code
stringlengths
1
13.8M
mKrig.trace <- function(object, iseed, NtrA) { if (exists(".Random.seed", .GlobalEnv)){ oldseed <- .GlobalEnv$.Random.seed } else{ oldseed <- NULL } if( !is.na(iseed)){ set.seed(iseed) } np<- object$np if (NtrA >= object$np) { Ey <- diag(1, np) NtrA <- np hold <- diag(predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE)) trA.info<- NA trA.est <- sum(hold) } else { Ey <- matrix(rnorm(np * NtrA), nrow = np, ncol = NtrA) trA.info <- colSums(Ey * (predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE))) trA.est <- mean(trA.info) } if (NtrA < np) { MSE<-(sum(object$residuals^2)/np) GCV <- MSE/(1 - trA.est /np)^2 GCV.info <- MSE/( 1 - trA.info/np)^2 } else{ GCV<- NA GCV.info <- NA } if (!is.null(oldseed)){ .GlobalEnv$.Random.seed <- oldseed } else{ if( exists(".Random.seed", .GlobalEnv)){ rm(".Random.seed", envir = .GlobalEnv) } } return( list(trA.info = trA.info, eff.df = trA.est, GCV= GCV, GCV.info=GCV.info) ) } mKrig.coef <- function(object, y, collapseFixedEffect=TRUE) { if( any(is.na(y))){ stop("mKrig can not omit missing values in observation vecotor") } if( object$nt>0){ beta <- as.matrix(qr.coef(object$qr.VT, forwardsolve(object$Mc, transpose = TRUE, y, upper.tri = TRUE))) betaMeans<- rowMeans( beta) if( collapseFixedEffect){ beta<- matrix( betaMeans, ncol=ncol(beta), nrow= nrow( beta)) } resid <- y - object$Tmatrix %*% beta } else{ beta<- NULL resid <- y } c.coef <- forwardsolve(object$Mc, transpose = TRUE, resid, upper.tri = TRUE) c.coef <- as.matrix(backsolve(object$Mc, c.coef)) out <- list( beta = (beta), c.coef = c.coef ) return(out) }
print.dust <- function(x, ..., asis = TRUE, linebreak_at_end = 2) { print_method <- x$print_method if (print_method == "latex" & x$hhline) print_method <- "latex_hhline" switch(print_method, "console" = print_dust_console(x, ..., asis = asis), "docx" = print_dust_markdown(x, ..., asis = asis), "markdown" = print_dust_markdown(x, ..., asis = asis), "html" = print_dust_html(x, ..., asis = asis, linebreak_at_end = linebreak_at_end), "latex" = print_dust_latex(x, ..., asis = asis), "latex_hhline" = print_dust_latex_hhline(x, ..., asis = asis), "slidy" = print_dust_html(x, ..., asis = asis, linebreak_at_end = linebreak_at_end), stop(sprintf("'%s' is not an valid print method", x[["print_method"]]))) } print.dust_list <- function(x, ..., asis = TRUE) { lapply(X = x, FUN = print.dust, asis = asis, ...) }
NULL globalVariables( c(".", "active", "cumdist", "dist_scaled", "dist_to_prev", "distance", "duration", "ele", "end_time", "lat", "lon", "radius", "start_time", "time_diff_to_prev", "wday", "x", "y", "year") )
getLinks <- function(areas = NULL, exclude = NULL, opts = simOptions(), internalOnly=FALSE, namesOnly = TRUE, withDirection = FALSE) { if (is.null(areas)) areas <- getAreas(opts = opts) if (is.null(opts$linksDef$from)) { return(NULL) } if (internalOnly) links <- opts$linksDef[from %in% areas & to %in% areas] else links <- opts$linksDef[from %in% areas | to %in% areas] links <- links[!from %in% exclude & !to %in% exclude] if (namesOnly) return(links$link) if (!withDirection) return(links) outward_links <- links[, .(area = from, link, to = to)] outward_links[, direction := 1] inward_links <- links[, .(area = to, link, to = from)] inward_links[, direction := -1] links <- rbind(outward_links, inward_links) links[area %in% areas] }
geo_median <- function(P, tol = 1e-07, maxiter = 200) { stopifnot(is.numeric(P)) if (!is.matrix(P)) stop("Argument 'P' must be a matrix (of points in R^n).") m <- nrow(P); n <- ncol(P) if (n == 1) return(list(p = median(P), d = sum(abs(P - median(P))), reltol = 0, niter = 0)) p0 <- apply(P, 2, mean) p1 <- p0 + 1 iter <- 1 while(max(abs(p0 - p1)) > tol && iter < maxiter) { iter <- iter + 1 p0 <- p1 s1 <- s2 <- 0 for (j in 1:m) { d <- Norm(P[j, ] - p0) s1 <- s1 + P[j, ]/d s2 <- s2 + 1/d } p1 <- s1 / s2 } if (iter >= maxiter) warning("Maximum number of iterations reached; may not converge.") d <- 0 for (j in 1:m) d <- d + Norm(P[j, ] - p1) return( list(p = p1, d = d, reltol = max(abs(p0 - p1)), niter = iter) ) }
library("testthat") context("ParamChecks") test_that("checkBoolean", { testthat::expect_error(checkBoolean(1)) testthat::expect_error(checkBoolean('tertet')) testthat::expect_equal(checkBoolean(T), T) testthat::expect_equal(checkBoolean(F), T) }) test_that("checkHigherEqual", { testthat::expect_error(checkHigherEqual(1,2)) testthat::expect_error(checkHigherEqual('tertet',1)) testthat::expect_equal(checkHigherEqual(1,0), T) testthat::expect_equal(checkHigherEqual(0,0), T) }) test_that("checkLowerEqual", { testthat::expect_error(checkLowerEqual(2,1)) testthat::expect_error(checkLowerEqual('tertet',1)) testthat::expect_equal(checkLowerEqual(0,1), T) testthat::expect_equal(checkLowerEqual(0,0), T) }) test_that("checkHigher", { testthat::expect_error(checkHigher(1,2)) testthat::expect_error(checkHigher(0,0)) testthat::expect_error(checkHigher('tertet',1)) testthat::expect_equal(checkHigher(1,0), T) }) test_that("checkLower", { testthat::expect_error(checkLower(2,1)) testthat::expect_error(checkLower(0,0)) testthat::expect_error(checkLower('tertet',1)) testthat::expect_equal(checkLower(0,1), T) }) test_that("checkNotNull", { testthat::expect_error(checkNotNull(NULL)) testthat::expect_equal(checkNotNull(0), T) testthat::expect_equal(checkNotNull(T), T) testthat::expect_equal(checkNotNull('yeryey'), T) }) test_that("checkIsClass", { testthat::expect_error(checkIsClass('dsdsds', 'double')) testthat::expect_equal(checkIsClass('dsdsds', "character"), T) }) test_that("checkInStringVector", { testthat::expect_error(checkInStringVector('dsdsds', c('dsds','double'))) testthat::expect_equal(checkInStringVector('dsdsds', c('dsdsds','double')), T) })
print.packageSum <- function(x, where, title, openBrowser = TRUE, template, ...) { cl <- deparse(substitute(x)) if(length(grep('\\(', cl))>0)cl <- 'x' if (nrow(x) < 1) { cat("x has zero rows; ", "nothing to display.\n") if (missing(where)) where <- "" return(invisible(where)) } if (missing(where)) where <- "HTML" if (length(where) == 1 && where == "console") where <- c("Package", "Count", 'MaxScore', 'TotalScore', 'Date', "Title", 'Version', 'Author') if (all(where %in% names(x))) { print.data.frame(x[, where]) return(invisible("")) } if (length(where)>1) stop("if length(where)>1, ", "where must be names of columns of", " x; they are not. where = ", paste(where, collapse=", ")) if (toupper(where) == "HTML") { f0 <- tempfile() for(i in 1:111) { File <- paste0(f0, ".html") fInf <- file.info(File) if(all(is.na(fInf))) break f0 <- paste(f0, "1", sep="") } } else { File <- where } Ocall <- attr(x, "call") Oc0 <- deparse(Ocall) Oc. <- gsub('\"', "'", Oc0) Oc1 <- paste(cl, "<-", paste(Oc., collapse='')) iPx <- paste0('installPackages(', cl, ',...)') w2xls <- paste0('writeFindFn2xls(', cl, ')') string <- attr(x, "string") if (missing(title)) { title <- paste('packageSum for', string) } Dir <- dirname(File) if (Dir == ".") { Dir <- getwd() File <- file.path(Dir, File) } else { dc0 <- dir.create(Dir, FALSE, TRUE) } js <- system.file("js", "sorttable.js", package = "sos") if (!file.exists(js)) { warning("Unable to locate 'sorttable.js' file") } else { file.copy(js, Dir) } xin <- x Desc <- x$Title if(is.null(Desc))Desc <- '' x$Title <- gsub("(^[ ]+)|([ ]+$)", "", as.character(Desc), useBytes = TRUE) x[] <- lapply(x, as.character) hasTemplate <- !missing(template) if (!hasTemplate) { templateFile <- system.file("brew", "default", "pkgSum.brew.html", package = "sos") template <- file(templateFile, encoding = "utf-8", open = "r" ) } xenv <- new.env() assign("Oc1", Oc1, envir = xenv) assign('iPx', iPx, envir=xenv) assign('w2xls', w2xls, envir=xenv) assign("x", x, envir = xenv) brew::brew(template, File, envir = xenv) if (!hasTemplate) { close(template) } FileInfo <- file.info(File) if (is.na(FileInfo$size) || FileInfo$size <= 0) { if (is.na(FileInfo$size)) { warning("Brew did not create file ", File) } else { warning("Brew created a file of size 0") } cat("Ignoring template.\n") con <- file(File, "wt") on.exit(close(con)) .cat <- function(...) cat(..., "\n", sep = "", file = con, append = TRUE) cat("<html>", file = con) .cat("<head>") .cat("<title>", title, "</title>") .cat("<script src=sorttable.js type='text/javascript'></script>") .cat("<style>\n", "table.sortable thead {\n", "font: normal 10pt Tahoma, Verdana, Arial;\n", "background: "color: "font-weight: bold;\n", "cursor: hand;\n", "}\n", "table.sortable th {\n", "width: 75px;\n", "color: "border: 1px solid black;\n", "}\n", "table.sortable th:hover {\n", "background: "}\n", "table.sortable td {\n", "font: normal 10pt Tahoma, Verdana, Arial;\n", "text-align: center;\n", "border: 1px solid blue;\n", "}\n", ".link {\n", "padding: 2px;\n", "width: 600px;\n", "}\n", ".link:hover {\n", "background: "}\n", "a {\n", "color: darkblue;\n", "text-decoration: none;\n", "border-bottom: 1px dashed darkblue;\n", "}\n", "a:visited {\n", "color: black;\n", "}\n", "a:hover {\n", "border-bottom: none;\n", "}\n", "h1 {\n", "font: normal bold 20pt Tahoma, Verdana, Arial;\n", "color: "text-decoration: underline;\n", "}\n", "h2 {\n", "font: normal bold 12pt Tahoma, Verdana, Arial;\n", "color: "}\n", "table.sortable .empty {\n", "background: white;\n", "border: 1px solid white;\n", "cursor: default;\n", "}\n", "</style>\n", "</head>") .cat("<h1>", title, "</h1>") .cat("<h2>call: <font color=' paste(Oc1, collapse = ""), "</font></h2>\n") .cat("<h2>Title, etc., are available on ", "installed packages. To get more, use", " <font color=' " </font></h2>") .cat("<h2>See also: <font color=' w2xls, "</font></h2>") .cat("<table class='sortable'>\n<thead>") link <- as.character(x$pkgLink) desc <- gsub("(^[ ]+)|([ ]+$)", "", as.character(x$Title), useBytes = TRUE) x$pkgLink <- sprintf("<a href='%s' target='_blank'>%s</a>", link, desc) x$Title <- NULL ilk <- which(names(x) == "pkgLink") names(x)[ilk] <- "Title and Link" .cat("<tr>\n <th style='width:40px'>Id</th>") .cat(sprintf(" <th>%s</th>\n</tr>", paste(names(x), collapse = "</th>\n <th>"))) .cat("</thead>\n<tbody>") paste.list <- c(list(row.names(x)), lapply(x, as.character), sep = "</td>\n <td>") tbody.list <- do.call("paste", paste.list) tbody <- sprintf("<tr>\n <td>%s</td>\n</tr>", tbody.list) tbody <- sub("<td><a", "<td class=link><a", tbody, useBytes = TRUE) .cat(tbody) .cat("</tbody></table></body></html>") } if (openBrowser) { FileInf2 <- file.info(File) if (is.na(FileInf2$size)) { warning("Did not create file ", File, "; nothing to give to a browser.") } else { if (FileInf2$size <= 0) { warning("0 bytes in file ", File, "; nothing to give to a browser.") } else { utils::browseURL(File) } } } invisible(File) }
imputeMissingValue <- function(inc_mat, method = c("svd", "median", "als", "CA")) { if (TRUE %in% rowSums(is.na(inc_mat)) == ncol(inc_mat)) { warning("Some observation row(s) are all Na, removed") inc_mat <- inc_mat[rowSums(is.na(inc_mat)) != ncol(inc_mat), ] } x <- inc_mat col_name <- colnames(x) row_name <- rownames(x) colnames(x) <- paste0("col", 1:ncol(x)) names(col_name) <- paste0("col", 1:ncol(x)) rownames(x) <- paste0("row", 1:nrow(x)) names(row_name) <- paste0("row", 1:nrow(x)) result <- list() if ("knn" %in% method) { method <- method[method != "knn"] knn_imputation <- bnstruct::knn.impute(x) colnames(knn_imputation) <- col_name[colnames(knn_imputation)] rownames(knn_imputation) <- row_name[rownames(knn_imputation)] result$knn <- base::as.matrix(knn_imputation) } if ("median" %in% method) { method <- method[method != "median"] median_imputation <- t(apply(x, 1, FUN = function(x) { x[is.na(x)] <- stats::median(x, na.rm = T) x })) colnames(median_imputation) <- col_name[colnames(median_imputation)] rownames(median_imputation) <- row_name[rownames(median_imputation)] result$median <- base::as.matrix(median_imputation) } if ("svd" %in% method) { method <- method[method != "svd"] fits_svd <- softImpute::softImpute(x, type = "svd", trace.it = F) svd_imputation <- softImpute::complete(x, fits_svd) colnames(svd_imputation) <- col_name[colnames(svd_imputation)] rownames(svd_imputation) <- row_name[rownames(svd_imputation)] result$svd <- base::as.matrix(svd_imputation) } if ("als" %in% method) { method <- method[method != "als"] fits_als <- softImpute::softImpute(x, type = "als", trace.it = F) als_imputation <- softImpute::complete(x, fits_als) colnames(als_imputation) <- col_name[colnames(als_imputation)] rownames(als_imputation) <- row_name[rownames(als_imputation)] result$als <- base::as.matrix(als_imputation) } if ("CA" %in% method) { method <- method[method != "CA"] CA_imputation <- missMDA::imputeCA(x) colnames(CA_imputation) <- col_name[colnames(CA_imputation)] rownames(CA_imputation) <- row_name[rownames(CA_imputation)] result$CA <- base::as.matrix(CA_imputation) } if ("FAMD" %in% method) { method <- method[method != "FAMD"] FAMD_imputation <- missMDA::imputeFAMD(x)$completeObs colnames(FAMD_imputation) <- col_name[colnames(FAMD_imputation)] rownames(FAMD_imputation) <- row_name[rownames(FAMD_imputation)] result$FAMD <- base::as.matrix(FAMD_imputation) } if ("PCA" %in% method) { method <- method[method != "PCA"] PCA_imputation <- missMDA::imputePCA(x)$completeObs colnames(PCA_imputation) <- col_name[colnames(PCA_imputation)] rownames(PCA_imputation) <- row_name[rownames(PCA_imputation)] result$PCA <- base::as.matrix(PCA_imputation) } if (!is.null(method)) { for (mice_method in method) { imp <- mice::mice(x, method = mice_method, m = 1, maxit = 1, printFlag = F) inc_mat_imp <- mice::complete(imp) colnames(inc_mat_imp) <- col_name[colnames(inc_mat_imp)] rownames(inc_mat_imp) <- row_name[rownames(inc_mat_imp)] result[[mice_method]] <- base::as.matrix(inc_mat_imp) } } return(result) }
boot2 <- function(y,xcopy,phi1,beta,nbs,method,scores=scores){ arp <- length(phi1) phi <- phi1 p <- length(beta) n <- length(y) zn1 <- n-p-arp zn2 <- n-2*p-arp if(zn1 < 0){zn1 <- 1} if(zn2 < 0){zn2 <- 1} adj <- zn1/zn2 icent <- 1 n1 <- n - arp ones <- rep(1,n) proj1 <- ones%*%t(ones)/n x2 <- as.matrix(xcopy[,2:p]) xbar <- apply(x2,2,mean) xc <- xcopy[,2:p] - proj1%*%xcopy[,2:p] x <- xc p <- p - 1 ehat <- rep(0,n1) for(i in (arp+1):n){ ypart <- y[i] for(k in 1:arp){ypart <- ypart - phi[k]*y[i-k]} xpart <- 0 for(j in 1:(p+icent)){ for(k in 1:arp){ if(k == 1){ xpart <- xpart + beta[j]*(xcopy[i,j] - phi[k]*xcopy[i-k,j]) } else { xpart <- xpart - beta[j]*phi[k]*xcopy[i-k,j] } } } ehat[i-arp] <- ypart - xpart } ehat <- (ehat - mean(ehat))*sqrt(adj) sigehat <- sd(ehat)*sqrt((n-arp)/(n-arp-1)) oldb <- beta pp1 <- p + icent bsbeta <- matrix(rep(0,pp1^2),ncol=pp1) ind <- 1:n1 ii <- sample(ind,1,replace=TRUE) allbeta <- c() rhostar <- c() MSEstar <- c() for(nbk in 1:nbs){ ind2 <- sample(ind,n1,replace=TRUE) ystar <- y[ii:(ii+arp-1)] estar <- ehat[ind2] for(i in (arp+1):n){ ypart <- 0 for(k in 1:arp){ypart <- ypart + phi[k]*ystar[i-k]} xpart <- 0 for(j in 1:pp1){ for(k in 1:arp){ if(k == 1){ xpart <- xpart + beta[j]*(xcopy[i,j]-phi[k]*xcopy[i-k,j]) } else { xpart <- xpart - beta[j]*phi[k]*xcopy[i-k,j] } } } ystar[i] <- ypart + xpart + estar[i-arp] } avey <- mean(ystar) sigestar <- sd(estar*(n/(n-1))) MSEstar <- c(MSEstar, sigestar ^ 2) ystar <- ystar - avey d2fit <- durbin2fit(ystar,x,phi,method=method,scores=scores) dum3 <- d2fit$beta d1 <- avey - t(xbar)%*%dum3 dum3 <- c(d1,dum3) uhat <- y - xcopy %*% dum3 dum4 = lagmat(uhat, arp) u.y <- dum4[,1] u.x <- dum4[,-1] ufit <- lm(u.y ~ u.x) rhotmp <- ufit$coef[-1] rhostar <- rbind(rhostar, rhotmp) allbeta <- rbind(allbeta, dum3) for(i in 1:pp1){ for(j in 1:pp1){ bsbeta[i,j] <- bsbeta[i,j]+(dum3[i]-oldb[i])*(dum3[j]-oldb[j])/sigestar^2 } } } bsbeta <- bsbeta / nbs list(betacov = bsbeta, allbeta = allbeta, rhostar = rhostar, MSEstar = MSEstar) }
boxplotPOFD <- function(data, centralRegion = 0.5, fmag = 1.5, fdom = 0) { N <- dim(data)[2] P <- dim(data)[1] w <- (N-rowSums(is.na(data)))/(N) if(is.null(rownames(data))){rownames(data) <- x <- c(1:P)}else{x <- as.numeric(rownames(data))} if(is.null(colnames(data))){colnames(data) <- ids <- c(1:N)}else{ids <- colnames(data)} mbd.ordered <- POIFD(data, type = "MBD") mbd.ids <- mbd.ordered[ids] median <- names(mbd.ordered)[1] idCR <- names(mbd.ordered[1:ceiling(N*centralRegion)]) center <- data[,idCR] propCR <- rowMeans(!is.na(center)) infCR <- apply(center, 1,function(x) suppressWarnings(min(x, na.rm=TRUE))); infCR[infCR == Inf | infCR == -Inf] = NA supCR <- apply(center, 1,function(x) suppressWarnings(max(x, na.rm=TRUE))); supCR[supCR == Inf | supCR == -Inf] = NA upperWhisker <- supCR + fmag*(supCR-infCR) lowerWhisker <- infCR - fmag*(supCR-infCR) if(fdom < 1){ dom.out <- which(colSums(data <= lowerWhisker & propCR <= fdom | data >= upperWhisker & propCR <= fdom, na.rm = TRUE) != 0) }else{ dom.out <- which(colSums(data <= lowerWhisker & propCR < fdom | data >= upperWhisker & propCR < fdom, na.rm = TRUE) != 0) } mag.out <- which(colSums( data <= lowerWhisker | data >= upperWhisker , na.rm = TRUE) != 0) fdata <- data.frame(id = rep(ids, each = P), x = rep(x, N), y = c(data) ) fdataMag <- data.frame(id = rep(mag.out, each = P), x = rep(x, length(mag.out)), y = c(data[,mag.out]) ) fdataDom <- data.frame(id = rep(dom.out, each = P), x = rep(x, length(dom.out)), y = c(data[,dom.out]) ) dataWinkler <- data.frame(id = c(rep(1, P), rep(2, P)), x = c(x, rev(x)), y = c(upperWhisker, rev(lowerWhisker)), wcol = c(w, rev(w))) dataWinklerBars <- data.frame( colBar = c(w[ceiling(P/2)], w[ceiling(P/2)]), x1 = c(x[ceiling(P/2)], x[ceiling(P/2)]), x2 = c(x[ceiling(P/2)], x[ceiling(P/2)]), y1 = c(supCR[ceiling(P/2)], infCR[ceiling(P/2)]), y2 = c(upperWhisker[ceiling(P/2)], lowerWhisker[ceiling(P/2)]) ) auxPolygonX <- c(matrix(rep(c(1,2,2,1), P-1), nrow = 4) + matrix(rep(seq(0:c(P-2))-1, each = 4), nrow = 4)) auxPolygonLowHigh <- c(matrix(rep(c(1,2,P+2,P+1), P-1), nrow = 4) + matrix(rep(seq(0:c(P-2))-1, each = 4), nrow = 4)) dataBand <- data.frame( id = rep(factor(1:c(P-1)), each = 4), x = x[auxPolygonX], y = c(infCR, supCR)[auxPolygonLowHigh], wcol = rep(w[2:P], each = 4) ) ggplot2::ggplot() + ggplot2::geom_polygon(data = dataBand, aes(x = .data$x, y = .data$y, group = .data$id, fill = .data$wcol, color = .data$wcol)) + ggplot2::geom_line(data = fdata[fdata$id == median,], aes(x = .data$x, y = .data$y), color = 'yellow', cex = 0.75) + ggplot2::geom_line(data = dataWinkler, aes(x = .data$x, y = .data$y, group = .data$id, color = .data$wcol), cex = 1) + ggplot2::geom_segment(data = dataWinklerBars, aes(x = .data$x1, y = .data$y1, xend = .data$x2, yend = .data$y2, color =.data$colBar), size = 0.75) + ggplot2::geom_line(data = fdataMag, aes(x = .data$x, y = .data$y, group = .data$id), color='blue', cex = 0.75)+ ggplot2::geom_line(data = fdataDom, aes(x = .data$x, y = .data$y, group = .data$id), color='red', linetype = "dashed", cex = 0.75)+ ggplot2::scale_fill_gradient(low = "white", high = "black", limits=c(0, 1) , aesthetics = c('fill', "color")) + ggplot2::labs(x = "", y ="")+ ggplot2::theme(legend.position = "none", legend.key.size = unit(0.75, "cm"), legend.title = element_blank(), panel.background = element_blank(), plot.title = element_text(hjust = 0.5), axis.line = element_line(colour = "black", size = rel(1)) ) -> boxplotPartially return(list(fboxplot = boxplotPartially, all.out = unique(c(mag.out, dom.out)), magnitude = mag.out, domain = dom.out)) }
geom_contour <- function(mapping = NULL, data = NULL, stat = "contour", position = "identity", ..., lineend = "butt", linejoin = "round", linemitre = 1, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE) { layer( data = data, mapping = mapping, stat = stat, geom = GeomContour, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( lineend = lineend, linejoin = linejoin, linemitre = linemitre, na.rm = na.rm, ... ) ) } GeomContour <- gganimintproto("GeomContour", GeomPath, default_aes = aes(weight = 1, colour = " pre_process = function(g, g.data, ...) { g$aes[["group"]] <- "piece" g$geom <- "path" return(list(g = g, g.data = g.data)) } )
NULL if (!methods::isClass("ArrayParameter")) methods::setOldClass("ArrayParameter") NULL NULL ArrayParameter <- pproto( "ArrayParameter", Parameter, label = character(0), upper_limit = numeric(0), lower_limit = numeric(0), length = 0, repr = function(self) { paste0(self$name, " (min: ", min(self$value), ", max: ", max(self$value), ")") }, validate = function(self, x) { assertthat::assert_that(inherits(x, "data.frame")) invisible(assertthat::see_if( identical(names(x), "value"), all(is.finite(x[[1]])), ncol(x) == 1, nrow(x) == self$length, inherits(x[[1]], self$class), setequal(self$label, rownames(x)), sum(!is.finite(x[[1]])) == 0, isTRUE(all(x[[1]] >= self$lower_limit)), isTRUE(all(x[[1]] <= self$upper_limit)))) }, set = function(self, x) { check_that(self$validate(x)) self$value <- x[[1]][match(rownames(x), self$label)] }, get = function(self) { structure(list(value = self$value), .Names = "value", row.names = self$label, class = "data.frame") }, render = function(self, ...) { pkg <- strsplit(self$widget, "::")[[1]][[1]] if (!requireNamespace(pkg, quietly = TRUE)) stop(paste0("the \"", pkg, "\" R package must be installed to render", " this parameter.")) f <- do.call(utils::getFromNamespace, as.list(rev(strsplit(self$widget, "::")[[1]]))) do.call(f, list(outputId = self$id)) })
doQmapPTF <- function(x,fobj,...){ if(!any(class(fobj)=="fitQmapPTF")) stop("class(fobj) should be fitQmapPTF") UseMethod("doQmapPTF") } doQmapPTF.default <- function(x,fobj,...){ ffun <- fobj$tfun funpar <- fobj$par wett <- if(!is.null(fobj$wet.day)){ x>=fobj$wet.day } else { rep(TRUE,length(x)) } x[wett] <- do.call(ffun,c(list(x[wett]),as.list(funpar))) x[!wett] <- 0 if(!is.null(fobj$wet.day)) x[x<0] <- 0 return(x) } doQmapPTF.matrix <- function (x, fobj, ...) { if (ncol(x) != nrow(fobj$par)) stop("'ncol(x)' and 'nrow(fobj$par)' should be eaqual\n") NN <- ncol(x) hind <- 1:NN names(hind) <- colnames(x) tfun <- fobj$tfun funpar <- fobj$par xx <- sapply(hind, function(i) { tr <- try({ xh <- x[, i] wett <- if (!is.null(fobj$wet.day)) { xh >= fobj$wet.day[i] } else { rep(TRUE, length(xh)) } xh[wett] <- do.call(tfun, c(list(xh[wett]), as.list(funpar[i, ]))) xh[!wett] <- 0 if (!is.null(fobj$wet.day)) xh[xh < 0] <- 0 xh }, silent = TRUE) if (class(tr) == "try-error") { warning("Quantile mapping for ", names(hind)[i], " failed NA's produced.") tr <- rep(NA, nrow(x)) } return(tr) }) rownames(xx) <- rownames(x) return(xx) } doQmapPTF.data.frame <- function(x,fobj,...){ x <- as.matrix(x) x <- doQmapPTF.matrix(x,fobj,...) x <- as.data.frame(x) return(x) }
context('get_cw_file') test_that('Failed to read crosswalk file of type: delimited (pipe)', { cw <- get_cw_file('./testdata/cw.txt', delimiter = '|') expect_is(cw, 'data.frame') expect_identical(names(cw), c('a','b')) expect_identical(unlist(cw[1,], use.names = FALSE), c('1','2')) }) test_that('Failed to read crosswalk file of type: delimited (CSV)', { cw <- get_cw_file('./testdata/cw.csv') expect_is(cw, 'data.frame') expect_identical(names(cw), c('a','b')) expect_identical(unlist(cw[1,], use.names = FALSE), c('1','2')) }) test_that('Failed to read crosswalk file of type: delimited (TSV)', { cw <- get_cw_file('./testdata/cw.tsv') expect_is(cw, 'data.frame') expect_identical(names(cw), c('a','b')) expect_identical(unlist(cw[1,], use.names = FALSE), c('1','2')) }) test_that('Failed to read crosswalk file of type: Excel (XLS)', { cw <- get_cw_file('./testdata/cw.xls') expect_is(cw, 'data.frame') expect_identical(names(cw), c('a','b')) expect_identical(unlist(cw[1,], use.names = FALSE), c('1','2')) }) test_that('Failed to read crosswalk file of type: Excel (XLSX)', { cw <- get_cw_file('./testdata/cw.xlsx') expect_is(cw, 'data.frame') expect_identical(names(cw), c('a','b')) expect_identical(unlist(cw[1,], use.names = FALSE), c('1','2')) }) test_that('Failed to read crosswalk file of type: Stata (DTA)', { cw <- get_cw_file('./testdata/cw.dta') expect_is(cw, 'data.frame') expect_identical(names(cw), c('a','b')) expect_identical(unlist(cw[1,], use.names = FALSE), c('1','2')) })
zotero_download_and_export_items <- function(group, file, format = "bibtex", showKeys = TRUE) { bibliography <- zotero_get_all_items(group = group, format = format); if (dir.exists(dirname(file))) { writeLines(bibliography, file); } else { warning( paste0( "You specified filename `", file, "` to write to, but the directory in that path does not exist." ) ) } if (showKeys) { print(gsub("^@[a-zA-Z0-9]+\\{(.*),", "\\1", bibliography)[grep("^@[a-zA-Z0-9]+\\{(.*),", bibliography)]); } return(invisible(bibliography)); }
library(knitr) knitr::opts_chunk$set(fig.height=4, fig.width=6, cache=TRUE, autodep = TRUE, cache.path = 'show_lemonade/') library(ggplot2) library(gtable) library(grid) dat1 <- data.frame( gp = factor(rep(letters[1:3], each = 10)), y = rnorm(30), cl = sample.int(3, 30, replace=TRUE), cl2 = sample(c('a','b','c'), 30, replace=TRUE) ) my.theme <- theme_light() ( p <- ggplot(dat1, aes(gp, y)) + geom_point() + my.theme ) g <- ggplotGrob(p) for (i in 1:nrow(g$layout)) { if (g$layout$name[i] == 'lemon') next h <- g$heights[[g$layout$t[i]]] rot <- if (as.character(h) == "1null") 90 else 0 w <- g$widths[[g$layout$l[i]]] rot <- if (rot == 90 && as.character(w) == "1null") 0 else rot r <- rectGrob(gp=gpar(col='black', fill='white', alpha=1/4)) t <- textGrob(g$layout$name[i], rot = rot) g$grobs[[i]] <- grobTree(r, t) } grid.newpage() grid.draw(g) is.small <- function(x) { if (!is.unit(x)) stop('`h` is not a unit.') if (is.null(attr(x, 'unit'))) return(FALSE) if (as.numeric(x) == 1 & attr(x, 'unit') == 'null') return(FALSE) if (as.numeric(x) == 0) return(TRUE) n <- as.numeric(x) r <- switch(attr(x, 'unit'), 'null'= FALSE, 'line'= n < 1, 'pt'= n < 10, 'cm' = n < 1, 'grobheight' = FALSE, 'grobwidth' = FALSE, NA) return(r) } g <- ggplotGrob(p) gp.gutter <- gpar(colour='grey', lty='dashed') g <- gtable_add_cols(g, unit(2, 'line'), 0) for (i in 2:nrow(g)) { g <- gtable_add_grob(g, t=i, l=1, clip='off', grobs=grobTree( textGrob(sprintf('(%d, )', i-1)), linesGrob(x=unit(c(-100,100), 'npc'), y=1, gp=gp.gutter) ), name='lemon') if (is.small(g$heights[[i]])) g$heights[[i]] <- unit(1, 'line') } g <- gtable_add_rows(g, unit(1, 'line'), 0) for (i in 2:ncol(g)) { g <- gtable_add_grob(g, t=1, l=i, clip='off', grobs=grobTree( textGrob(sprintf('( ,%d)', i-1)), linesGrob(x=1, unit(c(-100, 100), 'npc'), gp=gp.gutter) ), name='lemon') if (is.small(g$widths[[i]])) g$widths[[i]] <- unit(2, 'line') } grid.newpage() grid.draw(g) gtable_show_grill <- function(x, plot=TRUE) { if (is.ggplot(x)) x <- ggplotGrob(x) gp.gutter <- gpar(colour='grey', lty='dashed') if (is.null(x$vp)) { x$vp <- viewport(clip = 'on') } x <- gtable_add_cols(x, unit(2, 'line'), 0) for (i in 2:nrow(x)) { x <- gtable_add_grob(x, t=i, l=1, clip='off', grobs=grobTree( textGrob(sprintf('[%d, ]', i-1)), linesGrob(x=unit(c(-100,100), 'npc'), y=1, gp=gp.gutter) ), name='lemon') if (is.small(x$heights[[i]])) x$heights[[i]] <- unit(1, 'line') } x <- gtable_add_rows(x, unit(1, 'line'), 0) for (i in 2:ncol(x)) { x <- gtable_add_grob(x, t=1, l=i, clip='off', grobs=grobTree( textGrob(sprintf('[ ,%d]', i-1)), linesGrob(x=1, unit(c(-100, 100), 'npc'), gp=gp.gutter) ), name='lemon') if (is.small(x$widths[[i]])) x$widths[[i]] <- unit(2, 'line') } if (plot) { grid.newpage() grid.draw(x) } invisible(x) } gtable_show_grill(p) gtable_show_names <- function(x, plot=TRUE) { if (is.ggplot(x)) x <- ggplotGrob(x) for (i in 1:nrow(x$layout)) { if (x$layout$name[i] == 'lemon') next if (grepl('ylab', x$layout$name[i])) { rot <- 90 } else if (grepl('-l', x$layout$name[i])) { rot <- 90 } else if (grepl('-r', x$layout$name[i])) { rot <- 90 } else { rot <- 0 } r <- rectGrob(gp=gpar(col='black', fill='white', alpha=1/4)) t <- textGrob(x$layout$name[i], rot = rot) x$grobs[[i]] <- grobTree(r, t) } if (plot) { grid.newpage() grid.draw(x) } invisible(x) } gtable_show_names(p) gtable_show_names(gtable_show_grill(p, plot=FALSE)) try(rm(list=c('gtable_show_names','gtable_show_grill')), silent=TRUE) library(lemon) print(p) grid.draw(gtable_show_names(p, plot=FALSE)) gp <- ggplotGrob(p) gp <- gtable_add_rows(gp, g$heights[1], 0) gp <- gtable_add_cols(gp, unit(1.5, 'line')) gp <- gtable_add_grob(gp, linesGrob(x=0.5, gp=gpar(colour='grey', lwd=1.2)), t=1, b=nrow(gp), l=ncol(gp)) g <- gtable_show_names(gtable_show_grill(p, plot=FALSE), plot=FALSE) g <- cbind(gp, g) grid.newpage() grid.draw(g)
marginalRelevance <- function (x, y) { e1 <- new.env() if (!is.factor(y)) stop("error: y is not a factor") NF <- dim(x)[2] NK <- length(unique(y)) u <- matrix(0, 1, NF) l <- matrix(0, 1, NF) xOrdered <- matrix(0, dim(x)[1], NF) bestVars <- matrix(0, 1, NF) x_dot_f <- apply(x, 2, mean) for (k in 1:NK) { u <- u + sum(y == levels(y)[k]) * ((apply(x[y == levels(y)[k], ], 2, mean) - x_dot_f)^2) l <- l + apply((x[y == levels(y)[k], ] - kronecker(matrix(1, sum(y == levels(y)[k]), 1), t(as.matrix(apply(x[y == levels(y)[k], ], 2, mean)))))^2, 2, sum) } e1$score <- u/l e1$rank <- rank(-e1$score, ties.method = "random") for (i in 1:NF) { bestVars[i] <- which(e1$rank == i) xOrdered[, i] <- x[, which(e1$rank == i)] } e1$bestVars <- bestVars e1$orderedData <- xOrdered e1 <- as.list(e1) class(e1) = "marginalRelevance" return(e1) }
if(interactive()) { library(parcoords) library(shiny) ui <- tagList( textOutput("filteredstate", container=h3), parcoordsOutput("pc") ) server <- function(input, output, session) { rv <- reactiveValues(filtered = FALSE) output$pc <- renderParcoords({ parcoords(mtcars) }) observe({ invalidateLater(2500) rv$filtered <- !isolate(rv$filtered) }) observeEvent(rv$filtered, { pcp <- parcoordsProxy("pc") if(rv$filtered) { pcFilter( pcp, list( cyl = c(6,8), hp = list(gt = 200) ) ) } else { pcFilter(pcp, list()) } }) output$filteredstate <- renderText({ paste0("Filtered: ", rv$filtered) }) } shinyApp(ui = ui, server = server) library(shiny) library(parcoords) ui <- tags$div( parcoordsOutput("pc", width = 2500), style="width: 2500px;" ) server <- function(input, output, session) { pcp <- parcoordsProxy("pc") output$pc <- renderParcoords({ parcoords(mtcars) }) pcCenter(pcp, 'drat') } shinyApp(ui=ui, server=server) library(parcoords) library(shiny) ui <- tagList( selectizeInput( inputId = "columns", label = "Columns to Hide", choices = c("names",colnames(mtcars)), selected = "names", multiple = TRUE ), parcoordsOutput("pc"), checkboxInput("hidenames", label="Hide Row Names", value=TRUE), parcoordsOutput("pc2") ) server <- function(input, output, session) { output$pc <- renderParcoords({ parcoords(mtcars, rownames = FALSE, brushMode = "1d") }) output$pc2 <- renderParcoords({ parcoords(mtcars, rownames = FALSE) }) pcUnhide observeEvent(input$columns, { pcp <- parcoordsProxy("pc") pcHide(pcp, input$columns) }, ignoreInit = TRUE, ignoreNULL = FALSE) observeEvent(input$hidenames, { pcp2 <- parcoordsProxy("pc2") if(input$hidenames) { pcHide(pcp2, "names") } else { pcUnhide(pcp2, "names") } }) } shinyApp(ui = ui, server = server) library(shiny) library(parcoords) ui <- tags$div( actionButton(inputId = "snapBtn", label = "snapshot"), parcoordsOutput("pc", height=400) ) server <- function(input, output, session) { pcp <- parcoordsProxy("pc") output$pc <- renderParcoords({ parcoords(mtcars) }) observeEvent(input$snapBtn, { pcp <- parcoordsProxy("pc") pcSnapshot(pcp) }) } shinyApp(ui=ui, server=server) }
gridfs <- function(db = "test", url = "mongodb://localhost", prefix = "fs", options = ssl_options()){ client <- new_client(c(list(uri = url), options)) if(missing(db) || is.null(db)){ url_db <- mongo_get_default_database(client) if(length(url_db) && nchar(url_db)) db <- url_db } fs <- mongo_gridfs_new(client, prefix, db) orig <- list( prefix = prefix, db = db, url = url, options = options ) if(length(options$pem_file) && file.exists(options$pem_file)) attr(orig, "pemdata") <- readLines(options$pem_file) rm(client) fs_object(fs, orig) } fs_object <- function(fs, orig){ check_fs <- function(){ if(null_ptr(fs)){ message("Connection lost. Trying to reconnect with mongo...") fs <<- gridfs_reset(orig) } } self <- local({ drop <- function(){ check_fs() mongo_gridfs_drop(fs) } find <- function(filter = '{}', options = '{}'){ check_fs() mongo_gridfs_find(fs, filter, options) } upload <- function(path, name = basename(path), content_type = NULL, metadata = NULL){ check_fs() mongo_gridfs_upload(fs, name, path, content_type, metadata) } download <- function(name, path = "."){ check_fs() mongo_gridfs_download(fs, name, path) } read <- function(name, con = NULL, progress = TRUE){ check_fs() mongo_gridfs_read_stream(fs, name, con, progress) } write <- function(con, name, content_type = NULL, metadata = NULL, progress = TRUE){ check_fs() mongo_gridfs_write_stream(fs, name, con, content_type, metadata, progress) } remove <- function(name){ check_fs() mongo_gridfs_remove(fs, name) } disconnect <- function(gc = TRUE){ mongo_gridfs_disconnect(fs) if(isTRUE(gc)) base::gc() invisible() } environment() }) lockEnvironment(self, TRUE) structure(self, class=c("gridfs", "jeroen", class(self))) } gridfs_reset <- function(orig){ if(length(orig$options$pem_file) && !file.exists(orig$options$pem_file)){ orig$options$pem_file <- tempfile() writeLines(attr(orig, "pemdata"), orig$options$pem_file) } client <- new_client(c(list(uri = orig$url), orig$options)) mongo_gridfs_new(client, prefix = orig$prefix, db = orig$db) } mongo_gridfs_new <- function(client, prefix, db){ .Call(R_mongo_gridfs_new, client, prefix, db) } mongo_gridfs_drop <- function(fs){ .Call(R_mongo_gridfs_drop, fs) } mongo_gridfs_find <- function(fs, filter, opts){ out <- .Call(R_mongo_gridfs_find, fs, bson_or_json(filter), bson_or_json(opts)) list_to_df(out) } mongo_gridfs_disconnect <- function(fs){ stopifnot(inherits(fs, "mongo_gridfs")) .Call(R_mongo_gridfs_disconnect, fs) } mongo_gridfs_upload <- function(fs, name, path, type, metadata){ stopifnot(is.character(name)) path <- normalizePath(path, mustWork = TRUE) is_dir <- file.info(path)$isdir if(any(is_dir)) stop(sprintf("Upload contains directories, you can only upload files (%s)", paste(path[is_dir], collapse = ", "))) stopifnot(length(name) == length(path)) id <- rep(NA, length(name)) if(is.null(type)) type <- mime::guess_type(name, unknown = NA, empty = NA) type <- as.character(rep_len(type, length(name))) metadata <- if(length(metadata)) bson_or_json(metadata) out <- vector("list", length(name)) for(i in seq_along(name)){ out[[i]] <- .Call(R_mongo_gridfs_upload, fs, name[i], path[i], type[i], metadata) } df <- list_to_df(out) df$path = path df } mongo_gridfs_download <- function(fs, name, path){ if(length(path) == 1 && isTRUE(file.info(path)$isdir)){ path <- normalizePath(file.path(path, name), mustWork = FALSE) } else if(length(name) != length(path)){ stop("Argument 'path' must be an existing dir or vector of filenames equal length as 'name'") } path <- normalizePath(path, mustWork = FALSE) lapply(path, function(x){ dir.create(dirname(x), showWarnings = FALSE, recursive = TRUE)}) stopifnot(length(name) == length(path)) out <- vector("list", length(name)) for(i in seq_along(name)){ out[[i]] <- .Call(R_mongo_gridfs_download, fs, name_or_query(name[i]), path[i]) } df <- list_to_df(out) df$path = path df } mongo_gridfs_remove <- function(fs, name){ out <- lapply(name, function(x){ .Call(R_mongo_gridfs_remove, fs, name_or_query(x)) }) list_to_df(out) } mongo_gridfs_read_stream <- function(fs, name, con, progress = TRUE){ name <- name_or_query(name) stream <- .Call(R_new_read_stream, fs, name) size <- attr(stream, 'size') if(length(con) && is.character(con)) con <- file(con, raw = TRUE) if(!length(con)){ con <- rawConnection(raw(size), 'wb') on.exit(close(con)) } stopifnot(inherits(con, "connection")) if(!isOpen(con)){ open(con, 'wb') on.exit(close(con)) } remaining <- size bufsize <- 1024 * 1024 while(remaining > 0){ buf <- .Call(R_stream_read_chunk, stream, bufsize) remaining <- remaining - length(buf) if(length(buf) < bufsize && remaining > 0) stop("Stream read incomplete: ", remaining, " remaining") writeBin(buf, con) if(isTRUE(progress)) cat(sprintf("\r[%s]: read %s (%d%%) ", name, as_size(size - remaining), as.integer(100 * (size - remaining) / size))) } if(isTRUE(progress)) cat(sprintf("\r[%s]: read %s (done)\n", name, as_size(size - remaining))) out <- .Call(R_stream_close, stream) if(inherits(con, 'rawConnection')) out$data <- rawConnectionValue(con) structure(out, class = "miniprint") } mongo_gridfs_write_stream <- function(fs, name, con, type, metadata, progress = TRUE){ stopifnot(is.character(name)) type <- as.character(type) metadata <- if(length(metadata)) bson_or_json(metadata) stream <- .Call(R_new_write_stream, fs, name, type, metadata) if(length(con) && is.character(con)){ con <- if(grepl("^https?://", con)){ url(con) } else { file(con, raw = TRUE) } } if(is.raw(con)){ con <- rawConnection(con, 'rb') on.exit(close(con)) } stopifnot(inherits(con, "connection")) if(!isOpen(con)){ open(con, 'rb') on.exit(close(con)) } total <- 0 bufsize <- 1024 * 1024 repeat { buf <- readBin(con, raw(), bufsize) total <- total + .Call(R_stream_write_chunk, stream, buf) if(!length(buf)) break if(isTRUE(progress)) cat(sprintf("\r[%s]: written %s ", name, as_size(total))) } if(isTRUE(progress)) cat(sprintf("\r[%s]: written %s (done)\n", name, as_size(total))) out <- .Call(R_stream_close, stream) structure(out, class = "miniprint") } as_size <- function(n) { format(structure(n, class="object_size"), units="auto", standard = "SI", digits = 2L) } list_to_df <- function(list, cols = c("id", "name", "size", "date", "type", "metadata")){ out <- lapply(cols, function(col){ sapply(list, `[[`, col) }) df <- structure(out, class="data.frame", names = cols, row.names = seq_along(list)) class(df$date) = c("POSIXct", "POSIXt") df } name_or_query <- function(x){ if(!is.character(x)){ stop("Parameter 'name' must be a json query or filename (without spaces)") } if(grepl("^id:", x)){ x <- sprintf('{"_id": {"$oid":"%s"}}', sub("^id:", "", x)) } if(jsonlite::validate(x)){ return(bson_or_json(x)) } else { if(grepl("[\t {]", x)){ stop("Parameter 'name' does not contain valid json or filename (no spaces)") } return(x) } }
NULL get_hsy <- function(which.data=NULL, which.year=2013, data.dir=tempdir(), verbose=TRUE) { if (which.data=="Vaestotietoruudukko") { .Deprecated(new = "get_vaestotietoruudukko", package = "helsinki") message("get_hsy() has been deprecated, use get_vaestotietoruudukko() instead") return(NULL) } else if (which.data=="Rakennustietoruudukko") { .Deprecated(new = "get_rakennustietoruudukko", package = "helsinki") message("get_hsy() has been deprecated, use get_vaestotietoruudukko() instead") return(NULL) } else if (is.null(which.data)) { .Deprecated("get_feature") message("get_hsy() has been deprecated, use get_feature_list() to browse for available HSY features and get_feature() to download them") return(NULL) } else { .Deprecated("get_feature") message("get_hsy() has been deprecated, use get_feature_list() to browse for available HSY features and get_feature() to download them") return(NULL) } } get_vaestotietoruudukko <- function(year = NULL) { namespace_title <- "asuminen_ja_maankaytto:Vaestotietoruudukko" base_url <- "https://kartta.hsy.fi/geoserver/wfs" valid_years <- 2015:2020 if (is.null(year)) { message(paste0("year = NULL! Retrieving feature from year ", max(valid_years))) year <- max(valid_years) } if (!(year %in% valid_years)) { message(paste0("It is strongly suggested to use a valid year from range: 2015-2019. Using other years may result in an error.")) } selection <- paste(namespace_title, year, sep = "_") feature <- get_feature(base.url = base_url, typename = selection) feature } get_rakennustietoruudukko <- function(year = NULL) { namespace_title <- "asuminen_ja_maankaytto:Rakennustietoruudukko" base_url <- "https://kartta.hsy.fi/geoserver/wfs" valid_years <- 2015:2020 if (is.null(year)) { message(paste0("year = NULL! Retrieving feature from year ", max(valid_years))) year <- max(valid_years) } if (!(year %in% valid_years)) { message(paste0("It is strongly suggested to use a valid year from range: 2015-2019. Using other years may result in an error.")) } selection <- paste(namespace_title, year, sep = "_") feature <- get_feature(base.url = base_url, typename = selection) feature }
get_models <- function(fixed, random = NULL, data, auxvars = NULL, timevar = NULL, no_model = NULL, models = NULL, analysis_type = NULL, warn = TRUE) { if (missing(fixed)) errormsg("No formula specified.") if (missing(data)) errormsg("No dataset given.") if (!is.null(auxvars) & class(auxvars) != 'formula') errormsg("The argument %s should be a formula.", dQuote("auxvars")) models_user <- models if (is.null(attr(fixed[[1]], 'type'))) fixed <- extract_outcome_data(fixed, random = random, data = data, analysis_type = analysis_type, warn = FALSE)$fixed if (!is.null(timevar)) { no_model <- c(no_model, timevar) } allvars <- unique(c(all_vars(c(fixed, random, auxvars)), timevar)) if (any(!names(models) %in% names(data))) { errormsg("Variable(s) %s were not found in the data." , paste_and(dQuote(names(models)[!names(models) %in% names(data)]))) } if (!is.null(no_model) && any(colSums(is.na(data[, no_model, drop = FALSE])) > 0)) { errormsg("Variable(s) %s have missing values and imputation models are needed for these variables." , paste(dQuote(no_model[colSums(is.na(data[, no_model, drop = FALSE])) > 0]), collapse = ", ")) } if (any(!names(models_user) %in% allvars)) { errormsg("You have specified covariate model types for the variable(s) %s which are not part of the model.", paste_and(dQuote(names(models_user)[ !names(models_user) %in% allvars]))) } idvar <- extract_id(random, warn = warn) groups <- get_groups(idvar, data) random2 <- remove_grouping(random) allvars <- unique(c(names(fixed), all_vars(c(remove_lhs(fixed), random2, auxvars)), names(models), timevar)) group_lvls <- colSums(!identify_level_relations(groups)) max_lvl <- max(group_lvls) if (length(allvars) > 0) { varinfo <- sapply(allvars, function(k) { x <- eval(parse(text = k), envir = data) out <- k %in% names(fixed) lvl <- group_lvls[ check_varlevel(x, groups, group_lvls = identify_level_relations(groups))] nmis <- sum(is.na(x[match(unique(groups[[names(lvl)]]), groups[[names(lvl)]])])) nlev <- length(levels(x)) ordered <- is.ordered(x) data.frame(out = out, lvl = lvl, nmis = nmis, nlev = nlev, ordered = ordered, type = NA) }, simplify = FALSE) varinfo <- melt_data.frame_list(varinfo, id.vars = colnames(varinfo[[1]])) varinfo$type[!varinfo$lvl %in% max_lvl & varinfo$nlev > 2 & varinfo$ordered] <- "clmm" varinfo$type[varinfo$lvl %in% max_lvl & varinfo$nlev > 2 & varinfo$ordered] <- "clm" varinfo$type[!varinfo$lvl %in% max_lvl & varinfo$nlev > 2 & !varinfo$ordered] <- "mlogitmm" varinfo$type[varinfo$lvl %in% max_lvl & varinfo$nlev > 2 & !varinfo$ordered] <- "mlogit" varinfo$type[!varinfo$lvl %in% max_lvl & varinfo$nlev == 2] <- "glmm_binomial_logit" varinfo$type[varinfo$lvl %in% max_lvl & varinfo$nlev == 2] <- "glm_binomial_logit" varinfo$type[!varinfo$lvl %in% max_lvl & varinfo$nlev == 0] <- "lmm" varinfo$type[varinfo$lvl %in% max_lvl & varinfo$nlev == 0] <- "lm" survmods <- sapply(fixed, 'attr', 'type') %in% c('coxph', 'survreg', 'JM') if (any(survmods)) { varinfo$type[varinfo$L1 %in% names(fixed[survmods])] <- sapply(fixed[survmods], 'attr', 'type') } if (!is.null(attr(fixed[[1]], 'type'))) varinfo$type[varinfo$L1 %in% names(fixed)[1]] <- attr(fixed[[1]], 'type') varinfo <- varinfo[which(!varinfo$L1 %in% no_model), , drop = FALSE] types <- split(varinfo, ifelse(varinfo$out, 'outcome', ifelse(varinfo$nmis > 0, paste0('incomplete_lvl', varinfo$lvl), paste0('complete_lvl', varinfo$lvl) ))) types[which(names(types) != 'outcome')] <- lapply(types[which(names(types) != 'outcome')], function(x) x[order(-x$lvl, x$nmis, decreasing = TRUE), , drop = FALSE] ) NA_lvls <- unique(varinfo$lvl[varinfo$nmis > 0]) models <- do.call(rbind, c(types['outcome'], if (any(!varinfo$out) & length(NA_lvls) > 0) lapply(1:max(NA_lvls), function(k) { set <- if (k == max(NA_lvls)) { c('incomplete_lvl') } else { c('incomplete_lvl', 'complete_lvl') } do.call(rbind, types[paste0(set, k)]) }) )) models <- unlist(setNames(models$type, models$L1)) models[names(models_user)] <- models_user } else { models <- NULL } models }
read_sbatch <- function(x) { dat <- if (length(x) == 1 && file.exists(x)) unlist(strsplit(readLines(x), split = "\n")) else x dat <- dat[grepl("^( opts_ids <- which(grepl("^ if (!length(opts_ids)) return(character(0)) opts <- dat[opts_ids] opts <- gsub("^ opts_names <- gsub("=.+", "", opts) opts_names <- gsub("^[-]{2}", "", opts_names) opts <- gsub(".+=", "", opts) structure( opts, names = opts_names ) }
NULL drdid_rc1 <-function(y, post, D, covariates, i.weights = NULL, boot = FALSE, boot.type = "weighted", nboot = NULL, inffunc = FALSE){ D <- as.vector(D) n <- length(D) y <- as.vector(y) post <- as.vector(post) int.cov <- as.matrix(rep(1,n)) if (!is.null(covariates)){ if(all(as.matrix(covariates)[,1]==rep(1,n))){ int.cov <- as.matrix(covariates) } else { int.cov <- as.matrix(cbind(1, covariates)) } } if(is.null(i.weights)) { i.weights <- as.vector(rep(1, n)) } else if(min(i.weights) < 0) stop("i.weights must be non-negative") pscore.tr <- stats::glm(D ~ -1 + int.cov, family = "binomial", weights = i.weights) if(pscore.tr$converged == FALSE){ warning(" glm algorithm did not converge") } if(anyNA(pscore.tr$coefficients)){ stop("Propensity score model coefficients have NA components. \n Multicollinearity (or lack of variation) of covariates is a likely reason.") } ps.fit <- as.vector(pscore.tr$fitted.values) ps.fit <- pmin(ps.fit, 1 - 1e-16) reg.coeff.pre <- stats::coef(stats::lm(y ~ -1 + int.cov, subset = ((D==0) & (post==0)), weights = i.weights)) if(anyNA(reg.coeff.pre)){ stop("Outcome regression model coefficients have NA components. \n Multicollinearity (or lack of variation) of covariates is a likely reason.") } out.y.pre <- as.vector(tcrossprod(reg.coeff.pre, int.cov)) reg.coeff.post <- stats::coef(stats::lm(y ~ -1 + int.cov, subset = ((D==0) & (post==1)), weights = i.weights)) if(anyNA(reg.coeff.post)){ stop("Outcome regression model coefficients have NA components. \n Multicollinearity (or lack of variation) of covariates is a likely reason.") } out.y.post <- as.vector(tcrossprod(reg.coeff.post, int.cov)) out.y <- post * out.y.post + (1 - post) * out.y.pre w.treat.pre <- i.weights * D * (1 - post) w.treat.post <- i.weights * D * post w.cont.pre <- i.weights * ps.fit * (1 - D) * (1 - post)/(1 - ps.fit) w.cont.post <- i.weights * ps.fit * (1 - D) * post/(1 - ps.fit) eta.treat.pre <- w.treat.pre * (y - out.y) / mean(w.treat.pre) eta.treat.post <- w.treat.post * (y - out.y)/ mean(w.treat.post) eta.cont.pre <- w.cont.pre * (y - out.y) / mean(w.cont.pre) eta.cont.post <- w.cont.post * (y - out.y) / mean(w.cont.post) att.treat.pre <- mean(eta.treat.pre) att.treat.post <- mean(eta.treat.post) att.cont.pre <- mean(eta.cont.pre) att.cont.post <- mean(eta.cont.post) dr.att <- (att.treat.post - att.treat.pre) - (att.cont.post - att.cont.pre) weights.ols.pre <- i.weights * (1 - D) * (1 - post) wols.x.pre <- weights.ols.pre * int.cov wols.eX.pre <- weights.ols.pre * (y - out.y.pre) * int.cov XpX.inv.pre <- solve(crossprod(wols.x.pre, int.cov)/n) asy.lin.rep.ols.pre <- wols.eX.pre %*% XpX.inv.pre weights.ols.post <- i.weights * (1 - D) * post wols.x.post <- weights.ols.post * int.cov wols.eX.post <- weights.ols.post * (y - out.y.post) * int.cov XpX.inv.post <- solve(crossprod(wols.x.post, int.cov)/n) asy.lin.rep.ols.post <- wols.eX.post %*% XpX.inv.post score.ps <- i.weights * (D - ps.fit) * int.cov Hessian.ps <- stats::vcov(pscore.tr) * n asy.lin.rep.ps <- score.ps %*% Hessian.ps inf.treat.pre <- eta.treat.pre - w.treat.pre * att.treat.pre/mean(w.treat.pre) inf.treat.post <- eta.treat.post - w.treat.post * att.treat.post/mean(w.treat.post) M1.post <- - base::colMeans(w.treat.post * post * int.cov)/mean(w.treat.post) M1.pre <- - base::colMeans(w.treat.pre * (1 - post) * int.cov)/mean(w.treat.pre) inf.treat.or.post <- asy.lin.rep.ols.post %*% M1.post inf.treat.or.pre <- asy.lin.rep.ols.pre %*% M1.pre inf.treat.or <- inf.treat.or.post + inf.treat.or.pre inf.treat <- inf.treat.post - inf.treat.pre + inf.treat.or inf.cont.pre <- eta.cont.pre - w.cont.pre * att.cont.pre/mean(w.cont.pre) inf.cont.post <- eta.cont.post - w.cont.post * att.cont.post/mean(w.cont.post) M2.pre <- base::colMeans(w.cont.pre *(y - out.y - att.cont.pre) * int.cov)/mean(w.cont.pre) M2.post <- base::colMeans(w.cont.post *(y - out.y - att.cont.post) * int.cov)/mean(w.cont.post) inf.cont.ps <- asy.lin.rep.ps %*% (M2.post - M2.pre) M3.post <- - base::colMeans(w.cont.post * post * int.cov) / mean(w.cont.post) M3.pre <- - base::colMeans(w.cont.pre * (1 - post) * int.cov) / mean(w.cont.pre) inf.cont.or.post <- asy.lin.rep.ols.post %*% M3.post inf.cont.or.pre <- asy.lin.rep.ols.pre %*% M3.pre inf.cont.or <- inf.cont.or.post + inf.cont.or.pre inf.cont <- inf.cont.post - inf.cont.pre + inf.cont.ps + inf.cont.or dr.att.inf.func <- inf.treat - inf.cont if (boot == FALSE) { se.dr.att <- stats::sd(dr.att.inf.func)/sqrt(n) uci <- dr.att + 1.96 * se.dr.att lci <- dr.att - 1.96 * se.dr.att dr.boot <- NULL } if (boot == TRUE) { if (is.null(nboot) == TRUE) nboot = 999 if(boot.type == "multiplier"){ dr.boot <- mboot.did(dr.att.inf.func, nboot) se.dr.att <- stats::IQR(dr.boot) / (stats::qnorm(0.75) - stats::qnorm(0.25)) cv <- stats::quantile(abs(dr.boot/se.dr.att), probs = 0.95) uci <- dr.att + cv * se.dr.att lci <- dr.att - cv * se.dr.att } else { dr.boot <- unlist(lapply(1:nboot, wboot_drdid_rc1, n = n, y = y, post = post, D = D, int.cov = int.cov, i.weights = i.weights)) se.dr.att <- stats::IQR((dr.boot - dr.att)) / (stats::qnorm(0.75) - stats::qnorm(0.25)) cv <- stats::quantile(abs((dr.boot - dr.att)/se.dr.att), probs = 0.95) uci <- dr.att + cv * se.dr.att lci <- dr.att - cv * se.dr.att } } if(inffunc == FALSE) dr.att.inf.func <- NULL call.param <- match.call() argu <- mget(names(formals()), sys.frame(sys.nframe())) boot.type <- ifelse(argu$boot.type=="multiplier", "multiplier", "weighted") boot <- ifelse(argu$boot == TRUE, TRUE, FALSE) argu <- list( panel = FALSE, estMethod = "trad2", boot = boot, boot.type = boot.type, nboot = nboot, type = "dr" ) ret <- (list(ATT = dr.att, se = se.dr.att, uci = uci, lci = lci, boots = dr.boot, att.inf.func = dr.att.inf.func, call.param = call.param, argu = argu)) class(ret) <- "drdid" return(ret) }
NULL ubuntu_add_swap <- function(droplet, user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE ) { droplet_ssh(droplet, "fallocate -l 4G /swapfile", "chmod 600 /swapfile", "mkswap /swapfile", "sudo swapon /swapfile", "sudo echo \"/swapfile none swap sw 0 0\" >> /etc/fstab", user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } ubuntu_install_r <- function(droplet, user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE, rprofile = "options(repos=c('CRAN'='https://cloud.r-project.org/'))" ) { droplet %>% ubuntu_apt_get_cran(user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) %>% ubuntu_apt_get_update(user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) %>% ubuntu_apt_get_install("r-base", "r-base-dev", user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) %>% droplet_ssh(paste("echo", shQuote(rprofile), "> .Rprofile"), user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } ubuntu_install_rstudio <- function(droplet, user = "rstudio", password = "server", version = "0.99.484", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE ) { droplet %>% ubuntu_apt_get_install("gdebi-core", "libapparmor1", user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) %>% droplet_ssh( sprintf('wget http://download2.rstudio.org/rstudio-server-%s-amd64.deb', version), sprintf("sudo gdebi rstudio-server-%s-amd64.deb --non-interactive", version), sprintf('adduser %s --disabled-password --gecos ""', user), sprintf('echo "%s:%s" | chpasswd', user, password), user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } ubuntu_install_shiny <- function(droplet, version = "1.4.0.756", user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE, rprofile = "options(repos=c('CRAN'='https://cloud.r-project.org/'))" ) { droplet %>% ubuntu_install_r( user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose, rprofile = rprofile ) %>% install_r_package("shiny", user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) %>% install_r_package("rmarkdown", user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) %>% ubuntu_apt_get_install("gdebi-core", user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) %>% droplet_ssh( sprintf("wget http://download3.rstudio.org/ubuntu-12.04/x86_64/shiny-server-%s-amd64.deb", version), sprintf("sudo gdebi shiny-server-%s-amd64.deb --non-interactive", version), user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } ubuntu_install_opencpu <- function(droplet, version = "1.5", user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE ) { droplet %>% droplet_ssh( paste0("sudo add-apt-repository ppa:opencpu/opencpu-", version), "sudo apt-get update", "sudo apt-get -q -y install opencpu", "sudo service opencpu start", user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } ubuntu_apt_get_cran <- function(droplet, user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE) { version <- droplet$image$name cran_key <- if(any(version %in% c("20.04 (LTS) x64", "18.04 (LTS) x64"))) { "E298A3A825C0D65DFD57CBB651716619E084DAB9" } if (is.null(cran_key)) { message("The CRAN setup requires to use the ubuntu-20-04-x64 or ubuntu-18-04-x64 images.") stop() } cran_url <- "https://cran.pacha.dev/bin/linux/ubuntu/" cran_apt <- switch( version, "20.04 (LTS) x64" = "focal-cran40", "18.04 (LTS) x64" = "bionic-cran35" ) droplet_ssh(droplet, sprintf( "apt-key adv --keyserver keyserver.ubuntu.com --recv-keys %s", cran_key ), sprintf( "printf '\n ), user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } ubuntu_apt_get_update <- function(droplet, user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE) { droplet_ssh(droplet, "sudo apt-get update -qq", "sudo apt-get upgrade -y", user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } ubuntu_apt_get_install <- function(droplet, ..., user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE) { droplet_ssh(droplet, paste0("sudo apt-get install -y --force-yes ", paste(..., collapse = " ")), user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } install_r_package <- function(droplet, package, repo = "https://cloud.r-project.org/", user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE ) { droplet_ssh(droplet, sprintf("Rscript -e \"install.packages(\'%s\', repos=\'%s/\')\"", package, repo), user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } install_github_r_package <- function(droplet, package, repo = "https://cloud.r-project.org/", user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE ) { tf <- tempdir() randName <- paste(sample(c(letters, LETTERS), size = 10, replace = TRUE), collapse = "") tff <- file.path(tf, randName) on.exit({ if (file.exists(tff)) { file.remove(tff) } }) command = "Rscript -e \"cat(requireNamespace('remotes', quietly = TRUE))\"" droplet_ssh(droplet, paste0(command, " > /tmp/", randName), user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) droplet_download(droplet, paste0("/tmp/", randName), tf, user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose) droplet_ssh(droplet, paste0("rm /tmp/", randName), user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose) have_remotes <- readLines(tff, warn = FALSE) if (length(have_remotes) == 1) { if (have_remotes %in% c("TRUE", "FALSE")) { have_remotes = as.logical(have_remotes) } else { have_remotes = FALSE } } else { have_remotes = FALSE } if (!have_remotes) { install_r_package(droplet, "remotes", repo = repo, user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } droplet_ssh( droplet, sprintf("Rscript -e \"remotes::install_github('%s')\"", package), user = user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) } create_password <- function(n = 8) { stopifnot(n >= 8 & n <= 15) stopifnot(length(n) == 1 & is.numeric(n)) sam <- list() sam[[1]] <- 0:9 sam[[2]] <- letters sam[[3]] <- LETTERS p <- mapply(sample, sam, 10) return(paste(sample(p, n), collapse = "")) } ubuntu_create_user <- function(droplet, user, password , ssh_user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE) { check_for_a_pkg("ssh") if (missing(user)) stop("'user' is required") if (missing(password)) { password <- create_password(10) warning(sprintf("no 'password' suplied for '%s', using '%s'", user, password)) } if (password == "rstudio") stop("supply a 'password' other than 'rstudio'") droplet <- as.droplet(droplet) droplet_ssh(droplet, sprintf( "useradd -m -p $(openssl passwd -1 %s) %s", password, user ), user = ssh_user, keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose ) }
expected <- eval(parse(text="c(1, 0, 1)")); test(id=0, code={ argv <- eval(parse(text="list(c(TRUE, FALSE, TRUE))")); do.call(`as.double`, argv); }, o=expected);
Id <- "$Id: bhpm.cluster.BB.hier3.lev2.summary.stats.R,v 1.13 2020/03/31 12:42:23 clb13102 Exp clb13102 $" bhpm.cluster.BB.dep.lev2.summary.stats <- function(raw, prob = 0.95) { s_base = bhpm.cluster.1a.dep.lev2.summary.stats(raw, prob) if (is.null(s_base)) { return(NULL) } monitor = raw$monitor theta_mon = monitor[monitor$variable == "theta",]$monitor gamma_mon = monitor[monitor$variable == "gamma",]$monitor mu.theta_mon = monitor[monitor$variable == "mu.theta",]$monitor mu.gamma_mon = monitor[monitor$variable == "mu.gamma",]$monitor sigma2.theta_mon = monitor[monitor$variable == "sigma2.theta",]$monitor sigma2.gamma_mon = monitor[monitor$variable == "sigma2.gamma",]$monitor mu.theta.0_mon = monitor[monitor$variable == "mu.theta.0",]$monitor mu.gamma.0_mon = monitor[monitor$variable == "mu.gamma.0",]$monitor tau2.theta.0_mon = monitor[monitor$variable == "tau2.theta.0",]$monitor tau2.gamma.0_mon = monitor[monitor$variable == "tau2.gamma.0",]$monitor pi_mon = monitor[monitor$variable == "pi",]$monitor alpha_pi_mon = monitor[monitor$variable == "alpha.pi",]$monitor beta_pi_mon = monitor[monitor$variable == "beta.pi",]$monitor theta.trt.grps <- raw$Trt.Grps[ raw$Trt.Grps$param == "theta", ]$Trt.Grp if (pi_mon == 1 && !("pi" %in% names(raw))) { message("Missing pi data"); return(NULL) } if (alpha_pi_mon == 1 && !("alpha.pi" %in% names(raw))) { message("Missing alpha.pi data"); return(NULL) } if (beta_pi_mon == 1 && !("beta.pi" %in% names(raw))) { message("Missing beta.pi data"); return(NULL) } nchains = raw$chains pi_summ = data.frame(Trt.Grp = integer(0), Cluster = character(0), Outcome.Grp = character(0), mean = numeric(0), median = numeric(0), hpi_lower = numeric(0), hpi_upper = numeric(0), SD = numeric(0), SE = numeric(0)) alpha.pi_summ = data.frame(Trt.Grp = integer(0), mean = numeric(0), median = numeric(0), hpi_lower = numeric(0), hpi_upper = numeric(0), SD = numeric(0), SE = numeric(0)) beta.pi_summ = data.frame(Trt.Grp = integer(0), mean = numeric(0), median = numeric(0), hpi_lower = numeric(0), hpi_upper = numeric(0), SD = numeric(0), SE = numeric(0)) samples_combined <- rep(NA, (raw$iter - raw$burnin)*nchains) if (pi_mon == 1) { for (i in 1:raw$nClusters) { for (b in 1:raw$nOutcome.Grp[i]) { for (t in 1:(raw$nTreatments - 1)) { s = M_global$summaryStats(raw$pi[, t, i, b, ], nchains, prob) row <- data.frame(Trt.Grp = theta.trt.grps[t], Cluster = raw$Clusters[i], Outcome.Grp = raw$Outcome.Grp[i, b], mean = s[1], median = s[2], hpi_lower = s[3], hpi_upper = s[4], SD = s[5], SE = s[6]) pi_summ = rbind(pi_summ, row) } } } } if (alpha_pi_mon == 1) { for (t in 1:(raw$nTreatments - 1)) { s = M_global$summaryStats(raw$alpha.pi[,t,], nchains, prob) row <- data.frame(Trt.Grp = theta.trt.grps[t], mean = s[1], median = s[2], hpi_lower = s[3], hpi_upper = s[4], SD = s[5], SE = s[6]) alpha.pi_summ = rbind(alpha.pi_summ, row) } } if (beta_pi_mon == 1) { for (t in 1:(raw$nTreatments - 1)) { s = M_global$summaryStats(raw$beta.pi[,t,], nchains, prob) row <- data.frame(Trt.Grp = theta.trt.grps[t], mean = s[1], median = s[2], hpi_lower = s[3], hpi_upper = s[4], SD = s[5], SE = s[6]) beta.pi_summ = rbind(beta.pi_summ, row) } } rownames(pi_summ) <- NULL rownames(alpha.pi_summ) <- NULL rownames(alpha.pi_summ) <- NULL s_BB = list(pi.summary = pi_summ, alpha.pi.summary = alpha.pi_summ, beta.pi.summary = beta.pi_summ) summary.stats= c(s_base, s_BB) attr(summary.stats, "model") = attr(raw, "model") return(summary.stats) } bhpm.cluster.BB.dep.lev2.print.summary.stats <- function(summ) { if (is.null(summ)) { message("NULL summary data"); return(NULL) } monitor = summ$monitor theta_mon = monitor[monitor$variable == "theta",]$monitor gamma_mon = monitor[monitor$variable == "gamma",]$monitor mu.theta_mon = monitor[monitor$variable == "mu.theta",]$monitor mu.gamma_mon = monitor[monitor$variable == "mu.gamma",]$monitor sigma2.theta_mon = monitor[monitor$variable == "sigma2.theta",]$monitor sigma2.gamma_mon = monitor[monitor$variable == "sigma2.gamma",]$monitor mu.theta.0_mon = monitor[monitor$variable == "mu.theta.0",]$monitor mu.gamma.0_mon = monitor[monitor$variable == "mu.gamma.0",]$monitor tau2.theta.0_mon = monitor[monitor$variable == "tau2.theta.0",]$monitor tau2.gamma.0_mon = monitor[monitor$variable == "tau2.gamma.0",]$monitor pi_mon = monitor[monitor$variable == "pi",]$monitor alpha_pi_mon = monitor[monitor$variable == "alpha.pi",]$monitor beta_pi_mon = monitor[monitor$variable == "beta.pi",]$monitor model = attr(summ, "model") if (is.null(model)) { message("Missing model attribute"); return(NULL) } if (theta_mon == 1 && !("theta.summary" %in% names(summ))) { message("Missing theta.summary data"); return(NULL) } if (gamma_mon == 1 && !("gamma.summary" %in% names(summ))) { message("Missing gamma.summary data"); return(NULL) } if (mu.gamma_mon == 1 && !("mu.gamma.summary" %in% names(summ))) { message("Missing mu.gamma.summary data"); return(NULL) } if (mu.theta_mon == 1 && !("mu.theta.summary" %in% names(summ))) { message("Missing mu.theta.summary data"); return(NULL) } if (sigma2.gamma_mon == 1 && !("sigma2.gamma.summary" %in% names(summ))) { message("Missing sigma2.gamma.summary data"); return(NULL) } if (sigma2.theta_mon == 1 && !("sigma2.theta.summary" %in% names(summ))) { message("Missing sigma2.theta.summary data"); return(NULL) } if (mu.gamma.0_mon == 1 && !("mu.gamma.0.summary" %in% names(summ))) { message("Missing mu.gamma.0.summary data"); return(NULL) } if (mu.theta.0_mon == 1 && !("mu.theta.0.summary" %in% names(summ))) { message("Missing mu.theta.0.summary data"); return(NULL) } if (tau2.theta.0_mon == 1 && !("tau2.theta.0.summary" %in% names(summ))) { message("Missing tau2.theta.0.summary data"); return(NULL) } if (tau2.gamma.0_mon == 1 && !("tau2.gamma.0.summary" %in% names(summ))) { message("Missing tau2.gamma.0.summary data"); return(NULL) } if (pi_mon == 1 && !("pi.summary" %in% names(summ))) { message("Missing pi.summary data"); return(NULL) } if (alpha_pi_mon == 1 && !("alpha.pi.summary" %in% names(summ))) { message("Missing alpha.pi.summary data"); return(NULL) } if (beta_pi_mon == 1 && !("beta.pi.summary" %in% names(summ))) { message("Missing beta.pi.summary data"); return(NULL) } cat(sprintf("Variable Mean (HPI) SD SE\n")) cat(sprintf("=============================================================\n")) if (gamma_mon == 1) for (i in 1:nrow(summ$gamma.summary)) { row = summ$gamma.summary[i, ] cat(sprintf("gamma[%s, %s, %s]: %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Cluster, row$Outcome.Grp, row$Outcome, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (theta_mon == 1) for (i in 1:nrow(summ$theta.summary)) { row = summ$theta.summary[i, ] cat(sprintf("theta[%d %s, %s, %s]: %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Trt.Grp, row$Cluster, row$Outcome.Grp, row$Outcome, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (mu.gamma_mon == 1) for (i in 1:nrow(summ$mu.gamma.summary)) { row = summ$mu.gamma.summary[i, ] cat(sprintf("mu.gamma[%s, %s]: %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Cluster, row$Outcome.Grp, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (mu.theta_mon == 1) for (i in 1:nrow(summ$mu.theta.summary)) { row = summ$mu.theta.summary[i, ] cat(sprintf("mu.theta[%d %s, %s]: %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Trt.Grp, row$Cluster, row$Outcome.Grp, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (sigma2.gamma_mon == 1) for (i in 1:nrow(summ$sigma2.gamma.summary)) { row = summ$sigma2.gamma.summary[i, ] cat(sprintf("sigma2.gamma[%s, %s]: %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Cluster, row$Outcome.Grp, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (sigma2.theta_mon == 1) for (i in 1:nrow(summ$sigma2.theta.summary)) { row = summ$sigma2.theta.summary[i, ] cat(sprintf("sigma2.theta[%d %s, %s]: %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Trt.Grp, row$Cluster, row$Outcome.Grp, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (pi_mon == 1) for (i in 1:nrow(summ$pi.summary)) { row = summ$pi.summary[i, ] cat(sprintf("pi[%d %s, %s]: %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Trt.Grp, row$Cluster, row$Outcome.Grp, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (mu.gamma.0_mon == 1) for (i in 1:nrow(summ$mu.gamma.0.summary)) { row = summ$mu.gamma.0.summary[i, ] cat(sprintf("mu.gamma.0: %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (mu.theta.0_mon == 1) for (i in 1:nrow(summ$mu.theta.0.summary)) { row = summ$mu.theta.0.summary[i, ] cat(sprintf("mu.theta.0: %d %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Trt.Grp, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (tau2.gamma.0_mon == 1) for (i in 1:nrow(summ$tau2.gamma.0.summary)) { row = summ$tau2.gamma.0.summary[i, ] cat(sprintf("tau2.gamma.0: %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (tau2.theta.0_mon == 1) for (i in 1:nrow(summ$tau2.theta.0.summary)) { row = summ$tau2.theta.0.summary[i, ] cat(sprintf("tau2.theta.0: %d %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Trt.Grp, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (alpha_pi_mon == 1) for (i in 1:nrow(summ$alpha.pi.summary)) { row = summ$alpha.pi.summary[i, ] cat(sprintf("alpha.pi: %d %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Trt.Grp, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } if (beta_pi_mon == 1) for (i in 1:nrow(summ$beta.pi.summary)) { row = summ$beta.pi.summary[i, ] cat(sprintf("beta.pi: %d %0.6f (%0.6f %0.6f) %0.6f %0.6f\n", row$Trt.Grp, row$mean, row$hpi_lower, row$hpi_upper, row$SD, row$SE)) } }
context("Check describe() functions") test_that("describe cluster_profiles",{ library("DALEX") library("ranger") titanic_small <- titanic_imputed[1:500,] rf_model <- ranger(survived ~., data = titanic_small, probability = TRUE) explainer_rf <- explain(rf_model, data = titanic_small, y = titanic_small$survived, label = "RF", verbose = FALSE) selected_passangers <- select_sample(titanic_small, n = 1) cp_rf <- ceteris_paribus(explainer_rf, selected_passangers) desc_cp_rf <- describe(cp_rf, variables = "age") expect_true("ceteris_paribus_description" %in% class(desc_cp_rf)) })
calc_regres_coef_a <- function(y) { time_count <- seq_along(y) ones <- seq(1,1,length=length(y)) content.matrix <- c(ones, time_count) X <- matrix(content.matrix, byrow = FALSE, ncol = 2) suppressWarnings({ fm <- stats::lsfit(x = X, y = y) data.a <- fm$coef[[1]] }) return(data.a) }
report_side_effects() expect_equal(1+1, 2) Sys.setenv(hihi="lol") expect_equal(1+1, 3) Sys.setenv(hihi="lulz ftw")
is.XiMpLe.node <- function(x){ inherits(x, "XiMpLe.node") } is.XiMpLe.doc <- function(x){ inherits(x, "XiMpLe.doc") } is.XiMpLe.validity <- function(x){ inherits(x, "XiMpLe.validity") } setGeneric("XMLName", function(obj){standardGeneric("XMLName")}) setMethod("XMLName", signature=signature(obj="XiMpLe.node"), function(obj){ return(obj@name) } ) setGeneric("XMLName<-", function(obj, value){standardGeneric("XMLName<-")}) setMethod("XMLName<-", signature=signature(obj="XiMpLe.node"), function(obj, value){ obj@name <- value return(obj) } ) setGeneric("XMLAttrs", function(obj){standardGeneric("XMLAttrs")}) setMethod("XMLAttrs", signature=signature(obj="XiMpLe.node"), function(obj){ return(obj@attributes) } ) setGeneric("XMLAttrs<-", function(obj, value){standardGeneric("XMLAttrs<-")}) setMethod("XMLAttrs<-", signature=signature(obj="XiMpLe.node"), function(obj, value){ obj@attributes <- value return(obj) } ) setGeneric("XMLChildren", function(obj){standardGeneric("XMLChildren")}) setMethod("XMLChildren", signature=signature(obj="XiMpLe.node"), function(obj){ return(obj@children) } ) setMethod("XMLChildren", signature=signature(obj="XiMpLe.doc"), function(obj){ return(obj@children) } ) setGeneric("XMLChildren<-", function(obj, value){standardGeneric("XMLChildren<-")}) setMethod("XMLChildren<-", signature=signature(obj="XiMpLe.node"), function(obj, value){ obj@children <- child.list(value) return(obj) } ) setMethod("XMLChildren<-", signature=signature(obj="XiMpLe.doc"), function(obj, value){ obj@children <- child.list(value) return(obj) } ) setGeneric("XMLValue", function(obj){standardGeneric("XMLValue")}) setMethod("XMLValue", signature=signature(obj="XiMpLe.node"), function(obj){ directValue <- slot(obj, "value") children <- XMLChildren(obj) if("!value!" %in% names(children)){ indirectValue <- sapply( children[names(children) %in% "!value!"], XMLValue, USE.NAMES=FALSE ) } else { indirectValue <- NULL } if(identical(directValue, "")){ if(!is.null(indirectValue)){ return(indirectValue) } else { return(directValue) } } else { return(directValue) } } ) setGeneric("XMLValue<-", function(obj, value){standardGeneric("XMLValue<-")}) setMethod("XMLValue<-", signature=signature(obj="XiMpLe.node"), function(obj, value){ obj@value <- value return(obj) } ) setGeneric("XMLFile", function(obj){standardGeneric("XMLFile")}) setMethod("XMLFile", signature=signature(obj="XiMpLe.doc"), function(obj){ return(obj@file) } ) setGeneric("XMLFile<-", function(obj, value){standardGeneric("XMLFile<-")}) setMethod("XMLFile<-", signature=signature(obj="XiMpLe.doc"), function(obj, value){ obj@file <- value return(obj) } ) setGeneric("XMLDecl", function(obj){standardGeneric("XMLDecl")}) setMethod("XMLDecl", signature=signature(obj="XiMpLe.doc"), function(obj){ return(obj@xml) } ) setGeneric("XMLDecl<-", function(obj, value){standardGeneric("XMLDecl<-")}) setMethod("XMLDecl<-", signature=signature(obj="XiMpLe.doc"), function(obj, value){ obj@xml <- value return(obj) } ) setGeneric("XMLDTD", function(obj){standardGeneric("XMLDTD")}) setMethod("XMLDTD", signature=signature(obj="XiMpLe.doc"), function(obj){ return(obj@dtd) } ) setGeneric("XMLDTD<-", function(obj, value){standardGeneric("XMLDTD<-")}) setMethod("XMLDTD<-", signature=signature(obj="XiMpLe.doc"), function(obj, value){ obj@dtd <- value return(obj) } ) setGeneric("XMLScan", function(obj, name, as.list=FALSE){standardGeneric("XMLScan")}) find.nodes <- function(nodes, nName){ res <- list() for (thisNode in nodes){ if(identical(XMLName(thisNode), nName)){ res <- append(res, thisNode) } else if(length(XMLChildren(thisNode)) > 0){ res <- append(res, find.nodes(XMLChildren(thisNode), nName=nName)) } else {} } return(res) } setMethod("XMLScan", signature=signature(obj="XiMpLe.node"), function(obj, name, as.list=FALSE){ node.list <- find.nodes( nodes=child.list(obj), nName=name) if(identical(node.list, list())){ return(NULL) } else if(length(node.list) == 1 && !isTRUE(as.list)){ return(node.list[[1]]) } else { return(node.list) } } ) setMethod("XMLScan", signature=signature(obj="XiMpLe.doc"), function(obj, name, as.list=FALSE){ node.list <- find.nodes( nodes=XMLChildren(obj), nName=name) if(identical(node.list, list())){ return(NULL) } else if(length(node.list) == 1 && !isTRUE(as.list)){ return(node.list[[1]]) } else { return(node.list) } } ) setGeneric("XMLScan<-", function(obj, name, value){standardGeneric("XMLScan<-")}) replace.nodes <- function(nodes, nName, replacement){ nodes <- sapply(nodes, function(thisNode){ if(identical(XMLName(thisNode), nName)){ return(replacement) } else if(length(XMLChildren(thisNode)) > 0){ XMLChildren(thisNode) <- replace.nodes( XMLChildren(thisNode), nName=nName, replacement=replacement) return(thisNode) } else { return(thisNode) } }) nodes <- Filter(Negate(is.null), nodes) return(nodes) } setMethod("XMLScan<-", signature=signature(obj="XiMpLe.node"), function(obj, name, value){ stopifnot(is.XiMpLe.node(value) || is.null(value)) obj <- replace.nodes( nodes=child.list(obj), nName=name, replacement=value) stopifnot(validObject(object=obj, test=TRUE, complete=TRUE)) if(identical(obj, as.list(value))){ return(value) } else { return(obj[[1]]) } } ) setMethod("XMLScan<-", signature=signature(obj="XiMpLe.doc"), function(obj, name, value){ stopifnot(is.XiMpLe.node(value) || is.null(value)) XMLChildren(obj) <- replace.nodes( nodes=XMLChildren(obj), nName=name, replacement=value)[[1]] stopifnot(validObject(object=obj, test=TRUE, complete=TRUE)) return(obj) } ) setGeneric("XMLScanDeep", function(obj, find=NULL, search="attributes"){standardGeneric("XMLScanDeep")}) recursiveScan <- function(robj, rfind, rsearch, recResult=list(), result, envID="all"){ if(is.XiMpLe.doc(robj)){ recResult <- append(recResult, lapply(robj@children, function(this.child){ recursiveScan(robj=this.child, rfind=rfind, rsearch=rsearch, recResult=recResult, result=result, envID=envID) })) } else if(is.XiMpLe.node(robj)){ foundThis <- NULL if(identical(rsearch, "attributes")){ foundThis <- XMLAttrs(robj)[[rfind]] } else if(identical(rsearch, "name")){ objName <- XMLName(robj) if(identical(objName, rfind)){ foundThis <- objName } else {} } else if(identical(rsearch, "value")){ objValue <- XMLValue(robj) if(identical(objValue, rfind)){ foundThis <- objValue } else {} } else { stop(simpleError("Only \"attributes\", \"name\" or \"value\" are valid for search!")) } if(!is.null(foundThis)){ thisResult <- as.list(result) nodeName <- XMLName(robj) thisResult[[envID]] <- append(thisResult[[envID]], foundThis) names(thisResult[[envID]])[length(thisResult[[envID]])] <- nodeName list2env(thisResult, envir=result) } else {} recResult <- append(recResult, lapply(robj@children, function(this.child){ recursiveScan(robj=this.child, rfind=rfind, rsearch=rsearch, recResult=recResult, result=result, envID=envID) })) } return(recResult) } setMethod("XMLScanDeep", signature=signature(obj="XiMpLe.node"), function(obj, find, search){ result <- new.env() assign(find, c(), envir=result) recursiveScan(robj=obj, rfind=find, rsearch=search, recResult=list(), result=result, envID=find) return(get(find, envir=result)) } ) setMethod("XMLScanDeep", signature=signature(obj="XiMpLe.doc"), function(obj, find, search){ result <- new.env() assign(find, c(), envir=result) recursiveScan(robj=obj, rfind=find, rsearch=search, recResult=list(), result=result, envID=find) return(get(find, envir=result)) } )
mod_estimation_fit_curve_hot_server <- function(input, output, session, stringsAsFactors) { table_reset <- reactiveValues(value = 0) table_var_reset <- reactiveValues(value = 0) observeEvent(input$button_gen_table, { table_reset$value <- 1 table_var_reset$value <- 1 }) previous_coeffs <- reactive({ input$button_gen_table isolate({ formula_select <- input$formula_select }) if (formula_select == "lin-quad") { fit_coeffs_names <- c("coeff_C", "coeff_alpha", "coeff_beta") } else if (formula_select == "lin-quad-no-int") { fit_coeffs_names <- c("coeff_alpha", "coeff_beta") } else if (formula_select == "lin") { fit_coeffs_names <- c("coeff_C", "coeff_alpha") } else if (formula_select == "lin-no-int") { fit_coeffs_names <- c("coeff_alpha") } full_data <- data.frame( matrix( 0.0, nrow = length(fit_coeffs_names), ncol = 2 ) ) %>% `row.names<-`(fit_coeffs_names) %>% `colnames<-`(c("estimate", "std.error")) return(full_data) }) previous_var <- reactive({ input$button_gen_table isolate({ model_formula <- input$formula_select }) fit_coeffs_names <- names_from_model_formula(model_formula) full_data <- matrix( 0.0, nrow = length(fit_coeffs_names), ncol = length(fit_coeffs_names) ) %>% `row.names<-`(fit_coeffs_names) %>% `colnames<-`(fit_coeffs_names) %>% as.data.frame() return(full_data) }) changed_coeffs_data <- reactive({ input$button_gen_table if (is.null(input$fit_coeffs_hot) | isolate(table_reset$value == 1)) { table_reset$value <- 0 return(previous_coeffs()) } else if (!identical(previous_coeffs(), input$fit_coeffs_hot)) { fit_coeffs_names <- row.names(hot_to_r(input$fit_coeffs_hot)) mytable <- as.data.frame(hot_to_r(input$fit_coeffs_hot)) %>% dplyr::mutate_all(as.numeric) %>% `row.names<-`(fit_coeffs_names) return(mytable) } }) changed_var_data <- reactive({ input$button_gen_table if (is.null(input$fit_var_cov_mat_hot) | isolate(table_var_reset$value == 1)) { table_var_reset$value <- 0 return(previous_var()) } else if (!identical(previous_var(), input$fit_var_cov_mat_hot)) { fit_coeffs_names <- row.names(hot_to_r(input$fit_var_cov_mat_hot)) mytable <- as.data.frame(hot_to_r(input$fit_var_cov_mat_hot)) %>% dplyr::mutate_all(as.numeric) %>% `row.names<-`(fit_coeffs_names) return(mytable) } }) output$fit_coeffs_hot <- renderRHandsontable({ num_cols <- ncol(changed_coeffs_data()) hot <- changed_coeffs_data() %>% fix_coeff_names(type = "rows", output = "rhot") %>% rhandsontable( width = (50 + num_cols * 100), height = "100%" ) %>% hot_cols(colWidths = 100) %>% hot_cols(format = "0.000000") hot$x$contextMenu <- list(items = c("remove_row", "---------", "undo", "redo")) return(hot) }) output$fit_var_cov_mat_hot <- renderRHandsontable({ num_cols <- ncol(changed_var_data()) hot <- changed_var_data() %>% fix_coeff_names(type = "rows", output = "rhot") %>% fix_coeff_names(type = "cols", output = "rhot") %>% rhandsontable( width = (50 + num_cols * 100), height = "100%" ) %>% hot_cols(colWidths = 100) %>% hot_cols(format = "0.00000000") hot$x$contextMenu <- list(items = c("remove_row", "---------", "undo", "redo")) return(hot) }) } mod_estimation_fit_curve_server <- function(input, output, session, stringsAsFactors, aberr_module) { data <- reactive({ input$button_view_fit_data isolate({ load_fit_data <- input$load_fit_data_check fit_data <- input$load_fit_data }) input$button_view_fit_data isolate({ if (load_fit_data) { fit_results_list <- readRDS(fit_data$datapath) if (aberr_module == "translocations") { fit_genome_factor <- fit_results_list[["genome_factor"]] if (fit_results_list[["frequency_select"]] == "measured_freq") { trans_frequency_message <- paste0("The provided observed fitting curve has been converted to full genome, with a genomic conversion factor of ", round(fit_genome_factor, 3), ".") } else { trans_frequency_message <- "The provided fitting curve is already full genome." } fit_results_list[["fit_trans_frequency_message"]] <- trans_frequency_message if (fit_results_list[["frequency_select"]] == "measured_freq") { fit_results_list[["fit_coeffs"]][, "estimate"] <- fit_results_list[["fit_coeffs"]][, "estimate"] / fit_genome_factor fit_results_list[["fit_coeffs"]][, "std.error"] <- fit_results_list[["fit_coeffs"]][, "std.error"] / fit_genome_factor fit_results_list[["fit_var_cov_mat"]] <- fit_results_list[["fit_var_cov_mat"]] / fit_genome_factor^2 fit_results_list[["fit_model_statistics"]] <- calculate_model_stats( model_data = fit_results_list[["fit_raw_data"]], fit_coeffs_vec = fit_results_list[["fit_coeffs"]][, "estimate"], response = "yield", link = "identity", type = "theory", genome_factor = fit_genome_factor, calc_type = "estimation" ) } } } else { model_formula <- input$formula_select fit_formula_tex <- parse_model_formula(model_formula)$fit_formula_tex fit_coeffs_raw <- hot_to_r(input$fit_coeffs_hot) fit_coeffs <- fit_coeffs_raw %>% as.matrix() if (input$use_var_cov_matrix) { fit_var_cov_mat <- hot_to_r(input$fit_var_cov_mat_hot) %>% as.matrix() } else { fit_var_cov_mat <- matrix( 0, nrow = nrow(fit_coeffs), ncol = nrow(fit_coeffs) ) %>% `colnames<-`(rownames(fit_coeffs)) %>% `rownames<-`(rownames(fit_coeffs)) for (x_var in rownames(fit_var_cov_mat)) { fit_var_cov_mat[[x_var, x_var]] <- fit_coeffs[x_var, "std.error"] * fit_coeffs[x_var, "std.error"] } } fit_cor_mat <- fit_var_cov_mat for (x_var in rownames(fit_var_cov_mat)) { for (y_var in colnames(fit_var_cov_mat)) { fit_cor_mat[x_var, y_var] <- fit_var_cov_mat[x_var, y_var] / (fit_coeffs[x_var, "std.error"] * fit_coeffs[y_var, "std.error"]) } } if (aberr_module == "translocations") { if (input$frequency_select == "measured_freq") { fit_genome_factor <- input$fit_genome_factor fit_coeffs[, "estimate"] <- fit_coeffs[, "estimate"] / fit_genome_factor fit_coeffs[, "std.error"] <- fit_coeffs[, "std.error"] / fit_genome_factor fit_var_cov_mat <- fit_var_cov_mat / fit_genome_factor^2 } } fit_results_list <- list( fit_formula_tex = fit_formula_tex, fit_coeffs = fit_coeffs, fit_var_cov_mat = fit_var_cov_mat, fit_cor_mat = fit_cor_mat ) if (aberr_module == "translocations") { if (input$frequency_select == "measured_freq") { trans_frequency_message <- paste0("The provided observed fitting curve has been converted to full genome, with a genomic conversion factor of ", input$fit_genome_factor, ".") } else { trans_frequency_message <- "The provided fitting curve is already full genome." } fit_results_list[["fit_trans_frequency_message"]] <- trans_frequency_message } } }) return(fit_results_list) }) output$fit_formula_tex <- renderUI({ if (input$button_view_fit_data <= 0) { return(NULL) } withMathJax(paste0("$$", data()[["fit_formula_tex"]], "$$")) }) output$fit_trans_frequency_message <- renderUI({ if (input$button_view_fit_data <= 0 | aberr_module != "translocations") { return(NULL) } data()[["fit_trans_frequency_message"]] }) output$fit_model_statistics <- renderRHandsontable({ if (input$button_view_fit_data <= 0) { return(NULL) } num_cols <- as.numeric(ncol(data()[["fit_model_statistics"]])) data()[["fit_model_statistics"]] %>% rhandsontable( width = (num_cols * 70), height = "100%" ) %>% hot_cols(colWidths = 70) }) output$fit_coeffs <- renderRHandsontable({ if (input$button_view_fit_data <= 0) { return(NULL) } num_cols <- as.numeric(ncol(data()[["fit_coeffs"]])) data()[["fit_coeffs"]] %>% formatC(format = "e", digits = 3) %>% fix_coeff_names(type = "rows", output = "rhot") %>% rhandsontable( width = (50 + num_cols * 100), height = "100%" ) %>% hot_cols(colWidths = 100) %>% hot_cols(halign = "htRight") }) output$fit_var_cov_mat <- renderRHandsontable({ if (input$button_view_fit_data <= 0) { return(NULL) } num_cols <- as.numeric(ncol(data()[["fit_var_cov_mat"]])) data()[["fit_var_cov_mat"]] %>% formatC(format = "e", digits = 3) %>% fix_coeff_names(type = "rows", output = "rhot") %>% fix_coeff_names(type = "cols", output = "rhot") %>% rhandsontable( width = (50 + num_cols * 100), height = "100%" ) %>% hot_cols(colWidths = 100) %>% hot_cols(halign = "htRight") }) output$fit_cor_mat <- renderRHandsontable({ if (input$button_view_fit_data <= 0) { return(NULL) } num_cols <- as.numeric(ncol(data()[["fit_cor_mat"]])) data()[["fit_cor_mat"]] %>% fix_coeff_names(type = "rows", output = "rhot") %>% fix_coeff_names(type = "cols", output = "rhot") %>% rhandsontable( width = (50 + num_cols * 100), height = "100%" ) %>% hot_cols(colWidths = 100) %>% hot_cols(format = "0.000") }) } mod_estimation_case_hot_server <- function(input, output, session, stringsAsFactors, aberr_module, genome_factor = NULL) { table_reset <- reactiveValues(value = 0) observeEvent(input$button_upd_table, { table_reset$value <- 1 }) previous <- reactive({ input$button_upd_table isolate({ load_case_data <- input$load_case_data_check case_data <- input$load_case_data num_cases <- 1 num_aberrs <- as.numeric(input$num_aberrs) + 1 }) if (!load_case_data) { full_data <- data.frame( matrix( 0, nrow = num_cases, ncol = num_aberrs ) ) %>% `colnames<-`(paste0("C", seq(0, num_aberrs - 1, 1))) } else { full_data <- utils::read.csv(case_data$datapath, header = TRUE) %>% dplyr::rename_with( .fn = toupper, .cols = dplyr::everything() ) %>% dplyr::mutate( dplyr::across( .cols = dplyr::starts_with("C"), .fns = as.integer ) ) %>% dplyr::select( dplyr::starts_with("C") ) } return(full_data) }) changed_data <- reactive({ input$button_upd_table input$button_upd_params isolate({ if (is.null(input$case_data_hot) | isolate(table_reset$value == 1)) { table_reset$value <- 0 mytable <- previous() mytable <- init_aberr_table( data = mytable, type = "case", aberr_module ) } else if (!identical(previous(), input$case_data_hot)) { mytable <- as.data.frame(hot_to_r(input$case_data_hot)) mytable <- calculate_aberr_table( data = mytable, type = "case", assessment_u = 1 ) if (aberr_module == "dicentrics" | aberr_module == "micronuclei") { mytable <- mytable %>% dplyr::mutate( y = .data$mean, y_err = .data$std_err ) %>% dplyr::select(-.data$mean, -.data$std_err) } else if (aberr_module == "translocations") { genome_factor <- genome_factor$genome_factor() mytable <- mytable %>% dplyr::mutate( Fp = .data$mean, Fp_err = .data$std_err ) %>% dplyr::select(-.data$mean, -.data$std_err) %>% dplyr::mutate( Xc = dplyr::case_when( input$trans_confounders & input$trans_confounders_type == "sigurdson" ~ calculate_trans_rate_sigurdson( .data$N, genome_factor, age_value = input$trans_confounder_age, sex_bool = input$trans_confounder_sex, sex_value = input$trans_sex, smoker_bool = input$trans_confounder_smoke, ethnicity_value = input$trans_confounder_ethnicity, region_value = input$trans_confounder_region ), input$trans_confounders & input$trans_confounders_type == "manual" ~ calculate_trans_rate_manual(.data$N, genome_factor, input$trans_expected_aberr_value), TRUE ~ 0 ), Fg = correct_negative_vals(.data$X - .data$Xc) / (.data$N * genome_factor), Fg_err = .data$Fp_err / sqrt(genome_factor) ) } return(mytable) } }) }) output$case_data_hot <- renderRHandsontable({ num_cols <- as.numeric(ncol(changed_data())) hot <- changed_data() %>% rhandsontable( width = (50 + num_cols * 50), height = "100%" ) %>% hot_cols(colWidths = 50) if (aberr_module == "dicentrics" | aberr_module == "micronuclei") { hot <- hot %>% hot_col(c(1, 2, seq(num_cols - 3, num_cols, 1)), readOnly = TRUE) %>% hot_col(num_cols, renderer = " function (instance, td, row, col, prop, value, cellProperties) { Handsontable.renderers.NumericRenderer.apply(this, arguments); if (value > 1.96) { td.style.background = 'pink'; } }") } else if (aberr_module == "translocations") { hot <- hot %>% hot_col(c(1, 2, seq(num_cols - 6, num_cols, 1)), readOnly = TRUE) %>% hot_col(num_cols - 3, renderer = " function (instance, td, row, col, prop, value, cellProperties) { Handsontable.renderers.NumericRenderer.apply(this, arguments); if (value > 1.96) { td.style.background = 'pink'; } }") } hot$x$contextMenu <- list(items = c("remove_row", "---------", "undo", "redo")) return(hot) }) } mod_estimation_results_server <- function(input, output, session, stringsAsFactors, aberr_module, genome_factor = NULL) { data <- reactive({ input$button_estimate cli::cli_h1("Dose estimation calculations") progress <- shiny::Progress$new() on.exit(progress$close()) progress$set(message = "Performing dose estimation", value = 0) isolate({ load_fit_data <- input$load_fit_data_check fit_data <- input$load_fit_data exposure <- input$exposure_select assessment <- input$assessment_select case_data <- hot_to_r(input$case_data_hot) fraction_coeff <- input$fraction_coeff_select }) error_method <- input$error_method_whole_select cli::cli_alert_info("Parsing dose-effect curve...") progress$set(detail = "Parsing dose-effect curve", value = 1 / 6) if (load_fit_data) { fit_results_list <- readRDS(fit_data$datapath) if (aberr_module == "translocations") { fit_genome_factor <- fit_results_list[["genome_factor"]] if (fit_results_list[["frequency_select"]] == "measured_freq") { fit_results_list[["fit_coeffs"]][, "estimate"] <- fit_results_list[["fit_coeffs"]][, "estimate"] / fit_genome_factor fit_results_list[["fit_coeffs"]][, "std.error"] <- fit_results_list[["fit_coeffs"]][, "std.error"] / fit_genome_factor fit_results_list[["fit_var_cov_mat"]] <- fit_results_list[["fit_var_cov_mat"]] / fit_genome_factor^2 } } } else { model_formula <- input$formula_select fit_formula_tex <- parse_model_formula(model_formula)$fit_formula_tex fit_coeffs_raw <- hot_to_r(input$fit_coeffs_hot) fit_coeffs <- fit_coeffs_raw %>% cbind(statistic = c(rep(0, nrow(fit_coeffs_raw)))) %>% as.matrix() %>% `rownames<-`(names_from_model_formula(model_formula)) if (input$use_var_cov_matrix) { fit_var_cov_mat <- hot_to_r(input$fit_var_cov_mat_hot) %>% as.matrix() %>% `colnames<-`(rownames(fit_coeffs)) %>% `rownames<-`(rownames(fit_coeffs)) } else { fit_var_cov_mat <- matrix( 0, nrow = nrow(fit_coeffs), ncol = nrow(fit_coeffs) ) %>% `colnames<-`(rownames(fit_coeffs)) %>% `rownames<-`(rownames(fit_coeffs)) for (x_var in rownames(fit_var_cov_mat)) { fit_var_cov_mat[[x_var, x_var]] <- fit_coeffs[x_var, "std.error"] * fit_coeffs[x_var, "std.error"] } } if (aberr_module == "translocations") { if (input$frequency_select == "measured_freq") { fit_genome_factor <- input$fit_genome_factor fit_coeffs[, "estimate"] <- fit_coeffs[, "estimate"] / fit_genome_factor fit_coeffs[, "std.error"] <- fit_coeffs[, "std.error"] / fit_genome_factor fit_var_cov_mat <- fit_var_cov_mat / fit_genome_factor^2 } } fit_results_list <- list( fit_formula_tex = fit_formula_tex, fit_coeffs = fit_coeffs, fit_var_cov_mat = fit_var_cov_mat ) } fit_coeffs <- fit_results_list[["fit_coeffs"]] fit_var_cov_mat <- fit_results_list[["fit_var_cov_mat"]] fit_formula_tex <- fit_results_list[["fit_formula_tex"]] if (exposure == "protracted") { protracted_time <- input$protracted_time protracted_life_time <- input$protracted_life_time protracted_g_value <- protracted_g_function(protracted_time, protracted_life_time) } else if (exposure == "protracted_high") { protracted_g_value <- 0 protracted_time <- NA protracted_life_time <- NA } else { protracted_g_value <- 1 protracted_time <- NA protracted_life_time <- NA } if (grepl("merkle", error_method, fixed = TRUE)) { conf_int_curve <- as.numeric(paste0("0.", gsub("\\D", "", error_method))) conf_int_yield <- conf_int_curve } else if (error_method == "delta") { conf_int_curve <- 0.83 conf_int_delta <- 0.95 } if (aberr_module == "translocations") { parsed_genome_factor <- genome_factor$genome_factor() } else { parsed_genome_factor <- 1 } if (grepl("merkle", error_method, fixed = TRUE)) { cli::cli_alert_info("Performing whole-body dose estimation (Merkle's method)...") progress$set(detail = "Performing whole-body dose estimation", value = 2 / 6) results_whole <- estimate_whole_body_merkle( case_data, fit_coeffs, fit_var_cov_mat, conf_int_yield, conf_int_curve, protracted_g_value, parsed_genome_factor, aberr_module ) } else if (error_method == "delta") { cli::cli_alert_info("Performing whole-body dose estimation (delta method)...") progress$set(detail = "Performing whole-body dose estimation", value = 2 / 6) results_whole <- estimate_whole_body_delta( case_data, fit_coeffs, fit_var_cov_mat, conf_int_delta, protracted_g_value, aberr_module ) } est_doses_whole <- results_whole[["est_doses"]] AIC_whole <- results_whole[["AIC"]] if (assessment == "partial-body") { if (fraction_coeff == "gamma") { gamma <- input$gamma_coeff } else if (fraction_coeff == "d0") { gamma <- 1 / input$d0_coeff } cli::cli_alert_info("Performing partial-body dose estimation (Dolphin's method)...") progress$set(detail = "Performing partial-body dose estimation", value = 3 / 6) results_partial <- estimate_partial_body_dolphin( case_data, fit_coeffs, fit_var_cov_mat, conf_int = 0.95, protracted_g_value, parsed_genome_factor, gamma, aberr_module ) est_doses_partial <- results_partial[["est_doses"]] est_frac_partial <- results_partial[["est_frac"]] AIC_partial <- results_partial[["AIC"]] } else if (assessment == "hetero") { if (fraction_coeff == "gamma") { gamma <- input$gamma_coeff gamma_error <- input$gamma_error } else if (fraction_coeff == "d0") { gamma <- 1 / input$d0_coeff gamma_error <- 0 } cli::cli_alert_info("Performing heterogeneous dose estimation (mixed Poisson model)...") progress$set(detail = "Performing heterogeneous dose estimation", value = 3 / 6) for (i in 1:5) { try({ results_hetero <- estimate_hetero_mixed_poisson( case_data, fit_coeffs, fit_var_cov_mat, conf_int = 0.95, protracted_g_value, gamma = gamma, gamma_error = gamma_error ) break }) } if (!exists("results_hetero")) { cli::cli_alert_danger("The algorithm did not converge!") showNotification( ui = "The algorithm did not converge!\nPlease try again.", type = "error" ) } est_mixing_prop_hetero <- results_hetero[["est_mixing_prop"]] est_yields_hetero <- results_hetero[["est_yields"]] est_doses_hetero <- results_hetero[["est_doses"]] est_frac_hetero <- results_hetero[["est_frac"]] AIC_hetero <- results_hetero[["AIC"]] } cli::cli_alert_info("Plotting dose estimation results...") progress$set(detail = "Plotting dose estimation results", value = 4 / 6) if (assessment == "whole-body") { est_doses <- list(whole = results_whole) } else if (assessment == "partial-body") { est_doses <- list(whole = results_whole, partial = results_partial) } else if (assessment == "hetero") { est_doses <- list(whole = results_whole, hetero = results_hetero) } aberr_name <- to_title(aberr_module) if (aberr_module == "translocations") { if (nchar(input$trans_name) > 0) { aberr_name <- input$trans_name } } gg_curve <- plot_estimated_dose_curve( est_doses, fit_coeffs, fit_var_cov_mat, protracted_g_value, conf_int_curve = conf_int_curve, aberr_name ) cli::cli_alert_info("Processing results") progress$set(detail = "Processing results", value = 5 / 6) est_results_list <- list( assessment = assessment, est_doses_whole = est_doses_whole, est_doses_partial = NA, est_frac_partial = NA, est_mixing_prop_hetero = NA, est_yields_hetero = NA, est_doses_hetero = NA, est_frac_hetero = NA, AIC_whole = AIC_whole, AIC_partial = NA, AIC_hetero = NA, gg_curve = gg_curve, fit_coeffs = fit_coeffs, protraction = c(0, 0, 0), fit_formula_tex = fit_formula_tex, case_data = case_data, case_description = input$case_description, results_comments = input$results_comments ) if (assessment == "partial-body") { est_results_list[["est_doses_partial"]] <- est_doses_partial est_results_list[["est_frac_partial"]] <- est_frac_partial est_results_list[["est_mixing_prop_hetero"]] <- NA est_results_list[["est_yields_hetero"]] <- NA est_results_list[["est_doses_hetero"]] <- NA est_results_list[["est_frac_hetero"]] <- NA est_results_list[["AIC_partial"]] <- AIC_partial est_results_list[["AIC_hetero"]] <- NA } else if (assessment == "hetero") { est_results_list[["est_mixing_prop_hetero"]] <- est_mixing_prop_hetero est_results_list[["est_yields_hetero"]] <- est_yields_hetero est_results_list[["est_doses_hetero"]] <- est_doses_hetero est_results_list[["est_frac_hetero"]] <- est_frac_hetero est_results_list[["est_doses_partial"]] <- NA est_results_list[["est_frac_partial"]] <- NA est_results_list[["AIC_partial"]] <- NA est_results_list[["AIC_hetero"]] <- AIC_hetero } if (exposure == "protracted" & any(grep("beta", fit_formula_tex))) { est_results_list[["protraction"]] <- c(1, protracted_time, protracted_life_time) } if (aberr_module == "translocations") { est_results_list[["genome_factor"]] <- genome_factor$genome_factor() est_results_list[["chromosome_table"]] <- hot_to_r(input$chromosome_table) est_results_list[["trans_sex"]] <- input$trans_sex if (!input$trans_confounders) { est_results_list[["confounders"]] <- NULL } else if (input$trans_confounders & input$trans_confounders_type == "sigurdson") { est_results_list[["confounders"]] <- c( age_value = input$trans_confounder_age, sex_bool = input$trans_confounder_sex, smoker_bool = input$trans_confounder_smoke, ethnicity_value = input$trans_confounder_ethnicity, region_value = input$trans_confounder_region ) } else if (input$trans_confounders & input$trans_confounders_type == "manual") { est_results_list[["confounders"]] <- input$trans_expected_aberr_value } } cli::cli_alert_success("Dose estimation performed successfully") progress$set(detail = "Done", value = 1) showNotification( ui = "Dose estimation performed successfully" ) return(est_results_list) }) output$estimation_results_ui <- renderUI({ assessment <- input$assessment_select hetero_modal <- bsplus::bs_modal( id = session$ns("help_dose_mixed_yields_modal"), title = "Help: Heterogeneous exposures", size = "large", body = tagList( include_help("estimation/dose_mixed_yields.md") ) ) if (assessment == "whole-body") { return_tabbox <- tabBox( id = "estimation_results_tabs", width = 12, side = "left", title = help_modal_button( container = "tabbox", session$ns("help_dose_mixed_yields"), session$ns("help_dose_mixed_yields_modal") ), tabPanel( title = "Whole-body", h5("Whole-body exposure estimation"), div( class = "hot-improved", rHandsontableOutput(session$ns("est_yields_whole")) ), br(), div( class = "hot-improved", rHandsontableOutput(session$ns("est_doses_whole")) ) ) ) } else if (assessment == "partial-body") { return_tabbox <- tabBox( id = "estimation_results_tabs", width = 12, side = "left", title = help_modal_button( container = "tabbox", session$ns("help_dose_mixed_yields"), session$ns("help_dose_mixed_yields_modal") ), tabPanel( title = "Whole-body", h5("Whole-body exposure estimation"), div( class = "hot-improved", rHandsontableOutput(session$ns("est_yields_whole")) ), br(), div( class = "hot-improved", rHandsontableOutput(session$ns("est_doses_whole")) ) ), tabPanel( title = "Partial-body", h5("Partial-body exposure estimation"), div( class = "hot-improved", rHandsontableOutput(session$ns("est_yields_partial")) ), br(), div( class = "hot-improved", rHandsontableOutput(session$ns("est_doses_partial")) ), br(), h5("Initial fraction of irradiated cells"), div( class = "hot-improved", rHandsontableOutput(session$ns("est_frac_partial")) ) ) ) } else if (assessment == "hetero") { return_tabbox <- tabBox( id = "estimation_results_tabs", width = 12, side = "left", title = help_modal_button( container = "tabbox", session$ns("help_dose_mixed_yields"), session$ns("help_dose_mixed_yields_modal") ), tabPanel( title = "Whole-body", h5("Whole-body exposure estimation"), div( class = "hot-improved", rHandsontableOutput(session$ns("est_yields_whole")) ), br(), div( class = "hot-improved", rHandsontableOutput(session$ns("est_doses_whole")) ) ), tabPanel( title = "Heterogeneous", h5("Observed fraction of irradiated cells and its yield"), div( class = "hot-improved", rHandsontableOutput(session$ns("est_mixing_prop_hetero")) ), br(), h5("Heterogeneous exposure estimation"), div( class = "hot-improved", rHandsontableOutput(session$ns("est_yields_hetero")) ), br(), div( class = "hot-improved", rHandsontableOutput(session$ns("est_doses_hetero")) ), br(), h5("Initial fraction of irradiated cells"), div( class = "hot-improved", rHandsontableOutput(session$ns("est_frac_hetero")) ) ) ) } else { return(NULL) } return(tagList(return_tabbox, hetero_modal)) }) output$est_yields_whole <- renderRHandsontable({ if (input$button_estimate <= 0) { return(NULL) } data()[["est_doses_whole"]] %>% dplyr::select(.data$yield) %>% t() %>% as.data.frame() %>% rhandsontable( width = 320, height = "100%", rowHeaderWidth = 80 ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$est_doses_whole <- renderRHandsontable({ if (input$button_estimate <= 0) { return(NULL) } data()[["est_doses_whole"]] %>% dplyr::select(.data$dose) %>% t() %>% as.data.frame() %>% rhandsontable( width = 320, height = "100%", rowHeaders = "dose (Gy)", rowHeaderWidth = 80 ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$est_yields_partial <- renderRHandsontable({ if (input$button_estimate <= 0 | data()[["assessment"]] != "partial-body") { return(NULL) } data()[["est_doses_partial"]] %>% dplyr::select(.data$yield) %>% t() %>% as.data.frame() %>% dplyr::mutate(dplyr::across(where(is.logical), as.double)) %>% `colnames<-`(c("lower", "estimate", "upper")) %>% `row.names<-`("yield") %>% rhandsontable( width = 320, height = "100%", rowHeaderWidth = 80 ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$est_doses_partial <- renderRHandsontable({ if (input$button_estimate <= 0 | data()[["assessment"]] != "partial-body") { return(NULL) } data()[["est_doses_partial"]] %>% dplyr::select(.data$dose) %>% t() %>% as.data.frame() %>% dplyr::mutate(dplyr::across(where(is.logical), as.double)) %>% `colnames<-`(c("lower", "estimate", "upper")) %>% `row.names<-`("dose (Gy)") %>% rhandsontable( width = 320, height = "100%", rowHeaderWidth = 80 ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$est_frac_partial <- renderRHandsontable({ if (input$button_estimate <= 0 | data()[["assessment"]] != "partial-body") { return(NULL) } data()[["est_frac_partial"]] %>% t() %>% as.data.frame() %>% dplyr::mutate(dplyr::across(where(is.logical), as.double)) %>% `colnames<-`(c("lower", "estimate", "upper")) %>% `row.names<-`("fraction") %>% rhandsontable( width = 320, height = "100%", rowHeaderWidth = 80 ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$est_mixing_prop_hetero <- renderRHandsontable({ if (input$button_estimate <= 0 | data()[["assessment"]] != "hetero") { return(NULL) } data()[["est_mixing_prop_hetero"]] %>% dplyr::mutate(dplyr::across(where(is.logical), as.double)) %>% `colnames<-`(c("yield", "yield.err", "frac", "frac.err")) %>% `row.names<-`(c("dose1", "dose2")) %>% rhandsontable( width = 405, height = "100%", rowHeaderWidth = 85 ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$est_yields_hetero <- renderRHandsontable({ if (input$button_estimate <= 0 | data()[["assessment"]] != "hetero") { return(NULL) } data()[["est_yields_hetero"]] %>% t() %>% as.data.frame() %>% dplyr::mutate(dplyr::across(where(is.logical), as.double)) %>% `colnames<-`(c("lower", "estimate", "upper")) %>% `row.names<-`(c("yield1", "yield2")) %>% rhandsontable( width = 325, height = "100%", rowHeaderWidth = 85 ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$est_doses_hetero <- renderRHandsontable({ if (input$button_estimate <= 0 | data()[["assessment"]] != "hetero") { return(NULL) } data()[["est_doses_hetero"]] %>% t() %>% as.data.frame() %>% dplyr::mutate(dplyr::across(where(is.logical), as.double)) %>% `colnames<-`(c("lower", "estimate", "upper")) %>% `row.names<-`(c("dose1 (Gy)", "dose2 (Gy)")) %>% rhandsontable( width = 325, height = "100%", rowHeaderWidth = 85 ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$est_frac_hetero <- renderRHandsontable({ if (input$button_estimate <= 0 | data()[["assessment"]] != "hetero") { return(NULL) } data()[["est_frac_hetero"]] %>% dplyr::mutate(dplyr::across(where(is.logical), as.double)) %>% `colnames<-`(c("estimate", "std.err")) %>% `row.names<-`(c("dose1", "dose2")) %>% rhandsontable( width = 245, height = "100%", rowHeaderWidth = 85 ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$AIC_whole <- renderRHandsontable({ if (input$button_estimate <= 0) { return(NULL) } data()[["AIC_whole"]] %>% matrix() %>% `colnames<-`(c("AIC")) %>% rhandsontable( width = 80, height = "100%" ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$AIC_partial <- renderRHandsontable({ if (input$button_estimate <= 0 | data()[["assessment"]] != "partial-body") { return(NULL) } data()[["AIC_partial"]] %>% matrix() %>% `colnames<-`(c("AIC")) %>% rhandsontable( width = 80, height = "100%" ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$AIC_hetero <- renderRHandsontable({ if (input$button_estimate <= 0 | data()[["assessment"]] != "hetero") { return(NULL) } data()[["AIC_hetero"]] %>% matrix() %>% `colnames<-`(c("AIC")) %>% rhandsontable( width = 80, height = "100%" ) %>% hot_cols(colWidths = 80) %>% hot_cols(format = "0.000") }) output$plot <- renderPlot( res = 120, { if (input$button_estimate <= 0) { return(NULL) } data()[["gg_curve"]] } ) output$save_plot <- downloadHandler( filename = function() { paste("estimation-curve-", Sys.Date(), input$save_plot_format, sep = "") }, content = function(file) { ggplot2::ggsave( plot = data()[["gg_curve"]], filename = file, width = 6, height = 4.5, dpi = 96, device = gsub("\\.", "", input$save_plot_format) ) } ) output$save_report <- downloadHandler( filename = function() { paste0(aberr_module, "-estimation-report-", Sys.Date(), input$save_report_format) }, content = function(file) { temp_report <- file.path(tempdir(), "report.Rmd") local_report <- load_rmd_report( paste0( "estimation-report-", gsub("^\\.", "", input$save_report_format), ".Rmd" ) ) file.copy(local_report, temp_report, overwrite = TRUE) params <- list( est_results_list = data(), aberr_module = aberr_module ) rmarkdown::render( input = temp_report, output_file = file, params = params, envir = new.env(parent = globalenv()) ) } ) }
scan_neighbor = function(genoprobs, pheno, smap, scale, addcovar=NULL, addQTL=NULL, grouping=rep(1,nrow(smap)), response=c("quantitative","binary"), contrasts=NULL) { response <- match.arg(response) switch(response, "quantitative" = glm_family <- stats::gaussian(), "binary" = glm_family <- stats::binomial() ) p <- dim(genoprobs$geno[[1]]$prob)[1] geno <- decompose_genoprobs(genoprobs=genoprobs,contrasts=contrasts) contrasts <- attr(geno, "contrasts") scan_effect <- eff_neighbor(genoprobs=genoprobs, pheno=pheno, contrasts=contrasts, smap=smap, scale=scale, addcovar=addcovar, addQTL=addQTL, grouping=grouping, response=response, fig=FALSE) q <- nrow(scan_effect) p <- dim(genoprobs$geno[[1]]$prob)[1] y_self_hat <- genoprobs2selfprobs(geno, a1=scan_effect$a1, d1=scan_effect$d1) y_nei_hat <- calc_neiprob(geno, a2=scan_effect$a2, d2=scan_effect$d2, smap=smap, scale=scale, grouping=grouping) X <- c() if(is.null(addcovar)==FALSE) { X <- cbind(X, addcovar) } if(is.null(addQTL)==FALSE) { X <- cbind(X, y_self_hat[,match(addQTL, rownames(scan_effect))], y_nei_hat[,match(addQTL, rownames(scan_effect))]) } if(is.null(addcovar)&is.null(addQTL)) { LOD_self <- c(); LOD_nei <- c() LL_null <- logLik_glm.fit(rep(1,length(pheno)),pheno,family=glm_family) for(k in 1:q) { LL_self <- logLik_glm.fit(cbind(1,y_self_hat[,k]),pheno,family=glm_family) LL_nei <- logLik_glm.fit(cbind(1,y_self_hat[,k],y_nei_hat[,k]),pheno,family=glm_family) LOD_self <- c(LOD_self, log10(exp(LL_self-LL_null))) LOD_nei <- c(LOD_nei, log10(exp(LL_nei-LL_self))) } } else if(is.null(addQTL)==TRUE) { LOD_self <- c(); LOD_nei <- c() LL_null <- logLik_glm.fit(cbind(1,X),pheno,family=glm_family) for(k in 1:q) { LL_self <- logLik_glm.fit(cbind(1,X,y_self_hat[,k]),pheno,family=glm_family) LL_nei <- logLik_glm.fit(cbind(1,X,y_self_hat[,k],y_nei_hat[,k]),pheno,family=glm_family) LOD_self <- c(LOD_self, log10(exp(LL_self-LL_null))) LOD_nei <- c(LOD_nei, log10(exp(LL_nei-LL_self))) } } else { X <- cbind(y_self_hat[,match(addQTL, rownames(scan_effect))], y_nei_hat[,match(addQTL, rownames(scan_effect))]) LOD_self <- c(); LOD_nei <- c() LL_null <- logLik_glm.fit(cbind(1,X),pheno,family=glm_family) for(k in 1:q) { LL_self <- logLik_glm.fit(cbind(1,X,y_self_hat[,k]),pheno,family=glm_family) LL_nei <- logLik_glm.fit(cbind(1,X,y_self_hat[,k],y_nei_hat[,k]),pheno,family=glm_family) LOD_self <- c(LOD_self, log10(exp(LL_self-LL_null))) LOD_nei <- c(LOD_nei, log10(exp(LL_nei-LL_self))) } } marker_info <- get_markers(genoprobs=genoprobs) LODlist <- data.frame(marker_info, LOD_self, LOD_nei) colnames(LODlist) <- c("chr","pos","LOD_self","LOD_nei") return(LODlist) }
filter_throughput_time <- function(eventlog, interval, percentage, reverse, units, ...) { UseMethod("filter_throughput_time") } filter_throughput_time.eventlog <- function(eventlog, interval = NULL, percentage = NULL, reverse = FALSE, units = c("days","hours","mins","secs","weeks"), ...) { units <- match.arg(units) percentage <- deprecated_perc(percentage, ...) interval[1] <- deprecated_lower_thr(interval[1], ...) interval[2] <- deprecated_upper_thr(interval[2], ...) if(!is.null(interval) && (length(interval) != 2 || !is.numeric(interval) || any(interval < 0, na.rm = TRUE) || all(is.na(interval)) )) { stop("Interval should be a positive numeric vector of length 2. One of the elements can be NA to create open intervals.") } if(!is.null(percentage) && (!is.numeric(percentage) || !between(percentage,0,1) )) { stop("Percentage should be a numeric value between 0 and 1.") } if(is.null(interval) & is.null(percentage)) stop("At least an interval or a percentage must be provided.") else if((!is.null(interval)) & !is.null(percentage)) stop("Cannot filter on both interval and percentage simultaneously.") else if(!is.null(percentage)) filter_throughput_time_percentile(eventlog, percentage = percentage, reverse = reverse) else filter_throughput_time_threshold(eventlog, lower_threshold = interval[1], upper_threshold = interval[2], reverse = reverse, units = units) } filter_throughput_time.grouped_eventlog <- function(eventlog, interval = NULL, percentage = NULL, reverse = FALSE, units = c("days","hours","mins","secs","week"), ...) { grouped_filter(eventlog, filter_throughput_time, interval, percentage, reverse, units, ...) } ifilter_throughput_time <- function(eventlog) { ui <- miniPage( gadgetTitleBar("Filter Througput Time"), miniContentPanel( fillCol( fillRow( radioButtons("filter_type", "Filter type:", choices = c("Interval" = "int", "Use percentile cutoff" = "percentile")), radioButtons("units", "Time units: ", choices = c("weeks","days","hours","mins"), selected = "hours"), radioButtons("reverse", "Reverse filter: ", choices = c("Yes","No"), selected = "No") ), uiOutput("filter_ui") ) ) ) server <- function(input, output, session){ output$filter_ui <- renderUI({ if(input$filter_type == "int") { sliderInput("interval_slider", "Throguhput time interval", min = 0, max = max(eventlog %>% throughput_time("case", units = input$units) %>% pull(throughput_time)), value = c(0,1)) } else if(input$filter_type == "percentile") { sliderInput("percentile_slider", "Percentile cut off:", min = 0, max = 100, value = 80) } }) observeEvent(input$done, { if(input$filter_type == "int") filtered_log <- filter_throughput_time(eventlog, interval = input$interval_slider, reverse = ifelse(input$reverse == "Yes", TRUE, FALSE), units = input$units) else if(input$filter_type == "percentile") { filtered_log <- filter_throughput_time(eventlog, percentage = input$percentile_slider/100, reverse = ifelse(input$reverse == "Yes", TRUE, FALSE), units = input$units) } stopApp(filtered_log) }) } runGadget(ui, server, viewer = dialogViewer("Filter Througput Time", height = 400)) }
NULL stopifnot(require(methods), require(utils), require(MortalityTables), require(tidyverse), require(reshape2)) VUBestandstafel.Detail.load = function() { basedata = utils::read.csv( system.file("extdata", "VU_Gesamtbestand_Austria_Detail_2012-16.csv", package = "MortalityTables"), encoding = "UTF-8", header = TRUE ) basedata.array = basedata %>% as_tibble %>% gather(Variable, Value, smooth, raw, Exposure) %>% acast(tariff ~ sex ~ premium ~ probability ~ age ~ Variable, value.var = "Value") VU.Gesamtbestand.Detail = array( data = c(mortalityTable.NA), dim = c(dim(basedata.array)[1:4], 2), dimnames = c(`names<-`(dimnames(basedata.array)[1:4], c("Tarif", "Geschlecht", "Prämie", "Wahrscheinlichkeit")), list(Typ = c("raw", "smooth")))) dmn = dimnames(basedata.array)[1:4] q = "qx" ages = 0:99 ages.ch = as.character(ages) for (t in dmn[[1]]) { for (s in dmn[[2]]) { for (p in dmn[[3]]) { VU.Gesamtbestand.Detail[[t, s, p, q, "smooth"]] = mortalityTable.period( name = sprintf("VU Gesamtbestand AT, %s, %s, %s, %s, geglättet", t, s, p, q), ages = ages, deathProbs = basedata.array[t, s, p, q, ages.ch, "smooth"], exposures = basedata.array[t, s, p, q, ages.ch, "Exposure"], data = list( raw = basedata.array[t, s, p, q, ages.ch, "raw"], dim = list( sex = s, year = "(all)", data = "smooth", tarif = t, table = "VU Gesamtbestand AT", zahlart = p, probability = q )) ) VU.Gesamtbestand.Detail[[t, s, p, q, "raw"]] = mortalityTable.period( name = sprintf("VU Gesamtbestand AT, %s, %s, %s, %s, roh", t, s, p, q), ages = ages, deathProbs = basedata.array[t, s, p, q, ages.ch, "raw"], exposures = basedata.array[t, s, p, q, ages.ch, "Exposure"], data = list(dim = list( sex = s, year = "(all)", data = "raw", tarif = t, table = "VU Gesamtbestand AT", zahlart = p, probability = q )) ) } } } q = "sx" ages = 0:40 ages.ch = as.character(ages) for (t in dmn[[1]]) { for (s in dmn[[2]]) { for (p in dmn[[3]]) { VU.Gesamtbestand.Detail[[t, s, p, q, "raw"]] = mortalityTable.period( name = sprintf("VU Gesamtbestand AT, %s, %s, %s, %s, roh", t, s, p, q), ages = ages, deathProbs = basedata.array[t, s, p, q, ages.ch, "raw"], exposures = basedata.array[t, s, p, q, ages.ch, "Exposure"], data = list(dim = list( sex = s, year = "(all)", data = "raw", tarif = t, table = "VU Gesamtbestand AT", zahlart = p, probability = q )) ) } } } VU.Gesamtbestand.Detail } VUBestandstafel.qx.load = function() { basedata = utils::read.csv( system.file("extdata", "VU_Gesamtbestand_Austria_qx_2012-16.csv", package = "MortalityTables"), encoding = "UTF-8", header = TRUE ) sex = c("m", "f", "u") VU.Gesamtbestand = array( data = c(mortalityTable.NA), dim = c(3), dimnames = list(sex = sex) ) for (s in sex) { data = filter(basedata, sex == s) data = data[order(data$age),] VU.Gesamtbestand[[s]] = mortalityTable.period( name = paste0("VU-Gesamtbestand 2012-2016, ", recode(s, "m" = "Männer", "f" = "Frauen", "u" = "Unisex")), ages = data$age, deathProbs = data$smooth, baseYear = 2014, exposures = data$exposure, data = list( raw = data$raw, dim = list( sex = s, year = "2014", data = "smooth", tarif = "(all)", table = "VU Gesamtbestand AT", probability = "qx", population = "Lebensversicherte", country = "AT", period = "2012-2016" ) ) ) } VU.Gesamtbestand } VUBestandstafel.Storno.load = function() { basedata = utils::read.csv( system.file("extdata", "VU_Gesamtbestand_Austria_Storno_2012-16.csv", package = "MortalityTables"), encoding = "UTF-8", header = TRUE ) tarif = c("KLV", "FLV", "Sonstige") VU.Gesamtbestand = array( data = c(mortalityTable.NA), dim = c(3), dimnames = list(tarif = tarif) ) for (t in tarif) { data = filter(basedata, tarif == t) data = data[order(data$age),] VU.Gesamtbestand[[t]] = mortalityTable.period( name = paste0("VU-Gesamtbestand 2012-2016, Storno ", t), ages = data$age, deathProbs = data$sx, baseYear = 2014, exposures = data$exposure, data = list( dim = list( sex = "u", year = "2014", data = "raw", tarif = t, table = "VU Gesamtbestand AT", probability = "sx", population = "Lebensversicherte", country = "AT", period = "2012-2016" ) ) ) } VU.Gesamtbestand } VU.Gesamtbestand.Detail = VUBestandstafel.Detail.load() VU.Gesamtbestand = VUBestandstafel.qx.load() VU.Gesamtbestand.Storno = VUBestandstafel.Storno.load() rm(VUBestandstafel.Detail.load, VUBestandstafel.qx.load, VUBestandstafel.Storno.load)
geom_contour_z <- function(mapping = NULL, data = NULL, stat = "contour_z", position = "identity", ..., bins = NULL, binwidth = NULL, breaks = NULL, lineend = "butt", linejoin = "round", linemitre = 10, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, extrude = FALSE, material = list(), keep2d = FALSE) { layer( data = data, mapping = mapping, stat = stat, geom = GeomContourZ, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( bins = bins, binwidth = binwidth, breaks = breaks, lineend = lineend, linejoin = linejoin, linemitre = linemitre, na.rm = na.rm, extrude = extrude, material = material, keep2d = keep2d, ... ) ) } GeomContourZ <- ggproto( "GeomContourZ", GeomPath3d, required_aes = c("x", "y", "z"), default_aes = augment_aes( extrusion_aesthetics, aes( weight = 1, colour = " size = 0.5, linetype = 1, alpha = NA, z = 10 ) ) )
buttonGroupInput <- function(..., id, choices = NULL, values = choices, labels = deprecated(), direction = "horizontal") { if (!is_missing(labels)) { deprecate_soft( "0.2.0", "yonder::buttonGroupInput(labels = )", "yonder::buttonGroupInput(choices = )" ) choices <- labels } assert_id() assert_choices() shiny::registerInputHandler( type = "yonder.button.group", fun = function(x, session, name) { if (length(x) > 1) x[[2]] }, force = TRUE ) with_deps({ buttons <- map_buttons(choices, values) tag <- tags$div( class = "yonder-button-group btn-group", id = id, role = "group", buttons ) args <- style_dots_eval(..., .style = style_pronoun("yonder_button_group")) tag <- tag_extend_with(tag, args) s3_class_add(tag, c("yonder_button_group", "yonder_input")) }) } updateButtonGroupInput <- function(id, choices = NULL, values = choices, enable = NULL, disable = NULL, session = getDefaultReactiveDomain()) { assert_id() assert_choices() assert_session() buttons <- map_buttons(choices, values) content <- coerce_content(buttons) enable <- coerce_enable(enable) disable <- coerce_disable(disable) session$sendInputMessage(id, list( content = content, enable = enable, disable = disable )) } map_buttons <- function(choices, values) { if (is.null(choices) && is.null(values)) { return(NULL) } Map( label = choices, value = values, function(label, value) { tags$button( type = "button", class = "btn", value = value, label ) } ) }
set_golem_options <- function( golem_name = pkgload::pkg_name(), golem_version = pkgload::pkg_version(), golem_wd = pkgload::pkg_path(), app_prod = FALSE, talkative = TRUE ) { change_app_config_name( name = golem_name, path = golem_wd ) cat_if_talk <- function(..., fun = cat_green_tick) { if (talkative) { fun(...) } } conf_path <- get_current_config(golem_wd, set_options = FALSE) stop_if( conf_path, is.null, "Unable to retrieve golem config file." ) cat_if_talk( "Setting {golem} options in `golem-config.yml`", fun = cli::cat_rule ) conf <- read_yaml(conf_path, eval.expr = TRUE) if (golem_wd == here::here()) { path <- "here::here()" attr(path, "tag") <- "!expr" } else { path <- golem_wd } cat_if_talk( sprintf( "Setting `golem_wd` to %s", path ) ) cat_if_talk( "You can change golem working directory with set_golem_wd('path/to/wd')", fun = cat_line ) conf$dev$golem_wd <- path cat_if_talk( sprintf( "Setting `golem_name` to %s", golem_name ) ) conf$default$golem_name <- golem_name cat_if_talk( sprintf( "Setting `golem_version` to %s", golem_version ) ) conf$default$golem_version <- as.character(golem_version) cat_if_talk( sprintf( "Setting `app_prod` to %s", app_prod ) ) conf$default$app_prod <- app_prod write_yaml( conf, conf_path ) cat_if_talk( "Setting {usethis} project as `golem_wd`", fun = cli::cat_rule ) proj_set(golem_wd) } set_golem_things <- function( key, value, path, talkative, config = "default" ) { conf_path <- get_current_config(path, set_options = FALSE) stop_if( conf_path, is.null, "Unable to retrieve golem config file." ) cat_if_talk <- function(..., fun = cat_green_tick) { if (talkative) { fun(...) } } cat_if_talk( sprintf( "Setting `%s` to %s", key, value ) ) conf <- read_yaml(conf_path, eval.expr = TRUE) conf[[config]][[key]] <- value write_yaml( conf, conf_path ) invisible(path) } set_golem_wd <- function( path = pkgload::pkg_path(), talkative = TRUE ) { path <- path_abs(path) if (path == here::here()) { path <- "here::here()" attr(path, "tag") <- "!expr" } set_golem_things( "golem_wd", path, path, talkative = talkative, config = "dev" ) invisible(path) } set_golem_name <- function( name = pkgload::pkg_name(), path = pkgload::pkg_path(), talkative = TRUE ) { path <- path_abs(path) set_golem_things( "golem_name", name, path, talkative = talkative ) change_app_config_name( name = name, path = path ) desc <- desc::description$new( file = fs::path( path, "DESCRIPTION" ) ) desc$set( Package = name ) desc$write( file = "DESCRIPTION" ) invisible(name) } set_golem_version <- function( version = pkgload::pkg_version(), path = pkgload::pkg_path(), talkative = TRUE ) { path <- path_abs(path) set_golem_things( "golem_version", as.character(version), path, talkative = talkative ) desc <- desc::description$new(file = fs::path(path, "DESCRIPTION")) desc$set_version( version = version ) desc$write( file = "DESCRIPTION" ) invisible(version) } get_golem_things <- function( value, config = Sys.getenv("R_CONFIG_ACTIVE", "default"), use_parent = TRUE, path ) { conf_path <- get_current_config(path, set_options = TRUE) stop_if( conf_path, is.null, "Unable to retrieve golem config file." ) config::get( value = value, config = config, file = conf_path, use_parent = TRUE ) } get_golem_wd <- function( use_parent = TRUE, path = pkgload::pkg_path() ) { get_golem_things( value = "golem_wd", config = "dev", use_parent = use_parent, path = path ) } get_golem_name <- function( config = Sys.getenv("R_CONFIG_ACTIVE", "default"), use_parent = TRUE, path = pkgload::pkg_path() ) { nm <- get_golem_things( value = "golem_name", config = config, use_parent = use_parent, path = path ) if (is.null(nm)) { nm <- pkgload::pkg_name() } nm } get_golem_version <- function( config = Sys.getenv("R_CONFIG_ACTIVE", "default"), use_parent = TRUE, path = pkgload::pkg_path() ) { get_golem_things( value = "golem_version", config = config, use_parent = use_parent, path = path ) }
downloader <- function(x, dsn = getwd(), overwrite = FALSE, quiet = TRUE, mode = "wb", cores = 1L, ...) { checkDsn(dsn) cores <- checkCores(cores) userpwd = if (any(grepl("^ftp://", x))) { nfo = getPolesFTPOpts() paste( nfo$gimms.poles.username , nfo$gimms.poles.password , sep = ":" ) } if (cores == 1L) { for (i in x) { destfile <- paste0(dsn, "/", basename(i)) if (file.exists(destfile) & !overwrite) { if (!quiet) cat("File", destfile, "already exists in destination folder. Proceeding to next file ...\n") } else { if (grepl("^ftp://", i)) { h = curl::new_handle( userpwd = userpwd ) try( curl::curl_download( i , destfile = destfile , handle = h ) , silent = TRUE ) } else { try(download.file(i, destfile = destfile, mode = mode, quiet = quiet, ...), silent = TRUE) } } } } else { cl <- parallel::makePSOCKcluster(cores) on.exit(parallel::stopCluster(cl)) parallel::clusterExport( cl , c("x", "dsn", "overwrite", "quiet", "mode", "userpwd") , envir = environment() ) parallel::parLapply(cl, x, function(i) { destfile <- paste0(dsn, "/", basename(i)) if (file.exists(destfile) & !overwrite) { if (!quiet) cat("File", destfile, "already exists in destination folder. Proceeding to next file ...\n") } else { if (grepl("^ftp://", i)) { h = curl::new_handle( userpwd = userpwd ) try( curl::curl_download( i , destfile = destfile , handle = h ) , silent = TRUE ) } else { try(download.file(i, destfile = destfile, mode = mode, quiet = quiet, ...), silent = TRUE) } } }) } gimms_out <- paste(dsn, basename(x), sep = "/") return(gimms_out) } createHeader <- function(x) { header <- paste("ENVI", "description = { R-language data }", "samples = 2160", "lines = 4320", "bands = 1", "data type = 2", "header offset = 0", "interleave = bsq", "sensor type = AVHRR", "byte order = 1", sep = "\n") sapply(x, function(i) { fls <- paste0(i, ".hdr") writeLines(header, fls) return(fls) }) } checkCores <- function(cores) { cores_avl <- parallel::detectCores() if (cores > cores_avl) { cores <- cores_avl - 1 warning("Desired number of cores is invalid. Resizing parallel cluster to ", cores, " cores.") } return(cores) } checkDsn <- function(dsn) { if (!dir.exists(dsn)) { answer <- readline(paste("Target folder", dsn, "doesn't exist.", "Do you wish to create it? (yes/no) \n")) if (answer == "yes") { dir.create(dsn) } else { stop(paste("Target folder", dsn, "doesn't exist. Aborting operation...\n")) } } return(invisible()) } setLocale <- function(reset = FALSE, ...) { if (!reset) { if (Sys.info()[["sysname"]] == "Windows") { invisible(Sys.setlocale(category = "LC_TIME", locale = "C")) } else { invisible(Sys.setlocale(category = "LC_TIME", locale = "en_US.UTF-8")) } } else { Sys.setlocale(category = "LC_TIME", ...) } return(invisible()) } getV1dates <- function(x, pos1 = 15L, pos2 = 23L, suffix = TRUE) { fls <- substr(basename(x), pos1, pos2) lst <- strsplit(fls, "_") yrs <- sapply(lst, "[[", 1) yrs <- substr(yrs, 3, 4) mts <- sapply(lst, "[[", 2) locale <- Sys.getlocale(category = "LC_TIME") setLocale() lst <- lapply(seq(mts), function(i) { mts <- if (mts[i] == "0106") { rep(tolower(month.abb[1:6]), each = 2) } else { rep(tolower(month.abb[7:12]), each = 2) } if (suffix) mts <- paste0(mts, rep(c("15a", "15b"), length(mts) / 2)) dts <- paste0(yrs[i], mts) return(dts) }) setLocale(reset = TRUE, locale = locale) return(unlist(lst)) } getV0dates <- function(x, pos1 = 4L, pos2 = 11L, suffix = TRUE) { substr(basename(x), pos1, ifelse(suffix, pos2, pos2 - 1)) } productVersion <- function(x, uniform = FALSE) { v0 <- substr(basename(x), 1, 3) == "geo" v1 <- substr(basename(x), 1, 6) == "ndvi3g" ids <- apply(cbind(v0, v1), 1, FUN = function(y) { tmp <- which(y) if (length(tmp) == 0) NA else tmp - 1 }) if (uniform) { if (length(unique(ids)) > 1) stop("Different or non-classifiable product versions found. Please make sure to supply files from the same NDVI3g version only that follow the rules of GIMMS standard naming.\n") } return(ids) } checkFls <- function(x, filename) { len <- length(filename) if (len == 1) { if (nchar(filename) == 0) { rep(filename, length(x)) } else { stop("If specified, 'filename' must be of the same length as 'x'.\n") } } else if ((len > 1) & (len != length(x))) { stop("If specified, 'filename' must be of the same length as 'x'.\n") } else { filename } } checkVersion = function(server, version) { input = version version = suppressWarnings( as.integer(version) ) version = switch( server , "ecocast" = intersect(version, c(0, 1)) , "nasanex" = intersect(version, 0) , "poles" = intersect(version, 1) ) if (length(version) == 0) { stop( sprintf( "NDVI3g version '%s' is not available from server '%s'." , input , server ) ) } return(version) }
f<-function(x,a,b){ z=0 for(i in 1:length(b)) z=z+a[i]*x^(b[i]) z } allroots<-function(a,b){ a1=a b1=b n=length(b)-1 a=a/a[1] b=matrix(0,ncol=n,nrow=n) for(i in 1:(n-1)) b[i,i+1]=1 for(i in 1:n) b[n,i]=-a[n+2-i] c=eigen(b) print(c$values) print("inaccuracy error") print(f(c$values,a1,b1)) } dichotomy<-function(x1,x2,a,b,pert = 10^(-5),n=1000,s=0.1){ x0=rep(NA,length(x1)) for(i in 1:length(x1)){ if(f(x1[i],a,b)==0) x0[i]=x1[i] if(f(x2[i],a,b)==0) x0[i]=x2[i] if(f(x1[i],a,b)!=0&f(x2[i],a,b)!=0){ x0[i]=(x1[i]+x2[i])/2 k=1 while((abs(f(x0[i],a,b))>=pert)&(k<n)){ if(f(x0[i],a,b)==0) break if(f(x1[i],a,b)*f(x0[i],a,b)<0) x2[i]=x0[i] if(f(x2[i],a,b)*f(x0[i],a,b)<0) x1[i]=x0[i] if(x1[i]!=x0[i]&x2[i]!=x0[i]) x2[i]=x2[i]-s x0[i]=(x1[i]+x2[i])/2 k=k+1 if(k==1000) x0[i]=NA } } } x0 }
matrixsetup_kappa <- function( kappa, nNode, nGroup, expcov, labels, equal = FALSE, sampletable, name = "kappa", beta = array(0, c(nNode, nNode,nGroup)) ){ ischar <- is.character(kappa) kappa <- fixAdj(kappa,nGroup,nNode,equal,diag0=FALSE) kappaStart <- kappa for (g in 1:nGroup){ covest <- as.matrix(expcov[[g]]) zeroes <- which(kappaStart[,,g]==0 & t(kappaStart[,,g])==0 & diag(nNode) != 1,arr.ind=TRUE) if (nrow(zeroes) == 0){ wi <- solve_symmetric(covest) if (any(abs(qgraph::wi2net(wi)[lower.tri(wi,diag=FALSE)]) > 0.8)){ wi <- glasso(as.matrix(spectralshift(covest)), rho = 0.1)$wi } } else { glas <- glasso(as.matrix(covest), rho = 1e-10, zero = zeroes) wi <- glas$wi } kappaStart[,,g] <- (kappaStart[,,g] !=0) * as.matrix(wi) if (ischar && nNode > 1){ endo <- which(rowSums(beta[,,g])>0) inds <- (row(kappa[,,g]) %in% endo | col(kappa[,,g]) %in% endo) & (row(kappa[,,g] ) != col(kappa[,,g] )) kappa[,,g][inds] <- kappaStart[,,g][inds] <- 0 } } list(kappa, mat = name, op = "--", symmetrical= TRUE, sampletable=sampletable, rownames = labels, colnames = labels, sparse = TRUE, posdef = TRUE, diag0 = FALSE, start = kappaStart ) }
library(pROC) data(aSAH) context("ci.formula") test_that("bootstrap cov works with smooth and !reuse.auc", { skip_slow() if (R.version$minor >= "6.0") { RNGkind(sample.kind="Rounding") } for (pair in list( list(ci, list()), list(ci.se, list(boot.n = 10)), list(ci.sp, list(boot.n = 10)), list(ci.thresholds, list(boot.n = 10)), list(ci.coords, list(boot.n = 10, x = 0.5)), list(ci.auc, list()))) { fun <- pair[[1]] args.default <- c( list(response = aSAH$outcome, predictor = aSAH$s100b), pair[[2]]) set.seed(42) obs.default <- do.call(fun, args.default) args.formula <- c( list(formula = outcome ~ s100b, data = aSAH), pair[[2]]) set.seed(42) obs.formula <- do.call(fun, args.formula) expect_equivalent(obs.default, obs.formula) } })
plot_data_one_iso <- function(mix,source,discr,filename,plot_save_pdf,plot_save_png,return_obj=FALSE){ if(length(grep("C",mix$iso_names))==1) x_label <- expression(paste(delta^13, "C (\u2030)",sep="")) if(length(grep("N",mix$iso_names))==1) x_label <- expression(paste(delta^15, "N (\u2030)",sep="")) if(length(grep("S",mix$iso_names))==1) x_label <- expression(paste(delta^34, "S (\u2030)",sep="")) if(length(grep("O",mix$iso_names))==1) x_label <- expression(paste(delta^18, "O (\u2030)",sep="")) if(length(grep("SP",mix$iso_names))==1) x_label <- expression(paste(delta^15, "N-SP (\u2030)",sep="")) if(!exists("x_label")) x_label <- mix$iso_names y_data <- 0.5 y <- rep(y_data,mix$N) df <- data.frame(x = mix$data_iso, y = y) spacing <- 0.1 if(!is.na(source$by_factor)){ source_linetype <- sort(rep(1:source$n.sources,source$S_factor_levels)) source_color <- factor(as.numeric(source$S_factor1)) index <- seq(from=1,to=1+(source$n.sources-1)*source$S_factor_levels,by=source$S_factor_levels) discr_mu_plot <- array(NA,dim=c(length(source$S_MU[,1]),mix$n.iso)) discr_sig2_plot <- array(NA,dim=c(length(source$S_MU[,1]),mix$n.iso)) for(i in 1:source$n.sources){ discr_mu_plot[index[i]:(index[i]+source$S_factor_levels-1),] <- matrix(rep(discr$mu[i],source$S_factor_levels),nrow=source$S_factor_levels,ncol=mix$n.iso,byrow=T) discr_sig2_plot[index[i]:(index[i]+source$S_factor_levels-1),] <- matrix(rep(discr$sig2[i],source$S_factor_levels),nrow=source$S_factor_levels,ncol=mix$n.iso,byrow=T) } y_sources <- seq(y_data+0.2,(source$S_factor_levels*source$n.sources*spacing)-spacing+y_data+0.2,by=spacing) MU_plot <- source$S_MU[,mix$iso_names] + discr_mu_plot SIG_plot <- sqrt(source$S_SIG[,mix$iso_names]^2 + discr_sig2_plot) } else { source_linetype <- 1:source$n.sources source_color <- factor(rep("black",source$n.sources)) index <- 1:source$n.sources discr_mu_plot <- discr$mu discr_sig2_plot <- discr$sig2 y_sources <- seq(y_data+0.2,(source$n.sources*spacing)-spacing+y_data+0.2,by=spacing) source$S_factor_levels <- 0.5 MU_plot <- source$S_MU + discr_mu_plot SIG_plot <- sqrt(source$S_SIG^2 + discr_sig2_plot) } MU_plot <- as.vector(MU_plot) SIG_plot <- as.vector(SIG_plot) df_sources <- data.frame(x=MU_plot, xmin = MU_plot - SIG_plot, xmax = MU_plot + SIG_plot, y = y_sources, linetype = source_linetype, scolour = source_color) source.labels <- data.frame( x = MU_plot[index], y = y_sources[index] + spacing*source$S_factor_levels, label = source$source_names ) .e <- environment() dev.new() if(mix$n.effects==2){ shapes <- c(16,17,15,3,7,8,1,6,35,36,37,4,18,14,11,9,13) shapes <- shapes[1:mix$FAC[[2]]$levels] if(!is.na(source$by_factor)){ g <- ggplot2::ggplot(data = df,ggplot2::aes(x = x,y = y),environment=.e) + ggplot2::geom_point(ggplot2::aes(colour = factor(mix$FAC[[1]]$values), shape = factor(mix$FAC[[2]]$values)), position=position_jitter(width=.2,height=.1), show.legend=T) + ggplot2::scale_colour_discrete(breaks = levels(factor(mix$FAC[[1]]$values)), labels = mix$FAC[[1]]$labels) + ggplot2::scale_shape_manual(values=shapes, labels=mix$FAC[[2]]$labels) + ggplot2::geom_point(data=df_sources, ggplot2::aes(x=x, y=y,colour=scolour), size=2, show.legend=F) + ggplot2::geom_errorbarh(data=df_sources, ggplot2::aes(xmin=xmin,xmax=xmax,colour=scolour), size=1, height=0, linetype=source_linetype, show.legend=F) + ggplot2::geom_text(data=source.labels, ggplot2::aes(x=x,y=y,label=label), show.legend=F) + ggplot2::scale_y_continuous(breaks = NULL) + ggplot2::ylab("") + ggplot2::xlab(x_label) + ggplot2::theme_bw() + ggplot2::theme(legend.position=c(0,1), legend.justification=c(0,1), legend.title=ggplot2::element_blank()) print(g) } else { g <- ggplot2::ggplot(data = df,ggplot2::aes(x = x,y = y),environment=.e) + ggplot2::geom_point(ggplot2::aes(colour = factor(mix$FAC[[1]]$values), shape = factor(mix$FAC[[2]]$values)), position=position_jitter(width=.2,height=.1), show.legend=T) + ggplot2::scale_colour_discrete(breaks = levels(factor(mix$FAC[[1]]$values)), labels = mix$FAC[[1]]$labels) + ggplot2::scale_shape_manual(values=shapes, labels=mix$FAC[[2]]$labels) + ggplot2::geom_point(data=df_sources, ggplot2::aes(x=x, y=y), size=2, show.legend=F) + ggplot2::geom_errorbarh(data=df_sources, ggplot2::aes(xmin=xmin,xmax=xmax), size=1, height=0, linetype=source_linetype, show.legend=F) + ggplot2::geom_text(data=source.labels, ggplot2::aes(x=x,y=y,label=label), show.legend=F) + ggplot2::scale_y_continuous(breaks = NULL) + ggplot2::ylab("") + ggplot2::xlab(x_label) + ggplot2::theme_bw() + ggplot2::theme(legend.position=c(0,1), legend.justification=c(0,1), legend.title=ggplot2::element_blank()) print(g) } } if(mix$n.effects==1){ if(!is.na(source$by_factor)){ g <- ggplot2::ggplot(data = df,ggplot2::aes(x = x,y = y),environment=.e) + ggplot2::geom_point(ggplot2::aes(colour = factor(mix$FAC[[1]]$values)), position=position_jitter(width=.2,height=.1), show.legend=T) + ggplot2::scale_colour_discrete(breaks = levels(factor(mix$FAC[[1]]$values)), labels = mix$FAC[[1]]$labels) + ggplot2::geom_point(data=df_sources, ggplot2::aes(x=x, y=y, colour=scolour), size=2, show.legend=F) + ggplot2::geom_errorbarh(data=df_sources, ggplot2::aes(xmin=xmin,xmax=xmax,colour=scolour), size=1, height=0, linetype=source_linetype, show.legend=F) + ggplot2::geom_text(data=source.labels, ggplot2::aes(x=x,y=y,label=label), show.legend=F) + ggplot2::scale_y_continuous(breaks = NULL) + ggplot2::ylab("") + ggplot2::xlab(x_label) + ggplot2::theme_bw() + ggplot2::theme(legend.position=c(0,1), legend.justification=c(0,1), legend.title=ggplot2::element_blank()) print(g) } else { g <- ggplot2::ggplot(data = df,ggplot2::aes(x = x,y = y),environment=.e) + ggplot2::geom_point(ggplot2::aes(colour = factor(mix$FAC[[1]]$values)), position=position_jitter(width=.2,height=.1), show.legend=T) + ggplot2::scale_colour_discrete(breaks = levels(factor(mix$FAC[[1]]$values)), labels = mix$FAC[[1]]$labels) + ggplot2::geom_point(data=df_sources, ggplot2::aes(x = x, y = y), size=2, show.legend=F) + ggplot2::geom_errorbarh(data=df_sources, ggplot2::aes(xmin=xmin,xmax=xmax), size=1, height=0, linetype=source_linetype, show.legend=F) + ggplot2::geom_text(data=source.labels, ggplot2::aes(x=x,y=y,label=label), show.legend=F) + ggplot2::scale_y_continuous(breaks = NULL) + ggplot2::ylab("") + ggplot2::xlab(x_label) + ggplot2::theme_bw() + ggplot2::theme(legend.position=c(0,1), legend.justification=c(0,1), legend.title=ggplot2::element_blank()) print(g) } } if(mix$n.effects==0){ g <- ggplot2::ggplot(data = df,ggplot2::aes(x = x,y = y)) + ggplot2::geom_point(position=ggplot2::position_jitter(width=.2,height=.1)) + ggplot2::geom_point(data=df_sources, ggplot2::aes(x=x,y=y), size=2, show.legend=F) + ggplot2::geom_errorbarh(data=df_sources, ggplot2::aes(xmin=xmin,xmax=xmax), size=1, height=0, linetype=source_linetype, show.legend=F) + ggplot2::geom_text(data=source.labels, ggplot2::aes(x=x,y=y,label=label), show.legend=F) + ggplot2::scale_y_continuous(breaks = NULL) + ggplot2::ylab("") + ggplot2::xlab(x_label) + ggplot2::theme_bw() + ggplot2::theme(legend.position=c(0,1), legend.justification=c(0,1), legend.title=ggplot2::element_blank()) print(g) } if(plot_save_pdf==TRUE){ mypath <- file.path(paste(getwd(),"/",filename,".pdf",sep="")) cairo_pdf(filename=mypath, width=7, height=7) print(g) dev.off() } if(plot_save_png==TRUE){ mypath <- file.path(paste(getwd(),"/",filename,".png",sep="")) png(filename=mypath) print(g) dev.off() } if(return_obj==TRUE) return(g) }
dcl.predict<-function(dcl.par,Ntriangle,Model=2,Tail=TRUE,Tables=TRUE, summ.by="diag",num.dec=2) { inflat<-dcl.par$inflat mu<-dcl.par$mu mu.adj<-dcl.par$mu.adj pi.delay<-dcl.par$pi.delay if (max(abs(pi.delay))>1) { message("Warning: Check if the data follow the DCL model, the estimated delay function is not valid.") } pj<-dcl.par$pj m<-length(pj);d<-m-1 Nhat<-dcl.par$Nhat Nhat<-as.matrix(Nhat) Xhat<-dcl.par$Xhat Xhat<-as.matrix(Xhat) if (missing(Ntriangle) | Model==0) Ntriangle<-Nhat Ntriangle<-as.matrix(Ntriangle) two.models<-function(pj,mu) { Ec.rbns<-function(Ntriangle,pj,mu,inflat,m,d) { set.rect<-expand.grid(1:(m+d),1:m) v.expect<-apply(set.rect,MARGIN=1,FUN= function(v) { j<-v[1];i<-v[2]; if ((j>(m-i+1))& (j<(m+d-i+2))) {limq<-(i-m+j-1):(min((j-1),d));limN<-j-limq; v.e<-sum(Ntriangle[i,limN]* pj[limq+1] * mu*inflat[i],na.rm=T)} else v.e<-NA return(v.e) }) Xrbns<-matrix(v.expect,m,m+d,byrow=T) return(Xrbns) } Ec.ibnr<-function(Nhat,pj,mu,inflat,m,d) { set.rect<-expand.grid(1:(m+d),1:m) Nhat_ext<-cbind(Nhat,matrix(NA,nrow=m,ncol=d)) v.expect<-apply(set.rect,MARGIN=1, FUN=function(v) { j<-as.numeric(v[1]);i<-as.numeric(v[2]); if ((j>(m-i+1))& (j<(m+d+1))& (i>1)) { limq<-0:(min((i-m+j-2),d));limN<-j-limq; v.e<-sum(Nhat_ext[i,limN]*pj[limq+1]*mu*inflat[i],na.rm=T)} else v.e<-NA return(v.e)}) Xibnr<-matrix(v.expect,m,m+d,byrow=T) return(Xibnr) } Xrbns<-Ec.rbns(Ntriangle,pj,mu,inflat,m,d) Xibnr<-Ec.ibnr(Nhat,pj,mu,inflat,m,d) if (Tail==FALSE) {Xrbns[,(m+1):( 2*m-1)]<-0 ; Xibnr[,(m+1):( 2*m-1)]<-0} Xrbns.zero<-Xrbns Xrbns.zero[is.na(Xrbns)]<-0 Xibnr.zero<-Xibnr Xibnr.zero[is.na(Xibnr)]<-0 Xtotal<-Xrbns.zero+Xibnr.zero if (summ.by=="diag") { dd<-m+d-1 Drbns<-sapply(split(Xrbns, row(Xrbns)+col(Xrbns)), sum, na.rm=T) Drbns<-as.vector(Drbns[-(1:m)]) Drbns<-c(Drbns,sum(Drbns,na.rm =T)) Dibnr<-sapply(split(Xibnr, row(Xibnr)+col(Xibnr)), sum, na.rm=T) Dibnr<-as.vector(Dibnr[-(1:m)]) Dibnr<-c(Dibnr,sum(Dibnr,na.rm =T)) Dtotal<-Drbns+Dibnr if (Tables==TRUE) { Diag.CL.paid<-sapply(split(Xhat, row(Xhat)+col(Xhat)), sum, na.rm=T) Dclm<-c(Diag.CL.paid[-(1:m)]) Total.CL.paid<- sum(Dclm,na.rm=TRUE) Dclm<-c(Dclm,rep(NA,dd-length(Dclm)),Total.CL.paid) table.diags<-data.frame(Future.years=c(1:dd,'Tot.'),rbns=round(Drbns,num.dec), ibnr=round(Dibnr,num.dec),total=round(Dtotal,num.dec), clm=round(Dclm,num.dec)) print(table.diags) } return(list(Drbns=Drbns,Xrbns=Xrbns,Dibnr=Dibnr,Xibnr=Xibnr, Dtotal=Dtotal,Xtotal=Xtotal)) } if (summ.by=="row") { Rrbns<-rowSums(Xrbns,na.rm=TRUE) Rrbns<-c(Rrbns,sum(Rrbns,na.rm=TRUE)) Ribnr<-rowSums(Xibnr,na.rm=TRUE) Ribnr<-c(Ribnr,sum(Ribnr,na.rm=TRUE)) Rtotal<-Rrbns+Ribnr if (Tables==TRUE) { Xhat.low<-Xhat Xhat.low[row(Xhat)+col(Xhat)<=(m+1)]<-NA Ri.CL.paid<-rowSums(Xhat.low,na.rm=T) Total.CL.paid<- sum(Ri.CL.paid,na.rm=TRUE) Rclm<-c(Ri.CL.paid,Total.CL.paid) table.rows<-data.frame(Rows=c(1:m,'Tot.'),rbns=round(Rrbns,num.dec), ibnr=round(Ribnr,num.dec),total=round(Rtotal,num.dec), clm=round(Rclm,num.dec)) print(table.rows) } return(list(Rrbns=Rrbns,Xrbns=Xrbns,Ribnr=Ribnr,Xibnr=Xibnr, Rtotal=Rtotal,Xtotal=Xtotal)) } if (summ.by=="cell") { return(list(Xrbns=Xrbns,Xibnr=Xibnr,Xtotal=Xtotal)) } } if (Model==1 | Model==0) res.model<-two.models(pi.delay,mu) else res.model<-two.models(pj,mu.adj) return(res.model) }
censor.exp.x <- function(delta,x,min.branch){ Fn <- sum(delta) x[x==0] <- min.branch Tn <- sum(x) est <- Fn/Tn LL <- Fn*(log(Fn)-log(Tn)-1) a <- data.frame(t(c(est,NA)),LL) return(a) }
setGeneric("initializeCloudProvider", function(provider, cluster, verbose){ standardGeneric("initializeCloudProvider") }, signature = "provider") setGeneric("runDockerServer", function(provider, cluster, container, hardware, verbose){ standardGeneric("runDockerServer") }, signature = "provider") setGeneric("stopDockerServer", function(provider, cluster, verbose){ standardGeneric("stopDockerServer") }, signature = "provider") setGeneric("getServerStatus", function(provider, cluster, verbose){ standardGeneric("getServerStatus") }, signature = "provider") setGeneric("getDockerServerIp", function(provider, cluster, verbose){ standardGeneric("getDockerServerIp") }, signature = "provider") setGeneric("setDockerWorkerNumber", function(provider, cluster, container, hardware, workerNumber, verbose){ standardGeneric("setDockerWorkerNumber") }, signature = "provider") setGeneric("getDockerWorkerNumbers", function(provider, cluster, verbose){ standardGeneric("getDockerWorkerNumbers") }, signature = "provider") setGeneric("dockerClusterExists", function(provider, cluster, verbose){ standardGeneric("dockerClusterExists") }, signature = "provider") setGeneric("reconnectDockerCluster", function(provider, cluster, verbose){ standardGeneric("reconnectDockerCluster") }, signature = "provider") setGeneric("cleanupDockerCluster", function(provider, cluster, deep, verbose){ standardGeneric("cleanupDockerCluster") }, signature = "provider")
ffp <- function(x = double(), ...) { vctrs::vec_cast(x, double()) new_ffp(x, ...) } is_ffp <- function(x) { inherits(x, "ffp") } as_ffp <- function(x) { UseMethod("as_ffp", x) } as_ffp.default <- function(x) { vctrs::vec_cast(x, new_ffp()) } as_ffp.integer <- function(x) { vctrs::vec_cast(as.double(x), new_ffp()) } NULL methods::setOldClass(c("ffp", "vctrs_vctr")) new_ffp <- function(x = double(), ...) { vctrs::vec_assert(x, double()) vctrs::new_vctr(x, class = "ffp", ...) } vec_ptype_abbr.ffp <- function(x, ...) "ffp" vec_ptype2.ffp.ffp <- function(x, y, ...) new_ffp() vec_ptype2.ffp.double <- function(x, y, ...) double() vec_ptype2.double.ffp <- function(x, y, ...) double() vec_cast.ffp.ffp <- function(x, to, ...) x vec_cast.ffp.double <- function(x, to, ...) ffp(x) vec_cast.double.ffp <- function(x, to, ...) vctrs::vec_data(x) obj_print_data.ffp <- function(x, ...) { if (vctrs::vec_size(x) <= 5) { cat(x) } else { cat(utils::head(x, 5), "...", utils::tail(x, 1)) } } vec_math.ffp <- function(.fn, .x, ...) vctrs::vec_math_base(.fn, .x, ...) vec_arith.ffp <- function(op, x, y, ...) vctrs::vec_arith_base(op, x, y, ...)
"hewlett_packard"
plot.summary.loci <- function(x, loci, what = "both", layout = 1, col = c("blue", "red"), ...) { what <- match.arg(what, c("both", "alleles", "genotypes")) layout(matrix(1:layout, ceiling(sqrt(layout)))) if (!devAskNewPage() && !names(dev.cur()) %in% c("pdf", "postscript")) { devAskNewPage(TRUE) on.exit(devAskNewPage(FALSE)) } nms <- names(x) N <- if (!missing(loci)) match(loci, nms) else seq_along(x) if (what == "both") { for (i in N){ barplot(x[[i]]$allele, main = paste(nms[i], "- alleles"), col = col[1], ...) barplot(x[[i]]$genotype, main = paste(nms[i], "- genotypes"), col = col[2], ...) } } else if (what == "alleles") for (i in N) barplot(x[[i]]$allele, main = nms[i], col = col[1], ...) else if (what == "genotypes") for (i in N) barplot(x[[i]]$genotype, main = nms[i], col = col[2], ...) }
delim.table<-function(x,filename="",delim=",",tabegin="",bor="",eor="\n", tablend="",label=deparse(substitute(x)),header=NULL,trailer=NULL,html=FALSE, show.rownames=TRUE,leading.delim=FALSE,show.all=FALSE,nsignif=4, con,open.con=FALSE) { if(html) { if(delim == ",") delim="<td>" if(tabegin == "") tabegin="<table border=1>\n" if(bor == "") bor="<tr><td>" if(eor == "\n") eor="</tr>\n" if(tablend == "") tablend="</table>\n" if(is.null(header)) header="<html><body>\n" if(is.null(trailer)) trailer="</body></html>\n" } if(missing(con)) { if(nzchar(filename)) { con<-file(filename,"w") open.con<-TRUE } else con<-"" if(!is.null(header)) cat(header,"\n",file=con) } if(is.list(x) && !is.data.frame(x) && length(x) > 1) { if(!is.null(label)) cat(label,eor,file=con) for(component in 1:length(x)) delim.table(x[[component]],filename="",delim=delim,tabegin=tabegin,bor=bor, eor=eor,tablend=tablend,label=names(x[component]),html=FALSE, show.rownames=show.rownames,leading.delim=leading.delim, show.all=show.all,con=con) } else { xdim<-dim(x) if(length(xdim) > 2) stop("delim.table can only process 2D tables") if(is.null(xdim)) { if(show.all) { cat(label,eor,file=con) if(is.vector(x)) { if(is.expression(x)) cat("Can't print expression",file=con) else { for(xindex in 1:length(x)) cat(ifelse(is.numeric(x[xindex]),signif(x[xindex],nsignif), x[xindex]),delim,sep="",file=con) } cat(eor,eor,file=con) } else { options(show.error.messages = FALSE) xchar<-try(as.character(x)) options(show.error.messages = TRUE) cat(xchar,eor,file=con) } } } else { cat(label,"\n",tabegin,"\n",sep="",file=con) if(show.rownames) row.names<-rownames(x) else row.names<-NULL col.names<-names(x) if(is.null(col.names)) col.names<-colnames(x) if(!is.null(col.names)) { if(show.rownames && !is.null(row.names)) { if(leading.delim) cat(delim,file=con) cat(col.names,sep=delim,file=con) } cat(eor,file=con) } for(row in 1:xdim[1]) { if(nzchar(bor)) cat(bor,file=con) if(show.rownames && !is.null(row.names)) { if(leading.delim) cat(delim,file=con) cat(row.names[row],file=con) } nxp<-ifelse(is.na(xdim[2]),length(x),xdim[2]) for(col in 1:nxp) { nextx<-ifelse(is.na(xdim),x[col],x[row,col]) cat(delim,ifelse(is.numeric(nextx),signif(nextx,nsignif),nextx), sep="",file=con) } cat("\n",file=con) } cat(eor, file = con) } cat(tablend,ifelse(html,"",eor),file=con) } if(open.con) { if(!is.null(trailer)) cat(trailer,"\n",file=con) close(con) } }
rm(list = ls()) data(spc) Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA spcsur.sim <-spsurml(formula = Tformula, data = spc, type = "sim") spcsur.slm <-spsurml(formula = Tformula, data = spc, type = "slm", listw = Wspc) anova(spcsur.sim, spcsur.slm) print(spcsur.slm) plot(spcsur.slm) if (require(gridExtra)) { pl <- plot(spcsur.slm, viewplot = FALSE) grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]], pl$pldeltas, nrow = 3) }
context("Getting Senate nominate scores") library(politicaldata) test_that("get_senate_nominate() outputs non-empty dataset", { expect_is(get_senate_nominate(116),class = "data.frame") })
renderDga <- function() { tabPanel( "Bayesian Model Averaging", sidebarLayout( sidebarPanel( h4("Prior Model Complexity"), numericInput("dgaPriorDelta", "Delta", 1, min = 0, max = 1000000), hr(), h4("Prior Population Size"), numericInput( "dgaNMax", "Maximum Population Size", 100000, min = 0, max = 1000000 ), radioButtons( "dgaPriorType", " Prior Distribution", choices = c("Non-informative" = "noninf", "Log-normal" = "lnorm"), selected = "noninf" ), conditionalPanel( "input.dgaPriorType == \"lnorm\"", numericInput( "dgaPriorMedian", "Prior: Median", 7000, min = 0, max = 1000000 ), numericInput( "dgaPrior90", "Prior: 90% Upper Bound", 10000, min = 0, max = 1000000 ) ), hr(), checkboxInput( "dgaSaturated", "Include Saturated Model", FALSE ) ), mainPanel( tabsetPanel( tabPanel( "Prior", h3("Distribution"), withSpinner(plotOutput("dgaPrior")), h3("Cumulative Distribution"), withSpinner(plotOutput("dgaCumPrior")) ), tabPanel( "Posterior Population Size", textOutput("dgaSaturatedWarning"), tags$head( tags$style(" font-size: 20px; font-style: italic;}" ) ), br(), h3("Posterior Summaries"), withSpinner(tableOutput("dgaTable")), br(), h3("Posterior Distribution"), withSpinner(plotOutput("dgaPlot")) ), tabPanel( "Posterior Model Probabilities", withSpinner(tableOutput("dgaModelPost")) ) ) ) ) ) }
context("maxControlsCap function old") test_that("maxControlsCap", { data(nuclearplants) mhd2a <- match_on(pr ~ date + cum.n, data = nuclearplants, within = exactMatch(pr ~ pt, data = nuclearplants)) mhd2a <- t(mhd2a) mhd2a.caliper <- mhd2a + caliper(mhd2a, 3) s1 <- stratumStructure(fullmatch(mhd2a.caliper, data=nuclearplants)) expect_equal(names(s1), c("5:1", "4:1", "2:1", "1:1", "1:2")) expect_equal(as.vector(s1), c(1,2,3,2,1)) expect_equal(attr(s1, "comparable.num.matched.pairs"), 12.2) mx1 <- maxControlsCap(mhd2a.caliper) expect_true(all.equal(unlist(mx1),c(0, 0, .5, 1), check.attributes=FALSE)) s2 <- stratumStructure(fullmatch(mhd2a.caliper, max=1, data=nuclearplants)) expect_warning(s3 <- stratumStructure(fullmatch(mhd2a.caliper, max=1/2, data=nuclearplants))) s4 <- stratumStructure(fullmatch(mhd2a + caliper(mhd2a, 2), data=nuclearplants)) expect_equal(names(s2), c("5:1", "4:1", "2:1", "1:1")) expect_equal(as.vector(s2), c(1,2,2,5)) expect_equal(attr(s2, "comparable.num.matched.pairs"), 12.53333333) expect_equal(names(s3), c("1:0", "4:1", "3:1", "2:1", "0:1")) expect_equal(as.vector(s3), c(3, 2, 1, 4, 3)) expect_equal(attr(s3, "comparable.num.matched.pairs"), 10.03333333) expect_equal(names(s4), c("5:1", "4:1", "2:1", "1:1", "1:2")) expect_equal(as.vector(s4), c(1,2,3,2,1)) expect_equal(attr(s4, "comparable.num.matched.pairs"), 12.2) mx2 <- maxControlsCap(mhd2a + caliper(mhd2a, 2)) expect_true(all.equal(unlist(mx2),c(0, 0, .5, 1), check.attributes=FALSE)) s5 <- stratumStructure(fullmatch(mhd2a + caliper(mhd2a, 2), max=mx2$strictest, data=nuclearplants)) expect_warning(s6 <- stratumStructure(fullmatch(mhd2a + caliper(mhd2a, 2), max=1/2, data=nuclearplants))) expect_equal(names(s5), c("4:1", "3:1", "2:1", "1:1")) expect_equal(as.vector(s5), c(2,1,4,3)) expect_equal(attr(s5, "comparable.num.matched.pairs"), 13.03333333) expect_equal(names(s6), c("1:0", "4:1", "3:1", "2:1", "0:1")) expect_equal(as.vector(s6), c(3,2,1,4,3)) expect_equal(attr(s6, "comparable.num.matched.pairs"), 10.03333333) })
Licor_QC <- function(dat, curve = c("ACi", "AQ"), tol = 0.05) { if (!("QC" %in% names(dat))) { dat$QC <- rep(0, nrow(dat)) } pos <- c(0.1, 0.9) status <- c("red", "black", "blue", "grey") if ("aci" %in% tolower(curve)) { ref <- estimate_mode(dat$PARi) if (ref < 1) { return(NULL) } sel <- which(abs(dat$PARi - ref) / ref < tol) ulhc <- c(sum(rev(pos) * range(dat$Ci[sel], na.rm = TRUE)), sum(pos * range(dat$Photo[sel], na.rm = TRUE))) plot(dat$Ci[sel], dat$Photo[sel], col = status[dat$QC[sel] + 2], pch = 20, cex = 2, main = paste("CLICK ON OUTLIERS\n", dat$fname[1])) points(dat$Ci[-sel], dat$Photo[-sel], col = status[4], pch = 20, cex = 2) text(ulhc[1], ulhc[2], "FAIL\nALL", col = "red") legend("bottomright", legend = c("fail", "unchecked", "pass", "other"), col = status, pch = 18, cex = 1.5, bty = "n") flag <- identify(c(dat$Ci[sel], ulhc[1]), c(dat$Photo[sel], ulhc[2])) if (length(flag) > 0) { if (max(flag) > length(sel)) { dat$QC[sel] <- -1 } else { dat$QC[sel[flag]] <- -1 } } dat$QC[sel[dat$QC[sel] == 0]] <- 1 plot(dat$Ci[sel], dat$Photo[sel], col = status[dat$QC[sel] + 2], pch = 20, cex = 2, main = paste("UPDATED", dat$fname[1], "\nclick to undo Outliers")) points(dat$Ci[-sel], dat$Photo[-sel], col = status[4], pch = 20, cex = 2) legend("bottomright", legend = c("fail", "unchecked", "pass"), col = status, pch = 18, cex = 1.5, bty = "n") flag <- identify(dat$Ci[sel], dat$Photo[sel]) if (length(flag) > 0) { dat$QC[sel[flag]] <- 1 } } if ("aq" %in% tolower(curve)) { ref <- estimate_mode(dat$CO2R) if (ref < 1) { return(NULL) } sel <- which(abs(dat$CO2R - ref)/ref < tol) ulhc <- c(sum(rev(pos) * range(dat$PARi[sel], na.rm = TRUE)), sum(pos * range(dat$Photo[sel], na.rm = TRUE))) plot(dat$PARi[sel], dat$Photo[sel], col = status[dat$QC[sel] + 2], pch = 20, cex = 2, main = paste("CLICK ON OUTLIERS\n", dat$fname[1])) points(dat$PARi[-sel], dat$Photo[-sel], col = status[4], pch = 20, cex = 2) text(ulhc[1], ulhc[2], "FAIL\nALL", col = "red") legend("bottomright", legend = c("fail", "unchecked", "pass", "other"), col = status, pch = 18, cex = 1.5, bty = "n") flag <- identify(c(dat$PARi[sel], ulhc[1]), c(dat$Photo[sel], ulhc[2])) if (length(flag) > 0) { if (max(flag) > length(sel)) { dat$QC[sel] <- -1 } else { dat$QC[sel[flag]] <- -1 } } dat$QC[sel[dat$QC[sel] == 0]] <- 1 plot(dat$PARi[sel], dat$Photo[sel], col = status[dat$QC[sel] + 2], pch = 20, cex = 2, main = paste("UPDATED", dat$fname[1], "\nclick to undo Outliers")) points(dat$PARi[-sel], dat$Photo[-sel], col = status[4], pch = 20, cex = 2) legend("bottomright", legend = c("fail", "unchecked", "pass"), col = status, pch = 18, cex = 1.5, bty = "n") flag <- identify(dat$PARi[sel], dat$Photo[sel]) if (length(flag) > 0) { dat$QC[sel[flag]] <- 1 } } return(invisible(dat)) } estimate_mode <- function(x, adjust = 0.1) { d <- density(x, na.rm = TRUE, adjust = adjust) return(d$x[which.max(d$y)]) }
stopifnot(require(RHive, quietly=TRUE)) stopifnot(require(RUnit, quietly=TRUE)) test.rhive.hdfs <- function() { data(emp) localData = file.path(getwd(),"emp.csv") write.csv2(emp,localData) checkTrue(rhive.save(emp,file="/rhive/unittest/emp.RData")) listdata <- rhive.hdfs.ls("/rhive/unittest") loc <- (listdata['file'] == "/rhive/unittest/emp.RData") checkTrue(length(listdata['file'][loc]) == 1) rhive.load("/rhive/unittest/emp.RData") rhive.hdfs.put(localData,"/rhive/unittest/emp.csv") listdata <- rhive.hdfs.ls("/rhive/unittest") loc <- (listdata['file'] == "/rhive/unittest/emp.csv") checkTrue(length(listdata['file'][loc]) == 1) rhive.hdfs.rename("/rhive/unittest/emp.csv","/rhive/unittest/emp1.csv") listdata <- rhive.hdfs.ls("/rhive/unittest") loc <- (listdata['file'] == "/rhive/unittest/emp1.csv") checkTrue(length(listdata['file'][loc]) == 1) rhive.hdfs.chmod("666","/rhive/unittest/emp1.csv") listdata <- rhive.hdfs.ls("/rhive/unittest/emp1.csv") checkTrue(listdata[['permission']][1] == "rw-rw-rw-") rhive.hdfs.chown("rhive","/rhive/unittest/emp1.csv") listdata <- rhive.hdfs.ls("/rhive/unittest/emp1.csv") checkTrue(listdata[['owner']][1] == "rhive") rhive.hdfs.chgrp("grhive","/rhive/unittest/emp1.csv") listdata <- rhive.hdfs.ls("/rhive/unittest/emp1.csv") checkTrue(listdata[['group']][1] == "grhive") rhive.hdfs.rm("/rhive/unittest/emp1.csv") listdata <- rhive.hdfs.ls("/rhive/unittest") loc <- (listdata['file'] == "/rhive/unittest/emp1.csv") checkTrue(length(listdata['file'][loc]) == 0) rhive.hdfs.rm("/rhive/unittest/emp.RData") queryResult <- rhive.hdfs.du("/rhive") checkTrue(!is.null(queryResult)) totalsize <- rhive.hdfs.du("/rhive",summary=TRUE) checkTrue(length(totalsize['file']) == 1) }
interpolate <- function() { flux <- NULL k <- NULL C0 <- NULL initial <- function(t = 1, pars = NULL) { flux <<- approxfun(pars$flux_t, pars$flux_y) k <<- pars$k C0 <<- mean(flux(1:365)) / k C0 } derivs <- function(t, y, .) { flux_t <- flux(t) list(flux_t - k * y) } list(derivs = derivs, initial = initial, t = c(1, 365)) }
if(interactive()){ data(mstData) outputSRT <- srtFREQ(Posttest~ Intervention + Prettest, intervention = "Intervention", data = mstData) outputSRTBoot <- srtFREQ(Posttest~ Intervention + Prettest, intervention = "Intervention",nBoot=1000, data = mstData) outputMST <- mstFREQ(Posttest~ Intervention + Prettest, random = "School", intervention = "Intervention", data = mstData) outputMSTBoot <- mstFREQ(Posttest~ Intervention + Prettest, random = "School", intervention = "Intervention", nBoot = 1000, data = mstData) outputSRTbayes <- srtBayes(Posttest~ Intervention + Prettest, intervention = "Intervention", nsim = 2000, data = mstData) ComparePlot(list(outputSRT,outputSRTBoot,outputMST,outputMSTBoot,outputSRTbayes), modelNames =c("ols", "olsBoot","MLM","MLMBoot","OLSBayes"),group=1) }
graphdf(tinyPatchMPG) mean(igraph::V(tinyPatchMPG@mpg)$patchArea) if (interactive()) plot(tinyPatchMPG, col = c("grey", "black"), legend = FALSE) tinyLatticeMPG <- MPG(cost = tinyCost, patch = 10) if (interactive()) plot(tinyLatticeMPG)
summarySubcascades <- function(subcascades=NULL) { if(is.null(subcascades)) return(NULL) if(!inherits(subcascades, 'Subcascades')) stop(errorStrings('subcascades')) subcascades <- subcascades[sapply(subcascades, function(x){!is.null(x)})] if(length(subcascades)==0) { return(NULL) } overview <- sapply(subcascades, function(casc){c(nrow(casc), min(casc))}) if(!is.matrix(overview)) { overview <- matrix(overview, nrow = 1) }else{ overview <- t(overview) } colnames(overview) <- c('number', 'min.class.sens') rownames(overview) <- names(subcascades) return(overview) }
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL
add_ppmf12_path <- function(path, overwrite = FALSE, install = FALSE) { if (missing(path)) { stop('Input `path` cannot be missing.') } if (install) { r_env <- file.path(Sys.getenv('HOME'), '.Renviron') if (!file.exists(r_env)) { file.create(r_env) } lines <- readLines(r_env) newline <- paste0("ppmf12='", path.expand(path), "'") exists <- stringr::str_detect(lines, 'ppmf12=') if (any(exists)) { if (sum(exists) > 1) { stop('Multiple entries in .Renviron have name matching input `name`.\nEdit manually with `usethis::edit_r_environ()`.') } if (overwrite) { lines[exists] <- newline writeLines(lines, r_env) message('Run `readRenviron("~/.Renviron")` to update your active environment.') } else { message('ppmf12 already exists in .Renviron. \nEdit manually with `usethis::edit_r_environ() or set `overwrite = TRUE`.') } } else { lines[length(lines) + 1] <- newline writeLines(lines, r_env) message('Run `readRenviron("~/.Renviron")` to update your active environment.') } } else { Sys.setenv(ppmf12 = path) } invisible(path) } add_ppmf4_path <- function(path, overwrite = FALSE, install = FALSE) { if (missing(path)) { stop('Input `path` cannot be missing.') } if (install) { r_env <- file.path(Sys.getenv('HOME'), '.Renviron') if (!file.exists(r_env)) { file.create(r_env) } lines <- readLines(r_env) newline <- paste0("ppmf4='", path.expand(path), "'") exists <- stringr::str_detect(lines, 'ppmf4=') if (any(exists)) { if (sum(exists) > 1) { stop('Multiple entries in .Renviron have name matching input `name`.\nEdit manually with `usethis::edit_r_environ()`.') } if (overwrite) { lines[exists] <- newline writeLines(lines, r_env) message('Run `readRenviron("~/.Renviron")` to update your active environment.') } else { message('ppmf4 already exists in .Renviron. \nEdit manually with `usethis::edit_r_environ() or set `overwrite = TRUE`.') } } else { lines[length(lines) + 1] <- newline writeLines(lines, r_env) message('Run `readRenviron("~/.Renviron")` to update your active environment.') } } else { Sys.setenv(ppmf4 = path) } invisible(path) } add_ppmf19_path <- function(path, overwrite = FALSE, install = FALSE) { if (missing(path)) { stop('Input `path` cannot be missing.') } if (install) { r_env <- file.path(Sys.getenv('HOME'), '.Renviron') if (!file.exists(r_env)) { file.create(r_env) } lines <- readLines(r_env) newline <- paste0("ppmf19='", path.expand(path), "'") exists <- stringr::str_detect(lines, 'ppmf19=') if (any(exists)) { if (sum(exists) > 1) { stop('Multiple entries in .Renviron have name matching input `name`.\nEdit manually with `usethis::edit_r_environ()`.') } if (overwrite) { lines[exists] <- newline writeLines(lines, r_env) message('Run `readRenviron("~/.Renviron")` to update your active environment.') } else { message('ppmf19 already exists in .Renviron. \nEdit manually with `usethis::edit_r_environ() or set `overwrite = TRUE`.') } } else { lines[length(lines) + 1] <- newline writeLines(lines, r_env) message('Run `readRenviron("~/.Renviron")` to update your active environment.') } } else { Sys.setenv(ppmf19 = path) } invisible(path) }
print.robotstxt_text <- function(x, ...){ cat("[robots.txt]\n--------------------------------------\n\n") tmp <- unlist(strsplit(x, "\n")) cat(tmp[seq_len(min(length(tmp), 50))], sep ="\n") cat("\n\n\n") if(length(tmp) > 50){ cat("[...]\n\n") } problems <- attr(x, "problems") if ( length(problems) > 0){ cat("[events]\n--------------------------------------\n\n") cat("requested: ", attr(x, "request")$request$url, "\n") cat("downloaded: ", attr(x, "request")$url, "\n\n") cat(utils::capture.output(print(problems)), sep="\n") cat("[attributes]\n--------------------------------------\n\n") cat(names(attributes(x)), sep=", ") } cat("\n") invisible(x) }
nestselect = function(aics, mod1, mod2, dfdiff, pval = .05){ if(is.na(aics[mod1])){ loser = mod1 } else if(isTRUE(aics[mod2] <= aics[mod1])){ chisq = aics[mod1] - aics[mod2] + 2*dfdiff ptest = 1-pchisq(chisq, dfdiff) if(ptest < pval) loser = mod1 else loser = mod2 } else loser = mod2 return(aics[names(aics) != loser]) }
tam_colSums <- function(x) { use_sum <- FALSE if (is.vector(x)){ use_sum <- TRUE } if (is.matrix(x)){ if (ncol(x)==1){ use_sum <- TRUE } } if (use_sum){ res <- sum(x) } else { res <- colSums(x) } return(res) }
confusionMatrix <- function(data, ...){ UseMethod("confusionMatrix") } confusionMatrix.default <- function(data, reference, positive = NULL, dnn = c("Prediction", "Reference"), prevalence = NULL, mode = "sens_spec", ...) { if(!(mode %in% c("sens_spec", "prec_recall", "everything"))) stop("`mode` should be either 'sens_spec', 'prec_recall', or 'everything'") if(!is.factor(data) | !is.factor(reference)) { stop("`data` and `reference` should be factors with the same levels.", call. = FALSE) } if(!is.character(positive) & !is.null(positive)) stop("positive argument must be character") if(length(levels(data)) > length(levels(reference))) stop("the data cannot have more levels than the reference") if(!any(levels(data) %in% levels(reference))){ stop("The data must contain some levels that overlap the reference.") } if(!all(levels(data) %in% levels(reference))){ badLevel <- levels(data)[!levels(data) %in% levels(reference)] if(sum(table(data)[badLevel]) > 0){ stop("The data contain levels not found in the data.") } else{ warning("The data contains levels not found in the data, but they are empty and will be dropped.") data <- factor(as.character(data)) } } if(any(levels(reference) != levels(data))) { warning("Levels are not in the same order for reference and data. Refactoring data to match.") data <- as.character(data) data <- factor(data, levels = levels(reference)) } classLevels <- levels(data) numLevels <- length(classLevels) if(numLevels < 2) stop("there must be at least 2 factors levels in the data") if(numLevels == 2 & is.null(positive)) positive <- levels(reference)[1] classTable <- table(data, reference, dnn = dnn, ...) getFromNamespace("confusionMatrix.table", "caret")(classTable, positive, prevalence = prevalence, mode = mode) } confusionMatrix.matrix <- function(data, positive = NULL, prevalence = NULL, mode = "sens_spec", ...) { if (length(unique(dim(data))) != 1) { stop("matrix must have equal dimensions") } classTable <- as.table(data, ...) confusionMatrix(classTable, positive, prevalence = prevalence, mode = mode) } confusionMatrix.table <- function(data, positive = NULL, prevalence = NULL, mode = "sens_spec", ...){ if(!(mode %in% c("sens_spec", "prec_recall", "everything"))) stop("`mode` should be either 'sens_spec', 'prec_recall', or 'everything'") if(length(dim(data)) != 2) stop("the table must have two dimensions") if(!all.equal(nrow(data), ncol(data))) stop("the table must nrow = ncol") if(!isTRUE(all.equal(rownames(data), colnames(data)))) stop("the table must the same classes in the same order") if(!is.character(positive) & !is.null(positive)) stop("positive argument must be character") classLevels <- rownames(data) numLevels <- length(classLevels) if(numLevels < 2) stop("there must be at least 2 factors levels in the data") if(numLevels == 2 & is.null(positive)) positive <- rownames(data)[1] if(numLevels == 2 & !is.null(prevalence) && length(prevalence) != 1) stop("with two levels, one prevalence probability must be specified") if(numLevels > 2 & !is.null(prevalence) && length(prevalence) != numLevels) stop("the number of prevalence probability must be the same as the number of levels") if(numLevels > 2 & !is.null(prevalence) && is.null(names(prevalence))) stop("with >2 classes, the prevalence vector must have names") propCI <- function(x) { res <- try(binom.test(sum(diag(x)), sum(x))$conf.int, silent = TRUE) if(inherits(res, "try-error")) res <- rep(NA, 2) res } propTest <- function(x){ res <- try( binom.test(sum(diag(x)), sum(x), p = max(apply(x, 2, sum)/sum(x)), alternative = "greater"), silent = TRUE) res <- if(inherits(res, "try-error")) c("null.value.probability of success" = NA, p.value = NA) else res <- unlist(res[c("null.value", "p.value")]) res } overall <- c(unlist(e1071::classAgreement(data))[c("diag", "kappa")], propCI(data), propTest(data), mcnemar.test(data)$p.value) names(overall) <- c("Accuracy", "Kappa", "AccuracyLower", "AccuracyUpper", "AccuracyNull", "AccuracyPValue", "McnemarPValue") if(numLevels == 2) { if(is.null(prevalence)) prevalence <- sum(data[, positive])/sum(data) negative <- classLevels[!(classLevels %in% positive)] tableStats <- c(sensitivity.table(data, positive), specificity.table(data, negative), posPredValue.table(data, positive, prevalence = prevalence), negPredValue.table(data, negative, prevalence = prevalence), precision.table(data, relevant = positive), recall.table(data, relevant = positive), F_meas.table(data, relevant = positive), prevalence, sum(data[positive, positive])/sum(data), sum(data[positive, ])/sum(data)) names(tableStats) <- c("Sensitivity", "Specificity", "Pos Pred Value", "Neg Pred Value", "Precision", "Recall", "F1", "Prevalence", "Detection Rate", "Detection Prevalence") tableStats["Balanced Accuracy"] <- (tableStats["Sensitivity"]+tableStats["Specificity"])/2 } else { tableStats <- matrix(NA, nrow = length(classLevels), ncol = 11) for(i in seq(along = classLevels)) { pos <- classLevels[i] neg <- classLevels[!(classLevels %in% classLevels[i])] prev <- if(is.null(prevalence)) sum(data[, pos])/sum(data) else prevalence[pos] tableStats[i,] <- c(sensitivity.table(data, pos), specificity.table(data, neg), posPredValue.table(data, pos, prevalence = prev), negPredValue.table(data, neg, prevalence = prev), precision.table(data, relevant = pos), recall.table(data, relevant = pos), F_meas.table(data, relevant = pos), prev, sum(data[pos, pos])/sum(data), sum(data[pos, ])/sum(data), NA) tableStats[i,11] <- (tableStats[i,1] + tableStats[i,2])/2 } rownames(tableStats) <- paste("Class:", classLevels) colnames(tableStats) <- c("Sensitivity", "Specificity", "Pos Pred Value", "Neg Pred Value", "Precision", "Recall", "F1", "Prevalence", "Detection Rate", "Detection Prevalence", "Balanced Accuracy") } structure( list(positive = positive, table = data, overall = overall, byClass = tableStats, mode = mode, dots = list(...)), class = "confusionMatrix") } as.matrix.confusionMatrix <- function(x, what = "xtabs", ...){ if(!(what %in% c("xtabs", "overall", "classes"))) stop("what must be either xtabs, overall or classes") out <- switch(what, xtabs = matrix(as.vector(x$table), nrow = length(colnames(x$table)), dimnames = list(rownames(x$table), colnames(x$table))), overall = as.matrix(x$overall), classes = as.matrix(x$byClass)) if(what == "classes"){ if(length(colnames(x$table)) > 2){ out <- t(out) colnames(out) <- gsub("Class: ", "", colnames(out), fixed = TRUE) } } out } sbf_resampledCM <- function(x) { lev <- x$obsLevels if("pred" %in% names(x) && !is.null(x$pred)) { resampledCM <- do.call("rbind", x$pred[names(x$pred) == "predictions"]) resampledCM <- ddply(resampledCM, .(Resample), function(y) flatTable(pred = y$pred, obs = y$obs)) } else stop(paste("When there are 50+ classes, the function does not automatically pre-compute the", "resampled confusion matrices. You can get them when the option", "`saveDetails = TRUE`.")) resampledCM } rfe_resampledCM <- function(x) { lev <- x$obsLevels if("resample" %in% names(x) && !is.null(x$resample) && sum(grepl("\\.cell[1-9]", names(x$resample))) > 3) { resampledCM <- subset(x$resample, Variables == x$optsize) resampledCM <- resampledCM[,grepl("\\.cell[1-9]", names(resampledCM))] } else { if(!is.null(x$pred)) { resampledCM <- ddply(x$pred, .(Resample), function(y) flatTable(pred = y$pred, obs = y$obs)) } else { if(length(lev) > 50) stop(paste("When there are 50+ classes, `the function does not automatically pre-compute the", "resampled confusion matrices. You can get them when the object", "has a `pred` element.")) } } resampledCM } train_resampledCM <- function(x) { if(x$modelType == "Regression") stop("confusion matrices are only valid for classification models") lev <- levels(x) if("resampledCM" %in% names(x) && !is.null(x$resampledCM)) { names(x$bestTune) <- gsub("^\\.", "", names(x$bestTune)) resampledCM <- merge(x$bestTune, x$resampledCM) } else { if(!is.null(x$pred)) { resampledCM <- ddply(merge(x$pred, x$bestTune), .(Resample), function(y) flatTable(pred = y$pred, obs = y$obs)) } else { if(length(lev) > 50) stop(paste("When there are 50+ classes, `train` does not automatically pre-compute the", "resampled confusion matrices. You can get them from this function", "using a value of `savePredictions` other than FALSE.")) } } resampledCM } as.table.confusionMatrix <- function(x, ...) x$table confusionMatrix.train <- function(data, norm = "overall", dnn = c("Prediction", "Reference"), ...){ if(data$control$method %in% c("oob", "LOOCV", "none")) stop("cannot compute confusion matrices for leave-one-out, out-of-bag resampling, or no resampling") if (inherits(data, "train")) { if(data$modelType == "Regression") stop("confusion matrices are only valid for classification models") lev <- levels(data) resampledCM <- train_resampledCM(data) } else { lev <- data$obsLevels if (inherits(data, "rfe")) resampledCM <- rfe_resampledCM(data) if (inherits(data, "sbf")) resampledCM <- sbf_resampledCM(data) } if(!is.null(data$control$index)) { resampleN <- unlist(lapply(data$control$index, length)) numResamp <- length(resampleN) resampText <- resampName(data) } else { resampText <- "" numResamp <- 0 } counts <- as.matrix(resampledCM[ , grep("^\\.?cell", colnames(resampledCM))]) norm <- match.arg(norm, c("none", "overall", "average")) if(norm == "none") counts <- matrix(apply(counts, 2, sum), nrow = length(lev)) else counts <- matrix(apply(counts, 2, mean), nrow = length(lev)) if(norm == "overall") counts <- counts / sum(counts) * 100 rownames(counts) <- colnames(counts) <- lev names(dimnames(counts)) <- dnn out <- list(table = as.table(counts), norm = norm, B = length(data$control$index), text = paste(resampText, "Confusion Matrix")) class(out) <- paste0("confusionMatrix.", class(data)) out } confusionMatrix.rfe <- confusionMatrix.train confusionMatrix.sbf <- confusionMatrix.train print.confusionMatrix.train <- function(x, digits = 1, ...){ cat(x$text, "\n") normText <- switch(x$norm, none = "\n(entries are un-normalized aggregated counts)\n", average = "\n(entries are average cell counts across resamples)\n", overall = "\n(entries are percentual average cell counts across resamples)\n", "") cat(normText, "\n") if(x$norm == "none" & x$B == 1) { print(getFromNamespace("confusionMatrix.table", "caret")(x$table)) } else { print(round(x$table, digits)) out <- cbind("Accuracy (average)", ":", formatC(sum(diag(x$table) / sum(x$table)))) dimnames(out) <- list(rep("", nrow(out)), rep("", ncol(out))) print(out, quote = FALSE) cat("\n") } invisible(x) } print.confusionMatrix.rfe <- print.confusionMatrix.train print.confusionMatrix.sbf <- print.confusionMatrix.train resampName <- function(x, numbers = TRUE){ if(!("control" %in% names(x))) return("") if(numbers) { resampleN <- unlist(lapply(x$control$index, length)) numResamp <- length(resampleN) out <- switch(tolower(x$control$method), none = "None", apparent = "Apparent", custom = paste("Custom Resampling (", numResamp, " reps)", sep = ""), timeslice = paste("Rolling Forecasting Origin Resampling (", x$control$horizon, " held-out with", ifelse(x$control$fixedWindow, " a ", " no "), "fixed window)", sep = ""), oob = "Out of Bag Resampling", boot =, optimism_boot =, boot_all =, boot632 = paste("Bootstrapped (", numResamp, " reps)", sep = ""), cv = paste("Cross-Validated (", x$control$number, " fold)", sep = ""), repeatedcv = paste("Cross-Validated (", x$control$number, " fold, repeated ", x$control$repeats, " times)", sep = ""), lgocv = paste("Repeated Train/Test Splits Estimated (", numResamp, " reps, ", round(x$control$p*100, 1), "%)", sep = ""), loocv = "Leave-One-Out Cross-Validation", adaptive_boot = paste("Adaptively Bootstrapped (", numResamp, " reps)", sep = ""), adaptive_cv = paste("Adaptively Cross-Validated (", x$control$number, " fold, repeated ", x$control$repeats, " times)", sep = ""), adaptive_lgocv = paste("Adaptive Repeated Train/Test Splits Estimated (", numResamp, " reps, ", round(x$control$p, 2), "%)", sep = "") ) } else { out <- switch(tolower(x$control$method), none = "None", apparent = "(Apparent)", custom = "Custom Resampling", timeslice = "Rolling Forecasting Origin Resampling", oob = "Out of Bag Resampling", boot = "(Bootstrap)", optimism_boot = "(Optimism Bootstrap)", boot_all = "(Bootstrap All)", boot632 = "(Bootstrap 632 Rule)", cv = "(Cross-Validation)", repeatedcv = "(Repeated Cross-Validation)", loocv = "Leave-One-Out Cross-Validation", lgocv = "(Repeated Train/Test Splits)") } out } print.confusionMatrix <- function(x, mode = x$mode, digits = max(3, getOption("digits") - 3), printStats = TRUE, ...){ if(is.null(mode)) mode <- "sens_spec" if(!(mode %in% c("sens_spec", "prec_recall", "everything"))) stop("`mode` should be either 'sens_spec', 'prec_recall', or 'everything'") cat("Confusion Matrix and Statistics\n\n") print(x$table, ...) if(printStats) { tmp <- round(x$overall, digits = digits) pIndex <- grep("PValue", names(x$overall)) tmp[pIndex] <- format.pval(x$overall[pIndex], digits = digits) overall <- tmp accCI <- paste("(", paste( overall[ c("AccuracyLower", "AccuracyUpper")], collapse = ", "), ")", sep = "") overallText <- c(paste(overall["Accuracy"]), accCI, paste(overall[c("AccuracyNull", "AccuracyPValue")]), "", paste(overall["Kappa"]), "", paste(overall["McnemarPValue"])) overallNames <- c("Accuracy", "95% CI", "No Information Rate", "P-Value [Acc > NIR]", "", "Kappa", "", "Mcnemar's Test P-Value") if(dim(x$table)[1] > 2){ cat("\nOverall Statistics\n") overallNames <- ifelse(overallNames == "", "", paste(overallNames, ":")) out <- cbind(format(overallNames, justify = "right"), overallText) colnames(out) <- rep("", ncol(out)) rownames(out) <- rep("", nrow(out)) print(out, quote = FALSE) cat("\nStatistics by Class:\n\n") if(mode == "prec_recall") x$byClass <- x$byClass[,!grepl("(Sensitivity)|(Specificity)|(Pos Pred Value)|(Neg Pred Value)", colnames(x$byClass))] if(mode == "sens_spec") x$byClass <- x$byClass[,!grepl("(Precision)|(Recall)|(F1)", colnames(x$byClass))] print(t(x$byClass), digits = digits) } else { if(mode == "prec_recall") x$byClass <- x$byClass[!grepl("(Sensitivity)|(Specificity)|(Pos Pred Value)|(Neg Pred Value)", names(x$byClass))] if(mode == "sens_spec") x$byClass <- x$byClass[!grepl("(Precision)|(Recall)|(F1)", names(x$byClass))] overallText <- c(overallText, "", format(x$byClass, digits = digits)) overallNames <- c(overallNames, "", names(x$byClass)) overallNames <- ifelse(overallNames == "", "", paste(overallNames, ":")) overallNames <- c(overallNames, "", "'Positive' Class :") overallText <- c(overallText, "", x$positive) out <- cbind(format(overallNames, justify = "right"), overallText) colnames(out) <- rep("", ncol(out)) rownames(out) <- rep("", nrow(out)) out <- rbind(out, rep("", 2)) print(out, quote = FALSE) } } invisible(x) }
compute.threshold.FPF.pooledROC.emp <- function(object, FPF = 0.5, ci.level = 0.95, parallel = c("no", "multicore", "snow"), ncpus = 1, cl = NULL) { if(class(object)[1] != "pooledROC.emp") { stop(paste0("This function can not be used for this object class: ", class(object)[1])) } F1emp <- ecdf(object$marker$d[!object$missing.ind$d]) thresholds <- quantile(object$marker$h[!object$missing.ind$h], 1 - FPF, type = 1) TPF <- 1 - F1emp(thresholds) res <- list() res$thresholds <- thresholds res$FPF <- FPF res$TPF <- TPF res }
Quandl.search <- function(query, silent = FALSE, per_page = 10, ...) { params <- list() params$query <- query params$per_page <- per_page params <- c(params, list(...)) path <- "datasets" json <- do.call(quandl.api, c(path=path, params)) results <- structure(json$datasets, meta = json$meta) if (!is.null(nrow(results)) && nrow(results) > 0) { for (i in 1:nrow(results)) { name <- results[i,]$name code <- paste(results[i,]$database_code, "/", results[i,]$dataset_code, sep="") desc <- results[i,]$description freq <- results[i,]$frequency colname <- results[i,]$column_names if (!silent) { cat(name, "\nCode: ", code, "\nDesc: ", desc, "\nFreq: ", freq, "\nCols: ", paste(unlist(colname), collapse=" | "), "\n\n", sep="") } } } else { warning("No datasets found") } invisible(results) }
get.point.sampler.info <- function(shapefile, region.obj, meta = NULL){ ID <- X <- Y <- region <- NULL ID <- shapefile$shp$shp[,'record'] X <- shapefile$shp$shp[,'x'] Y <- shapefile$shp$shp[,'y'] effort <- rep(1, length(ID)) if(length([email protected]) > 0){ if(!is.null(shapefile$dbf$dbf$Stratum)){ strata.ID <- shapefile$dbf$dbf$Stratum[ID] strata.names <- [email protected][strata.ID] }else if(!is.null(meta)){ for(i in seq(along = ID)){ if(length(meta[,1][meta[,2] == ID[i]]) > 0){ region[i] <- meta[,3][meta[,2] == ID[i]] } } strata.names <- [email protected][as.numeric(region)] }else{ point.coords <- data.frame(x = X, y = Y) strata <- lapply(region.obj@coords, FUN = in.polygons, pts = point.coords, boundary = TRUE) strata.id <- rep(NA, nrow(point.coords)) for(strat in seq(along = strata)){ strata.id <- ifelse(strata[[strat]], strat, strata.id) } if(length(which(is.na(strata.id))) > 0){ warning("Transect cannot be allocated to strata debug get.point.sampler.info (possible that a transect falls outwith study region)", call. = FALSE, immediate. = TRUE) return(NULL) } strata.names <- [email protected][strata.id] } sampler.info <- data.frame(ID = ID, X = X, Y = Y, region = strata.names, effort = effort) }else{ region <- rep([email protected], length(ID)) sampler.info <- data.frame(ID = ID, X = X, Y = Y, region = region, effort = effort) } return(sampler.info) }
library(checkargs) context("isNumberOrNaOrNanOrInfVector") test_that("isNumberOrNaOrNanOrInfVector works for all arguments", { expect_identical(isNumberOrNaOrNanOrInfVector(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrNaOrNanOrInfVector(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrNaOrNanOrInfVector(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrNaOrNanOrInfVector(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrNaOrNanOrInfVector("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrNaOrNanOrInfVector(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrNaOrNanOrInfVector(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrNaOrNanOrInfVector(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrNaOrNanOrInfVector(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_error(isNumberOrNaOrNanOrInfVector(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrNaOrNanOrInfVector(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrNaOrNanOrInfVector(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isNumberOrNaOrNanOrInfVector(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(0, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isNumberOrNaOrNanOrInfVector("", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrNaOrNanOrInfVector("X", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrNaOrNanOrInfVector(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrNaOrNanOrInfVector(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isNumberOrNaOrNanOrInfVector(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrNaOrNanOrInfVector(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isNumberOrNaOrNanOrInfVector(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrNaOrNanOrInfVector(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) })
default_exception_handler <- function(e){ ts <- format(Sys.time(), format = "%Y-%m-%d %H:%M:%OS3") call <- paste(trimws(format(e$call)), collapse = " ") logger <- format(e$logger$name) if ("appender" %in% names(e)){ appender <- paste0(class_fmt(e$appender, ignore = c("Filterable", "R6", "Appender"))) message <- sprintf("[%s] %s %s ~ error in `%s`: %s", ts, logger, appender, call, e$message) res <- AppenderWarning(message = message, error = e) } else { message <- sprintf("[%s] %s ~ error in `%s`: %s", ts, logger, call, e$message) res <- LoggerWarning(message = message, error = e) } warning(res) } AppenderWarning <- function(message, class = NULL, call = NULL, ...){ LoggerWarning( message = message, class = union(class, "AppenderWarning"), call = call, ... ) } LoggerWarning <- function(message, class = NULL, call = NULL, ...){ warning_condition( message = message, class = union(class, "LoggerWarning"), call = call, ... ) }
context("Mortality") for(test in testlist) { samc_obj <- test$samc Q <- samc_obj$q_matrix Q <- as.matrix(Q) R <- diag(nrow(Q)) diag(R) <- samc_obj@data@t_abs R_list <- lapply(split(samc_obj@data@c_abs, col(samc_obj@data@c_abs)), function(x){ mat <- diag(length(x)) diag(mat) <- x return(mat) }) R_list <- c(list(total = R), R_list) I <- diag(nrow(Q)) F_mat <- solve(I - Q) occ_ras <- raster::raster(test$occ) pv <- as.vector(occ_ras) pv <- pv[is.finite(pv)] test_that("Testing mortality(samc, time)", { samc_obj$override <- TRUE result <- mortality(samc_obj, time = time) samc_obj$override <- FALSE base_result <- diag(nrow(Q)) Qt <- diag(nrow(Q)) for (i in 1:(time - 1)) { Qt <- Qt %*% Q base_result <- base_result + Qt } base_result <- base_result %*% R expect_equal(dim(result), dim(base_result)) expect_equal(as.vector(result), as.vector(base_result)) }) test_that("Testing mortality(samc, origin, time)", { result <- mortality(samc_obj, origin = row_vec[1], time = time) result_char <- mortality(samc_obj, origin = as.character(row_vec[1]), time = time) expect_equal(result, result_char) base_result <- diag(nrow(Q)) Qt <- diag(nrow(Q)) for (i in 1:(time - 1)) { Qt <- Qt %*% Q base_result <- base_result + Qt } base_result <- base_result %*% R expect_equal(as.vector(result), as.vector(base_result[row_vec[1], ])) }) test_that("Testing mortality(samc, origin, time_vec)", { result <- mortality(samc_obj, origin = row_vec[1], time = time_vec) result_char <- mortality(samc_obj, origin = as.character(row_vec[1]), time = time_vec) expect_equal(result, result_char) for (i in 1:length(time_vec)) { base_result <- diag(nrow(Q)) Qt <- diag(nrow(Q)) for (j in 1:(time_vec[i] - 1)) { Qt <- Qt %*% Q base_result <- base_result + Qt } base_result <- base_result %*% R expect_equal(result[[i]], as.vector(base_result[row_vec[1], ])) } }) test_that("Testing mortality(samc, dest, time)", { result <- mortality(samc_obj, dest = col_vec[1], time = time) result_char <- mortality(samc_obj, dest = as.character(col_vec[1]), time = time) expect_equal(result, result_char) base_result <- diag(nrow(Q)) Qt <- diag(nrow(Q)) for (i in 1:(time - 1)) { Qt <- Qt %*% Q base_result <- base_result + Qt } base_result <- base_result %*% R expect_equal(as.vector(result), as.vector(base_result[, col_vec[1]])) }) test_that("Testing mortality(samc, dest, time_vec)", { result <- mortality(samc_obj, dest = col_vec[1], time = time_vec) result_char <- mortality(samc_obj, dest = as.character(col_vec[1]), time = time_vec) expect_equal(result, result_char) for (i in 1:length(time_vec)) { base_result <- diag(nrow(Q)) Qt <- diag(nrow(Q)) for (j in 1:(time_vec[i] - 1)) { Qt <- Qt %*% Q base_result <- base_result + Qt } base_result <- base_result %*% R expect_equal(result[[i]], as.vector(base_result[, col_vec[1]])) } }) test_that("Testing mortality(samc, origin, dest, time)", { result <- mortality(samc_obj, origin = row_vec[1], dest = col_vec[1], time = time) result_char <- mortality(samc_obj, origin = as.character(row_vec[1]), dest = as.character(col_vec[1]), time = time) expect_equal(result, result_char) base_result <- diag(nrow(Q)) Qt <- diag(nrow(Q)) for (i in 1:(time - 1)) { Qt <- Qt %*% Q base_result <- base_result + Qt } base_result <- base_result %*% R expect_equal(as.vector(result), as.vector(base_result[row_vec[1], col_vec[1]])) }) test_that("Testing mortality(samc, origin, dest, time_vec)", { result <- mortality(samc_obj, origin = row_vec[1], dest = col_vec[1], time = time_vec) result_char <- mortality(samc_obj, origin = as.character(row_vec[1]), dest = as.character(col_vec[1]), time = time_vec) expect_equal(result, result_char) for (i in 1:length(time_vec)) { base_result <- diag(nrow(Q)) Qt <- diag(nrow(Q)) for (j in 1:(time_vec[i] - 1)) { Qt <- Qt %*% Q base_result <- base_result + Qt } base_result <- base_result %*% R expect_equal(result[[i]], as.vector(base_result[row_vec[1], col_vec[1]])) } }) test_that("Testing mortality(samc, occ, time)", { result <- mortality(samc_obj, occ = test$occ, time = time) base_result <- I Qt <- diag(nrow(Q)) for (i in 1:(time - 1)) { Qt <- Qt %*% Q base_result <- base_result + Qt } base_result <- pv %*% base_result %*% R expect_equal(as.vector(result), as.vector(base_result)) }) test_that("Testing mortality(samc, occ, time_vec)", { result <- mortality(samc_obj, occ = test$occ, time = time_vec) for (i in 1:length(time_vec)) { base_result <- I Qt <- diag(nrow(Q)) for (j in 1:(time_vec[i] - 1)) { Qt <- Qt %*% Q base_result <- base_result + Qt } base_result <- pv %*% base_result %*% R expect_equal(result[[i]], as.vector(base_result)) } }) test_that("Testing mortality(samc)", { samc_obj$override <- TRUE result <- mortality(samc_obj) samc_obj$override <- FALSE expect_equal(as.vector(result[[1]]), as.vector(Reduce('+', result) - result[[1]])) base_result <- lapply(R_list, function(x) F_mat %*% x) mapply(function(x, y) expect_equal(as.vector(x), as.vector(y)), base_result, result) }) test_that("Testing mortality(samc, origin)", { result <- mortality(samc_obj, origin = row_vec[1]) expect_equal(as.vector(result[[1]]), as.vector(Reduce('+', result) - result[[1]])) result_char <- mortality(samc_obj, origin = as.character(row_vec[1])) expect_equal(result[[1]], result_char[[1]]) base_result <- lapply(R_list, function(x) F_mat %*% x) mapply(function(x, y) expect_equal(as.vector(x[row_vec[1], ]), as.vector(y)), base_result, result) }) test_that("Testing mortality(samc, dest)", { result <- mortality(samc_obj, dest = col_vec[1]) expect_equal(as.vector(result[[1]]), as.vector(Reduce('+', result) - result[[1]])) result_char <- mortality(samc_obj, dest = as.character(col_vec[1])) expect_equal(result[[1]], result_char[[1]]) base_result <- lapply(R_list, function(x) F_mat %*% x) mapply(function(x, y) expect_equal(as.vector(x[, col_vec[1]]), as.vector(y)), base_result, result) }) test_that("Testing mortality(samc, origin, dest)", { vector_result <- mortality(samc_obj, origin = row_vec, des = col_vec) expect_equal(as.vector(vector_result[[1]]), as.vector(Reduce('+', vector_result) - vector_result[[1]])) vector_result_char <- mortality(samc_obj, origin = as.character(row_vec), dest = as.character(col_vec)) expect_equal(vector_result[[1]], vector_result_char[[1]]) base_result <- lapply(R_list, function(x) F_mat %*% x) for (i in 1:length(row_vec)) { r <- mortality(samc_obj, origin = row_vec[i], dest = col_vec[i]) mapply(function(x, y) expect_equal(x[i], y), vector_result, r) mapply(function(x, y) expect_equal(x, y[row_vec[i], col_vec[i]], check.names = FALSE), r, base_result) } }) test_that("Testing mortality(samc, occ)", { result <- mortality(samc_obj, occ = test$occ) expect_equal(as.vector(result[[1]]), as.vector(Reduce('+', result) - result[[1]])) base_result <- lapply(R_list, function(x) pv %*% F_mat %*% x) mapply(function(x, y) expect_equal(as.vector(x), as.vector(y)), base_result, result) }) }
doFullPlot <- function (cosinemeshplot, cosinedrugbankplot, cosineepilepsyplot, dicemeshplot, dicedrugbankplot, diceepilepsyplot, jaccardmeshplot, jaccarddrugbankplot, jaccardepilepsyplot) { full <- gridExtra::grid.arrange(cosinemeshplot, cosinedrugbankplot, cosineepilepsyplot, dicemeshplot, dicedrugbankplot, diceepilepsyplot, jaccardmeshplot, jaccarddrugbankplot, jaccardepilepsyplot) return (full) }
context("racusum_crit_sim") R0 <- 1; RA <- 2 library("spcadjust") data("cardiacsurgery") cardiacsurgery <- dplyr::mutate(cardiacsurgery, phase=factor(ifelse(date < 2*365, "I", "II"))) S2 <- subset(cardiacsurgery, c(surgeon==2), c("phase", "Parsonnet", "status")) S2I <- subset(S2, c(phase=="I"), c("Parsonnet", "status")) df1 <- data.frame(Parsonnet=c(0L, 0L, 50L, 50L), status = c(0, 1, 0, 1)) coeff1 <- c("(Intercept)" = -3.68, "Parsonnet" = 0.077) L0 <- 1 test_that("Input parameter of function", { expect_error(racusum_crit_sim(L0 = 0, df1, coeff1)) }) test_that("Different input values for df", { dftest1 <- list(as.matrix(df1), NULL) lapply(dftest1, function(x) { expect_error(do.call(x, racusum_crit_sim(L0, df = x, coeff1)))}) dftest2 <- list(data.frame(0L, 1, 1), data.frame(0L), data.frame(NA)) lapply(dftest2, function(x) { expect_error(do.call(x, racusum_crit_sim(L0, df = x, coeff1)))}) }) test_that("Different input values for coeff", { coefftest <- list(coeff1[1], rep(1, 3), NULL, NA) lapply(coefftest, function(x) { expect_error(do.call(x, racusum_crit_sim(L0, df1, coeff = x)))}) }) test_that("Different input values for R0", { R0test <- list(-1, 0, "0", NA) lapply(R0test, function(x) { expect_error(do.call(x, racusum_crit_sim(L0, df1, coeff1, R0 = x)))}) }) test_that("Different input values for RA", { RAtest <- list(-1, 0, "0", NA) lapply(RAtest, function(x) { expect_error(do.call(x, racusum_crit_sim(L0, df1, coeff1, RA = x)))}) }) test_that("Iterative search procedure I", { skip_on_cran() skip_if(SKIP==TRUE, "skip this test now") SALLI <- cardiacsurgery %>% mutate(s = Parsonnet) %>% mutate(y = ifelse(status == 1 & time <= 30, 1, 0), phase = factor(ifelse(date < 2*365, "I", "II"))) %>% filter(phase == "I") %>% select(s, y) mod1 <- glm(y ~ s, data = SALLI, family = "binomial") y <- SALLI$y pi1 <- fitted.values(mod1) pmix <- data.frame(y, pi1, pi1) L0 <- 370 m <- 1e3 tol <- 0.3 set.seed(1234) expect_equal(racusum_crit_sim(pmix = pmix, L0 = L0, m = m, RA = 2, verbose = TRUE), 1.8481, tolerance=tol) expect_equal(racusum_crit_sim(pmix = pmix, L0 = L0, m = m, RA = 2, verbose = FALSE), 1.8481, tolerance=tol) expect_equal(racusum_crit_sim(pmix = pmix, L0 = L0, m = m, RA = 1/2, verbose = TRUE), 1.6383, tolerance=tol) expect_equal(racusum_crit_sim(pmix = pmix, L0 = L0, m = m, RA = 1/2, verbose = FALSE), 1.6383, tolerance=tol) })
DistMatrixNoUnit <- function(dists, func, testNA){ FUN <- match.fun(func) n_cols = ncol(dists) dist_value = vector("numeric", 1) dist_matrix <- matrix(NA_real_, n_cols,n_cols) for (i in seq_len(n_cols)) { for (j in seq_len(n_cols)) { if (is.na(dist_matrix[i,j])) { dist_value = FUN(dists[ , i], dists[ , j], testNA) dist_matrix[i,j] = dist_value dist_matrix[j,i] = dist_value } } } return(dist_matrix) }
linearSum <- function(theta, matrixList) { C <- Reduce('+', Map(f = function(x, y) x * y, theta, matrixList)) return(C) } quadForm <- function(x, A, y = x) { sum(x * (A %*% y)) } calcSumSquares <- function(lRinv, Q, r, a, Nvarcomp) { SSr <- sapply(X = lRinv, FUN= function(X) { quadForm(r, X) }) if (Nvarcomp > 0) { SSa <- sapply(X = Q, FUN = function(X) { quadForm(a, X) }) SS_all <- c(SSa, SSr) } else { SS_all <- SSr } return(SS_all) } solveMME <- function(cholC, listC, lWtRinvY, phi, theta) { C <- linearSum(theta = theta, matrixList = listC) cholC <- update(cholC, C) WtRinvy <- as.vector(linearSum(theta = phi, matrixList = lWtRinvY)) a <- spam::backsolve.spam(cholC, spam::forwardsolve.spam(cholC, WtRinvy)) return(a) } calcEffDim <- function(ADcholGinv, ADcholRinv, ADcholC, phi, psi, theta) { resultRinv <- logdetPlusDeriv(ADcholRinv, phi) logdetR <- -resultRinv[1] dlogdetRinv <- resultRinv[-1] if (!is.null(ADcholGinv)) { resultGinv <- logdetPlusDeriv(ADcholGinv, psi) logdetG <- -resultGinv[1] dlogdetGinv <- resultGinv[-1] } else { logdetG <- 0 } resultC <- logdetPlusDeriv(ADcholC, theta) logdetC <- resultC[1] dlogdetC <- resultC[-1] EDmax_phi <- phi * dlogdetRinv if (!is.null(ADcholGinv)) { EDmax_psi <- psi * dlogdetGinv } else { EDmax_psi <- NULL } EDmax <- c(EDmax_psi, EDmax_phi) ED <- EDmax - theta * dlogdetC attr(ED, "logdetC") <- logdetC attr(ED, "logdetG") <- logdetG attr(ED, "logdetR") <- logdetR return(ED) } REMLlogL <- function(ED, yPy) { logdetC <- attr(ED, "logdetC") logdetG <- attr(ED, "logdetG") logdetR <- attr(ED, "logdetR") logL <- -0.5 * (logdetR + logdetG + logdetC + yPy) return(logL) } sparseMixedModels <- function(y, X, Z, lGinv, lRinv, maxit = 100, tolerance = 1.0e-6, trace = FALSE, theta = NULL) { Ntot <- length(y) p <- ncol(X) q <- ncol(Z) Nres <- length(lRinv) Nvarcomp <- length(lGinv) NvarcompTot <- Nres + Nvarcomp dimMME <- p + q W <- spam::as.spam(cbind(X, Z)) Wt <- t(W) lWtRinvW <- lapply(X = lRinv, FUN = function(x) { Wt %*% x %*% W}) lWtRinvY <- lapply(X = lRinv, FUN = function(x) { Wt %*% (x %*% y)}) lQ <- lapply(X = lGinv, FUN = function(x) { zero <- spam::spam(0, ncol = p, nrow = p) return(spam::bdiag.spam(zero, x)) }) listC <- c(lQ, lWtRinvW) lWtRinvW <- lapply(X = lWtRinvW, FUN = spam::cleanup) lQ <- lapply(X = lQ, FUN = spam::cleanup) lGinv <- lapply(X = lGinv, FUN = spam::cleanup) listC <- lapply(X = listC, FUN = spam::cleanup) if (is.null(theta)) { theta <- rep(1, Nvarcomp + Nres) } if (Nvarcomp > 0) { psi <- theta[1:Nvarcomp] phi <- theta[-(1:Nvarcomp)] } else { psi <- NULL phi <- theta } C <- linearSum(theta = theta, matrixList = listC) opt <- summary(C) cholC <- chol(C, memory = list(nnzR = 8 * opt$nnz, nnzcolindices = 4 * opt$nnz)) ADcholRinv <- ADchol(lRinv) if (Nvarcomp > 0) { ADcholGinv <- ADchol(lGinv) } else { ADcholGinv <- NULL } ADcholC <- ADchol(listC) logLprev <- Inf fixedTheta <- rep(FALSE, length = NvarcompTot) if (trace) { cat("iter logLik\n") } for (it in 1:maxit) { if (Nvarcomp > 0) { psi <- theta[1:length(psi)] phi <- theta[-(1:length(psi))] } else { psi <- NULL phi <- theta } ED <- calcEffDim(ADcholGinv, ADcholRinv, ADcholC, phi, psi, theta) a <- solveMME(cholC = cholC, listC = listC, lWtRinvY = lWtRinvY, phi = phi, theta = theta) r <- y - W %*% a SS_all <- calcSumSquares(lRinv = lRinv, Q = lQ, r = r, a = a, Nvarcomp = Nvarcomp) Rinv <- linearSum(phi, lRinv) yPy <- quadForm(x = y, A = Rinv, y = r) logL <- REMLlogL(ED, yPy) if (trace) { cat(sprintf("%4d %8.4f\n", it, logL)) } if (abs(logLprev - logL) < tolerance) { break } theta <- ifelse(fixedTheta, theta, ED / SS_all) fixedTheta <- theta > 1.0e6 logLprev <- logL } if (it == maxit) { warning("No convergence after ", maxit, " iterations \n", call. = FALSE) } C <- linearSum(theta = theta, matrixList = listC) cholC <- update(cholC, C) names(phi) <- names(lRinv) names(psi) <- names(lGinv) EDnames <- c(names(lGinv), names(lRinv)) L <- list(logL = logL, sigma2e = 1 / phi, tau2e = 1 / psi, ED = ED, theta = theta, EDnames = EDnames, a = a, yhat = y - r, residuals = r, nIter = it, C = C) return(L) }
library( "testthat" ) test_package( "SmithWilsonYieldCurve" )
NULL if(getRversion() >= "2.15.1") utils::globalVariables(c(".")) globalVariables(c("valueGuess", "valueType", "row_1", "row_2", "value", "cor", "setNames", "rowname", "n"))
setClass ( Class = "DecisionTable", representation = representation( decisionTable = "matrix" ), validity = function(object){ if(nrow(object@decisionTable) < 2 || ncol(object@decisionTable) < 2){ stop ("[DecisionTable: validation] the minimum number of row and columns are 2") }else{} return(TRUE) } ) setMethod ( f="initialize", signature="DecisionTable", definition=function(.Object,decisionTable){ if(!missing(decisionTable)){ colnames(decisionTable) <- paste("C",1:ncol(decisionTable),sep="") dtColNames <- colnames(decisionTable) dtColNames[length(dtColNames)] <- "D" colnames(decisionTable) <- dtColNames rownames(decisionTable) <- paste("R",1:nrow(decisionTable),sep="") .Object@decisionTable <- decisionTable validObject(.Object) }else{ .Object@decisionTable <- matrix(nrow=0,ncol=0) } return(.Object) } ) decisionTable <- function(theDecisionTable){ new (Class="DecisionTable",decisionTable=theDecisionTable) } setGeneric("getDecisionTable",function(object){standardGeneric ("getDecisionTable")}) setMethod("getDecisionTable","DecisionTable", function(object){ return(object@decisionTable) } ) setGeneric("getCondition",function(object){standardGeneric ("getCondition")}) setMethod("getCondition","DecisionTable", function(object){ decisionTable <- object@decisionTable condition <- decisionTable[,1:(ncol(decisionTable)-1)] return(condition) } ) setGeneric("getDecision",function(object){standardGeneric ("getDecision")}) setMethod("getDecision","DecisionTable", function(object){ decisionTable <- object@decisionTable decision <- decisionTable[,ncol(decisionTable)] return(decision) } ) setGeneric("getRule",function(object,ruleIndex){standardGeneric ("getRule")}) setMethod("getRule","DecisionTable", function(object,ruleIndex){ return(object@decisionTable[ruleIndex,]) } ) setMethod ("print","DecisionTable", function(x,...){ cat("*** Class DecisionTable, method Print *** \n") if(length(x@decisionTable) != 0){ print(formatC(x@decisionTable),quote=FALSE) }else{} cat("******* End Print (DecisionTable) ******* \n") } ) setMethod("show","DecisionTable", function(object){ cat("*** Class DecisionTable, method Show *** \n") cat("* decisionTable (limited to a matrix 10x10) = \n") if(length(object@decisionTable) != 0){ nrowShow <- min(10,nrow(object@decisionTable)) ncolShow <- min(10,ncol(object@decisionTable)) print(formatC(object@decisionTable[1:nrowShow,1:ncolShow]),quote=FALSE) }else{} cat("******* End Show (DecisionTable) ******* \n") } ) setGeneric (name = "checkConsistency",def = function(object){standardGeneric("checkConsistency")}) setMethod( f = "checkConsistency", signature = "DecisionTable", definition = function(object){ consistencyMatrix <- .computeConsistencyMatrix(object@decisionTable) expectedSum <- c(1:nrow(consistencyMatrix)) obtainedSum <- apply(consistencyMatrix,1,function(theRule){sum(theRule,na.rm = TRUE)}) consistentRules <- (obtainedSum == expectedSum) return(consistentRules) } ) setGeneric (name = "computeConsistencyMatrix",def = function(object){standardGeneric("computeConsistencyMatrix")}) setMethod( f = "computeConsistencyMatrix", signature = "DecisionTable", definition = function(object){ consistencyMatrix <- .computeConsistencyMatrix(object@decisionTable) return(consistencyMatrix) } ) setGeneric (name = "computeDiscernibilityMatrix",def = function(object){standardGeneric("computeDiscernibilityMatrix")}) setMethod( f = "computeDiscernibilityMatrix", signature = "DecisionTable", definition = function(object){ discernibilityMatrix <- .computeDiscernibilityMatrix(object@decisionTable) dt <- new(Class="DiscernibilityMatrix",discernibilityMatrix = discernibilityMatrix) return(dt) } ) setGeneric (name = "removeDuplicatedRulesDT",def = function(object){standardGeneric("removeDuplicatedRulesDT")}) setMethod( f = "removeDuplicatedRulesDT", signature = "DecisionTable", definition = function(object){ dtMat <- object@decisionTable newDecisionTable <- unique(dtMat) newDT <- new(Class="DecisionTable",decisionTable = newDecisionTable) return(newDT) } ) setGeneric (name = "findFirstConditionReduct",def = function(object){standardGeneric("findFirstConditionReduct")}) setMethod( f = "findFirstConditionReduct", signature = "DecisionTable", definition = function(object){ dtMat <- object@decisionTable dm <- computeDiscernibilityMatrix(object) coreNoDecision <- computeCore(dm) firstReduct <- .findFirstReductsFromCore(dtMat,coreNoDecision) firstReductWithDecision <- append(firstReduct,ncol(dtMat)) cr <- new(Class="ConditionReduct",decisionTable = object, columnIds = firstReductWithDecision) return(cr) } ) setGeneric (name = "findSmallestReductFamilyFromCore",def = function(object){standardGeneric("findSmallestReductFamilyFromCore")}) setMethod( f = "findSmallestReductFamilyFromCore", signature = "DecisionTable", definition = function(object){ lres <- list() dtMat <- object@decisionTable dm <- computeDiscernibilityMatrix(object) coreNoDecision <- computeCore(dm) reductFamilyList <- .findSmallestReductFamilyFromCore(dtMat,coreNoDecision) listLen <- length(reductFamilyList) for(i in 1:listLen){ reductVector <- reductFamilyList[[i]] reductVector <- append(reductVector,ncol(dtMat)) cr <- new(Class="ConditionReduct",decisionTable = object,columnIds = reductVector) lres[[i]] <- cr } return(lres) } ) setGeneric (name = "findAllReductsFromCore",def = function(object){standardGeneric("findAllReductsFromCore")}) setMethod( f = "findAllReductsFromCore", signature = "DecisionTable", definition = function(object){ lres <- list() dtMat <- object@decisionTable dm <- computeDiscernibilityMatrix(object) coreNoDecision <- computeCore(dm) reductFamilyList <- .findAllReductsFromCore(dtMat,coreNoDecision) listLen <- length(reductFamilyList) for(i in 1:listLen){ reductVector <- reductFamilyList[[i]] reductVector <- append(reductVector,ncol(dtMat)) cr <- new(Class="ConditionReduct",decisionTable = object,columnIds = reductVector) lres[[i]] <- cr } return(lres) } ) setGeneric (name = "simplifyDecisionTable",def = function(object){standardGeneric("simplifyDecisionTable")}) setMethod( f = "simplifyDecisionTable", signature = "DecisionTable", definition = function(object){ noDuplicatedDT <- removeDuplicatedRulesDT(object) cr <- findFirstConditionReduct(noDuplicatedDT) noDuplicatedCR <- removeDuplicatedRulesCR(cr) vr <- computeValueReduct(noDuplicatedCR) NoDuplicatedVr <- removeDuplicatedRulesVR(vr) return(NoDuplicatedVr) } ) .inflateValueReduct <- function(theValueReductWithDecision, theReductConditionIds,theDecisionTableConditionDecisionIds){ resRowCounter <- nrow(theValueReductWithDecision) resColCounter <- length(theDecisionTableConditionDecisionIds) res <- matrix(data = NA, nrow = resRowCounter, ncol = resColCounter) for(i in 1:resRowCounter){ valueReductRule <- theValueReductWithDecision[i,] copyCounter <- 0 for(j in 1:resColCounter){ if(is.element(j, theReductConditionIds)){ copyCounter <- (copyCounter + 1) res[i,j] <- valueReductRule[copyCounter] }else{} if(j == resColCounter){ res[i,j] <- valueReductRule[length(valueReductRule)] }else{} } } return(res) } .findFirstReductsFromCore <- function(theDecisionTable,theCoreNoDecision){ theCore <- theCoreNoDecision if(.isReduct(theDecisionTable, theCore)){ res <- theCore }else{ conditionCount <- (ncol(theDecisionTable) - 1) notCoreConditionsId <- setdiff(c(1:conditionCount),theCore) res <- vector(mode = "numeric", length = 0) for(i in 1:(length(notCoreConditionsId))){ if(length(notCoreConditionsId) > 1){ combinations <- combn(notCoreConditionsId,i) combinationsCount <- ncol(combinations) }else if(length(notCoreConditionsId) == 1){ combinations <- notCoreConditionsId combinationsCount <- 1 }else{} for(j in 1:combinationsCount){ if(is.vector(combinations)){ combinationNoCore <- combinations[j] }else if(is.matrix(combinations)){ combinationNoCore <- combinations[,j] }else{} combinationCore <- union(theCore, combinationNoCore) combinationCore <- sort(combinationCore) if(.isReduct(theDecisionTable, combinationCore)){ res <- combinationCore break }else{} } if(length(res) > 0){ break }else{} } } return(res) } .findSmallestReductFamilyFromCore <- function(theDecisionTable,theCoreNoDecision){ theCore <- theCoreNoDecision lres <- list() if(.isReduct(theDecisionTable, theCore)){ lres[[1]] <- theCore }else{ conditionCount <- (ncol(theDecisionTable) - 1) notCoreConditionsId <- setdiff(c(1:conditionCount),theCore) counter <- 0 for(i in 1:(length(notCoreConditionsId))){ if(length(notCoreConditionsId) > 1){ combinations <- combn(notCoreConditionsId,i) combinationsCount <- ncol(combinations) }else if(length(notCoreConditionsId) == 1){ combinations <- notCoreConditionsId combinationsCount <- 1 }else{} for(j in 1:combinationsCount){ if(is.vector(combinations)){ combinationNoCore <- combinations[j] }else if(is.matrix(combinations)){ combinationNoCore <- combinations[,j] }else{} combinationCore <- union(theCore, combinationNoCore) combinationCore <- sort(combinationCore) if(.isReduct(theDecisionTable, combinationCore)){ counter <- (counter + 1) lres[[counter]] <- combinationCore }else{} } if(counter != 0){ break } } } return(lres) } .findAllReductsFromCore <- function(theDecisionTable,theCoreNoDecision){ theCore <- theCoreNoDecision lres <- list() counter <- 0 if(.isReduct(theDecisionTable, theCore)){ counter <- (counter + 1) lres[[counter]] <- theCore }else{} conditionCount <- (ncol(theDecisionTable) - 1) notCoreConditionsId <- setdiff(c(1:conditionCount),theCore) for(i in 1:(length(notCoreConditionsId))){ if(length(notCoreConditionsId) > 1){ combinations <- combn(notCoreConditionsId,i) combinationsCount <- ncol(combinations) }else if(length(notCoreConditionsId) == 1){ combinations <- notCoreConditionsId combinationsCount <- 1 }else{} for(j in 1:combinationsCount){ if(is.vector(combinations)){ combinationNoCore <- combinations[j] }else if(is.matrix(combinations)){ combinationNoCore <- combinations[,j] }else{} combinationCore <- union(theCore, combinationNoCore) combinationCore <- sort(combinationCore) if(.isReduct(theDecisionTable, combinationCore)){ counter <- (counter + 1) lres[[counter]] <- combinationCore }else{} } } return(lres) } .computeDiscernibilityMatrix <- function(theDecisionTable){ id <- c(1:nrow(theDecisionTable)) conditionCount <- ncol(theDecisionTable) - 1 ruleCount <- nrow(theDecisionTable) theDTid <- cbind(theDecisionTable,id) partialResult <- apply(theDTid,1,.computeDiscernibilityVector,theDecisionTable=theDecisionTable) discernibilityMatrix <- array(NA,c(ruleCount,ruleCount,conditionCount)) mat <- matrix() for(i in 1:ruleCount){ mat <- matrix(partialResult[,i],ncol=conditionCount,byrow=TRUE) for(j in 1:nrow(mat)){ discernibilityMatrix[i,j,] <- mat[j,] } } ruleNames <- paste("R",1:nrow(discernibilityMatrix),sep="") attNames <- paste("C",1:conditionCount,sep="") dimensionNames <- list(ruleNames,ruleNames,attNames) dimnames(discernibilityMatrix) <- dimensionNames return(discernibilityMatrix) } .computeConsistencyMatrix <- function(theDecisionTable){ id <- c(1:nrow(theDecisionTable)) theDTid <- cbind(theDecisionTable,id) consistencyMatrix <- apply(theDTid,1,.computeConsistencyVector,theDecisionTable=theDecisionTable) rownames(consistencyMatrix) <- paste("R",1:nrow(consistencyMatrix),sep="") colnames(consistencyMatrix) <- paste("R",1:ncol(consistencyMatrix),sep="") return(consistencyMatrix) } .computeDiscernibilityVector<- function(theRule,theDecisionTable){ ruleId <- theRule[length(theRule)] rule <- theRule[-length(theRule)] ruleCondition <- rule[-length(rule)] ruleConditionCount <- length(ruleCondition) conditionTable <- theDecisionTable[,-ncol(theDecisionTable)] ruleCount <- nrow(theDecisionTable) conditionCount <- length(rule) - 1 theDisTable <- array(NA, c(ruleCount,conditionCount)) for(i in 1:ruleCount){ iniPos <- ((i * ruleConditionCount)-(ruleConditionCount-1)) endPos <- (i * ruleConditionCount) if(i <= ruleId){ theDisTable[iniPos:endPos] <- NA }else if(i > ruleId){ theDisTable[iniPos:endPos] <- (ruleCondition != conditionTable[i,]) }else{} } return(theDisTable) } .computeConsistencyVector <- function(theRule,theDecisionTable){ ruleId <- theRule[length(theRule)] rule <- theRule[1:(length(theRule)-1)] ruleCount <- nrow(theDecisionTable) theConVector <- vector(mode = "logical", length = ruleCount) theValue <- NA for(i in 1:ruleCount){ if(i < ruleId){ theValue <- NA }else if(i == ruleId){ theValue <- TRUE }else if(i > ruleId){ theValue <- .checkRuleConsistency(rule,theDecisionTable[i,]) }else{} theConVector[i] <- theValue } if(sum(theConVector, na.rm = TRUE) != ((length(theConVector) + 1) - ruleId)){ theConVector[ruleId] <- FALSE }else{} return(theConVector) } .checkRuleConsistency <- function(rule1,rule2){ areConsistent <- FALSE condR1 <- rule1[-length(rule1)] condR2 <- rule2[-length(rule2)] decR1 <- rule1[length(rule1)] decR2 <- rule2[length(rule2)] if(identical(condR1,condR2)){ if(identical(decR1,decR2)){ areConsistent <- TRUE }else{ areConsistent <- FALSE } }else{ areConsistent <- TRUE } return(areConsistent) } .isReduct <- function(theDecisionTable, theReductConditionIds){ reduct <- theDecisionTable[,theReductConditionIds] conditions <- theDecisionTable[,-ncol(theDecisionTable)] indRed <- .computeIndescernibilityFunction(reduct) indCon <- .computeIndescernibilityFunction(conditions) ans <- identical(indCon,indRed) return(ans) }
dta.byte <- 251 dta.short <- 252 dta.long <- 253 dta.float <- 254 dta.double <- 255 dta.byte.missrange <- c(0x64,0x7f) dta.short.missrange <- c(0x7fe5,0x7fff) dta.long.missrange <- c(0x7fffffe5L,0x7fffffffL) dta.float.missrange <- c(2.0^0x7f,Inf) dta.double.missrange <- c(2.0^0x3ff,Inf) missnames <- paste(".",c("",letters),sep="") dta.byte.misslab <- structure(0x64 + 1:27,names=missnames) dta.short.misslab <- structure(0x7fe4 + 1:27,names=missnames) dta.long.misslab <- structure(0x7fffffe4L + 1:27,names=missnames) dta.float.misslab <- structure((1+(0:26)/16^3)*2.0^0x7f,names=missnames) dta.double.misslab <- structure((1+(0:26)/16^3)*2.0^0x3ff,names=missnames) new.dta <- function(file) .Call("dta_file_open",file,"rb") dta.read.version <- function(bf) .Call("dta_read_version",bf) dta.read.header <- function(bf,lablen).Call("dta_read_header",bf,lablen) dta.read.descriptors <- function(bf,nvar,len.varn,len.fmt,len.lbl) .Call("dta_read_descriptors",bf,nvar,len.varn,len.fmt,len.lbl) dta.read.varlabs <- function(bf,nvar,len.varlab) .Call("dta_read_varlabs",bf,nvar,len.varlab) dta.read.expansion.fields <- function(bf,shortext) .Call("dta_read_expansion_fields",bf,shortext) dta.read.labels <- function(bf,lbllen,padding) .Call("dta_read_labels",bf,lbllen,padding) dta.trans.types <- function(types) .Call("dta_trans_types",types) dta.calc.obssize <- function(bf,types) .Call("dta_calc_obssize",bf,types) dta.tell <- function(bf) .Call("dta_ftell",bf) dta.seek <- function(bf,pos,whence) .Call("dta_fseek",bf,pos,whence) dta.feof <- function(bf) .Call("dta_feof",bf) dta.skip.records <- function(bf,n) .Call("dta_skip_records",bf,n) dta.seek.data <- function(bf) .Call("dta_seek_data",bf) get.dictionary.dta <- function(bf){ version <- dta.read.version(bf) if(version==105){ version.string <- "Stata 5" len.varn <- 8 len.fmt <- 11 len.lbl <- 8 len.varlab <- 31 ext.short <- TRUE conv.types <- FALSE } else if(version==108){ version.string <- "Stata 6" len.varn <- 8 len.fmt <- 11 len.lbl <- 8 len.varlab <- 80 ext.short <- TRUE conv.types <- FALSE } else if(version==110){ version.string <- "Stata 7" len.varn <- 32 len.fmt <- 11 len.lbl <- 32 len.varlab <- 80 ext.short <- FALSE conv.types <- TRUE } else if(version==111){ version.string <- "Stata 7 SE" len.varn <- 32 len.fmt <- 11 len.lbl <- 32 len.varlab <- 80 ext.short <- FALSE conv.types <- FALSE } else if(version==113){ version.string <- "Stata 8" len.varn <- 32 len.fmt <- 11 len.lbl <- 32 len.varlab <- 80 ext.short <- FALSE conv.types <- FALSE } else if(version %in% c(114,115)){ version.string <- if(version==114) "Stata 9" else "Stata 10" len.varn <- 32 len.fmt <- 48 len.lbl <- 32 len.varlab <- 80 ext.short <- FALSE conv.types <- FALSE } else { stop("version ",version," not yet supported") } hdr <- dta.read.header(bf,len.varlab) nobs <- hdr$nobs nvar <- hdr$nvar descriptors <- dta.read.descriptors(bf, nvar=nvar, len.varn=len.varn, len.fmt=len.fmt, len.lbl=len.lbl) varnames <- descriptors$varlist types <- if(conv.types) dta.trans.types(descriptors$typelist) else descriptors$typelist names(types) <- varnames obs_size <- dta.calc.obssize(bf,types) varlab <- dta.read.varlabs(bf, nvar=nvar, len.varlab=len.varlab) names(varlab) <- varnames dta.read.expansion.fields(bf,ext.short) vallabs <- descriptors$lbllist names(vallabs) <- varnames vallabs <- vallabs[nzchar(vallabs)] if(version>105){ dta.skip.records(bf,nobs) vallab.patterns <- list() while(!dta.feof(bf)) vallab.patterns <- c(vallab.patterns,dta.read.labels(bf,len.lbl,3)) if(!any(sapply(vallab.patterns,length)>0)) vallab.patterns <- NULL } else vallab.patterns <- NULL if(length(vallab.patterns)){ vallabs[] <- vallab.patterns[vallabs] } if(version >= 113){ missing.values <- dta_missing.values(types) missval_labels <- dta_missval_labels(types) } else { missing.values <- NULL missval_labels <- NULL } list(names=varnames, types=types, nobs=nobs, nvar=nvar, varlabs=varlab, value.labels=vallabs, missing.values=missing.values, missval_labels=missval_labels, version.string=version.string ) } dta_missing.values <- function(types){ nvar <- length(length) missing.values <- vector(nvar,mode="list") missing.values[types==dta.byte] <- list(list(range=dta.byte.missrange)) missing.values[types==dta.short] <- list(list(range=dta.short.missrange)) missing.values[types==dta.long] <- list(list(range=dta.long.missrange)) missing.values[types==dta.float] <- list(list(range=dta.float.missrange)) missing.values[types==dta.double] <- list(list(range=dta.double.missrange)) names(missing.values) <- names(types) missing.values } dta_missval_labels <- function(types){ nvar <- length(length) missval_labels <- vector(nvar,mode="list") missval_labels[types==dta.byte] <- list(dta.byte.misslab) missval_labels[types==dta.short] <- list(dta.short.misslab) missval_labels[types==dta.long] <- list(dta.long.misslab) missval_labels[types==dta.float] <- list(dta.float.misslab) missval_labels[types==dta.double] <- list(dta.double.misslab) names(missval_labels) <- names(types) missval_labels }
context("aliases") test_that("aliases work", { expect_equal( gss_calc %>% get_pvalue(obs_stat = -0.2, direction = "right") %>% dplyr::pull(), expected = 1, tolerance = eps ) expect_silent(gss_permute %>% get_ci()) }) test_that("old aliases produce warning", { expect_warning( gss_calc %>% p_value(obs_stat = -0.2, direction = "right") %>% dplyr::pull(), expected = 1 ) expect_warning(gss_permute %>% conf_int()) })
Plot2WayANOVA <- function(formula, dataframe = NULL, confidence = .95, plottype = "line", errorbar.display = "CI", xlab = NULL, ylab = NULL, title = NULL, subtitle = NULL, interact.line.size = 2, ci.line.size = 1, mean.label = FALSE, mean.ci = TRUE, mean.size = 4, mean.shape = 23, mean.color = "darkred", mean.label.size = 3, mean.label.color = "black", offset.style = "none", overlay.type = NULL, posthoc.method = "scheffe", show.dots = FALSE, PlotSave = FALSE, ggtheme = ggplot2::theme_bw(), package = "RColorBrewer", palette = "Dark2", ggplot.component = NULL) { ggplot2::theme_set(ggtheme) if (length(match.call()) - 1 <= 1) { stop("Not enough arguments passed... requires at least a formula with a DV and 2 IV plus a dataframe") } if (missing(formula)) { stop("\"formula\" argument is missing, with no default") } if (!is(formula, "formula")) { stop("\"formula\" argument must be a formula") } if (length(formula) != 3) { stop("invalid value for \"formula\" argument") } vars <- all.vars(formula) chkinter <- all.names(formula) if (length(vars) != 3) { stop("invalid value for \"formula\" argument") } if ("+" %in% chkinter) { stop("Sorry you need to use an asterisk not a plus sign in the formula so the interaction can be plotted") } if ("~" == chkinter[2]) { stop("Sorry you can only have one dependent variable so only one tilde is allowed ~ you have two or more") } depvar <- vars[1] iv1 <- vars[2] iv2 <- vars[3] potentialfname <- paste0(depvar, "by", iv1, "and", iv2, ".png") if (missing(dataframe)) { stop("You didn't specify a data frame to use") } if (!exists(deparse(substitute(dataframe)))) { stop("That dataframe does not exist\n") } if (!is(dataframe, "data.frame")) { stop("The dataframe name you specified is not valid\n") } if (!(depvar %in% names(dataframe))) { stop(paste0( "'", depvar, "' is not the name of a variable in '", deparse(substitute(dataframe)), "'" )) } if (!(iv1 %in% names(dataframe))) { stop(paste0( "'", iv1, "' is not the name of a variable in '", deparse(substitute(dataframe)), "'" )) } if (!(iv2 %in% names(dataframe))) { stop(paste0( "'", iv2, "' is not the name of a variable in '", deparse(substitute(dataframe)), "'" )) } dataframe <- dataframe[, c(depvar, iv1, iv2)] if (is.null(xlab)) { xlab <- iv1 } if (is.null(ylab)) { ylab <- depvar } dataframe <- as.data.frame(dataframe) if (!is(dataframe[, depvar], "numeric")) { stop("dependent variable must be numeric") } if (!is(dataframe[, iv1], "factor")) { message(paste0("\nConverting ", iv1, " to a factor --- check your results")) dataframe[, iv1] <- as.factor(dataframe[, iv1]) } if (!is(dataframe[, iv2], "factor")) { message(paste0("\nConverting ", iv2, " to a factor --- check your results")) dataframe[, iv2] <- as.factor(dataframe[, iv2]) } factor1.names <- levels(dataframe[, iv1]) factor2.names <- levels(dataframe[, iv2]) if (!is(confidence, "numeric") | length(confidence) != 1 | confidence < .5 | confidence > .9991) { stop("\"confidence\" must be a number between .5 and 1") } if (plottype != "bar") { plottype <- "line" } missing <- apply(is.na(dataframe), 1, any) if (any(missing)) { warning(paste(sum(missing)), " case(s) removed because of missing data") } dataframe <- dataframe[!missing, ] checkcells <- dataframe %>% group_by(!!sym(iv1), !!sym(iv2)) %>% summarize(count = n()) %>% ungroup() %>% complete(!!sym(iv1), !!sym(iv2), fill = list(count = 0)) if (any(checkcells$count == 0)) { print(checkcells) stop(paste0( "\n--- MAJOR Problem! ---\n", "You have one or more cells with ZERO observations.\n" )) } else if (any(checkcells$count <= 2)){ message(paste0( "\n\t\t\t\t--- WARNING! ---\n", "\t\tYou have one or more cells with less than 3 observations.\n" )) print(checkcells) } newdata <- dataframe %>% group_by(!!sym(iv1), !!sym(iv2)) %>% summarise( TheMean = mean(!!sym(depvar), na.rm = TRUE), TheSD = sd(!!sym(depvar), na.rm = TRUE), TheSEM = sd(!!sym(depvar), na.rm = TRUE) / sqrt(n()), CIMuliplier = qt(confidence / 2 + .5, n() - 1), LowerBoundCI = TheMean - TheSEM * CIMuliplier, UpperBoundCI = TheMean + TheSEM * CIMuliplier, LowerBoundSEM = TheMean - TheSEM, UpperBoundSEM = TheMean + TheSEM, LowerBoundSD = TheMean - TheSD, UpperBoundSD = TheMean + TheSD, N = n() ) %>% mutate( LowerBound = case_when( errorbar.display == "SD" ~ LowerBoundSD, errorbar.display == "SEM" ~ LowerBoundSEM, errorbar.display == "CI" ~ LowerBoundCI, TRUE ~ LowerBoundCI), UpperBound = case_when( errorbar.display == "SD" ~ UpperBoundSD, errorbar.display == "SEM" ~ UpperBoundSEM, errorbar.display == "CI" ~ UpperBoundCI, TRUE ~ UpperBoundCI) ) MyAOV <- aov(formula, dataframe) MyAOVt2 <- aovtype2(MyAOV) WithETA <- sjstats::anova_stats(MyAOVt2) BFTest <- BrownForsytheTest(formula, dataframe) MyAOV_residuals <- residuals(object = MyAOV) if (nrow(dataframe) < 5000){ SWTest <- shapiro.test(x = MyAOV_residuals) } else { SWTest <- NULL } sigfactors <- filter(WithETA, p.value <= 1 - confidence) %>% select(term) if (nrow(sigfactors) > 0) { posthocresults <- PostHocTest(MyAOV, method = posthoc.method, conf.level = confidence, which = as.character(sigfactors[, 1]) ) } else { posthocresults <- "No signfiicant effects" } bf_models <- BayesFactor::anovaBF(formula = formula, data = dataframe, progress = FALSE) bf_models <- as_tibble(bf_models, rownames = "model") %>% select(model:error) %>% arrange(desc(bf)) %>% mutate(support = bf_display(bf = bf, display_type = "support")) %>% mutate(margin_of_error = error) %>% select(-error) cipercent <- round(confidence * 100, 2) if (is.null(title)) { title <- paste("Interaction plot ", deparse(formula, width.cutoff = 80), collapse="") if (errorbar.display == "CI") { title <- bquote(.(title) * " with" ~ .(cipercent) * "% conf ints") } else if (errorbar.display == "SEM") { title <- bquote(.(title) * " with standard error of the mean") } else if (errorbar.display == "SD") { title <- bquote(.(title) * " with standard deviations") } else { title <- title } } AICnumber <- round(stats::AIC(MyAOV), 1) BICnumber <- round(stats::BIC(MyAOV), 1) eta2iv1 <- WithETA[1, 7] eta2iv2 <- WithETA[2, 7] eta2interaction <- WithETA[3, 7] if (is.null(subtitle)) { subtitle <- bquote( eta^2 * " (" * .(iv1) * ") =" ~ .(eta2iv1) * ", " * eta^2 * " (" * .(iv2) * ") =" ~ .(eta2iv2) * ", " * eta^2 * " (interaction) =" ~ .(eta2interaction) * ", AIC =" ~ .(AICnumber) * ", BIC =" ~ .(BICnumber) ) } if (offset.style == "wide") { dot.dodge <- .4 ci.dodge <- .15 mean.dodge <- .15 } if (offset.style == "narrow") { dot.dodge <- .1 ci.dodge <- .05 mean.dodge <- .05 } if (offset.style != "narrow" && offset.style != "wide") { dot.dodge <- 0 ci.dodge <- 0 mean.dodge <- 0 } commonstuff <- list( xlab(xlab), ylab(ylab), scale_colour_hue(l = 40), ggtitle(title, subtitle = subtitle), theme(panel.grid.major.x = element_blank()) ) p <- newdata %>% ggplot(aes_string( x = iv1, y = "TheMean", colour = iv2, fill = iv2, group = iv2 )) + commonstuff if (plottype == "line" && show.dots == TRUE) { p <- p + geom_point( data = dataframe, mapping = aes( x = !!sym(iv1), y = !!sym(depvar), shape = !!sym(iv2) ), alpha = .4, position = position_dodge(dot.dodge), show.legend = TRUE ) } if (errorbar.display != "none") { switch(plottype, bar = p <- p + geom_bar( stat = "identity", position = "dodge" ) + geom_errorbar(aes(ymin = LowerBound, ymax = UpperBound), width = .5, size = ci.line.size, position = position_dodge(0.9), show.legend = FALSE ), line = p <- p + geom_errorbar(aes( ymin = LowerBound, ymax = UpperBound ), width = .2, size = ci.line.size, position = position_dodge(ci.dodge) ) + geom_line( aes_string(linetype = iv2), size = interact.line.size, position = position_dodge(mean.dodge) ) + geom_point(aes(y = TheMean), shape = mean.shape, size = mean.size, color = mean.color, alpha = 1, position = position_dodge(mean.dodge) ) ) } else { switch(plottype, bar = p <- p + geom_bar( stat = "identity", position = "dodge" ), line = p <- p + geom_line( aes_string(linetype = iv2), size = interact.line.size, position = position_dodge(mean.dodge) ) + geom_point(aes(y = TheMean), shape = mean.shape, size = mean.size, color = mean.color, alpha = 1, position = position_dodge(mean.dodge) ) ) } if (!is.null(overlay.type)) { if (plottype == "line" && overlay.type == "box") { p <- p + geom_boxplot( data = dataframe, mapping = aes( x = !!sym(iv1), y = !!sym(depvar), group = !!sym(iv1) ), color = "gray", width = 0.4, alpha = 0.2, fill = "white", outlier.shape = NA, show.legend = FALSE ) } else if (plottype == "line" && overlay.type == "violin") { p <- p + geom_violin( data = dataframe, mapping = aes( x = !!sym(iv1), y = !!sym(depvar), group = !!sym(iv1) ), color = "gray", width = 0.7, alpha = 0.2, fill = "white", show.legend = FALSE ) } } if (isTRUE(mean.label && plottype == "line")) { p <- p + ggrepel::geom_label_repel( data = newdata, mapping = aes( x = !!sym(iv1), y = TheMean, label = as.character(round(TheMean, 2)) ), size = mean.label.size, color = mean.label.color, fontface = "bold", alpha = .8, direction = "both", nudge_x = -.2, max.iter = 3e2, box.padding = 0.35, point.padding = 0.5, segment.color = "black", force = 2, inherit.aes = FALSE, seed = 123 ) } if (isTRUE(mean.label && plottype == "bar")) { p <- p + ggrepel::geom_label_repel( data = newdata, mapping = aes( x = !!sym(iv1), y = TheMean, label = as.character(round(TheMean, 2)) ), size = mean.label.size, color = mean.label.color, fontface = "bold", alpha = .8, direction = "both", max.iter = 3e2, box.padding = 0.35, point.padding = 0.5, segment.color = "black", force = 2, position = position_dodge(0.9), inherit.aes = TRUE, show.legend = FALSE, seed = 123 ) } if (!all(checkcells$count == checkcells$count[1])) { rsquaredx <- round(1 - (MyAOVt2$`Sum Sq`[4] / sum(MyAOVt2$`Sum Sq`[1:4])), 3) message(paste0( "\n\t\t\t\t--- WARNING! ---\n", "\t\tYou have an unbalanced design. Using Type II sum of squares, to calculate factor effect sizes eta and omega. Your two factors account for ", rsquaredx, " of the type II sum of squares.\n" )) } else { message("\nYou have a balanced design. \n") } print(WithETA) message("\nTable of group means\n") print(newdata) message("\nPost hoc tests for all effects that were significant\n") print(posthocresults) message("\nTesting Homogeneity of Variance with Brown-Forsythe \n") if (BFTest$`Pr(>F)`[[1]] <= .05) { message(" *** Possible violation of the assumption ***") } print(BFTest) if(!is.null(SWTest)) { message("\nTesting Normality Assumption with Shapiro-Wilk \n") if (SWTest$p.value <= .05) { message(" *** Possible violation of the assumption. You may want to plot the residuals to see how they vary from normal ***") } print(SWTest) } message("\nBayesian analysis of models in order\n") print(bf_models) p <- p + ggplot.component message("\nInteraction graph plotted...") print(p) whattoreturn <- list( ANOVATable = WithETA, MeansTable = newdata, PosthocTable = posthocresults, BFTest = BFTest, SWTest = SWTest, Bayesian_models = bf_models ) if (PlotSave) { ggsave(potentialfname, device = "png") whattoreturn[["plotfile"]] <- potentialfname } return(invisible(whattoreturn)) }
nlsmn0b <-function(formula, start, trace=FALSE, data=NULL, lower=-Inf, upper=Inf, masked=NULL, control=list(), ...){ showpoint<-function(SS, pnum){ pnames<-names(pnum) npar<-length(pnum) cat("lamda:",lamda," SS=",SS," at") for (i in 1:npar){ cat(" ",pnames[i],"=",pnum[i]) } cat(" ",feval,"/",jeval) cat("\n") } if (! is.null(data)){ for (dfn in names(data)) { cmd<-paste(dfn,"<-data$",dfn,"") eval(parse(text=cmd)) } } else stop("'data' must be a list or an environment") pnames<-names(start) start<-as.numeric(start) names(start)<-pnames npar<-length(start) if (length(lower)==1) lower<-rep(lower,npar) if (length(upper)==1) upper<-rep(upper,npar) if (length(lower)!=npar) stop("Wrong length: lower") if (length(upper)!=npar) stop("Wrong length: upper") if (any(start<lower) || any(start>upper)) stop("Infeasible start") if (trace) { cat("formula: ") print(formula) cat("lower:") print(lower) cat("upper:") print(upper) } ctrl<-list( watch=FALSE, phi=1, lamda=0.0001, offset=100, laminc=10, lamdec=4, jemax=5000, femax=10000 ) epstol<-(.Machine$double.eps)*ctrl$offset ncontrol <- names(control) nctrl <- names(ctrl) for (onename in ncontrol) { if (!(onename %in% nctrl)) { if (trace) cat("control ",onename," is not in default set\n") } ctrl[onename]<-control[onename] } phiroot<-sqrt(ctrl$phi) lamda<-ctrl$lamda offset<-ctrl$offset laminc<-ctrl$laminc lamdec<-ctrl$lamdec watch<-ctrl$watch jemax<-ctrl$jemax femax<-ctrl$femax vn <- all.vars(parse(text=formula)) pnum<-start pnames<-names(pnum) bdmsk<-rep(1,npar) mskdx<-which(pnames %in% masked) bdmsk[mskdx]<-0 if (trace) { parpos <- match(pnames, vn) datvar<-vn[-parpos] for (dvn in datvar){ cat("Data variable ",dvn,":") print(eval(parse(text=dvn))) } } if (is.character(formula)){ es<-formula } else { tstr<-as.character(formula) es<-paste(tstr[[2]],"~",tstr[[3]],'') } parts<-strsplit(as.character(es), "~")[[1]] if (length(parts)!=2) stop("Model expression is incorrect!") lhs<-parts[1] rhs<-parts[2] resexp<-paste(rhs,"-",lhs, collapse=" ") for (i in 1:npar){ joe<-paste(pnames[[i]],"<-",pnum[[i]]) eval(parse(text=joe)) } gradexp<-deriv(parse(text=resexp), names(start)) resbest<-with(data, eval(parse(text=resexp))) ssbest<-crossprod(resbest) feval<-1 pbest<-pnum feval<-1 jeval<-0 if (trace) { cat("Start:") showpoint(ssbest,pnum) } ssquares<-.Machine$double.xmax newjac<-TRUE bdmsk<-rep(1,npar) eqcount<-0 while ((eqcount < npar) && (feval<=femax) && (jeval<=jemax) ) { if (trace && watch) { cat("bdmsk:") print(bdmsk) } if (newjac) { bdmsk<-rep(1,npar) bdmsk[mskdx]<-0 bdmsk[which(pnum-lower<epstol*(abs(lower)+epstol))]<- -3 bdmsk[which(upper-pnum<epstol*(abs(upper)+epstol))]<- -1 J0<-with(data, eval(gradexp)) Jac<-attr(J0,"gradient") jeval<-jeval+1 if (any(is.na(Jac))) stop("NaN in Jacobian") gjty<-t(Jac)%*%resbest for (i in 1:npar){ bmi<-bdmsk[i] if (bmi==0) { gjty[i]<-0 Jac[,i]<-0 } if (bmi<0) { if((2+bmi)*gjty[i] > 0) { bdmsk[i]<-1 if (trace) cat("freeing parameter ",i," now at ",pnum[i],"\n") } else { gjty[i]<-0 Jac[,i]<-0 if (trace) cat("active bound ",i," at ",pnum[i],"\n") if (trace) print(Jac) } } } JTJ<-crossprod(Jac) gjty[mskdx]<-0 dde<-diag(diag(JTJ))+phiroot*diag(npar) gjty<-as.numeric(gjty) if (trace && watch) { cat("gjty:") print(gjty) cat("JTJ\n") print(JTJ) cat("dde") print(dde) cat("bdmsk:") print(bdmsk) } } Happ<-JTJ+lamda*dde if (trace && watch) { cat("Happ\n") print(Happ) } delta<-try(solve(Happ,-gjty)) if (class(delta)=="try-error") { if (lamda<1000*.Machine$double.eps) lamda<-1000*.Machine$double.eps lamda<-laminc*lamda newjac<-FALSE if (trace) cat(" Equation solve failure\n") print(Happ) print(gjty) feval<-feval+1 print(pnum) tmp<-readline("continue") } else { gproj<-crossprod(delta,gjty) gangle<-gproj/sqrt(crossprod(gjty)*crossprod(delta)) if (trace) cat("gradient projection0 = ",gproj," gangle=",gangle,"\n") if (gproj >= 0) { if (lamda<1000*.Machine$double.eps) lamda<-1000*.Machine$double.eps lamda<-laminc*lamda newjac<-FALSE if (trace) cat(" Uphill search direction\n") } else { delta[mskdx]<-0 delta<-as.numeric(delta) if (trace && watch) { cat("delta:") print(delta) } step<-rep(1,npar) for (i in 1:npar){ bd<-bdmsk[i] da<-delta[i] if (bd==0 || ((bd==-3) && (da<0)) ||((bd==-1)&& (da>0))) { delta[i]<-0 } else { if (delta[i]>0) step[i]<-(upper[i]-pbest[i])/delta[i] if (delta[i]<0) step[i]<-(lower[i]-pbest[i])/delta[i] } } stepsize<-min(1,step[which(delta!=0)]) if (trace) cat("Stepsize=",stepsize,"\n") if (stepsize<.Machine$double.eps) { if (lamda<1000*.Machine$double.eps) lamda<-1000*.Machine$double.eps lamda<-laminc*lamda newjac<-FALSE if (trace) cat(" Stepsize too small\n") } else { pnum<-pbest+stepsize*delta names(pnum)<-pnames eqcount<-length(which((offset+pbest)==(offset+pnum))) if (eqcount<npar) { for (i in 1:npar){ joe<-paste(pnames[[i]],"<-",pnum[[i]]) eval(parse(text=joe)) } feval<-feval+1 resid<-with(data, eval(parse(text=resexp))) print(pnum) ssquares<-as.numeric(crossprod(resid)) print(ssquares) if (is.na(ssquares) ) ssquares<-.Machine$double.xmax if (ssquares>=ssbest) { if (lamda<1000*.Machine$double.eps) lamda<-1000*.Machine$double.eps lamda<-laminc*lamda newjac<-FALSE if(trace) showpoint(ssquares, pnum) } else { lamda<-lamdec*lamda/laminc if (trace) { cat("<<") showpoint(ssquares, pnum) } ssbest<-ssquares resbest<-resid pbest<-pnum newjac<-TRUE } } else { if (trace) cat("No parameter change\n") } } } } if (watch) tmp<-readline() } pnum<-as.vector(pnum) result<-list(resid=resbest, jacobian=Jac, feval=feval, jeval=jeval, coeffs=pnum, ssquares=ssbest) }
animint2HTML <- function(plotList) { res <- animint2dir(plotList, out.dir = "animint-htmltest", open.browser = FALSE) remDr$refresh() Sys.sleep(1) res$html <- getHTML() res } translatePattern <- paste0("translate[(]", "(?<x>.*?)", ",", "(?<y>.*?)", "[)]") acontext <- function(...){ print(...) context(...) } str_match_perl <- function(string,pattern){ stopifnot(is.character(string)) stopifnot(is.character(pattern)) stopifnot(length(pattern)==1) parsed <- regexpr(pattern,string,perl=TRUE) captured.text <- substr(string,parsed,parsed+attr(parsed,"match.length")-1) captured.text[captured.text==""] <- NA captured.groups <- do.call(rbind,lapply(seq_along(string),function(i){ st <- attr(parsed,"capture.start")[i,] if(is.na(parsed[i]) || parsed[i]==-1)return(rep(NA,length(st))) substring(string[i],st,st+attr(parsed,"capture.length")[i,]-1) })) result <- cbind(captured.text,captured.groups) colnames(result) <- c("",attr(parsed,"capture.names")) result } str_match_all_perl <- function(string,pattern){ stopifnot(is.character(string)) stopifnot(is.character(pattern)) stopifnot(length(pattern)==1) parsed <- gregexpr(pattern,string,perl=TRUE) lapply(seq_along(parsed),function(i){ r <- parsed[[i]] starts <- attr(r,"capture.start") if(r[1]==-1)return(matrix(nrow=0,ncol=1+ncol(starts))) names <- attr(r,"capture.names") lengths <- attr(r,"capture.length") full <- substring(string[i],r,r+attr(r,"match.length")-1) subs <- substring(string[i],starts,starts+lengths-1) m <- matrix(c(full,subs),ncol=length(names)+1) colnames(m) <- c("",names) if("name" %in% names){ rownames(m) <- m[, "name"] } m }) } getSelectorWidgets <- function(html=getHTML()){ tr.list <- getNodeSet(html, '//table[@class="table_selector_widgets"]//tr') td.list <- sapply(tr.list[-1], function(tr)xmlChildren(tr)[[1]]) sapply(td.list, xmlValue) } clickHTML <- function(...){ v <- c(...) stopifnot(length(v) == 1) e <- remDr$findElement(names(v), as.character(v)) e$clickElement() Sys.sleep(1) getHTML() } clickID <- function(...){ v <- c(...) stopifnot(length(v) == 1) e <- remDr$findElement("id", as.character(v)) e$clickElement() } getHTML <- function(){ XML::htmlParse(remDr$getPageSource(), asText = TRUE) } rgba.pattern <- paste0( "(?<before>rgba?)", " *[(] *", "(?<red>[0-9]+)", " *, *", "(?<green>[0-9]+)", " *, *", "(?<blue>[0-9]+)", "(?:", " *, *", "(?<alpha>[^)]+)", ")?", " *[)]") ensure_rgba <- function(color.vec){ match.mat <- str_match_perl(color.vec, rgba.pattern) is.not.rgb <- is.na(match.mat[,1]) hex.vec <- toRGB(color.vec[is.not.rgb]) not.rgb.mat <- col2rgb(hex.vec, alpha=TRUE) rgb.cols <- c("red", "green", "blue") match.mat[is.not.rgb, rgb.cols] <- t(not.rgb.mat[rgb.cols,]) match.mat[is.not.rgb, "alpha"] <- not.rgb.mat["alpha",]/255 is.rgb <- match.mat[, "before"] == "rgb" match.mat[is.rgb, "alpha"] <- 1 is.transparent <- match.mat[, "alpha"] == 0 match.mat[, rgb.cols] <- 0 opacity <- as.numeric(match.mat[, "alpha"]) if(any(is.na(opacity))){ print(match.mat) stop("missing alpha opacity value") } match.mat[, "alpha"] <- paste(opacity) rgba.cols <- c(rgb.cols, "alpha") rgba.mat <- matrix(match.mat[, rgba.cols], nrow(match.mat), length(rgba.cols)) no.paren <- apply(rgba.mat, 1, function(x)paste(x, collapse=", ")) paste0("rgba(", no.paren, ")") } stopifnot(ensure_rgba("transparent") == ensure_rgba("rgba(0, 0, 0, 0.0)")) stopifnot(ensure_rgba("rgba(0, 0, 0, 0.0)") == ensure_rgba("rgba(0, 0, 0, 0)")) stopifnot(ensure_rgba("rgba(0, 0, 0, 0.1)") != ensure_rgba("rgba(0, 0, 0, 0)")) stopifnot(ensure_rgba("rgb(0, 0, 0)") == ensure_rgba("rgba(0, 0, 0, 1)")) expect_color <- function(computed.vec, expected.vec) { computed.rgb <- ensure_rgba(computed.vec) expected.rgb <- ensure_rgba(expected.vec) expect_identical(computed.rgb, expected.rgb) } expect_transform <- function(actual, expected, context = "translate", tolerance = 5) { nocontext <- gsub(paste(context, collapse = "||"), "", actual) vec <- gsub("\\)\\(", ",", nocontext) clean <- gsub("\\)", "", gsub("\\(", "", vec)) nums <- as.numeric(strsplit(clean, split = "\\,")[[1]]) expect_equal(nums, expected, tolerance, scale = 1) } expect_links <- function(html, urls){ expect_attrs(html, "a", "href", urls) } expect_attrs <- function(html, element.name, attr.name, urls){ stopifnot(is.character(urls)) xpath <- paste0("//", element.name) pattern <- paste0(attr.name, "$") node.set <- getNodeSet(html, xpath) rendered.urls <- rep(NA, length(node.set)) for(node.i in seq_along(node.set)){ node <- node.set[[node.i]] node.attrs <- xmlAttrs(node) href.i <- grep(pattern, names(node.attrs)) if(length(href.i)==1){ rendered.urls[[node.i]] <- node.attrs[[href.i]] } } for(u in urls){ expect_true(u %in% rendered.urls) } } expect_styles <- function(html, styles.expected){ stopifnot(is.list(styles.expected)) stopifnot(!is.null(names(styles.expected))) geom <- getNodeSet(html, '//*[@class="geom"]') style.strs <- as.character(sapply(geom, function(x) xmlAttrs(x)["style"])) pattern <- paste0("(?<name>\\S+?)", ": *", "(?<value>.+?)", ";") style.matrices <- str_match_all_perl(style.strs, pattern) for(style.name in names(styles.expected)){ style.values <- sapply(style.matrices, function(m)m[style.name, "value"]) for(expected.regexp in styles.expected[[style.name]]){ expect_match(style.values, expected.regexp, all=FALSE) } } } getTextValue <- function(tick)xmlValue(getNodeSet(tick, "text")[[1]]) getStyleValue <- function(html, xpath, style.name) { node.list <- getNodeSet(html, xpath) style.vec <- sapply(node.list, function(node){ attr.vec <- xmlAttrs(node) if("style" %in% names(attr.vec)){ attr.vec[["style"]] }else{ NA } }) pattern <-paste0( "(?<name>\\S+?)", ": *", "(?<value>.+?)", ";") style.matrices <- str_match_all_perl(style.vec, pattern) sapply(style.matrices, function(m){ val.vec <- rep(NA, length(style.name)) if(1 < length(style.name))names(val.vec) <- style.name found <- style.name %in% rownames(m) if(any(found)){ style.found <- style.name[found] val.vec[found] <- m[style.found, "value"] } val.vec }) } expect_no_warning <- function(object, regexp, ...){ expect_warning(object, NA) } getTransform <- function(tick)xmlAttrs(tick)[["transform"]] getTickDiff <- function(doc, ticks = 1:2, axis="x"){ g.ticks <- getNodeSet(doc, "g[@class='tick major']") tick.labs <- sapply(g.ticks, getTextValue) names(g.ticks) <- tick.labs tick.transform <- sapply(g.ticks[ticks], getTransform) trans.mat <- str_match_perl(tick.transform, translatePattern) num <- as.numeric(trans.mat[, axis]) val <- abs(diff(num)) attr(val, "label-diff") <- diff(as.numeric(names(tick.transform))) val } both.equal <- function(x, tolerance = 0.1){ if(is.null(x) || !is.vector(x) || length(x) != 2){ return(FALSE) } isTRUE(all.equal(x[[1]], x[[2]], tolerance)) } normDiffs <- function(xdiff, ydiff, ratio = 1) { xlab <- attr(xdiff, "label-diff") ylab <- attr(ydiff, "label-diff") if (is.null(xlab) || is.null(ylab)) warning("label-diff attribute is missing") c(ratio * xdiff / xlab, ydiff / ylab) } get_pixel_ranges <- function(html=NULL, geom_class=NULL){ if(is.null(html) || is.null(geom_class)){ stop("please specify html and geom_class") } nodes <- getNodeSet(html, paste0('//g[@class="', geom_class, '"]//circle')) attrs <- sapply(nodes, xmlAttrs)[c("cx", "cy"), ] if(is.matrix(attrs)){ xranges <- range(as.numeric(attrs[1, ]), na.rm = T) yranges <- range(as.numeric(attrs[2, ]), na.rm = T) }else if(is.vector(attrs) && length(attrs) == 2){ xranges <- range(as.numeric(attrs[["cx"]]), na.rm = T) yranges <- range(as.numeric(attrs[["cy"]]), na.rm = T) }else{ return(NULL) } return(list(x=xranges, y=yranges)) } unequal <- function(object, expected, ...){ !isTRUE(all.equal(object, expected, ...)) }
cv.env <- function(X, Y, u, m, nperm) { X <- as.matrix(X) a <- dim(Y) n <- a[1] r <- a[2] p <- ncol(X) prederr <- rep(0, nperm) for (i in 1:nperm) { id <- sample(n, n) Xn <- as.matrix(X[id, ]) Yn <- Y[id, ] for (j in 1:m) { id.test <- (floor((j - 1) * n / m) + 1) : ceiling(j * n / m) id.train <- setdiff(1:n, id.test) X.train <- Xn[id.train, ] Y.train <- Yn[id.train, ] X.test <- Xn[id.test, ] Y.test <- Yn[id.test, ] n.test <- length(id.test) fit <- env(X.train, Y.train, u, asy = F) betahat <- fit$beta muhat <- fit$mu resi <- as.matrix(Y.test - matrix(1, n.test, 1) %*% t(muhat) - as.matrix(X.test) %*% t(betahat)) sprederr <- apply(resi, 1, function(x) sum(x ^ 2)) prederr[i] <- prederr[i] + sum(sprederr) } } return(sqrt(mean(prederr / n))) }
AffySimStudy <- function(n, M, eps, seed = 123, eps.lower = 0, eps.upper = 0.05, steps = 3L, fsCor = TRUE, contD, plot1 = FALSE, plot2 = FALSE, plot3 = FALSE){ stopifnot(n >= 3) stopifnot(eps >= 0, eps <= 0.5) if(plot1){ from <- min(-6, q.l(contD)(1e-15)) to <- max(6, q.l(contD)(1-1e-15)) curve(pnorm, from = from, to = to, lwd = 2, n = 201, main = "Comparison: ideal vs. real", ylab = "cdf") fun <- function(x) (1-eps)*pnorm(x) + eps*p(contD)(x) curve(fun, from = from, to = to, add = TRUE, col = "orange", lwd = 2, n = 201, ylab = "cdf") legend("topleft", legend = c("ideal", "real"), fill = c("black", "orange")) } set.seed(seed) r <- rbinom(n*M, prob = eps, size = 1) Mid <- rnorm(n*M) Mcont <- r(contD)(n*M) Mre <- matrix((1-r)*Mid + r*Mcont, ncol = n) ind <- rowSums(matrix(r, ncol = n)) >= n/2 while(any(ind)){ M1 <- sum(ind) cat("Samples to re-simulate:\t", M1, "\n") r <- rbinom(n*M1, prob = eps, size = 1) Mid <- rnorm(n*M1) Mcont <- r(contD)(n*M1) Mre[ind,] <- (1-r)*Mid + r*Mcont ind[ind] <- rowSums(matrix(r, ncol = n)) >= n/2 } rm(Mid, Mcont, r, ind) if(plot2){ ind <- if(M <= 20) 1:M else sample(1:M, 20) if(plot1) dev.new() M1 <- min(M, 20) print( stripplot(rep(1:M1, each = n) ~ as.vector(Mre[ind,]), ylab = "samples", xlab = "x", pch = 20, main = ifelse(M <= 20, "Samples", "20 randomly chosen samples")) ) } Mean <- rowMeans(Mre) Sd <- sqrt(rowMeans((Mre-Mean)^2)) Median <- rowMedians(Mre) Mad <- rowMedians(abs(Mre - Median))/qnorm(0.75) Tukey <- apply(Mre, 1, function(x) tukey.biweight(x)) Tukey <- cbind(Tukey, Mad) RadMinmax <- estimate(rowRoblox(Mre, eps.lower = eps.lower, eps.upper = eps.upper, k = steps, fsCor = fsCor)) if(plot3){ Ergebnis1 <- list(Mean, Median, Tukey[,1], RadMinmax[,1]) Ergebnis2 <- list(Sd, Mad, RadMinmax[,2]) myCol <- brewer.pal(4, "Dark2") if(plot1 || plot2) dev.new() layout(matrix(c(1, 1, 1, 1, 3, 2, 2, 2, 2, 3), ncol = 2)) boxplot(Ergebnis1, col = myCol, pch = 20, main = "Location") abline(h = 0) boxplot(Ergebnis2, col = myCol[c(1,2,4)], pch = 20, main = "Scale") abline(h = 1) op <- par(mar = rep(2, 4)) plot(c(0,1), c(1, 0), type = "n", axes = FALSE) legend("center", c("ML", "Med/MAD", "biweight", "rmx"), fill = myCol, ncol = 4, cex = 1.5) on.exit(par(op)) } MSE1.1 <- n*mean(Mean^2) MSE2.1 <- n*mean(Median^2) MSE3.1 <- n*mean(Tukey[,1]^2) MSE4.1 <- n*mean(RadMinmax[,1]^2) empMSE <- data.frame(ML = MSE1.1, Med = MSE2.1, Tukey = MSE3.1, "rmx" = MSE4.1) rownames(empMSE) <- "n x empMSE (loc)" relMSE <- empMSE[1,]/empMSE[1,4] empMSE <- rbind(empMSE, relMSE) rownames(empMSE)[2] <- "relMSE (loc)" MSE1.2 <- n*mean((Sd-1)^2) MSE2.2 <- n*mean((Mad-1)^2) MSE3.2 <- MSE2.2 MSE4.2 <- n*mean((RadMinmax[,2]-1)^2) empMSE <- rbind(empMSE, c(MSE1.2, MSE2.2, MSE3.2, MSE4.2)) rownames(empMSE)[3] <- "n x empMSE (scale)" relMSE <- empMSE[3,]/empMSE[3,4] empMSE <- rbind(empMSE, relMSE) rownames(empMSE)[4] <- "relMSE (scale)" empMSE <- rbind(empMSE, c(MSE1.1 + MSE1.2, MSE2.1 + MSE2.2, MSE3.1 + MSE3.2, MSE4.1 + MSE4.2)) rownames(empMSE)[5] <- "n x empMSE (loc + scale)" relMSE <- empMSE[5,]/empMSE[5,4] empMSE <- rbind(empMSE, relMSE) rownames(empMSE)[6] <- "relMSE (loc + scale)" empMSE }
context("add_default_solver") test_that("implicit default solver", { skip_on_cran() skip_if_no_fast_solvers_installed() data(sim_pu_raster, sim_features) p <- problem(sim_pu_raster, sim_features) %>% add_min_set_objective() %>% add_relative_targets(0.1) %>% add_proportion_decisions() s <- solve(p) expect_true(inherits(s, "Raster")) expect_equal(raster::nlayers(s), 1) expect_true(raster::compareRaster(sim_pu_raster, s, res = TRUE, crs = TRUE, tolerance = 1e-5, stopiffalse = FALSE)) }) test_that("raster planning unit data", { skip_on_cran() skip_if_no_fast_solvers_installed() data(sim_pu_raster, sim_features) p <- problem(sim_pu_raster, sim_features) %>% add_min_set_objective() %>% add_relative_targets(0.1) %>% add_binary_decisions() %>% add_default_solver(time_limit = 5, verbose = FALSE) s <- solve(p) expect_true(inherits(s, "Raster")) expect_equal(raster::nlayers(s), 1) expect_true(raster::compareRaster(sim_pu_raster, s, res = TRUE, crs = TRUE, tolerance = 1e-5, stopiffalse = FALSE)) }) test_that("spatial planning unit data", { skip_on_cran() skip_if_no_fast_solvers_installed() data(sim_pu_polygons, sim_features) p <- problem(sim_pu_polygons, sim_features, "cost") %>% add_min_set_objective() %>% add_relative_targets(0.1) %>% add_binary_decisions() %>% add_default_solver(time_limit = 5, verbose = FALSE) s <- solve(p) expect_true(inherits(s, "SpatialPolygonsDataFrame")) expect_equal(length(s), length(sim_pu_polygons)) expect_equal(s@polygons, sim_pu_polygons@polygons) expect_true(sf::st_crs(s@proj4string) == sf::st_crs(sim_pu_polygons@proj4string)) })
check_logfile_existence <- function() { if (file.exists(LOGFILE_PATH)) { print("load logfile") logfile <- read.csv(LOGFILE_PATH, sep = "\t", stringsAsFactors = F) } else { print("create logfile") logfile <- data.frame(file_name = NA, seed = NA, formula_x = NA, formula_y = NA) } }
localYule<- function (X) { sumrow <- apply(X, 1, sum) sumcol <- apply(X, 2, sum) n <- sum(X) result <- X for (i in (1:nrow(X))) { for (j in (1:ncol(X))) { a <- X[i, j] b <- sumrow[i] - a c <- sumcol[j] - a d <- n - a - b - c Q <- (a * d - b * c)/(a * d + b * c) result[i,j] <- Q } } result }
maxv12 <- function(theta=30, phi=30, inc=25, lseq=200, ticktype="detailed", diagnose=FALSE, verbose=TRUE) { MC <- match.call() if(verbose) { print("", quote = F) print("Running maxv12", quote = F) print("", quote = F) print(date(), quote = F) print("", quote = F) print("Call:", quote = F) print(MC) print("", quote = F) } simpleprod <- function(x,y){sqrt(x*y)} cycle <- TRUE x <- seq(-1, 1, length.out = lseq) y <- x x <- x[x>=0] y <- y[y>=0] z <- outer(x,y,simpleprod) oldpar <- graphics::par(bg = "white") td <- theta ph <- phi while(cycle){ graphics::persp(x, y, z, theta = td, phi = ph, expand = 0.5, col = "lightblue",ticktype="detailed",xlab="V1",ylab="V2",zlab="V12") graphics::title(sub=".") graphics::title(main = "Maximum absolute value of off-diagonal variable V12 \nin 2x2 symmetric positive definite matrix\nas a function of diagonal variables, V1 and V2") print("Click on R Console and then",quote=F) print("", quote = F) print("press 'u' to roll view up", quote=F) print(" 'd' to roll view down", quote=F) print(" 'r' to roll view to right", quote=F) print(" 'l' to roll view to left", quote=F) print(" 'x' to exit program", quote=F) print("", quote = F) print("After each letter, press 'Enter'", quote=F) vv <- readline("Waiting for you . . . ") if(vv == "u") ph <- ph - inc if(vv == "d") ph <- ph + inc if(vv == "r") td <- td - inc if(vv == "l") td <- td + inc if(vv == "x"){ cycle <- FALSE break } } graphics::par(oldpar) if(verbose) { print("", quote = F) print("Finished running maxv12", quote = F) print("", quote = F) print(date(), quote = F) print("", quote = F) } list(theta=td, phi=ph, inc=inc, lseq=lseq, ticktype=ticktype, Call=MC) }
heterogeneity <- function(x) { x.whitened <- na.contiguous(ar(x)$resid) x.archtest <- arch_stat(x.whitened) LBstat <- sum(acf(x.whitened^2, lag.max = 12L, plot = FALSE)$acf[-1L]^2) garch.fit <- suppressWarnings(tseries::garch(x.whitened, trace = FALSE)) garch.fit.std <- residuals(garch.fit) x.garch.archtest <- arch_stat(garch.fit.std) LBstat2 <- NA try(LBstat2 <- sum(acf(na.contiguous(garch.fit.std^2), lag.max = 12L, plot = FALSE)$acf[-1L]^2), silent = TRUE ) output <- c( arch_acf = LBstat, garch_acf = LBstat2, arch_r2 = unname(x.archtest), garch_r2 = unname(x.garch.archtest) ) return(output) } nonlinearity <- function(x) { X2 <- tryCatch(tseries::terasvirta.test(as.ts(x), type = "Chisq")$stat, error = function(e) NA) c(nonlinearity = 10 * unname(X2) / length(x)) } arch_stat <- function(x, lags = 12, demean = TRUE) { if (length(x) <= lags+1) { return(c(ARCH.LM = NA_real_)) } if (demean) { x <- x - mean(x, na.rm = TRUE) } mat <- embed(x^2, lags + 1) fit <- try(lm(mat[, 1] ~ mat[, -1]), silent = TRUE) if ("try-error" %in% class(fit)) { return(c(ARCH.LM = NA_real_)) } else { arch.lm <- summary(fit) S <- arch.lm$r.squared return(c(ARCH.LM = if(is.nan(S)) 1 else S)) } }
rawToDisplay <- function( raws ) { raws[ raws <= charToRaw("\037") ] <- charToRaw(".") raws[ raws >= charToRaw("\177") ] <- charToRaw(".") rawToChar(raws) }
plot.unireg <- function(x, onlySpline=FALSE, type="l", xlab="x", ylab=NULL, col="black", ...){ constr <- x$constr if(is.null(ylab)){if(constr=="none"){constr <- "unconstrained"} if(constr=="invuni"){constr <- "inverse unimodal"} ylab <- paste("Fitted", constr, "spline function") } if(!onlySpline){ plot(x$x,x$y, xlab=xlab, ylab=ylab, ...) points(x, type=type, col=col, ...) }else{minx <- min(diff(unique(x$x))) z <- seq(x$a, x$b, by=minx/10) plot(z, predict.unireg(x,z), type=type, xlab=xlab, ylab=ylab, col=col, ...) } }
check_projection <- function(projection, abort = FALSE, verbose = TRUE) { UseMethod("check_projection") } check_projection.default <- function(projection, abort = FALSE, verbose = TRUE) { call <- match.call() if (abort) { stop("check_projection --> ", call[[2]], " is not a valid epsg code or ", "WKT projection description. Aborting!") } else { if (verbose) { warning("check_projection --> ", call[[2]], " is not a valid epsg code or ", "WKT projection description. returning `NA`") } return(NA) } } check_projection.numeric <- function(projection, abort = FALSE, verbose = TRUE) { proj <- sf::st_crs(projection) if (is.na(proj$epsg)){ if (abort == TRUE) { stop("check_projection --> Invalid EPSG code detected! Aborting!") } else { if (verbose) warning("check_projection --> Invalid EPSG code detected, returning `NA`!") return(NA) } } else { return(projection) } } check_projection.character <- function(projection, abort = FALSE, verbose = TRUE) { if (suppressWarnings(!is.na(as.numeric(projection)))) { return(check_projection.numeric(as.integer(projection), abort = abort)) } if (grepl("^[0-9]+[NnSs]$",projection)) { utm_zone <- stringr::str_pad(gsub("[NnSs]$","",projection), 2, "left", "0") utm_ns <- toupper(gsub("?[0-9]+","",projection)) projection <- as.numeric(paste0("32", if (utm_ns == "N") {"6"} else {"7"}, utm_zone)) return(projection) } projection_crs <- try(sf::st_crs(projection)) if (inherits(projection_crs, "try-error") || is.na(projection_crs$proj4string)) { if (abort == TRUE) { stop("check_projection --> Invalid projection detected! Aborting!") } else { if (verbose) (warning("check_projection --> Invalid projection detected, returning `NA`!")) return(NA) } } else { return(projection) } } check_projection.crs <- function(projection, abort = FALSE, verbose = TRUE) { return(projection) }
computePcaNbDims <- function(sdev, pca.variance.cum.min=0.9) { message("PCA number of dimensions computing") pca.variance <- sdev^2/sum(sdev^2) pca.variance.cum <- cumsum(pca.variance) pca.nb.dims <- min(which(pca.variance.cum >= pca.variance.cum.min)) } computeKmeans <- function(x, K=0, K.max=20, kmeans.variance.min=0.95, graph=F) { K.max <- min(nrow(x), K.max) if (K.max <= 2) K <- K.max if (K==0) { message("K-means computing and K estimation: method Elbow") kmax <- min(ceiling(sqrt(nrow(x)/2)), K.max) res <- KmeansAutoElbow(x, Kmax=kmax, kmeans.variance.min, graph) res.kmeans <- res$res.kmeans message(paste(" obtained K=", res$K)) } else { message("K-means computing: method Quick") res.kmeans <- KmeansQuick(x, K=K) } res.kmeans } computeEM <- function(x, K=0, K.max=20, kmeans.variance.min=0.95, graph=F, Mclust.options=list()) { Within <- NULL if (K==0) { message("EM computing and K estimation: method Elbow") kmax <- min(ceiling(sqrt(nrow(x)/2)), K.max) res <- KmeansAutoElbow(x, Kmax=kmax, kmeans.variance.min, graph) Within <- res$res.kmeans[["Withins_tot"]] K <- res$K message(paste(" obtained K=", res$K)) } if (K<2) stop("EM computing requires several features (nb.cols >= 2).") res.EM <- do.call(mclust::Mclust, c(list(x, G=K), Mclust.options)) if (is.null(res.EM$classification)){ stop("No clustering found for this sample with EM, try with another K") } res.EM[["Withins_tot"]]=Within res.EM } guessFileEncoding <- function(file.name) { stringi::stri_enc_detect(rawToChar(readBin(file.name, "raw")))[[1]][1,1] } sortCharAsNum <- function(char.vec, ...) { ok <- T vec <- suppressWarnings(as.numeric(char.vec)) if (any(is.na(vec))) { vec <- char.vec ok <- F } res <- order(vec, ...) char.vec[res] } convNamesToIndex <- function(name.sample, full.name.set) { sapply(name.sample, function(name) which(full.name.set == name)) } convNamesPairsToIndexPairs <- function(pair.list, full.name.set) { pair.matrix <- NULL if (!length(pair.list)){ pair.matrix <- matrix(0,nrow=0,ncol=2) } else { pair.list <- sapply(pair.list, function(ligne) convNamesToIndex(ligne, full.name.set), simplify=F) pair.matrix <- do.call(rbind, pair.list) colnames(pair.matrix) <- NULL pair.matrix <- pair.matrix[apply(pair.matrix,1,function(ligne) all(!is.na(ligne))),,drop=F] } pair.matrix } computeCKmeans <- function(x, K=0, K.max=20, mustLink=NULL, cantLink=NULL, maxIter=2, kmeans.variance.min=0.95) { Within <- NULL mustLink <- convNamesPairsToIndexPairs(mustLink, row.names(x)) cantLink <- convNamesPairsToIndexPairs(cantLink, row.names(x)) if (K==0) { message("Constrained K-means computing and K estimation: method Elbow") kmax <- min(ceiling(sqrt(nrow(x)/2)), K.max) res <- KmeansAutoElbow(x, Kmax = kmax, kmeans.variance.min) Within <- res$res.kmeans[["Withins_tot"]] label <- conclust::mpckm(x, k = res$K, mustLink, cantLink, maxIter) message(paste(" obtained K=", res$K)) } else { message("Constrained K-means computing") label <- conclust::mpckm(x, k = K, mustLink, cantLink, maxIter) } res.ckmeans <- list(label=label, Within=Within) res.ckmeans } computeCSC <- function(x, K=0, K.max=20, mustLink=list(), cantLink=list(), alphas=seq(from=0, to=1, length=100)) { if (length(mustLink)){ mustLink <- sapply(mustLink, function(ligne) convNamesToIndex(ligne, row.names(x)), simplify=F) mustLink <- mustLink[sapply(mustLink,function(ligne) all(!is.na(ligne)))] } if (length(cantLink)){ cantLink <- sapply(cantLink, function(ligne) convNamesToIndex(ligne, row.names(x)), simplify=F) cantLink <- cantLink[sapply(cantLink,function(ligne) all(!is.na(ligne)))] } sim <- computeGaussianSimilarityZP(x, 7) res.csc <- KwaySSSC(sim, K=K, list.ML=mustLink, list.CNL=cantLink, alphas=alphas, K.max=K.max) res.csc } computeSampling <- function(x, label=NULL, K=0, toKeep = NULL, sampling.size.max=3000, K.max=20, kmeans.variance.min=0.95) { if (!sampling.size.max) sampling.size.max <- 3000 nrx <- nrow(x) if ((K>0) && (K>nrx)) K <- nrx if (K.max > nrx) K.max <- nrx if (is.null(label)) { res.kmeans <- computeKmeans(x, K=K, K.max=K.max, kmeans.variance.min=kmeans.variance.min, graph=F) label <- res.kmeans$cluster label_prob <- stats::ave(label,label,FUN=length) label_prob <- 1/(label_prob*max(unname(label))) } selection <- sample(rownames(x),min(sampling.size.max,nrow(x)),prob=label_prob) selection <- by(selection, label[selection], function (x) {x}) selection <- sapply(selection, as.character) if (!is.null(toKeep)) { toKeep <- unique(toKeep) for (t in setdiff(toKeep, unlist(selection))) selection[[label[t]]] <- c(selection[[label[t]]], t) } selection.ids <- sortCharAsNum(unlist(selection, use.names = FALSE)) selection.labs <- label[selection.ids] res.knn <- class::knn(x[selection.ids,,drop=F], x, cl=selection.ids, k=1) matching <- as.character(res.knn) list(selection.ids=selection.ids, selection.labs=selection.labs, matching=matching, size.max=sampling.size.max, K=length(levels(label))) } computePcaSample <- function(data.sample, pca.nb.dims=0, selected.var=NULL, echo=F, prcomp.options=list(center=T, scale=T), pca.variance.cum.min=0.95) { features <- list("pca_full"=NULL, "pca"=NULL) numFeat <- colnames(data.sample$features[["preprocessed"]]$x)[sapply(data.sample$features[["preprocessed"]]$x, is.numeric)] if (length(selected.var)) selected.var <- intersect(selected.var, numFeat) if (!length(selected.var)) selected.var <- numFeat available <- setequal(selected.var, colnames(data.sample$features$pca)) missing.data <- is.null(data.sample$features$pca) if (missing.data || !available) { if (echo) message("PCA computing") df <- as.data.frame(data.sample$features[["preprocessed"]]$x[data.sample$id.clean, selected.var, drop=F]) df <- df[,apply(df, 2, stats::var, na.rm=TRUE) != 0] if (all(dim(df) > 1)) { res.pca <- do.call(stats::prcomp, c(list(df), prcomp.options)) rownames(res.pca$x) <- rownames(data.sample$features[["preprocessed"]]$x)[data.sample$id.clean] features$pca$save <- res.pca features$pca$x <- as.data.frame(res.pca$x) features$pca$rotation <- res.pca$rotation features$pca$sdev <- res.pca$sdev features$pca$inertia.prop <- cumsum(res.pca$sdev^2)/sum(res.pca$sdev^2) colnames(features$pca$x) <- paste("PC", 1:ncol(features$pca$x)) colnames(features$pca$rotation) <- paste("PC", 1:ncol(features$pca$rotation)) features$pca$logscale <- rep(FALSE, ncol(features$pca$x)) names(features$pca$logscale) <- colnames(features$pca$x) features[["pca_full"]] <- features$pca } else { features <- data.sample$features[c("pca_full","pca")] } if (pca.nb.dims==0) pca.nb.dims <- computePcaNbDims(features$pca$sdev, pca.variance.cum.min) if (pca.nb.dims<2) pca.nb.dims <- 2 if (echo) message(paste("Working on PCA, nb of principal components =", pca.nb.dims)) if (echo) message(paste("Information lost=", 100-round(features$pca$inertia.prop[pca.nb.dims]*100,2), "%")) features[["pca"]]$x <- features$pca$x[,1:pca.nb.dims, drop=F] features[["pca"]]$logscale <- features$pca$logscale[1:pca.nb.dims] features[["pca"]]$rotation <- features$pca$rotation[1:pca.nb.dims] features[["pca"]]$sdev <- features$pca$sdev[1:pca.nb.dims] features[["pca"]]$inertia.prop <- features$pca$inertia.prop[1:pca.nb.dims] features } else data.sample$features } computeSpectralEmbeddingSample <- function(data.sample, use.sampling = FALSE, sampling.size.max=0, scale=FALSE, selected.var = NULL, echo=F, RclusTool.env=initParameters()) { this.call <- list(use.sampling=use.sampling, selected.var=selected.var) if (use.sampling) this.call[["selection.ids"]] <- data.sample$sampling$selection.ids if (length(selected.var)) selected.var <- intersect(selected.var, colnames(data.sample$features[["preprocessed"]]$x)[sapply(data.sample$features[["preprocessed"]]$x, is.numeric)]) if (!length(selected.var)) selected.var <- colnames(data.sample$features[["preprocessed"]]$x)[sapply(data.sample$features[["preprocessed"]]$x, is.numeric)] this.call[["selected.var"]] <- selected.var x <- data.sample$features[["preprocessed"]]$x[data.sample$id.clean, selected.var, drop=F] if (scale) { x <- scale(x, center = TRUE, scale = TRUE) } if (use.sampling) { if (is.null(data.sample$sampling) || (!is.null(data.sample$config$sampling.size.max)&&(data.sample$config$sampling.size.max!=sampling.size.max))) { data.sample$sampling <- computeSampling(x=x, K=RclusTool.env$param$classif$unsup$K.max, sampling.size.max=RclusTool.env$param$preprocess$sampling.size.max, kmeans.variance.min=RclusTool.env$param$classif$unsup$kmeans.variance.min) } x <- x[data.sample$sampling$selection.ids, , drop=F] } if (echo) message("Similarity computing") sim <- computeGaussianSimilarityZP(x, k = RclusTool.env$param$classif$unsup$nb.neighbours) if (echo) message("Cluster number estimating") res.gap <- computeGap(sim, Kmax = RclusTool.env$param$classif$unsup$K.max) if (echo) message(paste(" obtained K = ", res.gap$Kmax)) K <- res.gap$Kmax res.se <- spectralEmbeddingNg(sim, K) features <- data.sample$features[["preprocessed"]] features$call <- this.call features$x <- as.data.frame(res.se$x) features$gap <- res.gap$gap features$eig <- res.gap$val features$sampling <- TRUE colnames(features$x) <- paste("SC", 1:ncol(features$x)) features$logscale <- rep(FALSE, ncol(res.se$x)) names(features$logscale) <- colnames(features$x) features } removeZeros <- function(x, threshold=.Machine$double.eps, positive=FALSE) { threshold <- abs(threshold) clx <- class(x) x <- as.matrix(x) w = which(abs(x) <= threshold) if (length(w)) { s <- sign(x[w]) s[s==0] <- 1 if (positive) s[s==-1] <- 1 x[w] <- s*threshold } if (clx == "data.frame") x <- as.data.frame(x) x } computeItems <- function (data.sample, method, cluster, modelFile) { object <- readRDS(modelFile) idxCluster <- which(data.sample$clustering[[method]]$label == cluster) dat <- data.sample$features$initial$x[idxCluster, intersect(names(data.sample$features$initial$x), names(object$model))] if (class(object) == "lm") pred <- stats::predict(object, newdata = dat) if (class(object) == "lda") pred <- stats::predict(object, newdata = dat)$class if (class(object) == "mda") pred <- stats::predict(object, newdata = dat) data.sample$clustering[[method]]$nbItems[names(pred)] <- pred data.sample } computeItemsGUI <- function(method.select = "K-means", RclusTool.env=RclusTool.env) { itemtt <- tktoplevel() tktitle(itemtt) <- "Process with items countings" items.env <- new.env() items.env$export.counts <- TRUE items.env$cluster.select <- NULL items.env$modelFile <- NULL OnExportCounts <- function() { items.env$export.counts <- tclvalue(tcl.export.counts) == "1" } OnClusterChange <- function() { items.env$cluster.select <- tclvalue(tcl.cluster.select) tkconfigure(tk.cluster.but, text = items.env$cluster.select) } buildMenuClusters <- function() { tkconfigure(tk.cluster.but, text = items.env$cluster.select) tkdelete(tk.cluster.menu, 0, "end") for (name in levels(RclusTool.env$data.sample$clustering[[method.select]]$label)) tkadd(tk.cluster.menu, "radio", label = name, variable = tcl.cluster.select, command = OnClusterChange) } onLoadModel <- function() { items.env$modelFile <- tclvalue(tkgetOpenFile(filetypes = "{{RData Files} {.RData}}")) if (!nchar(items.env$modelFile)) { tkmessageBox(message = "No file selected!") } else { tkgrid(tklabel(itemtt, text=basename(items.env$modelFile)), row = 2, column = 3, columnspan = 2) } } onApplyModel <- function() { if (is.character(items.env$modelFile)) RclusTool.env$data.sample <- computeItems(data.sample = RclusTool.env$data.sample, method = method.select, cluster = items.env$cluster.select, modelFile = items.env$modelFile) if (items.env$export.counts) { fileCounts.csv <- file.path(RclusTool.env$data.sample$files$results$clustering, paste("counts ", RclusTool.env$operator.name, " ", method.select, ".csv", sep="")) saveCounts(fileCounts.csv, RclusTool.env$data.sample$clustering[[method.select]]$nbItems) } } tkgrid(tklabel(itemtt, text=" "), row = 0, column = 0) items.env$cluster.select <- levels(RclusTool.env$data.sample$clustering[[method.select]]$label)[1] tcl.cluster.select <- tclVar(items.env$cluster.select) tk.cluster.but <- tkmenubutton(itemtt, text = items.env$cluster.select, relief = "raised", width = 15) tk.cluster.menu <- tkmenu(tk.cluster.but, tearoff = FALSE) buildMenuClusters() tkconfigure(tk.cluster.but, menu = tk.cluster.menu) tkgrid(tk.cluster.but, row = 1, column = 1) butLoad <- tk2button(itemtt, text = "Load model file", image = "csvFile", compound = "left", width = 30, command = onLoadModel) tkgrid(butLoad, row = 1, column = 3, columnspan = 2) tcl.export.counts <- tclVar(as.character(as.integer(items.env$export.counts))) tk.export.counts <- tkcheckbutton(itemtt, text="", variable=tcl.export.counts, command=OnExportCounts) tkgrid(tk2label(itemtt, text="Export counts"), row=3, column=3, sticky="e") tkgrid(tk.export.counts, row=3, column=4, sticky="w") tkgrid(tklabel(itemtt, text=" "), row = 2, column = 2) butApply <- tk2button(itemtt, text = "Apply model", width = -6, command = onApplyModel) tkgrid(butApply, row = 4, column = 3, columnspan = 2) tkgrid(tklabel(itemtt, text=" "), row = 5, column = 5) tkwait.window(itemtt) } itemsModel <- function (dat, countFile, method = "mda") { if (length(countFile) < 1 && !is.character(countFile)) stop("'countFile' must be a single (or multiple) character string(s)") if (length(method) != 1 && !is.character(method)) stop("'method' must be a single character string") if (!method %in% c("lm","lda","mda")) stop("'method' must be one of 'lm', 'lda' or 'mda'") class <- gsub("_itemsCount.RData", "", basename(countFile)) modelPath <- file.path(dirname(countFile), paste(class, "_itemsModel.RData", sep = "")) message("Building predictive model...") nbItems <- readRDS(countFile) nbCounted <- nrow(nbItems) if (nbCounted < 1) { warning("Nothing counted for '", class, "'!", sep = "") } else { data2 <- dat[rownames(nbItems), sapply(dat, is.numeric)] data2 <- data2[,-1] form <- stats::as.formula(unlist(nbItems[, "Manual.Number.of.items"]) ~ .) if (method == "lm") model <- stats::lm(form, data = data2) if (method == "lda") model <- MASS::lda(form, data = data2) if (method == "mda") model <- mda::mda(form, data = data2, start.method = "kmeans", keep.fitted = TRUE, method = mda::gen.ridge, iter = 10) saveRDS(model, file = modelPath) } message("Done!") } countItems <- function(profile, feature = NULL, imgdir = NULL, image = NULL) { opar <- graphics::par(no.readonly=TRUE) on.exit(graphics::par(opar)) nbItemsTot <- NULL nc <- ncol(profile) grDevices::dev.new() graphics::layout(matrix(c(1,2), 1, 2, byrow = TRUE), widths=c(4,4)) graphics::par(mar=c(3,3,2,.2)) if (!is.null(nc)) { curve.names <- colnames(profile) curve.colors <- c("black","blue","yellow","orange","red","palevioletred") graphics::matplot(profile, pch=1:nc, type="o", col=curve.colors, main=image, ylab="level", cex = 0.8) if (!is.null(curve.names)) graphics::legend("topright", legend=curve.names, col=curve.colors, pch=1:nc, cex=.8) } else { graphics::plot(1, col="white", axes=FALSE, xlab=NA, ylab=NA) graphics::text(1, col = "black", labels = "No signals") } graphics::par(mar=c(5,.2,5,.2)) if (!is.null(image) && (!identical(image, ""))) { imgFile <- file.path(imgdir, image) readImg <- jpeg::readJPEG if (!grepl(".jpg", imgFile)) readImg <- png::readPNG if (grepl(".jpg", imgFile) || grepl(".png", imgFile)) { img <- readImg(imgFile, native = FALSE) gray <- 60 / 255 threshold <- 1 - 2 * gray mask <- matrix(1, nrow = nrow(img[,,1]), ncol = ncol(img[,,1])) mask[img[,,1] > threshold] <- 0 mask_erode <- mmand::erode(mask, c(1,1,1)) dimg <- dim(img) h <- dimg[1] w <- dimg[2] rotate <- function(x) t(apply(x, 2, rev)) image(rotate(img[,,1]), col = gray((0:255)/255), axes = F) graphics::title(sub = "1. Click 4 polygon vertices (subregion).\n2. Click items and right-click when done.\nClose windows to end.", adj = 1, font.sub = 2, cex.sub = .8) rectCoord <- graphics::locator(4, type = "o", col = "blue", pch = 16, cex = 2) graphics::polygon(rectCoord$x, rectCoord$y, border = "blue") xSub <- dim(mask_erode)[1] - round(rectCoord$y*dim(mask_erode)[1]) ySub <- round(rectCoord$x*dim(mask_erode)[2]) idxTot <- which(mask_erode == 0, arr.ind=TRUE) idx <- sp::point.in.polygon(idxTot[,1], idxTot[,2], xSub, ySub, mode.checked = FALSE) pixSub <- length(which(idx==1)) nb <- graphics::locator(10000, type = "p", col = "red", pch = 16, cex = 2) n <- length(nb$x) densiteSub <- n/pixSub pixTot <- length(which(mask_erode==0)) nbItemsTot <- densiteSub * pixTot } } else { graphics::plot(1, col= "white", axes=FALSE, xlab=NA, ylab=NA) graphics::text(1, col = "black", labels = "No image") } grDevices::dev.off() nbItemsTot } countItemsGUI <- function (RclusTool.env=initParameters()) { imgdir <- tk_choose.dir() if (is.na(imgdir)) return(invisible(NULL)) countPath <- file.path(dirname(imgdir), paste(basename(imgdir), "_itemsCount.RData", sep = "")) reset <- FALSE if (file.exists(countPath)) { nbItems <- readRDS(countPath) ncount <- nrow(nbItems) if (ncount > 0) { if (ncount == 1) { msg <- "There is one image processed. Do you want to keep its count?" } else msg <- paste("There are", ncount, "images already processed. Do you want to keep these counts?") res <- tkmessageBox(message = msg, icon = "question", type = "yesnocancel", default = "yes") if (tclvalue(res) == "cancel") return(invisible(NULL)) reset = (tclvalue(res) == "no") } } if (!(file.exists(countPath)) || isTRUE(reset)) nbItems <- NULL img <- list.files(imgdir, pattern = ".jpg") for (i in 1:length(img)) { imgNum <- gsub(".jpg", "", img[i]) imgNum <- as.numeric(imgNum) if (!(imgNum %in% row.names(nbItems))) { nb <- c(RclusTool.env$data.sample$features$initial$x[imgNum,], countItems(profile = RclusTool.env$data.sample$profiles[[imgNum]], feature = RclusTool.env$data.sample$features$initial$x[imgNum,], imgdir = imgdir, image = img[i])) nbItems <- rbind(nbItems, nb) rownames(nbItems)[nrow(nbItems)] <- imgNum colnames(nbItems)[ncol(nbItems)] <- "Manual.Number.of.items" message(nbItems) } } saveRDS(nbItems, countPath) itemsModel(dat = RclusTool.env$data.sample$features$initial$x, countFile = countPath, method = "lm") } toStringDataFrame = function (object, digits=NULL) { nRows = length(row.names(object)); if (length(object)==0) { return(paste( sprintf(ngettext(nRows, "data frame with 0 columns and %d row", "data frame with 0 columns and %d rows") , nRows) , "\\n", sep = "") ); } else if (nRows==0) { return(gettext("<0 rows> (or 0-length row.names)\\n")); } else { m = as.matrix(format.data.frame(object, digits=digits, na.encode=FALSE)); m = rbind(dimnames(m)[[2]], m); maxLen = apply(apply(m, c(1,2), stringr::str_length), 2, max, na.rm=TRUE); m = t(apply(m, 1, stringr::str_pad, width=maxLen, side="right")); m = t(apply(m, 1, stringr::str_pad, width=maxLen+3, side="left")); m = apply(m, 1, paste, collapse=""); return(paste(m, collapse="\n")); } }
context("Setting graph/global attributes") test_that("Setting a graph name can be done", { graph <- create_graph() graph_name <- graph %>% set_graph_name(name = "test_that_name") expect_true( graph_name$graph_info$graph_name == "test_that_name") graph_1 <- graph %>% add_node() %>% add_node() %>% add_edge( from = 1, to = 2) %>% select_nodes_by_id(nodes = 1) graph_name_1 <- set_graph_name( graph = graph_1, name = "test_that_name_again") expect_true( graph_name_1$graph_info$graph_name == "test_that_name_again") }) test_that("Setting a time for the graph can be done", { graph <- create_graph() graph_1 <- set_graph_time( graph = graph, time = "2015-10-25 15:23:00") expect_true( graph_1$graph_info$graph_time == "2015-10-25 15:23:00") expect_true( graph_1$graph_info$graph_tz == "GMT") graph_2 <- set_graph_time( graph = graph_1, tz = "America/Los_Angeles") expect_true( graph_2$graph_info$graph_tz == "America/Los_Angeles") expect_error( set_graph_time( graph = graph_2, tz = "Moon/Moon")) graph_selection <- create_graph() %>% add_node() %>% select_nodes() %>% set_graph_time("2015-10-25 15:23:00") }) test_that("Getting the graph name is possible", { graph <- create_graph() %>% set_graph_name(name = "test_graph") expect_is( get_graph_name(graph), "character") expect_equal( length(get_graph_name(graph)), 1) expect_equal( get_graph_name(graph), "test_graph") }) test_that("Getting the graph time is possible", { graph <- create_graph() %>% set_graph_time( time = "2015-10-25 15:23:00") expect_is( get_graph_time(graph), "POSIXct") expect_equal( length(get_graph_time(graph)), 1) graph <- create_graph() expect_is( get_graph_time(graph), "POSIXct") }) test_that("Getting global graph attrs is possible", { graph <- create_graph(attr_theme = NULL) expect_equal( graph %>% get_global_graph_attr_info() %>% nrow(), 0) graph <- graph %>% add_global_graph_attrs( attr = c("overlap", "color", "penwidth"), value = c("true", "red", "5"), attr_type = c("graph", "node", "edge")) global_graph_attrs <- graph %>% get_global_graph_attr_info() expect_equal( graph$global_attrs %>% dplyr::as_tibble(), global_graph_attrs) }) test_that("Adding global graph attrs is possible", { graph <- create_graph() graph_add_2 <- graph %>% add_global_graph_attrs( attr = c("overlap", "penwidth"), value = c("true", "5"), attr_type = c("graph", "edge")) expect_equal( nrow(graph_add_2$global_attrs) - nrow(graph$global_attrs), 2) expect_equal( tail(graph_add_2$global_attrs, 2)[, 1], c("overlap", "penwidth")) expect_equal( tail(graph_add_2$global_attrs, 2)[, 2], c("true", "5")) expect_equal( tail(graph_add_2$global_attrs, 2)[, 3], c("graph", "edge")) graph_add_1 <- graph %>% add_global_graph_attrs( attr = "overlap", value = TRUE, attr_type = "graph") expect_equal( nrow(graph_add_1$global_attrs) - nrow(graph$global_attrs), 1) expect_equal( tail(graph_add_1$global_attrs, 1)[, 1], "overlap") expect_equal( tail(graph_add_1$global_attrs, 1)[, 2], "true") expect_equal( tail(graph_add_1$global_attrs, 1)[, 3], "graph") }) test_that("Deleting global graph attrs is possible", { graph <- create_graph() graph_del_1 <- graph %>% delete_global_graph_attrs( attr = "layout", attr_type = "graph") expect_equal( nrow(graph$global_attrs) - nrow(graph_del_1$global_attrs), 1) graph_del_2 <- graph %>% delete_global_graph_attrs( attr = c("layout", "outputorder"), attr_type = c("graph", "graph")) expect_equal( nrow(graph$global_attrs) - nrow(graph_del_2$global_attrs), 2) expect_error( graph %>% delete_global_graph_attrs( attr = "layout", attr_type = "nodes")) })
source("ESEUR_config.r") library("plyr") gd=read.csv(paste0(ESEUR_dir, "sourcecode/glob-def-usage.csv.xz"), as.is=TRUE) gd$Release.Date=as.Date(gd$Release.Date, format="%d/%m/%y") plot(gd$LOC/1e3, gd$Global.Variables, type="n", log="x", xlab="KLOC", ylab="Global variables\n") u_prog=unique(gd$Program) pal_col=rainbow(length(u_prog)) gd$col_str=mapvalues(gd$Program, u_prog, pal_col) d_ply(gd, .(Program), function(df) points(df$LOC/1e3, df$Global.Variables, col=df$col_str[1])) legend(x="topleft", legend=u_prog, bty="n", fill=pal_col, cex=1.2)
semivariogram <- function(x, ...){ UseMethod("semivariogram") } semivariogram.krige <- function(x, ..., bins=13, terms = "all", type, pch, lty, legend, col){ if (!inherits(x, "krige")) stop("The input x is not a 'krige' x.") if (terms[1] == "all") terms <- c("raw", "residual", "parametric") dcol <- c(raw="black", residual="blue", parametric="red") dtype <- c(raw="p", residual="p", parametric="l") dpch <- c(raw=1, residual=3, parametric=2) dlty <- c(raw=3, residual=2, parametric=1) if (missing(col)) col <- dcol[terms] if (is.null(names(col))) names(col) <- terms if (missing(type)) type <- dtype[terms] if (is.null(names(type))) names(type) <- terms type[type == "lines"] <- "l"; type[type == "points"] <- "p" if (missing(col)) col <- dcol[terms] if (is.null(names(col))) names(col) <- terms if (missing(type)) type <- dtype[terms] if (is.null(names(type))) names(type) <- terms if (missing(pch)) {pch <- ifelse(type == "p", dpch, NA) } else { pch <- ifelse(type == "p", pch, NA) } if (is.null(names(pch))) names(pch) <- terms if (missing(lty)) {lty <- ifelse(type == "l", dlty, NA) } else { lty <- ifelse(type == "l", lty, NA) } if (is.null(names(lty))) names(lty) <- terms if (all(is.na(pch))) pch <- NULL if (all(is.na(lty))) lty <- NULL if (length(terms) > 1 & missing(legend)) {legend <- TRUE } else if (length(terms) == 1 & missing(legend)) {legend <- FALSE} distance<-as.numeric(dist(cbind(x$model.data.list$easting, x$model.data.list$northing))) if ("raw" %in% terms) { raw <- sv(x = x$model.data.list$y, distance = distance, bins = bins, ...) } if ("residual" %in% terms) { residual <- sv(x = x$init.ols$residuals, distance = distance, bins = bins, ...) } if ("parametric" %in% terms) { if (!exists("resid")) {residual <- sv(x = x$init.ols$residuals, distance = distance, ...)} var.terms<-apply(x$mcmc.mat[,1:3],2,quantile,0.5) parametric <- exponential.semivariance.default(nugget=var.terms[1], decay=var.terms[2], partial.sill = var.terms[3], distance = as.numeric(names(residual)), power = x$standing.parameter$powered.exp) } for (i in terms) { if (i == terms[1]) { sv.plot(get(i),distance=distance,bins=bins,add=FALSE,type=type[i],col=col[i], pch=pch[i],lty=lty[i]) } else { sv.plot(get(i),distance=distance,bins=bins,type=type[i],col=col[i],pch=pch[i], lty=lty[i],add=TRUE) } } if (legend == TRUE) { lnames <- c(raw = "Raw data", residual = "OLS residuals", parametric = "Parametric Semivariogram") legend("top", legend=lnames[terms], pch = as.vector(pch[terms]), inset=c(0,-.15), xpd=TRUE, bty = "n",col=col[terms], lty=as.vector(lty[terms]), cex=0.8,ncol=length(terms)) } } plot.krige <- function(...) semivariogram.krige(...) semivariogram.lm <- function(x, ..., coords, bins = 13, terms = c("raw", "residual"), east, north, type, legend, col, pch, lty) { if (!inherits(x, "lm")) stop("The input x is not a 'lm' x.") if (missing(coords)) { if (missing(east) | missing(north)) stop("Coordinates are missing.") coords <- cbind(east, north) if (is.character(coords) & length(coords) == 2) coords <- as.vector(coords) } cl <- x$call y <- x$model[1] if (is.character(coords) & length(coords) == 2) { form <- update(as.formula(cl$formula), paste("~ . +",paste(coords, collapse=" + "))) na.action <- ifelse("na.action" %in% names(cl), cl$na.action, "na.omit") mf <- model.frame(form, data = get(as.character(cl$data)), na.action=na.action) if (length(mf[1]) != length(y)) warning("Additional missing data are dropped.") y <- mf[1]; coords <- mf[coords] x <- lm(cl$formula, data = mf) } dcol <- c(raw="black", residual="blue") dtype <- c(raw="p", residual="p") dpch <- c(raw=1, residual=3) dlty <- c(raw=1, residual=3) if (missing(col)) col <- dcol[terms] if (is.null(names(col))) names(col) <- terms if (missing(type)) type <- dtype[terms] if (is.null(names(type))) names(type) <- terms type[type == "lines"] <- "l"; type[type == "points"] <- "p" if (missing(pch)) {pch <- ifelse(type == "p", dpch, NA) } else { pch <- ifelse(type == "p", pch, NA) } if (is.null(names(pch))) names(pch) <- terms if (missing(lty)) {lty <- ifelse(type == "l", dlty, NA) } else { lty <- ifelse(type == "l", lty, NA) } if (is.null(names(lty))) names(lty) <- terms if (all(is.na(pch))) pch <- NULL if (all(is.na(lty))) lty <- NULL if (length(terms) > 1 & missing(legend)) {legend <- TRUE } else if (length(terms) == 1 & missing(legend)) {legend <- FALSE} distance<-as.numeric(dist(coords)) if ("raw" %in% terms) { raw <- sv(x = y, distance = distance, bins = bins, ...) } if ("residual" %in% terms) { residual <- sv(x = x$residuals, distance = distance, bins = bins, ...) } for (i in terms) { if (i == terms[1]) { sv.plot(get(i),distance=distance,bins=bins,add=FALSE,type=type[i],col=col[i], pch=pch[i],lty=lty[i]) } else { sv.plot(get(i),distance=distance,bins=bins,type=type[i],col=col[i],pch=pch[i], lty=lty[i],add=TRUE) } } if (legend == TRUE) { lnames <- c(raw = "Raw data", residual = "Residuals") legend("top", legend=lnames[terms], pch = as.vector(pch[terms]), inset=c(0,-.15), xpd=TRUE, bty = "n",col=col[terms], lty=as.vector(lty[terms]), cex=0.8, ncol=length(terms)) } } semivariogram.default <- function(x, ..., coords, data, bins=13, east, north, type, pch, lty, col){ if (missing(coords)) { coords <- cbind(east, north) if (is.character(coords) & length(coords) == 2) coords <- as.vector(coords) } if (is.character(coords) & length(coords) == 2) coords <- data[coords] if (is.character(x) & length(x) == 1) x <- data[x] if (missing(type)) type <- "p" type[type == "points"] <- "p"; type[type == "lines"] <- "l" if (type == "p") pch <- ifelse(missing(pch), 1, pch); lty <- NULL if (type == "l") lty <- ifelse(missing(lty), 1, lty); pch <- NULL if (missing(col)) col <- "black" distance <- as.numeric(dist(coords)) semivariances <- sv(x = x, distance = distance, bins = bins, ...) sv.plot(semivariances,distance=distance,bins=bins,add=FALSE,type=type,col=col, pch=pch,lty=lty) } semivariogram.semivariance <- function(x, ..., type, pch, lty, legend, col){ if (!inherits(x, "semivariance")) stop("The input x is not a 'semivariance' x.") if (is.list(x)){ terms <- names(x) dcol <- c(raw="black", residual="blue", parametric="red") dtype <- c(raw="p", residual="p", parametric="l") dpch <- c(raw=1, residual=3, parametric=2) dlty <- c(raw=3, residual=2, parametric=1) if (missing(col)) col <- dcol[terms] if (is.null(names(col))) names(col) <- terms if (missing(type)) type <- dtype[terms] if (is.null(names(type))) names(type) <- terms type[type == "lines"] <- "l"; type[type == "points"] <- "p" if (missing(col)) col <- dcol[terms] if (is.null(names(col))) names(col) <- terms if (missing(type)) type <- dtype[terms] if (is.null(names(type))) names(type) <- terms if (missing(pch)) {pch <- ifelse(type == "p", dpch, NA) } else { pch <- ifelse(type == "p", pch, NA) } if (is.null(names(pch))) names(pch) <- terms if (missing(lty)) {lty <- ifelse(type == "l", dlty, NA) } else { lty <- ifelse(type == "l", lty, NA) } if (is.null(names(lty))) names(lty) <- terms if (all(is.na(pch))) pch <- NULL if (all(is.na(lty))) lty <- NULL if (length(terms) > 1 & missing(legend)) {legend <- TRUE } else if (length(terms) == 1 & missing(legend)) {legend <- FALSE} for (i in terms) { if (i == terms[1]) { distance <- as.numeric(names(x[[i]])) sv.plot(x[[i]],distance=distance,bins=length(distance),add=FALSE,type=type[i],col=col[i], pch=pch[i],lty=lty[i]) } else { sv.plot(x[[i]],distance=distance,bins=length(distance),type=type[i],col=col[i],pch=pch[i], lty=lty[i],add=TRUE) } if (legend == TRUE) { legend("top", legend=terms, pch = as.vector(pch[terms]), inset=c(0,-.15), xpd=TRUE, bty = "n",col=col[terms], lty=as.vector(lty[terms]), cex=0.8, ncol=length(terms)) } } } else if (is.matrix(x)) { if (length(x) > 100) stop("The length of distance is too large.") i <- 1 if (missing(type)) type <- ifelse(length(x) > 30, "l", "p") type[type == "points"] <- "p"; type[type == "lines"] <- "l" if (type == "p") pch <- ifelse(missing(pch), 1, pch); lty <- NA if (type == "l") lty <- ifelse(missing(lty), 1, lty); pch <- NA if (missing(col)) col <- "black" distance <- as.numeric(names(x)) sv.plot(x[[i]],distance=distance,bins=length(distance),add=FALSE,type=type[i],col=col[i], pch=pch[i],lty=lty[i]) } } plot.semivariance <- semivariogram.semivariance sv.plot <- function(semivariances,distance,bins,add=FALSE,type="p",col=col,pch=1,lty=1,...){ breaks<-seq(0,max(distance),length=bins+1) digits<-ifelse(max(breaks)<10,2,0) labels<-round(breaks[-1],digits) cl <- match.call(expand.dots=TRUE) if (! "xlab" %in% names(cl)) xlab <- "Distance" if (! "ylab" %in% names(cl)) ylab <- "Semivariance" if (add==FALSE){ plot(1, type="n", xlab=xlab, ylab=ylab, xlim=c(0,bins), ylim=c(0,max(semivariances)),axes=F,...) axis(1,at=1:bins,labels=labels,cex.axis=.75);axis(2);box() } if (type=="p"){ points(semivariances, col = col, pch = pch) } if (type=="l"){ lines(semivariances, col = col, lty = lty) } }
gt_reflect <- function(obj, angle, fid = NULL, update = TRUE){ assertNumeric(x = angle, any.missing = FALSE, lower = -360, upper = 360, min.len = 1) assertNumeric(x = fid, lower = 1, finite = TRUE, any.missing = FALSE, null.ok = TRUE) assertLogical(x = update, len = 1, any.missing = FALSE) theFeatures <- getFeatures(x = obj) theGroups <- getGroups(x = obj) thePoints <- getPoints(x = obj) theWindow <- getWindow(x = obj) ids <- unique(thePoints$fid) existsID <- !is.null(fid) if(existsID){ doReflect <- ids %in% fid } else{ doReflect <- rep(TRUE, length(ids)) } if(length(angle) != length(ids)){ angle <- rep(angle, length.out = length(ids)) } digits <- getOption("digits") temp <- NULL for(i in seq_along(ids)){ tempCoords <- thePoints[thePoints$fid == ids[i],] newCoords <- tempCoords if(doReflect[i]){ tempAngle <- angle[[i]] newCoords$x <- round(tempCoords$x * cos(2 * .rad(tempAngle)) + tempCoords$y * sin(2 * .rad(tempAngle)), digits) newCoords$y <- round(tempCoords$x * sin(2 * .rad(tempAngle)) - tempCoords$y * cos(2 * .rad(tempAngle)), digits) } temp <- rbind(temp, newCoords) } if(update){ window <- .updateWindow(input = temp, window = theWindow) } else { window <- theWindow } if(length(ids) == 1){ hist <- paste0("geom was reflected.") } else { hist <- paste0("geoms were reflected.") } out <- new(Class = "geom", type = getType(x = obj)[1], point = temp, feature = theFeatures, group = theGroups, window = window, crs = getCRS(x = obj), history = c(getHistory(x = obj), list(hist))) return(out) }
fitexi <- function(data, threshold){ if (any(is.na(data))){ warning("NA's are not allowed in object ``data''.\nReplacing them by the threshold !!!") data[is.na(data)] <- threshold } idx <- which(data > threshold) nat <- length(idx) interTim <- diff(idx) if (max(interTim) == 1) exi <- 0 else{ if (max(interTim) <= 2){ exi <- 2 * sum(interTim - 1)^2 / (nat - 1) / sum((interTim - 1) * (interTim - 2)) exi <- min(1, exi) } else{ exi <- 2 * sum(interTim)^2 / (nat - 1) / sum(interTim^2) exi <- min(1, exi) } } myC <- floor(exi * nat) + 1 sortInterTim <- sort(interTim, decreasing = TRUE) if (myC <= length(interTim)) TC <- sortInterTim[myC] else TC <- max(interTim) return(list(exi = exi, tim.cond = TC)) }
new_project_group <- function(path) { p_path <- get_p_path() path <- validate_directory(path, p_path, make_directories = TRUE) if (fs::path_ext(path) != "") { stop("\nMust be a directory and not a file (i.e., must not have a file ", "extension, which is ", fs::path_ext(path), " in this case).") } if (fs::dir_exists(path)) { stop("\nDirectory already exists.") } fs::dir_create(path) message("\nThe following directory was created:\n", path) } rename_folder <- function(project, new_folder_name, archived = FALSE) { p_path <- get_p_path() projects_path <- make_rds_path("projects", p_path) projects_table <- get_rds(projects_path) if (!archived) { projects_table <- remove_archived(projects_table) } project_row <- validate_unique_entry( x = project, table = projects_table, what = "project" ) new_folder_name <- fs::path_sanitize(new_folder_name) new_path <- fs::path(fs::path_dir(project_row$path), new_folder_name) print(project_row) if (fs::dir_exists(new_path)) { stop("The directory\n", new_path, "\nalready exists.", "\nMove or delete it, or pick a different name.") } else { user_prompt( msg = paste0("Are you sure you want to rename this project folder so ", "that its new file path is\n", new_path, "\n? (y/n)"), n_msg = paste0('Renaming not completed. To rename this project, ', 'try again and enter "y".') ) } fs::file_move(path = project_row$path, new_path = new_path) project_row$path <- unclass(new_path) edit_metadata( table = projects_table, row_id = project_row$id, path = project_row$path, short_title = project_row$short_title, table_path = projects_path ) message( "\nProject ", project_row$id, " renamed so that its new path is\n", project_row$path ) invisible(project_row) } move_project <- function(project, path, make_directories = FALSE, archived = FALSE) { p_path <- get_p_path() projects_path <- make_rds_path("projects", p_path) projects_table <- get_rds(projects_path) if (!archived) { projects_table <- remove_archived(projects_table) } project_row <- validate_unique_entry( x = project, table = projects_table, what = "project" ) path <- validate_directory( path = path, p_path = p_path, make_directories = make_directories ) print(project_row) if (fs::dir_exists(path)) { user_prompt( msg = paste0("Are you sure you want to move this project folder so ", "that its new file path is\n", fs::path(path, fs::path_file(project_row$path)), "\n? (y/n)"), n_msg = paste0('Move not completed. To move this project, try again ', 'and enter "y".') ) } else { user_prompt( msg = paste0("\nDirectory not found:\n", path, "\n\nWould you like to create it and move the project ", "folder there, so that its new file path will be\n", fs::path(path, fs::path_file(project_row$path)), "\n\n? (y/n)"), n_msg = paste0("\nMove not completed. To move this project, try again ", 'and enter "y"')) fs::dir_create(path) } fs::file_move(path = project_row$path, new_path = path) project_row$path <- fs::path(path, fs::path_file(project_row$path)) %>% unclass() edit_metadata( table = projects_table, row_id = project_row$id, path = project_row$path, table_path = projects_path ) message( "\nProject ", project_row$id, " moved so that its new path is\n", project_row$path ) } copy_project <- function(project_to_copy, path, new_id = NA, new_folder_name = paste0("p", stringr::str_pad(new_id, 4, pad = "0")), new_short_title = NA, make_directories = FALSE, archived = FALSE) { p_path <- get_p_path() pa_assoc_path <- make_rds_path("project_author_assoc", p_path) pa_assoc_table <- get_rds(pa_assoc_path) projects_path <- make_rds_path("projects", p_path) projects_table <- get_rds(projects_path) project_row <- validate_unique_entry( x = project_to_copy, table = projects_table, what = "project" ) original_project_id <- project_row$id old_path <- project_row$path old_folder <- fs::path_file(old_path) if (missing(path)) { path <- fs::path_dir(old_path) } else { path <- validate_directory( path = path, p_path = p_path, make_directories = make_directories ) } old_project <- project_row project_row$id <- new_id <- validate_new(id = new_id, what = "project", rds_table = projects_table) project_row$short_title <- new_short_title project_row$path <- make_project_path(project_name = new_folder_name, path = path) if (fs::dir_exists(project_row$path)) { stop( "The directory\n", project_row$path, "\nalready exists.", "\nMove or delete it, or pick a different folder_name." ) } print(old_project) if (fs::dir_exists(path)) { user_prompt( msg = paste0("\nAre you sure you want to copy this project into the ", "new directory\n", project_row$path, "\n\n? (y/n)"), n_msg = paste0('Copy not completed. To copy this project, try again ', 'and enter "y".') ) } else { user_prompt( msg = paste0("\nDirectory not found:\n", path, "\n\nWould you like to create it and copy the above ", "project there, so that its file path will be\n", project_row$path, "\n\n? (y/n)"), n_msg = paste0("\nCopy not completed. To copy this project, try again ", 'and enter "y"') ) fs::dir_create(path) } fs::dir_copy(path = old_path, new_path = project_row$path) add_metadata( table = projects_table, new_row = project_row, table_path = projects_path ) old_assoc <- dplyr::filter(pa_assoc_table, .data$id1 == original_project_id) if (nrow(old_assoc) > 0L) { add_assoc( assoc_table = pa_assoc_table, new_rows = tibble::tibble(id1 = project_row$id, id2 = old_assoc$id2), assoc_path = pa_assoc_path ) } message( "\nProject ", project_row$id, " below is a copy of project ", original_project_id, " and is located at\n", project_row$path ) print(project_row) Rproj_path <- fs::dir_ls(project_row$path, glob = "*.Rproj") if (length(Rproj_path) == 1L) { new_path <- fs::path(project_row$path, new_folder_name, ext = "Rproj") fs::file_move(path = Rproj_path, new_path = new_path) message("\nThe .Rproj file\n", Rproj_path, "\nwas renamed to\n", new_path) } else if (length(Rproj_path) == 0L) { warning("\nNo .Rproj file found in the new project folder.") } else { warning("\nMultiple .Rproj files found in newly created directory.", " None have been renamed.") } message( '\nBe sure to change all instances of \"', old_folder, '\" to \"', new_folder_name, '\" as desired\n(e.g., .bib files and references to them in YAML headers).' ) invisible(project_row) } archive_project <- function(project) { p_path <- get_p_path() projects_path <- make_rds_path("projects", p_path) projects_table <- get_rds(projects_path) %>% remove_archived() project_row <- validate_unique_entry( x = project, table = projects_table, what = "project" ) if (!fs::dir_exists(project_row$path)) { print(project_row) stop("The above project not found at\n", project_row$path, "\nRestore project folder to this location first.") } archive_folder <- fs::path(fs::path_dir(project_row$path), "archive") new_path <- fs::path(archive_folder, fs::path_file(project_row$path)) user_prompt( msg = paste0("\nAre you sure you want to archive this project folder", " so that its new file path is\n", new_path, "\n\n? (y/n)"), n_msg = paste0('\nArchiving not completed. To archive this project, try ', 'again and enter "y".')) if (!fs::file_exists(archive_folder)) { fs::dir_create(archive_folder) } fs::file_move(path = project_row$path, new_path = archive_folder) projects_table$path[projects_table$id == project_row$id] <- new_path readr::write_rds(projects_table, projects_path) print(dplyr::filter(projects_table, .data$id == project_row$id)) message("\nThe above project was archived and has the file path\n", new_path) } open_project <- function(project, new_session = FALSE, archived = FALSE) { p_path <- get_p_path() project_row <- validate_unique_entry( x = project, table = projects_internal(p_path = p_path, archived = archived), what = "project" ) if (fs::path_has_parent(project_row$path, p_path)) { Rproj_path <- fs::dir_ls(project_row$path, glob = "*.Rproj") } else { path_split <- fs::path_split(project_row$path)[[1L]] len <- length(path_split) Rproj_path <- NULL for (i in seq_len(len)[-1L]) { candidate <- fs::path_join(c(p_path, path_split[i:len])) if (fs::file_exists(candidate)) { Rproj_path <- fs::dir_ls(candidate, glob = "*.Rproj") break } } } if (length(Rproj_path) != 1L) { if (length(Rproj_path) == 0L) { user_prompt( msg = paste0( "\nCannot open project ", project_row$id, " because there\n", "is no .Rproj file in\n", project_row$path, "\n\nRestore it with a default .Rproj file? (y/n)" ), n_msg = paste0('\nRestore a .Rproj file to the folder\n', project_row$path) ) default_Rproj <- system.file( "templates", "pXXXX.Rproj", package = "projects", mustWork = TRUE ) Rproj_path <- fs::path( project_row$path, paste0("p", stringr::str_pad(project_row$id, width = 4L, pad = "0")), ext = "Rproj" ) fs::file_copy(default_Rproj, Rproj_path) user_prompt( msg = paste0( ".Rproj file restored at\n", Rproj_path, "\n\nOpen this project? (y/n)" ), n_msg = paste0("\nProject not opened.") ) } else { stop( "\nCannot open project ", project_row$id, " because there\n", "are multiple .Rproj files in\n", project_row$path, "\nNamely: ", paste(fs::path_file(Rproj_path), collapse = ", "), "\nMove or delete the extraneous ones." ) } } rstudioapi::openProject(Rproj_path, new_session) } move_projects_folder <- function(new_path, make_directories = FALSE, .Renviron_path = file.path(Sys.getenv("HOME"), ".Renviron")) { p_path <- get_p_path() projects_path <- make_rds_path("projects", p_path = p_path) projects_table <- get_rds(projects_path) new_path <- validate_directory( new_path, p_path = NULL, make_directories = make_directories ) new_path2 <- fs::path(new_path, fs::path_file(p_path)) if (fs::dir_exists(new_path)) { if (fs::dir_exists(new_path2)) { stop( "\nCannot move the projects folder currently at:\n", p_path, "\ninto the folder:\n", new_path, "\nbecause this folder:\n", new_path2, "\nalready exists." ) } user_prompt( msg = paste0("Are you sure you want to move the projects folder", "\nso that its new path is\n", new_path2, "\n? (y/n)"), n_msg = paste0('Move not completed. To move the projects folder, ', 'try again and enter "y".') ) } else { user_prompt( msg = paste0("\nDirectory not found:\n", new_path, "\n\nWould you like to create it and move the projects ", "folder there, so that its new path will be\n", new_path2, "\n\n? (y/n)"), n_msg = paste0("\nMove not completed. To move this project, try again ", 'and enter "y"') ) fs::dir_create(new_path) } fs::file_move(path = p_path, new_path = new_path) set_Renviron(new_path2, .Renviron_path = .Renviron_path) coll_p_path <- stringr::coll(fs::path_dir(p_path)) projects_table$path <- stringr::str_replace( string = projects_table$path, pattern = coll_p_path, replacement = new_path ) projects_path <- stringr::str_replace( string = projects_path, pattern = coll_p_path, replacement = new_path ) readr::write_rds(projects_table, projects_path) message("\nProjects folder moved so that its new path is\n", new_path2) } rename_projects_folder <- function(new_name, .Renviron_path = file.path(Sys.getenv("HOME"), ".Renviron") ) { p_path <- get_p_path() projects_path <- make_rds_path("projects", p_path = p_path) projects_table <- get_rds(projects_path) if (!identical(new_name, fs::path_sanitize(new_name))) { stop(new_name, " is not a valid folder name") } new_path <- fs::path(fs::path_dir(p_path), new_name) if (fs::dir_exists(new_path)) { stop( "\nThe directory:\n", new_path, "\nalready exists. Move or delete it or choose a different name." ) } user_prompt( msg = paste0("Are you sure you want to rename the projects folder", "\nso that its new path is\n", new_path, "\n? (y/n)"), n_msg = paste0('Renaming not completed. To rename the projects folder, ', 'try again and enter "y".') ) fs::file_move(path = p_path, new_path = new_path) set_Renviron(new_path, .Renviron_path = .Renviron_path) coll_p_path <- stringr::coll(p_path) projects_table$path <- stringr::str_replace( string = projects_table$path, pattern = coll_p_path, replacement = new_path ) projects_path <- stringr::str_replace( string = projects_path, pattern = coll_p_path, replacement = new_path ) readr::write_rds(projects_table, projects_path) message("\nProjects folder renamed so that its new path is:\n", new_path) }