code
stringlengths 1
13.8M
|
---|
fixedCoxLassoInf=function(x, y, status,
beta, lambda,
alpha=.1, type=c("partial"),
tol.beta=1e-5, tol.kkt=0.1,
gridrange=c(-100,100),
bits=NULL, verbose=FALSE,
this.call=NULL){
checkargs.xy(x,y)
if(is.null(status)) stop("Must supply `status' argument")
if( sum(status==0)+sum(status==1)!=length(y)) stop("status vector must have values 0 or 1")
if (missing(beta) || is.null(beta)) stop("Must supply the solution beta")
if (missing(lambda) || is.null(lambda)) stop("Must supply the tuning parameter value lambda")
checkargs.misc(beta=beta,lambda=lambda,alpha=alpha,
gridrange=gridrange,tol.beta=tol.beta,tol.kkt=tol.kkt)
if (!is.null(bits) && !requireNamespace("Rmpfr",quietly=TRUE)) {
warning("Package Rmpfr is not installed, reverting to standard precision")
bits = NULL
}
n=nrow(x)
p=ncol(x)
nvar=sum(beta!=0)
pv=vlo=vup=sd=rep(NA, nvar)
ci=tailarea=matrix(NA,nvar,2)
m=beta!=0
vars=which(m)
if(sum(m)>0){
bhat=beta[beta!=0]
sign_bhat=sign(bhat)
aaa=coxph(Surv(y,status)~x[,m],init=bhat,iter.max=0)
res=residuals(aaa,type="score")
if(!is.matrix(res)) res=matrix(res,ncol=1)
scor=colSums(res)
g=(scor+lambda*sign_bhat)/(2*lambda)
if (any(abs(g) > 1+tol.kkt) )
warning(paste("Solution beta does not satisfy the KKT conditions",
"(to within specified tolerances)"))
MM=vcov(aaa)
bbar=(bhat+lambda*MM%*%sign_bhat)
A1=-(mydiag(sign_bhat))
b1= -(mydiag(sign_bhat)%*%MM)%*%sign_bhat*lambda
temp=max(A1%*%bbar-b1)
for(jj in 1:length(bbar)){
vj=rep(0,length(bbar));vj[jj]=sign_bhat[jj]
junk=TG.pvalue(bbar, A1, b1, vj,MM)
pv[jj] = junk$pv
vlo[jj]=junk$vlo
vup[jj]=junk$vup
sd[jj]=junk$sd
junk2=TG.interval(bbar, A1, b1, vj, MM, alpha, flip=(sign_bhat[jj]==-1))
ci[jj,]=junk2$int
tailarea[jj,] = junk2$tailarea
}
fit0=coxph(Surv(y,status)~x[,m])
coef0=fit0$coef
se0=sqrt(diag(fit0$var))
zscore0=coef0/se0
out = list(lambda=lambda,pv=pv,ci=ci,
tailarea=tailarea,vlo=vlo,vup=vup,sd=sd,
vars=vars,alpha=alpha,coef0=coef0,zscore0=zscore0,
call=this.call)
class(out) = "fixedCoxLassoInf"
}
return(out)
}
print.fixedCoxLassoInf <- function(x, tailarea=TRUE, ...) {
cat("\nCall:\n")
dput(x$call)
cat(sprintf("\nStandard deviation of noise (specified or estimated) sigma = %0.3f\n",
x$sigma))
cat(sprintf("\nTesting results at lambda = %0.3f, with alpha = %0.3f\n",x$lambda,x$alpha))
cat("",fill=T)
tab = cbind(x$vars,
round(x$coef0,3),
round(x$zscore0,3),
round(x$pv,3),round(x$ci,3))
colnames(tab) = c("Var", "Coef", "Z-score", "P-value", "LowConfPt", "UpConfPt")
if (tailarea) {
tab = cbind(tab,round(x$tailarea,3))
colnames(tab)[(ncol(tab)-1):ncol(tab)] = c("LowTailArea","UpTailArea")
}
rownames(tab) = rep("",nrow(tab))
print(tab)
cat(sprintf("\nNote: coefficients shown are %s regression coefficients\n",
ifelse(x$type=="partial","partial","full")))
invisible()
} |
model <- "
y1 ~ y2 + y3
y1 =~ x1 + x2 + x3
y2 =~ x4 + x5
y3 =~ x6 + x7
x1 ~~ x2
"
m <- parseModel(model)
m
identical(m, parseModel(m))
m_incomplete <- m[c("structural", "measurement", "construct_type")]
parseModel(m_incomplete)
\dontrun{
m_incomplete[c("name_a", "name_b")] <- c("hello world", "hello universe")
parseModel(m_incomplete)
}
\dontrun{
m_incomplete <- m[c("structural", "construct_type")]
parseModel(m_incomplete)
} |
mvregmed.grid.data <- function(fit.lst,lambda.vec){
out<-data.frame(lambda=lambda.vec,
do.call(rbind,lapply(fit.lst,function(z) as.data.frame(z[c("converge","iter","df","df.alpha",
"df.beta", "df.delta", "df.vary", "bic")]))))
return(out)
} |
firstCommonUpstreamBe <- function(beList=listBe(), uniqueOrg=TRUE){
if(!is.logical(uniqueOrg)){
stop("uniqueOrg should be a logical")
}
if(!is.atomic(beList) || length(beList)==0){
stop("beList should be a non-empty character vector")
}
if(!uniqueOrg){
return("Gene")
}
checkedBe <- match.arg(beList, several.ok=TRUE)
notFound <- setdiff(beList, checkedBe)
if(length(notFound)>0){
stop(paste(
"Could not find the following entities among possible BE:",
paste(notFound, collapse=", "),
"\nPossible BE: ", paste(listBe(), collapse=", ")
))
}
if(length(beList)==1){
return(beList)
}else{
cql <- 'MATCH (o:BEType)'
cid <- 0
for(be in beList){
cid <- cid+1
cql <- c(
cql,
sprintf(
'MATCH (%s:BEType {value:"%s"})',
paste0("be", cid), be
),
sprintf(
'MATCH (o)-[:produces*0..]->(%s)',
paste0("be", cid)
)
)
}
cql <- c(
cql,
'WITH o, be1',
'MATCH p=shortestPath((o)-[:produces*0..]->(be1))',
'RETURN o.value as be, length(p) as lp',
'ORDER BY lp'
)
cqRes <- bedCall(
neo2R::cypher,
query=neo2R::prepCql(cql)
)
return(cqRes[1,1])
}
} |
NULL
NULL
fmt_function_signature <- function(x){
paste0("function(", paste(names(formals(x)), collapse = ", "), ")")
}
fmt_threshold <- function(
x,
type = "both",
log_levels = getOption("lgr.log_levels")
){
assert(all(is.na(x)) || is_integerish(x[!is.na(x)]) || is.character(x))
log_levels = c("off" = 0L, log_levels)
if (is.character(x)){
assert(all(x %in% names(log_levels)))
x <- unlabel_levels(x, log_levels = log_levels)
}
impl <- function(.x){
assert((length(.x) == 1L) && (is.na(.x)) || is_integerish(.x))
if (.x %in% log_levels){
.r <- log_levels[which(log_levels == .x)]
} else if (is.na(.x)){
.r <- c("all" = NA)
} else {
return(format(.x))
}
if (identical(type, "character")){
return(names(.r))
}
paste0(names(.r), " (", .r, ")")
}
vapply(x, impl, character(1))
} |
`Pevid.ind` <-
function(alleles, prob, x, u = NULL) {
require(combinat)
if (!is.numeric(x) || any(is.na(x)) || any(x < 0))
stop("'x' must be a vector of nonnegative integers")
x0 <- x
x <- round(x)
if (any(x != x0))
warning("elements of 'x' have been rounded to integers")
if (!is.vector(alleles))
stop("'alleles' must be a vector")
if (is.vector(prob) == TRUE)
prob <- as.matrix(prob)
if (!is.matrix(prob))
stop("'prob' must be a matrix or a vector")
n_a <- length(alleles)
if (length(union(alleles, alleles)) < n_a)
stop("'alleles' must be a vector of distinct elements")
if (n_a != dim(prob)[1])
stop("the number of rows of 'prob' should equal to the number of distinct alleles in the mixture")
if (!is.numeric(prob) || any(is.na(prob)) || any(prob <= 0) || any(prob >= 1))
stop("all entries of 'prob' must be numbers between 0 and 1")
if (any(apply(prob, 2, sum) > 1))
stop("sum of allele proportions in an ethnic group is larger than 1")
if (length(x) != dim(prob)[2])
stop("error in the length of 'x' or in the dimension of 'prob'")
u <- union(u, u)
n_u <- length(u)
if (n_u > 0) {
if (setequal(intersect(u, alleles), u) == FALSE)
stop("'u' must contain only elements from 'alleles'")
}
G <- length(x)
min.x <- trunc(n_u / 2) + n_u %% 2
if (sum(x) == 0 && setequal(u, NULL) == FALSE)
stop(gettextf(ngettext(min.x,
"there must be at least %d unknown person to carry alleles in 'u'",
"there must be at least %d unknown people to carry alleles in 'u'"),
min.x))
if (sum(x) > 0 && sum(x) < min.x)
stop("not enough unknown contributors")
if (n_u > 0) {
ind <- rep(NA, n_u)
for (k in 1:n_u)
ind[k] <- which(alleles == u[k])
}
T <- rep(0, n_u + 1)
T[1] <- prod(apply(prob, 2, sum)^(2 * x))
if (n_u > 1) {
for (skip in 1:(n_u - 1)) {
K <- combn(ind, skip)
Kcol <- ncol(K)
t <- rep(0, Kcol)
for (j in 1:Kcol)
t[j] <- prod(apply(matrix(prob[ -K[,j], ], ncol = G), 2, sum)^(2 * x))
T[skip + 1] <- (-1)^(skip) * sum(t)
}
}
if (n_u > 0)
T[n_u + 1] <- (-1)^(n_u) * prod(apply(matrix(prob[ -ind, ], ncol = G), 2, sum)^(2 * x))
return(sum(T))
} |
context("Targets (low level)")
test_that("reserved names", {
reserved <- c("target_name", ".")
expect_equal(sort(reserved), sort(target_reserved_names()))
for (i in reserved) {
expect_error(make_target(i), "Target name .+ is reserved")
}
})
test_that("Fake targets", {
t <- make_target("a_fake_target", list(type="fake"))
expect_is(t, "target_fake")
expect_is(t, "target_base")
expect_equal(t$type, "fake")
expect_equal(t$name, "a_fake_target")
expect_equal(t$depends_name, character(0))
expect_equal(t$rule, NULL)
expect_equal(t$cleanup_level, "never")
expect_equal(t$quiet, FALSE)
expect_equal(t$check, "all")
t <- make_target("a_fake_target", list())
expect_equal(t$type, "fake")
deps <- letters[1:3]
t <- make_target("a_fake_target", list(depends=deps))
expect_equal(t$type, "fake")
expect_equal(t$depends_name, deps)
expect_error(make_target("a_fake_target",
list(depends=deps, packages="pkg")),
"fake targets may not load packages")
})
test_that("Can't do much with fake targets", {
t <- make_target("a_fake_target", list(type="fake"))
expect_error(target_get(t), "Not something that can be")
expect_error(target_set(t), "Not something that can be")
})
test_that("Fake targets (invalid)", {
expect_error(make_target("fake", list(command="foo()", type="fake")),
"fake targets must have a NULL rule")
expect_error(make_target("fake", list(target_argument="foo", type="fake")),
"Invalid keys: target_argument")
expect_error(make_target("fake", list(cleanup_level="tidy", type="fake")),
"Unknown fields in fake: cleanup_level")
expect_error(make_target("fake", list(other_opt="tidy", type="fake")),
"Unknown fields in fake: other_opt")
})
test_that("Dependency parsing", {
expect_equal(from_yaml_map_list(yaml_load("[]")), list())
expect_equal(from_yaml_map_list(yaml_load("[a, b, c]")),
list("a", "b", "c"))
expect_equal(from_yaml_map_list(yaml_load("- a\n- b\n- c")),
list("a", "b", "c"))
expect_equal(from_yaml_map_list(yaml_load("[A: a, b, c]")),
list(A="a", "b", "c"))
expect_equal(from_yaml_map_list(yaml_load("- A: a\n- b\n- c")),
list(A="a", "b", "c"))
})
test_that("Object target", {
t <- make_target("real", list(command="foo()"))
expect_is(t, "target_object")
expect_is(t, "target_base")
expect_equal(t$type, "object")
expect_equal(t$name, "real")
expect_equal(t$depends_name, character(0))
expect_equal(t$depends_name, character(0))
expect_equal(t$rule, "foo")
expect_equal(t$cleanup_level, "tidy")
expect_equal(t$quiet, FALSE)
expect_equal(t$check, "all")
expect_equal(target_run_fake(t), "real <- foo()")
t <- make_target("real", list(command="foo()", quiet=TRUE))
expect_equal(t$quiet, TRUE)
t <- make_target("real", list(command="foo()", check="code"))
expect_equal(t$check, "code")
t <- make_target("real", list(command="foo()", cleanup_level="purge"))
expect_equal(t$cleanup_level, "purge")
t <- make_target("real", list(command="foo()", depends="a"))
expect_equal(t$rule, "foo")
expect_equal(t$depends_name, "a")
t <- make_target("real", list(command="foo(a)"))
expect_equal(t$rule, "foo")
expect_equal(t$depends_name, "a")
t <- make_target("real", list(command="foo(a, b=c)"))
expect_equal(t$rule, "foo")
expect_equal(t$depends_name, c("a", "c"))
t <- make_target("code.R", list(command="foo()", type="object"))
expect_equal(t$type, "object")
})
test_that("Object target (invalid)", {
expect_error(make_target("foo", "bar"),
"While processing target 'foo':")
expect_error(make_target("foo", "bar"),
"target data must be named")
expect_error(make_target("foo", c(name="bar")),
"target data must be a list")
expect_error(make_target("real", list(type="object")),
"Must not have a NULL rule")
expect_error(make_target("real", list(command="foo()", target_argument=1)),
"Invalid keys: target_argument")
expect_error(make_target("real", list(rule="foo")),
"Invalid keys: rule")
expect_error(make_target("real", list(command="foo()", quiet="quiet")),
"quiet must be logical")
expect_error(make_target("real", list(command="foo()", quiet=c(TRUE, TRUE))),
"quiet must be a scalar")
expect_error(make_target("real", list(command="foo()",
cleanup_level="purge2")),
"cleanup_level must be one")
expect_error(make_target("real", list(command="foo()", check="exists2")),
"check must be one")
expect_error(make_target("real", list(command="foo()", other_opt="tidy")),
"Unknown fields in real: other_opt")
})
test_that("File targets", {
t <- make_target("foo.csv", list(command="foo()"))
expect_equal(t$type, "file")
expect_is(t, "target_file")
expect_is(t, "target_base")
expect_equal(t$rule, "foo")
expect_equal(t$depends_name, character(0))
expect_null(t$target_argument)
expect_equal(target_run_fake(t), "foo()")
t <- make_target("foo.csv", list(command="foo(a, b, c)"))
expect_equal(t$type, "file")
expect_equal(t$rule, "foo")
expect_equal(t$depends_name, c("a", "b", "c"))
expect_null(t$target_argument)
t <- make_target("foo.csv", list(command="foo(a, b, C=c)"))
expect_equal(t$type, "file")
expect_equal(t$rule, "foo")
expect_equal(t$depends_name, c("a", "b", "c"))
t <- make_target("foo.csv", list(command="foo(target_name, b, C=c)"))
expect_equal(t$type, "file")
expect_equal(t$rule, "foo")
expect_equal(t$depends_name, c("b", "c"))
expect_equal(as.list(t$command[2]), list("foo.csv"))
t <- make_target("foo.csv", list(command="foo(name='foo.csv', b, C=c)"))
expect_equal(t$type, "file")
expect_equal(t$rule, "foo")
expect_equal(t$depends_name, c("b", "c"))
expect_equal(as.list(t$command[2]), list(name="foo.csv"))
})
test_that("Implicit file targets", {
expect_error(make_target("code.R", list()),
"Must not have a NULL rule")
t <- target_new_file_implicit("code.R")
expect_equal(t$type, "file")
t <- target_new_file_implicit("code.R")
expect_equal(t$name, "code.R")
expect_equal(t$type, "file")
expect_null(t$rule)
expect_equal(t$depends_name, character(0))
expect_error(target_build(t),
"Can't build implicit target code.R")
expect_null(target_run(t, NULL))
expect_null(target_run_fake(t))
expect_warning(t <- target_new_file_implicit("file.csv"),
"Creating implicit target for nonexistant")
expect_equal(t$name, "file.csv")
expect_equal(t$type, "file")
expect_null(t$rule)
expect_equal(t$depends_name, character(0))
expect_error(target_build(t),
"Can't build implicit target file.csv")
expect_null(target_run(t))
expect_null(target_run_fake(t))
})
test_that("knitr", {
t <- make_target("file.md", list(type="knitr"))
expect_is(t, "target_knitr")
expect_equal(t$type, "file")
expect_equal(t$knitr$input, "file.Rmd")
expect_equal(t$knitr$options, list(error=FALSE))
t <- make_target("file.md", list(knitr=TRUE))
expect_is(t, "target_knitr")
t <- make_target("file.md", list(knitr=list(input="foo.Rmd")))
expect_equal(t$knitr$input, "foo.Rmd")
t <- make_target("file.md", list(knitr=list(auto_figure_prefix=TRUE)))
expect_true(t$knitr$auto_figure_prefix)
prefix <- "figures/file-"
t <- make_target("file.md",
list(knitr=list(options=list(fig.path=prefix))))
expect_equal(t$knitr$options$fig.path, prefix)
expect_true(t$quiet)
expect_true(make_target("file.md", list(quiet=TRUE, type="knitr"))$quiet)
expect_false(make_target("file.md", list(quiet=FALSE, type="knitr"))$quiet)
expect_equal(t$rule, ".__knitr__")
})
test_that("knitr (invalid)", {
expect_error(make_target("file.xmd", list(knitr=TRUE)),
"Target must end in .md")
expect_error(make_target("file.md", list(command="fn()", type="knitr")),
"knitr targets must have a NULL rule")
expect_error(make_target("file.md", list(command="fn()", knitr=TRUE)),
"knitr targets must have a NULL rule")
expect_error(make_target("file.md",
list(command=c("foo()", "bar(.)"), knitr=TRUE)),
"commands must be scalar")
expect_error(make_target("file.md", list(quiet="yes please",
type="knitr"))$quiet,
"quiet must be logical")
expect_error(make_target("file.md", list(unknown="opt", type="knitr")),
"Unknown fields in file.md")
expect_error(make_target("file.md", list(knitr=TRUE,
auto_figure_prefix=TRUE)),
"Unknown fields in file.md: auto_figure_prefix")
dat <- list(knitr=list(
options=list(fig.path="foo"),
auto_figure_prefix=TRUE))
expect_warning(make_target("file.md", dat),
"Ignoring 'auto_figure_prefix'")
})
test_that("download", {
url <- "http://whatever"
t <- make_target("file", list(download=url))
expect_equal(class(t),
c("target_download", "target_file", "target_base"))
expect_equal(t$download, url)
expect_equal(t$check, "exists")
expect_equal(t$cleanup_level, "purge")
expect_equal(t$type, "file")
})
test_that("download (invalid)", {
expect_error(make_target("file", list(download=NULL)),
"download must be a scalar")
expect_error(make_target("file", list(download=character(0))),
"download must be a scalar")
expect_error(make_target("file", list(download=c("a", "b"))),
"download must be a scalar")
expect_error(make_target("file", list(download=TRUE)),
"download must be character")
expect_error(make_target("file", list(download="www.whatever")),
"does not look like a")
expect_error(make_target("file", list(download="ftp://www.whatever")),
"does not look like a")
expect_error(make_target("file", list(download="file://www.whatever")),
"does not look like a")
})
test_that("cleanup", {
cleanup()
m <- remake("remake_cleanup_hook.yml")
t <- m$targets[["clean"]]
expect_equal(length(t$depends_name), 2)
expect_equal(t$depends_name, c("data.csv", "tidy"))
expect_false(file.exists("data.csv"))
expect_message(remake_make(m, "clean"),
"running post-cleanup hook")
expect_true(file.exists("data.csv"))
expect_message(remake_make(m, "purge"),
"running post-cleanup hook")
expect_false(file.exists("data.csv"))
cleanup()
expect_error(remake("remake_cleanup_error.yml"),
"Cleanup target commands must have no arguments")
})
test_that("get/set/archive object targets", {
cleanup()
m <- remake("remake.yml")
remake_make(m, "processed")
t <- m$targets[["processed"]]
expect_is(target_get(t, m$store), "data.frame")
dep <- dependency_status(t, m$store)
path <- tempfile()
dir.create(path)
archive_export_target(t, m$store, path)
expect_equal(dir(file.path(path, "objects")),
c("config", "data", "keys"))
expect_equal(dir(file.path(path, "objects", "keys", "objects")),
storr::encode64("processed"))
expect_equal(readLines(file.path(path, "objects", "keys", "objects",
storr::encode64("processed"))),
digest::digest(target_get(t, m$store)))
st_db <- storr::storr_rds(file.path(path, "objects"),
default_namespace="remake_db",
mangle_key=TRUE)
expect_equal(st_db$list(), t$name)
res <- st_db$get(t$name)
expect_equal(res[names(res) != "time"],
dep[names(dep) != "time"])
expect_gte(as.numeric(dep$time), as.numeric(res$time))
file_remove(path, recursive=TRUE)
target_set(t, m$store, "foo")
expect_equal(target_get(t, m$store), "foo")
remake_remove_target(m, "processed")
path <- tempfile()
dir.create(path)
expect_error(archive_export_target(t, m$store, path),
"processed not found in object store")
file_remove(path, recursive=TRUE)
})
test_that("get/set/archive file targets", {
cleanup()
m <- remake("remake.yml")
remake_make(m, "plot.pdf")
t <- m$targets[["plot.pdf"]]
expect_equal(target_get(t, m$store), "plot.pdf")
dep <- dependency_status(t, m$store)
path <- tempfile()
dir.create(path)
archive_export_target(t, m$store, path)
md5 <- function(f) unname(tools::md5sum(f))
expect_equal(dir(file.path(path, "files")), "plot.pdf")
expect_equal(md5(file.path(path, "files", "plot.pdf")),
md5("plot.pdf"))
st_db <- storr::storr_rds(file.path(path, "objects"),
default_namespace="remake_db",
mangle_key=TRUE)
expect_equal(st_db$list(), t$name)
res <- st_db$get(t$name)
expect_equal(res[names(res) != "time"],
dep[names(dep) != "time"])
expect_gte(as.numeric(dep$time), as.numeric(res$time))
file_remove(path, recursive=TRUE)
remake_remove_target(m, "plot.pdf")
path <- tempfile()
dir.create(path)
expect_error(archive_export_target(t, m$store, path),
"plot.pdf not found in file store")
file_remove(path, recursive=TRUE)
})
test_that("Error messages", {
expect_error(remake("remake_invalid.yml"),
"While processing target 'all'")
})
test_that("Targets from calls", {
t1 <- make_target("a", list(command="foo(b)"))
t2 <- make_target("a", list(command=quote(foo(b))))
expect_identical(t1, t2)
})
test_that("Extensions", {
expect_identical(file_extensions(), tolower(file_extensions()))
})
test_that("custom file extensions", {
expect_is(make_target("a.phy", list(command="foo()")),
"target_object")
expect_is(make_target("a.phy", list(command="foo()"), file_extensions="phy"),
"target_file")
}) |
select_edges_by_node_id <- function(graph,
nodes,
set_op = "union") {
time_function_start <- Sys.time()
fcn_name <- get_calling_fcn()
if (graph_object_valid(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph object is not valid")
}
if (graph_contains_nodes(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph contains no nodes")
}
if (graph_contains_edges(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph contains no edges")
}
edges_df <- graph$edges_df
edges_selected <-
edges_df %>%
dplyr::filter(from %in% nodes | to %in% nodes)
n_e_select_properties_in <-
node_edge_selection_properties(graph = graph)
edges_selected <- edges_selected$id
edges_prev_selection <- graph$edge_selection$edge
if (set_op == "union") {
edges_combined <-
union(edges_prev_selection, edges_selected)
} else if (set_op == "intersect") {
edges_combined <-
intersect(edges_prev_selection, edges_selected)
} else if (set_op == "difference") {
edges_combined <-
base::setdiff(edges_prev_selection, edges_selected)
}
edges_combined <-
graph$edges_df %>%
dplyr::filter(id %in% edges_combined) %>%
dplyr::select(id, from, to) %>%
dplyr::rename(edge = id)
graph$edge_selection <- edges_combined
graph$node_selection <- create_empty_nsdf()
n_e_select_properties_out <-
node_edge_selection_properties(graph = graph)
graph$graph_log <-
add_action_to_log(
graph_log = graph$graph_log,
version_id = nrow(graph$graph_log) + 1,
function_used = fcn_name,
time_modified = time_function_start,
duration = graph_function_duration(time_function_start),
nodes = nrow(graph$nodes_df),
edges = nrow(graph$edges_df))
if (graph$graph_info$write_backups) {
save_graph_as_rds(graph = graph)
}
if (!is.null(graph$graph_info$display_msgs) &&
graph$graph_info$display_msgs) {
if (!n_e_select_properties_in[["node_selection_available"]] &
!n_e_select_properties_in[["edge_selection_available"]]) {
msg_body <-
glue::glue(
"created a new selection of \\
{n_e_select_properties_out[['selection_count_str']]}")
} else if (n_e_select_properties_in[["node_selection_available"]] |
n_e_select_properties_in[["edge_selection_available"]]) {
if (n_e_select_properties_in[["edge_selection_available"]]) {
msg_body <-
glue::glue(
"modified an existing selection of\\
{n_e_select_properties_in[['selection_count_str']]}:
* {n_e_select_properties_out[['selection_count_str']]}\\
are now in the active selection
* used the `{set_op}` set operation")
}
if (n_e_select_properties_in[["node_selection_available"]]) {
msg_body <-
glue::glue(
"created a new selection of\\
{n_e_select_properties_out[['selection_count_str']]}:
* this replaces\\
{n_e_select_properties_in[['selection_count_str']]}\\
in the prior selection")
}
}
emit_message(
fcn_name = fcn_name,
message_body = msg_body)
}
graph
} |
RefSigmaW <- function(sigma,Beta,X,y,delta,tol=0.0001,maxit=100,nitmon)
{
nit <- 1
repeat{
sigmao <- sigma
sigma <- ( RefAve2W(sigmao,Beta,X,y,delta)*sigmao^2/0.5 )^0.5; d <- sigma-sigmao
if (nit==maxit | abs(d)<tol) break
if(nitmon) cat(nit,sigma,"\n")
nit <- nit+1}
list(sigma=sigma,nit=nit)} |
getData <- function(name='GADM', download=TRUE, path='', ...) {
path <- .getDataPath(path)
tout <- getOption("timeout")
on.exit(options(timeout = tout))
options(timeout = max(600, tout))
if (name=='GADM') {
.GADM(..., download=download, path=path)
} else if (name=='SRTM') {
.SRTM(..., download=download, path=path)
} else if (name=='alt') {
.raster(..., name=name, download=download, path=path)
} else if (name=='worldclim') {
.worldclim(..., download=download, path=path)
} else if (name=='CMIP5') {
.cmip5(..., download=download, path=path)
} else if (name=='ISO3') {
ccodes()[,c(2,1)]
} else if (name=='countries') {
.countries(download=download, path=path, ...)
} else {
stop(name, ' not recognized as a valid name.')
}
}
.download <- function(aurl, filename) {
fn <- paste(tempfile(), '.download', sep='')
res <- utils::download.file(url=aurl, destfile=fn, quiet = FALSE, mode = "wb", cacheOK = TRUE)
if (res == 0) {
w <- getOption('warn')
on.exit(options('warn' = w))
options('warn'=-1)
if (! file.rename(fn, filename) ) {
file.copy(fn, filename)
file.remove(fn)
}
} else {
stop('could not download the file' )
}
}
.ISO <- function() {
ccodes()
}
ccodes <- function() {
path <- system.file(package="raster")
readRDS(file.path(path, "external/countries.rds"))
}
.getCountry <- function(country='') {
country <- toupper(trim(country[1]))
cs <- ccodes()
cs <- sapply(cs, toupper)
cs <- data.frame(cs, stringsAsFactors=FALSE)
nc <- nchar(country)
if (nc == 3) {
if (country %in% cs$ISO3) {
return(country)
} else {
stop('unknown country')
}
} else if (nc == 2) {
if (country %in% cs$ISO2) {
i <- which(country==cs$ISO2)
return( cs$ISO3[i] )
} else {
stop('unknown country')
}
} else if (country %in% cs[,1]) {
i <- which(country==cs[,1])
return( cs$ISO3[i] )
} else if (country %in% cs[,4]) {
i <- which(country==cs[,4])
return( cs$ISO3[i] )
} else if (country %in% cs[,5]) {
i <- which(country==cs[,5])
return( cs$ISO3[i] )
} else {
stop('provide a valid name name or 3 letter ISO country code; you can get a list with "ccodes()"')
}
}
.getDataPath <- function(path) {
path <- trim(path)
if (path=="") {
path <- .dataloc()
} else {
if (substr(path, nchar(path)-1, nchar(path)) == '//' ) {
p <- substr(path, 1, nchar(path)-2)
} else if (substr(path, nchar(path), nchar(path)) == '/' | substr(path, nchar(path), nchar(path)) == '\\') {
p <- substr(path, 1, nchar(path)-1)
} else {
p <- path
}
if (!file.exists(p) & !file.exists(path)) {
stop('path does not exist: ', path)
}
}
if (substr(path, nchar(path), nchar(path)) != '/' & substr(path, nchar(path), nchar(path)) != '\\') {
path <- paste(path, "/", sep="")
}
return(path)
}
.GADM <- function(country, level, download, path, version=3.6, type='sp') {
country <- .getCountry(country)
if (missing(level)) {
stop('provide a "level=" argument; levels can be 0, 1, or 2 for most countries, and higher for some')
}
if (version > 3) {
if (type == 'sf') {
filename <- file.path(path, paste0('gadm36_', country, '_', level, "_sf.rds"))
} else {
filename <- file.path(path, paste0('gadm36_', country, '_', level, "_sp.rds"))
}
} else {
filename <- paste(path, 'GADM_', version, '_', country, '_', level, ".rds", sep="")
}
if (!file.exists(filename)) {
if (download) {
baseurl <- paste0("https://biogeo.ucdavis.edu/data/gadm", version)
if (version == 2.8) {
theurl <- paste(baseurl, '/rds/', country, '_adm', level, ".rds", sep="")
} else {
if (type == 'sf') {
theurl <- paste(baseurl, '/Rsf/gadm36_', country, '_', level, "_sf.rds", sep="")
} else {
theurl <- paste(baseurl, '/Rsp/gadm36_', country, '_', level, "_sp.rds", sep="")
}
}
.download(theurl, filename)
if (!file.exists(filename)) {
message("\nCould not download file -- perhaps it does not exist")
}
} else {
message("File not available locally. Use 'download = TRUE'")
}
}
if (file.exists(filename)) {
x <- readRDS(filename)
if (type != 'sf') {
crs(x) <- "+proj=longlat +datum=WGS84"
}
return(x)
} else {
return(NULL)
}
}
.countries <- function(download, path, type='sp', ...) {
if (type == 'sf') {
f <- "countries_gadm36_sf.rds"
} else {
f <- "countries_gadm36_sp.rds"
}
filename <- file.path(path, f)
if (!file.exists(filename)) {
if (download) {
theurl <- paste0("https://biogeo.ucdavis.edu/data/gadm3.6/", f)
.download(theurl, filename)
if (!file.exists(filename)) {
message("\nCould not download file -- perhaps it does not exist")
}
} else {
message("File not available locally. Use 'download = TRUE'")
}
}
if (file.exists(filename)) {
data <- readRDS(filename)
crs(data) <- "+proj=longlat +datum=WGS84"
return(data)
}
}
.cmip5 <- function(var, model, rcp, year, res, lon, lat, path, download=TRUE) {
if (!res %in% c(0.5, 2.5, 5, 10)) {
stop('resolution should be one of: 2.5, 5, 10')
}
if (res==2.5) {
res <- '2_5m'
} else if (res == 0.5) {
res <- "30s"
} else {
res <- paste(res, 'm', sep='')
}
var <- tolower(var[1])
vars <- c('tmin', 'tmax', 'prec', 'bio')
stopifnot(var %in% vars)
var <- c('tn', 'tx', 'pr', 'bi')[match(var, vars)]
model <- toupper(model)
models <- c('AC', 'BC', 'CC', 'CE', 'CN', 'GF', 'GD', 'GS', 'HD', 'HG', 'HE', 'IN', 'IP', 'MI', 'MR', 'MC', 'MP', 'MG', 'NO')
stopifnot(model %in% models)
rcps <- c(26, 45, 60, 85)
stopifnot(rcp %in% rcps)
stopifnot(year %in% c(50, 70))
m <- matrix(c(0,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,1,1,1,0,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1), ncol=4)
i <- m[which(model==models), which(rcp==rcps)]
if (!i) {
warning('this combination of rcp and model is not available')
return(invisible(NULL))
}
path <- paste(path, '/cmip5/', res, '/', sep='')
dir.create(path, recursive=TRUE, showWarnings=FALSE)
zip <- tolower(paste(model, rcp, var, year, '.zip', sep=''))
theurl <- paste('https://biogeo.ucdavis.edu/data/climate/cmip5/', res, '/', zip, sep='')
zipfile <- paste(path, zip, sep='')
if (var == 'bi') {
n <- 19
} else {
n <- 12
}
tifs <- paste(extension(zip, ''), 1:n, '.tif', sep='')
files <- paste(path, tifs, sep='')
fc <- sum(file.exists(files))
if (fc < n) {
if (!file.exists(zipfile)) {
if (download) {
.download(theurl, zipfile)
if (!file.exists(zipfile)) {
message("\n Could not download file -- perhaps it does not exist")
}
} else {
message("File not available locally. Use 'download = TRUE'")
}
}
utils::unzip(zipfile, exdir=dirname(zipfile))
}
stack(paste(path, tifs, sep=''))
}
.worldclim <- function(var, res, lon, lat, path, download=TRUE) {
if (!res %in% c(0.5, 2.5, 5, 10)) {
stop('resolution should be one of: 0.5, 2.5, 5, 10')
}
if (res==2.5) { res <- '2-5' }
stopifnot(var %in% c('tmean', 'tmin', 'tmax', 'prec', 'bio', 'alt'))
path <- paste(path, 'wc', res, '/', sep='')
dir.create(path, showWarnings=FALSE)
if (res==0.5) {
lon <- min(180, max(-180, lon))
lat <- min(90, max(-60, lat))
rs <- raster(nrows=5, ncols=12, xmn=-180, xmx=180, ymn=-60, ymx=90 )
row <- rowFromY(rs, lat) - 1
col <- colFromX(rs, lon) - 1
rc <- paste(row, col, sep='')
zip <- paste(var, '_', rc, '.zip', sep='')
zipfile <- paste(path, zip, sep='')
if (var == 'alt') {
bilfiles <- paste(var, '_', rc, '.bil', sep='')
hdrfiles <- paste(var, '_', rc, '.hdr', sep='')
} else if (var != 'bio') {
bilfiles <- paste(var, 1:12, '_', rc, '.bil', sep='')
hdrfiles <- paste(var, 1:12, '_', rc, '.hdr', sep='')
} else {
bilfiles <- paste(var, 1:19, '_', rc, '.bil', sep='')
hdrfiles <- paste(var, 1:19, '_', rc, '.hdr', sep='')
}
theurl <- paste('https://biogeo.ucdavis.edu/data/climate/worldclim/1_4/tiles/cur/', zip, sep='')
} else {
zip <- paste(var, '_', res, 'm_bil.zip', sep='')
zipfile <- paste(path, zip, sep='')
if (var == 'alt') {
bilfiles <- paste(var, '.bil', sep='')
hdrfiles <- paste(var, '.hdr', sep='')
} else if (var != 'bio') {
bilfiles <- paste(var, 1:12, '.bil', sep='')
hdrfiles <- paste(var, 1:12, '.hdr', sep='')
} else {
bilfiles <- paste(var, 1:19, '.bil', sep='')
hdrfiles <- paste(var, 1:19, '.hdr', sep='')
}
theurl <- paste('https://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/', zip, sep='')
}
files <- c(paste(path, bilfiles, sep=''), paste(path, hdrfiles, sep=''))
fc <- sum(file.exists(files))
if ( fc < length(files) ) {
if (!file.exists(zipfile)) {
if (download) {
.download(theurl, zipfile)
if (!file.exists(zipfile)) {
message("\n Could not download file -- perhaps it does not exist")
}
} else {
message("File not available locally. Use 'download = TRUE'")
}
}
utils::unzip(zipfile, exdir=dirname(zipfile))
for (h in paste(path, hdrfiles, sep='')) {
x <- readLines(h)
x <- c(x[1:14], 'PIXELTYPE SIGNEDINT', x[15:length(x)])
writeLines(x, h)
}
}
if (var == 'alt') {
st <- raster(paste(path, bilfiles, sep=''))
} else {
st <- stack(paste(path, bilfiles, sep=''))
}
projection(st) <- "+proj=longlat +datum=WGS84"
return(st)
}
.raster <- function(country, name, mask=TRUE, path, download, keepzip=FALSE, ...) {
country <- .getCountry(country)
path <- .getDataPath(path)
if (mask) {
mskname <- '_msk_'
mskpath <- 'msk_'
} else {
mskname<-'_'
mskpath <- ''
}
filename <- paste(path, country, mskname, name, ".grd", sep="")
if (!file.exists(filename)) {
zipfilename <- filename
extension(zipfilename) <- '.zip'
if (!file.exists(zipfilename)) {
if (download) {
theurl <- paste("https://biogeo.ucdavis.edu/data/diva/", mskpath, name, "/", country, mskname, name, ".zip", sep="")
.download(theurl, zipfilename)
if (!file.exists(zipfilename)) {
message("\nCould not download file -- perhaps it does not exist")
}
} else {
message("File not available locally. Use 'download = TRUE'")
}
}
ff <- utils::unzip(zipfilename, exdir=dirname(zipfilename))
if (!keepzip) {
file.remove(zipfilename)
}
}
if (file.exists(filename)) {
rs <- raster(filename)
} else {
f <- ff[substr(ff, nchar(ff)-3, nchar(ff)) == '.grd']
if (length(f)==0) {
warning('something went wrong')
return(NULL)
} else if (length(f)==1) {
rs <- raster(f)
} else {
rs <- sapply(f, raster)
message('returning a list of RasterLayer objects')
return(rs)
}
}
projection(rs) <- "+proj=longlat +datum=WGS84"
return(rs)
}
.SRTM <- function(lon, lat, download, path) {
stopifnot(lon >= -180 & lon <= 180)
stopifnot(lat >= -60 & lat <= 60)
rs <- raster(nrows=24, ncols=72, xmn=-180, xmx=180, ymn=-60, ymx=60 )
rowTile <- rowFromY(rs, lat)
colTile <- colFromX(rs, lon)
if (rowTile < 10) { rowTile <- paste('0', rowTile, sep='') }
if (colTile < 10) { colTile <- paste('0', colTile, sep='') }
baseurl <- "https://srtm.csi.cgiar.org/wp-content/uploads/files/srtm_5x5/TIFF/"
f <- paste0("srtm_", colTile, "_", rowTile, ".zip")
zipfilename <- file.path(path, f)
tiffilename <- file.path(path, gsub(".zip$", ".tif", f))
if (!file.exists(tiffilename)) {
if (!file.exists(zipfilename)) {
if (download) {
theurl <- paste0(baseurl, f)
test <- try (.download(theurl, zipfilename) , silent=TRUE)
if (inherits(test, "try-error")) {
stop("cannot download the file")
}
} else {message("file not available locally, use download=TRUE") }
}
if (file.exists(zipfilename)) {
utils::unzip(zipfilename, exdir=dirname(zipfilename))
file.remove(zipfilename)
}
}
if (file.exists(tiffilename)) {
rs <- raster(tiffilename)
projection(rs) <- "+proj=longlat +datum=WGS84"
return(rs)
} else {
stop('file not found')
}
} |
sign_splits = function(orig.splits, refit.splits, perm.distr, alpha, testtype){
reduced.splits = sort(orig.splits[orig.splits$chg.loss < 0, ]$T.split)
final.splits = c()
for (ji in 1:length(refit.splits)){
if (testtype == "t-test"){
stat.result = t.test(refit.splits[[ji]], perm.distr[[ji]], alternative = "less")$p.value
} else if (testtype == "wilcox"){
stat.result = wilcox.test(refit.splits[[ji]], perm.distr[[ji]], alternative = "less")$p.value
} else if (testtype == "ks"){
stat.result = ks.test(refit.splits[[ji]], perm.distr[[ji]], alternative = "greater")$p.value
}
stat.result = p.adjust(stat.result, method = "BH", n = length(refit.splits))
if (is.numeric(alpha)){
final.splits = rbind(final.splits, data.frame(reduced.splits[ji], stat.result < alpha))
} else if (is.null(alpha)){
final.splits = rbind(final.splits, data.frame(reduced.splits[ji], stat.result))
}
}
colnames(final.splits) = c("T", "stat_test")
rownames(final.splits) = NULL
return(final.splits)
} |
post_success <- function(dat, config) {
opts <- config$server_options()
response <- NULL
if (!is.null(opts)) {
remote <- get_remote(opts$name, config)
opts <- resolve_env(opts, error = FALSE)
slack_url <- opts$slack_url
teams_url <- opts$teams_url
report_url <- remote$url_report(dat$meta$name, dat$meta$id)
response <- list()
if (!is.null(slack_url)) {
assert_scalar_character(slack_url, "slack_url")
data <- slack_data(dat, opts$name, report_url, opts$primary)
response$slack <- do_post_success(slack_url, data, "slack")
}
if (!is.null(teams_url)) {
assert_scalar_character(teams_url, "teams_url")
data <- teams_data(dat, opts$name, report_url, opts$primary)
response$teams <- do_post_success(teams_url, data, "teams")
}
}
response
}
slack_data <- function(dat, remote_name, report_url, remote_is_primary) {
content <- prepare_content(dat, remote_name, report_url, "<{url}|{label}>",
escape = FALSE)
fields <- list(list(title = "id", value = content$id, short = TRUE))
if (!is.null(dat$git)) {
branch <- dat$git$branch %||% "(detached)"
sha <- dat$git$sha_short
if (!is.null(dat$git$github_url)) {
sha <- sprintf("<%s/tree/%s|%s>", dat$git$github_url, sha, sha)
}
if (!is.null(dat$git$github_url) && !is.null(dat$git$branch)) {
branch <- sprintf("<%s/tree/%s|%s>", dat$git$github_url, branch, branch)
}
fields <- c(fields, list(list(title = "git",
value = sprintf("%s@%s", branch, sha),
short = TRUE)))
}
col <- if (remote_is_primary) "good" else "warning"
list(username = "orderly",
icon_emoji = ":ambulance:",
attachments = list(list(
title = content$title,
text = content$text,
color = col,
fallback = content$fallback,
fields = fields,
actions = list(list(
name = "link",
type = "button",
text = ":clipboard: View report",
style = "primary",
url = report_url)))))
}
teams_data <- function(dat, remote_name, report_url, remote_is_primary) {
content <- prepare_content(dat, remote_name, report_url, "[{label}]({url})",
escape = TRUE)
facts <- list(list(name = "id:", value = content$id))
if (!is.null(dat$git)) {
branch <- dat$git$branch %||% "(detached)"
sha <- dat$git$sha_short
if (!is.null(dat$git$github_url)) {
sha <- sprintf("[%s](%s/tree/%s)", sha, dat$git$github_url, sha)
}
if (!is.null(dat$git$github_url) && !is.null(dat$git$branch)) {
branch <- sprintf("[%s](%s/tree/%s)", branch, dat$git$github_url, branch)
}
facts <- c(facts, list(list(name = "git:",
value = sprintf("%s@%s", branch, sha))))
}
col <- if (remote_is_primary) "2EB886" else "DAA038"
list(
"@type" = "MessageCard",
"@context" = "http://schema.org/extensions",
summary = content$fallback,
themeColor = col,
sections = list(
list(
activityTitle = content$title,
activityText = content$text,
activityImage = paste0("https://cdn.pixabay.com/photo/2017/",
"06/10/07/18/list-2389219_960_720.png")
),
list(
facts = facts
)
),
potentialAction = list(
list(
"@type" = "OpenUri",
name = "View report",
targets = list(
list(
os = "default",
uri = report_url
)
)
)
)
)
}
prepare_content <- function(dat, remote_name, report_url, link_format,
escape) {
id <- dat$meta$id
name <- dat$meta$name
elapsed <- format(as.difftime(dat$meta$elapsed, units = "secs"), digits = 2)
if (escape) {
qname <- sprintf("`%s`", name)
} else {
qname <- sprintf("'%s'", name)
}
list(
fallback = sprintf("Ran '%s' as '%s'; view at %s", name, id, report_url),
title = sprintf("Ran report %s", qname),
text = sprintf("on server *%s* in %s", remote_name, elapsed),
id = sprintf("`%s`", id)
)
}
do_post_success <- function(url, data, destination) {
if (!requireNamespace("httr", quietly = TRUE)) {
message("not sending messages as httr is not available")
return(invisible(NULL))
}
r <- tryCatch({
r <- httr::POST(url, body = data, encode = "json")
httr::stop_for_status(r)
r
}, error = function(e) {
message(sprintf("NOTE: running %s hook failed\n", destination), e$message)
NULL
})
invisible(r)
} |
require(sde)
k <- NULL
theta <- NULL
k1 <- NULL
theta1 <- NULL
sigma.hat <- NULL
sigma <- 0.15
pars <- c(0.5, 0.2, sigma)
n.sim <- 1000
Delta <- 0.01
set.seed(123)
x0 <- rsCIR(n.sim, pars)
T <- 100
for(i in 1:n.sim){
X <- sde.sim(X0=x0[i], model="CIR", theta=pars, N=T/Delta, delta=Delta)
n <- length(X)
I3 <- Delta * sum(1/X[1:(n-1)] + 1/X[2:n])/2
I1 <- log(X[n]/X[1]) + 0.5*sigma^2 * I3
I2 <- X[n] - X[1]
I4 <- Delta * sum(X[1:(n-1)] + X[2:n])/2
I5 <- n*Delta
k <- c(k, (I1*I5-I2*I3)/(I3*I4-I5^2))
theta <- c(theta, (I1*I4-I2*I5)/(I1*I5-I2*I3))
sigma.est <- sqrt(sum((X[2:n]-X[1:(n-1)])^2/X[1:(n-1)])/(n*Delta))
sigma.hat <- c(sigma.hat, sigma.est)
I1 <- log(X[n]/X[1]) + 0.5*sigma.est^2 * I3
k1 <- c(k1, (I1*I5-I2*I3)/(I3*I4-I5^2))
theta1 <- c(theta1, (I1*I4-I2*I5)/(I1*I5-I2*I3))
}
cat(sprintf("kappa=%f, theta=%f, sigma=%f : kappa1=%f, theta1=%f\n", mean(k*theta),
mean(k), mean(sigma.hat), mean(k1*theta1), mean(k1)))
cat(sprintf("SD: kappa=%f, theta=%f, sigma=%f : kappa1=%f, theta1=%f\n", sd(k*theta),
sd(k), sd(sigma.hat), sd(k1*theta1), sd(k1)))
cat(sprintf("kappa=%f, theta=%f, sigma=%f\n", pars[1], pars[2], pars[3])) |
print.clock_calendar <- function(x, ..., max = NULL) {
clock_print(x, max)
}
obj_print_data.clock_calendar <- function(x, ..., max) {
if (vec_is_empty(x)) {
return(invisible(x))
}
x <- max_slice(x, max)
out <- format(x)
print(out, max = max)
invisible(x)
}
obj_print_footer.clock_calendar <- function(x, ..., max) {
clock_print_footer(x, max)
}
pillar_shaft.clock_calendar <- function(x, ...) {
out <- format(x)
pillar::new_pillar_shaft_simple(out, align = "left")
}
ptype2_calendar_and_calendar <- function(x, y, ...) {
if (calendar_precision_attribute(x) == calendar_precision_attribute(y)) {
x
} else {
stop_incompatible_type(x, y, ..., details = "Can't combine calendars with different precisions.")
}
}
cast_calendar_to_calendar <- function(x, to, ...) {
if (calendar_precision_attribute(x) == calendar_precision_attribute(to)) {
x
} else {
stop_incompatible_cast(x, to, ..., details = "Can't cast between calendars with different precisions.")
}
}
calendar_leap_year <- function(x) {
UseMethod("calendar_leap_year")
}
calendar_leap_year.clock_calendar <- function(x) {
stop_clock_unsupported_calendar_op("calendar_leap_year")
}
calendar_month_factor <- function(x,
...,
labels = "en",
abbreviate = FALSE) {
UseMethod("calendar_month_factor")
}
calendar_month_factor.clock_calendar <- function(x,
...,
labels = "en",
abbreviate = FALSE) {
stop_clock_unsupported_calendar_op("calendar_month_factor")
}
calendar_month_factor_impl <- function(x, labels, abbreviate, ...) {
check_dots_empty()
if (calendar_precision_attribute(x) < PRECISION_MONTH) {
abort("`x` must have at least 'month' precision.")
}
if (is_character(labels)) {
labels <- clock_labels_lookup(labels)
}
if (!is_clock_labels(labels)) {
abort("`labels` must be a 'clock_labels' object.")
}
if (!is_bool(abbreviate)) {
abort("`abbreviate` must be `TRUE` or `FALSE`.")
}
if (abbreviate) {
labels <- labels$month_abbrev
} else {
labels <- labels$month
}
x <- get_month(x)
x <- labels[x]
factor(x, levels = labels, ordered = TRUE)
}
calendar_group <- function(x, precision, ..., n = 1L) {
check_dots_empty()
precision <- validate_precision_string(precision)
if (!calendar_is_valid_precision(x, precision)) {
message <- paste0(
"`precision` must be a valid precision for a '", calendar_name(x), "'."
)
abort(message)
}
x_precision <- calendar_precision_attribute(x)
if (precision > x_precision) {
precision <- precision_to_string(precision)
x_precision <- precision_to_string(x_precision)
message <- paste0(
"Can't group at a precision (", precision, ") ",
"that is more precise than `x` (", x_precision, ")."
)
abort(message)
}
if (precision > PRECISION_SECOND && x_precision != precision) {
precision <- precision_to_string(precision)
x_precision <- precision_to_string(x_precision)
message <- paste0(
"Can't group a subsecond precision `x` (", x_precision, ") ",
"by another subsecond precision (", precision, ")."
)
abort(message)
}
UseMethod("calendar_group")
}
calendar_group.clock_calendar <- function(x, precision, ..., n = 1L) {
stop_clock_unsupported_calendar_op("calendar_group")
}
calendar_group_time <- function(x, n, precision) {
if (precision == PRECISION_HOUR) {
value <- get_hour(x)
value <- group_component0(value, n)
x <- set_hour(x, value)
return(x)
}
if (precision == PRECISION_MINUTE) {
value <- get_minute(x)
value <- group_component0(value, n)
x <- set_minute(x, value)
return(x)
}
if (precision == PRECISION_SECOND) {
value <- get_second(x)
value <- group_component0(value, n)
x <- set_second(x, value)
return(x)
}
if (precision == PRECISION_MILLISECOND) {
value <- get_millisecond(x)
value <- group_component0(value, n)
x <- set_millisecond(x, value)
return(x)
}
if (precision == PRECISION_MICROSECOND) {
value <- get_microsecond(x)
value <- group_component0(value, n)
x <- set_microsecond(x, value)
return(x)
}
if (precision == PRECISION_NANOSECOND) {
value <- get_nanosecond(x)
value <- group_component0(value, n)
x <- set_nanosecond(x, value)
return(x)
}
abort("Internal error: Unknown precision.")
}
group_component0 <- function(x, n) {
(x %/% n) * n
}
group_component1 <- function(x, n) {
((x - 1L) %/% n) * n + 1L
}
validate_calendar_group_n <- function(n) {
n <- vec_cast(n, integer(), x_arg = "n")
if (!is_number(n)) {
abort("`n` must be a single number.")
}
if (n <= 0L) {
abort("`n` must be a positive number.")
}
n
}
calendar_narrow <- function(x, precision) {
precision <- validate_precision_string(precision)
if (!calendar_is_valid_precision(x, precision)) {
message <- paste0(
"`precision` must be a valid precision for a '", calendar_name(x), "'."
)
abort(message)
}
x_precision <- calendar_precision_attribute(x)
if (precision > x_precision) {
precision <- precision_to_string(precision)
x_precision <- precision_to_string(x_precision)
message <- paste0(
"Can't narrow to a precision (", precision, ") ",
"that is wider than `x` (", x_precision, ")."
)
abort(message)
}
if (precision > PRECISION_SECOND && x_precision != precision) {
precision <- precision_to_string(precision)
x_precision <- precision_to_string(x_precision)
message <- paste0(
"Can't narrow a subsecond precision `x` (", x_precision, ") ",
"to another subsecond precision (", precision, ")."
)
abort(message)
}
UseMethod("calendar_narrow")
}
calendar_narrow.clock_calendar <- function(x, precision) {
stop_clock_unsupported_calendar_op("calendar_narrow")
}
calendar_narrow_time <- function(out_fields, out_precision, x_fields) {
if (out_precision >= PRECISION_HOUR) {
out_fields[["hour"]] <- x_fields[["hour"]]
}
if (out_precision >= PRECISION_MINUTE) {
out_fields[["minute"]] <- x_fields[["minute"]]
}
if (out_precision >= PRECISION_SECOND) {
out_fields[["second"]] <- x_fields[["second"]]
}
if (out_precision > PRECISION_SECOND) {
out_fields[["subsecond"]] <- x_fields[["subsecond"]]
}
out_fields
}
calendar_widen <- function(x, precision) {
precision <- validate_precision_string(precision)
if (!calendar_is_valid_precision(x, precision)) {
message <- paste0(
"`precision` must be a valid precision for a '", calendar_name(x), "'."
)
abort(message)
}
x_precision <- calendar_precision_attribute(x)
if (x_precision > precision) {
precision <- precision_to_string(precision)
x_precision <- precision_to_string(x_precision)
message <- paste0(
"Can't widen to a precision (", precision, ") ",
"that is narrower than `x` (", x_precision, ")."
)
abort(message)
}
if (x_precision > PRECISION_SECOND && x_precision != precision) {
precision <- precision_to_string(precision)
x_precision <- precision_to_string(x_precision)
message <- paste0(
"Can't widen a subsecond precision `x` (", x_precision, ") ",
"to another subsecond precision (", precision, ")."
)
abort(message)
}
UseMethod("calendar_widen")
}
calendar_widen.clock_calendar <- function(x, precision) {
stop_clock_unsupported_calendar_op("calendar_widen")
}
calendar_widen_time <- function(x, x_precision, precision) {
if (precision >= PRECISION_HOUR && x_precision < PRECISION_HOUR) {
x <- set_hour(x, 0L)
}
if (precision >= PRECISION_MINUTE && x_precision < PRECISION_MINUTE) {
x <- set_minute(x, 0L)
}
if (precision >= PRECISION_SECOND && x_precision < PRECISION_SECOND) {
x <- set_second(x, 0L)
}
if (precision == PRECISION_MILLISECOND && x_precision != precision) {
x <- set_millisecond(x, 0L)
}
if (precision == PRECISION_MICROSECOND && x_precision != precision) {
x <- set_microsecond(x, 0L)
}
if (precision == PRECISION_NANOSECOND && x_precision != precision) {
x <- set_nanosecond(x, 0L)
}
x
}
NULL
calendar_start <- function(x, precision) {
UseMethod("calendar_start")
}
calendar_start.clock_calendar <- function(x, precision) {
stop_clock_unsupported_calendar_op("calendar_start")
}
calendar_end <- function(x, precision) {
UseMethod("calendar_end")
}
calendar_end.clock_calendar <- function(x, precision) {
stop_clock_unsupported_calendar_op("calendar_end")
}
calendar_start_end_checks <- function(x, x_precision, precision, which) {
if (!calendar_is_valid_precision(x, precision)) {
message <- paste0(
"`precision` must be a valid precision for a '", calendar_name(x), "'."
)
abort(message)
}
if (x_precision < precision) {
precision <- precision_to_string(precision)
x_precision <- precision_to_string(x_precision)
message <- paste0(
"Can't compute the ", which, " of `x` (", x_precision, ") ",
"at a more precise precision (", precision, ")."
)
abort(message)
}
if (precision > PRECISION_SECOND && x_precision != precision) {
precision <- precision_to_string(precision)
x_precision <- precision_to_string(x_precision)
message <- paste0(
"Can't compute the ", which, " of a subsecond precision `x` (", x_precision, ") ",
"at another subsecond precision (", precision, ")."
)
abort(message)
}
invisible(x)
}
calendar_start_time <- function(x, x_precision, precision) {
values <- list(
hour = 0L,
minute = 0L,
second = 0L,
millisecond = 0L,
microsecond = 0L,
nanosecond = 0L
)
calendar_start_end_time(x, x_precision, precision, values)
}
calendar_end_time <- function(x, x_precision, precision) {
values <- list(
hour = 23L,
minute = 59L,
second = 59L,
millisecond = 999L,
microsecond = 999999L,
nanosecond = 999999999L
)
calendar_start_end_time(x, x_precision, precision, values)
}
calendar_start_end_time <- function(x, x_precision, precision, values) {
if (precision <= PRECISION_DAY && x_precision > PRECISION_DAY) {
x <- set_hour(x, values$hour)
}
if (precision <= PRECISION_HOUR && x_precision > PRECISION_HOUR) {
x <- set_minute(x, values$minute)
}
if (precision <= PRECISION_MINUTE && x_precision > PRECISION_MINUTE) {
x <- set_second(x, values$second)
}
if (precision <= PRECISION_SECOND && x_precision > PRECISION_SECOND) {
if (x_precision == PRECISION_MILLISECOND) {
x <- set_millisecond(x, values$millisecond)
} else if (x_precision == PRECISION_MICROSECOND) {
x <- set_microsecond(x, values$microsecond)
} else if (x_precision == PRECISION_NANOSECOND) {
x <- set_nanosecond(x, values$nanosecond)
}
}
x
}
NULL
calendar_count_between <- function(start,
end,
precision,
...,
n = 1L) {
UseMethod("calendar_count_between")
}
calendar_count_between.clock_calendar <- function(start,
end,
precision,
...,
n = 1L) {
check_dots_empty()
if (!is_calendar(end)) {
abort("`end` must be a <clock_calendar>.")
}
size <- vec_size_common(start = start, end = end)
args <- vec_cast_common(start = start, end = end)
args <- vec_recycle_common(!!!args, .size = size)
start <- args[[1]]
end <- args[[2]]
n <- vec_cast(n, integer(), x_arg = "n")
if (!is_number(n) || n <= 0L) {
abort("`n` must be a single positive integer.")
}
precision_int <- validate_precision_string(precision)
if (calendar_precision_attribute(start) < precision_int) {
abort("Precision of inputs must be at least as precise as `precision`.")
}
args <- calendar_count_between_standardize_precision_n(start, precision, n)
precision <- args$precision
n <- args$n
out <- calendar_count_between_compute(start, end, precision)
args <- calendar_count_between_proxy_compare(start, end, precision)
start_proxy <- args$start
end_proxy <- args$end
if (ncol(start_proxy) == 0L) {
comparison <- vec_rep(0L, size)
} else {
comparison <- vec_compare(end_proxy, start_proxy)
}
adjustment <- vec_rep(-1L, size)
adjustment[start > end] <- 1L
adjustment[comparison != adjustment] <- 0L
out <- out + adjustment
if (n != 1L) {
out <- out %/% n
}
out
}
calendar_count_between_standardize_precision_n <- function(x, precision, n) {
UseMethod("calendar_count_between_standardize_precision_n")
}
calendar_count_between_compute <- function(start, end, precision) {
UseMethod("calendar_count_between_compute")
}
calendar_count_between_proxy_compare <- function(start, end, precision) {
UseMethod("calendar_count_between_proxy_compare")
}
calendar_precision <- function(x) {
UseMethod("calendar_precision")
}
calendar_precision.clock_calendar <- function(x) {
precision <- calendar_precision_attribute(x)
precision <- precision_to_string(precision)
precision
}
calendar_name <- function(x) {
UseMethod("calendar_name")
}
calendar_is_valid_precision <- function(x, precision) {
UseMethod("calendar_is_valid_precision")
}
calendar_precision_attribute <- function(x) {
attr(x, "precision", exact = TRUE)
}
calendar_require_minimum_precision <- function(x, precision, fn) {
if (!calendar_has_minimum_precision(x, precision)) {
precision_string <- precision_to_string(precision)
msg <- paste0("`", fn, "()` requires a minimum precision of '", precision_string, "'.")
abort(msg)
}
invisible(x)
}
calendar_has_minimum_precision <- function(x, precision) {
calendar_precision_attribute(x) >= precision
}
calendar_require_precision <- function(x, precision, fn) {
if (!calendar_has_precision(x, precision)) {
precision_string <- precision_to_string(precision)
msg <- paste0("`", fn, "()` requires a precision of '", precision_string, "'.")
abort(msg)
}
invisible(x)
}
calendar_require_any_of_precisions <- function(x, precisions, fn) {
results <- vapply(precisions, calendar_has_precision, FUN.VALUE = logical(1), x = x)
if (!any(results)) {
precision_string <- precision_to_string(calendar_precision_attribute(x))
msg <- paste0("`", fn, "()` does not support a precision of '", precision_string, "'.")
abort(msg)
}
invisible(x)
}
calendar_has_precision <- function(x, precision) {
calendar_precision_attribute(x) == precision
}
calendar_validate_subsecond_precision <- function(subsecond_precision) {
if (is_null(subsecond_precision)) {
abort("If `subsecond` is provided, `subsecond_precision` must be specified.")
}
subsecond_precision <- validate_precision_string(subsecond_precision, "subsecond_precision")
if (!is_valid_subsecond_precision(subsecond_precision)) {
abort("`subsecond_precision` must be a valid subsecond precision.")
}
subsecond_precision
}
calendar_require_all_valid <- function(x) {
if (invalid_any(x)) {
message <- paste0(
"Conversion from a calendar requires that all dates are valid. ",
"Resolve invalid dates by calling `invalid_resolve()`."
)
abort(message)
}
invisible(x)
}
calendar_ptype_full <- function(x, class) {
precision <- calendar_precision_attribute(x)
precision <- precision_to_string(precision)
paste0(class, "<", precision, ">")
}
calendar_ptype_abbr <- function(x, abbr) {
precision <- calendar_precision_attribute(x)
precision <- precision_to_string(precision)
precision <- precision_abbr(precision)
paste0(abbr, "<", precision, ">")
}
arith_calendar_and_missing <- function(op, x, y, ...) {
switch (
op,
"+" = x,
stop_incompatible_op(op, x, y, ...)
)
}
arith_calendar_and_calendar <- function(op, x, y, ..., calendar_minus_calendar_fn) {
switch (
op,
"-" = calendar_minus_calendar_fn(op, x, y, ...),
stop_incompatible_op(op, x, y, ...)
)
}
arith_calendar_and_duration <- function(op, x, y, ...) {
switch (
op,
"+" = add_duration(x, y),
"-" = add_duration(x, -y),
stop_incompatible_op(op, x, y, ...)
)
}
arith_duration_and_calendar <- function(op, x, y, ...) {
switch (
op,
"+" = add_duration(y, x, swapped = TRUE),
"-" = stop_incompatible_op(op, x, y, details = "Can't subtract a calendar from a duration.", ...),
stop_incompatible_op(op, x, y, ...)
)
}
arith_calendar_and_numeric <- function(op, x, y, ...) {
switch (
op,
"+" = add_duration(x, duration_helper(y, calendar_precision_attribute(x), retain_names = TRUE)),
"-" = add_duration(x, duration_helper(-y, calendar_precision_attribute(x), retain_names = TRUE)),
stop_incompatible_op(op, x, y, ...)
)
}
arith_numeric_and_calendar <- function(op, x, y, ...) {
switch (
op,
"+" = add_duration(y, duration_helper(x, calendar_precision_attribute(y), retain_names = TRUE), swapped = TRUE),
"-" = stop_incompatible_op(op, x, y, details = "Can't subtract a calendar from a duration.", ...),
stop_incompatible_op(op, x, y, ...)
)
}
as_year_month_day.clock_calendar <- function(x) {
as_year_month_day(as_sys_time(x))
}
as_year_month_weekday.clock_calendar <- function(x) {
as_year_month_weekday(as_sys_time(x))
}
as_iso_year_week_day.clock_calendar <- function(x) {
as_iso_year_week_day(as_sys_time(x))
}
as_year_day.clock_calendar <- function(x) {
as_year_day(as_sys_time(x))
}
as_year_quarter_day.clock_calendar <- function(x, ..., start = NULL) {
as_year_quarter_day(as_sys_time(x), ..., start = start)
}
field_year <- function(x) {
out <- field(x, "year")
names(out) <- NULL
out
}
field_quarter <- function(x) {
field(x, "quarter")
}
field_month <- function(x) {
field(x, "month")
}
field_week <- function(x) {
field(x, "week")
}
field_day <- function(x) {
field(x, "day")
}
field_hour <- function(x) {
field(x, "hour")
}
field_minute <- function(x) {
field(x, "minute")
}
field_second <- function(x) {
field(x, "second")
}
field_subsecond <- function(x) {
field(x, "subsecond")
}
field_index <- function(x) {
field(x, "index")
}
is_calendar <- function(x) {
inherits(x, "clock_calendar")
} |
seq_vector = function(n) {
1:n
} |
library(amap)
url = 'https://docs.google.com/spreadsheets/d/1PWWoMqE5o3ChwJbpexeeYkW6p4BHL9hubVb1fkKSBgA/edit
library(gsheet)
data = as.data.frame(gsheet2tbl(url))
str(data)
head(data)
dim(data)
names(data)
summary(data)
str(data)
colnames(data)
class(data$Age)
apply(data, 2, FUN= class)
dim(data)
head(data)
summary(data)
names(data)
k1 <- amap::Kmeans(data[,-1],centers=3, iter.max = 200)
?Kmeans
k1$centers
attributes(k1)
k1$size
k1$withinss
k1$cluster
k1$centers
k1$cluster[9000:9800]
table(k1$cluster)
k1$size
data_clus_2 <- data[ k1$cluster == 2,]
(data_clus_2)
mean(data_clus_2$Age)
data_clus_2$Cust_id
write.csv(data_clus_2[,1], file = "./data/data_clus_2.csv") |
add_prefix <- function(prefix) {
a <- rstudioapi::getSourceEditorContext()
s <- a$selection
n <- length(s)
if (n == 1L && nchar(s[[1L]]$text) == 0L) {
pos <- s[[1L]]$range$start
pos[2L] <- 1
rstudioapi::insertText(location = pos, text = prefix)
} else {
for (i in s)
rstudioapi::insertText(location = i$range$start, text = prefix)
}
}
add_multiline_prefix <- function(prefix, as_is = FALSE) {
a <- rstudioapi::getSourceEditorContext()
content <- strsplit(a$selection[[1]]$text, "\n")[[1]]
prefix_content <- iconv(content, "latin1", "ASCII", sub="")
prefix_content <- gsub('^["]','',prefix_content)
if (as_is) {
content <- paste0(prefix, content)
} else {
content[nzchar(content)] <-
paste0(
gsub("\\b.*$", "", prefix_content[nzchar(content)], perl = TRUE),
prefix,
gsub("^\\s*", "", content[nzchar(content)])
)
}
if (length(content) > 0) {
content <- paste0(content, "\n", collapse = "")
} else {
content <- ""
}
rstudioapi::modifyRange(
location = a$selection[[1]]$range,
text = content,
id = a$id
)
}
enclose <- function(prefix, postfix = prefix) {
a <- rstudioapi::getSourceEditorContext()
for (s in a$selection)
rstudioapi::insertText(location = s$range, text = sprintf("%s%s%s", prefix, s$text, postfix))
} |
qcomhd <- function(formula, data, q = c(0.1, 0.25, 0.5, 0.75, 0.9), nboot = 2000, alpha = 0.05, ADJ.CI = TRUE, ...){
if (missing(data)) {
mf <- model.frame(formula)
} else {
mf <- model.frame(formula, data)
}
cl <- match.call()
xy <- split(model.extract(mf, "response"), mf[,2])
faclevels <- names(xy)
x <- xy[[1]]
y <- xy[[2]]
pv=NULL
output=matrix(NA,nrow=length(q),ncol=10)
dimnames(output)<-list(NULL,c("q","n1","n2","est.1","est.2","est.1_minus_est.2","ci.low","ci.up", "p_crit","p-value"))
for(i in 1:length(q)){
output[i,1]=q[i]
output[i,2]=length(elimna(x))
output[i,3]=length(elimna(y))
output[i,4]=hd(x,q=q[i])
output[i,5]=hd(y,q=q[i])
output[i,6]=output[i,4]-output[i,5]
temp=pb2gen1(x,y,nboot=nboot,est=hd,q=q[i],SEED=FALSE,alpha=alpha,pr=FALSE)
output[i,7]=temp$ci[1]
output[i,8]=temp$ci[2]
output[i,10]=temp$p.value
}
temp=order(output[,10],decreasing=TRUE)
zvec=alpha/c(1:length(q))
output[temp,9]=zvec
if(ADJ.CI){
for(i in 1:length(q)){
temp=pb2gen1(x,y,nboot=nboot,est=hd,q=q[i],SEED=FALSE,alpha=output[i,9],pr=FALSE)
output[i,7]=temp$ci[1]
output[i,8]=temp$ci[2]
output[i,10]=temp$p.value
}
}
output <- data.frame(output)
output$signif=rep("YES",nrow(output))
temp=order(output[,10],decreasing=TRUE)
for(i in 1:nrow(output)){
if(output[temp[i],10]>output[temp[i],9])output$signif[temp[i]]="NO"
if(output[temp[i],10]<=output[temp[i],9])break
}
output <- output[,-ncol(output)]
colnames(output) <- c("q", "n1", "n2", "est1", "est2", "est1-est.2", "ci.low", "ci.up", "p.crit", "p.value")
result <- list(partable = output, alpha = alpha, call = cl)
class(result) <- "robtab"
result
} |
ideo.dist <- function(df, id, ideology, time, adoption){
df2 <- as.data.frame(df)
df2$ideo_distance_s <- NA
for (i in 1:length(eval(substitute({{ id }}), df2))) {
p_time <- data.frame(eval(substitute({{ time }}), df2)[eval(substitute({{ adoption }}), df2)==1 & eval(substitute({{ time }}), df2)<eval(substitute({{ time }}), df2)[i]])
p_ideo <- data.frame(eval(substitute({{ ideology }}), df2)[eval(substitute({{ adoption }}), df2)==1 & eval(substitute({{ time }}), df2)<eval(substitute({{ time }}), df2)[i]])
p_id <- data.frame(eval(substitute({{ id }}), df2)[eval(substitute({{ adoption }}), df2)==1 & eval(substitute({{ time }}), df2)<eval(substitute({{ time }}), df2)[i]])
names(p_id) <- "p_id"
names(p_time) <- "p_time"
names(p_ideo) <- "p_ideo"
scores <- dplyr::bind_cols(p_id,p_time,p_ideo)
names(scores) <- c("id","t","ideo")
max_time <- {suppressWarnings(max(eval(substitute(t), scores)))}
min_time <- {suppressWarnings(min(eval(substitute(t), scores)))}
recent_scores <- scores %>% dplyr::filter(t==max_time)
older <- scores %>% dplyr::filter(t==min_time)
older_scores <- dplyr::setdiff(scores,recent_scores)
df2$last_adopter_ideo[i] <- (sum(eval(substitute(ideo), recent_scores))/(length(eval(substitute(ideo), recent_scores))))
df2$allother_adopter_ideo[i] <- (sum(eval(substitute(ideo), older_scores))/(length(eval(substitute(ideo), older_scores))))
}
df2$last_adopter_ideo[is.nan(df2$last_adopter_ideo)] <- 0
df2$allother_adopter_ideo[is.nan(df2$allother_adopter_ideo)] <- 0
df2$ideo_distance_s <- abs(((eval(substitute(last_adopter_ideo), df2) + eval(substitute(allother_adopter_ideo), df2))/2) - eval(substitute(ideology), df2))
dfname <- deparse(substitute(df))
pos <- 1
envir = as.environment(pos)
assign(dfname, data.frame(df2), envir = envir)
} |
graphIndexComplexity <- function(g) {
if (class(g)[1] != "graphNEL")
stop("'g' must be a 'graphNEL' object")
stopifnot(.validateGraph(g))
n <- numNodes(g)
M <- adjacencyMatrix(g)
EV <- as.double(eigen(M, only.values=TRUE)$values)
r_max <- max(EV)
cr <- (r_max - 2*cos(pi/(n+1))) / ((n-1) - 2*cos(pi/(n+1)))
4 * cr * (1-cr)
} |
`morisita.horn` <-
function(x,y) {
aN <- sum(x)
bN <- sum(y)
da <- sum(x^2)/aN^2
db <- sum(y^2)/bN^2
top <- sum(x*y)
mor <- 2*top/((da+db)*aN*bN)
return(mor)
} |
complk_cont <- function(Y,piv,Pi,Mu,Si,k){
sY = dim(Y)
n = sY[1]
TT = sY[2]
if(length(sY)==2) r = 1 else r = sY[3]
if(r==1){
if(is.matrix(Y)) Y = array(Y,c(dim(Y),1))
}
Phi = array(1,c(n,k,TT)); L = array(0,c(n,k,TT))
for(u in 1:k) Phi[,u,1] = dmvnorm(matrix(Y[,1,],n,r),Mu[,u],Si)
L[,,1] = Phi[,,1]%*%diag(piv)
for(t in 2:TT){
for(u in 1:k) Phi[,u,t] = dmvnorm(matrix(Y[,t,],n,r),Mu[,u],Si)
L[,,t] = Phi[,,t]*(L[,,t-1]%*%Pi[,,t])
}
if(n==1) pv = sum(L[1,,TT])
else pv = rowSums(L[,,TT])
lk = sum(log(pv))
out = list(lk=lk,Phi=Phi,L=L,pv=pv)
} |
"GARI" <-
function(ADM,EADM){
n <- nrow(ADM)
N <- n-1
tmp <- rep(0,n)
for(i in 1:n){
k <- sum(ADM[i,])
tmp[i] <- N + 2*k*(k-N)/N
}
ECN <- sum(tmp)
X <- sum(ADM==EADM) - n
gari <- (X- ECN )/( n*(n-1) - ECN )
return( gari )
} |
`jadjust.length` <-
function (inputdata)
{
if (is.character(inputdata))
s <- scan(inputdata)
else s <- inputdata
np <- length(s)
pow <- 1
while (2 * pow < np) pow <- 2 * pow
new.np <- 2 * pow
if (np == new.np)
list(signal = s, length = np)
else {
new.s <- 1:new.np
new.s[1:new.np] <- 0
new.s[1:np] <- s
list(signal = new.s, length = new.np)
}
} |
context("test-fedregs.R")
test_that("We can extract some numbers.", {
bad_part <- "800 to end"
good_part <- "Part 800 to end"
silly_part <- "Part no digits"
testthat::expect_error(numextract(bad_part), "Make sure you are providing a valid 'part'.")
testthat::expect_error(numextract(silly_part), "Make sure string is a numeric value.")
testthat::expect_true(numextract("Part 100 to 200", return = "max") == 200)
testthat::expect_true(numextract("Part 100 to 200", return = "min") == 100)
testthat::expect_true(numextract("Part 100 to end", return = "max") == Inf)
testthat::expect_true(is.numeric(numextract("Part 100 to 200", return = "max")))
testthat::expect_true(is.numeric(numextract("Part 100 to 200", return = "min")))
testthat::expect_true(is.numeric(numextract("Part 100 to end", return = "max")))
})
test_that("We can go all the way", {
good_year <- 2012
bad_year <- 1995
na_year <- 1996
good_title_number <- 50
bad_title_number <- 1000
na_title_number <- 1
good_chapter <- 6
bad_chapter <- "BB"
good_part <- 648
bad_part <- "DD"
testthat::expect_error(cfr_text(bad_year,
good_title_number,
good_chapter,
good_part),
"Year must be between 1996 and 2018.\n")
testthat::expect_error(cfr_text(good_year,
bad_title_number,
good_chapter,
good_part),
"Title must be a numeric value between 1 and 50.\n")
testthat::expect_error(cfr_text(good_year,
good_title_number,
bad_chapter,
good_part),
"Chapter must be a numeric value, not a Roman Numeral.\n")
testthat::expect_error(cfr_text(good_year,
good_title_number,
good_chapter,
bad_part),
"Part must be a numeric value.\n")
testthat::expect_error(cfr_text(na_year,
na_title_number,
good_chapter,
good_part),
sprintf("There aren't any regulations for title %s in %s.\n", na_title_number, na_year))
good_text <- cfr_text(good_year, good_title_number, good_chapter, good_part)
testthat::expect_true(all(class(good_text) %in% c("grouped_df", "tbl", "tbl_df", "data.frame") == TRUE))
}) |
dat <- structure(c(7L, 5L, 8L, 0L), .Dim = c(2L, 2L))
class(dat) <- "table"
hyp <- "a:=x[1,1]/c(x[1,1]+x[1,2]);
a>.5"
res <- gorica(dat, hyp)
test_that("contingency table supp 2_3 works", {
expect_equivalent(res$fit$gorica_weights, c(0.6146977, 0.3853023), tolerance = .03)
}) |
ubio_classification <- function(...) {
.Defunct(msg = "the uBio API is down, for good as far as we know")
} |
theme_grid <- function(fig,
which = c("x", "y"),
band_fill_alpha = 1,
band_fill_color = "gray",
grid_line_alpha = 1,
grid_line_cap = "butt",
grid_line_color = "black",
grid_line_dash = NULL,
grid_line_dash_offset = 0,
grid_line_join = "miter",
grid_line_width = 1,
minor_grid_line_alpha = 1,
minor_grid_line_cap = "butt",
minor_grid_line_color = "black",
minor_grid_line_dash = NULL,
minor_grid_line_dash_offset = 0,
minor_grid_line_join = "miter",
minor_grid_line_width = 1,
pars = NULL
) {
if (is.null(pars)) {
specified <- names(as.list(match.call())[-1])
pars <- as.list(environment())[specified]
}
pars <- pars[names(pars) %in% names(grid_par_validator_map)]
pars <- handle_extra_pars(pars, grid_par_validator_map)
parnames <- names(pars)
if (!is.null(fig$x$modeltype) && fig$x$modeltype == "GridPlot") {
for (ii in seq_along(fig$x$spec$figs)) {
if ("x" %in% which && fig$x$spec$figs[[ii]]$x$spec$xaxes != FALSE) {
if (is.null(fig$x$spec$figs[[ii]]$x$spec$model[["x_grid"]]))
fig$x$spec$figs[[ii]] <- fig$x$spec$figs[[ii]] %>% x_axis()
for (nm in parnames)
fig$x$spec$figs[[ii]]$x$spec$model[["x_grid"]]$attributes[[nm]] <- pars[[nm]]
}
if ("y" %in% which && fig$x$spec$figs[[ii]]$x$spec$yaxes != FALSE) {
if (is.null(fig$x$spec$figs[[ii]]$x$spec$model[["y_grid"]]))
fig$x$spec$figs[[ii]] <- fig$x$spec$figs[[ii]] %>% y_axis()
for (nm in parnames)
fig$x$spec$figs[[ii]]$x$spec$model[["y_grid"]]$attributes[[nm]] <- pars[[nm]]
}
}
} else {
if ("x" %in% which && fig$x$spec$xaxes != FALSE) {
if (is.null(fig$x$spec$model[["x_grid"]]))
fig <- fig %>% x_axis()
for (nm in parnames)
fig$x$spec$model[["x_grid"]]$attributes[[nm]] <- pars[[nm]]
}
if ("y" %in% which && fig$x$spec$yaxes != FALSE) {
if (is.null(fig$x$spec$model[["y_grid"]]))
fig <- fig %>% y_axis()
for (nm in parnames)
fig$x$spec$model[["y_grid"]]$attributes[[nm]] <- pars[[nm]]
}
}
fig
} |
act2probrat <- function(act, theta, beta) {
1 / (1 + exp(-theta * (act - beta)))
} |
crowdingDist4frnt <-
function(pop,rnk,rng){
popSize <- nrow(pop);
objDim <- length(rng);
varNo <- ncol(pop)-1-length(rng);
cd <- matrix(Inf,nrow=popSize,ncol=objDim);
for (i in 1:length(rnk)){
selectRow <- pop[,ncol(pop)]==i;
len <- length(rnk[[i]]);
if (len > 2) {
for (j in 1:objDim) {
originalIdx <- rnk[[i]][order(pop[selectRow,varNo+j])];
cd[originalIdx[2:(len-1)],j] = abs(pop[originalIdx[3:len],varNo+j] - pop[originalIdx[1:(len-2)],varNo+j])/rng[j];
}
}
}
return(cd);
} |
getHHdata <- function(survey, year, quarter) {
if (!checkSurveyOK(survey)) return(FALSE)
if (!checkSurveyYearOK(survey, year, checksurvey = FALSE)) return(FALSE)
if (!checkSurveyYearQuarterOK(survey, year, quarter, checksurvey = FALSE, checkyear = FALSE)) return(FALSE)
url <-
sprintf(
"https://datras.ices.dk/WebServices/DATRASWebService.asmx/getHHdata?survey=%s&year=%i&quarter=%i",
survey, year, quarter)
out <- readDatras(url)
out <- parseDatras(out)
out
} |
expected <- 2L
test(id=1, code={
argv <- structure(list(x = structure(c(1L, 2L, NA), .Label = c("1", "2"
), class = "factor")), .Names = "x")
do.call('nlevels', argv);
}, o = expected);
|
complete.mids <- function(data, action = 1L, include = FALSE,
mild = FALSE, ...) {
if (!is.mids(data)) stop("'data' not of class 'mids'")
m <- as.integer(data$m)
if (is.numeric(action)) {
action <- as.integer(action)
idx <- action[action >= 0L & action <= m]
if (include && all(idx != 0L)) idx <- c(0L, idx)
shape <- ifelse(mild, "mild", "stacked")
}
else if (is.character(action)) {
if (include) idx <- 0L:m else idx <- 1L:m
shape <- match.arg(action, c("all", "long", "broad", "repeated", "stacked"))
shape <- ifelse(shape == "all" || mild, "mild", shape)
}
else {
stop("'action' not recognized")
}
mylist <- vector("list", length = length(idx))
for (j in seq_along(idx)) {
mylist[[j]] <- single.complete(data$data, data$where, data$imp, idx[j])
}
if (shape == "stacked") {
return(bind_rows(mylist))
}
if (shape == "mild") {
names(mylist) <- as.character(idx)
class(mylist) <- c("mild", "list")
return(mylist)
}
if (shape == "long") {
cmp <- bind_rows(mylist)
cmp <- data.frame(
.imp = rep(idx, each = nrow(data$data)),
.id = rep.int(1L:nrow(data$data), length(idx)),
cmp
)
if (is.integer(attr(data$data, "row.names"))) {
row.names(cmp) <- seq_len(nrow(cmp))
} else {
row.names(cmp) <- as.character(seq_len(nrow(cmp)))
}
return(cmp)
}
cmp <- bind_cols(mylist)
names(cmp) <- paste(rep.int(names(data$data), m),
rep.int(idx, rep.int(ncol(data$data), length(idx))),
sep = "."
)
if (shape == "broad") {
return(cmp)
} else {
return(cmp[, order(rep.int(seq_len(ncol(data$data)), length(idx)))])
}
}
single.complete <- function(data, where, imp, ell) {
if (ell == 0L) {
return(data)
}
if (is.null(where)) {
where <- is.na(data)
}
idx <- seq_len(ncol(data))[apply(where, 2, any)]
for (j in idx) {
if (is.null(imp[[j]])) {
data[where[, j], j] <- NA
} else {
data[where[, j], j] <- imp[[j]][, ell]
}
}
data
} |
numMualem <- function(h, scap, pcon = NA) {
if(!is.na(pcon)){
q <- pcon[1]
r <- pcon[2]
}else{
q <- 1
r <- 2
}
int1 = pracma::cumtrapz(rev(scap), rev(h^-q))
int2 = max(int1)[1];
mua_num = rev((int1/int2)^r)
return(mua_num)
} |
local({
version <- "0.14.0"
project <- getwd()
activate <- Sys.getenv("RENV_ACTIVATE_PROJECT")
if (!nzchar(activate)) {
if (nzchar(Sys.getenv("R_INSTALL_PKG")))
return(FALSE)
}
if (tolower(activate) %in% c("false", "f", "0"))
return(FALSE)
if (nzchar(Sys.getenv("RENV_R_INITIALIZING")))
return(invisible(TRUE))
Sys.setenv("RENV_R_INITIALIZING" = "true")
on.exit(Sys.unsetenv("RENV_R_INITIALIZING"), add = TRUE)
options(renv.consent = TRUE)
library(utils, lib.loc = .Library)
if ("renv" %in% loadedNamespaces()) {
spec <- .getNamespaceInfo(.getNamespace("renv"), "spec")
if (identical(spec[["version"]], version))
return(invisible(TRUE))
unloadNamespace("renv")
}
bootstrap <- function(version, library) {
tarball <- tryCatch(renv_bootstrap_download(version), error = identity)
if (inherits(tarball, "error"))
stop("failed to download renv ", version)
status <- tryCatch(renv_bootstrap_install(version, tarball, library), error = identity)
if (inherits(status, "error"))
stop("failed to install renv ", version)
}
renv_bootstrap_tests_running <- function() {
getOption("renv.tests.running", default = FALSE)
}
renv_bootstrap_repos <- function() {
repos <- Sys.getenv("RENV_CONFIG_REPOS_OVERRIDE", unset = NA)
if (!is.na(repos))
return(repos)
if (renv_bootstrap_tests_running())
return(getOption("renv.tests.repos"))
repos <- getOption("repos")
repos[repos == "@CRAN@"] <- getOption(
"renv.repos.cran",
"https://cloud.r-project.org"
)
default <- c(FALLBACK = "https://cloud.r-project.org")
extra <- getOption("renv.bootstrap.repos", default = default)
repos <- c(repos, extra)
dupes <- duplicated(repos) | duplicated(names(repos))
repos[!dupes]
}
renv_bootstrap_download <- function(version) {
nv <- numeric_version(version)
components <- unclass(nv)[[1]]
methods <- if (length(components) == 4L) {
list(
renv_bootstrap_download_github
)
} else {
list(
renv_bootstrap_download_cran_latest,
renv_bootstrap_download_cran_archive
)
}
for (method in methods) {
path <- tryCatch(method(version), error = identity)
if (is.character(path) && file.exists(path))
return(path)
}
stop("failed to download renv ", version)
}
renv_bootstrap_download_impl <- function(url, destfile) {
mode <- "wb"
fixup <-
Sys.info()[["sysname"]] == "Windows" &&
substring(url, 1L, 5L) == "file:"
if (fixup)
mode <- "w+b"
utils::download.file(
url = url,
destfile = destfile,
mode = mode,
quiet = TRUE
)
}
renv_bootstrap_download_cran_latest <- function(version) {
spec <- renv_bootstrap_download_cran_latest_find(version)
message("* Downloading renv ", version, " ... ", appendLF = FALSE)
type <- spec$type
repos <- spec$repos
info <- tryCatch(
utils::download.packages(
pkgs = "renv",
destdir = tempdir(),
repos = repos,
type = type,
quiet = TRUE
),
condition = identity
)
if (inherits(info, "condition")) {
message("FAILED")
return(FALSE)
}
message("OK (downloaded ", type, ")")
info[1, 2]
}
renv_bootstrap_download_cran_latest_find <- function(version) {
binary <-
getOption("renv.bootstrap.binary", default = TRUE) &&
!identical(.Platform$pkgType, "source") &&
!identical(getOption("pkgType"), "source") &&
Sys.info()[["sysname"]] %in% c("Darwin", "Windows")
types <- c(if (binary) "binary", "source")
for (type in types) {
for (repos in renv_bootstrap_repos()) {
db <- tryCatch(
as.data.frame(
utils::available.packages(type = type, repos = repos),
stringsAsFactors = FALSE
),
error = identity
)
if (inherits(db, "error"))
next
entry <- db[db$Package %in% "renv" & db$Version %in% version, ]
if (nrow(entry) == 0)
next
spec <- list(entry = entry, type = type, repos = repos)
return(spec)
}
}
fmt <- "renv %s is not available from your declared package repositories"
stop(sprintf(fmt, version))
}
renv_bootstrap_download_cran_archive <- function(version) {
name <- sprintf("renv_%s.tar.gz", version)
repos <- renv_bootstrap_repos()
urls <- file.path(repos, "src/contrib/Archive/renv", name)
destfile <- file.path(tempdir(), name)
message("* Downloading renv ", version, " ... ", appendLF = FALSE)
for (url in urls) {
status <- tryCatch(
renv_bootstrap_download_impl(url, destfile),
condition = identity
)
if (identical(status, 0L)) {
message("OK")
return(destfile)
}
}
message("FAILED")
return(FALSE)
}
renv_bootstrap_download_github <- function(version) {
enabled <- Sys.getenv("RENV_BOOTSTRAP_FROM_GITHUB", unset = "TRUE")
if (!identical(enabled, "TRUE"))
return(FALSE)
pat <- Sys.getenv("GITHUB_PAT")
if (nzchar(Sys.which("curl")) && nzchar(pat)) {
fmt <- "--location --fail --header \"Authorization: token %s\""
extra <- sprintf(fmt, pat)
saved <- options("download.file.method", "download.file.extra")
options(download.file.method = "curl", download.file.extra = extra)
on.exit(do.call(base::options, saved), add = TRUE)
} else if (nzchar(Sys.which("wget")) && nzchar(pat)) {
fmt <- "--header=\"Authorization: token %s\""
extra <- sprintf(fmt, pat)
saved <- options("download.file.method", "download.file.extra")
options(download.file.method = "wget", download.file.extra = extra)
on.exit(do.call(base::options, saved), add = TRUE)
}
message("* Downloading renv ", version, " from GitHub ... ", appendLF = FALSE)
url <- file.path("https://api.github.com/repos/rstudio/renv/tarball", version)
name <- sprintf("renv_%s.tar.gz", version)
destfile <- file.path(tempdir(), name)
status <- tryCatch(
renv_bootstrap_download_impl(url, destfile),
condition = identity
)
if (!identical(status, 0L)) {
message("FAILED")
return(FALSE)
}
message("OK")
return(destfile)
}
renv_bootstrap_install <- function(version, tarball, library) {
message("* Installing renv ", version, " ... ", appendLF = FALSE)
dir.create(library, showWarnings = FALSE, recursive = TRUE)
bin <- R.home("bin")
exe <- if (Sys.info()[["sysname"]] == "Windows") "R.exe" else "R"
r <- file.path(bin, exe)
args <- c("--vanilla", "CMD", "INSTALL", "-l", shQuote(library), shQuote(tarball))
output <- system2(r, args, stdout = TRUE, stderr = TRUE)
message("Done!")
status <- attr(output, "status")
if (is.numeric(status) && !identical(status, 0L)) {
header <- "Error installing renv:"
lines <- paste(rep.int("=", nchar(header)), collapse = "")
text <- c(header, lines, output)
writeLines(text, con = stderr())
}
status
}
renv_bootstrap_platform_prefix <- function() {
version <- paste(R.version$major, R.version$minor, sep = ".")
prefix <- paste("R", numeric_version(version)[1, 1:2], sep = "-")
devel <-
identical(R.version[["status"]], "Under development (unstable)") ||
identical(R.version[["nickname"]], "Unsuffered Consequences")
if (devel)
prefix <- paste(prefix, R.version[["svn rev"]], sep = "-r")
components <- c(prefix, R.version$platform)
prefix <- renv_bootstrap_platform_prefix_impl()
if (!is.na(prefix) && nzchar(prefix))
components <- c(prefix, components)
paste(components, collapse = "/")
}
renv_bootstrap_platform_prefix_impl <- function() {
prefix <- Sys.getenv("RENV_PATHS_PREFIX", unset = NA)
if (!is.na(prefix))
return(prefix)
auto <- Sys.getenv("RENV_PATHS_PREFIX_AUTO", unset = NA)
if (auto %in% c("TRUE", "True", "true", "1"))
return(renv_bootstrap_platform_prefix_auto())
""
}
renv_bootstrap_platform_prefix_auto <- function() {
prefix <- tryCatch(renv_bootstrap_platform_os(), error = identity)
if (inherits(prefix, "error") || prefix %in% "unknown") {
msg <- paste(
"failed to infer current operating system",
"please file a bug report at https://github.com/rstudio/renv/issues",
sep = "; "
)
warning(msg)
}
prefix
}
renv_bootstrap_platform_os <- function() {
sysinfo <- Sys.info()
sysname <- sysinfo[["sysname"]]
if (sysname == "Windows")
return("windows")
else if (sysname == "Darwin")
return("macos")
for (file in c("/etc/os-release", "/usr/lib/os-release"))
if (file.exists(file))
return(renv_bootstrap_platform_os_via_os_release(file, sysinfo))
if (file.exists("/etc/redhat-release"))
return(renv_bootstrap_platform_os_via_redhat_release())
"unknown"
}
renv_bootstrap_platform_os_via_os_release <- function(file, sysinfo) {
release <- utils::read.table(
file = file,
sep = "=",
quote = c("\"", "'"),
col.names = c("Key", "Value"),
comment.char = "
stringsAsFactors = FALSE
)
vars <- as.list(release$Value)
names(vars) <- release$Key
os <- tolower(sysinfo[["sysname"]])
id <- "unknown"
for (field in c("ID", "ID_LIKE")) {
if (field %in% names(vars) && nzchar(vars[[field]])) {
id <- vars[[field]]
break
}
}
version <- "unknown"
for (field in c("UBUNTU_CODENAME", "VERSION_CODENAME", "VERSION_ID", "BUILD_ID")) {
if (field %in% names(vars) && nzchar(vars[[field]])) {
version <- vars[[field]]
break
}
}
paste(c(os, id, version), collapse = "-")
}
renv_bootstrap_platform_os_via_redhat_release <- function() {
contents <- readLines("/etc/redhat-release", warn = FALSE)
id <- if (grepl("centos", contents, ignore.case = TRUE))
"centos"
else if (grepl("redhat", contents, ignore.case = TRUE))
"redhat"
else
"unknown"
version <- "unknown"
parts <- strsplit(contents, "[[:space:]]")[[1L]]
for (part in parts) {
nv <- tryCatch(numeric_version(part), error = identity)
if (inherits(nv, "error"))
next
version <- nv[1, 1]
break
}
paste(c("linux", id, version), collapse = "-")
}
renv_bootstrap_library_root_name <- function(project) {
asis <- Sys.getenv("RENV_PATHS_LIBRARY_ROOT_ASIS", unset = "FALSE")
if (asis)
return(basename(project))
id <- substring(renv_bootstrap_hash_text(project), 1L, 8L)
paste(basename(project), id, sep = "-")
}
renv_bootstrap_library_root <- function(project) {
path <- Sys.getenv("RENV_PATHS_LIBRARY", unset = NA)
if (!is.na(path))
return(path)
path <- Sys.getenv("RENV_PATHS_LIBRARY_ROOT", unset = NA)
if (!is.na(path)) {
name <- renv_bootstrap_library_root_name(project)
return(file.path(path, name))
}
prefix <- renv_bootstrap_profile_prefix()
paste(c(project, prefix, "renv/library"), collapse = "/")
}
renv_bootstrap_validate_version <- function(version) {
loadedversion <- utils::packageDescription("renv", fields = "Version")
if (version == loadedversion)
return(TRUE)
components <- strsplit(loadedversion, "[.-]")[[1]]
remote <- if (length(components) == 4L)
paste("rstudio/renv", loadedversion, sep = "@")
else
paste("renv", loadedversion, sep = "@")
fmt <- paste(
"renv %1$s was loaded from project library, but this project is configured to use renv %2$s.",
"Use `renv::record(\"%3$s\")` to record renv %1$s in the lockfile.",
"Use `renv::restore(packages = \"renv\")` to install renv %2$s into the project library.",
sep = "\n"
)
msg <- sprintf(fmt, loadedversion, version, remote)
warning(msg, call. = FALSE)
FALSE
}
renv_bootstrap_hash_text <- function(text) {
hashfile <- tempfile("renv-hash-")
on.exit(unlink(hashfile), add = TRUE)
writeLines(text, con = hashfile)
tools::md5sum(hashfile)
}
renv_bootstrap_load <- function(project, libpath, version) {
if (!requireNamespace("renv", lib.loc = libpath, quietly = TRUE))
return(FALSE)
renv_bootstrap_validate_version(version)
renv::load(project)
TRUE
}
renv_bootstrap_profile_load <- function(project) {
profile <- Sys.getenv("RENV_PROFILE", unset = NA)
if (!is.na(profile) && nzchar(profile))
return(profile)
path <- file.path(project, "renv/local/profile")
if (!file.exists(path))
return(NULL)
contents <- readLines(path, warn = FALSE)
if (length(contents) == 0L)
return(NULL)
profile <- contents[[1L]]
if (nzchar(profile))
Sys.setenv(RENV_PROFILE = profile)
profile
}
renv_bootstrap_profile_prefix <- function() {
profile <- renv_bootstrap_profile_get()
if (!is.null(profile))
return(file.path("renv/profiles", profile))
}
renv_bootstrap_profile_get <- function() {
profile <- Sys.getenv("RENV_PROFILE", unset = "")
renv_bootstrap_profile_normalize(profile)
}
renv_bootstrap_profile_set <- function(profile) {
profile <- renv_bootstrap_profile_normalize(profile)
if (is.null(profile))
Sys.unsetenv("RENV_PROFILE")
else
Sys.setenv(RENV_PROFILE = profile)
}
renv_bootstrap_profile_normalize <- function(profile) {
if (is.null(profile) || profile %in% c("", "default"))
return(NULL)
profile
}
renv_bootstrap_profile_load(project)
root <- renv_bootstrap_library_root(project)
prefix <- renv_bootstrap_platform_prefix()
libpath <- file.path(root, prefix)
if (renv_bootstrap_load(project, libpath, version))
return(TRUE)
prefix <- paste("
postfix <- paste(rep.int("-", 77L - nchar(prefix)), collapse = "")
header <- paste(prefix, postfix)
message(header)
bootstrap(version, libpath)
if (!is.na(Sys.getenv("RENV_BOOTSTRAP_INSTALL_ONLY", unset = NA)))
return(TRUE)
if (requireNamespace("renv", lib.loc = libpath, quietly = TRUE)) {
message("* Successfully installed and loaded renv ", version, ".")
return(renv::load())
}
msg <- c(
"Failed to find an renv installation: the project will not be loaded.",
"Use `renv::activate()` to re-initialize the project."
)
warning(paste(msg, collapse = "\n"), call. = FALSE)
}) |
context("GPModel_combined_GP_grouped_random_effects")
sim_rand_unif <- function(n, init_c=0.1){
mod_lcg <- 2^32
sim <- rep(NA, n)
sim[1] <- floor(init_c * mod_lcg)
for(i in 2:n) sim[i] <- (22695477 * sim[i-1] + 1) %% mod_lcg
return(sim / mod_lcg)
}
n <- 100
d <- 2
coords <- matrix(sim_rand_unif(n=n*d, init_c=0.1), ncol=d)
D <- as.matrix(dist(coords))
sigma2_1 <- 1^2
rho <- 0.1
Sigma <- sigma2_1 * exp(-D/rho) + diag(1E-20,n)
L <- t(chol(Sigma))
b_1 <- qnorm(sim_rand_unif(n=n, init_c=0.8))
Z_SVC <- matrix(sim_rand_unif(n=n*2, init_c=0.6), ncol=2)
colnames(Z_SVC) <- c("var1","var2")
b_2 <- qnorm(sim_rand_unif(n=n, init_c=0.17))
b_3 <- qnorm(sim_rand_unif(n=n, init_c=0.42))
m <- 10
group <- rep(1,n)
for(i in 1:m) group[((i-1)*n/m+1):(i*n/m)] <- i
Z1 <- model.matrix(rep(1,n) ~ factor(group) - 1)
b_gr_1 <- qnorm(sim_rand_unif(n=m, init_c=0.56))
n_obs_gr <- n/m
group2 <- rep(1,n)
for(i in 1:m) group2[(1:n_obs_gr)+n_obs_gr*(i-1)] <- 1:n_obs_gr
Z2 <- model.matrix(rep(1,n)~factor(group2)-1)
b_gr_2 <- qnorm(sim_rand_unif(n=n_obs_gr, init_c=0.36))
x <- cos((1:n-n/2)^2*5.5*pi/n)
Z3 <- diag(x) %*% Z1
b_gr_3 <- qnorm(sim_rand_unif(n=m, init_c=0.5678))
xi <- qnorm(sim_rand_unif(n=n, init_c=0.1)) / 5
X <- cbind(rep(1,n),sin((1:n-n/2)^2*2*pi/n))
beta <- c(2,2)
cluster_ids <- c(rep(1,0.4*n),rep(2,0.6*n))
eps <- as.vector(L %*% b_1) + as.vector(Z1 %*% b_gr_1)
eps_svc <- as.vector(L %*% b_1 + Z_SVC[,1] * L %*% b_2 + Z_SVC[,2] * L %*% b_3) +
Z1 %*% b_gr_1 + Z2 %*% b_gr_2 + Z3 %*% b_gr_3
test_that("Combined Gaussian process and grouped random effects model ", {
y <- eps + xi
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential", group_data = group)
fit(gp_model, y = y, params = list(optimizer_cov = "gradient_descent", std_dev = TRUE,
lr_cov = 0.15, use_nesterov_acc = TRUE,
acc_rate_cov = 0.8, delta_rel_conv=1E-6))
cov_pars <- c(0.02924971, 0.09509924, 0.61463579, 0.30619763, 1.02189002, 0.25932007, 0.11327419, 0.04276286)
expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6)
expect_equal(dim(gp_model$get_cov_pars())[2], 4)
expect_equal(dim(gp_model$get_cov_pars())[1], 2)
expect_equal(gp_model$get_num_optim_iter(), 33)
gp_model <- fitGPModel(gp_coords = coords, cov_function = "exponential", group_data = group, y = y,
params = list(optimizer_cov = "fisher_scoring", std_dev = FALSE))
cov_pars <- c(0.02262645, 0.61471473, 1.02446559, 0.11177327)
cov_pars_est <- as.vector(gp_model$get_cov_pars())
expect_lt(sum(abs(cov_pars_est-cov_pars)),1E-5)
expect_equal(class(cov_pars_est), "numeric")
expect_equal(length(cov_pars_est), 4)
expect_equal(gp_model$get_num_optim_iter(), 8)
gp_model <- fitGPModel(gp_coords = coords, cov_function = "exponential", group_data = group, y = y,
params = list(optimizer_cov = "fisher_scoring", std_dev = FALSE))
coord_test <- cbind(c(0.1,0.2,0.7),c(0.9,0.4,0.55))
group_test <- c(1,2,9999)
pred <- predict(gp_model, y=y, gp_coords_pred = coord_test,
group_data_pred = group_test, predict_cov_mat = TRUE)
expected_mu <- c(0.3769074, 0.6779193, 0.1803276)
expected_cov <- c(0.619329940, 0.007893047, 0.001356784, 0.007893047, 0.402082274,
-0.014950019, 0.001356784, -0.014950019, 1.046082243)
expect_lt(sum(abs(pred$mu-expected_mu)),1E-6)
expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-6)
pred <- predict(gp_model, y=y, gp_coords_pred = coord_test,
group_data_pred = group_test, predict_var = TRUE)
expect_lt(sum(abs(pred$mu-expected_mu)),1E-6)
expect_lt(sum(abs(as.vector(pred$var)-expected_cov[c(1,5,9)])),1E-6)
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential", group_data = group)
pred <- predict(gp_model, y=y, gp_coords_pred = coord_test, group_data_pred = group_test,
cov_pars = c(0.02,1,1.2,0.9), predict_cov_mat = TRUE)
expected_mu <- c(0.3995192, 0.6775987, 0.3710522)
expected_cov <- c(0.1257410304, 0.0017195802, 0.0007660953, 0.0017195802,
0.0905110441, -0.0028869470, 0.0007660953, -0.0028869470, 1.1680614026)
expect_lt(sum(abs(pred$mu-expected_mu)),1E-6)
expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-6)
nll <- gp_model$neg_log_likelihood(cov_pars=c(0.1,0.9,1.6,0.2),y=y)
expect_lt(abs(nll-134.3491913),1E-6)
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential", group_data = group)
opt <- optim(par=c(0.1,1.5,2,0.2), fn=gp_model$neg_log_likelihood, y=y, method="Nelder-Mead")
expect_lt(sum(abs(opt$par-cov_pars)),1E-3)
expect_lt(abs(opt$value-(132.4136164)),1E-5)
expect_equal(as.integer(opt$counts[1]), 335)
})
test_that("Combined GP and grouped random effects model with linear regression term ", {
y <- eps + X%*%beta + xi
gp_model <- fitGPModel(gp_coords = coords, cov_function = "exponential", group_data = group,
y = y, X=X,
params = list(optimizer_cov = "fisher_scoring", optimizer_coef = "wls", std_dev = TRUE))
cov_pars <- c(0.02258493, 0.09172947, 0.61704845, 0.30681934, 1.01910740, 0.25561489, 0.11202133, 0.04174140)
coef <- c(2.06686646, 0.34643130, 1.92847425, 0.09983966)
expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6)
expect_lt(sum(abs(as.vector(gp_model$get_coef())-coef)),1E-6)
expect_equal(gp_model$get_num_optim_iter(), 8)
coord_test <- cbind(c(0.1,0.2,0.7),c(0.9,0.4,0.55))
group_test <- c(1,2,9999)
X_test <- cbind(rep(1,3),c(-0.5,0.2,0.4))
pred <- predict(gp_model, gp_coords_pred = coord_test, group_data_pred = group_test,
X_pred = X_test, predict_cov_mat = TRUE)
expected_mu <- c(1.442617, 3.129006, 2.946252)
expected_cov <- c(0.615200495, 0.007850776, 0.001344528, 0.007850776, 0.399458031,
-0.014866034, 0.001344528, -0.014866034, 1.045700453)
expect_lt(sum(abs(pred$mu-expected_mu)),1E-5)
expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-6)
})
test_that("Combined GP and grouped random effects model with random coefficients ", {
y <- eps_svc + xi
gp_model <- fitGPModel(y = y, gp_coords = coords, cov_function = "exponential", gp_rand_coef_data = Z_SVC,
group_data = cbind(group,group2), group_rand_coef_data = x, ind_effect_group_rand_coef = 1,
params = list(optimizer_cov = "gradient_descent", std_dev = TRUE,
lr_cov = 0.1, use_nesterov_acc = TRUE,
acc_rate_cov = 0.5, maxit=10))
expected_values <- c(0.4005820, 0.3111155, 0.4564903, 0.2693683, 1.3819153, 0.7034572,
1.0378165, 0.5916405, 1.3684672, 0.6861339, 0.1854759, 0.1430030,
0.5790945, 0.9748316, 0.2103132, 0.4453663, 0.2639379, 0.8772996, 0.2210313, 0.9282390)
expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-expected_values)),1E-6)
expect_equal(gp_model$get_num_optim_iter(), 10)
gp_model <- GPModel(gp_coords = coords, gp_rand_coef_data = Z_SVC, cov_function = "exponential",
group_data = cbind(group,group2), group_rand_coef_data = x, ind_effect_group_rand_coef = 1)
coord_test <- cbind(c(0.1,0.2,0.7),c(0.9,0.4,0.55))
Z_SVC_test <- cbind(c(0.1,0.3,0.7),c(0.5,0.2,0.4))
group_data_pred = cbind(c(1,1,7),c(2,1,3))
group_rand_coef_data_pred = c(0,0.1,0.3)
pred <- gp_model$predict(y = y, gp_coords_pred = coord_test,
gp_rand_coef_data_pred=Z_SVC_test,
group_data_pred=group_data_pred, group_rand_coef_data_pred=group_rand_coef_data_pred,
cov_pars = c(0.1,0.9,0.8,1.2,1,0.1,0.8,0.15,1.1,0.08), predict_cov_mat = TRUE)
expected_mu <- c(0.8657964, 1.5419953, -2.5645509)
expected_cov <- c(1.177484599, 0.073515374, 0.030303784, 0.073515374,
0.841043737, 0.004484463, 0.030303784, 0.004484463, 1.011570695)
expect_lt(sum(abs(pred$mu-expected_mu)),1E-6)
expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-6)
gp_model <- fitGPModel(y = y, gp_coords = coords, cov_function = "exponential", gp_rand_coef_data = Z_SVC,
group_data = cbind(group,group2), group_rand_coef_data = x, ind_effect_group_rand_coef = 1,
params = list(optimizer_cov = "fisher_scoring", std_dev = FALSE,
use_nesterov_acc= FALSE, maxit=2))
expected_values <- c(0.6093408, 0.8157278, 1.6016549, 1.2415390,1.7255119,
0.1400087, 1.1872654, 0.1469588, 0.4605333, 0.2635957)
expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-expected_values)),1E-6)
expect_equal(gp_model$get_num_optim_iter(), 2)
nll <- gp_model$neg_log_likelihood(cov_pars=c(0.1,0.9,0.8,1.2,1,0.1,0.8,0.15,1.1,0.08),y=y)
expect_lt(abs(nll-182.3674191),1E-5)
})
test_that("Combined GP and grouped random effects model with cluster_id's not constant ", {
y <- eps + xi
gp_model <- fitGPModel(gp_coords = coords, cov_function = "exponential", group_data = group,
y = y, cluster_ids = cluster_ids,
params = list(optimizer_cov = "fisher_scoring", std_dev = TRUE))
cov_pars <- c(0.005306836, 0.087915468, 0.615012714, 0.315022228,
1.043024690, 0.228236254, 0.113716679, 0.039839629)
expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-5)
expect_equal(gp_model$get_num_optim_iter(), 8)
coord_test <- cbind(c(0.1,0.2,0.7),c(0.9,0.4,0.55))
group_data_pred = c(1,1,9999)
cluster_ids_pred = c(1,3,1)
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential", group_data = group,
cluster_ids = cluster_ids)
pred <- gp_model$predict(y = y, gp_coords_pred = coord_test, group_data_pred = group_data_pred,
cluster_ids_pred = cluster_ids_pred,
cov_pars = c(0.1,1.5,1,0.15), predict_cov_mat = TRUE)
expected_mu <- c(0.1275193, 0.0000000, 0.5948827)
expected_cov <- c(0.76147286, 0.00000000, -0.01260688, 0.00000000, 2.60000000,
0.00000000, -0.01260688, 0.00000000, 2.15607110)
expect_lt(sum(abs(pred$mu-expected_mu)),1E-6)
expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-6)
})
if(Sys.getenv("GPBOOST_ALL_TESTS") == "GPBOOST_ALL_TESTS"){
test_that("Saving a GPModel and loading from filw works ", {
y <- eps + X%*%beta + xi
gp_model <- fitGPModel(gp_coords = coords, cov_function = "exponential", group_data = group,
y = y, X=X,
params = list(optimizer_cov = "fisher_scoring", optimizer_coef = "wls"))
coord_test <- cbind(c(0.1,0.2,0.7),c(0.9,0.4,0.55))
group_test <- c(1,2,9999)
X_test <- cbind(rep(1,3),c(-0.5,0.2,0.4))
pred <- predict(gp_model, gp_coords_pred = coord_test, group_data_pred = group_test,
X_pred = X_test, predict_cov_mat = TRUE)
filename <- tempfile(fileext = ".json")
saveGPModel(gp_model,filename = filename)
rm(gp_model)
gp_model_loaded <- loadGPModel(filename = filename)
pred_loaded <- predict(gp_model_loaded, gp_coords_pred = coord_test, group_data_pred = group_test,
X_pred = X_test, predict_cov_mat = TRUE)
expect_equal(pred$mu, pred_loaded$mu)
expect_equal(pred$cov, pred_loaded$cov)
})
} |
sfaLoad<- function (filename){
sfaList<-list()
load(file=filename)
return(sfaList)
}
sfaSave<- function (sfaList, filename){
save(sfaList,file=filename)
}
gaussLoad<- function (filename){
gauss<-list()
load(file=filename)
return(gauss)
}
gaussSave<- function (gauss, filename){
save(gauss,file=filename)
} |
library(magi)
library(testthat)
context("x-theta sampler")
config <- list(
nobs = 41,
noise = 0.1,
kernel = "generalMatern",
seed = 123,
npostplot = 5,
loglikflag = "band",
bandsize = 20,
hmcSteps = 100,
n.iter = 1e3,
burninRatio = 0.1,
stepSizeFactor = 1
)
VRtrue <- read.csv(system.file("testdata/FN.csv", package="magi"))
pram.true <- list(
abc=c(0.2,0.2,3),
rphi=c(0.9486433, 3.2682434),
vphi=c(1.9840824, 1.1185157),
sigma=config$noise
)
fn.true <- VRtrue[seq(1,401,by=2),]
fn.true$time <- seq(0,20,0.1)
fn.sim <- fn.true
set.seed(config$seed)
fn.sim[,1:2] <- fn.sim[,1:2]+rnorm(length(unlist(fn.sim[,1:2])), sd=config$noise)
tvec.full <- fn.sim$time
fn.sim.all <- fn.sim
fn.sim[-seq(1,nrow(fn.sim), length=config$nobs),] <- NaN
fn.sim.obs <- fn.sim[seq(1,nrow(fn.sim), length=config$nobs),]
tvec.nobs <- fn.sim$time[seq(1,nrow(fn.sim), length=config$nobs)]
foo <- outer(tvec.full, t(tvec.full),'-')[,1,]
r <- abs(foo)
r2 <- r^2
signr <- -sign(foo)
foo <- outer(tvec.nobs, t(tvec.nobs),'-')[,1,]
r.nobs <- abs(foo)
r2.nobs <- r.nobs^2
signr.nobs <- -sign(foo)
marlikmap <- list(par = c(2.314, 1.346, 0.622, 2.452, 0.085))
cursigma <- marlikmap$par[5]
curCovV <- calCov(marlikmap$par[1:2], r, signr, bandsize=config$bandsize,
kerneltype=config$kernel)
curCovR <- calCov(marlikmap$par[3:4], r, signr, bandsize=config$bandsize,
kerneltype=config$kernel)
cursigma <- marlikmap$par[5]
curCovV$mu <- as.vector(fn.true[,1])
curCovR$mu <- as.vector(fn.true[,2])
dotmu <- magi:::fODE(pram.true$abc, fn.true[,1:2])
curCovV$dotmu <- as.vector(dotmu[,1])
curCovR$dotmu <- as.vector(dotmu[,2])
xth <- c(fn.true$Vtrue, fn.true$Rtrue, pram.true$abc)
rstep <- rep(1e10, length(xth))
foo <- magi:::xthetaSample(data.matrix(fn.sim[,1:2]), list(curCovV, curCovR), cursigma,
xth, rstep, config$hmcSteps, F, loglikflag = "usual")
test_that("NA should not appear after xthetaSample", {
expect_true(all(!is.na(foo$final)))
})
rstep <- rep(1e30, length(xth))
foo <- magi:::xthetaSample(data.matrix(fn.sim[,1:2]), list(curCovV, curCovR), cursigma,
xth, rstep, config$hmcSteps, T, loglikflag = "usual")
test_that("NA should not appear after xthetaSample", {
expect_true(all(!is.na(foo$final)))
})
rstep <- rep(0.0001, length(xth))
set.seed(234)
foo1 <- magi:::xthetaSample(data.matrix(fn.sim[,1:2]), list(curCovV, curCovR), cursigma,
xth, rstep, config$hmcSteps, F, loglikflag = "usual")
set.seed(234)
foo2 <- magi:::xthetaSample(data.matrix(fn.sim[,1:2]), list(curCovV, curCovR), cursigma,
xth, rstep, config$hmcSteps, T, loglikflag = "usual")
test_that("return trajectory or not does not affect result", {
expect_equal(foo1$final, foo2$final)
}) |
Covid19DataHub <- R6::R6Class("Covid19DataHub",
inherit = CountryDataClass,
public = list(
origin = "Covid-19 Data Hub",
supported_levels = list("1", "2", "3"),
supported_region_names = list(
"1" = "country",
"2" = "region",
"3" = "subregion"
),
supported_region_codes = list(
"1" = "iso_3166_1_alpha_3", "2" = "iso_code", "3" = "subregion_code"
),
level_data_urls = list(
"1" = list(
"country" = "https://storage.covid19datahub.io/rawdata-1.csv"
),
"2" = list(
"region" = "https://storage.covid19datahub.io/rawdata-2.csv"
),
"3" = list(
"subregion" = "https://storage.covid19datahub.io/rawdata-3.csv"
)
),
source_data_cols = c("confirmed", "deaths", "recovered", "tested", "hosp"),
source_text = "COVID-19 Data Hub",
source_url = "https://covid19datahub.io",
clean_common = function() {
raw_data <- self$data$raw[[names(self$level_data_urls[[self$level]])]]
self$data$clean <- raw_data %>%
rename(
level_1_region_code = .data$iso_alpha_3,
level_1_region = .data$administrative_area_level_1,
level_2_region_code = .data$iso_alpha_2,
level_2_region = .data$administrative_area_level_2,
level_3_region_code = .data$iso_numeric,
level_3_region = .data$administrative_area_level_3,
cases_new = .data$confirmed,
deaths_new = .data$deaths,
tested_new = .data$tests,
recovered_new = .data$recovered,
hosp_new = .data$hosp
) %>%
mutate(
date = ymd(.data$date),
cases_new = as.numeric(.data$cases_new),
deaths_new = as.numeric(.data$deaths_new),
recovered_new = as.numeric(.data$recovered_new),
tested_new = as.numeric(.data$tested_new),
hosp_new = as.numeric(.data$hosp_new)
)
all_levels <- paste0("^level_", self$supported_levels, "_*")
keep_levels <- paste0("^level_", seq_len(as.integer(self$level)), "_*")
remove_levels <- unlist(map(
setdiff(all_levels, keep_levels),
~ {
grep(.x, colnames(self$data$clean), value = TRUE)
}
))
self$data$clean <- self$data$clean %>%
select(
-all_of(remove_levels)
)
}
)
) |
diff_Chao1bc <-
function(ksi, s) {
D12 <- ksi[1]
f11 <- ksi[2]
fp1 <- ksi[3]
f1p <- ksi[4]
fp2 <- ksi[5]
f2p <- ksi[6]
if (s == 1){
d <- 1
} else if (s == 2) {
d <- f1p * fp1 / (4 * (f2p + 1) * (fp2 + 1))
} else if (s == 3) {
d <- f11 * f1p / (4 * (f2p + 1) * (fp2 + 1)) + (2 * fp1 - 1)/ (2 * (fp2 + 1))
} else if (s == 4) {
d <- f11 * fp1 / (4 * (f2p + 1) * (fp2 + 1)) + (2 * f1p - 1)/ (2 * (f2p + 1))
} else if (s == 5) {
d <- - f11 * f1p * fp1 / (4 * (f2p + 1)) / (fp2 + 1)^2 - fp1 * (fp1 - 1) / 2 / (fp2 + 1)^2
} else if (s == 6) {
d <- - f11 * f1p * fp1 / (4 * (fp2 + 1)) / (f2p + 1)^2 - f1p * (f1p - 1) / 2 / (f2p + 1)^2
} else {
d <- 0
}
return(d)
} |
mod_clone_tables_ui <- function(id) {
ns <- NS(id)
tabPanel(
title = "Clone Tables",
column(
width = 12,
fluidRow(column(width = 12,
h2("Clone Tables"))),
fluidRow(column(
width = 12,
tags$div(
align = "left",
class = "multicol",
checkboxGroupInput(
inputId = ns("selected_tables"),
label = "Select table(s) to clone",
choices = NULL
)
)
)),
fluidRow(column(
width = 12,
selectInput(
inputId = ns("table_list"),
label = "Edit Properties of: ",
choices = NULL
)
)),
fluidRow(column(
width = 12,
textInput(inputId = ns("new_table_name"),
label = "New Table Name")
)),
fluidRow(column(
width = 12,
tags$div(
align = "left",
class = "multicol",
checkboxGroupInput(inputId = ns("selected_columns"),
label = "Select Columns to clone")
)
)),
fluidRow(column(
width = 12,
checkboxInput(inputId = ns("include_data"),
label = "Include Data")
)),
fluidRow(column(
width = 12,
actionButton(inputId = ns("clone"),
label = "Clone")
)),
br(),
br()
)
)
}
mod_clone_tables_server <- function(input, output, session, conn) {
ns <- session$ns
info <- reactiveValues(
table_name_list = list(),
column_list = list(),
include_data = list()
)
action_clone_tables <- reactiveValues(tables_cloned = NULL)
observeEvent(list(conn$active_db, conn$input_sidebar_menu), {
if (!is.null(conn$active_db)) {
updateCheckboxGroupInput(
session = session,
inputId = "selected_tables",
choices = RSQLite::dbListTables(conn$active_db)
)
for (i in RSQLite::dbListTables(conn$active_db)) {
info$table_name_list[[i]] = paste0(i, "_copy")
info$column_list[[i]] = RSQLite::dbGetQuery(conn$active_db,
table_structure_query(i))$name
info$include_data[[i]] = TRUE
}
}
})
observeEvent(input$selected_tables, {
updateSelectInput(
session = session,
inputId = "table_list",
choices = input$selected_tables
)
})
observeEvent(input$table_list, {
updateTextInput(
session = session,
inputId = "new_table_name",
value = info$table_name_list[[input$table_list]]
)
if (!is.null(conn$active_db))
updateCheckboxGroupInput(
session = session,
inputId = "selected_columns",
choices = RSQLite::dbGetQuery(conn$active_db,
table_structure_query(input$table_list))$name,
selected = info$column_list[[input$table_list]]
)
updateCheckboxInput(
session = session,
inputId = "include_data",
value = info$include_data[[input$table_list]]
)
})
observeEvent(input$new_table_name, {
info$table_name_list[[input$table_list]] <- input$new_table_name
if (!is.null(conn$active_db)) {
if (input$new_table_name %in% RSQLite::dbListTables(conn$active_db)) {
showNotification(
ui = "Table with this name already present in database.
Please enter a new name.",
duration = 3,
type = "error"
)
}
}
})
observeEvent(input$selected_columns, {
if (!is.null(input$table_list)) {
info$column_list[[input$table_list]] <- input$selected_columns
}
}, ignoreNULL = FALSE)
observeEvent(input$include_data, {
info$include_data[[input$table_list]] <-
input$include_data
})
observeEvent(input$clone, {
tryCatch({
if (is.null(input$selected_tables)) {
showNotification(ui = "No table selected.",
duration = 3,
type = "error")
}
else{
for (i in input$selected_tables) {
if (!is.null(info$column_list[[i]]))
{
if (info$table_name_list[[i]] %in% RSQLite::dbListTables(conn$active_db)) {
showNotification(
ui = paste0(
"Table with name ",
info$table_name_list[[i]],
" already present in database.
This table not cloned."
),
duration = 3,
type = "error"
)
}
else{
RSQLite::dbExecute(
conn$active_db,
clone_query(
info$table_name_list[[i]],
i,
info$column_list[[i]],
info$include_data[[i]]
)
)
}
}
else
showNotification(
ui = paste0(
" No columns selected for table ",
i,
". This table could not be cloned."
),
duration = 10,
type = "error"
)
}
action_clone_tables$tables_cloned <- input$clone
showNotification(ui = "Selected tables cloned successfully.",
duration = 5,
type = "message")
updateCheckboxGroupInput(
session = session,
inputId = "selected_tables",
choices = RSQLite::dbListTables(conn$active_db),
selected = input$selected_tables
)
}
},
error = function(err) {
showNotification(
ui = paste0(err, "Further Tables not cloned."),
duration = 10,
type = "error"
)
})
})
return(action_clone_tables)
} |
context("images")
test_that("returns expected output for public images", {
skip_on_cran()
imgs <- images()
expect_is(imgs, "list")
expect_is(imgs[[1]], "image")
expect_is(imgs[[1]]$id, "integer")
expect_is(imgs[[1]]$name, "character")
expect_true(imgs[[1]]$public)
})
test_that("fails well with wrong input type to private parameter", {
skip_on_cran()
expect_error(images(private = "af"), "is not TRUE")
})
test_that("works with type parameter", {
skip_on_cran()
imgs_dist <- images(type = "distribution")
imgs_appl <- c(images(type = "application"), images(type = "application", page = 2))
expect_is(imgs_dist, "list")
expect_is(imgs_appl, "list")
expect_is(imgs_dist[[1]], "image")
expect_is(imgs_dist[[1]]$regions, "list")
expect_is(imgs_dist[[1]]$regions[[1]], "character")
expect_is(imgs_appl[[1]], "image")
expect_is(imgs_appl[[1]]$regions, "list")
expect_is(imgs_appl[[1]]$regions[[1]], "character")
})
test_that("public parameter is defunct", {
skip_on_cran()
expect_error(images(public = TRUE), "The parameter public has been removed, see private")
})
test_that("httr curl options work", {
skip_on_cran()
library("httr")
expect_error(images(config = timeout(seconds = 0.001)))
}) |
.ptime <- proc.time()
set.seed(123)
demos <- c("Hershey", "Japanese", "lm.glm", "nlm", "plotmath")
for(nam in demos) demo(nam, character.only = TRUE)
cat("Time elapsed: ", proc.time() - .ptime, "\n") |
setClass("mdt",
representation(name="character",table="data.frame"),
prototype(name="sample multiple decrement table",table=data.frame(x=seq(0,2,1),
lx=c(1000,500,200),c1=c(200,200,100),c2=c(300,100,100)))
)
setValidity("mdt",
function(object){
check<-FALSE
namesOfTable<-names(object@table)
check1<-is.element("x",namesOfTable) & is.element("lx",namesOfTable)
if (!check1) cat("Missing x or lx")
check2<-setequal(object@table$x,seq(0,max(object@table$x),by=1))
if (!check2) cat("Check the x sequence")
onlyDecrements<-object@table[,setdiff(namesOfTable,c("x","lx"))]
check3<-(sum(onlyDecrements)==object@table$lx[1])
if (!check3) cat("Check the lx")
check<-check1&check2&check3
return(check)
}
)
setMethod("initialize",
signature(.Object = "mdt"),
function (.Object, name,table,...)
{
if(missing(table)) table=data.frame(x=seq(0,2,1),
lx=c(1000,500,200),c1=c(200,200,100),c2=c(300,100,100))
if(missing(name)) name="sample multiple decrement table"
table<-.tableSanitizer(decrementDf=table)
callNextMethod(.Object=.Object, name =name, table=table,...)
}
)
setGeneric("getDecrements", function(object) standardGeneric("getDecrements"))
setMethod("getDecrements","mdt",
function(object) {
out<-setdiff(names(object@table),c("x","lx"))
return(out)
}
)
.isProb<-function(prob)
{
if((prob>1)|(prob<0)) return(FALSE) else return(TRUE)
}
.tableSanitizer<-function(decrementDf)
{
out<-decrementDf
namesOfTable<-names(decrementDf)
decrementIds<-which(!(namesOfTable %in% c("lx","x")))
pureDecrements<-decrementDf[,decrementIds]
if(!("lx" %in% namesOfTable))
{
lx<-numeric(nrow(decrementDf))
lx[1]<-sum(pureDecrements)
for(i in 2:length(lx))
{
lx[i]=lx[i-1]-sum(pureDecrements[i-1,])
}
out$lx<-lx
decrementDf<-out
cat("Added lx","\n")
}
if(!("x" %in% namesOfTable))
{
x=seq(from=0,to=(nrow(decrementDf)-1),by=1)
out$x<-x
decrementDf<-out
cat("Added x to the table...","\n")
}
if(!(min(decrementDf$x)==0))
{
x2Complete<-seq(from=0,to=(min(decrementDf$x)-1))
lx2Complete<-numeric(length(x2Complete))
lxLast<-decrementDf$lx[1]
for(i in length(lx2Complete):1)
{
lx2Complete[i]<-lxLast/(1-0.01)
lxLast<-lx2Complete[i]
}
dx2Add<- -diff(c(lx2Complete,decrementDf$lx[1]))
decrements2complete<-matrix(0,nrow=length(dx2Add),ncol=ncol(decrementDf),
dimnames=list(NULL,c("x","lx",names(decrementDf[,decrementIds]))))
decrements2complete[,1]<-x2Complete
decrements2complete[,2]<-lx2Complete
decrements2complete[,3]<-dx2Add
outMatrix<-rbind(decrements2complete,as.matrix(decrementDf))
out<-as.data.frame(outMatrix)
rownames(out)<-NULL
cat("Added fictional decrement below last x and completed x and lx until zero....","\n")
}
maxage<-which(out$x==max(out$x))
pureDecrements<-out[,decrementIds]
lastCheck<-(rowSums(pureDecrements[maxage,])==out$lx[maxage])
if (!lastCheck) {
decrements2complete<-matrix(0,nrow=1,ncol=ncol(decrementDf),dimnames=list(NULL,c("x","lx",names(decrementDf[,decrementIds]))))
decrements2complete[1,1]<-max(out$x)+1
decrements2complete[1,2]<-out$lx[1]-sum(out[,decrementIds])
decrements2complete[1,3]<-decrements2complete[1,2]
outMatrix<-rbind(out,decrements2complete)
out<-as.data.frame(outMatrix)
rownames(out)<-NULL
cat("Completed the table at top, all decrements on first cause","\n")
}
invisible(out)
}
.decr2Probs<-function(decrementDf)
{
namesOfTable<-names(decrementDf)
decrementIds<-which(!(namesOfTable %in% c("lx","x")))
pureDecrements<-decrementDf[,decrementIds]
probs<-pureDecrements/decrementDf$lx
rownames(probs)<-decrementDf$x
invisible(probs)
}
setMethod("show","mdt",
function(object){
cat(paste("Multiple decrements table",object@name),"\n")
object@table
print(object@table)
}
)
setMethod("print","mdt",
function(x){
cat(paste("Multiple decrements table",x@name),"\n")
probs<-.decr2Probs(x@table)
print(probs)
}
)
setAs("mdt","data.frame",
function(from){
return(from@table)
}
)
setMethod("summary",
signature(object="mdt"),
function (object, ...)
{
cat("This is Multiple Decrements Table: ",object@name, "\n","Omega age is: ",getOmega(object), "\n", "Stored decrements are: ", getDecrements(object))
}
) |
htmlNobr <- function(children=NULL, id=NULL, n_clicks=NULL, n_clicks_timestamp=NULL, key=NULL, role=NULL, accessKey=NULL, className=NULL, contentEditable=NULL, contextMenu=NULL, dir=NULL, draggable=NULL, hidden=NULL, lang=NULL, spellCheck=NULL, style=NULL, tabIndex=NULL, title=NULL, loading_state=NULL, ...) {
wildcard_names = names(dash_assert_valid_wildcards(attrib = list('data', 'aria'), ...))
props <- list(children=children, id=id, n_clicks=n_clicks, n_clicks_timestamp=n_clicks_timestamp, key=key, role=role, accessKey=accessKey, className=className, contentEditable=contentEditable, contextMenu=contextMenu, dir=dir, draggable=draggable, hidden=hidden, lang=lang, spellCheck=spellCheck, style=style, tabIndex=tabIndex, title=title, loading_state=loading_state, ...)
if (length(props) > 0) {
props <- props[!vapply(props, is.null, logical(1))]
}
component <- list(
props = props,
type = 'Nobr',
namespace = 'dash_html_components',
propNames = c('children', 'id', 'n_clicks', 'n_clicks_timestamp', 'key', 'role', 'accessKey', 'className', 'contentEditable', 'contextMenu', 'dir', 'draggable', 'hidden', 'lang', 'spellCheck', 'style', 'tabIndex', 'title', 'loading_state', wildcard_names),
package = 'dashHtmlComponents'
)
structure(component, class = c('dash_component', 'list'))
} |
context("waiting for a condition")
test_that("waiting for a condition", {
s <- Session$new(port = phantom$port)
on.exit(s$delete(), add = TRUE)
s$go(server$url("/wait-for-1.html"))
expect_false(s$executeScript("return $('
expect_true(s$waitFor("$('
expect_true(s$executeScript("return $('
expect_false(s$waitFor("$('
expect_identical(
s$waitFor("syntax error"),
NA
)
expect_true(
s$waitFor('"foo" == "foo"')
)
}) |
source('Schelde_pars.R')
pHfunction <- function(pH, DIC, TA, SumNH4) return(TA-TA_estimate(pH, DIC, SumNH4))
OSAmodel <- function (tt, state, parms, scenario="B1") {
with (as.list(c(state, parms)), {
pH <- uniroot (pHfunction, interval = c(6, 10), tol=1e-20,
DIC=SumCO2, TA=TA, SumNH4=SumNH4)$root
H <- 10^(-pH) * 1e6
CO2 <- H*H/(H*K1CO2 + H*H + K1CO2*K2CO2)*SumCO2
NH3 <- KNH4/(KNH4+H)*SumNH4
NH4 <- SumNH4 - NH3
ECO2 <- KL * (CO2sat - CO2)
EO2 <- KL * (O2sat - O2)
ENH3 <- KL * (NH3sat - NH3)
TO2 <- Transport(O2, O2_up, O2_down)
TNO3 <- Transport(NO3, NO3_up, NO3_down)
TTA <- Transport(TA, TA_up, TA_down)
TSumCO2 <- Transport(SumCO2, SumCO2_up, SumCO2_down)
TSumNH4 <- Transport(SumNH4, SumNH4_up, SumNH4_down)
if (scenario == "A" && tt > 365) {
TOM <- Transport(OM, OM_up_A, OM_down)
} else TOM <- Transport(OM, OM_up , OM_down)
if (scenario == "B1" && (tt > 360 && tt < 370)) {
AddNH4NO3 <- SpillNH4NO3
} else AddNH4NO3 <- 0
if (scenario == "C" && (tt > 360 && tt < 370)) {
AddNH3 <- SpillNH3
} else AddNH3 <- 0
ROx <- rOM * OM * (O2/(O2 + ksO2))
ROxCarbon <- ROx * C_Nratio
RNit <- rNitri * NH4 * (O2/(O2 + ksO2))
dOM <- TOM - ROx
dO2 <- TO2 + EO2 - ROxCarbon - 2*RNit
dNO3 <- TNO3 + RNit + AddNH4NO3
dSumCO2 <- TSumCO2 + ECO2 + ROxCarbon
dSumNH4 <- TSumNH4 + ENH3 + ROx - RNit + AddNH3 + AddNH4NO3
dTA <- TTA + ENH3 + ROx-2*RNit + AddNH3
return(list(c(dOM, dO2, dNO3, dTA, dSumNH4, dSumCO2),
c(pH=pH, CO2=CO2, NH3=NH3, NH4=SumNH4-NH3)))
})
}
TA_down<- TA_estimate(pH_down, SumCO2_down, SumNH4_down)
TA_up <- TA_estimate(pH_up , SumCO2_up , SumNH4_up)
TA_ini <- TA_estimate(pH_ini , SumCO2_ini , SumNH4_ini)
state <- c(OM=OM_ini, O2=O2_ini, NO3=NO3_ini, TA=TA_ini,
SumNH4=SumNH4_ini, SumCO2=SumCO2_ini)
times <- c(0, 350:405)
outA <- vode(state, times, OSAmodel, phPars, scenario = "A" , hmax = 1)
outB <- vode(state, times, OSAmodel, phPars, scenario = "B1", hmax = 1)
outC <- vode(state, times, OSAmodel, phPars, scenario = "C" , hmax = 1)
par(mfrow = c(3, 4), mar = c(1, 2, 2, 1), oma = c(3, 3, 3, 0))
Selection <- c("pH","TA","SumCO2","O2")
plot(outA, mfrow = NULL, xlim = c(350,405), type = "l",
xaxt = "n", which = Selection)
plot(outB, mfrow = NULL, xlim = c(350,405), type = "l",
xaxt = "n", which = Selection)
plot(outC, mfrow = NULL, xlim = c(350,405), type = "l",
xaxt = "n", which = Selection)
mtext(side = 1, outer = TRUE, "time, d", line = 2, cex = 1.2)
mtext(side = 2, at = 0.2, outer = TRUE, "Scenario C", line = 1.5, cex = 1.2)
mtext(side = 2, at = 0.5, outer = TRUE, "Scenario B", line = 1.5, cex = 1.2)
mtext(side = 2, at = 0.8, outer = TRUE, "Scenario A", line = 1.5, cex = 1.2)
mtext(side = 3, at = 0.125, outer = TRUE, "pH, -", line = 1, cex = 1.2)
mtext(side = 3, at = 0.375, outer = TRUE, "TA, mol/kg", line = 1, cex = 1.2)
mtext(side = 3, at = 1-0.375, outer = TRUE, "CO2, mol/kg", line = 1, cex = 1.2)
mtext(side = 3, at = 1-0.125, outer = TRUE, "O2, mol/kg", line = 1, cex = 1.2) |
JGee1 <-
function(formula,id,data,nr,na.action=NULL,family=gaussian(link="identity"),
corstr1="independence",Mv=NULL,corstr2="independence",
beta_int=NULL,R1=NULL,R2=NULL,scale.fix=FALSE,
scale.value=1,maxiter=25,tol=10^-3,silent=FALSE) {
call <- match.call()
m <- match.call(expand.dots = FALSE)
m$family <-m$link <- m$varfun <-
m$nr<-m$beta_int <-
m$corstr1 <- m$Mv<- m$corstr2 <-m$R1 <- m$R2 <-
m$scale.fix <- m$scale.value <-
m$maxiter <- m$tol <-m$silent <-NULL
if(is.null(m$id)) m$id<-as.name("id")
if(!is.null(m$na.action) && m$na.action != "na.omit") {
warning("Only 'na.omit' is implemented for gee\ncontinuing with 'na.action=na.omit'")
m$na.action <- as.name("na.omit")
}
m[[1]] <- as.name("model.frame")
m <- eval(m, parent.frame())
Terms <- attr(m, "terms")
y <- model.extract(m, "response")
X<- model.matrix(Terms, m, contrasts)
id<-model.extract(m, id)
if(is.null(id)) {
stop("Id variable not found!")
}
if(is.null(nr)) {
stop("nr variable not found!")
}
if(length(id) != length(y)) stop("Id and y not same length!")
if(!(is.double(X))) X <- as.double(X)
if(!(is.double(y))) y <- as.double(y)
if(!(is.double(id))) id <- as.double(id)
N<-length(unique(id))
nr<-as.integer(nr)
K<-ncol(X)-1
xnames <- dimnames(X)[[2]]
if(is.null(xnames)) {
xnames <- paste("x", 0:K, sep = "")
dimnames(X) <- list(NULL, xnames)
}
avec <- as.integer(unlist(lapply(split(id, id), "length")))/nr
maxclsz <-max(avec)
maxcl <- maxclsz
nt<-avec
nobs<-sum(nt)*nr
if(missing(family)) family=gaussian(link="identity")
if(missing(corstr1)) corstr1="independence"
if(missing(corstr2)) corstr2="independence"
if(missing(Mv)) Mv<-NULL
if(corstr1=="stat_M_dep" && is.null(Mv)) stop("corstr1 is assumed to be 'stat_M_dep' but Mv is not specified!")
if(corstr1=="non_stat_M_dep" && is.null(Mv)) stop("corstr1 is assumed to be 'non_stat_M_dep' but Mv is not specified!")
if((corstr1!="stat_M_dep" && corstr1!="non_stat_M_dep") && !is.null(Mv)) stop("Mv is specified while corstr1 is assumed to be neither
'stat_M_dep' nor 'non_stat_M_dep'!")
if(corstr1=="non_stat_M_dep" && length(unique(nt)) !=1) stop("corstr1 cannot be assumed to be 'non_stat_M_dep' for unbalanced data!")
if(corstr1=="unstructured" && length(unique(nt)) !=1) stop("corstr1 cannot be assumed to be 'unstructured' for unbalanced data!")
if(missing(R1)) R1<-NULL
if(missing(R2)) R2<-NULL
if(corstr1!="fixed" && corstr2=="fixed") stop("corstr1 should also be assumed to be 'fixed' when corstr2='fixed'!")
if(corstr1=="fixed" && corstr2!="fixed") stop("corstr2 should also be assumed to be 'fixed' when corstr1='fixed'!")
if(corstr1=="fixed" && corstr2=="fixed" && is.null(R1) && is.null(R2)) stop("corstr1 and corstr2 are assumed to be 'fixed' but R1 and R2 are not specified!")
if(corstr1=="fixed" && corstr2=="fixed" && is.null(R1) && !is.null(R2)) stop("corstr1 and corstr2 are assumed to be 'fixed' but R1 is not specified!")
if(corstr1=="fixed" && corstr2=="fixed" && !is.null(R1) && is.null(R2)) stop("corstr1 and corstr2 are assumed to be 'fixed' but R2 is not specified!")
if(corstr1!="fixed" && corstr2!="fixed" && !is.null(R1)&& !is.null(R2)) stop("R1 and R2 are specified although corstr1 and corstr2 are not assumed to be 'fixed'!")
if(corstr1!="fixed" && corstr2!="fixed" && !is.null(R1)&& is.null(R2)) stop("R1 is specified although corstr1 and corstr2 are not assumed to be 'fixed'!")
if(corstr1!="fixed" && corstr2!="fixed" && is.null(R1)&& !is.null(R2)) stop("R2 is specified although corstr1 and corstr2 are not assumed to be 'fixed'!")
if(!is.null(R1)) {
Rr1 <- nrow(R1)
if(Rr1 != ncol(R1)) {stop("R1 is not square!")} else
if(Rr1 < maxclsz) {stop("R1 is not big enough to accommodate some clusters!")} else
if(Rr1 > maxclsz) {stop("R1 is larger than the maximum cluster!")}
}
if(!is.null(R2)) {
Rr2 <- nrow(R2)
if(Rr2 != ncol(R2)) {stop("R2 is not square!")} else
if(Rr2 < nr) {stop("R2 is not big enough to accommodate some clusters!")} else
if(Rr2 > nr) {stop("R2 is larger than the number of responses!")}
}
if(missing(scale.fix)) scale.fix=FALSE
scale.fix <- as.integer(scale.fix)
if(missing(scale.value)) scale.value=1
scale.value<-as.integer(scale.value)
if(missing(maxiter)) maxiter<-25
maxiter<-as.integer(maxiter)
if(missing(tol)) tol=10^-3
tol=as.double(tol)
if(missing(silent)) silent<-FALSE
silent<-as.integer(silent)
if (is.character(family)) family <- get(family)
if (is.function(family)) family <- family()
links <- c("identity","log","logit","inverse","probit","cloglog")
fams <- c("gaussian","poisson","binomial","Gamma","quasi")
varfuns <- c("constant", "mu", "mu(1-mu)", "mu^2")
corstrs1 <- c("independence", "fixed", "stat_M_dep", "non_stat_M_dep", "exchangeable",
"AR-1", "unstructured")
corstrs2 <- c("independence", "fixed", "exchangeable","unstructured")
linkv <- as.integer(match(c(family$link), links, -1))
if(linkv < 1) stop("unknown link!")
famv <- match(family$family, fams, -1)
if(famv < 1) stop("unknown family")
if(famv <= 4) varfunv <- famv
else varfunv <- match(family$varfun, varfuns, -1)
if(varfunv < 1) stop("unknown varfun!")
corstrv1 <- as.integer(match(corstr1, corstrs1, -1))
if(corstrv1 < 1) stop("unknown corstr1!")
corstrv2 <- as.integer(match(corstr2, corstrs2, -1))
if(corstrv2 < 1) stop("unknown corstr2!")
Mv <- as.integer(Mv)
if (!is.null(beta_int))
{
beta <- matrix(beta_int, nrow = 1)
if(ncol(beta) != (K+1)) {stop("Dimension of beta != ncol(X)!")}
message("user\'s initial regression estimate")
}
else {
message("running gee to get initial regression estimate")
mm <- match.call(expand.dots = FALSE)
mm$nr<- mm$R1 <-mm$R2 <- mm$beta_int <- mm$tol <- mm$maxiter <- mm$link <- mm$varfun <-mm$corstr1 <-
mm$corstr2 <-mm$Mv <- mm$silent <-mm$scale.fix <- mm$scale.value <- mm$id<- NULL
mm[[1]]<-as.name("glm")
beta <- eval(mm, parent.frame())$coefficients
print(beta)
}
beta_int=matrix(beta, ncol = 1)
beta_new<-beta_int
R.fi.hat=mycor_jgee1(N,nr,nt,y,X,family,beta_new,corstr1,Mv,corstr2,maxclsz,R1=R1,R2=R2,scale.fix=scale.fix,scale.value=scale.fix)
Rhat=R.fi.hat$Ehat
fihat=R.fi.hat$fi
S.H.E.val=S_H1(N,nr,nt,y,X,K,family,beta_new,Rhat,fihat)
S<-S.H.E.val$S
H<-S.H.E.val$H
diff<-1
iter<-0
while(iter < maxiter) {
beta_old<-beta_new
beta_new<-matrix(beta_old)+(ginv(H)%*%S)
R.fi.hat=mycor_jgee1(N,nr,nt,y,X,family,beta_new,corstr1,Mv,corstr2,maxclsz,R1,R2,scale.fix,scale.value)
Rhat=R.fi.hat$Ehat
fihat=R.fi.hat$fi
C1hat=R.fi.hat$cor1
C2hat=R.fi.hat$cor2
S.H.E.M.val=S_H1(N,nr,nt,y,X,K,family,beta_new,Rhat,fihat)
S<-S.H.E.M.val$S
H<-S.H.E.M.val$H
M<-S.H.E.M.val$M
diff<-sum(abs(beta_old-beta_new))
iter<-iter+1
if (silent==1) cat("iter",iter,"diff",diff,"\n")
if (diff <= tol) break
}
estb=beta_new
nv=naive.var<-ginv(H)
rv=robust.var<-ginv(H)%*%M%*%ginv(H)
final_iter=iter
final_diff=diff
fit <- list()
attr(fit, "class") <- c("JGee1","gee","glm")
fit$title <- "JGEE: JOINT GENERALIZED ESTIMATING EQUATIONS FOR CLUSTERED DATA"
fit$version <- "Version: 1.0"
links <- c("Identity", "Logarithm", "Logit", "Reciprocal", "Probit","Cloglog")
varfuns <- c("Gaussian", "Poisson", "Binomial", "Gamma")
corstrs1 <- c("Independent", "Fixed", "Stationary M-dependent",
"Non-Stationary M-dependent", "Exchangeable", "AR-1",
"Unstructured")
corstrs2 <- c("Independent", "Fixed","Exchangeable", "Unstructured")
fit$model <- list()
fit$model$link <- links[linkv]
fit$model$varfun <- varfuns[varfunv]
fit$model$corstr1 <- corstrs1[corstrv1]
if(!is.na(match(c(corstrv1), c(3, 4))))
fit$model$M <- Mv
fit$model$corstr2 <- corstrs2[corstrv2]
fit$call <- call
fit$terms <- Terms
fit$formula <- as.vector(attr(Terms, "formula"))
fit$nobs <- nobs
fit$iterations <- final_iter
fit$coefficients <- as.vector(estb)
fit$nas <- is.na(fit$coefficients)
names(fit$coefficients) <- xnames
eta <- as.vector(X %*% fit$coefficients)
fit$linear.predictors <- eta
mu <- as.vector(family$linkinv(eta))
fit$fitted.values <- mu
fit$residuals <- y - mu
fit$family <- family
fit$y <- as.vector(y)
fit$id <- as.vector(id)
fit$max.id <- maxcl
fit$working.correlation1 <- C1hat[1:maxclsz,1:maxclsz,which(avec==maxclsz)[1]]
fit$working.correlation2 <- C2hat
fit$working.correlation <- Rhat[1:(maxclsz*nr),1:(maxclsz*nr),which(avec==maxclsz)[1]]
fit$scale <- fihat
fit$robust.variance <- rv
fit$naive.variance <- nv
fit$xnames <- xnames
fit$error <- final_diff
dimnames(fit$robust.variance) <- list(xnames, xnames)
dimnames(fit$naive.variance) <- list(xnames, xnames)
fit
} |
smd_test<-function(x, y, paired = c(TRUE, FALSE), auto=TRUE, var = TRUE, normal = TRUE, conf.int = 0.9, mu = 0, swc = 0.5, plot=FALSE) {
if (is.character(x) == TRUE ||
is.factor(x) == TRUE || is.character(y) ==
TRUE || is.factor(y) == TRUE) {
error <- "Sorry, data must be numeric or integer values."
stop(error)
}
if (length(x) < 3 || length(y) < 3) {
error <- "Sorry, not enough data."
stop(error)
}
if (missing(paired)) {
error <-
"Missing Argument: Please specify if data is paired = TRUE/FALSE."
stop(error)
}
if (swc <= 0 ) {
error <- "Sorry, the smallest effect size of interest be a positive number"
stop(error)
}
if (length(x) != length(y)) {
max.len <- max(length(x), length(y))
x <- c(x, rep(NA, max.len - length(x)))
y <- c(y, rep(NA, max.len - length(y)))
}
if (auto==TRUE){
normal.x<-stats::shapiro.test(x)
normal.y<-stats::shapiro.test(y)
Normal<-ifelse(normal.x$p.value < .05 || normal.y$p.value < .05, FALSE, TRUE)
normlabel<-ifelse(normal.x$p.value < .05 || normal.y$p.value < .05," Skewness Observed"," Normality Observed")
equal<-stats::var.test(x,y)
variance<-ifelse(equal$p.value < .05, FALSE,TRUE)
variance2<-ifelse(equal$p.value < .05, "Unequal Variance","Equal Variance")
}
if(auto==FALSE){
NormTest <- FALSE
VarTest <- FALSE
Normal <- normal
equal <- var
variance <- ifelse(var == FALSE, FALSE, TRUE)
variance2 <- ifelse(var == FALSE, "Unequal Variance","Equal Variance")
normlabel<-ifelse(normal == FALSE," Skewness Assumed"," Normality Assumed")
}
length.x <- length(x) - sum(is.na(x))
length.y <- length(y) - sum(is.na(y))
n2 <- length.x + length.y
n <- length.x
ind.stdr <- sqrt(1 / length.x + 1 / length.y)
pair.stdr <- sqrt((sd(x, na.rm = T) ^ 2 + sd(y, na.rm = T) ^ 2) / 2)
if (Normal == FALSE) {
if (0 %in% x || 0 %in% y) {
test <- stats::t.test(
log(abs(x + 1)),
log(abs(y +
1)),
var.equal = variance,
paired = paired,
conf.level = conf.int,
na.action = na.omit,
mu = mu
)
}
else {
test <-
stats::t.test(
log(abs(x)),
log(abs(y)),
var.equal = variance,
paired = paired,
conf.level = conf.int,
na.action = na.omit,
mu = mu
)
}
estimate <- ifelse(
paired == T,
unname(test$estimate),
(unname(test$estimate[1]) - unname(test$estimate[2]))
)
OR <- round(exp(estimate), digits = 2)
LL <- round(exp(test$conf.int[1]), digits = 2)
UL <- round(exp(test$conf.int[2]), digits = 2)
rank <- stats::wilcox.test(
x,
y,
paired = paired,
conf.int = T,
conf.level = 0.9,
na.action = na.omit,
correct = F,
exact = F
)
suppressWarnings(warning(rank))
r <- ifelse(OR < 1,
stats::qnorm(rank$p.value / 2) / sqrt(n2),
abs(stats::qnorm(rank$p.value / 2) / sqrt(n2)))
r.LL <-
(exp(2 * ((swc * log((1 + r) / (1 - r)
)) + (
stats::qnorm(((
100 -
(100 * conf.int)
) / 100 / 2)) / sqrt(n - 3)
))) - 1) / (exp(2 *
((swc * log((1 + r) /
(1 - r)
)) + (
stats::qnorm(((
100 -
(100 * conf.int)
) / 100 / 2)) / sqrt(n - 3)
))) + 1)
r.UL <-
(exp(2 * ((swc * log((1 + r) / (1 - r)
)) - (
stats::qnorm(((
100 -
(100 * conf.int)
) / 100 / 2)) / sqrt(n - 3)
))) - 1) / (exp(2 *
((swc * log((1 + r) /
(1 - r)
)) - (
stats::qnorm(((
100 -
(100 * conf.int)
) / 100 / 2)) / sqrt(n - 3)
))) + 1)
level <- paste(as.character(100 * conf.int), "%", sep = "")
negative <-
round(100 * (stats::pnorm((log(0.9) - log(OR)) / abs(log(OR) / stats::qnorm(test$p.value /
2))
)),
digits = 1)
positive <- round(100 * (1 - stats::pnorm((log(1.11) -
log(OR)) / abs(log(OR) /
stats::qnorm(test$p.value / 2))
)),
digits = 1)
trivial <- round((100 - positive - negative), digits = 1)
table1 <- matrix(c(
round(test$statistic, digits = 5),
round(test$parameter, digits = 5),
round(test$p.value,
digits = 5)
),
ncol = 1,
byrow = T)
rownames(table1) <- c("t", "df", "P value")
colnames(table1) <- c("Log-Transformed")
table2 <- matrix(c(
round(rank$statistic, digits = 3),
round(rank$p.value, digits = 3),
round(rank$conf.int[1],
digits = 3),
round(rank$conf.int[2], digits = 3)
),
ncol = 1,
byrow = T)
if (paired == TRUE) {
rownames(table2) <- c("V",
"P value",
paste(level,
"CI LL", sep = " "),
paste(level, "CI UL", sep = " "))
}
else {
rownames(table2) <- c("W",
"P value",
paste(level,
"CI LL", sep = " "),
paste(level, "CI UL", sep = " "))
}
colnames(table2) <- c("Rank-Based")
title <- paste(normlabel, variance2, sep = ", ")
title2 <- paste(" Method:", test$method, sep = " ")
title3 <- paste(" Method:", rank$method, sep = " ")
cat(" Mean of ", deparse(substitute(x)), " = ", round(mean(x,
na.rm = T), digits = 2), "; ", "Mean of ", deparse(substitute(y)),
" = ", round(mean(y, na.rm = T), digits = 2), "\n",
sep = "")
cat(title, title2, sep = "\n")
cat("\n")
print(table1)
cat("\n")
cat(" ", "Factor", " = ", round(OR, digits = 2), "\n",
sep = "")
cat(" ", level, " CI ", "[", round(LL, digits = 2),
", ", round(UL, digits = 2), "]\n", sep = "")
table3 <- matrix(
c("Lower", "Trivial", "Higher", negative,
trivial, positive),
nrow = 2,
byrow = T
)
rownames(table3) <- c(" ", "MBI (%)")
lower <-
ifelse(negative < 0.5,
"Most Unlikely",
ifelse(
negative <
5,
"Very Unlikely",
ifelse(
negative < 25,
"Unlikely",
ifelse(
negative < 75,
"Possibly",
ifelse(
negative <
95,
"Likely",
ifelse(
negative < 99,
"Most Likely",
ifelse(negative >= 99, "Almost Certainly")
)
)
)
)
))
trivial2 <-
ifelse(trivial < 0.5,
"Most Unlikely",
ifelse(
trivial <
5,
"Very Unlikely",
ifelse(
trivial < 25,
"Unlikely",
ifelse(
trivial < 75,
"Possibly",
ifelse(
trivial <
95,
"Likely",
ifelse(
negative < 99,
"Most Likely",
ifelse(negative >= 99, "Almost Certainly")
)
)
)
)
))
higher <-
ifelse(positive < 0.5,
"Most Unlikely",
ifelse(
positive <
5,
"Very Unlikely",
ifelse(
positive < 25,
"Unlikely",
ifelse(
positive < 75,
"Possibly",
ifelse(
positive <
95,
"Likely",
ifelse(
positive < 99,
"Most Likely",
ifelse(positive >= 99, "Almost Certainly")
)
)
)
)
))
colnames(table3) <- c(lower, trivial2, higher)
title4 <- (" Magnitude-Based Inference\n")
cat("\n")
cat(title4, "\n")
print(table3)
infer <- which.max(table3[2,])
dir <- ifelse(OR < 1, "Decrease.", "Increase.")
infer2 <- ifelse(infer == 1, lower, ifelse(infer == 2,
trivial2, ifelse(infer == 3, higher)))
if (OR < 1) {
mag <- ifelse(OR > (1 / 1.5) || infer == 2,
"Trivial",
ifelse(OR > (1 / 3.5), "Small", ifelse(
OR > (1 / 9),
"Moderate", ifelse(OR > (1 /
32), "Large", ifelse(OR <=
(1 /
32), "Very Large"))
)))
}
else {
mag <- ifelse(abs(OR) < 1.5 || infer == 2,
"Trivial",
ifelse(
abs(OR) < 3.5,
"Small",
ifelse(abs(OR) <
9, "Moderate", ifelse(
abs(OR) < 32, "Large",
ifelse(abs(OR) >= 32, "Very Large")
))
))
}
LogInference <- ifelse(abs(positive) >= 5 && abs(negative) > 5,
paste("Inference: Unclear Difference."),
paste("Inference:", infer2, mag, dir,sep = " "))
cat(LogInference)
cat("\n-----------------------------------------------")
cat("\n Nonparametric Inference", title3, sep = "\n")
cat("\n")
print(table2)
cat("\n")
cat(" ", "r", " = ", round(r, digits = 2), "\n", sep = "")
cat(" ", level, " CI ", "[", round(r.LL, digits = 2),
", ", round(r.UL, digits = 2), "]\n\n", sep = "")
positive.r <-
round(100 * (1 - stats::pnorm(
0.1, mean = (swc *
log((1 + r) /
(1 - r))), sd = (1 / sqrt(n - 3))
)), digits = 1)
negative.r <- round(100 * (stats::pnorm(
-0.1, mean = (swc *
log((1 + r) /
(1 - r))), sd = (1 / sqrt(n - 3))
)), digits = 1)
trivial.r <- round(100 - positive.r - negative.r, digits = 1)
lower.r <- ifelse(negative.r < 0.5,
"Most Unlikely",
ifelse(
negative.r < 5,
"Very Unlikely",
ifelse(
negative.r <
25,
"Unlikely",
ifelse(
negative.r < 75,
"Possibly",
ifelse(
negative.r < 95,
"Likely",
ifelse(
negative.r <
99,
"Most Likely",
ifelse(negative.r >= 99,
"Almost Certainly")
)
)
)
)
))
trivial2.r <- ifelse(trivial.r < 0.5,
"Most Unlikely",
ifelse(
trivial.r < 5,
"Very Unlikely",
ifelse(
trivial.r <
25,
"Unlikely",
ifelse(
trivial.r < 75,
"Possibly",
ifelse(
trivial.r < 95,
"Likely",
ifelse(
trivial.r <
99,
"Most Likely",
ifelse(trivial.r >= 99,
"Almost Certainly")
)
)
)
)
))
higher.r <- ifelse(positive.r < 0.5,
"Most Unlikely",
ifelse(
positive.r < 5,
"Very Unlikely",
ifelse(
positive.r <
25,
"Unlikely",
ifelse(
positive.r < 75,
"Possibly",
ifelse(
positive.r < 95,
"Likely",
ifelse(
positive.r <
99,
"Most Likely",
ifelse(positive.r >= 99,
"Almost Certainly")
)
)
)
)
))
table.r <- matrix(
c(
"Negative",
"Trivial",
"Positive",
negative.r,
trivial.r,
positive.r
),
nrow = 2,
byrow = T
)
rownames(table.r) <- c(" ", "MBI (%)")
colnames(table.r) <- c(lower.r, trivial2.r, higher.r)
title.r <- (" Magnitude-Based Inference")
cat(title.r, "\n\n")
print(table.r)
cat("\n")
infer.r <- which.max(table.r[2,])
infer3.r <- ifelse(infer.r == 1,
lower.r,
ifelse(infer.r ==
2, trivial2.r, ifelse(infer.r == 3, higher.r)))
mag.r <- ifelse(abs(r) < 0.1 || infer.r == 2,
"Trivial",
ifelse(abs(r) < 0.3, "Small", ifelse(
abs(r) < 0.5,
"Moderate", ifelse(
abs(r) < 0.7,
"Large",
ifelse(abs(r) <
0.9, "Very Large", ifelse(abs(r) >= 0.9, "Very Large"))
)
)))
NonParametricInference <- ifelse(abs(positive.r) >= 5 && abs(negative.r) > 5,
paste("Inference: Unclear Difference."),
paste("Inference:", infer3.r, mag.r, "Effect Size",sep = " "))
cat(NonParametricInference)
invisible(list(or.stat = OR, or.LL = LL, or.UL = UL, r.stat = r, r.LL = r.LL, r.UL = r.UL,
t.value = test$statistic[[1]], df = test$parameter[[1]], p.value = test$p.value,
mean1 = round(mean(x, na.rm = T), digits = 3), sd1 = round(sd(x, na.rm = T), digits = 3),
mean2 = round(mean(y, na.rm = T), digits = 3), sd2 = round(sd(y, na.rm = T), digits = 3),
LogmbiNegative = negative, LogmbiTrivial = trivial, LogmbiPositive = positive,
mbiNegative.r = negative.r, mbiTrivial.r = trivial.r, mbiPositive.r = positive.r,
LogInference=LogInference, NonParametricInference=NonParametricInference))
}
else {
test <- stats::t.test(x,y, var.equal = variance, paired = paired, conf.level = conf.int,
na.action = na.omit, mu = mu)
d <- ifelse(paired == T, ((mean(x, na.rm = T) - mean(y,
na.rm = T)) / pair.stdr), test$statistic * ind.stdr)
LL <- d - (stats::qt(((
100 - (100 * conf.int)
) / 100) / 2,
test$parameter)) * abs(d) / stats::qt(test$p.value /
2,
test$parameter)
UL <- d + (stats::qt(((
100 - (100 * conf.int)
) / 100) / 2,
test$parameter)) * abs(d) / stats::qt(test$p.value /
2,
test$parameter)
if (test$parameter < 30) {
d <- d * (1 - (3 / (4 * (
test$parameter - 1
))))
LL <- LL * (1 - (3 / (4 * (
test$parameter - 1
))))
UL <- UL * (1 - (3 / (4 * (
test$parameter - 1
))))
}
parameter <- ifelse(test$parameter < 30, "Cohen d Adj",
"Cohen d")
negative <-
round(100 * (ifelse((d--swc) > 0,
stats::pt((d--swc) / abs(d) * abs(test$statistic),
test$parameter,
lower.tail = F
),
(1 - stats::pt((-swc - d) / abs(d) *
abs(test$statistic),
test$parameter,
lower.tail = F
))
)),
digits = 1)
positive <-
round(100 * (ifelse((d - swc) > 0,
(1 - stats::pt((d -
swc) /
abs(d) * abs(test$statistic),
test$parameter,
lower.tail = F
)),
stats::pt((swc - d) / abs(d) * abs(test$statistic),
test$parameter,
lower.tail = F
)
)), digits = 1)
trivial <- round((100 - positive - negative), digits = 1)
table1 <- matrix(c(
round(test$statistic, digits = 3),
round(test$parameter, digits = 0),
round(test$p.value,
digits = 3),
round(test$conf.int[1], digits = 3),
round(test$conf.int[2], digits = 3)
),
ncol = 1,
byrow = T)
level <- paste(as.character(100 * conf.int), "%", sep = "")
rownames(table1) <- c("t",
"df",
"P value",
paste(level,
"CI LL", sep = " "),
paste(level, "CI UL", sep = " "))
colnames(table1) <- c("Raw Scale")
table2 <- matrix(
c("Lower", "Trivial", "Higher", negative,
trivial, positive),
nrow = 2,
byrow = T
)
rownames(table2) <- c(" ", "MBI (%)")
lower <-
ifelse(negative < 0.5,
"Most Unlikely",
ifelse(
negative <
5,
"Very Unlikely",
ifelse(
negative < 25,
"Unlikely",
ifelse(
negative < 75,
"Possibly",
ifelse(
negative <
95,
"Likely",
ifelse(
negative < 99,
"Most Likely",
ifelse(negative >= 99, "Almost Certainly")
)
)
)
)
))
trivial2 <-
ifelse(trivial < 0.5,
"Most Unlikely",
ifelse(
trivial <
5,
"Very Unlikely",
ifelse(
trivial < 25,
"Unlikely",
ifelse(
trivial < 75,
"Possibly",
ifelse(
trivial <
95,
"Likely",
ifelse(
negative < 99,
"Most Likely",
ifelse(negative >= 99, "Almost Certainly")
)
)
)
)
))
higher <-
ifelse(positive < 0.5,
"Most Unlikely",
ifelse(
positive <
5,
"Very Unlikely",
ifelse(
positive < 25,
"Unlikely",
ifelse(
positive < 75,
"Possibly",
ifelse(
positive <
95,
"Likely",
ifelse(
positive < 99,
"Most Likely",
ifelse(positive >= 99, "Almost Certainly")
)
)
)
)
))
colnames(table2) <- c(lower, trivial2, higher)
title3 <- (" Magnitude-Based Inference")
title <- paste(normlabel, variance2, sep = ", ")
title2 <- paste(" Method:", test$method, sep = " ")
cat(" Mean of ", deparse(substitute(x)), " = ", round(mean(x,
na.rm = T), digits = 2), "; ", "Mean of ", deparse(substitute(y)),
" = ", round(mean(y, na.rm = T), digits = 2), "\n",
sep = "")
cat(title, title2, sep = "\n")
cat("\n")
print(table1)
cat("\n")
cat(" ", parameter, " = ", round(d, digits = 2), "\n",
sep = "")
cat(" ", level, " CI ", "[", round(LL, digits = 2),
", ", round(UL, digits = 2), "]\n\n", sep = "")
cat(title3, "\n\n")
print(table2)
cat("\n")
infer <- which.max(table2[2,])
infer2 <- ifelse(infer == 1, lower, ifelse(infer == 2,
trivial2, ifelse(infer == 3, higher)))
mag <- ifelse(abs(d) < 0.2 || infer == 2,
"Trivial",
ifelse(abs(d) < 0.6, "Small", ifelse(
abs(d) < 1.2,
"Moderate", ifelse(abs(d) < 2, "Large", ifelse(abs(d) >=
2, "Very Large"))
)))
dir <- ifelse(d < 0, "Decrease.", "Increase.")
Inference <- ifelse(abs(positive) >= 5 && abs(negative) > 5,
paste("Inference: Unclear Difference."),
paste("Inference:", infer2, mag, dir, sep = " "))
cat(Inference)
if (plot == TRUE) {
plot(NA, ylim = c(0, 1), xlim = c(min(LL, -swc) -
max(UL - LL, swc - -swc)/10,
max(UL, swc) + max(UL - LL, swc -
-swc)/10), bty = "l", yaxt = "n", ylab = "",
xlab = "Effect Size")
graphics::points(x = d, y = 0.5, pch = 15, cex = 2)
graphics::abline(v = swc, lty = 2)
graphics::abline(v = -swc, lty = 2)
graphics::abline(v = 0, lty = 2, col = "grey")
graphics::segments(LL, 0.5, UL, 0.5, lwd = 3)
graphics::title(main = paste(
"Cohen's d = ", round(d, digits = 3), " \n ",
100 * (conf.int), "% CI [", round(LL, digits = 3),
";", round(UL, digits = 3), "] ", " \n ", "Inference: ", infer2, " ", mag," ", dir,
sep = ""), cex.main = 1)
}
invisible(list(
d.stat = d,
d.LL = LL,
d.UL = UL,
t.value = test$statistic[[1]],
df = test$parameter[[1]],
p.value = test$p.value,
conf.int=conf.int,
mean1 = round(mean(x, na.rm = T), digits = 3),
sd1 = round(sd(x, na.rm = T), digits = 3),
mean2 = round(mean(y, na.rm = T), digits = 3),
sd2 = round(sd(y, na.rm = T), digits = 3),
mbiNegative = negative,
mbiTrivial = trivial,
mbiPositive = positive,
Inference = Inference)
)
}
} |
LoadBeatAmbit <- function(HRVData, RecordName, RecordPath=".", verbose = NULL) {
dir=getwd()
HRVData = HandleVerboseArgument(HRVData, verbose)
VerboseMessage(HRVData$Verbose,
paste("Loading beats positions for record:", RecordName))
VerboseMessage(HRVData$Verbose, paste("Path:", RecordPath))
setwd(RecordPath)
aux=scan(RecordName,what=character(0),strip.white=TRUE,quiet=TRUE)
date=aux[grepl('DateTime',aux)]
dateAux=substr(date,11,20)
time <- substr(date,22,29)
VerboseMessage(HRVData$Verbose, paste("Date: ", dateAux))
VerboseMessage(HRVData$Verbose, paste("Time: ", time))
datetimeinfo = paste(dateAux,time,sep = " ")
HRVData$datetime=datetimeinfo
BeatPosition=grep('IBI',aux)
rawIBI=aux[BeatPosition[1]:BeatPosition[2]]
rawIBI[1]=gsub('<IBI>','',rawIBI[1])
rawIBI[length(rawIBI)]=gsub('</IBI>','',rawIBI[length(rawIBI)])
HRVData$Beat$RR=as.numeric(rawIBI)
HRVData$Beat$Time=cumsum(HRVData$Beat$RR)/1000
VerboseMessage(HRVData$Verbose,
paste("Number of beats:", length(HRVData$Beat$Time))
)
setwd(dir)
return(HRVData)
} |
MYheatmap.2 <- function (x, Rowv = TRUE, Colv = if (symm) "Rowv" else TRUE,
distfun = dist, hclustfun = hclust, dendrogram = c("both",
"row", "column", "none"), symm = FALSE, scale = c("none",
"row", "column"), na.rm = TRUE, revC = identical(Colv,
"Rowv"), add.expr, breaks, symbreaks = min(x < 0, na.rm = TRUE) ||
scale != "none", col = "heat.colors", colsep, rowsep,
sepcolor = "white", sepwidth = c(0.05, 0.05), cellnote, notecex = 1,
notecol = "cyan", na.color = graphics::par("bg"), trace = c("column",
"row", "both", "none"), tracecol = "cyan", hline = stats::median(breaks),
vline = stats::median(breaks), linecol = tracecol, margins = c(5,
5), ColSideColors, RowSideColors, cexRow = 0.2 + 1/log10(nr),
cexCol = 0.2 + 1/log10(nc), labRow = NULL, labCol = NULL,
key = TRUE, keysize = 1.5, density.info = c("histogram",
"density", "none"), denscol = tracecol, symkey = min(x <
0, na.rm = TRUE) || symbreaks, densadj = 0.25, main = NULL,
xlab = NULL, ylab = NULL, lmat = NULL, lhei = NULL, lwid = NULL,
...)
{
scale01 <- function(x, low = min(x), high = max(x)) {
x <- (x - low)/(high - low)
x
}
retval <- list()
scale <- if (symm && missing(scale))
"none"
else match.arg(scale)
dendrogram <- match.arg(dendrogram)
trace <- match.arg(trace)
density.info <- match.arg(density.info)
if (length(col) == 1 && is.character(col))
col <- get(col, mode = "function")
if (!missing(breaks) && (scale != "none"))
warning("Using scale=\"row\" or scale=\"column\" when breaks are",
"specified can produce unpredictable results.", "Please consider using only one or the other.")
if (is.null(Rowv) || is.na(Rowv))
Rowv <- FALSE
if (is.null(Colv) || is.na(Colv))
Colv <- FALSE
else if (Colv == "Rowv" && !isTRUE(Rowv))
Colv <- FALSE
if (length(di <- dim(x)) != 2 || !is.numeric(x))
stop("`x' must be a numeric matrix")
nr <- di[1]
nc <- di[2]
if (nr <= 1 || nc <= 1)
stop("`x' must have at least 2 rows and 2 columns")
if (!is.numeric(margins) || length(margins) != 2)
stop("`margins' must be a numeric vector of length 2")
if (missing(cellnote))
cellnote <- matrix("", ncol = ncol(x), nrow = nrow(x))
if (!inherits(Rowv, "dendrogram")) {
if (((!isTRUE(Rowv)) || (is.null(Rowv))) && (dendrogram %in%
c("both", "row"))) {
if (is.logical(Colv) && (Colv))
dendrogram <- "column"
else dedrogram <- "none"
warning("Discrepancy: Rowv is FALSE, while dendrogram is `",
dendrogram, "'. Omitting row dendogram.")
}
}
if (!inherits(Colv, "dendrogram")) {
if (((!isTRUE(Colv)) || (is.null(Colv))) && (dendrogram %in%
c("both", "column"))) {
if (is.logical(Rowv) && (Rowv))
dendrogram <- "row"
else dendrogram <- "none"
warning("Discrepancy: Colv is FALSE, while dendrogram is `",
dendrogram, "'. Omitting column dendogram.")
}
}
if (inherits(Rowv, "dendrogram")) {
ddr <- Rowv
rowInd <- stats::order.dendrogram(ddr)
}
else if (is.integer(Rowv)) {
hcr <- hclustfun(distfun(x))
ddr <- stats::as.dendrogram(hcr)
ddr <- stats::reorder(ddr, Rowv)
rowInd <- stats::order.dendrogram(ddr)
if (nr != length(rowInd))
stop("row dendrogram ordering gave index of wrong length")
}
else if (isTRUE(Rowv)) {
Rowv <- rowMeans(x, na.rm = na.rm)
hcr <- hclustfun(distfun(x))
ddr <- stats::as.dendrogram(hcr)
ddr <- stats::reorder(ddr, Rowv)
rowInd <- stats::order.dendrogram(ddr)
if (nr != length(rowInd))
stop("row dendrogram ordering gave index of wrong length")
}
else {
rowInd <- nr:1
}
if (inherits(Colv, "dendrogram")) {
ddc <- Colv
colInd <- stats::order.dendrogram(ddc)
}
else if (identical(Colv, "Rowv")) {
if (nr != nc)
stop("Colv = \"Rowv\" but nrow(x) != ncol(x)")
if (exists("ddr")) {
ddc <- ddr
colInd <- stats::order.dendrogram(ddc)
}
else colInd <- rowInd
}
else if (is.integer(Colv)) {
hcc <- hclustfun(distfun(if (symm)
x
else t(x)))
ddc <- stats::as.dendrogram(hcc)
ddc <- stats::reorder(ddc, Colv)
colInd <- stats::order.dendrogram(ddc)
if (nc != length(colInd))
stop("column dendrogram ordering gave index of wrong length")
}
else if (isTRUE(Colv)) {
Colv <- colMeans(x, na.rm = na.rm)
hcc <- hclustfun(distfun(if (symm)
x
else t(x)))
ddc <- stats::as.dendrogram(hcc)
ddc <- stats::reorder(ddc, Colv)
colInd <- stats::order.dendrogram(ddc)
if (nc != length(colInd))
stop("column dendrogram ordering gave index of wrong length")
}
else {
colInd <- 1:nc
}
retval$rowInd <- rowInd
retval$colInd <- colInd
retval$call <- match.call()
x <- x[rowInd, colInd]
x.unscaled <- x
cellnote <- cellnote[rowInd, colInd]
if (is.null(labRow))
labRow <- if (is.null(rownames(x)))
(1:nr)[rowInd]
else rownames(x)
else labRow <- labRow[rowInd]
if (is.null(labCol))
labCol <- if (is.null(colnames(x)))
(1:nc)[colInd]
else colnames(x)
else labCol <- labCol[colInd]
if (scale == "row") {
retval$rowMeans <- rm <- rowMeans(x, na.rm = na.rm)
x <- sweep(x, 1, rm)
retval$rowSDs <- sx <- apply(x, 1, sd, na.rm = na.rm)
x <- sweep(x, 1, sx, "/")
}
else if (scale == "column") {
retval$colMeans <- rm <- colMeans(x, na.rm = na.rm)
x <- sweep(x, 2, rm)
retval$colSDs <- sx <- apply(x, 2, sd, na.rm = na.rm)
x <- sweep(x, 2, sx, "/")
}
if (missing(breaks) || is.null(breaks) || length(breaks) <
1) {
if (missing(col) || is.function(col))
breaks <- 16
else breaks <- length(col) + 1
}
if (length(breaks) == 1) {
if (!symbreaks)
breaks <- seq(min(x, na.rm = na.rm), max(x, na.rm = na.rm),
length = breaks)
else {
extreme <- max(abs(x), na.rm = TRUE)
breaks <- seq(-extreme, extreme, length = breaks)
}
}
nbr <- length(breaks)
ncol <- length(breaks) - 1
if (class(col) == "function")
col <- col(ncol)
min.breaks <- min(breaks)
max.breaks <- max(breaks)
x[x < min.breaks] <- min.breaks
x[x > max.breaks] <- max.breaks
if (missing(lhei) || is.null(lhei))
lhei <- c(keysize, 4)
if (missing(lwid) || is.null(lwid))
lwid <- c(keysize, 4)
if (missing(lmat) || is.null(lmat)) {
lmat <- rbind(4:3, 2:1)
if (!missing(ColSideColors)) {
if (!is.character(ColSideColors) || length(ColSideColors) !=
nc)
stop("'ColSideColors' must be a character vector of length ncol(x)")
lmat <- rbind(lmat[1, ] + 1, c(NA, 1), lmat[2, ] +
1)
lhei <- c(lhei[1], 0.2, lhei[2])
}
if (!missing(RowSideColors)) {
if (!is.character(RowSideColors) || length(RowSideColors) !=
nr)
stop("'RowSideColors' must be a character vector of length nrow(x)")
lmat <- cbind(lmat[, 1] + 1, c(rep(NA, nrow(lmat) -
1), 1), lmat[, 2] + 1)
lwid <- c(lwid[1], 0.2, lwid[2])
}
lmat[is.na(lmat)] <- 0
}
if (length(lhei) != nrow(lmat))
stop("lhei must have length = nrow(lmat) = ", nrow(lmat))
if (length(lwid) != ncol(lmat))
stop("lwid must have length = ncol(lmat) =", ncol(lmat))
op <- graphics::par(no.readonly = TRUE)
on.exit(graphics::par(op))
graphics::layout(lmat, widths = lwid, heights = lhei, respect = FALSE)
if (!missing(RowSideColors)) {
graphics::par(mar = c(margins[1], 0, 0, 0.5))
graphics::image(rbind(1:nr), col = RowSideColors[rowInd], axes = FALSE)
}
if (!missing(ColSideColors)) {
graphics::par(mar = c(0.5, 0, 0, margins[2]))
graphics::image(cbind(1:nc), col = ColSideColors[colInd], axes = FALSE)
}
graphics::par(mar = c(margins[1], 0, 0, margins[2]))
x <- t(x)
cellnote <- t(cellnote)
if (revC) {
iy <- nr:1
if (exists("ddr"))
ddr <- rev(ddr)
x <- x[, iy]
cellnote <- cellnote[, iy]
}
else iy <- 1:nr
graphics::image(1:nc, 1:nr, x, xlim = 0.5 + c(0, nc), ylim = 0.5 +
c(0, nr), axes = FALSE, xlab = "", ylab = "", col = col,
breaks = breaks, ...)
retval$carpet <- x
if (exists("ddr"))
retval$rowDendrogram <- ddr
if (exists("ddc"))
retval$colDendrogram <- ddc
retval$breaks <- breaks
retval$col <- col
if (!invalid(na.color) & any(is.na(x))) {
mmat <- ifelse(is.na(x), 1, NA)
graphics::image(1:nc, 1:nr, mmat, axes = FALSE, xlab = "", ylab = "",
col = na.color, add = TRUE)
}
graphics::axis(1, 1:nc, labels = labCol, las = 2, line = -0.5, tick = 0,
cex.axis = cexCol)
if (!is.null(xlab))
graphics::mtext(xlab, side = 1, line = margins[1] - 1.25)
graphics::axis(4, iy, labels = labRow, las = 2, line = -0.5, tick = 0,
cex.axis = cexRow)
if (!is.null(ylab))
graphics::mtext(ylab, side = 4, line = margins[2] - 1.25)
if (!missing(add.expr))
eval.parent(substitute(add.expr))
if (!missing(colsep))
for (csep in colsep) graphics::rect(xleft = csep + 0.5, ybottom = rep(0,
length(csep)), xright = csep + 0.5 + sepwidth[1],
ytop = rep(ncol(x) + 1, csep), lty = 1, lwd = 1,
col = sepcolor, border = sepcolor)
if (!missing(rowsep))
for (rsep in rowsep) graphics::rect(xleft = 0, ybottom = (ncol(x) +
1 - rsep) - 0.5, xright = nrow(x) + 1, ytop = (ncol(x) +
1 - rsep) - 0.5 - sepwidth[2], lty = 1, lwd = 1,
col = sepcolor, border = sepcolor)
min.scale <- min(breaks)
max.scale <- max(breaks)
x.scaled <- scale01(t(x), min.scale, max.scale)
if (trace %in% c("both", "column")) {
retval$vline <- vline
vline.vals <- scale01(vline, min.scale, max.scale)
for (i in colInd) {
if (!is.null(vline)) {
graphics::abline(v = i - 0.5 + vline.vals, col = linecol,
lty = 2)
}
xv <- rep(i, nrow(x.scaled)) + x.scaled[, i] - 0.5
xv <- c(xv[1], xv)
yv <- 1:length(xv) - 0.5
graphics::lines(x = xv, y = yv, lwd = 1, col = tracecol, type = "s")
}
}
if (trace %in% c("both", "row")) {
retval$hline <- hline
hline.vals <- scale01(hline, min.scale, max.scale)
for (i in rowInd) {
if (!is.null(hline)) {
graphics::abline(h = i + hline, col = linecol, lty = 2)
}
yv <- rep(i, ncol(x.scaled)) + x.scaled[i, ] - 0.5
yv <- rev(c(yv[1], yv))
xv <- length(yv):1 - 0.5
graphics::lines(x = xv, y = yv, lwd = 1, col = tracecol, type = "s")
}
}
if (!missing(cellnote))
graphics::text(x = c(row(cellnote)), y = c(col(cellnote)), labels = c(cellnote),
col = notecol, cex = notecex)
graphics::par(mar = c(margins[1], 0, 0, 0))
if (dendrogram %in% c("both", "row")) {
graphics::plot(ddr, horiz = TRUE, axes = FALSE, yaxs = "i", leaflab = "none")
}
else graphics::plot.new()
graphics::par(mar = c(0, 0, if (!is.null(main)) 5 else 0, margins[2]))
if (dendrogram %in% c("both", "column")) {
graphics::plot(ddc, axes = FALSE, xaxs = "i", leaflab = "none")
}
else graphics::plot.new()
if (!is.null(main))
graphics::title(main, cex.main = 1.5 * op[["cex.main"]])
if (key) {
graphics::par(mar = c(5, 4, 2, 1), cex = 0.75)
tmpbreaks <- breaks
if (symkey) {
max.raw <- max(abs(c(x, breaks)), na.rm = TRUE)
min.raw <- -max.raw
}
else {
min.raw <- min(x, na.rm = TRUE)
max.raw <- max(x, na.rm = TRUE)
}
z <- seq(min.raw, max.raw, length = length(col))
graphics::image(z = matrix(z, ncol = 1), col = col, breaks = tmpbreaks,
xaxt = "n", yaxt = "n")
graphics::par(usr = c(0, 1, 0, 1))
lv <- pretty(breaks)
xv <- scale01(as.numeric(lv), min.raw, max.raw)
graphics::axis(1, at = xv, labels = lv)
if (scale == "row")
graphics::mtext(side = 1, "Row Z-Score", line = 2)
else if (scale == "column")
graphics::mtext(side = 1, "Column Z-Score", line = 2)
else graphics::mtext(side = 1, "Value", line = 2)
if (density.info == "density") {
dens <- stats::density(x, adjust = densadj, na.rm = TRUE)
omit <- dens$x < min(breaks) | dens$x > max(breaks)
dens$x <- dens$x[-omit]
dens$y <- dens$y[-omit]
dens$x <- scale01(dens$x, min.raw, max.raw)
graphics::lines(dens$x, dens$y/max(dens$y) * 0.95, col = denscol,
lwd = 1)
graphics::axis(2, at = pretty(dens$y)/max(dens$y) * 0.95, pretty(dens$y))
graphics::title("Color Key\nand Density Plot")
graphics::par(cex = 0.5)
graphics::mtext(side = 2, "Density", line = 2)
}
else if (density.info == "histogram") {
h <- graphics::hist(x, plot = FALSE, breaks = breaks)
hx <- scale01(breaks, min.raw, max.raw)
hy <- c(h$counts, h$counts[length(h$counts)])
graphics::lines(hx, hy/max(hy) * 0.95, lwd = 1, type = "s",
col = denscol)
graphics::axis(2, at = pretty(hy)/max(hy) * 0.95, pretty(hy))
graphics::title("Color Key\nand Histogram")
graphics::par(cex = 0.5)
graphics::mtext(side = 2, "Count", line = 2)
}
else graphics::title("Color Key")
}
else graphics::plot.new()
retval$colorTable <- data.frame(low = retval$breaks[-length(retval$breaks)],
high = retval$breaks[-1], color = retval$col)
invisible(retval)
} |
"toybase_individual_2016_03" |
library(PEcAn.all)
library(PEcAn.SIPNET)
library(PEcAn.LINKAGES)
library(PEcAn.visualization)
library(PEcAn.ED2)
library(PEcAn.assim.sequential)
library(nimble)
library(lubridate)
library(PEcAn.visualization)
library(rgdal)
library(ncdf4)
setwd('/fs/data2/output//PEcAn_1000009225/')
file.copy('/fs/data2/output//PEcAn_1000007999/sda.obs.Rdata',getwd())
setwd('/fs/data2/output//PEcAn_1000008588/')
adjustment=TRUE
setwd('/fs/data2/output//PEcAn_1000008683/')
adjustment=TRUE
load("out/sda.initial.runs.Rdata")
load("sda.output.Rdata")
nt <- length(obs.list$obs.mean)
aqq <- array(NA,dim=c(nt,10,10))
t <- length(FORECAST)+1
aqq[t,,]<- solve(enkf.params[[t-1]]$q.bar)*enkf.params[[t-1]]$n
bqq<-numeric(nt)
bqq[t]<-enkf.params[[t-1]]$n
settings <- read.settings("pecan.SDA.xml")
obs.list <- load_data_paleon_sda(settings = settings)
IC <- NULL
status.start("IC")
ne <- as.numeric(settings$state.data.assimilation$n.ensemble)
state <- as.data.frame(rmvnorm(ne,as.numeric(obs.list$obs.mean[[1]]),(obs.list$obs.cov[[1]]), method = "svd"))
colnames(state)<-c('AbvGrndWood','GWBI')
IC <- sample.IC.SIPNET(ne, state = state)
status.end()
if(FALSE){
obs.mean = obs.list$obs.mean
obs.cov = obs.list$obs.cov
Q = NULL
adjustment = TRUE
restart=NULL
}
PEcAn.assim.sequential::sda.enkf(settings, obs.mean = obs.list$obs.mean, obs.cov = obs.list$obs.cov, IC = IC)
obmn <- obvn <- list()
times.keep <- seq(1,1100,100)
for(i in 1:length(times.keep)){
obmn[[i]] <- obs.mean[[times.keep[i]]]
obvn[[i]] <- obs.cov[[times.keep[i]]]
}
names(obmn) <- names(obvn) <- names(obs.mean)[times.keep]
obs.mean <- obmn
obs.cov <- obvn
t1 <- 1
t <- length(obs.list$obs.mean)
names.y <- unique(unlist(lapply(obs.list$obs.mean[t1:t], function(x) { names(x) })))
Ybar <- t(sapply(obs.list$obs.mean[t1:t], function(x) {
tmp <- rep(NA, length(names.y))
names(tmp) <- names.y
mch <- match(names(x), names.y)
tmp[mch] <- x[mch]
tmp
}))
YCI <- t(as.matrix(sapply(obs.list$obs.cov[t1:t], function(x) {
if (length(x)<2) {
rep(NA, length(names.y))
}
sqrt(diag(x))
})))
obs.dates <- rownames(Ybar)
green <- col2rgb("green")
alphagreen <- rgb(green[1], green[2], green[3], 75, max = 255)
for(i in 1:length(obs.list$obs.mean[[1]])){
plot(as.Date(obs.dates),
as.numeric(Ybar[, i]),
type = "l",
col = "darkgreen",
lwd = 2,ylim=c(0,1),main=colnames(Ybar)[i])
ciEnvelope(as.Date(obs.dates),
as.numeric(Ybar[, i]) - as.numeric(YCI[, i]) * 1.96,
as.numeric(Ybar[, i]) + as.numeric(YCI[, i]) * 1.96,
col = alphagreen)
lines(as.Date(obs.dates),
as.numeric(Ybar[, i]),
type = "l",
col = "darkgreen",
lwd = 2)
} |
expected <- eval(parse(text="structure(list(`1` = c(0, 0, 0, 0, 0, 0, 1.48219693752374e-323, 0, 0, 0, 0, 0)), .Names = \"1\")"));
test(id=0, code={
argv <- eval(parse(text="list(structure(c(0, 0, 0, 0, 0, 0, 1.48219693752374e-323, 0, 0, 0, 0, 0), .Dim = c(1L, 12L), .Dimnames = list(NULL, c(\"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\"))), structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = \"1\", class = \"factor\"))"));
.Internal(split(argv[[1]], argv[[2]]));
}, o=expected); |
rdif <- function(x, data, score=NULL, group, focal.name, D=1, alpha=0.05, missing=NA, purify=FALSE,
purify.by=c("rdif_rs", "rdif_r", "rdif_s"), max.iter=10, min.resp=NULL, method="MLE",
range=c(-4, 4), norm.prior=c(0, 1), nquad=41, weights=NULL, ncore=1, verbose=TRUE) {
cl <- match.call()
x <- data.frame(x)
colnames(x) <- c("id", "cats", "model", paste0("par.", 1:(ncol(x) - 3)))
if(ncol(x[, -c(1, 2, 3)]) == 2) {
x <- data.frame(x, par.3=NA)
}
x <- back2df(metalist2(x))
x$model <- as.character(x$model)
if(any(x$model %in% c("GRM", "GPCM")) | any(x$cats > 2)) {
stop("The current version only supports dichotomous response data.", call.=FALSE)
}
data <- data.matrix(data)
if(!is.na(missing)) {
data[data == missing] <- NA
}
if(!is.null(score)) {
if(is.matrix(score) | is.data.frame(score)) {
score <- as.numeric(data.matrix(score))
}
} else {
if(!is.null(min.resp)) {
n_resp <- rowSums(!is.na(data))
loc_less <- which(n_resp < min.resp & n_resp > 0)
data[loc_less, ] <- NA
}
score <- est_score(x=x, data=data, D=D, method=method, range=range, norm.prior=norm.prior,
nquad=nquad, weights=weights, ncore=ncore)$est.theta
}
dif_rst <- rdif_one(x=x, data=data, score=score, group=group, focal.name=focal.name, D=D, alpha=alpha)
no_purify <- list(dif_stat=NULL, moments=NULL, dif_item=NULL, score=NULL)
with_purify <- list(purify.by=NULL, dif_stat=NULL, moments=NULL,
dif_item=NULL, n.iter=NULL, score=NULL, complete=NULL)
no_purify$dif_stat <- dif_rst$dif_stat
no_purify$dif_item <- dif_rst$dif_item
no_purify$moments <- data.frame(id=x$id,
dif_rst$moments$rdif_r[, c(1, 3)],
dif_rst$moments$rdif_s[, c(1, 3)],
dif_rst$covariance, stringsAsFactors=FALSE)
names(no_purify$moments) <- c("id", "mu.rdif_r", "sigma.rdif_r", "mu.rdif_s", "sigma.rdif_s", "covariance")
no_purify$score <- score
if(purify) {
purify.by <- match.arg(purify.by)
dif_item <- NULL
dif_stat <-
data.frame(id=rep(NA_character_, nrow(x)), rdif_r=NA, z.rdif_r=NA,
rdif_s=NA, z.rdif_s=NA, rdif_rs=NA, p.val.rdif_r=NA, p.val.rdif_s=NA, p.val.rdif_rs=NA,
n.ref=NA, n.foc=NA, n.total=NA, n.iter=NA, stringsAsFactors=FALSE)
mmt_df <-
data.frame(id=rep(NA_character_, nrow(x)), mu.rdif_r=NA, sigma.rdif_r=NA,
mu.rdif_s=NA, sigma.rdif_s=NA, covariance=NA, n.iter=NA, stringsAsFactors=FALSE)
dif_item_tmp <- dif_rst$dif_item[[purify.by]]
dif_stat_tmp <- dif_rst$dif_stat
mmt_df_tmp <- no_purify$moments
x_puri <- x
data_puri <- data
if(!is.null(dif_item_tmp)) {
item_num <- 1:nrow(x)
if(max.iter < 1) stop("The maximum iteration (i.e., max.iter) must be greater than 0 when purify = TRUE.", call.=FALSE)
if(verbose) {
cat("Purification started...", '\n')
}
for(i in 1:max.iter) {
if(verbose) {
cat("\r", paste0("Iteration: ", i))
}
flag_max <-
switch(purify.by,
rdif_r=which.max(abs(dif_stat_tmp$z.rdif_r)),
rdif_s=which.max(abs(dif_stat_tmp$z.rdif_s)),
rdif_rs=which.max(dif_stat_tmp$rdif_rs))
del_item <- item_num[flag_max]
dif_item <- c(dif_item, del_item)
dif_stat[del_item, 1:12] <- dif_stat_tmp[flag_max, ]
dif_stat[del_item, 13] <- i - 1
mmt_df[del_item, 1:6] <- mmt_df_tmp[flag_max, ]
mmt_df[del_item, 7] <- i - 1
item_num <- item_num[-flag_max]
x_puri <- x_puri[-flag_max, ]
data_puri <- data_puri[, -flag_max]
if(!is.null(min.resp)) {
n_resp <- rowSums(!is.na(data_puri))
loc_less <- which(n_resp < min.resp & n_resp > 0)
data_puri[loc_less, ] <- NA
}
score_puri <- est_score(x=x_puri, data=data_puri, D=D, method=method, range=range, norm.prior=norm.prior,
nquad=nquad, weights=weights, ncore=ncore)$est.theta
dif_rst_tmp <- rdif_one(x=x_puri, data=data_puri, score=score_puri, group=group,
focal.name=focal.name, D=D, alpha=alpha)
dif_item_tmp <- dif_rst_tmp$dif_item[[purify.by]]
dif_stat_tmp <- dif_rst_tmp$dif_stat
mmt_df_tmp <- data.frame(id=dif_rst_tmp$dif_stat$id,
dif_rst_tmp$moments$rdif_r[, c(1, 3)],
dif_rst_tmp$moments$rdif_s[, c(1, 3)],
dif_rst_tmp$covariance, stringsAsFactors=FALSE)
names(mmt_df_tmp) <- c("id", "mu.rdif_r", "sigma.rdif_r", "mu.rdif_s", "sigma.rdif_s", "covariance")
if(is.null(dif_item_tmp)) {
dif_item <- dif_item
dif_stat[item_num, 1:12] <- dif_stat_tmp
dif_stat[item_num, 13] <- i
mmt_df[item_num, 1:6] <- mmt_df_tmp
mmt_df[item_num, 7] <- i
break
}
}
if(verbose) {
cat("", "\n")
}
n_iter <- i
if(max.iter == n_iter & !is.null(dif_item_tmp)) {
warning("The iteration reached out the maximum number of iteration before purification is complete.", call.=FALSE)
complete <- FALSE
dif_item <- c(dif_item, item_num[dif_item_tmp])
dif_stat[item_num, 1:12] <- dif_stat_tmp
dif_stat[item_num, 13] <- i
mmt_df[item_num, 1:6] <- mmt_df_tmp
mmt_df[item_num, 7] <- i
} else {
complete <- TRUE
if(verbose) {
cat("Purification is finished.", '\n')
}
}
with_purify$purify.by <- purify.by
with_purify$dif_stat <- dif_stat
with_purify$moments <- mmt_df
with_purify$dif_item <- sort(dif_item)
with_purify$n.iter <- n_iter
with_purify$score <- score_puri
with_purify$complete <- complete
} else {
with_purify$purify.by <- purify.by
with_purify$dif_stat <- cbind(no_purify$dif_stat, n.iter=0)
with_purify$moments <- cbind(no_purify$moments, n.iter=0)
with_purify$n.iter <- 0
with_purify$complete <- TRUE
}
}
rst <- list(no_purify=no_purify, purify=purify, with_purify=with_purify, alpha=alpha)
class(rst) <- "rdif"
rst$call <- cl
rst
}
rdif_one <- function(x, data, score, group, focal.name, D=1, alpha=0.05) {
meta <- metalist2(x)
cats <- x$cats
nitem <- nrow(x)
loc_ref <- which(group != focal.name)
loc_foc <- which(group == focal.name)
resp_ref <- data[loc_ref, , drop=FALSE]
resp_foc <- data[loc_foc, , drop=FALSE]
n_ref <- colSums(!is.na(resp_ref))
n_foc <- colSums(!is.na(resp_foc))
all_miss <- sort(unique(c(which(n_ref == 0), which(n_foc == 0))))
score_ref <- score[loc_ref]
score_foc <- score[loc_foc]
extscore_ref <- trace(meta=meta, theta=score_ref, D=D)$trace_df
extscore_foc <- trace(meta=meta, theta=score_foc, D=D)$trace_df
prob_ref <- trace4(meta=meta, theta=score_ref, D=D)$trace
prob_foc <- trace4(meta=meta, theta=score_foc, D=D)$trace
extscore_ref[is.na(resp_ref)] <- NA
extscore_foc[is.na(resp_foc)] <- NA
resid_ref <- resp_ref - extscore_ref
resid_foc <- resp_foc - extscore_foc
rdif_r <- colMeans(resid_foc, na.rm=TRUE) - colMeans(resid_ref, na.rm=TRUE)
rdif_s <- colMeans(resid_foc^2, na.rm=TRUE) - colMeans(resid_ref^2, na.rm=TRUE)
moments <- resid_moments(p_ref=prob_ref, p_foc=prob_foc, n_ref=n_ref, n_foc=n_foc,
resp_ref=resp_ref, resp_foc=resp_foc, cats=cats)
moments_rdif_r <- moments$rdif_r
moments_rdif_s <- moments$rdif_s
covar <- moments$covariance
poolsd <- moments$poolsd
chisq <- c()
for(i in 1:nitem) {
if(i %in% all_miss) {
chisq[i] <- NaN
} else{
cov_mat <- array(NA, c(2, 2))
cov_mat[col(cov_mat) != row(cov_mat)] <- covar[i]
diag(cov_mat) <- c(moments_rdif_r[i, 2], moments_rdif_s[i, 2])
mu_vec <- cbind(moments_rdif_r[i, 1], moments_rdif_s[i, 1])
est_mu_vec <- cbind(rdif_r[i], rdif_s[i])
inv_cov <- suppressWarnings(tryCatch({solve(cov_mat, tol=1e-200)}, error = function(e) {NULL}))
if(is.null(inv_cov)) {
inv_cov <- suppressWarnings(tryCatch({solve(cov_mat + 1e-15, tol=1e-200)}, error = function(e) {NULL}))
if(is.null(inv_cov)) {
inv_cov <- suppressWarnings(tryCatch({solve(cov_mat + 1e-10, tol=1e-200)}, error = function(e) {NULL}))
}
}
chisq[i] <- as.numeric((est_mu_vec - mu_vec) %*% inv_cov %*% t(est_mu_vec - mu_vec))
}
}
z_stat_rdif_r <- (rdif_r - moments_rdif_r$mu) / moments_rdif_r$sigma
z_stat_rdif_s <- (rdif_s - moments_rdif_s$mu) / moments_rdif_s$sigma
pval_rdif_r <- round(2 * stats::pnorm(q=abs(z_stat_rdif_r), mean=0, sd=1, lower.tail=FALSE), 4)
pval_rdif_s <- round(2 * stats::pnorm(q=abs(z_stat_rdif_s), mean=0, sd=1, lower.tail=FALSE), 4)
pval_rdif_rs <- round(stats::pchisq(chisq, df=2, lower.tail=FALSE), 4)
rdif_stats <- list(x=rdif_r, y=rdif_s)
n_total <- n_foc + n_ref
efs_hedge <-
purrr::map2(.x=rdif_stats, .y=poolsd$hedge,
.f=function(x, y) {round((x / y) * (1 - (3 / (4 * (n_foc + n_ref) - 9))), 4)}) %>%
data.frame() %>%
dplyr::rename_all(.f=function(x) c("he_rdif_r", "he_rdif_s"))
efs_glass <-
purrr::map2(.x=rdif_stats, .y=poolsd$glass, .f=function(x, y) round(x / y, 4)) %>%
data.frame() %>%
dplyr::rename_all(.f=function(x) c("gl_rdif_r", "gl_rdif_s"))
effect_size <- data.frame(id=x$id, efs_hedge, efs_glass, stringsAsFactors=FALSE)
stat_df <-
data.frame(id=x$id, rdif_r=round(rdif_r, 4), z.rdif_r=round(z_stat_rdif_r, 4),
rdif_s=round(rdif_s, 4), z.rdif_s=round(z_stat_rdif_s, 4), rdif_rs=round(chisq, 4),
p.val.rdif_r=pval_rdif_r, p.val.rdif_s=pval_rdif_s, p.val.rdif_rs=pval_rdif_rs,
n.ref=n_ref, n.foc=n_foc, n.total=n_total, stringsAsFactors=FALSE)
rownames(stat_df) <- NULL
dif_item_rdif_r <- as.numeric(which(pval_rdif_r <= alpha))
dif_item_rdif_s <- as.numeric(which(pval_rdif_s <= alpha))
dif_item_rdif_rs <- which(pval_rdif_rs <= alpha)
if(length(dif_item_rdif_r) == 0) dif_item_rdif_r <- NULL
if(length(dif_item_rdif_s) == 0) dif_item_rdif_s <- NULL
if(length(dif_item_rdif_rs) == 0) dif_item_rdif_rs <- NULL
rst <- list(dif_stat=stat_df, effect_size=effect_size,
dif_item=list(rdif_r=dif_item_rdif_r, rdif_s=dif_item_rdif_s, rdif_rs=dif_item_rdif_rs),
moments=list(rdif_r=moments_rdif_r, rdif_s=moments_rdif_s), covariance=covar, alpha=alpha)
rst
}
resid_moments <- function(p_ref, p_foc, n_ref, n_foc, resp_ref, resp_foc, cats) {
nitem <- length(cats)
nrow_ref <- nrow(resp_ref)
nrow_foc <- nrow(resp_foc)
mu_ref <- purrr::map(.x=1:2, .f=function(x) matrix(NA, nrow=nrow_ref, ncol=nitem))
mu_foc <- purrr::map(.x=1:2, .f=function(x) matrix(NA, nrow=nrow_foc, ncol=nitem))
mu2_ref <- mu_ref
mu2_foc <- mu_foc
mu_resid3_ref <- matrix(NA, nrow=nrow_ref, ncol=nitem)
mu_resid3_foc <- matrix(NA, nrow=nrow_foc, ncol=nitem)
for(i in 1:nitem) {
Emat_ref <- matrix(0:(cats[i]-1), nrow=nrow_ref, ncol=cats[i], byrow = TRUE)
Emat_foc <- matrix(0:(cats[i]-1), nrow=nrow_foc, ncol=cats[i], byrow = TRUE)
exp_resid_ref <- Emat_ref - matrix(rowSums(Emat_ref * p_ref[[i]]), nrow=nrow_ref, ncol=cats[i], byrow=FALSE)
exp_resid_foc <- Emat_foc - matrix(rowSums(Emat_foc * p_foc[[i]]), nrow=nrow_foc, ncol=cats[i], byrow=FALSE)
exp_resid_ref[is.na(resp_ref[, i]), ] <- NA
exp_resid_foc[is.na(resp_foc[, i]), ] <- NA
value_foc <- value_ref <- vector('list', 2)
value_ref[[1]] <- exp_resid_ref
value_foc[[1]] <- exp_resid_foc
value_ref[[2]] <- exp_resid_ref^2
value_foc[[2]] <- exp_resid_foc^2
resid3_ref <- exp_resid_ref^3
resid3_foc <- exp_resid_foc^3
for(j in 1:2) {
mu_ref[[j]][, i] <- rowSums(value_ref[[j]] * p_ref[[i]], na.rm=FALSE)
mu2_ref[[j]][, i] <- rowSums((value_ref[[j]])^2 * p_ref[[i]], na.rm=FALSE)
mu_foc[[j]][, i] <- rowSums(value_foc[[j]] * p_foc[[i]], na.rm=FALSE)
mu2_foc[[j]][, i] <- rowSums((value_foc[[j]])^2 * p_foc[[i]], na.rm=FALSE)
}
mu_resid3_ref[, i] <- rowSums(resid3_ref * p_ref[[i]], na.rm=FALSE)
mu_resid3_foc[, i] <- rowSums(resid3_foc * p_foc[[i]], na.rm=FALSE)
}
var_ref <- purrr::map2(.x=mu2_ref, .y=mu_ref, .f=function(x, y) x - y^2)
var_foc <- purrr::map2(.x=mu2_foc, .y=mu_foc, .f=function(x, y) x - y^2)
const_ref <- purrr::map(.x=var_ref,
.f=function(x) matrix((1 / n_ref^2), nrow=nrow(x), ncol=ncol(x), byrow=TRUE))
const_foc <- purrr::map(.x=var_foc,
.f=function(x) matrix((1 / n_foc^2), nrow=nrow(x), ncol=ncol(x), byrow=TRUE))
var_mu_ref <- purrr::map2(.x=const_ref, .y=var_ref, .f=function(x, y) colSums(x * y, na.rm=TRUE))
var_mu_foc <- purrr::map2(.x=const_foc, .y=var_foc, .f=function(x, y) colSums(x * y, na.rm=TRUE))
mu <- purrr::map2(.x=mu_foc, .y=mu_ref, .f=function(x, y) colMeans(x, na.rm=TRUE) - colMeans(y, na.rm=TRUE))
sigma2 <- purrr::map2(.x=var_mu_foc, .y=var_mu_ref, .f=function(x, y) x + y)
sigma <- purrr::map(.x=sigma2, .f=function(x) sqrt(x))
poolsd_hedge <-
suppressWarnings(purrr::map2(.x=var_mu_foc, .y=var_mu_ref,
.f=function(x, y) {
sqrt((x * (n_foc - 1) + y * (n_ref - 1)) / (n_foc + n_foc - 2))
}))
poolsd_glass <-
suppressWarnings(purrr::map(.x=var_mu_ref, .f=function(x) sqrt(x)))
poolsd <- list(hedge=poolsd_hedge, glass=poolsd_glass)
covar <- colSums(mu_resid3_foc, na.rm=TRUE) * (1/n_foc^2) + colSums(mu_resid3_ref, na.rm=TRUE) * (1/n_ref^2)
rst <- purrr::pmap(.l=list(x=mu, y=sigma2, z=sigma),
.f=function(x, y, z) data.frame(mu=x, sigma2=y, sigma=z))
names(rst) <- c("rdif_r", "rdif_s")
rst$covariance <- covar
rst$poolsd <- poolsd
rst
} |
hist.lengths <-
function (x, ..., log = FALSE, zeros.rm = TRUE) {
newlen <- x$length + 0
if (zeros.rm & x$zeros) {
newlen <- x$length + x$maxcens
}
args <- list(...)
breaks <- "Sturges"
if (!is.null(args$breaks)) breaks <- args$breaks
include.lowest <- TRUE
if (!is.null(args$include.lowest)) include.lowest <- args$include.lowest
right <- TRUE
if (!is.null(args$right)) right <- args$right
res <- tapply(newlen, x$categories, function(Lengths) {
if (log) {
LogLengths <- log(Lengths)
hist(LogLengths, breaks = breaks, include.lowest = include.lowest,
right = right, plot = FALSE)
}
else {
hist(Lengths, breaks = breaks, include.lowest = include.lowest,
right = right, plot = FALSE)
}
})
res$direction <- x$direction
res$log <- log
class(res) <- "hist.lengths"
plot <- TRUE
if (!is.null(args$plot)) plot <- args$plot
if (plot) {
plot(res, ...)
return(invisible(res))
}
if (!plot) return(res)
} |
if(getRversion() >= "2.15.1") utils::globalVariables("exp2d", package="tgp")
"exp2d.Z" <-
function(X, sd=0.001)
{
if(is.null(X)) return(NULL);
if(is.null(ncol(X))) X <- matrix(X, ncol=length(X))
if(ncol(X) != 2)
stop(paste("X should be a matrix (or data frame) with 2 columns, you have",
ncol(X)))
Ztrue <- X[,1] * exp(- X[,1]^2 - X[,2]^2)
Z <- Ztrue + rnorm(nrow(X),mean=0,sd=sd)
return(data.frame(Z=Z,Ztrue=Ztrue))
}
"exp2d.rand" <-
function(n1=50, n2=30, lh=NULL, dopt=1)
{
if(n1 < 0 || n2 < 0) { stop("n1 and n2 must be >= 0") }
if(!is.null(lh)) {
Xcand <- lhs(n1*dopt, rbind(c(-2,2), c(-2,2)))
if(dopt > 2) { X <- dopt.gp(n1, NULL, Xcand)$XX }
else { X <- Xcand }
if(length(n2) == 1) n2 <- rep(ceiling(n2/3), 3)
else if(length(n2 != 3))
stop(paste("length of n2 should be 1 or 3, you have",
length(n2)))
if(length(dopt) != 1 || dopt < 1)
stop(paste("dopt should be a scalar >= 1, you have", dopt))
Xcand <- lhs(n2[1]*dopt, rbind(c(2,6), c(-2,2)))
Xcand <- rbind(Xcand, lhs(n2[2]*dopt, rbind(c(2,6), c(2,6))))
Xcand <- rbind(Xcand, lhs(n2[3]*dopt, rbind(c(-2,2), c(2,6))))
if(dopt > 2) { X <- rbind(X, dopt.gp(sum(n2), NULL, Xcand)$XX) }
else { X <- rbind(X, Xcand) }
Zdata <- exp2d.Z(X);
Ztrue <- Zdata$Ztrue; Z <- Zdata$Z
if(length(lh) == 1) lh <- rep(ceiling(lh/4), 4)
else if(length(lh) != 4)
stop(paste("length of lh should be 0 (for grid), 1 or 4, you have",
length(lh)))
XX <- lhs(lh[1]*dopt, rbind(c(-2,2), c(-2,2)))
XX <- rbind(XX, lhs(lh[2]*dopt, rbind(c(2,6), c(-2,2))))
XX <- rbind(XX, lhs(lh[3]*dopt, rbind(c(2,6), c(2,6))))
XX <- rbind(XX, lhs(lh[4]*dopt, rbind(c(-2,2), c(2,6))))
if(length(X) > 0 && dopt > 2) {
XX <- dopt.gp(sum(lh), X, XX)$XX
}
ZZdata <- exp2d.Z(XX);
ZZtrue <- ZZdata$Ztrue; ZZ <- Zdata$Z
} else {
if(n1 + n2 >= 441) { stop("n1 + n2 must be <= 441") }
if(dopt != 1) { warning("argument dopt != 1 only makes sens when !is.null(lh)") }
data(exp2d, envir=environment()); n <- dim(exp2d)[1]
si <- (1:n)[1==apply(exp2d[,1:2] <= 2, 1, prod)]
s <- c(sample(si, size=n1, replace=FALSE),
sample(setdiff(1:n, si), n2, replace=FALSE))
X <- as.matrix(exp2d[s,1:2]);
ss <- setdiff(1:n, s)
XX <- exp2d[ss, 1:2];
Z <- as.vector(exp2d[s,3]);
Ztrue <- as.vector(exp2d[s,4]);
ZZ <- as.vector(exp2d[ss,3]);
ZZtrue <- as.vector(exp2d[ss,4]);
}
return(list(X=X, Z=Z, Ztrue=Ztrue, XX=XX, ZZ=ZZ, ZZtrue=ZZtrue))
} |
certify <- function(x, ..., allow_null = FALSE, id = NULL, return_id = FALSE) {
id <- resolve_id(rlang::enquo(x), id)
if (is.null(x)) {
if (!allow_null) {
stop(backticks(id), " must not be NULL.", call. = FALSE)
} else {
return(NULL)
}
}
quos <- rlang::enquos(...)
for (quo in quos) {
condition <- rlang::as_function(rlang::eval_tidy(quo))
satisfied <- condition(x)
if (!rlang::is_scalar_logical(satisfied)) stop(
"`",
rlang::quo_text(quo),
"` does not evaluate to a scalar logical for ",
backticks(id),
".",
call. = FALSE
)
if (!satisfied) stop(
"Condition `",
rlang::quo_text(quo),
"` not satisfied for ",
backticks(id),
".",
call. = FALSE
)
}
maybe_set_id(x, id, return_id)
}
gt <- function(l) {
force(l)
function(x) all(x > l)
}
gte <- function(l) {
force(l)
function(x) all(x >= l)
}
lt <- function(u) {
force(u)
function(x) all(x < u)
}
lte <- function(u) {
force(u)
function(x) all(x <= u)
}
bounded <- function(l = NULL, u = NULL, incl_lower = TRUE, incl_upper = TRUE) {
if (is.null(l) && is.null(u)) stop("At least one of `l` or `u` must be specified.", call. = FALSE)
lower_bound <- if (!is.null(l)) {
if (incl_lower) gte(l) else gt(l)
} else {
function() TRUE
}
upper_bound <- if (!is.null(u)) {
if (incl_upper) lte(u) else lt(u)
} else {
function() TRUE
}
function(x) lower_bound(x) && upper_bound(x)
} |
require(rkwarddev)
local({
output.dir <- "~/cocor/"
overwrite <- TRUE
about.node <- rk.XML.about(
name="cocor",
author=person(given="Birk", family="Diedenhofen", email="[email protected]", role=c("aut","cre")),
about=list(
desc="Comparison of two correlations based on either dependent or independent groups.",
version="1.1-3",
date="2016-05-28",
url="http://comparingcorrelations.org",
license="GPL"
)
)
dependencies.node <- rk.XML.dependencies(
dependencies=list(
rkward.min="0.6.0",
rkward.max="",
R.min="2.15",
R.max=""
)
)
var.sel <- rk.XML.varselector("Select data", id.name="vars")
raw.data.dep.groups.overlap.var.sel <- rk.XML.varselector("Select data", id.name="raw_data_dep_groups_overlap_var_sel")
raw.data.dep.groups.nonoverlap.var.sel <- rk.XML.varselector("Select data", id.name="raw_data_dep_groups_nonoverlap_var_sel")
raw.data.indep.groups.var.sel.1 <- rk.XML.varselector("Select data", id.name="raw_data_indep_groups_1_var_sel")
raw.data.indep.groups.var.sel.2 <- rk.XML.varselector("Select data", id.name="raw_data_indep_groups_2_var_sel")
data.input <- rk.XML.radio("Data input",
id.name="data_input",
options=list(
"Calculate and compare correlations from raw data"=c(val="raw.data"),
"Enter correlations manually"=c(val="manual"),
"Use correlations stored in single variables"=c(val="variable")
)
)
groups <- rk.XML.radio("The two correlations are based on",
id.name="groups",
options=list(
"two independent groups"=c(val="indep"),
"two dependent groups (e.g., same group)"=c(val="dep")
)
)
correlations <- rk.XML.radio("The two correlations are",
id.name="correlations",
options=list(
"overlapping"=c(val="overlap"),
"nonoverlapping"=c(val="nonoverlap")
)
)
text.tailed.test <- "Do you want to conduct a one- or two-tailed test?"
test.hypothesis.indep.groups <- rk.XML.radio(text.tailed.test,
id.name="test_hypothesis_indep_groups",
options=list(
"Two-tailed: r1.jk is not equal to r2.hm"=c(val="two.sided"),
"One-tailed: r1.jk is greater than r2.hm"=c(val="greater"),
"One-tailed: r1.jk is less than r2.hm "=c(val="less")
)
)
test.hypothesis.indep.groups.null.value <- rk.XML.radio(text.tailed.test,
id.name="test_hypothesis_indep_groups_null_value",
options=list(
"Two-tailed: the difference between r1.jk and r2.hm is not equal to the defined null value"=c(val="two.sided"),
"One-tailed: the difference between r1.jk and r2.hm is greater than the defined null value"=c(val="greater"),
"One-tailed: the difference between r1.jk and r2.hm is less than the defined null value"=c(val="less")
)
)
test.hypothesis.dep.groups.overlap <- rk.XML.radio(text.tailed.test,
id.name="test_hypothesis_dep_groups_overlap",
options=list(
"Two-tailed: r.jk is not equal to r.jh"=c(val="two.sided"),
"One-tailed: r.jk is greater than r.jh"=c(val="greater"),
"One-tailed: r.jk is less than r.jh"=c(val="less")
)
)
test.hypothesis.dep.groups.overlap.null.value <- rk.XML.radio(text.tailed.test,
id.name="test_hypothesis_dep_groups_overlap_null_value",
options=list(
"Two-tailed: the difference between r.jk and r.jh is not equal to the defined null value"=c(val="two.sided"),
"One-tailed: the difference between r.jk and r.jh is greater than the defined null value"=c(val="greater"),
"One-tailed: the difference between r.jk and r.jh is less than the defined null value"=c(val="less")
)
)
test.hypothesis.dep.groups.nonoverlap <- rk.XML.radio(text.tailed.test,
id.name="test_hypothesis_dep_groups_nonoverlap",
options=list(
"Two-tailed: r.jk is not equal to r.hm"=c(val="two.sided"),
"One-tailed: r.jk is greater than r.hm"=c(val="greater"),
"One-tailed: r.jk is less than r.hm"=c(val="less")
)
)
test.hypothesis.dep.groups.nonoverlap.null.value <- rk.XML.radio(text.tailed.test,
id.name="test_hypothesis_dep_groups_nonoverlap_null_value",
options=list(
"Two-tailed: the difference between r.jk and r.hm is not equal to the defined null value"=c(val="two.sided"),
"One-tailed: the difference between r.jk and r.hm is greater than the defined null value"=c(val="greater"),
"One-tailed: the difference between r.jk and r.hm is less than the defined null value"=c(val="less")
)
)
alpha <- rk.XML.spinbox("Alpha level", min=0, max=1, id.name="alpha", initial=.05)
alpha.frame <- rk.XML.frame(alpha, label="Please choose an alpha level:")
conf.level <- rk.XML.spinbox("Confidence level", min=0, max=1, id.name="conf_int", initial=.95)
conf.level.frame <- rk.XML.frame(conf.level, label="Please choose a confidence level:")
null.value <- rk.XML.spinbox("Null value", min=-2, max=2, id.name="null_value", initial=0, precision=2)
null.value.frame <- rk.XML.frame(rk.XML.text("The null value is the hypothesized difference between the two correlations used for testing the null hypothesis. If the null value is other than 0, only the test by Zou (2007) is available."), null.value, label="Please choose a null value:")
text.correlations <- "Please provide the correlations you want to compare:"
text.related.correlation <- rk.XML.text("To assess the significance of the difference between the two dependent correlations, you need to provide the correlation between k and h:<br /><br />")
text.related.correlations <- rk.XML.text("To assess the significance of the difference between the two dependent correlations, you need to provide additional related correlations:<br /><br />")
text.group.size <- "Please indicate the size of your sample:"
text.group.sizes <- "Please indicate the size of your samples:"
raw.data.indep.groups.1 <- rk.XML.varslot("Raw data set 1 (must be a data.frame)", source=raw.data.indep.groups.var.sel.1, classes=c("data.frame"), id.name="raw_data_indep_groups_1")
raw.data.indep.groups.2 <- rk.XML.varslot("Raw data set 2 (must be a data.frame)", source=raw.data.indep.groups.var.sel.2, classes=c("data.frame"), id.name="raw_data_indep_groups_2")
raw.data.indep.groups.j <- rk.XML.varslot("Variable j", source=raw.data.indep.groups.var.sel.1, types="number", id.name="raw_data_indep_groups_j")
raw.data.indep.groups.k <- rk.XML.varslot("Variable k", source=raw.data.indep.groups.var.sel.1, types="number", id.name="raw_data_indep_groups_k")
raw.data.indep.groups.h <- rk.XML.varslot("Variable h", source=raw.data.indep.groups.var.sel.2, types="number", id.name="raw_data_indep_groups_h")
raw.data.indep.groups.m <- rk.XML.varslot("Variable m", source=raw.data.indep.groups.var.sel.2, types="number", id.name="raw_data_indep_groups_m")
raw.data.indep.groups.col.1 <- rk.XML.col(
rk.XML.text("To compare the correlations j ~ k and h ~ m, please provide a data.frame for each correlations and select columns to specify the variables j, k, h, and m.<br />"),
raw.data.indep.groups.1.frame <- rk.XML.frame(raw.data.indep.groups.1, raw.data.indep.groups.j, raw.data.indep.groups.k, label="Correlation j ~ k", id.name="raw_data_indep_groups_1_frame"),
rk.XML.stretch()
)
raw.data.indep.groups.col.2 <- rk.XML.col(
raw.data.indep.groups.2.frame <- rk.XML.frame(raw.data.indep.groups.2, raw.data.indep.groups.h, raw.data.indep.groups.m, label="Correlation h ~ m", id.name="raw_data_indep_groups_2_frame"),
rk.XML.stretch()
)
raw.data.dep.groups.overlap <- rk.XML.varslot("Raw data (must be a data.frame)", source=raw.data.dep.groups.overlap.var.sel, classes=c("data.frame"), id.name="raw_data_dep_groups_overlap")
raw.data.dep.groups.overlap.j <- rk.XML.varslot("Variable j", source=raw.data.dep.groups.overlap.var.sel, types="number", id.name="raw_data_dep_groups_overlap_j")
raw.data.dep.groups.overlap.k <- rk.XML.varslot("Variable k", source=raw.data.dep.groups.overlap.var.sel, types="number", id.name="raw_data_dep_groups_overlap_k")
raw.data.dep.groups.overlap.h <- rk.XML.varslot("Variable h", source=raw.data.dep.groups.overlap.var.sel, types="number", id.name="raw_data_dep_groups_overlap_h")
raw.data.dep.groups.overlap.col <- rk.XML.col(
rk.XML.text("To compare the correlations j ~ k and j ~ h, please provide a data.frame and select columns to specify the variables j, k, and h.<br />"),
raw.data.dep.groups.overlap,
raw.data.dep.groups.overlap.frame <- rk.XML.frame(raw.data.dep.groups.overlap.j, raw.data.dep.groups.overlap.k, raw.data.dep.groups.overlap.h, label="Correlations j ~ k and j ~ h", id.name="raw_data_dep_groups_overlap_frame"),
rk.XML.stretch()
)
raw.data.dep.groups.nonoverlap <- rk.XML.varslot("Raw data (must be a data.frame)", source=raw.data.dep.groups.nonoverlap.var.sel, classes=c("data.frame"), id.name="raw_data_dep_groups_nonoverlap")
raw.data.dep.groups.nonoverlap.j <- rk.XML.varslot("Variable j", source=raw.data.dep.groups.nonoverlap.var.sel, types="number", id.name="raw_data_dep_groups_nonoverlap_j")
raw.data.dep.groups.nonoverlap.k <- rk.XML.varslot("Variable k", source=raw.data.dep.groups.nonoverlap.var.sel, types="number", id.name="raw_data_dep_groups_nonoverlap_k")
raw.data.dep.groups.nonoverlap.h <- rk.XML.varslot("Variable h", source=raw.data.dep.groups.nonoverlap.var.sel, types="number", id.name="raw_data_dep_groups_nonoverlap_h")
raw.data.dep.groups.nonoverlap.m <- rk.XML.varslot("Variable m", source=raw.data.dep.groups.nonoverlap.var.sel, types="number", id.name="raw_data_dep_groups_nonoverlap_m")
raw.data.dep.groups.nonoverlap.col <- rk.XML.col(
rk.XML.text("To compare the correlations j ~ k and h ~ m, please provide a data.frame and select columns to specify the variables j, k, h, and m.<br />"),
raw.data.dep.groups.nonoverlap,
raw.data.dep.groups.nonoverlap.frame.1 <- rk.XML.frame(raw.data.dep.groups.nonoverlap.j, raw.data.dep.groups.nonoverlap.k, label="Correlation j ~ k", id.name="raw_data_dep_groups_nonoverlap_frame"),
raw.data.dep.groups.nonoverlap.frame.2 <- rk.XML.frame(raw.data.dep.groups.nonoverlap.h, raw.data.dep.groups.nonoverlap.m, label="Correlation h ~ m", id.name="raw_data_dep_groups_nonoverlap_frame"),
rk.XML.stretch()
)
manual.indep.groups.r1.jk <- rk.XML.spinbox("Correlation r1.jk", min=-1, max=1, id.name="manual_indep_groups_r1_jk")
manual.indep.groups.r2.hm <- rk.XML.spinbox("Correlation r2.hm", min=-1, max=1, id.name="manual_indep_groups_r2_hm")
manual.indep.groups.n1 <- rk.XML.spinbox("Group size n1", min=3, real=FALSE, initial=30, id.name="manual_indep_groups_n1")
manual.indep.groups.n2 <- rk.XML.spinbox("Group size n2", min=3, real=FALSE, initial=30, id.name="manual_indep_groups_n2")
manual.indep.groups.cor.frame <- rk.XML.frame(manual.indep.groups.r1.jk, manual.indep.groups.r2.hm, label=text.correlations, id.name="manual_indep_groups_cor_frame")
manual.indep.groups.group.size.frame <- rk.XML.frame(manual.indep.groups.n1, manual.indep.groups.n2, label=text.group.sizes, id.name="manual_indep_groups_group_size_frame")
manual.indep.groups.frame <- rk.XML.frame(manual.indep.groups.cor.frame, manual.indep.groups.group.size.frame, label="", id.name="manual_indep_groups_frame")
manual.dep.groups.overlap.r.jk <- rk.XML.spinbox("Correlation j ~ k", min=-1, max=1, id.name="manual_dep_groups_overlap_r_jk")
manual.dep.groups.overlap.r.jh <- rk.XML.spinbox("Correlation j ~ h", min=-1, max=1, id.name="manual_dep_groups_overlap_r_jh")
manual.dep.groups.overlap.r.kh <- rk.XML.spinbox("Correlation k ~ h", min=-1, max=1, id.name="manual_dep_groups_overlap_r_kh")
manual.dep.groups.overlap.n <- rk.XML.spinbox("Group size n", min=3, real=FALSE, initial=30, id.name="manual_dep_groups_overlap_n")
manual.dep.groups.overlap.cor.frame <- rk.XML.frame(manual.dep.groups.overlap.r.jk, manual.dep.groups.overlap.r.jh, label=text.correlations, id.name="manual_dep_groups_overlap_cor_frame")
manual.dep.groups.overlap.related.cor.frame <- rk.XML.frame(text.related.correlation, manual.dep.groups.overlap.r.kh, id.name="manual_dep_groups_overlap_related_cor_frame")
manual.dep.groups.overlap.group.size.frame <- rk.XML.frame(manual.dep.groups.overlap.n, label=text.group.size, id.name="manual_dep_groups_overlap_group_size_frame")
manual.dep.groups.overlap.frame <- rk.XML.frame(manual.dep.groups.overlap.cor.frame, manual.dep.groups.overlap.related.cor.frame, manual.dep.groups.overlap.group.size.frame, label="", id.name="manual_dep_groups_overlap_frame")
manual.dep.groups.nonoverlap.r.jk <- rk.XML.spinbox("Correlation j ~ k", min=-1, max=1, id.name="manual_dep_groups_nonoverlap_r_jk")
manual.dep.groups.nonoverlap.r.hm <- rk.XML.spinbox("Correlation h ~ m", min=-1, max=1, id.name="manual_dep_groups_nonoverlap_r_hm")
manual.dep.groups.nonoverlap.r.jh <- rk.XML.spinbox("Correlation j ~ h", min=-1, max=1, id.name="manual_dep_groups_nonoverlap_r_jh")
manual.dep.groups.nonoverlap.r.jm <- rk.XML.spinbox("Correlation j ~ m", min=-1, max=1, id.name="manual_dep_groups_nonoverlap_r_jm")
manual.dep.groups.nonoverlap.r.kh <- rk.XML.spinbox("Correlation k ~ h", min=-1, max=1, id.name="manual_dep_groups_nonoverlap_r_kh")
manual.dep.groups.nonoverlap.r.km <- rk.XML.spinbox("Correlation k ~ m", min=-1, max=1, id.name="manual_dep_groups_nonoverlap_r_km")
manual.dep.groups.nonoverlap.n <- rk.XML.spinbox("Group size n", min=3, real=FALSE, initial=30, id.name="manual_dep_groups_nonoverlap_n")
manual.dep.groups.nonoverlap.cor.frame <- rk.XML.frame(manual.dep.groups.nonoverlap.r.jk, manual.dep.groups.nonoverlap.r.hm, label=text.correlations, id.name="manual_dep_groups_nonoverlap_cor_frame")
manual.dep.groups.nonoverlap.related.cor.frame <- rk.XML.frame(text.related.correlations, manual.dep.groups.nonoverlap.r.jh, manual.dep.groups.nonoverlap.r.jm, manual.dep.groups.nonoverlap.r.kh, manual.dep.groups.nonoverlap.r.km, id.name="manual_dep_groups_nonoverlap_related_cor_frame")
manual.dep.groups.nonoverlap.group.size.frame <- rk.XML.frame(manual.dep.groups.nonoverlap.n, label=text.group.size, id.name="manual_dep_groups_nonoverlap_group_size_frame")
manual.dep.groups.nonoverlap.frame <- rk.XML.frame(manual.dep.groups.nonoverlap.cor.frame, manual.dep.groups.nonoverlap.related.cor.frame, manual.dep.groups.nonoverlap.group.size.frame, id.name="manual_dep_groups_nonoverlap_frame")
variable.indep.groups.r1.jk <- rk.XML.varslot("Correlation r1.jk", source=var.sel, types="number", id.name="variable_indep_groups_r1_jk")
variable.indep.groups.r2.hm <- rk.XML.varslot("Correlation r2.hm", source=var.sel, types="number", id.name="variable_indep_groups_r2_hm")
variable.indep.groups.n1 <- rk.XML.varslot("Group size n1", source=var.sel, types="number", id.name="variable_indep_groups_n1")
variable.indep.groups.n2 <- rk.XML.varslot("Group size n2", source=var.sel, types="number", id.name="variable_indep_groups_n2")
variable.indep.groups.cor.frame <- rk.XML.frame(variable.indep.groups.r1.jk, variable.indep.groups.r2.hm, label=text.correlations, id.name="variable_indep_groups_cor_frame")
variable.indep.groups.group.size.frame <- rk.XML.frame(variable.indep.groups.n1, variable.indep.groups.n2, label=text.group.sizes, id.name="variable_indep_groups_group_size_frame")
variable.indep.groups.frame <- rk.XML.frame(variable.indep.groups.cor.frame, variable.indep.groups.group.size.frame, label="", id.name="variable_indep_groups_frame")
variable.dep.groups.overlap.r.jk <- rk.XML.varslot("Correlation j ~ k", source=var.sel, types="number", id.name="variable_dep_groups_overlap_r_jk")
variable.dep.groups.overlap.r.jh <- rk.XML.varslot("Correlation j ~ h", source=var.sel, types="number", id.name="variable_dep_groups_overlap_r_jh")
variable.dep.groups.overlap.r.kh <- rk.XML.varslot("Correlation k ~ h", source=var.sel, types="number", id.name="variable_dep_groups_overlap_r_kh")
variable.dep.groups.overlap.n <- rk.XML.varslot("Group size n", source=var.sel, types="number", id.name="variable_dep_groups_overlap_n")
variable.dep.groups.overlap.cor.frame <- rk.XML.frame(variable.dep.groups.overlap.r.jk, variable.dep.groups.overlap.r.jh, label=text.correlations, id.name="variable_dep_groups_overlap_cor_frame")
variable.dep.groups.overlap.related.cor.frame <- rk.XML.frame(text.related.correlation, variable.dep.groups.overlap.r.kh, id.name="variable_dep_groups_overlap_related_cor_frame")
variable.dep.groups.overlap.group.size.frame <- rk.XML.frame(variable.dep.groups.overlap.n, label=text.group.size, id.name="variable_dep_groups_overlap_group_size_frame")
variable.dep.groups.overlap.frame <- rk.XML.frame(variable.dep.groups.overlap.cor.frame, variable.dep.groups.overlap.related.cor.frame, variable.dep.groups.overlap.group.size.frame, label="", id.name="variable_dep_groups_overlap_frame")
variable.dep.groups.nonoverlap.r.jk <- rk.XML.varslot("Correlation j ~ k", source=var.sel, types="number", id.name="variable_dep_groups_nonoverlap_r_jk")
variable.dep.groups.nonoverlap.r.hm <- rk.XML.varslot("Correlation h ~ m", source=var.sel, types="number", id.name="variable_dep_groups_nonoverlap_r_hm")
variable.dep.groups.nonoverlap.r.jh <- rk.XML.varslot("Correlation j ~ h", source=var.sel, types="number", id.name="variable_dep_groups_nonoverlap_r_jh")
variable.dep.groups.nonoverlap.r.jm <- rk.XML.varslot("Correlation j ~ m", source=var.sel, types="number", id.name="variable_dep_groups_nonoverlap_r_jm")
variable.dep.groups.nonoverlap.r.kh <- rk.XML.varslot("Correlation k ~ h", source=var.sel, types="number", id.name="variable_dep_groups_nonoverlap_r_kh")
variable.dep.groups.nonoverlap.r.km <- rk.XML.varslot("Correlation k ~ m", source=var.sel, types="number", id.name="variable_dep_groups_nonoverlap_r_km")
variable.dep.groups.nonoverlap.n <- rk.XML.varslot("Group size n", source=var.sel, types="number", id.name="variable_dep_groups_nonoverlap_n")
variable.dep.groups.nonoverlap.cor.frame <- rk.XML.frame(variable.dep.groups.nonoverlap.r.jk, variable.dep.groups.nonoverlap.r.hm, label=text.correlations, id.name="variable_dep_groups_nonoverlap_cor_frame")
variable.dep.groups.nonoverlap.related.cor.frame <- rk.XML.frame(text.related.correlations, variable.dep.groups.nonoverlap.r.jh, variable.dep.groups.nonoverlap.r.jm, variable.dep.groups.nonoverlap.r.kh, variable.dep.groups.nonoverlap.r.km, id.name="variable_dep_groups_nonoverlap_related_cor_frame")
variable.dep.groups.nonoverlap.group.size.frame <- rk.XML.frame(variable.dep.groups.nonoverlap.n, label=text.group.size, id.name="variable_dep_groups_nonoverlap_group_size_frame")
variable.dep.groups.nonoverlap.frame <- rk.XML.frame(variable.dep.groups.nonoverlap.cor.frame, variable.dep.groups.nonoverlap.related.cor.frame, variable.dep.groups.nonoverlap.group.size.frame, label="", id.name="variable_dep_groups_nonoverlap_frame")
wizard.correlations.page <- rk.XML.page(
id.name="wizard_correlations_page",
rk.XML.text("Are the two correlations overlapping, i.e., do they have one variable in common?"),
correlations,
rk.XML.frame(label="Examples",
rk.XML.text("Overlapping:<br />Correlation 1: age ~ intelligence<br />Correlation 2: age ~ shoe size<br /><br />These are overlapping correlations because the same variable 'age' is part of both correlations.<br /><br />Nonoverlapping:<br />Correlation 1: age ~ intelligence<br />Correlation 2: body mass index ~ shoe size<br /><br />These are nonoverlapping correlations because no variable is part of both correlations.<br /><br /><br />")
),
rk.XML.stretch()
)
raw.data.row2 <- rk.XML.row(
rk.XML.col(raw.data.indep.groups.var.sel.2),
raw.data.indep.groups.col.2
)
manual.and.variable.data.input.col <- rk.XML.col(
manual.indep.groups.frame, manual.dep.groups.overlap.frame, manual.dep.groups.nonoverlap.frame,
variable.indep.groups.frame, variable.dep.groups.overlap.frame, variable.dep.groups.nonoverlap.frame,
rk.XML.stretch()
)
wizard <- rk.XML.wizard(
label="Comparing correlations",
rk.XML.page(
rk.XML.text("Are the two correlations based on two independent or on two dependent groups? (If the data were taken from measurements of the same individuals, the groups are dependent.)<br />"),
groups,
rk.XML.stretch()
),
wizard.correlations.page,
rk.XML.page(
rk.XML.text("Do you want to calculate and compare correlations from raw data, are the correlations already available in single variables, or do you want to type the correlations in manually?"),
data.input,
rk.XML.stretch()
),
rk.XML.page(
rk.XML.col(
rk.XML.row(
rk.XML.col(var.sel,raw.data.indep.groups.var.sel.1,raw.data.dep.groups.overlap.var.sel,raw.data.dep.groups.nonoverlap.var.sel),
raw.data.dep.groups.nonoverlap.col,
raw.data.dep.groups.overlap.col,
raw.data.indep.groups.col.1,
manual.and.variable.data.input.col
),
raw.data.row2
)
),
rk.XML.page(
alpha.frame,
conf.level.frame,
null.value.frame,
rk.XML.stretch()
),
rk.XML.page(
test.hypothesis.indep.groups,
test.hypothesis.dep.groups.overlap,
test.hypothesis.dep.groups.nonoverlap,
test.hypothesis.indep.groups.null.value,
test.hypothesis.dep.groups.overlap.null.value,
test.hypothesis.dep.groups.nonoverlap.null.value,
rk.XML.stretch()
)
)
logic <- rk.XML.logic(
raw.data.input.convert <- rk.XML.convert(sources=list(string=data.input), mode=c(equals="raw.data"), id.name="raw_data_input_convert"),
manual.input.convert <- rk.XML.convert(sources=list(string=data.input), mode=c(equals="manual"), id.name="manual_input_convert"),
variable.input.convert <- rk.XML.convert(sources=list(string=data.input), mode=c(equals="variable"), id.name="variable_input_convert"),
indep.groups.convert <- rk.XML.convert(sources=list(string=groups), mode=c(equals="indep"), id.name="indep_groups_convert"),
dep.groups.convert <- rk.XML.convert(sources=list(string=groups), mode=c(equals="dep"), id.name="dep_groups_convert"),
overlap.correlations.convert <- rk.XML.convert(sources=list(string=correlations), mode=c(equals="overlap"), id.name="overlap_correlations_convert"),
nonoverlap.correlations.convert <- rk.XML.convert(sources=list(string=correlations), mode=c(equals="nonoverlap"), id.name="nonoverlap_correlations_convert"),
raw.data.indep.groups.1.convert <- rk.XML.convert(sources=list(available=raw.data.indep.groups.1), mode=c(notequals=""), id.name="raw_data_indep_groups_1_convert"),
raw.data.indep.groups.2.convert <- rk.XML.convert(sources=list(available=raw.data.indep.groups.2), mode=c(notequals=""), id.name="raw_data_indep_groups_2_convert"),
raw.data.dep.groups.overlap.convert <- rk.XML.convert(sources=list(available=raw.data.dep.groups.overlap), mode=c(notequals=""), id.name="raw_data_dep_groups_overlap_convert"),
raw.data.dep.groups.nonoverlap.convert <- rk.XML.convert(sources=list(available=raw.data.dep.groups.nonoverlap), mode=c(notequals=""), id.name="raw_data_dep_groups_nonoverlap_convert"),
null.value.is.zero.convert <- rk.XML.convert(sources=list(real=null.value), mode=c(min=-0.001, max=0.001), id.name="null_value_is_zero_convert"),
null.value.is.greater.than.zero.convert <- rk.XML.convert(sources=list(real=null.value), mode=c(min=0.01, max=2.00), id.name="null_value_is_greater_than_zero_convert"),
null.value.is.less.than.zero.convert <- rk.XML.convert(sources=list(real=null.value), mode=c(min=-2.00, max=-0.01), id.name="null_value_is_less_than_zero_convert"),
null.value.is.not.zero.convert <- rk.XML.convert(sources=list(null.value.is.less.than.zero.convert, null.value.is.greater.than.zero.convert), mode=c(or=""), id.name="null_value_is_not_zero_convert"),
manual.or.variable.input.convert <- rk.XML.convert(sources=list(manual.input.convert, variable.input.convert), mode=c(or=""), id.name="manual_or_variable_input_convert"),
dep.groups.and.overlap.correlations.convert <- rk.XML.convert(sources=list(dep.groups.convert, overlap.correlations.convert), mode=c(and=""), id.name="dep_groups_and_overlap_correlations_convert"),
dep.groups.and.nonoverlap.correlations.convert <- rk.XML.convert(sources=list(dep.groups.convert, nonoverlap.correlations.convert), mode=c(and=""), id.name="dep_groups_and_nonoverlap_correlations_convert"),
indep.groups.and.null.value.is.zero.convert <- rk.XML.convert(sources=list(indep.groups.convert, null.value.is.zero.convert), mode=c(and=""), id.name="indep_groups_and_null_value_is_zero_convert"),
dep.groups.and.overlap.correlations.and.null.value.is.zero.convert <- rk.XML.convert(sources=list(dep.groups.convert, overlap.correlations.convert, null.value.is.zero.convert), mode=c(and=""), id.name="dep_groups_and_overlap_correlations_and_null_value_is_zero_convert"),
dep.groups.and.nonoverlap.correlations.and.null.value.is.zero.convert <- rk.XML.convert(sources=list(dep.groups.convert, nonoverlap.correlations.convert, null.value.is.zero.convert), mode=c(and=""), id.name="dep_groups_and_nonoverlap_correlations_and_null_value_is_zero_convert"),
indep.groups.and.null.value.is.not.zero.convert <- rk.XML.convert(sources=list(indep.groups.convert, null.value.is.not.zero.convert), mode=c(and=""), id.name="indep_groups_and_null_value_is_not_zero_convert"),
dep.groups.and.overlap.correlations.and.null.value.is.not.zero.convert <- rk.XML.convert(sources=list(dep.groups.convert, overlap.correlations.convert, null.value.is.not.zero.convert), mode=c(and=""), id.name="dep_groups_and_overlap_correlations_and_null_value_is_not_zero_convert"),
dep.groups.and.nonoverlap.correlations.and.null.value.is.not.zero.convert <- rk.XML.convert(sources=list(dep.groups.convert, nonoverlap.correlations.convert, null.value.is.not.zero.convert), mode=c(and=""), id.name="dep_groups_and_nonoverlap_correlations_and_null_value_is_not_zero_convert"),
raw.data.and.indep.groups.convert <- rk.XML.convert(sources=list(raw.data.input.convert, indep.groups.convert), mode=c(and=""), id.name="raw_data_and_indep_groups_convert"),
raw.data.and.dep.groups.and.nonoverlap.correlations.convert <- rk.XML.convert(sources=list(raw.data.input.convert, dep.groups.convert, nonoverlap.correlations.convert), mode=c(and=""), id.name="raw_data_and_dep_groups_and_nonoverlap_correlations_convert"),
raw.data.and.dep.groups.and.overlap.correlations.convert <- rk.XML.convert(sources=list(raw.data.input.convert, dep.groups.convert, overlap.correlations.convert), mode=c(and=""), id.name="raw_data_and_dep_groups_and_overlap_correlations_convert"),
manual.and.indep.groups.convert <- rk.XML.convert(sources=list(manual.input.convert, indep.groups.convert), mode=c(and=""), id.name="manual_and_indep_groups_convert"),
manual.and.dep.groups.and.nonoverlap.correlations.convert <- rk.XML.convert(sources=list(manual.input.convert, dep.groups.convert, nonoverlap.correlations.convert), mode=c(and=""), id.name="manual_and_dep_groups_and_nonoverlap_correlations_convert"),
manual.and.dep.groups.and.overlap.correlations.convert <- rk.XML.convert(sources=list(manual.input.convert, dep.groups.convert, overlap.correlations.convert), mode=c(and=""), id.name="manual_and_dep_groups_and_overlap_correlations_convert"),
variable.and.indep.groups.convert <- rk.XML.convert(sources=list(variable.input.convert, indep.groups.convert), mode=c(and=""), id.name="variable_and_indep_groups_convert"),
variable.and.dep.groups.and.nonoverlap.correlations.convert <- rk.XML.convert(sources=list(variable.input.convert, dep.groups.convert, nonoverlap.correlations.convert), mode=c(and=""), id.name="variable_and_dep_groups_and_nonoverlap_correlations_convert"),
variable.and.dep.groups.and.overlap.correlations.convert <- rk.XML.convert(sources=list(variable.input.convert, dep.groups.convert, overlap.correlations.convert), mode=c(and=""), id.name="variable_and_dep_groups_and_overlap_correlations_convert"),
rk.XML.connect(governor=manual.or.variable.input.convert, client=manual.and.variable.data.input.col, set="visible"),
rk.XML.connect(governor=manual.and.indep.groups.convert, client=manual.indep.groups.frame, set="visible"),
rk.XML.connect(governor=manual.and.dep.groups.and.nonoverlap.correlations.convert, client=manual.dep.groups.nonoverlap.frame, set="visible"),
rk.XML.connect(governor=manual.and.dep.groups.and.overlap.correlations.convert, client=manual.dep.groups.overlap.frame, set="visible"),
rk.XML.connect(governor=variable.and.indep.groups.convert, client=variable.indep.groups.frame, set="visible"),
rk.XML.connect(governor=variable.and.dep.groups.and.nonoverlap.correlations.convert, client=variable.dep.groups.nonoverlap.frame, set="visible"),
rk.XML.connect(governor=variable.and.dep.groups.and.overlap.correlations.convert, client=variable.dep.groups.overlap.frame, set="visible"),
rk.XML.connect(governor=indep.groups.and.null.value.is.zero.convert, client=test.hypothesis.indep.groups, set="visible"),
rk.XML.connect(governor=dep.groups.and.overlap.correlations.and.null.value.is.zero.convert, client=test.hypothesis.dep.groups.overlap, set="visible"),
rk.XML.connect(governor=dep.groups.and.nonoverlap.correlations.and.null.value.is.zero.convert, client=test.hypothesis.dep.groups.nonoverlap, set="visible"),
rk.XML.connect(governor=indep.groups.and.null.value.is.not.zero.convert, client=test.hypothesis.indep.groups.null.value, set="visible"),
rk.XML.connect(governor=dep.groups.and.overlap.correlations.and.null.value.is.not.zero.convert, client=test.hypothesis.dep.groups.overlap.null.value, set="visible"),
rk.XML.connect(governor=dep.groups.and.nonoverlap.correlations.and.null.value.is.not.zero.convert, client=test.hypothesis.dep.groups.nonoverlap.null.value, set="visible"),
rk.XML.connect(governor=variable.input.convert, client=var.sel, set="visible"),
rk.XML.connect(governor=dep.groups.convert, client=wizard.correlations.page, set="visible"),
rk.XML.connect(governor=raw.data.and.indep.groups.convert, client=raw.data.indep.groups.var.sel.1, set="visible"),
rk.XML.connect(governor=raw.data.and.indep.groups.convert, client=raw.data.row2, set="visible"),
rk.XML.connect(governor=raw.data.and.indep.groups.convert, client=raw.data.indep.groups.col.1, set="visible"),
rk.XML.connect(governor=raw.data.indep.groups.1.convert, client=raw.data.indep.groups.j, set="enabled"),
rk.XML.connect(governor=raw.data.indep.groups.1.convert, client=raw.data.indep.groups.k, set="enabled"),
rk.XML.connect(governor=raw.data.indep.groups.2.convert, client=raw.data.indep.groups.h, set="enabled"),
rk.XML.connect(governor=raw.data.indep.groups.2.convert, client=raw.data.indep.groups.m, set="enabled"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.overlap.correlations.convert, client=raw.data.dep.groups.overlap.var.sel, set="visible"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.overlap.correlations.convert, client=raw.data.dep.groups.overlap.col, set="visible"),
rk.XML.connect(governor=raw.data.dep.groups.overlap.convert, client=raw.data.dep.groups.overlap.j, set="enabled"),
rk.XML.connect(governor=raw.data.dep.groups.overlap.convert, client=raw.data.dep.groups.overlap.k, set="enabled"),
rk.XML.connect(governor=raw.data.dep.groups.overlap.convert, client=raw.data.dep.groups.overlap.h, set="enabled"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.nonoverlap.correlations.convert, client=raw.data.dep.groups.nonoverlap.var.sel, set="visible"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.nonoverlap.correlations.convert, client=raw.data.dep.groups.nonoverlap.col, set="visible"),
rk.XML.connect(governor=raw.data.dep.groups.nonoverlap.convert, client=raw.data.dep.groups.nonoverlap.j, set="enabled"),
rk.XML.connect(governor=raw.data.dep.groups.nonoverlap.convert, client=raw.data.dep.groups.nonoverlap.k, set="enabled"),
rk.XML.connect(governor=raw.data.dep.groups.nonoverlap.convert, client=raw.data.dep.groups.nonoverlap.h, set="enabled"),
rk.XML.connect(governor=raw.data.dep.groups.nonoverlap.convert, client=raw.data.dep.groups.nonoverlap.m, set="enabled"),
rk.XML.connect(governor=raw.data.and.indep.groups.convert, client=raw.data.indep.groups.1, set="required"),
rk.XML.connect(governor=raw.data.and.indep.groups.convert, client=raw.data.indep.groups.2, set="required"),
rk.XML.connect(governor=raw.data.and.indep.groups.convert, client=raw.data.indep.groups.j, set="required"),
rk.XML.connect(governor=raw.data.and.indep.groups.convert, client=raw.data.indep.groups.k, set="required"),
rk.XML.connect(governor=raw.data.and.indep.groups.convert, client=raw.data.indep.groups.h, set="required"),
rk.XML.connect(governor=raw.data.and.indep.groups.convert, client=raw.data.indep.groups.m, set="required"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.overlap.correlations.convert, client=raw.data.dep.groups.overlap, set="required"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.overlap.correlations.convert, client=raw.data.dep.groups.overlap.j, set="required"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.overlap.correlations.convert, client=raw.data.dep.groups.overlap.k, set="required"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.overlap.correlations.convert, client=raw.data.dep.groups.overlap.h, set="required"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.nonoverlap.correlations.convert, client=raw.data.dep.groups.nonoverlap, set="required"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.nonoverlap.correlations.convert, client=raw.data.dep.groups.nonoverlap.j, set="required"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.nonoverlap.correlations.convert, client=raw.data.dep.groups.nonoverlap.k, set="required"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.nonoverlap.correlations.convert, client=raw.data.dep.groups.nonoverlap.h, set="required"),
rk.XML.connect(governor=raw.data.and.dep.groups.and.nonoverlap.correlations.convert, client=raw.data.dep.groups.nonoverlap.m, set="required"),
rk.XML.connect(governor=variable.and.indep.groups.convert, client=variable.indep.groups.r1.jk, set="required"),
rk.XML.connect(governor=variable.and.indep.groups.convert, client=variable.indep.groups.n1, set="required"),
rk.XML.connect(governor=variable.and.indep.groups.convert, client=variable.indep.groups.r2.hm, set="required"),
rk.XML.connect(governor=variable.and.indep.groups.convert, client=variable.indep.groups.n2, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.overlap.correlations.convert, client=variable.dep.groups.overlap.r.jk, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.overlap.correlations.convert, client=variable.dep.groups.overlap.r.jh, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.overlap.correlations.convert, client=variable.dep.groups.overlap.r.kh, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.overlap.correlations.convert, client=variable.dep.groups.overlap.n, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.nonoverlap.correlations.convert, client=variable.dep.groups.nonoverlap.r.jk, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.nonoverlap.correlations.convert, client=variable.dep.groups.nonoverlap.r.hm, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.nonoverlap.correlations.convert, client=variable.dep.groups.nonoverlap.r.jh, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.nonoverlap.correlations.convert, client=variable.dep.groups.nonoverlap.r.jm, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.nonoverlap.correlations.convert, client=variable.dep.groups.nonoverlap.r.kh, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.nonoverlap.correlations.convert, client=variable.dep.groups.nonoverlap.r.km, set="required"),
rk.XML.connect(governor=variable.and.dep.groups.and.nonoverlap.correlations.convert, client=variable.dep.groups.nonoverlap.n, set="required"),
rk.XML.connect(governor="current_object", client=raw.data.indep.groups.1, set="available"),
rk.XML.connect(governor="current_object", client=raw.data.indep.groups.2, set="available"),
rk.XML.connect(governor="current_object", client=raw.data.dep.groups.overlap, set="available"),
rk.XML.connect(governor="current_object", client=raw.data.dep.groups.nonoverlap, set="available"),
rk.XML.connect(governor=raw.data.indep.groups.1, client=raw.data.indep.groups.var.sel.1, get="available", set="root"),
rk.XML.connect(governor=raw.data.indep.groups.2, client=raw.data.indep.groups.var.sel.2, get="available", set="root"),
rk.XML.connect(governor=raw.data.dep.groups.overlap, client=raw.data.dep.groups.overlap.var.sel, get="available", set="root"),
rk.XML.connect(governor=raw.data.dep.groups.nonoverlap, client=raw.data.dep.groups.nonoverlap.var.sel, get="available", set="root")
)
JS.calc <- rk.paste.JS(
jsVar.raw.data.indep.groups.j <- rk.JS.vars(raw.data.indep.groups.j, modifiers="shortname"),
jsVar.raw.data.indep.groups.k <- rk.JS.vars(raw.data.indep.groups.k, modifiers="shortname"),
jsVar.raw.data.indep.groups.h <- rk.JS.vars(raw.data.indep.groups.h, modifiers="shortname"),
jsVar.raw.data.indep.groups.m <- rk.JS.vars(raw.data.indep.groups.m, modifiers="shortname"),
ite(id(data.input, " == 'raw.data' && ", groups, " == 'indep'"), echo("result <- cocor(~", jsVar.raw.data.indep.groups.j, " + ", jsVar.raw.data.indep.groups.k, " | ", jsVar.raw.data.indep.groups.h, " + ", jsVar.raw.data.indep.groups.m, ", data=list(", raw.data.indep.groups.1, ",", raw.data.indep.groups.2, ")")),
jsVar.raw.data.dep.groups.overlap.j <- rk.JS.vars(raw.data.dep.groups.overlap.j, modifiers="shortname"),
jsVar.raw.data.dep.groups.overlap.k <- rk.JS.vars(raw.data.dep.groups.overlap.k, modifiers="shortname"),
jsVar.raw.data.dep.groups.overlap.h <- rk.JS.vars(raw.data.dep.groups.overlap.h, modifiers="shortname"),
ite(id(data.input, " == 'raw.data' && ", groups, " == 'dep' && ", correlations, " == 'overlap'"), echo("result <- cocor(~", jsVar.raw.data.dep.groups.overlap.j, " + ", jsVar.raw.data.dep.groups.overlap.k, " | ", jsVar.raw.data.dep.groups.overlap.j, " + ", jsVar.raw.data.dep.groups.overlap.h, ", data=", raw.data.dep.groups.overlap)),
jsVar.raw.data.dep.groups.nonoverlap.j <- rk.JS.vars(raw.data.dep.groups.nonoverlap.j, modifiers="shortname"),
jsVar.raw.data.dep.groups.nonoverlap.k <- rk.JS.vars(raw.data.dep.groups.nonoverlap.k, modifiers="shortname"),
jsVar.raw.data.dep.groups.nonoverlap.h <- rk.JS.vars(raw.data.dep.groups.nonoverlap.h, modifiers="shortname"),
jsVar.raw.data.dep.groups.nonoverlap.m <- rk.JS.vars(raw.data.dep.groups.nonoverlap.m, modifiers="shortname"),
ite(id(data.input, " == 'raw.data' && ", groups, " == 'dep' && ", correlations, " == 'nonoverlap'"), echo("result <- cocor(~", jsVar.raw.data.dep.groups.nonoverlap.j, " + ", jsVar.raw.data.dep.groups.nonoverlap.k, " | ", jsVar.raw.data.dep.groups.nonoverlap.h, " + ", jsVar.raw.data.dep.groups.nonoverlap.m, ", data=", raw.data.dep.groups.nonoverlap)),
ite(id(data.input, " == 'manual' && ", groups, " == 'indep'"), echo("result <- cocor.indep.groups(r1.jk=", manual.indep.groups.r1.jk, ", n1=", manual.indep.groups.n1, ", r2.hm=", manual.indep.groups.r2.hm, ", n2=", manual.indep.groups.n2)),
ite(id(data.input, " == 'manual' && ", groups, " == 'dep' && ", correlations, " == 'overlap'"), echo("result <- cocor.dep.groups.overlap(r.jk=", manual.dep.groups.overlap.r.jk, ", r.jh=", manual.dep.groups.overlap.r.jh, ", r.kh=", manual.dep.groups.overlap.r.kh, ", n=", manual.dep.groups.overlap.n)),
ite(id(data.input, " == 'manual' && ", groups, " == 'dep' && ", correlations, " == 'nonoverlap'"), echo("result <- cocor.dep.groups.nonoverlap(r.jk=", manual.dep.groups.nonoverlap.r.jk, ", r.hm=", manual.dep.groups.nonoverlap.r.hm, ", r.jh=", manual.dep.groups.nonoverlap.r.jh, ", r.jm=", manual.dep.groups.nonoverlap.r.jm, ", r.kh=", manual.dep.groups.nonoverlap.r.kh, ", r.km=", manual.dep.groups.nonoverlap.r.km,", n=", manual.dep.groups.nonoverlap.n)),
ite(id(data.input, " == 'variable' && ", groups, " == 'indep'"), echo("result <- cocor.indep.groups(r1.jk=", variable.indep.groups.r1.jk, ", n1=", variable.indep.groups.n1, ", r2.hm=", variable.indep.groups.r2.hm, ", n2=", variable.indep.groups.n2)),
ite(id(data.input, " == 'variable' && ", groups, " == 'dep' && ", correlations, " == 'overlap'"), echo("result <- cocor.dep.groups.overlap(r.jk=", variable.dep.groups.overlap.r.jk, ", r.jh=", variable.dep.groups.overlap.r.jh, ", r.kh=", variable.dep.groups.overlap.r.kh, ", n=", variable.dep.groups.overlap.n)),
ite(id(data.input, " == 'variable' && ", groups, " == 'dep' && ", correlations, " == 'nonoverlap'"), echo("result <- cocor.dep.groups.nonoverlap(r.jk=", variable.dep.groups.nonoverlap.r.jk, ", r.hm=", variable.dep.groups.nonoverlap.r.hm, ", r.jh=", variable.dep.groups.nonoverlap.r.jh, ", r.jm=", variable.dep.groups.nonoverlap.r.jm, ", r.kh=", variable.dep.groups.nonoverlap.r.kh, ", r.km=", variable.dep.groups.nonoverlap.r.km,", n=", variable.dep.groups.nonoverlap.n)),
ite(id(groups, " == 'indep' && ", null.value, " == 0"), echo(", alternative=\"", test.hypothesis.indep.groups, "\"")),
ite(id(groups, " == 'indep' && ", null.value, " != 0"), echo(", alternative=\"", test.hypothesis.indep.groups.null.value, "\"")),
ite(id(groups, " == 'dep' && ", correlations, " == 'overlap' && ", null.value, " == 0"), echo(", alternative=\"", test.hypothesis.dep.groups.overlap, "\"")),
ite(id(groups, " == 'dep' && ", correlations, " == 'overlap' && ", null.value, " != 0"), echo(", alternative=\"", test.hypothesis.dep.groups.overlap.null.value, "\"")),
ite(id(groups, " == 'dep' && ", correlations, " == 'nonoverlap' && ", null.value, " == 0"), echo(", alternative=\"", test.hypothesis.dep.groups.nonoverlap, "\"")),
ite(id(groups, " == 'dep' && ", correlations, " == 'nonoverlap' && ", null.value, " != 0"), echo(", alternative=\"", test.hypothesis.dep.groups.nonoverlap.null.value, "\"")),
ite(id(null.value, " != 0"), echo(", test=\"zou2007\"")),
echo(", alpha=", alpha, ", conf.level=", conf.level, ", null.value=", null.value, ")\n"),
level=2
)
JS.print <- rk.paste.JS(echo("rk.print(result)\n"), level=2)
rkh <- list(
summary=rk.rkh.summary(text="Compare two correlation coefficients based on either independent or dependent groups (e.g., same group)."),
sections=list(
groups=rk.rkh.section(title="Step 1", text="Indicate if the correlations are based on independent or dependent groups."),
correlations=rk.rkh.section(title="Step 2", text="If the correlation are based on dependent groups, state whether or not the correlations are overlapping and have one variable in common."),
data.input=rk.rkh.section(title="Step 3", text="Choose whether you want to calculate the correlations from raw data, type in the correlation coefficients manually, or retrieve them from existing variables."),
data=rk.rkh.section(title="Step 4", text="Enter the data."),
test.hypothesis.indep.groups1=rk.rkh.section(title="Step 5", text="Select an alpha level and a confidence level. Specify the null value, i.e., the hypothesized difference between the two correlations used for testing the null hypothesis. If the null value is other than 0, only the test by Zou (2007) is available."),
test.hypothesis.indep.groups2=rk.rkh.section(title="Step 6", text="Choose if the test should be one- or two-sided."),
code=rk.rkh.section(title="Step 7", text="Copy and paste the generated code to your R script or directly run the code.")
)
)
plugin.dir <<- rk.plugin.skeleton(
about.node,
path=output.dir,
provides=c("logic", "wizard"),
xml=list(logic=logic, wizard=wizard),
rkh=rkh,
js=list(
require="cocor",
results.header="\"Comparing correlations\"",
calculate=JS.calc,
printout=JS.print
),
pluginmap=list(name="Comparing correlations", hierarchy=list("analysis", "correlation")),
dependencies=dependencies.node,
load=TRUE,
overwrite=overwrite
)
}) |
fig_wrap <- function(figs,
tag = NULL,
prefix = NULL,
suffix = NULL,
pos = "topleft",
x_nudge = 0,
y_nudge = 0,
nrow = NULL,
ncol = NULL,
colour = NULL,
alpha = NULL,
hjust = NULL,
vjust = NULL,
fontsize = NULL,
fontfamily = NULL,
fontface = NULL,
b_col = NULL,
b_size = 1,
b_pos = "offset",
b_margin = ggplot2::margin(4, 4, 4, 4)) {
if (!is.list(figs)) {
stop("figs must be a list of figs created by fig().")
}
num_figs <- length(figs)
if (!is.null(tag)) {
if (length(tag) > 1) {
if (length(tag) != length(figs)) {
stop("If providing a tag vector, it must be of equal length to the number of figs.")
}
} else if (grepl("[[:upper:]]", tag)) {
start_let <- grep(tag, LETTERS)
tags <- LETTERS[seq(start_let, start_let + num_figs)]
} else if (grepl("[[:lower:]]", tag)) {
start_let <- grep(tag, letters)
tags <- letters[seq(start_let, start_let + num_figs)]
} else if (is.numeric(tag)) {
tags <- seq(tag, tag + num_figs)
}
}
if (!is.null(tag)) {
tags <- paste0(prefix, tags, suffix)
} else {
tags <- NULL
}
figs <- lapply(seq_along(figs), function(x) {
if (is.null(tags)) {
fig <- figs[[x]]
} else {
fig <- fig_tag(
plot = figs[[x]],
tag = tags[x],
pos = pos,
x_nudge = repeat_value(x_nudge, num_figs, int = x),
y_nudge = repeat_value(y_nudge, num_figs, int = x),
colour = repeat_value(colour, num_figs, int = x),
alpha = repeat_value(alpha, num_figs, int = x),
hjust = repeat_value(hjust, num_figs, int = x),
vjust = repeat_value(vjust, num_figs, int = x),
fontsize = repeat_value(fontsize, num_figs, int = x),
fontfamily = repeat_value(fontfamily, num_figs, int = x),
fontface = repeat_value(fontface, num_figs, int = x)
)
}
fig <- fig_borders(
fig = fig,
b_col = repeat_value(b_col, num_figs, int = x),
b_pos = repeat_value(b_pos, num_figs, int = x),
b_size = repeat_value(b_size, num_figs, int = x)
)
if (!is.null(b_margin)) {
fig <- fig +
ggplot2::theme(
plot.margin = b_margin
)
}
fig
})
patchwork::wrap_plots(figs, ncol = ncol, nrow = nrow)
} |
zipsae <- function(data, vardir, formula, PRECISION = 1e-04, MAXITER = 100 ){
if(missing(data)){
stop("Data argument is missing")
}
if (length(formula)==0){
stop("Please insert your formula for fitted model")
}
if (missing(vardir)){
stop("vardir argument is missing")
}
hasil <- list(estimate = NA,
dispersion = list(rse = NA),
coefficient = list(lambda = NA,
omega = NA
)
)
reml <- function(X, Y, vardir, MAXITER){
PRECISION = 1e-04
REML_tmp <- 0
REML_tmp[1] <- mean(vardir)
k <- 0
acc <- PRECISION + 1
while ((acc > PRECISION) & (k < MAXITER)) {
k <- k + 1
Psi <- 1/(REML_tmp[k] + vardir)
PsiXt <- t(Psi * X)
Q <- solve(PsiXt %*% X)
P <- diag(Psi) - t(PsiXt) %*% Q %*% PsiXt
Py <- P %*% Y
s <- (-0.5) * sum(diag(P)) + 0.5 * (t(Py) %*% Py)
Fis <- 0.5 * sum(diag(P %*% P))
REML_tmp[k + 1] <- REML_tmp[k] + s/Fis
acc <- abs((REML_tmp[k + 1] - REML_tmp[k])/REML_tmp[k])
}
REML <- max(REML_tmp[k + 1], 0)
return(REML)
}
m_data = model.frame(formula, na.action = na.omit ,data)
Xz <- model.matrix(formula, m_data)
Xz <- as.numeric(Xz[,-1])
Xnz <- Xz
Y <- m_data[, 1]
ToOmit <- c()
dataLength <- nrow(data)
for (i in 1:dataLength) {
if (Y[i] == 0) {
ToOmit <- c(ToOmit, i)
}
}
if (length(ToOmit) != 0) {
Xnz <- Xz[-ToOmit]
Ynz <- Y[-ToOmit]
vardirNz <- vardir[-ToOmit]
}else{
Xnz <- Xz
Ynz <- Y
vardirNz <- vardir
}
b.REMLz <- reml(Xz, Y, vardir, MAXITER)
a.REMLnz <- reml(Xnz, Ynz, vardirNz, MAXITER)
Vnz <- 1/(a.REMLnz + vardirNz)
Vz <- 1/(b.REMLz + vardir)
Xnz_tmp <- t(Vnz*Xnz)
Xz_tmp <- t(Vz*Xz)
Qnz <- solve(Xnz_tmp%*%Xnz)
Qz <- solve(Xz_tmp%*%Xz)
beta.nz <- Qnz%*%Xnz_tmp%*%Ynz
beta.z <- Qz%*%Xz_tmp%*%Y
X_beta.nz <- Xnz%*%beta.nz
X_beta.z <- Xz%*%beta.z
residNz <- Ynz - X_beta.nz
residZ <- Y - X_beta.z
lamda = exp((Xz%*%beta.nz) + as.vector(a.REMLnz*(Vnz%*%residNz)))
logit = exp(X_beta.z + as.vector(b.REMLz*(Vz%*%residZ)))
omega = (logit/(1 + logit))
delta = 1-omega
est <- lamda*delta
est - mean(est) -> diff_tmp
(diff_tmp)^2 -> diff_tmp_squared
sqrt(diff_tmp_squared)/est -> rse_tmp
hasil$estimate <- est
hasil$dispersion$rse <- rse_tmp
hasil$coefficient$lambda <- lamda
hasil$coefficient$omega <- omega
return(hasil)
} |
findFeasibleMatrix_targetmean <- function(r,c,p,eps=1e-9,targetmean=0.3){
Lorig <- findFeasibleMatrix(r=r,c=c,p=p,eps=eps)
if (mean(Lorig>0)<targetmean){
avgavailable <- mean(p>0)
psample <- min(1,(targetmean-mean(Lorig>0))/avgavailable)
Adjstart <- matrix(rbinom(length(r)*length(c),
size=1,
prob=psample*(p>0)),
nrow=length(r),
ncol=length(c)
)
maxsaveval <- pmin(matrix(r/pmax(1,rowSums(Adjstart)),nrow=length(r),ncol=length(c)),
matrix(c/pmax(1,colSums(Adjstart)),nrow=length(r),ncol=length(c),byrow=TRUE))
Lstart <- matrix(runif(length(r)*length(c))*maxsaveval,nrow=length(r))*Adjstart
Lstart+findFeasibleMatrix(r=r-rowSums(Lstart),c=c-colSums(Lstart),p=p,eps=eps)
}else{
warning("Desired mean degree is less than minimal degree that is necessary.");
Lorig
}
}
getfeasibleMatr <- function(L,A){
if (min(L,A)<0) stop("L and A must be nonnegative.")
if (abs(sum(L)-sum(A))>1e-10) stop("sum(L) different to sum(A).")
if (max(A+L)>sum(L)) stop("No feasible matrix exists: max(A+L)>sum(L)")
Lorig <- L; Aorig <- A
n <- length(L)
resall <- matrix(0,nrow=n,ncol=n)
while(sum(L)>1e-10&&sum(A)>1e-10){
if (min(ifelse(A>0,A,Inf))<min(ifelse(L>0,L,Inf))){
transp <- TRUE
Atmp <- A
A <- L
L <- Atmp
}else{
transp <- FALSE
}
i <- which.min(ifelse(L>0,L,Inf))
LA <- ifelse(A>0,L+A,0)
LA[i] <- Inf
o <- order(LA,decreasing=TRUE)
L <- L[o]
A <- A[o]
LA <- LA[o]
xi=max(which((LA)[-1]==(LA)[2]))
if (xi+1==n)
Delta <- min(L[1],xi*(LA)[2])
else
Delta <- min(L[1],xi*((LA)[2]-(LA)[2+xi]))
res <- matrix(0,nrow=n,ncol=n)
res[1,2:(1+xi)]=Delta/xi
L[1] <- L[1]-Delta
A[2:(1+xi)] <- A[2:(1+xi)]-Delta/xi
res[o,o] <- res
if (transp)res <- t(res)
resall <- resall+res
A[o] <- A
L[o] <- L
if (transp){
Atmp <- A
A <- L
L <- Atmp
}
}
if (any(abs(rowSums(resall)-Lorig)>1e-9)||any(abs(colSums(resall)-Aorig)>1e-9)){
warning("Discrepancy between intended row/column sums and ",
"row/column sums of generated matrix detected. ",
"This may only be a numerical issue. ",
"Maximum absolute difference between row and column sums: ",
max(abs(rowSums(resall)-Lorig),abs(colSums(resall)-Aorig)))
}
resall
} |
chainsawSliver = function(downLog,
sect,
gLog,
nSegs = 25,
runQuiet = TRUE,
...
)
{
if(!(is(downLog,'downLog') || !validObject(downLog)) )
stop('***>Invalid "downLog" object passed!')
trMat = transfMatrix(downLog@logAngle, coordinates(downLog@location))
trMatInv = solve(trMat)
logLen = downLog@logLen
buttDiam = downLog@buttDiam
topDiam = downLog@topDiam
solidType = downLog@solidType
halfLen = logLen/2
log = as(gLog, 'matrix')
log = cbind(log, rep(1, nrow(log)) )
dn = dimnames(log)
log = log %*% trMatInv
dimnames(log) = dn
log[,'x'] = log[,'x'] + halfLen
sect = cbind(sect, rep(1, nrow(sect)) )
sect = sect %*% trMatInv
dimnames(sect) = dn
sect[,'x'] = sect[,'x'] + halfLen
gSect = as(sect[,-3],'gpc.poly')
sectArea = rgeos::area.poly(gSect)
sectLens = range(sect[,'x'])
if(sectLens[1] < 0)
sectLens[1] = 0
if(sectLens[2] > logLen)
sectLens[2] = logLen
boltLen = sectLens[2] - sectLens[1]
length = seq(sectLens[1], sectLens[2], len=nSegs)
if(!is.null(solidType)) {
taper = .StemEnv$wbTaper(buttDiam, topDiam, logLen, nSegs=nSegs, solidType, length)
diameter = taper$diameter
}
else {
diameter = taperInterpolate(downLog, 'diameter', length)
taper = data.frame(diameter, length)
}
rad = diameter/2
profile = data.frame( rad = c(-rad, rev(rad)) )
profile$length = c(length, rev(length))
profile = rbind(profile, profile[1,])
np = nrow(profile)
rotBolt = profile
rotBolt$hc = rep(1, np)
rotBolt = as.matrix(rotBolt)
trMat = transfMatrix(offset = c(0,-halfLen))
rotBolt = rotBolt %*% trMat
trMat = transfMatrix(angle = -pi/2)
rotBolt = rotBolt %*% trMat
trMat = transfMatrix(downLog@logAngle, offset = coordinates(downLog@location))
rotBolt = rotBolt %*% trMat
dimnames(rotBolt) = list(NULL, c('x','y','hc'))
gBolt = as(rotBolt[,-3], 'gpc.poly')
boltArea = rgeos::area.poly(gBolt)
propArea = sectArea/boltArea
if(!is.null(solidType)) {
boltVol = .StemEnv$wbVolume(buttDiam, topDiam, logLen, solidType, sectLens[2]) -
.StemEnv$wbVolume(buttDiam, topDiam, logLen, solidType, sectLens[1])
boltSA = .StemEnv$wbSurfaceArea(buttDiam, topDiam, logLen, solidType,
sectLens[1], sectLens[2])
boltCA = .StemEnv$wbCoverageArea(buttDiam, topDiam, logLen, solidType,
sectLens[1], sectLens[2])
}
else {
boltVol = .StemEnv$SmalianVolume(taper)$logVol
boltSA = .StemEnv$splineSurfaceArea(taper, sectLens[1], sectLens[2])
boltCA = .StemEnv$splineCoverageArea(taper, sectLens[1], sectLens[2])
}
sectVol = propArea*boltVol
sectSA = propArea*boltSA
sectCA = propArea*boltCA
boltBms = boltVol*downLog@conversions['volumeToWeight']
sectBms = propArea*boltBms
boltCarbon = boltBms*downLog@conversions['weightToCarbon']
sectCarbon = propArea*boltCarbon
if(!runQuiet) {
cat('\nPercentage sliver is of bolt area =', propArea*100)
cat('\nBolt volume (not expanded) =', boltVol)
cat('\nSection/sliver volume (not expanded) =', sectVol)
cat('\n')
}
z = list(
rotBolt = rotBolt,
boltVol = boltVol,
sectVol = sectVol,
area = c(propArea=propArea,
boltArea=boltArea,
sectArea=sectArea),
boltLen = boltLen,
boltSA = boltSA,
sectSA = sectSA,
boltCA = boltCA,
sectCA = sectCA,
boltBms = boltBms,
sectBms = sectBms,
boltCarbon = boltCarbon,
sectCarbon = sectCarbon
)
return(z)
}
|
context("graphics")
test_that("plot", {
testImage <- "/working/base_graphics_test.jpg"
jpeg(testImage)
plot(runif(10))
dev.off()
expect_true(file.exists(testImage))
}) |
s2_unprojection_filter <- function(handler, projection = s2_projection_plate_carree(),
tessellate_tol = Inf) {
wk::new_wk_handler(
.Call(c_s2_coord_filter_new, handler, projection, TRUE, tessellate_tol),
subclass = "s2_coord_filter"
)
}
s2_projection_filter <- function(handler, projection = s2_projection_plate_carree(),
tessellate_tol = Inf) {
wk::new_wk_handler(
.Call(c_s2_coord_filter_new, handler, projection, FALSE, tessellate_tol),
subclass = "s2_coord_filter"
)
}
s2_projection_plate_carree <- function() {
.Call(c_s2_projection_plate_carree)
}
s2_projection_mercator <- function() {
.Call(c_s2_projection_mercator)
} |
get_all_params(poped.db) |
CurtBinomial= function(n, Ac, p=seq(0, 0.5, .01), Plots=TRUE)
{
q=1-p
ASN.full = pbinom(Ac, n+1, p)*((n-Ac)/(n*q)) +(1-pbinom(Ac+1, n+1, p))*((Ac+1)/(n*p))
ASN.full=n*ASN.full
ASN.semi = pbinom(Ac, n, p) +(1-pbinom(Ac+1, n+1, p))*((Ac+1)/(n*p))
ASN.semi=n*ASN.semi
if(any(p==0)){
ASN.semi[p==0] = n
ASN.full[p==0] = n-Ac
}
results=list(p=p, ASN.semi=ASN.semi, ASN.full=ASN.full, n=n)
class(results)="CurtSampPlan"
if(Plots){
plot(results)
}
return(results)
} |
library(testthat)
context("Properties")
test_that("construction", {
expect_error(Properties$new(cardinality = "c"), "Cardinality must either")
expect_equal(Properties$new(cardinality = "a0")$cardinality, "Aleph0")
expect_equal(Properties$new(cardinality = "aleph0")$cardinality, "Aleph0")
expect_equal(Properties$new(cardinality = "beth0")$cardinality, "Beth0")
expect_equal(Properties$new(cardinality = "b20")$cardinality, "Beth20")
expect_error(Properties$new(cardinality = "b20a"))
expect_error(Properties$new(closure = "not closed"))
})
test_that("strprint/print", {
expect_equal(class(Properties$new("closed", 5)$strprint()), "list")
expect_output(print(Properties$new("closed", 5)))
useUnicode(TRUE)
expect_equal(Properties$new("closed", 5)$strprint()$cardinality, 5)
expect_equal(Properties$new("closed", "a0")$strprint()$cardinality, "\u2135\u2080")
expect_equal(Properties$new("closed", "b15")$strprint()$cardinality, "\u2136\u2081\u2085")
useUnicode(FALSE)
expect_equal(Properties$new("closed", 5)$strprint()$cardinality, 5)
expect_equal(Properties$new("closed", "a0")$strprint()$cardinality, "Aleph0")
expect_equal(Properties$new("closed", "b15")$strprint()$cardinality, "Beth15")
}) |
normalize_2d = function(x) {
x = check_one_attribute(x)
x = check_2d(x)
return(x)
} |
context("patch")
test_that("Empty patch works",{
x <- data.frame(a=1, b=2)
y <- x
patch <- diff_data(x,y)
expect_equal(patch_data(x, patch), y)
})
test_that("Diff changed value works",{
x <- data.frame(a=1, b=2)
y <- x
y$a <- 10
patch <- diff_data(x,y)
expect_equal(patch_data(x, patch), y)
})
test_that("Adding row works",{
x <- data.frame(a=1, b=2)
y <- rbind(x,x)
patch <- diff_data(x,y)
expect_equal(patch_data(x, patch), y)
})
test_that("Removing row works",{
x <- data.frame(a=1:2, b=2:3)
y <- x[1,]
patch <- diff_data(x,y)
expect_equal(patch_data(x, patch), y)
})
test_that("Adding column works",{
x <- data.frame(a=1, b=2)
y <- x
y$c <- 10
patch <- diff_data(x,y)
expect_equal(patch_data(x, patch), y)
})
test_that("Removing column works",{
x <- data.frame(a=1, b=2)
y <- x
y$b <- NULL
patch <- diff_data(x,y)
expect_equal(patch_data(x, patch), y)
})
test_that("Changing a factor works",{
x <- data.frame(a=factor(c("A","B")), b=1:2)
y <- x
y$a[1] <- "B"
patch <- diff_data(x,y)
expect_equal(patch_data(x, patch), y)
}) |
`varpart3` <-
function (Y, X1, X2, X3, chisquare, permat)
{
collinwarn <- function(case, mm, m)
warning(gettextf("collinearity detected in %s: mm = %d, m = %d",
case, mm, m), call. = FALSE)
if (inherits(Y, "dist")) {
Y <- GowerDblcen(as.matrix(Y^2), na.rm = FALSE)
Y <- -Y/2
SS.Y <- sum(diag(Y))
simpleRDA2 <- match.fun(simpleDBRDA)
} else {
Y <- as.matrix(Y)
if (chisquare) {
SS.Y <- sum(initCA(Y)^2)
simpleRDA2 <- match.fun(simpleCCA)
} else {
Y <- scale(Y, center = TRUE, scale = FALSE)
SS.Y <- sum(Y * Y)
}
}
X1 <- as.matrix(X1)
X2 <- as.matrix(X2)
X3 <- as.matrix(X3)
n <- nrow(Y)
n1 <- nrow(X1)
n2 <- nrow(X2)
n3 <- nrow(X3)
p <- ncol(Y)
mm1 <- ncol(X1)
mm2 <- ncol(X2)
mm3 <- ncol(X3)
if (n1 != n)
stop("Y and X1 do not have the same number of rows")
if (n2 != n)
stop("Y and X2 do not have the same number of rows")
if (n3 != n)
stop("Y and X3 do not have the same number of rows")
X1 <- scale(X1, center = TRUE, scale = FALSE)
X2 <- scale(X2, center = TRUE, scale = FALSE)
X3 <- scale(X3, center = TRUE, scale = FALSE)
dummy <- simpleRDA2(Y, X1, SS.Y, permat)
adfg.ua <- dummy$Rsquare
adfg <- dummy$RsquareAdj
m1 <- dummy$m
if (m1 != mm1)
collinwarn("X1", mm1, m1)
dummy <- simpleRDA2(Y, X2, SS.Y, permat)
bdeg.ua <- dummy$Rsquare
bdeg <- dummy$RsquareAdj
m2 <- dummy$m
if (m2 != mm2)
collinwarn("X2", mm2, m2)
dummy <- simpleRDA2(Y, X3, SS.Y, permat)
cefg.ua <- dummy$Rsquare
cefg <- dummy$RsquareAdj
m3 <- dummy$m
if (m3 != mm3)
collinwarn("X3", mm3, m3)
mm4 = mm1 + mm2
dummy <- simpleRDA2(Y, cbind(X1, X2), SS.Y, permat)
abdefg.ua <- dummy$Rsquare
abdefg <- dummy$RsquareAdj
m4 <- dummy$m
if (m4 != mm4)
collinwarn("cbind(X1,X2)", mm4, m4)
mm5 = mm1 + mm3
dummy <- simpleRDA2(Y, cbind(X1, X3), SS.Y, permat)
acdefg.ua <- dummy$Rsquare
acdefg <- dummy$RsquareAdj
m5 <- dummy$m
if (m5 != mm5)
collinwarn("cbind(X1,X3)", mm5, m5)
mm6 = mm2 + mm3
dummy <- simpleRDA2(Y, cbind(X2, X3), SS.Y, permat)
bcdefg.ua <- dummy$Rsquare
bcdefg <- dummy$RsquareAdj
m6 <- dummy$m
if (m6 != mm6)
collinwarn("cbind(X2,X3)", mm6, m6)
mm7 = mm1 + mm2 + mm3
dummy <- simpleRDA2(Y, cbind(X1, X2, X3), SS.Y, permat)
abcdefg.ua <- dummy$Rsquare
abcdefg <- dummy$RsquareAdj
m7 <- dummy$m
if (m7 != mm7)
collinwarn("cbind(X1,X2,X3)", mm7, m7)
bigwarning <- NULL
if ((m1 + m2) > m4)
bigwarning <- c(bigwarning, c("X1, X2"))
if ((m1 + m3) > m5)
bigwarning <- c(bigwarning, c("X1, X3"))
if ((m2 + m3) > m6)
bigwarning <- c(bigwarning, c("X2, X3"))
if ((m1 + m2 + m3) > m7)
bigwarning <- c(bigwarning, c("X1, X2, X3"))
Df <- c(m1, m2, m3, m4, m5, m6, m7)
fract <- data.frame(Df = Df,
R.square = c(adfg.ua, bdeg.ua, cefg.ua, abdefg.ua, acdefg.ua,
bcdefg.ua, abcdefg.ua),
Adj.R.square = c(adfg, bdeg, cefg, abdefg, acdefg, bcdefg,
abcdefg), Testable = rep(TRUE, 7) & Df)
rownames(fract) <- c("[a+d+f+g] = X1", "[b+d+e+g] = X2",
"[c+e+f+g] = X3", "[a+b+d+e+f+g] = X1+X2", "[a+c+d+e+f+g] = X1+X3",
"[b+c+d+e+f+g] = X2+X3", "[a+b+c+d+e+f+g] = All")
a <- abcdefg - bcdefg
b <- abcdefg - acdefg
c <- abcdefg - abdefg
d <- acdefg - cefg - a
e <- abdefg - adfg - b
f <- bcdefg - bdeg - c
g <- adfg - a - d - f
ma <- m7 - m6
mb <- m7 - m5
mc <- m7 - m4
mad <- m5 - m3
maf <- m4 - m2
mbd <- m6 - m3
mbe <- m4 - m1
mce <- m5 - m1
mcf <- m6 - m2
Df <- c(ma, mb, mc, rep(0, 4), NA)
indfract <- data.frame(Df = Df,
R.square = rep(NA, 8),
Adj.R.square = c(a, b, c, d, e, f, g, 1 - abcdefg),
Testable = c(rep(TRUE, 3), rep(FALSE, 5)) & Df)
rownames(indfract) <- c("[a] = X1 | X2+X3", "[b] = X2 | X1+X3",
"[c] = X3 | X1+X2", "[d]", "[e]", "[f]", "[g]", "[h] = Residuals")
Df <- c(mad, maf, mbd, mbe, mce, mcf)
contr1 <- data.frame(Df = Df,
R.square = rep(NA, 6),
Adj.R.square = c(a + d, a + f, b + d, b + e, c + e, c + f),
Testable = rep(TRUE, 6) & Df)
rownames(contr1) <- c("[a+d] = X1 | X3", "[a+f] = X1 | X2",
"[b+d] = X2 | X3", "[b+e] = X2 | X1", "[c+e] = X3 | X1",
"[c+f] = X3 | X2")
out <- list(fract = fract, indfract = indfract, contr1 = contr1,
SS.Y = SS.Y, nsets = 3, bigwarning = bigwarning, n = n1)
class(out) <- "varpart234"
out
} |
assertDataCorrectness <- function(data, graphType, config) {
validGraphTypes <- c("Area", "AreaLine", "Bar", "BarLine", "Boxplot",
"Circular", "Correlation", "Dotplot", "DotLine",
"Fish", "Genome", "Heatmap", "Line", "Map", "Meter", "Network",
"Pie", "ParallelCoordinates", "Sankey", "Scatter2D",
"Scatter3D", "ScatterBubble2D", "Stacked",
"StackedPercent", "StackedLine", "StackedPercentLine",
"Tree", "Treemap", "TagCloud", "Venn", "Gantt")
noDataNecessary <- c("Map")
if (is.null(graphType)) stop("graphType cannot be NULL!")
if (!(graphType %in% validGraphTypes)) {
stop("graphType is invalid, must be one of <",
paste(validGraphTypes, collapse = ", "), ">")
}
if (is.character(data) && graphType != "Network") {
if (httr::http_error(data)) {
message("Unable to validate URL")
}
}
else if (graphType == "Venn") {
vdata <- data
if (is.null(vdata)) {
if (!("vennData" %in% names(config))) {
stop("vennData cannot be NULL!")
}
else {
vdata <- config$vennData
}
}
if (!inherits(vdata, c("data.frame", "matrix", "list"))) {
stop("vennData must be a data.frame, matrix, or named list")
}
if (inherits(vdata, c("list")) & (length(vdata) > 1)) {
stop("Venn diagrams do not support multiple datasets")
}
else if (is.null(vdata[[1]])) {
stop("vennData cannot be NULL!")
}
if (!("vennLegend" %in% names(config)) |
!("vennGroups" %in% names(config))) {
stop("Venn diagrams must specify both the <vennLegend> and <vennGroups> parameters")
}
}
else if (graphType == "Network") {
if (is.character(data)) {
if (file.exists(data)) {
data <- paste(readLines(data), collapse = '\n')
}
else if (httr::http_error(data)) {
message(data, " may not a valid file location or URL - unable to verify.")
}
}
else {
ndata <- NULL
edata <- NULL
if (!is.null(data)) {
if (!("nodeData" %in% names(data)) & !("edgeData" %in% names(data))) {
stop("Network diagrams must specify both <nodeData> and <edgeData> as parameters or named data list items")
}
ndata <- data$nodeData
edata <- data$edgeData
}
else {
if (!("nodeData" %in% names(config)) |
!("edgeData" %in% names(config))) {
stop("Network diagrams must specify both <nodeData> and <edgeData> as parameters or named data list items")
}
ndata <- config$nodeData
edata <- config$edgeData
}
if (is.null(ndata)) {
stop("nodeData cannot be NULL!")
}
if (is.null(edata)) {
stop("edgeData cannot be NULL!")
}
if (!inherits(ndata, c("data.frame", "matrix", "list"))) {
stop("nodeData must be a data.frame or matrix or named list")
}
if (!inherits(edata, c("data.frame", "matrix", "list"))) {
stop("edgeData must be a data.frame or matrix or named list")
}
}
}
else if (graphType == "Genome") {
message("The Genome graphType is an advanced chart, data is passed as-is to the JS library")
}
else if (!(graphType %in% noDataNecessary)) {
if (is.null(data)) {
stop("data cannot be NULL!")
}
if (!inherits(data, c("data.frame", "matrix", "list"))) {
stop("data must be a data.frame, matrix, or named list")
}
if (inherits(data, c("list"))) {
if (length(data) < 1) {
stop("data specified as a list must contain at least one item")
}
precalcBoxplot <- FALSE
precalcBarchart <- FALSE
if (length(data) > 1 ) {
if (is.null(names(data))) {
stop("data specified as a list of multiple items must have named elements")
}
else if (graphType == "Boxplot") {
req <- c("iqr1", "qtl1", "median", "qtl3", "iqr3")
precalcBoxplot <- (length(intersect(names(data), req)) == 5 ||
length(intersect(rownames(data), req)) == 5)
if (!precalcBoxplot && !("y" %in% names(data))) {
stop("data specified as a list of multiple items must contain a <y> element")
}
}
else if (graphType == "Bar") {
req <- c("mean", "stdev")
precalcBarchart <- (length(intersect(names(data), req)) == 2 ||
length(intersect(rownames(data), req)) == 2)
if (!precalcBarchart && !("y" %in% names(data))) {
stop("data specified as a list of multiple items must contain a <y> element")
}
}
else if (!("y" %in% names(data))) {
stop("data specified as a list of multiple items must contain a <y> element")
}
}
fail <- vector(mode = "character", length = 0)
for (name in names(data)) {
if (!inherits(data[[name]], c("data.frame", "matrix"))) {
fail <- c(fail, name)
}
}
if (!precalcBoxplot && !precalcBarchart && length(fail) > 0) {
stop("data list elements <", paste(fail, collapse = ", "),
"> are not data.frame or matrix elements")
}
}
}
}
assignCanvasXpressColnames <- function(x) {
if (is.null(colnames(x))) {
names <- paste("V", seq(length = ncol(x)), sep = "")
} else {
names <- colnames(x)
}
return(names)
}
assignCanvasXpressRownames <- function(x) {
if (is.null(rownames(x))) {
names <- paste("V", seq(length = nrow(x)), sep = "")
} else {
names <- rownames(x)
}
return(names)
}
convertRowsToList <- function(x) {
seq_row <- function(x) {
seq_len(nrow(x))
}
res = lapply(seq_row(x), function(i) stats::setNames(x[i,], NULL))
stats::setNames(res, rownames(x))
}
setup_y <- function(data) {
y <- NULL
if (inherits(data, "list")) {
if (length(data) > 1) {
y <- lapply(data, as.matrix, dimnames = list())
y$smps <- as.list(assignCanvasXpressColnames(data$y))
y$vars <- as.list(assignCanvasXpressRownames(data$y))
y$data <- y$y
y$y <- NULL
}
else {
y <- list(vars = as.list(assignCanvasXpressRownames(data[[1]])),
smps = as.list(assignCanvasXpressColnames(data[[1]])),
data = as.matrix(data[[1]], dimnames = list()))
}
}
else {
y <- list(vars = as.list(assignCanvasXpressRownames(data)),
smps = as.list(assignCanvasXpressColnames(data)),
data = as.matrix(data, dimnames = list()))
}
y
}
setup_x <- function(y_smps, smpAnnot) {
x <- NULL
if (!is.null(smpAnnot)) {
test <- as.list(assignCanvasXpressRownames(smpAnnot))
if (!identical(test, y_smps)) {
smpAnnot <- t(smpAnnot)
test <- as.list(assignCanvasXpressRownames(smpAnnot))
}
if (!identical(test, y_smps)) {
stop("Row names in smpAnnot are different from column names in data")
}
x <- lapply(convertRowsToList(t(smpAnnot)), function(d) if (length(d) > 1) d else list(d))
}
x
}
setup_z <- function(y_vars, varAnnot) {
z <- NULL
if (!is.null(varAnnot)) {
test <- as.list(assignCanvasXpressRownames(varAnnot))
if (!identical(test, y_vars)) {
varAnnot <- t(varAnnot)
test <- as.list(assignCanvasXpressRownames(varAnnot))
}
if (!identical(test, y_vars)) {
stop("Row names in varAnnot are different from row names in data")
}
z <- lapply(convertRowsToList(t(varAnnot)), function(d) if (length(d) > 1) d else list(d))
}
z
} |
cbind.mitml.list <- function(...){
Map(cbind, ...)
} |
library("simPop")
data("ghanaS")
seed <- 1234
ghanaP <- simStructure(ghanaS, hid = "hhid", w = "weight", strata = "region",
additional = c("age", "sex", "relate"), keep = FALSE)
breaks <- c(min(ghanaS$age), seq(6, 18, 2), seq(20, 80, 5), max(ghanaS$age))
ghanaS$ageCat <- cut(ghanaS$age, breaks = breaks, include.lowest = TRUE)
ghanaP$ageCat <- cut(ghanaP$age, breaks = breaks, include.lowest = TRUE)
basic <- c("ageCat", "sex", "hsize")
additional <- c("nation", "ethnic", "religion")
ghanaP <- simRelation(ghanaS, ghanaP, hid = "hhid", w = "weight",
strata = "region", basic = basic, additional = additional)
basic <- c(basic, additional)
additional <- c("highest_degree", "occupation")
hd14 <- c("bece", "mslc", "ssce", "other", "tech/prof cert")
hd18 <- c("hnd", "gce 'a' level", "gce 'o' level", "tech/prof dip", "voc/comm")
hd21 <- c("bachelor", "teacher trng a", "teacher trng b")
limitHD <- list(ageCat=list("[0,6]" = "none", "(6,8]" = "none",
"(8,10]" = "none", "(10,12]" = "none", "(12,14]" = c("none", hd14),
"(14,16]" = c("none", hd14), "(16,18]" = c("none", hd14, hd18),
"(18,20]" = c("none", hd14, hd18),
"(20,25]" = c("none", hd14, hd18, hd21)))
o8 <- c("craft and related trades workers", "elementary occupations",
"service workers and shop and market sales workers",
"skilled agricultural and fishery workers")
o18 <- c("armed forces and other security personnel", "clerks",
"plant and machine operators and assemblers",
"technicians and associate professionals")
limitO <- list(ageCat=list("[0,6]" = "none", "(6,8]" =c ("none", o8),
"(8,10]" = c("none", o8), "(10,12]" = c("none", o8),
"(12,14]" = c("none", o8), "(14,16]" = c("none", o8),
"(16,18]" = c("none", o8, o18), "(18,20]" = c("none", o8, o18),
"(20,25]" = c("none", o8, o18)))
ghanaP <- simCategorical(ghanaS, ghanaP, w = "weight",
strata = "region", basic = basic, additional = additional,
limit = list(highest_degree = limitHD, occupation = limitO))
breaks <- c(0:10, 15, 20, max(ghanaS$hsize))
labs <- c(1:10, "(11,15]", "(15,20]", "(20,29]")
ghanaS$hsizeCat <- cut(ghanaS$hsize, breaks = breaks, labels = labs)
ghanaP$hsizeCat <- cut(as.numeric(as.character(ghanaP$hsize)),
breaks = breaks, labels = labs)
abbRegion <- c("W", "C", "GA", "V", "E", "A", "BA", "N", "UE", "UW")
abbHsize <- c(1:10, "15", "20", ">")
nam <- c(sex = "Sex", region = "Region", hsizeCat = "Household size")
lab <- labeling_border(set_labels = list(region = abbRegion,
hsizeCat = abbHsize), set_varnames = nam)
spMosaic(c("sex", "region", "hsizeCat"), "weight", ghanaS, ghanaP,
labeling = lab)
abbEthnic <- c("A", "O", "E", "GD", "Gs", "Gn", "Gm", "M", "MD")
abbOccupation <- c("F", "Cl", "Cr", "E", "O", "N", "M", "P", "S", "A", "T")
nam <- c(sex = "Sex", ethnic = "Ethnicity", occupation = "Occupation")
lab <- labeling_border(set_labels = list(ethnic = abbEthnic,
occupation = abbOccupation), set_varnames = nam)
spMosaic(c("sex", "ethnic", "occupation"), "weight", ghanaS, ghanaP,
labeling = lab)
basic <- c(basic, additional)
probs <- c(0.05, 0.1, seq(from=0.2, to=0.8, by=0.2),
0.9, 0.95, 0.975, 0.99, 0.995, 0.999)
limitI <- list(occupation = list(none = "0"))
censorI <- list(
"(1.8e+03,2.6e+03]" = list(ageCat = c("[0,6]","(6,8]","(8,10]")),
"(2.6e+03,4.16e+03]" = list(ageCat = c("[0,6]", "(6,8]", "(8,10]",
"(10,12]", "(12,14]")),
"(4.16e+03,7.68e+03]" = list(ageCat = c("[0,6]", "(6,8]", "(8,10]",
"(10,12]", "(12,14]")),
"(7.68e+03,1.3e+04]" = list(ageCat = c("[0,6]", "(6,8]", "(8,10]",
"(10,12]", "(12,14]", "(14,16]")),
"(1.3e+04,3.84e+04]" = list(ageCat = c("[0,6]", "(6,8]", "(8,10]",
"(10,12]", "(12,14]", "(14,16]", "(16,18]")),
"(3.84e+04,1e+06]" = list(ageCat = c("[0,6]", "(6,8]", "(8,10]", "(10,12]",
"(12,14]", "(14,16]", "(16,18]", "(18,20]", "(20,25]"),
occupation = c("armed forces and other security personnel",
"clerks", "elementary occupations")))
ghanaP <- simContinuous(ghanaS, ghanaP, w = "weight", strata = "region",
basic = basic, additional = "income", upper = 1000000, probs = probs,
limit = limitI, censor = censorI, keep = FALSE)
ghanaP$income <- round(ghanaP$income, 2)
subset <- which(ghanaS[, "income"] > 0)
q <- quantileWt(ghanaS[subset, "income"], ghanaS[subset, "weight"],
probs = 0.99)
spCdfplot("income", "weight", dataS = ghanaS, dataP = ghanaP, xlim = c(0, q))
spBwplot("income", "weight", dataS = ghanaS, dataP = ghanaP, pch = "|")
spBwplot("income", "weight", "region", dataS = ghanaS, dataP = ghanaP,
pch = "|", layout = c(1, 10))
spBwplot("income", "weight", "sex", dataS = ghanaS, dataP = ghanaP,
pch = "|", layout = c(1, 2))
spBwplot("income", "weight", "ethnic", dataS = ghanaS, dataP = ghanaP,
pch = "|", layout = c(1, 9))
spBwplot("income", "weight", "occupation", dataS = ghanaS, dataP = ghanaP,
pch = "|", layout = c(1, 11)) |
calcNullDev <- function(X, y, group, family) {
form <- if (any(group==0)) formula(y~X[, group==0]) else formula(y~1)
fit <- glm(form, family=family)
mean(loss.grpreg(y, predict(fit, type="response"), family))
} |
.test.s3methods.rendobase <- function(res.model, input.form, function.std.data, req.df,
full.coefs){
input.form <- Formula::as.Formula(input.form)
.test.s3methods.basic.structure(res.model=res.model, input.form=input.form,
function.std.data=function.std.data, full.coefs=full.coefs)
test_that("object structure", {
expect_true(all(c("call", "formula", "terms", "coefficients",
"names.main.coefs", "fitted.values", "residuals") %in%
names(res.model)))
expect_s3_class(res.model, "rendo.base")
expect_type(res.model$call, "language")
expect_s3_class(res.model$formula, "Formula")
expect_s3_class(res.model$model, "data.frame")
expect_s3_class(res.model$terms, "terms")
expect_type(res.model$names.main.coefs, "character")
expect_type(res.model$fitted.values, "double")
expect_type(res.model$residuals, "double")
})
test_that("coef has default = TRUE", {
expect_equal(eval(formals(REndo:::coef.rendo.base)[["complete"]]), TRUE)
})
test_that("coef with complete=TRUE", {
expect_silent(res.cf <- coef(res.model, complete = TRUE))
expect_equal(res.cf, expected = res.model$coefficients)
})
test_that("coef with complete=FALSE", {
expect_silent(res.cf <- coef(res.model, complete = FALSE))
expect_equal(res.cf, expected = res.model$coefficients[res.model$names.main.coefs])
})
test_that("terms", {
expect_silent(terms(res.model))
})
test_that("case.names", {
expect_silent(res.cases <- case.names(res.model))
expect_type(res.cases, "character")
expect_equal(res.cases, rownames(function.std.data))
expect_length(res.cases, nrow(function.std.data))
})
test_that("summary() - vcov", {
expect_silent(res.vcov <- vcov(summary(res.model)))
res.attr <- attributes(res.vcov)
expect_named(res.attr, c("dim", "dimnames"))
expect_length(res.attr$dimnames, 2)
expect_equal(res.attr$dim, c(length(coef(res.model)), length(coef(res.model))) )
expect_equal(res.attr$dimnames[[1]], names(coef(res.model)))
expect_equal(res.attr$dimnames[[2]], names(coef(res.model)))
})
test_that("summary() - coef", {
expect_silent(sum.coef <- coef(summary(res.model)))
expect_true(ncol(sum.coef) == 4)
expect_true(all(colnames(sum.coef) != ""))
expect_true(nrow(sum.coef) == length(coef(res.model)))
expect_true(all(rownames(sum.coef) == names(coef(res.model))))
})
test_that("Printing methods work", {
expect_output(res <- show(res.model), regexp = "Coefficients")
expect_null(res)
expect_output(res <- print(res.model))
expect_identical(res, res.model)
expect_silent(res.sum <- summary(res.model))
expect_output(res <- show(res.sum))
expect_null(res)
expect_output(res <- print(res.sum))
expect_equal(res, res.sum)
})
} |
expected <- eval(parse(text="structure(raw(0), .Dim = c(0L, 0L))"));
test(id=0, code={
argv <- eval(parse(text="list(raw(0), 0L, 0L, FALSE, NULL, FALSE, FALSE)"));
.Internal(matrix(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]], argv[[7]]));
}, o=expected); |
test_that("grey", {
withr::local_options(cli.num_colors = 256)
expect_true(cli::ansi_has_any(grey()("foobar")))
withr::local_options(cli.num_colors = 1)
expect_false(cli::ansi_has_any(grey()("foobar")))
})
test_that("prompt_fancy", {
withr::local_options(cli.unicode = FALSE)
withr::local_options(cli.num_colors = 1)
mockery::stub(prompt_fancy, "devtools_packages", character())
mockery::stub(prompt_fancy, "memory_usage", list(formatted = "194.29 MB"))
mockery::stub(prompt_fancy, "ps::ps_loadavg", c(1.31, 1.89, 2.001))
mockery::stub(prompt_fancy, "git_info", "gitinfo")
mockery::stub(prompt_fancy, "has_emoji", FALSE)
expect_snapshot(prompt_fancy(NULL, NULL, TRUE, TRUE))
mockery::stub(prompt_fancy, "devtools_packages", "mypkg")
expect_snapshot(prompt_fancy(NULL, NULL, TRUE, TRUE))
})
test_that("git_info", {
mockery::stub(git_info, "git", structure(1, "status" = 10))
expect_equal(git_info(), "")
mockery::stub(git_info, "git", structure(1, "status" = 0))
mockery::stub(git_info, "is_git_dir", FALSE)
expect_equal(git_info(), "")
mockery::stub(git_info, "is_git_dir", TRUE)
mockery::stub(git_info, "git_branch", "br")
mockery::stub(git_info, "git_dirty", "*")
mockery::stub(git_info, "git_arrows", "arr")
expect_equal(git_info(), "br*arr")
})
test_that("has_emoji", {
he <- has_emoji()
expect_true(inherits(he, "logical"))
expect_equal(length(he), 1)
}) |
context("treeplyr functions work")
test_that("treedata can handle matrix/dataframe input", {
require(testthat)
data(anolis)
td <- make.treedata(anolis$phy, anolis$dat, name_column=1)
originaldat <- anolis$dat[,-1]
rownames(originaldat) <- anolis$dat[,1]
jacknife <- sample(1:nrow(anolis$dat), 10, replace=FALSE)
td_filtered <- filter(td, SVL > 3.5, island=="Cuba")
td_filtered_ <- filter_(td, "SVL > 3.5", "island=='Cuba'")
td_selected <- select(td, SVL, ecomorph, island)
td_selected_ <- select_(td, "SVL", "ecomorph", "island")
td_mutated <- mutate(td, logSVL = log(SVL), discrete_awesome = as.numeric(awesomeness>0))
td_mutated_ <- mutate_(td, logSVL = "log(SVL)", discrete_awesome = "as.numeric(awesomeness>0)")
td_reorder <- reorder(td, "postorder")
expect_identical(td$dat$SVL[match(anolis$phy$tip.label[jacknife], attributes(td)$tip.label)], originaldat[anolis$phy$tip.label[jacknife], "SVL"])
expect_identical(td_filtered$dat$SVL, originaldat[td_filtered$phy$tip.label, "SVL"])
expect_identical(td_selected$dat$SVL[match(anolis$phy$tip.label[jacknife], attributes(td)$tip.label)], originaldat[anolis$phy$tip.label[jacknife], "SVL"])
expect_identical(td_mutated$dat$SVL[match(anolis$phy$tip.label[jacknife], attributes(td)$tip.label)], originaldat[anolis$phy$tip.label[jacknife], "SVL"])
expect_identical(td_reorder$dat$SVL[match(anolis$phy$tip.label[jacknife], attributes(td)$tip.label)], originaldat[anolis$phy$tip.label[jacknife], "SVL"])
expect_identical(td_selected, td_selected_)
expect_identical(td_mutated, td_mutated_)
expect_identical(td_filtered, td_filtered_)
expect_true(min(filter(td, SVL > 3.5)$dat$SVL) > 3.5)
expect_identical(td_filtered$phy$tip.label, td_filtered$phy$tip.label[as.numeric(rownames(td_filtered$dat))])
td_treeply <- treeply(td, geiger::rescale, model="OU", 10)
expect_identical(td_treeply$dat$SVL[match(anolis$phy$tip.label[jacknife], attributes(td)$tip.label)], originaldat[anolis$phy$tip.label[jacknife], "SVL"])
expect_identical(td_treeply$phy$edge.length, geiger::rescale(td$phy, "OU", 10)$edge.length)
}) |
confint <- function(object, parm, level = 0.95, ...) UseMethod("confint")
format.perc <- function(probs, digits)
paste(format(100 * probs, trim = TRUE, scientific = FALSE, digits = digits),
"%")
confint.lm <- function(object, parm, level = 0.95, ...)
{
cf <- coef(object)
ses <- sqrt(diag(vcov(object)))
pnames <- names(ses)
if(is.matrix(cf)) cf <- setNames(as.vector(cf), pnames)
if(missing(parm)) parm <- pnames
else if(is.numeric(parm)) parm <- pnames[parm]
a <- (1 - level)/2
a <- c(a, 1 - a)
fac <- qt(a, object$df.residual)
pct <- format.perc(a, 3)
ci <- array(NA_real_,
dim = c(length(parm), 2L), dimnames = list(parm, pct))
ci[] <- cf[parm] + ses[parm] %o% fac
ci
}
confint.glm <- function(object, parm, level = 0.95, ...)
{
if(!requireNamespace("MASS", quietly = TRUE))
stop("package 'MASS' must be installed")
confint.glm <- get("confint.glm", asNamespace("MASS"), inherits = FALSE)
confint.glm(object, parm, level, ...)
}
confint.nls <- function(object, parm, level = 0.95, ...)
{
if(!requireNamespace("MASS", quietly = TRUE))
stop("package 'MASS' must be installed")
confint.nls <- get("confint.nls", asNamespace("MASS"), inherits = FALSE)
confint.nls(object, parm, level, ...)
}
confint.default <- function (object, parm, level = 0.95, ...)
{
cf <- coef(object)
pnames <- names(cf)
if(missing(parm)) parm <- pnames
else if(is.numeric(parm)) parm <- pnames[parm]
a <- (1 - level)/2
a <- c(a, 1 - a)
pct <- format.perc(a, 3)
fac <- qnorm(a)
ci <- array(NA, dim = c(length(parm), 2L),
dimnames = list(parm, pct))
ses <- sqrt(diag(vcov(object)))[parm]
ci[] <- cf[parm] + ses %o% fac
ci
} |
clean_genoprob <-
function(object, value_threshold=1e-6, column_threshold=0.01, ind=NULL, cores=1, ...)
{
if(!is.null(ind)) {
probs_sub <- clean_genoprob(subset(object, ind=ind), value_threshold=value_threshold,
column_threshold=column_threshold, cores=cores)
for(i in seq_along(object))
object[[i]][rownames(probs_sub[[i]]),,] <- probs_sub[[i]]
return(object)
}
attrib <- attributes(object)
cores <- setup_cluster(cores)
result <- cluster_lapply(cores, seq_along(object),
function(i) {
this_result <- .clean_genoprob(object[[i]], value_threshold, column_threshold)
dimnames(this_result) <- dimnames(object[[i]])
this_result })
for(a in names(attrib)) {
attr(result, a) <- attrib[[a]]
}
result
}
clean.calc_genoprob <- clean_genoprob |
show_available_catalogues <- function(selected_heading = NULL, refresh = FALSE) {
if (isFALSE(is.logical(refresh))) {
stop("`refresh` must be `TRUE` or `FALSE`.")
}
if (isFALSE(refresh)) {
table_to_use <- abs_lookup_table
} else {
table_to_use <- scrape_abs_catalogues()
}
if (!is.null(selected_heading)) {
available_catalogues <- filter(table_to_use, .data$heading == selected_heading)
} else {
available_catalogues <- table_to_use
}
available_catalogues <- pull(available_catalogues, .data$catalogue)
return(available_catalogues)
} |
iotables_read_tempdir <- function( source = "naio_10_cp1700" ) {
validate_source(source)
temporary_file <- file.path(tempdir(), paste0(source, '_processed.rds'))
if (file.exists(temporary_file)) {
readRDS(temporary_file)
}
}
|
subsemble <- function(x, y, newx = NULL, family = gaussian(),
learner, metalearner = "SL.glm", subsets = 3, subControl = list(),
cvControl = list(), learnControl = list(), genControl = list(),
id = NULL, obsWeights = NULL, seed = 1, parallel = "seq")
{
starttime <- Sys.time()
runtime <- list()
N <- dim(x)[1L]
ylim <- range(y)
row.names(x) <- 1:N
if (is.null(newx)) {
newx <- x
}
subControl <- do.call(".sub_control", subControl)
cvControl <- do.call(".cv_control", cvControl)
learnControl <- do.call(".learn_control", learnControl)
genControl <- do.call(".gen_control", genControl)
if (length(unique(y)) != 2) {
subControl$stratifyCV = FALSE
cvControl$stratifyCV = FALSE
}
if (is.numeric(subsets) && length(subsets)==1 && subsets%%1==0) {
subControl$V <- subsets
if (is.numeric(seed)) set.seed(seed)
subsets <- CVFolds(N=N, id=NULL, Y=y, cvControl=subControl)
} else if (length(subsets)==N) {
subsets <- lapply(1:length(unique(subsets)), function(j) which(subsets==j))
names(subsets) <- as.character(seq(length(subsets)))
subControl$V <- length(subsets)
} else if (is.list(subsets) && identical(seq(N), as.integer(sort(unlist(subsets))))) {
subsets <- lapply(subsets, function(ll) as.integer(ll))
names(subsets) <- as.character(seq(length(subsets)))
subControl$V <- length(subsets)
} else {
stop("'subsets' must be either an integer, a vector of subset labels, or a list of index vectors")
}
J <- subControl$V
V <- cvControl$V
L <- length(learner)
if (J==1) {
message("Setting J=1 will fit an ensemble on the full data; this is equivalent to the Super Learner algorithm.")
}
multilearning <- ifelse(L>1, TRUE, FALSE)
if (learnControl$multiType == "divisor" | L==1) {
if (J %% L == 0) {
learner <- rep(learner, J/L)
} else {
message("The length of 'learner' must be a divisor of the number of subsets.")
}
}
if (length(metalearner)>1 | !is.character(metalearner)) {
stop("The 'metalearner' argument must be a string, specifying the name of a SuperLearner wrapper function.")
}
if (sum(!sapply(learner, exists))>0) {
stop("'learner' function name(s) not found.")
}
if (!exists(metalearner)) {
stop("'metalearner' function name not found.")
}
if (is.character(family))
family <- get(family, mode = "function", envir = parent.frame())
if (is.function(family))
family <- family()
if (is.null(family$family)) {
print(family)
stop("'family' not recognized")
}
if (is.null(id)) {
id <- seq(N)
} else if (length(id)!=N) {
stop("If specified, the 'id' argument must be a vector of length nrow(x)")
}
if (is.null(obsWeights)) {
obsWeights <- rep(1, N)
}
if (inherits(parallel, "character")) {
if (!(parallel %in% c("seq","multicore"))) {
stop("'parallel' must be either 'seq' or 'multicore' or a snow cluster object")
} else if (parallel == "multicore") {
ncores <- detectCores()
}
} else if (!inherits(parallel, "cluster")) {
stop("'parallel' must be either 'seq' or 'multicore' or a snow cluster object")
}
.subCVsplit <- function(idxs, y, cvControl) {
folds <- CVFolds(N=length(idxs), id=NULL, Y=y[idxs], cvControl=cvControl)
subfolds <- lapply(X=folds, FUN=function(ll) idxs[ll])
return(subfolds)
}
if (is.numeric(seed)) set.seed(seed)
subCVsets <- lapply(X=subsets, FUN=.subCVsplit, y=y, cvControl=cvControl)
.subFun <- function(j, v, subCVsets, y, x, family, learner, obsWeights, seed) {
idx.train <- setdiff(unlist(subCVsets[[j]]), subCVsets[[j]][[v]])
idx.test <- unlist(lapply(subCVsets, function(ll) ll[[v]]), use.names=FALSE)
if (is.numeric(seed)) set.seed(seed)
fit <- match.fun(learner[j])(Y=y[idx.train], X=x[idx.train,], newX=x[idx.test,],
family=family, obsWeights=obsWeights[idx.train])
if (!is.null(names(fit$pred)) && is.vector(fit$pred)) {
if (!identical(as.integer(names(fit$pred)), unlist(sapply(1:J, function(ll) subCVsets[[ll]][[v]], simplify=FALSE)))) {
stop("names not identical")
}
}
preds <- as.vector(fit$pred)
names(preds) <- as.vector(unlist(sapply(subCVsets, function(ll) ll[[v]], simplify=FALSE)))
return(preds)
}
.cvFun <- function(v, subCVsets, y, xmat, family, learner, obsWeights, seed) {
preds <- lapply(X=1:J, FUN=.subFun, v=v, subCVsets=subCVsets, y=y, x=xmat, family=family,
learner=learner, obsWeights=obsWeights, seed=seed)
return(preds)
}
.subPreds <- function(j, cvRes) {
subRes <- unlist(cvRes[j,])
return(subRes[as.character(seq(length(subRes)))])
}
.make_Z_l <- function(V, subCVsets, y, x, family, learner, obsWeights, parallel, seed) {
if (inherits(parallel, "cluster")) {
cvRes <- parSapply(cl=parallel, X=1:V, FUN=.cvFun, subCVsets=subCVsets, y=y, xmat=x, family=family,
learner=learner, obsWeights=obsWeights, seed=seed)
} else if (parallel=="multicore") {
cl <- makeCluster(min(ncores,V), type="FORK")
cvRes <- parSapply(cl=cl, X=1:V, FUN=.cvFun, subCVsets=subCVsets, y=y, xmat=x, family=family,
learner=learner, obsWeights=obsWeights, seed=seed)
stopCluster(cl)
} else {
cvRes <- sapply(X=1:V, FUN=.cvFun, subCVsets=subCVsets, y=y, xmat=x, family=family,
learner=learner, obsWeights=obsWeights, seed=seed)
}
if (!inherits(cvRes, "matrix")) {
cvRes <- t(as.matrix(cvRes))
}
Z <- as.data.frame(sapply(1:J, .subPreds, cvRes=cvRes))
return(Z)
}
if (multilearning && length(learner)!=length(unique(learner))) {
if (!is.null(seed)) warning("Repeating identical learner wrappers in the learning library
when the seed is not NULL will cause these sublearners
to produce identical submodels (not recommended).")
lnames <- learner
for (x in learner) {
if (sum(learner==x)>1) {
for (i in seq(sum(learner==x))) {
idxs <- which(learner==x)
lnames[idxs[i]] <- paste(learner[idxs[i]], i, sep=".")
}
}
}
} else if (multilearning){
lnames <- learner
} else {
lnames <- unique(learner)
}
if (multilearning && learnControl$multiType=="crossprod") {
multilearner <- sapply(learner, function(ll) list(rep(ll,J)))
runtime$cv <- system.time(Z <- do.call("cbind", sapply(X=multilearner, FUN=.make_Z_l, V=V, subCVsets=subCVsets,
y=y, x=x, family=family, obsWeights=obsWeights,
parallel=parallel, seed=seed, simplify=FALSE)), gcFirst=FALSE)
learner <- unlist(multilearner)
} else {
runtime$cv <- system.time(Z <- .make_Z_l(V=V, subCVsets=subCVsets, y=y, x=x,
family=family, learner=learner,
obsWeights=obsWeights, seed=seed, parallel=parallel), gcFirst=FALSE)
}
if (learnControl$multiType=="crossprod") {
modnames <- as.vector(sapply(lnames, function(ll) paste(ll, paste("J", seq(J), sep=""), sep="_")))
} else {
modnames <- sapply(seq(J), function(i) sprintf("%s_J%s", rep(lnames, J/length(lnames))[i], i))
}
names(Z) <- modnames
row.names(Z) <- row.names(x)
Z[Z < ylim[1]] <- ylim[1]
Z[Z > ylim[2]] <- ylim[2]
if (is.numeric(seed)) set.seed(seed)
runtime$metalearning <- system.time(metafit <- match.fun(metalearner)(Y=y, X=Z, newX=Z,
family=family, id=id, obsWeights=obsWeights), gcFirst=FALSE)
.fitFun <- function(m, subCVsets, y, x, newx, family, learner, obsWeights, seed) {
J <- length(subCVsets)
j <- ifelse((m %% J)==0, J, (m %% J))
idx.train <- unlist(subCVsets[[j]])
if (is.numeric(seed)) set.seed(seed)
fit <- match.fun(learner[m])(Y=y[idx.train], X=x[idx.train,], newX=newx,
family=family, obsWeights=obsWeights[idx.train])
return(fit)
}
.fitWrapper <- function(m, subCVsets, y, xmat, newx, family, learner, obsWeights, seed) {
fittime <- system.time(fit <- .fitFun(m, subCVsets, y, xmat, newx, family,
learner, obsWeights, seed), gcFirst=FALSE)
return(list(fit=fit, fittime=fittime))
}
M <- ncol(Z)
if (inherits(parallel, "cluster")) {
sublearners <- parSapply(cl=parallel, X=1:M, FUN=.fitWrapper, subCVsets=subCVsets, y=y, xmat=x, newx=newx,
family=family, learner=learner, obsWeights=obsWeights, seed=seed, simplify=FALSE)
} else if (parallel=="multicore") {
cl <- makeCluster(min(ncores,M), type="FORK")
sublearners <- parSapply(cl=cl, X=1:M, FUN=.fitWrapper, subCVsets=subCVsets, y=y, xmat=x, newx=newx,
family=family, learner=learner, obsWeights=obsWeights, seed=seed, simplify=FALSE)
stopCluster(cl)
} else {
sublearners <- sapply(X=1:M, FUN=.fitWrapper, subCVsets=subCVsets, y=y, xmat=x, newx=newx,
family=family, learner=learner, obsWeights=obsWeights, seed=seed, simplify=FALSE)
}
runtime$sublearning <- lapply(sublearners, function(ll) ll$fittime)
names(runtime$sublearning) <- modnames
subpred <- do.call("cbind", lapply(sublearners, function(ll) ll$fit$pred))
subpred <- as.data.frame(subpred)
names(subpred) <- names(Z)
subpred[subpred < ylim[1]] <- ylim[1]
subpred[subpred > ylim[2]] <- ylim[2]
pred <- predict(metafit$fit, newdata=subpred, family=family)
pred[pred < ylim[1]] <- ylim[1]
pred[pred > ylim[2]] <- ylim[2]
if (genControl$saveFits) {
subfits <- lapply(sublearners, function(ll) ll$fit$fit)
names(subfits) <- names(Z)
} else {
subfits = NULL
metafit = NULL
}
runtime$total <- Sys.time() - starttime
out <- list(subfits=subfits,
metafit=metafit,
subpred=subpred,
pred=pred,
Z=Z,
cvRisk=NULL,
family=family,
subControl=subControl,
cvControl=cvControl,
learnControl=learnControl,
subsets=subsets,
subCVsets=subCVsets,
ylim=ylim,
seed=seed,
runtime=runtime)
class(out) <- "subsemble"
return(out)
} |
secure_server <- function(
server,
custom_sign_in_server = NULL,
custom_admin_server = NULL,
allow_reconnect = FALSE
) {
server <- force(server)
function(input, output, session) {
session$userData$user <- reactiveVal(NULL)
if (isTRUE(allow_reconnect) || allow_reconnect == "force") {
session$allowReconnect(allow_reconnect)
}
shiny::observeEvent(input$hashed_cookie, {
hashed_cookie <- input$hashed_cookie
if (isTRUE(.global_sessions$get_admin_mode())) {
session$userData$user(list(
session_uid = uuid::UUIDgenerate(),
user_uid = "00000000-0000-0000-0000-000000000000",
email = "[email protected]",
is_admin = TRUE,
hashed_cookie = character(0),
email_verified = TRUE,
roles = NA
))
shiny::updateQueryString(
queryString = paste0("?page=admin_panel"),
session = session,
mode = "push"
)
return()
}
query_list <- shiny::getQueryString()
page <- query_list$page
global_user <- NULL
try({
global_user <- .global_sessions$find(hashed_cookie, paste0("server-", page))
}, silent = TRUE)
if (is.null(global_user)) {
if ((!identical(page, "sign_in")) &&
isTRUE(.global_sessions$is_auth_required)) {
shiny::updateQueryString(
queryString = paste0("?page=sign_in"),
session = session,
mode = "replace"
)
session$reload()
} else {
session$userData$user(NULL)
return()
}
} else {
if (identical(query_list$page, "sign_in")) {
remove_query_string()
session$reload()
}
if (is.na(global_user$signed_in_as) || !is.null(query_list$page)) {
if (!is.na(global_user$signed_in_as)) {
.global_sessions$set_signed_in_as(
global_user$session_uid,
NA,
user_uid = global_user$user_uid
)
}
user_out <- global_user[
c("session_uid", "user_uid", "email", "is_admin", "hashed_cookie", "email_verified", "roles")
]
session$userData$user(user_out)
} else {
signed_in_as_user <- .global_sessions$get_signed_in_as_user(global_user$signed_in_as)
signed_in_as_user$session_uid <- global_user$session_uid
signed_in_as_user$hashed_cookie <- global_user$hashed_cookie
signed_in_as_user$email_verified <- TRUE
session$userData$user(signed_in_as_user)
}
}
}, ignoreNULL = TRUE)
shiny::observeEvent(session$userData$user(), {
query_list <- shiny::getQueryString()
hold_user <- session$userData$user()
if (isTRUE(hold_user$email_verified) ||
isFALSE(.global_sessions$is_email_verification_required)) {
is_on_admin_page <- if (
isTRUE(.global_sessions$get_admin_mode()) ||
identical(query_list$page, 'admin_panel')) TRUE else FALSE
if (isTRUE(hold_user$is_admin) && isTRUE(is_on_admin_page)) {
shiny::callModule(
admin_module,
"admin"
)
if (isTRUE(!is.null(custom_admin_server))) {
if (names(formals(custom_admin_server))[[1]] == "id") {
custom_admin_server("custom_admin")
} else {
callModule(
custom_admin_server,
"custom_admin"
)
}
}
} else if (is.null(query_list$page)) {
if (isTRUE(.global_sessions$is_auth_required)) {
server(input, output, session)
}
shiny::callModule(
admin_button,
"polished"
)
shiny::onStop(fun = function() {
tryCatch({
.global_sessions$set_inactive(
session_uid = hold_user$session_uid,
user_uid = hold_user$user_uid
)
}, catch = function(err) {
print('error setting the session to incative')
print(err)
})
})
}
} else {
callModule(
verify_email_module,
"verify"
)
}
}, once = TRUE)
if (isFALSE(.global_sessions$is_auth_required)) {
server(input, output, session)
}
observeEvent(session$userData$user(), {
req(is.null(session$userData$user()))
query_list <- shiny::getQueryString()
page <- query_list$page
if (identical(page, "sign_in")) {
if (is.null(custom_sign_in_server)) {
shiny::callModule(
sign_in_module,
"sign_in"
)
} else {
if (names(formals(custom_sign_in_server))[[1]] == "id") {
custom_sign_in_server("sign_in")
} else {
shiny::callModule(
custom_sign_in_server,
"sign_in"
)
}
}
}
}, ignoreNULL = FALSE, once = TRUE)
}
} |
pack <- function(.data, ..., .names_sep = NULL) {
cols <- enquos(...)
if (any(names2(cols) == "")) {
abort("All elements of `...` must be named")
}
cols <- map(cols, ~ tidyselect::eval_select(.x, .data))
unpacked <- setdiff(names(.data), unlist(map(cols, names)))
unpacked <- .data[unpacked]
packed <- map(cols, ~ .data[.x])
if (!is.null(.names_sep)) {
packed <- imap(packed, strip_names, names_sep = .names_sep)
}
packed <- new_data_frame(packed, n = vec_size(.data))
out <- vec_cbind(unpacked, packed)
reconstruct_tibble(.data, out)
}
unpack <- function(data, cols, names_sep = NULL, names_repair = "check_unique") {
check_required(cols)
cols <- tidyselect::eval_select(enquo(cols), data)
size <- vec_size(data)
out <- tidyr_new_list(data)
cols <- out[cols]
cols <- cols[map_lgl(cols, is.data.frame)]
cols_names <- names(cols)
if (!is.null(names_sep)) {
out[cols_names] <- map2(
cols,
cols_names,
rename_with_names_sep,
names_sep = names_sep
)
}
names <- names(out)
names[names %in% cols_names] <- ""
names(out) <- names
out <- df_list(!!!out, .size = size, .name_repair = "minimal")
out <- tibble::new_tibble(out, nrow = size)
names(out) <- vec_as_names(
names = names(out),
repair = names_repair,
repair_arg = "names_repair"
)
reconstruct_tibble(data, out)
}
rename_with_names_sep <- function(x, outer, names_sep) {
inner <- names(x)
names <- apply_names_sep(outer, inner, names_sep)
set_names(x, names)
}
strip_names <- function(df, base, names_sep) {
base <- vec_paste0(base, names_sep)
names <- names(df)
has_prefix <- regexpr(base, names, fixed = TRUE) == 1L
names[has_prefix] <- substr(names[has_prefix], nchar(base) + 1, nchar(names[has_prefix]))
set_names(df, names)
} |
local({
makeLazyLoadDB <- function(from, filebase, compress = TRUE, ascii = FALSE,
variables) {
envlist <- function(e)
.Internal(getVarsFromFrame(ls(e, all = TRUE), e, FALSE))
envtable <- function() {
idx <- 0
envs <- NULL
enames <- character(0)
find <- function(v, keys, vals) {
for (i in seq_along(keys))
if (identical(v, keys[[i]]))
return(vals[i])
NULL
}
getname <- function(e) find(e, envs, enames)
getenv <- function(n) find(n, enames, envs)
insert <- function(e) {
idx <<- idx + 1
name <- paste("env", idx, sep="::")
envs <<- c(e, envs)
enames <<- c(name, enames)
name
}
list(insert = insert, getenv = getenv, getname = getname)
}
lazyLoadDBinsertValue <- function(value, file, ascii, compress, hook)
.Internal(lazyLoadDBinsertValue(value, file, ascii, compress, hook))
lazyLoadDBinsertListElement <- function(x, i, file, ascii, compress, hook)
.Internal(lazyLoadDBinsertValue(x[[i]], file, ascii, compress, hook))
lazyLoadDBinsertVariable <- function(n, e, file, ascii, compress, hook) {
x <- .Internal(getVarsFromFrame(n, e, FALSE))
.Internal(lazyLoadDBinsertValue(x[[1L]], file, ascii, compress, hook))
}
mapfile <- paste(filebase, "rdx", sep = ".")
datafile <- paste(filebase, "rdb", sep = ".")
close(file(datafile, "w"))
table <- envtable()
varenv <- new.env(hash = TRUE)
envenv <- new.env(hash = TRUE)
envhook <- function(e) {
if (is.environment(e)) {
name <- table$getname(e)
if (is.null(name)) {
name <- table$insert(e)
data <- list(bindings = envlist(e),
enclos = parent.env(e))
key <- lazyLoadDBinsertValue(data, datafile, ascii,
compress, envhook)
assign(name, key, envir = envenv)
}
name
}
}
if (is.environment(from)) {
if (! missing(variables))
vars <- variables
else vars <- ls(from, all = TRUE)
}
else if (is.list(from)) {
vars <- names(from)
if (length(vars) != length(from) || any(nchar(vars) == 0))
stop("source list must have names for all elements")
}
else stop("source must be an environment or a list");
for (i in seq_along(vars)) {
if (is.environment(from))
key <- lazyLoadDBinsertVariable(vars[i], from, datafile,
ascii, compress, envhook)
else key <- lazyLoadDBinsertListElement(from, i, datafile, ascii,
compress, envhook)
assign(vars[i], key, envir = varenv)
}
vals <- lapply(vars, get, envir = varenv, inherits = FALSE)
names(vals) <- vars
rvars <- ls(envenv, all = TRUE)
rvals <- lapply(rvars, get, envir = envenv, inherits = FALSE)
names(rvals) <- rvars
val <- list(variables = vals, references = rvals,
compressed = compress)
saveRDS(val, mapfile)
}
omit <- c(".Last.value", ".AutoloadEnv", ".BaseNamespaceEnv",
".Device", ".Devices", ".Machine", ".Options", ".Platform")
if (length(search()[search()!="Autoloads"]) != 2)
stop("start R with NO packages loaded to create the data base")
baseFileBase <- file.path(.Library,"base","R","base")
if (file.info(baseFileBase)["size"] < 20000)
stop("may already be using lazy loading on base");
basevars <- ls(baseenv(), all.names=TRUE)
prims <- basevars[sapply(basevars, function(n) is.primitive(get(n, baseenv())))]
basevars <- basevars[! basevars %in% c(omit, prims)]
makeLazyLoadDB(baseenv(), baseFileBase, variables = basevars)
}) |
`getsurv` <-
function(times,icfit,nonUMLE.method="interpolation"){
ntimes<-length(times)
method<-match.arg(nonUMLE.method,c("interpolation","left","right"))
getsurvOneStratum<-function(L,R,p){
Sout<-rep(NA,ntimes)
mle<-rep(TRUE,ntimes)
S<-c(1-cumsum(p))
nonUMLE.func<-switch(method,
interpolation=function(i,Time){
if (R[i]==Inf) stop("cannot interpolate when R[i]=Inf")
if (i==1){
1 + ((Time - L[i])/(R[i]-L[i]))*(S[i]-1)
} else {
S[i-1] + ((Time - L[i])/(R[i]-L[i]))*(S[i]-S[i-1])}},
left=function(i,Time){ ifelse(i<=1,1,S[i-1]) },
right=function(i,Time){ S[i]})
k<-length(p)
for (i in 1:ntimes){
if (any(times[i]==R)){ Sout[i]<-S[times[i]==R]
} else if (times[i]<=L[1]){ Sout[i]<-1
} else if (times[i]>=R[k]){ Sout[i]<-0
} else {
if (times[i]>L[k]){
Sout[i]<-nonUMLE.func(k,times[i])
mle[i]<-FALSE
} else {
iLup<-min((1:k)[L>=times[i]])
if (R[iLup-1]<=times[i] | L[iLup]==times[i]) Sout[i]<-S[iLup-1]
else {
Sout[i]<- nonUMLE.func(iLup-1,times[i])
mle[i]<-FALSE
}
}
}
}
out<-list(S=Sout,times=times,unique.mle=mle,nonUMLE.method=method)
out
}
if (is.null(icfit$strata)){
icfit$strata<-c(length(icfit$pf))
}
nstrata<-length(icfit$strata)
strata<-icfit$strata
cnt<-1
for (i in 1:nstrata){
I<-cnt:(cnt+strata[i]-1)
p<-icfit$pf[I]
L<-icfit$intmap[1,I]
R<-icfit$intmap[2,I]
cnt<-cnt+strata[i]
if (i==1) OUT<-list(getsurvOneStratum(L,R,p))
else OUT<-c(OUT,list(getsurvOneStratum(L,R,p)))
}
if (nstrata>1){
strataNames<-names(strata)
names(strataNames)<-1:nstrata
OUT<-c(OUT,list(strataNames=strataNames))
}
OUT
} |
if(getRversion() >= "2.15.1") utils::globalVariables("output")
parse_less <-
function(code) {
get_v8_console()$call("rlessParse", code, "output")
output
} |
NyeSimilarity <- function (tree1, tree2 = NULL, similarity = TRUE,
normalize = FALSE,
normalizeMax = !is.logical(normalize),
reportMatching = FALSE,
diag = TRUE) {
unnormalized <- CalculateTreeDistance(NyeSplitSimilarity, tree1, tree2,
reportMatching)
if (similarity) {
InfoInTree <- if (normalizeMax) SplitsInBinaryTree else NSplits
if (diag && is.null(tree2)) {
unnormalized <- as.matrix(unnormalized)
diag(unnormalized) <- InfoInTree(tree1)
}
NormalizeInfo(unnormalized, tree1, tree2, how = normalize,
InfoInTree = InfoInTree, Combine = .MeanOfTwo)
} else {
unnormalized <- .MaxValue(tree1, tree2, NSplits) -
(unnormalized + unnormalized)
NormalizeInfo(unnormalized, tree1, tree2, how = normalize,
InfoInTree = NSplits, Combine = '+')
}
}
.MeanOfTwo <- function (x, y) (x + y) / 2L
NyeSplitSimilarity <- function (splits1, splits2,
nTip = attr(splits1, 'nTip'),
reportMatching = FALSE) {
GeneralizedRF(splits1, splits2, nTip, cpp_jaccard_similarity, k = 1L,
allowConflict = TRUE, maximize = TRUE,
reportMatching = reportMatching)
}
JaccardRobinsonFoulds <- function (tree1, tree2 = NULL, k = 1L,
allowConflict = TRUE, similarity = FALSE,
normalize = FALSE, reportMatching = FALSE) {
unnormalized <- CalculateTreeDistance(JaccardSplitSimilarity, tree1, tree2,
k = k, allowConflict = allowConflict,
reportMatching = reportMatching) * 2L
if (!similarity) {
unnormalized <- .MaxValue(tree1, tree2, NSplits) - unnormalized
}
NormalizeInfo(unnormalized, tree1, tree2, how = normalize,
InfoInTree = NSplits, Combine = '+')
}
JaccardSplitSimilarity <- function (splits1, splits2,
nTip = attr(splits1, 'nTip'),
k = 1L, allowConflict = TRUE,
reportMatching = FALSE) {
GeneralizedRF(splits1, splits2, nTip, cpp_jaccard_similarity, k = k,
allowConflict = allowConflict, maximize = TRUE,
reportMatching = reportMatching)
} |
"ratskin" |
gisco_get_lau <- function(year = "2016",
epsg = "4326",
cache = TRUE,
update_cache = FALSE,
cache_dir = NULL,
verbose = FALSE,
country = NULL,
gisco_id = NULL) {
ext <- "geojson"
api_entry <- gsc_api_url(
id_giscoR = "lau",
year = year,
epsg = epsg,
resolution = 0,
spatialtype = "RG",
ext = ext,
nuts_level = NULL,
level = NULL,
verbose = verbose
)
filename <- basename(api_entry)
if ((!is.null(country) || !is.null(gisco_id)) && cache) {
gsc_message(verbose, "Speed up using sf query")
if (!is.null(country)) {
country <- gsc_helper_countrynames(
country, "eurostat"
)
}
namefileload <-
gsc_api_cache(
api_entry,
filename,
cache_dir,
update_cache,
verbose
)
layer <- tools::file_path_sans_ext(basename(namefileload))
q <- paste0(
"SELECT * from \"",
layer,
"\" WHERE"
)
where <- NULL
if (!is.null(country)) {
where <- c(where, paste0(
"CNTR_CODE IN (",
paste0("'", country, "'", collapse = ", "),
")"
))
}
if (!is.null(gisco_id)) {
where <- c(where, paste0(
"GISCO_ID IN (",
paste0("'", gisco_id, "'", collapse = ", "),
")"
))
}
where <- paste(where, collapse = " OR ")
q <- paste(q, where)
gsc_message(verbose, "Using query:\n ", q)
data_sf <- try(
suppressWarnings(
sf::st_read(namefileload,
quiet = !verbose,
query = q
)
),
silent = TRUE
)
if (!inherits(data_sf, "try-error")) {
data_sf <- sf::st_make_valid(data_sf)
return(data_sf)
}
update_cache <- FALSE
rm(data_sf)
gsc_message(
TRUE,
"\n\nIt was a problem with the query.",
"Retrying without country filters\n\n"
)
}
if (cache) {
namefileload <-
gsc_api_cache(
api_entry,
filename,
cache_dir,
update_cache,
verbose
)
} else {
namefileload <- api_entry
}
data_sf <-
gsc_api_load(namefileload, epsg, ext, cache, verbose)
if (!is.null(country) & "CNTR_CODE" %in% names(data_sf)) {
country <- gsc_helper_countrynames(country, "eurostat")
data_sf <- data_sf[data_sf$CNTR_CODE %in% country, ]
}
if (!is.null(country) & "CNTR_ID" %in% names(data_sf)) {
country <- gsc_helper_countrynames(country, "eurostat")
data_sf <- data_sf[data_sf$CNTR_ID %in% country, ]
}
if (!is.null(gisco_id) & "GISCO_ID" %in% names(data_sf)) {
data_sf <- data_sf[data_sf$GISCO_ID %in% gisco_id, ]
}
return(data_sf)
}
gisco_get_communes <- function(year = "2016",
epsg = "4326",
cache = TRUE,
update_cache = FALSE,
cache_dir = NULL,
verbose = FALSE,
spatialtype = "RG",
country = NULL) {
ext <- "geojson"
api_entry <- gsc_api_url(
id_giscoR = "communes",
year = year,
epsg = epsg,
resolution = 0,
spatialtype = spatialtype,
ext = ext,
nuts_level = NULL,
level = NULL,
verbose = verbose
)
filename <- basename(api_entry)
if (cache && !is.null(country)) {
gsc_message(verbose, "Speed up using sf query")
country <- gsc_helper_countrynames(country, "eurostat")
namefileload <-
gsc_api_cache(
api_entry,
filename,
cache_dir,
update_cache,
verbose
)
layer <- tools::file_path_sans_ext(basename(namefileload))
q <- paste0(
"SELECT * from \"",
layer,
"\" WHERE CNTR_CODE IN (",
paste0("'", country, "'", collapse = ", "),
")"
)
gsc_message(verbose, "Using query:\n ", q)
data_sf <- try(
suppressWarnings(
sf::st_read(namefileload,
quiet = !verbose,
query = q
)
),
silent = TRUE
)
if (!inherits(data_sf, "try-error")) {
data_sf <- sf::st_make_valid(data_sf)
return(data_sf)
}
update_cache <- FALSE
rm(data_sf)
gsc_message(
TRUE,
"\n\nIt was a problem with the query.",
"Retrying without country filters\n\n"
)
}
if (cache) {
namefileload <-
gsc_api_cache(
api_entry,
filename,
cache_dir,
update_cache,
verbose
)
} else {
namefileload <- api_entry
}
data_sf <- gsc_api_load(
namefileload, epsg, ext, cache,
verbose
)
return(data_sf)
} |
parse_symbols <- function(data) {
template <- list(
"cost" = as.character,
"symbol" = as.character,
"colors" = function(x) list(unlist(x)),
"cmc" = as.numeric,
"loose_variant" = as.character,
"english" = as.character,
"gatherer_alternates" = function(x) list(unlist(x)),
"transposable" = as.logical,
"represents_mana" = as.logical,
"appears_in_mana_costs" = as.logical,
"funny" = as.logical,
"svg_uri" = as.character,
"colorless" = as.logical,
"monocolored" = as.logical,
"multicolored" = as.logical
)
bind_rows(data, template)
} |
cleanr::set_cleanr_options(reset = TRUE)
path <- system.file("runit_tests", "runit_wrappers.R", package = "cleanr")
print(cleanr::check_file_layout(path))
cleanr::get_cleanr_options(flatten_list = FALSE)
print(tools::assertCondition(cleanr::check_file_layout(path,
max_file_width = 79),
c("cleanr", "error", "condition"))
)
cleanr::set_cleanr_options(max_file_width = 75,
max_file_length = 20)
print(tools::assertCondition(cleanr::check_file_layout(path),
c("cleanr", "error", "condition"))
)
cleanr::set_cleanr_options(reset = TRUE)
path <- system.file("source", "R", "checks.R", package = "cleanr")
print(cleanr::check_file_layout(path))
print(tools::assertCondition(cleanr::check_file_layout(path,
max_file_length = 100),
c("cleanr", "error", "condition"))
)
print(suppressWarnings(cleanr::check_functions_in_file(path)))
print(tools::assertCondition(suppressWarnings(cleanr::check_functions_in_file(path,
max_num_arguments = 1)),
c("cleanr", "error", "condition"))
)
print(suppressWarnings(cleanr::check_file(path)))
path <- system.file("runit_tests", package = "cleanr")
print(suppressWarnings(cleanr::check_directory(path,
check_return = FALSE)))
path <- system.file("source", "R", package = "cleanr")
cleanr::load_internal_functions("cleanr")
print(tools::assertCondition(suppressWarnings(cleanr::check_directory(path)),
c("cleanr", "error", "condition"))
)
cleanr::set_cleanr_options(reset = TRUE)
cleanr::load_internal_functions("cleanr")
path <- system.file("source", "R", "wrappers.R", package = "cleanr")
r <- tools::assertCondition(cleanr::check_functions_in_file(path,
check_return = FALSE),
c("cleanr", "error", "condition"))
print(r)
r <- cleanr::check_functions_in_file(path, check_return = FALSE,
max_num_arguments = FALSE)
print(r)
co <- get_cleanr_options(flatten_list = FALSE)
co <- lapply(co, function(x) x == FALSE)
options("cleanr" = list(cleanr = co))
get_cleanr_options()
path <- system.file("source", "R", package = "cleanr")
cleanr::load_internal_functions("cleanr")
print(cleanr::check_directory(path)) |
context("matchSingleIndex")
test_that("matchSingleIndex correctly finds matching rows", {
ky <- seq(1,10)
dta <- as.character(paste("data", ky))
df1 <- data.frame(ky, dta, stringsAsFactors = FALSE)
ky <- seq(7,15)
dta <- as.character(paste("data", ky))
df2 <- data.frame(ky, dta, stringsAsFactors = FALSE)
ky <- seq(7,10)
dta <- as.character(paste("data", ky))
dfMtch <- data.frame(ky, dta, stringsAsFactors = FALSE)
mtch <- matchSingleIndex(df1, df2, "ky")
msgA <- seq(1,6)
msgB <- seq(11,15)
expect_equal(mtch[[1]][,1], dfMtch[,1])
expect_equal(mtch[[1]][,2], dfMtch[,2])
expect_equal(mtch[[2]][,1], dfMtch[,1])
expect_equal(mtch[[2]][,2], dfMtch[,2])
expect_equal(mtch[[3]][[1]][[1]], msgA)
expect_equal(mtch[[3]][[2]][[1]], msgB)
}) |
bdmake <- function(mat1, mat2) {
r1 = length(mat1[, 1])
r2 = length(mat2[, 1])
r3 = r1 + r2
res = matrix(rep(0, r3^2), ncol = r3)
res[1:r1, 1:r1] = mat1
res[(r1 + 1):r3, (r1 + 1):r3] = mat2
return(res)
} |
test_that("abbreviate", {
txt <- c("euclidean", "maximum", "manhattan", "canberra", "minimum")
res <- c("euc", "max", "man", "can" ,"min")
names(res) <- txt
expect_equal(abbreviate_text(txt, 3), res)
txt <- c("euclidean", "maximum", "manhattan", "manhattan", "canberra", "minimum")
res <- c("euc", "max", "man", "man", "can", "min")
names(res) <- txt
expect_equal(abbreviate_text(txt, 3), res)
txt <- c("euclidean", "maximum", "manhattan", NA, "canberra", "minimum", "abc", "abc")
res <- c("euc", "max", "man", NA, "can", "min", "abc", "abc")
names(res) <- txt
expect_equal(abbreviate_text(txt, 3), res)
txt <- c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid")
res <- c("ward", "warD", "sin", "com", "ave", "mcq", "med", "cen")
names(res) <- txt
expect_equal(abbreviate_text(txt, 3), res)
res <- c("w", "r", "s", "c", "a", "q", "m", "e")
names(res) <- txt
expect_equal(abbreviate_text(txt, 0), res)
res <- c("set", "ver", "vir")
names(res) <- c("setosa", "versicolor", "virginica")
expect_equal(abbreviate_text(unique(iris[,5])), res)
}) |
addIdRecords <- function(ids, fullPed, partialPed) {
if (length(ids[!all(is.na(ids))]) > 0) {
addToPed <- fullPed[is.element(fullPed$id, ids), ]
addToPed$sire <- NA
addToPed$dam <- NA
partialPed <- rbind(partialPed, addToPed,
stringsAsFactors = FALSE)
}
partialPed[!duplicated(partialPed$id), ]
} |
boolSkip=FALSE
TEST_ITERATIONS=2048
MAX_NUMBER_OF_PLAYERS=10
test_that("Check 21.4 - test if bit matrix created for 3 players created is equal to expected (A not specified)" ,{
if(boolSkip){
skip("Test was skipped")
}
expectedBitMatrix=rbind(
c(1,0,0),
c(0,1,0),
c(0,0,1),
c(1,1,0),
c(1,0,1),
c(0,1,1),
c(1,1,1)
)
expectedBitMatrix=cbind(expectedBitMatrix,cVal=0)
actualBitMatrix=createBitMatrix(n=3)
expect_equal(actualBitMatrix, expectedBitMatrix)
})
test_that("Check 21.5 - test if bit matrix created for 4 players created is equal to expected (A not specified)" ,{
if(boolSkip){
skip("Test was skipped")
}
expectedBitMatrix=rbind(
c(1,0,0,0),
c(0,1,0,0),
c(0,0,1,0),
c(0,0,0,1),
c(1,1,0,0),
c(1,0,1,0),
c(1,0,0,1),
c(0,1,1,0),
c(0,1,0,1),
c(0,0,1,1),
c(1,1,1,0),
c(1,1,0,1),
c(1,0,1,1),
c(0,1,1,1),
c(1,1,1,1)
)
expectedBitMatrix=cbind(expectedBitMatrix,cVal=0)
actualBitMatrix=createBitMatrix(n=4)
expect_equal(actualBitMatrix, expectedBitMatrix)
})
test_that("Check 21.6 - testing from getPlayersFromBitVector for all possibilities for either 3 or 4 players " ,{
if(boolSkip){
skip("Test was skipped")
}
expect_equal(getPlayersFromBitVector(bitVector = c(1,0,0,0)),c(1))
expect_equal(getPlayersFromBitVector(bitVector = c(0,1,0,0)),c(2))
expect_equal(getPlayersFromBitVector(bitVector = c(0,0,1,0)),c(3))
expect_equal(getPlayersFromBitVector(bitVector = c(1,1,0,0)),c(1,2))
expect_equal(getPlayersFromBitVector(bitVector = c(1,0,1,0)),c(1,3))
expect_equal(getPlayersFromBitVector(bitVector = c(0,1,1,0)),c(2,3))
expect_equal(getPlayersFromBitVector(bitVector = c(1,1,1,0)),c(1,2,3))
expect_equal(getPlayersFromBitVector(bitVector = c(1,0,0,0,0)),c(1))
expect_equal(getPlayersFromBitVector(bitVector = c(0,1,0,0,0)),c(2))
expect_equal(getPlayersFromBitVector(bitVector = c(0,0,1,0,0)),c(3))
expect_equal(getPlayersFromBitVector(bitVector = c(0,0,0,1,0)),c(4))
expect_equal(getPlayersFromBitVector(bitVector = c(1,1,0,0,0)),c(1,2))
expect_equal(getPlayersFromBitVector(bitVector = c(1,0,1,0,0)),c(1,3))
expect_equal(getPlayersFromBitVector(bitVector = c(1,0,0,1,0)),c(1,4))
expect_equal(getPlayersFromBitVector(bitVector = c(0,1,1,0,0)),c(2,3))
expect_equal(getPlayersFromBitVector(bitVector = c(0,1,0,1,0)),c(2,4))
expect_equal(getPlayersFromBitVector(bitVector = c(0,0,1,1,0)),c(3,4))
expect_equal(getPlayersFromBitVector(bitVector = c(1,1,1,0,0)),c(1,2,3))
expect_equal(getPlayersFromBitVector(bitVector = c(1,1,0,1,0)),c(1,2,4))
expect_equal(getPlayersFromBitVector(bitVector = c(0,1,1,1,0)),c(2,3,4))
expect_equal(getPlayersFromBitVector(bitVector = c(1,1,1,1,0)),c(1,2,3,4))
})
test_that("Check 21.7 - testing from getPlayersFromBitVector for all possibilities for either 3 or 4 players " ,{
if(boolSkip){
skip("Test was skipped")
}
bm3=createBitMatrix(n=3)
bm4=createBitMatrix(n=4)
expect_equal(getPlayersFromBMRow(bm3[1,]),c(1))
expect_equal(getPlayersFromBMRow(bm3[2,]),c(2))
expect_equal(getPlayersFromBMRow(bm3[3,]),c(3))
expect_equal(getPlayersFromBMRow(bm3[4,]),c(1,2))
expect_equal(getPlayersFromBMRow(bm3[5,]),c(1,3))
expect_equal(getPlayersFromBMRow(bm3[6,]),c(2,3))
expect_equal(getPlayersFromBMRow(bm3[7,]),c(1,2,3))
expect_equal(getPlayersFromBMRow(bm4[1,]),c(1))
expect_equal(getPlayersFromBMRow(bm4[2,]),c(2))
expect_equal(getPlayersFromBMRow(bm4[3,]),c(3))
expect_equal(getPlayersFromBMRow(bm4[4,]),c(4))
expect_equal(getPlayersFromBMRow(bm4[5,]),c(1,2))
expect_equal(getPlayersFromBMRow(bm4[6,]),c(1,3))
expect_equal(getPlayersFromBMRow(bm4[7,]),c(1,4))
expect_equal(getPlayersFromBMRow(bm4[8,]),c(2,3))
expect_equal(getPlayersFromBMRow(bm4[9,]),c(2,4))
expect_equal(getPlayersFromBMRow(bm4[10,]),c(3,4))
expect_equal(getPlayersFromBMRow(bm4[11,]),c(1,2,3))
expect_equal(getPlayersFromBMRow(bm4[12,]),c(1,2,4))
expect_equal(getPlayersFromBMRow(bm4[13,]),c(1,3,4))
expect_equal(getPlayersFromBMRow(bm4[14,]),c(2,3,4))
expect_equal(getPlayersFromBMRow(bm4[15,]),c(1,2,3,4))
})
test_that("Check 21.8 - test if getPlayersFromBMRow and getPlayersFromIndex achieve equal outcomes when expected to" ,{
if(boolSkip){
skip("Test was skipped")
}
for(numberOfPlayers in 2:MAX_NUMBER_OF_PLAYERS){
bm=createBitMatrix(numberOfPlayers)
numberOfCoalitions=(2^numberOfPlayers)-1
for(i in 1:numberOfCoalitions){
playersFromBMRow=getPlayersFromBMRow(bm[i,])
playersFromIndex=getPlayersFromIndex(n=numberOfPlayers, bitIndex = i)
expect_equal(playersFromBMRow, playersFromIndex)
}
}
})
|
get.max_precision <- function(preds, labels) {
DT <- data.table(y_true = labels, y_prob = preds, key = "y_prob")
cleaner <- !duplicated(DT[, "y_prob"], fromLast = TRUE)
nump <- sum(y_true)
DT[, fp_v := cumsum(y_true == 1)]
DT[, tp_v := nump - fp_v]
DT <- DT[cleaner, ]
DT[, prec := tp_v / (tp_v + fp_v)]
best_row <- which.max(DT$prec)
if (length(best_row) > 0) {
return(c(DT$prec[best_row[1]], DT$y_prob[best_row[1]]))
} else {
return(c(-1, -1))
}
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.