code
stringlengths
1
13.8M
library(checkargs) context("isIntegerOrInfScalarOrNull") test_that("isIntegerOrInfScalarOrNull works for all arguments", { expect_identical(isIntegerOrInfScalarOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isIntegerOrInfScalarOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isIntegerOrInfScalarOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isIntegerOrInfScalarOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isIntegerOrInfScalarOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isIntegerOrInfScalarOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isIntegerOrInfScalarOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isIntegerOrInfScalarOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isIntegerOrInfScalarOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isIntegerOrInfScalarOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isIntegerOrInfScalarOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isIntegerOrInfScalarOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isIntegerOrInfScalarOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isIntegerOrInfScalarOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isIntegerOrInfScalarOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isIntegerOrInfScalarOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isIntegerOrInfScalarOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isIntegerOrInfScalarOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) })
setMethodS3("fitC1C2Peaks", "PairedPSCBS", function(fit, ..., tol=0.05, onError=c("error", "warning", "skip"), verbose=FALSE) { onError <- match.arg(onError); verbose <- Arguments$getVerbose(verbose); if (verbose) { pushState(verbose); on.exit(popState(verbose)); } verbose && enter(verbose, "Fitting the relationship between peaks in C1 and C2"); d1d2 <- fitC1C2Densities(fit, orderBy="x"); pList <- d1d2$pList; verbose && print(verbose, pList); D <- outer(pList$C1$x, pList$C2$x, FUN="-"); idxs <- which(abs(D) < tol, arr.ind=TRUE); verbose && print(verbose, idxs); if (nrow(idxs) < 2) { msg <- sprintf("Cannot fit relationship between C1 and C2. Too few common peaks: %d", nrow(idxs)); if (onError == "error") { plotC1C2Grid(fit); throw(msg); } if (onError == "warning") { warning(msg); } msg <- sprintf("Skipping fitting the relationship between peaks in C1 and C2. %s", msg); verbose && cat(verbose, msg); warning(msg); verbose && exit(verbose); return(NULL); } c1 <- pList$C1$x[idxs[,1]]; c2 <- pList$C2$x[idxs[,2]]; dd <- cbind(pList$C1$density[idxs[,1]], pList$C2$density[idxs[,2]]); dd <- rowSums(dd^2); w <- dd / sum(dd); verbose && print(verbose, cbind(c1=c1, c2=c2, weights=w)); f <- lm(c2 ~ 1 + c1, weights=w); verbose && print(verbose, f); a <- coef(f)[1]; b <- coef(f)[2]; params <- list(a=a, b=b); verbose && print(verbose, params); res <- list(fit=f, params=params); verbose && str(verbose, res); verbose && exit(verbose); res; }) setMethodS3("fitC1C2Densities", "PairedPSCBS", function(fit, adjust=0.2, tol=0.05, orderBy=c("density", "x"), ...) { orderBy <- match.arg(orderBy); data <- extractC1C2(fit); n <- data[,4, drop=TRUE]; n <- sqrt(n); w <- n/sum(n, na.rm=TRUE); adjust <- 0.2; dList <- list(); for (cc in 1:2) { y <- data[,cc]; ok <- is.finite(y) & is.finite(w); y <- y[ok]; wt <- w[ok]/sum(w[ok]); d <- density(y, weights=wt, adjust=adjust); dList[[cc]] <- d; } names(dList) <- colnames(data)[1:2]; type <- NULL; rm(list="type"); pList <- lapply(dList, FUN=function(d) { p <- .findPeaksAndValleys(d, tol=tol); p <- subset(p, type == "peak"); p <- p[order(p[[orderBy]], decreasing=c("x"=FALSE, "density"=TRUE)[orderBy]),,drop=FALSE]; }); names(pList) <- names(dList); return(list(dList=dList, pList=pList)); })
test_that("with and without title", { expect_snapshot({ pillar(add_special(10^(1:6))) pillar(add_special(10^(1:6)), title = "crayon") pillar(add_special(10^(1:6)), title = "short") pillar(add_special(10^(1:6)), title = "somewhat_wider") pillar(add_special(10^(1:6)), title = "exactly_fifteen") pillar(add_special(10^(1:6)), title = "absolutely_breaking_all_sensible_boundaries", width = 18) }) })
context("Test main functions") test_that("test zones",{ x <- system.file("extdata", "yangambi.png", package = "foto", mustWork = TRUE) expect_output(str(foto(x = raster::raster(x), plot = FALSE))) expect_output(str(foto(x = raster::brick(x), plot = FALSE))) expect_output(str(foto(x = x, plot = FALSE))) expect_output(str(foto(x = raster::raster(x), plot = TRUE))) expect_error(foto()) expect_error(foto(x = "./no_image.png")) expect_error(foto(x = raster::raster(x), plot = FALSE, method = "xx")) }) test_that("test mw",{ r <- raster::crop(raster::raster(system.file("extdata", "yangambi.png", package = "foto", mustWork = TRUE)), raster::extent(1,30,1,30)) expect_output(str(foto(r, plot = FALSE, window_size = 25, method = "mw"))) }) test_that("test normalization",{ x <- c(1,5,10) expect_output(str(normalize(x))) expect_error(normalize()) })
raw_moment <- function(f, order) { x_tbl <- meta_x_tbl(f) switch( meta_type(f), discrete = dotprod(x_tbl[["x"]]^order, x_tbl[["prob"]]), continuous = raw_moment_con(x_tbl, order) ) } raw_moment_con <- function(x_tbl, k) { n <- nrow(x_tbl) x_l <- x_tbl[["x"]][-n] x_r <- x_tbl[["x"]][-1] x_l_k <- x_l^k x_l_k1 <- x_l_k * x_l x_r_k <- x_r^k x_r_k1 <- x_r_k * x_r y_l <- x_tbl[["y"]][-n] y_r <- x_tbl[["y"]][-1] coeffs <- compute_piecelin_density_coeffs(x_tbl, seq_len(n - 1)) piece_moments <- coeffs[["slope"]] * (x_r_k1 * x_r - x_l_k1 * x_l) / (k + 2) + coeffs[["intercept"]] * (x_r_k1 - x_l_k1) / (k + 1) approx_piece_moments <- (x_r - x_l) * (x_l_k * y_l + x_r_k * y_r) / 2 diff_x_is_small <- (x_r - x_l <= 1e-3) & (pmax(y_l, y_r) >= 1e3) piece_moments[diff_x_is_small] <- approx_piece_moments[diff_x_is_small] sum(piece_moments) } compute_density_crossings <- function(f, g) { op <- options(pdqr.assert_args = FALSE) on.exit(options(op)) compute_piecequad_crossings(piecequad_density(f), piecequad_density(g)) } piecequad_density <- function(f) { x_tbl <- meta_x_tbl(f) n <- nrow(x_tbl) coeffs <- compute_piecelin_density_coeffs(x_tbl, seq_len(n - 1)) list( x = x_tbl[["x"]], a = rep(0, n - 1), b = coeffs[["slope"]], c = coeffs[["intercept"]] ) } compute_cdf_crossings <- function(f, g) { op <- options(pdqr.assert_args = FALSE) on.exit(options(op)) compute_piecequad_crossings(piecequad_cdf(f), piecequad_cdf(g)) } piecequad_cdf <- function(f) { x_tbl <- meta_x_tbl(f) n <- nrow(x_tbl) x_l <- x_tbl[["x"]][-n] coeffs <- compute_piecelin_density_coeffs(x_tbl, seq_len(n - 1)) slope <- coeffs[["slope"]] inter <- coeffs[["intercept"]] list( x = x_tbl[["x"]], a = 0.5 * slope, b = inter, c = x_tbl[["cumprob"]][-n] - (0.5 * slope * x_l + inter) * x_l ) } compute_piecequad_crossings <- function(piecequad_1, piecequad_2) { pair <- piecequad_pair_regrid(piecequad_1, piecequad_2) grid <- pair[[1]][["x"]] x_l <- grid[-length(grid)] x_r <- grid[-1] a <- pair[[1]][["a"]] - pair[[2]][["a"]] b <- pair[[1]][["b"]] - pair[[2]][["b"]] c <- pair[[1]][["c"]] - pair[[2]][["c"]] quad_solutions <- solve_piecequad(a, b, c, x_l, x_r) x_quad_1 <- quad_solutions[["solution_1"]] x_quad_2 <- quad_solutions[["solution_2"]] x_lin <- na_outside(-c / b, x_l, x_r) is_const_sol <- is_zero(c) is_const_sol[!is_const_sol] <- NA x_const_1 <- x_l[is_const_sol] x_const_2 <- x_r[is_const_sol] is_quad <- !is_zero(a) is_lin <- !(is_quad | is_zero(b)) is_const <- !(is_quad | is_lin) res <- c( x_quad_1[is_quad], x_quad_2[is_quad], x_lin[is_lin], x_const_1[is_const], x_const_2[is_const] ) sort(unique(res[is.finite(res)])) } piecequad_pair_regrid <- function(piecequad_1, piecequad_2) { x_1 <- piecequad_1[["x"]] x_2 <- piecequad_2[["x"]] left <- max(min(x_1), min(x_2)) right <- min(max(x_1), max(x_2)) if (left > right) { num <- numeric(0) return(list( piecequad_1 = list(x = num, a = num, b = num, c = num), piecequad_2 = list(x = num, a = num, b = num, c = num) )) } grid <- sort(union(x_1, x_2)) grid <- grid[(grid >= left) & (grid <= right)] list( piecequad_1 = piecequad_regrid(grid, piecequad_1), piecequad_2 = piecequad_regrid(grid, piecequad_2) ) } piecequad_regrid <- function(grid, piecequad) { grid <- rep(grid, length.out = max(2, length(grid))) mids <- 0.5 * (grid[-1] + grid[-length(grid)]) inds <- findInterval(mids, piecequad[["x"]], all.inside = TRUE) list( x = grid, a = piecequad[["a"]][inds], b = piecequad[["b"]][inds], c = piecequad[["c"]][inds] ) } solve_piecequad <- function(a, b, c, x_l, x_r) { a_new <- a b_new <- 2 * a * x_l + b c_new <- (a * x_l + b) * x_l + c discr_sqrt <- na_sqrt(b_new^2 - 4 * a_new * c_new) t_sol_1 <- (-b_new + discr_sqrt) / (2 * a_new) t_sol_2 <- (-b_new - discr_sqrt) / (2 * a_new) x_sol_1 <- na_outside(x_l + t_sol_1, x_l, x_r) x_sol_2 <- na_outside(x_l + t_sol_2, x_l, x_r) list(solution_1 = x_sol_1, solution_2 = x_sol_2) } na_sqrt <- function(x) { res <- rep(NA_real_, length(x)) x_is_pos <- is.finite(x) & (x >= 0) res[x_is_pos] <- sqrt(x[x_is_pos]) res } na_outside <- function(x, left, right) { x[!is.na(x) & ((x < left) | (x > right))] <- NA x } approx_discrete <- function(f) { assert_pdqr_fun(f) n_grid <- get_approx_discrete_n_grid_option() if (meta_type(f) == "continuous") { disable_asserting_locally() f <- form_retype( form_regrid(f, n_grid = n_grid, method = "x"), type = "discrete", method = "piecelin" ) } f } get_approx_discrete_n_grid_option <- function() { n_grid <- getOption("pdqr.approx_discrete_n_grid") enable_asserting_locally() assert_type( n_grid, is_single_number, min_val = 1, x_name = 'Option "pdqr.approx_discrete_n_grid"', type_name = "single number not less than 1" ) n_grid }
library(act) t <- examplecorpus@transcripts[[1]] path <- tempfile(pattern = t@name, tmpdir = tempdir(), fileext = ".srt") \dontrun{ path <- file.path("PATH_TO_AN_EXISTING_FOLDER_ON_YOUR_COMPUTER", paste(t@name, ".srt", sep="")) } act::export_srt(t=t, outputPath=path)
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(age = 60), .Names = \"age\", row.names = c(NA, -1L), class = \"data.frame\"), \"numeric\")")); .Internal(is.vector(argv[[1]], argv[[2]])); }, o=expected);
test_that("function works for each input type", { d <- getBillSponsors("2007-08", "HB 1001", type = "df") l <- getBillSponsors("2007-08", "HB 1001", type = "list") x <- getBillSponsors("2007-08", "HB 1001", type = "xml") expect_true(any(class(d) == "data.frame",is.null(d))) expect_true(any(typeof(l) == "list",is.null(l))) expect_true(any(typeof(x[[1]]) == "externalptr",is.null(x))) }) test_that("function handles vector inputs", { bills <- c("HB 1001", "HB 1002") d <- getBillSponsors("2007-08", bills, type = "df") l <- getBillSponsors("2007-08", bills, type = "list") x <- getBillSponsors("2007-08", bills, type = "xml") expect_true(any(identical(unique(d$BillId),bills),is.null(d))) expect_true(any(identical(names(l),bills),is.null(l))) expect_true(any(identical(names(x),paste("2007-08", bills, sep = "//")),is.null(x))) }) test_that("function checks for proper formatting", { expect_error(getBillSponsors("2007-2008", "1001")) expect_error(getBillSponsors("2007-08", "1001")) expect_error(getBillSponsors("1989-90", "HB 1001")) })
file.edit(fname2) source(fname2)
context("publications") test_that("publications basic functionality works", { vcr::use_cassette("publications", { aa <- publications(tsn = 70340) }) expect_is(aa, "data.frame") expect_is(aa, "tbl_df") expect_is(aa$isbn, "character") expect_gt(NROW(aa), 0) }) test_that("publications - xml works", { vcr::use_cassette("publications-xml", { aa <- publications(tsn = 70340, wt = "xml") }) expect_is(aa, "character") expect_match(aa, "xmlns") }) test_that("publications - raw JSON works", { vcr::use_cassette("publications-json", { aa <- publications(tsn = 70340, raw = TRUE) }) expect_is(aa, "character") expect_false(grepl("xmlns", aa)) }) test_that("publications fails well", { expect_error(publications(), "\"tsn\" is missing") expect_error(publications(tsn = 70340, wt = "ffa"), "'wt' must be one of") vcr::use_cassette("publications-fails-well", { expect_error(publications(tsn = "Asdfasdfa"), "Bad Request \\(HTTP 400\\)", class = "error") }) })
c33f <- function(mati,b_hat,g_hat,k,amp){ c33 <- (mati[2,2] * g_hat^2 - 2 * mati[2,3] * b_hat * g_hat + mati[3,3]*b_hat^2) / (k * amp^2) return(c33) }
initialize_non_glu <- function(module, input_dim, output_dim) { gain_value <- sqrt((input_dim + output_dim)/sqrt(4*input_dim)) torch::nn_init_xavier_normal_(module$weight, gain = gain_value) } initialize_glu <- function(module, input_dim, output_dim) { gain_value <- sqrt((input_dim + output_dim)/sqrt(input_dim)) torch::nn_init_xavier_normal_(module$weight, gain = gain_value) } gbn <- torch::nn_module( "gbn", initialize = function(input_dim, virtual_batch_size=128, momentum=0.01) { self$input_dim <- input_dim self$virtual_batch_size <- virtual_batch_size self$bn = torch::nn_batch_norm1d(self$input_dim, momentum=momentum) }, forward = function(x) { chunks <- x$chunk(as.integer(ceiling(x$shape[1] / self$virtual_batch_size)), 1) res <- lapply(chunks, self$bn) torch::torch_cat(res, dim=1) } ) tabnet_encoder <- torch::nn_module( "tabnet_encoder", initialize = function(input_dim, output_dim, n_d=8, n_a=8, n_steps=3, gamma=1.3, n_independent=2, n_shared=2, epsilon=1e-15, virtual_batch_size=128, momentum=0.01, mask_type="sparsemax") { self$input_dim <- input_dim self$output_dim <- output_dim self$n_d <- n_d self$n_a <- n_a self$n_steps <- n_steps self$gamma <- gamma self$epsilon <- epsilon self$n_independent <- n_independent self$n_shared <- n_shared self$virtual_batch_size <- virtual_batch_size self$mask_type <- mask_type self$initial_bn <- torch::nn_batch_norm1d(self$input_dim, momentum=momentum) if (self$n_shared > 0) { shared_feat_transform <- torch::nn_module_list() for (i in seq_len(self$n_shared)) { if (i == 1) { shared_feat_transform$append(torch::nn_linear( self$input_dim, 2*(n_d + n_a), bias = FALSE) ) } else { shared_feat_transform$append(torch::nn_linear( n_d + n_a, 2*(n_d + n_a), bias = FALSE )) } } } else { shared_feat_transform <- NULL } self$initial_splitter <- feat_transformer( self$input_dim, n_d+n_a, shared_feat_transform, n_glu_independent=self$n_independent, virtual_batch_size=self$virtual_batch_size, momentum=momentum ) self$feat_transformers <- torch::nn_module_list() self$att_transformers <- torch::nn_module_list() for (step in seq_len(n_steps)) { transformer <- feat_transformer(self$input_dim, n_d+n_a, shared_feat_transform, n_glu_independent=self$n_independent, virtual_batch_size=self$virtual_batch_size, momentum=momentum) attention <- attentive_transformer(n_a, self$input_dim, virtual_batch_size=self$virtual_batch_size, momentum=momentum, mask_type=self$mask_type) self$feat_transformers$append(transformer) self$att_transformers$append(attention) } }, forward = function(x, prior) { res <- torch::torch_tensor(0, device = x$device) x <- self$initial_bn(x) M_loss <- 0 att <- self$initial_splitter(x)[, (self$n_d + 1):N] steps_output <- list() for (step in seq_len(self$n_steps)) { M <- self$att_transformers[[step]](prior, att) M_loss <- M_loss + torch::torch_mean(torch::torch_sum( torch::torch_mul(M, torch::torch_log(M + self$epsilon)), dim = 2 )) prior <- torch::torch_mul(self$gamma - M, prior) masked_x <- torch::torch_mul(M, x) out <- self$feat_transformers[[step]](masked_x) d <- torch::nnf_relu(out[.., 1:(self$n_d)]) steps_output[[step]] <- d res <- torch::torch_add(res, d) att <- out[, (self$n_d + 1):N] } M_loss <- M_loss/self$n_steps list(res, M_loss, steps_output) }, forward_masks = function(x) { x <- self$initial_bn(x) prior <- torch::torch_ones(x$shape, device = x$device) M_explain <- torch::torch_zeros(x$shape, device = x$device) att <- self$initial_splitter(x)[, (self$n_d+1):N] masks <- list() for (step in seq_len(self$n_steps)) { M <- self$att_transformers[[step]](prior, att) masks[[step]] <- M prior <- torch::torch_mul(self$gamma - M, prior) masked_x <- torch::torch_mul(M, x) out <- self$feat_transformers[[step]](masked_x) d <- torch::nnf_relu(out[.., 1:(self$n_d)]) step_importance <- torch::torch_sum(d, dim=2) M_explain <- M_explain + torch::torch_mul(M, step_importance$unsqueeze(dim=2)) att <- out[, (self$n_d+1):N] } list(M_explain, masks) } ) tabnet_decoder <- torch::nn_module( "tabnet_decoder", initialize = function(input_dim, n_d=8, n_steps=3, n_independent=2, n_shared=2, virtual_batch_size=128, momentum=0.02) { self$input_dim <- input_dim self$n_d <- n_d self$n_steps <- n_steps self$n_independent <- n_independent self$n_shared <- n_shared self$virtual_batch_size <- virtual_batch_size self$feat_transformers <- torch::nn_module_list() self$reconstruction_layers <- torch::nn_module_list() if (self$n_shared > 0) { shared_feat_transform <- torch::nn_module_list() for (i in seq_len(self$n_shared)) { if (i == 1) { shared_feat_transform$append(torch::nn_linear( n_d, 2 * n_d, bias = FALSE) ) } else { shared_feat_transform$append(torch::nn_linear( n_d, 2 * n_d, bias = FALSE) ) } } } else { shared_feat_transform <- NULL } for (step in seq_len(n_steps)) { transformer <- feat_transformer(n_d, n_d, shared_feat_transform, n_glu_independent=self$n_independent, virtual_batch_size=self$virtual_batch_size, momentum=momentum) self$feat_transformers$append(transformer) reconstruction_layer <- torch::nn_linear(n_d, self$input_dim, bias = FALSE) initialize_non_glu(reconstruction_layer, n_d, self$input_dim) self$reconstruction_layers$append(reconstruction_layer) } }, forward = function(steps_output) { res <- torch::torch_tensor(0, device = steps_output[[1]]$device) for (step_nb in seq_along(steps_output)) { x <- self$feat_transformers[[step_nb]](steps_output[[step_nb]]) x <- self$reconstruction_layers[[step_nb]](steps_output[[step_nb]]) res <- torch::torch_add(res, x) } res }, ) tabnet_pretrainer <- torch::nn_module( "tabnet_pretrainer", initialize = function(input_dim, pretraining_ratio=0.2, n_d=8, n_a=8, n_steps=3, gamma=1.3, cat_idxs=c(), cat_dims=c(), cat_emb_dim=1, n_independent=2, n_shared=2, epsilon=1e-15, virtual_batch_size=128, momentum=0.01, mask_type="sparsemax") { self$input_dim <- input_dim self$pretraining_ratio <- pretraining_ratio self$.check <- torch::nn_parameter(torch::torch_tensor(1, requires_grad = TRUE)) self$n_d <- n_d self$n_a <- n_a self$n_steps <- n_steps self$gamma <- gamma self$cat_idxs <- cat_idxs self$cat_dims <- cat_dims self$cat_emb_dim <- cat_emb_dim self$epsilon <- epsilon self$n_independent <- n_independent self$n_shared <- n_shared self$mask_type <- mask_type self$initial_bn <- torch::nn_batch_norm1d(self$input_dim, momentum=momentum) if (self$n_steps <= 0) stop("n_steps should be a positive integer.") if (self$n_independent == 0 && self$n_shared == 0) stop("n_shared and n_independant can't be both zero.") self$virtual_batch_size <- virtual_batch_size self$embedder <- embedding_generator(input_dim, cat_dims, cat_idxs, cat_emb_dim) self$post_embed_dim <- self$embedder$post_embed_dim self$masker = random_obfuscator(self$pretraining_ratio) self$encoder = tabnet_encoder( input_dim=self$post_embed_dim, output_dim=self$post_embed_dim, n_d=n_d, n_a=n_a, n_steps=n_steps, gamma=gamma, n_independent=n_independent, n_shared=n_shared, epsilon=epsilon, virtual_batch_size=virtual_batch_size, momentum=momentum, mask_type=mask_type ) self$decoder = tabnet_decoder( self$post_embed_dim, n_d=n_d, n_steps=n_steps, n_independent=n_independent, n_shared=n_shared, virtual_batch_size=virtual_batch_size, momentum=momentum ) }, forward = function(x) { embedded_x <- self$embedder(x) if (self$training) { masker_out_lst <- self$masker(embedded_x) obf_vars <- masker_out_lst[[2]] prior <- 1 - obf_vars steps_out <- self$encoder(masker_out_lst[[1]], prior)[[3]] res <- self$decoder(steps_out) list(res, embedded_x, obf_vars) } else { prior <- torch::torch_ones(size = x$shape, device = x$device) steps_out <- self$encoder(embedded_x, prior)[[3]] res <- self$decoder(steps_out) list(res, embedded_x, torch::torch_ones(embedded_x$shape, device = x$device)) } }, forward_masks = function(x) { embedded_x <- self$embedder(x) self$encoder$forward_masks(embedded_x) } ) tabnet_no_embedding <- torch::nn_module( "tabnet_no_embedding", initialize = function(input_dim, output_dim, n_d=8, n_a=8, n_steps=3, gamma=1.3, n_independent=2, n_shared=2, epsilon=1e-15, virtual_batch_size=128, momentum=0.02, mask_type="sparsemax") { self$input_dim <- input_dim self$output_dim <- output_dim self$n_d <- n_d self$n_a <- n_a self$n_steps <- n_steps self$gamma <- gamma self$epsilon <- epsilon self$n_independent <- n_independent self$n_shared <- n_shared self$virtual_batch_size <- virtual_batch_size self$mask_type <- mask_type self$initial_bn <- torch::nn_batch_norm1d(self$input_dim, momentum=0.01) self$encoder <- tabnet_encoder( input_dim=input_dim, output_dim=output_dim, n_d=n_d, n_a=n_a, n_steps=n_steps, gamma=gamma, n_independent=n_independent, n_shared=n_shared, epsilon=epsilon, virtual_batch_size=virtual_batch_size, momentum=momentum, mask_type=mask_type ) self$final_mapping <- torch::nn_linear(n_d, output_dim, bias=FALSE) initialize_non_glu(self$final_mapping, n_d, output_dim) }, forward = function(x) { prior <- torch::torch_ones(size = x$shape, device = x$device) self_encoder_lst <- self$encoder(x, prior) steps_output <- self_encoder_lst[[1]] M_loss <- self_encoder_lst[[2]] res <- torch::torch_sum(torch::torch_stack(steps_output, dim=1), dim=1) res <- self$final_mapping(res) list(res, M_loss) }, forward_masks = function(x) { self$encoder$forward_masks(x) } ) tabnet_nn <- torch::nn_module( "tabnet", initialize = function(input_dim, output_dim, n_d=8, n_a=8, n_steps=3, gamma=1.3, cat_idxs=c(), cat_dims=c(), cat_emb_dim=1, n_independent=2, n_shared=2, epsilon=1e-15, virtual_batch_size=128, momentum=0.02, mask_type="sparsemax") { self$cat_idxs <- cat_idxs self$cat_dims <- cat_dims self$cat_emb_dim <- cat_emb_dim self$.check <- torch::nn_parameter(torch::torch_tensor(1, requires_grad = TRUE)) self$input_dim <- input_dim self$output_dim <- output_dim self$n_d <- n_d self$n_a <- n_a self$n_steps <- n_steps self$gamma <- gamma self$epsilon <- epsilon self$n_independent <- n_independent self$n_shared <- n_shared self$mask_type <- mask_type if (self$n_steps <= 0) stop("n_steps should be a positive integer.") if (self$n_independent == 0 && self$n_shared == 0) stop("n_shared and n_independant can't be both zero.") self$virtual_batch_size <- virtual_batch_size self$embedder <- embedding_generator(input_dim, cat_dims, cat_idxs, cat_emb_dim) self$post_embed_dim <- self$embedder$post_embed_dim self$tabnet <- tabnet_no_embedding(self$post_embed_dim, output_dim, n_d, n_a, n_steps, gamma, n_independent, n_shared, epsilon, virtual_batch_size, momentum, mask_type) }, forward = function(x) { x <- self$embedder(x) self$tabnet(x) }, forward_masks = function(x) { x <- self$embedder(x) self$tabnet$forward_masks(x) } ) attentive_transformer <- torch::nn_module( "attentive_transformer", initialize = function(input_dim, output_dim, virtual_batch_size=128, momentum=0.02, mask_type="sparsemax") { self$fc <- torch::nn_linear(input_dim, output_dim, bias=FALSE) initialize_non_glu(self$fc, input_dim, output_dim) self$bn <- gbn(output_dim, virtual_batch_size=virtual_batch_size, momentum=momentum) if (mask_type == "sparsemax") self$selector <- torch::nn_contrib_sparsemax(dim=-1) else if (mask_type == "entmax") self$selector <- entmax(dim=-1) else stop("Please choose either sparsemax or entmax as masktype") }, forward = function(priors, processed_feat) { x <- self$fc(processed_feat) x <- self$bn(x) x <- torch::torch_mul(x, priors) x <- self$selector(x) x } ) feat_transformer <- torch::nn_module( "feat_transformer", initialize = function(input_dim, output_dim, shared_layers, n_glu_independent, virtual_batch_size=128, momentum=0.02) { params <- list( 'n_glu'= n_glu_independent, 'virtual_batch_size'= virtual_batch_size, 'momentum'= momentum ) if (is.null(shared_layers)) { self$shared <- torch::nn_identity() is_first <- TRUE } else { self$shared <- glu_block(input_dim, output_dim, first=TRUE, shared_layers=shared_layers, n_glu=length(shared_layers), virtual_batch_size=virtual_batch_size, momentum=momentum) is_first <- FALSE } if (n_glu_independent == 0) { self$specifics <- torch::nn_identity() } else { if (is_first) spec_input_dim <- input_dim else spec_input_dim <- output_dim self$specifics <- do.call(glu_block, append( list(spec_input_dim, output_dim, first = is_first), params )) } }, forward = function(x) { x <- self$shared(x) x <- self$specifics(x) x } ) glu_block <- torch::nn_module( "glu_block", initialize = function(input_dim, output_dim, n_glu=2, first=FALSE, shared_layers=NULL, virtual_batch_size=128, momentum=0.02) { self$first <- first self$shared_layers <- shared_layers self$n_glu <- n_glu self$glu_layers <- torch::nn_module_list() params = list( 'virtual_batch_size'= virtual_batch_size, 'momentum'= momentum ) if (length(shared_layers) > 0) fc <- shared_layers[[1]] else fc <- NULL self$glu_layers$append(do.call(glu_layer, append( list(input_dim, output_dim, fc = fc), params ))) if (self$n_glu >= 2) { for (glu_id in 2:(self$n_glu)) { if (length(shared_layers) > 0) fc <- shared_layers[[glu_id]] else fc <- NULL self$glu_layers$append(do.call(glu_layer, append( list(output_dim, output_dim, fc = fc), params ))) } } }, forward = function(x) { scale <- torch::torch_sqrt(torch::torch_tensor(0.5, device = x$device)) if (self$first) { x <- self$glu_layers[[1]](x) layers_left <- seq_len(self$n_glu)[-1] } else { layers_left <- seq_len(self$n_glu) } for (glu_id in layers_left) { x <- torch::torch_add(x, self$glu_layers[[glu_id]](x)) x <- x*scale } x } ) glu_layer <- torch::nn_module( "glu_layer", initialize = function(input_dim, output_dim, fc=NULL, virtual_batch_size=128, momentum=0.02) { self$output_dim <- output_dim if (!is.null(fc)) self$fc <- fc else self$fc <- torch::nn_linear(input_dim, 2*output_dim, bias = FALSE) initialize_glu(self$fc, input_dim, 2*output_dim) self$bn <- gbn(2*output_dim, virtual_batch_size=virtual_batch_size, momentum=momentum) }, forward = function(x) { x <- self$fc(x) x <- self$bn(x) out <- torch::torch_mul( x[, 1:self$output_dim], torch::torch_sigmoid(x[, (self$output_dim+1):N]) ) out } ) embedding_generator <- torch::nn_module( "embedding_generator", initialize = function(input_dim, cat_dims, cat_idxs, cat_emb_dim) { if (length(cat_dims) == 0 || length(cat_idxs) == 0) { self$skip_embedding <- TRUE self$post_embed_dim <- input_dim return(invisible(NULL)) } self$skip_embedding <- FALSE if (length(cat_emb_dim) == 1) self$cat_emb_dims <- rep(cat_emb_dim, length(cat_idxs)) else self$cat_emb_dims <- cat_emb_dim if (length(self$cat_emb_dims) != length(cat_dims)){ msg = "cat_emb_dim and cat_dims must be lists of same length, got {length(self$cat_emb_dims)} and {length(cat_dims)}" stop(msg) } self$post_embed_dim <- as.integer(input_dim + sum(self$cat_emb_dims) - length(self$cat_emb_dims)) self$embeddings <- torch::nn_module_list() sorted_idx <- order(cat_idxs) cat_dims <- cat_dims[sorted_idx] self$cat_emb_dims <- self$cat_emb_dims[sorted_idx] for (i in seq_along(cat_dims)) { self$embeddings$append( torch::nn_embedding( cat_dims[i], self$cat_emb_dims[i] ) ) } self$continuous_idx <- rep(TRUE, input_dim) self$continuous_idx[cat_idxs] <- FALSE }, forward = function(x) { if (self$skip_embedding) { return(x) } cols <- list() cat_feat_counter <- 1 for (i in seq_along(self$continuous_idx)) { if (self$continuous_idx[i]) { cols[[i]] <- x[,i]$to(dtype = torch::torch_float())$view(c(-1, 1)) } else { cols[[i]] <- self$embeddings[[cat_feat_counter]](x[, i]$to(dtype = torch::torch_long())) cat_feat_counter <- cat_feat_counter + 1 } } post_embeddings <- torch::torch_cat(cols, dim=2) post_embeddings } ) random_obfuscator <- torch::nn_module( "random_obfuscator", initialize = function(pretraining_ratio) { if (pretraining_ratio <= 0 || pretraining_ratio >= 1) { pretraining_ratio <- 0.5 } self$pretraining_ratio <- pretraining_ratio }, forward = function(x) { ones <- torch::torch_ones(size = x$shape, device="cpu") obfuscated_vars <- torch::torch_bernoulli(self$pretraining_ratio * ones)$to(device=x$device) masked_input = torch::torch_mul(1 - obfuscated_vars, x) list(masked_input, obfuscated_vars) } )
test_that("read_builtin works", { expect_error(read_builtin(AirPassengers, "datasets")) expect_error(read_builtin("nasa", "readr")) if (!"dplyr" %in% loadedNamespaces()) { expect_error(read_builtin("starwars")) } expect_true(is.data.frame(read_builtin("BOD", "datasets"))) if ("datasets" %in% loadedNamespaces()) { expect_true(is.data.frame(read_builtin("BOD"))) } })
PredictivePosterior.TSPNDE <- function (n1, m2, u2, logitP.fixed, p, U, mu, sigma) { s <- length(n1) t <- length(u2) p.bkp <- p Theta <- lapply(1:nrow(p),function(i) lnTheta(mu[i,],sigma[i,],s,t)) simData <- lapply(1:nrow(p),function(i) simTSPNDE(n1,U[i,],p[i,],Theta[[i]])) discrep <- t(sapply(1:nrow(p),function(k){ temp1.o <- sqrt(m2[,1:t]) - sqrt(n1 * t(t(Theta[[k]]) * p[k,1:t])) notmissing <- !is.na(temp1.o) d1.m2.o <- sum(temp1.o^2,na.rm=TRUE) temp1.s <- sqrt(simData[[k]]$m2[,1:t]) - sqrt(n1 * t(t(Theta[[k]]) * p[k,1:t])) d1.m2.s <- sum(temp1.s[notmissing]^2,na.rm=TRUE) temp2.o <- sqrt(u2) - sqrt(U[k,] * p[k,1:t]) notmissing <- !is.na(temp2.o) d1.u2.o <- sum(temp2.o^2,na.rm=TRUE) temp2.s <- sqrt(simData[[k]]$u2) - sqrt(U[k,] * p[k,1:t]) d1.u2.s <- sum(temp2.s[notmissing]^2,na.rm=TRUE) d2.m2.o <- -2 * sum(sapply(1:s,function(i){ cellProbs <- Theta[[k]][i,] * p[k,1:t] cellProbs <- c(cellProbs,1-sum(cellProbs)) stats::dmultinom(m2[i,],n1[i],cellProbs,log=TRUE) })) notmissing <- !is.na(u2) d2.u2.o <- -2 * sum(stats::dbinom(u2[notmissing],U[k,notmissing],p[k,notmissing],log=TRUE)) d2.o <- d2.m2.o + d2.u2.o d2.m2.s <- -2 * sum(sapply(1:s,function(i){ cellProbs <- Theta[[k]][i,] * p[k,1:t] cellProbs <- c(cellProbs,1-sum(cellProbs)) stats::dmultinom(simData[[k]]$m2[i,],n1[i],cellProbs,log=TRUE) })) d2.u2.s <- -2 * sum(stats::dbinom(simData[[k]]$u2[notmissing],U[k,notmissing],p[k,notmissing],log=TRUE)) d2.s <- d2.m2.s + d2.u2.s c(d1.m2.o, d1.m2.s, d2.m2.o, d2.m2.s, d1.u2.o, d1.u2.s, d2.u2.o, d2.u2.s, d1.m2.o+d1.u2.o, d1.m2.s+d1.u2.s, d2.o, d2.s) })) discrep } lnTheta <- function(mu,sigma,s,t){ tmp <- t(sapply(1:s,function(i){ tmp1 <- stats::pnorm(log(1:(t-i+1)),mu[i],sigma[i]) - stats::pnorm(log(1:(t-i+1)-1),mu[i],sigma[i]) c(rep(0,i-1),tmp1) })) } simTSPNDE <- function(n1,U,p,Theta){ s <- length(n1) t <- length(U) m2 <- t(sapply(1:length(n1),function(i){ cellProbs <- Theta[i,] * p cellProbs <- c(cellProbs,1-sum(cellProbs)) stats:rmultinom(1,n1[i],cellProbs)[1:t] })) m2 <- cbind(m2,n1-apply(m2,1,sum)) u2 <- stats::rbinom(t,U,p) return(list(m2=m2,u2=u2)) }
twoMarkerDistribution <- function(x, id, partialmarker1, partialmarker2, rho, loopBreakers = NULL, eliminate = 99, verbose = TRUE) { if(is.pedList(x)) { if(is.marker(partialmarker1) || is.marker(partialmarker2)) stop2("When `x` has multiple components, the partial markers must be attached") pednr = getComponent(x, id, checkUnique = TRUE) x = x[[pednr]] } if(!is.ped(x)) stop2("Input is not a pedigree") if(!isCount(eliminate, minimum = 0)) stop2("`eliminate` must be a nonnegative integer") m1 = partialmarker1 if (!is.marker(m1)) { if(length(m1) != 1) stop2("`partialmarker1` must have length 1") m1 = getMarkers(x, markers = m1)[[1]] } m2 = partialmarker2 if (!is.marker(m2)) { if(length(m2) != 1) stop2("`partialmarker2` must have length 1") m2 = getMarkers(x, markers = m2)[[1]] } if (!is.null(x$LOOP_BREAKERS)) stop2("`ped` objects with pre-broken loops are not allowed as input to `twoMarkerDistribution`") if (!identical(chrom(m1), chrom(m2))) stop2("Partial markers are on different chromosomes: ", toString(c(chrom(m1), chrom(m2)))) onX = isXmarker(m1) XandMale = onX && getSex(x, id) == 1 if (verbose) { cat("Known genotypes:\n") df = as.data.frame(setMarkers(x, list(m1, m2)))[-(2:4)] df = cbind(df, arrow = "", stringsAsFactors = FALSE) df$arrow[internalID(x, id)] = " <===" names(df)[4] = "" print(df, row.names = FALSE) cat("\nAllele frequencies, marker 1:\n") print(data.frame(as.list(afreq(m1)), check.names = FALSE), row.names = FALSE) cat("\nAllele frequencies, marker 2:\n") print(data.frame(as.list(afreq(m2)), check.names = FALSE), row.names = FALSE) cat("\nRecombination rate :", rho) cat("\nChromosome type :", ifelse(onX, "X-linked", "autosomal")) cat("\nTarget individual :", id, "\n") } starttime = Sys.time() grid.subset = fastGrid(c(genoCombinations(x, m1, id, make.grid = FALSE), genoCombinations(x, m2, id, make.grid = FALSE))) if (x$UNBROKEN_LOOPS) { x = breakLoops(setMarkers(x, list(m1, m2)), loopBreakers = loopBreakers, verbose = verbose) m1 = x$MARKERS[[1]] m2 = x$MARKERS[[2]] } int.id = internalID(x, id) allgenos1 = allGenotypes(nAlleles(m1)) allgenos2 = allGenotypes(nAlleles(m2)) alleles1 = alleles(m1) alleles2 = alleles(m2) if (XandMale) { geno.names = list(alleles1, alleles2) } else { gt1.strings = paste(alleles1[allgenos1[, 1]], alleles1[allgenos1[, 2]], sep = "/") gt2.strings = paste(alleles2[allgenos2[, 1]], alleles2[allgenos2[, 2]], sep = "/") geno.names = list(gt1.strings, gt2.strings) } probs = array(0, dim = lengths(geno.names, use.names = FALSE), dimnames = geno.names) probs.subset = grid.subset if(XandMale) { homoz1 = which(allgenos1[,1] == allgenos1[,2]) homoz2 = which(allgenos2[,1] == allgenos2[,2]) probs.subset[, 1] = match(probs.subset[, 1], homoz1) probs.subset[, 2] = match(probs.subset[, 2], homoz2) } marginal = likelihood2(x, marker1 = m1, marker2 = m2, rho = rho, eliminate = eliminate) if (marginal == 0) stop2("Partial marker data is impossible") if(verbose) { cat("Marginal likelihood:", marginal, "\n") cat("Calculations needed:", nrow(grid.subset), "\n") } probs[probs.subset] = apply(grid.subset, 1, function(allg_rows) { m1[int.id, ] = allgenos1[allg_rows[1], ] m2[int.id, ] = allgenos2[allg_rows[2], ] likelihood2(x, marker1 = m1, marker2 = m2, rho = rho, eliminate = eliminate) }) totalTime = format(Sys.time() - starttime, digits = 3) if(verbose) cat("\nAnalysis finished in", totalTime, "\n") probs/marginal }
Rain <- list() Rain$rain <- as.matrix(read.csv("Rain_rain.csv", header = FALSE)) + 1 Rain$months <- as.matrix(read.csv("Rain_months.csv", header = FALSE)) save(Rain, file="Rain.RData")
validate.plinkfiles <- function(geno.files){ if(!is.data.frame(geno.files) && !is.matrix(geno.files)){ msg <- 'geno.files should be a data frame' stop(msg) } if(is.matrix(geno.files)){ geno.files <- as.data.frame(geno.files) } colnames(geno.files) <- convert.header(colnames(geno.files), c('fam', 'bim', 'bed')) if(!all(c('fam', 'bim', 'bed') %in% colnames(geno.files))){ msg <- 'geno.files should be a data frame with columns \'fam\', \'bim\', \'bed\'' stop(msg) } geno.files <- geno.files[, c('fam', 'bim', 'bed')] fam <- geno.files$fam cc <- rep('NULL', 6) cc[1] <- 'character' for(f in fam){ re <- try(tmp <- read.table(f, header = FALSE, as.is = TRUE, colClasses = cc, nrows = 1e3)) if("try-error" %in% class(re)){ msg <- paste0('Cannot load ', f) stop(msg) } rm(tmp) gc() } bim <- geno.files$bim cc <- rep('NULL', 6) cc[2] <- 'character' for(b in bim){ re <- try(tmp <- read.table(b, header = FALSE, as.is = TRUE, colClasses = cc, nrows = 1e3)) if("try-error" %in% class(re)){ msg <- paste0('Cannot load ', b) stop(msg) } rm(tmp) gc() } geno.files }
whm <- function(yy, xx, var.function = "power", tuning.para = 1.345, ite = 5){ c <- tuning.para Y <- as.matrix(yy) n <- length(Y) z <- c() rlm.model <- rlm(yy ~ xx -1, k = c) X <- as.matrix(rlm.model$x) switch(var.function, "power"={ est <- function(x){sum(chi((Y-mu)/(phi*abs(mu)^x))*log(abs(mu)))} var.func <- function(mu, esti, phi){phi*abs(mu)^esti} est_phi <- function(x){sum(chi((Y-mu)/(x*abs(mu)^esti)))} }, "exponential"={ est <- function(x){sum(chi((Y-mu)/(phi*exp(x*abs(mu))))*abs(mu))} var.func <- function(mu, esti, phi){phi*exp(esti*abs(mu))} est_phi <- function(x){sum(chi((Y-mu)/(x*exp(esti*abs(mu)))))} }, stop("Wrong function name") ) mu <- rlm.model$fitted.values phi <- 1 for(i in 1: ite){ esti<- uniroot(est,c(-2,2))$root phi <- uniroot(est_phi,c(0,2))$root pearson_res <- (Y-mu) / (var.func(mu, esti, phi)) w_i <- as.vector((psi.Huber(pearson_res, c)/(pearson_res))) W <- pmin(as.vector(w_i / (var.func(mu, esti, phi)))^2, 1) B_est <- solve(crossprod(X,W*X), crossprod(X,W*Y)) mu <- X %*% B_est } pearson_res <- (Y-mu) / (var.func(mu, esti, phi)) p<- length(B_est) psip <- dpsi.Huber(pearson_res,c) mn <-mean(psip) K <- 1 + p/n * var(psip)/(mn^2) CC <- solve(t(X)%*% diag(as.vector(1 / (var.func(mu, esti, phi))))^2 %*% X) vcov.mod<-(1/(n-p))*sum(psi.Huber(pearson_res,c)^2)/mn^2*K^2*CC sum_table <- data.frame(Estimate = B_est, Std.Error=sqrt(diag(vcov.mod))) sum_table$t_value <- sum_table$Estimate/sum_table$Std.Error sum_table<- round(sum_table[,-5], digits = 5) z$coefficients <- B_est z$residuals <- (Y-mu) z$fitted.values <- mu z$vcov <- vcov.mod z$summary <-sum_table z$model <- cbind(yy,X) z$tuningpara <- list(c = c) z$varpara <-data.frame(gamma=esti, phi= phi) cat("Summary : \n ") print(z$summary) cat("\n Tuning parameter:",c) z }
context("profile information metrics") test_that(".pii works", { x <- .pii(i = rep(1, 10), baseline = TRUE, numericDigits = 4) expect_equal(x, 1L) x <- .pii(i = c(1:10), baseline = TRUE, numericDigits = 4) expect_equal(x, 2L) x <- .pii(i = letters, baseline = TRUE, numericDigits = 4) expect_equal(x, 3.615, tolerance = 0.001) }) test_that("basic operation", { a <- data.frame(id = 'A', top = 0, bottom = 100, p = 5) b <- data.frame(id = 'B', top = c(0, 10, 20, 30, 40, 50), bottom = c(10, 20, 30, 40, 50, 100), p = rep(5, times = 6)) x <- rbind(a, b) depths(x) <- id ~ top + bottom p <- profileInformationIndex(x, vars = c('p'), method = 'sum') expect_equal(as.vector(p), c(3, 4.3), tolerance = 0.1) p <- profileInformationIndex(x, vars = c('p'), method = 'mean') expect_equal(as.vector(p), c(0, 0.458), tolerance = 0.1) p <- profileInformationIndex(x, vars = c('p'), method = 'median') expect_equal(as.vector(p), c(0, 0.529), tolerance = 0.1) p <- profileInformationIndex(x, vars = c('p'), method = 'sum', baseline = FALSE) expect_equal(as.vector(p), c(29, 62)) p <- profileInformationIndex(x, vars = c('p'), method = 'mean', baseline = FALSE) expect_equal(as.vector(p), c(8.666, 19.666), tolerance = 0.1) p <- profileInformationIndex(x, vars = c('p'), method = 'median', baseline = FALSE) expect_equal(as.vector(p), c(8, 23)) })
test_that("top_n returns n rows", { test_df <- data.frame(x = 1:10, y = 11:20) top_four <- test_df %>% top_n(4, y) expect_equal(dim(top_four), c(4, 2)) }) test_that("top_n() handles missing `wt`", { df <- data.frame(x = c(10, 4, 1, 6, 3, 1, 1)) expect_message( regexp = "Selecting by x", expect_identical(top_n(df, 2)$x, c(10, 6)) ) }) test_that("top_n() handles calls", { expect_identical(top_n(mtcars, 2, -disp), top_n(mtcars, -2, disp)) }) test_that("top_n() quotes n", { expect_snapshot(res1 <- top_n(mtcars, n() * .5)) expect_snapshot(res2 <- top_n(mtcars, 16)) expect_identical(res1, res2) }) test_that("top_frac() is a shorthand for top_n(n()*)", { expect_identical(top_n(mtcars, n() * .5, disp), top_frac(mtcars, .5, disp)) expect_snapshot(res1 <- top_n(mtcars, n() * .5)) expect_snapshot(res2 <- top_frac(mtcars, .5)) })
ctiList <- function(x, cond){ cond <- noblanks(cond) condListed <- extract_asf(cond) csfLengths <- lengths(condListed) ff <- hstrsplit(condListed, c("<*->", "+", "*"), relist = FALSE, fixed = c(FALSE, TRUE, TRUE)) if (x$type == "mv") ff[] <- sub("=[0-9]+", "", as.vector(ff)) ll <- as.vector(rowsum(collapse(attr(ff, "lengths"), 2:3)[[1]], rep(seq_along(csfLengths), csfLengths))) nmsList <- C_relist_Char(toupper(as.vector(ff)), ll) nmsList <- lapply(nmsList, function(x) sort.default(unique.default(x))) nmsStrings <- C_mconcat(nmsList, "\r") uNmsStrings <- unique(nmsStrings) uNmsList <- strsplit(uNmsStrings, "\r", fixed = TRUE) if (!all(unique(unlist(uNmsList)) %in% names(x$nVal))){ uNmsList[] <- lapply(uNmsList, intersect, names(x$nVal)) } indices <- match(nmsStrings, uNmsStrings) tbls <- lapply(uNmsList, function(nms) selectFactors(x, nms)) structure(c( x[c("type", "resp_nms", "nVal", "uniqueValues")], list(scores = x$scores[0, , drop = FALSE], conds = cond, tbls = tbls, indices = indices)), class = "ctiList") } useCtiList <- function(cti, maxnrow = getOption("ctiListLimit")){ sepflag <- getOption("useCtiList") if (sepflag %in% c(TRUE, FALSE)) return(sepflag) prod(cti$nVal) > maxnrow } selectFactors <- function(x, nms){ if (setequal(names(x$nVal), nms)) return(x) innms <- names(x$nVal) x$nVal <- x$nVal[nms] x$uniqueValues <- x$uniqueValues[nms] x$config <- x$config[nms] keepValues <- unique(unlist(x$config, use.names = FALSE)) x$resp_nms <- x$resp_nms[if (x$type == "mv") keepValues else match(nms, innms)] x$config[] <- C_relist_Int(seq_along(keepValues), x$nVal) x$valueId <- x$valueId[, nms, drop = FALSE] x$valueId[] <- match(x$valueId, keepValues) rownames(x$valueId) <- NULL x$scores <- x$scores[, keepValues, drop = FALSE] if (anyDuplicated(x$scores)>0){ rows <- do.call(paste, c(asplit(x$scores, 2), list(sep = "\r"))) urows <- unique(rows) rowId <- match(rows, unique(rows)) urows <- match(seq_along(urows), rowId) x$valueId <- x$valueId[urows, , drop = FALSE] x$scores <- x$scores[urows, , drop = FALSE] x$freq <- as.vector(rowsum(x$freq, rowId)) } x } getPos <- function(x){ out <- integer(length(x$conds)) b <- 0 for (i in seq_along(x$tbls)){ pos <- which(x$indices == i) out[pos] <- b + seq_along(pos) b <- b + length(pos) } out } `[.ctiList` <- function(x, i){ out <- x out$conds <- x$conds[i] out$indices <- x$indices[i] uInd <- unique(out$indices) out$tbls <- out$tbls[uInd] out$indices <- match(out$indices, uInd) out } full.ct.ctiList <- function(x, ...){ x$tbls[] <- lapply(x$tbls, full.ct.cti) x$freq <- prod(x$nVal) x } .det.ctiList <- function(x, cond = x$conds, what = c("inus", "cyclic", "exhaustiveness", "faithfulness", "coherence", "redundant"), available = what, cycle.type = "factor", in.csf = FALSE){ out <- mapply(.det.cti, x = x$tbls, cond = split(x$conds, x$indices), MoreArgs = list(what = what, available = available, cycle.type = cycle.type, in.csf = in.csf), SIMPLIFY = FALSE, USE.NAMES = FALSE) out <- do.call(rbind, out) out[getPos(x), , drop = FALSE] } .inus.ctiList <- function(x, cond, qtypes, full = FALSE, const.ok = FALSE, csf.info = FALSE){ out0 <- mapply(.inus.cti, x = x$tbls, cond = split(x$conds, x$indices), qtypes = split(qtypes, x$indices), MoreArgs = list(full = full, const.ok = const.ok, csf.info = csf.info), SIMPLIFY = FALSE, USE.NAMES = FALSE) out <- do.call(c, out0) out <- out[getPos(x)] if (csf.info){ csf.info <- do.call(rbind, lapply(out0, attr, "csf.info")) csf.info <- csf.info[getPos(x), , drop = FALSE] attr(out, "csf.info") <- csf.info } out } .redund.ctiList <- function(x, cond, simplify = TRUE, full = FALSE, names = TRUE){ out <- mapply(.redund.cti, x = x$tbls, cond = split(x$conds, x$indices), MoreArgs = list(simplify = FALSE, full = full, names = names), SIMPLIFY = FALSE, USE.NAMES = FALSE) out <- unlist(out, recursive = FALSE)[getPos(x)] if (simplify && length(ul <- unique(lengths(out, use.names = FALSE))) == 1L){ nms <- names(out) out <- matrix(unlist(out, use.names = FALSE), ncol = ul, byrow = TRUE) if (names) rownames(out) <- nms } out } exff.ctiList <- function(x, cond, num = TRUE, names = TRUE, cti.full = full.ct(x, cond = cond), ...){ cti <- lapply(x$tbls, unique_cti_cs) out <- mapply(calcExff, cti, cti.full = cti.full$tbls, cond = split(x$conds, x$indices), MoreArgs = list(num = num, names = names), SIMPLIFY = FALSE, USE.NAMES = FALSE) out <- do.call(rbind, out) out[getPos(x), , drop = FALSE] } .minCsf.ctiList <- function(x, cond = x$conds, verbose = FALSE, ...){ rr <- .redund.ctiList(x, cond, full = TRUE, simplify = FALSE) anyRed <- m_any(rr) if (verbose){ n.asf <- lengths(rr, use.names = FALSE) cat("csf-length ", n.asf[1], ": ", sum(anyRed), " of ", length(cond), " csf are reducible ", sep = "") } noRed <- names(rr)[!anyRed] if (!any(anyRed)){ if (verbose) cat("\n") return(noRed) } withRed <- rr[anyRed] condNew <- .redCsf(withRed) condNewOrigin <- which(anyRed)[attr(condNew, "orig")] dups <- duplicated(condNew) if (verbose) cat("(", sum(!dups), " uniques)\n", sep = "") x$conds <- condNew[!dups] x$indices <- x$indices[condNewOrigin][!dups] if (!all(seq_along(x$tbls) %in% x$indices)){ used <- intersect(seq_along(x$tbls), x$indices) x$tbls <- x$tbls[used] x$indices <- match(x$indices, used) } recurs <- .minCsf.ctiList(x, verbose = verbose) c(recurs, noRed) }
dwtest <- function(formula, order.by = NULL, alternative = c("greater", "two.sided", "less"), iterations = 15, exact = NULL, tol = 1e-10, data = list()) { dname <- paste(deparse(substitute(formula))) alternative <- match.arg(alternative) if(!inherits(formula, "formula")) { if(!is.null(w <- weights(formula))) { if(!isTRUE(all.equal(as.vector(w), rep(1L, length(w))))) stop("weighted regressions are not supported") } X <- if(is.matrix(formula$x)) formula$x else model.matrix(terms(formula), model.frame(formula)) y <- if(is.vector(formula$y)) formula$y else model.response(model.frame(formula)) } else { mf <- model.frame(formula, data = data) y <- model.response(mf) X <- model.matrix(formula, data = data) } if(!is.null(order.by)) { if(inherits(order.by, "formula")) { z <- model.matrix(order.by, data = data) z <- as.vector(z[,ncol(z)]) } else { z <- order.by } X <- as.matrix(X[order(z),]) y <- y[order(z)] } n <- nrow(X) if(is.null(exact)) exact <- (n < 100) k <- ncol(X) res <- lm.fit(X,y)$residuals dw <- sum(diff(res)^2)/sum(res^2) Q1 <- chol2inv(qr.R(qr(X))) if(n < 3) { warning("not enough observations for computing a p value, set to 1") pval <- 1 } else { if(exact) { A <- diag(c(1,rep(2, n-2), 1)) A[abs(row(A)-col(A))==1] <- -1 MA <- diag(rep(1,n)) - X %*% Q1 %*% t(X) MA <- MA %*% A ev <- eigen(MA)$values[1:(n-k)] if(any(Im(ev)>tol)) warning("imaginary parts of eigenvalues discarded") ev <- Re(ev) ev <- ev[ev>tol] pdw <- function(dw) .Fortran("pan", as.double(c(dw,ev)), as.integer(length(ev)), as.double(0), as.integer(iterations), x=double(1), PACKAGE = "lmtest")$x pval <- switch(alternative, "two.sided" = (2*min(pdw(dw), 1-pdw(dw))), "less" = (1 - pdw(dw)), "greater" = pdw(dw)) if(is.na(pval) || ((pval > 1) | (pval < 0))) { warning("exact p value cannot be computed (not in [0,1]), approximate p value will be used") exact <- FALSE } } if(!exact) { if(n < max(5, k)) { warning("not enough observations for computing an approximate p value, set to 1") pval <- 1 } else { AX <- matrix(as.vector(filter(X, c(-1, 2, -1))), ncol = k) AX[1,] <- X[1,] - X[2,] AX[n,] <- X[n,] - X[(n-1),] XAXQ <- t(X) %*% AX %*% Q1 P <- 2*(n-1) - sum(diag(XAXQ)) Q <- 2*(3*n - 4) - 2* sum(diag(crossprod(AX) %*% Q1)) + sum(diag(XAXQ %*% XAXQ)) dmean <- P/(n-k) dvar <- 2/((n-k)*(n-k+2)) * (Q - P*dmean) pval <- switch(alternative, "two.sided" = (2*pnorm(abs(dw-dmean), sd=sqrt(dvar), lower.tail = FALSE)), "less" = pnorm(dw, mean = dmean, sd = sqrt(dvar), lower.tail = FALSE), "greater" = pnorm(dw, mean = dmean, sd = sqrt(dvar))) } } } alternative <- switch(alternative, "two.sided" = "true autocorrelation is not 0", "less" = "true autocorrelation is less than 0", "greater" = "true autocorrelation is greater than 0") names(dw) <- "DW" RVAL <- list(statistic = dw, method = "Durbin-Watson test", alternative = alternative, p.value= pval, data.name=dname) class(RVAL) <- "htest" return(RVAL) }
isNaOrStringVectorOrNull <- function(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) { checkarg(argument, "S", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = NA, naAllowed = TRUE, emptyStringAllowed = TRUE, message = message, argumentName = argumentName) }
logregBY <- BYlogreg <- function(x0,y, intercept=1, const=0.5,kmax=1000,maxhalf=10) { sigmamin=0.0001 if (!is.numeric(y)) y <- as.numeric(y) if (!is.null(dim(y))) { if (ncol(y) != 1) stop("y is not onedimensional") y <- as.vector(y) } n <- length(y) x0<-as.matrix(x0) if (nrow(x0) != n) stop("Number of observations in x and y not equal") na.x <- !is.finite(rowSums(x0)) na.y <- !is.finite(y) ok <- !(na.x | na.y) if (!all(ok)) { x0 <- x0[ok, , drop = FALSE] y <- y[ok] } n <- nrow(x0) if (n == 0) stop("All observations have missing values!") p<-ncol(x0) family <- binomial() p<-dim(x0)[2] zz<-rep(0,p) for (i in 1:p) {zz[i]<-sum((x0[,i]==0)|(x0[,i]==1))} tt<-which(zz!=n) p1<-length(tt) x0=as.matrix(x0,n,p) x00<-x0[,tt] if(p1==1) {rdx<-abs(x00-median(x00))/mad(x00) wrd<-(rdx<=qnorm(.9875))} if(p1>1) { mcdx <- robustbase::covMcd(x00,alpha=.75) rdx <- mahalanobis(x00,center=mcdx$center,cov=mcdx$cov) vc<-qchisq(0.975,p) wrd<-(rdx<=vc)} if(p1==0) {wrd=1:n} if (intercept==1) {out<-glm(y[wrd]~x0[wrd,], family = family) x <- cbind(Intercept = 1, x0)} if (intercept==0) {out<-glm(y[wrd]~x0[wrd,]-1, family = family) x<-x0} gstart<-out$coeff p=ncol(x) sigmastart=1/sqrt(sum(gstart^2)) xistart=gstart*sigmastart stscores=x %*% xistart oldobj=mean(phiBY3(stscores/sigmastart,y,const)) kstep=1 jhalf=1 while (( kstep < kmax) & (jhalf<maxhalf)) { optimsig=optimize(sigmaBY3,lower=0,upper=10^3,y=y,s=stscores,c3=const) sigma1=optimsig$minimum if (sigma1<sigmamin) { print("Explosion");kstep=kmax } else { gamma1=xistart/sigma1 scores=stscores/sigma1 newobj=mean(phiBY3(scores,y,const)) oldobj=newobj gradBY3=apply((derphiBY3(scores,y,const)%*%t(rep(1,p)))*x,2,mean) h=-gradBY3+(sum(gradBY3*xistart) *xistart) finalstep=h/sqrt(sum(h^2)) xi1=xistart+finalstep xi1=xi1/(sum(xi1^2)) scores1=(x%*%xi1)/sigma1 newobj=mean(phiBY3(scores1,y,const)) hstep=1 jhalf=1 while ((jhalf <=maxhalf) & (newobj>oldobj)) { hstep=hstep/2 xi1=xistart+finalstep*hstep xi1=xi1/sqrt(sum(xi1^2)) scores1=x%*%xi1/sigma1 newobj=mean(phiBY3(scores1,y,const)) jhalf=jhalf+1 } if ((jhalf==maxhalf+1) & (newobj>oldobj)) { } else { jhalf=1 xistart=xi1 oldobj=newobj stscores=x%*% xi1 kstep=kstep+1 } } } if (kstep == kmax) {print("No convergence") resultat=list(convergence=F,objective=0,coef=t(rep(NA,p))) resultat} else { gammaest=xistart/sigma1 stander=sterby3(x,y,const,gammaest) fitted.linear<- x%*%gammaest fitted.linear<-pmin(fitted.linear,1e2) fitted.values<-exp(fitted.linear)/(1+exp(fitted.linear)) residual.deviances<-sign(y-fitted.values)*sqrt(-2*(y*log(fitted.values)+(1-y)*log(1-fitted.values))) result <-list(convergence=TRUE,objective=oldobj, coefficients=gammaest, standard.deviation=stander,fitted.values=t(fitted.values), residual.deviances= t(residual.deviances)) result } } phiBY3=function(s,y,c3) { s=as.double(s) dev=log(1+exp(-abs(s)))+abs(s)*((y-0.5)*s<0) res=rhoBY3(dev,c3)+GBY3Fs(s,c3)+GBY3Fsm(s,c3) res } rhoBY3 <- function(t,c3) { (t*exp(-sqrt(c3))*as.numeric(t <= c3))+ (((exp(-sqrt(c3))*(2+(2*sqrt(c3))+c3))-(2*exp(-sqrt(t))*(1+sqrt(t))))*as.numeric(t >c3)) } psiBY3 <- function(t,c3) { (exp(-sqrt(c3))*as.numeric(t <= c3))+(exp(-sqrt(t))*as.numeric(t >c3)) } derpsiBY3 <- function(t,c3) { (0*as.numeric(t <= c3))+(-(exp(-sqrt(t))/(2*sqrt(t)))*as.numeric(t >c3)) } sigmaBY3<-function(sigma,s,y,c3) { mean(phiBY3(s/sigma,y,c3)) } derphiBY3=function(s,y,c3) { Fs= exp(-(log(1+exp(-abs(s)))+abs(s)*(s<0))) ds=Fs*(1-Fs) dev=log(1+exp(-abs(s)))+abs(s)*((y-0.5)*s<0) Gprim1=log(1+exp(-abs(s)))+abs(s)*(s<0) Gprim2=log(1+exp(-abs(s)))+abs(s)*(s>0) -psiBY3(dev,c3)*(y-Fs)+((psiBY3(Gprim1,c3)-psiBY3(Gprim2,c3))*ds) } der2phiBY3=function(s,y,c3) { s=as.double(s) Fs= exp(-(log(1+exp(-abs(s)))+abs(s)*(s<0))) ds=Fs*(1-Fs) dev=log(1+exp(-abs(s)))+abs(s)*((y-0.5)*s<0) Gprim1=log(1+exp(-abs(s)))+abs(s)*(s<0) Gprim2=log(1+exp(-abs(s)))+abs(s)*(s>0) der2=(derpsiBY3(dev,c3)*(Fs-y)^2)+(ds*psiBY3(dev,c3)) der2=der2+(ds*(1-2*Fs)*(psiBY3(Gprim1,c3)-psiBY3(Gprim2,c3))) der2=der2-(ds*((derpsiBY3(Gprim1,c3)*(1-Fs))+(derpsiBY3(Gprim2,c3)*Fs))) der2 } GBY3Fs <- function(s,c3) { Fs= exp(-(log(1+exp(-abs(s)))+abs(s)*(s<0))) resGinf=exp(0.25)*sqrt(pi)*(pnorm(sqrt(2)*(0.5+sqrt(-log(Fs))))-1) resGinf=(resGinf+(Fs*exp(-sqrt(-log(Fs)))))*as.numeric(s <= -log(exp(c3)-1)) resGsup=((Fs*exp(-sqrt(c3)))+(exp(0.25)*sqrt(pi)*(pnorm(sqrt(2)*(0.5+sqrt(c3)))-1)))*as.numeric(s > -log(exp(c3)-1)) resG=resGinf+resGsup resG } GBY3Fsm <- function(s,c3) { Fsm=exp(-(log(1+exp(-abs(s)))+abs(s)*(s>0))) resGinf=exp(0.25)*sqrt(pi)*(pnorm(sqrt(2)*(0.5+sqrt(-log(Fsm))))-1) resGinf=(resGinf+(Fsm*exp(-sqrt(-log(Fsm)))))*as.numeric(s >= log(exp(c3)-1)) resGsup=((Fsm*exp(-sqrt(c3)))+(exp(0.25)*sqrt(pi)*(pnorm(sqrt(2)*(0.5+sqrt(c3)))-1)))*as.numeric(s < log(exp(c3)-1)) resG=resGinf+resGsup resG } sterby3 <- function(z,y,const,estim) { n=dim(z)[[1]] p=dim(z)[[2]] argum=z %*% estim matM=matrix(data=0,nrow=p,ncol=p) for (i in 1:n) { matM=matM+(der2phiBY3(argum[i],y[i],const) * (z[i,] %*% t(z[i,]))) } matM=matM/n matMinv=solve(matM) IFsquar=matrix(data=0,nrow=p,ncol=p) for (i in 1:n) { IFsquar=IFsquar+((derphiBY3(argum[i],y[i],const))^2 * (z[i,] %*% t(z[i,]))) } IFsquar=IFsquar/n asvBY=matMinv %*% IFsquar %*% t(matMinv) sqrt(diag(asvBY))/sqrt(n) }
library(stringr) library(tableschema.r) library(testthat) library(config) library(foreach) context("types.castObject") TESTS <- list( list('default', list(), list()), list('default', '{}', helpers.from.json.to.list('{}')), list('default', '{"key": "value"}', list('key' = 'value')), list('default', '["key", "value"]', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))), list('default', 'string', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))), list('default', 1, config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))), list('default', '3.14', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))), list('default', '', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))), list('default', matrix(1:4, nrow = 2), config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))), list('default', NULL, config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))), list('default', '[["id", "name"],["1", "ab"]]', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))) ) foreach(j = seq_along(TESTS) ) %do% { TESTS[[j]] <- setNames(TESTS[[j]], c("format", "value", "result")) test_that(str_interp('format "${TESTS[[j]]$format}" should check "${TESTS[[j]]$value}" as "${TESTS[[j]]$result}"'), { expect_equal(types.castObject(TESTS[[j]]$format, TESTS[[j]]$value), TESTS[[j]]$result) }) }
trimpartt<-function(x,con){ trimpartt<-sum(con*x) trimpartt }
library(tinytest) library(ggiraph) library(ggplot2) library(xml2) source("setup.R") { eval(test_geom_layer, envir = list(name = "geom_spoke_interactive")) }
folds <- function(x, nfolds=5L, stratified=FALSE, seed=NULL){ FoldID <- NULL Target <- NULL if(is(x, "data.table")){ if(stratified != FALSE){ if(!stratified %in% colnames(x)) stop("Argument stratified must be FALSE or match the name of a column in the given data.table") foldIDs <- folds(x=x[[stratified]], nfolds=nfolds, stratified=TRUE, seed=seed) } else{ foldIDs <- folds(x=seq_len(nrow(x)), nfolds=nfolds, stratified=FALSE, seed=seed) } return(split(x, foldIDs)) } if(length(x) == 1 & x[1] > 1 & x[1] %% 1 == 0){ return(folds(rep(x = 1L, x), nfolds = nfolds, stratified = FALSE, seed = seed)) } set.seed(seed) if(stratified){ if(is.numeric(x)){ dt <- data.table(Target=floor((frank(-x, ties.method="random") - 1) / nfolds)) } else{ dt <- data.table(Target=x) } dt[, FoldID := (sample(.N, .N) - 1L) %% nfolds + 1L, by=Target] foldIDs <- dt$FoldID } else{ foldIDs <- (sample(length(x), length(x)) - 1L) %% nfolds + 1L } return(foldIDs) }
ggInterval_hist<-function(data = NULL,mapping = aes(NULL),method="equal-bin",bins=10, plotAll = FALSE){ argsNum<-length(mapping) args<-lapply(mapping[1:argsNum],FUN=rlang::get_expr) this.x <- args$x ; this.y <- args$y ggSymData <- testData(data) iData <- ggSymData$intervalData if(plotAll){ if(!is.null(this.x) | !is.null(this.y)){ warning("Using plotAll presentation cannot specify variables.") } }else{ testXY(iData,this.x,this.y) } p<-dim(iData)[2] n<-dim(iData)[1] if(method=="equal-bin" & bins>200 & bins<=1000){ warning("Bins are too large that will lead the figure to be fuzzy.") }else if(method=="equal-bin" & bins>1000){ stop("Bins are too large that will lead the figure to be fuzzy.") } if("ggESDA" %in% class(data)){data <- iData} with(data,{ plotVarNum <- NULL mmd <- data.frame(NULL) if(plotAll){ numericData <- unlist(lapply(data.frame(iData[1:dim(iData)[2]]) ,FUN = is.sym.interval)) iData <- iData[,which(numericData)] attr <- colnames(iData) for(i in 1:length(attr)){ mmd[i, "minimal"]<-min(iData[[i]]$min) mmd[i, "maximal"]<-max(iData[[i]]$max) } }else{ if(any(unlist(lapply(as.data.frame(data[,1:p]),FUN=identical,x=eval(this.x))))){ attr<-which(unlist(lapply(as.data.frame(data[,1:p]),FUN=identical,x=eval(this.x)))) attr<-names(attr) }else if(any(unlist(lapply(as.data.frame(data[,1:p]),FUN=identical,x=eval(this.y))))){ attr<-which(unlist(lapply(as.data.frame(data[,1:p]),FUN=identical,x=eval(this.y)))) attr<-names(attr) }else{ stop("ERROR : Cannot find variables in aes(...)") } if(p==1){ attr = colnames(data) } if(all(!is.numeric(data[[attr]]) , !RSDA::is.sym.interval(data[[attr]]))){ stop("ERROR : Variables in histogram can only be numeric.") } mmd[1, "minimal"]<-min(iData[[attr]]$min) mmd[1, "maximal"]<-max(iData[[attr]]$max) } if(method=="unequal-bin"){ plotData <- NULL ; intervalDf = NULL for(u in 1:nrow(mmd)){ d<-as.data.frame(iData[[attr[u]]]) temp<-seq(mmd[u, "minimal"], mmd[u, "maximal"],0.01) f <- matrix(0,nrow=length(temp),ncol=n+1) f[,1]<-temp for (i in 1:n){ start<-length(which(round(f[,1],2)<=round(d[i,1],2))) end<-length(which(round(f[,1],2)<=round(d[i,2],2))) f[start:end,i+1]<-1 } f<-cbind(temp,apply(f[,-1],1,FUN=sum)) x<-f[1,2] y<-1 for (i in 1:(dim(f)[1]-1)){ if(f[i,2]!=f[i+1,2]){ y<-append(y,f[i+1,2]) x<-append(x,i) x<-append(x,i+1) } } x<-append(x,length(temp)) x<-t(matrix(x,nrow=2)) x1<-f[x[,1],1] x2<-f[x[,2],1] plotData<-rbind(plotData, data.frame(x1,x2,y1=0,y2=y/n,group=factor(attr[u]))) tempDf <- data.frame(start = rep(NA, length(x1)), end = rep(NA, length(x1))) tempDf[1:length(x1), "start"] <- round(x1,2) tempDf[1:length(x1), "end"] <- round(x2,2) intervalDf <- rbind(intervalDf, tempDf) } intervalDf <- intervalDf[order(intervalDf$start), ] temp <- paste(intervalDf$start, intervalDf$end, sep = ":") nameList <- paste0("[",temp,"]") midP <- (plotData$x1 + plotData$x2)/2 xyLocation <- c(which(names(mapping) == "x"), which(names(mapping) == "y")) if(length(xyLocation) != 0){ usermapping <- mapping[-xyLocation] }else{ usermapping <- mapping } mymapping <- list(mapping=aes(xmin=x1, xmax=x2, ymin=y1, ymax=y2),fill="grey",col="black") allmapping <-as.list(structure(as.expression(c(usermapping,mymapping)),class="uneval")) base <- ggplot(data=plotData,aes(x1,y1))+ do.call(geom_rect,allmapping)+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) if(plotAll){ base <- base + facet_grid(group ~ .) + labs(x = "", y="frequency") + scale_x_continuous(n.breaks = 8) }else{ base <- base + labs(x=attr,y="frequency")+ scale_x_continuous(breaks = midP, labels=nameList) } return(base) }else if(method=="equal-bin"){ myhist <- NULL ; intervalDf <- NULL for(i in 1:nrow(mmd)){ dist<-(mmd[i, "maximal"]-mmd[i, "minimal"])/bins interval<-seq(mmd[i, "minimal"],mmd[i, "maximal"],dist) f <- NULL f <- matrix(nrow=length(iData[[attr[i]]]),ncol=bins) for (obs in 1:length(iData[[attr[i]]])){ a<-iData[[attr[i]]][obs]$min b<-iData[[attr[i]]][obs]$max for(area in 1:bins){ headIn<-a %>% between(interval[area],interval[area+1]) tailIn<-b %>% between(interval[area],interval[area+1]) contain<-interval[area] %>% between(a,b) if(headIn|tailIn|contain){ temp<-sort(c(a,b,interval[area],interval[area+1])) f[obs,area]<-(temp[3]-temp[2])/(b-a) }else{ f[obs,area]<-0 } } } nInt <- length(interval) interval <- round(interval,2) tempDf <- data.frame(start = rep(NA, nInt-1), end = rep(NA, nInt-1)) tempDf[1:(nInt-1), "start"] <- interval[1:(nInt-1)] tempDf[1:(nInt-1), "end"] <- interval[2:nInt] intervalDf <- rbind(intervalDf, tempDf) myhist<-rbind(myhist, data.frame(interval=interval[1:bins], frequency=apply(f,2,FUN=sum), group = factor(attr[i]))) } myhist <- cbind(myhist, intervalDf) intervalDf <- intervalDf[order(intervalDf$start), ] temp <- paste(intervalDf$start, intervalDf$end, sep = ":") nameList <- paste0("[",temp,"]") myhist$frequency <- myhist$frequency/n xyLocation <- c(which(names(mapping) == "x"), which(names(mapping) == "y")) if(length(xyLocation) != 0){ usermapping <- mapping[-xyLocation] }else{ usermapping <- mapping } mymapping <- list(stat="identity", mapping=aes(alpha=0.5,fill=gray.colors(bins*length(attr))),col="black") allmapping <-as.list(structure(as.expression(c(usermapping,mymapping)),class="uneval")) if(plotAll){ mymapping <- list(mapping=aes(xmin=start, xmax=end, ymin=0, ymax=frequency),fill="grey",col="black") allmapping <-as.list(structure(as.expression(c(usermapping,mymapping)),class="uneval")) base <- ggplot(data=myhist)+ do.call(geom_rect,allmapping) + facet_grid(group ~ .) + labs(x = "", y="frequency") + scale_x_continuous(n.breaks = 8) }else{ base <- ggplot(data=myhist, aes(x=factor(interval),y=frequency))+ do.call(geom_histogram,allmapping)+ scale_fill_manual(values=rep("black",bins*length(attr)))+ guides(colour = FALSE, alpha = FALSE,fill=FALSE)+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))+ labs(x=attr)+ scale_x_discrete(labels = nameList) } return(base) }else{ stop(paste0("ERROR : Unrecognize method : ",method," .")) } }) }
has_intercept <- function(x, verbose = TRUE) { f <- find_formula(x) if (is_multivariate(x)) { lapply(f, .check_for_intercept, verbose = verbose) } else { .check_for_intercept(f, verbose) } } .check_for_intercept <- function(f, verbose = TRUE) { if (!is.null(f$conditional)) { f_terms <- stats::terms(f$conditional) intercept <- as.vector(attr(f_terms, "intercept")) return(intercept == 1) } else if (verbose) { warning(format_message("Cannot extract terms from model formula."), call. = FALSE) } }
tvgarch <- function (y, order.g = 1, order.h = c(1,1,0), xtv = NULL, xreg = NULL, initial.values = list(), opt = 2, turbo = FALSE, trace = FALSE) { n <- length(y) y.index <- index(y) if (!is.null(order.g) && order.g == 0) order.g <- NULL npar.h <- 1 + sum(order.h) if (!is.null(xreg)) { xreg <- as.matrix(xreg) npar.h <- npar.h + NCOL(xreg) } robse.par.h <- numeric(npar.h) maxpqr <- max(order.h) if (!is.null(order.g)) { if (!is.null(xtv)){ xtv <- matrix(xtv, n, 1) if (is.null(colnames(xtv))) colnames(xtv) <- "xtv" } if (is.null(xtv)) { xtv <- matrix((1:n)/n, n, 1) colnames(xtv) <- "time" xtv <- as.zoo(xtv, order.by = y.index) } s <- length(order.g) npar.g <- 1 + 2 * s + sum(order.g) } ' Initial values ' if (!is.null(order.g)) { if (is.null(initial.values$intercept.g)) intercept.g <- 1 else intercept.g <- initial.values$intercept.g if (is.null(initial.values$size)) size <- rep(0.1, s) else size <- initial.values$size if (is.null(initial.values$speed)) speed <- rep(1, s) else speed <- initial.values$speed if (is.null(initial.values$location)) { location <- NULL for (i in 1:s) { if (order.g[i] == 1) location <- c(location, mean(xtv)) if (order.g[i] > 1) { location <- c(location, seq(from = min(xtv)+0.5*sd(xtv), to = max(xtv)-0.5*sd(xtv), by = (max(xtv)-min(xtv) - sd(xtv))/(order.g[i]-1))) } } } else location <- initial.values$location if (s != length(size)) { stop("Mismatch between the number of transition functions, s, and the number of initial size values.") } if (s != length(speed)) { stop("Mismatch between the number of transition functions, s, and the number of initial speed values.") } if (sum(order.g) != length(location)) { stop("Mismatch between order.gand the initial location values.") } } if (is.null(initial.values$intercept.h)) intercept.h <- 0.1 if (!is.null(initial.values$intercept.h)) { intercept.h <- initial.values$intercept.h } if (is.null(initial.values$arch)) arch <- rep(0.1/order.h[2], order.h[2]) if (!is.null(initial.values$arch)) arch <- initial.values$arch if (order.h[2] != length(arch)) { stop("Mismatch between the number of ARCH-type parameters, q, and the arch initial values.") } if (order.h[1] != 0) { if (is.null(initial.values$garch)) garch <- rep(0.7/order.h[1], order.h[1]) else garch <- initial.values$garch if (order.h[1] != length(garch)) { stop("Mismatch between the number of GARCH-type parameters, p, and the garch initial values.") } } if (order.h[1] == 0) garch <- NULL if (order.h[3] != 0) { if (is.null(initial.values$asym)) asym <- rep(0.02/order.h[3], order.h[3]) if (!is.null(initial.values$asym)) asym <- initial.values$asym if (order.h[3] != length(asym)) { stop("Mismatch between the number of GJR-type parameters, r, and the asym initial values.") } } if (order.h[3] == 0) asym <- NULL if (!is.null(xreg)) { if (is.null(initial.values$par.xreg)) par.xreg <- rep(0.01, NCOL(xreg)) if (!is.null(initial.values$par.xreg)) par.xreg <- initial.values$par.xreg if (NCOL(xreg) != length(par.xreg)) { stop("Mismatch between the number of covariates, X, and the par.xreg initial values.") } } if (is.null(xreg)) par.xreg <- NULL ' Vector of initial parameters for h component ' names.h <- c("intercept.h", paste("arch", paste(seq(1:order.h[2]), sep = ""), sep = "")) ini.par.h <- c(intercept.h, arch) if (order.h[1] != 0) { names.h <- c(names.h, paste("garch", paste(seq(1:order.h[1]), sep = ""), sep = "")) ini.par.h <- c(ini.par.h, garch) } if (order.h[3] != 0) { names.h <- c(names.h, paste("asym", paste(seq(1:order.h[3]), sep = ""), sep = "")) ini.par.h <- c(ini.par.h, asym) } if (!is.null(xreg)) { if (!is.null(colnames(xreg))) names.h <- c(names.h, colnames(xreg)) else names.h <- c(names.h, paste("xreg", paste(seq(1:NCOL(xreg)), sep = ""), sep = "")) ini.par.h <- c(ini.par.h, par.xreg) } if (length(ini.par.h) != npar.h) { stop("Check initial parameters in the h component.") } initial.h <- matrix(ini.par.h, 1, npar.h) colnames(initial.h) <- names.h rownames(initial.h) <- "Value:" if (trace == TRUE) { cat("\n Initial parameters in the h component\n\n") print(round(initial.h, 4)) } ' g component and maximization by parts ' g <- y g[1:n] <- 1 if (!is.null(order.g)) { ' Vector of initial parameters for g component ' ini.par.g <- c(intercept.g, size, speed, location) names.g <- c("intercept.g", paste("size", paste(seq(1:s), sep = ""), sep = ""), paste("speed", paste(seq(1:s), sep = ""), sep = "")) for (i in 1:s) { if (s == 1) { names.g <- c(names.g, paste("location", paste(seq(1:max(order.g[i])), sep = ""), sep = "")) } else { names.g <- c(names.g, paste("location", paste(i, sep = ""), paste(seq(1:max(order.g[i])), sep = ""), sep = "")) } } if (length(ini.par.g) != npar.g) { stop("Check initial parameters in the g component.") } initial.g <- matrix(ini.par.g, 1, npar.g) colnames(initial.g) <- names.g rownames(initial.g) <- "Value:" if (trace == TRUE) { cat("\n Initial parameters in the g component:\n\n") print(round(initial.g, 4)) } ' Parameter constraints for g component and iter = 0 ' r <- diag(npar.g) r1 <- r[1,] ui.g <- r1 ci.g <- 1e-5 if (s == 1) { r2 <- r[2,] r2[1] <- 1 ui.g <- rbind(ui.g, r2) ci.g <- c(ci.g, 1e-5) } if (s > 1) { r.size <- combos(s)$binary r3 <- matrix(0, nrow(r.size), npar.g) r3[,1] <- 1 r3[,2:(s+1)] <- r.size ui.g <- rbind(ui.g, r3) ci.g <- c(ci.g, rep(1e-5, nrow(r.size))) } r4 <- r[(2+s):(2*s+1),] r5 <- r[(2*s+2):npar.g,] ui.g <- rbind(ui.g, r4, -r4, r5, -r5) if (opt != 2) ci.g <- c(ci.g, rep(1e-5, s), rep(-250, s), rep(min(xtv)+1e-3, sum(order.g)), rep(-max(xtv)+1e-3, sum(order.g))) if (opt == 2) ci.g <- c(ci.g, rep(log(1e-5), s), rep(-log(250), s), rep(min(xtv)+1e-3, sum(order.g)), rep(-max(xtv)+1e-3, sum(order.g))) if (any(order.g > 1)) { for (i in which(order.g > 1)) { r6 <- -r[(1+2*s+sum(order.g[1:i]) - order.g[i]+1):(1+2*s+sum(order.g[1:i])-1),] + r[(1+2*s+sum(order.g[1:i])-order.g[i]+2):(1+2*s+sum(order.g[1:i])),] ui.g <- rbind(ui.g, r6) ci.g <- c(ci.g, rep(0, order.g[i]-1)) } } ' Maximization by parts: estimating initial TV parameters ' iter <- 0 h <- rep(1, n) iter0.fit.g <- constrOptim(theta = ini.par.g, f = tvObj, grad = NULL, ui = ui.g, ci = ci.g, y = y, order.g = order.g, xtv = xtv, opt = opt, fixed.h = h, iter0 = TRUE, flag = 1) par.hat0.g <- iter0.fit.g$par g[1:n] <- tvObj(par.g = iter0.fit.g$par, fixed.par.g = NULL, xtv = xtv, opt = opt, order.g = order.g, fixed.h = h, y = y, iter0 = TRUE, flag = 2) estimates <- matrix(par.hat0.g, 1, length(names.g)) colnames(estimates) <- names.g rownames(estimates) <- "Value:" if (trace == TRUE) { cat("\n Initial estimation for the g component:\n\n") if (turbo == TRUE) print(round(estimates[1,], 4)) else print(round(estimates, 4)) } ' Parameter constraints for g component and iter > 0 ' par.hat.g <- par.hat0.g[-c(1,(s+2):(2*s+1))] par.hat0.g <- par.hat0.g[c(1,(s+2):(2*s+1))] r <- diag(length(par.hat.g)) ui.g <- rbind(r[(s+1):(npar.g-s-1),], -r[(s+1):(npar.g-s-1),]) ci.g <- c(rep(min(xtv)+1e-3, sum(order.g)), rep(-max(xtv)+1e-3, sum(order.g))) if (s == 1) { r1 <- r[1,] ui.g <- rbind(ui.g, r1) ci.g <- c(ci.g, -par.hat0.g[1]+1e-5) } if (s > 1) { r.size <- combos(s)$binary r1 <- matrix(0, nrow(r.size), length(par.hat.g)) r1[,1:s] <- r.size ui.g <- rbind(ui.g, r1) ci.g <- c(ci.g, rep(-par.hat0.g[1]+1e-5, nrow(r.size))) } if (any(order.g > 1)) { for(i in which(order.g > 1)){ r2 <- -r[(s+sum(order.g[1:i])-order.g[i]+1):(s+sum(order.g[1:i])-1),] + r[(s+sum(order.g[1:i])-order.g[i]+2):(s+sum(order.g[1:i])),] ui.g <- rbind(ui.g, r2) ci.g <- c(ci.g, rep(0, order.g[i]-1)) } } ' Iterative estimation ' iter <- iter + 1 maxiter <- 1000 phi <- y/sqrt(g) par.hat.h <- ini.par.h repeat{ if (trace == TRUE) { cat(" \n\n") cat("Iteration round:",iter, "\n\n") } ' Estimating GJR-GARCH-X parameters: ' iter.fit.h <- garchx(y = phi, order = order.h, xreg = xreg, initial.values = par.hat.h) h <- garchxRecursion(pars = as.numeric(iter.fit.h$par), aux = iter.fit.h) if (iter > 1) conv.h <- max(abs(par.hat.h-iter.fit.h$par)) par.hat.h <- iter.fit.h$par if (trace == TRUE) { cat("Estimates (h component):", par.hat.h, "\n") cat("Likelihood:", logLik.garchx(iter.fit.h), "\n") } ' Estimating TV parameters: ' iter.fit.g <- constrOptim(theta = par.hat.g, f = tvObj, grad = NULL, ui = ui.g, ci = ci.g, fixed.par.g = par.hat0.g, y = y, order.g = order.g, xtv = xtv, opt = opt, fixed.h = h, iter0 = FALSE, flag = 1) conv.g <- max(abs(par.hat.g - iter.fit.g$par)) par.hat.g <- iter.fit.g$par g[1:n] <- tvObj(par.g = par.hat.g, fixed.par.g = par.hat0.g, xtv = xtv, opt = opt, order.g = order.g, fixed.h = h, y = y, iter0 = FALSE, flag = 2) phi <- y/sqrt(g) if (trace == TRUE) { cat("Estimates (g component):", par.hat.g, "\n") cat("Likelihood:", - iter.fit.g$value, "\n") if (iter > 1) cat("Max. convergence:", max(conv.h, conv.g), "\n") } ' Next round ' iter <- iter + 1 if (iter > 2) { if (iter >= maxiter || max(conv.g, conv.h) < 1e-5){ if (iter == maxiter) { warning("Convergence has not been reached after ", paste(maxiter, sep = "")," iterations.") } break } } } par.hat.g <- c(par.hat0.g[1], iter.fit.g$par[1:s], par.hat0.g[-1], iter.fit.g$par[-(1:s)]) if (turbo == TRUE) { vcov.g <- NULL robse.par.g <- rep(NA_real_, length(par.hat.g)) } if (turbo == FALSE) { ' TV variance-covariance matrix: ' vcov.g <- matrix(NA_real_, npar.g, npar.g) rownames(vcov.g) <- names.g colnames(vcov.g) <- names.g jac.g <- jacobian(func = tvObj, x = iter.fit.g$par, fixed.par.g = par.hat0.g, xtv = xtv, opt = opt, order.g = order.g, fixed.h = h, y = y, iter0 = FALSE, flag = 0) J.g <- crossprod(jac.g) H.g <- optimHess(par = iter.fit.g$par, fn = tvObj, fixed.par.g = par.hat0.g, xtv = xtv, opt = opt, order.g = order.g, fixed.h = h, y = y, iter0 = FALSE, flag = 1) solHG <- solve(-H.g) vcov.iter <- solHG %*% J.g %*% solHG vcov.g[c(2:(s+1),(2*s+2):npar.g),c(2:(s+1),(2*s+2):npar.g)] <- vcov.iter robse.par.g <- sqrt(diag(vcov.g)) } ' TV final parameter estimates: ' estimates.g <- as.matrix(rbind(par.hat.g, robse.par.g)) rownames(estimates.g) <- c("Estimate:", "Std. Error:") colnames(estimates.g) <- names.g } ' Final GJR-GARCH-X estimation ' iter.fit.h <- garchx(y = y/sqrt(g), order = order.h, xreg = xreg, initial.values = ini.par.h) aux.h <- iter.fit.h h <- garchxRecursion(pars = as.numeric(iter.fit.h$par), aux = iter.fit.h) if (turbo == TRUE) { vcov.h <- NULL robse.par.h <- rep(NA_real_, length(iter.fit.h$par)) } if (turbo == FALSE) { ' GJR-GARCH-X variance-covariance matrix: ' vcov.h <- vcov.garchx(iter.fit.h) robse.par.h <- sqrt(diag(vcov.h)) } ' GJR-GARCH-X final parameter estimates: ' estimates.h <- as.matrix(rbind(iter.fit.h$par, robse.par.h)) rownames(estimates.h) <- c("Estimate:", "Std. Error:") colnames(estimates.h) <- names.h ' TV-GJR-GARCH-X output: ' sigma2 <- as.matrix(h*g) colnames(sigma2) <- "sigma2" logLik <- sum(dnorm(x = y, mean = 0, sd = sqrt(sigma2), log = TRUE)) residuals <- as.matrix(y/sqrt(sigma2)) colnames(residuals) <- "innovations" results <- list(par.h = estimates.h[1,], se.h = estimates.h[2,], names.h = names.h, sigma2 = sigma2, residuals = residuals, h = h, g = g, logLik = logLik, vcov.h = vcov.h, message.h = iter.fit.h$message, order.g = order.g, order.h = order.h, xreg = xreg, y = y, y.index = y.index, date = date(), turbo = turbo, aux.h = aux.h) if (!is.null(order.g)) { results$par.g = estimates.g[1,] results$se.g = estimates.g[2,] results$names.g = names.g results$vcov.g = vcov.g results$message.g = iter.fit.g$message results$xtv = xtv results$opt = opt results$iter = iter } class(results) <- "tvgarch" return(results) }
setGeneric("getformula", function(x) standardGeneric("getformula"), package = "btergm") setMethod("getformula", signature = className("ergm", "ergm"), definition = function(x) x$formula) setMethod("getformula", signature = className("btergm", "btergm"), definition = function(x) x@formula) setMethod("getformula", signature = className("mtergm", "btergm"), definition = function(x) x@formula) setMethod("getformula", signature = className("tbergm", "btergm"), definition = function(x) x@formula)
setConstructorS3("AbstractCNData", function(chromosome=NULL, x=NULL, y=NULL, ..., name=NULL, .virtuals=NULL) { if (!is.null(chromosome)) { if (is.data.frame(chromosome)) { data <- chromosome chromosome <- data$chromosome x <- data$x y <- data$y } args <- list(...) keep <- !sapply(args, FUN=is.null) args <- args[keep] if (is.null(y)) { y <- args$y args$y <- NULL } } else { args <- NULL } this <- extend(RawGenomicSignals(chromosome=chromosome, x=x, y=y, name=name), "AbstractCNData") this <- setVirtualColumnFunctions(this, .virtuals) if (length(args) > 0) { class <- class(this) for (key in names(args)) { values <- args[[key]] this[[key]] <- values } class(this) <- class } this }) setMethodS3("getPlatform", "AbstractCNData", function(this, ...) { attr(this, "platform") }) setMethodS3("setPlatform", "AbstractCNData", function(this, platform, ...) { platform <- Arguments$getCharacter(platform) attr(this, "platform") <- platform invisible(this) }) setMethodS3("getChipType", "AbstractCNData", function(this, fullname=TRUE, ...) { chipType <- attr(this, "chipType") if (!fullname) { chipType <- gsub(",.*", "", chipType) } chipType }) setMethodS3("setChipType", "AbstractCNData", function(this, chipType, ...) { chipType <- Arguments$getCharacter(chipType) attr(this, "chipType") <- chipType invisible(this) }) setMethodS3("getLocusData", "AbstractCNData", function(this, ...) { as.data.frame(this) }) setMethodS3("hasKnownPositions", "AbstractCNData", function(this, ...) { data <- as.data.frame(this, ...) ok <- (!is.na(data$chromosome) & !is.na(data$x)) ok }, protected=TRUE) setMethodS3("orderAlongGenome", "AbstractCNData", function(this, ...) { sort(this, ...) }, protected=TRUE) setMethodS3("findLargeGaps", "AbstractCNData", function(chromosome, ...) { pkg <- "PSCBS" require(pkg, character.only=TRUE) || throw("Package not loaded: ", pkg) this <- chromosome data <- as.data.frame(this, ...) findLargeGaps(chromosome=data$chromosome, x=data$x, ...) })
kfunc <- function(dist_mat,start,end,step,Lt,n,w){ breaks <- seq(start,end,step) t1 <- (n-1)/Lt k_values <- sapply(breaks,function(dist){ int_mat <- t(t(dist_mat<=dist) * w) diag(int_mat) <- 0 tot <- (rowSums(int_mat)) k <- t1 * sum(tot) return(k) }) return(k_values) } gfunc <- function(dist_mat,start,end,step,width,Lt,n,w){ breaks <- seq(start,end,step) width <- width/2 t1 <- (n-1)/Lt k_values <- sapply(breaks,function(dist){ int_mat <- t(t(dist_mat<=dist+width & dist_mat>=dist-width) * w) diag(int_mat) <- 0 tot <- (rowSums(int_mat)) k <- t1 * sum(tot) return(k) }) return(k_values) } cross_kfunc <- function(dist_mat,start,end,step,Lt,na,nb,wa,wb){ breaks <- seq(start,end,step) t1 <- (na/Lt) k_values <- sapply(breaks,function(dist){ int_mat <- sweep((dist_mat<=dist), MARGIN = 2, FUN = "*", wa) int_mat <- sweep(int_mat,MARGIN = 1, FUN = "*", wb) tot <- (rowSums(int_mat)) k <- t1 * sum(tot) return(k) }) return(k_values) } cross_gfun <- function(dist_mat,start,end,step,width,Lt,na,nb,wa,wb){ breaks <- base::seq(from = start,to = end, by = step) width <- width/2 t1 <- (na/Lt) g_values <- sapply(breaks,function(dist){ d1 <- dist + width d2 <- dist - width int_mat <- (dist_mat <= d1 & dist_mat >= d2) int_mat <- base::sweep(int_mat, MARGIN = 2, FUN = "*", wa) int_mat <- base::sweep(int_mat,MARGIN = 1, FUN = "*", wb) tot <- rowSums(int_mat) k <- t1 * sum(tot) return(k) }) return(g_values) } randomize_distmatrix2 <- function(graph, edge_df, n, resolution, nsim, start_vert = NULL){ edit_edge <- subset(edge_df, edge_df$weight > resolution) all_names <- names(igraph::V(graph)) vertices_and_distances <- lapply(1:nrow(edit_edge), function(i){ this_edge <- edit_edge[i,] start_node <- all_names[this_edge$start_oid] end_node <- all_names[this_edge$end_oid] dists <- rep(resolution, floor(this_edge$weight/resolution)) if(sum(dists) == this_edge$weight){ dists <- dists[1:(length(dists)-1)] } names(dists) <- paste("fict",i,1:length(dists), sep="_") return(data.frame(starts = c(start_node, names(dists)), ends = c(names(dists), end_node), weight = c(dists, this_edge$weight - sum(dists)))) }) all_elements <- do.call(rbind, vertices_and_distances) all_elements <- subset(all_elements,all_elements$weight>0) new_graph <- igraph::graph_from_data_frame(all_elements, directed = FALSE) tot_graph <- igraph::union(graph,new_graph, byname = TRUE) ws <- igraph::E(tot_graph) df_tmp <- data.frame("w1" = ws$weight_1, "w2" = ws$weight_2) df_tmp[is.na(df_tmp$w1),"w1"] <- 0 df_tmp[is.na(df_tmp$w2),"w2"] <- 0 tot_graph <- igraph::set_edge_attr(tot_graph, "weight", value = df_tmp$w1 + df_tmp$w2, index = igraph::E(tot_graph)) verts <- as.numeric(igraph::V(tot_graph)) dist_matrices <- lapply(1:nsim, function(i){ new_vert <- sample(verts,size = n, replace = F) if (is.null(start_vert)){ dist_mat <- igraph::distances(tot_graph,v = new_vert, to = new_vert) }else{ dist_mat <- igraph::distances(tot_graph,v = start_vert, to = new_vert) } }) return(dist_matrices) } randomize_distmatrix <- function(graph, edge_df, n, start_vert = NULL){ vec_runif <- Vectorize(runif, vectorize.args = c("max")) sel_edges_id <- sample(edge_df$edge_id, size = n, replace = TRUE, prob = 1/edge_df$weight * edge_df$probs) sel_edges <- edge_df[sel_edges_id,] sel_edges_len <- sel_edges$weight start_oids <- sel_edges$start_oid end_oids <- sel_edges$end_oid all_names <- names(igraph::V(graph)) start_names <- all_names[start_oids] end_names <- all_names[end_oids] dists <- vec_runif(n=1,min = 0, max = sel_edges_len) new_vert <- paste0(rep("virt_"),seq_len(length(dists))) df <- data.frame(start = c(start_names,new_vert), end = c(new_vert,end_names), weight = c(dists,(sel_edges_len - dists))) new_graph <- igraph::graph_from_data_frame(df, directed = FALSE) tot_graph <- igraph::union(graph,new_graph, byname = TRUE) ws <- igraph::E(tot_graph) df_tmp <- data.frame("w1" = ws$weight_1, "w2" = ws$weight_2) df_tmp[is.na(df_tmp$w1),"w1"] <- 0 df_tmp[is.na(df_tmp$w2),"w2"] <- 0 tot_graph <- igraph::set_edge_attr(tot_graph, "weight", value = df_tmp$w1 + df_tmp$w2, index = igraph::E(tot_graph)) if (is.null(start_vert)){ dist_mat <- igraph::distances(tot_graph,v = new_vert, to = new_vert) }else{ dist_mat <- igraph::distances(tot_graph,v = start_vert, to = new_vert) } return(dist_mat) } kfunctions <- function(lines, points, start, end, step, width, nsim, conf_int = 0.05, digits = 2, tol = 0.1, resolution = NULL, agg = NULL, verbose = TRUE){ if (verbose){ print("Preparing data ...") } n <- nrow(points) points$goid <- seq_len(nrow(points)) points$weight <- rep(1,nrow(points)) points <- clean_events(points,digits,agg) probs <- NULL if(is.null(probs)){ lines$probs <- 1 }else{ lines$probs <- probs } lines$length <- gLength(lines,byid = TRUE) lines <- subset(lines, lines$length>0) lines$oid <- seq_len(nrow(lines)) if (verbose){ print("Snapping points on lines ...") } snapped_events <- snapPointsToLines2(points,lines,idField = "oid") new_lines <- split_lines_at_vertex(lines, snapped_events, snapped_events$nearest_line_id, tol) if (verbose){ print("Building graph ...") } new_lines$length <- gLength(new_lines,byid = TRUE) new_lines <- subset(new_lines,new_lines$length>0) new_lines <- remove_loop_lines(new_lines,digits) new_lines$oid <- seq_len(nrow(new_lines)) new_lines <- new_lines[c("length","oid","probs")] Lt <- gLength(new_lines) new_lines$weight <- gLength(new_lines, byid = TRUE) graph_result <- build_graph(new_lines,digits = digits, line_weight = "weight", attrs = TRUE) graph <- graph_result$graph nodes <- graph_result$spvertices graph_result$spedges$probs <- igraph::get.edge.attribute(graph_result$graph, name = "probs") snapped_events$vertex_id <- closest_points(snapped_events, nodes) dist_mat <- igraph::distances(graph,v = snapped_events$vertex_id, to = snapped_events$vertex_id) if (verbose){ print("Calculating k and g functions ...") } k_vals <- kfunc(dist_mat,start,end,step,Lt,n,w = snapped_events$weight) g_vals <- gfunc(dist_mat,start,end,step,width,Lt,n,w = snapped_events$weight) if (verbose){ print("Calculating the simulations ...") } w <- rep(1,times = n) if(verbose){ pb <- txtProgressBar(min = 0, max = nsim, style = 3) } if (is.null(resolution)==FALSE){ dist_matrices <- randomize_distmatrix2(graph = graph_result$graph, edge_df = graph_result$spedges, n = n, resolution = resolution, nsim = nsim) all_values <- lapply(1:nsim,function(i){ dist_mat <- dist_matrices[[i]] k_vals <- kfunc(dist_mat,start,end,step,Lt,n,w = w) g_vals <- gfunc(dist_mat,start,end,step,width,Lt,n,w = w) if(verbose){ setTxtProgressBar(pb, i) } return(cbind(k_vals,g_vals)) }) }else{ all_values <- lapply(1:nsim,function(i){ dist_mat <- randomize_distmatrix(graph_result$graph,graph_result$spedges,n) k_vals <- kfunc(dist_mat,start,end,step,Lt,n,w = w) g_vals <- gfunc(dist_mat,start,end,step,width,Lt,n,w = w) if(verbose){ setTxtProgressBar(pb, i) } return(cbind(k_vals,g_vals)) }) } k_mat <- do.call(cbind,lapply(all_values,function(i){return(i[,1])})) g_mat <- do.call(cbind,lapply(all_values,function(i){return(i[,2])})) upper <- 1-conf_int / 2 lower <- conf_int / 2 k_stats <- apply(k_mat,MARGIN = 1, function(i){ return(quantile(i,probs = c(lower,upper))) }) g_stats <- apply(g_mat,MARGIN = 1, function(i){ return(quantile(i,probs = c(lower,upper))) }) plot_df <- data.frame( "obs_k" = k_vals, "lower_k" = k_stats[1,], "upper_k" = k_stats[2,], "obs_g" = g_vals, "lower_g" = g_stats[1,], "upper_g" = g_stats[2,], "distances" = seq(start,end,step) ) plotk <- ggplot(plot_df)+ geom_ribbon(aes_string(x = "distances", ymin="lower_k",ymax = "upper_k"), fill = grDevices::rgb(0.1,0.1,0.1), alpha=0.4)+ geom_path(aes_string(x = "distances", y = "lower_k"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "upper_k"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "obs_k"), col="blue")+ labs(x = "distances", y = "empirical K-function") plotg <- ggplot(plot_df)+ geom_ribbon(aes_string(x = "distances", ymin="lower_g", ymax = "upper_g"), fill = grDevices::rgb(0.1,0.1,0.1),alpha=0.4, )+ geom_path(aes_string(x = "distances", y = "lower_g"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "upper_g"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "obs_g"), col="blue")+ labs(x = "distances", y = "empirical G-function") return(list( "plotk" = plotk, "plotg" = plotg, "values" = plot_df )) } kfunctions.mc <- function(lines, points, start, end, step, width, nsim, conf_int = 0.05, digits = 2 ,tol = 0.1, resolution = 50, agg = NULL, verbose = TRUE){ if(verbose){ print("Preparing data ...") } n <- nrow(points) points$goid <- seq_len(nrow(points)) points$weight <- rep(1,nrow(points)) points <- clean_events(points,digits,agg) probs <- NULL if(is.null(probs)){ lines$probs <- 1 }else{ lines$probs <- probs } lines$length <- gLength(lines,byid = TRUE) lines <- subset(lines, lines$length>0) lines$oid <- seq_len(nrow(lines)) if(verbose){ print("Snapping points on lines ...") } snapped_events <- snapPointsToLines2(points,lines,idField = "oid") new_lines <- split_lines_at_vertex(lines, snapped_events, snapped_events$nearest_line_id, tol) if(verbose){ print("Building graph ...") } new_lines$length <- gLength(new_lines,byid = TRUE) new_lines <- subset(new_lines,new_lines$length>0) new_lines <- remove_loop_lines(new_lines,digits) new_lines$oid <- seq_len(nrow(new_lines)) new_lines <- new_lines[c("length","oid","probs")] Lt <- gLength(new_lines) graph_result <- build_graph(new_lines,digits = digits,line_weight = "length", attrs = TRUE) graph_result$spedges$probs <- igraph::get.edge.attribute(graph_result$graph, name = "probs") graph <- graph_result$graph nodes <- graph_result$spvertices snapped_events$vertex_id <- closest_points(snapped_events, nodes) dist_mat <- igraph::distances(graph,v = snapped_events$vertex_id, to = snapped_events$vertex_id) if(verbose){ print("Calculating k and g functions ...") } k_vals <- kfunc(dist_mat,start,end,step,Lt,n,w = snapped_events$weight) g_vals <- gfunc(dist_mat,start,end,step,width,Lt,n,w = snapped_events$weight) if(verbose){ print("Calculating the simulations ...") } w <- rep(1,times = n) sim_seq <- 1:nsim graph <- graph_result$graph edgesdf <- graph_result$spedges@data if (is.null(resolution)){ if(verbose){ progressr::with_progress({ p <- progressr::progressor(along = sim_seq) all_values <- future.apply::future_lapply(sim_seq, function(i){ dist_mat <- randomize_distmatrix(graph, edgesdf, n) k_vals <- kfunc(dist_mat,start,end,step,Lt,n,w = w) g_vals <- gfunc(dist_mat,start,end,step,width,Lt,n,w = w) return(cbind(k_vals,g_vals)) },future.packages = c("igraph")) }) }else{ all_values <- future.apply::future_lapply(sim_seq, function(i){ dist_mat <- randomize_distmatrix(graph, edgesdf, n) k_vals <- kfunc(dist_mat,start,end,step,Lt,n,w = w) g_vals <- gfunc(dist_mat,start,end,step,width,Lt,n,w = w) return(cbind(k_vals,g_vals)) },future.packages = c("igraph")) } }else{ if(verbose){ print("generating the randomized distance matrices...") } dist_mats <- randomize_distmatrix2(graph, edgesdf, n = n, nsim = nsim, resolution = resolution) if(verbose){ print("calculating the k and g functions for the randomized matrices..") } all_values <- future.apply::future_lapply(dist_mats, function(dist_mat){ k_vals <- kfunc(dist_mat,start,end,step,Lt,n,w = w) g_vals <- gfunc(dist_mat,start,end,step,width,Lt,n,w = w) return(cbind(k_vals,g_vals)) },future.packages = c("igraph")) } k_mat <- do.call(cbind,lapply(all_values,function(i){return(i[,1])})) g_mat <- do.call(cbind,lapply(all_values,function(i){return(i[,2])})) lower <- 1-conf_int/2 upper <- conf_int/2 k_stats <- apply(k_mat,MARGIN = 1, function(i){ return(quantile(i,probs = c(lower,upper))) }) g_stats <- apply(g_mat,MARGIN = 1, function(i){ return(quantile(i,probs = c(lower,upper))) }) plot_df <- data.frame( "obs_k" = k_vals, "upper_k" = k_stats[1,], "lower_k" = k_stats[2,], "obs_g" = g_vals, "upper_g" = g_stats[1,], "lower_g" = g_stats[2,], "distances" = seq(start,end,step) ) plotk <- ggplot(plot_df)+ geom_ribbon(aes_string(x = "distances", ymin="lower_k", ymax = "upper_k"), fill = grDevices::rgb(0.1,0.1,0.1),alpha=0.4, )+ geom_path(aes_string(x = "distances", y = "lower_k"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "upper_k"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "obs_k"), col="blue")+ labs(x = "distances", y = "empirical K-function") plotg <- ggplot(plot_df)+ geom_ribbon(aes_string(x = "distances", ymin="lower_g", ymax = "upper_g"), fill = grDevices::rgb(0.1,0.1,0.1),alpha=0.4, )+ geom_path(aes_string(x = "distances", y = "lower_g"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "upper_g"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "obs_g"), col="blue")+ labs(x = "distances", y = "empirical G-function") return(list( "plotk" = plotk, "plotg" = plotg, "values" = plot_df )) } cross_kfunctions <- function(lines, pointsA, pointsB, start, end, step, width, nsim, conf_int = 0.05, digits = 2, tol = 0.1, resolution = NULL, agg = NULL, verbose = TRUE){ if(verbose){ print("Preparing data ...") } na <- nrow(pointsA) nb <- nrow(pointsB) probs <- NULL pointsA$weight <- rep(1,nrow(pointsA)) pointsA <- clean_events(pointsA,digits,agg) pointsA$goid <- seq_len(nrow(pointsA)) pointsB$weight <- rep(1,nrow(pointsB)) pointsB <- clean_events(pointsB,digits,agg) pointsB$goid <- seq_len(nrow(pointsB)) if(is.null(probs)){ lines$probs <- 1 }else{ lines$probs <- probs } lines$length <- gLength(lines,byid = TRUE) lines <- subset(lines, lines$length>0) lines$oid <- seq_len(nrow(lines)) if(verbose){ print("Snapping points on lines ...") } pointsA$type <- "A" pointsB$type <- "B" all_events <- rbind(pointsA[c("type","goid","weight")], pointsB[c("type","goid","weight")]) snapped_events <- snapPointsToLines2(all_events, lines, idField = "oid") new_lines <- split_lines_at_vertex(lines, snapped_events, snapped_events$nearest_line_id, tol) if(verbose){ print("Building graph ...") } new_lines$length <- gLength(new_lines ,byid = TRUE) new_lines <- subset(new_lines, new_lines$length>0) new_lines <- remove_loop_lines(new_lines, digits) new_lines$oid <- seq_len(nrow(new_lines)) new_lines <- new_lines[c("length","oid","probs")] Lt <- gLength(new_lines) graph_result <- build_graph(new_lines,digits = digits, line_weight = "length", attrs = TRUE) graph_result$spedges$probs <- igraph::get.edge.attribute(graph_result$graph, name = "probs") graph <- graph_result$graph nodes <- graph_result$spvertices snapped_events$vertex_id <- closest_points(snapped_events, nodes) snappedA <- subset(snapped_events, snapped_events$type == "A") snappedB <- subset(snapped_events, snapped_events$type == "B") dist_mat <- igraph::distances(graph,v = snappedB$vertex_id, to = snappedA$vertex_id, mode = "out") if(verbose){ print("Calculating k and g functions ...") } k_vals <- cross_kfunc(dist_mat,start,end,step,Lt,na,nb,snappedA$weight,snappedB$weight) g_vals <- cross_gfun(dist_mat,start,end,step,width,Lt,na,nb,snappedA$weight,snappedB$weight) if(verbose){ print("Calculating the simulations ...") pb <- txtProgressBar(min = 0, max = nsim, style = 3) } w <- rep(1,times = na) if (is.null(resolution)==FALSE){ dist_matrices <- randomize_distmatrix2(graph = graph_result$graph, edge_df = graph_result$spedges, n = na, start_vert = snappedB$vertex_id, resolution = resolution, nsim = nsim) all_values <- lapply(1:nsim,function(i){ dist_mat <- dist_matrices[[i]] k_vals <- cross_kfunc(dist_mat,start,end,step,Lt,na,nb,w,snappedB$weight) g_vals <- cross_gfun(dist_mat,start,end,step,width,Lt,na,nb,w,snappedB$weight) if(verbose){ setTxtProgressBar(pb, i) } return(cbind(k_vals,g_vals)) }) }else{ all_values <- lapply(1:nsim,function(i){ dist_mat <- randomize_distmatrix(graph_result$graph,graph_result$spedges, na,start_vert = snappedB$vertex_id) k_vals <- cross_kfunc(dist_mat,start,end,step,Lt,na,nb,w,snappedB$weight) g_vals <- cross_gfun(dist_mat,start,end,step,width,Lt,na,nb,w,snappedB$weight) if(verbose){ setTxtProgressBar(pb, i) } return(cbind(k_vals,g_vals)) }) } k_mat <- do.call(cbind,lapply(all_values,function(i){return(i[,1])})) g_mat <- do.call(cbind,lapply(all_values,function(i){return(i[,2])})) upper <- 1-conf_int / 2 lower <- conf_int / 2 k_stats <- apply(k_mat,MARGIN = 1, function(i){ return(quantile(i,probs = c(lower,upper))) }) g_stats <- apply(g_mat,MARGIN = 1, function(i){ return(quantile(i,probs = c(lower,upper))) }) plot_df <- data.frame( "obs_k" = k_vals, "lower_k" = k_stats[1,], "upper_k" = k_stats[2,], "obs_g" = g_vals, "lower_g" = g_stats[1,], "upper_g" = g_stats[2,], "distances" = seq(start,end,step) ) plotk <- ggplot(plot_df)+ geom_ribbon(aes_string(x = "distances", ymin = "lower_k", ymax = "upper_k"), fill = rgb(0.1,0.1,0.1),alpha=0.4, )+ geom_path(aes_string(x = "distances", y = "lower_k"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "upper_k"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "obs_k"), col="blue")+ labs(x = "distances", y = "empirical cross-K-function") plotg <- ggplot(plot_df)+ geom_ribbon(aes_string(x = "distances", ymin = "lower_g", ymax = "upper_g"), fill = rgb(0.1,0.1,0.1),alpha=0.4, )+ geom_path(aes_string(x = "distances", y = "lower_g"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "upper_g"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "obs_g"), col="blue")+ labs(x = "distances", y = "empirical cross-G-function") return(list( "plotk" = plotk, "plotg" = plotg, "values" = plot_df )) } cross_kfunctions.mc <- function(lines, pointsA, pointsB, start, end, step, width, nsim, conf_int = 0.05, digits = 2, tol = 0.1, resolution = NULL, agg = NULL, verbose = TRUE){ if(verbose){ print("Preparing data ...") } na <- nrow(pointsA) nb <- nrow(pointsB) probs <- NULL pointsA$weight <- rep(1,nrow(pointsA)) pointsA <- clean_events(pointsA,digits,agg) pointsA$goid <- seq_len(nrow(pointsA)) pointsB$weight <- rep(1,nrow(pointsB)) pointsB <- clean_events(pointsB,digits,agg) pointsB$goid <- seq_len(nrow(pointsB)) if(is.null(probs)){ lines$probs <- 1 }else{ lines$probs <- probs } lines$length <- gLength(lines,byid = TRUE) lines <- subset(lines, lines$length>0) lines$oid <- seq_len(nrow(lines)) if(verbose){ print("Snapping points on lines ...") } pointsA$type <- "A" pointsB$type <- "B" all_events <- rbind(pointsA[c("type","goid","weight")], pointsB[c("type","goid","weight")]) snapped_events <- snapPointsToLines2(all_events, lines, idField = "oid") new_lines <- split_lines_at_vertex(lines, snapped_events, snapped_events$nearest_line_id, tol) if(verbose){ print("Building graph ...") } new_lines$length <- gLength(new_lines,byid = TRUE) new_lines <- subset(new_lines,new_lines$length>0) new_lines <- remove_loop_lines(new_lines,digits) new_lines$oid <- seq_len(nrow(new_lines)) new_lines <- new_lines[c("length","oid","probs")] Lt <- gLength(new_lines) graph_result <- build_graph(new_lines,digits = digits, line_weight = "length", attrs = TRUE) graph_result$spedges$probs <- igraph::get.edge.attribute(graph_result$graph, name = "probs") graph <- graph_result$graph nodes <- graph_result$spvertices snapped_events$vertex_id <- closest_points(snapped_events, nodes) snappedA <- subset(snapped_events, snapped_events$type == "A") snappedB <- subset(snapped_events, snapped_events$type == "B") dist_mat <- igraph::distances(graph,v = snappedB$vertex_id, to = snappedA$vertex_id) if(verbose){ print("Calculating k and g functions ...") } k_vals <- cross_kfunc(dist_mat, start, end, step, Lt, na, nb, snappedA$weight, snappedB$weight) g_vals <- cross_gfun(dist_mat, start, end, step, width, Lt, na, nb, snappedA$weight, snappedB$weight) if(verbose){ print("Calculating the simulations ...") } w <- rep(1,times = na) sim_seq <- 1:nsim if (is.null(resolution)){ progressr::with_progress({ p <- progressr::progressor(along = sim_seq) all_values <- future.apply::future_lapply(sim_seq,function(i){ dist_mat <- randomize_distmatrix(graph_result$graph, graph_result$spedges, na, start_vert = snappedB$vertex_id) k_vals <- cross_kfunc(dist_mat, start, end, step, Lt, na, nb, w, snappedB$weight) g_vals <- cross_gfun(dist_mat, start, end, step, width, Lt, na, nb, w,snappedB$weight) return(cbind(k_vals,g_vals)) },future.packages = c("igraph","base")) }) }else{ if(verbose){ print("calculating the randomized distance matrices...") } dist_matrices <- randomize_distmatrix2(graph = graph_result$graph, edge_df = graph_result$spedges, n = na, start_vert = snappedB$vertex_id, resolution = resolution, nsim = nsim) if(verbose){ print("calculating the k and g functions for the randomized matrices..") } all_values <- future.apply::future_lapply(dist_matrices,function(dist_mat){ k_vals <- cross_kfunc(dist_mat, start, end, step, Lt, na, nb, w, snappedB$weight) g_vals <- cross_gfun(dist_mat, start, end, step, width, Lt, na, nb, w,snappedB$weight) return(cbind(k_vals,g_vals)) },future.packages = c("igraph","base")) } k_mat <- do.call(cbind,lapply(all_values,function(i){return(i[,1])})) g_mat <- do.call(cbind,lapply(all_values,function(i){return(i[,2])})) upper <- 1-conf_int / 2 lower <- conf_int / 2 k_stats <- apply(k_mat,MARGIN = 1, function(i){ return(quantile(i,probs = c(lower,upper))) }) g_stats <- apply(g_mat,MARGIN = 1, function(i){ return(quantile(i,probs = c(lower,upper))) }) plot_df <- data.frame( "obs_k" = k_vals, "lower_k" = k_stats[1,], "upper_k" = k_stats[2,], "obs_g" = g_vals, "lower_g" = g_stats[1,], "upper_g" = g_stats[2,], "distances" = seq(start,end,step) ) plotk <- ggplot(plot_df)+ geom_ribbon(aes_string(x = "distances", ymin = "lower_k", ymax = "upper_k"), fill = rgb(0.1,0.1,0.1),alpha=0.4, )+ geom_path(aes_string(x = "distances", y = "lower_k"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "upper_k"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "obs_k"), col="blue")+ labs(x = "distances", y = "empirical cross-K-function") plotg <- ggplot(plot_df)+ geom_ribbon(aes_string(x = "distances", ymin = "lower_g", ymax = "upper_g"), fill = rgb(0.1,0.1,0.1),alpha=0.4, )+ geom_path(aes_string(x = "distances", y = "lower_g"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "upper_g"), col="black", linetype="dashed")+ geom_path(aes_string(x = "distances", y = "obs_g"), col="blue")+ labs(x = "distances", y = "empirical cross-G-function") return(list( "plotk" = plotk, "plotg" = plotg, "values" = plot_df )) }
print.AT <- function(x, ...){ if(x$triv == FALSE){ if(x$type != "naive" && !(x$mar2 %in% x$bl) && x$eq == 1){ es <- format(x$Effects, digits = 3, trim=TRUE) cat("\n") print(es) cat("\n") }else{ if(x$mar2 %in% x$bl || ( !(x$mar2 %in% x$bl) && x$eq == 1) ) es <- format(x$res*100, digits = 3, trim=TRUE) if(!(x$mar2 %in% x$bl) && x$eq == 2) es <- format(x$res, digits = 3, trim=TRUE) if(x$mar2 %in% x$bl || ( !(x$mar2 %in% x$bl) && x$eq == 1) ) cat("\nTreatment effect (%) with ",(1-x$prob.lev)*100,"% interval:\n\n",sep="") if( !(x$mar2 %in% x$bl) && x$eq == 2) cat("\nTreatment effect with ",(1-x$prob.lev)*100,"% interval:\n\n",sep="") if(x$Model != "ROY") cat(es[2]," (",es[1],",",es[3],")\n\n",sep="") } } if(x$triv == TRUE){ es <- format(x$res*100, digits = 3, trim=TRUE) cat("\nTreatment effect (%) with ",(1-x$prob.lev)*100,"% interval:\n\n",sep="") cat(es[2]," (",es[1],",",es[3],")\n\n",sep="") } if(x$Model == "ROY"){ es <- format(x$res, digits = 3, trim=TRUE) cat("\nMarginal effect with ",(1-x$prob.lev)*100,"% interval:\n\n",sep="") cat(es[2]," (",es[1],",",es[3],")\n\n",sep="") } invisible(x) }
sl.sim <- function(decTable, file, header = TRUE, sep = ",", ...) { sl <- read.table(file, header, sep, ...) out <- lapply(1:nrow(sl), function(i){ info <- sl[i, ][!is.na(sl[i, ])] n.info <- length(info) dec.sim(info[3:n.info], decTable, info[1], info[2]) }) if(nrow(sl) > 1) { class(out) <- c("sl.sim", "dec.sim") } else { class(out) <- "dec.sim" } return(out) }
find_response <- function(x, combine = TRUE, ...) { UseMethod("find_response") } find_response.default <- function(x, combine = TRUE, ...) { f <- find_formula(x, verbose = FALSE) if (is.null(f)) { return(NULL) } if (is_multivariate(f)) { resp <- unlist(lapply(f, function(i) .safe_deparse(i$conditional[[2L]]))) } else { resp <- .safe_deparse(f$conditional[[2L]]) } check_cbind(resp, combine, model = x) } find_response.model_fit <- function(x, combine = TRUE, ...) { find_response(x$fit, combine = combine, ...) } find_response.bfsl <- function(x, combine = TRUE, ...) { resp <- find_response.default(x, combine = combine) if (is.null(resp)) { resp <- "y" } resp } find_response.selection <- function(x, combine = TRUE, ...) { f <- find_formula(x, verbose = FALSE) resp <- c( .safe_deparse(f$conditional$selection[[2L]]), .safe_deparse(f$conditional$outcome[[2L]]) ) check_cbind(resp, combine, model = x) } find_response.mediate <- function(x, combine = TRUE, ...) { f <- find_formula(x, verbose = FALSE) if (is.null(f)) { return(NULL) } resp <- c(.safe_deparse(f$mediator$conditional[[2L]]), .safe_deparse(f$outcome$conditional[[2L]])) check_cbind(resp, combine, model = x) } find_response.mjoint <- function(x, combine = TRUE, component = c("conditional", "survival", "all"), ...) { component <- match.arg(component) f <- find_formula(x, verbose = FALSE) if (is.null(f)) { return(NULL) } conditional <- unlist(lapply(f[grepl("^conditional", names(f))], function(i) .safe_deparse(i[[2L]]))) survial <- .safe_deparse(f$survival[[2L]]) resp <- switch(component, "conditional" = conditional, "survial" = survial, "all" = c(conditional, survial) ) unlist(lapply(resp, check_cbind, combine = combine, model = x)) } find_response.joint <- function(x, combine = TRUE, component = c("conditional", "survival", "all"), ...) { component <- match.arg(component) f <- find_formula(x, verbose = FALSE) if (is.null(f)) { return(NULL) } conditional <- .safe_deparse(f$conditional[[2L]]) survial <- .safe_deparse(f$survival[[2L]]) resp <- switch(component, "conditional" = conditional, "survial" = survial, "all" = c(conditional, survial) ) unlist(lapply(resp, check_cbind, combine = combine, model = x)) } check_cbind <- function(resp, combine, model) { if (!combine && inherits(model, "DirichletRegModel")) { resp <- model$varnames } else if (!combine && any(grepl("cbind\\((.*)\\)", resp))) { resp <- .extract_combined_response(resp, "cbind") } else if (!combine && any(grepl("Surv\\((.*)\\)", resp))) { resp <- .extract_combined_response(resp, "Surv") } else if (!combine && any(grepl("Hist\\((.*)\\)", resp))) { resp <- .extract_combined_response(resp, "Hist") } else if (!combine && any(grepl("Event\\((.*)\\)", resp))) { resp <- .extract_combined_response(resp, "Event") } else if (!combine && any(grepl("Curv\\((.*)\\)", resp))) { resp <- .extract_combined_response(resp, "Curv") } else if (!combine && any(grepl("MMO\\((.*)\\)", resp))) { resp <- .extract_combined_response(resp, "MMO") } else if (!combine && any(grepl("MMO2\\((.*)\\)", resp))) { resp <- .extract_combined_response(resp, "MMO2") } else if (!combine && any(grepl("/", resp, fixed = TRUE))) { resp <- strsplit(resp, split = "/", fixed = TRUE) resp <- gsub("(I|\\(|\\))", "", .trim(unlist(resp))) } else if (any(.string_contains("|", resp))) { r1 <- .trim(sub("(.*)\\|(.*)", "\\1", resp)) r2 <- .trim(sub("(.*)\\|(.*)\\(([^,)]*).*", "\\3", resp)) r_resp <- .trim(unlist(strsplit(resp, "|", fixed = TRUE))[2]) if (grepl("^resp_thres", r_resp)) { r3 <- .trim(sub("=", "", sub("(.*)\\(([^=)]*)(.*)\\)", "\\3", r_resp))) names(r3) <- r3 numeric_values <- suppressWarnings(as.numeric(r2)) r2 <- r2[is.na(numeric_values)] if (length(r2)) { r2 <- c(r2, r3) } else { r2 <- r3 } } resp <- c(r1, r2) } else if (!combine && any(grepl("+", resp, fixed = TRUE))) { resp <- strsplit(resp, split = "+", fixed = TRUE) resp <- gsub("(I|\\(|\\))", "", .trim(unlist(resp))) } if (inherits(model, "clogit") && grepl("^rep\\(", resp[1]) && length(resp) == 3) { resp <- c(paste0(resp[1], resp[2]), resp[3]) } .remove_pattern_from_names(resp, ignore_asis = TRUE) } .extract_combined_response <- function(resp, pattern) { if (pattern %in% c("MMO", "MMO2") && !grepl(paste0("^", pattern, "\\((.*),(.*)\\)"), resp)) { resp <- gsub(paste0("^", pattern, "\\((.*)\\)"), "\\1", resp) } else { resp <- sub(sprintf("%s\\(([^,].*)([\\)].*)", pattern), "\\1", resp) resp <- strsplit(resp, split = ",", fixed = TRUE) resp <- .trim(unlist(resp)) } if (any(.string_contains("-", resp[2]))) { resp[2] <- .trim(sub("(.*)(\\-)(.*)", "\\1", resp[2])) } resp }
NULL .onLoad <- function(libname, pkgname) { while (".needs" %in% search()) detach(.needs) sysfile <- system.file("extdata", "promptUser", package = "needs") promptUser <- as.logical(scan(sysfile, quiet = T)) options(needs.promptUser = promptUser) if (getOption("needs.promptUser")) { if (interactive()) { q <- "Should `needs` load itself when it's... needed?\n (this is recommended)" choices <- sample(c("Yes", "No")) yes <- choices[utils::menu(choices, title = q)] == "Yes" if (isTRUE(yes)) { siteProfile <- if (is.na(Sys.getenv("R_PROFILE", unset = NA))) { file.path(Sys.getenv("R_HOME"), "etc", "Rprofile.site") } else { Sys.getenv("R_PROFILE") } if (!file.exists(siteProfile)) { file.create(siteProfile) } cxn <- file(siteProfile) lines <- readLines(cxn) if (!any(grepl("^[:blank:]*autoload\\(\"needs\", \"needs\"\\)", lines))) { write('\n\nautoload("needs", "needs")\n\n', file = siteProfile, append = T) } close(cxn) } options(needs.promptUser = F) write(0, file = sysfile) } } } .onAttach <- function(libname, pkgname) { if (getOption("needs.promptUser") && !interactive()) { packageStartupMessage("\nLoad `package:needs` in an interactive session to set auto-load flag\n") } }
vfold_cv <- function(data, v = 10, repeats = 1, strata = NULL, breaks = 4, pool = 0.1, ...) { if(!missing(strata)) { strata <- tidyselect::vars_select(names(data), !!enquo(strata)) if(length(strata) == 0) strata <- NULL } strata_check(strata, data) if (repeats == 1) { split_objs <- vfold_splits(data = data, v = v, strata = strata, breaks = breaks, pool = pool) } else { for (i in 1:repeats) { tmp <- vfold_splits(data = data, v = v, strata = strata, pool = pool) tmp$id2 <- tmp$id tmp$id <- names0(repeats, "Repeat")[i] split_objs <- if (i == 1) tmp else rbind(split_objs, tmp) } } split_objs$splits <- map(split_objs$splits, rm_out) cv_att <- list(v = v, repeats = repeats, strata = !is.null(strata)) new_rset(splits = split_objs$splits, ids = split_objs[, grepl("^id", names(split_objs))], attrib = cv_att, subclass = c("vfold_cv", "rset")) } vfold_splits <- function(data, v = 10, strata = NULL, breaks = 4, pool = 0.1) { if (!is.numeric(v) || length(v) != 1) stop("`v` must be a single integer.", call. = FALSE) n <- nrow(data) if (is.null(strata)) { folds <- sample(rep(1:v, length.out = n)) idx <- seq_len(n) indices <- split_unnamed(idx, folds) } else { stratas <- tibble::tibble(idx = 1:n, strata = make_strata(getElement(data, strata), breaks = breaks, pool = pool)) stratas <- split_unnamed(stratas, stratas$strata) stratas <- purrr::map(stratas, add_vfolds, v = v) stratas <- dplyr::bind_rows(stratas) indices <- split_unnamed(stratas$idx, stratas$folds) } indices <- lapply(indices, default_complement, n = n) split_objs <- purrr::map(indices, make_splits, data = data, class = "vfold_split") tibble::tibble(splits = split_objs, id = names0(length(split_objs), "Fold")) } add_vfolds <- function(x, v) { x$folds <- sample(rep(1:v, length.out = nrow(x))) x } print.vfold_cv <- function(x, ...) { cat(" class(x) <- class(x)[!(class(x) %in% c("vfold_cv", "rset"))] print(x, ...) }
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(\"lattice\", .Names = \"\"), FALSE, FALSE, NA)")); .Internal(`duplicated`(argv[[1]], argv[[2]], argv[[3]], argv[[4]])); }, o=expected);
source("ESEUR_config.r") pal_col=rainbow(3) hair=read.csv(paste0(ESEUR_dir, "evolution/robinson1976a.csv.xz"), as.is=TRUE) hair$total=rowSums(hair[ , -1]) plot(hair$year, 100*hair$clean_shaven/hair$total, type="l", col=pal_col[1], xaxs="i", yaxs="i", ylim=c(0, 90), xlab="Year", ylab="Percentage\n") lines(loess.smooth(hair$year, 100*hair$beard/hair$total, span=0.1), col=pal_col[2]) lines(loess.smooth(hair$year, 100*hair$mustache/hair$total, span=0.1), col=pal_col[3]) legend(x="topleft", legend=c("Clean shaven", "Beard", "Mustache"), bty="n", fill=pal_col, cex=1.2)
register_extendr <- function(path = ".", quiet = FALSE, force = FALSE, compile = NA) { pkg_name <- pkg_name(path) if (!isTRUE(quiet)) { ui_i("Generating extendr wrapper functions for package: {.pkg {pkg_name}}.") } entrypoint_c_file <- rprojroot::find_package_root_file("src", "entrypoint.c", path = path) if (!file.exists(entrypoint_c_file)) { ui_throw( "Unable to register the extendr module.", c( bullet_x("Could not find file {.file src/entrypoint.c }."), bullet_o("Are you sure this package is using extendr Rust code?") ) ) } outfile <- rprojroot::find_package_root_file("R", "extendr-wrappers.R", path = path) path <- rprojroot::find_package_root_file(path = path) if (isTRUE(is.na(compile))) { compile <- needs_compilation(path, quiet) || pkgbuild::needs_compile(path) } if (isTRUE(compile)) { pkgbuild::compile_dll( path = path, force = TRUE, quiet = quiet ) } library_path <- get_library_path(path) if (!file.exists(library_path)) { msg <- "{library_path} doesn't exist" if (isTRUE(compile)) { ui_throw(msg) } else { ui_throw( msg, bullet_i("You need to compile first, try {.code register_rextendr(compile = TRUE)}.") ) } } if (!isTRUE(force) && length(find_newer_files_than(outfile, library_path)) > 0) { rel_path <- pretty_rel_path(outfile, path) ui_i("{.file {rel_path}} is up-to-date. Skip generating wrapper functions.") return(invisible(character(0L))) } tryCatch( make_wrappers_externally( module_name = pkg_name, package_name = pkg_name, outfile = outfile, path = path, use_symbols = TRUE, quiet = quiet ), error = function(e) { ui_throw( "Failed to generate wrapper functions.", bullet_x(e[["message"]]) ) } ) invisible(normalizePath(outfile)) } make_wrappers <- function(module_name, package_name, outfile, path = ".", use_symbols = FALSE, quiet = FALSE) { wrapper_function <- glue("wrap__make_{module_name}_wrappers") x <- .Call( wrapper_function, use_symbols = use_symbols, package_name = package_name, PACKAGE = package_name ) x <- stringi::stri_split_lines1(x) write_file( text = x, path = outfile, search_root_from = path, quiet = quiet ) } make_wrappers_externally <- function(module_name, package_name, outfile, path, use_symbols = FALSE, quiet = FALSE) { func <- function(path, make_wrappers, quiet, module_name, package_name, outfile, use_symbols, ...) { library_path <- file.path(path, "src", paste0(package_name, .Platform$dynlib.ext)) lib <- dyn.load(library_path) on.exit(dyn.unload(lib[["path"]]), add = TRUE) make_wrappers( module_name = module_name, package_name = package_name, outfile = outfile, path = path, use_symbols = use_symbols, quiet = quiet ) } args <- list( path = rprojroot::find_package_root_file(path = path), make_wrappers = make_wrappers, module_name = module_name, package_name = package_name, outfile = outfile, use_symbols = use_symbols, quiet = quiet ) invisible(callr::r(func, args = args, show = !isTRUE(quiet))) }
NULL NULL methods::setGeneric("add_linear_penalties", signature = methods::signature("x", "penalty", "data"), function(x, penalty, data) standardGeneric("add_linear_penalties")) methods::setMethod("add_linear_penalties", methods::signature("ConservationProblem", "ANY", "character"), function(x, penalty, data) { assertthat::assert_that( inherits(x$data$cost, c("data.frame", "Spatial", "sf")), msg = paste("argument to data is a character and planning units", "specified in x are not a data.frame, Spatial, or sf object")) assertthat::assert_that( is.numeric(penalty), assertthat::noNA(penalty), number_of_zones(x) == length(penalty), assertthat::noNA(data), number_of_zones(x) == length(data)) assertthat::assert_that( all(data %in% names(x$data$cost)), msg = paste("argument to data is not a field name in the planning units", "specified in x")) d <- x$data$cost if (inherits(d, "Spatial")) { d <- as.matrix(d@data[, data, drop = FALSE]) } else if (inherits(d, "sf")) { d <- as.matrix(sf::st_drop_geometry(d)[, data, drop = FALSE]) } else { d <- as.matrix(d[, data, drop = FALSE]) } assertthat::assert_that( is.numeric(d), msg = paste("argument to data correspond to non-numeric fields in", "the planning unit data associated with x")) assertthat::assert_that( assertthat::noNA(d), msg = paste("argument to data correspond to fields with NA values in", "the planning unit data associated with x")) add_linear_penalties(x, penalty, d) }) methods::setMethod("add_linear_penalties", methods::signature("ConservationProblem", "ANY", "numeric"), function(x, penalty, data) { assertthat::assert_that( is.numeric(penalty), assertthat::noNA(penalty), number_of_zones(x) == length(penalty), assertthat::noNA(data), number_of_total_units(x) == length(data)) add_linear_penalties(x, penalty, matrix(data, ncol = 1)) }) methods::setMethod("add_linear_penalties", methods::signature("ConservationProblem", "ANY", "matrix"), function(x, penalty, data) { assertthat::assert_that( is.numeric(penalty), assertthat::noNA(penalty), number_of_zones(x) == length(penalty), assertthat::noNA(c(data)), number_of_total_units(x) == nrow(data), number_of_zones(x) == ncol(data)) add_linear_penalties(x, penalty, methods::as(data, "dgCMatrix")) }) methods::setMethod("add_linear_penalties", methods::signature("ConservationProblem", "ANY", "Matrix"), function(x, penalty, data) { assertthat::assert_that( is.numeric(penalty), assertthat::noNA(penalty), number_of_zones(x) == length(penalty), assertthat::noNA(c(data)), number_of_total_units(x) == nrow(data), number_of_zones(x) == ncol(data)) add_linear_penalties(x, penalty, methods::as(data, "dgCMatrix")) }) methods::setMethod("add_linear_penalties", methods::signature("ConservationProblem", "ANY", "Raster"), function(x, penalty, data) { assertthat::assert_that( inherits(x, "ConservationProblem"), inherits(data, "Raster"), is.numeric(penalty), assertthat::noNA(penalty), number_of_zones(x) == raster::nlayers(data), number_of_zones(x) == length(penalty), inherits(x$data$cost, c("sf", "Spatial", "Raster"))) if (inherits(x$data$cost, c("sf", "Spatial"))) { d <- fast_extract(data, x$data$cost, fun = "sum") } else { assertthat::assert_that(is_comparable_raster(x$data$cost, data[[1]])) d <- as.matrix(raster::as.data.frame(data)) } d[is.na(d)] <- 0 add_linear_penalties(x, penalty, methods::as(d, "dgCMatrix")) }) methods::setMethod("add_linear_penalties", methods::signature("ConservationProblem", "ANY", "dgCMatrix"), function(x, penalty, data) { assertthat::assert_that( inherits(x, "ConservationProblem"), is.numeric(penalty), isTRUE(all(is.finite(penalty))), number_of_zones(x) == length(penalty), is.numeric(data@x), all(is.finite(data@x), number_of_total_units(x) == nrow(data), number_of_zones(x) == ncol(data))) if (number_of_zones(x) == 1) { p <- numeric_parameter("penalty", penalty) } else { p <- numeric_parameter_array("penalty", penalty, x$zone_names()) } x$add_penalty(pproto( "LinearPenalty", Penalty, name = "Linear penalties", data = list(data = data), parameters = parameters(p), apply = function(self, x, y) { assertthat::assert_that(inherits(x, "OptimizationProblem"), inherits(y, "ConservationProblem")) p <- self$parameters$get("penalty") if (inherits(p, "data.frame")) p <- p[[1]] if (min(abs(p)) > 1e-50) { indices <- y$planning_unit_indices() d <- self$get_data("data")[indices, , drop = FALSE] rcpp_apply_linear_penalties(x$ptr, p, d) } invisible(TRUE) })) })
library(devtools) library(microbenchmark) library(ggplot2) library(sf) library(stars) library(mapview) library(rnaturalearth) library(spData) library(raster) options(viewer=NULL) if (FALSE) { dev_mode() install_github("mtennekes/tmap") dev_mode(path = "~/R-dev_old") install_github("mtennekes/tmap@895c4d4295") } data("world") w <- rnaturalearth::ne_download(scale = 10, type = 'countries', returnclass = "sf") granule = system.file("sentinel/S2A_MSIL1C_20180220T105051_N0206_R051_T32ULE_20180221T134037.zip", package = "starsdata") s2 = paste0("SENTINEL2_L1C:/vsizip/", granule, "/S2A_MSIL1C_20180220T105051_N0206_R051_T32ULE_20180221T134037.SAFE/MTD_MSIL1C.xml:10m:EPSG_32632") (p = read_stars(s2, proxy = TRUE)) p = st_set_crs(p, 32632) (p2 = read_stars(s2, RasterIO = list(nXSize = 3000, nYSize = 3000))) p2 = st_set_crs(p2, 32632) r <- as(p2, "Raster") prec_file = system.file("nc/test_stageiv_xyt.nc", package = "stars") (prec = read_ncdf(prec_file, curvilinear = c("lon", "lat"), ignore_bounds = TRUE)) prec1_4 = dplyr::slice(prec, time, 1:4) data(land, package = "tmap") rm(p2, prec); gc() mb <- list() mb$sf <- microbenchmark(times = 5, plot(world[, "lifeExp"]), plot(w[, "ECONOMY"])) str(mb$sf) dev.off(dev.list()["RStudioGD"]) mb$stars <- microbenchmark(times = 5, plot(p), plot(prec1_4)) dev.off(dev.list()["RStudioGD"]) mb$raster <- microbenchmark(times = 5, plot(r), plot(land)) dev.off(dev.list()["RStudioGD"]) mb$mapview <- microbenchmark(times = 3, print(mapview(world, z = "lifeExp")), print(mapview(w, z = "ECONOMY")), print(mapview(r[[1]], homebutton = FALSE))) mb_tmap = function(version) { if (version %in% c("cran_plot", "cran_view")) { microbenchmark(times = 3, print(tm_shape(world) + tm_polygons("lifeExp") + tm_layout(title = version)), print(tm_shape(w) + tm_polygons("ECONOMY")), print(tm_shape(r) + tm_raster()), print(tm_shape(land) + tm_raster())) } else { microbenchmark(times = 3, print(tm_shape(world) + tm_polygons("lifeExp") + tm_layout(title = version)), print(tm_shape(w) + tm_polygons("ECONOMY")), print(tm_shape(p) + tm_raster()), print(tm_shape(r) + tm_raster()), print(tm_shape(prec1_4) + tm_raster()), print(tm_shape(land) + tm_raster())) } } library(tmap) tmap_mode("plot") mb$tmap_CRAN_plot = mb_tmap(version = "cran_plot") dev.off(dev.list()["RStudioGD"]) tmap_mode("view") mb$tmap_CRAN_view = mb_tmap(version = "cran_view") gc() detach("package:tmap", unload = TRUE) dev_mode(TRUE) library(tmap) tmap_mode("plot") mb$tmap_new_plot = mb_tmap(version = "new_plot") dev.off(dev.list()["RStudioGD"]) tmap_mode("view") mb$tmap_new_view = mb_tmap(version = "new_view") mbs = do.call(rbind, mb) autoplot(mbs)
"ggthemes_data"
search_songs=function(api_key,artist=NA,artist_id=NA,title=NA,hotttnesss=T,style=NA,artist_location=T, combined=NA,sort=NA,audio_summary=F,partner=NA,min_name=NA,discovery=T, max_name=NA,min_val=NA,max_val=NA,start=NA,results=15,mode=NA,key=NA,currency=T, description=NA,rank_type="relevance",mood=NA,familiarity=T, song_type=NA,artist_start_year_before=NA,artist_start_year_after=NA, artist_end_year_before=NA,artist_end_year_after=NA) { url=paste("http://developer.echonest.com/api/v4/song/search?api_key=",api_key,"&format=json",sep="") final="" if(results>100) { stop("results should be less than or equal to 100") } if(!is.na(artist)) { artist=gsub(" ","+",artist) url=paste(url,"&artist=",artist,sep="") } if(!is.na(artist_id)) { url=paste(url,"&artist_id=",artist_id,sep="") } if(!is.na(combined)) { combined=gsub(" ","+",combined) url=paste(url,"&combined=",combined,sep="") } if(!is.na(description)) { description=gsub(" ","+",description) url=paste(url,"&description=",description,sep="") } if(!is.na(song_type)) { song_type=gsub(" ","+",song_type) url=paste(url,"&song_type=",song_type,sep="") } if(!is.na(mood)) { mood=gsub(" ","+",mood) url=paste(url,"&mood=",mood,sep="") } if(!is.na(mode)) { mode=gsub(" ","+",mode) url=paste(url,"&mode=",mode,sep="") } if(!is.na(key)) { key=gsub(" ","+",key) url=paste(url,"&key=",key,sep="") } if(hotttnesss) { url=paste(url,"&bucket=song_hotttnesss&bucket=song_hotttnesss_rank&bucket=artist_hotttnesss&bucket=artist_hotttnesss_rank",sep="") } if(familiarity) { url=paste(url,"&bucket=artist_familiarity&bucket=artist_familiarity_rank",sep="") } if(currency) { url=paste(url,"&bucket=song_currency&bucket=song_currency_rank",sep="") } if(discovery) { url=paste(url,"&bucket=artist_discovery&bucket=artist_discovery_rank",sep="") } if(audio_summary) { url=paste(url,"&bucket=audio_summary",sep="") } if(artist_location) { url=paste(url,"&bucket=artist_location",sep="") } if(!is.na(sort)) { url=paste(url,"&sort=",sort,sep="") } if(!is.na(partner)) { url=paste(url,"&bucket=id:",partner,"&limit=true",sep="") } if(!is.na(style)) { url=paste(url,"&style=",style,sep="") } if(!is.na(min_name)) { len=length(min_name) for(i in 1:len) { url=paste(url,"&",min_name[i],"=",min_val[i],sep="") } } if(!is.na(max_name)) { len=length(max_name) for(i in 1:len) { url=paste(url,"&",max_name[i],"=",max_val[i],sep="") } } url=paste(url,"&rank_type=",rank_type,sep="") if(!is.na(title)) { title=gsub(" ","+",title) url=paste(url,"&title=",title,sep="") } if(!is.na(artist_start_year_before)) { url=paste(url,"&artist_start_year_before=",artist_start_year_before,sep="") } if(!is.na(artist_start_year_after)) { url=paste(url,"&artist_start_year_after=",artist_start_year_after,sep="") } if(!is.na(artist_end_year_before)) { url=paste(url,"&artist_end_year_before=",artist_end_year_before,sep="") } if(!is.na(artist_end_year_after)) { url=paste(url,"&artist_end_year_after=",artist_end_year_after,sep="") } if(!is.na(start)) { url=paste(url,"&start=",start,sep="") } url=paste(url,"&results=",results,sep="") rd=getURL(url) rd=fromJSON(rd) rd$response$songs }
survey.region.dht <- function(Nhat.by.sample, samples, width, left, point){ Effort.by.region <- by(samples$Effort, samples$Region.Label, sum) if(point){ CoveredArea <- pi*as.vector(Effort.by.region)*width^2 - pi*as.vector(Effort.by.region)*left^2 }else{ CoveredArea <- 2*as.vector(Effort.by.region)*(width-left) } Nhat.by.sample <- merge(Nhat.by.sample, data.frame(Region.Label=names(Effort.by.region), CoveredArea=CoveredArea, Effort=as.vector(Effort.by.region)), by.x="Region.Label", by.y="Region.Label", all.x=TRUE) Nhat.by.sample$Nhat <- Nhat.by.sample$Nhat*Nhat.by.sample$Area/ Nhat.by.sample$CoveredArea return(Nhat.by.sample) }
data.root <- function(d, y, c, my_env) { initval <- my_env$initval ch <- my_env$ch distr <- my_env$obj["distr"] if(distr == "weibull") { r <- my_env$obj[["params"]]["shape"] t <- my_env$obj[["params"]]["scale"] g <- 0 g1r <- zipfR::Cgamma(1+1/r) g2r <- zipfR::Cgamma(1+2/r) A <- (t^2)*g2r*(exp(-1*((d-y+initval-g)/t)^r) - exp(-1*((d+initval-g)/t)^r)) B <- zipfR::Rgamma(((2/r)+1), ((d-y+initval-g)/t)^r, .Machine$double.xmin) - zipfR::Rgamma(((2/r)+1), ((d+initval-g)/t)^r, .Machine$double.xmin) C <- t*g1r*(zipfR::Rgamma(((1/r)+1), ((d-y+initval-g)/t)^r, .Machine$double.xmin) - zipfR::Rgamma(((1/r)+1), ((d+initval-g)/t)^r, .Machine$double.xmin)) calc <- (A*B-(C^2))*(c) } if(distr == "gamma") { r <- my_env$obj[["params"]]["shape"] f <- my_env$obj[["params"]]["rate"] t <- 1/f g <- 0 A <- (t^2)*r*(r+1)*(zipfR::Rgamma(r,(d-y+initval-g)/t)- zipfR::Rgamma(r,(d+initval-g)/t)) B <- zipfR::Rgamma((r+2),(d-y+initval-g)/t)- zipfR::Rgamma((r+2),(d+initval-g)/t) C <- t*r*(zipfR::Rgamma((r+1),(d-y+initval-g)/t)- zipfR::Rgamma((r+1),(d+initval-g)/t)) calc <- (A*B-(C^2))*(c) } if(distr == "exp") { lambda <- my_env$obj[["params"]]["rate"] A <- exp(-1*lambda*(d-y+initval)) B <- (1/(lambda^2))*((1-exp(-1*lambda*y))^2) C <- (y^2)*exp(-1*lambda*y) calc <- ((A^2)*(B-C))*(c) } if(distr == "norm") { mu <- my_env$obj[["params"]]["mean"] sigma <- my_env$obj[["params"]]["sd"] A <- erf((d+initval-mu)/(sigma*sqrt(2)))-erf((d-y+initval-mu)/(sigma*sqrt(2))) B <- ((d-y+initval-mu)/sigma)*exp(-1*(((d-y+initval-mu)/(sigma*sqrt(2)))^2)) - ((d+initval-mu)/sigma)*exp(-1*(((d+initval-mu)/(sigma*sqrt(2)))^2)) C <- exp(-1*(((d-y+initval-mu)/(sigma*sqrt(2)))^2)) - exp(-1*(((d+initval-mu)/(sigma*sqrt(2)))^2)) calc <- (((sigma^2)/(2*sqrt(2*pi)))*A*B + 0.25*(sigma^2)*(A^2) - ((sigma^2)/(2*pi))*(C^2))*(c) } if(distr == "lnorm") { mu <- my_env$obj[["params"]]["meanlog"] sigma <- my_env$obj[["params"]]["sdlog"] A = (erf((log(d+initval)-mu-2*(sigma^2))/(sigma*sqrt(2))) - erf((log(d-y+initval)-mu-2*(sigma^2))/(sigma*sqrt(2)))) B = (erf((log(d+initval)-mu)/(sigma*sqrt(2))) - erf((log(d-y+initval)-mu)/(sigma*sqrt(2)))) C = (erf((log(d+initval)-mu-(sigma^2))/(sigma*sqrt(2))) - erf((log(d-y+initval)-mu-(sigma^2))/(sigma*sqrt(2)))) calc = (0.25*exp(2*mu+2*(sigma^2))*A*B - 0.25*exp(2*mu + (sigma^2))*(C^2))*(c) } if(distr == "cauchy") { mu <- my_env$obj[["params"]]["location"] sig <- my_env$obj[["params"]]["scale"] xh = (d+initval) xh1 = (d-y+initval) wh = (1/pi)*(atan((xh1+y-mu)/sig) - atan((xh1-mu)/sig)) muh = (1/(2*(atan((xh1+y-mu)/sig) - atan((xh1-mu)/sig))))*(sig*log((xh1+y-mu)^2+sig^2) + 2*mu*atan((xh1+y-mu)/sig) - sig*log((xh1-mu)^2+sig^2) - 2*mu*atan((xh1-mu)/sig)) sig2h = (1/(atan((xh1+y-mu)/sig) - atan((xh1-mu)/sig)))*(mu*sig*log((xh1+y-mu)^2+sig^2) + (mu^2-sig^2)*atan((xh1+y-mu)/sig) + sig*(xh1+y) - mu*sig*log((xh1-mu)^2+sig^2) - (mu^2-sig^2)*atan((xh1-mu)/sig) - sig*xh1) - muh^2 calc = ((1/(pi^2))*(atan((xh1+y-mu)/sig) - atan((xh1-mu)/sig))*(mu*sig*log((xh1+y-mu)^2+sig^2) + (mu^2-sig^2)*atan((xh1+y-mu)/sig) + sig*(xh1+y) - mu*sig*log((xh1-mu)^2+sig^2) - (mu^2-sig^2)*atan((xh1-mu)/sig) - sig*xh1) - ((1/(4*pi^2))*((sig*log((xh1+y-mu)^2+sig^2) + 2*mu*atan((xh1+y-mu)/sig) - sig*log((xh1-mu)^2+sig^2) - 2*mu*atan((xh1-mu)/sig)))^2))*(c) } if(distr == "triangle") { a <- my_env$obj[["params"]]["min"] b <- my_env$obj[["params"]]["max"] c <- my_env$obj[["params"]]["mode"] eps = 1e-10 if(initval==0) { initval <- initval+eps } else{initval <- initval} xh = d+initval xh1 = d-y+initval wh1 = (y*(y+2*(xh1-a)))/((b-a)*(c-a)) muh1 = ((2/3)*(y^2)+2*y*xh1-a*y+2*(xh1-a)*xh1)/(y+2*(xh1-a)) sig2h1 = ((y^2)*((y^2)+6*y*(xh1-a)+6*(xh1-a)^2))/(18*(y+2*(xh1-a))^2) wh2 = (y*(2*(b-xh1)-y))/((b-a)*(b-c)) muh2 = (3*(b-xh1)*y-3*y*xh1+6*(b-xh1)*xh1-2*y^2)/(3*(2*(b-xh1)-y)) sig2h2 = ((y^2)*(6*(b-xh1)^2-6*y*(b-xh1)+y^2))/((18*(2*(b-xh1)-y)^2)) if(d <= c) { calc = ((wh1^2)*sig2h1)*(c) } if(d > c) { calc = ((wh2^2)*sig2h2)*(c) } } if(distr == "rtriangle") { a <- my_env$obj[["params"]]["min"] b <- my_env$obj[["params"]]["max"] eps = 1e-10 if(initval==0) { initval <- initval+eps } else{initval <- initval} xh = d+initval xh1 = d-y+initval wh = (y*(2*(b-xh1)-y))/((b-a)^2) muh = (3*b*(y+2*xh1) - 2*(y^2+3*y*xh1) + 3*(xh1^2))/(3*(2*(b-xh1)-y)) sig2h = ((y^2)*(y^2-6*(b-xh1)*y+6*((b-xh1)^2)))/(18*((2*(b-xh1)-y)^2)) calc = ((wh^2)*(sig2h))*(c) } if(distr == "unif") { minn <- my_env$obj[["params"]]["min"] maxx <- my_env$obj[["params"]]["max"] xh = d+initval xh1 = d-y+initval wh = y/(maxx-minn) muh = (y+2*xh1)/2 sig2h = (y^2)/12 calc = ((wh^2)*(sig2h))*(c) } if(distr == "pareto") { a <- my_env$obj[["params"]]["shape"] s <- my_env$obj[["params"]]["scale"] xh <- d+initval xh1 <- d-y+initval Wh <- (s/(xh1+s))^a - (s/((y+xh1)+s))^a A = ((y+xh1+s)^(2-a))/(2-a) B = (2*s*(y+xh1+s)^(1-a))/(1-a) C = ((s^2)*(y+xh1+s)^(-a))/a D = ((xh1+s)^(2-a))/(2-a) E = (2*s*(xh1+s)^(1-a))/(1-a) G = ((s^2)*(xh1+s)^(-a))/a H = (a*(y+xh1)+s)/((y+xh1+s)^a) I = (a*xh1+s)/((xh1+s)^a) calc = ((a*s^a)*Wh*(A-B-C-D+E+G) - ((s^(2*a))/((1-a)^2))*(H-I)^2)*(c) } if(calc < 0 || is.nan(calc) || is.na(calc)) { rtval <- -1 } else { rtval <- sqrt(calc) } return(rtval) }
"power.grouped" <- function(n = NULL, m, X = NULL, theta, sigma, sign.level = 0.05, type.power = c("conditional", "marginal"), MC.iter = 10, type.lik = c("original", "approximate"), gr.mech = c("rounding", "equispaced"), dist.t, dist.x, power. = NULL, limits = c(10, 3000)){ if(sum(sapply(list(n, power.), is.null)) != 1) stop("exactly one of the ", sQuote("n"), " and ", sQuote("power."), " must be NULL") if(is.null(n) && type.power == "conditional") stop(sQuote("type.power"), " must be ", sQuote("marginal"), ": sample size calculations are based on the marginal power formulas") if(is.null(n) && !is.null(X)) n <- nrow(X) if(missing(dist.x) && length(theta) != 2 && type.power == "marginal") stop("distributional assumptions about the extra covariates must be made") if(is.null(X) && missing(dist.t)) stop("exactly one of the ", sQuote("X"), " and ", sQuote("dist.t"), " must be given") if(!is.null(sign.level) && !is.numeric(sign.level) || any(sign.level < 0 | sign.level > 1)) stop(sQuote("sign.level"), " must be numeric in [0, 1]") if(!is.null(X) && nrow(X) != n) stop(sQuote("n"), " does not equal the number of the rows of X") gr.mech <- match.arg(gr.mech) type.power <- match.arg(type.power) type.lik <- match.arg(type.lik) if(!is.null(X) && type.power == "marginal") stop("the type of power calculation cannot be marginal when ", sQuote("X"), " is given") if(is.null(X) && type.power == "conditional") stop("the type of power calculation cannot be conditional") tpower <- switch(type.power, conditional = 1, marginal = 2) tlik <- switch(type.lik, original = 1, approximate = 2) pow. <- if(tpower == 1 && tlik == 1) quote({cond.power.orig(X = X, theta = theta, sigma = sigma, m = m, a = sign.level, grouping.mech = gr.mech)}) else if(tpower == 1 && tlik == 2) quote({cond.power.approx(X = X, theta = theta, sigma = sigma, m = m, a = sign.level, grouping.mech = gr.mech)}) else if(tpower == 2 && tlik == 1) quote({marg.power.orig(MC = MC.iter, n = n, m = m, theta = theta, sigma = sigma, a = sign.level, dist.t = dist.t, dist.x = dist.x, grouping.mech = gr.mech)[[1]]}) else if(tpower == 2 && tlik == 2) quote({marg.power.approx(MC = MC.iter, n = n, m = m, theta = theta, sigma = sigma, a = sign.level, dist.t = dist.t, dist.x = dist.x, grouping.mech = gr.mech)[[1]]}) nn <- if(tlik ==1 ) quote({uniroot(samplesize.orig, interval = limits, p. = power., MC = MC.iter, theta = theta, sigma = sigma, m = m, a = sign.level, dist.t = dist.t, dist.x = dist.x, grouping.mech = gr.mech, tol = 1e-01, maxiter = 20)$root}) else if(tlik == 2) quote({uniroot(samplesize.approx, interval = limits, p. = power., MC = MC.iter, theta = theta, sigma = sigma, m = m, a = sign.level, dist.t = dist.t, dist.x = dist.x, grouping.mech = gr.mech, tol = 1e-01, maxiter = 20)$root}) if(is.null(power.)) power. <- eval(pow.) if(is.null(n)) n <- eval(nn) structure(list(n = round(n), m = m, theta = theta, sigma = sigma, sign.level = sign.level, type.power = type.power, type.lik = type.lik, power. = power., grouping.mech = gr.mech), class = "power.grouped") }
gSlc <- function(formula,data = NULL,random = NULL,family,control = gSlc.control()) { nBurn <- control$nBurn nKept <- control$nKept nThin <- control$nThin fixedEffPriorVar <- control$fixedEffPriorVar sdPriorScale <- control$sdPriorScale numBasis <- control$numBasis preTransfData <- control$preTransfData msgCode <- control$msgCode formularInformation <- readFormula(formula) responseName <- formularInformation$response linPredNames <- formularInformation$lvar splPredNames <- formularInformation$svar basisSizes <- formularInformation$nbas numLinCompons <- length(linPredNames) numSplCompons <- length(splPredNames) if (is.null(data)) y <- get(responseName,pos=1) if (!is.null(data)) y <- data[,responseName] if (length(linPredNames)>0) { XlinPreds <- NULL ; namesXlinPreds <- NULL for (jLin in 1:numLinCompons) { if (is.null(data)) currPred <- get(linPredNames[jLin],pos=1) if (!is.null(data)) currPred <- data[,linPredNames[jLin]] if (!is.character(currPred)) { XlinPreds <- cbind(XlinPreds,currPred) namesXlinPreds <- c(namesXlinPreds,linPredNames[jLin]) } if (is.character(currPred)) { suqcurrPred <- sort(unique(currPred)) ; baseChar <- suqcurrPred[1] ; numLevs <- length(suqcurrPred) if (length(suqcurrPred)==1) stop("Factor has all levels equal.") XcurrPred <- NULL ; namesXcurrPred <- NULL for (jLev in 2:numLevs) { XcurrPred <- cbind(XcurrPred,as.numeric(currPred==suqcurrPred[jLev])) namesXcurrPred <- c(namesXcurrPred,paste(suqcurrPred[jLev],"VS",suqcurrPred[1],sep="")) } XcurrPred <- as.data.frame(XcurrPred) XlinPreds <- cbind(XlinPreds,XcurrPred) namesXlinPreds <- c(namesXlinPreds,namesXcurrPred) } } names(XlinPreds) <- namesXlinPreds XlinPreds <- as.matrix(XlinPreds) numLinCompons <- ncol(XlinPreds) linPredNames <- namesXlinPreds } if (length(linPredNames)==0) XlinPreds <- NULL if (length(splPredNames)>0) { XsplPreds <- NULL for (jSpl in 1:length(splPredNames)) { if (is.null(data)) XsplPreds <- cbind(XsplPreds,get(splPredNames[jSpl],pos=1)) if (!is.null(data)) XsplPreds <- cbind(XsplPreds,data[,splPredNames[jSpl]]) } XsplPreds <- as.matrix(XsplPreds) } if (length(splPredNames)==0) XsplPreds <- NULL if (preTransfData) { XlinPredsOrig <- XlinPreds XsplPredsOrig <- XsplPreds if (numLinCompons>0) for (jLin in 1:numLinCompons) { minCurr <- min(XlinPreds[,jLin]) ; maxCurr <- max(XlinPreds[,jLin]) XlinPreds[,jLin] <- (XlinPreds[,jLin] - minCurr)/(maxCurr - minCurr) } if (numSplCompons>0) for (jSpl in 1:numSplCompons) { minCurr <- min(XsplPreds[,jSpl]) ; maxCurr <- max(XsplPreds[,jSpl]) XsplPreds[,jSpl] <- (XsplPreds[,jSpl] - minCurr)/(maxCurr - minCurr) } } if (!is.null(numBasis)) { if (length(numBasis)==1) numBasis <- rep(numBasis,numSplCompons) if (length(numBasis)!=numSplCompons) stop("The length of numSplCompons must match the number of smooth functions.\n") } if (is.null(numBasis)) { numBasis <- rep(NA,numSplCompons) for (jSpl in 1:numSplCompons) numBasis[jSpl] <- min(25,round(length(unique(XsplPreds[,jSpl]))/4)) } if (!is.null(random)) { idnumPresent <- TRUE if (is.list(random)) { r.names <- names(random) idnumName <- c(unlist(lapply(random,function(x) all.vars(formula(x)))),r.names) if (is.null(data)) idnumOrig <- get(idnumName,pos=1) if (!is.null(data)) idnumOrig <- data[,idnumName] } else idnumOrig <- NULL idnum <- match(idnumOrig,unique(idnumOrig)) numGps <- length(unique(idnum)) } else { idnum <- NULL idnumPresent <- FALSE } X <- cbind(1,XlinPreds,XsplPreds) blockInds <- list(1:ncol(X)) blkIndStt <- ncol(X) + 1 if (numSplCompons == 0) Zspl <- NULL if (numSplCompons == 0) { range.x.list <- NULL intKnots.list <- NULL ncZspl <- NULL } if (numSplCompons > 0) { range.x.list <- vector("list",numSplCompons) intKnots.list <- vector("list",numSplCompons) ncZspl <- NULL ; Zspl <- NULL for (jSpl in 1:numSplCompons) { xCurr <- XsplPreds[,jSpl] range.xVal <- c(min(xCurr),max(xCurr)) numIntKnotsVal <- numBasis[jSpl] - 2 intKnots <- as.numeric(quantile(unique(xCurr),seq(0,1,length=numIntKnotsVal+2) [-c(1,numIntKnotsVal+2)])) Zcurr <- ZOSull(xCurr,intKnots=intKnots,range.x=range.xVal) range.x.list[[jSpl]] <- attr(Zcurr,"range.x") intKnots.list[[jSpl]] <- attr(Zcurr,"intKnots") ncZspl <- c(ncZspl,ncol(Zcurr)) Zspl <- cbind(Zspl,Zcurr) blkIndEnd <- blkIndStt + ncol(Zcurr) - 1 blockInds <- c(blockInds,list(blkIndStt:blkIndEnd)) blkIndStt <- blkIndEnd + 1 } } if (idnumPresent) blockInds <- c(blockInds,list(blkIndStt:(blkIndStt+numGps-1))) Cspl <- cbind(X,Zspl) CsplTy <- as.numeric(crossprod(Cspl,y)) lenbki <- length(blockInds) lenssq <- lenbki - 1 Ahyp <- rep(sdPriorScale,lenssq) ssqbeta <- fixedEffPriorVar sttEntry <- function(x) return(x[1]) endEntry <- function(x) return(x[length(x)]) ibkstt <- unlist(lapply(blockInds,sttEntry)) ibkend <- unlist(lapply(blockInds,endEntry)) nMCMC <- nBurn + nKept numObs <- length(y) ncCspl <- ncol(Cspl) idPres <- idnumPresent if (idPres==0) { idnum <- 1 ; numGps <- 1 nVec <- 1 ; lennu <- ncCspl idStt <- 1 ; idEnd <- 1 } if (idPres==1) { numGps <- length(unique(idnum)) nVec <- as.numeric(table(idnum)) lennu <- ncCspl + numGps idEnd <- c((1:numObs)[diff(idnum)==1],numObs) idStt <- idEnd - nVec + 1 } xnu <- matrix(0,lennu,nMCMC) sigsq <- matrix(1,lenssq,nMCMC) xnucur <- rep(0,lennu) lnumn1 <- lennu - 1 if (family=="binomial") ifam <- 1 if (family=="poisson") ifam <- 2 gparm <- rep(0,2) xncnoj <- rep(0,lnumn1) buSpl <- rep(0,ncCspl) idxSpl <- rep(0,ncCspl) betauO <- rep(0,lennu) uSbj <- rep(0,numGps) uSbjO <- rep(0,numGps) idxSbj <- rep(0,numGps) aux <- matrix(1,lenssq,nMCMC) ssqnu <- c(rep(ssqbeta,ncol(X)),rep(1,lennu-ncol(X))) cat("\n") cat("=====================\n") cat("Welcome to gammSlice.\n") cat("=====================\n\n") cat("Rudimentary progress reports available from\n") cat("inside the Fortran 77 'engine room' according\n") cat("to the control parameter 'msgCode'.\n\n") if (msgCode==0) cat("Currently msgCode = 0 leading to no reporting.\n") if (msgCode==1) { cat("Currently msgCode = 1 (the default) leading to\n") cat("reporting for percentages 1,2,...,10\n") cat("and then for percentages 20,30,...,100.\n") Sys.sleep(3) } if (msgCode==2) { cat("Currently msgCode = 2 leading to reporting\n") cat("for percentages 1,2,...,100.\n") Sys.sleep(3) } if (msgCode==3) { cat("Currently msgCode = 3 leading to reporting\n") cat("for percentages 10,20,...,100.\n") Sys.sleep(3) } cat("\n") F77obj <- .Fortran("gslcmc",as.double(y),as.double(Cspl),as.double(CsplTy), as.double(Ahyp),as.integer(ibkstt),as.integer(ibkend), as.integer(nMCMC),as.integer(numObs),as.integer(ncCspl), as.integer(idPres),as.integer(idnum),as.integer(numGps), as.integer(idStt),as.integer(idEnd),as.integer(nVec), xnu=as.double(xnu),sigsq=as.double(sigsq),as.double(xnucur), as.integer(lennu),as.integer(lenbki),as.integer(lenssq), as.integer(lnumn1),as.integer(ifam),as.double(gparm), as.double(xncnoj),as.double(buSpl),as.double(betauO), as.integer(idxSpl),as.double(uSbj),as.double(uSbjO), as.integer(idxSbj),as.double(aux),as.double(ssqnu), as.integer(msgCode)) cat("\n") nuMCMC <- matrix(F77obj$xnu,lennu,nMCMC) sigsqMCMC <- matrix(F77obj$sigsq,lenssq,nMCMC) nuMCMC <- nuMCMC[,-(1:nBurn)] sigsqMCMC <- sigsqMCMC[,-(1:nBurn)] if (is.vector(sigsqMCMC)) sigsqMCMC <- t(as.matrix(sigsqMCMC)) nKept <- ncol(nuMCMC) ; nKeptPostThin <- floor(nKept/nThin) indsFromThinning <- 1 + nThin*(0:nKeptPostThin) if (max(indsFromThinning)>nKept) indsFromThinning <- indsFromThinning[-length(indsFromThinning)] nuMCMC <- nuMCMC[,indsFromThinning] sigsqMCMC <- sigsqMCMC[,indsFromThinning] if (is.vector(sigsqMCMC)) sigsqMCMC <- t(as.matrix(sigsqMCMC)) nuOut <- t(nuMCMC) sigmaSquaredOut <- t(sigsqMCMC) betaOut <- NULL if (numLinCompons>0) { betaOut <- nuOut[,2:(1+numLinCompons)] if (is.vector(betaOut)) betaOut <- t(as.matrix(betaOut)) if (nrow(betaOut)==1) betaOut <- t(betaOut) } if (!idnumPresent) { if (numSplCompons==0) modelType <- "linOnly" if ((numLinCompons==0)&(numSplCompons>0)) modelType <- "pureAdd" if ((numLinCompons>0)&(numSplCompons>0)) modelType <- "linAdd" } if (idnumPresent) { if (numSplCompons==0) modelType <- "linOnlyMix" if ((numLinCompons==0)&(numSplCompons>0)) modelType <- "pureAddMix" if ((numLinCompons>0)&(numSplCompons>0)) modelType <- "linAddMix" } if (preTransfData) { XlinPreds <- XlinPredsOrig XsplPreds <- XsplPredsOrig } outObj <- list(nu=nuOut,beta=betaOut,sigmaSquared=sigmaSquaredOut, y=y,XlinPreds=XlinPreds,linPredNames=linPredNames, XsplPreds=XsplPreds,splPredNames=splPredNames,Zspl=Zspl,ncZspl=ncZspl, range.x.list=range.x.list,intKnots.list=intKnots.list,family=family, modelType=modelType,preTransfData=preTransfData) class(outObj) <- "gSlc" return(outObj) }
model.data = function (lmobj, lhs = FALSE) { fcall = lmobj$call m = match(c("formula", "data", "subset", "weights"), names(fcall), 0L) fcall = fcall[c(1L, m)] fcall[[1L]] = as.name("model.frame") trms = terms(lmobj) if (!lhs) trms = delete.response(trms) vars = all.vars(trms) if(!is.null(dat <- lmobj$data)) dat[, vars, drop = FALSE] else { form = reformulate(vars) fcall$formula = update(trms, form) env = environment(trms) if (is.null(env)) env = parent.frame() eval(fcall, env, parent.frame()) } } contour.lm = function(x, form, at, bounds, zlim, xlabs, hook, plot.it=TRUE, atpos = 1, decode=TRUE, image=FALSE, img.col=terrain.colors(50), ...) { if (!missing(at)) { if (is.null(names(at))) stop("'at' must be a NAMED list of values used for surface slices") } if (!missing(bounds)) { if (is.null(names(bounds))) stop("'bounds' must be a NAMED list of bounds for each variable") } .decode.value = function(cname, cval) { if (decode && !is.null(forms)) { if (is.null(form <- forms[[cname]])) cval else { inf = .parse.coding(forms[[cname]]) inf$const[1] + cval * inf$const[2] } } else cval } lmobj = x data = model.data(lmobj) if(inherits(form,"formula")) { if (length(form)==2) { vars = all.vars(form[[2]]) n = length(vars) if (n < 2) stop("Need at least two variables") form = list() elt = 1 for (i in 1:(n-1)) for (j in (i+1):n) { form[[elt]] = formula(paste(vars[j],vars[i],sep="~")) elt = elt + 1 } } else { yvars = all.vars(form[[2]]) xvars = all.vars(form[[3]]) form = list() elt = 1 for (i in 1:length(xvars)) for (j in 1:length(yvars)) { form[[elt]] = formula(paste(yvars[j],xvars[i],sep="~")) elt = elt + 1 } } } vars = sort(unique(as.character(sapply(form, all.vars)))) dots = list(...) if (!is.null(dots$ylab)) message("'ylab' ignored. Specify axis labels using 'xlabs'") if(!missing(xlabs) && length(xlabs) < length(vars)) stop("'xlabs' does not contain enough labels" ) forms = NULL if (inherits(lmobj, "rsm")) { forms = codings(lmobj) if (missing(xlabs) && !is.null(forms)) { if(!decode) xlabs = sapply(vars, function(v) paste(as.character(forms[[v]][2:3]), collapse=" = ")) else { xlabs = sapply(vars, function(v) all.vars(forms[[v]][[3]])[1]) } } else if (missing(xlabs)) xlabs = vars } else if (missing(xlabs)) xlabs = vars tmp = lapply(data, function(var) { if (is.factor(var)) factor(levels(var)) else mean(var) }) orig.atnm = NULL if (!missing(at)) { orig.atnm = names(at) for (nm in orig.atnm) { numflag = is.numeric(tmp[[nm]]) if (numflag) tmp[[nm]] = as.numeric(at[[nm]]) else tmp[[nm]] = at[[nm]] } } at = tmp tmp = lapply(data, function(x) if (is.numeric(x)) range(x)) if (!missing(bounds)) for (nm in names(bounds)) if (length(bounds[[nm]]) > 1) tmp[[nm]] = bounds[[nm]] bounds = lapply(tmp, function(x) { if (length(x) == 2) seq(x[1], x[2], length=26) else if (length(x) == 3) seq(x[1], x[2], length=x[3]) else x }) isnum = sapply(at, is.numeric) allnum = names(at)[isnum] plot.data = list() lbls = rep("", length(form)) z.rng = NULL for (i in 1:length(form)) { AT = at v = all.vars(form[[i]]) bad = which(!(v %in% names(data))) if (length(bad) > 0) stop("Unknown variable(s) encountered in 'form': ", paste(v[bad], collapse = ", "), call. = FALSE) if (length(unique(v)) == 1) next y = AT[[v[1]]] = bounds[[v[1]]] x = AT[[v[2]]] = bounds[[v[2]]] newdata = do.call(expand.grid, AT) ord = order(newdata[[v[1]]], newdata[[v[2]]]) newdata = newdata[ord, ] z = predict (lmobj, newdata = newdata) rep = length(z) / length(x) / length(y) if (rep > 1) z = apply(matrix(z, nrow=rep), 2, mean) z.rng = range (c (z.rng, z)) if (!missing(zlim)) { z[z > zlim[2]] = NA z[z < zlim[1]] = NA } vnames = c(x=v[2], y=v[1]) labs = c(xlabs[sapply(vnames, charmatch, vars)], vnames, "") lbls[i] = paste(labs[3], labs[4], sep=" ~ ") if (atpos != 0) { atidx = setdiff(allnum, vnames) if (length(atidx) > 0) { atlabs = NULL if (length(atidx) > 0) { atvals = round(sapply(atidx, function(v) .decode.value(v, at[[v]])), 2) if (decode && !is.null(forms)) { dclabs = sapply(atidx, function(x) { f = forms[[x]] if (is.null(f)) x else { info = .parse.coding(f) info[[1]][2] } }) atlabs = paste(dclabs, atvals, sep=" = ") } else atlabs = paste(atidx, atvals, sep = " = ") } facidx = setdiff(orig.atnm, atidx) faclabs = paste(facidx, unlist(at[facidx]), sep = " = ") atlabs = c(atlabs, faclabs) atlabs = paste(atlabs, collapse = ", ") labs[5] = paste("Slice at", atlabs) if (atpos < 3) labs[atpos] = paste(labs[atpos], "\n", labs[5], sep = "") } } y = .decode.value(v[1], y) x = .decode.value(v[2], x) plot.data[[i]] = list(x=x, y=y, z=matrix(z, nrow=length(x)), labs=labs) } names(plot.data) = lbls if (missing (zlim)) zlim = z.rng for (i in 1:length(lbls)) plot.data[[i]]$zlim = zlim if (plot.it) for (i in 1:length(form)) { dat = plot.data[[i]] if (!missing(hook)) if (!is.null(hook$pre.plot)) hook$pre.plot(dat$labs) args = list(x=dat$x, y=dat$y, z=dat$z, col=img.col, zlim = dat$zlim, ...) args$xlab = dat$labs[1] args$ylab = dat$labs[2] if (image) { do.call("image", args) args$add = TRUE args$xlab = args$ylab = args$col = NULL do.call("contour", args) } else { args$col = NULL do.call("contour", args) if (atpos == 3) title(sub = labs[5]) } if (!missing(hook)) if (!is.null(hook$post.plot)) hook$post.plot(dat$labs) } invisible(plot.data) } image.lm = function(x, form, at, bounds, zlim, xlabs, hook, atpos=1, decode=TRUE, ...) { plot.data = contour.lm(x, form, at, bounds, zlim, xlabs, atpos=atpos, decode=decode, plot.it=FALSE) for (i in 1:length(plot.data)) { dat = plot.data[[i]] if (!missing(hook)) if (!is.null(hook$pre.plot)) hook$pre.plot(dat$labs) image(dat$x, dat$y, dat$z, xlab = dat$labs[1], ylab = dat$labs[2], zlim = dat$zlim, ...) if (atpos == 3) title(sub = dat$labs[5]) if (!missing(hook)) if (!is.null(hook$post.plot)) hook$post.plot(dat$labs) } invisible(plot.data) } persp.lm = function(x, form, at, bounds, zlim, zlab, xlabs, col = "white", contours=NULL, hook, atpos=3, decode = TRUE, theta = -25, phi = 20, r = 4, border = NULL, box = TRUE, ticktype = "detailed", ...) { draw.cont.line = function(line) { if (cont.varycol) { cont.col = col if (length(col) > 1) cont.col = col[cut(c(line$level, dat$zlim), length(col))][1] } lines(trans3d(line$x, line$y, cont.z, transf), col=cont.col, lwd=cont.lwd) } plot.data = contour.lm(x, form, at, bounds, zlim, xlabs, atpos=atpos, plot.it=FALSE) transf = list() if (missing(zlab)) zlab = "" facet.col = col cont = !is.null(contours) if (mode(contours) == "logical") cont = contours cont.first = cont cont.z = cz = plot.data[[1]]$zlim[1] cont.col = 1 cont.varycol = FALSE cont.lwd = 1 if (is.character(contours)) { idx = charmatch(contours, c("top","bottom", "colors"), 0) if (idx == 1) { cont.first = FALSE cont.z = plot.data[[1]]$zlim[2] } else if (idx == 2) {} else if (idx == 3) { cont.varycol = TRUE if (length(col) < 2) col = rainbow(40) } else cont.col = contours } else if (is.list(contours)) { if(!is.null(contours$z)) cz = contours$z if (is.numeric(cz)) cont.z = cz else if (cz=="top") { cont.first = FALSE cont.z = plot.data[[1]]$zlim[2] } if(!is.null(contours$col)) cont.col = contours$col if(!is.null(contours$lwd)) cont.lwd = contours$lwd if(charmatch(cont.col, "colors", 0) == 1) { cont.varycol = TRUE if (length(col) < 2) col = rainbow(40) } } for (i in 1:length(plot.data)) { dat = plot.data[[i]] cont.lines = NULL if (!missing(hook)) if (!is.null(hook$pre.plot)) hook$pre.plot(dat$labs) if (cont) cont.lines = contourLines(dat$x, dat$y, dat$z) if (cont && cont.first) { transf = persp(dat$x, dat$y, dat$z, zlim=dat$zlim, theta=theta, phi=phi, r=r, col = NA, border=NA, box=FALSE, ...) lapply(cont.lines, draw.cont.line) par(new=TRUE) } if (length(col) > 1) { nrz = nrow(dat$z) ncz = ncol(dat$z) zfacet = dat$z[-1,-1] + dat$z[-1,-ncz] + dat$z[-nrz,-1] + dat$z[-nrz,-ncz] zfacet = c(zfacet/4, dat$zlim) facet.col = cut(zfacet, length(col)) facet.col = col[facet.col] } transf = persp(dat$x, dat$y, dat$z, xlab=dat$labs[1], ylab=dat$labs[2], zlab=zlab, zlim=dat$zlim, col=facet.col, border=border, box=box, theta=theta, phi=phi, r=r, ticktype=ticktype, ...) if (atpos == 3) title(sub = dat$labs[5], ...) if (cont && !cont.first) lapply(cont.lines, draw.cont.line) if (!missing(hook)) if (!is.null(hook$post.plot)) hook$post.plot(dat$labs) plot.data[[i]]$transf = transf } invisible(plot.data) }
optim.step1.2 <- function(dat, coef, random.eff){ lam=dat$lam lam0=which(lam==0) lam1=which(lam==1) n.lam0=length(lam0) n.lam1=length(lam1) dfs=dat$dfs n.coef=length(coef) A=coef[1] B=coef[2] beta=coef[3:(n.coef-4)] ss0=coef[n.coef-3] ss1=coef[n.coef-2] rho=coef[n.coef-1] sigma=coef[n.coef] b=random.eff[, 1] d=random.eff[, 2] optimdat=dat$dat dimdat=dim(optimdat) nn=dimdat[1] ids=unique(optimdat[,1]) mm=length(ids) D=as.matrix(optimdat[,4:(sum(dfs)+4)]) Z=matrix(0, nrow=nn, ncol=mm) for(i in 1:mm){ id.x=(optimdat[,1]==ids[i]) ni=sum(id.x) t1=rep(1, ni) Z[id.x,i]=t1 } Sigma=matrix(c(ss0^2,rho*ss0*ss1,rho*ss0*ss1,ss1^2),2,2)/(sigma^2) Gi=solve(t(chol(Sigma))) G=kronecker(diag(mm), Gi) delta=0.1 w=rep(0, 2*mm) while(delta>0.00001) { DDt=D%*%as.matrix(beta) f0.1=-as.matrix(A*exp(Z%*%b))/(1+exp(-log(DDt)/(B*exp(Z%*%d)))) GG=c(seq(1, mm, 1)*2-1) GG2=c(seq(1, mm, 1)*2) w[GG]=b w[GG2]=d f0.2=G%*%w f0=as.matrix(rbind(f0.1, f0.2)) y=as.matrix(rbind(as.matrix(optimdat[,3]), as.matrix(rep(0, 2*mm)))) nn.new=dim(y)[1] f0.A.1=-as.matrix(exp(Z%*%b))/(1+exp(-log(DDt)/(B*exp(Z%*%d)))) f0.A=as.matrix(rbind(f0.A.1, as.matrix(rep(0, 2*mm)))) f0.B.1=-f0.1*(1+exp(-log(DDt)/(B*exp(Z%*%d))))^(-1)*exp(-log(DDt)/(B*exp(Z%*%d)))*(log(DDt)/exp(Z%*%d))*B^(-2) f0.B=as.matrix(rbind(f0.B.1, as.matrix(rep(0, 2*mm)))) f0.beta.miss=f0.1*(1+exp(-log(DDt)/(B*exp(Z%*%d))))^(-1)*exp(-log(DDt)/(B*exp(Z%*%d)))*((DDt)*(B*exp(Z%*%d)))^(-1) applyftn1=function(x){x*f0.beta.miss} f0.beta.1=apply(D, 2, applyftn1) f0.beta.2=matrix(0, nrow=2*mm, ncol=(dim(D)[2]-n.lam0)) f0.beta.0=as.matrix(f0.beta.1[,lam0]) f0.beta.c=f0.beta.1[,lam1] f0.beta.0=rbind(f0.beta.0, matrix(0, nrow=2*mm, ncol=n.lam0)) f0.beta.c=rbind(f0.beta.c, f0.beta.2) applyftn2=function(x){x*f0.1} f0.b.1=apply(Z, 2, applyftn2) f0.b.2=G[,GG] f0.b=rbind(f0.b.1, f0.b.2) f0.d.1=f0.1*(1+exp(-log(DDt)/(B*exp(Z%*%d))))^(-1)*exp(-log(DDt)/(B*exp(Z%*%d)))*(log(DDt)/(B*exp(Z%*%d))) applyftn3=function(x){x*f0.d.1} f0.d.1=apply(-Z, 2, applyftn3) f0.d.2=G[,GG2] f0.d=rbind(f0.d.1, f0.d.2) y.new=y-f0+f0.beta.c%*%beta[lam1] X1=cbind(f0.A, f0.B, f0.beta.0, f0.b, f0.d) X2=f0.beta.c I=diag(nn.new) beta.new=cls(y.new, (I-Px(X1))%*%X2) y.part.hat=X2%*%beta.new$betahat y.part1.hat=y.new-y.part.hat increment=as.numeric(solve(t(X1)%*%X1)%*%t(X1)%*%y.part1.hat) A=increment[1]+A B=increment[2]+B temp=beta if(n.lam0!=0){ beta[lam0]=increment[3:(2+n.lam0)]+beta[lam0] } beta[lam1]=beta.new$betahat b=b+increment[(3+n.lam0):(length(increment)-mm)] d=d+increment[(length(increment)-mm+1):length(increment)] diff.beta=abs(temp-beta) delta=max(abs(increment), diff.beta) } y.hat=-as.matrix(A*exp(Z%*%b))/(1+exp(-log(D%*%beta)/(B*exp(Z%*%d)))) Zhat=matrix(0, nrow=nn, ncol=2*mm) applyftn2=function(x){x*y.hat} Zhat[,GG]=apply(Z, 2, applyftn2) f0.d.1=y.hat*(1+exp(-log(D%*%beta)/(B*exp(Z%*%d))))^(-1)*exp(-log(D%*%beta)/(B*exp(Z%*%d)))*(log(D%*%beta)/(B*exp(Z%*%d))) applyftn3=function(x){x*f0.d.1} Zhat[,GG2]=apply(-Z, 2, applyftn3) time=optimdat[,2] ww=optimdat[,3]-y.hat Dt=round(log(D%*%beta), 8) colnames(Dt)="Dt" id=as.matrix(Z%*%c(1:mm)) colnames(id)="id" DAMAGE_Y=as.matrix(optimdat[,3]) res.dat=cbind(id=id, TIME=optimdat[,2], Dt=Dt , DAMAGE_Y=DAMAGE_Y) colnames(res.dat)=c("id", "TIME", "Dt", "DAMAGE_Y") newdata=as.data.frame(res.dat) random.eff=cbind(b, d) coef=c(A, B, beta, ss0, ss1, rho, sigma) res=list(coef=coef, random.eff=random.eff, yhat=y.hat, Zhat=Zhat, time=time, residual=ww, dat=dat, newdata=newdata) return(res) }
findintercorr_cont_pois <- function(method, constants, rho_cont_pois, lam, nrand = 100000, seed = 1234) { Sigma_cont_pois <- matrix(1, nrow = nrow(rho_cont_pois), ncol = ncol(rho_cont_pois)) for (i in 1:nrow(rho_cont_pois)) { for (j in 1:ncol(rho_cont_pois)) { Sigma_cont_pois[i, j] <- rho_cont_pois[i, j]/(chat_pois(lam[j], n_unif = nrand, seed = seed) * power_norm_corr(constants[i, ], method)) } } return(Sigma_cont_pois) }
"oo_maya_lamps"
knitr::opts_chunk$set(echo = TRUE,comment = " fig.height = 4,fig.align = "center", eval = TRUE) library(MASS) library(kableExtra) generate_data = function(n, p, V, Utrue, err_sd=0.01, pi=NULL){ if (is.null(pi)) { pi = rep(1, length(Utrue)) } assertthat::are_equal(length(pi), length(Utrue)) for (j in 1:length(Utrue)) { assertthat::are_equal(dim(Utrue[j]), c(p, p)) } pi <- pi / sum(pi) which_U <- sample(1:length(pi), n, replace=TRUE, prob=pi) Beta = matrix(0, nrow=n, ncol=p) for(i in 1:n){ Beta[i,] = mvrnorm(1, rep(0, p), Utrue[[which_U[i]]]) } Shat = matrix(err_sd, nrow=n, ncol=p, byrow = TRUE) E = mvrnorm(n, rep(0, p), Shat[1,]^2 * V) Bhat = Beta + E return(list(B = Beta, Bhat=Bhat, Shat = Shat, whichU = which_U)) } set.seed(1) n = 2000 R = 5 V = diag(R) U0 = matrix(0, R, R) U1 = matrix(1, R, R) U2 = U0; U2[1:2,1:2] = 4 U3 = U0; U3[5,5] = 4 simdata = generate_data(n, R, V, list(U0=U0, U1=U1, U2=U2, U3 = U3), err_sd = 1) library(mashr) data = mash_set_data(simdata$Bhat, simdata$Shat) data.L = mash_update_data(data, ref = 'mean') U.c = cov_canonical(data.L) m.1by1 = mash_1by1(data.L) strong = get_significant_results(m.1by1) U.pca = cov_pca(data.L,2,subset=strong) U.ed = cov_ed(data.L, U.pca, subset=strong) m = mash(data.L, c(U.c,U.ed), algorithm.version = 'R') print(get_loglik(m),digits=10) length(get_significant_results(m)) null.ind = which(simdata$whichU %in% c(1,2))
sirt_add_increment <- function(x, pos, value) { y <- x y[pos] <- x[pos] + value return(y) }
enerscape <- function( dem, m, unit = "joule", neigh = 16, method = "ARC", v = NULL ) { if (is.null(dem) | is.null(m)) { stop("Missing mandatory input - see ?enerscape::enerscape for details") } if (class(dem) != "RasterLayer") { stop("Digital elevation model must be a RaterLayer") } if (!unit %in% c("joule", "kcal")) { stop("unit must be one of 'joule' or 'kcal'") } work_in_kcal <- ifelse(unit == "kcal", TRUE, FALSE) en_res <- raster::res(dem)[1] message(" - Raster cells are assumed to have same horizontal and vertical", " resolution and with planar coordinate reference system (e.g. UTM)") message(" | Calculating slope") height <- suppressWarnings( gdistance::transition(dem, function(x) { x[2] - x[1] }, directions = neigh, symm = FALSE) ) slope <- gdistance::geoCorrection(height, scl = FALSE) slope <- atan(slope) * 180 / pi adj <- raster::adjacent(dem, 1:(raster::ncell(dem)), pairs = TRUE, directions = neigh) message(" | Calculating work") work <- slope if (method == "ARC") { work[adj] <- .calc_arc(slope[adj], m, work_in_kcal) } else if (method == "cycling") { if (is.null(v)) { stop("Argument v must be specified") } else { v <- v / 3.6 } work[adj] <- .calc_cycling(height[adj], slope[adj], m, v, work_in_kcal) zeros <- Matrix::which(work@transitionMatrix < 0, arr.ind = TRUE) rw <- zeros[, 1] cl <- zeros[, 2] work@transitionMatrix[rw, cl] <- 0 } else { stop("Argument method must be 'ARC' or 'cycling'") } message(" | Calculating conductance (1 / work)") cond <- slope if (method == "ARC") { cond[adj] <- .calc_arc_cond(slope[adj], m, work_in_kcal) } else if (method == "cycling") { cond[adj] <- .calc_cycling_cond(height[adj], slope[adj], m, v, work_in_kcal) zeros <- Matrix::which(cond@transitionMatrix < 0, arr.ind = TRUE) rw <- zeros[, 1] cl <- zeros[, 2] val <- max(cond@transitionMatrix) * 10 } else { stop("Argument method must be 'ARC' or 'cycling'") } s <- gdistance::raster(slope, "colSums") / neigh w <- gdistance::raster(work, "colSums") / neigh if (method == "cycling") { w[w < 0] <- 0 } con <- gdistance::raster(cond, "colSums") / neigh ans <- raster::stack(dem, s, w, con) names(ans) <- c("DEM", "Slope", "EnergyScape", "Conductance") ans <- list(neighbors = neigh, mass = m, rasters = ans, cond_tr = cond) class(ans) <- "enerscape" message(" - Do not use slope with negative values for distance calculations") return(ans) }
require(xts) require(PerformanceAnalytics) require(gdata) require(FinancialInstrument) require(quantmod) currency("USD") filesroot = "~/Data/MSCI" if (!file.exists(filesroot)) dir.create(filesroot, mode="0777") if (!file.exists(paste(filesroot, "/.incoming", sep=""))) dir.create(paste(filesroot, "/.incoming", sep=""), mode="0777") setwd(paste(filesroot, "/.incoming", sep="")) if(!file.exists("historyIndex.xls")) stop(paste("No spreadsheet exists. Download the spreadsheet to be processed from http://www.msci.com into ", filesroot, "/.incoming", sep="")) x = read.xls("historyIndex.xls", pattern="Date") x = x[-((dim(x)[1]-15):dim(x)[1]),] x.dates = paste(substring(x[,1],1,6),substring(x[,1],7,10)) ISOdates = as.Date(x.dates, format="%b %d %Y") symbolNames = colnames(x[,-1]) description = paste("MSCI", gsub(pattern = "\\.", replacement = " ", symbolNames)) description = gsub(pattern = " ", replacement = " ", description) symbolNames = gsub(pattern = ".Standard.*", replacement = "", symbolNames) symbolNames = paste("MSCI.", symbolNames, ".M.IDX", sep="") symbolNames = gsub(pattern = "\\.\\.", replacement = "\\.", symbolNames) for(i in 1:length(symbolNames)) { dir.create(paste(filesroot, symbolNames[i], sep="/"), showWarnings = FALSE, recursive = FALSE, mode = "0777") } print("Processing columns as symbols...") for( i in 1:length(symbolNames)){ x.xts = as.xts(as.numeric(sub(",","", x[,i+1], fixed=TRUE)), order.by=ISOdates) R.xts = Return.calculate(x.xts) x.xts = cbind(x.xts, R.xts) index(x.xts) = as.Date(as.yearmon(index(x.xts)), frac=1) colnames(x.xts)=c(paste(symbolNames[i],".Close", sep=""), paste(symbolNames[i], ".Returns", sep="")) xtsAttributes(x.xts) <- list(Description = paste(description[i], "Index")) save(x.xts, file=paste(filesroot, symbolNames[i], paste(symbolNames[i], ".rda", sep=""), sep="/")) instrument(symbolNames[i], currency="USD", multiplier=1, tick_size=.01, start_date=head(index(x.xts),1), description=paste(description[i], "Index", sep=""), data="CR", source="MSCI", frequency="Monthly", assign_i=TRUE) print(paste(symbolNames[i], description[i])) } setSymbolLookup.FI(base_dir=filesroot, split_method='common') getSymbols("MSCI.WORLD.M.IDX") getSymbols(symbolNames) chartSeries(Cl(MSCI.WORLD.M.IDX), theme="white") head(MSCI.WORLD.M.IDX)
test_that("devRatePlot returns NULL",{ xx <- seq(from = 4, to = 35, by = 1) yy <- c(0.0011177457, 0.0000000000, 0.0027744302, 0.0004460741, 0.0020882305, 0.0048659816, 0.0046385278, 0.0083962283, 0.0089383489, 0.0076518397, 0.0109503542, 0.0111564471, 0.0150364540, 0.0165235404, 0.0189938734, 0.0238332060, 0.0229612488, 0.0271481105, 0.0292819680, 0.0346557231, 0.0360398266, 0.0397014187, 0.0413783578, 0.0439369633, 0.0481031628, 0.0489109593, 0.0515116666, 0.0539285523, 0.0533571975, 0.0552395531, 0.0552867174, 0.0534671900) testNLS <- devRateModel(eq = lamb_92, temp = xx, devRate = yy, startValues = list(list(Rm = 0.05393, Tmax = 33.4000, To = 10.7500), list(T1 = 3.377000))) res <- devRatePlot( eq = lamb_92, nlsDR = testNLS, rangeT = 10, optText = TRUE, spe = TRUE) expect_equal( object = res, expected = NULL ) xx <- seq(from = 0, to = 50, by = 1) yy <- c(0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 3.243648e-03, 7.814825e-04, 5.814596e-03, 9.819378e-03, 7.814990e-03, 0.000000e+00, 5.430783e-05, 1.056332e-02, 0.000000e+00, 1.295533e-02, 0.000000e+00, 0.000000e+00, 7.823721e-03, 1.247843e-03, 5.706782e-03, 8.286514e-03, 7.482038e-03, 2.459962e-02, 5.102975e-03, 3.485625e-02, 3.060154e-02, 1.493131e-02, 2.509750e-02, 2.822221e-02, 2.497632e-02, 3.772156e-02, 3.043415e-02, 3.034768e-02, 3.756987e-02, 5.572242e-02, 5.400489e-02, 5.740899e-02, 4.994192e-02, 5.559589e-02, 5.372400e-02, 4.867726e-02, 5.998619e-02, 4.504179e-02, 2.689224e-02, 4.373311e-02, 4.414157e-02, 3.948465e-02, 3.335472e-02, 4.921421e-02, 3.708899e-02, 1.838826e-02) testNLS <- devRateModel(eq = taylor_81, temp = xx, devRate = yy, startValues = list(Rm = 0.0550, Tm = 37.2000, To = 8.8000)) res <- devRatePlot( eq = taylor_81, nlsDR = testNLS, rangeT = 10, optText = TRUE, spe = TRUE) expect_equal( object = res, expected = NULL ) rawDevEggs <- matrix(c(10, 0.031, 10, 0.039, 15, 0.047, 15, 0.059, 15.5, 0.066, 13, 0.072, 16, 0.083, 16, 0.100, 17, 0.100, 20, 0.100, 20, 0.143, 25, 0.171, 25, 0.200, 30, 0.200, 30, 0.180, 35, 0.001), ncol = 2, byrow = TRUE) testNLS <- devRateModel(eq = stinner_74, temp = rawDevEggs[,1], devRate = rawDevEggs[,2], startValues = list(list(C = 0.1, k1 = 4, k2 = -0.2), list(Topt = 30))) res <- devRatePlot( eq = stinner_74, nlsDR = testNLS, rangeT = 10, optText = TRUE, spe = TRUE) expect_equal( object = res, expected = NULL ) rawDevEggs <- matrix(c(10, 0.031, 10, 0.039, 15, 0.047, 15, 0.059, 15.5, 0.066, 13, 0.072, 16, 0.083, 16, 0.100, 17, 0.100, 20, 0.100, 20, 0.143, 25, 0.171, 25, 0.200, 30, 0.200, 30, 0.180), ncol = 2, byrow = TRUE) testNLS <- devRateModel(eq = campbell_74, temp = rawDevEggs[,1], devRate = rawDevEggs[,2], startValues = list(aa = 0, bb = 0)) res <- devRatePlot( eq = campbell_74, nlsDR = testNLS, rangeT = 10, optText = TRUE, spe = TRUE) expect_equal( object = res, expected = NULL ) rawDevEggs <- matrix(c(10, 0.031, 10, 0.039, 15, 0.047, 15, 0.059, 15.5, 0.066, 13, 0.072, 16, 0.083, 16, 0.100, 17, 0.100, 20, 0.100, 20, 0.143, 25, 0.171, 25, 0.200, 30, 0.200, 30, 0.180), ncol = 2, byrow = TRUE) testNLS <- devRateModel(eq = davidson_44, temp = rawDevEggs[,1], devRate = rawDevEggs[,2], startValues = list(aa = 5, bb = -0.2, K = 0.3)) res <- devRatePlot( eq = davidson_44, nlsDR = testNLS, rangeT = 10, optText = TRUE, spe = TRUE) expect_equal( object = res, expected = NULL ) rawDevEggs <- matrix(c(10, 0.031, 10, 0.039, 15, 0.047, 15, 0.059, 15.5, 0.066, 13, 0.072, 16, 0.083, 16, 0.100, 17, 0.100, 20, 0.100, 20, 0.143, 25, 0.171, 25, 0.200, 30, 0.200, 30, 0.180, 35, 0.001), ncol = 2, byrow = TRUE) testNLS <- devRateModel(eq = janisch_32, temp = rawDevEggs[,1], devRate = rawDevEggs[,2], startValues = list(Dmin = 5, Topt = 30, aa = 0.2, bb = 0.1)) res <- devRatePlot( eq = janisch_32, nlsDR = testNLS, rangeT = 10, optText = TRUE, spe = TRUE) expect_equal( object = res, expected = NULL ) xx <- seq(from = 0, to = 33, by = 1) yy <- c(0.0005252046, 0.0002251286, 0.0006460717, 0.0017880213, 0.0015611891, 0.0012853886, 0.0010841702, 0.0000000000, 0.0029119885, 0.0051535582, 0.0049455628, 0.0049839564, 0.0042565719, 0.0075039314, 0.0073359365, 0.0069161169, 0.0104414407, 0.0109888804, 0.0121261595, 0.0153213235, 0.0147817972, 0.0193366467, 0.0202140539, 0.0221893465, 0.0260741628, 0.0275310077, 0.0298545694, 0.0317042536, 0.0332244901, 0.0302047526, 0.0292701892, 0.0267738132, 0.0155003324, 0.0011891955) testNLS <- devRateModel(eq = logan6_76, temp = xx, devRate = yy, startValues = list(phi = 0.000800, bb = 0.169, Tmax = 33.003, deltaT = 3.895)) res <- devRatePlot( eq = logan6_76, nlsDR = testNLS, rangeT = 10, optText = TRUE, spe = TRUE) expect_equal( object = res, expected = NULL ) xx <- seq(from = 0, to = 33, by = 1) yy <- c(0.0005252046, 0.0002251286, 0.0006460717, 0.0017880213, 0.0015611891, 0.0012853886, 0.0010841702, 0.0000000000, 0.0029119885, 0.0051535582, 0.0049455628, 0.0049839564, 0.0042565719, 0.0075039314, 0.0073359365, 0.0069161169, 0.0104414407, 0.0109888804, 0.0121261595, 0.0153213235, 0.0147817972, 0.0193366467, 0.0202140539, 0.0221893465, 0.0260741628, 0.0275310077, 0.0298545694, 0.0317042536, 0.0332244901, 0.0302047526, 0.0292701892, 0.0267738132, 0.0155003324, 0.0011891955) testNLS <- devRateModel(eq = logan6_76, temp = xx, devRate = yy, startValues = list(phi = 0.000800, bb = 0.169, Tmax = 33.003, deltaT = 3.895)) res <- devRatePlot( eq = logan6_76, nlsDR = testNLS, rangeT = 10, optText = TRUE, spe = FALSE) expect_equal( object = res, expected = NULL ) })
outlierMap <- function(res, title = "Robust PCA", col = "black", pch = 16, labelOut = TRUE, id = 3, xlim = NULL, ylim = NULL, cex = 1, cex.main=1.2, cex.lab=NULL, cex.axis=NULL){ if(is.null(res$sd)) { SD = res$SD } else { SD = res$sd } if(is.null(res$cutoff.sd)) { cutoffSD = res$cutoffSD } else { cutoffSD = res$cutoff.sd } if(is.null(res$od)) { OD = res$OD } else { OD = res$od } if(is.null(res$cutoff.od)) { cutoffOD = res$cutoffOD } else { cutoffOD = res$cutoff.od } if(is.null(SD)) stop(" No score distances are given.") if(is.null(cutoffSD)) stop( " No cutoff for score distances is given.") if(is.null(OD)) stop(" No orthogonal distances are given.") if(is.null(cutoffOD)) stop( " No cutoff for orthogonal distances is given.") if (is.null(xlim)) { xlim <- c(0, max(SD) * 1.1) } if (is.null(ylim)) { ylim <- c(0, max(OD) * 1.1) } if (is.null(pch)) { pch <- ifelse(is.null(col), 1, 16) } if (is.null(col)) { col <- "black" } mycex = cex mycex.main = 1 if(!is.null(cex.main)) { mycex.main = cex.main } mycex.lab = 1 if(!is.null(cex.lab)) { mycex.lab = cex.lab } mycex.axis = 1 if(!is.null(cex.axis)) { mycex.axis = cex.axis } if (is.list(col)) { for (i in seq_len(length(col))) { if (i == 1) { plot(SD[col[[i]]$index], OD[col[[i]]$index], xlab = "", ylab = "", main = "", pch = pch, col = col[[i]]$col, xlim = xlim, ylim = ylim, cex=mycex, cex.axis = mycex.axis) } points(SD[col[[i]]$index], OD[col[[i]]$index], pch = pch, col = col[[i]]$col, cex=mycex) } } else { plot(SD, OD, xlab = "", ylab = "", main = "", pch = pch, col = col, xlim = xlim, ylim = ylim, cex=mycex, cex.axis = mycex.axis) } title(main = title, line = 1, cex.main = mycex.main) title(ylab = "Orthogonal distance", line = 2.3, cex.lab = mycex.lab) title(xlab = "Score distance", line = 2.3, cex.lab = mycex.lab) abline(v = cutoffSD) abline(h = cutoffOD) if (labelOut) { labelDD_cw(SD, OD, id.n.SD = id, id.n.OD = id) } } labelDD_cw <- function(x,y,id.n.SD=3,id.n.OD=3,off=0.02) { xrange <- graphics::par("usr") xrange <- xrange[2] - xrange[1] if (id.n.SD > 0 && id.n.OD > 0) { n <- length(x) indexSD <- sort(x, index.return = TRUE)$ix indexSD <- indexSD[(n - id.n.SD + 1):n] indexOD <- sort(y, index.return = TRUE)$ix indexOD <- indexOD[(n - id.n.OD + 1):n] lab <- indexOD if (is.character(names(y))) { lab <- names(y[indexOD]) } graphics::text(x[indexOD] - off * xrange, y[indexOD], lab) lab <- indexSD if (is.character(names(x))) { lab <- names(x[indexSD]) } graphics::text(x[indexSD] - off * xrange, y[indexSD], lab) } }
summary.sglg <- function(object, ...) { if (object$semi == FALSE & object$censored == FALSE) { cat(" -------------------------------------------------------------- ") cat("\n Semi-parametric generalized log-gamma regression model \n") cat(" --------------------------------------------------------------\n") cat(" Sample size: ", length(object$y_est)) cat(" Censored: ") print(object$censored) cat("\n ------------------------ Location model ---------------------- \n\n") cat(" ---------- Parametric component ----------\n\n") p <- object$p Estimate <- object$mu StdErr <- object$st_error[1:p] tval <- Estimate/StdErr p.value <- object$p.values[1:p] table <- cbind(Estimate, StdErr, tval, p.value) colnames(table) <- c("Estimate", "Std.Err", "z-value", "Pr(>|z|)") rownames(table) <- colnames(object$X) printCoefmat(table, P.values = TRUE, has.Pvalue = TRUE, digits = 5, signif.legend = FALSE, tst.ind = c(2, 3)) cat("\n -------------------- Scale parameter -------------------- \n\n") Estimate <- object$sigma StdErr <- object$st_error[p + 1] tval <- Estimate/StdErr p.value <- object$p.values[p + 1] table <- cbind(Estimate, StdErr, tval, p.value) colnames(table) <- c("Estimate", "Std.Err", "z-value", "Pr(>|z|)") rownames(table) <- colnames("sigma") printCoefmat(table, P.values = TRUE, has.Pvalue = TRUE, digits = 5, signif.legend = FALSE, tst.ind = c(2, 3)) cat("\n -------------------- Shape parameter -------------------- \n\n") Estimate <- object$lambda StdErr <- object$st_error[p + 2] tval <- Estimate/StdErr p.value <- object$p.values[p + 2] table <- cbind(Estimate, StdErr, tval, p.value) colnames(table) <- c("Estimate", "Std.Err", "z-value", "Pr(>|z|)") rownames(table) <- colnames("lambda") printCoefmat(table, P.values = TRUE, has.Pvalue = TRUE, digits = 5, signif.legend = TRUE, tst.ind = c(2, 3)) cat(" ------------------------------------------------------------\n\n") cat(" Deviance: ", round(object$deviance, digits = 2), "\n\n") cat(" ------ Penalized Log-likelihood ------\n\n") cat(" Log-lik: ", round(object$llglg, digits = 2), "\n\n") cat(" ------ Information criterion ------\n\n") cat(" AIC: ", round(object$AIC, digits = 2), "\n") cat(" BIC: ", round(object$BIC, digits = 2), "\n\n") cat(" --------------------------------------------------------------\n") } if (object$semi == FALSE & object$censored == TRUE) { cat(" -------------------------------------------------------------- ") cat("\n Semi-parametric generalized log-gamma regression model \n") cat(" --------------------------------------------------------------\n") cat(" Sample size: ", length(object$y_est)) cat(" Censored: ") print(object$censored) cat(" Percentage of censored observations: ") print(object$per.censo) cat("\n ------------------------ Location model ---------------------- \n\n") cat(" ---------- Parametric component ----------\n\n") p <- object$p Estimate <- object$mu StdErr <- object$st_error[1:p] tval <- Estimate/StdErr p.value <- object$p.values[1:p] table <- cbind(Estimate, StdErr, tval, p.value) colnames(table) <- c("Estimate", "Std.Err", "z-value", "Pr(>|z|)") rownames(table) <- colnames(object$X) printCoefmat(table, P.values = TRUE, has.Pvalue = TRUE, digits = 5, signif.legend = FALSE, tst.ind = c(2, 3)) cat("\n -------------------- Scale parameter -------------------- \n\n") Estimate <- object$sigma StdErr <- object$st_error[p + 1] tval <- Estimate/StdErr p.value <- object$p.values[p + 1] table <- cbind(Estimate, StdErr, tval, p.value) colnames(table) <- c("Estimate", "Std.Err", "z-value", "Pr(>|z|)") rownames(table) <- colnames("sigma") printCoefmat(table, P.values = TRUE, has.Pvalue = TRUE, digits = 5, signif.legend = FALSE, tst.ind = c(2, 3)) cat(" ------------------------------------------------------------\n\n") cat(" Shape: ", round(object$lambda, digits = 2), "\n\n") cat(" Deviance: ", round(object$deviance, digits = 2), "\n\n") cat(" ------ Penalized Log-likelihood ------\n\n") cat(" Log-lik: ", round(object$llglg, digits = 2), "\n\n") cat(" ------ Information criterion ------\n\n") cat(" AIC: ", round(object$AIC, digits = 2), "\n") cat(" BIC: ", round(object$BIC, digits = 2), "\n\n") cat(" --------------------------------------------------------------\n") } if (object$semi == TRUE & object$censored == FALSE) { cat(" -------------------------------------------------------------- ") cat("\n Semi-parametric generalized log-gamma regression model \n") cat(" --------------------------------------------------------------\n") cat(" Sample size: ", length(object$y_est)) cat(" Censored: ") print(object$censored) cat("\n ------------------------ Location model ---------------------- \n\n") cat(" ---------- Parametric component ----------\n\n") p <- object$p Estimate <- object$mu[1:p] StdErr <- object$st_error[1:p] tval <- Estimate/StdErr p.value <- object$p.values[1:p] table <- cbind(Estimate, StdErr, tval, p.value) colnames(table) <- c("Estimate", "Std.Err", "z-value", "Pr(>|z|)") rownames(table) <- colnames(object$X) printCoefmat(table, P.values = TRUE, has.Pvalue = TRUE, digits = 5, signif.legend = FALSE, tst.ind = c(2, 3)) cat("\n ---------- Non-parametric component ----------\n\n") Knot <- object$Knot Smoothp <- object$alpha d.f <- round(object$d.f.npc,4) BasisD <- Knot table <- cbind(Smoothp, BasisD) cat(" Type of basis: ", as.character(object$basis),"\n\n") cat(" Degrees of freedom: ", as.character(d.f),"\n\n") colnames(table) <- c("Smooth parameter", "Basis dimension") rownames(table) <- colnames(object$npc) printCoefmat(table) cat("\n -------------------- Scale parameter -------------------- \n\n") Estimate <- object$sigma Tknot <- sum(Knot) StdErr <- object$st_error[p + Tknot + 1] tval <- Estimate/StdErr p.value <- object$p.values[p + Tknot + 1] table <- cbind(Estimate, StdErr, tval, p.value) colnames(table) <- c("Estimate", "Std.Err", "z-value", "Pr(>|z|)") rownames(table) <- colnames("sigma") printCoefmat(table, P.values = TRUE, has.Pvalue = TRUE, digits = 5, signif.legend = FALSE, tst.ind = c(2, 3)) cat("\n -------------------- Shape parameter -------------------- \n\n") Estimate <- object$lambda StdErr <- object$st_error[p + Tknot + 2] tval <- Estimate/StdErr p.value <- object$p.values[p + Tknot + 2] table <- cbind(Estimate, StdErr, tval, p.value) colnames(table) <- c("Estimate", "Std.Err", "z-value", "Pr(>|z|)") rownames(table) <- colnames("lambda") printCoefmat(table, P.values = TRUE, has.Pvalue = TRUE, digits = 5, signif.legend = TRUE, tst.ind = c(2, 3)) cat(" ------------------------------------------------------------\n\n") cat(" Deviance: ", round(object$deviance, digits = 2), "\n\n") cat(" ------ Penalized Log-likelihood ------\n\n") cat(" Log-lik: ", round(object$llglg, digits = 2), "\n\n") cat(" ------ Information criterion ------\n\n") cat(" AIC: ", round(object$AIC, digits = 2), "\n") cat(" BIC: ", round(object$BIC, digits = 2), "\n\n") cat(" --------------------------------------------------------------\n") } if (object$semi == TRUE & object$censored == TRUE) { cat(" -------------------------------------------------------------- ") cat("\n Semi-parametric generalized log-gamma regression model \n") cat(" --------------------------------------------------------------\n") cat(" Sample size: ", length(object$y_est)) cat(" Censored: ") print(object$censored) cat("\n ------------------------ Location model ---------------------- \n\n") cat(" ---------- Parametric component ----------\n\n") p <- object$p Estimate <- object$mu[1:p] StdErr <- object$st_error[1:p] tval <- Estimate/StdErr p.value <- object$p.values[1:p] table <- cbind(Estimate, StdErr, tval, p.value) colnames(table) <- c("Estimate", "Std.Err", "z-value", "Pr(>|z|)") rownames(table) <- colnames(object$X) printCoefmat(table, P.values = TRUE, has.Pvalue = TRUE, digits = 5, signif.legend = FALSE, tst.ind = c(2, 3)) cat(" ---------- Non-parametric component ----------\n\n") Knot <- object$Knot Smoothp <- object$alpha d.f <- object$d.f.npc BasisD <- Knot table <- cbind(Smoothp, BasisD, d.f) colnames(table) <- c("Smooth parameter", "Basis dimension", "d.f") rownames(table) <- colnames(object$npc) printCoefmat(table) cat("\n -------------------- Scale parameter -------------------- \n\n") Estimate <- object$sigma Tknot <- sum(Knot) StdErr <- object$st_error[p + Tknot + 1] tval <- Estimate/StdErr p.value <- object$p.values[p + Tknot + 1] table <- cbind(Estimate, StdErr, tval, p.value) colnames(table) <- c("Estimate", "Std.Err", "z-value", "Pr(>|z|)") rownames(table) <- colnames("sigma") printCoefmat(table, P.values = TRUE, has.Pvalue = TRUE, digits = 5, signif.legend = FALSE, tst.ind = c(2, 3)) cat(" ------------------------------------------------------------\n\n") cat(" Shape: ", round(object$lambda, digits = 2), "\n\n") cat(" Deviance: ", round(object$deviance, digits = 2), "\n\n") cat(" ------ Penalized Log-likelihood ------\n\n") cat(" Log-lik: ", round(object$llglg, digits = 2), "\n\n") cat(" ------ Information criterion ------\n\n") cat(" AIC: ", round(object$AIC, digits = 2), "\n") cat(" BIC: ", round(object$BIC, digits = 2), "\n\n") cat(" --------------------------------------------------------------\n") } }
docx_reference_img <- function( x, src){ x <- part_reference_img(x, src, "doc_obj") x } part_reference_img <- function( x, src, part){ src <- unique( src ) x[[part]]$relationship()$add_img(src, root_target = "media") img_path <- file.path(x$package_dir, "word", "media") dir.create(img_path, recursive = TRUE, showWarnings = FALSE) file.copy(from = src, to = file.path(x$package_dir, "word", "media", basename(src))) x } wml_link_images <- function(x, str){ wml_part_link_images(x, str, "doc_obj") } wml_part_link_images <- function(x, str, part){ ref <- x[[part]]$relationship()$get_data() ref <- ref[ref$ext_src != "",] doc <- as_xml_document(str) for(id in seq_along(ref$ext_src) ){ xpth <- paste0("//w:drawing", "[wp:inline/a:graphic/a:graphicData/pic:pic/pic:blipFill/a:blip", sprintf( "[contains(@r:embed,'%s')]", ref$ext_src[id]), "]") src_nodes <- xml_find_all(doc, xpth) blip_nodes <- xml_find_all(src_nodes, "wp:inline/a:graphic/a:graphicData/pic:pic/pic:blipFill/a:blip") xml_attr(blip_nodes, "r:embed") <- ref$id[id] } as.character(doc) }
library(knitr) library(rgl) library(ggsci) library(tidyverse) library(magrittr) rgl::setupKnitr() options(rgl.useNULL=TRUE) rgl::par3d("family" = "serif") opts_chunk$set( collapse = TRUE, comment = " warning=FALSE, message=FALSE, include = TRUE, out.width = "99%", fig.width = 8, fig.align = "center", fig.asp = 0.62 ) if (!requireNamespace("rmarkdown", quietly = TRUE) || !rmarkdown::pandoc_available("1.14")) { warning(call. = FALSE, "These vignettes assume rmarkdown and pandoc version 1.14 (or higher). These were not found. Older versions will not work.") knitr::knit_exit() } library(gMOIP) view <- matrix( c(0.333316594362259, 0.938472270965576, -0.0903875231742859, 0, 0.83994072675705, -0.339126199483871, -0.423665106296539, 0, -0.428250730037689, 0.0652943551540375, -0.901297807693481, 0, 0, 0, 0, 1), nc = 4) loadView(v = view) set.seed(1234) pts <- genNDSet(3, 100, argsSphere = list(below = FALSE), dubND = FALSE) pts <- classifyNDSet(pts[,1:3]) head(pts) ini3D(argsPlot3d = list(xlim = c(min(pts[,1])-2,max(pts[,1])+2), ylim = c(min(pts[,2])-2,max(pts[,2])+2), zlim = c(min(pts[,3])-2,max(pts[,3])+2))) plotPoints3D(pts[pts$se,1:3], argsPlot3d = list(col = "red")) plotPoints3D(pts[!pts$sne,1:3], argsPlot3d = list(col = "black")) plotPoints3D(pts[!pts$us,1:3], argsPlot3d = list(col = "blue")) plotCones3D(pts[,1:3], rectangle = TRUE, argsPolygon3d = list(alpha = 1, color = "cornflowerblue")) plotHull3D(pts[,1:3], addRays = TRUE, argsPolygon3d = list(alpha = 0.25, color = "red"), useRGLBBox = TRUE) finalize3D(argsAxes3d = list(edges = "bbox")) loadView(v = view) pts <- genNDSet(3, 50, argsSphere = list(below = TRUE), dubND = FALSE) pts <- classifyNDSet(pts[,1:3]) ini3D(argsPlot3d = list(xlim = c(min(pts[,1])-2,max(pts[,1])+2), ylim = c(min(pts[,2])-2,max(pts[,2])+2), zlim = c(min(pts[,3])-2,max(pts[,3])+2))) plotPoints3D(pts[pts$se,1:3], argsPlot3d = list(col = "red")) plotPoints3D(pts[!pts$sne,1:3], argsPlot3d = list(col = "black")) plotPoints3D(pts[!pts$us,1:3], argsPlot3d = list(col = "blue")) plotCones3D(pts[,1:3], rectangle = TRUE, argsPolygon3d = list(alpha = 1, color = "cornflowerblue")) plotHull3D(pts[,1:3], addRays = TRUE, argsPolygon3d = list(alpha = 0.25, color = "red"), useRGLBBox = TRUE) finalize3D(argsAxes3d = list(edges = "bbox")) pts <- matrix(c(0,0,1, 0,1,0, 1,0,0, 0.5,0.2,0.5, 0.25,0.5,0.25), ncol = 3, byrow = TRUE) open3d() ini3D(argsPlot3d = list(xlim = c(min(pts[,1])-2,max(pts[,1])+2), ylim = c(min(pts[,2])-2,max(pts[,2])+2), zlim = c(min(pts[,3])-2,max(pts[,3])+2))) plotHull3D(pts, addRays = TRUE, argsPolygon3d = list(alpha = 0.5), useRGLBBox = TRUE) pts <- classifyNDSet(pts[,1:3]) pts plotPoints3D(pts[pts$se,1:3], argsPlot3d = list(col = "red")) plotPoints3D(pts[!pts$sne,1:3], argsPlot3d = list(col = "black")) plotPoints3D(pts[!pts$us,1:3], argsPlot3d = list(col = "blue")) plotCones3D(pts[,1:3], rectangle = TRUE, argsPolygon3d = list(alpha = 1)) finalize3D() rglwidget(reuse = F) pts <- genNDSet(3,50, dubND = FALSE)[,1:3] open3d() ini3D(argsPlot3d = list(xlim = c(0,max(pts$z1)+2), ylim = c(0,max(pts$z2)+2), zlim = c(0,max(pts$z3)+2))) plotHull3D(pts, addRays = TRUE, argsPolygon3d = list(alpha = 0.5)) pts <- classifyNDSet(pts[,1:3]) pts plotPoints3D(pts[pts$se,1:3], argsPlot3d = list(col = "red")) plotPoints3D(pts[!pts$sne,1:3], argsPlot3d = list(col = "black")) plotPoints3D(pts[!pts$us,1:3], argsPlot3d = list(col = "blue")) finalize3D() rglwidget(reuse = F) rm(list = ls(all.names = TRUE))
cluster_iteration_sum_sse <- function(data, P, Q) { np <- ncol(P) nq <- ncol(Q) cluster_sses <- numeric(np * nq) ind <- 1 for(i in 1:nq) { for(j in 1:np) { q_proto <- which(Q[, i] == 1) p_proto <- which(P[, j] == 1) proto_mean <- mean(data[q_proto, p_proto], na.rm = TRUE) cluster_sses[ind] <- sum((data[q_proto, p_proto] - proto_mean) ^ 2, na.rm = TRUE) ind <- ind + 1 } } return(sum(cluster_sses, na.rm = TRUE)) }
IRT.cv <- function(object, ...) { UseMethod("IRT.cv") }
parseGeneAttrs <- function(rootNode) { i <- 0 res <- xmlApply(rootNode,function(child) { i <<- i + 1 attrs <- xmlAttrs(child) name <- unname(attrs["name"]) if (name == "" | is.na(name)) name <- paste(xmlName(child),i,sep="_") logic <- xmlFindNode(child,"simulationLogic") initVal <- NULL if (is.null(logic)) { warning(paste("Gene ",name," does not specify a simulation logic, assuming AND!",sep="")) logic <- "AND" } else { logic <- logic[[1]] params <- xmlFindNode(logic,"simParameters") if (!is.null(params)) { for (param in xmlChildren(params[[1]])) { pa <- xmlAttrs(param) if (pa["name"] == "initVal") { initVal <- as.numeric(pa["value"]) if (initVal != 0 & initVal != 1) { warning("Initial value for gene ",name," is neither 0 nor 1 and is ignored!",sep="") initVal <- NULL } break } } } logic <- unname(xmlAttrs(logic)["type"]) } list(id=unname(attrs["id"]), name=adjustGeneNames(name),logic=logic,initVal=initVal,inputs=NULL) }) } parseAllGenes <- function(rootNode) { genes <- unlist(xmlApply(rootNode,parseGeneAttrs),recursive=FALSE) names(genes) <- lapply(genes,function(gene)gene$id) return(genes) } parseAllLinks <- function(rootNode,geneList) { for (link in xmlChildren(rootNode)) { attrs <- xmlAttrs(link) if (is.na(attrs["sign"])) { warning(paste("The link between \"",geneList[[attrs["src"]]]$name, "\" and \"",geneList[[attrs["targ"]]]$name, "\" is not specified as an enhancer or suppressor and is therefore ignored!",sep="")) } else { geneList[[attrs["targ"]]]$input[[length(geneList[[attrs["targ"]]]$input) + 1]] <- list(input=unname(attrs["src"]),sign=attrs["sign"]) } } return(geneList) } loadBioTapestry <- function(file, symbolic=FALSE) { doc <- xmlRoot(xmlTreeParse(file)) genome <- xmlFindNode(doc,"genome",throwError=TRUE)[[1]] nodes <- xmlFindNode(genome,"nodes",throwError=TRUE)[[1]] geneList <- parseAllGenes(nodes) links <- xmlFindNode(genome,"links",throwError=TRUE)[[1]] geneList <- parseAllLinks(links,geneList) genes <- unname(sapply(geneList,function(gene)gene$name)) geneIds <- names(geneList) fixed <- rep(-1L,length(genes)) i <- 0 interactions <- lapply(geneList,function(gene) { i <<- i + 1 input <- sapply(gene$input,function(inp) { which(geneIds == inp$input) }) if (length(input) == 0) { if (!is.null(gene$initVal)) { input <- 0 func <- gene$initVal fixed[i] <<- func expr <- func } else { input <- i func <- c(0,1) expr <- gene$name } } else { inputSigns <- sapply(gene$input,function(inp)inp$sign) if (!symbolic || gene$logic == "XOR") { tt <- as.matrix(allcombn(2,length(input)) - 1) func <- as.integer(switch(gene$logic, AND = { apply(tt,1,function(assignment) { res <- 1 for (i in seq_along(assignment)) { if (inputSigns[i] == "+") res <- res & assignment[i] else res <- res & !assignment[i] if (!res) break } res }) }, OR = { apply(tt,1,function(assignment) { res <- 0 for (i in seq_along(assignment)) { if (inputSigns[i] == "+") res <- res | assignment[i] else res <- res | !assignment[i] if (res) break } res }) }, XOR = { apply(tt,1,function(assignment) { res <- assignment[1] for (i in 2:length(assignment)) { res <- xor(res,assignment[i]) } res }) }, stop(paste("Unknown Boolean operator \"", gene$logic,"\"!",sep="")) )) } literals <- mapply(function(gene,sign) { if (sign == "+") gene else paste("!",gene,sep="") }, genes[input], inputSigns) expr <- switch(gene$logic, AND = { paste(literals,collapse=" & ") }, OR = { paste(literals,collapse=" | ") }, XOR = { getDNF(func,genes[input]) } ) } if (symbolic) return(parseBooleanFunction(expr,varNames=genes)) else return(list(input=input,func=func,expression=expr)) }) names(interactions) <- genes fixed <- as.integer(fixed) names(fixed) <- genes net <- list(genes=genes,interactions=interactions,fixed=fixed) if (symbolic) { net$timeDelays <- apply(sapply(net$interactions,maxTimeDelay,genes=net$genes),1,max) net$internalStructs <- .Call("constructNetworkTrees_R",net) class(net) <- "SymbolicBooleanNetwork" } else class(net) <- "BooleanNetwork" return(net) }
quantCI <- function(x, q, alpha, method=c("exact", "approximate")){ method <- match.arg(method) x <- sort(x) n <- length(x) if(method == "exact"){ results <- exactBeta(n, q, alpha) u1 <- results[[1]] u2 <- results[[2]] }else if(method == "approximate"){ pn=(n+1)*q qn=(n+1)*(1-q) u1 <- qbeta(alpha/2, pn, qn) u2 <- qbeta(1 - alpha/2, pn, qn) }else{ stop("A method must be entered") } a <- c(q, u1, u2) z <- (n+1)*a j <- floor(z) g <- z - j y <- c() for(r in 1:3){ if(j[r]==0){ y[r] <- x[1] }else if(j[r] > n){ y[r] <- x[n] }else{ y[r] <- (1-g[r])*x[j[r]] + g[r]*x[j[r]+1] } } tbl <- c(y[1],y[2],y[3]) names(tbl) <- paste(as.character(a[c(1:3)]*100),"th percentile ", sep = "") return(list(u1 = u1, u2 = u2, lower.ci = tbl[2], qx = tbl[1], upper.ci = tbl[3])) }
context('Adding new individuals') test_that('age',{ contestants <- data.frame(id = letters[1:4], period = 1, convention1 = as.Date( c('1994-01-01', '1990-01-01', '1991-01-01', '1992-01-01') )) new.order <- DynaRankR:::add_new_ids_age(new.ids = 'a', working.ranks = letters[2:4], contestants = contestants, period = 1) expect_identical(new.order[4], 'a') }) test_that('tenure',{ contestants <- data.frame(id = letters[1:4], period = 1, convention1 = as.Date( c('1994-01-01', '1990-01-01', '1991-01-01', '1992-01-01') )) new.order <- DynaRankR:::add_new_ids_tenure(new.ids = 'a', working.ranks = letters[2:4], contestants = contestants, period = 1) expect_identical(new.order[4], 'a') }) test_that('mri',{ contestants <- data.frame(id = letters[1:4], period = 1, convention1 = c('b', 'o', 'f', 'g')) new.order <- DynaRankR:::add_new_ids_mri(new.ids = 'a', working.ranks = letters[2:4], contestants = contestants, period = 1) expect_identical(new.order[2], 'a') }) test_that('phys.attr',{ contestants <- data.frame(id = letters[1:4], period = 1, convention1 = c(45, 55, 34, 23)) new.order <- DynaRankR:::add_new_ids_phys_attr(new.ids = 'a', working.ranks = letters[2:4], contestants = contestants, period = 1) expect_identical(new.order[2], 'a') }) test_that('age elo',{ contestants <- data.frame(id = letters[1:4], period = 1, convention1 = as.Date( c('1994-01-01', '1990-01-01', '1991-01-01', '1992-01-01') )) current.scores <- data.frame(id = letters[2:4], score = c(100, 80, 60)) id.score <- DynaRankR:::add_new_ids_age_elo(new.ids = 'a', contestants = contestants, period = 1, current.scores = current.scores) expect_identical(id.score[1,2], 60) }) test_that('tenure elo',{ contestants <- data.frame(id = letters[1:4], period = 1, convention1 = as.Date( c('1994-01-01', '1990-01-01', '1991-01-01', '1992-01-01') )) current.scores <- data.frame(id = letters[2:4], score = c(100, 80, 60)) id.scores <- DynaRankR:::add_new_ids_tenure_elo(new.ids = 'a', contestants = contestants, period = 1, current.scores = current.scores) expect_equal(id.scores[1,2], as.numeric(quantile(c(100,80,60), 0))) }) test_that('mri elo',{ contestants <- data.frame(id = letters[1:4], period = 1, convention1 = c('b', 'o', 'f', 'g'),stringsAsFactors = FALSE) current.scores <- data.frame(id = letters[2:4], score = c(100, 80, 60)) ids.score <- DynaRankR:::add_new_ids_mri_elo(new.ids = 'a', current.scores = current.scores, contestants = contestants, period = 1) expect_equal(ids.score[1,2], 99.9) }) test_that('phys.attr elo',{ contestants <- data.frame(id = letters[1:4], period = 1, convention1 = c(45, 55, 34, 23)) current.scores <- data.frame(id = letters[2:4], score = c(100, 80, 60)) id.scores <- DynaRankR:::add_new_ids_phys_attr_elo(new.ids = 'a', current.scores = current.scores, contestants = contestants, period = 1) expect_equal(id.scores[1,2], as.numeric(quantile(c(100,80,60), 0.66666666667))) })
advectionF <- function(id, ...) { .args <- list(...) do.call(paste0('advectionF', id), args = .args) } advectionF2 <- function(id, arglist) { do.call(paste0('advectionF', id), args = arglist) } advectionFuniform <- function(spacepoints, u, v) { d <- nrow(spacepoints) return( data.frame(u = rep(u, d), v = rep(v, d)) ) } advectionFrotation <- function(spacepoints, x0, y0, a, b) { x <- spacepoints[,1] - x0 y <- spacepoints[,2] - y0 u <- a * y v <- (-b * x) return( data.frame(u = u, v = v) ) } advectionFspiral <- function(spacepoints, x0, y0, a, b, rotation = 1) { x <- spacepoints[,1] - x0 y <- spacepoints[,2] - y0 if (rotation == 1) { u <- ( b * y - a * x) v <- (-a * x - b * y) } if (rotation == 2) { u <- (-a * x - b * y) v <- ( a * x - b * y) } return( data.frame(u = u, v = v) ) } advectionFspiralCE <- function(spacepoints, a, C) { xaux <- spacepoints[,1] yaux <- spacepoints[,2] x <- (xaux - min(xaux)) / diff(range(xaux)) y <- (yaux - min(yaux)) / diff(range(yaux)) dPPdx <- (sin(C * pi * x) * (C * pi) * (1 - x)^2 - (1 - cos(C * pi * x)) * (2 * (1 - x))) * ((1 - cos(C * pi * y)) * (1 - y)^2) dPPdy <- ((1 - cos(C * pi * x)) * (1 - x)^2) * (sin(C * pi * y) * (C * pi) * (1 - y)^2 - (1 - cos(C * pi * y)) * (2 * (1 - y))) u <- -a * dPPdy v <- a * dPPdx return( data.frame(u = u, v = v) ) } advectionFradial <- function(spacepoints, x0, y0, a, b) { x <- spacepoints[,1] - x0 y <- spacepoints[,2] - y0 u <- a * x v <- b * y return( data.frame(u = u, v = v) ) } advectionFhyperbolic <- function(spacepoints, x0, y0, a, b) { x <- spacepoints[,1] - x0 y <- spacepoints[,2] - y0 u <- a * y v <- b * x return( data.frame(u = u, v = v) ) }
"_PACKAGE" if(getRversion() >= "2.15.1") globalVariables(c(".", "alpha", ""))
output$genderBar <- renderEcharts4r({ if (!is.null(input$ageGenderOptionRegion) & !is.null(input$ageGenderOptionDateRange)) { dt <- GLOBAL_VALUE$signateDetail.ageGenderData updateDay <- max(dt$公表日, na.rm = T) dt[年代 == "", 年代 := "不明"] genderAgeMaster <- data.table( 年代 = rep(c("不明", "00代", "> 90代", paste0(seq(1:8), "0代")), 3), 性別 = c(rep("男性", 11), rep("女性", 11), rep("不明", 11)) ) if (input$ageGenderOptionRegion != "全国") { dt <- dt[受診都道府県 %in% input$ageGenderOptionRegion] } dt <- dt[公表日 >= input$ageGenderOptionDateRange[1] & 公表日 <= input$ageGenderOptionDateRange[2]] dt <- merge(genderAgeMaster, dt[, .(人数 = .N), by = c("年代", "性別")], all.x = T) dt[is.na(人数), 人数 := 0] forPlot <- reshape(dt, idvar = "年代", timevar = "性別", direction = "wide")[order(年代)][, male_minus := -人数.男性] maleCount <- sum(forPlot$人数.男性, na.rm = T) femaleCount <- sum(forPlot$人数.女性, na.rm = T) unknownCount <- sum(forPlot$人数.不明, na.rm = T) totalCount <- maleCount + femaleCount + unknownCount forPlot$年代 <- suppressWarnings(i18n$t(forPlot$年代)) forPlot %>% e_chart(年代) %>% e_bar(male_minus, stack = "1", name = i18n$t("男性"), itemStyle = list(color = darkNavy)) %>% e_bar(人数.女性, stack = "1", name = i18n$t("女性"), itemStyle = list(color = middleRed)) %>% e_x_axis(axisTick = list(show = F), axisLabel = list(inside = T)) %>% e_labels(position = "inside", formatter = htmlwidgets::JS(" function(params) { let count = params.value[0] if(count < 0) { count = -count } return(count) } ")) %>% e_y_axis(show = F) %>% e_flip_coords() %>% e_tooltip( formatter = htmlwidgets::JS(paste0(" function(params) { let count = params[0].value[0] if(count < 0) { count = -count } const total = Number(count) + Number(params[1].value[0]) return(`${params[0].value[1]} ", i18n$t("合計:"), "${total} (", i18n$t("総計の"), "${Math.round(total/", totalCount, "*100, 4)}%) <hr>", i18n$t("男性:"), "${count} (${params[0].value[1]}", i18n$t("の"), "${Math.round(count/total*100, 4)}%) <br>", i18n$t("女性:"), "${params[1].value[0]} (${params[0].value[1]}", i18n$t("の"), "${Math.round(params[1].value[0]/total*100, 4)}%) `) } ")), trigger = "axis", axisPointer = list(type = "shadow") ) %>% e_title( text = sprintf( i18n$t("男性:%s人 (%s%%)、女性:%s人 (%s%%)\n不明:%s人 (%s%%)、計:%s人"), maleCount, round(maleCount / totalCount * 100, 2), femaleCount, round(femaleCount / totalCount * 100, 2), unknownCount, round(unknownCount / totalCount * 100, 2), totalCount ), subtext = paste0(i18n$t("集計時間:"), updateDay), textStyle = list(fontSize = 11), subtextStyle = list(fontSize = 9) ) %>% e_legend(top = "15%", right = "5%", selectedMode = F, orient = "vertical") %>% e_grid(bottom = "0%", right = "0%", left = "0px") } }) output$ageGenderOption <- renderUI({ region <- as.list(c("全国", prefectureNameMapJa)) names(region) <- c(i18n$t("全国"), prefectureNameMap[[languageSetting]]) tagList( pickerInput( inputId = "ageGenderOptionRegion", label = i18n$t("都道府県"), choices = region ), dateRangeInput( "ageGenderOptionDateRange", label = i18n$t("公表日"), start = min(GLOBAL_VALUE$signateDetail.ageGenderData$公表日, na.rm = T), end = Sys.Date(), min = min(GLOBAL_VALUE$signateDetail.ageGenderData$公表日, na.rm = T), max = Sys.Date(), separator = " - ", format = i18n$t("yyyy年m月d日"), language = languageSetting ) ) })
get.cycle.minimums <- function(dataset, CycleBreaks, cyclemat, rowLimit=NULL){ close.cycle <- NULL for(i in 1:dim(cyclemat)[2]){ close.cycle <- append(close.cycle, which.max(cyclemat[,i])) } if(is.null(rowLimit)){ limits <- NULL for(i in 1:dim(CycleBreaks)[2]){ set1 <- na.omit(CycleBreaks[,i]) ncycles <- length(set1)-1 limits <- append(limits, ncycles) } rowLimit <- max(limits) } closebreaks <- NULL start <- 1 for(i in 1:dim(CycleBreaks)[2]){ set1 <- na.omit(CycleBreaks[,i]) nbreaks <- length(set1) ncycles <- nbreaks-1 open <- CycleBreaks[1:ncycles, i] end <- start + ncycles - 1 close <- close.cycle[start:end] set2 <- open + close closebreaks <- add.col(closebreaks, set2, rowLimit) start <- end + 1 } return(list(closebreaks=closebreaks, close.cycle=close.cycle)) }
options(warn = 1, keep.source = TRUE, error = quote({ status.end("ERROR") })) status.start <- function(name) { cat(paste(name, format(Sys.time(), "%F %T"), sep="\t"), file=file.path(settings$outdir, "STATUS"), append=TRUE) } status.end <- function(status="DONE") { cat(paste("", format(Sys.time(), "%F %T"), status, "\n", sep="\t"), file=file.path(settings$outdir, "STATUS"), append=TRUE) } library(PEcAn.all) library(PEcAn.assim.sequential) library(PEcAn.visualization) library(PEcAn.allometry) library(mvtnorm) library(rjags) library(reshape2) library(PEcAn.LINKAGES) settings <- read.settings("pecan.SDA.xml") load('~/linkages_lyford_summary_v6.Rdata') row.keep <- list() spp.params.default <- read.csv(system.file("spp_matrix.csv", package = "linkages")) for(i in 1:15){ row.keep[[i]]<-grep(rownames(ab_mat)[i],spp.params.default[,2])[1] } dist.mat<-spp.params.default[unlist(row.keep),] dist.mat<-dist.mat[-9,] rownames(dist.mat)<-dist.mat[,1] dist(dist.mat,method="canberra") new.names <- spp.params.default[unlist(row.keep),1] new.names[2] <- spp.params.default[18,1] rm.spp <- which(is.na(new.names)) new.names<-new.names[-rm.spp] ab_mat<-ab_mat[-rm.spp,] rownames(ab_mat)<- paste0("AGB.pft.",new.names) obs.mean <- list() for(i in 1:ncol(ab_mat)){ obs.mean[[i]] <- ab_mat[,i] } cov_array<-cov_array[-rm.spp,-rm.spp,] colnames(cov_array)<-new.names rownames(cov_array)<-new.names obs.cov <- list() for(i in 1:dim(cov_array)[3]){ obs.cov[[i]] <- cov_array[,,i] } years<-1960:2014 names(obs.mean) <- paste0(years,'/12/31') for(i in 1:14){ plot(ab_mat[i,],typ='l',main=new.names[i]) lines(ab_mat[i,]*cov_array[i,i,]) lines(ab_mat[i,]*cov_array[i,i,]) lines(ab_mat[i,]*(cov_array[i,i,]+1)) } status.start("IC") IC = matrix(NA,as.numeric(settings$state.data.assimilation$n.ensemble),length(settings$pfts)) status.end() status.start("EnKF") sda.enkf(settings=settings, obs.mean = obs.mean, obs.cov = obs.cov, IC = IC, Q = NULL) status.end()
library(hamcrest) expected <- c(0x1.29fffffffffffp+8 + 0x0p+0i, 0x1.34c0161bc286bp+5 + -0x1.e549f5d1f6ef6p+7i, -0x1.e3f2fa9d806b6p+6 + -0x1.2b2724a2962fbp+3i, 0x1.58796d01633a2p+6 + 0x1.824f5d8fbb5d2p+4i, 0x1.e0a897011f022p+2 + -0x1.642eb042923a2p+7i, -0x1.8628765d213c2p+7 + -0x1.882f853218ae4p+5i, -0x1.412a5b7e75bebp+6 + 0x1.fd54e1d6b6343p+6i, 0x1.028e81545ce16p+5 + 0x1.a91304f85c4ap+5i, -0x1.2a01d266073fp+4 + 0x1.06cdf6d020175p+4i, -0x1.1748b1bec8b43p+3 + 0x1.2b228c001af96p+6i, 0x1.0a3b1a8d47fd9p+6 + 0x1.14bc32e421259p+6i, 0x1.8fb9e7b5810acp+6 + -0x1.e88a8cc6e37ep+1i, 0x1.b6458c4c406c2p+5 + -0x1.20cbd6031a3c2p+6i, -0x1.0b045a1b30b3p+4 + -0x1.d935001996203p+5i, -0x1.8f5cf0faa45adp+3 + -0x1.a6dbf605f0ap+3i, 0x1.68412946115ccp+2 + -0x1.3dd4fdbdaa25p+5i, -0x1.c3681561a470ap+5 + -0x1.96ce418480b85p+5i, -0x1.47f87b47c9d3ap+6 + 0x1.0a7ac80c6184p+5i, -0x1.c60a1773b2cc4p+0 + 0x1.2f46ea8184116p+6i, 0x1.47ab38d9f868p+5 + 0x1.fad34ca28e393p+3i, -0x1.b4a55a851afa8p+1 + -0x1.d89ff8ae871b2p+2i, -0x1.bd616ca8e2fbp-1 + 0x1.3cde8038795a7p+5i, 0x1.fd6f04bf267b9p+5 + 0x1.59c788a516871p+4i, 0x1.73a39e87b69afp+5 + -0x1.e44b87218b8b8p+5i, -0x1.40bc7b8a42c1p+5 + -0x1.a4b7be076d213p+5i, -0x1.24f4e866a684fp+5 + 0x1.7078beb8d7ddp+4i, 0x1.53794598dc5bbp+4 + 0x1.66cef91ebec1ep+3i, -0x1.2c85718658cp+3 + -0x1.08b936f615b86p+5i, -0x1.8fa373466e2c2p+5 + 0x1.138aa00486409p+4i, 0x1.810133e3b496ap+3 + 0x1.e892692dc985ep+5i, 0x1.d4845433e620fp+5 + -0x1.3671831394441p+1i, -0x1.990872355277cp+0 + -0x1.66371d818d69bp+5i, -0x1.02f83cdf6c424p+5 + 0x1.e6ce8f43c39dep+3i, 0x1.16c0870f6b7bap+5 + 0x1.fda387815bd6dp+4i, 0x1.449ebdfb77454p+5 + -0x1.78507cf5502b2p+5i, -0x1.73da3144a2fdap+5 + -0x1.77a86a118e889p+5i, -0x1.5298f8aa3b04fp+5 + 0x1.2f9386dc9b2dcp+5i, 0x1.dd68932a68211p+4 + 0x1.a5107880d031ap+4i, 0x1.6a015547c1d2p+2 + -0x1.d2d5bece3049bp+4i, -0x1.2f3b32f1536e8p+5 + 0x1.0e8d6cf8eddfp+3i, 0x1.bb12dd400fcf4p+2 + 0x1.8a41f28a4fb7ap+5i, 0x1.9f61922beaffep+5 + 0x1.e77c609706bb3p+2i, 0x1.4a578a6f2eefap+4 + -0x1.5186fb5447b21p+5i, -0x1.dc924e29ef926p+4 + -0x1.3781d60710c32p+4i, -0x1.325027af858eep+2 + 0x1.b84ce394aae8cp+4i, 0x1.35cdfe00f6757p+5 + -0x1.a946b0efac051p+3i, -0x1.9e1a48e323ccp+4 + -0x1.c7c2bb2fce06ap+5i, -0x1.233e119f4d19fp+6 + 0x1.d44d085ef130ep+4i, 0x1.8b10308fe5cb8p+4 + 0x1.356905afe401cp+6i, 0x1.065530a2e7338p+6 + -0x1.3d10bdc563b59p+4i, -0x1.987c8b7202cf6p+4 + -0x1.5670160ce6b9ap+5i, -0x1.821eb1476b3fbp+4 + 0x1.652c9018c052fp+5i, 0x1.07b7f61349827p+6 + 0x1.534c777f1623ep+4i, 0x1.e4aeac23f6d7fp+4 + -0x1.2867567354f54p+6i, -0x1.0226e4494dfdcp+6 + -0x1.245cdd134087bp+5i, -0x1.bee4636c3813ep+4 + 0x1.717a947f6999fp+5i, 0x1.0b924e6fc2893p+5 + 0x1.ebffbda18b6a2p+1i, -0x1.8c573fcea09f1p+4 + -0x1.253a411503e8p+5i, -0x1.b1ddd43dff207p+5 + 0x1.493885e39bc38p+5i, 0x1.1978d3369e164p+5 + 0x1.18c8c61e9c9bep+6i, 0x1.0598cf9558ca9p+6 + -0x1.f81f34d7dafacp+3i, -0x1.84344fa968574p+2 + -0x1.2ce64d1633e44p+5i, -0x1.c58d54d68de2p+2 + 0x1.490390142b883p+4i, 0x1.86fb75ae46288p+5 + -0x1.857479fdba04p+1i, 0x1.46fda6b6ccde9p+3 + -0x1.0ad5ac89a4ab5p+6i, -0x1.e110db1b8c31fp+5 + -0x1.d175dc0703eaap+4i, -0x1.0c3e030c01392p+5 + 0x1.243b22883e09ep+5i, 0x1.0290deab6713dp+4 + 0x1.17f1f0e19acfap+4i, -0x1.fc8fb26f1c256p+2 + -0x1.052873765df05p+4i, -0x1.3363359ebf576p+5 + 0x1.7289792de7458p+4i, 0x1.0104a774deddcp+4 + 0x1.05022117c7c63p+6i, 0x1.29f2f30f84a4ep+6 + 0x1.33f2ced3d4777p+2i, 0x1.028fe130629e2p+4 + -0x1.df9c04cfd5cfp+5i, -0x1.2c030fdaf7a4bp+5 + -0x1.6e641e268f5c2p+1i, 0x1.b1ce6cbf7f095p+4 + 0x1.b53f2741829e5p+4i, 0x1.106ed1fd25b8bp+5 + -0x1.a52a58fb692d5p+5i, -0x1.ddf51c367689dp+5 + -0x1.735ce50425b3cp+5i, -0x1.964786df69f92p+5 + 0x1.8dfbfe2a3eb02p+5i, 0x1.115678a34f43cp+5 + 0x1.46f9867dfe841p+5i, 0x1.41563cf2a9fa4p+4 + -0x1.aca36e79cdbcdp+4i, -0x1.1c4563955fca4p+5 + -0x1.2d26bfbbea4p-2i, 0x1.604874e973af8p+2 + 0x1.b8c87df78bcp+5i, 0x1.16d6273695de8p+6 + 0x1.1ffaf5478790cp+2i, 0x1.18d7195ddf032p+4 + -0x1.0feda9ecbf93dp+6i, -0x1.adf8625dd16aep+5 + -0x1.2dc77695f3a3ap+4i, -0x1.61b4e2aec962p+2 + 0x1.40ee409cbd7e1p+5i, 0x1.237f25790bcaap+5 + -0x1.b215bd9501e4fp+3i, -0x1.b20f3c39838ecp+4 + -0x1.5865505db0fd9p+5i, -0x1.aac6c17458f49p+5 + 0x1.c61b4369437d2p+4i, 0x1.2cd9be0089952p+4 + 0x1.c9619ea2eca6fp+5i, 0x1.7da1a2ab9fdb4p+5 + -0x1.39a161e0c03afp+3i, -0x1.ef06e36ec95f2p+3 + -0x1.e3f2e57634952p+4i, -0x1.40ad70542f9aep+4 + 0x1.2e55131570468p+5i, 0x1.f08041845d6d4p+5 + 0x1.a14bbcd056641p+4i, 0x1.401ccbc6e82bcp+5 + -0x1.1e46fda8945dp+6i, -0x1.009cb540009fcp+6 + -0x1.68f79fe56475ap+5i, -0x1.0935cdf886dbdp+5 + 0x1.9a39119e90a9ep+5i, 0x1.67da36205ec8p+5 + 0x1.299fa3911ef92p+3i, -0x1.da55fa0fd8c41p+3 + -0x1.8b0027455db94p+5i, -0x1.e175166dfb982p+5 + 0x1.d05f1d24ba18cp+4i, 0x1.dfb4796166f6bp+4 + 0x1.0e7a7e8c5312ap+6i, 0x1.f96e6cc347897p+5 + -0x1.84f7042cddacep+4i, -0x1.7850b2a6637e4p+4 + -0x1.81693ee81fd91p+5i, -0x1.0910b7e578ab4p+5 + 0x1.018bb794ac606p+5i, 0x1.5edf33f7e6e06p+5 + 0x1.9edffc9f365c5p+4i, 0x1.851bea912875dp+4 + -0x1.9525d785f0496p+5i, -0x1.a0632bc2f44d8p+5 + -0x1.670b3a2d1ab6cp+4i, -0x1.2f4df3d125a26p+4 + 0x1.98de328db0c7cp+5i, 0x1.7fd21682f5c63p+5 + 0x1.d352863333c0cp+3i, 0x1.ddee0eb9a7066p+2 + -0x1.55482799ca59fp+5i, -0x1.3a42cf14bddf7p+5 + 0x1.9b31975066c98p+1i, 0x1.8975690d234c5p+3 + 0x1.4b8da95e4e5a5p+5i, 0x1.6ffa1e1946e6ap+5 + -0x1.b63ce0033d4b2p+3i, -0x1.085e25efe1152p+3 + -0x1.7307d83a2e8e8p+5i, -0x1.42bc922b10d6p+5 + 0x1.84fc1b684fabp+1i, 0x1.3338a3950396ap+2 + 0x1.f8cd54b4389a8p+4i, 0x1.a5e2a08e6ade2p+4 + -0x1.02048a0faac65p+4i, -0x1.0b820aa988943p+5 + -0x1.eafbf2cc20bfep+4i, -0x1.6453d192e711dp+5 + 0x1.73d3f0f1adf54p+5i, 0x1.6da2a5dbdcd7ep+5 + 0x1.c62c98919efadp+5i, 0x1.9ba1dc33f6253p+5 + -0x1.1626043fed37ap+5i, -0x1.e66a821b6648ap+4 + -0x1.98b801fb383f8p+4i, 0x1.f1ce0c5bd3ae8p+1 + 0x1.6110a3b2df8a8p+5i, 0x1.0dddde1c7e5a9p+6 + -0x1.f5d51b7111ae3p+3i, -0x1.68cdd25311f64p+2 + -0x1.405e7fecbe86ap+6i, -0x1.19ac79b42979ep+6 + -0x1.6ffb816dad6e2p+3i, -0x1.16916a97c5db2p+4 + 0x1.68359b07cc9c2p+5i, 0x1.5d07028e818aap+4 + 0x1.276e16317aa4ep+2i, -0x1.33be05a0dd002p+4 + -0x1.0f0fec0ac63b5p+4i, -0x1.09bd26437966ap+5 + 0x1.2579d5dd637dep+5i, 0x1.124ef1105165p+5 + 0x1.c0d7f8e08071dp+5i, 0x1.02f1b1f874d12p+6 + -0x1.059d1dc1fbb07p+4i, -0x1.3079743de2be8p+1 + -0x1.9e7526a5f440ep+5i, -0x1.e7cb1375b1a2p+4 + 0x1.d131e46a415e2p+2i, 0x1.ad15523fac32cp+4 + 0x1.3152109dab8bdp+4i, 0x1.6a5d70cfa8b52p+4 + -0x1.67d6d6b5bde7p+5i, -0x1.94930ecf9aaf9p+5 + -0x1.ff1d9777fcda3p+4i, -0x1.1615939eb9436p+5 + 0x1.5eaf6988e26cep+5i, 0x1.0557755527ee9p+5 + 0x1.82e251467903dp+4i, 0x1.a0a07242c993p+0 + -0x1.ba8087a63283cp+4i, -0x1.1ebec29cbf53bp+5 + 0x1.6128d86a0beep+4i, 0x1.03fd18325ce8cp+5 + 0x1.a745c6532710ap+5i, 0x1.00489f5fee84p+6 + -0x1.8d1010063dce5p+4i, -0x1.3bc865b727c9ep+3 + -0x1.cef5cd10bb686p+5i, -0x1.2e8775e02d727p+5 + 0x1.d2e41027726fp+1i, 0x1.9228d3022c097p+3 + 0x1.20f420a67703p+4i, 0x1.52362d903dd9ep+3 + -0x1.e715264c2d6f2p+4i, -0x1.6a1ab93710f1fp+5 + -0x1.1ebfdb7864a41p+4i, -0x1.06a809c4d81ep+5 + 0x1.74fdf63acc6eep+5i, 0x1.076bae4d6a868p+5 + 0x1.49b42b02f6889p+5i, 0x1.feb0813709a21p+4 + -0x1.0459b38b7a7c2p+4i, -0x1.e0149565d3d94p+3 + -0x1.2c78f3cc60368p+3i, 0x1.d6ac65ade0388p+2 + 0x1.197d8f7e39f54p+5i, 0x1.f1816dd2a5b16p+5 + -0x1.000a12dc96358p+2i, 0x1.a1f32cb8df62p+3 + -0x1.2ca15bb9eab26p+6i, -0x1.0dc59ef95e2b9p+6 + -0x1.798d1bc2b5a76p+4i, -0x1.af03dec64681ap+3 + 0x1.8f08d6620f7e5p+5i, 0x1.3055626151dc9p+5 + -0x1.d3a6c61a86b16p+3i, -0x1.695fd673bae58p+5 + -0x1.3d0735cb76e8dp+5i, -0x1.8cf08a40dde7dp+5 + 0x1.e7172bfafbb38p+5i, 0x1.b60d2bca497aap+5 + 0x1.aaf992a946bcap+5i, 0x1.35c3f57f14e91p+5 + -0x1.2897dea047ccep+5i, -0x1.b66312ae1f05ep+4 + -0x1.3b456e19622cap+3i, 0x1.bac2344823c9dp+3 + 0x1.19d1660eadb1ap+5i, 0x1.97b9f86ae9f66p+5 + -0x1.0ac79264f094dp+4i, -0x1.d73b3f80e55a8p+0 + -0x1.d3272051aa5a1p+5i, -0x1.9dec0b0adeec6p+5 + -0x1.cd8b12fb575d6p+3i, -0x1.2c65d7bbe8c6ap+4 + 0x1.2e31567e6e844p+5i, 0x1.adc5dabaf8492p+4 + 0x1.0725062e75825p+3i, -0x1.70f5dab2c1a76p+3 + -0x1.a7ef15674e94fp+4i, -0x1.311519fc5ed52p+5 + 0x1.d25250f58ea43p+4i, 0x1.0d66182b15503p+5 + 0x1.b0798fc7a376ep+5i, 0x1.e4e880f5dbd1cp+5 + -0x1.87a638e2e20e6p+4i, -0x1.b8c0dbe7382a2p+3 + -0x1.93a23fe038f5cp+5i, -0x1.e89ebbc22bc6ap+4 + 0x1.e84ccd0f64004p+3i, 0x1.f79647d46cc8ep+4 + 0x1.e65e7cb871794p+3i, 0x1.b1454684b7688p+3 + -0x1.ad1a140def94ap+5i, -0x1.16adcfb6715ccp+6 + -0x1.87c1f033f54f1p+4i, -0x1.33d294d91c3b4p+5 + 0x1.1abc3191dc454p+6i, 0x1.c2e4666d6ac2ap+5 + 0x1.49d7b9a96fc88p+5i, 0x1.6e5a30881d08cp+4 + -0x1.35d0c38d44374p+5i, -0x1.168eb40e7edd8p+5 + 0x1.41d6226f4c79ep+3i, 0x1.22b23aaf6cb19p+5 + 0x1.87fbdddbd47acp+5i, 0x1.05ced40652939p+6 + -0x1.3c362da4e3bb4p+5i, -0x1.8c07613a343bap+4 + -0x1.fcf807281c50bp+5i, -0x1.3b5fc5f9c427fp+5 + 0x1.888bce3cd753p+3i, 0x1.113e5317a8108p+4 + 0x1.0fea943c9c7d4p+3i, -0x1.099606adc447ep+3 + -0x1.28c9a950682fap+5i, -0x1.c62f0948ec865p+5 + 0x1.61ee2f26c5aap-1i, -0x1.7c4de24852d8ep+4 + 0x1.d92d1a4f8a538p+5i, 0x1.3e9ab7c28fdccp+5 + 0x1.5ccc3d176898ep+5i, 0x1.3d35f1462e2dep+5 + -0x1.c11672322a514p+3i, -0x1.682ec8305164p+2 + -0x1.b151ba4c35dcfp+3i, 0x1.8fbbfb0cd980ep+3 + 0x1.79e22f1a14866p+4i, 0x1.9f0b85728d204p+5 + -0x1.207bc48105f67p+4i, -0x1.124dc09635363p+2 + -0x1.0641fdfbacc86p+6i, -0x1.b6c67c3c80b62p+5 + -0x1.50dc5082082eap+3i, -0x1.578e08807e5c2p+3 + 0x1.e9e19499ef159p+4i, 0x1.866798cca567p+3 + -0x1.392faddcba9a8p+2i, -0x1.8ddb5e0f3ef5bp+4 + -0x1.a1cde67b309b9p+3i, -0x1.02fa2082d336dp+5 + 0x1.0c2178f682a95p+5i, 0x1.6d4b309ccb03fp+4 + 0x1.b34954c9158ap+5i, 0x1.de7d1788f7193p+5 + -0x1.d71ba425ae81p+0i, 0x1.140af66737267p+3 + -0x1.5c91a779af33bp+5i, -0x1.47c073cd727b9p+4 + 0x1.11abd49a2eee4p+2i, 0x1.01de665dbb664p+5 + 0x1.336c8d2da3ce8p+3i, 0x1.f8223aa49a16bp+3 + -0x1.b52faf5966da6p+5i, -0x1.ccb3034ab6c8bp+5 + -0x1.c02f249cbeedep+4i, -0x1.fa8179f016e3fp+4 + 0x1.55d7e4ba23585p+5i, 0x1.7b68149f63fcdp+4 + 0x1.2ddcf888dd89cp+4i, -0x1.8b682e689993p+2 + -0x1.148bc46bbde75p+4i, -0x1.f8e5e3a13f8p+4 + 0x1.bda38e29334b5p+4i, 0x1.e01a07e043d77p+4 + 0x1.c3e4e34c4f522p+5i, 0x1.16a5f783b005ep+6 + -0x1.96d30a96571c8p+3i, 0x1.24ac18441e29dp+2 + -0x1.cc43296b05092p+5i, -0x1.d6d76f54fc2a6p+4 + -0x1.8848db00f9818p+0i, 0x1.6f622fcc24f78p+4 + 0x1.da8954865a8cp+2i, 0x1.441933dc80c6cp+2 + -0x1.9b52201019ebfp+5i, -0x1.01c1286758b47p+6 + -0x1.22911d18504dcp+4i, -0x1.f2140d9fab0b2p+4 + 0x1.b68d4cdce3154p+5i, 0x1.f2987f76090b9p+4 + 0x1.cf54f8ef11f3ep+4i, 0x1.09a29348ed987p+3 + -0x1.8fe55c0c8d426p+3i, -0x1.cb122080644fp+3 + 0x1.19951cd2162fdp+4i, 0x1.c995b64d933c2p+4 + 0x1.1070c9a8794c4p+5i, 0x1.a14b6dec25b4ap+5 + -0x1.165fcde17437cp+4i, 0x1.373c653b37d9p+1 + -0x1.a141691bb30e7p+5i, -0x1.232b9898535c5p+5 + -0x1.5c0ac96c3aa37p+3i, -0x1.facd12edd9bap-2 + 0x1.468641e3848efp+4i, 0x1.0520142441229p+4 + -0x1.4d8612940beacp+4i, -0x1.4114726a00df2p+5 + -0x1.8fb1a40a2452cp+4i, -0x1.3345889a4326fp+5 + 0x1.7e936392c3e2cp+5i, 0x1.50e4f4c660182p+5 + 0x1.654faca16f868p+5i, 0x1.17f6b4c7406ap+5 + -0x1.f3088d904f63fp+4i, -0x1.c23e031b4b441p+4 + -0x1.9222bf01ea524p+3i, 0x1.fea2bd2b9d654p+2 + 0x1.32261126501a8p+5i, 0x1.a85860586fe6p+5 + -0x1.bfed2f3bc429ep+3i, -0x1.977d1ee8f0834p+2 + -0x1.dbc8a08de0dd2p+5i, -0x1.a54239f6c9902p+5 + -0x1.000beb23fe4a8p+2i, -0x1.b5f3315afa506p+2 + 0x1.2ac2dedb49e5p+5i, 0x1.655a5953ad84fp+4 + -0x1.18aa3ea8b7c2p+1i, -0x1.46d410ac933c3p+4 + -0x1.068359152a3d8p+4i, -0x1.7875ac15cb298p+4 + 0x1.2b91bf78a71f3p+5i, 0x1.47717654ad55ep+5 + 0x1.2414a3db6298bp+5i, 0x1.3fe6a4dc1e1d8p+5 + -0x1.d623c8edda492p+4i, -0x1.016d9a22fea36p+4 + -0x1.9d538e41a923ep+4i, -0x1.ac8e5e7b9fb8p+1 + 0x1.f0c018c09027dp+3i, 0x1.c221e7f5ae2e3p+4 + -0x1.3e8712b111788p+3i, -0x1.5997e77de910cp+2 + -0x1.4da2bc2c2cf6ap+5i, -0x1.631868a2fd106p+5 + -0x1.65736f7a7097ap+3i, -0x1.a1dfcce2d4339p+4 + 0x1.0d4d76b4e904fp+5i, 0x1.14c5bb0847ec4p+4 + 0x1.b3f121c2f0f0ap+4i, 0x1.7e997b992835ep+3 + -0x1.276780617da1ap+3i, -0x1.363d3902391f7p+4 + 0x1.145b11e81fe04p+3i, 0x1.1a4a264fb2d5dp+4 + 0x1.5223e7718d0d2p+5i, 0x1.d854a3e4a3ccp+5 + -0x1.312aafd37c88fp+3i, 0x1.a053ab905af3p+1 + -0x1.bdc677510f6b5p+5i, -0x1.264be9fc93758p+5 + -0x1.084f41297017p+2i, 0x1.55a75d8de9babp+3 + 0x1.23e3e47598babp+4i, 0x1.6d59608088eep+3 + -0x1.f60f247542a3p+4i, -0x1.6cf0807674608p+5 + -0x1.06a36635d1518p+4i, -0x1.9bf49ad023555p+4 + 0x1.737da90c2708ep+5i, 0x1.183c70f61ab74p+5 + 0x1.d5424f9907143p+4i, 0x1.493c76de2712cp+4 + -0x1.565d3ddb31f53p+4i, -0x1.289a7210c8ca1p+4 + -0x1.c39c608c259bp+1i, 0x1.163eb8452bebep+3 + 0x1.e3bcde67f0fd8p+4i, 0x1.728c2387bc744p+5 + -0x1.c22ac7aab6648p+2i, 0x1.e9fd3dbce4adp+1 + -0x1.aa33483f8bf35p+5i, -0x1.77f95b660c936p+5 + -0x1.69617d72d6c8cp+3i, -0x1.b36a4afa1a034p+2 + 0x1.0b22812477cb3p+5i, 0x1.57e8756d4b668p+4 + -0x1.380bd0e3c58e4p+3i, -0x1.f77c6f01e25ap+4 + -0x1.2f47b2d73ceecp+4i, -0x1.c1f72609ecef3p+4 + 0x1.7243cfec926f1p+5i, 0x1.5cdb14e6bbc2dp+5 + 0x1.494ebdc434209p+5i, 0x1.5dc4cee00977p+5 + -0x1.9ad021e3fc2b4p+4i, -0x1.23d9e6ad62dc3p+3 + -0x1.d80b7e5f1ca08p+4i, -0x1.1935fc5f28036p+3 + 0x1.3783478038047p+3i, 0x1.b3cbf28076eebp+4 + -0x1.dada79feaeeap+0i, 0x1.f5f11ec08a318p+1 + -0x1.7dd2f64e16454p+5i, -0x1.cdb5fc09dfeb5p+5 + -0x1.246b0328968ep+4i, -0x1.b578702dd5cfep+4 + 0x1.aa84d545ac624p+5i, 0x1.482861283f623p+5 + 0x1.487ebad3f480ep+4i, -0x1.40e87bbf5b96p+1 + -0x1.0d45284893b85p+5i, -0x1.462a963bbdd96p+5 + 0x1.d1293cc468949p+4i, 0x1.4e87943a93893p+5 + 0x1.cd145986d8924p+5i, 0x1.0c8459a2bbd28p+6 + -0x1.1b70474418db6p+5i, -0x1.6a111f5050162p+4 + -0x1.c7c9a215d9049p+5i, -0x1.04469627e30d6p+5 + 0x1.425ce02b92c92p+4i, 0x1.fe40fad721d84p+4 + 0x1.384f9d2a084fcp+3i, -0x1.1d96fab4ef7cp-1 + -0x1.82517f776e6aep+5i, -0x1.c9c0232447278p+5 + -0x1.26f0b55cc803p+0i, -0x1.bf9fb9815046ep+2 + 0x1.a003a28a95aaap+5i, 0x1.1378fe93861b2p+5 + 0x1.aa4b27d2181dap+2i, -0x1.874c0a40262ep+2 + -0x1.f1eed9be841d4p+3i, -0x1.2a207eb4734b6p+3 + 0x1.a073666929a16p+4i, 0x1.30557b5284efdp+5 + 0x1.34fb3e986c5a1p+4i, 0x1.0db7b88a1929cp+5 + -0x1.fdc59719b3abp+4i, -0x1.a13bcbc0bca69p+3 + -0x1.286f68b63e3d8p+5i, -0x1.9295738f70bb3p+4 + -0x1.76802bdc30ef7p+1i, -0x1.274bcd77d95aep+2 + 0x1.b71e09574d04p+2i, -0x1.28d968f4d1f08p+2 + -0x1.0e3c90d625facp+3i, -0x1.af28f94f2b486p+4 + -0x1.b5aec2a8d48p-7i, -0x1.3e905ba2a0959p+4 + 0x1.23b75ab3d8095p+5i, 0x1.b8d8f87c4caap+4 + 0x1.4583a10ddbedcp+5i, 0x1.5ae1fc65dee36p+5 + -0x1.dae0ec4976f1cp+2i, 0x1.65d8b6dceec68p+1 + -0x1.7228c902c9292p+4i, 0x1.8ea94fa87d9b8p+1 + 0x1.6485853ed2018p+3i, 0x1.40be461433697p+5 + -0x1.a827cff9839b8p+3i, -0x1.10686636734a8p+1 + -0x1.de47a0dd18de4p+5i, -0x1.ad88830ec772p+5 + -0x1.e3c4a71fb53b4p+3i, -0x1.28dd8e3612e46p+4 + 0x1.a45339eef720ap+4i, -0x1.c943a1beb98p+0 + 0x1.30adf2c01456p-2i, -0x1.cbba61979a753p+4 + 0x1.1bdc89c1d7234p+3i, -0x1.537563bf219d8p+3 + 0x1.69c9c01136f85p+5i, 0x1.03a510502df62p+5 + 0x1.3847c44439692p+5i, 0x1.8be18acbb34b3p+5 + 0x1.3d0716fbe529cp+0i, 0x1.a7987c18e86bfp+4 + -0x1.029c9efccac16p+5i, -0x1.6672d838ce834p+2 + -0x1.4730d63c8cae7p+4i, 0x1.690c7d10e5decp+3 + -0x1.2057ccd8c826p+2i, 0x1.37ef56de53e56p+3 + -0x1.56eeadf8888ddp+5i, -0x1.ad5bddf233c3ap+5 + -0x1.08779481542e9p+5i, -0x1.5ec371de1b51fp+5 + 0x1.59620a5c8e7cep+5i, 0x1.a9e06580718eep+4 + 0x1.fb812c506ce34p+4i, 0x1.df19468536078p+1 + -0x1.55969003a4866p+4i, -0x1.09cd3474a37abp+5 + 0x1.4e09652ff94acp+4i, 0x1.9c35756eafd58p+4 + 0x1.961158fc584f7p+5i, 0x1.b7a08de48d811p+5 + -0x1.8e4ca2d19b606p+3i, 0x1.08a68f23ee29p+0 + -0x1.369b2ce64773p+5i, -0x1.dc5efaeff5c8dp+3 + 0x1.a4cd3df178be8p-1i, 0x1.0650df15d0448p+4 + 0x1.353fc6db3053p+0i, 0x1.1260684c3154p+2 + -0x1.06364c966c4f6p+5i, -0x1.418b881e7db8p+5 + -0x1.1be68b0c7237cp+4i, -0x1.f618bda5e2ee7p+4 + 0x1.28b6acf5bbeeep+5i, 0x1.b5c3a912efa03p+4 + 0x1.250cc8d839281p+5i, 0x1.ce07bdc448f19p+4 + -0x1.2c7efe04b2c83p+4i, -0x1.4070df13559e5p+4 + -0x1.71b4c46365c1ep+3i, 0x1.1419e1cd561ep+2 + 0x1.05e4acb191dbdp+5i, 0x1.7f8bac1dd14fcp+5 + -0x1.3b4ae08a1d7a2p+3i, -0x1.a51ec33d94a74p+2 + -0x1.b1675e2f0ce96p+5i, -0x1.7b537944044e4p+5 + 0x1.7b2c5072090aap+1i, 0x1.8bd5d9c4a7e3cp+2 + 0x1.fce9e0dd4fa83p+4i, 0x1.ea6a40847e692p+3 + -0x1.2dea82ae97e94p+4i, -0x1.2f9b159e8fce4p+5 + -0x1.c5a62008ce34cp+2i, -0x1.8ae74e24914e6p+3 + 0x1.a7e6a0b9b21fap+5i, 0x1.9de0fe44253bep+5 + 0x1.8c94b3e429585p+4i, 0x1.cda6e29d761dp+4 + -0x1.0ca52987106dcp+5i, -0x1.bbdbff550ef06p+3 + -0x1.f8e6a0a59f00bp+3i, 0x1.4a7351f5fec9cp+2 + 0x1.2af9f13ea66cdp+3i, 0x1.542c0891e3b51p+4 + -0x1.feb576dc6aff8p+3i, -0x1.05e97d22bea1ap+3 + -0x1.2184010bbe59ap+5i, -0x1.42580449d2613p+5 + -0x1.4da8f74c8a30cp+3i, -0x1.7a4bafa5315d6p+4 + 0x1.e4356d9b19f78p+4i, 0x1.db14c0a44e3cap+3 + 0x1.2610be098193ep+4i, -0x1.61fdd8a529874p+2 + -0x1.23da26a7bd692p+3i, -0x1.6101f927496bfp+4 + 0x1.0274861f8ce28p+5i, 0x1.4c820b0ebd43ep+5 + 0x1.66b9bcc4a2203p+5i, 0x1.bcc84abc7548ap+5 + -0x1.c4529455544cbp+4i, -0x1.1a8be7283a30ap+3 + -0x1.4974aedad6c11p+5i, -0x1.74b6f150f5deep+3 + 0x1.c48eb7124dd3cp+1i, 0x1.00261fb43872cp+4 + -0x1.4767822149fc4p+3i, -0x1.56b17e5c2f81ap+3 + -0x1.0600e6f36d09p+5i, -0x1.33f05e4d1b6d5p+5 + -0x1.739bb7b56da5cp+2i, -0x1.7b5a94d070c8p+4 + 0x1.c82ad0e7b7bbbp+4i, 0x1.5bcedbfcd7d07p+3 + 0x1.c0884dd10fdf8p+4i, 0x1.d7704166a3976p+3 + -0x1.3cdad0d3f9dap+0i, -0x1.606af547aeac6p+3 + 0x1.3967a249624dcp+2i, 0x1.a33384d0269ccp+3 + 0x1.18b6462a1e045p+5i, 0x1.b165638530facp+5 + -0x1.dd3e3b4c4c7c8p+1i, 0x1.58ab161324721p+3 + -0x1.abce7c554aadcp+5i, -0x1.25ff5cb3ba9fap+5 + -0x1.a6845186c704cp+3i, 0x1.0db6cc5e70294p+0 + 0x1.3a105ae401a2bp+4i, 0x1.afac2a24bccb8p+3 + -0x1.6c2f7d48cc0bep+4i, -0x1.3a5957493c0ffp+5 + -0x1.2accc381da34dp+4i, -0x1.bb1dfd534b1a1p+4 + 0x1.549f670e2d3ddp+5i, 0x1.03b1021f70ea9p+5 + 0x1.e0ae6ec9231d5p+4i, 0x1.2a9d1e7c07ee2p+4 + -0x1.236155c4eb8cep+4i, -0x1.a45a503ea338ep+3 + 0x1.209eaa74b42bp+1i, 0x1.26cec49861ae2p+4 + 0x1.6233ee2fb0acep+4i, 0x1.227bc5ff6846fp+5 + -0x1.2e5753dd7caedp+4i, -0x1.a306521d2d15ep+2 + -0x1.56e76bbada3ap+5i, -0x1.2baa0385befa6p+5 + -0x1.b0dadcf938d1ep+2i, -0x1.6ca67d651b85ep+3 + 0x1.8df9a59bc7acdp+4i, 0x1.9a737b4cbbd9ap+3 + 0x1.0ee2201bdfb2cp+2i, -0x1.775a0cc13cd7bp+3 + -0x1.1314588767f3cp+3i, -0x1.f7d3287823e4p+3 + 0x1.b23ee7ca4abbcp+4i, 0x1.ee6d4c62cc528p+4 + 0x1.c75885136106ep+4i, 0x1.0a4b85e1087bcp+5 + -0x1.5578d91aa34d5p+4i, -0x1.4483e325254e5p+3 + -0x1.664f4a81d7414p+4i, -0x1.87861134e4b3p+1 + 0x1.4d52730b118ebp+3i, 0x1.6ee107139282ep+4 + -0x1.383ec90347a6p+3i, -0x1.f7cd2afc5096cp+2 + -0x1.266ae74239d99p+5i, -0x1.4359ecfdf2c18p+5 + -0x1.40e0e0cf7479p+2i, -0x1.1d9fb2d89f1c4p+4 + 0x1.d745ca5fb5df6p+4i, 0x1.337c3a1cd86c8p+3 + 0x1.2f71cd78275f2p+4i, 0x1.0d3a165cd7d8cp+2 + 0x1.2c3b9014b23a8p+2i, -0x1.2325a649998p-7 + 0x1.0670e2fe2bcc2p+4i, 0x1.8b46d71b768bbp+4 + 0x1.5cf341778cceap+4i, 0x1.5016745af6a6p+5 + -0x1.9a29d5fc76dcp+3i, 0x1.bfc7b769ea61ep+2 + -0x1.58295cb9e6179p+5i, -0x1.9984e96dca1fap+4 + -0x1.d99b22e6a482ap+3i, -0x1.582b694154aeap+1 + 0x1.660c731dbd308p+2i, -0x1.41a519f21b3p+1 + -0x1.43b9d3984c911p+4i, -0x1.2e3b7af678e22p+5 + -0x1.ee932717a4098p+1i, -0x1.ff54154c87c84p+3 + 0x1.3268e32ed4cp+5i, 0x1.6191a67295df4p+4 + 0x1.42ef0a047b7aap+4i, 0x1.0f2e1abb2d474p+3 + -0x1.59c0913aa3e84p+1i, 0x1.86cadd2b6a516p+1 + 0x1.8237bf8058cecp+3i, 0x1.78da3238cef74p+4 + 0x1.10a8d47673edcp+3i, 0x1.7b09f5e936c8cp+4 + -0x1.ec124160932fap+3i, 0x1.1e37214fab31cp+2 + -0x1.a9cd43f6ee916p+4i, -0x1.f3120ef41a5p+3 + -0x1.2ea3378d74226p+4i, -0x1.292499e7b0008p+4 + 0x1.b9f0590b5b4dp+0i, -0x1.c742f1201f62p+1 + 0x1.a5025fe024b84p+2i, -0x1.e08b624b3dc0ap+2 + -0x1.0548b50c3b31p+2i, -0x1.51636c228930fp+4 + 0x1.beea790a5cfcdp+3i, 0x1.089692b0f99ffp+3 + 0x1.289258694d67ep+5i, 0x1.45bc83b115a5cp+5 + 0x1.da83c98d89bd4p+1i, 0x1.1566190ebc5cp+3 + -0x1.e593ab1c22d65p+4i, -0x1.09fb67a124ef8p+4 + 0x1.121fdbb0d317p+0i, 0x1.37532f478a22bp+4 + 0x1.64ecba2afd828p+3i, 0x1.e138025d5b396p+3 + -0x1.108439fdd8b58p+5i, -0x1.3030e72b898d6p+5 + -0x1.4c57b23609c6bp+4i, -0x1.4d0d3965dc722p+4 + 0x1.04a42311bf8dep+5i, 0x1.775747fa26c65p+4 + 0x1.6b3beec23a43cp+3i, -0x1.a853a124679f5p+2 + -0x1.2ae36869a2886p+4i, -0x1.85653b9691e5ep+4 + 0x1.90411cf2c28c5p+4i, 0x1.01a6be200e088p+5 + 0x1.265335908d344p+5i, 0x1.568683d56aedap+5 + -0x1.8e8baa613dbe5p+4i, -0x1.b0a831e8f7c15p+3 + -0x1.078be3b1bef74p+5i, -0x1.8e8d25aa06782p+3 + 0x1.6960c1bbd952ep+3i, 0x1.48ad8eff411f3p+4 + -0x1.151b31d0cc9c8p+2i, -0x1.f19ade6a576b4p+2 + -0x1.031d8fd2f0677p+5i, -0x1.22f8a30b6463p+5 + -0x1.42db3d6c8932p+0i, -0x1.c65e54d9a8b71p+3 + 0x1.ba26a0b824bc4p+4i, 0x1.3dc5a7113e783p+3 + 0x1.3a01ab571ec24p+4i, 0x1.5a61b51868515p+3 + 0x1.111be0d909914p+2i, 0x1.be710d5af5a7p+0 + 0x1.8cc9751159a04p+2i, 0x1.fca5f132e0efp+3 + 0x1.19ed47bf05b8ep+4i, 0x1.2f0985e4174a8p+5 + -0x1.2810f80f75068p+3i, 0x1.79251897db93ep+2 + -0x1.52154dab731dp+5i, -0x1.d118aa5857b94p+4 + -0x1.bc1668ae4121cp+3i, -0x1.c47ae522b1614p+2 + 0x1.47d34392e0cap+3i, -0x1.42e62d6e1d2ep+0 + -0x1.39f6cca8d2a65p+3i, -0x1.9f208c22d885bp+4 + -0x1.45c61a15bc3p-2i, -0x1.7eea8356c903bp+3 + 0x1.f09b6a9d5c21cp+4i, 0x1.538f00c24fe41p+4 + 0x1.6f89db5a2138bp+4i, 0x1.5d381a695f6c3p+4 + -0x1.0c160eefb7941p+2i, 0x1.3c54a7f25b134p+2 + -0x1.f038d55300996p+2i, 0x1.bba6a878f67a4p+2 + 0x1.ecc43eeee14p+0i, 0x1.16bb9fdacd39p+4 + -0x1.3780fb902c7b6p+3i, -0x1.5e2b88db673ap-1 + -0x1.b738f6554761dp+4i, -0x1.90ffbe56cccd4p+4 + -0x1.42cfe7f1fc734p+3i, -0x1.a063b6416bd81p+3 + 0x1.b234a9f125dp+3i, 0x1.64a0fa5d66c6p+0 + 0x1.28ef25e6121bp+2i, -0x1.71901e08121fap+3 + 0x1.3beb1b384357p+1i, -0x1.99ad813e2d984p+2 + 0x1.91e61b24c9f06p+4i, 0x1.894ecd3e006cap+4 + 0x1.58516d99c19aep+4i, 0x1.c431d60becc0dp+4 + -0x1.2ba2a2331d386p+3i, 0x1.b9dba96f8e228p+2 + -0x1.27c9978577fdep+4i, -0x1.b44d289c059p-3 + -0x1.34f771e7a938ep+3i, 0x1.19777a9b1fa38p+1 + -0x1.5b6e3087b0de4p+3i, -0x1.ae0c0ca9b3848p+2 + -0x1.197f3b200cdf1p+4i, -0x1.8ff4c9194c5a6p+4 + -0x1.0594ed5dcc7eep+3i, -0x1.690f63698e49fp+4 + 0x1.418db644691e6p+4i, 0x1.d31616c16bb04p+2 + 0x1.970cd35a49ecap+4i, 0x1.a34800eebf6e7p+3 + 0x1.f97238412cc6p+0i, -0x1.5c23a6ccfb45p+1 + 0x1.598851df7356cp+2i, 0x1.ba958fff44e5p+3 + 0x1.3303cac634a9p+4i, 0x1.01a10b6e44f33p+5 + -0x1.3e4d6cc83709p+2i, 0x1.654ad938e47fbp+3 + -0x1.d31d0300b784fp+4i, -0x1.b4d590410188cp+3 + -0x1.293c2ba1bd7dep+4i, -0x1.69ecaf0015d2p+3 + -0x1.2dbcd26b1dep-5i, -0x1.2c6acd639434p+0 + -0x1.0b661997e167cp+2i, -0x1.17d48c712695p+4 + -0x1.4fed9b3e258d4p+3i, -0x1.afdb015631db2p+4 + 0x1.526e58de8102ap+4i, 0x1.ca5c7522cb6c6p+3 + 0x1.2300b6bb4dd8fp+5i, 0x1.dec68a6294585p+4 + -0x1.45eb09fe411f8p+2i, -0x1.58f1dad60356p+2 + -0x1.608fba872d409p+3i, 0x1.696c2d6ae650cp+2 + 0x1.270ce4971cdf6p+4i, 0x1.0d64d4998f04cp+5 + -0x1.0599a729f9e08p+3i, 0x1.370203a0cb8ep+0 + -0x1.2d4a13e52f98p+5i, -0x1.b5e7fcf87455fp+4 + -0x1.6167c75db9fa2p+3i, -0x1.9055b12b45e78p+3 + 0x1.5005e1c433c3ep+3i, -0x1.37660e3bacf98p+1 + 0x1.0d3b875866c42p+2i, -0x1.22d27b4b1a4d4p+3 + 0x1.b9947f3543fp+1i, -0x1.23c4bde4c21cap+3 + 0x1.1c7b397c98dfap+4i, 0x1.a0f400c006826p+3 + 0x1.a7da2f581caf7p+4i, 0x1.0c5ae37036fdap+5 + 0x1.7db397c0e732ap+1i, 0x1.f1ce65a306644p+3 + -0x1.74443e7e7b0a6p+4i, -0x1.4e378e2b353ap+2 + -0x1.6fcc6dc348838p+3i, 0x1.c87f5d2174684p+2 + -0x1.0cd8a84b55978p+2i, 0x1.208d2e4fd39ap+1 + -0x1.9e93efc0e142ep+4i, -0x1.f955feeaacd35p+4 + -0x1.25689123e436fp+4i, -0x1.f1d62ff1d1eb4p+4 + 0x1.4d97e1f55ee82p+4i, 0x1.8e8806aa16f3p+0 + 0x1.d5e58b9d2bbc8p+4i, 0x1.695eeaed12a6ap+3 + 0x1.5c34434d08a18p+3i, 0x1.025c1531db91p+2 + 0x1.5fb87cc0eaccbp+3i, 0x1.3361c63245855p+4 + 0x1.268bd35ba116cp+4i, 0x1.29b1eb908cc18p+5 + -0x1.c8685383f7338p+2i, 0x1.6d1602986caa6p+3 + -0x1.21a2925c84c01p+5i, -0x1.25f6a3a093f76p+4 + -0x1.0950dffd56d0ep+4i, -0x1.201c79da13938p+1 + 0x1.6f9d0b85ad24p-1i, -0x1.90d80154aed1p+1 + -0x1.486cdca538074p+4i, -0x1.177c842a22682p+5 + -0x1.d2efe5f0c2af8p+2i, -0x1.559e54a793fbep+4 + 0x1.e76bb03ea0dcbp+4i, 0x1.34f42a901e23ap+3 + 0x1.8ce29acfd0398p+4i, 0x1.53532c33c9e6cp+3 + 0x1.76ad07c7dff2cp+3i, 0x1.f2ddddb223a68p+3 + 0x1.881ff5d8f715cp+3i, 0x1.80b4080ca10f4p+4 + 0x1.1a2072211e2ep+0i, 0x1.63dbf91e24518p+4 + -0x1.b73b1c45bc328p+3i, 0x1.1ec72d0e3037p+3 + -0x1.d01deb4c502d9p+4i, -0x1.22f97ea3a9a96p+4 + -0x1.7c2a1ec0e2a2p+4i, -0x1.334b6c6c7585p+4 + 0x1.05cf0fbd038ep+1i, -0x1.4e191dc91fd4p+2 + 0x0p+0i, -0x1.334b6c6c75848p+4 + -0x1.05cf0fbd0386p+1i, -0x1.22f97ea3a9a8ap+4 + 0x1.7c2a1ec0e2a1ap+4i, 0x1.1ec72d0e3037p+3 + 0x1.d01deb4c502dp+4i, 0x1.63dbf91e2451p+4 + 0x1.b73b1c45bc328p+3i, 0x1.80b4080ca10f4p+4 + -0x1.1a2072211e29p+0i, 0x1.f2ddddb223a68p+3 + -0x1.881ff5d8f7168p+3i, 0x1.53532c33c9e6ep+3 + -0x1.76ad07c7dff3p+3i, 0x1.34f42a901e23ap+3 + -0x1.8ce29acfd0395p+4i, -0x1.559e54a793fbap+4 + -0x1.e76bb03ea0dc6p+4i, -0x1.177c842a22682p+5 + 0x1.d2efe5f0c2af4p+2i, -0x1.90d80154aed1p+1 + 0x1.486cdca538076p+4i, -0x1.201c79da13938p+1 + -0x1.6f9d0b85ad2p-1i, -0x1.25f6a3a093f74p+4 + 0x1.0950dffd56d0ep+4i, 0x1.6d1602986caa9p+3 + 0x1.21a2925c84c01p+5i, 0x1.29b1eb908cc18p+5 + 0x1.c8685383f734p+2i, 0x1.3361c63245853p+4 + -0x1.268bd35ba1166p+4i, 0x1.025c1531db9p+2 + -0x1.5fb87cc0eacccp+3i, 0x1.695eeaed12a64p+3 + -0x1.5c34434d08a18p+3i, 0x1.8e8806aa16f5p+0 + -0x1.d5e58b9d2bbc8p+4i, -0x1.f1d62ff1d1eafp+4 + -0x1.4d97e1f55ee82p+4i, -0x1.f955feeaacd3p+4 + 0x1.25689123e4372p+4i, 0x1.208d2e4fd39bp+1 + 0x1.9e93efc0e142dp+4i, 0x1.c87f5d217469p+2 + 0x1.0cd8a84b5597p+2i, -0x1.4e378e2b353a4p+2 + 0x1.6fcc6dc348834p+3i, 0x1.f1ce65a30664dp+3 + 0x1.74443e7e7b0a4p+4i, 0x1.0c5ae37036fd8p+5 + -0x1.7db397c0e7348p+1i, 0x1.a0f400c006828p+3 + -0x1.a7da2f581cafbp+4i, -0x1.23c4bde4c21cap+3 + -0x1.1c7b397c98df7p+4i, -0x1.22d27b4b1a4d4p+3 + -0x1.b9947f3543fp+1i, -0x1.37660e3bacf8p+1 + -0x1.0d3b875866c46p+2i, -0x1.9055b12b45e78p+3 + -0x1.5005e1c433c44p+3i, -0x1.b5e7fcf87455fp+4 + 0x1.6167c75db9fa6p+3i, 0x1.370203a0cb8ep+0 + 0x1.2d4a13e52f98p+5i, 0x1.0d64d4998f04cp+5 + 0x1.0599a729f9e0ep+3i, 0x1.696c2d6ae651p+2 + -0x1.270ce4971cdf6p+4i, -0x1.58f1dad603558p+2 + 0x1.608fba872d401p+3i, 0x1.dec68a6294583p+4 + 0x1.45eb09fe41202p+2i, 0x1.ca5c7522cb6c4p+3 + -0x1.2300b6bb4dd8ep+5i, -0x1.afdb015631db7p+4 + -0x1.526e58de8102cp+4i, -0x1.17d48c712694fp+4 + 0x1.4fed9b3e258dap+3i, -0x1.2c6acd639439p+0 + 0x1.0b661997e1671p+2i, -0x1.69ecaf0015d22p+3 + 0x1.2dbcd26b1e4p-5i, -0x1.b4d590410189p+3 + 0x1.293c2ba1bd7e2p+4i, 0x1.654ad938e47fdp+3 + 0x1.d31d0300b785p+4i, 0x1.01a10b6e44f33p+5 + 0x1.3e4d6cc837096p+2i, 0x1.ba958fff44e58p+3 + -0x1.3303cac634a94p+4i, -0x1.5c23a6ccfb46p+1 + -0x1.598851df73582p+2i, 0x1.a34800eebf6edp+3 + -0x1.f97238412ccap+0i, 0x1.d31616c16baf8p+2 + -0x1.970cd35a49ecbp+4i, -0x1.690f63698e49ep+4 + -0x1.418db644691ep+4i, -0x1.8ff4c9194c5a9p+4 + 0x1.0594ed5dcc7f8p+3i, -0x1.ae0c0ca9b3854p+2 + 0x1.197f3b200cdf4p+4i, 0x1.19777a9b1fa28p+1 + 0x1.5b6e3087b0decp+3i, -0x1.b44d289c058p-3 + 0x1.34f771e7a9395p+3i, 0x1.b9dba96f8e236p+2 + 0x1.27c9978577fdep+4i, 0x1.c431d60becc0ep+4 + 0x1.2ba2a2331d386p+3i, 0x1.894ecd3e006cbp+4 + -0x1.58516d99c19aep+4i, -0x1.99ad813e2d988p+2 + -0x1.91e61b24c9f09p+4i, -0x1.71901e08121fep+3 + -0x1.3beb1b38435bp+1i, 0x1.64a0fa5d66c8p+0 + -0x1.28ef25e6121ap+2i, -0x1.a063b6416bd86p+3 + -0x1.b234a9f125cffp+3i, -0x1.90ffbe56cccd8p+4 + 0x1.42cfe7f1fc738p+3i, -0x1.5e2b88db6738p-1 + 0x1.b738f65547624p+4i, 0x1.16bb9fdacd39p+4 + 0x1.3780fb902c7b8p+3i, 0x1.bba6a878f67a8p+2 + -0x1.ecc43eeee13ep+0i, 0x1.3c54a7f25b134p+2 + 0x1.f038d55300992p+2i, 0x1.5d381a695f6bfp+4 + 0x1.0c160eefb7929p+2i, 0x1.538f00c24fe3ap+4 + -0x1.6f89db5a21387p+4i, -0x1.7eea8356c902ep+3 + -0x1.f09b6a9d5c212p+4i, -0x1.9f208c22d8858p+4 + 0x1.45c61a15bc3p-2i, -0x1.42e62d6e1d3p+0 + 0x1.39f6cca8d2a62p+3i, -0x1.c47ae522b15fep+2 + -0x1.47d34392e0cap+3i, -0x1.d118aa5857b96p+4 + 0x1.bc1668ae41218p+3i, 0x1.79251897db934p+2 + 0x1.52154dab731cep+5i, 0x1.2f0985e4174a9p+5 + 0x1.2810f80f75068p+3i, 0x1.fca5f132e0eecp+3 + -0x1.19ed47bf05b8fp+4i, 0x1.be710d5af5a9p+0 + -0x1.8cc97511599fcp+2i, 0x1.5a61b51868516p+3 + -0x1.111be0d90991p+2i, 0x1.3dc5a7113e786p+3 + -0x1.3a01ab571ec25p+4i, -0x1.c65e54d9a8b71p+3 + -0x1.ba26a0b824bbep+4i, -0x1.22f8a30b6462fp+5 + 0x1.42db3d6c8932p+0i, -0x1.f19ade6a576c8p+2 + 0x1.031d8fd2f0674p+5i, 0x1.48ad8eff411eep+4 + 0x1.151b31d0cc9ccp+2i, -0x1.8e8d25aa06778p+3 + -0x1.6960c1bbd9531p+3i, -0x1.b0a831e8f7c12p+3 + 0x1.078be3b1bef71p+5i, 0x1.568683d56aedap+5 + 0x1.8e8baa613dbe4p+4i, 0x1.01a6be200e086p+5 + -0x1.265335908d345p+5i, -0x1.85653b9691e5ep+4 + -0x1.90411cf2c28c6p+4i, -0x1.a853a124679f2p+2 + 0x1.2ae36869a2886p+4i, 0x1.775747fa26c6p+4 + -0x1.6b3beec23a439p+3i, -0x1.4d0d3965dc721p+4 + -0x1.04a42311bf8ddp+5i, -0x1.3030e72b898d6p+5 + 0x1.4c57b23609c6cp+4i, 0x1.e138025d5b392p+3 + 0x1.108439fdd8b58p+5i, 0x1.37532f478a23p+4 + -0x1.64ecba2afd83p+3i, -0x1.09fb67a124efcp+4 + -0x1.121fdbb0d31bp+0i, 0x1.1566190ebc5ccp+3 + 0x1.e593ab1c22d65p+4i, 0x1.45bc83b115a5ap+5 + -0x1.da83c98d89be8p+1i, 0x1.089692b0f99f7p+3 + -0x1.289258694d678p+5i, -0x1.51636c228930cp+4 + -0x1.beea790a5cfc4p+3i, -0x1.e08b624b3dc0cp+2 + 0x1.0548b50c3b308p+2i, -0x1.c742f1201f63p+1 + -0x1.a5025fe024b82p+2i, -0x1.292499e7b000ap+4 + -0x1.b9f0590b5b4ap+0i, -0x1.f3120ef41a503p+3 + 0x1.2ea3378d7422ap+4i, 0x1.1e37214fab318p+2 + 0x1.a9cd43f6ee913p+4i, 0x1.7b09f5e936c89p+4 + 0x1.ec124160933p+3i, 0x1.78da3238cef78p+4 + -0x1.10a8d47673edap+3i, 0x1.86cadd2b6a50cp+1 + -0x1.8237bf8058ce6p+3i, 0x1.0f2e1abb2d46cp+3 + 0x1.59c0913aa3e82p+1i, 0x1.6191a67295df6p+4 + -0x1.42ef0a047b7a6p+4i, -0x1.ff54154c87c88p+3 + -0x1.3268e32ed4cp+5i, -0x1.2e3b7af678e24p+5 + 0x1.ee932717a40bp+1i, -0x1.41a519f21b2f8p+1 + 0x1.43b9d3984c90dp+4i, -0x1.582b694154adap+1 + -0x1.660c731dbd2fcp+2i, -0x1.9984e96dca1f7p+4 + 0x1.d99b22e6a482ap+3i, 0x1.bfc7b769ea632p+2 + 0x1.58295cb9e6178p+5i, 0x1.5016745af6a63p+5 + 0x1.9a29d5fc76dbep+3i, 0x1.8b46d71b768bcp+4 + -0x1.5cf341778cceap+4i, -0x1.2325a64997p-7 + -0x1.0670e2fe2bcc3p+4i, 0x1.0d3a165cd7d8cp+2 + -0x1.2c3b9014b23b8p+2i, 0x1.337c3a1cd86c4p+3 + -0x1.2f71cd78275f6p+4i, -0x1.1d9fb2d89f1c4p+4 + -0x1.d745ca5fb5df4p+4i, -0x1.4359ecfdf2c1ap+5 + 0x1.40e0e0cf7479p+2i, -0x1.f7cd2afc5099p+2 + 0x1.266ae74239d9dp+5i, 0x1.6ee1071392831p+4 + 0x1.383ec90347a6cp+3i, -0x1.87861134e4b3p+1 + -0x1.4d52730b118eep+3i, -0x1.4483e325254eep+3 + 0x1.664f4a81d7418p+4i, 0x1.0a4b85e1087bfp+5 + 0x1.5578d91aa34dap+4i, 0x1.ee6d4c62cc526p+4 + -0x1.c75885136106fp+4i, -0x1.f7d3287823e2ep+3 + -0x1.b23ee7ca4abb3p+4i, -0x1.775a0cc13cd7p+3 + 0x1.1314588767f34p+3i, 0x1.9a737b4cbbd9p+3 + -0x1.0ee2201bdfb2cp+2i, -0x1.6ca67d651b862p+3 + -0x1.8df9a59bc7ac4p+4i, -0x1.2baa0385befap+5 + 0x1.b0dadcf938d0ap+2i, -0x1.a306521d2d156p+2 + 0x1.56e76bbada398p+5i, 0x1.227bc5ff6846dp+5 + 0x1.2e5753dd7cae8p+4i, 0x1.26cec49861ae2p+4 + -0x1.6233ee2fb0ac9p+4i, -0x1.a45a503ea3394p+3 + -0x1.209eaa74b42b8p+1i, 0x1.2a9d1e7c07eep+4 + 0x1.236155c4eb8cdp+4i, 0x1.03b1021f70ea8p+5 + -0x1.e0ae6ec9231d6p+4i, -0x1.bb1dfd534b19dp+4 + -0x1.549f670e2d3dcp+5i, -0x1.3a5957493c1p+5 + 0x1.2accc381da34fp+4i, 0x1.afac2a24bccbcp+3 + 0x1.6c2f7d48cc0c3p+4i, 0x1.0db6cc5e702dcp+0 + -0x1.3a105ae401a2cp+4i, -0x1.25ff5cb3ba9f9p+5 + 0x1.a6845186c7054p+3i, 0x1.58ab161324723p+3 + 0x1.abce7c554aad6p+5i, 0x1.b165638530fa8p+5 + 0x1.dd3e3b4c4c7cp+1i, 0x1.a33384d0269c8p+3 + -0x1.18b6462a1e042p+5i, -0x1.606af547aeac7p+3 + -0x1.3967a249624e4p+2i, 0x1.d7704166a396dp+3 + 0x1.3cdad0d3f9dap+0i, 0x1.5bcedbfcd7d06p+3 + -0x1.c0884dd10fdf4p+4i, -0x1.7b5a94d070c82p+4 + -0x1.c82ad0e7b7bbap+4i, -0x1.33f05e4d1b6d4p+5 + 0x1.739bb7b56da6p+2i, -0x1.56b17e5c2f818p+3 + 0x1.0600e6f36d08fp+5i, 0x1.00261fb43872ap+4 + 0x1.4767822149fc4p+3i, -0x1.74b6f150f5deep+3 + -0x1.c48eb7124dd5p+1i, -0x1.1a8be7283a30cp+3 + 0x1.4974aedad6c0fp+5i, 0x1.bcc84abc7548bp+5 + 0x1.c4529455544cbp+4i, 0x1.4c820b0ebd44p+5 + -0x1.66b9bcc4a2207p+5i, -0x1.6101f927496c6p+4 + -0x1.0274861f8ce28p+5i, -0x1.61fdd8a529864p+2 + 0x1.23da26a7bd68ep+3i, 0x1.db14c0a44e3b8p+3 + -0x1.2610be0981938p+4i, -0x1.7a4bafa5315cep+4 + -0x1.e4356d9b19f6fp+4i, -0x1.42580449d261p+5 + 0x1.4da8f74c8a30ep+3i, -0x1.05e97d22bea14p+3 + 0x1.2184010bbe598p+5i, 0x1.542c0891e3b54p+4 + 0x1.feb576dc6aff4p+3i, 0x1.4a7351f5feca4p+2 + -0x1.2af9f13ea66cap+3i, -0x1.bbdbff550eeffp+3 + 0x1.f8e6a0a59f00ap+3i, 0x1.cda6e29d761cep+4 + 0x1.0ca52987106dcp+5i, 0x1.9de0fe44253bep+5 + -0x1.8c94b3e429581p+4i, -0x1.8ae74e24914e6p+3 + -0x1.a7e6a0b9b21fcp+5i, -0x1.2f9b159e8fce5p+5 + 0x1.c5a62008ce364p+2i, 0x1.ea6a40847e692p+3 + 0x1.2dea82ae97e9cp+4i, 0x1.8bd5d9c4a7e4cp+2 + -0x1.fce9e0dd4fa89p+4i, -0x1.7b537944044e7p+5 + -0x1.7b2c5072090aap+1i, -0x1.a51ec33d94a66p+2 + 0x1.b1675e2f0ce99p+5i, 0x1.7f8bac1dd14fcp+5 + 0x1.3b4ae08a1d798p+3i, 0x1.1419e1cd561d8p+2 + -0x1.05e4acb191dbap+5i, -0x1.4070df13559e5p+4 + 0x1.71b4c46365c1cp+3i, 0x1.ce07bdc448f1dp+4 + 0x1.2c7efe04b2c7fp+4i, 0x1.b5c3a912efap+4 + -0x1.250cc8d839282p+5i, -0x1.f618bda5e2ee7p+4 + -0x1.28b6acf5bbeecp+5i, -0x1.418b881e7db81p+5 + 0x1.1be68b0c7237cp+4i, 0x1.1260684c31534p+2 + 0x1.06364c966c4f6p+5i, 0x1.0650df15d044ap+4 + -0x1.353fc6db304ep+0i, -0x1.dc5efaeff5c84p+3 + -0x1.a4cd3df178c88p-1i, 0x1.08a68f23ee2ep+0 + 0x1.369b2ce647732p+5i, 0x1.b7a08de48d816p+5 + 0x1.8e4ca2d19b606p+3i, 0x1.9c35756eafd5ep+4 + -0x1.961158fc584fcp+5i, -0x1.09cd3474a37b1p+5 + -0x1.4e09652ff94bp+4i, 0x1.df19468536068p+1 + 0x1.55969003a486cp+4i, 0x1.a9e06580718f4p+4 + -0x1.fb812c506ce3ep+4i, -0x1.5ec371de1b52p+5 + -0x1.59620a5c8e7cdp+5i, -0x1.ad5bddf233c3p+5 + 0x1.08779481542e3p+5i, 0x1.37ef56de53e4ap+3 + 0x1.56eeadf8888d8p+5i, 0x1.690c7d10e5de8p+3 + 0x1.2057ccd8c8268p+2i, -0x1.6672d838ce82p+2 + 0x1.4730d63c8cae5p+4i, 0x1.a7987c18e86b9p+4 + 0x1.029c9efccac12p+5i, 0x1.8be18acbb34aep+5 + -0x1.3d0716fbe52cp+0i, 0x1.03a510502df6p+5 + -0x1.3847c44439692p+5i, -0x1.537563bf219d3p+3 + -0x1.69c9c01136f83p+5i, -0x1.cbba61979a751p+4 + -0x1.1bdc89c1d7232p+3i, -0x1.c943a1beb982p+0 + -0x1.30adf2c01454p-2i, -0x1.28dd8e3612e4ap+4 + -0x1.a45339eef720ap+4i, -0x1.ad88830ec771ep+5 + 0x1.e3c4a71fb53aep+3i, -0x1.1068663673498p+1 + 0x1.de47a0dd18de2p+5i, 0x1.40be461433699p+5 + 0x1.a827cff9839b6p+3i, 0x1.8ea94fa87d9cp+1 + -0x1.6485853ed202p+3i, 0x1.65d8b6dceec88p+1 + 0x1.7228c902c9292p+4i, 0x1.5ae1fc65dee32p+5 + 0x1.dae0ec4976f02p+2i, 0x1.b8d8f87c4ca98p+4 + -0x1.4583a10ddbed8p+5i, -0x1.3e905ba2a095ap+4 + -0x1.23b75ab3d8092p+5i, -0x1.af28f94f2b481p+4 + 0x1.b5aec2a8d58p-7i, -0x1.28d968f4d1f18p+2 + 0x1.0e3c90d625fbp+3i, -0x1.274bcd77d959fp+2 + -0x1.b71e09574d034p+2i, -0x1.9295738f70bb2p+4 + 0x1.76802bdc30f14p+1i, -0x1.a13bcbc0bca67p+3 + 0x1.286f68b63e3d6p+5i, 0x1.0db7b88a1929ap+5 + 0x1.fdc59719b3aaep+4i, 0x1.30557b5284efep+5 + -0x1.34fb3e986c5ap+4i, -0x1.2a207eb4734b4p+3 + -0x1.a073666929a17p+4i, -0x1.874c0a40262ecp+2 + 0x1.f1eed9be841d4p+3i, 0x1.1378fe93861b2p+5 + -0x1.aa4b27d2181e4p+2i, -0x1.bf9fb98150478p+2 + -0x1.a003a28a95aaep+5i, -0x1.c9c023244727bp+5 + 0x1.26f0b55cc807p+0i, -0x1.1d96fab4ef7ap-1 + 0x1.82517f776e6acp+5i, 0x1.fe40fad721d86p+4 + -0x1.384f9d2a084ecp+3i, -0x1.04469627e30d1p+5 + -0x1.425ce02b92c92p+4i, -0x1.6a111f505015ep+4 + 0x1.c7c9a215d9046p+5i, 0x1.0c8459a2bbd28p+6 + 0x1.1b70474418db5p+5i, 0x1.4e87943a93894p+5 + -0x1.cd145986d8926p+5i, -0x1.462a963bbdd97p+5 + -0x1.d1293cc468948p+4i, -0x1.40e87bbf5b96p+1 + 0x1.0d45284893b84p+5i, 0x1.482861283f62p+5 + -0x1.487ebad3f4809p+4i, -0x1.b578702dd5cfdp+4 + -0x1.aa84d545ac623p+5i, -0x1.cdb5fc09dfeb6p+5 + 0x1.246b0328968e1p+4i, 0x1.f5f11ec08a308p+1 + 0x1.7dd2f64e16456p+5i, 0x1.b3cbf28076ef1p+4 + 0x1.dada79feaeedp+0i, -0x1.1935fc5f2802ep+3 + -0x1.3783478038052p+3i, -0x1.23d9e6ad62dcfp+3 + 0x1.d80b7e5f1ca09p+4i, 0x1.5dc4cee009774p+5 + 0x1.9ad021e3fc2b9p+4i, 0x1.5cdb14e6bbc2ap+5 + -0x1.494ebdc434209p+5i, -0x1.c1f72609ecefp+4 + -0x1.7243cfec926f1p+5i, -0x1.f77c6f01e25ap+4 + 0x1.2f47b2d73cee6p+4i, 0x1.57e8756d4b65ep+4 + 0x1.380bd0e3c58d3p+3i, -0x1.b36a4afa1a038p+2 + -0x1.0b22812477caep+5i, -0x1.77f95b660c934p+5 + 0x1.69617d72d6c8dp+3i, 0x1.e9fd3dbce4aep+1 + 0x1.aa33483f8bf36p+5i, 0x1.728c2387bc746p+5 + 0x1.c22ac7aab6654p+2i, 0x1.163eb8452bec6p+3 + -0x1.e3bcde67f0fdbp+4i, -0x1.289a7210c8ca3p+4 + 0x1.c39c608c2599p+1i, 0x1.493c76de2713p+4 + 0x1.565d3ddb31f52p+4i, 0x1.183c70f61ab74p+5 + -0x1.d5424f990714dp+4i, -0x1.9bf49ad02355fp+4 + -0x1.737da90c27091p+5i, -0x1.6cf080767460ap+5 + 0x1.06a36635d151cp+4i, 0x1.6d59608088ee8p+3 + 0x1.f60f247542a34p+4i, 0x1.55a75d8de9bb4p+3 + -0x1.23e3e47598baep+4i, -0x1.264be9fc93758p+5 + 0x1.084f41297017p+2i, 0x1.a053ab905af4cp+1 + 0x1.bdc677510f6aep+5i, 0x1.d854a3e4a3cb8p+5 + 0x1.312aafd37c889p+3i, 0x1.1a4a264fb2d59p+4 + -0x1.5223e7718d0cdp+5i, -0x1.363d3902391f5p+4 + -0x1.145b11e81fe06p+3i, 0x1.7e997b992835ep+3 + 0x1.276780617da0ep+3i, 0x1.14c5bb0847ecp+4 + -0x1.b3f121c2f0f05p+4i, -0x1.a1dfcce2d4337p+4 + -0x1.0d4d76b4e904dp+5i, -0x1.631868a2fd106p+5 + 0x1.65736f7a70971p+3i, -0x1.5997e77de9114p+2 + 0x1.4da2bc2c2cf67p+5i, 0x1.c221e7f5ae2e4p+4 + 0x1.3e8712b11179p+3i, -0x1.ac8e5e7b9fb78p+1 + -0x1.f0c018c09028p+3i, -0x1.016d9a22fea37p+4 + 0x1.9d538e41a9238p+4i, 0x1.3fe6a4dc1e1d6p+5 + 0x1.d623c8edda49ap+4i, 0x1.47717654ad56p+5 + -0x1.2414a3db6298dp+5i, -0x1.7875ac15cb29dp+4 + -0x1.2b91bf78a71f3p+5i, -0x1.46d410ac933c2p+4 + 0x1.068359152a3d6p+4i, 0x1.655a5953ad847p+4 + 0x1.18aa3ea8b7c6p+1i, -0x1.b5f3315afa4f6p+2 + -0x1.2ac2dedb49e4ep+5i, -0x1.a54239f6c98fep+5 + 0x1.000beb23fe4a6p+2i, -0x1.977d1ee8f0844p+2 + 0x1.dbc8a08de0dd2p+5i, 0x1.a85860586fe5ep+5 + 0x1.bfed2f3bc42ap+3i, 0x1.fea2bd2b9d668p+2 + -0x1.32261126501a9p+5i, -0x1.c23e031b4b44p+4 + 0x1.9222bf01ea526p+3i, 0x1.17f6b4c74069dp+5 + 0x1.f3088d904f63ep+4i, 0x1.50e4f4c66018p+5 + -0x1.654faca16f865p+5i, -0x1.3345889a4326cp+5 + -0x1.7e936392c3e2cp+5i, -0x1.4114726a00df5p+5 + 0x1.8fb1a40a24528p+4i, 0x1.0520142441226p+4 + 0x1.4d8612940beb6p+4i, -0x1.facd12edd994p-2 + -0x1.468641e3848f2p+4i, -0x1.232b9898535c8p+5 + 0x1.5c0ac96c3aa3p+3i, 0x1.373c653b37d7cp+1 + 0x1.a141691bb30ebp+5i, 0x1.a14b6dec25b49p+5 + 0x1.165fcde17437cp+4i, 0x1.c995b64d933c7p+4 + -0x1.1070c9a8794cp+5i, -0x1.cb122080644e1p+3 + -0x1.19951cd216303p+4i, 0x1.09a29348ed989p+3 + 0x1.8fe55c0c8d41dp+3i, 0x1.f2987f76090b4p+4 + -0x1.cf54f8ef11f3ep+4i, -0x1.f2140d9fab0b1p+4 + -0x1.b68d4cdce3155p+5i, -0x1.01c1286758b48p+6 + 0x1.22911d18504d9p+4i, 0x1.441933dc80c7p+2 + 0x1.9b52201019ecp+5i, 0x1.6f622fcc24f7ap+4 + -0x1.da8954865a8acp+2i, -0x1.d6d76f54fc2a3p+4 + 0x1.8848db00f9812p+0i, 0x1.24ac18441e296p+2 + 0x1.cc43296b05092p+5i, 0x1.16a5f783b005ep+6 + 0x1.96d30a96571c4p+3i, 0x1.e01a07e043d7ep+4 + -0x1.c3e4e34c4f526p+5i, -0x1.f8e5e3a13f807p+4 + -0x1.bda38e29334bep+4i, -0x1.8b682e689994p+2 + 0x1.148bc46bbde79p+4i, 0x1.7b68149f63fcbp+4 + -0x1.2ddcf888dd89ap+4i, -0x1.fa8179f016e43p+4 + -0x1.55d7e4ba23585p+5i, -0x1.ccb3034ab6c8ap+5 + 0x1.c02f249cbeeep+4i, 0x1.f8223aa49a16cp+3 + 0x1.b52faf5966da4p+5i, 0x1.01de665dbb662p+5 + -0x1.336c8d2da3ceep+3i, -0x1.47c073cd727b7p+4 + -0x1.11abd49a2eeep+2i, 0x1.140af6673726ap+3 + 0x1.5c91a779af33bp+5i, 0x1.de7d1788f7194p+5 + 0x1.d71ba425ae848p+0i, 0x1.6d4b309ccb041p+4 + -0x1.b34954c9158a3p+5i, -0x1.02fa2082d336cp+5 + -0x1.0c2178f682a99p+5i, -0x1.8ddb5e0f3ef6p+4 + 0x1.a1cde67b309bdp+3i, 0x1.866798cca566cp+3 + 0x1.392faddcba9bfp+2i, -0x1.578e08807e5c2p+3 + -0x1.e9e19499ef15ep+4i, -0x1.b6c67c3c80b68p+5 + 0x1.50dc5082082e2p+3i, -0x1.124dc0963537bp+2 + 0x1.0641fdfbacc8ap+6i, 0x1.9f0b85728d20ap+5 + 0x1.207bc48105f6ep+4i, 0x1.8fbbfb0cd981p+3 + -0x1.79e22f1a14872p+4i, -0x1.682ec83051638p+2 + 0x1.b151ba4c35dcfp+3i, 0x1.3d35f1462e2d7p+5 + 0x1.c11672322a508p+3i, 0x1.3e9ab7c28fdc8p+5 + -0x1.5ccc3d1768989p+5i, -0x1.7c4de24852d86p+4 + -0x1.d92d1a4f8a532p+5i, -0x1.c62f0948ec864p+5 + -0x1.61ee2f26c5b4p-1i, -0x1.099606adc4478p+3 + 0x1.28c9a950682f8p+5i, 0x1.113e5317a8107p+4 + -0x1.0fea943c9c7cfp+3i, -0x1.3b5fc5f9c427dp+5 + -0x1.888bce3cd7526p+3i, -0x1.8c07613a343bcp+4 + 0x1.fcf807281c506p+5i, 0x1.05ced40652937p+6 + 0x1.3c362da4e3bb2p+5i, 0x1.22b23aaf6cb18p+5 + -0x1.87fbdddbd47aap+5i, -0x1.168eb40e7edd8p+5 + -0x1.41d6226f4c79ep+3i, 0x1.6e5a30881d085p+4 + 0x1.35d0c38d44373p+5i, 0x1.c2e4666d6ac2ap+5 + -0x1.49d7b9a96fc84p+5i, -0x1.33d294d91c3b2p+5 + -0x1.1abc3191dc454p+6i, -0x1.16adcfb6715cdp+6 + 0x1.87c1f033f54fp+4i, 0x1.b1454684b7682p+3 + 0x1.ad1a140def948p+5i, 0x1.f79647d46cc8dp+4 + -0x1.e65e7cb87179p+3i, -0x1.e89ebbc22bc64p+4 + -0x1.e84ccd0f63ffap+3i, -0x1.b8c0dbe738292p+3 + 0x1.93a23fe038f56p+5i, 0x1.e4e880f5dbd18p+5 + 0x1.87a638e2e20e4p+4i, 0x1.0d66182b155p+5 + -0x1.b0798fc7a376ap+5i, -0x1.311519fc5ed52p+5 + -0x1.d25250f58ea44p+4i, -0x1.70f5dab2c1a76p+3 + 0x1.a7ef15674e94fp+4i, 0x1.adc5dabaf849p+4 + -0x1.0725062e7581fp+3i, -0x1.2c65d7bbe8c67p+4 + -0x1.2e31567e6e843p+5i, -0x1.9dec0b0adeec4p+5 + 0x1.cd8b12fb575cfp+3i, -0x1.d73b3f80e55bp+0 + 0x1.d3272051aa5a2p+5i, 0x1.97b9f86ae9f6ap+5 + 0x1.0ac79264f094cp+4i, 0x1.bac2344823c9bp+3 + -0x1.19d1660eadb1ep+5i, -0x1.b66312ae1f066p+4 + 0x1.3b456e19622d4p+3i, 0x1.35c3f57f14e94p+5 + 0x1.2897dea047ccfp+5i, 0x1.b60d2bca497a8p+5 + -0x1.aaf992a946bcap+5i, -0x1.8cf08a40dde7ap+5 + -0x1.e7172bfafbb38p+5i, -0x1.695fd673bae56p+5 + 0x1.3d0735cb76e89p+5i, 0x1.3055626151dc6p+5 + 0x1.d3a6c61a86b12p+3i, -0x1.af03dec646812p+3 + -0x1.8f08d6620f7e3p+5i, -0x1.0dc59ef95e2b8p+6 + 0x1.798d1bc2b5a74p+4i, 0x1.a1f32cb8df61cp+3 + 0x1.2ca15bb9eab26p+6i, 0x1.f1816dd2a5b16p+5 + 0x1.000a12dc96344p+2i, 0x1.d6ac65ade03ap+2 + -0x1.197d8f7e39f54p+5i, -0x1.e0149565d3d95p+3 + 0x1.2c78f3cc60362p+3i, 0x1.feb0813709a1cp+4 + 0x1.0459b38b7a7c4p+4i, 0x1.076bae4d6a868p+5 + -0x1.49b42b02f688bp+5i, -0x1.06a809c4d81e2p+5 + -0x1.74fdf63acc6fp+5i, -0x1.6a1ab93710f23p+5 + 0x1.1ebfdb7864a46p+4i, 0x1.52362d903dda8p+3 + 0x1.e715264c2d6fbp+4i, 0x1.9228d3022c0a5p+3 + -0x1.20f420a677031p+4i, -0x1.2e8775e02d728p+5 + -0x1.d2e41027726ep+1i, -0x1.3bc865b727cap+3 + 0x1.cef5cd10bb682p+5i, 0x1.00489f5fee83fp+6 + 0x1.8d1010063dce4p+4i, 0x1.03fd18325ce8dp+5 + -0x1.a745c6532710ap+5i, -0x1.1ebec29cbf53cp+5 + -0x1.6128d86a0bee6p+4i, 0x1.a0a07242c98d8p+0 + 0x1.ba8087a63283bp+4i, 0x1.0557755527ee9p+5 + -0x1.82e251467903cp+4i, -0x1.1615939eb943ap+5 + -0x1.5eaf6988e26cfp+5i, -0x1.94930ecf9aafbp+5 + 0x1.ff1d9777fcda4p+4i, 0x1.6a5d70cfa8b58p+4 + 0x1.67d6d6b5bde72p+5i, 0x1.ad15523fac334p+4 + -0x1.3152109dab8bdp+4i, -0x1.e7cb1375b1a1cp+4 + -0x1.d131e46a415e6p+2i, -0x1.3079743de2beap+1 + 0x1.9e7526a5f441p+5i, 0x1.02f1b1f874d15p+6 + 0x1.059d1dc1fbb07p+4i, 0x1.124ef11051655p+5 + -0x1.c0d7f8e080723p+5i, -0x1.09bd26437967p+5 + -0x1.2579d5dd637e4p+5i, -0x1.33be05a0ddp+4 + 0x1.0f0fec0ac63b6p+4i, 0x1.5d07028e818a1p+4 + -0x1.276e16317aa3cp+2i, -0x1.16916a97c5daap+4 + -0x1.68359b07cc9bcp+5i, -0x1.19ac79b42979ap+6 + 0x1.6ffb816dad6ddp+3i, -0x1.68cdd25311f5ap+2 + 0x1.405e7fecbe868p+6i, 0x1.0dddde1c7e5a5p+6 + 0x1.f5d51b7111ae3p+3i, 0x1.f1ce0c5bd3aep+1 + -0x1.6110a3b2df8a3p+5i, -0x1.e66a821b66484p+4 + 0x1.98b801fb383f6p+4i, 0x1.9ba1dc33f624ep+5 + 0x1.1626043fed37bp+5i, 0x1.6da2a5dbdcd7cp+5 + -0x1.c62c98919efaap+5i, -0x1.6453d192e711cp+5 + -0x1.73d3f0f1adf53p+5i, -0x1.0b820aa988944p+5 + 0x1.eafbf2cc20bfcp+4i, 0x1.a5e2a08e6ade4p+4 + 0x1.02048a0faac6ap+4i, 0x1.3338a39503986p+2 + -0x1.f8cd54b4389aap+4i, -0x1.42bc922b10d63p+5 + -0x1.84fc1b684fac8p+1i, -0x1.085e25efe1154p+3 + 0x1.7307d83a2e8ebp+5i, 0x1.6ffa1e1946e69p+5 + 0x1.b63ce0033d4aep+3i, 0x1.8975690d234c7p+3 + -0x1.4b8da95e4e5ap+5i, -0x1.3a42cf14bddf1p+5 + -0x1.9b31975066cbp+1i, 0x1.ddee0eb9a7067p+2 + 0x1.55482799ca598p+5i, 0x1.7fd21682f5c5fp+5 + -0x1.d352863333bfbp+3i, -0x1.2f4df3d125a2p+4 + -0x1.98de328db0c79p+5i, -0x1.a0632bc2f44d6p+5 + 0x1.670b3a2d1ab68p+4i, 0x1.851bea912875cp+4 + 0x1.9525d785f0496p+5i, 0x1.5edf33f7e6e08p+5 + -0x1.9edffc9f365c2p+4i, -0x1.0910b7e578ab6p+5 + -0x1.018bb794ac607p+5i, -0x1.7850b2a6637e6p+4 + 0x1.81693ee81fd9p+5i, 0x1.f96e6cc347898p+5 + 0x1.84f7042cddacfp+4i, 0x1.dfb4796166f6ap+4 + -0x1.0e7a7e8c53129p+6i, -0x1.e175166dfb984p+5 + -0x1.d05f1d24ba18ap+4i, -0x1.da55fa0fd8c45p+3 + 0x1.8b0027455db9ap+5i, 0x1.67da36205ec84p+5 + -0x1.299fa3911ef91p+3i, -0x1.0935cdf886dbep+5 + -0x1.9a39119e90a9cp+5i, -0x1.009cb540009fap+6 + 0x1.68f79fe564758p+5i, 0x1.401ccbc6e82b8p+5 + 0x1.1e46fda8945cdp+6i, 0x1.f08041845d6dp+5 + -0x1.a14bbcd05663bp+4i, -0x1.40ad70542f9a6p+4 + -0x1.2e55131570468p+5i, -0x1.ef06e36ec95fcp+3 + 0x1.e3f2e5763495p+4i, 0x1.7da1a2ab9fdb4p+5 + 0x1.39a161e0c03a8p+3i, 0x1.2cd9be008994fp+4 + -0x1.c9619ea2eca71p+5i, -0x1.aac6c17458f49p+5 + -0x1.c61b4369437d3p+4i, -0x1.b20f3c39838ecp+4 + 0x1.5865505db0fd8p+5i, 0x1.237f25790bcaap+5 + 0x1.b215bd9501e5ep+3i, -0x1.61b4e2aec9622p+2 + -0x1.40ee409cbd7e2p+5i, -0x1.adf8625dd16bp+5 + 0x1.2dc77695f3a39p+4i, 0x1.18d7195ddf031p+4 + 0x1.0feda9ecbf94p+6i, 0x1.16d6273695debp+6 + -0x1.1ffaf5478790ap+2i, 0x1.604874e973afep+2 + -0x1.b8c87df78bc05p+5i, -0x1.1c4563955fca4p+5 + 0x1.2d26bfbbea44p-2i, 0x1.41563cf2a9f9cp+4 + 0x1.aca36e79cdbcap+4i, 0x1.115678a34f43cp+5 + -0x1.46f9867dfe83ep+5i, -0x1.964786df69f94p+5 + -0x1.8dfbfe2a3eb02p+5i, -0x1.ddf51c36768ap+5 + 0x1.735ce50425b3fp+5i, 0x1.106ed1fd25b8cp+5 + 0x1.a52a58fb692d5p+5i, 0x1.b1ce6cbf7f098p+4 + -0x1.b53f2741829e4p+4i, -0x1.2c030fdaf7a4ap+5 + 0x1.6e641e268f5ep+1i, 0x1.028fe130629e2p+4 + 0x1.df9c04cfd5cf2p+5i, 0x1.29f2f30f84a5p+6 + -0x1.33f2ced3d4784p+2i, 0x1.0104a774deddfp+4 + -0x1.05022117c7c65p+6i, -0x1.3363359ebf574p+5 + -0x1.7289792de7464p+4i, -0x1.fc8fb26f1c26dp+2 + 0x1.052873765df07p+4i, 0x1.0290deab67141p+4 + -0x1.17f1f0e19acfep+4i, -0x1.0c3e030c01396p+5 + -0x1.243b22883e0a3p+5i, -0x1.e110db1b8c32ap+5 + 0x1.d175dc0703ebp+4i, 0x1.46fda6b6ccdefp+3 + 0x1.0ad5ac89a4ab4p+6i, 0x1.86fb75ae46284p+5 + 0x1.857479fdba048p+1i, -0x1.c58d54d68ddfep+2 + -0x1.490390142b88p+4i, -0x1.84344fa968552p+2 + 0x1.2ce64d1633e3ep+5i, 0x1.0598cf9558ca6p+6 + 0x1.f81f34d7daf9cp+3i, 0x1.1978d3369e15ep+5 + -0x1.18c8c61e9c9bap+6i, -0x1.b1ddd43dff206p+5 + -0x1.493885e39bc35p+5i, -0x1.8c573fcea09f2p+4 + 0x1.253a411503e7dp+5i, 0x1.0b924e6fc2892p+5 + -0x1.ebffbda18b658p+1i, -0x1.bee4636c38138p+4 + -0x1.717a947f6999dp+5i, -0x1.0226e4494dfdap+6 + 0x1.245cdd1340878p+5i, 0x1.e4aeac23f6d7fp+4 + 0x1.2867567354f54p+6i, 0x1.07b7f61349826p+6 + -0x1.534c777f1623dp+4i, -0x1.821eb1476b3fcp+4 + -0x1.652c9018c053p+5i, -0x1.987c8b7202cf9p+4 + 0x1.5670160ce6b98p+5i, 0x1.065530a2e7336p+6 + 0x1.3d10bdc563b6p+4i, 0x1.8b10308fe5cb2p+4 + -0x1.356905afe401ap+6i, -0x1.233e119f4d19ep+6 + -0x1.d44d085ef1307p+4i, -0x1.9e1a48e323cbep+4 + 0x1.c7c2bb2fce066p+5i, 0x1.35cdfe00f6751p+5 + 0x1.a946b0efac05p+3i, -0x1.325027af858dap+2 + -0x1.b84ce394aae83p+4i, -0x1.dc924e29ef922p+4 + 0x1.3781d60710c32p+4i, 0x1.4a578a6f2eef6p+4 + 0x1.5186fb5447b2p+5i, 0x1.9f61922beaffep+5 + -0x1.e77c609706bbp+2i, 0x1.bb12dd400fcfep+2 + -0x1.8a41f28a4fb79p+5i, -0x1.2f3b32f1536e7p+5 + -0x1.0e8d6cf8eddecp+3i, 0x1.6a015547c1d1cp+2 + 0x1.d2d5bece3049ep+4i, 0x1.dd68932a68213p+4 + -0x1.a5107880d031cp+4i, -0x1.5298f8aa3b04fp+5 + -0x1.2f9386dc9b2dap+5i, -0x1.73da3144a2fdap+5 + 0x1.77a86a118e889p+5i, 0x1.449ebdfb77458p+5 + 0x1.78507cf5502b5p+5i, 0x1.16c0870f6b7bbp+5 + -0x1.fda387815bd78p+4i, -0x1.02f83cdf6c426p+5 + -0x1.e6ce8f43c39dap+3i, -0x1.99087235527bp+0 + 0x1.66371d818d696p+5i, 0x1.d4845433e6208p+5 + 0x1.3671831394474p+1i, 0x1.810133e3b4974p+3 + -0x1.e892692dc9856p+5i, -0x1.8fa373466e2c2p+5 + -0x1.138aa00486414p+4i, -0x1.2c85718658c02p+3 + 0x1.08b936f615b8ap+5i, 0x1.53794598dc5c1p+4 + -0x1.66cef91ebec1cp+3i, -0x1.24f4e866a684dp+5 + -0x1.7078beb8d7dd2p+4i, -0x1.40bc7b8a42c11p+5 + 0x1.a4b7be076d212p+5i, 0x1.73a39e87b69aep+5 + 0x1.e44b87218b8b5p+5i, 0x1.fd6f04bf267bcp+5 + -0x1.59c788a51687p+4i, -0x1.bd616ca8e2fep-1 + -0x1.3cde8038795aap+5i, -0x1.b4a55a851afe4p+1 + 0x1.d89ff8ae87191p+2i, 0x1.47ab38d9f867ep+5 + -0x1.fad34ca28e37fp+3i, -0x1.c60a1773b2c6p+0 + -0x1.2f46ea8184119p+6i, -0x1.47f87b47c9d3fp+6 + -0x1.0a7ac80c61848p+5i, -0x1.c3681561a470ap+5 + 0x1.96ce418480b86p+5i, 0x1.68412946115ap+2 + 0x1.3dd4fdbdaa24fp+5i, -0x1.8f5cf0faa45a8p+3 + 0x1.a6dbf605f0a1bp+3i, -0x1.0b045a1b30b2cp+4 + 0x1.d935001996201p+5i, 0x1.b6458c4c406cp+5 + 0x1.20cbd6031a3c2p+6i, 0x1.8fb9e7b5810aap+6 + 0x1.e88a8cc6e37d8p+1i, 0x1.0a3b1a8d47fdbp+6 + -0x1.14bc32e42125ap+6i, -0x1.1748b1bec8b47p+3 + -0x1.2b228c001af99p+6i, -0x1.2a01d266073f5p+4 + -0x1.06cdf6d020176p+4i, 0x1.028e81545ce19p+5 + -0x1.a91304f85c49dp+5i, -0x1.412a5b7e75beep+6 + -0x1.fd54e1d6b6344p+6i, -0x1.8628765d213c4p+7 + 0x1.882f853218aeap+5i, 0x1.e0a897011f00ap+2 + 0x1.642eb042923a4p+7i, 0x1.58796d01633a8p+6 + -0x1.824f5d8fbb5dbp+4i, -0x1.e3f2fa9d806bap+6 + 0x1.2b2724a2962f9p+3i, 0x1.34c0161bc287p+5 + 0x1.e549f5d1f6efap+7i ) assertThat(stats:::fft(z=c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.25991722556023, 1.74008277443977, 1.37184215616, 0.62815784384, 0, 0.797828680160094, 0.202171319839906, 0, 1.81948989300014, 0.646208854539964, 0.577623678139958, 1.95667757431994, 0.577615013880049, 0.82309143088024, 2.59929355523971, 0.68953128022001, 1.04692396356016, 2.26354475621983, 3.20575552920042, 2.9386525563996, 3.85559191439998, 2.74006544592015, 1.66786140312014, 1.66788739589974, 2.92418575505997, 1.16245043204012, 1.11190760208009, 1.72564196587979, 4.15884889416003, 3.08662752284023, 3.75452358299974, 2.4151472533203, 0.945864296419714, 0.638988450259987, 21.0902030679414, 2.85563523569883, 1.08304331347982, 0.971118382879965, 0.584835418160054, 0.555953801040047, 0.859210780799899, 0.696751684500015, 0.555953801040019, 0.747294514459966, 0.808659286580081, 0.555962465299928, 0.635378248119991, 0.920575552920056, 0.555953801040047, 0.555962465299885, 0.967508180740012, 0.588445620300035, 0.555953801040047, 0.855600578659917, 0, 0, 0, 0.812269488720091, 0.187730511279909, 0, 0, 0, 0, 0, 0, 0, 0, 0.703972088780006, 0.296027911219994, 0, 0, 0, 0, 0, 0.483749758240066, 0.555962465299956, 0.960287776459978, 0.595666024580055, 0.404333975419945, 0, 0, 0, 0, 0.81948989300011, 0.18051010699989, 0, 0.931406159340042, 0.0685938406599576, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.935016361480024, 0.0649836385199762, 0, 0, 0, 0, 0, 0.714802695200007, 0.285197304799993, 0, 0.826710297280073, 0.173289702719927, 0, 0, 0, 0.0505428299599942, 0.949457170040006, 0, 0, 0, 0, 0.548733396760099, 1.4512666032399, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.613717035280047, 0.386282964719953, 0, 0.725633301620007, 0.274366698379993, 0, 0, 0.393503368999973, 0.606496631000027, 0, 0, 0, 0, 0, 0, 0, 0, 0.285197304799993, 0.714802695200007, 0, 0, 0, 0, 0.509021173220106, 0.555962465299928, 0.935016361479967, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.2490952834001, 0.931406159339957, 0.819498557259948, 0.73646390803998, 0.55595380104009, 0.70758229091993, 0, 0, 0, 0.960287776460063, 0.555953801040062, 0.483758422499875, 0, 0, 0.368223289760181, 1.63177671023982, 0.740074110179989, 0.555953801040062, 0.703972088779949, 0.851981712260113, 0.555962465299899, 0.592055822439988, 0, 1.03970355928004, 0.960296440719958, 0, 33.483706436942, 19.704015410078, 0.812278152979957, 0.743684312319999, 0.256315687680001, 0, 0.855591914400065, 0.555962465299956, 0.588445620299979, 0.967508180740083, 0.555953801040062, 0.714811359459645, 2.76172665876021, 1.27075649623998, 1.30323965124018, 2.42600385251984, 0, 0.606496631000027, 1.39350336899997, 5.15521269924045, 1.25995188259952, 0.584835418160026, 3.88447353152014, 1.69674302023998, 1.58485274667987, 1.83393070156001, 0.638988450260058, 0.555953801040005, 0.805057748699937, 2.25271414980023, 1.36100288547993, 1.38628296471984, 1.72562463736017, 2.36824928253947, 2.90612608010036, 1.94945717003998, 2.17327237420022, 1.8772704557598, 0, 4.49819056680008, 3.29601924696021, 3.20579018623971, 0.754514918739972, 1.79782868016019, 3.44765640109983, 0.866422520820095, 0.978347451419893, 1.15523002776001, 0, 0, 0.270765160500048, 2.72923483949995, 2.58483541816031, 2.02165254857994, 2.39351203325975, 0, 0.628157843839972, 1.37184215616003, 3.48013089184019, 1.37185948467982, 1.14800962347999, 2.94584696790002, 0.0541530320999755, 0.281595766919907, 2.71840423308009, 0.64981905668003, 0.967499516480245, 2.38268142683972, 0.761735323019991, 0.873642925100114, 1.36462175187989, 0, 0.859210780800026, 1.14078921919997, 0, 0.541512992480136, 0.555962465299842, 0.902524542220021, 0, 0.41876611972009, 1.58123388027991, 0, 0, 0, 2.63175938172003, 1.2346718033599, 1.13356881492007, 0, 0, 0.101085659920045, 0.898914340079955, 0, 0, 0, 0, 0.324909528340015, 0.675090471659985, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.884473531520086, 0.115526468479914, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) , identicalTo( expected, tol = 1e-6 ) )
require(quadprog) na <- 20L ns <- 60L R <- array(rnorm(ns*na, mean = 0.005, sd = 0.015), dim = c(ns,na)) mu <- colMeans(R) rf <- 0.0001 mu2 <- mu - rf Q <- cov(R) B <- array(mu2, dim = c(1L,na)) b <- 1 result <- solve.QP(Dmat = Q, dvec = rep(0,na), Amat = t(B), bvec = b, meq = 1L) w <- as.matrix(result$solution/sum(result$solution)) SR <- t(w) %*% mu2 / sqrt(t(w) %*% Q %*% w) sum(w) t(w) %*% mu >= rf R2 <- R - rf ones <- array(1, dim = c(ns,1L)) solR <- lm(ones~-1 + R2) w2 <- coef(solR); w2 <- w2/sum(w2) stopifnot(all.equal(as.numeric(w),as.numeric(w2))) w3 <- solve(Q,mu2) w3 <- w3/sum(w3) stopifnot(all.equal(as.numeric(w2),as.numeric(w3)))
d=canc%>%filter(cancer=="CML")%>%print(n=13) d%>%summarize(n=n(),na=sum(is.na(surv)),prct=100*na/n) d=d%>%mutate(status=as.numeric(COD>0),surv=(surv+0.5)/12) d=d%>%select(yrdx,agedx,sex,surv,status)%>%print(n=13) (D=msd(d,mrt,brkst=c(0,0.5,1,2,3,4,5,6,8),brksy=c(1973,1990,2005,2015))) gx=xlab("Years Since CML Diagnosis") gy=ylab("Relative Risk of Mortality") myt=theme(legend.text=element_text(size=12),strip.text=element_text(size=12)) D%>%ggplot(aes(x=t,y=RR,col=Years))+facet_grid(.~sex)+gp+gl+gx+gy+gh+ svts+jco+tc(14)+ltb+ltp+sbb+ylim(c(0,NA))+geRR+myt ggsave("~/Results/tutorial/CMLmortEx1A.pdf",width=4.5,height=3) labs=c("1973-1990","1991-2005","2006-2015") d=d%>%mutate(yrg=cut(yrdx,c(1972,1990,2005,2015),labels=labs))%>%print(n=13) fit=survfit(Surv(surv,status)~yrg+sex,data=d) gy=ylab("Survival Probability") ggsurvplot_facet(fit,d,facet.by="sex",legend.title="",xlim=c(0,12), short.panel.labs=T)+svts+jco+sbb+myt+gx+gy ggsave("~/Results/tutorial/CMLsurvEx1B.pdf",width=4.5,height=3)
wait_for_http <- function(url, timeout = 5000, interval = 100) { end <- Sys.time() + timeout / 1000.0 try_1 <- function(timeout) { h <- new_handle(url = url, connecttimeout = timeout) m <- new_pool() multi_add(h, pool = m) out <- tryCatch( multi_run(timeout = timeout, pool = m), error = function(e) { print (e) ; FALSE } ) if (identical(out, FALSE)) return(FALSE) out$success == 1 } remaining <- end - Sys.time() while (remaining > 0) { if (try_1(as.numeric(remaining))) return(TRUE) Sys.sleep(interval / 1000.0) remaining <- end - Sys.time() } FALSE }
function( x, y, deprecated=FALSE, ... ){ if(!requireNamespace("DODO")){ stop("The DODO package is required") } if(!DODO::check_dodo_connection()){ stop( "You need to connect to a DODO database using", " the DODO::connect_to_dodo() function" ) } x$lid <- paste(x$source, x$identifier, sep=":") y$lid <- paste(y$source, y$identifier, sep=":") convTable <- dplyr::tibble() for(xcondition in unique(x$condition)){ for(ycondition in unique(y$condition)){ if(ycondition==xcondition){ convTable <- dplyr::bind_rows(convTable, DODO::convert_concept( from=setdiff(union(x$lid, y$lid), NA), from.concept=xcondition, to.concept=xcondition, deprecated=deprecated ) %>% dplyr::select(-"deprecated") %>% dplyr::mutate( fcondition=xcondition, tcondition=xcondition ) ) }else{ convTable <- dplyr::bind_rows(convTable, DODO::convert_concept( from=setdiff(x$lid, NA), from.concept=xcondition, to.concept=ycondition, deprecated=deprecated ) %>% dplyr::select(-"deprecated") %>% dplyr::mutate( fcondition=xcondition, tcondition=ycondition ) ) convTable <- dplyr::bind_rows(convTable, DODO::convert_concept( from=setdiff(y$lid, NA), from.concept=ycondition, to.concept=xcondition, deprecated=deprecated ) %>% dplyr::select(-"deprecated") %>% dplyr::mutate( fcondition=ycondition, tcondition=xcondition ) ) } } } toRet <- dplyr::bind_rows( dplyr::left_join( x, convTable, by=c("lid"="from", "condition"="fcondition") ) %>% dplyr::rename( "lid_x"="lid", "lid_y"="to", "condition_x"="condition", "condition_y"="tcondition" ), dplyr::left_join( x, convTable, by=c("lid"="to", "condition"="tcondition") ) %>% dplyr::rename( "lid_x"="lid", "lid_y"="from", "condition_x"="condition", "condition_y"="fcondition" ) ) toRet <- dplyr::right_join( toRet, y, by=c("lid_y"="lid", "condition_y"="condition"), suffix=c("_x", "_y") ) %>% dplyr::select(-lid_x, -lid_y) %>% dplyr::distinct() return(toRet) }
SNK.test <- function (y, trt, DFerror, MSerror, alpha=0.05, group=TRUE,main = NULL,console=FALSE) { name.y <- paste(deparse(substitute(y))) name.t <- paste(deparse(substitute(trt))) clase<-c("aov","lm") if(is.null(main))main<-paste(name.y,"~", name.t) if("aov"%in%class(y) | "lm"%in%class(y)){ if(is.null(main))main<-y$call A<-y$model DFerror<-df.residual(y) MSerror<-deviance(y)/DFerror y<-A[,1] ipch<-pmatch(trt,names(A)) nipch<- length(ipch) for(i in 1:nipch){ if (is.na(ipch[i])) return(if(console)cat("Name: ", trt, "\n", names(A)[-1], "\n")) } name.t<- names(A)[ipch][1] trt <- A[, ipch] if (nipch > 1){ trt <- A[, ipch[1]] for(i in 2:nipch){ name.t <- paste(name.t,names(A)[ipch][i],sep=":") trt <- paste(trt,A[,ipch[i]],sep=":") }} name.y <- names(A)[1] } junto <- subset(data.frame(y, trt), is.na(y) == FALSE) Mean<-mean(junto[,1]) CV<-sqrt(MSerror)*100/Mean medians<-tapply.stat(junto[,1],junto[,2],stat="median") for(i in c(1,5,2:4)) { x <- tapply.stat(junto[,1],junto[,2],function(x)quantile(x)[i]) medians<-cbind(medians,x[,2]) } medians<-medians[,3:7] names(medians)<-c("Min","Max","Q25","Q50","Q75") means <- tapply.stat(junto[,1],junto[,2],stat="mean") sds <- tapply.stat(junto[,1],junto[,2],stat="sd") nn <- tapply.stat(junto[,1],junto[,2],stat="length") means<-data.frame(means,std=sds[,2],r=nn[,2],medians) names(means)[1:2]<-c(name.t,name.y) ntr<-nrow(means) Tprob <- qtukey(1-alpha,2:ntr, DFerror) nr <- unique(nn[,2]) if(console) { cat("\nStudy:", main) cat("\n\nStudent Newman Keuls Test\nfor",name.y,"\n") cat("\nMean Square Error: ",MSerror,"\n\n") cat(paste(name.t,",",sep="")," means\n\n") print(data.frame(row.names = means[,1], means[,2:6])) } if(length(nr) == 1 ) sdtdif <- sqrt(MSerror/nr) else { nr1 <- 1/mean(1/nn[,2]) sdtdif <- sqrt(MSerror/nr1) } SNK <- Tprob * sdtdif names(SNK)<-2:ntr snk<-data.frame(Table=Tprob,CriticalRange=SNK) if ( group & length(nr) == 1 & console){ cat("\nAlpha:",alpha,"; DF Error:",DFerror,"\n") cat("\nCritical Range\n") print(SNK) } if ( group & length(nr) != 1 & console) cat("\nGroups according to probability of means differences and alpha level(",alpha,")\n") if ( length(nr) != 1) snk<-NULL Omeans<-order(means[,2],decreasing = TRUE) Ordindex<-order(Omeans) comb <-utils::combn(ntr,2) nn<-ncol(comb) dif<-rep(0,nn) LCL<-dif UCL<-dif sig<-NULL pvalue<-dif odif<-dif for (k in 1:nn) { i<-comb[1,k] j<-comb[2,k] dif[k]<-means[i,2]-means[j,2] nx<-abs(i-j)+1 odif[k] <- abs(Ordindex[i]- Ordindex[j])+1 pvalue[k]<- round(1-ptukey(abs(dif[k])/sdtdif,odif[k],DFerror),4) LCL[k] <- dif[k] - SNK[odif[k]-1] UCL[k] <- dif[k] + SNK[odif[k]-1] sig[k]<-" " if (pvalue[k] <= 0.001) sig[k]<-"***" else if (pvalue[k] <= 0.01) sig[k]<-"**" else if (pvalue[k] <= 0.05) sig[k]<-"*" else if (pvalue[k] <= 0.1) sig[k]<-"." } if(!group){ tr.i <- means[comb[1, ],1] tr.j <- means[comb[2, ],1] comparison<-data.frame("difference" = dif, pvalue=pvalue,"signif."=sig,LCL,UCL) rownames(comparison)<-paste(tr.i,tr.j,sep=" - ") if(console){cat("\nComparison between treatments means\n\n") print(comparison)} groups=NULL } if (group) { comparison=NULL Q<-matrix(1,ncol=ntr,nrow=ntr) p<-pvalue k<-0 for(i in 1:(ntr-1)){ for(j in (i+1):ntr){ k<-k+1 Q[i,j]<-p[k] Q[j,i]<-p[k] } } groups <- orderPvalue(means[, 1], means[, 2],alpha, Q,console) names(groups)[1]<-name.y if(console) { cat("\nMeans with the same letter are not significantly different.\n\n") print(groups) } } parameters<-data.frame(test="SNK",name.t=name.t,ntr = ntr,alpha=alpha) statistics<-data.frame(MSerror=MSerror,Df=DFerror,Mean=Mean,CV=CV) rownames(parameters)<-" " rownames(statistics)<-" " rownames(means)<-means[,1] means<-means[,-1] output<-list(statistics=statistics,parameters=parameters, snk=snk, means=means,comparison=comparison,groups=groups) class(output)<-"group" invisible(output) }
.modEvAmethods <- function(arg) { if (arg %in% c("threshMeasures", "multModEv")) { thresh.measures <- c("CCR", "Misclass", "Sensitivity", "Specificity", "Omission", "Commission", "Precision", "Recall", "PPP", "NPP", "UPR", "OPR", "PPI", "PAI", "kappa", "TSS", "NMI", "F1score", "OddsRatio") if (arg == "threshMeasures") return(thresh.measures) else if (arg == "multModEv") return (c("Preval", "AUC", "MeanPrecision", "AUCPR", thresh.measures)) } else if (arg == "bin") return(c("round.prob", "prob.bins", "size.bins", "n.bins", "quantiles")) else if (arg == "threshold") return(c("each", "preval", "0.5", "maxKappa", "minSensSpecDiff", "maxSensSpecSum", "maxTSS")) }
get_dists <- function(x, i, j = NULL, return_indices = FALSE){ j_supplied <- !is.null(j) if(is.null(return_indices)){ stop("return_indices must be TRUE or FALSE.") } return_indices <- as.logical(return_indices)[1] if(is.na(return_indices)){stop("return_indices cannot be NA.")} if( is.null(x) || !((length(class(x)) == 1) && (class(x) == "dist")) ){ stop( " x must be an object of class 'dist'. " ) } size <- attr(x,"Size") if(is.null(i)){ stop("Argument i cannot be NULL.") } if(!is.null(j)){ if( !( (length(class(i)) == 1) && (length(class(j)) == 1) && ((class(i) == "numeric") || (class(i) == "integer")) && ((class(j) == "numeric") || (class(j) == "integer")) && all(as.integer(i) == i) && all(as.integer(j) == j) && (length(i) == length(j)) ) ){ stop( " If both i and j are supplied, then both must be equal length integer or numeric vectors. " ) }else{ i <- matrix(c(i,j), ncol = 2) } } if( !( ( (class(i) == "matrix") && ((class(i[1]) == "numeric") || (class(i[1]) == "integer")) && all(as.integer(i) == i) && all((i >= 1) & (i <= size)) ) ) ){ if(j_supplied){ stop("Vector arguments i and j must be integers between 1 and attr(x, 'Size')") }else{ stop( "i must be a two column matrix filled with integers between 1 and attr(x, 'Size'), inclusive" ) } } left_smaller <- i[,1] < i[,2] right_smaller <- !left_smaller s <- numeric(nrow(i)) b <- s s[left_smaller] <- i[left_smaller,1] s[right_smaller] <- i[right_smaller,2] b[left_smaller] <- i[left_smaller,2] b[right_smaller] <- i[right_smaller,1] linear_index <- 0.5*size*(size-1)-0.5*(size-s)*(size-s-1)-(size-b) linear_index[s == b] <- NA output <- x[linear_index] output[is.na(output)] <- 0 if(return_indices){ output <- matrix(c(s,b,output), ncol = 3) colnames(output) <- c("Small_Index","Large_Index","Distance") } return(output) }
downloadAEMETstationlist <- function(api){ opt = meteospain::aemet_options(api_key = api) data_sf = meteospain::get_stations_info_from("aemet", opt) data_sp = as(data_sf, "Spatial") data_sp@data = data_sp@data[,c("altitude", "station_id","station_name")] names(data_sp@data) = c("elevation", "ID", "name") row.names(data_sp@data) <- data_sp@data$ID colnames(data_sp@coords)<-c("long", "lat") rownames(data_sp@coords) <- data_sp@data$ID return(data_sp) } downloadSMCstationlist <- function(api, date = NULL){ if(is.null(date)) date = Sys.Date() opt = meteospain::meteocat_options(api_key = api, start_date = as.Date(date)) data_sf = meteospain::get_stations_info_from("meteocat", opt) data_sp = as(data_sf, "Spatial") data_sp@data = data_sp@data[,c("altitude", "station_id","station_province","station_name")] names(data_sp@data) = c("elevation", "ID","province", "name") row.names(data_sp@data) <- data_sp@data$ID colnames(data_sp@coords)<-c("long", "lat") rownames(data_sp@coords) <- data_sp@data$ID return(data_sp) } downloadMGstationlist <- function() { opt = meteospain::meteogalicia_options() data_sf = meteospain::get_stations_info_from("meteogalicia", opt) data_sp = as(data_sf, "Spatial") data_sp@data = data_sp@data[,c("altitude", "station_id","station_province","station_name")] names(data_sp@data) = c("elevation", "ID","province", "name") row.names(data_sp@data) <- data_sp@data$ID colnames(data_sp@coords)<-c("long", "lat") rownames(data_sp@coords) <- data_sp@data$ID return(data_sp) } downloadMETEOCLIMATICstationlist <- function(station_id = 'ESCAT') { opt <- meteospain::meteoclimatic_options(stations = station_id) data_sf <- meteospain::get_stations_info_from("meteoclimatic", opt) data_sp <- as(data_sf, "Spatial") data_sp@data <- data_sp@data[,c("station_id","station_name")] names(data_sp@data) <- c("ID", "name") row.names(data_sp@data) <- data_sp@data$ID colnames(data_sp@coords)<-c("long", "lat") rownames(data_sp@coords) <- data_sp@data$ID return(data_sp) }
cancor <- function(x, ...) { UseMethod("cancor", x) } cancor.formula <- function(formula, data, subset, weights, na.rm = TRUE, method = "gensvd", ...) { formula <- update(formula, . ~ . - 1) cl <- match.call() cl$formula <- formula mf <- match.call(expand.dots = FALSE) mf$formula <- formula m <- match(c("formula", "data", "subset", "weights"), names(mf), 0L) mf <- mf[c(1L, m)] mf[[1L]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") y <- model.response(mf, "numeric") w <- as.vector(model.weights(mf)) if (!is.null(w) && !is.numeric(w)) stop("'weights' must be a numeric vector") x <- model.matrix(mt, mf, contrasts) z <- cancor.default(x, y, weights=w, na.rm=na.rm, ...) z$call <- cl z$terms <- mt z } Var <- function(x, na.rm = TRUE, use, weights) { if(missing(weights) || is.null(weights)) res <- var(x, na.rm=na.rm, use=use) else { if (na.rm) { if (!pmatch(use, "complete")) warning("Use of weights only supports use='complete'") OK <- complete.cases(x) x <- x[OK,] } res <- cov.wt(x, wt=weights)$cov } res } cancor.default <- function (x, y, weights, X.names = colnames(x), Y.names = colnames(y), row.names = rownames(x), xcenter = TRUE, ycenter = TRUE, xscale = FALSE, yscale = FALSE, ndim=min(p,q), set.names=c("X", "Y"), prefix=c("Xcan", "Ycan"), na.rm = TRUE, use = if (na.rm) "complete" else "pairwise", method = "gensvd", ... ) { X <- as.matrix(x) Y <- as.matrix(y) p <- ncol(X) q <- ncol(Y) n <- length(complete.cases(X,Y)) if(!missing(weights)) n <- n - sum(weights==0) C <- Var(cbind(X, Y), na.rm = TRUE, use=use, weights=weights) Cxx <- C[1:p, 1:p] Cyy <- C[-(1:p), -(1:p)] Cxy <- C[1:p, -(1:p)] res <- gensvd(Cxy, Cxx, Cyy, nu=ndim, nv=ndim) names(res) <- c("cor", "xcoef", "ycoef") colnames(res$xcoef) <- paste(prefix[1], 1:ndim, sep="") colnames(res$ycoef) <- paste(prefix[2], 1:ndim, sep="") scores <- can.scores(X, Y, res$xcoef, res$ycoef) colnames(scores$xscores) <- paste(prefix[1], 1:ndim, sep="") colnames(scores$yscores) <- paste(prefix[2], 1:ndim, sep="") structure <- can.structure(X, Y, scores, use=use) result <- list(cancor = res$cor, names = list(X = X.names, Y = Y.names, row.names = row.names, set.names=set.names), ndim = ndim, dim = list(p=p, q=q, n=n), coef = list(X = res$xcoef, Y= res$ycoef), scores = list(X = scores$xscores, Y=scores$yscores), X = X, Y = Y, weights = if (missing(weights)) NULL else weights, structure = structure) class(result) <- "cancor" return(result) } can.scores <- function (X, Y, xcoef, ycoef) { X.aux = scale(X, center=TRUE, scale=FALSE) Y.aux = scale(Y, center=TRUE, scale=FALSE) X.aux[is.na(X.aux)] = 0 Y.aux[is.na(Y.aux)] = 0 xscores = X.aux %*% xcoef yscores = Y.aux %*% ycoef return(list(xscores = xscores, yscores = yscores)) } can.structure <- function (X, Y, scores, use="complete.obs") { xscores <- scores$xscores yscores <- scores$yscores X.xscores = cor(X, xscores, use = use) Y.xscores = cor(Y, xscores, use = use) X.yscores = cor(X, yscores, use = use) Y.yscores = cor(Y, yscores, use = use) return(list( X.xscores = X.xscores, Y.xscores = Y.xscores, X.yscores = X.yscores, Y.yscores = Y.yscores)) } gensvd <- function (Rxy, Rxx, Ryy, nu=p, nv=q) { p <- dim(Rxy)[1] q <- dim(Rxy)[2] if (missing(Rxx)) Rxx <- diag(p) if (missing(Ryy)) Ryy <- diag(q) if (dim(Rxx)[1] != dim(Rxx)[2]) stop("Rxx must be square") if (dim(Ryy)[1] != dim(Ryy)[2]) stop("Ryy must be square") s <- min(p, q) if (max(abs(Rxx - t(Rxx)))/max(abs(Rxx)) > 1e-10) { warning("Rxx not symmetric.") Rxx <- (Rxx + t(Rxx))/2 } if (max(abs(Ryy - t(Ryy)))/max(abs(Ryy)) > 1e-10) { warning("Ryy not symmetric.") Ryy <- (Ryy + t(Ryy))/2 } Rxxinv <- solve(chol(Rxx)) Ryyinv <- solve(chol(Ryy)) Dform <- t(Rxxinv) %*% Rxy %*% Ryyinv if (p >= q) { result <- svd(Dform, nu=nu, nv=nv) values <- result$d Xmat <- Rxxinv %*% result$u Ymat <- Ryyinv %*% result$v } else { result <- svd(t(Dform), nu=nv, nv=nu) values <- result$d Xmat <- Rxxinv %*% result$v Ymat <- Ryyinv %*% result$u } gsvdlist <- list(values=values, Xmat=Xmat, Ymat=Ymat) return(gsvdlist) } stars <- function(p, width=30) { p <- p/sum(p) reps <- round(p * width / max(p)) res1 <- sapply(reps, function(x) paste(rep('*', x), sep="", collapse="")) res2 <- sapply(reps, function(x) paste(rep(' ', width-x), sep="", collapse="")) res <- paste(res1, res2, sep="") res } print.cancor <- function(x, digits=max(getOption("digits") - 2, 3), ...) { names <- x$names cat("\nCanonical correlation analysis of:\n") cat( "\t", x$dim$p, " ", names$set.names[1], " variables: ", paste(names$X, collapse=', '), "\n") cat(" with\t", x$dim$q, " ", names$set.names[2], " variables: ", paste(names$Y, collapse=', '), "\n") cat("\n") canr <- x$cancor lambda <- canr^2 / (1-canr^2) pct = 100*lambda / sum(lambda) cum = cumsum(pct) stwidth <- getOption("width") - 40 scree <- stars(pct, width = min(30, stwidth)) canrdf <- data.frame("CanR"=canr, "CanRSQ"=canr^2, "Eigen"=lambda, "percent"=pct, "cum"=cum, "scree"=scree) print(canrdf, digits=4) tests <- Wilks.cancor(x) print(tests, digits=digits) invisible(x) } summary.cancor <- function(object, digits=max(getOption("digits") - 2, 3), ...) { names <- object$names print(object, digits=digits, ...) cat("\nRaw canonical coefficients\n") cat("\n ", names$set.names[1], " variables: \n") print(object$coef$X, digits=digits) cat("\n ", names$set.names[2], " variables: \n") print(object$coef$Y, digits=digits) } scores <- function(x, ...) { UseMethod("scores") } scores.cancor <- function(x, type=c("x", "y", "both", "list", "data.frame"), ...) { type <- match.arg(type) switch(type, x = x$scores$X, y = x$scores$Y, both = x$scores, list = x$scores, data.frame = data.frame(x$scores$X, x$scores$Y) ) } coef.cancor <- function(object, type=c("x", "y", "both", "list"), standardize=FALSE, ...) { coef <- object$coef if (standardize) { coef$X <- diag(sqrt(diag(cov(object$X)))) %*% coef$X coef$Y <- diag(sqrt(diag(cov(object$Y)))) %*% coef$Y rownames(coef$X) <- rownames(object$coef$X) rownames(coef$Y) <- rownames(object$coef$Y) } type <- match.arg(type) switch(type, x = coef$X, y = coef$Y, both = list(coef$X, coef$Y), list = list(coef$X, coef$Y) ) }
"modeG"<-function(postG, threshold=0){ id<-rownames(postG[[1]]) G<-as.list(1:length(postG)) names(G)<-names(postG) n<-sum(postG[[1]][1,]) for(i in 1:length(G)){ an<-allele.names(as.genotype(colnames(postG[[i]]))) G[[i]]<-as.genotype(colnames(postG[[i]])[apply(postG[[i]],1,which.max)], alleles=an) G[[i]][which(apply(postG[[i]],1,max)/n < threshold)]<-NA } list(G=G, id=id) }
library(testthat) library(rly) context("Grammar with bad literal characters") Parser <- R6::R6Class("Parser", public = list( tokens = c('NAME','NUMBER', 'PLUS','MINUS','TIMES','DIVIDE','EQUALS', 'LPAREN','RPAREN'), precedence = list(c('left','+','-'), c('left','*','/','MINUS'), c('right','UMINUS')), names = new.env(hash=TRUE), p_statement_assign = function(doc='statement : NAME EQUALS expression', p) { self$names[[as.character(p$get(2))]] <- p$get(4) }, p_statement_expr = function(doc='statement : expression', p) { cat(p$get(2)) cat('\n') }, p_expression_binop = function(doc="expression : expression '+' expression | expression '-' expression | expression '*' expression | expression '/' expression | expression '**' expression", p) { if(p$get(3) == '+') p$set(1, p$get(2) + p$get(4)) else if(p$get(3) == '-') p$set(1, p$get(2) - p$get(4)) else if(p$get(3) == '*') p$set(1, p$get(2) * p$get(4)) else if(p$get(3) == '/') p$set(1, p$get(2) / p$get(4)) }, p_expression_uminus = function(doc='expression : MINUS expression %prec UMINUS', p) { p$set(1, -p$get(3)) }, p_expression_group = function(doc='expression : LPAREN expression RPAREN', p) { p$set(1, p$get(3)) }, p_expression_number = function(doc='expression : NUMBER', p) { p$set(1, p$get(2)) }, p_expression_name = function(doc='expression : NAME', p) { p$set(1, self$names[[as.character(p$get(2))]]) }, p_error = function(p) { cat(sprintf("Syntax error at '%s'", p$value)) } ) ) test_that("literal", { expect_output(expect_error(rly::yacc(Parser), "\\[YaccError\\]Unable to build parser"), "ERROR .* \\[GrammarError\\]p_expression_binop: Literal token '\\*\\*' in rule expression may only be a single character") })
context("Checking clean") test_that("clean gives the desired output",{ x <- "I go \r\n to the \tnext line" expect_true(clean(x) == "I go to the next line") })
print.seqem <- function(x, ...) { print(x$Imputed.DataFrames) }
`dist2Mats` <- function(mat1,mat2,method,p=2){ n.row<-nrow(mat1) mat<-rbind(mat1,mat2) vec.dist<-dist(mat,method=method,p=p) mat<-as.matrix(vec.dist) mat[1:n.row,(n.row+1):nrow(mat)] }
rm(list=ls()) sources <- c("costFunctionReg.R","sigmoid.R", "plotData.R","plotDecisionBoundary.R", "mapFeature.R","predict.R") for (i in 1:length(sources)) { cat(paste("Loading ",sources[i],"\n")) source(sources[i]) } data <- read.table('ex2data2.txt', sep = ',') X <- data[,c(1,2)]; y <- data[,3] X <- as.matrix(X) plotData(X, y,axLables = c('Microchip Test 1','Microchip Test 2'), legLabels = c("y = 1","y = 0")) X <- mapFeature(X[,1], X[,2]) initial_theta <- rep(0,dim(X)[2]) lambda <- 1 cost <- costFunctionReg(X, y, lambda)(initial_theta) grd <- gradReg(X,y, lambda)(initial_theta) cat(sprintf('Cost at initial theta (zeros): %f\n', cost)) cat(sprintf('\nProgram paused. Press enter to continue.\n')) line <- readLines(con = stdin(),1) initial_theta <- rep(0,dim(X)[2]) lambda <- 0 optimRes <- optim(par = initial_theta, fn = costFunctionReg(X,y,lambda), gr = gradReg(X,y,lambda), method="BFGS", control = list(maxit = 400)) theta <- optimRes$par J <- optimRes$value plotDecisionBoundary(theta, X, y, axLables = c('Microchip Test 1','Microchip Test 2'), legLabels = c("y = 1","y = 0")) p <- predict(theta, X) cat(sprintf('Train Accuracy: %f\n', mean(p == y) * 100))
db_connection <- function(system_name = NULL, db_type, headless = FALSE, from_env = TRUE, settings = NULL, timeout = 30, logfile_dir = NULL, lib_path = NULL) { db_con <- NULL stopifnot( is.character(db_type), is.logical(headless), is.logical(from_env), ifelse(is.null(settings), TRUE, is.list(settings)), is.numeric(timeout), ifelse(is.null(logfile_dir), TRUE, dir.exists(logfile_dir)), ifelse(is.null(lib_path), TRUE, file.exists(lib_path)) ) error <- FALSE tryCatch({ if (isTRUE(!is.null(settings) && is.list(settings))) { from_env <- FALSE } if (isTRUE(from_env)) { stopifnot(is.character(system_name)) system_name_uppercase <- toupper(system_name) dbname <- Sys.getenv(paste0(system_name_uppercase, "_DBNAME")) host <- Sys.getenv(paste0(system_name_uppercase, "_HOST")) port <- Sys.getenv(paste0(system_name_uppercase, "_PORT")) user <- Sys.getenv(paste0(system_name_uppercase, "_USER")) password <- Sys.getenv(paste0(system_name_uppercase, "_PASSWORD")) } else if (isFALSE(from_env)) { stopifnot(is.list(settings), length(settings) >= 4) dbname <- settings$dbname host <- settings$host port <- settings$port user <- settings$user password <- settings$password } db_type <- toupper(db_type) necessary_vars <- c("host", "port", "user", "password") if (db_type != "ORACLE") { necessary_vars <- c(necessary_vars, "dbname") } for (param in necessary_vars) { if (!exists(param) || get(param) == "" || is.null(get(param))) { feedback( print_this = paste0("Missing '", param, "' for db-connection."), type = "Error", findme = "f762a865c8", logfile_dir = logfile_dir, headless = headless ) error <<- TRUE } } if (!error && db_type == "ORACLE") { if (is.null(lib_path)) { if (isTRUE(from_env)) { lib_path <- Sys.getenv(paste0(system_name_uppercase, "_DRIVER")) } else { lib_path <- settings$lib_path } } stopifnot(lib_path != "" || !is.null(lib_path)) drv <- RJDBC::JDBC("oracle.jdbc.OracleDriver", classPath = lib_path) if (isTRUE(from_env)) { sid <- Sys.getenv(paste0(system_name_uppercase, "_SID")) } else if (isFALSE(from_env)) { sid <- settings$sid } if (is.null(sid) || sid == "") { if (is.null(dbname) || dbname == "") { feedback( print_this = "Missing SID for db-connection to oracle.", type = "Error", findme = "0bba010a4a", logfile_dir = logfile_dir, headless = headless ) error <<- TRUE stop() } else { feedback( print_this = paste0( "`SID` is empty. Using the `dbname` ('", dbname, "') instead. But this might be wrong or cause errors!" ), type = "Warning", logfile_dir = logfile_dir, headless = headless, findme = "e38041e91c" ) sid <- dbname } } url <- paste0("jdbc:oracle:thin:@//", host, ":", port, "/", sid) db_con <- tryCatch({ conn <- DBI::dbConnect( drv = drv, url = url, user = user, password = password ) conn }, error = function(e) { feedback( print_this = paste0("Error while connection to oracle: ", e), type = "Error", logfile_dir = logfile_dir, headless = headless, findme = "0a50850ccd" ) error <<- TRUE conn <- NULL return(conn) }) } else if (!error && db_type == "POSTGRES") { drv <- RPostgres::Postgres() db_con <- tryCatch({ conn <- RPostgres::dbConnect( drv = drv, dbname = dbname, host = host, port = port, user = user, password = password, connect_timeout = timeout ) conn }, error = function(e) { feedback( print_this = paste0("Error while connection to postgres: ", e), type = "Error", logfile_dir = logfile_dir, headless = headless, findme = "0a50850ccd" ) error <<- TRUE conn <- NULL return(conn) }) } if (error || is.null(db_con)) { feedback( "DB connection error", findme = "9431c8c61f", logfile_dir = logfile_dir, headless = headless, type = "Error" ) error <- TRUE } }, error = function(cond) { feedback( print_this = paste0("Error while trying to establish a db-connection: ", cond), type = "Error", logfile_dir = logfile_dir, headless = headless, findme = "c16b60a6ff" ) return(NULL) }) if (error) { DIZutils::feedback( print_this = paste0( "Error while trying to establish the db conncection.", " Maybe the logging above is helpful for debugging?" ), type = "Error", findme = "29294c19e3", logfile_dir = logfile_dir, headless = headless ) } return(db_con) }
EmpiricalSemivariogram <- function(ssn.object, varName, nlag = 20, directions = c(0,45,90,135), tolerance = 22.5, inc = 0, maxlag = 1e32, nlagcutoff = 1, EmpVarMeth = "MethMoment") { if(class(ssn.object) == "influenceSSN") ssn.object <- ssn.object$ssn.object data <- ssn.object@obspoints@SSNPoints[[1]]@point.data var <- varName x <- ssn.object@obspoints@SSNPoints[[1]]@point.coords[,1] y <- ssn.object@obspoints@SSNPoints[[1]]@point.coords[,2] n1 <- length(data[,1]) distance <- sqrt( ( matrix(x,nrow=n1,ncol=1) %*% matrix(rep(1,times=n1),nrow=1,ncol=n1) - matrix(rep(1,times=n1),nrow=n1,ncol=1) %*% matrix(x,nrow=1,ncol=n1) )^2 + ( matrix(y,nrow=n1,ncol=1) %*% matrix(rep(1,times=n1),nrow=1,ncol=n1) - matrix(rep(1,times=n1),nrow=n1,ncol=1) %*% matrix(y,nrow=1,ncol=n1) )^2 ) difx <- -(matrix(y,nrow=n1,ncol=1) %*% matrix(rep(1,times=n1),nrow=1,ncol=n1) - matrix(rep(1,times=n1),nrow=n1,ncol=1) %*% matrix(y,nrow=1,ncol=n1)) signind <- -(matrix(x,nrow=n1,ncol=1) %*% matrix(rep(1,times=n1),nrow=1,ncol=n1) - matrix(rep(1,times=n1),nrow=n1,ncol=1) %*% matrix(x,nrow=1,ncol=n1)) < 0 distance <- distance*1.0000000001 theta.deg <- acos(difx/distance)*180/pi theta.deg[signind] <- 360-theta.deg[signind] diff2 <- ( matrix(data[,var],nrow=n1,ncol=1) %*% matrix(rep(1,times=n1),nrow=1,ncol=n1) - matrix(rep(1,times=n1),nrow=n1,ncol=1) %*% matrix(data[,var],nrow=1,ncol=n1) )^2 sqrtdiff <- sqrt(abs( matrix(data[,var],nrow=n1,ncol=1) %*% matrix(rep(1,times=n1),nrow=1,ncol=n1) - matrix(rep(1,times=n1),nrow=n1,ncol=1) %*% matrix(data[,var],nrow=1,ncol=n1) ) ) if(EmpVarMeth == "CovMean") temp4cov <- data[,var] - mean(data[,var]) else temp4cov <- data[,var] covprod <- (matrix(temp4cov,nrow=n1,ncol=1) %*% matrix(rep(1,times=n1),nrow=1,ncol=n1)) * (matrix(rep(1,times=n1),nrow=n1,ncol=1) %*% matrix(temp4cov,ncol=n1,nrow=1)) distance <- matrix(distance, ncol = 1) theta.deg <- matrix(theta.deg, ncol = 1) diff2 <- matrix(diff2, ncol = 1) sqrtdiff <- matrix(sqrtdiff, ncol = 1) covprod <- matrix(covprod, ncol = 1) indmax <- distance <= maxlag distance <- distance[indmax,] theta.deg <- theta.deg[indmax,] diff2 <- diff2[indmax,] sqrtdiff <- sqrtdiff[indmax,] covprod <- covprod[indmax,] maxd<-max(distance) if( inc <= 0) inc <- maxd/nlag ind <- distance==0 ndir <- length(directions) store.results <- matrix(data = NA, ncol = 6, dimnames = list(NULL, c("distance", "gamma", "np", "azimuth", "hx", "hy"))) for (j in 1:ndir) { for ( i in 1:nlag){ if( (directions[j]-tolerance)<0 && (directions[j]+tolerance)>0 ) ind1 <- theta.deg >= 360+directions[j]-tolerance | theta.deg < directions[j]+tolerance else if( (directions[j]+tolerance)>360 && (directions[j]-tolerance)<360 ) ind1 <- theta.deg < directions[j]+tolerance-360 | theta.deg >= directions[j]-tolerance else ind1 <- theta.deg >= directions[j]-tolerance & theta.deg < directions[j]+tolerance ind<-distance>(i-1)*inc & distance<=i*inc & !is.na(theta.deg) & ind1 nclass <- sum(ind) if(EmpVarMeth == "MethMoment") cv <- mean(diff2[ind]) if(EmpVarMeth == "RobustMean") cv <- ((mean(sqrtdiff[ind]))^4)/(.457 + .494/sum(ind)) if(EmpVarMeth == "RobustMedian") cv <- (median(sqrtdiff[ind]))^4/.457 if(EmpVarMeth == "Covariance" | EmpVarMeth == "CovMean") cv <- mean(covprod[ind]) mean.dis <- mean(distance[ind]) if(nclass > 0) store.results<-rbind(store.results, c(mean.dis,cv,nclass,directions[j],0,0)) } } store.results[,"hx"]<-store.results[,"distance"]*sin(store.results[,"azimuth"]*pi/180) store.results[,"hy"]<-store.results[,"distance"]*cos(store.results[,"azimuth"]*pi/180) store.results[,"gamma"]<-store.results[,"gamma"]/2 ind <- store.results[,"np"] >= nlagcutoff store.results <- store.results[ind,] ind <- !is.na(store.results[,"hx"]) store.results <- store.results[ind,] store.results <- as.data.frame(store.results) class(store.results) <- "EmpiricalSemivariogramSSN" store.results }
library(gpuR) context("Custom OpenCL") current_context <- set_device_context("cpu") library(Rcpp) set.seed(123) ORDER <- 4 Aint <- matrix(sample(seq(10), ORDER^2, replace=TRUE), nrow=ORDER, ncol=ORDER) Bint <- matrix(sample(seq(10), ORDER^2, replace=TRUE), nrow=ORDER, ncol=ORDER) igpuA <- vclMatrix(Aint, type="integer") igpuB <- vclMatrix(Bint, type="integer") igpuC <- vclMatrix(0L, 4, 4, type="integer") test_that("Custom OpenCL GEMM Kernel", { has_cpu_skip() Cint <- Aint %*% Bint kernel <- system.file("CL", "basic_gemm.cl", package = "gpuR") cl_args <- setup_opencl(c("vclMatrix", "vclMatrix", "vclMatrix"), toupper(c("in", "in", "inout")), list("iMatMult","iMatMult","iMatMult"), list("A", "B", "C")) custom_opencl(kernel, cl_args, type = "integer") basic_gemm(igpuA, igpuB, igpuC) expect_equivalent(igpuC[,], Cint, info="integer matrix elements not equivalent") }) setContext(current_context)
"fitted.symcoca" <- function(object, which = c("y1","y2"), ...) { `getFitted` <- function(x, take) { TAKE <- ifelse(take == "Y", 1L, 2L) rsum <- x$rowsum[[TAKE]] csum <- x$colsum[[TAKE]] tot <- sum(rsum) exp <- rsum %*% t(csum) / tot Yhat <- exp * (1 + (x$scores$site[[take]] %*% t(x$scores$species[[take]]))) rownames(Yhat) <- rownames(x$scores$site[[take]]) Yhat } which <- selectWhich(which) out <- list() nam <- character(0) if ("Y" %in% which) { out$Y <- getFitted(object, take = "Y") nam <- c(nam, object$nam.dat$namY) } if ("X" %in% which) { out$X <- getFitted(object, take = "X") nam <- c(nam, object$nam.dat$namX) } out$nam.dat <- nam names(out$nam.dat) <- c("namY","namX")[c("Y","X") %in% which] class(out) <- "fitted.symcoca" out }
readVarColumns <- function(fiName, path=NULL, sep="\t", header=TRUE, emptyFields=NA, refCo=NULL, supNa=NULL, silent=FALSE, callFrom=NULL) { fxNa <- .composeCallName(callFrom, newNa="readVarColumns") fiName <- if(length(path) >0) {if(nchar(path) >0) file.path(path, fiName) else fiName} else fiName if(!file.exists(fiName)) { dataOK <- FALSE warning(" PROBLEM : Can't find file '",fiName,"'") } else { dataOK <- TRUE if(length(header) !=1) header <- FALSE if(!is.logical(header)) { dataOK <- FALSE warning(fxNa," Invalid command: argument 'header' should be logical and of length=1")} } if(dataOK) { out <- try(scan(fiName, what="character", sep="\n"), silent=TRUE) if("try-error" %in% class(out)) { dataOK <- FALSE warning(fxNa," Did NOT succed reading file '",fiName,"'")}} if(dataOK) { out <- strsplit(out, sep) maxCo <- max(sapply(out, length)) out <- t(sapply(out, function(x,maxC) {if(length(x)==maxC) x else {z <- rep("",maxC); z[1:length(x)] <- x; z}}, maxC=maxCo)) supPep <- which(out[1,]=="") if(length(supNa) !=1) { supNa0 <- min(supPep ,na.rm=TRUE) supNa <- if(supNa0 >1) out[1, min(supPep, na.rm=TRUE) -1] else ((1:ncol(out))[-supPep])[1]} out[1, supPep] <- paste(supNa, 1 +1:length(supPep),sep="_") if(nrow(out) <2) { dataOK <- FALSE warning(" PROBLEM : data seem to be empty (header only ?)")} } if(dataOK) { testNum <- function(x) all(length(grep("(^([0-9]+)|(^[+-][0-9]+)|(^\\.[0-9]+))((\\.[0-9]+)?)(([eE][+-]?[0-9]+)?)$",x)) ==length(x)) numCol <- apply(out[-1,], 2, testNum) if(length(refCo) !=1) {refCo <- min(which(!numCol)) if(isFALSE(silent)) message(fxNa," setting 'refCo' to '",out[1,refCo],"'")} dupNa <- duplicated(out[1,]) useLi <- if(header) 2:nrow(out) else 1:nrow(out) colNa <- if(header) {if(any(dupNa)) correctToUnique(out[1,]) else out[1,]} else NULL dupNa <- duplicated(out[useLi,refCo]) rowNa <- if(any(dupNa)) correctToUnique(out[useLi,refCo]) else out[useLi,refCo] if(header) out <- out[-1,] if(length(dim(out)) <2) out <- matrix(out, nrow=1, dimnames=list(rowNa, names(out))) else dimnames(out) <- list(rowNa,colNa) out } }
treeSlice<-function(tree,slice=NULL,trivial=FALSE,prompt=FALSE,...){ if(!inherits(tree,"phylo")) stop("tree should be an object of class \"phylo\".") if(hasArg(orientation)) orientation<-list(...)$orientation else orientation<-"tipwards" if(prompt){ cat("Inside prompt.\n") plotTree(tree,mar=c(3.1,rep(0.1,3)),...) axis(1) cat("Click at the tree height where cutting is desired...\n") flush.console() xy<-unlist(locator(1)) slice<-xy[1] cat(paste("Slice height is ",signif(slice,6),". Thank you!\n",sep="")) flush.console() lines(rep(slice,2),par()$usr[3:4],lty="dashed") obj<-get("last_plot.phylo",envir=.PlotPhyloEnv) X<-cbind(obj$xx[obj$edge[,1]],obj$xx[obj$edge[,2]]) y<-obj$yy[obj$edge[,2]] if(trivial){ for(i in 1:nrow(X)) if(X[i,1]<slice&&X[i,2]>slice) points(slice,y[i],pch=19) } else { for(i in 1:nrow(X)) if(X[i,1]<slice&&X[i,2]>slice&&obj$edge[i,2]>Ntip(tree)) points(slice,y[i],pch=19) } } tree<-reorder(tree) H<-nodeHeights(tree) edges<-which(H[,2]>slice&H[,1]<slice) nodes<-tree$edge[edges,2] if(orientation=="tipwards"){ if(!trivial) nodes<-nodes[nodes>length(tree$tip)] trees<-list() class(trees)<-"multiPhylo" for(i in 1:length(nodes)){ if(nodes[i]>Ntip(tree)){ trees[[i]]<-extract.clade(tree,node=nodes[i]) trees[[i]]$root.edge<-H[which(tree$edge[,2]==nodes[i]),2]-slice } else { z<-list(edge=matrix(c(2,1),1,2), edge.length=H[which(tree$edge[,2]==nodes[i]),2]-slice, tip.label=tree$tip.label[nodes[i]],Nnode=1L) class(z)<-"phylo" trees[[i]]<-z } } return(trees) } else if(orientation=="rootwards"){ obj<-tree obj$node.label<-1:obj$Nnode+Ntip(obj) if(any(nodes<=Ntip(obj))){ tips<-nodes[nodes<=Ntip(obj)] tips<-obj$tip.label[tips] nodes<-nodes[nodes>Ntip(obj)] } else tips<-NULL if(length(nodes)>0){ for(i in 1:length(nodes)){ nn<-which(obj$node.label==nodes[i])+Ntip(obj) parent<-getParent(obj,nn) bp<-slice-nodeheight(obj,parent) obj<-splitTree(obj,list(node=nn,bp=bp))[[1]] obj$tip.label[obj$tip.label=="NA"]<-nodes[i] } } if(!is.null(tips[1])){ for(i in 1:length(tips)){ nn<-which(obj$tip.label==tips[i]) parent<-getParent(obj,nn) obj$edge.length[which(obj$edge[,2]==nn)]<-slice-nodeheight(obj,parent) } } return(obj) } } getParent<-function(tree,node){ ind<-which(tree$edge[,2]==node) if(length(ind)>0) pp<-tree$edge[which(tree$edge[,2]==node),1] else { pp<-NULL cat("node is the root. returning NULL\n") } pp }
Return <- COUNTIF(iris$Species,"virginica") expect_equal(Return,50L)
local_edition(3) test_that("file.path.ci returns correctly no matter the case", { tmp_dir <- withr::local_tempdir() expect_equal(file.path.ci(tmp_dir, "global.R"), file.path(tmp_dir, "global.R")) withr::local_dir(tmp_dir) expect_equal_file <- function(file, tmp_dir, default = file) { withr::local_file(file); xfun::write_utf8(" expect_equal(file.path.ci(!!tmp_dir, "global.R"), file.path(!!tmp_dir, !!default)) } expect_equal_file("global.R", tmp_dir) if (xfun::is_linux()) expect_equal_file("global.r", tmp_dir) expect_equal_file("global.R", "donotexist") expect_equal_file("global.Rmd", tmp_dir, "global.R") }) test_that("set_current_theme() informs shiny::getCurrentTheme()", { expect_null(shiny::getCurrentTheme()) theme <- bslib::bs_theme() set_current_theme(theme) expect_equal(theme, shiny::getCurrentTheme()) set_current_theme(NULL) expect_null(shiny::getCurrentTheme()) })
context("captions") library(utils) library(xml2) library(officer) library(rmarkdown) rmd_str <- c("```{r setup, include=FALSE}", "knitr::opts_chunk$set(echo=FALSE)", "```", "", "```{r libs}", "library(flextable)", "```", "", "Table \\@ref(tab:table1).", "", "```{r table1, tab.cap=\"a table caption\", tab.cap.style=\"Table Caption\"}", "df <- head(iris)", "ft <- flextable(df)", "ft", "```", "", "Table \\@ref(tab:table2).", "", "```{r table2}", "ft <- set_caption(", " x = ft, ", " caption =\"a table caption\", ", " style = \"Table Caption\")", "ft", "```", "") rmd_str <- c("---", "title: flextable", "---", rmd_str) rmd_file <- tempfile(fileext = ".Rmd") writeLines(rmd_str, rmd_file) test_that("word_document2 captions", { skip_if_not_installed("bookdown") skip_if_not(pandoc_version() >= numeric_version("2")) template <- tempfile(fileext = ".docx") print(read_docx(), target = template) render(rmd_file, output_format = bookdown::word_document2(reference_docx=template), output_file = "caption.docx", quiet = TRUE) dir_xml <- tempfile(pattern = "xml_tmp") officer::unpack_folder(file.path(dirname(rmd_file), "caption.docx"), dir_xml) xml_file <- file.path(dir_xml, "/word/document.xml" ) x <- read_xml(xml_file) style_nodes <- xml_find_all(x, "/w:document/w:body/w:tbl/preceding-sibling::*[1]/w:pPr/w:pStyle[@w:val='TableCaption']") expect_length(style_nodes, 2) txt_nodes <- xml_find_all(x, "/w:document/w:body/w:tbl/preceding-sibling::*[1]/w:r/w:t") expect_equal( sum(xml_text(txt_nodes) %in% "a table caption"), 2 ) }) test_that("html_document2 captions", { skip_if_not_installed("bookdown") skip_if_not(pandoc_version() >= numeric_version("2")) render(rmd_file, output_format = bookdown::html_document2(), output_file = "caption.html", quiet = TRUE) doc <- read_html(file.path(dirname(rmd_file), "caption.html")) captions_ids <- xml_find_all(doc, "//table/caption//span") expect_equal(xml_attr(captions_ids, "id"), c("tab:table1", "tab:table2")) txt <- gsub("[\n\r]+", "", xml_text(xml_find_all(doc, "//table/caption"))) expect_equal(txt, c("Table 1: a table caption", "Table 2: a table caption")) }) rmd_str <- c("```{r include=FALSE}", "knitr::opts_chunk$set(echo=FALSE)", "library(flextable)", "```", "", "```{r tab.id=\"table1\", tab.cap=\"a table caption\", tab.cap.style=\"Table Caption\"}", "df <- head(airquality)", "ft <- flextable(df)", "ft", "```", "", "```{r table2}", "library(officer)", "autonum <- run_autonum(seq_id = \"tab\", bkm = \"mtcars\")", "ft <- set_caption(ft, caption =\"a table caption\", autonum = autonum, style = \"Table Caption\")", "ft", "```") rmd_str <- c("---", "title: flextable", "---", rmd_str) rmd_file <- tempfile(fileext = ".Rmd") writeLines(rmd_str, rmd_file) test_that("word_document captions", { skip_if_not(pandoc_version() >= numeric_version("2")) template <- tempfile(fileext = ".docx") print(read_docx(), target = template) render(rmd_file, output_format = rmarkdown::word_document(reference_docx=template), output_file = "caption.docx", quiet = TRUE) dir_xml <- tempfile(pattern = "xml_tmp") officer::unpack_folder(file.path(dirname(rmd_file), "caption.docx"), dir_xml) xml_file <- file.path(dir_xml, "/word/document.xml" ) x <- read_xml(xml_file) xml_find_all(x, "/w:document/w:body/w:tbl/preceding-sibling::w:p[1]/w:bookmarkStart[@w:name='table1']") bookmarks <- xml_find_all(x, "/w:document/w:body/w:tbl/preceding-sibling::w:p[1]/w:bookmarkStart") expect_length(bookmarks, 2) expect_equal(xml_attr(bookmarks, "name"), c("table1", "mtcars")) wordfields <- xml_find_all(x, "/w:document/w:body/w:tbl/preceding-sibling::w:p[1]/w:r/w:instrText") expect_equal(xml_text(wordfields), c("SEQ tab \\* Arabic", "SEQ tab \\* Arabic")) })
context("specify") one_nonshift_mean <- mtcars_df %>% specify(response = mpg) one_nonshift_prop <- mtcars_df %>% specify(response = am, success = "1") two_means_boot <- mtcars_df %>% specify(mpg ~ am) two_props_boot <- mtcars_df %>% specify(am ~ vs, success = "1") slope_boot <- mtcars_df %>% specify(mpg ~ hp) test_that("auto `type` works (specify)", { expect_equal(attr(one_nonshift_mean, "type"), "bootstrap") expect_equal(attr(one_nonshift_prop, "type"), "bootstrap") expect_equal(attr(two_means_boot, "type"), "bootstrap") expect_equal(attr(two_props_boot, "type"), "bootstrap") expect_equal(attr(slope_boot, "type"), "bootstrap") }) test_that("data argument", { expect_error(specify(blah ~ cyl)) expect_error(specify(1:3)) expect_is(mtcars_df, "data.frame") expect_error(specify(mtcars_df, mtcars_df$mpg)) }) test_that("response and explanatory arguments", { expect_error(specify(mtcars_df, response = blah), "response.*cannot be found") expect_error( specify(mtcars_df, response = "blah"), "response.*bare.*not a string" ) expect_error( specify(mtcars_df, formula = mpg ~ blah), "explanatory.*cannot be found" ) expect_error(specify(mtcars_df, blah2 ~ cyl), "response.*cannot be found") expect_error(specify(mtcars_df), "Please supply a response variable that is not `NULL`.") expect_error(specify(mtcars_df, formula = mpg ~ mpg), "different") expect_error( specify(mtcars_df, formula = "mpg" ~ cyl), "response.*bare.*not a string" ) expect_error( specify(mtcars_df, formula = mpg ~ "cyl"), "explanatory.*bare.*not a string" ) expect_silent(specify(mtcars_df, formula = mpg ~ cyl)) expect_error(specify(mtcars_df, formula = NULL ~ cyl), "Please supply a response variable that is not `NULL`.") }) test_that("success argument", { expect_error(specify(mtcars_df, response = vs, success = 1)) expect_error(specify(mtcars_df, response = vs, success = "bogus")) expect_error(specify(mtcars_df, response = mpg, success = "1")) expect_error(specify(mtcars_df, response = cyl, success = "4")) expect_error(specify(mtcars_df, response = am)) }) test_that("sensible output", { expect_equal(ncol(specify(mtcars_df, formula = mpg ~ NULL)), 1) expect_equal(ncol(specify(mtcars_df, formula = mpg ~ wt)), 2) expect_equal(class(specify(mtcars_df, formula = mpg ~ wt))[1], "infer") }) test_that("formula argument is a formula", { expect_error(specify(mtcars_df, formula = "vs", success = 1)) expect_error(specify(mtcars, am, success = "1")) expect_error(specify(mtcars, response = am, "1")) expect_silent({ mtcars %>% dplyr::mutate(am = factor(am)) %>% specify(response = am, success = "1") }) }) test_that("is_complete works", { some_missing <- data.frame(vec = c(NA, 2, 3)) expect_warning(specify(some_missing, response = vec)) }) test_that("specify doesn't have NSE issues ( expect_silent(specify(tibble(x = 1:10), x ~ NULL)) }) test_that("specify messages when dropping unused levels", { expect_message( gss %>% dplyr::filter(partyid %in% c("rep", "dem")) %>% specify(age ~ partyid), "Dropping unused factor levels c\\(\"ind\", \"other\"" ) expect_message( gss %>% dplyr::filter(partyid %in% c("rep", "dem")) %>% specify(partyid ~ age), "Dropping unused factor levels c\\(\"ind\", \"other\"" ) expect_message( gss %>% dplyr::filter(partyid %in% c("rep", "dem")) %>% specify(partyid ~ NULL), "Dropping unused factor levels c\\(\"ind\", \"other\"" ) expect_silent( gss %>% dplyr::filter(partyid %in% c("rep", "dem")) %>% specify(age ~ NULL) ) }) test_that("user can specify multiple explanatory variables", { x <- gss %>% specify(hours ~ sex + college) expect_true(inherits(x, "infer")) expect_true(inherits(explanatory_variable(x), "tbl_df")) expect_true(inherits(explanatory_name(x), "character")) expect_true(inherits(explanatory_expr(x), "call")) expect_equal(explanatory_name(x), c("sex", "college")) expect_equal(response_name(x), "hours") })
STLginhom <- function(X,lambda,normalize=FALSE,r=NULL,t=NULL,nxy=10){ if (!inherits(X, "stlpp")) stop("X should be from class stlpp") Y <- as.lpp.stlpp(X) l <- domain(Y) tleng <- summary(l)$totlength n <- npoints(Y) a <- X$time[1] b <- X$time[2] trange <- b-a timev <- X$data$t sdist <- pairdist(Y) tdist <- as.matrix(dist(timev)) toler <- default.linnet.tolerance(l) ml <- matrix(1, n, n) for (j in 1:n) { ml[-j, j] <- countends(l, Y[-j], sdist[-j, j], toler = toler) } mtplus <- matrix(timev, n, n, byrow = T) + tdist mtminus <- matrix(timev, n, n, byrow = T) - tdist mtedge <- (mtplus <= b) + (mtminus >= a) diag(mtedge) <- 1 lamden <- outer(lambda,lambda,FUN = "*") edgetl <- mtedge * ml * lamden maxs <- 0.7*max(sdist[!is.infinite(sdist)]) maxt <- 0.7*(trange/2) if(is.null(r)) r <- seq((maxs/nxy),maxs,by=(maxs-(maxs/nxy))/(nxy-1)) if(is.null(t)) t <- seq((maxt/nxy),maxt,by=(maxt-(maxt/nxy))/(nxy-1)) g <- matrix(NA, nrow = nxy, ncol = nxy) no <- sdist == 0 & tdist == 0 | sdist==Inf | sdist>maxs | tdist>maxt bwl <- bw.nrd0(as.numeric(sdist[!no])) bwt <- bw.nrd0(as.numeric(tdist[!no])) for (i in 1:length(r)) { for (j in 1:length(t)) { outl <- dkernel(as.numeric(sdist[!no] - r[i]), sd = bwl) outt <- dkernel(as.numeric(tdist[!no] - t[j]), sd = bwt) g1 <- outl * outt/(edgetl[!no]) g[i, j] <- sum(g1[!is.na(g1) & !is.infinite(g1)]) } } if(normalize){ revrho <- outer(1/lambda,1/lambda,FUN = "*") appx <- (tleng*trange)/(sum(revrho[lower.tri(revrho, diag = FALSE)])*2) gval <- g * appx } else { gval <- g/(tleng*trange) } gout <- list(ginhom = gval, gtheo = matrix(rep(1, length(t) * length(r)), ncol = nxy), r = r, t = t) class(gout) <- c("sumstlpp") attr(gout,"nxy") <- nxy return(gout) }