code
stringlengths
1
13.8M
rgb2alpha <- function(raw_col, alpha) { raw_col_rgb <- col2rgb(raw_col) alpha_col <- rgb( raw_col_rgb[1L, ], raw_col_rgb[2L, ], raw_col_rgb[3L, ], alpha = alpha * 255L, maxColorValue = 255L ) alpha_col } plot.cv.enpls <- function( x, xlim = NULL, ylim = NULL, alpha = 0.8, main = NULL, ...) { if (!inherits(x, "cv.enpls")) { stop('This function only works for objects of class "cv.enpls"') } df <- as.data.frame(x$"ypred") xrange <- range(df$"y.real") yrange <- range(df$"y.pred") fixrange <- c(min(xrange[1L], yrange[1L]), max(xrange[2L], yrange[2L])) if (is.null(xlim)) xlim <- fixrange if (is.null(ylim)) ylim <- fixrange ggplot( df, aes_string( x = "y.real", y = "y.pred", xmin = xlim[1L], xmax = xlim[2L], ymin = ylim[1L], ymax = ylim[2L] ) ) + geom_abline(slope = 1, intercept = 0, colour = "darkgrey") + geom_point(size = 3, shape = 1, alpha = alpha) + coord_fixed(ratio = 1) + xlab("Observed Response") + ylab("Predicted Response") } plot.enpls.fs <- function( x, nvar = NULL, type = c("dotplot", "boxplot"), limits = c(0, 1), main = NULL, ...) { if (!inherits(x, "enpls.fs")) { stop('This function only works for objects of class "enpls.fs"') } type <- match.arg(type) imp <- x$"variable.importance" if (is.null(nvar)) nvar <- length(imp) if (type == "dotplot") { df <- data.frame(sort(imp, TRUE)[nvar:1]) df[, 2L] <- row.names(df) names(df) <- c("varimp", "varname") df$"varname" <- factor(df$"varname", levels = df$"varname") p <- ggplot(df) + geom_point(aes_string(x = "varimp", y = "varname")) + theme( panel.grid.major.x = element_blank(), panel.grid.major.y = element_line(linetype = 3, color = "darkgray") ) + xlab("Variable Importance Score") + ylab("Variable Name") } if (type == "boxplot") { mat <- x$"coefficient.matrix" df <- as.data.frame(mat[, names(sort(imp, TRUE)[nvar:1])]) df <- suppressMessages(melt(df)) p <- ggplot(df, aes_string(x = "variable", y = "value")) + scale_y_continuous(limits = quantile(df$"value", limits)) + geom_boxplot() + coord_flip() + xlab("Variable Name") + ylab("Coefficient") } p } plot.enpls.od <- function( x, criterion = c("quantile", "sd"), prob = 0.05, sdtimes = 3L, alpha = 1, main = NULL, ...) { if (!inherits(x, "enpls.od")) { stop('This function only works for objects of class "enpls.od"') } criterion <- match.arg(criterion) error.mean <- x$"error.mean" error.sd <- x$"error.sd" if (criterion == "quantile") { vpos <- quantile(error.mean, 1 - prob, na.rm = TRUE) hpos <- quantile(error.sd, 1 - prob, na.rm = TRUE) } else { vpos <- mean(error.mean, na.rm = TRUE) + (sdtimes * sd(error.mean, na.rm = TRUE)) hpos <- mean(error.sd, na.rm = TRUE) + (sdtimes * sd(error.sd, na.rm = TRUE)) } yout <- intersect(which(error.mean >= vpos), which(error.sd <= hpos)) Xout <- intersect(which(error.mean <= vpos), which(error.sd >= hpos)) abnormal <- intersect(which(error.mean >= vpos), which(error.sd >= hpos)) plot(error.mean, error.sd, xlab = "Error Mean", ylab = "Error SD", bty = "n", xaxt = "n", yaxt = "n", main = main, ... ) rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = " ) rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], border = "darkgrey", lwd = 0.5 ) grid(col = "white", lty = 1) points(error.mean, error.sd, col = rgb2alpha(" axis(side = 1, labels = TRUE, col = "darkgrey", lwd = 0.3, cex.axis = 0.8) axis(side = 2, labels = TRUE, col = "darkgrey", lwd = 0.3, cex.axis = 0.8) abline(h = hpos, col = "black", lty = 2) abline(v = vpos, col = "black", lty = 2) if (length(yout) != 0L) { points(error.mean[yout], error.sd[yout], pch = 21, col = rgb2alpha(" bg = rgb2alpha(" ) text(error.mean[yout], error.sd[yout], labels = as.character(yout), col = " ) } if (length(Xout) != 0L) { points(error.mean[Xout], error.sd[Xout], pch = 21, col = rgb2alpha(" bg = rgb2alpha(" ) text(error.mean[Xout], error.sd[Xout], labels = as.character(Xout), col = " ) } if (length(abnormal) != 0L) { points(error.mean[abnormal], error.sd[abnormal], pch = 21, col = rgb2alpha(" bg = rgb2alpha(" ) text(error.mean[abnormal], error.sd[abnormal], labels = as.character(abnormal), col = " ) } } plot.enpls.ad <- function( x, type = c("static", "interactive"), main = NULL, ...) { if (!inherits(x, "enpls.ad")) { stop('This function only works for objects of class "enpls.ad"') } type <- match.arg(type) n.testset <- length(x$"te.error.mean") nsamp.tr <- length(x$"tr.error.mean") nsamp.te <- sapply(x$"te.error.mean", length) tr.df <- data.frame( "Mean" = x$"tr.error.mean", "SD" = x$"tr.error.sd", "Set" = "Train" ) te.list <- vector("list", n.testset) for (i in 1L:n.testset) { te.list[[i]] <- data.frame( "Mean" = x[["te.error.mean"]][[i]], "SD" = x[["te.error.sd"]][[i]], "Set" = paste0("Test.", i) ) } df <- rbind(tr.df, Reduce(rbind, te.list)) if (type == "static") { p <- ggplot(df) + geom_point(aes_string( x = "Mean", y = "SD", color = "Set", shape = "Set" )) + scale_shape(solid = FALSE) + scale_colour_brewer(palette = "Set1") + xlab("Absolute Mean Prediction Error") + ylab("Prediction Error SD") } else { hovertext <- sprintf("Sample ID: %s", rownames(df)) df <- data.frame(df, "hovertext" = hovertext) g <- ggplot(df) + geom_point(aes_string( x = "Mean", y = "SD", color = "Set", text = "hovertext" )) + scale_colour_brewer(palette = "Set1") + xlab("Absolute Mean Prediction Error") + ylab("Prediction Error SD") p <- ggplotly(g) } p }
compute_fs = function(fs_time_horizon,T=NA,fs_dates=NA){ if(all(is.na(fs_dates))){ if(is.numeric(fs_time_horizon)){ T_star = rep(fs_time_horizon,T) } if(fs_time_horizon %in% c("w","m","q","y")){ if(fs_time_horizon == "w") size = 5 if(fs_time_horizon == "m") size = 25 if(fs_time_horizon == "q") size = 70 if(fs_time_horizon == "y") size = 260 T_star = sample(1:size,T,replace=TRUE,prob=dbinom(1:size,size,0.9)/sum(dbinom(1:size,size,0.9))) } } else { dates_overview = data.frame("w" = as.numeric(strftime(fs_dates,format ="%W")), "m" = as.numeric(strftime(fs_dates,format ="%m")), "q" = as.numeric(substr(quarters(fs_dates),2,2)), "y" = as.numeric(strftime(fs_dates,format ="%Y"))) if(fs_time_horizon == "w"){ T_star = vector() for(y in unique(dates_overview[["y"]])){ dates_overview_subset = dates_overview[dates_overview[["y"]]==y,] T_star = c(T_star,as.vector(table(dates_overview_subset[["w"]]))) } } if(fs_time_horizon == "m"){ T_star = vector() for(y in unique(dates_overview[["y"]])){ dates_overview_subset = dates_overview[dates_overview[["y"]]==y,] T_star = c(T_star,as.vector(table(dates_overview_subset[["m"]]))) } } if(fs_time_horizon == "q"){ T_star = vector() for(y in unique(dates_overview[["y"]])){ dates_overview_subset = dates_overview[dates_overview[["y"]]==y,] T_star = c(T_star,as.vector(table(dates_overview_subset[["q"]]))) } } if(fs_time_horizon == "y"){ T_star = as.vector(table(dates_overview[["y"]])) } if(is.numeric(fs_time_horizon)){ T_star = rep(fs_time_horizon,floor(length(fs_dates)/fs_time_horizon)) } } return(T_star) }
fetchBMdata = function(url = NULL, id = NULL){ if(is.null(url)){ url = "http://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/july1999/dnaloci.txt" } if(is.null(id)){ id = "parent-fieldname-text-2baa15a4d877814a4a62588114966028" } fetchLines = function(){ webpage = read_html(url) xpath = paste0('//div[@id="', id, '"]') data = html_text(html_nodes(webpage, xpath = xpath)) Lines = unlist(strsplit(data, "[\r]+")) i1 = grep("Table 1.", Lines) i2 = grep("^3409", Lines) Lines = Lines[i1:i2] } Lines = fetchLines() Lines = gsub("[&][ Lines = stringr::str_trim(Lines) Lines = gsub("(<|>)[0-9]+","108.1",Lines) Lines = Lines[nchar(Lines)>0] Lines = Lines[-1] popLocations = which(nchar(Lines) < 50) popNames = Lines[popLocations] Loci = unlist(strsplit(Lines[2], "[\t ]+"))[-1] nLoci = length(Loci) Alleles = vector(length = nLoci, mode = "list") allPops = strsplit(Lines[-c(popLocations,popLocations+1)],"[\t ]+") allPops = lapply(allPops, function(profile){ l = 2 * nLoci + 1 - length(profile) if(l != 0){ profile = c(profile, rep(NA, l)) } profile[profile == "0"] = NA profile } ) Alleles = vector(mode = "list", length = nLoci) apm = do.call("rbind", allPops) for(loc in 1:nLoci){ i1 = 2 * loc i2 = i1 + 1 alleles = c(apm[,i1], apm[,i2]) alleles = alleles[!is.na(alleles)] Alleles[[loc]] = sort(unique(alleles)) if(all(grepl("^[0-9.]+$", Alleles[[loc]]))){ Alleles[[loc]] = as.character(sort(as.numeric(Alleles[[loc]]))) } } names(Alleles) = Loci numPops = length(popNames) db = vector(length = numPops, mode = "list") names(db) = popNames i1 = popLocations + 2 i2 = c(popLocations[-1] - 1, length(Lines)) popSizes = i2 - i1 + 1 start = cumsum(c(1, popSizes[-numPops])) end = cumsum(popSizes) for(pop in 1:numPops){ if(pop > 3){ nLoci = 13 Loci = Loci[1:nLoci] } db[[pop]] = list(loci = Loci, profiles = apm[start[pop]:end[pop], 1:(2 * nLoci + 1)], freqs = vector(mode = "list", length = nLoci)) names(db[[pop]]$freqs) = Loci for(loc in 1:nLoci){ i1 = 2 * loc i2 = i1 + 1 a = c(db[[pop]]$profiles[,i1], db[[pop]]$profiles[,i2]) a = factor(a, levels = Alleles[[loc]]) tbl = xtabs(~a) db[[pop]]$freqs[[loc]] = tbl / sum(tbl) } } return(db) }
context("TEST MODELTIME PLOTS") m750 <- m4_monthly %>% filter(id == "M750") splits <- initial_time_split(m750, prop = 0.8) model_spec <- arima_reg(seasonal_period = 12) %>% set_engine("auto_arima") model_fit <- model_spec %>% fit(log(value) ~ date, data = training(splits)) forecast_tbl <- model_fit %>% modeltime_calibrate(new_data = testing(splits)) %>% modeltime_forecast( actual_data = m750, conf_interval = 0.95) g <- forecast_tbl %>% mutate_at(vars(.value:.conf_hi), exp) %>% plot_modeltime_forecast(.interactive = FALSE) suppressWarnings({ p <- forecast_tbl %>% mutate_at(vars(.value:.conf_hi), exp) %>% plot_modeltime_forecast(.interactive = TRUE) }) test_that("modeltime plot, Test Static ggplot", { testthat::expect_s3_class(g, "ggplot") testthat::expect_s3_class(g$layers[[1]]$geom, "GeomRibbon") }) test_that("modeltime plot, Test Interactive plotly", { testthat::expect_s3_class(p, "plotly") }) g <- forecast_tbl %>% mutate_at(vars(.value:.conf_hi), exp) %>% plot_modeltime_forecast(.interactive = FALSE, .conf_interval_show = FALSE) p <- forecast_tbl %>% mutate_at(vars(.value:.conf_hi), exp) %>% plot_modeltime_forecast(.interactive = TRUE, .conf_interval_show = FALSE) test_that("modeltime plot, Test Static ggplot", { testthat::expect_s3_class(g, "ggplot") testthat::expect_s3_class(g$layers[[1]]$geom, "GeomLine") }) test_that("modeltime plot, Test Interactive plotly", { testthat::expect_s3_class(p, "plotly") }) model_spec <- arima_reg(seasonal_period = 12) %>% set_engine("auto_arima") recipe_spec <- recipe(value ~ date, data = training(splits)) %>% step_log(value, skip = FALSE) wflw <- workflow() %>% add_recipe(recipe_spec) %>% add_model(model_spec) wflw_fit <- wflw %>% fit(training(splits)) forecast_tbl <- wflw_fit %>% modeltime_calibrate(testing(splits)) %>% modeltime_forecast(actual_data = m750, conf_interval = 0.8) g <- forecast_tbl %>% mutate_at(vars(.value:.conf_hi), exp) %>% plot_modeltime_forecast(.conf_interval_show = TRUE, .interactive = FALSE) p <- forecast_tbl %>% mutate_at(vars(.value:.conf_hi), exp) %>% plot_modeltime_forecast(.conf_interval_show = TRUE, .interactive = TRUE) test_that("modeltime plot - workflow, Test Static ggplot", { testthat::expect_s3_class(g, "ggplot") testthat::expect_s3_class(g$layers[[1]]$geom, "GeomRibbon") }) test_that("modeltime plot - workflow, Test Interactive plotly", { testthat::expect_s3_class(p, "plotly") })
append.dictionary <- function(..., dictionary.name = "appendix", save.location = c("envir","wd","choose","path"), path = NULL, textcleaner = FALSE, package = FALSE) { word.list <- list(...) words <- unlist(word.list) name <- as.character(substitute(list(...))) name <- name[-which(name=="list")] dicts <- grep(".dictionary", name) if(textcleaner){ if(length(dicts) != 0){ dict.words <- sort(unique(unlist(word.list[dicts]))) new.words <- setdiff(words, dict.words) }else{new.words <- words} } if(package) { if(missing(save.location)) {save.location <- "path"} path <- "D:/R Packages/SemNetDictionaries/data" updated <- sort(unique(c(unlist(words), load.dictionaries(dictionary.name)))) dictionary <- paste(dictionary.name, ".dictionary", sep = "") assign(dictionary, updated, envir = environment()) data.path <- paste(path, "/", dictionary, ".Rdata", sep = "") save(list = dictionary, file = data.path, envir = environment(), version = 2) return(message(paste(dictionary, ".Rdata was updated.", sep = ""))) } if(missing(save.location)) {save.location <- "envir" }else{save.location <- match.arg(save.location)} if(save.location == "envir") { sav.files <- ls(envir = globalenv()) append.data <- paste(dictionary.name,"dictionary",sep=".") }else if(save.location != "envir") { if(save.location == "wd") { path <- getwd() }else if(save.location == "choose") { path <- paste(tcltk::tkchooseDirectory(), collapse = " ") }else if(save.location == "path") { if(is.null(path)) {stop("A 'path' must be specified.")} if(!dir.exists(path)) {stop("'path' does not exist.")} } sav.loc <- path sav.files <- list.files(sav.loc) append.data <- paste(dictionary.name,"dictionary","rds",sep=".") } if(append.data %in% sav.files) { if(!textcleaner){ new.words <- unlist(words) } new.words <- tolower(new.words) if(save.location != "envir") { append.words <- readRDS(paste(sav.loc,append.data,sep="/")) }else if(save.location == "envir") { if(textcleaner) {append.words <- dict.words }else{append.words <- get(paste(dictionary.name,"dictionary",sep="."), envir = globalenv())} } comb.words <- c(append.words,new.words) append.words <- unique(sort(comb.words)) if(save.location == "envir") { if(!textcleaner) {message("Dictionary has been updated") }else{message(paste("\nResponse was ADDED TO DICTIONARY:", paste("'", new.words, "'", sep = "")))} return(append.words) }else if(save.location == "choose") { if(!textcleaner){ ans <- yes.no.menu(title = "Update your dictionary") }else{ans <- 1} if(ans == 1) { saveRDS(append.words, file = file.path(paste(sav.loc,append.data,sep="/")), version = 2) message(paste("\n", append.data," has been updated.",sep="")) }else if(ans == 2) { message(paste("\n", append.data," was not updated.",sep="")) } }else{ saveRDS(append.words, file = file.path(paste(sav.loc,append.data,sep="/")), version = 2) message(paste("\n", append.data," has been updated.",sep="")) } }else{ append.words <- unlist(words) append.words <- tolower(append.words) if(textcleaner) {append.words <- unique(sort(c(append.words, dict.words))) }else{append.words <- unique(sort(append.words))} if(save.location == "envir") { if(!textcleaner) {message("Dictionary has been created") }else{message(paste("\nResponse was ADDED TO DICTIONARY:", paste("'", new.words, "'", sep = "")))} return(append.words) }else if(save.location == "choose") { if(!textcleaner) {ans <- yes.no.menu(title = "Save your dictionary") }else{ans <- 1} if(ans == 1) { saveRDS(append.words, file = file.path(paste(sav.loc,append.data,sep="/")), version = 2) message(paste("\nA new dictionary file was created in: '", paste(sav.loc, append.data, sep="/"), "'", sep = "")) }else if(ans == 2) { message(paste("\n",append.data," was not saved.",sep="")) } }else{ saveRDS(append.words, file = file.path(paste(sav.loc,append.data,sep="/")), version = 2) message(paste("\nA new dictionary file was created in: '", paste(sav.loc, append.data, sep="/"), "'", sep = "")) } } }
`rda.default` <- function (X, Y = NULL, Z = NULL, scale = FALSE, ...) { if (inherits(X, "dist") || NCOL(X) == NROW(X) && isTRUE(all.equal(X, t(X)))) stop("function cannot be used with (dis)similarities") X <- as.matrix(X) if (!is.null(Y)) { if (is.data.frame(Y) || is.factor(Y)) Y <- model.matrix(~ ., as.data.frame(Y))[,-1,drop=FALSE] Y <- as.matrix(Y) } if (!is.null(Z)) { if (is.data.frame(Z) || is.factor(Z)) Z <- model.matrix(~ ., as.data.frame(Z))[,-1,drop=FALSE] Z <- as.matrix(Z) } sol <- ordConstrained(X, Y, Z, arg = scale, method = "rda") call <- match.call() call[[1]] <- as.name("rda") sol$call <- call inertia <- if (scale) "correlations" else "variance" sol <- c(sol, list("inertia" = inertia)) sol$regularization <- "this is a vegan::rda result object" class(sol) <- c("rda", "cca") sol }
list_images <- function(start, length, options=NULL, ...) { args <- pc(list(options = paste0(options, collapse = " "))) path <- file.path('api/a/image/list', start, length) phy_GET(path, args, ...)$result }
"[.ratetable" <- function(x, ..., drop=TRUE) { aa <- attributes(x) attributes(x) <- aa[c("dim", "dimnames")] y <- NextMethod("[", drop=FALSE) newdim <- attr(y, 'dim') if (is.null(newdim)) return(y) dropped <- (newdim==1) if (drop) change <- (newdim!=aa$dim & !dropped) else change <- (newdim!=aa$dim) if (any(change)) { newcut <- aa$cutpoints for (i in (1:length(change))[change]) if (!is.null(newcut[[i]])) newcut[[i]] <- (newcut[[i]])[match(dimnames(y)[[i]], aa$dimnames[[i]])] aa$cutpoints <- newcut } if (drop && any(dropped)){ if (all(dropped)) as.numeric(y) else { attributes(y) <- list( dim = dim(y)[!dropped], dimnames = dimnames(y)[!dropped], dimid = aa$dimid[!dropped], factor = aa$factor[!dropped], cutpoints =aa$cutpoints[!dropped], type = aa$type[!dropped]) class(y) <- 'ratetable' y } } else { aa$dim <- aa$dimnames <- NULL attributes(y) <- c(attributes(y), aa) y } } is.na.ratetable <- function(x) structure(is.na(as.vector(x)), dim=dim(x), dimnames=dimnames(x)) Math.ratetable <- function(x, ...) { attributes(x) <- attributes(x)[c("dim", "dimnames")] NextMethod(.Generic) } Ops.ratetable <- function(e1, e2) { if (nchar(.Method[1])) attributes(e1) <- attributes(e1)[c("dim","dimnames")] if (nchar(.Method[2])) attributes(e2) <- attributes(e2)[c("dim","dimnames")] NextMethod(.Generic) } as.matrix.ratetable <- function(x, ...) { attributes(x) <- attributes(x)[c("dim", "dimnames")] x }
checkKey <- function(dfList) { sapply(dfList, function(x) names(x)[1]=="KEY" & all(is.numeric(x[,1]))) }
findintercorr_cont_cat <- function(method = c("Fleishman", "Polynomial"), constants, rho_cont_cat, marginal, support) { Sigma_cont_cat <- matrix(1, nrow = nrow(rho_cont_cat), ncol = ncol(rho_cont_cat)) for (i in 1:nrow(rho_cont_cat)) { for (j in 1:ncol(rho_cont_cat)) { Sigma_cont_cat[i, j] <- (rho_cont_cat[i, j] * sqrt(var_cat(marginal[[j]], support[[j]])))/(denom_corr_cat(marginal[[j]], support[[j]]) * power_norm_corr(constants[i, ], method)) } } return(Sigma_cont_cat) }
onsetissa<-function(kandi,h,delta,minim, brnode,component, index, AtomlistAtom,AtomlistNext){ itis<-F d<-length(minim) node<-brnode compo<-component[node] ato<-compo while ((ato>0) && !(itis)){ inde<-index[AtomlistAtom[ato]] keski<-minim-h+delta*inde for (din in 1:d){ if ((kandi[din]>=(keski[din]-delta[din]/2)) && (kandi[din]<=(keski[din]+delta[din]/2))){ itis<-T } } ato<-AtomlistNext[ato] } return(itis) }
prepPDE <- function(fn) { pdes = RSEIS::getPDEscreen(fn) pdelist = RSEIS::PDE2list(pdes) w1 = which(is.na(pdelist$sec)) zde = data.frame(pdelist) zde = zde[-w1, ] pdejsec = RSEIS::JtimL(zde) ipde = as.list(zde) ipde$jsec = pdejsec any(is.na(pdejsec)) return(ipde) }
"algoComp"
library(testthat) library(text) library(tibble) library(dplyr) context("Training Functions") test_that("textTrain Regression produces list of results with prediction being numeric", { skip_on_cran() x = wordembeddings4[1] y = Language_based_assessment_data_8[6] trained_min_halving <- textTrainRegression(wordembeddings4[1], Language_based_assessment_data_8[6], cv_method = "cv_folds", outside_folds = 2, inside_folds = 2, outside_strata_y = NULL, inside_strata_y = NULL, model = "regression", eval_measure = "rmse", penalty = c(1), mixture = c(0), preprocess_PCA = 1, multi_cores = FALSE, save_output = "only_results" ) testthat::expect_that(trained_min_halving, is_a("list")) testthat::expect_is(trained_min_halving$results$statistic[[1]], "numeric") trained_logistic <- textTrainRegression( x = wordembeddings4[1], y = as.factor(Language_based_assessment_data_8$gender), cv_method = "validation_split", outside_folds = 2, inside_folds = 3/4, outside_strata_y = NULL, inside_strata_y = NULL, model = "logistic", eval_measure = "bal_accuracy", penalty = c(1), mixture = c(0), preprocess_PCA = "min_halving", multi_cores = "multi_cores_sys_default", save_output = "only_results" ) testthat::expect_that(trained_logistic, is_a("list")) testthat::expect_is(trained_logistic$results_metrics$.estimate[[1]], "numeric") trained_logistic2 <- textTrainRegression( x = wordembeddings4[1], y = as.factor(Language_based_assessment_data_8$gender), cv_method = "cv_folds", outside_folds = 2, inside_folds = 2, outside_strata_y = NULL, inside_strata_y = NULL, model = "logistic", eval_measure = "accuracy", penalty = c(1), mixture = c(0), preprocess_PCA = 1, multi_cores = "multi_cores_sys_default", save_output = "only_results_predictions" ) testthat::expect_that(trained_logistic2, is_a("list")) testthat::expect_is(trained_logistic2$results_metrics$.estimate[[1]], "numeric") trained_logistic_PCA1 <- textTrainRegression(wordembeddings4[1], as.factor(Language_based_assessment_data_8$gender), outside_folds = 2, outside_strata_y = NULL, inside_strata_y = NULL, model = "logistic", eval_measure = "precision", penalty = c(1), mixture = c(0), preprocess_PCA = 1, multi_cores = "multi_cores_sys_default", save_output = "all" ) testthat::expect_that(trained_logistic_PCA1, is_a("list")) testthat::expect_is(trained_logistic_PCA1$results_metrics$.estimate[[1]], "numeric") predict_list_form <- text::textPredict(trained_logistic_PCA1, wordembeddings4[1]) testthat::expect_is(predict_list_form$.pred_class[[1]], "factor") trained_1 <- textTrain(wordembeddings4$harmonytext, Language_based_assessment_data_8$hilstotal, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, penalty = c(1), mixture = c(0), preprocess_PCA = NA, multi_cores = "multi_cores_sys_default", force_train_method = "regression", save_output = "only_results_predictions" ) testthat::expect_that(trained_1, is_a("list")) testthat::expect_is(trained_1$prediction$predictions[1], "numeric") trained_NA <- textTrain(wordembeddings4$harmonytext, Language_based_assessment_data_8$hilstotal, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, penalty = c(1), mixture = c(0), preprocess_PCA = NA, multi_cores = "multi_cores_sys_default" ) testthat::expect_that(trained_NA, is_a("list")) testthat::expect_is(trained_NA$prediction$predictions[1], "numeric") }) test_that("textTrain Random Forest produces list of results with prediction being categorical", { skip_on_cran() example_categories <- as.factor(c( 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 )) trained1 <- textTrain(wordembeddings4$harmonytext, example_categories, cv_method = "validation_split", outside_folds = 2, inside_folds = 3/4, outside_strata_y = NULL, inside_strata_y = NULL, mtry = c(1), min_n = c(1), trees = c(1000), preprocess_PCA = "min_halving", multi_cores = "multi_cores_sys_default", eval_measure = "f_measure", force_train_method = "random_forest" ) testthat::expect_that(trained1, testthat::is_a("list")) testthat::expect_is(trained1$truth_predictions$truth[1], "factor") trained2 <- textTrain(wordembeddings4$harmonytext, example_categories, outside_folds = 2, inside_folds = 3/4, outside_strata_y = NULL, inside_strata_y = NULL, mtry = c(1), min_n = c(1), trees = c(1000), preprocess_PCA = 2, multi_cores = "multi_cores_sys_default", eval_measure = "sens", force_train_method = "random_forest" ) testthat::expect_that(trained2, testthat::is_a("list")) testthat::expect_is(trained2$truth_predictions$truth[1], "factor") trained_NA <- textTrain(wordembeddings4$harmonytext, example_categories, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, force_train_method = "random_forest", mtry = c(1), min_n = c(1), trees = c(1000), preprocess_PCA = NA, multi_cores = "multi_cores_sys_default", eval_measure = "spec" ) testthat::expect_that(trained_NA, testthat::is_a("list")) testthat::expect_is(trained_NA$truth_predictions$truth[1], "factor") }) test_that("textTrainRandomForest with Extremely Randomized Trees produces list of results with prediction being categorical", { skip_on_cran() example_categories <- as.factor(c( 1, NA, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 )) trained_rf_95 <- textTrainRandomForest( x = wordembeddings4$harmonytext, y = example_categories, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, mode_rf = "classification", mtry = c(1), min_n = c(1), trees = c(1000), preprocess_PCA = c(0.95), extremely_randomised_splitrule = NULL, multi_cores = "multi_cores_sys_default", eval_measure = "roc_auc", save_output = "only_results", event_level = "second" ) testthat::expect_that(trained_rf_95, testthat::is_a("list")) testthat::expect_is(trained_rf_95$results$.estimate[1], "numeric") example_categories <- as.factor(c( 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 )) trained_rf_3 <- textTrainRandomForest(wordembeddings4$harmonytext, example_categories, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, mtry = c(1), min_n = c(1), trees = c(1000), preprocess_PCA = c(3), extremely_randomised_splitrule = "gini", multi_cores = FALSE, eval_measure = "kappa", save_output = "only_results_predictions" ) testthat::expect_that(trained_rf_3, testthat::is_a("list")) testthat::expect_is(trained_rf_3$truth_predictions$truth[1], "factor") example_categories_tibble <- tibble::as_tibble_col(example_categories) trained_rf_NA <- textTrainRandomForest(wordembeddings4[1], example_categories_tibble, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, mtry = c(1), min_n = c(1), trees = c(1000), preprocess_PCA = NA, extremely_randomised_splitrule = "gini", multi_cores = "multi_cores_sys_default" ) testthat::expect_that(trained_rf_NA, testthat::is_a("list")) testthat::expect_is(trained_rf_NA$truth_predictions$truth[1], "factor") }) test_that("textTrainLists Regression produces a list of results with prediction being numeric", { skip_on_cran() results_or <- textTrainLists(wordembeddings4$harmonywords, Language_based_assessment_data_8[5:6], outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, preprocess_PCA = c(0.90), penalty = c(2), mixture = c(0), force_train_method = "regression", save_output = "only_results", method_cor = "kendall", multi_cores = "multi_cores_sys_default" ) testthat::expect_that(results_or, testthat::is_a("list")) testthat::expect_is(results_or$results$tau_correlation[1], "character") wordembeddings <- wordembeddings4[1] ratings_data1 <- Language_based_assessment_data_8[5] ratings_data2 <- Language_based_assessment_data_8[6] factors1 <- tibble::as_tibble_col(as.factor(Language_based_assessment_data_8$gender)) ratings_data <- cbind(ratings_data1, ratings_data2, factors1) results_or_p <- textTrainLists(wordembeddings, ratings_data, preprocess_PCA = c(0.90), outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, penalty = c(2), mixture = c(0), force_train_method = "automatic", save_output = "only_results_predictions", multi_cores = "multi_cores_sys_default" ) testthat::expect_that(results_or_p, testthat::is_a("list")) testthat::expect_is(results_or_p$results$correlation[1], "character") results_or_p <- textTrain(x = wordembeddings, y = ratings_data, preprocess_PCA = c(0.90), outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, penalty = c(2), mixture = c(0), force_train_method = "random_forest", save_output = "only_results_predictions", multi_cores = "multi_cores_sys_default" ) testthat::expect_that(results_or_p, testthat::is_a("list")) testthat::expect_is(results_or_p$results$.estimate[1], "numeric") factors1 <- as.factor(Language_based_assessment_data_8$gender) factors2 <- as.factor(Language_based_assessment_data_8$gender) rating1 <- Language_based_assessment_data_8$hilstotal ratings_data_factors <- tibble::tibble(factors1, factors2, rating1) results_list_logistic <- textTrainLists(wordembeddings4[1], ratings_data_factors, preprocess_PCA = c(0.90), outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, penalty = c(2), mixture = c(0), force_train_method = "automatic", model = "logistic", eval_measure = "default", save_output = "only_results_predictions", multi_cores = "multi_cores_sys_default" ) testthat::expect_that(results_or_p, testthat::is_a("list")) testthat::expect_is(results_or_p$results$.estimate[1], "numeric") results_list_logistic <- textTrain(wordembeddings, ratings_data_factors, preprocess_PCA = c(0.90), outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, penalty = c(2), mixture = c(0), force_train_method = "regression", save_output = "only_results_predictions", multi_cores = "multi_cores_sys_default" ) testthat::expect_that(results_or_p, testthat::is_a("list")) testthat::expect_is(results_or_p$results$.estimate[1], "numeric") }) test_that("textTrainLists randomForest produces list of results with prediction being numeric", { skip_on_cran() x <- wordembeddings4[1] y1 <- factor(rep(c("young", "old", "young", "old", "young", "old", "young", "old", "young", "old"), 4)) y2 <- factor(rep(c("young", "old", "young", "old", "young", "old", "young", "old", "young", "old"), 4)) y <- tibble::tibble(y1, y2) results_rf_et <- textTrain(x, y, force_train_method = "automatic", outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, mtry = c(1), min_n = c(1), preprocess_PCA = c(0.95), trees = c(1000), eval_measure = "accuracy", extremely_randomised_splitrule = "extratrees", save_output = "all", multi_cores = "multi_cores_sys_default" ) testthat::expect_that(results_rf_et, testthat::is_a("list")) testthat::expect_is(results_rf_et$results$p_value[1], "character") results_rf <- textTrain(x, y, force_train_method = "automatic", outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, mtry = c(1), min_n = c(1), preprocess_PCA = NA, trees = c(1000), eval_measure = "kappa", save_output = "all", multi_cores = "multi_cores_sys_default" ) testthat::expect_that(results_rf, testthat::is_a("list")) testthat::expect_is(results_rf$results$p_value[1], "character") results_rf_or_p <- textTrain(x, y, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, mtry = c(1), min_n = c(1), preprocess_PCA = c(0.95), trees = c(1000), eval_measure = "precision", save_output = "only_results_predictions", multi_cores = "multi_cores_sys_default" ) testthat::expect_that(results_rf_or_p, testthat::is_a("list")) testthat::expect_is(results_rf_or_p$results$p_value[1], "character") results_rf_or <- textTrain(x, y, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, mtry = c(1), min_n = c(1), preprocess_PCA = c(0.95), trees = c(1000), eval_measure = "precision", save_output = "only_results", multi_cores = "multi_cores_sys_default" ) testthat::expect_that(results_rf_or, testthat::is_a("list")) testthat::expect_is(results_rf_or$results$p_value[1], "character") }) test_that("textTrainRegression adding wordembeddings together", { skip_on_cran() multi_we_PCA_09 <- textTrainRegression(wordembeddings4[1:2], Language_based_assessment_data_8$hilstotal, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, preprocess_PCA = c(0.9), penalty = 1, multi_cores = "multi_cores_sys_default" ) testthat::expect_that(multi_we_PCA_09, testthat::is_a("list")) testthat::expect_is(multi_we_PCA_09$results[[1]][[1]], "numeric") predictions_multi <- text::textPredict(multi_we_PCA_09, wordembeddings4[1:2]) testthat::expect_is(predictions_multi$.pred[[1]], "numeric") multi_we_PCA_3 <- textTrainRegression(wordembeddings4[1:2], Language_based_assessment_data_8$hilstotal, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, preprocess_PCA = 3, penalty = 1, multi_cores = "multi_cores_sys_default" ) testthat::expect_that(multi_we_PCA_3, testthat::is_a("list")) testthat::expect_is(multi_we_PCA_3$results[[1]][[1]], "numeric") multi_we_PCA_NA <- textTrainRegression(wordembeddings4[1:2], Language_based_assessment_data_8$hilstotal, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, preprocess_PCA = NA, penalty = 1, multi_cores = "multi_cores_sys_default" ) testthat::expect_that(multi_we_PCA_NA, testthat::is_a("list")) testthat::expect_is(multi_we_PCA_NA$results[[1]][[1]], "numeric") }) test_that("textTrainRandomForest adding wordembeddings together", { y <- as.factor(c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2)) multi_we_RF_PCA_09 <- textTrainRandomForest(wordembeddings4[1:2], y, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, preprocess_PCA = 0.9, mtry = c(1), min_n = c(1), multi_cores = "multi_cores_sys_default" ) testthat::expect_that(multi_we_RF_PCA_09, testthat::is_a("list")) testthat::expect_is(multi_we_RF_PCA_09$results$.estimate[[1]], "numeric") multi_we_RF_PCA_3 <- textTrainRandomForest(wordembeddings4[1:2], y, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, preprocess_PCA = 3, mtry = c(1), min_n = c(1), multi_cores = "multi_cores_sys_default" ) testthat::expect_that(multi_we_RF_PCA_3, testthat::is_a("list")) testthat::expect_is(multi_we_RF_PCA_3$results$.estimate[[1]], "numeric") multi_we_RF_PCA_NA <- textTrainRandomForest(wordembeddings4[1:2], y, outside_folds = 2, inside_folds = 2/3, outside_strata_y = NULL, inside_strata_y = NULL, preprocess_PCA = NA, mtry = c(1), min_n = c(1), multi_cores = "multi_cores_sys_default" ) testthat::expect_that(multi_we_RF_PCA_NA, testthat::is_a("list")) testthat::expect_is(multi_we_RF_PCA_NA$results$.estimate[[1]], "numeric") })
visNetMul <- function (g, data, height=7, margin=rep(0.1,4), border.color=" { if(class(g)=="graphNEL"){ ig <- igraph.from.graphNEL(g) }else{ ig <- g } if (class(ig) != "igraph"){ stop("The function must apply to either 'igraph' or 'graphNEL' object.\n") } if(is.null(V(ig)$name)){ V(ig)$name <- as.character(V(ig)) } if(is.matrix(data) | is.data.frame(data) | is.vector(data)){ data <- as.matrix(data) }else if(is.null(data)){ stop("The input data must be not NULL.\n") } if(is.null(rownames(data))) { stop("The function must require the row names of the input data.\n") }else if(any(is.na(rownames(data)))){ warning("Data with NA as row names will be removed") data <- data[!is.na(rownames(data)),] } cnames <- colnames(data) if(is.null(cnames)){ cnames <- seq(1,ncol(data)) } ind <- match(rownames(data), V(ig)$name) nodes_mapped <- V(ig)$name[ind[!is.na(ind)]] if(length(nodes_mapped)!=vcount(ig)){ stop("The function must require that the row names of input data contain all those in the input graph.\n") } data <- as.matrix(data[nodes_mapped,]) vmin <- floor(stats::quantile(data, 0.05)) vmax <- ceiling(stats::quantile(data, 0.95)) if(vmin < 0 & vmax > 0){ vsym <- abs(min(vmin, vmax)) vmin <- -1*vsym vmax <- vsym } if(!is.null(zlim)){ if(zlim[1] < floor(min(data)) | zlim[2] > ceiling(max(data))){ } }else{ zlim <- c(vmin,vmax) } colNum <- ceiling(sqrt(length(cnames))) + 1 rowNum <- ceiling((length(cnames)+1)/colNum) + 1 tolNum <- colNum*rowNum if(tolNum < length(cnames)+colNum+rowNum-1){ rowNum <- rowNum+1 } layout_vec <- vector() k <- 0 t <- 0 for(j in 1:rowNum){ for(i in 1:colNum){ t <- t+1 if(j == 1){ layout_vec[t] <- 0 }else{ if(i == colNum){ if(j == rowNum){ layout_vec[t] <- length(cnames)+1 }else{ layout_vec[t] <- 0 } }else{ k <- k+1 if(k<=length(cnames)){ layout_vec[t] <- k }else{ layout_vec[t] <- 0 } } } } } layout_matrix <- matrix(layout_vec, rowNum, colNum, byrow=T) frac <- colorbar.fraction row_first <- frac*10/rowNum row_rest <- (10-row_first)/(rowNum-1) layout_heights <- c(row_first, rep(row_rest, rowNum-1)) col_last <- frac*10/colNum col_rest <- (10-col_last)/(colNum-1) layout_widths <- c(rep(col_rest, colNum-1), col_last) if (newpage){ grDevices::dev.new(width=height*colNum/rowNum, height=height) } graphics::par(mfrow=c(rowNum,colNum), mar=margin) graphics::layout(layout_matrix, widths=layout_widths, heights=layout_heights) if(is.function(glayout)){ glayout_fix <- glayout(ig) }else{ glayout_fix <- glayout } for(k in 1:length(cnames)){ visNet(ig, glayout=glayout_fix, pattern=data[,k], colormap=colormap, ncolors=ncolors, zlim=zlim, colorbar=F, newpage=F, ...) graphics::mtext(sprintf("%s",cnames[k]), line=-1.5, side=mtext.side, adj=mtext.adj, cex=mtext.cex, font=mtext.font, col=mtext.col) graphics::box("figure",col=border.color) } if(colorbar){ plot(c(0,1),c(0,1),xlab="", ylab="", axes=F, type="n") palette.name <- visColormap(colormap=colormap) colors <- palette.name(ncolors) lab.scale <- length(colors)/(zlim[2]-zlim[1]) for (i in 1:length(colors)) { yValue <- (i-1)/ncolors hValue <- 1/ncolors xValue <- 0.25 wValue <- 0.25 xleft <- xValue ybottom <- yValue xright <- xValue+wValue ytop <- yValue+hValue graphics::rect(xleft,ybottom,xright,ytop, col=colors[i], border="transparent") if(i == 1 | i == 1+length(colors)/2){ tx <- (i-1)/lab.scale + zlim[1] graphics::text(x=xright+0.1, y=ybottom, labels=tx, cex=1) }else if(i==length(colors)){ tx <- i/lab.scale + zlim[1] graphics::text(x=xright+0.2, y=ytop, labels=tx, cex=1) } } } invisible() }
est2SLSCoefCov <- function(d, poly.mat = NULL, cov.mat = NULL, mean.vec = NULL, acov = NULL, acov.sat = NULL, r = NULL){ coef.names <- lapply(d, function(eq) { paste0(eq$DVlat, "~",if(eq$categorical) eq$IVlat else c("1",eq$IVlat)) }) not.cat <- unlist(lapply(d, function(eq){ rep(!eq$categorical, length(eq$coefficients)) })) coefCov <- matrix(0, length(unlist(coef.names)), length(unlist(coef.names)) ) rownames(coefCov) <- colnames(coefCov) <- unlist(coef.names) if (!is.null(acov.sat)) { acov.names <- colnames(acov.sat) K <- buildDeltaK(d, cov.mat, mean.vec, acov.names) coefCov <- K %*% acov.sat %*% t(K) rownames(coefCov) <- colnames(coefCov) <- unlist(coef.names)[not.cat] } else { d <- lapply(d, function(eq) { if (eq$categorical){ eq$sigma <- NA K <- buildCategoricalK(eq, poly.mat) eq$coefCov <- K %*% acov %*% t(K) rownames(eq$coefCov) <- colnames(eq$coefCov) <- names(eq$coefficients) } else { eq$sigma <- (cov.mat[eq$DVobs, eq$DVobs] + (t(eq$coefficients[-1]) %*% cov.mat[c(eq$IVobs), c(eq$IVobs)] %*% eq$coefficients[-1]) - (2 * cov.mat[eq$DVobs, c(eq$IVobs)] %*% eq$coefficients[-1])) if (!is.null(r$R)){ eq$coefCov <- NA } else { eq$coefCov <- solve(eq$XX1 %*% t( solve(diag(rep(eq$sigma, length(eq$coefficients)))))) rownames(eq$coefCov) <- colnames(eq$coefCov) <- paste0(eq$DVlat, "~", c("1",eq$IVlat)) } } eq }) if (is.null(r$R)){ coefCov <- lavaan::lav_matrix_bdiag(lapply(d,"[[","coefCov")) rownames(coefCov) <- colnames(coefCov) <- unlist(coef.names) } else { SIG <- diag(unlist(lapply(d,function(eq){ if (!eq$categorical) rep(eq$sigma,length(eq$coefficients))})) ) XX1 <- lavaan::lav_matrix_bdiag(lapply(d, function (eq){ if (!eq$categorical) eq$XX1 else matrix(0,0,0) })) R0 <- matrix(0, nrow(r$R), nrow(r$R)) R1 <- r$R[,not.cat,drop=FALSE] coefCovR <- solve( rbind(cbind(XX1 %*% t(solve(SIG)), t(R1)),cbind(R1,R0)) )[1:nrow(XX1), 1:nrow(XX1)] colnames(coefCovR) <- rownames(coefCovR) <- unlist(coef.names)[not.cat] coefCov[rownames(coefCovR), colnames(coefCovR)] <- coefCovR for (i in 1:length(d)){ if (d[[i]]$categorical) { coefCov[ rownames(d[[i]]$coefCov), colnames(d[[i]]$coefCov) ] <- d[[i]]$coefCov } } } } return(coefCov) }
knitr::opts_chunk$set(echo=TRUE, collapse=T, comment=' library(MetAlyzer) library(ggplot2) library(dplyr) fpath <- system.file("extdata", "example_data.xlsx", package = "MetAlyzer") mpath <- system.file("extdata", "example_meta_data.rds", package = "MetAlyzer") obj <- MetAlyzerDataset(file_path = fpath) show(obj) head(metaData(obj)) head(quantStatus(obj), c(5, 5)) obj <- filterMetabolites(obj, class_name = "Metabolism Indicators") obj <- filterMetaData(obj, column = Group, keep = c(1:6)) summariseQuantData(obj) meta_df <- readRDS(mpath) head(meta_df) obj <- updateMetaData(obj, name = Replicate, new_colum = meta_df$Replicate) show(obj) obj <- renameMetaData(obj, Method = Group) head(metaData(obj)) obj <- createPlottingData(obj, Method, Tissue, ungrouped = Replicate) gg_df <- plottingData(obj) head(gg_df) glu_gg_df <- filter(gg_df, Metabolite == "Glu") ggplot(glu_gg_df, aes(Method, Concentration, color = Status)) + geom_point() + scale_color_manual(values = c("Valid" = " "LOQ" = " "LOD" = " ylab("Concentration [pmol/mg Tissue]") + facet_grid(~ Tissue) length(which(gg_df$Concentration == 0)) obj <- imputePlottingData(obj, Tissue, Metabolite) imp_gg_df <- plottingData(obj) min(imp_gg_df$imp_Conc, na.rm = TRUE) obj <- transformPlottingData(obj) trans_gg_df <- plottingData(obj) head(trans_gg_df) trans_glu_gg_df <- filter(trans_gg_df, Metabolite == "Glu") ggplot(trans_glu_gg_df, aes(Method, transf_Conc, color = Status)) + geom_point() + scale_color_manual(values = c("Valid" = " "LOQ" = " "LOD" = " facet_grid(~ Tissue) obj <- performANOVA(obj, categorical = Method) anv_gg_df <- plottingData(obj) head(data.frame(anv_gg_df)) anv_gg_df$optimal <- sapply(anv_gg_df$ANOVA_group, function(g) grepl("A", g)) obj <- setPlottingData(obj, anv_gg_df) head(data.frame(anv_gg_df))
library(knitr) opts_chunk$set(cache = FALSE, tidy = FALSE, fig.align = "center") library(biogas) options(width=65) data("sludgeTwoBiogas") dim(sludgeTwoBiogas) head(sludgeTwoBiogas) summary(sludgeTwoBiogas) data("sludgeTwoSetup") dim(sludgeTwoSetup) head(sludgeTwoSetup) summary(sludgeTwoSetup) cum.prod.lc <- calcBgMan(sludgeTwoBiogas, temp = 30, time.name = "time.d", comp.name = "xCH4n", temp.init = 30, pres.init = 0.0, pres.resid = 0, headspace = sludgeTwoSetup, pres.amb = 1013, absolute = FALSE, unit.pres = "mbar") head(cum.prod.lc) dim(cum.prod.lc) library(ggplot2) ggplot(cum.prod.lc, aes(time.d, cvCH4, colour = factor(id))) + geom_point() + geom_line(aes(group = id)) + labs(x = "Time [d]", y = "cvCH4 [mL]", colour = "Bottle id") + theme_bw() data("strawPressure") dim(strawPressure) head(strawPressure) summary(strawPressure) data("strawComp") dim(strawComp) head(strawComp) summary(strawComp) data("strawSetup") dim(strawSetup) head(strawSetup) summary(strawSetup) cum.prod.l <- calcBgMan(strawPressure, comp = strawComp, temp = 31, data.struct = "long", time.name = "time", id.name = "bottle", comp.name = "xCH4", temp.init = 21.55, pres.resid = "pres.resid", pres.init = 0.0, headspace = strawSetup, vol.hs.name = "headspace", pres.amb = 101.3, absolute = FALSE, extrap = TRUE, unit.pres = "kPa") head(cum.prod.l) ggplot(cum.prod.l, aes(time, cvCH4, colour = factor(bottle))) + geom_point() + geom_line(aes(group = bottle)) + labs(x = "Time [d]", y = "cvCH4 [mL]", colour = "Bottle id") + theme_bw()
context("inequalityConstraint") test_that("check optimNLOPTR interface (no constraint)", { res <- optimNLOPTR(,fun = funSphere,lower = c(-10,-20),upper=c(20,8)) expect_equal(length(res$xbest),2) res }) test_that("check optimNLOPTR + inequality constraint", { contr <- list() contr$eval_g_ineq <- function(x) 1+x[1]-x[2] res <- optimNLOPTR(,fun = funSphere,lower = c(-10,-20),upper=c(20,8),control=contr) expect_equal(length(res$xbest),2) res contr$opts$algorithm <- "NLOPT_GN_ISRES" res <- optimNLOPTR(,fun = funSphere,lower = c(-10,-20),upper=c(20,8),control=contr) expect_equal(length(res$xbest),2) res }) test_that("check SPOT+NLOPTR with inequality constraints but with default design", { contr <- list() contr$eval_g_ineq <- function(x) 1+x[1]-x[2] contr$funEvals <- 100 contr$opts$algorithm <- "NLOPT_GN_ISRES" res <- spot(,fun = funSphere,lower = c(-10,-20),upper=c(20,8), control=list( funEvals=15, modelControl=list(target="ei"), optimizer=optimNLOPTR, optimizerControl=contr ) ) res$xbest res$ybest expect_true(!all(apply(res$x,1,contr$eval_g_ineq) <=0)) }) test_that("check SPOT+NLOPTR with inequality constraints also in design", { contr <- list() contr$eval_g_ineq <- function(x) 1+x[1]-x[2] contr$funEvals <- 100 contr$opts$algorithm <- "NLOPT_GN_ISRES" res <- spot(,fun = funSphere,lower = c(-10,-20),upper=c(20,8), control=list( funEvals=15, modelControl=list(target="ei"), optimizer=optimNLOPTR, optimizerControl=contr, designControl=list(inequalityConstraint=contr$eval_g_ineq) ) ) res$xbest res$ybest expect_true(all(apply(res$x,1,contr$eval_g_ineq) <=0)) })
.radial.plot<-function(lengths,radial.pos=NULL,labels=NA,label.pos=NULL, radlab=FALSE,start=0,clockwise=FALSE,rp.type="r",label.prop=1.1,main="", xlab="",ylab="",line.col=par("fg"),lty=par("lty"),lwd=par("lwd"), mar=c(2,2,3,2),show.grid=TRUE,show.grid.labels=4,show.radial.grid=TRUE, rad.col="gray",grid.col="gray",grid.bg="transparent",grid.left=FALSE, grid.unit=NULL,point.symbols=1,point.col=par("fg"),show.centroid=FALSE, radial.lim=NULL,radial.labels=NULL,boxed.radial=FALSE,poly.col=NA, add=FALSE,...) { if(is.null(radial.lim)) radial.lim<-range(lengths) length.dim<-dim(lengths) if(is.null(length.dim)) { npoints<-length(lengths) nsets<-1 lengths<-matrix(lengths,nrow=1) } else { npoints<-length.dim[2] nsets<-length.dim[1] lengths<-as.matrix(lengths) } lengths<-lengths-radial.lim[1] lengths[lengths<0]<-NA if(is.null(radial.pos)) radial.pos<-seq(0,pi*(2 - 2 * (rp.type != "l")/npoints),length.out=npoints) radial.pos.dim<-dim(radial.pos) if(is.null(radial.pos.dim)) radial.pos<-matrix(rep(radial.pos,nsets),nrow=nsets,byrow=TRUE) else radial.pos<-as.matrix(radial.pos) if(rp.type == "l" && clockwise == TRUE) start<-pi/2 if(clockwise) radial.pos<--radial.pos if(start) radial.pos<-radial.pos+start if(show.grid) { if(length(radial.lim) < 3) grid.pos<-pretty(radial.lim) else grid.pos<-radial.lim if(grid.pos[1] < radial.lim[1]) grid.pos<-grid.pos[-1] maxlength<-max(grid.pos-radial.lim[1]) angles<-seq(0,1.96*pi,by=0.04*pi) } else { grid.pos<-NA maxlength<-diff(radial.lim) } oldpar<-par("xpd","mar","pty") if(!add) { par(mar=mar,pty="s") plot(c(-maxlength,maxlength),c(-maxlength,maxlength),type="n",axes=FALSE, main=main,xlab=xlab,ylab=ylab) if(is.null(label.pos)) { if(is.null(labels)) nlpos<-ifelse(npoints > 8,8,npoints) else { if(is.na(labels[1])) nlpos<-ifelse(npoints > 8,8,npoints) else nlpos<-length(labels) } label.pos<-seq(0,pi*(2-2/nlpos),length.out=nlpos) } if(show.grid) { .radial.grid(labels=labels,label.pos=label.pos,radlab=radlab, radial.lim=radial.lim,start=start,clockwise=clockwise, label.prop=label.prop,grid.pos=grid.pos,rad.col=rad.col, grid.col=grid.col,grid.bg=grid.bg, show.radial.grid=show.radial.grid) } } par(xpd=TRUE) if(length(line.col) < nsets) line.col<-1:nsets if(length(rp.type) < nsets) rp.type<-rep(rp.type,length.out=nsets) if(length(point.symbols) < nsets) point.symbols<-rep(point.symbols,length.out=nsets) if(length(point.col) < nsets) point.col<-rep(point.col,length.out=nsets) if(length(poly.col) < nsets) poly.col<-rep(poly.col,length.out=nsets) if(length(lty) < nsets) lty<-rep(lty,length.out=nsets) if(length(lwd) < nsets) lwd<-rep(lwd,length.out=nsets) for(i in 1:nsets) { if(nsets > 1) { linecol<-line.col[i] polycol<-poly.col[i] pointcol<-point.col[i] pointsymbols<-point.symbols[i] ltype<-lty[i] lwidth<-lwd[i] } else { linecol<-line.col polycol<-poly.col pointcol<-point.col pointsymbols<-point.symbols ltype<-lty lwidth<-lwd } rptype<-unlist(strsplit(rp.type[i],"")) if(match("s",rptype,0)) { if(is.null(pointsymbols)) pointsymbols<-i if(is.null(pointcol)) pointcol<-i } xpos<-cos(radial.pos[i,])*lengths[i,] ypos<-sin(radial.pos[i,])*lengths[i,] if(match("r",rptype,0)) segments(0,0,xpos,ypos,col=linecol,lty=ltype,lwd=lwidth,...) if(match("p",rptype,0)) polygon(xpos,ypos,border=linecol,col=polycol,lty=ltype, lwd=lwidth,...) if(match("s",rptype,0)) points(xpos,ypos,pch=pointsymbols,col=pointcol,...) if(match("l",rptype,0)) lines(xpos,ypos,lty=ltype,lwd=lwidth,col=linecol,...) if(show.centroid) { if(match("p",rptype,0)) { nvertices<-length(xpos) polygonarea<-xpos[nvertices]*ypos[1] - xpos[1]*ypos[nvertices] for(vertex in 1:(nvertices-1)) polygonarea<- polygonarea+xpos[vertex]*ypos[vertex+1]-xpos[vertex+1]*ypos[vertex] polygonarea<-polygonarea/2 centroidx<- (xpos[nvertices]+xpos[1])*(xpos[nvertices]*ypos[1]-xpos[1]*ypos[nvertices]) centroidy<- (ypos[nvertices]+ypos[1])*(xpos[nvertices]*ypos[1]-xpos[1]*ypos[nvertices]) for(vertex in 1:(nvertices-1)) { centroidx<-centroidx + (xpos[vertex]+xpos[vertex+1])* (xpos[vertex]*ypos[vertex+1]-xpos[vertex+1]*ypos[vertex]) centroidy<-centroidy + (ypos[vertex]+ypos[vertex+1])* (xpos[vertex]*ypos[vertex+1]-xpos[vertex+1]*ypos[vertex]) } points(centroidx/(6*polygonarea),centroidy/(6*polygonarea), col=point.col[i],pch=point.symbols[i],cex=2,...) } else points(mean(xpos),mean(ypos),col=pointcol,pch=pointsymbols, cex=2,...) } } if(show.grid.labels && !add) { if(show.grid.labels%%2) { ypos<-grid.pos-radial.lim[1] xpos<-rep(0,length(grid.pos)) if(show.grid.labels==1) ypos<--ypos } else { xpos<-grid.pos-radial.lim[1] ypos<-rep(0,length(grid.pos)) if(show.grid.labels==2) xpos<--xpos } if(is.null(radial.labels)) radial.labels<-grid.pos if(!is.null(grid.unit)) radial.labels[length(grid.pos)]<- paste(radial.labels[length(grid.pos)],grid.unit) if(boxed.radial) .boxed.labels(xpos,ypos,radial.labels,border=FALSE, cex=par("cex.lab")) else text(xpos,ypos,radial.labels,cex=par("cex.lab")) } invisible(oldpar) } .radial.grid<-function(labels=NA,label.pos=NULL,radlab=FALSE,radial.lim=NULL, start=0,clockwise=FALSE,label.prop=1.1,grid.pos,rad.col="gray", grid.col="gray",grid.bg="transparent",show.radial.grid=TRUE, start.plot=FALSE) { if(start.plot) { radial.span<-diff(radial.lim) plot(0,type="n",xlim=c(-radial.span,radial.span), ylim=c(-radial.span,radial.span),xlab="",ylab="",axes=FALSE) } par(xpd=TRUE) if(is.null(label.pos)) label.pos<-seq(0,1.8*pi,length=9) if(!is.null(labels)) { if(is.na(labels[1])) labels<-as.character(round(label.pos,2)) } if(clockwise) label.pos<--label.pos if(start) label.pos<-label.pos+start angles<-seq(0,1.96*pi,by=0.04* pi) for(i in seq(length(grid.pos),1,by=-1)) { xpos<-cos(angles)*(grid.pos[i]-radial.lim[1]) ypos<-sin(angles)*(grid.pos[i]-radial.lim[1]) polygon(xpos,ypos,border=grid.col,col=grid.bg) } maxlength<-max(grid.pos)-radial.lim[1] if(show.radial.grid) { xpos<-cos(label.pos)*maxlength ypos<-sin(label.pos)*maxlength segments(0,0,xpos,ypos,col=rad.col) xpos<-cos(label.pos)*maxlength ypos<-sin(label.pos)*maxlength } if(!is.null(labels)) { xpos<-cos(label.pos)*maxlength*label.prop ypos<-sin(label.pos)*maxlength*label.prop if(radlab) { for(label in 1:length(labels)) { labelsrt<-(180*label.pos[label]/pi)+180* (label.pos[label] > pi/2 && label.pos[label] < 3*pi/2) text(xpos[label],ypos[label],labels[label], cex=par("cex.axis"),srt=labelsrt) } } else .boxed.labels(x = xpos, y = ypos,labels,ypad=0.7,border=FALSE,cex=par("cex.axis")) } par(xpd = FALSE) } .boxed.labels<-function (x, y = NA, labels, bg = ifelse(match(par("bg"), "transparent", 0), "white", par("bg")), border = TRUE, xpad = 1.2, ypad = 1.2, srt = 0, cex = 1, adj = 0.5, xlog=FALSE, ylog=FALSE, ...) { oldpars <- par(c("cex", "xpd")) par(cex = cex, xpd = TRUE) box.adj <- adj + (xpad - 1) * cex * (0.5 - adj) if (srt == 90 || srt == 270) { bheights <- strwidth(labels) theights <- bheights * (1 - box.adj) bheights <- bheights * box.adj lwidths <- rwidths <- strheight(labels) * 0.5 } else { lwidths <- strwidth(labels) rwidths <- lwidths * (1 - box.adj) lwidths <- lwidths * box.adj bheights <- theights <- strheight(labels) * 0.5 } args <- list(x = x, y = y, labels = labels, srt = srt, adj = adj, col = ifelse(colSums(col2rgb(bg) * c(1, 1.4, 0.6)) < 350, "white", "black")) args <- modifyList(args, list(...)) if(xlog){ xpad<-xpad*2 xr<-exp(log(x) - lwidths * xpad) xl<-exp(log(x) + lwidths * xpad) } else{ xr<-x - lwidths * xpad xl<-x + lwidths * xpad } if(ylog){ ypad<-ypad*2 yb<-exp(log(y) - bheights * ypad) yt<-exp(log(y) + theights * ypad) } else{ yb<-y - bheights * ypad yt<-y + theights * ypad } rect(xr, yb, xl, yt, col = bg, border = border) do.call(text, args) par(cex = oldpars) }
library(BatchExperiments) library(parallelMap) library(mlrMBO) library(eaf) library(stringr) library(checkmate) plotEAF = function(opt.paths, xlim = NULL, ylim = NULL, ...) { args = list(...) requirePackages("eaf", why = "plotEAF") assertList(opt.paths, min.len = 1L, types = "list", names = "unique") algos = names(opt.paths) y.names = NULL; minimize = NULL data = data.frame() for (i in seq_along(algos)) { a = algos[i] runs = opt.paths[[i]] assertList(runs, types = "OptPath", min.len = 1L) fronts = lapply(seq_along(runs), function(j) { run = runs[[j]] f = as.data.frame(getOptPathParetoFront(run)) cns = colnames(f) if (length(cns) != 2L) stop("Must always have 2 objectives in opt path. But found: %i", length(cns)) if (i == 1L && j == 1L) { y.names <<- cns minimize <<- run$minimize } if (!all(y.names == cns)) stop("Must always have the same 2 objectives in opt path: %s (first ones taken). But found here: %s", collapse(y.names), collapse(cns)) if (!all(minimize == run$minimize)) stop("Must always have the same 'minimize' settings for objectives in opt path: %s (first one taken). But found here: %s", collapse(minimize), collapse(run$minimize)) cbind(f, .algo = a, .repl = j) }) fronts = do.call(rbind, fronts) data = rbind(data, fronts) } yn1 = y.names[1L]; yn2 = y.names[2L] f = as.formula(sprintf("%s + %s ~ .repl", yn1, yn2)) defaults = list( xlab = yn1, ylab = yn2, percentiles = 50 ) args = insert(defaults, args) args$x = f args$data = data args$groups = quote(.algo) args$maximise = !minimize args$xlim = xlim args$ylim = ylim args$col = c("darkgrey", "darkgrey", "darkgrey", "black", "black", "black") args$lty = c("solid", "dashed", "dotdash", "solid", "dashed", "dotdash") do.call(eafplot, args) return(data) } reg = loadRegistry("mco_bench-files", work.dir = ".") job.info = getJobInfo(reg, pars = TRUE) job.info$algo2 = paste(job.info$algo, job.info$budget, job.info$prop.points, job.info$indicator, job.info$crit, sep = "-") job.info$algo2 = str_replace_all(job.info$algo2, "-NA", "") pids = c("GOMOP3_3D2M", "GOMOP_2D2M", "GOMOP_5D2M", "dtlz2_5D2M", "zdt1_5D2M", "zdt2_5D2M", "zdt3_5D2M") aids.base = c("nsga2-ref", "nsga2-normal", "randomSearch-normal") aids1 = c(aids.base, "dib-1-sms", "dib-1-eps") aids2 = c(aids.base, "dib-4-sms", "dib-4-eps") aids3 = c(aids.base, "parego-1-ei", "parego-1-cb") aids4 = c(aids.base, "parego-4-ei", "parego-4-cb") aids5 = c(aids.base, "mspot-1-mean", "mspot-1-cb", "mspot-1-ei") aids6 = c(aids.base, "mspot-4-mean", "mspot-4-cb", "mspot-4-ei") aids7 = c(aids.base, "dib-1-sms", "parego-4-cb", "mspot-4-ei") getOptPaths = function(job.info, pids, aids) { ops = list() for (pid in pids) { for (aid in aids) { jids = job.info[job.info$prob == pid & job.info$algo2 == aid, "id"] assertInteger(jids, len = 20L, any.missing = FALSE) ops[[pid]][[aid]] = extractSubList(loadResults(reg, jids), "opt.path", simplify = FALSE) } names(ops[[pid]]) = paste(seq_along(aids), aids) } return(ops) } plotMMBOEAF = function(prob.id, opt.paths, file = NULL, logscale = FALSE, title = prob.id, xlim = NULL, ylim = NULL, ...) { if (!logscale) { log = ""; legend.pos = "topright" } else { log = "xy"; legend.pos = "bottomleft" } if (!is.null(file)) pdf(file) d = plotEAF(opt.paths[[prob.id]], legend.pos = "topright", log = log, main = title, xlab = "y1", ylab = "y2", xlim = xlim, ylim = ylim, ...) if (!is.null(file)) dev.off() return(d) } xlims = list(c(-3.965, -3.6), c(0, 30), c(-3.5, 0), c(0, 1.25), c(0, 1), c(0, 1), c(0, 1)) ylims = list(c(1, 1e4), c(0, 1), c(30, 100), c(0, 1.25), c(0, 2), c(0, 2), c(-1, 4)) pdf("eafs.pdf") for(j in 1:7) { pid = pids[j] for (i in 1:7) { aids = get(paste("aids", i, sep = "")) plotMMBOEAF(pid, getOptPaths(job.info, pid, aids), xlim = xlims[[j]], ylim = ylims[[j]]) } } dev.off()
library(LearnBayes) data(cancermortality) fit=laplace(betabinexch,c(-7,6),cancermortality) betabinexch.cond=function (log.K, data) { eta = exp(-6.818793)/(1 + exp(-6.818793)) K = exp(log.K) y = data[, 1]; n = data[, 2]; N = length(y) logf=0*log.K for (j in 1:length(y)) logf = logf + lbeta(K * eta + y[j], K * (1 - eta) + n[j] - y[j]) - lbeta(K * eta, K * (1 - eta)) val = logf + log.K - 2 * log(1 + K) return(exp(val-max(val))) } I=integrate(betabinexch.cond,2,16,cancermortality) par(mfrow=c(2,2)) curve(betabinexch.cond(x,cancermortality)/I$value,from=3,to=16, ylab="Density", xlab="log K",lwd=3, main="Densities") curve(dnorm(x,8,2),add=TRUE) legend("topright",legend=c("Exact","Normal"),lwd=c(3,1)) curve(betabinexch.cond(x,cancermortality)/I$value/ dnorm(x,8,2),from=3,to=16, ylab="Weight",xlab="log K", main="Weight = g/p") curve(betabinexch.cond(x,cancermortality)/I$value,from=3,to=16, ylab="Density", xlab="log K",lwd=3, main="Densities") curve(1/2*dt(x-8,df=2),add=TRUE) legend("topright",legend=c("Exact","T(2)"),lwd=c(3,1)) curve(betabinexch.cond(x,cancermortality)/I$value/ (1/2*dt(x-8,df=2)),from=3,to=16, ylab="Weight",xlab="log K", main="Weight = g/p") tpar=list(m=fit$mode,var=2*fit$var,df=4) myfunc=function(theta) return(theta[2]) s=impsampling(betabinexch,tpar,myfunc,10000,cancermortality) cbind(s$est,s$se)
computeLogLikInd <- function (cluster.par, gene.data, n.time, n.rep) { cluster.mean = cluster.par[1:n.time] sdWICluster = cluster.par[n.time+1] sdTSampling = cluster.par[n.time+2] sdResidual = cluster.par[n.time+3] mean.vec = rep (cluster.mean, times=n.rep) Smatrix = matrix (1, nrow=n.time, ncol=n.time) Imatrix = matrix (0, nrow=n.time, ncol=n.time) diag (Imatrix) = 1 diagonal.block = sdWICluster^2 * Smatrix + (sdTSampling^2 + sdResidual^2) * Imatrix offdiagonal.block = sdWICluster^2 * Smatrix + sdTSampling^2 * Imatrix cov.matrix = matrix (0, nrow=n.time*n.rep, ncol=n.time*n.rep) for (r in 1:n.rep) { cov.matrix[(n.time * (r-1) + 1:n.time), (n.time * (r-1) + 1:n.time)] = diagonal.block } for (r1 in 1:(n.rep-1)) { for (r2 in (r1+1):n.rep) { cov.matrix[(n.time * (r1-1) + 1:n.time), (n.time * (r2-1) + 1:n.time)] = offdiagonal.block cov.matrix[(n.time * (r2-1) + 1:n.time), (n.time * (r1-1) + 1:n.time)] = offdiagonal.block } } loglik = dMVNorm (gene.data, mean=mean.vec, sigma=cov.matrix, log=TRUE) return (loglik) }
source("ESEUR_config.r") pal_col=rainbow(4) posix_dr=read.csv(paste0(ESEUR_dir, "reliability/Austin-group-Jul-17.csv.xz"), as.is=TRUE) posix_dr$Date.Submitted=as.Date(posix_dr$Date.Submitted) posix_dr$Updated=as.Date(posix_dr$Updated) clarif=subset(posix_dr, Type == "Clarification Requested") enhance=subset(posix_dr, Type == "Enhancement Request") error=subset(posix_dr, Type == "Error") omission=subset(posix_dr, Type == "Omission") plot(sort(error$Date.Submitted), 1:nrow(error), type="l", col=pal_col[1], xaxs="i", yaxs="i", xlab="Date", ylab="Reported problems\n") lines(sort(clarif$Date.Submitted), 1:nrow(clarif), col=pal_col[2]) lines(sort(enhance$Date.Submitted), 1:nrow(enhance), col=pal_col[3]) lines(sort(omission$Date.Submitted), 1:nrow(omission), col=pal_col[4]) legend(x="topleft", legend=c("Error", "Clarification Requested", "Enhancement Request", "Omission"), bty="n", fill=pal_col, cex=1.2)
Dpens2 <- function(params, type = "lasso", lambda = 1, w.alasso = NULL, gamma = 1, a = 3.7, eps = 1e-10){ if(type == "lasso"){ f1 <- function(x) sqrt(x^2 + eps) f2 <- function(x) x/sqrt(x^2 + eps) f3 <- function(x) 0.5 * (2 * (x^2 + eps)^-0.5 - 2 * x * ((x^2 + eps)^-(0.5 + 1) * (0.5 * (2 * x)))) S2 <- lambda*f1(params) S1 <- lambda*f2(params) S <- lambda*f3(params) } L <- list(S = S, S1 = S1, S2 = S2) L }
X2RSEIS<-function(nh, g) { kix = legitpix(g$sel, g$zloc, g$zenclick) ypick = kix$ypick ppick = kix$ppick if(length(ppick)>0) { ipick = g$sel[ypick] ipick = ipick[length(ipick)] if(g$zenclick>2) { pickwin = range( c(g$zloc$x[(g$zenclick-1)], g$zloc$x[(g$zenclick-2)])) } else { pickwin = g$WIN } GH = WINGH(nh, WIN = pickwin ) pstamp = Zdate(GH$info) outfile = pstamp[1] cat(paste("Creating RSEIS GH file:", outfile ), sep="\n") save(file=paste(outfile, "GH.RDATA", sep="."), GH) g$zloc = list(x=NULL, y=NULL) g$action="donothing" invisible(list(RETX =NULL , global.vars=g)) } else { cat("X_R WARNING: no window or trace has been selected:", sep="\n") RETX=NULL g$zloc = list(x=NULL, y=NULL) g$action="donothing" invisible(list(global.vars=g)) } }
rdd_coef <- function(object, allInfo = FALSE, allCo = FALSE, ...) UseMethod("rdd_coef") rdd_coef.default <- function(object, allInfo = FALSE, allCo = FALSE, ...) { res <- coef(summary(object)) if (!allCo) res <- res["D", , drop = FALSE] if (!allInfo) res <- res[, "Estimate"] res } rdd_coef.rdd_reg_np <- function(object, allInfo = FALSE, allCo = FALSE, ...) { res <- object$coefMat if (!allCo) res <- res["D", , drop = FALSE] if (!allInfo) res <- res[, "Estimate"] res }
library(magrittr) library(dplyr) n_samples <- 6 test_that("We can read all sections of the MultiQC example WGS file", { report <- load_multiqc( system.file("extdata", "wgs/multiqc_data.json", package = "TidyMultiqc"), sections = c("plot", "general", "raw"), plots = "fastqc_per_sequence_quality_scores_plot" ) expect_equal( report$metadata.sample_id %>% unique() %>% length(), report$metadata.sample_id %>% length() ) expect_equal(nrow(report), n_samples) expect_true(ncol(report) > 100) expect_type(report$plot.fastqc_per_sequence_quality_scores_plot, "list") report$plot.fastqc_per_sequence_quality_scores_plot %>% purrr::map(function(df) { expect_equal(ncol(df), 2) }) expect_true(colnames(report[, 1]) %>% stringr::str_starts("metadata")) expect_true(report %>% dplyr::select(last_col()) %>% colnames() %>% stringr::str_starts("raw")) }) test_that("We can parse the general stats section", { report <- load_multiqc( system.file("extdata", "wgs/multiqc_data.json", package = "TidyMultiqc"), sections = "general" ) expect_equal(nrow(report), n_samples) expect_true(ncol(report) > 100) expect_true(all( c( "general.avg_gc", "general.high", "general.3_prime_utr_variant", "general.sequence_feature", "general.intergenic", "general.insertions", "general.percent_gc" ) %in% colnames(report) )) }) test_that("We can parse the qualimap coverage histogram", { report <- load_multiqc( system.file("extdata", "wgs/multiqc_data.json", package = "TidyMultiqc"), sections = "plot", plots = "qualimap_coverage_histogram" ) expect_true("plot.qualimap_coverage_histogram" %in% colnames(report)) expect_equal( report %>% filter(metadata.sample_id == "P4107_1001") %>% pull(plot.qualimap_coverage_histogram) %>% purrr::flatten_df() %>% { HistDat::HistDat(vals = .$x, counts = .$y) } %>% HistDat::median(), 35, tolerance = 1 ) expect_equal(nrow(report), n_samples) expect_equal(ncol(dplyr::select(report, where(is.list))), 1) }) test_that("We can parse the qualimap cumulative coverage histogram", { report <- load_multiqc( system.file("extdata", "wgs/multiqc_data.json", package = "TidyMultiqc"), sections = "plot", plots = "qualimap_genome_fraction" ) expect_true("plot.qualimap_genome_fraction" %in% colnames(report)) expect_equal( report %>% filter(metadata.sample_id == "P4107_1001") %>% pull("plot.qualimap_genome_fraction") %>% purrr::flatten_df() %>% dplyr::filter(x == 30) %>% dplyr::pull(y), 74.66, tolerance = 0.01 ) expect_equal(nrow(report), n_samples) expect_equal(ncol(dplyr::select(report, where(is.list))), 1) }) test_that("We can parse the snpeff bar chart", { report <- load_multiqc( system.file("extdata", "wgs/multiqc_data.json", package = "TidyMultiqc"), sections = "plot", plots = "snpeff_variant_effects_region" ) expect_equal(nrow(report), n_samples) expect_equal(ncol(report), 2) expect_true("plot.snpeff_variant_effects_region" %in% colnames(report)) report <- tidyr::unnest(report, cols = plot.snpeff_variant_effects_region, names_sep = ".") expect_equal(ncol(dplyr::select(report, where(is.numeric))), 13) expect_true(all(c( "plot.snpeff_variant_effects_region.exon", "plot.snpeff_variant_effects_region.utr_3_prime", "plot.snpeff_variant_effects_region.splice_site_acceptor" ) %in% colnames(report))) expect_equal( report %>% filter(metadata.sample_id == "P4107_1001") %>% pull("plot.snpeff_variant_effects_region.exon"), 191454 ) })
extract.mark.output <- function(out,model,adjust,realvcv=FALSE,vcvfile) { os=R.Version()$os locate=function(x) { loc=regexpr("} = ",out[x]) if(length(loc)==0)return(NULL) if(loc[1]==-1)loc=regexpr(" = ",out[x])-1 return(loc) } design.matrix=model$simplify$design.matrix links=model$links model_def=setup.model(model$model,model$nocc) if(model_def$derived) derived_labels=model_def$derived_labels[[1]] else derived_labels=NULL outfile=tempfile("markxxx",tmpdir=getwd(),fileext=".tmp") nreal=dim(design.matrix)[1] nbeta=dim(design.matrix)[2] x=grep("Effective sample size ",out,ignore.case=TRUE) if(length(x)==0) { message(paste("MARK did not run properly. If error message was not shown, look at most recent .out file")) return(NULL) } n=type.convert(substr(out[x],regexpr("=",out[x])+1,nchar(out[x]))) x=grep("-2logL {",out,fixed=TRUE) if(length(x)==0) { message(paste("MARK did not run properly. If error message was not shown, look at most recent .out file")) return(NULL) } lnl=type.convert(substr(out[x],locate(x)+4,nchar(out[x]))) x=grep("Number of Estimated",out,ignore.case=TRUE) if(length(x)==0) { message(paste("MARK did not run properly. If error message was not shown, look at most recent .out file")) return(NULL) } npar=type.convert(substr(out[x],locate(x)+4,nchar(out[x]))) x=grep("DEVIANCE ",out,ignore.case=TRUE) if(length(x)==0) { message(paste("MARK did not run properly. If error message was not shown, look at most recent .out file")) return(NULL) } deviance=type.convert(substr(out[x],locate(x)+4,nchar(out[x])))[1] x = grep("DEVIANCE Degrees of Freedom ", out, ignore.case = TRUE) if(length(x)==0) { message(paste("MARK did not run properly. If error message was not shown, look at most recent .out file")) return(NULL) } deviance.df = type.convert(substr(out[x], locate(x)+4, nchar(out[x])))[1] x=grep("AICc",out,ignore.case=TRUE) if(length(x)==0) { message(paste("MARK did not run properly. If error message was not shown, look at most recent .out file")) return(NULL) } AICc=type.convert(substr(out[x],locate(x)+4,nchar(out[x]))) if(length(links)==1) x1=grep(paste(links,"link"),out,ignore.case=TRUE) else x1=grep("parm-specific link",out,ignore.case=TRUE) if(length(x1)==0) { message(paste("MARK did not run properly. If error message was not shown, look at most recent .out file")) return(NULL) } x2=grep("Real Function Parameters",out,ignore.case=TRUE) if(length(x2)==0) { message(paste("MARK did not run properly. If error message was not shown, look at most recent .out file")) return(NULL) } x3=length(out) if(length(grep("proc stop",out,ignore.case=TRUE))==0) message("\nWarning: output from MARK was not complete\n") x4=grep("Variable Value",out,ignore.case=FALSE)+1 if(length(x4)==0)x4=x2 if(x4>x2) { ff <- tempfile() cat(file=ff, out[(x4+1):(x4+length(model$covariates))],sep="\n") covariate.values=read.fwf(file=ff,widths=c(20,15),col.names=c("Variable","Value")) } else covariate.values=NULL j=1 save=NULL for(i in x1:(x2-1)) { if(j<=nbeta) { ind=regexpr(paste(" ",j,":",sep=""),out[i]) if(ind!=-1 & ind<=20) { save=c(save,out[i]) j=j+1 } } } write(save,outfile) x=read.fwf(file=outfile,widths=c(26,16,16,16,16),col.names=c("","estimate","se","lcl","ucl")) dimx=dim(x)[2] beta=as.data.frame(x[,((dimx-4+1):dimx)]) names(beta)=c("estimate","se","lcl","ucl") row.names(beta)= colnames(model$simplify$design.matrix) nbeta=length(beta$estimate[beta$estimate!=0.000000]) singular=NULL if(nbeta!=npar) { x=grep("Attempted ordering of parameters",out,ignore.case=TRUE) if(length(x)==0) warning("\nNot all parameters were estimated but not able to find non-estimable parameters\n") else { nlines=ceiling(nbeta/25) par.indices=NULL for (i in (x+1):(x+nlines)) { ii=strsplit(out[i]," ")[[1]] par.indices=c(par.indices,as.numeric(ii[ii!=""])) } singular=par.indices[(npar+1):nbeta] } } if(nbeta!=npar & adjust) { message("\nNote: only ",npar," parameters counted of ",nbeta," specified parameters\n") message("AICc and parameter count have been adjusted upward\n") AICc.unadjusted=AICc npar.unadjusted=npar AICc=lnl+ 2*nbeta +2*nbeta*(nbeta+1)/(n - nbeta -1) npar=nbeta } else npar.unadjusted=NULL unlink(outfile) j=1 if(x4>x2)x2=x4+length(model$covariates)+1 for(i in x2:(x3-1)) { if(j<=nreal) { ind=regexpr(paste(" ",j,":",sep=""),out[i]) if(ind==-1) ind= regexpr("\\*\\*\\*\\*:",out[i]) if(ind!=-1& ind<=20) { write(out[i],file=outfile,append=TRUE) j=j+1 } } } x=read.fwf(file=outfile,widths=c(27,16,16,16,16,20),col.names=c("","estimate","se","lcl","ucl","fixed"), as.is=TRUE) unlink(outfile) x$note="" x$fixed[is.na(x$fixed)]= " " x$note[substr(as.character(x$fixed),3,7)!="Fixed"]=x$fixed[substr(as.character(x$fixed),3,7)!="Fixed"] x$fixed[substr(as.character(x$fixed),3,7)!="Fixed"]=" " x$fixed[substr(as.character(x$fixed),3,7)=="Fixed"]="Fixed" x$fixed[is.na(x$fixed)]= " " real=data.frame(estimate=as.numeric(x$estimate),se=as.numeric(x$se),lcl=as.numeric(x$lcl),ucl=as.numeric(x$ucl),fixed=x$fixed,note=x$note) if(is.null(model$simplify)) row.names(real) = row.names(design.matrix) else row.names(real)=row.names(model$simplify$design.matrix) if(!is.factor(real$note))real$note="" if(file.exists(vcvfile)) if(os=="mingw32") param=read.mark.binary(vcvfile,derived_labels) else param=read.mark.binary.linux(vcvfile,derived_labels) else { param=NULL message("\nV-C file is missing. Skipping over it.\n") } if(realvcv) real.vcv=param$real.vcv else real.vcv=NULL if(is.null(npar.unadjusted)) return(list(lnl=lnl,deviance=deviance,deviance.df=deviance.df,npar=npar,n=n,AICc=AICc,beta=beta,real=real,beta.vcv=param$beta.vcv,derived=param$derived,derived.vcv=param$derived.vcv, covariate.values=covariate.values,singular=singular,real.vcv=real.vcv)) else return(list(lnl=lnl,deviance=deviance,deviance.df=deviance.df,npar=npar,npar.unadjusted=npar.unadjusted,n=n,AICc=AICc,AICc.unadjusted=AICc.unadjusted, beta=beta,real=real,beta.vcv=param$beta.vcv,derived=param$derived,derived.vcv=param$derived.vcv, covariate.values=covariate.values,singular=singular,real.vcv=real.vcv)) }
tabPanel( "Generate possible time points" , tags$br() , sidebarLayout( sidebarPanel( width = 5 , h3( "Time constraints" ) , actionLink(inputId = "helpTimeConstraints" , label = "Time constraints", icon = icon("question-circle") ) , conditionalPanel( "input.helpTimeConstraints % 2 == 1" , wellPanel( "Table containing number of user specified time points per time zone. Each row is a time zone." , HTML('<ul type="disc"> <li> <em>startTime</em> the start time of each time zone assumed to be included in that zone</li> <li> <em>endTime</em> the end time of the zone. It is not part of the current zone but the start time of the next zone</li> <li> <em>nPointsPerZone</em> the number of time points to be chosen within each zone</li> <li> <em>timeInterval</em> mimimum time difference between time points</li> </ul>') , "the last time point is always included and not specified in time constraints" ) , tags$br() ) , rHandsontableOutput( "tableTimeConstraints" ) , actionButton( "clearTimeConstraints", "clear time constraints") , tags$br() , h3( "Generate time points" ) , actionButton( inputId = "calcTimePoints" , label = "Generate time points" , icon = icon("gears") ) ) , mainPanel( width = 5 , h3("Possible time points") , wellPanel( textOutput( "textFullTimePoints" ) ) , tags$br() , h3("Time point combinations meeting constraints") , h4("Number of combinations") , wellPanel( textOutput( "nTimePoints" ) ) , h4("Time point combinations") , addSpinner( DT::dataTableOutput( "tableSetOfTimePoints" ) ) ) ) )
pseudo.absence <- function(x, n, window = "hull", Mask = NULL, s = NULL, sigma = "Scott", wts = NULL, KDE = FALSE, gradient = 1, p = NULL, edge = FALSE) { if (!class(x)[1] == "SpatialPointsDataFrame" & !class(x) == "SpatialPoints") stop(deparse(substitute(x)), " MUST BE A sp POINTS OBJECT") if (!is.null(Mask)) { if (!class(Mask)[1] == "RasterLayer") stop(deparse(substitute(Mask)), " MUST BE A RasterLayer OBJECT") } if (is.null(p)) p <- 1e-09 a <- 10000 raster.as.im <- function(im) { r <- raster::res(im) orig <- sp::bbox(im)[, 1] + 0.5 * r dm <- dim(im)[2:1] xx <- unname(orig[1] + cumsum(c(0, rep(r[1], dm[1] - 1)))) yy <- unname(orig[2] + cumsum(c(0, rep(r[2], dm[2] - 1)))) return(spatstat.geom::im(matrix(raster::values(im), ncol = dm[1], nrow = dm[2], byrow = TRUE)[dm[2]:1, ], xcol = xx, yrow = yy)) } if (is.null(Mask)) { if (window == "hull") { win <- spatstat.geom::convexhull.xy(sp::coordinates(x)) win <- spatstat.geom::as.mask(win, eps = s) } if (window == "extent") { e <- as.vector(sp::bbox(x)) win <- spatstat.geom::as.owin(c(e[1], e[3], e[2], e[4])) win <- spatstat.geom::as.mask(win, eps = s) } } else { win <- raster.as.im(Mask) win <- spatstat.geom::as.mask(win, eps = raster::res(Mask)[1]) } x.ppp <- spatstat.geom::as.ppp(sp::coordinates(x), win) bw.Scott <- function(X) { stopifnot(spatstat.geom::is.ppp(X)) n <- spatstat.geom::npoints(X) sdx <- sqrt(stats::var(X$x)) sdy <- sqrt(stats::var(X$y)) return(c(sdx, sdy) * n^(-1/6)) } bw.Stoyan <- function(X, co = 0.15) { stopifnot(spatstat.geom::is.ppp(X)) n <- spatstat.geom::npoints(X) W <- spatstat.geom::as.owin(X) a <- spatstat.geom::area.owin(W) stoyan <- co/sqrt(5 * n/a) return(stoyan) } bw.geometry <- function(X, f = 1/4) { X <- spatstat.geom::as.owin(X) g <- spatstat.core::distcdf(X) r <- with(g, .x) Fr <- with(g, .y) iopt <- min(which(Fr >= f)) return(r[iopt]) } bw.likelihood <- function(X, srange = NULL, ns = 16) { check.range <- function (x, fatal = TRUE) { xname <- deparse(substitute(x)) if (is.numeric(x) && identical(x, range(x, na.rm = TRUE))) return(TRUE) if (fatal) stop(paste(xname, "should be a vector of length 2 giving (min, max)")) return(FALSE) } stopifnot(spatstat.geom::is.ppp(X)) if (!is.null(srange)) check.range(srange) else { nnd <- spatstat.geom::nndist(X) srange <- c(min(nnd[nnd > 0]), spatstat.geom::diameter(spatstat.geom::as.owin(X))/2) } sigma <- exp(seq(log(srange[1]), log(srange[2]), length = ns)) cv <- numeric(ns) for (i in 1:ns) { si <- sigma[i] lamx <- spatstat.core::density.ppp(X, sigma = si, at = "points", leaveoneout = TRUE) lam <- spatstat.core::density.ppp(X, sigma = si) cv[i] <- sum(log(lamx)) - spatstat.geom::integral.im(lam) } result <- spatstat.core::bw.optim(cv, sigma, iopt = which.max(cv), criterion = "Likelihood Cross-Validation") return(result) } if (sigma == "Diggle") { bw <- spatstat.core::bw.diggle(x.ppp) } else if(sigma == "Scott") { bw <- bw.Scott(x.ppp) } else if(sigma == "Stoyan") { bw <- bw.Stoyan(x.ppp) } else if(sigma == "geometry") { bw <- bw.geometry(x.ppp) } else if(sigma == "likelihood") { bw <- bw.likelihood(x.ppp) } else if(is.numeric(sigma)) { bw = sigma } else { stop("Not a valid bandwidth option") } den <- raster::raster(spatstat.core::density.ppp(x.ppp, weights = wts, sigma = bw, adjust = gradient, diggle = edge)) * a den <- 1 - (den/raster::maxValue(den)) den[den <= p] <- p den.sp <- raster::rasterToPoints(den, spatial=TRUE) names(den.sp@data)[1] <- "KDE" den.sp <- den.sp[sample(1:nrow(den.sp@data), size = n, prob = den.sp@data$KDE), ] if (KDE == TRUE) { return(list(sample = den.sp, kde = den, sigma = bw)) } else { return(list(sample = den.sp, sigma = bw) ) } }
remove.redundant.vertices <- function(H, check.empty=TRUE ) { if(!hypergraph.is.connected(H)) stop("H is disconnected") f <- function(guess,h,v,check.empty){ inds <- v[(1:guess)] myHype <- hypergraph.delete.vertices(h, inds) if(check.empty && has.empty.hyperedges(myHype)) return(-1) if(hypergraph.is.connected(myHype)) { if(guess>1){ inds <- inds[-length(inds)] myHype <- hypergraph.delete.vertices(h,inds) if(check.empty && has.empty.hyperedges(myHype)){ return(1) } if(!hypergraph.is.connected(myHype)){ return(0) } } return(1) } else { return(-1) } } vorder <- order(hdegree(H),decreasing=TRUE) suppressWarnings( z <- gtools::binsearch(f,c(1,horder(H)),h=H, v=vorder, check.empty=check.empty) ) h1 <- hypergraph.delete.vertices(H,vorder[1:z$where[1]]) if(length(z$where)==2){ h2 <- hypergraph.delete.vertices(H,vorder[1:z$where[2]]) if(!hypergraph.is.connected(h1) || (check.empty && has.empty.hyperedges(h1))){ h1 <- h2 } else if(horder(h2)<horder(h1)){ if(hypergraph.is.connected(h2) && !(check.empty && has.empty.hyperedges(h2))){ h1 <- h2 } } } else if((z$flag=="Upper Boundary") && (z$value==(-1))){ h1 <- H } h1 }
.d <- function(bs, s=length(bs)) { if (s == 1) return(bs) if (is.matrix(bs)) sqrt(rowSums(bs*bs)) else sqrt(sum(bs*bs)) } .d2 <- function(sbs2, s) { if (s == 1) stop("s must be larger than 1") sqrt(sbs2) } .Dd2 <- function(sbs2, s) { 1/.d2(sbs2,s) } .zeroB <- function(object, pp = object@pp) if (inherits(pp, "rlmerPredD_test")) pp$zeroB else pp$zeroB() lchol <- function(x) { r <- try(chol.default(x), silent=TRUE) if (is(r, "try-error")) { Diagonal(x = sqrt(diag(x))) } else r } calcE.D.re <- function(s, rho) { if (s == 1) return(rho@EDpsi()) tfun <- function(v) rho@Dwgt(.d2(v,s))*.Dd2(v,s)*v*dchisq(v, s) tfun2 <- function(v) rho@wgt(.d2(v,s))*dchisq(v, s) integrate(tfun, 0, Inf)$value / s + integrate(tfun2, 0, Inf)$value } calcE.D.re2 <- function(rho, s) calcE.D.re(s, rho) calcE.psi_bbt <- function(rho, s) { if (s == 1) { Matrix(rho@EDpsi()) } else { wgt <- rho@wgt fun <- function(v) wgt(.d2(v,s))*v*dchisq(v,s) tmp <- integrate(fun, 0, Inf)$value / s Diagonal(x=rep(tmp, s)) } } calcE.psi_bpsi_bt <- function(rho, s) { if (s == 1) { Matrix(rho@Epsi2()) } else { wgt <- rho@wgt fun <- function(v) wgt(.d2(v,s))^2*v*dchisq(v, s) tmp <- integrate(fun, 0, Inf)$value / s Diagonal(x=rep(tmp, s)) } } .s <- function(object, theta = FALSE, pp = object@pp) { if (theta) { M1 <- pp$K() M2 <- pp$L diag(M2) <- 0 } else { M1 <- pp$A diag(M1) <- 0 M2 <- pp$B() } M1[is.na(M1)] <- 0 M2[is.na(M2)] <- 0 ret <- pp$rho_e@Epsi2() * rowSums(M1^2) if (any(!.zeroB(pp = pp))) ret <- ret + drop(M2^2 %*% diag(pp$Epsi_bpsi_bt)) sqrt(ret) } .S <- function(object) { ret <- list() idx <- !.zeroB(object) tmpEL <- object@pp$L() %*% object@pp$Epsi_bpsi_bt() for (k in 1:max(object@k)) { ind <- object@k == k if (any(idx[ind])) { ret <- c(ret, list(drop(lchol(symmpart( [email protected]@Epsi2() * crossprod(object@pp$Kt()[, ind, drop=FALSE]) + tcrossprod(object@pp$L()[ind, !ind, drop=FALSE], tmpEL[ind, !ind, drop=FALSE]) ))))) } else { ret <- c(ret, list(matrix(0, sum(ind), sum(ind)))) } } ret } calcKappaTau <- function(rho, s=1) { if (s > 38) return(1) psi <- rho@psi if (s == 1) { wgt <- rho@wgt tfun <- function(e) psi(e)*e*dnorm(e) tfun2 <- function(e) wgt(e)*dnorm(e) integrate(tfun, -Inf, Inf)$value / integrate(tfun2, -Inf, Inf)$value } else { tfun3 <- function(v, kappa) psi(v-s*kappa)*dchisq(v, s) tfun4 <- function(kappa) integrate(tfun3, 0, Inf, kappa=kappa)$value uniroot(tfun4, c(0, 1), tol = .Machine$double.eps^0.5)$root } } calcKappaTauB <- function(object, pp = object@pp, rhoSigmaB = [email protected]) { pp$btapply(rhoSigmaB, calcKappaTau) } .sigma <- robustlmm:::.sigma uArranged <- robustlmm:::uArranged rho.b <- robustlmm:::rho.b rho.e <- robustlmm:::rho.e b.s <- robustlmm:::b.s .kappa_b <- robustlmm:::.kappa_b std.b <- function(object, sigma = .sigma(object), matrix, drop=TRUE, t=FALSE) object@pp$stdB(sigma, matrix, drop, t) std.e <- function(object, sigma = .sigma(object), matrix, drop=TRUE) { if (missing(matrix)) return(object@resp$wtres / sigma) if (drop) matrix <- drop(matrix) matrix/sigma } .dk <- function(object, sigma, center, bs = b.s(object), ...) { ua <- uArranged(object, bs/sigma) unlist(lapply(seq_along(object@blocks), function(bt) { us <- ua[[bt]] s <- ncol(us) if (s == 1) return(us) ret <- rowSums(us*us) if (center) ret <- ret - .kappa_b(object)[bt]*s ret })) } dist.b <- function(object, sigma = .sigma(object), center=FALSE, ...) { db <- .dk(object, sigma, center, ...) if (!center && any(object@dim > 1)) { bidx <- object@ind %in% which(object@dim > 1) db[bidx] <- sqrt(db[bidx]) } db[object@k] } dist.e <- function(object, sigma = .sigma(object)) { std.e(object, sigma) } wgt.b <- function(object, sigma = .sigma(object), center = FALSE) { db <- dist.b(object, sigma, center) rho <- rho.b(object, if (center) "sigma" else "default") ret <- numeric() for (bt in seq_along(object@blocks)) { bind <- as.vector(object@idx[[bt]]) ret <- c(ret, rho[[bt]]@wgt(db[bind])) } ret } wgt.e <- function(object, sigma = .sigma(object), use.rho.sigma = FALSE) if (use.rho.sigma) [email protected]@wgt(dist.e(object, sigma)) else [email protected]@wgt(dist.e(object, sigma)) calcTau <- function(a, s, rho.e, rho.sigma.e, pp, kappa, tau = rep(1, length(a)), method="DAStau", rel.tol = 1e-6, max.it = 200) { stopifnot(length(a) == length(s)) if (method == "DASvar" || !is.numeric(tau) || length(tau) != length(a)) { Tau <- with(pp, V_e - EDpsi_e * (t(A) + A) + Epsi2_e * tcrossprod(A) + B() %*% tcrossprod(Epsi_bpsi_bt, B())) tau <- sqrt(diag(Tau)) if (method == "DASvar") return(tau) } psiZ <- rho.e@psi(pp$ghZ) fun <- function(tau, a, s) { t <- (pp$ghZ-a*psiZ-s*pp$ghZt)/tau numerator <- sum(rho.sigma.e@psi(t)*t*(tau*tau)*pp$ghW) denominator <- sum(rho.sigma.e@wgt(t)*pp$ghW)*kappa newValue = sqrt(numerator /denominator) newValue } for (i in seq_along(a)) { check <- FALSE a_i <- a[i] s_i <- s[i] j <- 0 while ((j <- j + 1) < i) { if( abs(a_i - a[j]) < 1e-8 && abs(s_i - s[j]) < 1e-8 ) { check <- TRUE tau[i] <- tau[j] break } } if (!check) { it <- 0 conv <- FALSE while(!conv && (it <- it + 1) < max.it && tau[i] <= 1) { tau0 <- tau[i] tau[i] <- fun(tau0, a_i, s_i) conv <- abs(tau[i] - tau0) < rel.tol * max(rel.tol, tau0) } if (it >= max.it) { warning("calculation of tau[", i, "] reached max.it") } if (tau[i] > 1) { tau[i] <- 1 warning("tau[", i, "] > 1, setting it to 1") } } } tau } calcTau.nondiag <- function(object, ghZ, ghw, skbs, kappas, max.iter, rel.tol = 1e-4, verbose = 0, pp = object@pp) { T <- pp$T() TkbsI <- list() for (type in seq_along(object@blocks)) { bidx <- object@idx[[type]] for (k in 1:ncol(bidx)) TkbsI <- c(TkbsI, list(as.matrix(T[bidx[,k],bidx[,k]]))) } Tbks <- list() for (type in seq_along(object@blocks)) { if (verbose > 5) cat("computing tau for blocktype", type, "...\n") bidx <- object@idx[[type]] s <- nrow(bidx) ind <- which(object@ind == type) idx <- !.zeroB(pp=pp) if (!any(idx[bidx])) { Tbks <- c(Tbks, rep(list(matrix(0, s, s)), length(ind))) next } if (s == 1) { bidx <- drop(bidx) tmp <- calcTau(diag(pp$L)[bidx], unlist(skbs[ind]), [email protected][[type]], [email protected][[type]], pp, kappas[type]) Tbks <- c(Tbks, as.list(tmp*tmp)) } else if (s == 2) { wgt <- [email protected][[type]]@wgt wgt.sigma <- [email protected][[type]]@wgt psi.sigma <- [email protected][[type]]@psi skappa <- s*pp$kappa_b[type] if (verbose > 6) { cat("type = ", type, "\n") cat("skappa = ", format(skappa, digits = 15), "\n") } wgtDelta <- function(u) (psi.sigma(u) - psi.sigma(u-skappa))/s lastSk <- lastLkk <- matrix() lastRet <- NA for (k in 1:ncol(bidx)) { lTbk <- as.matrix(TkbsI[[ind[k]]]) lbidx <- bidx[,k] Lkk <- as.matrix(pp$L[lbidx, lbidx]) Sk <- as.matrix(skbs[[ind[k]]]) diff <- if (any(dim(lastSk) != dim(Sk))) 1 else abs(c(lastSk - Sk, lastLkk - Lkk)) if (any(diff >= rel.tol * max(diff, rel.tol))) { lastSk <- Sk lastLkk <- Lkk if (verbose > 5) cat("TbkI for k =", k, ":", lTbk, "\n") if (verbose > 6) { cat("Lkk = ", format(Lkk, digits = 15), "\n") cat("Sk = ", format(Sk, digits = 15), "\n") } conv <- FALSE iter <- 0 while (!conv && (iter <- iter + 1) < max.iter) { lUTbk <- try(chol(lTbk), silent=TRUE) if (is(lUTbk, "try-error")) { warning("chol(lTbk) failed: ", lUTbk, "\nlTbk was: ", paste(lTbk), "\nSetting it to Tb()\n") conv <- TRUE lTbk <- as.matrix(TkbsI[[ind[k]]]) } else { if (FALSE) { funA <- function(u) { btilde <- u[1:2] - wgt(.d(u[1:2],2)) * Lkk %*% u[1:2] - crossprod(Sk, u[3:4]) wgtDelta(drop(crossprod(backsolve(lUTbk, btilde)))) } a <- int4d(funA) funB <- function(u) { btilde <- u[1:2] - wgt(.d(u[1:2],2)) * Lkk %*% u[1:2] - crossprod(Sk, u[3:4]) wgt.sigma(drop(crossprod(backsolve(lUTbk, btilde))))*tcrossprod(btilde) } B <- matrix(int4d(funB), s) } btilde <- ghZ[,1:2] - wgt(.d(ghZ[,1:2],2)) * ghZ[, 1:2] %*% Lkk - ghZ[, 3:4] %*% Sk tmp1 <- colSums(backsolve(lUTbk, t(btilde))^2) tmp2 <- btilde[,1] * btilde[,2] a <- sum(wgtDelta(tmp1) * ghw) if (abs(a) < 1e-7) { a <- lasta } else { lasta <- a } B <- matrix(colSums(wgt.sigma(tmp1) * ghw * matrix(c(btilde[,1]*btilde[,1], tmp2, tmp2, btilde[,2]*btilde[,2]), length(ghw))),2) lTbk1 <- B/a diff <- abs(c(lTbk - lTbk1)) conv <- all(diff < rel.tol * max(diff, rel.tol)) if (verbose > 5) { cat(sprintf("k=%i, iter=%i, conv=%s\n", k, iter, conv)) if (verbose > 6) { cat("B:", B, "\n") cat("a:", a, "\n") } cat("Tbk:", lTbk1, "\n") } lTbk <- lTbk1 } } lastRet <- lTbk } Tbks <- c(Tbks, list(lastRet)) } } else { warning("DAStau for blocks of dimension > 2 not defined, falling back to DASvar") stop("yes, do as promised") } } out <- bdiag(Tbks) return(out) }
correlation <- function(data, data2 = NULL, select = NULL, select2 = NULL, rename = NULL, method = "pearson", p_adjust = "holm", ci = 0.95, bayesian = FALSE, bayesian_prior = "medium", bayesian_ci_method = "hdi", bayesian_test = c("pd", "rope", "bf"), redundant = FALSE, include_factors = FALSE, partial = FALSE, partial_bayesian = FALSE, multilevel = FALSE, ranktransform = FALSE, winsorize = FALSE, verbose = TRUE, standardize_names = getOption("easystats.standardize_names", FALSE), ...) { if (partial == FALSE & multilevel) { partial <- TRUE convert_back_to_r <- TRUE } else { convert_back_to_r <- FALSE } if (bayesian == TRUE) { p_adjust <- "none" } if (ci == "default") { ci <- 0.95 } if (is.null(data2) && !is.null(select)) { all_selected <- c(select, select2) not_in_data <- !all_selected %in% colnames(data) if (any(not_in_data)) { stop(paste0("Following variables are not in the data: ", all_selected[not_in_data], collapse = ", ")) } if (inherits(data, "grouped_df")) { grp_df <- attributes(data)$groups grp_var <- setdiff(colnames(grp_df), ".rows") select <- unique(c(select, grp_var)) select2 <- if (!is.null(select2)) unique(c(select2, grp_var)) } else { grp_df <- NULL } data2 <- if (!is.null(select2)) data[select2] data <- data[select] attr(data, "groups") <- grp_df attr(data2, "groups") <- if (!is.null(select2)) grp_df } if (!is.null(rename)) { if (length(data) != length(rename)) { warning("Mismatch between number of variables and names.") } else { colnames(data) <- rename } } if (inherits(data, "grouped_df")) { rez <- .correlation_grouped_df( data, data2 = data2, method = method, p_adjust = p_adjust, ci = ci, bayesian = bayesian, bayesian_prior = bayesian_prior, bayesian_ci_method = bayesian_ci_method, bayesian_test = bayesian_test, redundant = redundant, include_factors = include_factors, partial = partial, partial_bayesian = partial_bayesian, multilevel = multilevel, ranktransform = ranktransform, winsorize = winsorize, verbose = verbose, ... ) } else { rez <- .correlation( data, data2 = data2, method = method, p_adjust = p_adjust, ci = ci, bayesian = bayesian, bayesian_prior = bayesian_prior, bayesian_ci_method = bayesian_ci_method, bayesian_test = bayesian_test, redundant = redundant, include_factors = include_factors, partial = partial, partial_bayesian = partial_bayesian, multilevel = multilevel, ranktransform = ranktransform, winsorize = winsorize, verbose = verbose, ... ) } out <- rez$params attributes(out) <- c( attributes(out), list( "data" = data, "data2" = data2, "modelframe" = rez$data, "ci" = ci, "n" = nrow(data), "method" = method, "bayesian" = bayesian, "p_adjust" = p_adjust, "partial" = partial, "multilevel" = multilevel, "partial_bayesian" = partial_bayesian, "bayesian_prior" = bayesian_prior, "include_factors" = include_factors ) ) attr(out, "additional_arguments") <- list(...) if (inherits(data, "grouped_df")) { class(out) <- unique(c("easycorrelation", "see_easycorrelation", "grouped_easycorrelation", "parameters_model", class(out))) } else { class(out) <- unique(c("easycorrelation", "see_easycorrelation", "parameters_model", class(out))) } if (convert_back_to_r) out <- pcor_to_cor(pcor = out) if (standardize_names) insight::standardize_names(out, ...) out } .correlation_grouped_df <- function(data, data2 = NULL, method = "pearson", p_adjust = "holm", ci = "default", bayesian = FALSE, bayesian_prior = "medium", bayesian_ci_method = "hdi", bayesian_test = c("pd", "rope", "bf"), redundant = FALSE, include_factors = TRUE, partial = FALSE, partial_bayesian = FALSE, multilevel = FALSE, ranktransform = FALSE, winsorize = FALSE, verbose = TRUE, ...) { groups <- setdiff(colnames(attributes(data)$groups), ".rows") ungrouped_x <- as.data.frame(data) xlist <- split(ungrouped_x, ungrouped_x[groups], sep = " - ") if (!is.null(data2)) { if (inherits(data2, "grouped_df")) { groups2 <- setdiff(colnames(attributes(data2)$groups), ".rows") if (all.equal(groups, groups2)) { ungrouped_y <- as.data.frame(data2) ylist <- split(ungrouped_y, ungrouped_y[groups], sep = " - ") modelframe <- data.frame() out <- data.frame() for (i in names(xlist)) { xlist[[i]][groups] <- NULL ylist[[i]][groups] <- NULL rez <- .correlation( xlist[[i]], data2 = ylist[[i]], method = method, p_adjust = p_adjust, ci = ci, bayesian = bayesian, bayesian_prior = bayesian_prior, bayesian_ci_method = bayesian_ci_method, bayesian_test = bayesian_test, redundant = redundant, include_factors = include_factors, partial = partial, partial_bayesian = partial_bayesian, multilevel = multilevel, ranktransform = ranktransform, winsorize = winsorize ) modelframe_current <- rez$data rez$params$Group <- modelframe_current$Group <- i out <- rbind(out, rez$params) modelframe <- rbind(modelframe, modelframe_current) } } else { stop("'data2' should have the same grouping characteristics as data.") } } } else { modelframe <- data.frame() out <- data.frame() for (i in names(xlist)) { xlist[[i]][groups] <- NULL rez <- .correlation( xlist[[i]], data2, method = method, p_adjust = p_adjust, ci = ci, bayesian = bayesian, bayesian_prior = bayesian_prior, bayesian_ci_method = bayesian_ci_method, bayesian_test = bayesian_test, redundant = redundant, include_factors = include_factors, partial = partial, partial_bayesian = partial_bayesian, multilevel = multilevel, ranktransform = ranktransform, winsorize = winsorize ) modelframe_current <- rez$data rez$params$Group <- modelframe_current$Group <- i out <- rbind(out, rez$params) modelframe <- rbind(modelframe, modelframe_current) } } out <- out[c("Group", names(out)[names(out) != "Group"])] list(params = out, data = modelframe) } .correlation <- function(data, data2 = NULL, method = "pearson", p_adjust = "holm", ci = "default", bayesian = FALSE, bayesian_prior = "medium", bayesian_ci_method = "hdi", bayesian_test = c("pd", "rope", "bf"), redundant = FALSE, include_factors = FALSE, partial = FALSE, partial_bayesian = FALSE, multilevel = FALSE, ranktransform = FALSE, winsorize = FALSE, verbose = TRUE, ...) { if (!is.null(data2)) { data <- cbind(data, data2) } if (ncol(data) <= 2 & any(sapply(data, is.factor)) & include_factors == FALSE) { if (isTRUE(verbose)) { warning("It seems like there is not enough continuous variables in your data. Maybe you want to include the factors? We're setting `include_factors=TRUE` for you.", call. = FALSE) } include_factors <- TRUE } if (sum(sapply(if (is.null(data2)) data else cbind(data, data2), is.numeric)) == 0) { include_factors <- TRUE } if (method == "polychoric") multilevel <- TRUE combinations <- .get_combinations( data, data2 = NULL, redundant = FALSE, include_factors = include_factors, multilevel = multilevel, method = method ) data <- .clean_data(data, include_factors = include_factors, multilevel = multilevel) for (i in 1:nrow(combinations)) { x <- as.character(combinations[i, "Parameter1"]) y <- as.character(combinations[i, "Parameter2"]) if (i > 1) { verbose <- FALSE } result <- cor_test( data, x = x, y = y, ci = ci, method = method, bayesian = bayesian, bayesian_prior = bayesian_prior, bayesian_ci_method = bayesian_ci_method, bayesian_test = bayesian_test, partial = partial, multilevel = multilevel, ranktransform = ranktransform, winsorize = winsorize, verbose = verbose, ... ) if (i == 1) { params <- result } else { if (!all(names(result) %in% names(params))) { if ("r" %in% names(params) & !"r" %in% names(result)) { names(result)[names(result) %in% c("rho", "tau")] <- "r" } if ("r" %in% names(result) & !"r" %in% names(params)) { names(params)[names(params) %in% c("rho", "tau")] <- "r" } if (!"r" %in% names(params) & any(c("rho", "tau") %in% names(result))) { names(params)[names(params) %in% c("rho", "tau")] <- "r" names(result)[names(result) %in% c("rho", "tau")] <- "r" } result[names(params)[!names(params) %in% names(result)]] <- NA } params <- rbind(params, result) } } if ("Method" %in% names(params)) { params$Method <- paste0(params$Method, " correlation") if (!isFALSE(winsorize) && !is.null(winsorize)) { params$Method <- paste0("Winsorized ", params$Method) } } if (!is.null(data2)) { params <- params[!params$Parameter1 %in% names(data2), ] params <- params[params$Parameter2 %in% names(data2), ] } if ("p" %in% names(params)) { params$p <- stats::p.adjust(params$p, method = p_adjust) } if (redundant) { params <- .add_redundant(params, data) } list(params = params, data = data) } plot.easycorrelation <- function(x, ...) { insight::check_if_installed("see", "to plot correlation graphs") NextMethod() }
touchi.boundary<-function(rec1,rec2,rho=0) { d<-length(rec1)/2 if (length(rho)==1) rho<-rep(rho,d) tulos<-1 i<-1 while ((i<=d) && (tulos==1)){ ala<-max(rec1[2*i-1],rec2[2*i-1]) yla<-min(rec1[2*i],rec2[2*i]) ala2<-min(rec1[2*i-1],rec2[2*i-1]) yla2<-max(rec1[2*i],rec2[2*i]) if ((ala2==0)&&(yla2==2*pi)) isboundary<-TRUE else isboundary<-FALSE if ((!isboundary)&&(yla+2*rho[i]<ala)) tulos<-0 i<-i+1 } return(tulos) }
context("obs_cor") test_that("obs_cor endpoint", { skip_on_cran() url <- getOption("epigraphdb.api.url") trait <- "body mass index" r <- httr::RETRY("GET", glue::glue("{url}/obs-cor"), query = list( trait = trait ), config = httr::add_headers(.headers = c("client-type" = "R", "ci" = "true")) ) expect_equal(httr::status_code(r), 200) expect_true(length(httr::content(r)) > 0) }) test_that("obs_cor mode = \"table\"", { skip_on_cran() trait <- "body mass index" expect_error( df <- obs_cor( trait = trait ), NA ) expect_is(df, "tbl_df") }) test_that("obs_cor mode = \"raw\"", { skip_on_cran() trait <- "body mass index" expect_error( response <- obs_cor( trait = trait, mode = "raw" ), NA ) expect_equal(length(response), 2L) }) test_that("obs_cor cor_coef_threshold", { skip_on_cran() trait <- "Body mass index" expect_error( response <- obs_cor( trait = trait, cor_coef_threshold = 0.8 ), NA ) expect_error( response <- obs_cor( trait = trait, cor_coef_threshold = 0.6 ), NA ) expect_error( response <- obs_cor( trait = trait, cor_coef_threshold = 0.4 ), NA ) })
hMeanChiSq <- function(z, w = rep(1, length(z)), alternative = c("greater", "less", "two.sided", "none"), bound = FALSE){ stopifnot(is.numeric(z), length(z) > 0, is.finite(z), is.numeric(w), length(w) == length(z), is.finite(w), min(w) > 0, !is.null(alternative)) alternative <- match.arg(alternative) stopifnot(is.logical(bound), length(bound) == 1, is.finite(bound)) n <- length(z) zH2 <- sum(sqrt(w))^2 / sum(w / z^2) res <- pchisq(zH2, df = 1, lower.tail = FALSE) check_greater <- min(z) >= 0 check_less <- max(z) <= 0 break_p <- 1 / (2^n) if(alternative == "greater"){ if(bound) res <- if(check_greater) res / (2^n) else paste(">", format(break_p, scientific = FALSE)) else res <- if(check_greater) res / (2^n) else NaN } if(alternative == "less"){ if(bound) res <- if(check_less) res / (2^n) else paste(">", format(break_p, scientific = FALSE)) else res <- if(check_less) res / (2^n) else NaN } if(alternative == "two.sided"){ if(bound) res <- if(check_greater || check_less) res / (2^(n - 1)) else paste(">", format(2*break_p, scientific = FALSE)) else res <- if(check_greater || check_less) res / (2^(n - 1)) else NaN } return(res) } hMeanChiSqMu <- function(thetahat, se, w = rep(1, length(thetahat)), mu = 0, alternative = c("greater", "less", "two.sided", "none"), bound = FALSE){ stopifnot(is.numeric(thetahat), length(thetahat) > 0, is.finite(thetahat), is.numeric(se), length(se) == 1 || length(se) == length(thetahat), is.finite(se), min(se) > 0, is.numeric(w), length(w) == length(thetahat), is.finite(w), min(w) > 0, is.numeric(mu), length(mu) > 0, is.finite(mu), !is.null(alternative)) alternative <- match.arg(alternative) stopifnot(is.logical(bound), length(bound) == 1, is.finite(bound)) n <- length(thetahat) m <- length(mu) if(alternative != "none"){ z <- (thetahat - mu) / se zH2 <- sum(sqrt(w))^2 / sum(w / z^2) res <- pchisq(zH2, df = 1, lower.tail = FALSE) check_greater <- min(z) >= 0 check_less <- max(z) <= 0 break_p <- 1 / (2^n) if(alternative == "greater"){ if(bound) res <- if(check_greater) res / (2^n) else paste(">", format(break_p, scientific = FALSE)) else res <- if(check_greater || check_less) res/(2^n) else NaN } if(alternative == "less"){ if(bound) res <- if(check_less) res / (2^n) else paste(">", format(break_p, scientific = FALSE)) else res <- if(check_greater || check_less) res / (2^n) else NaN } if(alternative == "two.sided"){ if(bound) res <- if(check_greater || check_less) res / (2^(n - 1)) else paste(">", format(2*break_p, scientific = FALSE)) else res <- if(check_greater || check_less) res / (2^(n - 1)) else NaN } } if(alternative == "none"){ zH2 <- numeric(m) sw <- sum(sqrt(w))^2 for(i in 1:m){ z <- (thetahat - mu[i]) / se zH2[i] <- sw / sum(w / z^2) } res <- pchisq(q = zH2, df = 1, lower.tail = FALSE) } return(res) } hMeanChiSqCI <- function(thetahat, se, w = rep(1, length(thetahat)), alternative = c("two.sided", "greater", "less", "none"), level = 0.95, wGamma = rep(1, length(unique(thetahat)) - 1)){ stopifnot(is.numeric(thetahat), length(thetahat) > 0, is.finite(thetahat)) stopifnot(is.numeric(se), length(se) == 1 || length(se) == length(thetahat), is.finite(se), min(se) > 0, is.numeric(w), length(w) == length(thetahat), is.finite(w), min(w) > 0, !is.null(alternative)) alternative <- match.arg(alternative) stopifnot(is.numeric(level), length(level) == 1, is.finite(level), 0 < level, level < 1, is.numeric(wGamma), length(wGamma) == length(unique(thetahat)) -1, is.finite(w), min(w) > 0) target <- function(limit){ hMeanChiSqMu(thetahat = thetahat, se = se, w = w, mu = limit, alternative = alternative, bound = FALSE) - alpha } indOrd <- order(thetahat) thetahat <- thetahat[indOrd]; se <- se[indOrd]; w <- w[indOrd] thetahatUnique <- unique(thetahat) nThetahatUnique <- length(thetahatUnique) mini <- which.min(thetahat) maxi <- which.max(thetahat) mint <- thetahat[mini] maxt <- thetahat[maxi] minse <- se[mini] maxse <- se[maxi] alpha <- 1 - level z1 <- max(-qnorm(alpha), 1) eps <- 1e-6 factor <- 5 if(alternative == "none"){ lower <- mint - z1 * minse while(target(lower) > 0) lower <- lower - minse CIlower <- uniroot(f = target, lower = lower, upper = thetahat[1])$root CImiddle <- matrix(NA, nrow = 2, ncol = nThetahatUnique - 1) gam <- matrix(NA, nrow = nThetahatUnique - 1, ncol = 2) colnames(gam) <- c("minimum", "pvalue_fun/gamma") for(i in 1:(nThetahatUnique - 1)){ opt <- optimize(f = target, lower = thetahatUnique[i], upper = thetahatUnique[i + 1]) gam[i,] <- c(opt$minimum, opt$objective + alpha) if(opt$objective <= 0){ CImiddle[1, i] <- uniroot(f = target, lower = thetahatUnique[i], upper = opt$minimum)$root CImiddle[2, i] <- uniroot(f = target, lower = opt$minimum, upper = thetahatUnique[i + 1])$root } } CImiddle <- CImiddle[!is.na(CImiddle)] upper <- maxt + maxse while(target(upper) > 0) upper <- upper + z1 * maxse CIupper <- uniroot(f = target, lower = thetahat[length(thetahat)], upper = upper)$root CI <- matrix(c(CIlower, CImiddle, CIupper), ncol = 2, byrow = TRUE) colnames(CI) <- c("lower", "upper") return(list(CI = CI, gamma = gam, gammaMean = weighted.mean(x = gam[,"pvalue_fun/gamma"], w = wGamma), gammaHMean = sum(wGamma) / sum(wGamma / gam[,"pvalue_fun/gamma"]))) } if(alternative == "two.sided"){ lower <- uniroot(f = target, lower = mint - factor * z1 * minse, upper = mint - eps * minse)$root upper <- uniroot(f = target, lower = maxt + eps * maxse, upper = maxt + factor * z1 * maxse)$root return(list(CI = cbind(lower, upper))) } if(alternative == "greater"){ lower <- uniroot(f = target, lower = mint - factor * z1 * minse, upper = mint - eps * minse)$root upper <- Inf return(list(CI = cbind(lower, upper))) } if(alternative == "less"){ lower <- -Inf upper <- uniroot(f = target, lower = maxt + eps * maxse, upper = maxt + factor * z1 * maxse)$root return(list(CI = cbind(lower, upper))) } stop("function not get here.") } unirootAll <- function(f, interval, lower = min(interval), upper = max(interval), n = 1000, tol = .Machine$double.eps^0.2, maxiter = 1000, trace = 0, ...) { stopifnot(is.function(f), length(formals(f)) >= 1, is.numeric(lower), length(lower) == 1, is.finite(lower), is.numeric(upper), length(upper) == 1, is.finite(upper), lower < upper, is.numeric(n), length(n) == 1, is.finite(n), n >= 2) n <- round(n) xseq <- seq(lower, upper, length.out = n + 1) mod <- f(xseq, ...) index <- which(mod[1:n] * mod[2:(n + 1)] < 0) rootsOffGrid <- numeric(length = length(index)) for (i in seq_along(index)) rootsOffGrid[i] <- uniroot(f = f, lower = xseq[index[i]], upper = xseq[index[i] + 1], maxiter = maxiter, tol = tol, trace = trace, ...)$root rootsGrid <- xseq[which(mod == 0)] if(length(rootsGrid) > 0) return(sort(c(rootsGrid, rootsOffGrid))) rootsOffGrid }
ui_params <- function() { ns <- NS("params") tabPanel( "Parameters", value = "parameters", verticalLayout( fluidRow( column(2, style = "margin-top: 25px; margin-bottom: 25px", actionButton(ns("configs_save"), "Save parameters")), column(2, style = "margin-top: 25px; margin-bottom: 25px", actionButton(ns("configs_load"), "Load selected")) ) %>% shinyhelper::helper(type = "markdown", content = "params_help"), fluidRow(DT::DTOutput(ns("configs_table"))) ) ) } server_params <- function(id, distance_method, linkage_method, nclusters) { moduleServer(id, function(input, output, session) { saved_configurations <- reactiveVal(list()) output$configs_table <- DT::renderDT({ validate(need(length(saved_configurations()) > 0, "No states saved")) do.call(rbind, saved_configurations()) }, rownames = TRUE, caption = "Click on a row to select parameters to load them again", selection = "single", options = list(ordering = FALSE)) observeEvent(input$configs_save, { idx <- length(saved_configurations()) + 1 current_config <- list( distance_method = distance_method(), linkage_method = linkage_method(), nclusters = nclusters() ) config_list <- saved_configurations() config_list[[idx]] <- current_config saved_configurations(config_list) }) selected_config <- eventReactive(input$configs_load, { req(input$configs_table_rows_selected) saved_configurations()[[input$configs_table_rows_selected]] }) selected_config }) }
Level2RegularNodeBP <- function(level, organism = NULL){ Organism <- organism if(is.null(level) || !is.numeric(level)){ stop("The argument \"level\" is missing with no default or is non numeric") } x <- level + 1 if(!is.null(Organism) && !(toupper(Organism) %in% SupportedOrganism)){ print(SupportedOrganismv2) stop("The \"organism\" argument should be given from the list above") } if(is.null(Organism)){ tryCatch({ nonLeafNode <- GOgeneralbp$df[x,][2] if(nonLeafNode != 0){ return(GOgeneralbp$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for the General GO BP tree, the highest level is", 19 , sep = " ")) }) }else if(toupper(Organism) == "HOMO SAPIENS" || toupper(Organism) == "HUMAN"){ tryCatch({ nonLeafNode <- BPHuman$df[x,][2] if(nonLeafNode != 0){ return(BPHuman$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for the General GO BP tree, the highest level is", length(BPHuman$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "RATTUS NORVEGICUS" || toupper(Organism) == "RAT"){ tryCatch({ nonLeafNode <- gontr::BPRat$df[x,][2] if(nonLeafNode != 0){ return(gontr::BPRat$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Rat, the highest level is", length(gontr::BPRat$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "MUS MUSCULUS" || toupper(Organism) == "MOUSE"){ tryCatch({ nonLeafNode <- gontr::BPMouse$df[x,][2] if(nonLeafNode != 0){ return(gontr::BPMouse$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Mouse, the highest level is", length(gontr::BPMouse$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "DANIO RERIO" || toupper(Organism) == "ZEBRAFISH"){ tryCatch({ nonLeafNode <- BPZebrafish$df[x,][2] if(nonLeafNode != 0){ return(BPZebrafish$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Zebrafish, the highest level is", length(BPZebrafish$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "CAENORHABDITIS ELEGANS" || toupper(Organism) == "WORM"){ tryCatch({ nonLeafNode <- BPElegan$df[x,][2] if(nonLeafNode != 0){ return(BPElegan$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Caenorhabditis elegans, the highest level is", length(BPElegan$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "ARABIDOPSIS THALIANA" || toupper(Organism) == "CRESS"){ tryCatch({ nonLeafNode <- BPTair$df[x,][2] if(nonLeafNode != 0){ return(BPTair$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Arabidopsis thaliana, the highest level is", length(BPTair$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "SACCHAROMYCES CEREVISIAE" || toupper(Organism) == "YEAST"){ tryCatch({ nonLeafNode <- BPYeast$df[x,][2] if(nonLeafNode != 0){ return(BPYeast$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Saccharomyces cerevisiae, the highest level is", length(BPYeast$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "SCHIZOSACCHAROMYCES POMBE" || toupper(Organism) == "FISSION YEAST"){ tryCatch({ nonLeafNode <- BPPombe$df[x,][2] if(nonLeafNode != 0){ return(BPPombe$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Schizosaccharomyces pombe, the highest level is", length(BPPombe$df[,1]) - 1, sep = " ")) }) } else if(toupper(Organism) == "DROSOPHILA MELANOGASTER" || toupper(Organism) == "FRUIT FLY"){ tryCatch({ nonLeafNode <- BPDrosophila$df[x,][2] if(nonLeafNode != 0){ return(BPDrosophila$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Drosophila melanogaster, the highest level is", length(BPDrosophila$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "ESCHERICHIA COLI" || toupper(Organism) == "E.COLI"){ tryCatch({ nonLeafNode <- BPEcoli$df[x,][2] if(nonLeafNode != 0){ return(BPEcoli$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Escherichia coli, the highest level is", length(BPEcoli$df[,1]) - 1, sep = " ")) }) } } Level2RegularNodeMF <- function(level, organism = NULL){ Organism <- organism if(is.null(level) || !is.numeric(level)){ stop("The argument \"level\" is missing with no default or is non numeric") } x <- level + 1 if(!is.null(Organism) && !(toupper(Organism) %in% SupportedOrganism)){ print(SupportedOrganismv2) stop("The \"organism\" argument should be given from the list above") } if(is.null(Organism)){ tryCatch({ nonLeafNode <- GOgeneralmf$df[x,][2] if(nonLeafNode != 0){ return(GOgeneralmf$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for the General GO MF tree, the highest level is", 16 , sep = " ")) }) }else if(toupper(Organism) == "HOMO SAPIENS" || toupper(Organism) == "HUMAN"){ tryCatch({ nonLeafNode <- MFHuman$df[x,][2] if(nonLeafNode != 0){ return(MFHuman$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Human, the highest level is", length(MFHuman$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "RATTUS NORVEGICUS" || toupper(Organism) == "RAT"){ tryCatch({ nonLeafNode <- gontr::MFRat$df[x,][2] if(nonLeafNode != 0){ return(gontr::MFRat$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Rat, the highest level is", length(gontr::MFRat$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "MUS MUSCULUS" || toupper(Organism) == "MOUSE"){ tryCatch({ nonLeafNode <- gontr::MFMouse$df[x,][2] if(nonLeafNode != 0){ return(gontr::MFMouse$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Mouse, the highest level is", length(gontr::MFMouse$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "DANIO RERIO" || toupper(Organism) == "ZEBRAFISH"){ tryCatch({ nonLeafNode <- MFZebrafish$df[x,][2] if(nonLeafNode != 0){ return(MFZebrafish$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Zebrafish, the highest level is", length(MFZebrafish$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "CAENORHABDITIS ELEGANS" || toupper(Organism) == "WORM"){ tryCatch({ nonLeafNode <- MFElegan$df[x,][2] if(nonLeafNode != 0){ return(MFElegan$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Caenorhabditis elegans, the highest level is", length(MFElegan$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "ARABIDOPSIS THALIANA" || toupper(Organism) == "CRESS"){ tryCatch({ nonLeafNode <- MFTair$df[x,][2] if(nonLeafNode != 0){ return(MFTair$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Arabidopsis thaliana, the highest level is", length(MFTair$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "SACCHAROMYCES CEREVISIAE" || toupper(Organism) == "YEAST"){ tryCatch({ nonLeafNode <- MFYeast$df[x,][2] if(nonLeafNode != 0){ return(MFYeast$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Saccharomyces cerevisiae, the highest level is", length(MFYeast$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "SCHIZOSACCHAROMYCES POMBE" || toupper(Organism) == "FISSION YEAST"){ tryCatch({ nonLeafNode <- MFPombe$df[x,][2] if(nonLeafNode != 0){ return(MFPombe$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Schizosaccharomyces pombe, the highest level is", length(MFPombe$df[,1]) - 1, sep = " ")) }) } else if(toupper(Organism) == "DROSOPHILA MELANOGASTER" || toupper(Organism) == "FRUIT FLY"){ tryCatch({ nonLeafNode <- MFDrosophila$df[x,][2] if(nonLeafNode != 0){ return(MFDrosophila$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Drosophila melanogaster, the highest level is", length(MFDrosophila$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "ESCHERICHIA COLI" || toupper(Organism) == "E.COLI"){ tryCatch({ nonLeafNode <- MFEcoli$df[x,][2] if(nonLeafNode != 0){ return(MFEcoli$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Escherichia coli, the highest level is", length(MFEcoli$df[,1]) - 1, sep = " ")) }) } } Level2RegularNodeCC <- function(level, organism = NULL){ Organism <- organism if(is.null(level) || !is.numeric(level)){ stop("The argument \"level\" is missing with no default or is non numeric") } x <- level + 1 if(!is.null(Organism) && !(toupper(Organism) %in% SupportedOrganism)){ print(SupportedOrganismv2) stop("The \"organism\" argument should be given from the list above") } if(is.null(Organism)){ tryCatch({ nonLeafNode <- GOgeneralcc$df[x,][2] if(nonLeafNode != 0){ return(GOgeneralcc$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for the General GO CC tree, the highest level is", 17 , sep = " ")) }) }else if(toupper(Organism) == "HOMO SAPIENS" || toupper(Organism) == "HUMAN"){ tryCatch({ nonLeafNode <- CCHuman$df[x,][2] if(nonLeafNode != 0){ return(CCHuman$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Human, the highest level is", length(CCHuman$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "RATTUS NORVEGICUS" || toupper(Organism) == "RAT"){ tryCatch({ nonLeafNode <- gontr::CCRat$df[x,][2] if(nonLeafNode != 0){ return(gontr::CCRat$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Rat, the highest level is", length(gontr::CCRat$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "MUS MUSCULUS" || toupper(Organism) == "MOUSE"){ tryCatch({ nonLeafNode <- gontr::CCMouse$df[x,][2] if(nonLeafNode != 0){ return(gontr::CCMouse$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Mouse, the highest level is", length(gontr::CCMouse$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "DANIO RERIO" || toupper(Organism) == "ZEBRAFISH"){ tryCatch({ nonLeafNode <- CCZebrafish$df[x,][2] if(nonLeafNode != 0){ return(CCZebrafish$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Zebrafish, the highest level is", length(CCZebrafish$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "CAENORHABDITIS ELEGANS" || toupper(Organism) == "WORM"){ tryCatch({ nonLeafNode <- CCElegan$df[x,][2] if(nonLeafNode != 0){ return(CCElegan$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Caenorhabditis elegans, the highest level is", length(CCElegan$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "ARABIDOPSIS THALIANA" || toupper(Organism) == "CRESS"){ tryCatch({ nonLeafNode <- CCTair$df[x,][2] if(nonLeafNode != 0){ return(CCTair$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Arabidopsis thaliana, the highest level is", length(CCTair$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "SACCHAROMYCES CEREVISIAE" || toupper(Organism) == "YEAST"){ tryCatch({ nonLeafNode <- CCYeast$df[x,][2] if(nonLeafNode != 0){ return(CCYeast$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Saccharomyces cerevisiae, the highest level is", length(CCYeast$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "SCHIZOSACCHAROMYCES POMBE" || toupper(Organism) == "FISSION YEAST"){ tryCatch({ nonLeafNode <- CCPombe$df[x,][2] if(nonLeafNode != 0){ return(CCPombe$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Schizosaccharomyces pombe, the highest level is", length(CCPombe$df[,1]) - 1, sep = " ")) }) } else if(toupper(Organism) == "DROSOPHILA MELANOGASTER" || toupper(Organism) == "FRUIT FLY"){ tryCatch({ nonLeafNode <- CCDrosophila$df[x,][2] if(nonLeafNode != 0){ return(CCDrosophila$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Drosophila melanogaster, the highest level is", length(CCDrosophila$df[,1]) - 1, sep = " ")) }) }else if(toupper(Organism) == "ESCHERICHIA COLI" || toupper(Organism) == "E.COLI"){ tryCatch({ nonLeafNode <- CCEcoli$df[x,][2] if(nonLeafNode != 0){ return(CCEcoli$v[[as.character(nonLeafNode)]]) } else{ return(NULL) } }, error = function(e){ print(paste("No such level exist for Escherichia coli, the highest level is", length(CCEcoli$df[,1]) - 1, sep = " ")) }) } }
.parse_draftpick_url <- function(url = "https://data.nba.net/data/5s/prod/draft/2017/draft_pick.json") { data <- url %>% fromJSON(simplifyDataFrame = T) %>% as_tibble() data }
context("spec (responses): 1.26") test_sample_responses("1.26")
BASiCSEstimate <- function(counts, spike.info = NULL, batch = NULL, n = 20000, thin = 10, burn = 5000, regression = TRUE, params = newBASiCSParams(), verbose = TRUE, progress = TRUE, ...) { UseMethod("BASiCSEstimate") } BASiCSEstimate.SingleCellExperiment <- function(counts, spike.info = NULL, batch = NULL, n = 20000, thin = 10, burn = 5000, regression = TRUE, params = newBASiCSParams(), verbose = TRUE, progress = TRUE, ...) { counts <- getCounts(counts) BASiCSEstimate(counts, spike.info, batch, n, thin, burn, regression, params, verbose, progress, ...) } BASiCSEstimate.matrix <- function(counts, spike.info = NULL, batch = NULL, n = 20000, thin = 10, burn = 5000, regression = TRUE, params = newBASiCSParams(), verbose = TRUE, progress = TRUE, ...) { checkmate::assertClass(params, "BASiCSParams") checkmate::assertMatrix(counts, mode = "numeric", any.missing = FALSE, min.rows = 1, min.cols = 1, row.names = "unique", col.names = "unique") if (is.null(spike.info) && is.null(batch)) { stop("At least one of spike.info and batch must be provided") } if (!is.null(spike.info)) { checkmate::assertDataFrame(spike.info, any.missing = FALSE, min.rows = 1, ncols = 2) if (!all(colnames(spike.info) == c("Name", "Input"))) { stop("spike.info must have columns named 'Name' and 'Input'") } checkmate::assertCharacter(spike.info$Name, min.chars = 1, unique = TRUE) checkmate::assertNumeric(spike.info$Input, lower = 0, finite = TRUE) } if (!is.null(batch)) { checkmate::assertIntegerish(batch, lower = 0, any.missing = FALSE, len = ncol(counts)) if (is.null(spike.info) && length(unique(batch)) == 1) { stop("If spike.info is not provided there must be at least two ", "batches") } } else { batch <- rep(1, ncol(counts)) } checkmate::assertInt(thin, lower = 2) checkmate::assertInt(n, lower = max(4, thin)) if ((n %% thin) != 0) { stop("'n' must be a multiple of 'thin'") } checkmate::assertInt(burn, lower = 1, upper = n - 1) if ((burn %% thin) != 0) { stop("'burn' must be a multiple of 'thin'") } checkmate::assertFlag(regression) is.spike <- rownames(counts) %in% spike.info$Name BASiCS.data <- suppressMessages( BASiCS::newBASiCS_Data(counts, is.spike, spike.info, batch) ) with.spikes <- sum(is.spike) > 1 if (verbose) { mcmc <- BASiCS::BASiCS_MCMC(Data = BASiCS.data, N = n, Thin = thin, Burn = burn, Regression = regression, PrintProgress = progress, WithSpikes = with.spikes, ...) } else { mcmc <- suppressMessages( BASiCS::BASiCS_MCMC(Data = BASiCS.data, N = n, Thin = thin, Burn = burn, Regression = regression, PrintProgress = progress, WithSpikes = with.spikes, ...) ) } mcmc.summ <- BASiCS::Summary(mcmc) means <- BASiCS::displaySummaryBASiCS(mcmc.summ, Param = "mu")[, 1] deltas <- BASiCS::displaySummaryBASiCS(mcmc.summ, Param = "delta")[, 1] if (!is.null(spike.info)) { phis <- BASiCS::displaySummaryBASiCS(mcmc.summ, Param = "phi")[, 1] } else { phis <- rep(1, ncol(counts)) } ss <- BASiCS::displaySummaryBASiCS(mcmc.summ, Param = "s")[, 1] thetas <- BASiCS::displaySummaryBASiCS(mcmc.summ, Param = "theta")[, 1] params <- setParams(params, nGenes = sum(!is.spike), batchCells = as.vector(table(batch)), gene.params = data.frame(Mean = means, Delta = deltas), nSpikes = sum(is.spike), spike.means = ifelse(!is.null(spike.info), spike.info$Input, numeric()), cell.params = data.frame(Phi = phis, S = ss), theta = thetas) return(params) }
library(revdepcheck) revdep_check(quiet = FALSE, num_workers = 2, pkg = ".", timeout = as.difftime(120, units = "mins"))
plotDistractorAnalysis <- function(Data, key, num.groups = 3, item = 1, item.name, multiple.answers = TRUE, criterion = NULL, crit.discrete = FALSE, cut.points, data, matching, match.discrete) { if (!missing(data)) { warning("Argument 'data' is deprecated; please use 'Data' instead.", call. = FALSE ) Data <- data } if (!missing(matching)) { warning("Argument 'matching' is deprecated; please use 'criterion' instead.", call. = FALSE ) criterion <- matching } if (!missing(match.discrete)) { warning("Argument 'match.discrete' is deprecated; please use 'crit.discrete' instead.", call. = FALSE ) crit.discrete <- match.discrete } if (missing(key)) { if (all(sapply(Data, is.numeric))) { warning("Answer key is not provided. Maximum value is used as key.", call. = FALSE) key <- sapply(Data, max, na.rm = TRUE) } else if (missing(criterion)) { stop("Answer key is not provided. Please, specify key to be able to calculate total score or provide criterion. ", call. = FALSE ) } else { key <- NULL } } else { if (!length(key) == ncol(Data)) { stop("Answer key is not provided or some item keys are missing.", call. = FALSE) } key <- unlist(key) } tabDA <- DistractorAnalysis( Data = Data, key = key, p.table = TRUE, num.groups = num.groups, criterion = criterion, crit.discrete = crit.discrete, cut.points = cut.points ) x <- tabDA[[item]] if (dim(x)[2] != 1) { x <- x[!(apply(x, 1, function(y) all(y == 0))), ] } x <- as.data.frame(x) colnames(x)[colnames(x) == "Freq"] <- "value" x <- x[complete.cases(x), ] x$response <- as.factor(x$response) levels(x$response)[which(levels(x$response) == "")] <- "NaN" if (!is.null(key)) { x$response <- relevel(x$response, as.character(key[item])) } if (multiple.answers) { df <- x CA <- CAall <- as.character(key[item]) col <- rainbow(n = length(levels(df$response))) names(col) <- levels(df$response) } else { levels(x$response)[which(levels(x$response) == "NaN")] <- "x" y <- x[rep(1:nrow(x), nchar(as.character(x$response))), ] y$response <- as.factor(unlist(strsplit(as.character(x$response), ""))) df <- aggregate(value ~ response + score.level, data = y, sum) CAdf <- x[x$response == as.character(key[item]), ] CAdf$response <- paste(key[item], "-correct", sep = "") df <- rbind(df, CAdf) CA <- unique(CAdf$response) levels(df$response)[which(levels(df$response) == "x")] <- "NaN" col <- rainbow(n = (length(levels(df$response)) + 1)) names(col) <- levels(df$response) col[CA] <- "black" df$response <- relevel(df$response, CA) CAall <- c(CA, unlist(strsplit(as.character(key[item]), ""))) } if (missing(item.name)) { item.name <- paste("Item", item) } if (is.null(key)) { linetype <- rep(1, length(levels(df$response))) shape <- rep(19, length(levels(df$response))) names(linetype) <- names(shape) <- levels(df$response) } else { linetype <- rep(2, length(levels(df$response))) shape <- rep(1, length(levels(df$response))) names(linetype) <- names(shape) <- levels(df$response) linetype[CAall] <- 1 shape[CAall] <- 19 } xlab <- ifelse(is.null(criterion), "Group by total score", "Group by criterion variable") df$score.level <- as.factor(df$score.level) num.groups <- length(unique(df$score.level)) colnames(df) <- c("Response", "Group", "Proportion") levels(df$Group) <- 1:length(levels(df$Group)) g <- ggplot(df, aes_string( x = "Group", y = "Proportion", group = "Response", colour = "Response", linetype = "Response", shape = "Response" )) + geom_line(size = 0.8) + geom_point(size = 3) + xlab(xlab) + ylab("Option selection proportion") + scale_y_continuous(limits = c(0, 1)) + scale_x_discrete(labels = 1:num.groups, expand = c(0, 0.15)) + scale_linetype_manual(values = linetype) + scale_shape_manual(values = shape) + scale_color_manual(values = col) + theme_app() + theme( legend.position = c(0.01, 0.98), legend.justification = c(0, 1), legend.key.width = unit(1, "cm") ) + ggtitle(item.name) if (length(col) > 11) { g <- g + guides( linetype = guide_legend(ncol = 2), shape = guide_legend(ncol = 2), color = guide_legend(ncol = 2) ) } return(g) }
expandedLinkTable <- function( Links, Coordinates ){ if( is.null(Links) ) { return(NA) } else { ept <- merge( x = Links, by.x = "Node1", all.x = TRUE, sort = FALSE, y = Coordinates, by.y = "Node" ) names(ept)[ grep("X.coord", names(ept)) ] <- "x1" names(ept)[ grep("Y.coord", names(ept)) ] <- "y1" ept <- merge( x = ept, by.x = "Node2", all.x = TRUE, sort = FALSE, y = Coordinates, by.y = "Node" ) names(ept)[ grep("X.coord", names(ept)) ] <- "x2" names(ept)[ grep("Y.coord", names(ept)) ] <- "y2" ept$midx <- (ept$x1 + ept$x2) / 2 ept$midy <- (ept$y1 + ept$y2) / 2 ept <- ept[ ,c( names(Links), 'x1', 'y1', 'x2', 'y2', 'midx', 'midy') ] } class(ept) <- c("expandedLinkTable", "data.frame") return(ept) } plot.expandedLinkTable <- function(x, add=FALSE, label=FALSE, linewidths = 3, color = 'black', ...){ if( add == FALSE ){ graphics::plot( range( c(x$x1, x$x2) ), range( c(x$y1, x$y2) ), type = 'n', xlab = "", xaxt = 'n', ylab = "", yaxt = 'n' ) } graphics::segments( x0 = x$x1, y0 = x$y1, x1 = x$x2, y1 = x$y2, lwd = linewidths, col = color, ... ) if( label == TRUE ){ graphics::text( x$midx, x$midy, x$ID) } } is.expandedLinkTable <- function( x ){ inherits( x, "expandedLinkTable") }
source("incl/start.R") if (require(future.batchtools, character.only = TRUE)) { message("*** doFuture + future.batchtools ...") strategies <- c("batchtools_local", "batchtools_interactive") res0 <- NULL for (strategy in strategies) { message(sprintf("- plan('%s') ...", strategy)) plan(strategy) message("- Explicitly exporting globals ...") mu <- 1.0 sigma <- 2.0 res1 <- foreach(i = 1:3, .export = c("mu", "sigma"), .packages = "stats") %dopar% { dnorm(i, mean = mu, sd = sigma) } print(res1) if (is.null(res0)) { res0 <- res1 } else { stopifnot(all.equal(res1, res0)) } message("- Explicitly exporting globals ... DONE") message("- Implicitly exporting globals (via future) ...") mu <- 1.0 sigma <- 2.0 res2 <- foreach(i = 1:3, .packages = "stats") %dopar% { dnorm(i, mean = mu, sd = sigma) } print(res2) stopifnot(all.equal(res2, res0)) library("tools") my_ext <- function(x) file_ext(x) y_truth <- lapply("abc.txt", FUN = my_ext) y <- foreach(f = "abc.txt") %dopar% { file_ext(f) } stopifnot(identical(y, y_truth)) message("- Implicitly exporting globals (via future) ... DONE") if (require(plyr, character.only = TRUE)) { message("*** dplyr w / doFuture + future.batchtools ...") print(sessionInfo()) x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE, FALSE, FALSE, TRUE)) y0 <- llply(x, quantile, probs = (1:3) / 4, .parallel = FALSE) print(y0) y1 <- llply(x, quantile, probs = (1:3) / 4, .parallel = TRUE) print(y1) stopifnot(all.equal(y1, y0)) message("*** dplyr w / doFuture + future.batchtools ... DONE") } if (require(BiocParallel, character.only = TRUE) && packageVersion("BiocParallel") >= "1.2.22") { message("*** BiocParallel w / doFuture + future.batchtools ...") print(sessionInfo()) y0 <- list() p <- SerialParam() y0$a <- bplapply(1:5, sqrt, BPPARAM = p) y0$b <- bpvec(1:5, sqrt, BPPARAM = p) str(y0) register(SerialParam(), default = TRUE) p <- DoparParam() y1 <- list() y1$a <- bplapply(1:5, sqrt, BPPARAM = p) y1$b <- bpvec(1:5, sqrt, BPPARAM = p) stopifnot(identical(y1, y0)) register(DoparParam(), default = TRUE) y2 <- list() y2$a <- bplapply(1:5, sqrt, BPPARAM = p) y2$b <- bpvec(1:5, sqrt, BPPARAM = p) stopifnot(identical(y2, y0)) message("*** BiocParallel w / doFuture + future.batchtools ... DONE") } message(sprintf("- plan('%s') ... DONE", strategy)) } print(sessionInfo()) message("*** doFuture + future.batchtools ... DONE") } source("incl/end.R")
.getAdjustedE <- function(r, tr, i, e) { startcell <- cellFromRowCol(r, tr$row[i] , 1) len <- cellFromRowCol(r, tr$row[i] + (tr$nrows[i]-1), ncol(r)) - startcell + 1 n <- (startcell / length(e)) %% 1 if (n > 0 ) { start <- round(n * length(e)) } else { start <- 1 } out <- c(e[start:length(e)], rep(e, floor(len/length(e)))) out[1:len] } .asLogical <- function(x) { x[x!=0] <- 1 return(x) } setMethod('==', signature(e1='BasicRaster', e2='BasicRaster'), function(e1,e2){ cond <- compareRaster(c(e1, e2), extent=TRUE, rowcol=TRUE, crs=TRUE, tolerance=0.05, stopiffalse=FALSE) return(cond) } ) setMethod('!=', signature(e1='BasicRaster', e2='BasicRaster'), function(e1,e2){ cond <- compareRaster(c(e1, e2), extent=TRUE, rowcol=TRUE, crs=TRUE, tolerance=0.05, stopiffalse=FALSE) return(!cond) } ) setMethod('!', signature(x='Raster'), function(x){ if (nlayers(x) > 1) { r <- brick(x, values=FALSE) } else { r <- raster(x) } if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' return(setValues(r, ! getValues(x))) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) for (i in 1:tr$n) { v <- ! .asLogical(getValues(x, row=tr$row[i], nrows=tr$nrows[i])) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } r <- writeStop(r) pbClose(pb) return(r) } } ) setMethod("Compare", signature(e1='Raster', e2='logical'), function(e1,e2){ nl <- nlayers(e1) if (nl > 1) { r <- brick(e1, values=FALSE) } else { r <- raster(e1) } if (length(e2) > 1 & nl > 1) { if (length(e2) != nl) { a <- rep(NA, nl) a[] <- e2 e2 <- a } if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' r <- setValues(r, values=t(methods::callGeneric(t(getValues(e1)), e2 ) ) ) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) for (i in 1:tr$n) { v <- t(methods::callGeneric( t(getValues(e1, row=tr$row[i], nrows=tr$nrows[i])), e2)) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } r <- writeStop(r) pbClose(pb) } } else { if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' if (length(e2) > ncell(r)) { e2 <- e2[1:ncell(r)] } r <- setValues(r, values=methods::callGeneric(getValues(e1), e2 ) ) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) if (length(e2) > 0) { for (i in 1:tr$n) { e <- .getAdjustedE(r, tr, i, e2) v <- methods::callGeneric(getValues(e1, row=tr$row[i], nrows=tr$nrows[i]), e) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } } else { for (i in 1:tr$n) { v <- methods::callGeneric(getValues(e1, row=tr$row[i], nrows=tr$nrows[i]), e2) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } } r <- writeStop(r) pbClose(pb) } } return(r) } ) setMethod("Compare", signature(e1='logical', e2='Raster'), function(e1,e2){ nl <- nlayers(e2) if (nl > 1) { r <- brick(e2, values=FALSE) } else { r <- raster(e2) } if (length(e1) > 1 & nl > 1) { if (length(e1) != nl) { a <- rep(NA, nl) a[] <- e1 e1 <- a } if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' r <- setValues(r, values=t(methods::callGeneric(e1, t(getValues(e2)) ) ) ) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) for (i in 1:tr$n) { v <- t(methods::callGeneric(e1, t(getValues(e2, row=tr$row[i], nrows=tr$nrows[i])))) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } r <- writeStop(r) pbClose(pb) } } else { if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' if (length(e1) > ncell(r)) { e1 <- e1[1:ncell(r)] } r <- setValues(r, values=methods::callGeneric(e1, getValues(e2) ) ) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) if (length(e1) > 0) { for (i in 1:tr$n) { e <- .getAdjustedE(r, tr, i, e1) v <- methods::callGeneric(e1, getValues(e, row=tr$row[i], nrows=tr$nrows[i])) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } } else { for (i in 1:tr$n) { v <- methods::callGeneric(e1, getValues(e2, row=tr$row[i], nrows=tr$nrows[i])) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } } r <- writeStop(r) pbClose(pb) } } return(r) } ) setMethod("Compare", signature(e1='Raster', e2='numeric'), function(e1, e2){ nl <- nlayers(e1) if (nl > 1) { r <- brick(e1, values=FALSE) } else { r <- raster(e1) } if (length(e2) > 1 & nl > 1) { if (length(e2) != nl) { a <- rep(NA, nl) a[] <- e2 e2 <- a } if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' r <- setValues(r, values=t(methods::callGeneric(t(getValues(e1)), e2 ) ) ) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) for (i in 1:tr$n) { v <- t(methods::callGeneric( t(getValues(e1, row=tr$row[i], nrows=tr$nrows[i])), e2)) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } r <- writeStop(r) pbClose(pb) } } else { if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' if (length(e2) > ncell(r)) { e2 <- e2[1:ncell(r)] } r <- setValues(r, values=methods::callGeneric(getValues(e1), e2)) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) if (length(e2) > 0) { for (i in 1:tr$n) { e <- .getAdjustedE(r, tr, i, e2) v <- methods::callGeneric(getValues(e1, row=tr$row[i], nrows=tr$nrows[i]), e) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } } else { for (i in 1:tr$n) { v <- methods::callGeneric(getValues(e1, row=tr$row[i], nrows=tr$nrows[i]), e2) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } } r <- writeStop(r) pbClose(pb) } } return(r) } ) setMethod("Compare", signature(e1='numeric', e2='Raster'), function(e1, e2){ nl <- nlayers(e2) if (nl > 1) { r <- brick(e2, values=FALSE) } else { r <- raster(e2) } if (length(e1) > 1 & nl > 1) { if (length(e1) != nl) { a <- rep(NA, nl) a[] <- e1 e1 <- a } if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' r <- setValues(r, values=t(methods::callGeneric(e1, t(getValues(e2))) ) ) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) for (i in 1:tr$n) { v <- t(methods::callGeneric(e1, t(getValues(e2, row=tr$row[i], nrows=tr$nrows[i])))) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } r <- writeStop(r) pbClose(pb) } } else { if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' if (length(e1) > ncell(r)) { e1 <- e1[1:ncell(r)] } r <- setValues(r, values=methods::callGeneric(e1, getValues(e2))) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) if (length(e2) > 0) { for (i in 1:tr$n) { e <- .getAdjustedE(r, tr, i, e1) v <- methods::callGeneric(e, getValues(e2, row=tr$row[i], nrows=tr$nrows[i])) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } } else { for (i in 1:tr$n) { v <- methods::callGeneric(e1, getValues(e2, row=tr$row[i], nrows=tr$nrows[i])) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } } r <- writeStop(r) pbClose(pb) } } return(r) } ) setMethod("Compare", signature(e1='Raster', e2='Raster'), function(e1, e2){ if (nlayers(e1) > 1) { if (nlayers(e2) > 1 & nlayers(e2) != nlayers(e1)) { stop('number of layers of objects do not match') } r <- brick(e1, values=FALSE) } else if (nlayers(e2) > 1) { r <- brick(e2, values=FALSE) } else { r <- raster(e1) } cond <- compareRaster(c(r, e2), extent=TRUE, rowcol=TRUE, crs=TRUE, tolerance=0.05, stopiffalse=FALSE) if (!cond) { stop("Cannot compare Rasters that have different BasicRaster attributes. See compareRaster()") } if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' r <- setValues(r, methods::callGeneric(getValues(e1), getValues(e2))) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) for (i in 1:tr$n) { v <- methods::callGeneric(getValues(e1, row=tr$row[i], nrows=tr$nrows[i]), getValues(e2, row=tr$row[i], nrows=tr$nrows[i])) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } r <- writeStop(r) pbClose(pb) } return(r) } ) setMethod("Logic", signature(e1='Raster', e2='Raster'), function(e1, e2){ if (nlayers(e1) > 1) { r <- brick(e1, values=FALSE) if (nlayers(e2) > 1 & nlayers(e2) != nlayers(e1)) { stop('number of layers of objects do not match') } } else if (nlayers(e2) > 1) { r <- brick(e2, values=FALSE) } else { r <- raster(e1) } cond <- compareRaster(c(r, e2), extent=TRUE, rowcol=TRUE, crs=TRUE, tolerance=0.05, stopiffalse=FALSE) if (!cond) { stop("Cannot compare Rasters that have different BasicRaster attributes. See compareRaster()") } if (canProcessInMemory(r, 3)) { dataType(r) <- 'LOG1S' r <- setValues(r, methods::callGeneric(.asLogical(getValues(e1)), .asLogical(getValues(e2)))) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), datatype='LOG1S', overwrite=TRUE ) for (i in 1:tr$n) { v <- methods::callGeneric(.asLogical(getValues(e1, row=tr$row[i], nrows=tr$nrows[i])), .asLogical(getValues(e2, row=tr$row[i], nrows=tr$nrows[i]))) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } r <- writeStop(r) pbClose(pb) } return(r) } ) setMethod("Compare", signature(e1='Extent', e2='Extent'), function(e1,e2){ a <- methods::callGeneric(e2@xmin, e1@xmin) b <- methods::callGeneric(e1@xmax, e2@xmax) c <- methods::callGeneric(e2@ymin, e1@ymin) d <- methods::callGeneric(e1@ymax, e2@ymax) a & b & c & d } )
test_that("regr_frbs", { requirePackagesOrSkip("frbs", default.method = "load") parset.list = list( list(num.labels = 2L, type.mf = "TRAPEZOID") ) old.predicts.list = list() for (i in seq_along(parset.list)) { pars = parset.list[[i]] method.arg = names(pars) == "method" if (any(method.arg)) { pars = list(method = pars$method, control = pars[!method.arg]) } else { pars = list(control = pars) } pars$data.train = regr.num.train m = do.call(frbs::frbs.learn, pars) ind = setdiff(names(regr.num.test), regr.num.target) p = suppressWarnings(predict(m, newdata = regr.num.test[, ind])[, 1]) old.predicts.list[[i]] = p } suppressWarnings( testSimpleParsets("regr.frbs", regr.num.df, regr.num.target, regr.num.train.inds, old.predicts.list, parset.list) ) })
removeSource <- function(fn) { stopifnot(is.function(fn)) if (is.primitive(fn)) return(fn) attr(fn, "srcref") <- NULL attr(body(fn), "wholeSrcref") <- NULL attr(body(fn), "srcfile") <- NULL recurse <- function(part) { if (is.name(part)) return(part) attr(part, "srcref") <- NULL attr(part, "wholeSrcref") <- NULL attr(part, "srcfile") <- NULL if (is.language(part) && is.recursive(part)) { for (i in seq_along(part)) part[i] <- list(recurse(part[[i]])) } part } body(fn) <- recurse(body(fn)) fn } getSrcFilename <- function(x, full.names=FALSE, unique=TRUE) { srcref <- getSrcref(x) if (is.list(srcref)) result <- sapply(srcref, getSrcFilename, full.names, unique) else { srcfile <- attr(srcref, "srcfile") if (is.null(srcfile)) result <- character() else result <- srcfile$filename } result <- if (full.names) result else basename(result) if (unique) unique(result) else result } getSrcDirectory <- function(x, unique=TRUE) { result <- dirname(getSrcFilename(x, full.names=TRUE, unique=unique)) if (unique) unique(result) else result } getSrcref <- function(x) { if (inherits(x, "srcref")) return(x) if (!is.null(srcref <- attr(x, "srcref"))) return(srcref) if (is.function(x) && !is.null(srcref <- getSrcref(body(x)))) return(srcref) if (methods::is(x, "MethodDefinition")) return(getSrcref(unclass(methods::unRematchDefinition(x)))) NULL } getSrcLocation <- function(x, which=c("line", "column", "byte", "parse"), first=TRUE) { srcref <- getSrcref(x) if (is.null(srcref)) return(NULL) if (is.list(srcref)) sapply(srcref, getSrcLocation, which, first) else { if (length(srcref) == 6L) srcref <- c(srcref, srcref[c(1L,3L)]) which <- match.arg(which) if (first) index <- c(line=1L, column=5L, byte=2L, parse=7L)[which] else index <- c(line=3L, column=6L, byte=4L, parse=8L)[which] srcref[index] } } getSrcfile <- function(x) { result <- attr(x, "srcfile") if (!is.null(result)) return(result) srcref <- attr(x, "wholeSrcref") if (is.null(srcref)) { srcref <- getSrcref(x) if (is.list(srcref) && length(srcref)) srcref <- srcref[[length(srcref)]] } attr(srcref, "srcfile") } substr_with_tabs <- function(x, start, stop, tabsize = 8) { widths <- rep_len(1, nchar(x)) tabs <- which(strsplit(x,"")[[1]] == "\t") for (i in tabs) { cols <- cumsum(widths) widths[i] <- tabsize - (cols[i] - 1) %% tabsize } cols <- cumsum(widths) start <- which(cols >= start) if (!length(start)) return("") start <- start[1] stop <- which(cols <= stop) if (length(stop)) { stop <- stop[length(stop)] substr(x, start, stop) } else "" } getParseData <- function(x, includeText = NA) { if (inherits(x, "srcfile")) srcfile <- x else srcfile <- getSrcfile(x) if (is.null(srcfile)) return(NULL) else data <- srcfile$parseData if (!is.null(data)) { tokens <- attr(data, "tokens") data <- t(unclass(data)) colnames(data) <- c( "line1", "col1", "line2", "col2", "terminal", "token.num", "id", "parent" ) data <- data.frame(data[, -c(5,6), drop = FALSE], token = tokens, terminal = as.logical(data[,"terminal"]), text = attr(data, "text"), stringsAsFactors = FALSE) o <- order(data[,1], data[,2], -data[,3], -data[,4]) data <- data[o,] rownames(data) <- data$id attr(data, "srcfile") <- srcfile if (isTRUE(includeText)) gettext <- which(!nzchar(data$text)) else if (is.na(includeText)) gettext <- which(!nzchar(data$text) & data$terminal) else { gettext <- integer(0) data$text <- NULL } if (length(gettext)) data$text[gettext] <- getParseText(data, data$id[gettext]) } data } getParseText <- function(parseData, id) { srcfile <- attr(parseData, "srcfile") d <- parseData[as.character(id),] text <- d$text if (is.null(text)) { text <- character(nrow(d)) blank <- seq_along(text) } else blank <- which(!nzchar(text) | (d$token == "STR_CONST" & startsWith(text, "["))) for (i in blank) { lines <- getSrcLines(srcfile, d$line1[i], d$line2[i]) n <- length(lines) lines[n] <- substr_with_tabs(lines[n], 1, d$col2[i]) lines[1] <- substr_with_tabs(lines[1], d$col1[i], Inf) text[i] <- paste(lines, collapse="\n") } text }
plot_cps <- function(titan.out, taxa.dist = T, z.weights = T, taxaID = NULL, cp.med = F, cp.trace = F, cp.hist = T, stacked = F, xlabel = "Environmental Gradient", xmin = min(titan.out$env), xmax = max(titan.out$envcls) * 1.25, tck = 0.025, bty = "u", ntick = 6, cex = 1.75, cex.axis = 1.75, cex.leg = 1.5, cex.lab = 1.75, write = F, leg.x = 0.8, leg.y = 0.8, leg = TRUE, ...) { minSplt <- titan.out$arguments[[1]] boot <- titan.out$arguments[[3]] > 0.5 imax <- titan.out$arguments[[5]] > 0.5 if (boot == F) { stop("Bootstrap Output Required for this TITAN plot") } numUnit <- length(titan.out$env) selTaxa <- which(titan.out$sppmax[, 16] > 0) subsel1 <- titan.out$sppmax[selTaxa, 16] == 1 subsel2 <- titan.out$sppmax[selTaxa, 16] == 2 numTxa <- length(selTaxa) cp.eden <- matrix(0, numTxa, numUnit) cp.edenz <- matrix(0, numTxa, numUnit) cp.eden.zmd <- matrix(0, numTxa, numUnit) envseq <- seq(from = 0, to = ceiling(max(titan.out$srtEnv)), by = 0.5) zmed <- titan.out$sppmax[selTaxa, 15] for (i in 1:numTxa) { fe <- round(sort(titan.out$metricArray[selTaxa[i], 2, ]), digits = 2) dens <- table(fe)/length(fe) edfe <- approxfun(unique(fe), dens) for (j in 1:numUnit) { if (is.na(edfe(titan.out$srtEnv[j]))) { cp.eden[i, j] <- 0 cp.edenz[i, j] <- 0 } else { cp.eden[i, j] <- edfe(titan.out$srtEnv[j]) cp.eden.zmd[i, j] <- edfe(titan.out$srtEnv[j]) * zmed[i] } } } if (taxa.dist) { maxZmed <- apply(cp.eden.zmd, 1, which.max) txaDens <- matrix(NA, nrow(cp.eden), 5) colnames(txaDens) <- c("env.max.cp", "which.env", "EDF.max", "z.median", "zEDF.max") rownames(txaDens) <- rownames(titan.out$sppmax[selTaxa, ]) for (i in 1:nrow(cp.eden)) { txaDens[i, 1] <- round((titan.out$srtEnv[maxZmed[i] - 1] + titan.out$srtEnv[maxZmed[i]])/2, digits = 2) txaDens[i, 2] <- maxZmed[i] txaDens[i, 3] <- round(cp.eden[i, maxZmed[i]], digits = 2) txaDens[i, 4] <- round(zmed[i], digits = 2) txaDens[i, 5] <- round(cp.eden.zmd[i, maxZmed[i]], digits = 2) } if (!(is.null(taxaID))) { if (is.numeric(taxaID)) { taxNum <- taxaID } else { taxNum <- which(taxaID == rownames(titan.out$sppmax)) } if (titan.out$sppmax[taxNum, 16] < 1) { stop("This taxon is either impure or unreliable, try a robust taxon") } tag <- rep(0, nrow(titan.out$sppmax)) tag[taxNum] <- 1 tagNum <- which(tag[selTaxa] > 0) par(mar = c(5, 5, 4, 2), oma = c(0, 0, 0, 3)) plot(titan.out$env, titan.out$taxa[, taxNum], xlab = xlabel, ylab = "Abundance", axes = T, col = "black", cex.axis = cex.axis, cex = cex, cex.lab = cex.lab, tck = tck) segments(titan.out$sppmax[taxNum, 8], max(titan.out$taxa[, taxNum], na.rm = T), titan.out$sppmax[taxNum, 12], max(titan.out$taxa[, taxNum], na.rm = T), col = "red", lwd = 2) if (cp.med) { cp.choice <- titan.out$sppmax[taxNum, 10] } else { if (imax) { cp.choice <- titan.out$sppmax[taxNum, 1] } else { cp.choice <- titan.out$sppmax[taxNum, 2] } } symbols(cp.choice, max(titan.out$taxa[, taxNum], na.rm = T), circles = titan.out$sppmax[taxNum, 15], inches = 0.1, add = TRUE, fg = "red", bg = "white", lwd = 2) if (cp.trace) { par(new = T) plot(titan.out$srtEnv, c(rep(NA, minSplt), titan.out$ivzScores[nrow(titan.out$sppmax) + taxNum, ], rep(NA, minSplt - 1)), type = "l", axes = F, xlab = "", ylab = "", col = "red", lty = 2, ylim = c(0, max(titan.out$ivzScores[nrow(titan.out$sppmax) + taxNum, ], na.rm = T))) par(new = T) plot(titan.out$srtEnv, c(rep(NA, minSplt), titan.out$ivzScores[(nrow(titan.out$sppmax) * 2) + taxNum, ], rep(NA, minSplt - 1)), type = "l", axes = F, xlab = "", ylab = "", col = "grey80", lty = 2, ylim = c(0, max(titan.out$ivzScores[(nrow(titan.out$sppmax) * 2) + taxNum, ], na.rm = T))) } if (cp.hist) { par(new = T) plot(titan.out$srtEnv, cp.eden[tagNum, ], type = "h", axes = F, xlab = "", ylab = "", col = "blue", main = rownames(titan.out$sppmax)[taxNum], ylim = c(0, max(cp.eden[tagNum, ], na.rm = T))) axis(4, pretty(c(0, max(cp.eden[tagNum, ], na.rm = T)), 6), cex.axis = cex.axis, tck = tck, mgp = c(2.5, 0.5, 0)) mtext("Density", side = 4, line = 3, cex = cex.lab) } } else { par(mfrow = c(ceiling(sqrt(length(selTaxa))), ceiling(sqrt(length(selTaxa)))), mar = c(2, 2, 2, 2)) if (z.weights) { if (sum(subsel1, na.rm = T) > 0) { for (i in 1:nrow(cp.eden[subsel1, ])) { plot(titan.out$srtEnv, cp.eden.zmd[subsel1, ][i, ], type = "h", axes = T, xlab = "", ylab = "", col = "blue", main = rownames(titan.out$sppmax)[selTaxa[subsel1]][i], ylim = c(0, 1.5)) } } if (sum(subsel2, na.rm = T) > 0) { for (i in 1:nrow(cp.eden[subsel2, ])) { plot(titan.out$srtEnv, cp.eden.zmd[subsel2, ][i, ], type = "h", axes = T, xlab = "", ylab = "", col = "red", main = rownames(titan.out$sppmax)[selTaxa[subsel2]][i], ylim = c(0, 1.5)) } } } else { if (sum(subsel1, na.rm = T) > 0) { for (i in 1:nrow(cp.eden[subsel1, ])) { plot(titan.out$srtEnv, cp.eden[subsel1, ][i, ], type = "h", axes = T, xlab = "", ylab = "", col = "blue", main = rownames(titan.out$sppmax)[selTaxa[subsel1]][i], ylim = c(0, 0.3)) } } if (sum(subsel2, na.rm = T) > 0) { for (i in 1:nrow(cp.eden[subsel2, ])) { plot(titan.out$srtEnv, cp.eden[subsel2, ][i, ], type = "h", axes = T, xlab = "", ylab = "", col = "red", main = rownames(titan.out$sppmax)[selTaxa[subsel2]][i], ylim = c(0, 0.3)) } } } if (sum(subsel1, na.rm = T) > 0 & write) { print("Group 1 Pure and Reliable Taxa") print(txaDens[subsel1, ]) } if (sum(subsel2, na.rm = T) > 0 & write) { print("Group 2 Pure and Reliable Taxa") print(txaDens[subsel2, ]) } } } else { sumDen1 <- colSums(cp.eden[subsel1, ], na.rm = T) sumDen2 <- colSums(cp.eden[subsel2, ], na.rm = T) sumDen <- colSums(cp.eden, na.rm = T) sumDenzd1 <- colSums(cp.eden.zmd[subsel1, ], na.rm = T) sumDenzd2 <- colSums(cp.eden.zmd[subsel2, ], na.rm = T) sumDenzd <- colSums(cp.eden.zmd, na.rm = T) sumTab <- matrix(NA, 3, 4) rownames(sumTab) <- c("Group 1", "Group 2", "P&R Taxa") colnames(sumTab) <- c("uw.env", "uw.max", "zw.env", "zw.max") maxDen1 <- which.max(sumDen1) maxDen2 <- which.max(sumDen2) maxDen <- which.max(sumDen) maxZden1 <- which.max(sumDenzd1) maxZden2 <- which.max(sumDenzd2) maxZden <- which.max(sumDenzd) if (sum(subsel1, na.rm = T) > 0) { if (maxDen1 > 1) { sumTab[1, 1] <- round((titan.out$srtEnv[maxDen1 - 1] + titan.out$srtEnv[maxDen1])/2, digits = 2) } else { sumTab[1, 1] <- titan.out$srtEnv[maxDen1] } sumTab[1, 2] <- round(sumDen1[maxDen1], digits = 2) if (maxDen1 > 1) { sumTab[1, 3] <- round((titan.out$srtEnv[maxZden1 - 1] + titan.out$srtEnv[maxZden1])/2, digits = 2) } else { sumTab[1, 3] <- titan.out$srtEnv[maxZden1] } sumTab[1, 4] <- round(sumDenzd1[maxZden1], digits = 2) } if (sum(subsel2, na.rm = T) > 0) { sumTab[2, 1] <- round((titan.out$srtEnv[maxDen2 - 1] + titan.out$srtEnv[maxDen2])/2, digits = 2) sumTab[2, 2] <- round(sumDen2[maxDen2], digits = 2) sumTab[2, 3] <- round((titan.out$srtEnv[maxZden2 - 1] + titan.out$srtEnv[maxZden2])/2, digits = 2) sumTab[2, 4] <- round(sumDenzd2[maxZden2], digits = 2) } if (maxDen > 1) { sumTab[3, 1] <- round((titan.out$srtEnv[maxDen - 1] + titan.out$srtEnv[maxDen])/2, digits = 2) } else { sumTab[3, 1] <- titan.out$srtEnv[maxDen] } sumTab[3, 2] <- round(sumDen[maxDen], digits = 2) if (maxZden > 1) { sumTab[3, 3] <- round((titan.out$srtEnv[maxZden - 1] + titan.out$srtEnv[maxZden])/2, digits = 2) } else { sumTab[3, 3] <- titan.out$srtEnv[maxZden] } sumTab[3, 4] <- round(sumDenzd[maxZden], digits = 2) print("Summary of Summed Density Functions") print(sumTab) plot.stacked <- function(x, y, order.method = "as.is", ylab = "", xlab = "", border = NULL, lwd = 0.5, col = c("blue", "red"), ylim = NULL, ...) { if (sum(y < 0) > 0) warning("Y cannot contain negative numbers") if (is.null(border)) border <- par("fg") border <- as.vector(matrix(border, nrow = ncol(y), ncol = 1)) col <- as.vector(matrix(col, nrow = ncol(y), ncol = 1)) lwd <- as.vector(matrix(lwd, nrow = ncol(y), ncol = 1)) if (order.method == "max") { ord <- order(apply(y, 2, which.max)) y <- y[, ord] col <- col[ord] border <- border[ord] } top.old <- x * 0 polys <- vector(mode = "list", ncol(y)) for (i in seq(polys)) { top.new <- top.old + y[, i] polys[[i]] <- list(x = c(x, rev(x)), y = c(top.old, rev(top.new))) top.old <- top.new } if (is.null(ylim)) ylim <- range(sapply(polys, function(x) range(x$y, na.rm = TRUE)), na.rm = TRUE) plot(x, y[, 1], ylab = ylab, xlab = xlab, ylim = ylim, t = "n", col = "blue", ...) for (i in seq(polys)) { polygon(polys[[i]], border = col[i], col = col[i], lwd = lwd[i]) } } par(mar = c(5, 5, 4, 2), oma = c(0, 0, 0, 3)) if (z.weights) { if (stacked) { plot.stacked(titan.out$srtEnv, cbind(sumDenzd1, sumDenzd2), xlab = xlabel, ylab = "Summed z-Weighted Probability Densities", sub = "pure and reliable taxa only", xlim = c(xmin, xmax), cex = 1.75, cex.axis = 1.75, tck = 0.025, cex.lab = 1.5) points(titan.out$srtEnv[which.max(sumDenzd1)], max(sumDenzd1, na.rm = T), pch = 19, col = "blue") points(titan.out$srtEnv[which.max(sumDenzd2)], max(sumDenzd2, na.rm = T), pch = 19, col = "red") } else { plot(titan.out$srtEnv, sumDenzd, xlab = xlabel, ylab = "Summed z-Weighted Probability Densities", ty = "b", col = "gray", lty = 1, sub = "pure and reliable taxa only", xlim = c(xmin, xmax), cex = 1.75, cex.axis = 1.75, tck = 0.025, cex.lab = 1.75) points(titan.out$srtEnv, sumDenzd2, ty = "b", col = "red", pch = 19) points(titan.out$srtEnv, sumDenzd1, ty = "b", col = "blue", pch = 19) } } else { if (stacked) { plot.stacked(titan.out$srtEnv, cbind(sumDen1, sumDen2), xlab = xlabel, ylab = "Summed Unweighted Probability Densities", sub = "pure and reliable taxa only", xlim = c(xmin, xmax), cex = 1.75, cex.axis = 1.75, tck = 0.025, cex.lab = 1.5) points(titan.out$srtEnv[which.max(sumDen1)], max(sumDen1, na.rm = T), pch = 19, col = "blue") points(titan.out$srtEnv[which.max(sumDen2)], max(sumDen2, na.rm = T), pch = 19, col = "red") } else { plot(titan.out$srtEnv, sumDen, xlab = xlabel, ylab = "Summed Unweighted Probability Densities", ty = "b", col = "gray", lty = 1, sub = "pure and reliable taxa only", xlim = c(xmin, xmax), cex = 1.75, cex.axis = 1.75, tck = 0.025, cex.lab = 1.75) points(titan.out$srtEnv, sumDen2, ty = "b", col = "red", pch = 19) points(titan.out$srtEnv, sumDen1, ty = "b", col = "blue", pch = 19) } } } if (leg) { if (stacked) { legend("topright", legend = c("z- max", "z+ max"), col = c("blue", "red"), pch = 19) } else { if (!taxa.dist) { legend("topright", legend = c("all z", "z-", "z+"), col = c("gray", "blue", "red"), pch = 19) } } } } plotCPs <- function(...) { .Deprecated("plot_cps") plot_cps(...) }
Delta.the.cc <- function(para, map, ref, Delta){ the <- para[map$the] fx <- as.matrix(ref[, names(the), drop = FALSE]) fx * Delta }
source("ESEUR_config.r") library("plyr") params=read.csv(paste0(ESEUR_dir, "ecosystems/param-cnt.csv.xz"), as.is=TRUE) pal_col=rainbow(3) cbook=subset(params, source == "cbook") cbook$int_p=round(cbook$percent) cb_cp=rep(0:(nrow(cbook)-1), cbook$int_p) embed=subset(params, source == "Embedded") embed$int_p=round(embed$percent) embed_pc=rep(0:(nrow(embed)-1), embed$int_p) plot(params$params, params$percent, type="n", xaxs="i", yaxs="i", xlim=c(-0.05, 10), xlab="Number of parameters", ylab="Function definitions (percentage)\n") lines(embed$params, embed$percent, col=pal_col[2]) lines(cbook$params, cbook$percent, col=pal_col[2]) embed_pois=glm(embed_pc ~ 1, family=poisson(link="identity")) points(0:8, dpois(0:8, coef(embed_pois)[1])*100, col=pal_col[1]) cbook_pois=glm(cb_cp ~ 1, family=poisson(link="identity")) points(0:8, dpois(0:8, coef(cbook_pois)[1])*100, col=pal_col[3]) legend(x="topright", legend=c("C book", "Fitted model", "Embedded"), bty="n", fill=pal_col, cex=1.2)
check_itemscale <- function(x) { if (!inherits(x, "parameters_pca")) { stop(insight::format_message("'x' must be an object of class 'parameters_pca', as returned by 'parameters::principal_components()'."), call. = FALSE) } insight::check_if_installed("parameters") data_set <- attributes(x)$data_set subscales <- parameters::closest_component(x) out <- lapply(sort(unique(subscales)), function(.subscale) { columns <- names(subscales)[subscales == .subscale] items <- data_set[columns] reliability <- item_reliability(items) .item_discr <- reliability$item_discrimination if (is.null(.item_discr)) .item_discr <- NA .item_alpha <- reliability$alpha_if_deleted if (is.null(.item_alpha)) .item_alpha <- NA s_out <- data.frame( Item = columns, Missings = sapply(items, function(i) sum(is.na(i)) / nrow(items)), Mean = sapply(items, mean, na.rm = TRUE), SD = sapply(items, stats::sd, na.rm = TRUE), Skewness = sapply(items, function(i) as.numeric(datawizard::skewness(i))), "Difficulty" = item_difficulty(items)$difficulty, "Discrimination" = .item_discr, "alpha if deleted" = .item_alpha, stringsAsFactors = FALSE, check.names = FALSE ) attr(s_out, "item_intercorrelation") <- item_intercor(items) attr(s_out, "cronbachs_alpha") <- cronbachs_alpha(items) s_out }) class(out) <- unique(c("check_itemscale", class(out))) out }
predictor <- function(tree, register) { ti <- 1 while (tree[[ti]][["SL"]] != -1) { if (register[tree[[ti]][["xi"]]] < as.data.frame(tree[[ti]][["s"]])) { ti <- posIdNode(tree, tree[[ti]][["SL"]]) } else { ti <- posIdNode(tree, tree[[ti]][["SR"]]) } } return(tree[[ti]][["y"]]) } posIdNode <- function(tree, idNode) { for (i in 1:length(tree)) { if (tree[[i]][["id"]] == idNode) { return(i) } } return(-1) }
new_geodesic_path <- function(name, generator, frozen = NULL, ...) { tries <- 1 tour_path <- function(current, data, ...) { if (is.null(current)) { return(generator(NULL, data, tries, ...)) } dist <- 0 while (dist < 1e-3) { if (name %in% c("guided", "frozen-guided")) tries <<- tries + 1 gen <- generator(current, data, tries, ...) target <- gen$target if (is.null(target)) { return(NULL) } dist <- proj_dist(current, target) if (dist < 1e-2) { return(NULL) } cat("generation: dist = ", dist, "\n") } list(ingred = geodesic_path(current, target, frozen, ...), index = gen$index, tries = tries) } structure( tour_path, name = name, class = c("tour_path", "function") ) } "print.tour_path" <- function(x, ...) { cat("Tour path:", attr(x, "name"), "\n") }
NULL expfpInit <- function(mCall, LHS, data, ...){ xy <- sortedXyData(mCall[["x"]], LHS, data) if(nrow(xy) < 3){ stop("Too few distinct input values to fit an exponential-plateau.") } if(any(xy[,"y"] < 0)) stop("negative values in y are not allowed.") xy1 <- xy[1:floor(nrow(xy)/2),] fit <- try(stats::lm(log(xy1[,"y"]) ~ xy1[,"x"]), silent = TRUE) if(class(fit) == "try-error"){ a <- xy1[1,"y"] c <- (xy1[nrow(xy1),"y"] - xy1[1,"y"])/(xy1[nrow(xy1),"x"] - xy1[1,"x"]) }else{ a <- exp(coef(fit)[1]) c <- coef(fit)[2] } objfun <- function(cfs){ pred <- expfp(xy[,"x"], a=cfs[1], c=cfs[2], xs=cfs[3]) ans <- sum((xy[,"y"] - pred)^2) ans } cfs <- c(a,c,mean(xy[,"x"])) op <- try(stats::optim(cfs, objfun, method = "L-BFGS-B", upper = c(Inf, Inf, max(xy[,"x"])), lower = c(-Inf, -Inf, min(xy[,"x"]))), silent = TRUE) if(class(op) != "try-error"){ a <- op$par[1] c <- op$par[2] xs <- op$par[3] }else{ xs <- mean(xy[,"x"]) } value <- c(a, c, xs) names(value) <- mCall[c("a","c","xs")] value } expfp <- function(x, a, c, xs){ .value <- (x < xs) * a * exp(c * x) + (x >= xs) * (a * exp(c * xs)) .exp1 <- ifelse(x < xs, exp(c * x), exp(c * xs)) .exp2 <- ifelse(x < xs, a * (exp(c * x) * x), a * (exp(c * xs) * xs)) .exp3 <- ifelse(x < xs, 0, a * (exp(c * xs) * c)) .actualArgs <- as.list(match.call()[c("a","c","xs")]) if (all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 3L), list(NULL, c("a", "c", "xs"))) .grad[, "a"] <- .exp1 .grad[, "c"] <- .exp2 .grad[, "xs"] <- .exp3 dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value } SSexpfp <- selfStart(expfp, initial = expfpInit, c("a", "c", "xs"))
write_ref_output <- FALSE test_that("kraken input works", { res <- read_report("read_report/input/kraken-report.txt") if (write_ref_output) saveRDS(res, "read_report/ref_output/kraken-report-res.rds") expect_equal(res, readRDS("read_report/ref_output/kraken-report-res.rds")) }) test_that("krakenuniq input works", { res <- read_report("read_report/input/krakenuniq-report.txt") if (write_ref_output) saveRDS(res, "read_report/ref_output/krakenuniq-report-res.rds") expect_equal(res, readRDS("read_report/ref_output/krakenuniq-report-res.rds")) }) test_that("kraken2uniq input works", { res <- read_report("read_report/input/k2uniq-report.txt") if (write_ref_output) saveRDS(res, "read_report/ref_output/k2uniq-report-res.rds") expect_equal(res, readRDS("read_report/ref_output/k2uniq-report-res.rds")) }) test_that("metaphlan2 input works", { res <- read_report("read_report/input/metaphlan2-report.txt") if (write_ref_output) saveRDS(res, "read_report/ref_output/metaphlan2-report-res.rds") expect_equal(res, readRDS("read_report/ref_output/metaphlan2-report-res.rds")) }) test_that("metaphlan3 input works", { res <- read_report("read_report/input/metaphlan3-report.txt") if (write_ref_output) saveRDS(res, "read_report/ref_output/metaphlan3-report-res.rds") expect_equal(res, readRDS("read_report/ref_output/metaphlan3-report-res.rds")) })
set_parvec <- function(TXT2, partable, dp, cp, lv.x.wish, lv.names.x, target="jags"){ t1 <- paste(rep(" ", 2L), collapse="") t2 <- paste(rep(" ", 4L), collapse="") t3 <- paste(rep(" ", 6L), collapse="") eqop <- ifelse(target == "stan", "=", "<-") commop <- ifelse(target == "stan", "// ", " eolop <- ifelse(target == "stan", ";", "") TXT3 <- paste("\n", t1, commop, "Priors", sep="") wishpars <- NULL if(lv.x.wish & length(lv.names.x) > 1){ wishpars <- which(partable$lhs %in% lv.names.x & partable$rhs %in% lv.names.x & partable$op == "~~") } partable$freeparnums <- rep(0, length(partable$parnums)) parvecnum <- 0 for(i in 1:nrow(partable)){ miscignore <- (partable$mat[i] == "") | (i %in% wishpars) eqpar <- which(partable$rhs == partable$plabel[i] & partable$op == "==") defeq <- partable$op[i] %in% c("==", ":=") & grepl("\\+|-|/|\\*|\\(|\\)|\\^", partable$rhs[i]) compeq <- which((partable$lhs == partable$plabel[i] | partable$lhs == partable$label[i]) & partable$op %in% c("==", ":=") & grepl("\\+|-|/|\\*|\\(|\\)|\\^", partable$rhs)) fixed <- partable$free[i] == 0 & partable$op[i] != ":=" if(length(eqpar) > 0 | defeq | length(compeq) > 0 | fixed | miscignore){ next } else { parvecnum <- parvecnum + 1 partable$freeparnums[i] <- parvecnum } } for(i in 1:nrow(partable)){ if((partable$mat[i] != "" & !(i %in% wishpars)) | partable$op[i] == ":="){ eqpar <- which(partable$rhs == partable$plabel[i] & partable$op == "==") defeq <- partable$op[i] %in% c("==", ":=") & grepl("\\+|-|/|\\*|\\(|\\)|\\^", partable$rhs[i]) compeq <- which((partable$lhs == partable$plabel[i] | partable$lhs == partable$label[i]) & partable$op %in% c("==", ":=") & grepl("\\+|-|/|\\*|\\(|\\)|\\^", partable$rhs)) if(grepl("rho", partable$id[i])){ rhoinf <- strsplit(partable$id[i], "[, \\[^\\]]+", perl=TRUE) partable$mat[i] <- rhoinf[[1]][1] partable$row[i] <- rhoinf[[1]][2] partable$col[i] <- rhoinf[[1]][3] } TXT2 <- paste(TXT2, "\n", t1, partable$mat[i], "[", partable$row[i], ",", partable$col[i], ",", partable$group[i], "] ", eqop, " ", sep="") if(grepl("rho", partable$id[i]) & partable$free[i] > 0){ TXT2 <- paste(TXT2, "-1 + 2*", sep="") } if(partable$free[i] == 0 & partable$op[i] != ":="){ if(is.na(partable$ustart[i])){ TXT2 <- paste(TXT2, partable$start[i], eolop, sep="") } else { TXT2 <- paste(TXT2, partable$ustart[i], eolop, sep="") } } else if(length(eqpar) > 0){ eqpar <- which(partable$plabel == partable$lhs[eqpar]) if(length(eqpar) > 1){ if(length(eqpar) > 2) stop("blavaan ERROR: problem with parameter equality constraints") eqpar <- eqpar[which(partable$freeparnums[eqpar] > 0)] } if(partable$freeparnums[eqpar] == 0){ eqtxt <- paste(partable$mat[eqpar], "[", partable$row[eqpar], ",", partable$col[eqpar], ",", partable$group[eqpar], "]", eolop, sep="") } else { eqtxt <- paste("parvec[", partable$freeparnums[eqpar], "]", eolop, sep="") } vpri <- grepl("\\[var\\]", partable$prior[eqpar]) spri <- grepl("\\[sd\\]", partable$prior[eqpar]) if(!vpri & (grepl("theta", partable$mat[i]) | grepl("psi", partable$mat[i]))){ sq <- ifelse(spri, "2", "-1") TXT2 <- paste(TXT2, "pow(", eqtxt, ",", sq, ")", eolop, sep="") } else { TXT2 <- paste(TXT2, eqtxt, sep="") } } else if(defeq | length(compeq) > 0){ if(length(compeq) == 0) compeq <- i rhsvars <- all.vars(parse(file="", text=partable$rhs[compeq])) if(compeq == i){ pvnum <- match(rhsvars, partable$label) } else { pvnum <- match(rhsvars, partable$plabel) if(is.na(pvnum[1])) pvnum <- match(rhsvars, partable$label) } rhstrans <- paste(partable$mat[pvnum], "[", partable$row[pvnum], ",", partable$col[pvnum], ",", partable$group[pvnum], "]", sep="") oldjageq <- partable$rhs[compeq] transtab <- as.list(rhstrans) names(transtab) <- rhsvars jagexpr <- parse(text=oldjageq)[[1]] jageq <- do.call("substitute", list(jagexpr, transtab)) jageq <- paste(deparse(jageq, width.cutoff = 500), collapse="") jageq <- gsub('\"', '', jageq) TXT2 <- paste(TXT2, jageq, eolop, sep="") } else { TXT3 <- paste(TXT3, "\n", t1, "parvec[", partable$freeparnums[i], "]", sep="") if(partable$prior[i] == ""){ if(partable$mat[i] == "lvrho"){ partype <- grep("rho", names(dp)) } else if(grepl("star", partable$mat[i])){ pname <- paste("i", strsplit(partable$mat[i], "star")[[1]][1], sep="") partype <- grep(pname, names(dp)) } else { partype <- grep(partable$mat[i], names(dp)) } if(length(partype) > 1) partype <- partype[1] partable$prior[i] <- dp[partype] } if(grepl(")[", partable$prior[i], fixed=TRUE)){ jagpri <- paste0(strsplit(partable$prior[i], ")[", fixed=TRUE)[[1]][1], ")") } else { jagpri <- partable$prior[i] } vpri <- grepl("\\[var\\]", partable$prior[i]) spri <- grepl("\\[sd\\]", partable$prior[i]) if(!vpri & (grepl("theta", partable$mat[i]) | grepl("psi", partable$mat[i]))){ sq <- ifelse(spri, "2", "-1") TXT2 <- paste(TXT2, "pow(parvec[", partable$freeparnums[i], "],", sq, ")", eolop, sep="") } else { TXT2 <- paste(TXT2, "parvec[", partable$freeparnums[i], "]", eolop, sep="") } TXT3 <- paste(TXT3, " ~ ", jagpri, eolop, sep="") } } } if(lv.x.wish & length(lv.names.x) > 1){ nlvx <- length(lv.names.x) ngroups <- max(partable$group, na.rm = TRUE) TXT3 <- paste(TXT3, "\n", t1, "for(k in 1:", ngroups, ") {\n", t2, "ibpsi[1:", nlvx, ",1:", nlvx, ",k] ~ dwish(iden,", nlvx+1, ")\n", sep="") TXT3 <- paste(TXT3, t2, "bpsi[1:", nlvx, ",1:", nlvx, ",k] <- inverse(ibpsi[1:", nlvx, ",1:", nlvx, ",k])\n", t1, "}\n", sep="") for(i in 1:length(wishpars)){ tmppar <- wishpars[i] wishrow <- which(lv.names.x == partable$lhs[tmppar]) wishcol <- which(lv.names.x == partable$rhs[tmppar]) partable$prior[tmppar] <- dp[["ibpsi"]] TXT2 <- paste(TXT2, "\n", t1, partable$mat[tmppar], "[", partable$row[tmppar], ",", partable$col[tmppar], ",", partable$group[tmppar], "] ", eqop, " bpsi[", wishrow, ",", wishcol, ",", partable$group[tmppar], "]", eolop, sep="") } } covs <- unique(partable$lhs[grep(".phant", partable$lhs)]) if(length(covs) > 0){ TXT2 <- paste(TXT2, "\n\n", t1, commop, "Inferential covariances", sep="") for(i in 1:length(covs)){ for(k in 1:max(partable$group)){ varlocs <- which(((partable$lhs == covs[i] & partable$op == "=~") | (partable$rhs == covs[i] & partable$op == "~")) & partable$group == k) vartxt <- "star" vars <- partable$rhs[varlocs] lhsvars <- grepl(".phant", vars) if(any(lhsvars)){ vars[lhsvars] <- partable$lhs[varlocs[lhsvars]] } if(length(varlocs) == 0){ varlocs <- which(partable$rhs == covs[i] & partable$op == "~" & partable$group == k) vars <- partable$lhs[varlocs] } var1 <- which(partable$lhs == vars[1] & partable$lhs == partable$rhs & partable$group == partable$group[varlocs[1]] & grepl(vartxt, partable$mat)) var2 <- which(partable$lhs == vars[2] & partable$lhs == partable$rhs & partable$group == partable$group[varlocs[1]] & grepl(vartxt, partable$mat)) matname <- ifelse(grepl("theta", partable$mat[var1]), "theta", "psi") phpars <- which((partable$lhs == covs[i] | partable$rhs == covs[i]) & partable$group == k) if(length(phpars) == 1){ phpars <- which(partable$rhs == covs[i] & partable$group == k) } TXT2 <- paste(TXT2, "\n", t1, matname, "[", partable$row[var1], ",", partable$row[var2], ",", partable$group[varlocs[1]], "] ", eqop, " ", partable$mat[phpars[1]], "[", partable$row[phpars[1]], ",", partable$col[phpars[1]], ",", partable$group[phpars[1]], "]*", partable$mat[phpars[2]], "[", partable$row[phpars[2]], ",", partable$col[phpars[2]], ",", partable$group[phpars[2]], "]*", partable$mat[phpars[3]], "[", partable$row[phpars[3]], ",", partable$col[phpars[3]], ",", partable$group[phpars[3]], "]", eolop, sep="") } } TXT2 <- paste(TXT2, "\n", sep="") } list(TXT2 = TXT2, TXT3 = TXT3, partable = partable) }
do.crda <- function(X,ndim=2,type=c("proportion",0.1),symmetric="union",weight=TRUE, lambda=1.0,alpha=1.0,maxiter=1000,tolerance=1e-6){ vlnum = 1e+10 aux.typecheck(X) ndim = as.integer(ndim) if(!check_NumMM(ndim,1,ncol(X),compact=FALSE)){stop("* do.crda : 'ndim' is a positive integer in (1, lambda = as.double(lambda) if(!check_NumMM(lambda,0,vlnum,compact=FALSE)){stop("* do.crda : 'lambda' should be a positive real number.")} alpha = as.double(alpha) if(!check_NumMM(alpha,0,vlnum,compact=FALSE)){stop("* do.crda : 'alpha' should be a positive real number.")} maxiter = as.integer(maxiter) if(!check_NumMM(maxiter,1,vlnum,compact=FALSE)){stop("* do.crda : 'maxiter' should be a not-so-small positive integer.")} tolerance = as.double(tolerance) if(!check_NumMM(alpha,0,vlnum,compact=FALSE)){stop("* do.crda : 'tolerance' should be a positive real number.")} nbdtype = type nbdsymmetric = symmetric if (!is.element(nbdsymmetric,c("union","intersect","asymmetric"))){ stop("* do.crda : 'symmetric' should have one of three values.") } algweight = weight if (!is.logical(algweight)){ stop("* do.crda : 'weight' should be a logical value.") } nbdstruct = aux.graphnbd(X,method="euclidean", type=nbdtype,symmetric=nbdsymmetric) D = nbdstruct$dist Dmask = nbdstruct$mask nD = ncol(D) if (algweight){ wD = Dmask*D idnan = is.na(wD) wD[idnan] = 0 } else { wD = matrix(as.double(Dmask),nrow=nD) } Xij = aux.shortestpath(wD) Yinit = do.pca(X, ndim=ndim)$Y vecselector = as.vector(sample(0:(nrow(X)-1), maxiter, replace=TRUE)) Youtput = method_crca(Xij,Yinit,lambda,alpha,maxiter,tolerance,vecselector) trfinfo = list() trfinfo$type = "null" trfinfo$algtype = "nonlinear" result = list() result$Y = Youtput$Y result$niter = Youtput$niter result$trfinfo = trfinfo return(result) }
remove_prefix <- function(data, prefices, sep = ".") { for (prefix in prefices) { prefix <- paste0(prefix, sep) names(data) %<>% gsub(prefix, "", .) } data }
ck_conv_vox = function(data,message){ if(missing(message)) message = TRUE if(!(is.data.frame(data))) stop("data must be a data.frame or a data.table") if(ncol(data) > 4){ if(message) print("NOTE: data contain more than 3 columns, three first used") } if(ncol(data) < 4){ stop("data must contain 4 columns, x, y, z and number of points") } dfr=FALSE if(!data.table::is.data.table(data)) dfr = TRUE data=data.table::data.table(data[,1:4]) data.table::setnames(data,c("x","y","z","npts")) if(!(all(sapply(data[,1:3],class)=="numeric") & (all(sapply(data[,4],class)=="integer")|all(sapply(data[,4],class)=="numeric")) )){ stop("All the fields of the data must be numeric") } if(any(is.na(data))&message) warning("data contains missing values.") invisible(list(data=data,dfr=dfr)) }
test_that("check class and length of output", { testthat::skip_on_cran() local_edition(3) data(ExampleData.DeValues, envir = environment()) temp <- expect_s4_class(calc_FiniteMixture( ExampleData.DeValues$CA1, sigmab = 0.2, n.components = 2, grain.probability = TRUE, verbose = TRUE), "RLum.Results") expect_equal(length(temp), 10) results <- get_RLum(temp) expect_equal(results$de[1], 31.5299) expect_equal(results$de[2], 72.0333) expect_equal(results$de_err[1], 3.6387) expect_equal(results$de_err[2], 2.4082) expect_equal(results$proportion[1], 0.1096) expect_equal(results$proportion[2], 0.8904) expect_s4_class(calc_FiniteMixture( ExampleData.DeValues$CA1, sigmab = 0.2, n.components = 2:3, grain.probability = TRUE, verbose = FALSE), "RLum.Results") })
assoTest <- function(Dx, Dy, hapMat, nperm, method, xlab = "", ylab = "", main = ""){ n = length(Dy) assoStats = vector(length = n, mode = "list") permStatMat = matrix(NA, nrow = n, ncol = nperm) for(i in 1:n){ assoStats[[i]] = performTest(Dx = Dx, Dy = Dy[[i]], testname = method, nperm = nperm) permStatMat[i, ] = assoStats[[i]]$permStats } trueStats = rep(NA, length(assoStats)) for(j in 1:length(assoStats)){ trueStats[j] = assoStats[[j]]$Stat } if( nperm != 0){ mar_pval = rep(NA, length(assoStats)) for(k in 1:length(assoStats)){ mar_pval[k] = assoStats[[k]]$pValue } }else{ mar_pval = NA } omPvalue = (sum(apply(permStatMat, 2, max) >= max(trueStats))+1)/(nperm + 1) plt <- plot(hapMat$posns, trueStats, xlab = xlab, ylab = ylab, main = main ) return(list(plt, Stats = trueStats, OmPval = omPvalue, mPval = mar_pval)) } performTest <- function(Dx, Dy, testname, nperm){ if(testname == "HHG"){ return( HHGtest(Dx = Dx, Dy = Dy, nperm = nperm)) } if(testname == "dCor"){ return( dCorTest(Dx = Dx, Dy = Dy, nperm = nperm)) } if(testname == "Mantel"){ return(MantelTest(Dx = Dx, Dy = Dy, nperm = nperm)) } if(testname == "RV"){ return(RVtest(Dx = Dx, Dy = Dy, nperm = nperm)) } }
test.millsR <- function() { xVals <- 1:5 yVals <- millsR(xVals) yReqd <- c(0.65568, 0.42137, 0.30459, 0.23665, 0.19281) tol <- 0.001 checkEquals(yReqd, yVals, tol = tol) tol <- 10^(-14) xVals <- (1:10)*10^7 yVals <- millsR(xVals) yReqd <- c(1.00090856345226e-07, 4.99371810711756e-08, 3.43212891632624e-08, 2.51099915574398e-08, 1.95556810878505e-08, 1.95556810878505e-08, 1.52299797447126e-08, 1.52299797447126e-08, 1.52299797447126e-08, 1.52299797447126e-08) checkEquals((yVals - yReqd)/yReqd, rep(0, length(yVals)), tol = tol) checkEquals(millsR(1:5, log = TRUE), log(millsR(1:5)), tol = tol) }
test_that("number format works correctly", { expect_equal(number(123.45, accuracy = 1), "123") expect_equal(number(123.45, accuracy = 10), "120") expect_equal(number(123.45, accuracy = .25), "123.5") expect_equal( number(12345, big.mark = ","), "12,345" ) expect_equal( number(12.3, decimal.mark = ",", accuracy = .1), "12,3" ) expect_equal( number(1.234, scale = 100), "123" ) expect_equal( number(123, prefix = "pre", suffix = "post"), "pre123post" ) expect_equal(number(c(1, 23)), c("1", "23")) expect_equal(number(c(1, 23), trim = FALSE), c(" 1", "23")) }) test_that("number_format works with Inf", { cust <- number_format(suffix = "suff", accuracy = NULL) expect_equal(cust(c(Inf, -Inf)), c("Inf", "-Inf")) }) test_that("number preserves names", { expect_named(number(c(a = 1)), "a") }) test_that("comma format always adds commas", { expect_equal(comma(1e3), "1,000") expect_equal(comma(1e6), "1,000,000") expect_equal(comma(1e9), "1,000,000,000") }) test_that("comma preserves names", { expect_named(comma(c(a = 1)), "a") }) test_that("formatters don't add extra spaces", { has_space <- function(x) any(grepl("\\s", x)) x <- 10^c(-1, 0, 1, 3, 6, 9) expect_false(has_space(number(x, big.mark = ","))) expect_false(has_space(comma(x))) expect_false(has_space(dollar(x))) expect_false(has_space(percent(x, big.mark = ","))) expect_false(has_space(scientific(x))) }) test_that("formats work with 0 length input", { x <- numeric() expected <- character() expect_identical(number(x), expected) expect_identical(comma(x), expected) expect_identical(dollar(x), expected) expect_identical(percent(x), expected) expect_identical(scientific(x), expected) expect_identical(comma_format()(x), expected) expect_identical(date_format()(as.Date(character(0))), expected) expect_identical(dollar_format()(x), expected) expect_identical(parse_format()(x), expression()) expect_identical(parse_format()(character()), expression()) expect_identical(percent_format()(x), expected) expect_identical(scientific_format()(x), expected) expect_identical(trans_format(identity)(x), expected) }) test_that("precision rounds large numbers appropriately", { x <- c(0, 0.025) expect_equal(precision(x), 0.001) expect_equal(precision(x * 10), 0.01) expect_equal(precision(x * 100), 0.1) expect_equal(precision(x * 1000), 1) expect_equal(precision(x * 10000), 1) }) test_that("precision handles duplicate values", { expect_equal(precision(c(0, 0, 0.025)), 0.001) expect_equal(precision(c(Inf, 0.1, 0.2, Inf)), 0.01) }) test_that("precision ignores Inf and NA", { expect_equal(precision(c(NA, Inf, -Inf)), 1) expect_equal(precision(c(1, NA)), 1) })
boot.senv <- function (X, Y, u, B) { X <- as.matrix(X) a <- dim(Y) n <- a[1] r <- a[2] p <- ncol(X) fit <- senv(X, Y, u, asy = F) Yfit <- matrix(1, n, 1) %*% t(fit$mu) + X %*% t(fit$beta) res <- Y - Yfit bootenv <- function(i) { res.boot <- res[sample(1:n, n, replace = T), ] Y.boot <- Yfit + res.boot return(c(senv(X, Y.boot, u, asy = F)$beta)) } bootbeta <- lapply(1:B, function(i) bootenv(i)) bootbeta <- matrix(unlist(bootbeta), nrow = B, byrow = TRUE) bootse <- matrix(apply(bootbeta, 2, stats::sd), nrow = r) return(bootse) }
"toy_wide_censN"
lsm_l_area_cv <- function(landscape, directions = 8) { landscape <- landscape_as_list(landscape) result <- lapply(X = landscape, FUN = lsm_l_area_cv_calc, directions = directions) layer <- rep(seq_along(result), vapply(result, nrow, FUN.VALUE = integer(1))) result <- do.call(rbind, result) tibble::add_column(result, layer, .before = TRUE) } lsm_l_area_cv_calc <- function(landscape, directions, resolution = NULL){ area_patch <- lsm_p_area_calc(landscape, directions = directions, resolution = resolution) if (all(is.na(area_patch$value))) { return(tibble::tibble(level = "landscape", class = as.integer(NA), id = as.integer(NA), metric = "area_cv", value = as.double(NA))) } area_cv <- raster::cv(area_patch$value) return(tibble::tibble(level = "landscape", class = as.integer(NA), id = as.integer(NA), metric = "area_cv", value = as.double(area_cv))) }
.checkMetricInvariants <- function(metric) { checkTrue(metric >= 0) checkTrue(metric <= 1) } TestKSDCC <- function() { x <- rexp(100) h1 <- hist(x, plot=FALSE) h2 <- hist(x, breaks=seq(0, round(max(x) + 1), by=0.1), plot=FALSE) ksdcc.1 <- KSDCC(h1) ksdcc.2 <- KSDCC(h2) .checkMetricInvariants(ksdcc.1) .checkMetricInvariants(ksdcc.2) checkTrue(ksdcc.1 >= ksdcc.2) x1.min <- rep(head(h1$breaks, -1), h1$counts) x1.max <- rep(tail(h1$breaks, -1), h1$counts) checkEquals(unname(ks.test(x1.min, x1.max, exact=F)$statistic), KSDCC(h1)) x2.min <- rep(head(h2$breaks, -1), h2$counts) x2.max <- rep(tail(h2$breaks, -1), h2$counts) checkEquals(unname(ks.test(x2.min, x2.max, exact=F)$statistic), KSDCC(h2)) } TestEMDCC <- function() { set.seed(0) x <- rexp(100) h1 <- hist(x, plot=FALSE) h2 <- hist(x, breaks=seq(0, round(max(x) + 1), by=0.1), plot=FALSE) emdcc.1 <- EMDCC(h1) emdcc.2 <- EMDCC(h2) .checkMetricInvariants(emdcc.1) .checkMetricInvariants(emdcc.2) checkTrue(emdcc.1 >= emdcc.2) if (require(emdist)) { MinEcdf <- HistToEcdf(h1, f=0) MaxEcdf <- HistToEcdf(h1, f=1) A1 <- matrix(c(rep(1, length(h1$counts)), h1$mids, MaxEcdf(tail(knots(MinEcdf), -1))), ncol=3) A2 <- matrix(c(rep(1, length(h1$counts)), h1$mids, MinEcdf(head(knots(MinEcdf), -1))), ncol=3) checkEquals(emd(A1, A2), emdcc.1, tol=2^-23) } }
getNote <- function(note) { paste(scan(note, '', sep = '\n', quiet = TRUE), collapse = '\n') } getDose <- function(note, ...) { d <- medExtractR::medExtractR(getNote(note), ...) if(length(d) == 1 && is.na(d)) return(NULL) d[,'filename'] <- basename(note) d <- d[, c('filename', 'entity', 'expr', 'pos')] return(d) }
library("zlog") albumin <- c(42, 34, 38, 43, 50, 42, 27, 31, 24) z(albumin, limits = c(35, 52)) zlog(albumin, limits = c(35, 52)) izlog(zlog(albumin, limits = c(35, 52)), limits = c(35, 52)) z <- -10:10 oldpar <- par(mar = c(0, 0, 0, 0), oma = c(0, 0, 0, 0)) image(matrix(z, ncol = 1), col = zcol(z), axes = FALSE) text(seq(0, 1, length.out=length(z)), 0, label = z) par(oldpar) bilirubin <- c(11, 9, 2, 5, 22, 42, 37, 200, 20) zloga <- zlog(albumin, limits = c(35, 52)) zlogb <- zlog(bilirubin, limits = c(2, 21)) d <- data.frame( Category = c( rep(c( "blood donor", "hepatitis without cirrhosis", "hepatitis with cirrhosis" ), each = 3 ) ), albumin = albumin, zloga = zloga, bilirubin = bilirubin, zlogb = zlogb ) d$albumin <- kableExtra::cell_spec( d$albumin, background = zcol(zloga), align = "right" ) d$bilirubin <- kableExtra::cell_spec( d$bilirubin, background = zcol(zlogb), align = "right" ) kableExtra::kable_classic( kableExtra::kbl( d, col.names = c( "Category", "albumin", "zlog(albumin)", "bilirubin", "zlog(bilirubin)" ), digits = 2, escape = FALSE, caption = paste0( "Table reproduced from @hoffmann2017, Table 2, limits used: ", "albumin 35-52 g/l, bilirubin 2-21 µmol/l." ) ), "basic" ) reference_limits(albumin) reference_limits(albumin, probs = c(0.05, 0.95)) exp(reference_limits(log(albumin))) reference <- data.frame( param = c("albumin", rep("bilirubin", 4)), age = c(0, 1, 2, 3, 7), sex = "both", units = c("g/l", rep("µmol/l", 4)), lower = c(35, rep(NA, 4)), upper = c(52, 5, 8, 13, 18) ) knitr::kable(reference) lookup_limits( age = 18 * 365.25, sex = "female", table = reference[reference$param == "albumin",] ) lookup_limits( age = 18 * 365.25, sex = "female", table = reference ) lookup_limits( age = 0:8, sex = rep(c("female", "male"), 5:4), table = reference[reference$param == "bilirubin",] ) set_missing_limits(reference) set_missing_limits(reference, fraction = c(0.2, 5)) x <- data.frame( age = c(40, 50), sex = c("female", "male"), albumin = c(42, NA) ) x z_df(impute_df(x, reference, method = "mean"), reference) zlog_df(impute_df(x, reference), reference) library("survival") data("pbc") labs <- c( "bili", "chol", "albumin", "copper", "alk.phos", "ast", "trig", "platelet", "protime" ) pbc <- pbc[, c("age", "sex", labs)] knitr::kable(head(pbc), digits = 1) param <- rep(labs, ifelse(labs %in% c("copper", "ast"), 2, 1)) sex <- rep_len("both", length(param)) sex[param %in% c("copper", "ast")] <- c("f", "m") reference <- data.frame( param = param, age = 0, sex = sex, lower = NA, upper = NA ) for (i in seq_len(nrow(reference))) { reference[i, c("lower", "upper")] <- if (reference$sex[i] == "both") reference_limits(pbc[reference$param[i]]) else reference_limits(pbc[pbc$sex == reference$sex[i], reference$param[i]]) } knitr::kable(reference) pbc[c(6, 14),] pbc <- impute_df(pbc, reference) pbc[c(6, 14),] pbc <- zlog_df(pbc, reference) pbctbl <- head(pbc, n = 25) pbctbl[labs] <- lapply(labs, function(l) { kableExtra::cell_spec( sprintf("%.1f", unlist(pbctbl[l])), background = zcol(unlist(pbctbl[l])), align = "right" ) }) kableExtra::kable_classic( kableExtra::kbl(pbctbl, digits = 1, escape = FALSE), "basic" ) sessionInfo()
library(testthat) expect_plots_same_message <- "The TeX expression %s should %s render the same as the given expression. Compare: * TeX: %s * Expression: %s Note: TeX string evaluated to %s. " expect_renders_same <- function(object, expected_expression) { expected_expression <- as.expression(rlang::enexpr(expected_expression)) .expect_renders(object, expected_expression, negate=FALSE) } expect_renders_different <- function(object, expected_expression) { expected_expression <- as.expression(rlang::enexpr(expected_expression)) .expect_renders(object, expected_expression, negate=TRUE) } .expect_renders <- function(object, expected_expression, negate) { act <- testthat::quasi_label(rlang::enquo(object), arg="object") plot_md5 <- function(expr, prefix) { fn <- tempfile(pattern = prefix, fileext = ".png") png(fn, 640, 480, res=150) plot(expr, main=act$val) dev.off() tools::md5sum(fn) } if (is.character(act$val)) { result_expression <- TeX(act$val) } else{ result_expression <- act$val } act$md5_1 <- plot_md5(result_expression, "latex2exp_") act$md5_2 <- plot_md5(expected_expression, "expression_") message <- sprintf(expect_plots_same_message, act$val, if (!negate) "" else "not", names(act$md5_1), names(act$md5_2), result_expression) comparison_successful <- identical(unname(act$md5_1), unname(act$md5_2)) if (negate) { comparison_successful <- !comparison_successful } if (!comparison_successful && interactive()) { plot(expected_expression, main="Expected") plot(result_expression, main="Result") } expect(comparison_successful, message) invisible(act$val) }
CPP.AHP.Unif = function (n,list,x){ min = apply(simplify2array(list), 1:2, min) max = apply(simplify2array(list), 1:2, max) c=nrow(min) d = c^2 simu = vector("list", d) k=1 for (i in 1:c) { for (j in 1:c) { simu[[k]] <- runif(n,min[i,j],max[i,j]) k = k+1 }} un = unlist(simu) abc = matrix(un,c^2,n,byrow=TRUE) m = vector("list", n) weight = vector("list", n) CI = vector("list", n) for (a in 1:n) { m[[a]] = as.vector(abc[,a]) matrix = matrix(m[[a]],nrow = c,ncol = c, byrow = TRUE) for (i in 1:c) { weight[[a]][i] <- prod(matrix[i,])^(1/c) } temp_sum <- sum(weight[[a]]) weight[[a]] <- weight[[a]]/temp_sum lambda_max <- Re(eigen(matrix)$values[1]) CI[[a]] <- (lambda_max-c)/(c-1) } RI = c(0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49) min = which.min(CI) index = CI[[min]]/RI[c] w.min = weight[[min]] w = w.min y = t(as.matrix(apply(x,2,sum))) dadosn=x for (j in 1:ncol(x)) { for (i in 1:nrow(x)) { dadosn[i,j] = x[i,j]/y[j] }} dadosn = replace(dadosn, dadosn == 0, 0.0000000001) x = dadosn PMax = x mat = x sd = apply(x,2,sd) for (j in 1:ncol(x)) { for (i in 1:nrow(x)) { PMax[i,j] = (integrate(Vectorize(function(x) {prod(pnorm(x,mat[,j][-i],sd[j]))*dnorm(x,mat[,j][[i]],sd[j])}),-2,2)) $value }} PMax = PMax[,] saw = PMax%*%w rank = rank(-saw) SAW = cbind(saw, rank) colnames(SAW) = c("SAW","Rank") Result = list(Weights.AHP=w, PMax=PMax, CPP=SAW) Result }
compPowerRespDetection<-function(bkgLevel, respLevel, numCats, numCatsWithResp, normDistribution=FALSE, showProgress=FALSE, numTrialsPerCat=15, numBootIters=1000, numRuns=1000, alpha=0.05) { if (numCatsWithResp>numCats) { stop("number of categories with response must be less then number of categories") } responseLevels<-c(rep(respLevel,numCatsWithResp), rep(bkgLevel,numCats-numCatsWithResp)) numSig<-0 for (i in 1:numRuns) { if (showProgress) print(i) if (normDistribution) sim1<-simNormCatResp(bkgLevel,responseLevels,numTrialsPerCat) else sim1<-simCatResp(bkgLevel,responseLevels,numTrialsPerCat) sigLevel<-testCatEffectBoot(sim1,numBootIters,testFnc=sumSqCat,backMean=bkgLevel) if (sigLevel<alpha) numSig<-numSig+1 } numSig }
truncHist <- function(x, xmin=NULL, xmax=NULL, trim=0.025, main=NULL, xlab="x", ...) { if (!is.numeric(x)) stop("'x' must be numeric.") if (length(xmin)>1 | (!is.numeric(xmin) & !is.null(xmin))) stop("'xmin' must be scalar numeric or NULL.") if (length(xmax)>1 | (!is.numeric(xmax) & !is.null(xmax))) stop("'xmax' must be scalar numeric or NULL.") if (length(trim)!=1 | !is.numeric(trim)) stop("'trim' must be scalar numeric between 0 and 0.5.") if (trim<0 | trim>0.5) stop("'trim' must be scalar numeric between 0 and 0.5.") if ( (is.null(xmin)& !is.null(xmax)) || (!is.null(xmin)&is.null(xmax))) stop("'xmin' and 'xmax' must both be NULL or must both be nonNULL.") if ( !is.null(main) & !is.character(main) ) stop("'main' must be character or NULL.") if ( !is.character(xlab) ) stop("'xlab' must be character.") if (is.null(xmin)&is.null(xmax)) y <- sort(x)[(length(x)*trim): (length(x)*(1-trim))] if (!is.null(xmin)&!is.null(xmax)) { if (xmin >= xmax) stop("'xmin' cannot be as large as or larger than 'xmax'.") y <- x[ x>xmin & x<xmax ] } if ( is.null(main) ) { main = paste("Truncated Histogram of", xlab) if (trim<=0) main = paste("Histogram of", xlab) } hist(y, main=main, xlab=xlab, ...) }
mape <- function(y, yhat) { if(class(y) != 'integer' && class(y) != 'numeric') { stop('Invalid input: y should be numeric or integer vector representing a linear response') } else if(class(yhat) != 'integer' && class(yhat) != 'numeric') { stop('Invalid input: yhat should be numeric or integer vector of predicted linear response') } else if(length(y) != length(yhat)) { stop('Invalid input: vectors y and yhat should have the same length') } else { mape <- mean(abs((y - yhat)/y)) return(mape) } }
prepare.array = function(data, x, splines, m = 2, sparse = TRUE, ...) { arglist = list(...) arg_check_data(data) if (missing(x)) { evalargs = default.evalargs(data) } arg_check_data_x(data, x) if (missing(splines)) { splines = default.splines(x) } arg_check_x_splines(x, splines) d = length(x) if (!is.null(arglist$assembled)) { assembled = arglist$assembled } else { assembled = assemble(splines, x = x, m = m, sparse = sparse, ...) } A = lapply(assembled, getElement, name = "A") Ytilde = rh.seq(A, data, transpose = TRUE) structure(list( Ytilde = Ytilde, sum_ysq = sum(data^2), n = dim(data), s = lapply(assembled, getElement, name = "s"), B = lapply(assembled, getElement, name = "B"), Q = lapply(assembled, getElement, name = "Q"), A = lapply(assembled, getElement, name = "A"), U = lapply(assembled, getElement, name = "U"), loglambda = rep(0, d), x = x ), class = "prepared_array") }
`is.Stem.Model` <- function(x) inherits(x, "Stem.Model")
library(hexSticker) library(ggseg) library(ggplot2) devtools::load_all(".") atlas <- jhu pkgname <- "ggsegJHU" p <- ggseg(atlas = atlas, view = "lower axial", show.legend = FALSE, colour = "grey30", size = .2, mapping = aes(fill = region)) + scale_fill_brain2(palette = atlas$palette) + theme_void() + theme_transparent() sticker(p, package = pkgname, filename="man/figures/logo.svg", s_y = 1.2, s_x = 1, s_width = 1, s_height = 1, p_family = "mono", p_size = 5, p_color = "grey30", p_y = .6, h_fill = "white", h_color = "grey30" ) sticker(p, package = pkgname, filename="man/figures/logo.png", s_y = 1.2, s_x = 1, s_width = 1, s_height = 1, p_family = "mono", p_size = 5, p_color = "grey30", p_y = .6, h_fill = "white", h_color = "grey30" ) pkgdown::build_favicons()
fixDur <- function( data, fixTime, passes, AOI = NULL ) { if( is_tibble( data ) ) { data <- as.data.frame( data ) } fixDur.inputChecks( data = data, fixTime = fixTime, passes = passes, AOI = AOI ) if( !is.null( AOI ) ) { AOI <- data[ , AOI ] if( is.factor( AOI ) ) { AOI <- data.frame( AOI = levels( AOI ), stringsAsFactors = F ) } else AOI <- data.frame( AOI = unique( AOI ), stringsAsFactors = F ) } if( any( data[ , passes] == 0 ) ) data0 <- data[ data[ , passes] == 0, ] data <- data[ data[ , passes] != 0, ] if( !is.character( data[ , passes ] ) ) data[ , passes ] <- as.character( data[ , passes ] ) splitted_pass <- transpose( as.data.frame( strsplit( data[, passes], split = "_", fixed = T ) ) ) if( ncol( splitted_pass ) < 2 ) { result <- aggregate( list( duration = data[ , fixTime ] ), by = list( AOI = splitted_pass[ , 1 ]), FUN = sum ) if( exists( "data0" ) ) { result0 <- sum( data0[ , fixTime ] ) result <- rbind( data.frame( AOI = 0, duration = result0 ), result ) } }else { result <- aggregate( list( duration = data[ , fixTime ] ), by = list( AOI = splitted_pass[ , 2 ], passes = splitted_pass[ , 1 ]), FUN = sum ) result <- spread( result, key = "passes", value = "duration", fill = 0, drop = F ) if( exists( "data0" ) ) { result0 <- sum( data0[ , fixTime ] ) result <- rbind( data.frame( AOI = 0, FPF = result0, FPR = NA, SP = NA ), result ) } if( !is.null( AOI ) ) result <- merge( result, AOI, by = "AOI", all = T ) result[ is.na( result ) ] <- 0 if( any( splitted_pass [ , 1 ] == "FPF" ) ) { names( result )[ 2:4 ] <- c( "FirstPassForward", "FirstPassRereading", "SecondPass" ) }else names( result )[ 2:3 ] <- c( "FirstPass", "SecondPass" ) } return( as.data.frame( result ) ) } fixDur.inputChecks <- function( data, fixTime, passes, AOI ) { if( !is.data.frame( data ) ) stop( "data should be a data frame" ) if( length( fixTime ) > 1 ) stop( paste0("fixTime should be a single number or ", "character, indicating the fixation time ", "column" ) ) if( is.character( fixTime ) & !( fixTime %in% colnames( data ) ) ) stop( "fixTime is not a column of data" ) if( length( passes ) > 1 ) stop( paste0("passes should be a single number or ", "character, indicating the coded passes ", "column" ) ) if( is.character( passes ) & !( passes %in% colnames( data ) ) ) stop( "passes is not a column of data" ) if( !is.null( AOI ) & is.character( AOI ) & length( AOI ) == 1 ) { if( !( AOI %in% colnames( data ) ) ) stop( "the value provide to AOI is not a column name of data" ) } }
if(getRversion() >= '2.15.1') utils::globalVariables(c('scoring.fun', 'testChar')) TestScorerGUI <- function() { catalog <- set.tests.directory() courrier10 <- tkfont.create(family="courier", size=10) arial8 <- tkfont.create(family="arial", size=8) present.test <- new.env(parent = emptyenv()) subject <- new.env(parent = emptyenv()) top <- tktoplevel() tkwm.title(top, 'TestScorer 1.7.2') tkwm.resizable(top, FALSE, FALSE) testFrame <- tkframe(top, relief="groove",borderwidth=2) idFrame <- tkframe(top, relief="groove",borderwidth=2) respFrame <- tkframe(top, relief="groove",borderwidth=2) tkgrid.configure(testFrame, idFrame, respFrame) number.of.tests <- length(catalog) tests <- character(0) for (i in 1:number.of.tests) tests <- c(tests, catalog[[i]][[1]]) which.testFrame <- tkframe(testFrame, relief="groove", borderwidth=2) scr <- tkscrollbar(which.testFrame, repeatinterval=5, command=function(...)tkyview(test.selBox,...)) test.selBox <- tklistbox(which.testFrame, height=6, width='31', selectmode='single', yscrollcommand=function(...)tkset(scr,...), background='white', exportselection=F) for (i in (1:number.of.tests)) tkinsert(test.selBox,'end',tests[i]) tkselection.set(test.selBox,0) tkgrid.configure(which.testFrame, sticky='nw') tkgrid(tklabel(which.testFrame, text='Which test would you like to score?'), sticky='nw') tkgrid(test.selBox, scr, sticky='nw') tkgrid.configure(scr, rowspan=3, sticky='nse') on.nameFile <- function() { choice.top <- tktoplevel() tkwm.deiconify(choice.top) tkwm.resizable(choice.top, FALSE, FALSE) tkgrab.set(choice.top) tktitle(choice.top) <- 'Saving scores' tkgrid(tklabel(choice.top, text=' ')) choiceFrame <- tkframe(choice.top, relief="groove", borderwidth=2) tkgrid(choiceFrame) rb.dont <- tkradiobutton(choice.top) rb.new <- tkradiobutton(choice.top) rb.exist <- tkradiobutton(choice.top) rbChoice <- tclVar("dont") tkconfigure(rb.dont, variable=rbChoice ,value="dont") tkconfigure(rb.new, variable=rbChoice ,value="new") tkconfigure(rb.exist, variable=rbChoice, value="exist") tkgrid(tklabel(choiceFrame, text="Save to:"), stick='w') tkgrid(tklabel(choiceFrame, text=" Don't save"), rb.dont, sticky='w') tkgrid(tklabel(choiceFrame, text=" An existing file"), rb.exist, sticky='w') tkgrid(tklabel(choiceFrame, text=" A new file"), rb.new, sticky='w') tkgrid(tklabel(choice.top, text=' ')) donechoiceVar <- tclVar(0) OkDoneChoice.but <- tkbutton(choice.top, text=' OK ', command=function() tclvalue(donechoiceVar) <- 1) tkgrid(OkDoneChoice.but) tkgrid(tklabel(choice.top, text=paste('Close this window to cancel the action.', 'Option will be set to "Don\'t save".', sep='\n'))) tkbind(choice.top, '<Destroy>', function() tclvalue(donechoiceVar) <- 3) tkfocus(choice.top) tkwait.variable(donechoiceVar) doneChoice <- as.integer(tclvalue(donechoiceVar)) tkgrab.release(choice.top) tkdestroy(choice.top) nameFile='' if (doneChoice==1) { if (tclvalue(rbChoice)=='dont') { tclvalue(nameFileVar) <- "Don't save" tclvalue(write.itemsVar) <- 'Yes' } else if (tclvalue(rbChoice)=='new') { msg <- paste("First choose a directory.", "Then a name for the file will be asked.", "", "Note: It is not save to mix data with scoring scripts", " in the same directory.", sep="\n") tkmessageBox(message=msg) name.dir <- tk_choose.dir() if (!is.na(name.dir)) { a.file <- tktoplevel() tkwm.deiconify(a.file) tkwm.resizable(a.file, FALSE, FALSE) tkgrab.set(a.file) tktitle(a.file) <- 'File' tkgrid(tklabel(a.file, text='')) nameFrame <- tkframe(a.file, relief="groove", borderwidth=2) tkgrid(nameFrame) nameVar <- tclVar('') nameEntryWidget <- tkentry(nameFrame, width = 20, textvariable = nameVar) tkgrid(tklabel(nameFrame, text = 'Name for the file:'), nameEntryWidget) tkgrid(tklabel(a.file, text="DON'T MISS THE EXTENSION!")) tkgrid(tklabel(a.file, text='')) tkfocus(nameEntryWidget) donechoiceVar <- tclVar(0) OkDoneChoice.but <- tkbutton(a.file, text=' OK ', command=function() tclvalue(donechoiceVar) <- 1) tkgrid(OkDoneChoice.but) tkgrid(tklabel(a.file, text='Close this window to cancel the action.')) tkbind(a.file, '<Destroy>', function() tclvalue(donechoiceVar) <- 3) tkfocus(a.file) tkwait.variable(donechoiceVar) doneChoice <- as.integer(tclvalue(donechoiceVar)) new.file <- tclvalue(nameVar) tkgrab.release(a.file) tkdestroy(a.file) } else new.file <- '' if (new.file!='') { nameFile <- paste(name.dir, '/', new.file, sep='', collapse='') the.file.exists <- file.exists(nameFile) if (the.file.exists) { msg <- paste('File already exists.', 'New data will be appended.', sep='\n') tkmessageBox(message=msg, icon='warning', type='ok') } } else nameFile <- '' } else if (tclvalue(rbChoice)=='exist') { nameFile <- tk_choose.files(multi=FALSE) if (length(nameFile)==0) nameFile <- '' } } if (nameFile=='') { tclvalue(nameFileVar) <- "Don't save" tclvalue(write.itemsVar) <- 'Yes' tkconfigure(showBut, text=' Show results ') tkconfigure(writeBut, foreground='gray50') tkconfigure(YesButton, state='disabled') tkconfigure(NoButton, state='disabled') msg <- "Choosing a file has been canceled. \nOption is set to \"Don't save\"." tkmessageBox(message=msg, icon='warning', type='ok') } else if (grepl('TST_', nameFile)) { msg <- paste('Names begining with the string "TST_" are not allowed.', 'Choose another name.', sep='\n') tkmessageBox(message=msg, icon='error', type='ok') tclvalue(nameFileVar) <- "Don't save" tclvalue(write.itemsVar) <- 'Yes' tkconfigure(showBut, text=' Show results ') tkconfigure(writeBut, foreground='gray50') tkconfigure(YesButton, state='disabled') tkconfigure(NoButton, state='disabled') } else if (!file.exists(nameFile)) { tclvalue(nameFileVar) <- nameFile tkconfigure(showBut, text='Show & write results') tkconfigure(writeBut, foreground='black') tkconfigure(YesButton, state='normal') tkconfigure(NoButton, state='normal') } else { options(warn = -1) disk.file <- read.csv2(nameFile, nrows=1) options(warn = 0) disk.file.names <- names(disk.file) names.needed <- c('id', 'test', 'age', 'sex', 'date', 'obs') if(!all(names.needed %in% disk.file.names)) { msg <- paste("The file ", nameFile, " has not a valid structure.", "\nChoose or create an other file.", sep="") tkmessageBox(message=msg, icon='error', type='ok') tclvalue(nameFileVar) <- "Don't save" tclvalue(write.itemsVar) <- 'Yes' tkconfigure(showBut, text=' Show results ') tkconfigure(writeBut, foreground='gray50') tkconfigure(YesButton, state='disabled') tkconfigure(NoButton, state='disabled') } else { present.test <- sub('^TST_', '', present.test[['test']]) if(disk.file[1, 2] != present.test) { msg <- paste("The file ", nameFile, " is for an other test (", disk.file[1, 2], ").", "\nChoose or create an other file.", sep="") tkmessageBox(message=msg, icon='error', type='ok') tclvalue(nameFileVar) <- "Don't save" tclvalue(write.itemsVar) <- 'Yes' tkconfigure(showBut, text=' Show results ') tkconfigure(writeBut, foreground='gray50') tkconfigure(YesButton, state='disabled') tkconfigure(NoButton, state='disabled') } else { tclvalue(nameFileVar) <- nameFile tkconfigure(showBut, text='Show & write results') tkconfigure(writeBut, foreground='black') tkconfigure(YesButton, state='normal') tkconfigure(NoButton, state='normal') } } } } where.writeFrame <- tkframe(testFrame, relief="groove", borderwidth=2) fileLbl <- tklabel(where.writeFrame, text='Where would you like to save scores in tabular format? ') tkgrid(where.writeFrame, sticky='w') tkgrid(fileLbl, sticky='w') nameFileVar <- tclVar("Don't save") nameFileEntry <- tklabel(where.writeFrame, text=tclvalue(nameFileVar), width=70) fileNameBut <- tkbutton(where.writeFrame, text='Change\noption', command=on.nameFile) tkconfigure(nameFileEntry, textvariable=nameFileVar, bg='lightgrey', relief='groove', borderwidth=2) tkgrid(nameFileEntry, fileNameBut, sticky='ew') write.itemsFrame<- tkframe(where.writeFrame) write.itemsVar <- tclVar('Yes') YesButton <- tkradiobutton(write.itemsFrame, variable=write.itemsVar, value='Yes') NoButton <- tkradiobutton(write.itemsFrame, variable=write.itemsVar, value='No') tkconfigure(YesButton, state='disabled') tkconfigure(NoButton, state='disabled') tkgrid(write.itemsFrame, sticky='w') tkgrid.configure(tklabel(write.itemsFrame, text='Would you like to save also the items?'), tklabel(write.itemsFrame, text='Yes'), YesButton, tklabel(write.itemsFrame, text='No'), NoButton, sticky='w') testCharLbl <- tklabel(testFrame, text='Test information') testCharEntry <- tktext(testFrame, width=71, height=7, bg='lightgrey', font=arial8) tkgrid(testCharLbl, sticky='w') tkgrid(testCharEntry, sticky='w') idVar <- tclVar('') idEntry <- tkentry(idFrame, width='30', textvariable=idVar) ageVar <- tclVar('') ageEntry <- tkentry(idFrame, width='2', textvariable=ageVar) sexVar <- tclVar('Male') sexFrame <- tkframe(idFrame, relief="groove", borderwidth=2) maleButton <- tkradiobutton(sexFrame, variable=sexVar, value='Male') femaleButton <- tkradiobutton(sexFrame, variable=sexVar, value='Female') dateVar <- tclVar('') dateEntry <- tkentry(idFrame, width='10', textvariable=dateVar) commVar <- tclVar('') commEntry <- tkentry(idFrame, width='30', textvariable=commVar) tkgrid.configure(idFrame, sticky='nw') tkgrid(tklabel(idFrame, text='Identification'), sticky='nw') tkgrid(idEntry, sticky='nw') tkgrid(tklabel(idFrame, text='Age'), sticky='nw') tkgrid(ageEntry, sticky='nw') tkgrid(sexFrame, sticky='nw') tkgrid.configure(tklabel(sexFrame, text='Male'), maleButton, tklabel(sexFrame, text='Female'), femaleButton) tkgrid(tklabel(idFrame, text='Date'), sticky='nw') tkgrid(dateEntry, sticky='nw') tkgrid(tklabel(idFrame, text='Comment'), sticky='nw') tkgrid(commEntry, sticky='nw') entryFrame <- tkframe(respFrame, relief="groove", borderwidth=2) tkgrid(tklabel(entryFrame, text="Entry items window"), sticky='nw') item.numVar <- tclVar('Item to enter: 1 -->') item.numEntry <- tklabel(entryFrame, text=tclvalue(item.numVar), width=20) itemVar <- tclVar('') itemEntry <- tkentry(entryFrame, width='1', textvariable=idVar, font=courrier10 ) tkconfigure(item.numEntry, textvariable=item.numVar, fg='blue') tkconfigure(itemEntry, textvariable=itemVar) tkgrid.configure(respFrame, sticky='nw') tkgrid(item.numEntry, itemEntry) tkgrid(entryFrame, sticky='ew') itemsFrame <- tkframe(respFrame) items <- tktext(itemsFrame, bg='lightgrey', font=courrier10, height=10, width='10') tkconfigure(items, state='disabled') itemsText <- tktext(itemsFrame, bg='lightgrey', font=courrier10, height=10, width='7') tkinsert(itemsText, 'end', paste(seq(1, 91, 10), '-', seq(10, 100, 10), '\n', sep='', collapse='')) tkconfigure(itemsText, state='disabled') tkgrid(tklabel(itemsFrame, text='1234567890', font=courrier10)) tkgrid(items, itemsText) tkgrid(itemsFrame) initialize.test <- function(num.order) { test <- paste('TST_', catalog[[num.order]][[1]], sep='') assign('test', test, envir=present.test) total.items <- catalog[[num.order]][[4]] assign('total.items', total.items, envir=present.test) valid.characters <- c(catalog[[num.order]][[5]], catalog[[num.order]][[6]], 'space') assign('valid.characters', valid.characters, envir=present.test) items.string <- paste(c(rep(' ', present.test[['total.items']]), rep('=', (present.test[['total.items']] %/% 100 +1)*100 - present.test[['total.items']])), collapse='') assign('items.string', items.string, envir=present.test) next.item <- 1 assign('next.item', next.item, envir=present.test) tkconfigure(testCharEntry, stat='normal') tkdelete(testCharEntry, '0.0', 'end') tkinsert(testCharEntry,"end","Test name: ") tkinsert(testCharEntry,'end', paste(catalog[[num.order]][[2]])) tkinsert(testCharEntry,"end","\nAuthor: ") tkinsert(testCharEntry,'end', paste(catalog[[num.order]][[3]])) tkinsert(testCharEntry,"end","\nNumber of items: ") tkinsert(testCharEntry,'end', paste(catalog[[num.order]][[4]])) tkinsert(testCharEntry,"end","\nValid answers: ") tkinsert(testCharEntry,'end', paste(catalog[[num.order]][[5]])) tkinsert(testCharEntry,'end','\nMissings: ') if (length(catalog[[num.order]][[6]])==0) tkinsert(testCharEntry,'end', 'space') else tkinsert(testCharEntry,'end', paste(catalog[[num.order]][[6]], '& space')) tkinsert(testCharEntry,'end','\nComment: ') tkinsert(testCharEntry,'end', paste(catalog[[num.order]][[7]])) tkconfigure(testCharEntry, state='disabled') tkconfigure(items, state='normal') tkdelete(items, '0.0', 'end') tkinsert(items, '0.0', present.test[['items.string']]) tkconfigure(items, state='disabled') } on.item.numEntry <- function(K) { if (is.element(K, c(present.test[['valid.characters']], 'Up', 'Down', 'Left', 'Right', 'Num_Lock'))) { if (K=='Up') if (present.test[['next.item']] < 11) answer.out() else present.test[['next.item']] <- present.test[['next.item']] - 10 else if (K=='Down') if (present.test[['next.item']] > present.test[['total.items']]-10) answer.out() else present.test[['next.item']] <- present.test[['next.item']] + 10 else if (K=='Left') if (present.test[['next.item']] < 2) answer.out() else present.test[['next.item']] <- present.test[['next.item']] - 1 else if (K=='Right') if (present.test[['next.item']] > present.test[['total.items']]) answer.out() else present.test[['next.item']] <- present.test[['next.item']] + 1 else if (K=='Num_Lock') {} else if (present.test[['next.item']] > present.test[['total.items']]) answer.out() else { present.test[['next.item']] <- present.test[['next.item']] + 1 tclvalue(item.numVar) <- present.test[['next.item']] if (K=='space') item.value <- ' ' else item.value <- K present.test[['items.string']] <- paste(substr(present.test[['items.string']], 1, present.test[['next.item']]-2), item.value, substr(present.test[['items.string']], present.test[['next.item']], nchar(present.test[['items.string']])), sep='') } } else invalid.answer(K) items.string.mod <- paste(substr(present.test[['items.string']], 1, present.test[['next.item']] - 1), '*', substr(present.test[['items.string']], present.test[['next.item']] + 1, nchar(present.test[['items.string']])), sep='') hundred <- (present.test[['next.item']]-1) %/% 100 tkconfigure(itemsText, state='normal') tkdelete(itemsText, '0.0', 'end') tkinsert(itemsText, 'end', paste(seq(hundred*100+1, hundred*100+91, 10), '-', seq(hundred*100+10, hundred*100+100, 10), '\n', sep='', collapse='')) tkconfigure(itemsText, state='disabled') items.string.mod <- substring(items.string.mod, hundred * 100 + 1, (hundred + 1) * 100) tkconfigure(items, state='normal') tkdelete(items, '0.0', 'end') tkinsert(items, '0.0', items.string.mod) tkconfigure(items, state='disabled') tkdelete(itemEntry, '0', 'end') tkinsert(itemEntry, '0', substring(present.test[['items.string']], present.test[['next.item']], present.test[['next.item']])) if (present.test[['next.item']] == present.test[['total.items']]+1) { alarm() tclvalue(item.numVar) <- 'END OF TEST' } else tclvalue(item.numVar) <- paste('Item to enter: ', present.test[['next.item']], '-->') } answer.out <- function(K) { msg <- paste('You tried to go out of the range of items.', '\n"Test information" shows the number of items of this test.', sep='\n') tkmessageBox(message=msg, icon='error') tkfocus(itemEntry) } invalid.answer <- function(K) { msg <- paste('Answer "', K, '" is invalid.', '\n\nSee "Test information" window for valid answers.', sep='') tkmessageBox(message=msg, icon='error') tkfocus(itemEntry) } on.show.and.record <- function(){ results <- score.results() show.results(results[[1]], results[[2]]) if (tclvalue(nameFileVar) != "Don't save") write.results(results[[3]], results[[4]]) } on.write <- function(){ results <- score.results() write.results(results[[3]], results[[4]]) } score.results <- function() { assign('id', tclvalue(idVar), envir=subject) assign('age', tclvalue(ageVar), envir=subject) assign('sex', tclvalue(sexVar), envir=subject) assign('date.test', tclvalue(dateVar), envir=subject) assign('comm.sbj', tclvalue(commVar), envir=subject) answers <- character(present.test[['total.items']]) for (i in 1:present.test[['total.items']]) answers[i] <- substring(present.test[['items.string']], i, i) eval(parse(text=paste(text="source('", present.test[['test']], ".r')", sep=""))) results <- scoring.fun(answers, subject[['sex']], subject[['age']], subject[['id']], subject[['date.test']], subject[['comm.sbj']]) results.lst <- results$results.lst results.df <- results$results.df results.scores <- results$results.scores list(results.lst=results.lst, results.df=results.df, results.scores=results.scores, answers=answers) } show.results <- function(results.lst, results.df){ options(width=100) cat('\n\n') cat('----------------------', sub('^TST_', '', present.test[['test']]), '-----------------------\n') cat('Subject:', subject[['id']], '\n') cat('Sex:', subject[['sex']], '\n') cat('Age:', subject[['age']], '\n') cat('Date:', subject[['date.test']], '\n') cat('Comment:', subject[['comm.sbj']], '\n\n') for (i in seq_along(results.lst)) cat(results.lst[[i]], '\n') cat('\n') print(results.df, right=FALSE, row.names=FALSE, na.print='-') } write.results <- function(results.scores, answers){ if (tclvalue(nameFileVar) != "Don't save") { the.file.exists <- file.exists(tclvalue(nameFileVar)) options(warn=-1) case <- data.frame(id=subject[['id']], test=sub('^TST_', '', present.test[['test']]), age=as.numeric(subject[['age']]), sex=subject[['sex']], date=subject[['date.test']], obs=subject[['comm.sbj']]) options(warn=0) if (is.data.frame(results.scores)) case <- cbind(case, results.scores) else case <- cbind(case, t(results.scores)) if (tclvalue(write.itemsVar)=='Yes') { if (the.file.exists) { if ((length(results.scores)+6)==length(read.csv2(tclvalue(nameFileVar), header = TRUE, nrows = 1))) { msg <- paste("This file doesn't accept items.", "Items have not been saved, but scales yes.", "To save items use an other (existing or new created) file,", "with the save items option checked.", sep="\n") tkmessageBox(message=msg, icon='warning') tclvalue(write.itemsVar) <- 'No' } else case <- cbind(case, i=t(as.numeric(answers))) } else case <- cbind(case, i=t(as.numeric(answers))) } if (!the.file.exists) { write.table(case, tclvalue(nameFileVar), row.names=F, sep=';', na='', quote=TRUE) } else { write.table(case, tclvalue(nameFileVar), append=TRUE, row.names=F, col.names=F, sep=';', na='', quote=TRUE) } rm(case, inherits=TRUE) msg <- 'Test scores has been saved.' tkmessageBox(message=msg, icon='info') } else {msg <- paste('First choose a file where to write the resuts.', 'Use the "Change option" button.', sep='\n') tkmessageBox(message=msg, icon='error')} } on.clean.all <- function() { tkdelete(idEntry, 0, 'end') tkdelete(ageEntry, 0, 'end') tkdelete(dateEntry, 0, 'end') tkdelete(commEntry, 0, 'end') tkdelete(itemEntry, 0, 'end') tclvalue(sexVar) <- 'Male' on.clean.test() } on.new.test <- function() { if (tclvalue(nameFileVar)!="Don't save") { tclvalue(nameFileVar) <- "Don't save" tclvalue(write.itemsVar) <- 'Yes' tkconfigure(showBut, text=' Show results ') tkconfigure(writeBut, foreground='gray50') tkconfigure(YesButton, state='disabled') tkconfigure(NoButton, state='disabled') msg <- paste("The file for saving scores is no longer valid for the new test.", "Saving results has been reseted to \"Don't save\".", "Select an other file if appropiate.", sep='\n') tkmessageBox(message=msg, icon='warning') } on.clean.test() } on.clean.test <- function() { tkdelete(itemEntry, 0, 'end') initialize.test(as.numeric(tkcurselection(test.selBox))+1) tclvalue(item.numVar) <- 'Item to enter: 1 -->' tkconfigure(itemsText, state='normal') tkdelete(itemsText, '0.0', 'end') tkinsert(itemsText, 'end', paste(seq(1, 91, 10), '-', seq(10, 100, 10), '\n', sep='', collapse='')) tkconfigure(itemsText, state='disabled') tkgrid(items, itemsText) } on.exit <- function() { msg <- paste(' -------------------------------------------------------', ' | To exit the R session close the window or type: q() |', ' | |', ' | TestScorer do not use the workspace image, so |', ' | you can safely answer "No" to the next question. |', ' -------------------------------------------------------', sep='\n') message(msg) tkdestroy(top) } on.help <- function() { modalDialog <- function() { dlg <- tktoplevel() tkwm.title(dlg, 'Help') tkwm.resizable(dlg, FALSE, FALSE) tkwm.deiconify(dlg) tkgrab.set(dlg) tkfocus(dlg) scrBar <- tkscrollbar(dlg, repeatinterval=5, command=function(...)tkyview(helpText,...)) helpText <- tktext(dlg, height=30, width='70', font=courrier10, yscrollcommand=function(...)tkset(scrBar,...)) txt <- readLines('Help.txt', n=-1) tkinsert(helpText, 'end', paste(txt, '\n', sep='', collapse='')) tkconfigure(helpText, state='disabled') onClose <- function() { tkgrab.release(dlg) tkdestroy(dlg) tkfocus(top) } Close.but <-tkbutton(dlg, text=" Close ",command=onClose) tkgrid(helpText, scrBar, sticky='ns') tkgrid(Close.but) tkfocus(dlg) tkbind(dlg, "<Destroy>", function() {tkgrab.release(dlg);tkfocus(top)}) tkwait.window(dlg) } modalDialog() } on.manager <- function() { manager.top <- tktoplevel() tkwm.deiconify(manager.top) tkwm.resizable(manager.top, FALSE, FALSE) tkgrab.set(manager.top) tktitle(manager.top) <- 'Test Manager' tkgrid(tklabel(manager.top, text=' ')) managerFrame <- tkframe(manager.top, relief="groove",borderwidth=2) tkgrid(managerFrame) rb.add <- tkradiobutton(managerFrame) rb.del <- tkradiobutton(managerFrame) rbValue <- tclVar("Add") tkconfigure(rb.add, variable=rbValue ,value="Add") tkconfigure(rb.del, variable=rbValue, value="Delete") tkgrid(tklabel(managerFrame, text="Make a choice:"), stick='w') tkgrid(tklabel(managerFrame, text=" Add a new test "), rb.add) tkgrid(tklabel(managerFrame, text=" Delete an existing test"), rb.del) tkgrid(tklabel(manager.top, text=' ')) doneManager <- tclVar(0) OkDoneManager.but <- tkbutton(manager.top, text=' OK ', command=function() tclvalue(doneManager) <- 1) tkgrid(OkDoneManager.but) tkgrid(tklabel(manager.top, text='Close this window to cancel the action.')) tkbind(manager.top, '<Destroy>', function() tclvalue(doneManager) <- 3) tkfocus(manager.top) tkwait.variable(doneManager) doneVal <- as.integer(tclvalue(doneManager)) tkgrab.release(manager.top) tkdestroy(manager.top) if (doneVal==1) { tkdestroy(top) if (tclvalue(rbValue)=='Add') add.new.test() if (tclvalue(rbValue)=='Delete') delete.test() } } buttFrame <- tkframe(top) showBut <- tkbutton(buttFrame, text=" Show results ", command=on.show.and.record) writeBut <- tkbutton(buttFrame, text=" Only save ", foreground='gray50', command=on.write) cleanTestBut <- tkbutton(buttFrame, text=" Clean items ", command=on.clean.test) cleanAllBut <- tkbutton(buttFrame, text=" Clean all ", command=on.clean.all) exitBut <- tkbutton(buttFrame, text="Exit TestScorer", command=on.exit) helpBut <- tkbutton(buttFrame, text=" Help ", command=on.help) managerBut <- tkbutton(buttFrame, text="Test Manager", command=on.manager) tkgrid(buttFrame, columnspan=3) tkgrid(showBut, writeBut, cleanTestBut, cleanAllBut, managerBut, helpBut, exitBut) notabeneFrame <- tkframe(top, relief="groove", borderwidth=2) tkgrid(notabeneFrame, columnspan=3) tkgrid(tklabel(notabeneFrame, text='Gray windows are non-editable.')) tkgrid(tklabel(notabeneFrame, text='To introduce the items, put the cursor inside the white box in "Entry items window". Then enter the answers using numerical keys.')) tkgrid(tklabel(notabeneFrame, text='You can use the arrow keys to skip between items. Do NOT use "backspace".')) tkgrid(tklabel(notabeneFrame, text='Use the R console menu option "File" to print or save the results.')) tkgrid(tklabel(notabeneFrame, text='Click help for more detailed instructions.')) tkbind(itemEntry, "<KeyRelease>", on.item.numEntry) tkbind(test.selBox, "<ButtonRelease-1>", on.new.test) initialize.test(1) on.new.test() tkfocus(top) } set.tests.directory <- function() { content <- dir() existing.tests <- content[grep('^TST_.+\\.r$', content)] if (length(existing.tests)==0) { choice.dir.top <- tktoplevel() tkwm.deiconify(choice.dir.top) tkwm.resizable(choice.dir.top, FALSE, FALSE) tkgrab.set(choice.dir.top) tktitle(choice.dir.top) <- 'Choose a directory' tkgrid(tklabel(choice.dir.top, text='')) tkgrid(tklabel(choice.dir.top, text='You have to choose or create a directory for working with TestScorer.'), sticky='w') tkgrid(tklabel(choice.dir.top, text='')) tkgrid(tklabel(choice.dir.top, text='If you create a new directory, six files will be copied to it:'), sticky='w') tkgrid(tklabel(choice.dir.top, text=' DASS.r: R script for scoring DASS scales'), sticky='w') tkgrid(tklabel(choice.dir.top, text=' MHLC.r: R script for scoring MHLC test'), sticky='w') tkgrid(tklabel(choice.dir.top, text=' RAAS.r: R script for scoring RAAS scales'), sticky='w') tkgrid(tklabel(choice.dir.top, text=' Help.txt: an ascii file with help instructions'), sticky='w') tkgrid(tklabel(choice.dir.top, text=' TestScorerHelp.pdf: PDF with further help'), sticky='w') tkgrid(tklabel(choice.dir.top, text=' .Profile: to open TestScorer when R is launched from this directory'), sticky='w') tkgrid(tklabel(choice.dir.top, text='')) choice.dirFrame <- tkframe(choice.dir.top, relief='groove', borderwidth=2) tkgrid(choice.dirFrame) rb.continue <- tkradiobutton(choice.dir.top) rb.stop <- tkradiobutton(choice.dir.top) rbdirChoiceVar <- tclVar('continue') tkconfigure(rb.continue, variable=rbdirChoiceVar, value='continue') tkconfigure(rb.stop, variable=rbdirChoiceVar, value='stop') tkgrid(tklabel(choice.dirFrame, text='Choose an option:'), sticky='w') tkgrid(tklabel(choice.dirFrame, text=' Select an existing directory or create a new one'), rb.continue, sticky='w') tkgrid(tklabel(choice.dirFrame, text=' Stop & exit TestScorer'), rb.stop, sticky='w') tkgrid(tklabel(choice.dir.top, text=' ')) doneChoiceDirVar <- tclVar(0) OkDoneChoiceDir.but <- tkbutton(choice.dir.top, text=' Ok ', command=function() tclvalue(doneChoiceDirVar) <- 1) tkgrid(OkDoneChoiceDir.but) tkbind(choice.dir.top, '<Destroy>', function() tclvalue(doneChoiceDirVar) <- 3) tkfocus(choice.dir.top) tkwait.variable(doneChoiceDirVar) doneChoiceDir <- tclvalue(doneChoiceDirVar) choiceDir <- tclvalue(rbdirChoiceVar) tkgrab.release(choice.dir.top) tkdestroy(choice.dir.top) if (doneChoiceDir=='1' && choiceDir=='continue') { set.dir <- 'stop TestScorer' working.dir <- tk_choose.dir() if (working.dir!='') { setwd(working.dir) content <- dir() if (length(grep('TST_.+\\.r$', content))==0) { file.copy(from=system.file('some.stuff/TST_DASS.r', package='TestScorer'), to=working.dir) file.copy(from=system.file('some.stuff/TST_MHLC.r', package='TestScorer'), to=working.dir) file.copy(from=system.file('some.stuff/TST_RAAS.r', package='TestScorer'), to=working.dir) file.copy(from=system.file('some.stuff/TST_IPIP50.r', package='TestScorer'), to=working.dir) file.copy(from=system.file('some.stuff/Help.txt', package='TestScorer'), to=working.dir) file.copy(from=system.file('doc/TestScorerHelp.pdf', package='TestScorer'), to=working.dir) cat(paste(' '\nsuppressPackageStartupMessages(require(TestScorer))', '\nTestScorerGUI()'), file='.Rprofile') if (.Platform$OS.type=='windows') { if (.Platform$r_arch=='i386') startR <- paste(R.home(), '/bin/i386/Rgui.exe', sep='') else startR <- paste(R.home(), '/bin/x64/Rgui.exe', sep='') cat(paste('start ""', startR, '--no-restore --quiet'), file='TestScorer.cmd') } } set.dir <- 'test has been copied' } } else set.dir <- 'stop TestScorer' } else set.dir <- 'tests already exist' if (set.dir!='stop TestScorer') { content <- dir() existing.tests <- content[grep('^TST_.+\\.r$', content)] if (length(existing.tests)>0) { catalog <- list() for (i in seq_along(existing.tests)) { source(existing.tests[i]) catalog <- c(catalog, list(testChar)) cat.length <- length(catalog) acronyms <- character() for (i in 1:cat.length) acronyms <- c(acronyms, catalog[[i]]$acronym) dupli <- acronyms[duplicated(acronyms)] if (length(dupli>0)) tkmessageBox(message=paste('Some test in catalog are duplicated:', paste(dupli, collapse=', '), '\n\nConsiderer revising the test files in the directory.', '\nProbably an acronym do not match the file name.'), icon='warning', type='ok') } } } else stop(paste('No directory has been choosen.', 'TestScorer has been stopped by the user.', sep='\n')) catalog } add.new.test <- function() { test.char <- new.env(parent = emptyenv()) assign('trans.is.numeric', 'yes', envir=test.char) scale.char <- new.env(parent = emptyenv()) assign('trans.is.numeric', 'yes', envir=scale.char) make.test.window <- function() { no.trans <- function() { assign('graphVal', tclVar('no'), envir=test.char) assign('equalVal', tclVar('no'), envir=test.char) assign('name.transVal', tclVar('Centil'), envir=test.char) tkconfigure(rb.graph.yes, variable=test.char[['graphVal']], state='disabled') tkconfigure(rb.graph.no, variable=test.char[['graphVal']], state='disabled') tkconfigure(rb.equal.yes, variable=test.char[['equalVal']], state='disabled') tkconfigure(rb.equal.no, variable=test.char[['equalVal']], state='disabled') tkconfigure(entry.name, textvariable=test.char[['name.transVal']], state='disabled') assign('n.age.groupsVal', tclVar('1'), envir=test.char) tkconfigure(entry.n.age.groups, textvariable=test.char[['n.age.groupsVal']], state='disabled') } other.trans <- function() { if (tclvalue(test.char[['prorrateVal']])=='yes' || tclvalue(test.char[['scoringVal']])=='mean') tkmessageBox(message='NB: Raw scores would be rounded before transformation.\n Considerer if rounding is appropiate.', icon='warning', type='ok') if (tclvalue(test.char[['graphVal']])=='yes') { assign('graphVal', tclVar('no'), envir=test.char) tkmessageBox(message='NB: No graph for non-T transformation, graph option set to "no".', icon='warning', type='ok') } tkconfigure(rb.graph.yes, variable=test.char[['graphVal']], state='disabled') tkconfigure(rb.graph.no, variable=test.char[['graphVal']], state='disabled') tkconfigure(rb.equal.yes, state='normal') tkconfigure(rb.equal.no, state='normal') assign('name.transVal', tclVar('Centil'), envir=test.char) tkconfigure(entry.name, textvariable=test.char[['name.transVal']], state='normal') assign('n.age.groupsVal', tclVar('1'), envir=test.char) tkconfigure(entry.n.age.groups, textvariable=test.char[['n.age.groupsVal']], state='normal') } Tmean.trans <- function() { tkconfigure(rb.equal.yes, state='normal') tkconfigure(rb.equal.no, state='normal') tkconfigure(rb.graph.yes, state='normal') tkconfigure(rb.graph.no, state='normal') assign('name.transVal', tclVar('Centil'), envir=test.char) tkconfigure(entry.name, textvariable=test.char[['name.transVal']], state='disabled') assign('n.age.groupsVal', tclVar('1'), envir=test.char) tkconfigure(entry.n.age.groups, textvariable=test.char[['n.age.groupsVal']], state='normal') } Ttable.trans <- function() { if (tclvalue(test.char[['prorrateVal']])=='yes' || tclvalue(test.char[['scoringVal']])=='mean') tkmessageBox(message=paste('NB: Raw scores would be rounded before transformation.', ' Considerer if rounding is appropiate.', sep='\n'), icon='warning', type='ok') tkconfigure(rb.equal.yes, state='normal') tkconfigure(rb.equal.no, state='normal') tkconfigure(rb.graph.yes, state='normal') tkconfigure(rb.graph.no, state='normal') assign('name.transVal', tclVar('Centil'), envir=test.char) tkconfigure(entry.name, textvariable=test.char[['name.transVal']], state='disabled') assign('n.age.groupsVal', tclVar('1'), envir=test.char) tkconfigure(entry.n.age.groups, textvariable=test.char[['n.age.groupsVal']], state='normal') } raw.is.sum <- function() { tkconfigure(rb.prorat.no, state='normal') tkconfigure(rb.prorat.yes, state='normal') } raw.is.mean <- function() { if(tclvalue(test.char[['prorrateVal']])=='yes') { assign('prorrateVal', tclVar('no'), envir=test.char) tkconfigure(rb.prorat.no, variable=test.char[['prorrateVal']], state='disabled') tkconfigure(rb.prorat.yes, variable=test.char[['prorrateVal']], state='disabled') tkmessageBox(message='Prorrate has been reseted to "no".', icon='warning', type='ok') } if(tclvalue(test.char[['transVal']])!='no') { assign('transVal', tclVar('no'), envir=test.char) tkconfigure(rb.trans.No, variable=test.char[['transVal']], state='normal') tkconfigure(rb.trans.Tmean, variable=test.char[['transVal']], state='normal') tkconfigure(rb.trans.Ttable, variable=test.char[['transVal']], state='normal') tkconfigure(rb.trans.Other, variable=test.char[['transVal']], state='normal') assign('graphVal', tclVar('no'), envir=test.char) tkconfigure(rb.graph.no, variable=test.char[['graphVal']], state='disabled') tkconfigure(rb.graph.yes, variable=test.char[['graphVal']], state='disabled') assign('equalVal', tclVar('no'), envir=test.char) tkconfigure(rb.equal.no, variable=test.char[['equalVal']], state='disabled') tkconfigure(rb.equal.yes, variable=test.char[['equalVal']], state='disabled') tkmessageBox(message='Transform has been reseted to "no".', icon='warning', type='ok') } } prorrate.yes <- function() { if(tclvalue(test.char[['transVal']])!='no') { assign('transVal', tclVar('no'), envir=test.char) tkconfigure(rb.trans.No, variable=test.char[['transVal']], state='normal') tkconfigure(rb.trans.Tmean, variable=test.char[['transVal']], state='normal') tkconfigure(rb.trans.Ttable, variable=test.char[['transVal']], state='normal') tkconfigure(rb.trans.Other, variable=test.char[['transVal']], state='normal') assign('graphVal', tclVar('no'), envir=test.char) tkconfigure(rb.graph.no, variable=test.char[['graphVal']], state='disabled') tkconfigure(rb.graph.yes, variable=test.char[['graphVal']], state='disabled') assign('equalVal', tclVar('no'), envir=test.char) tkconfigure(rb.equal.no, variable=test.char[['equalVal']], state='disabled') tkconfigure(rb.equal.yes, variable=test.char[['equalVal']], state='disabled') tkmessageBox(message='Transform has been reseted to "no".', icon='warning', type='ok') } } validate.test <- function() { is.OkTest <- 'yes' options(warn=-1) acronymTest <- tclvalue(test.char[['acronymTestVal']]) acronymTest <- sub(' +$', '', acronymTest) acronymTest <- sub('^ +', '', acronymTest) tmp <- grep('([[:alnum:]]|_)+$', acronymTest) if (length(tmp)==0) { is.OkTest <- 'no' msg <- paste('Acronym is not valid.', '\nOnly alphanumeric and the character "_" are allowed.', sep='\n') tkmessageBox(message=msg, icon="error", type="ok") } content <- dir() existing.tests <- content[grep('TST_.+\\.r$', content)] existing.tests <- gsub('TST_', '', existing.tests) existing.tests <- gsub('.r$', '', existing.tests) if(acronymTest %in% existing.tests) { is.OkTest <- 'no' tkmessageBox(message="This test already exists. Change the acronym or cancel.", icon="error", type="ok") } n.items <- as.numeric(tclvalue(test.char[['n.itemsVal']])) if (is.na(n.items) || length(grep('\\.', n.items)>0)) { is.OkTest <- 'no' tkmessageBox(message="Number of items is not valid.", icon="error", type="ok") } valid <- tclvalue(test.char[['validVal']]) valid <- as.numeric(unlist(strsplit(valid, ','))) if (length(valid) == 0 || any(is.na(valid)) || any(nchar(valid) > 1)) { is.OkTest <- 'no' tkmessageBox(message="Valid answers are not valid.", icon="error", type="ok") } miss <- tclvalue(test.char[['missVal']]) miss <- as.numeric(unlist(strsplit(miss, ','))) if (any(is.na(miss)) || any(nchar(valid) > 1)) { is.OkTest <- 'no' tkmessageBox(message="Missings are not valid.", icon="error", type="ok") } if (any(miss %in% valid)) { is.OkTest <- 'no' tkmessageBox(message="Don't include missing values into the valid values.", icon="error", type="ok") } reversed <- tclvalue(test.char[['reversedVal']]) reversed <- as.numeric(unlist(strsplit(reversed, ','))) if (any(is.na(reversed) | any(grep('\\.', reversed)))) { is.OkTest <- 'no' tkmessageBox(message="Reversed items are not valid.", icon="error", type="ok") } if (length(reversed)!=0 && max(reversed, na.rm=TRUE)>n.items) { is.OkTest <- 'no' tkmessageBox(message="Some reversed item is greather than de number of items of the test.", icon="error", type="ok") } n.scales <- as.numeric(tclvalue(test.char[['n.scalesVal']])) if (is.na(n.scales)) { is.OkTest <- 'no' tkmessageBox(message="Number of scales is not valid.", icon="error", type="ok") } n.age.groups <- as.numeric(tclvalue(test.char[['n.age.groupsVal']])) if (is.na(n.age.groups) || grepl('\\.', n.age.groups)) { is.OkTest <- 'no' tkmessageBox(message="Age-groups is not an integer.", icon="error", type="ok") } else if (n.age.groups == 0) { is.OkTest <- 'no' tkmessageBox(message="Age-groups should be at least 1.", icon="error", type="ok") } else if (n.age.groups > 1) { assign('n.age.groupsVal', tclVar('1'), envir=test.char) tkconfigure(entry.n.age.groups, textvariable=test.char[['n.age.groupsVal']], state='normal') tkmessageBox(message="Sorry, norms only implementet as yet for one group.", icon="error", type="ok") } options(warn=0) is.OkTest } OnOkTest <- function() { OkTest <- validate.test() if (OkTest=='yes') tclvalue(doneTest) <- 1 } top.test <- tktoplevel() tkwm.title(top.test, "Test characteristics") tkwm.resizable(top.test, FALSE, FALSE) frameAcronym <- tkframe(top.test) assign('acronymTestVal', tclVar(""), envir=test.char) entry.acronymTest <- tkentry(frameAcronym ,width="10", textvariable=test.char[['acronymTestVal']]) tkgrid(frameAcronym, sticky='w') tkgrid(tklabel(frameAcronym, text="Enter an acronym for the test"), entry.acronymTest, sticky='w') tkgrid(tklabel(top.test, text="Note: Use only letters, numbers and '_'. The first character must be a letter."), sticky='w') tkgrid(tklabel(top.test, text=' ')) frameName <- tkframe(top.test) assign('nameTestVal', tclVar(""), envir=test.char) entry.nameTest <- tkentry(frameName , width="40", textvariable=test.char[['nameTestVal']]) tkgrid(frameName, sticky='w') tkgrid(tklabel(frameName, text="Enter the name of the test (optional)"), entry.nameTest, sticky='w') tkgrid(tklabel(top.test, text=' ')) frameRef <- tkframe(top.test) assign('refVal', tclVar(""), envir=test.char) entry.ref <- tkentry(frameRef ,width="40", textvariable=test.char[['refVal']]) tkgrid(frameRef, sticky='w') tkgrid(tklabel(frameRef, text="Enter the reference of the test (optional)"), entry.ref, sticky='w') tkgrid(tklabel(top.test, text=' ')) frameComm <- tkframe(top.test) assign('commVal', tclVar(""), envir=test.char) entry.comm <- tkentry(frameComm ,width="40", textvariable=test.char[['commVal']]) tkgrid(frameComm, sticky='w') tkgrid(tklabel(frameComm, text="Comment (optional)"), entry.comm, sticky='w') tkgrid(tklabel(top.test, text=paste("Note: Any optional comment (e.g.: Use only for ages greater than 18).")), sticky='w') frame.rigth <- tkframe(top.test, relief="groove", borderwidth=2) frame.left <- tkframe(top.test, relief="groove", borderwidth=2) frame.rigth <- tkframe(top.test, relief="groove", borderwidth=2) tkgrid(frame.left, frame.rigth, sticky='nw') tkgrid(tklabel(frame.left, text=' ')) frameN.items <- tkframe(frame.left) assign('n.itemsVal', tclVar(""), envir=test.char) entry.n.items <- tkentry(frameN.items ,width="10", textvariable=test.char[['n.itemsVal']]) tkgrid(frameN.items, sticky='w') tkgrid(tklabel(frameN.items, text="Enter the number of items"), entry.n.items, sticky='w') tkgrid(tklabel(frame.left, text=' ')) frameValid <- tkframe(frame.left) assign('validVal', tclVar(""), envir=test.char) entry.valid <- tkentry(frameValid ,width="20", textvariable=test.char[['validVal']]) tkgrid(frameValid, sticky='w') tkgrid(tklabel(frameValid, text="Valid answers"), entry.valid, sticky='w') tkgrid(tklabel(frame.left, text=paste("Note: Can be any number.", "Do NOT include the missing values here", "(e.g.: 1,2,3).")), sticky='w') tkgrid(tklabel(frame.left, text="Use only letters separated by commas."), sticky='w') tkgrid(tklabel(frame.left, text=' ')) frameMiss <- tkframe(frame.left) assign('missVal', tclVar(""), envir=test.char) entry.miss <- tkentry(frameMiss ,width="10", textvariable=test.char[['missVal']]) tkgrid(frameMiss, sticky='w') tkgrid(tklabel(frameMiss, text="Missing answers"), entry.miss, sticky='w') tkgrid(tklabel(frame.left, text=paste("Note: Any numbers which represent a missing.", "'space' is automatically added as a missing character.")), sticky='w') tkgrid(tklabel(frame.left, text="Type only numbers separated by commas."), sticky='w') tkgrid(tklabel(frame.left, text=' ')) frameReversed <- tkframe(frame.left) assign('reversedVal', tclVar(""), envir=test.char) entry.reversed <- tkentry(frameReversed, width="60", textvariable=test.char[['reversedVal']]) tkgrid(frameReversed, sticky='w') tkgrid(tklabel(frameReversed, text="Reversed items"), entry.reversed, sticky='w') tkgrid(tklabel(frame.left, text=paste("Note: Left blank if none of the items should be reversed.", "Otherwise, use commas to separate the numbers.")), sticky='w') tkgrid(tklabel(frame.left, text=' ')) frameScoring <- tkframe(frame.left) rb.sum <- tkradiobutton(frameScoring) rb.mean <- tkradiobutton(frameScoring) rb.prorat.no <- tkradiobutton(frameScoring) rb.prorat.yes <- tkradiobutton(frameScoring) assign('scoringVal', tclVar("sum"), envir=test.char) tkconfigure(rb.sum, variable=test.char[['scoringVal']], value="sum", command=raw.is.sum) tkconfigure(rb.mean, variable=test.char[['scoringVal']], value="mean", command=raw.is.mean) rb.prorat.no <- tkradiobutton(frameScoring) rb.prorat.yes <- tkradiobutton(frameScoring) assign('prorrateVal', tclVar("no"), envir=test.char) tkconfigure(rb.prorat.no, variable=test.char[['prorrateVal']], value="no") tkconfigure(rb.prorat.yes, variable=test.char[['prorrateVal']], value="yes", command=prorrate.yes) tkgrid(frameScoring, sticky='w') tkgrid(tklabel(frameScoring, text="Scoring Procedure? "), tklabel(frameScoring, text="Mean"), rb.mean, tklabel(frameScoring, text="Add"),rb.sum, tklabel(frameScoring, text="If add, prorrate missings? "), tklabel(frameScoring, text="No"), rb.prorat.no, tklabel(frameScoring, text="Yes"),rb.prorat.yes, sticky='w') tkgrid(tklabel(frame.left, text=' ')) frameN.scales <- tkframe(frame.left) assign('n.scalesVal', tclVar(""), envir=test.char) entry.n.scales <- tkentry(frameN.scales ,width="2", textvariable=test.char[['n.scalesVal']]) tkgrid(frameN.scales, sticky='w') tkgrid(tklabel(frameN.scales, text="Enter the number of scales"), entry.n.scales, sticky='w') rb.trans.No <- tkradiobutton(frame.rigth) rb.trans.Tmean <- tkradiobutton(frame.rigth) rb.trans.Ttable <- tkradiobutton(frame.rigth) rb.trans.Other <- tkradiobutton(frame.rigth) rb.graph.yes <- tkradiobutton(frame.rigth) rb.graph.no <- tkradiobutton(frame.rigth) rb.equal.yes <- tkradiobutton(frame.rigth) rb.equal.no <- tkradiobutton(frame.rigth) assign('transVal', tclVar('no'), envir=test.char) assign('graphVal', tclVar('no'), envir=test.char) assign('equalVal', tclVar('no'), envir=test.char) assign('name.transVal', tclVar('Centil'), envir=test.char) assign('n.age.groupsVal', tclVar('1'), envir=test.char) entry.name <- tkentry(frame.rigth, width='5', textvariable=test.char[['name.transVal']], state='disabled') entry.n.age.groups <- tkentry(frame.rigth, width='1', textvariable=test.char[['n.age.groupsVal']], state='disabled') tkconfigure(rb.trans.No, variable=test.char[['transVal']], value="no", command=no.trans) tkconfigure(rb.trans.Tmean, variable=test.char[['transVal']], value="Tmean", command=Tmean.trans) tkconfigure(rb.trans.Ttable, variable=test.char[['transVal']], value="Ttable", command=Ttable.trans) tkconfigure(rb.trans.Other, variable=test.char[['transVal']], value="Other", command=other.trans) tkconfigure(rb.graph.yes, variable=test.char[['graphVal']], value="yes", state='disabled') tkconfigure(rb.graph.no, variable=test.char[['graphVal']], value="no", state='disabled') tkconfigure(rb.equal.yes, variable=test.char[['equalVal']], value="yes", state='disabled') tkconfigure(rb.equal.no, variable=test.char[['equalVal']], value="no", state='disabled') tkgrid(tklabel(frame.rigth, text="Choose one option for transforming raw scores:"), sticky='w') tkgrid(tklabel(frame.rigth, text=" 1. Do NOT transform"), rb.trans.No, sticky='w') tkgrid(tklabel(frame.rigth, text=" 2. T'scores using mean & sd"), rb.trans.Tmean, sticky='w') tkgrid(tklabel(frame.rigth, text=" 3. T'scores using a table"), rb.trans.Ttable, sticky='w') tkgrid(tklabel(frame.rigth, text=" 4. Other transformation using a table"), rb.trans.Other, sticky='w') tkgrid(tklabel(frame.rigth, text=" Choose a name, e.g.: 'Centil'"), entry.name, sticky='w') tkgrid(tklabel(frame.rigth, text=""), sticky='w') tkgrid(tklabel(frame.rigth, text=" Number of age-groups norms"), entry.n.age.groups, sticky='w') tkgrid(tklabel(frame.rigth, text=" Transformation is equal for both sexes?"), tklabel(frame.rigth, text='Yes'), rb.equal.yes, tklabel(frame.rigth, text='No'), rb.equal.no, sticky='w') tkgrid(tklabel(frame.rigth, text=" Add a pseudo-graph for T'scores?"), tklabel(frame.rigth, text='Yes'), rb.graph.yes, tklabel(frame.rigth, text='No'), rb.graph.no, sticky='w') doneTest <- tclVar(0) tkgrid(tklabel(top.test, text='')) OkTest.but <-tkbutton(top.test, text=" OK ", command=OnOkTest) tkgrid(OkTest.but, columnspan=2) tkgrid(tklabel(top.test, text='Close the window to cancel adding a new test.'), columnspan=2) tkbind(top.test, "<Destroy>", function() tclvalue(doneTest) <- 3) tkfocus(top.test) tkwait.variable(doneTest) if (tclvalue(doneTest)==1) { OkTest <- 'yes' acronymTest <- tclvalue(test.char[['acronymTestVal']]) acronymTest <- sub(' +$', '', acronymTest) acronymTest <- sub('^ +', '', acronymTest) n.items <- as.numeric(tclvalue(test.char[['n.itemsVal']])) valid <- tclvalue(test.char[['validVal']]) valid <- as.numeric(unlist(strsplit(valid, ','))) miss <- tclvalue(test.char[['missVal']]) miss <- as.numeric(unlist(strsplit(miss, ','))) reversed <- tclvalue(test.char[['reversedVal']]) reversed <- as.numeric(unlist(strsplit(reversed, ','))) n.scales <- as.numeric(tclvalue(test.char[['n.scalesVal']])) test.characteristics <- list(acronymTest <- acronymTest, nameTest <- tclvalue(test.char[['nameTestVal']]), ref <- tclvalue(test.char[['refVal']]), comm <- tclvalue(test.char[['commVal']]), n.items <- n.items, valid <- valid, miss <- miss, reversed <- reversed, scoring <- tclvalue(test.char[['scoringVal']]), prorrate <- tclvalue(test.char[['prorrateVal']]), n.scales <- n.scales, trans <- tclvalue(test.char[['transVal']]), equal <- tclvalue(test.char[['equalVal']]), graph <- tclvalue(test.char[['graphVal']]), name.trans <- tclvalue(test.char[['name.transVal']]), n.age.agroups <- tclvalue(test.char[['n.age.groupsVal']])) } else { OkTest <- 'no' test.characteristics <- as.list(rep('', 15)) } tkdestroy(top.test) list(OkTest=OkTest, test.characteristics=test.characteristics) } write.test.begining <- function(acronymTest, nameTest, ref, n.items, valid, miss, comm, reversed, trans, graph) { cat(paste(' acronymTest, 'scale scoring script'), file='tmp') cat(paste('\n Sys.Date()), file='tmp', append=TRUE) cat('\n cat(paste('\ntestChar <- list(acronym = "', acronymTest, '",', sep=''), file='tmp', append=TRUE) cat(paste('\n name = "', nameTest, '",', sep=''), file='tmp', append=TRUE) cat(paste('\n ref = "', ref, '",', sep=''), file='tmp', append=TRUE) cat(paste('\n n.items = ', n.items, ',', sep=''), file='tmp', append=TRUE) cat('\n valid = c(', file='tmp', append=TRUE) if (length(valid)>1) for (i in 1:(length(valid)-1)) cat(paste(valid[i], ', ', sep=''), file='tmp', append=TRUE) cat(paste(valid[length(valid)], '),', sep=''), file='tmp', append=TRUE) cat('\n miss = c(', file='tmp', append=TRUE) if (length(miss)>1) for (i in 1:(length(miss)-1)) cat(paste(miss[i], ', ', sep=''), file='tmp', append=TRUE) cat(paste(miss[length(miss)], '),', sep=''), file='tmp', append=TRUE) cat(paste('\n comm = "', comm, '")', sep=''), file='tmp', append=TRUE) cat('\n\nscoring.fun <- function(answers, sex, age, id, date.test, comm) {', file='tmp', append=TRUE) cat('\n cat('\n cat('\n answers <- as.numeric(answers) if (length(miss)!=0) { cat(paste('\n answers[answers %in% c(', miss, ')] <- NA sep=''), file='tmp', append=TRUE) } cat('\n blanks <- sum(is.na(answers)) cat(paste('\n pcnt.blanks <- round((blanks / ', n.items, ') * 100) sep=''), file='tmp', append=TRUE) if (sum(nchar(reversed))!=0) { cat('\n cat('\n reversed.items <- c(', file='tmp', append=TRUE) if (length(reversed)>1) for (i in 1:(length(reversed)-1)) cat(paste(reversed[i], ', ', sep=''), file='tmp', append=TRUE) cat(paste(reversed[length(reversed)], ')', sep=''), file='tmp', append=TRUE) max.answ <- max(valid) cat(paste('\n answers[reversed.items] <- (', max.answ, ' + 1) - answers[reversed.items]', sep=''), file='tmp', append=TRUE) } cat('\n results <- data.frame(NULL) if (trans=='Tmean') { cat('\n\n toT <- function(raw.score, mean, sd) { cat('\n T.score <- round(((raw.score - mean) / sd) * 10 + 50)' , file='tmp', append=TRUE) cat('\n T.score' , file='tmp', append=TRUE) cat('\n } } if (graph=='yes') { cat('\n\n makeGraph <- function(T.score) { cat('\n template <- "| : : | : | : | : : |"' , file='tmp', append=TRUE) cat('\n options(warn=-1)', file='tmp', append=TRUE) cat('\n T.score <- as.integer(T.score) cat('\n options(warn=0)', file='tmp', append=TRUE) cat('\n if (!is.na(T.score)) {', file='tmp', append=TRUE) cat('\n if (T.score < 0) T.score <- 0' , file='tmp', append=TRUE) cat('\n else if (T.score > 100) T.score <- 100' , file='tmp', append=TRUE) cat('\n position <- round((T.score / 2) + 1)' , file='tmp', append=TRUE) cat(paste('\n graph <- paste(substr(template, 1, position-1),', ' substr(template, position + 1, nchar(template)),', ' sep="o") sep='\n'), file='tmp', append=TRUE) cat('\n } else {' , file='tmp', append=TRUE) cat('\n graph <- "Not graphicable"', file='tmp', append=TRUE) cat('\n }', file='tmp', append=TRUE) cat('\n graph', file='tmp', append=TRUE) cat('\n } } } make.scale.window <- function(scale.num, n.items, valid, trans, equal, graph, name.trans) { ValidateScaleChar <- function() { is.OkScale='yes' options(warn=-1) acronymScale <- tclvalue(acronymScaleVal) acronymScale <- sub(' +$', '', acronymScale) acronymScale <- sub('^ +', '', acronymScale) tmp <- grep('^[[:alpha:]]([[:alnum:]]|_)*$', acronymScale) if (length(tmp)==0) { is.OkScale <- 'no' msg <- paste('Acronym is not valid.', '\nThe first character should be a letter', 'Only alphanumeric and the character "_" are allowed.', sep='\n') tkmessageBox(message=msg, icon="error", type="ok") } tmp <- tclvalue(itemsVal) items <- as.numeric(unlist(strsplit(tmp, ','))) if (length(items) == 0 || any(is.na(items)) || any(grep('\\.', items))) { is.OkScale <- 'no' tkconfigure(entry.items, state='normal') tkmessageBox(message="Items are not valid.", icon="error", type="ok") } if (max(items, na.rm=TRUE)>n.items) { is.OkScale <- 'no' tkconfigure(entry.items, state='normal') tkmessageBox(message="Some value is greather than the number of items of the test.", icon="error", type="ok") } if (trans=='no' || trans=='Tmean') assign('tableDone', 'no table is needed', envir=scale.char) if (trans=='Tmean') { if (equal=='yes') { mean.1 <- as.numeric(tclvalue(mean.1Val)) if(is.na(mean.1)) { is.OkScale <- 'no' tkmessageBox(message="Mean is not valid.", icon="error", type="ok") } sd.1 <- as.numeric(tclvalue(sd.1Val)) if(is.na(sd.1)) { is.OkScale <- 'no' tkmessageBox(message="SD is not valid.", icon="error", type="ok") } } else { mean.males <- as.numeric(tclvalue(mean.malesVal)) if(is.na(mean.malesVal)) { is.OkScale <- 'no' tkmessageBox(message="Mean for males is not valid.", icon="error", type="ok") } sd.males <- as.numeric(tclvalue(sd.malesVal)) if(is.na(sd.malesVal)) { is.OkScale <- 'no' tkmessageBox(message="SD for males is not valid.", icon="error", type="ok") } mean.females <- as.numeric(tclvalue(mean.femalesVal)) if(is.na(mean.femalesVal)) { is.OkScale <- 'no' tkmessageBox(message="Mean for females is not valid.", icon="error", type="ok") } sd.females <- as.numeric(tclvalue(sd.femalesVal)) if(is.na(sd.femalesVal)) { is.OkScale <- 'no' tkmessageBox(message="SD for females is not valid.", icon="error", type="ok") } } } if (scale.char[['tableDone']]=='no') { is.OkScale <- 'no' tkmessageBox(message="You need open and fill the transformation table.", icon="error", type="ok") } else if (any(grepl('^-$', unlist(scale.char[['transTable']]))) || any(grepl('^$', unlist(scale.char[['transTable']])))) { is.OkScale <- 'no' msg <- paste('All or some of the transformations values are missing', 'Open and refill the table.', sep='\n') tkmessageBox(message=msg, icon="error", type="ok") } options(warn=0) is.OkScale } top.scale <- tktoplevel() tkwm.title(top.scale, paste("Definition of scale number", scale.num)) tkwm.resizable(top.scale, FALSE, FALSE) frameAcronym <- tkframe(top.scale) acronymScaleVal <- tclVar("") entry.acronymScale <- tkentry(frameAcronym ,width="10", textvariable=acronymScaleVal) tkgrid(frameAcronym, sticky='w') tkgrid(tklabel(frameAcronym, text="Enter an acronym for the scale"), entry.acronymScale, sticky='w') tkgrid(tklabel(top.scale, text="Note: Use only letters, numbers and '_'. The first character must be a letter."), sticky='w') tkgrid(tklabel(top.scale, text=' ')) frameName <- tkframe(top.scale) nameScaleVal <- tclVar("") entry.name <- tkentry(frameName ,width="40", textvariable=nameScaleVal) tkgrid(frameName, sticky='w') tkgrid(tklabel(frameName, text="Enter the scale's name (optional)"), entry.name, sticky='w') tkgrid(tklabel(top.scale, text=' ')) frameItems <- tkframe(top.scale) itemsVal <- tclVar("") entry.items <- tkentry(frameItems, width="60", textvariable=itemsVal) tkgrid(frameItems, sticky='w') tkgrid(tklabel(frameItems, text="Items making up the scale"), entry.items, sticky='w') tkgrid(tklabel(top.scale, text="Note: Use commas to separate the numbers."), sticky='w') if (trans=='Tmean') { if (equal=='yes') { tkgrid(tklabel(top.scale, text=' ')) frameMean.sd <- tkframe(top.scale) mean.1Val <- tclVar("") sd.1Val <- tclVar("") entry.mean <- tkentry(frameMean.sd ,width="8", textvariable=mean.1Val) entry.sd <- tkentry(frameMean.sd ,width="8", textvariable=sd.1Val) tkgrid(frameMean.sd, sticky='w') tkgrid(tklabel(frameMean.sd, text="Mean"),entry.mean, tklabel(frameMean.sd, text=" SD"), entry.sd, sticky='w') } else { tkgrid(tklabel(top.scale, text=' ')) frameMean.sd.males <- tkframe(top.scale) mean.malesVal <- tclVar("") sd.malesVal <- tclVar("") entry.mean.males <- tkentry(frameMean.sd.males ,width="8", textvariable=mean.malesVal) entry.sd.males <- tkentry(frameMean.sd.males ,width="8", textvariable=sd.malesVal) tkgrid(frameMean.sd.males, sticky='w') tkgrid(tklabel(frameMean.sd.males, text="Males: Mean"), entry.mean.males, tklabel(frameMean.sd.males, text=" SD"), entry.sd.males, sticky='w') frameMean.sd.females <- tkframe(top.scale) mean.femalesVal <- tclVar("") sd.femalesVal <- tclVar("") entry.mean.females <- tkentry(frameMean.sd.females ,width="8", textvariable=mean.femalesVal) entry.sd.females <- tkentry(frameMean.sd.females ,width="8", textvariable=sd.femalesVal) tkgrid(frameMean.sd.females, sticky='w') tkgrid(tklabel(frameMean.sd.females, text="Females: Mean"), entry.mean.females, tklabel(frameMean.sd.females, text=" SD"), entry.sd.females, sticky='w') } } else if (trans=='Ttable' || trans=='Other') { make.table.win <- function(valid, items, equal) { tkconfigure(entry.items, state='disabled') n.items <- length(unlist(strsplit(items, ','))) min.score <- min(valid)*n.items max.score <- max(valid)*n.items n.scores <- max.score - min.score + 1 if (equal=='yes') { matrixTrans <- matrix(c(as.character(min.score:max.score), rep('-', n.scores)), nrow=n.scores, ncol=2) matrixTrans <- rbind(c('Raw', 'Transf'), matrixTrans) tclArrayTrans <- tclArray() for (i in (1:(n.scores+1))) for (j in (1:2)) tclArrayTrans[[i-1,j-1]] <- matrixTrans[i,j] nrow <- n.scores+1 ncol <- 2 } else { matrixTrans <- matrix(c(as.character(min.score:max.score), rep('-', 2*(n.scores))), nrow=n.scores, ncol=3) matrixTrans <- rbind(c('Raw', 'Male', 'Female'), matrixTrans) tclArrayTrans <- tclArray() for (i in (1:(n.scores+1))) for (j in (1:3)) tclArrayTrans[[i-1,j-1]] <- matrixTrans[i,j] nrow <- n.scores+1 ncol <- 3 } trans.win <- tktoplevel() tkwm.resizable(trans.win, FALSE, FALSE) tkgrab.set(trans.win) tableFrame <- tkframe(trans.win) tkgrid(tableFrame) tclRequire("Tktable") tkwm.title(trans.win, 'Transform') table <- tkwidget(tableFrame, "table", rows=nrow, cols=ncol, titlerows=1, titlecols=1, height=16, width=ncol+1, yscrollcommand=function(...) tkset(yscr,...)) yscr <- tkscrollbar(tableFrame, command=function(...)tkyview(table,...)) tkgrid(table, yscr) tkgrid.configure(yscr, sticky="nsw") tkconfigure(table, variable=tclArrayTrans, selectmode="single", background="white") tkgrid(tklabel(trans.win, text='Note: "-" sign will be automatically removed.')) tkgrid(tklabel(trans.win, text=' ')) doneTransVal <- tclVar(0) OkTrans.but <- tkbutton(trans.win, text=" OK ", command=function() tclvalue(doneTransVal) <- 1) tkgrid(OkTrans.but) tkgrid(tklabel(trans.win, text='Close the window to cancel the table.')) tkgrid(tklabel(trans.win, text='Canceling the table allows the reedition of items.')) tkbind(trans.win, "<Destroy>", function() tclvalue(doneTransVal) <- 3) tkfocus(trans.win) tkwait.variable(doneTransVal) if (equal=='yes') { transTable <- character(n.scores) for (i in 1:n.scores) transTable[i] <- tclvalue(tclArrayTrans[[i, 1]]) } else { transTableMales <- character(n.scores) for (i in 1:n.scores) transTableMales[i] <- tclvalue(tclArrayTrans[[i, 1]]) transTableFemales <- character(n.scores) for (i in 1:n.scores) transTableFemales[i] <- tclvalue(tclArrayTrans[[i, 2]]) } if (tclvalue(doneTransVal)==3) { tkconfigure(entry.items, state='normal') msg <- paste('The table has been canceled.', 'All the transformations are set to "-".', 'Edition of items is enabled.', sep='\n') tkmessageBox(message=msg, icon='warning', type='ok') } tkdestroy(trans.win) if (equal=='yes') { transTable <- list(transTable) } else transTable <- list(transTableMales, transTableFemales) assign('transTable', transTable, envir=scale.char) assign('tableDone', 'yes', envir=scale.char) } tkgrid(tklabel(top.scale, text=' ')) defTableFrame <- tkframe(top.scale) assign('tableDone', 'no', envir=scale.char) openTable.but <- tkbutton(top.scale, text='Open', command=function() make.table.win(valid, tclvalue(itemsVal), equal)) tkgrid.configure(defTableFrame, sticky='w') tkgrid(tklabel(defTableFrame, text = 'Transformation table: '), openTable.but, sticky='w') tkgrid(tklabel(top.scale, text='Note: To avoid mismatch between number of items and number of raw scores,'), sticky='w') tkgrid(tklabel(top.scale, text=' when the table is openned, the edition of items is blocked'), sticky='w') tkgrid(tklabel(top.scale, text=' and the table is reseted accordingly the number of items.'), sticky='w') } OnOkScale <- function() { OkScale <- ValidateScaleChar() if (OkScale=='yes') tclvalue(doneScale) <- 1 } tkgrid(tklabel(top.scale, text=' ')) doneScale <- tclVar(0) scale.butFrame <- tkframe(top.scale) tkgrid(scale.butFrame) OkScale.but <- tkbutton(scale.butFrame, text=" OK ", command=OnOkScale) cancelScale.but <- tkbutton(scale.butFrame, text="Cancel scale", command=function() tclvalue(doneScale) <- 2) cancelTest.but<- tkbutton(scale.butFrame, text=" Cancel test ", command=function() tclvalue(doneScale) <- 3) tkgrid(OkScale.but, cancelScale.but, cancelTest.but) tkbind(top.scale, '<Destroy>', function() tclvalue(doneScale) <- 2) tkfocus(top.scale) tkwait.variable(doneScale) if (tclvalue(doneScale)==1) { acronymScale <- tclvalue(acronymScaleVal) acronymScale <- sub(' +$', '', acronymScale) acronymScale <- sub('^ +', '', acronymScale) nameScale <- tclvalue(nameScaleVal) items <- tclvalue(itemsVal) items <- as.numeric(unlist(strsplit(items, ','))) mean.1 <- NA sd.1 <- NA mean.males <- NA mean.females <- NA sd.males <- NA sd.females <- NA trans.1 <- NA trans.males <- NA trans.females <- NA if(trans=='Tmean' && equal=='yes') { mean.1 <- as.numeric(tclvalue(mean.1Val)) sd.1 <- as.numeric(tclvalue(sd.1Val)) } else if (trans=='Tmean' && equal=='no') { mean.males <- as.numeric(tclvalue(mean.malesVal)) sd.males <- as.numeric(tclvalue(sd.malesVal)) mean.females <- as.numeric(tclvalue(mean.femalesVal)) sd.females <- as.numeric(tclvalue(sd.femalesVal)) } else if ((trans=='Ttable' || trans=='Other') && equal=='yes') { trans.1 <- scale.char[['transTable']] trans.1 <- trans.1[[1]] trans.1 <- gsub('(^-)|(-$)', '', trans.1) if (sum(!grepl('^[0-9]+$', trans.1))>0) { assign('trans.is.numeric', 'no', envir=test.char) assign('trans.is.numeric', 'no', envir=scale.char) } else assign('trans.is.numeric', 'yes', envir=scale.char) } else if ((trans=='Ttable' || trans=='Other') && equal=='no') { trans <- scale.char[['transTable']] trans.males <- trans[[1]] trans.females <- trans[[2]] trans.males <- gsub('(^-)|(-$)', '', trans.males) trans.females <- gsub('(^-)|(-$)', '', trans.females) if (sum(!grepl('^[0-9]+$', trans.males))>0 || sum(!grepl('^[0-9]+$', trans.females))>0) { assign('trans.is.numeric', 'no', envir=test.char) assign('trans.is.numeric', 'no', envir=scale.char) } else assign('trans.is.numeric', 'yes', envir=test.char) } OkScale <- 'yes' n.items <- length(items) min.score <- min(valid)*n.items scale.characteristics <- list(acronymScale=acronymScale, nameScale=nameScale, items=items, mean.1=mean.1, sd.1=sd.1, mean.males=mean.males, mean.females=mean.females, sd.males=sd.males, sd.females=sd.females, trans.1=trans.1, trans.males=trans.males, trans.females=trans.females, min.score=min.score) } else if (tclvalue(doneScale)==2) { OkScale <- 'repeat scale' scale.characteristics <- list('') } else { OkScale <- 'no' scale.characteristics <- list('') } tkdestroy(top.scale) list(OkScale=OkScale, scale.characteristics=scale.characteristics) } write.scale <- function(acronymScale, nameScale, items, scale.num, scoring, prorrate, trans, equal, name.trans, graph, mean.1, sd.1, mean.males, mean.females, sd.males, sd.females, trans.1, trans.males, trans.females, min.score) { cat(paste('\n\n acronymScale, 'scale scoring commands'), file='tmp', append=TRUE) cat('\n cat(paste('\n results[', scale.num, ', "Acronym"] <- "', acronymScale, '" sep=''), file='tmp', append=TRUE) cat(paste('\n results[', scale.num, ', "Scale"] <- "', nameScale, '" sep=''), file='tmp', append=TRUE) cat('\n cat('\n items <- c(', file='tmp', append=TRUE) if (length(items)>1) for (i in 1:(length(items)-1)) cat(paste(items[i], ', ', sep=''), file='tmp', append=TRUE) cat(paste(items[length(items)], ')', sep=''), file='tmp', append=TRUE) cat(paste('\n results[', scale.num, ', "Miss"] <- sum(is.na(answers[items])) sep=''), file='tmp', append=TRUE) cat(paste('\n if (results[', scale.num, ', "Miss"] == length(items)) { sep=''), file='tmp', append=TRUE) cat(paste('\n results[', scale.num, ', "Raw"] <- NA', sep=''), file='tmp', append=TRUE) if (trans=='Tmean' || trans=='Ttable') { cat(paste('\n results[', scale.num, ', "T"] <- NA', sep=''), file='tmp', append=TRUE) } if (trans=='Other') { cat(paste('\n results[', scale.num, ', "', name.trans, '"] <- NA', sep=''), file='tmp', append=TRUE) } if (graph=='yes') cat(paste('\n results[', scale.num, ', "Graph"] <- "All items missing"', sep=''), file='tmp', append=TRUE) cat('\n } else {', file='tmp', append=TRUE) if (scoring=='sum' && prorrate=='no') cat(paste('\n results[', scale.num, ', "Raw"] <- sum(answers[items], na.rm=TRUE) sep=''), file='tmp', append=TRUE) else if (scoring=='sum' && prorrate=='yes') cat(paste('\n results[', scale.num, ', "Raw"] <- round(mean(answers[items], na.rm=TRUE)*length(items), 2) sep=''), file='tmp', append=TRUE) else cat(paste('\n results[', scale.num, ', "Raw"] <- round(mean(answers[items], na.rm=TRUE), 2) sep=''), file='tmp', append=TRUE) if(trans=='Tmean' && equal=='no') { cat(paste('\n if (sex=="Male") results[', scale.num, ', "T"] <- toT(results[', scale.num, ', "Raw"], ', mean.males, ', ', sd.males, ') sep=''), file='tmp', append=TRUE) cat(paste('\n else results[', scale.num, ', "T"] <- toT(results[', scale.num, ', "Raw"], ', mean.females, ', ', sd.females, ')', sep=''), file='tmp', append=TRUE) } else if(trans=='Tmean' && equal=='yes') { cat(paste('\n results[', scale.num, ', "T"] <- toT(results[', scale.num, ', "Raw"], ', mean.1, ', ', sd.1, ') sep=''), file='tmp', append=TRUE) } else if ((trans=='Ttable' || trans=='Other') && equal=='no') { cat('\n if (scale.char[['trans.is.numeric']]=='yes') { cat('\n trans.males.table <- c(', file='tmp', append=TRUE) if (length(trans.males)>1) for (i in 1:(length(trans.males)-1)) cat(paste(trans.males[i], ', ', sep=''), file='tmp', append=TRUE) cat(paste(trans.males[length(trans.males)], ')', sep=''), file='tmp', append=TRUE) } else { cat('\n trans.males.table <- c(', file='tmp', append=TRUE) if (length(trans.males)>1) for (i in 1:(length(trans.males)-1)) cat(paste('"', trans.males[i], '", ', sep=''), file='tmp', append=TRUE) cat(paste('"', trans.males[length(trans.males)], '")', sep=''), file='tmp', append=TRUE) } if (scale.char[['trans.is.numeric']]=='yes') { cat('\n trans.females.table <- c(', file='tmp', append=TRUE) if (length(trans.females)>1) for (i in 1:(length(trans.females)-1)) cat(paste(trans.females[i], ', ', sep=''), file='tmp', append=TRUE) cat(paste(trans.females[length(trans.females)], ')', sep=''), file='tmp', append=TRUE) } else { cat('\n trans.females.table <- c(', file='tmp', append=TRUE) if (length(trans.females)>1) for (i in 1:(length(trans.females)-1)) cat(paste('"', trans.females[i], '", ', sep=''), file='tmp', append=TRUE) cat(paste('"', trans.females[length(trans.females)], '")', sep=''), file='tmp', append=TRUE) } if (scoring=='sum' && prorrate=='no') cat(paste('\n index <- results[', scale.num, ', "Raw"]', sep=''), file='tmp', append=TRUE) else cat(paste('\n index <- round(results[', scale.num, ', "Raw"]) sep=''), file='tmp', append=TRUE) cat(paste('\n index <- ', 1 - min.score, ' + index 1 - min.score, ', because raw scores begin at ', min.score, sep=''), file='tmp', append=TRUE) cat(paste('\n if (sex=="Male") results[', scale.num, ', "', sep=''), file='tmp', append=TRUE) if (trans=='Ttable') cat('T', file='tmp', append=TRUE) else cat(name.trans , file='tmp', append=TRUE) cat('"] <- trans.males.table[index]', file='tmp', append=TRUE) cat(paste('\n else results[', scale.num, ', "', sep=''), file='tmp', append=TRUE) if (trans=='Ttable') cat('T', file='tmp', append=TRUE) else cat(name.trans , file='tmp', append=TRUE) cat('"] <- trans.females.table[index]', file='tmp', append=TRUE) } else if ((trans=='Ttable' || trans=='Other') && equal=='yes') { cat('\n if (scale.char[['trans.is.numeric']]=='yes') { cat('\n trans.table <- c(', file='tmp', append=TRUE) if (length(trans.1)>1) for (i in 1:(length(trans.1)-1)) cat(paste(trans.1[i], ', ', sep=''), file='tmp', append=TRUE) cat(paste(trans.1[length(trans.1)], ')', sep=''), file='tmp', append=TRUE) } else { cat('\n trans.table <- c(', file='tmp', append=TRUE) if (length(trans.1)>1) for (i in 1:(length(trans.1)-1)) cat(paste('"', trans.1[i], '", ', sep=''), file='tmp', append=TRUE) cat(paste('"', trans.1[length(trans.1)], '")', sep=''), file='tmp', append=TRUE) } if (scoring=='sum' && prorrate=='no') cat(paste('\n index <- results[', scale.num, ', "Raw"]', sep=''), file='tmp', append=TRUE) else cat(paste('\n index <- round(results[', scale.num, ', "Raw"]) sep=''), file='tmp', append=TRUE) cat(paste('\n index <- ', 1 - min.score, ' + index 1 - min.score, ', because raw scores begin at ', min.score, sep=''), file='tmp', append=TRUE) cat(paste('\n results[', scale.num, ', "', sep=''), file='tmp', append=TRUE) if (trans=='Ttable') cat('T', file='tmp', append=TRUE) else cat(name.trans , file='tmp', append=TRUE) cat('"] <- trans.table[index]', file='tmp', append=TRUE) } if(graph=='yes') cat(paste('\n results[', scale.num, ', "Graph"] <- makeGraph(results[', scale.num, ', "T"]) sep=''), file='tmp', append=TRUE) cat('\n }', file='tmp', append=TRUE) } write.test.end <- function(acronymTest, trans, graph, name.trans) { cat('\n\n cat('\n if (graph=='no') { cat('\n results.scores <- unlist(results[-c(1, 2)]) file='tmp', append=TRUE) } else { cat('\n results.scores <- unlist(results[-c(1, 2, 6)]) file='tmp', append=TRUE) } cat('\n names <- paste(results$Acronym, names(results.scores), sep=".")', file='tmp', append=TRUE) cat('\n names(results.scores) <- sub("[0-9]+$", "", names) file='tmp', append=TRUE) if (graph=='yes') { cat('\n\n cat('\n cat('\n names(results)[6] <- "0 10 20 30 40 50 60 70 80 90 100"', file='tmp', append=TRUE) } cat('\n\n cat('\n cat('\n results.lst <- list(paste("Total number of missing items: ",', file='tmp', append=TRUE) cat('\n blanks,', file='tmp', append=TRUE) cat('\n " (",', file='tmp', append=TRUE) cat('\n pcnt.blanks,', file='tmp', append=TRUE) cat('\n "%)",', file='tmp', append=TRUE) cat('\n sep=""))', file='tmp', append=TRUE) cat('\n\n cat('\n cat('\n list(results.lst = results.lst,', file='tmp', append=TRUE) cat('\n results.df = results,', file='tmp', append=TRUE) cat('\n results.scores = results.scores)', file='tmp', append=TRUE) cat('\n\n} file.name <- paste('TST_', acronymTest, '.r', sep='') file.rename(from='tmp', to=file.name) msg <- paste("Test definition and scoring script have been saved as TST_", acronymTest, '.r', sep='') tkmessageBox(message=msg) } ret.values <- make.test.window() continue.test <- ret.values[[1]] test.characteristics <- ret.values[[2]] acronymTest <- test.characteristics[[1]] nameTest <- test.characteristics[[2]] ref <- test.characteristics[[3]] comm <- test.characteristics[[4]] n.items <- test.characteristics[[5]] valid <- test.characteristics[[6]] miss <- test.characteristics[[7]] reversed <- test.characteristics[[8]] scoring <- test.characteristics[[9]] prorrate <- test.characteristics[[10]] n.scales <- test.characteristics[[11]] trans <- test.characteristics[[12]] equal <- test.characteristics[[13]] graph <- test.characteristics[[14]] name.trans <- test.characteristics[[15]] if (continue.test=='yes') write.test.begining(acronymTest, nameTest, ref, n.items, valid, miss, comm, reversed, trans, graph) if (continue.test=='yes') { scale.num <-0 while ((scale.num < n.scales) && (continue.test == 'yes')) { scale.num <- scale.num + 1 ret.values <- make.scale.window(scale.num, n.items, valid, trans, equal, graph, name.trans) OkScale <- ret.values[[1]] scale.characteristics <- ret.values[[2]] acronymScale <- scale.characteristics['acronymScale'] nameScale <- scale.characteristics['nameScale'] items <- unlist(scale.characteristics['items']) mean.1 <- scale.characteristics['mean.1'] sd.1 <- scale.characteristics['sd.1'] mean.males <- scale.characteristics['mean.males'] mean.females <- scale.characteristics['mean.females'] sd.males <- scale.characteristics['sd.males'] sd.females <- scale.characteristics['sd.females'] trans.1 <- unlist(scale.characteristics['trans.1']) trans.males <- unlist(scale.characteristics['trans.males']) trans.females <- unlist(scale.characteristics['trans.females']) min.score <- unlist(scale.characteristics['min.score']) if (OkScale=='yes') write.scale(acronymScale, nameScale, items, scale.num, scoring, prorrate, trans, equal, name.trans, graph, mean.1, sd.1, mean.males, mean.females, sd.males, sd.females, trans.1, trans.males, trans.females, min.score) else if (OkScale=='repeat scale') { scale.num <- scale.num - 1 continue.test <- 'yes' } else continue.test <- 'no' } } if (continue.test=='yes') write.test.end(acronymTest, trans, graph, name.trans) if (continue.test=='no') { msg <- "Test definition has been canceled." tkmessageBox(message=msg, icon='warning', type='ok') options(warn=-1) try(dummy <- file.remove('tmp')) options(warn=0) } TestScorerGUI() } delete.test <- function() { content <- dir() existing.tests <- content[grep('TST_.+\\.r$', content)] existing.tests <- gsub('TST_', '', existing.tests) delete.top <- tktoplevel() tkwm.title(delete.top, 'Delete a test') tkwm.resizable(delete.top, FALSE, FALSE) scr <- tkscrollbar(delete.top, repeatinterval=5, command=function(...)tkyview(test.selBox,...)) test.selBox <- tklistbox(delete.top, height=3, width='31', selectmode='single', yscrollcommand=function(...)tkset(scr,...), background='white', exportselection=F) for (i in (seq_along(existing.tests))) tkinsert(test.selBox,'end', existing.tests[i]) tkselection.set(test.selBox,0) tkgrid(tklabel(delete.top, text='Which test would you like to delete?'), sticky='nw') tkgrid(test.selBox, scr, sticky='nw') tkgrid.configure(scr, rowspan=5, sticky='nse') tkgrid(tklabel(delete.top, text=' ')) doneDeleteTestVal <- tclVar(0) OkDeleteTest.but <- tkbutton(delete.top, text=" OK ", command=function() tclvalue(doneDeleteTestVal) <- 1) tkgrid(OkDeleteTest.but) tkgrid(tklabel(delete.top, text='Close the window to cancel deleting a test.')) tkbind(delete.top, "<Destroy>", function() tclvalue(doneDeleteTestVal) <- 3) tkfocus(delete.top) tkwait.variable(doneDeleteTestVal) if (tclvalue(doneDeleteTestVal)==1) { test.to.delete <- existing.tests[as.numeric(tkcurselection(test.selBox))+1] test.to.delete <- sub('.r$', '', test.to.delete) file.to.rename <- paste('TST_', test.to.delete, '.r', sep='') file.new.name <- paste('TST_', test.to.delete, '.bak', sep='') file.rename(from=file.to.rename, to=file.new.name) tkdestroy(delete.top) tkmessageBox(message=paste('Extension type has been changed to ".bak".', 'This test will not appear in TestScorer.', sep='\n'), icon='warning', type='ok') } TestScorerGUI() }
library(grid) library(gridSVG) pdf(file = NULL) rg <- radialGradient(col = c("white", "black")) m <- mask(gradientFillGrob(circleGrob(), gradient = rg)) registerMask("circleMask", m) sp <- gTree(name = "simplePlot", children = gList(xaxisGrob(), yaxisGrob(), rectGrob(gp = gpar(fill = "grey"))), vp = plotViewport()) grid.draw(sp) grid.mask("simplePlot", label = "circleMask") grid.export("mask-simpleplot.svg") dev.off() pdf(file = NULL) gridSVG.newpage() rg <- radialGradient(col = c("white", "black")) m <- mask(gradientFillGrob(circleGrob(), gradient = rg)) pushMask(m) sp <- gTree(name = "simplePlot", children = gList(xaxisGrob(), yaxisGrob(), rectGrob(gp = gpar(fill = "grey"))), vp = plotViewport()) grid.draw(sp) popMask() grid.export("pushmask-simpleplot.svg") dev.off()
"nyc_marathon"
initECRControl = function(fitness.fun, n.objectives = NULL, minimize = NULL) { task = makeOptimizationTask(fitness.fun, n.objectives = n.objectives, minimize = minimize) makeS3Obj("ecr_control", task = task) } extractFunctionParameters = function(fun) { UseMethod("extractFunctionParameters") } extractFunctionParameters.smoof_function = function(fun) { par.set = getParamSet(fun) return(list( n.objectives = getNumberOfObjectives(fun), n.dim = getNumberOfParameters(fun), minimize = shouldBeMinimized(fun), upper = getUpper(par.set), lower = getLower(par.set)) ) } extractFunctionParameters.function = function(fun) { return(list()) } extractFunctionParameters.smoof_wrapped_function = function(fun) { extractFunctionParameters(getWrappedFunction(fun)) } initControlParams = function(control, ...) { control$params = list(...) return(control) } initDefaultOperators = function(control, type, n.objectives) { n.objectives = asInt(n.objectives, lower = 1L) assertChoice(type, c("float", "permutation", "binary", "custom")) obj.type = if (n.objectives == 1L) "single" else "multi" control = registerECROperator(control, "selectForMating", getDefaultEvolutionaryOperators(type, "parent.selector", n.objectives, control)) control = registerECROperator(control, "selectForSurvival", getDefaultEvolutionaryOperators(type, "survival.selector", n.objectives, control)) control = registerECROperator(control, "mutate", getDefaultEvolutionaryOperators(type, "mutator", n.objectives, control)) control = registerECROperator(control, "recombine", getDefaultEvolutionaryOperators(type, "recombinator", n.objectives, control)) return(control) } checkCorrectOperatorType = function(operator, class, type) { if (!inherits(operator, class)) { stopf("%s must be of class '%s', not '%s'.", type, class, collapse(attr(operator, "class"), sep = ", ")) } } getDefaultEvolutionaryOperators = function(representation, type, n.objectives, control) { if (n.objectives == 1L) { return(getSingleObjectiveDefaults(representation, type, control)) } return(getMultiObjectiveDefaults(representation, type, control)) } getSingleObjectiveDefaults = function(representation, type, control) { defaults = list( "float" = list( "parent.selector" = setup(selTournament, k = 2L), "mutator" = try(setup(mutGauss), silent = TRUE), "recombinator" = setup(recIntermediate), "survival.selector" = setup(selGreedy) ), "binary" = list( "parent.selector" = setup(selTournament, k = 2L), "mutator" = setup(mutBitflip), "recombinator" = setup(recCrossover), "survival.selector" = setup(selGreedy) ), "permutation" = list( "parent.selector" = setup(selTournament, k = 2L), "mutator" = setup(mutSwap), "recombinator" = setup(recPMX), "survival.selector" = setup(selGreedy) ), "custom" = list( "parent.selector" = setup(selTournament, k = 2L), "mutator" = NULL, "recombinator" = NULL, "survival.selector" = setup(selGreedy) ) ) if (representation %in% names(defaults)) { return(defaults[[representation]][[type]]) } stopf("No defaults availiable for custom representation. You need to specify all operators by hand.") } getMultiObjectiveDefaults = function(representation, type, control) { defaults = list( "float" = list( "parent.selector" = setup(selSimple), "mutator" = try(setup(mutGauss), silent = TRUE), "recombinator" = setup(recIntermediate), "survival.selector" = setup(selNondom) ), "binary" = list( "parent.selector" = setup(selSimple), "mutator" = setup(mutBitflip), "recombinator" = setup(recCrossover), "survival.selector" = setup(selNondom) ), "permutation" = list( "parent.selector" = setup(selSimple), "mutator" = setup(mutSwap), "recombinator" = setup(recPMX), "survival.selector" = setup(selNondom) ), "custom" = list( "parent.selector" = setup(selSimple), "mutator" = NULL, "recombinator" = NULL, "survival.selector" = setup(selNondom) ) ) if (representation %in% names(defaults)) { return(defaults[[representation]][[type]]) } stopf("No defaults availiable for custom representation. You need to specify all operators by hand.") }
library("plm") data("Grunfeld", package = "plm") Grunfeld$fac <- factor(1:200) pGrun <- pdata.frame(Grunfeld) options("plm.fast" = FALSE) pGrunpser1.1 <- pseriesfy(pGrun) collapse.avail <- if (!requireNamespace("collapse", quietly = TRUE)) FALSE else TRUE if(collapse.avail) { options("plm.fast" = TRUE) pGrunpser2.1 <- pseriesfy(pGrun) options("plm.fast" = FALSE) class(pGrunpser1.1) class(pGrunpser2.1) stopifnot(identical(pGrunpser1.1, pGrunpser2.1)) lapply(pGrunpser1.1, class) lapply(pGrunpser2.1, class) lapply(pGrunpser1.1, names) lapply(pGrunpser2.1, names) form <- inv ~ value + capital plm(form, pGrunpser1.1, model = "within") plm(form, pGrunpser2.1, model = "within") options("plm.fast" = FALSE) pGrunpser1.2 <- pseriesfy(pGrunpser1.1) options("plm.fast" = TRUE) pGrunpser2.2 <- pseriesfy(pGrunpser2.1) options("plm.fast" = FALSE) class(pGrunpser1.2) class(pGrunpser2.2) lapply(pGrunpser1.2, class) lapply(pGrunpser2.2, class) lapply(pGrunpser1.2, names) lapply(pGrunpser2.2, names) stopifnot(identical(pGrunpser1.1, pGrunpser1.2)) stopifnot(identical(pGrunpser2.1, pGrunpser2.2)) stopifnot(identical(pGrunpser1.2, pGrunpser2.2)) with(pGrun, lag(value)) with(pGrunpser1.1, lag(value)) invisible(NULL) }
abort <- function(message = NULL, class = NULL, ..., call, body = NULL, footer = NULL, trace = NULL, parent = NULL, use_cli_format = NULL, .internal = FALSE, .file = NULL, .frame = NULL, .subclass = deprecated()) { .__signal_frame__. <- TRUE caller <- caller_env() if (is_null(.frame)) { if (is_environment(maybe_missing(call))) { .frame <- call } else { .frame <- caller } } else { check_environment(.frame) } info <- abort_context(.frame, parent) if (is_missing(call)) { if (is_null(info$from_handler)) { call <- .frame } else { call <- info$setup_caller } } message <- validate_signal_args(message, class, call, .subclass, "abort") call <- error_call(call) message_info <- cnd_message_info( message, body, footer, caller, use_cli_format = use_cli_format, internal = .internal ) message <- message_info$message extra_fields <- message_info$extra_fields use_cli_format <- message_info$use_cli_format if (is_null(trace) && is_null(peek_option("rlang:::disable_trace_capture"))) { with_options( "rlang:::disable_trace_capture" = TRUE, "rlang:::visible_bottom" = info$bottom_frame, { trace <- trace_back() } ) } cnd <- error_cnd( class, ..., message = message, !!!extra_fields, use_cli_format = use_cli_format, call = call, parent = parent, trace = trace ) signal_abort(cnd, .file) } abort_context <- function(frame, parent, call = caller_env()) { calls <- sys.calls() frames <- sys.frames() parents <- sys.parents() frame_loc <- detect_index(frames, identical, frame) setup_loc <- 0L setup_caller <- NULL from_handler <- NULL if (frame_loc > 1L) { prev_frame <- frames[[frame_loc - 1L]] if (env_has(prev_frame, ".__handler_frame__.")) { from_handler <- "calling" frame_loc <- frame_loc - 1L setup_frame <- env_get(prev_frame, ".__setup_frame__.", default = NULL) if (!is_null(setup_frame)) { setup_caller <- eval_bare(call2(parent.frame), setup_frame) } } } bottom_loc <- frame_loc if ((frame_loc - 1) > 0) { call1 <- calls[[frame_loc]] call2 <- calls[[frame_loc - 1]] if (is_exiting_handler_call(call1, call2)) { from_handler <- "exiting" setup_loc <- calls_try_catch_loc(calls, frame_loc) bottom_loc <- parents[[setup_loc]] } else { if (is_string(from_handler, "calling") || !is_null(parent)) { if (is_calling_handler_inlined_call(call1)) { from_handler <- "calling" bottom_loc <- calls_signal_loc(calls, frame_loc - 1L) } else if (is_calling_handler_simple_error_call(call1, call2)) { from_handler <- "calling" bottom_loc <- calls_signal_loc(calls, frame_loc - 2L) } setup_loc <- calls_setup_loc(calls, frames, frame_loc) } } } if (bottom_loc) { bottom_loc <- skip_signal_frames(bottom_loc, frames) bottom_frame <- frames[[bottom_loc]] } else { bottom_frame <- NULL } if (is_null(setup_caller) && setup_loc) { setup_caller <- frames[[parents[[setup_loc]]]] } list( from_handler = from_handler, bottom_frame = bottom_frame, setup_caller = setup_caller ) } calls_try_catch_loc <- function(calls, loc) { loc <- loc - 1L node <- as.pairlist(rev(calls[seq_len(loc)])) while (is_call(node_car(node), c("tryCatchList", "tryCatchOne"))) { node <- node_cdr(node) loc <- loc - 1L } loc } calls_signal_loc <- function(calls, loc) { tmp_node <- tmp_loc <- found_restart <- NULL node <- as.pairlist(rev(calls[seq_len(loc)])) call <- node_car(node) advance <- function(node, i) { list(node_cdr(node), i - 1L) } advance_restart <- function(node, i) { found <- FALSE restart_fns <- c( "doWithOneRestart", "withOneRestart", "withRestarts" ) while (is_call(node_car(node), restart_fns)) { node <- node_cdr(node) i <- i - 1L found <- TRUE } list(node, i, found) } if (is_call(call, "stop")) { return(loc) } if (is_call(call, "signalCondition")) { c(tmp_node, tmp_loc, found_restart) %<-% advance_restart(node, loc) if (found_restart && is_call(node_car(tmp_node), "message")) { return(tmp_loc) } else { return(loc) } } c(tmp_node, tmp_loc, found_restart) %<-% advance_restart(node, loc) if (found_restart) { if (is_call(node_car(tmp_node), ".signalSimpleWarning")) { c(tmp_node, tmp_loc) %<-% advance(tmp_node, tmp_loc) } if (is_call(node_car(tmp_node), "warning")) { return(tmp_loc) } } loc } calls_setup_loc <- function(calls, frames, handler_loc) { handler <- sys.function(handler_loc) top <- handler_loc while (TRUE) { calls <- calls[seq_len(top)] setup_loc <- detect_index(calls, is_call, "withCallingHandlers", .right = TRUE) if (!setup_loc) { return(0L) } signal_handlers <- frames[[setup_loc]][["handlers"]] if (some(signal_handlers, identical, handler)) { return(setup_loc) } top <- setup_loc - 1L } } skip_signal_frames <- function(loc, frames) { found <- FALSE while (loc > 1 && env_has(frames[[loc - 1L]], ".__signal_frame__.")) { found <- TRUE loc <- loc - 1L } if (found) { loc - 1L } else { loc } } is_calling_handler_inlined_call <- function(call) { is_call(call) && is_function(call[[1]]) && is_condition(call[[2]]) } is_calling_handler_simple_error_call <- function(call1, call2) { identical(call1, quote(h(simpleError(msg, call)))) && is_call(call2, ".handleSimpleError") } is_exiting_handler_call <- function(call1, call2) { identical(call1, quote(value[[3L]](cond))) && is_call(call2, "tryCatchOne") } cnd_message_info <- function(message, body, footer, env, cli_opts = NULL, use_cli_format = NULL, internal = FALSE, error_call = caller_env()) { if (internal) { check_exclusive(footer, .internal, .require = FALSE, .frame = error_call) } if (length(message) > 1 && !is_character(body) && !is_null(body)) { stop_multiple_body(body, call = error_call) } cli_opts <- cli_opts %||% use_cli(env, error_call = error_call) if (!is_null(use_cli_format)) { cli_opts[["format"]] <- use_cli_format } fields <- list() if (cli_opts[["inline"]]) { message[] <- map_chr(message, cli::format_inline, .envir = env) } use_cli_format <- cli_opts[["format"]] if (use_cli_format) { if (length(message) > 1) { fields$body <- c(message[-1], body) message <- message[1] } else { fields$body <- body } if (!is_null(footer)) { fields$footer <- footer } if (internal) { fields$footer <- footer_internal } } else { if (length(message) > 1 && is_null(names(message))) { names(message) <- c("", rep_len("*", length(message) - 1)) } if (is_character(body)) { message <- c(message, body) } else { fields$body <- body } if (is_character(footer)) { message <- c(message, footer) } else { fields$footer <- footer } if (internal) { message <- c(message, footer_internal) } message <- .rlang_cli_format_fallback(message) } list( message = message, use_cli_format = use_cli_format, extra_fields = fields ) } utils::globalVariables(".internal") footer_internal <- c( "i" = "This is an internal error, please report it to the package authors." ) stop_multiple_body <- function(body, call) { msg <- c( sprintf( "Can't supply conflicting bodies in %s and %s.", format_arg("body"), format_arg("message") ), "x" = sprintf( "%s must be character or NULL when a length > 1 %s is supplied.", format_arg("body"), format_arg("message") ), "i" = sprintf( "%s is currently %s.", format_arg("body"), friendly_type_of(body) ) ) abort(msg, call = call) } local_use_cli <- function(..., format = TRUE, inline = FALSE, frame = caller_env()) { check_dots_empty0(...) use_cli <- c(format = format, inline = inline) if (is_namespace(frame)) { frame$.__rlang_use_cli__. <- use_cli } else { local_bindings(.__rlang_use_cli__. = use_cli, .frame = frame) } invisible(NULL) } use_cli <- function(env, error_call) { if (is_true(peek_option("rlang:::disable_cli"))) { return(FALSE) } default <- c(format = FALSE, inline = FALSE) last <- topenv(env) if (identical(last, global_env()) && "devtools_shims" %in% search()) { last <- empty_env() } flag <- env_get( env, ".__rlang_use_cli__.", default = default, inherit = TRUE, last = last ) check_use_cli_flag(flag, error_call = error_call) flag } check_use_cli_flag <- function(flag, error_call) { if (!is_logical(flag) || !identical(names(flag), c("format", "inline")) || anyNA(flag)) { abort("`.__rlang_use_cli__.` has unknown format.", call = error_call) } if (flag[["inline"]]) { if (!has_cli_format || !has_cli_inline) { msg <- c( "`.__rlang_use_cli__.[[\"inline\"]]` is set to `TRUE` but cli is not installed or is too old.", "i" = "The package author should add a recent version of `cli` to their `Imports`." ) with_options( "rlang:::disable_cli" = TRUE, abort(call = error_call) ) } if (!flag[["format"]]) { msg <- "Can't use cli inline formatting without cli bullets formatting." abort(msg, call = error_call) } } } signal_abort <- function(cnd, file = NULL) { .__signal_frame__. <- TRUE if (is_true(peek_option("rlang::::force_unhandled_error"))) { fallback <- cnd } else { signalCondition(cnd) fallback <- cnd class(fallback) <- c("rlang_error", "condition") fallback$message <- "" fallback$rlang$internal$entraced <- TRUE } poke_last_error(cnd) cnd <- cnd_set_backtrace_on_error(cnd, peek_backtrace_on_error()) msg <- cnd_message(cnd, inherit = TRUE, prefix = TRUE) cat_line(msg, file = file %||% default_message_file()) local_options(show.error.messages = FALSE) stop(fallback) } local_error_call <- function(call, frame = caller_env()) { frame$.__error_call__. <- call invisible(NULL) } NULL caller_arg <- function(arg) { arg <- substitute(arg) check_arg(arg) expr <- do.call(substitute, list(arg), envir = caller_env()) as_label(expr) } format_error_call <- function(call) { call <- error_call(call) if (is_null(call)) { return(NULL) } label <- error_call_as_string(call) if (is_null(label)) { return(NULL) } if (grepl("\n", label)) { cli_with_whiteline_escapes(label, format_code) } else { format_code(label) } } error_call_as_string <- function(call) { if (!is_call(call)) { return(NULL) } if (inherits(call, "AsIs")) { call <- expr_deparse(unclass(call)) if (length(call) == 1) { return(call) } else { return(NULL) } } if (is_call(call, c("eval", "evalq"))) { return(NULL) } if (!is_call_simple(call)) { return(NULL) } old <- call[[1]] call[[1]] <- sym(call_name(call)) if (is_call(call, "if")) { call[[3]] <- quote(...) return(as_label(call[1:3])) } if (!is_string(call_parse_type(call), "")) { return(paste(error_call_deparse(call), collapse = "\n")) } if (is_symbol(call[[1]]) && needs_backticks(call[[1]])) { return(as_string(call[[1]])) } call[[1]] <- old as_label(call[1]) } error_call_deparse <- function(call) { out <- expr_deparse(call) if (length(out) > 1) { out[-1] <- paste0(" ", out[-1]) } out } error_call <- function(call) { while (is_environment(call)) { flag <- env_get(call, ".__error_call__.", default = TRUE) if (is_null(flag) || is_call(flag)) { call <- flag break } if (is_environment(flag)) { call <- flag next } if (is_string(flag, "caller")) { call <- eval_bare(call2(caller_env), call) next } if (is_string(gen <- call$.Generic)) { frames <- sys.frames() i <- detect_index(frames, identical, call, .right = TRUE) while (i > 1) { i <- i - 1 prev <- frames[[i]] if (is_call(frame_call(prev), "NextMethod")) { next } if (identical(prev$.Generic, gen)) { next } return(error_call(prev)) } } call <- frame_call(call) break } if (!is_call(call)) { return(NULL) } quo_squash(call) } call_restore <- function(x, to) { attr(x, "srcref") <- attr(to, "srcref") x } NULL backtrace_on_error_opts <- c("none", "reminder", "branch", "collapse", "full") format_onerror_backtrace <- function(cnd, opt = peek_backtrace_on_error()) { opt <- arg_match0(opt, backtrace_on_error_opts, "backtrace_on_error") if (opt == "none") { return(NULL) } trace <- cnd$trace while (is_condition(cnd$parent)) { cnd <- cnd$parent if (!is_null(cnd$trace)) { trace <- cnd$trace } } if (is_null(trace) || !trace_length(trace)) { return(NULL) } if (opt == "reminder") { if (is_interactive()) { reminder <- silver("Run `rlang::last_error()` to see where the error occurred.") } else { reminder <- NULL } return(reminder) } if (opt == "branch") { max_frames <- 10L } else { max_frames <- NULL } simplify <- switch( opt, full = "none", reminder = "branch", opt ) paste_line( "Backtrace:", format(trace, simplify = simplify, max_frames = max_frames) ) } peek_backtrace_on_error <- function() { opt <- peek_backtrace_on_error_opt("rlang_backtrace_on_error") if (!is_null(opt)) { return(opt) } if (report_in_progress()) { "branch" } else if (is_interactive()) { "reminder" } else { "full" } } peek_backtrace_on_error_report <- function() { peek_backtrace_on_error_opt("rlang_backtrace_on_error_report") %||% "none" } peek_backtrace_on_error_opt <- function(name) { opt <- peek_option(name) if (!is_null(opt) && !is_string(opt, backtrace_on_error_opts)) { options(list2("{name}" := NULL)) warn(c( sprintf("Invalid %s option.", format_arg(name)), i = "The option was just reset to `NULL`." )) return(NULL) } opt }
claims_by_first_report <- function(tbl_policy, frequency, payment_severity, lags){ if (missing(frequency)) stop("Must supply frequency.") if (missing(payment_severity)) stop("Must supply payment_severity.") numFreq <- length(frequency) numSev <- length(payment_severity) frequency <- maybe_wrap_in_list(frequency) payment_severity <- maybe_wrap_in_list(payment_severity) if (numFreq > numSev) { message("frequency has more elements than severity. Recycling to accommodate.") indices <- rep_len(seq.int(numSev), length.out = numFreq) payment_severity <- payment_severity[indices] numSev <- length(payment_severity) } else if (numFreq < numSev) { message("payment_severity has more elements than frequency. Recycling to accommodate.") indices <- rep_len(seq.int(numFreq), length.out = numSev) frequency <- frequency[indices] numFreq <- length(frequency) } if (numFreq != numSev) { stop("Something very strange has happened. Contact package maintainer for support.") } if (missing(lags)) { lags <- seq.int(numFreq) } num_lags <- length(lags) numPolicies <- nrow(tbl_policy) lstClaims <- vector("list", num_lags) first_claim_id <- 1 for (iLag in seq.int(num_lags)) { claimFrequencies <- sample_or_rep(frequency[[iLag]], numPolicies) if (any(claimFrequencies < 0)) { message("Some claim frequencies are negative. These will be set to zero.") claimFrequencies <- pmax(0, claimFrequencies) } claimFrequencies <- as.integer(claimFrequencies) totalClaims <- sum(claimFrequencies) claimIDs <- seq.int(from = first_claim_id, length.out = totalClaims) first_claim_id <- max(claimIDs) + 1 policyholderIds <- mapply(rep, tbl_policy$policyholder_id, claimFrequencies, SIMPLIFY = FALSE) policyholderIds <- do.call("c", policyholderIds) effectiveDates <- mapply(rep, tbl_policy$policy_effective_date, claimFrequencies, SIMPLIFY = FALSE) effectiveDates <- do.call("c", effectiveDates) severities <- sample_or_rep(payment_severity[[iLag]], totalClaims) lstClaims[[iLag]] <- tibble(policyholder_id = policyholderIds , policy_effective_date = effectiveDates , claim_id = claimIDs , lag = lags[iLag] , payment_amount = severities) } tbl_claims <- do.call(rbind, lstClaims) tbl_claims }
if (requireNamespace("tinytest", quietly = TRUE)) { tinytest::test_package("ggiraph") }
rm(list=ls()) library(tidyverse) library(ukcovid19) library(paletteer) library(RcppRoll) library(lubridate) library(scales) library(ragg) deaths.reg <- get_data(filters="areaType=region", structure=list(date="date", name="areaName", deaths="newDeaths28DaysByDeathDate")) deaths.reg <- deaths.reg %>% mutate(pop=case_when( name=="East of England" ~ 6236072, name=="London" ~ 8961989, name=="West Midlands" ~ 5934037, name=="East Midlands" ~ 4835928, name=="North East" ~ 2669941, name=="Yorkshire and The Humber" ~ 5502967, name=="North West" ~ 7341196, name=="South East" ~ 9180135, name=="South West" ~ 5624696), mortrate=deaths*100000/pop, date=as.Date(date), mortrateroll=roll_mean(mortrate, 7, align="center", fill=NA)) %>% arrange(date) maxdate <- max(deaths.reg$date) agg_tiff("Outputs/COVIDDeathsxRegionLine.tiff", units="in", width=10, height=7, res=500) deaths.reg %>% filter(date<maxdate-days(3)) %>% ggplot()+ geom_line(aes(x=date, y=mortrateroll, colour=name))+ theme_classic()+ scale_x_date(name="", breaks=breaks_pretty(n=interval(min(deaths.reg$date, na.rm=TRUE), maxdate-days(3))%/% months(1)))+ scale_y_continuous(name="Daily COVID-19 deaths per 100,000")+ scale_colour_paletteer_d("LaCroixColoR::paired", name="Region")+ labs(title="COVID-19 deaths are falling consistently across all regions of England", subtitle="Daily deaths per 100,000 within 28 days of a positive COVID-19 test", caption="Data from PHE | Plot by @VictimOfMaths")+ theme(plot.title=element_text(face="bold", size=rel(1.2))) dev.off() agg_tiff("Outputs/COVIDDeathsxRegionLineRecent.tiff", units="in", width=10, height=7, res=500) deaths.reg %>% filter(date<maxdate-days(3) & date>as.Date("2020-09-01")) %>% ggplot()+ geom_line(aes(x=date, y=mortrateroll, colour=name))+ theme_classic()+ scale_x_date(name="", breaks=breaks_pretty(n=interval(min(deaths.reg$date, na.rm=TRUE), maxdate-days(3))%/% months(1)))+ scale_y_continuous(name="Daily COVID-19 deaths per 100,000")+ scale_colour_paletteer_d("LaCroixColoR::paired", name="Region")+ labs(title="Deaths associated with COVID-19 are still falling rapidly across England", subtitle="Daily deaths per 100,000 within 28 days of a positive COVID-19 test", caption="Data from PHE | Plot by @VictimOfMaths")+ theme(plot.title=element_text(face="bold", size=rel(1.2))) dev.off() peaks <- deaths.reg %>% mutate(period=if_else(date<as.Date("2020-08-01"), "Wave 1", "Wave 2")) %>% group_by(name, period) %>% summarise(peak=max(mortrateroll, na.rm=TRUE)) %>% spread(period, peak) agg_tiff("Outputs/COVIDDeathsxRegionScatter.tiff", units="in", width=8, height=6, res=500) ggplot(peaks)+ geom_point(aes(x=`Wave 1`, y=`Wave 2`, colour=name))+ geom_abline(intercept=0)+ scale_colour_paletteer_d("LaCroixColoR::paired", name="Region")+ theme_classic()+ scale_x_continuous(limits=c(0,3), name="Peak mortality rate Mar-Jul\n7-day rolling average")+ scale_y_continuous(limits=c(0,3), name="Peak mortality rate Aug-Jan\n7-day rolling average")+ labs(title="Correlation between the Spring and Autumn/Winter peaks is limited", subtitle="Deaths per 100,000 within 28 days of a positive COVID-19 test", caption="Date from PHE | Plot by @VictimOfMaths")+ theme(plot.title=element_text(face="bold", size=rel(1.2))) dev.off() deaths.nat <- get_data(filters="areaType=nation", structure=list(date="date", name="areaName", deaths="newDeaths28DaysByDeathDate")) deaths.nat <- deaths.nat %>% mutate(pop=case_when( name=="England" ~ 56286961, name=="Scotland" ~ 5463300, name=="Wales" ~ 3152879, name=="Northern Ireland" ~ 1893667), mortrate=deaths*100000/pop, date=as.Date(date)) %>% arrange(date) %>% group_by(name) %>% mutate(mortrateroll=roll_mean(mortrate, 7, align="center", fill=NA)) %>% ungroup() agg_tiff("Outputs/COVIDDeathsxCountryLine.tiff", units="in", width=10, height=7, res=500) deaths.nat %>% filter(date<maxdate-days(3)) %>% ggplot()+ geom_line(aes(x=date, y=mortrateroll, colour=name))+ theme_classic()+ scale_x_date(name="", breaks=breaks_pretty(n=interval(min(deaths.reg$date, na.rm=TRUE), maxdate-days(3))%/% months(1)))+ scale_y_continuous(name="Daily COVID-19 deaths per 100,000")+ scale_colour_paletteer_d("fishualize::Scarus_quoyi", name="")+ labs(title="Deaths linked to COVID-19 are falling in all four UK nations", subtitle="Daily deaths per 100,000 within 28 days of a positive COVID-19 test", caption="Data from PHE | Plot by @VictimOfMaths")+ theme(plot.title=element_text(face="bold", size=rel(1.2))) dev.off() agg_tiff("Outputs/COVIDDeathsxCountryLineRecent.tiff", units="in", width=10, height=7, res=500) deaths.nat %>% filter(date<maxdate-days(3) & date>as.Date("2020-09-01")) %>% ggplot()+ geom_line(aes(x=date, y=mortrateroll, colour=name))+ theme_classic()+ scale_x_date(name="", breaks=breaks_pretty(n=interval(min(deaths.reg$date, na.rm=TRUE), maxdate-days(3))%/% months(1)))+ scale_y_continuous(name="Daily COVID-19 deaths per 100,000")+ scale_colour_paletteer_d("fishualize::Scarus_quoyi", name="")+ labs(title="Mortality rates across the UK have been falling consistently since mid-January", subtitle="Daily deaths per 100,000 within 28 days of a positive COVID-19 test", caption="Data from PHE | Plot by @VictimOfMaths")+ theme(plot.title=element_text(face="bold", size=rel(1.2))) dev.off()
pred_NHANES3 <- function(age, height, gender=1, ethnicity=1, param="FEV1") { param <- param[param %in% c("FEV1", "FVC", "FEV1FVC", "PEF", "FEF2575", "FEV6", "FEV1FEV6")] if (length(param)==0) stop("No valid parameters found in argument 'param'!") dat <- rspiro_check_data(age, height, gender, ethnicity, NHANES=TRUE) dat$under20 <- dat$age<20 dat$age2 <- dat$age^2 dat$Intercept <- 1 dat$height2 <- (dat$height * 100)^2 for (p in param) { if (p %in% c("FEV1FVC", "FEV1FEV6")) { cf <- t(mapply(function(p, gend, ethn) { NHtb6[ with(NHtb6, which(param==p & sex==gend & ethnicity==ethn)), c("interceptPRD", "Age")] }, p=p, gend=dat$gender, ethn=dat$ethnicity)) cf <- matrix(as.numeric(cf), ncol=ncol(cf), nrow=nrow(cf), dimnames=dimnames(cf)) dat[[paste0("pred.", p)]] <- unname(rowSums(dat[,c("Intercept","age")]*cf))/100 } else { cf <- t(mapply(function(p, gend, ethn, u20) { NHtb45[ with(NHtb45, which(param==p & sex==gend & ethnicity==ethn & under20==u20)), c("intercept", "age", "age2", "HtPRD")] }, p=p, gend=dat$gender, ethn=dat$ethnicity, u20=dat$under20)) cf <- matrix(as.numeric(cf), ncol=ncol(cf), nrow=nrow(cf), dimnames=dimnames(cf)) dat[[paste0("pred.", p)]] <- unname(rowSums(dat[,c("Intercept","age","age2","height2")]*cf)) } } return(dat[,grep("pred", names(dat), fixed=TRUE)]) }
name_stages <- function(mat, names = NULL, prefix = "stage_", left_pad = TRUE) { if (!is.matrix(mat) && !is.list(mat)) { stop("Argument `mat` must be either a matrix or list of matrices.\n") } if (is.matrix(mat)) { if (length(unique(dim(mat))) != 1L) { stop("When `mat` is supplied as a matrix, it must be square.\n") } else { mdim <- nrow(mat) } } else { if (length(unique(unlist(lapply(mat, dim), use.names = FALSE))) != 1L) { stop("Each matrix in `mat` must be square with the same dimensions.\n") } else { mdim <- nrow(mat[[1]]) } } if (is.null(names) && !is.character(prefix)) { stop("Either stage `names` or a naming `prefix` must be supplied.\n") } if (!is.null(names) && is.character(prefix)){ warning("Naming `prefix` ignored, using stage `names` instead.\n") } if (is.null(names)) { if (isTRUE(left_pad)) { fmt <- paste0("%0", nchar(mdim), "d") names <- paste0(prefix, sprintf(fmt, 1:mdim)) } else if (isFALSE(left_pad)) { names <- 1:mdim } else { stop("Argument `left_pad` must be of type logical (TRUE/FALSE).\n") } } if (mdim != length(names)) { stop("Incorrect number of stage names supplied: ", length(names), " names supplied for ", mdim, " life stages.\n") } if (is.list(mat) && !is.null(unlist(lapply(mat, dimnames), use.names = FALSE)) | is.matrix(mat) && !is.null(unlist(dimnames(mat), use.names = FALSE))) { warning("Existing stage names have been overwritten!\n") } if (is.matrix(mat)) { dimnames(mat) <- list(names, names) } else { mat <- lapply(mat, `dimnames<-`, list(names, names)) } return(mat) }
"plot.surface" <- function(x, main = NULL, type = "C", zlab = NULL, xlab = NULL, ylab = NULL, levels = NULL, zlim = NULL, graphics.reset = NULL, labcex = 0.6, add.legend = TRUE, ...) { obj <- x old.par <- par(no.readonly = TRUE) if (is.na(match(type, c("b", "c", "C", "I", "p")))) { stop("plot type does not match b, C, I, or p.") } if (is.null(zlim)) { zlim = range(obj$z, na.rm = TRUE) } if (is.null(graphics.reset) & (type == "b")) { graphics.reset <- TRUE } else { graphics.reset <- FALSE } if (graphics.reset) { on.exit(par(old.par)) } if (is.null(xlab)) { if (is.null(obj$xlab)) xlab <- "X" else xlab <- obj$xlab } if (is.null(ylab)) { if (is.null(obj$ylab)) ylab <- "Y" else ylab <- obj$ylab } if (is.null(zlab)) { if (is.null(obj$zlab)) zlab <- "Z" else zlab <- obj$zlab } if (is.null(main)) if (!is.null(obj$main)) main <- obj$main if (type == "b") set.panel(1, 2, TRUE) if (type == "p" | type == "b") { if (type == "b") { add.legend <- FALSE old.mar <- par()$mar par(mar = c(0, 5, 0, 0)) } drape.plot(obj, xlab = xlab, ylab = ylab, zlab = zlab, zlim = zlim, add.legend = add.legend, ...) if (!is.null(main)) title(main) } if (type == "I") { image.plot(obj$x, obj$y, obj$z, xlab = xlab, ylab = ylab, zlim = zlim, ...) if ((!is.null(main)) & type != "b") title(main) } if (type == "c") { if (is.null(levels)) levels <- pretty(obj$z[!is.na(obj$z)], 5) contour(obj$x, obj$y, obj$z, levels = levels, labcex = labcex, lwd = 2, ...) if ((!is.null(main)) & type != "b") title(main) } if (type == "b" | type == "C") { if (type == "b") { par(mar = old.mar) } image.plot(obj$x, obj$y, obj$z, xlab = xlab, ylab = ylab, graphics.reset = graphics.reset, zlim = zlim, ...) if (is.null(levels)) levels <- pretty(obj$z[!is.na(obj$z)], 5) contour(obj$x, obj$y, obj$z, add = TRUE, levels = levels, labcex = labcex, col = "black", lwd = 2) if ((!is.null(main)) & type != "b") title(main) } invisible() }
isPositiveNumberOrNaScalar <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = 1, zeroAllowed = TRUE, negativeAllowed = FALSE, positiveAllowed = TRUE, nonIntegerAllowed = TRUE, naAllowed = TRUE, nanAllowed = FALSE, infAllowed = FALSE, message = message, argumentName = argumentName) }
"pine"
names.clock_rcrd <- function(x) { .Call(`_clock_clock_rcrd_names`, x) } `names<-.clock_rcrd` <- function(x, value) { .Call(`_clock_clock_rcrd_set_names`, x, value) } `[.clock_rcrd` <- function(x, i) { i <- maybe_missing(i, default = TRUE) vec_slice(x, i) } `[[.clock_rcrd` <- function(x, i) { size <- vec_size(x) names <- names(x) i <- vec_as_location2(i, n = size, names = names, arg = "i") x <- unname(x) vec_slice(x, i) } vec_math.clock_rcrd <- function(.fn, .x, ...) { switch( .fn, is.nan = clock_rcrd_is_nan(.x), is.finite = clock_rcrd_is_finite(.x), is.infinite = clock_rcrd_is_infinite(.x), NextMethod() ) } clock_rcrd_is_nan <- function(x) { vec_rep(FALSE, vec_size(x)) } clock_rcrd_is_finite <- function(x) { !vec_equal_na(x) } clock_rcrd_is_infinite <- function(x) { vec_rep(FALSE, vec_size(x)) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(saeHB)
makeWeightsAIC <- function(aics){ min.i<-which(aics==min(aics)) deltas<-aics-aics[min.i][1] w<-exp(-deltas/2)/sum(exp(-deltas/2)) return(w) }
knitr::opts_chunk$set(collapse = T, comment = " options(tibble.print_min = 4L, tibble.print_max = 4L) library(grapherator) addEdgesThreshold = function(graph, threshold, ...) { n = getNumberOfNodes(graph) coords = getNodeCoordinates(graph) dists = as.matrix(dist(coords, method = "euclidean", ...)) adj.mat = dists < threshold diag(adj.mat) = FALSE return(list(adj.mat = adj.mat, generator = "ThEG")) } set.seed(1) g = graph(lower = 0, upper = 100) g = addNodes(g, n = 25, generator = addNodesUniform) g = addEdges(g, generator = addEdgesThreshold, threshold = 30) plot(g)$pl.coords set.seed(1) g = graph(lower = 0, upper = 100) g = addNodes(g, n = 5, generator = addNodesUniform) g = addNodes(g, n = 25, by.centers = TRUE, generator = addNodesGrid, lower = c(0, 0), upper = c(15, 15)) g = addEdges(g, generator = addEdgesThreshold, threshold = 13, type = "intracluster") g = addEdges(g, generator = addEdgesDelauney, type = "intercenter") plot(g)$pl.coords
ms_explode <- function(input, force_FC = TRUE, sys = FALSE, sys_mem = 8) { UseMethod("ms_explode") } ms_explode.character <- function(input, force_FC = TRUE, sys = FALSE, sys_mem = 8) { input <- check_character_input(input) apply_mapshaper_commands(data = input, command = "-explode", force_FC = force_FC, sys = sys, sys_mem = sys_mem) } ms_explode.geo_json <- function(input, force_FC = TRUE, sys = FALSE, sys_mem = 8) { apply_mapshaper_commands(data = input, command = "-explode", force_FC = force_FC, sys = sys, sys_mem = sys_mem) } ms_explode.geo_list <- function(input, force_FC = TRUE, sys = FALSE, sys_mem = 8) { geojson <- geo_list_to_json(input) ret <- apply_mapshaper_commands(data = geojson, command = "-explode", force_FC = force_FC, sys = sys, sys_mem = sys_mem) geojsonio::geojson_list(ret) } ms_explode.SpatialPolygons <- function(input, force_FC = TRUE, sys = FALSE, sys_mem = 8) { explode_sp(input, sys = sys, sys_mem = sys_mem) } ms_explode.SpatialLines <- function(input, force_FC = TRUE, sys = FALSE, sys_mem = 8) { explode_sp(input, sys = sys, sys_mem = sys_mem) } explode_sp <- function(input, sys, sys_mem) { ms_sp(input = input, call = "-explode", sys = sys, sys_mem = sys_mem) } ms_explode.sf <- function(input, force_FC = TRUE, sys = FALSE, sys_mem = 8) { explode_sf(input = input, sys = sys, sys_mem = sys_mem) } ms_explode.sfc <- function(input, force_FC = TRUE, sys = FALSE, sys_mem = 8) { explode_sf(input = input, sys = sys, sys_mem = sys_mem) } explode_sf <- function(input, sys, sys_mem) { ms_sf(input = input, call = "-explode", sys = sys, sys_mem = sys_mem) }
print.src <- function(x, ...){ p1 <- "\nWeibull regression for a right-censored response with an interval-censored covariate\n\n" p2 <- "\nCoefficients:\n" p3 <- round(t(x$coeff[, "Estimate", drop = FALSE]), 5) rownames(p3) <- "" p4 <- paste("\nAIC: ", round(x$AIC, 1), "\n", sep = "") cat(p1) cat("Call:\n") print(x$Call) cat(p2) print(p3) cat(p4) invisible(x) }