code
stringlengths 1
13.8M
|
---|
parse_ast <- function(kind, resolve) {
fn <- function(obj, schema) {
if (inherits(obj, kind)) {
resolve(obj$value, schema)
} else {
NULL
}
}
pryr_unenclose(fn)
}
for_onload(function() {
coerce_int <- function(value, ...) {
MAX_INT <- 2147483647
MIN_INT <- -2147483648
num <- suppressWarnings(as.integer(value))
if (!is.na(num)) {
if (num <= MAX_INT && num >= MIN_INT) {
return(num)
}
}
return(NULL)
}
Int <- ScalarTypeDefinition$new(
name = Name$new(value = "Int"),
description = paste0(
"The Int scalar type represents a signed 32-bit numeric non-fractional value. ",
"Response formats that support a 32-bit integer or a number type should use that ",
"type to represent this scalar."
),
.resolve = coerce_int,
.parse_ast = parse_ast("IntValue", coerce_int)
)
coerce_float <- function(value, ...) {
num <- suppressWarnings(as.numeric(value))
if (is.numeric(num)) {
return(num)
} else {
return(NULL)
}
}
Float <- ScalarTypeDefinition$new(
name = Name$new(value = "Float"),
description = collapse(
"The `Float` scalar type represents signed double-precision fractional ",
"values as specified by ",
"[IEEE 754](http://en.wikipedia.org/wiki/IEEE_floating_point)."
),
.resolve = coerce_float,
.parse_ast = pryr_unenclose(function(obj, schema) {
if (
inherits(obj, "IntValue") ||
inherits(obj, "FloatValue")
) {
coerce_float(obj$value, schema)
} else {
NULL
}
})
)
coerce_string <- function(value, ...) {
char <- suppressWarnings(as.character(value))
if (is.character(char)) {
return(char)
} else {
return(NULL)
}
}
String <- ScalarTypeDefinition$new(
name = Name$new(value = "String"),
description = collapse(
"The `String` scalar type represents textual data, represented as UTF-8 ",
"character sequences. The String type is most often used by GraphQL to ",
"represent free-form human-readable text."
),
.resolve = coerce_string,
.parse_ast = parse_ast("StringValue", coerce_string)
)
coerce_boolean <- function(value, ...) {
val <- suppressWarnings(as.logical(value))
if (is.logical(val)) {
if (!is_nullish(val)) {
return(val)
}
}
return(NULL)
}
Boolean <- ScalarTypeDefinition$new(
name = Name$new(value = "Boolean"),
description = "The `Boolean` scalar type represents `TRUE` or `FALSE`.",
.resolve = coerce_boolean,
.parse_ast = parse_ast("BooleanValue", coerce_boolean)
)
}) |
cellMap = function(D, R, indcells = NULL, indrows = NULL,
standOD=NULL,showVals=NULL,rowlabels="",
columnlabels="",mTitle="", rowtitle="",
columntitle="",showrows=NULL, showcolumns=NULL,
nrowsinblock=1, ncolumnsinblock=1,autolabel=TRUE,
columnangle=90,sizetitles=1.1,adjustrowlabels=1,
adjustcolumnlabels=1, colContrast=1,outlyingGrad=TRUE,
darkestColor = sqrt(qchisq(0.999,1)),
drawCircles = TRUE) {
funcSqueeze = function(Xin,n,d,ncolumnsinblock,nrowsinblock,colContrast) {
Xblock = matrix(0,nrow=n,ncol=d)
Xblockgrad = matrix(0,nrow=n,ncol=d)
for (i in seq_len(n)) {
for (j in seq_len(d)) {
Xsel = Xin[(1+((i-1)*nrowsinblock)):(i*nrowsinblock),
(1+((j-1)*ncolumnsinblock)):(j*ncolumnsinblock)]
seltable = tabulate(Xsel,nbins=4)
if (sum(seltable) > 0) {
indmax = which(seltable==max(seltable))[1]
cntmax = seltable[indmax]
gradmax = (cntmax / (ncolumnsinblock*nrowsinblock))^(1/colContrast)
} else {
indmax = 0
gradmax = 1
}
Xblock[i,j] = indmax
Xblockgrad[i,j] = gradmax
}
}
return(list(X=Xblock,Xgrad=Xblockgrad))
}
variable <- rownr <- rescaleoffset <- x <- y <- NULL
type = "cell"
n = nrow(R)
d = ncol(R)
blockMap = FALSE
if (ncolumnsinblock > 1 | nrowsinblock > 1 ){
blockMap = TRUE
if (ncolumnsinblock > d) stop('Input argument ncolumnsinblock cannot be larger than d')
if (nrowsinblock > n) stop('Input argument nrowsinblock cannot be larger than n')
if (!is.null(showVals)) warning('The option showVals=D or showVals=R cannot
be combined with ncolumnsinblock or nrowsinblock greater than 1,
so showVals is set to NULL here.')
showVals = NULL
}
if(!blockMap){
if (!all(dim(R) == dim(D))) stop('Dimensions of D and R must match')
}
if(!(blockMap & autolabel==FALSE)){
if (length(columnlabels) > 0 & length(columnlabels)!= d) {
stop(paste('Number of columnlabels does not match d = ',d,sep=""))}
if (length(rowlabels) > 0 & length(rowlabels)!= n) {
stop(paste('Number of rowlabels does not match n = ',n,sep=""))}
}
if (!is.null(showVals)) {
if (!showVals %in% c("D", "R")) {
stop(paste("Invalid \"showVals\" argument. Should be one of: NULL, \"D\", \"R\""))
}
}
if(is.null(indcells)) indcells = which(abs(R) > sqrt(qchisq(0.99,1)))
if(!(is.null(showcolumns) & is.null(showrows))){
if(is.null(showcolumns)) { showcolumns = seq_len(d) } else {
if(!(all(showcolumns %in% seq_len(d)))) stop(" showcolumns goes out of bounds")}
if(is.null(showrows)) { showrows = seq_len(n) } else {
if(!(all(showrows %in% seq_len(n)))) stop(" showrows goes out of bounds")}
tempMat = matrix(0,n,d)
tempMat[indcells] = 1
tempMat = tempMat[showrows,showcolumns]
indcells = which(tempMat == 1)
tempVec = rep(0,n)
tempVec[indrows] = 1
tempVec = tempVec[showrows]
indrows = which(tempVec == 1)
rm(tempMat,tempVec)
if(!blockMap) D = D[showrows,showcolumns]
R = R[showrows,showcolumns]
if (!(blockMap & autolabel==FALSE)) columnlabels = columnlabels[showcolumns]
if (!(blockMap & autolabel==FALSE)) rowlabels = rowlabels[showrows]
n = nrow(R)
d = ncol(R)
if(!is.null(standOD)) standOD = standOD[showrows]
}
if (type=="residual") outlyingGrad=1
X = matrix(0,n,d)
Xrow = matrix(0,n,1)
Xrow[indrows,1] = 3
if (type=="cell" | blockMap){
pcells = indcells[indcells %in% which(R>=0)]
ncells = indcells[indcells %in% which(R<0)]
} else {
pcells = which(R>=0)
ncells = which(R<0)
}
X[ncells] = 1
X[pcells] = 2
X[is.na(R)] = 4
if (blockMap) {
n = floor(n/nrowsinblock)
d = floor(d/ncolumnsinblock)
result = funcSqueeze(X,n,d,ncolumnsinblock,nrowsinblock,colContrast)
X = result$X
Xgrad = result$Xgrad
result = funcSqueeze(Xrow,n,1,1,nrowsinblock,colContrast)
Xrowgrad = result$Xgrad
Xrowgrad[result$X==0] = 0
if (autolabel==TRUE) {
if (ncolumnsinblock>1 & length(columnlabels)>0) {
labx = columnlabels
columnlabels = rep(0,d)
for(ind in seq_len(d)) {
columnlabels[ind] = paste(labx[(1+((ind-1)*ncolumnsinblock))],"-",
labx[(ind*ncolumnsinblock)],sep="")
}
}
if (nrowsinblock>1 & length(rowlabels)>0) {
laby = rowlabels
rowlabels = rep(0,n)
for(ind in seq_len(n)) {
rowlabels[ind] = paste(laby[(1+((ind-1)*nrowsinblock))],"-",
laby[(ind*nrowsinblock) ])
}
}
} else {
if (length(columnlabels) > 0 & length(columnlabels)!= d) {
stop(paste(' autolabel=FALSE and number of columnlabels is ',
length(columnlabels),' but should be ',d,sep=""))}
if (length(rowlabels) > 0 & length(rowlabels)!= n) {
stop(paste(' autolabel=FALSE and number of rowlabels is ',
length(rowlabels),' but should be ',n,sep=""))}
}
Xdf = data.frame(cbind(seq(1,n,1),X))
colnames(Xdf) = c("rownr",seq(1,d,1))
rownames(Xdf) = NULL
Xdf$rownr = with(Xdf, reorder(rownr, seq(n,1,-1)))
mX = melt(Xdf,id.var="rownr", value.name = "CatNr")
Xgraddf = data.frame(cbind(seq(1,n,1),Xgrad))
colnames(Xgraddf) = c("rownr",seq(1,d,1))
rownames(Xgraddf) = NULL
Xgraddf$rownr = with(Xgraddf, reorder(rownr, seq(n,1,-1)))
mXgrad = melt(Xgraddf,id.var="rownr", value.name = "grad")
mX$grad = mXgrad$grad
mX$rescaleoffset = mXgrad$grad + 10*mX$CatNr
mXrow = data.frame(rownr=seq_len(n),rescaleoffset=Xrowgrad+ 10*3)
scalerange = c(0,1)
gradientends = scalerange + rep(c(0,10,20,30,40), each=2)
if (type=="cell") colorends = c("yellow", "yellow", "yellow", "blue",
"yellow", "red","white", "black",
"yellow", "white")
if (type=="residual") colorends = c("white", "white", "white", "blue",
"white", "red","white", "black",
"white", "white")
} else {
Ddf = data.frame(cbind(seq(1,n,1),D))
colnames(Ddf) = c("rownr",seq(1,d,1))
rownames(Ddf) = NULL
Ddf$rownr = with(Ddf, reorder(rownr, seq(n,1,-1)))
mD = melt(Ddf,id.var="rownr")
Rdf = data.frame(cbind(seq(1,n,1),R))
colnames(Rdf) = c("rownr",seq(1,d,1))
rownames(Rdf) = NULL
Rdf$rownr = with(Rdf, reorder(rownr, seq(n,1,-1)))
mR = melt(Rdf,id.var="rownr")
Xdf = data.frame(cbind(seq(1,n,1),X))
colnames(Xdf) = c("rownr",seq(1,d,1))
rownames(Xdf) = NULL
Xdf$rownr = with(Xdf, reorder(rownr, seq(n,1,-1)))
mX = melt(Xdf,id.var="rownr", value.name = "CatNr")
if (!is.null(showVals)) {
if (showVals=="D") mX$data = mD$value
if (showVals=="R") mX$data = mR$value
}
if (!outlyingGrad) {
mX$rescaleoffset = 10*mX$CatNr
scalerange = c(0,1)
gradientends = scalerange + rep(c(0,10,20,30,40), each=2)
gradientends
colorends = c("yellow", "yellow", "blue", "blue", "red", "red",
"white", "black","white", "white")
} else {
Xgrad = matrix(NA,n,d)
if (type=="cell") {
Xgrad[indcells] = abs(R[indcells])
limL = sqrt(qchisq(0.9,1))
} else {
Xgrad = abs(R)
limL = 0
}
limH = darkestColor
Xgrad[Xgrad>limH] = limH
Xgrad = ( (Xgrad -limL) / (limH - limL) )^colContrast
Xgrad[is.na(Xgrad)] = 0
Xgraddf = data.frame(cbind(seq(1,n,1),Xgrad))
colnames(Xgraddf) = c("rownr",seq(1,d,1))
rownames(Xgraddf) = NULL
Xgraddf$rownr = with(Xgraddf, reorder(rownr, seq(n,1,-1)))
mXgrad = melt(Xgraddf,id.var="rownr", value.name = "grad")
mX$grad = mXgrad$grad
mX$rescaleoffset = mXgrad$grad + 10*mX$CatNr
scalerange = c(0,1)
gradientends = scalerange + rep(c(0,10,20,30,40), each=2)
if (type=="cell") colorends = c("yellow", "yellow", "yellow", "blue",
"yellow", "red", "white", "black",
"white", "white")
if (type=="residual") colorends = c("white", "white", "white", "blue",
"white", "red", "white", "black",
"white", "white")
}
tempVec = rep(0,n)
tempVec[indrows] = 1
mXrow = data.frame(rownr=seq_len(n),rescaleoffset=40-(10*tempVec) )
rm(tempVec)
if (is.null(standOD)) {
mXrow$rescaleoffset[indrows] = mXrow$rescaleoffset[indrows] + 1
} else {
limL = 1
limH = 3
standOD[standOD>limH] = limH
standOD = ( (standOD - limL) / (limH - limL) )^colContrast
mXrow$rescaleoffset[indrows] = mXrow$rescaleoffset[indrows] +
standOD[indrows]
}
}
rowlabels = rev(rowlabels)
base_size = 10
columnlabels = c(columnlabels,"","")
circleFun = function(centerx, centery, r, npoints) {
tt = seq(0, 2 * pi, length.out = npoints)
xx = centerx + r * cos(tt)
yy = centery + r * sin(tt)
return(c(xx, yy))
}
if (drawCircles) {
centerx = d + 1
centery = n:1
radius = 0.4
npoints = 100
circlePoints = mapply(circleFun, centerx, centery, radius,
npoints)
positions = data.frame(rownr = rep(seq_len(n), each = npoints),
x = c(circlePoints[seq_len(npoints), ]),
y = c(circlePoints[(npoints +1):(2*npoints), ]))
datapoly = merge(mXrow, positions, by = c("rownr"))
}
ggp = ggplot(data = mX, aes(variable, rownr)) + {
if (blockMap)
geom_tile(aes(fill = rescale(rescaleoffset,
from = range(gradientends))),
color = "white")
} + {
if (!blockMap & outlyingGrad)
geom_tile(aes(fill = rescale(rescaleoffset,
from = range(gradientends))),
color = "white")
} + {
if (!blockMap & !outlyingGrad)
geom_tile(aes(fill = rescale(rescaleoffset,
from = range(gradientends))),
colour = "white")
} + {
if (drawCircles)
geom_polygon(data = datapoly,
aes(x = x, y = y,
fill = rescale(rescaleoffset, from = range(gradientends)),
group = rownr), colour = "black") } +
scale_fill_gradientn(colours = colorends,
values = rescale(gradientends),
rescaler = function(x, ...) x, oob = scales::squish) +
ggtitle(mTitle) + coord_fixed() +
theme_classic(base_size = base_size * 1) +
labs(x = columntitle, y = rowtitle) +
scale_x_discrete(expand = c(0, 0),
limits = as.factor(seq(1, d + 2, 1)),
labels = columnlabels) +
scale_y_discrete(expand = c(0, 0), labels = rowlabels) +
theme(legend.position = "none", axis.ticks = element_blank(),
plot.title = element_text(size = base_size * 2, hjust = 0.5,
vjust = 1, face = "bold"),
axis.text.x = element_text(size = base_size * 1.8,
angle = columnangle, hjust = adjustcolumnlabels,
vjust = 0.5, colour = "black"),
axis.text.y = element_text(size = base_size * 1.8,
angle = 0, hjust = adjustrowlabels, colour = "black"),
axis.title.x = element_text(colour = "black", size =
base_size * sizetitles, vjust = 1),
axis.title.y = element_text(colour = "black", size =
base_size * sizetitles, vjust = 0),
axis.line.x = element_blank(),
panel.border = element_blank()) +
annotate(geom = "segment", x = 0.5, xend = d + 0.5,
y = 0.5, yend = 0.5) +
annotate(geom = "segment", x = 0.5, xend = d + 0.5,
y = n + 0.5, yend = n + 0.5) +
annotate(geom = "segment", x = d + 0.5, xend = d + 0.5,
y = 0.5, yend = n + 0.5)
if (!is.null(showVals)) {
txtcol = mX$CatNr
txtcol[txtcol==0] = "black"
txtcol[txtcol==1] = "white"
txtcol[txtcol==2] = "white"
if (type=="residual") {
txtcol[]="black"
txtcol[mXgrad$grad>0.5] = "white"
}
txtcol[txtcol==4] = "black"
ggp = ggp + geom_text(aes(label = ifelse(is.na(data),
sprintf("%1.0f",data),
round(data,1))),size = base_size*0.5,
colour=txtcol, na.rm = TRUE)
}
return(ggp)
} |
test_that("binary - uses user defined costs", {
df <- data.frame(
obs = factor(c("B", "A", "B"), levels = c("A", "B")),
A = c(1, .80, .51)
)
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
"A", "B", 2,
"B", "A", 3
)
exp_cost <-
1.00 * 3 + 0.00 * 0 +
0.80 * 0 + 0.20 * 2 +
0.51 * 3 + 0.49 * 0
expect_equal(
classification_cost(df, obs, A, costs = costs)[[".estimate"]],
exp_cost / nrow(df)
)
})
test_that("binary - respects `event_first`", {
df <- data.frame(
obs = factor(c("B", "A", "B"), levels = c("A", "B")),
B = c(1, .80, .51)
)
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
"A", "B", 2,
"B", "A", 3
)
exp_cost <-
1.00 * 0 + 0.00 * 3 +
0.80 * 2 + 0.20 * 0 +
0.51 * 0 + 0.49 * 3
expect_equal(
classification_cost(df, obs, B, costs = costs, event_level = "second")[[".estimate"]],
exp_cost / nrow(df)
)
})
test_that("costs$truth can be factor", {
df <- data.frame(
obs = factor(c("B", "A", "B"), levels = c("A", "B")),
A = c(1, .80, .51)
)
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
"A", "B", 2,
"B", "A", 3
)
costs2 <- costs
costs2$truth <- as.factor(costs2$truth)
costs2$estimate <- as.factor(costs2$estimate)
expect_identical(
classification_cost(df, obs, A, costs = costs),
classification_cost(df, obs, A, costs = costs2)
)
})
test_that("binary - requires 1 column of probabilities", {
expect_error(classification_cost(two_class_example, truth, Class1:Class2), "`binary` metric")
})
test_that("multiclass - uses equal costs by default", {
df <- data.frame(
obs = factor(c("A", "A", "A", "B", "B", "C")),
A = c(1, .80, .51, .1, .2, .3),
B = c(0, .05, .29, .8, .6, .3),
C = c(0, .15, .20, .1, .2, .4)
)
A <- df$B[df$obs == "A"] + df$C[df$obs == "A"]
B <- df$A[df$obs == "B"] + df$C[df$obs == "B"]
C <- df$A[df$obs == "C"] + df$B[df$obs == "C"]
estimate <- mean(c(A, B, C))
expect_equal(
classification_cost(df, obs, A:C)[[".estimate"]],
estimate
)
})
test_that("multiclass - respects user defined costs", {
df <- data.frame(
obs = factor(c("A", "A", "A", "B", "B", "C")),
A = c(1, .80, .51, .1, .2, .3),
B = c(0, .05, .29, .8, .6, .3),
C = c(0, .15, .20, .1, .2, .4)
)
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
"A", "A", 0,
"A", "B", 1,
"A", "C", 2,
"B", "A", 3,
"B", "B", 0,
"B", "C", 4,
"C", "A", 5,
"C", "B", 6,
"C", "C", 0,
)
exp_cost <-
1.00 * 0 + 0.00 * 1 + 0.00 * 2 +
0.80 * 0 + 0.05 * 1 + 0.15 * 2 +
0.51 * 0 + 0.29 * 1 + 0.20 * 2 +
0.10 * 3 + 0.80 * 0 + 0.10 * 4 +
0.20 * 3 + 0.60 * 0 + 0.20 * 4 +
0.30 * 5 + 0.30 * 6 + 0.40 * 0
expect_equal(
classification_cost(df, obs, A:C, costs = costs)[[".estimate"]],
exp_cost / nrow(df)
)
})
test_that("multiclass - fills in missing combinations with zero cost", {
df <- data.frame(
obs = factor(c("A", "A", "A", "B", "B", "C")),
A = c(1, .80, .51, .1, .2, .3),
B = c(0, .05, .29, .8, .6, .3),
C = c(0, .15, .20, .1, .2, .4)
)
costs_partial <- dplyr::tribble(
~truth, ~estimate, ~cost,
"A", "A", 0,
"A", "C", 2,
"B", "A", 3,
"B", "C", 4,
"C", "A", 5,
"C", "C", 0,
)
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
"A", "A", 0,
"A", "B", 0,
"A", "C", 2,
"B", "A", 3,
"B", "B", 0,
"B", "C", 4,
"C", "A", 5,
"C", "B", 0,
"C", "C", 0,
)
expect_identical(
classification_cost(df, obs, A:C, costs = costs_partial),
classification_cost(df, obs, A:C, costs = costs)
)
})
test_that("costs must be a data frame with the right column names", {
df <- data.frame(
obs = factor(c("B", "A", "B"), levels = c("A", "B")),
A = c(1, .80, .51)
)
expect_error(classification_cost(df, obs, A, costs = 1), "`NULL` or a data.frame")
expect_error(classification_cost(df, obs, A, costs = data.frame()), "3 columns")
expect_error(classification_cost(df, obs, A, costs = data.frame(x = 1, y = 2, z = 3)), "'truth', 'estimate', and 'cost'")
})
test_that("costs$estimate must contain the right levels", {
df <- data.frame(
obs = factor(c("B", "A", "B"), levels = c("A", "B")),
A = c(1, .80, .51)
)
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
"A", "b", 2,
"B", "A", 3
)
expect_error(classification_cost(df, obs, A, costs = costs), "can only contain 'A', 'B'")
})
test_that("costs$truth must contain the right levels", {
df <- data.frame(
obs = factor(c("B", "A", "B"), levels = c("A", "B")),
A = c(1, .80, .51)
)
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
"a", "B", 2,
"B", "A", 3
)
expect_error(classification_cost(df, obs, A, costs = costs), "can only contain 'A', 'B'")
})
test_that("costs$truth, costs$estimate, and costs$cost must have the right type", {
df <- data.frame(
obs = factor(c("B", "A", "B"), levels = c("A", "B")),
A = c(1, .80, .51)
)
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
1, "B", 2,
2, "A", 3
)
expect_error(classification_cost(df, obs, A, costs = costs), "character or factor")
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
"A", 1, 2,
"B", 2, 3
)
expect_error(classification_cost(df, obs, A, costs = costs), "character or factor")
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
"A", "B", "1",
"B", "A", "2"
)
expect_error(classification_cost(df, obs, A, costs = costs), "numeric column")
})
test_that("costs$truth and costs$estimate cannot contain duplicate pairs", {
df <- data.frame(
obs = factor(c("B", "A", "B"), levels = c("A", "B")),
A = c(1, .80, .51)
)
costs <- dplyr::tribble(
~truth, ~estimate, ~cost,
"A", "B", 2,
"A", "B", 3
)
expect_error(
classification_cost(df, obs, A, costs = costs),
"cannot have duplicate 'truth' / 'estimate' combinations"
)
}) |
PipeOpMCBoost = R6Class("PipeOpMCBoost",
inherit = mlr3pipelines::PipeOp,
public = list(
initialize = function(id = "mcboost", param_vals = list()) {
param_set = paradox::ParamSet$new(list(
paradox::ParamInt$new("max_iter", lower = 0L, upper = Inf, default = 5L, tags = "train"),
paradox::ParamDbl$new("alpha", lower = 0, upper = 1, default = 1e-4, tags = "train"),
paradox::ParamDbl$new("eta", lower = 0, upper = 1, default = 1, tags = "train"),
paradox::ParamLgl$new("partition", tags = "train", default = TRUE),
paradox::ParamInt$new("num_buckets", lower = 1, upper = Inf, default = 2L, tags = "train"),
paradox::ParamLgl$new("rebucket", default = FALSE, tags = "train"),
paradox::ParamLgl$new("multiplicative", default = TRUE, tags = "train"),
paradox::ParamUty$new("auditor_fitter", default = NULL, tags = "train"),
paradox::ParamUty$new("subpops", default = NULL, tags = "train"),
paradox::ParamUty$new("default_model_class", default = ConstantPredictor, tags = "train"),
paradox::ParamUty$new("init_predictor", default = NULL, tags = "train")
))
super$initialize(id,
param_set = param_set, param_vals = param_vals, packages = character(0),
input = data.table(name = c("data", "prediction"), train = c("TaskClassif", "TaskClassif"), predict = c("TaskClassif", "TaskClassif")),
output = data.table(name = "output", train = "NULL", predict = "PredictionClassif"),
tags = "target transform")
}
),
private = list(
.train = function(inputs) {
d = inputs$data$data(cols = inputs$data$feature_names)
l = inputs$data$data(cols = inputs$data$target_names)
args = self$param_set$get_values(tags = "train")
if (is.null(args$init_predictor)) {
init_predictor = function(data, prediction) {
if (length(prediction$feature_names) > 1L) {
prds = prediction$data(cols = prediction$feature_names)
as.matrix(prds)
} else {
prds = prediction$data(cols = prediction$feature_names)[[1]]
one_hot(prds)
}
}
args$init_predictor = init_predictor
}
mc = invoke(MCBoost$new, .args = args)
mc$multicalibrate(d, l, predictor_args = inputs$prediction)
self$state = list("mc" = mc)
list(NULL)
},
.predict = function(inputs) {
d = inputs$data$data(cols = inputs$data$feature_names)
prob = self$state$mc$predict_probs(d, predictor_args = inputs$prediction)
prob = cbind(1 - prob, prob)
lvls = c(inputs$prediction$negative, inputs$prediction$positive)
colnames(prob) = lvls
list(PredictionClassif$new(
inputs$prediction,
row_ids = inputs$prediction$row_ids,
truth = inputs$prediction$truth(),
prob = prob
))
}
),
active = list(
predict_type = function(val) {
if (!missing(val)) {
if (!identical(val, private$.learner)) {
stop("$predict_type for PipeOpMCBoost is read-only.")
}
}
return("prob")
}
)
) |
estimateAUCwithMVNCML <- function(inputData, LOQ,
timePoints, isMultiplicative = FALSE, onlyFitCML = FALSE,
printCMLmessage = TRUE, optimizationMethod = NULL,
CMLcontrol = NULL, na.rm = TRUE, isPairwise = FALSE){
if (isPairwise){
outputResults <- estimateAUCwithPairwiseCML (inputData, LOQ,
timePoints, isMultiplicative, onlyFitCML, optimizationMethod = optimizationMethod,
CMLcontrol, na.rm)
}else{
outputResults <- estimateAUCwithFullCML (inputData, LOQ,
timePoints, isMultiplicative, onlyFitCML,
printCMLmessage, optimizationMethod = optimizationMethod, CMLcontrol, na.rm)
}
return(outputResults)
} |
startCTT <- function() {
shiny::runApp(appDir = system.file("Shiny", package="CTTShiny"))
} |
require(Rcpp)
require(RcppArmadillo)
require(inline)
src <- '
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp;
using namespace arma;
// [[Rcpp::export]]
SEXP testRcpp(NumericVector x_) {
vec x(x_);
uvec index = find(x);
return wrap(x);
}
'
sourceCpp(code=src)
testRcpp(map0)
time0 <- c(0,10,0,20)
ind0 <- time0>0
map0 <- vector("integer",)
map0[ind0] <- as.integer(1:sum(ind0))
map0[!ind0] <- NaN
which0 <- 1:length(time0)
which0[!ind0] <- NaN
src <- '
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp;
using namespace arma;
uvec removeNaN(vec x) {
vec newx = x;
uvec index = find(newx == newx); // NaN != NaN
newx = newx(index);
return conv_to<uvec>::from(newx);
}
// [[Rcpp::export]]
uvec testRcpp(NumericVector x_) {
vec x = as<vec>(x_);
uvec index = find(x==x);
return index;
}
'
sourceCpp(code=src)
testRcpp(map0)
testRcpp(which0)
testRcpp(1:10)
src <- '
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp;
using namespace arma;
// [[Rcpp::export]]
double testRcpp(double x) {
return R::lgammafn(x);
}
'
sourceCpp(code=src)
testRcpp(3.0) - log(gamma(3.0)) |
spec_span<-function(from=NA_character_,to=NA_character_,first=NA_integer_,last=NA_integer_,
exclFirst=NA_integer_,exclLast=NA_integer_, var=NA_character_){
x.from<-as.Date(from)
x.to <- as.Date(to)
x.first <-first
x.last <- last
x.exclFirst <- exclFirst
x.exclLast <- exclLast
if (sum(!is.na(x.from),!is.na(x.to))==2){
if (x.to <= x.from){
warning(paste(var,".to <= ",var,".from. Provided values will be ignored.",sep=""), call. = FALSE)
x.to <-NA_character_
x.from <-NA_character_
}
}
if (sum(!is.na(x.from),!is.na(x.to),!is.na(x.last),!is.na(x.first),!is.na(x.exclFirst),
!is.na(x.exclLast))==0) {
z.span <- NA_character_
z.type <- NA_character_
z.d0 <- NA_character_
z.d1 <- NA_character_
z.n0 <- NA_integer_
z.n1 <- NA_integer_
z<- data.frame(span=z.span,type=z.type,d0=z.d0,d1=z.d1,n0=z.n0,n1=z.n1, row.names= "")
return(z)
}else if (sum(!is.na(x.from),!is.na(x.to))==2){
z.span <- paste(as.character(x.from),"-",as.character(x.to), sep=" ")
z.type <- "Between"
z.d0 <- as.character(x.from)
z.d1 <- as.character(x.to)
z.n0 <- 0
z.n1 <- 0
if (sum(!is.na(x.last),!is.na(x.first),!is.na(x.exclFirst),!is.na(x.exclLast))!=0) {
warning(paste("(",var,".to, ",var,".from) used. Remainig variables (",var,".last,",var,".first,",var,".exclFirst,",var,".exclLast) will be ignored.",sep=""), call. = FALSE)
}
z<- data.frame(span=z.span,type=z.type,d0=z.d0,d1=z.d1,n0=z.n0,n1=z.n1, row.names= "")
return(z)
} else if (sum(!is.na(x.from),!is.na(x.to))==1) {
if (!is.na(x.from)) {
z.span <- paste("From",as.character(x.from), sep=" ")
z.type <- "From"
z.d0 <- as.character(x.from)
z.d1 <- "2020-12-31"
z.n0 <- 0
z.n1 <- 0
}else{
z.span <- paste("Until",as.character(x.to), sep=" ")
z.type <- "To"
z.d0 <- "1900-01-01"
z.d1 <- as.character(x.to)
z.n0 <- 0
z.n1 <- 0
}
if (sum(!is.na(x.last),!is.na(x.first),!is.na(x.exclFirst),!is.na(x.exclLast))!=0) {
warning(paste("(",var,".to, ",var,".from) used. Remainig variables (",var,".last,",var,".first,",var,".exclFirst,",var,".exclLast) will be ignored.",sep=""), call. = FALSE)
}
z<- data.frame(span=z.span,type=z.type,d0=z.d0,d1=z.d1,n0=z.n0,n1=z.n1, row.names= "")
return(z)
} else if (!is.na(x.last) & x.last> 0) {
z.span <- paste("Last",as.character(x.last),"periods", sep=" ")
z.type <- "Last"
z.d0 <- "1900-01-01"
z.d1 <- "2020-12-31"
z.n0 <- 0
z.n1 <- x.last
if (sum(!is.na(x.first),!is.na(x.exclFirst),!is.na(x.exclLast))!=0) {
warning(paste("(",var,".last used. Remainig variables (",var,".first,",var,".exclFirst,",var,".exclLast) will be ignored.",sep=""), call. = FALSE)
}
z<- data.frame(span=z.span,type=z.type,d0=z.d0,d1=z.d1,n0=z.n0,n1=z.n1, row.names= "")
return(z)
} else if (!is.na(x.first) & x.first> 0) {
z.span <- paste("First",as.character(x.first),"periods", sep=" ")
z.type <- "First"
z.d0 <- "1900-01-01"
z.d1 <- "2020-12-31"
z.n0 <- x.first
z.n1 <- 0
if (sum(!is.na(x.exclFirst),!is.na(x.exclLast))!=0) {
warning(paste("(",var,".first used. Remainig variables (",var,".exclFirst,",var,".exclLast) will be ignored.",sep=""), call. = FALSE)
}
z<- data.frame(span=z.span,type=z.type,d0=z.d0,d1=z.d1,n0=z.n0,n1=z.n1, row.names= "")
return(z)
} else if (sum(!is.na(x.exclFirst),!is.na(x.exclLast))==2){
if (sum(x.exclFirst,x.exclLast)==0){
z.span <- "All"
z.type <- "All"
z.d0 <- "1900-01-01"
z.d1 <- "2020-12-31"
z.n0 <- 0
z.n1 <- 0
}else{
z.type <- "Excluding"
z.d0 <- "1900-01-01"
z.d1 <- "2020-12-31"
z.n0 <- x.exclFirst
z.n1 <- x.exclLast
if (x.exclFirst==0) {
z.span <- paste("All but last",as.character(x.exclLast),"periods", sep=" ")
} else if (x.exclLast==0) {
z.span <- paste("All but first",as.character(x.exclFirst),"periods", sep=" ")
}else{
z.span <- paste("All but first",as.character(x.exclFirst),"periods and last",as.character(x.exclLast),"periods", sep=" ")
}
}
z<- data.frame(span=z.span,type=z.type,d0=z.d0,d1=z.d1,n0=z.n0,n1=z.n1, row.names= "")
return(z)
}else if ((is.na(x.exclFirst)& x.exclLast==0)| (is.na(x.exclLast)& x.exclFirst==0)){
z.span <- "All"
z.type <- "All"
z.d0 <- "1900-01-01"
z.d1 <- "2020-12-31"
z.n0 <- 0
z.n1 <- 0
z<- data.frame(span=z.span,type=z.type,d0=z.d0,d1=z.d1,n0=z.n0,n1=z.n1, row.names= "")
return(z)
} else if (!is.na(x.exclFirst)) {
z.span <- paste("All but first",as.character(x.exclFirst),"periods", sep=" ")
z.type <- "Excluding"
z.d0 <- "1900-01-01"
z.d1 <- "2020-12-31"
z.n0 <- x.exclFirst
z.n1 <- 0
z<- data.frame(span=z.span,type=z.type,d0=z.d0,d1=z.d1,n0=z.n0,n1=z.n1, row.names= "")
return(z)
} else if (!is.na(x.exclLast)) {
z.span <- paste("All but last",as.character(x.exclLast),"periods", sep=" ")
z.type <- "Excluding"
z.d0 <- "1900-01-01"
z.d1 <- "2020-12-31"
z.n0 <- 0
z.n1 <- x.exclLast
z<- data.frame(span=z.span,type=z.type,d0=z.d0,d1=z.d1,n0=z.n0,n1=z.n1, row.names= "")
return(z)
}else{
z.span <- NA_character_
z.type <- NA_character_
z.d0 <- NA_character_
z.d1 <- NA_character_
z.n0 <- NA_integer_
z.n1 <- NA_integer_
}
z<- data.frame(span=z.span,type=z.type,d0=z.d0,d1=z.d1,n0=z.n0,n1=z.n1, row.names= "")
return(z)
}
spec_preOut<-function(outliertype=NA,outlierdate=NA,outliercoef=NA){
outliers.type <- c("AO","LS","TC","SO")
if (sum(is.na(outliertype))==0){
if (!is.vector(outliertype)|is.list(outliertype)|length(setdiff(outliertype,outliers.type))>0){
warning("wrong format of the userdef.outliertype. Pre-specified outlier(s) will be ignored.", call. = FALSE)
return(NA)
}else if (!is.vector(outlierdate)| sum(is.na(as.Date(outlierdate)))>0){
warning("wrong format of the userdef.outlierdate. Pre-specified outlier(s) will be ignored.", call. = FALSE)
return(NA)
}else if (length(outliertype)!=length(outlierdate)){
warning("userdef.outlierdate is not of the same length as userdef.outliertype. Pre-specified outlier(s) will be ignored.", call. = FALSE)
return(NA)
}else{
if (sum(is.na(outliercoef))!=0){
outliers <-data.frame(type = outliertype, date = outlierdate, coeff = rep(NA,length(outliertype)))
}else if(!is.vector(outliercoef)|!is.numeric(outliercoef)|(length(outliercoef)!= length(outliertype))){
warning("userdef.outliercoef is wrongly specified. The coefficient(s) will be ignored.", call. = FALSE)
outliers <-data.frame(type = outliertype, date = outlierdate, coeff = rep(NA,length(outliertype)))
}else{
outliers <-data.frame(type = outliertype, date = outlierdate, coeff = outliercoef)
}
}
}else{
return(NA)
}
outliers
}
spec_preVar<-function(var = NA, vartype = NA, varcoef = NA, tradingdays.option = NA){
variables.type <- c("Undefined","Series","Trend","Seasonal","SeasonallyAdjusted","Irregular","Calendar")
nvar <- if (is.mts(var)) {dim(var)[2]} else if (is.ts(var)) {1} else {0}
if (all(sapply(vartype,is.na)))
vartype <- rep("Undefined", nvar)
if (sum(!is.na(var))!=0){
if (!is.ts(var) & !is.mts(var)){
warning("userdef.var must be a time series or a matrix of time series. User-defined variable(s) will be ignored.", call. = FALSE)
vars <- list(series = NA, description = NA)
return(vars)
}else if (!is.vector(vartype)|is.list(vartype)|length(setdiff(vartype,variables.type))>0) {
warning("wrong format of the userdef.varType. User-defined variable(s) will be ignored.", call. = FALSE)
vars <- list(series = NA, description = NA)
return(vars)
}else{
if (nvar != length(vartype)) {
vartype <- rep(vartype, nvar)[1:nvar]
}
if (!is.na(tradingdays.option)){
var_calendar <- grep("Calendar", vartype)
if(tradingdays.option != "UserDefined" && length(var_calendar) > 0){
warning("userdef.VarType contains Calendar variables but the tradingdays.options isn't UserDefined.\n",
"Corresponding variables will be ignored.", call. = FALSE)
if(length(var_calendar) == nvar){
return(list(series = NA, description = NA))
}else{
var <- var[,-var_calendar]
vartype <- vartype[-var_calendar]
if(sum(is.na(varcoef))!=0 | !is.vector(varcoef) |
!is.numeric(varcoef)|
(length(varcoef)!= length(vartype))){
varcoef <- NA
}else{
varcoef <- varcoef[-var_calendar]
}
}
}
}
if(is.mts(var)){
description_names <- base::make.names(colnames(var), unique = TRUE)
description_names <- gsub(".","_", description_names, fixed = TRUE)
}else{
description_names <- "userdef"
}
if (sum(is.na(varcoef)) != 0){
vars <- list(series = var,
description = data.frame(type = vartype, coeff = NA,
row.names = description_names))
}else if(!is.vector(varcoef)|!is.numeric(varcoef)|(length(varcoef)!= length(vartype))){
warning("userdef.varCoef is wrongly specified. The coefficient(s) will be ignored.", call. = FALSE)
vars <- list(series = var,
description = data.frame(type = vartype, coeff = NA,
row.names = description_names))
}else{
vars <- list(series = var,
description = data.frame(type = vartype, coeff = varcoef,
row.names = description_names))
}
}
}else{
vars <- list(series = NA, description = NA)
}
vars
}
spec_arimaCoef<-function(coef = NA, coeftype= NA){
coef.types <- c("Fixed", "Initial","Undefined")
if (sum(!is.na(coef))!=0){
if (!is.vector(coef)|is.list(coef)| !is.numeric(coef)){
warning("wrong format of the arima.coef. Defined ARIMA coef. variable(s) will be ignored.", call. = FALSE)
return(NA)
}else if (!is.vector(coeftype)|is.list(coeftype)|length(setdiff(coeftype,coef.types))>0) {
warning("wrong format of the arima.coefType. Defined ARIMA coef. variable(s) will be ignored.", call. = FALSE)
return(NA)
} else if (length(coef)!=length(coeftype)){
warning("arima.coefType is not of the same length as arima.coef. Defined ARIMA coef. variable(s) will be ignored.", call. = FALSE)
return(NA)
}else{
coeff <-data.frame(Type = coeftype, Value = coef )
}
}else{
return(NA)
}
return(coeff)
}
spec_arimaCoefF <- function(enabled=NA, armaP=NA, armaF=NA , coefP=NA, coefF=NA){
if (enabled == TRUE & sum(!is.na(coefF))==0 & sum(!is.na(coefP))!=0){
if (dim(coefP)[1]== sum(armaP) & identical(armaP,armaF)){
coef <- coefP
ena <- TRUE
} else {
coef <- NA
ena<- FALSE
}
}else if (sum(!is.na(coefF))==0){
coef <- NA
ena<- FALSE
}else if (dim(coefF)[1]!= sum(armaP)){
coef <- NA
ena<- FALSE
warning("A wrong number of ARIMA coef was provided (arima.coef and arima.coefType). Defined ARIMA coef. variable(s) will be ignored.", call. = FALSE)
} else {
dsc <-c()
if (armaP[1]!=0){
for (i in 1:armaP[1]){dsc <- c(dsc,paste("Phi(",as.character(i),")",sep=""))}
}
if (armaP[2]!=0){
for (i in 1:armaP[2]){dsc <-c(dsc,paste("Theta(",as.character(i),")",sep=""))}
}
if (armaP[3]!=0){
for (i in 1:armaP[3]){dsc <-c(dsc,paste("BPhi(",as.character(i),")",sep=""))}
}
if (armaP[4]!=0){
for (i in 1:armaP[4]){dsc <-c(dsc,paste("BTheta(",as.character(i),")",sep=""))}
}
coef <- coefF
rownames(coef) <- dsc
ena <- enabled
}
return(list(ena, coef))
}
spec_seasma <- function(seasma=NA){
len <- length(seasma)
seasma.type <- c("Msr","Stable","X11Default","S3X1","S3X3","S3X5","S3X9","S3X15")
if (sum(is.na(seasma)) != 0) {
return(NA)
} else if (!is.vector(seasma) | is.list(seasma) |
length(setdiff(seasma,seasma.type)) > 0) {
warning("wrong format of the x11.seasonalma.\nPossibles filters per period: \"Msr\",\"Stable\", \"X11Default\", \"S3X1\", \"S3X3\", \"S3X5\", \"S3X9\" and \"S3X15\".\nPre-specified seasonal filters will be ignored.", call. = FALSE)
return(NA)
} else if (!(len %in% c(1, 2, 4, 6, 12))) {
warning("wrong format of the x11.seasonalma.\nPre-specified seasonal filters will be ignored.", call. = FALSE)
return(NA)
} else {
z <- toString(seasma)
return(z)
}
}
spec_calendar_sigma <- function(calendarSigma = NA, sigmaVector = NA){
len <- length(calendarSigma)
calendarSigma.type <- c("None","Signif","All","Select")
sigmaVector.type <- c("Group1", "Group2")
if (identical_na(calendarSigma)) {
if (!identical_na(sigmaVector)) {
warning("x11.sigmaVector will be ignored: x11.calendarSigma must be set to \"Select\"", call. = FALSE)
}
calendarSigma <- sigmaVector <- NA
} else if (is.list(calendarSigma) ||
length(calendarSigma) > 1 ||
!calendarSigma %in% calendarSigma.type) {
warning("Wrong format of the x11.calendarSigma.",
"\nPossibles values are: ",
"\"None\",\"Signif\", \"All\", \"Select\".",
"\nParameters will be ignored.", call. = FALSE)
calendarSigma <- sigmaVector <- NA
} else if (identical(calendarSigma, "Select")) {
if (identical_na(sigmaVector)) {
warning("x11.sigmaVector must be specified when x11.calendarSigma = \"Select\"." ,
"\nx11.calendarSigma will be set to ",
'"None".', call. = FALSE)
sigmaVector <- NA
calendarSigma <- "None"
}else if (length(setdiff(sigmaVector, sigmaVector.type)) > 0 ||
!(length(sigmaVector) %in% c(2, 4, 6, 12))) {
warning("Wrong format of the x11.sigmaVector." ,
"\nIt will be ignored and x11.calendarSigma is set to ",
'"None".', call. = FALSE)
sigmaVector <- NA
calendarSigma <- "None"
}else{
sigmaVector <- toString(sigmaVector)
}
} else {
sigmaVector <- NA
}
list(calendarSigma = calendarSigma, sigmaVector = sigmaVector)
}
spec_trendma <- function(trendma=NA){
if (sum(!is.na(trendma))==0){
return(NA)
} else if (!is.numeric(trendma)){
return(NA)
warning("The variable x11.trendma should be numeric.\nThe variable will be ignored.", call. = FALSE)
} else if (trendma <= 1 | trendma > 101 | (floor(trendma/2)==trendma/2)) {
warning("The variable x11.trendma should be in the range (1,101] and be an odd number.\nThe variable will be ignored.", call. = FALSE)
return(NA)
} else {
return(trendma)
}
}
spec_estimateX13<-function(est, spanP, spanM){
est[3,"preliminary.check"] <- if(!is.na(est[2,"preliminary.check"])) {
est[2,"preliminary.check"]
} else {
est[1,"preliminary.check"]
}
span <-spanM
est[3,"span"] <- if(!is.na(est[2,"span"])) {est[2,"span"]} else {est[1,"span"]}
if (is.na(est[2,"span"])) {
span <- rbind(spanP[1,],spanM[2,])
rownames(span) <- c("estimate","outlier")
}
est[3,"tolerance"] <- if(!is.na(est[2,"tolerance"])) {est[2,"tolerance"]} else {est[1,"tolerance"]}
rownames(est) <- c("Predefined","User_modif","Final")
return(list(est=est,span=span))
}
spec_transformX13<-function(trans){
trans[3,1] <- if(!is.na(trans[2,1])) {trans[2,1]} else {trans[1,1]}
if (trans[3,1]== "None"){
trans[3,2] <-"None"
trans[3,3] <-trans[1,3]
} else if (trans[3,1]== "Log"){
trans[3,3] <-trans[1,3]
} else if (trans[3,1]== "Auto"){
trans[3,2] <-"None"
}
if (is.na(trans[3,2]))
trans[3,2] <- if(!is.na(trans[2,2])) {trans[2,2]} else {trans[1,2]}
if (is.na(trans[3,3]))
trans[3,3] <- if(!is.na(trans[2,3])) {trans[2,3]} else {trans[1,3]}
rownames(trans) <- c("Predefined","User_modif","Final")
return(trans)
}
spec_tdX13<-function(td, tf, tadj){
td[3, "option"] <- if(!is.na(td[2, "option"])) {td[2, "option"]} else {td[1, "option"]}
td[3, "stocktd"] <- if(!is.na(td[2, "stocktd"])) {td[2, "stocktd"]} else {td[1, "stocktd"]}
if (td[3, "option"]=="None" & td[3, "stocktd"]==0) {
td[3, "autoadjust"]<- td[1, "autoadjust"]
td[3,c("leapyear", "test")]<- "None"
} else if (td[3, "option"]=="None") {
td[3, "autoadjust"]<- td[1, "autoadjust"]
td[3, "leapyear"]<- "None"
} else {
td[3, "stocktd"] <-0
}
if (is.na(td[3, "autoadjust"])){
td[3, "autoadjust"] <- if(!is.na(td[2, "autoadjust"])) {td[2, "autoadjust"]} else {td[1, "autoadjust"]}
if (td[3, "autoadjust"] & as.character(tf)=="Auto") {
td[3, "leapyear"]<- td[1, "leapyear"]
}else{
td[3, "autoadjust"]<-FALSE
}
}
if (is.na(td[3, "leapyear"])){
if (tadj!="None") {
td[3, "leapyear"] <- "None"
}else{
td[3, "leapyear"] <- if(!is.na(td[2, "leapyear"])) {td[2, "leapyear"]} else {td[1, "leapyear"]}
}
}
if (is.na(td[3, "test"]))
td[3, "test"] <- if(!is.na(td[2, "test"])) {td[2, "test"]} else {td[1, "test"]}
if(td[3, "option"] == "UserDefined"){
if(any(!is.na(td[1, c("autoadjust", "leapyear", "stocktd")]))){
warning("With tradingdays.option = \"UserDefined\", the parameters tradingdays.autoadjust, tradingdays.leapyear and tradingdays.stocktd are ignored.\n",
call. = FALSE)
}
td[3, "leapyear"] <- "None"
td[3, "autoadjust"] <- FALSE
td[3, "stocktd"] <- 0
}
rownames(td) <- c("Predefined","User_modif","Final")
return(td)
}
spec_easterX13<-function(easter){
easter[3,1] <- if(!is.na(easter[2,1])) {easter[2,1]} else {easter[1,1]}
if (easter[3,1]== FALSE) {
easter[3,2] <-FALSE
easter[3,3] <-easter[1,3]
easter[3,4] <- "None"
}
if (is.na(easter[3,2])){
easter[3,2] <- if (!is.na(easter[2,2])) {easter[2,2]} else {easter[1,2]}
}
if (is.na(easter[3,4])){
easter[3,4] <- if (!is.na(easter[2,4])) {easter[2,4]} else {easter[1,4]}
}
if (is.na(easter[3,3])){
if (easter[3,4]=="Add") {
easter[3,3] <-easter[1,3]
}else{
easter[3,3] <- if (!is.na(easter[2,3])) {easter[2,3]} else {easter[1,3]}
}
}
rownames(easter) <- c("Predefined","User_modif","Final")
return(easter)
}
spec_outliersX13<-function(out, spanP, spanM){
span <-spanM
out[3,1]<- if (!is.na(out[2,1])) {out[2,1]} else {out[1,1]}
out[3,3]<- if (!is.na(out[2,3])) {out[2,3]} else {out[1,3]}
out[3,4]<- if (!is.na(out[2,4])) {out[2,4]} else {out[1,4]}
out[3,5]<- if (!is.na(out[2,5])) {out[2,5]} else {out[1,5]}
out[3,6]<- if (!is.na(out[2,6])) {out[2,6]} else {out[1,6]}
if ((out[3,1]==FALSE) | (sum(out[3,3],out[3,4],out[3,5],out[3,6])==0)) {
out[3,c(1,3:6)]<- FALSE
out[3,c(2,7:10)]<- out[1,c(2,7:10)]
span <- rbind(spanM[1,],spanP[2,])
rownames(span) <- c("estimate","outlier")
}else{
out[3,2]<- if (!is.na(out[2,2])) {out[2,2]} else {out[1,2]}
out[3,7]<- if (!is.na(out[2,7])) {out[2,7]} else {out[1,7]}
out[3,8]<- if (!is.na(out[2,8])) {out[2,8]} else {out[1,8]}
out[3,9]<- if (!is.na(out[2,9])) {out[2,9]} else {out[1,9]}
out[3,10]<- if (!is.na(out[2,10])) {out[2,10]} else {out[1,10]}
if (out[3,7]) {out[3,8]<-4}
}
if (is.na(out[2,2])) {
span <- rbind(spanM[1,],spanP[2,])
rownames(span) <- c("estimate","outlier")
}
rownames(out) <- c("Predefined","User_modif","Final")
return(list(out=out,span=span))
}
spec_arimaX13 <-function(arimaspc, arimaco){
arimacoF <- arimaco$Final
arimacoP <- arimaco$Predefined
arimaspc[3,1]<- if (!is.na(arimaspc[2,1])) {arimaspc[2,1]} else {arimaspc[1,1]}
if (arimaspc[3,1] == FALSE){
arimaspc[3,2:11] <- arimaspc[1,2:11]
arimaspc[3,12]<- if (!is.na(arimaspc[2,12])) {arimaspc[2,12]} else {arimaspc[1,12]}
arimaspc[3,13]<- if (!is.na(arimaspc[2,13])) {arimaspc[2,13]} else {arimaspc[1,13]}
arimaspc[3,14]<- if (!is.na(arimaspc[2,14])) {arimaspc[2,14]} else {arimaspc[1,14]}
arimaspc[3,15]<- if (!is.na(arimaspc[2,15])) {arimaspc[2,15]} else {arimaspc[1,15]}
arimaspc[3,16]<- if (!is.na(arimaspc[2,16])) {arimaspc[2,16]} else {arimaspc[1,16]}
arimaspc[3,17]<- if (!is.na(arimaspc[2,17])) {arimaspc[2,17]} else {arimaspc[1,17]}
arimaspc[3,18]<- if (!is.na(arimaspc[2,18])) {arimaspc[2,18]} else {arimaspc[1,18]}
arimaspc[3,19]<- if (!is.na(arimaspc[2,19])) {arimaspc[2,19]} else {arimaspc[1,19]}
} else {
arimaspc[3,2]<- if (!is.na(arimaspc[2,2])) {arimaspc[2,2]} else {arimaspc[1,2]}
arimaspc[3,3]<- if (!is.na(arimaspc[2,3])) {arimaspc[2,3]} else {arimaspc[1,3]}
arimaspc[3,4]<- if (!is.na(arimaspc[2,4])) {arimaspc[2,4]} else {arimaspc[1,4]}
arimaspc[3,5]<- if (!is.na(arimaspc[2,5])) {arimaspc[2,5]} else {arimaspc[1,5]}
arimaspc[3,6]<- if (!is.na(arimaspc[2,6])) {arimaspc[2,6]} else {arimaspc[1,6]}
arimaspc[3,7]<- if (!is.na(arimaspc[2,7])) {arimaspc[2,7]} else {arimaspc[1,7]}
arimaspc[3,8]<- if (!is.na(arimaspc[2,8])) {arimaspc[2,8]} else {arimaspc[1,8]}
arimaspc[3,9]<- if (!is.na(arimaspc[2,9])) {arimaspc[2,9]} else {arimaspc[1,9]}
arimaspc[3,10]<- if (!is.na(arimaspc[2,10])) {arimaspc[2,10]} else {arimaspc[1,10]}
arimaspc[3,11]<- if (!is.na(arimaspc[2,11])) {arimaspc[2,11]} else {arimaspc[1,11]}
arimaspc[3,12:18] <- arimaspc[1,12:18]
arimaspc[3,19] <- FALSE
}
arma.cp <- c(arimaspc[3,13],arimaspc[3,15],arimaspc[3,16],arimaspc[3,18])
arma.cf <- c(arimaspc[1,13],arimaspc[1,15],arimaspc[1,16],arimaspc[1,18])
arimacoefFinal <- spec_arimaCoefF(enabled = arimaspc[3,19], armaP = arma.cp, armaF = arma.cf,
coefP = arimacoP, coefF = arimacoF)
arimaspc[3,19] <- as.logical(arimacoefFinal[1])
arimacoF <- if (is.na(arimacoefFinal[2])) {NA} else {as.data.frame(arimacoefFinal[2])}
rownames(arimaspc) <- c("Predefined","User_modif","Final")
x <- list(Predefined = arimacoP , Final = arimacoF)
y <- list(specification = arimaspc, coefficients = x)
return(y)
}
spec_estimateTS<-function(est, spanP, spanM){
est[3,"preliminary.check"] <- if(!is.na(est[2,"preliminary.check"])) {
est[2,"preliminary.check"]
} else {
est[1,"preliminary.check"]
}
span <-spanM
est[3,"span"] <- if(!is.na(est[2,"span"])) {est[2,"span"]} else {est[1,"span"]}
if (is.na(est[2,"span"])) {
span <- rbind(spanP[1,],spanM[2,])
rownames(span) <- c("estimate","outlier")
}
est[3, "tolerance"] <- if(!is.na(est[2, "tolerance"])) {est[2, "tolerance"]} else {est[1, "tolerance"]}
est[3, "exact_ml"] <- if(!is.na(est[2, "exact_ml"])) {est[2, "exact_ml"]} else {est[1, "exact_ml"]}
est[3, "urfinal"] <- if(!is.na(est[2, "urfinal"])) {est[2, "urfinal"]} else {est[1, "urfinal"]}
rownames(est) <- c("Predefined","User_modif","Final")
return(list(est=est,span=span))
}
spec_transformTS<-function(trans){
trans[3,1] <- if(!is.na(trans[2,1])) {trans[2,1]} else {trans[1,1]}
if (trans[3,1]=="Auto") {
trans[3,2] <- if(!is.na(trans[2,2])) {trans[2,2]} else {trans[1,2]}
}else{
trans[3,2]<-trans[1,2]
}
rownames(trans) <- c("Predefined","User_modif","Final")
return(trans)
}
spec_tdTS<-function(td){
td[3, "automatic"] <- if(!is.na(td[2, "automatic"])) {td[2, "automatic"]} else {td[1, "automatic"]}
if (td[3, "automatic"]== "Unused"){
td[3, "pftd"] <- if(!is.na(td[2, "pftd"])) {td[2, "pftd"]} else {td[1, "pftd"]}
td[3, c("option", "leapyear", "stocktd", "test")] <- td[1, c("option", "leapyear", "stocktd", "test")]
}else{
td[3, "pftd"] <-td[1, "pftd"]
td[3, "option"] <- if(!is.na(td[2, "option"])) {td[2, "option"]} else {td[1, "option"]}
td[3, "stocktd"] <- if(!is.na(td[2, "stocktd"])) {td[2, "stocktd"]} else {td[1, "stocktd"]}
if (td[3, "option"]=="None" & td[3, "stocktd"]==0){
td[3, "leapyear"] <- FALSE
td[3, "test"] <- "None"
}else if (td[3, "option"]=="None"){
td[3, "leapyear"] <- FALSE
td[3, "test"] <- if(!is.na(td[2, "test"])) {td[2, "test"]} else {td[1, "test"]}
}else{
td[3, "stocktd"]<-0
td[3, "leapyear"] <- if(!is.na(td[2, "leapyear"])) {td[2, "leapyear"]} else {td[1, "leapyear"]}
td[3, "test"] <- if(!is.na(td[2, "test"])) {td[2, "test"]} else {td[1, "test"]}
}
}
if(td[3, "option"] == "UserDefined"){
if(any(!is.na(td[1, c("automatic","leapyear", "stocktd")]))){
warning("With tradingdays.option = \"UserDefined\", the parameters tradingdays.leapyear and tradingdays.stocktd are ignored.\n",
call. = FALSE)
}
td[3, "automatic"] <- td[1, "automatic"]
td[3, "leapyear"] <- FALSE
td[3, "stocktd"] <- 0
}
rownames(td) <- c("Predefined","User_modif","Final")
return(td)
}
spec_easterTS<-function(easter){
easter[3,1] <- if(!is.na(easter[2,1])) {easter[2,1]} else {easter[1,1]}
if (easter[3,1] == "Unused"){
easter[3,2] <- FALSE
easter[3,3:4] <- easter[1,3:4]
}else{
easter[3,2] <- if(!is.na(easter[2,2])) {easter[2,2]} else {easter[1,2]}
easter[3,3] <- if(!is.na(easter[2,3])) {easter[2,3]} else {easter[1,3]}
easter[3,4] <- if(!is.na(easter[2,4])) {easter[2,4]} else {easter[1,4]}
}
rownames(easter) <- c("Predefined","User_modif","Final")
return(easter)
}
spec_outliersTS<-function(out, spanP, spanM){
span <-spanM
out[3,1]<- if (!is.na(out[2,1])) {out[2,1]} else {out[1,1]}
out[3,3]<- if (!is.na(out[2,3])) {out[2,3]} else {out[1,3]}
out[3,4]<- if (!is.na(out[2,4])) {out[2,4]} else {out[1,4]}
out[3,5]<- if (!is.na(out[2,5])) {out[2,5]} else {out[1,5]}
out[3,6]<- if (!is.na(out[2,6])) {out[2,6]} else {out[1,6]}
if ((out[3,1]==FALSE) | (sum(out[3,3],out[3,4],out[3,5],out[3,6])==0)) {
out[3,c(1,3:6)]<- FALSE
out[3,c(2,7:10)]<- out[1,c(2,7:10)]
span <- rbind(spanM[1,],spanP[2,])
rownames(span) <- c("estimate","outlier")
}else{
out[3,2]<- if (!is.na(out[2,2])) {out[2,2]} else {out[1,2]}
out[3,7]<- if (!is.na(out[2,7])) {out[2,7]} else {out[1,7]}
out[3,8]<- if (!is.na(out[2,8])) {out[2,8]} else {out[1,8]}
out[3,9]<- if (!is.na(out[2,9])) {out[2,9]} else {out[1,9]}
out[3,10]<- if (!is.na(out[2,10])) {out[2,10]} else {out[1,10]}
if (out[3,7]) {out[3,8]<-3.5}
}
if (is.na(out[2,2])) {
span <- rbind(spanM[1,],spanP[2,])
rownames(span) <- c("estimate","outlier")
}
rownames(out) <- c("Predefined","User_modif","Final")
return(list(out=out,span=span))
}
spec_arimaTS <-function(arimaspc, arimaco){
arimacoF <- arimaco$Final
arimacoP <- arimaco$Predefined
arimaspc[3,1]<- if (!is.na(arimaspc[2,1])) {arimaspc[2,1]} else {arimaspc[1,1]}
if (arimaspc[3,1] == FALSE){
arimaspc[3,2:9] <- arimaspc[1,2:9]
arimaspc[3,10]<- if (!is.na(arimaspc[2,10])) {arimaspc[2,10]} else {arimaspc[1,10]}
arimaspc[3,11]<- if (!is.na(arimaspc[2,11])) {arimaspc[2,11]} else {arimaspc[1,11]}
arimaspc[3,12]<- if (!is.na(arimaspc[2,12])) {arimaspc[2,12]} else {arimaspc[1,12]}
arimaspc[3,13]<- if (!is.na(arimaspc[2,13])) {arimaspc[2,13]} else {arimaspc[1,13]}
arimaspc[3,14]<- if (!is.na(arimaspc[2,14])) {arimaspc[2,14]} else {arimaspc[1,14]}
arimaspc[3,15]<- if (!is.na(arimaspc[2,15])) {arimaspc[2,15]} else {arimaspc[1,15]}
arimaspc[3,16]<- if (!is.na(arimaspc[2,16])) {arimaspc[2,16]} else {arimaspc[1,16]}
arimaspc[3,17]<- if (!is.na(arimaspc[2,17])) {arimaspc[2,17]} else {arimaspc[1,17]}
}else{
arimaspc[3,2]<- if (!is.na(arimaspc[2,2])) {arimaspc[2,2]} else {arimaspc[1,2]}
arimaspc[3,3]<- if (!is.na(arimaspc[2,3])) {arimaspc[2,3]} else {arimaspc[1,3]}
arimaspc[3,4]<- if (!is.na(arimaspc[2,4])) {arimaspc[2,4]} else {arimaspc[1,4]}
arimaspc[3,5]<- if (!is.na(arimaspc[2,5])) {arimaspc[2,5]} else {arimaspc[1,5]}
arimaspc[3,6]<- if (!is.na(arimaspc[2,6])) {arimaspc[2,6]} else {arimaspc[1,6]}
arimaspc[3,7]<- if (!is.na(arimaspc[2,7])) {arimaspc[2,7]} else {arimaspc[1,7]}
arimaspc[3,8]<- if (!is.na(arimaspc[2,8])) {arimaspc[2,8]} else {arimaspc[1,8]}
arimaspc[3,9]<- if (!is.na(arimaspc[2,9])) {arimaspc[2,9]} else {arimaspc[1,9]}
arimaspc[3,10:16] <- arimaspc[1,10:16]
arimaspc[3,17] <- FALSE
}
arma.cp <- c(arimaspc[3,11],arimaspc[3,13],arimaspc[3,14],arimaspc[3,16])
arma.cf <- c(arimaspc[1,11],arimaspc[1,13],arimaspc[1,14],arimaspc[1,16])
arimacoefFinal <- spec_arimaCoefF(enabled = arimaspc[3,17], armaP = arma.cp, armaF = arma.cf,
coefP = arimacoP, coefF = arimacoF)
arimaspc[3,17] <- as.logical(arimacoefFinal[1])
arimacoF <- if (is.na(arimacoefFinal[2])) {NA} else {as.data.frame(arimacoefFinal[2])}
rownames(arimaspc) <- c("Predefined","User_modif","Final")
x <- list(Predefined = arimacoP , Final = arimacoF)
y <- list(specification = arimaspc, coefficients = x)
return(y)
}
spec_userdef <- function(usrspc, out, var, tf) {
outF <- out$Final
outP <- out$Predefined
varF <- var$Final
varP <- var$Predefined
if(is.na(usrspc [2,1])){
usrspc[3,1] <- usrspc[1,1]
if (usrspc[1,1] & (sum(!is.na(outF))==0)){
outF<- outP
}
}else if (usrspc[2,1] & usrspc[1,1] & sum(!is.na(outF))==0){
usrspc[3,1] <- TRUE
outF<- outP
}else if(sum(!is.na(outF))==0){
usrspc[3,1]<-FALSE
}else{
usrspc[3,1] <- usrspc[2,1]
}
if (usrspc[3,1]){
if (sum(!is.na(outF[,3]))==0){
usrspc[2:3,2]<- FALSE
}else if (tf=="Auto"){
usrspc[2,2]<- TRUE
usrspc[3,2]<- FALSE
}else{
usrspc[2:3,2]<- TRUE
}
}else{
usrspc[3,2]<- FALSE
}
if(is.na(usrspc[2,3])){
usrspc[3,3] <- usrspc[1,3]
if (usrspc[1,3] & (sum(!is.na(varF$series))==0)){
varF<- varP
}
}else if (usrspc[2,3] & usrspc[1,3]==TRUE & sum(!is.na(varF$series))==0){
usrspc[3,3] <- TRUE
varF<- varP
}else if(sum(!is.na(varF$series))==0){
usrspc[3,3]<-FALSE
}else{
usrspc[3,3] <- usrspc[2,3]
}
if (usrspc[3,3]){
if (sum(!is.na(varF$description[,2]))==0){
usrspc[2:3,4]<- FALSE
}else if (tf=="Auto"){
usrspc[2,4]<- TRUE
usrspc[3,4]<- FALSE
}else{
usrspc[2:3,4]<- TRUE
}
}else{
usrspc[3,4]<- FALSE
}
rownames(usrspc) <- c("Predefined","User_modif","Final")
outliers <- list(Predefined = outP, Final = outF)
variables <- list(Predefined = varP, Final = varF)
x <- list(specification = usrspc, outliers = outliers, variables = variables)
return(x)
}
spec_forecast <- function(fcst){
fcst[3,1] <- if (!is.na(fcst[2,1])) {fcst[2,1]} else {fcst[1,1]}
rownames(fcst) <- c("Predefined","User_modif","Final")
return(fcst)
}
spec_x11 <- function(x11){
for (i in c("x11.mode", "x11.seasonalComp", "x11.lsigma", "x11.usigma",
"x11.trendAuto", "x11.fcasts", "x11.bcasts", "x11.excludeFcasts")
) {
x11[3,i] <- if (!is.na(x11[2,i])) {x11[2,i]} else {x11[1,i]}
}
if (x11[3,"x11.trendAuto"] | is.na(x11[2, "x11.trendma"])) {
x11[3, "x11.trendma"] <- x11[1, "x11.trendma"]
}else {
x11[3,"x11.trendma"] <- x11[2, "x11.trendma"]
}
if(x11[3,"x11.seasonalComp"] & !is.na(x11[2,"x11.seasonalma"])){
x11[3,"x11.seasonalma"] <- x11[2,"x11.seasonalma"]
}else {
x11[3,"x11.seasonalma"] <- x11[1,"x11.seasonalma"]
}
if (is.na(x11[2, "x11.calendarSigma"])) {
x11[3, c("x11.calendarSigma","x11.sigmaVector")] <- x11[1, c("x11.calendarSigma","x11.sigmaVector")]
} else if (!identical(x11[2, "x11.calendarSigma"], "Select")){
x11[3, "x11.calendarSigma"] <- x11[2, "x11.calendarSigma"]
x11[3, "x11.sigmaVector"] <- NA
} else{
x11[3, c("x11.calendarSigma","x11.sigmaVector")] <- x11[2, c("x11.calendarSigma","x11.sigmaVector")]
}
rownames(x11) <- c("Predefined","User_modif","Final")
return(x11)
}
spec_seats <- function(seatspc){
seats <- seatspc
for (i in seq_len(ncol(seats))) {
seats[3,i] <- if (!is.na(seats[2,i])) {seats[2,i]} else {seats[1,i]}
}
rownames(seats) <- c("Predefined","User_modif","Final")
return(seats)
} |
context("landscape level lsm_l_te metric")
landscapemetrics_landscape_landscape_value <- lsm_l_te(landscape)
test_lsm <- matrix(data = NA, nrow = 25, ncol = 30)
test_lsm[c(5:7), c(5:7)] <- 1
test_lsm[4, 6] <- 1
test_lsm[6, 8] <- 1
test_lsm[8, 6] <- 1
test_lsm[6, 4] <- 1
test_lsm[6, 6] <- 2
test_lsm <- raster::raster(test_lsm, xmn = 0, xmx = 30, ymn = 0, ymx = 25)
test_that("lsm_l_te is typestable", {
expect_is(lsm_l_te(landscape), "tbl_df")
expect_is(lsm_l_te(landscape_stack), "tbl_df")
expect_is(lsm_l_te(landscape_brick), "tbl_df")
expect_is(lsm_l_te(landscape_list), "tbl_df")
})
test_that("lsm_l_te returns the desired number of columns", {
expect_equal(ncol(landscapemetrics_landscape_landscape_value), 6)
})
test_that("lsm_l_te returns in every column the correct type", {
expect_type(landscapemetrics_landscape_landscape_value$layer, "integer")
expect_type(landscapemetrics_landscape_landscape_value$level, "character")
expect_type(landscapemetrics_landscape_landscape_value$class, "integer")
expect_type(landscapemetrics_landscape_landscape_value$id, "integer")
expect_type(landscapemetrics_landscape_landscape_value$metric, "character")
expect_type(landscapemetrics_landscape_landscape_value$value, "double")
})
test_that("lsm_l_te option count_boundary is working", {
te_with_boundary <- lsm_l_te(landscape, count_boundary = TRUE)
te_without_boundary <- lsm_l_te(landscape, count_boundary = FALSE)
expect_lt(te_without_boundary$value, te_with_boundary$value)
})
test_that("lsm_l_te can handle raster with different xy resolution", {
expect_is(lsm_l_te(landscape_diff_res), "tbl_df")
})
test_that("lsm_l_te is the same if count_boundary = FALSE", {
result_cbF <- lsm_c_te(test_lsm, count_boundary = FALSE)
result_cbT <- lsm_c_te(test_lsm, count_boundary = TRUE)
result_l_cbF <- lsm_l_te(test_lsm, count_boundary = FALSE)
result_l_cbT <- lsm_l_te(test_lsm, count_boundary = TRUE)
expect_true(all(result_l_cbF$value == result_cbF$value))
expect_true(all(result_l_cbT$value == max(result_cbT$value)))
}) |
ir_parse <- function(x, options, type = NULL) {
xp <- odin_preprocess(x, type)
root <- xp$root
exprs <- xp$exprs
base <- xp$base
dat <- ir_parse_exprs(exprs)
eqs <- dat$eqs
source <- dat$source
config <- ir_parse_config(eqs, base, root, source, options$read_include,
options$config_custom)
features <- ir_parse_features(eqs, config, source)
variables <- ir_parse_find_variables(eqs, features$discrete, source)
eqs <- lapply(eqs, ir_parse_rewrite_initial, variables)
eqs <- ir_parse_arrays(eqs, variables, config$include$names, source)
eqs <- ir_parse_substitute(eqs, options$substitutions)
if (options$rewrite_constants) {
eqs <- ir_parse_rewrite_constants(eqs)
} else if (options$rewrite_dims && features$has_array) {
eqs <- ir_parse_rewrite_dims(eqs)
}
packing <- ir_parse_packing(eqs, variables, source)
eqs <- c(eqs, packing$offsets)
packing$offsets <- NULL
if (features$has_interpolate) {
eqs <- ir_parse_interpolate(eqs, features$discrete, source)
i <- vcapply(eqs, "[[", "type") == "alloc_interpolate"
f <- function(v) {
sort(unique(unlist(unname(lapply(eqs[i], function(eq)
eq$control[[v]]))))) %||% character(0)
}
interpolate <-
list(min = f("min"), max = f("max"), critical = f("critical"))
} else {
interpolate <- list(min = list(), max = list(), critical = list())
}
if (features$has_delay) {
eqs <- ir_parse_delay(eqs, features$discrete, packing$variables, source)
}
eqs <- eqs[order(names(eqs))]
meta <- ir_parse_meta(features$discrete)
dependencies <- ir_parse_dependencies(eqs, variables, meta$time, source)
stage <- ir_parse_stage(eqs, dependencies, variables, meta$time, source)
eqs_initial <- names_if(vlapply(eqs, function(x)
identical(x$lhs$special, "initial")))
features$initial_time_dependent <-
features$has_delay || max(stage[eqs_initial]) == STAGE_TIME
data <- ir_parse_data(eqs, packing, stage, source)
if (features$has_user) {
is_user <- vcapply(eqs, "[[", "type") == "user"
user <- unname(lapply(eqs[is_user], function(x)
list(name = x$name, has_default = !is.null(x$user$default))))
user <- user[order(vlapply(user, "[[", "has_default"))]
} else {
user <- list()
}
components <- ir_parse_components(eqs, dependencies, variables, stage,
features$discrete, source, options)
equations <- ir_parse_equations(eqs)
ir_parse_check_functions(eqs, features$discrete, config$include$names, source)
ret <- list(version = .odin$version,
config = config,
meta = meta,
features = features,
data = data,
equations = equations,
components = components,
user = user,
interpolate = interpolate,
source = source)
ir <- ir_serialise(ret, options$pretty)
if (options$validate) {
ir_validate(ir, TRUE)
}
ir
}
ir_parse_packing <- function(eqs, variables, source) {
i <- vlapply(eqs, function(x) identical(x$lhs$special, "initial"))
pack_variables <- ir_parse_packing_new(eqs[i], TRUE, "variable")
j <- vlapply(eqs, function(x) identical(x$lhs$special, "output"))
pack_output <- ir_parse_packing_new(eqs[j], FALSE, "output")
output <- vcapply(pack_output$contents, "[[", "name")
err <- intersect(output, variables)
if (length(err) > 0L) {
k <- which(i | j)
k <- k[vlapply(eqs[k], function(x) x$lhs$name_data %in% err)]
ir_parse_error("output() name cannot be the same as variable name",
ir_parse_error_lines(eqs[k]), source)
}
list(variables = pack_variables,
output = pack_output,
offsets = c(pack_variables$offsets, pack_output$offsets))
}
ir_parse_data <- function(eqs, packing, stage, source) {
type <- vcapply(eqs, function(x) x$type, USE.NAMES = FALSE)
is_alloc <- vlapply(eqs, function(x)
x$type == "alloc" && x$name != x$lhs$name_lhs)
i <- !(is_alloc | type %in% c("copy", "config"))
elements <- lapply(eqs[i], ir_parse_data_element, stage)
names(elements) <- vcapply(elements, "[[", "name")
elements <- elements[order(names(elements))]
list(elements = elements,
variable = packing$variables,
output = packing$output)
}
ir_parse_data_element <- function(x, stage) {
name <- x$lhs$name_data
storage_type <- x$lhs$storage_type %||% "double"
if (is.null(x$array)) {
rank <- 0L
dimnames <- NULL
} else {
rank <- x$array$rank
dimnames <- x$array$dimnames
}
stage <- stage[[x$name]]
if (is.null(x$lhs$special)) {
if (rank == 0L && stage == STAGE_TIME) {
location <- "transient"
} else {
location <- "internal"
}
} else if (x$lhs$special == "initial") {
location <- "internal"
name <- x$lhs$name_equation
} else if (x$lhs$special == "deriv" || x$lhs$special == "update") {
location <- "variable"
} else if (x$lhs$special == "output") {
location <- "output"
} else {
stop("unclassified data type [odin bug]")
}
list(name = name,
location = location,
stage = stage,
storage_type = storage_type,
rank = rank,
dimnames = dimnames)
}
ir_parse_meta <- function(discrete) {
time <- if (discrete) STEP else TIME
result <- if (discrete) STATE_NEXT else DSTATEDT
list(internal = INTERNAL,
user = USER,
state = STATE,
result = result,
output = OUTPUT,
time = time,
initial_time = initial_name(time))
}
ir_parse_find_variables <- function(eqs, discrete, source) {
is_special <- vlapply(eqs, function(x) !is.null(x$lhs$special))
special <- vcapply(eqs[is_special], function(x) x$lhs$special)
name_data <- vcapply(eqs[is_special], function(x) x$lhs$name_data)
rhs_fun <- if (discrete) "update" else "deriv"
is_initial <- special == "initial"
is_var <- special == rhs_fun
vars <- name_data[is_var]
vars_initial <- name_data[is_initial]
if (!setequal(vars, vars_initial)) {
msg <- collector()
msg_initial <- setdiff(vars, vars_initial)
if (length(msg_initial) > 0L) {
msg$add("\tin %s() but not initial(): %s",
rhs_fun, paste(msg_initial, collapse = ", "))
}
msg_vars <- setdiff(vars_initial, vars)
if (length(msg_vars) > 0L) {
msg$add("\tin initial() but not %s(): %s",
rhs_fun, paste(msg_vars, collapse = ", "))
}
tmp <- eqs[is_var | is_initial]
ir_parse_error(sprintf(
"%s() and initial() must contain same set of equations:\n%s\n",
rhs_fun, paste(msg$get(), collapse = "\n")),
ir_parse_error_lines(tmp), source)
}
err <- names(eqs) %in% vars
if (any(err)) {
ir_parse_error(
sprintf("variables on lhs must be within %s() or initial() (%s)",
rhs_fun,
paste(intersect(vars, names(eqs)), collapse = ", ")),
ir_parse_error_lines(eqs[err]), source)
}
unique(unname(vars))
}
ir_parse_find_exclusive_output <- function(eqs, source) {
i <- vlapply(eqs, function(x) identical(x$lhs$special, "output"))
j <- vlapply(eqs, function(x) is.null(x$lhs$special))
nms <- vcapply(eqs[i], function(x) x$lhs$name_data, USE.NAMES = FALSE)
setdiff(nms, names_if(j))
}
ir_parse_dependencies <- function(eqs, variables, time_name, source) {
implicit <- set_names(rep(list(character(0)), length(variables) + 1),
c(variables, time_name))
explicit <- lapply(eqs, function(eq)
setdiff(eq$depends$variables, c(eq$name, INDEX, "")))
deps <- c(explicit, implicit)
msg <- lapply(deps, setdiff, names(deps))
i <- lengths(msg) > 0L
if (any(i)) {
msg <- sort(unique(unlist(msg)))
fmt <- ngettext(length(msg), "Unknown variable %s", "Unknown variables %s")
ir_parse_error(sprintf(fmt, paste(msg, collapse = ", ")),
ir_parse_error_lines(eqs[i]), source)
}
order <- topological_order(deps)
recursive_dependencies(order, deps, variables)
}
ir_parse_stage <- function(eqs, dependencies, variables, time_name, source) {
stage <- set_names(rep(STAGE_CONSTANT, length(dependencies)),
names(dependencies))
is_user <- function(x) {
x$type == "user"
}
is_null <- function(x) {
x$type == "null"
}
is_time_dependent <- function(x) {
(!is.null(x$lhs$special) &&
x$lhs$special %in% c("deriv", "update", "output")) ||
!is.null(x$rhs$delay) || !is.null(x$rhs$interpolate) ||
isTRUE(x$stochastic) || x$type == "delay_continuous"
}
stage[names_if(vlapply(eqs, is_user))] <- STAGE_USER
stage[names_if(vlapply(eqs, is_time_dependent))] <- STAGE_TIME
stage[time_name] <- STAGE_TIME
stage[variables] <- STAGE_TIME
for (i in seq_along(stage)) {
stage[[i]] <- max(stage[[i]], stage[dependencies[[i]]])
}
stage[names_if(vlapply(eqs, is_null))] <- STAGE_NULL
i <- vlapply(eqs, function(x) !is.null(x$array))
len <- lapply(eqs[i], function(x) x$array$dimnames$length)
len_var <- vcapply(len[!vlapply(len, is.numeric)], as.character)
err <- stage[len_var] == STAGE_TIME
if (any(err)) {
ir_parse_error(
"Array extent is determined by time",
ir_parse_error_lines(eqs[len_var[err]]), source)
}
stage
}
ir_parse_packing_new <- function(eqs, variables, offset_prefix) {
eqs <- unname(eqs)
len <- lapply(eqs, function(x) x$array$dimnames$length %||% 1L)
rank <- viapply(eqs, function(x) x$array$rank %||% 0L)
names <- vcapply(eqs, function(x) x$lhs$name_data)
ir_parse_packing_internal(names, rank, len, variables, offset_prefix)
}
ir_parse_packing_internal <- function(names, rank, len, variables,
offset_prefix) {
i <- order(!vlapply(len, is.numeric), rank)
names <- names[i]
rank <- rank[i]
len <- len[i]
is_array <- rank > 0L
offset <- vector("list", length(names) + 1L)
offset[[1L]] <- 0L
for (i in seq_along(names)) {
if (!is_array[[i]]) {
offset[[i + 1L]] <- i
} else {
len_i <- if (is.numeric(len[[i]])) len[[i]] else as.name(len[[i]])
offset[[i + 1L]] <- static_eval(call("+", offset[[i]], len_i))
}
}
length <- offset[[length(names) + 1L]]
offset <- offset[seq_along(names)]
i <- vlapply(offset[seq_along(names)], is.call)
if (any(i)) {
eq_offset <- function(name, value) {
list(name = name,
type = "expression_scalar",
implicit = TRUE,
source = integer(0),
depends = find_symbols(value),
lhs = list(name_data = name, name_equation = name, name_lhs = name,
storage_type = "int"),
rhs = list(value = value))
}
offset_name <- sprintf("offset_%s_%s", offset_prefix, names[i])
eqs_offsets <- Map(eq_offset, offset_name, offset[i])
names(eqs_offsets) <- vcapply(eqs_offsets, "[[", "name")
offset[i] <- lapply(names(eqs_offsets), as.name)
} else {
eqs_offsets <- NULL
}
if (variables) {
contents <- unname(Map(
list, name = names, offset = offset, initial = initial_name(names)))
} else {
contents <- unname(Map(list, name = names, offset = offset))
}
list(length = length, contents = contents, offsets = eqs_offsets)
}
ir_parse_features <- function(eqs, config, source) {
is_update <- vlapply(eqs, function(x) identical(x$lhs$special, "update"))
is_deriv <- vlapply(eqs, function(x) identical(x$lhs$special, "deriv"))
is_output <- vlapply(eqs, function(x) identical(x$lhs$special, "output"))
is_dim <- vlapply(eqs, function(x) identical(x$lhs$special, "dim"))
is_user <- vlapply(eqs, function(x) !is.null(x$user))
is_delay <- vlapply(eqs, function(x) !is.null(x$delay))
is_interpolate <- vlapply(eqs, function(x) !is.null(x$interpolate))
is_stochastic <- vlapply(eqs, function(x) isTRUE(x$stochastic))
if (any(is_update) && any(is_deriv)) {
tmp <- eqs[is_deriv | is_update]
ir_parse_error("Cannot mix deriv() and update()",
ir_parse_error_lines(tmp), source)
}
if (!any(is_update | is_deriv)) {
ir_parse_error("Did not find a deriv() or an update() call",
NULL, NULL)
}
list(discrete = any(is_update),
has_array = any(is_dim),
has_output = any(is_output),
has_user = any(is_user),
has_delay = any(is_delay),
has_interpolate = any(is_interpolate),
has_stochastic = any(is_stochastic),
has_include = !is.null(config$include),
initial_time_dependent = NULL)
}
ir_parse_components <- function(eqs, dependencies, variables, stage,
discrete, source, options) {
eqs_constant <- intersect(names_if(stage == STAGE_CONSTANT), names(eqs))
eqs_user <- intersect(names_if(stage == STAGE_USER), names(eqs))
eqs_time <- intersect(names_if(stage == STAGE_TIME), names(eqs))
rhs_special <- if (discrete) "update" else "deriv"
rhs <- names_if(vlapply(eqs, function(x)
identical(x$lhs$special, rhs_special)))
v <- unique(unlist(dependencies[rhs], use.names = FALSE))
eqs_rhs <- intersect(eqs_time, c(rhs, v))
variables_rhs <- intersect(variables, v)
output <- names_if(vlapply(eqs, function(x)
identical(x$lhs$special, "output")))
v <- unique(c(character(), unlist(dependencies[output], use.names = FALSE)))
eqs_output <- intersect(eqs_time, c(output, v))
variables_output <- intersect(variables, v)
initial <- names_if(vlapply(eqs, function(x)
identical(x$lhs$special, "initial")))
v <- unique(c(initial, unlist(dependencies[initial], use.names = FALSE)))
eqs_initial <- intersect(eqs_time, v)
type <- vcapply(eqs, "[[", "type")
core <- unique(c(initial, rhs, output, eqs_initial, eqs_rhs, eqs_output))
used_in_delay <- unlist(lapply(eqs[type == "delay_continuous"], function(x)
x$delay$depends$variables), FALSE, FALSE)
core <- union(core, used_in_delay)
ignore <- c("config", "null", "delay_index", "alloc")
core <- c(core, names(eqs)[type %in% ignore])
if (!options$no_check_unused_equations) {
ir_parse_check_unused(eqs, dependencies, core, stage, source)
}
list(
create = list(variables = character(0), equations = eqs_constant),
user = list(variables = character(0), equations = eqs_user),
initial = list(variables = character(0), equations = eqs_initial),
rhs = list(variables = variables_rhs, equations = eqs_rhs),
output = list(variables = variables_output, equations = eqs_output))
}
ir_parse_check_unused <- function(eqs, dependencies, core, stage, source) {
used <- unique(c(core, unlist(dependencies[core], FALSE, FALSE)))
check <- names_if(vlapply(eqs, function(x) !isTRUE(x$implicit)))
unused <- setdiff(check, used)
ignored <- vlapply(eqs[unused], function(x)
any(grepl("
USE.NAMES = FALSE)
if (length(ignored) > 0) {
dropped <- names_if(stage[unused[ignored]] == STAGE_TIME)
if (length(dropped) > 0) {
ir_parse_note(sprintf(
"Unused equation marked as ignored will be dropped: %s",
paste(sort(dropped), collapse = ", ")),
ir_parse_error_lines(eqs[dropped]), source)
}
}
unused <- unused[!ignored]
if (length(unused) > 0L) {
what <- ngettext(length(unused), "equation", "equations")
ir_parse_note(sprintf("Unused %s: %s",
what, paste(sort(unused), collapse = ", ")),
ir_parse_error_lines(eqs[unused]), source)
}
}
ir_parse_exprs <- function(exprs) {
src <- attr(exprs, "wholeSrcref", exact = TRUE)
if (is.null(src)) {
src <- vcapply(exprs, deparse_str)
lines <- seq_along(exprs)
} else {
src <- as.character(src)
lines0 <- utils::getSrcLocation(exprs, "line", first = TRUE)
lines1 <- utils::getSrcLocation(exprs, "line", first = FALSE)
lines <- Map(seq.int, lines0, lines1)
}
expr_is_assignment <- function(x) {
length(x) == 3L &&
(identical(x[[1]], quote(`<-`)) || identical(x[[1]], quote(`=`)))
}
err <- which(!vlapply(exprs, expr_is_assignment))
if (length(err) > 0L) {
ir_parse_error("Every line must contain an assignment",
unlist(lines[err]), src)
}
eqs <- Map(ir_parse_expr, exprs, lines, MoreArgs = list(source = src))
names(eqs) <- vcapply(eqs, "[[", "name")
list(eqs = eqs, source = src)
}
ir_parse_expr <- function(expr, line, source) {
lhs <- ir_parse_expr_lhs(expr[[2L]], line, source)
rhs <- ir_parse_expr_rhs(expr[[3L]], line, source)
depends <- join_deps(list(lhs$depends, rhs$depends))
rhs$depends <- NULL
if (!is.null(rhs$user)) {
type <- "user"
} else if (!is.null(rhs$interpolate)) {
type <- "interpolate"
} else if (!is.null(rhs$delay)) {
type <- "delay"
} else if (identical(lhs$special, "dim")) {
type <- "dim"
} else if (identical(lhs$special, "config")) {
type <- "config"
} else if (lhs$type == "expression_scalar") {
type <- "expression_scalar"
} else if (lhs$type == "expression_array") {
type <- "expression_array"
} else {
stop("unclassified equation type [odin bug]")
}
lhs$type <- NULL
if (type == "user") {
if (!is.null(lhs$special) && !identical(lhs$special, "dim")) {
ir_parse_error("user() only valid for non-special variables",
line, source)
}
if (rhs$user$integer) {
lhs$storage_type <- "int"
}
}
if (type == "delay" && !is.null(lhs$special)) {
ir_parse_error("delay() only valid for non-special variables",
line, source)
}
if (identical(lhs$special, "output")) {
copy_expr <- as.name(lhs$name_data)
if (type == "expression_array") {
copy_expr_index <- lapply(INDEX[seq_along(lhs$index)[[1]]], as.name)
copy_expr_array <- as.call(c(as.name("["), copy_expr, copy_expr_index))
} else {
copy_expr_array <- copy_expr
}
is_copy <- isTRUE(rhs$rhs$value) ||
identical(rhs$rhs$value, copy_expr) ||
identical(rhs$rhs$value, copy_expr_array)
if (is_copy) {
type <- "copy"
depends <- list(functions = character(0), variables = lhs$name_data)
rhs <- NULL
}
}
if (any(names(FUNCTIONS_INPLACE) %in% depends$functions)) {
type <- "expression_inplace"
ir_parse_expr_rhs_check_inplace(lhs, rhs, line, source)
}
is_self_ref <- lhs$name_data %in% depends$variables &&
type != "expression_array" &&
!identical(lhs$special, "deriv") &&
!identical(lhs$special, "update") &&
type != "copy"
if (is_self_ref) {
ir_parse_error(
"Self referencing expressions not allowed (except for arrays)",
line, source)
}
ret <- list(name = lhs$name_equation,
type = type,
lhs = lhs,
depends = depends,
source = line)
c(ret, rhs)
}
ir_parse_expr_lhs <- function(lhs, line, source) {
is_special <- is_array <- FALSE
special <- index <- depends <- NULL
if (is.call(lhs)) {
fun <- deparse_str(lhs[[1L]])
if (fun %in% SPECIAL_LHS) {
if (length(lhs) != 2L) {
ir_parse_error("Invalid length special function on lhs", line, source)
}
is_special <- TRUE
special <- fun
lhs <- lhs[[2L]]
}
}
if (is_call(lhs, "[")) {
if (is_special && special %in% c("dim", "config")) {
ir_parse_error("dim() must be applied to a name only (not an array)",
line, source)
}
is_array <- TRUE
tmp <- ir_parse_expr_lhs_index(lhs, line, source)
index <- tmp$index
depends <- tmp$depends
lhs <- lhs[[2L]]
}
name <- ir_parse_expr_check_lhs_name(lhs, special, line, source)
type <- if (is_array) "expression_array" else "expression_scalar"
name_data <- name
name_equation <- if (is_special) sprintf("%s_%s", special, name) else name
if (!is_special) {
name_lhs <- name_equation
} else if (special %in% c("initial", "dim")) {
name_lhs <- name_equation
} else if (special %in% c("deriv", "output", "update", "config")) {
name_lhs <- name_data
} else {
stop("odin bug")
}
list(type = type,
name_data = name_data,
name_equation = name_equation,
name_lhs = name_lhs,
special = special,
index = index,
depends = depends)
}
ir_parse_expr_lhs_index <- function(lhs, line, source) {
if (!is.name(lhs[[2L]])) {
ir_parse_error("array lhs must be a name", line, source)
}
index <- as.list(lhs[-(1:2)])
is_empty <- vlapply(index, identical, quote(expr = ))
if (any(is_empty)) {
if (length(index) == 1L) {
index[] <- list(bquote(1:length(.(lhs[[2L]]))))
} else {
index[is_empty] <- lapply(as.numeric(which(is_empty)), function(i)
bquote(1:dim(.(lhs[[2L]]), .(i))))
}
lhs[-(1:2)] <- index
}
tmp <- lapply(index, ir_parse_expr_lhs_check_index)
ok <- vlapply(tmp, as.logical)
if (all(ok)) {
extent_max <- lapply(tmp, attr, "value_max", exact = TRUE)
extent_min <- lapply(tmp, attr, "value_min", exact = TRUE)
is_range <- !vlapply(extent_min, is.null)
} else {
msg <- paste0("\t\t", vcapply(tmp[!ok], attr, "message"), collapse = "\n")
ir_parse_error(sprintf("Invalid array use on lhs:\n%s", msg),
line, source)
}
name <- deparse(lhs[[2L]])
deps <- find_symbols(index)
err <- intersect(INDEX, deps$variables)
if (length(err) > 0L) {
ir_parse_error(
sprintf("Special index variable %s may not be used on array lhs",
pastec(err)), line, source)
}
name_dim <- array_dim_name(name)
deps$variables <- union(deps$variables, name_dim)
deps$functions <- setdiff(deps$functions, ":")
list(
index = Map(list, value = index, is_range = is_range,
index = INDEX[seq_along(index)]),
depends = deps)
}
ir_parse_expr_check_lhs_name <- function(lhs, special, line, source) {
if (is.call(lhs)) {
fun <- deparse_str(lhs[[1L]])
if (fun %in% SPECIAL_LHS) {
msg <- sprintf("Invalid nested lhs function usage for %s", fun)
} else {
msg <- sprintf("Unhandled expression %s on lhs", fun)
}
ir_parse_error(msg, line, source)
}
if (!is.name(lhs)) {
if (is.null(special)) {
ir_parse_error("Invalid left hand side", line, source)
} else {
ir_parse_error(sprintf("Argument to %s must be a symbol", special),
line, source)
}
}
name <- deparse(lhs)
if (name %in% RESERVED) {
ir_parse_error(sprintf("Reserved name '%s' for lhs", name), line, source)
}
re <- sprintf("^(%s)_.*", paste(RESERVED_PREFIX, collapse = "|"))
if (grepl(re, name)) {
ir_parse_error(sprintf("Variable name cannot start with '%s_'",
sub(re, "\\1", name)),
line, source)
}
name
}
ir_parse_expr_rhs <- function(rhs, line, source) {
if (is_call(rhs, quote(delay))) {
ir_parse_expr_rhs_delay(rhs, line, source)
} else if (is_call(rhs, quote(user))) {
ir_parse_expr_rhs_user(rhs, line, source)
} else if (is_call(rhs, quote(interpolate))) {
ir_parse_expr_rhs_interpolate(rhs, line, source)
} else {
ir_parse_expr_rhs_expression(rhs, line, source)
}
}
ir_parse_expr_rhs_expression <- function(rhs, line, source) {
depends <- find_symbols(rhs)
err <- intersect(setdiff(SPECIAL_LHS, "dim"), depends$functions)
if (length(err) > 0L) {
ir_parse_error(sprintf("Function %s is disallowed on rhs",
paste(unique(err), collapse = ", ")), line, source)
}
err <- intersect(SPECIAL_RHS, depends$functions)
if (length(err) > 0L) {
ir_parse_error(sprintf("%s() must be the only call on the rhs", err[[1]]),
line, source)
}
err <- intersect(c(SPECIAL_LHS, SPECIAL_RHS), depends$variables)
if (length(err) > 0L) {
ir_parse_error(sprintf(
"Function '%s' is disallowed as symbol on rhs", err[[1L]]),
line, source)
}
ir_parse_expr_rhs_check_usage(rhs, line, source)
if ("sum" %in% depends$functions) {
rhs <- ir_parse_expr_rhs_expression_sum(rhs, line, source)
depends <- find_symbols(rhs)
}
if (":" %in% depends$functions) {
ir_parse_error("Range operator ':' may not be used on rhs", line, source)
}
stochastic <- any(depends$functions %in% names(FUNCTIONS_STOCHASTIC))
list(rhs = list(value = rhs),
depends = depends,
stochastic = stochastic)
}
ir_parse_expr_rhs_user <- function(rhs, line, source) {
args <- as.list(rhs[-1L])
nms <- names(args) %||% rep("", length(args))
if (any(!nzchar(nms[-1]))) {
ir_parse_error("Only first argument to user() may be unnamed", line, source)
}
m <- match.call(function(default, integer, min, max, ...) NULL, rhs, FALSE)
extra <- m[["..."]]
if (!is.null(extra)) {
ir_parse_error(sprintf("Unknown %s to user(): %s",
ngettext(length(extra), "argument", "arguments"),
paste(squote(names(extra)), collapse = ", ")),
line, source)
}
deps <- find_symbols(as.list(rhs[-1L]))
allowed <- c("+", "/", "-", "*", "^", "(")
if (length(setdiff(deps$functions, allowed)) > 0L) {
ir_parse_error("user() call must not use functions", line, source)
}
if (length(deps$variables) > 0L) {
ir_parse_error("user() call must not reference variables", line, source)
}
user <- list(default = m$default,
dim = FALSE,
integer = m$integer %||% FALSE,
min = m$min,
max = m$max)
list(user = user)
}
ir_parse_expr_rhs_interpolate <- function(rhs, line, source) {
na <- length(rhs) - 1L
if (na < 2L || na > 3L) {
ir_parse_error("interpolate() requires two or three arguments",
line, source)
}
m <- match.call(function(t, y, type) NULL, rhs, FALSE)
type <- m$type %||% "spline"
if (!is.character(type)) {
ir_parse_error("Expected a string constant for interpolation type",
line, source)
}
if (!(type %in% INTERPOLATION_TYPES)) {
ir_parse_error(sprintf(
"Invalid interpolation type; must be one: of %s",
paste(INTERPOLATION_TYPES, collapse = ", ")),
line, source)
}
if (!is.symbol(m$t)) {
ir_parse_error("interpolation time argument must be a symbol",
line, source)
}
if (!is.symbol(m$y)) {
ir_parse_error("interpolation target argument must be a symbol",
line, source)
}
t <- as.character(m$t)
y <- as.character(m$y)
list(interpolate = list(t = t, y = y, type = type),
depends = ir_parse_depends(variables = c(t, y)))
}
ir_parse_expr_rhs_delay <- function(rhs, line, source) {
na <- length(rhs) - 1L
if (na < 2L || na > 3L) {
ir_parse_error("delay() requires two or three arguments",
line, source)
}
delay_expr <- rhs[[2L]]
delay_time <- rhs[[3L]]
if (na == 3L) {
delay_default <- ir_parse_expr_rhs(rhs[[4L]], line, source)
} else {
delay_default <- NULL
}
deps_delay_expr <- find_symbols(delay_expr)
deps_delay_time <- find_symbols(delay_time)
fns <- c(deps_delay_expr$functions,
deps_delay_time$functions,
delay_default$depends$functions)
if ("delay" %in% fns) {
ir_parse_error("delay() may not be nested", line, source)
}
if (TIME %in% deps_delay_expr$variables) {
ir_parse_error("delay() may not refer to time as that's confusing",
line, source)
}
depends <- join_deps(list(deps_delay_time, delay_default$depends))
list(delay = list(time = delay_time,
default = delay_default$rhs$value,
depends = deps_delay_expr),
rhs = list(value = delay_expr),
depends = depends)
}
ir_parse_equations <- function(eqs) {
type <- vcapply(eqs, "[[", "type")
eqs[!(type %in% c("null", "config"))]
}
ir_parse_depends <- function(functions = character(0),
variables = character(0)) {
list(functions = functions, variables = variables)
}
ir_parse_interpolate <- function(eqs, discrete, source) {
type <- vcapply(eqs, "[[", "type")
for (eq in eqs[type == "interpolate"]) {
eqs <- ir_parse_interpolate1(eq, eqs, discrete, source)
}
eqs
}
ir_parse_interpolate1 <- function(eq, eqs, discrete, source) {
nm <- eq$lhs$name_lhs
nm_alloc <- sprintf("interpolate_%s", nm)
eq_alloc <- eq
eq_alloc$name <- nm_alloc
eq_alloc$type <- "alloc_interpolate"
eq_alloc$lhs$name_lhs <- nm_alloc
eq_alloc$lhs$name_data <- nm_alloc
eq_alloc$lhs$name_equation <- nm_alloc
eq_alloc$lhs$storage_type <- "interpolate_data"
msg <- setdiff(c(eq_alloc$interpolate$t, eq_alloc$interpolate$y), names(eqs))
if (length(msg) > 0L) {
fmt <-
ngettext(length(msg), "Unknown variable %s", "Unknown variables %s")
ir_parse_error(sprintf(fmt, paste(msg, collapse = ", ")),
eq$source, source)
}
eq_t <- eqs[[eq_alloc$interpolate$t]]
eq_y <- eqs[[eq_alloc$interpolate$y]]
rank_t <- eq_t$array$rank
rank_y <- eq_y$array$rank
rank_z <- eq$array$rank %||% 0L
if (eq_t$array$rank != 1L) {
ir_parse_error(sprintf("Expected %s to be a vector for interpolation",
eq_t$name),
eq_t$source, source)
}
if (eq_y$array$rank != rank_z + 1L) {
type <-
if (rank_z == 0L) "vector" else paste(rank_z + 1, "dimensional array")
ir_parse_error(sprintf("Expected %s to be a %s", eq_y$name, type),
eq_y$source, source)
}
eq_alloc$interpolate$equation <- nm
time <- if (discrete) STEP else TIME
eq_use <- eq
eq_use$type <- "interpolate"
eq_use$depends <- ir_parse_depends(variables = c(time, nm_alloc))
eq_use$interpolate <- nm_alloc
type <- eq_alloc$interpolate$type
eq_alloc$control <- list(
min = eq_t$name,
max = if (type != "constant") eq_t$name,
critical = if (type == "constant") eq_t$name)
if (isTRUE(eq$user$dim)) {
deps_alloc <- union(eq_alloc$depends$variables, eq$array$dimnames$length)
eq_alloc$depends <- ir_parse_depends(variables = deps_alloc)
deps <- c(eq$array$dimnames$length, eq$interpolate$t, eq$interpolate$y)
eq$depends <- ir_parse_depends(variables = deps)
nm_length <- eq$array$dimnames$length
eqs[[nm_length]]$type <- "expression_scalar"
if (rank_z == 1L) {
len <- eq_y$array$dimnames$dim[[2]]
eqs[[nm_length]]$rhs$value <- as.name(len)
eqs[[nm_length]]$depends <- ir_parse_depends(variables = len)
} else {
for (j in seq_along(eq$array$dimnames$dim)) {
nm <- eq$array$dimnames$dim[[j]]
eqs[[nm]]$type <- "expression_scalar"
eqs[[nm]]$rhs$value <- as.name(eq_y$array$dimnames$dim[[j + 1]])
eqs[[nm]]$depends$variables <- eq_y$array$dimnames$dim[[j + 1]]
}
}
}
extra <- list(eq_alloc, eq_use)
names(extra) <- vcapply(extra, "[[", "name")
stopifnot(sum(names(eqs) == eq$name) == 1)
c(eqs[names(eqs) != eq$name], extra)
}
ir_parse_rewrite_initial <- function(eq, variables) {
needs_rewrite <- identical(eq$lhs$special, "initial") &&
any(eq$depends$variables %in% variables)
if (needs_rewrite) {
subs <- set_names(initial_name(variables), variables)
env <- as.environment(lapply(subs, as.name))
eq$rhs$value <- substitute_(eq$rhs$value, env)
i <- match(eq$depends$variables, names(subs))
j <- !is.na(i)
eq$depends$variables[j] <- subs[i][j]
}
eq
}
ir_parse_check_functions <- function(eqs, discrete, include, source) {
used_functions <- lapply(eqs, function(x) x$depends$functions)
all_used_functions <- unique(unlist(used_functions))
if (!discrete) {
err <- intersect(all_used_functions, names(FUNCTIONS_STOCHASTIC))
if (length(err) > 0L) {
tmp <- eqs[vlapply(used_functions, function(x) any(x %in% err))]
ir_parse_error(sprintf(
"Stochastic functions not allowed in ODE models (used: %s)",
pastec(err)),
ir_parse_error_lines(tmp), source)
}
}
allowed <- c(names(FUNCTIONS),
names(FUNCTIONS_INFIX),
names(FUNCTIONS_UNARY),
names(FUNCTIONS_RENAME),
"odin_sum",
include,
if (discrete) names(FUNCTIONS_STOCHASTIC))
err <- setdiff(all_used_functions, allowed)
if (length(err) > 0L) {
tmp <- eqs[vlapply(used_functions, function(x) any(x %in% err))]
ir_parse_error(sprintf("Unsupported %s: %s",
ngettext(length(err), "function", "functions"),
pastec(err)),
ir_parse_error_lines(tmp), source)
}
}
ir_parse_delay <- function(eqs, discrete, variables, source) {
type <- vcapply(eqs, "[[", "type")
for (eq in eqs[type == "delay"]) {
if (discrete) {
eqs <- ir_parse_delay_discrete(eq, eqs, source)
initial_time <- initial_name(STEP)
initial_time_type <- "int"
} else {
eqs <- ir_parse_delay_continuous(eq, eqs, variables, source)
initial_time <- initial_name(TIME)
initial_time_type <- "double"
subs <- unique(unlist(lapply(eqs[names_if(type == "delay")], function(x)
x$delay$substitutions), FALSE, FALSE))
f <- function(x) {
depends <- if (is.numeric(x$dim)) character(0) else as.character(x$dim)
list(name = x$to,
type = "alloc",
source = integer(0),
depends = ir_parse_depends(variables = depends),
lhs = list(name_data = x$to,
name_lhs = x$to,
name_equation = x$to),
array = eqs[[x$from]]$array)
}
arrays <- lapply(subs, f)
names(arrays) <- vcapply(arrays, "[[", "name")
eqs <- c(eqs, arrays[setdiff(names(arrays), names(eqs))])
}
}
eq_initial_time <- list(list(
name = initial_time,
type = "null",
lhs = list(name_data = initial_time, name_equation = initial_time,
special = "initial", storage_type = initial_time_type),
line = integer(0),
depends = NULL))
names(eq_initial_time) <- initial_time
c(eqs, eq_initial_time)
}
ir_parse_delay_discrete <- function(eq, eqs, source) {
nm <- eq$name
nm_ring <- sprintf("delay_ring_%s", nm)
len <- eq$array$dimnames$length
depends_ring <- list(
functions = character(0),
variables = if (is.character(len)) len else character(0))
lhs_ring <- list(name_data = nm_ring, name_equation = nm_ring,
name_lhs = nm_ring, storage_type = "ring_buffer")
eq_ring <- list(
name = nm_ring,
type = "alloc_ring",
source = eq$source,
depends = depends_ring,
lhs = lhs_ring,
delay = nm)
lhs_use <- eq$lhs[c("name_data", "name_equation", "name_lhs", "special")]
depends_use <- join_deps(list(eq$depends, eq$delay$depends))
depends_use$variables <- c(nm_ring, depends_use$variables)
eq_use <- list(
name = nm,
type = "delay_discrete",
source = eq$source,
depends = depends_use,
lhs = lhs_use,
rhs = list(value = eq$rhs$value,
index = eq$rhs$index),
array = eq$array,
delay = list(ring = nm_ring,
time = eq$delay$time,
default = eq$delay$default))
extra <- list(eq_ring, eq_use)
names(extra) <- vcapply(extra, "[[", "name")
stopifnot(sum(names(eqs) == eq$name) == 1)
c(eqs[names(eqs) != eq$name], extra)
}
ir_parse_delay_continuous <- function(eq, eqs, variables, source) {
variable_names <- vcapply(variables$contents, "[[", "name")
nm <- eq$name
nm_state <- sprintf("delay_state_%s", nm)
nm_index <- sprintf("delay_index_%s", nm)
nm_dim <- sprintf("dim_delay_%s", nm)
graph <- ir_parse_delay_continuous_graph(eq, eqs, variable_names, source)
arrays <- names_if(
vcapply(eqs[graph$equations], "[[", "type") == "expression_array")
if (length(arrays) > 0L) {
substitutions <- lapply(arrays, function(x)
list(from = x,
to = sprintf("delay_array_%s", x),
dim = eqs[[x]]$array$dimnames$length))
} else {
substitutions <- list()
}
if (is.numeric(graph$packing$length)) {
eq_len <- NULL
val_len <- graph$packing$length
dep_len <- character(0)
} else {
eq_len <- list(
name = nm_dim,
type = "expression_scalar",
source = eq$source,
depends = find_symbols(graph$packing$length),
lhs = list(name_data = nm_dim, name_equation = nm_dim, name_lhs = nm_dim,
storage_type = "int"),
rhs = list(value = graph$packing$length))
val_len <- nm_dim
dep_len <- nm_dim
}
lhs_use <- eq$lhs[c("name_data", "name_equation", "name_lhs", "special")]
subs_from <- vcapply(substitutions, "[[", "to")
depends_use <- join_deps(list(
eq$depends, ir_parse_depends(variables = c(dep_len, subs_from, TIME))))
eq_use <- list(
name = nm,
type = "delay_continuous",
source = eq$source,
depends = depends_use,
lhs = lhs_use,
rhs = list(value = eq$rhs$value, index = eq$rhs$index),
delay = list(
state = nm_state,
index = nm_index,
substitutions = substitutions,
variables = list(length = val_len,
contents = graph$packing$contents),
equations = graph$equations,
default = eq$delay$default,
time = eq$delay$time,
depends = eq$delay$depends),
array = eq$array)
array <- list(dimnames = list(length = val_len, dim = NULL, mult = NULL),
rank = 1L)
lhs_index <-
list(name_data = nm_index, name_equation = nm_index, name_lhs = nm_index,
storage_type = "int")
offsets <- lapply(variables$contents[match(graph$variables, variable_names)],
"[[", "offset")
depends_index <- join_deps(lapply(offsets, find_symbols))
depends_index$variables <- union(depends_index$variables, dep_len)
eq_index <- list(
name = nm_index,
type = "delay_index",
source = eq$source,
depends = depends_index,
lhs = lhs_index,
delay = nm,
array = array)
lhs_state <-
list(name_data = nm_state, name_equation = nm_state, name_lhs = nm_state,
storage_type = "double")
eq_state <- list(
name = nm_state,
type = "null",
source = eq$source,
depends = ir_parse_depends(variables = dep_len),
lhs = lhs_state,
array = array)
offsets <- graph$packing$offsets
if (!is.null(offsets)) {
eq_index$depends$variables <- c(eq_index$depends$variables, names(offsets))
}
extra <- c(if (is.null(eq_len)) NULL else list(eq_len),
list(eq_index, eq_state, eq_use),
offsets)
names(extra) <- vcapply(extra, "[[", "name")
stopifnot(sum(names(eqs) == eq$name) == 1)
c(eqs[names(eqs) != eq$name], extra)
}
ir_parse_delay_continuous_graph <- function(eq, eqs, variables, source) {
used <- eq$delay$depends$variables
exclude <- c(variables, TIME, INDEX)
v <- setdiff(used, exclude)
deps <- list()
while (length(v) > 0L) {
err <- setdiff(v, names(eqs))
if (length(err) > 0L) {
pos <-
intersect(union(names(deps), unlist(deps, FALSE, FALSE)), names(eqs))
msg <- sprintf("Missing %s in delay expression: %s (for delay %s)",
ngettext(length(err), "variable", "variables"),
paste(err, collapse = ", "), eq$name)
ir_parse_error(msg, ir_parse_error_lines(eqs[union(pos, eq$name)]),
source)
}
tmp <- lapply(eqs[v], function(x) x$depends$variables)
deps <- c(deps, tmp)
v <- setdiff(unlist(tmp, use.names = FALSE), c(exclude, names(deps)))
}
used_vars <- intersect(variables,
union(used, unlist(deps, use.names = FALSE)))
used_eqs <- topological_order(deps) %||% character(0)
include <- set_names(logical(length(used_eqs)), used_eqs)
for (v in used_eqs) {
d <- deps[[v]]
include[[v]] <-
any(d %in% used_vars) ||
any(d == TIME) ||
eqs[[v]]$type == "delay" ||
any(include[intersect(d, names(deps))])
}
used_eqs <- used_eqs[include]
i <- vlapply(eqs, function(x)
identical(x$lhs$special, "deriv") && x$lhs$name_data %in% used_vars)
packing <- ir_parse_packing_new(eqs[i], FALSE, eq$name)
list(equations = used_eqs, variables = used_vars, packing = packing)
}
ir_parse_expr_rhs_check_usage <- function(rhs, line, source) {
len <- c(FUNCTIONS,
setNames(FUNCTIONS[FUNCTIONS_RENAME], names(FUNCTIONS_RENAME)))
throw <- function(...) {
ir_parse_error(sprintf(...), line, source)
}
check_usage <- function(x) {
if (is.recursive(x)) {
fn <- x[[1L]]
if (!is.name(fn)) {
throw("Cannot process statement")
}
nm <- deparse(fn)
n <- len[[nm]]
nargs <- length(x) - 1L
if (nm == "function") {
throw("Cannot define R functions in odin model")
}
if (length(n) > 1L) {
if (nargs < n[[1L]] || nargs > n[[2L]]) {
if (is.finite(n[[2L]])) {
throw("Expected %d-%d arguments in %s call, but recieved %d",
n[[1L]], n[[2L]], nm, nargs)
} else {
throw("Expected %d or more arguments in %s call, but recieved %d",
n[[1L]], nm, nargs)
}
}
} else if (!is.null(n) && is.finite(n)) {
if (nargs != n) {
if (nm == "if") {
throw("All if statements must have an else clause")
} else {
throw("Expected %d %s in %s call, but recieved %d",
n, ngettext(n, "argument", "arguments"), nm, nargs)
}
}
}
lapply(as.list(x[-1L]), check_usage)
}
}
check_usage(rhs)
}
ir_parse_expr_rhs_check_inplace <- function(lhs, rhs, line, source) {
fn <- deparse(rhs$rhs$value[[1]])
depends <- join_deps(lapply(rhs$rhs$value[-1], find_symbols))
if (!(fn %in% names(FUNCTIONS_INPLACE)) || length(depends$functions) > 0L) {
ir_parse_error(sprintf(
"At present, inplace function '%s' must use no functions", fn),
line, source)
}
if (is.null(lhs$index)) {
ir_parse_error(sprintf(
"Expected an array on the lhs of inplace function '%s'", fn),
line, source)
}
}
ir_parse_substitute <- function(eqs, subs) {
if (is.null(subs)) {
return(eqs)
}
f <- function(nm) {
eq <- eqs[[nm]]
if (is.null(eq)) {
stop(sprintf("Substitution failed: '%s' is not an equation", nm),
call. = FALSE)
}
if (eq$type != "user") {
stop(sprintf("Substitution failed: '%s' is not a user() equation", nm),
call. = FALSE)
}
if (!is.null(eq$array)) {
stop(sprintf("Substitution failed: '%s' is an array", nm), call. = FALSE)
}
value <- support_coerce_mode(subs[[nm]], eq$user$integer,
eq$user$min, eq$user$max, nm)
eq$type <- "expression_scalar"
eq$rhs <- list(value = value)
eq$stochastic <- FALSE
eq
}
eqs[names(subs)] <- lapply(names(subs), f)
eqs
}
ir_parse_rewrite_dims <- function(eqs) {
nms <- names_if(vlapply(eqs, function(x) isTRUE(x$lhs$dim)))
ir_parse_rewrite(nms, eqs)
}
ir_parse_rewrite_constants <- function(eqs) {
nms <- names_if(vlapply(eqs, function(x) x$type == "expression_scalar"))
ir_parse_rewrite(nms, eqs)
}
ir_parse_rewrite_compute_eqs <- function(nms, eqs) {
cache <- new_empty_env()
lapply(eqs[nms], function(eq)
static_eval(ir_parse_rewrite_compute(eq$rhs$value, eqs, cache)))
}
ir_parse_rewrite_compute <- function(x, eqs, cache) {
key <- deparse_str(x)
if (key %in% names(cache)) {
return(cache[[key]])
}
if (!is.numeric(x)) {
if (is.symbol(x)) {
x_eq <- eqs[[deparse_str(x)]]
if (identical(x_eq$type, "expression_scalar")) {
x <- ir_parse_rewrite_compute(x_eq$rhs$value, eqs, cache)
}
} else if (is_call(x, "length")) {
length_name <- as.name(array_dim_name(as.character(x[[2]])))
x <- ir_parse_rewrite_compute(length_name, eqs, cache)
} else if (is_call(x, "dim")) {
dim_name <- as.name(array_dim_name(as.character(x[[2]]), x[[3]]))
x <- ir_parse_rewrite_compute(dim_name, eqs, cache)
} else if (is.recursive(x)) {
x[-1] <- lapply(x[-1], ir_parse_rewrite_compute, eqs, cache)
}
}
cache[[key]] <- x
x
}
ir_parse_rewrite <- function(nms, eqs) {
val <- tryCatch(
ir_parse_rewrite_compute_eqs(nms, eqs),
error = function(e) {
message("Rewrite failure: ", e$message)
list()
})
rewrite <- vlapply(val, function(x) is.symbol(x) || is.numeric(x))
subs <- val[rewrite]
copy_self <- unlist(lapply(eqs, function(x)
if (x$type == "copy") x$lhs$name_data), FALSE)
subs <- subs[setdiff(names(subs), copy_self)]
is_dim <- vlapply(eqs, function(x) isTRUE(x$lhs$dim))
check <- val[intersect(names_if(!rewrite), names_if(is_dim))]
if (length(check) > 0) {
dup <- duplicated(check) & !vlapply(check, is.null)
if (any(dup)) {
i <- match(check[dup], check)
subs <- c(subs,
set_names(lapply(names(check)[i], as.name), names(check)[dup]))
}
}
subs_env <- list2env(subs, parent = emptyenv())
subs_dep <- vcapply(subs, function(x)
if (is.numeric(x)) NA_character_ else deparse_str(x))
replace <- function(x, y) {
i <- match(vcapply(x, function(x) x %||% ""), names(y))
j <- which(!is.na(i))
x[j] <- unname(y)[i[j]]
na_drop(x)
}
rewrite_eq_array_part <- function(el) {
el$value <- substitute_(el$value, subs_env)
for (i in seq_along(el$index)) {
el$index[[i]]$value <- substitute_(el$index[[i]]$value, subs_env)
}
el
}
rewrite_eq <- function(eq) {
if (eq$type == "expression_array") {
eq$rhs <- lapply(eq$rhs, rewrite_eq_array_part)
} else if (eq$name %in% names(subs)) {
eq$rhs$value <- subs[[eq$name]]
} else {
eq$rhs$value <- substitute_(eq$rhs$value, subs_env)
}
eq$depends$variables <- replace(eq$depends$variables, subs_dep)
eq$lhs$depends$variables <- replace(eq$lhs$depends$variables, subs_dep)
if (!is.null(eq$array$dimnames)) {
eq$array$dimnames$length <- replace(eq$array$dimnames$length, subs)[[1]]
eq$array$dimnames$dim <- replace(eq$array$dimnames$dim, subs)
eq$array$dimnames$mult <- replace(eq$array$dimnames$mult, subs)
}
if (!is.null(eq$delay)) {
eq$delay$time <- substitute_(eq$delay$time, subs_env)
eq$delay$depends$variables <-
replace(eq$delay$depends$variables, subs_dep)
}
eq
}
keep <- names_if(!vlapply(eqs, function(x) is.null(x$lhs$special)))
i <- setdiff(names(eqs), setdiff(names(subs), keep))
lapply(eqs[i], rewrite_eq)
} |
unify.owin <- function(W){
if(!is.owin(W)) stop("'W' must be of spatstat class 'owin'")
xr <- W$xrange
yr <- W$yrange
dx <- diff(xr)
dy <- diff(yr)
return(affine(W,matrix(c(1/dx,0,0,1/dy),2,2),c(-xr[1]/dx,-yr[1]/dy)))
} |
eloscoring <- function(data, id, block, item, choice, K = 30, iter = 100,
wide = FALSE) {
get_checks(data, id, block, item, choice, nonbibd = TRUE)
out <- lapply(unique(data[[id]]), function(cid) {
get_eloresults(data[data[[id]] == cid, ], block, item, choice) %>%
get_eloscores(K, iter) %>%
dplyr::mutate(id = cid)
})
out <- do.call(dplyr::bind_rows, out)
out <- out %>%
dplyr::select(id, item, elo)
colnames(out) <- c(id, item, "elo")
if (wide) {
out <- out %>%
tidyr::spread(!!sym(item), elo)
}
return(out)
} |
get_latent_model <- function(){
"
data {
K = length(n)
Sn <- sum(n[])
Sm <- sum(m[])
}
model {
for (i in 1:2){
z0[i] <- (i-1)*0.0001
phi0[i] <- theta[i]*z0[i]
}
theta[1] <- 1-St
eltheta[1] ~ dgamma(1.0,1.0)
theta[2] <- eltheta[2]/(1+Sr)
eltheta[2] ~ dgamma(1.0E-3,1.0E-3)
for (i in 3:K){
phi0[i] <- theta[i]*z0[i]
eltheta[i] ~ dgamma(1.0E-3,1.0E-3)
theta[i] <- eltheta[i]/(1+Sr)
z0[i] <- z0[i-1]/q[i]
}
Sr <- sum(eltheta[2:K])
St <- sum(theta[2:K])
Sp <-sum(p0[])
Sphi0 <- sum(phi0[])
for (i in 1:K){
phi[i] <- phi0[i]/Sphi0
z[i] <- z0[i]/Sphi0
q[i] ~ dunif(0.001,0.999)
p0[i] <- theta[i]*(1-lambda)+lambda*phi[i]
p[i] <- p0[i]/Sp
lami[i] <- lambda*phi[i]/p0[i]
sens[i] <- sum(phi[i:K])
P[i] <- (1-lami[i])*p0[i]
spec[i] <- sum(P[1:i])/sum(P)
Q[i] <- lami[i]*p0[i]
ppv[i] <- sum(Q[i:K])/sum(p0[i:K])
npv[i] = spec[i] * (1 - lambda) /(spec[i] * (1 - lambda) + ((1 - sens[i]) * lambda))
}
m[1:K] ~ dmulti(theta[1:K], Sm)
n[1:K] ~ dmulti(p[1:K], Sn)
lambda~ dunif(0.00001,0.99999)
}
"
} |
NNS.part = function(x, y,
Voronoi = FALSE,
type = NULL,
order = NULL,
obs.req = 8,
min.obs.stop = TRUE,
noise.reduction = "off"){
noise.reduction <- tolower(noise.reduction)
if (!any(noise.reduction %in% c("mean", "median", "mode",
"off", "mode_class"))) {
stop("Please ensure noise.reduction is from 'mean', 'median', 'mode' or 'off'")
}
if(any(class(x)==c("tbl", "data.table"))) x <- as.vector(unlist(x))
if(any(class(y)==c("tbl", "data.table"))) y <- as.vector(unlist(y))
if (is.null(obs.req)) obs.req <- 8
if (!is.null(order) && order == 0) order <- 1
if (Voronoi) {
x.label <- deparse(substitute(x))
y.label <- deparse(substitute(y))
}
x <- as.numeric(x)
y <- as.numeric(y)
PART <- data.table::data.table(x, y, quadrant = "q", prior.quadrant = "pq")[, `:=`(counts, .N), by = "quadrant"][, `:=`(old.counts, .N), by = "prior.quadrant"]
if(Voronoi) plot(x, y, col = "steelblue", cex.lab = 1.5, xlab = x.label, ylab = y.label)
if (length(x) <= 8) {
if(is.null(order)){
order <- 1
hard.stop <- max(ceiling(log(length(x), 2)), 1)
} else {
obs.req <- 0
hard.stop <- length(x)
}
}
if(is.null(order)) order <- max(ceiling(log(length(x), 2)), 1)
if(!is.numeric(order)){
obs.req <- 0
hard.stop <- max(ceiling(log(length(x), 2)), 1) + 2
} else {
obs.req <- obs.req
hard.stop <- 2*max(ceiling(log(length(x), 2)), 1) + 2
}
if(is.null(type)) {
i <- 0L
while (i >= 0) {
if(i == order || i == hard.stop) break
PART[counts >= obs.req, `:=`(counts, .N), by = quadrant]
PART[old.counts >= obs.req, `:=`(old.counts, .N), by = prior.quadrant]
l.PART <- max(PART$counts)
obs.req.rows <- PART[counts >= obs.req, which = TRUE]
old.obs.req.rows <- PART[old.counts >= obs.req, which = TRUE]
if(length(obs.req.rows)==0) break
if(min.obs.stop && obs.req > 0 && (length(obs.req.rows) < length(old.obs.req.rows))) break
if(noise.reduction == "off") {
if(Voronoi) {
if(l.PART > obs.req) {
PART[obs.req.rows, {
segments(min(x), gravity(y), max(x), gravity(y),
lty = 3)
segments(gravity(x), min(y), gravity(x), max(y),
lty = 3)
}, by = quadrant]
}
}
RP <- PART[obs.req.rows, mapply(function(f,z) as.list(f(z)), list(x = gravity, y = gravity), .SD), by = quadrant,
.SDcols = x:y]
}
if(noise.reduction == "mean") {
if(Voronoi) {
if(l.PART > obs.req) {
PART[obs.req.rows, {
segments(min(x), mean(y), max(x), mean(y),
lty = 3)
segments(gravity(x), min(y), gravity(x), max(y),
lty = 3)
}, by = quadrant]
}
}
RP <- PART[obs.req.rows, mapply(function(f,z) as.list(f(z)), list(x = gravity, y = mean), .SD), by = quadrant,
.SDcols = x:y]
}
if(noise.reduction == "median") {
if(Voronoi) {
if(l.PART > obs.req) {
PART[obs.req.rows, {
segments(min(x), median(y), max(x), median(y),
lty = 3)
segments(gravity(x), min(y), gravity(x), max(y),
lty = 3)
}, by = quadrant]
}
}
RP <- PART[obs.req.rows, mapply(function(f,z) as.list(f(z)), list(x = gravity, y = median), .SD), by = quadrant,
.SDcols = x:y]
}
if(noise.reduction == "mode") {
if(Voronoi) {
if(l.PART > obs.req) {
PART[obs.req.rows, {
segments(min(x), mode(y), max(x), mode(y),
lty = 3)
segments(gravity(x), min(y), gravity(x), max(y),
lty = 3)
}, by = quadrant]
}
}
RP <- PART[obs.req.rows, mapply(function(f,z) as.list(f(z)), list(x = gravity, y = mode), .SD), by = quadrant,
.SDcols = x:y]
}
if(noise.reduction == "mode_class") {
if(Voronoi) {
if(l.PART > obs.req) {
PART[obs.req.rows, {
segments(min(x), mode_class(y), max(x), mode_class(y),
lty = 3)
segments(gravity_class(x), min(y), gravity_class(x), max(y),
lty = 3)
}, by = quadrant]
}
}
RP <- PART[obs.req.rows, mapply(function(f,z) as.list(f(z)), list(x = gravity_class, y = mode_class), .SD), by = quadrant,
.SDcols = x:y]
}
RP[, `:=`(prior.quadrant, (quadrant))]
PART[obs.req.rows, `:=`(prior.quadrant, (quadrant))]
old.parts <- length(unique(PART$quadrant))
PART[RP, on = .(quadrant), `:=`(q_new, {
lox = x.x <= i.x
loy = x.y <= i.y
1L + lox + loy * 2L
})]
PART[obs.req.rows, `:=`(quadrant, paste0(quadrant, q_new))]
new.parts <- length(unique(PART$quadrant))
if((min(PART$counts) <= obs.req) && i >= 1) break
i = i + 1L
}
if(!exists("RP")) RP <- PART[, c("quadrant", "x", "y")]
if(!is.numeric(order) || is.null(dim(RP))) RP <- PART[, c("quadrant", "x", "y")] else RP[, `:=`(prior.quadrant = NULL)]
PART[, `:=`(counts = NULL, old.counts = NULL, q_new = NULL)]
RP <- data.table::setorder(RP[], quadrant)[]
if (Voronoi) {
title(main = paste0("NNS Order = ", i), cex.main = 2)
if(min.obs.stop) points(RP$x, RP$y, pch = 15, lwd = 2, col = "red")
}
if(min.obs.stop == FALSE) RP <- NULL
return(list(order = i, dt = PART[], regression.points = RP))
}
if(!is.null(type)) {
i <- 0L
while (i >= 0) {
if(i == order || i == hard.stop) break
PART[counts > obs.req/2, `:=`(counts, .N), by = quadrant]
PART[old.counts > obs.req/2, `:=`(old.counts, .N), by = prior.quadrant]
obs.req.rows <- PART[counts > obs.req/2, which = TRUE]
old.obs.req.rows <- PART[old.counts > obs.req/2, which = TRUE]
if(length(obs.req.rows)==0) break
if(obs.req > 0 && (length(obs.req.rows) < length(old.obs.req.rows))) break
if(noise.reduction == "off") {
RP <- PART[obs.req.rows, mapply(function(f,z) as.list(f(z)), list(x = gravity, y = gravity), .SD), by = quadrant,
.SDcols = x:y]
}
if(noise.reduction == "mean") {
RP <- PART[obs.req.rows, mapply(function(f,z) as.list(f(z)), list(x = gravity, y = mean), .SD), by = quadrant,
.SDcols = x:y]
}
if(noise.reduction == "mode") {
RP <- PART[obs.req.rows, mapply(function(f,z) as.list(f(z)), list(x = gravity, y = mode), .SD), by = quadrant,
.SDcols = x:y]
}
if(noise.reduction == "mode_class") {
RP <- PART[obs.req.rows, mapply(function(f,z) as.list(f(z)), list(x = gravity_class, y = mode_class), .SD), by = quadrant,
.SDcols=x:y]
}
if(noise.reduction == "median") {
RP <- PART[obs.req.rows, mapply(function(f,z) as.list(f(z)), list(x = gravity, y = median), .SD), by = quadrant,
.SDcols = x:y]
}
RP[, `:=`(prior.quadrant, (quadrant))]
PART[obs.req.rows, `:=`(prior.quadrant, (quadrant))]
old.parts <- length(unique(PART$quadrant))
PART[RP, on = .(quadrant), `:=`(q_new, {
lox = x.x > i.x
1L + lox
})]
PART[obs.req.rows, `:=`(quadrant, paste0(quadrant, q_new))]
new.parts <- length(unique(PART$quadrant))
if((min(PART$counts) <= obs.req) && i >= 1) break
i <- i + 1L
}
if(!exists("RP")) RP <- PART[, c("quadrant", "x", "y")]
if(!is.numeric(order) || is.null(dim(RP))) RP <- PART[, c("quadrant", "x", "y")] else RP[, `:=`(prior.quadrant = NULL)]
PART[, `:=`(counts = NULL, old.counts = NULL, q_new = NULL)]
RP <- data.table::setorder(RP[], quadrant)[]
if(mean(c(length(unique(diff(x))), length(unique(x)))) < .33*length(x)) RP$x <- ifelse(RP$x%%1 < .5, floor(RP$x), ceiling(RP$x))
if(Voronoi) {
abline(v = c(PART[ ,min(x), by=prior.quadrant]$V1,max(x)), lty = 3)
if(min.obs.stop) points(RP$x, RP$y, pch = 15, lwd = 2, col = "red")
title(main = paste0("NNS Order = ", i), cex.main = 2)
}
if(min.obs.stop == FALSE) RP <- NULL
return(list(order = i, dt = PART[], regression.points = RP))
}
} |
p_functions <-
function (package = "base", all = FALSE, character.only = FALSE){
if (!character.only & is.name(substitute(package))) {
package <- deparse(substitute(package))
}
if (identical(package, character(0))) {
package <- "base"
}
ns <- loadNamespace(package)
if(all){
packagefunctions <- ls(ns)
}else{
packagefunctions <- getNamespaceExports(ns)
}
datas <- suppressWarnings(utils::data(package = package)[["results"]][, 3])
packagefunctions <- packagefunctions[!packagefunctions %in% datas]
return(sort(packagefunctions))
}
p_funs <- p_functions |
multi.collinear <- function(x, perm = FALSE, leave.out = FALSE, n = 99, p = 1e-07, na.rm = FALSE) {
if (!inherits(x, "data.frame") & !inherits(x, "matrix")) stop("x must be a data.frame or matrix")
if ( (dim(x)[2] < 2) == TRUE) stop("Need at least two parameters to test")
if(!inherits(x, "matrix")) x <- as.data.frame(x)
if(na.rm) { x <- stats::na.omit(x) }
qrd <- function(x) {
x <- as.matrix(x)
n <- ncol(x)
m <- nrow(x)
q <- matrix(0, m, n)
r <- matrix(0, n, n)
for (j in 1:n) {
v = x[,j]
if (j > 1) {
for (i in 1:(j-1)) {
r[i,j] <- t(q[,i]) %*% x[,j]
v <- v - r[i,j] * q[,i]
}
}
r[j,j] <- sqrt(sum(v^2))
q[,j] <- v / r[j,j]
}
return( list('qr'=q, 'rank'=r) )
}
mc.test <- function(v, p) {
qrx <- qr(v, tol = p)
if (length(names(v)[qrx$pivot[1:qrx$rank]]) != length(v) ) {
keep <- names(v)[qrx$pivot[1:qrx$rank]]
return(paste(setdiff(names(v), keep)))
}
return(NULL)
}
if(perm == TRUE) {
freq <- data.frame(variables = names(x), frequency = 0)
if(leave.out == TRUE) freq <- data.frame(freq, leave.out = 0)
for(i in 1:n) {
x.data <- x[,sample(1:length(names(x)))]
if(leave.out == TRUE) {
x.data <- x.data[,-sample(1:length(names(x.data)),1)]
lo.idx <- which(freq$variables %in% setdiff(names(x), names(x.data)))
freq[lo.idx,]$leave.out <- freq[lo.idx,]$leave.out + 1
}
mc <- mc.test(x.data, p = p)
if(!is.null(mc)) {
idx <- which(freq$variables %in% mc)
freq[idx,]$frequency <- freq[idx,]$frequency + 1
}
}
return( freq )
} else {
mc <- mc.test(x, p = p)
if( length(mc) > 0) {
return( mc )
} else {
return( NULL )
}
}
} |
"ncvs_personal_codebook" |
setGeneric(name = ".VerifyTxName",
def = function(txName, ...) { standardGeneric(".VerifyTxName") })
setMethod(f = ".VerifyTxName",
signature = c(txName = "ANY"),
definition = function(txName, ...) {
stop("txName must be a vector of character objects",
call. = FALSE)
})
setMethod(f = ".VerifyTxName",
signature = c(txName = "character"),
definition = function(txName, ..., data) {
if (length(x = txName) == 0L) {
stop("txName must be provided", call. = FALSE)
}
test <- tryCatch(expr = data[,txName,drop = FALSE],
error = function(e) { return( NULL ) })
if (is.null(x = test) && length(x = txName) == 1L) {
dataNames <- colnames(x = data)
cov <- strsplit(x = dataNames, split = ".", fixed = TRUE)
areAs <- lapply(X = cov, FUN = function(x){x[[ 1L ]] == txName})
if (sum(areAs) > 0L) {
nDP <- sum(areAs)
message("detected ", nDP, "decision points")
txName <- dataNames[areAs]
return( .VerifyTxName(txName = txName, data = data) )
}
}
test <- tryCatch(expr = data[,txName,drop = FALSE],
error = function(e) {
stop("unable to retrieve 'txName' from data",
e$message, call. = FALSE)
})
if (any(sapply(X = test, FUN = is.nan))) {
stop("txName cannot include NaN values", call. = FALSE)
}
for (i in 1L:ncol(x = test)) {
if (!is.factor(x = test[,i])) {
if (is.numeric(x = test[,i])) {
if (!isTRUE(all.equal(target = test[,i],
current = round(x = test[,i], digits = 0L)))) {
stop("treatment variable must be integer or factor",
call. = FALSE)
}
} else {
stop("treatment variable must be integer or factor",
call. = FALSE)
}
}
}
return( txName )
}) |
NO_PANEL <- -1L
locate_grid <- function(data, panels, rows = NULL, cols = NULL, margins = FALSE) {
if (empty(data)) {
return(cbind(data, PANEL = integer(0)))
}
rows <- as.quoted(rows)
cols <- as.quoted(cols)
vars <- c(names(rows), names(cols))
margin_vars <- list(intersect(names(rows), names(data)),
intersect(names(cols), names(data)))
data <- reshape2::add_margins(data, margin_vars, margins)
facet_vals <- quoted_df(data, c(rows, cols))
missing_facets <- setdiff(vars, names(facet_vals))
if (length(missing_facets) > 0) {
to_add <- unique(panels[missing_facets])
data_rep <- rep.int(1:nrow(data), nrow(to_add))
facet_rep <- rep(1:nrow(to_add), each = nrow(data))
data <- plyr::unrowname(data[data_rep, , drop = FALSE])
facet_vals <- plyr::unrowname(cbind(
facet_vals[data_rep, , drop = FALSE],
to_add[facet_rep, , drop = FALSE]))
}
if (nrow(facet_vals) == 0) {
data$PANEL <- NO_PANEL
} else {
facet_vals[] <- lapply(facet_vals[], as.factor)
facet_vals[] <- lapply(facet_vals[], addNA, ifany = TRUE)
keys <- plyr::join.keys(facet_vals, panels, by = vars)
data$PANEL <- panels$PANEL[match(keys$x, keys$y)]
}
data[order(data$PANEL), , drop = FALSE]
}
locate_wrap <- function(data, panels, vars) {
if (empty(data)) {
return(cbind(data, PANEL = integer(0)))
}
vars <- as.quoted(vars)
facet_vals <- quoted_df(data, vars)
facet_vals[] <- lapply(facet_vals[], as.factor)
missing_facets <- setdiff(names(vars), names(facet_vals))
if (length(missing_facets) > 0) {
to_add <- unique(panels[missing_facets])
data_rep <- rep.int(1:nrow(data), nrow(to_add))
facet_rep <- rep(1:nrow(to_add), each = nrow(data))
data <- plyr::unrowname(data[data_rep, , drop = FALSE])
facet_vals <- plyr::unrowname(cbind(
facet_vals[data_rep, , drop = FALSE],
to_add[facet_rep, , drop = FALSE]))
}
keys <- plyr::join.keys(facet_vals, panels, by = names(vars))
data$PANEL <- panels$PANEL[match(keys$x, keys$y)]
data[order(data$PANEL), ]
} |
checkLEs <- function(filePaths, leDF) {
if(length(filePaths) < 2) {stop("At least two data bases must be specified ('filePath' must be a character vector of length 2 or more).")}
allV <- list(trendLevel1 = "trendLevel1", trendLevel2 = "trendLevel2", parameter = "parameter", linkingError="linkingError", depVar = "depVar")
allN <- lapply(allV, FUN=function(ii) {eatTools::existsBackgroundVariables(dat = leDF, variable=ii, warnIfMissing = TRUE)})
namlis<- lapply(filePaths, eatGADS::namesGADS)
depVar<- unique(leDF[,allN[["depVar"]]])
dep_notIn_nam_list <- lapply(seq_along(namlis), function(i) {
nam <- namlis[[i]]
dep_notIn_nam <- setdiff(depVar, unlist(nam))
if(length(dep_notIn_nam) > 0) {message("The following variables have linking errors but are not variables in data base ", i, ": '", paste0(dep_notIn_nam, collapse = "', '"),"'")}
return(dep_notIn_nam) })
tLevel<- unique(unlist(leDF[,c(allN[["trendLevel1"]], allN[["trendLevel2"]])]))
if ( length(tLevel) != length(filePaths)) {warning(paste0("Number of trend levels do not match: Expect ",length(filePaths)," trend levels in data base ('filePaths' has length ",length(filePaths),"). ",length(tLevel), " trend levels for linking errors ('",paste(tLevel, collapse="', '"),"') found."))}
return(list(dep_notIn_nam = dep_notIn_nam_list)) } |
library(dplyr)
filter(mtcars, cyl == 8)
filter(mtcars, cyl < 6)
filter(mtcars, cyl < 6 & vs == 1)
filter(mtcars, cyl < 6 | vs == 1)
filter(mtcars, cyl < 6, vs == 1)
filter(mtcars, row_number() == 1L)
filter(mtcars, row_number() == n())
filter(mtcars, between(row_number(), 5, n()-2))
mutate(mtcars, displ_l = disp / 61.0237)
transmute(mtcars, displ_l = disp / 61.0237)
mutate(mtcars, cyl = NULL)
slice(mtcars, 1L)
slice(mtcars, n())
slice(mtcars, 5:n())
slice(mtcars, c(2,4,5,10))
(by_cyl <- group_by(mtcars, cyl))
slice(by_cyl, 1:2)
tbl_df(mtcars)
glimpse(mtcars)
View(mtcars)
df = tibble::rownames_to_column(df, var='cars')
df2 = mtcars
names(df)
tibble::has_rownames(mtcars)
tibble::has_rownames(df)
head(df2[1:5])
tibble::remove_rownames(df2)
tibble::rowid_to_column(df, var = "rowid")
head(df[1:5])
tibble::column_to_rownames(df, var = "cars")
mtcars %>% group_by(am)
mtcars %>% group_by(am) %>% summarise(mean(mpg), max(wt))
summarise(mtcars, mean(disp))
summarise(group_by(mtcars, cyl), mean(disp))
summarise(group_by(mtcars, cyl), m = mean(disp), sd = sd(disp))
mtcars %>% group_by(am, gear) %>% summarise_all(mean)
mtcars %>% group_by(am, gear)%>% summarise_all(c("min", "max"))
mtcars %>% group_by(am, gear)%>% summarise_all(funs(med = median))
mtcars %>% summarise(mean(mpg), max(wt))
mtcars %>% summarise_all(mean)
mtcars %>% select(wt, gear)%>% summarise_all(c("min", "max"))
mtcars %>% summarise_all(funs(med = median))
mtcars %>% summarise_if(is.numeric, mean, na.rm = TRUE)
iris %>% summarise_if(is.numeric, mean, na.rm = TRUE)
mtcars %>% summarise_at(c("mpg", "wt"), mean, na.rm = TRUE)
dplyr::tbl_df(iris)
print(dplyr::tbl_df(mtcars), n=20)
tbl_df(mtcars) %>% print(n = Inf)
tbl_df(mtcars) %>% print(width = Inf)
tbl_df(mtcars) %>% as.data.frame(mtcars)
glimpse(mtcars)
df = mtcars
row.names(df) = NULL
df %>% select(mpg)
select(mtcars, mpg, vs)
mtcars %>% dplyr::select(vs, mpg, wt)
mtcars %>% group_by(cyl) %>% summarise(avgwt = mean(wt), meanhp = mean(hp)) %>% arrange( desc(meanhp), avgwt)
mtcars
names(mtcars)
filter(mtcars, mpg > 23 | wt < 2)
mtcars %>% filter(mpg > 23 & wt > 2)
mtcars %>% select(mpg, wt) %>% filter(mpg > 23)
mtcars %>%
filter(iris, Sepal.Length > 7)
filter(mtcars, cyl == 4)
distinct(mtcars)
df = data.frame(a=c(2,2),b=c(2,2))
df
distinct(df)
sample_frac(mtcars, 0.2, replace=T)
sample_n(mtcars, 60, replace=T) %>% select(mpg)
slice(mtcars,10:14)
top_n(mtcars,-2, mpg)
select(mtcars, mpg) %>% arrange(desc(mpg))
select(mtcars, mpg, wt)
select(mtcars, contains('a'))
names(mtcars)
select(mtcars, contains ='vs')
select(mtcars, everything())
mtcars %>% group_by(cyl, am) %>% summarise_all(mean)
df = data.frame(marks=c(1,2,3,7,1))
cbind(df, dplyr::mutate_each(df, funs(min_rank)))
mtcars %>% lead() %>% lag()
dplyr::n(mtcars)
select(mtcars, mpg2 = mpg)
df = mtcars[1:4]
names(df) = c('MPG','C1','C2','C3')
df= rename(df, C5=C1)
names(df)
df
rename(df, marks2 = marks)
df %>% mutate(marks2 = marks + 2, marks3 = marks + 4)
df %>% transmute(marks2 = marks + 2, marks3 = marks + 4)
library(nycflights13)
data(flights)
destinations <- group_by(flights, dest)
destinations
summarise(destinations,
planes = n_distinct(tailnum),
flights = n()
)
select(iris, -ends_with("Width")) %>% head
vars <- c("Petal.Length", "Petal.Width1")
select(iris, from=1, to=n())
filter(mtcars, row_number() == n())
filter(mtcars, between(row_number(), 5, n()))
mtcars %>% group_by(cyl) %>% filter(1:3)
> mtcars %.% group_by(cyl) %.% filter(sample(n(), 10))
group_by( mtcars, cyl ) %>% integer_filter(1:2)
?integer_filter
mtcars %>% slice(from = 1, to = n(), by = 2)
slice(mtcars, from = 2, to = n(), by = 2)
slice(mtcars, from = 1, to = 10)
slice(mtcars, n()-10: n())
slice(mtcars, 1:4)
mtcars
df <- tibble(
g1 = c(1, 1, 2, 2, 2),
g2 = c(1, 2, 1, 2, 1),
a = sample(5),
b = sample(5)
)
df
df %>% slice(n()-2:n())
var1 <- quo(letters[1:5])
var1
quo(toupper(!!var1))
quo(toupper(letters[1:5]))
quo(toupper(!!letters[1:5]))
quo(toupper(UQ(letters[1:5])))
toupper(letters[1:5])
quote(toupper(letters[1:5]))
head(mtcars)
slice(mtcars, 1:5)
slice(mtcars, 1)
slice(mtcars, 1L)
tail(mtcars,n=5)
slice(mtcars, n()-5:n())
slice(mtcars, n())
slice(mtcars, n() - 1)
mtcars %>% top_n(2)
mtcars %>% top_n(-2)
mtcars %>% group_by(cyl) %>% tally(cyl) %>% top_n(1, cyl)
dim(mtcars)
bind_rows(mtcars, mtcars)
bind_cols(mtcars,mtcars)
gtable_combine(list(mtcars, mtcars))
dim_desc(mtcars)
f1 <- factor("a")
f2 <- factor("b")
c(f1, f2)
unlist(list(f1, f2))
gtable_combine(f1, f2)
gtable_combine(list(f1, f2))
slice( mtcars, c(1L,3L,2L,7L))
by_cyl <- mtcars %>% group_by(cyl)
mtcars %>% slice(1)
by_cyl %>% slice(1)
mtcars %>% slice(n())
by_cyl %>% slice(n())
mtcars %>% slice(10)
by_cyl %>% slice(10)
mtcars %>% slice(1:9)
by_cyl %>% slice(1:3)
mtcars %>% slice(c(1, 3, 9))
by_cyl %>% slice(c(1, 3, 5))
mtcars %>% slice(seq(2, n(), by = 2))
by_cyl %>% slice(seq(2, n(), by = 2)) %>% select(cyl, everything())
mtcars %>% group_by(cyl, am) %>% slice(1)
by_cyl %>% slice(1)
by_cyl %>% slice()
df <- data.frame(x = c(10, 4, 1, 6, 3, 1, 1))
df %>% top_n(2)
df %>% top_n(-2) |
library(ggplot2)
library(patchwork)
data(VADeaths)
reshape_VADeaths = transform(
expand.grid(sex = colnames(VADeaths), age = rownames(VADeaths)),
rates = as.vector(t(VADeaths))
)
p = ggplot(data = reshape_VADeaths,
aes(x = age, y = rates, fill = sex)) +
labs(x = "年龄", y = "死亡率", fill = "性别") +
scale_fill_discrete(labels = c("农村男性", "农村女性",
"城市男性", "城市女性"))
p1 = p + geom_col(position = "stack")
p2 = p + geom_col(position = "dodge")
print(p1 / p2) |
makeRLearner.regr.nnet = function() {
makeRLearnerRegr(
cl = "regr.nnet",
package = "nnet",
par.set = makeParamSet(
makeIntegerLearnerParam(id = "size", default = 3L, lower = 0L),
makeIntegerLearnerParam(id = "maxit", default = 100L, lower = 1L),
makeLogicalLearnerParam(id = "skip", default = FALSE),
makeNumericLearnerParam(id = "rang", default = 0.7),
makeNumericLearnerParam(id = "decay", default = 0, lower = 0),
makeLogicalLearnerParam(id = "Hess", default = FALSE),
makeLogicalLearnerParam(id = "trace", default = TRUE, tunable = FALSE),
makeIntegerLearnerParam(id = "MaxNWts", default = 1000L, lower = 1L, tunable = FALSE),
makeNumericLearnerParam(id = "abstol", default = 1.0e-4),
makeNumericLearnerParam(id = "reltol", default = 1.0e-8)
),
par.vals = list(size = 3L),
properties = c("numerics", "factors", "weights"),
name = "Neural Network",
short.name = "nnet",
note = "`size` has been set to `3` by default.",
callees = "nnet"
)
}
trainLearner.regr.nnet = function(.learner, .task, .subset, .weights = NULL, ...) {
if (is.null(.weights)) {
f = getTaskFormula(.task)
nnet::nnet(f, data = getTaskData(.task, .subset), linout = TRUE, ...)
} else {
f = getTaskFormula(.task)
nnet::nnet(f, data = getTaskData(.task, .subset), linout = TRUE, weights = .weights, ...)
}
}
predictLearner.regr.nnet = function(.learner, .model, .newdata, ...) {
predict(.model$learner.model, newdata = .newdata, ...)[, 1L]
} |
L_regress <- function(y, x, verb=TRUE) {
m1=anova(lm(y ~ x))
tss <- sum(m1$`Sum Sq`)
N <- (sum(m1$Df)+1)
lin_df <- m1$Df[1]
S_LN <- -0.5 * N * (log(m1$`Sum Sq`[2]) - log(tss))
k2 <- 1
k1 <- m1$Df[1] + 1
Ac <- k1 - k2
S_LNc <- S_LN - Ac
m3 <- anova(lm(y ~ x + I(x^2) + I(x^3)))
m3
quad_ss <- m3$`Sum Sq`[2] + m3$`Sum Sq`[1]
unex_q_ss <- tss - quad_ss
S_QL <- -0.5 * N * (log(unex_q_ss) - log(m1$`Sum Sq`[2]))
S_QLc <- S_QL - 1
unex_c_ss <- tss - sum(m3$`Sum Sq`[1:3])
S_QC <- -0.5 * N * (log(unex_q_ss) - log(unex_c_ss))
S_QCc <- S_QC + 1
plot(x, y)
fit1<-lm(y ~ poly(x,1,raw=TRUE))
linear = fit1$coefficient[2]*x + fit1$coefficient[1]
fit2<-lm(y ~ poly(x,2,raw=TRUE))
quadratic = fit2$coefficient[3]*x^2 + fit2$coefficient[2]*x + fit2$coefficient[1]
fit3<-lm(y ~ poly(x,3,raw=TRUE))
cubic = fit3$coefficient[4]*x^3 + fit3$coefficient[3]*x^2 +
fit3$coefficient[2]*x + fit3$coefficient[1]
lines(x,linear, col="black")
lines(x,quadratic, col="red")
lines(x,cubic, col="blue",lty=2)
if(verb) cat("\nSupport for linear fit over null model ", round(S_LNc,3), sep= "",
"\n Support for quadratic versus linear fit = ", round(S_QLc,3),
"\n Support for quadratic versus cubic = ", round(S_QCc,3),
"\n N = ", N,
"\n P values for linear, quadratic and cubic fits = ", m3$`Pr(>F)`[1],
" ", m3$`Pr(>F)`[2], " ", m3$`Pr(>F)`[3], "\n ")
invisible(list(S.LNc = S_LNc, S.LN = S_LN, S.QLc = S_QLc, S.QL = S_QL,
S.QCc = S_QCc, N = N, p.vals = m3$`Pr(>F)`[1:3]))
} |
plotTsAnom <-
function(x, xlab = NULL, ylab = NULL,
strip.labels = colnames(x), ...) {
if (!is.ts(x)) stop("x must be of class 'ts'")
if (missing(xlab)) xlab <- ""
if (missing(ylab)) ylab <- ""
if (is.matrix(x)) {
strip.labels <- strip.labels
colnames(x) <- gsub(' ', '.', colnames(x))
x.mean <- apply(x, 2, mean, na.rm = TRUE)
x.mean.df <- data.frame(variable = factor(names(x.mean)), x.mean)
d <- data.frame(time=as.Date(time(x)), x)
d1 <- melt(d, id = 'time')
d2 <- merge(d1, x.mean.df)
d3 <- within(d2, variable <- factor(variable, levels = levels(variable),
labels = strip.labels))
d3 <- na.omit(d3)
d3$ymin. <- with(d3, ifelse(value >= x.mean, x.mean, value))
d3$ymax. <- with(d3, ifelse(value >= x.mean, value, x.mean))
d3$colour. <- with(d3, value >= x.mean)
ggplot(d3, aes_string(x="time", y="value", ymin="ymin.", ymax="ymax.",
colour="colour.")) +
geom_linerange() +
geom_hline(aes(yintercept = x.mean), size = 0.25) +
labs(x = xlab, y = ylab) +
facet_wrap(~ variable, ...) +
theme(legend.position='none', panel.grid.minor = element_blank(),
axis.text.x = element_text(angle=45, colour="grey50"))
} else {
x.mean <- mean(x, na.rm = TRUE)
d1 <- data.frame(time = as.Date(time(x)), x = as.numeric(x), x.mean)
d1 <- na.omit(d1)
d1$ymin. <- with(d1, ifelse(x >= x.mean, x.mean, x))
d1$ymax. <- with(d1, ifelse(x >= x.mean, x, x.mean))
d1$colour. <- with(d1, x >= x.mean)
ggplot(d1, aes_string(x="time", y="x", ymin="ymin.", ymax="ymax.",
colour="colour.")) +
geom_linerange() +
geom_hline(aes(yintercept = x.mean), size = 0.25) +
labs(x = xlab, y = ylab) +
theme(legend.position='none', panel.grid.minor = element_blank(),
axis.text.x = element_text(angle=45, colour="grey50"))
}
} |
library(chorddiag)
m <- matrix(c(11975, 5871, 8916, 2868,
1951, 10048, 2060, 6171,
8010, 16145, 8090, 8045,
1013, 990, 940, 6907),
byrow = TRUE,
nrow = 4, ncol = 4)
groupNames <- c("black", "blonde", "brown", "red")
row.names(m) <- groupNames
colnames(m) <- groupNames
m
chorddiag(m, showGroupnames = T)
groupColors <- c("
chorddiag(m, groupColors = groupColors, groupnamePadding = 50, margin = 100,
tooltipGroupConnector = " prefer ")
chorddiag(t(m), groupColors = groupColors, groupnamePadding = 50, margin = 100,
tooltipGroupConnector = " prefered by ")
chorddiag(100*m/rowSums(m), groupColors = groupColors, groupnamePadding = 30,
margin = 60, tickInterval = 5,
tooltipGroupConnector = " prefer ", tooltipUnit = " %",
precision = 2)
if (requireNamespace("dplyr", quietly = TRUE)) {
library(dplyr)
titanic_tbl <- tibble::as_tibble(Titanic)
titanic_tbl <- titanic_tbl %>%
mutate(across(where(is.character), as.factor))
by_class_survival <- titanic_tbl %>%
group_by(Class, Survived) %>%
summarise(Count = sum(n)) %>%
ungroup()
titanic.mat <- matrix(by_class_survival$Count, nrow = 4, ncol = 2, byrow = TRUE)
dimnames(titanic.mat ) <- list(Class = levels(titanic_tbl$Class),
Survival = levels(titanic_tbl$Survived))
print(titanic.mat)
groupColors <- c("
chorddiag(titanic.mat, type = "bipartite",
groupColors = groupColors,
tickInterval = 50)
} |
balancedSplit <- function(fac, size) {
trainer <- rep(FALSE, length(fac))
for (lev in levels(fac)) {
N <- sum(fac==lev)
wanted <- max(1, trunc(N*size))
trainer[fac==lev][sample(N, wanted)] <- TRUE
}
trainer
} |
.node.desc<- function(tr, node)
{
ee<- tr$edge
nT<- length(tr$tip.label)
nN<- tr$Nnode
d.tips<- numeric()
d.nodes<- numeric()
desc<- ee[ee[,1]==node,2]
d.tips<- append(d.tips, desc[desc<=nT])
d.nodes<- append(d.nodes, desc[desc>nT])
if (node<=nT) d.tips<- node
else{
while(!all(desc<=nT))
{
desc<- ee[ee[,1] %in% desc,2]
d.tips<- append(d.tips, desc[desc<=nT])
d.nodes<- append(d.nodes, desc[desc>nT])
}
}
return(list(tips=d.tips, nodes=d.nodes, node.label=node))
} |
library(testthat)
context("taxmap parsers")
test_that("Taxmap can be intialized from complex data", {
my_vector <- c("A;B;C;D", "A;E;F;G", "A;B;H;I")
my_list_1 <- list("A;B;C;D", "A;E;F;G", c("A;B", "H;I"))
my_list_2 <- list(c(Phylum = "A", Class = "B", Order = "C", Family = "D"),
c(Phylum = "A", Class = "E", Order = "F", Family = "G"),
c(Phylum = "A", Class = "B", Order = "H", Family = "I"))
my_frame <- data.frame(tax = c("A;B;C", "A;E;F", "A;B;H"),
species = c("D", "G", "I"))
my_frames <- list(data.frame(tax = c("A", "B", "C", "D")),
data.frame(tax = c("A", "E", "F", "G")),
data.frame(tax = c("A", "B", "H", "I")))
vector_result <- parse_tax_data(my_vector, include_tax_data = FALSE)
list_1_result <- parse_tax_data(my_list_1, include_tax_data = FALSE)
list_2_result <- parse_tax_data(my_list_2, include_tax_data = FALSE)
frame_result <- parse_tax_data(my_frame, class_cols = c("tax", "species"),
include_tax_data = FALSE)
expect_equal(length(vector_result$taxon_ids()), 9)
expect_equal(length(vector_result$roots()), 1)
expect_equal(vector_result, list_1_result)
expect_equal(vector_result, list_2_result)
expect_equal(vector_result, frame_result)
result <- parse_tax_data(my_list_2, include_tax_data = FALSE,
named_by_rank = TRUE)
expect_true(all(c("Phylum", "Class", "Order", "Family") %in% result$taxon_ranks()))
test_obj <- parse_tax_data(my_vector, list(test = letters[1:3]),
mappings = c("{{index}}" = "{{index}}"))
expect_equal(test_obj$map_data(test, taxon_names),
structure(c("D", "G", "I"), .Names = c("a", "b", "c")))
a_dataset <- data.frame(my_index = c(3, 2),
dataset_key = c("key_3", "key_2"))
rownames(a_dataset) <- c("name_3", "name_2")
a_tax_data <- data.frame(tax = c("A;B;C", "A;E;F", "A;B;H"),
species = c("D", "G", "I"),
tax_key = c("key_1", "key_2", "key_3"))
rownames(a_tax_data) <- c("name_1", "name_2", "name_3")
test_obj <- parse_tax_data(a_tax_data, class_cols = c("tax", "species"),
datasets = list(my_data = a_dataset),
mappings = c("{{index}}" = "my_index"))
expect_equal(test_obj$data$my_data$taxon_id, c("j", "i"))
test_obj <- parse_tax_data(a_tax_data, class_cols = c("tax", "species"),
datasets = list(my_data = a_dataset),
mappings = c("{{name}}" = "{{name}}"))
expect_equal(test_obj$data$my_data$taxon_id, c("j", "i"))
test_obj <- parse_tax_data(a_tax_data, class_cols = c("tax", "species"),
datasets = list(my_data = a_dataset),
mappings = c("tax_key" = "dataset_key"))
expect_equal(test_obj$data$my_data$taxon_id, c("j", "i"))
my_frames <- list(data.frame(tax = c("A", "B", "C", "D"),
my_rank = c("P", "C", "O", "F")),
data.frame(tax = c("A", "E", "F", "G"),
my_rank = c("P", "C", "O", "F")),
data.frame(tax = c("A", "B", "H", "I"),
my_rank = c("P", "C", "O", "F")))
test_obj <- parse_tax_data(my_frames, class_cols = "tax")
expect_equal(length(test_obj$taxon_ids()), nrow(test_obj$data$tax_data))
expect_true("my_rank" %in% colnames(test_obj$data$tax_data))
raw_data <- c("K__Mammalia;P__Carnivora;C__Felidae;G__Panthera;S__leo",
"K__Mammalia;P__Carnivora;C__Felidae;G__Panthera;S__tigris",
"K__Mammalia;P__Carnivora;C__Felidae;G__Ursus;S__americanus")
result <- parse_tax_data(raw_data, class_sep = ";", class_regex = "^(.+)__(.+)$",
class_key = c(my_rank = "taxon_rank", tax_name = "taxon_name"),
include_match = FALSE)
expect_true(all(c("K", "P", "C", "G", "S") %in% result$taxon_ranks()))
expect_error(parse_tax_data(raw_data, class_sep = ";", class_regex = "^(.+)__(.+)$",
class_key = c(my_rank = "taxon_rank", tax_name = "taxon_name"),
include_match = FALSE, named_by_rank = TRUE))
result <- parse_tax_data(raw_data, class_sep = ";", class_regex = "^(.+)__(.+)$",
class_key = c("taxon_rank", "taxon_name"))
expect_true(all(c("taxon_rank_match", "taxon_name_match") %in% colnames(result$data$class_data)))
result <- parse_tax_data(raw_data, class_sep = ";", class_regex = "^(.+)__(.+)(.+)(.+)$",
class_key = c("taxon_rank", "taxon_name", "info", "info"))
expect_true("info_match_1" %in% colnames(result$data$class_data))
result <- parse_tax_data(raw_data, class_sep = ";", class_regex = "^(.+)__(.+)(.+)(.+)$",
class_key = c("taxon_rank", "taxon_name", "info", x = "info"))
expect_true(all(c("info_match", "x") %in% colnames(result$data$class_data)))
expect_error(parse_tax_data(raw_data, class_sep = ";",
class_regex = "^(.+)_invalid_(.+)$",
class_key = c(rank = "info",
tax_name = "taxon_name"),
include_match = FALSE),
"could not be matched by the regex supplied")
expect_error(parse_tax_data(raw_data, class_cols = "Not a column"),
'No item')
expect_error(parse_tax_data(1:3, class_cols = "Not a column"),
'No item named')
expect_error(parse_tax_data(1:3, class_cols = 10),
'out of bounds for inputs:')
expect_error(parse_tax_data(1:3, datasets = list(), mappings = 1),
'must have the same number of values')
expect_error(parse_tax_data(1:3, datasets = 1, mappings = 1),
'The mapping options must be named.')
expect_error(parse_tax_data(1:3, datasets = 1, mappings = c(sdaff = 2)),
'Invalid inputs to the `mappings` found')
expect_equal(taxon_names(parse_tax_data(c())), character(0))
expect_equal(taxon_names(parse_tax_data(character(0))), character(0))
expect_equal(taxon_names(parse_tax_data(list())), character(0))
expect_equal(taxon_names(parse_tax_data(data.frame())), character(0))
})
test_that("Taxmap can be intialized from queried data", {
skip_on_cran()
raw_data <- data.frame(tax = c("Mammalia;Carnivora;Felidae",
"Mammalia;Carnivora;Felidae",
"Mammalia;Carnivora;Ursidae"),
species = c("Panthera leo",
"Panthera tigris",
"Ursus americanus"),
my_tax_id = c("9689", "9694", "9643"),
my_seq = c("AB548412", "FJ358423", "DQ334818"),
species_id = c("A", "B", "C"))
abundance <- data.frame(id = c("A", "B", "C", "A", "B", "C"),
sample_id = c(1, 1, 1, 2, 2, 2),
counts = c(23, 4, 3, 34, 5, 13))
common_names <- c(A = "Lion", B = "Tiger", C = "Bear", "Oh my!")
foods <- list(c("ungulates", "boar"),
c("ungulates", "boar"),
c("salmon", "fruit", "nuts"))
Sys.sleep(1)
name_result = lookup_tax_data(raw_data,
type = "taxon_name",
datasets = list(counts = abundance,
my_names = common_names,
foods = foods),
mappings = c("species_id" = "id",
"species_id" = "{{name}}",
"{{index}}" = "{{index}}"),
column = "species")
Sys.sleep(1)
expect_equal(lookup_tax_data("poa annus", type = "fuzzy_name")$taxon_names(),
lookup_tax_data("Poa annua", type = "taxon_name")$taxon_names())
Sys.sleep(1)
id_result = lookup_tax_data(raw_data,
type = "taxon_id",
datasets = list(counts = abundance,
my_names = common_names,
foods = foods),
mappings = c("species_id" = "id",
"species_id" = "{{name}}",
"{{index}}" = "{{index}}"),
column = "my_tax_id")
Sys.sleep(1)
seq_result = lookup_tax_data(raw_data,
type = "seq_id",
datasets = list(counts = abundance,
my_names = common_names,
foods = foods),
mappings = c("species_id" = "id",
"species_id" = "{{name}}",
"{{index}}" = "{{index}}"),
column = "my_seq")
Sys.sleep(1)
expect_equal(name_result, id_result)
expect_equal(name_result, seq_result)
expect_error(lookup_tax_data(1:3, type = "seq_id", database = "not valid"),
"not a valid database")
expect_error(lookup_tax_data(1:3, type = "seq_id", database = "bold"),
"not a valid database")
expect_error(lookup_tax_data(raw_data, column = "Not a column",
type = "seq_id"),
'No column "Not a column" in input table')
expect_error(lookup_tax_data(1:3, column = "Not a column", type = "seq_id"),
'No item named "Not a column" in the following inputs:')
expect_error(lookup_tax_data(1:3, column = 10, type = "seq_id"),
'out of bounds for inputs:')
Sys.sleep(1)
raw_data <- data.frame(species = c("Panthera leo",
"not a taxon",
"Ursus americanus"),
my_tax_id = c("9689", "not a taxon id 6", "9643"),
my_seq = c("AB548412", "777777777777", "DQ334818"),
species_id = c("A", "B", "C"))
expect_warning(result <- lookup_tax_data(raw_data, type = "taxon_name", column = "species"))
expect_warning(result <- lookup_tax_data(raw_data, type = "taxon_name", column = "species"), ask = FALSE)
expect_equal(unname(result$data$query_data$taxon_id[2]), "unknown")
expect_warning(result <- lookup_tax_data(raw_data, type = "taxon_id", column = "my_tax_id"))
expect_equal(unname(result$data$query_data$taxon_id[2]), "unknown")
expect_warning(result <- lookup_tax_data(raw_data, type = "seq_id", column = "my_seq"))
expect_equal(unname(result$data$query_data$taxon_id[2]), "unknown")
expect_equal(taxon_names(lookup_tax_data(c())), character(0))
expect_equal(taxon_names(lookup_tax_data(character(0))), character(0))
expect_equal(taxon_names(lookup_tax_data(list())), character(0))
expect_equal(taxon_names(lookup_tax_data(data.frame())), character(0))
})
test_that("Taxmap can be intialized from raw strings", {
raw_data <- c(">var_1:A--var_2:9689--non_target--tax:K__Mammalia;P__Carnivora;C__Felidae;G__Panthera;S__leo",
">var_1:B--var_2:9694--non_target--tax:K__Mammalia;P__Carnivora;C__Felidae;G__Panthera;S__tigris",
">var_1:C--var_2:9643--non_target--tax:K__Mammalia;P__Carnivora;C__Felidae;G__Ursus;S__americanus")
result <- extract_tax_data(raw_data,
key = c(var_1 = "info", var_2 = "info", tax = "class"),
regex = "^>var_1:(.+)--var_2:(.+)--non_target--tax:(.+)$",
class_sep = ";", class_regex = "^(.+)__(.+)$",
class_key = c(my_rank = "info", tax_name = "taxon_name"))
expect_equal(length(result$taxa), 8)
expect_equal(result$data$tax_data$var_1, c("A", "B", "C"))
expect_true("my_rank" %in% colnames(result$data$class_data))
raw_data <- c("K;Mammalia;P;Carnivora;C;Felidae;G;Panthera;S;leo;",
"K;Mammalia;P;Carnivora;C;Felidae;G;Panthera;S;tigris;",
"K;Mammalia;P;Carnivora;C;Felidae;G;Ursus;S;americanus;")
result <- extract_tax_data(raw_data,
key = c(tax = "class"),
regex = "(.*)",
class_regex = "(.+?);(.*?);",
class_key = c(my_rank = "info", tax_name = "taxon_name"))
expect_equal(length(result$taxa), 8)
expect_equal(length(result$roots()), 1)
expect_true("my_rank" %in% colnames(result$data$class_data))
raw_data <- c(">var_1:A--var_2:9689--non_target--tax:K__Mammalia;P__Carnivora;C__Felidae;G__Panthera;S__leo",
"not a match",
">var_1:C--var_2:9643--non_target--tax:K__Mammalia;P__Carnivora;C__Felidae;G__Ursus;S__americanus")
expect_warning(extract_tax_data(raw_data,
key = c(var_1 = "info", var_2 = "info", tax = "class"),
regex = "^>var_1:(.+)--var_2:(.+)--non_target--tax:(.+)$",
class_sep = ";", class_regex = "^(.+)__(.+)$",
class_key = c(my_rank = "info", tax_name = "taxon_name")),
"indexes failed to match the regex supplied")
expect_equal(taxon_names(extract_tax_data(c())), character(0))
expect_equal(taxon_names(extract_tax_data(character(0))), character(0))
expect_equal(taxon_names(extract_tax_data(list())), character(0))
})
test_that("Taxmap can be intialized from raw strings and lookup data", {
skip_on_cran()
raw_data <- c(">var_1:A--var_2:9689--non_target--tax:K__Mammalia;P__Carnivora;C__Felidae;G__Panthera;S__leo",
">var_1:B--var_2:9694--non_target--tax:K__Mammalia;P__Carnivora;C__Felidae;G__Panthera;S__tigris",
">var_1:C--var_2:9643--non_target--tax:K__Mammalia;P__Carnivora;C__Felidae;G__Ursus;S__americanus")
Sys.sleep(1)
result <- extract_tax_data(raw_data,
key = c(var_1 = "info", var_2 = "taxon_id", tax = "info"),
regex = "^>var_1:(.+)--var_2:(.+)--non_target--tax:(.+)$")
expect_true("ncbi_id" %in% colnames(result$data$tax_data))
expect_equivalent(result$roots(value = "taxon_names"), "cellular organisms")
}) |
insertSeparators <- function(dates) {
if (!any(stri_detect_regex(dates[!is.na(dates)], pattern = "[-/]"))) {
if (all(suppressWarnings(as.integer(dates[!is.na(dates)]) &
!is.na(as.integer(dates[!is.na(dates)]))))) {
dates <- vapply(dates, function(x) {
stri_c(stri_sub(x, from = 1, to = 4), "-",
stri_sub(x, from = 5, to = 6), "-",
stri_sub(x, from = 7, to = 8))
}, character(1))
}
}
dates
} |
elevenprobs <- function(X, parnames = FALSE) {
listp <- c(as.numeric(c(0.25, 0.5, 1) %o% 10^(-8:-1)), 0.15, 0.20)
ltX <- length(X)
p1 <- listp[findInterval(1/ltX, listp) + 1]
p2 <- listp[findInterval(1/ltX, listp) + 2]
p3 <- listp[findInterval(1/ltX, listp) + 3]
p11 <- c(p1, p2, p3, 0.25, 0.35, 0.50, 0.65, 0.75, 1-p3, 1-p2, 1-p1)
np11 <- character(length(p11))
for (i in 1:length(np11)) { np11[i] <- format(p11[i], nsmall=2, scientific=FALSE) }
names(p11) <- if (parnames) { np11 } else { NULL }
return(p11)
}
sevenprobs <- function(X, parnames = FALSE) {
listp <- c(as.numeric(c(0.25, 0.5, 1) %o% 10^(-8:-1)), 0.15, 0.20)
ltX <- length(X)
p1 <- listp[findInterval(1/ltX, listp) + 1]
p2 <- listp[findInterval(1/ltX, listp) + 2]
p7 <- c(p1, p2, 0.25, 0.50, 0.75, 1-p2, 1-p1)
np7 <- character(length(p7))
for (i in 1:length(np7)) { np7[i] <- format(p7[i], nsmall=2, scientific=FALSE) }
names(p7) <- if (parnames) { np7 } else { NULL }
return(p7)
}
fiveprobs <- function (X, i = 4, parnames = FALSE) {
X <- sort(as.numeric(X[is.finite(X)]))
N <- length(X)
if (i == 0) {
listp <- c(as.numeric(c(0.25, 0.5, 1) %o% 10^(-8:-1)),
0.15, 0.20)
p1 <- listp[findInterval(1/N, listp) + 1]
p5 <- c(p1, 0.25, 0.5, 0.75, 1-p1)
} else {
p5 <- c(i/(N+1), 0.25, 0.50, 0.75, (N+1-i)/(N+1))
}
if (parnames) {
np5 <- character(length(p5))
for (i in 1:length(np5)) {
np5[i] <- format(p5[i], nsmall = 2, scientific = FALSE)
}
names(p5) <- np5
}
return(p5)
}
checkquantiles <- function(x, proba = FALSE, acceptNA = FALSE, STOP = TRUE) {
if (acceptNA) { x <- x[!is.na(x)] }
n <- length(x)
nt1 <- (n == 0)
nt2 <- anyNA(x)
nt3 <- (dimdim1(x) != 1)
nt4 <- (!is(x, "numeric"))
nt5 <- (proba && any(x < 0))
nt6 <- (proba && any(x > 1))
nt7 <- any(nt1, nt2, nt3, nt4, nt5, nt6)
nt1;nt2;nt3;nt4;nt5;nt6;nt7
z <- if (nt7) {
FALSE
} else {
if (n == 1) {
TRUE
} else {
(sum(x[2:n] <= x[1:(n-1)]) == 0)
}
}
if (STOP && !z) {
stop("Error in checkquantiles(): x is not correct (dim, NA, proba, etc...)
or not sorted. Please check.")
}
return(z)
}
estimkiener11 <- function(x11, p11, ord = 7, maxk = 10) {
if (length(x11) != 11) {stop("length(x11) is of wrong size. Must be 11.")}
if (length(p11) != 11) {stop("length(p11) is of wrong size. Must be 11.")}
if (!is.element(ord, 1:12)) {stop("ord must be in 1:12")}
names(x11) <- NULL
if (checkquantiles(x11, STOP = FALSE)) {
m <- x11[6]
k <- .hestimkappa11(x11, p11, ord, maxk)
d <- .hestimdelta11(x11, p11, ord)
d <- if (abs(d) > (0.90/k)) {sign(d)*0.90/k} else {d}
g <- .hestimgamma11(x11, p11, k, ord)
e <- kd2e(k, d)
a <- ke2a(k, e)
w <- ke2w(k, e)
z <- c(m, g, a, k, w, d, e)
} else {
z <- c(NA, NA, NA, NA, NA, NA, NA)
}
names(z) <- c("m", "g", "a", "k", "w", "d", "e")
return(z)
}
estimkiener7 <- function(x7, p7, maxk = 10) {
if (length(x7) != 7) {stop("length(x7) is of wrong size. Must be 7.")}
if (length(p7) != 7) {stop("length(p7) is of wrong size. Must be 7.")}
names(x7) <- NULL
if (checkquantiles(x7, STOP = FALSE)) {
dx <- abs(x7 - x7[4])
lp7 <- logit(p7)
m <- x7[4]
k <- ( .hestimkappa6(lp7[5], lp7[7], dx[1], dx[3], dx[5], dx[7], maxk)
+.hestimkappa6(lp7[5], lp7[6], dx[2], dx[3], dx[5], dx[6], maxk))/2
d <- log(dx[7]/dx[1]) /4/lp7[7] + log(dx[6]/dx[2]) /4/lp7[6]
d <- if (abs(d) > (0.90/k)) {sign(d)*0.90/k} else {d}
g <- sqrt(dx[3]*dx[5]) /2/k /sinh(lp7[5] /k)
e <- kd2e(k, d)
a <- ke2a(k, e)
w <- ke2w(k, e)
z <- c(m, g, a, k, w, d, e)
} else {
z <- c(NA, NA, NA, NA, NA, NA, NA)
}
names(z) <- c("m", "g", "a", "k", "w", "d", "e")
return(z)
}
estimkiener5 <- function(x5, p5, maxk = 20, maxe = 0.90) {
names(x5) <- names(p5) <- NULL
if (length(x5) != 5) {stop("length(x5) is wrong. Must be 5.")}
if (length(p5) != 5) {stop("length(p5) is wrong. Must be 5.")}
if (checkquantiles(x5, STOP = FALSE)) {
dx <- abs(x5 - x5[3])
lp <- logit(p5)
m <- x5[3]
d <- log((x5[5]-x5[3])/(x5[3]-x5[1]))/2/lp[5]
Q <- (x5[5]-x5[1])/(x5[4]-x5[2])*cosh(d*lp[4])/cosh(d*lp[5])
fOPT<- function (k, q, p, Q) {
(Q - sinh(logit(p)/k)/sinh(logit(q)/k))^2
}
k <- if (Q <= sinh(lp[5]/maxk)/sinh(lp[4]/maxk)) {
maxk
} else {
optimize(fOPT, c(0.1, maxk), tol = 0.0001,
q = p5[4], p = p5[5], Q = Q)$minimum
}
k <- min(k, abs(1/d)*maxe)
e <- kd2e(k, d)
a <- kd2a(k, d)
w <- kd2w(k, d)
g <- (x5[4]-x5[2])/4/k/sinh(lp[4]/k)/cosh(d*lp[4])
z <- c(m, g, a, k, w, d, e)
} else {
z <- c(NA, NA, NA, NA, NA, NA, NA)
}
names(z) <- c("m", "g", "a", "k", "w", "d", "e")
return(z)
}
.hestimdelta11 <- function(x11, p11, ord) {
if (length(x11) != 11) {stop("length(x11) is of wrong side. Must be 11.")}
if (length(p11) != 11) {stop("length(p11) is of wrong side. Must be 11.")}
if (!is.element(ord, 1:12)) {stop("ord must be an integer in 1:12")}
lp11 <- logit(p11)
dx <- abs(x11 - x11[6])
d1 <- log(dx[11]/dx[1]) /2/lp11[11]
d2 <- log(dx[10]/dx[2]) /2/lp11[10]
d3 <- log(dx[9] /dx[3]) /2/lp11[9]
d12 <- (d1 + d2)/2
d123 <- (d1 + d2 + d3)/3
d <- switch(as.character(ord),
"1"=d1, "2"=d2, "3"=d12, "4"=d123,
"5"=d1, "6"=d2, "7"=d12, "8"=d123,
"9"=d1,"10"=d2,"11"=d12,"12"=d123)
names(d) <- NULL
return(d)
}
.hestimkappa11 <- function(x11, p11, ord, maxk = 10) {
if (length(x11) != 11) {stop("length(x11) is of wrong size. Must be 11.")}
if (length(p11) != 11) {stop("length(p11) is of wrong size. Must be 11.")}
if (!is.element(ord, 1:12)) {stop("ord must be in 1:12")}
dx <- abs(x11 - x11[6])
lp11 <- logit(p11)
l65 <- lp11[7]
l75 <- lp11[8]
l3 <- lp11[9]
l2 <- lp11[10]
l1 <- lp11[11]
k <- switch(as.character(ord),
"1"= .hestimkappa6(l65, l1, dx[1], dx[5], dx[7], dx[11], maxk),
"2"= .hestimkappa6(l65, l2, dx[2], dx[5], dx[7], dx[10], maxk),
"3"= mean(c(.hestimkappa6(l65, l1, dx[1], dx[5], dx[7], dx[11], maxk),
.hestimkappa6(l65, l2, dx[2], dx[5], dx[7], dx[10], maxk))),
"4"= mean(c(.hestimkappa6(l65, l1, dx[1], dx[5], dx[7], dx[11], maxk),
.hestimkappa6(l65, l2, dx[2], dx[5], dx[7], dx[10], maxk),
.hestimkappa6(l65, l3, dx[3], dx[5], dx[7], dx[ 9], maxk))),
"5"= .hestimkappa6(l75, l1, dx[1], dx[4], dx[8], dx[11], maxk),
"6"= .hestimkappa6(l75, l2, dx[2], dx[4], dx[8], dx[10], maxk),
"7"= mean(c(.hestimkappa6(l75, l1, dx[1], dx[4], dx[8], dx[11], maxk),
.hestimkappa6(l75, l2, dx[2], dx[4], dx[8], dx[10], maxk))),
"8"= mean(c(.hestimkappa6(l75, l1, dx[1], dx[4], dx[8], dx[11], maxk),
.hestimkappa6(l75, l2, dx[2], dx[4], dx[8], dx[10], maxk),
.hestimkappa6(l75, l3, dx[3], dx[4], dx[8], dx[ 9], maxk))),
"9"= mean(c(.hestimkappa6(l65, l1, dx[1], dx[5], dx[7], dx[11], maxk),
.hestimkappa6(l75, l1, dx[1], dx[4], dx[8], dx[11], maxk))),
"10"= mean(c(.hestimkappa6(l65, l2, dx[2], dx[5], dx[7], dx[10], maxk),
.hestimkappa6(l75, l2, dx[2], dx[4], dx[8], dx[10], maxk))),
"11"= mean(c(.hestimkappa6(l65, l1, dx[1], dx[5], dx[7], dx[11], maxk),
.hestimkappa6(l65, l2, dx[2], dx[5], dx[7], dx[10], maxk),
.hestimkappa6(l75, l1, dx[1], dx[4], dx[8], dx[11], maxk),
.hestimkappa6(l75, l2, dx[2], dx[4], dx[8], dx[10], maxk))),
"12"= mean(c(.hestimkappa6(l65, l1, dx[1], dx[5], dx[7], dx[11], maxk),
.hestimkappa6(l65, l2, dx[2], dx[5], dx[7], dx[10], maxk),
.hestimkappa6(l65, l3, dx[3], dx[5], dx[7], dx[ 9], maxk),
.hestimkappa6(l75, l1, dx[1], dx[4], dx[8], dx[11], maxk),
.hestimkappa6(l75, l2, dx[2], dx[4], dx[8], dx[10], maxk),
.hestimkappa6(l75, l3, dx[3], dx[4], dx[8], dx[ 9], maxk))))
names(k) <- NULL
return(k)
}
.hestimgamma11 <- function(x11, p11, k, ord) {
dx <- abs(x11 - x11[6])
lp11 <- logit(p11)
g75 <- sqrt(dx[4]*dx[8]) /2/k /sinh(lp11[8] /k)
g65 <- sqrt(dx[5]*dx[7]) /2/k /sinh(lp11[7] /k)
gmm <- (g65 + g75)/2
g <- switch(as.character(ord),
"1"=g65, "2"=g65, "3"=g65, "4"=g65,
"5"=g75, "6"=g75, "7"=g75, "8"=g75,
"9"=gmm, "10"=gmm, "11"=gmm, "12"=gmm)
names(g) <- NULL
return(g)
}
.hestimkappa6 <- function(lg, lp, dx1p, dx1g, dxg, dxp, maxk = 10) {
h <- lp/lg
lgh <- lg * sqrt((-7 +3*h*h) /30)
rss <- 1.2 - 1.6 /(-1 + h*h)
psi <- sqrt(dx1p *dxp /dx1g /dxg) / h
k <- if (psi <= 1) { maxk } else {
lgh /sqrt(-1 + sqrt(1 + rss*(-1 +psi)))
}
k <- if (is.na(k)) { maxk } else { k }
k <- if (k < maxk) { k } else { maxk }
names(k) <- NULL
return(k)
} |
anthro_zscore_triceps_skinfold_for_age <-
function(triskin, age_in_days, age_in_months, sex, flag_threshold = 5,
growthstandards = growthstandards_tsanthro) {
anthro_zscore_adjusted(
name = "ts",
measure = triskin,
age_in_days = age_in_days,
age_in_months = age_in_months,
sex = sex,
growthstandards = growthstandards,
flag_threshold = flag_threshold,
allowed_age_range = c(91, 1856)
)
} |
rate_limit <- function(resource_match = NULL, token = NULL) {
json <- TWIT_get(token, "/1.1/application/rate_limit_status")
resources <- unlist(unname(json$resources), recursive = FALSE)
df <- tibble::tibble(
resource = names(resources),
limit = unlist(lapply(resources, "[[", "limit"), use.names = FALSE),
remaining = unlist(lapply(resources, "[[", "remaining"), use.names = FALSE),
reset_at = unlist(lapply(resources, "[[", "reset"), use.names = FALSE),
)
df$reset_at <- .POSIXct(df$reset_at)
df$reset <- round(difftime(df$reset_at, Sys.time(), units = "mins"))
if (!is.null(resource_match)) {
df <- df[grepl(resource_match, df$resource), ]
}
df
}
rate_limit_reset <- function(endpoint, token = NULL) {
endpoint <- gsub("^/", "", endpoint)
resource <- strsplit(endpoint, "/")[[1]][[1]]
params <- list(resource = resource)
json <- TWIT_get(token, "/1.1/application/rate_limit_status", params)
info <- json$resources[[resource]][[paste0("/", endpoint)]]
if (is.null(info)) {
stop("Unrecognised endpoint '", endpoint, "'", call. = FALSE)
}
if (info$remaining > 0) {
Sys.time()
} else {
.POSIXct(info$reset)
}
}
rate_limit_wait <- function(endpoint, token = NULL) {
reset <- unclass(rate_limit_reset(endpoint, token))
wait_until(reset, endpoint)
invisible()
}
wait_until <- function(until, api, fps = 8, verbose = TRUE) {
until <- unclass(until)
seconds <- until - unclass(Sys.time())
if (!verbose) {
Sys.sleep(ceiling(seconds))
return()
}
if (seconds < 0) {
return(invisible())
}
pb <- progress::progress_bar$new(
total = seconds * fps,
format = paste0(
"Rate limit exceeded for Twitter endpoint '", api, "'. ",
"Waiting for refresh in :mins mins :spin"
)
)
withr::defer(pb$terminate())
while(Sys.time() < until) {
Sys.sleep(1 / fps)
mins <- round((until - unclass(Sys.time())) / 60)
pb$tick(tokens = list(mins = mins))
}
invisible()
} |
test_that(". escaped around surround by anchors", {
expect_equal(escape_path("."), "^\\.$")
})
test_that("strip trailing /", {
expect_equal(escape_path("./"), "^\\.$")
}) |
ebic.lmm.bsreg <- function(target, dataset, id, wei = NULL, gam = NULL) {
dm <- dim(dataset)
n <- dm[1]
p <- dm[2]
if ( p > n ) {
res <- paste("The number of variables is higher than the sample size. No backward procedure was attempted")
} else {
tic <- proc.time()
logn <- log(n)
if ( is.null(gam) ) {
con <- 2 - log(p) / logn
} else con <- 2 * gam
if ( (con) < 0 ) con <- 0
tool <- numeric(p + 1)
ini <- lme4::lmer( target ~ dataset + (1|id), REML = FALSE, weights = wei )
bic0 <- BIC(ini)
tool[1] <- bic0
bic <- numeric(p)
M <- dim(dataset)[2] - 1
if ( M == 0 ) {
mod <- lme4::lmer( target ~ 1 + (1|id), REML = FALSE, weights = wei)
bic <- BIC(mod)
if (bic0 - bic < 0 ) {
info <- matrix( 0, nrow = 0, ncol = 2 )
mat <- matrix( c(1, bic - bic0), ncol = 2 )
} else {
info <- matrix( c(1, bic), ncol = 2 )
mat <- matrix(0, nrow = 0, ncol = 2 )
}
runtime <- proc.time() - tic
colnames(info) <- c("Variables", "eBIC")
colnames(mat) <- c("Variables", "eBIC")
res <- list(runtime = runtime, info = info, mat = mat )
} else {
for (j in 1:p) {
mod <- lme4::lmer( target ~ dataset[, -j, drop = FALSE] + (1|id), REML = FALSE, weights = wei)
bic[j] <- BIC(mod) + con * lchoose(p, M)
}
mat <- cbind(1:p, bic )
sel <- which.min( mat[, 2] )
info <- matrix( c(0, 0), ncol = 2 )
colnames(info) <- c("Variables", "eBIC")
colnames(mat) <- c("Variables", "eBIC")
if ( bic0 - mat[sel, 2] < 0 ) {
runtime <- proc.time() - tic
res <- list(runtime = runtime, info = info, mat = mat )
} else {
info[1, ] <- mat[sel, ]
mat <- mat[-sel, , drop = FALSE]
dat <- dataset[, -sel, drop = FALSE]
tool[2] <- info[1, 2]
i <- 2
if ( tool[2] != 0 ) {
while ( tool[i - 1] - tool[i ] > 0 & NCOL(dat) > 0 ) {
ini <- lme4::lmer( target ~ dat + (1|id), REML = FALSE, weights = wei )
M <- dim(dat)[2]
bic0 <- BIC(mod) + con * lchoose(p, M)
i <- i + 1
if ( M == 1 ) {
mod <- lme4::lmer(target ~ 1 + (1|id), REML = FALSE, weights = wei )
bic <- BIC(mod)
tool[i] <- bic
if (bic0 - bic < 0 ) {
runtime <- proc.time() - tic
res <- list(runtime = runtime, info = info, mat = mat )
} else {
runtime <- proc.time() - tic
info <- rbind(info, c(mat[, 1], bic) )
mat <- mat[-1, , drop = FALSE]
res <- list(runtime = runtime, info = info, mat = mat )
dat <- dataset[, -info[, 1], drop = FALSE ]
}
} else {
bic <- numeric(M)
M <- dim(dat)[2] - 1
for ( j in 1:(M + 1) ) {
mod <- lme4::lmer( target ~ dat[, -j, drop = FALSE] + (1|id), REML = FALSE, weights = wei )
bic[j] <- BIC(mod) + con * lchoose(p, M)
}
mat[, 2] <- bic
sel <- which.min( mat[, 2] )
tool[i] <- mat[sel, 2]
if ( bic0 - mat[sel, 2] < 0 ) {
runtime <- proc.time() - tic
res <- list(runtime = runtime, info = info, mat = mat )
} else {
info <- rbind(info, mat[sel, ] )
mat <- mat[-sel, , drop = FALSE]
dat <- dataset[, -info[, 1], drop = FALSE ]
}
}
}
}
}
}
runtime <- proc.time() - tic
res <- list(runtime = runtime, info = info, mat = mat )
}
res
} |
ref_sequence <- function(alignment) {
if(!is_align_mat_class(alignment))
stop('`alignment` should be an object of class align_mat.')
m <- remove_align_mat_class(alignment)
ref_seq <- m[1, ]
return(ref_seq)
} |
f2si <-
function(number, unit=""){
sifactor <- c(1e-24, 1e-21, 1e-18, 1e-15,
1e-12, 1e-09, 1e-06, 1e-03,
1e+00,
1e+03, 1e+06, 1e+09, 1e+12,
1e+15, 1e+18, 1e+21, 1e+24)
pre <- c(" y", " z", " a", " f",
" p", " n", " u", " m",
"",
" k", " M", " G", " T",
" P", " E", " Z", " Y")
absolutenumber <- number * sign(number)
ix <- findInterval(absolutenumber, sifactor)
if (length(ix) > 0 ) {
sistring <- paste(number/sifactor[ix], pre[ix], sep="", unit=unit)
} else {
sistring <- as.character(number)
}
return(sistring)
} |
cs_per <- function(x,
knots = NULL,
nk = 5,
xmax = max(x, na.rm=TRUE),
xmin = min(x, na.rm=TRUE)){
if( is.null(knots) ) {
knots <- rcspline.eval(x, nk = nk, knots.only = TRUE)
}
nk <- length(knots)
rcs.out <- matrix(NA, ncol = nk, nrow = length(x))
for( j in 1:nk ){
a_j <- (-1 / (xmax - xmin)) * (
((xmax^2 + xmin^2 + 4 * xmin * xmax) / 2) * (xmax - knots[j]) -
((3 * (xmax + xmin) / 2) * (xmax - knots[j])^2) + (xmax - knots[j])^3 )
b_j <- ((3 * (xmax + xmin) * (xmax - knots[j])) / (2*(xmax - xmin))) -
((3 * (xmax - knots[j])^2) / (2 * (xmax - xmin)))
c_j <- ( - (xmax - knots[j])/(xmax - xmin))
rcs.out[, j] <- (a_j * x) + (b_j * (x^2)) + (c_j * (x^3)) + ifelse( (x - knots[j] > 0), (x - knots[j])^3, 0)
}
attr(rcs.out, "knots") <- knots
return(rcs.out)
} |
plotDivRates <- function(rates, facet = TRUE){
message("Using default time units in x-axis label: Age (Ma)")
rates_to_plot <- unique(rates$item)[grep("rate", unique(rates$item))]
`%>%` <- dplyr::`%>%`
p <- rates %>%
subset(grepl("rate", item)) %>%
ggplot2::ggplot(ggplot2::aes(time, value, color = item)) +
ggplot2::geom_step(ggplot2::aes(time, value),
direction = "vh") +
geom_stepribbon(ggplot2::aes(x = time,
ymin = lower,
ymax = upper,
fill = item),
direction = "vh",
alpha = 0.4,
color = NA) +
ggplot2::scale_x_reverse() +
ggplot2::xlab("Age (Ma)") +
ggplot2::ylab("Rate") +
ggplot2::theme_bw() +
ggplot2::theme(legend.title = ggplot2::element_blank(),
legend.position = "none",
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
strip.background = ggplot2::element_blank()) +
ggplot2::scale_color_manual(values = colFun(length(rates_to_plot))) +
ggplot2::scale_fill_manual(values = colFun(length(rates_to_plot)))
if (facet){
p <- p +
ggplot2::facet_wrap(dplyr::vars(item),
scales = "free_y",
labeller =
ggplot2::labeller(item = .titleFormatLabeller))
}
return(p)
} |
rvquantile <- function(x, ...)
{
UseMethod("rvquantile")
}
rvquantile.rv <- function(x, probs=c(0.025, 0.10, 0.25, 0.50, 0.75, 0.90, 0.975), ignoreInf=FALSE, ...)
{
if (ignoreInf) {
.f <- function (x) { quantile(x[is.finite(x)], probs=probs, ..., na.rm=TRUE) }
t(rvsimapply(x, .f))
} else {
t(rvsimapply(x, quantile, probs=probs, ..., na.rm=TRUE))
}
}
rvquantile.rvsummary <- function(x, probs=c(0.025, 0.10, 0.25, 0.50, 0.75, 0.90, 0.975), ...)
{
Q <- t(sims(x))
all_probs <- attr(Q, "quantiles")
M <- NULL
name <- character(0)
for (p in probs) {
ix <- (all_probs==p)
if (any(ix)) {
M <- cbind(M, Q[,ix,drop=FALSE])
} else {
name <- paste(p*100, "%", sep="")
M <- cbind(M, NA)
colnames(M)[ncol(M)] <- name
}
}
return(M)
} |
expect_equal <- function(x, y) {
stopifnot(isTRUE(all.equal(x, y)))
}
expect_equal_pairs <- function(x, y) {
setkey(pairs_ref, .x, .y)
setkey(pairs_loc, .x, .y)
expect_equal(pairs_ref$.x, pairs_loc$.x)
expect_equal(pairs_ref$.y, pairs_loc$.y)
}
library(reclin2)
library(parallel)
x <- data.table(a = c(1,1,2,2), b = c(1,2,1,2))
y <- data.table(a = c(3,3,2,2), b = c(1,2,1,2))
cl <- makeCluster(2)
pairs <- cluster_pair_minsim(cl, x, y, on = c("a", "b"), minsim = 2)
pairs_ref <- pair_minsim(x, y, on = c("a", "b"), minsim = 2)
pairs_loc <- cluster_collect(pairs)
expect_equal_pairs(pairs_ref, pairs_loc)
pairs <- cluster_pair_minsim(cl, x, on = c("a", "b"), minsim = 1, deduplication = TRUE)
pairs_ref <- pair_minsim(x, on = c("a", "b"), minsim = 1, deduplication = TRUE)
pairs_loc <- cluster_collect(pairs)
expect_equal_pairs(pairs_ref, pairs_loc)
stopCluster(cl) |
marginal.g.oneWay = Vectorize(function(g,F,N,J,rscale,log=FALSE, log.const=0)
{
dfs = (J-1)/(N*J-J)
omega = (1+(N*g/(dfs*F+1)))/(N*g+1)
m = log(rscale) - 0.5*log(2*pi) - 1.5*log(g) - rscale^2/(2*g) - (J-1)/2*log(N*g+1) - (N*J-1)/2*log(omega) - log.const
ifelse(log,m,exp(m))
},"g") |
df_build_site <- function() {
df_build_readme()
df_setup_vignette()
devtools::document()
pkgdown::build_site()
}
df_build_readme <- function() {
if(fs::dir_exists("README_cache")) {
fs::dir_delete("README_cache")
}
rmarkdown::render("README.rmd", output_file = "README.md")
if(fs::file_exists("README.html")) {
fs::file_delete("README.html")
}
if(fs::dir_exists("README_cache")) {
fs::dir_delete("README_cache")
}
}
df_setup_vignette <- function(excl = "", strip_number = FALSE) {
purrr::walk(list.dirs("vignettes/",recursive = FALSE), ~{
fs::dir_delete(.x)
})
purrr::walk(list.files("vignettes/", pattern = "*.Rmd", full.names = TRUE), fs::file_delete)
lf = list.files("book", pattern="*.Rmd")
lf = lf[!is.na(as.integer(sapply(lf, function(x) substr(x, 1, 2))))]
lf = lf[sapply(lf, function(x) !(x %in% excl))]
purrr::walk(lf, function(file) {
fs::file_copy(
file.path("book", file),
ifelse(strip_number,file.path("vignettes", substr(file, 4, nchar(file))),file.path("vignettes", file))
, overwrite = TRUE)
})
NULL
}
df_test <- function() {
devtools::test()
}
df_build_vignettes_for_cran <- function() {
rmd_files = list.files("vignettes/", pattern = "*.Rmd", full.names = TRUE)
purrr::map(rmd_files, fs::file_delete)
rmd_files = list.files("vignettes/", pattern = "*.tex", full.names = TRUE)
purrr::map(rmd_files, fs::file_delete)
rmd_files = list.files("vignettes/", pattern = "*.pdf", full.names = TRUE)
purrr::map(rmd_files, fs::file_delete)
df_ready_for_cran()
lapply(
list.files("vignettes/", pattern = "*.Rmd", full.names = TRUE),
rmarkdown::render
)
rmd_files = list.files("vignettes/", pattern = "*.pdf", full.names = TRUE)
rmd_files = paste0(substr(rmd_files, 1, nchar(rmd_files)-3),"Rmd")
purrr::map(rmd_files, function(x) {
if (file.exists(x)) {
fs::file_delete(x)
}
})
rmd_files = list.files("vignettes/", pattern = "*.tex", full.names = TRUE)
purrr::map(rmd_files, fs::file_delete)
rmd_files = list.dirs("vignettes/", recursive = FALSE)
purrr::map(rmd_files, fs::file_delete)
mergedf = data.frame(
pdfs = c("concepts", "convenience-features", "custom-group-by", "data-table-syntax", "glm", "group-by", "ingesting-data", "intro-disk-frame"),
asis = c("concepts", "convenience-features", "custom-group-by", "data-table-syntax", "glm", "group-by", "ingesting-data", "intro-disk-frame"),
index_entry = c(
"Key disk.frame concepts",
"Convenience Features",
"Custom Group-by",
"Using data.table syntax",
"Generalized Linear Models (GLMs)",
"Group-by",
"Ingesting Data",
"Quick-start"
)
)
mergedf$rmd_files = paste0("vignettes/", mergedf$pdfs, ".pdf")
abc = data.frame(rmd_files = list.files("vignettes/", pattern = "*.pdf", full.names = TRUE))
mergedf = mergedf %>% left_join(abc, by = "rmd_files")
purrr::walk2(paste0(mergedf$rmd_files, ".asis"), mergedf$index_entry, function(x, y) {
xf = file(x)
writeLines(c(
glue::glue("%\\VignetteIndexEntry{|y|}", .open="|", .close="|"),
glue::glue("%\\VignetteEngine{R.rsp::asis}", .open="|", .close="|")),
xf)
close(xf)
})
}
df_ready_for_cran <- function() {
df_build_readme()
devtools::clean_vignettes()
df_setup_vignette(excl = c("08-more-epic.Rmd", "06-vs-dask-juliadb.Rmd", "01-intro.Rmd"), strip_number = TRUE)
devtools::document()
if(fs::dir_exists("tests")) {
fs::dir_copy("tests", "tests_manual")
fs::dir_delete("tests")
}
if(fs::dir_exists("README_cache")) {
fs::dir_delete("README_cache")
}
}
df_check <- function() {
df_ready_for_cran()
rmd_files = list.files("vignettes/", pattern = "*.Rmd", full.names = TRUE)
purrr::map(rmd_files, fs::file_delete)
devtools::check(args = c('--as-cran'))
}
df_release <- function() {
df_ready_for_cran()
rmd_files = list.files("vignettes/", pattern = "*.Rmd", full.names = TRUE)
purrr::map(rmd_files, fs::file_delete)
devtools::release()
}
if(F) {
df_check()
} |
library(tidymodels)
library(RWeka)
library(janitor)
dry_beans <-
read.arff(url("https://www.muratkoklu.com/datasets/vtdhnd02.php")) %>%
dplyr::rename(AspectRatio = AspectRation) %>%
clean_names() %>%
as_tibble() %>%
mutate(class = tolower(as.character(class)),
class = factor(class))
names(dry_beans) <- gsub("([1-4]$)", "_\\1", names(dry_beans), perl = TRUE)
save(dry_beans, file = "RData/dry_beans.RData", compress = "xz", version = 2) |
ystand <-
function(fixed,clustername,data,method,y,N,p,nlevel,stand,affequiv){
sv=diag(p)
if(method=="ls"){method="identity"}
if(method=="identity" & p>1){affequiv=TRUE}
if(method=="mixed")
{
rando="~1|"
for(i in 1:(nlevel-1))
{
if(i==(nlevel-1))
{
rando=paste0(rando,clustername[i])
}
else if(i<(nlevel-1))
rando=paste0(rando,clustername[i],"/")
}
rando=formula(rando)
}
if(p==1) {if(stand=="location") {
if(method=="identity") {
yc=y-mean(y)
}
else if(method=="sign") {
yc=sign(y-median(y))
}
else if(method=="rank") {
ray=rank(y)
yc=ray-mean(ray)
}
}
else if(stand=="reg") {
if(method=="identity") {
yc=lm(fixed,data)$residuals
}
if(method=="mixed") {
yc=residuals(lme(fixed,data,rando),level=0)
}
else if(method=="sign") {
yc=sign(rq(fixed,data,tau=.5)$residuals)
}
else if(method=="rank") {
resr=rank(rfit(fixed,data)$residuals)
yc=resr-mean(resr)
}
}
}
else if(p>1) {
if(stand=="location")
{
estim=mv.1sample.est(y,score=method,stand="inner",maxiter=10000)
u=estim$location
yres=y-matrix(u,nrow=N,ncol=p,byrow=T)
}
else if(stand=="reg")
{
if(method=="identity") {
yres=lm(fixed,data=data)$residuals
}
else if(method=="sign" | method=="rank")
{
yres=mv.l1lm(fixed,scores=method,stand="inner",maxiter=10000,data=data)$residuals
}
}
if(affequiv==TRUE)
{
if(method=="identity" | method=="sign")
{
sha=mv.shape.est(yres,score=method,location=rep(0,p),estimate="inner")
}
else if(method=="rank")
{
sha=mv.shape.est(yres,score=method,estimate="inner")
sha=sha*p/sum(diag(sha))
}
ev=eigen(sha)
svi=ev$vectors %*% sqrt(solve(diag(ev$values))) %*% t(ev$vectors)
sv=ev$vectors %*% sqrt(diag(ev$values)) %*% t(ev$vectors)
}
if(affequiv==FALSE)
{
sv=diag(p)
svi=diag(p)
}
if(method=="identity")
{
yc=yres %*% svi
}
else if(method=="sign")
{
yc=spatial.signs(yres %*% svi,center=FALSE,shape=FALSE)
}
else if(method=="rank")
{
yc=spatial.rank(yres %*% svi,center=FALSE,shape=FALSE)
}
}
yc=as.matrix(yc)
list(yc,sv)
} |
weight_func <- function(values = values_weight_func) {
new_qual_param(
type = "character",
values = values,
label = c(weight_func = "Distance Weighting Function"),
finalize = NULL
)
}
values_weight_func <- c("rectangular", "triangular", "epanechnikov",
"biweight", "triweight", "cos", "inv",
"gaussian", "rank", "optimal") |
bi_legend <- function(pal, dim = 3, xlab, ylab, size = 10){
bi_class = bi_fill = x = y = NULL
if (missing(pal) == TRUE){
stop("A palette must be specified for the 'pal' argument.")
}
if ("bi_pal_custom" %in% class(pal) == TRUE) {
if (dim == 2 & length(pal) != 4){
stop("There is a mismatch between the length of your custom palette object and the given dimensions.")
} else if (dim == 3 & length(pal) != 9){
stop("There is a mismatch between the length of your custom palette object and the given dimensions.")
}
} else if ("bi_pal_custom" %in% class(pal) == FALSE){
if (pal %in% c("Brown", "DkBlue", "DkCyan", "DkViolet", "GrPink") == FALSE){
stop("The given palette is not one of the allowed options for bivariate mapping. Please choose one of: 'Brown', 'DkBlue', 'DkCyan', 'DkViolet', or 'GrPink'.")
}
}
if (is.numeric(dim) == FALSE){
stop("The 'dim' argument only accepts the numeric values '2' or '3'.")
}
if (dim != 2 & dim != 3){
stop("The 'dim' argument only accepts the numeric values '2' or '3'.")
}
if (missing(xlab) == TRUE){
xlab <- "x var "
}
if (is.character(xlab) == FALSE){
stop("The 'xlab' argument must be a character string.")
}
if (missing(ylab) == TRUE){
ylab <- "y var "
}
if (is.character(ylab) == FALSE){
stop("The 'ylab' argument must be a character string.")
}
if (is.numeric(size) == FALSE){
stop("The 'size' argument must be a numeric value.")
}
xQN <- rlang::quo_name(rlang::enquo(xlab))
yQN <- rlang::quo_name(rlang::enquo(ylab))
if ("bi_pal_custom" %in% class(pal) == TRUE) {
x <- pal
} else if ("bi_pal_custom" %in% class(pal) == FALSE){
if (pal == "DkViolet"){
x <- pal_dkviolet(n = dim)
} else if (pal == "GrPink"){
x <- pal_grpink(n = dim)
} else if (pal == "DkBlue"){
x <- pal_dkblue(n = dim)
} else if (pal == "DkCyan"){
x <- pal_dkcyan(n = dim)
} else if (pal == "Brown"){
x <- pal_brown(n = dim)
}
}
x <- dplyr::tibble(
bi_class = names(x),
bi_fill = x
)
leg <- tidyr::separate(x, bi_class, into = c("x", "y"), sep = "-")
leg <- dplyr::mutate(leg, x = as.integer(x), y = as.integer(y))
legend <- ggplot2::ggplot() +
ggplot2::geom_tile(data = leg, mapping = ggplot2::aes(x = x, y = y, fill = bi_fill)) +
ggplot2::scale_fill_identity() +
ggplot2::labs(x = substitute(paste(xQN, ""%->%"")), y = substitute(paste(yQN, ""%->%""))) +
bi_theme() +
ggplot2::theme(axis.title = ggplot2::element_text(size = size)) +
ggplot2::coord_fixed()
return(legend)
} |
inspectDifferences <- function(varName, GADSdat1, GADSdat2, id) {
check_GADSdat(GADSdat1)
check_GADSdat(GADSdat2)
if(!is.character(varName) || length(varName) != 1) stop("'varName' must be a character of length 1.")
if(!is.character(id) || length(id) != 1) stop("'id' must be a character of length 1.")
if(!varName %in% namesGADS(GADSdat1)) stop("'varName' is not a variable in 'GADSdat1'.")
if(!varName %in% namesGADS(GADSdat2)) stop("'varName' is not a variable in 'GADSdat2'.")
if(!id %in% namesGADS(GADSdat1)) stop("'id' is not a variable in 'GADSdat1'.")
if(!id %in% namesGADS(GADSdat2)) stop("'id' is not a variable in 'GADSdat2'.")
if(nrow(GADSdat1$dat) != nrow(GADSdat2$dat)) stop("'GADSdat1' and 'GADSdat2' have different row numbers.")
if(any(is.na(GADSdat1$dat[, id]))) stop("Missing values in 'id' column of 'GADSdat1'.")
if(any(is.na(GADSdat2$dat[, id]))) stop("Missing values in 'id' column of 'GADSdat2'.")
if(any(GADSdat1$dat[, id] != GADSdat2$dat[, id])) stop("'id' column is not equal for 'GADSdat1' and 'GADSdat2'.")
if(is.numeric(GADSdat1$dat[, varName]) && !is.numeric(GADSdat2$dat[, varName])) stop("'varName' column is numeric in 'GADSdat1' but not in 'GADSdat2'.")
if(!is.numeric(GADSdat1$dat[, varName]) && is.numeric(GADSdat2$dat[, varName])) stop("'varName' column is numeric in 'GADSdat2' but not in 'GADSdat1'.")
if(isTRUE(all.equal(GADSdat2$dat[, varName], GADSdat1$dat[, varName], scale = 1))) return("all.equal")
unequal_rows <- c(which(GADSdat2$dat[, varName] != GADSdat1$dat[, varName]),
which(is.na(GADSdat2$dat[, varName]) & !is.na(GADSdat1$dat[, varName])),
which(!is.na(GADSdat2$dat[, varName]) & is.na(GADSdat1$dat[, varName])))
unequal_case_dat2 <- GADSdat2$dat[unequal_rows, ]
unequal_case_dat1 <- GADSdat1$dat[unequal_rows, ]
ncol1 <- ifelse(ncol(GADSdat1$dat) > 8, yes = 8, no = ncol(GADSdat1$dat))
ncol2 <- ifelse(ncol(GADSdat2$dat) > 8, yes = 8, no = ncol(GADSdat2$dat))
nrow1 <- ifelse(nrow(unequal_case_dat1) > 5, yes = 5, no = nrow(unequal_case_dat1))
nrow2 <- ifelse(nrow(unequal_case_dat2) > 5, yes = 5, no = nrow(unequal_case_dat2))
list(cross_table = table(GADSdat1$dat[, varName], GADSdat2$dat[, varName], useNA = "if",
dnn = c("GADSdat1", "GADSdat2")),
some_unequals_GADSdat1 = unequal_case_dat1[1:nrow1, unique(c(namesGADS(GADSdat1)[1:ncol1], varName))],
some_unequals_GADSdat2 = unequal_case_dat2[1:nrow2, unique(c(namesGADS(GADSdat2)[1:ncol2], varName))],
unequal_IDs = unequal_case_dat2[, id]
)
} |
runHook = function(obj, hook, ...) {
UseMethod("runHook")
}
runHook.Registry = function(obj, hook, ...) {
f = obj$cluster.functions$hooks[[hook]]
if (is.null(f))
return(NULL)
"!DEBUG [runHook]: Running hook '`hook`'"
f(obj, ...)
}
runHook.JobCollection = function(obj, hook, ...) {
f = obj$hooks[[hook]]
if (is.null(f))
return(NULL)
"!DEBUG [runHook]: Running hook '`hook`'"
f(obj, ...)
} |
setClass("disk.matrix",
slots=list(
file="character",
read.func="character",
func.args="list"
),
validity=function(object) {
errors <- character()
if (length(object@file) != 1) {
msg <- "slot 'file' must be a single value"
errors <- c(errors, msg)
}
if (!file.exists(object@file)) {
msg <- "slot 'file' must be a file path to an existing file"
errors <- c(errors, msg)
}
if (length([email protected]) != 1 && [email protected] %nin% c("read.table", "readRDS")) {
msg <- "slot 'read.func' must be either \"read.table\" or \"readRDS\""
errors <- c(errors, msg)
}
if (length(errors) > 0) {
return(errors)
} else {
return(TRUE)
}
})
attach.disk.matrix <- function(file, serialized=TRUE, ...) {
if (is.na(serialized) || length(serialized) != 1) {
stop("'serialized' must be 'TRUE' or 'FALSE'")
}
if (length(file) != 1 || !is.character(file) || !file.exists(file)) {
stop("'file' must be the name of a file and that file must already exist")
}
read.func <- ifelse(serialized, "readRDS", "read.table")
new("disk.matrix", file=normalizePath(file), read.func=read.func,
func.args=list(...))
}
serialize.table <- function(file, ...) {
if (length(file) != 1 || !is.character(file) || !file.exists(file)) {
stop("'file' must be the name of a file and that file must already exist")
}
ext <- gsub(".*\\.", "", file)
serialized.file <- gsub(paste0(ext, "$"), "rds", file)
m <- as.matrix(read.table(file, ...))
saveRDS(m, serialized.file)
serialized.file
}
is.disk.matrix <- function(x) {
"disk.matrix" %in% class(x)
}
setGeneric("as.disk.matrix", function(x, file, serialize=TRUE) {
standardGeneric("as.disk.matrix")
})
setMethod("as.disk.matrix", signature(x="disk.matrix"),
function(x, file, serialize=TRUE) {
warning("already a 'disk.matrix'")
return(x)
})
setMethod("as.disk.matrix", signature(x="matrix"),
function(x, file, serialize=TRUE) {
if (is.na(serialize) || length(serialize) != 1) {
stop("'serialize' must be 'TRUE' or 'FALSE'")
}
if (length(file) != 1 || !is.character(file)) {
stop("'file' must be the name of a file to save the matrix to")
}
if (serialize) {
saveRDS(x, file)
attach.disk.matrix(file)
} else {
write.table(x, file, col.names=!is.null(colnames(x)),
row.names=!is.null(rownames(x)), sep="\t",
quote=FALSE)
attach.disk.matrix(file, FALSE, header=!is.null(colnames(x)),
row.names=ifelse(is.null(rownames(x)), FALSE, 1),
sep="\t")
}
})
setMethod("as.disk.matrix", signature(x="ANY"),
function(x, file, serialize=TRUE) {
x <- as.matrix(x)
as.disk.matrix(x, file, serialize)
})
setMethod("as.matrix", signature(x="disk.matrix"), function(x) {
if (!file.exists(x@file)) {
stop("file ", prettyPath(x@file), " does not exist")
}
as.matrix(do.call([email protected], c(file=x@file, [email protected])))
})
setMethod("show", signature(object="disk.matrix"), function(object) {
cat("Pointer to matrix stored at", prettyPath(object@file), "\n")
}) |
test_that("The combined transition probabilities file is correctly generated", {
wp$rf <- c("n1.RDS", "n2.RDS", "n3.RDS", "n4.RDS")
options("wordpredictor" = wp)
source("./inc.R")
fns <- c("words", "model-4", "tp2", "tp3", "tp4")
tp <- TPGenerator$new(opts = list(n = 4, dir = ed), ve = wp$ve)
tp$generate_tp()
for (fn in fns) {
fn <- paste0(ed, "/", fn, ".RDS")
expect_true(file.exists(fn), label = fn)
}
source("./cu.R")
}) |
sirt_display_function <- function(length=66)
{
disp <- paste0( rep("-",length), collapse="")
cat(disp, "\n")
} |
ll <- generateTestDensityMultiNormal(sigma = "no correlation")
bayesianSetup = createBayesianSetup(likelihood = ll,
lower = rep(-10, 3),
upper = rep(10, 3))
settings = list(iterations = 1000)
out <- runMCMC(bayesianSetup = bayesianSetup, settings = settings)
newPrior = createPriorDensity(out, method = "multivariate",
eps = 1e-10, lower = rep(-10, 3),
upper = rep(10, 3), best = NULL)
bayesianSetup <- createBayesianSetup(likelihood = ll, prior = newPrior)
\dontrun{
settings = list(iterations = 1000)
out <- runMCMC(bayesianSetup = bayesianSetup, settings = settings)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(hydraulics)
nu = kvisc(T = 55, units = 'Eng')
cat(sprintf("Kinematic viscosity: %.3e ft2/s\n", nu))
rho = dens(T = 25, units = 'SI')
cat(sprintf("Water density: %.3f kg/m3\n", rho))
Ts <- seq(0, 100, 10)
nus <- kvisc(T = Ts, units = 'SI')
xlbl <- expression("Temperature, " (degree*C))
ylbl <- expression("Kinematic viscosity," ~nu~ (m^{2}/s))
par(cex=0.8, mgp = c(2,0.7,0))
plot(Ts, nus, xlab = xlbl, ylab = ylbl, type="l")
T <- 25
Dens <- dens(T = T, units = 'SI', ret_units = TRUE)
Dvisc <- dvisc(T = T, units = 'SI', ret_units = TRUE)
Kvisc <- Dvisc / Dens
Kvisc
units::set_units(Kvisc, m^2/s)
units::set_units(Kvisc, ft^2/s)
vps <- svp(T = 10, units = "SI", ret_units = T)
vps
units::set_units(vps,lbf/`in`^2)
Temperature <- units::set_units(seq(0, 100, 10), degree_Celsius)
Kinematic_Viscosity <- kvisc(T = Temperature, units = 'SI', ret_units = TRUE)
par(cex=0.8, mar = par("mar") + c(0, .2, 0, 0))
plot(Temperature, Kinematic_Viscosity, type="l")
knitr::kable(data.frame(Fr=c("<1.0","=1.0",">1.0"), Condition=c("subcritical","critical","supercritical")), format="pipe", padding=0)
D <- 20/12
L <- 10560
Q <- 4
T <- 60
ks <- 0.0005
ans <- darcyweisbach(Q = Q,D = D, L = L, ks = ks,
nu = kvisc(T=T, units="Eng"), units = c("Eng"))
cat(sprintf("Reynolds no: %.0f\nFriction Fact: %.4f\nHead Loss: %.2f ft\n",
ans$Re, ans$f, ans$hf))
ans <- darcyweisbach(Q = 4.0,D = 20/12, L = 10560, ks = 0.0005, nu = kvisc(T=T, units="Eng"),
units = "Eng", ret_units = TRUE)
knitr::kable(format(as.data.frame(ans), digits = 2), format = "pipe")
Q <- 37.5
L <- 8000
hf <- 215
T <- 68
ks <- 0.0008
ans <- darcyweisbach(Q = Q, hf = hf, L = L, ks = ks, nu = kvisc(T=T, units='Eng'), units = c('Eng'))
cat(sprintf("Reynolds no: %.0f\nFriction Fact: %.4f\nDiameter: %.2f ft\n", ans$Re, ans$f, ans$D))
Qs <- seq(30, 45, 1.0)
L <- 8000
hf <- 215
T <- 68
ks <- 0.0008
ans <- mapply(darcyweisbach, Q=Qs, MoreArgs =
list(hf = hf, L = L, ks = ks, nu = kvisc(T=T, units='Eng'), units = 'Eng'))
ans <- as.data.frame(t(ans))
plot(ans$Q, ans$D, xlab = "Q, ft^3/s", ylab = "D, ft", type="l")
grid()
knitr::kable(data.frame(Q_liter_s=c("0.20","0.24","0.30"), Headloss_m=c("0.052","0.073","0.110")), format="pipe", padding=0)
Qs = c(0.00020, 0.00024, 0.00030)
hfs <- c(0.052,0.073,0.110)
ans <- mapply(darcyweisbach, Q=Qs, hf=hfs, MoreArgs =
list(L = 3.0, D = 0.025, nu = kvisc(T=20, units='SI'), units = 'SI'))
ks_values = unlist((as.data.frame(t(ans)))$ks)
cat(round(ks_values,6))
cat(paste0("\nMean Roughness, ks = ",round(mean(ks_values),6), " m"))
Re_values <- unlist((as.data.frame(t(ans)))$Re)
f_values <- unlist((as.data.frame(t(ans)))$f)
moody(Re = Re_values, f = f_values)
ans <- manningc(Q=0.01, n=0.013, Sf=0.001, d = 0.2, units="SI", ret_units = TRUE)
knitr::kable(format(as.data.frame(ans), digits = 2), format = "pipe", padding=0)
ans <- manningc(Q=0.01, n=0.013, Sf=0.001, d = 0.2, units="SI", ret_units = TRUE)
xc_circle(y = ans$y, d=ans$d, units = "SI")
ans <- manningt(Q = 360., n = 0.015, m = 1, b = 20.0, y = 3.0, units = "Eng")
cat(sprintf("Slope: %.5f ft\n", ans$Sf))
knitr::kable(format(as.data.frame(ans), digits = 2), format = "pipe", padding=0)
ans <- manningt(Q = 360., n = 0.015, m = 1, b = 20.0, y = 3.0, units = "Eng", ret_units = TRUE)
knitr::kable(format(as.data.frame(ans), digits = 2), format = "pipe", padding=0)
xc_trap( y = 3.0, b = 20.0, m = 1.0, units = "Eng")
ans <- manningt(Q = 360., n = 0.015, m = 1, y = 3.0, Sf = 0.00088, units = "Eng")
knitr::kable(format(as.data.frame(ans), digits = 2), format = "pipe", padding=0)
cat(sprintf("Optimal bottom width: %.5f ft\n", ans$bopt))
ans <- manningt(Q = 360., n = 0.015, m = 1, b = 4.767534, Sf = 0.00088, units = "Eng")
cat(sprintf("Optimal depth: %.5f ft\n", ans$yopt))
spec_energy_trap( Q = 360, b = 20, m = 1, scale = 4, units = "Eng" )
spec_energy_trap( Q = 360, b = 20, m = 1, scale = 4, y=3.0, units = "Eng" )
ns <- seq(0.011, 0.021, 0.002)
ys <- seq(1.5, 2.1, 0.1)
ny <- expand.grid(n=ns, y=ys)
ans <- mapply(manningt, n = ny$n, y = ny$y, MoreArgs = list(m = 2, Sf = 0.0005, b = 3, units = "SI"))
x <- as.data.frame(t(ans))
x2 <- data.frame(Q=unlist(x$Q),y=unlist(x$y),n=unlist(x$n))
ggplot2::ggplot(data=x2,ggplot2::aes(x=y,y=Q, group=n, colour=n)) + ggplot2::geom_line() +
ggplot2::labs(x = "y, m", y = expression(paste("Q, ", ~m^3/s)))
knitr::include_graphics('./TDH_Example_2_Diagram.png')
ans <- darcyweisbach(Q = 1,D = 20/12, L = 3884, ks = 0.0005, nu = 1.23e-5, units = "Eng")
cat(sprintf("Coefficient K: %.3f\n", ans$hf))
scurve <- systemcurve(hs = 30, K = ans$hf, units = "Eng")
knitr::include_graphics('./goulds_pump_3409.png')
knitr::kable(data.frame(type=c("poly1","poly2","poly3"), Equation=c("$h=a+{b}{Q}+{c}{Q}^2$","$h=a+{c}{Q}^2$","$h_{shutoff}+{c}{Q}^2$")), format="pipe", padding=0)
qgpm <- units::set_units(c(0, 5000, 7850), gallons/minute)
qcfs <- units::set_units(qgpm, ft^3/s)
hft <- c(81, 60, 20)
pcurve <- pumpcurve(Q = qcfs, h = hft, eq = "poly2", units = "Eng")
pcurve$p
oppt <- operpoint(pcurve = pcurve, scurve = scurve)
cat(sprintf("Operating Point: Q = %.3f, h = %.3f\n", oppt$Qop, oppt$hop))
oppt$p
knitr::include_graphics('./hardycross_system.png')
dfpipes <- data.frame(
ID = c(1,2,3,4,5,6,7,8,9,10),
D = c(0.3,0.2,0.2,0.2,0.2,0.15,0.25,0.15,0.15,0.25),
L = c(250,100,125,125,100,100,125,100,100,125),
f = c(.01879,.02075,.02075,.02075,.02075,.02233,.01964,.02233,.02233,.01964)
)
loops <- list(c(1,2,3,4,5),c(4,6,7,8),c(3,9,10,6))
Qs <- list(c(.040,.040,.02,-.02,-.04),c(.02,0,0,-.02),c(-.02,.02,0,0))
ans <- hardycross(dfpipes = dfpipes, loops = loops, Qs = Qs, n_iter = 3, units = "SI")
knitr::kable(ans$dfloops, digits = 4, format = "pipe", padding=0)
knitr::kable(ans$dfpipes, digits = 4, format = "pipe", padding=0)
dfpipes <- data.frame(
ID = c(1,2,3,4,5,6,7,8,9,10),
D = c(0.3,0.2,0.2,0.2,0.2,0.15,0.25,0.15,0.15,0.25),
L = c(250,100,125,125,100,100,125,100,100,125),
ks = rep(0.00025,10)
)
loops <- list(c(1,2,3,4,5),c(4,6,7,8),c(3,9,10,6))
Qs <- list(c(.040,.040,.02,-.02,-.04),c(.02,0,0,-.02),c(-.02,.02,0,0))
ans <- hardycross(dfpipes = dfpipes, loops = loops, Qs = Qs, n_iter = 3, units = "SI")
knitr::kable(ans$dfpipes, digits = 4, format = "pipe", padding=0) |
dfs_idx <- function(.x, .f) {
.f <- purrr::as_mapper(.f)
res <- list()
num <- 0L
walk <- function(x, idx) {
for (i in seq_along(x)) {
if (isTRUE(tryCatch(.f(x[[i]]), error = function(e) FALSE))) {
res[[num <<- num + 1L]] <<- append(idx, i)
}
if (is.list(x[[i]])) {
walk(x[[i]], append(idx, i))
}
}
}
walk(.x, integer())
res
} |
context("traceback")
test_that("tb()", {
mockery::stub(tb, "format_trace", function(x) "ok")
expect_identical(tb(), "ok")
})
test_that("tb(frame)", {
expect_message(ret <- tb(1000000), "Invalid frame")
expect_null(ret)
mockery::stub(tb, "trace_code", function(a,b,c) list(a,b,c))
res <- tb(1, 10)
expect_equal(res[[2]], 1)
expect_equal(res[[3]], 10)
}) |
enmtools.maxent <- function(species, env, test.prop = 0, nback = 1000, env.nback = 10000, report = NULL, overwrite = FALSE, rts.reps = 0, bg.source = "default", verbose = FALSE, clamp = TRUE, corner = NA, bias = NA, ...){
check.packages("rJava")
notes <- NULL
species <- check.bg(species, env, nback = nback, bg.source = bg.source, verbose = verbose, bias = bias)
maxent.precheck(f, species, env)
test.data <- NA
test.evaluation <- NA
env.test.evaluation <- NA
rts.test <- NA
if(is.numeric(test.prop)){
if(test.prop > 0 & test.prop < 1){
test.inds <- sample(1:nrow(species$presence.points), ceiling(nrow(species$presence.points) * test.prop))
test.data <- species$presence.points[test.inds,]
species$presence.points <- species$presence.points[-test.inds,]
}
}
if(is.character(test.prop)){
if(test.prop == "block"){
if(is.na(corner)){
corner <- ceiling(runif(1, 0, 4))
} else if(corner < 1 | corner > 4){
stop("corner should be an integer from 1 to 4!")
}
test.inds <- get.block(species$presence.points, species$background.points)
test.bg.inds <- which(test.inds$bg.grp == corner)
test.inds <- which(test.inds$occ.grp == corner)
test.data <- species$presence.points[test.inds,]
test.bg <- species$background.points[test.bg.inds,]
species$presence.points <- species$presence.points[-test.inds,]
species$background.points <- species$background.points[-test.bg.inds,]
}
}
analysis.df <- rbind(species$presence.points, species$background.points)
analysis.df$presence <- c(rep(1, nrow(species$presence.points)), rep(0, nrow(species$background.points)))
if(length(names(env)) == 1){
oldname <- names(env)
env <- stack(env, env)
env[[2]][!is.na(env[[2]])] <- 0
names(env) <- c(oldname, "dummyvar")
notes <- c(notes, "Only one predictor was provided, so a dummy variable was created in order to be compatible with dismo's prediction function.")
}
if(verbose){
this.mx <- dismo::maxent(env, p = analysis.df[analysis.df$presence == 1,1:2], a = analysis.df[analysis.df$presence == 0,1:2], ...)
suitability <- predict(env, this.mx, type = "response")
} else {
invisible(capture.output(this.mx <- dismo::maxent(env, p = analysis.df[analysis.df$presence == 1,1:2], a = analysis.df[analysis.df$presence == 0,1:2], ...)))
invisible(capture.output(suitability <- predict(env, this.mx, type = "response")))
}
clamping.strength <- NA
if(clamp == TRUE){
this.df <- as.data.frame(extract(env, species$presence.points))
env <- clamp.env(this.df, env)
if(verbose){
clamped.suitability <- predict(env, this.mx, type = "response")
} else {
invisible(capture.output(clamped.suitability <- predict(env, this.mx, type = "response")))
}
clamping.strength <- clamped.suitability - suitability
suitability <- clamped.suitability
}
if(verbose){
model.evaluation <-dismo::evaluate(species$presence.points[,1:2], species$background.points[,1:2],
this.mx, env)
env.model.evaluation <- env.evaluate(species, this.mx, env, n.background = env.nback)
} else {
invisible(capture.output(model.evaluation <-dismo::evaluate(species$presence.points[,1:2], species$background.points[,1:2],
this.mx, env)))
invisible(capture.output(env.model.evaluation <- env.evaluate(species, this.mx, env, n.background = env.nback)))
}
if(is.numeric(test.prop)){
if(test.prop > 0 & test.prop < 1){
test.check <- raster::extract(env, test.data)
test.data <- test.data[complete.cases(test.check),]
temp.sp <- species
temp.sp$presence.points <- test.data
if(verbose){
test.evaluation <-dismo::evaluate(test.data, species$background.points[,1:2],
this.mx, env)
env.test.evaluation <- env.evaluate(temp.sp, this.mx, env, n.background = env.nback)
} else {
invisible(capture.output(test.evaluation <-dismo::evaluate(test.data, species$background.points[,1:2],
this.mx, env)))
invisible(capture.output(env.test.evaluation <- env.evaluate(temp.sp, this.mx, env, n.background = env.nback)))
}
}
}
if(is.character(test.prop)){
if(test.prop == "block"){
test.check <- raster::extract(env, test.data)
test.data <- test.data[complete.cases(test.check),]
temp.sp <- species
temp.sp$presence.points <- test.data
temp.sp$background.points <- test.bg
if(verbose){
test.evaluation <-dismo::evaluate(test.data, test.bg,
this.mx, env)
env.test.evaluation <- env.evaluate(temp.sp, this.mx, env, n.background = env.nback)
} else {
invisible(capture.output(test.evaluation <-dismo::evaluate(test.data, test.bg,
this.mx, env)))
invisible(capture.output(env.test.evaluation <- env.evaluate(temp.sp, this.mx, env, n.background = env.nback)))
}
}
}
if(rts.reps > 0){
message("\nBuilding RTS replicate models...\n")
if(!is.numeric(test.prop)){
stop(paste("RTS test can only be conducted with randomly withheld data, and test.prop is set to", test.prop))
}
rts.models <- list()
rts.geog.training <- c()
rts.geog.test <- c()
rts.env.training <- c()
rts.env.test <- c()
if (requireNamespace("progress", quietly = TRUE)) {
pb <- progress::progress_bar$new(
format = " [:bar] :percent eta: :eta",
total = rts.reps, clear = FALSE, width= 60)
}
for(i in 1:rts.reps){
if (requireNamespace("progress", quietly = TRUE)) {
pb$tick()
}
if(verbose == TRUE){message(paste("Replicate", i, "of", rts.reps))}
rep.species <- species
allpoints <- rbind(test.data, species$background.points[,1:2], species$presence.points[,1:2])
rep.rows <- sample(nrow(allpoints), nrow(species$presence.points))
rep.species$presence.points <- allpoints[rep.rows,]
allpoints <- allpoints[-rep.rows,]
if(test.prop > 0){
test.rows <- sample(nrow(allpoints), nrow(test.data))
rep.test.data <- allpoints[test.rows,]
allpoints <- allpoints[-test.rows,]
}
rep.species$background.points <- allpoints
rep.species <- add.env(rep.species, env, verbose = verbose)
rts.df <- rbind(rep.species$presence.points, rep.species$background.points)
rts.df$presence <- c(rep(1, nrow(rep.species$presence.points)), rep(0, nrow(rep.species$background.points)))
if(verbose){
thisrep.mx <- dismo::maxent(env, p = rts.df[rts.df$presence == 1,1:2], a = rts.df[rts.df$presence == 0,1:2], ...)
thisrep.model.evaluation <-dismo::evaluate(rep.species$presence.points[,1:2], species$background.points[,1:2],
thisrep.mx, env)
thisrep.env.model.evaluation <- env.evaluate(rep.species, thisrep.mx, env, n.background = env.nback)
} else {
invisible(capture.output(thisrep.mx <- dismo::maxent(env, p = rts.df[rts.df$presence == 1,1:2], a = rts.df[rts.df$presence == 0,1:2], ...)))
invisible(capture.output(thisrep.model.evaluation <-dismo::evaluate(rep.species$presence.points[,1:2], species$background.points[,1:2],
thisrep.mx, env)))
invisible(capture.output(thisrep.env.model.evaluation <- env.evaluate(rep.species, thisrep.mx, env, n.background = env.nback)))
}
rts.geog.training[i] <- thisrep.model.evaluation@auc
rts.env.training[i] <- thisrep.env.model.evaluation@auc
if(test.prop > 0 & test.prop < 1){
temp.sp <- rep.species
temp.sp$presence.points <- rep.test.data
if(verbose){
thisrep.test.evaluation <-dismo::evaluate(rep.test.data, rep.species$background.points[,1:2],
thisrep.mx, env)
thisrep.env.test.evaluation <- env.evaluate(temp.sp, thisrep.mx, env, n.background = env.nback)
} else {
invisible(capture.output(thisrep.test.evaluation <-dismo::evaluate(rep.test.data, rep.species$background.points[,1:2],
thisrep.mx, env)))
invisible(capture.output(thisrep.env.test.evaluation <- env.evaluate(temp.sp, thisrep.mx, env, n.background = env.nback)))
}
rts.geog.test[i] <- thisrep.test.evaluation@auc
rts.env.test[i] <- thisrep.env.test.evaluation@auc
}
rts.models[[paste0("rep.",i)]] <- list(model = thisrep.mx,
training.evaluation = thisrep.model.evaluation,
env.training.evaluation = thisrep.env.model.evaluation,
test.evaluation = thisrep.test.evaluation,
env.test.evaluation = thisrep.env.test.evaluation)
}
rts.geog.training.pvalue = mean(rts.geog.training > model.evaluation@auc)
rts.env.training.pvalue = mean(rts.env.training > env.model.evaluation@auc)
if(test.prop > 0){
rts.geog.test.pvalue <- mean(rts.geog.test > test.evaluation@auc)
rts.env.test.pvalue <- mean(rts.env.test > env.test.evaluation@auc)
} else {
rts.geog.test.pvalue <- NA
rts.env.test.pvalue <- NA
}
training.plot <- qplot(rts.geog.training, geom = "histogram", fill = "density", alpha = 0.5) +
geom_vline(xintercept = model.evaluation@auc, linetype = "longdash") +
xlim(0,1) + guides(fill = FALSE, alpha = FALSE) + xlab("AUC") +
ggtitle(paste("Model performance in geographic space on training data")) +
theme(plot.title = element_text(hjust = 0.5))
env.training.plot <- qplot(rts.env.training, geom = "histogram", fill = "density", alpha = 0.5) +
geom_vline(xintercept = env.model.evaluation@auc, linetype = "longdash") +
xlim(0,1) + guides(fill = FALSE, alpha = FALSE) + xlab("AUC") +
ggtitle(paste("Model performance in environmental space on training data")) +
theme(plot.title = element_text(hjust = 0.5))
if(test.prop > 0){
test.plot <- qplot(rts.geog.test, geom = "histogram", fill = "density", alpha = 0.5) +
geom_vline(xintercept = test.evaluation@auc, linetype = "longdash") +
xlim(0,1) + guides(fill = FALSE, alpha = FALSE) + xlab("AUC") +
ggtitle(paste("Model performance in geographic space on test data")) +
theme(plot.title = element_text(hjust = 0.5))
env.test.plot <- qplot(rts.env.test, geom = "histogram", fill = "density", alpha = 0.5) +
geom_vline(xintercept = env.test.evaluation@auc, linetype = "longdash") +
xlim(0,1) + guides(fill = FALSE, alpha = FALSE) + xlab("AUC") +
ggtitle(paste("Model performance in environmental space on test data")) +
theme(plot.title = element_text(hjust = 0.5))
} else {
test.plot <- NA
env.test.plot <- NA
}
rts.pvalues = list(rts.geog.training.pvalue = rts.geog.training.pvalue,
rts.env.training.pvalue = rts.env.training.pvalue,
rts.geog.test.pvalue = rts.geog.test.pvalue,
rts.env.test.pvalue = rts.env.test.pvalue)
rts.distributions = list(rts.geog.training = rts.geog.training,
rts.env.training = rts.env.training,
rts.geog.test = rts.geog.test,
rts.env.test = rts.env.test)
rts.plots = list(geog.training.plot = training.plot,
env.training.plot = env.training.plot,
geog.test.plot = test.plot,
env.test.plot = env.test.plot)
rts.test <- list(rts.models = rts.models,
rts.pvalues = rts.pvalues,
rts.distributions = rts.distributions,
rts.plots = rts.plots,
rts.nreps = rts.reps)
}
output <- list(species.name = species$species.name,
analysis.df = analysis.df,
test.data = test.data,
test.prop = test.prop,
model = this.mx,
training.evaluation = model.evaluation,
test.evaluation = test.evaluation,
env.training.evaluation = env.model.evaluation,
env.test.evaluation = env.test.evaluation,
rts.test = rts.test,
suitability = suitability,
clamping.strength = clamping.strength,
call = sys.call(),
notes = notes)
class(output) <- c("enmtools.maxent", "enmtools.model")
response.plots <- list()
for(i in names(env)){
response.plots[[i]] <- marginal.plots(output, env, i)
}
output[["response.plots"]] <- response.plots
if(!is.null(report)){
if(file.exists(report) & overwrite == FALSE){
stop("Report file exists, and overwrite is set to FALSE!")
} else {
message("This function not enabled yet. Check back soon!")
}
}
return(output)
}
summary.enmtools.maxent <- function(object, ...){
cat("\n\nData table (top ten lines): ")
print(kable(head(object$analysis.df, 10)))
cat("\n\nModel: ")
print(summary(object$model))
cat("\n\nModel fit (training data): ")
print(object$training.evaluation)
cat("\n\nEnvironment space model fit (training data): ")
print(object$env.training.evaluation)
cat("\n\nProportion of data wittheld for model fitting: ")
cat(object$test.prop)
cat("\n\nModel fit (test data): ")
print(object$test.evaluation)
cat("\n\nEnvironment space model fit (test data): ")
print(object$env.test.evaluation)
cat("\n\nSuitability: \n")
print(object$suitability)
cat("\n\nNotes: \n")
print(object$notes)
plot(object)
}
print.enmtools.maxent <- function(x, ...){
summary(x)
}
plot.enmtools.maxent <- function(x, ...){
suit.points <- data.frame(rasterToPoints(x$suitability))
colnames(suit.points) <- c("Longitude", "Latitude", "Suitability")
suit.plot <- ggplot(data = suit.points, aes_string(y = "Latitude", x = "Longitude")) +
geom_raster(aes_string(fill = "Suitability")) +
scale_fill_viridis_c(option = "B", guide = guide_colourbar(title = "Suitability")) +
coord_fixed() + theme_classic() +
geom_point(data = x$analysis.df[x$analysis.df$presence == 1 &
x$analysis.df$Longitude > extent(x$suitability)[1] &
x$analysis.df$Longitude < extent(x$suitability)[2] &
x$analysis.df$Latitude > extent(x$suitability)[3] &
x$analysis.df$Latitude < extent(x$suitability)[4],], aes_string(y = "Latitude", x = "Longitude"),
pch = 21, fill = "white", color = "black", size = 2)
if(!(all(is.na(x$test.data)))){
suit.plot <- suit.plot + geom_point(data = x$test.data, aes_string(y = "Latitude", x = "Longitude"),
pch = 21, fill = "green", color = "black", size = 2)
}
if(!is.na(x$species.name)){
title <- paste("Maxent model for", x$species.name)
suit.plot <- suit.plot + ggtitle(title) + theme(plot.title = element_text(hjust = 0.5))
}
return(suit.plot)
}
predict.enmtools.maxent <- function(object, env, maxpts = 1000, clamp = TRUE, ...){
suitability <- invisible(capture.output(raster::predict(env, object$model)))
if(clamp == TRUE){
this.df <- as.data.frame(rbind(object$model@presence, object$model@absence))
env <- clamp.env(this.df, env)
clamped.suitability <- invisible(capture.output(raster::predict(env, object$model)))
clamping.strength <- clamped.suitability - suitability
suitability <- clamped.suitability
}
suit.points <- data.frame(rasterToPoints(suitability))
colnames(suit.points) <- c("Longitude", "Latitude", "Suitability")
suit.plot <- ggplot(data = suit.points, aes_string(y = "Latitude", x = "Longitude")) +
geom_raster(aes_string(fill = "Suitability")) +
scale_fill_viridis_c(option = "B", guide = guide_colourbar(title = "Suitability")) +
coord_fixed() + theme_classic()
if(!is.na(object$species.name)){
title <- paste("Maxent model projection for", object$species.name)
suit.plot <- suit.plot + ggtitle(title) + theme(plot.title = element_text(hjust = 0.5))
}
this.threespace = threespace.plot(object, env, maxpts)
output <- list(suitability.plot = suit.plot,
suitability = suitability,
clamping.strength = clamping.strength,
threespace.plot = this.threespace)
return(output)
}
maxent.precheck <- function(f, species, env){
jar <- paste(system.file(package="dismo"), "/java/maxent.jar", sep='')
if (!file.exists(jar)) {
stop('file missing:\n', jar, '.\nPlease download it here: http://www.cs.princeton.edu/~schapire/maxent/')
}
if(!inherits(species, "enmtools.species")){
stop("Argument \'species\' must contain an enmtools.species object!")
}
check.species(species)
if(!inherits(species$presence.points, "data.frame")){
stop("Species presence.points do not appear to be an object of class data.frame")
}
if(!inherits(species$background.points, "data.frame")){
stop("Species background.points do not appear to be an object of class data.frame")
}
if(!inherits(env, c("raster", "RasterLayer", "RasterStack", "RasterBrick"))){
stop("No environmental rasters were supplied!")
}
if(ncol(species$presence.points) != 2){
stop("Species presence points do not contain longitude and latitude data!")
}
if(ncol(species$background.points) != 2){
stop("Species background points do not contain longitude and latitude data!")
}
} |
add_point_cloud_layer <- function(deckgl, id = "point-cloud-layer", data = NULL, properties = list(), ...) {
add_layer(deckgl, "PointCloudLayer", id, data, properties, ...)
} |
testthat::context("Test R6Class transpilation")
testthat::test_that("Test component functions", {
expr <- parse_expr('list(x = 1, y = 2, z = function(x) {x})')
expect_equal(
deparse_public_list(expr, default_deparsers()),
"self.x = 1\n self.y = 2\n self.z = function(x) {\n x\n }"
)
expr <- parse_expr('list(x = 1, y = 2, z = function(x) {x})')
expect_equal(
deparse_private_list(expr, default_deparsers()),
"private.x = 1\n private.y = 2\n private.z = function(x) {\n x\n }"
)
expr <- parse_expr('list(x = 1, y = 2, z = function(x) {this$x})')
expect_equal(
deparse_private_list(expr, default_deparsers()),
"private.x = 1\n private.y = 2\n private.z = function(x) {\n $(this, x)\n }"
)
expr <- parse_expr('list(x = 1, y = 2, z = function(x) {x})')
expect_equal(
get_constructor_arg(expr, default_deparsers()),
""
)
expr <- parse_expr('list(initialize = function(x) {x})')
expect_equal(
get_constructor_arg(expr, default_deparsers()),
"x"
)
expr <- parse_expr('list(initialize = function(x = 1) {x})')
expect_equal(
get_constructor_arg(expr, default_deparsers()),
"x = 1"
)
expr <- parse_expr('list(initialize = function(x = 1, y) {x})')
expect_equal(
get_constructor_arg(expr, default_deparsers()),
"x = 1, y"
)
expr <- parse_expr('list(initialize = function(x = 1, y = 3) {x})')
expect_equal(
get_constructor_arg(expr, default_deparsers()),
"x = 1, y = 3"
)
}) |
BuildNIHR <-
function(HRVData, verbose=NULL) {
HRVData = HandleVerboseArgument(HRVData, verbose)
VerboseMessage(HRVData$Verbose, "Calculating non-interpolated heart rate")
CheckBeats(HRVData)
NBeats = length(HRVData$Beat$Time)
VerboseMessage(HRVData$Verbose, paste("Number of beats:",NBeats))
hr = c(0)
hr[2:NBeats] = 60.0 / diff(HRVData$Beat$Time)
hr[1] = hr[2]
HRVData$Beat$niHR = hr
rr = c(0)
rr[2:NBeats] = 1000.0 * diff(HRVData$Beat$Time)
rr[1] = rr[2]
HRVData$Beat$RR = rr
return(HRVData)
} |
Becker83 <- matrix(
c(1,-0.33,0.03,25,2,
2,0.07,0.03,25,2,
3,-0.3,0.02,50,2,
4,0.35,0.02,100,38,
5,0.69,0.07,100,30,
6,0.81,0.22,100,45,
7,0.4,0.05,100,45,
8,0.47,0.07,100,45,
9,0.37,0.05,100,5,
10,-0.06,0.03,100,5),
ncol=5, byrow=TRUE)
dimnames(Becker83) <- list(NULL, c("study","di","vi","percentage","items"))
Becker83 <- data.frame(Becker83) |
expected <- eval(parse(text="c(137.806684813768, 121.8139365262, 65.7401124541654, 58.1108376312736, 45.405715266083, 27.7215361928801, 24.5043950862888, 19.146851627154, 11.6897209360412, 10.3331048565334, 8.07391591749891, 4.92936519144333, 4.35730225537612, 3.85162839581514, 1.83740349181702, 1.43568090186075, 0.87652578203274, 0.774803168078583, 0.326721894204603, 0.28880514857566, 0.15586133644587, 0.13777330882289, 0.0580967635187637, 0.0453947182615431, 0.0244984602619516)"));
test(id=0, code={
argv <- eval(parse(text="list(c(4.92585186838819, 4.80249477012754, 4.18570927882429, 4.06235218056364, 3.81563798404234, 3.32220959099974, 3.19885249273909, 2.95213829621779, 2.45870990317518, 2.33535280491453, 2.08863860839323, 1.59521021535063, 1.47185311708998, 1.34849601882933, 0.608353429265429, 0.361639232744128, -0.131789160298473, -0.255146258559123, -1.11864594638368, -1.24200304464433, -1.85878853594758, -1.98214563420823, -2.84564532203278, -3.09235951855408, -3.70914500985733))"));
do.call(`exp`, argv);
}, o=expected); |
clusOpt3fixedPSU <- function(unit.cost, m, delta1, delta2, unit.rv, k1=1, k2=1, CV0=NULL, tot.cost=NULL, cal.sw){
if (m<0) stop("m must be positive.\n")
delta1.chk <- any(delta1 < 0 | delta1 > 1)
if (delta1.chk) stop("delta1 must be in [0,1].\n")
delta2.chk <- any(delta2 < 0 | delta2 > 1)
if (delta2.chk) stop("delta2 must be in [0,1].\n")
if (!is.null(CV0) & !is.null(tot.cost))
stop("CV0 and C.prime cannot both be non-null.\n")
if (is.null(CV0) & is.null(tot.cost))
stop("CV0 and C.prime cannot both be null.\n")
if (sum(length(m)>1, length(delta1)>1,
length(delta2)>1, length(unit.rv)>1, length(CV0)>1, length(tot.cost)>1) > 1)
stop("Only one argument to function can be vector.\n")
C1 <- unit.cost[1]
C2 <- unit.cost[2]
C3 <- unit.cost[3]
C.prime <- tot.cost/m - C1
q.opt <- sqrt((1-delta2)/delta2 * C2 / C3)
if (cal.sw == 1){
n <- C.prime/(C2 + C3*q.opt)
n.chk <- any(n < 0)
if (n.chk) stop(paste("n is negative. Check inputs. n=",n,"\n"))
tot.cost <- C1*m + C2*m*n + C3*m*n*q.opt
CV <- sqrt(unit.rv/m/n/q.opt * (k1*delta1*n*q.opt + k2*(1 + delta2*(q.opt-1))))
output <-
structure(list(C1 = C1,
C2 = C2,
C3 = C3,
m = m,
delta1 = delta1,
delta2 = delta2,
"unit relvar" = unit.rv,
k1 = k1,
k2 = k2,
"variable budget" = tot.cost-C1*m,
"total cost" = round(tot.cost,0),
n = round(n,1),
q = round(q.opt,1),
CV = round(CV,4)),
class = "power.htest")
}
if (cal.sw == 2) {
n <- k2*(1 + delta2*(q.opt-1)) / q.opt / (CV0^2*m/unit.rv - k1*delta1)
n.chk <- any(n < 0)
if (n.chk) stop(paste("n is negative. Check inputs. n=",n,"\n"))
tot.cost <- C1*m + C2*m*n + C3*m*n*q.opt
CV.chk <- sqrt(unit.rv/m/n/q.opt * (k1*delta1*n*q.opt + k2*(1+ delta2*(q.opt-1))))
output <-
structure(list(C1 = C1,
C2 = C2,
C3 = C3,
m = m,
delta1 = delta1,
delta2 = delta2,
"unit relvar" = unit.rv,
k1 = k1,
k2 = k2,
"variable budget" = tot.cost-C1*m,
"total cost" = round(tot.cost,0),
n = round(n,1),
q = round(q.opt,1),
CV = CV0,
"CV check" = round(CV.chk,4)),
class = "power.htest")
}
output
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(ggplot2)
data(anscombe)
computational_components <- list(
Linear = ggplot(anscombe, aes(x = x1, y = y1)) + geom_point() + theme_bw(),
`Non Linear` = ggplot(anscombe, aes(x = x2, y = y2)) + geom_point() + theme_bw(),
`Outlier Vertical`= ggplot(anscombe, aes(x = x3, y = y3)) + geom_point() + theme_bw(),
`Outlier Horizontal` = ggplot(anscombe, aes(x = x4, y = y4)) + geom_point() + theme_bw())
library(listdown)
ld <- listdown(load_cc_expr = readRDS("comp-comp.rds"),
package = "ggplot2")
doc <- c(
as.character(ld_rmarkdown_header("Anscombe's Quartet",
author = "Francis Anscombe",
date = "1973")),
ld_make_chunks(ld))
cat("\n", paste(doc, collapse = "\n"))
ld <- listdown(load_cc_expr = readRDS("comp-comp.rds"),
package = "ggplot2",
echo = FALSE)
cat(paste(ld_make_chunks(ld), collapse = "\n"))
computational_components$Data <- anscombe
cat(paste(ld_make_chunks(ld), collapse = "\n"))
library(DT)
ld <- listdown(load_cc_expr = readRDS("comp-comp.rds"),
package = c("ggplot2", "DT"),
decorator = list(data.frame = datatable))
cat(paste(ld_make_chunks(ld), collapse = "\n")) |
as.genind.DNAbin <- function(x, pops){
h <- haplotype(x)
tab <- sapply(attr(h, 'index'), function(i)
sapply(1:dim(x)[1], function(j) sum(i==j)))
colnames(tab) <- paste("L1", 1:dim(tab)[2], sep=".")
res <- genind(tab=tab, pop=pops, ploidy=1)
return(res)
} |
library(testthat)
context("Cause-specific Cox regression")
library(riskRegression)
library(pec)
library(rms)
library(survival)
library(prodlim)
test_that("CSC vs prodlim",{
data(Melanoma)
nd <- data.frame(sex=factor(levels(Melanoma$sex)))
A <- prodlim(Hist(time,status)~1,data=Melanoma)
B <- CSC(Hist(time,status)~1,data=Melanoma)
pB <- predictRisk(B,times=sort(unique(Melanoma$time)),newdata=nd[1,,drop=FALSE],cause=1)
pA <- predictRisk(A,times=sort(unique(Melanoma$time)),newdata=nd[1,,drop=FALSE],cause=1)
expect_equal(c(pB),pA,tolerance=1e3)
a <- prodlim(Hist(time,status)~sex,data=Melanoma)
b <- CSC(Hist(time,status)~strat(sex),data=Melanoma,fitter="cph")
c <- CSC(Hist(time,status)~strat(sex),data=Melanoma,surv.type="survival",fitter="cph")
pa <- predictRisk(a,times=c(0,10,100,1000,2000),newdata=nd,cause=1)
pb <- predictRisk(b,times=c(0,10,100,1000,2000),newdata=nd,cause=1)
pc <- predictRisk(c,times=c(0,10,100,1000,2000),newdata=nd,cause=1)
expect_equal(c(pb),c(pa),tolerance=0.1)
expect_equal(c(pb),c(pc),tolerance=0.00000001)
u <- CSC(Hist(time,status)~strat(sex)+age+invasion,data=Melanoma,fitter="cph")
v <- CSC(Hist(time,status)~strat(sex)+age+invasion,data=Melanoma,surv.type="survival",fitter="cph")
pu <- predictRisk(u,times=c(0,10,100,1000,2000),newdata=Melanoma[c(17,84),],cause=1)
pv <- predictRisk(v,times=c(0,10,100,1000,2000),newdata=Melanoma[c(17,84),],cause=1)
expect_equal(c(pu),c(pv),tolerance=0.1)
})
test_that("predictSurv",{
set.seed(17)
d <- prodlim::SimSurv(100)
f <- coxph(Surv(time,status)~X1+X2,data=d,x=TRUE,y=TRUE)
h <- cph(Surv(time,status)~X1+X2,data=d,surv=TRUE,x=TRUE,y=TRUE)
af <- predictRisk(f,newdata=d[c(17,88,3),],times=c(0,1,8.423,100,1000))
bf <- 1-predictSurvProb(f,newdata=d[c(17,88,3),],times=c(0,1,8.423,100,1000))
expect_equal(unname(af),unname(bf),tolerance = 1e-8)
ah <- predictRisk(h,newdata=d[c(17,88,3),],times=c(0,1,8.423,100,1000))
bh <- 1-predictSurvProb(h,newdata=d[c(17,88,3),],times=c(0,1,8.423,100,1000))
colnames(bh) <- NULL
expect_equal(unname(ah),unname(bh),tolerance = 1e-8)
})
test_that("Cox models",{
set.seed(17)
d <- prodlim::SimCompRisk(100)
a <- CSC(Hist(time,event)~X1+X2,data=d)
A <- CSC(Hist(time,event)~X1+X2,data=d,surv.type="surv")
a1 <- coxph(Surv(time,event==1)~X1+X2,data=d)
a2 <- coxph(Surv(time,event==2)~X1+X2,data=d)
A2 <- coxph(Surv(time,event!=0)~X1+X2,data=d)
expect_equal(coef(a$models[[1]]),coef(a1),tolerance = 1e-8)
expect_equal(coef(a$models[[2]]),coef(a2),tolerance = 1e-8)
expect_equal(coef(A$models[[2]]),coef(A2),tolerance = 1e-8)
})
test_that("strata",{
set.seed(17)
d <- prodlim::SimCompRisk(100)
a <- CSC(Hist(time,event)~strata(X1)+X2,data=d)
A <- CSC(Hist(time,event)~strata(X1)+X2,data=d,surv.type="surv")
a1 <- coxph(Surv(time,event==1)~strata(X1)+X2,data=d)
a2 <- coxph(Surv(time,event==2)~strata(X1)+X2,data=d)
A2 <- coxph(Surv(time,event!=0)~strata(X1)+X2,data=d)
expect_equal(coef(a$models[[1]]),coef(a1),tolerance = 1e-8)
expect_equal(coef(a$models[[2]]),coef(a2),tolerance = 1e-8)
expect_equal(coef(A$models[[2]]),coef(A2),tolerance = 1e-8)
})
test_that("strat and strata",{
data(Melanoma)
a <- CSC(Hist(time,status)~strat(sex)+age+invasion+logthick+strat(epicel)+strat(ulcer),data=Melanoma,fitter="cph")
predictRisk(a,times=c(0,100,1000,4000),newdata=Melanoma[c(17,77,188),],cause=2)
b <- CSC(Hist(time,status)~strata(sex)+age+invasion+logthick+strata(epicel)+strata(ulcer),data=Melanoma,fitter="coxph")
pa <- predictRisk(a,times=c(0,100,1000,4000),newdata=Melanoma[c(17,77,188),],cause=2)
pb <- predictRisk(b,times=c(0,100,1000,4000),newdata=Melanoma[c(17,77,188),],cause=2)
expect_equal(pa,pb,tolerance=1e-6)
}) |
con_iachan_holland<-function(a,b){
a <- toupper(unlist(strsplit(a,split = "",fixed = TRUE)))
b <- toupper(unlist(strsplit(b,split = "",fixed = TRUE)))
if(length(a) != length(b)) stop("a and b must have the same number of characters in Holland-code")
if(length(a) > 3 ) stop("a Iachan-Index is only defined for three-letter Holland-code")
IM<-matrix(c(22,10,4,10,5,2,4,2,1),ncol=3)
bM<-t(matrix(rbind(b,b,b),ncol=3))
aM<-matrix(rbind(a,a,a),ncol=3)
ergM<-((aM==bM)*IM)
erg <- sum(ergM)
return (erg)
} |
library(testthat)
library(workflows)
test_check("workflows") |
compute_s2_paths <- function(pm,
s2_list_l1c,
s2_list_l2a,
tmpdir,
list_prods,
force_tiles = FALSE,
check_tmp = TRUE,
ignorelist) {
. <- type <- mission <- level <- id_orbit <- extent_name <- file_ext <-
mission <- level <- sensing_date <- id_orbit <- prod_type <- res <-
sensing_datetime <- id_tile <- NULL
list_prods <- list_prods[!is.na(nn(list_prods))]
list_rgb <- pm$list_rgb[!is.na(nn(pm$list_rgb))]
list_indices <- pm$list_indices[!is.na(nn(pm$list_indices))]
list_prods <- list_prods[!duplicated(list_prods)]
list_rgb <- list_rgb[!duplicated(list_rgb)]
list_indices <- list_indices[!duplicated(list_indices)]
s2_list_l1c <- s2_list_l1c[!duplicated(names(s2_list_l1c))]
s2_list_l2a <- s2_list_l2a[!duplicated(names(s2_list_l2a))]
nomsk <- c("SCL", "CLD", "SNW", "AOT")
steps_todo <- c(
"tiles" = TRUE,
"merged" = TRUE,
"warped" = pm$clip_on_extent,
"warped_nomsk" = pm$clip_on_extent & any(nomsk %in% list_prods),
"rgb" = length(list_rgb) > 0,
"masked" = !is.na(pm$mask_type),
"indices" = length(list_indices) > 0
)
output_req <- c(
"tiles" = !is.na(pm$path_tiles),
"merged" = !is.na(pm$path_merged) | !is.na(pm$path_out) & !steps_todo[["warped"]] & !steps_todo[["masked"]],
"warped" = length(pm$list_prods[!is.na(pm$list_prods) & pm$list_prods != "SCL"]) > 0 & !steps_todo[["masked"]] & pm$clip_on_extent,
"warped_nomsk" = any(nomsk %in% pm$list_prods),
"rgb" = steps_todo[["rgb"]],
"masked" = length(pm$list_prods[!is.na(pm$list_prods) & !pm$list_prods %in% nomsk]) > 0 & steps_todo[["masked"]],
"indices" = steps_todo[["indices"]]
)
gdal_formats <- fromJSON(system.file("extdata/settings/gdal_formats.json",package="sen2r"))$drivers
sel_driver <- gdal_formats[gdal_formats$name==pm$outformat,]
sel_rgb_driver <- gdal_formats[gdal_formats$name==pm$rgb_outformat,]
if (nrow(sel_driver)==0) {
print_message(
type="error",
"Format \"",pm$outformat,"\" is not recognised; ",
"please use one of the formats supported by your GDAL installation."
)
}
if (nrow(sel_rgb_driver)==0) {
print_message(
type="error",
"Format \"",pm$rgb_outformat,"\" is not recognised; ",
"please use one of the formats supported by your GDAL installation."
)
}
main_format <- sel_driver[1,"name"]
rgb_format <- sel_rgb_driver[1,"name"]
out_format <- c(
"tiles" = if (output_req["tiles"]) main_format else "VRT",
"merged" = if (output_req["merged"]) main_format else "VRT",
"warped" = if (output_req["warped"]) main_format else "VRT",
"warped_nomsk" = main_format,
"rgb" = rgb_format,
"masked" = main_format,
"indices" = main_format
)
main_ext <- sel_driver[1,"ext"]
rgb_ext <- sel_rgb_driver[1,"ext"]
out_ext <- c(
"tiles" = if (output_req["tiles"]) main_ext else "vrt",
"merged" = if (output_req["merged"]) main_ext else "vrt",
"warped" = if (output_req["warped"]) main_ext else "vrt",
"warped_nomsk" = main_ext,
"rgb" = rgb_ext,
"masked" = main_ext,
"indices" = main_ext
)
output_dep <- c(
"tiles" = "SAFE",
"merged" = "tiles",
"warped" = "merged",
"warped_nomsk" = "merged",
"rgb" = if (steps_todo["warped"]) {"warped"} else {"merged"},
"masked.nonnomsk" = if (steps_todo["warped"]) {"warped"} else {"merged"},
"masked.nomsk" = if (steps_todo["warped"]) {"warped_nomsk"} else {"merged"},
"indices" = if (steps_todo["masked"]) {"masked"} else if (steps_todo["warped"]) {"warped"} else {"merged"}
)
cloudcovered_steps <- c(
"tiles" = FALSE,
"merged" = FALSE,
"warped" = FALSE,
"warped_nomsk" = FALSE,
"rgb" = FALSE,
"masked" = TRUE,
"indices" = TRUE
)
paths_istemp <- c(
"L1C" = is.na(pm$path_l1c),
"L2A" = is.na(pm$path_l2a),
"tiles" = !output_req[["tiles"]],
"merged" = is.na(pm$path_merged) & (is.na(pm$path_out) | steps_todo[["warped"]] | steps_todo[["masked"]]),
"warped" = !output_req[["warped"]],
"warped_nomsk" = !output_req[["warped_nomsk"]],
"rgb" = !output_req[["rgb"]],
"masked" = !output_req[["masked"]],
"indices" = !output_req[["indices"]]
)
paths <- c(
"L1C" = if (!paths_istemp[["L1C"]]) {pm$path_l1c} else {file.path(tmpdir,"SAFE")},
"L2A" = if (!paths_istemp[["L2A"]]) {pm$path_l2a} else {file.path(tmpdir,"SAFE")},
"tiles" = if (!paths_istemp[["tiles"]]) {pm$path_tiles} else {file.path(tmpdir,"tiles")},
"merged" = if (!is.na(pm$path_merged)) {
pm$path_merged
} else if (!is.na(pm$path_out) & !steps_todo[["warped"]] & !steps_todo[["masked"]]) {
pm$path_out
} else {
file.path(tmpdir,"merged")
},
"warped" = if (!paths_istemp[["warped"]]) {pm$path_out} else {file.path(tmpdir,"warped")},
"warped_nomsk" = if (!paths_istemp[["warped_nomsk"]]) {pm$path_out} else {file.path(tmpdir,"warped")},
"rgb" = if (!paths_istemp[["rgb"]]) {pm$path_rgb} else {file.path(tmpdir,"rgb")},
"masked" = if (!paths_istemp[["masked"]]) {pm$path_out} else {file.path(tmpdir,"masked")},
"indices" = if (!paths_istemp[["indices"]]) {pm$path_indices} else {file.path(tmpdir,"indices")}
)
paths <- sapply(paths, normalize_path, mustWork = FALSE)
ExtentName <- if (steps_todo["warped"]) {pm$extent_name} else {""}
level_for_indices <- switch(pm$index_source, TOA = "1C", BOA = "2A")
l1c_prods <- c("TOA")
l2a_prods <- c("BOA","SCL","TCI","AOT","WVP","CLD","SNW")
remove_duplicates <- function(x) {x[!duplicated(x)]}
merge_exp_req <- function(exp_paths, req_paths, step) {
sapply(names(exp_paths[[step]]), function(prod) {
remove_duplicates(nn(unlist(
as.vector(c(
if (output_req[step]) {exp_paths[[step]][[prod]]},
unlist(sapply(
req_paths[gsub("\\..*$","",names(which(output_dep==step)))],
function(sellist) {sellist[[prod]]}
))
))
)))
}, simplify = FALSE, USE.NAMES = TRUE)
}
nonex_paths <- function(list_paths, overwrite = FALSE) {
if (overwrite) {
list_paths
} else {
sapply(names(list_paths), function(prod) {
list_paths[[prod]][!file.exists(list_paths[[prod]])]
}, simplify = FALSE, USE.NAMES = TRUE)
}
}
exi_paths <- list(
"tiles" = sapply(list_prods, function(prod) {
list.files(
file.path(paths["tiles"], if (pm$path_subdirs) {prod}),
paste0("^S2([AB])([12][AC])\\_([0-9]{8})\\_([0-9]{3})\\_([0-9]{2}[A-Z]{3})\\_(",prod,")\\_([126]0)\\.?(",out_ext["tiles"],")$"),
full.names=TRUE
)
}, simplify = FALSE, USE.NAMES = TRUE),
"merged" = sapply(list_prods, function(prod) {
list.files(
file.path(paths["merged"], if (pm$path_subdirs) {prod}),
paste0("^S2([AB])([12][AC])\\_([0-9]{8})\\_([0-9]{3})\\_\\_(",prod,")\\_([126]0)\\.?(",out_ext["merged"],")$"),
full.names=TRUE
)
}, simplify = FALSE, USE.NAMES = TRUE),
"warped" = sapply(list_prods[!list_prods %in% nomsk], function(prod) {
list.files(
file.path(paths["warped"], if (pm$path_subdirs) {prod}),
paste0("^S2([AB])([12][AC])\\_([0-9]{8})\\_([0-9]{3})\\_([^\\_\\.]*)\\_(",prod,")\\_([126]0)\\.?(",out_ext["warped"],")$"),
full.names=TRUE
)
}, simplify = FALSE, USE.NAMES = TRUE),
"warped_nomsk" = sapply(list_prods[list_prods %in% nomsk], function(prod) {
list.files(
file.path(paths["warped_nomsk"], if (pm$path_subdirs) {prod}),
paste0("^S2([AB])([12][AC])\\_([0-9]{8})\\_([0-9]{3})\\_([^\\_\\.]*)\\_(",prod,")\\_([126]0)\\.?(",out_ext["warped_nomsk"],")$"),
full.names=TRUE
)
}, simplify = FALSE, USE.NAMES = TRUE),
"rgb" = sapply(list_rgb, function(prod) {
list.files(
file.path(paths["rgb"], if (pm$path_subdirs) {prod}),
paste0("^S2([AB])([12][AC])\\_([0-9]{8})\\_([0-9]{3})\\_([^\\_\\.]*)\\_(",prod,")\\_([126]0)\\.?(",out_ext["rgb"],")$"),
full.names=TRUE
)
}, simplify = FALSE, USE.NAMES = TRUE),
"masked" = sapply(list_prods[!list_prods %in% nomsk], function(prod) {
list.files(
file.path(paths["masked"], if (pm$path_subdirs) {prod}),
paste0("^S2([AB])([12][AC])\\_([0-9]{8})\\_([0-9]{3})\\_([^\\_\\.]*)\\_(",prod,")\\_([126]0)\\.?(",out_ext["masked"],")$"),
full.names=TRUE
)
}, simplify = FALSE, USE.NAMES = TRUE),
"indices" = sapply(list_indices, function(prod) {
list.files(
file.path(paths["indices"], if (pm$path_subdirs) {prod}),
paste0("^S2([AB])([12][AC])\\_([0-9]{8})\\_([0-9]{3})\\_([^\\_\\.]*)\\_(",prod,")\\_([126]0)\\.?(",out_ext["indices"],")$"),
full.names=TRUE
)
}, simplify = FALSE, USE.NAMES = TRUE)
)
exi_meta <- sapply(names(exi_paths), function(step) {
sapply(names(exi_paths[[step]]), function(prod) {
table <- suppressWarnings(sen2r_getElements(exi_paths[[step]][[prod]], abort = FALSE))
table$names <- exi_paths[[step]][[prod]]
if (is.null(table$prod_type)) {table$prod_type <- character()}
if (is.null(table$mission)) {table$mission <- character()}
if (is.null(table$level)) {table$level <- character()}
if (is.null(table$file_ext)) {table$file_ext <- character()}
table <- table[
type != "unrecognised" &
mission %in% toupper(substr(pm$sel_sensor,3,3)) &
level %in% toupper(substr(pm$s2_levels,2,3))
,]
if (length(pm$timewindow)>0 & !anyNA(pm$timewindow) & length(table$sensing_date)>0) {
table <- table[
table$sensing_date>=pm$timewindow[1] &
table$sensing_date<=pm$timewindow[2]
,]
}
if (length(pm$s2orbits_selected)>0 & !anyNA(pm$s2orbits_selected) & length(table$id_orbit)>0) {
table <- table[id_orbit %in% pm$s2orbits_selected,]
}
table
}, simplify = FALSE, USE.NAMES = TRUE)
}, simplify = FALSE, USE.NAMES = TRUE)
rm(exi_paths)
if (length(pm$s2tiles_selected)>0 & !anyNA(pm$s2tiles_selected)) {
for (step in c("tiles")) {
exi_meta[[step]] <- sapply(names(exi_meta[[step]]), function(prod) {
table <- exi_meta[[step]][[prod]]
table <- table[extent_name %in% pm$s2tiles_selected,]
table
}, simplify = FALSE, USE.NAMES = TRUE)
}
}
if (length(pm$extent_name)>0 & !anyNA(pm$extent_name)) {
for (step in c("warped", "warped_nomsk", "masked", "rgb", "indices")) {
exi_meta[[step]] <- sapply(names(exi_meta[[step]]), function(prod) {
table <- exi_meta[[step]][[prod]]
table <- table[extent_name %in% pm$extent_name,]
table
}, simplify = FALSE, USE.NAMES = TRUE)
}
}
for (step in c("warped", "warped_nomsk", "masked")) {
exi_meta[[step]] <- sapply(names(exi_meta[[step]]), function(prod) {
table <- exi_meta[[step]][[prod]]
table <- table[file_ext %in% out_ext[step],]
table
}, simplify = FALSE, USE.NAMES = TRUE)
}
exi_paths <- sapply(exi_meta, function(x) {
sapply(x, function(y) {y$names}, simplify = FALSE, USE.NAMES = FALSE)
}, simplify = FALSE, USE.NAMES = TRUE)
exi_paths[cloudcovered_steps] <- sapply(exi_paths[cloudcovered_steps], function(x) {
sapply(x, function(y) {
y[!sen2r_getElements(y)$sensing_date %in% ignorelist$dates_cloudcovered]
}, simplify = FALSE, USE.NAMES = FALSE)
}, simplify = FALSE, USE.NAMES = TRUE)
exi_paths <- sapply(exi_paths, function(x) {
sapply(x, function(y) {
y[!basename(y) %in% ignorelist$names_missing]
}, simplify = FALSE, USE.NAMES = FALSE)
}, simplify = FALSE, USE.NAMES = TRUE)
exp_paths <- list()
if (steps_todo["tiles"]) {
exp_paths[["tiles"]] <- sapply(list_prods, function(prod){
nn(
unlist(c(
sapply(
if (prod %in% l1c_prods) {file.path(pm$path_l1c,names(s2_list_l1c))} else
if (prod %in% l2a_prods) {file.path(pm$path_l2a,names(s2_list_l2a))},
function(safe){
sel_av_tiles <- tryCatch(
safe_getMetadata(
safe, info = "tiles",
format = "vector", abort = TRUE, simplify = TRUE
),
error = function(e){
safe_getMetadata(
safe, info = "id_tile",
format = "vector", simplify = TRUE
)
}
)
file.path(
paths["tiles"],
if (pm$path_subdirs) {prod} else {""},
basename(safe_shortname(
safe, prod_type=prod, ext=out_ext["tiles"],
res=pm$res_s2, tiles=pm$s2tiles_selected,
force_tiles=force_tiles, multiple_names=TRUE
))
)
},
simplify = FALSE, USE.NAMES = FALSE
),
exi_paths$tiles[[prod]]
))
)
}, simplify = FALSE, USE.NAMES = TRUE)
if (any(unlist(lapply(exp_paths[["tiles"]], duplicated)))) {
exp_paths[["tiles"]] <- sapply(exp_paths[["tiles"]], function(p) {
add_tile_suffix(p)
}, simplify = FALSE, USE.NAMES = TRUE)
}
}
if (steps_todo["merged"]) {
exp_paths[["merged"]] <- sapply(list_prods, function(prod) {
expaths <- if (length(exp_paths[[output_dep["merged"]]][[prod]]) == 0) {
character(0)
} else {
file.path(
paths["merged"],
if (pm$path_subdirs) {prod} else {""},
sen2r_getElements(exp_paths[[output_dep["merged"]]][[prod]])[,paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"__",
prod_type,"_",
substr(res,1,2),".",
out_ext["merged"]
)]
)
}
remove_duplicates(nn(
unlist(c(expaths, exi_paths[["merged"]][[prod]]))
))
}, simplify = FALSE, USE.NAMES = TRUE)
}
if (steps_todo["warped"]) {
exp_paths[["warped"]] <- sapply(list_prods[!list_prods %in% nomsk], function(prod) {
expaths <- if (length(exp_paths[[output_dep["warped"]]][[prod]]) == 0) {
character(0)
} else {
file.path(
paths["warped"],
if (pm$path_subdirs) {prod} else {""},
sen2r_getElements(exp_paths[[output_dep["warped"]]][[prod]])[,paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
ExtentName,"_",
prod_type,"_",
substr(res,1,2),".",
out_ext["warped"]
)]
)
}
remove_duplicates(nn(
unlist(c(expaths, exi_paths[["warped"]][[prod]]))
))
}, simplify = FALSE, USE.NAMES = TRUE)
}
if (steps_todo["warped_nomsk"]) {
exp_paths[["warped_nomsk"]] <- sapply(list_prods[list_prods %in% nomsk], function(prod) {
expaths <- if (length(exp_paths[[output_dep["warped_nomsk"]]][[prod]]) == 0) {
character(0)
} else {
file.path(
paths["warped_nomsk"],
if (pm$path_subdirs) {prod} else {""},
sen2r_getElements(exp_paths[[output_dep["warped_nomsk"]]][[prod]])[,paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
ExtentName,"_",
prod_type,"_",
substr(res,1,2),".",
out_ext["warped_nomsk"]
)]
)
}
remove_duplicates(nn(
unlist(c(expaths, exi_paths[["warped_nomsk"]][[prod]]))
))
}, simplify = FALSE, USE.NAMES = TRUE)
}
if (steps_todo["rgb"]) {
exp_paths[["rgb"]] <- sapply(list_rgb, function(prod) {
expaths <- if (length(unlist(exp_paths[[output_dep["rgb"]]])) == 0) {
character(0)
} else {
gsub(
"<rgbname>", prod,
file.path(
paths["rgb"],
if (pm$path_subdirs) {prod} else {""},
unique(
sen2r_getElements(unlist(exp_paths[[output_dep["rgb"]]]))[
level == switch(substr(prod,7,7), T = "1C", B = "2A"),
paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
ExtentName,"_",
"<rgbname>_",
substr(res,1,2),".",
out_ext["rgb"]
)]
)
)
)
}
remove_duplicates(nn(
unlist(c(expaths, exi_paths[["rgb"]][[prod]]))
))
}, simplify = FALSE, USE.NAMES = TRUE)
}
if (steps_todo["masked"]) {
exp_paths[["masked"]] <- sapply(list_prods[!list_prods %in% nomsk], function(prod) {
expaths <- if (length(exp_paths[[output_dep["masked.nonnomsk"]]][[prod]]) == 0) {
character(0)
} else {
canbemasked <- sen2r_getElements(
exp_paths[[output_dep["masked.nonnomsk"]]][[prod]]
)[,paste(sensing_date,id_orbit,ExtentName)] %in%
sen2r_getElements(
exp_paths[[output_dep["masked.nomsk"]]][["SCL"]]
)[,paste(sensing_date,id_orbit,ExtentName)]
file.path(
paths["masked"],
if (pm$path_subdirs) {prod} else {""},
sen2r_getElements(exp_paths[[output_dep["masked.nonnomsk"]]][[prod]])[canbemasked, paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
ExtentName,"_",
prod_type,"_",
substr(res,1,2),".",
out_ext["masked"]
)]
)
}
remove_duplicates(nn(
unlist(c(expaths, exi_paths$masked[[prod]]))
))
}, simplify = FALSE, USE.NAMES = TRUE)
}
if (steps_todo["indices"]) {
exp_paths[["indices"]] <- sapply(list_indices, function(prod) {
expaths <- if (length(unlist(exp_paths[[output_dep["indices"]]])) == 0) {
character(0)
} else {
gsub(
"<index>", prod ,
file.path(
paths["indices"],
if (pm$path_subdirs) {prod} else {""},
sen2r_getElements(unlist(exp_paths[[output_dep["indices"]]]))[
level %in% level_for_indices,
paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
ExtentName,"_",
"<index>_",
substr(res,1,2),".",
out_ext["indices"]
)]
)
)
}
remove_duplicates(nn(
unlist(c(expaths, exi_paths$indices[[prod]]))
))
}, simplify = FALSE, USE.NAMES = TRUE)
}
exp_paths[cloudcovered_steps] <- sapply(exp_paths[cloudcovered_steps], function(x) {
sapply(x, function(y) {
y[!sen2r_getElements(y)$sensing_date %in% ignorelist$dates_cloudcovered]
}, simplify = FALSE, USE.NAMES = FALSE)
}, simplify = FALSE, USE.NAMES = TRUE)
exp_paths <- sapply(exp_paths, function(x) {
sapply(x, function(y) {
y[!basename(y) %in% ignorelist$names_missing]
}, simplify = FALSE, USE.NAMES = FALSE)
}, simplify = FALSE, USE.NAMES = TRUE)
new_paths <- req_paths <- list()
if (steps_todo["indices"]) {
new_paths[["indices"]] <- nonex_paths(exp_paths[["indices"]], pm$overwrite)
req_paths[["indices"]] <- list()
req_paths[["indices"]][[pm$index_source]] <- if (length(unlist(new_paths[["indices"]])) == 0) {
character(0)
} else {
file.path(
paths[output_dep["indices"]],
if (pm$path_subdirs) {pm$index_source} else {""},
remove_duplicates(
sen2r_getElements(
unlist(new_paths[["indices"]])
)[level %in% level_for_indices,
paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
ExtentName,"_",
pm$index_source,"_",
substr(res,1,2),".",
out_ext[output_dep["indices"]]
)]
)
)
}
}
if (steps_todo["masked"]) {
exp_paths[["masked"]] <- merge_exp_req(exp_paths, req_paths, "masked")
new_paths[["masked"]] <- nonex_paths(exp_paths[["masked"]], pm$overwrite)
req_paths[["masked"]] <- sapply(list_prods[!list_prods %in% nomsk], function(prod) {
if (length(new_paths[["masked"]][[prod]]) == 0) {
character(0)
} else {
file.path(
paths[output_dep["masked.nonnomsk"]],
if (pm$path_subdirs) {prod} else {""},
remove_duplicates(
sen2r_getElements(new_paths[["masked"]][[prod]])[
,paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
ExtentName,"_",
prod,"_",
substr(res,1,2),".",
out_ext[output_dep["masked.nonnomsk"]]
)]
)
)
}
}, simplify = FALSE, USE.NAMES = TRUE)
req_paths[["masked"]][["SCL"]] <- if (length(unlist(new_paths[["masked"]])) == 0) {
character(0)
} else {
file.path(
paths[output_dep["masked.nomsk"]],
if (pm$path_subdirs) {"SCL"} else {""},
remove_duplicates(
sen2r_getElements(
unlist(new_paths[["masked"]])
)[,paste0(
"S2",
mission,
"2A","_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
ExtentName,"_",
"SCL","_",
substr(res,1,2),".",
out_ext[output_dep["masked.nomsk"]]
)]
)
)
}
}
if (steps_todo["rgb"]) {
new_paths[["rgb"]] <- nonex_paths(exp_paths[["rgb"]], pm$overwrite)
req_paths[["rgb"]] <- sapply(list_prods[list_prods %in% c("TOA", "BOA")], function(prod) {
if (length(unlist(new_paths[["rgb"]][substr(names(new_paths[["rgb"]]),7,7) == substr(prod,1,1)])) == 0) {
character(0)
} else {
file.path(
paths[output_dep["rgb"]],
if (pm$path_subdirs) {prod} else {""},
remove_duplicates(
sen2r_getElements(unlist(
new_paths[["rgb"]][substr(names(new_paths[["rgb"]]),7,7) == substr(prod,1,1)]
))[
level == switch(prod, TOA = "1C", BOA = "2A"),
paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
ExtentName,"_",
prod,"_",
substr(res,1,2),".",
out_ext[output_dep["rgb"]]
)]
)
)
}
}, simplify = FALSE, USE.NAMES = TRUE)
}
if (steps_todo["warped_nomsk"]) {
exp_paths[["warped_nomsk"]] <- merge_exp_req(exp_paths, req_paths, "warped_nomsk")
new_paths[["warped_nomsk"]] <- nonex_paths(exp_paths[["warped_nomsk"]], pm$overwrite)
req_paths[["warped_nomsk"]] <- sapply(list_prods[list_prods %in% nomsk], function(prod) {
if (length(new_paths[["warped_nomsk"]][[prod]]) == 0) {
character(0)
} else {
file.path(
paths[output_dep["warped_nomsk"]],
if (pm$path_subdirs) {prod} else {""},
remove_duplicates(
sen2r_getElements(new_paths[["warped_nomsk"]][[prod]])[
,paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
"_",
prod,"_",
substr(res,1,2),".",
out_ext[output_dep["warped_nomsk"]]
)]
)
)
}
}, simplify = FALSE, USE.NAMES = TRUE)
}
if (steps_todo["warped"]) {
exp_paths[["warped"]] <- merge_exp_req(exp_paths, req_paths, "warped")
new_paths[["warped"]] <- nonex_paths(exp_paths[["warped"]], pm$overwrite)
req_paths[["warped"]] <- sapply(list_prods[!list_prods %in% nomsk], function(prod) {
if (length(new_paths[["warped"]][[prod]]) == 0) {
character(0)
} else {
file.path(
paths[output_dep["warped"]],
if (pm$path_subdirs) {prod} else {""},
remove_duplicates(
sen2r_getElements(new_paths[["warped"]][[prod]])[
,paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
"_",
prod,"_",
substr(res,1,2),".",
out_ext[output_dep["warped"]]
)]
)
)
}
}, simplify = FALSE, USE.NAMES = TRUE)
}
if (steps_todo["merged"]) {
exp_paths[["merged"]] <- merge_exp_req(exp_paths, req_paths, "merged")
new_paths[["merged"]] <- nonex_paths(exp_paths[["merged"]], pm$overwrite)
req_paths[["merged"]] <- sapply(list_prods, function(prod) {
if (length(new_paths[["merged"]][[prod]]) == 0) {
character(0)
} else {
reqpaths <- sen2r_getElements(new_paths[["merged"]][[prod]])[
,paste0(
"S2",
mission,
level,"_",
strftime(sensing_date,"%Y%m%d"),"_",
id_orbit,"_",
"[0-9]{2}[A-Z]{3}[a-z]?_",
prod,"_",
substr(res,1,2),".",
out_ext[output_dep["merged"]]
)]
remove_duplicates(nn(unlist(
lapply(reqpaths, function(x){
exp_paths[[output_dep["merged"]]][[prod]][grep(x, exp_paths[[output_dep["merged"]]][[prod]])]
})
)))
}
}, simplify = FALSE, USE.NAMES = TRUE)
}
if (steps_todo["tiles"]) {
exp_paths[["tiles"]] <- merge_exp_req(exp_paths, req_paths, "tiles")
new_paths[["tiles"]] <- nonex_paths(exp_paths[["tiles"]], pm$overwrite)
req_paths[["tiles"]] <- if (sum(sapply(new_paths[["tiles"]], length)) == 0) {
list("L1C" = character(0), "L2A" = character(0))
} else {
safe_dt_av <- safe_getMetadata(
c(names(s2_list_l1c),names(s2_list_l2a)),
info = c("nameinfo"), format = "data.table", simplify = FALSE
)
tiles_basenames_av <- safe_dt_av[,paste0(
"S",mission,level,"_",
strftime(sensing_datetime,"%Y%m%d"),"_",
id_orbit,"_",
ifelse(id_tile!="",id_tile,"[A-Z0-9]{5}"),"_",
"[A-Z0-9]{3}_",
"[126]0\\.",
out_ext["tiles"]
)]
if (any(duplicated(tiles_basenames_av))) {
for (sel_basename_av in names(table(tiles_basenames_av))[table(tiles_basenames_av)>1]) {
tiles_basenames_av[tiles_basenames_av==sel_basename_av] <- sapply(
letters[seq_len(sum(tiles_basenames_av==sel_basename_av))],
function(l) {
gsub(
"_([0-9]{2}[A-Z]{3})_",
paste0("_\\1",l,"_"),
sel_basename_av
)
}
)
}
}
list(
"L1C" = file.path(
pm$path_l1c,
basename(names(s2_list_l1c))[unlist(
lapply(
tiles_basenames_av[safe_dt_av$level=="1C"],
function(x){length(grep(x,unlist(new_paths[["tiles"]]))) > 0}
)
)]
),
"L2A" = file.path(
pm$path_l2a,
basename(names(s2_list_l2a))[unlist(
lapply(
tiles_basenames_av[safe_dt_av$level=="2A"],
function(x){length(grep(x,unlist(new_paths[["tiles"]]))) > 0}
)
)]
)
)
}
}
outnames <- list("exi" = exi_paths, "exp" = exp_paths, "new" = new_paths, "req" = req_paths)
attr(outnames, "is_todo") <- steps_todo
attr(outnames, "is_req") <- output_req
attr(outnames, "out_ext") <- out_ext
attr(outnames, "out_format") <- out_format
attr(outnames, "which_dep") <- output_dep
attr(outnames, "paths") <- paths
attr(outnames, "paths_istemp") <- paths_istemp
outnames
} |
server = function(input, output, session) {
shapeGamma <- 2
scaleGamma <- 50
xSkew <- seq(0,shapeGamma*scaleGamma+7.5*sqrt(shapeGamma)*scaleGamma,
length.out=600)
ySkew <- dgamma(xSkew,shape=shapeGamma,scale=scaleGamma)
popDen <- list(x=xSkew,y=ySkew)
popMean <- shapeGamma*scaleGamma
yMax <- 1.5*max(popDen$y)
set.seed(as.numeric(Sys.time()))
rv <- reactiveValues(sample = NULL, mean = NULL, lower = NULL, upper = NULL, sims = 0,
good = 0)
observeEvent(input$takeSample,
{
samp <- rgamma(input$n,shape=shapeGamma,scale=scaleGamma)
xbar <- mean(samp)
conf = isolate(input$confLevel/100)
t.input = conf + ((1 - conf)/2)
tMultiplier = qt(t.input, df = input$n - 1)
se = sd(samp)/sqrt(input$n)
margin = tMultiplier * se
rv$sample <- rgamma(input$n,shape=shapeGamma,scale=scaleGamma)
rv$mean <- xbar
rv$lower <- xbar - margin
rv$upper <- xbar + margin
goodInterval <- popMean >= rv$lower & popMean <= rv$upper
rv$sims <- rv$sims + 1
rv$good <- rv$good + goodInterval
})
observeEvent(input$reset,
{
rv$sims <- 0
rv$good <- 0
})
output$ciplot <- renderPlot({
par(family = "serif", font = 2, bg = NA)
plot(popDen$x,popDen$y,type="l",lwd=3,col="red",cex.axis = 1.25, yaxt = "n",
main="Density Curve of Population",
xlab="",
ylab="",
ylim = c(0,yMax))
text(c(400,500,600),rep(0.0108,3),c("Simulations","Good","Percent Good"), cex = 1.4)
text(c(400,500,600), rep(0.0100,3),c(rv$sims, rv$good, round(rv$good/rv$sims, digits = 4)), cex = 1.4)
box(lwd = 2.5)
axis(side = 2, las = 1, cex.axis = 1.25, tck = 0.025, hadj = 0.65)
mtext(side = 2, "density f(t)", line = 3, cex.lab = 1.25)
abline(v=popMean,lwd=2)
if (input$takeSample) {
sampDen <- density(rv$sample, from = 0)
xdens <- sampDen$x
ydens <- sampDen$y
firstx <- xdens[1]
lastx <- xdens[length(xdens)]
polygon(x = c(firstx,xdens,lastx), y = c(0,ydens,0), col = alpha("lightblue",0.5))
intLevel <- 0.95*yMax
segments(x0 = rv$lower, y0 = intLevel, x1 = rv$upper, y1 = intLevel,
col = "green", lwd = 3)
text(x=rv$lower,y=intLevel,labels="(")
text(x=rv$upper,y=intLevel,labels=")")
points(rv$mean, intLevel, col = "blue", pch = 20,cex=2)
rug(rv$sample)
}
})
} |
layoutClones <- function(fish,separate.independent.clones=FALSE){
[email protected]=lapply(rownames([email protected]),getInnerSpace,fish)
[email protected]=getOuterSpace(fish)
ytop.vec = c()
ybtm.vec = c()
xpos.vec = c()
for(timepos in 1:length(fish@timepoints)){
timepoint=fish@timepoints[timepos]
ytop = rep(NA,length(fish@parents))
ybtm = rep(NA,length(fish@parents))
xpos = rep(timepoint, length(fish@parents))
parentsList = 0
while(length(parentsList) > 0){
parent = parentsList[[1]]
children = which(fish@parents == parent)
parentsList = parentsList[-1]
parentsList = c(parentsList, children)
numChildren = length(children)
spacing = 0
y = [email protected][timepos]/2;
if(separate.independent.clones){
y=0
if(parent == 0){
numZeros = length(which(fish@parents==0))
if(numZeros > 1 & [email protected][timepos] > 0){
[email protected][timepos]/(numZeros+1)
}
}
}
if(parent!=0){
y = ybtm[parent]
spacing = [email protected][[parent]][timepos]/(numChildren(fish,parent,timepos)+1)
}
for(clone in children){
if([email protected][clone,timepos] == 0){
xpos[clone] = NA
if(timepos > 1){
if([email protected][clone,timepos-1] > 0){
ybtm[clone] = y+spacing/2
ytop[clone] = y+spacing/2
xpos[clone] = timepoint-0.25
}
}
} else {
ybtm[clone] = y+spacing
y = y + [email protected][clone,timepos]
ytop[clone] = y+spacing
y = y+spacing
}
}
}
ybtm.vec = c(ybtm.vec,ybtm)
ytop.vec = c(ytop.vec,ytop)
xpos.vec = c(xpos.vec,xpos)
}
ybtm = matrix(ybtm.vec,ncol=ncol([email protected]))
ytop = matrix(ytop.vec,ncol=ncol([email protected]))
xpos = matrix(xpos.vec,ncol=ncol([email protected]))
ybtm.list = list()
ytop.list = list()
xpos.list = list()
for(i in 1:nrow([email protected])){
ybtm.list[[i]] = ybtm[i,!is.na(ybtm[i,])]
ytop.list[[i]] = ytop[i,!is.na(ytop[i,])]
xpos.list[[i]] = xpos[i,!is.na(xpos[i,])]
}
fish@ybtm = ybtm.list
fish@ytop = ytop.list
fish@xpos = xpos.list
return(fish)
}
numChildren <- function(fish,clone,timepoint){
if(clone==0){
return(0)
}
return(length(which([email protected][which(fish@parents==clone), timepoint]>0)))
}
getInnerSpace <- function(clone,fish){
total = [email protected][as.numeric(clone),]
for(i in which(fish@parents==clone)){
total = total - [email protected][i,]
}
return(total)
}
getOuterSpace <- function(fish){
z = [email protected][which(fish@parents==0),]
if(is.vector(z)){
return(100-z)
}
return(100-colSums(z))
} |
"dialog.s.class" <- function(show, history)
{
tt <- tktoplevel()
tkwm.title(tt,"s.class")
frame1 <- tkframe(tt, relief="groove", borderwidth=2)
frame3 <- tkframe(tt, relief="groove", borderwidth=2)
frame4 <- tkframe(tt, relief="groove", borderwidth=2)
frame2 <- tkframe(tt, relief="groove", borderwidth=2)
xyframe <- tkframe(frame1, relief="groove", borderwidth=2)
labframe <- tkframe(frame1, relief="groove", borderwidth=2)
facframe <- tkframe(frame2, relief="groove", borderwidth=2)
classframe <- tkframe(frame2, relief="groove", borderwidth=2)
miscframe <- tkframe(frame2, relief="groove", borderwidth=2)
limframe <- tkframe(frame3, relief="groove", borderwidth=2)
posframe <- tkframe(frame3, relief="groove", borderwidth=2)
legframe <- tkframe(frame3, relief="groove", borderwidth=2)
optframe <- tkframe(frame4, relief="groove", borderwidth=2)
origframe <- tkframe(frame4, relief="groove", borderwidth=2)
gridframe <- tkframe(frame4, relief="groove", borderwidth=2)
xyvar <- tclVar()
facvar <- tclVar()
wtvar <- tclVar()
colvar <- tclVar()
cstarvar <- tclVar()
nxvar <- tclVar(1)
nyvar <- tclVar(2)
labvar <- tclVar()
clabvar <- tclVar(1)
pchvar <- tclVar(20)
cpvar <- tclVar(1)
xl1var <- tclVar()
xl2var <- tclVar()
yl1var <- tclVar()
yl2var <- tclVar()
blengthvar <- tclVar(1)
ellsizevar <- tclVar(1.5)
cgrvar <- tclVar(1)
orxvar <- tclVar(0)
oryvar <- tclVar(0)
subvar <- tclVar()
csubvar <- tclVar(1)
spvar <- tclVar()
gridvar <- tclVar(1)
axesvar <- tclVar(0)
origvar <- tclVar(1)
posvar <- tclVar(3)
addvar <- tclVar(0)
axellvar <- tclVar(1)
TFrame <- tkframe(tt, relief="groove")
labh <- tklabel(TFrame, bitmap="questhead")
tkgrid(tklabel(TFrame,text="Classes", font="Times 18", foreground="red"), labh)
tkbind(labh, "<Button-1>", function() print(help("s.class")))
tkpack(TFrame)
xy.entry <- tkentry(xyframe, textvariable=xyvar, width=10)
nx.entry <- tkentry(xyframe, textvariable=nxvar, width=3)
ny.entry <- tkentry(xyframe, textvariable=nyvar, width=3)
dfnr.label <- tklabel(xyframe, width=4)
dfnc.label <- tklabel(xyframe, width=4)
choosexy.but <- tkbutton(xyframe, text="Set", command=function() choosedf(xy.entry, dfnr.label, dfnc.label))
tkgrid(tklabel(xyframe, text="- Coordinates -", foreground="blue"), columnspan=5)
tkgrid(tklabel(xyframe,text="XY Coordinates"), xy.entry, choosexy.but, dfnr.label, dfnc.label)
tkgrid(tklabel(xyframe,text="X axis col.
tkgrid(tklabel(xyframe,text="Y axis col.
lab.entry <- tkentry(labframe, textvariable=labvar, width=10)
clab.entry <- tkentry(labframe, textvariable=clabvar, width=10)
pch.entry <- tkentry(labframe, textvariable=pchvar, width=10)
cp.entry <- tkentry(labframe, textvariable=cpvar, width=10)
chooselab.but <- tkbutton(labframe, text="Set", command=function() chooselab(tt, dfnr.label, lab.entry))
tkgrid(tklabel(labframe, text="- Labels & symbols -", foreground="blue"), columnspan=3)
tkgrid(tklabel(labframe,text="Labels"), lab.entry, chooselab.but)
tkgrid(tklabel(labframe,text="Label size"), clab.entry)
tkgrid(tklabel(labframe,text="Character
tkgrid(tklabel(labframe,text="Char. size"), cp.entry)
tkpack(xyframe, labframe, side="left")
tkpack(frame1)
fac.entry <- tkentry(facframe, textvariable=facvar, width=10)
wt.entry <- tkentry(facframe, textvariable=wtvar, width=10)
col.entry <- tkentry(facframe, textvariable=colvar, width=10)
choosefac.but <- tkbutton(facframe, text="Set", command=function() choosefac(fac.entry, dfnr.label))
choosewt.but <- tkbutton(facframe, text="Set", command=function() choosewt(wt.entry, dfnr.label))
choosecol.but <- tkbutton(facframe, text="Set", command=function() choosecol(col.entry, facvar))
tkgrid(tklabel(facframe, text="- Grouping factor -", foreground="blue"), columnspan=3)
tkgrid(tklabel(facframe,text="Factor"), fac.entry, choosefac.but)
tkgrid(tklabel(facframe,text="Weights"), wt.entry, choosewt.but)
tkgrid(tklabel(facframe,text="Colors"), col.entry, choosecol.but)
blength.entry <- tkentry(classframe, textvariable=blengthvar, width=5)
ellsize.entry <- tkentry(classframe, textvariable=ellsizevar, width=5)
axell.cbut <- tkcheckbutton(classframe,text="Draw ellipse axes", variable=axellvar)
tkgrid(tklabel(classframe, text="- Ellipses & stars -", foreground="blue"), columnspan=3)
tkgrid(axell.cbut)
tkgrid(tklabel(classframe,text="Star branch length"), blength.entry)
tkgrid(tklabel(classframe,text="Ellipse size factor"), ellsize.entry)
sp.entry <- tkentry(miscframe, textvariable=spvar, width=10)
choosesp.but <- tkbutton(miscframe, text="Set", command=function() choosesp(sp.entry))
tkgrid(tklabel(miscframe, text="- Misc. options -", foreground="blue"), columnspan=3)
tkgrid(tklabel(miscframe,text="Spatial object"), sp.entry, choosesp.but)
tkpack(facframe, classframe, miscframe, side="left", expand=1)
tkpack(frame2, fill="x")
xl1.entry <- tkentry(limframe, textvariable=xl1var, width=10)
xl2.entry <- tkentry(limframe, textvariable=xl2var, width=10)
yl1.entry <- tkentry(limframe, textvariable=yl1var, width=10)
yl2.entry <- tkentry(limframe, textvariable=yl2var, width=10)
tkgrid(tklabel(limframe, text="- Limits -", foreground="blue"), columnspan=2)
tkgrid(tklabel(limframe,text="X min"), xl1.entry)
tkgrid(tklabel(limframe,text="X max"), xl2.entry)
tkgrid(tklabel(limframe,text="Y min"), yl1.entry)
tkgrid(tklabel(limframe,text="Y max"), yl2.entry)
tkpack(tklabel(posframe, text="- Sub-title position -", foreground="blue"), anchor="w")
tkpack(tkradiobutton(posframe, text="Top left", value=1, variable=posvar), anchor="w")
tkpack(tkradiobutton(posframe, text="Top right", value=2, variable=posvar), anchor="w")
tkpack(tkradiobutton(posframe, text="Bottom left", value=3, variable=posvar), anchor="w")
tkpack(tkradiobutton(posframe, text="Bottom right", value=4, variable=posvar), anchor="w")
sub.entry <- tkentry(legframe, textvariable=subvar)
csub.entry <- tkentry(legframe, textvariable=csubvar, width=10)
tkgrid(tklabel(legframe, text="- Sub-title -", foreground="blue"), columnspan=2)
tkgrid(tklabel(legframe,text="Sub-title string"), sub.entry)
tkgrid(tklabel(legframe,text="Sub-title size"), csub.entry)
tkpack(limframe, legframe, posframe, side="left", expand=1)
tkpack(frame3, fill="x")
axes.cbut <- tkcheckbutton(optframe,text="Draw axes", variable=axesvar)
add.cbut <- tkcheckbutton(optframe,text="Add to plot", variable=addvar)
tkgrid(tklabel(optframe, text="- Draw options -", foreground="blue"))
tkgrid(axes.cbut)
tkgrid(add.cbut)
orig.cbut <- tkcheckbutton(origframe,text="Include origin", variable=origvar)
orx.entry <- tkentry(origframe, textvariable=orxvar, width=10)
ory.entry <- tkentry(origframe, textvariable=oryvar, width=10)
tkgrid(tklabel(origframe, text="- Origin -", foreground="blue"), columnspan=2)
tkgrid(orig.cbut)
tkgrid(tklabel(origframe,text="X Origin"), orx.entry)
tkgrid(tklabel(origframe,text="Y Origin"), ory.entry)
grid.cbut <- tkcheckbutton(gridframe,text="Draw grid", variable=gridvar)
cgr.entry <- tkentry(gridframe, textvariable=cgrvar, width=10)
tkgrid(tklabel(gridframe, text="- Grid -", foreground="blue"), columnspan=2)
tkgrid(grid.cbut)
tkgrid(tklabel(gridframe,text="Grid legend size"), cgr.entry)
tkpack(optframe, gridframe, origframe, side="left", expand=1)
tkpack(frame4, fill="x")
vnr=NULL
vnc=NULL
numi=1
done <- tclVar(0)
"build" <- function() {
l <- list(dfxy = .test1value(tclvalue(xyvar), ""),
xax = .test1value(tclvalue(nxvar), ""),
yax = .test1value(tclvalue(nyvar), ""),
labels = .test1value(tclvalue(labvar), ""),
plabels.cex = .test1value(tclvalue(clabvar), ""),
ppoints.pch = .test1value(tclvalue(pchvar), ""),
ppoints.cex = .test1value(tclvalue(cpvar), ""),
xlim = .test2values(tclvalue(xl1var), tclvalue(xl2var), ""),
ylim = .test2values(tclvalue(yl1var), tclvalue(yl2var), ""),
psub.text = tclvalue(subvar),
psub.cex = .test1value(tclvalue(csubvar), ""),
paxes.draw = as.logical(tclObj(axesvar)),
add = as.logical(tclObj(addvar)),
pgrid.draw = as.logical(tclObj(gridvar)),
pgrid.text.cex = .test1value(tclvalue(cgrvar), ""),
porigin.include = as.logical(tclObj(origvar)),
porigin.origin = .test2values(tclvalue(orxvar), tclvalue(oryvar), ""),
Sp = .test1value(tclvalue(spvar), ""),
pellipses.axes.draw = as.logical(tclObj(axellvar)),
starSize = .test1value(tclvalue(blengthvar), ""),
ellipseSize = .test1value(tclvalue(ellsizevar), ""),
col = .test1value(tclvalue(colvar), ""),
wt = .test1value(tclvalue(wtvar), ""),
fac = .test1value(tclvalue(facvar), as.factor(rep(1, tclvalue(tkcget(dfnr.label, "-text"))))),
plot = FALSE
)
if (tclvalue(posvar) == 1) l$psub.position <- "topleft"
if (tclvalue(posvar) == 2) l$psub.position <- "topright"
if (tclvalue(posvar) == 3) l$psub.position <- "bottomleft"
if (tclvalue(posvar) == 4) l$psub.position <- "bottomright"
l <- l[which(l != "")]
return(do.call("s.class", l))
}
"reset" <- function()
{
tclvalue(xyvar) <- ""
tclvalue(facvar) <- ""
tclvalue(wtvar) <- ""
tclvalue(colvar) <- ""
tclvalue(cstarvar) <- ""
tclvalue(nxvar) <- "1"
tclvalue(nyvar) <- "2"
tclvalue(labvar) <- ""
tclvalue(clabvar) <- "1"
tclvalue(pchvar) <- "20"
tclvalue(cpvar) <- "1"
tclvalue(xl1var) <- ""
tclvalue(xl2var) <- ""
tclvalue(yl1var) <- ""
tclvalue(yl2var) <- ""
tclvalue(blengthvar) <- "1"
tclvalue(ellsizevar) <- "1.5"
tclvalue(cgrvar) <- "1"
tclvalue(orxvar) <- "0"
tclvalue(oryvar) <- "0"
tclvalue(subvar) <- ""
tclvalue(csubvar) <- "1"
tclvalue(pmvar) <- ""
tclvalue(spvar) <- ""
tkconfigure(dfnr.label, text="")
tkconfigure(dfnc.label, text="")
tclvalue(gridvar) <- "1"
tclvalue(axesvar) <- "0"
tclvalue(origvar) <- "1"
tclvalue(posvar) <- "3"
tclvalue(addvar) <- "0"
tclvalue(axellvar) <- "1"
}
"drawgraph" <- function()
{
cmd <- print(build())
if (show) {
pr1 <- substr(options("prompt")$prompt, 1, 2)
cat(deparse(cmd@Call, width.cutoff = 500), "\n", pr1, sep="")
}
eval.parent(cmd)
assign("cmdlist", c(get("cmdlist", envir=env_ade4tkgui), cmd@Call), envir=env_ade4tkgui)
if (history) rewriteHistory(deparse(cmd@Call, width.cutoff = 500))
}
RCSFrame <- tkframe(tt, relief="groove")
reset.but <- tkbutton(RCSFrame, text="Reset", command=reset)
cancel.but <- tkbutton(RCSFrame, text="Dismiss", command=function() tkdestroy(tt))
submit.but <- tkbutton(RCSFrame, text="Submit", default="active", command=function() drawgraph())
tkgrid(cancel.but, submit.but, reset.but, ipadx=20)
tkpack(RCSFrame)
tkbind(tt, "<Destroy>", function() tclvalue(done)<-2)
tkbind(tt, "<KeyPress-Return>", function() drawgraph())
tkbind(tt, "<KeyPress-Escape>", function() tkdestroy(tt))
if(tclvalue(done)=="2") return()
} |
boot_probtrans<-function(coxrfx_fits_boot,patient_data,tmat,initial_state,max_time){
msfit_objects_boot<-vector("list",length(coxrfx_fits_boot))
probtrans_objects_boot<-vector("list",length(coxrfx_fits_boot))
for(i in 1:length(coxrfx_fits_boot)){
print(i)
covariate_df<-as.data.frame(coxrfx_fits_boot[[i]]$Z)
covariate_df$strata<-coxrfx_fits_boot[[i]]$strata
mstate_data_expanded.boot<-list()
mstate_data_expanded.boot$time<-coxrfx_fits_boot[[i]]$surv[,1]
mstate_data_expanded.boot$status<-coxrfx_fits_boot[[i]]$surv[,2]
patient_data2<-patient_data[names(patient_data)%in%names(covariate_df)]
patient_data2$strata<-patient_data$strata
msfit_objects_boot[[i]]<-msfit_generic(coxrfx_fits_boot[[i]],patient_data2,trans=tmat)
probtrans_objects_boot[[i]]<-probtrans_ebmstate(initial_state,msfit_objects_boot[[i]],"clockreset")[[1]]
probtrans_objects_boot[[i]]<-probtrans_objects_boot[[i]][sapply(seq(from=0,to=max_time,length.out = 400),function(x) which.min(abs(probtrans_objects_boot[[i]]$time-x))),]
}
probtrans_CIs<-lapply(colnames(tmat),CIs_for_target_state,probtrans_objects_boot=probtrans_objects_boot)
names(probtrans_CIs)<-colnames(tmat)
return(list(probtrans_CIs=probtrans_CIs,probtrans_objects_boot=probtrans_objects_boot, msfit_objects_boot=msfit_objects_boot))
}
extract_function<-function(list_object,tstate){
as.vector(list_object[tstate])
}
CIs_for_target_state<-function(target_state,probtrans_objects_boot){
target_state_boot_samples<-as.data.frame(sapply(probtrans_objects_boot, extract_function,tstate=target_state))
apply(target_state_boot_samples,1,hdi,credMass=0.95)
}
cumhazCIs_for_target_transition<-function(transition,msfit_objects_boot){
unique_time_points<-sort(unique(unlist(sapply(msfit_objects_boot,function(x) unique(x[[1]][,"time"])))))
cumhaz_fun<-function(msfit_object_boot,unique_time_point,transition){
msfit_for_target_trans<-msfit_object_boot[[1]][msfit_object_boot[[1]][,"trans"]==transition,]
msfit_for_target_trans[which.max(msfit_for_target_trans[,"time"]>=unique_time_point),"Haz"]
}
obj<-sapply(msfit_objects_boot,function(x) sapply(unique_time_points,cumhaz_fun,msfit_object_boot=x,transition=transition))
output<-apply(obj,1,hdi,credMass=0.95)
colnames(output)<-unique_time_points
output
}
boot_coxrfx<-function(mstate_data_expanded,which_group,min_nr_samples=100,output="CIs",...){
coxrfx_fits_boot<-vector("list")
rownames(mstate_data_expanded)<-1:nrow(mstate_data_expanded)
boot_matrix<-matrix(nrow=0,ncol = sum(!names(mstate_data_expanded)%in%c("id","from","to","trans","Tstart","Tstop","time","status","strata","type")),dimnames = list(NULL,names(mstate_data_expanded)[!names(mstate_data_expanded)%in%c("id","from","to","trans","Tstart","Tstop","time","status","strata","type")]))
j<-1
repeat{
boot_samples_trans_1<-sample(rownames(mstate_data_expanded[mstate_data_expanded$trans==1,]),replace = TRUE)
boot_samples_trans_2<-sample(rownames(mstate_data_expanded[mstate_data_expanded$trans==2,]),replace = TRUE)
boot_samples_trans_3<-sample(rownames(mstate_data_expanded[mstate_data_expanded$trans==3,]),replace = TRUE)
boot_samples<-c(boot_samples_trans_1,boot_samples_trans_2,boot_samples_trans_3)
mstate_data_expanded.boot<-mstate_data_expanded[boot_samples,]
covariate_df<-mstate_data_expanded.boot[!names(mstate_data_expanded.boot)%in%c("id","from","to","trans","Tstart","Tstop","time","status","type")]
groups2<-which_group[names(covariate_df)[names(covariate_df)!="strata"]]
coxrfx_fits_boot[[j]]<-CoxRFX(covariate_df,Surv(mstate_data_expanded.boot$time,mstate_data_expanded.boot$status),groups =groups2,... )
if(coxrfx_fits_boot[[j]]$iter[1]!=as.list(coxrfx_fits_boot[[j]]$call)$max.iter & sum(is.na(coxrfx_fits_boot[[j]]$coefficients))==0){
boot_matrix<-rbind(boot_matrix,rep(NA,ncol(boot_matrix)))
boot_matrix[j,names(coxrfx_fits_boot[[j]]$coefficients)]<-coxrfx_fits_boot[[j]]$coefficients
print(min(apply(boot_matrix, 2, function(x) sum(!is.na(x)))))
j<-j+1
}
if(min(apply(boot_matrix, 2, function(x) sum(!is.na(x))))>=min_nr_samples) break
}
CIs<-apply(boot_matrix,2,hdi,credMass=0.95)
CIs<-rbind(CIs,apply(boot_matrix, 2, function(x) sum(!is.na(x))))
dimnames(CIs)[[1]][3]<-"n_samples"
if(output=="CIs_and_coxrfx_fits"){
return(list(CIs=CIs,coxrfx_fits_boot=coxrfx_fits_boot))
}else if(output=="CIs"){
return(CIs)
}
}
boot_ebmstate<-function(mstate_data_expanded=NULL,which_group=NULL,min_nr_samples=NULL,
patient_data=NULL,initial_state=NULL,tmat=NULL,time_model=NULL,
backup_file=NULL,input_file=NULL,coxrfx_args=NULL,
msfit_args=NULL,probtrans_args=NULL){
list2env(coxrfx_args,envir = environment())
if(!is.null(input_file)){
load(input_file)
}else{
coxrfx_fits_boot<-vector("list")
msfit_objects_boot<-vector("list")
probtrans_objects_boot<-vector("list")
rownames(mstate_data_expanded)<-1:nrow(mstate_data_expanded)
boot_matrix<-matrix(nrow=0,
ncol = sum(!names(mstate_data_expanded)%in%c("id","from","to","trans",
"Tstart","Tstop","strata","time",
"status","type")),
dimnames = list(NULL,names(mstate_data_expanded)[!names(mstate_data_expanded)%in%c("id","from","to","trans",
"Tstart","Tstop","strata","time",
"status","type")]))
j<-1
}
tol<-unlist(mget("tol",ifnotfound = list(function(tol) 0.001)))
max.iter<- unlist(mget("max.iter",ifnotfound = list(function(max.iter) 50)))
sigma0<- unlist(mget("sigma0",ifnotfound = list(function(sigma0) 0.1)))
sigma.hat<- unlist(mget("sigma.hat",ifnotfound = list(function(sigma.hat) "df")))
verbose<- unlist(mget("verbose",ifnotfound = list(function(verbose) FALSE)))
repeat{
boot_samples_trans_1<-sample(rownames(mstate_data_expanded[mstate_data_expanded$trans==1,]),replace = TRUE)
boot_samples_trans_2<-sample(rownames(mstate_data_expanded[mstate_data_expanded$trans==2,]),replace = TRUE)
boot_samples_trans_3<-sample(rownames(mstate_data_expanded[mstate_data_expanded$trans==3,]),replace = TRUE)
boot_samples<-c(boot_samples_trans_1,boot_samples_trans_2,boot_samples_trans_3)
mstate_data_expanded.boot<-mstate_data_expanded[boot_samples,]
covariate_df<-mstate_data_expanded.boot[!names(mstate_data_expanded.boot)%in%c("id","from","to",
"Tstart","Tstop","time","status","type")]
groups2<-which_group[names(covariate_df)[!names(covariate_df)%in%c("strata","trans")]]
if(time_model=="clockreset"){
surv_object<-Surv(mstate_data_expanded.boot$time,mstate_data_expanded.boot$status)
}else if(time_model=="clockforward"){
surv_object<-Surv(mstate_data_expanded.boot$Tstart,mstate_data_expanded.boot$Tstop,mstate_data_expanded.boot$status)
}
which.mu<-unlist(mget("which.mu",ifnotfound = list(function(which.mu) unique(groups2))))
coxrfx_fits_boot[[j]]<-CoxRFX(covariate_df,surv_object,groups2,which.mu =which.mu,
tol = tol,
max.iter = max.iter,
sigma0 = sigma0,
sigma.hat = sigma.hat,
verbose = verbose,coxrfx_args)
if(sum(is.na(coxrfx_fits_boot[[j]]$coefficients))==0){
boot_matrix<-rbind(boot_matrix,rep(NA,ncol(boot_matrix)))
boot_matrix[j,names(coxrfx_fits_boot[[j]]$coefficients)]<-coxrfx_fits_boot[[j]]$coefficients
msfit_objects_boot[[j]]<-do.call("msfit_generic",c(list(object=coxrfx_fits_boot[[j]],newdata=patient_data,trans=tmat),msfit_args))
probtrans_objects_boot[[j]]<-do.call("probtrans_ebmstate",c(list(initial_state=initial_state,cumhaz=msfit_objects_boot[[j]],model=time_model),probtrans_args))[[1]]
print(min(apply(boot_matrix, 2, function(x) sum(!is.na(x)))))
if(j %%5==0 & !is.null(backup_file)){
save(coxrfx_fits_boot,probtrans_objects_boot,
msfit_objects_boot,boot_matrix,j, file =backup_file)
}
j<-j+1
}
if(min(apply(boot_matrix, 2, function(x) sum(!is.na(x))))>=min_nr_samples) break
}
CIs<-apply(boot_matrix,2,hdi,credMass=0.95)
CIs<-rbind(CIs,apply(boot_matrix, 2, function(x) sum(!is.na(x))))
dimnames(CIs)[[1]][3]<-"n_samples"
probtrans_CIs<-lapply(colnames(tmat),CIs_for_target_state,
probtrans_objects_boot=probtrans_objects_boot)
names(probtrans_CIs)<-colnames(tmat)
cumhaz_CIs<-lapply(sort(unique(mstate_data_expanded$trans)),cumhazCIs_for_target_transition,
msfit_objects_boot=msfit_objects_boot)
return(list(coefficients_CIs=CIs,coxrfx_fits_boot=coxrfx_fits_boot,
probtrans_CIs=probtrans_CIs,
probtrans_objects_boot=probtrans_objects_boot,
msfit_objects_boot=msfit_objects_boot,
patient_data=patient_data,cumhaz_CIs=cumhaz_CIs))
}
loo_ebmstate<-function(mstate_data,mstate_data_expanded,which_group,
patient_IDs,initial_state,tmat,time_model,
backup_file=NULL,input_file=NULL,coxrfx_args=list(),
msfit_args=NULL,probtrans_args=NULL){
list2env(coxrfx_args,envir = environment())
if(!is.null(input_file)){
load(input_file)
indices<-j:length(patient_IDs)
}else{
coxrfx_fits_loo<-vector("list")
msfit_objects_loo<-vector("list")
probtrans_objects_loo<-vector("list")
indices<-1:length(patient_IDs)
}
tol<-unlist(mget("tol",ifnotfound = list(function(tol) 0.001)))
max.iter<- unlist(mget("max.iter",ifnotfound = list(function(max.iter) 50)))
sigma0<- unlist(mget("sigma0",ifnotfound = list(function(sigma0) 0.1)))
sigma.hat<- unlist(mget("sigma.hat",ifnotfound = list(function(sigma.hat) "df")))
verbose<- unlist(mget("verbose",ifnotfound = list(function(verbose) FALSE)))
for(j in indices){
mstate_data_expanded_loo<-mstate_data_expanded[mstate_data_expanded$id!=patient_IDs[j],]
covariate_df<-mstate_data_expanded_loo[!names(mstate_data_expanded_loo)%in%c("id","from","to","Tstart","Tstop","time","status","type")]
groups2<-which_group[names(covariate_df)[!names(covariate_df)%in%c("strata","trans")]]
if(time_model=="clockreset"){
surv_object<-Surv(mstate_data_expanded_loo$time,mstate_data_expanded_loo$status)
}else if(time_model=="clockforward"){
surv_object<-Surv(mstate_data_expanded_loo$Tstart,mstate_data_expanded_loo$Tstop,mstate_data_expanded_loo$status)
}
which.mu<-unlist(mget("which.mu",ifnotfound = list(function(which.mu) unique(groups2))))
coxrfx_fits_loo[[j]]<-CoxRFX(covariate_df,surv_object,groups2,which.mu =which.mu,
tol = tol,
max.iter = max.iter,
sigma0 = sigma0,
sigma.hat = sigma.hat,
verbose = verbose,coxrfx_args)
if(sum(is.na(coxrfx_fits_loo[[j]]$coefficients))==0){
patient_data<-mstate_data[mstate_data$id==patient_IDs[j],,drop=FALSE][1,][rep(1,length(unique(mstate_data$trans))),]
patient_data$trans<-1:length(unique(mstate_data$trans))
patient_data<-expand.covs(patient_data,
covs = names(patient_data)[!names(patient_data)%in%c("id","from","to","trans","strata","Tstart","Tstop","time","status","type")])
patient_data<-patient_data[names(mstate_data_expanded)]
patient_data$strata<-unique(mstate_data[c("trans","strata")])[,2]
msfit_objects_loo[[j]]<-do.call("msfit_generic",c(list(object=coxrfx_fits_loo[[j]],newdata=patient_data,trans=tmat),msfit_args))
probtrans_objects_loo[[j]]<-do.call("probtrans_ebmstate",c(list(initial_state=initial_state,cumhaz=msfit_objects_loo[[j]],model=time_model),probtrans_args))
if(j %%5==0 & !is.null(backup_file)){
save(patient_IDs,coxrfx_fits_loo,msfit_objects_loo,probtrans_objects_loo,j,file=backup_file)
}
print(j)
}
}
return(list(coxrfx_fits_loo=coxrfx_fits_loo,
probtrans_objects_loo=probtrans_objects_loo,
msfit_objects_loo=msfit_objects_loo,
patient_IDs=patient_IDs))
} |
NULL
.apigatewaymanagementapi$delete_connection_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ConnectionId = structure(logical(0), tags = list(location = "uri", locationName = "connectionId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.apigatewaymanagementapi$delete_connection_output <- function(...) {
list()
}
.apigatewaymanagementapi$get_connection_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ConnectionId = structure(logical(0), tags = list(location = "uri", locationName = "connectionId", type = "string"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.apigatewaymanagementapi$get_connection_output <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(ConnectedAt = structure(logical(0), tags = list(locationName = "connectedAt", type = "timestamp", timestampFormat = "iso8601")), Identity = structure(list(SourceIp = structure(logical(0), tags = list(locationName = "sourceIp", type = "string")), UserAgent = structure(logical(0), tags = list(locationName = "userAgent", type = "string"))), tags = list(locationName = "identity", type = "structure")), LastActiveAt = structure(logical(0), tags = list(locationName = "lastActiveAt", type = "timestamp", timestampFormat = "iso8601"))), tags = list(type = "structure"))
return(populate(args, shape))
}
.apigatewaymanagementapi$post_to_connection_input <- function(...) {
args <- c(as.list(environment()), list(...))
shape <- structure(list(Data = structure(logical(0), tags = list(type = "blob")), ConnectionId = structure(logical(0), tags = list(location = "uri", locationName = "connectionId", type = "string"))), tags = list(type = "structure", payload = "Data"))
return(populate(args, shape))
}
.apigatewaymanagementapi$post_to_connection_output <- function(...) {
list()
} |
CST_Load <- function(...) {
exp <- Load(...)
result <- as.s2dv_cube(exp)
result
} |
buildXmlEnvelope <- function(myMcc,
userAgent,
developerToken,
adwordsService,
ManagedCustomerService_Selector_fields = NULL,
categoryProductsAndServices = NULL,
competition = NULL,
ideaTextFilter_included = NULL,
ideaTextFilter_excluded = NULL,
includeAdultContent = NULL,
language = NULL,
location = NULL,
network_GoogleSearch = NULL,
network_SearchNetwork = NULL,
relatedToQuery = NULL,
relatedToUrl = NULL,
searchVolumeMinimum = NULL,
searchVolumeMaximum = NULL,
seedAdGroupId = NULL,
requestType = NULL,
attributeTypes = NULL,
pagingStartIndex = NULL,
pagingNumberResults = NULL,
apiVersion = NULL) {
if (is.null(apiVersion)) {
apiVersion <- "v201806"
}
currentlySupportedServices <- c("ManagedCustomerService",
"TargetingIdeaService")
if (adwordsService %in% currentlySupportedServices) {
if (adwordsService %in% c("ManagedCustomerService")) {
wsdlNamespace <- "mcm"
} else if (adwordsService %in% c("TargetingIdeaService")) {
wsdlNamespace <- "o"
}
paste0(
'<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsdl="https://adwords.google.com/api/adwords/',
wsdlNamespace,
'/',
apiVersion,
'" xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:cm="https://adwords.google.com/api/adwords/cm/',
apiVersion,
'" xmlns:o="https://adwords.google.com/api/adwords/o/',
apiVersion,
'">\n',
buildXmlHeader(myMcc, userAgent, developerToken, apiVersion),
buildXmlBody(adwordsService,
ManagedCustomerService_Selector_fields,
categoryProductsAndServices,
competition,
ideaTextFilter_included,
ideaTextFilter_excluded,
includeAdultContent,
language,
location,
network_GoogleSearch,
network_SearchNetwork,
relatedToQuery,
relatedToUrl,
searchVolumeMinimum,
searchVolumeMaximum,
seedAdGroupId,
requestType,
attributeTypes,
pagingStartIndex,
pagingNumberResults,
apiVersion),
'\n</env:Envelope>'
)
} else {
stop(paste0(adwordsService, " is not currently supported."))
}
}
buildXmlHeader <- function(myMcc, userAgent, developerToken, apiVersion) {
paste0(
'<env:Header>\n
<wsdl:RequestHeader xmlns="https://adwords.google.com/api/adwords/cm/', apiVersion, '">\n
<clientCustomerId>', myMcc, '</clientCustomerId>\n
<userAgent>', userAgent, '</userAgent>\n
<developerToken>', developerToken, '</developerToken>\n
</wsdl:RequestHeader>\n
</env:Header>'
)
}
buildXmlBody <- function(adwordsService,
ManagedCustomerService_Selector_fields = NULL,
categoryProductsAndServices = NULL,
competition = NULL,
ideaTextFilter_included = NULL,
ideaTextFilter_excluded = NULL,
includeAdultContent = NULL,
language = NULL,
location = NULL,
network_GoogleSearch = NULL,
network_SearchNetwork = NULL,
relatedToQuery = NULL,
relatedToUrl = NULL,
searchVolumeMinimum = NULL,
searchVolumeMaximum = NULL,
seedAdGroupId = NULL,
requestType = NULL,
attributeTypes = NULL,
pagingStartIndex = NULL,
pagingNumberResults = NULL,
apiVersion) {
if (adwordsService == "ManagedCustomerService") {
xmlBody <- paste0('<env:Body>\n',
ManagedCustomerService_get(ManagedCustomerService_Selector_fields,
apiVersion),
'\n</env:Body>'
)
} else if (adwordsService == "TargetingIdeaService") {
xmlBody <- paste0('<env:Body>\n',
TargetingIdeaService_get(categoryProductsAndServices,
competition,
ideaTextFilter_included,
ideaTextFilter_excluded,
includeAdultContent,
language,
location,
network_GoogleSearch,
network_SearchNetwork,
relatedToQuery,
relatedToUrl,
searchVolumeMinimum,
searchVolumeMaximum,
seedAdGroupId,
requestType,
attributeTypes,
pagingStartIndex,
pagingNumberResults,
apiVersion),
'\n</env:Body>'
)
}
xmlBody
} |
desparsePrec <- function(
dat, rho, type = 'glasso'
){
empCv = cov(dat);
switch( type,
glasso = desparsePrecGlasso( empCv, rho ),
ridge = desparsePrecRidge( dat,empCv, rho )
)
}
desparsePrecGlasso <- function(
emp, rho
){
glEst = glasso(emp,rho);
return( 2*glEst$wi - glEst$wi%*%emp%*%glEst$wi );
}
desparsePrecRidge <- function(
dat, emp, rho
){
k = ncol(dat);
sv = svd(dat);
glEst = glasso(emp,1)$wi;
prj= sv$v%*%t(sv$v)%*%glEst;
diag(prj) <- 0;
rdEst = solve(emp+diag(rho,k));
return( rdEst + prj );
}
sparseMat <- function(
shat, k, alf=0.5, iter = 10, pnrm=Inf, THRSH='hard'
){
thrLen = length(THRSH);
if(thrLen==1){
if(THRSH=='all'){
THRSH =c("hard","soft","scad","adpt");
thrLen = length(THRSH);
}
}
toRet = vector("list",thrLen);
names(toRet) <- THRSH
tmp = array(0,dim=c(k,k,iter+1));
for( i in 1:thrLen ){
toRet[[i]] = tmp;
toRet[[i]][,,1]=shat;
}
origDiag= abs(diag(shat));
diag(shat) = abs(diag(shat));
eDiag = sqrt(abs(diag(diag(shat))));
invDiag = sqrt(abs(diag(1/diag(shat))));
shat = invDiag %*% shat %*% invDiag;
sigmas = shat[lower.tri(diag(k))];
if(iter==0){
return(toRet);
}
if( is.na(sum(abs(sigmas))) )
warning("NA Error in sigmas");
sigMedi = c(0,quantile( abs(sigmas),1-alf,na.rm=T));
fp00 = diag(diag(shat));
for( j in 1:thrLen )
toRet[[j]][,,2] = eDiag%*%thresh( shat,sigMedi[2],THRSH[j] )%*%eDiag;
if(iter==1)
return(toRet);
for( i in 2:iter ){
fp50 = thresh(shat,sigMedi[i],type='hard');
if(sum(fp50==diag(k))==k^2){
for( j in 1:thrLen)
toRet[[j]][,,i] = origDiag;
sigMedi = c(sigMedi,sigMedi[i])
next;
}
ra50a = phi( fp50-fp00,pnrm );
ra = ra50a*(sqrt(alf));
sigMedi = c(sigMedi,
spc_CoMZeroBinSearchRev( shat, k, ra, pnrm )
);
for( j in 1:thrLen )
toRet[[j]][,,i+1] = eDiag%*%thresh( shat,sigMedi[i+1],THRSH[j] )%*%eDiag;
}
return(toRet);
}
spc_CoMZeroBinSearchRev <- function( shat, k, ra, pnrm ){
maxThr = 1;
lmbPrev = 0;
quant = 0.5;
delta = 0.25;
spar = shat;
for( i in 1:10 ){
lmb = quant;
if( lmb == lmbPrev )
break;
if(lmb > maxThr){
quant=quant-delta;
delta=delta/2;
next;
}
snew= thresh( shat,lmb,'hard' );
if( phi(snew-diag(k),pnrm)<ra ){
spar = snew;
quant= quant - delta;
} else {
quant= quant + delta;
}
lmbPrev = lmb;
delta = delta/2;
}
return(lmb);
}
phi <- function( mat,p ){
return(pschnorm(mat,p))
}
pschnorm <- function( mat, p ){
if(p==2)
return( hsnorm(mat) );
ev = abs(eigen(mat,only.values=TRUE,symmetric=TRUE)$values);
if( is.infinite(p) )
return(max(ev));
return( sum(ev^p)^(1/p) );
}
hsnorm <- function( mat ){
return( sqrt(sum(mat^2)) );
}
sqrtMat <-function(A)
{
svdA= svd( A );
D = diag( sqrt(svdA$d) );
return( svdA$u %*% D %*% t(svdA$v) )
}
thresh <- function( s, lmb, type ){
switch( type,
soft = thr_soft(s,lmb),
hard = thr_hard(s,lmb),
scad = thr_scad(s,lmb),
adpt = thr_adpt(s,lmb)
)
}
thr_hard <- function(s,lmb){
return( s*(abs(s)>lmb) );
}
thr_soft <- function(s,lmb){
res = abs(s)-lmb;
return( sign(s)*res*( res>0 ) );
}
thr_scad <- function(s,lmb,aa=3.7){
msk1= s<(2*lmb);
msk2= (s<(aa*lmb))-msk1;
msk3= rep(1,length(s))-msk1-msk2;
scd = (aa-1)/(aa-2)*(s-2*lmb)+lmb;
res = thr_soft(s*msk1,lmb) + (scd)*msk2 + thr_hard(s*msk3,lmb);
return(res);
}
thr_adpt <- function(s,lmb,eta=1){
res = abs(s)-lmb^(eta+1)*abs(s)^(-eta);
res[which(is.na(res))]=0;
res[which(is.infinite(res))]=0;
return( sign(s)*res*( res>0 ) );
} |
gen_freq <-
function(af, n_seeds, result="initialSB", distribution = NA, max_vec_length=1e+07){
cat("gen_freq starts...")
dfgenotype <- get0("dfgenotype", envir = parent.frame(n = 1))
if(length(result)>1){
if(distribution[1] == "equal") distribution <- rep(1/length(result), length(result))
if(length(distribution) != length(result)) stop("Result and distribution has to be of the same length.")
if(any(distribution > 1 | distribution < 0)) stop("Distribution must be between 1 and 0.")
if(sum(distribution) > 1) stop("Distribution must not sum up to more the 1.")
n_seeds <- round(distribution*n_seeds, digits=0) }
if(is.null(af)){
for(i in seq_along(result)){
dfgenotype[[result[i]]] <- n_seeds[i]
}
assign("dfgenotype", value=dfgenotype, pos = -1, envir=parent.frame(n = 1))
cat("finished!\n")
return(dfgenotype)
}
gt_probab <- rep(1, nrow(dfgenotype))
n_loci <- length(af)
locus_value <- data.frame(matrix(ncol=n_loci,as.numeric(unlist(strsplit(as.character(dfgenotype[[1]]), split=NULL))),byrow=TRUE), stringsAsFactors = TRUE)
for (i in seq(along=af)){
locus <- locus_value[,i]
gt_probab <- gt_probab * af[i]^locus * (1-af[i])^abs(2-locus) *(-(locus-1)^2+2)
}
gtFreq <- data.frame(genotype = dfgenotype$genotype, stringsAsFactors = TRUE)
for(i in seq_along(result)){
gtFreq[[result[i]]] <- 0
i1 <- n_seeds[i] %/% max_vec_length
i2 <- n_seeds[i] %% max_vec_length
if(i1 > 0){
for(i in 1:i1){
tmp1 <- data.frame(table(sample(gtFreq$genotype, size = max_vec_length, replace = TRUE, prob = gt_probab)), stringsAsFactors = TRUE)
tmp2 <- merge(gtFreq, tmp1, by.x = "genotype", by.y = "Var1", all.x = TRUE)
if(anyNA(tmp2$Freq)){
warning("Frequencies of the genotype in the initial seed bank could not be calculated correctly")
tmp2[is.na(tmp2$Freq)] <- 0 }
gtFreq[,2] <- gtFreq[,2] + tmp2$Freq
}
}
tmp1 <- data.frame(table(sample(gtFreq$genotype, size = i2, replace = TRUE, prob = gt_probab)))
tmp2 <- merge(gtFreq, tmp1, by.x = "genotype", by.y = "Var1", all.x = TRUE)
if(anyNA(tmp2$Freq)){
warning("Frequencies of the genotype in the initial seed bank could not be calculated correctly")
tmp2$Freq[is.na(tmp2)] <- 0 }
gtFreq[,2] <- gtFreq[,2] + tmp2$Freq
dfgenotype[[result[i]]] <- gtFreq[,2]
}
cat("finished!\n")
assign("dfgenotype", value=dfgenotype, pos = -1, envir=parent.frame(n = 1))
invisible(dfgenotype)
} |
fastSumID <- function (x, group) {
as.vector(x = rowsum.default(x, group, reorder = FALSE), mode = "numeric")
} |
download_img_data = function(lib.loc = NULL){
stubs = c("T1Strip.nii.gz",
"T2Strip.nii.gz")
if (!is.null(lib.loc)) {
desc = system.file("DESCRIPTION", package = "WhiteStripe")
lib.dir = file.path(lib.loc, "WhiteStripe")
if (!dir.exists(lib.dir)) {
dir.create(lib.dir)
}
out_desc = file.path(lib.dir, "DESCRIPTION")
if (!file.exists(out_desc)) {
if (file.exists(desc)) {
file.copy(desc, out_desc)
}
}
}
img_files = ws_img_data(lib.loc = lib.loc,
warn = FALSE)
if (!all(file.exists(img_files))) {
for (istub in stubs) {
url = paste0("https://raw.githubusercontent.com/muschellij2/",
"WhiteStripe", "/gh-pages/", istub)
urlfile <- file.path(system.file(package = "WhiteStripe",
lib.loc = lib.loc),
istub)
download.file(url, urlfile, quiet = TRUE)
}
}
img_files = ws_img_data(lib.loc = lib.loc,
warn = FALSE)
return(all(file.exists(img_files)))
}
ws_img_data = function(lib.loc = NULL, warn = TRUE){
stubs = c(T1 = "T1Strip.nii.gz",
T2 = "T2Strip.nii.gz")
img_files = system.file(stubs,
package = "WhiteStripe",
lib.loc = lib.loc)
if (all(img_files == "")) {
if (warn) {
warning("Files are not downloaded, use download_img_data first!")
}
} else {
bn = basename(img_files)
bn = gsub("(.*)Strip.*", "\\1", bn)
names(img_files) = bn
}
return(img_files)
} |
setwd("/home/rstudio2/m4")
library("forecast")
library("MAPA")
library("nnfor")
library("thief")
library("pbmcapply")
ncore = detectCores()-4
set.seed(12345)
perd = "HOURLY"
h.fc = 48
freq = 168
MyData <- read.csv(file="Hourly-train.csv", header=TRUE, sep=",")
mydata.list <- setNames(split(MyData[,-1],seq(nrow(MyData))),MyData[,1])
mydata.list <- mclapply(mydata.list, function(x) x[!is.na(x)],mc.cores = ncore)
mydata.full.ts <- mclapply(mydata.list,function(x) ts(as.vector(t(x)),frequency = freq),mc.cores = ncore)
mydata.full.ts_207 <- mydata.full.ts[1:207]
mydata.full.ts_414 <- mydata.full.ts[208:414]
forx = function(x, h.fc, frequency = freq, transform = FALSE) {
if(transform & min(x, na.rm = TRUE) >= 0) {
lambda = BoxCox.lambda(na.contiguous(x), method = "guerrero",
lower = 0, upper = 1)
x.bc = BoxCox(x, lambda)
} else {
lambda = NULL
x.bc = x
transform = FALSE
}
k <- ges(x.bc)
kf <- (forecast(k,h=h.fc))
m <- thief(x.bc,h = h.fc,usemodel = "arima")
n <- thief(as.ts(x.bc,frequency=168),h = 48,usemodel = "snaive")
nn <- elm(x.bc)
f.nn <- forecast(nn,h=h.fc)
mlpm <- mlp(x.bc)
f.mlp <- forecast(mlpm,h=h.fc)
iu <- msts(x.bc,c(24,168))
decomp <- dshw(iu)
ui <- forecast(decomp,h=h.fc)$mean
ty <- tbats(x.bc,use.box.cox = T,use.parallel = F)
ty.f <- (forecast(ty,h=h.fc))$mean
agg <- cbind( ges=kf$forecast[1:h.fc],arima=m$mean[1:h.fc],
naive=n$mean[1:h.fc],tbats = ty.f[1:h.fc],
dshw = ui[1:h.fc],elm = f.nn$mean,mlp=f.mlp$mean
)
med <- apply(agg,1, median, na.rm = TRUE)
men <- rowMeans(agg)
med.noelm <- apply(agg[,c("ges","arima","naive","tbats","dshw")],1, median, na.rm = TRUE)
men.noelm <- rowMeans(agg[,c("ges","arima","naive","tbats","dshw")])
return(cbind (ges=kf$forecast[1:h.fc],
arima=m$mean[1:h.fc],naive=n$mean[1:h.fc],tbats = ty.f[1:h.fc],
dshw = ui[1:h.fc],elm = f.nn$mean,mlp=f.mlp$mean,
med = med, men=men,
med.noelm = med.noelm, men.noelm = men.noelm
)
)
}
system.time(for.hm4_207 <- pbmclapply(mydata.full.ts_207, forx, h.fc = h.fc, frequency = freq, transform = FALSE, mc.cores = ncore))
save(for.hm4_207, file = paste0("M4_", perd, "207_srihari.rda")) |
module_log_server <- function(input,
output,
session,
rv,
input_re,
...) {
arguments <- list(...)
observe({
file <- reactiveFileReader(500, session,
arguments$logfilename,
readLines)
rv$logfile <- file()
output$download_logfile <- downloadHandler(
filename = function() {
paste0("BC_logfile.txt")
},
content = function(file) {
write(rv$logfile, file)
},
contentType = "text/csv"
)
})
output$log_out <- reactive({
paste(paste0(rv$logfile, collapse = "\n"))
})
}
module_log_ui <- function(id) {
ns <- NS(id)
tagList(fluidRow(
box(
title = "Log",
verbatimTextOutput(ns("log_out")),
tags$head(tags$style(
paste0(
"
"max-height: 70vh; background: ghostwhite;}"
)
)),
width = 9
),
box(
title = "Download Log File",
div(
class = "row",
style = "text-align: center;",
shinyjs::disabled(downloadButton(
ns("download_logfile"),
"Download Log File",
paste0(
"white-space: normal; ",
"text-align:center; ",
"padding: 9.5px 9.5px 9.5px 9.5px; ",
"margin: 6px 10px 6px 10px;"
)
))
),
tags$hr(),
width = 3
)
))
} |
group_2d_graphics <- function(zargs,
glabs = NULL, sep = "\n", loc = c(0.5, 0.5),
add = FALSE, plot... = NULL, ...)
{
check_zargs(zargs, "turns", "vars", "num")
turns <- zargs$turns
vars <- zargs$vars
num <- zargs$num
ii <- range(vars[num,])
ii <- if(turns[num-1] == "u" || turns[num] == "u") rev(ii) else ii
if(is.null(glabs)) {
glabs <- extract_2d(zargs)$glabs
} else {
len.groups <- length(unlist(zargs$x, recursive = FALSE))
if(length(glabs) != len.groups)
stop("length(glabs) has to equal the number ",len.groups," of variables in all groups together; consider rep()")
}
labs <- paste0(glabs[ii], collapse = sep)
opar <- par(usr = c(0, 1, 0, 1))
on.exit(par(opar))
if(!add) plot_region(xlim = 0:1, ylim = 0:1, plot... = plot...)
text(x = loc[1], y = loc[2], labels = labs, ...)
}
points_2d_graphics <- function(zargs,
cex = 0.4, box = FALSE,
add = FALSE, group... = NULL, plot... = NULL, ...)
{
r <- extract_2d(zargs)
xlim <- r$xlim
ylim <- r$ylim
x <- as.matrix(r$x)
y <- as.matrix(r$y)
same.group <- r$same.group
if(same.group) {
if(!add) plot_region(xlim = xlim, ylim = ylim, plot... = plot...)
points(x = x, y = y, cex = cex, ...)
if(box) box(...)
} else {
args <- c(list(zargs = zargs, add = add), group...)
do.call(group_2d_graphics, args)
}
}
qq_2d_graphics <- function(zargs,
do.line = TRUE, lines... = NULL, cex = 0.4, box = FALSE,
add = FALSE, group... = NULL, plot... = NULL, ...)
{
r <- extract_2d(zargs)
xlim <- r$xlim
ylim <- r$ylim
x <- as.matrix(r$x)
y <- as.matrix(r$y)
same.group <- r$same.group
if(same.group) {
if(!add) plot_region(xlim = xlim, ylim = ylim, plot... = plot...)
sx <- sort(x)
sy <- sort(y)
lenx <- length(sx)
leny <- length(sy)
if (leny < lenx)
sx <- approx(1L:lenx, sx, n = leny)$y
if (leny > lenx)
sy <- approx(1L:leny, sy, n = lenx)$y
points(x = sx, y = sy, cex = cex, ...)
if(do.line) {
qx <- quantile(x, probs = c(0.25, 0.75), na.rm = TRUE, names = FALSE)
qy <- quantile(y, probs = c(0.25, 0.75), na.rm = TRUE, names = FALSE)
slope <- diff(qy) / diff(qx)
intercept <- qy[1] - qx[1] * slope
do.call(abline, c(list(a = intercept, b = slope), lines...))
}
if(box) box(...)
} else {
args <- c(list(zargs = zargs, add = add), group...)
do.call(group_2d_graphics, args)
}
}
density_2d_graphics <- function(zargs,
ngrids = 25, drawlabels = FALSE,
axes = FALSE, box = FALSE,
add = FALSE, group... = NULL, ...)
{
r <- extract_2d(zargs)
xlim <- r$xlim
ylim <- r$ylim
x <- r$x
y <- r$y
same.group <- r$same.group
if(same.group) {
data <- na.omit(cbind(x, y))
dens <- kde2d(data[,1], data[,2], n = ngrids, lims = c(xlim, ylim))
contour(dens$x, dens$y, dens$z, drawlabels = drawlabels,
axes = axes, add = add, ...)
if(box) box(...)
} else {
args <- c(list(zargs = zargs, add = add), group...)
do.call(group_2d_graphics, args)
}
}
axes_2d_graphics <- function(zargs,
length = 0.1, eps = 0.04, code = 2, xpd = NA,
add = FALSE, group... = NULL, plot... = NULL, ...)
{
r <- extract_2d(zargs)
xlim <- r$xlim
ylim <- r$ylim
same.group <- r$same.group
if(same.group) {
if(!add) plot_region(xlim = xlim, ylim = ylim, plot... = plot...)
epsx <- eps * diff(xlim)
epsy <- eps * diff(ylim)
arrows(xlim[1]-epsx, ylim[1]-epsy, xlim[2]+epsx, ylim[1]-epsy,
length = length, code = code, xpd = xpd, ...)
arrows(xlim[1]-epsx, ylim[1]-epsy, xlim[1]-epsx, ylim[2]+epsy,
length = length, code = code, xpd = xpd, ...)
} else {
args <- c(list(zargs = zargs, add = add), group...)
do.call(group_2d_graphics, args)
}
}
arrow_2d_graphics <- function(zargs,
loc = c(0.5, 0.5), angle = 60, length = 0.2,
add = FALSE, group... = NULL, plot... = NULL, ...)
{
r <- extract_2d(zargs)
same.group <- r$same.group
check_zargs(zargs, "num", "turns")
turn.out <- zargs$turns[zargs$num]
if(same.group) {
arrow <- zenarrow(turn.out, angle = angle, length = length,
coord.scale = 1)
arr <- loc + arrow
opar <- par(usr = c(0, 1, 0, 1))
on.exit(par(opar))
if(!add) plot_region(xlim = 0:1, ylim = 0:1, plot... = plot...)
segments(x0 = rep(arr[1,2], 2), y0 = rep(arr[2,2], 2),
x1 = c(arr[1,1], arr[1,3]), y1 = c(arr[2,1], arr[2,3]), ...)
} else {
args <- c(list(zargs = zargs, add = add), group...)
do.call(group_2d_graphics, args)
}
}
rect_2d_graphics <- function(zargs,
loc = c(0.5, 0.5), width = 1, height = 1,
add = FALSE, group... = NULL, plot... = NULL, ...)
{
r <- extract_2d(zargs)
same.group <- r$same.group
if(same.group) {
x <- c(loc[1] - width/2, loc[1] + width/2)
y <- c(loc[2] - height/2, loc[2] + height/2)
opar <- par(usr = c(0, 1, 0, 1))
on.exit(par(opar))
if(!add) plot_region(xlim = 0:1, ylim = 0:1, plot... = plot...)
rect(xleft = x[1], ybottom = y[1], xright = x[2], ytop = y[2], ...)
} else {
args <- c(list(zargs = zargs, add = add), group...)
do.call(group_2d_graphics, args)
}
}
label_2d_graphics <- function(zargs,
loc = c(0.98, 0.05), label = NULL, adj = 1:0, box = FALSE,
add = FALSE, group... = NULL, plot... = NULL, ...)
{
r <- extract_2d(zargs)
same.group <- r$same.group
vlabs <- r$vlabs
check_zargs(zargs, "vars", "num")
vars <- zargs$vars
num <- zargs$num
if(same.group) {
xlab <- vlabs[vars[num, 1]]
ylab <- vlabs[vars[num, 2]]
if(is.null(label)) label <- paste0("(",xlab,", ",ylab,")")
opar <- par(usr = c(0, 1, 0, 1))
on.exit(par(opar))
if(!add) plot_region(xlim = 0:1, ylim = 0:1, plot... = plot...)
text(x = loc[1], y = loc[2], labels = label, adj = adj, ...)
if(box) box(...)
} else {
args <- c(list(zargs = zargs, add = add), group...)
do.call(group_2d_graphics, args)
}
}
layout_2d_graphics <- function(zargs, ...)
label_2d_graphics(zargs, loc = c(0.5, 0.5), adj = rep(0.5, 2),
box = TRUE, group... = list(...), ...) |
hilbert.wge<- function( input)
{
n <- length( input )
if( (n%%2)==1 )
{
input <- input[-1]
n <- length( input )
}
x1 <- fft( input )
x2 <- rep(0,n)
x2[1] <- x2[n/2+1] <- 1
x2[2:(n/2)] <- 2
x3 <- x1*x2
ans <- fft( x3, inverse=T )/n
return( ans )
} |
checkComplex = function(x, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE) {
.Call(c_check_complex, x, any.missing, all.missing, len, min.len, max.len, unique, names, typed.missing, null.ok)
}
check_complex = checkComplex
assertComplex = makeAssertionFunction(checkComplex, c.fun = "c_check_complex", use.namespace = FALSE)
assert_complex = assertComplex
testComplex = makeTestFunction(checkComplex, c.fun = "c_check_complex")
test_complex = testComplex
expect_complex = makeExpectationFunction(checkComplex, c.fun = "c_check_complex", use.namespace = FALSE) |
amTimeSeries <- function(data, col_date,
col_series,
main = "",
ylab = "",
color = c("
type = c("line"),
bullet = NULL,
bulletSize = 2,
linetype = c(0, 5, 10, 15, 20),
linewidth = c(1, 1, 1, 1, 1, 1),
fillAlphas = 0,
precision = 1,
connect = FALSE,
export = FALSE,
legend = TRUE,
legendPosition = "bottom",
legendHidden = FALSE,
aggregation = c("Average", "Low", "High", "Sum"),
maxSeries = 300,
groupToPeriods = c('ss', 'mm', 'hh', 'DD', 'MM', 'YYYY'),
checkGroupToPeriods = TRUE,
ZoomButton = data.frame(Unit = "MAX", multiple = 1, label ="All"),
ZoomButtonPosition = "bottom",
periodFieldsSelection = FALSE,
scrollbar = TRUE,
scrollbarPosition = "bottom",
scrollbarHeight = 40,
scrollbarGraph = NULL,
cursor = TRUE,
cursorValueBalloonsEnabled = TRUE,
creditsPosition = "top-right",
group = NULL,
is_ts_module = FALSE,
dataDateFormat = 'YYYY-MM-DD JJ:NN:SS',
categoryBalloonDateFormats = list(list(period = 'YYYY', format = 'YYYY'),
list(period='MM', format = 'YYYY-MM'),
list(period = 'WW', format = 'YYYY-MM-DD'),
list(period='DD', format = 'YYYY-MM-DD'),
list(period = 'hh', format = 'YYYY-MM-DD JJ:NN'),
list(period='mm', format = 'YYYY-MM-DD JJ:NN'),
list(period = 'ss', format = 'YYYY-MM-DD JJ:NN:SS'),
list(period='fff', format = 'YYYY-MM-DD JJ:NN:SS')),
dateFormats = list(list(period = 'YYYY', format = 'YYYY'),
list(period='MM', format = 'MMM'),
list(period = 'WW', format = 'MMM DD'),
list(period='DD', format = 'MMM DD'),
list(period = 'hh', format = 'JJ:NN'),
list(period='mm', format = 'JJ:NN'),
list(period = 'ss', format = 'JJ:NN:SS'),
list(period='fff', format = 'JJ:NN:SS')),
...)
{
.testFormatData(data)
data <- data.frame(data, check.names = FALSE, stringsAsFactors = FALSE)
.testIn(vect = col_date, control = names(data))
init_col_series <- col_series
if(is.list(col_series)){
n_col_series <- sapply(col_series, length)
col_series <- do.call("c", col_series)
.testIn(vect = col_series, control = names(data))
if(any(!n_col_series%in%c(3, 1))){
stop("col_series list element must be a vector of length 1 (one curve) or 3 (upper/lower curve).")
}
} else if(is.vector(col_series)) {
.testIn(vect = col_series, control = names(data))
n_col_series <- rep(1, length(col_series))
} else {
stop("col_series must be a vector or a list")
}
data <- data[, c(col_date, col_series)]
.testCharacter(char = color)
aggregation <- match.arg(aggregation)
.testCharacterLength1(ZoomButtonPosition)
.testIn(ZoomButtonPosition, c("left", "right", "bottom", "top"))
.testLogicalLength1(logi = legend)
.testCharacterLength1(legendPosition)
.testIn(legendPosition, c("left", "right", "bottom", "top"))
.testNumericLength1(scrollbarHeight)
.testLogicalLength1(logi = scrollbar)
.testCharacterLength1(scrollbarPosition)
.testIn(scrollbarPosition, c("left", "right", "bottom", "top"))
if(!is.null(scrollbarGraph)){
stopifnot(scrollbarGraph%in%colnames(data))
}
.testCharacterLength1(creditsPosition)
.testIn(creditsPosition, c("top-right", "top-left", "bottom-right", "bottom-left"))
if (!is.null(bullet))
.testIn(bullet, c("diamond", "square", "bubble", "yError", "xError",
"round", "triangleLeft", "triangleRight", "triangleUp"))
.testNumeric(fillAlphas)
.testNumeric(linewidth)
.testNumericLength1(num = maxSeries)
if (!is.null(ZoomButton)) {
.testIn(vect = names(ZoomButton), control = c("Unit", "multiple", "label", "selected"))
.testNumeric(num = ZoomButton$multiple)
}
.testNumericLength1(num = precision)
.testCharacterLength1(char = ylab)
.testCharacterLength1(char = main)
.testLogicalLength1(logi = export)
data[,col_date] <- data[,col_date] + (as.POSIXlt(as.character(data[,col_date]), tz = "UTC") - data[,col_date])
if(nrow(data) >= 5){
difft <- min(c(as.numeric(difftime(data[4,col_date], data[3,col_date], units = "secs")),
as.numeric(difftime(data[5,col_date], data[4,col_date], units = "secs"))))
} else if(nrow(data) >= 2){
difft <- as.numeric(difftime(data[2,col_date], data[1,col_date], units = "secs"))
} else {
difft <- 1
}
if(checkGroupToPeriods){
if(length(groupToPeriods) == 1){
minPeriod = groupToPeriods
groupToPeriods <- list(groupToPeriods)
} else {
groupToPeriods <- controlgroupToPeriods(groupToPeriods, difft)
minPeriod = groupToPeriods[1]
if(length(groupToPeriods) == 1){
groupToPeriods <- list(groupToPeriods)
}
}
}
if(isTRUE(all.equal('YYYY', groupToPeriods))){
groupToPeriods <- c('DD', 'YYYY')
}
fieldMapping <- lapply(col_series, function(x) {
list(fromField=x, toField=x, title = x)
})
graph_maker <- data.frame(column = col_series, stringsAsFactors = F)
if (length(color) > 1) {
graph_maker$color <- rep(color[1:length(n_col_series)], n_col_series)
} else {
graph_maker$color <- color
}
if (length(type) > 1) {
graph_maker$type <- rep(type[1:length(n_col_series)], n_col_series)
} else {
graph_maker$type <- type
}
if (length(linewidth) > 1) {
graph_maker$linewidth <- rep(linewidth[1:length(n_col_series)], n_col_series)
} else {
graph_maker$linewidth <- linewidth
}
if(!is.null(bullet)){
if (length(bullet) > 1) {
graph_maker$bullet <- rep(bullet[1:length(n_col_series)], n_col_series)
} else {
graph_maker$bullet <- bullet
graph_maker$bulletAlpha <- 1
}
} else {
graph_maker$bullet <- "round"
graph_maker$bulletSize <- 5
graph_maker$bulletAlpha <- 0
}
if(!is.null(bullet)){
if (length(bulletSize) > 1) {
graph_maker$bulletSize <- rep(bulletSize[1:length(n_col_series)], n_col_series)
} else {
graph_maker$bulletSize <- bulletSize
}
}
if (length(linetype) > 1) {
graph_maker$dashLength <- rep(linetype[1:length(n_col_series)], n_col_series)
} else {
graph_maker$dashLength <- linetype
}
if (length(fillAlphas) > 1) {
graph_maker$fillAlphas <- rep(fillAlphas[1:length(n_col_series)], n_col_series)
} else {
graph_maker$fillAlphas <- fillAlphas
}
graph_maker$aggregation <- aggregation
graph_maker$am_type <- do.call("c", lapply(n_col_series, function(x){
if(x == 3){
c("low", "curve-uplow", "up")
} else {
"curve"
}
}))
event_hide <- ""
event_show <- ""
if(is.list(init_col_series)){
for(i in 1:length(init_col_series)){
if(length(init_col_series[[i]]) == 3){
event_hide <- paste0(event_hide,
'if(id === "', init_col_series[[i]][2], '"){\n',
'event.chart.hideGraph(event.chart.getGraphById("', init_col_series[[i]][1], '"));\n',
'event.chart.hideGraph(event.chart.getGraphById("', init_col_series[[i]][3], '"));}')
event_show <- paste0(event_show,
'if(id === "', init_col_series[[i]][2], '"){\n',
'event.chart.showGraph(event.chart.getGraphById("', init_col_series[[i]][1], '"));\n',
'event.chart.showGraph(event.chart.getGraphById("', init_col_series[[i]][3], '"));}')
}
}
}
if(event_hide != ""){
st_legend <- stockLegend(enabled = legend, labelText = "[[title]]", useGraphSettings = TRUE) %>>% addListener("hideItem", paste0('function(event) {console.info(event);var id = event.dataItem.id;\n', event_hide, '}')) %>>%
addListener("showItem", paste0('function(event) {var id = event.dataItem.id;\n',event_show, '}'))
} else {
st_legend <- stockLegend(enabled = legend, labelText = "[[title]]", useGraphSettings = TRUE)
}
if (length(legendHidden) > 1) {
graph_maker$hidden <- rep(legendHidden[1:length(n_col_series)], n_col_series)
} else {
graph_maker$hidden <- legendHidden
}
stockgraph <- lapply(1:nrow(graph_maker), function(x) {
if(graph_maker[x, "am_type"] == "curve"){
stockGraph(title = graph_maker[x, "column"],
id = graph_maker[x, "column"] , connect = connect,
valueField = graph_maker[x, "column"],
comparable = TRUE, periodValue = graph_maker[x, "aggregation"],
compareField = graph_maker[x, "column"],
balloonText = paste0(graph_maker[x, "column"], ' : <b>[[value]]</b>'),
lineColor = graph_maker[x, "color"],
fillAlphas = graph_maker[x, "fillAlphas"],
bulletSize = graph_maker[x, "bulletSize"],
type = graph_maker[x, "type"],
minBulletSize = 0,
dashLength = graph_maker[x, "dashLength"],
useDataSetColors = FALSE,
bullet = ifelse(is.null(graph_maker[x, "bullet"]), "none", graph_maker[x, "bullet"]),
bulletAlpha = graph_maker[x, "bulletAlpha"],
precision = precision,
hidden = graph_maker[x, "hidden"],
lineThickness = graph_maker[x, "linewidth"]
)
} else if(graph_maker[x, "am_type"] == "low"){
stockGraph(title = graph_maker[x, "column"],
id = graph_maker[x, "column"] , connect = connect,
valueField = graph_maker[x, "column"],
comparable = TRUE, periodValue = graph_maker[x, "aggregation"],
compareField = graph_maker[x, "column"],
showBalloon = FALSE,
lineAlpha = 0,
lineColor = graph_maker[x, "color"],
type = graph_maker[x, "type"],
fillAlphas = 0,
useDataSetColors = FALSE,
visibleInLegend = FALSE,
hidden = graph_maker[x, "hidden"],
precision = precision
)
} else if(graph_maker[x, "am_type"] == "curve-uplow"){
stockGraph(title = graph_maker[x, "column"],
id = graph_maker[x, "column"] , connect = connect,
valueField = graph_maker[x, "column"],
comparable = TRUE, periodValue = graph_maker[x, "aggregation"],
compareField = graph_maker[x, "column"],
balloonText = paste0(graph_maker[x+1, "column"],' : <b> [[', graph_maker[x+1, "column"], ']] </b><br>',
graph_maker[x, "column"], ' : <b> [[value]] </b><br>',
graph_maker[x-1, "column"],' : <b> [[', graph_maker[x-1, "column"], ']] </b>'),
lineColor = graph_maker[x, "color"],
type = graph_maker[x, "type"],
fillAlphas = graph_maker[x, "fillAlphas"],
bulletSize = graph_maker[x, "bulletSize"],
minBulletSize = 0,
dashLength = graph_maker[x, "dashLength"],
useDataSetColors = FALSE,
bullet = ifelse(is.null(graph_maker[x, "bullet"]), "none", graph_maker[x, "bullet"]),
bulletAlpha = graph_maker[x, "bulletAlpha"],
precision = precision,
hidden = graph_maker[x, "hidden"],
lineThickness = graph_maker[x, "linewidth"]
)
} else if(graph_maker[x, "am_type"] == "up"){
stockGraph(title = graph_maker[x, "column"],
id = graph_maker[x, "column"] , connect = connect,
valueField = graph_maker[x, "column"],
comparable = TRUE, periodValue = graph_maker[x, "aggregation"],
compareField = graph_maker[x, "column"],
type = graph_maker[x, "type"],
showBalloon = FALSE,
lineAlpha = 0,
lineColor = graph_maker[x, "color"],
fillAlphas = 0.2,
useDataSetColors = FALSE,
fillToGraph = graph_maker[x-2, "column"],
visibleInLegend = FALSE,
hidden = graph_maker[x, "hidden"],
precision = precision
)
}
})
periodZoom <- periodSelector(position = ZoomButtonPosition, inputFieldsEnabled = periodFieldsSelection)
if (!is.null(ZoomButton)) {
if(!"selected" %in% colnames(ZoomButton)){
ZoomButton$selected <- FALSE
ZoomButton$selected[1] <- TRUE
}
for (i in 1:nrow(ZoomButton)) {
periodZoom <- pipeR::pipeline(periodZoom,
addPeriod(period = ZoomButton$Unit[i],
selected = ZoomButton$selected[i], count = ZoomButton$multiple[i],
label = ZoomButton$label[i])
)
}
}
dataset_obj <- pipeR::pipeline(dataSet(categoryField = col_date) ,
setDataProvider(data, keepNA = FALSE),
setFieldMappings(fieldMapping))
panel_obj <- pipeR::pipeline(panel(title = ylab, stockGraphs = stockgraph),
setStockLegend(st_legend),
addTitle(text = main))
am_output <- pipeR::pipeline(
amStockChart(dataDateFormat = dataDateFormat, useUTC = TRUE, group = group,
is_ts_module = is_ts_module, ...),
setExport(enabled = export),
addDataSet(dataset_obj),
addPanel(panel_obj),
setChartCursorSettings(enabled = cursor, valueBalloonsEnabled = cursorValueBalloonsEnabled, fullWidth = TRUE,
cursorAlpha = 0.1, valueLineBalloonEnabled = TRUE,
valueLineEnabled = TRUE, valueLineAlpha = 0.5,
categoryBalloonDateFormats = categoryBalloonDateFormats),
setPeriodSelector(periodZoom),
setCategoryAxesSettings(parseDates = TRUE, minPeriod = minPeriod,
groupToPeriods = groupToPeriods,
maxSeries = maxSeries,
dateFormats = dateFormats),
setPanelsSettings(marginTop = 30, creditsPosition = creditsPosition, thousandsSeparator = " "),
setLegendSettings(position = legendPosition)
)
if(is.null(scrollbarGraph)){
am_output <- setChartScrollbarSettings(am_output, enabled = scrollbar,position = scrollbarPosition,
height = scrollbarHeight)
} else {
am_output <- setChartScrollbarSettings(am_output, enabled = scrollbar, graph = scrollbarGraph, graphType = "line",
position = scrollbarPosition, height = scrollbarHeight)
}
am_output
}
controlgroupToPeriods <- function(groupToPeriods = c('30ss', 'mm', 'hh', 'DD', 'MM', 'YYYY'),
diffTime = 30){
ref_period <- data.frame(periode = c('ss', 'mm', 'hh', 'DD', 'MM', 'YYYY'),
seconds = c(1, 60, 3600, 24*3600, 31*24*3600, 365*24*3600))
rownames(ref_period) <- ref_period$periode
if(!is.null(groupToPeriods)){
number <- as.numeric(gsub("ss|mm|hh|DD|MM|YYYY", "", groupToPeriods))
number[is.na(number)] <- 1
period <- gsub("^[[:digit:]]*", "", groupToPeriods)
period <- ref_period[period, "seconds"]
select <- groupToPeriods[period*number >= diffTime]
if(length(select) == 0){
select <- groupToPeriods[1]
}
} else {
select <- c(as.character(ref_period$periode)[ref_period$seconds == diffTime])
}
if(diffTime > 1){
minperiod <- max(which(ref_period$seconds/diffTime<1))
} else {
minperiod <- 1
}
if(length(minperiod)>0){
if(ref_period$seconds[minperiod+1] != diffTime){
select <- c(paste0(diffTime/ref_period[minperiod,]$seconds,
ref_period[minperiod,]$periode), select)
}
}
gsub("^0", "", unique(select[grepl("^[[:digit:]]*((ss)|(mm)|(hh)|(DD)|(MM)|(YYYY))$", select)]))
} |
EvolutionStrategy.int <- function(genomeLen, codonMin, codonMax,
genomeMin=rep.int(codonMin, genomeLen),
genomeMax=rep.int(codonMax, genomeLen),
suggestion=NULL,
popSize=4, newPerGen = 4,
iterations=500, terminationCost=NA,
mutationChance=1/(genomeLen+1),
monitorFunc=NULL,
evalFunc,
allowrepeat = TRUE,
showSettings=FALSE, verbose=FALSE,
plapply = lapply) {
is.verbose = verbose
verbose = function(...) { if (is.verbose) cat(...)}
if (is.null(evalFunc)) {
stop("A evaluation function must be provided. See the evalFunc parameter.");
}
stopifnot(genomeLen > 1)
verbose("Testing the sanity of parameters...\n");
if (length(genomeMin) != length(genomeMax)) {
stop("The vectors genomeMin and genomeMax must be of equal length.");
}
if (iterations < 1) {
stop("The number of iterations must be at least 1.")
}
if ((mutationChance < 0) | (mutationChance > 1)) {
stop("mutationChance must be between 0 and 1.")
}
if ((popSize + newPerGen) < 1) {
stop("Total new generation (popSize + newPerGen) must be at least 1")
}
if (showSettings) {
verbose("The start conditions:\n");
result = list(genomeMin=genomeMin, genomeMax=genomeMax, suggestions=suggestion,
popSize=popSize, iterations=iterations,
mutationChance=mutationChance);
class(result) = "rbga";
cat(summary(result));
} else {
verbose("Not showing GA settings...\n");
}
if (!is.null(suggestion)) {
verbose("Adding suggestions to first population...\n");
suggestionCount = 1
parent = suggestion
} else {
verbose("Starting with random values in the given domains...\n");
suggestionCount = 0
parent = ga.new.chromosome(genomeLen, genomeMin, genomeMax, allowrepeat)
}
parentEval = NA
bestEvals = rep(NA, iterations);
meanEvals = rep(NA, iterations);
totalPopulation = 1 + popSize + newPerGen
for (iter in 1:iterations) {
verbose(paste("Starting iteration", iter, "\n"));
population = matrix(rep(parent, totalPopulation), nrow=totalPopulation, byrow = TRUE)
evalVals = rep(NA, totalPopulation);
evalVals[1] = parentEval
if (mutationChance > 0 & popSize > 0) {
verbose(" applying mutations... ");
mutationCount = 0;
for (object in 2:(1 + popSize)) {
dampeningFactor = 1
mutResult <- ga.mutation(population[object,], mutationChance, genomeLen,
genomeMin, genomeMax, allowrepeat,
dampeningFactor)
population[object,] = mutResult$newGenome
evalVals[object] = NA;
mutationCount = mutationCount + 1;
}
verbose(paste(mutationCount, "mutations applied\n"));
}
verbose("Adding New Chromosomes ... ");
if (newPerGen > 0) {
for (i in (popSize+1+1):totalPopulation) {
population[i,] = ga.new.chromosome(genomeLen, genomeMin, genomeMax, allowrepeat)
}
}
verbose("Calucating evaluation values... ");
to.eval.Ids = which(is.na(evalVals))
evalVals[to.eval.Ids] = unlist(plapply(to.eval.Ids,
function(i, population, evalFunc) evalFunc(population[i, ]),
population, evalFunc))
if ((!all(is.numeric(evalVals))) |
any(is.na(evalVals)) |
any(is.nan(evalVals))) {
stop("Invalid cost function return value (NA or NaN).")
}
verbose(" sorting results...\n");
bestInd = which.min(evalVals)
parent = population[bestInd,]
parentEval = evalVals[bestInd]
bestEvals[iter] = min(evalVals);
meanEvals[iter] = mean(evalVals);
verbose(" done.\n");
collect.results <- function() {
settings = list(genomeMin=genomeMin, genomeMax=genomeMax,
popSize=popSize, newPerGen = newPerGen, totalPopulation = popSize + newPerGen,
iterations=iterations, suggestions=suggestion,
mutationChance=mutationChance)
pop.info = list(population=population, evaluations=evalVals, best=bestEvals, mean=meanEvals, currentIteration=iter)
best = list(genome=population[bestInd,], cost = evalVals[bestInd]);
ret = list(settings = settings, population = pop.info, best = best)
class(ret) = "EvolutionStrategy.int";
return (ret)
}
if (!is.null(monitorFunc)) {
verbose("Sending current state to the monitor()...\n");
monitorFunc(collect.results());
}
if (iter == iterations) {
verbose("End of generations iteration reached.\n");
break
}
if (!is.na(terminationCost)) {
if (parentEval <= terminationCost) {
verbose("Cost better than termination cost reached.\n");
break
}
}
}
return(collect.results());
} |
setMethodS3("fitLoessKD", "matrix", function(X, Y, ...) {
X <- as.matrix(X);
Y <- as.matrix(Y);
if (!all(dim(Y) == dim(X))) {
dimXStr <- paste(dim(X), collapse="x");
dimYStr <- paste(dim(Y), collapse="x");
throw("The dimensions of argument 'Y' and 'X' do not match: ",
dimYStr, " != ", dimXStr);
}
data <- list(X=X, Y=Y);
ok <- rowAlls(is.finite(X) & is.finite(Y));
X <- X[ok,,drop=FALSE];
Y <- Y[ok,,drop=FALSE];
fitList <- list();
for (cc in seq_len(ncol(X))) {
fitList[[cc]] <- loess(Y[,cc] ~ X);
}
predictY <- function(X, ...) {
if (ncol(X) != length(fitList)) {
throw("The number of columns in argument 'X' does not match the number of fitted dimensions: ", ncol(X), " != ", length(fitList));
}
X <- as.matrix(X);
naValue <- as.double(NA);
Y <- array(naValue, dim=dim(X));
ok <- rowAlls(is.finite(X));
ok <- which(ok);
X <- X[ok,,drop=FALSE];
for (cc in seq_len(ncol(X))) {
fit <- fitList[[cc]];
yPred <- predict(fit, newdata=X);
Y[ok,cc] <- yPred;
}
Y;
}
fit <- list(data=data, fitList=fitList, predictY=predictY);
class(fit) <- c("LoessKDFit", class(fit));
fit;
});
setMethodS3("normalizeLoessKD", "matrix", function(X, fit, ...) {
fit <- Arguments$getInstanceOf(fit, "LoessKDFit");
fit$predictY(X, ...);
})
setMethodS3("fitLoessKD", "data.frame", function(X, ...) {
X <- as.matrix(X);
fitLoessKD(X, ...);
})
setMethodS3("normalizeLoessKD", "data.frame", function(X, ...) {
XN <- X;
X <- as.matrix(X);
XN <- normalizeLoessKD(X, ...);
XN <- as.data.frame(XN);
XN;
}) |
underlined = function(x, y, label, col){
text(x, y, label, col = col, font = 2)
sw = strwidth(label)
sh = strheight(label)
lines(x + c(-sw/2, sw/2), rep(y - 1.5*sh/2, 2), col = col)
}
largest.cex = function(node, height, width, hfrac = 0.7, wfrac = 0.9) {
guess = hfrac * height / strheight(node, cex = 1)
best = optimize(f = function(x) abs(strheight(node, cex = x) - hfrac * height),
interval = guess * c(0.5, 2), tol = 0.025)$minimum
best = best * min(wfrac * width / strwidth(node, cex = best), 1)
return(best)
}
lighter.colour = function(col, offset = 0.25) {
rgb = col2rgb(col)[, 1]
do.call("rgb", as.list((rgb + (255 - rgb) * offset) / 255))
} |
histCount <- function(C1, C2 = NULL, x0 = FALSE, nbmax = 30,
color = c('skyblue', adjustcolor('red', 0.5)), border='white', bty='n',
ylab="Frequency", xlab="Count", main="", ...) {
rng <- range(C1, C2)
if(x0)
rng[1] <- 0
range <- diff(rng) + 1
if(range <= nbmax) {
bwidth=1
} else {
bwidth <- range %/% nbmax + 1
}
nb <- ceiling(range/bwidth)
br <- seq(min(C1,C2), max(C1,C2)+bwidth, by=bwidth) - 0.5
H1 <- hist(C1, breaks = br, plot=FALSE)
ymax <- max(H1$counts)
if(!is.null(C2)) {
H2 <- hist(C2, breaks = br, plot=FALSE)
ymax <- max(ymax, H2$counts)
}
plot(H1, col=color[1], border=border,yaxs='i', ylim=c(0, ymax),
xlim=rng, bty=bty, ylab=ylab, xlab=xlab, main=main)
if(!is.null(C2)) {
plot(H2, col=color[2], border=border,add=TRUE)
plot(H1, breaks = br, col=NA, border=border,add=TRUE)
}
axis(2)
segments(rng[1], 0, rng[2], 0)
} |
pad_sequences <- function(sequences, maxlen = NULL, dtype = "int32", padding = "pre",
truncating = "pre", value = 0.0) {
if (is.list(sequences)) {
sequences <- lapply(sequences, function(seq) {
if (length(seq) == 1)
as.list(seq)
else
seq
})
}
keras$preprocessing$sequence$pad_sequences(
sequences = sequences,
maxlen = as_nullable_integer(maxlen),
dtype = dtype,
padding = padding,
truncating = truncating,
value = value
)
}
skipgrams <- function(sequence, vocabulary_size, window_size = 4, negative_samples = 1.0,
shuffle = TRUE, categorical = FALSE, sampling_table = NULL, seed = NULL) {
args <- list(
sequence = as.integer(sequence),
vocabulary_size = as.integer(vocabulary_size),
window_size = as.integer(window_size),
negative_samples = negative_samples,
shuffle = shuffle,
categorical = categorical,
sampling_table = sampling_table
)
if (keras_version() >= "2.0.7")
args$seed <- as_nullable_integer(seed)
sg <- do.call(keras$preprocessing$sequence$skipgrams, args)
sg <- list(
couples = sg[[1]],
labels = sg[[2]]
)
}
make_sampling_table <- function(size, sampling_factor = 1e-05) {
keras$preprocessing$sequence$make_sampling_table(
size = as.integer(size),
sampling_factor = sampling_factor
)
}
text_to_word_sequence <- function(text, filters = '!"
lower = TRUE, split=' ') {
keras$preprocessing$text$text_to_word_sequence(
text = text,
filters = filters,
lower = lower,
split = split
)
}
text_one_hot <- function(input_text, n, filters = '!"
lower = TRUE, split = ' ', text = NULL) {
if (tensorflow::tf_version() >= "2.3" && !is.null(text)) {
warning("text is deprecated as of TF 2.3. use input_text instead")
if (!missing(input_text))
stop("input_text and text must not be bopth specified")
input_text <- text
}
keras$preprocessing$text$one_hot(
input_text,
n = as.integer(n),
filters = filters,
lower = lower,
split = split
)
}
text_hashing_trick <- function(text, n,
hash_function = NULL,
filters = '!"
lower = TRUE, split = ' ') {
if (length(text) != 1) {
stop("`text` should be length 1.")
}
if (is.na(text)) {
return(NA_integer_)
}
keras$preprocessing$text$hashing_trick(
text = text,
n = as.integer(n),
hash_function = hash_function,
filters = filters,
lower = lower,
split = split
)
}
text_tokenizer <- function(num_words = NULL, filters = '!"
lower = TRUE, split = ' ', char_level = FALSE, oov_token = NULL) {
args <- list(
num_words = as_nullable_integer(num_words),
filters = filters,
lower = lower,
split = split,
char_level = char_level
)
if (keras_version() >= "2.1.3")
args$oov_token <- oov_token
do.call(keras$preprocessing$text$Tokenizer, args)
}
fit_text_tokenizer <- function(object, x) {
tokenizer <- object
if (is.list(x))
tokenizer$fit_on_sequences(x)
else {
tokenizer$fit_on_texts(if (is.function(x)) reticulate::py_iterator(x) else as_texts(x))
}
invisible(tokenizer)
}
save_text_tokenizer <- function(object, filename) {
py_save_object(object, filename)
invisible(object)
}
load_text_tokenizer <- function(filename) {
py_load_object(filename)
}
texts_to_sequences <- function(tokenizer, texts) {
tokenizer$texts_to_sequences(as_texts(texts))
}
texts_to_sequences_generator <- function(tokenizer, texts) {
tokenizer$texts_to_sequences_generator(as_texts(texts))
}
texts_to_matrix <- function(tokenizer, texts, mode = c("binary", "count", "tfidf", "freq")) {
tokenizer$texts_to_matrix(
texts = as_texts(texts),
mode = mode
)
}
as_texts <- function(texts) {
if (is.character(texts) && length(texts) == 1)
as.array(texts)
else
texts
}
sequences_to_matrix <- function(tokenizer, sequences, mode = c("binary", "count", "tfidf", "freq")) {
if (is.list(sequences)) {
sequences <- lapply(sequences, function(seq) {
if (length(seq) == 1)
as.list(seq)
else
seq
})
}
tokenizer$sequences_to_matrix(
sequences = sequences,
mode = mode
)
}
image_load <- function(path, grayscale = FALSE, color_mode='rgb',
target_size = NULL,
interpolation = "nearest") {
if (!have_pillow())
stop("The Pillow Python package is required to load images")
if (!is.null(target_size)) {
if (length(target_size) != 2)
stop("target_size must be 2 element integer vector")
target_size <- as.integer(target_size)
target_size <- tuple(target_size[[1]], target_size[[2]])
}
args <- list(
path = normalize_path(path),
color_mode = color_mode,
grayscale = grayscale,
target_size = target_size
)
if (keras_version() >= "2.0.9")
args$interpolation <- interpolation
do.call(keras$preprocessing$image$load_img, args)
}
image_to_array <- function(img, data_format = c("channels_last", "channels_first")) {
keras$preprocessing$image$img_to_array(
img = img,
data_format = match.arg(data_format)
)
}
image_array_resize <- function(img, height, width,
data_format = c("channels_last", "channels_first")) {
np <- import("numpy")
scipy <- import("scipy")
img <- np$copy(img)
dims <- dim(img)
is_4d_array <- FALSE
if (length(dims) == 4 && dims[[1]] == 1) {
is_4d_array <- TRUE
img <- array_reshape(img, dims[-1])
}
data_format <- match.arg(data_format)
if (data_format == "channels_last") {
factors <- tuple(
height / dim(img)[[1]],
width / dim(img)[[2]],
1
)
} else {
factors <- tuple(
1,
height / dim(img)[[1]],
width / dim(img)[[2]],
)
}
img <- scipy$ndimage$zoom(img, factors, order = 1L)
if (is_4d_array)
img <- array_reshape(img, dim = c(1, dim(img)))
img
}
image_array_save <- function(img, path, data_format = NULL, file_format = NULL, scale = TRUE) {
if (keras_version() >= "2.2.0") {
keras$preprocessing$image$save_img(
path, img,
data_format = data_format,
file_format = file_format,
scale = scale
)
} else {
pil <- import("PIL")
pil$Image$fromarray(reticulate::r_to_py(img)$astype("uint8"))$save(path)
}
}
image_data_generator <- function(featurewise_center = FALSE, samplewise_center = FALSE,
featurewise_std_normalization = FALSE, samplewise_std_normalization = FALSE,
zca_whitening = FALSE, zca_epsilon = 1e-6, rotation_range = 0.0, width_shift_range = 0.0,
height_shift_range = 0.0, brightness_range = NULL, shear_range = 0.0, zoom_range = 0.0, channel_shift_range = 0.0,
fill_mode = "nearest", cval = 0.0, horizontal_flip = FALSE, vertical_flip = FALSE,
rescale = NULL, preprocessing_function = NULL, data_format = NULL, validation_split=0.0) {
args <- list(
featurewise_center = featurewise_center,
samplewise_center = samplewise_center,
featurewise_std_normalization = featurewise_std_normalization,
samplewise_std_normalization = samplewise_std_normalization,
zca_whitening = zca_whitening,
rotation_range = rotation_range,
width_shift_range = width_shift_range,
height_shift_range = height_shift_range,
shear_range = shear_range,
zoom_range = zoom_range,
channel_shift_range = channel_shift_range,
fill_mode = fill_mode,
cval = cval,
horizontal_flip = horizontal_flip,
vertical_flip = vertical_flip,
rescale = rescale,
preprocessing_function = preprocessing_function,
data_format = data_format
)
if (keras_version() >= "2.0.4")
args$zca_epsilon <- zca_epsilon
if (keras_version() >= "2.1.5") {
args$brightness_range <- brightness_range
args$validation_split <- validation_split
}
do.call(keras$preprocessing$image$ImageDataGenerator, args)
}
generator_next <- function(generator, completed = NULL) {
reticulate::iter_next(generator, completed = completed)
}
fit_image_data_generator <- function(object, x, augment = FALSE, rounds = 1, seed = NULL) {
generator <- object
history <- generator$fit(
x = keras_array(x),
augment = augment,
rounds = as.integer(rounds),
seed = seed
)
invisible(history)
}
flow_images_from_data <- function(
x, y = NULL, generator = image_data_generator(), batch_size = 32,
shuffle = TRUE, sample_weight = NULL, seed = NULL,
save_to_dir = NULL, save_prefix = "", save_format = 'png', subset = NULL) {
args <- list(
x = keras_array(x),
y = keras_array(y),
batch_size = as.integer(batch_size),
shuffle = shuffle,
seed = as_nullable_integer(seed),
save_to_dir = normalize_path(save_to_dir),
save_prefix = save_prefix,
save_format = save_format
)
stopifnot(args$batch_size > 0)
if (keras_version() >= "2.1.5")
args$subset <- subset
if (keras_version() >= "2.2.0")
args$sample_weight <- sample_weight
do.call(generator$flow, args)
}
flow_images_from_directory <- function(
directory, generator = image_data_generator(), target_size = c(256, 256), color_mode = "rgb",
classes = NULL, class_mode = "categorical",
batch_size = 32, shuffle = TRUE, seed = NULL,
save_to_dir = NULL, save_prefix = "", save_format = "png",
follow_links = FALSE, subset = NULL, interpolation = "nearest") {
args <- list(
directory = normalize_path(directory),
target_size = as.integer(target_size),
color_mode = color_mode,
classes = classes,
class_mode = class_mode,
batch_size = as.integer(batch_size),
shuffle = shuffle,
seed = as_nullable_integer(seed),
save_to_dir = normalize_path(save_to_dir),
save_prefix = save_prefix,
save_format = save_format,
follow_links = follow_links
)
stopifnot(args$batch_size > 0)
if (keras_version() >= "2.1.2")
args$interpolation <- interpolation
if (keras_version() >= "2.1.5")
args$subset <- subset
do.call(generator$flow_from_directory, args)
}
flow_images_from_dataframe <- function(
dataframe, directory = NULL, x_col = "filename", y_col = "class",
generator = image_data_generator(), target_size = c(256,256),
color_mode = "rgb", classes = NULL, class_mode = "categorical",
batch_size = 32, shuffle = TRUE, seed = NULL, save_to_dir = NULL,
save_prefix = "", save_format = "png", subset = NULL,
interpolation = "nearest", drop_duplicates = NULL) {
if (!reticulate::py_module_available("pandas"))
stop("Pandas (Python module) must be installed in the same environment as Keras.",
'Install it using reticulate::virtualenv_install("pandas", envname = "r-tensorflow") ',
'or reticulate::conda_install("pandas", envname = "r-tensorflow") depending on ',
'the kind of environment you are using.')
args <- list(
dataframe = as.data.frame(dataframe),
directory = normalize_path(directory),
x_col = x_col, y_col = y_col,
target_size = as.integer(target_size),
color_mode = color_mode,
classes = classes,
class_mode = class_mode,
batch_size = as.integer(batch_size),
shuffle = shuffle,
seed = as_nullable_integer(seed),
save_to_dir = normalize_path(save_to_dir),
save_prefix = save_prefix,
save_format = save_format,
drop_duplicates = drop_duplicates
)
stopifnot(args$batch_size > 0)
if (keras_version() >= "2.1.2")
args$interpolation <- interpolation
if (keras_version() >= "2.1.5")
args$subset <- subset
if(!is.null(drop_duplicates) && tensorflow::tf_version() >= "2.3") {
warning("\'drop_duplicates\' is deprecated as of tensorflow 2.3 and will be ignored. Make sure the supplied dataframe does not contain duplicates.")
args$drop_duplicates <- NULL
}
if (is.null(drop_duplicates) && tensorflow::tf_version() < "2.3")
args$drop_duplicates <- TRUE
do.call(generator$flow_from_dataframe, args)
}
image_dataset_from_directory <- function(
directory,
labels="inferred",
label_mode="int",
class_names=NULL,
color_mode="rgb",
batch_size=32,
image_size=c(256, 256),
shuffle=TRUE,
seed=NULL,
validation_split=NULL,
subset=NULL,
interpolation="bilinear",
follow_links=FALSE
) {
if (!is.character(labels))
labels <- as.integer(labels)
args <- list(
directory=normalizePath(directory, mustWork = FALSE),
labels=labels,
label_mode=label_mode,
class_names=class_names,
color_mode=color_mode,
batch_size=as.integer(batch_size),
image_size=as_integer_tuple(image_size),
shuffle=shuffle,
seed=as_nullable_integer(seed),
validation_split=validation_split,
subset=subset,
interpolation=interpolation,
follow_links=follow_links
)
out <- do.call(keras$preprocessing$image_dataset_from_directory, args)
class(out) <- c("tf_dataset", class(out))
out
}
text_dataset_from_directory <-
function(directory,
labels = "inferred",
label_mode = "int",
class_names = NULL,
batch_size = 32L,
max_length = NULL,
shuffle = TRUE,
seed = NULL,
validation_split = NULL,
subset = NULL,
follow_links = FALSE,
...
)
{
args <- capture_args(match.call(),
list(batch_size = as.integer,
max_length = as_nullable_integer,
seed = as_nullable_integer))
do.call(keras$preprocessing$text_dataset_from_directory, args)
}
timeseries_dataset_from_array <-
function(data, targets, sequence_length, sequence_stride = 1L,
sampling_rate = 1L, batch_size = 128L, shuffle = FALSE, ...,
seed = NULL, start_index = NULL, end_index = NULL)
{
require_tf_version("2.6", "timeseries_dataset_from_array")
args <- capture_args(match.call(), list(
sequence_length = as.integer,
sequence_stride = as.integer,
sampling_rate = as.integer,
batch_size = as.integer,
seed = as_nullable_integer,
start_index = as_nullable_integer,
end_index = as_nullable_integer
))
do.call(keras$preprocessing$timeseries_dataset_from_array, args)
} |
objah <- ooplah$new()
test_that("object_class", {
expect_equal(object_class(objah), "ooplah")
expect_equal(object_class(objah, 1), "OoplahParent")
expect_equal(object_class(objah, 2), "R6")
})
test_that("get_object_class", {
expect_equal(get_object_class(objah), ooplah)
expect_equal(get_object_class(objah, 1)$classname, OoplahParent$classname)
})
test_that("object_classes", {
expect_equal(object_classes(objah, objah), rep("ooplah", 2))
expect_equal(object_classes(objects = list(objah, objah)), rep("ooplah", 2))
}) |
library(ggplot2)
library(scales)
this_base <- "fig04-05_state-areas-top-axis-labeled-with-original-scale"
my_data <- data.frame(
state_name = state.name,
state_area = state.area,
state_area_scaled = state.area / 1000)
p <- ggplot(my_data, aes(x = state_area_scaled,
y = reorder(state_name, state_area_scaled))) +
geom_point() +
scale_x_continuous(trans = log2_trans(),
breaks = trans_breaks("log2", function(x) 2^x)) +
labs(x = "Area (thousand square miles)", y = NULL) +
ggtitle("Fig. 4.5 State Areas: BOTTOM Axis Labeled \nwith Original Scale") +
theme_bw() +
theme(panel.grid.major.x = element_blank(),
panel.grid.major.y = element_line(colour = "grey70"),
plot.title = element_text(face = "bold", vjust = 1.5),
axis.ticks.y = element_blank(),
axis.text.y = element_text(size = rel(0.9)))
p
ggsave(paste0(this_base, ".png"),
p, width = 6, height = 6) |
source("ESEUR_config.r")
library("lubridate")
library("plyr")
plot_layout(6, 4, max_height=30)
par(mar=MAR_default-c(0.8, 1.7, 0.7, 0.7))
scm=read.csv(paste0(ESEUR_dir, "time-series/smr1615/scmlog.csv.xz"),
as.is=TRUE, quote="\'")
scm$rev=NULL
scm$message=NULL
scm$date=as.Date(scm$date, format="%Y-%m-%d")
start_date=as.Date("1991-01-01", format="%Y-%m-%d")
end_date=as.Date("2012-01-01", format="%Y-%m-%d")
cfl=read.csv(paste0(ESEUR_dir, "time-series/smr1615/commits_files_lines.csv.xz"),
as.is=TRUE, quote="\'")
cfl$date=scm$date[cfl$commit]
cfl=subset(cfl, (date >= start_date) & (date <= end_date))
cfl$year=year(cfl$date)
plot(table(trunc(as.numeric(3+cfl$date) %% 7)), col=point_col, cex=1.3,
cex.lab=1.4, xlab="Total", ylab="")
d_ply(cfl, .(year), function(df) plot(table(trunc(as.numeric(3+df$date) %% 7)),
col=point_col, cex=1.3, cex.lab=1.4,
xlab=df$year[1], ylab="")) |
test_that("initialize parameters are checked", {
s1 <- MarkovState$new("s1")
s2 <- MarkovState$new("s2")
expect_silent(Transition$new(s1,s2))
expect_error(Transition$new(s1,s2,label=42), class="non-string_label")
n1 <- Node$new()
expect_error(Transition$new(n1,s2), class="invalid_source")
expect_error(Transition$new(s1,n1), class="invalid_target")
expect_silent(Transition$new(s1,s2))
expect_error(Transition$new(s1,s2,cost="200"), class="invalid_cost")
expect_silent(Transition$new(s1,s2,label=""))
expect_silent(Transition$new(s1,s2,label="mychance"))
MT <- Transition$new(s1,s2,cost=20)
expect_equal(MT$cost(),20)
})
test_that("costs can be modified", {
s1 <- MarkovState$new("s1")
s2 <- MarkovState$new("s2")
t <- Transition$new(s1, s2)
expect_equal(t$cost(), 0)
t <- Transition$new(s1, s2, cost=42)
expect_equal(t$cost(), 42)
t$set_cost(1000)
expect_equal(t$cost(), 1000)
c <- ConstModVar$new("c1", "GBP", 42)
t <- Transition$new(s1, s2, cost=c)
expect_equal(t$cost(), 42)
t <- Transition$new(s1, s2)
t$set_cost(c)
expect_equal(t$cost(), 42)
})
test_that("ModVars are identified and their values are returned", {
s1 <- MarkovState$new("s1")
s2 <- MarkovState$new("s2")
fortytwo <- ConstModVar$new("fortytwo", "GBP", 42)
e <- Transition$new(s1,s2,cost=fortytwo,label="label")
expect_equal(e$cost(), 42)
mv <- e$modvars()
expect_equal(length(mv),1)
discount <- ConstModVar$new("discount", "rate", 0.1)
dcost <- ExprModVar$new(
"true cost", "GPB",
rlang::quo(fortytwo*(1-discount))
)
e <- Transition$new(s1,s2,cost=dcost,label="label")
expect_equal(e$cost(), 42*0.9)
mv <- e$modvars()
expect_equal(length(mv),3)
}) |
removeAlgorithm = function(reg, id, force = FALSE) {
checkExperimentRegistry(reg, strict = TRUE, writeable = TRUE)
syncRegistry(reg)
assertString(id)
if (id %nin% dbGetAllAlgorithmIds(reg))
stop("Algorithm not present in registry: ", id)
info("Removing Experiments from database")
ids = dbFindExperiments(reg, algo.pattern = id, like = FALSE)
removeExperiments(reg, ids = ids, force = force)
info("Removing Algorithm from database")
dbRemoveAlgorithm(reg, id)
fn = getAlgorithmFilePath(reg$file.dir, id)
info("Deleting algorithm file: %s", fn)
ok = file.remove(fn)
if (!ok)
warningf("Could not remove algorithm file: %s", fn)
invisible(NULL)
} |
transform_prediction <- function(pred, loss_fun_type){
link_type = ""
if(loss_fun_type %in% c("mse")){
link_type = "identity"
}else if(loss_fun_type %in% c("logloss")){
link_type = "logit"
}else if(loss_fun_type %in% c("poisson", "gamma::log", "negbinom")){
link_type = "log"
}else if(loss_fun_type %in% c("gamma::neginv")){
link_type = "neginv"
}else{
warning(paste0("No link-function match for loss: ", loss_fun_type, " Using identity"))
link_type = "identity"
}
if(link_type == "identity"){
res <- pred
}else if(link_type == "logit"){
res <- 1/(1+exp(-pred))
}else if(link_type == "log"){
res <- exp(pred)
}else if(link_type == "neginv"){
res <- -1/pred
}
return(res)
}
loss_to_xgbloss <- function(loss_function){
if(loss_function == "mse"){
xgbloss = "reg:squarederror"
}else if(loss_function == "logloss"){
xgbloss = "binary:logistic"
}else if(loss_function == "gamma::log"){
xgbloss = "reg:gamma"
}else if(loss_function == "poisson"){
xgbloss = "count:poisson"
}
return(xgbloss)
}
loss_to_lgbloss <- function(loss_function){
if(loss_function == "mse"){
lgbloss = "regression"
}else if(loss_function == "logloss"){
lgbloss = "binary"
}else if(loss_function == "gamma::log"){
lgbloss = "gamma"
}else if(loss_function == "poisson"){
lgbloss = "poisson"
}
return(lgbloss)
}
gbt.model.complexity <- function(model){
loss_function = model$get_loss_function()
initial_raw_prediction = model$initialPred
res <- list(
"loss_function" = loss_function,
"nrounds" = model$get_num_trees(),
"learning_rate" = model$get_learning_rate(),
"initial_raw_prediction" = initial_raw_prediction,
"initial_prediction" = transform_prediction(initial_raw_prediction, loss_function),
"max_depth" = max(model$get_tree_depths()),
"min_loss_reductions" = model$get_max_node_optimism(),
"sum_hessian_weights" = model$get_min_hessian_weights(),
"number_of_leaves" = max(model$get_num_leaves()),
"l1_regularization" = 0.0,
"l2_regularization" = 0.0,
"row_subsampling" = 1.0,
"column_subsampling" = 1.0
)
return(res)
}
gbt.complexity <- function(model, type){
message("Experimental feature")
message("Best results are obtained using agtboost algorithm global-subset")
model_complexity <- gbt.model.complexity(model)
parameters = with(model_complexity,
if(type=="xgboost"){
list(
"base_score" = initial_prediction,
"nrounds" = nrounds,
"learning_rate" = learning_rate,
"max_depth" = max_depth,
"gamma" = min_loss_reductions,
"min_child_weight" = sum_hessian_weights,
"max_leaves" = number_of_leaves,
"grow_policy" = "lossguide",
"objective" = loss_to_xgbloss(loss_function),
"alpha" = 0.0,
"lambda" = 0.0,
"subsample" = 1.0,
"colsample_bytree" = 1.0
)
}else if(type=="lightgbm"){
list(
"init_score" = initial_prediction,
"nrounds" = nrounds,
"learning_rate" = learning_rate,
"max_depth" = max_depth,
"min_gain_to_split" = min_loss_reductions,
"min_sum_hessian_in_leaf" = sum_hessian_weights,
"num_leaves" = number_of_leaves,
"objective" = loss_to_lgbloss(loss_function),
"lambda_l1" = 0.0,
"lambda_l2" = 0.0,
"bagging_fraction" = 1.0,
"feature_fraction" = 1.0
)
}
)
return(parameters)
} |
autointensity <- function(times, window=NULL, maxlag=max(times),
ylab="Conditional probability", xlab="Lag",
main="Autointensity function", xlim=c(0,max(times)),
ylim=c(0,if(plotse)max(se1)else max(z$density)), lty=1,
plot=TRUE, plotse=TRUE, add=FALSE, ...){
if(any(times<=0))stop("Times must be strictly positive")
n <- length(times)
total <- sum(times)
if(is.null(window))window <- total/n/2
tmp <- cumsum(times)
times <- tmp[2:n]-tmp[1]
for(i in 3:n)times <- c(times,tmp[i:n]-tmp[i-1])
times <- times[times<maxlag]
z <- hist(times,plot=FALSE,breaks=seq(0,max(times+window),by=window))
z$density <- z$counts*total/(total-z$mids)/window/n
se1 <- ifelse(z$density>0,(sqrt(z$density)+2/sqrt(window*n))^2,0)
se2 <- sqrt(z$density)-2/sqrt(window*n)
se2 <- ifelse(z$density>0,ifelse(se2>0,se2,0)^2,0)
if(plot){
if(add)plot(z$mids,z$density,type="l",lty=lty)
else plot(z$mids,z$density,type="l",main=main,ylab=ylab,xlab=xlab,
xlim=xlim,ylim=ylim,lty=lty,...)
lines(xlim,rep(n/total,2))
if(plotse){
lines(z$mids,se1,lty=3)
lines(z$mids,se2,lty=3)}}
invisible(list(mids=z$mids,density=z$density,se=rbind(se1,se2)))} |
library(lmForc)
vector_lag <- function(vector, n) {
vector <- c(rep(NA, n), vector[1:(length(vector) - n)])
return(vector)
}
date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30", "2012-09-30", "2012-12-31"))
y <- c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99, 1.31, 2.33)
x1 <- c(4.22, 3.86, 4.27, 5.60, 5.11, 4.31, 4.92, 5.80, 6.30, 4.17, 4.18, 5.89)
x2 <- c(10.03, 10.49, 10.85, 10.47, 9.09, 10.91, 8.68, 9.91, 7.87, 6.63, 6.67, 7.77)
data <- data.frame(date, y, x1, x2)
realized_vec = data$y
h_ahead = 4L
ar_lags = 3L
estimation_end = 4L
time_vec = 1:length(realized_vec)
estimation_window = NULL
output_start <- which(time_vec == estimation_end)
output_end <- length(realized_vec) - h_ahead
output_length <- length(output_start:output_end)
full_train_data <- realized_vec[1:8]
full_train_data_lag1 <- vector_lag(full_train_data, n = 1)
full_train_data_lag2 <- vector_lag(full_train_data, n = 2)
full_train_data_lag3 <- vector_lag(full_train_data, n = 3)
train_data <- full_train_data
train_data_lag1 <- full_train_data_lag1
train_data_lag2 <- full_train_data_lag2
train_data_lag3 <- full_train_data_lag3
coefs <- lm(train_data ~ train_data_lag1 + train_data_lag2 + train_data_lag3)$coefficients
forc_1ahead <- coefs[[1]] + coefs[[2]] * realized_vec[[8]] + coefs[[3]] * realized_vec[[7]] + coefs[[4]] * realized_vec[[6]]
forc_2ahead <- coefs[[1]] + coefs[[2]] * forc_1ahead + coefs[[3]] * realized_vec[[8]] + coefs[[4]] * realized_vec[[7]]
forc_3ahead <- coefs[[1]] + coefs[[2]] * forc_2ahead + coefs[[3]] * forc_1ahead + coefs[[4]] * realized_vec[[8]]
forc_4ahead <- coefs[[1]] + coefs[[2]] * forc_3ahead + coefs[[3]] * forc_2ahead + coefs[[4]] * forc_1ahead
pos5_forc <- forc_4ahead
full_train_data <- realized_vec
full_train_data_lag1 <- vector_lag(full_train_data, n = 1)
full_train_data_lag2 <- vector_lag(full_train_data, n = 2)
train_data <- full_train_data[5:9]
train_data_lag1 <- full_train_data_lag1[5:9]
train_data_lag2 <- full_train_data_lag2[5:9]
coefs <- lm(train_data ~ train_data_lag1 + train_data_lag2)$coefficients
pos4_forc2 <- coefs[[1]] + coefs[[2]] * realized_vec[[9]] + coefs[[3]] * realized_vec[[8]]
forc <- autoreg_forc(
realized_vec = data$y,
h_ahead = 4L,
ar_lags = 3L,
estimation_end = 4L,
time_vec = NULL,
estimation_window = NULL
)
forc2 <- autoreg_forc(
realized_vec = data$y,
h_ahead = 1L,
ar_lags = 2L,
estimation_end = as.Date("2011-06-30"),
time_vec = data$date,
estimation_window = 4L
)
test_that("Origin and future output are of the correct class.", {
expect_equal(class(time_vec), class(origin(forc)))
expect_equal(class(time_vec), class(future(forc)))
})
test_that("Output values are correct.", {
expect_equal(origin(forc), time_vec[output_start:output_end])
expect_equal(future(forc), time_vec[(nrow(data) - output_length + 1):nrow(data)])
expect_equal(realized(forc), data$y[(nrow(data) - output_length + 1):nrow(data)])
expect_equal(forc(forc)[5], pos5_forc)
expect_equal(forc(forc2)[4], pos4_forc2)
})
test_that("Output Forecast is the correct length.", {
expect_equal(output_length, length(output_start:output_end))
}) |
update.compareGroups<-
function (object, formula., ..., evaluate = TRUE)
{
if(!inherits(object, "compareGroups"))
stop("argument 'object' must be of class 'compareGroups'")
if(inherits(object, "compareGroups.subset"))
stop("Update process might not work properly (different variables selected) since 'obj' has been subset previously")
if(inherits(object, "rbind.compareGroups"))
stop("Update process does not work for rbind.compareGroups objects")
call <- attr(object,"call")$call
if (is.null(call))
stop("need an object with call component")
extras <- match.call(expand.dots = FALSE)$...
if (!missing(formula.)){
if (inherits(formula., "formula")){
if (inherits(eval(call$formula), "formula")){
call$formula <- update.formula2(call$formula, formula.)
}else {
call$data <- call$formula
call$formula <- formula.
}
} else {
call$formula <- formula.
}
}
if (length(extras)) {
existing <- !is.na(match(names(extras), names(call)))
for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
if (any(!existing)) {
call <- c(as.list(call), extras[!existing])
call <- as.call(call)
}
}
if (evaluate)
eval(call, parent.frame())
else
call
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.