code
stringlengths 1
13.8M
|
---|
context("encrypt_data")
test_that("encrypt_data", {
pair <- keypair_openssl("pair1", "pair1")
r <- openssl::rand_bytes(20)
v <- encrypt_data(r, pair, NULL)
expect_is(v, "raw")
expect_identical(decrypt_data(v, pair, NULL), r)
})
test_that("encrypt_object", {
pair <- keypair_openssl("pair1", "pair1")
r <- list(runif(10), sample(20))
v <- encrypt_object(r, pair, NULL)
expect_is(v, "raw")
expect_identical(decrypt_object(v, pair), r)
})
test_that("encrypt_string", {
pair <- keypair_openssl("pair1", "pair1")
r <- paste(sample(letters), collapse = "")
v <- encrypt_string(r, pair)
expect_is(v, "raw")
expect_identical(decrypt_string(v, pair), r)
})
test_that("encrypt_file", {
pair <- keypair_openssl("pair1", "pair1")
path1 <- tempfile()
path2 <- tempfile()
path3 <- tempfile()
on.exit(suppressWarnings(file.remove(path1, path2, path3)))
write.csv(mtcars, path1)
encrypt_file(path1, pair, path2)
expect_true(file.exists(path2))
expect_false(unname(tools::md5sum(path1)) == unname(tools::md5sum(path2)))
decrypt_file(path2, pair, path3)
expect_true(file.exists(path3))
expect_identical(unname(tools::md5sum(path1)),
unname(tools::md5sum(path3)))
})
test_that("input validation", {
key <- key_sodium(sodium::keygen())
expect_error(encrypt_data(iris, key),
"Expected a raw vector")
expect_error(encrypt_string(raw(10), key),
"must be a scalar character")
expect_error(encrypt_string(letters, key),
"must be a scalar character")
})
test_that("decrypt_data from file", {
key <- key_sodium(sodium::keygen())
path <- tempfile()
r <- sodium::random(20)
encrypt_data(r, key, path)
expect_identical(decrypt_data(path, key), r)
expect_error(decrypt_data(tempfile(), key),
"must be a file that exists")
}) |
library(norm2)
set.seed(1234)
simdata <- data.frame(
Y1=rnorm(10), Y2=rnorm(10), Y3=rnorm(10), X1=rnorm(10) )
simdata$Y3[7] <- simdata$Y2[3]<- NA
emResult <- emNorm( cbind(Y1,Y2,Y3) ~ X1, data=simdata )
imp <- impNorm( emResult, method="predict")
print( round( imp, 5 ) )
set.seed(1234)
imp <- impNorm( emResult, method="random")
print( round( imp, 5 ) )
data(marijuana)
emResult <- emNorm( marijuana, prior="ridge", prior.df=0.5 )
set.seed(23)
imp <- impNorm( emResult, method="random")
print( round( imp, 5 ) )
data(cholesterol)
emResult <- emNorm(cholesterol)
set.seed(23)
imp1 <- impNorm( emResult )
print( imp1 )
set.seed(23)
imp2 <- impNorm( cbind(Y1,Y2,Y3)~1, data=cholesterol,
param=emResult$param )
print( imp2 )
set.seed(23)
imp3 <- impNorm( cholesterol, param=emResult$param )
print( imp3 )
print( all( imp1 == imp2 ) )
print( all( imp1 == imp3 ) ) |
as.repeatedTrain <- function(x) {
if (!is.list(x))
x <- list(x)
if (!is.null(names(x))) {
xN <- names(x)
} else {
xN <- paste("stim.",1:length(x))
}
x <- lapply(x, as.spikeTrain)
names(x) <- xN
class(x) <- "repeatedTrain"
x
}
is.repeatedTrain <- function(x) {
if (!("repeatedTrain" %in% class(x))) return(FALSE)
if (!all(sapply(x,is.spikeTrain))) return(FALSE)
return(TRUE)
}
raster <- function(x,
stimTimeCourse = NULL,
colStim = "grey80",
xlim, pch, xlab, ylab, main,
...) {
do.call(plot.repeatedTrain,as.list(match.call()[-1]))
}
plot.repeatedTrain <- function (x,
stimTimeCourse = NULL,
colStim = "grey80",
xlim, pch, xlab, ylab, main,
...) {
if (!is.repeatedTrain(x)) x <- as.repeatedTrain(x)
nbTrains <- length(x)
if (missing(xlim))
xlim <- c(0, ceiling(max(sapply(x, max))))
if (missing(xlab))
xlab <- "Time (s)"
if (missing(ylab))
ylab <- "trial"
if (missing(main))
main <- paste(deparse(substitute(x)), "raster")
if (missing(pch))
pch <- ifelse(nbTrains <= 20, "|", ".")
oldpar <- par(mar = c(5, 4, 2, 1))
on.exit(par(oldpar))
acquisitionDuration <- max(xlim)
plot(c(0, acquisitionDuration), c(0, nbTrains + 1), type = "n",
xlab = xlab, ylab = ylab, xlim = xlim, ylim = c(1, nbTrains +
1), bty = "n", main = main, ...)
if (!is.null(stimTimeCourse)) {
rect(stimTimeCourse[1], 0.1, stimTimeCourse[2], nbTrains +
0.9, col = colStim, lty = 0)
}
invisible(sapply(1:nbTrains, function(idx) points(x[[idx]],
numeric(length(x[[idx]])) + idx, pch = pch)))
axis(2, at = 1:nbTrains)
axis(1)
}
plot.psth <- function(x,
stimTimeCourse = NULL,
colStim = "grey80",
colCI = NULL,
xlab, ylab, main, xlim,
ylim, lwd = 2, col = 1,
...) {
if (!is.null(stimTimeCourse)) {
if (length(stimTimeCourse) != 2)
stop(paste(deparse(substitute(stimTimeCourse)),
"should be a vector with 2 elements.")
)
}
if (missing(xlab))
xlab <- "Time (s)"
if (missing(ylab))
ylab <- "Freq (Hz)"
if (missing(main)) {
nameList <- deparse(x$call[["repeatedTrain"]])
main <- paste(nameList, "PSTH")
}
withCI <- !is.null(x$ciUp)
originalBreaksArg <- x$call[["breaks"]]
if (!is.null(originalBreaksArg) && (length(eval(originalBreaksArg))==2))
smoothOne <- TRUE
else
smoothOne <- FALSE
if (missing(xlim)) {
if (!smoothOne) xlim <- range(x$breaks)
else xlim <- range(x$mids) + c(-0.5,0.5)*x$breaks["step"]
}
if (missing(ylim))
ylim <- c(0, ifelse(withCI, max(x$ciUp), max(x$freq)))
plot(xlim,
ylim,
type = "n",
xlab = xlab,
ylab = ylab,
main = main,
xlim = xlim,
ylim = ylim,
...)
if (!is.null(stimTimeCourse)) {
rect(stimTimeCourse[1], 0, stimTimeCourse[2], ylim[2],
col = colStim, lty = 0)
}
if (withCI) {
if (is.null(colCI)) {
if (!smoothOne) {
sapply(1:length(x$mids),
function(idx)
segments(x$breaks[idx], x$ciLow[idx],
x$breaks[idx + 1], x$ciLow[idx],
lty = 2)
)
sapply(1:length(x$mids),
function(idx)
segments(x$breaks[idx], x$ciUp[idx],
x$breaks[idx + 1], x$ciUp[idx],
lty = 2)
)
} else {
lines(x$mids, x$ciLow, lty = 2)
lines(x$mids, x$ciUp, lty = 2)
}
} else {
if (!smoothOne) {
sapply(1:length(x$mids),
function(idx)
rect(x$breaks[idx], x$ciLow[idx],
x$breaks[idx + 1], x$ciUp[idx],
lty = 0, col = colCI))
} else {
polygon(c(x$mids, rev(x$mids)), c(x$ciLow, rev(x$ciUp)),
col = colCI, border = NA)
}
}
}
if (!smoothOne) {
invisible(sapply(1:length(x$mids),
function(idx) {
segments(x$breaks[idx], x$freq[idx],
x$breaks[idx + 1], x$freq[idx],
lwd = lwd, col = col)
if (idx == 1)
segments(x$breaks[idx], 0, x$breaks[idx],
x$freq[idx], lwd = lwd, col = col)
if (idx != length(x$mids)) {
segments(x$breaks[idx + 1],
x$freq[idx],
x$breaks[idx + 1],
x$freq[idx + 1],
lwd = lwd,
col = col)
} else {
segments(x$breaks[idx + 1],
x$freq[idx],
x$breaks[idx + 1],
0, lwd = lwd, col = col)
}
}
)
)
} else {
lines(x$mids, x$freq, col = col, lwd = lwd)
}
abline(h = 0)
}
psth <- function (repeatedTrain,
breaks=20,
include.lowest = TRUE,
right = TRUE,
plot = TRUE,
CI = 0.95,
...
) {
if (!is.repeatedTrain(repeatedTrain))
repeatedTrain <- as.repeatedTrain(repeatedTrain)
if (!inherits(breaks,"numeric"))
stop("breaks should be a numeric.")
nbTrials <- length(repeatedTrain)
breaksName <- deparse(substitute(breaks))
l <- floor(min(sapply(repeatedTrain,function(l) l[1])))
r <- ceiling(max(sapply(repeatedTrain,function(l) l[length(l)])))
if (length(breaks) != 2) {
if (length(breaks)==1) breaks <- seq(l,r,length.out=breaks+1)
counts <- t(sapply(repeatedTrain,
function(train)
hist(x = unclass(train), breaks = breaks,
include.lowest = include.lowest,
right = right, plot = FALSE)$counts
)
)
h <- list(breaks = breaks,
counts = counts,
mids = breaks[-length(breaks)]+diff(breaks)/2)
f <- colSums(counts)/(nbTrials * diff(h$breaks))
} else {
if (is.null(names(breaks))) {
bw <- breaks[1]
step <- breaks[2]
} else {
if (!all(names(breaks) %in% c("bw", "step")))
stop(paste(breaksName, "should have named elements: bw and step"))
bw <- as.numeric(breaks["bw"])
step <- as.numeric(breaks["step"])
}
bwh <- bw/2
breaks <- c(bw = bw, step = step)
mids <- seq(bwh, r - bwh, by = step)
counts <- t(sapply(repeatedTrain,
function(train)
sapply(mids,
function(m)
ifelse(right,
sum(m - bwh < train & train <= m + bwh),
sum(m - bwh <= train & train < m + bwh))
)
)
)
h <- list(breaks = breaks,
counts = counts,
mids = mids)
f <- colSums(counts)/(nbTrials * bw)
}
if (!is.null(CI)) {
expectedCount <- colSums(counts)
ciUp <- sapply(1:length(h$mids),
function(idx) qpois(1-(1-CI)/2,expectedCount[idx])
)
if (length(breaks) > 2) ciUp <- ciUp / (nbTrials * diff(h$breaks))
else ciUp <- ciUp / (nbTrials * bw)
ciLow <- sapply(1:length(h$mids),
function(idx) qpois((1-CI)/2,expectedCount[idx])
)
if (length(breaks) > 2) ciLow <- ciLow / (nbTrials * diff(h$breaks))
else ciLow <- ciLow / (nbTrials * bw)
}
if (!is.null(CI)) {
result <- list(freq = f, ciUp = ciUp, ciLow = ciLow,
breaks = h$breaks, mids = h$mids, counts = h$counts,
nbTrials = nbTrials, call = match.call())
class(result) <- "psth"
} else {
result <- list(freq = f, ciUp = NULL, ciLow = NULL,
breaks = h$breaks, mids = h$mids, counts = h$counts,
nbTrials = nbTrials, call = match.call())
class(result) <- "psth"
}
if (plot) {
plot(result,...)
} else {
return(result)
}
}
print.repeatedTrain <- function(x,...) {
main <- "Raster plot"
plot(x,main=main,...)
}
summary.repeatedTrain <- function(object,
responseWindow,
acquisitionWindow,
...) {
repeatedTrain <- object
rm(object)
nbRepeates <- length(repeatedTrain)
if (missing(acquisitionWindow))
acquisitionWindow <- c(min(sapply(repeatedTrain,function(l) floor(l[1]))),
max(sapply(repeatedTrain,function(l) ceiling(l[length(l)])))
)
acquisitionDuration <- diff(acquisitionWindow)
if (!missing(responseWindow)) {
if (length(responseWindow) != 2) stop("Wrong responseWindow.")
if ((responseWindow[1] < acquisitionWindow[1]) ||
(responseWindow[2] > acquisitionWindow[2]) )
warning("responseWindow does not make much sense.")
stimDuration <- diff(responseWindow)
} else {
responseWindow <- NULL
stimDuration <- NULL
}
theStats <- sapply(repeatedTrain,
function(l) {
nb <- length(l)
nu <- nb/acquisitionDuration
result <- c(nb=nb,nu=nu)
if (!is.null(stimDuration)) {
goodOnes <- responseWindow[1] < l & l < responseWindow[2]
nbR <- sum(goodOnes)
nuR <- nbR/stimDuration
result <- c(result,c(nbR=nbR,nuR=nuR))
}
result
}
)
stationarityTest <- chisq.test(theStats["nb",],...)$p.value
if (!is.null(stimDuration)) {
stationarityTestR <- chisq.test(theStats["nbR",],...)$p.value
} else {
stationarityTestR <- NULL
}
result <- list(nbRepeates=nbRepeates,
acquisitionWindow=acquisitionWindow,
responseWindow=responseWindow,
stats=theStats,
globalPval=stationarityTest,
responsePval=stationarityTestR)
class(result) <- "summary.repeatedTrain"
return(result)
}
print.summary.repeatedTrain <- function(x,...) {
obj <- x
rm(x)
cat(paste(obj$nbRepeates, " repeats in the object.\n"))
print(t(obj$stats))
cat(paste("The p value of the chi 2 test for the stationarity accross repeats is:\n",
obj$globalPval,
".\n",sep="")
)
if (!is.null(obj$responseWindow))
cat(paste("The p value of the chi 2 test for the stationarity accross repeats during the stim. is:\n",
obj$responsePval,
".\n",sep="")
)
}
df4counts <- function(repeatedTrain,
breaks=length(repeatedTrain)
) {
if (!is.repeatedTrain(repeatedTrain))
repeatedTrain <- as.repeatedTrain(repeatedTrain)
nbTrials <- length(repeatedTrain)
breaksName <- deparse(substitute(breaks))
trainNames <- names(repeatedTrain)
if (is.null(trainNames))
trainNames <- paste("trial",1:nbTrials)
l <- floor(min(sapply(repeatedTrain,function(l) l[1])))
r <- ceiling(max(sapply(repeatedTrain,function(l) l[length(l)])))
if (length(breaks) == 1) {
breaks <- seq(l,r,length.out=breaks+1)
}
counts <- sapply(repeatedTrain,
function(train)
hist(x=train[l <= train & train <= r],
breaks=breaks, plot=FALSE)$counts
)
mids <- breaks[-length(breaks)]+diff(breaks)/2
nb <- length(mids)
data.frame(Count=as.numeric(counts),
Bin=factor(rep(1:nb,nbTrials)),
Trial=factor(rep(trainNames,each=nb)),
Rate=as.numeric(counts)/diff(breaks),
Time=rep(mids,nbTrials)
)
} |
view_step <- function(pause_length = 1, step_length = 1, nsteps = NULL, look_ahead = pause_length,
delay = 0, include = TRUE, ease = 'cubic-in-out', wrap = TRUE,
pause_first = FALSE, fixed_x = FALSE, fixed_y = FALSE,
exclude_layer = NULL, aspect_ratio = 1) {
ggproto(NULL, ViewStep,
fixed_lim = list(x = fixed_x, y = fixed_y),
exclude_layer = exclude_layer,
aspect_ratio = aspect_ratio,
params = list(
pause_length = pause_length,
step_length = step_length,
nsteps = nsteps,
look_ahead = look_ahead,
delay = delay,
include = include,
ease = ease,
wrap = wrap,
pause_first = pause_first
)
)
}
ViewStep <- ggproto('ViewStep', View,
setup_params = function(self, data, params) {
nsteps <- params$nstep %||% max(length(params$step_length), length(params$pause_length))
step_length <- rep(params$step_length, length.out = nsteps)
pause_length <- rep(params$pause_length, length.out = nsteps)
look_ahead <- rep(params$look_ahead, length.out = nsteps)
if (!params$pause_first) {
pause_length <- c(0, pause_length)
step_length <- c(step_length, 0)
look_ahead <- c(look_ahead, look_ahead[1])
if (!params$wrap) pause_length[length(pause_length)] <- 0
} else if (!params$wrap) {
step_length[length(step_length)] <- 0
}
params$step_length <- step_length
params$pause_length <- pause_length
params$look_ahead <- look_ahead
params
},
train = function(self, data, params) {
nframes <- params$nframes
if (params$wrap) nframes <- nframes + 1
frames <- distribute_frames(params$pause_length, params$step_length, nframes)
if (!params$pause_first) {
frames$transition_length[length(frames$transition_length)] <- frames$transition_length[1]
}
look_ahead <- round(params$look_ahead * frames$mod)
breaks <- cumsum(frames$static_length + frames$transition_length) + look_ahead
if (params$wrap) {
breaks <- breaks %% nframes
breaks[breaks == 0] <- 1L
breaks <- if (params$pause_first) {
c(breaks[length(breaks)], breaks)
} else {
c(breaks[length(breaks) - 1], breaks)
}
} else {
breaks <- c(1, pmin(breaks, params$nframes))
}
data <- data[!seq_along(data) %in% params$excluded_layers]
windows <- lapply(breaks, function(i) {
data <- lapply(data, `[[`, i)
ranges <- self$get_ranges(data,
params)
x_range <- range(unlist(lapply(ranges, `[[`, 'x')))
y_range <- range(unlist(lapply(ranges, `[[`, 'y')))
data.frame(xmin = x_range[1], xmax = x_range[2], ymin = y_range[1], ymax = y_range[2])
})
if (params$include) {
windows <- lapply(seq_along(windows), function(i) {
if (i == 1) {
if (!params$wrap) return(windows[[i]])
else i <- c(length(windows), i)
} else {
i <- c(i - 1, i)
}
range <- do.call(rbind, windows[i])
data.frame(xmin = min(range$xmin), xmax = max(range$xmax), ymin = min(range$ymin), ymax = max(range$ymax))
})
}
frame_ranges <- if (params$wrap) {
if (params$pause_first) {
windows[[length(windows)]]
} else {
windows[[length(windows) - 1]]
}
} else {
windows[[1]]
}
for (i in seq_len(length(windows) - 1)) {
if (frames$static_length[i] != 0) {
frame_ranges <- keep_state(frame_ranges, frames$static_length[i])
}
if (frames$transition_length[i] != 0) {
frame_ranges <- self$window_transition(frame_ranges, windows[[i + 1]], frames$transition_length[i], params)
}
}
frame_ranges <- frame_ranges[frame_ranges$.frame <= params$nframes, ]
frame_ranges$.frame <- (frame_ranges$.frame + round(params$delay * frames$mod)) %% params$nframes
frame_ranges <- frame_ranges[order(frame_ranges$.frame), ]
params$frame_ranges <- frame_ranges
params
},
set_view = function(self, plot, params, i) {
range <- params$frame_ranges[i, ]
self$reset_limits(plot, c(range$xmin, range$xmax), c(range$ymin, range$ymax))
},
window_transition = function(windows, next_window, n, params) {
tween_state(windows, next_window, params$ease, n)
}
) |
context("Kernel loader")
test_that("Kernel translator",{
expect_true(is.kern_linear(kernel_translator(1:3, kernel = "linear")))
res <- kernel_translator(1:3, kernel = "fbm,0.7")
expect_true(is.kern_fbm(res))
expect_equal(get_hyperparam(res), 0.7)
res <- kernel_translator(1:3, kernel = "se,0.7")
expect_true(is.kern_se(res))
expect_equal(get_hyperparam(res), 0.7)
res1 <- kernel_translator(1:3, kernel = "poly,0.7")
res2 <- kernel_translator(1:3, kernel = "poly3")
res3 <- kernel_translator(1:3, kernel = "poly4,0.9")
expect_true(all(is.kern_poly(res1), is.kern_poly(res2), is.kern_poly(res3)))
expect_equal(get_hyperparam(res1), 0.7)
expect_equal(get_hyperparam(res2), 0)
expect_equal(get_hyperparam(res3), 0.9)
expect_equal(get_polydegree(res1), 2)
expect_equal(get_polydegree(res2), 3)
expect_equal(get_polydegree(res3), 4)
})
test_that("Kernel to param to theta", {
kernels <- c("linear", "fbm,0.7", "se,2", "poly3,0.15", "pearson")
which.pearson <- c(F, F, F, F, T)
poly.degree <- c(NA, NA, NA, 3, NA)
lambda <- rep(1, 5)
psi <- 1
names(psi) <- "psi"
res1 <- kernel_to_param(kernels, lambda)
res2 <- param_to_theta(res1, list(est.lambda = c(FALSE, TRUE),
est.hurst = TRUE,
est.lengthscale = FALSE,
est.offset = TRUE,
est.psi = TRUE))
res3 <- theta_to_param(res2$theta, list(thetal = res2,
which.pearson = which.pearson,
poly.degree = poly.degree))
expect_equal(kernels, res3$kernels)
expect_equal(length(collapse_param(res3)$param), 8)
expect_equal(theta_to_psi(res2$theta, list(thetal = res2)), psi)
expect_equal(res1, res3)
})
test_that("Incorrect specification of kernels", {
y <- x <- 1:3
expect_warning(mod <- kernL(y, x, x, x, kernel = c("poly", "se")))
expect_warning(mod <- kernL(y, x, kernel = c("poly", "se")))
})
test_that("Interactions", {
y <- x <- 1:3
mod1 <- kernL(y, x, x, x, interactions = c("1:2", "1:2:3"))
mod2 <- kernL(stack.loss ~ . ^ 2, stackloss)
expect_true(is.ipriorKernel(mod1))
expect_equal(mod1$no.int, 1)
expect_equal(mod1$no.int.3plus, 1)
expect_true(is.ipriorKernel(mod2))
expect_equal(mod2$no.int, 3)
expect_equal(mod2$no.int.3plus, 0)
})
test_that("Fixed hyperparameter option", {
y <- x <- 1:3
mod <- kernL(y, x, kernel = "fbm,0.8", fixed.hyp = TRUE)
expect_true(is.ipriorKernel(mod))
expect_false(all(unlist(mod$estl)))
})
test_that("Formula input", {
dat <- gen_smooth(3)
mod1 <- kernL(y ~ ., dat, kernel = "poly")
mod2 <- kernL(dat$y, dat$X, kernel = "poly")
tmp1 <- capture.output(print(mod1))
tmp2 <- capture.output(print(mod2))
expect_equal(tmp1[-3], tmp2[-3])
})
test_that("get_Hlam()", {
y <- x1 <- 1:3
x2 <- factor(1:3)
x3 <- 4:6
mod1 <- kernL(y, x1, x2, x3, kernel = c("se", "pearson", "fbm"))
theta1 <- mod1$thetal$theta
mod2 <- kernL(y, x1, x2, x3, kernel = c("se", "pearson", "fbm"),
est.hurst = TRUE, est.lengthscale = TRUE)
theta2 <- mod2$thetal$theta
expect_equivalent(get_Hlam(mod1, theta1, theta.is.lambda = TRUE),
get_Hlam(mod2, theta2))
})
test_that("Training samples specified", {
y <- x <- 1:10
mod <- kernL(y, x, train.samp = 1:5)
expect_equal(mod$n, 5)
expect_equal(mod$y.test, mod$Xl.test[[1]])
mod <- kernL(y ~ x, data.frame(y, x), train.samp = 1:5)
expect_equal(mod$n, 5)
expect_equivalent(mod$y.test, mod$Xl.test[[1]])
})
test_that("Test samples specified", {
y <- x <- 1:10
mod <- kernL(y, x, test.samp = 1:5)
expect_equal(mod$n, 5)
expect_equal(mod$y.test, mod$Xl.test[[1]])
mod <- kernL(y ~ x, data.frame(y, x), test.samp = 1:5)
expect_equal(mod$n, 5)
expect_equivalent(mod$y.test, mod$Xl.test[[1]])
})
test_that("Warn if training samples not correct", {
y <- x <- 1:10
expect_warning(kernL(y, x, train.samp = 1:200))
expect_warning(kernL(y, x, train.samp = 250))
})
test_that("Stop if train.samp and test.samp both specified", {
y <- x <- 1:10
expect_error(kernL(y, x, train.samp = 1:5, test.samp = 1:5))
}) |
.correct_r_uvdrr <- function(rxyi, qxa = 1, qyi = 1, ux = 1){
rxpi <- rxyi / qyi
(rxpi / (ux * sqrt((1 / ux^2 - 1) * rxpi^2 + 1))) / qxa
}
.attenuate_r_uvdrr <- function(rtpa, qxa = 1, qyi = 1, ux = 1){
rxpa <- rtpa * qxa
ux * rxpa / sqrt((ux^2 - 1) * rxpa^2 + 1) * qyi
}
.correct_r_uvirr <- function(rxyi, qxi = 1, qyi = 1, ut = 1){
rtpi <- rxyi / (qxi * qyi)
rtpi / (ut * sqrt((1 / ut^2 - 1) * rtpi^2 + 1))
}
.attenuate_r_uvirr <- function(rtpa, qxi = 1, qyi = 1, ut = 1){
ut * rtpa / sqrt((ut^2 - 1) * rtpa^2 + 1) * (qxi * qyi)
}
.correct_r_bvdrr <- function(rxyi, qxa = 1, qya = 1, ux = 1, uy = 1){
rtpa <- ((rxyi^2 - 1) / (2 * rxyi) * ux * uy + sign(rxyi) * sqrt((1 - rxyi^2)^2 / (4 * rxyi^2) * ux^2 * uy^2 + 1)) / (qxa * qya)
rtpa[is.na(rtpa)] <- 0
rtpa
}
.attenuate_r_bvdrr <- function(rtpa, qxa = 1, qya = 1, ux = 1, uy = 1){
(sqrt((1/(qya * qxa) - rtpa^2 * qya * qxa)^2 + 4 * rtpa^2 * ux^2 * uy^2) + rtpa^2 * qya * qxa - 1/(qya * qxa))/(2 * rtpa * ux * uy)
}
.lambda_bvirr <- function(ux, uy, sign_rxz = 1, sign_ryz = 1){
ux_prime <- ux
uy_prime <- uy
ux_prime[ux > 1 / ux] <- 1 / ux[ux > 1 / ux]
uy_prime[uy > 1 / uy] <- 1 / uy[uy > 1 / uy]
sign_x <- sign(ux - 1)
sign_y <- sign(uy - 1)
sign_x <- sign(1 - ux)
sign_y <- sign(1 - uy)
sign_x * sign_y * sign(sign_rxz * sign_ryz) * (sign_x * ux_prime + sign_y * uy_prime) / (ux_prime + uy_prime)
}
.correct_r_bvirr <- function(rxyi, qxa = 1, qya = 1, ux = 1, uy = 1, sign_rxz = 1, sign_ryz = 1){
lambda <- .lambda_bvirr(ux = ux, uy = uy, sign_rxz = sign_rxz, sign_ryz = sign_ryz)
(rxyi * ux * uy + lambda * sqrt(abs(1 - ux^2) * abs(1 - uy^2))) / (qxa * qya)
}
.attenuate_r_bvirr <- function(rtpa, qxa = 1, qya = 1, ux = 1, uy = 1, sign_rxz = 1, sign_ryz = 1){
lambda <- .lambda_bvirr(ux = ux, uy = uy, sign_rxz = sign_rxz, sign_ryz = sign_ryz)
(rtpa * qxa * qya - lambda * sqrt(abs(1 - ux^2) * abs(1 - uy^2))) / (ux * uy)
}
.correct_r_rb <- function(rxyi, qx = 1, qy = 1, ux = 1){
rxyi / (qx * qy * sqrt(ux + rxyi^2 * (1 - ux^2)))
}
.attenuate_r_rb <- function(rtpa, qx = 1, qy = 1, ux = 1){
(rtpa * qy * qx * ux) / sqrt(rtpa^2 * qy^2 * qx^2 * ux^2 - rtpa^2 * qy^2 * qx^2 + 1)
} |
panel.xblocks <- function(x, ...)
UseMethod("panel.xblocks")
panel.xblocks.default <-
function (x, y, ..., col = NULL, border = NA,
height = unit(1, "npc"),
block.y = unit(0, "npc"), vjust = 0,
name = "xblocks", gaps = FALSE,
last.step = median(diff(tail(x))))
{
if (is.function(y))
y <- y(x)
x <- as.numeric(x)
if (length(x) == 0) return()
if (is.unsorted(x, na.rm = TRUE))
stop("'x' should be ordered (increasing)")
if (is.na(last.step))
last.step <- 0
if (gaps) {
.Deprecated(msg = "The 'gaps' argument is deprecated; use panel.xblocks(time(z), is.na(z))")
y <- is.na(y)
}
if (is.logical(y)) {
y <- y
} else if (is.numeric(y)) {
y <- !is.na(y)
} else {
y <- as.character(y)
}
NAval <-
if (is.character(y)) "" else FALSE
y[is.na(y)] <- NAval
yrle <- rle(y)
blockCol <- yrle$values
blockCol[blockCol == NAval] <- NA
if (is.logical(y) && is.null(col))
col <- trellis.par.get("plot.line")$col
if (length(col) > 0) {
if (is.character(col))
col[col == ""] <- NA
ok <- !is.na(blockCol)
blockCol[ok] <- rep(col, length = sum(ok))
}
idxBounds <- cumsum(c(1, yrle$lengths))
idxStart <- head(idxBounds, -1)
idxEnd <- tail(idxBounds, -1)
idxEnd[length(idxEnd)] <- length(y)
blockStart <- x[idxStart]
blockEnd <- x[idxEnd]
blockEnd[length(blockEnd)] <- tail(blockEnd, 1) + last.step
blockWidth <- blockEnd - blockStart
grid::grid.rect(x = blockStart, width = blockWidth,
y = block.y, height = height,
hjust = 0, vjust = vjust,
default.units = "native", name = name,
gp = gpar(fill = blockCol, col = border, ...))
}
panel.xblocks.ts <-
function(x, y = x, ...)
{
if (!is.function(y)) y <- as.vector(y)
panel.xblocks(as.vector(time(x)), y, ...)
}
panel.xblocks.zoo <-
function(x, y = x, ...)
{
if (!is.function(y)) y <- zoo::coredata(y)
panel.xblocks(zoo::index(x), y, ...)
} |
geom_segment_3d <- function(mapping = NULL, data = NULL,
stat = "identity", position = "identity",
...,
arrow = NULL,
arrow.fill = NULL,
lineend = "butt",
linejoin = "round",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
extrude = FALSE,
material = list(),
keep2d = FALSE) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomSegment3d,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
arrow = arrow,
arrow.fill = arrow.fill,
lineend = lineend,
linejoin = linejoin,
na.rm = na.rm,
extrude = extrude,
material = material,
keep2d = keep2d,
...
)
)
}
GeomSegment3d <- ggplot2::ggproto(
"GeomSegment3d",
ggplot2::Geom,
required_aes = c("x", "y", "z", "xend", "yend", "zend"),
non_missing_aes = c("linetype", "size", "shape"),
default_aes = augment_aes(
extrusion_aesthetics,
aes(
colour = "black",
size = 0.5,
linetype = 1,
alpha = NA
)
),
draw_panel = function(data, panel_params, coord, arrow = NULL, arrow.fill = NULL,
lineend = "butt", linejoin = "round", na.rm = FALSE,
extrude = FALSE, material = list(), keep2d = FALSE) {
if (isTRUE(keep2d)) {
grob2d <- GeomSegment$draw_panel(data, panel_params, coord, arrow = arrow,
arrow.fill = arrow.fill, lineend = lineend,
linejoin = linejoin, na.rm = na.rm)
} else {
grob2d <- ggplot2::zeroGrob()
}
data <- remove_missing(
data, na.rm = na.rm,
c("x", "y", "xend", "yend", "linetype", "size", "shape"),
name = "geom_segment"
)
if (empty(data)) return(ggplot2::zeroGrob())
if (!coord$is_linear()) {
abort("GeomSegment3d: Non-linear coord not handled. (yet!)")
}
coord <- coord$transform(data, panel_params)
arrow.fill <- arrow.fill %||% coord$colour
x <- with(coord, interleave(x, xend))
y <- with(coord, interleave(y, yend))
z <- with(coord, interleave(z, zend))
color <- with(coord, rep(colour, each = 2))
size <- with(coord, rep(size , each = 2))
alpha <- with(coord, rep(alpha , each = 2))
alpha <- ifelse(is.na(alpha), 1, alpha)
rgl_call <- cryogenic::capture_call(
segments3d(
x = x,
y = y,
z = z,
color = color,
alpha = alpha,
lwd = coord$size[1] * ggplot2::.pt
),
defaults = material
)
segments_grob <- snowcrash::encode_robj_to_rasterGrob(rgl_call)
extrusion <- list(faces_grob = ggplot2::zeroGrob(), edges_grob = ggplot2::zeroGrob())
if (isTRUE(extrude)) {
ex_data <- coord
ex_data$id <- seq_len(nrow(ex_data))
ex_data2 <- ex_data
ex_data2$x <- ex_data2$xend
ex_data2$y <- ex_data2$yend
ex_data2$z <- ex_data2$zend
ex_data <- rbind(ex_data, ex_data2)
ex_data <- ex_data[order(ex_data$id),]
ex_data$id <- ceiling(seq_len(nrow(ex_data))/2)
extrusion <- create_extrusion(ex_data, closed = FALSE)
}
grid::grobTree(
grob2d,
segments_grob,
extrusion$faces_grob,
extrusion$edges_grob
)
},
draw_key = ggplot2::draw_key_path
) |
readResults = function(N = 0, rel = "UN", gzip = TRUE,
strPath = "", strVer = "", fileName = NULL){
if(is.null(fileName)){
if(nchar(strVer)==0){
fileName = sprintf("results-sim-%s-%d.csv", rel, N)
}else{
fileName = sprintf("results-sim-%s-%d-%s.csv", rel, N, strVer)
}
}
if(nchar(strPath)>0){
fileName = paste(strPath, fileName, sep = "")
}
if(gzip & !grepl("gz$", fileName))
fileName = paste(fileName, ".gz", sep = "")
res = matrix(scan(fileName, sep = ','), ncol = 3, byrow = T)
return(data.frame(sib = res[,1], pc = res[,2], ibs = res[,3]))
} |
printClustersFromLabels<-function(obj,labels)
{
N<-dim(obj$Qmat)[1]
clsIDVec<-sort(unique(obj$indexClsVec) )
if(missing(labels))
{
IDs<-1:N
for(cls in clsIDVec)
{
print("===============")
M<-sum(obj$indexClsVec == cls)
print(sprintf("ID%d, md%.2f, N%d",cls,obj$homoClusters[[cls]]$maxDiffAdmixRatio,M))
print(IDs[obj$indexClsVec == cls])
}
}else{
print("Overall labels")
print("===============")
str<-""
allLabelVec<-unique(labels)
countVec<-c()
for(label_itr in allLabelVec)
{
c1<-sum( labels == label_itr )
countVec<-c(countVec,c1)
str<-sprintf("%s%s(%d)",str,label_itr,c1)
}
print(str)
for(cls in clsIDVec)
{
print("===============")
currLabels<-labels[obj$indexClsVec == cls]
currLabelsMembers<-unique(currLabels)
print(sprintf("ID%d, md%.2f, N%d",cls,obj$homoClusters[[cls]]$maxDiffAdmixRatio,length(currLabels)))
str<-""
for(label_itr in currLabelsMembers)
{
c1<-sum( currLabels == label_itr )
c2<-countVec[allLabelVec == label_itr]
str<-sprintf("%s%s(%d/%d)",str,label_itr,c1,c2)
}
print(str)
}
}
} |
thetaHill <- function (x, k = NULL, x0 = NULL, w = NULL) {
if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector")
haveK <- !is.null(k)
if(haveK) {
if(!is.numeric(k) || length(k) == 0 || k[1] < 1) {
stop("'k' must be a positive integer")
} else k <- k[1]
} else if(!is.null(x0)) {
if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric")
else x0 <- x0[1]
} else stop("either 'k' or 'x0' must be supplied")
haveW <- !is.null(w)
if(haveW) {
if(!is.numeric(w) || length(w) != length(x)) {
stop("'w' must be numeric vector of the same length as 'x'")
}
if(any(w < 0)) stop("negative weights in 'w'")
if(any(i <- is.na(x))) {
x <- x[!i]
w <- w[!i]
}
order <- order(x)
x <- x[order]
w <- w[order]
} else {
if(any(i <- is.na(x))) x <- x[!i]
x <- sort(x)
}
.thetaHill(x, k, x0, w)
}
.thetaHill <- function (x, k = NULL, x0 = NULL, w = NULL) {
n <- length(x)
haveK <- !is.null(k)
haveW <- !is.null(w)
if(haveK) {
if(k >= n) stop("'k' must be smaller than the number of observed values")
x0 <- x[n-k]
} else {
if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'")
k <- length(which(x > x0))
}
if(haveW) {
w <- w[(n-k+1):n]
sum(w)/sum(w*(log(x[(n-k+1):n]) - log(x0)))
} else {
k/sum(log(x[(n-k+1):n]) - log(x0))
}
} |
topidx <- function(DEM, resolution, river=NULL) {
nrow <- dim(DEM)[1]
ncol <- dim(DEM)[2]
stopifnot(is(DEM, "matrix"),(is(river,"matrix") || is.null(river)))
if(min(as.vector(DEM[!is.na(DEM)])) < -9000)
stop("DEM contains unrealistic values (< -9000)")
if(is.null(river)) { river = rep(0,nrow*ncol)
} else { if(min(river) < 0) stop("Error: the object 'river' should only contain positive values") }
DEM[is.na(DEM)] <- -9999
result <- .C("c_topidx",
PACKAGE = "topmodel",
as.double(DEM),
as.integer(river),
as.integer(nrow),
as.integer(ncol),
as.double(resolution),
as.double(resolution),
result = double(length(DEM)*2))$result
atb <- matrix(result[1:(nrow*ncol)],nrow=nrow)
area <- matrix(result[(nrow*ncol+1):(nrow*ncol*2)],nrow=nrow)
atb[atb < -9] <- NA
area[area < -9] <- NA
return(list(atb = atb,area = area))
} |
summary.MangroveTree <-
function(object,...){
object$printSummary()
} |
subgroups <- function(las,
x,
select,
continuous,
breaks,
default_breaks = 4,
thresholds = c(-0.05, 0.05),
significance,
alpha = 0.01) {
if (!"lassie" %in% class(las)) {
stop("Invalid 'las' argument: must be a 'lassie' object")
}
x <- tryCatch(data.frame(x), error = function(c) {
stop("Invalid 'x' argument: must be convertible to a data.frame")
})
if (nrow(x) != nrow(las$data$raw)) {
stop("Invalid 'las' or 'x' argument: raw 'las' data.frame must have the same number of rows as 'x'. Check if you are not using two different data.frames")
}
raw <- x
if (missing(select) || is.null(select)) {
select <- colnames(raw)[! colnames(raw) %in% las$lassie_params$var]
}
x <- tryCatch(subset(raw, select = select), error = function(c) {
stop("Invalid 'select' argument: needs to be a vector of column numbers or column names")
})
select <- colnames(x)
if (any(select %in% las$lassie_params$var)) {
stop("Invalid 'select' argument: variable names in 'select' cannot correspond to variable names in 'las'")
}
if (missing(continuous) || is.null(continuous)) {
continuous <- NULL
}
continuous <- tryCatch(colnames(subset(raw, select = continuous)), error = function(c) {
stop("Invalid 'continuous' argument: needs to be a vector of column numbers or column names")
})
if (missing(breaks)) {
breaks <- NULL
}
if (!is.numeric(thresholds) || length(thresholds) != 2) {
stop("Invalid 'tresholds' argument: must be two numeric values")
}
if (thresholds[1] > thresholds[2]) {
thresholds <- sort(thresholds, decreasing = FALSE)
}
if ((missing(significance) || is.null(significance))) {
if ("permtest" %in% class(x)) significance <- TRUE
else significance <- FALSE
}
if (! "permtest" %in% class(las) && significance) {
warning("Invalid 'significance' argument: run permtest to take into account significance of values. Resuming subgroup analysis with 'significance' set to FALSE")
significance <- FALSE
}
if (significance && (!is.numeric(alpha) || alpha <= 0 || alpha >= 1)) {
stop("Invalid 'alpha' argument: must be a numeric between 0 and 1 non included")
}
measure <- las$lassie_params$measure
df <- reshape2::melt(las$local, value.name = "local")
pos <- df$local > thresholds[2]
neg <- df$local < thresholds[1]
if (significance) {
local_p <- reshape2::melt(las$local_p, value.name = "local_p")
df <- plyr::join(df, local_p, by = las$lassie_params$var)
pos <- pos & df$local_p <= alpha
neg <- neg & df$local_p <= alpha
}
ind <- !pos & !neg
df$subgroups <- NA_character_
assoc_levels <- c()
if (sum(pos) > 0) {
df$subgroups[pos] <- "Positive"
assoc_levels <- c(assoc_levels, "Positive")
}
if (sum(ind) > 0) {
df$subgroups[ind] <- "Independent"
assoc_levels <- c(assoc_levels, "Independent")
}
if (sum(neg) > 0) {
df$subgroups[neg] <- "Negative"
assoc_levels <- c(assoc_levels, "Negative")
}
if (length(assoc_levels) < 2) {
stop("Analysis requires at least two local association subgroups. Try setting less stringent 'thresholds' or 'alpha' level, or setting 'significance' to FALSE.")
}
df$subgroups <- factor(df$subgroups, levels = assoc_levels)
df <- plyr::join(las$data$pp, df, by = las$lassie_params$var)
na <- stats::na.action(las$data$pp)
x <- subset(x, subset = ! 1:nrow(x) %in% na)
df <- cbind(df$subgroups, x)
new_varname <- paste(las$lassie_params$var, collapse="_")
colnames(df)[1] <- new_varname
select <- c(select, new_varname)
lassie(df,
select = select,
continuous = continuous,
measure = measure,
breaks = breaks,
default_breaks = default_breaks)
} |
nlsfit <-
function(data, model=1, start=c(a=1,b=1,c=1,d=1, e=1)){
s=start
n=names(data)
d1 = as.data.frame(data[, 1])
d2 = as.data.frame(data[, -1])
f = function(h) {
data.frame(d1, d2[h])
}
h = length(d2)
h = 1:h
l = lapply(h, f)
R2 <- function(m) {
gl <- length(fitted(m)) - 1
sqt <- var((fitted(m) + resid(m))) * gl
r1 <- (sqt - deviance(m))/sqt
r1=round(r1,4)
return(r1)
}
R3 <- function(m) {
gl <- length(fitted(m)) - 1
sqt <- var((fitted(m) + resid(m))) * gl
r1 <- (sqt - deviance(m))/sqt
p1 <- (gl/((gl + 1) - (length(coef(m) + 1))) * (1 - r1))
r2 <- 1 - p1
r2=round(r2,4)
return(r2)
}
f1=function(data){names(data) = c("x", "y")
ml = lm(data[, 2] ~ data[, 1])
c1 = coef(ml)[[1]]
c2 = coef(ml)[[2]]
m=nls(y~a+b*x, data=data, start=list(a=c1,b=c2),control = nls.control(maxiter = 6000))
c=coef(m); s=summary(m); a=c[1];b=c[2];l=c(a,b,summary(m)[11][[1]][7], summary(m)[11][[1]][8], R2(m), R3(m),AIC(m), BIC(m)); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"p-value t.test for a", "p-value t.test for b",
"r-squared", "adjusted r-squared",
"AIC", "BIC")
return(l)}
f2=function(data){names(data) = c("x", "y")
mq = lm(data[, 2] ~ data[, 1] + I(data[, 1]^2))
c3 = coef(mq)[[1]]
c4 = coef(mq)[[2]]
c5 = coef(mq)[[3]]
m=nls(y~a+b*x+c*x^2, data=data, start=list(a=c3,b=c4,c=c5),control = nls.control(maxiter = 6000));c=coef(m); s=summary(m); a=c[1];b=c[2];c=c[3];pm = a - (b^2)/(4 * c)
pc = -0.5 * b/c; l=c(a,b,c,summary(m)[11][[1]][10], summary(m)[11][[1]][11], summary(m)[11][[1]][12], R2(m), R3(m),AIC(m), BIC(m), pm,pc); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"coefficient c", "p-value t.test for a", "p-value t.test for b",
"p-value t.test for c", "r-squared", "adjusted r-squared",
"AIC", "BIC","maximum or minimum value for y", "critical point in x")
return(l)
}
f3=function(data){names(data) = c("x", "y")
ml = lm(data[, 2] ~ data[, 1])
mq = lm(data[, 2] ~ data[, 1] + I(data[, 1]^2))
c1 = coef(ml)[[1]]
c2 = coef(ml)[[2]]
c3 = coef(mq)[[1]]
c4 = coef(mq)[[2]]
c5 = coef(mq)[[3]]
pc = -0.5 * c4/c5
ff=function(x){c3+c4*x+c5*x^2}
pp=ff(pc)
a=start[1]
b=start[2]
c=start[3]
a11=ifelse(a==1,pp,a)
b11=ifelse(b==1,c2,b)
c11=ifelse(c==1,pc,c)
m <- nls(y ~ a + b * (x - c) * (x <= c), start = list(a = a11,
b = b11, c = c11), data = data, control = nls.control(maxiter = 6000))
c=coef(m); a=c[1];b=c[2];c=c[3]
l=c(a,b,c,summary(m)[11][[1]][10], summary(m)[11][[1]][11], summary(m)[11][[1]][12], R2(m), R3(m),AIC(m), BIC(m), a,c); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"coefficient c", "p-value t.test for a", "p-value t.test for b",
"p-value t.test for c", "r-squared", "adjusted r-squared",
"AIC", "BIC","maximum or minimum value for y", "critical point in x")
return(l)
}
f4=function(data){names(data) = c("x", "y")
mq = lm(data[, 2] ~ data[, 1] + I(data[, 1]^2))
c3 = coef(mq)[[1]]
c4 = coef(mq)[[2]]
c5 = coef(mq)[[3]]
a=start[1]
b=start[2]
c=start[3]
a11=ifelse(a==1,c3,a)
b11=ifelse(b==1,c4,b)
c11=ifelse(c==1,c5,c)
m <- nls(y ~ (a + b * x + c * I(x^2)) * (x <= -0.5 *
b/c) + (a + I(-b^2/(4 * c))) * (x > -0.5 * b/c),
start = list(a = a11, b = b11, c = c11), data = data,
control = nls.control(maxiter = 6000))
c=coef(m); a=c[1];b=c[2];c=c[3]
pmm = (a + I(-b^2/(4 * c)))
pcc = -0.5 * b/c
l=c(a,b,c,summary(m)[11][[1]][10], summary(m)[11][[1]][11], summary(m)[11][[1]][12], R2(m), R3(m),AIC(m), BIC(m), pmm,pcc); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"coefficient c", "p-value t.test for a", "p-value t.test for b",
"p-value t.test for c", "r-squared", "adjusted r-squared",
"AIC", "BIC","maximum or minimum value for y", "critical point in x")
return(l)
}
f5=function(data){names(data) = c("x", "y")
fp=function(a,b,c,x,d){ifelse(x>=d,(a-c*d)+(b+c)*x, a+b*x)}
m=nls(y~fp(a,b,c,x,d), start=list(a=s[1],b=s[2],c=s[3], d=s[4]), data=data,control = nls.control(maxiter = 6000));c=coef(m); a=c[1];b=c[2];c1=c;c=c[3];d=c1[4]
l=c(a,b,c,d,summary(m)[11][[1]][13], summary(m)[11][[1]][14], summary(m)[11][[1]][15],summary(m)[11][[1]][16], R2(m), R3(m),AIC(m), BIC(m)); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"coefficient c","coefficient d", "p-value t.test for a", "p-value t.test for b",
"p-value t.test for c", "p-value t.test for d","r-squared", "adjusted r-squared",
"AIC", "BIC")
return(l)
}
f6=function(data){names(data) = c("x", "y")
m=nls(y~a*exp(b*x) ,start=list(a=s[1],b=s[2]),data=data,control = nls.control(maxiter = 6000));c=coef(m); a=c[1];b=c[2]
l=c(a,b,summary(m)[11][[1]][7], summary(m)[11][[1]][8], R2(m), R3(m),AIC(m), BIC(m)); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"p-value t.test for a", "p-value t.test for b",
"r-squared", "adjusted r-squared",
"AIC", "BIC")
return(l)
}
f7=function(data){names(data) = c("x", "y")
m=nls(y~a*(1+b*(exp(-c*x)))^-1, data=data, start=list(a=s[1],b=s[2],c=s[3]),control = nls.control(maxiter = 6000));c=coef(m); s=summary(m); a=c[1];b=c[2];c=c[3]; l=c(a,b,c,summary(m)[11][[1]][10], summary(m)[11][[1]][11], summary(m)[11][[1]][12], R2(m), R3(m),AIC(m), BIC(m)); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"coefficient c", "p-value t.test for a", "p-value t.test for b",
"p-value t.test for c", "r-squared", "adjusted r-squared",
"AIC", "BIC")
return(l)
}
f8=function(data){names(data) = c("x", "y")
m=nls(y~a*(1-b*(exp(-c*x)))^3, data=data, start=list(a=s[1],b=s[2],c=s[3]),control = nls.control(maxiter = 6000));c=coef(m); s=summary(m); a=c[1];b=c[2];c=c[3]; l=c(a,b,c,summary(m)[11][[1]][10], summary(m)[11][[1]][11], summary(m)[11][[1]][12], R2(m), R3(m),AIC(m), BIC(m)); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"coefficient c", "p-value t.test for a", "p-value t.test for b",
"p-value t.test for c", "r-squared", "adjusted r-squared",
"AIC", "BIC")
return(l)
}
f9=function(data){names(data) = c("x", "y")
m=nls(y~a*(1-b*(exp(-c*x))), data=data, start=list(a=s[1],b=s[2],c=s[3]),control = nls.control(maxiter = 6000));c=coef(m); s=summary(m); a=c[1];b=c[2];c=c[3]; l=c(a,b,c,summary(m)[11][[1]][10], summary(m)[11][[1]][11], summary(m)[11][[1]][12], R2(m), R3(m),AIC(m), BIC(m)); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"coefficient c", "p-value t.test for a", "p-value t.test for b",
"p-value t.test for c", "r-squared", "adjusted r-squared",
"AIC", "BIC")
return(l)
}
f10=function(data){names(data) = c("x", "y")
m=nls(y~a*exp(-b*exp(-c*x)), data=data, start=list(a=s[1],b=s[2],c=s[3]),control = nls.control(maxiter = 6000));c=coef(m); s=summary(m); a=c[1];b=c[2];c=c[3]; l=c(a,b,c,summary(m)[11][[1]][10], summary(m)[11][[1]][11], summary(m)[11][[1]][12], R2(m), R3(m),AIC(m), BIC(m)); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"coefficient c", "p-value t.test for a", "p-value t.test for b",
"p-value t.test for c", "r-squared", "adjusted r-squared",
"AIC", "BIC")
return(l)
}
f11=function(data){names(data) = c("x", "y")
m=nls(y~(a*x^b)*exp(-c*x), data=data, start=list(a=s[1],b=s[2],c=s[3]),control = nls.control(maxiter = 6000));c=coef(m); s=summary(m); a=c[1];b=c[2];c=c[3]; pm=a*(b/c)^b*exp(-b);pc=b/c;l=c(a,b,c,summary(m)[11][[1]][10], summary(m)[11][[1]][11], summary(m)[11][[1]][12], R2(m), R3(m),AIC(m), BIC(m), pm,pc); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"coefficient c", "p-value t.test for a", "p-value t.test for b",
"p-value t.test for c", "r-squared", "adjusted r-squared",
"AIC", "BIC","maximum or minimum value for y", "critical point in x")
return(l)
}
y1=c(25,24,26,28,30,31,27,26,25,24,23,24,22,21,22,20,21,19,18,17,18,18,16,17,15,16,14)
x1=c(15,15,15,75,75,75,135,135,135,195,195,195,255,255,255,315,315,315,375,375,375,435,435,435,
495,495,495)
dados=data.frame(x1,y1)
f12=function(data){names(data) = c("x", "y")
m=nls(y ~ a + b * (1 - exp(-c * x)), data=data, start=list(a=20,b=60,c=0.05),control = nls.control(maxiter = 6000));c=coef(m); s=summary(m); a=c[1];b=c[2];c=c[3]; l=c(a,b,c,summary(m)[11][[1]][10], summary(m)[11][[1]][11], summary(m)[11][[1]][12], R2(m), R3(m),AIC(m), BIC(m)); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b",
"coefficient c", "p-value t.test for a", "p-value t.test for b",
"p-value t.test for c", "r-squared", "adjusted r-squared",
"AIC", "BIC")
return(l)
}
tempo=c(0,12,24,36,48,60,72,84,96,108,120,144,168,192)
gas=c(0.002,3.8,8,14.5,16,16.5,17,17.4,17.9,18.1,18.8,19,19.2,19.3)
d=data.frame(tempo,gas)
m=nls(gas~(vf1/(1+exp(2-4*k1*(tempo-l))))+(vf2/(1+exp(2-4*k2*(tempo-l)))), start=list(vf1=19,vf2=4,k1=0.05,k2=0.005,l=5), data=d)
f13=function(data){names(data) = c("x", "y")
m=nls(y~(a/(1+exp(2-4*c*(x-e))))+(b/(1+exp(2-4*d*(x-e)))), start=list(a=s[1],b=s[2],c=s[3],d=s[4],e=s[5]), data=data,control = nls.control(maxiter = 6000));cc=coef(m); s=summary(m); a=cc[1];b=cc[2];c=cc[3];d=cc[4];e=cc[5]; l=c(a,b,c,d,e,summary(m)[11][[1]][16], summary(m)[11][[1]][17], summary(m)[11][[1]][18],summary(m)[11][[1]][19],summary(m)[11][[1]][20], R2(m), R3(m),AIC(m), BIC(m)); l=round(l,8);l=as.data.frame(l)
rownames(l)=c("coefficient a", "coefficient b", "coefficient c","coefficient d","coefficient e",
"p-value t.test for a", "p-value t.test for b",
"p-value t.test for c","p-value t.test for d","p-value t.test for e" ,"r-squared", "adjusted r-squared",
"AIC", "BIC")
return(l)
}
fun=list(f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13)
fu=fun[[model]]
r1=as.data.frame(lapply(l, fu))
names(r1)=n[-1]
models=c("y~a+b*x","y~a+b*x+c*x^2","y ~ a + b * (x - c) * (x <= c)","y ~ (a + b * x + c * I(x^2)) * (x <= -0.5 * b/c) + (a + I(-b^2/(4 * c))) * (x > -0.5 * b/c)","ifelse(x>=d,(a-c*d)+(b+c)*x, a+b*x)","y~a*exp(b*x)","y~a*(1+b*(exp(-c*x)))^-1","y~a*(1-b*(exp(-c*x)))^3","y~a*(1-b*(exp(-c*x)))",
"y~a*exp(-b*exp(-c*x)","y~(a*x^b)*exp(-c*x)","y ~ a + b * (1 - exp(-c * x))","y~(a/(1+exp(2-4*c*(x-e))))+(b/(1+exp(2-4*d*(x-e))))")
r2=models[model]
r=list(r2,r1);names(r)=c("Model","Parameters")
return(r)
} |
.runThisTest <- Sys.getenv("RunAllinsightTests") == "yes"
if (.runThisTest && Sys.getenv("USER") != "travis") {
if (requiet("testthat") && requiet("insight") && requiet("VGAM")) {
data("hunua")
m1 <- download_model("vgam_1")
m2 <- download_model("vgam_2")
test_that("model_info", {
expect_true(model_info(m1)$is_binomial)
expect_true(model_info(m2)$is_binomial)
expect_false(model_info(m1)$is_bayesian)
expect_false(model_info(m2)$is_bayesian)
})
test_that("find_predictors", {
expect_identical(find_predictors(m1), list(conditional = c("vitluc", "altitude")))
expect_identical(
find_predictors(m1, flatten = TRUE),
c("vitluc", "altitude")
)
expect_null(find_predictors(m1, effects = "random"))
expect_identical(find_predictors(m2), list(conditional = c("vitluc", "altitude")))
expect_identical(
find_predictors(m2, flatten = TRUE),
c("vitluc", "altitude")
)
expect_null(find_predictors(m2, effects = "random"))
})
test_that("find_random", {
expect_null(find_random(m1))
expect_null(find_random(m2))
})
test_that("get_random", {
expect_warning(get_random(m1))
expect_warning(get_random(m2))
})
test_that("find_response", {
expect_identical(find_response(m1), "agaaus")
expect_identical(find_response(m2), "cbind(agaaus, kniexc)")
expect_identical(find_response(m2, combine = FALSE), c("agaaus", "kniexc"))
})
test_that("get_response", {
expect_equal(get_response(m1), hunua$agaaus)
expect_equal(
get_response(m2),
data.frame(agaaus = hunua$agaaus, kniexc = hunua$kniexc)
)
})
test_that("get_predictors", {
expect_equal(colnames(get_predictors(m1)), c("vitluc", "altitude"))
expect_equal(colnames(get_predictors(m2)), c("vitluc", "altitude"))
})
test_that("link_inverse", {
expect_equal(link_inverse(m1)(.2), plogis(.2), tolerance = 1e-5)
expect_equal(link_inverse(m2)(.2), plogis(.2), tolerance = 1e-5)
})
test_that("get_data", {
expect_equal(nrow(get_data(m1)), 392)
expect_equal(nrow(get_data(m2)), 392)
expect_equal(colnames(get_data(m1)), c("agaaus", "vitluc", "altitude"))
expect_equal(
colnames(get_data(m2)),
c("agaaus", "kniexc", "vitluc", "altitude")
)
})
test_that("find_formula", {
expect_length(find_formula(m1), 1)
expect_equal(
find_formula(m1),
list(conditional = as.formula("agaaus ~ vitluc + s(altitude, df = 2)")),
ignore_attr = TRUE
)
expect_length(find_formula(m2), 1)
expect_equal(
find_formula(m2),
list(
conditional = as.formula("cbind(agaaus, kniexc) ~ vitluc + s(altitude, df = c(2, 3))")
),
ignore_attr = TRUE
)
})
test_that("find_terms", {
expect_equal(
find_terms(m1),
list(
response = "agaaus",
conditional = c("vitluc", "s(altitude, df = 2)")
)
)
expect_equal(
find_terms(m1, flatten = TRUE),
c("agaaus", "vitluc", "s(altitude, df = 2)")
)
expect_equal(
find_terms(m2),
list(
response = "cbind(agaaus, kniexc)",
conditional = c("vitluc", "s(altitude, df = c(2, 3))")
)
)
expect_equal(
find_terms(m2, flatten = TRUE),
c(
"cbind(agaaus, kniexc)",
"vitluc",
"s(altitude, df = c(2, 3))"
)
)
})
test_that("find_variables", {
expect_equal(
find_variables(m1),
list(
response = "agaaus",
conditional = c("vitluc", "altitude")
)
)
expect_equal(
find_variables(m1, flatten = TRUE),
c("agaaus", "vitluc", "altitude")
)
expect_equal(find_variables(m2), list(
response = c("agaaus", "kniexc"),
conditional = c("vitluc", "altitude")
))
expect_equal(
find_variables(m2, flatten = TRUE),
c("agaaus", "kniexc", "vitluc", "altitude")
)
})
test_that("n_obs", {
expect_equal(n_obs(m1), 392)
expect_equal(n_obs(m2), 392)
})
test_that("linkfun", {
expect_false(is.null(link_function(m1)))
expect_false(is.null(link_function(m2)))
})
test_that("find_parameters", {
expect_equal(
find_parameters(m1),
list(
conditional = c("(Intercept)", "vitluc"),
smooth_terms = "s(altitude, df = 2)"
)
)
expect_equal(nrow(get_parameters(m1)), 3)
expect_equal(
get_parameters(m1)$Parameter,
c("(Intercept)", "vitluc", "s(altitude, df = 2)")
)
expect_equal(
find_parameters(m2),
list(
conditional = c(
"(Intercept):1",
"(Intercept):2",
"vitluc:1",
"vitluc:2"
),
smooth_terms = c("s(altitude, df = c(2, 3)):1", "s(altitude, df = c(2, 3)):2")
)
)
expect_equal(nrow(get_parameters(m2)), 6)
expect_equal(
get_parameters(m2)$Parameter,
c(
"(Intercept):1",
"(Intercept):2",
"vitluc:1",
"vitluc:2",
"s(altitude, df = c(2, 3)):1",
"s(altitude, df = c(2, 3)):2"
)
)
})
test_that("is_multivariate", {
expect_false(is_multivariate(m1))
expect_false(is_multivariate(m2))
})
test_that("find_statistic", {
expect_identical(find_statistic(m1), "chi-squared statistic")
expect_identical(find_statistic(m2), "chi-squared statistic")
})
}
} |
setClass("EUtilsSummary",
representation(
db = "character",
count = "numeric",
retmax = "numeric",
retstart = "numeric",
PMID = "character",
querytranslation = "character"
)
)
EUtilsSummary <- function(query,type="esearch",db="pubmed",url=NULL,encoding="unknown",...){
if(is.null(url)){
url <- EUtilsQuery(query,type,db,...)
}
lines <- readLines(url,warn=FALSE,encoding=encoding)
res <- ParseTags(lines)
EMPTYCHECK <- length(grep("^(?:<eSearchResult>)?<Count>0<\\/Count>", lines))!=0
if(EMPTYCHECK){
res$Id <- character(0)
res$Count <- 0
}
new("EUtilsSummary",
db = db,
count = res$Count,
retstart = res$RetStart,
retmax = res$RetMax,
PMID = res$Id,
querytranslation = res$QueryTranslation
)
}
setMethod("print","EUtilsSummary",function(x,...) print(x@querytranslation))
setMethod("show","EUtilsSummary",function(object) print(object@querytranslation))
setMethod("summary","EUtilsSummary",function(object,...){
cat("Query:\n")
cat(object@querytranslation,"\n\n")
cat("Result count: ",object@count)
invisible(object@PMID)
})
setMethod("QueryCount","EUtilsSummary",function(object) object@count)
setMethod("QueryId","EUtilsSummary",function(object) object@PMID)
setMethod("QueryTranslation","EUtilsSummary",function(object) object@querytranslation) |
getPowerFitNested <- function(altNested, altParent, cutoff = NULL, nullNested = NULL, nullParent = NULL, revDirec = FALSE, usedFit = NULL, alpha = 0.05, nVal = NULL, pmMCARval = NULL, pmMARval = NULL, condCutoff = TRUE, df = 0) {
result <- NULL
if(is.null(cutoff)) {
if(!is.null(nullNested) & !is.null(nullParent)) {
result <- getPowerFitNestedNullObj(altNested = altNested, altParent = altParent, nullNested = nullNested, nullParent = nullParent, revDirec = revDirec, usedFit = usedFit, alpha = alpha, nVal = nVal, pmMCARval = pmMCARval, pmMARval = pmMARval, df = df)
} else {
stop("Please specify fit index cutoff, 'cutoff', or the result object representing the null model, 'nullObject'.")
}
} else {
if(is.null(nullNested) & is.null(nullParent)) {
result <- getPowerFitNestedCutoff(altNested = altNested, altParent = altParent, cutoff = cutoff, revDirec = revDirec, usedFit = usedFit, nVal = nVal, pmMCARval = pmMCARval, pmMARval = pmMARval, condCutoff = condCutoff, df = df)
} else {
stop("Please specify either fit index cutoff, 'cutoff', or the result object representing the null model, 'nullObject', but not both.")
}
}
result
}
getPowerFitNestedCutoff <- function(altNested, altParent, cutoff, revDirec = FALSE,
usedFit = NULL, nVal = NULL, pmMCARval = NULL, pmMARval = NULL, condCutoff = TRUE,
df = 0) {
if (is.null(nVal) || is.na(nVal))
nVal <- NULL
if (is.null(pmMCARval) || is.na(pmMCARval))
pmMCARval <- NULL
if (is.null(pmMARval) || is.na(pmMARval))
pmMARval <- NULL
mod <- clean(altNested, altParent)
altNested <- mod[[1]]
altParent <- mod[[2]]
if (!isTRUE(all.equal(unique(altNested@paramValue), unique(altParent@paramValue))))
stop("Models are based on different data and cannot be compared, check your random seed")
if (!isTRUE(all.equal(unique(altNested@n), unique(altParent@n))))
stop("Models are based on different values of sample sizes")
if (!isTRUE(all.equal(unique(altNested@pmMCAR), unique(altParent@pmMCAR))))
stop("Models are based on different values of the percent completely missing at random")
if (!isTRUE(all.equal(unique(altNested@pmMAR), unique(altParent@pmMAR))))
stop("Models are based on different values of the percent missing at random")
Data <- as.data.frame((altNested@fit - altParent@fit))
condition <- c(length(unique(altNested@pmMCAR)) > 1, length(unique(altNested@pmMAR)) >
1, length(unique(altNested@n)) > 1)
condValue <- cbind(altNested@pmMCAR, altNested@pmMAR, altNested@n)
colnames(condValue) <- c("Percent MCAR", "Percent MAR", "N")
condValue <- condValue[, condition]
if (is.null(condValue) || length(condValue) == 0)
condValue <- NULL
predictorVal <- rep(NA, 3)
if (condition[3]) {
ifelse(is.null(nVal), stop("Please specify the sample size value, 'nVal', because the sample size in the result object is varying"),
predictorVal[3] <- nVal)
}
if (condition[1]) {
ifelse(is.null(pmMCARval), stop("Please specify the percent of completely missing at random, 'pmMCARval', because the percent of completely missing at random in the result object is varying"),
predictorVal[1] <- pmMCARval)
}
if (condition[2]) {
ifelse(is.null(pmMARval), stop("Please specify the percent of missing at random, 'pmMARval', because the percent of missing at random in the result object is varying"),
predictorVal[2] <- pmMARval)
}
predictorVal <- predictorVal[condition]
output <- getPowerFitDataFrame(Data, cutoff, revDirec, usedFit, predictor = condValue,
predictorVal = predictorVal, condCutoff = condCutoff, df = df)
return(output)
}
getPowerFitNestedNullObj <- function(altNested, altParent,
nullNested, nullParent, revDirec = FALSE, usedFit = NULL, alpha = 0.05, nVal = NULL,
pmMCARval = NULL, pmMARval = NULL, df = 0) {
if (!multipleAllEqual(unique(altNested@n), unique(altParent@n), unique(nullNested@n),
unique(nullParent@n)))
stop("Models are based on different values of sample sizes")
if (!multipleAllEqual(unique(altNested@pmMCAR), unique(altParent@pmMCAR), unique(nullNested@pmMCAR),
unique(nullParent@pmMCAR)))
stop("Models are based on different values of the percent completely missing at random")
if (!multipleAllEqual(unique(altNested@pmMAR), unique(altParent@pmMAR), unique(nullNested@pmMAR),
unique(nullParent@pmMAR)))
stop("Models are based on different values of the percent missing at random")
if (!isTRUE(all.equal(unique(altNested@paramValue), unique(altParent@paramValue))))
stop("'altNested' and 'altParent' are based on different data and cannot be compared, check your random seed")
if (!isTRUE(all.equal(unique(nullNested@paramValue), unique(nullParent@paramValue))))
stop("'nullNested' and 'nullParent' are based on different data and cannot be compared, check your random seed")
usedFit <- cleanUsedFit(usedFit, colnames(altNested@fit), colnames(altParent@fit), colnames(nullNested@fit), colnames(nullParent@fit))
if(is.null(nullNested)) nullNested <- altNested
if(is.null(nullParent)) nullParent <- altParent
mod <- clean(altNested, altParent, nullNested, nullParent)
altNested <- mod[[1]]
altParent <- mod[[2]]
nullNested <- mod[[3]]
nullParent <- mod[[4]]
if (is.null(nVal) || is.na(nVal))
nVal <- NULL
if (is.null(pmMCARval) || is.na(pmMCARval))
pmMCARval <- NULL
if (is.null(pmMARval) || is.na(pmMARval))
pmMARval <- NULL
condition <- c(length(unique(altNested@pmMCAR)) > 1, length(unique(altNested@pmMAR)) >
1, length(unique(altNested@n)) > 1)
condValue <- cbind(altNested@pmMCAR, altNested@pmMAR, altNested@n)
colnames(condValue) <- c("Percent MCAR", "Percent MAR", "N")
condValue <- condValue[, condition]
if (is.null(condValue) || length(condValue) == 0)
condValue <- NULL
predictorVal <- rep(NA, 3)
if (condition[3]) {
ifelse(is.null(nVal), stop("Please specify the sample size value, 'nVal', because the sample size in the result object is varying"),
predictorVal[3] <- nVal)
}
if (condition[1]) {
ifelse(is.null(pmMCARval), stop("Please specify the percent of completely missing at random, 'pmMCARval', because the percent of completely missing at random in the result object is varying"),
predictorVal[1] <- pmMCARval)
}
if (condition[2]) {
ifelse(is.null(pmMARval), stop("Please specify the percent of missing at random, 'pmMARval', because the percent of missing at random in the result object is varying"),
predictorVal[2] <- pmMARval)
}
predictorVal <- predictorVal[condition]
usedDirec <- (usedFit %in% getKeywords()$reversedFit)
if (revDirec)
usedDirec <- !usedDirec
usedDist <- as.data.frame((altNested@fit - altParent@fit)[, usedFit])
nullFit <- as.data.frame((nullNested@fit - nullParent@fit)[, usedFit])
temp <- rep(NA, length(usedFit))
if (is.null(condValue)) {
usedCutoff <- as.vector(t(getCutoffDataFrame(nullFit, alpha = alpha, usedFit = usedFit)))
names(usedCutoff) <- usedFit
temp <- pValueDataFrame(usedCutoff, usedDist, revDirec = usedDirec)
names(temp) <- usedFit
if(all(c("chisq", "df") %in% colnames(nullNested@fit))) {
cutoffChisq <- qchisq(1 - alpha, df=(nullNested@fit - nullParent@fit)[,"df"])
powerChi <- mean((altNested@fit - altParent@fit)[,"chisq"] > cutoffChisq)
temp <- c("TraditionalChi" = powerChi, temp)
}
} else {
varyingCutoff <- getCutoffDataFrame(object = nullFit, alpha = alpha, revDirec = FALSE,
usedFit = usedFit, predictor = condValue, df = df, predictorVal = "all")
for (i in 1:length(temp)) {
temp[i] <- pValueVariedCutoff(varyingCutoff[, i], usedDist[, i], revDirec = usedDirec[i],
x = condValue, xval = predictorVal)
}
names(temp) <- usedFit
}
return(temp)
}
multipleAllEqual <- function(...) {
obj <- list(...)
multipleAllEqualList(obj)
}
multipleAllEqualList <- function(obj) {
for (i in 2:length(obj)) {
for (j in 1:(i - 1)) {
temp <- isTRUE(all.equal(obj[[i]], obj[[j]]))
if (!temp)
return(FALSE)
}
}
return(TRUE)
}
multipleAnyEqual <- function(...) {
obj <- list(...)
multipleAnyEqualList(obj)
}
multipleAnyEqualList <- function(obj) {
for (i in 2:length(obj)) {
for (j in 1:(i - 1)) {
temp <- isTRUE(all.equal(obj[[i]], obj[[j]]))
if (temp)
return(TRUE)
}
}
return(FALSE)
} |
library(testthat)
library(LaF)
context("laf_to_ffdf")
test_that(
"laf_to_ffdf",
{
lines <- c(
" 1M 1.45Rotterdam ",
" 2F12.00Amsterdam ",
" 3 .22 Berlin ",
" M22 Paris ",
" 4F12345London ",
" 5M Copenhagen",
" 6M-12.1 ",
" 7F -1Oslo ")
data <- data.frame(
id=c(1,2,3,NA,4,5,6,7),
gender=as.factor(c("M", "F", NA, "M", "F", "M", "M", "F")),
x=c(1.45, 12, 0.22, 22, 12345, NA, -12.1, -1),
city=c("Rotterdam", "Amsterdam", "Berlin", "Paris",
"London", "Copenhagen", "", "Oslo"),
stringsAsFactors=FALSE
)
tmp.fwf <- tempfile("tmp.fwf")
writeLines(lines, con=tmp.fwf, sep="\n")
laf <- laf_open_fwf(filename=tmp.fwf,
column_types=c("integer", "categorical", "double", "string"),
column_widths=c(2,1,5,10)
)
foo <- laf_to_ffdf(laf, nrow=2)
bar <- laf_to_ffdf(laf, nrows=1, columns=c(1, 2, 3))
laf2 <- laf_open_fwf(filename=tmp.fwf,
column_types=c("integer", "categorical", "double", "string"),
column_widths=c(2,1,5,10)
)
bar2 <- laf_to_ffdf(laf2, nrows=1, columns=c(1, 2, 3))
bar3 <- laf_to_ffdf(laf2, nrows=1, columns=c(1, 2, 3))
}) |
create_report <- function(data,
output_format = html_document(toc = TRUE, toc_depth = 6, theme = "yeti"),
output_file = "report.html",
output_dir = getwd(),
y = NULL,
config = configure_report(),
report_title = "Data Profiling Report",
...) {
if (!is.data.table(data)) data <- data.table(data)
if (!is.null(y)) {
if (!(y %in% names(data))) stop("`", y, "` not found in data!")
}
report_dir <- system.file("rmd_template/report.rmd", package = "DataExplorer")
suppressWarnings(render(
input = report_dir,
output_format = output_format,
output_file = output_file,
output_dir = output_dir,
intermediates_dir = output_dir,
params = list(data = data, report_config = config, response = y, set_title = report_title),
...
))
report_path <- path.expand(file.path(output_dir, output_file))
browseURL(report_path)
} |
pplace_to_table <-
function(pplace,type="full",run_id=NULL){
if(class(pplace)!="pplace"){
stop("ERROR: the input is not an object of class pplace")
}
if(!is.null(run_id)){
pplace <- sub_pplace(pplace,run_id=run_id)
}
out <- NULL
if(nrow(pplace$multiclass)>0){
out <- merge(pplace$multiclass,pplace$placement_positions,by="placement_id")
if(type=="best"){
out <- out[order(out$ml_ratio,decreasing=TRUE),]
out <- out[match(unique(out$placement_id),out[,1]),]
}
out <- out[order(out$placement_id),]
rownames(out) <- NULL
colnames(out)[c(5,12)] <- c("tax_id_multilcass","tax_id_placement")
}
return(out)
} |
NULL
axe_call.flexsurvreg <- function(x, verbose = FALSE, ...) {
old <- x
x <- exchange(x, "call", call("dummy_call"))
add_butcher_attributes(
x,
old,
disabled = c("print()"),
verbose = verbose
)
}
axe_env.flexsurvreg <- function(x, verbose = FALSE, ...) {
old <- x
attributes(x$data$m)$terms <- axe_env(attributes(x$data$m)$terms)
attributes(x$concat.formula)$`.Environment` <- rlang::base_env()
x$all.formulae <- purrr::map(x$all.formulae, function(z) axe_env(z, ...))
add_butcher_attributes(
x,
old,
verbose = verbose
)
} |
Preimage <- function(Data,K_W1, C_out, Cl_assign, max_Nsize = 32, ncores = 4, DIR_out = getwd(),
BIG = FALSE){
if(BIG){
bf_preimage = file.path(DIR_out, 'Centroid_preimage')
if(file.exists(paste0(bf_preimage, '.bk'))){
file.remove(paste0(bf_preimage, '.bk'))
}
}
clusters = Cl_assign[,ncol(Cl_assign)]
centroid_IDs = sort(unique(clusters))
Centroids = C_out[,centroid_IDs]
Centroids_norm = apply(Centroids, 2, function(x) x/sqrt(sum(x*x)))
if(BIG){
C_preimage = bigstatsr::FBM(nrow =nrow(Data), ncol = ncol(Centroids_norm), backingfile = bf_preimage)$save()
}else{
C_preimage <- matrix(0, nrow = nrow(Data), ncol = ncol(Centroids_norm))
}
if(BIG){
for(i in 1:ncol(Centroids_norm)){
index = which(clusters == centroid_IDs[i])
kernel_c<- bigstatsr::big_apply(K_W1, a.FUN = function(X, ind, Y){
return(abs(Y%*%X[,ind]))
} , a.combine = 'c', ind = index, Y = t(Centroids_norm[,i]))
if(length(index)> 1){
if(length(index)<= max_Nsize){
neigbours_IDs = index
}else{
neigbours_IDs = index[sort.int(kernel_c, index.return = TRUE, decreasing = TRUE)$ix[1:max_Nsize]]
}
cluster_sum <- bigstatsr::big_apply(Data, a.FUN = function(X, ind){
return( rowSums(X[,ind]))
}, a.combine = 'plus', ind = neigbours_IDs)
C_preimage[, i]<- cluster_sum/ min(length(index), max_Nsize)
}else{
C_preimage[,i]<- Data[,index]
}
}
}else{
for(i in 1:ncol(Centroids_norm)){
index = which(clusters == centroid_IDs[i])
kernel_c<- bigstatsr::big_apply(K_W1, a.FUN = function(X, ind, Y){
abs(Y%*%X[,ind])
} , a.combine = 'c', ind = index, Y = t(Centroids_norm[,i]))
if(length(index)> 1){
neigbours_IDs = sort(index[sort.int(kernel_c, index.return = TRUE, decreasing = TRUE)$ix[1:min(length(index), max_Nsize)]])
C_preimage[, i]<- rowSums(Data[,neigbours_IDs])/min(length(index), max_Nsize)
}else{
C_preimage[,i]<- Data[,index]
}
}
}
return(C_preimage)
} |
NULL
.backup$create_backup_plan_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlan = structure(list(BackupPlanName = structure(logical(0), tags = list(type = "string")), Rules = structure(list(structure(list(RuleName = structure(logical(0), tags = list(type = "string")), TargetBackupVaultName = structure(logical(0), tags = list(type = "string")), ScheduleExpression = structure(logical(0), tags = list(type = "string")), StartWindowMinutes = structure(logical(0), tags = list(type = "long")), CompletionWindowMinutes = structure(logical(0), tags = list(type = "long")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), RecoveryPointTags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE)), CopyActions = structure(list(structure(list(Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), DestinationBackupVaultArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), AdvancedBackupSettings = structure(list(structure(list(ResourceType = structure(logical(0), tags = list(type = "string")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), BackupPlanTags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE)), CreatorRequestId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$create_backup_plan_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(type = "string")), BackupPlanArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), VersionId = structure(logical(0), tags = list(type = "string")), AdvancedBackupSettings = structure(list(structure(list(ResourceType = structure(logical(0), tags = list(type = "string")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$create_backup_selection_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(location = "uri", locationName = "backupPlanId", type = "string")), BackupSelection = structure(list(SelectionName = structure(logical(0), tags = list(type = "string")), IamRoleArn = structure(logical(0), tags = list(type = "string")), Resources = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ListOfTags = structure(list(structure(list(ConditionType = structure(logical(0), tags = list(type = "string")), ConditionKey = structure(logical(0), tags = list(type = "string")), ConditionValue = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), CreatorRequestId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$create_backup_selection_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(SelectionId = structure(logical(0), tags = list(type = "string")), BackupPlanId = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$create_backup_vault_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string")), BackupVaultTags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE)), EncryptionKeyArn = structure(logical(0), tags = list(type = "string")), CreatorRequestId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$create_backup_vault_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(type = "string")), BackupVaultArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$delete_backup_plan_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(location = "uri", locationName = "backupPlanId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$delete_backup_plan_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(type = "string")), BackupPlanArn = structure(logical(0), tags = list(type = "string")), DeletionDate = structure(logical(0), tags = list(type = "timestamp")), VersionId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$delete_backup_selection_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(location = "uri", locationName = "backupPlanId", type = "string")), SelectionId = structure(logical(0), tags = list(location = "uri", locationName = "selectionId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$delete_backup_selection_output <- function(...) {
list()
}
.backup$delete_backup_vault_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$delete_backup_vault_output <- function(...) {
list()
}
.backup$delete_backup_vault_access_policy_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$delete_backup_vault_access_policy_output <- function(...) {
list()
}
.backup$delete_backup_vault_notifications_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$delete_backup_vault_notifications_output <- function(...) {
list()
}
.backup$delete_recovery_point_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string")), RecoveryPointArn = structure(logical(0), tags = list(location = "uri", locationName = "recoveryPointArn", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$delete_recovery_point_output <- function(...) {
list()
}
.backup$describe_backup_job_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupJobId = structure(logical(0), tags = list(location = "uri", locationName = "backupJobId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_backup_job_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(AccountId = structure(logical(0), tags = list(type = "string")), BackupJobId = structure(logical(0), tags = list(type = "string")), BackupVaultName = structure(logical(0), tags = list(type = "string")), BackupVaultArn = structure(logical(0), tags = list(type = "string")), RecoveryPointArn = structure(logical(0), tags = list(type = "string")), ResourceArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CompletionDate = structure(logical(0), tags = list(type = "timestamp")), State = structure(logical(0), tags = list(type = "string")), StatusMessage = structure(logical(0), tags = list(type = "string")), PercentDone = structure(logical(0), tags = list(type = "string")), BackupSizeInBytes = structure(logical(0), tags = list(type = "long")), IamRoleArn = structure(logical(0), tags = list(type = "string")), CreatedBy = structure(list(BackupPlanId = structure(logical(0), tags = list(type = "string")), BackupPlanArn = structure(logical(0), tags = list(type = "string")), BackupPlanVersion = structure(logical(0), tags = list(type = "string")), BackupRuleId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceType = structure(logical(0), tags = list(type = "string")), BytesTransferred = structure(logical(0), tags = list(type = "long")), ExpectedCompletionDate = structure(logical(0), tags = list(type = "timestamp")), StartBy = structure(logical(0), tags = list(type = "timestamp")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), BackupType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_backup_vault_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_backup_vault_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(type = "string")), BackupVaultArn = structure(logical(0), tags = list(type = "string")), EncryptionKeyArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CreatorRequestId = structure(logical(0), tags = list(type = "string")), NumberOfRecoveryPoints = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_copy_job_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(CopyJobId = structure(logical(0), tags = list(location = "uri", locationName = "copyJobId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_copy_job_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(CopyJob = structure(list(AccountId = structure(logical(0), tags = list(type = "string")), CopyJobId = structure(logical(0), tags = list(type = "string")), SourceBackupVaultArn = structure(logical(0), tags = list(type = "string")), SourceRecoveryPointArn = structure(logical(0), tags = list(type = "string")), DestinationBackupVaultArn = structure(logical(0), tags = list(type = "string")), DestinationRecoveryPointArn = structure(logical(0), tags = list(type = "string")), ResourceArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CompletionDate = structure(logical(0), tags = list(type = "timestamp")), State = structure(logical(0), tags = list(type = "string")), StatusMessage = structure(logical(0), tags = list(type = "string")), BackupSizeInBytes = structure(logical(0), tags = list(type = "long")), IamRoleArn = structure(logical(0), tags = list(type = "string")), CreatedBy = structure(list(BackupPlanId = structure(logical(0), tags = list(type = "string")), BackupPlanArn = structure(logical(0), tags = list(type = "string")), BackupPlanVersion = structure(logical(0), tags = list(type = "string")), BackupRuleId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_global_settings_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_global_settings_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(GlobalSettings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), LastUpdateTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_protected_resource_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ResourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resourceArn", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_protected_resource_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ResourceArn = structure(logical(0), tags = list(type = "string")), ResourceType = structure(logical(0), tags = list(type = "string")), LastBackupTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_recovery_point_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string")), RecoveryPointArn = structure(logical(0), tags = list(location = "uri", locationName = "recoveryPointArn", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_recovery_point_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(RecoveryPointArn = structure(logical(0), tags = list(type = "string")), BackupVaultName = structure(logical(0), tags = list(type = "string")), BackupVaultArn = structure(logical(0), tags = list(type = "string")), SourceBackupVaultArn = structure(logical(0), tags = list(type = "string")), ResourceArn = structure(logical(0), tags = list(type = "string")), ResourceType = structure(logical(0), tags = list(type = "string")), CreatedBy = structure(list(BackupPlanId = structure(logical(0), tags = list(type = "string")), BackupPlanArn = structure(logical(0), tags = list(type = "string")), BackupPlanVersion = structure(logical(0), tags = list(type = "string")), BackupRuleId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), IamRoleArn = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CompletionDate = structure(logical(0), tags = list(type = "timestamp")), BackupSizeInBytes = structure(logical(0), tags = list(type = "long")), CalculatedLifecycle = structure(list(MoveToColdStorageAt = structure(logical(0), tags = list(type = "timestamp")), DeleteAt = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), EncryptionKeyArn = structure(logical(0), tags = list(type = "string")), IsEncrypted = structure(logical(0), tags = list(type = "boolean")), StorageClass = structure(logical(0), tags = list(type = "string")), LastRestoreTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_region_settings_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_region_settings_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ResourceTypeOptInPreference = structure(list(structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "map"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_restore_job_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(RestoreJobId = structure(logical(0), tags = list(location = "uri", locationName = "restoreJobId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$describe_restore_job_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(AccountId = structure(logical(0), tags = list(type = "string")), RestoreJobId = structure(logical(0), tags = list(type = "string")), RecoveryPointArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CompletionDate = structure(logical(0), tags = list(type = "timestamp")), Status = structure(logical(0), tags = list(type = "string")), StatusMessage = structure(logical(0), tags = list(type = "string")), PercentDone = structure(logical(0), tags = list(type = "string")), BackupSizeInBytes = structure(logical(0), tags = list(type = "long")), IamRoleArn = structure(logical(0), tags = list(type = "string")), ExpectedCompletionTimeMinutes = structure(logical(0), tags = list(type = "long")), CreatedResourceArn = structure(logical(0), tags = list(type = "string")), ResourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$export_backup_plan_template_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(location = "uri", locationName = "backupPlanId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$export_backup_plan_template_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanTemplateJson = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_plan_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(location = "uri", locationName = "backupPlanId", type = "string")), VersionId = structure(logical(0), tags = list(location = "querystring", locationName = "versionId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_plan_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlan = structure(list(BackupPlanName = structure(logical(0), tags = list(type = "string")), Rules = structure(list(structure(list(RuleName = structure(logical(0), tags = list(type = "string")), TargetBackupVaultName = structure(logical(0), tags = list(type = "string")), ScheduleExpression = structure(logical(0), tags = list(type = "string")), StartWindowMinutes = structure(logical(0), tags = list(type = "long")), CompletionWindowMinutes = structure(logical(0), tags = list(type = "long")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), RecoveryPointTags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE)), RuleId = structure(logical(0), tags = list(type = "string")), CopyActions = structure(list(structure(list(Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), DestinationBackupVaultArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), AdvancedBackupSettings = structure(list(structure(list(ResourceType = structure(logical(0), tags = list(type = "string")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), BackupPlanId = structure(logical(0), tags = list(type = "string")), BackupPlanArn = structure(logical(0), tags = list(type = "string")), VersionId = structure(logical(0), tags = list(type = "string")), CreatorRequestId = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), DeletionDate = structure(logical(0), tags = list(type = "timestamp")), LastExecutionDate = structure(logical(0), tags = list(type = "timestamp")), AdvancedBackupSettings = structure(list(structure(list(ResourceType = structure(logical(0), tags = list(type = "string")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_plan_from_json_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanTemplateJson = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_plan_from_json_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlan = structure(list(BackupPlanName = structure(logical(0), tags = list(type = "string")), Rules = structure(list(structure(list(RuleName = structure(logical(0), tags = list(type = "string")), TargetBackupVaultName = structure(logical(0), tags = list(type = "string")), ScheduleExpression = structure(logical(0), tags = list(type = "string")), StartWindowMinutes = structure(logical(0), tags = list(type = "long")), CompletionWindowMinutes = structure(logical(0), tags = list(type = "long")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), RecoveryPointTags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE)), RuleId = structure(logical(0), tags = list(type = "string")), CopyActions = structure(list(structure(list(Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), DestinationBackupVaultArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), AdvancedBackupSettings = structure(list(structure(list(ResourceType = structure(logical(0), tags = list(type = "string")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_plan_from_template_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanTemplateId = structure(logical(0), tags = list(location = "uri", locationName = "templateId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_plan_from_template_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanDocument = structure(list(BackupPlanName = structure(logical(0), tags = list(type = "string")), Rules = structure(list(structure(list(RuleName = structure(logical(0), tags = list(type = "string")), TargetBackupVaultName = structure(logical(0), tags = list(type = "string")), ScheduleExpression = structure(logical(0), tags = list(type = "string")), StartWindowMinutes = structure(logical(0), tags = list(type = "long")), CompletionWindowMinutes = structure(logical(0), tags = list(type = "long")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), RecoveryPointTags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE)), RuleId = structure(logical(0), tags = list(type = "string")), CopyActions = structure(list(structure(list(Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), DestinationBackupVaultArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), AdvancedBackupSettings = structure(list(structure(list(ResourceType = structure(logical(0), tags = list(type = "string")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_selection_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(location = "uri", locationName = "backupPlanId", type = "string")), SelectionId = structure(logical(0), tags = list(location = "uri", locationName = "selectionId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_selection_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupSelection = structure(list(SelectionName = structure(logical(0), tags = list(type = "string")), IamRoleArn = structure(logical(0), tags = list(type = "string")), Resources = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ListOfTags = structure(list(structure(list(ConditionType = structure(logical(0), tags = list(type = "string")), ConditionKey = structure(logical(0), tags = list(type = "string")), ConditionValue = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), SelectionId = structure(logical(0), tags = list(type = "string")), BackupPlanId = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CreatorRequestId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_vault_access_policy_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_vault_access_policy_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(type = "string")), BackupVaultArn = structure(logical(0), tags = list(type = "string")), Policy = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_vault_notifications_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_backup_vault_notifications_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(type = "string")), BackupVaultArn = structure(logical(0), tags = list(type = "string")), SNSTopicArn = structure(logical(0), tags = list(type = "string")), BackupVaultEvents = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_recovery_point_restore_metadata_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string")), RecoveryPointArn = structure(logical(0), tags = list(location = "uri", locationName = "recoveryPointArn", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_recovery_point_restore_metadata_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultArn = structure(logical(0), tags = list(type = "string")), RecoveryPointArn = structure(logical(0), tags = list(type = "string")), RestoreMetadata = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$get_supported_resource_types_input <- function(...) {
list()
}
.backup$get_supported_resource_types_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ResourceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_jobs_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer")), ByResourceArn = structure(logical(0), tags = list(location = "querystring", locationName = "resourceArn", type = "string")), ByState = structure(logical(0), tags = list(location = "querystring", locationName = "state", type = "string")), ByBackupVaultName = structure(logical(0), tags = list(location = "querystring", locationName = "backupVaultName", type = "string")), ByCreatedBefore = structure(logical(0), tags = list(location = "querystring", locationName = "createdBefore", type = "timestamp")), ByCreatedAfter = structure(logical(0), tags = list(location = "querystring", locationName = "createdAfter", type = "timestamp")), ByResourceType = structure(logical(0), tags = list(location = "querystring", locationName = "resourceType", type = "string")), ByAccountId = structure(logical(0), tags = list(location = "querystring", locationName = "accountId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_jobs_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupJobs = structure(list(structure(list(AccountId = structure(logical(0), tags = list(type = "string")), BackupJobId = structure(logical(0), tags = list(type = "string")), BackupVaultName = structure(logical(0), tags = list(type = "string")), BackupVaultArn = structure(logical(0), tags = list(type = "string")), RecoveryPointArn = structure(logical(0), tags = list(type = "string")), ResourceArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CompletionDate = structure(logical(0), tags = list(type = "timestamp")), State = structure(logical(0), tags = list(type = "string")), StatusMessage = structure(logical(0), tags = list(type = "string")), PercentDone = structure(logical(0), tags = list(type = "string")), BackupSizeInBytes = structure(logical(0), tags = list(type = "long")), IamRoleArn = structure(logical(0), tags = list(type = "string")), CreatedBy = structure(list(BackupPlanId = structure(logical(0), tags = list(type = "string")), BackupPlanArn = structure(logical(0), tags = list(type = "string")), BackupPlanVersion = structure(logical(0), tags = list(type = "string")), BackupRuleId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ExpectedCompletionDate = structure(logical(0), tags = list(type = "timestamp")), StartBy = structure(logical(0), tags = list(type = "timestamp")), ResourceType = structure(logical(0), tags = list(type = "string")), BytesTransferred = structure(logical(0), tags = list(type = "long")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), BackupType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_plan_templates_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_plan_templates_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), BackupPlanTemplatesList = structure(list(structure(list(BackupPlanTemplateId = structure(logical(0), tags = list(type = "string")), BackupPlanTemplateName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_plan_versions_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(location = "uri", locationName = "backupPlanId", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_plan_versions_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), BackupPlanVersionsList = structure(list(structure(list(BackupPlanArn = structure(logical(0), tags = list(type = "string")), BackupPlanId = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), DeletionDate = structure(logical(0), tags = list(type = "timestamp")), VersionId = structure(logical(0), tags = list(type = "string")), BackupPlanName = structure(logical(0), tags = list(type = "string")), CreatorRequestId = structure(logical(0), tags = list(type = "string")), LastExecutionDate = structure(logical(0), tags = list(type = "timestamp")), AdvancedBackupSettings = structure(list(structure(list(ResourceType = structure(logical(0), tags = list(type = "string")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_plans_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer")), IncludeDeleted = structure(logical(0), tags = list(location = "querystring", locationName = "includeDeleted", type = "boolean"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_plans_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), BackupPlansList = structure(list(structure(list(BackupPlanArn = structure(logical(0), tags = list(type = "string")), BackupPlanId = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), DeletionDate = structure(logical(0), tags = list(type = "timestamp")), VersionId = structure(logical(0), tags = list(type = "string")), BackupPlanName = structure(logical(0), tags = list(type = "string")), CreatorRequestId = structure(logical(0), tags = list(type = "string")), LastExecutionDate = structure(logical(0), tags = list(type = "timestamp")), AdvancedBackupSettings = structure(list(structure(list(ResourceType = structure(logical(0), tags = list(type = "string")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_selections_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(location = "uri", locationName = "backupPlanId", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_selections_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), BackupSelectionsList = structure(list(structure(list(SelectionId = structure(logical(0), tags = list(type = "string")), SelectionName = structure(logical(0), tags = list(type = "string")), BackupPlanId = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CreatorRequestId = structure(logical(0), tags = list(type = "string")), IamRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_vaults_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_backup_vaults_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultList = structure(list(structure(list(BackupVaultName = structure(logical(0), tags = list(type = "string")), BackupVaultArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), EncryptionKeyArn = structure(logical(0), tags = list(type = "string")), CreatorRequestId = structure(logical(0), tags = list(type = "string")), NumberOfRecoveryPoints = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_copy_jobs_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer")), ByResourceArn = structure(logical(0), tags = list(location = "querystring", locationName = "resourceArn", type = "string")), ByState = structure(logical(0), tags = list(location = "querystring", locationName = "state", type = "string")), ByCreatedBefore = structure(logical(0), tags = list(location = "querystring", locationName = "createdBefore", type = "timestamp")), ByCreatedAfter = structure(logical(0), tags = list(location = "querystring", locationName = "createdAfter", type = "timestamp")), ByResourceType = structure(logical(0), tags = list(location = "querystring", locationName = "resourceType", type = "string")), ByDestinationVaultArn = structure(logical(0), tags = list(location = "querystring", locationName = "destinationVaultArn", type = "string")), ByAccountId = structure(logical(0), tags = list(location = "querystring", locationName = "accountId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_copy_jobs_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(CopyJobs = structure(list(structure(list(AccountId = structure(logical(0), tags = list(type = "string")), CopyJobId = structure(logical(0), tags = list(type = "string")), SourceBackupVaultArn = structure(logical(0), tags = list(type = "string")), SourceRecoveryPointArn = structure(logical(0), tags = list(type = "string")), DestinationBackupVaultArn = structure(logical(0), tags = list(type = "string")), DestinationRecoveryPointArn = structure(logical(0), tags = list(type = "string")), ResourceArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CompletionDate = structure(logical(0), tags = list(type = "timestamp")), State = structure(logical(0), tags = list(type = "string")), StatusMessage = structure(logical(0), tags = list(type = "string")), BackupSizeInBytes = structure(logical(0), tags = list(type = "long")), IamRoleArn = structure(logical(0), tags = list(type = "string")), CreatedBy = structure(list(BackupPlanId = structure(logical(0), tags = list(type = "string")), BackupPlanArn = structure(logical(0), tags = list(type = "string")), BackupPlanVersion = structure(logical(0), tags = list(type = "string")), BackupRuleId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_protected_resources_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_protected_resources_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(Results = structure(list(structure(list(ResourceArn = structure(logical(0), tags = list(type = "string")), ResourceType = structure(logical(0), tags = list(type = "string")), LastBackupTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_recovery_points_by_backup_vault_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer")), ByResourceArn = structure(logical(0), tags = list(location = "querystring", locationName = "resourceArn", type = "string")), ByResourceType = structure(logical(0), tags = list(location = "querystring", locationName = "resourceType", type = "string")), ByBackupPlanId = structure(logical(0), tags = list(location = "querystring", locationName = "backupPlanId", type = "string")), ByCreatedBefore = structure(logical(0), tags = list(location = "querystring", locationName = "createdBefore", type = "timestamp")), ByCreatedAfter = structure(logical(0), tags = list(location = "querystring", locationName = "createdAfter", type = "timestamp"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_recovery_points_by_backup_vault_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), RecoveryPoints = structure(list(structure(list(RecoveryPointArn = structure(logical(0), tags = list(type = "string")), BackupVaultName = structure(logical(0), tags = list(type = "string")), BackupVaultArn = structure(logical(0), tags = list(type = "string")), SourceBackupVaultArn = structure(logical(0), tags = list(type = "string")), ResourceArn = structure(logical(0), tags = list(type = "string")), ResourceType = structure(logical(0), tags = list(type = "string")), CreatedBy = structure(list(BackupPlanId = structure(logical(0), tags = list(type = "string")), BackupPlanArn = structure(logical(0), tags = list(type = "string")), BackupPlanVersion = structure(logical(0), tags = list(type = "string")), BackupRuleId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), IamRoleArn = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CompletionDate = structure(logical(0), tags = list(type = "timestamp")), BackupSizeInBytes = structure(logical(0), tags = list(type = "long")), CalculatedLifecycle = structure(list(MoveToColdStorageAt = structure(logical(0), tags = list(type = "timestamp")), DeleteAt = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), EncryptionKeyArn = structure(logical(0), tags = list(type = "string")), IsEncrypted = structure(logical(0), tags = list(type = "boolean")), LastRestoreTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_recovery_points_by_resource_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ResourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resourceArn", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_recovery_points_by_resource_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), RecoveryPoints = structure(list(structure(list(RecoveryPointArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), Status = structure(logical(0), tags = list(type = "string")), EncryptionKeyArn = structure(logical(0), tags = list(type = "string")), BackupSizeBytes = structure(logical(0), tags = list(type = "long")), BackupVaultName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_restore_jobs_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer")), ByAccountId = structure(logical(0), tags = list(location = "querystring", locationName = "accountId", type = "string")), ByCreatedBefore = structure(logical(0), tags = list(location = "querystring", locationName = "createdBefore", type = "timestamp")), ByCreatedAfter = structure(logical(0), tags = list(location = "querystring", locationName = "createdAfter", type = "timestamp")), ByStatus = structure(logical(0), tags = list(location = "querystring", locationName = "status", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_restore_jobs_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(RestoreJobs = structure(list(structure(list(AccountId = structure(logical(0), tags = list(type = "string")), RestoreJobId = structure(logical(0), tags = list(type = "string")), RecoveryPointArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), CompletionDate = structure(logical(0), tags = list(type = "timestamp")), Status = structure(logical(0), tags = list(type = "string")), StatusMessage = structure(logical(0), tags = list(type = "string")), PercentDone = structure(logical(0), tags = list(type = "string")), BackupSizeInBytes = structure(logical(0), tags = list(type = "long")), IamRoleArn = structure(logical(0), tags = list(type = "string")), ExpectedCompletionTimeMinutes = structure(logical(0), tags = list(type = "long")), CreatedResourceArn = structure(logical(0), tags = list(type = "string")), ResourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_tags_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ResourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resourceArn", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "integer"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$list_tags_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$put_backup_vault_access_policy_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string")), Policy = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$put_backup_vault_access_policy_output <- function(...) {
list()
}
.backup$put_backup_vault_notifications_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string")), SNSTopicArn = structure(logical(0), tags = list(type = "string")), BackupVaultEvents = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$put_backup_vault_notifications_output <- function(...) {
list()
}
.backup$start_backup_job_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(type = "string")), ResourceArn = structure(logical(0), tags = list(type = "string")), IamRoleArn = structure(logical(0), tags = list(type = "string")), IdempotencyToken = structure(logical(0), tags = list(type = "string")), StartWindowMinutes = structure(logical(0), tags = list(type = "long")), CompleteWindowMinutes = structure(logical(0), tags = list(type = "long")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), RecoveryPointTags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE)), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$start_backup_job_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupJobId = structure(logical(0), tags = list(type = "string")), RecoveryPointArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$start_copy_job_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(RecoveryPointArn = structure(logical(0), tags = list(type = "string")), SourceBackupVaultName = structure(logical(0), tags = list(type = "string")), DestinationBackupVaultArn = structure(logical(0), tags = list(type = "string")), IamRoleArn = structure(logical(0), tags = list(type = "string")), IdempotencyToken = structure(logical(0), tags = list(type = "string")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$start_copy_job_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(CopyJobId = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$start_restore_job_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(RecoveryPointArn = structure(logical(0), tags = list(type = "string")), Metadata = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE)), IamRoleArn = structure(logical(0), tags = list(type = "string")), IdempotencyToken = structure(logical(0), tags = list(type = "string")), ResourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$start_restore_job_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(RestoreJobId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$stop_backup_job_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupJobId = structure(logical(0), tags = list(location = "uri", locationName = "backupJobId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$stop_backup_job_output <- function(...) {
list()
}
.backup$tag_resource_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ResourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resourceArn", type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$tag_resource_output <- function(...) {
list()
}
.backup$untag_resource_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ResourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resourceArn", type = "string")), TagKeyList = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list", sensitive = TRUE))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$untag_resource_output <- function(...) {
list()
}
.backup$update_backup_plan_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(location = "uri", locationName = "backupPlanId", type = "string")), BackupPlan = structure(list(BackupPlanName = structure(logical(0), tags = list(type = "string")), Rules = structure(list(structure(list(RuleName = structure(logical(0), tags = list(type = "string")), TargetBackupVaultName = structure(logical(0), tags = list(type = "string")), ScheduleExpression = structure(logical(0), tags = list(type = "string")), StartWindowMinutes = structure(logical(0), tags = list(type = "long")), CompletionWindowMinutes = structure(logical(0), tags = list(type = "long")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), RecoveryPointTags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map", sensitive = TRUE)), CopyActions = structure(list(structure(list(Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), DestinationBackupVaultArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), AdvancedBackupSettings = structure(list(structure(list(ResourceType = structure(logical(0), tags = list(type = "string")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$update_backup_plan_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupPlanId = structure(logical(0), tags = list(type = "string")), BackupPlanArn = structure(logical(0), tags = list(type = "string")), CreationDate = structure(logical(0), tags = list(type = "timestamp")), VersionId = structure(logical(0), tags = list(type = "string")), AdvancedBackupSettings = structure(list(structure(list(ResourceType = structure(logical(0), tags = list(type = "string")), BackupOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$update_global_settings_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(GlobalSettings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$update_global_settings_output <- function(...) {
list()
}
.backup$update_recovery_point_lifecycle_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultName = structure(logical(0), tags = list(location = "uri", locationName = "backupVaultName", type = "string")), RecoveryPointArn = structure(logical(0), tags = list(location = "uri", locationName = "recoveryPointArn", type = "string")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$update_recovery_point_lifecycle_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(BackupVaultArn = structure(logical(0), tags = list(type = "string")), RecoveryPointArn = structure(logical(0), tags = list(type = "string")), Lifecycle = structure(list(MoveToColdStorageAfterDays = structure(logical(0), tags = list(type = "long")), DeleteAfterDays = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), CalculatedLifecycle = structure(list(MoveToColdStorageAt = structure(logical(0), tags = list(type = "timestamp")), DeleteAt = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$update_region_settings_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ResourceTypeOptInPreference = structure(list(structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "map"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.backup$update_region_settings_output <- function(...) {
list()
} |
ms.face<-function(features,...){
xy <- unlist(features)
spline<-function(a,y,m=200,plot=FALSE){
n<-length(a)
h<-diff(a)
dy<-diff(y)
sigma<-dy/h
lambda<-h[-1]/(hh<-h[-1]+h[-length(h)])
mu<-1-lambda
d<-6*diff(sigma)/hh
tri.mat<-2*diag(n-2)
tri.mat[2+ (0:(n-4))*(n-1)] <-mu[-1]
tri.mat[ (1:(n-3))*(n-1)] <-lambda[-(n-2)]
M<-c(0,solve(tri.mat)%*%d,0)
x<-seq(from=a[1],to=a[n],length=m)
anz.kl <- hist(x,breaks=a,plot=FALSE)$counts
adj<-function(i) i-1
i<-rep(1:(n-1),anz.kl)+1
S.x<- M[i-1]*(a[i]-x )^3 / (6*h[adj(i)]) +
M[i] *(x -a[i-1])^3 / (6*h[adj(i)]) +
(y[i-1] - M[i-1]*h[adj(i)]^2 /6) * (a[i]-x)/ h[adj(i)] +
(y[i] - M[i] *h[adj(i)]^2 /6) * (x-a[i-1]) / h[adj(i)]
if(plot){ plot(x,S.x,type="l"); points(a,y) }
return(cbind(x,S.x))
}
n.char<-15
xy<-rbind(xy)
n<-1
face.orig<-list(
eye =rbind(c(12,0),c(19,8),c(30,8),c(37,0),c(30,-8),c(19,-8),c(12,0))
,iris =rbind(c(20,0),c(24,4),c(29,0),c(24,-5),c(20,0))
,lipso=rbind(c(0,-47),c( 7,-49),lipsiend=c( 16,-53),c( 7,-60),c(0,-62))
,lipsi=rbind(c(7,-54),c(0,-54))
,nose =rbind(c(0,-6),c(3,-16),c(6,-30),c(0,-31))
,shape =rbind(c(0,44),c(29,40),c(51,22),hairend=c(54,11),earsta=c(52,-4),
earend=c(46,-36),c(38,-61),c(25,-83),c(0,-89))
,ear =rbind(c(60,-11),c(57,-30))
,hair =rbind(hair1=c(72,12),hair2=c(64,50),c(36,74),c(0,79))
)
lipso.refl.ind<-4:1
lipsi.refl.ind<-1
nose.refl.ind<-3:1
hair.refl.ind<-3:1
shape.refl.ind<-8:1
shape.xnotnull<-2:8
nose.xnotnull<-2:3
for(ind in 1:n){
factors<-xy[ind,]
face <- face.orig
m<-mean(face$lipso[,2])
face$lipso[,2]<-m+(face$lipso[,2]-m)*(1+0.7*factors[4])
face$lipsi[,2]<-m+(face$lipsi[,2]-m)*(1+0.7*factors[4])
face$lipso[,1]<-face$lipso[,1]*(1+0.7*factors[5])
face$lipsi[,1]<-face$lipsi[,1]*(1+0.7*factors[5])
face$lipso["lipsiend",2]<-face$lipso["lipsiend",2]+20*factors[6]
m<-mean(face$eye[,2])
face$eye[,2] <-m+(face$eye[,2] -m)*(1+0.7*factors[7])
face$iris[,2]<-m+(face$iris[,2]-m)*(1+0.7*factors[7])
m<-mean(face$eye[,1])
face$eye[,1] <-m+(face$eye[,1] -m)*(1+0.7*factors[8])
face$iris[,1]<-m+(face$iris[,1]-m)*(1+0.7*factors[8])
m<-min(face$hair[,2])
face$hair[,2]<-m+(face$hair[,2]-m)*(1+0.2*factors[9])
m<-0
face$hair[,1]<-m+(face$hair[,1]-m)*(1+0.2*factors[10])
m<-0
face$hair[c("hair1","hair2"),2]<-face$hair[c("hair1","hair2"),2]+50*factors[11]
m<-mean(face$nose[,2])
face$nose[,2]<-m+(face$nose[,2]-m)*(1+0.7*factors[12])
face$nose[nose.xnotnull,1]<-face$nose[nose.xnotnull,1]*(1+factors[13])
m<-mean(face$shape[c("earsta","earend"),1])
face$ear[,1]<-m+(face$ear[,1]-m)* (1+0.7*factors[14])
m<-min(face$ear[,2])
face$ear[,2]<-m+(face$ear[,2]-m)* (1+0.7*factors[15])
face<-lapply(face,function(x){ x[,2]<-x[,2]*(1+0.2*factors[1]);x})
face<-lapply(face,function(x){ x[,1]<-x[,1]*(1+0.2*factors[2]);x})
face<-lapply(face,function(x){ x[,1]<-ifelse(x[,1]>0,
ifelse(x[,2] > -30, x[,1],
pmax(0,x[,1]+(x[,2]+50)*0.2*sin(1.5*(-factors[3])))),0);x})
invert<-function(x) cbind(-x[,1],x[,2])
face.obj<-list(
eyer=face$eye
,eyel=invert(face$eye)
,irisr=face$iris
,irisl=invert(face$iris)
,lipso=rbind(face$lipso,invert(face$lipso[lipso.refl.ind,]))
,lipsi=rbind(face$lipso["lipsiend",],face$lipsi,
invert(face$lipsi[lipsi.refl.ind,,drop=FALSE]),
invert(face$lipso["lipsiend",,drop=FALSE]))
,earr=rbind(face$shape["earsta",],face$ear,face$shape["earend",])
,earl=invert(rbind(face$shape["earsta",],face$ear,face$shape["earend",]))
,nose=rbind(face$nose,invert(face$nose[nose.refl.ind,]))
,hair=rbind(face$shape["hairend",],face$hair,invert(face$hair[hair.refl.ind,]),
invert(face$shape["hairend",,drop=FALSE]))
,shape=rbind(face$shape,invert(face$shape[shape.refl.ind,]))
)
tmp <- list(x=numeric(0),y=numeric(0))
for(ind in seq(face.obj)) {
x <-face.obj[[ind]][,1]; y<-face.obj[[ind]][,2]
xx<-spline(1:length(x),x,40,FALSE)[,2]
yy<-spline(1:length(y),y,40,FALSE)[,2]
xx <- xx/105
yy <- yy/105
tmp$x <- c(tmp$x,NA,xx)
tmp$y <- c(tmp$y,NA,yy)
}
}
return(tmp)
} |
context("Stress Get Data")
library("SWIM")
set.seed(0)
x <- data.frame(cbind(
"normal" = rnorm(1000),
rgamma(1000, shape = 2),
rbeta(1000, shape1 = 2, shape2 = 2)))
colnames(x) <- c("normal", "", "beta")
colnames(x)
k <- 1:3
new_means <- c(1, 1, 0.75)
res1 <- stress(type = "mean", x = x, k = k, new_means = new_means)
test_that("get data", {
expect_equal(colnames(get_data(res1)), colnames(x))
expect_equal(colnames(get_data(res1, xCol = "all")), colnames(x))
expect_equal(colnames(get_data(res1, xCol = colnames(x)[1])), colnames(x)[1])
expect_equal(colnames(get_data(res1, xCol = 1)), colnames(x)[1])
expect_equal(colnames(get_data(res1, xCol = colnames(x)[-2])), colnames(x)[-2])
expect_equal(colnames(get_data(res1, xCol = c(1,3))), colnames(x)[-2])
expect_error(colnames(get_data(res1, xCol = c("all", "all"))))
expect_error(colnames(get_data(res1, xCol = c(1, "all"))))
})
set.seed(0)
x <- data.frame(cbind(
rnorm(1000),
rgamma(1000, shape = 2),
rbeta(1000, shape1 = 2, shape2 = 2)))
colnames(x) <- c("X1", "X2", "X3")
k <- 1:3
new_means <- c(1, 1, 0.75)
res2 <- stress(type = "mean", x = x, k = k, new_means = new_means)
test_that("get data", {
expect_equal(colnames(get_data(res2)), colnames(x))
expect_equal(colnames(get_data(res2, xCol = "all")), colnames(x))
expect_equal(colnames(get_data(res2, xCol = colnames(x)[1])), colnames(x)[1])
expect_equal(colnames(get_data(res2, xCol = 1)), colnames(x)[1])
expect_equal(colnames(get_data(res2, xCol = colnames(x)[-2])), colnames(x)[-2])
expect_equal(colnames(get_data(res2, xCol = c(1,3))), colnames(x)[-2])
expect_error(colnames(get_data(res2, xCol = c("all", "all"))))
expect_error(colnames(get_data(res2, xCol = c(1, "all"))))
})
set.seed(0)
x <- as.matrix(cbind(
rnorm(1000),
rgamma(1000, shape = 2),
rbeta(1000, shape1 = 2, shape2 = 2)))
colnames(x) <- c("X1", "X2", "X3")
k <- 1:3
new_means <- c(1, 1, 0.75)
res3 <- stress(type = "mean", x = x, k = k, new_means = new_means)
test_that("get data", {
expect_equal(colnames(get_data(res3)), colnames(x))
expect_equal(colnames(get_data(res3, xCol = "all")), colnames(x))
expect_equal(colnames(get_data(res3, xCol = 1)), "X1")
expect_equal(colnames(get_data(res3, xCol = c(1,3))), c("X1", "X3"))
expect_error(colnames(get_data(res3, xCol = c("normal", "beta"))))
expect_error(colnames(get_data(res3, xCol = c("all", "all"))))
expect_error(colnames(get_data(res3, xCol = c(1, "all"))))
}) |
`print.RRT`=function(x, ...){
cat("\nCall:\n")
print(x$Call)
cat("\n",x$Model," model", sep = "")
cat("\n",x$Name," model for the ",x$Type," estimator\nParameters: ",
paste(names(x$Param),gsub(" ","",formatC(x$Param,digits=2)),sep="=",collapse="; "),"\n",sep="")
if((x$Model=="Qualitative")&(x$Type=="total")){
cat("\nEstimation:",round(x$Estimation))
}else{
cat("\nEstimation:",x$Estimation)
}
cat("\nVariance:",x$Variance)
cat("\nConfidence interval (",format(100*(x$ConfidenceLevel),digits=2),"%)\n",sep="")
cat(" Lower bound:",x$ConfidenceInterval[1],"\n")
cat(" Upper bound:",x$ConfidenceInterval[2],"\n\n")
} |
library('smaa')
pvf1 <- function(x) {
smaa.pvf(x, cutoffs=c(-0.15, 0.35), values=c(0, 1))
}
pvf2 <- function(x) {
smaa.pvf(x, cutoffs=c(50, 100), values=c(1, 0))
}
stopifnot(all.equal(pvf1(0.35), 1))
stopifnot(all.equal(pvf1(-0.15), 0))
stopifnot(all.equal(pvf1(0.1), 0.5))
stopifnot(all.equal(pvf1(c(0.35, 0.1)), c(1, 0.5)))
stopifnot(all.equal(pvf2(50), 1))
stopifnot(all.equal(pvf2(100), 0))
stopifnot(all.equal(pvf2(75), 0.5))
stopifnot(all.equal(pvf2(c(75, 100)), c(0.5, 0)))
pvf3 <- function(x) {
smaa.pvf(x, cutoffs=c(-0.15, 0.0, 0.25, 0.35), values=c(0, 0.1, 0.9, 1))
}
pvf4 <- function(x) {
smaa.pvf(x, cutoffs=c(50, 75, 90, 100), values=c(1, 0.8, 0.5, 0))
}
stopifnot(all.equal(pvf3(0.35), 1.0))
stopifnot(all.equal(pvf3(-0.15), 0.0))
stopifnot(all.equal(pvf3(0.0), 0.1))
stopifnot(all.equal(pvf3(0.25), 0.9))
stopifnot(all.equal(pvf3(0.1), 2/5*0.8+0.1))
stopifnot(all.equal(pvf4(50), 1.0))
stopifnot(all.equal(pvf4(60), 1-(2/5*0.2)))
stopifnot(all.equal(pvf4(75), 0.8))
stopifnot(all.equal(pvf4(90), 0.5))
stopifnot(all.equal(pvf4(100), 0.0))
stopifnot(all.equal(pvf4(c(50,90,100)), c(1.0, 0.5, 0.0)))
pvf5 <- function(x) {
smaa.pvf(x, cutoffs=c(50, 75, 90, 100), values=c(1, 0.8, 0.5, 0), outOfBounds="interpolate")
}
stopifnot(all.equal(pvf5(c(50,90,100)), c(1.0, 0.5, 0.0)))
stopifnot(all.equal(pvf5(c(10, 40, 101, 120)), c(1.32, 1.08, -0.05, -1)))
pvf6 <- function(x) {
smaa.pvf(x, cutoffs=c(50, 75, 90, 100), values=c(1, 0.8, 0.5, 0), outOfBounds="clip")
}
stopifnot(all.equal(pvf6(c(50,90,100)), c(1.0, 0.5, 0.0)))
stopifnot(all.equal(pvf6(c(10, 40, 101, 120)), c(1.0, 1.0, 0.0, 0.0)))
pvf7 <- function(x) {
smaa.pvf(x, cutoffs=c(-0.15, 0.0, 0.25, 0.35), values=c(0, 0.1, 0.9, 1), outOfBounds="clip")
}
stopifnot(all.equal(pvf7(c(0.35, -0.15, 0.0, 0.25)), c(1.0, 0.0, 0.1, 0.9)))
stopifnot(all.equal(pvf7(c(0.38, -0.20)), c(1.0, 0.0))) |
"new_function_names" |
NULL
NULL
NULL
NULL
NULL
NULL |
iterate.factor.comb <- function (p, n, i)
{
ret <- NULL
for(col in 1:n){
ret <- c(ret, ((i-1)%/%(p^(n-col)))%%p)
}
ret
}
matrix.search<-function(A, l)
{
for (i in 1:nrow(A))
if (all(A[i,]==l)) {return(i); break;}
return(0)
}
multi.modp<-function(a,b,p){
la <- length(a)
lb <- length(b)
dummy <- numeric(la+lb-1)
for (i in 1:(la+lb-1)){
dummy[i] <- sum(a[max(i-lb+1,1):min(i,la)]*b[min(lb,i):max(1,i-la+1)]) %%p
}
return(dummy)
}
myGF<-function(p, n)
{
x<-GF(p,n)
obj<-x[[1]]
pol<-x[[2]][1,]
if (n>1) {
addition<-matrix(0,p^n,p^n)
for(i in 1:(p^n))
for(j in i:(p^n))
{
newobj<-(obj[i,]+obj[j,]) %%p
addition[i,j]<-addition[j,i]<-matrix.search(obj,newobj)
}
multiply<-matrix(0,p^n,p^n)
for(i in 1:(p^n))
for(j in i:(p^n))
{
newobj<-redu.modp(multi.modp(obj[i,],obj[j,],p),pol,p)
multiply[i,j]<-multiply[j,i]<-matrix.search(obj,newobj)
}
}
else
{
addition<-matrix(0,p^n,p^n)
for(i in 0:(p-1))
for(j in 0:(p-1))
{
addition[i+1,j+1]<-addition[j+1,i+1]<-(i+j)%%p+1
}
multiply<-matrix(0,p^n,p^n)
for(i in 0:(p-1))
for(j in 0:(p-1))
{
multiply[i+1,j+1]<-multiply[j+1,i+1]<-(i*j)%%p+1
}
}
return(list(objects=obj,add=addition,multiply=multiply))
}
elements.of.matrix<-function(A, i, j)
{
apply(cbind(i,j),1,function(x) A[x[1],x[2]])
}
bibd<-function(v, k, method=0, ...)
{
if(v<k) stop("v < k ")
if(method==0){
if(k>v/2) method <- 2
if(v<6 || k<3) method <- 1
if(v==6 && k==3) method <- 3
if(v==7 && k==3) method <- 3
if(v==8 && k==3) method <- 6
if(v==8 && k==4) method <- 4
if(v==9 && k==3) method <- 4
if(v==9 && k==4) method <- 6
if(v==10 && k==3) method <- 9
if(v==10 && k==4) method <- 7
if(v==10 && k==5) method <- 18
if(v==11 && k==3) method <- 6
if(v==11 && k==4) method <- 6
if(v==11 && k==5) method <- 6
if(v==12 && k==3) method <- 9
if(v==12 && k==4) method <- 8
if(v==12 && k==5) method <- 15
if(v==12 && k==6) method <- 5
if(v%%4==3) method <- 16
}
if(method==1) ret <- bibd.method1(v,k)
if(method==2) ret <- bibd.method2(v,k)
if(method==3) ret <- bibd.method3(v,k)
if(method==4) ret <- bibd.method4(v,k)
if(method==6) ret <- bibd.method6(v,k)
if(method==7) ret <- bibd.method7(v,k)
if(method==8) ret <- bibd.method8(v,k)
if(method==9) ret <- bibd.method9(v,k)
if(method==10) ret <- bibd.method10(v,k)
if(method==11) ret <- bibd.method11(v,k)
if(method==12) ret <- bibd.method12(v,k)
if(method==13) ret <- bibd.method13(v,k)
if(method==14) ret <- bibd.method14(v,k)
if(method==15) ret <- bibd.method15(v,k)
if(method==16) ret <- bibd.method16(v,k)
if(method==17) ret <- bibd.method17(v,k)
if(method==18) ret <- bibd.method18(v,k)
if(method==19) ret <- bibd.method18(v,k)
class(ret)<-"bibd"
return(ret)
}
print.bibd<-function(x, width=getOption("width"), ...)
{
x<-x[do.call(order,lapply(1:ncol(x), function(i) x[,i])),]
t<-test.bibd(x)
vdgts<-ceiling(log(t$v+1)/log(10))
bdgts<-ceiling(log(t$b+1)/log(10))
cat(" block treatments\n")
for (i in 1:nrow(x))
{
to.print<-paste(i)
while (nchar(to.print)<bdgts)
to.print<-paste(" ",to.print,sep="")
cat(to.print," (",sep="")
for (j in 1:ncol(x))
{
to.print<-paste(x[i,j])
while (nchar(to.print)<vdgts)
to.print<-paste(" ",to.print,sep="")
cat(to.print)
if (j!=ncol(x)) cat(", ") else cat(")\n")
}
}
cat(paste("\n v = ",t$v,
" k = ",t$k,
" b = ",t$b,
" r = ",t$r,
" lambda = ", t$lambda,
"\n\n", sep=""))
}
compact.2.imatrix<-function(A)
{
v<-length(unique(as.vector(A)))
b<-nrow(A)
B<-matrix(0,v,b)
for (i in 1:nrow(A))
B[A[i,],i]<-1
class(B)<-"bibdmatrix"
return(B)
}
print.bibdmatrix<-function(B)
{
cat("\nIncidence matrix of bibd:\n\n")
B<-unclass(B)
NextMethod(B)
}
imatrix.2.compact<-function(B)
{
A<-matrix(0,ncol(B),sum(B[,1]))
for (i in 1:ncol(B))
A[i,]<-which(B[,i]==1)
class(A)<-"bibd"
return(A)
}
test.bibd<-function(A, fast=TRUE)
{
flag<-TRUE
abc<-unique(as.vector(A))
B<-compact.2.imatrix(A)
v<-length(abc);
k<-ncol(A);
b<-nrow(A);
r<-sum(B[1,]==1)
lambda<-sum(B[1,]==1&B[2,]==1)
if(!fast)
{
if (any(apply(B,1,sum)!=r)) warning("Desing is not equi-replicated.")
flag<-TRUE
for (i in 1:(nrow(B)-1))
for (j in (i+1):nrow(B))
if (flag&sum(B[i,]==1&B[j,]==1)!=lambda)
{flag<-FALSE; warning("Desing is not balanced.")}
}
return(list(v=v,k=k,b=b,r=r,lambda=lambda))
}
necessary.conditions<-function(v, k, b, r, lambda)
{
if (v*r!=b*k) return(1);
if (lambda*(v-1)!=r*(k-1)) return(2);
if (b<v) return(3)
if (2*lambda*(v*r-b-(v-1))*(b-3)/r/(r-1)/(v*r-b-v+3)<1 & v<6) return(4)
return(0);
}
bibd.method3<-function(v, k, verbose=T)
{
primen100 <- c(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,
61,67,71,73,79,83,89,97)
s <- 0; n <- 0
for(p in primen100){
for(N in 1:100){
v1 <- (as.bigz(p)^as.bigz(N+1)-1)/as.bigz(p-1)
if(verbose)cat(paste("v:",as.numeric(as.character(v1)),"\n"))
for(M in (N-1):1){
k1 <- (as.bigz(p)^as.bigz(M+1)-1)/as.bigz(p-1)
if(verbose)cat(paste("k:",as.numeric(as.character(k1)),"\n"))
if(v==v1 && k==k1){
s=p; n=N; m=M;
break
}
}
if(s!=0) break
}
if(s!=0) break
}
if(s==0 && n==0) stop("no s and n found")
h=1
is.null.comb<-function(q,w)
{
e<-rep(0,length(q))
for (i in 1:length(q)) e[i]<-gf$multiply[q[i],w[i]]
dummy<-1
for (i in 1:length(q)) dummy<-gf$add[dummy,e[i]]
return(dummy==1)
}
p<-s
gf<-myGF(p,h)
if((p^h)^(n+1)>2^32)stop("p and h too large")
poi<-coef<-factor.comb(p^h,n+1)[-1,]+1
just.this<-rep(TRUE,nrow(poi))
for (i in 1:(nrow(poi)-1))
for (j in 2:(p^h))
for (k in (i+1):nrow(poi))
{
dummy<-elements.of.matrix(gf$multiply,poi[i,],rep(j,ncol(poi)))
if (all(dummy==poi[k,])) just.this[k]<-FALSE
}
poi<-poi[just.this,]
results<-NULL
for (i in 1:nrow(coef))
{
res<-c()
for (j in 1:nrow(poi))
if (is.null.comb(coef[i,],poi[j,])) res<-c(res,j)
results[[i]]<-res+1
}
k<-max(sapply(results,length))
for (i in 1:nrow(coef))
if (length(results[[i]])==k-1) results[[i]]<-c(1,results[[i]])
results<-unique(results)
if (m!=n-1)
for (i in (n-2):m)
{
new.results<-NULL
index<-0
for (j in 1:(length(results)-1))
for (k in (j+1):length(results))
{ index<-index+1
new.results[[index]]<-intersect(results[[j]],results[[k]])
}
l<-max(sapply(new.results,length))
results<-NULL
new.index<-0
for (j in 1:index)
if (length(new.results[[j]])==l)
{
new.index<-new.index+1
results[[new.index]]<-new.results[[j]]
}
results<-unique(results)
}
results<-matrix(as.numeric(as.factor(unlist(results))),byrow=TRUE,nrow=length(results))
return(results)
}
bibd.method3.new<-function(n, s, h=1, m=n-1)
{
is.null.comb<-function(q,w)
{
e<-rep(0,length(q))
for (i in 1:length(q)) e[i]<-gf$multiply[q[i],w[i]]
dummy<-1
for (i in 1:length(q)) dummy<-gf$add[dummy,e[i]]
return(dummy==1)
}
p<-s
gf<-myGF(p,h)
poi <- NULL
npoi <- (p^h)^(n+1)
mpoi <- n+1
I <- 1
while(I<=npoi){
if(I%%1000==0)cat(paste("I:",I,"\n"))
poiI <- iterate.factor.comb(p^h,n+1,I)[-1]+1
i <- I
j <- 2
while(j<=p^h){
k <- i+1
while(k<=npoi){
if(k%%1000==0)cat(paste("k:",k,"\n"))
poiK <- iterate.factor.comb(p^h,n+1,k)[-1]+1
dummy<-elements.of.matrix(gf$multiply,poiI,rep(j,mpoi))
if (!all(dummy==poiK))
poi <- rbind(poi,poiI)
k <- k+1
}
j <- j+1
}
I <- I+1
}
results<-list()
lresults <- 1
i <- 1
while(i<=npoi){
if(i%%1000==0)cat(paste("i:",i,"\n"))
poiI <- iterate.factor.comb(p^h,n+1,i)[-1]+1
res<-c()
for (j in 1:nrow(poi))
if (is.null.comb(poiI,poi[j,])) res<-c(res,j)
results[[lresults]]<-res+1
lresults <- lresults+1
i <- i+1
}
k<-max(sapply(results,length))
for (i in 1:length(results))
if (length(results[[i]])==k-1) results[[i]]<-c(1,results[[i]])
results<-unique(results)
if (m!=n-1)
for (i in (n-2):m)
{
new.results<-NULL
index<-0
for (j in 1:(length(results)-1))
for (k in (j+1):length(results))
{ index<-index+1
new.results[[index]]<-intersect(results[[j]],results[[k]])
}
l<-max(sapply(new.results,length))
results<-NULL
new.index<-0
for (j in 1:index)
if (length(new.results[[j]])==l)
{
new.index<-new.index+1
results[[new.index]]<-new.results[[j]]
}
results<-unique(results)
}
results<-matrix(as.numeric(as.factor(unlist(results))),byrow=TRUE,nrow=length(results))
return(results)
}
bibd.method4<-function(n, s, h=1, m=n-1)
{
is.null.comb<-function(q,w)
{
e<-rep(0,length(q))
for (i in 1:length(q)) e[i]<-gf$multiply[q[i],w[i]]
dummy<-w[length(q)+1]
for (i in 1:length(q)) dummy<-gf$add[dummy,e[i]]
return(dummy==1)
}
p<-s
gf<-myGF(p,h)
poi<-factor.comb(p^h,n)+1
coef<-factor.comb(p^h,n+1)[-1,]+1
results<-NULL
for (i in 1:nrow(coef))
{
res<-c()
for (j in 1:nrow(poi))
if (is.null.comb(poi[j,],coef[i,])) res<-c(res,j)
results[[i]]<-res
}
results<-unique(results)
if (m!=n-1)
for (i in (n-2):m)
{
new.results<-NULL
index<-0
for (j in 1:(length(results)-1))
for (k in (j+1):length(results))
{ index<-index+1
new.results[[index]]<-intersect(results[[j]],results[[k]])
}
l<-max(sapply(new.results,length))
results<-NULL
new.index<-0
for (j in 1:index)
if (length(new.results[[j]])==l)
{
new.index<-new.index+1
results[[new.index]]<-new.results[[j]]
}
results<-unique(results)
}
new.results<-results
l<-max(sapply(new.results,length))
results<-NULL
new.index<-0
for (j in 1:length(new.results))
if (length(new.results[[j]])==l)
{
new.index<-new.index+1
results[[new.index]]<-new.results[[j]]
}
results<-unique(results)
results<-matrix(as.numeric(as.factor(unlist(results))),byrow=TRUE,nrow=length(results))
return(results)
}
bibd.method1<-function(v, k)
{
return(t(combn(v,k)))
}
bibd.method2<-function(v, k, method=0)
{
A <- bibd(v,v-k,method)
abc<-unique(as.vector(A))
B<-NULL
for (i in 1:nrow(A))
B<-rbind(B,setdiff(abc,A[i,]))
return(B)
}
bibd.method6<-function(v, k, Nsim=1, seed=NA)
{
if (!is.na(seed)) set.seed(seed);
f <- as.numeric(as.character(factorize(v)))
fu <- unique(f)
if(length(fu)==1){
p <- as.integer(fu)
m <- length(f)
A<-MOLS(p,m)
flag<-TRUE
solution<-matrix(0,1,1)
for (index in 1:Nsim)
{
B<-matrix(0,k,dim(A)[3]*dim(A)[2])
elmnts<-sample(p^m,k)
for (i in 1:dim(A)[3])
for (j in 1:dim(A)[2])
B[,(i-1)*dim(A)[2]+j]<-sort(match(elmnts,A[,j,i]))
B<-unique(t(B))
if (flag | nrow(B)<nrow(solution)) solution<-B
flag<-FALSE
}
return(solution)
} else {
stop("method 6 not applicable")
}
}
bibd.method5<-function(A)
{
l<-(nrow(A)-3)/4
if (l!=round(l) | length(unique(as.vector(A)))!=4*l+3 | ncol(A)!=2*l+1) stop("Assumptions violated!")
B<-bibd.method2(A)
A<-cbind(A,4*l+4)
return(rbind(A,B))
}
bibd.method16<-function(v, k)
{
if ((v+1) %% 4 != 0) stop("v+1 must be divisible by 4")
if(k!=(v-1)/2) stop(" ... wrong k ....")
A<-hadamard.matrix(v+1)[-1,-1]
B<-NULL
for (i in 1:nrow(A))
B<-rbind(B,which(A[i,]==1))
return(B)
}
dset.table<-
rbind(c(7,3,1,1,1,7),
c(9,3,3,3,4,3),
c(9,4,3,1,2,9),
c(10,3,4,2,6,5),
c(10,4,4,2,3,5),
c(11,3,3,1,5,11),
c(11,4,6,1,5,11),
c(11,5,2,1,1,11),
c(13,3,1,1,2,13),
c(13,4,1,1,4,13),
c(13,4,4,1,3,13),
c(13,6,5,1,2,13),
c(15,3,3,3,7,5),
c(15,7,3,1,1,15),
c(16,3,2,1,5,16),
c(16,5,4,1,3,16),
c(17,4,3,1,4,17),
c(17,5,5,1,4,17),
c(17,8,7,1,2,17),
c(19,3,1,1,3,19),
c(19,4,2,1,3,19),
c(19,6,5,1,3,19),
c(19,9,4,1,1,19),
c(21,3,3,3,10,7),
c(21,4,3,1,5,21),
c(21,5,1,1,5,21),
c(21,6,9,3,6,7),
c(22,4,4,2,7,11),
c(22,7,8,2,4,11),
c(23,11,1,1,11,23),
c(25,3,1,1,4,25))
colnames(dset.table)<-c("v","k","rho","s","t","m")
dset.table<-as.data.frame(dset.table)
dsets<-NULL
dsets[[1]]<-matrix(c(1,2,4),1,3,byrow=T)
dsets[[2]]<-matrix(c(1,2,0+1i,1+1i,2+1i,0+2i,1+2i,2+2i,0,0,0+1i,0+2i),4,3,byrow=T)
dsets[[3]]<-matrix(c(0,1,2,4,0,3,4,7),2,4,byrow=T)
dsets[[4]]<-matrix(c(0,3,1+1i,1,2,1+1i,1+1i,4+1i,4,0+1i,4+1i,1+1i,0,3,4+1i,1,2,4+1i),6,3,byrow=T)
dsets[[5]]<-matrix(c(0,3,0+1i,4+1i,0,0+1i,1+1i,3+1i,1,2,3,0+1i),3,4,byrow=T)
dsets[[6]]<-matrix(c(0,1,3,0,1,5,0,2,7,0,1,8,0,3,5),5,3,byrow=T)
dsets[[7]]<-matrix(c(0,1,8,9,0,2,5,7,0,1,4,5,0,2,3,5,0,4,5,9),5,4,byrow=T)
dsets[[8]]<-matrix(c(1,3,4,5,9),1,5,byrow=T)
dsets[[9]]<-matrix(c(0,1,4,0,2,7),2,3,byrow=T)
dsets[[10]]<-matrix(c(1,3,9,13),1,4,byrow=T)
dsets[[11]]<-matrix(c(0,1,2,4,8,0,1,3,6,12,0,2,5,6,10),3,5,byrow=T)
dsets[[12]]<-matrix(c(0,1,3,6,7,11,0,1,2,3,7,11),2,6,byrow=T)
dsets[[13]]<-matrix(c(1,4,0+1i,2,3,0+1i,1,4+1i,0+2i,2+1i,3+1i,0+2i,1+2i,4+2i,0,2+2i,3+2i,0,0,0+1i,0+2i),7,3,byrow=T)
dsets[[14]]<-matrix(c(1,2,4,5,8,10,15),1,7,byrow=T)
dsets[[15]]<-matrix(c(0,1,3,0,4,9,0,2,8,0,3,7,0,1,6),5,3,byrow=T)
dsets[[16]]<-matrix(c(0,1,2,4,7,0,1,5,8,10,0,1,3,7,11),3,5,byrow=T)
dsets[[17]]<-matrix(c(0,1,3,7,0,1,5,7,0,1,6,9,0,2,5,9),4,4,byrow=T)
dsets[[18]]<-matrix(c(0,1,4,13,16,0,3,5,12,14,0,2,8,9,15,0,6,7,10,11),4,5,byrow=T)
dsets[[19]]<-matrix(c(0,1,3,7,8,12,14,15,0,2,3,4,7,8,9,11),2,8,byrow=T)
dsets.table2<-rbind(c(6,3,2,1,1,1,5),
c(8,4,3,1,1,1,7),
c(10,5,4,1,1,1,7),
c(12,3,2,1,3,1,11),
c(12,6,5,1,1,1,11),
c(14,7,6,1,1,1,13),
c(15,5,4,1,2,1,14),
c(15,6,10,2,3,2,7),
c(16,8,7,1,1,1,15))
dsets2<-NULL
dsets2[[1]]<-matrix(c(0,1,3,NaN,0,1),2,3,byrow=T)
dsets2[[2]]<-matrix(c(0,1,2,4,NaN,1,2,4),2,4,byrow=T)
dsets2[[3]]<-matrix(c(0,1,2,4,8,NaN,0,1,4,6),2,5,byrow=T)
dsets2[[4]]<-matrix(c(0,1,3,0,1,5,0,2,5,NaN,0,4),4,3,byrow=T)
dsets2[[5]]<-matrix(c(0,1,3,7,0,1,3,5,NaN,0,1,5),3,4,byrow=T)
dsets2[[6]]<-matrix(c(0,1,3,4,5,9,NaN,0,4,5,6,8),2,6,byrow=T)
dsets2[[7]]<-matrix(c(0,1,3,4,9,10,12,NaN,1,3,4,9,10,12),2,7,byrow=T)
dsets2[[8]]<-matrix(c(0,1,4,9,11,0,1,4,10,12,NaN,0,1,2,7),3,5,byrow=T)
dsets2[[9]]<-matrix(c(1,2,4,0+1i,1+1i,3+1i,2,3,5,0+1i,1+1i,3+1i,0,4,5,0+1i,1+1i,3+1i,NaN,0,0+1i,1+1i,2+1i,4+1i,NaN,0,3,5,6,0+1i),5,6,byrow=T)
dsets2[[10]]<-matrix(c(3,4,5,6,8,10,11,14,NaN,0,1,2,7,9,12,13),2,8,byrow=T)
bibd.method7<-function(ds, m)
{
result<-NULL
for (i in 1:nrow(ds))
for (j in 0:(m-1))
result<-rbind(result,complex(real=(Re(ds[i,])+j)%%m,imaginary=Im(ds[i,])))
dr<-dim(result)
result<-as.numeric(as.factor(result))
dim(result)<-dr
for (i in 1:nrow(result)) result[i,]<-sort(result[i,])
return(result)
}
bibd.method8<-bibd.method7
admissible.triples <- function(v){
U <- 0:(v-1)
W <- c(0:(v-2), Inf)
d <- matrix(0,nrow=v,ncol=v)
for(u in U){
for(w in W){
if(is.infinite(w)){
d[u+1,length(W)] <- Inf
}
else
d[u+1,w+1] <- min((u-w)%%v,(w-u)%%v)
}
}
ds <- unique(c(d))
maxd <- max(ds,na.rm=T)
choices.index <- factor.comb(length(ds),3)+1
ret <- NULL
collect <- NULL
for(j in 1:dim(choices.index)[1]){
triple <- c(ds[choices.index[j,1]],
ds[choices.index[j,2]],
ds[choices.index[j,3]])
triple <- sort(triple)
if(triple[1]+triple[2]==triple[3]){
chr <- ""
for(k in triple){
chr <- paste(chr,k,sep="")
}
if(!(chr %in% collect)){
ret <- rbind(ret,triple)
collect <- cbind(collect,chr)
}
}
}
dimnames(ret) <- NULL
ret
}
admissible.triples.repeated <- function(v, lambda){
t <- admissible.triples(v)
}
not.yet.implemented <- function(){
stop("not yet implemented")
}
bibd.method9 <- function(v, k){
not.yet.implemented()
}
bibd.method10 <- function(v, k){
not.yet.implemented()
}
bibd.method11 <- function(v, k){
not.yet.implemented()
}
bibd.method12 <- function(v, k){
not.yet.implemented()
}
bibd.method13 <- function(v, k){
not.yet.implemented()
}
bibd.method14 <- function(v, k){
not.yet.implemented()
}
bibd.method15 <- function(v, k){
not.yet.implemented()
}
bibd.method17 <- function(v, k){
not.yet.implemented()
}
bibd.method18 <- function(v, k){
not.yet.implemented()
} |
ids_new_to_old <- function(id)
{
gsub("IEU-a:", "", id)
}
ids_new_to_old2 <- function(id)
{
id <- gsub("IEU-a-", "", id)
id <- gsub("-a-", "-a:", id)
id <- gsub("-b-", "-b:", id)
id <- gsub("-c-", "-c:", id)
id <- gsub("-d-", "-d:", id)
return(id)
}
ids_old_to_new <- function(id)
{
ieu_index <- ! grepl("[A-Z]+-[a-z]+:", id)
id[ieu_index] <- paste0("IEU-a:", id[ieu_index])
return(id)
}
ids_old_to_new2 <- function(id)
{
id <- gsub(":", "-", id)
ieu_index <- ! grepl("[A-Z]+-[a-z]+-", id)
id[ieu_index] <- paste0("IEU-a-", id[ieu_index])
id <- gsub(":", "-", id)
return(id)
} |
initialize_data.frame = function(data, position = position){
cnames = colnames(data)[-1]
log.pos = grep("log\\(.+\\)",cnames)
cnames = gsub("log\\(","",cnames)
cnames = gsub("I\\(","",cnames)
cnames = gsub("\\)","",cnames)
cnames = gsub("\\^[0-9]+","",cnames)
cnames = unique(cnames)
if(!is.null(position)){
dc_var = cnames[position]
cnames[position] = paste0(dc_var,"_val1")
cnames = append(cnames, paste0(dc_var,"_val2"), position)
names = c("val1_mean","val1_lower","val1_upper","val2_mean","val2_lower","val2_upper","dc_mean","dc_lower","dc_upper",cnames)
log.pos = ifelse(log.pos > position, log.pos + 1, log.pos)
if(position %in% log.pos){
log.pos = append(log.pos, position + 1, which(log.pos == position))
}
log.pos = log.pos + 9
}else{
names = c("mean","lower","upper",cnames)
log.pos = log.pos + 3
}
result = data.frame(t(rep(NA,length(names))))
colnames(result) = names
return(list(result=result,log.pos=log.pos))
} |
.RookeryApp <- setRefClass(
'RookeryApp',
fields = c('app','name','appEnv','configured','workingDir'),
methods = list(
initialize = function(app=NULL,name=NULL,...){
if (is.null(name) || !is.character(name)){
base::warning("Need a proper app 'name'")
.self$configured <- FALSE
return(callSuper(...))
}
.self$name <- name
if (is.character(app) && file.exists(app)){
.self$workingDir <- dirname(app)
oldwd <- setwd(.self$workingDir)
on.exit(setwd(oldwd))
appEnv <<- new.env(parent=globalenv())
appEnv$.appFile <<- normalizePath(basename(app))
appEnv$.mtime <<- as.integer(file.info(appEnv$.appFile)$mtime)
sys.source(appEnv$.appFile,envir=.self$appEnv)
if (exists(.self$name,.self$appEnv,inherits=FALSE))
.self$app <- get(.self$name,.self$appEnv)
else if (exists('app',.self$appEnv,inherits=FALSE))
.self$app <- get('app',.self$appEnv)
else {
base::warning("Cannot find a suitable app in file ",app)
.self$app <- NULL
}
} else {
base::warning("File does not exist: ",app)
.self$configured <- FALSE;
}
if (!is_rookable(.self$app)){
base::warning("App ",name," is not rookable'")
.self$configured <- FALSE;
} else {
.self$configured <- TRUE;
}
callSuper(...)
}
)
)
.Rookery <- setRefClass(
'Rookery',
fields = c('req','res','appHash','messages'),
methods = list(
initialize = function(...){
appHash <<- new.env()
messages <<- list(
emptypath = c(
'<h2>Oops! option Rook.Rookery.paths is NULL</h2>',
'<p>You must set this to a character vector containing',
'valid directories where Rook apps live.</p>'
),
nodots = c(
'<h2>Apps cannot be named . or ..</h2>'
)
)
callSuper(...)
},
message = function(name,opt=NULL){
msg <- paste(messages,collapse='\n')
if (!is.null(opt))
msg <- sprintf(msg,opt)
res$header('Content-Type','text/html')
res$write(msg)
},
findSuitableApp = function(appName){
if (appName %in% c('.','..')){
message('nodots')
return(NULL)
}
paths <- getOption('Rook.Rookery.paths')
if (is.null(paths)){
message('emptypath')
return(NULL)
}
},
listAllApps = function(){
},
call = function(env){
req <<- Request$new(env)
res <<- Response$new()
appName <- strsplit(req$path_info(),'/',fixed=TRUE)[[1]][2]
if (is.na(appName)){
listAllApps()
} else {
app <- findSuitableApp(appName)
if (!is.null(app)){
new_path_info <- req$path_info()
req$path_info(sub(paste("/",appName,sep=''),'',new_path_info))
oldwd <- setwd(app$workingDir)
on.exit(setwd(oldwd))
if (is(app$app,'function')) {
return(app$app(env))
} else {
return(app$app$call(env))
}
}
}
res$finish()
}
)
) |
cruzMapRiver <- reactive({
world2 <- cruz.map.range$world2
rivs <- map("rivers", plot = FALSE)
if (world2) rivs$x <- ifelse(rivs$x < 0, rivs$x+360, rivs$x)
rivs
})
cruzMapColorLand <- reactive({
ifelse(input$color_land_all == TRUE, input$color_land, "white")
})
cruzMapGrid <- reactive({
list(
col = input$grid_line_color, lwd = input$grid_line_width,
lty = input$grid_line_type
)
})
cruzMapBathyLoad <- eventReactive(input$depth_file, {
req(input$depth_file)
file.in <- input$depth_file
cruz.list$bathy.xyz <- NULL
bathy.xyz <- read.csv(file.in$datapath)
validate(
need(ncol(bathy.xyz) >= 3,
"The bathymetric CSV file must contain at least 3 columns")
)
cruz.list$bathy.xyz <- bathy.xyz
NULL
})
cruzMapColorWater <- reactive({
if (input$color_water_style == 1) {
bathy <- NULL
} else {
bathy.xyz <- cruz.list$bathy.xyz
validate(need(bathy.xyz, "Please load a CSV file with bathymetric data"))
bathy.xyz[[1]] <- if (cruz.map.range$world2) {
ifelse(bathy.xyz[[1]] < 0, bathy.xyz[[1]] + 360, bathy.xyz[[1]])
} else {
ifelse(bathy.xyz[[1]] > 180, bathy.xyz[[1]] - 360, bathy.xyz[[1]])
}
lon.range <- cruz.map.range$lon.range
lat.range <- cruz.map.range$lat.range
bathy.xyz.keep <- between(bathy.xyz[[1]], lon.range[1], lon.range[2]) &
between(bathy.xyz[[2]], lat.range[1], lat.range[2])
bathy <- try(
marmap::as.bathy(bathy.xyz[bathy.xyz.keep, ]),
silent = TRUE
)
validate(need(inherits(bathy, "bathy"),
paste("Unable to convert the loaded CSV file into a bathy object;",
"see `maramp::as.bathy` for data format requirements")))
validate(need(length(bathy) > 0,
"The loaded bathymetric data does not cover any of the current map area")
)
}
list(input$color_water, bathy)
})
output$depth_download_button <- renderUI({
v.val <- input$depth_res
v.mess <- "Bathymetric data resolution must be a whole number between 0 and 60"
validate(need(!is.na(v.val), v.mess))
validate(need(isTRUE(all.equal(v.val %% 1, 0)), v.mess))
validate(need(between(v.val, 0, 60), v.mess))
downloadButton("depth_download", "Download bathymetric file")
})
output$depth_download_message <- renderUI({
if (cruz.list$bathy.download) {
validate(
paste("CruzPlot was not able to resolve host: gis.ngdc.noaa.gov.",
"Please check your internet connection and try again")
)
} else {
NULL
}
})
observe({
input$tabs
input$tabset1
isolate(cruz.list$bathy.download <- FALSE)
})
output$depth_download <- downloadHandler(
filename = function() {
paste0(
paste(
"marmap_coord",
paste(cruz.map.range$lon.range[1], cruz.map.range$lon.range[2],
cruz.map.range$lat.range[1], cruz.map.range$lat.range[2], sep = ";"),
"res", input$depth_res,
sep = "_"),
".csv"
)
},
content = function(file) {
cruz.list$bathy.download <- FALSE
lon.range <- cruz.map.range$lon.range
lat.range <- cruz.map.range$lat.range
world2 <- cruz.map.range$world2
bathy <- try(marmap::getNOAA.bathy(
lon1 = input$lon_left, lon2 = input$lon_right,
lat1 = lat.range[1], lat2 = lat.range[2],
resolution = input$depth_res, antimeridian = world2,
keep = FALSE
), silent = TRUE)
if (!isTruthy(bathy)) cruz.list$bathy.download <- TRUE
validate(need(bathy, "Download did not work"))
write.csv(marmap::as.xyz(bathy), file = file, row.names = FALSE)
}
) |
require_pkgs = function(pkgs) {
for (pkg in pkgs) {
if (!require(pkg, character.only = TRUE)) {
stop(paste("please install the package '", pkg, "'. install.packages('", pkg, "') "))
}
}
} |
"randfn" <-
function(n, family, ...){
args <- list(...)
switch(family,
negbin= rnbinom(n, size=exp(args$size), mu=args$mu),
poisson=rpois(n, lambda=args$mu),
geometric=rgeom(n, prob= args$mu),
binom=rbinom(n, size=args$size, prob=args$mu)
)
} |
estimate_prob <- function(x) {
if (!is.data.frame(x)) {
x <- tryCatch(as.data.frame(x), error = function(c) {
stop("Invalid 'x' argument: must be convertible to a data.frame")
})
}
if (ncol(x) < 2) {
stop("Invalid 'x' argument: needs to have at least two columns.")
}
cnames <- colnames(x)
prob <- list()
prob[["margins"]] <- lapply(cnames, function(i) {
v <- x[, i]
dim_names <- list()
lev <- levels(v)
if (is.null(lev))
lev <- unique(v)
dim_names[[i]] <- lev
array(prop.table(table(v, useNA = "ifany")), dimnames = dim_names)
})
names(prob[["margins"]]) <- cnames
observed <- as.array(prop.table(table(x, useNA = "ifany")))
prob[["observed"]] <- observed
expected <- prob[["margins"]][[1]]
for (i in cnames[2:length(cnames)]) {
expected <- outer(expected, prob[["margins"]][[i]])
}
expected <- array(expected, dim = dim(observed), dimnames = dimnames(observed))
prob[["expected"]] <- expected
prob
} |
tg_channel_err <- function(
channel_id = tg_get_channel_id(),
start_date = Sys.Date() - 15,
end_date = Sys.Date(),
group = c('day', 'week', 'month')
) {
group <- match.arg(group)
resp <- tg_make_request(
method = 'channels/err',
token = tg_get_token(),
channelId = channel_id,
startDate = as.numeric(as.POSIXct(start_date)),
endDate = as.numeric(as.POSIXct(end_date)),
group = group
)
data <- tg_parse_response(resp)
return(data)
} |
`ordisegments` <-
function (ord, groups, levels, replicates, order.by, display = "sites",
col = 1, show.groups, label = FALSE, ...)
{
pts <- scores(ord, display = display, ...)
npoints <- nrow(pts)
if (missing(groups))
groups <- gl(levels, replicates, npoints)
if (!missing(order.by)) {
if (length(order.by) != nrow(pts))
stop(gettextf("the length of order.by (%d) does not match the number of points (%d)",
length(order.by), nrow(pts)))
ord <- order(order.by)
pts <- pts[ord,]
groups <- groups[ord]
}
if (!missing(show.groups)) {
take <- groups %in% show.groups
pts <- pts[take, , drop = FALSE]
groups <- groups[take]
}
out <- seq(along = groups)
inds <- names(table(groups))
if (is.factor(col))
col <- as.numeric(col)
col <- rep(col, length=length(inds))
names(col) <- inds
ends <- names <- NULL
for (is in inds) {
gr <- out[groups == is]
if (length(gr) > 1) {
X <- pts[gr, , drop = FALSE]
X0 <- X[-nrow(X), , drop = FALSE]
X1 <- X[-1, , drop = FALSE]
ordiArgAbsorber(X0[, 1], X0[, 2], X1[, 1], X1[, 2],
col = col[is], FUN = segments, ...)
if (label) {
ends <- rbind(ends, X[c(1, nrow(X)), ])
names <- c(names, is, is)
}
}
}
if (label)
ordiArgAbsorber(ends, labels = names, border = col, col = par("fg"),
FUN = ordilabel, ...)
invisible()
} |
qini <- function(x, ...) UseMethod("qini")
qini.default <- function(x, ...)
stop("uplift: No method implemented for this class of object")
qini.performance <- function(x, direction = 1, plotit = TRUE, ...) {
if (!inherits(x, "performance"))
stop("uplift: x is not of class performance")
if (!direction %in% c(1, 2))
stop("uplift: direction must be either 1 or 2")
perf <- x
groups <- nrow(perf)
if (direction == 1) {
inc.gains <- cumsum(perf[, 4] - perf[, 5] * sum(perf[, 2]) / sum(perf[, 3])) / sum(perf[, 2])
overall.inc.gains <- sum(perf[, 4]) / sum(perf[, 2]) - sum(perf[, 5]) / sum(perf[, 3])
} else {
inc.gains <- cumsum(-1 * (perf[, 4] - perf[, 5] * sum(perf[, 2]) / sum(perf[, 3]))) / sum(perf[, 2])
overall.inc.gains <- sum(perf[, 5]) / sum(perf[, 3]) - sum(perf[, 4]) / sum(perf[, 2])
}
random.inc.gains <- cumsum(rep(overall.inc.gains / groups, groups))
x <- seq(1 / groups, 1, 1 / groups)
y <- inc.gains
auuc <- 0
for (i in 2:length(x)) {
auuc <- auuc + 0.5 * (x[i] - x[i-1]) * (y[i] + y[i-1])
}
y.rand <- random.inc.gains
auuc.rand <- 0
for (i in 2:length(x)) {
auuc.rand <- auuc.rand + 0.5 * (x[i] - x[i-1]) * (y.rand[i] + y.rand[i-1])
}
Qini <- auuc - auuc.rand
miny <- 100 * min(c(random.inc.gains, inc.gains))
maxy <- 100 * max(c(random.inc.gains, inc.gains))
if (plotit) {
plot(inc.gains * 100 ~ seq(100 / groups, 100, 100 / groups), type ="b",
col = "blue", lty = 2, xlab = "Proportion of population targeted (%)",
ylab = "Cumulative incremental gains (pc pt)", ylim = c(miny, maxy), ...)
lines(random.inc.gains * 100 ~ seq(100 / groups, 100, 100 / groups), type = "l", col = "red", lty = 1)
legend("topright", c("Model", "Random"),
col=c("blue", "red"), lty=c(2,1))
}
res <- list(Qini = Qini,
inc.gains = inc.gains,
random.inc.gains = random.inc.gains)
return(res)
}
|
ruleList2Exec <-
function(X,allRulesList){
typeX = getTypeX(X)
ruleExec <- unique(t(sapply(allRulesList,singleRuleList2Exec,typeX=typeX)))
ruleExec <- t(ruleExec)
colnames(ruleExec) <- "condition"
return(ruleExec)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(kidney.epi)
head(ktx)
egfr.ckdepi (creatinine = 1.4, age = 60, sex = "Male", ethnicity = "White", creatinine_units = "mg/dl", label_afroamerican = c ("Afroamerican"), label_sex_male = c ("Male"), label_sex_female = c ("Female"))
mydata <- ktx
mydata$ckdepi <- egfr.ckdepi ( creatinine = mydata$don.creatinine, age = mydata$don.age,
sex = mydata$don.sex, ethnicity = mydata$don.ethnicity, creatinine_units = "mg/dl",
label_afroamerican = c ("Afroamerican"),
label_sex_male = c ("Male"), label_sex_female = c ("Female"))
summary(mydata$ckdepi) |
library(deming)
sen <- data.frame(t=c(1, 2, 3, 4, 10, 12, 18),
y=c(9, 15, 19, 20, 45, 55, 78))
fit <- pbreg(y ~ t, data=sen, conf=.93)
all.equal(coef(fit), c("(Intercept)"=6, "t"=4))
all.equal(fit$ci[2,], c(26/7, 35/8), check.attributes=FALSE)
fit2 <- pbreg(y ~ t, data=sen, conf=.93, method=2)
fit3 <- pbreg(y ~ t, data=sen, conf=.93, method=3)
all.equal(coef(fit2), coef(fit))
all.equal(coef(fit3), coef(fit))
all.equal(fit2$ci, fit$ci)
all.equal(fit3$ci, fit$ci)
pdata <- data.frame(x=1:6, y=c(2,1.2, 4.1,3.5,6.3, 3))
fit <- pbreg(y~x, pdata)
all.equal(coef(fit), c(1/8, 1.05), check.attributes=FALSE)
fit3 <- pbreg(y ~ x, pdata, method=3)
all.equal(coef(fit3), coef(fit))
fit2 <- pbreg(y ~ x, pdata, method=2)
temp <- tan(mean(c(atan(2.2/2), atan(4.3/4))))
all.equal(as.vector(coef(fit2)), c(median(pdata$y- pdata$x*temp), temp)) |
prune_leaf <- function(dend, leaf_name, ...) {
labels_dend <- labels(dend)
if (length(labels_dend) != length(unique(labels_dend))) warning("Found duplicate labels in the tree (this might indicate a problem in the tree you supplied)")
if (!(leaf_name %in% labels_dend)) {
warning(paste("There is no leaf with the label", leaf_name, "in the tree you supplied", "\n", "Returning original tree", "\n"))
return(dend)
}
if (sum(labels_dend %in% leaf_name) > 1) {
warning(paste(
"There are multiple leaves by the name of '", leaf_name, "' in the tree you supplied. Their locations is:",
paste(which(labels_dend %in% leaf_name), collapse = ","), "\n", "Returning original tree", "\n"
))
return(dend)
}
is.father.of.leaf.to.remove <- function(dend, leaf_name) {
is.father <- FALSE
for (i in seq_len(length(dend)))
{
if (is.leaf(dend[[i]]) == TRUE && labels(dend[[i]]) == leaf_name) is.father <- TRUE
}
return(is.father)
}
remove_leaf_if_child <- function(dend, leaf_name) {
if (all(labels(dend) != leaf_name)) {
return(dend)
} else {
attr(dend, "members") <- attr(dend, "members") - 1
if (!is.father.of.leaf.to.remove(dend, leaf_name))
{
for (i in seq_len(length(dend)))
{
dend[[i]] <- remove_leaf_if_child(dend[[i]], leaf_name)
}
} else {
if (length(dend) == 2) {
leaf_location <- 1
if (is.leaf(dend[[leaf_location]]) == T && labels(dend[[leaf_location]]) == leaf_name) {
branch_to_bumpup <- 2
dend <- dend[[branch_to_bumpup]]
} else {
branch_to_bumpup <- 1
dend <- dend[[branch_to_bumpup]]
}
} else if (length(dend) > 2) {
dend_leaves <- unlist(lapply(dend, is.leaf))
dend_labels <- character(length = length(dend_leaves))
dend_labels[!dend_leaves] <- NA
if (sum(dend_leaves) > 0) {
dend_labels[dend_leaves] <- unlist(lapply(dend, function(x) attr(x, "label")))
dend_matches <- dend_labels == leaf_name
dend_keep <- which(!(dend_leaves & dend_matches))
pruned <- dend[dend_keep]
attributes(pruned) <- attributes(dend)
attr(pruned, "members") <- length(dend_keep)
dend <- pruned
}
}
}
}
return(dend)
}
new_dend <- remove_leaf_if_child(dend, leaf_name)
new_dend <- suppressWarnings(stats_midcache.dendrogram(new_dend))
return(new_dend)
}
prune <- function(dend, ...) {
UseMethod("prune")
}
prune.default <- function(dend, ...) {
stop("object dend must be a dendrogram/hclust/phylo object")
}
prune.dendrogram <- function(dend, leaves, reindex_dend = TRUE, ...) {
leaves <- as.character(leaves)
for (i in seq_along(leaves))
{
dend <- prune_leaf(dend, leaves[i])
}
if (reindex_dend) dend <- reindex_dend(dend)
return(dend)
}
prune.hclust <- function(dend, leaves, ...) {
x_dend <- as.dendrogram(dend)
x_dend_pruned <- x_dend %>%
prune(leaves, ...) %>%
reindex_dend()
x_pruned <- as_hclust_fixed(x_dend_pruned, dend)
return(x_pruned)
}
prune.phylo <- function(dend, ...) {
ape::drop.tip(phy = dend, ...)
}
prune.rpart <- function(dend, ...) {
rpart::prune.rpart(tree = dend, ...)
}
prune_common_subtrees.dendlist <- function(dend, ...) {
if (!length(dend) == 2) stop("The dend must of be of length 2")
if (!is.dendlist(dend)) stop("The dend must of be of class dendlist")
clusters <- common_subtrees_clusters(dend[[1]], dend[[2]])
labels_to_prune <- labels(dend[[1]])[clusters == 0]
dend1 <- prune(dend[[1]], labels_to_prune)
dend2 <- prune(dend[[2]], labels_to_prune)
dend_12 <- dendlist(dend1, dend2)
names(dend_12) <- names(dend)
dend_12
}
intersect_trees <- function(dend1, dend2, warn = dendextend_options("warn"), ...) {
labels_dend1 <- labels(dend1)
labels_dend2 <- labels(dend2)
intersected_labels <- intersect(labels_dend1, labels_dend2)
if (length(intersected_labels) == 0) {
warning("The two trees had no common labels!")
return(dendlist())
}
ss_labels_to_keep <- labels_dend1 %in% intersected_labels
ss_labels_to_prune_1 <- !ss_labels_to_keep
pruned_dend1 <- prune(dend1, labels_dend1[ss_labels_to_prune_1])
ss_labels_to_keep <- labels_dend2 %in% intersected_labels
ss_labels_to_prune_2 <- !ss_labels_to_keep
pruned_dend2 <- prune(dend2, labels_dend2[ss_labels_to_prune_2])
if (warn && any(c(ss_labels_to_prune_1, ss_labels_to_prune_2))) {
warning("The labels in both tree had different values - trees were pruned.")
}
return(dendlist(pruned_dend1, pruned_dend2))
}
reindex_dend <- function(dend) {
order.dendrogram(dend) <- dend %>%
order.dendrogram() %>%
rank() %>%
as.integer()
return(dend)
} |
refreshDataSetsList <-
function(outp = TRUE) {
removeIfExists("dSList", envir = KTSEnv)
tsLoaded <- tsDetect()
gapLoaded <- gapDetect()
rmLoaded <- rmDetect()
if (is.null(tsLoaded)) {
nTS <- NULL
} else {
nTS <- length(tsLoaded)
}
if (is.null(gapLoaded)) {
nGaps <- NULL
} else {
nGaps <- length(gapLoaded)
}
if (is.null(rmLoaded)) {
nRM <- NULL
} else {
nRM <- length(rmLoaded)
}
dSList <- list(TS = tsLoaded, gaps = gapLoaded,
rm = rmLoaded, nTS = nTS, nGaps = nGaps,
nRM = nRM)
assign("dSList", dSList, envir = KTSEnv)
if (outp != FALSE) {
writeOutpTs <- function(nameTS) {
timSer <- get(nameTS, envir = KTSEnv)
lTimSer <- nrow(timSer)
sampPers <- getUniqueSampPer(timSer)
sampPers <- sampPers[which(sampPers[, 1] > 10), 2]
txt <- c(paste("TIME SERIES:", nameTS),
paste("First date:", as.character(timSer$time[1])),
paste("Last date:", as.character(timSer$time[lTimSer])),
paste("Length:", as.character(lTimSer)),
paste("Likely sampling periods(sec):",
paste(sampPers, collapse = ",")))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste(txt, collapse = "\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n"))
}
writeOutpGap <- function(nameGap) {
gapSet <- get(nameGap, envir = KTSEnv)
txt <- c(paste("SET OF GAPS:", nameGap),
paste("Number of NAs:",
as.character(length(gapSet$gaps))),
paste("Original time series:", gapSet$tsName),
"Characteristics of the original time series:",
paste("initial and final dates:",
gapSet$tsIni, ";", gapSet$tsEnd),
paste("length and sampling period:",
gapSet$tsLength, ";", gapSet$samPerMin))
tcltk::tkinsert(KTSEnv$txtWidget, "end",
paste(txt, collapse = "\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n"))
}
writeOutpRM <- function(nameRM) {
recMat <- get(nameRM, envir = KTSEnv)
if (recMat$type != "cross") {
warningRM = paste("Number of ones (only",
"upper triangle,without diag.):",
nrow(recMat$ones))
} else {
warningRM = paste("Number of ones (both triangles and diag.):",
nrow(recMat$ones))
}
txt <- c(paste("RECURRENCE MATRIX:", nameRM), warningRM,
paste("Type:", recMat$type),
paste("Tolerance:", paste(recMat$tol, collapse = ",")),
paste("Distance:", paste(recMat$dist, collapse = ",")),
paste("Embedding dimension:",
paste(recMat$embDim, collapse = ",")),
paste("Delay:", paste(recMat$delay, collapse = ",")),
paste("Original time series:",
paste(recMat$tsName, collapse = ",")),
paste("Lengths:", paste(recMat$tsLength, collapse = ",")),
paste("Sampling periods:",
paste(recMat$samPerSec, collapse = ",")),
paste("Initial dates:", paste(recMat$tsIni, collapse = ",")))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste(txt, collapse = "\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n"))
}
tcltk::tkinsert(KTSEnv$txtWidget, "end",
paste("LOADED OBJECTS", collapse = "\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", date())
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n"))
if (class(KTSEnv$dSList$TS) == "character") {
apply(as.matrix(KTSEnv$dSList$TS), 1, FUN = writeOutpTs)
} else {
tcltk::tkinsert(KTSEnv$txtWidget, "end",
paste("TIME SERIES:none", collapse = "\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n"))
}
if (class(KTSEnv$dSList$gaps) == "character") {
apply(as.matrix(KTSEnv$dSList$gaps), 1, FUN = writeOutpGap)
} else {
tcltk::tkinsert(KTSEnv$txtWidget, "end",
paste("SETS OF GAPS:none", collapse = "\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n"))
}
if (class(KTSEnv$dSList$rm) == "character") {
apply(as.matrix(KTSEnv$dSList$rm), 1, FUN = writeOutpRM)
} else {
tcltk::tkinsert(KTSEnv$txtWidget, "end",
paste("RECURRENCE MATRICES:none",collapse = "\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n"))
}
endingLines()
}
} |
tam.np <- function( dat, probs_init=NULL, pweights=NULL, lambda=NULL, control=list(),
model="2PL", n_basis=0, basis_type="hermite", penalty_type="lasso",
pars_init=NULL, orthonormalize=TRUE)
{
s1 <- Sys.time()
CALL <- match.call()
disp <- "....................................................\n"
increment.factor <- progress <- nodes <- snodes <- ridge <- xsi.start0 <- QMC <- NULL
maxiter <- conv <- convD <- min.variance <- max.increment <- Msteps <- convM <- NULL
R <- trim_increment <- NULL
fac.oldxsi <- acceleration <- NULL
e1 <- environment()
tam_fct <- "tam.np"
res <- tam_mml_control_list_define(control=control, envir=e1, tam_fct=tam_fct,
prior_list_xsi=NULL)
control <- con <- res$con
con1a <- res$con1a
res <- tam_np_inits( dat=dat, nodes=nodes, pweights=pweights,
probs_init=probs_init, n_basis=n_basis, model=model )
maxK <- res$maxK
K <- res$K
K1 <- res$K1
TP <- res$TP
I <- res$I
probs <- res$probs
pi.k <- res$pi.k
dat_resp <- res$dat_resp
dat2 <- res$dat2
N <- res$N
pweights <- res$pweights
theta <- res$theta
items <- res$items
use_basis <- res$use_basis
prob_dim <- c(I, K1, TP)
dev <- 1E200
iterate <- TRUE
converged <- TRUE
iter <- 1
pi_k_array <- array(NA, dim=c(I,K1,TP))
for (ii in 1:I){
for (kk in 1:K1){
pi_k_array[ii,kk,] <- pi.k
}
}
if (use_basis){
res <- tam_np_create_spline_basis(nodes=nodes, n_basis=n_basis, items=items,
pi.k=pi.k, dat=dat, lambda=lambda, basis_type=basis_type,
pars_init=pars_init, orthonormalize=orthonormalize, model=model)
probs <- res$probs
}
est_bspline <- res$est_bspline
desmat <- res$desmat
pars <- res$pars
lambda <- res$lambda
orthonormalize <- res$orthonormalize
spline_optim <- res$spline_optim
target_fct <- res$target_fct
index_target <- res$index_target
index_basis <- res$index_basis
n_reg_max <- res$n_reg_max
while( iterate ){
res <- tam_mml_progress_em0(progress=progress, iter=iter, disp=disp,
print_estep=FALSE)
probs0 <- as.vector(probs)
dev0 <- dev
res <- tam_rcpp_tam_np_posterior( dat2=dat2, dat_resp=dat_resp,
probs0=probs0, pi_k=pi.k, pweights=pweights, K1=K1 )
f.yi.qk <- res$fyiqk
f.qk.yi <- res$fqkyi
n.ik <- array(res$nik, dim=prob_dim )
N.ik <- array(res$Nik, dim=c(I,TP) )
probs <- array(res$probs, dim=prob_dim )
ll <- res$ll
ll_individual <- res$ll_individual
dev <- -2*ll
res <- tam_np_mstep_trait_distribution(nodes=nodes, f.qk.yi=f.qk.yi,
model=model, pi.k=pi.k)
sigma <- res$sigma
pi.k <- res$pi.k
if (use_basis){
res <- tam_np_mstep_items( I=I, n.ik=n.ik, desmat=desmat,
Msteps=Msteps, spline_optim=spline_optim, probs=probs, pars=pars,
lambda=lambda, iter=iter, dev=dev, n_basis=n_basis,
penalty_type=penalty_type, target_fct=target_fct,
index_target=index_target, index_basis=index_basis, model=model)
probs <- res$probs
}
spline_optim <- res$spline_optim
pars <- res$pars
n_reg <- res$n_reg
par_reg_penalty <- res$par_reg_penalty
n_est <- res$n_est
AIC <- res$AIC
regularized <- res$regularized
probs_change <- max( sqrt( (probs - probs0)^2 *pi_k_array ) )
np_change <- probs_change
devch <- - ( dev - dev0 )
deviance_change <- devch
rel_deviance_change <- deviance_change / dev0
res <- tam_mml_progress_em(progress=progress, deviance=dev,
deviance_change=deviance_change, iter=iter,
rel_deviance_change=rel_deviance_change, is_mml_3pl=FALSE,
xsi_change=0, beta_change=0, variance_change=0, B_change=0,
skillspace='np', delta_change=0, digits_pars=6, devch=devch,
penalty_xsi=0, is_np=TRUE, is_latreg=TRUE, np_change=np_change,
par_reg_penalty=par_reg_penalty, n_reg=n_reg, AIC=AIC,
n_est=n_est, n_reg_max=n_reg_max)
iter <- iter + 1
if (iter > maxiter){
converged <- FALSE
iterate <- FALSE
}
if ( ( probs_change < conv) & ( abs(rel_deviance_change) < convD ) ){
iterate <- FALSE
}
}
n.ik <- array( n.ik, dim=c(prob_dim, 1) )
pi.k <- matrix(pi.k, ncol=1)
theta <- matrix(theta, ncol=1)
loglike <- -dev/2
if (! use_basis){ n_est <- NA }
ic <- tam_np_information_criteria(dev=dev, n_est=n_est, n=N)
pen_val <- sum(par_reg_penalty)
if (use_basis){
ncol_pars <- ncol(pars)
if (model=="2PL"){
np <- ncol_pars - n_reg
}
if (model=="1PL"){
np <- ncol_pars - 1 - n_reg
}
item <- data.frame(item=items, regul=regularized, lambda=lambda, np=np, pars)
} else {
item <- NULL
}
s2 <- Sys.time()
time <- c(s1, s2)
res <- list( CALL=CALL, dat=dat, dat2=dat2, dat_resp=dat_resp, n.ik=n.ik,
N.ik=N.ik, item=item, rprobs=probs, pi.k=pi.k, nodes=nodes,
pweights=pweights, like=f.yi.qk, hwt=f.qk.yi, iter=iter,
loglike=loglike, AIC=AIC, converged=converged,
iter=iter, time=time, dev=dev, theta=theta, G=1, pars=pars,
n_est=n_est, n_reg=n_reg, regularized=regularized,
basis_type=basis_type, n_basis=n_basis, desmat=desmat, ic=ic,
pid=NULL, orthonormalize=orthonormalize, penalty_type=penalty_type,
pen_val=pen_val, use_basis=use_basis, model=model, sigma=sigma,
ll_individual=ll_individual, control=control)
class(res) <- "tam.np"
return(res)
} |
get_pushover_sounds <- function(app = get_pushover_app()) {
assert_valid_app(app)
response <- pushover_api(
verb = "GET",
url = "https://api.pushover.net/1/sounds.json",
query = list(token = app)
)
response$sounds
} |
generic_sews <- function(mat,
subsize = 4,
abs_skewness = FALSE,
moranI_coarse_grain = FALSE) {
compute_indicator(mat, raw_generic_indic,
subsize = subsize,
abs_skewness = abs_skewness,
moranI_coarse_grain = moranI_coarse_grain,
taskname = "Generic indicators")
}
raw_generic_indic <- function(mat,
subsize,
abs_skewness,
moranI_coarse_grain) {
if ( is.numeric(mat) && subsize > 1 ) {
warning(paste("Input matrix has continous values but will be",
"coarse-grained anyway. Set subsize=1 to disable coarse",
"graining."))
}
if ( is.logical(mat) && subsize == 1 ) {
warning(paste("Input matrix is binary but no coarse-graining will be",
"performed."))
}
mat_cg <- coarse_grain(mat, subsize)
if ( length(unique(as.vector(mat_cg))) == 1 ) {
return( c(variance = var(as.vector(mat_cg)),
skewness = NA_real_,
moran = NA_real_,
mean = mean(mat)) )
}
skewness_value <- cpp_skewness(mat_cg)
if (abs_skewness) {
skewness_value <- abs(skewness_value)
}
if (moranI_coarse_grain) {
moran_value <- raw_moran(mat_cg)
} else {
moran_value <- raw_moran(mat)
}
c(variance = var(as.vector(mat_cg)),
skewness = skewness_value,
moran = moran_value,
mean = mean(mat))
}
raw_cg_variance <- function(mat, subsize = 5) {
if ( ! is.matrix(mat) ) {
stop("raw_cg_variance only accepts a single matrix as input.")
}
c(variance = var( as.vector( coarse_grain(mat, subsize) ) ))
}
raw_cg_moran <- function(mat, subsize = 1) {
if ( ! is.matrix(mat) ) {
stop("raw_cg_moran only accepts a single matrix as input.")
}
c(moran = raw_moran( coarse_grain(mat, subsize) ))
}
raw_cg_skewness <- function(mat, subsize = 5, absolute = TRUE) {
if ( ! is.matrix(mat) ) {
stop("raw_cg_skewness only accepts a single matrix as input.")
}
a <- cpp_skewness( coarse_grain(mat, subsize) )
if (absolute) {
a <- abs(a)
}
c(skewness = a)
} |
fMP_NLMainGxM_closedform <-
function(listdata, param) {
m = c(listdata$M1,listdata$M2);
p = c(listdata$P1,listdata$P2);
rG = listdata$rG;
aM = param$aM; cM = param$cM; eM = param$eM;
aU = param$aU; cU = param$cU; eU = param$eU;
muM = param$muM; muP = param$muP;
beta1 = param$beta1; beta2 = param$beta2;
alphaU = param$alphaU; kappaU = param$kappaU; epsilonU = param$epsilonU;
entry11 = aM^2 + cM^2 + eM^2
entry12 = aM^2*rG + cM^2
SigmaM = matrix(c(entry11, entry12,
entry12, entry11),2,2)
invSigmaM = solve(SigmaM);
fm = log(2*pi) + 0.5*log(det(SigmaM)) + 0.5*(m-muM) %*% invSigmaM %*%(m-muM);
muP_M = muP + beta1*m + beta2*(m^2);
entry11 = (aU+alphaU*m[1])^2 + (cU+kappaU*m[1])^2 + (eU+epsilonU*m[1])^2;
entry12 = (aU+alphaU*m[1])*(aU+alphaU*m[2])*rG + (cU+kappaU*m[1])*(cU+kappaU*m[2]);
entry22 = (aU+alphaU*m[2])^2 + (cU+kappaU*m[2])^2 + (eU+epsilonU*m[2])^2;
covP_M = matrix(c(entry11, entry12,
entry12, entry22),2,2)
fp_M = log(2*pi) + 0.5*log(det(covP_M)) + 0.5*(p-muP_M) %*% solve(covP_M) %*% (p-muP_M);
return(fm+fp_M);
} |
tblBlocks <- function(x, rowgroupSize=0, ...)
{
x <- { if (inherits(x, "textTable")) tblEntries(x, ...)
else as.tblEntries(x) }
rowheadInside <- attr(x, "rowheadInside")
required <- c("id", "part", "headlayer", "level_in_layer", "arow1", "arow2",
"acol1", "acol2")
if (length(chk <- setdiff(required, names(x))) > 0) stop(
"Following columns are required to define standard ",
"blocks, but are missing from 'x': ", toString(chk))
if (is.na(rowheadInside)) stop(
"Can't create standard blocks because 'rowheadInside' is NA")
if (!rowheadInside && any(with(x, part == "rowhead" & headlayer == 0))) stop(
"Found 'rowhead' entries for layer 0, but 'rowheadInside' is FALSE")
partinfo <- tblParts(x)
n_rowhead <- partinfo["rowhead", "nc"]
nc_rowhead <- { if (rowheadInside && n_rowhead > 0) n_rowhead <- n_rowhead - 1
else n_rowhead }
nc_body <- partinfo["body", "nc"]
n_colhead <- partinfo["colhead", "nr"]
nr_stub <- max(partinfo[c("colhead", "rowheadLabels"), "nr"])
nr_prebody <- sum(partinfo[c("title", "subtitle"), "nr"]) + nr_stub
ad <- adim(x)
nr_tbl <- ad[1]
nc_tbl <- ad[2]
nr_rhbody <- nr_tbl - nr_prebody - partinfo["foot", "nr"]
stopifnot((nc_tbl == nc_rowhead + nc_body) ||
(rowheadInside && nc_body == 0 && nc_rowhead == 0 && nc_tbl == 1))
partinfo[c("title", "subtitle", "foot"), "nc"] <- nc_tbl
min2 <- function(x) { if (length(x[!is.na(x)]) == 0) NA_real_
else min(x, na.rm=TRUE) }
max2 <- function(x) { if (length(x[!is.na(x)]) == 0) NA_real_
else max(x, na.rm=TRUE) }
blocks <- data.frame(id="table", type="table", subtype=NA_character_,
headlayer=NA_real_, level_in_layer=NA_real_,
group_in_level=NA_real_,
nr=nr_tbl, nc=nc_tbl,
arow1={ if (nr_tbl == 0) NA else 1 },
arow2={ if (nr_tbl == 0) NA else nr_tbl },
acol1={ if (nc_tbl == 0) NA else 1 },
acol2={ if (nc_tbl == 0) NA else nc_tbl },
row.names="table", stringsAsFactors=FALSE)
if (rowheadInside) {
id <- c("title", "subtitle", "colhead", "rowheadLabels", "rowhead_and_body",
"foot")
cumrows <- cumsum(c(partinfo[c("title", "subtitle", "colhead"), "nr"],
nr_rhbody, partinfo["foot", "nr"]))
cumcols <- c(nc_rowhead, nc_tbl)
arow2 <- cumrows[c(1, 2, 3, 3, 4, 5)]
acol2 <- cumcols[c(2, 2, 2, 1, 2, 2)]
nr <- c(partinfo[c("title", "subtitle", "colhead", "rowheadLabels"), "nr"],
nr_rhbody, partinfo["foot", "nr"])
nc <- c(nc_tbl, nc_tbl, partinfo["colhead", "nc"], nc_rowhead, nc_tbl,
nc_tbl)
} else {
id <- c("title", "subtitle", "colhead", "rowheadLabels", "rowhead", "body",
"foot")
arow2 <- partinfo[id, "arow2"]
acol2 <- partinfo[id, "acol2"]
nr <- partinfo[id, "nr"]
nc <- partinfo[id, "nc"]
}
arow2[nr == 0] <- NA
acol2[nc == 0] <- NA
dfr <- data.frame(id, type=id, subtype=NA_character_,
headlayer=NA_real_, level_in_layer=NA_real_,
group_in_level=NA_real_, nr, nc,
arow1=arow2 - nr + 1, arow2,
acol1=acol2 - nc + 1, acol2,
row.names=id, stringsAsFactors=FALSE)
blocks <- rbind(blocks, dfr)
dfr <- data.frame(id="stub", type="stub", subtype=NA_character_,
headlayer=NA_real_, level_in_layer=NA_real_,
group_in_level=NA_real_,
nr=nr_stub, nc=nc_rowhead,
arow1=blocks["colhead", "arow1"],
arow2=blocks["colhead", "arow2"],
acol1={ if (nc_rowhead == 0) NA else 1 },
acol2={ if (nc_rowhead == 0) NA else nc_rowhead },
row.names="stub", stringsAsFactors=FALSE)
blocks <- rbind(blocks, dfr)
blockUnion <- function(blks, which_rows, new_id, type=new_id,
subtype=NA_character_) {
mat <- data.matrix(blks[which_rows, c("nr", "nc", "arow1", "arow2",
"acol1", "acol2")])
rownames(mat) <- NULL
arow1 <- min2(mat[, "arow1"])
arow2 <- max2(mat[, "arow2"])
acol1 <- min2(mat[, "acol1"])
acol2 <- max2(mat[, "acol2"])
nr <- { if (is.na(arow2 - arow1)) 0 else arow2 - arow1 + 1 }
nc <- { if (is.na(acol2 - acol1)) 0 else acol2 - acol1 + 1 }
dfr <- data.frame(id=new_id, type=type, subtype=subtype,
headlayer=NA_real_, level_in_layer=NA_real_,
group_in_level=NA_real_, nr=nr, nc=nc,
arow1=arow1, arow2=arow2, acol1=acol1, acol2=acol2,
row.names=new_id, stringsAsFactors=FALSE)
dfr
}
dfr <- blockUnion(blocks, new_id="titles", which_rows=c("title", "subtitle"))
blocks <- rbind(blocks, dfr)
if (!rowheadInside) {
dfr1 <- blockUnion(blocks, new_id="rowhead_and_stub",
which_rows=c("stub", "rowhead"))
blocks <- rbind(blocks, dfr1)
}
dfr2 <- blockUnion(blocks, new_id="colhead_and_stub",
which_rows=c("stub", "colhead"))
blocks <- rbind(blocks, dfr2)
if (!rowheadInside) {
dfr1 <- blockUnion(blocks, new_id="rowhead_and_body",
which_rows=c("body", "rowhead"))
blocks <- rbind(blocks, dfr1)
}
dfr2 <- blockUnion(blocks, new_id="colhead_and_body",
which_rows=c("body", "colhead"))
blocks <- rbind(blocks, dfr2)
xhiers <- list(rowhead=attr(x, "rowhier"), colhead=attr(x, "colhier"))
for (part in c("rowhead", "colhead")) {
which_head <- substr(part, 1, 3)
xhier <- xhiers[[part]]
n_head <- length(xhier)
if (n_head == 0) next
xhier <- do.call(rbind, xhier)
nnodes <- nrow(xhier)
if (nnodes > 0) {
layer <- xhier$headlayer
varnum <- n_head - layer + 1
if (which_head == "row" && rowheadInside) {
layer <- ifelse(layer == n_head, 0, layer)
}
eid <- { if (which_head == "row") paste("rowhead", xhier$start, varnum,
sep=",")
else paste("colhead", varnum, xhier$start, sep=",") }
if (!all(okay <- (eid %in% x$id))) stop(
"Following entries not found in 'x': ", toString(eid[!okay], width=60))
arow1 <- x[eid, "arow1"]
acol1 <- x[eid, "acol1"]
if (which_head == "row") {
arow2 <- ifelse(layer == 0, arow1, arow1 + xhier$runlen - 1)
acol2 <- x[eid, "acol2"]
} else {
arow2 <- x[eid, "arow2"]
acol2 <- acol1 + xhier$runlen - 1
}
dfrA <- data.frame(type=paste0(which_head, "block"), subtype="A",
headlayer=layer,
level_in_layer=xhier[, "level_in_layer"],
group_in_level=NA_real_,
arow1, arow2, acol1, acol2,
stringsAsFactors=FALSE)
dfrB <- dfrA
dfrB$subtype <- "B"
dfrC <- dfrB
dfrC$subtype <- "C"
if (which_head == "row") {
dfrB$acol2 <- blocks["stub", "acol2"]
dfrC$acol2 <- nc_tbl
if (rowheadInside) {
lyr0 <- (layer == 0)
if (nc_rowhead + nc_body > 0) {
dfrB[lyr0, "arow1"] <- dfrA[lyr0, "arow1"] + 1
dfrB[lyr0, "arow2"] <- dfrA[lyr0, "arow1"] + xhier[lyr0, "runlen"]
dfrC[lyr0, c("arow1", "arow2")] <- dfrB[lyr0, c("arow1", "arow2")]
if (nc_rowhead == 0) {
dfrB[lyr0, c("acol1", "acol2")] <- NA_real_
}
} else {
dfrB[lyr0, c("arow1", "arow2", "acol1", "acol2")] <- NA_real_
dfrC[lyr0, c("arow1", "arow2", "acol1", "acol2")] <- NA_real_
}
}
} else {
dfrB$arow2 <- blocks["stub", "arow2"]
dfrC$arow2 <- blocks["stub", "arow2"] + nr_rhbody
}
dfr2 <- rbind(dfrA, dfrB, dfrC)
id <- with(dfr2, paste(type, subtype, headlayer, level_in_layer, sep="/"))
nr <- with(dfr2, ifelse(is.na(arow2 - arow1), 0, arow2 - arow1 + 1))
nc <- with(dfr2, ifelse(is.na(acol2 - acol1), 0, acol2 - acol1 + 1))
dfr2 <- data.frame(id, dfr2[, c("type", "subtype", "headlayer",
"level_in_layer", "group_in_level")],
nr, nc,
dfr2[, c("arow1", "arow2", "acol1", "acol2")],
row.names=id, stringsAsFactors=FALSE)
blocks <- rbind(blocks, dfr2)
}
}
if (rowgroupSize > 0) {
grpblks <- make_rowgroups(blocks, rowheadruns=attr(x, "rowhier"),
rowgroupSize=rowgroupSize)
blocks <- rbind(blocks, grpblks)
}
stopifnot(!any(duplicated(blocks$id)), !anyNA(blocks$nr),
!anyNA(blocks$nc))
stopifnot(with(blocks, all((is.na(arow2-arow1) & nr==0) |
(!is.na(arow2-arow1) & nr==arow2-arow1+1 &
nr > 0))))
stopifnot(with(blocks, all((is.na(acol2-acol1) & nc==0) |
(!is.na(acol2-acol1) & nc==acol2-acol1+1 &
nc > 0))))
had_enabled_entries <- rep(NA, nrow(blocks))
wch_entries <- entries_by_block(x, blocks=blocks, strict=FALSE)
for (i in seq_along(wch_entries)) {
had_enabled_entries[i] <- any(x[wch_entries[[i]], "enabled"])
}
blocks$had_enabled_entries <- had_enabled_entries
row.names(blocks) <- blocks$id
blocks <- structure(blocks, rowheadInside=rowheadInside,
rowgroupSize=rowgroupSize)
class(blocks) <- c("tblBlocks", "data.frame")
blocks
} |
grab_rt_live <- function(State = state_name, ST = state_abbrv){
url <- "https://d14wlfuexuxgcm.cloudfront.net/covid/rt.csv"
if ( as.character(url_file_exists(url)[1]) == "TRUE" ) {
rt_live <- read.csv("https://d14wlfuexuxgcm.cloudfront.net/covid/rt.csv") %>%
filter(region == ST) %>%
mutate(date = as.Date(as.character(date)),
region = as.character(region))
msg <- paste0("Successfully download data from Rt.live for ", State, " on ", Sys.Date())
} else {
msg <- paste0("Problem with Rt.live link to file updates. Check URL.")
}
print(msg)
return(rt_live)
} |
setMethod('predict', signature(object='Mahalanobis'),
function(object, x, toCenter=FALSE, ext=NULL, filename='', ...) {
if (toCenter) {
m <- colMeans(object@presence, na.rm=TRUE)
}
if (! (extends(class(x), 'Raster')) ) {
if (! all(colnames(object@presence) %in% colnames(x)) ) {
stop('missing variables in matrix ')
}
x <- x[ , colnames(object@presence),drop=FALSE]
if (toCenter) {
mah <- 1 - apply(data.frame(x), 1, FUN=function(z) mahalanobis(z, m, object@cov, inverted=TRUE))
return(mah)
} else {
mah <- 1 - apply(data.frame(x), 1, FUN=function(z) min( mahalanobis(object@presence, z, object@cov, inverted=TRUE)))
}
} else {
if (! all(colnames(object@presence) %in% names(x)) ) {
stop('missing variables in Raster object ')
}
out <- raster(x)
if (!is.null(ext)) {
out <- crop(out, ext)
firstrow <- rowFromY(x, yFromRow(out, 1))
firstcol <- colFromX(x, xFromCol(out, 1))
} else {
firstrow <- 1
firstcol <- 1
}
ncols <- ncol(out)
if (canProcessInMemory(out, 2)) {
inmem <- TRUE
v <- matrix(NA, ncol=nrow(out), nrow=ncol(out))
} else {
inmem <- FALSE
if (filename == '') {
filename <- rasterTmpFile()
if (getOption('verbose')) { message('writing raster to:', filename) }
}
out <- writeStart(out, filename=filename, ...)
}
cn <- colnames(object@presence)
tr <- blockSize(out, n=nlayers(x)+2)
pb <- pbCreate(tr$n, ...)
for (i in 1:tr$n) {
rr <- firstrow + tr$row[i] - 1
vals <- getValuesBlock(x, row=rr, nrows=tr$nrows[i], firstcol, ncols)
vals <- vals[,cn,drop=FALSE]
if (toCenter) {
res <- 1 - apply(data.frame(vals), 1, FUN=function(z) mahalanobis(z, m, object@cov, inverted=TRUE))
} else {
res <- 1 - apply(data.frame(vals), 1, FUN=function(z) min( mahalanobis(object@presence, z, object@cov, inverted=TRUE)))
}
if (inmem) {
res <- matrix(res, nrow=ncol(out))
cols = tr$row[i]:(tr$row[i]+dim(res)[2]-1)
v[, cols] <- res
} else {
out <- writeValues(out, res, tr$row[i])
}
pbStep(pb, i)
}
if (inmem) {
out <- setValues(out, as.vector(v))
if (filename != '') {
out <- writeRaster(out, filename, ...)
}
} else {
out <- writeStop(out)
}
pbClose(pb)
return(out)
}
}) |
bubbleRadviz <-
function(x,
main = NULL,
group = NULL,
color = NULL,
size = c(3,16),
label.color=NULL,
label.size=NULL,
bubble.color,
bubble.fg,
bubble.size,
scale,
decreasing,
add) {
if(!missing(bubble.color))
warning('bubble.color is a deprecated argument, use plot(x)+geom_point() and custom data and mappings to change plot.',call. = FALSE)
if(!missing(bubble.fg))
warning('bubble.fg is a deprecated argument, use plot(x)+geom_point() and custom data and mappings to change plot.',call. = FALSE)
if(!missing(bubble.size))
warning('bubble.size is a deprecated argument, use plot(x)+geom_point() and custom data and mappings to change plot.',call. = FALSE)
if(!missing(scale))
warning('scale is a deprecated argument, use plot(x)+geom_point() and custom data and mappings to change plot.',call. = FALSE)
if(!missing(decreasing))
warning('decreasing is a deprecated argument, use plot(x)+geom_point() and custom data and mappings to change plot.',call. = FALSE)
if(!missing(add))
warning('add is a deprecated argument, use plot(x)+geom_point() and custom data and mappings to change plot.',call. = FALSE)
if(is.null(group)) {
stop('Group must be set to a grouping column')
}
if(!is.null(color)) {
if(!color %in% colnames(x$proj$data)) {
stop(color,'is not a valid column name')
} else if(!is.numeric(x$proj$data[,color])) {
stop('color must correspond to a numeric vector')
}
}
p <- x$proj+
ggtitle(main)
if(!is.null(label.color) | !is.null(label.size)) {
if(is.null(label.size)) label.size <- NA
if(is.null(label.color)) label.color <- 'orangered4'
if(!is.numeric(label.size)) label.size <- as.numeric(label.size)
p$layers[[1]] <- geom_text(data = p$layers[[1]]$data,
aes_string(x='X1',y='X2',label='Channel'),
color=label.color,
size=label.size)
}
dims <- c(color,'rx','ry')
slayer <- geom_point(data=left_join(x$proj$data %>%
filter(!.data$rvalid) %>%
select(c(dims,group)) %>%
group_by(!!sym(group)) %>%
summarise_at(.vars=dims,.funs=median),
x$proj$data %>%
count(!!sym(group)),
by=group) %>%
mutate(!!group:=factor(!!sym(group)),
!!group:=reorder(!!sym(group),.data$n,max)),
aes_string(x='rx',y='ry',
color=ifelse(is.null(color),group,color),
size='n'))
p$layers <- c(slayer,p$layers)
p <- p+
scale_size(range=size)
if(!is.null(color)) {
p <- p+scale_color_gradient(low='grey90',high='dodgerblue4')
}
return(p)
} |
simplepanel <- function(title, B, boxes, clicks, redraws=NULL, exit=NULL, env) {
stopifnot(is.rectangle(B))
stopifnot(is.list(boxes))
if(!all(unlist(lapply(boxes, is.rectangle))))
stop("some of the boxes are not rectangles")
if(!all(unlist(lapply(boxes, is.subset.owin, B=B))))
stop("Some boxes do not lie inside the bounding box B")
stopifnot(is.list(clicks) && length(clicks) == length(boxes))
if(!all(unlist(lapply(clicks, is.function))))
stop("clicks must be a list of functions")
if(is.null(redraws)) {
redraws <- rep.int(list(dflt.redraw), length(boxes))
} else {
stopifnot(is.list(redraws) && length(redraws) == length(boxes))
if(any(isnul <- unlist(lapply(redraws, is.null))))
redraws[isnul] <- rep.int(list(dflt.redraw), sum(isnul))
if(!all(unlist(lapply(redraws, is.function))))
stop("redraws must be a list of functions")
}
if(is.null(exit)) {
exit <- function(...) { NULL}
} else stopifnot(is.function(exit))
stopifnot(is.environment(env))
n <- length(boxes)
bnames <- names(boxes) %orifnull% rep("", n)
cnames <- names(clicks) %orifnull% rep("", n)
dnames <- paste("Button", seq_len(n))
nama <- ifelse(nzchar(bnames), bnames, ifelse(nzchar(cnames), cnames, dnames))
out <- list(title=title, B=B,
nama=nama, boxes=boxes, clicks=clicks, redraws=redraws,
exit=exit, env=env)
class(out) <- c("simplepanel", class(out))
return(out)
}
grow.simplepanel <- function(P, side=c("right","left","top","bottom"),
len=NULL,
new.clicks, new.redraws=NULL, ..., aspect) {
verifyclass(P, "simplepanel")
side <- match.arg(side)
stopifnot(is.list(new.clicks))
if(!all(unlist(lapply(new.clicks, is.function))))
stop("new.clicks must be a list of functions")
if(is.null(new.redraws)) {
new.redraws <- rep.int(list(dflt.redraw), length(new.clicks))
} else {
stopifnot(is.list(new.redraws) && length(new.redraws) == length(new.clicks))
if(any(isnul <- sapply(new.redraws, is.null)))
new.redraws[isnul] <- rep.int(list(dflt.redraw), sum(isnul))
if(!all(unlist(lapply(new.redraws, is.function))))
stop("new.redraws must be a list of functions")
}
if(missing(aspect) || is.null(aspect)) {
n <- length(new.clicks)
nama <- names(new.clicks)
if(sum(nzchar(nama)) != n)
nama <- names(new.redraws)
if(sum(nzchar(nama)) != n)
nama <- paste("Box", seq_len(n))
aspect <- 3/max(4, nchar(nama))
}
B <- P$B
n <- length(new.clicks)
switch(side,
right={
new.width <- if(!is.null(len)) len else sidelengths(B)[1]/2
extraspace <- owin(B$xrange[2] + c(0, new.width), B$yrange)
new.boxes <- layout.boxes(extraspace, n, ..., aspect=aspect)
},
left={
new.width <- if(!is.null(len)) len else sidelengths(B)[1]/2
extraspace <- owin(B$xrange[1] - c(new.width, 0), B$yrange)
new.boxes <- layout.boxes(extraspace, n, ..., aspect=aspect)
},
top={
new.height <- if(!is.null(len)) len else sidelengths(B)[2]/2
extraspace <- owin(B$xrange, B$yrange[2] + c(0, new.height))
new.boxes <- layout.boxes(extraspace, n, ..., aspect=aspect,
horizontal=TRUE)
},
bottom={
new.height <- if(!is.null(len)) len else sidelengths(B)[2]/2
extraspace <- owin(B$xrange, B$yrange[1] - c(new.height, 0))
new.boxes <- layout.boxes(extraspace, n, ..., aspect=aspect,
horizontal=TRUE)
})
with(P, simplepanel(title,
boundingbox(B, extraspace),
append(boxes, new.boxes),
append(clicks, new.clicks),
append(redraws, new.redraws),
exit, env))
}
redraw.simplepanel <- function(P, verbose=FALSE) {
verifyclass(P, "simplepanel")
if(verbose)
cat("Redrawing entire panel\n")
with(P, {
plot(B, type="n", main=title)
for(j in seq_along(nama))
(redraws[[j]])(boxes[[j]], nama[j], env)
})
invisible(NULL)
}
clear.simplepanel <- function(P) {
verifyclass(P, "simplepanel")
plot(P$B, main="")
invisible(NULL)
}
run.simplepanel <- function(P, popup=TRUE, verbose=FALSE) {
verifyclass(P, "simplepanel")
if(popup) dev.new()
ntitle <- sum(nzchar(P$title))
opa <- par(mar=c(0,0,ntitle+0.2,0),ask=FALSE)
with(P, {
more <- TRUE
while(more) {
redraw.simplepanel(P, verbose=verbose)
xy <- spatstatLocator(1)
if(is.null(xy)) {
if(verbose) cat("No (x,y) coordinates\n")
break
}
found <- FALSE
for(j in seq_along(boxes)) {
if(inside.owin(xy$x, xy$y, boxes[[j]])) {
found <- TRUE
if(verbose) cat(paste("Caught click on", sQuote(nama[j]), "\n"))
more <- (clicks[[j]])(env, xy)
if(!is.logical(more) || length(more) != 1) {
warning(paste("Click function for",
sQuote(nama[j]),
"did not return TRUE/FALSE"))
more <- FALSE
}
if(verbose) cat(if(more) "Continuing\n" else "Terminating\n")
break
}
}
if(verbose && !found)
cat(paste("Coordinates", paren(paste(xy, collapse=",")),
"not matched to any box\n"))
}
})
if(verbose)
cat("Calling exit function\n")
rslt <- with(P, exit(env))
par(opa)
if(popup) dev.off()
return(rslt)
}
layout.boxes <- function(B, n, horizontal=FALSE, aspect=0.5, usefrac=0.9){
stopifnot(is.rectangle(B))
stopifnot(n > 0)
width <- sidelengths(B)[1]
height <- sidelengths(B)[2]
if(!horizontal) {
heightshare <- height/n
useheight <- min(width * aspect, heightshare * usefrac)
usewidth <- min(useheight /aspect, width * usefrac)
lostwidth <- width - usewidth
lostheightshare <- heightshare - useheight
template <- owin(c(0, usewidth), c(0, useheight))
boxes <- list()
boxes[[1]] <- shift(template,
c(B$xrange[1]+lostwidth/2,
B$yrange[1] + lostheightshare/2))
if(n > 1)
for(j in 2:n)
boxes[[j]] <- shift(boxes[[j-1]], c(0, heightshare))
} else {
boxes <- layout.boxes(flipxy(B), n,
horizontal=FALSE, aspect=1/aspect, usefrac=usefrac)
boxes <- lapply(boxes, flipxy)
}
return(boxes)
}
dflt.redraw <- function(button, name, env) {
plot(button, add=TRUE, border="pink")
text(centroid.owin(button), labels=name)
}
print.simplepanel <- function(x, ...) {
nama <- x$nama
cat("simplepanel object\n")
cat(paste("\tTitle:", sQuote(x$title), "\n"))
cat("\tPanel names:")
for(i in seq_along(nama)) {
if(i %% 6 == 1) cat("\n\t")
cat(paste0(sQuote(nama[i]), " "))
}
cat("\n")
return(invisible(NULL))
} |
starwars_dm <- function(configure_dm = TRUE, remote = FALSE) {
requires_dm("starwars_dm()")
x <- if (isTRUE(remote)) {
dm::dm_from_src(starwars_connect(), learn_keys = FALSE)
} else {
dm::as_dm(starwarsdb_tables())
}
if (!isTRUE(configure_dm)) return(x)
starwars_dm_configure(x)
}
starwars_dm_configure <- function(dm) {
requires_dm("starwars_dm_configure()")
dm %>%
dm::dm_add_pk("films", "title") %>%
dm::dm_add_pk("people", "name") %>%
dm::dm_add_pk("planets", "name") %>%
dm::dm_add_pk("species", "name") %>%
dm::dm_add_pk("vehicles", "name") %>%
dm::dm_add_fk("films_people", "title", "films") %>%
dm::dm_add_fk("films_people", "character", "people") %>%
dm::dm_add_fk("films_planets", "title", "films") %>%
dm::dm_add_fk("films_planets", "planet", "planets") %>%
dm::dm_add_fk("films_vehicles", "title", "films") %>%
dm::dm_add_fk("films_vehicles", "vehicle", "vehicles") %>%
dm::dm_add_fk("pilots", "pilot", "people") %>%
dm::dm_add_fk("pilots", "vehicle", "vehicles") %>%
dm::dm_add_fk("people", "species", "species") %>%
dm::dm_add_fk("people", "homeworld", "planets") %>%
dm::dm_set_colors(
"
"
"
"
"
)
}
requires_dm <- function(fn = NULL) {
if (!has_dm()) {
msg <- "requires the {dm} package: install.packages('dm')"
if (!is.null(fn)) msg <- paste(fn, msg)
stop(msg, call. = is.null(fn))
}
}
has_dm <- function() {
requireNamespace("dm", quietly = TRUE)
} |
estPI <- function(X,g,type="pair",goi=NULL,mc=1,order=TRUE,alg="Cnaive"){
type <- match.arg(type,c("single","pair","triple"))
alg <- match.arg(alg,c("Cnaive","Csubmat","Rsubmat","Rnaive","Rgrid"))
g <- relabelGroups(g)
result <- list()
dimX <- dim(X)
XisVector <- is.null(dimX)
if(is.null(goi)) goi <- g
goi <- unique(goi)
Ngoi <- length(goi)
pickThose <- is.element(g,goi)
ifelse(XisVector , X <- X[pickThose] , X <- X[pickThose,])
g <- g[pickThose]
if(mc>detectCores())
{
mc <- detectCores()
warning(paste("You do not have so many cores on this machine! I automatically reduced it to your machines maximum number:",mc,"\n"))
}
mc <- min(dimX[2],mc)
NlistItems <- c()
if(type=="single")
{
NlistItems <- Ngoi
comb <- goi
} else if (type=="pair"){
NlistItems <- getNListItems(Ngoi,"pair",order)
comb <- getComb(goi,type="pairs",order)
} else if (type=="triple"){
NlistItems <- getNListItems(Ngoi,"triple",order)
comb <- getComb(goi,type="triple",order)
}
inner1 <- function(i,X,g,t,goi,alg){
PE1(X[,i],g,t,goi,alg)
}
inner2 <- function(i,X,g,comb,alg){
PE2(X[,i],g,comb,alg)
}
inner3 <- function(i,X,g,comb,alg){
PE3(X[,i],g,comb,alg)
}
for(oRun in 1:NlistItems)
{
if(XisVector)
{
if(type=="single")
{
result[[oRun]] <- PE1(X,g,goi[oRun],goi,alg)
names(result)[oRun] <- paste("P(",goi[oRun],")",sep="")
} else if(type=="pair")
{
result[[oRun]] <- PE2(X,g,comb[oRun,],alg)
names(result)[oRun] <- paste("P(",paste(comb[oRun,],collapse="<"),")",sep="")
} else if(type=="triple")
{
result[[oRun]] <- PE3(X,g,comb[oRun,],alg)
names(result)[oRun] <- paste("P(",paste(comb[oRun,],collapse="<"),")",sep="")
}
} else {
if(type=="single")
{
result[[oRun]] <- unlist(mclapply(c(1:dimX[2]),inner1,X,g,goi[oRun],goi,alg,mc.cores=mc))
names(result)[oRun] <- paste("P(",goi[oRun],")",sep="")
} else if(type=="pair"){
result[[oRun]] <- unlist(mclapply(c(1:dimX[2]),inner2,X,g,comb[oRun,],alg,mc.cores=mc))
names(result)[oRun] <- paste("P(",paste(comb[oRun,],collapse="<"),")",sep="")
} else if(type=="triple"){
result[[oRun]] <- unlist(mclapply(c(1:dimX[2]),inner3,X,g,comb[oRun,],alg,mc.cores=mc))
names(result)[oRun] <- paste("P(",paste(comb[oRun,],collapse="<"),")",sep="")
}
}
}
if(XisVector)
{
result <- unlist(result)
} else {
temp <- matrix(NA,nrow=NlistItems,ncol=dimX[2])
for(i in 1:NlistItems)
{
temp[i,] <- result[[i]]
}
rownames(temp) <- names(result)
colnames(temp) <- colnames(X)
result <- temp
}
res <- list(probs=result,type=type,goi=goi,order=order,obs=X,g=g,alg=alg)
class(res) <- "estPI"
return(res)
} |
sienaRI <- function(data, ans=NULL, theta=NULL, algorithm=NULL, effects=NULL,
getChangeStats=FALSE)
{
if (!inherits(data, "siena"))
{
stop("no a legitimate Siena data specification")
}
datatypes <- sapply(data$depvars, function(x){attr(x,"type")})
if (any(datatypes == "bipartite"))
{
stop("sienaRI works only for dependent variables of type 'oneMode' or 'behavior'")
}
if(!is.null(ans))
{
if (!inherits(ans, "sienaFit"))
{
stop(paste("ans is not a legitimate Siena fit object", sep=""))
}
if(!is.null(algorithm)||!is.null(theta)||!is.null(effects))
{
warning(paste("some informations are multiply defined \n",
"results will be based on 'theta', 'algorithm', and 'effects'\n",
"stored in 'ans' (as 'ans$theta', 'ans$x', 'ans$effects')\n", sep=""))
}
if (sum(ans$effects$include==TRUE &
(ans$effects$type =="endow"|ans$effects$type =="creation")) > 0)
{
stop("sienaRI does not yet work for models containing endowment or creation effects")
}
if (any(ans$effects$shortName %in% c("unspInt", "behUnspInt"))){
stop("sienaRI does not yet work for models containing interaction effects")
}
contributions <- getChangeContributions(algorithm = ans$x, data = data,
effects = ans$effects)
RI <- expectedRelativeImportance(conts = contributions,
effects = ans$effects, theta =ans$theta, thedata=data,
getChangeStatistics=getChangeStats)
}
else
{
if (!inherits(algorithm, "sienaAlgorithm"))
{
stop(paste("algorithm is not a legitimate Siena algorithm specification", sep=""))
}
algo <- algorithm
if (!inherits(effects, "sienaEffects"))
{
stop(paste("effects is not a legitimate Siena effects object", sep=""))
}
if(sum(effects$include==TRUE &
(effects$type =="endow"|effects$type =="creation")) > 0)
{
stop("sienaRI does not yet work for models containing endowment or creation effects")
}
effs <- effects
if (!is.numeric(theta))
{
stop("theta is not a legitimate parameter vector")
}
if(length(theta) != sum(effs$include==TRUE & effs$type!="rate"))
{
if(length(theta) != sum(effs$include==TRUE))
{
stop("theta is not a legitimate parameter vector \n number of parameters has to match number of effects")
}
warning(paste("length of theta does not match the number of objective function effects\n",
"theta is treated as if containing rate parameters"))
paras <- theta
contributions <- getChangeContributions(algorithm = algo,
data = data, effects = effs)
RI <- expectedRelativeImportance(conts = contributions,
effects = effs, theta = paras, thedata=data,
getChangeStatistics=getChangeStats)
}else{
paras <- theta
contributions <- getChangeContributions(algorithm = algo,
data = data, effects = effs)
RI <- expectedRelativeImportance(conts = contributions,
effects = effs, theta = paras, thedata=data,
getChangeStatistics=getChangeStats)
}
}
RI
}
getChangeContributions <- function(algorithm, data, effects)
{
f <- unpackData(data,algorithm)
effects <- effects[effects$include,]
if (!is.null(algorithm$settings))
{
stop('not implemented: RI together with settings')
}
else
{
effects$setting <- rep("", nrow(effects))
}
pData <- .Call(C_setupData, PACKAGE=pkgname,
list(as.integer(f$observations)),
list(f$nodeSets))
ans <- reg.finalizer(pData, clearData, onexit = FALSE)
ans<- .Call(C_OneMode, PACKAGE=pkgname,
pData, list(f$nets))
ans <- .Call(C_Bipartite, PACKAGE=pkgname,
pData, list(f$bipartites))
ans<- .Call(C_Behavior, PACKAGE=pkgname, pData,
list(f$behavs))
ans<-.Call(C_ConstantCovariates, PACKAGE=pkgname,
pData, list(f$cCovars))
ans<-.Call(C_ChangingCovariates,PACKAGE=pkgname,
pData,list(f$vCovars))
ans<-.Call(C_DyadicCovariates,PACKAGE=pkgname,
pData,list(f$dycCovars))
ans<-.Call(C_ChangingDyadicCovariates,PACKAGE=pkgname,
pData, list(f$dyvCovars))
storage.mode(effects$parm) <- 'integer'
storage.mode(effects$group) <- 'integer'
storage.mode(effects$period) <- 'integer'
effects$effectPtr <- rep(NA, nrow(effects))
depvarnames <- names(data$depvars)
tmpeffects <- split(effects, effects$name)
myeffectsOrder <- match(depvarnames, names(tmpeffects))
ans <- .Call(C_effects, PACKAGE=pkgname, pData, tmpeffects)
pModel <- ans[[1]][[1]]
for (i in 1:length(ans[[2]]))
{
effectPtr <- ans[[2]][[i]]
tmpeffects[[i]]$effectPtr <- effectPtr
}
myeffects <- tmpeffects
for(i in 1:length(myeffectsOrder)){
myeffects[[i]]<-tmpeffects[[myeffectsOrder[i]]]
}
ans <- .Call(C_getTargets, PACKAGE=pkgname, pData, pModel, myeffects,
parallelrun=TRUE, returnActorStatistics=FALSE,
returnStaticChangeContributions=TRUE)
ans
}
expectedRelativeImportance <- function(conts, effects, theta, thedata=NULL,
getChangeStatistics=FALSE, effectNames = NULL)
{
waves <- length(conts[[1]])
effects <- effects[effects$include == TRUE,]
noRate <- effects$type != "rate"
effects <- effects[noRate,]
if(sum(noRate)!=length(theta))
{
theta <- theta[noRate]
}
effectNa <- attr(conts,"effectNames")
effectTypes <- attr(conts,"effectTypes")
networkNames <- attr(conts,"networkNames")
networkTypes <- attr(conts,"networkTypes")
networkInteraction <- effects$interaction1
effectIds <- paste(effectNa,effectTypes,networkInteraction, sep = ".")
currentDepName <- ""
depNumber <- 0
for(eff in 1:length(effectIds))
{
if(networkNames[eff] != currentDepName)
{
currentDepName <- networkNames[eff]
actors <- length(conts[[1]][[1]][[1]])
if (networkTypes[eff] == "oneMode")
{
choices <- actors
}else if(networkTypes[eff] == "behavior"){
choices <- 3
} else {
stop("so far, sienaRI works only for dependent variables of type 'oneMode' or 'behavior'")
}
depNumber <- depNumber + 1
currentDepEffs <- effects$name == currentDepName
effNumber <- sum(currentDepEffs)
depNetwork <- thedata$depvars[[depNumber]]
if (networkTypes[eff] == "oneMode")
{
depNetwork[,,1][is.na(depNetwork[,,1])] <- 0
}
else
{
depNetwork[,,1][is.na(depNetwork[,,1])] <- attr(depNetwork, 'modes')[1]
}
for (m in 2:dim(depNetwork)[3]){depNetwork[,,m][is.na(depNetwork[,,m])] <-
depNetwork[,,m-1][is.na(depNetwork[,,m])]}
if (networkTypes[eff] == "oneMode")
{
for (m in 1:dim(depNetwork)[3]){diag(depNetwork[,,m]) <- 0}
}
structurals <- (depNetwork >= 10)
if (networkTypes[eff] == "oneMode"){
if (attr(depNetwork, 'symmetric')){
message('\nNote that for symmetric networks, effect sizes are for modelType 2 (forcing).')}}
entropies <- vector(mode="numeric", length = actors)
expectedRI <- list()
expectedI <- list()
RIActors <- list()
IActors <- list()
absoluteSumActors <- list()
RHActors <-list()
changeStats <-list()
sigma <- list()
for(w in 1:waves)
{
currentDepEffectContributions <- conts[[1]][[w]][currentDepEffs]
currentDepEffectContributions <-
sapply(lapply(currentDepEffectContributions, unlist),
matrix, nrow=actors, ncol=choices, byrow=TRUE,
simplify="array")
cdec <- apply(currentDepEffectContributions, c(2,1), as.matrix)
if (dim(currentDepEffectContributions)[3] <= 1)
{
cdec <- array(cdec, dim=c(1,dim(cdec)))
}
rownames(cdec) <- effectNa[currentDepEffs]
if (getChangeStatistics)
{
changeStats[[w]] <- cdec
}
if (networkTypes[eff] == "oneMode")
{
for (ff in 1:dim(cdec)[1]){cdec[ff,,][t(structurals[,,w])] <- NA}
}
distributions <- apply(cdec, 3,
calculateDistributions, theta[which(currentDepEffs)])
distributions <-
lapply(apply(distributions, 2, list),
function(x){matrix(x[[1]], nrow=effNumber+1,
ncol=choices, byrow=F)})
entropy_vector <- unlist(lapply(distributions,
function(x){entropy(x[1,])}))
RIs_list <- lapply(distributions,function(x){L1D(x[1,],
x[2:dim(x)[1],])})
RIs_matrix <-(matrix(unlist(RIs_list),nrow=effNumber,
ncol=actors, byrow=F))
entropies <- entropy_vector
RIActors[[w]] <- t(t(RIs_matrix)/rowSums(t(RIs_matrix), na.rm=TRUE))
rownames(RIActors[[w]]) <- effectNa[currentDepEffs]
absoluteSumActors[[w]] <- colSums(RIs_matrix, na.rm=TRUE)
RHActors[[w]] <- entropies
expectedRI[[w]] <- rowMeans(RIActors[[w]], na.rm=TRUE)
IActors[[w]] <- RIs_matrix
rownames(IActors[[w]]) <- effectNa[currentDepEffs]
expectedI[[w]] <- rowMeans(RIs_matrix, na.rm=TRUE)
sigma[[w]] <- apply(cdec, c(1,3), sd, na.rm=TRUE)
rownames(sigma[[w]]) <- effectNa[currentDepEffs]
}
RItmp <- NULL
RItmp$dependentVariable <- currentDepName
RItmp$expectedRI <- expectedRI
RItmp$RIActors <- RIActors
RItmp$expectedI <- expectedI
RItmp$IActors <- IActors
RItmp$absoluteSumActors <- absoluteSumActors
RItmp$RHActors <- RHActors
RItmp$sigma <- sigma
if(!is.null(effectNames))
{
RItmp$effectNames <- effectNames[currentDepEffs]
}else{
RItmp$effectNames <-
paste(effectTypes[currentDepEffs], " ",
effects$effectName[currentDepEffs], sep="")
}
if (getChangeStatistics){
RItmp$changeStatistics <- changeStats
}
class(RItmp) <- "sienaRI"
if(depNumber == 1){
RI <- RItmp
}else if(depNumber == 2){
RItmp1 <- RI
RI <- list()
RI[[1]]<-RItmp1
RI[[2]]<-RItmp
}else{
RI[[depNumber]]<-RItmp
}
}
}
if(depNumber>1)
{
message(paste("more than one dependent variable\n",
"return value is therefore not of class 'sienaRI'\n",
"but a list of objects of class 'sienaRI'."))
}
RI
}
calculateDistributions <- function(effectContributions = NULL, theta = NULL)
{
neffects <- dim(effectContributions)[1]
nchoices <- dim(effectContributions)[2]
distributions <- array(NA, dim = c(neffects+1,nchoices))
the.choices <- !is.na(colSums(effectContributions))
if (sum(the.choices) >= 2)
{
distributions[1,the.choices] <-
exp(colSums(theta*effectContributions[,the.choices,drop=FALSE], na.rm=TRUE))/
sum(exp(colSums(theta*effectContributions[,the.choices,drop=FALSE], na.rm=TRUE)))
for(eff in 1:neffects)
{
th <- theta
th[eff] <- 0
distributions[eff+1,the.choices] <-
exp(colSums(th*effectContributions[,the.choices,drop=FALSE], na.rm=TRUE))/
sum(exp(colSums(th*effectContributions[,the.choices,drop=FALSE], na.rm=TRUE)))
}
}
distributions
}
entropy <- function(distribution = NULL)
{
if (sum(!is.na((distribution))) <= 1)
{
certainty <- NA
}
else
{
entropy <- -1*(sum(distribution * log(distribution), na.rm=TRUE)/
log(sum(!is.na((distribution)))))
certainty <- 1 - entropy
}
certainty
}
KLD <- function(referenz = NULL, distributions = NULL)
{
if (sum(!is.na((referenz))) <= 1)
{
kld <- rep(NA, dim(distributions)[1])
}
else
{
if(is.vector(distributions))
{
kld <- sum(referenz * (log(referenz)-log(distributions)),
na.rm=TRUE)/log(sum(!is.na((referenz))))
}
else
{
kld <- colSums(referenz * (log(referenz)-t(log(distributions))),
na.rm=TRUE)/log(sum(!is.na((referenz))))
}
}
kld
}
L1D <- function(referenz = NULL, distributions = NULL)
{
if (sum(!is.na((referenz))) <= 1)
{
l1d <- rep(NA, dim(distributions)[1])
}
else
{
if(is.vector(distributions))
{
l1d <- sum(abs(referenz-distributions), na.rm=TRUE)
}
else
{
l1d <- colSums(abs(referenz-t(distributions)), na.rm=TRUE)
}
}
l1d
}
print.sienaRI <- function(x, printSigma = FALSE, ...){
if (!inherits(x, "sienaRI"))
{
if (inherits(x[[1]], "sienaRI"))
{
cat("This object is a list, the components of which\n")
cat("are Siena relative importance of effects objects.\n")
cat("Apply the print function to the separate components.\n")
}
stop("not a legitimate Siena relative importance of effects object")
}
cat(paste("\n Expected relative importance of effects for dependent variable '",
x$dependentVariable,"' at observation moments:\n\n\n", sep=""))
waves <- length(x$expectedRI)
effs <- length(x$effectNames)
colNames = paste("wave ", 1:waves, sep="")
line1 <- format("", width =63)
line2 <- paste(format(1:effs,width=3), '. ',
format(x$effectNames, width = 56),sep="")
line3 <- line2
line4 <- format(" R_H ('degree of certainty')", width = 61)
line5 <- line2
if (printSigma)
{
sigmas <- matrix(sapply(x$sigma,rowMeans,na.rm=TRUE), effs, waves)
}
for (w in 1:length(colNames))
{
line1 <- paste(line1, format(colNames[w], width=8)," ", sep = "")
line2 <- paste(line2, format(round(x$expectedRI[[w]], 4),
width=8, nsmall=4)," ",sep="")
line3 <- paste(line3, format(round(x$expectedI[[w]], 4),
width=8, nsmall=4)," ",sep="")
line4 <- paste(line4,
format(round(mean(x$RHActors[[w]], na.rm=TRUE), 4),
width=8, nsmall=4)," ",sep="")
if (printSigma)
{
line5 <- paste(line5,
format(round(sigmas[,w], 4), width=8, nsmall=4)," ",sep="")
}
}
line2 <- paste(line2, rep('\n',effs), sep="")
line3 <- paste(line3, rep('\n',effs), sep="")
cat(as.matrix(line1),'\n \n', sep='')
cat(as.matrix(line2),'\n', sep='')
cat("\n Expected importance of effects for this dependent variable:\n\n")
cat(as.matrix(line3),'\n\n', sep='')
cat(as.matrix(line4),'\n', sep='')
if (printSigma)
{
cat("\n sigma (within-ego standard deviation of change statistics):\n\n")
line5 <- paste(line5, rep('\n',effs), sep="")
cat('\n',as.matrix(line5),'\n', sep='')
}
invisible(x)
}
summary.sienaRI <- function(object, ...)
{
if (!inherits(object, "sienaRI"))
{
stop("not a legitimate Siena relative importance of effects object")
}
class(object) <- c("summary.sienaRI", class(object))
object
}
print.summary.sienaRI <- function(x, ...)
{
if (!inherits(x, "summary.sienaRI"))
{
stop("not a legitimate summary of a Siena relative importance of effects object")
}
print.sienaRI(x)
invisible(x)
}
plot.sienaRI <- function(x, actors = NULL, col = NULL, addPieChart = FALSE,
radius = 1, width = NULL, height = NULL, legend = TRUE,
legendColumns = NULL, legendHeight = NULL, cex.legend = NULL,
cex.names = NULL, ...)
{
if (!inherits(x, "sienaRI"))
{
stop("not a legitimate Siena relative importance of effects object")
}
waves <- length(x$expectedRI)
if (is.null(actors))
{
nactors <- dim(x$RIActors[[1]])[2]
actors <- (1:nactors)
}
else
{
if ((!inherits(actors,"integer")) ||
(min(actors) < 1) || (max(actors) > dim(x$RIActors[[1]])[2]))
{
stop(paste("parameter <actors> must be a set of integers from 1 to",
dim(x$RIActors[[1]])[2]))
}
nactors <- length(actors)
}
if(legend)
{
if(!is.null(legendColumns))
{
if(is.numeric(legendColumns))
{
legendColumns <- as.integer(legendColumns)
}else{
legendColumns <- NULL
warning("legendColumns has to be of type 'numeric' \n used default settings")
}
}
if(is.null(legendColumns))
{
legendColumns <-floor((nactors+2)/11)
}
if(!is.null(legendHeight))
{
if(is.numeric(legendHeight))
{
legendHeight <- legendHeight
}else{
legendHeight <- NULL
warning("legendHeight has to be of type 'numeric' \n used default settings")
}
}
if(is.null(legendHeight))
{
legendHeight <-
max(0.8,ceiling(length(x$effectNames)/legendColumns)*0.2)
}
}
if(!is.null(height))
{
if(is.numeric(height))
{
height <- height
}else{
height <- NULL
warning("height has to be of type 'numeric' \n used default settings")
}
}
if(is.null(height))
{
height <- 1
}
if(!is.null(width))
{
if(is.numeric(width))
{
width <- width
}else{
width <- NULL
warning("width has to be of type 'numeric' \n used default settings")
}
}
if(is.null(width))
{
if(addPieChart)
{
width = (nactors/3+4)
}else{
width = (nactors/3+3)
}
}
if(!is.null(cex.legend))
{
if(is.numeric(cex.legend))
{
cex.legend <- cex.legend
}else{
cex.legend <- NULL
warning("cex.legend has to be of type 'numeric' \n used default settings")
}
}
if(is.null(cex.legend))
{
cex.legend <- 1.3
}
if(!is.null(cex.names))
{
if(is.numeric(cex.names))
{
cex.names <- cex.names
}else{
cex.names <- NULL
warning("cex.names has to be of type 'numeric' \n used default settings")
}
}
if(is.null(cex.names))
{
cex.names <- 1
}
if(!is.null(radius))
{
if(is.numeric(radius))
{
rad <- radius
}else{
rad <- NULL
warning("radius has to be of type 'numeric' \n used default settings")
}
}
if(is.null(radius))
{
rad <- 1
}
if(!is.null(col))
{
cl <- col
}else{
alph <- 175
green <- rgb(127, 201, 127,alph, maxColorValue = 255)
lila <-rgb(190, 174, 212,alph, maxColorValue = 255)
orange <- rgb(253, 192, 134,alph, maxColorValue = 255)
yellow <- rgb(255, 255, 153,alph, maxColorValue = 255)
blue <- rgb(56, 108, 176,alph, maxColorValue = 255)
lightgray <- rgb(184,184,184,alph, maxColorValue = 255)
darkgray <- rgb(56,56,56,alph, maxColorValue = 255)
gray <- rgb(120,120,120,alph, maxColorValue = 255)
pink <- rgb(240,2,127,alph, maxColorValue = 255)
brown <- rgb(191,91,23,alph, maxColorValue = 255)
cl <- c(green,lila,orange,yellow,blue,lightgray,darkgray,gray,pink,brown)
while(length(cl)<length(x$effectNames)){
alph <- (alph+75)%%255
green <- rgb(127, 201, 127,alph, maxColorValue = 255)
lila <-rgb(190, 174, 212,alph, maxColorValue = 255)
orange <- rgb(253, 192, 134,alph, maxColorValue = 255)
yellow <- rgb(255, 255, 153,alph, maxColorValue = 255)
blue <- rgb(56, 108, 176,alph, maxColorValue = 255)
lightgray <- rgb(184,184,184,alph, maxColorValue = 255)
darkgray <- rgb(56,56,56,alph, maxColorValue = 255)
gray <- rgb(120,120,120,alph, maxColorValue = 255)
pink <- rgb(240,2,127,alph, maxColorValue = 255)
brown <- rgb(191,91,23,alph, maxColorValue = 255)
cl <- c(cl,green,lila,orange,yellow,blue,lightgray,darkgray,gray,pink,brown)
}
}
bordergrey <-"gray25"
if(addPieChart)
{
if(legend)
{
layoutMatrix <- matrix(c(1:(2*waves+1),(2*waves+1)), byrow= TRUE,
ncol=2, nrow=(waves+1))
layout(layoutMatrix,widths= c((nactors/6)+10,3.5+2.5*(rad^2)),
heights=c(rep(height,waves),legendHeight))
}else{
layoutMatrix <- matrix(c(1:(2*waves)), byrow= TRUE,
ncol=2, nrow=waves)
layout(layoutMatrix,widths = c((nactors/6)+10,7+2.5*(rad^2)),
heights=rep(height,waves))
}
}else{
if(legend)
{
layoutMatrix <- matrix(c(1:(waves+1)), byrow= TRUE,
ncol=1, nrow=(waves+1))
layout(layoutMatrix)
}else{
layoutMatrix <- matrix(c(1:waves), byrow= TRUE, ncol=1, nrow=waves)
layout(layoutMatrix, heights=2*rep(height,waves))
}
par( oma = c( 1, 1, 2, 1 ), xpd=T , cex = 0.75, no.readonly = TRUE )
}
par(mar = c(3,3,1,1))
for(w in 1:waves)
{
barplot(cbind(x$RIActors[[w]][,actors], x$expectedRI[[w]]),
space=c(rep(0.1,nactors),1.5),width=c(rep(1,nactors),1),
beside =FALSE, yaxt = "n", xlab="Actor", cex.names = cex.names,
ylab=paste("wave ", w, sep=""),border=bordergrey,
col = cl, names.arg=c(actors,"exp. rel. imp."))
axis(2, at=c(0,0.25,0.5,0.75,1),labels=c("0","","0.5","","1"))
axis(4, at=c(0,0.25,0.5,0.75,1),labels=c("0","","0.5","","1"))
if(addPieChart)
{
pie(x$expectedRI[[w]], col = cl, labels=NA, border = bordergrey,
radius = rad)
mtext("exp. rel. imp.",side = 1, line = 1, cex=cex.names*0.75)
}
}
if(legend)
{
plot(c(0,1), c(0,1), col=rgb(0,0,0,0), axes=FALSE, ylab = "", xlab = "")
legend(0, 1, x$effectNames, fill=cl, ncol = legendColumns,
bty = "n", cex=cex.legend)
}
invisible(cl)
} |
labtoind <- function(x,row,col,Mat,symmetrical=FALSE){
symmetrical <- x@matrices$symmetrical[x@matrices$name == Mat]
if (symmetrical){
vars <- rbind(
x@parameters %>% filter(.data[['matrix']] == Mat) %>% select(ind = .data[['row']], var = .data[['var1']]),
x@parameters %>% filter(.data[['matrix']] == Mat) %>% select(ind = .data[['col']], var = .data[['var2']])
)
vars <- vars[!duplicated(vars),]
row <- vars$ind[match(row,vars$var)]
col <- vars$ind[match(col,vars$var)]
} else{
rows <- x@parameters %>% filter(.data[['matrix']] == Mat) %>% group_by(.data[["row"]]) %>%
summarize(ind = unique(.data[['row']]), var = unique(.data[['var1']]))
cols <- x@parameters %>% filter(.data[['matrix']] == Mat) %>% group_by(.data[["col"]]) %>%
summarize(ind = unique(.data[['col']]), var = unique(.data[['var2']]))
row <- rows$ind[match(row,rows$var)]
col <- cols$ind[match(col,cols$var)]
}
return(list(
row=row,col=col
))
} |
library(dials)
library(purrr)
library(dplyr)
num_prm <- parameters(mixture(), threshold())
cat_prm <- parameters(activation(), weight_func())
test_that('numerical neighborhood', {
vals <- tibble::tibble(mixture = 0.5, threshold = 0.5)
set.seed(1)
new_vals <-
finetune:::random_real_neighbor(vals, vals[0,], num_prm, retain = 100)
rad <- control_sim_anneal()$radius
correct_r <-
purrr::map2_dbl(new_vals$mixture, new_vals$threshold,
~ sqrt((.x - .5) ^ 2 + (.y - .5) ^ 2)) %>%
map_lgl( ~ .x >= rad[1] & .x <= rad[2])
expect_true(all(correct_r))
set.seed(1)
prev <- tibble::tibble(mixture = runif(5), threshold = runif(5))
set.seed(2)
more_vals <- finetune:::new_in_neighborhood(vals, prev, num_prm, radius = rep(0.12, 2))
rad_vals <- sqrt((more_vals$mixture - .5) ^ 2 + (more_vals$threshold - .5) ^ 2)
expect_equal(rad_vals, 0.12, tolerance = 0.001)
})
test_that('numerical neighborhood boundary filters', {
vals <- tibble::tibble(mixture = 0.05, threshold = 0.05)
set.seed(1)
new_vals <-
finetune:::random_real_neighbor(vals, vals[0,], num_prm, retain = 100, tries = 100, r = 0.12)
expect_true(nrow(new_vals) < 100)
})
test_that('categorical value switching', {
vals <- tibble::tibble(activation ="relu", weight_func ="biweight")
set.seed(1)
new_vals <-
purrr::map_dfr(
1:1000,
~ finetune:::random_discrete_neighbor(vals, cat_prm, prob = 1 / 4, change = FALSE)
)
relu_same <- mean(new_vals$activation == "relu")
biweight_same <- mean(new_vals$weight_func == "biweight")
expect_true(relu_same > .7 & relu_same < .8)
expect_true(biweight_same > .7 & biweight_same < .8)
set.seed(1)
prev <- tibble::tibble(activation = dials::values_activation[1:4],
weight_func = dials::values_weight_func[1:4])
set.seed(2)
must_change <- finetune:::new_in_neighborhood(vals, prev, cat_prm, flip = 1)
expect_true(must_change$activation != "relu")
expect_true(must_change$weight_func != "biweight")
})
test_that('reverse-unit encoding', {
prm <-
parameters(batch_size(), Laplace(), activation()) %>%
update(Laplace = Laplace(c(2, 4)), batch_size = batch_size(c(10, 20)))
unit_vals <- tibble::tibble(batch_size = .1, Laplace = .4, activation = .7)
vals <- finetune:::encode_set_backwards(unit_vals, prm)
expect_true(vals$batch_size > 1)
expect_true(vals$Laplace > 1)
expect_true(is.character(vals$activation))
}) |
PerMANOVAF <- function(D, grupo, C, Efectos){
g = length(levels(grupo))
n = dim(D)[1]
G = FactorToBinary(grupo)
Eij = G %*% t(G)
TSS=0.5*sum(D^2)/n
ng=diag(t(G) %*% G)
WSS=sum(0.5*apply((Eij * D^2)%*%G, 2, sum)/ng)
BSS=TSS-WSS
Fexp=(BSS/(g-1))/(WSS/(n-g))
Result=list()
Result$TSS= TSS
Result$BSS = BSS
Result$WSS = WSS
Result$glt=n-1
Result$glb=g-1
Result$glw=n-g
Result$Fexp=Fexp
return(Result)
} |
expected <- eval(parse(text="5"));
test(id=0, code={
argv <- eval(parse(text="list(5, 1, 0)"));
do.call(`max`, argv);
}, o=expected); |
rxodeTest(
{
context("v1 rate constants")
test_that("v1 rate constants", {
p1 <- rxDerived(v1 = 8, k = 0.5, digits = 3)
expect_equal(
p1,
structure(list(
vc = 8, kel = 0.5, vss = 8, cl = 4, t12alpha = 1.39,
alpha = 0.5, A = 0.125, fracA = 1
),
class = "data.frame", row.names = c(NA, -1L)
)
)
p1 <- rxDerived(v1 = 5, k = 0.7, k12 = 0.5, k21 = 0.05, digits = 3)
expect_equal(
p1,
structure(list(
vc = 5, kel = 0.7, k12 = 0.5, k21 = 0.05, vp = 50,
vss = 55, cl = 3.5, q = 2.5, t12alpha = 0.568, t12beta = 24.2,
alpha = 1.22, beta = 0.0287, A = 0.196, B = 0.00358, fracA = 0.982,
fracB = 0.0179
),
class = "data.frame",
row.names = c(NA, -1L)
)
)
p1 <- rxDerived(v1 = 10, k = 0.3, k12 = 0.2, k13 = 0.1, k21 = 0.02, k31 = 0.001, digits = 3)
expect_equal(p1, structure(list(
vc = 10, kel = 0.3, k12 = 0.2, k21 = 0.02, k13 = 0.1,
k31 = 0.001, vp = 100, vp2 = 1000, vss = 1110, cl = 3, q = 2,
q2 = 1, t12alpha = 1.14, t12beta = 52.2, t12gamma = 931,
alpha = 0.607, beta = 0.0133, gamma = 0.000745, A = 0.0988,
B = 0.00111, C = 6.47e-05, fracA = 0.988, fracB = 0.0111,
fracC = 0.000647
),
class = "data.frame",
row.names = c(NA, -1L)
))
})
context("Volumes and clearances")
test_that("Volumes and clearances", {
p1 <- rxDerived(v1 = 8.0, cl = 4.0, digits = 3)
expect_equal(p1, structure(list(
vc = 8, kel = 0.5, vss = 8, cl = 4, t12alpha = 1.39,
alpha = 0.5, A = 0.125, fracA = 1
),
class = "data.frame",
row.names = c(NA, -1L)
))
p1 <- rxDerived(v1 = 5.0, v2 = 50, cl = 3.5, q = 2.5, digits = 3)
expect_equal(p1, structure(list(
vc = 5, kel = 0.7, k12 = 0.5, k21 = 0.05, vp = 50,
vss = 55, cl = 3.5, q = 2.5, t12alpha = 0.568, t12beta = 24.2,
alpha = 1.22, beta = 0.0287, A = 0.196, B = 0.00358, fracA = 0.982,
fracB = 0.0179
),
class = "data.frame",
row.names = c(NA, -1L)
))
p1 <- rxDerived(
v1 = 10, v2 = 100, v3 = 1000,
cl = 3, q = 2, q2 = 1, digits = 3
)
expect_equal(p1, structure(list(
vc = 10, kel = 0.3, k12 = 0.2, k21 = 0.02, k13 = 0.1,
k31 = 0.001, vp = 100, vp2 = 1000, vss = 1110, cl = 3, q = 2,
q2 = 1, t12alpha = 1.14, t12beta = 52.2, t12gamma = 931,
alpha = 0.607, beta = 0.0133, gamma = 0.000745, A = 0.0988,
B = 0.00111, C = 6.47e-05, fracA = 0.988, fracB = 0.0111,
fracC = 0.000647
),
class = "data.frame",
row.names = c(NA, -1L)
))
})
},
test = "lvl2"
) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(pkgdown) |
Id <- "$Id: c212.interim.BB.hier3.lev0.convergence.R,v 1.9 2019/05/05 13:18:12 clb13102 Exp clb13102 $"
c212.interim.BB.indep.convergence.diag <- function(raw, debug_diagnostic = FALSE)
{
c_base = c212.interim.1a.indep.convergence.diag(raw, debug_diagnostic)
if (is.null(c_base)) {
return(NULL)
}
monitor = raw$monitor
theta_mon = monitor[monitor$variable == "theta",]$monitor
pi_mon = monitor[monitor$variable == "pi",]$monitor
alpha_pi_mon = monitor[monitor$variable == "alpha.pi",]$monitor
beta_pi_mon = monitor[monitor$variable == "beta.pi",]$monitor
nchains = raw$chains
if (alpha_pi_mon == 1 && !("alpha.pi" %in% names(raw))) {
print("Missing alpha.pi data")
return(NULL)
}
if (beta_pi_mon == 1 && !("beta.pi" %in% names(raw))) {
print("Missing beta.pi data")
return(NULL)
}
if (pi_mon == 1 && !("pi" %in% names(raw))) {
print("Missing pi data")
return(NULL)
}
if (raw$sim_type == "MH") {
if (alpha_pi_mon == 1 && !("alpha.pi_acc" %in% names(raw))) {
print("Missing beta.pi_acc data")
return(NULL)
}
if (beta_pi_mon == 1 && !("beta.pi_acc" %in% names(raw))) {
print("Missing beta.pi_acc data")
return(NULL)
}
}
else {
if (theta_mon == 1 && !("theta_acc" %in% names(raw))) {
print("Missing theta_acc data")
return(NULL)
}
}
pi_conv = data.frame(Interval = character(0), B = character(0), stat = numeric(0), upper_ci = numeric(0), stringsAsFactors=FALSE)
alpha.pi_conv = data.frame(Interval = character(0), stat = numeric(0), upper_ci = numeric(0), stringsAsFactors=FALSE)
beta.pi_conv = data.frame(Interval = character(0), stat = numeric(0), upper_ci = numeric(0), stringsAsFactors=FALSE)
type <- NA
if (nchains > 1) {
type = "Gelman-Rubin"
for (i in 1:raw$nIntervals) {
if (pi_mon == 1) {
for (b in 1:raw$nBodySys[i]) {
g = M_global$GelmanRubin(raw$pi[, i, b, ], nchains)
row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b],
stat = g$psrf[1], upper_ci = g$psrf[2], stringsAsFactors=FALSE)
pi_conv = rbind(pi_conv, row)
}
}
}
if (alpha_pi_mon == 1) {
for (i in 1:raw$nIntervals) {
g = M_global$GelmanRubin(raw$alpha.pi[, i, ], nchains)
row <- data.frame(Interval = raw$Intervals[i], stat = g$psrf[1], upper_ci = g$psrf[2], stringsAsFactors=FALSE)
alpha.pi_conv = rbind(alpha.pi_conv, row)
}
}
if (beta_pi_mon == 1) {
for (i in 1:raw$nIntervals) {
g = M_global$GelmanRubin(raw$beta.pi[, i, ], nchains)
row <- data.frame(Interval = raw$Intervals[i], stat = g$psrf[1], upper_ci = g$psrf[2], stringsAsFactors=FALSE)
beta.pi_conv = rbind(beta.pi_conv, row)
}
}
}
else {
type = "Geweke"
for (i in 1:raw$nIntervals) {
if (pi_mon == 1) {
for (b in 1:raw$nBodySys[i]) {
g = M_global$Geweke(raw$pi[1, i, b, ])
row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], stat = g$z, upper_ci = NA, stringsAsFactors=FALSE)
pi_conv = rbind(pi_conv, row)
}
}
if (alpha_pi_mon == 1) {
g = M_global$Geweke(raw$alpha.pi[1, i, ])
row <- data.frame(Interval = raw$Intervals[i], stat = g$z, upper_ci = NA, stringsAsFactors=FALSE)
alpha.pi_conv = rbind(alpha.pi_conv, row)
}
if (beta_pi_mon == 1) {
g = M_global$Geweke(raw$beta.pi[1, i, ])
row <- data.frame(Interval = raw$Intervals[i], stat = g$z, upper_ci = NA, stringsAsFactors=FALSE)
beta.pi_conv = rbind(beta.pi_conv, row)
}
}
}
theta_acc = data.frame(chain = numeric(0), Interval = character(0), B = character(0),
AE = character(0), rate = numeric(0), stringsAsFactors=FALSE)
alpha.pi_acc = data.frame(chain = numeric(0), Interval = character(0), rate = numeric(0), stringsAsFactors=FALSE)
beta.pi_acc = data.frame(chain = numeric(0), Interval = character(0), rate = numeric(0), stringsAsFactors=FALSE)
if (theta_mon == 1) {
for (i in 1:raw$nIntervals) {
for (b in 1:raw$nBodySys[i]) {
for (j in 1:raw$nAE[i, b]) {
for (c in 1:nchains) {
rate <- raw$theta_acc[c, i, b, j]/raw$iter
row <- data.frame(chain = c, Interval = raw$Intervals[i], B = raw$B[i, b],
AE = raw$AE[i, b,j], rate = rate, stringsAsFactors=FALSE)
theta_acc = rbind(theta_acc, row)
}
}
}
}
}
if (raw$sim_type == "MH") {
for (i in 1:raw$nIntervals) {
for (c in 1:nchains) {
if (alpha_pi_mon == 1) {
rate <- raw$alpha.pi_acc[c, i]/raw$iter
row <- data.frame(chain = c, Interval = raw$Intervals[i], rate = rate, stringsAsFactors=FALSE)
alpha.pi_acc = rbind(alpha.pi_acc, row)
}
if (beta_pi_mon == 1) {
rate <- raw$beta.pi_acc[c, i]/raw$iter
row <- data.frame(chain = c, Interval = raw$Intervals[i], rate = rate, stringsAsFactors=FALSE)
beta.pi_acc = rbind(beta.pi_acc, row)
}
}
}
}
rownames(theta_acc) <- NULL
rownames(pi_conv) <- NULL
rownames(alpha.pi_conv) <- NULL
rownames(beta.pi_conv) <- NULL
rownames(alpha.pi_acc) <- NULL
rownames(beta.pi_acc) <- NULL
c_base$theta_acc = theta_acc
c_BB = list(pi.conv.diag = pi_conv, alpha.pi.conv.diag = alpha.pi_conv, beta.pi.conv.diag = beta.pi_conv,
alpha.pi_acc = alpha.pi_acc, beta.pi_acc = beta.pi_acc)
conv.diag = c(c_base, c_BB)
attr(conv.diag, "model") = attr(raw, "model")
return(conv.diag)
}
c212.interim.BB.indep.print.convergence.summary <- function(conv) {
if (is.null(conv)) {
print("NULL conv data")
return(NULL)
}
monitor = conv$monitor
theta_mon = monitor[monitor$variable == "theta",]$monitor
gamma_mon = monitor[monitor$variable == "gamma",]$monitor
mu.theta_mon = monitor[monitor$variable == "mu.theta",]$monitor
mu.gamma_mon = monitor[monitor$variable == "mu.gamma",]$monitor
sigma2.theta_mon = monitor[monitor$variable == "sigma2.theta",]$monitor
sigma2.gamma_mon = monitor[monitor$variable == "sigma2.gamma",]$monitor
mu.theta.0_mon = monitor[monitor$variable == "mu.theta.0",]$monitor
mu.gamma.0_mon = monitor[monitor$variable == "mu.gamma.0",]$monitor
tau2.theta.0_mon = monitor[monitor$variable == "tau2.theta.0",]$monitor
tau2.gamma.0_mon = monitor[monitor$variable == "tau2.gamma.0",]$monitor
pi_mon = monitor[monitor$variable == "pi",]$monitor
alpha_pi_mon = monitor[monitor$variable == "alpha.pi",]$monitor
beta_pi_mon = monitor[monitor$variable == "beta.pi",]$monitor
model = attr(conv, "model")
if (is.null(model)) {
print("Convergence model attribute missing")
return(NULL)
}
if (gamma_mon == 1 && !("gamma.conv.diag" %in% names(conv))) {
print("Missing gamma.conv.diag data")
return(NULL)
}
if (theta_mon == 1 && !("theta.conv.diag" %in% names(conv))) {
print("Missing theta.conv.diag data")
return(NULL)
}
if (mu.gamma_mon == 1 && !("mu.gamma.conv.diag" %in% names(conv))) {
print("Missing mu.gamma.conv.diag data")
return(NULL)
}
if (mu.theta_mon == 1 && !("mu.theta.conv.diag" %in% names(conv))) {
print("Missing mu.theta.conv.diag data")
return(NULL)
}
if (sigma2.gamma_mon == 1 && !("sigma2.gamma.conv.diag" %in% names(conv))) {
print("Missing sigma2.gamma.conv.diag data")
return(NULL)
}
if (sigma2.theta_mon == 1 && !("sigma2.theta.conv.diag" %in% names(conv))) {
print("Missing sigma2.theta.conv.diag data")
return(NULL)
}
if (mu.gamma.0_mon == 1 && !("mu.gamma.0.conv.diag" %in% names(conv))) {
print("Missing mu.gamma.0.conv.diag data")
return(NULL)
}
if (mu.theta.0_mon == 1 && !("mu.theta.0.conv.diag" %in% names(conv))) {
print("Missing mu.theta.0.conv.diag data")
return(NULL)
}
if (tau2.gamma.0_mon== 1 && !("tau2.gamma.0.conv.diag" %in% names(conv))) {
print("Missing tau2.gamma.0.conv.diag data")
return(NULL)
}
if (tau2.theta.0_mon == 1 && !("tau2.theta.0.conv.diag" %in% names(conv))) {
print("Missing tau2.theta.0.conv.diag data")
return(NULL)
}
if (gamma_mon == 1 && !("gamma_acc" %in% names(conv))) {
print("Missing gamma_acc data")
return(NULL)
}
if (theta_mon == 1 && !("theta_acc" %in% names(conv))) {
print("Missing theta_acc data")
return(NULL)
}
if (pi_mon == 1 && !("pi.conv.diag" %in% names(conv))) {
print("Missing pi.conv.diag data")
return(NULL)
}
if (alpha_pi_mon == 1 && !("alpha.pi.conv.diag" %in% names(conv))) {
print("Missing alpha.pi.conv.diag data")
return(NULL)
}
if (beta_pi_mon == 1 && !("beta.pi.conv.diag" %in% names(conv))) {
print("Missing beta.pi.conv.diag data")
return(NULL)
}
if (alpha_pi_mon == 1 && !("alpha.pi_acc" %in% names(conv))) {
print("Missing alpha.pi_acc data")
return(NULL)
}
if (beta_pi_mon == 1 && !("beta.pi_acc" %in% names(conv))) {
print("Missing beta.pi_acc data")
return(NULL)
}
cat(sprintf("Summary Convergence Diagnostics:\n"))
cat(sprintf("================================\n"))
if (conv$type == "Gelman-Rubin") {
if (theta_mon == 1) {
cat(sprintf("theta:\n"))
cat(sprintf("------\n"))
max_t = head(conv$theta.conv.diag[conv$theta.conv.diag$stat == max(conv$theta.conv.diag$stat),,
drop = FALSE], 1)
cat(sprintf("Max Gelman-Rubin diagnostic (%s %s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$AE, max_t$stat))
min_t = head(conv$theta.conv.diag[conv$theta.conv.diag$stat == min(conv$theta.conv.diag$stat),,
drop = FALSE], 1)
cat(sprintf("Min Gelman-Rubin diagnostic (%s, %s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$AE, min_t$stat))
}
if (gamma_mon == 1) {
cat(sprintf("gamma:\n"))
cat(sprintf("------\n"))
max_t = head(conv$gamma.conv.diag[conv$gamma.conv.diag$stat == max(conv$gamma.conv.diag$stat),,
drop = FALSE], 1)
cat(sprintf("Max Gelman-Rubin diagnostic (%s %s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$AE, max_t$stat))
min_t = head(conv$gamma.conv.diag[conv$gamma.conv.diag$stat == min(conv$gamma.conv.diag$stat),,
drop = FALSE], 1)
cat(sprintf("Min Gelman-Rubin diagnostic (%s %s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$AE, min_t$stat))
}
if (mu.gamma_mon == 1) {
cat(sprintf("mu.gamma:\n"))
cat(sprintf("---------\n"))
max_t = head(conv$mu.gamma.conv.diag[conv$mu.gamma.conv.diag$stat
== max(conv$mu.gamma.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Gelman-Rubin diagnostic (%s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$stat))
min_t = head(conv$mu.gamma.conv.diag[conv$mu.gamma.conv.diag$stat
== min(conv$mu.gamma.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Gelman-Rubin diagnostic (%s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$stat))
}
if (mu.theta_mon == 1) {
cat(sprintf("mu.theta:\n"))
cat(sprintf("---------\n"))
max_t = head(conv$mu.theta.conv.diag[conv$mu.theta.conv.diag$stat
== max(conv$mu.theta.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Gelman-Rubin diagnostic (%s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$stat))
min_t = head(conv$mu.theta.conv.diag[conv$mu.theta.conv.diag$stat
== min(conv$mu.theta.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Gelman-Rubin diagnostic (%s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$stat))
}
if (sigma2.gamma_mon == 1) {
cat(sprintf("sigma2.gamma:\n"))
cat(sprintf("-------------\n"))
max_t = head(conv$sigma2.gamma.conv.diag[conv$sigma2.gamma.conv.diag$stat
== max(conv$sigma2.gamma.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Gelman-Rubin diagnostic (%s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$stat))
min_t = head(conv$sigma2.gamma.conv.diag[conv$sigma2.gamma.conv.diag$stat
== min(conv$sigma2.gamma.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Gelman-Rubin diagnostic (%s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$stat))
}
if (sigma2.theta_mon == 1) {
cat(sprintf("sigma2.theta:\n"))
cat(sprintf("-------------\n"))
max_t = head(conv$sigma2.theta.conv.diag[conv$sigma2.theta.conv.diag$stat
== max(conv$sigma2.theta.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Gelman-Rubin diagnostic (%s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$stat))
min_t = head(conv$sigma2.theta.conv.diag[conv$sigma2.theta.conv.diag$stat
== min(conv$sigma2.theta.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Gelman-Rubin diagnostic (%s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$stat))
}
if (pi_mon == 1) {
cat(sprintf("pi:\n"))
cat(sprintf("---\n"))
max_t = head(conv$pi.conv.diag[conv$pi.conv.diag$stat
== max(conv$pi.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Gelman-Rubin diagnostic (%s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$stat))
min_t = head(conv$pi.conv.diag[conv$pi.conv.diag$stat
== min(conv$pi.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Gelman-Rubin diagnostic (%s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$stat))
}
if (mu.gamma.0_mon == 1) {
cat(sprintf("mu.gamma.0:\n"))
cat(sprintf("-----------\n"))
max_t = head(conv$mu.gamma.0.conv.diag[conv$mu.gamma.0.conv.diag$stat
== max(conv$mu.gamma.0.conv.diag$stat), ], 1)
cat(sprintf("Max Gelman-Rubin diagnostic: (%s) %0.6f\n", max_t$Interval, max_t$stat))
min_t = head(conv$mu.gamma.0.conv.diag[conv$mu.gamma.0.conv.diag$stat
== min(conv$mu.gamma.0.conv.diag$stat), ], 1)
cat(sprintf("Min Gelman-Rubin diagnostic: (%s) %0.6f\n", min_t$Interval, min_t$stat))
}
if (mu.theta.0_mon == 1) {
cat(sprintf("mu.theta.0:\n"))
cat(sprintf("-----------\n"))
max_t = head(conv$mu.theta.0.conv.diag[conv$mu.theta.0.conv.diag$stat
== max(conv$mu.theta.0.conv.diag$stat), ], 1)
cat(sprintf("Max Gelman-Rubin diagnostic: (%s) %0.6f\n", max_t$Interval, max_t$stat))
min_t = head(conv$mu.theta.0.conv.diag[conv$mu.theta.0.conv.diag$stat
== min(conv$mu.theta.0.conv.diag$stat), ], 1)
cat(sprintf("Min Gelman-Rubin diagnostic: (%s) %0.6f\n", min_t$Interval, min_t$stat))
}
if (tau2.gamma.0_mon == 1) {
cat(sprintf("tau2.gamma.0:\n"))
cat(sprintf("-------------\n"))
max_t = head(conv$tau2.gamma.0.conv.diag[conv$tau2.gamma.0.conv.diag$stat
== max(conv$tau2.gamma.0.conv.diag$stat), ], 1)
cat(sprintf("Max Gelman-Rubin diagnostic: (%s) %0.6f\n", max_t$Interval, max_t$stat))
min_t = head(conv$tau2.gamma.0.conv.diag[conv$tau2.gamma.0.conv.diag$stat
== min(conv$tau2.gamma.0.conv.diag$stat), ], 1)
cat(sprintf("Min Gelman-Rubin diagnostic: (%s) %0.6f\n", min_t$Interval, min_t$stat))
}
if (tau2.theta.0_mon == 1) {
cat(sprintf("tau2.theta.0:\n"))
cat(sprintf("-------------\n"))
max_t = head(conv$tau2.theta.0.conv.diag[conv$tau2.theta.0.conv.diag$stat
== max(conv$tau2.theta.0.conv.diag$stat), ], 1)
cat(sprintf("Max Gelman-Rubin diagnostic: (%s) %0.6f\n", max_t$Interval, max_t$stat))
min_t = head(conv$tau2.theta.0.conv.diag[conv$tau2.theta.0.conv.diag$stat
== min(conv$tau2.theta.0.conv.diag$stat), ], 1)
cat(sprintf("Min Gelman-Rubin diagnostic: (%s) %0.6f\n", min_t$Interval, min_t$stat))
}
if (alpha_pi_mon == 1) {
cat(sprintf("alpha.pi:\n"))
cat(sprintf("----------\n"))
max_t = head(conv$alpha.pi.conv.diag[conv$alpha.pi.conv.diag$stat
== max(conv$alpha.pi.conv.diag$stat), ], 1)
cat(sprintf("Max Gelman-Rubin diagnostic: (%s) %0.6f\n", max_t$Interval, max_t$stat))
min_t = head(conv$alpha.pi.conv.diag[conv$alpha.pi.conv.diag$stat
== min(conv$alpha.pi.conv.diag$stat), ], 1)
cat(sprintf("Min Gelman-Rubin diagnostic: (%s) %0.6f\n", min_t$Interval, min_t$stat))
}
if (beta_pi_mon == 1) {
cat(sprintf("beta.pi:\n"))
cat(sprintf("--------\n"))
max_t = head(conv$beta.pi.conv.diag[conv$beta.pi.conv.diag$stat
== max(conv$beta.pi.conv.diag$stat), ], 1)
cat(sprintf("Max Gelman-Rubin diagnostic: (%s) %0.6f\n", max_t$Interval, max_t$stat))
min_t = head(conv$beta.pi.conv.diag[conv$beta.pi.conv.diag$stat
== min(conv$beta.pi.conv.diag$stat), ], 1)
cat(sprintf("Min Gelman-Rubin diagnostic: (%s) %0.6f\n", min_t$Interval, min_t$stat))
}
}
else {
if (theta_mon == 1) {
cat(sprintf("theta:\n"))
cat(sprintf("------\n"))
max_t = head(conv$theta.conv.diag[conv$theta.conv.diag$stat == max(conv$theta.conv.diag$stat),,
drop = FALSE], 1)
cat(sprintf("Max Geweke statistic (%s %s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$AE, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$theta.conv.diag[conv$theta.conv.diag$stat == min(conv$theta.conv.diag$stat),,
drop = FALSE], 1)
cat(sprintf("Min Geweke statistic (%s %s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$AE, min_t$stat,
chk_val(min_t$stat)))
}
if (gamma_mon == 1) {
cat(sprintf("gamma:\n"))
cat(sprintf("------\n"))
max_t = head(conv$gamma.conv.diag[conv$gamma.conv.diag$stat == max(conv$gamma.conv.diag$stat),,
drop = FALSE], 1)
cat(sprintf("Max Geweke statistic (%s %s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$AE, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$gamma.conv.diag[conv$gamma.conv.diag$stat == min(conv$gamma.conv.diag$stat),,
drop = FALSE], 1)
cat(sprintf("Min Geweke statistic (%s %s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$AE, min_t$stat,
chk_val(min_t$stat)))
}
if (mu.gamma_mon == 1) {
cat(sprintf("mu.gamma:\n"))
cat(sprintf("---------\n"))
max_t = head(conv$mu.gamma.conv.diag[conv$mu.gamma.conv.diag$stat
== max(conv$mu.gamma.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic (%s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$mu.gamma.conv.diag[conv$mu.gamma.conv.diag$stat
== min(conv$mu.gamma.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic (%s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$stat,
chk_val(min_t$stat)))
}
if (mu.theta_mon == 1) {
cat(sprintf("mu.theta:\n"))
cat(sprintf("---------\n"))
max_t = head(conv$mu.theta.conv.diag[conv$mu.theta.conv.diag$stat
== max(conv$mu.theta.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic (%s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$mu.theta.conv.diag[conv$mu.theta.conv.diag$stat
== min(conv$mu.theta.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic (%s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$stat,
chk_val(min_t$stat)))
}
if (sigma2.gamma_mon == 1) {
cat(sprintf("sigma2.gamma:\n"))
cat(sprintf("-------------\n"))
max_t = head(conv$sigma2.gamma.conv.diag[conv$sigma2.gamma.conv.diag$stat
== max(conv$sigma2.gamma.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic (%s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$sigma2.gamma.conv.diag[conv$sigma2.gamma.conv.diag$stat
== min(conv$sigma2.gamma.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic (%s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$stat,
chk_val(min_t$stat)))
}
if (sigma2.theta_mon == 1) {
cat(sprintf("sigma2.theta:\n"))
cat(sprintf("-------------\n"))
max_t = head(conv$sigma2.theta.conv.diag[conv$sigma2.theta.conv.diag$stat
== max(conv$sigma2.theta.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic (%s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$sigma2.theta.conv.diag[conv$sigma2.theta.conv.diag$stat
== min(conv$sigma2.theta.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic (%s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$stat,
chk_val(min_t$stat)))
}
if (pi_mon == 1) {
cat(sprintf("pi:\n"))
cat(sprintf("---\n"))
max_t = head(conv$pi.conv.diag[conv$pi.conv.diag$stat
== max(conv$pi.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic (%s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$pi.conv.diag[conv$pi.conv.diag$stat
== min(conv$pi.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic (%s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$stat,
chk_val(min_t$stat)))
}
if (mu.gamma.0_mon == 1) {
cat(sprintf("mu.gamma.0:\n"))
cat(sprintf("-----------\n"))
max_t = head(conv$mu.gamma.0.conv.diag[conv$mu.gamma.0.conv.diag$stat
== max(conv$mu.gamma.0.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic: (%s) %0.6f (%s)\n", max_t$Interval, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$mu.gamma.0.conv.diag[conv$mu.gamma.0.conv.diag$stat
== min(conv$mu.gamma.0.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic: (%s) %0.6f (%s)\n", min_t$Interval, min_t$stat,
chk_val(min_t$stat)))
}
if (mu.theta.0_mon == 1) {
cat(sprintf("mu.theta.0:\n"))
cat(sprintf("-----------\n"))
max_t = head(conv$mu.theta.0.conv.diag[conv$mu.theta.0.conv.diag$stat
== max(conv$mu.theta.0.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic: (%s) %0.6f (%s)\n", max_t$Interval, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$mu.theta.0.conv.diag[conv$mu.theta.0.conv.diag$stat
== min(conv$mu.theta.0.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic: (%s) %0.6f (%s)\n", min_t$Interval, min_t$stat,
chk_val(min_t$stat)))
}
if (tau2.gamma.0_mon == 1) {
cat(sprintf("tau2.gamma.0:\n"))
cat(sprintf("-------------\n"))
max_t = head(conv$tau2.gamma.0.conv.diag[conv$tau2.gamma.0.conv.diag$stat
== max(conv$tau2.gamma.0.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic: (%s) %0.6f (%s)\n", max_t$Interval, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$tau2.gamma.0.conv.diag[conv$tau2.gamma.0.conv.diag$stat
== min(conv$tau2.gamma.0.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic: (%s) %0.6f (%s)\n", min_t$Interval, min_t$stat,
chk_val(min_t$stat)))
}
if (tau2.theta.0_mon == 1) {
cat(sprintf("tau2.theta.0:\n"))
cat(sprintf("-------------\n"))
max_t = head(conv$tau2.theta.0.conv.diag[conv$tau2.theta.0.conv.diag$stat
== max(conv$tau2.theta.0.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic: (%s) %0.6f (%s)\n", max_t$Interval, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$tau2.theta.0.conv.diag[conv$tau2.theta.0.conv.diag$stat
== min(conv$tau2.theta.0.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic: (%s) %0.6f (%s)\n", min_t$Interval, min_t$stat,
chk_val(min_t$stat)))
}
if (alpha_pi_mon == 1) {
cat(sprintf("alpha.pi:\n"))
cat(sprintf("----------\n"))
max_t = head(conv$alpha.pi.conv.diag[conv$alpha.pi.conv.diag$stat
== max(conv$alpha.pi.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic: (%s) %0.6f (%s)\n", max_t$Interval, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$alpha.pi.conv.diag[conv$alpha.pi.conv.diag$stat
== min(conv$alpha.pi.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic: (%s) %0.6f (%s)\n", min_t$Interval, min_t$stat,
chk_val(min_t$stat)))
}
if (beta_pi_mon == 1) {
cat(sprintf("beta.pi:\n"))
cat(sprintf("----------\n"))
max_t = head(conv$beta.pi.conv.diag[conv$beta.pi.conv.diag$stat
== max(conv$beta.pi.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Max Geweke statistic: (%s) %0.6f (%s)\n", max_t$Interval, max_t$stat,
chk_val(max_t$stat)))
min_t = head(conv$beta.pi.conv.diag[conv$beta.pi.conv.diag$stat
== min(conv$beta.pi.conv.diag$stat),, drop = FALSE], 1)
cat(sprintf("Min Geweke statistic: (%s) %0.6f (%s)\n", min_t$Interval, min_t$stat,
chk_val(min_t$stat)))
}
}
if (conv$sim_type == "MH") {
cat("\nSampling Acceptance Rates:\n")
cat("==========================\n")
if (theta_mon == 1) {
cat("theta:\n")
cat("------\n")
print(sprintf("Min: %0.6f, Max: %0.6f", min(conv$theta_acc$rate),
max(conv$theta_acc$rate)))
}
if (gamma_mon == 1) {
cat("gamma:\n")
cat("------\n")
print(sprintf("Min: %0.6f, Max: %0.6f", min(conv$gamma_acc$rate),
max(conv$gamma_acc$rate)))
}
if (alpha_pi_mon == 1) {
cat("alpha.pi:\n")
cat("---------\n")
print(sprintf("Min: %0.6f, Max: %0.6f", min(conv$alpha.pi_acc$ratec),
max(conv$alpha.pi_acc$ratec)))
}
if (beta_pi_mon == 1) {
cat("beta.pi:\n")
cat("--------\n")
print(sprintf("Min: %0.6f, Max: %0.6f", min(conv$beta.pi_acc$rate),
max(conv$beta.pi_acc$rate)))
}
}
else {
cat("\nSampling Acceptance Rates:\n")
cat("==========================\n")
if (theta_mon == 1) {
cat("theta:\n")
cat("------\n")
print(sprintf("Min: %0.6f, Max: %0.6f", min(conv$theta_acc$rate),
max(conv$theta_acc$rate)))
}
}
} |
overallcovp1<-function(tfix=2.0,tfix0=1.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
rate41=rate21,rate51=rate51,ratec1=c(0.5,0.6),
rate10=rate11,rate20=rate10,rate30=rate31,
rate40=rate20,rate50=rate20,ratec0=ratec1,
tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,
eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0){
ratemax<-max(abs(rate11-rate10))+max(abs(rate21-rate20))+max(abs(rate31-rate30))+max(abs(rate41-rate40))+max(abs(rate51-rate50))+max(abs(ratec1-ratec0))
rateb<-max(0.01,min(ratemax,1))
err<-veps/rateb
tmax<-max(c(tfix,tchange,taur))+err
nr<-length(rate11)
tplus<-rep(0,nr)
tplus[nr]<-tmax
if (nr>1) tplus[-nr]<-tchange[-1]
nn<-rep(1,nr)
nn[1]<-ceiling((tplus[1]-tchange[1])/err)
atchange<-rep(0,nn[1])
atchange<-seq(tchange[1],tplus[1],by=(tplus[1]-tchange[1])/nn[1])[1:nn[1]]
if (nr>=2){
for (i in 2:nr){
nn[i]<-ceiling((tplus[i]-tchange[i])/err)
atchange<-c(atchange,seq(tchange[i],tplus[i],by=(tplus[i]-tchange[i])/nn[i])[1:nn[i]])
}
}
atchange1<-sort(unique(c(atchange,tfix,tfix-tfix0),fromLast=T))
aind<-(atchange1[-1]-atchange1[-length(atchange1)]>err/10)
ats<-c(0,atchange1[-1][aind==1])
anr<-length(ats)+1
atplus<-rep(0,anr)
atplus[anr]<-tmax+0.1*err
atplus[-anr]<-ats
nplus<-length(atplus)
covbeta1<-EA1<-0.0
if (sum((tfix-tfix0)<=atplus & atplus<(tfix-err/10))>0){
ats<-atplus[(tfix-tfix0)<=atplus & atplus<(tfix-err/10)]
atsupp<-c(ats,tfix)
nsupp<-length(atsupp)
BigK1<-pwecxpwuforvar(tfix=tfix,t=atsupp,taur=taur,u=u,ut=ut,
rate1=rate11,rate2=rate21,rate3=rate31,
rate4=rate41,rate5=rate51,ratec=ratec1,
tchange=tchange,type=type1,rp2=rp21,eps=eps)
BigK0<-pwecxpwuforvar(tfix=tfix,t=atsupp,taur=taur,u=u,ut=ut,
rate1=rate10,rate2=rate20,rate3=rate30,
rate4=rate40,rate5=rate50,ratec=ratec0,
tchange=tchange,type=type0,rp2=rp20,eps=eps)
dk1<-BigK1$f0[-1]-BigK1$f0[-nsupp]
dk0<-BigK0$f0[-1]-BigK0$f0[-nsupp]
adk1<-(dk1>1.0e-08)
adk0<-(dk0>1.0e-08)
tk1<-tk0<-atsupp[-nsupp]
tk1[adk1==1]<-(BigK1$f1[-1]-BigK1$f1[-nsupp])[adk1==1]/dk1[adk1==1]
tk0[adk0==1]<-(BigK0$f1[-1]-BigK0$f1[-nsupp])[adk0==1]/dk0[adk0==1]
ST11<-pwecx(t=tk1,rate1=rate11,rate2=rate21,rate3=rate31,
rate4=rate41,rate5=rate51,tchange=tchange,type=type1,rp2=rp21,eps=eps)$surv
ST10<-pwecx(t=tk1,rate1=rate10,rate2=rate20,rate3=rate30,
rate4=rate40,rate5=rate50,tchange=tchange,type=type0,rp2=rp20,eps=eps)$surv
SC11<-pwe(t=tk1,rate=ratec1,tchange=tchange)$surv
SC10<-pwe(t=tk1,rate=ratec0,tchange=tchange)$surv
ST01<-pwecx(t=tk0,rate1=rate11,rate2=rate21,rate3=rate31,
rate4=rate41,rate5=rate51,tchange=tchange,type=type1,rp2=rp21,eps=eps)$surv
ST00<-pwecx(t=tk0,rate1=rate10,rate2=rate20,rate3=rate30,
rate4=rate40,rate5=rate50,tchange=tchange,type=type0,rp2=rp20,eps=eps)$surv
SC01<-pwe(t=tk0,rate=ratec1,tchange=tchange)$surv
SC00<-pwe(t=tk0,rate=ratec0,tchange=tchange)$surv
bb1<-(1-pi1)*ST10*SC10
bb0<-(1-pi1)*ST00*SC00
aa1<-pi1*exp(beta)*ST11*SC11
aa0<-pi1*exp(beta)*ST01*SC01
q1bs<-aa1/(aa1+bb1)
q0bs<-aa0/(aa0+bb0)
ak1<-innervar(t=tk1-(tfix-tfix0),taur=taur,u=u,ut=ut,pi1=pi1,
rate11=rate11,rate21=rate21,rate31=rate31,
rate41=rate41,rate51=rate51,ratec1=ratec1,
rate10=rate10,rate20=rate20,rate30=rate30,
rate40=rate40,rate50=rate50,ratec0=ratec0,
tchange=tchange,type1=type1,type0=type0,rp21=rp21,rp20=rp20,
eps=eps,veps=veps,beta=beta0)
ak0<-innervar(t=tk0-(tfix-tfix0),taur=taur,u=u,ut=ut,pi1=pi1,
rate11=rate11,rate21=rate21,rate31=rate31,
rate41=rate41,rate51=rate51,ratec1=ratec1,
rate10=rate10,rate20=rate20,rate30=rate30,
rate40=rate40,rate50=rate50,ratec0=ratec0,
tchange=tchange,type1=type1,type0=type0,rp21=rp21,rp20=rp20,
eps=eps,veps=veps,beta=beta0)
covbeta1<-pi1*sum(q1bs*(1-q1bs)*ak1$qf1*dk1)-(1-pi1)*sum(q0bs^2*ak0$qf1*dk0)
covbeta1<-covbeta1-exp(beta0)*pi1*sum((1-q1bs)^2*ak1$qf2*dk1)+exp(beta0)*(1-pi1)*sum(q0bs*(1-q0bs)*ak0$qf2*dk0)
EA1<-pi1*sum((1-q1bs)*dk1)-(1-pi1)*sum(q0bs*dk0)
}
list(covbeta1=covbeta1, EA1=EA1)
} |
AbForests_RemoveNets<-function(list,opt,distance_mat,tie_flag,weight,N,C,random.seed,alg_opt){
list<-lapply(list, lapply,function(k) {
if (length(k)>0){
if(!(is.null(C))){
if(length(k$Seq)<C){
return()
}
}
if(opt=="isotype"){
pre_data<-.PREPROCESSING(k$Seq,k$isotype,distance_mat,NULL)
}else{
pre_data<-.PREPROCESSING(k$Seq,k$cluster,distance_mat,NULL)
}
if(alg_opt=="two-step"){
edgeList<-.FIND_EDGES_v1(pre_data$dist_mat,pre_data$countData)
edgeList<-.DELETE_MULTIPLE_PARENTS(edgeList$node_list,edgeList$edges_final,pre_data$dist_mat,pre_data$countData,tie_flag,weight,random.seed)
}else{
germline.index<-which(apply(pre_data$countData, 1, function(r) any(grepl("Germline",r))))
adj_mat<-.ADJ_MAT(pre_data$dist_mat)
edgeList<-.EDGES(pre_data$dist_mat,adj_mat,germline.index,weight,random.seed)
}
columns <- grep('Ratio', colnames(pre_data$countData), value=TRUE)
values <- lapply(edgeList$node_list, function(x) unlist(pre_data$countData[x,columns]))
df_values <- do.call("rbind", values)
if(!is.null(N)){
if(nrow(df_values)<N){
return()
}
}
return(k)
}
})
list<-lapply(list, function(x) Filter(length, x))
if(!(purrr::vec_depth(list)>3)){
list<-lapply(list,function(z) list(z))
}
return(list)
} |
condition_core <- function(i = i,
model_i,
m_fixed_values) {
names_i <- rownames(model_i)
n_terms <- nrow(model_i)
nCond <- nrow(m_fixed_values)
effects <- matrix(NA, nrow = n_terms-1, ncol=7)
colnames(effects) <- c("Variable1", "Variable2", "Fixed1", "Fixed2", "Parameter", "Type1", "Type2")
names_aux1 <- strsplit(names_i[-1], ":")
names_aux2 <- lapply(names_aux1, function(x) gsub("V", "", x))
names_aux3 <- lapply(names_aux2, function(x) {
x_out <- rep(NA, length(x))
for(v in 1:length(x)) if(substr(x[v], start = nchar(x[v]), nchar(x[v])) == ".") x_out[v] <- gsub("\\.", "", x[v]) else x_out[v] <- x[v]
return(x_out)
})
n_var_i <- unlist(lapply(names_aux3, length))
for(q in 1:length(n_var_i)) effects[q, 1:n_var_i[q]] <- as.numeric(unlist(names_aux3[[q]]))
for(q in 1:(n_terms-1)) effects[q, 6] <- ifelse(effects[q, 1] == round(effects[q, 1]), 1, 0)
for(q in which(n_var_i==2)) effects[q, 7] <- ifelse(effects[q, 2] == round(effects[q, 2]), 1, 0)
for(q in 1:(n_terms-1)) for(f in 1:nCond) if(effects[q, 1] == m_fixed_values[f, 1]) effects[q, 3] <- m_fixed_values[f, 2]
for(q in which(n_var_i==2)) for(f in 1:nCond) if(effects[q, 2] == m_fixed_values[f, 1]) effects[q, 4] <- m_fixed_values[f, 2]
for(q in 1:(n_terms-1)) {
if(effects[q, 6] == 0) {
var_cat <- strsplit(as.character(effects[q, 1]), "\\.")[[1]]
for(f in 1:nCond) if(as.numeric(var_cat[1]) == m_fixed_values[f, 1]) if(as.numeric(var_cat[2]) == m_fixed_values[f, 2]) effects[q, 3] <- 1 else effects[q, 3] <- 0
}
}
for(q in which(n_var_i==2)) {
if(effects[q, 7] == 0) {
var_cat <- strsplit(as.character(effects[q, 2]), "\\.")[[1]]
for(f in 1:nCond) if(as.numeric(var_cat[1]) == m_fixed_values[f, 1]) if(as.numeric(var_cat[2]) == m_fixed_values[f, 2]) effects[q, 4] <- 1 else effects[q, 4] <- 0
}
}
effects[, 5] <- model_i[-1, 1]
l_cPars <- vector("list", length = n_terms)
l_cPars <- lapply(l_cPars, function(x) list() )
if(!i %in% m_fixed_values[, 1]) {
l_cPars[[1]][[1]] <- model_i[1, 1]
for(q in 1:(n_terms-1)) {
if(n_var_i[q] == 1) {
if(is.na(effects[q, 3])) {
l_cPars[[q+1]][[length(l_cPars[[q+1]])+1]] <- effects[q, 5]
} else {
l_cPars[[1]][[length(l_cPars[[1]])+1]] <- effects[q, 5] * effects[q, 3]
}
}
if(n_var_i[q] == 2) {
ind_spec <- sum(c(is.na(effects[q, 3]), is.na(effects[q, 4])))
if(ind_spec == 2)
l_cPars[[q+1]][[length(l_cPars[[q+1]])+1]] <- effects[q, 5]
if(ind_spec==1) {
ind_specified <- !is.na(c(effects[q, 3], effects[q, 4]))
ind_leftover_mainE <- which(effects[n_var_i==1, 1]==effects[q, 1:2][!ind_specified])
l_cPars[[ind_leftover_mainE+1]][[length(l_cPars[[ind_leftover_mainE+1]])+1]] <- effects[q, 5] * effects[q, 3:4][ind_specified]
}
if(ind_spec == 0) l_cPars[[1]][[length(l_cPars[[1]])+1]] <- effects[q, 5] * effects[q, 3] * effects[q, 4]
}
}
}
model_i_new <- matrix(NA, nrow=n_terms, ncol=1)
rownames(model_i_new) <- names_i
for(q in 1:n_terms) model_i_new[q, 1] <- sum(unlist(l_cPars[[q]]))
return(model_i_new)
} |
msBP.marginalBeta <- function(y, maxS=10, output="tree")
{
veclen <- 2^(maxS+1) - 1
res <- .C("marginalBeta_C", out= as.double(rep(0, veclen)), as.double(y), as.integer(maxS), PACKAGE = "msBP")
if(output=="tree") vec2tree(res$out)
else res$out
} |
funs <- function(.data, fxn, action) {
pipe_autoexec(toggle = TRUE)
fxn_both <- sprintf("def %s; %s", fxn, action)
dots <- comb(tryargs(.data), structure(fxn_both, type = "funs"))
structure(list(data = getdata(.data), args = dots), class = "jqr")
} |
dataset <- data.frame(
txt = c("bob","Clare","clare","bob","eve","eve"),
num1 = c(3,1,2,0,0,2),
num2 = c(1,1,3,0,3,2),
etc = c("not","used","as","a","sort","term"),
stringsAsFactors = FALSE
)
f1 <- sortFrame(dataset, num1)
f2 <- sortFrame(dataset, num1, num2)
f3 <- sortFrame(dataset, txt) |
ssqvis <- function(
maxArrivals = Inf,
seed = NA,
interarrivalType = "M",
serviceType = "M",
maxTime = Inf,
maxDepartures = Inf,
maxEventsPerSkyline = 15,
saveAllStats = FALSE,
saveInterarrivalTimes = FALSE,
saveServiceTimes = FALSE,
saveWaitTimes = FALSE,
saveSojournTimes = FALSE,
saveNumInQueue = FALSE,
saveNumInSystem = FALSE,
saveServerStatus = FALSE,
showOutput = TRUE,
showSkyline = NULL,
showSkylineQueue = TRUE,
showSkylineSystem = TRUE,
showSkylineServer = TRUE,
showTitle = TRUE,
jobImage = NA,
plotDelay = -1
)
{
warnVal <- options("warn")
{
interarrivalFcn <- NA
serviceFcn <- NA
checkVal(seed, "i", minex = 1, na = TRUE, null = TRUE)
checkVal(maxTime, minex = 0)
checkVal(maxArrivals, "i", minex = 0)
checkVal(maxDepartures, "i", minex = 0)
checkVal(maxEventsPerSkyline, "i", minex = 0)
if (maxTime == Inf && maxArrivals == Inf && maxDepartures == Inf)
stop("at least one of 'maxTime', 'maxArrivals', or 'maxDepartures' must be < Inf")
if (!(interarrivalType %in% c("M","G")))
stop("for animation purposes, interarrivalType must be either 'M' or 'G'")
if (!(serviceType %in% c("M","G")))
stop("for animation purposes, serviceType must be either 'M' or 'G'")
checkVal(saveAllStats, "l")
checkVal(saveInterarrivalTimes, "l")
checkVal(saveServiceTimes, "l")
checkVal(saveWaitTimes, "l")
checkVal(saveSojournTimes, "l")
checkVal(saveNumInQueue, "l")
checkVal(saveNumInSystem, "l")
checkVal(saveServerStatus, "l")
if (saveAllStats) {
saveInterarrivalTimes <- TRUE
saveServiceTimes <- TRUE
saveWaitTimes <- TRUE
saveSojournTimes <- TRUE
saveNumInQueue <- TRUE
saveNumInSystem <- TRUE
saveServerStatus <- TRUE
}
checkVal(showOutput, "l")
checkVal(showTitle, "l")
checkVal(showSkylineSystem, "l")
checkVal(showSkylineQueue, "l")
checkVal(showSkylineServer, "l")
showSkylineResults <- ParseShow(
showBools = c(showSkylineSystem, showSkylineQueue, showSkylineServer),
show = showSkyline,
ignoreBools = missing(showSkylineSystem)
&& missing(showSkylineQueue)
&& missing(showSkylineServer)
)
showSkylineSystem <- showSkylineResults[1]
showSkylineQueue <- showSkylineResults[2]
showSkylineServer <- showSkylineResults[3]
if (!is.na(jobImage) && !is.character(jobImage))
stop("'jobImage' must be a local link or URL to an image (or a vector of such)")
if (!isValNum(plotDelay) || (plotDelay < 0 && plotDelay != -1))
stop("'plotDelay' must be a numeric value (in secs) >= 0 or -1 (interactive mode)")
endCriteria <- list(ARRIVALS = 1, DEPARTURES = 2)
endValue <- max(if (is.infinite(maxArrivals)) -1 else maxArrivals,
if (is.infinite(maxDepartures)) -1 else maxDepartures,
if (is.infinite(maxTime)) -1 else maxTime)
endType <- if (endValue == maxArrivals || endValue == maxTime)
endCriteria$ARRIVALS
else if (endValue == maxDepartures)
endCriteria$DEPARTURES
}
numServers <- 1
if (typeof(interarrivalFcn) != "closure") {
fcnInfo <- GetDefaultDistroFcn(interarrivalType,
isArrival = TRUE, asList = TRUE)
interarrivalFcn <- fcnInfo$fcn
arrivalNotation <- fcnInfo$notation
} else {
interarrivalFcn <- ParseDistroFcn(interarrivalFcn, asList = TRUE)
if (is.na(interarrivalFcn))
stop("Error: custom distributions not supported for ssqvis")
arrivalNotation <- GetDistroNotation(interarrivalFcn)
}
if (typeof(serviceFcn) != "closure") {
fcnInfo <- GetDefaultDistroFcn(serviceType,
isArrival = FALSE, asList = TRUE)
serviceFcn <- fcnInfo$fcn
serviceNotation <- fcnInfo$notation
} else {
serviceFcn <- ParseDistroFcn(serviceFcn, asList = TRUE)
if (is.na(serviceFcn))
stop("Error: custom distributions not supported for ssqvis")
serviceNotation <- GetDistroNotation(serviceFcn)
}
GetPic <- function(i) return(NA)
if (!requireNamespace("magick", quietly = TRUE)) {
message("Package \"magick\" needed for image inclusion to work. ",
"Defaulting from using images.", call. = FALSE)
}
else if (!is.na(jobImage[1]))
{
num.jobs <- if (maxArrivals < Inf) maxArrivals+1 else 100
pics <- lapply(jobImage, function(p)
as.raster(magick::image_scale(magick::image_read(p), "80")))
if (length(jobImage > 2)) {
pictype <- sample(1:length(pics), num.jobs, replace = TRUE)
GetPic <- function(i) return(pics[[pictype[i]]])
} else {
GetPic <- function(i) return(pics)
}
}
PauseCurrPlot <- NULL
pauseData <- NULL
if (maxArrivals < Inf) {
paramsText <- paste(" (",
if (maxArrivals < Inf) paste("N = ", maxArrivals, ")", sep = ""),
sep = "")
} else {
paramsText <- ""
}
titleText <- bquote(
.(arrivalNotation) ~ "/" ~ .(serviceNotation)
~ "/" ~ .(numServers) ~ .(paramsText))
sf_ratio = c(1,2)
fs <- function(n) ScaleFont(n, f = 3, r = sf_ratio)
arrivalsCal <- list(type = 'a', time = Inf, state = 0)
serverCal <- list(type = 's', time = 0, state = 0)
DrawCol <- NULL
calendarPlotRange <- c( 10, 190, 135, 190)
queuePlotRange <- c( 10, 190, 88, 130)
skylinePlotRange <- c( 18, 120, 18, 78)
statsPlotRange <- c( 130, 181, 18, 78)
upArrowPlotRange <- c( 65, 70, 126, 136)
calendarPlotBGColor <- rgb(0.95, 0.95, 0.95)
getNextEvent <- function()
{
minTime <- Inf
nextEvent <- NULL
if (arrivalsCal$state == 1 && arrivalsCal$time < minTime) {
minTime <- arrivalsCal$time
nextEvent <- arrivalsCal
}
if (serverCal$state == 1 && serverCal$time < minTime) {
minTime <- serverCal$time
nextEvent <- serverCal
}
return (nextEvent)
}
DrawJob <- NA
GetJobHalfWidth <- NA
GetJobHalfHeight <- NA
initDrawJob <- FALSE
SSQVals <- list(
time = 0,
idsInSystem = c(),
idJustRejected = 0,
idNextToEnter = 1,
idJustServed = 0,
currentProgress = 0,
numRejects = 0,
serviceTime = NA,
interarrivalTime = NA,
arrivalTime = NA,
completionTime = NA
)
DrawCurrQueue <- function(time,
idsInSystem,
idJustRejected,
idNextToEnter,
idJustServed,
currentProgress,
numRejects,
interarrivalTime,
arrivalTime,
serviceTime,
completionTime,
forceDraw = FALSE
)
{
if (missing(time)) time <- SSQVals[["time"]]
if (missing(idsInSystem)) idsInSystem <- SSQVals[["idsInSystem"]]
if (missing(idJustRejected)) idJustRejected <- SSQVals[["idJustRejected"]]
if (missing(idNextToEnter)) idNextToEnter <- SSQVals[["idNextToEnter"]]
if (missing(idJustServed)) idJustServed <- SSQVals[["idJustServed"]]
if (missing(currentProgress)) currentProgress <- SSQVals[["currentProgress"]]
if (missing(numRejects)) numRejects <- SSQVals[["numRejects"]]
if (missing(interarrivalTime)) interarrivalTime <- SSQVals[["interarrivalTime"]]
if (missing(arrivalTime)) arrivalTime <- SSQVals[["arrivalTime"]]
if (missing(serviceTime)) serviceTime <- SSQVals[["serviceTime"]]
if (missing(completionTime)) completionTime <- SSQVals[["completionTime"]]
DrawQueueComponents(time = time,
idsInSystem = idsInSystem,
idJustRejected = idJustRejected,
idNextToEnter = idNextToEnter,
idJustServed = idJustServed,
currentProgress = currentProgress,
numRejects = numRejects,
interarrivalTime = interarrivalTime,
arrivalTime = arrivalTime,
serviceTime = serviceTime,
completionTime = completionTime,
forceDraw = forceDraw
)
TogglePlot(upArrowPlotRange)
Arrows(100, 0, 100, 150)
ScalePlots(dims = c(0, 200, 0, 200))
}
setDrawCurrQueue <- function(time,
idsInSystem,
idJustRejected,
idNextToEnter,
idJustServed,
currentProgress,
numRejects,
interarrivalTime,
arrivalTime,
serviceTime,
completionTime,
shiftInQueue = FALSE,
shiftOutServer = FALSE
)
{
drawPlot <- FALSE
if (!missing(time)) { SSQVals[["time"]] <<- time; drawPlot <- TRUE }
if (!missing(idsInSystem)) { SSQVals[["idsInSystem"]] <<- idsInSystem; drawPlot <- TRUE }
if (!missing(idJustRejected)) { SSQVals[["idJustRejected"]] <<- idJustRejected; drawPlot <- TRUE }
if (!missing(idNextToEnter)) { SSQVals[["idNextToEnter"]] <<- idNextToEnter; drawPlot <- TRUE }
if (!missing(idJustServed)) { SSQVals[["idJustServed"]] <<- idJustServed; drawPlot <- TRUE }
if (!missing(currentProgress)) { SSQVals[["currentProgress"]] <<- currentProgress; drawPlot <- TRUE }
if (!missing(numRejects)) { SSQVals[["numRejects"]] <<- numRejects; drawPlot <- TRUE }
if (!missing(interarrivalTime)) { SSQVals[["interarrivalTime"]] <<- interarrivalTime; drawPlot <- TRUE }
if (!missing(arrivalTime)) { SSQVals[["arrivalTime"]] <<- arrivalTime; drawPlot <- TRUE }
if (!missing(serviceTime)) { SSQVals[["serviceTime"]] <<- serviceTime; drawPlot <- TRUE }
if (!missing(completionTime)) { SSQVals[["completionTime"]] <<- completionTime; drawPlot <- TRUE }
if (shiftInQueue) {
SSQVals[["idsInSystem"]] <<- c(SSQVals[["idsInSystem"]],
SSQVals[["idNextToEnter"]])
SSQVals[["idNextToEnter"]] <<- SSQVals[["idNextToEnter"]] + 1
drawPlot <- TRUE
}
if (shiftOutServer) {
SSQVals[["idJustServed"]] <<- SSQVals[["idsInSystem"]][1]
SSQVals[["idsInSystem"]] <<- SSQVals[["idsInSystem"]][-1]
drawPlot <- TRUE
}
return(drawPlot)
}
DrawQueueComponents <- function(time,
idsInSystem,
idJustRejected = 0,
idNextToEnter = 0,
idJustServed = 0,
currentProgress,
numRejects = 0,
interarrivalTime,
arrivalTime,
serviceTime,
completionTime,
forceDraw = FALSE
)
{
if (pauseData$plotDelay == 0 && !forceDraw) return()
if (pauseData$plotDelay == -2) return()
if (!initDrawJob)
{
initDrawJob <<- TRUE
hasImg <- !is.na(jobImage[1])
if (hasImg) {
jtcol <- "red"
GetJobHalfWidth <<- function(i) 6
GetJobHalfHeight <<- function(i) 25
} else {
jtcol <- "white"
GetJobHalfWidth <<- function(i) max(6, 2 * nchar(i, "width"))
GetJobHalfHeight <<- function(i) ScaleFont(250)
if (Sys.getenv("RSTUDIO") == 1) {
GetJobHalfHeight <<- function(i) ScaleFont(180)
}
}
DrawJob <<- function(i, midWidth = 10, midHeight = 100,
textXDisplace = 0, textYDisplace = 0, bg,
size = 15)
{
if (!hasImg)
textXDisplace <- textYDisplace <- 0
else
bg <- NA
TextBox(i, midWidth, midHeight, GetJobHalfWidth(i), GetJobHalfHeight(i),
bg = bg, col = jtcol, img = GetPic(i),
txd = textXDisplace, tyd = textYDisplace, size = size)
}
}
par(mfrow = c(1, 1), mar = c(0, 0, 0, 0), new = TRUE)
{
NewPlot()
TogglePlot(queuePlotRange)
DrawBorder("grey", "white")
}
size12_ <- if (Sys.getenv("RSTUDIO") == 1) fs(6) else fs(12)
size15_ <- if (Sys.getenv("RSTUDIO") == 1) fs(7) else fs(15)
size18_ <- if (Sys.getenv("RSTUDIO") == 1) fs(8) else fs(18)
{
TextBox(paste("System Clock: t =", pround(time)), 45, 170, 25,
size = size18_)
{
segments (30, c(73, 127), x1 = 128, lwd = 2)
segments (128, c(73, 127), y1 = c(80, 120), lwd = 2)
}
{
f.svrColor <- simcolors$busySvr
f.svcText <-
if (length(serviceTime) == 0 || is.na(serviceTime))
bquote(s[.(idsInSystem[1])] == ...)
else if (serviceTime <= 0)
bquote(s[.(idsInSystem[1])] == .(sym$infinity))
else bquote(s[.(idsInSystem[1])] == .(pround(serviceTime)))
f.cmpText <-
if (length(completionTime) == 0 || is.na(completionTime))
bquote(c[.(idsInSystem[1])] == ...)
else if (completionTime <= 0)
bquote(c[.(idsInSystem[1])] == .(sym$infinity))
else bquote(c[.(idsInSystem[1])] == .(pround(completionTime)))
if (length(serviceTime) == 0 || is.na(serviceTime)
|| length(completionTime) == 0 || is.na(completionTime))
f.svrColor <- simcolors$pendSvr
if (length(idsInSystem) == 0) {
f.svrColor <- simcolors$idleSvr
f.svcText <- "idle"
f.cmpText <- ""
}
roundrect(c(150, 100), radx = 15, rady = 50, rx = 5, col = f.svrColor)
TextBox(f.svcText, 150, 130, 20, size = size12_)
TextBox(f.cmpText, 150, 65, 20, size = size12_)
if (length(idsInSystem) > 0)
DrawJob(idsInSystem[1], midWidth = 150, midHeight = 100,
textXDisplace = 1.3, bg = simcolors$svgJob, size = size15_)
}
{
boxhw_ <- if (Sys.getenv("RSTUDIO") == 1) 15 else 12
TextBox(text = "", mw = 12, mh = 100, hw = boxhw_, hh = 50,
bg = simcolors$arr)
Arrows( 5, 100, 25, 100)
Arrows(170, 100, 190, 100)
if (idNextToEnter > 0) {
DrawJob(idNextToEnter, midWidth = 10, midHeight = 100,
textXDisplace = 1.3, bg = simcolors$inqJob, size = size15_)
f.iarText <-
if (is.na(interarrivalTime))
bquote(r[.(idNextToEnter)] == ...)
else
bquote(r[.(idNextToEnter)] == .(pround(interarrivalTime)))
f.arrText <-
if (is.na(arrivalTime))
bquote(a[.(idNextToEnter)] == ...)
else
bquote(a[.(idNextToEnter)] == .(pround(arrivalTime)))
fsize <- if (is.na(interarrivalTime)) fs(10) else fs(10 - log10(arrivalTime))
if (Sys.getenv("RSTUDIO") == 1)
fsize <- if (is.na(interarrivalTime)) fs(6) else fs(5)
TextBox(f.iarText, mw = 12, mh = 131, hw = boxhw_, size = fsize)
TextBox(f.arrText, mw = 12, mh = 65, hw = boxhw_, size = fsize)
}
if (idJustServed > 0) {
DrawJob(idJustServed, midWidth = 178, midHeight = 100,
textYDisplace = 1.6, bg = simcolors$svdJob, size = size15_)
}
}
{
f.phh <- if (Sys.getenv("RSTUDIO") == 1) ScaleFont(225) else ScaleFont(300)
barmh_ <- if (Sys.getenv("RSTUDIO") == 1) 20 else 25
rect(0, barmh_ - f.phh, 200, barmh_ + f.phh, col = simcolors$progbar[1])
rect(0, barmh_ - f.phh, 200 * currentProgress, barmh_ + f.phh,
col = simcolors$progbar[2])
f.ptext <- paste(sep = "", round(currentProgress * 100), "% Completed",
if (numRejects > 0) paste(" (", numRejects, " Rejected)", sep = ""))
TextBox (f.ptext, mw = 100, mh = barmh_, hw = 100, hh = f.phh,
col = simcolors$progtxt, size = size15_)
}
}
if (length(idsInSystem) > 1)
{
f.lastjob <- idsInSystem[length(idsInSystem)]
f.numslots <- max(3, 7 - floor(log10(f.lastjob)))
es <- function(n) return(134 - 100 * (n - 1)/f.numslots)
f.peakindex <- min(f.numslots, length(idsInSystem))
for (i in 2:f.peakindex) {
if (i == f.numslots - 1 && length(idsInSystem) > f.numslots)
points(
x = es(f.numslots - 1) + 3 * c(-1,0,1),
y = c(100,100,100),
cex = 0.5, col = "black"
)
else if (i == f.numslots)
DrawJob(f.lastjob, midWidth = es(i), midHeight = 100,
textYDisplace = -1.6, bg = simcolors$inqJob, size = size15_)
else
DrawJob(idsInSystem[i], midWidth = es(i), midHeight = 100,
textYDisplace = -1.6, bg = simcolors$inqJob, size = size15_)
}
}
}
PlotInitSkyline <- function (xRange = c(0,1), yRange = c(0,1))
{
skybgRange <- skylinePlotRange + c(-5, 5, 0, 5)
canShow <- c(showSkylineSystem, showSkylineQueue, showSkylineServer)
ScalePlots(skylinePlotRange)
TogglePlot(skybgRange)
if (Sys.getenv("RSTUDIO") == 1) {
DrawBorder(br = "grey", col = "white", xLowerLeft = -5)
} else {
DrawBorder(br = "grey", col = "white")
}
TextBox("t", 194, 34, 5, 5)
TogglePlot(skylinePlotRange, initPlot = FALSE, mar = c(1,1,1,1))
plot(NA, NA, xlim = xRange, ylim = yRange, xaxt = "n", yaxt = "n",
xlab = "", ylab = "", bty = "n", las = 1, type = "s")
fontScale <- if (Sys.getenv("RSTUDIO") == 1) ScaleFont(10) else ScaleFont(15)
if (sum(canShow) > 0) {
legend("top", c("System", "Queue", "Server", "Avg")[canShow > 0],
lty = c(canShow[canShow > 0], 2),
col = simcolors$sky[c(which(canShow > 0), 1)],
cex = fontScale, x.intersp = 0.5, horiz = TRUE)
}
title(paste("Number in System and In Queue"), cex.main = 0.975)
}
PlotSkyline <- function(times,
numsInSystem,
numsInQueue,
numsInServer,
rangeForPlotting,
entireRange,
forceDraw = FALSE)
{
rangePlot <- rangeForPlotting
rangeAll <- entireRange
yminratio <- (-0.4)/ScaleFont(15)
if (length(rangeAll) < 2)
{
PlotInitSkyline(c(0, 1), c(yminratio, 1.5))
axis(1, 0:1, line = -2, cex.axis = ScaleFont(15))
axis(2, 0:1, line = 0, tck = -0.02, mgp = c(3,0.5,0),
cex.axis = ScaleFont(15), las = 1)
return()
}
if (length(rangePlot) > 1 && length(rangeAll) > 1) {
rangePlot[2] <- max(which(!is.na(numsInSystem)))
rangeAll[2] <- max(which(!is.na(numsInSystem)))
rangePlot <- rangePlot[1]:rangePlot[2]
rangeAll <- rangeAll [1]:rangeAll [2]
}
timesSub <- times[rangePlot]
numsSub <- numsInSystem[rangePlot]
numsQSub <- numsInQueue[rangePlot]
numsSSub <- numsInServer[rangePlot]
maxTime <- timesSub[length(timesSub)]
minTime <- timesSub[1]
xRange <- c(minTime, maxTime)
yRange <- c(yminratio, 1.5) * max(numsSub)
PlotInitSkyline(xRange, yRange)
if (showSkylineSystem)
lines(timesSub, numsSub, type = "s", col = simcolors$sky[1], lwd = 1.25)
if (showSkylineQueue)
lines(timesSub, numsQSub, type = "s", col = simcolors$sky[2])
if (showSkylineServer)
lines(timesSub, numsSSub, type = "s", col = simcolors$sky[3], lwd = 0.75)
xlabs <- pretty(c(minTime, maxTime))
ylabs <- 0:max(numsSub)
if (ylabs[length(ylabs)] > 5) ylabs <- pretty(ylabs)
axis(1, xlabs, line = -2, cex.axis = ScaleFont(15))
axis(2, ylabs, line = 0, tck = -0.02, mgp = c(3,0.5,0),
cex.axis = ScaleFont(15), las = 1)
if (length(times[!is.na(times)]) > 1)
{
if (showSkylineSystem)
segments(
xRange[1], meanTPS(times[rangeAll], numsInSystem[rangeAll]),
xRange[2], lty = "dashed", col = simcolors$sky[1])
if (showSkylineQueue)
segments(
xRange[1], meanTPS(times[rangeAll], numsInQueue[rangeAll]),
xRange[2], lty = "dashed", col = simcolors$sky[2])
if (showSkylineServer)
segments(
xRange[1], meanTPS(times[rangeAll], numsInServer[rangeAll]),
xRange[2], lty = "dashed", col = simcolors$sky[3])
}
}
calendar_xRange <- calendarPlotRange[2] - calendarPlotRange[1]
calendar_yRange <- calendarPlotRange[4] - calendarPlotRange[3]
stats_yRange <- statsPlotRange[4] - statsPlotRange[3]
chyronRange <- calendarPlotRange + c(0, 0, calendar_yRange - 6, 0)
box1Range <- calendarPlotRange +
c(0.01 * calendar_xRange, -0.75 * calendar_xRange, 0, -5)
box2Range <- calendarPlotRange +
c(0.25 * calendar_xRange, -0.24 * calendar_xRange, 0, -5)
box3Range <- calendarPlotRange +
c(0.73 * calendar_xRange, -0.04 * calendar_xRange, 0, -5)
box2PlotRange <- box2Range + c(10, -5, 20, -10)
box2TimeRange <- box2Range + c(10, -5, 10, 0)
box2TimeRange[4] <- box2TimeRange[3] + 10
statsRange <- statsPlotRange + c(-5, 5, 0, 5)
tpsStatsRange <- statsPlotRange + c(0, 0, 5 + stats_yRange * ( 0.48), 0)
booStatsRange <- statsPlotRange + c(0, 0, 5, stats_yRange * (-0.44))
chyronSize_ <- if (Sys.getenv("RSTUDIO") == 1) fs(10) else fs(18)
SetChyron <- function(text) {
TogglePlot(chyronRange)
TextBox(text, 100, 100, 100, 100,
bg = "grey22", col = "white", font = 2, size = chyronSize_)
}
DrawEmptyIDF <- function()
{
TogglePlot(calendarPlotRange + c(0, 0, 0, -4.5))
DrawBorder(calendarPlotBGColor, calendarPlotBGColor)
TogglePlot(box2PlotRange + c(-10, 10, -6, 6))
DrawBorder("grey")
size_ <- if (Sys.getenv("RSTUDIO") == 1) fs(12) else fs(20)
TextBox("No Active \nGeneration", 100, 100, 100, 100, size = size_)
}
DrawIDF <- function(u, x = NA, gxRange, gxExact, gyExact, isArrival = FALSE)
{
timeMax <- gxRange[2]
xWidth <- diff(gxRange)
gyRange <- if (u > 0.1) c(-0.05,1) else c(-0.2,1)
f.pcol <- if (isArrival) simcolors$arr else simcolors$svc
f.xlab <- if (isArrival) "r" else "s"
TogglePlot(box2PlotRange, initPlot = FALSE)
plot(NA, NA, xlim = gxRange, ylim = gyRange,
xaxt = "n", yaxt = "n", bty = "n", xlab = "")
if (is.na(x)) {
axis(side = 1, at = pretty(c(0, timeMax)), lwd = 0,
lwd.ticks = 1, labels = TRUE,
padj = -0.5/ScaleFont(15), cex.axis = ScaleFont(15))
axis(side = 1, at = pretty(c(0, timeMax)), labels = FALSE, tcl = 0,
padj = -0.5, cex.axis = ScaleFont(15))
text(timeMax*1.08, gyRange[1] - 0.05, f.xlab,
cex = ScaleFont(15), xpd = NA)
axis(side = 2, at = c(0, 0.25, 0.5, 0.75, 1), las = 1,
cex.axis = ScaleFont(15))
} else {
segments(0, u, min(x, timeMax), u, lty = "dashed", lwd = 1, col = "red")
if (x < timeMax) segments(x, 0, x, u, lty = "dashed", lwd = 1, col = "red")
}
DrawPoint(-xWidth/55, u, simcolors$u, cex = ScaleFont(25))
if (!is.na(x) && x < timeMax)
DrawPoint(x, if (gyRange[1] == -0.05) -0.02 else -0.15,
f.pcol, cex = ScaleFont(25))
lines(gxExact, gyExact, col = f.pcol, lwd = 2)
}
DrawTimelineComponents <- function(time,
maxTime,
arrivalTime = NA,
completionTime = NA,
oldTimes = NA,
newTime = NA,
inversionLine = TRUE
)
{
TogglePlot(box2TimeRange + c(-5, 11, -6.5, -6.5))
DrawBorder(NA, calendarPlotBGColor)
maxX <- time + maxTime
TogglePlot(box2TimeRange, initPlot = FALSE)
plot(NA, NA, xlim = c(time, maxX), ylim = c(0, 1),
bty = "n", xaxt = "n", yaxt = "n")
axis(side = 1, at = pround(time + pretty(c(0, maxTime))), lwd = 0,
lwd.ticks = 1, labels = TRUE,
padj = -0.5/ScaleFont(15), cex.axis = ScaleFont(15))
axis(side = 1, at = pround(time + pretty(c(0, maxTime + 0.25))),
labels = FALSE, tcl = 0, padj = -0.5, cex.axis = ScaleFont(15))
if (inversionLine) {
segments(newTime, 0, newTime, 1, lty = "dashed", lwd = 1, col = "red")
}
showDots <- FALSE
for (i in 1:length(oldTimes)) {
if (isValNum(oldTimes[i]) && oldTimes[i] == Inf) oldTimes <- NA
else if (isValNum(oldTimes[i]) && oldTimes[i] > maxX)
{ oldTimes[i] <- maxX; showDots <- TRUE }
}
for (i in 1:length(newTime)) {
if (isValNum(newTime[i]) && newTime[i] == Inf) newTime[i] <- NA
else if (isValNum(newTime[i]) && newTime[i] > maxX)
{ newTime[i] <- maxX; showDots <- TRUE }
}
if (isValNum(arrivalTime) && arrivalTime == Inf)
{ arrivalTime <- NA }
else if (isValNum(arrivalTime) && arrivalTime > maxX)
{ arrivalTime <- maxX; showDots <- TRUE }
if (isValNum(completionTime) && completionTime == Inf)
{ completionTime <- NA }
else if (isValNum(completionTime) && completionTime > maxX)
{ completionTime <- maxX; showDots <- TRUE }
if (showDots) text(time + maxTime * 0.95, 0.1, "...")
DrawPoint(oldTimes, 0.1, col = "grey",
cex = ScaleFont(25))
DrawPoint(arrivalTime, 0.1, col = simcolors$arrivalTime,
cex = ScaleFont(25))
DrawPoint(completionTime, 0.1, col = simcolors$svc,
cex = ScaleFont(25))
DrawPoint(newTime, 0.1, col = simcolors$newTime,
cex = ScaleFont(25))
text(time + maxTime * 1.1, -0.05, "time", cex = ScaleFont(15), xpd = NA)
}
DrawCalendarComponents <- function(calendarTimes = c(0,0),
encircleTimes = c(FALSE, FALSE),
highlightTimes = c(FALSE, FALSE)
)
{
TogglePlot(box1Range)
arrcol <- if (highlightTimes[1]) "yellow" else simcolors$arr
svccol <- if (highlightTimes[2]) "yellow" else simcolors$svc
sizeS_ <- if (Sys.getenv("RSTUDIO") == 1) fs(8) else fs(15)
sizeL_ <- if (Sys.getenv("RSTUDIO") == 1) fs(12) else fs(20)
TextBox("", 100, 110, 75, 75, bg = "white")
TextBox("Calendar", 100, 180, 75, 15, col = "white",
bg = "lightsteelblue4", size = sizeL_)
if (encircleTimes[1]) TextBox("", 100, 120, 67.5, 20, bg = "blue")
if (encircleTimes[2]) TextBox("", 100, 60, 67.5, 20, bg = "blue")
TextBox("Next Arrival", 100, 150, 100, 10, size = sizeS_)
TextBox("Next Completion", 100, 88, 100, 10, size = sizeS_)
TextBox(paste("a =", pround(calendarTimes[1])), 100, 120, 60, 15,
bg = arrcol, size = sizeS_)
TextBox(paste("c =", pround(calendarTimes[2])), 100, 60, 60, 15,
bg = svccol, size = sizeS_)
}
CalendarVals <- list(arrivalTime = 0,
completionTime = 0,
encircleTimes = c(FALSE, FALSE),
highlightTimes = c(FALSE, FALSE))
DrawCurrCalendar <- function(arrivalTime,
completionTime,
encircleTimes,
highlightTimes,
forceDraw = FALSE)
{
if (missing(arrivalTime))
arrivalTime <- CalendarVals[["arrivalTime"]]
if (missing(completionTime))
completionTime <- CalendarVals[["completionTime"]]
if (missing(encircleTimes))
encircleTimes <- CalendarVals[["encircleTimes"]]
if (missing(highlightTimes))
highlightTimes <- CalendarVals[["highlightTimes"]]
DrawCalendarComponents(c(arrivalTime, completionTime),
encircleTimes, highlightTimes)
}
setDrawCurrCalendar <- function(arrivalTime,
completionTime,
encircleTimes = c(FALSE, FALSE),
highlightTimes = c(FALSE, FALSE)
)
{
plotCalendar <- FALSE
if (!missing(arrivalTime)) { CalendarVals[["arrivalTime"]] <<- arrivalTime; plotCalendar <- TRUE }
if (!missing(completionTime)) { CalendarVals[["completionTime"]] <<- completionTime; plotCalendar <- TRUE }
if (!missing(encircleTimes)) { CalendarVals[["encircleTimes"]] <<- encircleTimes; plotCalendar <- TRUE }
if (!missing(highlightTimes)) { CalendarVals[["highlightTimes"]] <<- highlightTimes; plotCalendar <- TRUE }
return(plotCalendar)
}
TimeLineVals <- list(time = 0,
maxTime = 4,
arrivalTime = 0,
completionTime = 0,
oldTimes = NA,
newTime = NA)
DrawCurrTimeline <- function(time,
arrivalTime,
completionTime,
oldTimes,
newTime,
inversionLine = TRUE,
forceDraw = FALSE)
{
if (pauseData$plotDelay == 0 && !forceDraw) return()
if (pauseData$plotDelay == -2) return()
if (missing(time)) time <- TimeLineVals[["time"]]
if (missing(arrivalTime)) arrivalTime <- TimeLineVals[["arrivalTime"]]
if (missing(completionTime)) completionTime <- TimeLineVals[["completionTime"]]
if (missing(oldTimes)) oldTimes <- TimeLineVals[["oldTimes"]]
if (missing(newTime)) newTime <- TimeLineVals[["newTime"]]
DrawTimelineComponents(time,
TimeLineVals[["maxTime"]],
arrivalTime,
completionTime,
oldTimes,
newTime,
inversionLine)
}
setDrawCurrTimeline <- function(time,
maxTime,
arrivalTime,
completionTime,
oldTimes = NA,
newTime = NA
)
{
plotTimeline <- FALSE
if (!missing(time)) { TimeLineVals[["time"]] <<- time; plotTimeline <- TRUE; }
if (!missing(maxTime)) { TimeLineVals[["maxTime"]] <<- maxTime; plotTimeline <- TRUE; }
if (!missing(arrivalTime)) { TimeLineVals[["arrivalTime"]] <<- arrivalTime; plotTimeline <- TRUE; }
if (!missing(completionTime)) { TimeLineVals[["completionTime"]] <<- completionTime; plotTimeline <- TRUE; }
if (!missing(oldTimes)) { TimeLineVals[["oldTimes"]] <<- oldTimes; plotTimeline <- TRUE; }
if (!missing(newTime)) { TimeLineVals[["newTime"]] <<- newTime; plotTimeline <- TRUE; }
return(plotTimeline)
}
SpecifyEventSteps <- function(currentTime,
arrivalTime,
completionTime,
process,
isArrival,
advanceTime,
numInSystem,
forceDraw = FALSE
)
{
if ((pauseData$plotDelay == 0 && !forceDraw) ||
(pauseData$plotDelay == -2))
{
vfunc <- if (isArrival == TRUE) interarrivalFcn else serviceFcn
return(vfunc(num_in_sys = numInSystem, as_list = FALSE))
}
if (process == 0)
msg <- c(
"Initialize Calendar",
"Initially, Impossible Events",
"Generate U(0, 1) For 1st Interarrival",
"Generate 1st Interarrival Time By Inverting",
"Compute 1st Arrival Time",
"Place 1st Arrival Time On Calendar"
)
else if (process == 1)
msg <- c(
"Process Arrival (Server Idle)",
"Check Calendar Times For Minimum Time",
"Generate U(0, 1) For Next Service Time",
"Compute Next Service Time By Inverting",
"Compute Next Completion Time",
"Place Next Completion Time On Calendar"
)
else if (process == 2)
msg <- c(
"Process Arrival",
"Check Calendar Times For Minimum Time",
"Generate U(0, 1) For Next Interarrival Time",
"Compute Next Interarrival Time By Inverting",
"Compute Next Arrival Time",
"Place Next Arrival Time On Calendar"
)
else if (process == 3)
msg <- c(
"Process Arrival (System Not Empty)",
"Check Calendar Times For Minimum Time",
"Generate U(0, 1) For Next Interarrival Time",
"Compute Next Interarrival Time By Inverting",
"Compute Next Arrival Time",
"Place Next Completion Time on Calendar"
)
else if (process == 4)
msg <- c(
"Process Completion (Queue Not Empty)",
"Check Calendar Times For Minimum Time",
"Generate U(0, 1) For Next Service Time",
"Compute Next Service Time By Inverting",
"Compute Next Completion Time",
"Place Next Completion Time on Calendar"
)
else if (process == 5) {
DrawServiceAsImpossible(currentTime, arrivalTime, completionTime)
return()
}
else if (process == 6) {
DrawArrivalAsImpossible(currentTime, arrivalTime, completionTime)
return()
}
else if (process == 7) {
DrawRejection(currentTime, arrivalTime, completionTime)
return()
}
variate <- DrawInversionProcess(currentTime, arrivalTime, completionTime,
isArrival, process, msg,
advanceTime, numInSystem,
forceDraw = forceDraw)
return(variate)
}
DrawServiceAsImpossible <- function(curr.time, arr.time, cmp.time)
{
ScalePlots(calendarPlotRange)
TogglePlot(calendarPlotRange)
DrawBorder(calendarPlotBGColor, calendarPlotBGColor)
SetChyron("Advance System Clock")
DrawEmptyIDF()
DrawCurrCalendar(encircleTimes = c(FALSE, TRUE))
DrawCurrTimeline(time = cmp.time)
pauseData <<- PauseCurrPlot("DrawServiceAsImpossible:
if (pauseData$menuChoice %in% c('q','e','j')) return()
SetChyron("Process Completion (Queue Empty) : Remove Expired Completion From Calendar")
DrawEmptyIDF()
setDrawCurrCalendar(completionTime = Inf)
DrawCurrCalendar(highlightTimes = c(FALSE, TRUE))
setDrawCurrTimeline(time = cmp.time, completionTime = NA)
DrawCurrTimeline(newTime = c(cmp.time), inversionLine = FALSE)
pauseData <<- PauseCurrPlot("DrawServiceAsImpossible:
if (pauseData$menuChoice %in% c('q','e','j')) return()
if (arr.time != Inf) {
SetChyron(paste("Determine Next Event Type : Find Minimum Time On Calendar"))
DrawCurrTimeline(inversionLine = FALSE)
DrawCurrCalendar(encircleTimes = c(TRUE, FALSE))
}
pauseData <<- PauseCurrPlot("DrawServiceAsImpossible:
if (pauseData$menuChoice %in% c('q','e','j')) return()
}
DrawArrivalAsImpossible <- function(curr.time, arr.time, cmp.time)
{
ScalePlots(calendarPlotRange)
TogglePlot(calendarPlotRange)
DrawBorder(calendarPlotBGColor, calendarPlotBGColor)
SetChyron("Advance System Clock")
DrawEmptyIDF()
DrawCurrCalendar(encircleTimes = c(TRUE, FALSE))
DrawCurrTimeline(time = arr.time)
pauseData <<- PauseCurrPlot("DrawArrivalAsImpossible:
if (pauseData$menuChoice %in% c('q','e','j')) return()
SetChyron("Finalizing Arrival : Cease Further Arrival Generations")
DrawEmptyIDF()
setDrawCurrCalendar(arrivalTime = Inf)
DrawCurrCalendar(highlightTimes = c(TRUE, FALSE))
setDrawCurrTimeline(time = arr.time, arrivalTime = NA)
DrawCurrTimeline(newTime = c(arr.time), inversionLine = FALSE)
pauseData <<- PauseCurrPlot("DrawArrivalAsImpossible:
if (pauseData$menuChoice %in% c('q','e','j')) return()
SetChyron("Progressing Simulation : Awaiting Next Service")
pauseData <<- PauseCurrPlot("DrawArrivalAsImpossible:
if (pauseData$menuChoice %in% c('q','e','j')) return()
}
DrawRejection <- function(curr.time, arr.time, cmp.time)
{
ScalePlots(calendarPlotRange)
TogglePlot(calendarPlotRange)
DrawBorder(calendarPlotBGColor, calendarPlotBGColor)
SetChyron("Advance System Clock")
DrawEmptyIDF()
DrawCurrQueue(idNextToEnter = SSQVals["idJustRejected"], idJustRejected = 0)
DrawCurrCalendar(encircleTimes = c(TRUE, FALSE))
DrawCurrTimeline(time = arr.time)
pauseData <<- PauseCurrPlot("DrawRejection:
if (pauseData$menuChoice %in% c('q','e','j')) return()
SetChyron("Rejecting Arrival : Ejecting Job and Removing Stale Arrival")
DrawEmptyIDF()
DrawCurrQueue()
setDrawCurrCalendar(arrivalTime = Inf)
DrawCurrCalendar(highlightTimes = c(TRUE, FALSE))
setDrawCurrTimeline(time = arr.time, arrivalTime = Inf)
DrawCurrTimeline(newTime = c(arr.time), inversionLine = FALSE)
pauseData <<- PauseCurrPlot("DrawRejection:
if (pauseData$menuChoice %in% c('q','e','j')) return()
}
DrawInversionProcess <- function(
time,
arrivalTime,
completionTime,
isArrival,
process,
message,
advanceTime,
numInSystem,
forceDraw = FALSE
)
{
vfunc <- if (isArrival == TRUE) interarrivalFcn else serviceFcn
arr0 <- if (arrivalTime == 0) Inf else arrivalTime
cmp0 <- if (completionTime == 0) Inf else completionTime
result <- vfunc(numInSystem, TRUE)
u <- result[["u"]]
x <- result[["x"]]
quantFnc <- result[["quantile"]]
plotText <- result[["text"]]
if ((pauseData$plotDelay == 0 && !forceDraw) || (pauseData$plotDelay == -2))
{
return(x)
}
gxRange <- quantFnc(c(0.01, 0.99))
gyExact <- seq(0, 1, by = (diff(0:1))/1000)
gxExact <- quantFnc(gyExact)
displayVars <- if (isArrival) c("r", "a") else c("s", "c")
{
ScalePlots(calendarPlotRange)
TogglePlot(calendarPlotRange)
DrawBorder(calendarPlotBGColor, calendarPlotBGColor)
ctitle <- if (time == 0) message[1] else "Advance System Clock"
SetChyron(ctitle)
DrawEmptyIDF()
DrawCalendarComponents(calendarTimes = c(arr0, cmp0),
encircleTimes = c(FALSE, FALSE))
DrawTimelineComponents(time = time,
maxTime = gxRange[2],
arrivalTime = arr0,
completionTime = cmp0,
oldTimes = NA,
newTime = NA)
}
if (pauseData$plotDelay == 0) return(x)
if (advanceTime)
{
pauseData <<- PauseCurrPlot("DrawInversionProcess:
if (pauseData$menuChoice %in% c('q','e','j'))
return(x)
}
{
SetChyron(paste(message[1], ":", message[2]))
DrawCalendarComponents(
calendarTimes = c(arr0, cmp0),
encircleTimes = c(time == 0 || isArrival,
time == 0 || !isArrival) )
}
if (time == 0) {
pauseData <<- PauseCurrPlot("DrawInversionProcess:
if (pauseData$menuChoice %in% c('q','e','j'))
return(x)
}
sizeTitle_ <- if (Sys.getenv("RSTUDIO") == 1) fs(10) else fs(18)
sizeS_ <- if (Sys.getenv("RSTUDIO") == 1) fs(8) else fs(15)
sizeL_ <- if (Sys.getenv("RSTUDIO") == 1) fs(12) else fs(20)
{
SetChyron(paste(message[1], ":", message[3]))
if (time == 0) {
DrawCalendarComponents(calendarTimes = c(arr0, cmp0),
encircleTimes = c(isArrival, !isArrival))
}
TogglePlot(box2PlotRange + c(-16, 16, -8, 8))
DrawBorder(calendarPlotBGColor, calendarPlotBGColor)
TogglePlot(box2Range + c(-2, 2, 0, 0), initPlot = FALSE)
typeText <- if (isArrival) "Interarrival" else "Service"
TextBox(paste(typeText, "CDF:", plotText), 100, 180, 100, 10,
font = 2, size = sizeTitle_)
DrawIDF(u, x = NA, gxRange, gxExact, gyExact, isArrival)
DrawTimelineComponents(time = time,
maxTime = gxRange[2],
arrivalTime = arr0,
completionTime = cmp0,
oldTimes = NA,
newTime = NA)
TogglePlot(box3Range)
TextBox("U(0,1)", 125, 175, 75, 20, bg = simcolors$u, tyd = 0.3, size = sizeS_)
TextBox(pround(u), 125, 155, 75/2, 15, bg = "white", size = sizeS_)
Arrows(50, 175, 15, 163)
}
pauseData <<- PauseCurrPlot("DrawInversionProcess:
if (pauseData$menuChoice %in% c('q','e','j'))
return(x)
{
SetChyron(paste(message[1], ":", message[4]))
DrawIDF(u, x = x, gxRange, gxExact, gyExact, isArrival)
if (isArrival)
setDrawCurrQueue(interarrivalTime = x)
else
setDrawCurrQueue(serviceTime = x)
DrawCurrQueue()
TogglePlot(box3Range)
boxtitle <- paste("New", displayVars[1])
TextBox(boxtitle, 125, 110, 75, 20, tyd = 0.3,
bg = if (isArrival) simcolors$arr else simcolors$svc,
size = sizeS_)
TextBox(pround(x), 125, 90, 75/2, 15, bg = "white", size = sizeS_)
Arrows(0, 110, 35, 110)
}
pauseData <<- PauseCurrPlot("DrawInversionProcess:
if (pauseData$menuChoice %in% c('q','e','j'))
return(x)
{
SetChyron(paste(message[1], ":", message[5]))
TogglePlot(box3Range)
boxtitle <- paste("New", displayVars[2])
boxvalue <- paste(pround(time), "+", displayVars[1])
TextBox(boxtitle, 125, 45, 75, 20, bg = "yellow", tyd = 0.3, size = sizeS_)
TextBox(boxvalue, 125, 25, 56.25, 15, bg = "white", size = sizeS_)
Arrows(70, 90, 70, 60)
DrawTimelineComponents(time = time,
maxTime = gxRange[2],
arrivalTime = arr0,
completionTime = cmp0,
oldTimes = NA,
newTime = time + x)
if (isArrival)
setDrawCurrQueue(arrivalTime = time + x)
else
setDrawCurrQueue(completionTime = time + x)
DrawCurrQueue()
TogglePlot(box1Range)
TextBox(paste(displayVars[2], "=", pround(time + x)), 100, 20, 60, 15,
bg = "yellow", size = sizeS_)
}
pauseData <<- PauseCurrPlot("DrawInversionProcess:
if (pauseData$menuChoice %in% c('q','e','j'))
return(x)
{
SetChyron(paste(message[1], ":", message[6]))
arr1 <- if ( isArrival) pround(time + x) else arr0
cmp1 <- if (!isArrival) pround(time + x) else cmp0
TogglePlot(box1Range)
rect(38, 3, 162, 34.4, col = calendarPlotBGColor, border = NA)
setDrawCurrCalendar(arrivalTime = arr1,
completionTime = cmp1)
DrawCurrCalendar(encircleTimes = c(isArrival, !isArrival),
highlightTimes = c(isArrival, !isArrival))
DrawTimelineComponents(
time = time,
maxTime = gxRange[2],
arrivalTime = arr1,
completionTime = cmp1,
oldTimes = c(arr0, cmp0),
inversionLine = FALSE
)
}
pauseData <<- PauseCurrPlot("DrawInversionProcess:
if (pauseData$menuChoice %in% c('q','e','j'))
return(x)
{
DrawEmptyIDF()
setDrawCurrTimeline(time = time,
maxTime = gxRange[2],
arrivalTime = arr1,
completionTime = cmp1)
DrawCurrTimeline()
DrawCurrCalendar()
SetChyron("Initialization Complete : Begin Event Loop")
}
if (process == 0) {
pauseData <<- PauseCurrPlot("DrawInversionProcess:
if (pauseData$menuChoice %in% c('q','e','j'))
return(x)
}
if (time == 0 || cmp1 < Inf)
{
SetChyron(paste("Determine Next Event Type : Find Mininum Time On Calendar"))
DrawCurrTimeline(inversionLine = FALSE)
minIsArrival <- (arr1 < cmp1) && arr1 != Inf
DrawCurrCalendar(encircleTimes = c(minIsArrival, !minIsArrival))
} else {
SetChyron(paste("Process Arrival : Generate New Service Time"))
DrawCurrTimeline(inversionLine = FALSE)
DrawCalendarComponents(
calendarTimes = c(arr1, cmp1),
encircleTimes = c(FALSE, TRUE),
highlightTimes = c(FALSE, FALSE)
)
}
return(x)
}
StatsValsFresh <- FALSE
StatsVals <- list(nt = rep(0, 3),
qt = rep(0, 3),
xt = rep(0, 3),
w = rep("-", 3),
s = rep("-", 3),
o = rep("-", 3))
DrawStatsTableComponents <- function(n = 0,
nt = StatsVals[["nt"]],
qt = StatsVals[["qt"]],
xt = StatsVals[["xt"]],
w = StatsVals[["w"]],
s = StatsVals[["s"]],
o = StatsVals[["o"]],
forceDraw = FALSE
)
{
if (identical(list(nt, qt, xt, w, s, o), StatsVals))
{
if (forceDraw == FALSE && StatsValsFresh == FALSE) {
return()
} else {
StatsValsFresh <<- FALSE
}
} else {
StatsValsFresh <<- TRUE
}
ScalePlots(statsPlotRange)
TogglePlot(statsRange)
DrawBorder("grey")
if (is.null(DrawCol))
{
tw <- c(35, 55, 55, 55)
th <- c(35, 40, 40, 40, 40)
hbg <- "lightgrey"
cbg <- "white"
tmw <- tw[1]/2
tmh <- th[1]/2
if (length(tw) > 2) for (i in 2:length(tw))
tmw <- c(tmw, sum(tw[1:(i-1)]) + tw[i]/2)
if (length(th) > 2) for (i in 2:length(th))
tmh <- c(tmh, sum(th[1:(i-1)]) + th[i]/2)
tmh <- 200 - tmh
cellsize_ <- if (Sys.getenv("RSTUDIO") == 1) 12 else 15
DrawCell <- function(text, c, r, bg = cbg, textf = NA)
{
TextBox(text, tmw[c], tmh[r+1], tw[c]/2, th[r+1]/2,
bg = bg, textf = pround, size = cellsize_)
}
DrawCol <<- function(col, texts, bg = cbg)
{
for (i in 1:length(texts))
DrawCell(texts[i], col, i, bg = if (col == 1 || i == 1) hbg else bg)
}
}
col1 <- "white"
col2 <- "yellow"
TogglePlot(tpsStatsRange)
size_ <- if (Sys.getenv("RSTUDIO") == 1) 12 else 15
TextBox("Time-Averaged Statistics", 100, 200, 100, 17,
bg = "grey22", col = "white", size = size_)
DrawCol(1, c("", "@t", "avg", "sd"))
DrawCol(2, c("n(t)", nt), if (all(nt == StatsVals[["nt"]])) col1 else col2)
DrawCol(3, c("q(t)", qt), if (all(qt == StatsVals[["qt"]])) col1 else col2)
DrawCol(4, c("x(t)", xt), if (all(xt == StatsVals[["xt"]])) col1 else col2)
TogglePlot(booStatsRange)
w <- if (!is.na(w[1])) w else rep("-", 3)
s <- if (!is.na(s[1])) s else rep("-", 3)
o <- if (!is.na(o[1])) o else rep("-", 3)
TextBox(paste("Observed Statistics (n = ", n, ")", sep = ""),
100, 200, 100, 17, bg = "grey22", col = "white", size = size_)
DrawCol(1, c("", "i", "avg", "sd"))
DrawCol(2, c("wait", w), if (all(w == StatsVals[["w"]])) col1 else col2)
DrawCol(3, c("service", s), if (all(s == StatsVals[["s"]])) col1 else col2)
DrawCol(4, c("sojourn", o), if (all(o == StatsVals[["o"]])) col1 else col2)
StatsVals[1:6] <<- list(nt, qt, xt, w, s, o)
}
main <- function(seed)
{
if (is.null(seed) || is.numeric(seed)) simEd::set.seed(seed)
numEntries <- 1000
jobs <- list(
arrTimes = rep(NA, numEntries),
intArrTimes = rep(NA, numEntries),
waitTimes = rep(NA, numEntries),
serviceTimes = rep(NA, numEntries),
sojournTimes = rep(NA, numEntries),
currState = rep("pending", numEntries))
idsInSystem <- c()
times <- rep(NA, numEntries)
numsInSys <- rep(NA, numEntries)
numsInQue <- rep(NA, numEntries)
numsInSvr <- rep(NA, numEntries)
timesPos <- 0
svrPos <- 0
timesServer <- rep(NA, numEntries)
numsServer <- rep(NA, numEntries)
currTime <- 0.0
prevTime <- 0.0
currSvcTime <- 0.0
currIntArrTime <- 0.0
numInSystem <- 0
numArrivals <- 0
numStarted <- 0
numDepartures <- 0
numRejects <- 0
idJustRejected <- 0
idJustServed <- 0
idLastEntered <- -1
{
GetBOOAvg <- function(d, i = length(d), getSd = FALSE)
{
vals <- d[1:i]; vals <- vals[!is.na(vals)]
if (length(vals) == 0) return(rep(NA, 1 + getSd))
xbar <- mean(vals)
if (getSd) {
s <- sd(vals)
s <- if (is.na(s)) 0 else s
return(c(xbar, s))
}
return(xbar)
}
GetTPSAvg <- function(n, t = times, i = length(n), getSd = FALSE)
{
nVals <- n[1:i]; nVals <- nVals[!is.na(nVals)]
tVals <- t[1:i]; tVals <- tVals[!is.na(tVals)]
if (length(nVals) == 0) return(rep(NA, 1 + getSd))
nbar <- if (length(tVals) > 1) meanTPS(tVals, nVals) else mean(nVals)
if (length(nVals) == 1) {
return(if (getSd) c(nbar, 0) else nbar)
}
if (getSd) {
s <- sdTPS(tVals, nVals)
s <- if (is.na(s)) 0 else s
return(c(nbar, s))
}
return(nbar)
}
SetSystemState <- function(time, numInSystem)
{
timesPos <<- timesPos + 1
if (timesPos > length(times)) {
times <<- resize(times)
numsInSys <<- resize(numsInSys)
numsInQue <<- resize(numsInQue)
numsInSvr <<- resize(numsInSvr)
}
times [timesPos] <<- time
numsInSys[timesPos] <<- numInSystem
numsInQue[timesPos] <<- max(0, numInSystem - numServers)
numsInSvr[timesPos] <<- min(numServers, numInSystem)
}
SetServerState <- function(time, numInService)
{
svrPos <<- svrPos + 1
if (svrPos > length(timesServer)) {
timesServer <<- resize(timesServer)
numsServer <<- resize(numsServer)
}
timesServer[svrPos] <<- time
numsServer [svrPos] <<- numInService
}
SetJobStateArr <- function(arrivalTime, interarrivalTime,
state, i = numArrivals + 1)
{
if (i > length(jobs$arrTimes))
jobs$arrTimes <<- resize(jobs$arrTimes)
if (i > length(jobs$intArrTimes))
jobs$intArrTimes <<- resize(jobs$intArrTimes)
if (i > length(jobs$currState))
jobs$currState <- resize(jobs$currState)
if (!is.na(jobImage) && length(idsInSystem) > length(pictype))
pictype <<- c(pictype, pictype)
jobs$arrTimes [i] <<- arrivalTime
jobs$intArrTimes[i] <<- interarrivalTime
jobs$currState [i] <<- state
}
UpdateJobStateArr <- function(arrivalTime, interarrivalTime,
state, i = numArrivals + 1)
{
jobs$arrTimes [i] <<- arrivalTime
jobs$intArrTimes[i] <<- interarrivalTime
jobs$currState [i] <<- state
}
SetJobStateSvc <- function(waitTime, serviceTime,
state, i = numStarted + 1)
{
if (i > length(jobs$waitTimes))
jobs$waitTimes <<- resize(jobs$waitTimes)
if (i > length(jobs$serviceTimes))
jobs$serviceTimes <<- resize(jobs$serviceTimes)
if (i > length(jobs$sojournTimes))
jobs$sojournTimes <<- resize(jobs$sojournTimes)
jobs$waitTimes [i] <<- waitTime
jobs$serviceTimes [i] <<- serviceTime
jobs$sojournTimes [i] <<- waitTime + serviceTime
jobs$currState [i] <<- state
}
}
SetSystemState(time = 0, numInSystem = 0)
SetServerState(time = 0, numInService = 0)
drawQueueSkylineStats <- NULL
viewJob <- function(job.num, data = jobs)
{
if (is.na(job.num))
message("\t", sym$alert,
" 'job' must be followed by the job
" (e.g., 'job 5')")
else if (job.num > numArrivals)
message("\t", sym$alert, " Job ", job.num, " has not yet arrived")
else {
message("\tViewing Job ", job.num)
message("\t ", sym$bullet, " Arrival Time = ",
format(round(data$arrTimes[job.num], 3), nsmall = 3))
message("\t ", sym$bullet, " Interarrival Time = ",
format(round(data$intArrTimes[job.num], 3), nsmall = 3))
message("\t ", sym$bullet, " Wait Time = ",
format(round(data$waitTimes[job.num], 3), nsmall = 3))
message("\t ", sym$bullet, " Service Time = ",
format(round(data$serviceTimes[job.num], 3), nsmall = 3))
sojourn_ = data$waitTimes[job.num] + data$serviceTimes[job.num]
message("\t ", sym$bullet, " Sojourn Time = ",
format(round(sojourn_, 3), nsmall = 3))
departure_ = data$arrTimes[job.num] + sojourn_
message("\t ", sym$bullet, " Departure Time = ",
format(round(departure_, 3), nsmall = 3))
}
}
pauseData <<- SetPausePlot(
plotDelay = plotDelay,
prompt =
"Hit 'ENTER' to proceed, 'q' to quit, or 'h' for help/more options: ",
viewCommand = c("job"),
viewNumArgs = c(1),
viewInstruct = c("'job n' = shows attributes of nth job"),
viewFunction = list("1" = function(n_) viewJob(n_))
)
PauseCurrPlot <<- function(calledFromWhere = NULL)
{
if (exists("DEBUG_") && !is.null(calledFromWhere)) {
cat("PauseCurrPlot called from ", calledFromWhere,
"with plotDelay =", pauseData$plotDelay, "\n")
}
currValue <- if (endType == endCriteria$ARRIVALS) { numArrivals }
else { numDepartures }
pauseData <<- PausePlot(
pauseData = pauseData,
currStep = currValue,
maxSteps = endValue
)
return(pauseData)
}
CheckMenuChoice <- function(menuChoice, userOptions)
{
if (!is.null(userOptions)) {
if (sum(sapply(1:2, function(i) userOptions[[i]])) != 0)
return(userOptions)
}
updatedUserOptions <- list(userQuits = FALSE,
userEnds = FALSE,
userJumps = FALSE)
if (menuChoice == 'q')
{
updatedUserOptions$userQuits <- TRUE
}
else if (pauseData$menuChoice == 'e')
{
updatedUserOptions$userEnds <- TRUE
pauseData$plotDelay <<- 0
}
else if (pauseData$menuChoice == 'j')
{
updatedUserOptions$userJumps <- TRUE
}
return(updatedUserOptions)
}
if(is.null(dev.list())) {
dev.new(width = 5, height = 6)
}
par(mfrow = c(1, 1), mar = c(1,1,1,1), new = FALSE)
dev.flush(dev.hold())
dev.hold()
ResetPlot()
if (showTitle) title(titleText, cex.main = 0.975, line = 0, xpd = NA)
DrawCurrQueue(forceDraw = TRUE)
PlotSkyline(times = 0,
numsInSystem = 0, numsInQueue = 0, numsInServer = 0,
rangeForPlotting = 0, entireRange = 0, forceDraw = TRUE)
DrawStatsTableComponents(n = 0, forceDraw = TRUE)
start.t <- rep(NA, numEntries)
end.t <- rep(NA, numEntries)
run.count <- 0
currIntArrTime <- SpecifyEventSteps(currentTime = 0,
arrivalTime = 0,
completionTime = 0,
process = 0,
isArrival = TRUE,
advanceTime = TRUE,
numInSystem = 0,
forceDraw = TRUE)
userOptions <- NULL
userOptions <- CheckMenuChoice(pauseData$menuChoice, userOptions)
arrivalsCal$time <<- currIntArrTime
arrivalsCal$state <<- 1
par(mfrow = c(1, 1), mar = c(0, 0, 0, 0), new = TRUE)
DrawQueueComponents(time = 0,
idsInSystem = NULL,
idJustRejected = 0,
idNextToEnter = 1,
idJustServed = 0,
currentProgress = 0,
numRejects = 0,
interarrivalTime = currIntArrTime,
arrivalTime = currIntArrTime,
serviceTime = NA,
completionTime = NA,
forceDraw = TRUE
)
TogglePlot(upArrowPlotRange)
Arrows(100, 0, 100, 150)
pauseData <<- PauseCurrPlot("After Initial Drawing")
userOptions <- CheckMenuChoice(pauseData$menuChoice, userOptions)
getCurrProgress <- function()
return(max(c(numDepartures/maxDepartures, numArrivals/maxArrivals,
currTime/maxTime)))
drawCurrQueue <- function(forceDraw = FALSE)
{
if (pauseData$plotDelay == 0 && !forceDraw) return()
if (pauseData$plotDelay == -2) return()
iar <- jobs$intArrTimes[numArrivals + 1]
if (is.null(idsInSystem)) svc <- NA
else svc <- jobs$serviceTimes[idsInSystem[1]]
arr <- if (is.na(iar)) iar else arrivalsCal$time
cmp <- if (is.na(svc)) svc else serverCal$time
if (setDrawCurrQueue(time = currTime,
idsInSystem = idsInSystem,
idJustRejected = idJustRejected,
idNextToEnter = numArrivals + 1,
idJustServed = idJustServed,
currentProgress = getCurrProgress(),
numRejects = numRejects,
serviceTime = svc,
interarrivalTime = iar,
arrivalTime = arr,
completionTime = cmp)
|| forceDraw)
{
DrawCurrQueue(forceDraw = forceDraw)
}
TogglePlot(upArrowPlotRange)
Arrows(100, 0, 100, 150)
}
drawCurrStatsTable <- function(forceDraw = FALSE, endOfSim = FALSE)
{
if (pauseData$plotDelay == 0 && !forceDraw) return()
if (pauseData$plotDelay == -2) return()
if (numDepartures > 0) {
w <- c(jobs$waitTimes[numDepartures],
GetBOOAvg(jobs$waitTimes[1:numDepartures],
i = numDepartures, getSd = TRUE))
s <- c(jobs$serviceTimes[numDepartures],
GetBOOAvg(jobs$serviceTimes[1:numDepartures],
i = numDepartures, getSd = TRUE))
o <- c(jobs$sojournTimes[numDepartures],
GetBOOAvg(jobs$sojournTimes[1:numDepartures],
i = numDepartures, getSd = TRUE))
} else {
w <- c(NA, NA)
s <- c(NA, NA)
o <- c(NA, NA)
}
if (endOfSim)
{
if (!is.infinite(maxTime) && endValue == maxTime &&
timesPos > 1 && currTime >= maxTime)
{
timesPos <- timesPos - 1
}
}
nt = c(numsInSys[timesPos], GetTPSAvg(numsInSys, i = timesPos, getSd = TRUE))
qt = c(numsInQue[timesPos], GetTPSAvg(numsInQue, i = timesPos, getSd = TRUE))
xt = c(numsInSvr[timesPos], GetTPSAvg(numsInSvr, i = timesPos, getSd = TRUE))
DrawStatsTableComponents(n = numDepartures,
nt = nt, qt = qt, xt = xt, w = w, s = s, o = o,
forceDraw = forceDraw
)
}
plotCurrSkyline <- function(forceDraw = FALSE, endOfSim = FALSE)
{
if (pauseData$plotDelay == 0 && !forceDraw) return()
if (pauseData$plotDelay == -2) return()
rangePlot <- NULL
entireRange <- NULL
if (timesPos == 1) {
rangePlot <- 0
entireRange <- 0
} else if (!endOfSim) {
rangePlot <- c(max(timesPos - maxEventsPerSkyline, 1), timesPos)
entireRange <- c(1, timesPos)
} else {
rangePlot <- c(1, timesPos)
entireRange <- c(1, timesPos)
}
PlotSkyline(times, numsInSys, numsInQue, numsInSvr,
rangePlot, entireRange, forceDraw)
}
specifyCurrentEventSteps <- function(process,
isArrival,
advanceTime = TRUE,
forceDraw = FALSE
)
{
drawQueueSkylineStats(forceDraw = forceDraw)
generatedTime <-
SpecifyEventSteps(currentTime = currTime,
arrivalTime = if (currIntArrTime == Inf) Inf
else arrivalsCal$time,
completionTime = if (currSvcTime == Inf) Inf
else serverCal$time,
process = process,
isArrival = isArrival,
advanceTime = advanceTime,
numInSystem = numInSystem,
forceDraw = forceDraw
)
return(generatedTime)
}
drawQueueSkylineStats <- function(forceDraw = FALSE,
endOfSim = FALSE)
{
if (pauseData$plotDelay == 0 && !forceDraw) return()
if (pauseData$plotDelay == -2) return()
drawCurrQueue(forceDraw = forceDraw)
plotCurrSkyline(forceDraw = forceDraw, endOfSim = endOfSim)
drawCurrStatsTable(forceDraw = forceDraw, endOfSim = endOfSim)
}
while (!userOptions$userQuits
&& currTime < maxTime
&& (numDepartures < maxDepartures)
&& (arrivalsCal$state == 1 || numInSystem > 0))
{
idJustServed <- idJustRejected <- 0
nextEvent <- getNextEvent()
prevTime <- currTime
currTime <- nextEvent$time
if (currTime > maxTime || numDepartures >= maxDepartures)
{
if (currTime > maxTime) currTime <- maxTime
SetSystemState(time = currTime, numInSystem = numsInSys[timesPos])
SetServerState(time = currTime, numInService = numsServer[svrPos])
break
}
if (nextEvent$type == 'a')
{
pauseData$isJumpStep <- TRUE
UpdateJobStateArr(arrivalTime = currTime,
interarrivalTime = currIntArrTime,
state = "queued")
numArrivals <- numArrivals + 1
idLastEntered <- numArrivals
numInSystem <- numInSystem + 1
if (!is.na(pauseData$jumpTo) && numArrivals == pauseData$jumpTo) {
pauseData$plotDelay <- -1
pauseData$jumpComplete <- TRUE
pauseData <<- pauseData
}
idsInSystem <- append(idsInSystem, numArrivals)
setDrawCurrQueue(shiftInQueue = TRUE)
if (!is.na(jobImage) && length(idsInSystem) > length(pictype))
pictype <<- c(pictype, pictype)
SetSystemState(time = currTime, numInSystem = numInSystem)
if (numInSystem == 1)
{
if (exists("DEBUG_")) print("process = 1")
currSvcTime <- specifyCurrentEventSteps(process = 1,
isArrival = FALSE)
userOptions <- CheckMenuChoice(pauseData$menuChoice, userOptions)
if (userOptions$userQuits) {
if (exists("DEBUG_")) print("quitting: process = 1!")
break
}
serverCal$time <<- currTime + currSvcTime
serverCal$state <<- 1
SetJobStateSvc(waitTime = 0,
serviceTime = currSvcTime,
state = "in service")
numStarted <- numStarted + 1
SetServerState(time = currTime, numInService = 1)
}
if (arrivalsCal$time >= maxTime || numArrivals == maxArrivals)
arrivalsCal$state <<- 0
if (numArrivals < maxArrivals)
{
if (numInSystem == 1) {
if (exists("DEBUG_")) print("process = 2")
currIntArrTime <- specifyCurrentEventSteps(process = 2,
isArrival = TRUE, advanceTime = FALSE)
userOptions <- CheckMenuChoice(pauseData$menuChoice, userOptions)
if (userOptions$userQuits) {
if (exists("DEBUG_")) print("quitting: process = 2!")
break
}
} else {
if (exists("DEBUG_")) print("process = 3")
currIntArrTime <- specifyCurrentEventSteps(process = 3,
isArrival = TRUE)
userOptions <- CheckMenuChoice(pauseData$menuChoice, userOptions)
if (userOptions$userQuits) {
if (exists("DEBUG_")) print("quitting: process = 3!")
break
}
}
arrivalsCal$time <<- arrivalsCal$time + currIntArrTime
SetJobStateArr(arrivalTime = arrivalsCal$time,
interarrivalTime = currIntArrTime,
state = "not arrived")
} else {
if (exists("DEBUG_")) print("process = 6")
specifyCurrentEventSteps(process = 6, isArrival = TRUE)
userOptions <- CheckMenuChoice(pauseData$menuChoice, userOptions)
if (userOptions$userQuits) {
if (exists("DEBUG_")) print("quitting: process = 6!")
break
}
currIntArrTime <- Inf
currArr <- Inf
}
}
else
{
pauseData$isJumpStep <- FALSE
numDepartures <- numDepartures + 1
numInSystem <- numInSystem - 1
jobs$currState[idsInSystem[1]] <- "served"
idJustServed <- idsInSystem[1]
idsInSystem <- idsInSystem[-1]
SetSystemState(time = currTime, numInSystem = numInSystem)
if (numInSystem > 0)
{
if (exists("DEBUG_")) print("process = 4")
currSvcTime <- specifyCurrentEventSteps(process = 4, isArrival = FALSE)
userOptions <- CheckMenuChoice(pauseData$menuChoice, userOptions)
if (userOptions$userQuits) {
if (exists("DEBUG_")) print("quitting: process = 4!")
break
}
serverCal$time <<- currTime + currSvcTime
SetJobStateSvc(waitTime = currTime - jobs$arrTimes[idsInSystem[1]],
serviceTime = currSvcTime,
state ="in service")
numStarted <- numStarted + 1
SetServerState(time = currTime, numInService = 1)
}
else
{
serverCal$state <<- 0
SetServerState(time = currTime, numInService = 0)
if (pauseData$plotDelay != 0) {
if (exists("DEBUG_")) print("process = 5")
specifyCurrentEventSteps(process = 5, isArrival = FALSE)
userOptions <- CheckMenuChoice(pauseData$menuChoice, userOptions)
if (userOptions$userQuits) {
if (exists("DEBUG_")) print("quitting: process = 5!")
break
}
}
currSvcTime <- Inf
currCmp <- Inf
}
}
currArr <- if (currTime >= arrivalsCal$time) Inf else arrivalsCal$time
currCmp <- if (currTime >= serverCal$time) Inf else serverCal$time
setDrawCurrTimeline(
time = currTime,
arrivalTime = currArr,
completionTime = currCmp)
setDrawCurrCalendar(
arrivalTime = currArr,
completionTime = currCmp)
DrawCurrTimeline()
drawQueueSkylineStats()
pauseData <<- PauseCurrPlot("end of while loop")
userOptions <- CheckMenuChoice(pauseData$menuChoice, userOptions)
if (userOptions$userQuits) {
print("quitting: end of while loop!")
break
}
if (pauseData$plotDelay != 0 && pauseData$plotDelay != -2) {
ResetPlot()
if (showTitle) title(titleText, cex.main = 0.975, line = -1)
}
}
if (pauseData$plotDelay == 0 && pauseData$menuChoice == 'e') {
pauseData <<- PauseCurrPlot("after while loop")
pauseData$plotDelay <- -1
}
if (pauseData$plotDelay == -2) {
pauseData$plotDelay <- -1
pauseData$jumpComplete <- TRUE
pauseData$endOfSim <- TRUE
pauseData <<- PauseCurrPlot("after while loop")
}
ResetPlot()
if (showTitle) title(titleText, cex.main = 0.975, line = -1)
drawQueueSkylineStats(forceDraw = TRUE, endOfSim = TRUE)
DrawEmptyIDF()
SetChyron("Execution Finished")
DrawCurrCalendar(forceDraw = TRUE)
setDrawCurrTimeline(time = currTime,
arrivalTime = NA,
completionTime = NA)
DrawCurrTimeline(forceDraw = TRUE)
dev.flush(dev.hold())
jobs$arrTimes <- jobs$arrTimes [!is.na(jobs$arrTimes)]
jobs$intArrTimes <- jobs$intArrTimes [!is.na(jobs$intArrTimes)]
jobs$waitTimes <- jobs$waitTimes [!is.na(jobs$waitTimes)]
jobs$serviceTimes <- jobs$serviceTimes [!is.na(jobs$serviceTimes)]
if (numDepartures > 0)
{
jobs$arrTimes <- jobs$arrTimes [1:numDepartures]
jobs$intArrTimes <- jobs$intArrTimes [1:numDepartures]
jobs$waitTimes <- jobs$waitTimes [1:numDepartures]
jobs$serviceTimes <- jobs$serviceTimes[1:numDepartures]
}
times <- times [!is.na(times)]
numsInSys <- numsInSys [!is.na(numsInSys)]
numsInQue <- numsInQue [!is.na(numsInQue)]
numsInSvr <- numsInSvr [!is.na(numsInSvr)]
timesServer <- timesServer [!is.na(timesServer)]
numsServer <- numsServer [!is.na(numsServer)]
if (pauseData$menuChoice == 'q' && currTime > 0)
{
timesServer <- c(timesServer, currTime)
numsServer <- c(numsServer, numsServer[length(numsServer)])
}
if (numDepartures > 0) {
jobs$sojournTimes <-
(jobs$waitTimes + jobs$serviceTimes)[1:numDepartures]
} else {
jobs$sojournTimes <- NA
}
avgWait <- 0
avgSojourn <- 0
avgNumInSys <- 0
util <- 0
avgNumInQue <- 0
if (length(jobs$waitTimes[!is.na(jobs$waitTimes)]) > 0)
avgWait <- mean(jobs$waitTimes[!is.na(jobs$waitTimes)])
if (length(jobs$sojournTimes[!is.na(jobs$sojournTimes)]) > 0)
avgSojourn<- mean(jobs$sojournTimes[!is.na(jobs$sojournTimes)])
if (length(numsInSys) > 1) avgNumInSys <- meanTPS(times, numsInSys)
if (length(numsServer) > 1) util <- meanTPS(timesServer, numsServer)
if (length(numsInQue) > 1) avgNumInQue <- meanTPS(times, numsInQue)
{
printed <- ""
printed <- paste(printed, "$customerArrivals\n[1]", sep = "")
printed <- paste(printed, numArrivals)
printed <- paste(printed, "\n\n$customerDepartures\n[1]", sep = "")
printed <- paste(printed, numDepartures)
printed <- paste(printed, "\n\n$simulationEndTime\n[1]", sep = "")
printed <- paste(printed, round(min(currTime, maxTime), digits = 5))
printed <- paste(printed, "\n\n$avgWait\n[1]", sep = "")
printed <- paste(printed, signif(avgWait, digits = 5))
printed <- paste(printed, "\n\n$avgSojourn\n[1]", sep = "")
printed <- paste(printed, signif(avgSojourn, digits = 5))
printed <- paste(printed, "\n\n$avgNumInSystem\n[1]", sep = "")
printed <- paste(printed, signif(avgNumInSys, digits = 5))
printed <- paste(printed, "\n\n$avgNumInQueue\n[1]", sep = "")
printed <- paste(printed, signif(avgNumInQue, digits = 5))
printed <- paste(printed, "\n\n$utilization\n[1]", sep = "")
printed <- paste(printed, signif(util, digits = 5))
printed <- paste(printed, "\n\n", sep = "")
if (showOutput) on.exit(cat(printed))
}
ssq <- list(customerArrivals = numArrivals,
customerDepartures = numDepartures,
simulationEndTime = min(currTime, maxTime),
avgWait = avgWait,
avgSojourn = avgSojourn,
avgNumInSystem = avgNumInSys,
avgNumInQueue = avgNumInQue,
utilization = util)
{
if (length(times) <= 1) {
jobs$intArrTimes <- NULL
jobs$serviceTimes <- NULL
jobs$waitTimes <- NULL
jobs$sojournTimes <- NULL
}
if (saveInterarrivalTimes) ssq$interarrivalTimes <- jobs$intArrTimes
if (saveServiceTimes) ssq$serviceTimes <- jobs$serviceTimes
if (saveWaitTimes) ssq$waitTimes <- jobs$waitTimes
if (saveSojournTimes) ssq$sojournTimes <- jobs$sojournTimes
if (saveNumInSystem) {
ssq$numInSystemT <- times
ssq$numInSystemN <- numsInSys
}
if (saveNumInQueue) {
ssq$numInQueueT <- times
ssq$numInQueueN <- numsInQue
}
if (saveServerStatus) {
ssq$serverStatusT <- timesServer
ssq$serverStatusN <- numsServer
}
}
options(warn = warnVal$warn)
par(mfrow = c(1,1))
return(invisible(ssq))
}
return(main(seed))
} |
setGeneric("sim",
function( fit , data , n=1000 , ... ) {
predict(fit)
}
)
sim_core <- function( fit , data , post , vars , n , refresh=0 , replace=list() , debug=FALSE , ll=FALSE , ... ) {
sim_vars <- list()
for ( var in vars ) {
f <- fit@formula[[1]]
for ( i in 1:length(fit@formula) ) {
f <- fit@formula[[i]]
left <- as.character( f[[2]] )
if ( left==var ) {
if ( debug==TRUE ) print(f)
break
}
}
lik <- f
outcome <- var
flik <- as.character(lik[[3]][[1]])
first_char <- substr( flik , 1 , 1 )
if ( first_char != "d" | flik=="dirichlet" ) {
for ( ii in 1:length( ulam_dists ) ) {
aStanName <- ulam_dists[[ii]]$Stan_name
if ( aStanName==flik ) {
flik <- ulam_dists[[ii]]$R_name
break
}
}
}
rlik <- flik
if ( ll==FALSE ) {
substr( rlik , 1 , 1 ) <- "r"
if ( rlik=="rgampois" ) rlik <- "rgampois2"
}
aggregated_binomial <- FALSE
size_var_is_data <- FALSE
if ( flik=="dbinom" & ll==TRUE ) {
ftemp <- flist_untag(fit@formula)[[1]]
size_sym <- ftemp[[3]][[2]]
if ( class(size_sym)=="name" ) {
aggregated_binomial <- TRUE
size_var_is_data <- TRUE
}
if ( class(size_sym)=="numeric" ) {
if ( size_sym > 1 ) aggregated_binomial <- TRUE
}
}
aggregated_binomial <- FALSE
pars <- vector(mode="list",length=length(lik[[3]])-1)
for ( i in 1:length(pars) ) {
pars[[i]] <- lik[[3]][[i+1]]
}
if ( aggregated_binomial==TRUE ) {
pars[[1]] <- 1
data[['ones__']] <- rep( 1 , length(data[[outcome]]) )
if ( refresh > 0 )
message("Aggregated binomial counts detected. Splitting to 0/1 outcome for WAIC calculation.")
}
pars <- paste( pars , collapse=" , " )
n_cases <- length(data[[outcome]])
if ( n_cases==0 ) {
n_cases <- length(data[[1]])
}
if ( ll==FALSE ) {
xeval <- paste( rlik , "(" , n_cases , "," , pars , ")" , collapse="" )
} else {
use_outcome <- outcome
if ( aggregated_binomial==TRUE ) use_outcome <- 'ones__'
xeval <- paste( rlik , "(" , use_outcome , "," , pars , ",log=TRUE )" , collapse="" )
}
sim_out <- matrix(NA,nrow=n,ncol=n_cases)
pred <- link( fit , data=data , n=n , post=post , flatten=FALSE , refresh=refresh , replace=replace , debug=debug , ... )
for ( s in 1:n ) {
elm <- list()
for ( j in 1:length(pred) ) {
elm[[j]] <- pred[[j]][s,]
}
names(elm) <- names(pred)
init <- list()
for ( j in 1:length(post) ) {
par_name <- names(post)[ j ]
dims <- dim( post[[par_name]] )
if ( is.null(dims) ) init[[par_name]] <- post[[par_name]][s]
if ( length(dims)==1 ) init[[par_name]] <- post[[par_name]][s]
if ( length(dims)==2 ) init[[par_name]] <- post[[par_name]][s,]
if ( length(dims)==3 ) init[[par_name]] <- post[[par_name]][s,,]
}
e <- list( as.list(data) , as.list(init) , as.list(elm) )
e <- unlist( e , recursive=FALSE )
if ( length(sim_vars) > 0 ) {
for ( j in 1:length(sim_vars) ) {
e[[ names(sim_vars)[j] ]] <- sim_vars[[j]][s,]
}
}
sim_out[s,] <- eval( parse( text=xeval ) , envir=e )
}
if ( debug==TRUE ) print(str(e))
if ( aggregated_binomial==TRUE ) {
if ( size_var_is_data==TRUE ) {
size_var <- data[[ as.character(ftemp[[3]][[2]]) ]]
} else {
size_var <- rep( as.numeric(ftemp[[3]][[2]]) , n_cases )
}
n_newcases <- sum(size_var)
sim_out_new <- matrix(NA,nrow=n,ncol=n_newcases)
current_newcase <- 1
outcome_var <- data[[ outcome ]]
for ( i in 1:n_cases ) {
num_ones <- outcome_var[i]
num_zeros <- size_var[i] - num_ones
ll1 <- sim_out[,i]
ll0 <- log( 1 - exp(ll1) )
if ( num_ones > 0 ) {
for ( j in 1:num_ones ) {
sim_out_new[,current_newcase] <- ll1
current_newcase <- current_newcase + 1
}
}
if ( num_zeros > 0 ) {
for ( j in 1:num_zeros ) {
sim_out_new[,current_newcase] <- ll0
current_newcase <- current_newcase + 1
}
}
}
sim_out <- sim_out_new
}
sim_vars[[ var ]] <- sim_out
data[[ var ]] <- sim_out
}
return(sim_vars)
}
setMethod("sim", "map",
function( fit , data , n=1000 , post , vars , ll=FALSE , refresh=0 , replace=list() , debug=FALSE , ... ) {
if ( class(fit)!="map" ) stop("Requires map/quap fit")
if ( missing(data) ) {
data <- fit@data
} else {
data <- as.list(data)
if ( !missing(vars) ) {
for ( i in 1:length(vars) ) {
if ( !(vars[i] %in% names(data)) ) {
data[[ vars[i] ]] <- rep( 0 , length(data[[1]]) )
}
}
}
}
if ( missing(post) ) {
post <- extract.samples(fit,n=n)
} else {
n <- dim(post[[1]])[1]
if ( is.null(n) ) n <- length(post[[1]])
}
if ( missing(vars) ) {
lik <- flist_untag(fit@formula)[[1]]
vars <- as.character(lik[[2]])
} else {
if ( debug==TRUE ) print(vars)
}
sim_vars <- sim_core( fit=fit , data=data , post=post , vars=vars , n=n , refresh=refresh , replace=replace , debug=debug , ll=ll , ... )
if ( length(sim_vars)==1 ) sim_vars <- sim_vars[[1]]
return( sim_vars )
}
)
setMethod("sim", "map2stan",
function( fit , data , n=1000 , post , refresh=0.1 , replace=list() , ... ) {
ag <- attr( fit , "generation" )
if ( !is.null(ag) )
if ( ag=="ulam2018" )
return( sim_ulam( fit , data=data , post=post , n=n , ... ) )
if ( missing(data) ) {
data <- fit@data
} else {
}
if ( n==0 ) {
n <- stan_total_samples(fit@stanfit)
} else {
tot_samples <- stan_total_samples(fit@stanfit)
n <- min(n,tot_samples)
}
if ( missing(post) )
post <- extract.samples(fit,n=n)
pred <- link( fit , data=data , n=n , post=post , flatten=FALSE , refresh=refresh , replace=replace , ... )
lik <- flist_untag(fit@formula)[[1]]
outcome <- as.character(lik[[2]])
flik <- as.character(lik[[3]][[1]])
first_char <- substr( flik , 1 , 1 )
if ( first_char != "d" ) {
for ( ii in 1:length(map2stan.templates) ) {
aStanName <- map2stan.templates[[ii]]$stan_name
if ( aStanName==flik ) {
flik <- map2stan.templates[[ii]]$R_name
break
}
}
}
rlik <- flik
substr( rlik , 1 , 1 ) <- "r"
if ( rlik=="rgampois" ) rlik <- "rgampois2"
pars <- vector(mode="list",length=length(lik[[3]])-1)
for ( i in 1:length(pars) ) {
pars[[i]] <- lik[[3]][[i+1]]
}
pars <- paste( pars , collapse=" , " )
n_cases <- length(data[[1]])
xeval <- paste( rlik , "(" , n_cases , "," , pars , ")" , collapse="" )
sim_out <- matrix( NA , nrow=n , ncol=n_cases )
post2 <- as.data.frame(post)
for ( s in 1:n ) {
elm <- list()
for ( j in 1:length(pred) ) {
ndims <- length(dim(pred[[j]]))
if ( ndims==2 )
elm[[j]] <- pred[[j]][s,]
if ( ndims==3 )
elm[[j]] <- pred[[j]][s,,]
}
names(elm) <- names(pred)
e <- list( as.list(data) , as.list(post2[s,]) , as.list(elm) )
e <- unlist( e , recursive=FALSE )
if ( flik=="dordlogit" ) {
n_outcome_vals <- dim( pred[[1]] )[3]
probs <- pred[[1]][s,,]
sim_out[s,] <- sapply(
1:n_cases ,
function(i)
sample( 1:n_outcome_vals , size=1 , replace=TRUE , prob=probs[i,] )
)
} else {
sim_out[s,] <- eval(parse(text=xeval),envir=e)
}
}
return(sim_out)
}
)
if ( FALSE ) {
library(rethinking)
data(cars)
fit <- map(
alist(
dist ~ dnorm(mu,sigma),
mu <- a + b*speed
),
data=cars,
start=list(a=30,b=0,sigma=5)
)
pred <- link(fit,data=list(speed=0:30),flatten=TRUE)
sim.dist <- sim(fit,data=list(speed=0:30))
plot( dist ~ speed , cars )
mu <- apply( pred , 2 , mean )
mu.PI <- apply( pred , 2, PI )
y.PI <- apply( sim.dist , 2 , PI )
lines( 0:30 , mu )
shade( mu.PI , 0:30 )
shade( y.PI , 0:30 )
cars$y <- cars$dist
m <- map2stan(
alist(
y ~ dnorm(mu,sigma),
mu <- a + b*speed,
a ~ dnorm(0,100),
b ~ dnorm(0,10),
sigma ~ dunif(0,100)
),
data=cars,
start=list(
a=mean(cars$y),
b=0,
sigma=1
),
warmup=500,iter=2500
)
pred <- link(m,data=list(speed=0:30),flatten=TRUE)
sim.dist <- sim(m,data=list(speed=0:30),n=0)
plot( dist ~ speed , cars )
mu <- apply( pred , 2 , mean )
mu.PI <- apply( pred , 2, PI )
y.PI <- apply( sim.dist , 2 , PI )
lines( 0:30 , mu )
shade( mu.PI , 0:30 )
shade( y.PI , 0:30 )
} |
fmetric <- function(S1,S2,measure="sim",h="laplacian", tau=1,M=NULL,abs.tol=.Machine$double.eps^0.25){
ret <- characterize(S1,S2); T1 <- ret$T1;T2 <- ret$T2;N1 <- ret$N1;N2 <- ret$N2;n.mark <- ret$n.mark
if(measure=="sim"){
if(n.mark==0){
if(class(h)=="character"){
if(h=="laplacian"){
return(as.numeric((1/(4*tau*N1*N2))*sum(exp(-abs(outer(T1,T2,FUN="-"))/tau)))/2)
}else{
stop("smoother function must be appropriately specified")
}
}else if(class(h)=="function"){
wv <- function(x){
sum(h(x-T1,tau=tau)*hev(x-T1))*sum(h(x-T2,tau=tau)*hev(x-T2))
}
vv <- Vectorize(wv)
val <- try(integrate(vv,lower=0,upper=Inf,abs.tol=abs.tol)$val,silent=TRUE)
if(class(val)=="try-error"){
val <- try(integrate(vv,lower=0,upper=Inf,abs.tol=1e-1,subdivisions=1000)$val,silent=TRUE)
}
return(val/(4*N1*N2*tau^2))
}else{
stop("smoother function must be appropriately specified")
}
}else{
R1 <- as.matrix(S1[,-1]);R2 <- as.matrix(S2[,-1])
if(is.null(M)){
if(n.mark==1){
tmp <- 1/apply(rbind(R1,R2),2,var);M <- as.matrix(ifelse(is.infinite(tmp),as.matrix(1),(tmp)))
}else{
tmp <- 1/apply(rbind(R1,R1),2,var);id <- which(is.infinite(tmp)); if(length(id)){ tmp[id] <- 1}; M <- diag(tmp)
}
}
if(sum(eigen(M)$values <0)){
stop("precision matrix of smoothing function for marks must be positive definite")
}
if(class(h)=="character"){
if(h=="laplacian"){
if(n.mark==1){
crossR1R2 <- outer(as.numeric(R1),as.numeric(R2),FUN="-");W <- exp(-(crossR1R2^2)*as.numeric(M/4))
}else{
crossR1R2 <- outer(t(R1),t(R2),FUN="-")
wGauss <- function(x) exp(-mahalanobis(x,center=FALSE,cov=M,inverted=TRUE)/4)
W <- apply(apply(crossR1R2,c(2,4),diag),c(2,3),wGauss)
}
return(as.numeric(sum(W*exp(-abs(outer(T1,T2,FUN="-")/tau)))*sqrt(det(M))/( (2^(n.mark+2))*(pi^(n.mark/2))*tau*N1*N2)))
}else{
stop("smoother function must be appropriately specified")
}
}else if(class(h)=="function"){
if(n.mark==1){
crossR1R2 <- outer(as.numeric(R1),as.numeric(R2),FUN="-");W <- exp(-(crossR1R2^2)*as.numeric(M/4))
}else{
crossR1R2 <- outer(t(R1),t(R2),FUN="-")
wGauss <- function(x) exp(-mahalanobis(x,center=FALSE,cov=M,inverted=TRUE)/4)
W <- apply(apply(crossR1R2,c(2,4),diag),c(2,3),wGauss)
}
wv <- function(x){
as.numeric((h(x-T1,tau=tau)*hev(x-T1))%*%W%*%(h(x-T2,tau=tau)*hev(x-T2)))
}
vv <- Vectorize(wv)
val <- try(integrate(vv,lower=0,upper=Inf,abs.tol=abs.tol)$val,silent=TRUE)
if(class(val)=="try-error"){
val <- try(integrate(vv,lower=0,upper=Inf,abs.tol=1e-1,subdivisions=1000)$val,silent=TRUE)
}
val <- val * sqrt(det(M))/( (2^(n.mark+2))*(pi^(n.mark/2))*tau*N1*N2)
return(val)
}else{
stop("smoother function must be appropriately specified")
}
}
}else if(measure=="dist"){
if(n.mark==0){
if(class(h)=="character"){
if(h=="laplacian"){
val <- sqrt(abs(as.numeric(sum(exp(-abs(outer(T1,T1,FUN="-"))/tau)))/(4*tau*N1^2)+as.numeric(sum(exp(-abs(outer(T2,T2,FUN="-"))/tau)))/(4*tau*N2^2)-as.numeric(sum(exp(-abs(outer(T1,T2,FUN="-"))/tau)))/(2*tau*N1*N2)))
return(val)
}else{
stop("smoother function must be appropriately specified")
}
}else if(class(h)=="function"){
wv <- function(x){
(sum((h(x-T1,tau=tau)*hev(x-T1)))/(2*N1)-sum((h(x-T2,tau=tau)*hev(x-T2)))/(2*N2))^2
}
vv <- Vectorize(wv)
val <- try(integrate(vv,lower=0,upper=Inf,abs.tol=abs.tol)$val,silent=TRUE)
if(class(val)=="try-error"){
val <- try(integrate(vv,lower=0,upper=Inf,abs.tol=1e-1,subdivisions=1000)$val,silent=TRUE)
}
return(sqrt(val))
}else{
stop("smoother function must be appropriately specified")
}
}else{
R1 <- as.matrix(S1[,-1]);R2 <- as.matrix(S2[,-1])
if(is.null(M)){
if(n.mark==1){
tmp <- 1/apply(rbind(R1,R2),2,var);M <- as.matrix(ifelse(is.infinite(tmp),as.matrix(1),(tmp)))
}else{
tmp <- 1/apply(rbind(R1,R1),2,var);id <- which(is.infinite(tmp)); if(length(id)){ tmp[id] <- 1}; M <- diag(tmp)
}
}
if(sum(eigen(M)$values <0)){
stop("precision matrix of smoothing function for marks must be positive definite")
}
if(n.mark==1){
crossR1R2 <- outer(as.numeric(R1),as.numeric(R2),FUN="-");W12 <- exp(-(crossR1R2^2)*as.numeric(M/4))
crossR1 <- outer(as.numeric(R1),as.numeric(R1),FUN="-");W1 <- exp(-(crossR1^2)*as.numeric(M/4))
crossR2 <- outer(as.numeric(R2),as.numeric(R2),FUN="-");W2 <- exp(-(crossR2^2)*as.numeric(M/4))
}else{
crossR1 <- outer(t(R1),t(R1),FUN="-")
crossR2 <- outer(t(R2),t(R2),FUN="-")
crossR1R2 <- outer(t(R1),t(R2),FUN="-")
wGauss <- function(x) exp(-mahalanobis(x,center=FALSE,cov=M,inverted=TRUE)/4)
W1 <- apply(apply(crossR1,c(2,4),diag),c(2,3),wGauss)
W2 <- apply(apply(crossR2,c(2,4),diag),c(2,3),wGauss)
W12 <- apply(apply(crossR1R2,c(2,4),diag),c(2,3),wGauss)
}
if(class(h)=="character"){
if(h=="laplacian"){
val <- as.numeric(sum(W1 * exp(-abs(outer(T1,T1,FUN="-"))/(tau))))/(N1^2)+ as.numeric(sum((W2 * exp(-abs(outer(T2,T2,FUN="-"))/(tau)))))/(N2^2) -2*as.numeric(sum((W12 * exp(-abs(outer(T1,T2,FUN="-"))/tau))))/(N1*N2)
val <- val*sqrt(det(M))/((2^(n.mark+2))*(pi^(n.mark/2))*tau)
return(sqrt(val))
}else{
stop("smoother function must be appropriately specified")
}
}else if(class(h)=="function"){
wv <- function(x){
(h(x-T1,tau=tau)*hev(x-T1))%*%W1%*%(h(x-T1,tau=tau)*hev(x-T1))/(N1^2)+(h(x-T2,tau=tau)*hev(x-T2))%*%W2%*%(h(x-T2,tau=tau)*hev(x-T2))/(N2^2)-2*(h(x-T1,tau=tau)*hev(x-T1))%*%W12%*%(h(x-T2,tau=tau)*hev(x-T2))/(N1*N2)
}
vv <- Vectorize(wv)
val <- try(integrate(vv,lower=0,upper=Inf,abs.tol=abs.tol)$val,silent=TRUE)
if(class(val)=="try-error"){
val <- try(integrate(vv,lower=0,upper=Inf,abs.tol=1e-1,subdivisions=1000)$val,silent=TRUE)
}
val <- val * sqrt(det(M))/((2^(n.mark+2))*(pi^(n.mark/2))*tau)
return(sqrt(val))
}else{
stop("smoother function must be appropriately specified")
}
}
}else{
stop("Measure must be dist or sim")
}
} |
window.mcmcOutput <- function(x, start=1, end=NULL, thin=1, ...) {
nChains <- attr(x, "nChains")
if(is.null(nChains) || nrow(x) %% nChains != 0)
stop("nChains attribute of x is missing or invalid.")
draws.per.chain <- nrow(x) / nChains
if(start > draws.per.chain)
start <- 1
if(is.null(end) || end > draws.per.chain || end <= start)
end <- draws.per.chain
if(start < 1 || end < 1 || thin < 1)
stop("Arguments start, end, and thin must be integers > 1")
retain <- seq.int(from=start-1+thin, to=end, by=thin)
npar <- ncol(x)
x_new <- unclass(x)
dim(x_new) <- c(draws.per.chain, nChains, npar)
x_new <- x_new[retain, , ]
mostattributes(x_new) <- attributes(x)
attr(x_new, "mcpar") <- NULL
dim(x_new) <- c(length(retain)*nChains, npar)
colnames(x_new) <- colnames(x)
return(x_new)
} |
wind_parse_hytek <- function(text) {
wind_string <- "(?<=[:alpha:]\\s?\\()(\\+|\\-)?\\d\\.\\d|(?<=[:alpha:]\\s?\\()w\\:\\+?\\-?\\d\\.\\d"
row_numbs <- text %>%
.[stringr::str_detect(.,
wind_string)] %>%
stringr::str_extract_all("\\d{1,}$")
if (length(row_numbs) > 0) {
minimum_row <- min(as.numeric(row_numbs))
maximum_row <- as.numeric(length(text))
text <- stringr::str_replace_all(text, "(\\)) (\\d)", "\\1 \\2")
text <- stringr::str_replace_all(text, "(?<=\\sX)\\s{5,}(?=\\d)", " NA ")
suppressWarnings(
data_1_wind <- text %>%
.[stringr::str_detect(.,
paste0(wind_string, "|\\s{2}NA\\s{2}"))] %>%
stringr::str_replace_all("\n", "") %>%
stringr::str_extract_all(
wind_string
) %>%
stringr::str_remove_all('\\"') %>%
stringr::str_replace_all("\\(", " ") %>%
stringr::str_replace_all("\\)", " ") %>%
stringr::str_remove_all("c") %>%
stringr::str_replace_all(",", " ") %>%
purrr::map(trimws)
)
data_1_wind <- paste(row_numbs, data_1_wind, sep = " ")
data_1_wind <-
unlist(purrr::map(data_1_wind, stringr::str_split, "\\s{2,}"),
recursive = FALSE)
data_wind_length_2 <- data_1_wind[purrr::map(data_1_wind, length) == 2]
data_wind_length_3 <- data_1_wind[purrr::map(data_1_wind, length) == 3]
data_wind_length_4 <- data_1_wind[purrr::map(data_1_wind, length) == 4]
data_wind_length_5 <- data_1_wind[purrr::map(data_1_wind, length) == 5]
data_wind_length_6 <- data_1_wind[purrr::map(data_1_wind, length) == 6]
data_wind_length_7 <- data_1_wind[purrr::map(data_1_wind, length) == 7]
data_wind_length_8 <- data_1_wind[purrr::map(data_1_wind, length) == 8]
data_wind_length_9 <- data_1_wind[purrr::map(data_1_wind, length) == 9]
data_wind_length_10 <- data_1_wind[purrr::map(data_1_wind, length) == 10]
if (length(data_wind_length_10) > 0) {
df_10_wind <- data_wind_length_10 %>%
list_transform()
} else {
df_10_wind <- data.frame(Row_Numb = character(),
stringsAsFactors = FALSE)
}
if (length(data_wind_length_9) > 0) {
df_9_wind <- data_wind_length_9 %>%
list_transform()
} else {
df_9_wind <- data.frame(Row_Numb = character(),
stringsAsFactors = FALSE)
}
if (length(data_wind_length_8) > 0) {
df_8_wind <- data_wind_length_8 %>%
list_transform()
} else {
df_8_wind <- data.frame(Row_Numb = character(),
stringsAsFactors = FALSE)
}
if (length(data_wind_length_7) > 0) {
df_7_wind <- data_wind_length_7 %>%
list_transform()
} else {
df_7_wind <- data.frame(Row_Numb = character(),
stringsAsFactors = FALSE)
}
if (length(data_wind_length_6) > 0) {
df_6_wind <- data_wind_length_6 %>%
list_transform()
} else {
df_6_wind <- data.frame(Row_Numb = character(),
stringsAsFactors = FALSE)
}
if (length(data_wind_length_5) > 0) {
df_5_wind <- data_wind_length_5 %>%
list_transform()
} else {
df_5_wind <- data.frame(Row_Numb = character(),
stringsAsFactors = FALSE)
}
if (length(data_wind_length_4) > 0) {
df_4_wind <- data_wind_length_4 %>%
list_transform()
} else {
df_4_wind <- data.frame(Row_Numb = character(),
stringsAsFactors = FALSE)
}
if (length(data_wind_length_3) > 0) {
df_3_wind <- data_wind_length_3 %>%
list_transform()
} else {
df_3_wind <- data.frame(Row_Numb = character(),
stringsAsFactors = FALSE)
}
if (length(data_wind_length_2) > 0) {
df_2_wind <- data_wind_length_2 %>%
list_transform()
} else {
df_2_wind <- data.frame(Row_Numb = character(),
stringsAsFactors = FALSE)
}
data_wind <-
dplyr::bind_rows(
df_10_wind,
df_9_wind,
df_8_wind,
df_7_wind,
df_6_wind,
df_5_wind,
df_4_wind,
df_3_wind,
df_2_wind
) %>%
lines_sort(min_row = minimum_row) %>%
dplyr::mutate(Row_Numb = as.numeric(Row_Numb) - 1)
old_names <- names(data_wind)[grep("^V", names(data_wind))]
new_names <-
paste("Round", seq(1, length(old_names)), "Wind", sep = "_")
data_wind <- data_wind %>%
dplyr::rename_at(dplyr::vars(old_names), ~ new_names) %>%
dplyr::na_if("NA")
} else {
data_wind <- data.frame(Row_Numb = as.numeric())
}
return(data_wind)
} |
mean1.ttest <- function(x, mu0=0, alternative=c("two.sided","less","greater")){
check_1d(x)
check_number(mu0)
if (missing(alternative)){
alternative = "two.sided"
} else {
if (alternative=="g"){
alternative = "greater"
} else if (alternative=="t"){
alternative = "two.sided"
} else if (alternative=="l"){
alternative = "less"
}
alternative = match.arg(alternative)
}
n = length(x)
xbar = mean(x)
sd = sd(x)
t = (xbar-mu0)/(sd/sqrt(n))
if (alternative=="two.sided"){
pvalue = 2*pt(abs(t),(n-1),lower.tail = FALSE)
Ha = paste("true mean is different from ",mu0,".",sep="")
} else if (alternative=="less"){
pvalue = pt(t,(n-1),lower.tail = TRUE)
Ha = paste("true mean is less than ",mu0,".",sep="")
} else if (alternative=="greater"){
pvalue = pt(t,(n-1),lower.tail = FALSE)
Ha = paste("true mean is greater than ",mu0,".",sep="")
}
hname = "One-sample Student\'s t-test"
thestat = t
DNAME = deparse(substitute(x))
names(thestat) = "t"
res = list(statistic=thestat, p.value=pvalue, alternative = Ha, method=hname, data.name = DNAME)
class(res) = "htest"
return(res)
} |
FCMres <- function(obj){
rasterMode <- class(obj$Data)[[1]] == "list"
if(rasterMode){
necessary <- c("Centers", "Data", "m", "algo", "rasters")
attrs <- names(obj)
if (sum(necessary %in% attrs) < 5){
stop("The attributes Centers, Data, m, algo and rasters are necessary to create
an object with class FCMres from raster data (obj$Data is a list, see
details in help(FCMres))")
}
}else{
necessary <- c("Centers", "Belongings", "Data", "m", "algo")
attrs <- names(obj)
if (sum(necessary %in% attrs) < 5){
stop("The attributes Centers, Data, m, algo and Belongings are necessary to create
an object with class FCMres")
}
obj$Belongings <- tryCatch(as.matrix(obj$Belongings),
error = function(e)
print("Obj$Belongings must be coercible to a matrix with as.matrix"))
}
obj$Centers <- tryCatch(as.matrix(obj$Centers),
error = function(e)
print("Obj$Centers must be coercible to a matrix with as.matrix"))
if(rasterMode){
check_raters_dims(obj$Data)
datamatrix <- do.call(cbind,lapply(obj$Data, function(band){
raster::values(band)
}))
missing_pxl <- complete.cases(datamatrix)
data_class <- datamatrix[missing_pxl,]
obj$Data <- data_class
obj$missing <- missing_pxl
obj$isRaster <- TRUE
if(is.null(obj$rasters) | class(obj$rasters)!="list"){
stop('When using raster data, the slot "raster" in obj must contains a list of the
rasterLayers representing the membership values')
}
belongmat <- do.call(cbind,lapply(obj$rasters, function(band){
raster::values(band)
}))
belongmat <- belongmat[missing_pxl,]
obj$Belongings <- belongmat
old_raster <- obj$rasters
names(old_raster) <- paste("group",1:length(old_raster))
rst2 <- old_raster[[1]]
vec <- rep(NA,times = raster::ncell(rst2))
DF <- as.data.frame(obj$Belongings)
vec[obj$missing] <- max.col(DF, ties.method = "first")
raster::values(rst2) <- vec
old_raster[["Groups"]] <- rst2
obj$rasters <- old_raster
}else{
obj$Data <- tryCatch(as.matrix(obj$Data),
error = function(e)
print("Obj$Data must be coercible to a matrix with as.matrix"))
obj$isRaster <- FALSE
}
obj$k <- ncol(obj$Belongings)
if("Groups" %in% attrs == FALSE){
DF <- as.data.frame(obj$Belongings)
obj$Groups <- colnames(DF)[max.col(DF, ties.method = "first")]
}
test <- round(rowSums(obj$Belongings),8) != 1
if(any(test)){
warning("some rows in the membership matrix does not sum up to 1... This should be checked")
}
class(obj) <- c("FCMres","list")
return(obj)
}
is.FCMres <- function(x){
attrs <- names(x)
necessary <- c("Centers", "Belongings", "Data", "m", "algo")
if (sum(necessary %in% attrs) < 3){
return(FALSE)
}
tryCatch({
as.matrix(x$Data)
as.matrix(x$Centers)
as.matrix(x$Belongings)
},error = function(e)return(FALSE))
if(nrow(x$Data) != nrow(x$Belongings)){
return(FALSE)
}
if(ncol(x$Data) != ncol(x$Centers)){
return(FALSE)
}
return(TRUE)
}
print.FCMres <- function(x, ...){
if(x$isRaster){
part1 <- "FCMres object constructed from a raster dataset"
part2 <- paste("dimension of the raster : ",x$rasters[[1]]@nrows,"x",x$rasters[[1]]@cols,
" and ", nrow(x$Data), " variables",sep="")
}else{
part1 <- "FCMres object constructed from a dataframe"
part2 <- paste(nrow(x$Data), " observations and ", ncol(x$Data), " variables", sep="")
}
elements <- c("algo","k", "m", "alpha", "beta")
params <- paste(paste(elements, x[elements], sep = "="), collapse = " ; ")
part3 <- paste("parameters of the classification: ",params, sep = "")
cat(part1,part2,part3,sep="\n")
invisible(x)
}
summarizeClusters <- function(data, belongmatrix, weighted = TRUE, dec = 3, silent=TRUE) {
belongmatrix <- as.data.frame(belongmatrix)
if (weighted) {
Summaries <- lapply(1:ncol(belongmatrix), function(c) {
W <- belongmatrix[, c]
Values <- apply(data, 2, function(x) {
Q5 <- as.numeric(round(reldist::wtd.quantile(x, q = 0.05, na.rm = TRUE, weight = W),dec))
Q10 <- as.numeric(round(reldist::wtd.quantile(x, q = 0.1, na.rm = TRUE, weight = W),dec))
Q25 <- as.numeric(round(reldist::wtd.quantile(x, q = 0.25, na.rm = TRUE, weight = W),dec))
Q50 <- as.numeric(round(reldist::wtd.quantile(x, q = 0.5, na.rm = TRUE, weight = W),dec))
Q75 <- as.numeric(round(reldist::wtd.quantile(x, q = 0.75, na.rm = TRUE, weight = W),dec))
Q90 <- as.numeric(round(reldist::wtd.quantile(x, q = 0.9, na.rm = TRUE, weight = W),dec))
Q95 <- as.numeric(round(reldist::wtd.quantile(x, q = 0.95, na.rm = TRUE, weight = W),dec))
Mean <- as.numeric(round(weighted.mean(x, W),dec))
Std <- round(sqrt(reldist::wtd.var(x, weight=W)),dec)
N <-
return(list(Q5 = Q5, Q10 = Q10, Q25 = Q25, Q50 = Q50,
Q75 = Q75, Q90 = Q90, Q95 = Q95,
Mean = Mean, Std = Std))
})
DF <- do.call(cbind, Values)
if(silent==FALSE){
print(paste("Statistic summary for cluster ", c, sep = ""))
print(DF)
}
return(DF)
})
names(Summaries) <- paste("Cluster_", c(1:ncol(belongmatrix)), sep = "")
return(Summaries)
} else {
Groups <- colnames(belongmatrix)[max.col(belongmatrix, ties.method = "first")]
data$Groups <- Groups
Summaries <- lapply(unique(data$Groups), function(c) {
DF <- subset(data, data$Groups == c)
DF$Groups <- NULL
Values <- apply(DF, 2, function(x) {
Q5 <- as.numeric(round(quantile(x, probs = 0.05, na.rm = TRUE),dec))
Q10 <- as.numeric(round(quantile(x, probs = 0.1, na.rm = TRUE),dec))
Q25 <- as.numeric(round(quantile(x, probs = 0.25, na.rm = TRUE),dec))
Q50 <- as.numeric(round(quantile(x, probs = 0.5, na.rm = TRUE),dec))
Q75 <- as.numeric(round(quantile(x, probs = 0.75, na.rm = TRUE),dec))
Q90 <- as.numeric(round(quantile(x, probs = 0.9, na.rm = TRUE),dec))
Q95 <- as.numeric(round(quantile(x, probs = 0.95, na.rm = TRUE),dec))
Mean <- round(mean(x),dec)
Std <- round(sd(x),dec)
return(list(Q5 = Q5, Q10 = Q10, Q25 = Q25, Q50 = Q50,
Q75 = Q75, Q90 = Q90, Q95 = Q95,
Mean = Mean, Std = Std))
})
DF <- do.call(cbind, Values)
if(silent==FALSE){
print(paste("Statistic summary for cluster ", c, sep = ""))
print(DF)
}
return(DF)
})
names(Summaries) <- paste("Cluster_", c(1:ncol(belongmatrix)), sep = "")
return(Summaries)
}
}
summary.FCMres <- function(object, data = NULL, weighted = TRUE, dec = 3, silent=TRUE, ...) {
if(is.null(data)){
df <- object$Data
}else{
df <- as.matrix(data)
}
return(summarizeClusters(df, object$Belongings, weighted, dec, silent))
}
predict_membership <- function(object, new_data, nblistw = NULL, window = NULL, standardize = TRUE, ...){
if(object$algo %in% c("FCM", "GFCM", "SFCM", "SGFCM") == FALSE){
stop('pred can only be performed for FCMres object
if algo is one of "FCM", "GFCM", "SFCM", "SGFCM"')
}
results <- object
if(results$isRaster == TRUE){
check_raters_dims(new_data)
old_data <- new_data
new_data_tot <- do.call(cbind,lapply(new_data, function(rast){
return(raster::values(rast))
}))
missing <- complete.cases(new_data_tot)
new_data <- new_data_tot[missing,]
}
if (standardize){
for (i in 1:ncol(new_data)) {
new_data[, i] <- scale(new_data[, i])
}
}
if(results$algo %in% c("SFCM", "SGFCM")){
if(results$isRaster == FALSE){
if(is.null(nblistw)){
stop("With a spatial clustering method like SFCM or SGFCM, the spatial matrix listw
associated with the new dataset must be provided")
}
wdata <- calcLaggedData(new_data, nblistw, results$lag_method)
}else{
if(is.null(window)){
stop("With a spatial clustering method like SFCM or SGFCM, the spatial matrix window
to use on the new dataset must be provided")
}
fun <- results$lag_method
if(class(fun) != "function"){
tryCatch(fun <- eval(parse(text=fun)),
error = function(e)
print("When using rasters, the parameter lag_method must be a function or a string
that can be parsed to a function like sum, mean, min, max ...,
Note that this function is applied to the pixels values multiplied by the weights in the window.")
)
}
wdata_total <- do.call(cbind,lapply(dataset, function(band){
wraster <- focal(band, window, fun, na.rm = TRUE, pad = TRUE)
return(raster::values(wraster))
}))
wdata <- wdata_total[missing,]
}
}
if(results$algo == "FCM"){
pred_values <- calcBelongMatrix(as.matrix(results$Centers), as.matrix(new_data),
m = results$m)
}else if(results$algo == "GFCM"){
pred_values <- calcFGCMBelongMatrix(as.matrix(results$Centers),
as.matrix(new_data),
m = results$m, beta = results$beta)
}else if(results$algo == "SFCM"){
pred_values <- calcSFCMBelongMatrix(as.matrix(results$Centers),
as.matrix(new_data),
wdata = as.matrix(wdata),
m = results$m, alpha = results$alpha)
}else if(results$algo == "SGFCM"){
pred_values <- calcSFGCMBelongMatrix(as.matrix(results$Centers),
as.matrix(new_data),
wdata = as.matrix(wdata),
m = results$m, alpha = results$alpha,
beta = results$beta)
}
if(results$isRaster == FALSE){
return(pred_values)
}else{
nc <- raster::ncell(new_data[[1]])
rasters_membership <- lapply(1:ncol(pred_values), function(i){
rast <- old_data[[1]]
vec <- rep(NA,times = nc)
vec[missing] <- pred_values[,i]
raster::values(rast) <- vec
return(rast)
})
names(rasters_membership) <- paste("group",1:ncol(pred_values), sep = "")
return(rasters_membership)
}
}
predict.FCMres <- function(object, new_data, nblistw = NULL, window = NULL, standardize = TRUE, ...){
return(predict_membership(object, new_data, nblistw, window, standardize, ...))
}
plot.FCMres <- function(x, type = "spider", ...){
if(type %in% c("bar", "violin","spider") == FALSE){
stop('the parameter type must be one of "bar", "violin","spider" to plot a FCM.res object')
}
if(type == "bar"){
return(barPlots(x$Data, x$Belongings))
}else if(type == "violin"){
return(violinPlots(x$Data,x$Groups))
}else if(type == "spider"){
return(spiderPlots(x$Data,x$Belongings))
}
} |
opal.execute <- function(opal, script, async=FALSE) {
if(is.list(opal)){
lapply(opal, function(o){opal.execute(o, script, async=async)})
} else {
query <- list()
if (async) query <- list(async="true")
ignore <- .getRSessionId(opal)
opal.post(opal, "r", "session", opal$rid, "execute", query=query, body=script, contentType="application/x-rscript", acceptType = "application/octet-stream")
}
}
opal.execute.source <- function(opal, path, async=FALSE) {
if (!file.exists(path)) {
stop("No file at path: ", path)
}
if (file.info(path)$isdir) {
stop("Cannot source a directory: ", path)
}
if(is.list(opal)){
lapply(opal, function(o){opal.execute.source(o, path, async=async)})
} else {
tmp <- opal.file_mkdir_tmp(opal)
opal.file_upload(opal, path, tmp)
filename <- basename(path)
opal.file_write(opal, paste0(tmp, filename))
opal.file_rm(opal, tmp)
script <- paste0("source('", filename, "')")
query <- list()
if (async) query <- list(async="true")
ignore <- .getRSessionId(opal)
opal.post(opal, "r", "session", opal$rid, "execute", query=query, body=script, contentType="application/x-rscript", acceptType = "application/octet-stream")
}
}
opal.load_package <- function(opal, pkg) {
resp <- opal.execute(opal, paste('library("', pkg, '")', sep=''))
}
opal.unload_package <- function(opal, pkg) {
resp <- opal.execute(opal, paste('detach("package:', pkg, '", character.only=TRUE, unload=TRUE)', sep=''))
} |
print.boin<-function(x,...){
print.default(x)
} |
kmeans.start <-
function (x, g, subclasses)
{
cnames <- levels(g <- factor(g))
J <- length(cnames)
g <- as.numeric(g)
weights <- as.list(cnames)
names(weights) <- cnames
subclasses <- rep(subclasses, length = length(cnames))
R <- sum(subclasses)
cl <- rep(seq(J), subclasses)
cx <- x[seq(R), , drop = FALSE]
for (j in seq(J)) {
nc <- subclasses[j]
which <- cl == j
xx <- x[g == j, , drop = FALSE]
if ((nc <= 1) || (nrow(xx) <= nc)) {
cx[which, ] <- apply(xx, 2, mean)
wmj <- matrix(1, sum(g == j), 1)
}
else {
start=nc
TT <- kmeans(xx, start)
cx[which, ] <- TT$centers
wmj <- diag(nc)[TT$cluster, ]
}
dimnames(wmj) <-
list(NULL, paste("s", seq(dim(wmj)[2]), sep = ""))
weights[[j]] <- wmj
}
list(x = cx, cl = factor(cl, labels = cnames), weights = weights)
} |
set_survey_vars <- function(
.svy, x, name = "__SRVYR_TEMP_VAR__", add = FALSE
) {
out <- .svy
if (length(x) != nrow(.svy)) {
cur_group_rows <- group_rows(cur_svy_full())[[cur_group_id()]]
if (length(x) == length(cur_group_rows)) {
x_stretched <- rep(FALSE, nrow(.svy))
x_stretched[cur_group_rows] <- x
x <- x_stretched
}
}
if (inherits(.svy, "twophase2")) {
if (!add) {
out$phase1$sample$variables <- select(out$phase1$sample$variables, dplyr::one_of(group_vars(out)))
}
out$phase1$sample$variables[[name]] <- x
} else {
if (!add) {
out$variables <- select(out$variables, dplyr::one_of(group_vars(out)))
}
out$variables[[name]] <- x
}
out
}
get_var_est <- function(
stat, vartype, grps = "", level = 0.95, df = Inf, pre_calc_ci = FALSE, deff = FALSE
) {
out_width <- 1
out <- lapply(vartype, function(vvv) {
if (vvv == "se") {
se <- survey::SE(stat)
if (!inherits(se, "data.frame")) {
se <- data.frame(matrix(se, ncol = out_width))
}
names(se) <- "_se"
se
} else if (vvv == "ci" && !pre_calc_ci) {
if (length(level) == 1) {
ci <- data.frame(matrix(
stats::confint(stat, level = level, df = df),
ncol = 2 * out_width
))
names(ci) <- c("_low", "_upp")
} else {
lci <- lapply(level, function(x) {as.data.frame(stats::confint(stat,level = x, df = df))})
ci <- dplyr::bind_cols(lci)
names(ci) <- paste0(c("_low", "_upp"), rep(level, each = 2) * 100)
}
ci
} else if (vvv == "ci" && pre_calc_ci) {
if (inherits(stat, "data.frame")) {
ci <- data.frame(stat[c("ci_l", "ci_u")])
names(ci) <- c("_low", "_upp")
} else {
ci <- data.frame(matrix(stats::confint(stat), ncol = 2 * out_width))
names(ci) <- c("_low", "_upp")
}
ci
} else if (vvv == "var") {
var <- data.frame(matrix(survey::SE(stat) ^ 2, ncol = out_width))
names(var) <- "_var"
var
} else if (vvv == "cv") {
cv <- data.frame((matrix(survey::cv(stat), ncol = out_width)))
names(cv) <- "_cv"
cv
} else {
stop(paste0("Unexpected vartype ", vvv))
}
})
coef <- data.frame(matrix(coef(stat), ncol = out_width))
names(coef) <- "coef"
out <- c(list(coef), out)
if (!identical(grps, "")) {
out <- c(list(as.data.frame(stat[grps], stringsAsFactors = FALSE)), out)
}
if (!isFALSE(deff)) {
deff <- data.frame(matrix(survey::deff(stat), ncol = out_width))
names(deff) <- "_deff"
out <- c(out, list(deff))
}
as_srvyr_result_df(dplyr::bind_cols(out))
}
get_var_est_quantile <- function(stat, vartype, q, grps = "", level = 0.95, df = Inf) {
qnames <- paste0("_q", gsub("\\.", "", formatC(q * 100, width = 2, flag = "0")))
out_width <- length(qnames)
out <- lapply(vartype, function(vvv) {
if (vvv == "se") {
se <- survey::SE(stat)
if (!inherits(se, "data.frame")) {
se <- data.frame(matrix(se, ncol = out_width))
}
names(se) <- paste0(qnames, "_se")
se
} else if (vvv == "ci") {
if (inherits(stat, "data.frame")) {
ci_cols <- grep("^ci_[lu]", names(stat))
ci <- data.frame(stat[, ci_cols])
} else {
ci <- data.frame(matrix(stats::confint(stat), ncol = 2 * out_width))
}
names(ci) <- paste0(qnames, rep(c("_low", "_upp"), each = out_width))
ci
} else if (vvv == "var") {
var <- data.frame(matrix(survey::SE(stat) ^ 2, ncol = out_width))
names(var) <- paste0(qnames, "_var")
var
} else if (vvv == "cv") {
cv <- data.frame((matrix(survey::cv(stat), ncol = out_width)))
names(cv) <- paste0(qnames, "_cv")
cv
} else {
stop(paste0("Unexpected vartype ", vvv))
}
})
coef <- data.frame(matrix(coef(stat), ncol = out_width))
names(coef) <- qnames
out <- lapply(out, as.data.frame)
out <- c(list(coef), out)
if (!identical(grps, "")) {
out <- c(list(as.data.frame(stat[grps])), out)
}
as_srvyr_result_df(dplyr::bind_cols(out))
}
stop_for_factor <- function(x) {
if (is.factor(x)) {
stop(paste0(
"Factor not allowed in survey functions, should be used as a grouping variable."
), call. = FALSE)
} else if (is.character(x)) {
stop(paste0(
"Character vectors not allowed in survey functions, should be used as a grouping variable."
), call. = FALSE)
}
}
as_srvyr_result_df <- function(x) {
class(x) <- c("srvyr_result_df", class(x))
x
}
is_srvyr_result_df <- function(x) {
inherits(x, "srvyr_result_df")
}
Math.srvyr_result_df <- function(x, ...) {
out <- NextMethod("Math", x)
class(out) <- c("srvyr_result_df", class(out))
out
}
Ops.srvyr_result_df <- function(e1, e2) {
out <- NextMethod()
class(out) <- c("srvyr_result_df", class(out))
out
}
cur_svy_wts <- function() {
cur_svy_env$split[[dplyr::cur_group_id()]][['pweights']] %||% (1/cur_svy_env$split[[dplyr::cur_group_id()]][['prob']])
} |
claw <- function(xx) {
x <- xx[1]
y <- (0.46*(dnorm(x,-1.0,2.0/3.0) + dnorm(x,1.0,2.0/3.0)) +
(1.0/300.0)*(dnorm(x,-0.5,.01) + dnorm(x,-1.0,.01) + dnorm(x,-1.5,.01)) +
(7.0/300.0)*(dnorm(x,0.5,.07) + dnorm(x,1.0,.07) + dnorm(x,1.5,.07)))
return(y)
}
library("rgenoud")
claw1 <- genoud(claw, nvars=1, max=TRUE, pop.size=3000) |
p <- 4
f <- function(th) drop(-sin(th / 2) * sin(th)^(p - 2))
I <- integrate(f, lower = 0, upper = pi, rel.tol = 1e-12)$value
test_that("Gauss_Legen for N = 5, 10, 20, ..., 2560, 5120", {
expect_equal(sum(Gauss_Legen_weights(a = 0, b = pi, N = 5) *
f(Gauss_Legen_nodes(a = 0, b = pi, N = 5))), I,
tolerance = 1e-3)
expect_equal(sum(Gauss_Legen_weights(a = 0, b = pi, N = 10) *
f(Gauss_Legen_nodes(a = 0, b = pi, N = 10))), I,
tolerance = 1e-12)
for (N in c(10 * 2^(1:9))) {
expect_equal(sum(Gauss_Legen_weights(a = 0, b = pi, N = N) *
f(Gauss_Legen_nodes(a = 0, b = pi, N = N))), I,
tolerance = 3e-14)
}
})
test_that("Gauss_Legen edge cases", {
expect_error(Gauss_Legen_weights(a = 0, b = pi, N = 19))
expect_error(Gauss_Legen_nodes(a = 0, b = pi, N = 19))
}) |
test_that("multi_chrBound checks if input is empty", {
x <- data.frame()
expect_error(multi_chrBound(x), "input has 0 rows")
})
test_that("multi_chrBound correctly formats data", {
x <- GenVisR::cytoGeno[GenVisR::cytoGeno$genome == 'hg19',]
out <- multi_chrBound(x)
expect_equal(nrow(out[out$chromosome == 'chr1',]), 2)
expect_equal(out$start, out$end)
}) |
judge_123 <- function(x){
x=x[!is.na(x)]
if (length(x)==1) return(TRUE)
for (i in 1:(length(x)-1)) {
if (x[i] > x[i+1]) return(FALSE)
}
return(TRUE)
}
judge_321 <- function(x){
x=x[!is.na(x)]
if (length(x)==1) return(TRUE)
for (i in 1:(length(x)-1)) {
if (x[i] < x[i+1]) return(FALSE)
}
return(TRUE)
} |
test_that("Variable names are labeled", {
skip_on_cran()
skip_if_offline()
expect_equal(label_eurostat_vars("geo"), "Geopolitical entity (reporting)")
expect_equal(label_eurostat_vars("housing", lang = "fr"), "Habitation")
expect_true(any(grepl(
"_code",
names(label_eurostat(
get_eurostat("road_eqr_trams"),
code = "geo"
))
)))
})
test_that("Label ordering is ordered", {
skip_on_cran()
skip_if_offline()
expect_equal(
c(
"European Union - 28 countries (2013-2020)",
"Finland", "United States"
),
levels(label_eurostat(factor(c("FI", "US", "EU28")),
dic = "geo", eu_order = TRUE
))
)
})
test_that("Countrycodes are labelled for factors", {
skip_on_cran()
skip_if_offline()
expect_equal(
levels(label_eurostat(factor(c("FI", "DE", "EU28"), c("FI", "DE", "EU28")),
dic = "geo",
countrycode = "country.name"
)),
c("Finland", "Germany", "EU28")
)
})
test_that("Countrycodes return NA for countrycode_nomatch = NA", {
skip_on_cran()
skip_if_offline()
expect_equal(
suppressWarnings(label_eurostat(c("FI", "DE", "EU28"),
dic = "geo",
countrycode = "country.name", countrycode_nomatch = NA
)),
c("Finland", "Germany", NA)
)
})
test_that("Countrycodes use eurostat for missing", {
skip_on_cran()
skip_if_offline()
expect_equal(
suppressWarnings(label_eurostat(c("FI", "DE", "EU28"),
dic = "geo",
countrycode = "country.name", countrycode_nomatch = "eurostat"
)),
c("Finland", "Germany", "European Union - 28 countries (2013-2020)")
)
})
test_that("custom_dic works", {
skip_on_cran()
skip_if_offline()
expect_equal(
label_eurostat(c("FI", "DE"), dic = "geo", custom_dic = c(DE = "Germany")),
c("Finland", "Germany")
)
}) |
util_looks_like_missing <- function(x, n_rules = 1) {
if (any(DATA_TYPES_OF_R_TYPE[[class(x)]] %in%
c(DATA_TYPES$INTEGER, DATA_TYPES$FLOAT))) {
x <- as.numeric(x)
}
if (!is.numeric(x)) {
util_error("%s works only on numeric vectors",
dQuote("util_looks_like_missing"))
}
sysmiss <- !is.finite(x)
if (all(sysmiss)) {
return(!logical(length = length(x)))
}
TYPICAL_MISSINGCODES <- c(
99, 999, 9999, 99999, 999999, 9999999, 999999999
)
.x <- abs(x)
.x <- gsub("8", "9", .x, fixed = TRUE)
.x <- gsub(".", "", .x, fixed = TRUE)
.x <- gsub("^0+", "", .x)
.x <- gsub("0+$", "", .x)
r <- .x %in% TYPICAL_MISSINGCODES
tuk <- util_tukey(x)
tuk[sysmiss] <- 0
ssig <- util_sixsigma(x)
ssig[sysmiss] <- 0
hub <- util_hubert(x)
hub[sysmiss] <- 0
sigg <- util_sigmagap(x)
sigg[sysmiss] <- 0
return(
sysmiss | (r &
(tuk +
ssig +
hub +
sigg >= n_rules))
)
} |
"simm.bb" <- function(date=1:100, begin = c(0,0),
end=begin, id="A1", burst=id, proj4string=CRS())
{
if (!inherits(date, "POSIXct")) {
class(date) <- c("POSIXct", "POSIXt")
attr(date, "tzone") <- ""
}
n <- length(date)
dt <- c(diff(unclass(date)),NA)
dx <- c(rnorm(n-1,0,sqrt(dt[-n])),NA)
dy <- c(rnorm(n-1,0,sqrt(dt[-n])),NA)
W <- cbind(dx,dy)
xtmp <- begin
x <- begin
for (i in 2:(n-1)) {
a <- diag(1/(unclass(date[n])-unclass(date[i-1])),2)
dX <- as.numeric((a%*%(end - xtmp)*dt[i-1] + W[i-1,]))
x <- rbind(x,xtmp+dX)
xtmp <- xtmp+dX
}
x <- rbind(x,end)
res <- as.ltraj(data.frame(x[,1],x[,2]),date, id, burst, typeII=TRUE,
proj4string=proj4string)
return(res)
} |
f_mlta <- function(S, counts, G, D, tol, maxiter, pdGH)
{
Ns <- nrow(S)
N <- sum(counts)
M <- ncol(S)
rownames(S) <- NULL
eta <- rep(1 / G, G)
p <- matrix(1 / M, G, M)
lab <- sample(1:G,
prob = eta,
size = Ns,
replace = TRUE)
z <- counts * cls(lab)
eta <- colSums(z) / N
xi <- array(20, c(Ns, M, G))
sigma_xi <- 1 / (1 + exp(-xi))
lambda_xi <- (0.5 - sigma_xi) / (2 * xi)
w <- array(rnorm(M * D * G), c(D, M, G))
b <- matrix(rnorm(M, G), G, M)
C <- array(0, c(D, D, Ns, G))
mu <- array(0, c(Ns, D, G))
lxi <- matrix(0, G, Ns)
v <- matrix(0, Ns, G)
ll <- -Inf
diff <- 1
iter <- 0
xin <- xi
while (diff > tol & iter < maxiter)
{
iter <- iter + 1
ll_old <- ll
if (D == 1) {
for (g in 1:G)
{
w[, , g] <- as.matrix(t(w[, , g]))
C[, , , g] <-
1 / (1 - 2 * rowSums(sweep(lambda_xi[, , g], MARGIN = 2, w[, , g] ^ 2, `*`)))
mu[, , g] <-
C[, , , g] * rowSums(sweep(
S - 0.5 + 2 * sweep(lambda_xi[, , g], MARGIN = 2, b[g, ], `*`),
MARGIN = 2,
w[, , g],
`*`
))
mu[, , g] <- matrix(mu[, , g], Ns, D)
YY <- matrix(C[, , , g] + mu[, , g] ^ 2, ncol = 1)
xi[, , g] <-
YY %*% (w[, , g] ^ 2) + mu[, , g] %*% t(2 * b[g, ] * w[, , g]) +
matrix(b[g, ] ^ 2,
nrow = Ns,
ncol = M,
byrow = TRUE)
xi[, , g] <- sqrt(xi[, , g])
sigma_xi[, , g] <- 1 / (1 + exp(-xi[, , g]))
lambda_xi[, , g] <- (0.5 - sigma_xi[, , g]) / (2 * xi[, , g])
YYh <- z[, g] * 2 * cbind(c(YY), mu[, , g], mu[, , g], 1)
den <- t(YYh) %*% lambda_xi[, , g]
num <- rbind(c(mu[, , g]), 1) %*% (z[, g] * (S - 0.5))
wh <-
apply(rbind(den, num), 2, function(x)
- crossprod(solve(matrix(x[1:4], 2, 2)), x[5:6]))
w[, , g] <- wh[1:D, ]
w[, , g] <- as.matrix(t(w[, , g]))
b[g, ] <- wh[D + 1, ]
lxi[g, ] <-
0.5 * log(C[, , , g]) + c(mu[, , g]) ^ 2 / (2 * C[, , , g]) +
rowSums(
log(sigma_xi[, , g]) - 0.5 * xi[, , g] - lambda_xi[, , g] * xi[, , g] ^
2 +
sweep(lambda_xi[, , g], MARGIN = 2, b[g, ] ^ 2, `*`) +
sweep(S - 0.5, MARGIN = 2, b[g, ], `*`)
)
}
v <- t(eta * exp(lxi))
v[is.nan(v)] <- 0
vsum <- rowSums(v)
z <- counts * v / vsum
ll <- sum(counts * log(vsum))
eta <- colSums(z) / N
diff <- sum(abs(ll - ll_old))
}
if (D == 2) {
for (g in 1:G)
{
C2 <-
apply(lambda_xi[, , g], 1, function(x)
solve(diag(D) - 2 * crossprod(x * t(w[, , g]), t(w[, , g]))))
C[, , , g] <- array(C2, c(D, D, Ns))
mu[, , g] <-
t(apply(rbind(C2, w[, , g] %*% t(
S - 0.5 + 2 * sweep(lambda_xi[, , g], MARGIN = 2, b[g, ], `*`)
)), 2, function(x)
matrix(x[1:4], nrow = D) %*% (x[-(1:4)])))
YY <- C2 + apply(mu[, , g], 1, tcrossprod)
xi[, , g] <-
t(
apply(YY, 2, function(x)
rowSums((
t(w[, , g]) %*% matrix(x, ncol = D)
) * t(w[, , g]))) + (2 * b[g, ] * t(w[, , g])) %*% t(mu[, , g]) + matrix(
b[g, ] ^ 2,
nrow = M,
ncol = Ns,
byrow = FALSE
)
)
xi[, , g] <- sqrt(xi[, , g])
sigma_xi[, , g] <- 1 / (1 + exp(-xi[, , g]))
lambda_xi[, , g] <- (0.5 - sigma_xi[, , g]) / (2 * xi[, , g])
YYh <-
z[, g] * 2 * cbind(YY[1, ], YY[2, ], mu[, 1, g], YY[3, ], YY[4, ], mu[, 2, g], mu[, 1, g], mu[, 2, g], 1)
den <- t(YYh) %*% lambda_xi[, , g]
num <- rbind(t(mu[, , g]), 1) %*% {
z[, g] * {
S - 0.5
}
}
wh <-
apply(rbind(den, num), 2, function(x)
- crossprod(solve(matrix(x[1:9], 3, 3)), x[10:12]))
w[, , g] <- wh[1:D, ]
w[, , g] <- as.matrix(w[, , g])
b[g, ] <- wh[D + 1, ]
detC <- C2[1, ] * C2[4, ] - C2[3, ] * C2[2, ]
lxi[g, ] <-
0.5 * log(detC) + 0.5 * apply(rbind(C2[4, ] / detC, -C2[2, ] / detC, -C2[3, ] /
detC, C2[1, ] / detC, t(mu[, , g])), 2, function(x)
t((x[-{
1:4
}])) %*% matrix(x[1:4], nrow = D) %*% (x[-{
1:4
}])) + rowSums(
log(sigma_xi[, , g]) - 0.5 * xi[, , g] - lambda_xi[, , g] * {
xi[, , g] ^ 2
} + sweep(lambda_xi[, , g], MARGIN = 2, b[g, ] ^ 2, `*`) + sweep(S - 0.5, MARGIN =
2, b[g, ], `*`)
)
}
v <- t(eta * exp(lxi))
v[is.nan(v)] <- 0
vsum <- rowSums(v)
z <- counts * v / vsum
ll <- sum(counts * log(vsum))
eta <- colSums(z) / N
diff <- sum(abs(ll - ll_old))
}
if (D > 2) {
for (g in 1:G)
{
C2 <-
apply(lambda_xi[, , g], 1, function(x)
solve(diag(D) - 2 * crossprod(x * t(w[, , g]), t(w[, , g]))))
C[, , , g] <- array(C2, c(D, D, Ns))
mu[, , g] <-
t(apply(rbind(C2, w[, , g] %*% t(
S - 0.5 + 2 * sweep(lambda_xi[, , g], MARGIN = 2, b[g, ], `*`)
)), 2, function(x)
matrix(x[1:(D * D)], nrow = D) %*% (
x[-(1:(D * D))])))
YY <- C2 + apply(mu[, , g], 1, tcrossprod)
xi[, , g] <-
t(
apply(YY, 2, function(x)
rowSums((t(w[, , g]) %*% matrix(x, ncol = D)) * t(w[, , g]))) + (2 * b[g, ] * t(w[, , g])) %*% t(mu[, , g]) +
matrix(b[g, ] ^ 2,
nrow = M,
ncol = Ns,
byrow = FALSE)
)
xi[, , g] <- sqrt(xi[, , g])
sigma_xi[, , g] <- 1 / (1 + exp(-xi[, , g]))
lambda_xi[, , g] <- (0.5 - sigma_xi[, , g]) / (2 * xi[, , g])
YYh <-
sweep(buildYYh(YY, t(mu[, , g]), D, Ns), MARGIN = 2, 2 * z[, g], `*`)
den <- (YYh) %*% lambda_xi[, , g]
num <- rbind(t(mu[, , g]), 1) %*% (z[, g] * (S - 0.5))
wh <-
apply(rbind(den, num), 2, function(x)
- crossprod(solve(matrix(x[1:((D + 1) * (D + 1))], D + 1, D + 1)), x[-(1:((D +
1) * (D + 1)))]))
w[, , g] <- wh[1:D, ]
w[, , g] <- as.matrix(w[, , g])
b[g, ] <- wh[D + 1, ]
detC <- apply(C2, 2, function(x)
det(matrix(x, D, D)))
lxi[g, ] <-
0.5 * log(detC) + 0.5 * apply(rbind(C2, t(mu[, , g])), 2, function(x)
t((x[-(1:(D * D))])) %*% solve(matrix(x[1:(D * D)], nrow = D)) %*% (x[-(1:(D * D))])) +
rowSums(
log(sigma_xi[, , g]) - 0.5 * xi[, , g] - lambda_xi[, , g] * (xi[, , g] ^
2) + sweep(lambda_xi[, , g], MARGIN = 2, b[g, ] ^ 2, `*`) + sweep(S - 0.5, MARGIN =
2, b[g, ], `*`)
)
}
v <- t(eta * exp(lxi))
v[is.nan(v)] <- 0
vsum <- rowSums(v)
z <- counts * v / vsum
ll <- sum(counts * log(vsum))
eta <- colSums(z) / N
diff <- sum(abs(ll - ll_old))
}
}
npoints <- round(pdGH ^ (1 / D))
ny <- npoints ^ D
GaHer <- glmmML::ghq(npoints, FALSE)
Ygh <- expand.grid(rep(list(GaHer$zeros), D))
Ygh <- as.matrix(Ygh)
Wgh <- apply(as.matrix(expand.grid(rep(
list(GaHer$weights), D
))), 1, prod) *
apply(exp(Ygh ^ 2), 1, prod)
Hy <- apply(Ygh, 1, mvtnorm::dmvnorm)
Beta <- Hy * Wgh / sum(Hy * Wgh)
fxy <- array(0, c(Ns, ny, G))
for (g in 1:G)
{
if (D == 1) {
Agh <- t(tcrossprod(w[, , g], Ygh) + b[g, ])
} else{
Agh <- t(tcrossprod(t(w[, , g]), Ygh) + b[g, ])
}
pgh <- 1 / (1 + exp(-Agh))
fxy[, , g] <-
exp(tcrossprod(S, log(pgh)) + tcrossprod(1 - S, log(1 - pgh)))
fxy[is.nan(fxy[, , g])] <- 0
}
eta <- as.vector(eta)
LLva <- ll
BICva <-
-2 * LLva + (G * (M * (D + 1) - D * (D - 1) / 2) + G - 1) * log(N)
llGH1 <- apply(rep(Beta, each = Ns) * fxy, c(1, 3), sum)
LL <- sum(counts * log(colSums(eta * t(llGH1))))
BIC <-
-2 * LL + (G * (M * (D + 1) - D * (D - 1) / 2) + G - 1) * log(N)
expected <- colSums(eta * t(llGH1)) * N
rownames(b) <- NULL
colnames(b) <- colnames(b, do.NULL = FALSE, prefix = "Item ")
rownames(b) <- rownames(b, do.NULL = FALSE, prefix = "Group ")
rownames(w) <- rownames(w, do.NULL = FALSE, prefix = "Dim ")
colnames(w) <- colnames(w, do.NULL = FALSE, prefix = "Item ")
dimnames(w)[[3]] <- paste("Group ", seq(1, G) , sep = '')
eta <- matrix(eta, byrow = T, G)
rownames(eta) <- rownames(eta, do.NULL = FALSE, prefix = "Group ")
colnames(eta) <- "eta"
names(LLva) <- c("Log-Likelihood (variational approximation):")
names(BICva) <- c("BIC (variational approximation):")
names(LL) <- c("Log-Likelihood (G-H Quadrature correction):")
names(BIC) <- c("BIC (G-H Quadrature correction):")
out <- list(
b = b,
w = w,
eta = eta,
mu = mu,
C = C,
z = z,
LL = LL,
BIC = BIC,
LLva = LLva,
BICva = BICva,
expected = expected
)
out
} |
dist2 <- function(X) {
D2 <- rowSums(X * X)
D2 + sweep(X %*% t(X) * -2, 2, t(D2), `+`)
}
safe_dist2 <- function(X) {
D2 <- dist2(X)
D2[D2 < 0] <- 0
D2
}
x2d <- function(X) {
sqrt(safe_dist2(x2m(X)))
}
c2y <- function(...) {
matrix(unlist(list(...)), ncol = 2)
}
iris10 <- NULL
iris10_Y <- NULL
diris10 <- NULL
dmiris10 <- NULL
dmiris10z <- NULL
ycat <- NULL
ycat2 <- NULL
ynum <- NULL
ynum2 <- NULL
nn <- NULL
create_data <- function() {
iris10 <<- x2m(iris[1:10, ])
iris10_Y <<- pca_init(iris10, ndim = 2)
diris10 <<- dist(iris10)
dmiris10 <<- as.matrix(diris10)
dmiris10zl <- dmiris10
dmiris10zl[dmiris10zl > 0.71] <- 0
dmiris10z <<- Matrix::drop0(dmiris10zl)
ycat <<- as.factor(c(levels(iris$Species)[rep(1:3, each = 3)], NA))
ycat2 <<- as.factor(c(NA, levels(iris$Species)[rep(1:3, times = 3)]))
ynum <<- (1:10) / 10
ynum2 <<- seq(from = 10, to = -10, length.out = 10) / 100
nnl <- find_nn(iris10,
k = 4, method = "fnn", metric = "euclidean",
n_threads = 0, verbose = FALSE)
row.names(nnl$idx) <- row.names(iris10)
row.names(nnl$dist) <- row.names(iris10)
nn <<- nnl
}
expect_ok_matrix <- function(res, nr = 10, nc = 2) {
expect_is(res, "matrix")
expect_equal(nrow(res), nr)
expect_equal(ncol(res), nc)
expect_false(any(is.infinite(res)))
}
expect_is_nn <- function(res, nr = 10, k = 4) {
expect_is(res, "list")
expect_is_nn_matrix(res$dist, nr, k)
expect_is_nn_matrix(res$idx, nr, k)
}
expect_is_nn_matrix <- function(res, nr = 10, k = 4) {
expect_is(res, "matrix")
expect_equal(nrow(res), nr)
expect_equal(ncol(res), k)
}
create_data() |
getP.Cnaive <- function(x, y , z = NULL){
if(is.null(z))
{
result <- .C("getPR", as.double(x), as.double(y), as.integer(length(x)), as.integer(length(y)),result=as.double(1))$result
} else {
result <- .C("getPTripR", as.double(x), as.double(y), as.double(z), as.integer(length(x)), as.integer(length(y)), as.integer(length(z)),result=as.double(1))$result
}
result
}
permObs2.C <- function(x, y){
nx <- length(x)
ny <- length(y)
res <- .C("permObs2R", as.double(x), as.double(y), as.integer(nx), as.integer(ny),result=double(nx+ny))$result
xOut <- res[1:nx]
yOut <- res[(nx+1):(nx+ny)]
return(list(x=xOut,y=yOut))
}
uit.C <- function(x, y, z){
.C("uitR", as.double(x), as.double(y), as.double(z), as.integer(length(x)), as.integer(length(y)), as.integer(length(z)),result=double(5))$result[1]
}
getRho.C <- function(x, y, z){
.C("getRhoR", as.integer(length(x)), as.integer(length(y)), as.integer(length(z)),result=double(6))$result[1]
}
getP.Csub <- function(x,y,z,nper){
.Call( "subMat", c(x, y, z), length(x), length(y),length(z), nper)$result
} |
require(bvpSolve)
measel <- function(t, y, pars, vv) {
bet <- 1575*(1+cos(2*pi*t))
dy1 <- mu-bet*y[1]*y[3]
dy2 <- bet*y[1]*y[3]-y[2]/lam
dy3 <-y[2]/lam-y[3]/vv
dy4 <- 0
dy5 <-0
dy6 <-0
list(c(dy1, dy2, dy3, dy4, dy5, dy6))
}
dmeasel <- function(t, y, pars, vv) {
df <- matrix (data = 0, nrow = 6, ncol = 6)
bet <- 1575*(1+cos(2*pi*t))
df[1,1] <- -bet*y[3]
df[1,3] <- -bet*y[1]
df[2,1] <- bet*y[3]
df[2,2] <- -1/lam
df[2,3] <- bet*y[1]
df[3,2] <- 1/lam
df[3,3] <- -1/vv
return(df)
}
bound <- function(i, y, pars,vv) {
if ( i == 1 | i == 4) return(y[1]-y[4])
if ( i == 2 | i == 5) return(y[2]-y[5])
if ( i == 3 | i == 6) return(y[3]-y[6])
}
dbound <- function(i, y, pars,vv) {
if ( i == 1 | i == 4) return(c(1,0,0,-1,0,0))
if ( i == 2 | i == 5) return(c(0,1,0,0,-1,0))
if ( i == 3 | i == 6) return(c(0,0,1,0,0,-1))
}
mu <- 0.02
lam <- 0.0279
v <- 0.1
x <- seq (0, 1, by = 0.01)
yguess <- matrix(ncol = length(x), nrow = 6, data = 1)
rownames(yguess) <- paste("y", 1:6, sep = "")
print(system.time(
solR <- bvptwp(fun = measel, bound = bound,
xguess = x, yguess = yguess,
x=x, leftbc = 3, vv = v, ncomp = 6,
nmax = 100000, atol = 1e-4)
))
plot(sol) |
make.mkn <- function(tree, states, k, strict=TRUE, control=list()) {
control <- check.control.mkn(control, k)
cache <- make.cache.mkn(tree, states, k, strict, control)
all.branches <- make.all.branches.mkn(cache, control)
rootfunc <- rootfunc.mkn
f.pars <- make.pars.mkn(k)
ll <- function(pars, root=ROOT.OBS, root.p=NULL, intermediates=FALSE) {
qmat <- f.pars(pars)
ans <- all.branches(qmat, intermediates)
rootfunc(ans, qmat, root, root.p, intermediates)
}
class(ll) <- c("mkn", "dtlik", "function")
ll
}
make.mk2 <- function(tree, states, strict=TRUE, control=list())
make.mkn(tree, states + 1, 2, strict, check.control.mk2(control))
make.info.mkn <- function(k, phy) {
list(name="mkn",
name.pretty="Mk(n)",
np=as.integer(k * k),
argnames=default.argnames.mkn(k),
ny=as.integer(k),
k=as.integer(k),
idx.e=integer(0),
idx.d=seq_len(k),
phy=phy,
ml.default="subplex",
mcmc.lowerzero=TRUE,
doc=NULL,
reference=c(
"Pagel (1994)",
"Lewis (2001)"))
}
default.argnames.mkn <- function(k) {
base <- ceiling(log10(k + .5))
fmt <- sprintf("q%%0%dd%%0%dd", base, base)
sprintf(fmt, rep(1:k, each=k-1),
unlist(lapply(1:k, function(i) (1:k)[-i])))
}
make.info.mk2 <- function(phy) {
info <- make.info.mkn(2, phy)
info$name <- "mk2"
info$name.pretty <- "Mk2"
info$argnames <- default.argnames.mk2()
info
}
default.argnames.mk2 <- function()
c("q01", "q10")
make.cache.mkn <- function(tree, states, k, strict, control) {
method <- control$method
tree <- check.tree(tree)
if ( !is.null(states) )
states <- check.states(tree, states, strict=strict,
strict.vals=1:k)
cache <- make.cache(tree)
if ( method == "mk2" )
cache$info <- make.info.mk2(tree)
else
cache$info <- make.info.mkn(k, tree)
cache$states <- states
if ( method == "ode" ) {
cache$info$derivs <- derivs.mkn.ode
cache$y <- initial.tip.mkn.ode(cache)
cache$info$name.ode <- "mknode"
} else if ( method == "" ) {
cache$info$name.ode <- "mknpij"
}
cache
}
initial.conditions.mkn <- function(init, pars, t, idx) {
init[,1] * init[,2]
}
rootfunc.mkn <- function(res, pars, root, root.p, intermediates) {
d.root <- res$vals
lq <- res$lq
k <- length(d.root)
root.p <- root.p.calc(d.root, pars, root, root.p,
stationary.freq.mkn)
if ( root == ROOT.ALL )
loglik <- log(d.root) + sum(lq)
else
loglik <- log(sum(root.p * d.root)) + sum(lq)
if ( intermediates ) {
res$root.p <- root.p
attr(loglik, "intermediates") <- res
attr(loglik, "vals") <- d.root
}
loglik
}
make.all.branches.mkn <- function(cache, control) {
if ( control$method == "ode" ) {
if ( !is.null(control$backend) && control$backend == "expokit" )
make.all.branches.mkn.expokit(cache, control)
else
make.all.branches.dtlik(cache, control, initial.conditions.mkn)
} else {
make.all.branches.mkn.pij(cache, control)
}
}
stationary.freq.mkn <- function(pars) {
stop("Needs testing")
if ( length(pars) == 2 )
pars[2:1] / sum(pars)
else
.NotYetImplemented()
}
make.pars.mkn <- function(k) {
qmat <- matrix(0, k, k)
idx <- cbind(rep(1:k, each=k-1),
unlist(lapply(1:k, function(i) (1:k)[-i])))
npar <- k*(k-1)
function(pars) {
check.pars.nonnegative(pars, npar)
qmat[idx] <- pars
diag(qmat) <- -rowSums(qmat)
qmat
}
}
mkn.Q <- function(pars, k) {
if ( missing(k) )
k <- (1 + sqrt(1 + 4*(length(pars))))/2
if ( abs(k - round(k)) > 1e-6 || length(pars) != k*(k-1) )
stop("Invalid parameter length")
make.pars.mkn(k)(pars)
}
check.control.mkn <- function(control, k) {
control <- modifyList(list(method="pij"), control)
if ( control$method == "mk2" && k != 2 )
stop("Method 'mk2' only valid when k=2")
methods <- c("pij", "mk2", "ode")
if ( !(control$method %in% methods) )
stop(sprintf("control$method must be in %s",
paste(methods, collapse=", ")))
control
}
check.control.mk2 <- function(control) {
control <- modifyList(list(method="mk2"), control)
if ( control$method != "mk2" )
stop("Invalid control$method value (just omit it)")
control
} |
stat.anova <-
function(table, test=c("Rao","LRT","Chisq", "F", "Cp"), scale, df.scale, n)
{
test <- match.arg(test)
dev.col <- match("Deviance", colnames(table))
if (test == "Rao") dev.col <- match("Rao", colnames(table))
if (is.na(dev.col)) dev.col <- match("Sum of Sq", colnames(table))
switch(test,
"Rao" = ,"LRT" = ,"Chisq" = {
dfs <- table[, "Df"]
vals <- table[, dev.col]/scale * sign(dfs)
vals[dfs %in% 0] <- NA
vals[!is.na(vals) & vals < 0] <- NA
cbind(table,
"Pr(>Chi)" = pchisq(vals, abs(dfs), lower.tail = FALSE)
)
},
"F" = {
dfs <- table[, "Df"]
Fvalue <- (table[, dev.col]/dfs)/scale
Fvalue[dfs %in% 0] <- NA
Fvalue[!is.na(Fvalue) & Fvalue < 0] <- NA
cbind(table,
F = Fvalue,
"Pr(>F)" = pf(Fvalue, abs(dfs), df.scale, lower.tail = FALSE)
)
},
"Cp" = {
if ("RSS" %in% names(table)) {
cbind(table, Cp = table[, "RSS"] +
2*scale*(n - table[, "Res.Df"]))
} else {
cbind(table, Cp = table[, "Resid. Dev"] +
2*scale*(n - table[, "Resid. Df"]))
}
})
}
printCoefmat <-
function(x, digits = max(3L, getOption("digits") - 2L),
signif.stars = getOption("show.signif.stars"),
signif.legend = signif.stars,
dig.tst = max(1L, min(5L, digits - 1L)),
cs.ind = 1:k, tst.ind = k+1, zap.ind = integer(),
P.values = NULL,
has.Pvalue = nc >= 4 && substr(colnames(x)[nc], 1, 3) == "Pr(",
eps.Pvalue = .Machine$double.eps,
na.print = "NA", ...)
{
if(is.null(d <- dim(x)) || length(d) != 2L)
stop("'x' must be coefficient matrix/data frame")
nc <- d[2L]
if(is.null(P.values)) {
scp <- getOption("show.coef.Pvalues")
if(!is.logical(scp) || is.na(scp)) {
warning("option \"show.coef.Pvalues\" is invalid: assuming TRUE")
scp <- TRUE
}
P.values <- has.Pvalue && scp
}
else if(P.values && !has.Pvalue)
stop("'P.values' is TRUE, but 'has.Pvalue' is not")
if(has.Pvalue && !P.values) {
d <- dim(xm <- data.matrix(x[,-nc , drop = FALSE]))
nc <- nc - 1
has.Pvalue <- FALSE
} else xm <- data.matrix(x)
k <- nc - has.Pvalue - (if(missing(tst.ind)) 1 else length(tst.ind))
if(!missing(cs.ind) && length(cs.ind) > k) stop("wrong k / cs.ind")
Cf <- array("", dim=d, dimnames = dimnames(xm))
ok <- !(ina <- is.na(xm))
for (i in zap.ind) xm[, i] <- zapsmall(xm[, i], digits)
if(length(cs.ind)) {
acs <- abs(coef.se <- xm[, cs.ind, drop=FALSE])
if(any(ia <- is.finite(acs))) {
digmin <- 1 + if(length(acs <- acs[ia & acs != 0]))
floor(log10(range(acs[acs != 0], finite = TRUE))) else 0
Cf[,cs.ind] <- format(round(coef.se, max(1L, digits - digmin)),
digits = digits)
}
}
if(length(tst.ind))
Cf[, tst.ind] <- format(round(xm[, tst.ind], digits = dig.tst),
digits = digits)
if(any(r.ind <- !((1L:nc) %in% c(cs.ind, tst.ind, if(has.Pvalue) nc))))
for(i in which(r.ind)) Cf[, i] <- format(xm[, i], digits = digits)
ok[, tst.ind] <- FALSE
okP <- if(has.Pvalue) ok[, -nc] else ok
x1 <- Cf[okP]
dec <- getOption("OutDec")
if(dec != ".") x1 <- chartr(dec, ".", x1)
x0 <- (xm[okP] == 0) != (as.numeric(x1) == 0)
if(length(not.both.0 <- which(x0 & !is.na(x0)))) {
Cf[okP][not.both.0] <- format(xm[okP][not.both.0],
digits = max(1L, digits - 1L))
}
if(any(ina)) Cf[ina] <- na.print
if(P.values) {
if(!is.logical(signif.stars) || is.na(signif.stars)) {
warning("option \"show.signif.stars\" is invalid: assuming TRUE")
signif.stars <- TRUE
}
if(any(okP <- ok[,nc])) {
pv <- as.vector(xm[, nc])
Cf[okP, nc] <- format.pval(pv[okP],
digits = dig.tst, eps = eps.Pvalue)
signif.stars <- signif.stars && any(pv[okP] < .1)
if(signif.stars) {
Signif <- symnum(pv, corr = FALSE, na = FALSE,
cutpoints = c(0, .001,.01,.05, .1, 1),
symbols = c("***","**","*","."," "))
Cf <- cbind(Cf, format(Signif))
}
} else signif.stars <- FALSE
} else signif.stars <- FALSE
print.default(Cf, quote = FALSE, right = TRUE, na.print = na.print, ...)
if(signif.stars && signif.legend) {
if((w <- getOption("width")) < nchar(sleg <- attr(Signif,"legend")))
sleg <- strwrap(sleg, width = w - 2, prefix = " ")
cat("---\nSignif. codes: ", sleg, sep = "",
fill = w+4 + max(nchar(sleg,"bytes") - nchar(sleg)))
}
invisible(x)
}
print.anova <- function(x, digits = max(getOption("digits") - 2L, 3L),
signif.stars = getOption("show.signif.stars"), ...)
{
if (!is.null(heading <- attr(x, "heading")))
cat(heading, sep = "\n")
nc <- dim(x)[2L]
if(is.null(cn <- colnames(x))) stop("'anova' object must have colnames")
has.P <- grepl("^(P|Pr)\\(", cn[nc])
zap.i <- 1L:(if(has.P) nc-1 else nc)
i <- which(substr(cn,2,7) == " value")
i <- c(i, which(!is.na(match(cn, c("F", "Cp", "Chisq")))))
if(length(i)) zap.i <- zap.i[!(zap.i %in% i)]
tst.i <- i
if(length(i <- grep("Df$", cn))) zap.i <- zap.i[!(zap.i %in% i)]
printCoefmat(x, digits = digits, signif.stars = signif.stars,
has.Pvalue = has.P, P.values = has.P,
cs.ind = NULL, zap.ind = zap.i, tst.ind = tst.i,
na.print = "",
...)
invisible(x)
} |
"brca" |
logbin.em <- function(mt, mf, Y, offset, mono, start, control, accelerate = c("em","squarem","pem","qn"),
control.method, warn)
{
accelerate = match.arg(accelerate)
control2 <- control
control2$trace <- (control$trace > 1)
reparam <- logbin.reparam(mt, mf, "em", mono)
if (!is.null(start)) {
start.expand <- logbin.expand(start, reparam, "em")
}
if(control$trace > 0) cat("logbin parameterisation 1/1\n")
if (length(reparam$Vmat) == 0) {
X <- model.matrix(mt, mf)
Amat <- diag(ncol(X))
}
else {
des <- logbin.design(mt, mf, "em", reparam)
X <- des$X.reparam
Amat <- des$A
}
thismodel <- nplbin(Y, X, offset, if (!is.null(start)) start.expand$coefs.exp else NULL,
Amat = Amat, control = control2, accelerate = accelerate,
control.accelerate = list(control.method))
if(control$trace > 0 & control$trace <= 1)
cat("Deviance =", thismodel$deviance, "Iterations -", thismodel$iter, "\n")
if (length(reparam$Vmat) == 0) {
np.coefs <- coefs <- coefs.boundary <- thismodel$coefficients
nn.design <- design <- X
if (control$coeftrace) coefhist <- thismodel$coefhist
} else {
np.coefs <- thismodel$coefficients
nn.design <- X
coefs <- as.vector(logbin.reduce(np.coefs, des$A))
names(coefs) <- gsub("`", "", colnames(des$X.orig))
design <- des$X.orig
coefs.boundary <- np.coefs[logbin.expand(coefs, reparam, "em")$which.boundary]
if (control$coeftrace) {
coefhist <- coefhist.reduce(thismodel$coefhist, des$A, names(coefs))
}
}
nvars <- length(coefs)
vardiff <- length(np.coefs) - nvars
aic.c <- thismodel$aic - 2 * vardiff + 2 * nvars * (nvars + 1) / (NROW(Y) - nvars - 1)
boundary <- any(coefs.boundary > -control$bound.tol)
if (warn) {
if (!thismodel$converged) {
if (identical(accelerate, "em"))
warning(gettextf("nplbin: algorithm did not converge within %d iterations -- increase 'maxit'.",
control$maxit), call. = FALSE)
else
warning(gettextf("nplbin(%s): algorithm did not converge within %d iterations -- increase 'maxit' or try with 'accelerate = \"em\"'.",
accelerate, control$maxit), call. = FALSE)
}
if(boundary) {
if(coefs.boundary[1] > -control$bound.tol)
warning("nplbin: fitted probabilities numerically 1 occurred", call. = FALSE)
else
warning("nplbin: MLE on boundary of constrained parameter space", call. = FALSE)
}
}
fit <- list(coefficients = coefs, residuals = thismodel$residuals,
fitted.values = thismodel$fitted.values,
linear.predictors = thismodel$linear.predictors, deviance = thismodel$deviance,
loglik = thismodel$loglik, aic = thismodel$aic - 2*vardiff, aic.c = aic.c,
null.deviance = thismodel$null.deviance, iter = thismodel$iter,
prior.weights = thismodel$prior.weights,
df.residual = thismodel$df.residual + vardiff, df.null = thismodel$df.null,
y = thismodel$y, x = design, converged = thismodel$converged,
boundary = boundary, np.coefficients = np.coefs,
nn.x = nn.design)
if (control$coeftrace) fit$coefhist <- coefhist
fit
} |
expected <- eval(parse(text="structure(c(43.6690361821048, 35.0518890362789, 30.2558850234373, 27.1664611723591, 24.9930921115624, 23.3776455926353, 22.122313646246, 21.1173217554787, 20.293145402391, 19.6041024133034, 19.0188803067124, 18.5152545044936, 18.0769941360739, 17.6919540860845, 17.3508558987268, 17.0464826391527, 0.924696372559026, 1.4577878275186, 1.99087928247818, 2.52397073743776, 3.05706219239734, 3.59015364735691, 4.12324510231649, 4.65633655727607, 5.18942801223565, 5.72251946719522, 6.2556109221548, 6.78870237711438, 7.32179383207396, 7.85488528703353, 8.38797674199311, 8.92106819695269), .Dim = c(16L, 2L), .Dimnames = list(NULL, c(\"ymax\", \"xhalf\")))"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(par.vals = structure(c(43.6690361821048, 35.0518890362789, 30.2558850234373, 27.1664611723591, 24.9930921115624, 23.3776455926353, 22.122313646246, 21.1173217554787, 20.293145402391, 19.6041024133034, 19.0188803067124, 18.5152545044936, 18.0769941360739, 17.6919540860845, 17.3508558987268, 17.0464826391527, 0.924696372559026, 1.4577878275186, 1.99087928247818, 2.52397073743776, 3.05706219239734, 3.59015364735691, 4.12324510231649, 4.65633655727607, 5.18942801223565, 5.72251946719522, 6.2556109221548, 6.78870237711438, 7.32179383207396, 7.85488528703353, 8.38797674199311, 8.92106819695269), .Dim = c(16L, 2L), .Dimnames = list(NULL, c(\"ymax\", \"xhalf\")))), .Names = \"par.vals\"), 1L)"));
do.call(`.subset2`, argv);
}, o=expected); |
valid_lbl_pos <- c("default", "visible", "hidden", "topleft")
.labelkids_helper = function(charval) {
ret = switch(charval,
"default" = NA,
"visible" = TRUE,
"hidden" = FALSE,
"topleft" = FALSE,
stop("unrecognized charval in .labelkids_helper. this shouldn't ever happen"))
}
setOldClass("expression")
setClassUnion("SubsetDef", c("expression", "logical", "integer", "numeric"))
setClassUnion("integerOrNULL", c("NULL", "integer"))
setClassUnion("characterOrNULL", c("NULL", "character"))
setClass("TreePos", representation(splits = "list",
s_values = "list",
sval_labels = "character",
subset = "SubsetDef"),
validity = function(object) {
nspl <- length(object@splits)
length(object@s_values) == nspl && length(object@sval_labels) == nspl
})
setClassUnion("functionOrNULL", c("NULL", "function"))
setClassUnion("listOrNULL", c("NULL", "list"))
setClassUnion("FormatSpec", c("NULL", "character", "function", "list"))
setClass("ValueWrapper", representation(value = "ANY",
label = "characterOrNULL"),
contains = "VIRTUAL")
setClass("SplitValue",
contains = "ValueWrapper",
representation(extra = "list"))
SplitValue <- function(val, extr =list(), label = val) {
if (is(val, "SplitValue")) {
if (length(splv_extra(val)) > 0)
extr <- c(splv_extra(val), extr)
splv_extra(val) <- extr
return(val)
}
if (!is(extr, "list"))
extr <- list(extr)
if (!is(label, "character"))
label <- as.character(label)
new("SplitValue", value = val,
extra = extr, label = label)
}
setClass("LevelComboSplitValue",
contains = "SplitValue",
representation(combolevels = "character"))
LevelComboSplitValue <- function(val, extr, combolevels, label = val) {
new("LevelComboSplitValue",
value = val,
extra = extr,
combolevels = combolevels,
label = label)
}
setClass("Split", contains = "VIRTUAL",
representation(
payload = "ANY",
name = "character",
split_label = "character",
split_format = "FormatSpec",
split_label_position = "character",
content_fun = "listOrNULL",
content_format = "FormatSpec",
content_var = "character",
label_children = "logical",
extra_args = "list",
indent_modifier = "integer",
content_indent_modifier = "integer",
content_extra_args = "list"))
setClass("CustomizableSplit", contains = "Split",
representation(split_fun = "functionOrNULL"))
setClass("VarLevelSplit", contains = "CustomizableSplit",
representation(value_label_var = "character",
value_order = "ANY"))
VarLevelSplit <- function(var,
split_label,
labels_var = NULL,
cfun = NULL,
cformat = NULL,
split_fun = NULL,
split_format = NULL,
valorder = NULL,
split_name = var,
child_labels = c("default", "visible", "hidden"),
extra_args = list(),
indent_mod = 0L,
label_pos = c("topleft", "hidden", "visible"),
cindent_mod = 0L,
cvar = "",
cextra_args = list()
) {
child_labels <- match.arg(child_labels)
if (is.null(labels_var))
labels_var <- var
new("VarLevelSplit", payload = var,
split_label = split_label,
name = split_name,
value_label_var = labels_var,
content_fun = cfun,
content_format = cformat,
split_fun = split_fun,
split_format = split_format,
value_order = NULL,
label_children = .labelkids_helper(child_labels),
extra_args = extra_args,
indent_modifier = as.integer(indent_mod),
content_indent_modifier = as.integer(cindent_mod),
content_var = cvar,
split_label_position = label_pos,
content_extra_args = cextra_args
)
}
setClass("NULLSplit", contains = "Split")
NULLSplit <- function(...) {
new("NULLSplit", payload = character(),
split_label = character(),
content_fun = NULL,
content_format = NULL,
split_format = NULL,
name = "",
indent_modifier = 0L,
content_indent_modifier = 0L,
content_var = "",
label_pos = FALSE)
}
setClass("AllSplit", contains = "Split")
AllSplit <- function(split_label = "",
cfun = NULL,
cformat = NULL,
split_format = NULL,
split_name = if (!missing(split_label) && nzchar(split_label)) split_label else "all obs",
extra_args = list(),
indent_mod = 0L,
cindent_mod = 0L,
cvar = "",
cextra_args = list(),
...) {
new("AllSplit", split_label = split_label,
content_fun = cfun,
content_format = cformat,
split_format = split_format,
name = split_name,
label_children = FALSE,
extra_args = extra_args,
indent_modifier = as.integer(indent_mod),
content_indent_modifier = as.integer(cindent_mod),
content_var = cvar,
split_label_position = "hidden",
content_extra_args = cextra_args)
}
setClass("RootSplit", contains = "AllSplit")
RootSplit <- function(split_label = "", cfun = NULL, cformat = NULL, cvar = "",
split_format= NULL, cextra_args = list(), ...) {
new("RootSplit", split_label = split_label,
content_fun = cfun,
content_format = cformat,
split_format = split_format,
name = "root",
label_children = FALSE,
indent_modifier = 0L,
content_indent_modifier = 0L,
content_var = cvar,
split_label_position = "hidden",
content_extra_args = cextra_args)
}
setClass("ManualSplit", contains = "AllSplit",
representation(levels = "character"))
ManualSplit <- function(levels, label, name = "manual",
extra_args = list(),
indent_mod = 0L,
cindent_mod = 0L,
cvar = "",
cextra_args = list(),
label_pos = "visible") {
label_pos <- match.arg(label_pos, label_pos_values)
new("ManualSplit",
split_label = label,
levels = levels,
name = name,
label_children = FALSE,
extra_args = extra_args,
indent_modifier = 0L,
content_indent_modifier = as.integer(cindent_mod),
content_var = cvar,
split_label_position = label_pos)
}
setClass("MultiVarSplit", contains = "Split",
representation(var_labels = "character",
var_names = "character"),
validity = function(object) {
length(object@payload) >= 1 &&
all(!is.na(object@payload)) &&
(length(object@var_labels) == 0 || length(object@payload) == length(object@var_labels))
})
.make_suffix_vec <- function(n) {
c("",
sprintf("._[[%d]]_.",
seq_len(n - 1) + 1L))
}
.make_multivar_names <- function(vars) {
dups <- duplicated(vars)
if (!any(dups))
return(vars)
dupvars <- unique(vars[dups])
ret <- vars
for (v in dupvars) {
pos <- which(ret == v)
ret[pos] <- paste0(ret[pos],
.make_suffix_vec(length(pos)))
}
ret
}
MultiVarSplit <- function(vars,
split_label = "",
varlabels = NULL,
varnames = NULL,
cfun = NULL,
cformat = NULL,
split_format = NULL,
split_name = "multivars",
child_labels = c("default", "visible", "hidden"),
extra_args = list(),
indent_mod = 0L,
cindent_mod = 0L,
cvar = "",
cextra_args = list(),
label_pos = "visible") {
label_pos <- match.arg(label_pos, label_pos_values[-3])
child_labels = match.arg(child_labels)
if(length(vars) == 1 && grepl(":", vars))
vars = strsplit(vars, ":")[[1]]
if(length(varlabels) == 0)
varlabels = vars
vnames <- varnames %||% .make_multivar_names(vars)
stopifnot(length(vnames) == length(vars))
new("MultiVarSplit", payload = vars,
split_label = split_label,
var_labels = varlabels,
var_names = vnames,
content_fun = cfun,
content_format = cformat,
split_format = split_format,
label_children = .labelkids_helper(child_labels),
name = split_name,
extra_args = extra_args,
indent_modifier = as.integer(indent_mod),
content_indent_modifier = as.integer(cindent_mod),
content_var = cvar,
split_label_position = label_pos,
content_extra_args = cextra_args)
}
setClass("VarStaticCutSplit", contains = "Split",
representation(cuts = "numeric",
cut_labels = "character"))
VarStaticCutSplit <- function(var,
split_label = var,
cuts,
cutlabels = NULL,
cfun = NULL,
cformat = NULL,
split_format = NULL,
split_name = var,
child_labels = c("default", "visible", "hidden"),
extra_args = list(),
indent_mod = 0L,
cindent_mod = 0L,
cvar = "",
cextra_args = list(),
label_pos = "visible") {
label_pos <- match.arg(label_pos, label_pos_values)
child_labels = match.arg(child_labels)
if(is.list(cuts) && is.numeric(cuts[[1]]) &&
is.character(cuts[[2]]) &&
length(cuts[[1]]) == length(cuts[[2]])) {
cutlabels <- cuts[[2]]
cuts <- cuts[[1]]
}
if (is.unsorted(cuts, strictly = TRUE))
stop("invalid cuts vector. not sorted unique values.")
if (is.null(cutlabels) && !is.null(names(cuts)))
cutlabels <- names(cuts)[-1]
new("VarStaticCutSplit", payload = var,
split_label = split_label,
cuts = cuts,
cut_labels = cutlabels,
content_fun = cfun,
content_format = cformat,
split_format = split_format,
name = split_name,
label_children = .labelkids_helper(child_labels),
extra_args = extra_args,
indent_modifier = as.integer(indent_mod),
content_indent_modifier = as.integer(cindent_mod),
content_var = cvar,
split_label_position = label_pos,
content_extra_args = cextra_args)
}
setClass("CumulativeCutSplit", contains = "VarStaticCutSplit")
CumulativeCutSplit <- function(var,
split_label,
cuts,
cutlabels = NULL,
cfun = NULL,
cformat = NULL,
split_format = NULL,
split_name = var,
child_labels = c("default", "visible", "hidden"),
extra_args = list(),
indent_mod = 0L,
cindent_mod = 0L,
cvar = "",
cextra_args = list(),
label_pos = "visible") {
label_pos <- match.arg(label_pos, label_pos_values)
child_labels = match.arg(child_labels)
if(is.list(cuts) && is.numeric(cuts[[1]]) &&
is.character(cuts[[2]]) &&
length(cuts[[1]]) == length(cuts[[2]])) {
cutlabels <- cuts[[2]]
cuts <- cuts[[1]]
}
if (is.unsorted(cuts, strictly = TRUE))
stop("invalid cuts vector. not sorted unique values.")
if (is.null(cutlabels) && !is.null(names(cuts)))
cutlabels <- names(cuts)[-1]
new("CumulativeCutSplit", payload = var,
split_label = split_label,
cuts = cuts,
cut_labels = cutlabels,
content_fun = cfun,
content_format = cformat,
split_format = split_format,
name = split_name,
label_children = .labelkids_helper(child_labels),
extra_args = extra_args,
indent_modifier = as.integer(indent_mod),
content_indent_modifier = as.integer(cindent_mod),
content_var = cvar,
split_label_position = label_pos,
content_extra_args = cextra_args)
}
setClass("VarDynCutSplit", contains = "Split",
representation(cut_fun = "function",
cut_label_fun = "function",
cumulative_cuts = "logical"))
VarDynCutSplit <- function(var,
split_label,
cutfun,
cutlabelfun = function(x) NULL,
cfun = NULL,
cformat = NULL,
split_format = NULL,
split_name = var,
child_labels = c("default", "visible", "hidden"),
extra_args = list(),
cumulative = FALSE,
indent_mod = 0L,
cindent_mod = 0L,
cvar = "",
cextra_args = list(),
label_pos = "visible") {
label_pos <- match.arg(label_pos, label_pos_values)
child_labels = match.arg(child_labels)
new("VarDynCutSplit", payload = var,
split_label = split_label,
cut_fun = cutfun,
cumulative_cuts = cumulative,
cut_label_fun = cutlabelfun,
content_fun = cfun,
content_format = cformat,
split_format = split_format,
name = split_name,
label_children = .labelkids_helper(child_labels),
extra_args = extra_args,
indent_modifier = as.integer(indent_mod),
content_indent_modifier = as.integer(cindent_mod),
content_var = cvar,
split_label_position = label_pos,
content_extra_args = cextra_args)
}
setClass("VAnalyzeSplit", contains = "Split",
representation(default_rowlabel = "character",
include_NAs = "logical",
var_label_position = "character"))
setClass("AnalyzeVarSplit", contains = "VAnalyzeSplit",
representation(analysis_fun = "function"))
setClass("AnalyzeColVarSplit", contains = "VAnalyzeSplit",
representation(analysis_fun = "list"))
AnalyzeVarSplit <- function(var,
split_label = var,
afun,
defrowlab = "",
cfun = NULL,
cformat = NULL,
split_format = NULL,
inclNAs = FALSE,
split_name = var,
extra_args = list(),
indent_mod = 0L,
label_pos = "default",
cvar = ""
) {
label_pos <- match.arg(label_pos, c("default", label_pos_values))
if(!any(nzchar(defrowlab))) {
defrowlab = as.character(substitute(afun))
if(length(defrowlab) > 1 || startsWith(defrowlab, "function("))
defrowlab = ""
}
new("AnalyzeVarSplit",
payload = var,
split_label = split_label,
content_fun = cfun,
analysis_fun = afun,
content_format = cformat,
split_format = split_format,
default_rowlabel = defrowlab,
include_NAs = inclNAs,
name = split_name,
label_children = FALSE,
extra_args = extra_args,
indent_modifier = as.integer(indent_mod),
content_indent_modifier = 0L,
var_label_position = label_pos,
content_var = cvar)
}
AnalyzeColVarSplit <- function(afun,
defrowlab = "",
cfun = NULL,
cformat = NULL,
split_format = NULL,
inclNAs = FALSE,
split_name = "",
extra_args = list(),
indent_mod = 0L,
label_pos = "default",
cvar = "") {
label_pos <- match.arg(label_pos, c("default", label_pos_values))
new("AnalyzeColVarSplit",
payload = NA_character_,
split_label = "",
content_fun = cfun,
analysis_fun = afun,
content_format = cformat,
split_format = split_format,
default_rowlabel = defrowlab,
include_NAs = inclNAs,
name = split_name,
label_children = FALSE,
extra_args = extra_args,
indent_modifier = as.integer(indent_mod),
content_indent_modifier = 0L,
var_label_position = label_pos,
content_var = cvar)
}
setClass("CompoundSplit", contains = "Split",
validity = function(object) are(object@payload, "Split"))
setClass("AnalyzeMultiVars", contains = "CompoundSplit")
.repoutlst <- function(x, nv) {
if (!is.function(x) && length(x) == nv)
return(x)
if (!is(x, "list"))
x <- list(x)
rep(x, length.out = nv)
}
.uncompound <- function(csplit) {
if (is(csplit, "list"))
return(unlist(lapply(csplit, .uncompound)))
if (!is(csplit, "CompoundSplit"))
return(csplit)
pld <- spl_payload(csplit)
done <- all(!vapply(pld, is, TRUE, class2 = "CompoundSplit"))
if (done)
pld
else
unlist(lapply(pld, .uncompound))
}
strip_compound_name <- function(obj) {
nm <- obj_name(obj)
gsub("^ma_", "", nm)
}
make_ma_name <- function(spl, pld = spl_payload(spl)) {
paste(c("ma",
vapply(pld, strip_compound_name, "")),
collapse = "_")
}
AnalyzeMultiVars <- function(var,
split_label = "",
afun,
defrowlab = "",
cfun = NULL,
cformat = NULL,
split_format = NULL,
inclNAs = FALSE,
.payload = NULL,
split_name = NULL,
extra_args = list(),
indent_mod = 0L,
child_labels = c("default", "topleft", "visible", "hidden"),
child_names = var,
cvar = ""
) {
child_labels <- match.arg(child_labels)
show_kidlabs <- child_labels
if(is.null(.payload)) {
nv = length(var)
defrowlab = .repoutlst(defrowlab, nv)
afun = .repoutlst(afun, nv)
split_label = .repoutlst(split_label, nv)
cfun = .repoutlst(cfun, nv)
cformat = .repoutlst(cformat, nv)
inclNAs = .repoutlst(inclNAs, nv)
pld = mapply(AnalyzeVarSplit,
var = var,
split_name = child_names,
split_label = split_label,
afun = afun,
defrowlab = defrowlab,
cfun = cfun,
cformat = cformat,
inclNAs = inclNAs,
MoreArgs = list(extra_args = extra_args,
indent_mod = indent_mod,
label_pos = show_kidlabs,
split_format = split_format
),
SIMPLIFY = FALSE)
} else {
pld <- unlist(lapply(.payload, .uncompound))
pld <- lapply(pld,
function(x) {
rvis = label_position(x)
if(!identical(show_kidlabs, "default")) {
if(identical(rvis, "default"))
rvis = show_kidlabs
}
label_position(x) = rvis
x
})
}
if (length(pld) == 1) {
ret <- pld[[1]]
} else {
if(is.null(split_name))
split_name <- paste(c("ma", vapply(pld, obj_name, "")), collapse = "_")
ret <- new("AnalyzeMultiVars",
payload = pld,
split_label = "",
split_format = NULL,
content_fun = NULL,
content_format = NULL,
label_children = .labelkids_helper(show_kidlabs),
split_label_position = "hidden",
name = split_name,
extra_args = extra_args,
indent_modifier = 0L,
content_indent_modifier = 0L,
content_var = cvar)
}
ret
}
setClass("VCompSplit", contains = c("VIRTUAL", "Split"),
representation(comparison_func = "function",
label_format = "character"))
setClassUnion("VarOrFactory", c("function", "character"))
setClass("MultiSubsetCompSplit", contains = "VCompSplit",
representation(subset1_gen = "VarOrFactory",
subset2_gen = "VarOrFactory"))
MultiSubsetCompSplit <- function(factory1, factory2, label_fstr = "%s - %s",
split_label = "",
comparison = `-`,
cfun = NULL, cformat = NULL, split_format = NULL) {
new("MultiSubsetCompSplit",
subset1_gen = factory1,
subset2_gen = factory2,
label_format = label_fstr,
split_label = split_label,
content_fun = cfun,
content_format = cformat,
split_format = split_format,
comparison_func = comparison)
}
setClass("SubsetSplit", contains = "Split",
representation(subset_gen = "VarOrFactory",
vs_all = "logical",
vs_non = "logical",
child_order = "character"),
validity = function(object) object@vs_all || object@vs_non,
prototype = prototype(vs_all = TRUE,
vs_non = FALSE))
SubsetSplit <- function(subset, vall = TRUE, vnon = FALSE,
order = c("subset", if (vnon) "non", if (vall) "all"),
split_label,
cfun = NULL, cformat = NULL, split_format = NULL) {
new("SubsetSplit",
split_label = split_label,
content_fun = cfun,
content_format = cformat,
split_format = split_format,
subset_gen = subset,
vs_all = vall,
vs_non = vnon,
child_order = order)
}
setClass("VarLevWBaselineSplit", contains = "VarLevelSplit",
representation(var = "character",
ref_group_value = "character"))
VarLevWBaselineSplit <- function(var,
ref_group,
labels_var = var,
split_label,
split_fun = NULL,
label_fstr = "%s - %s",
cfun = NULL,
cformat = NULL,
cvar = "",
split_format = NULL,
valorder = NULL,
split_name = var,
extra_args = list()) {
new("VarLevWBaselineSplit",
payload = var,
ref_group_value = ref_group,
value_label_var = labels_var,
split_label = split_label,
content_fun = cfun,
content_format = cformat,
split_format = split_format,
split_fun = split_fun,
name = split_name,
label_children = FALSE,
extra_args = extra_args,
indent_modifier = 0L,
content_indent_modifier = 0L,
content_var = cvar)
}
setClass("CompSubsetVectors",
representation(subset1 = "list",
subset2 = "list"),
validity = function(object) length(object@subset1) == length(object@subset2))
.chkname <- function(nm) {
if (is.null(nm))
nm <- ""
if (length(nm) != 1) {
stop("name is not of length one")
} else if (is.na(nm)) {
warning("Got missing value for name, converting to characters '<NA>'")
nm <- "<NA>"
}
nm
}
TreePos <- function(spls = list(), svals = list(), svlabels = character(), sub = NULL) {
svals <- make_splvalue_vec(vals = svals)
if (is.null(sub)) {
if (length(spls) > 0) {
sub <- make_pos_subset(spls = spls,
svals = svals)
} else {
sub <- expression(TRUE)
}
}
new("TreePos", splits = spls, s_values = svals,
sval_labels = svlabels,
subset = sub)
}
make_child_pos <- function(parpos, newspl, newval, newlab = newval, newextra = list()) {
if (!is(newval, "SplitValue"))
nsplitval <- SplitValue(newval, extr = newextra, label = newlab)
else
nsplitval <- newval
newpos <- TreePos(
spls = c(pos_splits(parpos), newspl),
svals = c(pos_splvals(parpos), nsplitval),
svlabels = c(pos_splval_labels(parpos), newlab),
sub = .combine_subset_exprs(pos_subset(parpos),
make_subset_expr(newspl, nsplitval)))
}
setClass("VNodeInfo", contains = "VIRTUAL",
representation(level = "integer",
name = "character"
))
setClass("VTree", contains = c("VIRTUAL", "VNodeInfo"), representation(children = "list"))
setClass("VLeaf", contains = c("VIRTUAL", "VNodeInfo"))
setClass("VLayoutLeaf", contains = c("VIRTUAL", "VLeaf"),
representation(pos_in_tree = "TreePos",
label = "character"))
setClass("VLayoutTree", contains = c("VIRTUAL", "VTree"),
representation(split = "Split",
pos_in_tree = "TreePos",
label = "character"))
setClassUnion("VLayoutNode", c("VLayoutLeaf", "VLayoutTree"))
setOldClass("function")
setOldClass("NULL")
setClassUnion("FunctionOrNULL", c("function", "NULL"))
setClass("LayoutAxisTree", contains = "VLayoutTree",
representation(summary_func = "FunctionOrNULL"),
validity = function(object) all(sapply(object@children, function(x) is(x, "LayoutAxisTree") || is(x, "LayoutAxisLeaf"))))
setClass("LayoutAxisLeaf", contains = "VLayoutLeaf",
representation(func = "function",
col_footnotes = "list"))
setClass("LayoutColTree", contains = "LayoutAxisTree",
representation(display_columncounts = "logical",
columncount_format = "character",
col_footnotes = "list"))
setClass("LayoutColLeaf", contains = "LayoutAxisLeaf")
setClass("LayoutRowTree", contains = "LayoutAxisTree")
setClass("LayoutRowLeaf", contains = "LayoutAxisLeaf")
LayoutColTree <- function(lev = 0L,
name = obj_name(spl),
label = obj_label(spl),
kids = list(),
spl = EmptyAllSplit,
tpos = TreePos(),
summary_function = NULL,
disp_colcounts = FALSE,
colcount_format = "(N=xx)",
footnotes = list()) {
footnotes <- make_ref_value(footnotes)
if (!is.null(spl)) {
new("LayoutColTree", level = lev, children = kids,
name = .chkname(name),
summary_func = summary_function,
pos_in_tree = tpos,
split = spl,
label = label,
display_columncounts = disp_colcounts,
columncount_format = colcount_format,
col_footnotes = footnotes)
} else {
stop("problema my manitar")
LayoutColLeaf(lev = lev, label = label, tpos = tpos,
name = .chkname(name))
}
}
LayoutColLeaf <- function(lev = 0L, name = label, label = "", tpos = TreePos()
) {
new("LayoutColLeaf", level = lev, name = .chkname(name), label = label,
pos_in_tree = tpos
)
}
LayoutRowTree <- function(lev = 0L, kids = list()) {
new("LayoutRowTree", level = lev, children = kids)
}
LayoutRowLeaf <- function(lev = 0L, label = "",
pos) {
new("LayoutRowLeaf", level = lev, label = label,
pos_in_tree = pos)
}
setClass("InstantiatedColumnInfo",
representation(tree_layout = "VLayoutNode",
subset_exprs = "list",
cextra_args = "list",
counts = "integer",
total_count = "integer",
display_columncounts = "logical",
columncount_format = "FormatSpec",
top_left = "character")
)
InstantiatedColumnInfo <- function(treelyt = LayoutColTree(),
csubs = list(expression(TRUE)),
extras = list(list()),
cnts = NA_integer_,
total_cnt = NA_integer_,
dispcounts = FALSE,
countformat = "(N=xx)",
topleft = character()) {
leaves <- collect_leaves(treelyt)
nl <- length(leaves)
extras <- rep(extras, length.out = nl)
cnts <- rep(cnts, length.out = nl)
csubs <- rep(csubs, length.out = nl)
nleaves <- length(leaves)
snas <- sum(is.na(cnts))
if (length(csubs) != nleaves ||
length(extras) != nleaves ||
length(cnts) != nleaves ||
(snas != 0 && snas != nleaves))
stop("attempted to create invalid InstatiedColumnInfo object. Please contact the maintainer(s).")
new("InstantiatedColumnInfo",
tree_layout = treelyt,
subset_exprs = csubs,
cextra_args = extras,
counts = cnts,
total_count = total_cnt,
display_columncounts = dispcounts,
columncount_format = countformat,
top_left = topleft)
}
setClass("VTableNodeInfo", contains = c("VNodeInfo", "VIRTUAL"),
representation(
col_info = "InstantiatedColumnInfo",
format = "FormatSpec",
indent_modifier = "integer"))
setClass("TableRow", contains = c("VIRTUAL", "VLeaf", "VTableNodeInfo"),
representation(leaf_value = "ANY",
var_analyzed = "character",
label = "character",
row_footnotes = "list"))
LabelRow <- function(lev = 1L,
label = "",
name = label,
vis = !is.na(label) && nzchar(label),
cinfo = EmptyColInfo,
indent_mod = 0L) {
new("LabelRow",
leaf_value = list(),
level = lev,
label = label,
name = .chkname(name),
col_info = cinfo,
visible = vis,
indent_modifier = as.integer(indent_mod))
}
setClass("DataRow", contains = "TableRow",
representation(colspans = "integer")
)
setClass("ContentRow", contains = "TableRow",
representation(colspans = "integer")
)
setClass("LabelRow", contains = "TableRow",
representation(visible = "logical")
)
.tablerow <- function(vals = list(),
name = "",
lev = 1L,
label = name,
cspan = rep(1L, length(vals)),
cinfo = EmptyColInfo,
var = NA_character_,
format = NULL,
klass,
indent_mod = 0L,
footnotes = list()) {
if ((missing(name) || is.null(name) || is.na(name) || nchar(name) == 0) &&
!missing(label))
name <- label
vals <- lapply(vals, rcell)
rlabels <- unique(unlist(lapply(vals, obj_label)))
if ((missing(label) || is.null(label) || identical(label, "")) &&
sum(nzchar(rlabels)) == 1)
label <- rlabels[nzchar(rlabels)]
if (missing(cspan) &&
!is.null(unlist(lapply(vals, cell_cspan))))
cspan <- vapply(vals, cell_cspan, 0L)
rw <- new(klass,
leaf_value = vals,
name = .chkname(name),
level = lev,
label = .chkname(label),
colspans = cspan,
col_info = cinfo,
var_analyzed = var,
format = NULL,
indent_modifier = indent_mod,
row_footnotes = footnotes
)
rw <- set_format_recursive(rw, format, FALSE)
rw
}
DataRow <- function(...) .tablerow(..., klass = "DataRow")
ContentRow <- function(...) .tablerow(..., klass = "ContentRow")
setClass("VTitleFooter", contains = "VIRTUAL",
representation(main_title = "character",
subtitles = "character",
main_footer = "character",
provenance_footer = "character"))
setClass("VTableTree", contains = c("VIRTUAL", "VTableNodeInfo", "VTree", "VTitleFooter"),
representation(children = "list",
rowspans = "data.frame",
labelrow = "LabelRow"
))
setClassUnion("IntegerOrNull", c("integer", "NULL"))
etable_validity <- function(object) {
kids <- tree_children(object)
all(sapply(kids,
function(k) {
(is(k, "DataRow") || is(k, "ContentRow"))}))
}
setClass("ElementaryTable", contains = "VTableTree",
representation(var_analyzed = "character"),
validity = etable_validity
)
.enforce_valid_kids <- function(lst, colinfo) {
if (!no_colinfo(colinfo)) {
lst <- lapply(lst,
function(x) {
if (no_colinfo(x))
col_info(x) <- colinfo
else if (!identical(colinfo, col_info(x)))
stop("attempted to add child with non-matching, non-empty column info to an existing table")
x
})
}
if (are(lst, "ElementaryTable") &&
all(sapply(lst, function(tb) {
nrow(tb) <= 1 && identical(obj_name(tb), "")
}))) {
lst <- unlist(lapply(lst, function(tb) tree_children(tb)[[1]]))
}
if (length(lst) == 0)
return(list())
realnames <- sapply(lst, obj_name)
lstnames <- names(lst)
if (is.null(lstnames)) {
names(lst) <- realnames
} else if (!identical(realnames, lstnames)) {
names(lst) <- realnames
}
lst
}
ElementaryTable <- function(kids = list(),
name = "",
lev = 1L,
label = "",
labelrow = LabelRow(lev = lev,
label = label,
vis = !isTRUE(iscontent) && !is.na(label) && nzchar(label)),
rspans = data.frame(),
cinfo = NULL,
iscontent = NA,
var = NA_character_,
format = NULL,
indent_mod = 0L,
title = "",
subtitles = character(),
main_footer = character(),
prov_footer = character()) {
if (is.null(cinfo)) {
if (length(kids) > 0)
cinfo <- col_info(kids[[1]])
else
cinfo <- EmptyColInfo
}
if (no_colinfo(labelrow))
col_info(labelrow) <- cinfo
kids <- .enforce_valid_kids(kids, cinfo)
tab <- new("ElementaryTable",
children = kids,
name = .chkname(name),
level = lev,
labelrow = labelrow,
rowspans = rspans,
col_info = cinfo,
var_analyzed = var,
format = NULL,
indent_modifier = as.integer(indent_mod),
main_title = title,
subtitles = subtitles,
main_footer = main_footer,
provenance_footer = prov_footer
)
tab <- set_format_recursive(tab, format, FALSE)
tab
}
ttable_validity <- function(object) {
all(sapply(tree_children(object), function(x) is(x, "TableTree") || is(x, "ElementaryTable") || is(x, "TableRow")))
}
setClass("TableTree", contains = c("VTableTree"),
representation(content = "ElementaryTable"
),
validity = ttable_validity)
TableTree <- function(kids = list(),
name = if (!is.na(var)) var else "",
cont = EmptyElTable,
lev = 1L,
label= name,
labelrow = LabelRow(lev = lev,
label = label,
vis = nrow(cont) == 0 && !is.na(label) && nzchar(label)),
rspans = data.frame(),
iscontent = NA,
var = NA_character_,
cinfo = NULL,
format = NULL,
indent_mod = 0L,
title = "",
subtitles = character(),
main_footer = character(),
prov_footer = character()) {
if (is.null(cinfo)) {
if (!is.null(cont)) {
cinfo <- col_info(cont)
} else if (length(kids) > 0) {
cinfo <- col_info(kids[[1]])
} else {
cinfo <- EmptyColInfo
}
}
kids <- .enforce_valid_kids(kids, cinfo)
if (isTRUE(iscontent) && !is.null(cont) && nrow(cont) > 0)
stop("Got table tree with content table and content position")
if (no_colinfo(labelrow))
col_info(labelrow) <- cinfo
if ((is.null(cont) || nrow(cont) == 0) && all(sapply(kids, is, "DataRow"))) {
ElementaryTable(kids = kids,
name = .chkname(name),
lev = lev,
labelrow = labelrow,
rspans = rspans,
cinfo = cinfo,
var = var,
format = format,
indent_mod = indent_mod,
title = title,
subtitles = subtitles,
main_footer = main_footer,
prov_footer = prov_footer)
} else {
tab <- new("TableTree", content = cont,
children = kids,
name = .chkname(name),
level = lev,
labelrow = labelrow,
rowspans = rspans,
col_info = cinfo,
format = NULL,
indent_modifier = as.integer(indent_mod),
main_title = title,
subtitles = subtitles,
main_footer = main_footer,
provenance_footer = prov_footer)
tab <- set_format_recursive(tab, format, FALSE)
tab
}
}
setClass("SplitVector", contains = "list",
validity = function(object) {
if (length(object) >= 1)
lst <- tail(object, 1)[[1]]
else
lst <- NULL
all(sapply(head(object, -1), is, "Split")) && (is.null(lst) || is(lst, "Split") || is(lst, "VTableNodeInfo"))
})
SplitVector <- function(x = NULL,
...,
lst = list(...)) {
if (!is.null(x))
lst <- unlist(c(list(x), lst), recursive = FALSE)
new("SplitVector", lst)
}
avar_noneorlast <- function(vec) {
if (!is(vec, "SplitVector"))
return(FALSE)
if (length(vec) == 0)
return(TRUE)
isavar <- which(sapply(vec, is, "AnalyzeVarSplit"))
(length(isavar) == 0) || (length(isavar) == 1 && isavar == length(vec))
}
setClass("PreDataAxisLayout", contains = "list",
representation(root_split = "ANY"),
validity = function(object) {
allleafs <- unlist(object, recursive = TRUE)
all(sapply(object, avar_noneorlast)) &&
all(sapply(allleafs,
function(x) is(x, "Split") || is(x, "VTableTree")))
})
setClass("PreDataColLayout", contains = "PreDataAxisLayout",
representation(display_columncounts = "logical",
columncount_format = "character"))
setClass("PreDataRowLayout", contains = "PreDataAxisLayout")
PreDataColLayout <- function(x = SplitVector(),
rtsp = RootSplit(),
...,
lst = list(x, ...),
disp_colcounts = FALSE,
colcount_format = "(N=xx)") {
ret <- new("PreDataColLayout", lst, display_columncounts = disp_colcounts,
columncount_format = colcount_format)
ret@root_split <- rtsp
ret
}
PreDataRowLayout <- function(x = SplitVector(),
root = RootSplit(),
...,
lst = list(x, ...)) {
new("PreDataRowLayout", lst, root_split = root)
}
setClass("PreDataTableLayouts", contains= "VTitleFooter",
representation(row_layout = "PreDataRowLayout",
col_layout = "PreDataColLayout",
top_left = "character"))
PreDataTableLayouts <- function(rlayout = PreDataRowLayout(),
clayout = PreDataColLayout(),
topleft = character(),
title = "",
subtitles = character(),
main_footer = character(),
prov_footer = character()) {
new("PreDataTableLayouts",
row_layout = rlayout,
col_layout = clayout,
top_left = topleft,
main_title = title,
subtitles = subtitles,
main_footer = main_footer,
provenance_footer = prov_footer)
}
setOldClass("CellValue")
setMethod("length", "CellValue",
function(x) 1L)
setClass("RefFootnote", representation(value = "character",
index = "integer"))
RefFootnote = function(note, index = NA_integer_) {
if(is(note, "RefFootnote"))
return(note)
else if(length(note) == 0)
return(NULL)
new("RefFootnote", value = note, index = index)
}
CellValue <- function(val, format = NULL, colspan = 1L, label = NULL, indent_mod = NULL, footnotes = NULL) {
if (is.null(colspan))
colspan <- 1L
if (!is.null(colspan) && !is(colspan, "integer"))
colspan <- as.integer(colspan)
if ((is.null(label) || is.na(label)) &&
!is.null(obj_label(val)))
label <- obj_label(val)
if(!is.list(footnotes))
footnotes <- lapply(footnotes, RefFootnote)
ret <- structure(list(val), format = format, colspan = colspan, label = label,
indent_mod = indent_mod, footnotes = footnotes, class = "CellValue")
}
print.CellValue <- function(x, ...) {
cat(paste("rcell:", format_rcell(x), "\n"))
invisible(x)
}
setOldClass("RowsVerticalSection")
RowsVerticalSection <- function(values,
names = names(values),
labels = NULL,
indent_mods = NULL,
formats = NULL,
footnotes = NULL) {
stopifnot(is(values, "list"))
if (is.null(labels)) {
labels <- names(values)
}
if (is.null(names) && all(nzchar(labels)))
names <- labels
else if (is.null(labels) && !is.null(names))
labels <- names
if (!is.null(indent_mods))
indent_mods <- as.integer(indent_mods)
structure(values, class = "RowsVerticalSection", row_names = names, row_labels = labels, indent_mods = indent_mods,
row_formats = formats,
row_footnotes = lapply(footnotes,
function(fns) lapply(fns, RefFootnote)))
}
print.RowsVerticalSection <- function(x, ...) {
cat("RowsVerticalSection (in_rows) object print method:\n----------------------------\n")
print(data.frame(
row_name = attr(x, "row_names"),
formatted_cell = vapply(x, format_rcell, character(1)),
indent_mod = vapply(x, indent_mod, numeric(1)),
row_label = attr(x, "row_labels"),
stringsAsFactors = FALSE,
row.names = NULL
), row.names = TRUE)
invisible(x)
} |
twosigma_custom<-function(count_matrix,mean_form,zi_form,id,return_summary_fits=TRUE,
silent=FALSE,disp_covar=NULL
,weights=rep(1,ncol(count_matrix))
,control = glmmTMBControl(),ncores=1,cluster_type="Fork"
,chunk_size=10,lb=FALSE,internal_call=FALSE){
passed_args <- names(as.list(match.call())[-1])
required_args<-c("count_matrix","mean_form","zi_form","id")
if (any(!required_args %in% passed_args)) {
stop(paste("Argument(s)",paste(setdiff(required_args, passed_args), collapse=", "),"missing and must be specified."))
}
ngenes<-nrow(count_matrix)
genes<-rownames(count_matrix)
if(is.null(genes)){genes<-1:ngenes}
if(length(id)!=ncol(count_matrix)){stop("Argument id should be a numeric vector with length equal to the number of columns of count_matrix (i.e. the number of cells).")}
fit_ts<-function(chunk,id){
k<-0
num_err=0
fit<-vector('list',length=length(chunk))
gene_err<-rep(TRUE,length(chunk))
logLik<-rep(NA,length(chunk))
for(l in unlist(chunk)){
if(num_err>0){break}
k<-k+1
count<-count_matrix[l,,drop=FALSE]
check_twosigma_custom_input(count,mean_form,zi_form,id,disp_covar)
count<-as.numeric(count)
if(is.null(disp_covar)){
disp_form<- ~1
}else{
if(is.atomic(disp_covar)&length(disp_covar)==1){
if(disp_covar==0){stop("Invalid dispersion covariate option")}else{
if(disp_covar==1){
disp_form<-~1
}else{
stop("Invalid dispersion covariate option")
}
}
}
}
if(is.null(disp_form)){
disp_form<- ~ disp_covar}
formulas<-list(mean_form=mean_form,zi_form=zi_form,disp_form=disp_form)
tryCatch({
f<-glmmTMB(formula=formulas$mean_form
,ziformula=formulas$zi_form
,weights=weights
,dispformula = formulas$disp_form
,family=nbinom2,verbose = F
,control = control)
if(return_summary_fits==TRUE){
fit[[k]]<-summary(f)
logLik[k]<-as.numeric(fit[[k]]$logLik)
gene_err[k]<-(is.na(logLik[k]) | f$sdr$pdHess==FALSE)
}else{
fit[[k]]<-f
logLik[k]<-as.numeric(summary(fit[[k]])$logLik)
gene_err[k]<-(is.na(logLik[k]) | f$sdr$pdHess==FALSE)
}},error=function(e){})
return(list(fit=fit,gene_err=gene_err))
}
}
size=chunk_size
chunks<-split(1:ngenes,ceiling(seq_along(genes)/size))
nchunks<-length(chunks)
cl=NULL
if(cluster_type=="Sock" & ncores>1){
cl<-parallel::makeCluster(ncores)
registerDoParallel(cl)
vars<-unique(c(all.vars(mean_form)[-1],all.vars(zi_form)[-1]))
clusterExport(cl,varlist=vars,envir=environment())
}
if(cluster_type=="Fork"&ncores>1){
cl<-parallel::makeForkCluster(ncores,outfile="")
registerDoParallel(cl)
}
if(internal_call==FALSE){
print("Running Gene-Level Models")
pboptions(type="timer")
if(lb==TRUE){pboptions(use_lb=TRUE)}
if(silent==TRUE){pboptions(type="none")}
a<-pblapply(chunks,FUN=fit_ts,id=id,cl=cl)
if(ncores>1){parallel::stopCluster(cl)}
}else{
a<-lapply(chunks,FUN=fit_ts,id=id)
}
rm(count_matrix)
gc()
fit<-do.call(c,sapply(a,'[',1))
gene_err<-unlist(sapply(a,'[',2))
names(fit)<-genes
names(gene_err)<-genes
return(list(fit=fit,gene_err=gene_err))
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.