code
stringlengths 1
13.8M
|
---|
dob <- function(n, random = TRUE, x = NULL, start = Sys.Date() - 365*15,
k = 365*2, by = "1 days", prob = NULL, name = "DOB"){
if (is.null(x)){
x <- seq(start, length = k, by = by)
}
if (!inherits(x, c("Date", "POSIXct", "POSIXt"))) warning("`x`may not a date vector")
out <- sample(x = x, size = n, replace = TRUE, prob = prob)
if (!random) out <- sort(out)
varname(out, name)
}
birth <- hijack(dob,
name = "Birth"
) |
varbvsmixupdate <- function (X, sigma, sa, w, xy, d, alpha0, mu0, Xr0, i) {
n <- nrow(X)
p <- ncol(X)
K <- length(w)
if (!is.double(X) || !is.matrix(X))
stop("Input X should be a double-precision matrix")
if (length(sigma) != 1)
stop("Input sigma should be a scalar")
if (length(sa) != K)
stop("Input sa should have length equal to input w")
if (!(length(xy) == p & length(d) == p))
stop("Inputs xy and d should have length = ncol(X)")
if (any(c(dim(alpha0),dim(mu0)) != c(p,K,p,K)))
stop(paste("Inputs alpha0 and mu0 should be p x K matrices,",
"with p = ncol(X) and K = length(w)"))
if (length(Xr0) != n)
stop("length(Xr0) must be equal to nrow(X)")
if (sum(i < 1 | i > p) > 0)
stop("Input i contains invalid variable indices")
alpha <- t(alpha0)
mu <- t(mu0)
Xr <- c(Xr0)
out <- .Call(C_varbvsmixupdate_Call,X = X,sigma = as.double(sigma),
sa = as.double(sa),w = as.double(w),xy = as.double(xy),
d = as.double(d),alpha = alpha,mu = mu,Xr = Xr,
i = as.integer(i-1),eps = eps)
return(list(alpha = t(alpha),mu = t(mu),Xr = Xr))
} |
desc2df <- function(desc){
fields <- desc::desc_fields(desc)
field_content <- sapply(fields, function(i) desc::desc_get_field(key = i,
default = NA,
trim_ws = TRUE,
file = desc))
mt <- matrix(field_content,nrow = 1,dimnames = list(NULL,fields))
data.frame(mt,check.names = FALSE,stringsAsFactors = FALSE)
} |
context("f_eval")
test_that("first argument must be a function", {
expect_error(f_eval(10), "`f` is not a formula")
})
test_that("f_eval uses formula's environment", {
x <- 10
f <- local({
y <- 100
~ x + y
})
expect_equal(f_eval(f), 110)
})
test_that("data needs to be a list", {
expect_error(f_eval(~ x, 10), "Do not know how to find data")
})
test_that("looks first in `data`", {
x <- 10
data <- list(x = 100)
expect_equal(f_eval(~ x, data), 100)
})
test_that("pronouns resolve ambiguity looks first in `data`", {
x <- 10
data <- list(x = 100)
expect_equal(f_eval(~ .data$x, data), 100)
expect_equal(f_eval(~ .env$x, data), 10)
})
test_that("pronouns complain about missing values", {
expect_error(f_eval(~ .data$x, list()), "Variable 'x' not found in data")
expect_error(f_eval(~ .env$`__`, list()), "Object '__' not found in environment")
})
test_that("f_eval does quasiquoting", {
x <- 10
expect_equal(f_eval(~ uq(quote(x))), 10)
})
test_that("unquoted formulas look in their own env", {
f <- function() {
n <- 100
~ n
}
n <- 10
expect_equal(f_eval(~ uq(f())), 10)
})
test_that("unquoted formulas can use data", {
f1 <- function() {
z <- 100
~ x + z
}
f2 <- function() {
z <- 100
~ .data$x + .env$z
}
z <- 10
expect_equal(f_eval(~ uq(f1()), data = list(x = 1)), 101)
expect_equal(f_eval(~ uq(f2()), data = list(x = 1)), 101)
})
test_that("f_eval_lhs uses lhs", {
f <- 1 ~ 2
expect_equal(f_eval_lhs(f), 1)
})
test_that("find data works for NULL, lists, and data frames", {
expect_equal(find_data(NULL), list())
expect_equal(find_data(list(x = 1)), list(x = 1))
expect_equal(find_data(mtcars), mtcars)
}) |
bzShiny <- function() {
if (!requireNamespace("shiny", quietly = TRUE)) {
stop("Shiny needed for this function to work. Please install it.",
call. = FALSE)
}
if (!requireNamespace("shinythemes", quietly = TRUE)) {
stop("shinythemes needed for this function to work. Please install it.",
call. = FALSE)
}
if (!requireNamespace("DT", quietly = TRUE)) {
stop("DT needed for this function to work. Please install it.",
call. = FALSE)
}
appDir <- system.file("shiny", package = "beanz")
if (appDir == "") {
stop("Could not find Shiny directory. Try re-installing `beanz`.",
call. = FALSE)
}
shiny::runApp(appDir, display.mode = "normal");
} |
test_that("classif_obliqueRF", {
requirePackages("obliqueRF", default.method = "load")
parset.list = list(
list(),
list(ntree = 5L, mtry = 2L),
list(training_method = "svm")
)
old.predicts.list = list()
old.probs.list = list()
for (i in seq_along(parset.list)) {
parset = parset.list[[i]]
train = binaryclass.train
target = train[, binaryclass.target]
target = ifelse(target == binaryclass.task$task.desc$positive, 1, 0)
train[, binaryclass.target] = NULL
train = as.matrix(train)
pars = list(x = train, y = target)
pars = c(pars, parset)
set.seed(getOption("mlr.debug.seed"))
m = do.call(obliqueRF::obliqueRF, pars)
binaryclass.test[, binaryclass.target] = NULL
p = predict(m, newdata = binaryclass.test)
p = as.factor(p)
p = as.factor(ifelse(p == 1L, binaryclass.task$task.desc$positive, binaryclass.task$task.desc$negative))
p2 = predict(m, newdata = binaryclass.test, type = "prob")
p2 = p2[, colnames(p2) == "1"]
old.predicts.list[[i]] = p
old.probs.list[[i]] = p2
}
testSimpleParsets("classif.obliqueRF", binaryclass.df, binaryclass.target,
binaryclass.train.inds, old.predicts.list, parset.list)
testProbParsets("classif.obliqueRF", binaryclass.df, binaryclass.target,
binaryclass.train.inds, old.probs.list, parset.list)
}) |
fish.1 <- function(data, step1, ano, year.vec, tech.reg, rts, orientation, parallel, mean.x, mean.y, itt, it, shadow) {
X1 <- t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$x.vars]))
Y1 <- t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$y.vars]))
X2 <- if (ano == 1) {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$x.vars]))
} else {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano - 1], step1$x.vars]))
}
Y2 <- if (ano == 1) {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$y.vars]))
} else {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano - 1], step1$y.vars]))
}
if (tech.reg == TRUE) {
XREF1 <- X1
YREF1 <- Y1
XREF2 <- X2
YREF2 <- Y2
} else {
XREF1 <- t(as.matrix(data[data[, step1$time.var] %in% year.vec[1:(ano)], step1$x.vars]))
YREF1 <- t(as.matrix(data[data[, step1$time.var] %in% year.vec[1:(ano)], step1$y.vars]))
XREF2 <- if (ano == 1) {
t(as.matrix(data[data[, step1$time.var] %in% year.vec[1:(ano)], step1$x.vars]))
} else {
t(as.matrix(data[data[, step1$time.var] %in% year.vec[1:(ano - 1)], step1$x.vars]))
}
YREF2 <- if (ano == 1) {
t(as.matrix(data[data[, step1$time.var] %in% year.vec[1:(ano)], step1$y.vars]))
} else {
t(as.matrix(data[data[, step1$time.var] %in% year.vec[1:(ano - 1)], step1$y.vars]))
}
}
P1 <- t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$p.vars]))
P2 <- if (ano == 1) {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$p.vars]))
} else {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano - 1], step1$p.vars]))
}
W1 <- t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$w.vars]))
W2 <- if (ano == 1) {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$w.vars]))
} else {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano - 1], step1$w.vars]))
}
res2 <- foreach(dmu = 1:length(data[data[, step1$time.var] == year.vec[ano], step1$id.var]),
.combine = rbind, .packages = c("lpSolveAPI")) %dopar% {
if (nrow(data) > 99 & parallel == FALSE & ((ano-1)*nrow(data[data[, step1$time.var] == year.vec[ano], ])+dmu) %in% itt) {
cat(nextElem(it))
flush.console()
}
P.Qt <- sum(P1[, dmu] * Y1[, dmu])
P.Qs <- sum(P1[, dmu] * Y2[, dmu])
P.Xt <- sum(W1[, dmu] * X1[, dmu])
P.Xs <- sum(W1[, dmu] * X2[, dmu])
L.Qt <- sum(P2[, dmu] * Y1[, dmu])
L.Qs <- sum(P2[, dmu] * Y2[, dmu])
L.Xt <- sum(W2[, dmu] * X1[, dmu])
L.Xs <- sum(W2[, dmu] * X2[, dmu])
Qt <- sqrt(L.Qt * P.Qt)
Qs <- sqrt(L.Qs * P.Qs)
Xt <- sqrt(L.Xt * P.Xt)
Xs <- sqrt(L.Xs * P.Xs)
AO <- Qt
AI <- Xt
TFP <- AO/AI
MP <- sqrt(D.tfp(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, PRICESO = P1[,
dmu], PRICESI = W1[, dmu], rts) * D.tfp(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1,
YREF = YREF1, PRICESO = P2[, dmu], PRICESI = W2[, dmu], rts))
TFPE <- TFP/MP
TFP2 <- Qs/Xs
MP2 <- sqrt(D.tfp(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREF2, YREF = YREF2, PRICESO = P1[,
dmu], PRICESI = W1[, dmu], rts) * D.tfp(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREF2,
YREF = YREF2, PRICESO = P2[, dmu], PRICESI = W2[, dmu], rts))
TFPE2 <- TFP2/MP2
if (shadow == TRUE) {
PO <- DO.shdu(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, rts)
PI <- DI.shdu(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, rts)
} else {
PO <- NULL
PI <- NULL
}
if (orientation == "out") {
teseme.OL <- DO.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, PRICESO = P2[, dmu], rts)
teseme.OP <- DO.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, PRICESO = P1[, dmu], rts)
RAE <- sqrt(teseme.OL["OME"] * teseme.OP["OME"])
RE <- RAE * teseme.OL["OTE"]
ROSE <- ((AO/(teseme.OL["OTE"] * RAE))/AI)/MP
OSME <- RAE * ROSE
RME <- TFPE/teseme.OL["OTE"]/teseme.OL["OSE"]
REV <- sum(Y1[, dmu] * mean.y * P1[, dmu])
COST <- sum(X1[, dmu] * mean.x * W1[, dmu])
PROF <- REV/COST
P <- REV/AO
W <- COST/AI
TT <- P/W
teseme.O2L <- DO.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREF2, YREF = YREF2, PRICESO = P2[, dmu], rts)
names(teseme.O2L) <- c("OTE2", "OSE2","OME2")
teseme.O2P <- DO.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREF2, YREF = YREF2, PRICESO = P1[, dmu], rts)
names(teseme.O2P) <- c("OTE2", "OSE2","OME2")
RAE2 <- sqrt(teseme.O2L["OME2"] * teseme.O2P["OME2"])
RE2 <- RAE2 * teseme.O2L["OTE2"]
ROSE2 <- ((Qs/(teseme.O2L["OTE2"] * RAE2))/Xs)/MP2
OSME2 <- RAE2 * ROSE2
RME2 <- TFPE2/teseme.O2L["OTE2"]/teseme.O2L["OSE2"]
res1 <- c(REV = REV, COST = COST, PROF = PROF, P = P, W = W, TT = TT, AO = AO, AI = AI,
TFP = TFP, MP = MP, TFPE = TFPE, teseme.OL[1:2], RAE = unname(RAE), ROSE = unname(ROSE), OSME = unname(OSME), RME = unname(RME),
RE = unname(RE), Qt = Qt, Qs = Qs, Xt = Xt, Xs = Xs, TFP2 = TFP2, MP2 = MP2,
TFPE2 = TFPE2, RAE2, ROSE2 = unname(ROSE2), OSME2 = unname(OSME2), RME2 = unname(RME2),
RE2 = unname(RE2), PRICEI = PI, PRICEO = PO)
} else {
if (orientation == "in") {
teseme.IL <- DI.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, PRICESI = W2[, dmu], rts)
teseme.IP <- DI.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, PRICESI = W1[, dmu], rts)
CAE <- sqrt(teseme.IL["IME"] * teseme.IP["IME"])
CE <- CAE * teseme.IL["ITE"]
RISE <- (AO/(AI * CAE * teseme.IL["ITE"]))/MP
ISME <- CAE * RISE
RME <- TFPE/teseme.IL["ITE"]/teseme.IL["ISE"]
REV <- sum(Y1[, dmu] * mean.y * P1[, dmu])
COST <- sum(X1[, dmu] * mean.x * W1[, dmu])
PROF <- REV/COST
P <- REV/AO
W <- COST/AI
TT <- P/W
teseme.I2L <- DI.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREF2, YREF = YREF2, PRICESI = W2[, dmu], rts)
names(teseme.I2L) <- c("ITE2", "ISE2","IME2")
teseme.I2P <- DI.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREF2, YREF = YREF2, PRICESI = W1[, dmu], rts)
names(teseme.I2P) <- c("ITE2", "ISE2","IME2")
CAE2 <- sqrt(teseme.I2L["IME2"] * teseme.I2P["IME2"])
CE2 <- CAE2 * teseme.I2L["ITE2"]
RISE2 <- (Qs/(Xs * CAE2 * teseme.I2L["ITE2"]))/MP2
ISME2 <- CAE2 * RISE2
RME2 <- TFPE2/teseme.I2L["ITE2"]/teseme.I2L["ISE2"]
res1 <- c(REV = REV, COST = COST, PROF = PROF, P = P, W = W, TT = TT, AO = AO, AI = AI,
TFP = TFP, MP = MP, TFPE = TFPE, teseme.IL[1:2], CAE = unname(CAE), RISE = unname(RISE), ISME = unname(ISME),
RME = unname(RME), CE = unname(CE), Qt = Qt, Qs = Qs, Xt = Xt, Xs = Xs, TFP2 = TFP2,
MP2 = MP2, TFPE2 = TFPE2, CAE2, RISE2 = unname(RISE2), ISME2 = unname(ISME2),
RME2 = unname(RME2), CE2 = unname(CE2), PRICEI = PI, PRICEO = PO)
} else {
teseme.OL <- DO.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, PRICESO = P2[, dmu], rts)
teseme.OP <- DO.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, PRICESO = P1[, dmu], rts)
RAE <- sqrt(teseme.OL["OME"] * teseme.OP["OME"])
RE <- RAE * teseme.OL["OTE"]
ROSE <- ((AO/(teseme.OL["OTE"] * RAE))/AI)/MP
OSME <- RAE * ROSE
RME <- TFPE/teseme.OL["OTE"]/teseme.OL["OSE"]
teseme.IL <- DI.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, PRICESI = W2[, dmu], rts)
teseme.IP <- DI.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREF1, YREF = YREF1, PRICESI = W1[, dmu], rts)
CAE <- sqrt(teseme.IL["IME"] * teseme.IP["IME"])
CE <- CAE * teseme.IL["ITE"]
RISE <- (AO/(AI * CAE * teseme.IL["ITE"]))/MP
ISME <- CAE * RISE
teseme.OIL <- sqrt(teseme.OL * teseme.IL)
names(teseme.OIL)[1:2] <- c("OTE.ITE", "OSE.ISE")
RAE.CAE <- sqrt(RAE * CAE)
ROSE.RISE <- sqrt(ROSE * RISE)
OSME.ISME <- RAE.CAE * ROSE.RISE
RE.CE <- sqrt(RE * CE)
REV <- sum(Y1[, dmu] * mean.y * P1[, dmu])
COST <- sum(X1[, dmu] * mean.x * W1[, dmu])
PROF <- REV/COST
P <- REV/AO
W <- COST/AI
TT <- P/W
teseme.O2L <- DO.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREF2, YREF = YREF2, PRICESO = P2[, dmu], rts)
names(teseme.O2L) <- c("OTE2", "OSE2","OME2")
teseme.O2P <- DO.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREF2, YREF = YREF2, PRICESO = P1[, dmu], rts)
names(teseme.O2P) <- c("OTE2", "OSE2","OME2")
RAE2 <- sqrt(teseme.O2L["OME2"] * teseme.O2P["OME2"])
RE2 <- RAE2 * teseme.O2L["OTE2"]
ROSE2 <- ((Qs/(teseme.O2L["OTE2"] * RAE2))/Xs)/MP2
OSME2 <- RAE2 * ROSE2
RME2 <- TFPE2/teseme.O2L["OTE2"]/teseme.O2L["OSE2"]
teseme.I2L <- DI.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREF2, YREF = YREF2, PRICESI = W2[, dmu], rts)
names(teseme.I2L) <- c("ITE2", "ISE2","IME2")
teseme.I2P <- DI.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREF2, YREF = YREF2, PRICESI = W1[, dmu], rts)
names(teseme.I2P) <- c("ITE2", "ISE2","IME2")
CAE2 <- sqrt(teseme.I2L["IME2"] * teseme.I2P["IME2"])
CE2 <- CAE2 * teseme.I2L["ITE2"]
RISE2 <- (Qs/(Xs * CAE2 * teseme.I2L["ITE2"]))/MP2
ISME2 <- CAE2 * RISE2
teseme.OI2L <- sqrt(teseme.O2L * teseme.I2L)
RE2.CE2 <- sqrt(RE2 * CE2)
RAE2.CAE2 <- sqrt(RAE2 * CAE2)
ROSE2.RISE2 <- sqrt(ROSE2 * RISE2)
OSME2.ISME2 <- RAE2.CAE2 * ROSE2.RISE2
res1 <- c(REV = REV, COST = COST, PROF = PROF, P = P, W = W, TT = TT, AO = AO, AI = AI,
TFP = TFP, MP = MP, TFPE = TFPE, teseme.OIL[1:2], RAE.CAE = unname(RAE.CAE), ROSE.RISE = unname(ROSE.RISE),
OSME.ISME = unname(OSME.ISME), RME = unname(RME), RE.CE = unname(RE.CE), Qt = Qt,
Qs = Qs, Xt = Xt, Xs = Xs, TFP2 = TFP2, MP2 = MP2, TFPE2 = TFPE2, RAE2.CAE2 = unname(RAE2.CAE2),
ROSE2.RISE2 = unname(ROSE2.RISE2), OSME2.ISME2 = unname(OSME2.ISME2), RME2 = unname(RME2),
RE2.CE2 = unname(RE2.CE2), PRICEI = PI, PRICEO = PO)
}
}
return(res1)
}
res2
}
fish.2 <- function(data, step1, ano, year.vec, rts, orientation, parallel, mean.x, mean.y, itt, it, shadow) {
X1 <- t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$x.vars]))
Y1 <- t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$y.vars]))
X2 <- if (ano == 1) {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$x.vars]))
} else {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano - 1], step1$x.vars]))
}
Y2 <- if (ano == 1) {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$y.vars]))
} else {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano - 1], step1$y.vars]))
}
P1 <- t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$p.vars]))
P2 <- if (ano == 1) {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$p.vars]))
} else {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano - 1], step1$p.vars]))
}
W1 <- t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$w.vars]))
W2 <- if (ano == 1) {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano], step1$w.vars]))
} else {
t(as.matrix(data[data[, step1$time.var] == year.vec[ano - 1], step1$w.vars]))
}
XREFs <- t(as.matrix(data[, step1$x.vars]))
YREFs <- t(as.matrix(data[, step1$y.vars]))
res2 <- foreach(dmu = 1:length(data[data[, step1$time.var] == year.vec[ano], step1$id.var]),
.combine = rbind, .packages = c("lpSolveAPI")) %dopar% {
if (nrow(data) > 99 & parallel == FALSE & ((ano-1)*nrow(data[data[, step1$time.var] == year.vec[ano], ])+dmu) %in% itt) {
cat(nextElem(it))
flush.console()
}
P.Qt <- sum(P1[, dmu] * Y1[, dmu])
P.Qs <- sum(P1[, dmu] * Y2[, dmu])
P.Xt <- sum(W1[, dmu] * X1[, dmu])
P.Xs <- sum(W1[, dmu] * X2[, dmu])
L.Qt <- sum(P2[, dmu] * Y1[, dmu])
L.Qs <- sum(P2[, dmu] * Y2[, dmu])
L.Xt <- sum(W2[, dmu] * X1[, dmu])
L.Xs <- sum(W2[, dmu] * X2[, dmu])
Qt <- sqrt(L.Qt * P.Qt)
Qs <- sqrt(L.Qs * P.Qs)
Xt <- sqrt(L.Xt * P.Xt)
Xs <- sqrt(L.Xs * P.Xs)
AO <- Qt
AI <- Xt
TFP <- AO/AI
MP <- sqrt(D.tfp(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, PRICESO = P1[,
dmu], PRICESI = W1[, dmu], rts) * D.tfp(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs,
YREF = YREFs, PRICESO = P2[, dmu], PRICESI = W2[, dmu], rts))
TFPE <- TFP/MP
TFP2 <- Qs/Xs
MP2 <- sqrt(D.tfp(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREFs, YREF = YREFs, PRICESO = P1[,
dmu], PRICESI = W1[, dmu], rts) * D.tfp(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREFs,
YREF = YREFs, PRICESO = P2[, dmu], PRICESI = W2[, dmu], rts))
TFPE2 <- TFP2/MP2
if (shadow == TRUE) {
PO <- DO.shdu(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, rts)
PI <- DI.shdu(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, rts)
} else {
PO <- NULL
PI <- NULL
}
if (orientation == "out") {
teseme.OL <- DO.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, PRICESO = P2[, dmu], rts)
teseme.OP <- DO.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, PRICESO = P1[, dmu], rts)
RAE <- sqrt(teseme.OL["OME"] * teseme.OP["OME"])
RE <- RAE * teseme.OL["OTE"]
ROSE <- ((AO/(teseme.OL["OTE"] * RAE))/AI)/MP
OSME <- RAE * ROSE
RME <- TFPE/teseme.OL["OTE"]/teseme.OL["OSE"]
REV <- sum(Y1[, dmu] * mean.y * P1[, dmu])
COST <- sum(X1[, dmu] * mean.x * W1[, dmu])
PROF <- REV/COST
P <- REV/AO
W <- COST/AI
TT <- P/W
teseme.O2L <- DO.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREFs, YREF = YREFs, PRICESO = P2[, dmu], rts)
names(teseme.O2L) <- c("OTE2", "OSE2","OME2")
teseme.O2P <- DO.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREFs, YREF = YREFs, PRICESO = P1[, dmu], rts)
names(teseme.O2P) <- c("OTE2", "OSE2","OME2")
RAE2 <- sqrt(teseme.O2L["OME2"] * teseme.O2P["OME2"])
RE2 <- RAE2 * teseme.O2L["OTE2"]
ROSE2 <- ((Qs/(teseme.O2L["OTE2"] * RAE2))/Xs)/MP2
OSME2 <- RAE2 * ROSE2
RME2 <- TFPE2/teseme.O2L["OTE2"]/teseme.O2L["OSE2"]
res1 <- c(REV = REV, COST = COST, PROF = PROF, P = P, W = W, TT = TT, AO = AO, AI = AI,
TFP = TFP, MP = MP, TFPE = TFPE, teseme.OL[1:2], RAE = unname(RAE), ROSE = unname(ROSE), OSME = unname(OSME), RME = unname(RME),
RE = unname(RE), Qt = Qt, Qs = Qs, Xt = Xt, Xs = Xs, TFP2 = TFP2, MP2 = MP2,
TFPE2 = TFPE2, RAE2, ROSE2 = unname(ROSE2), OSME2 = unname(OSME2), RME2 = unname(RME2),
RE2 = unname(RE2), PRICEI = PI, PRICEO = PO)
} else {
if (orientation == "in") {
teseme.IL <- DI.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, PRICESI = W2[, dmu], rts)
teseme.IP <- DI.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, PRICESI = W1[, dmu], rts)
CAE <- sqrt(teseme.IL["IME"] * teseme.IP["IME"])
CE <- CAE * teseme.IL["ITE"]
RISE <- (AO/(AI * CAE * teseme.IL["ITE"]))/MP
ISME <- CAE * RISE
RME <- TFPE/teseme.IL["ITE"]/teseme.IL["ISE"]
REV <- sum(Y1[, dmu] * mean.y * P1[, dmu])
COST <- sum(X1[, dmu] * mean.x * W1[, dmu])
PROF <- REV/COST
P <- REV/AO
W <- COST/AI
TT <- P/W
teseme.I2L <- DI.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREFs, YREF = YREFs, PRICESI = W2[, dmu], rts)
names(teseme.I2L) <- c("ITE2", "ISE2","IME2")
teseme.I2P <- DI.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREFs, YREF = YREFs, PRICESI = W1[, dmu], rts)
names(teseme.I2P) <- c("ITE2", "ISE2","IME2")
CAE2 <- sqrt(teseme.I2L["IME2"] * teseme.I2P["IME2"])
CE2 <- CAE2 * teseme.I2L["ITE2"]
RISE2 <- (Qs/(Xs * CAE2 * teseme.I2L["ITE2"]))/MP2
ISME2 <- CAE2 * RISE2
RME2 <- TFPE2/teseme.I2L["ITE2"]/teseme.I2L["ISE2"]
res1 <- c(REV = REV, COST = COST, PROF = PROF, P = P, W = W, TT = TT, AO = AO, AI = AI,
TFP = TFP, MP = MP, TFPE = TFPE, teseme.IL[1:2], CAE = unname(CAE), RISE = unname(RISE), ISME = unname(ISME),
RME = unname(RME), CE = unname(CE), Qt = Qt, Qs = Qs, Xt = Xt, Xs = Xs, TFP2 = TFP2,
MP2 = MP2, TFPE2 = TFPE2, CAE2, RISE2 = unname(RISE2), ISME2 = unname(ISME2),
RME2 = unname(RME2), CE2 = unname(CE2), PRICEI = PI, PRICEO = PO)
} else {
teseme.OL <- DO.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, PRICESO = P2[, dmu], rts)
teseme.OP <- DO.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, PRICESO = P1[, dmu], rts)
RAE <- sqrt(teseme.OL["OME"] * teseme.OP["OME"])
RE <- RAE * teseme.OL["OTE"]
ROSE <- ((AO/(teseme.OL["OTE"] * RAE))/AI)/MP
OSME <- RAE * ROSE
RME <- TFPE/teseme.OL["OTE"]/teseme.OL["OSE"]
teseme.IL <- DI.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, PRICESI = W2[, dmu], rts)
teseme.IP <- DI.teseme(XOBS = X1[, dmu], YOBS = Y1[, dmu], XREF = XREFs, YREF = YREFs, PRICESI = W1[, dmu], rts)
CAE <- sqrt(teseme.IL["IME"] * teseme.IP["IME"])
CE <- CAE * teseme.IL["ITE"]
RISE <- (AO/(AI * CAE * teseme.IL["ITE"]))/MP
ISME <- CAE * RISE
teseme.OIL <- sqrt(teseme.OL * teseme.IL)
names(teseme.OIL)[1:2] <- c("OTE.ITE", "OSE.ISE")
RAE.CAE <- sqrt(RAE * CAE)
ROSE.RISE <- sqrt(ROSE * RISE)
OSME.ISME <- RAE.CAE * ROSE.RISE
RE.CE <- sqrt(RE * CE)
REV <- sum(Y1[, dmu] * mean.y * P1[, dmu])
COST <- sum(X1[, dmu] * mean.x * W1[, dmu])
PROF <- REV/COST
P <- REV/AO
W <- COST/AI
TT <- P/W
teseme.O2L <- DO.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREFs, YREF = YREFs, PRICESO = P2[, dmu], rts)
names(teseme.O2L) <- c("OTE2", "OSE2","OME2")
teseme.O2P <- DO.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREFs, YREF = YREFs, PRICESO = P1[, dmu], rts)
names(teseme.O2P) <- c("OTE2", "OSE2","OME2")
RAE2 <- sqrt(teseme.O2L["OME2"] * teseme.O2P["OME2"])
RE2 <- RAE2 * teseme.O2L["OTE2"]
ROSE2 <- ((Qs/(teseme.O2L["OTE2"] * RAE2))/Xs)/MP2
OSME2 <- RAE2 * ROSE2
RME2 <- TFPE2/teseme.O2L["OTE2"]/teseme.O2L["OSE2"]
teseme.I2L <- DI.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREFs, YREF = YREFs, PRICESI = W2[, dmu], rts)
names(teseme.I2L) <- c("ITE2", "ISE2","IME2")
teseme.I2P <- DI.teseme(XOBS = X2[, dmu], YOBS = Y2[, dmu], XREF = XREFs, YREF = YREFs, PRICESI = W1[, dmu], rts)
names(teseme.I2P) <- c("ITE2", "ISE2","IME2")
CAE2 <- sqrt(teseme.I2L["IME2"] * teseme.I2P["IME2"])
CE2 <- CAE2 * teseme.I2L["ITE2"]
RISE2 <- (Qs/(Xs * CAE2 * teseme.I2L["ITE2"]))/MP2
ISME2 <- CAE2 * RISE2
teseme.OI2L <- sqrt(teseme.O2L * teseme.I2L)
RE2.CE2 <- sqrt(RE2 * CE2)
RAE2.CAE2 <- sqrt(RAE2 * CAE2)
ROSE2.RISE2 <- sqrt(ROSE2 * RISE2)
OSME2.ISME2 <- RAE2.CAE2 * ROSE2.RISE2
res1 <- c(REV = REV, COST = COST, PROF = PROF, P = P, W = W, TT = TT, AO = AO, AI = AI,
TFP = TFP, MP = MP, TFPE = TFPE, teseme.OIL[1:2], RAE.CAE = unname(RAE.CAE), ROSE.RISE = unname(ROSE.RISE),
OSME.ISME = unname(OSME.ISME), RME = unname(RME), RE.CE = unname(RE.CE), Qt = Qt,
Qs = Qs, Xt = Xt, Xs = Xs, TFP2 = TFP2, MP2 = MP2, TFPE2 = TFPE2, RAE2.CAE2 = unname(RAE2.CAE2),
ROSE2.RISE2 = unname(ROSE2.RISE2), OSME2.ISME2 = unname(OSME2.ISME2), RME2 = unname(RME2),
RE2.CE2 = unname(RE2.CE2), PRICEI = PI, PRICEO = PO)
}
}
return(res1)
}
res2
}
print.Fisher <- function(x, digits = NULL, ...) {
if (is.null(digits)) {
digits <- max(3, getOption("digits") - 3)
}
cat("\nFisher productivity and profitability levels (summary):\n\n")
print(summary(x[["Levels"]][-c(1:2)], digits = digits), digits = digits)
cat("\n\nFisher productivity and profitability changes (summary):\n\n")
print(summary(x[["Changes"]][-c(1:2)], digits = digits), digits = digits)
if (!is.null(x[["Shadowp"]])) {
cat("\n\nFisher productivity shadow prices (summary):\n\n")
print(summary(x[["Shadowp"]][-c(1:2)], digits = digits), digits = digits)
}
cat("\n")
invisible(x)
} |
whichCondOnLatent <- function( NNarray, firstind.pred=nrow(NNarray)+1 ){
n <- nrow(NNarray)
m <- ncol(NNarray)-1
CondOnLatent <- matrix(NA,n,m+1)
CondOnLatent[1,1] <- TRUE
for(k in 2:n){
latents=rep(0,m)
for(ind in 2:(m+1)){
l=NNarray[k,ind]
if(!is.na(l) && l<firstind.pred)
latents[ind]=sum(is.element(NNarray[k,],NNarray[l,]*CondOnLatent[l,]))
}
ind=NNarray[k,(which(latents==max(latents)))[1]]
CondOnLatent[k, ] <- is.element( NNarray[k,], NNarray[ind,]*CondOnLatent[ind,] )
CondOnLatent[k,NNarray[k,]>=firstind.pred] <- TRUE
CondOnLatent[k,1] <- TRUE
CondOnLatent[k,is.na(NNarray[k,])] <- NA
}
return(CondOnLatent)
} |
pdPgram <- function(X, B, method = c("multitaper", "bartlett"), bias.corr = F, nw = 3) {
if(missing(method)){
method <- "multitaper"
}
method <- match.arg(method, c("multitaper", "bartlett"))
d <- ncol(X)
n <- nrow(X)
if (missing(B)) {
B <- d
}
if(B < d){
warning("The number of tapers 'B' is smaller than the dimension of the time series 'ncol(X)';
the periodogram matrix is not positive definite.")
}
h <- switch(method,
bartlett = matrix(0, 1, 1),
multitaper = multitaper::dpss(n, B, nw = nw, returnEigenvalues = F)$v * sqrt(n))
P <- pgram_C(X, B, h, method, F)
bias <- ifelse(bias.corr, B * exp(-1/d * sum(digamma(B - (d - 1:d)))), 1)
return(list(freq = pi * (0:(dim(P)[3]-1))/dim(P)[3], P = bias * P))
}
pdPgram2D <- function(X, B, tf.grid, method = c("dpss", "hermite"), nw = 3, bias.corr = F){
d <- ncol(X)
n <- nrow(X)
if(missing(method)) {
method <- "dpss"
}
method <- match.arg(method, c("dpss", "hermite"))
if (missing(B)) {
B <- d
}
if(B < d){
warning("The number of tapers 'B' is smaller than the dimension of the time series 'ncol(X)';
the periodogram matrix is not positive definite!")
}
L <- ifelse(missing(tf.grid), 2^round(log2(sqrt(n))), length(tf.grid$time))
m <- 2 * floor(n / (2 * L))
if(missing(tf.grid)){
tf.grid <- list(time = seq(L + 1, n - L - 1, length = L)/n, freq = pi * 0:(m - 1) / m)
}
bias.corr <-ifelse(isTRUE(bias.corr & B >= d), B * exp(-1/d * sum(digamma(B - (d - 1:d)))), 1)
if(method == "dpss"){
h <- multitaper::dpss(m, B, nw, returnEigenvalues = F)$v * sqrt(m)
} else if(method == "hermite"){
Hermite <- function(k, t){
res <- numeric(length(t))
for(ti in t){
H <- numeric(k + 1)
for(i in 0:k){
H[i + 1] <- (if(i == 0) 1 else if(i == 1) 2 * ti else 2 * ti * H[i] - 2 * (i - 1) * H[i - 1])
}
res[which(t == ti)] <- exp(-ti^2 / 2) * H[k + 1] / sqrt(sqrt(pi) * 2^k * factorial(k))
}
return(res)
}
h0 <- sapply(0:(B-1), function(b) Hermite(b, seq(-nw, nw, length = m)))
norm.h0 <- sqrt(mean(h0[, 1]^2))
h <- apply(h0, 2, function(h.col) h.col / norm.h0)
}
Per <- sapply(tf.grid$time, function(ti) {
pgram_C(X[round(ti * n) + (-floor(m/2 - 1)):(m / 2), ], B, h, "multitaper", T)
}, simplify = "array")
return(list(tf.grid = tf.grid, P = bias.corr * aperm(Per, c(1, 2, 4, 3))))
} |
groupn <- function(x, y, m=150)
{
s <- !is.na(x + y)
x<-x[s]
y<-y[s]
i<-order(x)
x<-x[i]
y<-y[i]
n<-length(x)
if(n<m)
stop("m<number of observations in groupn")
start <- 1
end <- m
meanx <- NULL
meany <- NULL
while(end <= n) {
meanx <- c(meanx,mean(x[start:end]))
meany <- c(meany,mean(y[start:end]))
start <- start+m
end <- end+m
}
if(end > n) {
meanx <- c(meanx,mean(x[n-m+1:n]))
meany <- c(meany,mean(y[n-m+1:n]))
}
return(list(x=meanx,y=meany))
} |
sdc_raster <- function( x
, variable
, r = 200
, max_risk = 0.95
, min_count = 10
, risk_type = c("external", "internal", "discrete")
, ...
, field = variable
){
if (!is(r, "Raster")){
if (is.numeric(r) && length(r) < 3 ){
r <- create_raster(x, res = r)
} else{
stop("'r' must be either a raster or the size of a raster")
}
}
v <- if (is.character(field)) x[[field]] else field
type <- if (is.numeric(v)) {
"numeric"
} else if (is.logical(v)){
"logical"
} else {
stop("'variable' is not a numeric or logical.")
}
risk_type <- if (type == "logical") "discrete" else match.arg(risk_type)
l <- list()
l$sum <- raster::rasterize(x, r, fun = sum, field = field)
l$count <- raster::rasterize(x, r, fun = "count", field = field)
l$mean <- l$sum / l$count
if (type == "numeric"){
l$max <- raster::rasterize(x, r, fun = max, field = field)
l$max2 <- raster::rasterize(x, r, fun = max2, field = field)
}
value <- raster::brick(l, ...)
new_sdc_raster( value, type = type
, max_risk = max_risk, min_count = min_count
, risk_type = risk_type
)
}
new_sdc_raster <- function( r
, type = c("numeric", "logical")
, max_risk
, min_count
, risk_type
, scale = 1
){
structure(
list(
value = r,
max_risk = max_risk,
min_count = min_count,
risk_type = risk_type,
scale = scale,
type = type
), class="sdc_raster")
}
is_sdc_raster <- function(x, ...){
("sdc_raster" %in% class(x))
}
assert_sdc_raster <- function(x, ...){
if (!is_sdc_raster(x)){
stop("an object of type sdc_raster was expected.")
}
}
print.sdc_raster <- function(x, ...){
cat(x$type, "sdc_raster object: \n"
, " resolution:", raster::res(x$value)
, ", max_risk:", x$max_risk
, ", min_count:", x$min_count
, "\n mean sensitivity score [0,1]: ", sensitivity_score(x)
)
} |
runcodeUI <- function(code = "",
type = c("text", "textarea", "ace"),
width = NULL,
height = NULL,
includeShinyjs = NULL,
id = NULL) {
ns <- shiny::NS(id)
if (!missing(includeShinyjs)) {
warning("`includeShinyjs` argument is deprecated. You should always make ",
"sure to initialize shinyjs using `useShinyjs()`.")
}
type <- match.arg(type)
if (type == "ace") {
if (!requireNamespace("shinyAce", quietly = TRUE)) {
errMsg("You need to install the 'shinyAce' package in order to use 'shinyAce' editor.")
}
}
placeholder <- "Enter R code"
shiny::singleton(shiny::tagList(
if (type == "text")
shiny::textInput(
ns("runcode_expr"), label = NULL, value = code,
width = width, placeholder = placeholder
),
if (type == "textarea")
shiny::textAreaInput(
ns("runcode_expr"), label = NULL, value = code,
width = width, height = height, placeholder = placeholder
),
if (type == "ace")
shinyAce::aceEditor(ns("runcode_expr"), mode = 'r', value = code,
height = height, theme = "github", fontSize = 16),
shiny::actionButton(ns("runcode_run"), "Run", class = "btn-success"),
shinyjs::hidden(
shiny::div(
id = ns("runcode_error"),
style = "color: red; font-weight: bold;",
shiny::div("Oops, that resulted in an error! Try again."),
shiny::div("Error: ", shiny::br(),
shiny::tags$i(shiny::span(
id = ns("runcode_errorMsg"),
style = "margin-left: 10px;")))
)
)
))
}
runcodeServer <- function() {
parentFrame <- parent.frame(1)
session <- getSession()
shiny::observeEvent(session$input[['runcode_run']], {
shinyjs::hide("runcode_error")
tryCatch(
shiny::isolate(
eval(parse(text = session$input[['runcode_expr']]), envir = parentFrame)
),
error = function(err) {
shinyjs::html("runcode_errorMsg", as.character(err$message))
shinyjs::show(id = "runcode_error", anim = TRUE, animType = "fade")
}
)
})
invisible(NULL)
} |
control_sim_anneal <-
function(verbose = TRUE,
no_improve = Inf,
restart = 8L,
radius = c(0.05, 0.15),
flip = 3/4,
cooling_coef = 0.02,
extract = NULL,
save_pred = FALSE,
time_limit = NA,
pkgs = NULL,
save_workflow = FALSE,
save_history = FALSE,
event_level = "first",
parallel_over = NULL) {
tune::val_class_and_single(verbose, "logical", "control_sim_anneal()")
tune::val_class_and_single(save_pred, "logical", "control_sim_anneal()")
tune::val_class_and_single(no_improve, c("numeric", "integer"), "control_sim_anneal()")
tune::val_class_and_single(restart, c("numeric", "integer"), "control_sim_anneal()")
tune::val_class_and_single(flip, "numeric", "control_sim_anneal()")
tune::val_class_and_single(cooling_coef, "numeric", "control_sim_anneal()")
tune::val_class_or_null(extract, "function", "control_sim_anneal()")
tune::val_class_and_single(time_limit, c("logical", "numeric"), "control_sim_anneal()")
tune::val_class_or_null(pkgs, "character", "control_sim_anneal()")
tune::val_class_and_single(save_workflow, "logical", "control_sim_anneal()")
tune::val_class_and_single(save_history, "logical", "control_sim_anneal()")
if (!is.null(parallel_over)) {
val_parallel_over(parallel_over, "control_sim_anneal()")
}
if (!is.numeric(radius) | !length(radius) == 2) {
rlang::abort("Argument 'radius' should be two numeric values.")
}
radius <- sort(radius)
radius[radius <= 0] <- 0.001
radius[radius >= 1] <- 0.999
flip[flip < 0] <- 0
flip[flip > 1] <- 1
cooling_coef[cooling_coef <= 0] <- 0.0001
if (no_improve < 2) {
rlang::abort("'no_improve' should be > 1")
}
if (restart < 2) {
rlang::abort("'restart' should be > 1")
}
if (!is.infinite(restart) && restart > no_improve) {
cli::cli_alert_warning(
"Parameter restart is scheduled after {restart} poor iterations but the search will stop after {no_improve}."
)
}
res <-
list(
verbose = verbose,
no_improve = no_improve,
restart = restart,
radius = radius,
flip = flip,
cooling_coef = cooling_coef,
extract = extract,
save_pred = save_pred,
time_limit = time_limit,
pkgs = pkgs,
save_workflow = save_workflow,
save_history = save_history,
event_level = event_level,
parallel_over = parallel_over
)
class(res) <- "control_sim_anneal"
res
}
print.control_sim_anneal <- function(x, ...) {
cat("Simulated annealing control object\n")
invisible(x)
}
val_parallel_over <- function(parallel_over, where) {
val_class_and_single(parallel_over, "character", where)
rlang::arg_match0(parallel_over, c("resamples", "everything"), "parallel_over")
invisible(NULL)
} |
NULL
tk_augment_lags <- function(.data,
.value,
.lags = 1,
.names = "auto") {
column_expr <- enquo(.value)
if (rlang::quo_is_missing(column_expr)) stop(call. = FALSE, "tk_augment_lags(.value) is missing.")
UseMethod("tk_augment_lags", .data)
}
tk_augment_lags.data.frame <- function(.data,
.value,
.lags = 1,
.names = "auto") {
col_nms <- names(tidyselect::eval_select(rlang::enquo(.value), .data))
make_call <- function(col, lag_val) {
rlang::call2(
"lag_vec",
x = rlang::sym(col),
lag = lag_val,
.ns = "timetk"
)
}
grid <- expand.grid(
col = col_nms,
lag_val = .lags,
stringsAsFactors = FALSE
)
calls <- purrr::pmap(.l = list(grid$col, grid$lag_val), make_call)
if (any(.names == "auto")) {
newname <- paste0(grid$col, "_lag", grid$lag_val)
} else {
newname <- as.list(.names)
}
calls <- purrr::set_names(calls, newname)
ret <- tibble::as_tibble(dplyr::mutate(.data, !!!calls))
return(ret)
}
tk_augment_lags.grouped_df <- function(.data,
.value,
.lags = 1,
.names = "auto") {
column_expr <- enquo(.value)
group_names <- dplyr::group_vars(.data)
.data %>%
tidyr::nest() %>%
dplyr::mutate(nested.col = purrr::map(
.x = data,
.f = function(df) tk_augment_lags(
.data = df,
.value = !! enquo(.value),
.lags = .lags,
.names = .names
)
)) %>%
dplyr::select(-data) %>%
tidyr::unnest(cols = nested.col) %>%
dplyr::group_by_at(.vars = group_names)
}
tk_augment_lags.default <- function(.data,
.value,
.lags = 1,
.names = "auto") {
stop(paste0("`tk_augment_lags` has no method for class ", class(data)[[1]]))
}
tk_augment_leads <- function(.data,
.value,
.lags = -1,
.names = "auto") {
column_expr <- enquo(.value)
if (rlang::quo_is_missing(column_expr)) stop(call. = FALSE, "tk_augment_leads(.value) is missing.")
UseMethod("tk_augment_leads", .data)
}
tk_augment_leads.data.frame <- function(.data,
.value,
.lags = -1,
.names = "auto") {
col_nms <- names(tidyselect::eval_select(rlang::enquo(.value), .data))
make_call <- function(col, lag_val) {
rlang::call2(
"lag_vec",
x = rlang::sym(col),
lag = lag_val,
.ns = "timetk"
)
}
grid <- expand.grid(
col = col_nms,
lag_val = .lags,
stringsAsFactors = FALSE
)
calls <- purrr::pmap(.l = list(grid$col, grid$lag_val), make_call)
if (any(.names == "auto")) {
newname <- paste0(grid$col, "_lag", grid$lag_val) %>%
stringr::str_replace_all("lag-","lead")
} else {
newname <- as.list(.names)
}
calls <- purrr::set_names(calls, newname)
ret <- tibble::as_tibble(dplyr::mutate(.data, !!!calls))
return(ret)
}
tk_augment_leads.grouped_df <- function(.data,
.value,
.lags = -1,
.names = "auto") {
column_expr <- enquo(.value)
group_names <- dplyr::group_vars(.data)
.data %>%
tidyr::nest() %>%
dplyr::mutate(nested.col = purrr::map(
.x = data,
.f = function(df) tk_augment_leads(
.data = df,
.value = !! enquo(.value),
.lags = .lags,
.names = .names
)
)) %>%
dplyr::select(-data) %>%
tidyr::unnest(cols = nested.col) %>%
dplyr::group_by_at(.vars = group_names)
}
tk_augment_leads.default <- function(.data,
.value,
.lags = 1,
.names = "auto") {
stop(paste0("`tk_augment_leads` has no method for class ", class(data)[[1]]))
} |
setClass(
Class = "MacroBetaHirukawaJLNKernel",
representation = representation(
normalizationConst = "numeric"
),
contains = "HirukawaJLNKernel"
)
setGeneric (
name = "setNormalizationConstant",
def = function(.Object){standardGeneric("setNormalizationConstant")}
)
setMethod(
f = "setNormalizationConstant",
signature = "MacroBetaHirukawaJLNKernel",
definition = function(.Object){
f <- function(x,kernel){
density(as(kernel,"HirukawaJLNKernel"),x,scaled=TRUE)
}
normalizationConst <- integrate(f,lower=0,upper=1,kernel=.Object)$value
objectGlobalName <- deparse(substitute(.Object))
.Object@normalizationConst <- normalizationConst
assign(objectGlobalName,.Object,envir=parent.frame())
}
)
setMethod(
f = "density",
signature = "MacroBetaHirukawaJLNKernel",
definition = function(x,values,scaled = FALSE) {
.Object <- x
x <- values
isMatrix.x <- is.matrix(x)
dims <- dim(x)
if(!scaled){
x <- getScaledPoints(.Object,x)
}
if(length(.Object@normalizationConst) == 0){
objectGlobalName <- deparse(substitute(.Object))
setNormalizationConstant(.Object)
assign(objectGlobalName,.Object,envir=parent.frame())
}
numDataPoints <- length(x)
index.nozero <- which(x>=0 & x <=1)
x <- x[index.nozero]
if(length(x) == 0){
return(rep(0,numDataPoints - length(index.nozero)))
}
x.indices <- numeric(length(x))
x.densities <- numeric(length(x))
if(length(.Object@densityCache) == length(.Object@dataPointsCache)){
x.indices <- match(x, .Object@dataPointsCache, nomatch=0)
if(any(x.indices > 0)){
x.densities[x.indices != 0] <- .Object@densityCache[x.indices[x.indices!=0]]
}else{}
}else{}
x.new <- x[x.indices == 0]
x.new.length <- length(x.new)
if(x.new.length > 0){
forceDensityCacheTo(.Object,numeric(0))
x.densities[x.indices == 0] <- callNextMethod(.Object, x.new, scaled=TRUE)/.Object@normalizationConst
}else{}
aux.density <- numeric(numDataPoints)
aux.density[index.nozero] <- x.densities
x.densities <- aux.density
if(isMatrix.x){
dim(x.densities) <- dims
}
domain.length <- [email protected] - [email protected]
if(!scaled){
x.densities <- x.densities/domain.length
}
return(x.densities)
}
)
macroBetaHirukawaJLNKernel <- function(dataPoints, b=length(dataPoints)^(-2/5), dataPointsCache=NULL, modified = FALSE, lower.limit=0,upper.limit=1){
dataPoints.scaled <- dataPoints
dataPointsCache.scaled <- dataPointsCache
if(is.null(dataPointsCache)){
dataPointsCache.scaled <- seq(0,1,0.01)
}
if(lower.limit!=0 || upper.limit!=1){
dataPoints.scaled <- (dataPoints-lower.limit)/(upper.limit-lower.limit)
if(!is.null(dataPointsCache)){
dataPointsCache.scaled <- (dataPointsCache-lower.limit)/(upper.limit-lower.limit)
}
}
kernel <- new(Class="MacroBetaHirukawaJLNKernel",dataPoints = dataPoints.scaled, b = b, dataPointsCache = dataPointsCache.scaled, modified = modified, lower.limit=lower.limit,upper.limit=upper.limit)
setNormalizationConstant(kernel)
setDensityCache(kernel, densityFunction=NULL)
return(kernel)
} |
setClass('BiclustMethod',
representation = representation('VIRTUAL',
biclustFunction = 'function'))
setGeneric('biclust', function(x,method, ...){standardGeneric('biclust')})
setMethod('biclust', c('matrix','BiclustMethod'),
function(x,method, ...) {
MYCALL<-match.call()
ret<-method@biclustFunction(x,...)
ret@Parameters<-c(list(Call=MYCALL,Method=method))
return(ret)
})
setMethod('biclust', c('matrix','function'),
function(x,method, ...) {
method <- method()
biclust(x,method, ...)
})
setMethod('biclust', c('matrix','character'),
function(x,method, ...) {
method <- get(method[1], mode="function")
biclust(x,method, ...)
})
setClass('Biclust',
representation = representation(
Parameters = 'list',
RowxNumber = 'matrix',
NumberxCol = 'matrix',
Number = 'numeric',
info = 'list')
)
BiclustResult <- function(mypara, a, b, c, d) {
return(new('Biclust', Parameters=mypara, RowxNumber=a, NumberxCol=b, Number=c, info=d))
}
setClass('BCBimax',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,minr=2,minc=2,number=100){bimaxbiclust(x,minr,minc,number)}))
BCBimax <- function() {
return(new('BCBimax'))
}
setClass('BCrepBimax',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,minr=2,minc=2,number=100,maxc=12){repbimaxbiclust(x,minr,minc,number,maxc)}))
BCrepBimax <- function() {
return(new('BCrepBimax'))
}
setClass('BCXmotifs',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,ns=10,nd=10,sd=5,alpha=0.05,number=10){xmotifbiclust(x,ns,nd,sd,alpha,number)}))
BCXmotifs <- function() {
return(new('BCXmotifs'))
}
setClass('BCCC',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,delta=1.0,alpha=1.5,number=100){ccbiclust(x,delta,alpha,number)}))
BCCC <- function() {
return(new('BCCC'))
}
setClass('BCSpectral',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,normalization="log",numberOfEigenvalues=3,minr=2, minc=2, withinVar=1)
{spectral(x,normalization, numberOfEigenvalues, minr, minc, withinVar)}))
BCSpectral <- function() {
return(new('BCSpectral'))
}
setClass('BCPlaid',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x, cluster="b", fit.model= ~ m + a + b, background=TRUE, background.layer=NA, background.df=1, row.release=0.7,col.release=0.7,shuffle=3, back.fit=2,max.layers=10,iter.startup=5,iter.layer=30, verbose=TRUE)
{plaid(x, cluster, fit.model, background, background.layer, background.df, row.release, col.release, shuffle, back.fit, max.layers, iter.startup, iter.layer, verbose) }))
BCPlaid <- function() {
return(new('BCPlaid'))
}
setClass('BCQuest',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,ns=10,nd=10,sd=5,alpha=0.05,number=10){questmotif(x,ns,nd,sd,alpha,number)}))
BCQuest <- function() {
return(new('BCQuest'))
}
setClass('BCQuestord',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,d=1,ns=10,nd=10,sd=5,alpha=0.05,number=10){questordmotif(x,d,ns,nd,sd,alpha,number)}))
BCQuestord <- function() {
return(new('BCQuestord'))
}
setClass('BCQuestmet',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,quant=0.25,vari=1,ns=10,nd=10,sd=5,alpha=0.05,number=10){questmetmotif(x,quant,vari,ns,nd,sd,alpha,number)}))
BCQuestmet <- function() {
return(new('BCQuestmet'))
}
setMethod("show", "Biclust",
function(object)
{
cat("\nAn object of class",class(object),"\n\n")
cat("call:", deparse(object@Parameters$Call,0.75*getOption("width")),
sep="\n\t")
n<-object@Number
n<-min(c(n,5))
if(n>1)
{
cat("\nNumber of Clusters found: ",object@Number, "\n")
cat("\nFirst ",n," Cluster sizes:\n")
rowcolsizes<-rbind(colSums(object@RowxNumber[,1:n]),rowSums(object@NumberxCol[1:n,]))
rownames(rowcolsizes)<-c("Number of Rows:","Number of Columns:")
colnames(rowcolsizes)<-paste("BC", 1:n)
print(rowcolsizes)
}
else
{
if(n==1) cat("\nThere was one cluster found with\n ",sum(object@RowxNumber[,1]), "Rows and ", sum(object@NumberxCol), "columns")
if(n==0) cat("\nThere was no cluster found")
}
cat("\n\n")
})
setGeneric("summary")
setMethod("summary", "Biclust",
function(object)
{
cat("\nAn object of class",class(object),"\n\n")
cat("call:", deparse(object@Parameters$Call,0.75*getOption("width")),
sep="\n\t")
n<-object@Number
if(n>1)
{
cat("\nNumber of Clusters found: ",object@Number, "\n")
cat("\nCluster sizes:\n")
rowcolsizes<-rbind(colSums(object@RowxNumber[,1:n]),rowSums(object@NumberxCol[1:n,]))
rownames(rowcolsizes)<-c("Number of Rows:","Number of Columns:")
colnames(rowcolsizes)<-paste("BC", 1:n)
print(rowcolsizes)
}
else
{
if(n==1) cat("\nThere was one cluster found with\n ",sum(object@RowxNumber[,1]), "Rows and ", sum(object@NumberxCol), "columns")
if(n==0) cat("\nThere was no cluster found")
}
cat("\n\n")
}) |
library(knitr)
showMessage <- FALSE
showWarning <- TRUE
set_alias(w = "fig.width", h = "fig.height", res = "results")
opts_chunk$set(comment = "
tidy = FALSE, cache = FALSE, echo = TRUE,
fig.width = 7, fig.height = 7,
fig.path = "man/figures")
regmedint:::calc_myreg_mreg_linear_yreg_linear_est
regmedint:::calc_myreg_mreg_linear_yreg_linear_se
regmedint:::calc_myreg_mreg_linear_yreg_logistic_est
regmedint:::calc_myreg_mreg_linear_yreg_logistic_se
regmedint:::calc_myreg_mreg_logistic_yreg_linear_est
regmedint:::calc_myreg_mreg_logistic_yreg_linear_se
regmedint:::calc_myreg_mreg_logistic_yreg_logistic_est
regmedint:::calc_myreg_mreg_logistic_yreg_logistic_se |
label_value_map <- c("hide" = "labelHide",
"show" = "labelShow",
"show_unread" = "labelSHowIfUnread",
NULL
)
name_map <- c(
"user_id" = "userId",
"search" = "q",
"num_results" = "maxResults",
"add_labels" = "addLabelIds",
"remove_labels" = "removeLabelIds",
"page_token" = "pageToken",
"include_spam_trash" = "includeSpamTrash",
"start_history_id" = "startHistoryId",
"label_list_visibility" = "labelListVisibility",
"message_list_visibility" = "messageListVisibility",
"upload_type" = "uploadType",
"label_ids" = "labelIds",
NULL
)
rename <- function(...) {
args <- dots(...)
arg_names <- names(args)
missing <-
if (is.null(arg_names)) {
rep(TRUE, length(args))
} else {
!nzchar(arg_names)
}
arg_names[missing] <- vapply(args[missing], deparse, character(1))
to_rename <- arg_names %in% names(name_map)
arg_names[to_rename] <- name_map[arg_names[to_rename]]
vals <- list(...)
names(vals) <- arg_names
vals
}
not_null <- function(x){ Filter(Negate(is.null), x) }
gmail_path <- function(user, ...) { paste("https://www.googleapis.com/gmail/v1/users", user, paste0(unlist(list(...)), collapse = "/"), sep = "/") }
gmail_upload_path <- function(user, ...) { paste("https://www.googleapis.com/upload/gmail/v1/users", user, paste0(list(...), collapse = "/"), sep = "/") }
mark_utf8 <- function(x) {
if (length(x)) {
Encoding(x) <- "UTF-8"
}
x
}
base64url_decode_to_char <- function(x) {
mark_utf8(rawToChar(base64decode(gsub("_", "/", gsub("-", "+", x)))))
}
base64url_decode <- function(x) { base64decode(gsub("_", "/", gsub("-", "+", x))) }
base64url_encode <- function(x) { gsub("/", "_", gsub("\\+", "-", base64encode(charToRaw(as.character(x))))) }
debug <- function(...){
args <- dots(...)
base::message(sprintf(paste0(args, "=%s", collapse=" "), ...))
}
dots <- function (...) { eval(substitute(alist(...))) }
page_and_trim <- function(type, user_id, num_results, ...){
num_results <- num_results %||% 100
itr <- function(...){
req <- GET(gmail_path(user_id, type),
query = not_null(rename(...)), gm_token())
stop_for_status(req)
content(req, "parsed")
}
counts <- function(res) { vapply(lapply(res, `[[`, type), length, integer(1)) }
trim <- function(res, amount) {
if(is.null(amount)){
return(res)
}
num <- counts(res)
count <- 0
itr <- 0
while(count < amount && itr <= length(num)){
itr <- itr + 1
count <- count + num[itr]
}
remain <- amount - count
if(itr > length(res)){
res
}
else {
res[[itr]][[type]] <- res[[itr]][[type]][1:(num[itr] + remain)]
res[1:itr]
}
}
res <- itr(...)
all_results <- list(res)
page_token <- res[["nextPageToken"]]
while(sum(counts(all_results)) < num_results && !is.null(page_token)){
res <- itr(..., page_token = page_token)
page_token <- res[["nextPageToken"]]
all_results[[length(all_results) + 1]] <- res
}
structure(trim(all_results, num_results), class=paste0("gmail_", type))
}
ord <- function(x) { strtoi(charToRaw(x), 16L) }
chr <- function(x) { rawToChar(as.raw(x)) }
substitute_regex <- function(data, pattern, fun, ...) {
match <- gregexpr(pattern, ..., data)
regmatches(data, match) <- lapply(regmatches(data, match),
function(x) { if(length(x) > 0) { vapply(x, function(xx) paste0(fun(xx), collapse=""), character(1)) } else { x } })
data
}
"%||%" <- function(x, y){ if(is.null(x)){ y } else { x } }
"%|||%" <- function(x, y){ if(is.null(x)){ x } else { y } }
encode_base64 <- function(x, line_length = 76L, newline = "\r\n") {
if (length(x) == 0) {
return(x)
}
if(is.raw(x)) {
base64encode(x, 76L, newline)
} else {
base64encode(charToRaw(x), 76L, "\r\n")
}
}
exists_list <- function(data, x){
if(is.character(x)){
return(exists(x, data))
}
return(length(data) >= x && !is.null(data[[x]]))
}
"%==%" <- function(x, y) { identical(x, y) }
"%!=%" <- function(x, y) { !identical(x, y) }
p <- function(...) paste(sep="", collapse="", ...)
vcapply <- function(...) vapply(..., FUN.VALUE = character(1))
vlapply <- function(...) vapply(..., FUN.VALUE = logical(1))
vnapply <- function(...) vapply(..., FUN.VALUE = numeric(1))
isFALSE <- function(x) {
is.logical(x) && length(x) == 1L && !is.na(x) && !x
} |
cat("\014")
rm(list = ls())
setwd("~/git/of_dollars_and_data")
source(file.path(paste0(getwd(),"/header.R")))
library(scales)
library(readxl)
library(lubridate)
library(stringr)
library(tidyRSS)
library(tidyverse)
folder_name <- "xxxx_pull_rss_feed"
out_path <- paste0(exportdir, folder_name)
dir.create(file.path(paste0(out_path)), showWarnings = FALSE)
df <- tidyfeed(
"https://ofdollarsanddata.com/feed"
)
to_export <- df %>%
select(item_title, item_link, item_description, item_pub_date, item_category) %>%
mutate(pub_date = as.Date(item_pub_date)) %>%
arrange(pub_date) %>%
mutate(post_num = row_number()) %>%
rename(title = item_title,
link = item_link,
description = item_description,
category = item_category) %>%
select(post_num, pub_date, title, link, description)
export_to_excel(to_export,
outfile = paste0(out_path, "/all_posts.xlsx"),
sheetname = "raw",
new_file = 1,
fancy_formatting = 0) |
makeRLearner.surv.gamboost = function() {
makeRLearnerSurv(
cl = "surv.gamboost",
package = c("!survival", "mboost"),
par.set = makeParamSet(
makeDiscreteLearnerParam(id = "baselearner", values = c("bbs", "bols", "btree")),
makeIntegerLearnerParam(id = "dfbase", default = 4L),
makeNumericLearnerParam(id = "offset"),
makeDiscreteLearnerParam(id = "family", default = "CoxPH", values = c("CoxPH", "Weibull", "Loglog", "Lognormal", "Gehan", "custom.family")),
makeNumericVectorLearnerParam(id = "nuirange", default = c(0, 100), requires = quote(family %in% c("Weibull", "Loglog", "Lognormal"))),
makeUntypedLearnerParam(id = "custom.family.definition", requires = quote(family == "custom.family")),
makeIntegerLearnerParam(id = "mstop", default = 100L, lower = 1L),
makeNumericLearnerParam(id = "nu", default = 0.1, lower = 0, upper = 1),
makeDiscreteLearnerParam(id = "risk", values = c("inbag", "oobag", "none")),
makeLogicalLearnerParam(id = "stopintern", default = FALSE),
makeLogicalLearnerParam(id = "trace", default = FALSE, tunable = FALSE)
),
par.vals = list(
family = "CoxPH"
),
properties = c("numerics", "factors", "ordered", "weights"),
name = "Gradient boosting with smooth components",
short.name = "gamboost",
note = "`family` has been set to `CoxPH()` by default.",
callees = c("gamboost", "mboost_fit", "boost_control", "CoxPH", "Weibull", "Loglog", "Lognormal", "Gehan")
)
}
trainLearner.surv.gamboost = function(.learner, .task, .subset, .weights = NULL, nuirange = c(0, 100), family, custom.family.definition, mstop, nu, risk, stopintern, trace, ...) {
requirePackages("mboost", why = "argument 'baselearner' requires package", suppress.warnings = TRUE)
ctrl = learnerArgsToControl(mboost::boost_control, mstop, nu, risk, trace, stopintern)
family = switch(family,
CoxPH = mboost::CoxPH(),
Weibull = mboost::Weibull(nuirange = nuirange),
Loglog = mboost::Loglog(nuirange = nuirange),
Lognormal = mboost::Lognormal(nuirange = nuirange),
Gehan = mboost::Gehan(),
custom.family = custom.family.definition
)
f = getTaskFormula(.task)
data = getTaskData(.task, subset = .subset, recode.target = "surv")
if (is.null(.weights)) {
model = mboost::gamboost(f, data = data, control = ctrl, family = family, ...)
} else {
model = mboost::gamboost(f, data = getTaskData(.task, subset = .subset, recode.target = "surv"), control = ctrl, weights = .weights, family = family, ...)
}
}
predictLearner.surv.gamboost = function(.learner, .model, .newdata, ...) {
predict(.model$learner.model, newdata = .newdata, type = "link")
} |
.onLoad<-function(libname, pkgname){
utils::globalVariables(c("abhalf0","abhalf1","ab","key"),"AATtools")
registerS3method("print",class="aat_splithalf",method=print.aat_splithalf)
registerS3method("plot",class="aat_splithalf",method=plot.aat_splithalf)
registerS3method("print",class="aat_bootstrap",method=print.aat_bootstrap)
registerS3method("plot",class="aat_bootstrap",method=plot.aat_bootstrap)
registerS3method("print",class="qreliability",method=print.qreliability)
registerS3method("plot",class="qreliability",method=plot.qreliability)
if (r_check_limit_cores()) {
num_workers <- 2L
} else {
num_workers <- max(parallel::detectCores()-1,1)
}
options(AATtools.workers=num_workers)
}
r_check_limit_cores <- function() {
Rcheck <- tolower(Sys.getenv("_R_CHECK_LIMIT_CORES_", ""))
return((nchar(Rcheck[1]) > 0) & (Rcheck != "false"))
}
aat_splithalf<-function(ds,subjvar,pullvar,targetvar=NULL,rtvar,iters,
algorithm=c("aat_doublemeandiff","aat_doublemediandiff",
"aat_dscore","aat_dscore_multiblock",
"aat_regression","aat_standardregression",
"aat_doublemedianquotient","aat_doublemeanquotient",
"aat_singlemeandiff","aat_singlemediandiff"),
trialdropfunc=c("prune_nothing","trial_prune_3SD","trial_prune_SD_dropcases","trial_recode_SD",
"trial_prune_percent_subject","trial_prune_percent_sample"),
errortrialfunc=c("prune_nothing","error_replace_blockmeanplus","error_prune_dropcases"),
casedropfunc=c("prune_nothing","case_prune_3SD"),plot=TRUE,include.raw=FALSE,parallel=TRUE,
...){
packs<-c("magrittr","dplyr","AATtools")
args<-list(...)
algorithm<-ifelse(is.function(algorithm),deparse(substitute(algorithm)),match.arg(algorithm))
if(!(algorithm %in% c("aat_singlemeandiff","aat_singlemediandiff","aat_regression","aat_standardregression")) & is.null(targetvar)){
stop("Argument targetvar missing but required for algorithm!")
}
trialdropfunc<-ifelse(is.function(trialdropfunc),deparse(substitute(trialdropfunc)),match.arg(trialdropfunc))
casedropfunc<-ifelse(is.function(casedropfunc),deparse(substitute(casedropfunc)),match.arg(casedropfunc))
errortrialfunc<-ifelse(is.function(errortrialfunc),deparse(substitute(errortrialfunc)),match.arg(errortrialfunc))
if(errortrialfunc=="error_replace_blockmeanplus"){
stopifnot(!is.null(args$blockvar),!is.null(args$errorvar))
if(is.null(args$errorbonus)){ args$errorbonus<- 0.6 }
if(is.null(args$blockvar)){ args$blockvar<- 0 }
if(is.null(args$errorvar)){ args$errorvar<- 0 }
}
stopifnot(!(algorithm=="aat_dscore_multiblock" & is.null(args$blockvar)))
if(algorithm %in% c("aat_regression","aat_standardregression")){
if(!("formula" %in% names(args))){
args$formula<-as.formula(paste0(rtvar,"~",pullvar,"*",targetvar))
warning("No formula provided. Defaulting to formula ",form2char(args$formula))
}else if(is.character(args$formula)){
args$formula<-as.formula(args$formula)
}
if(!("aatterm" %in% names(args))){
args$aatterm<-paste0(pullvar,":",targetvar)
warning("No AAT-term provided. Defaulting to AAT-term ",args$aatterm)
}
}
ds<-do.call(aat_preparedata,c(list(ds=ds,subjvar=subjvar,pullvar=pullvar,targetvar=targetvar,rtvar=rtvar),args))
if(parallel){
`%dofunc%` <- `%dopar%`
hasCluster<-getDoParRegistered()
if(!hasCluster){
cluster<-makeCluster(getOption("AATtools.workers"))
registerDoParallel(cluster)
on.exit(unregisterDoParallel(cluster))
}
}else{
`%dofunc%` <- `%do%`
}
results<-
foreach(iter = seq_len(iters), .packages=packs) %dofunc% {
if(is.null(targetvar)){
iterds<-ds%>%group_by(!! sym(subjvar), !! sym(pullvar))%>%
mutate(key=sample(n())%%2)%>%ungroup()
}else{
iterds<-ds%>%group_by(!! sym(subjvar), !! sym(pullvar), !! sym(targetvar))%>%
mutate(key=sample(n())%%2)%>%ungroup()
}
iterds<-do.call(trialdropfunc,c(args,list(ds=iterds,subjvar=subjvar,rtvar=rtvar)))
iterds<-do.call(errortrialfunc,c(args,list(ds=iterds,subjvar=subjvar,rtvar=rtvar)))
iterds<-drop_empty_cases(iterds,subjvar)
half0set<-iterds%>%filter(key==0)
half1set<-iterds%>%filter(key==1)
abds<-merge(
do.call(algorithm,c(list(ds=half0set,subjvar=subjvar,pullvar=pullvar,
targetvar=targetvar,rtvar=rtvar),args)),
do.call(algorithm,c(list(ds=half1set,subjvar=subjvar,pullvar=pullvar,
targetvar=targetvar,rtvar=rtvar),args)),
by=subjvar,suffixes=c("half0","half1"))
abds<-do.call(casedropfunc,list(ds=abds))
currcorr<-cor(abds$abhalf0,abds$abhalf1,use="complete.obs")
list(corr=currcorr,abds=abds,rawdata=iterds)
}
cors<-sapply(results,FUN=function(x){x$corr})
ordering<-order(cors)
cors<-cors[ordering]
avg_n<-mean(sapply(results,function(x){ sum(!is.na(x$abds$abhalf0) & !is.na(x$abds$abhalf1)) }))
output<-list(rsplithalf=mean(cors),
lowerci=cors[round(iters*0.025)],
upperci=cors[round(iters*0.975)],
pval=r2p(mean(cors),avg_n),
rSB=SpearmanBrown(mean(cors)),
pval_rSB=r2p(SpearmanBrown(mean(cors)),avg_n),
avg_n=avg_n,
parameters=c(list(ds=ds,
subjvar=subjvar,
pullvar=pullvar,
targetvar=targetvar,
rtvar=rtvar,
iters=iters,
algorithm=algorithm,
trialdropfunc=trialdropfunc,
errortrialfunc=errortrialfunc,
casedropfunc=casedropfunc),
args),
itercors=cors,
iterdata=lapply(results,function(x){ x$abds })[ordering]) %>%
structure(class = "aat_splithalf")
if(include.raw){
output$rawiterdata<-lapply(results,function(x){ x$rawdata })[ordering]
}
if(plot){ plot(output) }
return(output)
}
print.aat_splithalf<-function(x,...){
cat("\nr = ",format(x$rsplithalf, digits=2), ", p = ",format(x$pval,digits=3),
"\nSpearman-Brown-corrected r = ",format(x$rSB,digits=2),", p = ",format(x$pval_rSB,digits=3),
"\n95%CI = [", format(x$lowerci,digits=2), ", ", format(x$upperci,digits=2),"]\n",
sep="")
}
plot.aat_splithalf<-function(x,type=c("median","minimum","maximum","random"),...){
type<-match.arg(type)
if(type=="median"){
title<-"Split-half Scatterplot for Iteration with Median Reliability"
idx<-ceiling(x$parameters$iters/2)
}else if(type=="minimum"){
title<-"Split-half Scatterplot for Iteration with the Lowest Reliability"
idx<-1
}else if(type=="maximum"){
title<-"Split-half Scatterplot for Iteration with the Highest Reliability"
idx<-x$parameters$iters
}else if(type=="random"){
title<-"Split-half Scatterplot for Random Iteration"
idx<-sample(1:x$parameters$iters,1)
}
abds<-x$iterdata[[idx]]
plot(abds$abhalf0,abds$abhalf1,pch=20,main=
paste0(title,
"\n(r = ", round(x$itercors[idx],digits=2),")"),
xlab="Half 1 computed bias",ylab="Half 2 computed bias")
text(abds$abhalf0,abds$abhalf1,abds[,1],cex= 0.7, pos=3, offset=0.3)
}
NULL
prune_nothing<-function(ds,...){
ds
}
trial_prune_percent_subject<-function(ds,subjvar,rtvar,lowerpercent=.01,upperpercent=.99,...){
ds %>% group_by(!!sym(subjvar)) %>% mutate(percentile=rank(!!sym(rtvar))/n()) %>%
filter(.data$percentile > lowerpercent & .data$percentile< upperpercent) %>% ungroup()
}
trial_prune_percent_sample<-function(ds,rtvar,lowerpercent=.01,upperpercent=.99,...){
ds %>% mutate(percentile=rank(!!sym(rtvar))/n()) %>%
filter(.data$percentile > lowerpercent & .data$percentile< upperpercent)
}
trial_prune_3SD<-function(ds,subjvar,rtvar,...){
ds %>% group_by(!!sym(subjvar)) %>% filter(abs(scale(!!sym(rtvar))) <3) %>% ungroup()
}
trial_prune_SD_dropcases<-function(ds,subjvar,rtvar,trialsd=3,maxoutliers=.15,...){
ds %>% group_by(!!sym(subjvar)) %>% mutate(is.ol=as.numeric(abs(scale(!!sym(rtvar))) >=3),avg.ol=mean(.data$is.ol)) %>%
ungroup %>% filter(.data$is.ol==0 & .data$avg.ol<maxoutliers)
}
trial_recode_SD<-function(ds,subjvar,rtvar,trialsd=3,...){
dsa<- ds %>% group_by(!!sym(subjvar)) %>% mutate(ol.z.score=scale(!!sym(rtvar)),
ol.type=(.data$ol.z.score >= trialsd) - (.data$ol.z.score <= -trialsd),
is.ol=abs(.data$ol.type),
ol.max.rt=mean(!!sym(rtvar))+sd(!!sym(rtvar))*trialsd,
ol.min.rt=mean(!!sym(rtvar))-sd(!!sym(rtvar))*trialsd)
dsa[which(dsa$is.ol!=0),rtvar]<-ifelse(dsa[which(dsa$is.ol!=0),]$ol.type==1,
dsa[which(dsa$is.ol!=0),]$ol.max.rt,
dsa[which(dsa$is.ol!=0),]$ol.min.rt)
dsa %>% dplyr::select(-.data$ol.type,-.data$ol.max.rt,-.data$ol.min.rt,-.data$ol.z.score)
}
case_prune_3SD<-function(ds,...){
dplyr::filter(ds,(abhalf0 < mean(abhalf0,na.rm=TRUE)+3*sd(abhalf0,na.rm=TRUE) &
abhalf0 > mean(abhalf0,na.rm=TRUE)-3*sd(abhalf0,na.rm=TRUE)) &
(abhalf1 < mean(abhalf1,na.rm=TRUE)+3*sd(abhalf1,na.rm=TRUE) &
abhalf1 > mean(abhalf1,na.rm=TRUE)-3*sd(abhalf1,na.rm=TRUE)))
}
error_replace_blockmeanplus<-function(ds,subjvar,rtvar,blockvar,errorvar,errorbonus, ...){
if(!("is.ol" %in% colnames(ds))){ ds$is.ol<-0; }
ds%<>%group_by(!!sym(subjvar),!!sym(blockvar), key)%>%
mutate(newrt=mean((!!sym(rtvar))[!(!!sym(errorvar)) & .data$is.ol==0])+errorbonus)%>%ungroup()
ds[ds[,errorvar]==1,rtvar]<-ds[ds[,errorvar]==1,]$newrt
dplyr::select(ds,-.data$newrt)
}
error_prune_dropcases<-function(ds,subjvar, errorvar, maxerrors = .15, ...){
ds%>%group_by(!!sym(subjvar), key)%>%
filter(mean(!!sym(errorvar))<maxerrors & !!sym(errorvar) == FALSE)
}
NULL
aat_doublemeandiff<-function(ds,subjvar,pullvar,targetvar,rtvar,...){
group_by(ds,!!sym(subjvar)) %>%
summarise(ab=(mean(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 1),na.rm=TRUE) -
mean(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 1),na.rm=TRUE)) -
(mean(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 0),na.rm=TRUE) -
mean(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 0),na.rm=TRUE)))
}
aat_doublemediandiff<-function(ds,subjvar,pullvar,targetvar,rtvar,...){
group_by(ds,!!sym(subjvar)) %>%
summarise(ab=(median(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 1),na.rm=TRUE) -
median(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 1),na.rm=TRUE)) -
(median(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 0),na.rm=TRUE) -
median(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 0),na.rm=TRUE)))
}
aat_dscore<-function(ds,subjvar,pullvar,targetvar,rtvar,...){
group_by(ds,!!sym(subjvar)) %>%
summarise(ab=((mean(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 1),na.rm=TRUE) -
mean(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 1),na.rm=TRUE)) -
(mean(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 0),na.rm=TRUE) -
mean(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 0),na.rm=TRUE))) /
sd(!!sym(rtvar),na.rm=TRUE))
}
aat_dscore_multiblock<-function(ds,subjvar,pullvar,targetvar,rtvar,blockvar,...){
ds %>% mutate(.blockset = floor((!!sym(blockvar) - min(!!sym(blockvar)))/2) ) %>%
group_by(!!sym(subjvar),.data$.blockset) %>%
summarise(ab=((mean(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 1),na.rm=TRUE) -
mean(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 1),na.rm=TRUE)) -
(mean(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 0),na.rm=TRUE) -
mean(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 0),na.rm=TRUE))) /
sd(!!sym(rtvar),na.rm=TRUE)) %>%
group_by(!!sym(subjvar)) %>% summarise(ab=mean(ab,na.rm=TRUE))
}
aat_regression<-function(ds,subjvar,formula,aatterm,...){
output<-data.frame(pp=unique(ds[[subjvar]]),ab=NA,var=NA)
for(i in seq_len(nrow(output))){
mod<-coef(summary(lm(formula,data=ds[ds[[subjvar]]==output[i,"pp"],])))
if(aatterm %in% rownames(mod)){
output[i,"ab"]<- -mod[rownames(mod)==aatterm,1]
output[i,"var"]<- mod[rownames(mod)==aatterm,2]
}
}
colnames(output)[colnames(output)=="pp"]<-subjvar
return(output)
}
aat_standardregression<-function(ds,subjvar,formula,aatterm,...){
output<-data.frame(pp=unique(ds[[subjvar]]),ab=NA,var=NA)
for(i in seq_len(nrow(output))){
mod<-coef(summary(lm(formula,data=ds[ds[[subjvar]]==output[i,"pp"],])))
if(aatterm %in% rownames(mod)){
output[i,"ab"]<- -mod[rownames(mod)==aatterm,1]
output[i,"var"]<- mod[rownames(mod)==aatterm,2]
}
}
colnames(output)[colnames(output)=="pp"]<-subjvar
output$ab<-output$ab/output$var
return(output)
}
aat_doublemedianquotient<-function(ds,subjvar,pullvar,targetvar,rtvar,...){
group_by(ds,!!sym(subjvar)) %>%
summarise(ab=log(median(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 1),na.rm=TRUE) /
median(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 1),na.rm=TRUE)) -
log(median(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 0),na.rm=TRUE) /
median(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 0),na.rm=TRUE)))
}
aat_doublemeanquotient<-function(ds,subjvar,pullvar,targetvar,rtvar,...){
group_by(ds,!!sym(subjvar)) %>%
summarise(ab=log(mean(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 1),na.rm=TRUE) /
mean(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 1),na.rm=TRUE)) -
log(mean(subset(!!sym(rtvar),!!sym(pullvar)==0 & !!sym(targetvar) == 0),na.rm=TRUE) /
mean(subset(!!sym(rtvar),!!sym(pullvar)==1 & !!sym(targetvar) == 0),na.rm=TRUE)))
}
aat_singlemeandiff<-function(ds,subjvar,pullvar,rtvar,...){
group_by(ds,!!sym(subjvar))%>%
summarise(ab=mean(subset(!!sym(rtvar),!!sym(pullvar)==1)) -
mean(subset(!!sym(rtvar),!!sym(pullvar)==0)))
}
aat_singlemediandiff<-function(ds,subjvar,pullvar,rtvar,...){
group_by(ds,!!sym(subjvar))%>%
summarise(ab=median(subset(!!sym(rtvar),!!sym(pullvar)==1)) -
median(subset(!!sym(rtvar),!!sym(pullvar)==0)))
}
aat_bootstrap<-function(ds,subjvar,pullvar,targetvar=NULL,rtvar,iters,
algorithm=c("aat_doublemeandiff","aat_doublemediandiff",
"aat_dscore","aat_dscore_multiblock",
"aat_regression","aat_standardregression",
"aat_doublemeanquotient","aat_doublemedianquotient",
"aat_singlemeandiff","aat_singlemediandiff"),
trialdropfunc=c("prune_nothing","trial_prune_3SD","trial_prune_SD_dropcases","trial_recode_SD",
"trial_prune_percent_subject","trial_prune_percent_sample"),
errortrialfunc=c("prune_nothing","error_replace_blockmeanplus","error_prune_dropcases"),
plot=TRUE,include.raw=FALSE,parallel=TRUE,...){
packs<-c("magrittr","dplyr","AATtools")
args<-list(...)
algorithm<-ifelse(is.function(algorithm),deparse(substitute(algorithm)),match.arg(algorithm))
if(!(algorithm %in% c("aat_singlemeandiff","aat_singlemediandiff","aat_regression","aat_standardregression")) & is.null(targetvar)){
stop("Argument targetvar missing but required for algorithm!")
}
trialdropfunc<-ifelse(is.function(trialdropfunc),deparse(substitute(trialdropfunc)),match.arg(trialdropfunc))
errortrialfunc<-ifelse(is.function(errortrialfunc),deparse(substitute(errortrialfunc)),match.arg(errortrialfunc))
if(errortrialfunc=="error_replace_blockmeanplus"){
stopifnot(!is.null(args$blockvar),!is.null(args$errorvar))
if(is.null(args$errorbonus)){ args$errorbonus<- 0.6 }
if(is.null(args$blockvar)){ args$blockvar<- 0 }
if(is.null(args$errorvar)){ args$errorvar<- 0 }
}
stopifnot(!(algorithm=="aat_dscore_multiblock" & is.null(args$blockvar)))
if(algorithm %in% c("aat_regression","aat_standardregression")){
if(!("formula" %in% names(args))){
args$formula<-as.formula(paste0(rtvar,"~",pullvar,"*",targetvar))
warning("No formula provided. Defaulting to formula ",form2char(args$formula))
}else if(is.character(args$formula)){
args$formula<-as.formula(args$formula)
}
if(!("aatterm" %in% names(args))){
args$aatterm<-paste0(pullvar,":",targetvar)
warning("No AAT-term provided. Defaulting to AAT-term ",args$aatterm)
}
}
ds<-do.call(aat_preparedata,c(list(ds=ds,subjvar=subjvar,pullvar=pullvar,targetvar=targetvar,rtvar=rtvar),args)) %>% mutate(key=1)
if(parallel){
`%dofunc%` <- `%dopar%`
hasCluster<-getDoParRegistered()
if(!hasCluster){
cluster<-makeCluster(getOption("AATtools.workers"))
registerDoParallel(cluster)
on.exit(unregisterDoParallel(cluster))
}
}else{
`%dofunc%` <- `%do%`
}
results<-
foreach(iter = seq_len(iters), .packages=packs, .combine=cbind) %dofunc% {
iterds<-ds %>% group_by(!!sym(subjvar), !!sym(pullvar), !!sym(targetvar)) %>%
sample_n(size=n(),replace=TRUE) %>% ungroup()
iterds<-do.call(trialdropfunc,list(ds=iterds,subjvar=subjvar,rtvar=rtvar))
iterds<-do.call(errortrialfunc,list(ds=iterds,subjvar=subjvar,rtvar=rtvar,
blockvar=args$blockvar,errorvar=args$errorvar,
errorbonus=args$errorbonus))
abds<-do.call(algorithm,c(list(ds=iterds,subjvar=subjvar,pullvar=pullvar,
targetvar=targetvar,rtvar=rtvar),args))
outvar<-abds$ab
names(outvar)<-abds[[subjvar]]
outvar
}
statset<-data.frame(ppidx=rownames(results),
bias=rowMeans(results,na.rm=TRUE),
var=apply(results,MARGIN = 1,FUN=var,na.rm=TRUE),
lowerci=apply(results,MARGIN=1,FUN=function(x){quantile(x,0.025,na.rm=TRUE)}),
upperci=apply(results,MARGIN=1,FUN=function(x){quantile(x,0.975,na.rm=TRUE)}),
stringsAsFactors=F)
statset$ci<-statset$upperci-statset$lowerci
bv<-var(statset$bias,na.rm=TRUE)
wv<-mean(statset$var,na.rm=TRUE)
q<-(bv-wv)/(bv+wv)
output<-list(bias=statset,
reliability=q,
parameters=c(list(ds=ds,
subjvar=subjvar,
pullvar=pullvar,
targetvar=targetvar,
rtvar=rtvar,
iters=iters,
algorithm=algorithm,
trialdropfunc=trialdropfunc,
errortrialfunc=errortrialfunc),args)) %>%
structure(class = "aat_bootstrap")
if(include.raw){
output$iterdata<-results
}
if(plot){ plot(output) }
return(output)
}
print.aat_bootstrap<-function(x,...){
cat("Bootstrapped bias scores and confidence intervals",
"\nMean bias score: ", mean(x$bias$bias,na.rm=TRUE),
"\nMean confidence interval: ",mean(x$bias$ci,na.rm=TRUE),
"\nreliability: q = ",mean(x$bias$bias,na.rm=TRUE),
"\nNumber of iterations: ",x$parameters$iters,sep="")
}
plot.aat_bootstrap <- function(x,...){
statset<-x$bias
statset<-statset[!is.na(statset$bias) & !is.na(statset$upperci) & !is.na(statset$lowerci),]
rank<-rank(statset$bias)
wideness<-max(statset$upperci) - min(statset$lowerci)
plot(x=statset$bias,y=rank,xlim=c(min(statset$lowerci)-0.01*wideness,max(statset$upperci)+0.01*wideness),
xlab="Bias score",main=paste0("Individual bias scores with 95%CI",
"\nEstimated reliability: q = ",x$reliability))
segments(x0=statset$lowerci,x1=statset$bias-0.005*wideness,y0=rank,y1=rank)
segments(x0=statset$bias+0.005*wideness,x1=statset$upperci,y0=rank,y1=rank)
abline(v=0)
}
aat_compute<-function(ds,subjvar,pullvar,targetvar=NULL,rtvar,
algorithm=c("aat_doublemeandiff","aat_doublemediandiff",
"aat_dscore","aat_dscore_multiblock",
"aat_regression","aat_standardregression",
"aat_doublemeanquotient","aat_doublemedianquotient",
"aat_singlemeandiff","aat_singlemediandiff"),
trialdropfunc=c("prune_nothing","trial_prune_3SD","trial_prune_SD_dropcases","trial_recode_SD",
"trial_prune_percent_subject","trial_prune_percent_sample"),
errortrialfunc=c("prune_nothing","error_replace_blockmeanplus","error_prune_dropcases"),
...){
args<-list(...)
algorithm<-ifelse(is.function(algorithm),deparse(substitute(algorithm)),match.arg(algorithm))
if(!(algorithm %in% c("aat_singlemeandiff","aat_singlemediandiff","aat_regression","aat_standardregression")) & is.null(targetvar)){
stop("Argument targetvar missing but required for algorithm!")
}
trialdropfunc<-ifelse(is.function(trialdropfunc),deparse(substitute(trialdropfunc)),match.arg(trialdropfunc))
errortrialfunc<-ifelse(is.function(errortrialfunc),deparse(substitute(errortrialfunc)),match.arg(errortrialfunc))
if(errortrialfunc=="error_replace_blockmeanplus"){
stopifnot(!is.null(args$blockvar),!is.null(args$errorvar))
if(is.null(args$errorbonus)){ args$errorbonus<- 0.6 }
if(is.null(args$blockvar)){ args$blockvar<- 0 }
if(is.null(args$errorvar)){ args$errorvar<- 0 }
}
stopifnot(!(algorithm=="aat_dscore_multiblock" & is.null(args$blockvar)))
if(algorithm %in% c("aat_regression","aat_standardregression")){
if(!("formula" %in% names(args))){
args$formula<-as.formula(paste0(rtvar,"~",pullvar,"*",targetvar))
warning("No formula provided. Defaulting to formula ",form2char(args$formula))
}else if(is.character(args$formula)){
args$formula<-as.formula(args$formula)
}
if(!("aatterm" %in% names(args))){
args$aatterm<-paste0(pullvar,":",targetvar)
warning("No AAT-term provided. Defaulting to AAT-term ",args$aatterm)
}
}
ds<-do.call(aat_preparedata,c(list(ds=ds,subjvar=subjvar,pullvar=pullvar,targetvar=targetvar,rtvar=rtvar),args)) %>% mutate(key=1)
iterds<-do.call(trialdropfunc,list(ds=ds,subjvar=subjvar,rtvar=rtvar))
iterds<-do.call(errortrialfunc,list(ds=ds,subjvar=subjvar,rtvar=rtvar,
blockvar=args$blockvar,errorvar=args$errorvar,
errorbonus=args$errorbonus))
abds<-do.call(algorithm,c(list(ds=ds,subjvar=subjvar,pullvar=pullvar,
targetvar=targetvar,rtvar=rtvar),args))
abds <- merge(x=abds,by=subjvar,all=TRUE,y=iterds %>% group_by(!!sym(subjvar)) %>% summarise(trials=n()))
return(abds)
}
q_reliability<-function(ds,subjvar,formula,aatterm=NA){
cols<-c(subjvar,as.character(attr(terms(formula),"variables"))[-1])
stopifnot(all(cols %in% colnames(ds)))
ds<-ds[apply(!is.na(ds[,cols]),MARGIN=1,FUN=all),]
if(aatterm=="1"){ aatterm<-NA }
coefs<-data.frame(pp=unique(ds[[subjvar]]),ab=NA,var=NA)
for(u in 1:nrow(coefs)){
iterset<-ds[ds[[subjvar]]==coefs[u,]$pp,]
mod<-lm(formula,data=iterset)
coefs[u,]$ab <- -coef(mod)[ifelse(is.na(aatterm),length(coef(mod)),aatterm)]
coefs[u,]$var <- (diag(vcov(mod)))[ifelse(is.na(aatterm),length(coef(mod)),aatterm)]
}
bv<-var(coefs$ab,na.rm=TRUE)
wv<-mean(coefs$var,na.rm=TRUE)
q<-(bv-wv)/(bv+wv)
return(structure(list(q=q,coefs=coefs),class="qreliability"))
}
print.qreliability<-function(x,...){
cat("q = ",x$q,"\n",sep="")
}
plot.qreliability<-function(x,...){
bv<-var(x$coefs$ab,na.rm=TRUE) / nrow(x$coefs)*1.96 *2
wv<-mean(x$coefs$var,na.rm=TRUE) / nrow(x$coefs)*1.96 *2
plotset<-data.frame(x=mean(x$coefs$ab) + cos(0:100 / 100 * 2*pi)*bv * 1/2*sqrt(2) - sin(0:100 / 100 * 2*pi)*wv * 1/2*sqrt(2),
y=mean(x$coefs$ab) + cos(0:100 / 100 * 2*pi)*bv * 1/2*sqrt(2) + sin(0:100 / 100 * 2*pi)*wv * 1/2*sqrt(2))
plot(plotset$x,plotset$y,type="l",main=paste0("Reliability\n","q = ",round(x$q,digits=2)),xlab="Participants' scores",ylab="Participants' scores")
points(x$coefs$ab,x$coefs$ab)
dispval<-(bv+wv)/100
plotset<-data.frame(xstart=c(x$coefs$ab+dispval,x$coefs$ab-dispval),
ystart=c(x$coefs$ab-dispval,x$coefs$ab+dispval),
xend=c(x$coefs$ab+sqrt(x$coefs$var) *1/2*sqrt(2),
x$coefs$ab-sqrt(x$coefs$var) *1/2*sqrt(2)),
yend=c(x$coefs$ab-sqrt(x$coefs$var) *1/2*sqrt(2),
x$coefs$ab+sqrt(x$coefs$var) *1/2*sqrt(2)))
segments(plotset$xstart,plotset$ystart,plotset$xend,plotset$yend)
}
SpearmanBrown<-function(corr,ntests=2,fix.negative=c("nullify","bilateral","none")){
fix.negative<-match.arg(fix.negative)
if(fix.negative=="bilateral"){
s<-sign(corr)
corr<-abs(corr)
sb<-ntests*corr / (1+(ntests-1)*corr)
return(s*sb)
}else{
sb<-ntests*corr / (1+(ntests-1)*corr)
if(fix.negative=="nullify"){
return(ifelse(sb<0,0,sb))
}else{
return(sb)
}
}
}
r2p<-function(corr,n){
t<- (corr*sqrt(n-2))/(1-corr^2)
2*pt(abs(t),n-2,lower.tail=FALSE)
}
aat_preparedata<-function(ds,subjvar,pullvar,targetvar=NULL,rtvar,...){
args<-list(...)
cols<-c(subjvar,pullvar,targetvar,rtvar,args$errorvar,args$blockvar)
if("formula" %in% names(args)){
formterms <- args$formula %>% as.formula() %>% terms() %>% attr("variables") %>% as.character()
formterms <- formterms[-1]
if(any(!(formterms %in% colnames(ds)))){
stop("Formula term(s) ",paste(formterms[!(formterms %in% colnames(ds))],collapse=", ")," missing from dataset")
}
cols <- c(cols,formterms)
}
stopifnot(all(cols %in% colnames(ds)))
ds<-ds[,cols]
ds[[subjvar]]%<>%as.factor()
if(is.logical(ds[,pullvar])){
warning("Recoded ",pullvar," from logical to numeric. Please make sure that FALSE ",
"represents push trials and TRUE represents pull trials")
ds[,pullvar]%<>%as.numeric()
}
if(is.factor(ds[,pullvar])){
warning("Recoded ",pullvar," from factor to numeric. Please make sure that ",
levels(ds[,pullvar])[1], " represents push trials and ",levels(ds[,pullvar])[2],
" represents pull trials")
ds[,pullvar]<-as.numeric(ds[,pullvar])-1
}
if(!is.null(targetvar)){
if(is.logical(ds[,targetvar])){
warning("Recoded ",targetvar," from logical to numeric. Please make sure that FALSE ",
"represents control/neutral stimuli and TRUE represents target stimuli")
ds[,targetvar]%<>%as.numeric()
}
if(is.factor(ds[,targetvar])){
warning("Recoded ",targetvar," from factor to numeric. Please make sure that ",
levels(ds[,targetvar])[1], " represents control/neutral stimuli and ",levels(ds[,targetvar])[2],
" represents target stimuli")
ds[,targetvar]<-as.numeric(ds[,targetvar])-1
}
}
rmindices <- ds[,cols] %>% lapply(FUN=is.na) %>% as.data.frame %>% apply(MARGIN=1,FUN=any) %>% which
if(length(rmindices)>0){
ds<-ds[-rmindices,]
warning("Removed ",length(rmindices)," rows due to presence of NA in critical variable(s)")
}
return(ds)
}
val_between<-function(x,lb,ub){x>lb & x<ub}
drop_empty_cases<-function(iterds,subjvar){
iterds%>%group_by(!!sym(subjvar))%>%filter(val_between(mean(key),0,1))
}
form2char<-function(x){
if(is.character(x)){ return(x) }
fs<-as.character(x)
fs<-paste(fs[2],fs[1],fs[3])
return(fs)
}
is.formula <- function(x){
inherits(x,"formula")
}
unregisterDoParallel <- function(cluster) {
stopCluster(cluster)
registerDoSEQ()
} |
PRISMA_flowdiagram <- function (data,
interactive = FALSE,
previous = TRUE,
other = TRUE,
fontsize = 7,
font = 'Helvetica',
title_colour = 'Goldenrod1',
greybox_colour = 'Gainsboro',
main_colour = 'Black',
arrow_colour = 'Black',
arrow_head = 'normal',
arrow_tail = 'none',
side_boxes = TRUE) {
for(var in seq_len(length(data))) {
assign(names(data)[var], data[[var]])
}
dbr_excluded[,1] <- stringr::str_wrap(dbr_excluded[,1],
width = 35)
other_excluded[,1] <- stringr::str_wrap(other_excluded[,1],
width = 35)
if(stringr::str_count(paste(dbr_excluded[,1], collapse = "\n"), "\n") > 3){
dbr_excludedh <- 3.5 - ((stringr::str_count(paste(dbr_excluded[,1], collapse = "\n"), "\n")-4)/9)
} else {
dbr_excludedh <- 3.5
}
if(nrow(other_excluded) > 3){
other_excludedh <- 3.5 - ((nrow(other_excluded)-4)/9)
} else {
other_excludedh <- 3.5
}
if (is.na(previous_studies) == TRUE && is.na(previous_reports) == TRUE) {
previous <- FALSE
}
if(previous == TRUE){
xstart <- 0
ystart <- 0
A <- paste0("A [label = '', pos='",xstart+1,",",ystart+0,"!', tooltip = '']")
Aedge <- paste0("subgraph cluster0 {
edge [color = White,
arrowhead = none,
arrowtail = none]
1->2;
edge [color = ", arrow_colour, ",
arrowhead = none,
arrowtail = ", arrow_tail, "]
2->A;
edge [color = ", arrow_colour, ",
arrowhead = ", arrow_head, ",
arrowtail = none,
constraint = FALSE]
A->19;
}")
bottomedge <- paste0("edge [color = ", arrow_colour, ",
arrowhead = ", arrow_head, ",
arrowtail = ", arrow_tail, "]
12->19;\n")
h_adj1 <- 0
h_adj2 <- 0
if(is.na(previous_studies) == TRUE) {
cond_prevstud <- ''
} else {
cond_prevstud <- stringr::str_wrap(paste0(previous_studies_text,
" (n = ",
previous_studies,
")"),
width = 40)
}
if(is.na(previous_reports) == TRUE) {
cond_prevrep <- ''
} else {
cond_prevrep <- paste0(stringr::str_wrap(previous_reports_text,
width = 40),
"\n(n = ",
previous_reports,
')')
}
if (is.na(previous_studies) == TRUE || is.na(previous_reports) == TRUE) {
dbl_br <- ''
} else {
dbl_br <- "\n\n"
}
previous_nodes <- paste0("node [shape = box,
fontsize = ", fontsize,",
fontname = ", font, ",
color = ", greybox_colour, "]
1 [label = '", previous_text, "', style = 'rounded,filled', width = 3.5, height = 0.5, pos='",xstart+1,",",ystart+8.25,"!', tooltip = '", tooltips[1], "']
node [shape = box,
fontname = ", font, ",
color = ", greybox_colour, "]
2 [label = '",paste0(cond_prevstud,
dbl_br,
cond_prevrep),
"', style = 'filled', width = 3.5, height = 0.5, pos='",xstart+1,",",ystart+7,"!', tooltip = '", tooltips[2], "']")
finalnode <- paste0("
node [shape = box,
fontname = ", font, ",
color = ", greybox_colour, "]
19 [label = '",paste0(stringr::str_wrap(paste0(total_studies_text,
" (n = ",
total_studies,
")"),
width = 33),
"\n",
stringr::str_wrap(paste0(total_reports_text,
" (n = ",
total_reports,
')'),
width = 33)),
"', style = 'filled', width = 3.5, height = 0.5, pos='",xstart+5,",",ystart+0,"!', tooltip = '", tooltips[19], "']")
prev_rank1 <- "{rank = same; A; 19}"
prevnode1 <- "1; "
prevnode2 <- "2; "
} else {
xstart <- -3.5
ystart <- 0
A <- ""
Aedge <- ""
bottomedge <- ""
previous_nodes <- ""
finalnode <- ""
h_adj1 <- 0.63
h_adj2 <- 1.4
prev_rank1 <- ""
prevnode1 <- ""
prevnode2 <- ""
}
if(side_boxes == TRUE){
sidebox <- paste0("node [shape = box,
fontsize = ", fontsize,",
fontname = ", font, ",
color = ", title_colour, "
]
identification [color = LightSteelBlue2, label=' ', style = 'filled,rounded', pos='",-1.4,",",ystart+7,"!', width = 0.4, height = 1.5, tooltip = '", tooltips[20], "'];
screening [color = LightSteelBlue2, label=' ', style = 'filled,rounded', pos='",-1.4,",",ystart+4.5,"!', width = 0.4, height = 2.5, tooltip = '", tooltips[21], "'];
included [color = LightSteelBlue2, label=' ', style = 'filled,rounded', pos='",-1.4,",",h_adj1+0.87,"!', width = 0.4, height = ",2.5-h_adj2,", tooltip = '", tooltips[22], "'];\n
")
} else {
sidebox <- ""
}
if (is.na(website_results) == TRUE && is.na(organisation_results) == TRUE && is.na(citations_results) == TRUE) {
other <- FALSE
}
if(other == TRUE){
if (is.data.frame(other_excluded) == TRUE){
other_excluded_data <- paste0(':',
paste(paste('\n',
other_excluded[,1],
' (n = ',
other_excluded[,2],
')',
sep = ''),
collapse = ''))
} else {
other_excluded_data <- paste0('\n', '(n = ', other_excluded, ')')
}
B <- paste0("B [label = '', pos='",xstart+13,",",ystart+1.5,"!', tooltip = '']")
if (is.na(website_results) == FALSE) {
cond_websites <- paste0(website_results_text,
" (n = ",
website_results,
')\n')
} else {
cond_websites <- ''
}
if (is.na(organisation_results) == FALSE) {
cond_organisation <- paste0(organisation_results_text,
" (n = ",
organisation_results,
')\n')
} else {
cond_organisation <- ''
}
if (is.na(citations_results) == FALSE) {
cond_citation <- paste0(citations_results_text,
" (n = ",
citations_results,
')')
} else {
cond_citation <- ''
}
cluster2 <- paste0("subgraph cluster2 {
edge [color = White,
arrowhead = none,
arrowtail = none]
13->14;
edge [color = ", arrow_colour, ",
arrowhead = ", arrow_head, ",
arrowtail = ", arrow_tail, "]
14->15; 15->16;
15->17; 17->18;
edge [color = ", arrow_colour, ",
arrowhead = none,
arrowtail = ", arrow_tail, "]
17->B;
edge [color = ", arrow_colour, ",
arrowhead = ", arrow_head, ",
arrowtail = none,
constraint = FALSE]
B->12;
}")
othernodes <- paste0("node [shape = box,
fontname = ", font, ",
color = ", greybox_colour, "]
13 [label = '", other_text, "', style = 'rounded,filled', width = 7.5, height = 0.5, pos='",xstart+15,",",ystart+8.25,"!', tooltip = '", tooltips[5], "']
node [shape = box,
fontname = ", font, ",
color = ", greybox_colour, "]
14 [label = '", paste0('Records identified from:\n',
cond_websites,
cond_organisation,
cond_citation),
"', style = 'filled', width = 3.5, height = 0.5, pos='",xstart+13,",",ystart+7,"!', tooltip = '", tooltips[6], "']
node [shape = box,
fontname = ", font, ",
color = ", greybox_colour, "]
15 [label = '", paste0(other_sought_reports_text,
'\n(n = ',
other_sought_reports,
')'), "', style = 'filled', width = 3.5, height = 0.5, pos='",xstart+13,",",ystart+4.5,"!', tooltip = '", tooltips[12], "']
node [shape = box,
fontname = ", font, ",
color = ", greybox_colour, "]
16 [label = '", paste0(other_notretrieved_reports_text,'\n(n = ',
other_notretrieved_reports,
')'), "', style = 'filled', width = 3.5, height = 0.5, pos='",xstart+17,",",ystart+4.5,"!', tooltip = '", tooltips[13], "']
node [shape = box,
fontname = ", font, ",
color = ", greybox_colour, "]
17 [label = '", paste0(other_assessed_text,
'\n(n = ',
other_assessed,
')'),"', style = 'filled', width = 3.5, height = 0.5, pos='",xstart+13,",",ystart+3.5,"!', tooltip = '", tooltips[16], "']
node [shape = box,
fontname = ", font, ",
color = ", greybox_colour, "]
18 [label = '", paste0(other_excluded_text,
other_excluded_data), "', style = 'filled', width = 3.5, height = 0.5, pos='",xstart+17,",",ystart+other_excludedh,"!', tooltip = '", tooltips[17], "']\n
")
extraedges <- "16->18;"
othernode13 <- "; 13"
othernode14 <- "; 14"
othernode1516 <- "; 15; 16"
othernode1718 <- "; 17; 18"
othernodeB <- "; B"
} else {
B <- ""
cluster2 <- ""
othernodes <- ""
extraedges <- ""
optnodesother <- ""
othernode13 <- ""
othernode14 <- ""
othernode1516 <- ""
othernode1718 <- ""
othernodeB <- ""
}
if (any(!grepl("\\D", dbr_excluded)) == FALSE){
dbr_excluded_data <- paste0(':',
paste(paste('\n',
dbr_excluded[,1],
' (n = ',
dbr_excluded[,2],
')',
sep = ''),
collapse = ''))
} else {
dbr_excluded_data <- paste0('\n', '(n = ', dbr_excluded, ')')
}
if (is.na(database_results) == FALSE) {
cond_database <- paste0(database_results_text,
' (n = ',
database_results,
')\n')
} else {
cond_database <- ''
}
if (is.na(register_results) == FALSE) {
cond_register <- paste0(register_results_text,
' (n = ',
register_results,
')')
} else {
cond_register <- ''
}
if (is.na(duplicates) == FALSE) {
cond_duplicates <- paste0(stringr::str_wrap(paste0(duplicates_text,
' (n = ',
duplicates,
')'),
width = 42),
'\n')
} else {
cond_duplicates <- ''
}
if (is.na(excluded_automatic) == FALSE) {
cond_automatic <- paste0(stringr::str_wrap(paste0(excluded_automatic_text,
' (n = ',
excluded_automatic,
')'),
width = 42),
'\n')
} else {
cond_automatic <- ''
}
if (is.na(excluded_other) == FALSE) {
cond_exclother <- paste0(stringr::str_wrap(paste0(excluded_other_text,
' (n = ',
excluded_other,
')'),
width = 42))
} else {
cond_exclother <- ''
}
if (is.na(duplicates) == TRUE && is.na(excluded_automatic) == TRUE && is.na(excluded_other) == TRUE) {
cond_duplicates <- paste0('(n = 0)')
}
if(is.na(new_studies) == FALSE) {
cond_newstud <- paste0(stringr::str_wrap(new_studies_text, width = 40),
'\n(n = ',
new_studies,
')\n')
} else {
cond_newstud <- ''
}
if(is.na(new_reports) == FALSE) {
cond_newreports <- paste0(stringr::str_wrap(new_reports_text, width = 40),
'\n(n = ',
new_reports,
')')
} else {
cond_newreports <- ''
}
x <- DiagrammeR::grViz(
paste0("digraph TD {
graph[splines=ortho, layout=neato, tooltip = 'Click the boxes for further information', outputorder=edgesfirst]",
sidebox,
previous_nodes,"
node [shape = box,
fontsize = ", fontsize,",
fontname = ", font, ",
color = ", title_colour, "]
3 [label = '", newstud_text, "', style = 'rounded,filled', width = 7.5, height = 0.5, pos='",xstart+7,",",ystart+8.25,"!', tooltip = '", tooltips[3], "']
node [shape = box,
fontname = ", font, ",
color = ", main_colour, "]
4 [label = '", paste0('Records identified from:\n',
cond_database,
cond_register), "', width = 3.5, height = 0.5, height = 0.5, pos='",xstart+5,",",ystart+7,"!', tooltip = '", tooltips[4], "']
node [shape = box,
fontname = ", font, ",
color = ", main_colour, "]
5 [label = '", paste0('Records removed before screening:\n',
cond_duplicates,
cond_automatic,
cond_exclother),
"', width = 3.5, height = 0.5, pos='",xstart+9,",",ystart+7,"!', tooltip = '", tooltips[7], "']
node [shape = box,
fontname = ", font, ",
color = ", main_colour, "]
6 [label = '", paste0(records_screened_text,
'\n(n = ',
records_screened,
')'), "', width = 3.5, height = 0.5, height = 0.5, pos='",xstart+5,",",ystart+5.5,"!', tooltip = '", tooltips[8], "']
node [shape = box,
fontname = ", font, ",
color = ", main_colour, "]
7 [label = '", paste0(records_excluded_text,
'\n(n = ',
records_excluded,
')'), "', width = 3.5, height = 0.5, pos='",xstart+9,",",ystart+5.5,"!', tooltip = '", tooltips[9], "']
node [shape = box,
fontname = ", font, ",
color = ", main_colour, "]
8 [label = '", paste0(dbr_sought_reports_text,
'\n(n = ',
dbr_sought_reports,
')'), "', width = 3.5, height = 0.5, height = 0.5, pos='",xstart+5,",",ystart+4.5,"!', tooltip = '", tooltips[10], "']
node [shape = box,
fontname = ", font, ",
color = ", main_colour, "]
9 [label = '", paste0(dbr_notretrieved_reports_text,
'\n(n = ',
dbr_notretrieved_reports,
')'), "', width = 3.5, height = 0.5, pos='",xstart+9,",",ystart+4.5,"!', tooltip = '", tooltips[11], "']
node [shape = box,
fontname = ", font, ",
color = ", main_colour, "]
10 [label = '", paste0(dbr_assessed_text,
'\n(n = ',
dbr_assessed,
')'), "', width = 3.5, height = 0.5, pos='",xstart+5,",",ystart+3.5,"!', tooltip = '", tooltips[14], "']
node [shape = box,
fontname = ", font, ",
color = ", main_colour, ",
fillcolor = White,
style = filled]
11 [label = '", paste0(dbr_excluded_text,
dbr_excluded_data), "', width = 3.5, height = 0.5, pos='",xstart+9,",",ystart+dbr_excludedh,"!', tooltip = '", tooltips[15], "']
node [shape = box,
fontname = ", font, ",
color = ", main_colour, ", fillcolor = '', style = solid]
12 [label = '", paste0(cond_newstud,
cond_newreports), "', width = 3.5, height = 0.5, pos='",xstart+5,",",ystart+1.5,"!', tooltip = '", tooltips[18], "']
",othernodes,
finalnode,"
node [shape = square, width = 0, color=White]\n",
A,"
",B,"
",
Aedge,"
node [shape = square, width = 0, style=invis]
C [label = '', width = 3.5, height = 0.5, pos='",xstart+9,",",ystart+3.5,"!', tooltip = '']
subgraph cluster1 {
edge [style = invis]
3->4; 3->5;
edge [color = ", arrow_colour, ",
arrowhead = ", arrow_head, ",
arrowtail = ", arrow_tail, ",
style = filled]
4->5;
4->6; 6->7;
6->8; 8->9;
8->10; 10->C;
10->12;
edge [style = invis]
5->7;
7->9;
9->11;
",extraedges,"
}
",cluster2,"
",
bottomedge,"\n\n",
prev_rank1,"\n",
"{rank = same; ",prevnode1,"3",othernode13,"}
{rank = same; ",prevnode2,"4; 5",othernode14,"}
{rank = same; 6; 7}
{rank = same; 8; 9",othernode1516,"}
{rank = same; 10; 11",othernode1718,"}
{rank = same; 12",othernodeB,"}
}
")
)
if (side_boxes == TRUE) {
x <- PRISMA_insert_js_(x, identification_text = identification_text,screening_text = screening_text,included_text = included_text)
}
if (interactive == TRUE) {
x <- PRISMA_interactive_(x, urls, previous = previous, other = other)
}
return(x)
}
PRISMA_data <- function(data){
previous_studies <- scales::comma(as.numeric(data[grep('previous_studies', data[,1]),]$n))
previous_reports <- scales::comma(as.numeric(data[grep('previous_reports', data[,1]),]$n))
register_results <- scales::comma(as.numeric(data[grep('register_results', data[,1]),]$n))
database_results <- scales::comma(as.numeric(data[grep('database_results', data[,1]),]$n))
website_results <- scales::comma(as.numeric(data[grep('website_results', data[,1]),]$n))
organisation_results <- scales::comma(as.numeric(data[grep('organisation_results', data[,1]),]$n))
citations_results <- scales::comma(as.numeric(data[grep('citations_results', data[,1]),]$n))
duplicates <- scales::comma(as.numeric(data[grep('duplicates', data[,1]),]$n))
excluded_automatic <- scales::comma(as.numeric(data[grep('excluded_automatic', data[,1]),]$n))
excluded_other <- scales::comma(as.numeric(data[grep('excluded_other', data[,1]),]$n))
records_screened <- scales::comma(as.numeric(data[grep('records_screened', data[,1]),]$n))
records_excluded <- scales::comma(as.numeric(data[grep('records_excluded', data[,1]),]$n))
dbr_sought_reports <- scales::comma(as.numeric(data[grep('dbr_sought_reports', data[,1]),]$n))
dbr_notretrieved_reports <- scales::comma(as.numeric(data[grep('dbr_notretrieved_reports', data[,1]),]$n))
other_sought_reports <- scales::comma(as.numeric(data[grep('other_sought_reports', data[,1]),]$n))
other_notretrieved_reports <- scales::comma(as.numeric(data[grep('other_notretrieved_reports', data[,1]),]$n))
dbr_assessed <- scales::comma(as.numeric(data[grep('dbr_assessed', data[,1]),]$n))
dbr_excluded <- data.frame(reason = gsub(",.*$", "", unlist(strsplit(as.character(data[grep('dbr_excluded', data[,1]),]$n), split = '; '))),
n = gsub(".*,", "", unlist(strsplit(as.character(data[grep('dbr_excluded', data[,1]),]$n), split = '; '))))
other_assessed <- scales::comma(as.numeric(data[grep('other_assessed', data[,1]),]$n))
other_excluded <- data.frame(reason = gsub(",.*$", "", unlist(strsplit(as.character(data[grep('other_excluded', data[,1]),]$n), split = '; '))),
n = gsub(".*,", "", unlist(strsplit(as.character(data[grep('other_excluded', data[,1]),]$n), split = '; '))))
new_studies <- scales::comma(as.numeric(data[grep('new_studies', data[,1]),]$n))
new_reports <- scales::comma(as.numeric(data[grep('new_reports', data[,1]),]$n))
total_studies <- scales::comma(as.numeric(data[grep('total_studies', data[,1]),]$n))
total_reports <- scales::comma(as.numeric(data[grep('total_reports', data[,1]),]$n))
tooltips <- stats::na.omit(data$tooltips)
urls <- data.frame(box = data[!duplicated(data$box), ]$box, url = data[!duplicated(data$box), ]$url)
previous_text <- data[grep('prevstud', data[,3]),]$boxtext
newstud_text <- data[grep('newstud', data[,3]),]$boxtext
other_text <- data[grep('othstud', data[,3]),]$boxtext
previous_studies_text <- data[grep('previous_studies', data[,1]),]$boxtext
previous_reports_text <- data[grep('previous_reports', data[,1]),]$boxtext
register_results_text <- data[grep('register_results', data[,1]),]$boxtext
database_results_text <- data[grep('database_results', data[,1]),]$boxtext
website_results_text <- data[grep('website_results', data[,1]),]$boxtext
organisation_results_text <- data[grep('organisation_results', data[,1]),]$boxtext
citations_results_text <- data[grep('citations_results', data[,1]),]$boxtext
duplicates_text <- data[grep('duplicates', data[,1]),]$boxtext
excluded_automatic_text <- data[grep('excluded_automatic', data[,1]),]$boxtext
excluded_other_text <- data[grep('excluded_other', data[,1]),]$boxtext
records_screened_text <- data[grep('records_screened', data[,1]),]$boxtext
records_excluded_text <- data[grep('records_excluded', data[,1]),]$boxtext
dbr_sought_reports_text <- data[grep('dbr_sought_reports', data[,1]),]$boxtext
dbr_notretrieved_reports_text <- data[grep('dbr_notretrieved_reports', data[,1]),]$boxtext
other_sought_reports_text <- data[grep('other_sought_reports', data[,1]),]$boxtext
other_notretrieved_reports_text <- data[grep('other_notretrieved_reports', data[,1]),]$boxtext
dbr_assessed_text <- data[grep('dbr_assessed', data[,1]),]$boxtext
dbr_excluded_text <- data[grep('dbr_excluded', data[,1]),]$boxtext
other_assessed_text <- data[grep('other_assessed', data[,1]),]$boxtext
other_excluded_text <- data[grep('other_excluded', data[,1]),]$boxtext
new_studies_text <- data[grep('new_studies', data[,1]),]$boxtext
new_reports_text <- data[grep('new_reports', data[,1]),]$boxtext
total_studies_text <- data[grep('total_studies', data[,1]),]$boxtext
total_reports_text <- data[grep('total_reports', data[,1]),]$boxtext
identification_text <- data[grep('identification', data[,1]),]$boxtext
screening_text <- data[grep('screening', data[,1]),]$boxtext
included_text <- data[grep('included', data[,1]),]$boxtext
x <- list(previous_studies = previous_studies,
previous_reports = previous_reports,
register_results = register_results,
database_results = database_results,
website_results = website_results,
organisation_results = organisation_results,
citations_results = citations_results,
duplicates = duplicates,
excluded_automatic = excluded_automatic,
excluded_other = excluded_other,
records_screened = records_screened,
records_excluded = records_excluded,
dbr_sought_reports = dbr_sought_reports,
dbr_notretrieved_reports = dbr_notretrieved_reports,
other_sought_reports = other_sought_reports,
other_notretrieved_reports = other_notretrieved_reports,
dbr_assessed = dbr_assessed,
dbr_excluded = dbr_excluded,
other_assessed = other_assessed,
other_excluded = other_excluded,
new_studies = new_studies,
new_reports = new_reports,
total_studies = total_studies,
total_reports = total_reports,
previous_text = previous_text,
newstud_text = newstud_text,
other_text = other_text,
previous_studies_text = previous_studies_text,
previous_reports_text = previous_reports_text,
register_results_text = register_results_text,
database_results_text = database_results_text,
website_results_text = website_results_text,
organisation_results_text = organisation_results_text,
citations_results_text = citations_results_text,
duplicates_text = duplicates_text,
excluded_automatic_text = excluded_automatic_text,
excluded_other_text = excluded_other_text,
records_screened_text = records_screened_text,
records_excluded_text = records_excluded_text,
dbr_sought_reports_text = dbr_sought_reports_text,
dbr_notretrieved_reports_text = dbr_notretrieved_reports_text,
other_sought_reports_text = other_sought_reports_text,
other_notretrieved_reports_text = other_notretrieved_reports_text,
dbr_assessed_text = dbr_assessed_text,
dbr_excluded_text = dbr_excluded_text,
other_assessed_text = other_assessed_text,
other_excluded_text = other_excluded_text,
new_studies_text = new_studies_text,
new_reports_text = new_reports_text,
total_studies_text = total_studies_text,
total_reports_text = total_reports_text,
identification_text = identification_text,
screening_text = screening_text,
included_text = included_text,
tooltips = tooltips,
urls = urls)
return(x)
}
PRISMA_save <- function(plotobj, filename = 'PRISMA2020_flowdiagram.html', filetype = NA, overwrite = FALSE){
if (!file.exists(filename) | overwrite == TRUE ) {
format_real <- PRISMA_calc_filetype_(filename, filetype)
switch(
format_real,
"HTML" = {
tmp_html <- tempfile(pattern = "PRISMA2020_", tmpdir = tempdir(), fileext = ".html" )
htmlwidgets::saveWidget(plotobj, file=tmp_html, title = tools::file_path_sans_ext(filename))
if (!(file.copy(tmp_html, filename, overwrite = TRUE))){
stop("Error saving HTML")
}
file.remove(tmp_html)
},
"PDF" = {
tmp_svg <- PRISMA_gen_tmp_svg_(plotobj)
rsvg::rsvg_pdf(tmp_svg, filename)
file.remove(tmp_svg)
},
"PNG" = {
tmp_svg <- PRISMA_gen_tmp_svg_(plotobj)
rsvg::rsvg_png(tmp_svg, filename)
file.remove(tmp_svg)
},
"SVG" = {
tmp_svg <- PRISMA_gen_tmp_svg_(plotobj)
if (!(file.copy(tmp_svg, filename, overwrite = TRUE))){
stop("Error saving SVG")
}
file.remove(tmp_svg)
},
"PS" = {
tmp_svg <- PRISMA_gen_tmp_svg_(plotobj)
rsvg::rsvg_ps(tmp_svg, filename)
file.remove(tmp_svg)
},
"WEBP" = {
tmp_svg <- PRISMA_gen_tmp_svg_(plotobj)
rsvg::rsvg_webp(tmp_svg, filename)
file.remove(tmp_svg)
},
stop("Please choose one of the supported file types")
)
return(tools::file_path_as_absolute(filename))
} else {
stop("File exists, please set overwite = TRUE to overwrite")
}
}
sr_flow_interactive <- function(plot,
urls,
previous,
other) {
.Deprecated("PRISMA_interactive_")
return(PRISMA_interactive_(plot, urls, previous, other))
}
read_PRISMAdata <- function(data){
.Deprecated("PRISMA_data")
return(PRISMA_data(data))
} |
library(hamcrest)
expected <- c(0x1.b5f3b62ep-12 + -0x1.2p-52i, -0x1p-43 + -0x1.bfd78p-47i,
-0x1.4p-43 + -0x1.ee0b6b8b4ce8p-53i, -0x1.8p-43 + 0x1.6027fe8p-46i,
-0x1.4p-43 + -0x1.23d14p-46i, -0x1.6p-43 + -0x1.13b48p-47i, -0x1.8p-43 + -0x1.ab7fa4a3a599p-48i,
-0x1.ap-43 + 0x1.7aa006p-48i, -0x1.6p-43 + 0x1.1cp-47i, -0x1.ap-43 + 0x1.b1ec4p-46i,
-0x1.ap-43 + 0x1.e3b7d251d2cc6p-47i, -0x1p-42 + 0x1.a7d7fe8p-46i,
-0x1.8p-43 + 0x1.cfd14p-46i, -0x1.8p-43 + 0x1.bdd9cp-46i, -0x1.9p-43 + -0x1.e0ff49474b318p-49i,
-0x1.08p-42 + 0x1.43f8018p-46i, -0x1.cp-43 + -0x1.d6edbb471b4p-49i,
-0x1.ap-43 + 0x1.f9ccc2a09db8fp-47i, -0x1.9p-43 + 0x1.99aab472ce754p-47i,
-0x1.bp-43 + 0x1.91cba2f1f0bf8p-48i, -0x1.a8p-43 + -0x1.a12c9672b36b8p-49i,
-0x1.4p-43 + 0x1.25086b3b68f97p-46i, -0x1.38p-43 + 0x1.511d1ec1b15e6p-46i,
-0x1.98p-43 + 0x1.4a706cbc0dffp-46i, -0x1.3p-43 + 0x1.fe150ae172296p-46i,
-0x1.48p-43 + 0x1.e8ebe77822e68p-49i, -0x1.48p-43 + 0x1.a11d62dc8fa08p-48i,
-0x1.58p-43 + 0x1.7b50d6f95d0ep-47i, -0x1.cp-44 + 0x1.293d34bc5d814p-46i,
-0x1.08p-43 + 0x1.6721ca13d9998p-46i, -0x1.dp-44 + 0x1.da9c6a315a048p-47i,
-0x1.18p-43 + 0x1.b9ddf7ed300cp-46i, -0x1.58p-44 + 0x1.6ep-48i,
-0x1.28p-44 + 0x1.40144p-46i, -0x1p-44 + 0x1.5c23e928e9664p-46i,
-0x1.b8p-44 + 0x1.6027fe8p-46i, -0x1.7p-45 + 0x1.985d8p-47i,
-0x1.08p-44 + 0x1.2625cp-46i, -0x1.8p-47 + 0x1.0a402dae2d33ap-47i,
-0x1.6p-44 + -0x1.0abff4p-49i, 0x1p-48 + 0x1.cep-46i, -0x1.2p-45 + -0x1.e13cp-50i,
-0x1p-47 + -0x1.3c482dae2d338p-47i, -0x1.08p-44 + -0x1.e028018p-46i,
-0x1p-46 + -0x1.42ecp-50i, -0x1.8p-47 + 0x1.05d9cp-46i, 0x1.5p-45 + -0x1.083fd251d2cc8p-47i,
-0x1.2p-46 + -0x1.e03ff4p-49i, 0x1.6p-45 + -0x1.7844912e393p-47i,
0x1.cp-46 + -0x1.6cbde1504edc8p-46i, 0x1.cp-45 + -0x1.748d87e7946e3p-46i,
0x1p-49 + -0x1.c845d778f85fcp-47i, 0x1.38p-44 + -0x1.237ced31a9929p-46i,
0x1.6p-45 + -0x1.0179d676d1f2ep-47i, 0x1.2p-44 + -0x1.2adcf113842adp-46i,
0x1.6p-45 + -0x1.37a069bc0dfefp-46i, 0x1.ap-44 + 0x1.17abd47a375aap-48i,
0x1.1p-44 + -0x1.0289f9de08b9ap-47i, 0x1.7p-45 + -0x1.791f0ccaa2378p-47i,
0x1.4p-46 + -0x1.ddf86e7cae87p-46i, 0x1.18p-44 + 0x1.2cca968744fd8p-47i,
0x1.8p-45 + 0x1.5c91b5ec26668p-46i, 0x1.38p-44 + -0x1.ac703b53fe758p-49i,
0x1.1p-45 + 0x1.f09058967fap-49i, 0x1.58p-44 + 0x1.e1c41b2ca998p-49i,
0x1.08p-44 + 0x1.8c131850649c8p-47i, 0x1.8p-45 + 0x1.3b9a408654548p-49i,
0x1.8p-48 + 0x1.81df134781558p-47i, 0x1.38p-44 + 0x1.a5163fcdde501p-47i,
0x0p+0 + 0x1.91899ec79217p-49i, 0x1.6p-45 + 0x1.dbcb85115dd24p-48i,
-0x1p-48 + 0x1.0655999a47087p-46i, 0x1.8p-45 + 0x1.1b961c7b1fccep-46i,
-0x1p-47 + 0x1.5cc68c6a1d34p-52i, -0x1p-48 + 0x1.2d5e75601b06p-48i,
-0x1.6p-45 + -0x1.c5d55aedad8ap-49i, -0x1.8p-47 + 0x1.ea4abbcca0f5ep-47i,
-0x1.8p-45 + 0x1.5204c47f35806p-47i, -0x1.8p-47 + -0x1.2ceeae8e1da6cp-48i,
-0x1.6p-44 + 0x1.e9e1279f020a4p-48i, -0x1p-47 + 0x1.0117ba8bd4407p-46i,
-0x1.6p-44 + -0x1.0775cee69f63cp-48i, -0x1p-44 + -0x1.6cdd7660051ccp-46i,
-0x1.cp-44 + -0x1.d06b30cac4892p-46i, -0x1.4p-44 + -0x1.c8e71bec74ab6p-47i,
-0x1.bp-44 + -0x1.0de147da1cfe4p-47i, -0x1.bp-44 + -0x1.2dac8a865b5ep-47i,
-0x1.2p-43 + -0x1.9dc07886b928p-50i, -0x1.bp-44 + 0x1.d14e81bccfad8p-50i,
-0x1.38p-43 + 0x1.1f0a4c2da151p-46i, -0x1.4p-43 + 0x1.97f1c6585a14p-51i,
-0x1.7p-43 + -0x1.dbb6869568f54p-46i, -0x1.ep-44 + 0x1.1a5db2b68e56p-50i,
-0x1.3p-43 + 0x1.21e93d9fdb629p-47i, -0x1.2p-43 + 0x1.e0d41cdeb63c4p-48i,
-0x1.6p-43 + -0x1.74e9a5a485204p-47i, -0x1.08p-43 + 0x1.9b8p-46i,
-0x1.28p-43 + 0x1.80288p-47i, -0x1.4p-43 + 0x1.7847d251d2cc6p-47i,
-0x1.ap-43 + -0x1.fd8018p-50i, -0x1.1p-43 + 0x1.ec2ecp-46i, -0x1.5p-43 + 0x1.d625cp-46i,
-0x1.fp-44 + 0x1.7a900b6b8b4cep-45i, -0x1.b8p-43 + 0x1.8ea8018p-46i,
-0x1.1p-43 + 0x1.a7p-45i, -0x1.5p-43 + 0x1.50f62p-45i, -0x1.5p-43 + 0x1.80edf49474b32p-45i,
-0x1.88p-43 + 0x1.0bebff4p-45i, -0x1.2p-43 + 0x1.87e8ap-45i,
-0x1.1p-43 + 0x1.eeecep-45i, -0x1.cp-44 + 0x1.51f00b6b8b4cep-45i,
-0x1.7p-43 + 0x1.a1fc00cp-45i, 0x1.b5f3b62ebp-12 + 0x1.f1eedbb471b4p-45i,
0x1.3b2bdc4182p-9 + 0x1.01a10f57d891cp-45i, 0x1.cfafe661d8p-9 + 0x1.7db93c0c35c8ep-45i,
0x1.51ac7f6d9p-8 + 0x1.7dee8a21c1e81p-45i, 0x1.e6e1cd89e8p-8 + 0x1.9e4189672b36cp-45i,
0x1.5b7dcde688p-7 + 0x1.77a18a624b835p-45i, 0x1.eb0aaa19a4p-7 + 0x1.629187763deaap-45i,
0x1.5777d87e9e8p-6 + 0x1.542fcb21f9008p-45i, 0x1.dbac4485ap-6 + 0x1.417abd47a375ap-44i,
0x1.46147c1676cp-5 + 0x1.23aec0c43ee8dp-44i, 0x1.ba94fa486f8p-5 + 0x1.41b83ccd57722p-45i,
0x1.2957aa9046p-4 + 0x1.2103c8c1a8bc8p-45i, 0x1.8b865d80dfp-4 + 0x1.36654b43a27ecp-46i,
0x1.0688de37468p-3 + 0x1.39236bd84ccdp-47i, 0x1.5906d0327e8p-3 + -0x1.d58e076a7fcebp-46i,
0x1.be42585c5fp-3 + -0x1.90f6fa769806p-45i, 0x1.1dc9625ee09p-2 + -0x1.448p-46i,
0x1.6a7ce95d731p-2 + 0x1.20144p-46i, 0x1.c755a49a442p-2 + -0x1.01ee0b6b8b4cep-45i,
0x1.1b3bac03b65p-1 + -0x1.6fec00cp-45i, 0x1.5cfe4eb721ep-1 + 0x1.b85d8p-47i,
0x1.a9f0262ee58p-1 + -0x1.3b48p-51i, 0x1.017901281cdp+0 + -0x1.d5bfd251d2cc6p-47i,
0x1.345d391225cp+0 + -0x1.a157fe8p-46i, 0x1.6de3f144b3bp+0 + 0x1.0ep-46i,
0x1.aeabe12f1bdp+0 + 0x1.63d88p-47i, 0x1.f5f0a7af74cp+0 + -0x1.87120b6b8b4cep-45i,
0x1.21e0dedd06b4p+1 + -0x1.ac1400cp-45i, 0x1.4be4c95ef044p+1 + -0x1.8176p-49i,
0x1.78d12cfffaccp+1 + -0x1.044c8p-47i, 0x1.a85f5245eddcp+1 + -0x1.7e0ff49474b32p-45i,
0x1.d9dc9a0ed23cp+1 + -0x1.3e03ff4p-45i, 0x1.067768d2ba94p+2 + -0x1.f5bb6ed1c6dp-47i,
0x1.20c0da0e840ep+2 + -0x1.06333d5f62471p-47i, 0x1.3b7f22585588p+2 + -0x1.999552e34c62bp-45i,
0x1.563af94a2b08p+2 + -0x1.cdc68ba1c1e81p-45i, 0x1.70b8053a7ce2p+2 + -0x1.d0964b3959b5cp-48i,
0x1.8aed3e69d434p+2 + -0x1.f5ef29892e0d2p-47i, 0x1.a4e00dc509a2p+2 + -0x1.1bb8b84f93a86p-44i,
0x1.be2d35c8bbdp+2 + -0x1.3d63e4d0fc804p-44i, 0x1.d7215b1c126cp+2 + -0x1.81eaf51e8dd6ap-46i,
0x1.efc77a94f117p+2 + -0x1.017141887dd1ap-45i, 0x1.0423832949768p+3 + -0x1.55ee29d23706p-44i,
0x1.1089937023fcp+3 + -0x1.6095e520d45e4p-44i, 0x1.1d507969bbab8p+3 + -0x1.56c2cb43a27ecp-46i,
0x1.2aa894658c8ap+3 + -0x1.6c6f1af613334p-45i, 0x1.3910ceae45de8p+3 + -0x1.54ac72b9d4bf7p-44i,
0x1.48c98d917c398p+3 + -0x1.61888204b3fdp-44i, 0x1.5a680d785e3ap+3 + -0x1.848p-46i,
0x1.6e45dc6d1825p+3 + -0x1.9febcp-46i, 0x1.84fe491bb4cbp+3 + -0x1.30f705b5c5a67p-44i,
0x1.9f18405b74e84p+3 + -0x1.37f6006p-44i, 0x1.bd12661de752p+3 + 0x1.30bbp-48i,
0x1.dfb35d71a7fbp+3 + -0x1.73b48p-47i, 0x1.03b4c5f8dcd59p+4 + -0x1.e56ff49474b32p-45i,
0x1.1a707f8d56388p+4 + -0x1.0455ffap-44i, 0x1.343b2e7a8e948p+4 + 0x1.4ep-46i,
0x1.514a98718e3c8p+4 + -0x1.709ep-49i, 0x1.71da3fc34bbfbp+4 + -0x1.e7120b6b8b4cep-45i,
0x1.961b0e980426p+4 + -0x1.1a0a006p-44i, 0x1.be2262d49baa2p+4 + 0x1.afa28p-47i,
0x1.e9f672392cbcp+4 + -0x1.72264p-46i, 0x1.0cc07ff1f05b5p+5 + -0x1.0307fa4a3a599p-44i,
0x1.26621df3f70d2p+5 + -0x1.2b01ffap-44i, 0x1.41d784514b0b8p+5 + 0x1.8f76dda38dap-48i,
0x1.5f0b49f1c29cfp+5 + -0x1.32f785413b72p-48i, 0x1.7de96a527d132p+5 + -0x1.8a46c3f3ca372p-45i,
0x1.9e5f919c0762cp+5 + -0x1.9d08baef1f0cp-44i, 0x1.c041be647954bp+5 + 0x1.3c8312ce566d7p-46i,
0x1.e38b266615464p+5 + -0x1.50bceb3b68f97p-46i, 0x1.0411f99b86e28p+6 + -0x1.7eb73c44e10abp-44i,
0x1.16ef5c4bd6c2ep+6 + -0x1.79e81a6f037fcp-44i, 0x1.2a5bc001a44d4p+6 + -0x1.50a8570b914acp-49i,
0x1.3e505fa1cc6c1p+6 + -0x1.20a27e77822e7p-45i, 0x1.52c4a7adcb5f4p+6 + -0x1.4f23e1995446fp-44i,
0x1.67b8dca7f0849p+6 + -0x1.5b7e1b9f2ba1cp-44i, 0x1.7d2141bca95ep+6 + -0x1.4cd5a5e2ec0ap-49i,
0x1.92fc6ac2ab07ap+6 + -0x1.f1b72509eccccp-45i, 0x1.a94769567b34ap+6 + -0x1.a56381da9ff3bp-44i,
0x1.bff8c965cac14p+6 + -0x1.c87b7d3b4c03p-44i, 0x1.d707bfe5f4c06p+6 + -0x1.729c41b2ca998p-45i,
0x1.ee6d2a0a9dbfap+6 + -0x1.f2f0861419272p-45i, 0x1.030d4c9eacd74p+7 + -0x1.bbcadd6fbdef9p-44i,
0x1.0f006166c8ep+7 + -0x1.0c13f19478156p-43i, 0x1.1b068b2a71ee4p+7 + -0x1.7a2d9fe6ef28p-46i,
0x1.2711d7ec45748p+7 + -0x1.e2f2d9ec79217p-45i, 0x1.331bd8e6d9e24p+7 + -0x1.732cace58a904p-44i,
0x1.3f167737dde99p+7 + -0x1.e24165a691c22p-44i, 0x1.4af47cb0b1da8p+7 + -0x1.ff961c7b1fccep-46i,
0x1.56abf17acbefcp+7 + -0x1.10cd4d18d43a6p-45i, 0x1.62360030ee81bp+7 + -0x1.89e7f2c18cfd4p-44i,
0x1.6d88061522dp+7 + -0x1.ade555e89293bp-44i, 0x1.789c0ec279932p+7 + -0x1.582dde6507afp-50i,
0x1.836b9689d23fep+7 + -0x1.ad4ee23f9ac03p-46i, 0x1.8df3d59c8725bp+7 + -0x1.f682135725b16p-45i,
0x1.9831c3a3512a1p+7 + -0x1.b9442373e0414p-45i, 0x1.a2234e9b48d8ep+7 + 0x1.1259ad44c9dfp-47i,
0x1.abc673b2ae749p+7 + -0x1.88ab934b74dc4p-47i, 0x1.b517da64506e9p+7 + -0x1.3cbbea9696371p-45i,
0x1.be157974bb25cp+7 + -0x1.b3577ede218b9p-45i, 0x1.c6b985252cb7ep+7 + 0x1.f0a1a16635eb4p-48i,
0x1.cf1e2e32e9234p+7 + 0x1.2202f4c7c0e4p-47i, 0x1.d720c864d2cd1p+7 + -0x1.0377be9cb7ca2p-45i,
0x1.dea78df0dec3ap+7 + -0x1.1450c7bfde1bep-44i, 0x1.e5baafc499608p+7 + -0x1.c1d5a4b1d1504p-47i,
0x1.ec4fbb64578f8p+7 + -0x1.933d493e625d8p-48i, 0x1.f25edb00beea4p+7 + -0x1.5e186e623d803p-45i,
0x1.f7df8aecfab1ep+7 + -0x1.d47c51389cfe6p-45i, 0x1.fccca1fe2ce8ap+7 + -0x1.7e56e3655bc5cp-47i,
0x1.00925a9cea3b8p+8 + -0x1.215885541d3f2p-45i, 0x1.02763c5eaba0dp+8 + -0x1.4ecc4e8329c54p-45i,
0x1.04161a30b842fp+8 + -0x1.7473cf54d756p-44i, 0x1.05783b0164834p+8 + -0x1.124p-45i,
0x1.06a8bdd5ce45fp+8 + -0x1.7ff5ep-45i, 0x1.07b76baaabd38p+8 + -0x1.e1ee0b6b8b4cep-45i,
0x1.08b592e977706p+8 + -0x1.27f6006p-44i, 0x1.09b742783b0f8p+8 + -0x1.89e8ap-45i,
0x1.0ad3cdebcf238p+8 + -0x1.54ed2p-45i, 0x1.0c262640ee446p+8 + -0x1.656ff49474b32p-45i,
0x1.0dc7bf1839982p+8 + -0x1.0c55ffap-44i, 0x1.0fd3320176ddbp+8 + -0x1.99p-45i,
0x1.12618f3288964p+8 + -0x1.2f09ep-45i, 0x1.1588f0068631ap+8 + -0x1.7f120b6b8b4cep-45i,
0x1.195a90d5dc6eap+8 + -0x1.d41400cp-45i, 0x1.1de35e34ea612p+8 + -0x1.78176p-45i,
0x1.232753e9fad98p+8 + -0x1.91132p-45i, 0x1.292422e5a7c52p+8 + -0x1.6e0ff49474b32p-45i,
0x1.2fcb9e7f4769fp+8 + -0x1.1e03ff4p-45i, 0x1.37077bee97fe4p+8 + -0x1.5c2248971c98p-46i,
0x1.3eb4e16296c9bp+8 + -0x1.3cbde1504edc8p-46i, 0x1.46a790a434d9ep+8 + -0x1.12361f9e51b8cp-48i,
0x1.4ea9bad873588p+8 + -0x1.108baef1f0bf8p-48i, 0x1.567b74906c9e7p+8 + -0x1.837ced31a9929p-46i,
0x1.5dd95e2241c5ep+8 + -0x1.42f3aceda3e5bp-48i, 0x1.647a345f704f5p+8 + 0x1.8a461dd8f7aa6p-47i,
0x1.6a1561d19d327p+8 + 0x1.50bf2c87e4022p-47i, 0x1.6e62c37cf97d6p+8 + -0x1.742a15c2e452bp-47i,
0x1.7120061bc71cdp+8 + 0x1.075d81887dd1ap-45i, 0x1.7213b156ea157p+8 + 0x1.8370799aaee44p-46i,
0x1.711123e442084p+8 + 0x1.a103c8c1a8bc8p-45i, 0x1.6df954387f7acp+8 + -0x1.93356978bb028p-47i,
0x1.68bd00a80595cp+8 + 0x1.c91b5ec266678p-50i, 0x1.615bff31f275bp+8 + 0x1.aa71f89580315p-46i,
0x1.57e7e76ed505ep+8 + 0x1.6f09058967fap-45i, 0x1.4c835a74b4e66p+8 + -0x1.2p-52i,
0x1.3f5eb500bb71bp+8 + 0x1.20144p-46i, 0x1.30b65a1751838p+8 + 0x1.fe11f49474b32p-45i,
0x1.20d2b60347169p+8 + 0x1.5809ffap-44i, 0x1.0ffdbc43adc42p+8 + -0x1.23d14p-46i,
0x1.fd0e4a173f6d6p+7 + 0x1.7625cp-46i, 0x1.d981b9f23cdaep+7 + 0x1.654805b5c5a67p-44i,
0x1.b5e94c11c4b26p+7 + 0x1.97aa006p-44i, 0x1.92cf7a35dbacp+7 + -0x1.b9p-45i,
0x1.70b2310c54316p+7 + -0x1.384fp-48i, 0x1.4ff7de9072822p+7 + 0x1.78edf49474b32p-45i,
0x1.30f7ddc4eb079p+7 + 0x1.69f5ffap-44i, 0x1.13ef45775141cp+7 + -0x1.0c0bbp-44i,
0x1.f20f49689336p+6 + -0x1.0899p-48i, 0x1.c0b31ba9caf8cp+6 + 0x1.e1f00b6b8b4cep-45i,
0x1.93d52d6760f86p+6 + 0x1.a1fc00cp-45i, 0x1.6b63580a3aeecp+6 + -0x1.1d6edbb471b4p-45i,
0x1.47353e3d5ca2p+6 + -0x1.03199eafb1238p-46i, 0x1.271137d6d4372p+6 + 0x1.666aad1cb39d5p-45i,
0x1.0ab22a2e2b8dp+6 + 0x1.991cba2f1f0cp-44i, 0x1.e3a07a64c4a6ap+5 + -0x1.1a12c9672b36cp-45i,
0x1.b82262b006f9p+5 + -0x1.b5ef29892e0d2p-47i, 0x1.9255f164aca64p+5 + 0x1.a88e8f60d8af3p-45i,
0x1.71a252cb6c29ap+5 + 0x1.529c1b2f037fcp-44i, 0x1.556c768d7bc73p+5 + -0x1.01eaf51e8dd6ap-46i,
0x1.3d218c32a752ap+5 + 0x1.1e8ebe77822e6p-45i, 0x1.28507ad0ad1dp+5 + 0x1.b423ac5b91f41p-45i,
0x1.16875800bc2ccp+5 + 0x1.6f6a1adf2ba1cp-44i, 0x1.075ae8dc889f8p+5 + -0x1.ad85968744fd8p-47i,
0x1.f4dfe76e91965p+4 + 0x1.3390e509eccccp-45i, 0x1.dee63d9c5253dp+4 + 0x1.f6a71a8c56812p-45i,
0x1.cc3b783271f67p+4 + 0x1.6e777dfb4c03p-44i, 0x1.bc595cff66c92p+4 + 0x1.b7p-47i,
0x1.aecc0a8f4cb68p+4 + 0x1.c0144p-46i, 0x1.a320fd615882p+4 + 0x1.6e11f49474b32p-45i,
0x1.99013c83fd002p+4 + 0x1.1809ffap-44i, 0x1.8f6d2d1ce4cfep+4 + 0x1.85d8p-51i,
0x1.8725fe60e365p+4 + 0x1.312ep-49i, 0x1.802db58570acdp+4 + 0x1.852016d71699dp-46i,
0x1.798039f89d2a6p+4 + 0x1.4f5400cp-45i, 0x1.73046e9192c0fp+4 + -0x1.52p-46i,
0x1.6c88cf0bdd697p+4 + 0x1.03d88p-47i, 0x1.65fca3473ca68p+4 + 0x1.00edf49474b32p-45i,
0x1.5f4e90a28df2p+4 + 0x1.87ebff4p-45i, 0x1.587f76744b1bp+4 + 0x1.c7a28p-47i,
0x1.5187aa6999a0dp+4 + 0x1.ebb38p-47i, 0x1.4a79ae8ddc216p+4 + 0x1.45f00b6b8b4cep-45i,
0x1.4379a8b5c56fp+4 + 0x1.71fc00cp-45i, 0x1.3c9e9dcb97d07p+4 + 0x1.63ddb768e368p-46i,
0x1.360e6d52a1489p+4 + 0x1.09a10f57d891cp-45i, 0x1.30007a7d398a7p+4 + 0x1.25b93c0c35c8ep-45i,
0x1.2aab287f87488p+4 + 0x1.adee8a21c1e81p-45i, 0x1.263fc31dd19acp+4 + 0x1.0e4189672b36cp-45i,
0x1.22ebe0602bfb5p+4 + 0x1.3f4314c497069p-46i, 0x1.20dcfd5d1b09p+4 + 0x1.6a9187763deaap-45i,
0x1.203a268c2b84dp+4 + 0x1.242fcb21f9008p-45i, 0x1.2116f71a7f7f8p+4 + 0x1.45eaf51e8dd6ap-46i,
0x1.2383b7a80b0e7p+4 + 0x1.febb0310fba33p-46i, 0x1.277c92942fc88p+4 + 0x1.a1b83ccd57722p-45i,
0x1.2cee09daf976bp+4 + 0x1.0881e460d45e4p-44i, 0x1.33b2b28fc30bap+4 + 0x1.0b32a5a1d13f6p-45i,
0x1.3b9fdada66d1p+4 + 0x1.6e48daf613334p-45i, 0x1.447b68e7f9b18p+4 + 0x1.e538fc4ac018ap-45i,
0x1.4dff65bd3ce74p+4 + 0x1.5f09058967fap-45i, 0x1.57e1b89f181dap+4 + 0x1.1e1c41b2ca998p-45i,
0x1.61cdb44a79c2p+4 + 0x1.c6098c28324e4p-46i, 0x1.6b7ad90335dfp+4 + 0x1.13b9a40865454p-45i,
0x1.749f38df7ed3ep+4 + 0x1.81df134781558p-47i, 0x1.7cf6b1463afe8p+4 + 0x1.a5163fcdde501p-47i,
0x1.8448c354bae4ep+4 + 0x1.91899ec79217p-49i, 0x1.8a6d1f1e20f25p+4 + -0x1.121a3d775116ep-47i,
0x1.8f44ad8464ac1p+4 + 0x1.95666691c21cp-52i, 0x1.92baf7fd3c9fp+4 + 0x1.b961c7b1fccep-50i,
0x1.94cffca5fc892p+4 + 0x1.5cc68c6a1d34p-52i, 0x1.9590944a2886dp+4 + 0x1.2d5e75601b06p-48i,
0x1.951c6ad4218f3p+4 + 0x1.8e8aa944949d8p-47i, 0x1.93a34a6bb4c6fp+4 + -0x1.0adaa219af851p-46i,
0x1.91584dda5ae08p+4 + -0x1.56fd9dc0653fdp-46i, 0x1.8e7cbcf23a513p+4 + -0x1.2ceeae8e1da6cp-48i,
0x1.8b4cdad6f9702p+4 + -0x1.0b0f6c307efaep-47i, 0x1.8814afb4bf2b2p+4 + -0x1.fdd08ae8577f2p-47i,
0x1.8522dece1696ap+4 + -0x1.0775cee69f63cp-48i, 0x1.82b5d7a2d69ep+4 + -0x1.b375d9801473p-48i,
0x1.810c0c96a6ea4p+4 + -0x1.d06b30cac4892p-46i, 0x1.806260beadb8cp+4 + 0x1.b8c7209c5aa5p-50i,
0x1.80dcfdcf817f3p+4 + -0x1.86f0a3ed0e7f2p-46i, 0x1.8293ff864e72bp+4 + -0x1.96d645432dafp-46i,
0x1.85a1ef89c3c9cp+4 + -0x1.9dc07886b928p-50i, 0x1.89fcc6dfd7f8bp+4 + 0x1.1d14e81bccfaep-46i,
0x1.8f98f87b5d227p+4 + -0x1.e0f5b3d25eafp-46i, 0x1.965c712e607cp+4 + 0x1.97f1c6585a14p-51i,
0x1.9e1ad6059e52ap+4 + 0x1.2449796a970acp-46i, 0x1.a6a30ce594486p+4 + 0x1.08d2ed95b472bp-45i,
0x1.afbe3598abdcep+4 + 0x1.21e93d9fdb629p-47i, 0x1.b9341ad4aad64p+4 + 0x1.e0d41cdeb63c4p-48i,
0x1.c2d635b60753p+4 + 0x1.458b2d2dbd6fep-46i, 0x1.cd00cdd2c3285p+4 + 0x1.9b8p-46i,
0x1.d6d64db77fd1dp+4 + 0x1.80288p-47i, 0x1.e072e3c25a384p+4 + 0x1.7847d251d2cc6p-47i,
0x1.ea04a9adbb01p+4 + -0x1.fd8018p-50i, 0x1.f3b14bb895ccap+4 + 0x1.ec2ecp-46i,
0x1.fdb7fcaefb7cap+4 + -0x1.4ed2p-49i, 0x1.042b0fdd10816p+5 + -0x1.0adfe928e9663p-46i,
0x1.0a0aa74420f2ep+5 + -0x1.c55ffap-48i, 0x1.10c9e2674d6a5p+5 + 0x1.4ep-46i,
0x1.18c02b37e8405p+5 + -0x1.5e13cp-46i, 0x1.225171a81495dp+5 + -0x1.fc482dae2d338p-47i,
0x1.2dfdc77a5b6c6p+5 + -0x1.e828018p-46i, 0x1.3c41ba3f06a42p+5 + 0x1.0fd14p-46i,
0x1.4d99a157780a9p+5 + -0x1.11132p-45i, 0x1.628edc738aec2p+5 + -0x1.5c1fe928e9664p-46i,
0x1.7baf36476ed67p+5 + -0x1.2f01ffap-44i, 0x1.9993507b29e1ap+5 + -0x1.c2248971c98p-50i,
0x1.bcc0c460ff1fcp+5 + -0x1.fcbde1504edc8p-46i, 0x1.e5baed702f51ep+5 + -0x1.412361f9e51b9p-44i,
0x1.0a7e42835fa8p+6 + -0x1.c108baef1f0cp-44i, 0x1.2578dad3520dap+6 + -0x1.86f9da6353252p-47i,
0x1.43f8d4aa429c2p+6 + -0x1.885e759db47cbp-45i, 0x1.661857912828p+6 + -0x1.4eb73c44e10abp-44i,
0x1.8be9f8237df0ap+6 + -0x1.d5e81a6f037fcp-44i, 0x1.b567de52de1ccp+6 + -0x1.7d0a8570b914bp-45i,
0x1.e27ad7867096p+6 + -0x1.5c513f3bc1173p-44i, 0x1.097aca29e240ep+7 + -0x1.5f23e1995446fp-44i,
0x1.2346cf3668a05p+7 + -0x1.37bf0dcf95d0ep-43i, 0x1.3e70495a20dfap+7 + -0x1.93356978bb028p-47i,
0x1.5ab9fe38ee056p+7 + -0x1.b1b72509eccccp-45i, 0x1.77d9257d4fc6ap+7 + -0x1.d58e076a7fcebp-46i,
0x1.95775cb5e36cp+7 + -0x1.90f6fa769806p-45i, 0x1.b333ec884390ap+7 + 0x1.77p-47i,
0x1.d0a5d095a0afap+7 + -0x1.6ff5ep-45i, 0x1.ed5e40dcba921p+7 + -0x1.01ee0b6b8b4cep-45i,
0x1.0475d2ce1c6dcp+8 + -0x1.6fec00cp-45i, 0x1.116e6af22c74fp+8 + 0x1.b85d8p-47i,
0x1.1d62153dcf118p+8 + -0x1.3b48p-51i, 0x1.281de038e8477p+8 + -0x1.eadfe928e9663p-46i,
0x1.31742428d2b7cp+8 + -0x1.50abff4p-45i, 0x1.393cf4da0d136p+8 + -0x1.e4p-47i,
0x1.3f5971a633dd5p+8 + -0x1.2709ep-45i, 0x1.43b20a7eb93e8p+8 + -0x1.c482dae2d33ap-51i,
0x1.4638bf2b91718p+8 + -0x1.5828018p-46i, 0x1.46e895d2e5924p+8 + -0x1.302ecp-46i,
0x1.45c5ddd714a86p+8 + -0x1.01132p-45i, 0x1.42dd79b430fe4p+8 + -0x1.f07fa4a3a598cp-48i,
0x1.3e43d2edd2ba4p+8 + 0x1.03f8018p-46i, 0x1.38146321ec1c1p+8 + 0x1.0a44912e393p-47i,
0x1.306f80015d6dp+8 + 0x1.f39985413b71ep-48i, 0x1.277a5787d994p+8 + 0x1.666aad1cb39d5p-45i,
0x1.1d5d39d9e71a8p+8 + 0x1.591cba2f1f0cp-44i, 0x1.1242419921c1cp+8 + -0x1.e84b259cacdaep-47i,
0x1.06549635857c9p+8 + 0x1.2284359db47ccp-45i, 0x1.f37ede7ef291bp+7 + 0x1.044747b06c57ap-44i,
0x1.d9588ba79ea8cp+7 + 0x1.629c1b2f037fcp-44i, 0x1.be864b99294f6p+7 + -0x1.81eaf51e8dd6ap-46i,
0x1.a35384ef1183cp+7 + 0x1.f475f3bc11734p-48i, 0x1.8806154c7ed84p+7 + 0x1.0a11d62dc8fap-44i,
0x1.6cddbd3efed6ep+7 + 0x1.7f6a1adf2ba1cp-44i, 0x1.521391d00f96ep+7 + -0x1.56c2cb43a27ecp-46i,
0x1.37da350481f72p+7 + 0x1.a721ca13d9998p-46i, 0x1.1e5eb8319e5a6p+7 + 0x1.4b538d462b409p-44i,
0x1.05c5f7b0a15eap+7 + 0x1.be777dfb4c03p-44i, 0x1.dc5d94015117cp+6 + 0x1.77p-47i,
0x1.af6703a675f38p+6 + 0x1.500a2p-45i, 0x1.84d018e76aa48p+6 + 0x1.5f08fa4a3a599p-44i,
0x1.5cb63ead5bea4p+6 + 0x1.1404ffdp-43i, 0x1.372d453c7ebfap+6 + 0x1.185d8p-47i,
0x1.144024afc50e6p+6 + 0x1.e312ep-45i, 0x1.e7e31660d9234p+5 + 0x1.654805b5c5a67p-44i,
0x1.ac7adb5fc81acp+5 + 0x1.f3aa006p-44i, 0x1.7631090823aacp+5 + 0x1.b8p-48i,
0x1.44e3920bfddc5p+5 + 0x1.a8f62p-45i, 0x1.18662c72e2834p+5 + 0x1.9c76fa4a3a599p-44i,
0x1.e10748a1e3cbp+4 + 0x1.e5f5ffap-44i, 0x1.99fe9aabc9022p+4 + 0x1.4be8ap-45i,
0x1.5b2c7dcc99bd6p+4 + 0x1.f6ecep-45i, 0x1.23fd3fef1bcbep+4 + 0x1.a4f805b5c5a67p-44i,
0x1.e70490d63c16ep+3 + 0x1.c4fe006p-44i, 0x1.93dbd2330bafcp+3 + 0x1.83ddb768e368p-46i,
0x1.4cb491d09b964p+3 + 0x1.d9a10f57d891cp-45i, 0x1.0ffae169c8fcp+3 + 0x1.4adc9e061ae47p-44i,
0x1.b9350741d3f2p+2 + 0x1.7af74510e0f4p-44i, 0x1.631221f4a9008p+2 + 0x1.1e4189672b36cp-45i,
0x1.1bddcdf0e012p+2 + 0x1.a7a18a624b834p-45i, 0x1.c2903a00b709p+1 + 0x1.5948c3bb1ef55p-44i,
0x1.62ef78737874p+1 + 0x1.1e17e590fc804p-44i, 0x1.15d2e5be475fp+1 + 0x1.6bd5ea3d1bad5p-47i,
0x1.b0dc58eac6bcp+0 + 0x1.febb0310fba33p-46i, 0x1.50485575f8bap+0 + 0x1.e1b83ccd57722p-45i,
0x1.053c0e56e86cp+0 + 0x1.9903c8c1a8bc8p-45i, 0x1.9acc5917940cp-1 + 0x1.59952d0e89fbp-48i,
0x1.4afb42c3627cp-1 + 0x1.0e48daf613334p-45i, 0x1.162a3b1be07cp-1 + 0x1.5538fc4ac018ap-45i,
0x1.ec5291f7f5d8p-2 + 0x1.4f09058967fap-45i, 0x1.d2bbd826136p-2 + -0x1.29c41b2ca998p-49i,
0x1.db73a8c9ea28p-2 + 0x1.b43de7af9b638p-47i, 0x1.00cc517c2d8p-1 + 0x1.90d48a410841cp-46i,
0x1.229bfca84fep-1 + 0x1.df60735c3f554p-46i, 0x1.510acc33c1c8p-1 + -0x1.745b3fcdde5p-47i,
0x1.8e2830366de8p-1 + 0x1.d0d261386de9p-49i, 0x1.d75fd76bf198p-1 + 0x1.334d4c69d5bfp-46i,
0x1.16a7569e5e68p+0 + 0x1.edf4d2cb71efp-47i, 0x1.478da29aa9ap+0 + -0x1.ff2c38f63f99cp-47i,
0x1.7de13ea2458p+0 + -0x1.219a9a31a874dp-46i, 0x1.b9bd5b48a2e8p+0 + 0x1.586034f9cc0aep-46i,
0x1.fb19c4faffacp+0 + 0x1.c86aa85db5b14p-46i, 0x1.202595e77ee6p+1 + -0x1.9582dde6507afp-46i,
0x1.442dec2ba71ep+1 + -0x1.5a9dc47f35806p-47i, 0x1.690f4321075cp+1 + 0x1.25f7b2a3693aap-47i,
0x1.8e1a21c3c23cp+1 + -0x1.728846e7c0828p-46i, 0x1.b28ad12f975cp+1 + -0x1.76d3295d9b108p-46i,
0x1.d58f84c9bcd4p+1 + -0x1.88ab934b74dc4p-47i, 0x1.f64fd74c6d9cp+1 + -0x1.e5df54b4b1b88p-48i,
0x1.09faa1f308abp+2 + -0x1.9abbf6f10c5c8p-48i, 0x1.16da145c25d3p+2 + -0x1.83d797a672853p-46i,
0x1.216a66c30369p+2 + -0x1.777f42ce0fc7p-45i, 0x1.295df0471ccap+2 + -0x1.86ef7d396f944p-46i,
0x1.2e78eeecd24fp+2 + -0x1.450c7bfde1be8p-48i, 0x1.30947182e82cp+2 + -0x1.3075692c74541p-45i,
0x1.2fa04509bf9cp+2 + -0x1.e4cf524f98976p-46i, 0x1.2ba3c3895ebdp+2 + -0x1.7861b988f600cp-47i,
0x1.24bd75f143fp+2 + -0x1.51f144e273f98p-47i, 0x1.1b218f938d0dp+2 + -0x1.bf2b71b2ade2ep-46i,
0x1.0f175e2d267ap+2 + -0x1.215885541d3f2p-45i, 0x1.00f5db67e65p+2 + -0x1.9d989d06538a8p-46i,
0x1.e23f359acaf8p+1 + 0x1.718615651541p-49i, 0x1.bffcb0336c8p+1 + -0x1.49p-47i,
0x1.9bfcda565f48p+1 + -0x1.ffafp-48i, 0x1.7714e8d5bc54p+1 + 0x1.3c23e928e9663p-46i,
0x1.520ea9fdd164p+1 + 0x1.809ffap-48i, 0x1.2da1d4c60174p+1 + -0x1.13d14p-46i,
0x1.0a6ed4e8da5p+1 + -0x1.53b48p-47i, 0x1.d1f6744dbb38p+0 + 0x1.6a402dae2d33ap-47i,
0x1.935fa2b7a9e8p+0 + 0x1.4ea8018p-46i, 0x1.59b0a2aaf1fp+0 + 0x1.9cp-47i,
0x1.2548db3917p+0 + 0x1.43d88p-47i, 0x1.eca8400c8f3p-1 + 0x1.01dbe928e9664p-46i,
0x1.99a1bdaffc6p-1 + 0x1.d7d7fe8p-46i, 0x1.512edb130f3p-1 + 0x1.fa28p-51i,
0x1.12c3c77def3p-1 + 0x1.bbb38p-47i, 0x1.bb4fec45f68p-2 + 0x1.23e016d71699cp-46i,
0x1.620a1bb23d4p-2 + 0x1.87f003p-47i, 0x1.17e8bf76a76p-2 + -0x1.b844912e393p-47i,
0x1.b629ce7c978p-3 + -0x1.797bc2a09db8fp-47i, 0x1.5381b8cd66cp-3 + 0x1.db93c0c35c8e8p-49i,
0x1.046d0cab6e4p-3 + 0x1.dee8a21c1e81p-49i, 0x1.8b865d80ep-4 + -0x1.be7698d4c948p-53i,
0x1.2957aa9048p-4 + 0x1.7a18a624b834ap-49i, 0x1.ba94fa4872p-5 + 0x1.8a461dd8f7aa6p-47i,
0x1.46147c167ap-5 + 0x1.50bf2c87e4022p-47i, 0x1.dbac4485a6p-6 + 0x1.8bd5ea3d1bad5p-47i,
0x1.5777d87ea4p-6 + 0x1.d760621f7466p-51i, 0x1.eb0aaa19a8p-7 + 0x1.06e0f3355dc88p-47i,
0x1.5b7dcde69p-7 + 0x1.420791835179p-46i, 0x1.e6e1cd8ap-8 + 0x1.b32a5a1d13f6p-49i,
0x1.51ac7f6dap-8 + 0x1.1c91b5ec26668p-46i, 0x1.cfafe661ep-9 + 0x1.54e3f12b0062ap-47i,
0x1.3b2bdc418p-9 + 0x1.bc2416259fe8p-47i)
assertThat(stats:::fft(z=c(69.3960931829029+0i, -38.2557511320866-12.2364435179003i, 9.3835792339577-22.7010573579115i,
-24.9437262575059+36.0881842085867i, 22.9873743364522-6.9221233646368i,
4.70702798330528-0.09131853561383i, -3.4855516101682-15.8796448346085i,
-13.8986579566687+7.7320785340451i, 7.44752212944896+6.42760175696428i,
1.72908760355909+0.81688745432433i, 4.42888131358119-7.23651733808099i,
-7.69923704294959+1.60001750650117i, 2.38866206897461+1.28040305352333i,
-0.38958076795512+2.0975825545369i, 2.90803087954275-2.66831958880578i,
-2.84126830760458+0.47798485129404i, 0.975237148082374-0.18218806207258i,
-0.409794969359215+0.959529481803594i, 0.779509821970734-0.98005318226616i,
-0.723824938214022+0.425358451166908i, 0.282581346601006-0.326053039186713i,
-0.205848933770649+0.460494979364222i, 0.247823826200259-0.317480414508844i,
-0.129419056476597+0.132699636634662i, 0.0098884221077766-0.0985489733438956i,
-0.018072589058847+0.108507065688675i, 0.0508044326451802-0.0542855530621947i,
-0.0278330142612114+0.015106247866356i, 0.0096897149751812-0.0227580427286841i,
-0.0129285026530165+0.0285687927756497i, 0.0146265174333508-0.0188710107415458i,
-0.00669657489162954+0.00831936619701322i, 0.00036765394066355-0.00667597675878766i,
-0.0010056939153399+0.00574537981266003i, 0.00133227007774275-0.00240175244934385i,
-9.8894965440534e-05+6.41203451664861e-04i, -1.2919584017544e-04-2.59058828512148e-04i,
-1.6307793343093e-05-2.42455851311312e-04i, -7.8808726334273e-05+2.17949868939393e-04i,
-1.11253292039305e-04-7.5015881448416e-05i, 6.69645252783494e-06+9.27376389138338e-06i,
7.240174126264e-06+2.59830201072588e-04i, 9.697507869713e-06-1.42594623843933e-04i,
3.63481770226044e-04+2.39995591208501e-04i, -2.4670600000839e-04-7.02034425099486e-04i,
-6.8182006730356e-05+4.5573463425159e-04i, -5.5843436067622e-05-9.32699502362776e-05i,
-9.53496135729914e-05-8.3957163898485e-05i, 2.18085334498443e-04+3.88411128375809e-04i,
-1.15930331703352e-04-3.60192893557337e-04i, 3.07466964959034e-04+1.89022806868514e-04i,
-4.07399462569602e-04-3.44114312294043e-04i, 1.29594211457982e-04+2.60150063136343e-04i,
2.28456228866351e-06+4.82028027595587e-06i, -1.59054399190015e-04-1.11892314172853e-04i,
3.26594532362735e-04+3.25876250661426e-04i, -1.98303374622467e-04-4.2927300978421e-04i,
1.92066390268526e-04+1.92281083647876e-04i, -3.03997684704762e-04-1.54552796418383e-04i,
8.05407580616925e-05+8.17295659379743e-05i, 1.00022233730219e-04+1.26214512020815e-04i,
-2.8466374796913e-04-9.8369416851841e-05i, 5.48293708057053e-04+9.2768070466783e-05i,
-5.01697700866666e-04-1.88371188926097e-04i, 2.81035589717271e-04+8.5110365275581e-05i,
-1.41592805107969e-04-3.16020975334e-07i, -6.05011232296863e-05+1.4216236489355e-06i,
2.49008350897009e-04+2.85293360384e-07i, -2.90438270386603e-04-8.102944481311e-06i,
2.56487385854016e-04-7.2027325815379e-05i, -2.83067738556283e-04+5.619849315054e-05i,
1.60577603830794e-04+3.1828521096639e-05i, -1.18163386856337e-05-3.0916896569967e-06i,
-1.16969550799418e-04+3.4173361762774e-05i, 3.99052524319294e-04-1.751306697862e-05i,
-4.09628155306663e-04-1.15701319111755e-04i, 2.20719598036708e-04-1.18351234184033e-04i,
-2.7857785535465e-04+2.24031572335762e-04i, 1.25221493332754e-04-2.461713148731e-05i,
4.97025842365178e-05+1.25910091765866e-05i, -7.11489126519355e-05+9.91580438900807e-05i,
3.39086553461404e-04-2.06338519829023e-04i, -4.16038947053962e-04-1.8486304359853e-05i,
1.62260106956536e-04+2.3895934188363e-05i, -9.5495045173889e-05+6.9303745845167e-05i,
-9.42134371046282e-06+3.6086492514285e-06i, 1.40574966589056e-04-2.1320931404431e-05i,
-9.4605318292829e-05+1.32603987897436e-04i, 1.640766953179e-04-3.38383368220357e-04i,
-2.76243028603656e-04+2.17800281330818e-04i, 1.16263062229284e-04-4.5510617529242e-05i,
-8.0098354344113e-06+2.88354723060882e-05i, -4.11159900759657e-05+8.49423930815997e-05i,
1.85646229724583e-04-1.11713820620961e-04i, -1.23110429712048e-04+3.1015266958208e-05i,
5.4399418853481e-05-2.16977842657198e-04i, -2.07756284442269e-04+2.56542648530852e-04i,
1.19581075269616e-04-7.3948370945046e-05i, 9.1423088022767e-06-1.98624543488594e-05i,
-6.930029404274e-06+2.17452962700862e-04i, 1.00606683949571e-04-3.30407352353339e-04i,
-2.8161927165487e-05+1.74858570900621e-04i, -1.27710138213451e-04-1.7668846114196e-04i,
2.6362077451921e-05+1.71875999016256e-04i, 1.19488694392029e-05-2.46774479204664e-05i,
2.01961069108116e-05-4.25145239272444e-05i, 4.6594110741322e-05+1.55662816668247e-04i,
-7.382766335867e-06-3.2671891568907e-04i, -8.5242767600085e-05+2.41625259519031e-04i,
-7.449253941858e-06-1.07334108866029e-04i, 3.75997999256947e-05+8.44643556069968e-05i,
4.2736376417741e-06+6.2936194320836e-05i, 4.3677703565514e-05-1.7851326966109e-04i,
8.8026752171604e-05+1.30492634314949e-04i, -2.46736610979001e-04-2.48272062836803e-04i,
9.0621574444782e-05+2.42597931742966e-04i, -2.83927539977572e-05-3.6742368000898e-05i,
1.29313326552962e-05+8.479775668911e-07i, 9.05313667232827e-05+8.61629571155001e-05i,
8.429851107456e-06-1.79840063893996e-04i, 4.480935702866e-06+3.87002677104214e-05i,
-2.00254174281824e-04-8.4845502693082e-05i, 1.12942187986762e-04+1.62215861673319e-04i,
-7.1716580329834e-06-3.5359876394281e-05i, -1.88890265482971e-05-5.808482848191e-07i,
1.07797352994744e-04+8.1622637471267e-05i, -2.922148200663e-05-2.39583562617863e-04i,
-3.7883986374378e-05+1.33983823222083e-04i, -1.10536265052674e-04-4.7712256546727e-05i,
9.42979517554801e-05+7.85794708915315e-05i, -5.439611603687e-07-1.2692009086834e-06i,
-2.61442946141423e-05-1.32810689313002e-05i, 1.737646905958e-04+2.0666217278295e-05i,
-2.07155346179823e-04-1.81268727446554e-04i, 5.9289822231747e-05+1.29176964989802e-04i,
-7.80434681212893e-05+1.66615525367578e-05i, 5.64069628144653e-05+6.321429186975e-07i,
4.84048796416383e-05+2.51274610972347e-05i, -4.23064864606567e-05-1.36094344943618e-05i,
1.1537360018261e-04-7.9906249864792e-05i, -2.02411330429303e-04-8.988885736843e-06i,
1.01327699430121e-04+6.8733974915757e-05i, -3.72473396971622e-05-8.660774147174e-07i,
-6.51880785501584e-06+2.56041664872258e-06i, 1.11549112216042e-04-1.1196567534859e-05i,
-1.29267445813345e-04-1.060193609492e-05i, 1.00530048673151e-04-6.9161215365144e-05i,
-1.49922899225587e-04+1.02930570218184e-04i, 1.15271943446401e-04-2.9198801598725e-05i,
-1.95823935866016e-05+2.161272953281e-06i, -1.76702563377537e-05+2.58073203559952e-05i,
9.248583169792e-05-9.36313696537008e-05i, -1.31966781528097e-04+5.4989953155343e-05i,
3.23456107225922e-05-6.01922253019832e-05i, -2.9051551407322e-05+1.02731173836465e-04i,
4.79824935680419e-05-3.11918343030065e-05i, 8.80403169460255e-06+2.35262383940408e-06i,
-2.08047621728233e-05+2.7336193114101e-06i, 8.64930674391062e-05-9.0686561826063e-05i,
-1.73812032015692e-04+6.4157225927183e-05i, 9.11897114878611e-05-1.79430307570414e-05i,
-2.15322932257995e-05+5.38788745828886e-05i, 1.01305779012919e-05-2.12862009247272e-05i,
3.63073403671419e-05-3.68739994685092e-05i, -3.33668812344773e-05+4.32722617958086e-05i,
6.43972355624e-06-1.05056947694726e-04i, -6.9788400121405e-05+1.28486393305376e-04i,
6.9545890580116e-05-5.6197340304384e-05i, -6.1325016314917e-06+2.09269640125448e-05i,
2.264510196169e-06+1.640651562504e-05i, 4.14275518033267e-05-8.42446741723665e-05i,
-8.93154942756449e-05+3.2041554996961e-05i, 1.19966611311344e-05-3.30183746242459e-05i,
-1.6859707817117e-05+1.27968138734547e-04i, 5.55672304678694e-05-8.90979208118088e-05i,
-7.31268006750303e-06+9.59950921839247e-06i, 1.08090342336289e-05+4.97901892949552e-05i,
-6.746377147926e-06-1.68505168151103e-04i, -4.4491743054138e-05+1.62229670009177e-04i,
-2.46850991978608e-05-7.90146298810716e-05i, 7.28313222469443e-05+6.83783021307915e-05i,
-2.54938209121841e-05-3.64294026409139e-05i, -6.31043772629802e-06-9.367630376959e-06i,
4.63232014125699e-05+3.268718236227e-06i, -8.7970256539373e-05-4.65132771927244e-05i,
2.23017617743377e-05+7.92088086538067e-05i, 1.96008495986947e-05-2.29466995667736e-05i,
1.31419377249024e-05+4.779643772288e-07i, -3.64222598947742e-06-4.52006210999592e-06i,
6.4201848006117e-06-4.55426230053285e-05i, -2.66106430644642e-05+3.17902704282662e-05i,
-5.57735125974381e-05-4.76936703814926e-05i, 6.424270785645e-05+1.28674567794444e-04i,
-1.20594351986293e-05-7.64347812505893e-05i, 1.94402482032863e-05+1.7214691779166e-06i,
3.19136695790415e-05+3.8611132175019e-06i, -6.3603182791951e-05-5.70553495795772e-05i,
5.6973684853036e-06+2.77385222396069e-05i, -5.5957890083399e-05+2.54680801072852e-05i,
9.06692958759324e-05+3.47480785690129e-05i, -2.95469548934397e-05-4.60685129750324e-05i,
6.2022120309855e-07+1.1196919549013e-06i, 3.59285784545173e-05-3.351936988113e-07i,
-8.47015633077469e-05-3.34027991203412e-05i, 4.12287799831452e-05+4.02211206121932e-05i,
-2.10409284033625e-05+1.6870711844863e-05i, 4.8128847527245e-05-1.33824320989922e-05i,
-2.31531321208878e-05-1.44584750705137e-05i, -8.5662421526936e-06-2.02571287466675e-05i,
2.32086839866531e-05+5.0675277371307e-06i, -1.07560911469618e-04+1.6910233979145e-05i,
1.16263040220051e-04+3.0705595530842e-05i, -3.72307812858108e-05-9.4449676166697e-06i,
2.23593816284055e-05-3.44941745449408e-05i, 1.11583108847153e-06-6.1736735235985e-07i,
-3.66876865001586e-05-6.9537129122563e-06i, -1.05931382051046e-05-1.38429114541474e-05i,
-2.77335003326531e-05+6.49686826555037e-05i, 7.71189155901708e-05-5.469586035753e-07i,
-2.07927616363336e-05-2.98193771972745e-05i, 3.2925041497615e-07-6.86891850628453e-06i,
2.41178577818788e-05-1.94997533138036e-05i, -7.61200781954183e-05-9.271875765247e-06i,
1.05189231649673e-05+1.95590188201399e-05i, 2.5339027864314e-06+6.6875005597912e-05i,
5.25640775825936e-05-5.44974519865998e-05i, -2.5213784061404e-05-1.3686488179067e-06i,
2.6203310495145e-08+4.28516558220407e-07i, 1.77211633848084e-05-3.61639885254017e-05i,
-7.84797773009858e-05+3.21395442597451e-05i, 4.99534391606712e-05+2.8342623811298e-06i,
-5.7384799417244e-06+3.10201289519941e-05i, 1.60426848885318e-05-4.36891759807049e-05i,
-8.38481909947796e-06+9.07340411227866e-06i, -4.1396517935036e-07+8.11762728870538e-06i,
-2.70782939337911e-05-4.3783546120977e-05i, 6.4481245808405e-06+7.22421232685004e-05i,
2.712853213057e-05-2.67743199234726e-05i, -4.5767545412495e-06-1.42530056634947e-05i,
-1.53725469352065e-05-7.3633804703231e-06i, -8.7469688505443e-07-6.38927457928574e-06i,
-1.0346360393484e-05+2.73987760125244e-05i, -2.9957414478543e-05-1.38299870919499e-05i,
6.65832954871261e-05+4.64292538449082e-05i, -1.92907769106975e-05-4.14977658984447e-05i,
3.1837345521297e-06-1.71773201508029e-05i, -9.11110689257541e-06+6.70440009461078e-06i,
-1.41280517410479e-05-8.2882767539091e-06i, -2.69960952041783e-05+1.43307439864998e-05i,
1.83898287640272e-05+2.54648501758252e-05i, 3.52651309861207e-05+3.1927937155075e-06i,
-1.3887174617391e-05-3.59810345972462e-05i, -8.73535586811686e-06+4.55622206340091e-06i,
1.10518223925989e-06-3.89561245818612e-06i, -2.62625327895873e-05-1.0411283317755e-06i,
1.14245349674882e-05+2.82837067409459e-05i, 1.36668960887387e-05+0i,
1.14245349674687e-05-2.82837067409538e-05i, -2.62625327895845e-05+1.0411283318462e-06i,
1.10518223928771e-06+3.89561245832759e-06i, -8.7353558680447e-06-4.55622206330555e-06i,
-1.38871746172898e-05+3.5981034597067e-05i, 3.52651309859845e-05-3.1927937154017e-06i,
1.83898287638254e-05-2.54648501756504e-05i, -2.69960952040343e-05-1.43307439864165e-05i,
-1.41280517406988e-05+8.2882767537262e-06i, -9.11110689260429e-06-6.70440009457155e-06i,
3.1837345520993e-06+1.71773201509284e-05i, -1.92907769107954e-05+4.1497765898623e-05i,
6.6583295487152e-05-4.64292538448711e-05i, -2.99574144785291e-05+1.38299870918897e-05i,
-1.03463603934818e-05-2.73987760127e-05i, -8.7469688510595e-07+6.38927457936109e-06i,
-1.53725469352064e-05+7.3633804703235e-06i, -4.5767545412255e-06+1.42530056634523e-05i,
2.71285321305486e-05+2.67743199233569e-05i, 6.4481245807602e-06-7.22421232684321e-05i,
-2.70782939338022e-05+4.37835461210546e-05i, -4.1396517933736e-07-8.11762728865895e-06i,
-8.3848190995973e-06-9.07340411231837e-06i, 1.60426848885415e-05+4.36891759807906e-05i,
-5.7384799417001e-06-3.10201289520224e-05i, 4.99534391606412e-05-2.8342623811109e-06i,
-7.8479777301312e-05-3.21395442598902e-05i, 1.77211633847642e-05+3.61639885253878e-05i,
2.6203310524841e-08-4.28516558221737e-07i, -2.52137840614596e-05+1.368648818013e-06i,
5.25640775826321e-05+5.44974519863069e-05i, 2.5339027864312e-06-6.68750055979119e-05i,
1.05189231649741e-05-1.95590188201921e-05i, -7.61200781951269e-05+9.2718757653483e-06i,
2.41178577817547e-05+1.94997533136637e-05i, 3.2925041497275e-07+6.86891850628003e-06i,
-2.07927616362624e-05+2.98193771971964e-05i, 7.71189155902853e-05+5.469586037686e-07i,
-2.77335003325778e-05-6.49686826556062e-05i, -1.05931382050887e-05+1.38429114541227e-05i,
-3.66876865001181e-05+6.9537129121533e-06i, 1.11583108850155e-06+6.1736735239748e-07i,
2.2359381628418e-05+3.44941745449002e-05i, -3.72307812857648e-05+9.444967616667e-06i,
1.16263040220174e-04-3.0705595530848e-05i, -1.0756091146962e-04-1.6910233979146e-05i,
2.32086839865703e-05-5.0675277370818e-06i, -8.5662421526827e-06+2.02571287466417e-05i,
-2.31531321206882e-05+1.44584750704878e-05i, 4.81288475272646e-05+1.33824320990017e-05i,
-2.10409284033808e-05-1.68707118448639e-05i, 4.12287799831129e-05-4.02211206121674e-05i,
-8.4701563307747e-05+3.34027991205007e-05i, 3.59285784545131e-05+3.351936989102e-07i,
6.2022120303367e-07-1.11969195482896e-06i, -2.95469548934383e-05+4.60685129749785e-05i,
9.0669295876231e-05-3.4748078568922e-05i, -5.59578900833569e-05-2.54680801072878e-05i,
5.6973684853293e-06-2.77385222396578e-05i, -6.3603182792124e-05+5.70553495795631e-05i,
3.19136695793765e-05-3.8611132169289e-06i, 1.94402482033801e-05-1.7214691780168e-06i,
-1.2059435198654e-05+7.6434781251088e-05i, 6.424270785645e-05-1.28674567794444e-04i,
-5.57735125971619e-05+4.76936703815061e-05i, -2.6610643064358e-05-3.17902704281959e-05i,
6.420184800483e-06+4.55426230052427e-05i, -3.64222598972343e-06+4.52006210979987e-06i,
1.31419377248699e-05-4.779643772505e-07i, 1.96008495986777e-05+2.29466995667838e-05i,
2.23017617744241e-05-7.92088086539633e-05i, -8.79702565393434e-05+4.65132771926699e-05i,
4.63232014125603e-05-3.2687182361833e-06i, -6.31043772630626e-06+9.3676303768629e-06i,
-2.54938209120189e-05+3.64294026406821e-05i, 7.28313222466949e-05-6.83783021308971e-05i,
-2.46850991977952e-05+7.90146298811971e-05i, -4.4491743054487e-05-1.62229670009248e-04i,
-6.746377148077e-06+1.6850516815118e-04i, 1.08090342336254e-05-4.97901892949389e-05i,
-7.31268006734795e-06-9.59950921831283e-06i, 5.55672304679099e-05+8.90979208117965e-05i,
-1.685970781712e-05-1.27968138734566e-04i, 1.19966611311267e-05+3.30183746242111e-05i,
-8.9315494275582e-05-3.20415549968512e-05i, 4.14275518034311e-05+8.42446741725442e-05i,
2.2645101961001e-06-1.640651562517e-05i, -6.1325016314994e-06-2.09269640125701e-05i,
6.95458905801788e-05+5.61973403045186e-05i, -6.9788400121502e-05-1.28486393305798e-04i,
6.439723556071e-06+1.05056947694626e-04i, -3.33668812344374e-05-4.32722617958804e-05i,
3.63073403673065e-05+3.68739994687764e-05i, 1.01305779013014e-05+2.12862009246096e-05i,
-2.15322932258926e-05-5.38788745825922e-05i, 9.1189711487861e-05+1.79430307570416e-05i,
-1.73812032015594e-04-6.4157225927475e-05i, 8.64930674389113e-05+9.06865618261193e-05i,
-2.08047621728268e-05-2.7336193114189e-06i, 8.8040316943969e-06-2.35262383934004e-06i,
4.79824935682228e-05+3.11918343029748e-05i, -2.9051551407389e-05-1.02731173836367e-04i,
3.23456107226858e-05+6.01922253021511e-05i, -1.31966781528177e-04-5.4989953155339e-05i,
9.24858316977875e-05+9.36313696535922e-05i, -1.76702563379011e-05-2.58073203561612e-05i,
-1.95823935866094e-05-2.1612729533339e-06i, 1.15271943446492e-04+2.919880159883e-05i,
-1.49922899225936e-04-1.0293057021846e-04i, 1.00530048673048e-04+6.9161215365144e-05i,
-1.29267445813234e-04+1.0601936094904e-05i, 1.11549112215975e-04+1.1196567534984e-05i,
-6.51880785549784e-06-2.56041664904472e-06i, -3.72473396969553e-05+8.660774148307e-07i,
1.01327699429953e-04-6.8733974915847e-05i, -2.02411330428947e-04+8.98888573711e-06i,
1.15373600182492e-04+7.9906249864164e-05i, -4.23064864605137e-05+1.36094344944107e-05i,
4.8404879641728e-05-2.51274610969749e-05i, 5.64069628146799e-05-6.321429184571e-07i,
-7.80434681213573e-05-1.66615525371351e-05i, 5.9289822231944e-05-1.291769649894e-04i,
-2.07155346180601e-04+1.81268727445199e-04i, 1.73764690596054e-04-2.0666217277728e-05i,
-2.61442946143351e-05+1.32810689312735e-05i, -5.4396116037073e-07+1.26920090897087e-06i,
9.42979517546625e-05-7.85794708926977e-05i, -1.10536265052674e-04+4.7712256546727e-05i,
-3.7883986374138e-05-1.33983823221385e-04i, -2.9221482005609e-05+2.39583562616857e-04i,
1.07797352994597e-04-8.16226374716e-05i, -1.88890265482146e-05+5.808482850567e-07i,
-7.1716580330554e-06+3.53598763948802e-05i, 1.12942187987432e-04-1.62215861673216e-04i,
-2.00254174282296e-04+8.4845502692614e-05i, 4.4809357030119e-06-3.87002677104351e-05i,
8.429851106484e-06+1.7984006389408e-04i, 9.05313667236024e-05-8.61629571152934e-05i,
1.29313326555757e-05-8.479775672033e-07i, -2.83927539977386e-05+3.67423680010493e-05i,
9.06215744446e-05-2.42597931743301e-04i, -2.46736610979028e-04+2.48272062837083e-04i,
8.8026752171707e-05-1.30492634315283e-04i, 4.3677703565626e-05+1.78513269660922e-04i,
4.2736376414915e-06-6.29361943207091e-05i, 3.75997999259449e-05-8.44643556066096e-05i,
-7.449253941849e-06+1.07334108865635e-04i, -8.5242767599639e-05-2.41625259518787e-04i,
-7.382766335989e-06+3.26718915688942e-04i, 4.6594110741277e-05-1.55662816667999e-04i,
2.01961069108244e-05+4.25145239270625e-05i, 1.19488694393129e-05+2.46774479207435e-05i,
2.6362077451929e-05-1.71875999016069e-04i, -1.27710138213439e-04+1.76688461141935e-04i,
-2.8161927165277e-05-1.74858570900978e-04i, 1.00606683949105e-04+3.30407352353265e-04i,
-6.930029404666e-06-2.1745296270027e-04i, 9.142308801876e-06+1.98624543487035e-05i,
1.19581075269797e-04+7.3948370944289e-05i, -2.07756284442269e-04-2.56542648530852e-04i,
5.4399418853421e-05+2.16977842656999e-04i, -1.23110429711828e-04-3.1015266957996e-05i,
1.85646229724241e-04+1.1171382061997e-04i, -4.11159900759469e-05-8.49423930813482e-05i,
-8.009835434655e-06-2.88354723058374e-05i, 1.16263062229276e-04+4.5510617529538e-05i,
-2.76243028603553e-04-2.17800281331026e-04i, 1.64076695317838e-04+3.38383368220451e-04i,
-9.4605318292916e-05-1.32603987897139e-04i, 1.40574966588803e-04+2.13209314045e-05i,
-9.4213437103991e-06-3.60864925220696e-06i, -9.54950451739699e-05-6.93037458451769e-05i,
1.62260106956755e-04-2.3895934188226e-05i, -4.16038947054204e-04+1.8486304360324e-05i,
3.39086553462037e-04+2.06338519828348e-04i, -7.11489126519663e-05-9.91580438901237e-05i,
4.97025842367039e-05-1.259100917621e-05i, 1.25221493332384e-04+2.4617131487212e-05i,
-2.78577855353327e-04-2.24031572335793e-04i, 2.20719598036603e-04+1.18351234183994e-04i,
-4.0962815530568e-04+1.15701319112298e-04i, 3.99052524318921e-04+1.7513066978835e-05i,
-1.16969550798978e-04-3.4173361763128e-05i, -1.18163386859273e-05+3.0916896568246e-06i,
1.60577603830921e-04-3.1828521096094e-05i, -2.83067738556701e-04-5.6198493150721e-05i,
2.5648738585368e-04+7.2027325815155e-05i, -2.90438270386488e-04+8.102944480991e-06i,
2.49008350896436e-04-2.85293358712e-07i, -6.05011232291451e-05-1.4216236495478e-06i,
-1.41592805107824e-04+3.16020975035e-07i, 2.81035589717271e-04-8.5110365275581e-05i,
-5.0169770086639e-04+1.88371188926119e-04i, 5.4829370805581e-04-9.2768070466831e-05i,
-2.84663747968552e-04+9.8369416850622e-05i, 1.00022233729375e-04-1.26214512020439e-04i,
8.05407580627519e-05-8.17295659384904e-05i, -3.03997684704544e-04+1.54552796418049e-04i,
1.92066390268216e-04-1.92281083648198e-04i, -1.98303374622324e-04+4.29273009783997e-04i,
3.26594532362916e-04-3.25876250660222e-04i, -1.59054399190116e-04+1.11892314172907e-04i,
2.28456228823985e-06-4.82028027601457e-06i, 1.29594211458474e-04-2.60150063136933e-04i,
-4.073994625703e-04+3.44114312295818e-04i, 3.07466964959516e-04-1.89022806868881e-04i,
-1.15930331703741e-04+3.60192893557518e-04i, 2.18085334498547e-04-3.88411128375995e-04i,
-9.53496135726216e-05+8.39571638988239e-05i, -5.58434360676845e-05+9.32699502365398e-05i,
-6.8182006731091e-05-4.55734634252176e-04i, -2.46706000008312e-04+7.02034425099294e-04i,
3.63481770226185e-04-2.39995591208063e-04i, 9.697507869729e-06+1.42594623843863e-04i,
7.240174125203e-06-2.59830201072346e-04i, 6.69645252805372e-06-9.2737638917572e-06i,
-1.11253292039012e-04+7.5015881448822e-05i, -7.8808726334565e-05-2.17949868939455e-04i,
-1.6307793344343e-05+2.4245585131119e-04i, -1.29195840175096e-04+2.59058828511326e-04i,
-9.8894965439964e-05-6.41203451664509e-04i, 0.0013322700777426+0.00240175244934319i,
-0.00100569391534063-0.0057453798126606i, 0.00036765394066356+0.00667597675878766i,
-0.00669657489162757-0.0083193661970128i, 0.0146265174333495+0.018871010741545i,
-0.0129285026530171-0.028568792775649i, 0.0096897149751807+0.0227580427286832i,
-0.0278330142612102-0.0151062478663562i, 0.0508044326451796+0.0542855530621939i,
-0.018072589058848-0.108507065688674i, 0.0098884221077766+0.0985489733438949i,
-0.129419056476596-0.132699636634663i, 0.247823826200259+0.317480414508844i,
-0.205848933770651-0.460494979364221i, 0.282581346601006+0.326053039186713i,
-0.723824938214021-0.425358451166909i, 0.779509821970735+0.98005318226616i,
-0.409794969359216-0.959529481803594i, 0.975237148082374+0.18218806207258i,
-2.84126830760457-0.47798485129404i, 2.90803087954274+2.66831958880578i,
-0.38958076795512-2.0975825545369i, 2.38866206897461-1.28040305352333i,
-7.69923704294959-1.60001750650118i, 4.42888131358119+7.23651733808099i,
1.72908760355909-0.81688745432433i, 7.44752212944895-6.42760175696428i,
-13.8986579566687-7.7320785340451i, -3.4855516101682+15.8796448346085i,
4.70702798330529+0.09131853561384i, 22.9873743364522+6.9221233646368i,
-24.9437262575059-36.0881842085867i, 9.3835792339577+22.7010573579115i,
-38.2557511320866+12.2364435179003i))
, identicalTo( expected, tol = 1e-6 ) ) |
if (getRversion() >= '2.15.1')
utils::globalVariables(
c('N', '.', 'copies')
)
is_id <- function(dt,
by,
verbose = TRUE,
return_report = FALSE) {
if (!(is.data.table(dt))) {
dt <- as.data.table(dt)
} else {
dt <- data.table::copy(dt)
}
m <- dt[, .(copies =.N), by = mget(by)]
is_id <- m[, mean(copies)] == 1
if (verbose) {
cli::cli_h3("Duplicates in terms of {.code {by}}")
d <- freq_table(m, "copies")
print(d[])
cli::cli_rule(right = "End of {.field is_id()} report")
}
if (isFALSE(return_report)) {
return(is_id)
} else {
return(m)
}
} |
"boa.pardesc" <-
function()
{
return(.boa.pardesc)
} |
gfunction.bet2.cc <- function(para, map, ref, Delta, delta, ncase, nctrl, xi, pr){
nmodel <- length(map$bet)
g.bet2 <- list()
n <- nrow(ref)
const <- list()
for(i in 1:nmodel){
id <- c(alp.index.cc(map, i), map$bet[[i]])
gam <- para[id]
rx <- as.matrix(ref[, names(gam), drop = FALSE])
rho.i <- ncase[i, i] / nctrl[i, i]
const[[i]] <- -rx * (delta[, i] * (1 - rho.i * delta[, i]) * (1 + rho.i * Delta) / (1 + rho.i * delta[, i])^3)
}
nlam <- max(map$lam)
offset <- max(map$the)
foo <- function(j, l){
paste0(j,'-',l)
}
for(i in 1:nmodel){
id.a <- alp.index.cc(map, i)
id.b <- map$bet[[i]]
id <- c(id.a, id.b)
for(j in id.b){
fxj <- ref[, names(para)[j]]
tmp <- const[[i]] * fxj
for(l in id.b){
if(l < j){
next
}
fxl <- ref[, names(para)[l]]
gt <- matrix(0, nrow = n, ncol = nlam - 1)
gt[, id - offset] <- tmp * fxl
g.bet2[[foo(j,l)]] <- t(gt %*% xi) %*% pr
}
}
}
g.bet2
} |
RVI_func <- function(ID, DXcontrol, covariates=NULL, resp.range, EP, data) {
resp.names <- names(data)[resp.range]
resp.data <- data.frame(data[,resp.range])
colnames(resp.data) <- resp.names
control.idx <- rownames(subset(data,eval(parse(text=DXcontrol))))
i.norm.data <- data.frame(ID=data[,which(names(data)==ID)])
if(is.null(covariates)==T){
for (i in 1:ncol(resp.data)) {
formula <- stats::as.formula(paste(resp.names[i], ' ~ ', 1))
model <- stats::lm(formula, na.action=stats::na.exclude, data=data)
model.residuals <- stats::resid(model)
i.norm.residuals <- stats::qnorm((rank(model.residuals, na.last = "keep")) / (sum(!is.na(model.residuals))+1))
i.norm.data <- cbind(i.norm.data,i.norm.residuals)
}
colnames(i.norm.data) <- c(ID,resp.names)
}
else{
for (i in 1:ncol(resp.data)) {
formula <- stats::as.formula(paste(resp.names[i], ' ~ ', paste(covariates, collapse = "+")))
model <- stats::lm(formula,na.action=stats::na.exclude, data=data)
model.residuals <- stats::resid(model)
i.norm.residuals <- stats::qnorm((rank(model.residuals, na.last = "keep")) / (sum(!is.na(model.residuals))+1))
i.norm.data <- cbind(i.norm.data,i.norm.residuals)
}
colnames(i.norm.data) <- c(ID,resp.names)
}
z.norm.data <- data.frame(ID=data[,which(names(data)==ID)])
for (i in 2:ncol(i.norm.data)) {
inorm.control.mean <- mean(i.norm.data[control.idx,i])
inorm.control.sd <- stats::sd(i.norm.data[control.idx,i])
z.norm.residuals <- (i.norm.data[,i] - inorm.control.mean)/inorm.control.sd
z.norm.data <- cbind(z.norm.data,z.norm.residuals)
}
colnames(z.norm.data) <- c(ID,resp.names)
RVI.data <- data.frame(ID=data[,which(names(data)==ID)],RVI=NA)
for (i in 1:nrow(z.norm.data)) {
RVI.data$RVI[i] <- stats::cor(unlist(z.norm.data[i,2:(length(resp.range)+1)]), EP, use = "complete.obs")
RVI.data$EDP[i] <- sum(unlist(z.norm.data[i,2:(length(resp.range)+1)])*EP, na.rm = TRUE)
}
out <- list()
out$i.norm.resid <- i.norm.data
out$z.norm.resid <- z.norm.data
out$RVI <- RVI.data
return (out)
} |
expected <- eval(parse(text="c(\"structure(list(Sex = structure(c(2L, 2L, 1L, 1L, 2L, 2L), .Label = c(\\\"Female\\\", \", \"\\\"Male\\\"), class = \\\"factor\\\"), age = c(15, 20, 10, 12, 2, 4), Subject = structure(c(2L, \", \"2L, 1L, 1L, 3L, 3L), .Label = c(\\\"F30\\\", \\\"M01\\\", \\\"M04\\\"), class = \\\"factor\\\")), .Names = c(\\\"Sex\\\", \", \"\\\"age\\\", \\\"Subject\\\"), row.names = c(NA, -6L), class = \\\"data.frame\\\")\")"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(Sex = structure(c(2L, 2L, 1L, 1L, 2L, 2L), .Label = c(\"Female\", \"Male\"), class = \"factor\"), age = c(15, 20, 10, 12, 2, 4), Subject = structure(c(2L, 2L, 1L, 1L, 3L, 3L), .Label = c(\"F30\", \"M01\", \"M04\"), class = \"factor\")), .Names = c(\"Sex\", \"age\", \"Subject\"), row.names = c(NA, -6L), class = \"data.frame\"), 60L, FALSE, 69, -1L)"));
.Internal(deparse(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]]));
}, o=expected); |
library("infercnv")
infercnv_obj = CreateInfercnvObject(raw_counts_matrix="../oligodendroglioma_expression_downsampled.counts.matrix",
annotations_file="../oligodendroglioma_annotations_downsampled.txt",
delim="\t",
gene_order_file="../gencode_downsampled.txt",
ref_group_names=c("Microglia/Macrophage","Oligodendrocytes (non-malignant)"))
out_dir="output_dir_use_zscores"
infercnv_obj = infercnv::run(infercnv_obj,
cutoff=1,
out_dir=out_dir,
cluster_by_groups=T,
plot_steps=T,
use_zscores=T,
include.spike=T
) |
filterStream <- function(file.name=NULL, track=NULL, follow=NULL, locations=NULL, language=NULL,
timeout=0, tweets=NULL, oauth=NULL, verbose=TRUE)
{
open.in.memory <- FALSE
if (all(is.null(c(track,follow,language,locations)))) {
stop("No filter parameter was specified. At least one is necessary.
See ?filterStream for more information about this error.")
}
if (all(is.null(c(track,follow,locations))) & !is.null(language)){
stop("Language parameter can only be used in combination with other filter parameters.")
}
if ((missing(file.name)||is.character(file.name)==FALSE)){
stop("The file where the tweets will be stored was not named properly.")
}
if (timeout<0||is.numeric(timeout)==FALSE||length(timeout)>1){
stop("The specified time out was not properly formatted.")
}
if (is.null(oauth)) {
stop("No authentication method was provided.
Please use an OAuth token.") }
if (!is.null(oauth)){
if (is.list(oauth)){
oauth <- createOAuthToken(consumerKey=oauth$consumer_key,
consumerSecret=oauth$consumer_secret,
accessToken=oauth$access_token,
accessTokenSecret=oauth$access_token_secret)
}
if (!inherits(oauth, "OAuth")) {
stop("oauth argument must be of class OAuth") }
if (!oauth$handshakeComplete) {
stop("Oauth needs to complete its handshake. See ?filterStream.") }
}
params <- buildArgList(track, follow, language, locations, oauth=oauth)
i <- 0
if (!is.null(file.name)){
if (verbose==TRUE) message("Capturing tweets...")
if (nchar(file.name)==0) {
open.in.memory <- TRUE
file.name <- tempfile()
}
conn <- file(description=file.name, open="a")
write.tweets <- function(x){
if (nchar(x)>0) {
i <<- i + 1
writeLines(x, conn, sep="")
}
}
if (!is.null(tweets) && is.numeric(tweets) && tweets>0){
write.tweets <- function(x){
while (i<=tweets){
if (nchar(x)>0) {
i <<- i + 1
writeLines(x, conn, sep="")
}
}
}
}
}
init <- Sys.time()
url <- "https://stream.twitter.com/1.1/statuses/filter.json"
if (!is.null(oauth)){
output <- tryCatch(oauth$OAuthRequest(URL=url, params=params, method="POST",
customHeader=NULL, timeout = timeout, writefunction = write.tweets,
cainfo=system.file("CurlSSL", "cacert.pem", package = "RCurl")),
error=function(e) e)
}
if (!is.null(file.name)){ close(conn) }
seconds <- round(as.numeric(difftime(Sys.time(), init, units="secs")),0)
if (open.in.memory==TRUE){
raw.tweets <- readLines(file.name, warn=FALSE, encoding="UTF-8")
if (verbose==TRUE){ message("Connection to Twitter stream was closed after ", seconds,
" seconds with up to ", length(raw.tweets), " tweets downloaded.") }
unlink(file.name)
return(raw.tweets)
}
if (open.in.memory==FALSE) {
if (verbose==TRUE) {message("Connection to Twitter stream was closed after ", seconds,
" seconds with up to ", i, " tweets downloaded.")}
}
}
format.param <- function(param.name, param){
param <- as.character(param)
if (length(param)>1) param <- paste(param, collapse=",")
param.field <- paste(param.name, "=", param, sep="")
}
buildArgList <- function(track=NULL, follow=NULL, language=NULL, locations=NULL,
with=NULL,replies=NULL, oauth=NULL)
{
params <- list()
if (!is.null(track)) params[["track"]] <- paste(track, collapse=",")
if (!is.null(follow)) params[["follow"]] <- paste(as.character(follow), collapse=",")
if (!is.null(locations)) params[["locations"]] <- paste(as.character(locations), collapse=",")
if (!is.null(language)) params[["language"]] <- paste(as.character(language), collapse=",")
if (!is.null(with)) params[["with"]] <- paste(as.character(with), collapse=",")
if (!is.null(replies)) params[["replies"]] <- paste(as.character(replies), collapse=",")
return(params)
}
createOAuthToken <- function(consumerKey, consumerSecret, accessToken, accessTokenSecret){
my_oauth <- ROAuth::OAuthFactory$new(consumerKey=consumerKey,
consumerSecret=consumerSecret,
oauthKey=accessToken,
oauthSecret=accessTokenSecret,
needsVerifier=FALSE, handshakeComplete=TRUE,
verifier="1",
requestURL="https://api.twitter.com/oauth/request_token",
authURL="https://api.twitter.com/oauth/authorize",
accessURL="https://api.twitter.com/oauth/access_token",
signMethod="HMAC")
return(my_oauth)
} |
navigate_hash <- function(hobj, numtree = NA, dataset_description = "Unknown"){
parentid <- NULL
objectid <- 0
level <- 1
ln <- NA
rn <- NA
label_1X <- "%s [label = \"Node %s\\nX[%s] <= %s\\ngini index = %s\\nsamples = %s\\nvalue = %s\"];"
label_1z <- "%s [label = \"Node %s\\nz[%s] <= %s\\ngini index = %s\\nsamples = %s\\nvalue = %s\"];"
if(is.na(numtree)){
loop_start <- 1
loop_end <- length(hobj)
} else {
loop_start <- numtree
loop_end <- numtree
}
if(numtree %notin% seq(1, length(hobj))){
msg <- "hhcartr(displayTree) Tree %s requested, only %s trees available."
msgs <- sprintf(msg, numtree, length(hobj))
stop(msgs)
}
clear_dot_list()
append_dot_list("digraph rmarkdown {")
append_dot_list("nodesp = 0.75;")
title_dot_stmt <- "graph [label = 'displayTree for Tree %s. Dataset: %s.\\nn_folds = %s, n_trees = %s, n_min = %s,\\nmin_node_impurity = %s, useIdentity = %s,\\nseed = %s.', labelloc='t', fontsize=28];"
title_dot_stmt_formatted <- sprintf(title_dot_stmt,
numtree,
dataset_description,
pkg.env$n_folds,
pkg.env$n_trees,
pkg.env$n_min,
pkg.env$min_node_impurity,
pkg.env$useIdentity,
pkg.env$seed)
append_dot_list(title_dot_stmt_formatted)
append_dot_list("node [shape = box, color = black, fontsize = 12];")
for(i in loop_start:loop_end){
zero_objectid_count()
if(!hobj[[i]]$node_children_left_NA){
ln <- hobj[[i]]$node_children_left
}
if(!hobj[[i]]$node_children_right_NA){
rn <- hobj[[i]]$node_children_right
}
if(hobj[[i]]$node_using_householder){
label_1 <- label_1z
} else {
label_1 <- label_1X
}
label_1_o <- sprintf(label_1, hobj[[i]]$node_objectid,
hobj[[i]]$node_objectid,
hobj[[i]]$node_feature_index,
round(hobj[[i]]$node_threshold, 4),
round(hobj[[i]]$node_gini, 4),
hobj[[i]]$node_tot_samples,
hobj[[i]]$node_num_samples_per_class)
append_dot_list(label_1_o)
if(!hobj[[i]]$node_children_left_NA){
dispnode(ln, level, objectid)
}
if(!hobj[[i]]$node_children_right_NA){
dispnode(rn, level, objectid)
}
append_dot_list("}")
file_name <- tempfile(fileext = ".gv")
out <- file(file_name, 'w')
lapply(get_dot_list(), write, out, append = TRUE)
if(!is.na(numtree)){
tryCatch((grViz(diagram = file_name)), error = function(c) {
c$message <- paste0(c$message, " (in ", file_name, ")")
unlink(file_name)
stop(c)
})
unlink(file_name)
}
close(out)
}
}
dispnode <- function(nn, level, pid){
ln <- NA
rn <- NA
label_1X <- "%s [label = \"Node %s\\nX[%s] <= %s\\ngini index = %s\\nsamples = %s\\nvalue = %s\"];"
label_1z <- "%s [label = \"Node %s\\nz[%s] <= %s\\ngini index = %s\\nsamples = %s\\nvalue = %s\"];"
label_2 <- "%s [label=\"Node %s\\ngini index = %s\\nsamples = %s\\nvalue = %s\"] ;"
label_3 <- "%s -> %s ;"
increment_objectid_count()
nn$node_objectid <- get_objectid_count()
nn$node_parentid <- pid
if(nn$node_children_left_NA & nn$node_children_right_NA){
label_2_o <- sprintf(label_2,
nn$node_objectid,
nn$node_objectid,
round(nn$node_gini, 4),
nn$node_tot_samples,
nn$node_num_samples_per_class)
append_dot_list(label_2_o)
} else {
if(nn$node_using_householder){
label_1 <- label_1z
} else {
label_1 <- label_1X
}
label_1_o <- sprintf(label_1,
nn$node_objectid,
nn$node_objectid,
nn$node_feature_index,
round(nn$node_threshold, 4),
round(nn$node_gini, 4),
nn$node_tot_samples,
nn$node_num_samples_per_class)
append_dot_list(label_1_o)
}
label_3_o <- sprintf(label_3, nn$node_parentid, nn$node_objectid)
append_dot_list(label_3_o)
level <- level + 1
if(!nn$node_children_left_NA){
ln <- nn$node_children_left
dispnode(ln, level, nn$node_objectid)
} else {
return()
}
if(!nn$node_children_right_NA){
rn <- nn$node_children_right
dispnode(rn, level, nn$node_objectid)
} else {
return()
}
return()
}
displayTree <- function(ntree = 1, rpart_ = NA){
if(is.na(rpart_)){
allres <- pkg.env$folds_trees
} else {
allres <- rpart_
ntree <- 1
}
if(length(allres) == 0){
stop("hhcartr(displayTree) no trees found. Run fit() or rpartTree() first.")
}
packages <- c("DiagrammeR")
check_package(packages)
dataset_description <- pkg.env$model_data_description
navigate_hash(allres, ntree, dataset_description)
return(grViz(unlist(get_dot_list())))
} |
setPriors.HmscRandomLevel = function(rL, nu=NULL, a1=NULL, a2=NULL, b1=NULL, b2=NULL, alphapw=NULL, nfMax=NULL, nfMin=NULL, setDefault=FALSE, ...)
{
stopifnot(inherits(rL, "HmscRandomLevel"))
xDim = max(rL$xDim, 1)
if(!is.null(nu)){
if(length(nu) == 1){
rL$nu = rep(nu, xDim)
} else{
if(length(nu) == xDim){
rL$nu = nu
} else
stop("length of nu argument must be either 1 or rL$xDim")
}
} else if(setDefault){
rL$nu = rep(3, xDim)
}
if(!is.null(a1)){
if(length(a1) == 1){
rL$a1 = rep(a1, xDim)
} else{
if(length(a1) == xDim){
rL$a1 = a1
} else
stop("length of a1 argument must be either 1 or rL$xDim")
}
} else if(setDefault){
rL$a1 = rep(50, xDim)
}
if(!is.null(b1)){
if(length(b1) == 1){
rL$b1 = rep(b1, xDim)
} else{
if(length(b1) == xDim){
rL$b1 = b1
} else
stop("length of b1 argument must be either 1 or rL$xDim")
}
} else if(setDefault){
rL$b1 = rep(1, xDim)
}
if(!is.null(a2)){
if(length(a2) == 1){
rL$a2 = rep(a2, xDim)
} else{
if(length(a2) == xDim){
rL$a2 = a2
} else
stop("length of a2 argument must be either 1 or rL$xDim")
}
} else if(setDefault){
rL$a2 = rep(50, xDim)
}
if(!is.null(b2)){
if(length(b2) == 1){
rL$b2 = rep(b2, xDim)
} else{
if(length(b2) == xDim){
rL$b2 = b2
} else
stop("length of b2 argument must be either 1 or rL$xDim")
}
} else if(setDefault){
rL$b2 = rep(1, xDim)
}
if(!is.null(alphapw)){
if(rL$sDim == 0)
stop("prior for spatial scale was given, but not spatial coordinates were specified")
if(ncol(alphapw)!=2)
stop("alphapw must be a matrix with two columns")
rL$alphapw = alphapw
} else if(setDefault && rL$sDim>0){
alphaN = 100
if(is.null(rL$distMat)){
if (is(rL$s, "Spatial")) {
enclosingRect <- as.data.frame(t(bbox(rL$s)))
coordinates(enclosingRect) <- colnames(enclosingRect)
proj4string(enclosingRect) <- proj4string(rL$s)
enclosingRectDiag <- max(spDists(enclosingRect))
} else {
enclosingRectDiag = sqrt(sum(apply(rL$s, 2, function(c) diff(range(c)))^2))
}
} else {
enclosingRectDiag = max(rL$distMat)
}
rL$alphapw = cbind(enclosingRectDiag*c(0:alphaN)/alphaN, c(0.5,rep(0.5/alphaN,alphaN)))
}
if(!is.null(nfMax)){
rL$nfMax = nfMax
} else if(setDefault){
rL$nfMax = Inf
}
if(!is.null(nfMin)){
if(nfMin > nfMax)
stop("nfMin must be not greater than nfMax")
rL$nfMin = nfMin
} else if(setDefault){
rL$nfMin = 2
}
return(rL)
} |
formatPsi <- function(psi.values = NULL,
to = "dataframe"){
to.dataframe.options <- c("dataframe", "Dataframe", "DATAFRAME", "data.frame", "Data.frame", "DATA.FRAME", "df")
to.matrix.options <- c("matrix", "Matrix", "MATRIX", "m", "M")
to.list.options <- c("list", "List", "LIST", "l", "L")
if(inherits(psi.values, "list") == TRUE){
if(to %in% to.list.options){
warning("The input is a list, and your desired output is a list. I did nothing.")
return(psi.values)
}
if(to %in% to.dataframe.options){
psi.dataframe <- .psiToDataframe(psi.values = psi.values)
return(psi.dataframe)
}
if(to %in% to.matrix.options){
psi.dataframe <- .psiToDataframe(psi.values = psi.values)
row.col.names <- unique(c(psi.dataframe$A, psi.dataframe$B))
psi.matrix <- matrix(NA, nrow=length(row.col.names), ncol=length(row.col.names))
colnames(psi.matrix) <- rownames(psi.matrix) <- row.col.names
for(i in 1:nrow(psi.dataframe)){
A <- psi.dataframe[i, "A"]
B <- psi.dataframe[i, "B"]
psi.matrix[A, B] <- psi.matrix[B, A] <- psi.dataframe[i, "psi"]
}
psi.matrix[is.na(psi.matrix)] <- 0
return(psi.matrix)
}
}
if(inherits(psi.values, "matrix") == TRUE){
if(to %in% to.matrix.options){
warning("The input is a maatrix, and your desired output is a matrix I did nothing.")
return(psi.values)
}
if(to %in% to.dataframe.options){
psi.values.dist <- stats::as.dist(psi.values)
dimensions <- attr(psi.values.dist, "Size")
sequence.names <- if (is.null(attr(psi.values.dist, "Labels"))) sequence(dimensions) else attr(psi.values.dist, "Labels")
psi.dataframe <- data.frame(
A = rep(sequence.names[-length(sequence.names)], (length(sequence.names)-1):1),
B = sequence.names[unlist(lapply(sequence(dimensions)[-1], function(x) x:dimensions))],
psi = as.vector(psi.values.dist),
stringsAsFactors = FALSE)
return(psi.dataframe)
}
}
if(inherits(psi.values, "data.frame") == TRUE){
if(to %in% to.dataframe.options){
warning("The input is a dataframe, and your desired output is a dataframe I did nothing.")
return(psi.values)
}
row.col.names <- unique(c(psi.values$A, psi.values$B))
psi.matrix <- matrix(NA, nrow=length(row.col.names), ncol=length(row.col.names))
colnames(psi.matrix) <- rownames(psi.matrix) <- row.col.names
for(i in 1:nrow(psi.values)){
A <- psi.values[i, "A"]
B <- psi.values[i, "B"]
psi.matrix[A, B] <- psi.matrix[B, A] <- psi.values[i, "psi"]
}
psi.matrix[is.na(psi.matrix)] <- 0
return(psi.matrix)
}
}
.psiToDataframe <- function(psi.values = NULL){
if(inherits(psi.values, "list") == TRUE){
n.elements <- length(psi.values)
} else {
temp <- list()
temp[[1]] <- psi.values
psi.values <- temp
names(psi.values) <- "A|B"
n.elements <- 1
}
nas <- rep(NA, n.elements)
psi.dataframe <- data.frame(A = nas, B = nas, psi = nas, stringsAsFactors = FALSE)
for(i in 1:n.elements){
psi.dataframe[i, "psi"] <- psi.values[[i]]
psi.dataframe[i, c("A", "B")] <- unlist(strsplit(names(psi.values)[i], split='|', fixed=TRUE))
}
return(psi.dataframe)
} |
stat = gene_stat (exp = example_data, r = 0.7)
head(stat) |
Officials.getByLevenshtein <-
function (lastName) {
Officials.getByLevenshtein.basic <- function (.lastName) {
request <- "Officials.getByLevenshtein?"
inputs <- paste("&lastName=",.lastName,sep="")
output <- pvsRequest4(request,inputs)
output$lastName.input <- .lastName
output
}
output.list <- lapply(lastName, FUN= function (y) {
Officials.getByLevenshtein.basic(.lastName=y)
}
)
output.list <- redlist(output.list)
output <- dfList(output.list)
output
} |
print.design <- function(x,show.order=NULL, group.print=TRUE, std.order=FALSE, ...){
if (!"design" %in% class(x)) stop("this function works for class design objects only")
else{
if (is.null(design.info(x)))
print.data.frame(x, ...)
else{
di <- design.info(x)
if (std.order) {
print(cbind(run.order(x)[,c(1,2)],x)[ord(run.order(x)),])
cat("NOTE: columns run.no.in.std.order and run.no", " are annotation,",
" not part of the data frame", fill=TRUE)
if (length(grep("param",di$type))>0 & length(grep("wide",di$type))>0 ){
cat("Outer array:\n")
print(di$outer, ...)
}
return(invisible())
}
if (group.print)
group.print <- di$type %in% c("full factorial.blocked", "FrF2.blocked", "FrF2.blockedcenter",
"FrF2.splitplot", "FrF2.splitplot.folded", "Dopt.blocked", "Dopt.splitplot", "oa.blocked", "pb.blocked")
if (is.null(show.order))
show.order <- group.print | di$replications > 1 | di$type=="crossed" | length(grep("param",di$type)) > 0
if (show.order){
if (!group.print)
print(cbind(run.order(x)[,2:3],x), ...)
else{
if (di$type %in% c("full factorial.blocked", "FrF2.blocked", "FrF2.blockedcenter", "Dopt.blocked", "oa.blocked", "pb.blocked"))
printBy(cbind(run.order(x)[,2:3],x), di$block.name,...)
if (di$type %in% c("FrF2.splitplot", "FrF2.splitplot.folded","Dopt.splitplot"))
printBy(cbind(run.order(x)[,2:3],x), names(di$factor.names)[1:di$nfac.WP], ...)
}
}
else {
if (!group.print)
print(cbind(x), ...)
else
{
if (di$type %in% c("full factorial.blocked", "FrF2.blocked", "FrF2.blockedcenter", "Dopt.blocked"))
printBy(cbind(x), di$block.name,...)
if (di$type %in% c("FrF2.splitplot", "FrF2.splitplot.folded","Dopt.splitlot"))
printBy(cbind(x), names(di$factor.names)[1:di$nfac.WP], ...)
}}
cat("class=design, type=", di$type,"\n")
if (show.order)
cat("NOTE: columns run.no and run.no.std.rp", " are annotation,",
" not part of the data frame",fill=TRUE)
if (length(grep("param",di$type))>0 & length(grep("wide",di$type))>0 ){
cat("Outer array:\n")
print(di$outer, ...)
}
}
}
}
printBy <- function(data, byvars, ...){
zaehl <- 0
zeil <- 0
while (zeil < nrow(data)){
zaehl <- zaehl + 1
current <- data[zeil + 1, byvars]
curz <- zaehl
aus <- data[-(1:nrow(data)),]
while (zaehl == curz & zeil < nrow(data)){
zeil <- zeil + 1
if (all(data[zeil,byvars] == current))
aus <- rbind(aus, data[zeil,])
else {
print(aus, ...)
zaehl <- zaehl + 1
zeil <- zeil - 1
}
if (zeil == nrow(data))
print(aus, ...)
}
}
}
summary.design <- function(object, brief = NULL, quote=FALSE, ...){
di <- design.info(object)
if (is.null(di)) return(summary.data.frame(object=object, quote=quote, ...))
if (is.null(brief))
if (nrow(object) <= 40 & ncol(object)<=12) brief <- FALSE else brief <- TRUE
if (is.language(di$creator)){
cat("Call:\n")
print(di$creator, quote=quote, ...)
cat("\n")
}
else {if (length(class(di$creator))>1)
cat("design was generated with RcmdrPlugin.DoE\n\n")
else {
cat("Multi-step-call:\n")
print(di$creator, quote=quote, ...)
cat("\n")}
}
cat("Experimental design of type ", di$type,"\n")
cat(di$nruns, " runs\n")
blocks <- di$nblocks
if (is.null(blocks)) blocks <- 1
if (blocks > 1){
if (length(grep("ccd",di$type))>0)
cat("blocked design with ", blocks, " cube blocks", "and one star block\n", fill=TRUE)
else
cat("blocked design with ", blocks, " blocks")
if (!all(di$blocksize==di$blocksize[1])){
cat("\nVarying block sizes: \n")
print(di$blocksize)}
else cat(" of size ", di$blocksize, "\n")
if (!length(grep("Dopt",di$type))>0){
if (di$bbreps>1)
cat("each type of block independently conducted ", di$bbreps, " times\n")
if (di$wbreps > 1 & !di$repeat.only)
cat("each run within each block independently conducted ", di$wbreps, " times\n")
if (di$wbreps > 1 & di$repeat.only)
cat("each run measured ", di$wbreps, " times (no proper replication)\n")
}
if (di$type=="full factorial.blocked"){
hilf <- factorize(di$nlevels)
names(hilf) <- Letters[1:di$nfactors]
hilf <- unlist(hilf)
if (is.null(colnames(di$block.gen)))
colnames(di$block.gen) <- names(hilf)
hilf.primes <- apply(di$block.gen, 1,
function(obj) unique(hilf[!obj==0]))
for (p in unique(hilf.primes)){
chilf <- conf.set(di$block.gen[which(hilf.primes==p),,drop=FALSE], p)
cat("\nConfounding of ", p, "-level pseudo-factors with blocks",
"\n(each row gives one independent confounded effect):\n")
print(chilf)
cat("\n")
}
}
}
else if (di$replications>1)
if (di$repeat.only)
cat(di$replications, " measurements per run (not proper replications)\n")
else
cat("each run independently conducted ", di$replications, " times\n")
cat("\n")
pfn <- di$factor.names
lfn <- max(sapply(pfn, "length"))
pfn <- lapply(pfn, function(obj) if (length(obj)==lfn) obj else c(obj,rep("",lfn-length(obj))))
pfn <- as.data.frame(pfn)
if (all(di$quantitative)){
if (!"ccd" %in% di$type)
cat("Factor settings (scale ends):\n")
else cat("Factor settings (cube):\n")
}
else
cat("Factor settings:\n")
print(pfn, quote=quote, ...)
if ("ccd" %in% di$type){
cat("\nNumbers of cube and star points: \n")
print(c(Cube=di$ncube, Star=di$nstar))
cat("Numbers of center points: \n")
print(c(Cube=di$ncenter[1], Star=di$ncenter[2]))
}
if (length(grep("Dopt",di$type))>0 | length(grep("lhs",di$type))>0)
if (!is.null(di$optimality.criteria)){
cat("\nOptimality criteria:\n ")
print(unlist(di$optimality.criteria))
}
if (!is.null(response.names(object))){
cat("\nResponses:\n")
if (is.null(di$responselist)) print(response.names(object), quote=quote, ...)
else print(di$responselist, quote=quote, ...)
}
if (length(grep("param",design.info(object)$type))>0 & length(grep("wide",design.info(object)$type))>0 ){
cat("\nOuter array:\n")
print(design.info(object)$outer, quote=quote, ...)
}
if (substr(di$type,1,4)=="FrF2"){
cat("\nDesign generating information:\n")
print(list(legend=di$aliased$legend), quote=quote, ...)
neuver <- FALSE
if (!is.null(di$FrF2.version) & length(di$FrF2.version)==1)
if (compareVersion(di$FrF2.version, "1.1") >= 0) neuver <- TRUE
if ((neuver || !(length(grep("blocked",di$type)) > 0 || length(grep("splitplot",di$type)) > 0)) &&
!(length(grep("param",di$type)) > 0 || length(grep("folded", di$type))>0) )
print(generators(object), quote=quote, ...)
if (length(di$aliased) == 1)
cat("\nno aliasing of main effects or 2fis", " among experimental factors\n", fill=TRUE)
else{
if (all(sapply(di$aliased[-1], "length")==0))
cat("\nno aliasing of main effects or 2fis", " among experimental factors\n", fill=TRUE)
else{
if (all(sapply(di$aliased, "length") >= 1) && length(di$aliased) > 1){
cat("\nAlias structure:\n")
print(di$aliased[-1], quote=quote, ...)}
else {
cat("\nAlias structure:\n")
if (length(di$aliased$main) > 0)
print(di$aliased[2], quote=quote, ...)
if (length(di$aliased$fi2) > 0)
print(di$aliased[3], quote=quote, ...)
if (length(di$aliased$fi3) > 0)
print(di$aliased[4], quote=quote, ...)
}
}
}
if (di$type=="FrF2.blocked"){
if (length(di$aliased.with.blocks) > 0){
cat("Aliased with block main effects:\n")
print(di$aliased.with.blocks, quote=quote, ...)
}
else cat("no main effects or 2fis aliased with blocks\n")
}
}
if (substr(di$type,1,4)=="oa"){
cat("Generating Orthogonal Array:\n")
print(di$generating.oa, quote=quote, ...)
cat("Selected Columns:\n")
print(di$selected.columns,...)
if (di$nfactors <= 15){
cat("Numbers of generalized words of lengths 3 and 4:\n")
print(c("3"=length3(object),"4"=length4(object)))}
else if (di$nfactors <= 30)
cat("Number of generalized words of length 3: ", length3(object),"\n", fill=TRUE)
}
nWPs <- di$nWPs
if (is.null(nWPs) | length(nWPs)==0) nWPs <- 1
if (nWPs > 1){
cat("\nsplit-plot design: ", nWPs, " whole plots\n")
cat(" first ", di$nfac.WP, " factors are whole plot factors\n")
}
if (!brief){
cat("\nThe design itself:\n")
print(object, quote=quote, ...)
}
} |
setGeneric("replace_errors", function( data
, x
, ref=NULL, ...
, cl = NULL
, Ncpus = getOption("Ncpus", 1)
, value = c("NA", "suggestion")){
standardGeneric("replace_errors")
})
setMethod('replace_errors', c("data.frame", "validator")
, function(data, x, ref=NULL, ..., cl = NULL
, Ncpus = getOption("Ncpus", 1)
, value = c("NA", "suggestion")){
fh <- fh_localizer(x)
replace_errors(data, fh, ref, ..., cl = cl, Ncpus = Ncpus)
})
setMethod('replace_errors', c("data.frame", "ErrorLocalizer")
, function(data, x
, ref = NULL
, ...
, cl = NULL
, Ncpus = getOption("Ncpus", 1)
, value = c("NA", "suggestion")){
el <- locate_errors(data, x, ref, ..., cl = cl)
replace_errors(data, el, ref, ..., cl = cl, Ncpus = Ncpus)
})
setMethod('replace_errors', c("data.frame", "errorlocation")
, function( data, x
, ref = NULL,
...
, cl = NULL
, Ncpus = 1
, value = c("NA", "suggestion")){
value <- switch ( match.arg(value),
"NA" = is.na(data) <- values(x, na_as_error = TRUE)
)
attr(data,"errorlocation") <- x
data
}) |
TD_power <- function(case, mean = 0, sd = 1,
sample_size = NULL,
power = NULL,
alternative = c("less", "greater", "two.sided"),
alpha = 0.05, spec = 0.005) {
if (!is.null(sample_size) & !is.null(power)) stop("Must supply only one of sample size or desired power")
if (is.null(sample_size) & is.null(power)) stop("Must supply either sample size or desired power")
if (!is.null(power)) if (power > 1 | power < 0) stop("Desired power must be between 0 and 1")
if (!is.null(sample_size)) if (sample_size < 2) stop("Sample size must be greater than 1")
if (alpha < 0 | alpha > 1) stop("Type I error rate must be between 0 and 1")
alternative <- match.arg(alternative)
n = sample_size
if (is.null(power)) {
if (alternative == "two.sided") {
power = stats::pt(stats::qt(alpha/2, df = n-1,
lower.tail = T),
ncp = ((case - mean)/(sd*sqrt((n+1)/n))),
df = n-1,
lower.tail = T) - stats::pt(-stats::qt(alpha/2, df = n-1,
lower.tail = T),
ncp = ((case - mean)/(sd*sqrt((n+1)/n))),
df = n-1,
lower.tail = T) + 1
return(power)
}
if (alternative == "less") {
power = stats::pt(stats::qt(alpha, df = n-1,
lower.tail = T),
ncp = ((case - mean)/(sd*sqrt((n+1)/n))),
df = n-1,
lower.tail = T
)
return(power)
}
if (alternative == "greater") {
power = stats::pt(stats::qt(alpha, df = n-1,
lower.tail = F),
ncp = ((case - mean)/(sd*sqrt((n+1)/n))),
df = n-1,
lower.tail = F
)
return(power)
}
}
if (is.null(sample_size)) {
n = 2
search_pwr = 0
prev_search_pwr = 1
keep_going = TRUE
while(keep_going == TRUE){
if (alternative == "two.sided") {
search_pwr = stats::pt(stats::qt(alpha/2, df = n-1,
lower.tail = T),
ncp = ((case - mean)/(sd*sqrt((n+1)/n))),
df = n-1,
lower.tail = T) - stats::pt(-stats::qt(alpha/2, df = n-1,
lower.tail = T),
ncp = ((case - mean)/(sd*sqrt((n+1)/n))),
df = n-1,
lower.tail = T) + 1
}
if (alternative == "less") {
search_pwr = stats::pt(stats::qt(alpha, df = n-1,
lower.tail = T),
ncp = ((case - mean)/(sd*sqrt((n+1)/n))),
df = n-1,
lower.tail = T
)
}
if (alternative == "greater") {
search_pwr = stats::pt(stats::qt(alpha, df = n-1,
lower.tail = F),
ncp = ((case - mean)/(sd*sqrt((n+1)/n))),
df = n-1,
lower.tail = F
)
}
if (abs(prev_search_pwr - search_pwr) < spec) {
keep_going = FALSE
message(paste0("Power (", format(round(search_pwr, 3), nsmall = 3), ") will not increase more than ", spec*100, "%",
" per participant for n > ", n))
}
prev_search_pwr = search_pwr
n = n + 1
if (search_pwr > power) keep_going = FALSE
}
return(data.frame(n = n - 1, power = search_pwr))
}
}
BTD_power <- function(case, mean = 0, sd = 1,
sample_size,
alternative = c("less", "greater", "two.sided"),
alpha = 0.05,
nsim = 1000, iter = 1000) {
if (sample_size < 2) stop("Sample size must be greater than 1")
if (alpha < 0 | alpha > 1) stop("Type I error rate must be between 0 and 1")
alternative <- match.arg(alternative)
n = sample_size
BTD_p_sim <- function() {
con <- stats::rnorm(n, mean = mean, sd = sd)
case <- stats::rnorm(1, mean = mean, sd = sd) + (case - mean)
pval <- singcar::BTD(case, con, iter = iter, alternative = alternative)[["p.value"]]
pval
}
pval <- vector(length = nsim)
for(i in 1:nsim) {
pval[i] <- BTD_p_sim()
}
power = sum(pval < alpha)/length(pval)
return(power)
}
BTD_cov_power <- function(case, case_cov, control_task = c(0, 1), control_covar = c(0, 1),
cor_mat = diag(2) + 0.3 - diag(c(0.3, 0.3)),
sample_size,
alternative = c("less", "greater", "two.sided"),
alpha = 0.05,
nsim = 1000, iter = 1000) {
if (alpha < 0 | alpha > 1) stop("Type I error rate must be between 0 and 1")
if (sum(eigen(cor_mat)$values > 0) < length(diag(cor_mat))) stop("cor_mat is not positive definite")
if (sample_size < 2) stop("Sample size must be greater than 1")
alternative <- match.arg(alternative)
n = sample_size
sum_stats <- rbind(control_task, control_covar)
if (length(sum_stats[ , 2]) != nrow(cor_mat)) stop("Number of variables and number of correlations do not match")
Sigma <- diag(sum_stats[ , 2]) %*% cor_mat %*% diag(sum_stats[ , 2])
mu <- sum_stats[ , 1]
BTD_cov_p_sim <- function() {
con <- MASS::mvrnorm(n+1, mu = mu, Sigma = Sigma)
case_scores <- c(case, case_cov)
case_score_emp <- vector(length = length(case_scores))
for (i in 1:length(case_scores)) {
case_score_emp[i] <- con[1, i] + (case_scores[i] - mu[i])
}
con <- con [-1, ]
pval <- singcar::BTD_cov(case_task = case_score_emp[1], case_covar = case_score_emp[-1],
control_task = con[ , 1], control_covar = con[ , -1],
iter = iter, alternative = alternative)[["p.value"]]
pval
}
pval <- vector(length = nsim)
for(i in 1:nsim) {
pval[i] <- BTD_cov_p_sim()
}
power = sum(pval < alpha)/length(pval)
return(power)
} |
dct1d <- function(dat){
n <- length(dat);
weight <- c(1,2*exp(-1i*(1:(n-1))*pi/(2*n)));
dat <- c(dat[seq(1,n-1,2)], dat[seq(n,2,-2)]);
out <- Re(weight*stats::fft(dat));
return(out)
}
fixedpoint <- function(tt,N,II,a2){
l <- 7
f <- 2*(pi^(2*l))*sum((II^l)*a2*exp(-II*(pi^2)*tt))
for (s in (l-1):2){
K0 <- prod(seq(1,2*s-1,2))/sqrt(2*pi)
const <- (1+(1/2)^(s+1/2))/3
TT <- (2*const*K0/N/f)^(2/(3+2*s))
f <- 2*pi^(2*s)*sum(II^s*a2*exp(-II*pi^2*TT))
}
out <- tt-(2*N*sqrt(pi)*f)^(-2/5)
return(out)
}
botev <- function(x){
n <- 512
minimum <- min(x)
maximum <- max(x)
Range <- maximum - minimum
MIN <- minimum-Range/10
MAX <- maximum+Range/10
R <- MAX-MIN
dx <- R/n
xmesh <- MIN+seq(0,R,dx)
if (anyDuplicated(x)){
N <- length(as.numeric(names(table(x))))
} else {
N <- length(x)
}
w <- graphics::hist(x,xmesh,plot=FALSE)
initialdata <- (w$counts)/N
initialdata <- initialdata/sum(initialdata)
a <- dct1d(initialdata)
II <- (1:(n-1))^2
a2 <- (a[2:n]/2)^2
tstar <- tryCatch(stats::uniroot(fixedpoint,c(0,.1),
N=N,II=II,a2=a2,tol=10^(-14))$root,
error=function(e).28*N^(-2/5))
bandwidth <- sqrt(tstar)*R
return(bandwidth)
}
commonbandwidth <- function(x){
dnames <- names(x$x)
n <- length(dnames)
bw <- rep(0,n)
for (i in 1:n){
bw[i] <- botev(x$x[[i]])
}
return(stats::median(bw))
} |
read_ipums_micro_yield <- function(
ddi,
vars = NULL,
data_file = NULL,
verbose = TRUE,
var_attrs = c("val_labels", "var_label", "var_desc"),
lower_vars = FALSE
) {
vars <- enquo(vars)
if (!is.null(var_attrs)) var_attrs <- match.arg(var_attrs, several.ok = TRUE)
IpumsLongYield$new(
ddi = ddi,
vars = !!vars,
data_file = data_file,
verbose = verbose,
var_attrs = var_attrs,
lower_vars = lower_vars
)
}
read_ipums_micro_list_yield <- function(
ddi,
vars = NULL,
data_file = NULL,
verbose = TRUE,
var_attrs = c("val_labels", "var_label", "var_desc"),
lower_vars = FALSE
) {
vars <- enquo(vars)
if (!is.null(var_attrs)) var_attrs <- match.arg(var_attrs, several.ok = TRUE)
IpumsListYield$new(
ddi = ddi,
vars = !!vars,
data_file = data_file,
verbose = verbose,
var_attrs = var_attrs,
lower_vars = lower_vars
)
}
IpumsLongYield <- R6::R6Class(
"IpumsLongYield", inherit = hipread::HipLongYield,
cloneable = FALSE,
private = list(ddi = NULL, var_attrs = NULL),
public = list(
initialize = function(
ddi,
vars = NULL,
data_file = NULL,
verbose = TRUE,
var_attrs = c("val_labels", "var_label", "var_desc"),
lower_vars = FALSE
) {
lower_vars_was_ignored <- check_if_lower_vars_ignored(ddi, lower_vars)
if (lower_vars_was_ignored) {
warning(lower_vars_ignored_warning())
}
if (is.character(ddi)) ddi <- read_ipums_ddi(ddi, lower_vars = lower_vars)
if (is.null(data_file)) data_file <- file.path(ddi$file_path, ddi$file_name)
if (fostr_detect(data_file, "\\.csv$|\\.csv\\.gz$")) {
stop(
"read_ipums_micro_yield does not support reading from .csv ",
"formatted data files, only from .dat (or .dat.gz) files"
)
}
data_file <- custom_check_file_exists(data_file, c(".dat.gz", ".csv", ".csv.gz"))
if (verbose) custom_cat(short_conditions_text(ddi))
vars <- enquo(vars)
if (!is.null(var_attrs)) var_attrs <- match.arg(var_attrs, several.ok = TRUE)
ddi <- ddi_filter_vars(ddi, vars, "long", verbose)
rt_info <- ddi_to_rtinfo(ddi)
col_spec <- ddi_to_colspec(ddi, "long", verbose)
super$initialize(
file = data_file,
var_info = col_spec,
rt_info = rt_info,
encoding = ddi$encoding
)
private$ddi <- ddi
private$var_attrs <- var_attrs
},
yield = function(n = 10000) {
out <- super$yield(n = n)
if (is.null(out)) return(out)
out <- set_ipums_var_attributes(out, private$ddi, private$var_attrs)
out
}
)
)
IpumsListYield <- R6::R6Class(
"IpumsListYield", inherit = hipread::HipListYield,
cloneable = FALSE,
private = list(ddi = NULL, var_attrs = NULL, rt_ddi = NULL),
public = list(
initialize = function(
ddi,
vars = NULL,
data_file = NULL,
verbose = TRUE,
var_attrs = c("val_labels", "var_label", "var_desc"),
lower_vars = FALSE
) {
lower_vars_was_ignored <- check_if_lower_vars_ignored(ddi, lower_vars)
if (lower_vars_was_ignored) {
warning(lower_vars_ignored_warning())
}
if (is.character(ddi)) ddi <- read_ipums_ddi(ddi, lower_vars = lower_vars)
if (is.null(data_file)) data_file <- file.path(ddi$file_path, ddi$file_name)
if (fostr_detect(data_file, "\\.csv$|\\.csv\\.gz$")) {
stop(
"read_ipums_micro_yield does not support reading from .csv ",
"formatted data files, only from .dat (or .dat.gz) files"
)
}
data_file <- custom_check_file_exists(data_file, c(".dat.gz", ".csv", ".csv.gz"))
if (verbose) custom_cat(short_conditions_text(ddi))
vars <- enquo(vars)
if (!is.null(var_attrs)) var_attrs <- match.arg(var_attrs, several.ok = TRUE)
rt_ddi <- get_rt_ddi(ddi)
ddi <- ddi_filter_vars(ddi, vars, "list", verbose)
rt_info <- ddi_to_rtinfo(ddi)
col_spec <- ddi_to_colspec(ddi, "list", verbose)
super$initialize(
file = data_file,
var_info = col_spec,
rt_info = rt_info,
encoding = ddi$encoding
)
private$ddi <- ddi
private$var_attrs <- var_attrs
private$rt_ddi <- rt_ddi
},
yield = function(n = 10000) {
out <- super$yield(n = n)
if (is.null(out)) return(out)
names(out) <- rectype_label_names(names(out), private$rt_ddi)
for (rt in names(out)) {
out[[rt]] <- set_ipums_var_attributes(out[[rt]], private$ddi, private$var_attrs)
}
out
}
)
) |
NULL
plot.FigureOfMerit <- function(x, y, ..., from, to, col=RColorBrewer::brewer.pal(8, "Set2"), type="b", key, scales, xlab, ylab) {
if (!missing(from) && missing(to)) fom <- "category"
if (!missing(from)) {
from.ix <- which(x@categories %in% from)
if (length(from.ix) > 1) {
stop("'from' must be a single land use category")
} else if (length(from.ix) == 0) {
stop("'from' is not a valid land use category")
}
} else {
fom <- "overall"
}
if (!missing(from) && !missing(to)) {
to.ix <- which(x@categories %in% to)
if (length(to.ix) == 0) {
stop("'to' is not a valid land use category")
}
if (length(to.ix) == 1 && from.ix == to.ix) stop("'from' cannot equal 'to'")
fom <- "transition"
}
if (fom == "transition") {
if (length(to.ix) > 1) {
data.list <- list()
var.list <- list()
for (i in 1:length(to.ix)) {
figureofmerit <- sapply(x@transition, function(x) x[from.ix, to.ix[i]])
if (!all(is.na(figureofmerit))) {
var <- paste0("transition ", x@labels[from.ix], " -> ", x@labels[to.ix[i]])
var.list[[(length(var.list) + 1)]] <- var
data.list[[(length(data.list) + 1)]] <- data.frame(x=1:length(x@factors),
var=var,
y=figureofmerit)
}
}
data <- do.call(rbind, data.list)
} else {
var <- paste0("transition ", x@labels[from.ix], " -> ", x@labels[to.ix])
figureofmerit <- sapply(x@transition, function(x) x[from.ix, to.ix])
data <- data.frame(x=1:length(x@factors),
var=var,
y=figureofmerit)
}
} else if (fom == "category") {
var <- paste0("transitions from ", x@labels[from.ix])
figureofmerit <- sapply(x@category, function(x) x[from.ix])
data <- data.frame(x=1:length(x@factors),
var=var,
y=figureofmerit)
} else if (fom == "overall") {
figureofmerit <- sapply(x@overall, function(x) x)
var <- paste0("overall")
data <- data.frame(x=1:length(x@factors),
var=var,
y=figureofmerit)
}
if (type == "transition" && length(to.ix) > 1) {
default.key <- list(space="bottom",
lines=list(type=type, pch=1, col=col[1:length(data.list)], size=5),
text=list(sapply(var.list, function(x) x)),
divide=1)
} else {
default.key <- list(space="bottom",
lines=list(type=type, pch=1, col=col[1], size=5),
text=list(var),
divide=1)
}
if (missing(key)) {
key <- default.key
} else if (!is.null(key)) {
matching.args <- names(default.key)[names(default.key) %in% names(key)]
key <- c(key, default.key[!names(default.key) %in% names(key)])
for (arg in matching.args) {
key[[arg]] <- c(key[[arg]], default.key[[arg]][!names(default.key[[arg]]) %in% names(key[[arg]])])
}
}
default.scales <- list(x=list(at=1:length(x@factors), labels=x@factors))
if (missing(scales)) {
scales <- default.scales
} else {
matching.args <- names(default.scales)[names(default.scales) %in% names(scales)]
scales <- c(scales, default.scales[!names(default.scales) %in% names(scales)])
for (arg in matching.args) {
scales[[arg]] <- c(scales[[arg]], default.scales[[arg]][!names(default.scales[[arg]]) %in% names(scales[[arg]])])
}
}
default.xlab <- list(label="Resolution (multiple of native pixel size)")
if (missing(xlab)) {
xlab <- default.xlab
} else {
matching.args <- names(default.xlab)[names(default.xlab) %in% names(xlab)]
xlab <- c(xlab, default.xlab[!names(default.xlab) %in% names(xlab)])
for (arg in matching.args) {
xlab[[arg]] <- c(xlab[[arg]], default.xlab[[arg]][!names(default.xlab[[arg]]) %in% names(xlab[[arg]])])
}
}
default.ylab <- list(label="Figure of merit")
if (missing(ylab)) {
ylab <- default.ylab
} else {
matching.args <- names(default.ylab)[names(default.ylab) %in% names(ylab)]
ylab <- c(ylab, default.ylab[!names(default.ylab) %in% names(ylab)])
for (arg in matching.args) {
ylab[[arg]] <- c(ylab[[arg]], default.ylab[[arg]][!names(default.ylab[[arg]]) %in% names(ylab[[arg]])])
}
}
p <- lattice::xyplot(y~x,
data=data,
groups=var,
key=key,
line.col=col,
panel=function(x,y,line.col,...) {
lattice::panel.xyplot(x,y,type=type,col=line.col,...)
},
xlab=xlab,
ylab=ylab,
scales=scales,
...)
p
}
setMethod("plot", "FigureOfMerit", plot.FigureOfMerit) |
fitCumChoose=function(nit,order){
ou=0
if(order==0) return(0)
for(i in 1:order){
ou=ou+choose(nit,i)
}
return(ou)
} |
smooth_cifti <- function(
x, cifti_target_fname=NULL,
surf_FWHM=5, vol_FWHM=3,
surfL_fname=NULL, surfR_fname=NULL, cerebellum_fname=NULL,
subcortical_zeroes_as_NA=FALSE, cortical_zeroes_as_NA=FALSE,
subcortical_merged=FALSE){
input_is_xifti <- is.xifti(x, messages=FALSE)
surfL_return <- surfR_return <- FALSE
if (input_is_xifti) {
x_intent <- x$meta$cifti$intent
if (!is.null(x_intent) && (x_intent %in% supported_intents()$value)) {
x_extn <- supported_intents()$extension[supported_intents()$value == x_intent]
} else {
warning("The CIFTI intent was unknown, so smoothing as a dscalar.")
x_extn <- "dscalar.nii"
}
cifti_original_fname <- file.path(tempdir(), paste0("to_smooth.", x_extn))
write_cifti(x, cifti_original_fname, verbose=FALSE)
if (is.null(cifti_target_fname)) {
cifti_target_fname <- gsub(
"to_smooth.", "smoothed.", cifti_original_fname, fixed=TRUE
)
}
if (is.null(surfL_fname) && !is.null(x$surf$cortex_left)) {
surfL_return <- TRUE
surfL_fname <- file.path(tempdir(), "left.surf.gii")
write_surf_gifti(x$surf$cortex_left, surfL_fname, hemisphere="left")
}
if (is.null(surfR_fname) && !is.null(x$surf$cortex_right)) {
surfR_return <- TRUE
surfR_fname <- file.path(tempdir(), "right.surf.gii")
write_surf_gifti(x$surf$cortex_right, surfR_fname, hemisphere="right")
}
cifti_info <- x$meta
brainstructures <- vector("character")
if (!is.null(x$data$cortex_left)) { brainstructures <- c(brainstructures, "left") }
if (!is.null(x$data$cortex_right)) { brainstructures <- c(brainstructures, "right") }
if (!is.null(x$data$subcort)) { brainstructures <- c(brainstructures, "subcortical") }
} else {
cifti_original_fname <- x
stopifnot(file.exists(cifti_original_fname))
cifti_info <- info_cifti(cifti_original_fname)
brainstructures <- cifti_info$cifti$brainstructures
if (is.null(cifti_target_fname)) {
cifti_target_fname <- file.path(
getwd(), paste0("smoothed.", get_cifti_extn(cifti_original_fname))
)
}
}
fix_dlabel <- FALSE
if (!is.null(cifti_info$cifti$intent) && cifti_info$cifti$intent == 3007) {
warning(paste(
"Smoothing a label file will convert the labels to their numeric",
"indices. Coercing `cifti_target_fname` to a \".dscalar\" file.\n"
))
fix_dlabel <- TRUE
cifti_target_fname <- gsub(
"dlabel.nii", "dscalar.nii",
cifti_target_fname, fixed=TRUE
)
}
cmd <- paste(
"-cifti-smoothing",
sys_path(cifti_original_fname),
surf_FWHM / (2*sqrt(2*log(2))),
vol_FWHM / (2*sqrt(2*log(2))),
"COLUMN",
sys_path(cifti_target_fname)
)
if ("left" %in% brainstructures && is.null(surfL_fname)) {
ciftiTools_warn(paste(
"No left surface provided to `smooth_cifti`,",
"so using the surface included in `ciftiTools`."
))
if (!is.xifti(x, messages=FALSE)) { x <- read_cifti(x, brainstructures=brainstructures) }
if (!is.null(x$meta$cifti$resamp_res)) {
x_res <- x$meta$cifti$resamp_res
} else if (!is.null(x$meta$cortex$medial_wall_mask$left)) {
x_res <- length(x$meta$cortex$medial_wall_mask$left)
} else {
if (!is.null(x$data$cortex_left) && !is.null(x$data$cortex_right)) {
if (nrow(x$data$cortex_left) != nrow(x$data$cortex_right)) {
stop(paste(
"The cortex resolution needs to be known to resample the cortex surface",
"for use in smoothing. But, there was no resampling resolution",
"or left medial wall mask in the `xifti`. Furthermore, the number of",
"data vertices differed between the left and right cortices, meaning",
"the cortex resolution cannot be inferred in any way."
))
}
}
warning(paste(
"No resampling resolution or left medial wall mask in the `xifti`.",
"Using the number of left cortex vertices. This may cause an error if",
"medial wall values were masked out."
))
x_res <- nrow(x$data$cortex_left)
}
surfL_fname <- file.path(tempdir(), "left.surf.gii")
surfL_fname <- resample_gifti(
ciftiTools.files()$surf["left"],
surfL_fname, hemisphere="left", file_type="surface", resamp_res=x_res
)
}
if ("right" %in% brainstructures && is.null(surfR_fname)) {
ciftiTools_warn(paste(
"No right surface provided to `smooth_cifti`,",
"so using the surface included in `ciftiTools`."
))
if (!is.xifti(x, messages=FALSE)) { x <- read_cifti(x, brainstructures=brainstructures) }
if (!is.null(x$meta$cifti$resamp_res)) {
x_res <- x$meta$cifti$resamp_res
} else if (!is.null(x$meta$cortex$medial_wall_mask$right)) {
x_res <- length(x$meta$cortex$medial_wall_mask$right)
} else {
if (!is.null(x$data$cortex_right) && !is.null(x$data$cortex_right)) {
if (nrow(x$data$cortex_right) != nrow(x$data$cortex_right)) {
stop(paste(
"The cortex resolution needs to be known to resample the cortex surface",
"for use in smoothing. But, there was no resampling resolution",
"or right medial wall mask in the `xifti`. Furthermore, the number of",
"data vertices differed between the right and right cortices, meaning",
"the cortex resolution cannot be inferred in any way."
))
}
}
warning(paste(
"No resampling resolution or right medial wall mask in the `xifti`.",
"Using the number of right cortex vertices. This may cause an error if",
"medial wall values were masked out."
))
x_res <- nrow(x$data$cortex_right)
}
surfR_fname <- file.path(tempdir(), "right.surf.gii")
surfR_fname <- resample_gifti(
ciftiTools.files()$surf["right"],
surfR_fname, hemisphere="right", file_type="surface", resamp_res=x_res
)
}
if (!is.null(surfL_fname)) { cmd <- paste(cmd, "-left-surface", sys_path(surfL_fname)) }
if (!is.null(surfR_fname)) { cmd <- paste(cmd, "-right-surface", sys_path(surfR_fname)) }
if (!is.null(cerebellum_fname)) { cmd <- paste(cmd, "-cerebellum-surface", sys_path(cerebellum_fname)) }
if (subcortical_zeroes_as_NA) { cmd <- paste(cmd, "-fix-zeros-volume") }
if (cortical_zeroes_as_NA) { cmd <- paste(cmd, "-fix-zeros-surface") }
if (subcortical_merged) { cmd <- paste(cmd, "-merged-volume") }
run_wb_cmd(cmd)
if (fix_dlabel) {
old_target_fname <- cifti_target_fname
cifti_target_fname <- gsub("dlabel", "dscalar", old_target_fname)
names_fname <- tempfile()
cat(names(cifti_info$cifti$labels), file = names_fname, sep = "\n")
run_wb_cmd(paste(
"-cifti-change-mapping", old_target_fname,
"ROW", cifti_target_fname,
"-scalar", "-name-file", names_fname
))
}
if (input_is_xifti) {
read_xifti_args <- list(
cifti_fname = cifti_target_fname,
brainstructures = brainstructures
)
if (surfL_return) { read_xifti_args$surfL_fname <- surfL_fname }
if (surfR_return) { read_xifti_args$surfR_fname <- surfR_fname }
return(do.call(read_xifti, read_xifti_args))
} else {
return(invisible(cifti_target_fname))
}
}
smoothCIfTI <- function(
x, cifti_target_fname=NULL,
surf_FWHM=5, vol_FWHM=5,
surfL_fname=NULL, surfR_fname=NULL, cerebellum_fname=NULL,
subcortical_zeroes_as_NA=FALSE, cortical_zeroes_as_NA=FALSE,
subcortical_merged=FALSE){
smooth_cifti(
x=x, cifti_target_fname=cifti_target_fname,
surf_FWHM=surf_FWHM, vol_FWHM=vol_FWHM,
surfL_fname=surfL_fname, surfR_fname=surfR_fname, cerebellum_fname=cerebellum_fname,
subcortical_zeroes_as_NA=subcortical_zeroes_as_NA, cortical_zeroes_as_NA=cortical_zeroes_as_NA,
subcortical_merged=subcortical_merged
)
}
smoothcii <- function(
x, cifti_target_fname=NULL,
surf_FWHM=5, vol_FWHM=5,
surfL_fname=NULL, surfR_fname=NULL, cerebellum_fname=NULL,
subcortical_zeroes_as_NA=FALSE, cortical_zeroes_as_NA=FALSE,
subcortical_merged=FALSE){
smooth_cifti(
x=x, cifti_target_fname=cifti_target_fname,
surf_FWHM=surf_FWHM, vol_FWHM=vol_FWHM,
surfL_fname=surfL_fname, surfR_fname=surfR_fname, cerebellum_fname=cerebellum_fname,
subcortical_zeroes_as_NA=subcortical_zeroes_as_NA, cortical_zeroes_as_NA=cortical_zeroes_as_NA,
subcortical_merged=subcortical_merged
)
}
smooth_xifti <- function(
x, cifti_target_fname=NULL,
surf_FWHM=5, vol_FWHM=5,
surfL_fname=NULL, surfR_fname=NULL, cerebellum_fname=NULL,
subcortical_zeroes_as_NA=FALSE, cortical_zeroes_as_NA=FALSE,
subcortical_merged=FALSE){
smooth_cifti(
x=x, cifti_target_fname=cifti_target_fname,
surf_FWHM=surf_FWHM, vol_FWHM=vol_FWHM,
surfL_fname=surfL_fname, surfR_fname=surfR_fname, cerebellum_fname=cerebellum_fname,
subcortical_zeroes_as_NA=subcortical_zeroes_as_NA, cortical_zeroes_as_NA=cortical_zeroes_as_NA,
subcortical_merged=subcortical_merged
)
} |
superiority <- function(.data, env, gen, resp, verbose = TRUE) {
factors <-
.data %>%
select({{env}}, {{gen}}) %>%
mutate(across(everything(), as.factor))
vars <-
.data %>%
select({{resp}}, -names(factors)) %>%
select_numeric_cols()
factors %<>% set_names("ENV", "GEN")
listres <- list()
nvar <- ncol(vars)
if (verbose == TRUE) {
pb <- progress(max = nvar, style = 4)
}
for (var in 1:nvar) {
data <- factors %>%
mutate(Y = vars[[var]])
if(has_na(data)){
data <- remove_rows_na(data)
has_text_in_num(data)
}
environments <-
data %>%
means_by(ENV, na.rm = TRUE) %>%
add_cols(index = Y - mean(Y),
class = ifelse(index < 0, "unfavorable", "favorable")) %>%
as_tibble()
data <- left_join(data, environments %>% select(ENV, class), by = "ENV")
lin_fun <- function(mat) {
P <- apply(mat, 1, function(x) {
sum((x - apply(mat, 2, max, na.rm = TRUE))^2, na.rm = TRUE)/(2 * length(na.omit(x)))
})
return(P)
}
mat_g <- make_mat(data, row = GEN, col = ENV, value = Y)
ge_mf <- subset(data, class == "favorable")
mat_f <- dplyr::select_if(make_mat(ge_mf, row = GEN,
col = ENV, value = Y), function(x) !any(is.na(x)))
ge_mu <- subset(data, class == "unfavorable")
mat_u <- dplyr::select_if(make_mat(ge_mu, row = GEN,
col = ENV, value = Y), function(x) !any(is.na(x)))
temp <- list(environments = environments,
index = tibble(GEN = rownames(mat_g),
Y = apply(mat_g, 1, mean, na.rm = TRUE),
Pi_a = lin_fun(mat_g),
R_a = rank(lin_fun(mat_g)),
Pi_f = lin_fun(mat_f),
R_f = rank(lin_fun(mat_f)),
Pi_u = lin_fun(mat_u),
R_u = rank(lin_fun(mat_u))))
rownames(temp) <- NULL
if (verbose == TRUE) {
run_progress(pb,
actual = var,
text = paste("Evaluating trait", names(vars[var])))
}
listres[[paste(names(vars[var]))]] <- temp
}
return(structure(listres, class = "superiority"))
}
print.superiority <- function(x, export = FALSE, file.name = NULL, digits = 3, ...) {
if (!class(x) == "superiority") {
stop("The object must be of class 'superiority'")
}
if (export == TRUE) {
file.name <- ifelse(is.null(file.name) == TRUE, "superiority summary", file.name)
sink(paste0(file.name, ".txt"))
}
opar <- options(pillar.sigfig = digits)
on.exit(options(opar))
for (i in 1:length(x)) {
var <- x[[i]]
cat("Variable", names(x)[i], "\n")
cat("---------------------------------------------------------------------------\n")
cat("Superiority index considering all, favorable and unfavorable environments\n")
cat("---------------------------------------------------------------------------\n")
print(var$index)
cat("---------------------------------------------------------------------------\n")
cat("\n\n\n")
}
if (export == TRUE) {
sink()
}
} |
in.da <- function(springs,similarity) {
cdist <- function(i,j,n) {
ci <- min(i,j)
cj <- max(i,j)
return( min( abs(cj-ci), abs(n-cj+ci) ) )
}
similarity <- similarity[rownames(springs),rownames(springs)]
neighbor <- matrix(0,nrow=nrow(springs),ncol=nrow(springs))
for(i in seq(1,nrow(springs)-1)) {
for(j in seq(i+1,nrow(springs))) {
neighbor[i,j] <- neighbor[j,i] <- 1-2*cdist(i,j,nrow(springs))/nrow(springs)
}
}
return(-sum(neighbor*similarity))
}
rv.da <- function(springs,similarity) {
proj <- do.radviz(similarity,springs)$proj$data[,c('rx','ry')]
proj <- proj[rownames(springs),]
d <- rep(0,nrow(springs))
for(i in seq(1,nrow(springs))) {
d[i] <- sqrt(sum((proj[i,]-springs[i,])^2))
}
return(sum(d))
} |
crps.ensembleMOSgev0 <-
function(fit, ensembleData, dates=NULL, ...)
{
gini.md <- function(x,na.rm=FALSE) {
if(na.rm & any(is.na(x))) x <- x[!is.na(x)]
n <-length(x)
return(4*sum((1:n)*sort(x,na.last=TRUE))/(n^2)-2*mean(x)*(n+1)/n)
}
crps.GEVneq0 <- function(MEAN,SCALE,SHAPE, obs) {
LOC <- MEAN - SCALE*(gamma(1-SHAPE)-1)/SHAPE
SCdSH <- SCALE/SHAPE
Gam1mSH <- gamma(1-SHAPE)
prob0 <- pgev(0, loc=LOC, scale=SCALE, shape=SHAPE)
probY <- pgev(obs, loc=LOC, scale=SCALE, shape=SHAPE)
T1 <- (obs-LOC)*(2*probY-1) + LOC*prob0^2
T2 <- SCdSH * ( 1-prob0^2 - 2^SHAPE*Gam1mSH*pgamma(-2*log(prob0),1-SHAPE) )
T3 <- -2*SCdSH * ( 1-probY - Gam1mSH*pgamma(-log(probY),1-SHAPE) )
return( mean(T1+T2+T3) )
}
eps <- 1e-5
matchITandFH(fit,ensembleData)
M <- matchEnsembleMembers(fit,ensembleData)
nForecasts <- ensembleSize(ensembleData)
if (!all(M == 1:nForecasts)) ensembleData <- ensembleData[,M]
M <- apply(ensembleForecasts(ensembleData), 1, function(z) all(is.na(z)))
M <- M | is.na(ensembleVerifObs(ensembleData))
ensembleData <- ensembleData[!M,]
dateTable <- dimnames(fit$B)[[2]]
if (!is.null(dates)) {
dates <- sort(unique(as.character(dates)))
if (length(dates) > length(dateTable))
stop("parameters not available for some dates")
K <- match( dates, dateTable, nomatch=0)
if (any(!K) || !length(K))
stop("parameters not available for some dates")
}
else {
dates <- dateTable
K <- 1:length(dateTable)
}
ensDates <- ensembleValidDates(ensembleData)
if (is.null(ensDates) || all(is.na(ensDates))) {
if (length(dates) > 1) stop("date ambiguity")
nObs <- nrow(ensembleData)
Dates <- rep( dates, nObs)
}
else {
if (any(M <- is.na(ensDates))) {
ensembleData <- ensembleData[!M,]
ensDates <- ensembleValidDates(ensembleData)
}
Dates <- as.character(ensDates)
L <- as.logical(match( Dates, dates, nomatch=0))
if (all(!L) || !length(L))
stop("model fit dates incompatible with ensemble data")
Dates <- Dates[L]
ensembleData <- ensembleData[L,]
nObs <- length(Dates)
}
obs <- ensembleVerifObs(ensembleData)
nForecasts <- ensembleSize(ensembleData)
CRPS <- rep(NA, nObs)
ensembleData <- ensembleForecasts(ensembleData)
crpsEns1 <- apply(abs(sweep(ensembleData, MARGIN=1,FUN ="-",STATS=obs))
,1,mean,na.rm=TRUE)
if (nrow(ensembleData) > 1) {
crpsEns2 <- apply(apply(ensembleData, 2, function(z,Z)
apply(abs(sweep(Z, MARGIN = 1, FUN = "-", STATS = z)),1,sum,na.rm=TRUE),
Z = ensembleData),1,sum, na.rm = TRUE)
}
else {
crpsEns2 <- sum(sapply(as.vector(ensembleData),
function(z,Z) sum( Z-z, na.rm = TRUE),
Z = as.vector(ensembleData)), na.rm = TRUE)
}
crpsEns <- crpsEns1 - crpsEns2/(2*(nForecasts*nForecasts))
l <- 0
for (d in dates) {
l <- l + 1
k <- K[l]
B <- fit$B[,k]
if (all(Bmiss <- is.na(B))) next
A <- fit$a[,k]
C <- fit$c[,k]
D <- fit$d[,k]
Q <- fit$q[,k]
S <- fit$s[,k]
I <- which(as.logical(match(Dates, d, nomatch = 0)))
for (i in I) {
f <- ensembleData[i,]
MEAN <- c(A,B)%*%c(1,f)+S*mean(f==0, na.rm = TRUE)
SCALE <- C + D*gini.md(f,na.rm = TRUE)
if( abs(Q) < eps ) {
crps.eps.m <- crps.GEVneq0 (MEAN,SCALE,-eps, obs[i])
crps.eps.p <- crps.GEVneq0 (MEAN,SCALE,eps, obs[i])
w.m <- (eps-Q)/(2*eps)
w.p <- (eps+Q)/(2*eps)
CRPS[i] <- w.m*crps.eps.m + w.p*crps.eps.p
} else {
CRPS[i] <- crps.GEVneq0 (MEAN,SCALE,Q, obs[i])
}
}
}
if (any(is.na(c(crpsEns,CRPS)))) warning("NAs in crps values")
cbind(ensemble = crpsEns, EMOS = CRPS)
} |
BrierDecomp <- function(p, y, bins=10, bias.corrected=FALSE) {
n <- length(p)
if (length(bins) == 1) {
n.bins <- floor(bins)
p.breaks <- seq(0, 1, length.out=n.bins+1)
} else {
n.bins <- length(bins) - 1
bins <- sort(bins)
stopifnot(min(bins)<= 0 & max(bins) >= 1)
p.breaks <- bins
}
p.binning <- cut(p, breaks=p.breaks, include.lowest=TRUE, ordered_result=TRUE)
p.binning <- as.numeric(p.binning)
m.ind <- matrix(c(seq(n), p.binning), nrow=n)
m.A <- matrix(0, nrow=n, ncol=n.bins)
m.A[m.ind] <- 1
cs.A <- colSums(m.A)
m.B <- matrix(0, nrow=n, ncol=n.bins)
m.B[m.ind] <- y
cs.B <- colSums(m.B)
m.C <- matrix(0, nrow=n, ncol=n.bins)
m.C[m.ind] <- p
cs.C <- colSums(m.C)
m.Y <- matrix(y, ncol=1)
cs.Y <- colSums(m.Y)
d0 <- which(cs.A < 1)
d1 <- which(cs.A < 2)
d0.set <- function(x) {
if (length(d0) > 0) {
x <- x[-d0]
}
x
}
d1.set <- function(x) {
if (length(d1) > 0) {
x <- x[-d1]
}
x
}
rel <- 1/n * sum( d0.set((cs.B - cs.C)^2 / cs.A) )
res <- 1/n * sum( d0.set(cs.A * (cs.B / cs.A - cs.Y / n)^2) )
unc <- cs.Y * (n - cs.Y) / n / n
corr.s <- 1 / n * sum(d1.set(cs.B * (cs.A - cs.B) / (cs.A * (cs.A - 1))))
corr.t <- cs.Y * (n - cs.Y) / n / n / (n-1)
alpha <- min(c(rel/corr.s,
max(c(res / (corr.s - corr.t),
(res - 1) / (corr.s - corr.t))),
(1 - 4 * unc) / (4 * corr.t),
1)
)
if (!is.finite(alpha)) {
alpha <- 0
}
rel2 <- rel - alpha * corr.s
res2 <- res - alpha * corr.s + alpha * corr.t
unc2 <- unc + alpha * corr.t
d.rel.d.a <- -1 * (cs.B - cs.C) * (cs.B - cs.C) / (n * cs.A * cs.A)
d.rel.d.b <- 2 * (cs.B - cs.C) / (n * cs.A)
d.rel.d.c <- -2 * (cs.B - cs.C) / (n * cs.A)
if (length(d0) > 0) {
d.rel.d.a[d0] <- 0
d.rel.d.b[d0] <- 0
d.rel.d.c[d0] <- 0
}
jacobian.rel <- matrix(c(d.rel.d.a, d.rel.d.b, d.rel.d.c), nrow=1)
m.X <- cbind(m.A, m.B, m.C)
cov.X.rel <- crossprod(scale(m.X, center=TRUE, scale=FALSE))
var.rel <- jacobian.rel %*% cov.X.rel %*% t(jacobian.rel)
d.res.d.a <- -1 / n * (cs.B / cs.A - cs.Y / n) *
(cs.B / cs.A + cs.Y / n)
d.res.d.b <- 2 / n * (cs.B / cs.A - cs.Y / n)
d.res.d.y <- 0
if (length(d0) > 0) {
d.res.d.a[d0] <- 0
d.res.d.b[d0] <- 0
}
jacobian.res <- matrix(c(d.res.d.a, d.res.d.b, d.res.d.y), nrow=1)
m.X <- cbind(m.A, m.B, m.Y)
cov.X.res <- crossprod(scale(m.X, center=TRUE, scale=FALSE))
var.res <- jacobian.res %*% cov.X.res %*% t(jacobian.res)
var.unc <- (1 - 2 * cs.Y / n) * (1 - 2 * cs.Y / n) / n / n *
crossprod(scale(m.Y, center=TRUE, scale=FALSE))
d.rel2.d.a <- -1 * ((cs.B - cs.C) * (cs.B - cs.C) +
(cs.B * cs.B) / (cs.A - 1) -
cs.A * cs.B * (cs.A - cs.B) /
(cs.A - 1) / (cs.A - 1)
) / (n * cs.A * cs.A)
d.rel2.d.b <- (2 * cs.B - 1) / (n * cs.A - n) - 2 * cs.C / (n * cs.A)
d.rel2.d.c <- -2 * (cs.B - cs.C) / (n * cs.A)
if (length(d1) > 0) {
d.rel2.d.a[d1] <- 0
d.rel2.d.b[d1] <- 0
d.rel2.d.c[d1] <- 0
}
jacobian.rel <- matrix(c(d.rel2.d.a, d.rel2.d.b, d.rel2.d.c), nrow=1)
var.rel2 <- jacobian.rel %*% cov.X.rel %*% t(jacobian.rel)
d.res2.d.a <- -1 / n * (cs.B / cs.A - cs.Y / n) * (cs.B / cs.A + cs.Y / n) +
cs.B / (n * cs.A * cs.A * (cs.A - 1) * (cs.A - 1)) *
((cs.A - cs.B) * (cs.A - cs.B) - cs.B * (cs.B - 1))
d.res2.d.b <- 2 / n * (cs.B / cs.A - cs.Y / n) - (cs.A - 2 * cs.B) /
(n * cs.A * (cs.A - 1))
d.res2.d.y <- (n - 2 * cs.Y) / n / n / (n - 1)
if (length(d1) > 0) {
d.res2.d.a[d1] <- 0
d.res2.d.b[d1] <- 0
}
jacobian.res2 <- matrix(c(d.res2.d.a, d.res2.d.b, d.res2.d.y), nrow=1)
var.res2 <- jacobian.res2 %*% cov.X.res %*% t(jacobian.res2)
var.unc2 <- (n - 2 * cs.Y) * (n - 2 * cs.Y) / n / n / (n - 1) / (n - 1) *
crossprod(scale(m.Y, center=TRUE, scale=FALSE))
sqrt0 <- function(x) {
if (x <= 0) {
return(0)
} else {
return(sqrt(x))
}
}
if (bias.corrected == FALSE) {
ans <- rbind(
component = c(REL=rel, RES=res, UNC=unc),
component.sd = c(REL=sqrt0(drop(var.rel)),
RES=sqrt0(drop(var.res)),
UNC=sqrt0(drop(var.unc)))
)
} else {
ans <- rbind(
component = c(REL=rel2, RES=res2, UNC=unc2),
component.sd = c(REL=sqrt0(drop(var.rel2)),
RES=sqrt0(drop(var.res2)),
UNC=sqrt0(drop(var.unc2)))
)
}
return(ans)
}
BrierScoreDecomposition <- BrierDecomp |
contr_one_hot <- function(n, contrasts = TRUE, sparse = FALSE) {
if (sparse) {
rlang::warn("`sparse = TRUE` not implemented for `contr_one_hot()`.")
}
if (!contrasts) {
rlang::warn("`contrasts = FALSE` not implemented for `contr_one_hot()`.")
}
if (is.character(n)) {
names <- n
n <- length(names)
} else if (is.numeric(n)) {
n <- as.integer(n)
if (length(n) != 1L) {
rlang::abort("`n` must have length 1 when an integer is provided.")
}
names <- as.character(seq_len(n))
} else {
rlang::abort("`n` must be a character vector or an integer of size 1.")
}
out <- diag(n)
rownames(out) <- names
colnames(out) <- names
out
} |
test_that("get_timeline works", {
x <- get_timeline(c("cnnbrk", "cnn"), n = 400)
expect_s3_class(x, "data.frame")
expect_true("id" %in% names(x))
expect_gt(nrow(x), 100)
expect_gt(ncol(x), 20)
})
test_that("get_my_timeline() works", {
gmt <- get_my_timeline()
expect_s3_class(gmt, "data.frame")
expect_true(nrow(gmt) > 50)
})
test_that("get_timelines() is deprecated", {
expect_snapshot(x <- get_timelines("cnn", n = 10))
})
test_that("Doesn't trim at 280 characters,
timeline_users <- get_timeline(user = "mvabercron", n = 20)
text <- timeline_users$text[!is.na(timeline_users$text)]
expect_true(any(nchar(text) > 280)|| all(!endsWith(text, "...")))
}) |
test_that("scalar y replaces all matching x", {
x <- c(0, 1, 0)
expect_equal(na_if(x, 0), c(NA, 1, NA))
expect_equal(na_if(x, 1), c(0, NA, 0))
})
test_that("na_if() gives meaningful errors", {
expect_snapshot(error = TRUE, na_if(1:3, 1:2))
expect_snapshot(error = TRUE, na_if(1, 1:2))
}) |
kml_track<-function(sdata, sdata.CRS = 'WGS', output = 'open', type = 'point', ...){
sdata <- sdata[stats::complete.cases(sdata[,c("lon","lat")]),]
sdata$DateTime <- with(sdata, as.POSIXct(DateTime, format = "%Y-%m-%d %H:%M:%S", tz = "GMT"))
j <- levels(factor(sdata$id))
if(sdata.CRS == 'WGS'){
sdata.CRS <- '+proj=longlat +ellps=WGS84 +datum=WGS84'
}
if(type == 'point'){
sp::coordinates(sdata) <- ~ lon + lat
sp::proj4string(sdata) <- sp::CRS(sdata.CRS)
} else {
lines <- sp::Line(cbind(sdata$lon, sdata$lat))
lineString <- sp::Lines(list(lines), ID=j)
spLines <- sp::SpatialLines(list(lineString), proj4string=sp::CRS(sdata.CRS))
df.lines <- data.frame(ID=j)
sdata <- sp::SpatialLinesDataFrame(spLines, data=df.lines, match.ID=F)
}
if(output == 'open'){
plotKML::plotKML(obj=sdata, ...)
} else {
plotKML::kml(obj=sdata, ...)
}
} |
context("Packaging expression")
test_that("can create a Dockerfile from expression", {
output <- capture_output(the_dockerfile <- dockerfile(from = expression(library(sp))))
expect_s4_class(the_dockerfile,"Dockerfile")
expect_true(any(stringr::str_detect(toString(the_dockerfile),
"^RUN \\[\"install2.r\", \"sp\"\\]$")))
})
test_that("can create a Dockerfile from expression with multiple statements", {
output <- capture_output(the_dockerfile <- dockerfile(from = expression({library(sp);library(fortunes)})))
expect_s4_class(the_dockerfile,"Dockerfile")
expect_true(any(stringr::str_detect(toString(the_dockerfile),
"^RUN \\[\"install2.r\", \"fortunes\", \"sp\"\\]$")))
})
test_that("can create a Dockerfile from expression vector", {
output <- capture_output(the_dockerfile <- dockerfile(from = c(expression(library(sp)), expression(library(rprojroot)))))
expect_s4_class(the_dockerfile,"Dockerfile")
expect_true(any(stringr::str_detect(toString(the_dockerfile),
"^RUN \\[\"install2.r\", \"rprojroot\", \"sp\"\\]$")))
}) |
dos2unix <- function(file)
{
txt <- readLines(file)
con <- file(file, open="wb")
writeLines(txt, con, sep="\n")
close(con)
} |
sum.intdiff.lgamma <-
function(G1,G2){
l <- length(G1)
RES <- sapply(1:l,function(x) if (G2[x] - G1[x] > 0) {sum(log(G1[x]:(G2[x]-1)))} else 0)
return(sum(RES))
} |
i.eli_ines_seg <-function(x.cent = 0, y.cent = 0, xb=4, yh=4, seg=c(0,30), nseg=720, col="grey", lwd=1, lty=1, ...){
sektor <- seq(from=seg[1],to=seg[2],by=360/nseg)
xx <- (x.cent + xb*sin( rad(sektor) ))
yy <- (y.cent + yh*cos( rad(sektor) ))
lines(xx,yy,col=col,lwd=lwd,lty=lty, ...)
} |
bspline_matrix <- function(x, m, q, Omega = NULL ){
if(is.null(Omega)){
Omega <- c(min(x), max(x))
}
trunc_pol <- function(x, t, q) (x-t)^q * (x>t)
h <- (Omega[2] - Omega[1]) / (m+1)
knots <- seq(Omega[1]-q*h, Omega[2]+q*h, by = h)
H <- outer(x, knots, trunc_pol, q)
D <- diff(diag(dim(H)[2]), diff = q+1) / (gamma(q+1)*h^q)
Phi <- (-1)^(q+1) * tcrossprod(H,D)
Phi[Phi < 1e-10] <- 0
return(Phi)
}
MVP_spline <- function(tPhi_list, alpha){
v <- MVP_khatrirao_trans_rcpp(tPhi_list, alpha)
base <- MVP_khatrirao_rcpp(tPhi_list, v)
return(base)
}
MVP_penalty <- function(pen_list, alpha, pen_type = "curve"){
if(pen_type == "curve"){
pen <- rowSums( sapply( 1:length(pen_list), function(p) MVP_kronecker_rcpp(pen_list[[p]], alpha) ) )
return(pen)
}
if(pen_type == "diff"){
Pj <- length(pen_list)
Jj <- sapply(1:Pj, function(p) dim(pen_list[[p]])[1])
n_left <- c(1, sapply(1:(Pj-1), function(p) prod(Jj[1:p]) ))
n_right <- c(rev( sapply(1:(Pj-1), function(p) prod(rev(Jj)[1:p]) ) ), 1)
if(Pj==1) n_left <- n_right <- 1
pen <- rowSums( sapply( 1:Pj, function(p) MVP_normalfactor_rcpp(pen_list[[p]], n_left[p], n_right[p], alpha) ) )
return(as.vector(pen))
}
}
L2norm_matrix <- function(m, q, d, Omega){
K <- m+q+1
h <- (Omega[2]-Omega[1]) / (m+1)
n_gauss <- q+1
gauss_legendre <- statmod::gauss.quad(n_gauss)
w_ref <- gauss_legendre$weights[order(gauss_legendre$nodes)]
points_ref <- (h/2)*sort(gauss_legendre$nodes) + (Omega[1]+(h/2))
points <- as.vector( sapply( 1:(m+1), function(j) points_ref+(j-1)*h ) )
w <- rep(w_ref,(m+1))
Phi <- bspline_matrix(points, m, (q-d), Omega)
G <- (h/2)*crossprod(Phi, Phi*w)
if(d==0){
Psi <- G
} else{
Delta <- diff(diag(K),diff=d)
Psi <- (1 / (h^(2*d))) * crossprod(Delta,G%*%Delta)
}
return(Psi)
}
L2norm_matrix_list <- function(m, q, d, Omega){
P <- length(q)
Reg_list <- lapply(1:P, function(p) L2norm_matrix(m[p],q[p],d[p],Omega[[p]]) )
return(Reg_list)
}
curvature_penalty <- function(m, q, Omega){
P <- length(m)
d_mat <- 2*diag(P)
if(P>1){
vec <- c(1,1,rep(0,P-2))
M <- matrix( unlist( unique(combinat::permn(vec)) ), nrow=P, byrow=F )
d_mat <- cbind(d_mat,M)
}
Psi_list <- lapply(1:dim(d_mat)[2], function(p) L2norm_matrix_list(m,q,d_mat[,p],Omega) )
nreg <- length(Psi_list)
w_Psi <- sapply(1:nreg, function(j) 2/prod(factorial(d_mat[,j])) )
for(j in 1:nreg){
Psi_list[[j]][[1]] <- w_Psi[j]*Psi_list[[j]][[1]]
}
return(Psi_list)
} |
lsm_c_gyrate_mn <- function(landscape,
directions = 8, cell_center = FALSE) {
landscape <- landscape_as_list(landscape)
result <- lapply(X = landscape,
FUN = lsm_c_gyrate_mn_calc,
directions = directions,
cell_center = cell_center)
layer <- rep(seq_along(result),
vapply(result, nrow, FUN.VALUE = integer(1)))
result <- do.call(rbind, result)
tibble::add_column(result, layer, .before = TRUE)
}
lsm_c_gyrate_mn_calc <- function(landscape, directions, cell_center,
points = NULL) {
gyrate <- lsm_p_gyrate_calc(landscape,
directions = directions,
cell_center = cell_center,
points = points)
if (all(is.na(gyrate$value))) {
return(tibble::tibble(level = "class",
class = as.integer(NA),
id = as.integer(NA),
metric = "gyrate_cv",
value = as.double(NA)))
}
gyrate_mn <- stats::aggregate(x = gyrate[, 5], by = gyrate[, 2],
FUN = mean)
return(tibble::tibble(level = "class",
class = as.integer(gyrate_mn$class),
id = as.integer(NA),
metric = "gyrate_mn",
value = as.double(gyrate_mn$value)))
} |
context("sts-functions")
test_succeeds("sts_build_factored_variational_loss works", {
skip_if_eager()
observed_time_series <-
rep(c(3.5, 4.1, 4.5, 3.9, 2.4, 2.1, 1.2), 5) + rep(c(1.1, 1.5, 2.4, 3.1, 4.0), each = 7)
day_of_week <-
observed_time_series %>% sts_seasonal(num_seasons = 7)
local_linear_trend <-
observed_time_series %>% sts_local_linear_trend()
model <-
observed_time_series %>% sts_sum(components = list(day_of_week, local_linear_trend))
optimizer <- tf$compat$v1$train$AdamOptimizer(0.1)
build_variational_loss <- function() {
res <-
observed_time_series %>% sts_build_factored_variational_loss(model = model)
variational_loss <- res[[1]]
variational_loss
}
loss_and_dists <-
observed_time_series %>% sts_build_factored_variational_loss(model = model)
variational_loss <- loss_and_dists[[1]]
train_op <- optimizer$minimize(variational_loss)
with (tf$Session() %as% sess, {
sess$run(tf$compat$v1$global_variables_initializer())
for (step in 1:5) {
res <- sess$run(train_op)
}
avg_loss <-
Map(function(x)
sess$run(variational_loss), 1:2) %>% unlist() %>% mean()
variational_distributions <- loss_and_dists[[2]]
posterior_samples <-
Map(function(d)
d %>% tfd_sample(50),
variational_distributions) %>%
sess$run()
})
expect_length(avg_loss, 1)
expect_length(posterior_samples, 4)
})
test_succeeds("sts_fit_with_hmc works", {
observed_time_series <-
rep(c(3.5, 4.1, 4.5, 3.9, 2.4, 2.1, 1.2), 5) + rep(c(1.1, 1.5, 2.4, 3.1, 4.0), each = 7)
if (tensorflow::tf_version() >= "2.0")
observed_time_series <- tensorflow::tf$convert_to_tensor(observed_time_series, dtype = tensorflow::tf$float64)
day_of_week <-
observed_time_series %>% sts_seasonal(num_seasons = 7)
local_linear_trend <-
observed_time_series %>% sts_local_linear_trend()
model <-
observed_time_series %>% sts_sum(components = list(day_of_week, local_linear_trend))
states_and_results <-
observed_time_series %>% sts_fit_with_hmc(
model,
num_results = 10,
num_warmup_steps = 5,
num_variational_steps = 15
)
posterior_samples <- states_and_results[[1]]
expect_length(posterior_samples, 4)
})
test_succeeds("sts_one_step_predictive works", {
observed_time_series <-
rep(c(3.5, 4.1, 4.5, 3.9, 2.4, 2.1, 1.2), 5) + rep(c(1.1, 1.5, 2.4, 3.1, 4.0), each = 7)
if (tensorflow::tf_version() >= "2.0")
observed_time_series <- tensorflow::tf$convert_to_tensor(observed_time_series, dtype = tensorflow::tf$float64)
day_of_week <-
observed_time_series %>% sts_seasonal(num_seasons = 7)
local_linear_trend <-
observed_time_series %>% sts_local_linear_trend()
model <-
observed_time_series %>% sts_sum(components = list(day_of_week, local_linear_trend))
states_and_results <-
observed_time_series %>% sts_fit_with_hmc(
model,
num_results = 10,
num_warmup_steps = 5,
num_variational_steps = 15
)
samples <- states_and_results[[1]]
preds <- observed_time_series %>%
sts_one_step_predictive(model,
parameter_samples = samples,
timesteps_are_event_shape = TRUE)
pred_means <- preds %>% tfd_mean()
pred_sds <- preds %>% tfd_stddev()
skip("Batch dim behavior changed")
expect_equal(preds$event_shape %>% length(), 2)
})
test_succeeds("sts_forecast works", {
observed_time_series <-
rep(c(3.5, 4.1, 4.5, 3.9, 2.4, 2.1, 1.2), 5) + rep(c(1.1, 1.5, 2.4, 3.1, 4.0), each = 7)
if (tensorflow::tf_version() >= "2.0")
observed_time_series <- tensorflow::tf$convert_to_tensor(observed_time_series, dtype = tensorflow::tf$float64)
day_of_week <-
observed_time_series %>% sts_seasonal(num_seasons = 7)
local_linear_trend <-
observed_time_series %>% sts_local_linear_trend()
model <-
observed_time_series %>% sts_sum(components = list(day_of_week, local_linear_trend))
states_and_results <-
observed_time_series %>% sts_fit_with_hmc(
model,
num_results = 10,
num_warmup_steps = 5,
num_variational_steps = 15
)
samples <- states_and_results[[1]]
preds <-
observed_time_series %>% sts_forecast(model,
parameter_samples = samples,
num_steps_forecast = 50)
predictions <- preds %>% tfd_sample(10)
expect_equal(predictions$get_shape()$as_list() %>% length(), 3)
})
test_succeeds("sts_decompose_by_component works", {
observed_time_series <-
array(rnorm(2 * 1 * 12), dim = c(2, 1, 12))
day_of_week <-
observed_time_series %>% sts_seasonal(num_seasons = 7, name = "seasonal")
local_linear_trend <-
observed_time_series %>% sts_local_linear_trend(name = "local_linear")
model <-
observed_time_series %>% sts_sum(components = list(day_of_week, local_linear_trend))
states_and_results <- observed_time_series %>% sts_fit_with_hmc(
model,
num_results = 10,
num_warmup_steps = 5,
num_variational_steps = 15
)
samples <- states_and_results[[1]]
component_dists <-
observed_time_series %>% sts_decompose_by_component(model = model,
parameter_samples = samples)
day_of_week_effect_mean <- component_dists[[1]] %>% tfd_mean()
expect_equal(day_of_week_effect_mean$get_shape()$as_list() %>% length(),
3)
})
test_succeeds("sts_build_factored_surrogate_posterior works", {
skip_if_tfp_below("0.8")
observed_time_series <-
rep(c(3.5, 4.1, 4.5, 3.9, 2.4, 2.1, 1.2), 5) + rep(c(1.1, 1.5, 2.4, 3.1, 4.0), each = 7)
day_of_week <-
observed_time_series %>% sts_seasonal(num_seasons = 7)
local_linear_trend <-
observed_time_series %>% sts_local_linear_trend()
model <-
observed_time_series %>% sts_sum(components = list(day_of_week, local_linear_trend))
optimizer <- tf$compat$v1$train$AdamOptimizer(0.1)
surrogate_posterior <-
model %>% sts_build_factored_surrogate_posterior()
loss_curve <- vi_fit_surrogate_posterior(
target_log_prob_fn = model$joint_log_prob(observed_time_series),
surrogate_posterior = surrogate_posterior,
optimizer = optimizer,
num_steps = 20
)
if (tf$executing_eagerly()) {
posterior_samples <- surrogate_posterior %>% tfd_sample(50)
} else {
with (tf$control_dependencies(list(loss_curve)), {
posterior_samples <- surrogate_posterior %>% tfd_sample(50)
})
}
expect_length(posterior_samples, 4)
})
test_succeeds("sts_sample_uniform_initial_state works", {
model <- sts_sparse_linear_regression(design_matrix = matrix(31 * 3, nrow = 31),
weights_prior_scale = 0.1)
p <- model$parameters[[1]]
init <- sts_sample_uniform_initial_state(parameter = p, init_sample_shape = list(2, 2))
expect_equal(init$get_shape()$as_list() %>% length(), 2)
})
test_succeeds("sts_decompose_forecast_by_component works", {
observed_time_series <-
array(rnorm(2 * 1 * 12), dim = c(2, 1, 12))
day_of_week <-
observed_time_series %>% sts_seasonal(num_seasons = 7, name = "seasonal")
local_linear_trend <-
observed_time_series %>% sts_local_linear_trend(name = "local_linear")
model <-
observed_time_series %>% sts_sum(components = list(day_of_week, local_linear_trend))
states_and_results <- observed_time_series %>% sts_fit_with_hmc(
model,
num_results = 10,
num_warmup_steps = 5,
num_variational_steps = 15
)
samples <- states_and_results[[1]]
forecast_dist <-
observed_time_series %>% sts_forecast(model,
parameter_samples = samples,
num_steps_forecast = 50)
component_forecasts <-
sts_decompose_forecast_by_component(model, forecast_dist, samples)
day_of_week_effect_mean <- component_forecasts[[1]] %>% tfd_mean()
expect_equal(day_of_week_effect_mean$get_shape()$as_list() %>% length(),
3)
}) |
chart.GroupWeights <- function(object, ..., grouping=c("groups", "category"), plot.type="line", main="Group Weights", las=3, xlab=NULL, cex.lab=0.8, element.color="darkgray", cex.axis=0.8){
if(!inherits(object, "optimize.portfolio")) stop("object must be of class 'optimize.portfolio'")
if(plot.type %in% c("bar", "barplot")){
barplotGroupWeights(object=object, ...=..., grouping=grouping, main=main,
las=las, xlab=xlab, cex.lab=cex.lab,
element.color=element.color, cex.axis=cex.axis)
} else if(plot.type == "line"){
constraints <- get_constraints(object$portfolio)
tmp <- extractGroups(object)
grouping <- grouping[1]
if(grouping == "groups"){
weights <- tmp$group_weights
if(is.null(weights)) stop("No weights detected for groups")
if(any(is.infinite(constraints$cUP)) | any(is.infinite(constraints$cLO))){
ylim <- range(weights)
} else {
ylim <- range(c(constraints$cLO, constraints$cUP))
}
}
if(grouping == "category"){
weights <- tmp$category_weights
if(is.null(weights)) stop("No weights detected for category")
ylim <- range(weights)
}
columnnames = names(weights)
numgroups = length(columnnames)
if(is.null(xlab))
minmargin = 3
else
minmargin = 5
if(main=="") topmargin=1 else topmargin=4
if(las > 1) {
bottommargin = max(c(minmargin, (strwidth(columnnames,units="in"))/par("cin")[1])) * cex.lab
if(bottommargin > 10 ) {
bottommargin<-10
columnnames<-substr(columnnames,1,19)
}
}
else {
bottommargin = minmargin
}
par(mar = c(bottommargin, 4, topmargin, 2) +.1)
plot(weights, axes=FALSE, xlab='', ylim=ylim, ylab="Weights", main=main, ...)
if(grouping == "groups"){
if(!any(is.infinite(constraints$cLO))){
points(constraints$cLO, type="b", col="darkgray", lty="solid", lwd=2, pch=24)
}
if(!any(is.infinite(constraints$cUP))){
points(constraints$cUP, type="b", col="darkgray", lty="solid", lwd=2, pch=25)
}
}
axis(2, cex.axis = cex.axis, col = element.color)
axis(1, labels=columnnames, at=1:numgroups, las=las, cex.axis = cex.axis, col = element.color)
box(col = element.color)
}
}
barplotGroupWeights <- function(object, ..., grouping=c("groups", "category"), main="Group Weights", las=3, xlab=NULL, cex.lab=0.8, element.color="darkgray", cex.axis=0.8){
if(!inherits(object, "optimize.portfolio")) stop("object must be of class 'optimize.portfolio'")
constraints <- get_constraints(object$portfolio)
tmp <- extractGroups(object)
if(grouping == "groups"){
weights <- tmp$group_weights
if(is.null(weights)) stop("No weights detected for groups")
}
if(grouping == "category"){
weights <- tmp$category_weights
if(is.null(weights)) stop("No weights detected for category")
}
columnnames = names(weights)
numgroups = length(columnnames)
barplot(weights, ylab = "", names.arg=columnnames,
border=element.color, cex.axis=cex.axis, main=main, las=las,
cex.names=cex.lab, xlab=xlab, ...)
box(col=element.color)
} |
KRV <- function(y = NULL, X = NULL, adjust.type = NULL, kernels.otu, kernel.y,
omnibus = "kernel_om", returnKRV = FALSE, returnR2 = FALSE){
om <- substring(tolower(omnibus), 1, 1)
if (!is.null(adjust.type)) {
adjust.type <- substring(tolower(adjust.type), 1, 1)
if (adjust.type == "p") {
if (!kernel.y %in% c("linear", "Gaussian")) {
stop("Phenotype-only adjustment may only be used with numeric y, not pre-computed phenotype kernel. Try option 'both' instead or double check that you have entered either 'linear' or 'Gaussian' for kernel.y.")
}
}
if (!adjust.type %in% c("p", "b")) {
stop("I don't know that covariate adjustment choice. Please choose 'phenotype' or 'both', or leave this option NULL.")
}
}
if (!is.list(kernels.otu)) {
kernels.otu <- list(kernels.otu)
}
if (!all(unlist(lapply(kernels.otu, FUN = function(k) is.matrix(k))))) {
stop("Please ensure kernels.otu is either a single n x n kernel matrix or a list of n x n kernel matrices.")
}
if (!is.null(X) & !all(X[,1] == 1)) {
X1 <- cbind(1, X)
X <- X1
}
if (is.null(X) & !is.null(adjust.type)) {
warning("X is NULL, so no covariate adjustment will be done.")
adjust.type = NULL
}
if (is.matrix(kernel.y)){
n = nrow(kernels.otu[[1]])
if (!is.null(y)){
warning("When a phenotype kernel is provided, argument \"y\" will be ignored.\n")
}
if (ncol(kernels.otu[[1]]) != n | nrow(kernel.y) != n | ncol(kernel.y) != n){
stop("Kernel matrices need to be n x n, where n is the sample size.\n ")
}
} else if (!is.matrix(kernel.y)){
if (!(kernel.y %in% c("Gaussian", "linear"))){
stop("Please choose kernel.y = \"Gaussian\" or \"linear\", or enter a kernel matrix for \"kernel.y\".\n")
}
if(is.null(y)){
stop("Please enter a phenotype matrix for argument \"y\" or enter a kernel matrix for argument \"kernel.y\".\n")
}
n = NROW(y)
if (!all(unlist(lapply(kernels.otu, FUN = function(x) nrow(x) == n & ncol(x) == n)))) {
stop("Kernel matrix/matrices must be n x n, where n is the sample size. \n ")
}
if (any(is.na(y))){
ids = which(is.na(y))
stop(paste("Missing response for subject(s)", ids, "- please remove before proceeding. \n"))
}
if (!is.null(X)){
if (any(is.na(X))){
stop("NAs in covariates X, please impute or remove subjects with missing covariates values.\n")
}
if(NROW(X)!= NROW(y)) stop("Dimensions of X and y don't match.\n")
}
}
pvals <- c()
if (returnKRV) { KRVs <- c() } else { KRVs = NULL }
if (returnR2) { R2 <- c() } else { R2 = NULL }
for(i in 1:length(kernels.otu)){
res <- inner.KRV(y = y, X = X, adjust.type = adjust.type, kernel.otu=kernels.otu[[i]],
kernel.y = kernel.y, returnKRV = TRUE, returnR2 = TRUE)
pvals[i] <- res$pv
if (returnKRV) { KRVs[i] <- res$KRV }
if (returnR2) { R2[i] <- res$R2 }
}
kernel.names <- names(kernels.otu)
names(pvals) <- kernel.names
if (returnKRV) { names(KRVs) <- kernel.names }
if (returnR2) { names(R2) <- kernel.names }
if (length(kernels.otu) > 1) {
if (om == "k") {
K.om <- matrix(0, nrow = nrow(kernels.otu[[1]]), ncol = ncol(kernels.otu[[1]]))
for(i in 1:length(kernels.otu)){
K.om = K.om + kernels.otu[[i]]/tr(kernels.otu[[i]])
}
omnibus_p <- as.numeric(inner.KRV(y = y, X = X, adjust.type = adjust.type,
kernel.otu = K.om, kernel.y = kernel.y)$pv)
} else if (om == "c") {
cauchy.t <- sum(tan((0.5 - pvals)*pi))/length(pvals)
omnibus_p <- 1 - pcauchy(cauchy.t)
} else {
stop("I don't know that omnibus option. Please choose 'kernel_om' or 'Cauchy'.")
}
if (is.null(KRVs) & is.null(R2)) {
return(list(p_values = pvals, omnibus_p = omnibus_p))
} else if (is.null(KRVs) & !is.null(R2)) {
return(list(p_values = pvals, omnibus_p = omnibus_p, R2 = R2))
} else if (!is.null(KRVs) & is.null(R2)) {
return(list(p_values = pvals, omnibus_p = omnibus_p, KRV = KRVs))
} else {
return(list(p_values = pvals, omnibus_p = omnibus_p, KRV = KRVs, R2 = R2))
}
}
if (is.null(KRVs) & is.null(R2)) {
return(list(p_values = pvals))
} else if (is.null(KRVs) & !is.null(R2)) {
return(list(p_values = pvals, R2 = R2))
} else if (!is.null(KRVs) & is.null(R2)) {
return(list(p_values = pvals, KRV = KRVs))
} else {
return(list(p_values = pvals, KRV = KRVs, R2 = R2))
}
} |
list_compar <- function(lgrph, nd.var = "type",
verbose = FALSE) {
ldec.comp <- utils::combn(seq_len(length(lgrph)), 2)
if (verbose) {
print(paste0("there is ", ncol(ldec.comp),
" pairwise comparisons to compute"))
}
grphAllcompar <- list()
for (dec in seq_len(ncol(ldec.comp))) {
idx.g <- ldec.comp[, dec]
if (verbose) {
tit <- paste0("compare decorations '", lgrph[[idx.g[1]]]$name,
"' and '", lgrph[[idx.g[2]]]$name, "'")
print(paste0(" ", dec, ") ", tit))
}
grph <- eds_compar(lgrph[idx.g], nd.var)
grph <- nds_compar(grph, nd.var)
attributes(grph)$nd.var <- nd.var
grphAllcompar[[dec]] <- grph
}
return(grphAllcompar)
}
nds_compar <- function(grphs, nd.var = "type") {
g.nds <- lapply(grphs, function(x) iconr::named_elements(x, "nodes", nd.var))
common.nodes <- intersect(g.nds[[1]], g.nds[[2]])
for (i in 1:2) {
igraph::V(grphs[[i]])$comm <- as.numeric(g.nds[[i]] %in% common.nodes)
}
return(grphs)
}
eds_compar <- function(grphs, nd.var = "type") {
g.eds <- lapply(grphs, function(x) iconr::named_elements(x, "edges", nd.var))
common.edges <- intersect(g.eds[[1]], g.eds[[2]])
for (i in 1:2) {
igraph::E(grphs[[i]])$comm <- as.numeric(g.eds[[i]] %in% common.edges)
}
return(grphs)
} |
library(ggplot2)
library(reshape2)
this_base <- "fig04-10_museum-exhibitions-jittering"
my_data <- read.delim(paste0(this_base, ".tsv"))
my_data_long <-
melt(my_data, id = NULL,
variable.name = "exhibition", value.name = "visit_length")
levels(my_data_long$exhibition) <-
gsub("\\.\\.\\.", ".&.", levels(my_data_long$exhibition))
levels(my_data_long$exhibition) <-
gsub("\\.", " ", levels(my_data_long$exhibition))
set.seed(0)
p <- ggplot(my_data_long, aes(x = visit_length, y = exhibition)) +
geom_point(shape = 1, position = position_jitter(w = 0.1, h = 0.1)) +
scale_x_continuous(breaks = seq(0, 80, 20), limits = c(-1, 100)) +
scale_y_discrete(limits = rev(levels(my_data_long$exhibition))) +
labs(x = NULL, y = "Times") +
ggtitle("Fig 4.10 Museum Exhibitions: Jittering") +
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.title = element_text(size = rel(1.2), face = "bold", vjust = 1.5),
axis.ticks.y = element_blank(),
axis.title.y = element_blank())
p
ggsave(paste0(this_base, ".png"), p, width = 6, height = 6) |
load_palette <- function(palette)
UseMethod('load_palette', palette)
load_palette.character <- function(palette) {
palette_list <- names(palettes)
if (!palette %in% palette_list)
stop(paste0("No palette named '", palette, "'. Please choose one of ", paste(palette_list, collapse=', '), '.'), call.=FALSE)
return (palettes[[palette]])
}
load_palette.ggthemr_palette <- function(palette)
return (palette) |
line_calc <- function(line_layer,
higher_geo_lay,
unique_id_code,
crs) {
crs = crs
line_layer <- sf::st_transform(line_layer, crs)
higher_geo_lay <- sf::st_transform(higher_geo_lay, crs)
higher_geo_lay$TotalArea <-
sf::st_area(higher_geo_lay$geometry)
higher_geo_lay$TotalArea <-
as.numeric(higher_geo_lay$TotalArea)
sf::st_agr(line_layer) = "constant"
sf::st_agr(higher_geo_lay) = "constant"
int <- dplyr::as_tibble(sf::st_intersection(line_layer, higher_geo_lay))
int$foot_len <- sf::st_length(int$geometry)
int$foot_len <- as.numeric(int$foot_len)
int <- int %>%
tidyr::drop_na(!!as.name(unique_id_code))
LengthByGeo <- int %>%
dplyr::group_by(!!as.name(unique_id_code)) %>%
dplyr::summarise(TotalLength = sum(foot_len), .groups = 'drop_last')
combined_data <- dplyr::left_join(LengthByGeo, higher_geo_lay, by = unique_id_code)
combined_data$Ratio <- combined_data$TotalLength / combined_data$TotalArea
results <- combined_data[,c(unique_id_code, "TotalArea", "TotalLength", "Ratio")]
return(results)
} |
get_mvn_params <- function(x, scale=1, correlations=TRUE, fix) {
blocks <- c("parameter", "initial")
params <- lapply(blocks, function(block) {
block_lines <-
grep("~", get_block(x$model, paste("proposal", block, sep="_")), value=TRUE)
sub("[[:space:]]*~.*$", "", block_lines)
})
names(params) <- blocks
dimless_params <- lapply(params, function(param) {
sub("[[:space:]]*\\[.*$", "", param)
})
names(dimless_params) <- names(params)
dims <- get_dims(x$model)
vars <- list()
for (block in names(params)) {
if (!missing(fix)) {
A <- matrix(fix, ncol=length(params[[block]]), nrow=length(params[[block]]))
rownames(A) <- params[[block]]
colnames(A) <- params[[block]]
} else if (x$run_flag){
res <- bi_read(x, vars=unique(dimless_params[[block]]), init_to_param = TRUE)
l <- list()
for (param in names(res))
{
if (prod(dim(res[[param]])) > 0)
{
y <- data.table(res[[param]])
dim_colnames <- setdiff(colnames(y), c("np", "value"))
unique_dims <- unique(y[, dim_colnames, with=FALSE])
if (sum(dim(unique_dims)) > 0)
{
a <- lapply(seq_len(nrow(unique_dims)), function(row) {
merge(unique_dims[row, ], y)
})
for (dim_colname in dim_colnames) {
if (is.factor(unique_dims[[dim_colname]])) {
unique_dims[[dim_colname]] <-
as.integer(unique_dims[[dim_colname]]) - 1
}
}
if (length(a) > 0)
{
names(a) <- unname(apply(unique_dims, 1, function(row) {
paste0(param, "[", paste(row, collapse = ","), "]")
}))
}
} else
{
a <- list(y)
names(a) <- param
}
}
a <- lapply(names(a), function(p) {
for (col in colnames(unique_dims)) {
a[[p]][[col]] <- NULL
}
data.table::setnames(a[[p]], "value", p)
})
l <- c(l, a)
}
if (length(l) > 0) {
wide <- l[[1]]
if (length(l) > 1) {
for (i in seq(2, length(l))) {
wide <- merge(wide, l[[i]], by=intersect(colnames(wide), colnames(l[[i]])))
}
}
wide[["np"]] <- NULL
if (ncol(wide) > 0)
{
if (ncol(wide) > 1 && correlations) {
c <- 2.38**2 * stats::cov(wide) / ncol(wide)
A <- tryCatch(t(as.matrix(chol(nearPD(c)$mat))), error=function(e) NULL)
} else {
A <- NULL
}
if (is.null(A)) {
A <- diag(apply(wide, 2, sd))
rownames(A) <- colnames(wide)
colnames(A) <- colnames(wide)
}
dA <- diag(A)
for (i in seq_along(dA)) {
if (dA[i]==0) {
A[i, i] <- abs(mean(wide[, i, with=FALSE][[1]]))/10
}
}
} else {
A <- matrix(ncol=0, nrow=0)
}
} else {
A <- NULL
}
} else {
A <- NULL
}
if (is.null(A)) {
A <- diag(ncol=length(params[[block]]), nrow=length(params[[block]]))
rownames(A) <- params[[block]]
colnames(A) <- params[[block]]
}
if (prod(dim(A) > 0)) {
if (!missing(scale)) {
A <- A * sqrt(scale)
}
cov_input_name <- paste("__proposal", block, "cov", sep="_")
dim_name <- paste("__dim", block, "cov", sep="_")
long_cov <- reshape2::melt(A, varnames=paste(dim_name, 1:2, sep="."))
vars[[cov_input_name]] <- long_cov
}
}
return(vars)
} |
NULL
ggbarplot <- function(data, x, y, combine = FALSE, merge = FALSE,
color = "black", fill = "white", palette = NULL,
size = NULL, width = NULL,
title = NULL, xlab = NULL, ylab = NULL,
facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE,
select = NULL, remove = NULL, order = NULL,
add = "none", add.params = list(), error.plot = "errorbar",
label = FALSE, lab.col = "black", lab.size = 4,
lab.pos = c("out", "in"), lab.vjust = NULL, lab.hjust = NULL,
lab.nb.digits = NULL,
sort.val = c("none", "desc", "asc"), sort.by.groups = TRUE,
top = Inf,
position = position_stack(),
ggtheme = theme_pubr(),
...)
{
.opts <- list(
combine = combine, merge = merge,
color = color, fill = fill, palette = palette,
size = size, width = width,
title = title, xlab = xlab, ylab = ylab,
facet.by = facet.by, panel.labs = panel.labs, short.panel.labs = short.panel.labs,
select = select , remove = remove, order = order,
add = add, add.params = add.params, error.plot = error.plot,
label = label, lab.col = lab.col, lab.size = lab.size,
lab.pos = lab.pos, lab.vjust = lab.vjust, lab.hjust = lab.hjust,
lab.nb.digits = lab.nb.digits,
sort.val = sort.val, sort.by.groups = sort.by.groups, top = top,
position = position, ggtheme = ggtheme, ...)
if(!missing(data)) .opts$data <- data
if(!missing(x)) .opts$x <- x
if(!missing(y)) .opts$y <- y
.user.opts <- as.list(match.call(expand.dots = TRUE))
.user.opts[[1]] <- NULL
for(opt.name in names(.opts)){
if(is.null(.user.opts[[opt.name]]))
.opts[[opt.name]] <- NULL
}
if(is.logical(merge)){
if(merge & missing(position))
.opts$position <- position_dodge(0.8)
if(merge & missing(lab.col))
.opts$lab.col <- ".y."
}
else if(is.character(merge)){
.opts$position <- position_dodge(0.8)
}
.opts$fun <- ggbarplot_core
.opts$fun_name <- "barplot"
if(missing(ggtheme) & (!is.null(facet.by) | combine))
.opts$ggtheme <- theme_pubr(border = TRUE)
p <- do.call(.plotter, .opts)
if(.is_list(p) & length(p) == 1) p <- p[[1]]
return(p)
}
ggbarplot_core <- function(data, x, y,
color = "black", fill = "white", palette = NULL,
size = NULL, width = 0.7,
title = NULL, xlab = NULL, ylab = NULL,
label = FALSE, lab.col = "black", lab.size = 4,
lab.pos = c("out", "in"), lab.vjust = NULL, lab.hjust = NULL,
lab.nb.digits = NULL,
select = NULL, order = NULL, facet.by = NULL,
sort.val = c("none", "desc", "asc"), sort.by.groups = TRUE,
merge = FALSE,
top = Inf,
add = "none",
add.params = list(),
error.plot = "errorbar",
position = position_stack(),
ggtheme = theme_pubr(),
...)
{
sort.val <- match.arg(sort.val)
if(!is.null(order)) data[, x] <- factor(data[, x], levels = order)
else {
xx <- .select_vec(data, x)
if(inherits(xx, c("character", "numeric")))
data[, x] <- .select_vec(data, x) %>% as.factor()
}
error.plot = error.plot[1]
lab.pos <- match.arg(lab.pos)
label <- as.vector(label)
if("none" %in% add) add <- "none"
grouping.vars <- intersect(c(x, color, fill, facet.by), names(data))
. <- NULL
if(is.null(add.params$fill)) add.params$fill <- "white"
if(is.null(add.params$group)){
if(fill %in% names(data)) add.params$group <- fill
else if(color %in% names(data)) add.params$group <- color
}
add.params <- .check_add.params(add, add.params, error.plot, data, color, fill, ...)
if(any(.summary_functions() %in% add)) {
data_sum <- desc_statby(data, measure.var = y, grps = grouping.vars)
summary.funcs <- intersect(.summary_functions(), add)
if(length(summary.funcs) > 1)
stop("Only one summary function is allowed. ",
"Choose one of ", .collapse(.summary_functions(), sep = ", "))
.center <- .get_errorbar_center_func(summary.funcs)
add <- setdiff(add, .center)
names(data_sum)[which(names(data_sum) == .center)] <- y
if(inherits(xx, c("character", "numeric")))
data_sum[, x] <- .select_vec(data_sum, x) %>% as.factor()
}
else data_sum <- data
if(top !=Inf & sort.val == "none") sort.val = "desc"
if(top !=Inf) {
data_sum <- data_sum[order(-data_sum[, y]), ]
data_sum <- utils::head(data_sum, n = top)
}
grps <- unique(intersect(c(color, fill), names(data)))
if(length(grps) > 0) grps <- .get_not_numeric_vars(data[, grps, drop = FALSE])
ngrps <- length(grps)
if(!sort.by.groups) ngrps <- 0
if(ngrps > 0) dd <- data_sum[, c(grps, y)]
else dd <- data_sum[, y, drop = FALSE]
if(sort.val == "desc") dd[, y] <- -dd[, y]
if(sort.val != "none") {
if(ngrps == 0) data_sum <- data_sum[order(dd[, y]),]
else if(ngrps == 1) data_sum <- data_sum[order(dd[, 1], dd[, y]),]
else if(ngrps == 2) data_sum <- data_sum[order(dd[, 1], dd[, 2], dd[, y]),]
data_sum[, x] <- factor(data_sum[, x], levels = data_sum[, x])
}
if(inherits(position, "PositionDodge") & is.null(position$width)) position$width = 0.95
p <- ggplot(data, create_aes(list(x = x, y = y)))
p <- p +
geom_exec(geom_bar, data = data_sum,
stat = "identity",
color = color, fill = fill,
position = position,
size = size, width = width, ...)
add.params <- add.params %>% .add_item(p = p, error.plot = error.plot)
is.stacked.position <- inherits(position, "PositionStack")
stack.groups <- unique(c(x, facet.by))
nb.bars.by.xposition <- data_sum %>%
group_by(!!!syms(stack.groups)) %>%
dplyr::count() %>%
dplyr::pull(.data$n) %>%
max()
if(is.stacked.position) add.position <- "identity"
else add.position <- position
if(is.stacked.position & nb.bars.by.xposition >=2) {
p <- add.params %>%
.add_item(add = .remove_errorbar_func(add), position = add.position) %>%
do.call(ggadd, .)
if(any(.errorbar_functions() %in% add)){
p <- p + .geom_stacked_errorbar(
data_sum, x, y,
color = add.params$color, fill = add.params$fill,
group = add.params$group, facet.by = facet.by,
func = .get_summary_func(add), error.plot = error.plot
)
}
}
else {
p <- add.params %>%
.add_item(add = add, position = add.position) %>%
do.call(ggadd, .)
}
add.label <- FALSE
if(is.logical(label)){
.lab <- y
add.label <- label
} else {
data_sum$.ulabel. <- label
.lab <- ".ulabel."
add.label <- TRUE
}
if(add.label) {
if(is.null(lab.vjust)) lab.vjust <- ifelse(lab.pos == "out", -0.4, 2 )
if(is.null(lab.hjust)) lab.hjust <- 0.5
if(!is.null(lab.nb.digits)){
if(is.numeric(.lab)) .lab <- round(.lab, digits = lab.nb.digits)
else if(.lab[1] %in% colnames(data_sum))
data_sum[, .lab] <- dplyr::pull(data_sum, .lab) %>%
round(digits = lab.nb.digits)
}
.cols <- unique(c(color, fill))
if(any(.cols %in% names(data))){
.in <- which(.cols %in% names(data))
lab.fill <- color.var <- .cols[.in]
data_sum <- data_sum %>%
dplyr::arrange(!!!syms(x), desc(!!!syms(color.var)))
group <- intersect(.cols, names(data))[1]
p <- p + geom_exec(geom_text, data = data_sum, label = .lab,
vjust = lab.vjust, hjust = lab.hjust, size = lab.size, color = lab.col,
fontface = "plain", position = position, group = group)
}
else{
p <- p + geom_exec(geom_text, data = data_sum, label = .lab,
vjust = lab.vjust, hjust = lab.hjust, size = lab.size, color = lab.col,
fontface = "plain", position = position)
}
}
p <- ggpar(p, palette = palette, ggtheme = ggtheme,
title = title, xlab = xlab, ylab = ylab,...)
p
}
.geom_stacked_errorbar <- function(data_sum, x, y, color = NULL, fill = NULL, facet.by = NULL, group = NULL,
func = "mean_se", error.plot = "errorbar"){
stack.groups <- unique(c(x, facet.by))
legend.var <- intersect(unique(c(color, fill, group)), colnames(data_sum))
error <- .get_errorbar_error_func(func)
error.value <- data_sum %>% dplyr::pull(!!error)
desc <- dplyr::desc
errorbar.position <- data_sum %>%
group_by(!!!syms(stack.groups)) %>%
dplyr::arrange(!!sym(x), desc(!!sym(legend.var))) %>%
dplyr::mutate(
y = cumsum(!!sym(y)),
ymin = .data$y - !!sym(error),
ymax = .data$y + !!sym(error)
) %>%
dplyr::ungroup()
geom_error <- .get_geom_error_function(error.plot)
args <- geom_exec(
data = errorbar.position, color = color,
group = group,
x = x, ymin = "ymin", ymax = "ymax"
)
mapping <- args$mapping
option <- args$option
if(error.plot == "errorbar") option$width <- 0.15
option[["mapping"]] <- create_aes(mapping)
do.call(geom_error, option)
}
.get_geom_error_function <- function(error.plot = "errorbar"){
error.plot <- error.plot[1]
geom_func <- ggplot2::geom_errorbar
if(error.plot %in% c("pointrange", "lower_pointrange", "upper_pointrange"))
geom_func <- ggplot2::geom_pointrange
else if(error.plot %in% c("linerange", "lower_linerange", "upper_linerange"))
geom_func <- ggplot2::geom_linerange
else if(error.plot %in% c("errorbar", "lower_errorbar", "upper_errorbar"))
geom_func <- ggplot2::geom_errorbar
geom_func
}
.is_stacked <- function(p){
inherits(p$layers[[1]]$position, "PositionStack")
}
.remove_errorbar_func <- function(add){
setdiff(add, .errorbar_functions())
}
.get_summary_func <- function(add){
intersect(.errorbar_functions(), add)
}
.get_errorbar_center_func <- function(func = "mean_se"){
. <- NULL
func %>%
strsplit("_", fixed = TRUE) %>%
unlist() %>% .[1]
}
.get_errorbar_error_func <- function(func = "mean_se"){
res <- func %>%
strsplit("_", fixed = TRUE) %>%
unlist()
if(length(res) >= 2){
res <- res[2]
}
else res <- NULL
res
} |
check_store_every <- function(store_every) {
testit::assert(length(store_every) == 1)
if (is.na(store_every)) return()
assertive::assert_is_a_number(store_every)
assertive::assert_all_are_whole_numbers(store_every)
if (store_every < -1 || store_every == 0) {
stop(
"'store_every' must be either NA, -1 or a non-zero positive value. \n",
"'Actual value: ", store_every
)
}
} |
peptide_type <- function(...) {
lifecycle::deprecate_warn("0.2.0",
"peptide_type()",
"assign_peptide_type()",
details = "This function has been renamed."
)
assign_peptide_type(...)
}
assign_peptide_type <- function(data,
aa_before = aa_before,
last_aa = last_aa,
aa_after = aa_after) {
data %>%
dplyr::mutate(N_term_tryp = dplyr::if_else({{ aa_before }} == "" |
{{ aa_before }} == "K" |
{{ aa_before }} == "R",
TRUE,
FALSE
)) %>%
dplyr::mutate(C_term_tryp = dplyr::if_else({{ last_aa }} == "K" |
{{ last_aa }} == "R" |
{{ aa_after }} == "",
TRUE,
FALSE
)) %>%
dplyr::mutate(pep_type = dplyr::case_when(
.data$N_term_tryp + .data$C_term_tryp == 2 ~ "fully-tryptic",
.data$N_term_tryp + .data$C_term_tryp == 1 ~ "semi-tryptic",
.data$N_term_tryp + .data$C_term_tryp == 0 ~ "non-tryptic"
)) %>%
dplyr::select(-.data$N_term_tryp, -.data$C_term_tryp)
} |
.DollarNames.rga <- function(x, pattern) {
grep(pattern, getRefClass(class(x))$methods(), value = TRUE)
} |
new_ptvapi_tibble <- function(response, parsed) {
assertthat::assert_that(is.data.frame(parsed))
ptvapi_tibble <- tibble::new_tibble(
parsed,
nrow = nrow(parsed),
class = "ptvapi",
request = response$request,
retrieved = response$retrieved,
status_code = response$status_code,
content = response$content
)
tibble::validate_tibble(ptvapi_tibble)
ptvapi_tibble
}
print.ptvapi <- function(x, ...) {
if (!is.null(attr(x, "request"))) {
cat("Request:", attr(x, "request"), "\n")
}
if (!is.null(attr(x, "retrieved"))) {
cat("Retrieved:", attr(x, "retrieved"), "\n")
}
if (!is.null(attr(x, "status_code"))) {
cat("Status code:", attr(x, "status_code"), "\n")
}
NextMethod()
} |
render <- function(statistic,
...,
format,
statDigits=4,
sigDigits=4,
pLargeCutoff=0.05,
pSmallCutoff=1.0e-5) {
UseMethod('render')
}
get_render_args <- function(args, strict, stat, fnname) {
res <- list(
statDigits=4,
sigDigits=4,
pLargeCutoff=0.05,
pSmallCutoff=1.0e-5
)
for(ni in names(res)) {
if(ni %in% names(stat)) {
res[[ni]] <- stat[[ni]]
}
if(ni %in% names(args)) {
res[[ni]] <- args[[ni]]
args[[ni]] <- NULL
}
}
if(!("format" %in% names(res))) {
if("format" %in% names(args)) {
res$format <- args$format
args$format <- NULL
} else if("format" %in% names(stat)) {
res$format <- stat$format
} else {
res$format <- getRenderingFormat()
}
}
if(!isTRUE(res$format %in% formats)) {
res$format <- "ascii"
}
if(strict) {
if(length(args)>0) {
stop(paste("unexpected arguments", fnname))
}
}
res
}
render.sigr_significance <- function(statistic,
...,
format,
statDigits=4,
sigDigits=4,
pLargeCutoff=0.05,
pSmallCutoff=1.0e-5) {
wrapr::stop_if_dot_args(substitute(list(...)), "sigr::render.sigr_significance")
sig <- statistic$significance
symbol <- statistic$symbol
if (missing(format) || is.null(format)) {
format <- getRenderingFormat()
}
if(!isTRUE(format %in% formats)) {
format <- "ascii"
}
fsyms <- syms[format,]
pString <- paste0(fsyms['startI'],symbol,fsyms['endI'])
if(is.na(sig)||is.infinite(sig)||is.nan(sig)) {
pString <- paste0(pString,fsyms['eq'],'n.a.')
} else if(sig>=pLargeCutoff) {
pString <- paste0(pString,fsyms['eq'],'n.s.')
} else {
sigStr <- paste0('%.',sigDigits,'g')
if(sig<pSmallCutoff) {
pString <- paste0(pString,fsyms['lt'],sprintf(sigStr,pSmallCutoff))
} else {
pString <- paste0(pString,fsyms['eq'],sprintf(sigStr,sig))
}
}
pString
}
as.character.sigr_statistic <- function(x, ...) {
render_args <- get_render_args(list(...), TRUE, x, "sigr::as.character.sigr_statistic")
render(x,
format = render_args$format,
statDigits = render_args$statDigits,
sigDigits = render_args$sigDigits,
pLargeCutoff = render_args$pLargeCutoff,
pSmallCutoff = render_args$pSmallCutoff)
}
format.sigr_statistic <- function(x, ...) {
render_args <- get_render_args(list(...), TRUE, x, "sigr::format.sigr_statistic")
render(x,
format = render_args$format,
statDigits = render_args$statDigits,
sigDigits = render_args$sigDigits,
pLargeCutoff = render_args$pLargeCutoff,
pSmallCutoff = render_args$pSmallCutoff)
}
print.sigr_statistic <- function(x, ...) {
render_args <- get_render_args(list(...), FALSE, x, "sigr::print.sigr_statistic")
print(render(x,
format = render_args$format,
statDigits = render_args$statDigits,
sigDigits = render_args$sigDigits,
pLargeCutoff = render_args$pLargeCutoff,
pSmallCutoff = render_args$pSmallCutoff),
...)
}
wrapSignificance <- function(significance,
symbol='p') {
r <- list(significance=significance,
symbol=symbol)
class(r) <- c('sigr_significance', 'sigr_statistic')
r
} |
ptuvn <- function(x, mean, sd, lower, upper){
result <- (stats::pnorm(x,mean,sd)- stats::pnorm(lower,mean,sd))/(stats::pnorm(upper,mean,sd) - stats::pnorm(lower,mean,sd))
result[x <= lower] <- 0 ; result[x >= upper] <- 1
result
} |
kronecker_list <- function(L){
isvecORmat <- function(x){is.matrix(x) || is.vector(x)}
stopifnot(all(unlist(lapply(L,isvecORmat))))
retmat <- L[[1]]
for(i in 2:length(L)){
retmat <- kronecker(retmat,L[[i]])
}
retmat
}
ttm<-function(tnsr,mat,m=NULL){
stopifnot(is.matrix(mat))
if(is.null(m)) stop("m must be specified")
mat_dims <- dim(mat)
modes_in <- tnsr@modes
stopifnot(modes_in[m]==mat_dims[2])
modes_out <- modes_in
modes_out[m] <- mat_dims[1]
tnsr_m = unfold(tnsr,row_idx = m, col_idx = (1:tnsr@num_modes)[-m])@data
retarr_m <- mat%*%tnsr_m
fold(retarr_m, row_idx = m, col_idx = (1:tnsr@num_modes)[-m], modes = modes_out)
}
ttl<-function(tnsr,list_mat,ms=NULL){
if(is.null(ms)||!is.vector(ms)) stop ("m modes must be specified as a vector")
if(length(ms)!=length(list_mat)) stop("m modes length does not match list_mat length")
num_mats <- length(list_mat)
if(length(unique(ms))!=num_mats) warning("consider pre-multiplying matrices for the same m for speed")
mat_nrows <- vector("list", num_mats)
mat_ncols <- vector("list", num_mats)
for(i in 1:num_mats){
mat <- list_mat[[i]]
m <- ms[i]
mat_dims <- dim(mat)
modes_in <- tnsr@modes
stopifnot(modes_in[m]==mat_dims[2])
modes_out <- modes_in
modes_out[m] <- mat_dims[1]
tnsr_m = unfold(tnsr,row_idx = m, col_idx = (1:tnsr@num_modes)[-m])@data
retarr_m <- mat%*%tnsr_m
tnsr = fold(retarr_m, row_idx = m, col_idx = (1:tnsr@num_modes)[-m], modes = modes_out)
}
tnsr
} |
.proctime00 <- proc.time()
library(utils)
options(digits = 5)
options(show.signif.stars = FALSE)
SweaveTeX <- function(file, ...) {
if(!file.exists(file))
stop("File", file, "does not exist in", getwd())
texF <- sub("\\.[RSrs]nw$", ".tex", file)
Sweave(file, ...)
if(!file.exists(texF))
stop("File", texF, "does not exist in", getwd())
readLines(texF)
}
p0 <- paste0
latexEnv <- function(lines, name) {
stopifnot(is.character(lines), is.character(name),
length(lines) >= 2, length(name) == 1)
beg <- p0("\\begin{",name,"}")
end <- p0("\\end{",name,"}")
i <- grep(beg, lines, fixed=TRUE)
j <- grep(end, lines, fixed=TRUE)
if((n <- length(i)) != length(j))
stop(sprintf("different number of %s / %s", beg,end))
if(any(j-1 < i+1))
stop(sprintf("positionally mismatched %s / %s", beg,end))
lapply(mapply(seq, i+1,j-1, SIMPLIFY=FALSE),
function(ind) lines[ind])
}
t1 <- SweaveTeX("swv-keepSrc-1.Rnw")
if(FALSE)
writeLines(t1)
inp <- latexEnv(t1, "Sinput")
out <- latexEnv(t1, "Soutput")
stopifnot(length(inp) == 5,
grepl("
length(out) == 1,
any(grepl("\\includegraphics", t1)))
t2 <- SweaveTeX("keepsource.Rnw")
comml <- grep("
stopifnot(length(comml) == 2,
grepl("initial comment line", comml[1]),
grepl("last comment", comml[2]))
Sweave("customgraphics.Rnw")
Sweave(f <- "Sexpr-verb-ex.Rnw")
require(tools)
texi2pdf(sub("Rnw$","tex", f))
tf <- textConnection("RdTeX", "w")
Rd2latex("Sexpr-hide-empty.Rd", tf, stages="build")
tex <- textConnectionValue(tf); close(tf); rm(tf)
(H2end <- tex[grep("^Hello", tex):length(tex)])
stopifnot((n <- length(H2end)) <= 4,
H2end[-c(1L,n)] == "")
cat('Time elapsed: ', proc.time() - .proctime00,'\n') |
groupMedians <-
function(variables, group, na.rm=FALSE)
{
verify_Xy = my_verify(variables, group, na.rm=na.rm)
X = verify_Xy$X
y = verify_Xy$y
ng = nlevels(y)
Meds = matrix(0, ncol(X), ng)
for (j in 1:ncol(X))
{
Meds[j,] = tapply(X[,j], y, FUN=median, na.rm=na.rm)
}
if (is.null(colnames(X))) {
rownames(Meds) = paste("X", 1:ncol(X), sep="")
} else {
rownames(Meds) = colnames(X)
}
colnames(Meds) = levels(y)
Meds
} |
hatvalues.CountsEPPM <-
function (model, ...) {
x <- model$covariates.matrix.mean
if (NCOL(x) < 1L)
return(structure(rep.int(0, NROW(x)), .Names = rownames(x)))
if (is.null(model$offset$mean)) { offset.mean <- rep(0, NROW(x)) }
wts <- weights(model$model)
if (is.null(wts)) { wts <- rep(1, NROW(x)) }
beta <- model$coefficients$mean.est[1:ncol(x)]
eta <- as.vector(x %*% beta + offset.mean)
vone <- rep(1,length(eta))
mean <- attr(model$link, which="mean")$linkinv(eta)
if (model$model.type=="mean only") { scale.factor <- matrix(rep.int(1, NROW(x)), ncol=1)
} else {
z <- model$covariates.matrix.scalef
if (is.null(model$offset$scalef)) { offset.scalef <- rep(0, NROW(z)) }
gamma <- model$coefficients$scalef.est[1:ncol(z)]
scale.factor_eta <- as.vector(z %*% gamma + offset.scalef)
scale.factor <- exp(scale.factor_eta) }
vvariance <- mean*scale.factor
dmu <- attr(model$link, which="mean")$mu.eta(eta)
if (model$data.type==TRUE) {
wk.mean <- mean
wk.wts <- wts
wk.vvariance <- vvariance
wk.dmu <- dmu
wk.x <- x
} else {
wks <- length(x[1,])
nend <- 0
for (ilist in 1:length(model$list.data)) {
for ( i in 1:length(model$list.data[[ilist]])) {
nt <- model$list.data[[ilist]][i]
if (nt>0) {
if (nend==0) {
wk.x <- as.vector(c(rep(x[ilist,],nt)))
wk.mean <- c(rep(mean[ilist],nt))
wk.wts <- c(rep(wts[ilist],nt))
wk.vvariance <- c(rep(vvariance[ilist],nt))
wk.dmu <- c(rep(dmu[ilist],nt))
} else {
wk.x <- append(wk.x, as.vector(c(rep(x[ilist,],nt))), after=(nend*wks))
wk.mean <- append(wk.mean, c(rep(mean[ilist],nt)), after=nend)
wk.wts <- append(wk.wts, c(rep(wts[ilist],nt)), after=nend)
wk.vvariance <- append(wk.vvariance, c(rep(vvariance[ilist],nt)), after=nend)
wk.dmu <- append(wk.dmu, c(rep(dmu[ilist],nt)), after=nend) }
nend <- nend + nt } }
}
wk.x <- t(matrix(wk.x, nrow=wks))
}
wkm <- sqrt(as.vector(wk.wts * wk.dmu * wk.dmu / wk.vvariance)) * wk.x
xwx1 <- chol2inv(qr.R(qr(wkm)))
as.vector(diag(wkm %*% xwx1 %*% t(wkm))) } |
tally( ~ Longevity, margin = TRUE, data = MammalLongevity) |
detfct.fit <- function(ddfobj, optim.options, bounds, misc.options){
showit <- misc.options$showit
silent <- misc.options$silent
epsilon <- sqrt(.Machine$double.eps)
misc.options$optim.history <- rep(NA, length(getpar(ddfobj))+2)
iter <- 0
metaiter <- 0
if(is.null(ddfobj$adjustment) | ddfobj$type=="unif" |
misc.options$mono | misc.options$nofit){
if(misc.options$mono & ddfobj$type!="unif"){
save.mono <- misc.options$mono
save.mono.strict <- misc.options$mono.strict
misc.options$mono <- FALSE
misc.options$mono.strict <- FALSE
lt <- detfct.fit.opt(ddfobj, optim.options, bounds,
misc.options, fitting="key")
misc.options$mono <- save.mono
misc.options$mono.strict <- save.mono.strict
ddfobj <- assign.par(ddfobj, lt$par)
if(check.bounds(lt, bounds$lower, bounds$upper, ddfobj,
showit, bounds$setlower, bounds$setupper)){
bounds <- setbounds(rep(NA, length(lt$par)), rep(NA, length(lt$par)),
lt$par, ddfobj)
}
}
lt <- detfct.fit.opt(ddfobj, optim.options, bounds, misc.options)
if(misc.options$mono){
hess <- numDeriv::hessian(flnl, lt$par,
ddfobj=ddfobj, misc.options=misc.options)
attr(lt, "details") <- list(nhatend=hess)
}
}else{
initialvalues <- getpar(ddfobj)
if(showit>=2) cat("DEBUG: starting to cycle the optimisation...\n")
while(iter < misc.options$maxiter){
metaiter <- 0
for(fitting in c("adjust", "key", "all")){
if(fitting == "adjust" | fitting == "key"){
refit.save <- misc.options$refit
misc.options$refit <- FALSE
}
if(showit >= 2) {
cat("DEBUG:", fitting, "iteration ", iter, ".", metaiter, "\n")
cat("DEBUG: initial values =",
paste(round(initialvalues, 7), collapse=", "), "\n")
}
lt <- try(detfct.fit.opt(ddfobj, optim.options, bounds, misc.options,
fitting=fitting), silent = silent)
metaiter <- metaiter + 1
if(all(class(lt)=="try-error")){
if(showit>=2){
cat("DEBUG: iteration", iter, ", fitting", fitting, "failed.\n")
}
if(fitting=="all"){
stop("Fitting failed! Try again with better initial values.\n")
}
}else{
bounds <- lt$bounds
if(showit >= 2){
cat("DEBUG: iteration", paste(iter, metaiter, sep="."),
":\n Converge =", lt$converge,
"\n lnl =", lt$value,
"\n parameters =", paste(round(lt$par, 7), collapse=", "),
"\n")
}
if(any(is.na(lt$par))){
lt$par[is.na(lt$par)] <- initialvalues[is.na(lt$par)]
}
optim.history <- lt$optim.history
misc.options$optim.history <- optim.history
oh <- optim.history[!is.na(optim.history[,1]) &
optim.history[, 1]==0, ]
if(fitting=="all" & !is.null(nrow(oh))){
initialvalues <- oh[which.max(oh[2]), -(1:2)]
ddfobj <- assign.par(ddfobj, initialvalues)
}else{
ddfobj <- assign.par(ddfobj, lt$par)
initialvalues <- getpar(ddfobj)
}
}
misc.options$refit <- refit.save
if(fitting == "all" & lt$conv==0) break
}
if(lt$conv==0) break
iter <- iter + 1
}
if(iter > misc.options$maxiter){
warning("Maximum iterations exceeded!", iter, ">",
misc.options$maxiter, "\n")
}
}
if(showit >= 1){
cat("\nDEBUG: Convergence!",
"\n Iteration ", paste(iter, metaiter, sep="."),
"\n Converge =", lt$converge,
"\n lnl =", lt$value,
"\n parameters =", paste(round(lt$par, 7), collapse=", "), "\n")
}
lt$optim.history <- lt$optim.history[-1, ]
return(lt)
} |
meanTranspose <-
function(x,tol=1e-6)
{
n = nrow(x)
p = ncol(x)
if(sum(is.na(x))==0)
{
nu = colMeans(x)
xnew = scale(x,center=TRUE,scale=FALSE)
mu = rowMeans(xnew)
xnew = t(scale(t(xnew),center=TRUE,scale=FALSE))
}
else
{
ind = 1
xnew = x
mut = nut = 0
while(abs(ind)>tol)
{
mu = rowMeans(xnew,na.rm=TRUE)
xnew = xnew - mu
nu = colMeans(xnew,na.rm=TRUE)
xnew = t(t(xnew) - nu)
ind = sum(mu) + sum(nu)
mut = mut + mu
nut = nut + nu
}
xnew[is.na(x)] = 0
mu = mut
nu = nut
}
M = t(t((matrix(0,n,p) + mu)) + nu)
return(list(x=x,xcen=xnew,mu=mu,nu=nu,M=M))
} |
gglasso <- function(x, y, group = NULL, loss = c("ls", "logit", "sqsvm",
"hsvm","wls"), nlambda = 100, lambda.factor = ifelse(nobs < nvars, 0.05, 0.001),
lambda = NULL, pf = sqrt(bs), weight = NULL, dfmax = as.integer(max(group)) +
1, pmax = min(dfmax * 1.2, as.integer(max(group))), eps = 1e-08, maxit = 3e+08,
delta,intercept=TRUE) {
this.call <- match.call()
loss <- match.arg(loss)
if (!is.matrix(x))
stop("x has to be a matrix")
if (any(is.na(x)))
stop("Missing values in x not allowed!")
y <- drop(y)
np <- dim(x)
nobs <- as.integer(np[1])
nvars <- as.integer(np[2])
vnames <- colnames(x)
if (is.null(vnames))
vnames <- paste("V", seq(nvars), sep = "")
if (length(y) != nobs)
stop("x and y have different number of rows")
if (!is.numeric(y))
stop("The response y must be numeric. Factors must be converted to numeric")
c1 <- loss %in% c("logit", "sqsvm", "hsvm")
c2 <- any(y %in% c(-1, 1) == FALSE)
if (c1 && c2)
stop("Classification method requires the response y to be in {-1,1}")
if (loss=="wls" & !is.matrix(weight))
stop("User must specify weight matrix for (loss='wls')")
if (is.null(group)) {
group <- 1:nvars
} else if (length(group) != nvars)
stop("group length does not match the number of predictors in x")
bn <- as.integer(max(group))
bs <- as.integer(as.numeric(table(group)))
if (!identical(as.integer(sort(unique(group))), as.integer(1:bn)))
stop("Groups must be consecutively numbered 1,2,3,...")
ix <- rep(NA, bn)
iy <- rep(NA, bn)
j <- 1
for (g in 1:bn) {
ix[g] <- j
iy[g] <- j + bs[g] - 1
j <- j + bs[g]
}
ix <- as.integer(ix)
iy <- as.integer(iy)
group <- as.integer(group)
if (missing(delta))
delta <- 1
if (delta < 0)
stop("delta must be non-negtive")
delta <- as.double(delta)
if (length(pf) != bn)
stop("The size of group-lasso penalty factor must be same as the number of groups")
maxit <- as.integer(maxit)
pf <- as.double(pf)
eps <- as.double(eps)
dfmax <- as.integer(dfmax)
pmax <- as.integer(pmax)
nlam <- as.integer(nlambda)
if (is.null(lambda)) {
if (lambda.factor >= 1)
stop("lambda.factor should be less than 1")
flmin <- as.double(lambda.factor)
ulam <- double(1)
} else {
flmin <- as.double(1)
if (any(lambda < 0))
stop("lambdas should be non-negative")
ulam <- as.double(rev(sort(lambda)))
nlam <- as.integer(length(lambda))
}
intr <- as.integer(intercept)
fit <- switch(loss,
ls = ls(bn, bs, ix, iy, nobs, nvars, x, y, pf,
dfmax, pmax, nlam, flmin, ulam, eps, maxit, vnames, group, intr),
logit = logit(bn,
bs, ix, iy, nobs, nvars, x, y, pf, dfmax, pmax, nlam, flmin,
ulam, eps, maxit, vnames, group, intr),
sqsvm = sqsvm(bn, bs, ix, iy,
nobs, nvars, x, y, pf, dfmax, pmax, nlam, flmin, ulam, eps, maxit, vnames,
group, intr),
hsvm = hsvm(delta, bn, bs, ix, iy, nobs, nvars, x, y,
pf, dfmax, pmax, nlam, flmin, ulam, eps, maxit, vnames, group, intr),
wls = wls(bn, bs, ix, iy, nobs, nvars, x, y, pf, weight,
dfmax, pmax, nlam, flmin, ulam, eps, maxit, vnames, group, intr)
)
if (is.null(lambda))
fit$lambda <- lamfix(fit$lambda)
fit$call <- this.call
class(fit) <- c("gglasso", class(fit))
fit
} |
pgfpoissonpascal <-
function(s,params) {
m<-s[abs(s)>1]
if (length(m)>0)
warning("At least one element of the vector s are out of interval [-1,1]")
if (length(params)<3) stop("At least one value in params is missing")
if (length(params)>3) stop("The length of params is 3")
theta<-params[1]
p<-params[2]
k<-params[3]
if (theta<=0)
stop ("Parameter theta must be positive")
if (p<=0)
stop ("Parameter lambda must be positive")
if (k<=0)
stop ("Parameter k must be positive")
exp(theta*((1+p-p*s)^(-k)-1))
} |
setOldClass(c("tbl_df", "tbl", "data.frame"))
setClass(
"sample_sets",
slots = c(
sample_sets = "tbl_df",
samples = "tbl_df",
demographics = "tbl_df",
cohorts = "tbl_df"
)
)
sample_sets <-
function(
sample_sets = s4pss_sample_sets_tbl(),
samples = s4pss_samples_tbl(),
demographics = s4pss_demographics_tbl(),
cohorts = s4pss_pgs_cohorts_tbl()) {
s4_sample_sets <- methods::new(
"sample_sets",
sample_sets = sample_sets,
samples = samples,
demographics = demographics,
cohorts = cohorts
)
return(s4_sample_sets)
}
s4pss_sample_sets_tbl <- function(pss_id = character()) {
tbl <- tibble::tibble(pss_id = pss_id)
return(tbl)
}
s4pss_samples_tbl <- function(pss_id = character(),
sample_id = integer(),
stage = character(),
sample_size = integer(),
sample_cases = integer(),
sample_controls = integer(),
sample_percent_male = double(),
phenotype_description = character(),
ancestry_category = character(),
ancestry = character(),
country = character(),
ancestry_additional_description = character(),
study_id = character(),
pubmed_id = character(),
cohorts_additional_description = character()) {
tbl <- tibble::tibble(
pss_id = pss_id,
sample_id = sample_id,
stage = stage,
sample_size = sample_size,
sample_cases = sample_cases,
sample_controls = sample_controls,
sample_percent_male = sample_percent_male,
phenotype_description = phenotype_description,
ancestry_category = ancestry_category,
ancestry = ancestry,
country = country,
ancestry_additional_description = ancestry_additional_description,
study_id = study_id,
pubmed_id = pubmed_id,
cohorts_additional_description = cohorts_additional_description
)
return(tbl)
}
s4pss_demographics_tbl <- function(pss_id = character(),
sample_id = integer(),
variable = character(),
estimate_type = character(),
estimate = double(),
unit = character(),
variability_type = character(),
variability = double(),
interval_type = character(),
interval_lower = double(),
interval_upper = double()) {
tbl <- tibble::tibble(
pss_id = pss_id,
sample_id = sample_id,
variable = variable,
estimate_type = estimate_type,
estimate = estimate,
unit = unit,
variability_type = variability_type,
variability = variability,
interval_type = interval_type,
interval_lower = interval_lower,
interval_upper = interval_upper
)
return(tbl)
}
s4pss_pgs_cohorts_tbl <- function(pss_id = character(),
sample_id = integer(),
cohort_symbol = character(),
cohort_name = character()) {
tbl <- tibble::tibble(
pss_id = pss_id,
sample_id = sample_id,
cohort_symbol = cohort_symbol,
cohort_name = cohort_name
)
return(tbl)
}
coerce_to_s4_sample_sets <- function(lst_tbl = NULL) {
if (is.null(lst_tbl)) {
s4_sample_sets <- sample_sets()
return(s4_sample_sets)
}
s4_sample_sets <- sample_sets(
sample_sets = lst_tbl$sample_sets,
samples = lst_tbl$samples,
demographics = lst_tbl$demographics,
cohorts = lst_tbl$cohorts
)
s4_sample_sets@sample_sets <- drop_metadata_cols(s4_sample_sets@sample_sets)
s4_sample_sets@samples <- drop_metadata_cols(s4_sample_sets@samples)
s4_sample_sets@demographics <- drop_metadata_cols(s4_sample_sets@demographics)
s4_sample_sets@cohorts <- drop_metadata_cols(s4_sample_sets@cohorts)
return(s4_sample_sets)
} |
selectSampleSystematic <- function(frame,
outstrata,
sortvariable = NULL,
writeFiles = FALSE,
verbatim = TRUE) {
strata.sample.systematic <- function(frame, strata, nh, sortvariable, repl) {
selected <- NULL
WEIGHTS <- NULL
j <- 0
for (i in (c(unique(as.numeric(frame$STRATO))))) {
j <- j+1
framestrat <- frame[frame[,strata] == i,]
if (!is.null(sortvariable)) {
framestrat <- framestrat[order(framestrat[,c(sortvariable)]),]
}
step <- nrow(framestrat) / nh[j]
start <- sample(step,1)
s <- round(seq(start,nrow(framestrat),step),0)
if (length(s) < nh[j]) {
s <- c(1,s)
}
sel <- framestrat$ID[s]
wgt <- rep(nrow(framestrat)/length(sel),length(sel))
selected <- c(selected,sel)
WEIGHTS <- c(WEIGHTS,wgt)
}
attr(selected, "WEIGHTS") <- WEIGHTS
selected
}
colnames(frame) <- toupper(colnames(frame))
if(is.factor(frame$ID)) frame$ID <- as.character(frame$ID)
colnames(outstrata) <- toupper(colnames(outstrata))
if (!is.null(sortvariable)) {
sortvariable <- toupper(sortvariable)
if (!(sortvariable %in% colnames(frame))) {
cat("\n Sort variable not in frame")
stop
}
}
outstrata$SOLUZ <- round(outstrata$SOLUZ)
frame$DOMAINVALUE <- factor(frame$DOMAINVALUE)
numdom <- length(levels(frame$DOMAINVALUE))
samptot <- NULL
chktot <- NULL
if (numdom > 1) {
for (d in (levels(frame$DOMAINVALUE))) {
domframe <- frame[frame$DOMAINVALUE == d, ]
domstrata <- outstrata[outstrata$DOM1 == d, ]
strataord <- domstrata[order(as.numeric(domstrata$STRATO)), ]
lista <- domframe
lista$STRATO <- lista$LABEL
listaord <- lista[order(as.numeric(lista$STRATO)), ]
s <- strata.sample.systematic(listaord, c("STRATO"), strataord$SOLUZ,
sortvariable, repl = FALSE)
samp <- data.frame(listaord[listaord$ID %in% s, ], WEIGHTS = attr(s, "WEIGHTS"), stringsAsFactors = TRUE)
samptot <- rbind(samptot, samp)
chk <- data.frame(DOMAINVALUE = d, STRATO = strataord$STRATO,
Nh_frame = as.vector(table(listaord$STRATO)), Nh_strata = strataord$N,
planned_units = strataord$SOLUZ, selected_units = as.vector(table(samp$STRATO)),
sum_of_wgts = tapply(samp$WEIGHTS, samp$STRATO, sum), stringsAsFactors = TRUE)
chktot <- rbind(chktot, chk)
}
}
if (numdom == 1) {
domframe <- frame
domstrata <- outstrata
strataord <- domstrata[order(as.numeric(domstrata$STRATO)), ]
lista <- domframe
lista$STRATO <- lista$LABEL
listaord <- lista[order(lista$STRATO), ]
s <- strata.sample.systematic(listaord, c("STRATO"), strataord$SOLUZ,
sortvariable, repl = FALSE)
samp <- data.frame(listaord[listaord$ID %in% s, ], WEIGHTS = attr(s, "WEIGHTS"), stringsAsFactors = TRUE)
samptot <- rbind(samptot, samp)
chk <- data.frame(DOMAINVALUE = strataord$DOM1, STRATO = strataord$STRATO,
Nh_frame = as.vector(table(listaord$STRATO)), Nh_strata = strataord$N,
planned_units = strataord$SOLUZ, selected_units = as.vector(table(samp$STRATO)),
sum_of_wgts = tapply(samp$WEIGHTS, samp$STRATO, sum), stringsAsFactors = TRUE)
chktot <- rbind(chktot, chk)
}
colnames(samptot) <- toupper(colnames(samptot))
colnames(chktot) <- toupper(colnames(chktot))
cens <- sum((chktot$NH_STRATA == chktot$PLANNED_UNITS) ==
TRUE)
cens.units <- sum(chktot$PLANNED_UNITS[chktot$NH_STRATA ==
chktot$PLANNED_UNITS])
if (verbatim == TRUE) {
cat("\n*** Sample has been drawn successfully ***")
cat("\n", nrow(samptot), " units have been selected from ",
nrow(outstrata), " strata\n")
if (cens > 0) {
cat("\n==> There have been ", cens, " take-all strata ")
cat("\nfrom which have been selected ", cens.units, "units\n")
}
}
if (writeFiles == TRUE)
write.table(samptot, "sample.csv", sep = ",", row.names = FALSE,
col.names = TRUE, quote = FALSE)
if (writeFiles == TRUE)
write.table(chktot, "sampling_check.csv", sep = ",",
row.names = FALSE, col.names = TRUE, quote = FALSE)
outstrata$FPC <- outstrata$SOLUZ/outstrata$N
fpc <- outstrata[, c("DOM1","STRATO","FPC")]
samptot <- merge(samptot, fpc, by.x = c("DOMAINVALUE","STRATO"),by.y=c("DOM1","STRATO"),all.x=TRUE)
return(samptot)
} |
context("Drop constant cols")
test_that("Error handling", {
x <- "wontwork"
expect_error(drop_constant_cols(x),
regexp = "must be a data.(table|frame)")
expect_warning(drop_constant_cols(data.frame(x = 1:5), copy = FALSE),
regexp = "copy")
})
test_that("No constant cols", {
DT <- data.table(x = 1:5, y = 11:15)
drop_constant_cols(DT)
expect_equal(names(DT), c("x", "y"))
})
test_that("Standard use", {
DT <- data.table(x = c(1, 1), y = c(1, 2))
drop_constant_cols(DT)
expect_equal(names(DT), c("y"))
})
test_that("Standard use, copying", {
DT <- data.table(x = c(1, 1), y = c(1, 2))
expect_equal(names(drop_constant_cols(DT, copy = TRUE)),
c("y"))
expect_equal(names(DT), c("x", "y"))
})
test_that("No constant cols, data frame", {
DFi <- data.frame(x = 1:5, y = 11:15)
DFe <- data.frame(x = 1:5, y = 11:15)
expect_identical(drop_constant_cols(DFi, copy = TRUE), DFe)
})
test_that("Standard use, data frame, one col returned", {
DFi <- data.frame(x = rep_len(1, 5), y = 11:15)
expect_equal(names(drop_constant_cols(DFi, copy = TRUE)), "y")
expect_true(is.data.frame(drop_constant_cols(DFi, copy = TRUE)))
})
test_that("Indistinct names", {
DT <- data.table(a = c(2, 3), j = c(1, 1), x = c(1, 1), y = c(1, 2))
setnames(DT, "x", "y")
drop_constant_cols(DT)
expect_equal(ncol(DT), 2L)
expect_equal(names(DT), c("a", "y"))
expect_equal(DT[["y"]], c(1, 2))
})
test_that("All columns dropped", {
DFi <- data.frame(x = rep_len(1, 5), y = rep_len("1", 5))
expect_equal(nrow(drop_constant_cols(DFi)), nrow(DFi))
expect_equal(ncol(drop_constant_cols(DFi)), 0)
DT <- as.data.table(DFi)
drop_constant_cols(DT)
expect_equal(nrow(DT), 0)
expect_equal(ncol(DT), 0)
}) |
void_snps_stats <- function(x) {
a <- names(x)[ !(names(x) %in% snpstatnames) ]
x[,a]
}
void_ped_stats <- function(x) {
a <- names(x)[ !(names(x) %in% pedstatnames) ]
x[,a]
}
setMethod("[", signature(x="bed.matrix",i="numeric",j="missing", drop="missing"),
function( x, i, j) {
if(any(i <= 0)) i <- (1:nrow(x))[i]
x@bed <- .Call('gg_extract_inds_indices', x@bed, i)
x@ped <- x@ped[i,]
x@snps <- void_snps_stats(x@snps)
if(getOption("gaston.auto.set.stats", TRUE)) x <- set.stats.snps(x, verbose = FALSE)
x
} );
setMethod("[", signature(x="bed.matrix",i="logical",j="missing", drop="missing"),
function( x, i, j) {
if(any(is.na(i))) stop("NAs not allowed")
x@bed <- .Call('gg_extract_inds_bool', x@bed, i)
x@ped <- x@ped[i,]
x@snps <- void_snps_stats(x@snps)
if(getOption("gaston.auto.set.stats", TRUE)) x <- set.stats.snps(x, verbose = FALSE)
x
} );
setMethod("[", signature(x="bed.matrix",i="missing",j="numeric", drop="missing"),
function( x, i, j) {
if(any(j <= 0)) j <- (1:ncol(x))[j]
x@bed <- .Call('gg_extract_snps_indices', x@bed, j)
x@snps <- x@snps[j,]
x@p <- x@p[j]
x@mu <- x@mu[j]
x@sigma <- x@sigma[j]
x@ped <- void_ped_stats(x@ped)
if(getOption("gaston.auto.set.stats", TRUE)) x <- set.stats.ped(x, verbose = FALSE)
x
} );
setMethod("[", signature(x="bed.matrix",i="missing",j="logical", drop="missing"),
function( x, i, j) {
if(any(is.na(j))) stop("NAs not allowed")
x@bed <- .Call('gg_extract_snps_bool', x@bed, j)
x@snps <- x@snps[j,]
x@p <- x@p[j]
x@mu <- x@mu[j]
x@sigma <- x@sigma[j]
x@ped <- void_ped_stats(x@ped)
if(getOption("gaston.auto.set.stats", TRUE)) x <- set.stats.ped(x, verbose = FALSE)
x
} );
setMethod("[", signature(x="bed.matrix",i="logical",j="logical", drop="missing"),
function( x, i, j) {
if(any(is.na(j))) stop("NAs not allowed")
x@bed <- .Call('gg_extract_snps_bool', x@bed, j)
x@snps <- x@snps[j,]
x@p <- x@p[j]
x@mu <- x@mu[j]
x@sigma <- x@sigma[j]
if(any(is.na(i))) stop("NAs not allowed")
x@bed <- .Call('gg_extract_inds_bool', x@bed, i)
x@ped <- x@ped[i,]
x@ped <- void_ped_stats(x@ped)
x@snps <- void_snps_stats(x@snps)
if(getOption("gaston.auto.set.stats", TRUE)) x <- set.stats(x, verbose = FALSE)
x
} );
setMethod("[", signature(x="bed.matrix",i="logical",j="numeric", drop="missing"),
function( x, i, j) {
if(any(j <= 0)) j <- (1:ncol(x))[j]
x@bed <- .Call('gg_extract_snps_indices', x@bed, j)
x@snps <- x@snps[j,]
x@p <- x@p[j]
x@mu <- x@mu[j]
x@sigma <- x@sigma[j]
if(any(is.na(i))) stop("NAs not allowed")
x@bed <- .Call('gg_extract_inds_bool', x@bed, i)
x@ped <- x@ped[i,]
x@ped <- void_ped_stats(x@ped)
x@snps <- void_snps_stats(x@snps)
if(getOption("gaston.auto.set.stats", TRUE)) x <- set.stats(x, verbose = FALSE)
x
} );
setMethod("[", signature(x="bed.matrix",i="numeric",j="logical", drop="missing"),
function( x, i, j) {
if(any(is.na(j))) stop("NAs not allowed")
x@bed <- .Call('gg_extract_snps_bool', x@bed, j)
x@snps <- x@snps[j,]
x@p <- x@p[j]
x@mu <- x@mu[j]
x@sigma <- x@sigma[j]
if(any(i <= 0)) i <- (1:nrow(x))[i]
x@bed <- .Call('gg_extract_inds_indices', x@bed, i)
x@ped <- x@ped[i,]
x@ped <- void_ped_stats(x@ped)
x@snps <- void_snps_stats(x@snps)
if(getOption("gaston.auto.set.stats", TRUE)) x <- set.stats(x, verbose = FALSE)
x
} );
setMethod("[", signature(x="bed.matrix",i="numeric",j="numeric", drop="missing"),
function( x, i, j) {
if(any(j <= 0)) j <- (1:ncol(x))[j]
x@bed <- .Call('gg_extract_snps_indices', x@bed, j)
x@snps <- x@snps[j,]
x@p <- x@p[j]
x@mu <- x@mu[j]
x@sigma <- x@sigma[j]
if(any(i <= 0)) i <- (1:nrow(x))[i]
x@bed <- .Call('gg_extract_inds_indices', x@bed, i)
x@ped <- x@ped[i,]
x@ped <- void_ped_stats(x@ped)
x@snps <- void_snps_stats(x@snps)
if(getOption("gaston.auto.set.stats", TRUE)) x <- set.stats(x, verbose = FALSE)
x
} ); |
spread_all <- function(.x, recursive = TRUE, sep = ".") {
if (!is.tbl_json(.x)) .x <- as.tbl_json(.x)
reserved_cols <- c("..id", "..name1", "..name2", "..type", "..value",
"..suffix")
assertthat::assert_that(!(any(reserved_cols %in% names(.x))))
if (nrow(.x) == 0)
return(.x)
unq_types <- .x %>% json_types("..type") %>% magrittr::extract2("..type") %>% unique
if (!("object" %in% unq_types)) {
warning("no JSON records are objects, returning .x")
return(.x)
}
exist_cols <- names(.x)
json <- json_get(.x)
.x <- .x %>% dplyr::mutate(..id = seq_len(n()))
y <- .x %>%
gather_object("..name1") %>%
json_types("..type")
if (recursive) {
while(any(y$..type == "object"))
y <- dplyr::bind_rows(
y %>% dplyr::filter(..type != "object"),
recursive_gather(y, sep)
)
} else {
y <- y %>% dplyr::filter(..type != 'object')
}
key_freq <- y %>% dplyr::group_by(..id, ..name1) %>% dplyr::tally()
while (any(key_freq$n > 1) || any(key_freq$..name1 %in% exist_cols)) {
warning("results in duplicate column names, appending .
y_dedupe <- y %>%
dplyr::group_by(..id, ..name1) %>%
dplyr::mutate(..suffix = 1L:n()) %>%
dplyr::mutate(..suffix = ..suffix + ifelse(..name1 %in% exist_cols, 1L, 0L)) %>%
dplyr::mutate(..suffix = ifelse(..suffix == 1L, "", paste0(".", ..suffix))) %>%
dplyr::ungroup() %>%
dplyr::mutate(..name1 = paste0(..name1, ..suffix)) %>%
dplyr::select(-..suffix)
y <- tbl_json(y_dedupe, json_get(y))
key_freq <- y %>% dplyr::group_by(..id, ..name1) %>% dplyr::tally()
}
name_order <- y %>%
dplyr::filter(..type %in% c("string", "number", "logical", "null")) %>%
magrittr::extract2("..name1") %>%
unique
y_string <- spread_type(y, "string", append_values_string)
y_number <- spread_type(y, "number", append_values_number)
y_logical <- spread_type(y, "logical", append_values_logical)
z <- dplyr::as_tibble(.x) %>%
dplyr::left_join(y_string, by = "..id") %>%
dplyr::left_join(y_number, by = "..id") %>%
dplyr::left_join(y_logical, by = "..id")
all_null <- y %>%
dplyr::group_by(..name1) %>%
dplyr::summarize(all.null = all(..type == "null")) %>%
dplyr::filter(all.null)
if (nrow(all_null) > 0) {
null_names <- all_null %>% magrittr::extract2("..name1")
z[, null_names] <- NA
}
final_columns <- names(.x) %>%
dplyr::setdiff(c("..id", "..JSON")) %>%
c(name_order)
z[, final_columns, drop = FALSE] %>%
tbl_json(json)
}
recursive_gather <- function(.x, sep) {
.x %>%
dplyr::filter(..type == "object") %>%
gather_object("..name2") %>%
dplyr::mutate(..name1 = paste(..name1, ..name2, sep = sep)) %>%
dplyr::select(-..type, -..name2) %>%
json_types("..type")
}
spread_type <- function(.x, this.type, append.fun) {
any_type <- any(.x$..type == this.type)
if (!any_type)
return(dplyr::tibble(..id = integer(0)))
.x %>%
dplyr::filter(..type == this.type) %>%
append.fun("..value") %>%
dplyr::as_tibble() %>%
dplyr::select(..id, ..name1, ..value) %>%
tidyr::spread(..name1, ..value)
} |
tokenize <- function(file, tokenizer = tokenizer_csv(), skip = 0, n_max = -1L) {
ds <- datasource(file, skip = skip, skip_empty_rows = FALSE)
tokenize_(ds, tokenizer, n_max)
}
NULL
tokenizer_delim <- function(delim, quote = '"', na = "NA", quoted_na = TRUE, comment = "",
trim_ws = TRUE,
escape_double = TRUE,
escape_backslash = FALSE,
skip_empty_rows = TRUE) {
structure(
list(
delim = delim,
quote = quote,
na = na,
quoted_na = quoted_na,
comment = comment,
trim_ws = trim_ws,
escape_double = escape_double,
escape_backslash = escape_backslash,
skip_empty_rows = skip_empty_rows
),
class = "tokenizer_delim"
)
}
tokenizer_csv <- function(na = "NA", quoted_na = TRUE, quote = "\"",
comment = "", trim_ws = TRUE,
skip_empty_rows = TRUE) {
tokenizer_delim(
delim = ",",
na = na,
quoted_na = quoted_na,
quote = quote,
comment = comment,
trim_ws = trim_ws,
escape_double = TRUE,
escape_backslash = FALSE,
skip_empty_rows = skip_empty_rows
)
}
tokenizer_tsv <- function(na = "NA", quoted_na = TRUE, quote = "\"",
comment = "", trim_ws = TRUE,
skip_empty_rows = TRUE) {
tokenizer_delim(
delim = "\t",
na = na,
quoted_na = quoted_na,
quote = quote,
comment = comment,
trim_ws = trim_ws,
escape_double = TRUE,
escape_backslash = FALSE,
skip_empty_rows = skip_empty_rows
)
}
tokenizer_line <- function(na = character(), skip_empty_rows = TRUE) {
structure(list(na = na, skip_empty_rows = skip_empty_rows),
class = "tokenizer_line"
)
}
tokenizer_log <- function(trim_ws) {
structure(list(trim_ws = trim_ws), class = "tokenizer_log")
}
tokenizer_fwf <- function(begin, end, na = "NA", comment = "", trim_ws = TRUE,
skip_empty_rows = TRUE) {
structure(list(
begin = as.integer(begin), end = as.integer(end), na = na, comment = comment,
trim_ws = trim_ws, skip_empty_rows = skip_empty_rows
),
class = "tokenizer_fwf"
)
}
tokenizer_ws <- function(na = "NA", comment = "", skip_empty_rows = TRUE) {
structure(list(na = na, comment = comment, skip_empty_rows = skip_empty_rows),
class = "tokenizer_ws"
)
} |
library(dplyr)
library(readr)
library(magrittr)
write_finemap_sumstats <- function(z, LD_file, n, k, prefix) {
cfg = list(z=paste0(prefix,".z"),
ld=LD_file,
snp=paste0(prefix,".snp"),
config=paste0(prefix,".config"),
k=paste0(prefix,".k"),
log=paste0(prefix,".log"),
meta=paste0(prefix,".master"))
write.table(z,cfg$z,quote=F,col.names=F)
if (!is.null(k)) {
write.table(t(k),cfg$k,quote=F,col.names=F,row.names=F)
write("z;ld;snp;config;k;log;n-ind",file=cfg$meta)
write(paste(cfg$z, cfg$ld, cfg$snp, cfg$config, cfg$k, cfg$log, n, sep=";"),
file=cfg$meta,append=TRUE)
} else {
write("z;ld;snp;config;log;n-ind",file=cfg$meta)
write(paste(cfg$z, cfg$ld, cfg$snp, cfg$config, cfg$log, n, sep=";"),
file=cfg$meta,append=TRUE)
}
return(cfg)
}
run_finemap <- function(z, LD_file, n, k, args = "", prefix="data")
{
cfg = write_finemap_sumstats(z, LD_file, n, k, prefix)
cmd = paste("finemap --sss --log", "--in-files", cfg$meta, args)
dscrutils::run_cmd(cmd)
snp = read.table(cfg$snp,header=TRUE,sep=" ")
snp$snp = as.character(snp$snp)
snp = rank_snp(snp)
config = read.table(cfg$config,header=TRUE,sep=" ")
ncausal = finemap_extract_ncausal(cfg$log)
return(list(snp=snp, set=config, ncausal=ncausal))
}
rank_snp <- function(snp) {
snp <- arrange(snp, -snp_prob) %>%
mutate(
rank = seq(1, n()),
snp_prob_cumsum = cumsum(snp_prob) / sum(snp_prob)) %>%
select(rank, snp, snp_prob, snp_prob_cumsum, snp_log10bf)
return(snp)
}
finemap_extract_ncausal <- function(logfile)
{
lines <- grep("->", readLines(logfile), value = TRUE)
lines <- gsub("\\(|\\)|>", "", lines)
splits <- strsplit(lines, "\\s+")
tab <- data.frame(
ncausal_num = sapply(splits, function(x) as.integer(x[2])),
ncausal_prob = sapply(splits, function(x) as.double(x[4])))
tab <- mutate(tab, type = ifelse(duplicated(ncausal_num), "post", "prior"))
return(tab)
}
finemap_mvar <- function(zscore, LD_file, n, k, args, prefix, parallel = FALSE) {
if (is.null(dim(zscore))) {
zscore = matrix(ncol=1,zscore)
}
single_core = function(r)
run_finemap(zscore[,r], LD_file, n, k, args,
paste0(prefix, '_condition_', r))
if (parallel)
return(parallel::mclapply(1:ncol(zscore), function(r) single_core(r),
mc.cores = min(8, ncol(zscore))))
else
return(lapply(1:ncol(zscore), function(r) single_core(r)))
}
eval(parse(text=commandArgs(T)))
dat = readRDS(input)
sumstats = dat$sumstats
N = nrow(dat$data$X)
ld = tempfile(fileext = ".ld")
write.table(cor(dat$data$X),ld,quote=F,col.names=F,row.names=F)
posterior = finemap_mvar(sumstats[1,,] / sumstats[2,,],
ld, N, k=NULL,
args, prefix=tempfile(fileext = ".finemap"))
saveRDS(posterior, paste0(output, '.rds')) |
if (require(microbenchmark)) {
stopifnot(identical(
icd:::icd9_add_leading_zeroes_alt_rcpp(c("1", "E2", "V1", "E"), short_code = TRUE),
icd:::icd9_add_leading_zeroes_rcpp(c("1", "E2", "V1", "E"), short_code = TRUE)
))
bad_codes <- sample(c("E2", "V01", "1234", "12", "1", "E99", "E987", "V"),
size = 1e4, replace = TRUE
)
microbenchmark::microbenchmark(
icd:::icd9_add_leading_zeroes_alt_rcpp(bad_codes, short_code = TRUE),
icd:::icd9_add_leading_zeroes_rcpp(bad_codes, short_code = TRUE)
)
} |
if (compareVersion(paste(R.version$major, R.version$minor, sep=".") ,"2.9.0") < 0) {
load(system.file(file.path("unitTestData", "regression.Rdata"), package="RevoIOQ"))
} else if (compareVersion(paste(R.version$major, R.version$minor, sep="."), "2.10.1") < 0) {
load(system.file(file.path("unitTestData", "regression_2.9.0.Rdata"), package="RevoIOQ"))
} else if (compareVersion(paste(R.version$major, R.version$minor, sep="."), "2.14.1") < 0) {
load(system.file(file.path("unitTestData", "regression_2.10.1.Rdata"), package="RevoIOQ"))
} else if (compareVersion(paste(R.version$major, R.version$minor, sep="."), "2.15.2") < 0) {
load(system.file(file.path("unitTestData", "regression_2.14.1.Rdata"), package="RevoIOQ"))
} else if (compareVersion(paste(R.version$major, R.version$minor, sep="."), "3.0.1") < 0) {
load(system.file(file.path("unitTestData", "regression_2.15.2.Rdata"), package="RevoIOQ"))
} else if (compareVersion(paste(R.version$major, R.version$minor, sep="."), "3.0.3") < 0) {
load(system.file(file.path("unitTestData", "regression_3.0.1.Rdata"), package="RevoIOQ"))
} else if (compareVersion(paste(R.version$major, R.version$minor, sep="."), "3.1.0") < 0) {
load(system.file(file.path("unitTestData", "regression_3.0.3.Rdata"), package="RevoIOQ"))
} else {
load(system.file(file.path("unitTestData", "regression_3.1.0.Rdata"), package="RevoIOQ"))
}
test.lm<- function(){
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c(ctl, trt)
kalama.age <- 18:29
kalama.height <- c(76.1, 77.0,78.1, 78.2,78.8,79.7,79.9, 81.1,81.2,81.8,82.8,83.5)
gesell.age <- c(15, 26,10, 9, 15,20, 18, 11, 8,20, 7, 9,10,11, 11, 10, 12, 42, 17, 11, 10)
gesell.score <- c(95, 71,83,91,102,87, 93,100,104,94,113,96,83,84, 102,100, 105, 57, 121, 86, 100)
library(MASS)
gasB.test <- lm(Gas ~ Temp, data=whiteside, subset= Insul=="Before")
gasA.test <- update(gasB.test, subset= Insul=="After")
gasBA.test <- lm(Gas ~ Insul/Temp - 1, data = whiteside)
gasQ.test <- lm(Gas ~ Insul/(Temp + I(Temp^2)) - 1, data =whiteside)
oldOpts <- options(contrasts = c("contr.helmert", "contr.poly"))
gasPR.test <- lm(Gas ~ Insul + Temp, data=whiteside)
anova.gas.test <- anova(gasPR.test, gasBA.test)
options(contrasts = c("contr.treatment", "contr.poly"))
gasBA1.test <- lm (Gas ~ Insul*Temp, data=whiteside)
options(oldOpts)
checkEquals(lm(weight ~ group), lm.D9, tolerance=10e-06)
checkEquals(lm(weight ~ group - 1), lm.D90, tolerance=10e-06)
checkEquals(lm(kalama.height ~ kalama.age), kalama.lm, tolerance=10e-06)
checkEquals(lm(gesell.score ~ gesell.age), gesell.lm1, tolerance=10e-06)
checkEquals(lm(gesell.score[-18] ~ gesell.age[-18]), gesell.lm2, tolerance=10e-06)
checkEquals(gasB.test, gasB)
checkEquals(gasA.test, gasA)
checkEquals(gasBA.test, gasBA)
checkEquals(gasPR.test, gasPR)
checkEquals(anova.gas.test, anova.gas)
checkEquals(gasBA1.test, gasBA1)
}
test.glm <- function(){
oldOpts <- options(contrasts = c("contr.treatment", "contr.poly"))
ldose <- rep(0:5, 2)
numdead <- c(1,4,9, 13,18, 20, 0, 2, 6, 10,12, 16)
sex <- factor(rep(c("M","F"),c(6,6)))
SF <- cbind(numdead, numalive = 20 - numdead)
budworm.lg.test <- glm(SF ~ sex*ldose, family=binomial)
budworm.lgA.test <- update(budworm.lg.test, . ~ sex * I(ldose - 3))
budworm.anova.test <- anova(update(budworm.lg.test, . ~ . + sex + I(ldose^2)), test="Chisq")
budworm.lg0.test <- glm(SF ~ sex + ldose - 1, family=binomial)
library(MASS)
attach(birthwt)
race <- factor(race, labels = c("white","black","other"))
ptd <- factor(ptl > 0)
ftv <- factor(ftv)
levels(ftv)[-(1:2)]<-"2+"
bwt <- data.frame(low=factor(low), age, lwt, race, smoke=(smoke>0), ptd, ht=(ht>0), ui=(ui>0), ftv)
detach(); rm(race, ptd, ftv)
birthwt.glm.test <- glm(low ~ ., family=binomial, data=bwt)
birthwt.step.test <- stepAIC(birthwt.glm.test, trace=FALSE)
birthwt.step2.test <- stepAIC(birthwt.glm.test, ~ .^2 + I(scale(age)^2) + I(scale(lwt)^2), trace=FALSE)
birthwt.pred.test <- table(bwt$low, predict(birthwt.step2.test) > 0)
options(oldOpts)
if (compareVersion(paste(R.version$major, R.version$minor, sep="."), "3.2.0") >= 0) {
budworm.lg.test$data <- NULL
budworm.lg$data <- NULL
budworm.lgA.test$data <- NULL
budworm.lgA$data <- NULL
budworm.anova.test$data <- NULL
budworm.anova$data <- NULL
budworm.lg0.test$data <- NULL
budworm.lg0$data <- NULL
birthwt.glm.test$data <- NULL
birthwt.glm$data <- NULL
birthwt.step.test$data <- NULL
birthwt.step$data <- NULL
}
checkEquals(budworm.lg.test, budworm.lg, tolerance=10e-06)
checkEquals(budworm.lgA.test, budworm.lgA, tolerance=10e-06)
checkEquals(budworm.anova.test, budworm.anova, tolerance=10e-06)
checkEquals(budworm.lg0.test, budworm.lg0, tolerance=10e-06)
checkEquals(birthwt.glm.test, birthwt.glm, tolerance=10e-06)
checkEquals(birthwt.step.test, birthwt.step, tolerance=10e-06)
checkEquals(birthwt.pred.test, birthwt.pred, tolerance=10e-06)
}
test.nls <- function(){
library(MASS)
wtloss.st <- c(b0=90, b1=95, th=120)
wtloss.fm.test <- nls(Weight ~ b0 + b1*2^(-Days/th),data=wtloss, start=wtloss.st, trace=TRUE)
expn <- function(b0,b1, th, x){
temp <- 2^(-x/th)
model.func <- b0 + b1 * temp
Z <- cbind(1, temp, (b1 * x * temp * log(2))/th^2)
dimnames(Z) <- list(NULL, c("b0", "b1", "th"))
attr(model.func, "gradient") <- Z
model.func
}
wtloss.gr.test <- nls(Weight ~ expn(b0, b1, th, Days), data=wtloss, start = wtloss.st, trace=TRUE)
checkEquals(wtloss.fm.test, wtloss.fm, tolerance=10e-06)
checkEquals(wtloss.gr.test, wtloss.gr, tolerance=10e-06)
negenv <- new.env()
attach(negenv)
assign("negexp", selfStart(model = ~ b0 + b1*exp(-x/th), initial = negexp.SSival,
parameters = c("b0", "b1", "th"), template = function(x, b0, b1, th){}), pos=2)
wtloss.formula <- as.formula(Weight ~ negexp(Days, B0, B1, theta), env="negenv")
wtloss.ss.test <- nls(wtloss.formula, data = wtloss, trace = TRUE)
detach("negenv")
A <- model.matrix(~ Strip - 1, data = muscle)
rats.nls1.test <- nls(log(Length) ~ cbind(A, rho^Conc), data=muscle, start = c(rho=0.1), algorithm = "plinear")
B <- coef(rats.nls1.test)
st <- list(alpha = B[2:22], beta=B[23], rho = B[1])
rats.nls2.test <- nls(log(Length) ~ alpha[Strip] + beta*rho^Conc, data=muscle, start=st)
checkEquals(wtloss.ss.test, wtloss.ss, tolerance=10e-06)
checkEquals(summary(wtloss.fm.test), summary(wtloss.fm),tolerance =10e-06)
checkEquals(vcov(wtloss.gr.test), vcov(wtloss.gr), tolerance=10e-06)
checkEquals(rats.nls1.test, rats.nls1, tolerance=10e-06)
checkEquals(rats.nls2.test, rats.nls2, tolerance=10e-06)
} |
test_that("error if cannot start", {
app <- new_app()
app$listen <- function(...) Sys.sleep(1)
expect_error(
new_app_process(app, process_timeout = 100),
"presser app subprocess did not start"
)
app <- new_app()
app$listen <- function(...) stop("oops")
expect_error(
new_app_process(app),
class = "callr_status_error",
"failed to start presser app process.*oops"
)
app <- new_app()
app$listen <- function(...) "foobar"
expect_error(
new_app_process(app),
"Unexpected message from presser app subprocess"
)
})
test_that("get_state", {
app <- new_app()
on.exit(proc$stop(), add = TRUE)
proc <- new_app_process(app)
expect_equal(proc$get_state(), "live")
proc$.process$kill()
expect_equal(proc$get_state(), "dead")
expect_output(proc$stop(), "presser process dead")
expect_equal(proc$get_state(), "not running")
})
test_that("env vars", {
app <- new_app()
on.exit(proc$stop(), add = TRUE)
withr::local_envvar(list(FOO = "foo"))
proc <- new_app_process(app)
proc$local_env(list(FOO = "bar"))
expect_equal(Sys.getenv("FOO", ""), "bar")
proc$stop()
expect_equal(Sys.getenv("FOO", ""), "foo")
}) |
summaryTransition <- setClass(
"summaryTransition", representation(
result = "data.frame", trans_object = "list"
)
)
summary.transition <- function(
object, ...
) {
reference_positives <- sum(object$references)
predicted_positives <- sum(object$predictions)
rejects <- object$matchings$rejected
true_positives <- sum(!rejects)
abs_lags <-
object$matchings$abs_lag[!rejects] %>%
mean_sd(digits = 1, nsmall = 1) %>%
sapply(
function(x) if(is.nan(x)) NA_real_ else x,
simplify = FALSE
) %>%
c(stringsAsFactors = FALSE, row.names = list(NULL)) %>%
do.call(data.frame, .)
signed_lags <-
object$matchings$signed_lag[!rejects] %>%
mean_sd(digits = 1, nsmall = 1) %>%
sapply(
function(x) if(is.nan(x)) NA_real_ else x,
simplify = FALSE
) %>%
c(stringsAsFactors = FALSE, row.names = list(NULL)) %>%
do.call(data.frame, .)
rmse <-
object$matchings$abs_lag[!rejects]^2 %>%
mean(.) %>%
sqrt(.) %>%
round(1) %>%
sapply(function(x) if(is.nan(x)) NA_real_ else x)
rmse_prop <- 1 - rmse/object$window_size
recall <- true_positives / reference_positives
precision <- true_positives / predicted_positives
class(object) <- "list"
data.frame(
window_size = object$window_size,
reference_positives = reference_positives,
predicted_positives = predicted_positives,
true_positives = true_positives,
n_rejected_pairs = sum(rejects),
mean_abs_lag_indices = abs_lags$mean,
sd_abs_lag_indices = abs_lags$sd,
mean_sd_abs_lag_indices = gsub(
"NaN", "NA", abs_lags$sum_string
),
mean_signed_lag_indices = signed_lags$mean,
sd_signed_lag_indices = signed_lags$sd,
mean_sd_signed_lag_indices = gsub(
"NaN", "NA", signed_lags$sum_string
),
recall = recall,
precision = precision,
rmse_lag_indices = rmse,
rmse_prop = rmse_prop,
row.names = NULL,
stringsAsFactors = FALSE
) %>% cbind(
., aggregated_performance = rowMeans(
.[ ,c("recall", "precision", "rmse_prop")]
)
) %>%
new("summaryTransition", result = ., trans_object = object)
}
add_summaryTransition <- function(e1, e2) {
not_used <- "Not used in combined objects"
e1 <- e1@trans_object
e2 <- e2@trans_object
references <- c(
e1$references, e2$references
)
predictions <- c(
e1$predictions, e2$predictions
)
matchings <- rbind(
e1$matchings, e2$matchings
)
window_size <-
e1$window_size %>%
c(e2$window_size) %>%
unique() %T>%
{if (length(.) > 1) stop(
"Cannot add if spurious pairing thresholds",
" differ for the objects",
call. = FALSE
)} %>%
as.numeric()
list(
window_size = window_size,
references = references,
predictions = predictions,
reference_transition_indices = not_used,
prediction_transition_indices = not_used,
pruned_reference_transition_indices = not_used,
pruned_prediction_transition_indices = not_used,
false_negative_indices = not_used,
false_positive_indices = not_used,
reference_preferences = not_used,
prediction_preferences = not_used,
matchings = matchings
) %>%
summary.transition(.)
}
setMethod("+", signature(e1 = "summaryTransition", e2 = "summaryTransition"),
function(e1, e2) add_summaryTransition(e1, e2))
subtract_summaryTransition <- function(e1, e2) {
diff_vars <- c(
"window_size","recall", "precision",
"mean_abs_lag_indices", "mean_signed_lag_indices",
"rmse_lag_indices", "rmse_prop", "aggregated_performance"
)
result <-
sapply(
diff_vars,
function(x) e1@result[ ,x] - e2@result[ ,x],
simplify = FALSE
) %>%
do.call(data.frame, .) %>%
{stats::setNames(., paste("diff", names(.), sep = "_"))} %>%
data.frame(
window_size = e1@result$window_size, .,
stringsAsFactors = FALSE, row.names = NULL
)
if(result$diff_window_size != 0) {
warning(
"Spurious pairing thresholds differ for the objects",
call. = FALSE
)
result$window_size <- paste(
e1@result$window_size, e2@result$window_size, sep = "--"
)
}
list(differences = result, e1 = e1@result, e2 = e2@result)
}
setMethod("-", signature(e1 = "summaryTransition", e2 = "summaryTransition"),
function(e1, e2) subtract_summaryTransition(e1, e2))
setAs("summaryTransition", "data.frame", function(from) from@result)
setAs("summaryTransition", "list", function(from) as.list(from@result)) |
fitNBP <- function(y,group=NULL,lib.size=colSums(y),tol=1e-5,maxit=40,verbose=FALSE)
{
y <- as.matrix(y)
if(is.null(group)) group <- rep(1,ncol(y))
group <- as.factor(group)
if(length(group) != ncol(y)) stop("length(group) must agree with ncol(y)")
ngenes <- nrow(y)
nlib <- ncol(y)
ngroups <- length(levels(group))
res.df <- ncol(y)-ngroups
ind <- matrix(FALSE,nlib,ngroups)
for (i in 1:ngroups) ind[,i] <- group==levels(group)[i]
offset <- matrix(1,ngenes,1) %*% log(lib.size)
mu <- pmax(y,0.5)
phi <- 0
w <- mu
z <- w*(log(mu)-offset)
beta <- matrix(0,ngenes,ngroups)
eta <- offset
for (i in 1:ngroups) {
beta[,i] <- rowSums(z[,ind[,i],drop=FALSE])/rowSums(w[,ind[,i],drop=FALSE])
eta[,ind[,i]] <- eta[,ind[,i]]+beta[,i]
}
if(verbose) cat("mean coef",colMeans(beta),"\n")
mu <- exp(eta)
iter <- 0
repeat{
iter <- iter+1
if(iter > maxit) {
warning("maxit exceeded")
break
}
e2 <- (y-mu)^2
dV <- mu*mu
inneriter <- 0
repeat {
inneriter <- inneriter+1
if(inneriter > 10) stop("problem with inner iteration")
V <- mu*(1+phi*mu)
X2 <- sum(e2/V)/res.df-ngenes
if(X2 >= 0) {
low <- phi
break
} else {
if(phi==0) break
if(inneriter > 4)
phi <- 0.9*phi
else
phi <- (low+phi)/2
if(verbose) cat("mean disp",phi,"\n")
}
}
if(X2<0) break
dX2 <- sum(e2/V/V*dV)/res.df
step.phi <- X2/pmax(dX2,1e-6)
phi <- phi+step.phi
conv.crit <- step.phi/(phi+1)
if(verbose) cat("Conv criterion",conv.crit,"\n")
if(conv.crit < tol) break
w <- mu/(1+phi*mu)
z <- (y-mu)/V*mu
eta <- offset
for (i in 1:ngroups) {
beta[,i] <- beta[,i]+rowSums(z[,ind[,i],drop=FALSE])/rowSums(w[,ind[,i],drop=FALSE])
eta[,ind[,i]] <- eta[,ind[,i]]+beta[,i]
}
if(verbose) cat("mean coef",colMeans(beta),"\n")
if(verbose) cat("disp",phi,"\n")
mu <- exp(eta)
}
colnames(beta) <- levels(group)
dimnames(mu) <- dimnames(y)
list(coefficients=beta,fitted.values=mu,dispersion=phi)
} |
modl <- function(tserie, method='arima'
,algorithm=NULL
,formula=NULL
,initialWindow=NULL,horizon=NULL,fixedWindow=NULL){
if(methods::is(tserie,"prep")) tserie <- tserie$tserie
else if(!stats::is.ts(tserie)) stop('Not a ts or prep object')
model <- NULL
errors <- NULL
tserieDF <- NULL
k <- 60
if(method=='arima'){
model <- modl.arima(tserie)
errors <- c(forecast::accuracy(model)[2],forecast::accuracy(model)[3],forecast::accuracy(model)[4])
}
else if(method=='dataMining'){
if(is.null(algorithm)) stop('Data mining regression algorithm required. Consult names here:\nhttp://topepo.github.io/caret/train-models-by-tag.html')
if(is.null(fixedWindow)) fixedWindow <- TRUE
if(is.null(initialWindow)) initialWindow <- as.integer(k/2)
if(is.null(horizon)) horizon <- as.integer(k/4)
timeControl <- modl.trControl(initialWindow,horizon,fixedWindow,givenSummary=TRUE)
tserieDF <- modl.tsToDataFrame(tserie,formula)
model <- modl.dataMining(Class ~ .,tserieDF,algorithm,timeControl,metric='RMSE',maximize=FALSE)
winningIndex <- which.min(model$results["RMSE"][,1])
errors <- c(model$results["RMSE"][winningIndex,1]
,model$results["MAE"][winningIndex,1]
,model$results["MAPE"][winningIndex,1])
}
else stop('Invalid modelling method')
names(errors) <- c("RMSE","MAE","MAPE")
obj <- list()
class(obj) <- "modl"
obj$tserie <- tserie
obj$tserieDF <- tserieDF
obj$method <- method
obj$algorithm <- algorithm
obj$horizon <- horizon
obj$model <- model
obj$errors <- errors
return (obj)
}
modl.arima <- function(tserie){
return (forecast::auto.arima(tserie,seasonal=FALSE))
}
modl.tsToDataFrame <- function(tserie,formula=NULL){
if(!stats::is.ts(tserie)) stop('Not a ts object')
k <- 60
if(is.null(formula)) formula <- c(1:16)
else if(length(formula)<6) stop('Parameter formula needs to have at least 6 elements')
numE <- max(formula)-min(formula)+1
n <- length(formula)-1
if(length(tserie)<numE) stop('Sample exceeds ts length')
mat <- data.frame()
continuar <- TRUE
i <- 0
while(continuar){
aux <- 1
vaux <- NULL
while(aux <= n+1){
vaux <- c(vaux,tserie[i+formula[aux]])
aux <- aux+1
}
mat <- rbind(mat,vaux)
i <- i+1
if(i > length(tserie)-numE) continuar <- FALSE
}
if(i < k) stop('Not enough observations to make good prediction: you need minimum a 60 length series.\n')
for(i in 1:(n+1)){
if (i==n+1) colnames(mat)[i] <- 'Class'
else colnames(mat)[i] <- paste0('c_',i)
}
return (mat)
}
modl.trControl <- function(initialWindow,horizon,fixedWindow,givenSummary=FALSE){
k <- 60
if(givenSummary)
return (caret::trainControl(method="timeslice",initialWindow=initialWindow,horizon=horizon,fixedWindow=fixedWindow,summaryFunction = modl.sumFunction))
else
return (caret::trainControl(method="timeslice",initialWindow=initialWindow,horizon=horizon,fixedWindow=fixedWindow))
}
modl.dataMining <- function(form,tserieDF,algorithm,timeControl,metric="RMSE",maximize=FALSE){
return (caret::train(form,data=tserieDF,method=algorithm,trControl=timeControl,metric=metric,maximize=maximize))
}
modl.sumFunction <- function(data,lev = NULL,model = NULL){
rmse <- caret::RMSE(data$obs,data$pred)
mae <- Metrics::mae(data$obs,data$pred)
mape <- TSPred::MAPE(data$obs,data$pred)
output <- c(rmse,mae,mape)
names(output) <- c("RMSE","MAE","MAPE")
return (output)
}
summary.modl <- function(object,...){
cat("Fitted model object\n")
if(object$method=='arima') cat("~Modelling method: ARIMA\n")
else if(object$method=='dataMining') cat ("~Modelling method: Data mining\n~Algorithm: ",object$algorithm,"\n")
cat("~Original time serie: \n")
utils::str(object$tserie)
cat("~Original time serie as data frame")
utils::str(object$tserieDF)
cat("~Model (best tuning parameters): \n")
if(object$method=='dataMining') print(object$model$bestTune)
else if(object$method=='arima') print(forecast::arimaorder(object$model))
cat("~Error measures: \n")
print(object$errors)
}
print.modl <- function(x,...){
cat("Fitted model object\n")
cat("Class: modl\n\n")
cat("Attributes: \n\n")
cat("$method: ",x$method,"\n\n")
if(!is.null(x$algorithm)) cat("$algorithm: ",x$algorithm,"\n\n")
cat("$tserie: \n")
print(x$tserie)
cat("\n")
cat("$tserieDF: \n")
utils::str(x$tserieDF)
cat("\n")
cat("$model: \n")
print(x$model)
cat("\n")
cat("$errors: \n")
print(x$errors)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
knitr::opts_chunk$set(fig.width=10, fig.height=8,fig.align = 'center')
library(httptest)
httptest::start_vignette("MMR_Distribution")
library(SC2API)
library(ggplot2)
data <- get_league_data(season_id = 43,
queue_id = 201,
team_type = 0,
league_id = 6,
host_region = "eu")
ladder_id <- data$tier$division[[1]]$ladder_id
ladder_id
ladder_data <- get_ladder_data(ladder_id = ladder_id, host_region = "eu")
mmr <- ladder_data$team$rating
head(mmr)
ladder_data_current <- get_gm_leaderboard(2, host_region = "us")
mmrCurrent <- ladder_data_current$mmr
head(mmrCurrent)
ladder_data_current2 <- get_gm_leaderboard(2, host_region = "kr")
mmrCurrent2 <- ladder_data_current$mmr
identical(mmrCurrent,mmrCurrent2)
ggplot() +
geom_histogram(aes(x=mmr)) +
theme_light()
races <- sapply(ladder_data$team$member,
function(x) x$played_race_count[[1]]$race$en_US)
df <- data.frame(mmr,races)
df <- df[df$races!='Random',]
head(df)
ggplot(df,aes(x = mmr, group = races, fill = races)) +
geom_histogram() +
scale_fill_manual(values = c('Orange','Blue','Red')) +
facet_wrap(~races) +
theme_light()
ggplot(df,aes(x = mmr)) +
geom_density(aes(y = ..density.., group = races, colour = races),
kernel=c("gaussian"),
adjust = 1.5,
position = "identity",
lwd = 1) +
scale_color_manual(values = c('Orange','Blue','Red')) +
theme_light()
httptest::end_vignette() |
`recode.hap` <-
function(hap,all.marq){
nb.marq = length(hap[1,])
nb.ind = length(hap[,1])
hap.recode= matrix(NA,ncol=nb.marq,nrow=nb.ind)
for(i in 1:nb.marq){
for(k in 1:length(all.marq[[i]])){
hap.recode[hap[,i]==all.marq[[i]][k],i]=k
}
}
hap.recode
} |
mwar.ani = function(
x, k = 15, conf = 2, mat = matrix(1:2, 2), widths = rep(1, ncol(mat)),
heights = rep(1, nrow(mat)), lty.rect = 2, ...
) {
nmax = ani.options('nmax')
if (missing(x))
x = sin(seq(0, 2 * pi, length = 50)) + rnorm(50, sd = 0.2)
n = length(x)
if (k > n)
stop('The window width k must be smaller than the length of x!')
idx = matrix(1:k, nrow = k, ncol = n - k + 1) +
matrix(rep(0:(n - k), each = k), nrow = k, ncol = n - k + 1)
phi = se = numeric(ncol(idx))
j = 1
for (i in 1:ncol(idx)) {
if (j > nmax)
break
fit = arima(x[idx[, i]], order = c(1, 0, 0))
phi[i] = coef(fit)['ar1']
se[i] = sqrt(vcov(fit)[1, 1])
j = j + 1
}
layout(mat, widths, heights)
U = phi + conf * se
L = phi - conf * se
j = 1
minx = maxx = NULL
for (i in 1:ncol(idx)) {
if (j > nmax) break
dev.hold()
plot(x, xlab = '', ylab = 'Original data')
minx = c(minx, min(x[idx[, i]]))
maxx = c(maxx, max(x[idx[, i]]))
rect(1:i, minx, k:(i + k - 1), maxx, lty = lty.rect, border = 1:i)
plot(x, xlim = c(1, n), ylim = range(c(U, L), na.rm = TRUE),
type = 'n', ylab = 'AR(1) coefficient', xlab = '')
arrows(1:i + k/2 - 0.5, L[1:i], 1:i + k/2 - 0.5, U[1:i], angle = 90, code = 3,
length = par('din')[1]/n * 0.4, col = 1:i)
points(1:i + k/2 - 0.5, phi[1:i], ...)
ani.pause()
j = j + 1
}
invisible(list(phi = phi, lower = L, upper = U))
} |
lsdm_est_logist_quant <- function( probcurves, theta, quantiles, wgt_theta,
est.icc=TRUE, b=NULL, a=NULL)
{
I <- nrow(probcurves)
b0 <- NULL
if (est.icc){
pars.probcurves <- matrix( 0, nrow=I, ncol=5 )
colnames(pars.probcurves) <- c("b.2PL", "a.2PL", "sigma.2PL", "b.1PL", "sigma.1PL")
rownames(pars.probcurves) <- rownames(probcurves)
for (kk in 1:I){
if (!is.null(b)){
b0 <- b[kk]
a0 <- a[kk]
}
pars.probcurves[kk,1:3] <- lsdm_est_logist_2pl( y=probcurves[kk,],
theta=theta, wgt_theta=wgt_theta, b0=b0, a0=a0 )
pars.probcurves[kk,4:5] <- lsdm_est_logist_rasch( y=probcurves[kk,],
theta=theta, wgt_theta=wgt_theta )
}
}
probcurves.quant <- sapply( quantiles, FUN=function(ql){
sapply( 1:I, FUN=function(kk){
lsdm_extract_probquantile(vec=probcurves[kk,], theta=theta, quant=ql)
} )
} )
probcurves.quant <- as.data.frame(probcurves.quant)
colnames(probcurves.quant) <- paste( "Q", 100*quantiles, sep="")
rownames(probcurves.quant) <- rownames(probcurves)
if (est.icc){
pars.probcurves <- cbind( probcurves.quant, pars.probcurves )
} else {
pars.probcurves <- probcurves.quant
}
for (vv in 1:(length(quantiles))){
pars.probcurves[,vv] <- as.numeric( pars.probcurves[,vv] )
}
return(pars.probcurves)
} |
design.efficiency.old <- function(design) {
if ("CrossoverSearchResult" %in% class(design)) design <- design@design
if ("CrossoverDesign" %in% class(design)) {
design <- design@design
}
design <- t(design)
nper <- dim(design)[2]
nseq <- dim(design)[1]
ntrt <- length(levels(as.factor(design)))
n<-rep(1,nseq)
group<-rep(1:nseq,nper*n)
subject<-rep(1:sum(n), rep(nper,sum(n)))
per<-rep(1:nper, sum(n))
trt<-NULL
for(i in 1:nseq){
trt<-c(trt,rep(design[i,],n[i]))
}
trt.mat<-matrix(trt,sum(n),nper,byrow=T)
car.mat<-matrix(0,sum(n),nper,byrow=T)
car.mat[,1]<-1
car.mat[,2:nper]<-trt.mat[,1:(nper-1)]
car<-NULL
for(i in 1:sum(n)){
car<-c(car,car.mat[i,])
}
nsubj<-sum(n)
ndata<-nsubj*nper
mean01<-matrix(1,ndata,1)
subj01<-matrix(0,ndata,nsubj)
per01<-matrix(0,ndata,nper)
trt01<-matrix(0,ndata,ntrt)
car01<-matrix(0,ndata,ntrt)
for(i in 1:nsubj){
subj01[,i][subject==i]<-1
}
for(i in 1:nper){
per01[,i][per==i]<-1
}
for(i in 1:ntrt){
trt01[,i][trt==i]<-1
}
car01[,1:ntrt][per==1]<-0
for(j in 2:nper){
car01[,1:ntrt][per==j]<-trt01[,1:ntrt][per==(j-1)]
}
xmat.no.subjects<-matrix(cbind(mean01,per01,trt01,car01),ndata,(1+nper+2*ntrt),byrow=F)
xmat<-matrix(cbind(mean01,subj01,per01,trt01,car01),ndata,(1+nsubj+nper+2*ntrt),byrow=F)
xtx<-t(xmat)%*%xmat
xtx.inv<-ginv(xtx)
n.cols.all<-1+nsubj+nper+2*ntrt
n.cols.car.upp<-n.cols.all
n.cols.car.low<-n.cols.car.upp-(ntrt-1)
n.cols.trt.upp<-n.cols.car.low-1
n.cols.trt.low<-n.cols.trt.upp-(ntrt-1)
xtx.inv.car.adj<-xtx.inv[n.cols.car.low:n.cols.car.upp,n.cols.car.low:n.cols.car.upp]
xtx.inv.trt.adj<-xtx.inv[n.cols.trt.low:n.cols.trt.upp,n.cols.trt.low:n.cols.trt.upp]
xmat<-matrix(cbind(mean01,subj01,per01,trt01),ndata,(1+nsubj+nper+ntrt),byrow=F)
xtx<-t(xmat)%*%xmat
xtx.inv<-ginv(xtx)
n.cols.all<-1+nsubj+nper+ntrt
n.cols.trt.upp<-n.cols.all
n.cols.trt.low<-n.cols.trt.upp-(ntrt-1)
xtx.inv.trt<-xtx.inv[n.cols.trt.low:n.cols.trt.upp,n.cols.trt.low:n.cols.trt.upp]
var.trt.pair.adj<-matrix(0,ntrt,ntrt)
for(i in 1:ntrt){
for(j in 1:ntrt){
if (i!=j) {
var.trt.pair.adj[i,j]<-xtx.inv.trt.adj[i,i]+xtx.inv.trt.adj[j,j] - 2*xtx.inv.trt.adj[i,j]
}}}
var.trt.pair<-matrix(0,ntrt,ntrt)
for(i in 1:ntrt){
for(j in 1:ntrt){
if (i!=j) {
var.trt.pair[i,j]<-xtx.inv.trt[i,i]+xtx.inv.trt[j,j] - 2*xtx.inv.trt[i,j]
}}}
rep<-matrix(0,ntrt)
for(i in 1:ntrt){
rep[i]<-sum(trt.mat==i)
}
var.trt.pair.ideal<-matrix(0,ntrt,ntrt)
for(i in 1:ntrt){
for(j in 1:ntrt){
if (i!=j) {
var.trt.pair.ideal[i,j]<-1/rep[i] + 1/rep[j]
}}}
eff.trt.pair<-matrix(0,ntrt,ntrt)
for(i in 1:ntrt){
for(j in 1:ntrt){
if (i!=j) {
eff.trt.pair[i,j]<-var.trt.pair.ideal[i,j]/var.trt.pair[i,j]
}}}
eff.trt.pair.adj<-matrix(0,ntrt,ntrt)
for(i in 1:ntrt){
for(j in 1:ntrt){
if (i!=j) {
eff.trt.pair.adj[i,j]<-var.trt.pair.ideal[i,j]/var.trt.pair.adj[i,j]
}}}
av.eff.trt.pair<-sum(eff.trt.pair)/(ntrt*(ntrt-1))
av.eff.trt.pair.adj<-sum(eff.trt.pair.adj)/(ntrt*(ntrt-1))
return(list(xmat.no.subjects=xmat.no.subjects,
var.trt.pair=var.trt.pair,eff.trt.pair=eff.trt.pair,av.eff.trt.pair=av.eff.trt.pair,
var.trt.pair.adj=var.trt.pair.adj,eff.trt.pair.adj=eff.trt.pair.adj,av.eff.trt.pair.adj=av.eff.trt.pair.adj))
}
test.eff <- function() {
f <- stop
path <- system.file("data", package="Crossover")
for (file in dir(path=path)) {
if (file %in% c("clatworthy1.rda", "clatworthyC.rda", "pbib2combine.rda", "exampleSearchResults2t.rda")) next
designs <- load(paste(path, file, sep="/"))
for (designS in designs) {
design <- get(designS)
r1 <- design.efficiency(design)
r2 <- design.efficiency.old(design)
if(!isTRUE(all.equal(r1$var.trt.pair.adj, r2$var.trt.pair.adj))) {
f(paste("Unequal variances for",designS," (",max(abs(r1$var.trt.pair.adj - r2$var.trt.pair.adj)),")!\n"))
}
if(!isTRUE(all.equal(r1$eff.trt.pair.adj, r2$eff.trt.pair.adj))) {
f(paste("Unequal efficiencies for",designS," (",max(abs(r1$eff.trt.pair.adj - r2$eff.trt.pair.adj))," - ",getCounts(design),")!\n"))
}
if(!isTRUE(all.equal(r1$xmat, r2$xmat.no.subjects, check.names=FALSE))) {
}
}
}
}
test.eff() |
NCEP.interp.surface <-
function(variable, lat, lon, dt, reanalysis2=FALSE,
interpolate.space=TRUE, interpolate.time=TRUE, keep.unpacking.info=FALSE,
return.units=TRUE, interp='linear', p=1, status.bar=TRUE){
iterations <- max(c(length(variable),length(lat), length(lon), length(dt), length(reanalysis2), length(interpolate.space), length(interpolate.time), length(interp), length(p)))
if(status.bar){
pb <- tkProgressBar(title="Total progress", min = 0, max=iterations, width=300)
} else { pb <- NULL }
variable <- rep(variable, length.out=iterations)
lat <- rep(lat, length.out=iterations)
lon <- rep(lon, length.out=iterations)
dt <- rep(dt, length.out=iterations)
reanalysis2 <- rep(reanalysis2, length.out=iterations)
interpolate.space <- rep(interpolate.space, length.out=iterations)
interpolate.time <- rep(interpolate.time, length.out=iterations)
interp <- rep(interp, length.out=iterations)
p <- rep(p, length.out=iterations)
interp <- ifelse(!interpolate.space, 'IDW', interp)
possible.lats <- c(90.0, 87.5, 85.0, 82.5, 80.0, 77.5, 75.0, 72.5, 70.0, 67.5, 65.0, 62.5, 60.0, 57.5, 55.0, 52.5, 50.0, 47.5, 45.0, 42.5, 40.0, 37.5, 35.0, 32.5, 30.0, 27.5, 25.0, 22.5, 20.0, 17.5, 15.0, 12.5, 10.0, 7.5, 5.0, 2.5, 0.0, -2.5, -5.0, -7.5, -10.0, -12.5, -15.0, -17.5, -20.0, -22.5, -25.0, -27.5, -30.0, -32.5, -35.0, -37.5, -40.0, -42.5, -45.0, -47.5, -50.0, -52.5, -55.0, -57.5, -60.0, -62.5, -65.0, -67.5, -70.0, -72.5, -75.0, -77.5, -80.0, -82.5, -85.0, -87.5, -90.0)
possible.lons <- c(0.0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, 40.0, 42.5, 45.0,
47.5, 50.0, 52.5, 55.0, 57.5, 60.0, 62.5, 65.0, 67.5, 70.0, 72.5, 75.0, 77.5, 80.0, 82.5, 85.0, 87.5, 90.0,
92.5, 95.0, 97.5, 100.0, 102.5, 105.0, 107.5, 110.0, 112.5, 115.0, 117.5, 120.0, 122.5, 125.0, 127.5, 130.0,
132.5, 135.0, 137.5, 140.0, 142.5, 145.0, 147.5, 150.0, 152.5, 155.0, 157.5, 160.0, 162.5, 165.0, 167.5, 170.0,
172.5, 175.0, 177.5, 180.0, 182.5, 185.0, 187.5, 190.0, 192.5, 195.0, 197.5, 200.0, 202.5, 205.0, 207.5, 210.0,
212.5, 215.0, 217.5, 220.0, 222.5, 225.0, 227.5, 230.0, 232.5, 235.0, 237.5, 240.0, 242.5, 245.0, 247.5, 250.0,
252.5, 255.0, 257.5, 260.0, 262.5, 265.0, 267.5, 270.0, 272.5, 275.0, 277.5, 280.0, 282.5, 285.0, 287.5, 290.0,
292.5, 295.0, 297.5, 300.0, 302.5, 305.0, 307.5, 310.0, 312.5, 315.0, 317.5, 320.0, 322.5, 325.0, 327.5, 330.0,
332.5, 335.0, 337.5, 340.0, 342.5, 345.0, 347.5, 350.0, 352.5, 355.0, 357.5)
not.in.reanalysis2 <- c('air.sig995','lftx.sfc','lftx4.sfc','omega.sig995','pottmp.sig995','rhum.sig995','slp','uwnd.sig995','vwnd.sig995')
not.in.reanalysis1 <- c('mslp')
gridsize <- as.integer(250)
tgridsize <- as.integer(60*60*6)
scale.offset.missingvals.temp <- tempfile()
out.temp <- tempfile()
wx.out <- c()
units <- c()
spread <- c()
unpacking.info.acquired <- FALSE
MK.interp <- function(pt1, pt2, pos){
return(pt1 + pos * (pt2 - pt1))
}
for(i in 1:iterations){
if(any(c('air.sig995','lftx.sfc','lftx4.sfc','omega.sig995','pottmp.sig995','pr_wtr.eatm','pres.sfc','rhum.sig995','slp','mslp','uwnd.sig995','vwnd.sig995') == variable[i]) == FALSE) { stop(paste("'",variable[i],"'", " not a valid variable name in reference to the surface",sep='')) }
if(reanalysis2[i] == TRUE && any(not.in.reanalysis2 == variable[i])) {
reanalysis2[i] <- FALSE
warning(paste(variable[i], " is not available at the surface in the Reanalysis II dataset. Using Reanalysis I instead.",sep=''))
}
if(reanalysis2[i] == FALSE && any(not.in.reanalysis1 == variable[i])) {
reanalysis2[i] <- TRUE
warning(paste(variable[i], " is not available at the surface in the Reanalysis I dataset. Using Reanalysis II instead.",sep=''))
}
name <- strsplit(variable[i], "\\.")[[1]][1]
level <- ifelse(length(strsplit(variable[i], "\\.")[[1]]) > 1, strsplit(variable[i], "\\.")[[1]][2], "")
lon[i] <- ifelse(lon[i] < 0, 360+lon[i], lon[i])
if(lon[i] >= 357.5){
temp.out <- robust.NCEP.interp.surface(variable=variable[i], lat=lat[i], lon=lon[i], dt=dt[i],
reanalysis2=reanalysis2[i], interpolate.space=interpolate.space[i], interpolate.time=interpolate.time[i],
keep.unpacking.info=keep.unpacking.info, return.units=return.units, interp=interp[i], p=p[i])
wx.out[i] <- temp.out$wx.out
spread[i] <- temp.out$spread
if(return.units == TRUE){
units[i] <- as.character(temp.out$units) }
if(!is.null(pb)){
cval <- pb$getVal()
Sys.sleep(0.000001)
setTkProgressBar(pb, cval+1, label=paste(round((cval+1)/iterations*100, 0), "% done"))
if(pb$getVal() == iterations) {close(pb)}
}
next }
if(interp[i] == 'IDW' | interp[i] == 'idw'){
NCEP.deg.dist <- function (long1, lat1, long2, lat2)
{
rad <- pi/180
a1 <- lat1 * rad
a2 <- long1 * rad
b1 <- lat2 * rad
b2 <- long2 * rad
dlon <- b2 - a2
dlat <- b1 - a1
a <- (sin(dlat/2))^2 + cos(a1) * cos(b1) * (sin(dlon/2))^2
c <- 2 * atan2(sqrt(a), sqrt(1 - a))
R <- 40041.47/(2 * pi)
d <- R * c
return(d)
}
ilat0 <- floor(lat[i] * 100 / gridsize) * gridsize
ilat1 <- ilat0 + gridsize
ilon0 <- floor(lon[i] * 100 / gridsize) * gridsize
ilon1 <- ilon0 + gridsize
lat0.lon0.d <- NCEP.deg.dist(long1=ilon0/100, lat1=ilat0/100, long2=lon[i], lat2=lat[i])^p[i]
lat0.lon1.d <- NCEP.deg.dist(long1=ilon1/100, lat1=ilat0/100, long2=lon[i], lat2=lat[i])^p[i]
lat1.lon0.d <- NCEP.deg.dist(long1=ilon0/100, lat1=ilat1/100, long2=lon[i], lat2=lat[i])^p[i]
lat1.lon1.d <- NCEP.deg.dist(long1=ilon1/100, lat1=ilat1/100, long2=lon[i], lat2=lat[i])^p[i]
if(any(c(lat0.lon0.d, lat0.lon1.d, lat1.lon0.d, lat1.lon1.d) == 0)){
min.d <- which(c(lat0.lon0.d, lat0.lon1.d, lat1.lon0.d, lat1.lon1.d) == 0)
interpolate.space[i] <- FALSE
} else {
lat0.lon0.inv.d <- 1/lat0.lon0.d
lat0.lon1.inv.d <- 1/lat0.lon1.d
lat1.lon0.inv.d <- 1/lat1.lon0.d
lat1.lon1.inv.d <- 1/lat1.lon1.d
total.inv.d <- sum(lat0.lon0.inv.d, lat0.lon1.inv.d, lat1.lon0.inv.d, lat1.lon1.inv.d)
all.latlons <- c(lat0.lon0.inv.d, lat0.lon1.inv.d, lat1.lon0.inv.d, lat1.lon1.inv.d)
min.d <- which(all.latlons == max(all.latlons))
}
lat0.lon0.f <- if(interpolate.space[i] == TRUE) { lat0.lon0.inv.d/total.inv.d } else if(min.d == 1) {1} else {0}
lat0.lon1.f <- if(interpolate.space[i] == TRUE) { lat0.lon1.inv.d/total.inv.d } else if(min.d == 2) {1} else {0}
lat1.lon0.f <- if(interpolate.space[i] == TRUE) { lat1.lon0.inv.d/total.inv.d } else if(min.d == 3) {1} else {0}
lat1.lon1.f <- if(interpolate.space[i] == TRUE) { lat1.lon1.inv.d/total.inv.d } else if(min.d == 4) {1} else {0}
dt.f <- strptime(dt[i], "%Y-%m-%d %H:%M:%S",'UTC')
year <- as.numeric(format(dt.f, "%Y"))
idatetime <- floor(as.numeric(as.POSIXct(dt[i], tz='UTC')) / tgridsize)
ts0 <- idatetime * tgridsize
ts1 <- ts0 + tgridsize
f0ts <- (as.numeric(as.POSIXct(dt[i], tz='UTC')) - ts0) / tgridsize
f0ts <- ifelse(interpolate.time[i] == FALSE, round(f0ts, digits=0), f0ts)
} else
if(interp[i] == 'linear'){
ilat0 <- floor(lat[i] * 100 / gridsize) * gridsize
ilat1 <- ilat0 + gridsize
f0lat <- (lat[i] * 100.0 - ilat0) / gridsize
f0lat <- ifelse(interpolate.space[i] == FALSE, round(f0lat, digits=0), f0lat)
ilon0 <- floor(lon[i] * 100 / gridsize) * gridsize
ilon1 <- ilon0 + gridsize
f0lon <- (lon[i] * 100.0 - ilon0) / gridsize;
f0lon <- ifelse(interpolate.space[i] == FALSE, round(f0lon, digits=0), f0lon)
dt.f <- strptime(dt[i], "%Y-%m-%d %H:%M:%S",'UTC')
year <- as.numeric(format(dt.f, "%Y"))
idatetime <- floor(as.numeric(as.POSIXct(dt[i], tz='UTC')) / tgridsize)
ts0 <- idatetime * tgridsize
ts1 <- ts0 + tgridsize
f0ts <- (as.numeric(as.POSIXct(dt[i], tz='UTC')) - ts0) / tgridsize
f0ts <- ifelse(interpolate.time[i] == FALSE, round(f0ts, digits=0), f0ts)
} else stop("'interp' must be either 'IDW' or 'linear'")
if(format(dt.f, "%m-%d %H:%M:%S") > "12-31 17:59:59") {
temp.out <- robust.NCEP.interp.surface(variable=variable[i], lat=lat[i], lon=lon[i], dt=dt[i],
reanalysis2=reanalysis2[i], interpolate.space=interpolate.space[i], interpolate.time=interpolate.time[i],
keep.unpacking.info=keep.unpacking.info, return.units=return.units, interp=interp[i], p=p[i])
wx.out[i] <- temp.out$wx.out
spread[i] <- temp.out$spread
if(return.units == TRUE){
units[i] <- as.character(temp.out$units) }
next }
lat.range <- c(which(possible.lats == (ilat1/100))-1, which(possible.lats == (ilat0/100))-1)
lon.range <- c(which(possible.lons == (ilon0/100))-1, which(possible.lons == (ilon1/100))-1)
beg.jdate <- as.numeric(difftime(as.POSIXct(ts0, origin='1970-01-01', tz="UTC"),
as.POSIXct(paste(year,"/1/1 0:0:0", sep=''), "%Y/%m/%d %H:%M:%S", tz="UTC"), units='hours'))/6
end.jdate <- as.numeric(difftime(as.POSIXct(ts1, origin='1970-01-01', tz="UTC"),
as.POSIXct(paste(year,"/1/1 0:0:0", sep=''), "%Y/%m/%d %H:%M:%S", tz="UTC"), units='hours'))/6
columns <- length(seq((ilon0/100),(ilon1/100), by=2.5)) + 1
actual.columns <- columns-1
rows <- length(seq((ilat0/100),(ilat1/100), by=2.5))
if(i == 1 | keep.unpacking.info == FALSE | unpacking.info.acquired == FALSE){
trying.out <- 1
fail <- 0
while(trying.out != 0){
trying.out <- try(download.file(paste("http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis",ifelse(reanalysis2[i] == TRUE, "2",""),"/surface/",variable[i],".",year,".nc.das", sep=''), mode="wb", method="libcurl", scale.offset.missingvals.temp), silent=TRUE)
fail <- fail + 1
if(fail >= 5) {stop(paste("\nThere is a problem connecting to the NCEP database with the information provided.
\nTry entering http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis",ifelse(reanalysis2[i] == TRUE, "2",""),"/surface/",variable[i],".",year,".nc.das into a web browser to obtain an error message.", sep = ""))}
}
add.offset <- if(any(grepl('add_offset', readLines(scale.offset.missingvals.temp)))){as.numeric(strsplit(strsplit(grep('add_offset', x=readLines(scale.offset.missingvals.temp), value=TRUE, fixed=TRUE), ';')[[1]][1], 'add_offset ')[[1]][2]) } else { 0 }
scale.factor <- if(any(grepl('scale_factor', readLines(scale.offset.missingvals.temp)))){as.numeric(strsplit(strsplit(grep('scale_factor', x=readLines(scale.offset.missingvals.temp), value=TRUE, fixed=TRUE), ';')[[1]][1], 'scale_factor ')[[1]][2]) } else { 1 }
missing.values <- as.numeric(strsplit(strsplit(grep('missing_value', x=readLines(scale.offset.missingvals.temp), value=TRUE, fixed=TRUE), ';')[[1]][1], 'missing_value ')[[1]][2])
if(return.units == TRUE){
var.loc.units <- min(grep(name, x = readLines(scale.offset.missingvals.temp), value = FALSE, fixed = TRUE))
all.loc.units <- grep("String units", x = readLines(scale.offset.missingvals.temp), value = FALSE, fixed = TRUE)
all.units <- grep("String units", x = readLines(scale.offset.missingvals.temp), value = TRUE, fixed = TRUE)
units[i] <- strsplit(all.units[which(all.loc.units > var.loc.units)[1]], "\"")[[1]][2]
}
unpacking.info.acquired <- TRUE
}
trying.out <- 1
fail <- 0
while(trying.out != 0){
trying.out <- try(download.file(paste("http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis",ifelse(reanalysis2[i] == TRUE, "2",""),"/surface/",variable[i],".",year,".nc.ascii?",name,"[",beg.jdate,":",end.jdate,"][",lat.range[1],":",lat.range[2],"][",lon.range[1],":",lon.range[2],"]", sep=''), mode="wb", method="libcurl", out.temp), silent=TRUE)
fail <- fail + 1
if(fail >= 5) {stop(paste("\nThere is a problem connecting to the NCEP database with the information provided.
\nTry entering http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis",ifelse(reanalysis2[i] == TRUE, "2",""),"/surface/",variable[i],".",year,".nc.ascii?",name,"[",beg.jdate,":",end.jdate,"][",lat.range[1],":",lat.range[2],"][",lon.range[1],":",lon.range[2],"] into a web browser to obtain an error message.", sep = ""))}
}
outdata <- read.table(file=out.temp, sep=',', skip=12, header=FALSE, na.strings=missing.values, nrows=((end.jdate-beg.jdate)+1)*rows)
rec0.1 <- ifelse(outdata$V2[2] == missing.values, NA, outdata$V2[2] * scale.factor + add.offset)
rec1.1 <- ifelse(outdata$V2[4] == missing.values, NA, outdata$V2[4] * scale.factor + add.offset)
rec2.1 <- ifelse(outdata$V3[2] == missing.values, NA, outdata$V3[2] * scale.factor + add.offset)
rec3.1 <- ifelse(outdata$V3[4] == missing.values, NA, outdata$V3[4] * scale.factor + add.offset)
rec4.1 <- ifelse(outdata$V2[1] == missing.values, NA, outdata$V2[1] * scale.factor + add.offset)
rec5.1 <- ifelse(outdata$V2[3] == missing.values, NA, outdata$V2[3] * scale.factor + add.offset)
rec6.1 <- ifelse(outdata$V3[1] == missing.values, NA, outdata$V3[1] * scale.factor + add.offset)
rec7.1 <- ifelse(outdata$V3[3] == missing.values, NA, outdata$V3[3] * scale.factor + add.offset)
if(interp[i] == 'IDW' | interp[i] == 'idw'){
t1 <- sum((lat0.lon0.f*rec0.1) + (lat0.lon1.f*rec2.1) + (lat1.lon0.f*rec4.1) + (lat1.lon1.f*rec6.1))
t2 <- sum((lat0.lon0.f*rec1.1) + (lat0.lon1.f*rec3.1) + (lat1.lon0.f*rec5.1) + (lat1.lon1.f*rec7.1))
wx.out[i] <- MK.interp(t1, t2, f0ts)
} else {
rec0 <- MK.interp(rec0.1, rec4.1, f0lat)
rec1 <- MK.interp(rec1.1, rec5.1, f0lat)
rec2 <- MK.interp(rec2.1, rec6.1, f0lat)
rec3 <- MK.interp(rec3.1, rec7.1, f0lat)
rec0 <- MK.interp(rec0, rec2, f0lon)
rec1 <- MK.interp(rec1, rec3, f0lon)
wx.out[i] <- MK.interp(rec0, rec1, f0ts)
}
if(interpolate.space[i] == TRUE){
if(interpolate.time[i] == TRUE){
spread[i] <- sd(c(rec0.1,rec1.1,rec2.1,rec3.1,rec4.1,rec5.1,rec6.1,rec7.1))
} else
if(f0ts == 1){
spread[i] <- sd(c(rec1.1,rec3.1,rec5.1,rec7.1))
} else
spread[i] <- sd(c(rec0.1,rec2.1,rec4.1,rec6.1))
} else
if(interpolate.space[i] == FALSE){
if(interpolate.time[i] == TRUE){
spread[i] <- sd(c(t1, t2))
} else
if(interpolate.time[i] == FALSE){
spread[i] <- NA
}
}
rec0.1 <- c()
rec1.1 <- c()
rec2.1 <- c()
rec3.1 <- c()
rec4.1 <- c()
rec5.1 <- c()
rec6.1 <- c()
rec7.1 <- c()
outdata <- c()
if(!is.null(pb)){
cval <- pb$getVal()
Sys.sleep(0.000001)
setTkProgressBar(pb, cval+1, label=paste(round((cval+1)/iterations*100, 0), "% done"))
}
}
unlink(c(scale.offset.missingvals.temp, out.temp))
if(!is.null(pb)) { if(pb$getVal() == iterations) {close(pb)} }
if(return.units == TRUE){
units <- units[is.na(units)==FALSE]
for(x in 1:length(unique(units))){
print(noquote(paste("Units of variable '", unique(variable)[x], "' are ", unique(units)[x], sep='')))
}
}
attr(wx.out, "standard deviation") <- spread
return(wx.out)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.