code
stringlengths 1
13.8M
|
---|
CEx <- function(model, param, conc){
if (missing(model) || missing (param) || missing(conc)) stop('argument missing')
if (is.vector(param)) param <- t(param)
effv <- matrix(0, length(model), length(conc))
for (i in seq(model)){
fun <- model[i]
p <- param[i, ]
for (j in seq(conc)){
if (fun == 'Hill')
ev <- 1 / (1 + (p[1] / conc[j])^p[2])
else if (fun == 'Hill_two')
ev <- p[2] * conc[j] / (p[1] + conc[j])
else if (fun == 'Hill_three')
ev <- p[3] /(1 + (p[1] / conc[j])^p[2])
else if (fun == 'Hill_four')
ev <- p[4] + (p[3] - p[4]) / (1 + (p[1] / conc[j])^p[2])
else if(fun == 'Weibull')
ev <- 1 - exp(-exp(p[1] + p[2] * log10(conc[j])))
else if(fun == 'Weibull_three')
ev <- p[3] * (1 - exp(-exp(p[1] + p[2] * log10(conc[j]))))
else if(fun == 'Weibull_four')
ev <- p[3] + (p[4] - p[3]) * exp(-exp(p[1] + p[2] * log10(conc[j])))
else if (fun == "Logit")
ev <- 1 / (1 + exp(-p[1] - p[2] * log10(conc[j])))
else if(fun == 'Logit_three')
ev <- p[3] / (1 + exp((-p[1]) - p[2] * log10(conc[j])))
else if(fun == 'Logit_four')
ev <- p[4] + (p[3] - p[4]) / (1 + exp((-p[1]) - p[2] * log10(conc[j])))
else if (fun == "BCW")
ev <- 1 - exp(-exp(p[1] + p[2] * ((conc[j]^p[3] - 1) / p[3])))
else if (fun == "BCL")
ev <- 1 / (1 + exp(-p[1] - p[2]((conc[j]^p[3] - 1) / p[3])))
else if (fun == "GL")
ev <- 1 / (1 + exp(-p[1] - p[2] * log10(conc[j])))^p[3]
else if (fun == "Brain_Consens")
ev <- 1 - (1 + p[1] * conc[j]) / (1 + exp(p[2] * p[3]) * conc[j]^p[2])
else if(fun == "BCV")
ev <- 1 - p[1] * (1 + p[2] * conc[j]) / (1 + (1 + 2 * p[2] * p[3]) * (conc[j] / p[3])^p[4])
else if(fun == "Cedergreen")
ev <- 1 - (1 + p[1] * exp(-1 / (conc[j]^p[2]))) / (1 + exp(p[3] * (log(conc[j]) - log(p[4]))))
else if(fun == "Beckon")
ev <- (p[1] + (1 - (p[1]) / (1 + (p[2] / conc[j])^p[3]))) / (1 + (conc[j] / p[4])^p[5])
else if(fun == "Biphasic")
ev <- p[1] - p[1] / (1 + 10^((conc[j] - p[2]) * p[3])) + (1 - p[1]) / (1 + 10^((p[4] - conc[j]) * p[5]))
else if(fun == 'Hill_five')
ev <- 1 - (1 + (p[3] - 1) / (1 + (p[1] / conc[j])^p[2])) * (1 - 1 / (1 + (p[4] / conc[j])^p[5]))
effv[i, j] <- ev
}
}
colName <- paste('Rspn_@_', conc, sep = '')
colnames(effv) <- colName
if(is.null(rownames(param))) rownames(effv) <- model else rownames(effv) <- rownames(param)
return(effv)
} |
test.readOrg <- function() {
checkException(readOrg("~/Packages/orgutils/inst/unitTests/orgtable0.org"),
silent = TRUE)
t1 <- readOrg("~/Packages/orgutils/inst/unitTests/orgtable1.org")
checkEquals(t1,
structure(list(col1 = c(1L, 4L), col2 = c(2L, 5L),
col3 = c("3", "test")),
.Names = c("col1", "col2", "col3"),
class = "data.frame",
row.names = c(NA, -2L)))
t2 <- readOrg("~/Packages/orgutils/inst/unitTests/orgtable2.org")
checkEquals(t2,
structure(list(col1 = c(1L, 4L), col2 = c(2L, 5L),
col3 = c("3", "test")),
.Names = c("col1", "col2", "col3"),
class = "data.frame",
row.names = c(NA, -2L)))
t3 <- readOrg("~/Packages/orgutils/inst/unitTests/orgtable3.org",
table.name = "table3")
checkEquals(t3,
structure(list(col1 = c(1L, 4L), col2 = c(2L, 5L),
col3 = c("3", "test")),
.Names = c("col1", "col2", "col3"),
class = "data.frame",
row.names = c(NA, -2L)))
t4 <- readOrg("~/Packages/orgutils/inst/unitTests/orgtable4.org",
table.name = "table4")
checkEquals(t4,
structure(list(col1 = c(1L, 4L), col2 = c(2L, 5L),
col3 = c("3", "test")),
.Names = c("col1", "col2", "col3"),
class = "data.frame",
row.names = c(NA, -2L)))
t5 <- readOrg("~/Packages/orgutils/inst/unitTests/orgtable5.org",
table.name = "table5")
checkEquals(t5,
structure(list(col1 = c(1L, 4L), col2 = c(2L, 5L),
col3 = c("3", "test")),
.Names = c("col1", "col2", "col3"),
class = "data.frame",
row.names = c(NA, -2L)))
t6 <- readOrg("~/Packages/orgutils/inst/unitTests/orgtable6.org",
table.name = "table6")
checkEquals(t6,
structure(list(col1 = c(1L, 4L, 7L),
col2 = c(2L, 5L, 8L),
col3 = c(3L, 6L, 9L)),
.Names = c("col1", "col2", "col3"),
class = "data.frame",
row.names = c(NA, -3L)))
t7 <- readOrg("~/Packages/orgutils/inst/unitTests/orgtable7.org")
checkEquals(t7,
structure(list(col1 = character(0),
col2 = character(0),
col3 = character(0)),
.Names = c("col1", "col2", "col3"),
row.names = integer(0),
class = "data.frame"))
t8 <- readOrg("~/Packages/orgutils/inst/unitTests/orgtable8.org")
checkEquals(t8,
structure(list(col1 = character(0),
col2 = character(0),
col3 = character(0)),
.Names = c("col1", "col2", "col3"),
row.names = integer(0),
class = "data.frame"))
t9 <- readOrg("~/Packages/orgutils/inst/unitTests/orgtable9.org")
checkEquals(t9,
structure(list(col1 = 1L,
col2 = 2L,
col3 = 3L),
.Names = c("col1", "col2", "col3"),
row.names = c(NA, -1L),
class = "data.frame"))
}
test.toOrg <- function() {
df <- data.frame(x = 1:3, row.names = letters[1:3])
tbl <- structure(c("| row.names | x |",
"|-----------+---|",
"| a | 1 |",
"| b | 2 |",
"| c | 3 |"),
class = "org")
checkEquals(tbl, toOrg(df))
checkEquals(tbl, toOrg(df), TRUE)
df <- data.frame(x = 1:3)
tbl <- structure(c("| x |",
"|---|",
"| 1 |",
"| 2 |",
"| 3 |"),
class = "org")
checkEquals(tbl, toOrg(df))
df <- data.frame(x = 1:3)
tbl <- structure(c("| row.names | x |",
"|-----------+---|",
"| 1 | 1 |",
"| 2 | 2 |",
"| 3 | 3 |"),
class = "org")
checkEquals(tbl, toOrg(data.frame(x = 1:3), TRUE))
checkEquals(toOrg(as.Date("2016-1-1")),
structure(paste0("<2016-01-01 ",
format(as.Date("2016-01-01"),
"%a"),
">"),
class = c("org", "character")))
checkEquals(toOrg(as.Date("2016-1-1"), inactive = TRUE),
structure(paste0("[2016-01-01 ",
format(as.Date("2016-01-01"),
"%a"),
"]"),
class = c("org", "character")))
times <- as.POSIXct(c("2016-1-1 10:00:00",
"2016-1-1 11:00:00"),
tz = Sys.timezone(location = TRUE))
checkEquals(toOrg(times),
structure(paste("<2016-01-01",
format(times, "%a"),
c("10:00:00>", "11:00:00>")),
class = c("org", "character")))
times <- as.POSIXlt(times)
checkEquals(toOrg(times),
structure(paste("<2016-01-01",
format(times, "%a"),
c("10:00:00>", "11:00:00>")),
class = c("org", "character")))
} |
poped_optim_2 <- function(poped.db,
opt_xt=poped.db$settings$optsw[2],
opt_a=poped.db$settings$optsw[4],
opt_x=poped.db$settings$optsw[3],
opt_samps=poped.db$settings$optsw[1],
opt_inds=poped.db$settings$optsw[5],
method=c("ARS","BFGS","LS"),
control=list(),
trace = TRUE,
fim.calc.type=poped.db$settings$iFIMCalculationType,
ofv_calc_type=poped.db$settings$ofv_calc_type,
approx_type=poped.db$settings$iApproximationMethod,
d_switch=poped.db$settings$d_switch,
ED_samp_size = poped.db$settings$ED_samp_size,
bLHS=poped.db$settings$bLHS,
use_laplace=poped.db$settings$iEDCalculationType,
out_file="",
parallel=F,
parallel_type=NULL,
num_cores = NULL,
loop_methods=ifelse(length(method)>1,TRUE,FALSE),
iter_max = 10,
stop_crit_eff = 1.001,
stop_crit_diff = NULL,
stop_crit_rel = NULL,
ofv_fun = poped.db$settings$ofv_fun,
maximize=T,
transform_parameters = F,
...){
called_args <- match.call()
default_args <- formals()
for(i in names(called_args)[-1]){
if(length(grep("^poped\\.db\\$",capture.output(default_args[[i]])))==1) {
eval(parse(text=paste(capture.output(default_args[[i]]),"<-",i)))
}
}
fmf = 0
dmf = 0
if(is.null(ofv_fun) || is.function(ofv_fun)){
ofv_fun_user <- ofv_fun
} else {
if(file.exists(as.character(ofv_fun))){
source(as.character(ofv_fun))
ofv_fun_user <- eval(parse(text=fileparts(ofv_fun)[["filename"]]))
} else {
stop("ofv_fun is not a function or NULL, and no file with that name was found")
}
}
if(!is.null(ofv_fun)){
poped.db$settings$ofv_calc_type = 0
}
output <-calc_ofv_and_fim(poped.db,d_switch=d_switch,
ED_samp_size=ED_samp_size,
bLHS=bLHS,
use_laplace=use_laplace,
ofv_calc_type=ofv_calc_type,
fim.calc.type=fim.calc.type,
ofv_fun = ofv_fun_user,
...)
fmf <- output$fim
dmf <- output$ofv
fmf_init <- fmf
dmf_init <- dmf
poped.db_init <- poped.db
if(is.nan(dmf_init)) stop("Objective function of initial design is NaN")
fn=blockheader(poped.db,name="optim",e_flag=!d_switch,
fmf=fmf_init,dmf=dmf_init,
out_file=out_file,
trflag=trace,
...)
my_ofv <- create_ofv(poped.db=poped.db,
opt_xt=opt_xt,
opt_a=opt_a,
opt_x=opt_x,
opt_samps=opt_samps,
opt_inds=opt_inds,
fim.calc.type=fim.calc.type,
ofv_calc_type=ofv_calc_type,
approx_type=approx_type,
d_switch=d_switch,
ED_samp_size = ED_samp_size,
bLHS=bLHS,
use_laplace=use_laplace,
ofv_fun = ofv_fun,
transform_parameters = transform_parameters,
...)
par <- my_ofv$par
ofv_fun <- my_ofv$fun
back_transform_par_fun <- my_ofv$back_transform_par
lower=my_ofv$space[["lower"]]
upper=my_ofv$space[["upper"]]
allowed_values=my_ofv$space[["allowed_values"]]
par_cat_cont=my_ofv$space[["par_cat_cont"]]
par_fixed_index=my_ofv$space[["par_fixed_index"]]
par_not_fixed_index=my_ofv$space[["par_not_fixed_index"]]
par_df_unique=my_ofv$space[["par_df_unique"]]
par_df=my_ofv$space[["par_df"]]
par_dim=my_ofv$space[["par_dim"]]
par_type=my_ofv$space[["par_type"]]
if(!(fn=="")) sink(fn, append=TRUE, split=TRUE)
iter <- 0
stop_crit <- FALSE
output$ofv <- dmf_init
while(stop_crit==FALSE && iter < iter_max){
ofv_init <- output$ofv
iter=iter+1
method_loop <- method
if(loop_methods){
cat("************* Iteration",iter," for all optimization methods***********************\n\n")
}
while(length(method_loop)>0){
cur_meth <- method_loop[1]
method_loop <- method_loop[-1]
if(cur_meth=="ARS"){
cat("*******************************************\n")
cat("Running Adaptive Random Search Optimization\n")
cat("*******************************************\n")
con <- list(trace = trace,
parallel=parallel,
parallel_type=parallel_type,
num_cores = num_cores)
nmsC <- names(con)
con[(namc <- names(control$ARS))] <- control$ARS
output <- do.call(optim_ARS,c(list(par=par,
fn=ofv_fun,
lower=lower,
upper=upper,
allowed_values = allowed_values,
maximize=maximize
),
con,
...))
}
if(cur_meth=="LS"){
cat("*******************************************\n")
cat("Running Line Search Optimization\n")
cat("*******************************************\n")
con <- list(trace = trace,
parallel=parallel,
parallel_type=parallel_type,
num_cores = num_cores)
nmsC <- names(con)
con[(namc <- names(control$LS))] <- control$LS
output <- do.call(optim_LS,c(list(par=par,
fn=ofv_fun,
lower=lower,
upper=upper,
allowed_values = allowed_values,
maximize=maximize
),
con,
...))
}
if(cur_meth=="BFGS"){
cat("*******************************************\n")
cat("Running L-BFGS-B Optimization\n")
cat("*******************************************\n")
if(all(par_cat_cont=="cat")){
cat("\nNo continuous variables to optimize, L-BFGS-B Optimization skipped\n\n")
next
}
if(trace) trace_optim=3
if(is.numeric(trace)) trace_optim = trace
con <- list(trace=trace_optim)
nmsC <- names(con)
con[(namc <- names(control$BFGS))] <- control$BFGS
fnscale=-1
if(!maximize) fnscale=1
if(is.null(con[["fnscale"]])) con$fnscale <- fnscale
par_full <- par
output <- optim(par=par[par_cat_cont=="cont"],
fn=ofv_fun,
gr=NULL,
only_cont=T,
lower=lower[par_cat_cont=="cont"],
upper=upper[par_cat_cont=="cont"],
method = "L-BFGS-B",
control=con)
output$ofv <- output$value
par_tmp <- output$par
output$par <- par_full
output$par[par_cat_cont=="cont"] <- par_tmp
fprintf('\n')
if(fn!="") fprintf(fn,'\n')
}
if(cur_meth=="GA"){
cat("*******************************************\n")
cat("Running Genetic Algorithm (GA) Optimization\n")
cat("*******************************************\n")
if (!requireNamespace("GA", quietly = TRUE)) {
stop("GA package needed for this function to work. Please install it.",
call. = FALSE)
}
if(all(par_cat_cont=="cat")){
cat("\nNo continuous variables to optimize, GA Optimization skipped\n\n")
next
}
parallel_ga <- parallel
if(!is.null(num_cores)) parallel_ga <- num_cores
if(!is.null(parallel_type)) parallel_ga <- parallel_type
con <- list(parallel=parallel_ga)
dot_vals <- dots(...)
nmsC <- names(con)
con[(namc <- names(control$GA))] <- control$GA
par_full <- par
ofv_fun_2 <- ofv_fun
if(!maximize) {
ofv_fun_2 <- function(par,only_cont=F,...){
-ofv_fun(par,only_cont=F,...)
}
}
output_ga <- do.call(GA::ga,c(list(type = "real-valued",
fitness = ofv_fun_2,
only_cont=T,
min=lower[par_cat_cont=="cont"],
max=upper[par_cat_cont=="cont"],
suggestions=par[par_cat_cont=="cont"]),
con,
...))
output$ofv <- output_ga@fitnessValue
if(!maximize) output$ofv <- -output$ofv
output$par <- output_ga@solution
par_tmp <- output$par
output$par <- par_full
output$par[par_cat_cont=="cont"] <- par_tmp
fprintf('\n')
if(fn!="") fprintf(fn,'\n')
}
par <- output$par
}
if(!loop_methods){
stop_crit <- TRUE
} else {
cat("*******************************************\n")
cat("Stopping criteria testing\n")
cat("(Compare between start of iteration and end of iteration)\n")
cat("*******************************************\n")
rel_diff <- (output$ofv - ofv_init)/abs(ofv_init)
abs_diff <- (output$ofv - ofv_init)
fprintf("Difference in OFV: %.3g\n",abs_diff)
fprintf("Relative difference in OFV: %.3g%%\n",rel_diff*100)
eff <- efficiency(ofv_init, output$ofv, poped.db)
fprintf("Efficiency: \n (%s) = %.5g\n",attr(eff,"description"),eff)
compare <-function(crit,crit_stop,maximize,inv=FALSE,neg=FALSE,text=""){
if(is.null(crit_stop)){
return(FALSE)
}
cat("\n",text,"\n")
if(is.nan(crit)){
fprintf(" Stopping criteria using 'NaN' as a comparitor cannot be used\n")
return(FALSE)
}
comparitor <- "<="
if(!maximize) comparitor <- ">="
if(inv) crit_stop <- 1/crit_stop
if(neg) crit_stop <- -crit_stop
fprintf(" Is (%0.5g %s %0.5g)? ",crit,comparitor,crit_stop)
res <- do.call(comparitor,list(crit,crit_stop))
if(res) cat(" Yes.\n Stopping criteria achieved.\n")
if(!res) cat(" No.\n Stopping criteria NOT achieved.\n")
return(res)
}
if(all(is.null(c(stop_crit_eff,stop_crit_rel,stop_crit_diff)))){
cat("No stopping criteria defined")
} else {
stop_eff <- compare(eff,stop_crit_eff,maximize,inv=!maximize,
text="Efficiency stopping criteria:")
stop_abs <- compare(abs_diff,stop_crit_diff,maximize,neg=!maximize,
text="OFV difference stopping criteria:")
stop_rel <- compare(rel_diff,stop_crit_rel,maximize,neg=!maximize,
text="Relative OFV difference stopping criteria:")
if(stop_eff || stop_rel || stop_abs) stop_crit <- TRUE
if(stop_crit){
cat("\nStopping criteria achieved.\n")
} else {
cat("\nStopping criteria NOT achieved.\n")
}
cat("\n")
}
}
}
if(!(fn=="")) sink()
par <- back_transform_par_fun(par)
if(length(par_fixed_index)!=0){
par_df_2[par_not_fixed_index,"par"] <- par
par <- par_df_2$par
}
if(!is.null(par_df_unique)){
par_df_unique$par <- par
for(j in par_df_unique$par_grouping){
par_df[par_df$par_grouping==j,"par"] <- par_df_unique[par_df_unique$par_grouping==j,"par"]
}
} else {
par_df$par <- par
}
if(opt_xt){
xt <- zeros(par_dim$xt)
par_xt <- par_df[par_type=="xt","par"]
for(i in 1:poped.db$design$m){
if((poped.db$design$ni[i]!=0 && poped.db$design$groupsize[i]!=0)){
xt[i,1:poped.db$design$ni[i]] <- par_xt[1:poped.db$design$ni[i]]
par_xt <- par_xt[-c(1:poped.db$design$ni[i])]
}
}
poped.db$design$xt[,]=xt[,]
}
if(opt_a) poped.db$design$a[,]=matrix(par_df[par_type=="a","par"],par_dim$a)
FIM <-calc_ofv_and_fim(poped.db,
ofv=output$ofv,
fim=0,
d_switch=d_switch,
ED_samp_size=ED_samp_size,
bLHS=bLHS,
use_laplace=use_laplace,
ofv_calc_type=ofv_calc_type,
fim.calc.type=fim.calc.type,
ofv_fun = ofv_fun_user,
...)[["fim"]]
time_value <-
blockfinal(fn=fn,fmf=FIM,
dmf=output$ofv,
groupsize=poped.db$design$groupsize,
ni=poped.db$design$ni,
xt=poped.db$design$xt,
x=poped.db$design$x,
a=poped.db$design$a,
model_switch=poped.db$design$model_switch,
poped.db$parameters$param.pt.val$bpop,
poped.db$parameters$param.pt.val$d,
poped.db$parameters$docc,
poped.db$parameters$param.pt.val$sigma,
poped.db,
fmf_init=fmf_init,
dmf_init=dmf_init,
...)
results <- list( ofv= output$ofv, FIM=FIM, initial=list(ofv=dmf_init, FIM=fmf_init, poped.db=poped.db_init),
run_time=time_value, poped.db = poped.db )
class(results) <- "poped_optim"
return(invisible(results))
} |
if (suppressWarnings(
require("testthat") &&
require("ggeffects") &&
require("lme4") &&
require("sjlabelled")
)) {
data(efc)
efc$e15relat <- as_label(efc$e15relat)
efc$e42dep <- as_label(efc$e42dep)
efc$c172code <- as.factor(efc$c172code)
m <- lmer(neg_c_7 ~ e42dep + c172code + (1 | e15relat), data = efc)
test_that("ggpredict, contrasts-1", {
options(contrasts = rep("contr.sum", 2))
pr <- ggpredict(m, c("c172code", "e42dep"))
expect_false(anyNA(pr$std.error))
})
test_that("ggpredict, contrasts-2", {
options(contrasts = rep("contr.sum", 2))
pr <- ggpredict(m, "c172code")
expect_false(anyNA(pr$std.error))
})
test_that("ggpredict, contrasts-3", {
options(contrasts = rep("contr.sum", 2))
pr <- ggpredict(m, "e42dep")
expect_false(anyNA(pr$std.error))
})
test_that("ggpredict, contrasts-4", {
options(contrasts = rep("contr.treatment", 2))
pr <- ggpredict(m, c("c172code", "e42dep"))
expect_false(anyNA(pr$std.error))
})
test_that("ggpredict, contrasts-5", {
options(contrasts = rep("contr.treatment", 2))
pr <- ggpredict(m, "c172code")
expect_false(anyNA(pr$std.error))
})
test_that("ggpredict, contrasts-6", {
options(contrasts = rep("contr.treatment", 2))
pr <- ggpredict(m, "e42dep")
expect_false(anyNA(pr$std.error))
})
} |
plot_nma <- function(s.id = "study", t.id = "treatment", data, title = "", adjust.figsizex = 1.1, adjust.figsizey = 1.1){
alphabetic = TRUE
weight.edge = TRUE
adjust.thick = 5
weight.node = TRUE
adjust.node.size = 10
node.col = "orange"
edge.col = "black"
text.cex = 1
if(missing(s.id) | missing(t.id)){
stop("both study id and treatment id must be specified.")
}
if(!missing(data)){
s.id <- eval(substitute(s.id), data, parent.frame())
t.id <- eval(substitute(t.id), data, parent.frame())
}
unique.sid <- unique(s.id)
nstudy <- length(unique.sid)
sid.ori <- s.id
for(s in 1:nstudy){
s.id[sid.ori == unique.sid[s]] <- s
}
unique.tid <- sort(unique(t.id))
ntrt <- length(unique.tid)
if(ntrt <= 2) stop("there are less than 3 treatments, no need for network plot.")
trtname <- unique.tid
trtname.order <- 1:ntrt
if(length(trtname) != ntrt){
stop("the length of trtname do not match the data.")
}
tid.ori <- t.id
for(t in 1:ntrt){
t.id[tid.ori == unique.tid[t]] <- t
}
polar <- pi/2 - 2*pi/ntrt*(0:(ntrt - 1))
x <- cos(polar)
y <- sin(polar)
graphics::plot(x, y, axes = FALSE, xlab="", ylab="", cex = 0.1,
xlim = c(-adjust.figsizex, adjust.figsizex),
ylim = c(-adjust.figsizey, adjust.figsizey),
main = title)
wt <- matrix(0, ntrt, ntrt)
for(t1 in 2:ntrt){
for(t2 in 1:(t1 - 1)){
study.t1 <- s.id[t.id == t1]
study.t2 <- s.id[t.id == t2]
study.t1.t2 <- intersect(study.t1, study.t2)
wt[t1, t2] <- length(study.t1.t2)
}
}
wt <- c(wt)
if(weight.edge == TRUE){
wt.unique <- unique(wt[wt > 0])
wtmin <- min(wt.unique)
wtmax <- max(wt.unique)
if(wtmin < wtmax){
wt[wt > 0] <- round(1 + adjust.thick*(wt[wt > 0] - wtmin)/(wtmax - wtmin))
}else{
wt[wt > 0] <- 2
}
}else{
wt[wt > 0] <- 2
}
wt <- matrix(wt, ntrt, ntrt)
for(t1 in 2:ntrt){
for(t2 in 1:(t1 - 1)){
if(t1 != t2 & wt[t1, t2] > 0){
graphics::lines(x = x[c(t1, t2)], y = y[c(t1, t2)],
lwd = wt[t1, t2], col = edge.col)
}
}
}
if(weight.node){
wt <- matrix(0, ntrt, ntrt)
for(t1 in 2:ntrt){
for(t2 in 1:(t1 - 1)){
study.t1 <- s.id[t.id == t1]
study.t2 <- s.id[t.id == t2]
study.t1.t2 <- intersect(study.t1, study.t2)
wt[t1, t2] <- length(study.t1.t2)
}
}
wt <- wt + t(wt)
wt <- colSums(wt)
node.sizes <- 3 + (wt - min(wt))/(max(wt) - min(wt))*adjust.node.size
graphics::points(x, y, pch = 20, cex = node.sizes, col = node.col)
}else{
graphics::points(x, y, pch = 20, cex = 3, col = node.col)
}
sides <- numeric(ntrt)
eps <- 10^(-4)
for(t in 1:ntrt){
if((polar[t] <= pi/2 & polar[t] > pi/4) |
(polar[t] < -5*pi/4 & polar[t] >= -3*pi/2)){
sides[t] <- 3
}
if(polar[t] <= pi/4 & polar[t] >= -pi/4){
sides[t] <- 4
}
if(polar[t] < -pi/4 & polar[t] > -3*pi/4){
sides[t] <- 1
}
if(polar[t] <= -3*pi/4 & polar[t] >= -5*pi/4){
sides[t] <- 2
}
}
for(t in 1:ntrt){
if(weight.node){
graphics::text(x = x[t], y = y[t], labels = trtname[trtname.order[t]],
cex = text.cex)
}else{
graphics::text(x = x[t], y = y[t], labels = trtname[trtname.order[t]],
pos = sides[t], cex = text.cex)
}
}
} |
check_horizontal <- function(original, horizontal, fig_name,
skip_on_windows = FALSE) {
sort <- function(x) x[order(names(x))]
flipped <- function(fun) {
function(x, ...) fun(flip_aes(x), ...)
}
set.seed(10)
h <- ggplot_build(original)
set.seed(10)
v <- ggplot_build(horizontal)
if (skip_on_windows) {
skip_on_os("windows")
}
expect_doppelganger(fig_name, horizontal)
}
expect_doppelganger <- function(title, fig, path = NULL, ...) {
testthat::skip_if_not_installed("vdiffr")
vdiffr::expect_doppelganger(title, fig, path = path, ...)
} |
test_that("classif_glmnet", {
requirePackagesOrSkip("glmnet", default.method = "load")
parset.list = list(
list(),
list(alpha = 0.5),
list(devmax = 0.8),
list(s = 0.1)
)
old.predicts.list = list()
old.probs.list = list()
for (i in seq_along(parset.list)) {
parset = parset.list[[i]]
s = parset[["s"]]
if (is.null(s)) {
s = 0.01
}
parset[["s"]] = NULL
x = binaryclass.train
y = x[, binaryclass.class.col]
x[, binaryclass.class.col] = NULL
pars = list(x = as.matrix(x), y = y, family = "binomial")
pars = c(pars, parset)
glmnet::glmnet.control(factory = TRUE)
ctrl.args = names(formals(glmnet::glmnet.control))
if (any(names(pars) %in% ctrl.args)) {
on.exit(glmnet::glmnet.control(factory = TRUE))
do.call(glmnet::glmnet.control, pars[names(pars) %in% ctrl.args])
m = do.call(glmnet::glmnet, pars[!names(pars) %in% ctrl.args])
} else {
m = do.call(glmnet::glmnet, pars)
}
newx = binaryclass.test
newx[, binaryclass.class.col] = NULL
p = factor(predict(m, as.matrix(newx), type = "class", s = s)[, 1])
p2 = predict(m, as.matrix(newx), type = "response", s = s)[, 1]
old.predicts.list[[i]] = p
old.probs.list[[i]] = 1 - p2
}
testSimpleParsets("classif.glmnet", binaryclass.df, binaryclass.target,
binaryclass.train.inds, old.predicts.list, parset.list)
testProbParsets("classif.glmnet", binaryclass.df, binaryclass.target,
binaryclass.train.inds, old.probs.list, parset.list)
}) |
source("ESEUR_config.r")
library("circular")
plot_layout(2, 1, max_height=11.0)
par(mar=MAR_default-c(2.7, 3.7, 0.5, 0.7))
pal_col=rainbow(3)
plot_commits=function(df, repo_str, col_str)
{
hrs=as.numeric(round(df$local_time, units="hours")) / (60*60)
week_hr=(shift_weekend+hrs) %% hrs_per_week
HoW=circular((360/hrs_per_week)*week_hr, units="degrees", rotation="clock")
rose.diag(HoW, bins=7*8, shrink=1.2, prop=5, col=col_str, border="grey",
axes=FALSE, control.circle=circle.control(col="grey", lwd=0.5))
axis.circular(at=circular(day_angle, units="degrees", rotation="clock"),
labels=c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"))
text(0.8, 1, repo_str, cex=1.4)
arrows.circular(mean(HoW), y=rho.circular(HoW), col=pal_col[2], lwd=3)
return(HoW)
}
commits=read.csv(paste0(ESEUR_dir, "time-series/commits/scc_commit.tsv.xz"), sep="\t", as.is=TRUE)
commits$sha1=NULL
commits$local_time=as.POSIXct(commits$local_time, format="%Y-%m-%d %H:%M:%S")
hrs_per_day=24
hrs_per_week=hrs_per_day*7
day_angle=seq(0, 359, 360/7)
shift_weekend=3*hrs_per_day
linux_circ=plot_commits(subset(commits, repository_id == 1), "Linux", pal_col[1])
BSD_circ=plot_commits(subset(commits, repository_id == 5), "OpenBSD", pal_col[3]) |
dualDiscrete <- function(length.sim,
max.infected.A,
max.infected.B,
init.individuals.A,
init.individuals.B,
init.structure.A,
init.structure.B,
structure.matrix.A,
structure.matrix.B,
pExit.A,
param.pExit.A,
timeDep.pExit.A=FALSE,
diff.pExit.A=FALSE,
hostCount.pExit.A=FALSE,
pMove.A,
param.pMove.A,
timeDep.pMove.A=FALSE,
diff.pMove.A=FALSE,
hostCount.pMove.A=FALSE,
nContact.A,
param.nContact.A,
timeDep.nContact.A=FALSE,
diff.nContact.A=FALSE,
hostCount.nContact.A=FALSE,
pTrans.A,
param.pTrans.A,
timeDep.pTrans.A=FALSE,
diff.pTrans.A=FALSE,
hostCount.pTrans.A=FALSE,
prefix.host.A="H",
pExit.B,
param.pExit.B,
timeDep.pExit.B=FALSE,
diff.pExit.B=FALSE,
hostCount.pExit.B=FALSE,
pMove.B,
param.pMove.B,
timeDep.pMove.B=FALSE,
diff.pMove.B=FALSE,
hostCount.pMove.B=FALSE,
nContact.B,
param.nContact.B,
timeDep.nContact.B=FALSE,
diff.nContact.B=FALSE,
hostCount.nContact.B=FALSE,
pTrans.B,
param.pTrans.B,
timeDep.pTrans.B=FALSE,
diff.pTrans.B=FALSE,
hostCount.pTrans.B=FALSE,
prefix.host.B="V",
print.progress=TRUE,
print.step=10){
CoreSanityChecks(length.sim, max.infected=(max.infected.A+max.infected.B), init.individuals=(init.individuals.A+init.individuals.B))
none.at.start.A = (init.individuals.A == 0)
none.at.start.B = (init.individuals.B == 0)
if(none.at.start.A) init.structure.A = "NA"
if(none.at.start.B) init.structure.B = "NA"
if((!is.function(pMove.A)) && (!is.function(pMove.B))) stop("At least one host must move.")
nContactParsed.A <- parseFunction(nContact.A, param.nContact.A, as.character(quote(nContact.A)), diff=diff.nContact.A, timeDep = timeDep.nContact.A, hostCount=hostCount.nContact.A, stateNames=colnames(structure.matrix.A))
nContactParsed.B <- parseFunction(nContact.B, param.nContact.B, as.character(quote(nContact.B)), diff=diff.nContact.B, timeDep = timeDep.nContact.B, hostCount=hostCount.nContact.B, stateNames=colnames(structure.matrix.B))
pTransParsed.A <- parseFunction(pTrans.A, param.pTrans.A, as.character(quote(pTrans.A)), diff=diff.pTrans.A, timeDep = timeDep.pTrans.A, hostCount=hostCount.pTrans.A, stateNames=colnames(structure.matrix.A))
pTransParsed.B <- parseFunction(pTrans.B, param.pTrans.B, as.character(quote(pTrans.B)), diff=diff.pTrans.B, timeDep = timeDep.pTrans.B, hostCount=hostCount.pTrans.B, stateNames=colnames(structure.matrix.B))
pExitParsed.A <- parseFunction(pExit.A, param.pExit.A, as.character(quote(pExit.A)), diff=diff.pExit.A, timeDep = timeDep.pExit.A, hostCount=hostCount.pExit.A, stateNames=colnames(structure.matrix.A))
pExitParsed.B <- parseFunction(pExit.B, param.pExit.B, as.character(quote(pExit.B)), diff=diff.pExit.B, timeDep = timeDep.pExit.B, hostCount=hostCount.pExit.B, stateNames=colnames(structure.matrix.B))
MatrixSanityChecks(structure.matrix.A,init.structure.A, none.at.start.A)
MatrixSanityChecks(structure.matrix.B,init.structure.B, none.at.start.B)
if(is.function(pMove.A)) pMoveParsed.A <- parseFunction(pMove.A, param.pMove.A, as.character(quote(pMove.A)), diff=diff.pMove.A, timeDep = timeDep.pMove.A, hostCount=hostCount.pMove.A, stateNames=colnames(structure.matrix.A))
if(is.function(pMove.B)) pMoveParsed.B <- parseFunction(pMove.B, param.pMove.B, as.character(quote(pMove.B)), diff=diff.pMove.B, timeDep = timeDep.pMove.B, hostCount=hostCount.pMove.B, stateNames=colnames(structure.matrix.B))
ParamHost.A <- paramConstructor(param.pExit.A, param.pMove=param.pMove.A, param.nContact.A, param.pTrans.A, param.sdMove=NA)
ParamHost.B <- paramConstructor(param.pExit.B, param.pMove=param.pMove.B, param.nContact.B, param.pTrans.B, param.sdMove=NA)
countingHosts <- any(c(hostCount.pExit.A, hostCount.pMove.A, hostCount.nContact.A, hostCount.pTrans.A),c(hostCount.pExit.B, hostCount.pMove.B, hostCount.nContact.B, hostCount.pTrans.B))
message("Starting the simulation\nInitializing ...", appendLF = FALSE)
res <- nosoiSimConstructor(total.time = 1,
type = "dual",
pop.A = nosoiSimOneConstructor(
N.infected = init.individuals.A,
table.hosts = iniTable(init.individuals.A, init.structure.A, prefix.host.A, ParamHost.A,
current.count.A = init.individuals.A, current.count.B = init.individuals.B),
table.state = iniTableState(init.individuals.A, init.structure.A, prefix.host.A),
prefix.host = prefix.host.A,
popStructure = "discrete"),
pop.B = nosoiSimOneConstructor(
N.infected = init.individuals.B,
table.hosts = iniTable(init.individuals.B, init.structure.B, prefix.host.B, ParamHost.B,
current.count.A = init.individuals.A, current.count.B = init.individuals.B),
table.state = iniTableState(init.individuals.B, init.structure.B, prefix.host.B),
prefix.host = prefix.host.B,
popStructure = "discrete"))
message(" running ...")
for (pres.time in 1:length.sim) {
exiting.full.A <- getExitingMoving(res$host.info.A, pres.time, pExitParsed.A)
exiting.full.B <- getExitingMoving(res$host.info.B, pres.time, pExitParsed.B)
res$host.info.A$table.hosts[exiting.full.A, `:=` (out.time = pres.time,
active = FALSE)]
res$host.info.B$table.hosts[exiting.full.B, `:=` (out.time = pres.time,
active = FALSE)]
res$host.info.A <- updateTableState(res$host.info.A, exiting.full.A, pres.time)
res$host.info.B <- updateTableState(res$host.info.B, exiting.full.B, pres.time)
if (!any(c(res$host.info.A$table.hosts[["active"]], res$host.info.B$table.hosts[["active"]]))) {break}
if(countingHosts) updateHostCount(res$host.info.A, res.B=res$host.info.B, type="discrete")
if(is.function(pMove.A)) moving.full.A <- getExitingMoving(res$host.info.A, pres.time, pMoveParsed.A)
if(is.function(pMove.B)) moving.full.B <- getExitingMoving(res$host.info.B, pres.time, pMoveParsed.B)
if(is.function(pMove.A)) res$host.info.A <- makeMoves(res$host.info.A, pres.time, moving.full.A, structure.matrix = structure.matrix.A)
if(is.function(pMove.B)) res$host.info.B <- makeMoves(res$host.info.B, pres.time, moving.full.B, structure.matrix = structure.matrix.B)
if(countingHosts) updateHostCount(res$host.info.A, res.B=res$host.info.B, type="discrete")
df.meetTransmit.A <- meetTransmit(res$host.info.A, pres.time,
positions = c("current.in", "host.count.A", "host.count.B"),
nContactParsed.A, pTransParsed.A)
res$host.info.B <- writeInfected(df.meetTransmit.A, res$host.info.B, pres.time, ParamHost.B)
df.meetTransmit.B <- meetTransmit(res$host.info.B, pres.time,
positions = c("current.in", "host.count.A", "host.count.B"),
nContactParsed.B, pTransParsed.B)
res$host.info.A <- writeInfected(df.meetTransmit.B, res$host.info.A, pres.time, ParamHost.A)
if(countingHosts) updateHostCount(res$host.info.A, res.B = res$host.info.B, type = "discrete")
if (print.progress == TRUE) progressMessage(Host.count.A = res$host.info.A$N.infected, Host.count.B = res$host.info.B$N.infected,
pres.time = pres.time, print.step = print.step, length.sim = length.sim,
max.infected.A = max.infected.A, max.infected.B = max.infected.B,
type = "dual")
if (res$host.info.A$N.infected > max.infected.A || res$host.info.B$N.infected > max.infected.B) {break}
}
endMessage(Host.count.A=res$host.info.A$N.infected, Host.count.B=res$host.info.B$N.infected, pres.time, type="dual")
res$total.time <- pres.time
return(res)
} |
as.tabular <- function(x, like = NULL) {
UseMethod("as.tabular")
}
as.tabular.default <- function(x, like = NULL) {
dim <- dim(x)
if (length(dim) != 2) stop("Cannot convert to tabular")
if (is.null(like)) {
rows <- factor(levels=rownames(x, do.NULL = FALSE))
cols <- factor(levels=colnames(x, do.NULL = FALSE))
names <- names(dimnames(x))
if (!length(names))
names <- c("", "")
df <- data.frame(A=rows, B=cols)
formula <- Factor(A, names[1]) ~ Factor(B, names[2])
if (names[1] == "") formula[[2]] <- call("*", quote(Heading()), formula[[2]])
if (names[2] == "") formula[[3]] <- call("*", quote(Heading()), formula[[3]])
like <- tabular(formula, data=df)
} else {
if (!inherits(like, "tabular"))
stop("'like' must be a 'tabular' object")
if (any(dim != dim(like)))
stop("Dimension of 'x' must match dimension of 'like'")
}
mode(x) <- "list"
attributes(x) <- attributes(like)
x
}
as.tabular.data.frame <- function(x, like = NULL) {
dimnames <- dimnames(x)
res <- matrix(1, nrow(x), ncol(x))
mode(res) <- "list"
for (j in seq_len(ncol(x))) {
col <- x[,j]
if (is.factor(col)) col <- as.character(col)
mode(col) <- "list"
res[,j] <- col
}
dimnames(res) <- dimnames
as.tabular.default(res, like = like)
}
|
test_that("construction", {
expect_silent(Logicals$new())
l <- Logicals$new()
expect_equal(l$elements, list(TRUE, FALSE))
expect_equal(l$min, NaN)
expect_equal(l$max, NaN)
expect_equal(l$lower, TRUE)
expect_equal(l$upper, FALSE)
}) |
ISOpureS2.model_core.compute_loglikelihood <- function(tumordata, model) {
loglikelihood <- 0;
D <- dim(tumordata)[2];
G <- dim(model$log_BBtranspose)[2];
loglikelihood <- loglikelihood + D*(lgamma(sum(model$vv)) - sum(lgamma(model$vv))) + sum((model$vv-1) %*% t(ISOpure.util.matlab_log(model$theta)));
kappaomegaPP <- model$omega %*% model$PPtranspose * ISOpure.util.repmat(t(model$kappa), 1, G);
for (dd in 1:D) {
log_all_rates <- rbind(model$log_BBtranspose, model$log_cc[dd,,drop=FALSE]);
log_P_t_given_theta <- ISOpure.util.logsum(t(ISOpure.util.repmat(ISOpure.util.matlab_log(model$theta[dd,,drop=FALSE]), G, 1)) + log_all_rates, 1);
loglikelihood <- loglikelihood + (log_P_t_given_theta %*% tumordata[,dd]);
loglikelihood <- loglikelihood + lgamma(sum(kappaomegaPP[dd,])) - sum(lgamma(kappaomegaPP[dd,])) + ((kappaomegaPP[dd,,drop=FALSE]-1) %*% t(model$log_cc[dd,,drop=FALSE]));
}
return(loglikelihood);
} |
predict.mKrig <- function(object, xnew = NULL, ynew = NULL, grid.list=NULL,
derivative = 0, Z = NULL, drop.Z = FALSE, just.fixed = FALSE,
collapseFixedEffect = object$collapseFixedEffect,
...) {
cov.args <- list(...)
if( !is.null(grid.list)){
xnew<- make.surface.grid(grid.list)
}
if (is.null(xnew)) {
xnew <- object$x
}
if (is.null(Z) & (length(object$ind.drift) >0 )) {
Z <- object$Tmatrix[, !object$ind.drift]
}
if (!is.null(ynew)) {
coef.hold <- mKrig.coef(object, ynew,
collapseFixedEffect=collapseFixedEffect)
c.coef <- coef.hold$c.coef
beta <- coef.hold$beta
}
else {
c.coef <- object$c.coef
beta <- object$beta
}
if( object$nt>0){
if (derivative == 0) {
if (drop.Z | object$nZ == 0) {
temp1 <- fields.mkpoly(xnew, m = object$m) %*%
beta[object$ind.drift, ]
}
else {
if( nrow( xnew) != nrow(as.matrix(Z)) ){
stop(paste("number of rows of covariate Z",
nrow(as.matrix(Z)),
" is not the same as the number of locations",
nrow( xnew) )
)
}
temp0 <- cbind(fields.mkpoly(xnew, m = object$m),as.matrix(Z))
temp1 <- temp0 %*% beta
}
}
else {
if (!drop.Z & object$nZ > 0) {
stop("derivative not supported with Z covariate included")
}
temp1 <- fields.derivative.poly(xnew, m = object$m, beta[object$ind.drift,
])
}
if (just.fixed) {
return(temp1)
}
}
if (derivative == 0) {
temp2 <- do.call(object$cov.function.name, c(object$args,
list(x1 = xnew, x2 = object$knots, C = c.coef), cov.args))
}
else {
temp2 <- do.call(object$cov.function.name, c(object$args,
list(x1 = xnew, x2 = object$knots, C = c.coef, derivative = derivative),
cov.args))
}
if( object$nt>0){
return((temp1 + temp2))
}
else{
return( temp2)
}
} |
pdot.dsr.integrate.logistic <- function(right, width, beta, x,
integral.numeric, BT, models, GAM=FALSE,
rem=FALSE, point=FALSE){
if(length(right)>1){
lower <- right[1]
right <- right[2]
integral.numeric <- TRUE
}else{
lower <- 0
}
if(is.null(x$observer)){
stop("data must have a column named \"observer\"")
}
if(integral.numeric | point){
if(GAM|length(right)>1){
is.constant <- FALSE
}else{
is.constant <- is.logistic.constant(x[x$observer==1,],
models$g0model,width)
}
if(is.constant){
int1 <- rep(integratelogistic(x=x[x$observer==1,][1,], models, beta,
lower=lower, right, point),
nrow(x[x$observer==1,]))
}else{
int1 <- rep(NA,nrow(x[x$observer==1,]))
for(i in 1:nrow(x[x$observer==1,])){
int1[i] <- integratelogistic(x=(x[x$observer==1,])[i,], models,
beta, lower=lower,right,point)
}
}
if(!BT){
if(is.logistic.constant(x[x$observer==2,],models$g0model,width)){
int2 <- rep(integratelogistic(x=x[x$observer==2,][1,], models, beta,
lower=lower, right, point),
nrow(x[x$observer==2,]))
}else{
int2 <- rep(NA,nrow(x[x$observer==2,]))
for(i in 1:nrow(x[x$observer==2,])){
int2[i] <- integratelogistic(x=x[x$observer==2,][i,], models,
beta, lower=lower, right, point)
}
}
}else{
int2 <- NULL
}
}else{
int1 <- integratelogistic.analytic(x[x$observer==1,], models=models,
beta=beta, width=right)
if(!BT){
int2 <- integratelogistic.analytic(x[x$observer==2,], models=models,
beta=beta, width=right)
}else{
int2 <- NULL
}
}
if(!BT){
if(is.logistic.constant(x[x$observer==1,],models$g0model,width) &
is.logistic.constant(x[x$observer==2,],models$g0model,width)){
int3 <- rep(integratelogisticdup(x1=x[x$observer==1,][1,],
x2=x[x$observer==2,][1,],models,beta,
lower=lower,right, point),
nrow(x[x$observer==2,]))
}else{
int3 <- rep(NA, nrow(x[x$observer==1,]))
for(i in 1:nrow(x[x$observer==1,])){
int3[i] <- integratelogisticdup(x1=(x[x$observer==1,])[i,],
x2=(x[x$observer==2,])[i,],
models, beta, lower=lower,
right, point)
}
}
pdot <- int1 + int2 - int3
}else{
int3 <- NULL
pdot <- int1
}
if(!point){
div <- width
}else{
div <- width^2
}
return(list(pdot = pdot/div,
int1 = int1/div,
int2 = int2/div,
int3 = int3/div))
} |
context("babel-export")
test_that("export writes files", {
x <- bot %>% efourier(3)
fn <- "plop.txt"
expect_message(export(x, file=fn))
expect_true(fn %in% list.files())
shut_up <- file.remove("plop.txt")
x %<>% PCA
fn <- "plop.txt"
expect_message(export(x, file=fn))
expect_true(fn %in% list.files())
shut_up <- file.remove("plop.txt")
x <- shapes[4]
fn <- "plop.txt"
expect_message(export(x, file=fn))
expect_true(fn %in% list.files())
shut_up <- file.remove("plop.txt")
}) |
powDT <- function(r,k,mu,mu0,n,n0,contrast,sigma=NA,df=Inf,alpha=0.05,mcs=1e+05,testcall){
theta <- mu-mu0
if(contrast=="props" & is.na(sigma)){
pooled.mu <- (mu*n*k+mu0*n0)/(n*k+n0)
sigma <- sqrt(pooled.mu*(1-pooled.mu))
}
corr <- n/(n0+n)
delta <- theta/(sigma*sqrt(1/n+1/n0))
if(testcall=="SD"){
cvSet <- cvSDDT(k=k, alpha=alpha, alternative="U", df=df, corr=corr)
}
if(testcall=="SU"){
cvSet <- cvSUDT(k=k, alpha=alpha, alternative="U", df=df, corr=corr)
}
z0 <- rnorm(mcs)
if(df == Inf){u <- 1}else{u <- sqrt(rchisq(mcs,df=df)/df)}
dvSet <- sapply(cvSet,function(x){(x*u+sqrt(corr)*z0)/sqrt(1-corr)})
list.J.Fun <- list(J2.fun,J3.fun,J4.fun,J5.fun,J6.fun,J7.fun,J8.fun,J9.fun,J10.fun,J11.fun,J12.fun,J13.fun,J14.fun,J15.fun,J16.fun)
if(testcall=="SU"){
pow <- mean((1-pnorm(dvSet[,1],mean=delta/sqrt(1-corr)))^k)
if(r<k){
s <- 1
p.rej <- (1-pnorm(dvSet[,s+1],mean=delta/sqrt(1-corr)))^(k-s)
Psi.d1 <- pnorm(dvSet[,s],mean=delta/sqrt(1-corr))
J1 <- Psi.d1
list.J <- c(list(1),list(J1))
list.Psi <- list(Psi.d1)
pow <- pow+choose(k,s)*mean(p.rej*J1)
if(r<(k-1)){
for(s in 2:(k-r)){
p.rej <- (1-pnorm(dvSet[,s+1],mean=delta/sqrt(1-corr)))^(k-s)
Psi.ds <- pnorm(dvSet[,s],mean=delta/sqrt(1-corr))
Js <- list.J.Fun[[s-1]](Psi.ds,list.J,list.Psi)
list.J <- c(list.J,list(Js))
list.Psi <- c(list.Psi,list(Psi.ds))
pow <- pow+choose(k,s)*mean(p.rej*Js)
}
}
}
}
if(testcall=="SD"){
powSet <- NULL
Psi.d1 <- 1-pnorm(dvSet[,k],mean=delta/sqrt(1-corr))
J1 <- Psi.d1
list.J <- c(list(1),list(J1))
list.Psi <- list(Psi.d1)
p.acc <- pnorm(dvSet[,k-1],mean=delta/sqrt(1-corr))^(k-1)
powSet <- c(powSet,choose(k,k-1)*mean(p.acc*J1))
if(k>2){
for(s in (k-2):0){
if(s==0){p.acc <- 1}else{p.acc <- pnorm(dvSet[,s],mean=delta/sqrt(1-corr))^s}
Psi.ds <- 1-pnorm(dvSet[,s+1],mean=delta/sqrt(1-corr))
Js <- list.J.Fun[[k-s-1]](Psi.ds,list.J,list.Psi)
powSet <- c(powSet,choose(k,s)*mean(p.acc*Js))
list.J <- c(list.J,list(Js))
list.Psi <- c(list.Psi,list(Psi.ds))
}
}
pow <- sum(powSet[r:k])
}
pow
} |
library(gridGraphics)
attach(beaver1)
axis.POSIXct1 <- function() {
time <- strptime(paste(1990, day, time %/% 100, time %% 100),
"%Y %j %H %M")
plot(time, temp, type = "l")
}
axis.POSIXct2 <- function() {
time <- strptime(paste(1990, day, time %/% 100, time %% 100),
"%Y %j %H %M")
plot(time, temp, type = "l", xaxt = "n")
r <- as.POSIXct(round(range(time), "hours"))
axis.POSIXct(1, at = seq(r[1], r[2], by = "hour"), format = "%H")
}
axis.POSIXct3 <- function() {
plot(.leap.seconds, seq_along(.leap.seconds), type = "n", yaxt = "n",
xlab = "leap seconds", ylab = "", bty = "n")
rug(.leap.seconds)
}
axis.POSIXct4 <- function() {
lps <- as.Date(.leap.seconds)
plot(lps, seq_along(.leap.seconds),
type = "n", yaxt = "n", xlab = "leap seconds",
ylab = "", bty = "n")
rug(lps)
}
axis.POSIXct5 <- function() {
set.seed(1)
random.dates <- as.Date("2001/1/1") + 70*sort(stats::runif(100))
plot(random.dates, 1:100)
}
axis.POSIXct6 <- function() {
set.seed(1)
random.dates <- as.Date("2001/1/1") + 70*sort(stats::runif(100))
plot(random.dates, 1:100, xaxt = "n")
axis.Date(1, at = seq(as.Date("2001/1/1"), max(random.dates)+6, "weeks"))
axis.Date(1, at = seq(as.Date("2001/1/1"), max(random.dates)+6, "days"),
labels = FALSE, tcl = -0.2)
}
plotdiff(expression(axis.POSIXct1()), "axis.POSIXct-1")
plotdiff(expression(axis.POSIXct2()), "axis.POSIXct-2", width=8, height=8)
plotdiff(expression(axis.POSIXct3()), "axis.POSIXct-3")
plotdiff(expression(axis.POSIXct4()), "axis.POSIXct-4")
plotdiff(expression(axis.POSIXct5()), "axis.POSIXct-5")
plotdiff(expression(axis.POSIXct6()), "axis.POSIXct-6", width=9, height=9)
detach(beaver1)
plotdiffResult() |
context("Uploading multiple files")
vcr::vcr_configure(
dir = cassette_dir("uploading-multiple-files")
)
setup({
multidir <<- fs::dir_copy(
file.path(rprojroot::find_testthat_root_file(), "test-files", "uploads"),
".osfr-tests"
)
if (has_pat()) {
vcr::use_cassette("create-p1", {
p1 <<- osf_create_project(title = "osfr-multifile-upload-test")
})
}
})
teardown({
fs::dir_delete(multidir)
if (has_pat()) {
vcr::use_cassette("delete-p1", {
osf_rm(p1, recurse = TRUE, check = FALSE)
})
}
})
test_that("multiple files can be uploaded", {
skip_if_no_pat()
infiles <- fs::dir_ls(multidir, type = "file")
vcr::use_cassette("upload-infiles", {
out <- osf_upload(p1, infiles)
})
expect_s3_class(out, "osf_tbl_file")
expect_equal(out$name, basename(infiles))
})
test_that("a directory can be uploaded", {
skip_if_no_pat()
vcr::use_cassette("create-and-populate-c1", {
c1 <- osf_create_component(p1, "dir-upload")
out <- osf_upload(c1, multidir)
})
expect_s3_class(out, "osf_tbl_file")
expect_match(out$name, basename(multidir))
vcr::use_cassette("list-c1-files",
c1_files <- osf_ls_files(out)
)
expect_true(
all(c1_files$name %in% basename(fs::dir_ls(multidir)))
)
})
test_that("a subdirectory can be uploaded", {
skip_if_no_pat()
indir <- file.path(multidir, "subdir1", "subdir1_1")
vcr::use_cassette("create-and-populate-c2", {
c2 <- osf_create_component(p1, "subdir-upload")
out <- osf_upload(c2, indir, verbose = TRUE)
})
expect_s3_class(out, "osf_tbl_file")
expect_match(out$name, basename(indir))
vcr::use_cassette("list-c2-subdirs",
subdirs <- osf_ls_files(c2, type = "folder")
)
expect_equal(
subdirs$name,
basename(indir)
)
vcr::use_cassette("list-c2-subdir-files",
subdir_files <- osf_ls_files(out)
)
expect_equal(
subdir_files$name,
basename(fs::dir_ls(indir))
)
})
test_that("recurse argument respects specified levels", {
skip_if_no_pat()
vcr::use_cassette("create-and-populate-c3", {
c3 <- osf_create_component(p1, "recurse=1")
out <- osf_upload(c3, path = multidir, recurse = 1)
})
vcr::use_cassette("list-c3-subdir1",
sd1_files <- osf_ls_files(out, path = "subdir1")
)
expect_setequal(
sort(sd1_files$name),
dir(file.path(multidir, "subdir1"))
)
vcr::use_cassette("list-c3-subdir2",
sd2_files <- osf_ls_files(out, path = "subdir2")
)
expect_setequal(
sd2_files$name,
dir(file.path(multidir, "subdir2"))
)
vcr::use_cassette("list-c3-subdir1_1",
sd1_1_files <- osf_ls_files(out, path = "subdir1/subdir1_1")
)
expect_equal(nrow(sd1_1_files), 0)
})
test_that("recurse=TRUE uploads the entire OSF directory structure", {
skip_if_no_pat()
vcr::use_cassette("create-and-populate-c4", {
c4 <- osf_create_component(p1, "recurse=TRUE")
out <- osf_upload(c4, path = multidir, recurse = TRUE)
})
vcr::use_cassette("list-c4-subdir1_1-files",
sd1_1_files <- osf_ls_files(out, path = "subdir1/subdir1_1")
)
expect_equal(
sd1_1_files$name,
dir(file.path(multidir, "subdir1/subdir1_1"))
)
})
test_that("files in parent directories can be uploaded", {
cwd <- getwd()
on.exit(setwd(cwd))
setwd(fs::path(multidir, "subdir1/subdir1_1"))
skip_if_no_pat()
vcr::use_cassette("create-c5", {
c5 <- osf_create_component(p1, "parent-directories")
})
vcr::use_cassette("c5-upload-f1", {
upf1 <- osf_upload(c5, path = "../d.txt")
})
vcr::use_cassette("c5-upload-f2", {
upf2 <- osf_upload(c5, path = "../../a.txt")
})
vcr::use_cassette("c5-upload-updir", {
updir <- osf_upload(c5, path = "../../subdir2")
})
vcr::use_cassette("list-c5-files",
c5_files <- osf_ls_files(c5)
)
expect_equal(
c5_files$name,
c("d.txt", "a.txt", "subdir2")
)
})
test_that("conflicting files are skipped or overwritten", {
skip_if_no_pat()
infiles <- fs::dir_ls(multidir, type = "file")
vcr::use_cassette("create-and-populate-c6", {
c6 <- osf_create_component(p1, "conflicts")
out1 <- osf_upload(c6, path = infiles[1])
})
writeLines("foo", infiles[1])
vcr::use_cassette("c6-conflict-skip", {
out2 <- osf_upload(c6, path = infiles[1], conflicts = "skip")
})
versions <- get_meta(out2, "attributes", "current_version")
expect_true(all(versions) == 1)
vcr::use_cassette("c6-conflict-overwrite", {
out3 <- osf_upload(c6, path = infiles[1], conflicts = "overwrite")
})
expect_equal(get_meta(out3, "attributes", "current_version"), 2)
}) |
arh_rkhs <-
function(fdata) {
n <- nrow(fdata$fdata)
lambda.me <- colMeans(fdata$lambda)
lambda.cent <- sweep(fdata$lambda, 2, lambda.me)
Covariance = t(lambda.cent) %*% (lambda.cent) / n
Cross.Cov = t(lambda.cent[2:n,]) %*% (lambda.cent[1:(n-1),]) / (n - 1)
rho = Cross.Cov %*% invgen(Covariance)
return(list(fdata = fdata,
lambda_cent = lambda.cent,
lambda_me = lambda.me,
rho = rho))
} |
testFunc4 <- function(x, y) x + y
testFunc5 <- function(x, y) x + y |
np.gmeta <-
function(Thetahat, se, alpha=c(0.025,0.975), n, m, band_pwr = 0.5, resample=200, B=40, len=10)
{
out<-.Fortran("confdistint",K=as.integer(length(Thetahat)),
Thetahat = as.double(Thetahat),se = as.double(se),
n=as.double(n),resample=as.integer(resample),B=as.integer(B),len=as.integer(len),
m=as.integer(m),band_pwr=as.double(band_pwr),
shrink=as.double(0),smoothlist=as.double(rep(0,len)),
eligids=as.integer(rep(0,len^2)),distvs=as.double(rep(0,len^2)),
finalxi1=as.double(rep(0,resample)),finalxi2=as.double(rep(0,resample)),finalxi3=as.double(rep(0,resample))
)
percentiles = matrix(0,3,length(alpha))
colnames(percentiles) = as.character(alpha); rownames(percentiles) = c("min.unif","max.smooth","mean.smooth")
percentiles[1,] = quantile(out$finalxi1,alpha)
percentiles[2,] = quantile(out$finalxi2,alpha)
percentiles[3,] = quantile(out$finalxi3,alpha)
aa=out$eligids;aa=aa[aa!=0]
return( list(percentiles = percentiles, shrink = out$shrink, smoothlist= out$smoothlist,
distance = matrix(out$distvs,10,10), elig.ind = arrayInd(aa,c(len,len)))
)
} |
quat2RM_svg <- function(q){
RM <- cbind(
c(1 - 2*q[2]^2 - 2*q[3]^2, 2*q[1]*q[2] - 2*q[3]*q[4], 2*q[1]*q[3] + 2*q[2]*q[4]),
c(2*q[1]*q[2] + 2*q[3]*q[4], 1 - 2*q[1]^2 - 2*q[3]^2, 2*q[2]*q[3] - 2*q[1]*q[4]),
c(2*q[1]*q[3] - 2*q[2]*q[4], 2*q[2]*q[3] + 2*q[1]*q[4], 1 - 2*q[1]^2 - 2*q[2]^2)
)
RM
} |
t <- read.csv("tableparamVSfunction.csv", sep = ",", header = TRUE, check.names = FALSE)
row.names(t) <- t[, 1]
t <- t[, -1]
t[is.na(t)] <- 0
table.value(t, plegend.drawKey = FALSE, ppoints.cex = 0.2, symbol = "circle", axis.text = list(cex = 0.8), pgrid.draw = TRUE,
ptable.y = list(srt = 45, pos = "left"),
ptable.margin = list(bottom = 2, left = 15, top = 15, right = 2))
|
source("incl/start.R")
if (require(plyr, character.only = TRUE)) {
message("*** dplyr w / doFuture + parallel ...")
strategies <- future:::supportedStrategies()
strategies <- setdiff(strategies, "multiprocess")
res0 <- NULL
for (strategy in strategies) {
message(sprintf("- plan('%s') ...", strategy))
plan(strategy)
mu <- 1.0
sigma <- 2.0
res <- foreach(i = 1:3, .packages = "stats") %dopar% {
dnorm(i, mean = mu, sd = sigma)
}
print(res)
if (is.null(res0)) {
res0 <- res
} else {
stopifnot(all.equal(res, res0))
}
print(sessionInfo())
x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE, FALSE, FALSE, TRUE))
y0 <- llply(x, quantile, probs = (1:3) / 4, .parallel = FALSE)
print(y0)
y1 <- llply(x, quantile, probs = (1:3) / 4, .parallel = TRUE)
print(y1)
stopifnot(all.equal(y1, y0))
message(sprintf("- plan('%s') ... DONE", strategy))
}
message("*** dplyr w / doFuture + parallel ... DONE")
}
source("incl/end.R") |
context("paths")
test_that("test cleanup_hashpath", {
expect_equal(cleanup_hashpath("
expect_equal(cleanup_hashpath("
expect_equal(cleanup_hashpath("
expect_equal(cleanup_hashpath("
})
test_that("test extract_link_name", {
expect_equal(extract_link_name("
expect_equal(extract_link_name("abc"), "abc")
})
test_that("test route_link", {
expect_equal(route_link("abc"), "./
expect_equal(route_link("
})
test_that("test parse_url_path", {
p <- parse_url_path("?a=1&b=foo
expect_error(parse_url_path())
expect_error(parse_url_path("www.foo.bar"))
expect_equal(p$path, "")
expect_equal(p$query$b, "foo")
p <- parse_url_path("www.foo.bar/?a=1&b[1]=foo&b[2]=bar")
expect_true(length(p$query$b) == 2)
expect_equal(p$query$b[[2]], "bar")
p <- parse_url_path("/
expect_equal(p$path, "foo")
expect_equal(p$query$a, "1")
expect_true(length(p$query$b) == 2)
p <- parse_url_path("?a=1&b=foo")
expect_equal(p$path, "")
expect_equal(p$query$b, "foo")
})
test_that("test valid_path", {
expect_error(valid_path())
expect_true(valid_path(list(a="a", b="b"), "b"))
expect_false(valid_path(list(a="a", c="b"), "b"))
expect_false(valid_path(list(), "b"))
})
test_that("test get_query_param parameters", {
session <- list(userData = NULL)
session$userData$shiny.router.page <- shiny::reactiveVal(list(
path = "root",
query = list(one = 1, two = 2),
unparsed = "root"
))
expect_error(shiny::isolate(get_query_param()))
expect_equal(shiny::isolate(get_query_param("one", session)), 1)
expect_failure(
expect_equal(shiny::isolate(get_query_param("two", session)), 1)
)
expect_equal(shiny::isolate(get_query_param(session = session)),
list(one = 1, two = 2))
}) |
theme_ipsum_rc <- function(
base_family="Roboto Condensed", base_size = 11.5,
plot_title_family=base_family, plot_title_size = 18,
plot_title_face="bold", plot_title_margin = 10,
subtitle_family=if (.Platform$OS.type == "windows") "Roboto Condensed" else "Roboto Condensed Light",
subtitle_size = 13,
subtitle_face = "plain", subtitle_margin = 15,
strip_text_family = base_family, strip_text_size = 12,
strip_text_face = "plain",
caption_family=if (.Platform$OS.type == "windows") "Roboto Condensed" else "Roboto Condensed Light",
caption_size = 9,
caption_face = "plain", caption_margin = 10,
axis_text_size = base_size,
axis_title_family = base_family,
axis_title_size = 9,
axis_title_face = "plain",
axis_title_just = "rt",
plot_margin = margin(30, 30, 30, 30),
panel_spacing = grid::unit(2, "lines"),
grid_col = "
axis_col = "
ret <- ggplot2::theme_minimal(base_family = base_family, base_size = base_size)
ret <- ret + theme(legend.background = element_blank())
ret <- ret + theme(legend.key = element_blank())
ret <- ret + theme(plot.margin = plot_margin)
ret <- ret + theme(panel.spacing = panel_spacing)
if (inherits(grid, "character") | grid == TRUE) {
ret <- ret + theme(panel.grid = element_line(color = grid_col, size = 0.2))
ret <- ret + theme(panel.grid.major = element_line(color = grid_col, size = 0.2))
ret <- ret + theme(panel.grid.minor = element_line(color = grid_col, size = 0.15))
if (inherits(grid, "character")) {
if (regexpr("X", grid)[1] < 0) ret <- ret + theme(panel.grid.major.x = element_blank())
if (regexpr("Y", grid)[1] < 0) ret <- ret + theme(panel.grid.major.y = element_blank())
if (regexpr("x", grid)[1] < 0) ret <- ret + theme(panel.grid.minor.x = element_blank())
if (regexpr("y", grid)[1] < 0) ret <- ret + theme(panel.grid.minor.y = element_blank())
}
} else {
ret <- ret + theme(panel.grid = element_blank())
ret <- ret + theme(panel.grid.major = element_blank())
ret <- ret + theme(panel.grid.major.x = element_blank())
ret <- ret + theme(panel.grid.major.y = element_blank())
ret <- ret + theme(panel.grid.minor = element_blank())
ret <- ret + theme(panel.grid.minor.x = element_blank())
ret <- ret + theme(panel.grid.minor.y = element_blank())
}
if (inherits(axis, "character") | axis == TRUE) {
ret <- ret + theme(axis.line = element_line(color = axis_col, size = 0.15))
if (inherits(axis, "character")) {
axis <- tolower(axis)
if (regexpr("x", axis)[1] < 0) {
ret <- ret + theme(axis.line.x = element_blank())
} else {
ret <- ret + theme(axis.line.x = element_line(color = axis_col, size = 0.15))
}
if (regexpr("y", axis)[1] < 0) {
ret <- ret + theme(axis.line.y = element_blank())
} else {
ret <- ret + theme(axis.line.y = element_line(color = axis_col, size = 0.15))
}
} else {
ret <- ret + theme(axis.line.x = element_line(color = axis_col, size = 0.15))
ret <- ret + theme(axis.line.y = element_line(color = axis_col, size = 0.15))
}
} else {
ret <- ret + theme(axis.line = element_blank())
}
if (!ticks) {
ret <- ret + theme(axis.ticks = element_blank())
ret <- ret + theme(axis.ticks.x = element_blank())
ret <- ret + theme(axis.ticks.y = element_blank())
} else {
ret <- ret + theme(axis.ticks = element_line(size = 0.15))
ret <- ret + theme(axis.ticks.x = element_line(size = 0.15))
ret <- ret + theme(axis.ticks.y = element_line(size = 0.15))
ret <- ret + theme(axis.ticks.length = grid::unit(5, "pt"))
}
xj <- switch(tolower(substr(axis_title_just, 1, 1)), b = 0, l = 0, m = 0.5, c = 0.5, r = 1, t = 1)
yj <- switch(tolower(substr(axis_title_just, 2, 2)), b = 0, l = 0, m = 0.5, c = 0.5, r = 1, t = 1)
ret <- ret + theme(axis.text = element_text(size = axis_text_size, margin = margin(t = 0, r = 0)))
ret <- ret + theme(axis.text.x = element_text(size = axis_text_size, margin = margin(t = 0)))
ret <- ret + theme(axis.text.y = element_text(size = axis_text_size, margin = margin(r = 0)))
ret <- ret + theme(axis.title = element_text(size = axis_title_size, family = axis_title_family))
ret <- ret + theme(axis.title.x = element_text(
hjust = xj, size = axis_title_size,
family = axis_title_family, face = axis_title_face
))
ret <- ret + theme(axis.title.y = element_text(
hjust = yj, size = axis_title_size,
family = axis_title_family, face = axis_title_face
))
ret <- ret + theme(axis.title.y.right = element_text(
hjust = yj, size = axis_title_size, angle = 90,
family = axis_title_family, face = axis_title_face
))
ret <- ret + theme(strip.text = element_text(
hjust = 0, size = strip_text_size,
face = strip_text_face, family = strip_text_family
))
ret <- ret + theme(plot.title = element_text(
hjust = 0, size = plot_title_size,
margin = margin(b = plot_title_margin),
family = plot_title_family, face = plot_title_face
))
ret <- ret + theme(plot.subtitle = element_text(
hjust = 0, size = subtitle_size,
margin = margin(b = subtitle_margin),
family = subtitle_family, face = subtitle_face
))
ret <- ret + theme(plot.caption = element_text(
hjust = 1, size = caption_size,
margin = margin(t = caption_margin),
family = caption_family, face = caption_face
))
ret
}
import_roboto_condensed <- function() {
rc_font_dir <- system.file("fonts", "roboto-condensed", package="hrbrthemes")
}
font_rc <- "Roboto Condensed"
font_rc_light <- "Roboto Condensed Light" |
GO4Organism <- function(organism, domain = "BP"){
species <- organism
ont <- domain
gonames <- c("Entrezgene ID", "GO ID", "Ont.", "Level" )
if(toupper(domain) != "BP" && toupper(domain) != "MF" && toupper(domain) != "CC"){
stop("The argument \"domain\" can only be \"BP\", \"MF\" or \"CC\".")
}
if(is.null(species)){
stop("The \"organism\" argument is missing with no default")
}
if(!is.null(species) && toupper(species) != "BP" && toupper(species) != "MF" && toupper(species) != "CC" && !(toupper(species) %in% SupportedOrganism)){
print(SupportedOrganismv2)
stop("The \"organism\" argument should be given from the list above")
}
if(toupper(species) == "BP"){
return(BP)
}
else if(toupper(species) == "MF"){
return(MF)
}
else if(toupper(species) == "CC"){
return(GOTermCCOnLevel(names(as.list(go2h2))))
}
else if(toupper(species) == "HOMO SAPIENS" || toupper(species) == "HUMAN"){
goids <- HumanAll
}else if(toupper(species) == "RATTUS NORVEGICUS" || toupper(species) == "RAT"){
goids <- gontr::RatAll
}else if(toupper(species) == "MUS MUSCULUS" || toupper(species) == "MOUSE"){
goids <- gontr::MouseAll
}else if(toupper(species) == "DANIO RERIO" || toupper(species) == "ZEBRAFISH"){
goids <- ZebrafishAll
}else if(toupper(species) == "CAENORHABDITIS ELEGANS" || toupper(species) == "WORM"){
goids <- EleganAll
}else if(toupper(species) == "ARABIDOPSIS THALIANA" || toupper(species) == "CRESS"){
goids <- AthalianAll
}else if(toupper(species) == "SACCHAROMYCES CEREVISIAE" || toupper(species) == "YEAST"){
goids <- YeastAll
}else if(toupper(species) == "SCHIZOSACCHAROMYCES POMBE" || toupper(species) == "FISSION YEAST"){
goids <- PombeAll
}else if(toupper(species) == "DROSOPHILA MELANOGASTER" || toupper(species) == "FRUIT FLY"){
goids <- DrosophilaAll
}else if(toupper(species) == "ESCHERICHIA COLI" || toupper(species) == "E.COLI"){
goids <- EcoliAll[,c(1,2)]
}
J <- goids
a <- which(J[,2] == '')
if(length(a) != 0){
J <- J[-a,]
}
gene_ontology <- Ontology(J[,2])
J <- cbind(J , gene_ontology)
a1 <- which(is.na(J[,3]))
if(length(a1 )!= 0){
J <- J[-a1,]
}
if(length(J) != 0){
if(is.null(ont) || toupper(ont) == "BP"){
J <- J[-which(!J[,3] == 'BP'),]
go_level <- lapply(J[,2], function(x) go2h[[x]][length(go2h[[x]])] - 1)
h <- which(go_level == 'NULL')
if(length(h) == 0){
go_level <- unlist(go_level)
J <- cbind(J,go_level)
}else{go_level[h] = 'NA'
go_level <- unlist(go_level)
J <- cbind(J, go_level)
J <- J[-which(J[,4] == 'NA'),]}
rownames(J) <- NULL
colnames(J) <- gonames
J <- unique(J[,c(2,4)])
return(J)
}else if(toupper(ont) == "MF"){
J <- J[-which(!J[,3] == "MF"),]
go_level <- lapply(J[,2], function(x) go2h1[[x]][length(go2h1[[x]])] - 1)
h <- which(go_level == 'NULL')
if(length(h) == 0){
go_level <- unlist(go_level)
J <- cbind(J,go_level)
}else{go_level[h] = 'NA'
go_level <- unlist(go_level)
J <- cbind(J,go_level)
J <- J[-which(J[,4] == 'NA'),]}
colnames(J) <- gonames
J <- unique(J[,c(2,4)])
rownames(J) <- NULL
return(J)
}else if(toupper(ont) == "CC"){
J <- J[-which(!J[,3] == "CC"),]
go_level <- lapply(J[,2], function(x) go2h2[[x]][length(go2h2[[x]])] - 1 )
h <- which(go_level == 'NULL')
if(length(h) == 0){
go_level <- unlist(go_level)
J <- cbind(J,go_level)
}else{go_level[h] = 'NA'
go_level <- unlist(go_level)
J <- cbind(J,go_level)
J <- J[-which(J[,4] == 'NA'),]}
colnames(J) <- gonames
J <- unique(J[,c(2,4)])
rownames(J) <- NULL
return(J)
}
}
} |
evppi_legend_cols <- function(evppi_obj, col = NULL) {
n_cols <- length(evppi_obj$parameters) + 1
if (is.null(col)) {
cols <- colors()
gr <- floor(seq(from = 261, to = 336, length.out = n_cols))
return(cols[gr])
} else {
if (length(col) != n_cols) {
message(
"The vector 'col' must have the number of elements for an EVPI
colour and each of the EVPPI parameters. Forced to black\n")
return(rep("black", length(evppi_obj$parameters) + 1))
}
}
col
}
evppi_legend_text <- function(evppi_obj) {
cmd <-
if (nchar(evppi_obj$parameters[1]) <= 25) {
paste0("EVPPI for ", evppi_obj$parameters)
} else "EVPPI for the selected\nsubset of parameters"
if (length(evppi_obj$index) > 1 &&
(("Strong & Oakley (univariate)" %in% evppi_obj$method) ||
("Sadatsafavi et al" %in% evppi_obj$method))) {
for (i in seq_along(evppi_obj$index)) {
}
cmd <-
paste0("(",
paste(1:length(evppi_obj$index)),
") EVPPI for ",
evppi_obj$parameters)
}
c("EVPI", cmd)
} |
getfiledestinations <- function() {
folders <- base::list.dirs(recursive=FALSE, full.names=FALSE)
folders <- grep("^(\\.|225|output|calib_run|figure)",folders, invert=TRUE, value=TRUE)
files <- NULL
for(f in folders) files <- c(files,dir(path=f,pattern="^files$",recursive = TRUE, full.names=TRUE))
out <- NULL
for(f in files) {
tmp <- grep("^\\*",readLines(f, warn = FALSE),invert=TRUE,value=TRUE)
add <- data.frame(file=tmp,destination=dirname(f),stringsAsFactors = FALSE)
out <- rbind(out,add)
}
out <- as.data.frame(lapply(out,trimws),stringsAsFactors=FALSE)
return(out[out[[1]]!="",])
} |
get_cohort <- function(resource,
limit = 20L,
verbose = FALSE,
warnings = TRUE,
progress_bar = TRUE) {
tbl_json <- get(resource_url = resource,
limit = limit,
verbose = verbose,
warnings = warnings,
progress_bar = progress_bar)
tidy_tbls <- as_tidy_tables_cohorts(tbl_json)
return(tidy_tbls)
}
get_cohort_by_cohort_symbol <- function(cohort_symbol, limit = 20L, verbose = FALSE, warnings = TRUE, progress_bar = TRUE) {
resource <- '/rest/cohort'
cohort_symbol <- purrr::map_chr(cohort_symbol, utils::URLencode, reserved = TRUE)
resource_urls <- sprintf("%s/%s", resource, cohort_symbol)
purrr::map(
resource_urls,
get_cohort,
limit = limit,
warnings = warnings,
verbose = verbose,
progress_bar = progress_bar
) %>%
purrr::pmap(dplyr::bind_rows)
}
get_cohort_all <- function(limit = 20L, verbose = FALSE, warnings = TRUE, progress_bar = TRUE) {
resource <- '/rest/cohort/all'
get_cohort(resource = resource,
limit = limit,
verbose = verbose,
warnings = warnings,
progress_bar = progress_bar)
}
get_cohorts <- function(
cohort_symbol = NULL,
verbose = FALSE,
warnings = TRUE,
progress_bar = TRUE) {
if(!(rlang::is_scalar_logical(verbose) && verbose %in% c(TRUE, FALSE)))
stop("verbose must be either TRUE or FALSE")
if(!(rlang::is_scalar_logical(warnings) && warnings %in% c(TRUE, FALSE)))
stop("warnings must be either TRUE or FALSE")
if (!rlang::is_null(cohort_symbol)) {
get_cohort_by_cohort_symbol(
cohort_symbol = cohort_symbol,
verbose = verbose,
warnings = warnings,
progress_bar = progress_bar
) %>%
coerce_to_s4_cohorts() %>%
return()
} else {
return(coerce_to_s4_cohorts(get_cohort_all(verbose = verbose, warnings = warnings, progress_bar = progress_bar)))
}
} |
row_f_var <- function(x, y, ratio=1, alternative="two.sided", conf.level=0.95) {
force(x)
force(y)
if(is.vector(x))
x <- matrix(x, nrow=1)
if(is.vector(y))
y <- matrix(y, nrow=1)
if(is.data.frame(x) && all(sapply(x, is.numeric)))
x <- data.matrix(x)
if(is.data.frame(y) && all(sapply(y, is.numeric)))
y <- data.matrix(y)
assert_numeric_mat_or_vec(x)
assert_numeric_mat_or_vec(y)
if(nrow(y)==1 & nrow(x)>1) {
y <- matrix(y, nrow=nrow(x), ncol=ncol(y), byrow=TRUE)
}
assert_equal_nrow(x, y)
if(length(alternative)==1)
alternative <- rep(alternative, length.out=nrow(x))
assert_character_vec_length(alternative, 1, nrow(x))
choices <- c("two.sided", "less", "greater")
alternative <- choices[pmatch(alternative, choices, duplicates.ok=TRUE)]
assert_all_in_set(alternative, choices)
if(length(ratio)==1)
ratio <- rep(ratio, length.out=nrow(x))
assert_numeric_vec_length(ratio, 1, nrow(x))
assert_all_in_open_interval(ratio, 0, Inf)
if(length(conf.level)==1)
conf.level <- rep(conf.level, length.out=nrow(x))
assert_numeric_vec_length(conf.level, 1, nrow(x))
assert_all_in_closed_interval(conf.level, 0, 1)
hasinfx <- is.infinite(x)
x[hasinfx] <- NA
hasinfx <- rowSums(hasinfx) > 0
hasinfy <- is.infinite(y)
y[hasinfy] <- NA
hasinfy <- rowSums(hasinfy) > 0
nxs <- rep.int(ncol(x), nrow(x)) - matrixStats::rowCounts(is.na(x))
nys <- rep.int(ncol(y), nrow(y)) - matrixStats::rowCounts(is.na(y))
nxys <- nxs + nys
dfx <- nxs - 1
dfy <- nys - 1
vxs <- rowVars(x, na.rm=TRUE)
vys <- rowVars(y, na.rm=TRUE)
estimate <- vxs/vys
fres <- do_ftest(estimate, ratio, alternative, dfx, dfy, conf.level)
w1 <- hasinfx
showWarning(w1, 'had infinite "x" observations that were removed')
w2 <- hasinfy
showWarning(w2, 'had infinite "y" observations that were removed')
w3 <- nxs <= 1
showWarning(w3, 'had less than 1 "x" observation')
w4 <- nys <= 1
showWarning(w4, 'had less than 1 "y" observation')
w5 <- vxs == 0
showWarning(w5, 'had zero variance in "x"')
w6 <- vys == 0
showWarning(w6, 'had zero variance in "y"')
fres[w3 | w4 | (w5 & w6),] <- NA
rnames <- rownames(x)
if(!is.null(rnames)) rnames <- make.unique(rnames)
data.frame(obs.x=nxs, obs.y=nys, obs.tot=nxys, var.x=vxs, var.y=vys,
var.ratio=estimate, df.num=dfx, df.denom=dfy, statistic=fres[,1],
pvalue=fres[,2], conf.low=fres[,3], conf.high=fres[,4],
ratio.null=ratio, alternative=alternative, conf.level=conf.level,
row.names=rnames, stringsAsFactors=FALSE
)
}
col_f_var <- function(x, y, ratio=1, alternative="two.sided", conf.level=0.95) {
row_f_var(t(x), t(y), ratio, alternative, conf.level)
} |
gl.pcoa.plot <- function(glPca,
x,
scale=FALSE,
ellipse=FALSE,
p=0.95,
labels="pop",
theme_plot=4,
as.pop=NULL,
hadjust=1.5,
vadjust=1,
xaxis=1,
yaxis=2,
plot.out=TRUE,
verbose=NULL) {
pkg <- "plotly"
if (!(requireNamespace(pkg, quietly = TRUE))) {
stop("Package ",pkg," needed for this function to work. Please install it.") }
pkg <- "directlabels"
if (!(requireNamespace(pkg, quietly = TRUE))) {
stop("Package ",pkg," needed for this function to work. Please install it.") }
pkg <- "ggrepel"
if (!(requireNamespace(pkg, quietly = TRUE))) {
stop("Package ",pkg," needed for this function to work. Please install it.") }
pkg <- "ggthemes"
if (!(requireNamespace(pkg, quietly = TRUE))) {
stop("Package ",pkg," needed for this function to work. Please install it.") } else {
funname <- match.call()[[1]]
build <- "Jacob"
if(class(x)=="genlight"){
if (is.null(verbose)){
if(!is.null(x@other$verbose)){
verbose <- x@other$verbose
} else {
verbose <- 2
}
}
}
if(class(x)=="fd"){
x <- x$gl
if (is.null(verbose)){
verbose <- 2
}
}
if(class(x)=="dist"){
if (is.null(verbose)){
verbose <- 2
}
}
if (verbose < 0 | verbose > 5){
cat(paste(" Warning: Parameter 'verbose' must be an integer between 0 [silent] and 5 [full report], set to 2\n"))
verbose <- 2
}
if (verbose >= 1){
if(verbose==5){
cat("Starting",funname,"[ Build =",build,"]\n")
} else {
cat("Starting",funname,"\n")
}
}
if(class(glPca)!="glPca") {
stop("Fatal Error: glPca object required as primary input (parameter glPca)!\n")
}
if(class(x) != "genlight" && class(x) != "dist" && class(x) != "fd") {
stop("Fatal Error: genlight, fd or dist object required as secondary input (parameter x)!\n")
}
if (labels != "none" && labels != "ind" && labels != "pop" && labels != "interactive" && labels != "legend"){
cat(" Warning: Parameter 'labels' must be one of none|ind|pop|interactive|legend, set to 'pop'\n")
labels <- "pop"
}
if (p < 0 | p > 1){
cat(" Warning: Parameter 'p' must fall between 0 and 1, set to 0.95\n")
p <- 0.95
}
if (hadjust < 0 | hadjust > 3){
cat(" Warning: Parameter 'hadjust' must fall between 0 and 3, set to 1.5\n")
hadjust <- 1.5
}
if (vadjust < 0 | hadjust > 3){
cat(" Warning: Parameter 'vadjust' must fall between 0 and 3, set to 1.5\n")
vadjust <- 1.5
}
if (xaxis < 1 | xaxis > ncol(glPca$scores)){
cat(" Warning: X-axis must be specified to lie between 1 and the number of retained dimensions of the ordination",ncol(glPca$scores),"; set to 1\n")
xaxis <- 1
}
if (xaxis < 1 | xaxis > ncol(glPca$scores)){
cat(" Warning: Y-axis must be specified to lie between 1 and the number of retained dimensions of the ordination",ncol(glPca$scores),"; set to 2\n")
yaxis <- 2
}
pop.hold <- pop(x)
if (!is.null(as.pop)){
if(as.pop %in% names(x@other$ind.metrics)){
pop(x) <- as.matrix(x@other$ind.metrics[as.pop])
if (verbose >= 2) {cat(" Temporarily setting population assignments to",as.pop,"as specified by the as.pop parameter\n")}
} else {
stop("Fatal Error: individual metric assigned to 'pop' does not exist. Check names(gl@other$loc.metrics) and select again\n")
}
}
m <- cbind(glPca$scores[,xaxis],glPca$scores[,yaxis])
df <- data.frame(m)
s <- sum(glPca$eig[glPca$eig >= 0])
e <- round(glPca$eig*100/s,1)
if(class(x)=="genlight"){
xlab <- paste("PCA Axis", xaxis, "(",e[xaxis],"%)")
ylab <- paste("PCA Axis", yaxis, "(",e[yaxis],"%)")
ind <- indNames(x)
pop <- factor(pop(x))
df <- cbind(df,ind,pop)
PCoAx <- PCoAy <- NA
colnames(df) <- c("PCoAx","PCoAy","ind","pop")
} else {
xlab <- paste("PCoA Axis", xaxis, "(",e[xaxis],"%)")
ylab <- paste("PCoA Axis", yaxis, "(",e[yaxis],"%)")
ind <- rownames(as.matrix(x))
pop <- ind
df <- cbind(df,ind,pop)
colnames(df) <- c("PCoAx","PCoAy","ind","pop")
if(labels == "interactive"){
cat(" Sorry, interactive labels are not available for an ordination generated from a Distance Matrix\n")
cat(" Labelling the plot with names taken from the Distance Matrix\n")
}
labels <- "pop"
}
theme_list <- list(
theme_minimal(),
theme_classic(),
theme_bw(),
theme_gray(),
theme_linedraw(),
theme_light(),
theme_dark(),
ggthemes::theme_economist(),
ggthemes::theme_economist_white(),
ggthemes::theme_calc(),
ggthemes::theme_clean(),
ggthemes::theme_excel(),
ggthemes::theme_excel_new(),
ggthemes::theme_few(),
ggthemes::theme_fivethirtyeight(),
ggthemes::theme_foundation(),
ggthemes::theme_gdocs(),
ggthemes::theme_hc(),
ggthemes::theme_igray(),
ggthemes::theme_solarized(),
ggthemes::theme_solarized_2(),
ggthemes::theme_solid(),
ggthemes::theme_stata(),
ggthemes::theme_tufte(),
ggthemes::theme_wsj())
if (labels == "ind") {
if (verbose>0) cat(" Plotting individuals\n")
p <- ggplot(df, aes(x=PCoAx, y=PCoAy, group=ind, colour=pop)) +
geom_point(size=2,aes(colour=pop)) +
theme_list[theme_plot] +
ggrepel::geom_text_repel(aes(label = ind),show.legend=FALSE) +
theme(axis.title=element_text(face="bold.italic",size="20", color="black"),
axis.text.x = element_text(face="bold",angle=0, vjust=0.5, size=10),
axis.text.y = element_text(face="bold",angle=0, vjust=0.5, size=10),
legend.title = element_text(colour="black", size=18, face="bold"),
legend.text = element_text(colour="black", size = 16, face="bold")
) +
labs(x=xlab, y=ylab) +
geom_hline(yintercept=0) +
geom_vline(xintercept=0)
if(scale==TRUE) { p <- p + coord_fixed(ratio=e[yaxis]/e[xaxis]) }
if(ellipse==TRUE) {p <- p + stat_ellipse(aes(colour=pop), type="norm", level=0.95)}
}
if (labels == "pop") {
if (class(x)=="genlight"){
if (verbose>0) cat(" Plotting populations\n")
} else {
if (verbose>0) cat(" Plotting entities from the Distance Matrix\n")
}
p <- ggplot(df, aes(x=PCoAx, y=PCoAy, group=pop, colour=pop)) +
geom_point(size=2,aes(colour=pop)) +
theme_list[theme_plot] +
directlabels::geom_dl(aes(label=pop),method="smart.grid") +
theme(axis.title=element_text(face="bold.italic",size="20", color="black"),
axis.text.x = element_text(face="bold",angle=0, vjust=0.5, size=10),
axis.text.y = element_text(face="bold",angle=0, vjust=0.5, size=10),
legend.title = element_text(colour="black", size=18, face="bold"),
legend.text = element_text(colour="black", size = 16, face="bold")
) +
labs(x=xlab, y=ylab) +
geom_hline(yintercept=0) +
geom_vline(xintercept=0) +
theme(legend.position="none")
if(scale==TRUE) { p <- p + coord_fixed(ratio=e[yaxis]/e[xaxis]) }
if(ellipse==TRUE) {p <- p + stat_ellipse(aes(colour="black"), type="norm", level=0.95)}
}
if (labels=="interactive" | labels=="ggplotly") {
cat(" Displaying an interactive plot\n")
cat(" NOTE: Returning the ordination scores, not a ggplot2 compatable object\n")
plot.out <- FALSE
p <- ggplot(df, aes(x=PCoAx, y=PCoAy)) +
geom_point(size=2,aes(colour=pop, fill=ind)) +
theme_list[theme_plot] +
theme(axis.title=element_text(face="bold.italic",size="20", color="black"),
axis.text.x = element_text(face="bold",angle=0, vjust=0.5, size=10),
axis.text.y = element_text(face="bold",angle=0, vjust=0.5, size=10),
legend.title = element_text(colour="black", size=18, face="bold"),
legend.text = element_text(colour="black", size = 16, face="bold")
) +
labs(x=xlab, y=ylab) +
geom_hline(yintercept=0) +
geom_vline(xintercept=0) +
theme(legend.position="none")
if(scale==TRUE) { p <- p + coord_fixed(ratio=e[yaxis]/e[xaxis]) }
if(ellipse==TRUE) {p <- p + stat_ellipse(aes(colour=pop), type="norm", level=0.95)}
cat("Ignore any warning on the number of shape categories\n")
}
if (labels == "legend") {
if (verbose>0) cat("Plotting populations identified by a legend\n")
p <- ggplot(df, aes(x=PCoAx, y=PCoAy,colour=pop)) +
geom_point(size=2,aes(colour=pop)) +
theme_list[theme_plot] +
ggrepel::geom_text_repel(aes(label = pop),show.legend=FALSE) +
theme(axis.title=element_text(face="bold.italic",size="20", color="black"),
axis.text.x = element_text(face="bold",angle=0, vjust=0.5, size=10),
axis.text.y = element_text(face="bold",angle=0, vjust=0.5, size=10),
legend.title = element_text(colour="black", size=18, face="bold"),
legend.text = element_text(colour="black", size = 16, face="bold")
) +
labs(x=xlab, y=ylab) +
geom_hline(yintercept=0) +
geom_vline(xintercept=0)
if(scale==TRUE) { p <- p + coord_fixed(ratio=e[yaxis]/e[xaxis]) }
if(ellipse==TRUE) {p <- p + stat_ellipse(aes(colour=pop), type="norm", level=0.95)}
}
if (labels == "none" | labels==FALSE) {
if (verbose>0) cat("Plotting points with no labels\n")
p <- ggplot(df, aes(x=PCoAx, y=PCoAy,colour=pop)) +
geom_point(size=2,aes(colour=pop)) +
theme_list[theme_plot] +
theme(axis.title=element_text(face="bold.italic",size="20", color="black"),
axis.text.x = element_text(face="bold",angle=0, vjust=0.5, size=10),
axis.text.y = element_text(face="bold",angle=0, vjust=0.5, size=10),
legend.title = element_text(colour="black", size=18, face="bold"),
legend.text = element_text(colour="black", size = 16, face="bold")
) +
labs(x=xlab, y=ylab) +
geom_hline(yintercept=0) +
geom_vline(xintercept=0)+
theme(legend.position="none")
if(scale==TRUE) { p <- p + coord_fixed(ratio=e[yaxis]/e[xaxis]) }
if(ellipse==TRUE) {p <- p + stat_ellipse(aes(colour=pop), type="norm", level=0.95)}
}
if (verbose>0) cat(" Preparing plot .... please wait\n")
if(labels=="interactive"){
pp <- plotly::ggplotly(p)
show(pp)
} else {
show(p)
}
if(plot.out) {
if(verbose >= 2){cat(" While waiting, returning ggplot compliant object\n")}
} else {
if(verbose >= 2){cat(" While waiting, returning dataframe with coordinates of points in the ordinated space\n")}
df <- data.frame(id=indNames(x), pop=as.character(pop(x)), glPca$scores)
row.names(df) <- NULL
}
if (!is.null(as.pop)){
pop(x) <- pop.hold
if (verbose >= 3) {cat(" Resetting population assignments to initial state\n")}
}
if (verbose >= 1) {
cat("Completed:",funname,"\n")
}
if(plot.out) {
return(p)
} else {
return(df)
}
}
} |
testthat::context("TargetAssigningPipe")
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("initialize",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham","spam")
targetsName <- list("_ham_","_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
testthat::expect_silent(TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps))
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("initialize targets type error",{
testthat::skip_if_not_installed("stringi")
targets <- NULL
targetsName <- list("_ham_","_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
testthat::expect_error(TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps),
"[TargetAssigningPipe][initialize][FATAL] Checking the type of the 'targets' variable: NULL",
fixed = TRUE)
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("initialize targetsName type error",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham","spam")
targetsName <- NULL
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
testthat::expect_error(TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps),
"[TargetAssigningPipe][initialize][FATAL] Checking the type of the 'targetsName' variable: NULL",
fixed = TRUE)
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("initialize propertyName type error",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham","spam")
targetsName <- list("_ham_","_spam_")
propertyName <- NULL
alwaysBeforeDeps <- list()
notAfterDeps <- list()
testthat::expect_error(TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps),
"[TargetAssigningPipe][initialize][FATAL] Checking the type of the 'propertyName' variable: NULL",
fixed = TRUE)
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("initialize alwaysBeforeDeps type error",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham","spam")
targetsName <- list("_ham_","_spam_")
propertyName <- "target"
alwaysBeforeDeps <- NULL
notAfterDeps <- list()
testthat::expect_error(TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps),
"[TargetAssigningPipe][initialize][FATAL] Checking the type of the 'alwaysBeforeDeps' variable: NULL",
fixed = TRUE)
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("initialize notAfterDeps type error",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham","spam")
targetsName <- list("_ham_","_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- NULL
testthat::expect_error(TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps),
"[TargetAssigningPipe][initialize][FATAL] Checking the type of the 'notAfterDeps' variable: NULL",
fixed = TRUE)
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("pipe",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham","spam")
targetsName <- list("_ham_","_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
pipe <- TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps)
path <- file.path("testFiles",
"testTargetAssigningPipe",
"files",
"_ham_",
"testFile.tsms")
instance <- ExtractorSms$new(path)
testthat::expect_equal(pipe$pipe(instance)$getSpecificProperty("target"),
"ham")
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("pipe unrecognizable target",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham","spam")
targetsName <- list("_ham_","_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
pipe <- TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps)
path <- "testFiles/_pan_/30.tsms"
instance <- ExtractorSms$new(path)
testthat::expect_warning(pipe$pipe(instance),
"\\[TargetAssigningPipe\\]\\[pipe\\]\\[WARN\\] The file: testFiles/_pan_/30.tsms has a target unrecognizable")
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("pipe instance type error",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham","spam")
targetsName <- list("_ham_","_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
pipe <- TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps)
instance <- NULL
testthat::expect_error(pipe$pipe(instance),
"[TargetAssigningPipe][pipe][FATAL] Checking the type of the 'instance' variable: NULL",
fixed = TRUE)
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("getTarget",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham", "spam")
targetsName <- list("_ham_", "_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
pipe <- TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps)
path <- "testFiles/_ham_/30.tsms"
testthat::expect_equal(pipe$getTarget(path),
"ham")
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("getTarget unrecognizable",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham", "spam")
targetsName <- list("_ham_", "_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
pipe <- TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps)
path <- "testFiles/_pan_/30.tsms"
testthat::expect_equal(pipe$getTarget(path),
"unrecognizable")
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("getTarget path type error",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham", "spam")
targetsName <- list("_ham_", "_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
pipe <- TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps)
path <- NULL
testthat::expect_error(pipe$getTarget(path),
"[TargetAssigningPipe][getTarget][FATAL] Checking the type of the 'path' variable: NULL",
fixed = TRUE)
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("checkTarget",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham", "spam")
targetsName <- list("_ham_", "_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
pipe <- TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps)
target <- "_ham_"
path <- "testFiles/_ham_/30.tsms"
testthat::expect_equal(pipe$checkTarget(target,
path),
list("_ham_" = "ham"))
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("checkTarget target type error",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham", "spam")
targetsName <- list("_ham_", "_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
pipe <- TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps)
target <- NULL
path <- "testFiles/_ham_/30.tsms"
testthat::expect_error(pipe$checkTarget(target,
path),
"[TargetAssigningPipe][checkTarget][FATAL] Checking the type of the 'target' variable: NULL",
fixed = TRUE)
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("checkTarget path type error",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham","spam")
targetsName <- list("_ham_","_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
pipe <- TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps)
target <- "_ham_"
path <- NULL
testthat::expect_error(pipe$checkTarget(target,
path),
"[TargetAssigningPipe][checkTarget][FATAL] Checking the type of the 'path' variable: NULL",
fixed = TRUE)
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::setup({
bdpar.Options$reset()
bdpar.Options$configureLog()
})
testthat::test_that("getTargets",{
testthat::skip_if_not_installed("stringi")
targets <- list("ham", "spam")
targetsName <- list("_ham_", "_spam_")
propertyName <- "target"
alwaysBeforeDeps <- list()
notAfterDeps <- list()
pipe <- TargetAssigningPipe$new(targets,
targetsName,
propertyName,
alwaysBeforeDeps,
notAfterDeps)
testthat::expect_equal(pipe$getTargets(),
list("_ham_" = "ham", "_spam_" = "spam"))
})
testthat::teardown({
bdpar.Options$reset()
bdpar.Options$configureLog()
}) |
context("densities-snorm")
set.seed(313)
x <- rnorm(10)
theta0 <- 0
tau <- 0.05
sigma <- 0.1
alpha <- c(0, 0.025, 0.05, 1)
eta <- c(1, 0.4, 0.1)
expect_equal(
log(dsnorm(x, theta0 = theta0, sigma = sigma, tau = tau, eta = eta)),
dsnorm(x, theta0 = theta0, sigma = sigma, tau = tau, eta = eta, log = TRUE)
)
n <- 3
y <- rep(1, n)
expect_equal({
set.seed(1)
rsnorm(n, theta0 = theta0, sigma = sigma, tau = tau, eta = eta)
}, {
set.seed(1)
rsnorm(y, theta0 = theta0, sigma = sigma, tau = tau, eta = eta)
},
)
expect_error(rsnorm(n, theta0 = theta0, sigma = sigma, tau = tau, eta = 1))
integrand <- function(theta) {
theta * dsnorm(theta, theta0, tau, sigma, alpha, eta)
}
expectation <- integrate(integrand, lower = -Inf, upper = Inf)$value
expect_equal(esnorm(theta0, tau, sigma, alpha, eta), expectation)
expect_error(psnorm(x, theta0 = NA, sigma = sigma, tau = tau, eta = eta))
expect_error(psnorm(x, theta0 = theta0, sigma = -1, tau = tau, eta = eta))
expect_error(psnorm(x, theta0 = theta0, sigma = sigma, tau = 0, eta = eta))
expect_error(rsnorm(1, theta0 = NA, sigma = sigma, tau = tau, eta = eta))
expect_error(rsnorm(1, theta0 = theta0, sigma = -1, tau = tau, eta = eta))
expect_error(rsnorm(1, theta0 = theta0, sigma = sigma, tau = 0, eta = eta))
expect_error(dsnorm(x, theta0 = NA, sigma = sigma, tau = tau, eta = eta))
expect_error(dsnorm(x, theta0 = theta0, sigma = -1, tau = tau, eta = eta))
expect_error(dsnorm(x, theta0 = theta0, sigma = sigma, tau = 0, eta = eta))
expect_error(dsnorm("x", theta0 = theta0, sigma = sigma, tau = tau, eta = eta)) |
.defaultLinkableStates_l_hist <- c("selected", "color", "active")
.defaultLinkableStates_l_plot <- c("selected", "color", "active", "size")
.defaultLinkableStates_l_plot3D <- c("selected", "color", "active", "size")
.defaultLinkableStates_l_serialaxes <- c("selected", "color", "active")
.defaultLinkableStates_l_graph <- c("selected", "color", "active", "size")
hasDefaultLinkableStatesVar <- function(l_className) {
tryCatch(eval(parse(text = paste0(".defaultLinkableStates_", l_className))),
error = function(e) {
warning(substitute(deparse(l_className)), " does not have linked states.")
})
} |
pcf.kern.vech<-function(dendat,h,N,kernel="gauss",weights=NULL,support=NULL,
lowest=0,radi=0)
{
d<-length(N)
if (d>1){
if (kernel=="bart")
ker<-function(xx,d){
musd<-2*pi^(d/2)/gamma(d/2)
c<-d*(d+2)/(2*musd)
return( c*(1-rowSums(xx^2))*(rowSums(xx^2) <= 1) )
}
if (kernel=="gauss")
ker<-function(xx,d){ return( (2*pi)^(-d/2)*exp(-rowSums(xx^2)/2) ) }
if (kernel=="uniform")
ker<-function(xx,d){
c<-gamma(d/2+1)/pi^(d/2)
return( (rowSums(xx^2) <= 1) )
}
if (kernel=="epane")
ker<-function(xx,d){
c<-(3/4)^d
xxx<-(1-xx^2)*(1-xx^2>=0)
return( c*apply(xxx,1,prod) )
}
recnum<-prod(N)
value<-matrix(0,recnum,1)
index<-matrix(0,recnum,d)
if (is.null(support)){
support<-matrix(0,2*d,1)
for (i in 1:d){
support[2*i-1]<-min(dendat[,i])-radi
support[2*i]<-max(dendat[,i])+radi
}
}
lowsuppo<-matrix(0,d,1)
for (i in 1:d) lowsuppo[i]<-support[2*i-1]
step<-matrix(0,d,1)
for (i in 1:d) step[i]<-(support[2*i]-support[2*i-1])/N[i]
numpositive<-0
for (i in 1:recnum){
inde<-digit(i-1,N)+1
arg<-lowsuppo+step*inde-step/2
argu<-matrix(arg,dim(dendat)[1],d,byrow=TRUE)
w<-ker((dendat-argu)/h,d)/prod(h)
valli<-mean(w)
if (!is.null(weights)) valli<-t(weights)%*%w
if (valli>lowest){
numpositive<-numpositive+1
value[numpositive]<-valli
index[numpositive,]<-inde
}
}
value<-value[1:numpositive]
index<-index[1:numpositive,]
down<-index-1
high<-index
pcf<-list(
value=value,index=index,
down=down,high=high,
support=support,N=N)
}
else{
d<-1
x<-matrix(dendat,length(dendat),1)
if (kernel=="gauss") ker<-function(xx,d){ return( (2*pi)^(-1/2)*exp(-xx^2/2) ) }
if (kernel=="uniform") ker<-function(xx,d){ return( (abs(xx) <= 1) ) }
index<-seq(1:N)
len<-length(index)
value<-matrix(0,N,1)
if (is.null(support)){
support<-matrix(0,2,1)
support[1]<-min(x)
support[2]<-max(x)
}
step<-(support[2]-support[1])/N
lowsuppo<-support[1]
numpositive<-0
for (i in 1:N){
inde<-i
argu<-lowsuppo+step*inde-step/2
w<-ker((x-argu)/h,1)/h
if (!is.null(weights)) valli<-t(weights)%*%w else valli<-mean(w)
if (valli>lowest){
numpositive<-numpositive+1
value[numpositive]<-valli
index[numpositive]<-inde
}
}
value<-value[1:numpositive]
index<-index[1:numpositive]
down<-matrix(0,numpositive,1)
high<-matrix(0,numpositive,1)
down[,1]<-index-1
high[,1]<-index
pcf<-list(
value=value,
down=down,high=high,
support=support,N=N)
}
return(pcf)
} |
vanDeemter <- function(col, ext, dead, length, A, B, C, Foley = FALSE,
GG = FALSE, do.plot = TRUE) {
if (!is.numeric(A) | !is.numeric(B) | !is.numeric(C)) {
stop("A, B and C parameters must be numeric")
}
if (!is.logical(Foley) | !is.logical(GG)) {
stop("Foley and GG parameters must be logical")
}
if (Foley == TRUE & GG == TRUE) {
stop("Just one approach (Foley or GG) at the time is possible")
}
if (Foley == FALSE & GG == FALSE) {
stop("Foley or GG parameter must be TRUE")
}
if (!is.numeric(length)) {
stop("length parameter must be numeric")
}
if (!is.data.frame(col)) {
stop("col parameter must be a data frame")
}
if (!is.data.frame(ext)) {
stop("ext parameter must be a data frame")
}
if (!is.data.frame(dead)) {
stop("dead parameter must be a data frame")
}
col <- col[order(col$flow), ]
ext <- ext[order(ext$flow), ]
dead <- dead[order(dead$flow), ]
t <- table(c(ext$flow, col$flow, dead$flow))
del <- as.numeric(names(which(t < max(as.vector(t)))))
ext <- ext[!ext$flow %in% del, ]
col <- col[!col$flow %in% del, ]
dead <- dead[!dead$flow %in% del, ]
Flow <- col[, "flow"]
tr <- col[, "tr"]
t0 <- dead[, "tr"]
tre <- ext[, "tr"]
velocity2 <- length/t0
if (Foley == TRUE) {
var <- ((col$A10 + col$B10)^2)/(1.764 * ((col$B10/col$A10)^2) -
11.15 * (col$B10/col$A10) + 28)
vare <- ((ext$A10 + ext$B10)^2)/(1.764 * ((ext$B10/ext$A10)^2) -
11.15 * (ext$B10/ext$A10) + 28)
H <- ((var - vare)/(tr * tr - tre * tre)) * length *
1000
data <- as.data.frame(cbind(velocity2, H))
d <- ggplot(data, aes(x = data[, 1], y = data[, 2])) +
geom_point(color = "black", size = 2, show.legend = TRUE) +
geom_smooth(method = "nls", formula = y ~ A + (B/x) +
C * x, method.args = list(start = c(A = A, B = B,
C = C)), se = FALSE)
d2 <- d + theme_bw()
d22 <- d2 + theme(plot.title = element_text(face = "bold"),
axis.title = element_text(size = 15),
axis.title.y = element_text(margin = margin(0, 20, 0, 0)),
legend.text = element_text(size = 15),
legend.title = element_text(size = 15)) +
scale_y_continuous(expression(H ~ (mu ~ m)))
d22 <- d22 + theme_minimal()
d22 <- d22 + scale_x_continuous(expression(u(mm/min)))
if (do.plot == TRUE) {
print(d22)
}
x <- data[, 1]
y <- data[, 2]
fit <- nls(y ~ A + (B/x) + C * x, start = list(A = A, B = B, C = C))
summary<-summary(fit)
cor <- cor(y,predict(fit))
ME <- mean(abs(y-predict(fit))/abs(y))*100
return(list(coefficients=coefficients(fit),summary=summary,
correlation=cor,MeanError=ME,RSE=summary(fit)$sigma))
}
if (GG == TRUE) {
col <- col[order(col$flow), ]
ext <- ext[order(ext$flow), ]
dead <- dead[order(dead$flow), ]
t <- table(c(ext$flow, col$flow, dead$flow))
del <- as.numeric(names(which(t < max(as.vector(t)))))
ext <- ext[!ext$flow %in% del, ]
col <- col[!col$flow %in% del, ]
dead <- dead[!dead$flow %in% del, ]
var <- (((col$A60^3) + (col$B60^3))/(col$A60 + col$B60)) -
(((2 * (col$B60 - col$A60)^2))/pi)
vare <- (((ext$A60^3) + (ext$B60^3))/(ext$A60 + ext$B60)) -
(((2 * (ext$B60 - ext$A60)^2))/pi)
tr <- tr + (2 * (col$B60 - col$A60))/(sqrt(2 * pi))
tre <- tre + (2 * (ext$B60 - ext$A60))/(sqrt(2 * pi))
H <- ((var - vare)/(tr * tr - tre * tre)) * length *
1000
data <- as.data.frame(cbind(velocity2, H))
d <- ggplot(data, aes(x = data[, 1], y = data[, 2])) +
geom_point(color = "black", size = 2, show.legend = TRUE) +
geom_smooth(method = "nls", formula = y ~ A + (B/x) +
C * x, method.args = list(start = c(A = A, B = B,
C = C)), se = FALSE)
d2 <- d + theme_bw()
d22 <- d2 + theme(plot.title = element_text(face = "bold"),
axis.title = element_text(size = 15),
axis.title.y = element_text(margin = margin(0, 20, 0, 0)),
legend.text = element_text(size = 15),
legend.title = element_text(size = 15)) +
scale_y_continuous(expression(H ~ (mu ~ m)))
d22 <- d22 + theme_minimal()
d22 <- d22 + scale_x_continuous(expression(u(mm/min)))
if (do.plot == TRUE) {
print(d22)
}
x <- data[, 1]
y <- data[, 2]
fit <- nls(y ~ A + (B/x) + C * x, start = list(A = A, B = B, C = C))
summary <- summary(fit)
cor <- cor(y,predict(fit))
ME <- mean(abs(y-predict(fit))/abs(y))*100
return(list(coefficients = coefficients(fit), summary = summary,
correlation = cor, MeanError = ME, RSE = summary(fit)$sigma))
}
} |
font_awesome_brands <-c("500px", "accessible-icon", "accusoft", "acquisitions-incorporated", "adn", "adversal", "affiliatetheme", "airbnb", "algolia", "alipay", "amazon", "amazon-pay", "amilia", "android", "angellist", "angrycreative", "angular", "app-store", "app-store-ios", "apper", "apple", "apple-pay", "artstation", "asymmetrik", "atlassian", "audible", "autoprefixer", "avianex", "aviato", "aws", "bandcamp", "battle-net", "behance", "behance-square", "bimobject", "bitbucket", "bitcoin", "bity", "black-tie", "blackberry", "blogger", "blogger-b", "bluetooth", "bluetooth-b", "bootstrap", "btc", "buffer", "buromobelexperte", "buy-n-large", "buysellads", "canadian-maple-leaf", "cc-amazon-pay", "cc-amex", "cc-apple-pay", "cc-diners-club", "cc-discover", "cc-jcb", "cc-mastercard", "cc-paypal", "cc-stripe", "cc-visa", "centercode", "centos", "chrome", "chromecast", "cloudflare", "cloudscale", "cloudsmith", "cloudversify", "codepen", "codiepie", "confluence", "connectdevelop", "contao", "cotton-bureau", "cpanel", "creative-commons", "creative-commons-by", "creative-commons-nc", "creative-commons-nc-eu", "creative-commons-nc-jp", "creative-commons-nd", "creative-commons-pd", "creative-commons-pd-alt", "creative-commons-remix", "creative-commons-sa", "creative-commons-sampling", "creative-commons-sampling-plus", "creative-commons-share", "creative-commons-zero", "critical-role", "css3", "css3-alt", "cuttlefish", "d-and-d", "d-and-d-beyond", "dailymotion", "dashcube", "deezer", "delicious", "deploydog", "deskpro", "dev", "deviantart", "dhl", "diaspora", "digg", "digital-ocean", "discord", "discourse", "dochub", "docker", "draft2digital", "dribbble", "dribbble-square", "dropbox", "drupal", "dyalog", "earlybirds", "ebay", "edge", "edge-legacy", "elementor", "ello", "ember", "empire", "envira", "erlang", "ethereum", "etsy", "evernote", "expeditedssl", "facebook", "facebook-f", "facebook-messenger", "facebook-square", "fantasy-flight-games", "fedex", "fedora", "figma", "firefox", "firefox-browser", "first-order", "first-order-alt", "firstdraft", "flickr", "flipboard", "fly", "font-awesome", "font-awesome-alt", "font-awesome-flag", "font-awesome-logo-full", "fonticons", "fonticons-fi", "fort-awesome", "fort-awesome-alt", "forumbee", "foursquare", "free-code-camp", "freebsd", "fulcrum", "galactic-republic", "galactic-senate", "get-pocket", "gg", "gg-circle", "git", "git-alt", "git-square", "github", "github-alt", "github-square", "gitkraken", "gitlab", "gitter", "glide", "glide-g", "gofore", "goodreads", "goodreads-g", "google", "google-drive", "google-pay", "google-play", "google-plus", "google-plus-g", "google-plus-square", "google-wallet", "gratipay", "grav", "gripfire", "grunt", "guilded", "gulp", "hacker-news", "hacker-news-square", "hackerrank", "hips", "hire-a-helper", "hive", "hooli", "hornbill", "hotjar", "houzz", "html5", "hubspot", "ideal", "imdb", "innosoft", "instagram", "instagram-square", "instalod", "intercom", "internet-explorer", "invision", "ioxhost", "itch-io", "itunes", "itunes-note", "java", "jedi-order", "jenkins", "jira", "joget", "joomla", "js", "js-square", "jsfiddle", "kaggle", "keybase", "keycdn", "kickstarter", "kickstarter-k", "korvue", "laravel", "lastfm", "lastfm-square", "leanpub", "less", "line", "linkedin", "linkedin-in", "linode", "linux", "lyft", "magento", "mailchimp", "mandalorian", "markdown", "mastodon", "maxcdn", "mdb", "medapps", "medium", "medium-m", "medrt", "meetup", "megaport", "mendeley", "microblog", "microsoft", "mix", "mixcloud", "mixer", "mizuni", "modx", "monero", "napster", "neos", "nimblr", "node", "node-js", "npm", "ns8", "nutritionix", "octopus-deploy", "odnoklassniki", "odnoklassniki-square", "old-republic", "opencart", "openid", "opera", "optin-monster", "orcid", "osi", "page4", "pagelines", "palfed", "patreon", "paypal", "penny-arcade", "perbyte", "periscope", "phabricator", "phoenix-framework", "phoenix-squadron", "php", "pied-piper", "pied-piper-alt", "pied-piper-hat", "pied-piper-pp", "pied-piper-square", "pinterest", "pinterest-p", "pinterest-square", "playstation", "product-hunt", "pushed", "python", "qq", "quinscape", "quora", "r-project", "raspberry-pi", "ravelry", "react", "reacteurope", "readme", "rebel", "red-river", "reddit", "reddit-alien", "reddit-square", "redhat", "renren", "replyd", "researchgate", "resolving", "rev", "rocketchat", "rockrms", "rust", "safari", "salesforce", "sass", "schlix", "scribd", "searchengin", "sellcast", "sellsy", "servicestack", "shirtsinbulk", "shopify", "shopware", "simplybuilt", "sistrix", "sith", "sketch", "skyatlas", "skype", "slack", "slack-hash", "slideshare", "snapchat", "snapchat-ghost", "snapchat-square", "soundcloud", "sourcetree", "speakap", "speaker-deck", "spotify", "squarespace", "stack-exchange", "stack-overflow", "stackpath", "staylinked", "steam", "steam-square", "steam-symbol", "sticker-mule", "strava", "stripe", "stripe-s", "studiovinari", "stumbleupon", "stumbleupon-circle", "superpowers", "supple", "suse", "swift", "symfony", "teamspeak", "telegram", "telegram-plane", "tencent-weibo", "the-red-yeti", "themeco", "themeisle", "think-peaks", "tiktok", "trade-federation", "trello", "tripadvisor", "tumblr", "tumblr-square", "twitch", "twitter", "twitter-square", "typo3", "uber", "ubuntu", "uikit", "umbraco", "uncharted", "uniregistry", "unity", "unsplash", "untappd", "ups", "usb", "usps", "ussunnah", "vaadin", "viacoin", "viadeo", "viadeo-square", "viber", "vimeo", "vimeo-square", "vimeo-v", "vine", "vk", "vnv", "vuejs", "watchman-monitoring", "waze", "weebly", "weibo", "weixin", "whatsapp", "whatsapp-square", "whmcs", "wikipedia-w", "windows", "wix", "wizards-of-the-coast", "wodu", "wolf-pack-battalion", "wordpress", "wordpress-simple", "wpbeginner", "wpexplorer", "wpforms", "wpressr", "xbox", "xing", "xing-square", "y-combinator", "yahoo", "yammer", "yandex", "yandex-international", "yarn", "yelp", "yoast", "youtube", "youtube-square", "zhihu") |
annotate_mf_all <- function(xlfilepath) {
spsheet <- readxl::read_excel(xlfilepath)
if (any(grepl("^\\.\\.\\.", names(spsheet)))) {
stop("Check the spreadsheet for empty values in the header row")
}
m_formatting <- tidyxl::xlsx_cells(xlfilepath)
rowtally <- dplyr::count(m_formatting, row)
if (length(unique(rowtally$n)) != 1) {
stop("Data in spreadsheet does not appear to be rectangular (this includes multisheet files)")
}
format_defs <- tidyxl::xlsx_formats(xlfilepath)
bold <- format_defs$local$font$bold
italic <- format_defs$local$font$italic
underlined <- format_defs$local$font$underline
highlighted <- format_defs$local$fill$patternFill$patternType
hl_color <- format_defs$local$fill$patternFill$fgColor$rgb
strikethrough <- format_defs$local$font$strike
text_clr <- format_defs$local$font$color$rgb
format_opts <- tibble::lst(
bold, highlighted, hl_color, italic,
strikethrough, text_clr, underlined
)
formatting_indicators <- dplyr::bind_cols(lapply(
format_opts,
function(x) x[m_formatting$local_format_id]
))
format_joined <- dplyr::bind_cols(m_formatting, formatting_indicators)
cols_spsheet <- match(
names(spsheet),
format_joined$character
)
target_var_fmt <- function(col_ind) {
orig_format <- dplyr::filter(format_joined, row >= 2 & col == col_ind)
orig_format <- dplyr::select(orig_format, bold:underlined)
formatted <- dplyr::bind_cols(spsheet, orig_format)
formatted <- dplyr::mutate_at(
formatted, dplyr::vars(bold:underlined),
~ replace(., is.na(.), FALSE)
)
formatted$highlighted <- gsub(
pattern = "FALSE", replacement = "",
formatted$highlighted
)
formatted$text_clr <- gsub(
pattern = "FALSE", replacement = "",
formatted$text_clr
)
formatted$underlined <- gsub(
pattern = "FALSE", replacement = "",
formatted$underlined
)
formatted$hl_color <- gsub(
pattern = "FALSE", replacement = "",
formatted$hl_color
)
formatted <- dplyr::mutate_at(
formatted, dplyr::vars(bold, italic, strikethrough),
as.logical
)
formatted <- dplyr::mutate_at(
formatted, dplyr::vars(bold:underlined),
function(x) {
ifelse(x == TRUE, deparse(substitute(x)), x)
}
)
formatted <- dplyr::mutate_at(
formatted,
dplyr::vars(bold:underlined), ~ replace(., . == "FALSE", "")
)
formatted$highlighted <- ifelse(formatted$highlighted != "",
paste0("highlight", "-", formatted$hl_color), formatted$highlighted
)
formatted$hl_color <- NULL
formatted$text_clr <- ifelse(formatted$text_clr != "",
paste0("color", "-", formatted$text_clr), formatted$text_clr
)
formatted$underlined <- ifelse(formatted$underlined != "",
paste0("underlined", "-", formatted$underlined), formatted$underlined
)
formatted$newvar <-
paste(
formatted$bold, formatted$highlighted,
formatted$italic, formatted$strikethrough, formatted$text_clr,
formatted$underlined
)
formatted$newvar <- stringr::str_squish(formatted$newvar)
formatted$newvar <- gsub(" ", ", ", formatted$newvar)
formatted <- dplyr::select(formatted, -c(bold:underlined))
formatted[[names(spsheet)[col_ind]]] <-
paste0("(", formatted$newvar, ") ", formatted[[names(spsheet)[col_ind]]])
formatted[[names(spsheet)[col_ind]]]
}
for (i in seq_along(cols_spsheet)) {
spsheet[, names(spsheet)[i]] <- target_var_fmt(i)
}
spsheet
dplyr::mutate_all(spsheet, stringr::str_remove, "^\\(\\) ")
} |
precomp <- function(file, fun, ...) {
bnf <- basename(file)
if (!grepl("\\.", bnf)) file <- paste0(file, ".rds")
precomp_global_mode <- getOption("spant.precomp_mode")
precomp_global_verbose <- getOption("spant.precomp_verbose")
if (precomp_global_mode == "default") {
if (file.exists(file)) {
if (precomp_global_verbose) cat("reading precomputed result:", file)
result <- readRDS(file)
} else {
result <- do.call(fun, list(...))
if (precomp_global_verbose) cat("writing precomputed result:", file)
saveRDS(result, file)
}
} else if (precomp_global_mode == "overwrite") {
if (file.exists(file)) {
result <- do.call(fun, list(...))
if (precomp_global_verbose) cat("overwriting precomputed result:", file)
saveRDS(result, file)
} else {
result <- do.call(fun, list(...))
if (precomp_global_verbose) cat("writing precomputed result:", file)
saveRDS(result, file)
}
} else if (precomp_global_mode == "clean") {
if (file.exists(file)) {
if (precomp_global_verbose) cat("reading and deleting precomputed result:", file)
result <- readRDS(file)
file.remove(file)
} else {
stop(paste0("precomputed file not found: ", file))
}
} else if (precomp_global_mode == "disabled") {
result <- do.call(fun, list(...))
} else {
stop("I don't belong here.")
}
return(result)
}
set_precomp_mode <- function(mode = NA) {
if (!((mode == "default") | (mode == "overwrite") | (mode == "clean") |
(mode == "disabled"))) {
stop("function argument must be one of \"default\", \"overwrite\", \"clean\" or \"disabled\"")
}
options(spant.precomp_mode = mode)
}
set_precomp_verbose <- function(verbose = NA) {
if (!is.logical(verbose)) stop("function argument must be logical (TRUE or FALSE)")
if (is.na(verbose)) stop("function argument must be logical (TRUE or FALSE)")
options(spant.precomp_verbose = verbose)
} |
moo.ind.cpt=function(out.point,data,range,pos=TRUE,same=FALSE,sd=0.01,...){
n=length(data)
if(any(out.point<1)){stop('out.point is less than 1')}
else if(any(out.point>n)){stop('out.point is larger than the length of the data')}
data[out.point]=make.many.outlier(data[out.point],range.data=range,pos=pos,same=same,sd=sd)
outlier.ans=cpt.mean(data,...)
return(outlier.ans)
} |
scale_color_flat <- function(palette = "contrast", discrete = TRUE, reverse = FALSE, ...) {
pal <- palette_flat(palette = palette, reverse = reverse)
if (discrete) {
discrete_scale("colour", paste0("flat_", palette), palette = pal, ...)
} else {
scale_color_gradientn(colours = pal(256), ...)
}
}
scale_color_flat_d <- function(palette = "contrast", discrete = TRUE, reverse = FALSE, ...) {
scale_color_flat(palette = palette, discrete = discrete, reverse = reverse, ...)
}
scale_color_flat_c <- function(palette = "contrast", discrete = FALSE, reverse = FALSE, ...) {
scale_color_flat(palette = palette, discrete = discrete, reverse = reverse, ...)
}
scale_colour_flat <- scale_color_flat
scale_colour_flat_c <- scale_color_flat_c
scale_colour_flat_d <- scale_color_flat_d
scale_fill_flat <- function(palette = "contrast", discrete = TRUE, reverse = FALSE, ...) {
pal <- palette_flat(palette = palette, reverse = reverse)
if (discrete) {
discrete_scale("fill", paste0("flat_", palette), palette = pal, ...)
} else {
scale_fill_gradientn(colours = pal(256), ...)
}
}
scale_fill_flat_d <- function(palette = "contrast", discrete = TRUE, reverse = FALSE, ...) {
scale_fill_flat(palette = palette, discrete = discrete, reverse = reverse, ...)
}
scale_fill_flat_c <- function(palette = "contrast", discrete = FALSE, reverse = FALSE, ...) {
scale_fill_flat(palette = palette, discrete = discrete, reverse = reverse, ...)
}
flat_colors_list <- c(
`red` = "
`dark red` = "
`purple` = "
`deep purple` = "
`blue` = "
`light blue` = "
`cyan` = "
`teal` = "
`green` = "
`light green` = "
`yellow` = "
`amber` = "
`orange` = "
`deep orange` = "
`grey` = "
`blue grey` = "
)
flat_colors <- function(...) {
cols <- c(...)
if (is.null(cols)) {
return(flat_colors_list)
}
flat_colors_list[cols]
}
flat_palettes <- list(
`full` = flat_colors(),
`ice` = flat_colors("purple", "deep purple", "blue", "light blue"),
`rainbow` = flat_colors("purple", "deep purple", "blue", "light blue", "green", "light green", "amber", "orange", "deep orange", "red"),
`contrast` = flat_colors("blue", "green", "amber", "purple", "red"),
`light` = flat_colors("light blue", "purple", "yellow", "light green", "orange"),
`complement` = flat_colors("blue grey", "blue", "light blue", "teal", "green", "yellow", "amber", "orange", "red")
)
palette_flat <- function(palette = "contrast", reverse = FALSE, ...) {
pal <- flat_palettes[[palette]]
if (reverse) pal <- rev(pal)
grDevices::colorRampPalette(pal, ...)
} |
mrMLM<-function(fileGen=NULL,filePhe=NULL,fileKin=NULL,filePS=NULL,PopStrType=NULL,fileCov=NULL,Genformat=NULL,method=NULL,
Likelihood="REML",trait=NULL,SearchRadius=20,CriLOD=NULL,SelectVariable=50,
Bootstrap=FALSE,DrawPlot=TRUE,Plotformat="tiff",dir=NULL){
if(DrawPlot==TRUE){
manhattan_mrMLM<-function(data_in,data_fin,mar=c(2.9,2.8,0.7,2.8),VerLabDis=1.5,HorLabDis=1.5,
HorTckDis=0.2,VerTckDis=0.4,label_size=0.8,CoorLwd=5,
TckLen=-0.03,TckLwd=0.7,log_times=2,LOD_times=1.2,lodline){
method<-unique(data_in[,3])
data_method<-list(NULL)
for(i in 1:length(method)){
data_method[[i]]<-data_in[which(data_in[,3]==method[i]),]
}
logp_4method<-numeric()
for(i in 1:length(method)){
method_p<-data_method[[i]][,8]
logp_4method<-cbind(logp_4method,method_p)
}
logp_4method<-apply(logp_4method,2,as.numeric)
p_4method<-10^-logp_4method
p_median<-apply(p_4method,1,median)
locsub<-which(p_median==0)
pmin<-min(p_median[p_median!=0])
subvalue<-10^(1.1*log10(pmin))
p_median[locsub]<-subvalue
data_p<-as.matrix(p_median)
data_num<-as.matrix(seq(1:length(p_median)))
data_chr<-as.matrix(data_method[[1]][,5])
data_pos<-as.matrix(data_method[[1]][,6])
manresult<-cbind(data_chr,data_pos,data_p,data_num)
manresult<-apply(manresult,2,as.numeric)
colnames(manresult)<-c("Chromosome","BPnumber","P-value","SNPname")
manresult<-as.data.frame(manresult)
data_fin_method<-unique(data_fin[,3])
data_fin_method_length<-1:length(unique(data_fin[,3]))
for(r in 1:length(unique(data_fin[,3]))){
data_fin[which(data_fin[,3]==data_fin_method[r]),3]<-r
}
data_fin_mark<-matrix(data_fin[,c(5,6,8,3)],,4)
data_fin_mark<-matrix(apply(data_fin_mark,2,as.numeric),,4)
data_fin_mark_chr<-matrix(data_fin_mark[order(data_fin_mark[,1]),],,4)
data_fin_mark_order<-numeric()
for(i in c(unique(data_fin_mark_chr[,1]))){
data_fin_mark_erery_chr<-matrix(data_fin_mark_chr[which(data_fin_mark_chr[,1]==i),],,4)
data_fin_mark_pos<-matrix(data_fin_mark_erery_chr[order(data_fin_mark_erery_chr[,2]),],,4)
all_pos<-unique(data_fin_mark_pos[,2])
all_pos_maxlod<-numeric()
for(ii in 1:length(all_pos)){
all_pos_every<-matrix(data_fin_mark_pos[which(data_fin_mark_pos[,2]==all_pos[ii]),],,4)
lod_me<-median(all_pos_every[,3])
all_pos_every_median<-c(all_pos_every[1,1:2],lod_me,all_pos_every[1,4])
if(nrow(all_pos_every)>=2){
all_pos_every_median<-c(all_pos_every[1,1:2],lod_me,max(data_fin_mark[,4])+1)
}
all_pos_maxlod<-rbind(all_pos_maxlod,all_pos_every_median)
}
data_fin_mark_order<-rbind(data_fin_mark_order,all_pos_maxlod)
}
snpOfInterest<-numeric()
for(i in c(unique(data_fin_mark_order[,1]))){
manresult_chr<-manresult[which(manresult[,1]==i),]
data_fin_mark_order_chr<-matrix(data_fin_mark_order[which(data_fin_mark_order[,1]==i),],,4)
mark_loc<-manresult_chr[which(manresult_chr[,2]%in%data_fin_mark_order_chr[,2]),4]
snpOfInterest<-c(snpOfInterest,mark_loc)
}
bpnumber <- numeric()
chrnum <- unique(manresult[,1])
for(i in 1:length(chrnum))
{
bpnumber <- rbind(bpnumber,as.matrix(c(1:length(which(manresult[,1]==chrnum[i])))))
}
manresult2<-cbind(manresult[,1],bpnumber,manresult[,3:4])
colnames(manresult2)<-c("Chromosome","BPnumber","P-value","SNPname")
x<-manresult2;col=c("lightgreen","lightskyblue");logp=TRUE
chr = "Chromosome";bp ="BPnumber";p ="P-value";snp="SNPname";
highlight<-snpOfInterest
CHR=BP=P=index=NULL
d=data.frame(CHR=x[[chr]], BP=x[[bp]], P=x[[p]])
if (!is.null(x[[snp]])) d=transform(d, SNP=x[[snp]])
d <- subset(d, (is.numeric(CHR) & is.numeric(BP) & is.numeric(P)))
d <- d[order(d$CHR, d$BP), ]
if (logp) {
d$logp <- -log10(d$P)
} else {
d$logp <- d$P
}
d$pos=NA
d$index=NA
ind = 0
for (i in unique(d$CHR)){
ind = ind + 1
d[d$CHR==i,]$index = ind
}
nchr = length(unique(d$CHR))
if (nchr==1) {
d$pos=d$BP
ticks=floor(length(d$pos))/2+1
xlabel = paste('Chromosome',unique(d$CHR),'position')
labs = ticks
} else {
lastbase=0
ticks=NULL
for (i in unique(d$index)) {
if (i==1) {
d[d$index==i, ]$pos=d[d$index==i, ]$BP
} else {
lastbase=lastbase+tail(subset(d,index==i-1)$BP, 1)
d[d$index==i, ]$pos=d[d$index==i, ]$BP+lastbase
}
ticks = c(ticks, (min(d[d$index == i,]$pos) + max(d[d$index == i,]$pos))/2 + 1)
}
xlabel = 'Chromosomes'
labs <- unique(d$CHR)
}
xmax = ceiling(max(d$pos) * 1.03)
xmin = floor(max(d$pos) * -0.03)
par(mar=mar)
def_args <- list(xaxt='n',yaxt="n",bty='n', xaxs='i', yaxs='i', las=1, pch=20,
xlim=c(xmin,xmax), ylim=c(0,log_times*max(d$logp)),
xlab=xlabel,ylab="",mgp=c(HorLabDis,0,0),cex.lab=label_size)
dotargs <- list(NULL)
do.call("plot", c(NA, dotargs, def_args[!names(def_args) %in% names(dotargs)]))
axis(1, at=ticks, labels=labs,lwd=CoorLwd,tck=TckLen,mgp=c(2.5,HorTckDis,0.5),cex.axis=TckLwd)
suppressWarnings(axis(2, at=seq(0,log_times*max(d$logp),ceiling(log_times*max(d$logp)/5)),lwd=CoorLwd,tck=TckLen,mgp=c(2.2,VerTckDis,0),cex.axis=TckLwd))
mtext(expression(-log[10]('P-value')),side=2,line=VerLabDis,cex=label_size,font=1)
col=rep(col, max(d$CHR))
if (nchr==1) {
with(d, points(pos, logp, pch=20, col=col[1]))
} else {
icol=1
for (i in unique(d$index)) {
with(d[d$index==unique(d$index)[i], ], points(pos, logp, col=col[icol], pch=20))
icol=icol+1
}
}
d.highlight=d[which(d$SNP %in% highlight), ]
highlight_LOD<-as.numeric(data_fin_mark_order[,3])
d.highlight<-as.data.frame(cbind(d.highlight,highlight_LOD))
par(new=T)
def_args <- list(xaxt='n', yaxt='n',bty='n', xaxs='i', yaxs='i', las=1, pch=20,
xlim=c(xmin,xmax), ylim=c(0,LOD_times*max(highlight_LOD)),xlab="",ylab="")
dotargs <- list(NULL)
do.call("plot", c(NA, dotargs, def_args[!names(def_args) %in% names(dotargs)]))
suppressWarnings(axis(4,mgp=c(1.4,VerTckDis,0),at=seq(0,LOD_times*max(highlight_LOD),ceiling(LOD_times*max(highlight_LOD)/5)),col="magenta",col.ticks="magenta",col.axis="magenta",lwd=CoorLwd,tck=TckLen,cex.axis=TckLwd))
mtext("LOD score",side=4,line=VerLabDis,cex=label_size,font=1,col="magenta")
abline(h=lodline,col="gray25",lty=2,lwd=2)
peach_colors<-c("magenta","deepskyblue2")
col_pos<-list(NULL)
method_num<-sort(unique(data_fin_mark_order[,4]))
if(max(unique(data_fin[,3]))<max(unique(data_fin_mark_order[,4]))){
col_pos[[1]]<-which(data_fin_mark_order[,4]==max(method_num))
col_pos[[2]]<-which(data_fin_mark_order[,4]!=max(method_num))
}else{
if(length(unique(data_fin[,3]))==1){
col_pos[[1]]<-which(data_fin_mark_order[,4]==max(method_num))
}else{
col_pos[[1]]<-1:nrow(data_fin_mark_order)
}
}
if(length(col_pos)>1&&length(col_pos[[2]])!=0){
with(d.highlight, points(pos[col_pos[[2]]], highlight_LOD[col_pos[[2]]], col=peach_colors[2], pch=20))
with(d.highlight, points(pos[col_pos[[2]]], highlight_LOD[col_pos[[2]]], col=peach_colors[2], pch=20,type="h",lty=2))
with(d.highlight, points(pos[col_pos[[1]]], highlight_LOD[col_pos[[1]]], col=peach_colors[1], pch=20))
with(d.highlight, points(pos[col_pos[[1]]], highlight_LOD[col_pos[[1]]], col=peach_colors[1], pch=20,type="h",lty=2))
}else{
with(d.highlight, points(pos[col_pos[[1]]], highlight_LOD[col_pos[[1]]], col=peach_colors[1], pch=20))
with(d.highlight, points(pos[col_pos[[1]]], highlight_LOD[col_pos[[1]]], col=peach_colors[1], pch=20,type="h",lty=2))
}
}
QQ_mrMLM<-function(data_in,mar=c(2.5,2.5,1,1),label_size=0.7,TckLen=-0.02,
CoorLwd=3,TckLwd=0.6,HorLabDis=1,HorTckDis=0.02,VerLabDis=1.1,
VerTckDis=0.3,P_stand=0.9){
method<-unique(data_in[,3])
data_method<-list(NULL)
for(i in 1:length(method)){
data_method[[i]]<-data_in[which(data_in[,3]==method[i]),]
}
logp_4method<-numeric()
for(i in 1:length(method)){
method_p<-data_method[[i]][,8]
logp_4method<-cbind(logp_4method,method_p)
}
logp_4method<-apply(logp_4method,2,as.numeric)
p_4method<-10^-logp_4method
p_median<-apply(p_4method,1,median)
locsub<-which(p_median==0)
pmin<-min(p_median[p_median!=0])
subvalue<-10^(1.1*log10(pmin))
p_median[locsub]<-subvalue
data_p<-as.matrix(p_median)
p_value<-data_p
pvalue<-matrix(p_value,,1)
observed<-sort(pvalue[,1])
observed<-observed/2
observed<-observed[which(observed!=0)]
newobserved<-observed[which(observed<(0.7/2))]
lobs<--(log10(newobserved))
expected<-c(1:length(newobserved))
lexp<--(log10(expected/(length(pvalue)+1)))
par(mar=mar)
suppressWarnings(plot(lexp,lobs,xlim=c(0,max(lexp)),ylim=c(0,max(lobs)),xlab=expression('Expected -log'[10]*'(P-value)'),
yaxt="n",ylab="",col="blue",pch=20,cex.lab=label_size,tck=TckLen,bty="l",lwd=CoorLwd,
lwd.ticks=CoorLwd,cex.axis=TckLwd,mgp=c(HorLabDis,HorTckDis,0)))
suppressWarnings(axis(2, at=seq(0,max(lobs)),lwd=CoorLwd,tck=TckLen,mgp=c(2.2,VerTckDis,0),cex.axis=TckLwd))
mtext(expression('Observed -log'[10]*'(P-value)'),side=2,line=VerLabDis,cex=label_size,font=1)
abline(0,1,col="red")
box(bty="l",lwd=CoorLwd)
}
}
screen<-function(reMR,rawgen,gen_num,phe_num,ps_num){
if(nrow(reMR)>=200){
reMR4<-as.matrix(reMR[,4])
datashuz1<-rawgen[-1,1]
calculate_gene<-t(gen_num[which(datashuz1%in%reMR4),-c(1,2)])
gene_shuzhi<-apply(calculate_gene,2,as.numeric)
larsres<-lars(gene_shuzhi,phe_num,type = "lar",trace = FALSE,use.Gram=FALSE,max.steps=200)
X<-gene_shuzhi[,which(larsres$beta[nrow(larsres$beta),]!=0)]
MR200<-reMR[which(larsres$beta[nrow(larsres$beta),]!=0),]
z<-cbind(matrix(1,nrow(gene_shuzhi),1),ps_num)
u1<-try({sblgwas(z,phe_num,X,t = -4,max.iter = 200,min.err = 1e-8)},silent=TRUE)
if('try-error' %in% class(u1)){
u1<-try({sblgwas(z,phe_num,X,t = -2,max.iter = 200,min.err = 1e-8)},silent=TRUE)
}
reMRshai<-MR200[which(u1$blup$p_wald<=0.01),]
ind1<-which(larsres$beta[nrow(larsres$beta),]!=0)
indz<-ind1[which(u1$blup$p_wald<=0.01)]
}else if(nrow(reMR)<200){
reMR4<-as.matrix(reMR[,4])
datashuz1<-rawgen[-1,1]
calculate_gene<-t(gen_num[which(datashuz1%in%reMR4),-c(1,2)])
gene_shuzhi<-apply(calculate_gene,2,as.numeric)
X<-gene_shuzhi
z<-cbind(matrix(1,nrow(gene_shuzhi),1),ps_num)
u1<-try({sblgwas(z,phe_num,X,t = -4,max.iter = 200,min.err = 1e-8)},silent=TRUE)
if('try-error' %in% class(u1)){
u1<-try({sblgwas(z,phe_num,X,t = -2,max.iter = 200,min.err = 1e-8)},silent=TRUE)
}
reMRshai<-reMR[which(u1$blup$p_wald<=0.01),]
indz<-which(u1$blup$p_wald<=0.01)
}
reMR<-cbind(reMRshai[,1:12],reMR[1:nrow(reMRshai),13:14])
result<-list(reMR,indz)
return(result)
}
svrad<-SearchRadius;svmlod<-CriLOD;lars1<-SelectVariable
if(Genformat=="Num"){Genformat<-1}else if(Genformat=="Cha"){Genformat<-2}else if(Genformat=="Hmp"){Genformat<-3}
Plotformat1<-paste("*.",Plotformat,sep="");Plotformat2<-paste("*.",Plotformat,sep="")
readraw<-ReadData(fileGen,filePhe,fileKin,filePS,fileCov,Genformat)
PheName<-readraw$phename
CLO<-readraw$CLO
print("Running in progress, please be patient...")
for (i in trait){
InputData<-inputData(readraw,Genformat,method,i,PopStrType)
reMR<-NULL;reFMR<-NULL;reFME<-NULL;rePLA<-NULL;rePKW<-NULL;reISIS<-NULL
re1MR<-NULL;re1FMR<-NULL;re1FME<-NULL;re1PLA<-NULL;re1PKW<-NULL;re1ISIS<-NULL
remanMR<-NULL;reqqMR<-NULL;remanFMR<-NULL;reqqFMR<-NULL;remanFME<-NULL;reqqFME<-NULL;
replPLA<-NULL;remanPKW<-NULL;reqqPKW<-NULL; replISIS<-NULL;metaresult<-NULL;result_output<-NULL
TRY1<-try({
if("mrMLM"%in%method){
outMR<-mrMLMFun(InputData$doMR$gen,InputData$doMR$phe,InputData$doMR$outATCG,InputData$doMR$genRaw,InputData$doMR$kk,InputData$doMR$psmatrix,0.01,svrad,svmlod,Genformat,CLO)
if(is.null(outMR$result2)==FALSE){
me<-matrix("mrMLM",nrow(outMR$result2),1)
tr<-matrix(i,nrow(outMR$result2),1)
trna<-matrix(PheName[i,],nrow(outMR$result2),1)
colnames(me)<-"Method"
colnames(tr)<-"Trait ID"
colnames(trna)<-"Trait name"
reMR<-cbind(tr,trna,me,as.matrix(outMR$result2))
if(nrow(reMR)>50){
reMR<-screen(reMR,InputData$doMR$genRaw,InputData$doMR$gen,InputData$doMR$phe,InputData$doMR$psmatrix)[[1]]
}
}
me1<-matrix("mrMLM",nrow(outMR$result1),1)
tr1<-matrix(i,nrow(outMR$result1),1)
tr1na<-matrix(PheName[i,],nrow(outMR$result1),1)
colnames(me1)<-"Method"
colnames(tr1)<-"Trait ID"
colnames(tr1na)<-"Trait name"
re1MR<-cbind(tr1,tr1na,me1,as.matrix(outMR$result1))
}
},silent=FALSE)
if ('try-error' %in% class(TRY1)|| !('try-error' %in% class(TRY1))){
TRY2<-try({
if("FASTmrMLM"%in%method){
outFMR<-FASTmrMLM(InputData$doMR$gen,InputData$doMR$phe,InputData$doMR$outATCG,InputData$doMR$genRaw,InputData$doMR$kk,InputData$doMR$psmatrix,0.01,svrad,svmlod,Genformat,CLO)
if(is.null(outFMR$result2)==FALSE){
me<-matrix("FASTmrMLM",nrow(outFMR$result2),1)
tr<-matrix(i,nrow(outFMR$result2),1)
trna<-matrix(PheName[i,],nrow(outFMR$result2),1)
colnames(me)<-"Method"
colnames(tr)<-"Trait ID"
colnames(trna)<-"Trait name"
reFMR<-cbind(tr,trna,me,as.matrix(outFMR$result2))
if(nrow(reFMR)>50){
reFMR<-screen(reFMR,InputData$doMR$genRaw,InputData$doMR$gen,InputData$doMR$phe,InputData$doMR$psmatrix)[[1]]
}
}
me1<-matrix("FASTmrMLM",nrow(outFMR$result1),1)
tr1<-matrix(i,nrow(outFMR$result1),1)
tr1na<-matrix(PheName[i,],nrow(outFMR$result1),1)
colnames(me1)<-"Method"
colnames(tr1)<-"Trait ID"
colnames(tr1na)<-"Trait name"
re1FMR<-cbind(tr1,tr1na,me1,as.matrix(outFMR$result1))
}
},silent=FALSE)
}
if ('try-error' %in% class(TRY2)|| !('try-error' %in% class(TRY2))){
TRY3<-try({
if("FASTmrEMMA"%in%method){
outFME<-FASTmrEMMA(InputData$doFME$gen,InputData$doFME$phe,InputData$doFME$outATCG,InputData$doFME$genRaw,InputData$doFME$kk,InputData$doFME$psmatrix,0.005,svmlod,Genformat,Likelihood,CLO)
if(is.null(outFME$result2)==FALSE){
me<-matrix("FASTmrEMMA",nrow(outFME$result2),1)
tr<-matrix(i,nrow(outFME$result2),1)
trna<-matrix(PheName[i,],nrow(outFME$result2),1)
colnames(me)<-"Method"
colnames(tr)<-"Trait ID"
colnames(trna)<-"Trait name"
reFME<-cbind(tr,trna,me,as.matrix(outFME$result2))
if(nrow(reFME)>50){
reFME<-screen(reFME,InputData$doFME$genRaw,InputData$doFME$gen,InputData$doFME$phe,InputData$doFME$psmatrix)[[1]]
}
}
me1<-matrix("FASTmrEMMA",nrow(outFME$result1),1)
tr1<-matrix(i,nrow(outFME$result1),1)
tr1na<-matrix(PheName[i,],nrow(outFME$result1),1)
colnames(me1)<-"Method"
colnames(tr1)<-"Trait ID"
colnames(tr1na)<-"Trait name"
re1FME<-cbind(tr1,tr1na,me1,as.matrix(outFME$result1))
}
},silent=FALSE)
}
if ('try-error' %in% class(TRY3)|| !('try-error' %in% class(TRY3))){
TRY4<-try({
if("pLARmEB"%in%method){
outPLA<-pLARmEB(InputData$doMR$gen,InputData$doMR$phe,InputData$doMR$outATCG,InputData$doMR$genRaw,InputData$doMR$kk,InputData$doMR$psmatrix,CriLOD,lars1,Genformat,Bootstrap,CLO)
if(is.null(outPLA$result)==FALSE){
me<-matrix("pLARmEB",nrow(outPLA$result),1)
tr<-matrix(i,nrow(outPLA$result),1)
trna<-matrix(PheName[i,],nrow(outPLA$result),1)
colnames(me)<-"Method"
colnames(tr)<-"Trait ID"
colnames(trna)<-"Trait name"
rePLA<-cbind(tr,trna,me,as.matrix(outPLA$result))
replPLA<-outPLA$plot
if(nrow(rePLA)>50){
rePLAQ<-screen(rePLA,InputData$doMR$genRaw,InputData$doMR$gen,InputData$doMR$phe,InputData$doMR$psmatrix)
rePLA<-rePLAQ[[1]]
}
}
}
},silent=FALSE)
}
if ('try-error' %in% class(TRY4)|| !('try-error' %in% class(TRY4))){
TRY5<-try({
if("pKWmEB"%in%method){
outPKW<-pKWmEB(InputData$doMR$gen,InputData$doMR$phe,InputData$doMR$outATCG,InputData$doMR$genRaw,InputData$doMR$kk,InputData$doMR$psmatrix,0.05,svmlod,Genformat,CLO)
if(is.null(outPKW$result2)==FALSE){
me<-matrix("pKWmEB",nrow(outPKW$result2),1)
tr<-matrix(i,nrow(outPKW$result2),1)
trna<-matrix(PheName[i,],nrow(outPKW$result2),1)
colnames(me)<-"Method"
colnames(tr)<-"Trait ID"
colnames(trna)<-"Trait name"
rePKW<-cbind(tr,trna,me,as.matrix(outPKW$result2))
if(nrow(rePKW)>50){
rePKW<-screen(rePKW,InputData$doMR$genRaw,InputData$doMR$gen,InputData$doMR$phe,InputData$doMR$psmatrix)[[1]]
}
}
me1<-matrix("pKWmEB",nrow(outPKW$result1),1)
tr1<-matrix(i,nrow(outPKW$result1),1)
tr1na<-matrix(PheName[i,],nrow(outPKW$result1),1)
colnames(me1)<-"Method"
colnames(tr1)<-"Trait ID"
colnames(tr1na)<-"Trait name"
re1PKW<-cbind(tr1,tr1na,me1,as.matrix(outPKW$result1))
}
},silent=FALSE)
}
if ('try-error' %in% class(TRY5)|| !('try-error' %in% class(TRY5))){
TRY6<-try({
if("ISIS EM-BLASSO"%in%method){
outISIS<-ISIS(InputData$doMR$gen,InputData$doMR$phe,InputData$doMR$outATCG,InputData$doMR$genRaw,InputData$doMR$kk,InputData$doMR$psmatrix,0.01,svmlod,Genformat,CLO)
if(is.null(outISIS$result)==FALSE){
me<-matrix("ISIS EM-BLASSO",nrow(outISIS$result),1)
tr<-matrix(i,nrow(outISIS$result),1)
trna<-matrix(PheName[i,],nrow(outISIS$result),1)
colnames(me)<-"Method"
colnames(tr)<-"Trait ID"
colnames(trna)<-"Trait name"
reISIS<-cbind(tr,trna,me,as.matrix(outISIS$result))
replISIS<-outISIS$plot
if(nrow(reISIS)>50){
reISISQ<-screen(reISIS,InputData$doMR$genRaw,InputData$doMR$gen,InputData$doMR$phe,InputData$doMR$psmatrix)
reISIS<-reISISQ[[1]]
}
}
}
},silent=FALSE)
}
if ('try-error' %in% class(TRY6)|| !('try-error' %in% class(TRY6))){
TRY7<-try({
output1qq<-list(re1MR,re1FMR,re1FME,re1PKW)
output1q<-do.call(rbind,output1qq)
if(isFALSE(all(lengths(output1qq)==0))){
eff<-numeric()
logp<-numeric()
for(bb in c(which(lengths(output1qq)!=0))){
eff_every<-as.matrix(output1qq[[bb]][,7])
colnames(eff_every)<-colnames(output1qq[[bb]])[7]
eff<-cbind(eff,eff_every)
logp_every<-as.matrix(output1qq[[bb]][,8])
colnames(logp_every)<-colnames(output1qq[[bb]])[8]
logp<-cbind(logp,logp_every)
}
gencode1<-as.matrix(output1qq[[which(lengths(output1qq)!=0)[1]]][,9])
colnames(gencode1)<-colnames(output1q)[[9]]
output1<-cbind(output1qq[[which(lengths(output1qq)!=0)[1]]][,c(1,2,4,5,6)],eff,logp,gencode1)
if("SNP effect (pKWmEB)"%in%colnames(output1)){
output1<-output1[,-c(which(colnames(output1)%in%"SNP effect (pKWmEB)"))]
}
}else{
output1<-output1q
}
write.table(output1,paste(dir,"/",i,"_intermediate result.csv",sep=""),sep=",",row.names=FALSE,col.names = T)
},silent=FALSE)
}
if ('try-error' %in% class(TRY7)|| !('try-error' %in% class(TRY7))){
TRY8<-try({
output<-list(reMR,reFMR,reFME,rePLA,rePKW,reISIS)
output<-do.call(rbind,output)
write.table(output,paste(dir,"/",i,"_Final result.csv",sep=""),sep=",",row.names=FALSE,col.names = T)
},silent=FALSE)
}
if ('try-error' %in% class(TRY8)|| !('try-error' %in% class(TRY8))){
TRY9<-try({
if(DrawPlot==TRUE){
if(isFALSE(all(lengths(output1qq)==0))){
manwidth<-28000;manhei<-7000;manwordre<-60;manfigurere<-600
qqwidth<-10000;qqhei<-10000;qqwordre<-60;qqfigurere<-600
if(Plotformat1=="*.png"){
png(paste(dir,"/",i,"_Manhattan plot.png",sep=""),width=as.numeric(manwidth), height=as.numeric(manhei), units= "px", pointsize =as.numeric(manwordre),res=as.numeric(manfigurere))
manhattan_mrMLM(data_in=as.matrix(output1q),data_fin=as.matrix(output),lodline=CriLOD)
dev.off()
png(paste(dir,"/",i,"_qq plot.png",sep=""),width=as.numeric(qqwidth), height=as.numeric(qqhei), units= "px", pointsize =as.numeric(qqwordre),res=as.numeric(qqfigurere))
QQ_mrMLM(data_in=as.matrix(output1q))
dev.off()
}else if(Plotformat1=="*.tiff"){
tiff(paste(dir,"/",i,"_Manhattan plot.tiff",sep=""),width=as.numeric(manwidth), height=as.numeric(manhei), units= "px", pointsize =as.numeric(manwordre),res=as.numeric(manfigurere))
manhattan_mrMLM(data_in=as.matrix(output1q),data_fin=as.matrix(output),lodline=CriLOD)
dev.off()
tiff(paste(dir,"/",i,"_qq plot.tiff",sep=""),width=as.numeric(qqwidth), height=as.numeric(qqhei), units= "px", pointsize =as.numeric(qqwordre),res=as.numeric(qqfigurere))
QQ_mrMLM(data_in=as.matrix(output1q))
dev.off()
}else if(Plotformat1=="*.jpeg"){
jpeg(paste(dir,"/",i,"_Manhattan plot.jpeg",sep=""),width=as.numeric(manwidth), height=as.numeric(manhei), units= "px", pointsize =as.numeric(manwordre),res=as.numeric(manfigurere))
manhattan_mrMLM(data_in=as.matrix(output1q),data_fin=as.matrix(output),lodline=CriLOD)
dev.off()
jpeg(paste(dir,"/",i,"_qq plot.jpeg",sep=""),width=as.numeric(qqwidth), height=as.numeric(qqhei), units= "px", pointsize =as.numeric(qqwordre),res=as.numeric(qqfigurere))
QQ_mrMLM(data_in=as.matrix(output1q))
dev.off()
}else if(Plotformat1=="*.pdf"){
pdf(paste(dir,"/",i,"_Manhattan plot.pdf",sep=""),width=16,height=4,pointsize = 20)
manhattan_mrMLM(data_in=as.matrix(output1q),data_fin=as.matrix(output),CoorLwd=2,lodline=CriLOD)
dev.off()
pdf(paste(dir,"/",i,"_qq plot.pdf",sep=""),pointsize = 25)
QQ_mrMLM(data_in=as.matrix(output1q),CoorLwd=2)
dev.off()
}
}else{
warning("Draw plot need intermediate result of mrMLM, FASTmrMLM, FASTmrEMMA or pKWmEB!")
}
}
},silent=FALSE)
}
}
}
ReadData<-function(fileGen=NULL,filePhe=NULL,fileKin=NULL,filePS=NULL,fileCov=NULL,Genformat=NULL){
kkRaw<-NULL
psmatrixRaw<-NULL
covmatrixRaw<-NULL
inputform<-Genformat
CLO<-NULL
if(!is.null(fileGen)){
if(is.character(fileGen)==TRUE){
genRaw<-fread(fileGen,header = FALSE,stringsAsFactors=T)
}else{
genRaw<-fileGen
CLO<-1
}
genRaw<-as.matrix(genRaw)
}
wnameGen <- as.matrix(genRaw[1,],1,)
if(inputform==1){
titlenameGen<-wnameGen[1:4,]
hapName<-c("rs
if(all(titlenameGen==hapName)==FALSE){
warning("please check the individual's name in genotypic file")
}
}
if(inputform==2){
titlenameGen<-wnameGen[1:3,]
hapName<-c("rs
if(all(titlenameGen==hapName)==FALSE){
warning("please check the individual's name in genotypic file")
}
}
if(inputform==3){
titlenameGen<-wnameGen[1:11,]
hapName<- c("rs
if(all(titlenameGen==hapName)==FALSE){
warning("please check the individual's name in genotypic file")
}
}
if(!is.null(filePhe)){
if(is.character(filePhe)==TRUE){
pheRaw1q<-fread(filePhe,header=F, stringsAsFactors=T)
}else{
pheRaw1q<-filePhe
CLO<-1
}
pheRaw1q<-as.matrix(pheRaw1q)
}
wnamePhe <- as.matrix(pheRaw1q[,1],,1)
wsameName <- intersect(wnameGen,wnamePhe)
wlocGen <- match(wsameName,wnameGen)
if(is.null(wlocGen)){
warning("please check the individual's name (ID) in genotypic and phenotypic files")
}
if(!is.null(fileKin)){
kkRaw<-fread(fileKin,header = FALSE,stringsAsFactors=T)
kkRaw<-as.matrix(kkRaw)
nnkk<-dim(kkRaw)[1]
kkRaw[1,2:nnkk]<-" "
}
if(!is.null(filePS)){
psmatrixRaw<-fread(filePS,header = FALSE,stringsAsFactors=T)
psmatrixRaw<-as.matrix(psmatrixRaw)
}
if(!is.null(fileCov)){
covmatrixRaw<-fread(fileCov,header = FALSE,stringsAsFactors=T)
covmatrixRaw<-as.matrix(covmatrixRaw)
}
phename<-as.matrix(pheRaw1q[1,2:ncol(pheRaw1q)])
output<-list(genRaw=genRaw,pheRaw1q=pheRaw1q,kkRaw=kkRaw,psmatrixRaw=psmatrixRaw,covmatrixRaw=covmatrixRaw,phename=phename,CLO=CLO)
return(output)
}
DoData<-function(genRaw=NULL,Genformat=NULL,pheRaw1q=NULL,kkRaw=NULL,psmatrixRaw=NULL,
covmatrixRaw=NULL,trait=NULL,type=NULL,PopStrType=NULL){
inputform<-Genformat
pheRaw1qq<-as.matrix(pheRaw1q[,2:ncol(pheRaw1q)])
pheRaw1<-cbind(pheRaw1q[,1],pheRaw1qq[,trait])
pheRaw2<-pheRaw1[-1,]
pheRaw3<-as.data.frame(pheRaw2,stringsAsFactors=FALSE)
pheRaw4<-as.matrix(pheRaw3[is.na(pheRaw3[,2])==F,])
pheRawthem<-matrix(c(pheRaw1[1,1]," "),1,)
pheRaw<-rbind(pheRawthem,pheRaw4)
row.names(pheRaw)<-NULL
pheRaw<-as.matrix(pheRaw)
if(type==1&&inputform==1){
genRawz<-genRaw[-1,-c(1:4)]
genRawz2<-gsub("0","0.5",genRawz)
genRawz3<-gsub("-1","0",genRawz2)
genRawz4<-cbind(genRaw[-1,c(1:4)],genRawz3)
genRaw<-rbind(genRaw[1,],genRawz4)
}else{
genRaw<-genRaw
}
if(inputform==1){
nameGen <- as.matrix(genRaw[1,],1,)
namePhe <- as.matrix(pheRaw[,1],,1)
sameName <- intersect(nameGen,namePhe)
locGen <- match(sameName,nameGen)
locPhe <- match(sameName,namePhe)
hapName <- matrix(c("rs
hapHave <- intersect(nameGen,hapName)
locHap <- match(hapHave,nameGen)
newGenloc <- c(locHap,locGen)
newPheloc <- locPhe
newGen <- as.matrix(genRaw[-1,newGenloc])
newPhe <- as.matrix(pheRaw[newPheloc,])
nnhap <- length(hapHave)
rownewGen <- dim(newGen)[1]
colnewGen <- dim(newGen)[2]
rownewPhe <- dim(newPhe)[1]
newGen <-rbind(genRaw[1,newGenloc],newGen)
locChr <- as.numeric(which(newGen[1,]=="chrom"))
locPos <- as.numeric(which(newGen[1,]=="pos"))
needloc <- c(locChr,locPos,(nnhap+1):colnewGen)
needGen <- newGen[,needloc]
gen<-as.matrix(needGen[-1,])
gen<-matrix(as.numeric(gen),nrow=nrow(gen))
rm(newGen,needGen)
gc()
pheRaw[1,2]<-" "
newPhe<-rbind(pheRaw[1,],newPhe)
phe<-as.matrix(newPhe[-1,-1])
phe<-matrix(as.numeric(phe),nrow=nrow(phe))
outATCG<-NULL
}else if(inputform==2){
nameGen <- as.matrix(genRaw[1,],1,)
namePhe <- as.matrix(pheRaw[,1],,1)
sameName <- intersect(nameGen,namePhe)
locGen <- match(sameName,nameGen)
locPhe <- match(sameName,namePhe)
hapName <- matrix(c("rs
hapHave <- intersect(nameGen,hapName)
locHap <- match(hapHave,nameGen)
newGenloc <- c(locHap,locGen)
newPheloc <- locPhe
newGen <- as.matrix(genRaw[-1,newGenloc])
newPhe <- as.matrix(pheRaw[newPheloc,])
nnhap <- length(hapHave)
rownewGen <- dim(newGen)[1]
colnewGen <- dim(newGen)[2]
rownewPhe <- dim(newPhe)[1]
computeGen <- newGen[,(nnhap+1):colnewGen]
colComGen <- ncol(computeGen)
referSam <- as.vector(computeGen[,1])
ATCGloc <- c(which(computeGen[,1]=="A"),which(computeGen[,1]=="T"),which(computeGen[,1]=="C"),which(computeGen[,1]=="G"))
NNRRloc <- setdiff(c(1:rownewGen),ATCGloc)
for(i in 2:colComGen)
{
if(length(NNRRloc)>0){
referSam[NNRRloc] <- as.vector(computeGen[NNRRloc,i])
ATCGlocLoop <- c(which(computeGen[NNRRloc,i]=="A"),which(computeGen[NNRRloc,i]=="T"),which(computeGen[NNRRloc,i]=="C"),which(computeGen[NNRRloc,i]=="G"))
NNRRloc <- setdiff(NNRRloc,NNRRloc[ATCGlocLoop])
}else{
break
}
}
for(i in 1:rownewGen)
{
tempSel1 <- as.vector(c(which(computeGen[i,]=="A"),which(computeGen[i,]=="T"),which(computeGen[i,]=="C"),which(computeGen[i,]=="G")))
tempSel2 <- as.vector(c(which(computeGen[i,]==referSam[i])))
notRef <- setdiff(tempSel1,tempSel2)
notATCG <- setdiff(c(1:colComGen),tempSel1)
computeGen[i,tempSel2] <- as.numeric(1)
if(type==1){
computeGen[i,notRef] <- as.numeric(0)
computeGen[i,notATCG] <- as.numeric(0.5)
}else{
computeGen[i,notRef] <- as.numeric(-1)
computeGen[i,notATCG] <- as.numeric(0)
}
}
outATCG<-as.matrix(referSam)
newGen <- cbind(newGen[,1:nnhap],computeGen)
newGen <-rbind(genRaw[1,newGenloc],newGen)
rm(computeGen)
gc()
locChr <- as.numeric(which(newGen[1,]=="chrom"))
locPos <- as.numeric(which(newGen[1,]=="pos"))
needloc <- c(locChr,locPos,(nnhap+1):colnewGen)
needGen<-newGen[,needloc]
gen<-as.matrix(needGen[-1,])
gen<-matrix(as.numeric(gen),nrow=nrow(gen))
rm(newGen,needGen)
gc()
pheRaw[1,2]<-" "
newPhe<-rbind(pheRaw[1,],newPhe)
phe<-as.matrix(newPhe[-1,-1])
phe<-matrix(as.numeric(phe),nrow=nrow(phe))
}else if(inputform==3){
nameGen<-as.matrix(genRaw[1,],1,)
namePhe<-as.matrix(pheRaw[,1],,1)
sameName<-intersect(nameGen,namePhe)
locGen<-match(sameName,nameGen)
locPhe<-match(sameName,namePhe)
hapName<-matrix(c("rs
hapHave<-intersect(nameGen,hapName)
locHap<-match(hapHave,nameGen)
newGenloc<-c(locHap,locGen)
newPheloc<-locPhe
newGen<-as.matrix(genRaw[-1,newGenloc])
newPhe<-as.matrix(pheRaw[newPheloc,])
nnhap<-length(hapHave)
rownewGen<-dim(newGen)[1]
colnewGen<-dim(newGen)[2]
rownewPhe<-dim(newPhe)[1]
computeGen<-newGen[,(nnhap+1):colnewGen]
colComGen<-ncol(computeGen)
referSam<-as.vector(computeGen[,1])
ATCGloc<-c(which(computeGen[,1]=="AA"),which(computeGen[,1]=="TT"),which(computeGen[,1]=="CC"),which(computeGen[,1]=="GG"))
NNRRloc<-setdiff(c(1:rownewGen),ATCGloc)
for(i in 2:colComGen)
{
if(length(NNRRloc)>0){
referSam[NNRRloc]<-as.vector(computeGen[NNRRloc,i])
ATCGlocLoop<-c(which(computeGen[NNRRloc,i]=="AA"),which(computeGen[NNRRloc,i]=="TT"),which(computeGen[NNRRloc,i]=="CC"),which(computeGen[NNRRloc,i]=="GG"))
NNRRloc<-setdiff(NNRRloc,NNRRloc[ATCGlocLoop])
}else{
break
}
}
for(i in 1:rownewGen)
{
tempSel1<-as.vector(c(which(computeGen[i,]=="AA"),which(computeGen[i,]=="TT"),which(computeGen[i,]=="CC"),which(computeGen[i,]=="GG")))
tempSel2<-as.vector(c(which(computeGen[i,]==referSam[i])))
notRef<-setdiff(tempSel1,tempSel2)
notATCG<-setdiff(c(1:colComGen),tempSel1)
computeGen[i,tempSel2]<-as.numeric(1)
if(type==1){
computeGen[i,notRef]<-as.numeric(0)
computeGen[i,notATCG]<-as.numeric(0.5)
}else{
computeGen[i,notRef]<-as.numeric(-1)
computeGen[i,notATCG]<-as.numeric(0)
}
}
outATCG<-as.matrix(referSam)
newGen<-cbind(newGen[,1:nnhap],computeGen)
newGen<-rbind(genRaw[1,newGenloc],newGen)
rm(computeGen)
gc()
locChr<-as.numeric(which(newGen[1,]=="chrom"))
locPos<-as.numeric(which(newGen[1,]=="pos"))
needloc<-c(locChr,locPos,(nnhap+1):colnewGen)
needGen<-newGen[,needloc]
gen<-as.matrix(needGen[-1,])
gen<-matrix(as.numeric(gen),nrow=nrow(gen))
rm(newGen,needGen)
gc()
pheRaw[1,2]<-" "
newPhe<-rbind(pheRaw[1,],newPhe)
phe<-as.matrix(newPhe[-1,-1])
phe<-matrix(as.numeric(phe),nrow=nrow(phe))
}
if(is.null(kkRaw)){
kk<-NULL
}else{
kkPre<-as.matrix(kkRaw[-1,-1])
nameKin<-as.matrix(kkRaw[-1,1])
sameGenKin<-intersect(sameName,nameKin)
locKin<-match(sameGenKin,nameKin)
kk<-kkPre[locKin,locKin]
kk<-matrix(as.numeric(kk),nrow=nrow(kk))
}
if(is.null(psmatrixRaw)){
psmatrix<-NULL
}else{
nnpprow<-dim(psmatrixRaw)[1]
nnppcol<-dim(psmatrixRaw)[2]
psmatrixRaw[1,2:nnppcol]<-" "
psmatrixPre<-psmatrixRaw[3:nnpprow,]
namePop<-as.matrix(psmatrixPre[,1])
sameGenPop<-intersect(sameName,namePop)
locPop<-match(sameGenPop,namePop)
selectpsmatrixq<-psmatrixPre[locPop,-1]
if(PopStrType=="Q"){
selectpsmatrix<-matrix(as.numeric(selectpsmatrixq),nrow = length(locPop))
coldelet<-which.min(apply(selectpsmatrix,2,sum))
psmatrix<-as.matrix(selectpsmatrix[,-coldelet])
}else if(PopStrType=="PCA"){
psmatrix<-matrix(as.numeric(selectpsmatrixq),nrow = length(locPop))
}else if(PopStrType=="EvolPopStr"){
otrait_ind<-sort(unique(selectpsmatrixq))
pop_col<-length(otrait_ind)-1
pop_each<-numeric()
for(j in 1:length(selectpsmatrixq)){
if(selectpsmatrixq[j]==otrait_ind[1]){
pop_0<-matrix(-1,1,pop_col)
}else{
pop_0<-matrix(0,1,pop_col)
popnum_loc<-which(otrait_ind[]==selectpsmatrixq[j])
pop_0[1,popnum_loc-1]<-1
}
pop_each<-rbind(pop_each,pop_0)
}
psmatrix=pop_each
}
}
if(is.null(covmatrixRaw)){
phe<-phe
}else{
nncovrow<-nrow(covmatrixRaw)
covmatrixPre<-covmatrixRaw[3:nncovrow,]
namecov<-as.matrix(covmatrixPre[,1])
sameGencov<-intersect(sameName,namecov)
loccov<-match(sameGencov,namecov)
selectcovmatrixq<-covmatrixPre[loccov,-1]
covname<-covmatrixRaw[2,-1]
label<-substr(covname,1,3)
if(("Cat"%in%label)&&("Con"%in%label)){
cat_loc<-as.numeric(which(label=="Cat"))
con_loc<-as.numeric(which(label=="Con"))
selectcovmatrixqq<-selectcovmatrixq
selectcovmatrixq<-selectcovmatrixq[,cat_loc]
covnum<-t(selectcovmatrixq)
yygg1<-numeric()
for(i in 1:nrow(covnum)){
otrait_ind<-sort(unique(covnum[i,]))
cov_col<-length(otrait_ind)-1
col_each<-numeric()
for(j in 1:length(covnum[i,])){
if(covnum[i,j]==otrait_ind[length(otrait_ind)]){
cov_0<-matrix(-1,1,cov_col)
}else{
cov_0<-matrix(0,1,cov_col)
covnum_loc<-which(otrait_ind[]==covnum[i,j])
cov_0[1,covnum_loc]<-1
}
col_each<-rbind(col_each,cov_0)
}
yygg1<-cbind(yygg1,col_each)
}
yygg1<-cbind(yygg1,as.matrix(selectcovmatrixqq[,con_loc]))
}else if(all(label=="Cat")){
covnum<-t(selectcovmatrixq)
yygg1<-numeric()
for(i in 1:nrow(covnum)){
otrait_ind<-sort(unique(covnum[i,]))
cov_col<-length(otrait_ind)-1
col_each<-numeric()
for(j in 1:length(covnum[i,])){
if(covnum[i,j]==otrait_ind[length(otrait_ind)]){
cov_0<-matrix(-1,1,cov_col)
}else{
cov_0<-matrix(0,1,cov_col)
covnum_loc<-which(otrait_ind[]==covnum[i,j])
cov_0[1,covnum_loc]<-1
}
col_each<-rbind(col_each,cov_0)
}
yygg1<-cbind(yygg1,col_each)
}
}else if(all(label=="Con")){
yygg1<-selectcovmatrixq
}
W.orig<-matrix(1,nrow(phe),1)
xenvir<-cbind(W.orig,yygg1)
xenvir<-apply(xenvir,2,as.numeric)
beta<-solve(t(xenvir)%*%xenvir)%*%t(xenvir)%*%phe
phe<-phe-xenvir%*%beta+W.orig
}
genRaw<-genRaw[,1:12]
doresult<-list(gen=gen,phe=phe,outATCG=outATCG,genRaw=genRaw,kk=kk,psmatrix=psmatrix)
return(doresult)
}
inputData<-function(readraw,Genformat=NULL,method=NULL,trait=NULL,PopStrType=NULL){
doMR<-NULL;doFME<-NULL
if("mrMLM"%in%method){
doMR<-DoData(readraw$genRaw,Genformat,readraw$pheRaw1q,readraw$kkRaw,readraw$psmatrixRaw,readraw$covmatrixRaw,trait,type=2,PopStrType)
}
if("FASTmrMLM"%in%method){
doMR<-DoData(readraw$genRaw,Genformat,readraw$pheRaw1q,readraw$kkRaw,readraw$psmatrixRaw,readraw$covmatrixRaw,trait,type=2,PopStrType)
}
if("FASTmrEMMA"%in%method){
doFME<-DoData(readraw$genRaw,Genformat,readraw$pheRaw1q,readraw$kkRaw,readraw$psmatrixRaw,readraw$covmatrixRaw,trait,type=1,PopStrType)
}
if("pLARmEB"%in%method){
doMR<-DoData(readraw$genRaw,Genformat,readraw$pheRaw1q,readraw$kkRaw,readraw$psmatrixRaw,readraw$covmatrixRaw,trait,type=2,PopStrType)
}
if("pKWmEB"%in%method){
doMR<-DoData(readraw$genRaw,Genformat,readraw$pheRaw1q,readraw$kkRaw,readraw$psmatrixRaw,readraw$covmatrixRaw,trait,type=2,PopStrType)
}
if("ISIS EM-BLASSO"%in%method){
doMR<-DoData(readraw$genRaw,Genformat,readraw$pheRaw1q,readraw$kkRaw,readraw$psmatrixRaw,readraw$covmatrixRaw,trait,type=2,PopStrType)
}
output<-list(doMR=doMR,doFME=doFME)
return(output)
} |
ramIndex<-function(input){
sptInput<-unlist(strsplit(input, "="))
value<-as.numeric(sptInput[2])
left<-sptInput[1]
leftLength<-nchar(left)
leftInd<-substr(left,7,leftLength-1)
leftSplit<-unlist(strsplit(leftInd, ","))
ind1<-as.numeric(leftSplit[1])
ind2<-as.numeric(leftSplit[2])
c(ind1,ind2,value)
}
ramMatrix<-function(model){
if(length(model) == 0) {
stop("ERROR: empty model syntax")
}
model <- unlist( strsplit(model, "\n") )
model <- gsub("
model <- gsub(";","\n", model)
model <- unlist( strsplit(model, "\n") )
model <- gsub("[[:space:]]+", "", model)
idx <- which(nzchar(model))
model <- model[idx]
manifestInd<-grep('manifest', model)
if (length(manifestInd)>1) warning('Multiple manifest keywords found and the first was used.')
manifestLine<-model[manifestInd]
manifestSplit<-unlist( strsplit(manifestLine, "=") )
manifest<-manifestSplit[2]
latentInd<-grep('latent', model)
if (length(latentInd)>0){
if (length(latentInd)>1) warning('Multiple latent keywords found and the first was used.')
latentLine<-model[latentInd]
latentSplit<-unlist( strsplit(latentLine, "=") )
latent<-latentSplit[2]
}else{
latent<-0
}
manifest<-as.numeric(manifest)
latent<-as.numeric(latent)
nrow<-manifest+latent
A<-S<-matrix(0, nrow, nrow)
arrowInd<-grep('arrow', model)
arrowLine<-model[arrowInd]
for (i in 1:length(arrowLine)){
temp<-ramIndex(arrowLine[i])
A[temp[1],temp[2]]<-temp[3]
}
slingInd<-grep('sling', model)
slingLine<-model[slingInd]
for (i in 1:length(slingLine)){
temp<-ramIndex(slingLine[i])
S[temp[1],temp[2]]<-temp[3]
S[temp[2],temp[1]]<-temp[3]
}
F<-diag(manifest)
if (latent>0) FLatent<-matrix(0,manifest,latent)
F<-cbind(F,FLatent)
labelInd<-grep('label', model)
varname<-character(0)
if (length(labelInd)>0){
varnameLine<-model[labelInd]
varname<-substr(varnameLine,7,nchar(varnameLine))
varname<-unlist(strsplit(varname,","))
}
if (length(varname)!=nrow){
if (length(varname)>0){
warning('The provided number of varible labels is not equal to the total number of variables. Default variables names will be used')
}
varname<-c(paste('V',1:manifest,sep=''),paste('F',1:latent,sep=''))
}
rownames(S)<-colnames(S)<-varname
rownames(A)<-colnames(A)<-varname
rownames(F)<-varname[1:manifest]
colnames(F)<-varname
cat("Matrix A\n")
print(A)
cat("Matrix S\n")
print(S)
cat("Matrix F\n")
print(F)
lname<-NULL
if (nrow>manifest) lname=varname[(manifest+1):nrow]
invisible(return(list(F=F, A=A, S=S, nvar=nrow, manifest=manifest,latent=latent,lname=lname,varname=varname)))
}
ramFlip<-function(input){
input<-unlist(strsplit(input,">"))
n<-length(input)
input<-input[n:1]
paste(input[1:(n-1)], collapse="<")
}
ramRmOne<-function(input){
input<-unlist(strsplit(input,">"))
n<-length(input)
paste(input[2:n], collapse=">")
}
makePathList <- function(AMatrix, Ase, indirect=TRUE) {
k <- 0
tIndex <- 1:10000
tFrom <- tTo <- tStartID <- tFromID <- tLength <- tValue <- rep(0, 10000)
tPath <- rep(NULL,10000)
tPathName<-tPathSig<-rep(NULL,10000)
tNames<-rownames(AMatrix)
if (is.null(tNames)) tNames<-1:nrow(AMatrix)
for (i in 1:nrow(AMatrix)) {
for (j in 1:ncol(AMatrix)) {
if (AMatrix[i,j] != 0) {
k <- k + 1
tFrom[k] <- j
tTo[k] <- i
tStartID[k] <- tIndex[k]
tFromID[k] <- tIndex[k]
tLength[k] <- 1
tValue[k] <- AMatrix[i,j]
tPath[k]<-paste(j,' > ',i,sep='')
tPathName[k]<-paste(tNames[j],' > ',tNames[i],sep='')
if (!missing(Ase)){
if (Ase[i,j] != 0){
tPathSig[k]<-abs(AMatrix[i,j]/Ase[i,j])
}
}
}
}
}
m<-k
if (indirect){
t1 <- 0
maxLength <- 0
while (t1 != k) {
t1 <- k
maxLength <- maxLength + 1
tSelect1 <- tLength == 1
tSelect2 <- tLength == maxLength
if (length(tIndex[tSelect1]) == 0 | length(tIndex[tSelect2]) == 0)
break
for (i in tIndex[tSelect2]) {
for (j in tIndex[tSelect1]) {
if (tTo[i] == tFrom[j]) {
k <- k + 1
tFrom[k] <- tFrom[i]
tTo[k] <- tTo[j]
tStartID[k] <- tIndex[i]
tFromID[k] <- tIndex[j]
tLength[k] <- 1 + maxLength
tValue[k] <- tValue[i] * tValue[j]
tPath[k]<-paste(tPath[i],' > ',tTo[j],sep='')
tPathName[k]<-paste(tPathName[i],' > ',tNames[tTo[j]],sep='')
}
}
}
}
}
return(list(index=tIndex[1:k], fromVar=tFrom[1:k],
toVar=tTo[1:k], startID=tStartID[1:k],
fromID=tFromID[1:k], length=tLength[1:k],
value=tValue[1:k], tPath=tPath[1:k], tPathName=tPathName[1:k], nPath=m, tPathSig=tPathSig[1:m]))
}
makeSpanList <- function(SMatrix, Sse) {
k <- 0
tIndex <- c(1:10000)
tVarA <- tVarB <- tValue <- rep(0, 10000)
tPath <- rep(NULL,10000)
tPathName <- tPathSig <- tPathSE <- rep(NULL,10000)
tNames<-rownames(SMatrix)
if (is.null(tNames)) tNames<-1:nrow(SMatrix)
for (i in 1:dim(SMatrix)[1]) {
for (j in 1:dim(SMatrix)[2]) {
if (SMatrix[i,j] != 0) {
k <- k + 1
tVarA[k] <- j
tVarB[k] <- i
tValue[k] <- SMatrix[i,j]
tPath[k]<-paste(j,' <> ',i,sep='')
tPathName[k]<-paste(tNames[j],' <> ',tNames[i],sep='')
if (!missing(Sse)){
tPathSE[k] <- Sse[i,j]
if (tPathSE[k] != 0){
tPathSig[k]<-abs(tValue[k]/tPathSE[k])
}
}
}
}
}
return(list(index=tIndex[1:k], varA=tVarA[1:k], varB=tVarB[1:k], value=tValue[1:k], tPath=tPath[1:k], tPathName=tPathName[1:k], tPathSig=tPathSig[1:k]))
}
makeBridgeList <- function(pathList, spanList) {
k <- 0
tIndex <- c(1:10000)
tVarA <- tVarB <- tSpanID <- tPath1ID <- tPath2ID <- tValue <- rep(0, 10000)
tPath <- rep(NULL,10000)
tPathName <- rep(NULL,10000)
for (i in 1:length(spanList$index)) {
k <- k + 1
tVarA[k] <- spanList$varA[i]
tVarB[k] <- spanList$varB[i]
tSpanID[k] <- spanList$index[i]
tPath1ID[k] <- 0
tPath2ID[k] <- 0
tValue[k] <- spanList$value[i]
tPath[k]<-spanList$tPath[k]
tPathName[k]<-spanList$tPathName[k]
}
for (i in 1:length(spanList$index)) {
for (j in 1:length(pathList$index)) {
if (spanList$varA[i] == pathList$fromVar[j]) {
k <- k + 1
tVarA[k] <- pathList$toVar[j]
tVarB[k] <- spanList$varB[i]
tSpanID[k] <- spanList$index[i]
tPath1ID[k] <- pathList$index[j]
tPath2ID[k] <- 0
tValue[k] <- spanList$value[i] * pathList$value[j]
tPath[k]<-paste(ramFlip(pathList$tPath[j]), ' < ', tPath[i], sep='')
tPathName[k]<-paste(ramFlip(pathList$tPathName[j]), ' < ', tPathName[i], sep='')
}
if (spanList$varB[i] == pathList$fromVar[j]) {
k <- k + 1
tVarA[k] <- spanList$varB[i]
tVarB[k] <- pathList$toVar[j]
tSpanID[k] <- spanList$index[i]
tPath1ID[k] <- 0
tPath2ID[k] <- pathList$index[j]
tValue[k] <- spanList$value[i] * pathList$value[j]
tPath[k]<-paste(ramFlip(pathList$tPath[j]), ' < ', tPath[i], sep='')
tPathName[k]<-paste(ramFlip(pathList$tPathName[j]), ' < ', tPathName[i], sep='')
}
}
}
for (i in 1:length(spanList$index)) {
for (j in 1:length(pathList$index)) {
if (spanList$varA[i] == pathList$fromVar[j]) {
for (h in 1:length(pathList$index)) {
if (spanList$varB[i] == pathList$fromVar[h]) {
k <- k + 1
tVarA[k] <- pathList$toVar[j]
tVarB[k] <- pathList$toVar[h]
tSpanID[k] <- spanList$index[i]
tPath1ID[k] <- pathList$index[j]
tPath2ID[k] <- pathList$index[h]
tValue[k] <- spanList$value[i] * pathList$value[j] * pathList$value[h]
tPath[k]<-paste(ramFlip(pathList$tPath[h]), " < ", tPath[i], substring(pathList$tPath[j],2), sep='')
tPathName[k]<-paste(ramFlip(pathList$tPathName[h]), " < ", tPathName[i], ">", ramRmOne(pathList$tPathName[j]), sep='')
}
}
}
}
}
return(list(index=tIndex[1:k], varA=tVarA[1:k],
varB=tVarB[1:k], spanID=tSpanID[1:k],
path1ID=tPath1ID[1:k], path2ID=tPath2ID[1:k],
value=tValue[1:k], path=tPath[1:k],pathName=tPathName[1:k], tPathSig=pathList$tPathSig, tSpanSig=spanList$tPathSig))
}
ramPathBridge<-function(rammatrix, allbridge=FALSE, indirect=TRUE){
Amatrix<-rammatrix$A
Smatrix<-rammatrix$S
if (is.null(rammatrix$Ase)) {
tPathlist <- makePathList(Amatrix,indirect=indirect)
}else{
tPathlist <- makePathList(Amatrix,rammatrix$Ase,indirect=indirect)
}
if (is.null(rammatrix$Sse)) {
tSpanlist <- makeSpanList(Smatrix)
}else{
tSpanlist <- makeSpanList(Smatrix,rammatrix$Sse)
}
tBridgelist<-NULL
if (allbridge) tBridgelist <- makeBridgeList(tPathlist, tSpanlist)
ramobject<-list(path=tPathlist, bridge=tBridgelist, span=tSpanlist, ram=rammatrix)
class(ramobject)<-'RAMpath'
ramobject
}
plot.RAMpath <- function (x, file, from, to, type=c("path","bridge"), size = c(8, 8), node.font = c("Helvetica", 14), edge.font = c("Helvetica", 10), rank.direction = c("LR","TB"), digits = 2, output.type=c("graphics", "dot"), graphics.fmt="pdf", dot.options=NULL, ...)
{
pathbridge<-x
if (length(type)>1) type<-type[1]
tPathlist<-pathbridge$path
tBridgelist<-pathbridge$bridge
tSpanlist<-pathbridge$span
rammatrix<-pathbridge$ram
varname<-rammatrix$varname
nvar<-length(varname)
latent <- rammatrix$lname
npath<-tPathlist$nPath
nspan<-length(tSpanlist$index)
pathValue<-round(tPathlist$value[1:npath],digits=digits)
spanValue<-round(tSpanlist$value)
tPathlist$value<-round(tPathlist$value,digits)
tSpanlist$value<-round(tSpanlist$value,digits)
if (!is.null(tBridgelist)) tBridgelist$value<-round(tBridgelist$value,digits)
tPathSig<-pathbridge$path$tPathSig
tSpanSig<-pathbridge$span$tPathSig
tBridgelist$pathName <- gsub("[[:space:]]+", "", tBridgelist$pathName)
tPathlist$tPathName <- gsub("[[:space:]]+", "", tPathlist$tPathName)
output.type <- match.arg(output.type)
if (missing(from)|missing(to)){
if (!missing(file)) {
dot.file <- paste(file, ".dot", sep="")
handle <- file(dot.file, "w")
on.exit(close(handle))
if (output.type == "graphics") graph.file <- paste(file, ".", graphics.fmt, sep="")
}else handle <- stdout()
rank.direction <- match.arg(rank.direction)
cat(file = handle, paste("digraph \"pathdiagram\" {\n", sep = ""))
cat(file = handle, paste(" rankdir=", rank.direction, ";\n",sep = ""))
cat(file = handle, paste(" size=\"", size[1], ",", size[2],"\";\n", sep = ""))
cat(file = handle, paste(" node [fontname=\"", node.font[1], "\" fontsize=", node.font[2], " shape=box];\n", sep = ""))
cat(file = handle, paste(" edge [fontname=\"", edge.font[1],"\" fontsize=", edge.font[2], "];\n", sep = ""))
cat(file = handle, " center=1;\n")
if (!is.null(latent)){
for (lat in latent) {
cat(file = handle, paste(" \"", lat, "\" [shape=ellipse]\n",sep = ""))
}
}
if (max(abs(rammatrix$M))>0){
cat(file = handle, paste(" \"1\" [shape=triangle]\n",sep = ""))
cat(file = handle, paste(" \"1\" -> \"1\" [label=\"1\" dir=both]\n",sep = ""))
}
for (i in 1:npath){
sig<-''
if (!is.null(tPathSig)){
if (!is.na(tPathSig[i])){
if (tPathSig[i]>1.96) sig<-'*'
}
}
cat(file = handle, paste(" \"", varname[tPathlist$fromVar[i]], "\" -> \"", varname[tPathlist$toVar[i]], "\" [label=\"",tPathlist$value[i], sig, "\"];\n", sep = ""))
}
if (max(abs(rammatrix$M))>0){
Mpath<-which(abs(rammatrix$M)>0)
for (i in Mpath){
sig<-''
if (rammatrix$Mse[i]!=0){
temp<-rammatrix$M[i]/rammatrix$Mse[i]
if (abs(temp)>1.96) sig<-'*'
}
cat(file = handle, paste(" \"1\" -> \"", rownames(rammatrix$M)[i], "\" [label=\"",round(rammatrix$M[i],digits=digits), sig, "\"];\n", sep = ""))
}
}
for (i in 1:nspan){
sig<-''
if (!is.null(tSpanSig)){
if (!is.na(tSpanSig[i])){
if (tSpanSig[i]>1.96) sig<-'*'
}
}
if (tSpanlist$varA[i] >= tSpanlist$varB[i]) cat(file = handle, paste(" \"", varname[tSpanlist$varA[i]], "\" -> \"", varname[tSpanlist$varB[i]], "\" [label=\"", tSpanlist$value[i], sig, "\" dir=both];\n", sep = ""))
}
cat(file = handle, "}\n")
if (output.type == "graphics" && !missing(file)){
cmd <- paste("dot -T", graphics.fmt, " -o ", graph.file, " ", dot.options, " ", dot.file, sep="")
cat("Running ", cmd, "\n")
result <- try(system(cmd))
}
}else{
if (!is.numeric(from)){ varA<-which(varname==from) }else varA<-from
if (!is.numeric(to)){ varB<-which(varname==to) } else varB<-to
if (length(varA)==0|varA>nvar|varA<0) stop("The from variable does not exist")
if (length(varB)==0|varB>nvar|varB<0) stop("The to variable does not exist")
if (type=="path"){
index<-which(tPathlist$fromVar==varA & tPathlist$toVar==varB)
if (length(index)==0) stop('No such path exists')
for (j in 1:length(index)){
if (!missing(file)) {
dot.file <- paste(file, j, ".dot", sep="")
handle <- file(dot.file, "w")
on.exit(close(handle))
if (output.type == "graphics") graph.file <- paste(file, j, ".", graphics.fmt, sep="")
}else handle <- stdout()
rank.direction <- match.arg(rank.direction)
cat(file = handle, paste("strict digraph \"pathdiagram\" {\n", sep = ""))
cat(file = handle, paste(" rankdir=", rank.direction, ";\n",sep = ""))
cat(file = handle, paste(" size=\"", size[1], ",", size[2],"\";\n", sep = ""))
cat(file = handle, paste(" node [fontname=\"", node.font[1], "\" fontsize=", node.font[2], " shape=box style=dashed];\n", sep = ""))
cat(file = handle, paste(" edge [fontname=\"", edge.font[1],"\" fontsize=", edge.font[2], " style=dashed];\n", sep = ""))
cat(file = handle, " center=1;\n")
sPath<-tPathlist$tPathName[index[j]]
sPathInd<-unlist(strsplit(sPath,">"))
nPathToPlot<-length(sPathInd)
for (k in 1:nPathToPlot){
if (sPathInd[k] %in% latent){
cat(file = handle, paste(" \"", sPathInd[k], "\" [shape=ellipse style=solid];\n",sep = ""))
}else{
cat(file = handle, paste(" \"", sPathInd[k], "\" [style=solid];\n",sep = ""))
}
}
for (k in 1:(nPathToPlot-1)){
value<- pathValue[(tPathlist$fromVar[1:npath]==which(sPathInd[k]==varname) ) & (tPathlist$toVar[1:npath]==which(sPathInd[k+1]==varname))]
cat(file = handle, paste(" \"", sPathInd[k], "\" -> \"", sPathInd[k+1], "\" [label=\"", value, "\" style=solid];\n", sep = ""))
}
if (!is.null(latent)){
for (lat in latent) {
cat(file = handle, paste(" \"", lat, "\" [shape=ellipse];\n",sep = ""))
}
}
for (i in 1:npath){
cat(file = handle, paste(" \"", varname[tPathlist$fromVar[i]], "\" -> \"", varname[tPathlist$toVar[i]], "\" [label=\"",tPathlist$value[i], "\"];\n", sep = ""))
}
for (i in 1:nspan){
if (tSpanlist$varA[i] >= tSpanlist$varB[i]) cat(file = handle, paste(" \"", varname[tSpanlist$varA[i]], "\" -> \"", varname[tSpanlist$varB[i]], "\" [label=\"", tSpanlist$value[i], "\" dir=both];\n", sep = ""))
}
cat(file = handle, "label=\"Effect ",tPathlist$tPathName[index[j]],"=",tPathlist$value[index[j]] ,"\";\n labelloc = \"top\";\n")
cat(file = handle, "}\n")
if (output.type == "graphics" && !missing(file)){
cmd <- paste("dot -T", graphics.fmt, " -o ", graph.file, " ", dot.options, " ", dot.file, sep="")
cat("Running ", cmd, "\n")
result <- try(system(cmd))
}
}
}
if (type=="bridge"){
index<-which(tBridgelist$varA==varA & tBridgelist$varB==varB)
for (j in 1:length(index)){
if (!missing(file)) {
dot.file <- paste(file, j, ".dot", sep="")
handle <- file(dot.file, "w")
on.exit(close(handle))
if (output.type == "graphics") graph.file <- paste(file, j, ".", graphics.fmt, sep="")
}else handle <- stdout()
rank.direction <- match.arg(rank.direction)
cat(file = handle, paste("strict digraph \"pathdiagram\" {\n", sep = ""))
cat(file = handle, paste(" rankdir=", rank.direction, ";\n",sep = ""))
cat(file = handle, paste(" size=\"", size[1], ",", size[2],"\";\n", sep = ""))
cat(file = handle, paste(" node [fontname=\"", node.font[1], "\" fontsize=", node.font[2], " shape=box style=dashed];\n", sep = ""))
cat(file = handle, paste(" edge [fontname=\"", edge.font[1],"\" fontsize=", edge.font[2], " style=dashed];\n", sep = ""))
cat(file = handle, " center=1;\n")
sPath<-tBridgelist$pathName[index[j]]
sBridge<-unlist(strsplit(sPath,"<>"))
sLeft<-unlist(strsplit(sBridge[1],"<"))
sRight<-unlist(strsplit(sBridge[2],">"))
sPathName<-unique(c(sLeft,sRight))
nPathToPlot<-length(sPathName)
for (k in 1:nPathToPlot){
if (sPathName[k] %in% latent){
cat(file = handle, paste(" \"", sPathName[k], "\" [shape=ellipse style=solid];\n",sep = ""))
}else{
cat(file = handle, paste(" \"", sPathName[k], "\" [style=solid];\n",sep = ""))
}
}
nLeft<-length(sLeft)
if (nLeft>1){
for (k in 1:(nLeft-1)){
value<- pathValue[(tPathlist$fromVar[1:npath]==which(sLeft[k+1]==varname) ) & (tPathlist$toVar[1:npath]==which(sLeft[k]==varname))]
cat(file = handle, paste(" \"", sLeft[k+1], "\" -> \"", sLeft[k], "\" [label=\"", value, "\" style=solid];\n", sep = ""))
}
}
nRight<-length(sRight)
if (nRight>1){
for (k in 1:(nRight-1)){
value<- pathValue[(tPathlist$fromVar[1:npath]==which(sRight[k]==varname) ) & (tPathlist$toVar[1:npath]==which(sRight[k+1]==varname))]
cat(file = handle, paste(" \"", sRight[k], "\" -> \"", sRight[k+1], "\" [label=\"", value, "\" style=solid];\n", sep = ""))
}
}
value<- spanValue[(tSpanlist$varA==which(sLeft[nLeft]==varname) ) & (tSpanlist$varB==which(sRight[1]==varname))]
cat(file = handle, paste(" \"", sLeft[nLeft], "\" -> \"", sRight[1], "\" [label=\"", value, "\" style=solid dir=both];\n", sep = ""))
if (!is.null(latent)){
for (lat in latent) {
cat(file = handle, paste(" \"", lat, "\" [shape=ellipse];\n",sep = ""))
}
}
for (i in 1:npath){
cat(file = handle, paste(" \"", varname[tPathlist$fromVar[i]], "\" -> \"", varname[tPathlist$toVar[i]], "\" [label=\"",tPathlist$value[i], "\"];\n", sep = ""))
}
for (i in 1:nspan){
if (!(tSpanlist$varA[i]==which(sLeft[nLeft]==varname) & tSpanlist$varB[i]==which(sRight[1]==varname)) & !(tSpanlist$varB[i]==which(sLeft[nLeft]==varname) & tSpanlist$varA[i]==which(sRight[1]==varname))){
if (tSpanlist$varA[i] >= tSpanlist$varB[i]) cat(file = handle, paste(" \"", varname[tSpanlist$varA[i]], "\" -> \"", varname[tSpanlist$varB[i]], "\" [label=\"", tSpanlist$value[i], "\" dir=both];\n", sep = ""))
}
}
cat(file = handle, "label=\"Bridge ",tBridgelist$pathName[index[j]],"=",tBridgelist$value[index[j]] ,"\";\n labelloc = \"top\";\n")
cat(file = handle, "}\n")
if (output.type == "graphics" && !missing(file)){
cmd <- paste("dot -T", graphics.fmt, " -o ", graph.file, " ", dot.options, " ", dot.file, sep="")
cat("Running ", cmd, "\n")
result <- try(system(cmd))
}
}
}
}
invisible(NULL)
}
ramUniquePath<-function(tPathlist){
tUniquePath<-cbind(tPathlist$fromVar, tPathlist$toVar)
name<-tPathlist$tPathName[1]
k<-1
for (i in 2:length(tPathlist$index)){
check<-cbind(tUniquePath[1:(i-1), 1]==tPathlist$fromVar[i], tUniquePath[1:(i-1), 2]==tPathlist$toVar[i])
maxT<-max(apply(check,1,sum))
if (maxT<2){
k<-k+1
tUniquePath[k,]<-c(tPathlist$fromVar[i], tPathlist$toVar[i])
name<-c(name, tPathlist$tPathName[i])
}
}
return(list(tUniquePath=tUniquePath[1:k, ], tUniqueName=name))
}
summary.RAMpath<-function(object, from, to, type=c("path","bridge"), se=FALSE, ...){
pathbridge<-object
if (length(type)>1) type<-type[1]
tPathlist<-pathbridge$path
tBridgelist<-pathbridge$bridge
tSpanlist<-pathbridge$span
rammatrix<-pathbridge$ram
varname<-rammatrix$varname
nvar<-length(varname)
if (missing(from)|missing(to)){
if (type=="path"){
tUniquePath<-ramUniquePath(tPathlist)
npath<-length(tUniquePath$tUniqueName)
cat('Path and its decomposions:\n\n')
nString<-max(nchar(tPathlist$tPathName))
txt<-sprintf(paste("%-",nString+8,"s %4s %12s %9s\n",sep=""), "Path Name", "", "Value", "Pecent")
if (se) txt<-sprintf(paste("%-",nString+8,"s %4s %12s %12s %9s\n",sep=""), "Path Name", "", "Value", "se", "Pecent")
cat(txt)
for (i in 1:npath){
index<-which(tPathlist$fromVar==tUniquePath$tUniquePath[i,1] & tPathlist$toVar==tUniquePath$tUniquePath[i,2])
if (length(index)>0){
name<-paste(varname[tUniquePath$tUniquePath[i,1]]," > ",varname[tUniquePath$tUniquePath[i,2]],sep="")
path<-length(index)
value<-sum(tPathlist$value[index])
percent<-100
txt<-sprintf(paste("%-",nString+8,"s %4.0f %12.3f %9.2f\n",sep=""), name, path, value, percent)
if (se) txt<-sprintf(paste("%-",nString+8,"s %4.0f %12.3f %12s %9.2f\n",sep=""), name, path, value, " ", percent)
cat(txt)
for (j in 1:length(index)){
name<-tPathlist$tPathName[index[j]]
path<-j
value.j<-tPathlist$value[index[j]]
percent.j<-value.j/value*100
if (se){
se.j<-ramEffectSE(object, name)
txt<-sprintf(paste(" %-",nString+6,"s %4.0f %12.3f %12.3f %9.2f\n",sep=""), name, path, value.j, se.j, percent.j)
}else{
txt<-sprintf(paste(" %-",nString+6,"s %4.0f %12.3f %9.2f\n",sep=""), name, path, value.j, percent.j)
}
cat(txt)
}
}
}
}
if (type=="bridge"){
nString<-max(nchar(tBridgelist$pathName))
cat('Covariance and its bridges:\n\n')
txt<-sprintf(paste("%-",nString+8,"s %4s %12s %9s\n",sep=""), "Path Name", "", "Value", "Percent")
cat(txt)
for (i in 1:nvar){
for (k in 1:i){
index<-which(tBridgelist$varA==i & tBridgelist$varB==k)
if (length(index)>0){
name<-paste(varname[i]," <> ",varname[k],sep='')
path<-length(index)
value<-sum(tBridgelist$value[index])
percent<-100
txt<-sprintf(paste("%-",nString+8,"s %4.0f %12.3f %9.2f\n",sep=""), name, path, value, percent)
cat(txt)
for (j in 1:length(index)){
name<-tBridgelist$pathName[index[j]]
path<-j
value.j<-tBridgelist$value[index[j]]
percent.j<-value.j/value*100
txt<-sprintf(paste(" %-",nString+6,"s %4.0f %12.3f %9.2f\n",sep=""), name, path, value.j, percent.j)
cat(txt)
}
}else{
name<-paste(varname[i],"<>",varname[k],sep='')
path<-0
value<-NA
percent<-NA
txt<-sprintf(paste("%-",nString+8,"s %4.0f %12.3f %9.2f\n",sep=""), name, path, value, percent)
cat(txt)
}
}
}
}
}else{
if (!is.numeric(from)){ varA<-which(varname==from) }else varA<-from
if (!is.numeric(to)){ varB<-which(varname==to) } else varB<-to
if (length(varA)==0|varA>nvar|varA<0) stop("The from variable does not exist")
if (length(varB)==0|varB>nvar|varB<0) stop("The to variable does not exist")
if (type=="path"){
cat('Path and its decomposions:\n\n')
nString<-max(nchar(tPathlist$tPathName))
txt<-sprintf(paste("%-",nString+8,"s %3s %12s %9s\n",sep=""), "Path Name", "", "Value", "Percent")
cat(txt)
index<-which(tPathlist$fromVar==varA & tPathlist$toVar==varB)
if (length(index)==0) stop(paste("No such path from ",varname[varA]," to ",varname[varB], sep=""))
if (length(index)>0){
name<-paste(varname[varA]," > ", varname[varB],sep="")
path<-length(index)
value<-sum(tPathlist$value[index])
percent<-100
txt<-sprintf(paste("%-",nString+8,"s %3.0f %12.3f %9.2f\n",sep=""), name, path, value, percent)
cat(txt)
for (j in 1:length(index)){
name<-tPathlist$tPathName[index[j]]
path<-j
value.j<-tPathlist$value[index[j]]
percent.j<-value.j/value*100
txt<-sprintf(paste(" %-",nString+6,"s %3.0f %12.3f %9.2f\n",sep=""), name, path, value.j, percent.j)
cat(txt)
}
}
}
if (type=="bridge"){
nString<-max(nchar(tBridgelist$pathName))
cat("Covariance and its bridges:\n\n")
txt<-sprintf(paste("%-",nString+8,"s %3s %12s %9s\n",sep=""), "Path Name", "", "Value", "Percent")
cat(txt)
index<-which(tBridgelist$varA==varA & tBridgelist$varB==varB)
if (length(index)==0) stop(paste("No covariance between ", varname[varA], " and ", varname[varB], sep=""))
if (length(index)>0){
name<-paste(varname[varA]," <> ",varname[varB],sep='')
path<-length(index)
value<-sum(tBridgelist$value[index])
percent<-100
txt<-sprintf(paste("%-",nString+8,"s %3.0f %12.3f %9.2f\n",sep=""), name, path, value, percent)
cat(txt)
for (j in 1:length(index)){
name<-tBridgelist$pathName[index[j]]
path<-j
value.j<-tBridgelist$value[index[j]]
percent.j<-value.j/value*100
txt<-sprintf(paste(" %-",nString+6,"s %3.0f %12.3f %9.2f\n",sep=""), name, path, value.j, percent.j)
cat(txt)
}
}
}
}
}
isNumeric <- function(constant){
save <- options(warn = -1)
on.exit(save)
!(is.na(as.numeric(constant)))
}
ramParseLavaan<-function(input, manifest, type=0){
sptInput<-unlist(strsplit(input, "="))
sLeft<-sptInput[1]
sRight<-sptInput[2]
sLeft1<-unlist(strsplit(sLeft, "(", fixed=TRUE))
sLeft2<-unlist(strsplit(sLeft1[2], ")", fixed=TRUE))
leftSplit<-unlist(strsplit(sLeft2, ","))
toVar<-as.numeric(leftSplit[1])
fromVar<-as.numeric(leftSplit[2])
findAt<-grep("@", sRight)
if (length(findAt)>0){
fixed<-0
if (nchar(sRight)==1){
fixedAt<-1
label<-NA
}else{
splitRight<-unlist(strsplit(sRight, "@", fixed=TRUE))
if (length(splitRight)==1){
label<-splitRight[1]
fixedAt<-1
}else{
if (splitRight[1]==""){
label<-NA
fixedAt<-as.numeric(splitRight[2])
}else{
label<-splitRight[1]
fixedAt<-as.numeric(splitRight[2])
}
}
}
}else{
findQM<-grep("?", sRight, fixed=TRUE)
if (length(findQM>0)){
fixed<-1
if (nchar(sRight)==1){
fixedAt<-NA
label<-NA
}else{
splitRight<-unlist(strsplit(sRight, "?", fixed=TRUE))
if (length(splitRight)==1){
label<-splitRight[1]
fixedAt<-NA
}else{
if (splitRight[1]==""){
label<-NA
fixedAt<-as.numeric(splitRight[2])
}else{
label<-splitRight[1]
fixedAt<-as.numeric(splitRight[2])
}
}
}
}else{
if (isNumeric(sRight)){
fixed<-1
label<-NA
fixedAt<-as.numeric(sRight)
}else{
fixed<-1
label<-sRight
fixedAt<-NA
}
}
}
if (type==0){
if (toVar<=manifest & fromVar>manifest){arrowType<-2}else{arrowType<-1}
}else{
arrowType<-3
}
list(ramValue=c(fromVar, toVar, arrowType, fixed, fixedAt), ramLabel=label)
}
ram2lavaan<-function(model){
if(length(model) == 0) {
stop("ERROR: empty model syntax")
}
model <- unlist( strsplit(model, "\n") )
model <- gsub("
model <- gsub(";","\n", model)
model <- unlist( strsplit(model, "\n") )
model <- gsub("[[:space:]]+", "", model)
idx <- which(nzchar(model))
model <- model[idx]
manifestInd<-grep('manifest', model)
if (length(manifestInd)>1) warning('Multiple manifest keywords found and the first was used.')
manifestLine<-model[manifestInd]
manifestSplit<-unlist( strsplit(manifestLine, "=") )
manifest<-manifestSplit[2]
latentInd<-grep('latent', model)
if (length(latentInd)>0){
if (length(latentInd)>1) warning('Multiple latent keywords found and the first was used.')
latentLine<-model[latentInd]
latentSplit<-unlist( strsplit(latentLine, "=") )
latent<-latentSplit[2]
}else{
latent<-0
}
manifest<-as.numeric(manifest)
latent<-as.numeric(latent)
nrow<-manifest+latent
ramMatrix<-NULL
ramLabel<-NULL
arrowInd<-grep('arrow', model)
arrowLine<-model[arrowInd]
for (i in 1:length(arrowLine)){
temp<-ramParseLavaan(arrowLine[i], manifest, 0)
ramMatrix<-rbind(ramMatrix, temp$ramValue)
ramLabel<-c(ramLabel, temp$ramLabel)
}
slingInd<-grep('sling', model)
slingLine<-model[slingInd]
for (i in 1:length(slingLine)){
temp<-ramParseLavaan(slingLine[i], manifest, 1)
ramMatrix<-rbind(ramMatrix, temp$ramValue)
ramLabel<-c(ramLabel, temp$ramLabel)
}
labelInd<-grep('label', model)
varname<-character(0)
if (length(labelInd)>0){
varnameLine<-model[labelInd]
varname<-substr(varnameLine,7,nchar(varnameLine))
varname<-unlist(strsplit(varname,","))
}
if (length(varname)!=nrow){
if (length(varname)>0){
warning('The provided number of varible labels is not equal to the total number of variables. Default variables names will be used')
}
varname<-c(paste('V',1:manifest,sep=''),paste('F',1:latent,sep=''))
}
nEq<-nrow(ramMatrix)
lavaanModel<-NULL
for (i in 1:nEq){
arrowType<-"~"
if (ramMatrix[i,3]==2) arrowType="=~"
if (ramMatrix[i,3]==3) arrowType="~~"
if (ramMatrix[i,4]==1){
if (is.na(ramMatrix[i,5]) & is.na(ramLabel[i])) preLabel<-NULL
if (is.na(ramMatrix[i,5]) & !is.na(ramLabel[i])) preLabel<-paste(ramLabel[i], "*", sep="")
if (!is.na(ramMatrix[i,5]) & is.na(ramLabel[i])) preLabel<-paste("start(",ramMatrix[i,5],")", "*", sep="")
if (!is.na(ramMatrix[i,5]) & !is.na(ramLabel[i])) {
multMod<-varname[ramMatrix[i,1]]
if (ramMatrix[i,3]==2) {multMod<-varname[ramMatrix[i,2]]}
preLabel<-paste(ramLabel[i], "*",multMod,"+start(",ramMatrix[i,5],")", "*", sep="")
}
}else{
preLabel<-paste(ramMatrix[i,5],"*",sep="")
}
temp<-paste(varname[ramMatrix[i,2]], arrowType, preLabel, varname[ramMatrix[i,1]], "\n", sep="")
if (ramMatrix[i,3]==2) temp<-paste(varname[ramMatrix[i,1]], arrowType, preLabel, varname[ramMatrix[i,2]], "\n", sep="")
lavaanModel<-paste(lavaanModel, temp)
}
return(lavaanModel)
}
ramFit<-function(ramModel, data, type=c('ram','lavaan'), digits=3, zero.print="0", ...){
if (missing(type)) type = 'ram'
if (type=='ram') {
lavaanModel<-ram2lavaan(ramModel)
}else{
lavaanModel<-ramModel
}
fitModel<-lavaan(model= lavaanModel, data=data, fixed.x=FALSE, warn=FALSE, ...)
parTable<-fitModel@ParTable
parEst<-fitModel@Fit@est
parSE<-fitModel@Fit@se
fitInd<-fitMeasures(fitModel)
varALL<-unique(c(parTable$rhs, parTable$lhs))
varData<-names(data)
obsVar<-latVar<-NULL
for (i in 1:length(varALL)){
if (varALL[i] %in% varData){
obsVar<-c(obsVar, varALL[i])
}else{
latVar<-c(latVar, varALL[i])
}
}
varName<-c(obsVar, latVar)
manifest<-length(obsVar)
latent<-length(latVar)
nrow<-length(varName)
A<-S<-Ase<-Sse<-matrix(0,nrow,nrow,dimnames=list(varName, varName))
M<-Mse<-matrix(0,nrow,1,dimnames=list(varName, 'M'))
for (j in parTable$id){
if (parTable$op[j]=="~"){
A[parTable$lhs[j], parTable$rhs[j]]<-parEst[j]
Ase[parTable$lhs[j], parTable$rhs[j]]<-parSE[j]
}
if (parTable$op[j]=="=~"){
A[parTable$rhs[j], parTable$lhs[j]]<-parEst[j]
Ase[parTable$rhs[j], parTable$lhs[j]]<-parSE[j]
}
if (parTable$op[j]=="~~"){
S[parTable$lhs[j], parTable$rhs[j]]<-parEst[j]
Sse[parTable$lhs[j], parTable$rhs[j]]<-parSE[j]
S[parTable$rhs[j], parTable$lhs[j]]<-parEst[j]
Sse[parTable$rhs[j], parTable$lhs[j]]<-parSE[j]
}
}
A.na<-A
A.na[A==0]<-NA
S.na<-S
S.na[S==0]<-NA
Ase.na<-Ase
Ase.na[Ase==0]<-NA
Sse.na<-Sse
Sse.na[Sse==0]<-NA
cat("\n--------------------\n")
cat("Parameter estimates:\n")
cat("--------------------\n")
cat("\nMatrix A\n\n")
print(A.na, digits=digits,na.print = zero.print)
cat("\nMatrix S\n\n")
print(S.na,digits=digits,na.print = zero.print)
cat("\n----------------------------------------\n")
cat("Standard errors for parameter estimates:\n")
cat("----------------------------------------\n")
cat("\nMatrix A\n\n")
print(Ase.na,digits=digits,na.print = zero.print)
cat("\nMatrix S\n\n")
print(Sse.na,digits=digits,na.print = zero.print)
lname<-NULL
if (nrow>manifest) lname=varName[(manifest+1):nrow]
invisible((list(A=A, S=S, Ase=Ase, Sse=Sse, M=M, Mse=Mse, fit=fitInd, lavaan=fitModel, nvar=nrow, manifest=manifest,latent=latent,lname=lname,varname=varName, model=lavaanModel, data=data)))
} |
.sigsQcNegativeControl <- function(genesList, expressionMatrixList, outputDir, studyName, numResampling=50, warningsFile, logFile){
if(missing(genesList)){
stop("Need to specify a list of genes. The IDs must match those in the expression matrices.")
}
if(missing(expressionMatrixList)){
stop("Neet to specify a list of expression matrices where the rows represent the genes and the columns the samples.")
}
if(missing(outputDir)){
stop("Need to specify an output directory")
}
if(missing(studyName)){
studyName = "MyStudy"
}
if(missing(warningsFile)){
warningsFile = file.path(outputDir, "warnings.log")
}
if(missing(logFile)){
logFile = file.path(outputDir, "log.log")
}
tryCatch({
re.power = numResampling;
if(!dir.exists(outputDir)){
dir.create(path=outputDir, showWarnings = F, recursive = T)
}
log.con = file(logFile, open = "a")
warnings.con = file(warningsFile, open = "a")
for(genes.i in 1:length(genesList)){
genes = as.matrix(genesList[[genes.i]])
colnames(genes) = names(genesList)[genes.i]
.sigQcNegativeControl(genes, expressionMatrixList, outputDir, studyName, rePower=numResampling, warningsFile, logFile);
}
}, error = function(err) {
cat("", file=log.con, sep="\n")
cat(paste(Sys.time(),"Errors occurred during in sigQcNegativeControl:", err, sep=" "), file=log.con, sep="\n")
}, finally = {
close(log.con)
close(warnings.con)
})
}
.sigQcNegativeControl <- function(genes, expressionMatrixList, outputDir, studyName, rePower=50, warningsFile, logFile){
if(missing(genes)){
stop("Need to specify a list of genes. The IDs must match those in the expression matrices.")
}
if(missing(expressionMatrixList)){
stop("Neet to specify a list of expression matrices where the rows represent the genes and the columns the samples.")
}
if(missing(outputDir)){
stop("Need to specify an output directory")
}
if(missing(studyName)){
studyName = "MyStudy"
}
if(missing(warningsFile)){
warningsFile = file.path(outputDir, "warnings.log")
}
if(missing(logFile)){
logFile = file.path(outputDir, "log.log")
}
tryCatch({
re.power = rePower;
if(!dir.exists(outputDir)){
dir.create(path=outputDir, showWarnings = F, recursive = T)
}
log.con = file(logFile, open = "a")
warnings.con = file(warningsFile, open = "a")
len = dim(genes)[1]
datasets.num = length(expressionMatrixList)
datasets.names = names(expressionMatrixList)
for(dataset.i in 1:datasets.num){
expressionMatrix = expressionMatrixList[[dataset.i]]
if(is.null(datasets.names))
datasetName = paste0("Dataset",dataset.i)
else
datasetName = datasets.names[dataset.i]
data.matrix.ncols = dim(expressionMatrix)[2]
data.matrix.nrows = dim(expressionMatrix)[1]
gene_sigs_list = list()
signatureName = colnames(genes)
for(i in 1:re.power){
random.index.vector = stats::runif(min=1, max=data.matrix.nrows, n=len);
random.genes = as.matrix(rownames(expressionMatrix)[random.index.vector]);
gene_sigs_list[[paste0("NC",i)]] = random.genes;
}
names_sigs = names(gene_sigs_list)
cat(paste(Sys.time(), "Computing the Negative Control...", sep=" "), file=log.con, sep="")
mRNA_expr_matrix = list()
names = c(datasetName)
mRNA_expr_matrix[[datasetName]] = expressionMatrix
sigQC.out_dir = file.path(outputDir, "negative_control", datasetName, signatureName, "sigQC")
dir.create(path = sigQC.out_dir, showWarnings = FALSE, recursive = T)
.compute_without_plots(names_datasets = names,
gene_sigs_list = gene_sigs_list,
names_sigs = names_sigs,
mRNA_expr_matrix = mRNA_expr_matrix,
out_dir = sigQC.out_dir
)
cat("DONE", file=log.con, sep="\n")
metrics.file.path = file.path(sigQC.out_dir, "radarchart_table", "radarchart_table.txt")
metrics.table = utils::read.table(file = metrics.file.path, header = T, sep = "\t", check.names = F, row.names = 1)
neg.controls.summary = matrix(nrow = 6, ncol = dim(metrics.table)[2])
colnames(neg.controls.summary) = colnames(metrics.table)
rownames(neg.controls.summary) = c("mean", "Q0.025", "Q0.25", "Q0.5", "Q0.75", "Q0.975")
neg.controls.summary[1,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){mean(t, na.rm=T)})
neg.controls.summary[2,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){stats::quantile(t, na.rm=T, probs=c(0.025))})
neg.controls.summary[3,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){stats::quantile(t, na.rm=T, probs=c(0.25))})
neg.controls.summary[4,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){stats::quantile(t, na.rm=T, probs=c(0.5))})
neg.controls.summary[5,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){stats::quantile(t, na.rm=T, probs=c(0.75))})
neg.controls.summary[6,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){stats::quantile(t, na.rm=T, probs=c(0.975))})
stripchartMatrixList=list()
stripchartMatrixList[["Negative Control"]]=metrics.table
sigQC.out_dir = outputDir
sig.metrics.file.path = file.path(outputDir, "radarchart_table", "radarchart_table.txt")
if(file.exists(sig.metrics.file.path)){
sig.metrics.table = utils::read.table(file = sig.metrics.file.path, header = T, sep = "\t", check.names = F, row.names = 1)
index = which(rownames(sig.metrics.table) == paste0(gsub(' ','.', datasetName),'_',gsub(' ','.', signatureName)))
sig.metrics.table = sig.metrics.table[index,,drop=F]
stripchartMatrixList[["Original Metric Value"]]=sig.metrics.table
}
sigQC.out_dir = file.path(outputDir, "negative_control", datasetName, signatureName)
stripchart_group_names <- c('Relative Med. SD','Skewness',expression(sigma["" >= "10%" ]),expression(sigma["" >= "25%" ]),expression(sigma["" >= "50%" ]),'Coef. of Var.',
'Non-NA Prop.','Prop. Expressed',
'Autocor.',expression(rho["Mean,Med" ]),
expression(rho["PCA1,Med" ]),expression(rho["Mean,PCA1" ]), expression(sigma["PCA1" ]),
expression(rho["Med,Z-Med" ]))
.boxplot.matrix2(x=neg.controls.summary[2:6,], outputDir=sigQC.out_dir, plotName="boxplot_metrics",
plotTitle=paste("Boxplot Negative Controls for",signatureName,sep=" "), stripchartMatrixList=stripchartMatrixList,
stripchartPch=c(1, 21), stripchartCol = c("gray", "red"), xlab ="Metrics", ylab="Score",group.names=stripchart_group_names)
summary.filePath = file.path(sigQC.out_dir, "neg_controls_summary_table.txt")
utils::write.table(x = neg.controls.summary,file = summary.filePath,row.names = TRUE, col.names = TRUE,sep=",")
}
for(dataset.i in 1:datasets.num){
if(is.null(datasets.names))
datasetName = paste0("Dataset",dataset.i)
else
datasetName = datasets.names[dataset.i]
expressionMatrix = expressionMatrixList[[dataset.i]]
signatureName = colnames(genes)
expressionMatrix_perm_list <- list()
for(i in 1:re.power){
expressionMatrix_perm <- expressionMatrix
genes_present <- intersect(rownames(expressionMatrix),genes[,1])
new_ordering <- replicate(sample(1:length(genes_present)),n=dim(expressionMatrix)[2])
for(col.num in 1:dim(expressionMatrix)[2]){
expressionMatrix_perm[genes_present,col.num] <- expressionMatrix[genes_present[new_ordering[,col.num]],col.num]
}
expressionMatrix_perm_list[[paste0("PC",i)]] <- expressionMatrix_perm
}
sigQC.out_dir = file.path(outputDir, "permutation_control", datasetName, signatureName, "sigQC")
dir.create(path = sigQC.out_dir, showWarnings = FALSE, recursive = T)
gene_sigs_list <- list()
gene_sigs_list[[colnames(genes)]] <- genes
.compute_without_plots(names_datasets = names(expressionMatrix_perm_list),
gene_sigs_list = gene_sigs_list,
names_sigs = names(gene_sigs_list),
mRNA_expr_matrix = expressionMatrix_perm_list,
out_dir = sigQC.out_dir
)
cat("DONE", file=log.con, sep="\n")
metrics.file.path = file.path(sigQC.out_dir, "radarchart_table", "radarchart_table.txt")
metrics.table = utils::read.table(file = metrics.file.path, header = T, sep = "\t", check.names = F, row.names = 1)
neg.controls.summary = matrix(nrow = 6, ncol = dim(metrics.table)[2])
colnames(neg.controls.summary) = colnames(metrics.table)
rownames(neg.controls.summary) = c("mean", "Q0.025", "Q0.25", "Q0.5", "Q0.75", "Q0.975")
neg.controls.summary[1,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){mean(t, na.rm=T)})
neg.controls.summary[2,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){stats::quantile(t, na.rm=T, probs=c(0.025))})
neg.controls.summary[3,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){stats::quantile(t, na.rm=T, probs=c(0.25))})
neg.controls.summary[4,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){stats::quantile(t, na.rm=T, probs=c(0.5))})
neg.controls.summary[5,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){stats::quantile(t, na.rm=T, probs=c(0.75))})
neg.controls.summary[6,] = apply(X=metrics.table,MARGIN = 2,FUN = function(t){stats::quantile(t, na.rm=T, probs=c(0.975))})
stripchartMatrixList=list()
stripchartMatrixList[["Permutation Control"]]=metrics.table
sigQC.out_dir = outputDir
sig.metrics.file.path = file.path(outputDir, "radarchart_table", "radarchart_table.txt")
if(file.exists(sig.metrics.file.path)){
sig.metrics.table = utils::read.table(file = sig.metrics.file.path, header = T, sep = "\t", check.names = F, row.names = 1)
index = which(rownames(sig.metrics.table) == paste0(gsub(' ','.', datasetName),'_',gsub(' ','.', signatureName)))
sig.metrics.table = sig.metrics.table[index,,drop=F]
stripchartMatrixList[["Original Metric Value"]]=sig.metrics.table
}
sigQC.out_dir = file.path(outputDir, "permutation_control", datasetName, signatureName)
stripchart_group_names <- c('Relative Med. SD','Skewness',expression(sigma["" >= "10%" ]),expression(sigma["" >= "25%" ]),expression(sigma["" >= "50%" ]),'Coef. of Var.',
'Non-NA Prop.','Prop. Expressed',
'Autocor.',expression(rho["Mean,Med" ]),
expression(rho["PCA1,Med" ]),expression(rho["Mean,PCA1" ]), expression(sigma["PCA1" ]),
expression(rho["Med,Z-Med" ]))
.boxplot.matrix2(x=neg.controls.summary[2:6,], outputDir=sigQC.out_dir, plotName="boxplot_metrics",
plotTitle=paste("Boxplot Permutation Controls for",signatureName,sep=" "), stripchartMatrixList=stripchartMatrixList,
stripchartPch=c(1, 21), stripchartCol = c("gray", "red"), xlab ="Metrics", ylab="Score",group.names=stripchart_group_names)
summary.filePath = file.path(sigQC.out_dir, "perm_controls_summary_table.txt")
utils::write.table(x = neg.controls.summary,file = summary.filePath,row.names = TRUE, col.names = TRUE,sep=",")
}
}, error = function(err) {
cat("", file=log.con, sep="\n")
cat(paste(Sys.time(),"Errors occurred during in sigQcNegativeControl:", err, sep=" "), file=log.con, sep="\n")
}, finally = {
close(log.con)
close(warnings.con)
})
} |
.ddg.init.proc.nodes <- function () {
.ddg.set("ddg.proc.nodes", .ddg.create.proc.node.rows())
.ddg.set("ddg.pnum", 0)
.ddg.set("ddg.total.elapsed.time", 0)
time <- proc.time()
time <- time[1] + time[2]
.ddg.set("ddg.proc.start.time", time)
.ddg.set("ddg.starts.open", vector())
}
.ddg.is.proc.type <- function(type) {
return(type %in% c("Operation", "Start", "Finish", "Binding", "Incomplete"))
}
.ddg.pnum <- function() {
return (.ddg.get("ddg.pnum"))
}
.ddg.total.elapsed.time <- function() {
return (.ddg.get("ddg.total.elapsed.time"))
}
.ddg.start.proc.time <- function() {
return(.ddg.get("ddg.proc.start.time"))
}
.ddg.elapsed.time <- function(){
time <- proc.time()
orig.total.elapsed <- .ddg.total.elapsed.time()
total.elapsed <- time[1] + time[2] - .ddg.start.proc.time()
elapsed <- total.elapsed - orig.total.elapsed
.ddg.set("ddg.total.elapsed.time", total.elapsed)
return(elapsed)
}
.ddg.create.proc.node.rows <- function (size=100) {
return (data.frame(
ddg.type = character(size),
ddg.num = numeric(size),
ddg.name = character(size),
ddg.value = character(size),
ddg.return.linked = logical(size),
ddg.time = double(size),
ddg.snum = numeric(size),
ddg.startLine = numeric(size),
ddg.startCol = numeric(size),
ddg.endLine = numeric(size),
ddg.endCol = numeric(size),
stringsAsFactors=FALSE))
}
.ddg.proc.node.table <- function() {
return (.ddg.get("ddg.proc.nodes"))
}
.ddg.proc.nodes <- function() {
ddg.proc.nodes <- .ddg.get("ddg.proc.nodes")
return (ddg.proc.nodes [ddg.proc.nodes$ddg.num > 0, ])
}
.ddg.proc.node.returned <- function(pn) {
ddg.proc.nodes <- .ddg.proc.node.table()
ddg.proc.nodes$ddg.return.linked[pn] <- TRUE
.ddg.set("ddg.proc.nodes", ddg.proc.nodes)
}
.ddg.proc.node.exists <- function(pname) {
ddg.proc.nodes <- .ddg.proc.node.table()
matching.nodes <- ddg.proc.nodes[ddg.proc.nodes$ddg.name == pname, ]
return (nrow(matching.nodes) > 0)
}
.ddg.proc.number <- function(pname, find.unreturned.function=FALSE) {
ddg.proc.nodes <- .ddg.proc.node.table()
if (find.unreturned.function) {
matching <- ddg.proc.nodes[ddg.proc.nodes$ddg.name == pname &
!ddg.proc.nodes$ddg.return.linked, ]
}
else {
matching <- ddg.proc.nodes[ddg.proc.nodes$ddg.name == pname, ]
}
if (nrow (matching) > 0) {
return (matching$ddg.num[nrow(matching)])
}
error.msg <- paste("No procedure node found for", pname)
if (.ddg.debug.lib()) print (sys.calls())
.ddg.insert.error.message(error.msg)
return(0)
}
.ddg.proc.name <- function(pnum) {
if (pnum < 1 || pnum > .ddg.pnum()) {
error.msg <- paste("No name found for procedure number", pnum)
.ddg.insert.error.message(error.msg)
return ("")
}
return(.ddg.proc.node.table()$ddg.name[pnum])
}
.ddg.save.debug.proc.nodes <- function () {
fileout <- paste(.ddg.path.debug(), "/procedure-nodes.csv", sep="")
ddg.proc.nodes <- .ddg.proc.nodes()
utils::write.csv(ddg.proc.nodes, fileout, row.names=FALSE)
}
.ddg.record.proc <- function(ptype, pname, pvalue, ptime, snum=NA, pos=NA) {
if (!.ddg.is.proc.type (ptype)) {
print (paste (".ddg.record.proc: bad value for ptype - ", ptype))
}
ddg.pnum <- .ddg.inc("ddg.pnum")
ddg.proc.nodes <- .ddg.proc.node.table()
if (nrow(ddg.proc.nodes) < ddg.pnum) {
ddg.proc.nodes <- .ddg.add.rows("ddg.proc.nodes", .ddg.create.proc.node.rows())
}
ddg.proc.nodes$ddg.type[ddg.pnum] <- ptype
ddg.proc.nodes$ddg.num[ddg.pnum] <- ddg.pnum
ddg.proc.nodes$ddg.name[ddg.pnum] <- pname
ddg.proc.nodes$ddg.value[ddg.pnum] <- pvalue
ddg.proc.nodes$ddg.time[ddg.pnum] <- ptime
ddg.proc.nodes$ddg.snum[ddg.pnum] <- snum
if (is.object(pos) && length(pos@startLine == 1)) {
ddg.proc.nodes$ddg.startLine[ddg.pnum] <- pos@startLine
ddg.proc.nodes$ddg.startCol[ddg.pnum] <- pos@startCol
ddg.proc.nodes$ddg.endLine[ddg.pnum] <- pos@endLine
ddg.proc.nodes$ddg.endCol[ddg.pnum] <- pos@endCol
}
else if (is.vector(pos) && length(pos) == 4) {
ddg.proc.nodes$ddg.startLine[ddg.pnum] <- pos[1]
ddg.proc.nodes$ddg.startCol[ddg.pnum] <- pos[2]
ddg.proc.nodes$ddg.endLine[ddg.pnum] <- pos[3]
ddg.proc.nodes$ddg.endCol[ddg.pnum] <- pos[4]
}
else {
ddg.proc.nodes$ddg.startLine[ddg.pnum] <- NA
ddg.proc.nodes$ddg.startCol[ddg.pnum] <- NA
ddg.proc.nodes$ddg.endLine[ddg.pnum] <- NA
ddg.proc.nodes$ddg.endCol[ddg.pnum] <- NA
}
.ddg.set("ddg.proc.nodes", ddg.proc.nodes)
if (.ddg.debug.lib()) {
print (paste("Adding procedure node", ddg.pnum, "named", pname))
}
}
.ddg.proc.node <- function(ptype, pname, pvalue="", functions.called=NULL,
cmd = NULL, scriptNum=NA, startLine=NA, startCol=NA, endLine=NA, endCol=NA) {
if (!.ddg.is.proc.type (ptype)) {
print (paste (".ddg.proc.node: bad value for ptype - ", ptype))
}
if (!is.null(cmd)) {
snum <- [email protected]
pos <- cmd@pos
}
else if (!is.na(scriptNum)){
snum <- scriptNum
pos <- c(startLine, startCol, endLine, endCol)
}
else {
snum <- NA
pos <- NA
}
if (ptype == "Start") {
ddg.starts.open <- .ddg.get ("ddg.starts.open")
ddg.starts.open <- c(ddg.starts.open, pname)
.ddg.set ("ddg.starts.open", ddg.starts.open)
}
else if (ptype == "Finish") {
ddg.starts.open <- .ddg.get ("ddg.starts.open")
num.starts.open <- length(ddg.starts.open)
if (num.starts.open > 0) {
last.start.open <- ddg.starts.open[num.starts.open]
if (num.starts.open > 1) {
ddg.starts.open <- ddg.starts.open[1:num.starts.open-1]
}
else {
ddg.starts.open <- vector()
}
.ddg.set ("ddg.starts.open", ddg.starts.open)
if (last.start.open != pname) {
.ddg.insert.error.message("Start and finish nodes do not match")
}
}
else {
.ddg.insert.error.message(
"Attempting to create a finish node when there are no open blocks")
}
}
.ddg.set("ddg.last.proc.node.created", paste(ptype, pname))
ptime <- .ddg.elapsed.time()
.ddg.record.proc(ptype, pname, pvalue, ptime, snum, pos)
if( !.ddg.is.null.or.na (functions.called)) {
pfunctions <- .ddg.get.function.info(functions.called)
.ddg.add.to.function.table (pfunctions)
nonlocals.used <- .ddg.get.nonlocals.used (pfunctions)
if (!is.null (nonlocals.used) && length (nonlocals.used) > 0) {
nonlocals.used[sapply(nonlocals.used, is.null)] <- NULL
create.use.edge <- function (var) {
if (is.null(var) || length(var) == 0) return ()
var <- .ddg.extract.var (var)
scope <- .ddg.get.scope(var)
if (.ddg.data.node.exists(var, scope)) {
.ddg.data2proc(var, scope)
}
}
sapply (nonlocals.used, create.use.edge)
}
nonlocals.set <- .ddg.get.nonlocals.set (pfunctions)
if (!is.null (nonlocals.set) && length (nonlocals.set) > 0) {
nonlocals.set[sapply(nonlocals.set, is.null)] <- NULL
nonlocals.set <- unique(unlist(nonlocals.set))
nonlocals.set <- unique(sapply (nonlocals.set,
function (var) {
return(.ddg.extract.var (var))
}))
sapply (nonlocals.set, .ddg.save.var)
sapply (nonlocals.set, .ddg.lastproc2data)
}
}
if (.ddg.debug.lib()) print(paste("proc.node:", ptype, pname))
} |
mixcombine <- function(..., weight, rescale=TRUE) {
comp <- list(...)
cl <- grep("mix$", class(comp[[1]]), ignore.case=TRUE, value=TRUE)
dl <- dlink(comp[[1]])
lik <- likelihood(comp[[1]])
assert_that(all(sapply(comp, inherits, "mix")), msg="All components must be mixture objects.")
assert_that(all(sapply(comp, likelihood) == lik), msg="All components must have the same likelihood set.")
mix <- do.call(cbind, comp)
if(!missing(weight)) {
assert_that(length(weight) == length(comp))
mix[1,] <- mix[1,] * rep(weight, times=sapply(comp, ncol))
}
if(rescale)
mix[1,] <- mix[1,] / sum(mix[1,])
class(mix) <- cl
dlink(mix) <- dl
likelihood(mix) <- lik
if("normMix" %in% cl) sigma(mix) <- sigma(comp[[1]])
mix
} |
compute.contrasts <- function(x, y, type=c("Fisher", "simple")) {
n <- nrow(x)
p <- ncol(x)
stopifnot(length(y) == n)
stopifnot(y %in% 0:1)
stopifnot(table(y) > 3)
xbar0 <- colMeans(x[y==0, ])
xbar1 <- colMeans(x[y==1, ])
s0 <- apply(x[y==0, ], 2, sd)
s1 <- apply(x[y==1, ], 2, sd)
n0 <- sum(y==0)
n1 <- sum(y==1)
w <- (xbar0-xbar1) / sqrt(s0^2/n0 + s1^2/n1)
rho0 <- cor(x[y==0, ])
rho1 <- cor(x[y==1, ])
if (type[1]=="Fisher") {
z <- (atanh(rho0) - atanh(rho1)) / sqrt(1/(n0-3) + 1/(n1-3))
diag(z) <- 0
}
else if (type[1]=="simple") {
xx0 <- scale(x[y==0, ])
xx1 <- scale(x[y==1, ])
zz0 <- array(NA, c(n0, p, p))
zz1 <- array(NA, c(n1, p, p))
for (j in seq(p))
for (k in seq(p)) {
zz0[, j, k] <- xx0[, j] * xx0[, k]
zz1[, j, k] <- xx1[, j] * xx1[, k]
}
m0 <- m1 <- s0 <- s1 <- matrix(NA, p, p)
for (j in seq(p))
for (k in seq(p)) {
m0[j, k] <- mean(zz0[, j, k])
m1[j, k] <- mean(zz1[, j, k])
s0[j, k] <- sd(zz0[, j, k])
s1[j, k] <- sd(zz1[, j, k])
}
z <- (m0 - m1) / sqrt(s0^2 / n0 + s1^2 / n1)
}
else stop("Not implemented")
list(w=w, z=z)
}
hiertest <- function(x, y, type=c("Fisher", "simple")) {
cc <- compute.contrasts(x, y, type=type)
knots <- get.knots(cc$w, cc$z)
out <- test.statistics(knots$main.knots, knots$int.knots)
class(out) <- "hiertest"
out
}
interactions.above <- function(testobj, lambda) {
ints <- testobj$stats[testobj$is.int]
ints[ints > lambda]
}
plot.hiertest <- function(x, ...) {
plot(x$stats,col=x$is.int+1, pch=20,
main="Test statistics ordered by magnitude",
ylab="CHT Statistic", ...)
legend("topright", legend=c("Main effect", "Interaction"), col=1:2, pch=20)
}
print.hiertest <- function(x, nshow = 20, ...) {
top <- x$stats[1:nshow]
print(data.frame(Name = names(top), Statistic = top), row.names = FALSE, ...)
cat("... List truncated. Use estimate.fdr to determine a proper cutoff.",
fill = TRUE)
}
reject <- function(test.obj, lamlist) {
lamlist <- sort(lamlist)
nams <- names(test.obj$stats)
reject <- list()
for (i in seq(length(lamlist))){
ii <- test.obj$stats >= lamlist[i]
test.obj$stats <- test.obj$stats[ii]
test.obj$is.int <- test.obj$is.int[ii]
nams <- nams[ii]
reject[[i]] <- list(int=nams[test.obj$is.int], main=nams[!test.obj$is.int])
}
reject
}
get.knots <- function(w, z) {
p <- length(w)
if (nrow(z) != p) browser()
stopifnot(nrow(z) == p, ncol(z) == p)
aw <- abs(w)
diag(z) <- rep(0, p)
az <- abs(z)
main.knots <- pmax(aw, (aw + apply(az, 1, max)) / 2)
int.knots <- matrix(NA, p, p)
for (j in seq(p)) {
for (k in seq(p)) {
if (j == k) next
int.knots[j, k] <- max(aw[j] - sum(pmax(az[j, -j] - az[j, k], 0)), 0) / 2
}
}
int.knots <- pmin(az, az / 2 + int.knots)
int.knots <- pmax(int.knots, t(int.knots))
list(main.knots=main.knots, int.knots=int.knots)
}
test.statistics <- function(main.stats, int.stats) {
p <- length(main.stats)
int.stats <- int.stats[upper.tri(int.stats)]
o <- order(-c(main.stats,int.stats))
main.nams <- names(main.stats)
if (is.null(main.nams)) main.nams <- 1:p
int.nams <- outer(main.nams, main.nams, paste, sep=":")
nams <- c(main.nams, int.nams[upper.tri(int.nams)])
stats <- c(main.stats, int.stats)
names(stats) <- nams
stats <- stats[o]
list(stats=stats, is.int=o>p)
}
estimate.fdr <- function(x, y, lamlist, type=c("Fisher", "simple"), B=100) {
p <- ncol(x)
nlam <- length(lamlist)
ut <- upper.tri(diag(p))
cc <- compute.contrasts(x, y, type=type)
lams <- get.knots(cc$w, cc$z)$int.knots[ut]
ncalled <- rep(NA, nlam)
for (i in seq(nlam))
ncalled[i] <- sum(lams >= lamlist[i])
ncalled[ncalled==0] <- NA
lamstars <- matrix(NA, B, length(lams))
for (b in seq(B)) {
ccstar <- compute.contrasts(x, sample(y), type=type)
lamstars[b, ] <- get.knots(cc$w, ccstar$z)$int.knots[ut]
}
null.ncalled <- rep(NA, nlam)
for (i in seq(nlam))
null.ncalled[i] <- sum(lamstars >= lamlist[i])
out <- list(ncalled=ncalled, null.ncalled=null.ncalled, fdr=pmin(null.ncalled / B / ncalled, 1),
lamlist=lamlist)
class(out) <- "estfdr"
out
}
plot.estfdr <- function(x, ...) {
plot(x$ncalled, x$fdr, type="l", ylab="Estimated FDR",
xlab="Number of interactions called", ...)
}
print.estfdr <- function(x, ...) {
print(data.frame("Lambda cutoff" = x$lamlist, "Number called" = x$ncalled, "Estimated FDR" = x$fdr), ...)
} |
setConstructorS3("AromaUnitSignalBinarySet", function(...) {
extend(AromaTabularBinarySet(...), "AromaUnitSignalBinarySet")
})
setMethodS3("findByName", "AromaUnitSignalBinarySet", function(static, ..., chipType=NULL) {
NextMethod("findByName", subdirs=chipType)
}, static=TRUE, protected=TRUE)
setMethodS3("byName", "AromaUnitSignalBinarySet", function(static, name, tags=NULL, ..., chipType=NULL, paths=NULL, pattern="[.]asb$") {
suppressWarnings({
path <- findByName(static, name=name, tags=tags, chipType=chipType,
..., paths=paths, mustExist=TRUE)
})
suppressWarnings({
byPath(static, path=path, ..., pattern=pattern)
})
}, static=TRUE)
setMethodS3("validate", "AromaUnitSignalBinarySet", function(this, ...) {
chipTypes <- lapply(this, FUN=getChipType)
chipTypes <- unique(chipTypes)
if (length(chipTypes) > 1) {
throw("The located ", class(this)[1], " contains files with different chip types: ", paste(chipTypes, collapse=", "))
}
NextMethod("validate")
}, protected=TRUE)
setMethodS3("getPlatform", "AromaUnitSignalBinarySet", function(this, ...) {
getPlatform(getOneFile(this), ...)
})
setMethodS3("getChipType", "AromaUnitSignalBinarySet", function(this, ...) {
getChipType(getOneFile(this), ...)
})
setMethodS3("getAromaUgpFile", "AromaUnitSignalBinarySet", function(this, ...) {
getAromaUgpFile(getOneFile(this), ...)
}) |
NULL
mean_error <- function(actual, predicted, na.rm = FALSE) {
if (!is.numeric(actual)) {
abort_argument_type(
arg = "actual",
must = "be numeric",
not = actual
)
}
if (!is.numeric(predicted)) {
abort_argument_type(
arg = "predicted",
must = "be numeric",
not = predicted
)
}
if (!is.logical(na.rm)) {
abort_argument_type(
arg = "na.rm",
must = "be logical",
not = na.rm
)
}
if (length(actual) != length(predicted)) {
abort_argument_diff_length(
arg1 = "actual",
arg2 = "predicted"
)
}
mean(error(actual, predicted), na.rm = na.rm)
}
mean_error_pct <- function(actual, predicted, na.rm = FALSE) {
if (!is.numeric(actual)) {
abort_argument_type(
arg = "actual",
must = "be numeric",
not = actual
)
}
if (!is.numeric(predicted)) {
abort_argument_type(
arg = "predicted",
must = "be numeric",
not = predicted
)
}
if (!is.logical(na.rm)) {
abort_argument_type(
arg = "na.rm",
must = "be logical",
not = na.rm
)
}
if (length(actual) != length(predicted)) {
abort_argument_diff_length(
arg1 = "actual",
arg2 = "predicted"
)
}
mean(error_pct(actual, predicted), na.rm = na.rm)
}
mean_error_abs <- function(actual, predicted, na.rm = FALSE) {
if (!is.numeric(actual)) {
abort_argument_type(
arg = "actual",
must = "be numeric",
not = actual
)
}
if (!is.numeric(predicted)) {
abort_argument_type(
arg = "predicted",
must = "be numeric",
not = predicted
)
}
if (!is.logical(na.rm)) {
abort_argument_type(
arg = "na.rm",
must = "be logical",
not = na.rm
)
}
if (length(actual) != length(predicted)) {
abort_argument_diff_length(
arg1 = "actual",
arg2 = "predicted"
)
}
mean(error_abs(actual, predicted), na.rm = na.rm)
}
mean_error_abs_pct <- function(actual, predicted, na.rm = FALSE) {
if (!is.numeric(actual)) {
abort_argument_type(
arg = "actual",
must = "be numeric",
not = actual
)
}
if (!is.numeric(predicted)) {
abort_argument_type(
arg = "predicted",
must = "be numeric",
not = predicted
)
}
if (!is.logical(na.rm)) {
abort_argument_type(
arg = "na.rm",
must = "be logical",
not = na.rm
)
}
if (length(actual) != length(predicted)) {
abort_argument_diff_length(
arg1 = "actual",
arg2 = "predicted"
)
}
mean(error_abs_pct(actual, predicted), na.rm = na.rm)
}
mean_error_sqr <- function(actual, predicted, na.rm = FALSE) {
if (!is.numeric(actual)) {
abort_argument_type(
arg = "actual",
must = "be numeric",
not = actual
)
}
if (!is.numeric(predicted)) {
abort_argument_type(
arg = "predicted",
must = "be numeric",
not = predicted
)
}
if (!is.logical(na.rm)) {
abort_argument_type(
arg = "na.rm",
must = "be logical",
not = na.rm
)
}
if (length(actual) != length(predicted)) {
abort_argument_diff_length(
arg1 = "actual",
arg2 = "predicted"
)
}
mean(error_sqr(actual, predicted), na.rm = na.rm)
}
mean_error_sqr_root <- function(actual, predicted, na.rm = FALSE) {
if (!is.numeric(actual)) {
abort_argument_type(
arg = "actual",
must = "be numeric",
not = actual
)
}
if (!is.numeric(predicted)) {
abort_argument_type(
arg = "predicted",
must = "be numeric",
not = predicted
)
}
if (!is.logical(na.rm)) {
abort_argument_type(
arg = "na.rm",
must = "be logical",
not = na.rm
)
}
if (length(actual) != length(predicted)) {
abort_argument_diff_length(
arg1 = "actual",
arg2 = "predicted"
)
}
sqrt(mean_error_sqr(actual, predicted, na.rm = na.rm))
}
bias <- function(actual, predicted, na.rm = FALSE) {
if (!is.numeric(actual)) {
abort_argument_type(
arg = "actual",
must = "be numeric",
not = actual
)
}
if (!is.numeric(predicted)) {
abort_argument_type(
arg = "predicted",
must = "be numeric",
not = predicted
)
}
if (!is.logical(na.rm)) {
abort_argument_type(
arg = "na.rm",
must = "be logical",
not = na.rm
)
}
if (length(actual) != length(predicted)) {
abort_argument_diff_length(
arg1 = "actual",
arg2 = "predicted"
)
}
mean_error(actual, predicted, na.rm = na.rm)
}
loa <- function(actual, predicted, na.rm = FALSE) {
if (!is.numeric(actual)) {
abort_argument_type(
arg = "actual",
must = "be numeric",
not = actual
)
}
if (!is.numeric(predicted)) {
abort_argument_type(
arg = "predicted",
must = "be numeric",
not = predicted
)
}
if (!is.logical(na.rm)) {
abort_argument_type(
arg = "na.rm",
must = "be logical",
not = na.rm
)
}
if (length(actual) != length(predicted)) {
abort_argument_diff_length(
arg1 = "actual",
arg2 = "predicted"
)
}
bias <- bias(actual, predicted, na.rm = na.rm)
SD <- stats::sd(error(actual, predicted), na.rm = na.rm)
lower <- bias - 1.96 * SD
upper <- bias + 1.96 * SD
loa <- list(lower = lower, upper = upper)
loa
} |
tango.pboot<-function(...)
{
return( tango.stat(...) )
} |
mydata<-as.table(matrix(c(51,2,42,46,7,
4,0,5,3,0,
44,4,174,39,2,
14,3,34,36,4,
4,1,26,11,0,
1,0,1,2,0,
0,0,0,0,0,
5,0,4,2,0,
1,0,3,0,0,
0,0,0,0,0,
1006,112,921,495,91,
81,1,79,22,2,
1084,109,1909,397,134,
486,42,419,220,33,
63,3,151,26,1,
34,3,7,21,1,
8,0,2,1,0,
23,0,20,13,3,
6,11,5,0,0,
0,0,3,0,0,
28,0,18,4,7,
0,0,2,0,0,
22,2,98,14,1,
5,0,25,0,0,
2,0,0,0,0), nrow=25, ncol=5, byrow = TRUE))
hyp <- "a:=x[1,1]+x[1,2]+x[1,3]+x[1,4]+x[1,5];
b:=x[1,1]+x[2,1]+x[3,1]+x[4,1]+x[5,1];
c:=x[7,1]+x[7,2]+x[7,3]+x[7,4]+x[7,5];
d:=x[6,2]+x[7,2]+x[8,2]+x[9,2]+x[10,2];
e:=x[13,1]+x[13,2]+x[13,3]+x[13,4]+x[13,5];
f:=x[11,3]+x[12,3]+x[13,3]+x[14,3]+x[15,3];
g:=x[14,1]+x[14,2]+x[14,3]+x[14,4]+x[14,5];
h:=x[11,4]+x[12,4]+x[13,4]+x[14,4]+x[15,4];
i:=x[18,1]+x[18,2]+x[18,3]+x[18,4]+x[18,5];
j:=x[16,3]+x[17,3]+x[18,3]+x[19,3]+x[20,3];
k:=x[19,1]+x[19,2]+x[19,3]+x[19,4]+x[19,5];
l:=x[16,4]+x[17,4]+x[18,4]+x[19,4]+x[20,4];
a > b & c > d & e > f & k > l;
a > b & c > d & g > h & i > j;
a = b & c = d & e = f & k = l;
a = b & c = d & g = h & i = j"
res <- gorica(mydata, hyp)
test_that("contingency table supp 3_1 works", {
expect_equivalent(res$fit$gorica_weights,
c(0.1522023526, 0.6953728373, 0.0008049366, 0.000866056, 0.1507538174),
tolerance = .03)
}) |
factory_gt <- function(tab,
align = NULL,
hrule = NULL,
notes = NULL,
title = NULL,
escape = TRUE,
...) {
assert_dependency("gt")
idx_col <- ncol(tab)
out <- gt::gt(tab, caption = title)
theme_ms <- getOption("modelsummary_theme_gt",
default = theme_ms_gt)
out <- theme_ms(out,
output_format = settings_get("output_format"),
hrule = hrule)
if (!is.null(notes)) {
for (n in notes) {
out <- gt::tab_source_note(out, source_note = n)
}
}
span <- attr(tab, 'span_gt')
if (!is.null(span)) {
for (s in span) {
out <- gt::tab_spanner(out, label = s$label, columns = s$position)
}
}
if (!is.null(align)) {
left <- grep('l', align)
center <- grep('c', align)
right <- grep('r', align)
out <-
out <- gt::cols_align(out, align = 'center', columns = center)
out <- gt::cols_align(out, align = 'left', columns = left)
out <- gt::cols_align(out, align = 'right', column = right)
}
if (is.null(settings_get("output_file"))) {
if (settings_equal("output_format", "html")) {
out <- gt::as_raw_html(out)
}
if (settings_equal("output_format", "latex")) {
out <- gt::as_latex(out)
}
if (!is.null(getOption("modelsummary_orgmode")) &&
settings_equal("output_format", c("html", "latex"))) {
out <- sprintf("
return(out)
}
if (settings_equal("output_format", c("default", "gt"))) {
return(out)
}
} else {
gt::gtsave(out, settings_get("output_file"))
}
} |
library(ggplot2)
library(grid)
this_base <- "fig10-03_presidential-approval-data-waffle-chart"
my_data <- data.frame(decision = c("Approve", "Disapprove", "No Opinion"),
ncases = c(53L, 34L, 13L))
ndeep <- 10
my_data_waffle <- expand.grid(y = 1:ndeep,
x = seq_len(ceiling(sum(my_data$ncases) / ndeep)))
decisionvec <- rep(my_data$decision, my_data$ncases)
my_data_waffle$decision <-
c(decisionvec, rep(NA, nrow(my_data_waffle) - length(decisionvec)))
my_data_waffle$decision <- factor(my_data_waffle$decision)
p <- ggplot(my_data_waffle, aes(x = x, y = y, fill = decision)) +
geom_tile(color = "black", size = 0.5) +
geom_hline(aes(yintercept = 5.5), size = 2) +
geom_vline(aes(xintercept = 5.5), size = 2) +
scale_fill_manual(breaks = c("1", "2"),
values = c("grey30", "grey60", "white"),
labels = c("Approve", "Disapprove")) +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0), trans = 'reverse') +
ggtitle("Fig 10.3 Presidential Approval Data \nWaffle Chart") +
theme(panel.border = element_rect(fill = NA, size = 3),
plot.title = element_text(size = rel(1.2), face = "bold"),
axis.text = element_blank(),
axis.title = element_blank(),
axis.ticks = element_blank(),
legend.title = element_blank(),
legend.position = "bottom",
legend.direction = "vertical")
p
ggsave(paste0(this_base, ".png"), p, width = 5, height = 6) |
dpcoa <- function (df, dis = NULL, scannf = TRUE, nf = 2, full = FALSE, tol = 1e-07, RaoDecomp = TRUE)
{
if (!inherits(df, "data.frame"))
stop("df is not a data.frame")
if (any(df < 0))
stop("Negative value in df")
if (any(rowSums(df) < tol))
stop("Remove empty samples")
nesp <- ncol(df)
nrel <- nrow(df)
if (!is.null(dis)) {
if (!inherits(dis, "dist"))
stop("dis is not an object 'dist'")
n1 <- attr(dis, "Size")
if (nesp != n1)
stop("Non convenient dimensions")
if (!is.euclid(dis))
stop("an Euclidean matrix is needed")
}
if (is.null(dis)) {
dis <- (matrix(1, nesp, nesp) - diag(rep(1, nesp))) * sqrt(2)
rownames(dis) <- colnames(dis) <- names(df)
dis <- as.dist(dis)
}
if (is.null(attr(dis, "Labels")))
attr(dis, "Labels") <- names(df)
d <- as.matrix(dis)
d <- (d^2) / 2
w.samples <- rowSums(df)/sum(df)
w.esp <- colSums(df)/sum(df)
dfp <- as.matrix(sweep(df, 1, rowSums(df), "/"))
pco1 <- dudi.pco(dis, row.w = w.esp, full = TRUE)
wrel <- data.frame(dfp %*% as.matrix(pco1$li))
row.names(wrel) <- rownames(df)
res <- as.dudi(wrel, rep(1, ncol(wrel)), w.samples, scannf = scannf, nf = nf, call = match.call(), type = "dpcoa", tol = tol, full = full)
w <- as.matrix(pco1$li) %*% as.matrix(res$c1)
w <- data.frame(w)
row.names(w) <- names(df)
res$dls <- w
res$dw <- w.esp
res$co <- res$l1 <- NULL
if(RaoDecomp){
res$RaoDiv <- apply(dfp, 1, function(x) sum(d * outer(x, x)))
fun1 <- function(x) {
w <- -sum(d * outer (x, x))
return(sqrt(w))
}
dnew <- matrix(0, nrel, nrel)
idx <- dfp[col(dnew)[col(dnew) < row(dnew)], ] - dfp[row(dnew)[col(dnew) < row(dnew)], ]
dnew <- apply(idx, 1, fun1)
attr(dnew, "Size") <- nrel
attr(dnew, "Labels") <- rownames(df)
attr(dnew, "Diag") <- TRUE
attr(dnew, "Upper") <- FALSE
attr(dnew, "method") <- "dis"
attr(dnew, "call") <- match.call()
class(dnew) <- "dist"
res$RaoDis <- dnew
Bdiv <- crossprod(w.samples, (as.matrix(dnew)^2)/2) %*% w.samples
Tdiv <- crossprod(w.esp, d) %*% (w.esp)
Wdiv <- Tdiv - Bdiv
divdec <- data.frame(c(Bdiv, Wdiv, Tdiv))
names(divdec) <- "Diversity"
rownames(divdec) <- c("Between-samples diversity", "Within-samples diversity", "Total diversity")
res$RaoDecodiv <- divdec
}
class(res) <- "dpcoa"
return(res)
}
plot.dpcoa <- function(x, xax = 1, yax = 2, ...) {
if (!inherits(x, "dpcoa"))
stop("Object of type 'dpcoa' expected")
nf <- x$nf
if (xax > nf)
stop("Non convenient xax")
if (yax > nf)
stop("Non convenient yax")
opar <- par(no.readonly = TRUE)
on.exit (par(opar))
par(mfrow = c(2,2))
s.corcircle(x$c1[, c(xax, yax)], cgrid = 0,
sub = "Principal axes", csub = 1.5, possub = "topleft", fullcircle = TRUE)
add.scatter.eig(x$eig, length(x$eig), xax, yax, posi = "bottomleft", ratio = 1/4)
X <- as.list(x$call)[[2]]
X <- eval.parent(X)
s.distri(x$dls[, c(xax, yax)], t(X), cellipse = 1, cstar = 0,
sub = "Categories & Collections", possub = "bottomleft", csub = 1.5)
s.label(x$dls[, c(xax, yax)], sub = "Categories", possub = "bottomleft", csub = 1.5)
if(!is.null(x$RaoDiv))
s.value(x$li[, c(xax, yax)], x$RaoDiv, sub = "Rao Divcs")
else
s.label(x$li[, c(xax, yax)], sub = "Collections", possub = "bottomleft", csub = 1.5)
}
summary.dpcoa <- function(object, ...){
summary.dudi(object, ...)
}
print.dpcoa <- function (x, ...)
{
if (!inherits(x, "dpcoa"))
stop("to be used with 'dpcoa' object")
cat("Double principal coordinate analysis\n")
cat("call: ")
print(x$call)
cat("class: ")
cat(class(x), "\n")
cat("\n$nf (axis saved) :", x$nf)
cat("\n$rank: ", x$rank)
cat("\n\neigen values: ")
l0 <- length(x$eig)
cat(signif(x$eig, 4)[1:(min(5, l0))])
if (l0 > 5)
cat(" ...\n\n")
else cat("\n\n")
nr <- ifelse(!is.null(x$RaoDecomp), 4, 3)
sumry <- array("", c(nr, 4), list(1:nr, c("vector", "length",
"mode", "content")))
sumry[1, ] <- c("$dw", length(x$dw), mode(x$dw), "category weights")
sumry[2, ] <- c("$lw", length(x$lw), mode(x$lw), "collection weights")
sumry[3, ] <- c("$eig", length(x$eig), mode(x$eig), "eigen values")
if(nr == 4)
sumry[4, ] <- c("$RaoDiv", length(x$RaoDiv), mode(x$RaoDiv),
"diversity coefficients within collections")
print(sumry, quote = FALSE)
cat("\n")
if(!is.null(x$RaoDecomp)){
sumry <- array("", c(1, 3), list(1:1, c("dist", "Size", "content")))
sumry[1, ] <- c("$RaoDis", attributes(x$RaoDis)$Size, "distances among collections")
print(sumry, quote = FALSE)
cat("\n")
}
sumry <- array("", c(nr, 4), list(1:nr, c("data.frame", "nrow",
"ncol", "content")))
sumry[1, ] <- c("$dls", nrow(x$dls), ncol(x$dls), "coordinates of the categories")
sumry[2, ] <- c("$li", nrow(x$li), ncol(x$li), "coordinates of the collections")
sumry[3, ] <- c("$c1", nrow(x$c1), ncol(x$c1), "scores of the principal axes of the categories")
if(nr == 4)
sumry[4, ] <- c("$RaoDecodiv", 3, 1, "decomposition of diversity")
print(sumry, quote = FALSE)
} |
layersList <- function(obj) {
if (is.ggplot(obj)) obj <- list(obj)
rmNullObs(lapply(obj, layersListFull))
} |
NULL
multinom_test <- function (x, p = rep(1/length(x), length(x)), detailed = FALSE)
{
args <- as.list(environment()) %>%
add_item(method = "exact_multinom_test")
if (!is.vector(x)) {
stop("'x' must be a vector")
}
if (sum(p) != 1) {
stop("sum of probabilities must be 1")
}
if (length(x) != length(p)) {
stop("'x' and 'p' lengths differ")
}
if(is.null(names(x))){
names(x) <- paste0("grp", 1:length(x))
}
size <- sum(x)
groups <- length(x)
numEvents <- choose(size + groups - 1, groups - 1)
pObs <- stats::dmultinom(x, size, p)
findVectors <- function(groups, size) {
if (groups == 1) {
mat <- size
}
else {
mat <- matrix(rep(0, groups - 1), nrow = 1)
for (i in 1:size) {
mat <- rbind(mat, findVectors(groups - 1, i))
}
mat <- cbind(mat, size - rowSums(mat))
}
mat
}
eventMat <- findVectors(groups, size)
eventProb <- apply(eventMat, 1, function(x) stats::dmultinom(x, size, p))
p.val <- sum(eventProb[eventProb <= pObs])
results <- tibble(
p = p.val, method = "Exact multinomial test"
) %>%
add_significance() %>%
select(.data$p, .data$p.signif, .data$method)
descriptives <- tibble(
group = names(x),
observed = x, expected = p*size
)
if(!detailed){
results <- results[, c("p", "p.signif")]
}
results %>%
set_attrs(args = args, descriptives = descriptives) %>%
add_class(c("rstatix_test", "exact_multinom_test"))
} |
vis.mirror.pt <- function(x,
titles,
size_titles = 5,
horizon = NULL,
breaks_x_left,
breaks_x_right,
from = 1,
cols,
ord,
xlab = "Time",
ylab = "Probability",
legend.pos = "right") {
if (!requireNamespace("ggplot2", quietly = TRUE)) {
stop("Package ggplot2 needed for this function to work. Please install it.", call. = FALSE)
}
n_states <- 1 + sum(!is.na(x[[1]][["trans"]][from, ]))
if (missing(cols)) cols <- set_colours(n = n_states, type = "areas")
if (missing(ord)) ord <- seq_len(n_states)
p_left <- plot.probtrans(x[[1]], use.ggplot = TRUE, ord = ord, cols = cols)
p_right <- plot.probtrans(x[[2]], use.ggplot = TRUE, ord = ord, cols = cols)
build_p1 <- ggplot2::ggplot_build(p_left)
left_xlim <- p_left$coordinates$limits$x
right_xlim <- p_right$coordinates$limits$x
if (!is.null(horizon)) {
if (horizon > max(left_xlim) | horizon > max(right_xlim))
stop(paste0("Horizon should be smaller than both ", max(left_xlim), " and ", max(right_xlim)))
left_xlim[which(left_xlim == max(left_xlim))] <- horizon
right_xlim[which(right_xlim == max(right_xlim))] <- horizon
}
dat_left <- p_left$data[time <= max(left_xlim)]
dat_left[time == max(dat_left$time), ]$time <- max(left_xlim)
dat_right <- p_right$data[time <= max(right_xlim)]
dat_right[time == max(dat_right$time), ]$time <- max(right_xlim)
if (any(levels(dat_left$state) != levels(dat_right$state)))
stop("Argument 'ord' must be the same for both plots.")
ylim <- c(0, 1)
main <- prep_compare_df(
dat_left = dat_left,
dat_right = dat_right
)
dat_main <- main$df_compare
max_t <- main$max_t
diff <- main$diff
breaks_size <- c(floor(max_t / 3), floor(max(dat_right$time) / 3))
if (any(breaks_size == 0)) breaks_size <- c(round(max_t / 3, digits = 1), round(max(dat_right$time) / 3, digits = 1))
if (missing(breaks_x_left)) breaks_x_left <- seq(from = 0, to = max_t, by = breaks_size[1])
if (missing(breaks_x_right)) breaks_x_right <- seq(from = 0, to = max(dat_right$time), by = breaks_size[2])
if (any(breaks_x_left > max_t))
stop(paste0("Max follow up on left side is ", round(max_t, 3), ", make sure all breaks are smaller!"))
if (any(breaks_x_right > max(dat_right$time)))
stop(paste0("Max follow up on right side is ", round(max(dat_right$time), 3), ", make sure all breaks are smaller!"))
breakos <- c(breaks_x_left, max(dat_main$time) - breaks_x_right)
labos <- c(breaks_x_left, breaks_x_right)
p_main <- ggplot2::ggplot(data = dat_main, ggplot2::aes(x = .data$time)) +
ggplot2::geom_ribbon(
ggplot2::aes(ymin = .data$low, ymax = .data$upp, fill = .data$state),
col = "black",
na.rm = TRUE
) +
ggplot2::geom_segment(
x = max_t,
xend = max_t,
y = ylim[1],
yend = ylim[2],
size = 2
) +
ggplot2::scale_x_continuous(xlab, breaks = breakos, labels = labos) +
ggplot2::ylab(ylab) +
ggplot2::scale_fill_manual(values = cols) +
ggplot2::guides(fill = ggplot2::guide_legend(reverse = TRUE))
if (missing(titles)) {
p <- p_main +
ggplot2::theme(
legend.position = legend.pos,
panel.grid = ggplot2::element_blank(),
panel.background = ggplot2::element_blank(),
axis.line = ggplot2::element_blank()
) +
ggplot2::coord_cartesian(expand = 0, ylim = ylim)
return(p)
} else {
pos_title_left <- (max_t / 2)
pos_title_right <- (max(dat_main$time) - max(dat_right$time) / 2)
titles_df <- data.frame(
labs = c(titles[1], titles[2]),
pos_x = c(pos_title_left, pos_title_right),
pos_y = rep(1.05, 2)
)
base_p <- p_main +
ggplot2::theme(
plot.margin = ggplot2::unit(c(30.5, 5.5, 5.5, 5.5), "points"),
legend.position = legend.pos,
panel.grid = ggplot2::element_blank()
) +
ggplot2::coord_cartesian(clip = "off", expand = 0, ylim = ylim) +
ggplot2::geom_text(
data = titles_df,
ggplot2::aes(x = .data$pos_x, y = .data$pos_y, label = .data$labs),
hjust = 0.5,
size = size_titles
)
return(base_p)
}
}
prep_compare_df <- function(dat_left, dat_right) {
. <- time <- time_orig <- state <- side <- NULL
p1_maxt <- max(dat_left$time)
p2_maxt <- max(dat_right$time)
max_t <- p1_maxt
diff <- ifelse(p2_maxt != p1_maxt, p2_maxt - p1_maxt, 0)
df_p2 <- data.table::copy(dat_right)
df_p2[, time := data.table::shift(
x = time,
fill = NA,
n = 1,
type = "lag"
), by = state]
df_p2 <- unique(df_p2[!is.na(time)])
df_p2[, ':=' (
time_orig = time,
time = -time + 2 * max_t + (diff + 0.01)
)]
cols <- c("time", "time_orig")
df_p2 <- rbind(df_p2, df_p2)
data.table::setorder(df_p2, time)
df_p2[, (cols) := Map(
f = data.table::shift,
x = .SD,
fill = time[1L],
n = 1,
type = "lag"
), by = state, .SDcols = cols]
df_p2[, side := "right"]
df_p1 <- dat_left[, ':=' (
time_orig = time,
side = "left"
)]
plot_df <- rbind(df_p1, df_p2[!is.na(time)])
res <- list("df_compare" = plot_df, "max_t" = max_t, "diff" = diff)
return(res)
} |
sirt_summary_print_computation_time_s1 <- function(object)
{
cat( "Date of Analysis:", paste(object$s2 ), "\n" )
cat("Computation Time:", print(object$s2 - object$s1), "\n\n")
} |
context("gather_array")
test_that("works with array of length 1", {
json <- '[{"name": "bob"}]'
expect_identical(
json %>% gather_array,
tbl_json(
data.frame(
document.id = 1L,
array.index = 1L
),
list(
list(name = "bob")
)
)
)
}
)
test_that("works with single array", {
json <- '[{"name": "bob"}, {"name": "susan"}]'
expect_identical(
json %>% gather_array,
tbl_json(
data.frame(
document.id = c(1L, 1L),
array.index = c(1L, 2L)
),
list(
list(name = "bob"), list(name = "susan")
)
)
)
}
)
test_that("works with multiple json", {
json <- c(
'[{"name": "bob"}, {"name": "susan"}]',
'[{"name": "john"}]'
)
expect_identical(
json %>% gather_array,
tbl_json(
data.frame(
document.id = c(1L, 1L, 2L),
array.index = c(1L, 2L, 1L)
),
list(
list(name = "bob"), list(name = "susan"), list(name = "john")
)
)
)
}
)
test_that("works with value array", {
json <- c('["a", "b"]')
expect_identical(
json %>% gather_array,
tbl_json(
data.frame(
document.id = c(1L, 1L),
array.index = c(1L, 2L)
),
list("a", "b")
)
)
}
)
test_that("empty json are dropped", {
json <- c('[{"name": "bob"}]', '[]')
expect_identical(
json %>% gather_array,
tbl_json(
data.frame(
document.id = 1L,
array.index = 1L
),
list(
list(name = "bob")
)
)
)
}
)
test_that("null values are kept", {
json <- '["string", null]'
expect_identical(
json %>% gather_array,
tbl_json(
data.frame(
document.id = c(1L, 1L),
array.index = c(1L, 2L)
),
list("string", NULL)
)
)
}
)
test_that("objects throws error", {
json <- c('[{"name": "bob"}]', '{"name": "susan"}')
expect_error(json %>% gather_array)
}
)
test_that("values throws error", {
json <- c('[{"name": "bob"}]', '"bob"')
expect_error(json %>% gather_array)
}
)
test_that("correctly handles character(0), {}, []", {
empty <- tbl_json(
data.frame(
document.id = integer(0),
array.index = integer(0),
stringsAsFactors = FALSE),
list())
expect_identical(
character(0) %>% gather_array,
empty)
expect_error('{}' %>% gather_array)
expect_identical(
'[]' %>% gather_array,
empty)
}
) |
mcSimulations <- function(N, nobs = 250, nMC = 100, rho = 0.5, sparsity = 0.05,
penalty = "ENET", covariance = "Toeplitz",
method = "normal", modelSel = "cv", ...) {
results <- list()
results$confusionMatrix <- matrix(0, nMC, 4)
results$matrixNorms <- matrix(0, nMC, 6)
pb <- utils::txtProgressBar(min = 0, max = nMC, style = 3)
for (i in 1:nMC) {
s <- simulateVAR(nobs = nobs, N = N, rho = rho, sparsity = sparsity, covariance = covariance, method = method, ...)
rets <- s$series
genA <- s$A[[1]]
spRad <- max(Mod(eigen(genA)$values))
res <- fitVAR(data = rets, penalty = penalty, method = modelSel, ...)
A <- res$A[[1]]
estSpRad <- max(Mod(eigen(A)$values))
L <- A
L[L != 0] <- 1
L[L == 0] <- 0
genL <- genA
genL[genL != 0] <- 1
genL[genL == 0] <- 0
results$confusionMatrix[i, 1:4] <- prop.table(table(Predicted = L, Real = genL))
results$accuracy[i] <- 1 - sum(abs(L - genL)) / N^2
results$matrixNorms[i, 1] <- abs(sum(L) / N^2 - sparsity)
results$matrixNorms[i, 2] <- l2norm(A - genA) / l2norm(genA)
results$matrixNorms[i, 3] <- frobNorm(A - genA) / frobNorm(genA)
results$matrixNorms[i, 4] <- res$mse
results$matrixNorms[i, 5] <- spRad
results$matrixNorms[i, 6] <- estSpRad
utils::setTxtProgressBar(pb, i)
}
close(pb)
results$confusionMatrix <- as.data.frame(results$confusionMatrix)
colnames(results$confusionMatrix) <- c("TP", "FP", "FN", "TN")
results$matrixNorms <- as.data.frame(results$matrixNorms)
colnames(results$matrixNorms) <- c("sparDiff", "l2", "frob", "mse", "spRad", "estSpRad")
return(results)
} |
library(backtest)
load("backtest.function.test.RData")
bt.1 <- backtest(x, in.var = "in.var.1", ret.var = "ret.var.1", by.period = FALSE)
bt.2 <- backtest(x, in.var = "in.var.1", ret.var = "ret.var.1", by.var = "country", by.period = FALSE)
bt.3 <- backtest(x, id.var = "id", in.var = "in.var.1", ret.var = "ret.var.1", date.var = "date", by.period = FALSE)
bt.4 <- backtest(x, in.var = c("in.var.1", "in.var.2"), ret.var = "ret.var.1", by.var = "country", by.period = FALSE)
bt.5 <- backtest(x, in.var = "in.var.1", ret.var = "ret.var.1", by.period = TRUE, date.var = "date", buckets = 2)
bt.6 <- backtest(x, in.var = "in.var.1", ret.var = "ret.var.1", by.period = TRUE, date.var = "date", natural = TRUE, id = "id", buckets = 2)
bt.7 <- backtest(x, id.var = "id", in.var = "in.var.1", ret.var = "ret.var.1", by.period = FALSE, date.var = "date", overlaps = 2)
stopifnot(
all.equal(truth.1, as.numeric(bt.1@results[1,1 , , ,"means"])),
all(mapply(all.equal, truth.2, bt.2@results[1,1 , , ,"means"])),
all(mapply(all.equal, truth.3, bt.3@results[1,1 , , ,"means"])),
all(mapply(all.equal, truth.4.A, bt.4@results["ret.var.1","in.var.1", , ,"means"])),
all(mapply(all.equal, truth.4.B, bt.4@results["ret.var.1","in.var.2", , ,"means"])),
all(mapply(all.equal, truth.5, bt.5@results[1,1 , , ,"means"])),
all(mapply(all.equal, truth.6, bt.6@results[1,1 , , ,"means"]))
) |
fxmonitor <- function(formula, data, start, end = 3, alpha = 0.05, meat. = NULL)
{
if(missing(formula)) formula <- colnames(data)[1]
if(is.character(formula)) formula <- as.formula(paste(formula,
"~", paste(colnames(data)[colnames(data) != formula], collapse = " + ")))
if(is.character(start)) start <- as.Date(start)
monitor <- end(window(data, end = start-1))
n <- NROW(window(data, end = monitor))
hist.fm <- fxlm(formula, data = window(data, end = monitor))
sigma2 <- coef(hist.fm)["(Variance)"]
mf <- model.frame(formula, data = as.data.frame(data))
y <- model.response(mf)
X <- model.matrix(formula, data = as.data.frame(data))
attr(X, "assign") <- NULL
y.pred <- predict(hist.fm, as.data.frame(X))
mscore <- as.vector(y - y.pred) * X
mscore <- cbind(mscore, ((y - y.pred)^2 - sigma2))
mscore <- mscore/sqrt(n)
hist.score <- mscore[1:n,]
J12 <- if(!is.null(meat.)) meat.(hist.fm) else crossprod(hist.score)
J12 <- root.matrix(J12)
mscore <- apply(as.matrix(mscore), 2, cumsum)
mscore <- zoo(t(chol2inv(chol(J12)) %*% t(mscore)), order.by = index(data))
colnames(mscore) <- names(coef(hist.fm))
cv <- matrix(c(
1.159, 1.329, 1.430, 1.472, 1.502, 1.541, 1.567,
1.253, 1.445, 1.544, 1.589, 1.619, 1.668, 1.688,
1.383, 1.590, 1.695, 1.753, 1.789, 1.838, 1.860,
1.467, 1.688, 1.793, 1.861, 1.899, 1.961, 1.964,
1.568, 1.814, 1.939, 2.006, 2.046, 2.090, 2.128,
1.616, 1.896, 2.022, 2.076, 2.131, 2.159, 2.219,
1.680, 1.997, 2.103, 2.177, 2.226, 2.257, 2.311,
1.801, 2.114, 2.217, 2.301, 2.397, 2.380, 2.454,
1.976, 2.300, 2.423, 2.525, 2.573, 2.597, 2.650,
2.118, 2.478, 2.599, 2.712, 2.812, 2.766, 2.888,
2.435, 2.789, 2.973, 3.288, 3.226, 3.230, 3.401), nrow = 7)
cv_row <- c(2:6, 8, 10)
cv_col <- c(0.2, 0.15, 0.1, 0.075, 0.05, 0.04, 0.03, 0.02, 0.01, 0.005, 0.001)
alpha <- 1 - (1 - alpha)^(1/ncol(mscore))
critval <- apply(cv, 2, function(x) approx(cv_row, x, end, rule = 2)$y)
critval <- approx(cv_col, critval, alpha, rule = 2)$y
rval <- list(process = mscore,
n = n,
formula = formula,
data = data,
monitor = monitor,
critval = critval,
J12 = J12)
class(rval) <- "fxmonitor"
return(rval)
}
plot.fxmonitor <- function(x,
which = NULL, aggregate = NULL,
ylim = NULL, xlab = "Time", ylab = "Empirical fluctuation process",
main = "Monitoring of FX model", ...)
{
n <- x$n
proc <- x$process
if(is.null(which)) which <- 1:NCOL(proc)
if(is.null(aggregate)) aggregate <- length(which) > 1
proc <- proc[,which]
dummy <- zoo((n+1):NROW(proc)/n, index(proc)[-(1:n)]) * x$critval
if(aggregate) {
maxabs <- zoo(apply(abs(coredata(proc)), 1, max), order.by = index(proc))
if(is.null(ylim)) ylim <- c(0, max(c(max(maxabs), max(dummy))))
plot(maxabs, ylim = ylim, xlab = xlab, ylab = ylab, main = main, ...)
abline(h = 0)
abline(v = x$monitor, lty = 2)
lines(dummy, col = 2)
} else {
if(missing(ylim)) ylim <- c(min(min(proc), min(-dummy)), max(max(proc), max(dummy)))
if(missing(ylab) && NCOL(proc) > 1) ylab <- colnames(proc)
mypanel <- function(z, ...) {
lines(z, ...)
abline(h = 0)
abline(v = x$monitor, lty = 2)
lines(-dummy, col = 2)
lines(dummy, col = 2)
}
plot(proc, panel = mypanel, ylim = ylim, xlab = xlab, ylab = ylab, main = main, ...)
}
invisible(x)
}
print.fxmonitor <- function(x, ...)
{
n <- x$n
proc <- x$process
maxabs <- apply(abs(coredata(proc)), 1, max)[-(1:n)]
dummy <- ((n+1):NROW(proc)/n) * x$critval
breakpoint <- if(any(maxabs > dummy)) min(which(maxabs > dummy)) + n else NA
form <- as.character(x$formula)
form <- paste(form[2], form[1], form[3])
cat("Monitoring of FX model\n\n")
cat(paste("Formula:", form, "\n"))
cat(paste("History period:", start(proc), "to", x$monitor, "\n"))
cat(paste("Break detected:", ifelse(is.na(breakpoint), "none", as.character(index(proc)[breakpoint])), "\n"))
invisible(x)
}
breakpoints.fxmonitor <- function(obj, ...)
{
n <- obj$n
proc <- obj$process
maxabs <- apply(abs(coredata(proc)), 1, max)[-(1:n)]
dummy <- ((n+1):NROW(proc)/n) * obj$critval
breakpoint <- if(any(maxabs > dummy)) min(which(maxabs > dummy)) + n else NA
return(breakpoint)
}
breakdates.fxmonitor <- function(obj, ...)
{
rval <- breakpoints(obj)
if(!is.na(rval)) rval <- index(obj$process)[rval]
return(rval)
} |
current_mps <- function(tidy = TRUE, tidy_style = "snake_case") {
suppressMessages(constit <- hansard::constituencies(
current = TRUE,
tidy = FALSE
))
current <- mnis::mnis_eligible(house = "commons", tidy = FALSE)
if (.Platform$OS.type == "windows") {
current$MemberFrom <- stringi::stri_trans_general(
current$MemberFrom,
"latin-ascii"
)
current$MemberFrom <- gsub(
"Ynys MA\U00B4n",
"Ynys M\U00F4n", current$MemberFrom
)
}
df <- dplyr::right_join(current, constit,
by = c("MemberFrom" = "label._value")
)
if (tidy == TRUE) {
df$startedDate._value <- as.POSIXct(df$startedDate._value)
df$startedDate._datatype <- "POSIXct"
df$CurrentStatus.StartDate <- gsub("T", " ", df$CurrentStatus.StartDate)
df$CurrentStatus.StartDate <- as.POSIXct(df$CurrentStatus.StartDate)
df$HouseStartDate <- gsub("T", "", df$HouseStartDate)
df$HouseStartDate <- as.POSIXct(df$HouseStartDate)
df$DateOfBirth <- as.character(df$DateOfBirth)
df$DateOfBirth <- gsub("T00:00:00", "", df$DateOfBirth)
df$DateOfBirth <- as.Date(df$DateOfBirth)
df$DateOfBirth <- as.POSIXct(df$DateOfBirth)
df <- parlitools_tidy(df, tidy_style)
}
df
} |
toolGetMapping <- function(name, type = NULL, where = NULL,
error.missing = TRUE,
returnPathOnly = FALSE, activecalc = NULL) {
if (is.null(where)) {
mf <- getConfig("mappingfolder")
fname <- paste0(mf, "/", type, "/", name)
if (file.exists(as.character(name))) {
fname <- name
} else if (!file.exists(as.character(fname))) {
packages <- getConfig("packages")
if (!is.null(activecalc[[1]]) & any(grepl(paste0("^", activecalc[[1]], "$"), getCalculations()[, "type"]))) {
fp <- as.character(attr(prepFunctionName(activecalc[[1]], "calc"), "package"))
packages <- c(fp, grep(fp, packages, invert = TRUE, value = TRUE))
}
for (i in packages) {
out <- toolGetMapping(name, type = type, where = i, error.missing = FALSE, returnPathOnly = TRUE)
if (out != "") {
fname <- out
break
}
}
}
} else if (where == "mappingfolder") {
mf <- getConfig("mappingfolder")
fname <- paste0(mf, "/", type, "/", name)
} else if (where == "local") {
if (is.null(type)) {
fname <- name
} else {
fname <- paste0(type, "/", name)
}
} else {
if (is.null(type)) {
tmpfname <- name
} else {
tmpfname <- paste0(type, "/", name)
}
fname <- system.file("extdata", tmpfname, package = where)
if (fname == "") fname <- system.file("inst/extdata", tmpfname, package = where)
if (fname == "") fname <- system.file("extdata", strsplit(tmpfname, split = "/")[[1]][2], package = where)
if (fname == "") fname <- system.file("inst/extdata", strsplit(tmpfname, split = "/")[[1]][2], package = where)
if (fname == "" & error.missing) {
stop('Mapping "', name, '" with type "', type, '" not found in package "', where, '"!')
}
}
if (error.missing & !file.exists(as.character(fname))) stop('Mapping "', name, '" not found!')
fname <- gsub("/+", "/", fname)
if (returnPathOnly) return(fname)
filetype <- tolower(file_ext(fname))
if (filetype == "csv") {
if (grepl(pattern = ";", x = readLines(fname, 1))) {
return(read.csv(fname, sep = ";", stringsAsFactors = FALSE, comment.char = "*"))
} else {
return(read.csv(fname, sep = ",", stringsAsFactors = FALSE, comment.char = "*"))
}
} else if (filetype == "rda") {
data <- NULL
load(fname)
if (is.null(data)) stop(fname, " did not contain a object named \"data\"!")
return(data)
} else if (filetype == "rds") {
return(readRDS(fname))
} else {
stop("Unsupported filetype \"", filetype, "\"")
}
} |
compare_logical <- function(x, y, paths = c("x", "y"), max_diffs = Inf) {
diff_element(
encodeString(x), encodeString(y), paths,
quote = NULL,
max_diffs = max_diffs
)
}
compare_character <- function(x, y, paths = c("x", "y"), quote = "\"", max_diffs = Inf) {
if (multiline(x) || multiline(y)) {
x <- split_by_line(x)
y <- split_by_line(y)
opts <- compare_opts(max_diffs = max_diffs)
if (length(x) == 1 && length(y) == 1) {
new_compare(compare_by_line1(x, y, paths, opts))
} else {
new_compare(compare_by_line(x, y, paths, opts))
}
} else {
diff_element(x, y, paths, quote = quote, max_diffs = max_diffs)
}
}
compare_numeric <- function(x, y, paths = c("x", "y"), tolerance = default_tol(), max_diffs = Inf) {
if (num_equal(x, y, tolerance)) {
return(new_compare())
}
if (!is.null(dim(x)) && identical(dim(x), dim(y))) {
rows <- printed_rows(x, y, paths = paths)
out <- diff_rows(rows, paths = paths, max_diffs = max_diffs)
if (length(out) > 0) {
return(out)
}
}
if (length(x) == length(y)) {
digits <- min_digits(x, y)
x_fmt <- num_exact(x, digits = digits)
y_fmt <- num_exact(y, digits = digits)
} else {
x_fmt <- as.character(x)
y_fmt <- as.character(y)
}
out <- diff_element(
x_fmt, y_fmt, paths,
quote = NULL,
justify = "right",
max_diffs = max_diffs
)
if (length(out) > 0) {
out
} else {
glue::glue("{paths[[1]]} != {paths[[2]]} but don't know how to show the difference")
}
}
num_exact <- function(x, digits = 6) {
sprintf(paste0("%0.", digits, "f"), x)
}
min_digits <- function(x, y) {
attributes(x) <- NULL
attributes(y) <- NULL
digits(abs(x - y))
}
digits <- function(x) {
x <- x[!is.na(x) & x != 0]
if (length(x) == 0) {
return(0)
}
scale <- -log10(min(x))
if (scale <= 0) {
0L
} else {
ceiling(round(scale, digits = 2))
}
} |
stretch_to_unitspheroid <- function(hellip){
V <- vertices(hellip)
tfm <- solve(V)
hellip1 <- transform_ellipsoid(hellip, tfm)
return(list(hellip1,tfm))
} |
reac <-
function(A,vector="n",bound=NULL,return.N=FALSE){
if(any(length(dim(A))!=2,dim(A)[1]!=dim(A)[2])) stop("A must be a square matrix")
order<-dim(A)[1]
if(!isIrreducible(A)){
warning("Matrix is reducible")
}
else{
if(!isPrimitive(A)) warning("Matrix is imprimitive")
}
M<-A
eigvals<-eigen(M)$values
lmax<-which.max(Re(eigvals))
lambda<-Re(eigvals[lmax])
A<-M/lambda
if(vector[1]=="n"){
if(!any(bound=="upper",bound=="lower")) stop('Please specify bound="upper", bound="lower" or specify vector')
if(bound=="upper"){
reac<-norm(A)
if(return.N){
N<-reac*lambda
return(list(reac=reac,N=N))
}
else{
return(reac)
}
}
if(bound=="lower"){
reac<-.minCS(A)
if(return.N){
N<-reac*lambda
return(list(reac=reac,N=N))
}
else{
return(reac)
}
}
}
else{
if(!is.null(bound)) warning("Specification of vector overrides calculation of bound")
n0<-vector
vector<-n0/sum(n0)
reac<-sum(A%*%vector)
if(return.N){
N<-reac*sum(n0)*lambda
return(list(reac=reac,N=N))
}
else{
return(reac)
}
}} |
"ellipse.default" <-
function (x, scale = c(1, 1), centre = c(0, 0), level = 0.95,
t = sqrt(qchisq(level, 2)), which = c(1, 2), npoints = 100, ...)
{
names <- c("x", "y")
if (is.matrix(x)) {
xind <- which[1]
yind <- which[2]
r <- x[xind, yind]
if (missing(scale)) {
scale <- sqrt(c(x[xind, xind], x[yind, yind]))
if (scale[1] > 0) r <- r/scale[1]
if (scale[2] > 0) r <- r/scale[2]
}
if (!is.null(dimnames(x)[[1]]))
names <- dimnames(x)[[1]][c(xind, yind)]
}
else r <- x
r <- min(max(r,-1),1)
d <- acos(r)
a <- seq(0, 2 * pi, len = npoints)
matrix(c(t * scale[1] * cos(a + d/2) + centre[1], t * scale[2] *
cos(a - d/2) + centre[2]), npoints, 2, dimnames = list(NULL,
names))
} |
test_that("SetXSet", {
expect_true(setintersect(Set$new(1, 2, 3), Set$new(3:5)) == (Set$new(3)))
expect_equal(Set$new(1) & Set$new(), Set$new())
expect_equal(Set$new(1, 2, 3) & Set$new(1), Set$new(1))
expect_equal(Set$new(1) & Set$new(1, 2, 3), Set$new(1))
expect_equal(Tuple$new(1, "a", 2L) & Set$new(elements = letters), Set$new("a"))
expect_equal(Multiset$new(1, "a", 2L) & Set$new(elements = letters), Set$new("a"))
expect_equal(Set$new(1) & Set$new(1, 2), Set$new(1))
expect_equal(Set$new() & Set$new(), Set$new())
})
test_that("conditionalset", {
useUnicode(FALSE)
expect_equal(
(ConditionalSet$new(function(x) x == 1) & ConditionalSet$new(function(y) y > 1))$strprint(),
"{x in V, y in V : x == 1 & y > 1}"
)
expect_equal(
ConditionalSet$new(function(x) x == 1) & ConditionalSet$new(function(y) y == 1),
ConditionalSet$new(function(x) x == 1)
)
expect_true((ConditionalSet$new(function(x) x == 0) &
Set$new(elements = -2:2))$equals(Set$new(0)))
useUnicode(TRUE)
})
test_that("fuzzy", {
expect_true((FuzzySet$new(1, 0.1, 2, 0.3) & Set$new(elements = 2:5)) == Set$new(2))
})
test_that("interval", {
expect_equal(Interval$new(1, 5) & Interval$new(7, 10), Set$new())
expect_equal(Interval$new(1, 5) & Interval$new(2, 10), Interval$new(2, 5))
expect_equal(Interval$new(1, 7) & Interval$new(3, 10), Interval$new(3, 7))
expect_equal(Interval$new(3, 10) & Interval$new(1, 7), Interval$new(3, 7))
})
test_that("mixed", {
expect_equal(Set$new(elements = 1:2) & ConditionalSet$new(function(x) x == 3), Set$new())
expect_equal(Set$new("a", 2) & Interval$new(1, 10), Set$new(2))
expect_equal(Interval$new(1, 10) & Set$new("a", 2), Set$new(2))
expect_equal(Interval$new() & Set$new(), Set$new())
expect_equal(Interval$new(1, 5) & Interval$new(2, 3), Interval$new(2, 3))
expect_equal(Interval$new(2, 3) & Interval$new(1, 5), Interval$new(2, 3))
})
test_that("UnionSet", {
expect_equal(
setintersect(
UnionSet$new(list(Set$new(1, 2, 5), Set$new(2, "a", Tuple$new(2)))),
Set$new(1, "a", Tuple$new(2), 7)
),
Set$new(1, "a", Tuple$new(2))
)
expect_true(setintersect(
UnionSet$new(list(Set$new(1, 2, 5), Set$new(4, 3))),
UnionSet$new(list(Set$new(1, 2, 5), Set$new(4, 3)))
)$equals(Set$new(1:5)))
})
test_that("ComplementSet", {
expect_equal(
ComplementSet$new(Reals$new(), Integers$new()) & Set$new(1.1, 2, 4.5, "a"),
Set$new(1.1, 4.5)
)
expect_equal(ComplementSet$new(Reals$new(), Integers$new()) &
ComplementSet$new(Set$new(1.1, 2.3), Set$new(2)), Set$new(1.1, 2.3))
expect_true(setintersect(
ComplementSet$new(Set$new(1, 2, 5), Set$new(4, 3)),
UnionSet$new(list(Set$new(1), Set$new(2, 5)))
)$equals(Set$new(1, 2, 5)))
})
test_that("ProductSet", {
useUnicode(FALSE)
obj <- setproduct(Set$new(1, 2), Set$new(3, 4), simplify = TRUE) &
Set$new(Tuple$new(1, 4))
expect_equal(as.character(obj), "{(1, 4)}")
obj <- (Set$new(1, 2) * Set$new(3, 4)) &
Set$new(Tuple$new(1, 4), Tuple$new(5, 6))
expect_equal(as.character(obj), "{(1, 4)}")
expect_equal(as.character((Set$new(1, 2) * Set$new(3, 4)) & Tuple$new(1, 4)),
"{}")
expect_message(
(Set$new(1, 2) * Set$new(3, 4)) & (Set$new(1, 2) * Set$new(3, 4)),
"currently not implemented")
useUnicode(TRUE)
}) |
fv_heatmap_box <- function(width = 12, collapsible = T, collapsed = F) {
box(title = HTML('<p style="font-size:120%;">Hypothesis Testing</p>'),
width = width, solidHeader = T, status = "primary",
collapsible = collapsible, collapsed = collapsed,
sidebarPanel(
width = 3,
selectInput('FV_Stats.Overview.ID', 'Algorithms to compare', choices = NULL,
selected = NULL, multiple = T),
textInput('FV_Stats.Overview.Target', label = RT_TAR_LABEL),
textInput('FV_Stats.Overview.Alpha',
label = HTML('<p>Significe level \\(\\alpha\\)</p>'),
value = 0.01),
hr(),
selectInput('FV_Stats.Overview.TableFormat', label = 'Select the table format',
choices = supported_table_format, selected = supported_table_format[[1]]),
downloadButton('FV_Stats.Overview.DownloadTable', label = 'Download the table'),
hr(),
selectInput('FV_Stats.Overview.Format', label = 'Select the figure format',
choices = supported_fig_format, selected = supported_fig_format[[1]]),
downloadButton('FV_Stats.Overview.DownloadHeatmap',
label = 'Download the heatmap')
),
mainPanel(
width = 9,
HTML_P('The <b>Kolmogorov-Smirnov test</b> is performed on empirical CDFs of running times for each pair of
algorithms, in order to determine which algorithm gives a significantly
smaller running time distribution. The resulting p-values are arranged in a matrix, where
each cell \\((i, j)\\) contains a p-value from the test with the alternative hypothesis:
the running time of algorithm \\(i\\) is smaller (thus better) than that of \\(j\\).'),
DT::dataTableOutput('FV_Stats.Overview.Pmatrix')
),
fluidRow(
column(
width = 12,
HTML('<div style="margin-top: 50px;"></div>'),
HTML_P('Decisions of the test, based on the \\(p-\\) value matrix and the \\(\\alpha\\) value,
are visualized in a heatmap (<b>left</b>) and a network (<b>right</b>).
In each cell (row, column) of the heatmap, the alternative hypothesis is again:
the row algorithm has smaller (better) running time than the column.
The color indicates:
<ul>
<li><font color="red">Red: A row is better than the column</font></li>
<li><font color="blue">Blue: A row is worse than the column</font></li>
<li><font color="grey">Gray: no significant distinction between the row and column</font></li>
</ul>
On the right subplot, the partial order resulted from the test is visualized as a network,
where an arrow from algorithm \\(A\\) to \\(B\\) indicates \\(A\\) is siginicantly better than
\\(B\\) with the specified \\(\\alpha\\) value.')
)
),
fluidRow(
column(
width = 6, align = 'center',
HTML('<div style="margin-top: 30px;"></div>'),
plotlyOutput.IOHanalyzer('FV_Stats.Overview.Heatmap', aspect_ratio = 1)
),
column(
width = 6, align = 'center',
HTML('<div style="margin-top: 30px;"></div>'),
plotOutput("FV_Stats.Overview.Graph", height = '70vh')
)
)
)
}
fv_glicko2_box <- function(width = 12, collapsible = T, collapsed = T) {
box(title = HTML('<p style="font-size:120%;">Glicko2-based ranking</p>'),
width = width, solidHeader = T, status = "primary",
collapsible = collapsible, collapsed = collapsed,
sidebarPanel(
width = 3,
selectInput('FV_Stats.Glicko.ID', 'Algorithms to compare', choices = NULL,
selected = NULL, multiple = T),
selectInput('FV_Stats.Glicko.Funcid', 'Functions to use', choices = NULL,
selected = NULL, multiple = T),
selectInput('FV_Stats.Glicko.Dim', 'Dimensions to use', choices = NULL,
selected = NULL, multiple = T),
textInput('FV_Stats.Glicko.Nrgames',
label = "Number of games per (function,dimension) pair",
value = 25),
actionButton('FV_Stats.Glicko.Create', 'Create / Update Ranking'),
hr(),
selectInput('FV_Stats.Glicko.Format', label = 'Select the figure format',
choices = supported_fig_format, selected = supported_fig_format[[1]]),
downloadButton('FV_Stats.Glicko.Download', label = 'Download the figure'),
hr(),
selectInput('FV_Stats.Glicko.TableFormat', label = 'Select the table format',
choices = supported_table_format, selected = supported_table_format[[1]]),
downloadButton('FV_Stats.Glicko.DownloadTable', label = 'Download the table')
),
mainPanel(
width = 9,
HTML_P('The <b>Glicko2</b> This procedure ranks algorithms based on a glico2-procedure.
Every round, for every function and dimension of the datasetlist,
each pair of algorithms competes. This competition samples a random function value for the
provided runtime (maximum used among all algorithms). Whichever algorithm has the better
function value wins the game. Then, from these games, the glico2-rating is used to determine the ranking.'),
HTML_P("The chosen <b>budget values</b> per (function, dimension)-pair are as follows
(double click an entry to edit it):"),
DT::dataTableOutput("FV_Stats.Glicko.Targets"),
hr(),
HTML_P("The results of the ranking are:"),
plotlyOutput.IOHanalyzer("FV_Stats.Glicko.Candlestick"),
DT::dataTableOutput('FV_Stats.Glicko.Dataframe')
)
)
} |
library("tmle.npvi")
log <- Arguments$getVerbose(-8, timestamp=TRUE)
dataSet <- "tcga2012brca"
path <- file.path("geneData", dataSet)
path <- Arguments$getReadablePath(path)
files <- list.files(path)
nas <- sapply(files, function(ff) {
obs <- loadObject(file.path(path, ff))
sum(is.na(obs))
})
files <- files[which(nas==0)]
descr <- list(thresh=2e-2,
f=identity,
flavor="learning",
nodes=1,
iter=10,
cvControl=2,
stoppingCriteria=list(mic = 0.001, div = 0.001, psi = 0.01),
nMax=30)
fileout <- sprintf("%s,tmle.npvi,%s,2014-11-21.rda", dataSet, descr$flavor)
mc.cores <- 3
nms <- unlist(strsplit(files, split=".xdr"))
TMLE <- parallel::mclapply(seq(along=files), mc.cores=mc.cores, FUN=function(ii) {
ff <- files[ii]
print(ii)
print(ff)
pathname <- file.path(path, ff)
obs <- loadObject(pathname)
nbcov <- ncol(extractW(obs))
if (nbcov==1) {
colnames(obs) <- c("Y", "X", "W")
}
whichSmall <- which(abs(obs[, "X"]) <= descr$thresh)
obs[whichSmall, "X"] <- 0
tmle <- try(tmle.npvi(obs=obs, f=descr$f, flavor=descr$flavor,
stoppingCriteria=descr$stoppingCriteria,
cvControl=descr$cvControl, nMax=descr$nMax))
if (inherits(tmle, "try-error")) {
return(attr(tmle, "condition"))
} else {
return(list(nbcov=nbcov, hist=getHistory(tmle)))
}
})
names(TMLE) <- nms
save(descr, TMLE, file=fileout) |
"_PACKAGE"
NULL
NULL
NULL
NULL
NULL |
to_long_tab <- function(reg.coef, d = 3, t.value.col = 3, Pr.col = 4){
if(!class(reg.coef)[1] %in% c("matrix", "data.frame", "coeftest")){stop("reg.coef needs to be a data.frame or an coeftest object")}
tryCatch({
if(class(reg.coef)[1] == "coeftest"){
reg.coef <- as.data.frame(`[`(reg.coef))
}
if(! "n.r" %in% colnames(reg.coef)){
reg.coef <- data.frame(n.r = 1:nrow(reg.coef), reg.coef)
}
if(! "prob." %in% colnames(reg.coef)){
t.value.col <- t.value.col + 1
reg.coef <- data.frame(reg.coef, prob. = 2 * (1 - pnorm(abs(reg.coef[ , t.value.col]))))
}
if(! "sig." %in% colnames(reg.coef)){
df <- reg.coef
Pr.col <- Pr.col + 1
reg.coef <- data.frame(df, sig.=ifelse(df[,Pr.col]<0.001, paste0(rep("\x2a", 3), collapse = ""),
ifelse(df[,Pr.col]<0.01, paste0(rep("\x2a", 2), collapse = ""),
ifelse(df[,Pr.col]<0.05, paste0(rep("\x2a", 1), collapse = ""),
ifelse(df[,Pr.col]<0.1,"\xe2\x80\xa0","")))))
}
Estimate <- NULL
n.r <- NULL
var_ <- NULL
key <- NULL
test <- cbind(var_ = rownames(df), reg.coef[,c(1:3, ncol(reg.coef))])
digits <- function(x,d){ if(class(x)[1]=="numeric") {formatC(x, format = "f", digits = d)} else{x} }
test <- data.frame(purrr::map(test, digits, d))
test <- tidyr::unite(test, Estimate, 3, 5, sep="")
test[,4] <- paste0("(",test[,4],")")
reg.table <- dplyr::arrange(tidyr::gather(test, key, beta, -c(var_, n.r)), n.r)[,c(2,1,4)]
even.row <- rep(c(FALSE, TRUE), nrow(reg.table)/2)
reg.table$var_ <- as.character(reg.table$var_)
reg.table$var_[even.row] <- ""
}, error=function(e){cat("ERROR :", conditionMessage(e), "\n")})
return(reg.table)
}
combine_long_tab <- function(tbl_1, tbl_2, tbl_3=NULL, tbl_4=NULL, tbl_5=NULL, tbl_6=NULL, tbl_7=NULL, tbl_8=NULL, tbl_9=NULL, tbl_10=NULL,
tbl_11=NULL, tbl_12=NULL, tbl_13=NULL, tbl_14=NULL, tbl_15=NULL, tbl_16=NULL, tbl_17=NULL, tbl_18=NULL, tbl_19=NULL, tbl_20=NULL) {
tryCatch({
all_tbls <- list(tbl_1,tbl_2,tbl_3,tbl_4,tbl_5,tbl_6,tbl_7,tbl_8,tbl_9,tbl_10,tbl_11,tbl_12,tbl_13,tbl_14,tbl_15,tbl_16,tbl_17,tbl_18,tbl_19,tbl_20)
non_empty <- length(all_tbls) - sum(unlist(purrr::map(all_tbls, is.null)))
list_tbls <- all_tbls[1:non_empty]
for(i in 1:length(list_tbls)){
list_tbls[[i]]$var_[seq(2, nrow(list_tbls[[i]]), by = 2)] <- paste0(list_tbls[[i]]$var_[seq(1, nrow(list_tbls[[i]]), by = 2)],"s.e.")
list_tbls[[i]]$n.r <- NULL
}
main.table <- purrr::reduce(list_tbls, dplyr::full_join,by=c("var_"))
main.table[is.na(main.table)] <- ""
main.table$var_[seq(2, nrow(main.table), by = 2)] <- ""
names(main.table) <- c("Variables", paste0("Model ", 0:(non_empty-1)))
}, error=function(e){cat("ERROR :", conditionMessage(e), "\n")})
return(main.table)}
compare_models <- function(model1, model2, model3=NULL, model4=NULL, model5=NULL, model6=NULL, model7=NULL, model8=NULL, model9=NULL, model10=NULL,
model11=NULL, model12=NULL, model13=NULL, model14=NULL, model15=NULL, model16=NULL, model17=NULL, model18=NULL, model19=NULL, model20=NULL,
likelihood.only = FALSE, round.digit = 3,
main.effect.only = NULL,
intn.effect.only = NULL){
tryCatch({
list_all <- list(model1, model2, model3, model4, model5, model6, model7, model8, model9, model10, model11, model12, model13, model14, model15, model16, model17, model18, model19, model20)
non_empty <- length(list_all) - sum(unlist(purrr::map(list_all, is.null)))
model_list <- list_all[1:non_empty]
if(likelihood.only == TRUE){
compare.df <- c("LogLikelihood", round(unlist(purrr::map(model_list, logLik)), round.digit))
}else
{
n <- non_empty
compare <- if(n==2){
suppressWarnings(suppressMessages(anova(model1,model2)))}else if(n==3){
suppressWarnings(suppressMessages(anova(model1,model2,model3)))}else if(n==4){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4)))}else if(n==5){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5)))}else if(n==6){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6)))}else if(n==7){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7)))}else if(n==8){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8)))}else if(n==9){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9)))}else if(n==10){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10)))}else if(n==11){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10,model11)))}else if(n==12){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10,model11,model12)))}else if(n==13){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10,model11,model12,model13)))}else if(n==14){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10,model11,model12,model13,model14)))}else if(n==15){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10,model11,model12,model13,model14,model15)))}else if(n==16){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10,model11,model12,model13,model14,model15,model16)))}else if(n==17){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10,model11,model12,model13,model14,model15,model16,model17)))}else if(n==18){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10,model11,model12,model13,model14,model15,model16,model17,model18)))}else if(n==19){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10,model11,model12,model13,model14,model15,model16,model17,model18,model19)))}else if(n==20){
suppressWarnings(suppressMessages(anova(model1,model2,model3,model4,model5,model6,model7,model8,model9,model10,model11,model12,model13,model14,model15,model16,model17,model18,model19,model20)))}
Chisq <- NULL
sig <- NULL
Delta_F <- NULL
if(!is.null(main.effect.only)){
for(i in main.effect.only){
compare[i,] <- anova(model_list[[main.effect.only[1]-2]], model_list[[i]])[2,]
}
}
if(!is.null(intn.effect.only)){
for(i in intn.effect.only){
compare[i,] <- if(!is.null(main.effect.only)){anova(model_list[[i-length(main.effect.only)]], model_list[[i]])[2,]
}else{
anova(model_list[[intn.effect.only[1] - 1]], model_list[[i]])[2,]
}
}
}
ch <- function(x){as.character(x)}
convert.sig <- function(df){ifelse(df<0.001, paste0(rep("\x2a", 3), collapse = ""),
ifelse(df<0.01, paste0(rep("\x2a", 2), collapse = ""),
ifelse(df<0.05, paste0(rep("\x2a", 1), collapse = ""),
ifelse(df<0.1,"\xe2\x80\xa0",""))))}
dg <- function(x)formatC(x, format = "f", digits = 3)
compare.df <- if(class(model1)[1]=="negbin"){
data.frame(AIC=ch(t(dg(unlist(purrr::map(model_list, MuMIn::AICc))))),
Log_Likelihood=ch(t(dg(compare[3][[1]]))), Chisq=ch(t(dg(compare[7][[1]]))),
sig=ch(t(convert.sig(compare[8][[1]])))) %>% unite(Chisq,Chisq,sig,sep="") %>% t()
}else if(class(model1)[1]=="lmerMod"){
data.frame(AIC=ch(t(dg(unlist(purrr::map(model_list, MuMIn::AICc))))),
Log_Likelihood=ch(t(dg(compare[4][[1]]))), Chisq=ch(t(dg(compare[6][[1]]))),
sig=ch(t(convert.sig(compare[8][[1]])))) %>% unite(Chisq,Chisq,sig,sep="") %>% t()
}else if(class(model1)[1]=="lm"){
data.frame(R_squared=ch(t(dg(unlist(purrr::map(model_list, function(df){summary(df)$r.squared}))))),
Adj_R_squared=ch(t(dg(unlist(purrr::map(model_list, function(df){summary(df)$adj.r.squared}))))),
Delta_F=ch(t(dg(compare[5][[1]]))),
sig=ch(t(convert.sig(compare[6][[1]])))) %>% tidyr::unite(Delta_F,Delta_F,sig,sep="") %>% t()
}else{
data.frame(AIC=ch(t(dg(unlist(purrr::map(model_list, MuMIn::AICc))))),
Log_Likelihood=ch(t(dg(compare[1][[1]]))),Chisq=ch(t(dg(compare[2][[1]]))),
sig=ch(t(convert.sig(compare[4][[1]])))) %>% unite(Chisq,Chisq,sig,sep="") %>% t() }
compare.df[nrow(compare.df),1] <- ""
compare.df <- data.frame(Variables=row.names(compare.df),compare.df)
}
names(compare.df) <- c("Variables", paste0("Model ", 0:(non_empty-1)))
}, error=function(e){cat("ERROR :", conditionMessage(e), "\n")})
return(compare.df)
} |
library(profvis)
library(dplyr)
library(vctrs)
library(bench)
bench_mean <- function(n = 1e6, ngroups = 1000) {
args <- list(n = n, ngroups = ngroups)
main_length <- callr::r(function(n, ngroups) {
library(dplyr, warn.conflicts = FALSE)
library(purrr)
library(vctrs)
df <- tibble(x = rnorm(n), g = sample(rep(1:ngroups, n / ngroups))) %>% group_by(g)
bench::mark(summarise(df, a = length(x))) %>%
mutate(branch = "main", fun = "length", n = n, ngroups = ngroups) %>%
select(branch, fun, n, ngroups, min:last_col())
}, args = args)
main_internal <- callr::r(function(n, ngroups) {
library(dplyr, warn.conflicts = FALSE)
library(purrr)
library(vctrs)
df <- tibble(x = rnorm(n), g = sample(rep(1:ngroups, n / ngroups))) %>% group_by(g)
bench::mark(summarise(df, a = .Internal(mean(x)))) %>%
mutate(branch = "main", fun = ".Internal(mean(.))", n = n, ngroups = ngroups) %>%
select(branch, fun, n, ngroups, min:last_col())
}, args = args)
main_mean <- callr::r(function(n, ngroups) {
library(dplyr, warn.conflicts = FALSE)
library(purrr)
library(vctrs)
df <- tibble(x = rnorm(n), g = sample(rep(1:ngroups, n / ngroups))) %>% group_by(g)
bench::mark(summarise(df, a = mean(x))) %>%
mutate(branch = "main", fun = "mean(.)", n = n, ngroups = ngroups) %>%
select(branch, fun, n, ngroups, min:last_col())
}, args = args)
released_internal <- callr::r(function(n, ngroups) {
library(dplyr, warn.conflicts = FALSE)
library(purrr)
library(vctrs)
df <- tibble(x = rnorm(n), g = sample(rep(1:ngroups, n / ngroups))) %>% group_by(g)
bench::mark(summarise(df, a = .Internal(mean(x)))) %>%
mutate(branch = "0.8.3", fun = ".Internal(mean(.))", n = n, ngroups = ngroups) %>%
select(branch, fun, n, ngroups, min:last_col())
}, args = args, libpath = "../bench-libs/0.8.3")
released_hybrid_mean <- callr::r(function(n, ngroups) {
library(dplyr, warn.conflicts = FALSE)
library(purrr)
library(vctrs)
df <- tibble(x = rnorm(n), g = sample(rep(1:ngroups, n / ngroups))) %>% group_by(g)
bench::mark(summarise(df, a = mean(x))) %>%
mutate(branch = "0.8.3", fun = "hybrid mean(.)", n = n, ngroups = ngroups) %>%
select(branch, fun, n, ngroups, min:last_col())
}, args = args, libpath = "../bench-libs/0.8.3")
released_nonhybrid_mean <- callr::r(function(n, ngroups) {
library(dplyr, warn.conflicts = FALSE)
library(purrr)
library(vctrs)
mean2 <- function(x, ...) UseMethod("mean")
df <- tibble(x = rnorm(n), g = sample(rep(1:ngroups, n / ngroups))) %>% group_by(g)
bench::mark(summarise(df, a = mean2(x))) %>%
mutate(branch = "0.8.3", fun = "mean2(.)", n = n, ngroups = ngroups) %>%
select(branch, fun, n, ngroups, min:last_col())
}, args = args, libpath = "../bench-libs/0.8.3")
as_tibble(vec_rbind(main_length, main_internal, main_mean, released_internal, released_hybrid_mean, released_nonhybrid_mean)) %>%
select(branch:ngroups, median, mem_alloc, n_gc)
}
bench_mean(1e6, 10)
bench_mean(1e6, 100000)
bench_mean(1e7, 10)
bench_mean(1e7, 1000000) |
library(citrus)
library(testthat)
library(dplyr)
preprocessed_data <- citrus::preprocessed_data
hyperparameters <- list(dependent_variable = 'response',
min_segmentation_fraction = 0.05,
number_of_segments = 6,
print_plot = FALSE,
print_safety_check=20,
saveoutput = FALSE)
model <- citrus::tree_segment(preprocessed_data, hyperparameters)
model <- citrus::tree_segment_prettify(model,print_plot = T)
model <- citrus::tree_abstract(model, preprocessed_data)
output <- citrus::output_table(preprocessed_data,model)
test_that("Number of Columns", {
expect_equal(ncol(output), 16)
})
test_that("Number of Rows", {
expect_equal(nrow(output), 6)
})
test_that("No nulls", {
expect_equal(ncol(output[complete.cases(output), ]), 16)
}) |
.wrsi <-
function(Y, X)
{
Pavail <- colSums(X) / sum(X)
Xu <- X * Y
Pused <- colSums(Xu) / sum(Xu)
Pw <- colSums(Xu) / colSums(X)
WRSI <- Pused / Pavail
cbind(
WRSI=WRSI,
zWRSI=log(WRSI),
rWRSI=(exp(2 * log(WRSI)) - 1)/(1 + exp(2 * log(WRSI))),
Pused=Pused,
Pavail=Pavail,
Pw=Pw,
u=colSums(Xu),
a=colSums(X))
} |
embed_timeseries <- function(timeseries, embedding.dimension) {
if (missing(timeseries)) stop("Provide a time series.", call. = FALSE)
if (!is.xts(timeseries) && class(timeseries) == "numeric") {
timeseries <- xts(timeseries,
order.by = seq.Date(from = Sys.Date(),
by = 1,
length.out = length(timeseries)))
}
ts.index <- index(timeseries)[-(1:(embedding.dimension-1))]
ts.embed <- stats::embed(timeseries, dimension = embedding.dimension)
colnames(ts.embed) <- c('target', paste0('Tm', 1:(embedding.dimension-1)))
df <- as.data.frame(xts(ts.embed, order.by = ts.index))
df
}
soft.completion <- function(x) {
if ("data.frame" %in% class(x)) x <- as.matrix(x)
as.data.frame(complete(x, softImpute(x)))
} |
`ensemble.analogue.object` <- function(
ref.location, future.stack, current.stack, name="reference1",
method="mahal", an=10000, probs=c(0.025, 0.975), weights=NULL, z=2)
{
target.values <- as.numeric(raster::extract(future.stack, ref.location))
names(target.values) <- names(future.stack)
if ((method %in% c("mahal", "quantile", "sd")) == F) {method <- "none"}
if (method == "mahal") {
a <- dismo::randomPoints(current.stack, n=an, p=NULL, excludep=F)
a <- data.frame(a)
background.data <- raster::extract(current.stack, a)
background.data <- data.frame(background.data)
TrainValid <- complete.cases(background.data)
background.data <- background.data[TrainValid,]
cov.mahal <- cov(background.data)
out <- list(name=name, ref.location=ref.location, stack.name=future.stack@title,
method=method, target.values=target.values, cov.mahal=cov.mahal)
return(out)
}
if (method == "quantile") {
lower.interval <- data.frame(t(quantile(current.stack, probs[1])))
upper.interval <- data.frame(t(quantile(current.stack, probs[2])))
norm.values <- as.numeric(upper.interval - lower.interval)
}
if (method == "sd") {
norm.values <- raster::cellStats(current.stack, stat="sd")
}
if (method == "none") {
norm.values <- rep(1, length=length(names(current.stack)))
}
names(norm.values) <- names(current.stack)
zero.norm.values <- which(norm.values == 0)
if(length(zero.norm.values) > 0) {
cat(paste("WARNING: some of the normalizing values were zero", "\n\n", sep=""))
print(names(zero.norm.values))
cat(paste("\n", "respective values were now set to one", "\n", sep=""))
norm.values[names(norm.values) %in% names(zero.norm.values)] <- 1
}
if (is.null(weights)==T || all.equal(names(weights), names(current.stack))==F) {
paste("WARNING: length of weights is different from number of variables in current RasterStack", "\n", sep="")
weight.values <- rep(1, raster::nlayers(current.stack))
names(weight.values) <- names(current.stack)
}else{
weight.values <- weights
}
weight.values <- weight.values / sum(weight.values)
out <- list(name=name, ref.location=ref.location, stack.name=future.stack@title,
method=method, target.values=target.values, norm.values=norm.values, weights=weight.values, z=z)
return(out)
}
`ensemble.analogue` <- function(
x=NULL, analogue.object=NULL, analogues=1,
RASTER.object.name=analogue.object$name, RASTER.stack.name=x@title,
RASTER.format="raster", RASTER.datatype="INT2S", RASTER.NAflag=-32767,
KML.out=T, KML.blur=10, KML.maxpixels = 100000,
limits=c(1, 5, 20, 50), limit.colours=c('red', 'orange', 'blue', 'grey'),
CATCH.OFF=FALSE
)
{
.BiodiversityR <- new.env()
if(is.null(x) == T) {stop("value for parameter x is missing (RasterStack object)")}
if(inherits(x, "RasterStack") == F) {stop("x is not a RasterStack object")}
if (is.null(analogue.object) == T) {stop("value for parameter analogue.object is missing (hint: use the ensemble.analogue.object function)")}
if (KML.out==T && raster::isLonLat(x)==F) {
cat(paste("\n", "NOTE: not possible to generate KML files as Coordinate Reference System (CRS) of stack ", x@title , " is not longitude and latitude", "\n", sep = ""))
KML.out <- FALSE
}
predict.analogue <- function(object=analogue.object, newdata=newdata) {
method <- object$method
if (method == "mahal") {
centroid <- object$target.values
cov.mahal <- object$cov.mahal
p <- mahalanobis(newdata, center=centroid, cov=cov.mahal)
p <- as.numeric(p)
return(p)
}else{
targetdata <- object$target.values
normdata <- object$norm.values
weightdata <- object$weights
z <- object$z
out <- newdata
for (i in 1:ncol(out)) {
out[,i] <- as.numeric(out[,i]) - as.numeric(targetdata[as.numeric(na.omit(match(names(out)[i], names(targetdata))))])
out[,i] <- abs(out[,i])
out[,i] <- as.numeric(out[,i]) / as.numeric(normdata[as.numeric(na.omit(match(names(out)[i], names(normdata))))])
out[,i] <- (out[,i]) ^ z
out[,i] <- as.numeric(out[,i]) * as.numeric(weightdata[as.numeric(na.omit(match(names(out)[i], names(weightdata))))])
}
p <- rowSums(out)
z2 <- 1/z
p <- p ^ z2
return(p)
}
}
dir.create("ensembles", showWarnings = F)
dir.create("ensembles/analogue", showWarnings = F)
if (KML.out == T) {
dir.create("kml", showWarnings = F)
dir.create("kml/analogue", showWarnings = F)
}
if(length(x@title) == 0) {x@title <- "stack1"}
stack.title <- RASTER.stack.name
if (gsub(".", "_", stack.title, fixed=T) != stack.title) {cat(paste("\n", "WARNING: title of stack (", stack.title, ") contains '.'", "\n\n", sep = ""))}
rasterfull <- paste("ensembles/analogue/", RASTER.object.name, "_", stack.title , "_analogue", sep="")
kmlfull <- paste("kml/analogue/", RASTER.object.name, "_", stack.title , "_analogue", sep="")
if (CATCH.OFF == F) {
tryCatch(analogue.raster <- raster::predict(object=x, model=analogue.object, fun=predict.analogue, na.rm=TRUE,
filename=rasterfull, progress='text', overwrite=T, format=RASTER.format),
error= function(err) {print(paste("prediction of analogue raster failed"))},
silent=F)
}else{
analogue.raster <- raster::predict(object=x, model=analogue.object, fun=predict.analogue, na.rm=TRUE,
filename=rasterfull, progress='text', overwrite=T, format=RASTER.format)
}
analogue.raster <- round(analogue.raster, digits=8)
raster::setMinMax(analogue.raster)
print(analogue.raster)
raster::writeRaster(analogue.raster, filename="working.grd", overwrite=T)
working.raster <- raster::raster("working.grd")
names(working.raster) <- paste(RASTER.object.name, "_", stack.title , "_", analogue.object$method, "_z", analogue.object$z, "_analogue", sep="")
raster::writeRaster(working.raster, filename=rasterfull, progress='text', overwrite=T, format=RASTER.format)
limits.data <- data.frame(limits)
limits.data <- data.frame(cbind(limits, limits))
names(limits.data) <- c("threshold", "count")
freqs <- raster::freq(analogue.raster, digits=8)
for (i in 1:length(limits)) {
j <- 1
while (sum(freqs[1:j, 2]) < limits[i]) {j <- j+1}
limits.data[i, 1] <- freqs[j, 1]
limits.data[i, 2] <- sum(freqs[1:j, 2])
}
cat(paste("\n", "suggested breaks in colour scheme", "\n", sep=""))
print(limits.data)
if (KML.out == T) {
breaks1 <- c(raster::minValue(analogue.raster), limits.data[,1])
raster::KML(working.raster, filename=kmlfull, overwrite=T, blur=KML.blur, col=limit.colours, breaks=breaks1)
}
j <- 1
while (sum(freqs[1:j, 2]) < analogues) {j <- j+1}
threshold <- freqs[j, 1]
cat(paste("\n", "Threshold (n =", j, "): ", threshold, "\n", sep=""))
index1 <- which(analogue.raster[,] <= threshold)
pres1 <- raster::xyFromCell(analogue.raster, index1)
vars <- length(names(x))
output1 <- data.frame(array(dim=c(length(index1), 5+vars)))
output2 <- data.frame(array(dim=c(1, 5+vars)))
names(output1) <- names(output2) <- c("model", "method", "lon", "lat", "distance", names(x))
output1[, 1] <- rep(analogue.object$stack.name, nrow(output1))
output2[1, 1] <- analogue.object$stack.name
if (analogue.object$method == "mahal") {
method1 <- "mahal"
}else{
method1 <- paste(analogue.object$method, "_z_", analogue.object$z, sep="")
}
output1[, 2] <- rep(method1, nrow(output1))
output1[, c(3:4)] <- pres1
point.data1 <- raster::extract(x, pres1)
output1[, c(6:(5+vars))] <- point.data1
point.data2 <- raster::extract(analogue.raster, pres1)
output1[, 5] <- point.data2
output1 <- output1[order(output1[,"distance"], decreasing=F),]
output2[1, 1] <- analogue.object$stack.name
output2[1, 2] <- "target"
output2[1 ,3] <- as.numeric(analogue.object$ref.location[,1])
output2[1 ,4] <- as.numeric(analogue.object$ref.location[,2])
output2[, c(6:(5+vars))] <- analogue.object$target.values
output3 <- rbind(output2, output1)
cat(paste("\n", "analogue raster provided in folder: ", getwd(), "//ensembles//analogue", "\n\n", sep=""))
return(output3)
} |
get_remaining_quota <- function(api_key) {
query = list(apikey = api_key)
response <- GET("https://datenservice.kof.ethz.ch/api/v1/main/remainingquota", query = query)
if(response$status_code == 200) {
fromJSON(content(response, as="text"))$quota
} else {
stop(sprintf("The API returned a status code of %d. Are you sure you provided a valid API key?", response$status_code))
}
} |
add_rugged_terrain <- function(data) {
if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type %in% c("dyad_year", "leader_dyad_year")) {
if (length(attributes(data)$ps_system) > 0 && attributes(data)$ps_system == "cow") {
rugged %>%
select(-.data$gwcode) -> hold_this
hold_this %>%
left_join(data, ., by=c("ccode1"="ccode")) %>%
rename(rugged1 = .data$rugged,
newlmtnest1 = .data$newlmtnest) %>%
left_join(., hold_this, by=c("ccode2"="ccode")) %>%
rename(rugged2 = .data$rugged,
newlmtnest2 = .data$newlmtnest) -> data
return(data)
} else {
rugged %>%
select(-.data$ccode) -> hold_this
hold_this %>%
left_join(data, ., by=c("gwcode1"="gwcode")) %>%
rename(rugged1 = .data$rugged,
newlmtnest1 = .data$newlmtnest) %>%
left_join(., hold_this, by=c("gwcode2"="gwcode")) %>%
rename(rugged2 = .data$rugged,
newlmtnest2 = .data$newlmtnest) -> data
return(data)
}
} else if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type %in% c("state_year", "leader_year")) {
if (length(attributes(data)$ps_system) > 0 && attributes(data)$ps_system == "cow") {
rugged %>%
select(-.data$gwcode) %>%
left_join(data, .) -> data
return(data)
} else {
rugged %>%
select(-.data$ccode) %>%
left_join(data, .) -> data
return(data)
}
}
else {
stop("add_rugged_terrain() requires a data/tibble with attributes$ps_data_type of state_year or dyad_year. Try running create_dyadyears() or create_stateyears() at the start of the pipe.")
}
} |
test_that('stack modelling function', {
data(Env)
data(Occurrences)
SSDM <- stack_modelling(c('CTA', 'SVM'), Occurrences, Env, rep = 1,
Xcol = 'LONGITUDE', Ycol = 'LATITUDE',
Spcol = 'SPECIES', ensemble.thresh = 0,
verbose = FALSE, cores = 0)
expect_is(SSDM, 'Stacked.SDM')
}) |
pwchisq <- function(x, lambda = 1, nu = 1, delta = 0, mode = 1,
maxit1 = 100000, eps = 10^(-10)) {
util_check_nonneg(x)
util_check_nonneg(lambda)
util_check_nonneg(nu)
util_check_nonneg(delta)
util_check_nonneg(mode)
util_check_gt(maxit1, 1)
util_check_nonneg(eps)
if (length(lambda) != length(nu) || length(nu) != length(delta)) {
stop("'lambda', 'nu', and 'delta' should have the same length.")
}
res <- pwchisqCpp(
q = as.double(x),
lambda = as.vector(lambda),
mult = as.vector(nu),
delta = as.vector(delta),
n = as.integer(length(lambda)),
mode = as.double(mode),
maxit = as.integer(maxit1),
eps = as.double(eps)
)
if (res$ifault == -1 || res$ifault == 2) {
warning("Input value(s) is not appropriate.")
} else if (res$ifault == 4) {
warning("The required accuracy could not be achived in 'maxit1' iterations.")
} else if (res$ifault == 1 || res$ifault == 3 || res$ifault == 5 || res$ifault == 6 ||
res$ifault == 9 || res$ifault == 10) {
warning("The estimate of the probability has a problem (e.g., prob < 0, prob > 1, etc.).")
}
return(res$prob)
} |
MixtureLogitAFT=function(formula,eventprobreg=~1,locationreg=~1,scalereg=~1,var.entry,var.mixturetype=NULL,var.weight=NULL,
data,time.origin=0,shape=NULL){
cat("Running ...")
time1=Sys.time()
call=match.call()
shapereg=~1
out=parameterize(formula,eventprobreg,locationreg,scalereg,shapereg,data,shape,var.entry)
dataset=out$dataset
covariates=out$covariates
var.centime=out$var.centime
var.truntime=out$var.truntime
is.reg=out$is.reg
x=out$x
fix.par=out$fix.par
par=out$par
is.interval=out$is.interval
is.truncation=out$is.truncation
minmax.time=out$minmax.time
var.obsweight=var.weight
is.weight=F; if(!is.null(var.obsweight)) is.weight=T
if(is.null(dataset)) return("Error: data !!")
if(is.null(var.centime)) return("Error: survival time !!")
if(any(is.na(match(var.centime,names(dataset))))) return("Error: survival time !!")
if(!is.null(var.truntime)){
if(any(is.na(match(var.truntime,names(dataset))))) return("Error: truncation time !!")
}
if(!is.null(covariates$names[-1])){
if(any(is.na(match(covariates$names[-1],names(dataset))))) return("Error: covariates !!")
}
if(!is.null(var.mixturetype)){
if(any(is.na(match(var.mixturetype,names(dataset))))) return("Error: variable of mixture type !!")
}
if(!is.null(var.obsweight)){
if(any(is.na(match(var.obsweight,names(dataset))))) return("Error: variable of observation weight !!")
}
dataset=dataset[,c(var.centime,var.truntime,covariates$names[-1],var.mixturetype,var.obsweight)]
dataset=obsKeep(dataset,covariates,var.centime,var.truntime)
num.obs=nrow(dataset)
if (length(covariates$names[-1])>0){
groups.obs=groupObs(dataset[,covariates$names[-1]],covariates$levels)
}else{
groups.obs=list()
groups.obs$labels="0";groups.obs$levels=0;groups.obs$levelsTrue=T;groups.obs$obs=rep(0,dim(dataset)[1])
}
if(length(covariates$labels)==length(groups.obs$labels))groups.obs$labels=covariates$labels
groups.obs$total.obs=numeric(length(groups.obs$levels))
groups.obs$case.obs=numeric(length(groups.obs$levels))
buffer.dataset=cbind(dataset[,var.centime[3]],groups.obs$obs)
total.obs=table(buffer.dataset[,2])
groups.obs$total.obs[match(as.numeric(names(total.obs)),groups.obs$levels)]=total.obs
index=which(buffer.dataset[,1] != 2)
if(length(index)>0) buffer.dataset=buffer.dataset[index,]
case.obs=table(buffer.dataset[,2])
groups.obs$case.obs[match(as.numeric(names(case.obs)),groups.obs$levels)]=case.obs
levels.mixturetype=NULL
if(!is.null(var.mixturetype)){
buffer=unique(cbind(dataset[,var.mixturetype],groups.obs$obs))
buffer=buffer[order(buffer[,2]),]
if(is.null(dim(buffer))){
buffer=buffer[!is.na(buffer[2])]
levels.mixturetype=buffer[1]
}else{
buffer=buffer[!is.na(buffer[,2]),]
levels.mixturetype=buffer[,1]
}
}
weight=rep(1,num.obs)
if(!is.null(var.obsweight)) weight=dataset[,var.obsweight]
if(!is.null(var.mixturetype)){
mtype=dataset[,var.mixturetype]
}else{
if(is.reg$beta==F){
mtype=rep(1,num.obs)
}else{
mtype=rep(2,num.obs)
}
}
var=var.centime
if(is.truncation) var=c(var,var.truntime)
survtime=dataset[,var]
index=which(survtime[,var.centime[3]]==2)
if(length(index)>0) survtime[index,var.centime[2]]=NA
index=which(survtime[,var.centime[3]]==4)
if(length(index)>0) survtime[index,var.centime[1]]=NA
if(is.truncation){
index=which(survtime[,var.truntime[3]]==2)
if(length(index)>0) survtime[index,var.truntime[2]]=NA
index=which(survtime[,var.truntime[3]]==4)
if(length(index)>0) survtime[index,var.truntime[1]]=NA
}
var=c(var.centime[1:2])
if(is.truncation) var=c(var,var.truntime[1:2])
survtime[,var]=survtime[,var]-time.origin
survtime[,var]=log(survtime[,var])
is.fix.par=list()
if (length(covariates$q) != length(fix.par$q)){
fix.par$q=NULL
}
is.fix.par$q = !is.null(fix.par$q)
survtime.turnbull=cbind(survtime,weight=weight)
index=which(survtime.turnbull[,3]==1)
if(length(index)>0) survtime.turnbull[index,2]=survtime.turnbull[index,1]
if (is.truncation){
turnbullEst=turnbullR(dataset=survtime.turnbull,var.centime=names(survtime.turnbull)[1:3],var.truntime=names(survtime.turnbull)[4:6],
var.obsweight=names(survtime.turnbull)[7],is.graph=F,tolerance=1e-3)
TurnbullEST=condition.turnbullR(turnbullEst,is.graph=F)
}else{
turnbullEst=turnbullR(dataset=survtime.turnbull,var.centime=names(survtime.turnbull)[1:3],var.truntime=NULL,
var.obsweight=names(survtime.turnbull)[4],is.graph=F,tolerance=1e-3)
TurnbullEST=condition.turnbullR(turnbullEst,is.graph=F)
}
TurnbullEST$p0=1-turnbullEst[1,"survival"]
TurnbullEST$p2=turnbullEst[nrow(turnbullEst)-1,"survival"]
if (TurnbullEST$SkewY > 0) TurnbullEST$SkewY=-1 else TurnbullEST$SkewY=1
y=list(E=NULL,Var=NULL,Skew=NULL)
y[1:3]=TurnbullEST[2:4]
if (is.reg$beta){
par$beta[1]=log((1-TurnbullEST$p0-TurnbullEST$p2)/TurnbullEST$p2)
}
w=list(E=NULL,Var=NULL)
w$E=(log(y$Skew^2)+digamma(y$Skew^{-2}))/y$Skew
w$Var=trigamma(y$Skew^{-2})/y$Skew^2
par$alpha[1]=log(sqrt(y$Var/w$Var))
par$gamma[1]=y$E-w$E*exp(par$alpha[1])
par$q[1]=y$Skew
if (is.fix.par$q) par$q=fix.par$q
par.nfix=NULL
if (is.reg$beta){
par.nfix=c(par.nfix,par$beta)
}
par.nfix=c(par.nfix,par$gamma,par$alpha)
if (!is.fix.par$q){
par.nfix=c(par.nfix,par$q)
}
options(warn=-1)
convergence=1
times.call=1; times.stop=3
while(convergence!=0 & times.call<=times.stop){
convergence=0
parscale=rep(1^(times.call-1),length(par.nfix))
cat(" ...")
est=optim(par=par.nfix,fn=LLF,gr=GLLF,method="BFGS",control=list(parscale=parscale,reltol=1e-16),hessian=F,
par.all=par,is.fix.par=is.fix.par,survtime=survtime,x=x,is.reg=is.reg,weight=weight,mtype=mtype)
par.nfix=est$par
gradient=-GLLF(par.nfix,par,is.fix.par,survtime,x,is.reg,weight,mtype)
hessian=HLLF(par.nfix,par,is.fix.par,survtime,x,is.reg,weight,mtype)
COV=NULL
std=rep(NA,length(par.nfix))
if(!any(is.na(hessian) | abs(hessian)==Inf)){
if(det(hessian)>0){
COV=solve(hessian,tol=1e-25)
std=sqrt(diag(COV))
}
}
if(est$convergence!=0){
convergence=est$convergence
}else if(any(is.na(hessian) | abs(hessian)==Inf)){
convergence=2
}else if(det(hessian)<=0){
convergence=3
}else if(any(is.na(std))){
convergence=4
}else if(max(abs(gradient))>1e-03){
convergence=5
}
times.call=times.call+1
}
cat("\n")
if(convergence==0){
cat("Convergence"); cat("\n")
}else{
cat("Not convergence"); cat("\n")
}
chisq=rep(NA,length(par.nfix))
pvalue=rep(NA,length(par.nfix))
if(all(!is.na(std))){
chisq=(par.nfix/std)^2
pvalue=1-pchisq(chisq,1)
}
LogLF=-est$value
AIC=2.0*(-LogLF+length(par.nfix))
start=1
if (is.reg$beta){
len=length(par$beta); par$beta=par.nfix[seq(start,start+len-1)]; start=start+len
}
len=length(par$gamma); par$gamma=par.nfix[seq(start,start+len-1)]; start=start+len
len=length(par$alpha); par$alpha=par.nfix[seq(start,start+len-1)]; start=start+len
if (!is.fix.par$q){
len=length(par$q); par$q=par.nfix[seq(start,start+len-1)]; start=start+len
}
residuals.data=residualData(par,survtime,x)
index=which(residuals.data[,3]==1)
if(length(index)>0) residuals.data[index,2]=residuals.data[index,1]
if(is.truncation){
index=which(residuals.data[,4]==-Inf)
if(length(index)>0){
residuals.data[index,4]=NA
residuals.data[index,6]=0
}
}
vars=c(covariates$main,var.obsweight)
if(length(vars)>0){
res.dataset=cbind(residuals.data,dataset[vars])
}else{
res.dataset=residuals.data
}
index=which(res.dataset[,3]==2)
if(length(index)>0) res.dataset[index,3]=0
index=which(res.dataset[,3]==4)
if(length(index)>0) res.dataset[index,3]=2
groups.obs=groups.obs[c("labels","total.obs","case.obs")]
time2=Sys.time()
run.time=time2-time1
run.time=paste(as.numeric(run.time),units(run.time),sep=" ")
cat(run.time); cat("\n")
MixtureRegEST=list(call=call,convergence=convergence,covariates=covariates,time.origin=time.origin,is.truncation=is.truncation,minmax.time=minmax.time,
is.interval=is.interval,is.weight=is.weight,fix.par=fix.par,par=par,parest=par.nfix,
std=std,chisq=chisq,pvalue=pvalue,gradient=gradient,LLF=LogLF,AIC=AIC,COV=COV,groups.obs=groups.obs,mixturetype=levels.mixturetype,
res.dataset=res.dataset,run.time=run.time,method="mixtureLogitAFT")
class(MixtureRegEST) = "mixture"
return(MixtureRegEST)
}
if(F){
par.all=par
print(LLF(par.nfix,par.all,is.fix.par,survtime,x,is.reg,weight,mtype),16)
GLLF(par.nfix,par.all,is.fix.par,survtime,x,is.reg,weight,mtype)
HLLF(par.nfix,par.all,is.fix.par,survtime,x,is.reg,weight,mtype)
} |
context("RateCardService")
skip("Reduce Total Test Runtime")
rdfp_options <- readRDS("rdfp_options.rds")
options(rdfp.network_code = rdfp_options$network_code)
options(rdfp.httr_oauth_cache = FALSE)
options(rdfp.application_name = rdfp_options$application_name)
options(rdfp.client_id = rdfp_options$client_id)
options(rdfp.client_secret = rdfp_options$client_secret)
dfp_auth(token = "rdfp_token.rds")
test_that("dfp_createRateCards", {
expect_true(TRUE)
})
test_that("dfp_getRateCardsByStatement", {
request_data <- list('filterStatement'=list('query'="WHERE status='ACTIVE'"))
dfp_getRateCardsByStatement_result <- dfp_getRateCardsByStatement(request_data)
expect_is(dfp_getRateCardsByStatement_result, "data.frame")
})
test_that("dfp_performRateCardAction", {
expect_true(TRUE)
})
test_that("dfp_updateRateCards", {
expect_true(TRUE)
}) |
intw1 <-
function(z) {c0 <- -0.1351788; PsiSw(z)*dlweibul(z+c0) } |
library(Rcpp);
get.context <- function (file,start){
cpp_get_context(file, start, length(start));
}; |
regSeries <- function(nVar, dMax, series, pReg = NULL) {
if (is.vector(series)) {
series <- t(series)
}
if (is.data.frame(series)) {
series <- as.matrix(series)
}
if (is.null(pReg)) {
if (is.null(dMax)) {
stop("'dMax' or 'pReg' is required.")
}
pReg <- regOrd(nVar,dMax)
} else {
if (is.vector(pReg)) {
pReg <- as.matrix(pReg)
}
}
RpFull <- NULL
for (i in 1:nVar) {
Rp <- c()
for (k in 1:dim(pReg)[2]) {
R1 <- series[,i]^pReg[i,k]
Rp <- cbind(Rp, R1)
}
if (is.null(RpFull)) {
RpFull <- Rp
}
else {
RpFull <- RpFull * Rp
}
}
RpFull
} |
summary.OBsProb <-
function (object, nTop = 10, digits = 3, ...)
{
nFac <- ncol(object$X) - object$blk
cat("\n Calculations:\n")
calc <- c(object$N, object$COLS, object$BLKS, object$MXFAC,
object$MXINT, object$mdcnt)
names(calc) <- c("nRun", "nFac", "nBlk", "mFac",
"mInt", "totMod")
out.list <- list(calc = calc)
print(round(calc, digits = digits))
prob <- data.frame(Factor = names(object$prob),
Prob = round(object$prob, digits), row.names = c(" ",seq(length(object$prob)-1)))
cat("\n Factor probabilities:\n")
print(prob, digits = digits)
cat("\n Model probabilities:\n")
ind <- seq(min(nTop, object$NTOP))
Prob <- round(object$ptop, digits)
NumFac <- object$nftop
Sigma2 <- round(object$sigtop, digits)
Factors <- apply(object$jtop, 1, function(x) ifelse(all(x ==
0), "none", paste(x[x != 0], collapse = ",")))
dd <- data.frame(Prob, Sigma2, NumFac, Factors)[ind, ]
print(dd, digits = digits, right = FALSE)
out.list[["probabilities"]] <- prob
out.list[["models"]] <- dd
invisible(out.list)
} |
est.union = function(collection, fun = mean, return.matrix = FALSE){
estado.pr = collection$data[[1]]
for ( i in 2:length(collection$data) ) {
estado.pr = ts.union(estado.pr, collection$data[[i]])
}
colnames(estado.pr) <- paste0("C", 1:length(collection$data))
if(return.matrix){ return(estado.pr) }
st = start(estado.pr)
estado.pr = apply(estado.pr, 1, fun, na.rm = TRUE)
estado.pr = ts(estado.pr, start=st, frequency=12)
col = collection
col$union = estado.pr
class(col) <- "Catalog"
return(col)
} |
frailty.vs<-function(formula,model,penalty,data,B=NULL,v=NULL,alpha=NULL,tun1=NULL,tun2=NULL,varfixed=FALSE,varinit=0.1){
Call <- match.call()
mc <- match.call()
indx <- match(c("formula", "data"),
names(Call), nomatch = 0)
if (indx[1] == 0)
stop("A formula argument is required")
temp <- Call[c(1, indx)]
temp[[1]] <- as.name("model.frame")
special <- c("strata", "cluster")
temp$formula <- terms(subbars(formula), special)
m <- eval(temp)
Terms <- attr(m, "terms")
Y <- model.extract(m, "response")
temp <- Call[c(1, indx)]
temp[[1]] <- as.name("model.frame")
special <- c("strata", "cluster")
temp$formula <- terms(formula, special)
Terms <- temp[[2]]
formula1 <- paste(paste(Terms[[2]][[2]], Terms[[3]], sep = "~")[[2]],
paste(Terms[[3]])[3], sep = "+")
formula1 <- formula(formula1)
fr <- FrailtyFrames(mc, formula1, contrasts)
namesX <- names(fr$fixef)
namesX <- namesX[-1]
namesY <- names(fr$mf)[1]
FL <- HGLMFactorList(formula1, fr, 0L, 0L)
namesRE <- FL$namesRE
y <- matrix(Y[, 1], length(fr$Y), 1)
x <- fr$X
z <- FL$Design
n <- nrow(x)
p <- ncol(x)
x1 <- x[1:n, 2:p]
x2 <- matrix(x1, n, p - 1)
x <- x2
n <- nrow(x)
p <- ncol(x)
alphas<-alpha
nrand <- length(z)
n.alpha<-length(alphas)
if (varfixed==TRUE) result<-frailty1.vs(formula=formula,model=model,penalty=penalty,data=data,B=B,v=v,alpha=alpha,tun1=tun1,tun2=tun2,varfixed=varfixed,varinit=varinit)
else {
if (n.alpha<=nrand) result<-frailty1.vs(formula=formula,model=model,penalty=penalty,data=data,B=B,v=v,alpha=alpha,tun1=tun1,tun2=tun2,varfixed=varfixed,varinit=varinit)
else result<-frailty2.vs(formula=formula,model=model,penalty=penalty,data=data,B=B,v=v,alpha=alpha,tun1=tun1,tun2=tun2)
}
return(result)
} |
slapGT<-function(EBS, data_inf, rand_nam, Ynames, grouping, Emethod){
gr<-data_inf[,grouping]
if(length(levels(gr))<2){stop("Grouping variable should have at leat 2 levels.")}
if(length(levels(gr))==2) gtmod ="logistic"
if(length(levels(gr))>2) gtmod ="multinomial"
if(Emethod=="joint"){
formula_gtp<-formula(paste0("~",paste0(rand_nam,collapse = "+"),"+",paste0(Ynames,collapse ="+")))
joint_gt<-globaltest::gt(data_inf[,grouping], formula_gtp, data=EBS, permutations=1e5, model =gtmod)
gt_obj<-c(joint_gt@result[,1],joint_gt@result[,2],joint_gt@result[,3],
joint_gt@result[,4],joint_gt@result[,5])
names(gt_obj)<-c("p-value","Statistic","Expected","Std.dev","Cov")
}
if(Emethod=="pairwise"){
formula_gtp<-formula(paste0("~",
paste0(rand_nam,collapse = "+"),"+",
paste0(Ynames,collapse ="+")))
pair_gt<-globaltest::gt(data_inf[,grouping], formula_gtp, data=EBS, permutations=1e5, model =gtmod)
gt_obj<-c(pair_gt@result[,1],pair_gt@result[,2],pair_gt@result[,3],
pair_gt@result[,4],pair_gt@result[,5])
names(gt_obj)<-c("p-value","Statistic","Expected","Std.dev","Cov")
}
gt_obj<-c(gt_obj,GT.model=gtmod)
return(gt_obj)
} |
require(OpenMx)
require(rpf)
require(ifaTools)
set.seed(2)
numItems <- 15
numPersons <- 250
slope <- 2
groupSize <- 5
items <- list()
items[1:numItems] <- rpf.drm()
correct.mat <- matrix(NA, 4, numItems)
dimnames(correct.mat) <- list(names(rpf.rparam(items[[1]])), paste("i", 1:numItems, sep=""))
correct.mat['a',] <- slope
correct.mat['b',] <- slope * seq(-1.5, 1.5, length.out = groupSize)
correct.mat['g',] <- kronecker(logit(1/2:(1+numItems/groupSize)), rep(1,groupSize))
correct.mat['u',] <- logit(1)
correct.mask <- matrix(FALSE, 4, numItems)
correct.mask[1,1] <- TRUE
correct.mask[2,] <- TRUE
correct.mask[3,] <- TRUE
mkmodel <- function() {
maxParam <- max(vapply(items, rpf.numParam, 0))
maxOutcomes <- max(vapply(items, function(i) i$outcomes, 0))
data <- rpf.sample(numPersons, items, correct.mat)
ip.mat <- mxMatrix(name="item", nrow=maxParam, ncol=numItems,
values=c(1, 0, NA, logit(1)), free=TRUE,
dimnames=list(names(rpf.rparam(items[[1]])),
colnames(data)))
ip.mat$free[1,] <- TRUE
ip.mat$labels[1,] <- 'slope'
ip.mat$values[3,] <- correct.mat['g',]
ip.mat$labels[3,] <- paste0('g', 1:ncol(ip.mat))
ip.mat$free[4,] <- FALSE
m1 <- mxModel(model="model1", ip.mat,
mxData(observed=data, type="raw"),
mxExpectationBA81(ItemSpec=items),
mxFitFunctionML())
m2 <- mxModel("3pl", m1,
univariatePrior("logit-norm", paste0('g', 1:ncol(ip.mat)), correct.mat['g',]),
mxFitFunctionMultigroup(c('model1', 'univariatePrior')),
mxComputeEM('model1.expectation', 'scores', mxComputeNewtonRaphson()))
m2
}
if (file.exists("inst/models/enormous/lib/stderrlib.R")) {
source("inst/models/enormous/lib/stderrlib.R")
} else if (file.exists("lib/stderrlib.R")) {
source("lib/stderrlib.R")
} else {
stop("Cannot find stderrlib.R")
}
name = "ifa-3pl-se"
recompute=FALSE
getMCdata(name, mkmodel, correct.mat[correct.mask], maxCondNum=5000, recompute=recompute)
omxCheckCloseEnough(norm(mcBias, "2"), .5525, .001)
omxCheckCloseEnough(max(abs(mcBias)), .3055, .001)
omxCheckCloseEnough(log(det(mcHessian)), 90.31, .1)
if (0) {
result <- NULL
set.seed(3)
model <- mkmodel()
model <- mxRun(mxModel(model, mxComputeSequence(list(
mxComputeOnce('model1.expectation', 'scores'),
mxComputeOnce('fitfunction', 'information', 'hessian'),
mxComputeReportDeriv()
))))
h1 <- model$output$hessian
h2 <- model$output$hessian
h3 <- model$output$hessian
em <- model$compute
fitfun <- em$mstep$fitfunction
em$accel <- ""
em$tolerance <- 1e-11
for (semType in c('mr','tian')) {
em$information <- "mr1991"
em$infoArgs <- list(fitfunction=fitfun, semMethod=semType, semTolerance=sqrt(1e-6))
plan <- mxComputeSequence(list(
em,
mxComputeHessianQuality(),
mxComputeStandardError(),
mxComputeReportDeriv()
))
model$compute <- plan
fit <- mxRun(model, silent=TRUE)
result <- rbind(result, data.frame(rd=(fit$output$standardErrors - mcSE)/mcSE,
algo=semType, param=names(mcSE)))
}
if (1) {
em$accel <- 'ramsay1975'
em$tolerance <- 1e-11
em$information <- "mr1991"
em$infoArgs <- list(fitfunction=fitfun, semMethod="agile")
plan <- mxComputeSequence(list(
em,
mxComputeHessianQuality(),
mxComputeStandardError(),
mxComputeReportDeriv()
))
if (is.null(fit)) fit <- model
fit$compute <- plan
fit <- mxRun(fit, silent=TRUE)
result <- rbind(result, data.frame(rd=(fit$output$standardErrors - mcSE)/mcSE,
algo="agile", param=names(mcSE)))
}
library(ggplot2)
ggplot(result, aes(rd, param, color=algo, shape=algo)) + geom_point() + geom_vline(xintercept=0)
}
rda <- paste(name, "-result.rda", sep="")
load(rda)
detail <- testPhase(mkmodel, 500,
methods=c('re', 'estepH', 'mr', 'tian', 'agile', 'meat', 'oakes'))
if (0) {
asem <- studyASEM(mkmodel)
smooth <- checkSmoothness(mkmodel)
}
save(detail, asem, smooth, file=rda)
stop("done")
if (0) {
asem <- studyASEM(mkmodel, reps = 50, targets=seq(-8.1, -3.9, .2))
got <- checkSmoothness(mkmodel())
}
if (0) {
seed <- 1
set.seed(seed)
m1 <- mkmodel()
f1 <- paste("ifa-3pl-se", seed, ".csv", sep="")
write.table(sapply(m1$data$observed, unclass)-1, f1, quote=FALSE, row.names=FALSE, col.names=FALSE)
m1 <- mxRun(m1)
covname <- "~/ifa/ifa-3pl-se/3pl-se-cov.txt"
H <- read.csv(covname, header = FALSE, row.names=NULL)
H <- H[,-ncol(H)]
H <- solve(H)
labels <- names(m1$output$estimate)
fmOrder <- c(labels[-c(2,9,16,23,30)], labels[c(2,9,16,23,30)])
fmPerm <- match(colnames(mcHessian), fmOrder)
H <- H[fmPerm, fmPerm]
H <- 2 * H
m1$compute <- mxComputeSequence(list(
mxComputeOnce('expectation','scores'),
mxComputeOnce('fitfunction', 'information', "hessian"),
mxComputeReportDeriv()))
m1 <- mxRun(m1)
mvn_KL_D(H, solve(H))
mvn_KL_D(junk, solve(junk))
}
if (0) {
require(mirt)
seed <- 1
set.seed(seed)
m1 <- mkmodel()
val <- mirt(sapply(m1$data$observed, unclass)-1, 1, "3PL", pars="values")
val[val$name == "a1", 'value'] <- 8
val[val$name == "a1", 'est'] <- FALSE
gnum <- val[val$name=='g', 'parnum']
fit <- mirt(sapply(m1$data$observed, unclass)-1, 1, "3PL", pars=val,
constrain=list(gnum[1:6], gnum[7:12], gnum[13:18], gnum[19:24], gnum[25:30]),
SE=TRUE, SE.type="complete")
fit$information
}
if (0) {
grp <- bank[[1]]$grp
source("~/2012/sy/irtplot.R")
booklet(function(item) {
rpf.plot(grp, item, data.bins=30, basis=c(1), factor=1)
}, colnames(correct.mat), output="4plm.pdf")
rpf.plot(grp, "i1")
rpf.plot(grp, "i6")
rpf.plot(grp, "i11")
rpf.plot(grp, "i16")
grp$param <- correct.mat
}
if (0) {
m1 <- mkmodel(1)
if (0) {
raw <- sapply(m1$data$observed, unclass) - 1
write.table(raw, file="3pl1.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
}
}
if(1) {
omxCheckCloseEnough(max(sapply(bank, function(t) t$condnum['meat'])), 733, 1)
omxCheckCloseEnough(max(abs(emp$bias)), .04, .01)
omxCheckCloseEnough(norm(check.se("meat"), "2"), 2.08, .01)
omxCheckCloseEnough(norm(check.se("sw"), "2"), 3.298, .01)
omxCheckCloseEnough(norm(check.se("sem"), "2"), 2.935, .01)
if (0) {
plot(emp$bias, correct.mat[correct.mask])
hist(check.se("sem"))
hist(check.se("meat"))
hist(check.se("sw"))
}
} |
postgis_insert <- function(conn, df, tbl, write_cols = NA,
geom_name = NA_character_,
hstore_name = NA_character_) {
query_text <- prep_write_query(conn, df, tbl, mode = "insert", write_cols,
NA, NA, geom_name, hstore_name, NA)
RPostgreSQL::dbSendQuery(conn, query_text)
}
postgis_update <- function(conn, df, tbl, id_cols, update_cols,
geom_name = NA_character_,
hstore_name = NA_character_, hstore_concat = TRUE) {
query_text <- prep_write_query(conn, df, tbl, mode = "update", NA, id_cols,
update_cols, geom_name, hstore_name, hstore_concat)
RPostgreSQL::dbSendQuery(conn, query_text)
}
prep_write_query <- function(conn, df, tbl, mode, write_cols, id_cols,
update_cols, geom_name, hstore_name, hstore_concat) {
if (!is(conn, "PostgreSQLConnection")) {
stop("conn is not a valid PostgreSQL connection")
}
if (!is(df, "data.frame") & !is(df, "Spatial")) {
stop("df must be a data.frame or Spatial*DataFrame")
}
test_single_str(tbl)
test_single_str(geom_name)
test_single_str(hstore_name)
if (mode == "update") {
if (length(intersect(id_cols, update_cols)) > 0) {
stop("the same column cannot appear in id_cols and update_cols")
}
if (geom_name %in% id_cols || hstore_name %in% id_cols) {
stop("geometry and hstore columns cannot be used in id_cols")
}
}
quote_id <- make_id_quote(conn)
quote_str <- make_str_quote(conn)
if (!is.na(geom_name)) {
if (!is(df, "Spatial")) {
stop("geom_name specified but df is not a spatial object")
}
if (all(is.na(write_cols))) {
write_cols <- colnames(df@data)
} else if (!all(write_cols %in% colnames(df@data))) {
stop(paste("columns not found in df:",
paste(setdiff(write_cols, colnames(df@data)),
collapse = ", ")))
}
srid <- find_srid(conn, proj4string(df))
geom_wkt <- rgeos::writeWKT(df, byid = nrow(df@data) > 1)
df <- cbind(df@data[, write_cols, drop = FALSE], geom_wkt,
stringsAsFactors = FALSE)
igeom <- ncol(df)
colnames(df)[igeom] <- geom_name
} else {
if (is(df, "Spatial")) {
stop("geom_name must be specified since df is as spatial object")
}
if (all(is.na(write_cols))) {
write_cols <- colnames(df)
} else if (!all(write_cols %in% colnames(df))) {
stop(paste("columns not found in df:",
paste(setdiff(write_cols, colnames(df)),
collapse = ", ")))
}
df <- df[, write_cols, drop = FALSE]
}
fact_cols <- vapply(df, is.factor, FALSE)
df[fact_cols] <- lapply(df[fact_cols], as.character)
if (mode == "update") {
if (!all(c(id_cols, update_cols) %in% colnames(df)))
stop(paste("columns not found in df:",
paste(setdiff(c(id_cols, update_cols), colnames(df)),
collapse = ", ")))
if (any(duplicated(df[, id_cols])))
stop("id_cols do not uniquely identify rows in df")
}
if (!is.na(hstore_name)) {
if (!all(vapply(df[[hstore_name]], is.list, FALSE))) {
stop(paste("column", deparse(substitute(hstore_name)),
"is not a valid hstore"))
}
df[[hstore_name]] <- vapply(df[[hstore_name]], jsonlite::toJSON, "")
df[[hstore_name]] <- json_to_hstore(df[[hstore_name]])
}
if (mode == "update") {
tbl_q <- quote_id(tbl)
tbl_tmp <- quote_id(paste0(tbl, "_tmp"))
id_q <- quote_id(id_cols)
update_q <- quote_id(update_cols)
update_tmp <- paste0(tbl_tmp, ".", update_q)
if (!is.na(hstore_name)) {
i_hs <- which(update_cols == hstore_name)
update_tmp[i_hs] <- paste0(update_tmp[i_hs], "::hstore")
if (hstore_concat) {
update_tmp[i_hs] <- paste0("COALESCE(", tbl_q, ".", update_q[i_hs],
", hstore('')) || ", update_tmp[i_hs])
}
}
query_text <- paste("UPDATE", tbl_q, "SET",
paste(update_q, "=", update_tmp, collapse = ", "),
"FROM (VALUES")
} else {
col_ids <- quote_id(colnames(df))
query_text <- paste("INSERT INTO", quote_id(tbl), "(",
paste(col_ids, collapse = ", "), ") VALUES")
}
df_q <- do.call(cbind, lapply(df, function(var) {
if(is.character(var)) quote_str(var)
else var
}))
na_inds <- do.call(cbind, lapply(df, is.na))
df_q[na_inds] <- "NULL"
if (!is.na(geom_name)) {
df_q[, igeom] <- paste0("ST_GeomFromText(", df_q[, igeom], ", ", srid, ")")
}
query_values <- apply(df_q, 1, function(row) {
paste("(", paste(row, collapse = ", "), ")")
})
query_text <- paste(query_text, paste(query_values, collapse = ", "))
if (mode == "update") {
query_text <- paste(query_text, ") AS", tbl_tmp, "(",
paste(quote_id(colnames(df)), collapse = ", "), ")",
"WHERE", paste(paste0(tbl_q, ".", id_q), "=",
paste0(tbl_tmp, ".", id_q),
collapse = " AND "))
}
query_text
} |
suppressWarnings(library(dplyr, warn.conflicts = FALSE, quietly = TRUE))
library(tidyr, quietly = TRUE)
library(nlme)
data(bdf, package = "mlmRev")
bdf_long <-
bdf %>%
filter(schoolNR %in% levels(schoolNR)[1:12]) %>%
droplevels() %>%
pivot_longer(cols = c(IQ.verb, IQ.perf, aritPRET),
names_to = "measure",
values_to = "score") %>%
select(schoolNR, pupilNR, sex, Minority, measure, score) %>%
arrange(schoolNR, pupilNR, measure)
bdf_MVML <- lme(score ~ 0 + measure,
random = ~ 1| schoolNR / pupilNR,
corr = corSymm(form = ~ 1 | schoolNR / pupilNR),
weights = varIdent(form = ~ 1 | measure),
data = bdf_long,
control = lmeControl(msMaxIter = 100, apVar = FALSE, returnObject = TRUE))
set.seed(20200311)
bdf_long$school_id <- bdf_long$schoolNR
levels(bdf_long$school_id) <- LETTERS[1:nlevels(bdf_long$school_id)]
bdf_long_wm <-
bdf_long %>%
mutate(
row_index = rbinom(n = n(), size = 1, prob = 0.9),
score = if_else(row_index == 1, score, as.numeric(NA)),
measure_id = as.integer(factor(measure))
) %>%
filter(!is.na(score)) %>%
select(-row_index) %>%
arrange(schoolNR, pupilNR, measure_id)
bdf_long_shuff <-
sample_frac(bdf_long_wm, 1) %>%
mutate(row = row_number())
bdf_wm <- lme(score ~ 0 + measure,
random = ~ 1| schoolNR / pupilNR,
corr = corSymm(form = ~ measure_id | schoolNR / pupilNR),
weights = varIdent(form = ~ 1 | measure_id),
data = bdf_long_wm,
control=lmeControl(msMaxIter = 100, apVar = FALSE, returnObject = TRUE))
bdf_wm_shuff <- lme(score ~ 0 + measure,
random = ~ 1| schoolNR / pupilNR,
corr = corSymm(form = ~ measure_id | schoolNR / pupilNR),
weights = varIdent(form = ~ 1 | measure_id),
data = bdf_long_shuff,
control=lmeControl(msMaxIter = 100, apVar = FALSE, returnObject = TRUE))
bdf_wm_id <- lme(score ~ 0 + measure,
random = ~ 1| school_id / pupilNR,
corr = corSymm(form = ~ measure_id | school_id / pupilNR),
weights = varIdent(form = ~ 1 | measure_id),
data = bdf_long_shuff,
control=lmeControl(msMaxIter = 100, apVar = FALSE, returnObject = TRUE))
test_that("targetVariance() works with multivariate models.", {
skip_on_cran()
test_Sigma_mats(bdf_MVML, bdf_long$schoolNR)
test_Sigma_mats(bdf_wm, bdf_long_wm$schoolNR)
test_Sigma_mats(bdf_wm_id, bdf_long_shuff$school_id)
test_Sigma_mats(bdf_wm_shuff, bdf_long_shuff$school_id)
})
test_that("Derivative matrices are of correct dimension with multivariate models.", {
skip_on_cran()
test_deriv_dims(bdf_MVML)
test_deriv_dims(bdf_wm)
test_deriv_dims(bdf_wm_id)
test_deriv_dims(bdf_wm_shuff)
})
test_that("Information matrices work with FIML too.", {
test_with_FIML(bdf_MVML)
test_with_FIML(bdf_wm)
test_with_FIML(bdf_wm_id)
test_with_FIML(bdf_wm_shuff)
})
test_that("New REML calculations work.", {
skip_on_cran()
check_REML2(bdf_MVML)
check_REML2(bdf_wm)
check_REML2(bdf_wm_id)
check_REML2(bdf_wm_shuff)
})
test_that("Info matrices work with dropped observations.", {
skip_on_cran()
test_after_deleting(bdf_MVML, seed = 10)
test_after_deleting(bdf_wm, seed = 20)
test_after_deleting(bdf_wm_id, seed = 30)
test_after_deleting(bdf_wm_shuff, seed = 40)
})
test_that("Results do not depend on order of data.", {
skip("For now.")
test_after_shuffling(bdf_MVML, seed = 20)
test_after_shuffling(bdf_wm, seed = 17)
test_after_shuffling(bdf_wm_id, seed = 20)
test_after_shuffling(bdf_wm_shuff, seed = 17)
}) |
TestTrimHistogram <- function() {
hist.1 <- hist(c(1,2,3), breaks=0:9, plot=FALSE)
hist.trimmed <- TrimHistogram(hist.1)
checkTrue(sum(hist.1$counts) == sum(hist.trimmed$counts))
checkTrue(length(hist.1$counts) > length(hist.trimmed$counts))
hist.2 <- hist(c(4,5,6), breaks=0:9, plot=FALSE)
hist.trimmed <- TrimHistogram(hist.2)
checkTrue(sum(hist.2$counts) == sum(hist.trimmed$counts))
checkTrue(length(hist.2$counts) > length(hist.trimmed$counts))
zero.hist <- hist(numeric(), breaks=c(0,1,2,3,4,5,6,7,8,9), plot=FALSE)
zero.trimmed <- TrimHistogram(zero.hist)
checkEquals(length(zero.hist$counts), length(zero.trimmed$counts))
} |
library( knitr)
opts_chunk$set(cache=TRUE, message = FALSE, comment = "", dev="pdf",
dpi=300, fig.show = "hold", fig.align = "center")
library( stockR)
set.seed( 747)
N <- 100
M <- 5000
S <- N
K <- 3
myData <- sim.stock.data( nAnimal=N, nSNP=M, nSampleGrps=N, K=K)
dim( myData)
ncol( myData)
nrow( myData)
table( attributes( myData)$grps)
attributes( myData)$grps
myData[1:5,1:3]
stocks <- stockSTRUCTURE( myData, K=3)
stocks$postProb
stocks$hardClass <- apply( stocks$postProb, 1, which.max)
stocks$boot <- stockBOOT( stocks, B=25, mc.cores=2)
stocks$uncertClass <- apply( stocks$boot$postProbs, 1:2,
quantile, probs=c(0.05,0.5,0.95))
print( round( stocks$uncertClass[,99,], 3))
S <- 15
K <- 3
myData <- sim.stock.data( nAnimal=N, nSNP=M, nSampleGrps=S, K=K)
stocks <- stockSTRUCTURE( myData, K=3,
sample.grps=attributes(myData)$sampleGrps)
attributes( myData)$grps
apply( stocks$postProbs, 1, which.max)
stocks$boot <- stockBOOT( stocks, B=25, mc.cores=2)
stocks$uncertClass <- apply( stocks$boot$postProbs, 1:2,
quantile, probs=c(0.05,0.5,0.95))
print( round( stocks$uncertClass, 3))
myData <- sim.stock.data( nAnimal=N, nSNP=M, nSampleGrps=N, K=K)
totMark <- prod( dim( myData))
myData[sample( 1:totMark, size=floor( 0.3*totMark))] <- NA
stocks <- stockSTRUCTURE( myData, K=3)
attributes( myData)$grps
apply( stocks$postProbs, 1, which.max)
rm( list=ls())
toLatex(sessionInfo()) |
compileCode <- TRUE
library(rstan) ; library(HRW)
nWarm <- 1000
nKept <- 1000
nThin <- 1
fTrue <- function(x)
return(3*exp(-78*(x-0.38)^2)+exp(-200*(x-0.75)^2)-x)
muXTrue <- 0.5 ; sigmaXTrue <- 1/6
sigmaEpsTrue <- 0.35
set.seed(1)
n <- 1000
misPropn <- 0.2
x <- rnorm(n,muXTrue,sigmaXTrue)
y <- fTrue(x) + sigmaEpsTrue*rnorm(n)
nUnobs <- round(misPropn*n) ; nObs <- n - nUnobs
indsUnobs <- sample(1:n,nUnobs,replace=FALSE)
indsObs <- setdiff(1:n,indsUnobs)
xUnobsTrue <- x[indsUnobs] ; xObs <- x[indsObs]
yxUnobs <- y[indsUnobs] ; yxObs <- y[indsObs]
ncZ <- 25
knots <- seq(min(xObs),max(xObs),length=(ncZ+2))[-c(1,ncZ+2)]
ZxObs <- outer(xObs,knots,"-")
ZxObs <- ZxObs*(ZxObs>0)
npRegMCARModel <-
'data
{
int<lower=1> nObs; int<lower=1> nUnobs;
int<lower=1> ncZ;
vector[nObs] yxObs; vector[nUnobs] yxUnobs;
vector[nObs] xObs;
vector[ncZ] knots; matrix[nObs,ncZ] ZxObs;
real<lower=0> sigmaBeta; real<lower=0> sigmaMu;
real<lower=0> Ax; real<lower=0> Aeps;
real<lower=0> Au;
}
parameters
{
vector[2] beta; vector[ncZ] u;
real muX; real<lower=0> sigmaX;
real<lower=0> sigmaEps; real<lower=0> sigmaU;
real xUnobs[nUnobs];
}
transformed parameters
{
matrix[nObs,2] XxObs; matrix[nUnobs,2] XxUnobs;
matrix[nUnobs,ncZ] ZxUnobs;
for (i in 1:nObs)
{
XxObs[i,1] = 1 ; XxObs[i,2] = xObs[i];
}
for (i in 1:nUnobs)
{
XxUnobs[i,1] = 1 ; XxUnobs[i,2] = xUnobs[i];
for (k in 1:ncZ)
{
ZxUnobs[i,k] = (xUnobs[i]-knots[k])*step(xUnobs[i]-knots[k]);
}
}
}
model
{
yxObs ~ normal(XxObs*beta+ZxObs*u,sigmaEps);
xObs ~ normal(muX,sigmaX);
yxUnobs ~ normal(XxUnobs*beta+ZxUnobs*u,sigmaEps);
xUnobs ~ normal(muX,sigmaX);
u ~ normal(0,sigmaU) ; beta ~ normal(0,sigmaBeta);
muX ~ normal(0,sigmaMu); sigmaX ~ cauchy(0,Ax);
sigmaEps ~ cauchy(0,Aeps); sigmaU ~ cauchy(0,Au);
}'
allData <- list(nObs = nObs,nUnobs = nUnobs,ncZ = ncZ,xObs = xObs,
yxObs = yxObs,yxUnobs = yxUnobs,ZxObs = ZxObs,knots = knots,
sigmaMu = 1e5,sigmaBeta = 1e5,sigmaEps = 1e5,sigmaX = 1e5,Ax = 1e5,
Aeps = 1e5,Au = 1e5)
if (compileCode)
stanCompilObj <- stan(model_code = npRegMCARModel,data = allData,
iter = 1,chains = 1)
stanObj <- stan(model_code = npRegMCARModel,data = allData,warmup = nWarm,
iter = (nWarm + nKept),chains = 1,thin = nThin,refresh = 100,
fit = stanCompilObj)
betaMCMC <- NULL
for (j in 1:2)
{
charVar <- paste("beta[",as.character(j),"]",sep = "")
betaMCMC <- rbind(betaMCMC,extract(stanObj,charVar,permuted = FALSE))
}
uMCMC <- NULL
for (k in 1:ncZ)
{
charVar <- paste("u[",as.character(k),"]",sep = "")
uMCMC <- rbind(uMCMC,extract(stanObj,charVar,permuted = FALSE))
}
muXMCMC <- as.vector(extract(stanObj,"muX",permuted = FALSE))
sigmaXMCMC <- as.vector(extract(stanObj,"sigmaX",permuted = FALSE))
sigmaEpsMCMC <- as.vector(extract(stanObj,"sigmaEps",permuted = FALSE))
sigmaUMCMC <- as.vector(extract(stanObj,"sigmaU",permuted = FALSE))
xUnobsMCMC <- NULL
for (i in 1:nUnobs)
{
charVar <- paste("xUnobs[",as.character(i),"]",sep = "")
xUnobsMCMC <- rbind(xUnobsMCMC,extract(stanObj,charVar,permuted = FALSE))
}
obsCol <- "darkblue" ; misCol <- "lightskyblue"
estFunCol <- "darkgreen"; trueFunCol <- "indianred3"
varBandCol <- "palegreen" ; cexVal <- 0.3
ng <- 201
xg <- seq(0,1,,length = ng)
Xg <- cbind(rep(1,ng),xg)
Zg <- outer(xg,knots,"-")
Zg <- Zg*(Zg>0)
fMCMC <- Xg%*%betaMCMC + Zg%*%uMCMC
credLower <- apply(fMCMC,1,quantile,0.025)
credUpper <- apply(fMCMC,1,quantile,0.975)
fg <- apply(fMCMC,1,mean)
par(mfrow = c(1,1),mai = c(1.02,0.82,0.82,0.42))
plot(xg,fg,type = "n",bty = "l",xlab = "x",ylab = "y",xlim = range(x),ylim = range(y))
polygon(c(xg,rev(xg)),c(credLower,rev(credUpper)),col = varBandCol,border = FALSE)
lines(xg,fg,lwd = 2,col = estFunCol)
lines(xg,fTrue(xg),lwd = 2,col = trueFunCol)
points(xObs,yxObs,col = obsCol,cex = cexVal)
points(xUnobsTrue,yxUnobs,col = misCol,cex = cexVal)
legend("topright",c("fully observed","x value unobserved"),col = c(obsCol,misCol),
pch = rep(1,2),pt.cex = cexVal)
legend("topleft",c("true f","estimated f"),col = c(trueFunCol,estFunCol),
lwd = rep(2,2))
indQ1 <- length(xg[xg <= quantile(xObs,0.25)])
fQ1MCMC <- fMCMC[indQ1,]
indQ2 <- length(xg[xg <= quantile(xObs,0.50)])
fQ2MCMC <- fMCMC[indQ2,]
indQ3 <- length(xg[xg <= quantile(xObs,0.75)])
fQ3MCMC <- fMCMC[indQ3,]
parms <- list(cbind(muXMCMC,sigmaXMCMC,sigmaEpsMCMC,fQ1MCMC,fQ2MCMC,fQ3MCMC))
parNamesVal <- list(c(expression(mu[x])),c(expression(sigma[x])),
c(expression(sigma[epsilon])),
c("first quartile","of x"),
c("second quart.","of x"),
c("third quartile","of x"))
summMCMC(parms,parNames = parNamesVal,numerSummCex = 1,
KDEvertLine = FALSE,addTruthToKDE = c(muXTrue,sigmaXTrue,
sigmaEpsTrue,fTrue(xg[indQ1]),
fTrue(xg[indQ2]),fTrue(xg[indQ3])))
parms <- list(t(xUnobsMCMC[1:5,]))
parNamesVal <- list(c(expression(x["unobs,1"])),
c(expression(x["unobs,2"])),
c(expression(x["unobs,3"])),
c(expression(x["unobs,4"])),
c(expression(x["unobs,5"])))
summMCMC(parms,parNames = parNamesVal,KDEvertLine = FALSE,addTruthToKDE = x[1:5]) |
addtoedges <- function(profileEdges=blackbox.getOption("profileEdges"), locedge) {
if(is.null(locedge)) return(profileEdges)
oldnr <- nrow(profileEdges)
if (is.null(oldnr)) oldnr <- 0
if ( oldnr>1000 ) { message.redef("profileEdges growing dangerously...")}
profileEdges <- rbind(profileEdges, locedge)
nr <- nrow(profileEdges)
if (is.null(nr)) nr <- 0
if ( oldnr<1001 & nr>1000 ) {
cat("(Reducing profileEdges)", "\n")
blob <- resetCHull(profileEdges, formats="vertices", redundant.mode="double")
profileEdges <- blob$vertices
}
blackbox.options(profileEdges=profileEdges)
return(profileEdges)
} |
gausskernel <-
function(X=NULL,sigma=NULL)
{
return(exp(-1*as.matrix(dist(X)^2)/sigma))
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.