code
stringlengths 1
13.8M
|
---|
library(OmicKriging)
binaryFile <- system.file(package = "OmicKriging",
"doc/vignette_data/ig_genotypes.grm.bin")
binaryFileBase <- substr(binaryFile,1, nchar(binaryFile) - 4)
expressionFile <- system.file(package = "OmicKriging",
"doc/vignette_data/ig_gene_subset.txt.gz")
phenotypeFile <- system.file(package = "OmicKriging",
"doc/vignette_data/ig_pheno.txt")
pheno <- read.table(phenotypeFile, header = T)
grmMat <- read_GRMBin(binaryFileBase)
gxmMat <- make_GXM(expFile = expressionFile)
pcMatXM <- make_PCs_irlba(gxmMat, n.top = 10)
pcMatGM <- make_PCs_irlba(grmMat, n.top = 10)
pcMat <- cbind(pcMatGM, pcMatXM[match(rownames(pcMatGM), rownames(pcMatXM)),])
result <- krigr_cross_validation(pheno.df = pheno,
cor.list = list(grmMat, gxmMat),
h2.vec = c(0.5, 0.5),
covar.mat = pcMat,
ncore = 2,
nfold = "LOOCV")
allCon <- showConnections()
socketCon <- as.integer(rownames(allCon)[allCon[, "class"] == "sockconn"])
sapply(socketCon, function(ii) close.connection(getConnection(ii)) ) |
library(aster)
data(radish)
options(digits=4)
pred <- c(0,1,2)
fam <- c(1,3,2)
famlist <- fam.default()
famlist[[2]] <- fam.negative.binomial(3.1415926526)
rout <- try(reaster(resp ~ varb + fit : (Site * Region),
list(block = ~ 0 + fit : Block, pop = ~ 0 + fit : Pop),
pred, fam, varb, id, root, data = radish, famlist = famlist)) |
CUSUMfixed <- function(x,d,procedure,bandw,tau=0.15)
{
if(procedure != "CUSUMfixedb_typeA" & procedure != "CUSUMfixedb_typeB"
& procedure != "CUSUMfixedm_typeA" & procedure != "CUSUMfixedm_typeB") stop("You misspecified which procedure to use")
if((procedure == "CUSUMfixedb_typeA" | procedure == "CUSUMfixedb_typeB")
& !(bandw %in% c(0.05,seq(0.1,1,0.1)))) stop("Use one of the following bandwidths: 0.05,0.1,0.2,0.3,...,0.9,1")
if((procedure == "CUSUMfixedm_typeA" | procedure == "CUSUMfixedm_typeB")
& !(bandw %in% c(1,2,3,4,10,25,50,100,150,200))) stop("Use one of the following bandwidths: 1,2,3,4,10,25,50,100,150,200")
if (any(is.na(x)))
stop("x contains missing values")
if(tau<=0 | tau>=1)
stop("It must hold that 0<tau<1")
if (mode(x) %in% ("numeric") == FALSE | is.vector(x) ==
FALSE)
stop("x must be a univariate numeric vector")
if(tau!=0.15)
warning("Critical values are just implemented for tau=0.15")
T <- length(x)
m <- bandw*T
u_hat <- x-mean(x)
cumulated <- cumsum(u_hat)
sigma <- c()
if(procedure=="CUSUMfixedb_typeA") sigma <- fb_longrun(u_hat,m)
if(procedure=="CUSUMfixedb_typeB"){
for(k in ((T*tau):(T*(1-tau))))
{X <- cbind(rep(1,T),c(rep(0,round(k)),rep(1,round(T-k))))
reg <- stats::lm(x~X-1)
u_hat2 <- unname(reg$residuals)
sigm <- fb_longrun(u_hat2,m)
sigma <- c(sigma,sigm)}}
if(procedure=="CUSUMfixedm_typeA"){
m <- bandw
sigma <- (2*pi/m)*sum(longmemo::per(u_hat)[2:(m+1)])}
if(procedure=="CUSUMfixedm_typeB"){
m <- bandw
for(k in ((T*tau):(T*(1-tau))))
{First <- c(rep(mean(x[1:k]),round(k)),rep(0,round(T-k)))
Second <- c(rep(0,round(k)),rep(mean(x[(k+1):T]),round(T-k)))
X_tilde <- x-First-Second
sigma <- c(sigma,(2*pi/m)*sum(longmemo::per(X_tilde)[2:(m+1)]))}}
crit_values <- CV_shift(d=d,procedure=procedure,param=bandw)
testCUSUMfixedb_typeB <- max(abs(cumulated[((T*tau):(T*(1-tau)))]/(sqrt(T*sigma))))
result <- c(crit_values,testCUSUMfixedb_typeB)
names(result) <- c("90%","95%","99%","Teststatistic")
return(round(result,3))
} |
PDEscatter=function(x,y,SampleSize,na.rm=FALSE,PlotIt=TRUE,ParetoRadius,sampleParetoRadius,
NrOfContourLines=20,Plotter='native', DrawTopView = TRUE,
xlab="X", ylab="Y", main="PDEscatter",
xlim, ylim, Legendlab_ggplot="value"){
x=checkFeature(x,'x')
y=checkFeature(y,'y')
if(identical(x,y)){
stop('PDEscatter: Variable x is identical to variable y. Please check input.')
}
isnumber=function(x) return(is.numeric(x)&length(x)==1)
if(missing(ParetoRadius)){
ParetoRadius =0
}
if(!isnumber(ParetoRadius))
stop('PDEscatter: "ParetoRadius" is not a numeric number of length 1. Please change Input.')
if(missing(SampleSize)){
SampleSize =-1
}
if(missing(sampleParetoRadius)){
sampleParetoRadius=round(sqrt(500000000),-3)
}
if(!isnumber(SampleSize))
stop('PDEscatter: "SampleSize" is not a numeric number of length 1. Please change Input.')
if(!isnumber(sampleParetoRadius))
stop('PDEscatter: "sampleParetoRadius" is not a numeric number of length 1. Please change Input.')
if(!isnumber(NrOfContourLines))
stop('PDEscatter: "NrOfContourLines" is not a numeric number of length 1. Please change Input.')
if(!is.logical(na.rm))
stop('PDEscatter: "na.rm" is expected to be either TRUE or FALSE')
if(!is.logical(PlotIt)){
if(!(PlotIt==-1))
stop('PDEscatter: "PlotIt" is expected to be either TRUE, FALSE or -1.')
}
if(!is.logical(DrawTopView))
stop('PDEscatter: "DrawTopView" is expected to be either TRUE or FALSE')
toRange=function (data, lower, upper)
{
data <- as.matrix(data)
if (lower == upper) {
stop("interval width can not be 0!")
}
if (lower > upper) {
temp <- upper
upper <- lower
lower <- upper
}
range <- upper - lower
n <- dim(data)[1]
d <- dim(data)[2]
if ((n == 1) & (d > 1)) {
data <- t(data)
wasRowVector <- 1
}
else {
wasRowVector <- 0
}
nRow <- dim(data)[1]
nCol <- dim(data)[2]
min <- apply(data, 2, min, na.rm = TRUE)
min <- matrix(min, nRow, nCol, byrow = TRUE)
max <- apply(data, 2, max, na.rm = TRUE)
max <- matrix(max, nRow, nCol, byrow = TRUE)
range <- max - min
range[range == 0] <- 1
scaleData <- (data - min)/range
scaleData <- lower + scaleData * (upper - lower)
if (wasRowVector == 1) {
scaleData = t(scaleData)
}
return(scaleData)
}
if(isTRUE(na.rm)){
noNaNInd <- which(is.finite(x)&is.finite(y))
x = x[noNaNInd]
y = y[noNaNInd]
}
nData <- length(x)
if(SampleSize>0){
if (SampleSize<nData) {
sampleInd=sample(1:nData,size = SampleSize)
x=x[sampleInd]
y=y[sampleInd]
}
}
if(missing(xlim))
xlim = c(min(x,na.rm = T), max(x,na.rm = T))
if(missing(ylim))
ylim = c(min(y,na.rm = T), max(y,na.rm = T))
data <- cbind(x,y)
percentdata <- toRange(data,0,100)
nData <- length(x)
if (sampleParetoRadius<nData) {
par_sampleInd=sample(1:nData,size = sampleParetoRadius,replace = FALSE)
sampleData4radius = percentdata[par_sampleInd,]
} else {
sampleData4radius = percentdata
}
if (!requireNamespace('parallelDist',quietly = TRUE)){
message('Subordinate package (parallelDist) is missing. No computations are performed.
Please install the package which is defined in "Suggests". Falling back to dist().')
DataDists = as.matrix(dist(sampleData4radius, method = 'euclidean', diag =TRUE))
Dists=as.vector(DataDists[upper.tri(DataDists,diag = F)])
}else{
Dists=parallelDist::parDist(sampleData4radius,method = 'euclidean',diag = F,upper = F)
Dists=as.vector(Dists)
}
if(ParetoRadius <= 0){
if(nData<500){
ParetoRadius <- quantile(Dists, 6/100, type = 5, na.rm = TRUE)
}else{
ParetoRadius <- c_quantile(Dists[is.finite(Dists)], 6/100)
}
if(ParetoRadius==0){
if(nData<500){
ParetoRadius <- quantile(Dists, 20/100, type = 5, na.rm = TRUE)
}else{
ParetoRadius <- c_quantile(Dists[is.finite(Dists)], 20/100)
}
if(ParetoRadius==0){
stop(paste0('Estimation of Radius(',ParetoRadius,') for two-dimensional density not possible. Please provide ParetoRadius manually.'))
}else{
warning(paste0('Estimation of Radius(',ParetoRadius,') for two-dimensional density may not work properly. You can provide ParetoRadius manually.'))
}
}
}
inPSpheres = inPSphere2D(percentdata, ParetoRadius)
Matrix3D=cbind(x,y,inPSpheres)
if(PlotIt==-1)
return(list(X=x,Y=y,Densities=inPSpheres,Matrix3D=Matrix3D,ParetoRadius=ParetoRadius,Handle=NULL))
plt = zplot(x = x,y = y,z = inPSpheres,DrawTopView,NrOfContourLines, TwoDplotter = Plotter, xlim = xlim, ylim = ylim)
if(DrawTopView){
switch(Plotter,'ggplot'={
plt <- plt +
xlab(xlab) +
ylab(ylab) +
labs(title=main, fill=Legendlab_ggplot) +
theme(panel.background = element_blank())
if(isTRUE(PlotIt))
print(plt)
},'native'={
title(main = main, xlab = xlab, ylab = ylab)
plt <- 'Native does not have a Handle'
if(!isTRUE(PlotIt)) warning('for native plotting cannot be disabled')
}, 'plotly'={
requireNamespace('plotly')
plt <- plotly::layout(plt,xaxis= list(title=xlab),
yaxis= list(title=ylab),
title= main)
if(isTRUE(PlotIt))
print(plt)
})
}else{
switch(Plotter,'ggplot'={
print('Plotly plot is used because ggplot is not implemented for option DrawTopView=FALSE.')
requireNamespace('plotly')
plt <- plotly::layout(plt,scene=list(xaxis= list(title=xlab),
yaxis= list(title=ylab),zaxis= list(title='PDE'),
title= main))
if(isTRUE(PlotIt))
print(plt)
},'native'={
print('Plotly plot is used because native is not implemented for option DrawTopView=FALSE.')
requireNamespace('plotly')
plt <- plotly::layout(plt,scene=list(xaxis= list(title=xlab),
yaxis= list(title=ylab),zaxis= list(title='PDE'),
title= main))
if(isTRUE(PlotIt))
print(plt)
}, 'plotly'={
requireNamespace('plotly')
plt <- plotly::layout(plt,scene=list(xaxis= list(title=xlab),
yaxis= list(title=ylab),zaxis= list(title='PDE'),
title= main))
if(isTRUE(PlotIt))
print(plt)
})
}
return(invisible(list(X=x,Y=y,Densities=inPSpheres,Matrix3D=Matrix3D,ParetoRadius=ParetoRadius,Handle=plt)))
} |
test_that("Full check of analyse_baSAR function", {
skip_on_cran()
local_edition(3)
set.seed(1)
data(ExampleData.BINfileData, envir = environment())
CWOSL.SAR.Data <- subset(CWOSL.SAR.Data,
subset = POSITION %in% c(1:3) & LTYPE == "OSL")
results <- suppressWarnings(analyse_baSAR(
object = CWOSL.SAR.Data,
source_doserate = c(0.04, 0.001),
signal.integral = c(1:2),
background.integral = c(80:100),
fit.method = "EXP",
method_control = list(inits = list(
list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 1),
list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 2),
list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 3)
)),
plot = TRUE,
verbose = TRUE,
n.MCMC = 100,
txtProgressBar = TRUE
))
expect_s4_class(results, class = "RLum.Results")
expect_s3_class(results$summary, "data.frame")
expect_s3_class(results$mcmc, "mcmc.list")
expect_type(results$models, "list")
expect_type(round(sum(results$summary[, c(6:9)]), 2),type = "double")
}) |
install_dev <- function(package, cran_url = getOption("repos")[["CRAN"]], ...) {
if (is.null(cran_url) || identical(cran_url, "@CRAN@")) {
cran_url <- "https://cloud.r-project.org"
}
refs <- dev_split_ref(package)
url <- build_url(cran_url, "web", "packages", refs[["pkg"]], "DESCRIPTION")
f <- tempfile()
on.exit(unlink(f))
download(f, url)
desc <- read_dcf(f)
url_fields <- c(desc$URL, desc$BugReports)
if (length(url_fields) == 0) {
stop("Could not determine development repository", call. = FALSE)
}
pkg_urls <- unlist(strsplit(url_fields, "[[:space:]]*,[[:space:]]*"))
pkg_urls <- sub("/issues/?$", "", pkg_urls)
valid_domains <- c("github[.]com", "gitlab[.]com", "bitbucket[.]org")
parts <-
re_match(pkg_urls,
sprintf("^https?://(?<domain>%s)/(?<username>%s)/(?<repo>%s)(?:/(?<subdir>%s))?",
domain = paste0(valid_domains, collapse = "|"),
username = "[^/]+",
repo = "[^/@
subdir = "[^/@$ ]+"
)
)[c("domain", "username", "repo", "subdir")]
parts <- unique(stats::na.omit(parts))
if (nrow(parts) != 1) {
stop("Could not determine development repository", call. = FALSE)
}
full_ref <- paste0(
paste0(c(parts$username, parts$repo, if (nzchar(parts$subdir)) parts$subdir), collapse = "/"),
refs[["ref"]]
)
switch(parts$domain,
github.com = install_github(full_ref, ...),
gitlab.com = install_gitlab(full_ref, ...),
bitbucket.org = install_bitbucket(full_ref, ...)
)
} |
matricear <- function(string, maxdist = 1){
V2 <- c()
if(maxdist==1){
V1<-deletion1(string)
V1<-as.data.table(V1)
V1<-V1[,V2 := string]
}
else if(maxdist==2){
V1<-deletion2(string)
V1<-as.data.table(V1)
V1<-V1[,V2 := string]
}
else if(maxdist==3){
V1<-deletion3(string)
V1<-as.data.table(V1)
V1<-V1[,V2 := string]
}
else{stop("Argument 'maxdist' out of range (1:3)")}
V1
} |
library(desctable)
options(DT.options = list(
info = F,
search = F,
dom = "Brtip",
fixedColumns = T))
knitr::opts_chunk$set(message = F, warning = F, screenshot.force = F)
iris %>%
desctable()
desctable(mtcars)
iris %>%
desctable() %>%
pander()
mtcars %>%
desctable() %>%
datatable()
iris %>%
desctable(stats = stats_auto) %>%
datatable()
mtcars %>%
desctable(stats = list("N" = length, "Mean" = mean, "SD" = sd)) %>%
datatable()
iris %>%
desctable(stats = list("N" = length,
"%/Mean" = is.factor ~ percent | (is.normal ~ mean),
"Median" = is.normal ~ NA | median)) %>%
datatable()
print(stats_auto)
mtlabels <- c(mpg = "Miles/(US) gallon",
cyl = "Number of cylinders",
disp = "Displacement (cu.in.)",
hp = "Gross horsepower",
drat = "Rear axle ratio",
wt = "Weight (1000 lbs)",
qsec = "¼ mile time",
vs = "V/S",
am = "Transmission",
gear = "Number of forward gears",
carb = "Number of carburetors")
mtcars %>%
dplyr::mutate(am = factor(am, labels = c("Automatic", "Manual"))) %>%
desctable(labels = mtlabels) %>%
datatable()
iris %>%
group_by(Species) %>%
desctable() -> iris_by_Species
iris_by_Species
str(iris_by_Species)
mtcars %>%
group_by(cyl) %>%
desctable() %>%
pander()
iris %>%
group_by(Petal.Length > 5) %>%
desctable() %>%
datatable()
mtcars %>%
dplyr::mutate(am = factor(am, labels = c("Automatic", "Manual"))) %>%
group_by(vs, am, cyl) %>%
desctable() %>%
datatable()
iris %>%
group_by(Species) %>%
desctable(tests = tests_auto) %>%
datatable()
iris %>%
group_by(Petal.Length > 5) %>%
desctable(tests = list(.auto = tests_auto,
Species = ~chisq.test)) %>%
datatable()
mtcars %>%
dplyr::mutate(am = factor(am, labels = c("Automatic", "Manual"))) %>%
group_by(am) %>%
desctable(tests = list(.default = ~wilcox.test,
mpg = ~t.test)) %>%
datatable()
mtcars %>%
desctable(stats = list("N" = length,
"Sum of squares" = function(x) sum(x^2),
"Q1" = . %>% quantile(prob = .25),
"Q3" = purrr::partial(quantile, probs = .75))) %>%
datatable()
iris %>%
group_by(Species) %>%
desctable(tests = list(.auto = tests_auto,
Sepal.Width = ~function(f) oneway.test(f, var.equal = F),
Petal.Length = ~. %>% oneway.test(var.equal = T),
Sepal.Length = ~purrr::partial(oneway.test, var.equal = T))) %>%
datatable()
library(survival)
bladder$surv <- Surv(bladder$stop, bladder$event)
bladder %>%
group_by(rx) %>%
desctable(tests = list(.default = ~wilcox.test,
surv = ~. %>% survdiff %>% .$chisq %>% pchisq(1, lower.tail = F) %>% list(p.value = .))) %>%
datatable() |
test <- c(rep(1, 53), rep(0, 47))
truth <- c(rep(1, 20), rep(0, 33), rep(1, 10), rep(0, 37))
con_mat <- confusion_matrix(test, truth, positive = "1")
test_that("Table is as expected",
{
expect_equivalent(unclass(con_mat$tab), matrix(c(20, 10, 33, 37), ncol = 1))
})
test_that("Sensitivity",
{
expect_equal(con_mat$stats["Sensitivity", 1], 20 / 30)
})
test_that("Specificity",
{
expect_equal(con_mat$stats["Specificity", 1], 37 / 70)
})
test_that("PPV",
{
expect_equal(con_mat$stats["PPV", 1], 20 / 53)
})
test_that("NPV",
{
expect_equal(con_mat$stats["NPV", 1], 37 / 47)
})
test_that("print confusion_matrix",
{
expect_output(print(con_mat), "Truth:\\ *truth")
expect_output(print(con_mat), "Prediction:\\ *test")
expect_output(print(con_mat), "Accuracy\\ *0.57")
expect_output(print(con_mat), "NPV\\ *0.78")
})
test_that("is confusion_matrix",
{
expect_true(is.confusion_matrix(con_mat))
})
test_that("errors for levels",
{
x <- sample(c("A", "B", "C"), 100, replace = TRUE)
y <- sample(c("A", "B"), 100, replace = TRUE)
expect_error(confusion_matrix(x, y))
x <- sample(c("A", "B"), 100, replace = TRUE)
x <- factor(x, levels = c("B", "A"))
y <- sample(c("A", "B"), 100, replace = TRUE)
y <- factor(y, levels = c("B", "A"))
expect_equal(attr(confusion_matrix(x, y), "positive") , "B")
x <- factor(sample(c("C", "D"), 100, replace = TRUE))
expect_error(confusion_matrix(x, y))
}) |
test_that("subset RLum.Analysis", {
testthat::skip_on_cran()
local_edition(3)
data("ExampleData.RLum.Analysis")
temp <- IRSAR.RF.Data
expect_s4_class(subset(temp), "RLum.Analysis")
expect_length(subset(temp), length(temp))
expect_identical(subset(temp)[[1]], temp[[1]])
expect_error(subset(temp, LTYPE == "RF"), regexp = "Valid terms are")
expect_null(subset(temp, recordType == "xx"))
expect_s4_class(subset(temp, recordType == "RF"), class = "RLum.Analysis")
expect_s4_class(subset(temp, recordType == "RF")[[1]], class = "RLum.Data.Curve")
expect_length(subset(temp, recordType == "RF"), n = length(temp))
expect_s4_class(get_RLum(temp, subset = recordType == "RF"), class = "RLum.Analysis")
expect_s4_class(get_RLum(temp, subset = recordType == "RF")[[1]], class = "RLum.Data.Curve")
expect_length(get_RLum(temp, subset = recordType == "RF"), n = length(temp))
}) |
BetaModVar <- R6::R6Class(
classname = "BetaModVar",
lock_class = TRUE,
inherit = ModVar,
private = list(
),
public = list(
initialize = function(description, units, alpha, beta) {
D <- BetaDistribution$new(alpha=alpha, beta=beta)
super$initialize(description, units, D=D, k=as.integer(1))
return(invisible(self))
},
is_probabilistic = function() {
return(TRUE)
}
)
) |
plot.gpcm <-
function (x, type = c("ICC", "IIC", "OCCu", "OCCl"), items = NULL, category = NULL,
zrange = c(-3.8, 3.8), z = seq(zrange[1], zrange[2], length = 100), annot,
labels = NULL, legend = FALSE,
cx = "top", cy = NULL, ncol = 1, bty = "n", col = palette(), lty = 1, pch,
xlab, ylab, main, sub = NULL, cex = par("cex"), cex.lab = par("cex.lab"),
cex.main = par("cex.main"), cex.sub = par("cex.sub"), cex.axis = par("cex.axis"),
plot = TRUE, ...) {
if (!inherits(x, "gpcm"))
stop("Use only with 'gpcm' objects.\n")
type <- match.arg(type)
betas <- x$coefficients
nitems <- length(betas)
ncatg <- sapply(betas, length)
itms <- if (!is.null(items)) {
if (!is.numeric(items) || length(items) > nitems)
stop("'items' must be a numeric vector of length at most ", nitems)
if (type == "ICC" && any(items < 1 | items > nitems))
stop("'items' must contain numbers between 1 and ", nitems, " denoting the items.\n")
if (type == "IIC" && any(items < 0 | items > nitems))
stop("'items' must contain numbers between 0 and ", nitems)
items
} else
1:nitems
ctg <- if (!is.null(category)) {
if (length(category) > 1)
stop("'category' must be a number indicating the category.\n")
if (category < 0 || category > max(ncatg))
stop(paste("'category' must be a number between 1 and ", max(ncatg), ".\n", sep = ""))
if (any(ind <- category > ncatg)){
if (sum(ind) > 1)
warning("Items ", paste(items[ind], collapse = ", "), " are excluded since they have only ",
paste(ncatg[ind], collapse = ", "), " categories, respectively.\n")
else
warning("Item ", items[ind], " is excluded since they have only ", ncatg[ind], " categories.\n")
itms <- itms[!ind]
}
category
} else
"all"
cpr <- switch(type,
"ICC" = lapply(crf.GPCM(betas, z, x$IRT.param), t),
"IIC" = infoGPCM(betas, z, x$IRT.param),
"OCCl" = lapply(crf.GPCM(betas, z, x$IRT.param), function (x) {
pp <- apply(x[-nrow(x), , drop = FALSE], 2, cumsum)
if (NCOL(pp) == 1) as.matrix(pp) else t(pp)
}),
"OCCu" = lapply(crf.GPCM(betas, z, x$IRT.param), function (x) {
pp <- apply(x[-nrow(x), , drop = FALSE], 2, cumsum)
if (NCOL(pp) == 1) 1 - as.matrix(pp) else 1 - t(pp)
})
)
plot.items <- type == "ICC" || (type == "IIC" & (is.null(items) || all(items > 0)))
plot.info <- !plot.items
if (missing(main)) {
Main <- if (type == "ICC") {
"Item Response Category Characteristic Curves"
} else if (type == "OCCl" || type == "OCCu") {
"Item Operation Characteristic Curves"
} else {
if (plot.items) "Item Information Curves" else "Test Information Function"
}
mis.ind <- TRUE
} else
mis.ind <- FALSE
if (missing(ylab)) {
ylab <- if (type == "ICC" || (type == "OCCl" | type == "OCCu")) "Probability" else "Information"
}
if (missing(xlab)) {
xlab <- "Ability"
}
if (missing(annot)) {
annot <- !legend
}
col. <- col
lty. <- lty
if (type == "ICC" || (type == "OCCl" | type == "OCCu")) {
if (ctg == "all") {
if (plot) {
if (length(itms) > 1) {
old.par <- par(ask = TRUE)
on.exit(par(old.par))
}
one.fig <- prod(par("mfcol")) == 1
for (i in seq(along = itms)) {
ii <- itms[i]
if (mis.ind) {
main. <- if (one.fig) paste("- Item:", names(cpr)[ii]) else paste("\nItem:", names(cpr)[ii])
main <- paste(Main, main.)
}
plot(range(z), c(0, 1), type = "n", xlab = xlab, ylab = ylab, main = main, sub = sub, cex = cex,
cex.lab = cex.lab, cex.main = cex.main, cex.axis = cex.axis, cex.sub = cex.sub, ...)
p <- cpr[[ii]]
pos <- round(seq(10, 90, length = ncol(p)))
col <- rep(col., length.out = ncatg[ii])
lty <- rep(lty., length.out = ncatg[ii])
if (!missing(pch)) {
pch <- rep(pch, length.out = ncatg[ii])
pch.ind <- round(seq(15, 85, length = 4))
}
for (j in 1:ncol(p)) {
lines(z, p[, j], lty = lty[j], col = col[j], ...)
if (!missing(pch))
points(z[pch.ind], p[pch.ind, j], pch = pch[j], col = col[j], cex = cex, ...)
if (annot)
text(z[pos[j]], p[pos[j], j], adj = c(0, 1.2), if (missing(labels)) j else labels[j],
col = col[j], cex = cex, ...)
}
if (legend) {
ncol. <- if (is.null(ncol)) {
if (is.factor(x$X[[ii]]) && any(nchar(levels(x$X[[ii]])) > 11)) 1 else ncatg[ii] %/% 2
} else
ncol
lab <- if (missing(labels)) {
switch(type,
"ICC" = if (is.factor(x$X[[i]])) levels(x$X[[ii]]) else 1:ncatg[ii],
"OCCu" = paste(if (is.factor(x$X[[ii]])) levels(x$X[[ii]])[-1] else 2:ncatg[ii], "or higher"),
"OCCl" = paste(if (is.factor(x$X[[ii]])) levels(x$X[[ii]])[-1] else 2:ncatg[ii], "or lower"))
} else
labels
legend(cx, cy, legend = lab, lty = lty, pch = pch, col = col, bty = bty, ncol = ncol., cex = cex, ...)
}
}
return.value <- list(z = z, pr = cpr[itms])
} else {
return(list(z = z, pr = cpr[itms]))
}
} else {
p <- sapply(cpr[itms], function (x, category) x[, category], category = ctg)
if (plot) {
one.fig <- prod(par("mfcol")) == 1
if (mis.ind) {
main. <- if (one.fig) paste("- Category:", ctg) else paste("\nCategory:", ctg)
main <- paste(Main, main.)
}
plot(range(z), c(0, 1), type = "n", xlab = xlab, ylab = ylab, main = main, sub = sub, cex = cex,
cex.lab = cex.lab, cex.main = cex.main, cex.axis = cex.axis, cex.sub = cex.sub, ...)
pos <- round(seq(10, 90, length = ncol(p)))
col <- rep(col., length.out = length(itms))
lty <- rep(lty., length.out = length(itms))
if (!missing(pch)) {
pch <- rep(pch, length.out = length(itms))
pch.ind <- round(seq(15, 85, length = 4))
}
for (j in 1:ncol(p)) {
lines(z, p[, j], lty = lty[j], col = col[j], ...)
if (!missing(pch))
lines(z, p[, j], pch = pch[j], col = col[j], cex = cex, ...)
if (annot)
text(z[pos[j]], p[pos[j], j], adj = c(0, 1.2), if (missing(labels)) colnames(p)[j] else labels[j],
col = col[j], cex = cex, ...)
}
if (legend) {
ncol. <- if (is.null(ncol)) {
if (any(nchar(colnames(p)) > 11)) 1 else length(items) %/% 2
} else
ncol
lab <- if (missing(labels)) colnames(p) else labels
legend(cx, cy, legend = lab, lty = lty, pch = pch, col = col, bty = bty, ncol = ncol., cex = cex, ...)
}
return.value <- cbind(z = z, pr = p)
} else {
return(cbind(z = z, pr = p))
}
}
} else {
p <- cpr[, itms, drop = FALSE]
if (plot) {
r <- if (plot.items) range(p) else range(rowSums(cpr))
if (mis.ind) {
main <- Main
}
plot(range(z), r, type = "n", xlab = xlab, ylab = ylab, main = main, sub = sub, cex = cex,
cex.lab = cex.lab, cex.main = cex.main, cex.axis = cex.axis, cex.sub = cex.sub, ...)
if (plot.items) {
col <- rep(col., length.out = length(itms))
lty <- rep(lty., length.out = length(itms))
if (!missing(pch)) {
pch <- rep(pch, length.out = length(itms))
pch.ind <- round(seq(15, 85, length = 4))
}
pos <- round(seq(10, 90, length = ncol(p)))
for (i in seq(along = itms)) {
lines(z, p[, i], lty = lty[i], col = col[i], ...)
if (!missing(pch))
points(z[pch.ind], p[pch.ind, i], pch = pch[i], col = col[i], cex = cex, ...)
if (annot)
text(z[pos[i]], p[pos[i], i], adj = c(0, 1.2), if (missing(labels)) i else labels[i],
col = col[i], cex = cex, ...)
}
if (legend) {
ncol. <- if (is.null(ncol)) ncol. <- if (nitems > 8) 2 else 1 else ncol
legend(cx, cy, legend = if (missing(labels)) colnames(cpr)[itms] else labels, lty = lty, pch = pch,
col = col, bty = bty, ncol = ncol., cex = cex, ...)
}
} else {
col <- col.[1]
lty <- lty.[1]
p <- rowSums(cpr)
lines(z, p, lty = lty, col = col, ...)
if (!missing(pch))
points(z, p, pch = pch, col = col, cex = cex, ...)
if (legend)
legend(cx, cy, legend = "Information", lty = lty, col = col, pch = pch, bty = bty, ncol = 1, ...)
}
return.value <- if (plot.items) cbind(z = z, item.info = p) else cbind(z = z, test.info = p)
} else {
return(if (plot.items) cbind(z = z, item.info = p) else cbind(z = z, test.info = rowSums(cpr)))
}
}
invisible(return.value)
} |
source("inst/fannie_mae_10pct/00_setup.r")
library(disk.frame)
library(xgboost)
acqall_dev = disk.frame(file.path(outpath, "appl_mdl_data_sampled"))
add_var_to_scorecard = disk.frame:::add_var_to_scorecard
check_which_is_best <- function(df, target, features, monotone_constraints, format_fns, weight=NULL) {
prev_pred = NULL
ws = NULL
vars_scr = NULL
while(length(features) > 0) {
res = furrr::future_map(1:length(features), ~add_var_to_scorecard(
df,
target,
features[.x],
monotone_constraints = monotone_constraints[.x],
prev_pred = prev_pred,
format_fn = format_fns[[.x]],
weight,
save_model_fname = glue::glue("{features[.x]}.xgbm")
))
w = which.max(map_dbl(res, ~.x$auc))
ws = c(ws, w)
feature_to_fit = features[w]
print(glue::glue("choosen: {feature_to_fit}"))
var_scr1 = res[[w]]
eval(parse(text = glue::glue("vars_scr = c(vars_scr, list({feature_to_fit} = var_scr1))")))
features = features[-w]
format_fns = format_fns[-w]
monotone_constraints = monotone_constraints[-w]
prev_pred = var_scr1$prev_pred
}
vars_scr
}
num_vars = c("mi_pct", "orig_amt", "orig_rt", "ocltv", "mi_type", "cscore_c", "oltv", "dti", "orig_trm", "cscore_b", "num_bo", "num_unit", "orig_dte", "frst_dte")
num_vars_mon = c(0 , 1 , 1 , 1 , 0 , -1 , 1 , 1 , 1 , -1 , -1 , 0 , 0 , 0)
num_var_fmt_fn = c(map(1:10, ~base::I), map(1:2, ~as.numeric), map(1:2, ~function(x) {
as.numeric(substr(x, 4, 7))
}))
cat_vars = setdiff(names(acqall_dev), num_vars) %>%
setdiff(
c("loan_id", "default_next_12m", "first_default_date", "mths_to_1st_default", "zip_3", "weight"))
pt = proc.time()
res_all = check_which_is_best(
acqall_dev,
"default_next_12m",
features = c(num_vars, cat_vars),
monotone_constraints = c(num_vars_mon, rep(0, length(cat_vars))),
format_fns = c(num_var_fmt_fn, map(1:length(cat_vars), ~base::I)),
weight = "weight"
)
timetaken(pt)
plot(map_dbl(res_all, ~.x$auc))
if(F) {
rescat = check_which_is_best(
acqall_dev,
"default_next_12m",
c("seller.name", "oltv", "state", "dti", "mi_type"),
c(0 , 1 , 0 , 1 , 0 ),
map(1:5, ~base::I)
)
system.time(res <- check_which_is_best(
acqall1,
"default_next_12m",
c("ocltv", "cscore_c", "mi_type", "oltv", "dti", "orig_trm", "cscore_b", "num_bo"),
c(1 , -1 , 0 , 1 , 1 , 1 , -1 , -1 ),
c(map(1:7, ~base::I), list(as.numeric))))
} |
mdmb_regression_adjustment_differentiation_parameter <- function(h, par )
{
abs_par <- abs(par)
hvec <- h * ifelse(abs_par > 1, abs_par, 1)
return(hvec)
} |
me_ <- nm_fun("TEST-range_write")
test_that("range_write() works", {
skip_if_offline()
skip_if_no_token()
n <- 3
m <- 5
data <- suppressMessages(
tibble::as_tibble(
matrix(head(letters, n * m), nrow = n , ncol = m), .name_repair = "unique"
)
)
ss <- local_ss(me_(), sheets = list(foo = data))
range_write(ss, data[3:2, ])
props <- sheet_properties(ss)
expect_equal(props$grid_rows, n + 1)
expect_equal(props$grid_columns, m)
df <- read_sheet(ss)
expect_identical(df[1, ], df[3, ])
range_write(ss, data, range = "foo!F5")
props <- sheet_properties(ss)
expect_equal(props$grid_rows, (5 - 1) + n + 1)
expect_equal(props$grid_columns, (which(LETTERS == "F") - 1) + m)
df <- read_sheet(ss, range = cell_cols(c("F", NA)))
expect_equal(df, data)
range_write(ss, data[1:3], sheet = "foo", range = "I2:K5")
props <- sheet_properties(ss)
expect_equal(props$grid_columns, (which(LETTERS == "K")))
df <- read_sheet(ss, range = "I2:K5")
expect_equal(df, data[1:3])
})
test_that("we can write a hole-y tibble containing NULLs", {
skip_if_offline()
skip_if_no_token()
dat_write <- tibble::tibble(A = list(NULL, "HI"), B = month.abb[1:2])
ss <- local_ss(me_("write-NULL"), sheets = dat_write)
write_sheet(dat_write, ss, sheet = 1)
dat_read <- read_sheet(ss)
expect_equal(dat_read$A, c(NA, "HI"))
expect_equal(dat_read$B, dat_write$B)
dat_read <- read_sheet(ss, col_types = "Lc")
expect_equal(dat_read$A, dat_write$A)
expect_equal(dat_read$B, dat_write$B)
})
test_that("prepare_loc() makes the right call re: `start` vs. `range`", {
expect_loc <- function(x, loc) {
sheets_df <- tibble::tibble(name = "Sheet1", index = 0, id = 123)
out <- prepare_loc(as_range_spec(x, sheets_df = sheets_df))
expect_named(out, loc)
}
expect_loc(NULL, "start")
expect_loc("Sheet1", "start")
expect_loc("D4", "start")
expect_loc("B5:B5", "start")
expect_loc(cell_limits(c(5, 2), c(5, 2)), "start")
expect_loc("B4:G9", "range")
expect_loc("A2:F", "range")
expect_loc("A2:5", "range")
expect_loc("C:E", "range")
expect_loc("5:7", "range")
expect_loc(cell_limits(c(2, 4), c(NA, NA)), "range")
})
test_that("prepare_dims() works when write_loc is a `start` (a GridCoordinate)", {
n <- 3
m <- 5
data <- suppressMessages(
tibble::as_tibble(
matrix(head(letters, n * m), nrow = n , ncol = m), .name_repair = "unique"
)
)
expect_dims <- function(loc, col_names, dims) {
expect_equal(prepare_dims(loc, data, col_names = col_names), dims)
}
loc <- list(start = new("GridCoordinate", sheetId = 123))
expect_dims(loc, col_names = TRUE, list(nrow = n + 1, ncol = m))
expect_dims(loc, col_names = FALSE, list(nrow = n, ncol = m))
loc <- list(start = new("GridCoordinate", sheetId = 123, rowIndex = 2))
expect_dims(loc, col_names = TRUE, list(nrow = 2 + n + 1, ncol = m))
expect_dims(loc, col_names = FALSE, list(nrow = 2 + n, ncol = m))
loc <- list(start = new("GridCoordinate", sheetId = 123, columnIndex = 3))
expect_dims(loc, col_names = TRUE, list(nrow = n + 1, ncol = 3 + m))
expect_dims(loc, col_names = FALSE, list(nrow = n, ncol = 3 + m))
loc <- list(
start = new("GridCoordinate", sheetId = 123, rowIndex = 2, columnIndex = 3)
)
expect_dims(loc, col_names = TRUE, list(nrow = 2 + n + 1, ncol = 3 + m))
expect_dims(loc, col_names = FALSE, list(nrow = 2 + n, ncol = 3 + m))
})
test_that("prepare_dims() works when write_loc is a `range` (a GridRange)", {
n <- 3
m <- 5
data <- suppressMessages(
tibble::as_tibble(
matrix(head(letters, n * m), nrow = n , ncol = m), .name_repair = "unique"
)
)
expect_dims <- function(x, col_names, dims) {
sheets_df <- tibble::tibble(name = "Sheet1", index = 0)
loc <- prepare_loc(as_range_spec(x, sheets_df = sheets_df))
expect_equal(prepare_dims(loc, data, col_names = col_names), dims)
}
expect_dims("B4:G9", col_names = TRUE, list(nrow = 9, ncol = which(LETTERS == "G")))
expect_dims("B4:G9", col_names = FALSE, list(nrow = 9, ncol = which(LETTERS == "G")))
expect_dims("B3:D", col_names = TRUE, list(nrow = 2 + n + 1, ncol = which(LETTERS == "D")))
expect_dims("B3:D", col_names = FALSE, list(nrow = 2 + n , ncol = which(LETTERS == "D")))
expect_dims("C3:5", col_names = TRUE, list(nrow = 5, ncol = which(LETTERS == "C") + m - 1))
expect_dims("C3:5", col_names = FALSE, list(nrow = 5, ncol = which(LETTERS == "C") + m - 1))
expect_dims("5:7", col_names = TRUE, list(nrow = 7, ncol = m))
expect_dims("5:7", col_names = FALSE, list(nrow = 7, ncol = m))
expect_dims("B:H", col_names = TRUE, list(nrow = n + 1, ncol = which(LETTERS == "H")))
expect_dims("B:H", col_names = FALSE, list(nrow = n, ncol = which(LETTERS == "H")))
expect_dims(
cell_limits(c(2, 4), c(NA, NA)), col_names = TRUE,
list(nrow = 2 + n + 1 - 1, ncol = 4 + m - 1)
)
expect_dims(
cell_limits(c(2, 4), c(NA, NA)), col_names = FALSE,
list(nrow = 2 + n - 1, ncol = 4 + m - 1)
)
}) |
match_tree_edges <- function(original_tree, pruned_tree) {
n_pruned_tips <- ape::Ntip(phy = pruned_tree)
n_pruned_nodes <- ape::Nnode(phy = pruned_tree)
if (n_pruned_tips < 3) stop("pruned_tree includes too few (<3) taxa to be used.")
if (length(x = setdiff(x = pruned_tree$tip.label, y = original_tree$tip.label)) > 0) stop("pruned_tree cannot include taxa not present in original_tree.")
removed_taxa <- setdiff(x = original_tree$tip.label, y = pruned_tree$tip.label)
if (length(x = removed_taxa) == 0) {
removed_edges <- numeric(0)
matching_edges <- as.list(x = 1:nrow(original_tree$edge))
clades <- corresponding_nodes <- c((n_pruned_tips + 1):(n_pruned_tips + n_pruned_nodes), 1:n_pruned_tips)
} else {
clades <- vector(mode = "character")
for (i in (n_pruned_tips + 1):(n_pruned_tips + n_pruned_nodes)) {
clades <- c(clades, paste(pruned_tree$tip.label[strap::FindDescendants(n = i, tree = pruned_tree)], collapse = "%%SpLiTtEr%%"))
names(clades)[length(x = clades)] <- i
}
corresponding_nodes <- vector(mode = "numeric")
for (i in clades) corresponding_nodes <- c(corresponding_nodes, find_mrca(descendant_names = strsplit(i, "%%SpLiTtEr%%")[[1]], tree = original_tree))
corresponding_nodes <- c(corresponding_nodes, match(pruned_tree$tip.label, original_tree$tip.label))
clades <- c(as.numeric(names(clades)), 1:n_pruned_tips)
pruned_edges <- cbind(corresponding_nodes[match(pruned_tree$edge[, 1], clades)], corresponding_nodes[match(pruned_tree$edge[, 2], clades)])
matching_edges <- match(apply(pruned_edges, 1, paste, collapse = "%%"), apply(original_tree$edge, 1, paste, collapse = "%%"))
nonmatching_edges <- pruned_edges[is.na(matching_edges), ]
if (length(x = nonmatching_edges) > 0) {
if (!is.matrix(nonmatching_edges)) nonmatching_edges <- matrix(nonmatching_edges, ncol = 2)
for (i in 1:nrow(nonmatching_edges)) {
start_node <- nonmatching_edges[i, 1]
end_node <- nonmatching_edges[i, 2]
edges <- match(end_node, original_tree$edge[, 2])
while (length(x = sort(x = match(original_tree$edge[edges, 1], start_node))) == 0) {
end_node <- original_tree$edge[match(end_node, original_tree$edge[, 2]), 1]
edges <- c(edges, match(end_node, original_tree$edge[, 2]))
}
matching_edges[which(x = is.na(matching_edges))[1]] <- paste(rev(edges), collapse = "%%")
}
matching_edges <- lapply(X = strsplit(matching_edges, "%%"), as.numeric)
} else {
matching_edges <- as.list(x = matching_edges)
}
removed_edges <- setdiff(x = 1:nrow(original_tree$edge), y = as.numeric(unlist(x = matching_edges)))
}
names(matching_edges) <- 1:nrow(pruned_tree$edge)
node_matches <- cbind(pruned_node = clades, original_node = corresponding_nodes)
list(matching_edges = matching_edges, matching_nodes = node_matches, removed_edges = removed_edges)
} |
as.data.frame.light.edsurvey.data.frame <- function(x, ...) {
res <- x
atrs <- names(attributes(x))
atrs <- atrs[!atrs %in% c("names", "row.names", "class")]
for(z in atrs) {
attr(res, z) <- NULL
}
class(res) <- "data.frame"
res
} |
plsim.vs.hard = function(...)
{
args = list(...)
if (is(args[[1]],"formula"))
UseMethod("plsim.vs.hard",args[[1]])
else
UseMethod("plsim.vs.hard")
}
plsim.vs.hard.formula = function(formula,data,...)
{
mf = match.call(expand.dots = FALSE)
m = match(c("formula","data"),
names(mf), nomatch = 0)
mf = mf[c(1,m)]
mf.xf = mf
mf[[1]] = as.name("model.frame")
mf.xf[[1]] = as.name("model.frame")
chromoly = deal_formula(mf[["formula"]])
if (length(chromoly) != 3)
stop("invoked with improper formula, please see plsim.vs.hard documentation for proper use")
bronze = lapply(chromoly, paste, collapse = " + ")
mf.xf[["formula"]] = as.formula(paste(" ~ ", bronze[[2]]),
env = environment(formula))
mf[["formula"]] = as.formula(paste(bronze[[1]]," ~ ", bronze[[3]]),
env = environment(formula))
formula.all = terms(as.formula(paste(" ~ ",bronze[[1]]," + ",bronze[[2]], " + ",bronze[[3]]),
env = environment(formula)))
orig.class = if (missing(data))
sapply(eval(attr(formula.all, "variables"), environment(formula.all)),class)
else sapply(eval(attr(formula.all, "variables"), data, environment(formula.all)),class)
arguments.mfx = chromoly[[2]]
arguments.mf = c(chromoly[[1]],chromoly[[3]])
mf[["formula"]] = terms(mf[["formula"]])
mf.xf[["formula"]] = terms(mf.xf[["formula"]])
if(all(orig.class == "ts")){
arguments = (as.list(attr(formula.all, "variables"))[-1])
attr(mf[["formula"]], "predvars") = bquote(.(as.call(c(quote(as.data.frame),as.call(c(quote(ts.intersect), arguments)))))[,.(match(arguments.mf,arguments)),drop = FALSE])
attr(mf.xf[["formula"]], "predvars") = bquote(.(as.call(c(quote(as.data.frame),as.call(c(quote(ts.intersect), arguments)))))[,.(match(arguments.mfx,arguments)),drop = FALSE])
}else if(any(orig.class == "ts")){
arguments = (as.list(attr(formula.all, "variables"))[-1])
arguments.normal = arguments[which(orig.class != "ts")]
arguments.timeseries = arguments[which(orig.class == "ts")]
ix = sort(c(which(orig.class == "ts"),which(orig.class != "ts")),index.return = TRUE)$ix
attr(mf[["formula"]], "predvars") = bquote((.(as.call(c(quote(cbind),as.call(c(quote(as.data.frame),as.call(c(quote(ts.intersect), arguments.timeseries)))),arguments.normal,check.rows = TRUE)))[,.(ix)])[,.(match(arguments.mf,arguments)),drop = FALSE])
attr(mf.xf[["formula"]], "predvars") = bquote((.(as.call(c(quote(cbind),as.call(c(quote(as.data.frame),as.call(c(quote(ts.intersect), arguments.timeseries)))),arguments.normal,check.rows = TRUE)))[,.(ix)])[,.(match(arguments.mfx,arguments)),drop = FALSE])
}
mf = tryCatch({
eval(mf,parent.frame())
},error = function(e){
NULL
})
mf.xf = tryCatch({
eval(mf.xf,parent.frame())
},error = function(e){
NULL
})
if(is.null(mf)){
cat( blue$bold("\n Z (")
%+% black$bold("z")
%+% blue$bold(") should not be NULL.\n")
%+% blue$bold(" If Z is null, please utilize linear models, such as ")
%+% black$bold("lm() ")
%+% blue$bold("function. \n\n")
)
return(NULL)
}
else{
ydat = model.response(mf)
}
xdat = mf.xf
zdat = mf[, chromoly[[3]], drop = FALSE]
ydat = data.matrix(ydat)
if(!is.null(xdat) & is.null(dim(xdat[,1]))){
xdat = data.matrix(xdat)
}
else if(!is.null(dim(xdat[,1]))){
xdat = xdat[,1]
}
if(is.null(dim(zdat[,1]))){
zdat = data.matrix(zdat)
}
else{
zdat = zdat[,1]
}
res = plsim.vs.hard(xdat = xdat, zdat = zdat, ydat = ydat, ...)
return(res)
}
plsim.vs.hard.default = function(xdat=NULL,zdat,ydat,h=NULL,zeta_i=NULL,lambdaList=NULL,
l1RatioList=NULL,lambda_selector="BIC",threshold=0.05,
Method="SCAD",verbose=TRUE,ParmaSelMethod="SimpleValidation",seed=0,...)
{
n = nrow(y)
data = list(x=xdat,y=ydat,z=zdat)
x = data$x
y = data$y
z = data$z
if ( is.null( .assertion_for_variables(data)) ) return(NULL)
if(is.data.frame(x))
x = data.matrix(x)
if(is.data.frame(z))
z = data.matrix(z)
if(is.data.frame(y))
y = data.matrix(y)
if(is.null(zeta_i))
{
if(verbose) zeta_i = plsim.ini(x,z,y,verbose=verbose)
}
if(Method %in% c('SCAD','LASSO','ElasticNet') )
{
class(data) = 'PPLSE'
}
else if(Method %in% c('AIC','BIC') )
{
class(data) = 'StepWise'
}
else
{
Method = "SCAD"
class(data) = 'PPLSE'
}
if( !is.null(h) & length(h)==1 )
{
res = varSelCore(data,h,zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag=FALSE,ParmaSelMethod,seed)
}
else if( is.vector(h) & length(h) > 1 )
{
hVec = h
BIC_best = 1000
res = NULL
for(j in 1:length(hVec))
{
if(verbose)
{
cat( blue$bold("\n----------Variable Selection when h=")
%+% blue$bold(as.character(hVec[j]))
%+% blue$bold("----------\n\n") )
}
res_tmp = varSelCore(data,hVec[j],zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag = TRUE,ParmaSelMethod,seed)
if(verbose)
{
cat( "BIC: "%+%blue$bold(as.character(res_tmp$fit_plsimest$BIC)))
}
if(res_tmp$fit_plsimest$BIC < BIC_best)
{
res = res_tmp
BIC_best = res_tmp$fit_plsimest$BIC
}
}
}
else if( is.null(h) )
{
hVec = seq(0.1/sqrt(n),2*sqrt(log(n)/n),length=20)
BIC_best = 1000
res = NULL
for(j in 1:length(hVec))
{
if(verbose)
{
cat( blue$bold("\n----------Variable Selection when h=")
%+% blue$bold(as.character(hVec[j]))
%+% blue$bold("----------\n\n") )
}
res_tmp = varSelCore(data,hVec[j],zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag = TRUE,ParmaSelMethod,seed)
if(is.null(res_tmp))
return(NULL)
if(verbose)
{
cat( " BIC: "%+%blue$bold(as.character(res_tmp$fit_plsimest$BIC)))
cat("\n")
}
if(res_tmp$fit_plsimest$BIC < BIC_best)
{
res = res_tmp
BIC_best = res_tmp$fit_plsimest$BIC
}
}
}
return(res)
}
varSelCore=function(data,h,zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag,ParmaSelMethod,seed)
{
UseMethod("varSelCore")
}
varSelCore.PPLSE=function(data,h,zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag,ParmaSelMethod,seed,...)
{
x = data$x
z = data$z
y = data$y
n = nrow(y)
if(is.null(x))
{
dx = 0
}
else
{
dx = ncol(x)
}
dz = ncol(z)
res = plsim.lam(x,y,z,h,zeta_i,Method,lambdaList,l1RatioList,lambda_selector,verbose,seed)
if(is.null(res))
return(NULL)
plsim_result = plsim.vs.soft(x,z,y,h,zeta_i,res$lambda_best,l1RatioList,1,Method,verbose,ParmaSelMethod,seed=seed)
if(is.null(plsim_result))
return(NULL)
alpha = plsim_result$zeta[1:dz]
if(!is.null(x))
{
beta = plsim_result$zeta[(dz+1):(dz+dx)]
}
alpha_norm = abs(alpha)/max(abs(alpha))
if(!is.null(x))
{
beta_norm = abs(beta)/max(abs(beta))
}
alpha_eliminated = which(alpha_norm<threshold)
if(!is.null(x))
{
beta_eliminated = which(beta_norm<threshold)
}
res_alpha_sorted = sort.int(alpha_norm,index.return = TRUE,decreasing = TRUE)
if(!is.null(x))
{
res_beta_sorted = sort.int(beta_norm,index.return = TRUE,decreasing = TRUE)
}
alpha_varSel = setdiff(res_alpha_sorted$ix,alpha_eliminated)
if(!is.null(x))
{
beta_varSel = setdiff(res_beta_sorted$ix,beta_eliminated)
}
if(verbose)
{
cat( blue$bold("\n Important varaibles in Z are")
,paste(black$bold(alpha_varSel),collapse = ","),sep = ": ")
}
if(!is.null(x))
{
if( length(beta_varSel) > 0 )
{
if(verbose)
{
cat(blue$bold("\n Important varaibles in X are"),
paste(black$bold(beta_varSel),collapse = ","),sep = ": ")
}
}
}
if(verbose) cat("\n")
if(!is.null(x))
{
result = list(alpha_varSel=alpha_varSel,beta_varSel=beta_varSel)
}
else
{
result = list(alpha_varSel=alpha_varSel)
}
if(flag)
{
if(is.null(x))
{
x_vs = NULL
}
else
{
if(length(beta_varSel) > 1)
{
x_vs = x[,beta_varSel]
}
else if(length(beta_varSel) == 1)
{
x_vs = matrix(x[,beta_varSel])
}
else
{
x_vs = NULL
}
}
if(length(alpha_varSel) > 1)
{
z_vs = z[,alpha_varSel]
}
else if( length(alpha_varSel) == 1)
{
z_vs = matrix(z[,alpha_varSel])
}
else
{
z_vs = NULL
}
fit_plsimest = plsim.est(x_vs, z_vs, y, ParmaSelMethod = ParmaSelMethod,
seed=seed,verbose=verbose)
if( !is.null(fit_plsimest))
{
fit_plsimest$BIC = .IC(fit_plsimest$mse,sum(fit_plsimest$zeta!=0),n,"BIC")
result$fit_plsimest = fit_plsimest
}
else
{
fit_plsimest = list(BIC=10000)
result$fit_plsimest = fit_plsimest
}
}
return(result)
}
varSelCore.StepWise=function(data,h,zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag,ParmaSelMethod,seed)
{
x = data$x
z = data$z
y = data$y
n = nrow(y)
if(is.null(x))
{
dx = 0
}
else
{
dx = ncol(x)
colnames(x) = 1:dx
}
dz = ncol(z)
colnames(z) = 1:dz
res = stepWise(data,h,zeta_i,Method,seed,verbose)
if(flag)
{
if(is.null(x))
{
x_vs = NULL
}
else
{
if(length(res$beta_varSel) > 1)
{
x_vs = x[,res$beta_varSel]
}
else
{
x_vs = matrix(x[,res$beta_varSel])
}
}
if(length(res$alpha_varSel) > 1)
{
z_vs = z[,res$alpha_varSel]
}
else
{
z_vs = matrix(z[,res$alpha_varSel])
}
fit_plsimest = plsim.est(x_vs, z_vs, y,seed=seed)
fit_plsimest$BIC = .IC(fit_plsimest$mse,sum(fit_plsimest$zeta!=0),n,"BIC")
res$fit_plsimest = fit_plsimest
}
return(res)
}
stepWise=function(data,h,zeta_i,Method="BIC",seed,verbose)
{
x = data$x
z = data$z
y = data$y
n = nrow(y)
if(is.null(x))
{
dx = 0
}
else
{
dx = ncol(x)
}
dz = ncol(z)
if(!is.null(x))
{
colnames(x) = 1:dx
}
colnames(z) = 1:dz
res = plsim.est(x,z,y,h,zeta_i,seed=seed)
zeta = res$zeta
mse = res$mse
df = sum(zeta!=0)
IC_all = .IC(mse,df,n,Method)
while (TRUE)
{
res = dropOneVar(x,y,z,h,zeta_i,Method,seed)
IC_tmp = res$IC
Component = res$Component
Idx = res$Idx
if(IC_tmp < IC_all)
{
IC_all = IC_tmp
if(Component == "X")
{
if(ncol(x) == 1)
{
x = NULL
}
else if(ncol(x) == 2)
{
x = matrix(x[,-Idx])
}
else
{
x = x[,-Idx]
}
zeta_i = zeta_i[-(ncol(z)+Idx)]
}
else
{
if(ncol(z) == 2)
{
z = matrix(z[,-Idx])
}
else
{
z = z[,-Idx]
}
zeta_i = zeta_i[-Idx]
}
}
else
{
break
}
if(!is.null(x))
{
if(verbose)
{
cat('\nSelected X:')
cat(paste(colnames(x),collapse = ','))
cat('\n')
}
}
if(verbose)
{
cat('\nSelected Z:')
cat(paste(colnames(z),collapse = ','))
cat('\n\n')
}
}
result = list()
if(!is.null(x))
{
result$beta_varSel = colnames(x)
}
result$alpha_varSel = colnames(z)
return(result)
}
dropOneVar=function(x,y,z,h,zeta_i,Method="BIC",seed)
{
n = nrow(y)
dz = ncol(z)
if(is.null(x))
{
dx = 0
}
else
{
dx = ncol(x)
}
X_IC_list = c()
i = 1
while( i <= dx )
{
if(dx == 1)
{
x_tmp = NULL
}
if(dx == 2)
{
x_tmp = matrix(x[,-i])
}
else
{
x_tmp = x[,-i]
}
zeta_tmp = zeta_i[-(dz+i)]
res = plsim.est(x_tmp,z,y,h,zeta_tmp,seed=seed)
zeta = res$zeta
mse = res$mse
df = sum(zeta!=0)
X_IC_list[i] = .IC(mse,df,n,Method)
i = i + 1
}
if(!is.null(x))
{
X_IC_min = min(X_IC_list)
X_IC_min_Idx = which.min(X_IC_list)
}
else
{
X_IC_min = 10000
}
Z_IC_list = c()
i = 1
while( (i <= dz) & (dz > 1) )
{
if(dz == 2)
{
z_tmp = matrix(z[,-i])
}
else
{
z_tmp = z[,-i]
}
zeta_tmp = zeta_i[-i]
res = plsim.est(x,z_tmp,y,h,zeta_tmp,seed=seed)
zeta = res$zeta
mse = res$mse
df = sum(zeta!=0)
Z_IC_list[i] = .IC(mse,df,n,Method)
i = i + 1
}
Z_IC_min = min(Z_IC_list)
Z_IC_min_Idx = which.min(Z_IC_list)
result = list()
if(X_IC_min < Z_IC_min)
{
result$IC = X_IC_min
result$Component = "X"
result$Idx = X_IC_min_Idx
}
else
{
result$IC = Z_IC_min
result$Component = "Z"
result$Idx = Z_IC_min_Idx
}
class(result) = "pls"
return(result)
} |
core_repos <- function(id, key = NULL, method = "GET", parse = TRUE, ...) {
core_parse(core_repos_(id, key, method, ...), parse)
}
core_repos_ <- function(id, key = NULL, method = "GET", ...) {
if (!method %in% c('GET', 'POST')) {
stop("'method' must be one of 'GET' or 'POST'", call. = FALSE)
}
switch(
method,
`GET` = {
if (length(id) > 1) stop("'id' must be of length 1 when 'method=GET'",
call. = FALSE)
core_GET(path = paste0("repositories/get/", id), key, list(), ...)
},
`POST` = core_POST(path = "repositories/get", key, list(), id, ...)
)
} |
future_by <- function(data, INDICES, FUN, ..., simplify = TRUE, future.envir = parent.frame()) {
future.envir <- force(future.envir)
UseMethod("future_by")
}
future_by.default <- function(data, INDICES, FUN, ..., simplify = TRUE, future.envir = parent.frame()) {
ndim <- length(dim(data))
.SUBSETTER <- if (ndim == 0L) {
function(row) data[row, , drop = TRUE]
} else {
function(row) data[row, , drop = FALSE]
}
data <- as.data.frame(data)
future_by_internal(data = data, INDICES = INDICES, FUN = FUN, ...,
simplify = simplify,
.INDICES.NAME = deparse(substitute(INDICES))[1L],
.CALL = match.call(),
.SUBSETTER = .SUBSETTER,
future.envir = future.envir)
}
future_by.data.frame <- function(data, INDICES, FUN, ..., simplify = TRUE, future.envir = parent.frame()) {
future_by_internal(data = data, INDICES = INDICES, FUN = FUN, ...,
simplify = simplify,
.INDICES.NAME = deparse(substitute(INDICES))[1L],
.CALL = match.call(),
.SUBSETTER = function(row) data[row, , drop = FALSE],
future.envir = future.envir)
}
future_by_internal <- function(data, INDICES, FUN, ..., simplify = TRUE, .SUBSETTER, .CALL, .INDICES.NAME, future.envir = parent.frame(), future.label = "future_by-%d") {
FUN <- if (!is.null(FUN)) match.fun(FUN)
stop_if_not(is.function(.SUBSETTER))
if (!is.list(INDICES)) {
INDEX <- vector("list", length = 1L)
INDEX[[1L]] <- INDICES
names(INDEX) <- .INDICES.NAME
INDICES <- INDEX
INDEX <- NULL
}
INDICES <- lapply(INDICES, FUN = as.factor)
nI <- length(INDICES)
if (!nI) stop("'INDICES' is of length zero")
nd <- nrow(data)
if (!all(lengths(INDICES) == nd)) {
stop("All elements of argument 'INDICES' must have same length as 'data'")
}
namelist <- lapply(INDICES, FUN = levels)
extent <- lengths(namelist, use.names = FALSE)
cumextent <- cumprod(extent)
if (cumextent[nI] > .Machine$integer.max)
stop("total number of levels >= 2^31")
storage.mode(cumextent) <- "integer"
ngroup <- cumextent[nI]
group <- as.integer(INDICES[[1L]])
if (nI > 1L) {
for (i in 2L:nI) {
group <- group + cumextent[i - 1L] * (as.integer(INDICES[[i]]) - 1L)
}
}
cumextent <- NULL
levels(group) <- as.character(seq_len(ngroup))
class(group) <- "factor"
ans <- split(seq_len(nd), f = group)
names(ans) <- NULL
index <- as.logical(lengths(ans) > 0L)
group <- NULL
grouped_data <- lapply(X = ans[index], FUN = .SUBSETTER)
ans <- future_lapply(X = grouped_data, FUN = FUN, ..., future.envir = future.envir, future.label = future.label)
grouped_data <- NULL
ansmat <- array({
if (simplify && all(lengths(ans) == 1L)) {
ans <- unlist(ans, recursive = FALSE, use.names = FALSE)
if (!is.null(ans) && is.atomic(ans)) vector(typeof(ans)) else NA
} else {
vector("list", length = prod(extent))
}
}, dim = extent, dimnames = namelist)
if (length(ans) > 0L) ansmat[index] <- ans
ans <- NULL
structure(ansmat,
call = .CALL,
class = "by"
)
} |
labelstonumbers<-function(phyl,tips)
{
if (class(phyl) != "phylo")
stop("your tree must be class 'phylo.'")
newtips<-c()
for(j in 1:length(tips)) {
for(i in 1:length(phyl$tip.label)) {
if(phyl$tip.label[i]==tips[j]) {newtips<-c(newtips,i)}
}
}
newtips
} |
near.bound<-function(X,Y,bX,bY){
euc<-function(x1,x2,y1,y2)sqrt((x1-x2)^2+(y1-y2)^2)
n<-length(X)
nb<-length(bX)
e<-matrix(ncol=n,nrow=nb)
for(i in 1:n){
e[,i]<-euc(X[i],bX,bY,Y[i])
}
mn<-apply(e,2,function(x){which(x==min(x))})
xy.bound<-data.frame(near.X.coord=bX[mn],near.Y.coord=bY[mn])
xy.bound
} |
lim0 <- function(
x,
f=1/27,
curtail=TRUE)
{
if(length(x)==1) x <- c(0,x)
r <- suppressWarnings(range(as.matrix(x), finite=TRUE))
if(!all(is.finite(r))) {warning("x has no finite values, returning plot range 0:1."); r <- 0:1}
r2 <- r + c(-f,f) * diff(r)
r2[which.min(abs(r2))] <- 0
if(curtail)
r2 + c(f,-f) * diff(r2)
else
r2
} |
"qua2ci.cov" <-
function(x,f, type=NULL, nsim=1000, interval=c("confidence", "none"), level=0.90,
tol=1E-6, asnorm=FALSE, altlmoms=NULL, flip=NULL, dimless=TRUE,
usefastlcov=TRUE, nmom=5, getsimlmom=FALSE, verbose=FALSE, ...) {
interval <- match.arg(interval)
if(is.null(type)) {
message("must specify an lmomco distribution abbreviation, returning NA")
return(NA)
}
if(! any(dist.list() == type)) {
warning("invalid lmomco distribution abbreviation given, returning NA")
return(NA)
}
if(interval == "none" & length(f) > 1) {
warning("function is not vectorized in f for interval 'none', using ",
"only the first value")
f <- f[1]
}
if(! check.fs(f)) return(NA)
if(! check.fs(level) | level == 1) {
warning("level is not in [0,1), returning NA")
return(NA)
}
if(! is.null(altlmoms) & ! dimless) {
warning("Altervative L-moments are given, so setting 'dimless=TRUE'")
dimless <- TRUE
}
npar <- dist.list(type=type)
if(nmom < npar) {
warning("number of parameters distribution 'type' is smaller ",
"than 'nmom' resetting 'nmom to' ", npar)
nmom <- npar
}
if(! is.null(flip)) x <- flip - x
xlmoms <- lmoms(x, nmom=nmom)
if(is.null(altlmoms)) altlmoms <- xlmoms
if(verbose) {
message(" Lambdas (alternate or of x) "); print(altlmoms$lambdas)
}
if(! are.lmom.valid(altlmoms)) {
warning(" L-moments (either computed on 'x') or from 'altlmoms' ",
"are invalid, returning NA")
return(NA)
}
parent <- lmom2par(altlmoms, type=type)
if(verbose) {
message(" Parent parameters "); print(parent$para)
}
if(dimless) {
newx <- (x - xlmoms$lambdas[1]) / xlmoms$lambdas[2]
if(usefastlcov) {
lmrcv <- Lmoments::Lmomcov(newx, rmax=nmom)
} else {
lmrcv <- lmoms.cov(newx, nmom=nmom)
}
sLM <- NULL
fed <- 0
if(nmom >= 2) fed <- c(fed, 1)
if(nmom >= 3) fed <- c(fed, altlmoms$ratios[3:nmom])
try(sLM <- MASS::mvrnorm(n=nsim, fed, lmrcv, tol=tol))
if(is.null(sLM)) {
message("x=")
print(x)
message("lmrcv=")
print(lmrcv)
warning("returning NULL (try increasing the tol-erance)")
return(NULL)
}
MU <- altlmoms$lambdas[1]
L2 <- altlmoms$lambdas[2]
for(i in 2:nmom) sLM[,i] <- sLM[,i]*L2
sLM[,1] <- sLM[,1]*L2 + MU
} else {
if(usefastlcov) {
lmrcv <- Lmoments::Lmomcov(x, rmax=nmom)
} else {
lmrcv <- lmoms.cov(x, nmom=nmom)
}
sLM <- NULL
try(sLM <- MASS::mvrnorm(n=nsim, altlmoms$lambdas, lmrcv, tol=tol))
if(is.null(sLM)) {
message("x=")
print(x)
message("lmrcv=")
print(lmrcv)
warning("returning NULL (try increasing the tol-erance)")
return(NULL)
}
}
if(verbose) {
message(" Var-covar matrix"); print(lmrcv)
message(" Summary of simulated lambdas "); print(summary(sLM))
}
if(getsimlmom) return(sLM)
ci <- c((1-level)/2, 1-(1-level)/2)
n <- length(f)
zz <- matrix(nrow=n, ncol=8)
for(i in 1:n) {
ff <- f[i]
quasf <- sapply(1:nsim, function(i) {
para <- NULL
slams <- sLM[i,]
lmr <- vec2lmom(c(slams[1:2], slams[3:nmom]/slams[2]))
if(! are.lmom.valid(lmr)) return(NA)
para <- lmom2par(lmr, type=type, ...)
if(is.null(para)) return(NA)
qf <- NULL
if(is.null(flip)) {
try(qf <- par2qua( ff, para))
ifelse(is.null(qf), return(NA), return(qf))
} else {
try(qf <- par2qua(1-ff, para))
ifelse(is.null(qf), return(NA), return(flip - qf))
}
})
if(interval == "none") return(quasf)
if(any(is.na(quasf))) {
num.na <- length(quasf[is.na(quasf)])
warning("at least one of 'quasf' is NA, stripping ", num.na,
" NA values (entries) and continuing")
quasf <- quasf[! is.na(quasf)]
}
if(length(quasf) < 3) {
warning("critical failure, no quantiles to then estimate the distribution for")
return(NULL)
}
lmr <- lmoms(quasf, nmom=3)
mu <- lmr$lambdas[1]; lscale <- lmr$lambdas[2]
ifelse(asnorm, z <- qnorm(ci, mean=mu, sd=sd(quasf)),
z <- dat2bernqua(ci, quasf))
fit <- ifelse(is.null(flip), par2qua( ff, parent),
flip - par2qua(1-ff, parent))
zz[i,] <- c(ff, z[1], fit, z[2],
median(quasf), mu, var(quasf), lscale)
}
colnames(zz) <- c("nonexceed", "lwr", "fit", "upr",
"qua_med", "qua_mean", "qua_var", "qua_lam2")
zz <- as.data.frame(zz)
return(zz)
} |
LoadApneaWFDB <-
function(HRVData, RecordName, RecordPath=".", Tag="APNEA", verbose=NULL) {
HRVData = HandleVerboseArgument(HRVData, verbose)
VerboseMessage(HRVData$Verbose,
paste("Loading apnea episodes for record:", RecordName))
dir=getwd()
on.exit(setwd(dir))
VerboseMessage(HRVData$Verbose, paste("Path:", RecordPath))
setwd(RecordPath)
if (is.null(HRVData$datetime)) {
VerboseMessage(HRVData$Verbose,
paste("Reading header info for:", RecordName))
HRVData = LoadHeaderWFDB(HRVData,RecordName,RecordPath)
} else {
VerboseMessage(HRVData$Verbose,
paste("Header info already present for:",RecordName))
}
auxHeader = readLines(paste(RecordName,".hea",sep=""),1)
splitAuxHeader = strsplit(auxHeader," ")
if(length(splitAuxHeader[[1]])>2)
samplingFrequency = splitAuxHeader[[1]][3]
else
samplingFrequency = "250"
samplingFrequency = as.numeric(samplingFrequency)
VerboseMessage(HRVData$Verbose,
paste("Sampling frequency for apnea annotations:",
samplingFrequency))
inApnea = FALSE
accumulator = 0
initT = c()
endT = c()
con = file(paste(RecordName,".apn",sep=""),"rb")
repeat {
value = readBin(con,"integer",n=1,size=1,signed=FALSE)+256*readBin(con,"integer",n=1,size=1,signed=FALSE)
code = bitwShiftR(value,10)
time = value %% 1024
if(code==0 && time==0)
break
if (code==8 && !inApnea) {
inApnea = TRUE
if (accumulator > 30)
initT = c(initT,accumulator-30)
else
initT = c(initT, accumulator)
}
if (code==1 && inApnea) {
inApnea = FALSE
endT = c(endT,accumulator-30)
}
if (code==59) {
interval = (readBin(con,"integer",n=1,size=1,signed=FALSE)+readBin(con,"integer",n=1,size=1,signed=FALSE)*256)*65536+(readBin(con,"integer",n=1,size=1,signed=FALSE)+readBin(con,"integer",n=1,size=1,signed=FALSE)*256)
accumulator = accumulator + interval/samplingFrequency
next
}
}
if (inApnea) {
endT = c(endT,accumulator)
}
close(con)
if (length(initT) > 0) {
HRVData = AddEpisodes(
HRVData,
InitTimes = initT,
Tags = Tag,
Durations = endT-initT,
Values = 0
)
}
return(HRVData)
} |
var1 <- function(
data,
contemporaneous = c("cov","chol","prec","ggm"),
beta = "full",
omega_zeta = "full",
delta_zeta = "full",
kappa_zeta = "full",
sigma_zeta = "full",
lowertri_zeta = "full",
mu,
beepvar,
dayvar,
idvar,
vars,
groups,
covs,
means,
nobs,
missing = "listwise",
equal = "none",
baseline_saturated = TRUE,
estimator = "ML",
optimizer,
storedata = FALSE,
covtype = c("choose","ML","UB"),
standardize = c("none","z","quantile"),
sampleStats,
verbose=FALSE
){
contemporaneous <- match.arg(contemporaneous)
if (missing(vars)) vars2 <- NULL else vars2 <- vars
if (missing(idvar)) idvar <- NULL
if (missing(dayvar)) dayvar <- NULL
if (missing(beepvar)) beepvar <- NULL
if (missing(groups)) groups <- NULL
if (!missing(data)){
data <- as.data.frame(data)
if (is.null(names(data))){
names(data) <- paste0("V",seq_len(ncol(data)))
}
}
data <- tsData(data, vars = vars2, beepvar = beepvar, dayvar = dayvar, idvar = idvar, groupvar = groups)
if (is.null(groups)){
vars <- colnames(data)
} else {
vars <- colnames(data)[colnames(data)!=groups]
}
if (missing(sampleStats)){
sampleStats <- samplestats(data = data,
vars = vars,
groups = groups,
covs = covs,
means = means,
nobs = nobs,
missing = ifelse(estimator == "FIML","pairwise",missing),
fimldata = estimator == "FIML",
storedata = storedata,
covtype=covtype,
standardize = standardize,
verbose=verbose,
weightsmatrix = ifelse(!estimator %in% c("WLS","ULS","DWLS"), "none",
switch(estimator,
"WLS" = "full",
"ULS" = "identity",
"DWLS" = "diag"
)))
}
if ( nrow(sampleStats@variables) %% 2 != 0){
stop("Number of variables is not an even number: variance-covariance matrix cannot be a Toeplitz matrix. ")
}
nNode <- nrow(sampleStats@variables) / 2
model <- generate_psychonetrics(model = "var1",submodel =
switch(contemporaneous,
"prec" = "gvar",
"ggm" = "gvar",
"chol" = "var",
"cov" = "var"
),types = list(zeta = contemporaneous),
sample = sampleStats,computed = FALSE,
equal = equal,
optimizer = defaultoptimizer(), estimator = estimator, distribution = "Gaussian",verbose=verbose)
nGroup <- nrow(model@sample@groups)
nVar <- nNode * 2
model@sample@nobs <-
nVar * (nVar+1) / 2 * nGroup +
nVar * nGroup
modMatrices <- list()
modMatrices$mu <- matrixsetup_mu(mu,nNode = nVar, nGroup = nGroup, labels = sampleStats@variables$label,equal = "mu" %in% equal,
expmeans = model@sample@means, sampletable = sampleStats, name = "mu")
shiftCovs <- lapply(sampleStats@covs,spectralshift)
exoCovs <- lapply(shiftCovs,function(x)spectralshift(x[1:nNode,1:nNode]))
modMatrices$exo_cholesky <- matrixsetup_lowertri("full",
name = "exo_cholesky",
expcov=exoCovs,
nNode = nNode,
nGroup = nGroup,
labels = sampleStats@variables$label[1:nNode],
equal = "exo_cholesky" %in% equal, sampletable = sampleStats)
S0est <- lapply(shiftCovs,function(x)spectralshift(x[nNode + (1:nNode),nNode + (1:nNode)]))
S1est <- lapply(shiftCovs,function(x)x[nNode + (1:nNode),1:nNode])
S0inv <- lapply(S0est,solve_symmetric)
betaEst <- lapply(1:nGroup, function(g) as.matrix(S1est[[g]] %*% S0inv[[g]]))
modMatrices$beta <- matrixsetup_beta(beta,
name = "beta",
nNode = nNode,
nGroup = nGroup,
labels = sampleStats@variables$label[nNode + (1:nNode)],
equal = "beta" %in% equal, sampletable = sampleStats, start = betaEst,
onlyStartSign = FALSE)
contCovEst <- lapply(1:nGroup, function(g) spectralshift(S0est[[g]] - S1est[[g]] %*% S0inv[[g]] %*% t(S1est[[g]])))
if (contemporaneous == "cov"){
modMatrices$sigma_zeta <- matrixsetup_sigma(sigma_zeta, name = "sigma_zeta",
expcov=contCovEst,
nNode = nNode,
nGroup = nGroup,
labels = sampleStats@variables$label[-(1:nNode)],
equal = "sigma_zeta" %in% equal, sampletable = sampleStats)
} else if (contemporaneous == "chol"){
modMatrices$lowertri_zeta <- matrixsetup_lowertri(lowertri_zeta, name = "lowertri_zeta",
expcov=contCovEst,
nNode = nNode,
nGroup = nGroup,
labels = sampleStats@variables$label[-(1:nNode)],
equal = "lowertri_zeta" %in% equal, sampletable = sampleStats)
} else if (contemporaneous == "ggm"){
modMatrices$omega_zeta <- matrixsetup_omega(omega_zeta, name = "omega_zeta",
expcov=contCovEst,
nNode = nNode,
nGroup = nGroup,
labels = sampleStats@variables$label[-(1:nNode)],
equal = "omega_zeta" %in% equal, sampletable = sampleStats,
onlyStartSign = FALSE)
modMatrices$delta_zeta <- matrixsetup_delta(delta_zeta, name = "delta_zeta",
expcov=contCovEst,
nNode = nNode,
nGroup = nGroup,
labels = sampleStats@variables$label[-(1:nNode)],
equal = "delta_zeta" %in% equal, sampletable = sampleStats,
onlyStartSign = FALSE,
omegaStart = modMatrices$omega_zeta$start)
} else if (contemporaneous == "prec"){
modMatrices$kappa_zeta <- matrixsetup_kappa(kappa_zeta, name = "kappa_zeta",
expcov=contCovEst,
nNode = nNode,
nGroup = nGroup,
labels = sampleStats@variables$label[-(1:nNode)],
equal = "kappa_zeta" %in% equal, sampletable = sampleStats)
}
pars <- do.call(generateAllParameterTables, modMatrices)
model@parameters <- pars$partable
model@matrices <- pars$mattable
model@extramatrices <- list(
D = psychonetrics::duplicationMatrix(nNode*2),
D2 = psychonetrics::duplicationMatrix(nNode),
L = psychonetrics::eliminationMatrix(nNode),
Dstar = psychonetrics::duplicationMatrix(nNode,diag = FALSE),
In = as(diag(nNode),"dgCMatrix"),
In2 = as(diag(nNode),"dgCMatrix"),
A = psychonetrics::diagonalizationMatrix(nNode),
C = as(lavaan::lav_matrix_commutation(nNode,nNode),"dgCMatrix")
)
dummySigma <- matrix(0,nNode*2,nNode*2)
smallMat <- matrix(0,nNode,nNode)
dummySigma[1:nNode,1:nNode][lower.tri(smallMat,diag=TRUE)] <- seq_len(nNode*(nNode+1)/2)
dummySigma[nNode + (1:nNode),nNode + (1:nNode)][lower.tri(smallMat,diag=TRUE)] <- max(dummySigma) + seq_len(nNode*(nNode+1)/2)
dummySigma[nNode + (1:nNode),1:nNode] <- max(dummySigma) + seq_len(nNode^2)
inds <- dummySigma[lower.tri(dummySigma,diag=TRUE)]
model@extramatrices$P <- bdiag(Diagonal(nNode*2),sparseMatrix(j=seq_along(inds),i=order(inds)))
model@extramatrices$P <- as(model@extramatrices$P, "dgCMatrix")
model@modelmatrices <- formModelMatrices(model)
if (baseline_saturated){
basGGM <- diag(nNode*2)
basGGM[1:nNode,1:nNode] <- 1
model@baseline_saturated$baseline <- cholesky(data = data,
lowertri = basGGM,
vars = vars,
groups = groups,
covs = covs,
means = means,
nobs = nobs,
missing = missing,
equal = equal,
estimator = estimator,
baseline_saturated = FALSE,
sampleStats = sampleStats)
model@baseline_saturated$saturated <- cholesky(data = data,
lowertri = "full",
vars = vars,
groups = groups,
covs = covs,
means = means,
nobs = nobs,
missing = missing,
equal = equal,
estimator = estimator,
baseline_saturated = FALSE,
sampleStats = sampleStats)
if (estimator != "FIML"){
model@baseline_saturated$saturated@computed <- TRUE
model@baseline_saturated$saturated@objective <- psychonetrics_fitfunction(parVector(model@baseline_saturated$saturated),model@baseline_saturated$saturated)
}
}
if (missing(optimizer)){
model <- setoptimizer(model, "default")
} else {
model <- setoptimizer(model, optimizer)
}
return(model)
} |
sdellipse = function (points, stdev = 1.96, density = .01, add = TRUE,
show = TRUE, means = NULL, se = FALSE, ...){
if (ncol (points) != 2) stop ('Points input must have exactly two columns.')
if (!is.null(means) & nrow(points) > 2) stop ('Covariance matrix must be 2 by 2.')
if (!is.null(means) & length(means) > 2) stop ('Exactly two means must be specified.')
t = seq (0,2*pi+density,density)
x = rbind (cos(t), sin(t))
if (is.null(means)){
sigma = var (points)
if (se) sigma = sigma / nrow(points)
}
if (!is.null(means)){
sigma = points
if (is.numeric(se)) sigma = sigma / se
}
A = eigen(sigma)$vectors %*% (diag(sqrt(eigen(sigma)$values)) * stdev)
points = t(colMeans(points) + A%*%x)
if (is.null(means)) points = t(colMeans(points) + A%*%x)
if (!is.null(means)) points = t(means + A%*%x)
if (add == TRUE & show == TRUE) lines (points, ...)
if (add == FALSE & show == TRUE) plot (points, type = 'l', ...)
invisible (points)
} |
library(dplyr)
test_that("group_slab_data_by works", {
df = data.frame(
x = 1:8,
ymin = 2:9,
ymax = 3:10,
fill = c("a","a","a","b","b","b","b","a"),
alpha = 1
)
ref = data.frame(
x = c(1:3, 3.5, 3.5, 3:1, 3.5, 4:7, 7.5, 7.5, 7:4, 3.5, 7.5, 8, 8, 7.5),
ymin = c(1:3, 3.5, 3.5, 3:1, 3.5, 4:7, 7.5, 7.5, 7:4, 3.5, 7.5, 8, 8, 7.5) + 1,
ymax = c(1:3, 3.5, 3.5, 3:1, 3.5, 4:7, 7.5, 7.5, 7:4, 3.5, 7.5, 8, 8, 7.5) + 2,
fill = c(rep("a", 8), rep("b", 12), rep("a", 4)),
alpha = 1,
group = c(rep(0, 8), rep(1, 12), rep(2,4)),
y = c(3:5, 5.5, 4.5, 4:2, 5.5, 6:9, 9.5, 8.5, 8:5, 4.5, 9.5, 10, 9, 8.5)
)
grouped_slab_data = arrange(group_slab_data_by(df, side = "both"), group)
expect_equal(grouped_slab_data, ref)
df$fill = "a"
expect_equal(group_slab_data_by(df, side = "topright"), mutate(df, y = ymax))
})
test_that("group_slab works", {
skip_if_no_vdiffr()
p = tibble(
x = seq(-4,4, length.out = 20),
d = dnorm(x)
) %>%
ggplot(aes(thickness = d))
vdiffr::expect_doppelganger("geom_slab one group",
p + geom_slab(aes(x = 1, y = x))
)
vdiffr::expect_doppelganger("geom_slabh one group",
p + geom_slab(aes(x = x, y = 1))
)
})
test_that("normalize works", {
skip_if_no_vdiffr()
p = tribble(
~y, ~id, ~p, ~ dist, ~ mu, ~ sigma,
1, "A", 1, "norm", 0, 1,
1, "B", 1, "norm", 8, 2,
2, "A", 1, "norm", 0, 2,
2, "A", 2, "norm", 0, 2,
1, "B", 2, "norm", 8, 2,
) %>%
ggplot(aes(y = y, dist = dist, arg1 = mu, arg2 = sigma, fill = id)) +
facet_grid(~p)
vdiffr::expect_doppelganger("halfeye with normalize = all",
p + stat_dist_halfeye(normalize = "all", n = 20)
)
vdiffr::expect_doppelganger("halfeye with normalize = panels",
p + stat_dist_halfeye(normalize = "panels", n = 20)
)
vdiffr::expect_doppelganger("halfeye with normalize = xy",
p + stat_dist_halfeye(normalize = "xy", n = 20)
)
vdiffr::expect_doppelganger("halfeye with normalize = groups",
p + stat_dist_halfeye(normalize = "groups", n = 20)
)
vdiffr::expect_doppelganger("halfeye with normalize = none",
p + stat_dist_halfeye(normalize = "none", n = 20)
)
})
test_that("alpha channel in fill colors works", {
skip_if_no_vdiffr()
vdiffr::expect_doppelganger("alpha channel in slab fill",
data.frame(x = c(0,1), y = "a", d = c(1,2)) %>%
ggplot(aes(x = x, y = y, thickness = d)) +
geom_slab(fill = scales::alpha("black", 0.2))
)
})
test_that("side and justification can vary", {
skip_if_no_vdiffr()
df = tibble(
x = rep(1:10, each = 2),
y = dnorm(x, c(4.5, 5.5), 2),
g = rep(c("a","b"), 10)
)
vdiffr::expect_doppelganger("varying side",
df %>%
ggplot(aes(x = x, y = g, thickness = y,
side = ifelse(g == "a", "top", "bottom"),
scale = ifelse(g == "a", 0.5, 0.25)
)) +
geom_slab()
)
vdiffr::expect_doppelganger("varying side and just",
df %>%
ggplot(aes(x = x, y = g, thickness = y,
side = ifelse(g == "a", "top", "bottom"),
justification = ifelse(g == "a", 1, 0),
scale = ifelse(g == "a", 0.5, 0.25)
)) +
geom_slab()
)
expect_error(
print(
ggplot(df, aes(x = x, y = g, thickness = y, group = g,
side = ifelse(x < 5, "top", "bottom")
)) +
geom_slab(orientation = "horizontal")
),
"Slab `side` cannot vary within groups"
)
expect_error(
print(
ggplot(df, aes(x = x, y = g, thickness = y, group = g,
justification = ifelse(x < 5, 0, 1)
)) +
geom_slab(orientation = "horizontal")
),
"Slab `justification` cannot vary within groups"
)
expect_error(
print(
ggplot(df, aes(x = x, y = g, thickness = y, group = g,
scale = ifelse(x < 5, 0.5, 0.25)
)) +
geom_slab(orientation = "horizontal")
),
"Slab `scale` cannot vary within groups"
)
}) |
FRESA.Model <-
function(formula,data,OptType=c("Binary","Residual"),pvalue=0.05,filter.p.value=0.10,loops=32,maxTrainModelSize=20,elimination.bootstrap.steps=100,bootstrap.steps=100,print=FALSE,plots=FALSE,CVfolds=1,repeats=1,nk=0,categorizationType=c("Raw","Categorical","ZCategorical","RawZCategorical","RawTail","RawZTail","Tail","RawRaw"),cateGroups=c(0.1,0.9),raw.dataFrame=NULL,var.description=NULL,testType=c("zIDI","zNRI","Binomial","Wilcox","tStudent","Ftest"),lambda="lambda.1se",equivalent=FALSE,bswimsCycles=20,usrFitFun=NULL)
{
a = as.numeric(Sys.time());
set.seed(a);
categorizationType <- match.arg(categorizationType);
cl <- match.call();
cvObject <- NULL;
univariate <- NULL;
eq=NULL;
bagg=NULL;
type = "LM";
if (class(formula)=="character")
{
formula <- formula(formula);
}
if (class(formula)=="formula")
{
featureSize = ncol(data)-1;
OptType <- match.arg(OptType)
varlist <- attr(terms(formula),"variables")
dependent <- as.character(varlist[[2]])
timeOutcome = NA;
Outcome = NA;
type = "LM";
if (length(dependent)==3)
{
type = "COX"
timeOutcome = dependent[2];
Outcome = dependent[3];
dependentout = paste(dependent[1],"(",dependent[2],",",dependent[3],")");
}
else
{
Outcome = dependent[1];
dependentout = Outcome;
}
setIntersect <- attr(terms(formula),"intercept")
if (setIntersect == 0)
{
covariates = "0";
}
else
{
covariates = "1";
}
termslist <- attr(terms(formula),"term.labels");
acovariates <- covariates[1];
if (length(termslist)>0)
{
for (i in 1:length(termslist))
{
covariates <- paste(covariates,"+",termslist[i]);
acovariates <- append(acovariates,termslist[i]);
}
}
startOffset = length(termslist);
variables <- vector();
descrip <- vector();
pnames <- as.vector(colnames(data));
for (i in 1:length(pnames))
{
detected = 0;
if (length(termslist)>0)
{
for (j in 1:length(termslist))
{
if (termslist[j] == pnames[i]) detected = 1;
}
}
if (Outcome == pnames[i]) detected = 1;
if (!is.na(timeOutcome) )
{
if (timeOutcome == pnames[i]) detected = 1;
}
if (detected == 0)
{
variables <- append(variables,pnames[i]);
if (!is.null(var.description))
{
descrip <- append(descrip,var.description[i]);
}
}
}
if (!is.null(var.description))
{
variables <- cbind(variables,descrip);
}
else
{
variables <- cbind(variables,variables);
}
colnames(variables) <- c("Var","Description");
if (CVfolds>nrow(data))
{
cat("Setting to LOO CV\n");
CVfolds=nrow(data);
}
trainFraction <- 1.0-1.0/CVfolds;
trainRepetition <- repeats*CVfolds;
fraction = 1.0000;
varMax = nrow(variables);
baseModel <- paste(dependentout,"~",covariates);
cvObject = NULL;
reducedModel = NULL;
bootstrappedModel = NULL;
UpdatedModel = NULL;
filter.z.value <- abs(qnorm(filter.p.value))
cutpvalue <- 3.0*filter.p.value
if (cutpvalue > 0.45) cutpvalue=0.45;
selectionType = match.arg(testType);
testType = match.arg(testType);
theScores <- names(table(data[,Outcome]))
if (((length(theScores)>2)||(min(data[,Outcome])<0))&&(OptType == "Binary"))
{
OptType = "Residual";
}
if (categorizationType=="RawRaw")
{
rownames(variables) <- variables[,1];
unirank <- uniRankVar(variables,baseModel,Outcome,data,categorizationType="Raw",type,rankingTest="Ztest",cateGroups,raw.dataFrame,description="Description",uniType="Regression",FullAnalysis=FALSE,acovariates=acovariates,timeOutcome=timeOutcome)
univariate <- unirank$orderframe;
featureSize <- nrow(univariate);
unitPvalues <- (1.0-pnorm(univariate$ZUni));
names(unitPvalues) <- univariate$Name;
adjPvalues <- p.adjust(unitPvalues,"BH");
variables <- variables[names(adjPvalues[adjPvalues <= 2*filter.p.value]),];
}
if (OptType == "Binary")
{
if (length(dependent)==1)
{
type = "LOGIT";
}
unirank <- uniRankVar(variables,baseModel,Outcome,data,categorizationType,type,rankingTest="zIDI",cateGroups,raw.dataFrame,description="Description",uniType="Binary",FullAnalysis=FALSE,acovariates=acovariates,timeOutcome=timeOutcome);
univariate <- unirank$orderframe;
featureSize <- nrow(univariate);
unitPvalues <- (1.0-pnorm(univariate$ZUni));
names(unitPvalues) <- univariate$Name;
adjPvalues <- p.adjust(unitPvalues,"BH");
varMax <- sum(univariate$ZUni >= filter.z.value);
if (categorizationType == "Raw")
{
gadjPvalues <- adjPvalues[adjPvalues < 2*filter.p.value]
noncornames <- correlated_Remove(data,names(gadjPvalues),thr=0.99);
attr(noncornames,"CorrMatrix") <- NULL;
if (length(noncornames) > 1) featureSize <- featureSize*length(noncornames)/length(gadjPvalues);
}
pvarMax <- sum(adjPvalues < 2*filter.p.value);
sizeM <- min(c(pvarMax,varMax));
if (sizeM < 5) sizeM = min(c(5,nrow(univariate)));
if (varMax > nrow(univariate)) varMax = nrow(univariate);
if (varMax < 5) varMax = min(c(5,nrow(univariate)));
redlist <- adjPvalues < cutpvalue;
totlist <- min(sum(1*redlist),100);
cat("Unadjusted size:",sum(univariate$ZUni >= filter.z.value)," Adjusted Size:",pvarMax," Cut size:",sum(1*redlist),"\n")
if (totlist<10)
{
redlist <- c(1:min(10,nrow(univariate)))
totlist <- length(totlist);
}
cat("\n Z: ",filter.z.value,", Features to test: ",sizeM,",Adjust Size:",featureSize,"\n");
shortUniv <- univariate[redlist,]
if (CVfolds>1)
{
if (categorizationType!="RawRaw")
{
rownames(variables) <- variables[,1];
}
cvObject <- crossValidationFeatureSelection_Bin(sizeM,fraction,c(pvalue,filter.p.value),loops,acovariates,Outcome,timeOutcome,NULL,data,maxTrainModelSize,type,selectionType,startOffset,elimination.bootstrap.steps,trainFraction,trainRepetition,bootstrap.steps,nk,unirank,print=print,plots=plots,lambda=lambda,equivalent=equivalent,bswimsCycles=bswimsCycles,usrFitFun,featureSize=featureSize);
firstModel <- cvObject$forwardSelection;
UpdatedModel <- cvObject$updateforwardSelection;
reducedModel <- cvObject$BSWiMS;
bootstrappedModel <- cvObject$FullBSWiMS.bootstrapped;
BSWiMS.models <- cvObject$BSWiMS.models;
}
else
{
BSWiMS.models <- BSWiMS.model(formula=formula,data=data,type=type,testType=selectionType,pvalue=pvalue,variableList=shortUniv,size=sizeM,loops=loops,elimination.bootstrap.steps=bootstrap.steps,fraction=1.0,maxTrainModelSize=maxTrainModelSize,maxCycles=bswimsCycles,print=print,plots=plots,featureSize=featureSize,NumberofRepeats=repeats);
firstModel <- BSWiMS.models$forward.model;
UpdatedModel <- BSWiMS.models$update.model;
reducedModel <- BSWiMS.models$BSWiMS.model;
bootstrappedModel <- reducedModel$bootCV;
}
}
if (OptType == "Residual")
{
if (testType=="zIDI")
{
if ((testType=="zIDI")&&(length(theScores)>10))
{
warning("Switching to Regresion, More than 10 scores");
testType = "Ftest";
}
else
{
cat("Doing a Ordinal Fit with zIDI Selection\n");
cat("Ordinal Fit will be stored in BSWiMS.models$oridinalModels\n");
cat("Use predict(BSWiMS.models$oridinalModels,testSet) to get the ordinal prediction on a new dataset \n");
}
}
if (length(dependent)==1)
{
if ((length(theScores)>2)||(min(data[,Outcome])<0))
{
type = "LM";
unirank <- uniRankVar(variables,baseModel,Outcome,data,categorizationType,type,rankingTest="Ztest",cateGroups,raw.dataFrame,description="Description",uniType="Regression",FullAnalysis=FALSE,acovariates=acovariates,timeOutcome=timeOutcome)
if ((length(theScores)<=10)&&(testType=="zIDI"))
{
type = "LOGIT";
}
}
else
{
if (type == "LM") type = "LOGIT";
unirank <- uniRankVar(variables,baseModel,Outcome,data,categorizationType,type,rankingTest="Ztest",cateGroups,raw.dataFrame,description="Description",uniType="Binary",FullAnalysis=FALSE,acovariates=acovariates,timeOutcome=timeOutcome)
}
}
else
{
unirank <- uniRankVar(variables,baseModel,Outcome,data,categorizationType,type,rankingTest="Ztest",cateGroups,raw.dataFrame,description="Description",uniType="Binary",FullAnalysis=FALSE,acovariates=acovariates,timeOutcome=timeOutcome)
}
univariate <- unirank$orderframe;
featureSize <- nrow(univariate);
unitPvalues <- (1.0-pnorm(univariate$ZUni));
names(unitPvalues) <- univariate$Name;
adjPvalues <- p.adjust(unitPvalues,"BH");
varMax <- sum(univariate$ZUni >= filter.z.value);
if (categorizationType == "Raw")
{
gadjPvalues <- adjPvalues[adjPvalues < 2*filter.p.value]
noncornames <- correlated_Remove(data,names(gadjPvalues),thr=0.99);
attr(noncornames,"CorrMatrix") <- NULL;
if (length(noncornames) > 1) featureSize <- featureSize*length(noncornames)/length(gadjPvalues);
}
pvarMax <- sum(adjPvalues < 2*filter.p.value);
sizeM <- min(c(pvarMax,varMax));
if (sizeM < 5) sizeM = min(c(5,nrow(univariate)));
if (varMax > nrow(univariate)) varMax = nrow(univariate);
if (varMax < 5) varMax = min(c(5,nrow(univariate)));
bootstrappedModel = NULL;
redlist <- adjPvalues < cutpvalue;
totlist <- min(sum(1*redlist),100);
cat("Features to test:",sizeM," Adjusted Size:",featureSize,"\n");
if (totlist<10)
{
redlist <- c(1:min(10,nrow(univariate)))
totlist <- length(totlist);
}
cat("\n Z: ",filter.z.value," Var Max: ",featureSize,"FitType: ",type," Test Type: ",testType,"\n");
shortUniv <- univariate[redlist,]
if (CVfolds>1)
{
if (categorizationType != "RawRaw")
{
rownames(variables) <- variables[,1];
}
cvObject <- crossValidationFeatureSelection_Res(size=sizeM,fraction=fraction,pvalue=c(pvalue,filter.p.value),loops=loops,covariates=acovariates,Outcome=Outcome,timeOutcome=timeOutcome,variableList=unirank$variableList,data=data,maxTrainModelSize=maxTrainModelSize,type=type,testType=testType,startOffset=startOffset,elimination.bootstrap.steps=elimination.bootstrap.steps,trainFraction=trainFraction,trainRepetition=trainRepetition,setIntersect=setIntersect,unirank=unirank,print=print,plots=plots,lambda=lambda,equivalent=equivalent,bswimsCycles=bswimsCycles,usrFitFun=usrFitFun,featureSize=featureSize);
firstModel <- cvObject$forwardSelection;
UpdatedModel <- cvObject$updatedforwardModel;
reducedModel <- cvObject$BSWiMS;
bootstrappedModel <- cvObject$BSWiMS$bootCV;
BSWiMS.models <- cvObject$BSWiMS.models;
}
else
{
BSWiMS.models <- BSWiMS.model(formula=formula,data=data,type=type,testType=testType,pvalue=pvalue,variableList=shortUniv,size=sizeM,loops=loops,elimination.bootstrap.steps=bootstrap.steps,fraction=1.0,maxTrainModelSize=maxTrainModelSize,maxCycles=bswimsCycles,print=print,plots=plots,featureSize=featureSize,NumberofRepeats=repeats);
firstModel <- BSWiMS.models$forward.model;
UpdatedModel <- BSWiMS.models$update.model;
reducedModel <- BSWiMS.models$BSWiMS.model;
bootstrappedModel <- reducedModel$bootCV;
}
}
}
else
{
cat("Expecting a formula object\n");
}
if (is.null(reducedModel))
{
result <- list(BSWiMS.model = NULL,
reducedModel = reducedModel,
univariateAnalysis=univariate,
forwardModel=firstModel,
updatedforwardModel=UpdatedModel,
bootstrappedModel=bootstrappedModel,
cvObject=cvObject,
used.variables=varMax,
call=cl);
}
else
{
eq <- NULL;
bagg <- NULL;
if ((length(reducedModel$back.model$coefficients) > 1 ) && equivalent)
{
collectFormulas <- BSWiMS.models$forward.selection.list;
bagg <- baggedModel(collectFormulas,data,type,Outcome,timeOutcome,univariate=univariate,useFreq=loops);
shortcan <- bagg$frequencyTable[(bagg$frequencyTable >= (loops*0.05))];
modeltems <- attr(terms(reducedModel$back.model),"term.labels");
eshortlist <- unique(c(names(shortcan),str_replace_all(modeltems,":","\\*")));
eshortlist <- eshortlist[!is.na(eshortlist)];
if (length(eshortlist)>0)
{
nameslist <- c(all.vars(BSWiMS.models$bagging$bagged.model$formula),as.character(univariate[eshortlist,2]));
nameslist <- unique(nameslist[!is.na(nameslist)]);
if (categorizationType != "RawRaw")
{
eqdata <- data[,nameslist];
}
else
{
eqdata <- data;
}
eq <- reportEquivalentVariables(reducedModel$back.model,pvalue = 0.25*pvalue,
data=eqdata,
variableList=cbind(eshortlist,eshortlist),
Outcome = Outcome,
timeOutcome=timeOutcome,
type = type,osize=featureSize,
method="BH");
}
}
result <- list(BSWiMS.model = BSWiMS.models$bagging$bagged.model,
reducedModel = reducedModel,
univariateAnalysis=univariate,
forwardModel=firstModel,
updatedforwardModel=UpdatedModel,
bootstrappedModel=bootstrappedModel,
cvObject=cvObject,
used.variables=varMax,
bagging=bagg,
eBSWiMS.model=eq,
BSWiMS.models=BSWiMS.models,
call=cl
);
}
return (result);
} |
load_dataset = function(id, package, keep_rownames = FALSE) {
assert_string(id)
assert_string(package)
assert_flag(keep_rownames)
if (!length(find.package(package, quiet = TRUE))) {
msg = sprintf("Please install package '%s' for data set '%s'", package, id)
stop(errorCondition(msg, packages = package, class = "packageNotFoundError"))
}
ee = new.env(parent = emptyenv(), hash = FALSE)
data(list = id, package = package, envir = ee)
data = ee[[id]]
if (!keep_rownames && (is.data.frame(data) || is.matrix(data))) {
rownames(data) = NULL
}
data
} |
gl.utils.fdsim <- function(gl, poppair, obs, sympatric=FALSE, reps=1000, delta=0.02, verbose=NULL) {
if (verbose > 0) {
cat("Starting gl.utils.fdsim: Using simulation to estimate frequency of false positives\n")
}
if(!(class(gl)=="genlight")){
cat("Fatal Error: Input data must be a genlight object\n")
stop("Execution terminated\n")
}
if (!(poppair[1] %in% levels(pop(gl)))){
cat("Fatal Error: Population A mislabelled\n")
stop("Execution terminated\n")
}
if (!(poppair[2] %in% levels(pop(gl)))){
cat("Fatal Error: Population B mislabelled\n")
stop("Execution terminated\n")
}
if (length(poppair) == 2) {
pair <- gl.keep.pop(gl, poppair, recalc=FALSE, mono.rm = TRUE, verbose=verbose)
} else {
cat("Fatal Error: Must specify two populations labels from the genlight object, e.g. poppair=c(popA,popB)\n")
stop("Execution terminated\n")
}
if (verbose >= 2) {cat("Comparing ",poppair[1],"and",poppair[2],"\n")}
if (verbose >= 3) {
cat(" Sample sizes:",table(pop(pair)),"\n")
cat(" No. of loci:",nLoc(pair),"\n")
cat(" No. of observed fixed differences:",obs,"\n")
}
rf <- gl.percent.freq(pair, verbose=verbose)
rfA <- rf[rf$popn==poppair[1],]
rfB <- rf[rf$popn==poppair[2],]
if(verbose >= 2){cat(" Calculations based on allopatric populations\n")}
if(sympatric){
rfA <- rf
rfB <- rf
if(verbose >= 2){cat(" Calculations based on sympatric populations\n")}
}
simA <- array(data=NA,dim=nLoc(pair))
simB <- array(data=NA,dim=nLoc(pair))
fd <- array(data=NA,dim=nLoc(pair))
falsepos <- array(data=NA,dim=reps)
if (is.null(obs)) {
fdmat <- gl.fixed.diff(pair)
obs <- fdmat[2,1]
}
if (verbose > 1) {
cat("Calculating false positive rate with",reps,"replications. Please be patient\n")
}
for (j in 1:reps){
for (i in 1:nLoc(pair)) {
if (is.na(rfA$frequency[i]) || is.na(rfB$frequency[i])) {
simA[i]<-NA
simB[i]<-NA
} else if ((((rfA$frequency[i]/100) < delta) && (1-(rfB$frequency[i]/100)) < delta)
|| (((rfB$frequency[i]/100) < delta) && (1-(rfA$frequency[i]/100)) < delta)) {
simA[i]<-NA
simB[i]<-NA
} else {
szA <- rfA$nobs[i]*2
szB <- rfB$nobs[i]*2
pbA <- rfA$frequency[i]/100
pbB <- rfB$frequency[i]/100
simA[i] <- (rbinom(n=1, size=szA, prob=pbA))/szA
simB[i] <- (rbinom(n=1, size=szB, prob=pbB))/szB
fd[i] <- ((1-simA[i])**szA)*((simB[i])**szB)+((simA[i])**szA)*((1-simB[i])**szB)
}
}
falsepos[j] <- sum(fd, na.rm=TRUE)
}
mn <- mean(falsepos)
sdev <- sd(falsepos)
nprob <- pnorm(obs, mean=mn, sd=sdev, lower.tail=FALSE)
if (verbose > 2) {
cat("Threshold minor allele frequency for generating a false positive:",delta,"\n")
cat("Estimated mean count of false positives:",round(mean(falsepos),1),"\n")
cat("Estimated SD of the count of false positives:",round(sd(falsepos),2),"\n")
cat("Prob that observed count of",obs,"are false positives:",nprob,"\n")
}
l <- list(observed=obs,mnexpected=mn,sdexpected=sdev,prob=nprob)
if (verbose > 0) {
cat("Completed gl.utils.fdsim\n\n")
}
return(l)
} |
.format_polynom <- function(p, s = "x")
{
res <- NULL
for(i in seq_along(p)) {
d <- i - 1
cc <- p[i]
if(cc != 0) {
if(d == 0) {
res <- format(cc)
} else {
if(d == 1) {
ss <- s
} else {
ss <- paste0(s, "^", d)
}
if(cc == 1) {
if(length(res) == 0) {
res <- c(res, ss)
} else {
res <- c(res, " + ", ss)
}
} else if(cc == -1) {
res <- c(res, " - ", ss)
} else if(cc < 0) {
res <- c(res, " - ", -cc, ss)
} else {
if(is.null(res)) {
res <- c(res, cc, ss)
} else {
res <- c(res, " + ", cc, ss)
}
}
}
}
}
if(is.null(res)) {
return("0")
}
return(paste(res, collapse = ""))
}
.show.polyMarix <- function(object) {
res <- matrix("+", nrow(object) + 1, ncol(object) + 1)
res[1, 1] <- " "
for(j in seq_len(ncol(object))) {
res[1, j + 1] <- paste0("[,", j, "]")
}
for(i in seq_len(nrow(object))) {
res[i + 1, 1] <- paste0("[", i, ",]")
for(j in seq_len(ncol(object))) {
res[i + 1, j + 1] <- .format_polynom(object[i, j])
}
}
col_sizes <- apply(res, 2, function(x) { max(sapply(x, nchar)) })
for(i in seq_len(nrow(res))) {
s <- NULL
for(j in seq_len(ncol(res))) {
s <- c(s, format(res[i, j], justify = "right", width = col_sizes[j]))
}
cat(s, sep = " ")
cat("\n")
}
}
.show.polyMarixCharPolynomial <- function (cp) {
res <- NULL
for(i in seq_len(ncol(cp@coef))) {
pc <- cp@coef[1, i]
if (pc != 0) {
str_p <- .format_polynom(pc)
if (sum(c(pc) != 0) == 1) {
if (sum(c(pc) > 0) == 1) {
str_p <- paste(c("+ ", str_p), collapse = "")
}
if (!is.null(res)) {
res <- c(res, str_p)
} else {
res <- str_p
}
} else {
if (!is.null(res)) {
stopifnot(i != 1)
res <- c(res, "+", paste("(", str_p, ")", collapse = ""))
} else {
if (i == 1) {
res <- str_p
} else {
res <- paste("(", str_p, ")", collapse = "")
}
}
}
if (i == 2) {
res <- c(res, "l")
} else if (i > 2){
res <- c(res, paste(c("l^", i - 1), collapse = ""))
}
}
}
cat(paste(res, collapse = " "))
cat("\n")
}
setMethod("show", signature(object = PM), .show.polyMarix)
setMethod("show", signature(object = PMCP), function (object) {
.show.polyMarixCharPolynomial(object)
}) |
context("read_rrd")
rrd_cpu_0 <- system.file("extdata/cpu-0.rrd", package = "rrd")
rrd_content_1 <- system.file("extdata/content-1.rrd", package = "rrd")
is_list_of_tibbles <- function(x){
is.list(x) &&
all(
vapply(x,
function(x)class(x)[1],
FUN.VALUE = character(1),
USE.NAMES = FALSE) == "tbl_df"
)
}
test_that("describe_rrd", {
expect_output(describe_rrd(rrd_cpu_0), "An RRD file with 10 RRA arrays and step size 60")
capture.output(
z <- (describe_rrd(rrd_cpu_0))
)
expect_is(z, "NULL")
})
test_that("deprecated functions", {
expect_warning(importRRD(rrd_cpu_0), "'importRRD' is deprecated.")
z <- suppressWarnings(
importRRD(rrd_cpu_0)
)
expect_true(is_list_of_tibbles(z))
expect_warning(importRRD(rrd_cpu_0, "MAX", start = Sys.time() - 86400, end = Sys.time(), step = 300L))
z <- suppressWarnings(
importRRD(rrd_cpu_0, "MAX", start = Sys.time() - 86400, end = Sys.time(), step = 300L)
)
expect_is(z, "tbl")
})
test_that("read_rrd rrd_cpu_0", {
z <- read_rrd(rrd_cpu_0)
expect_true(is_list_of_tibbles(z))
expect_is(z[[1]], "data.frame")
expect_equal(length(z), 10)
expect_equal(
names(z),
c("AVERAGE60", "AVERAGE300", "MIN300", "MAX300", "AVERAGE3600",
"MIN3600", "MAX3600", "AVERAGE86400", "MIN86400", "MAX86400")
)
})
test_that("read_rrd rrd_content_1", {
z <- read_rrd(rrd_content_1)
expect_true(is_list_of_tibbles(z))
expect_is(z[[1]], "data.frame")
expect_equal(length(z), 10)
expect_equal(
names(z),
c("AVERAGE60", "AVERAGE300", "MIN300", "MAX300", "AVERAGE3600",
"MIN3600", "MAX3600", "AVERAGE86400", "MIN86400", "MAX86400")
)
})
test_that("read_rra from rrd_content_1 using start time", {
z <- read_rra(rrd_content_1, "MAX", start = Sys.time() - 86400, end = Sys.time(), step = 300L)
expect_is(z, "data.frame")
expect_equal(nrow(z), 288)
expect_equal(ncol(z), 4)
expect_equal(
names(z),
c("timestamp", "sessions", "procs", "http")
)
})
test_that("read_rra from rrd_content_1 using n_rows", {
z <- read_rra(rrd_content_1, "MAX", n_steps = 10, end = Sys.time(), step = 300L)
expect_is(z, "data.frame")
expect_equal(nrow(z), 10)
expect_equal(ncol(z), 4)
expect_equal(
names(z),
c("timestamp", "sessions", "procs", "http")
)
}) |
test_that(desc="get_na_counts works as expected",
code={
skip_on_oldrel()
expect_equal(nrow(get_na_counts(iris,"Species")),
3)
expect_error(get_na_counts(airquality,
grouping_cols = "Nope"),
"All columns to group by should exist in the data set",
fixed=TRUE)
expect_equal(nrow(get_na_counts(airquality,
grouping_cols = "Month")),
5)
}) |
"Drugs_CID" |
YRCSkew <- function(row, col, rowinf, rowsup, inst=NULL) {
list(predictors = list(substitute(row), substitute(col), substitute(rowinf), substitute(rowsup)),
term = function(predLabels, varLabels) {
sprintf("%s * %s * (%s - %s) - %s * %s * (%s - %s)",
predLabels[3], predLabels[1], predLabels[2], predLabels[1],
predLabels[4], predLabels[2], predLabels[1], predLabels[2])
},
call = as.expression(match.call()),
common = c(1, 1, 2, 2)
)
}
class(YRCSkew) <- "nonlin"
yrcskew <- function(tab, nd.symm=NA, nd.skew=1, diagonal=FALSE,
weighting=c("marginal", "uniform", "none"), se=c("none", "jackknife", "bootstrap"),
nreplicates=100, ncpus=getOption("boot.ncpus"),
family=poisson, weights=NULL, start=NA, etastart=NULL, tolerance=1e-8, iterMax=15000,
trace=FALSE, verbose=TRUE, ...) {
weighting <- match.arg(weighting)
se <- match.arg(se)
tab <- as.table(tab)
if(length(dim(tab)) < 2)
stop("tab must have (at least) two dimensions")
if(nrow(tab) != ncol(tab))
stop("tab must be a square table for asymmetry models")
if(!all(rownames(tab) == colnames(tab)))
stop("tab must have identical row and column names for symmetric model")
if(!is.na(nd.symm) && nd.symm <= 0)
stop("nd.symm must be NA or strictly positive")
if(is.na(nd.skew))
stop("nd.skew must be strictly positive")
if(nd.skew > 1)
warning("nd.skew > 1 is untested. You are on your own!")
if(!is.na(nd.symm) && nd.symm/2 > min(nrow(tab), ncol(tab)) - 1)
stop("Number of dimensions of symmetric association cannot exceed 2 * (min(nrow(tab), ncol(tab)) - 1)")
if(length(dim(tab)) > 2)
tab <- margin.table(tab, 1:2)
tab <- prepareTable(tab, TRUE)
vars <- names(dimnames(tab))
if(diagonal && !is.na(nd.symm))
diagstr <- sprintf("+ Diag(%s, %s) ", vars[1], vars[2])
else
diagstr <- ""
if(is.na(nd.symm))
basef <- sprintf("Freq ~ %s + %s %s+ Symm(%s, %s)",
vars[1], vars[2], diagstr, vars[1], vars[2])
else
basef <- sprintf("Freq ~ %s + %s %s+ instances(MultHomog(%s, %s), %i)",
vars[1], vars[2], diagstr, vars[1], vars[2], nd.symm)
contr <- getOption("contrasts")
on.exit(options(contrasts=contr))
options(contrasts=c("contr.treatment", "contr.treatment"))
if(!is.null(start) && identical(start, NA)) {
cat("Running base model to find starting values...\n")
args <- list(formula=as.formula(basef),
data=tab, weights=weights, family=family,
tolerance=1e-3, iterMax=iterMax, verbose=verbose, trace=trace)
base <- do.call("gnm", c(args, list(...)))
start <- c(parameters(base), rep(NA, nd.skew * (nrow(tab) + 2)))
if(is.null(etastart))
etastart <- as.numeric(predict(base))
cat("Running real model...\n")
}
f <- sprintf("%s + instances(YRCSkew(%s, %s, factor(ifelse(as.numeric(%s) < as.numeric(%s), 1, 0)), factor(ifelse(as.numeric(%s) > as.numeric(%s), 1, 0))), %s)",
basef,
vars[1], vars[2],
vars[1], vars[2], vars[1], vars[2], nd.skew)
args <- list(formula=eval(as.formula(f)), data=tab,
constrain="YRCSkew\\(.*\\)0$",
family=family, weights=weights, start=start, etastart=etastart,
tolerance=tolerance, iterMax=iterMax, verbose=verbose, trace=trace)
model <- do.call("gnm", c(args, list(...)))
if(is.null(model))
return(NULL)
class(model) <- c("yrcskew", "rc.symm", "rc", "assocmod", class(model))
model$call.gnm <- model$call
model$call <- match.call()
if(!is.na(nd.symm))
model$assoc <- assoc.rc.symm(model, weighting=weighting)
else
model$assoc <- list()
model$assoc.yrcskew <- assoc.yrcskew(model, weighting=weighting)
if(se %in% c("jackknife", "bootstrap")) {
assoc1 <- if(is.na(nd.symm)) assoc.yrcskew else assoc.rc.symm
assoc2 <- if(is.na(nd.symm)) NULL else assoc.yrcskew
jb <- jackboot(se, ncpus, nreplicates, tab, model, assoc1, assoc2,
weighting, NULL, NULL, family, weights,
verbose, trace, start, etastart, ...)
if(!is.na(nd.symm)) {
model$assoc$covtype <- se
model$assoc$covmat <- jb$covmat1
model$assoc$adj.covmats <- jb$adj.covmats1
model$assoc$jack.results <- jb$jack.results1
model$assoc$boot.results <- jb$boot.results1
model$assoc.yrcskew$covtype <- se
model$assoc.yrcskew$covmat <- jb$covmat2
model$assoc.yrcskew$adj.covmats <- jb$adj.covmats2
model$assoc.yrcskew$jack.results <- jb$jack.results2
model$assoc.yrcskew$boot.results <- jb$boot.results2
}
else {
model$assoc.yrcskew$covtype <- se
model$assoc.yrcskew$covmat <- jb$covmat
model$assoc.yrcskew$adj.covmats <- jb$adj.covmats
model$assoc.yrcskew$jack.results <- jb$jack.results
model$assoc.yrcskew$boot.results <- jb$boot.results
}
}
else {
if(!is.na(nd.symm)) {
model$assoc$covtype <- se
model$assoc$covmat <- numeric(0)
model$assoc$adj.covmats <- numeric(0)
model$assoc$boot.results <- numeric(0)
model$assoc$jack.results <- numeric(0)
}
model$assoc.yrcskew$covtype <- se
model$assoc.yrcskew$covmat <- numeric(0)
model$assoc.yrcskew$adj.covmats <- numeric(0)
model$assoc.yrcskew$boot.results <- numeric(0)
model$assoc.yrcskew$jack.results <- numeric(0)
}
model
}
assoc.yrcskew <- function(model, weighting=c("marginal", "uniform", "none"), ...) {
if(!inherits(model, "gnm"))
stop("model must be a gnm object")
tab <- prepareTable(model$data, TRUE)
vars <- names(dimnames(tab))
weighting <- match.arg(weighting)
if(weighting == "marginal")
p <- prop.table(apply(tab, 1, sum, na.rm=TRUE) + apply(tab, 2, sum, na.rm=TRUE))
else if(weighting == "uniform")
p <- rep(1/nrow(tab), nrow(tab))
else
p <- rep(1, nrow(tab))
sc <- matrix(NA, nrow(tab), 0)
nd <- 0
while(TRUE) {
musk <- parameters(model)[pickCoef(model, sprintf("YRCSkew\\(.*inst = %i\\)(\\Q%s\\E)",
nd+1, paste(rownames(tab), collapse="\\E|\\Q")))]
if(length(musk) != nrow(tab))
break
nd <- nd + 1
sc <- cbind(sc, musk)
}
if(nd <= 0) {
musk <- parameters(model)[pickCoef(model, sprintf("YRCSkew.*\\)(\\Q%s\\E)$",
paste(rownames(tab), collapse="\\E|\\Q")))]
if(length(musk) == nrow(tab)) {
nd <- 1
sc <- cbind(sc, musk)
}
else {
stop("No skew dimensions found. Are you sure this is a Yamaguchi RC_SK model?")
}
}
skew <- parameters(model)[pickCoef(model, "YRCSkew.*\\)1$")]
if(length(skew) != nd)
stop("Skew coefficients not found. Are you sure this is a Yamaguchi RC_SK model?")
if(length(pickCoef(model, "Diag\\(")) > nrow(tab))
dg <- matrix(pickCoef(model, "Diag\\(", value=TRUE), ncol=nrow(tab))
else if(length(pickCoef(model, "Diag\\(")) > 0)
dg <- matrix(pickCoef(model, "Diag\\(", value=TRUE), 1, nrow(tab))
else
dg <- numeric(0)
sc <- sweep(sc, 2, colSums(sweep(sc, 1, p/sum(p), "*")), "-")
lambda <- matrix(0, nrow(tab), ncol(tab))
for(i in 1:nd) {
lambda <- lambda + abs(skew[i]) * sc[,i] %o% sc[,i]
}
lambda0 <- lambda * sqrt(p %o% p)
sv <- svd(lambda0)
sc[] <- diag(1/sqrt(p)) %*% sv$u[,1:nd]
phisk <- sign(skew) * sv$d[1:nd]
phisk <- rbind(c(phisk))
dim(sc)[3] <- 1
names(phisk) <- NULL
colnames(sc) <- colnames(phisk) <- paste("Dim", 1:nd, sep="")
rownames(sc) <- rownames(tab)
if(length(dg) > 0) {
dg[,order(rownames(tab))] <- dg
colnames(dg) <- if(all(rownames(tab) == colnames(tab))) rownames(tab)
else paste(rownames(tab), colnames(tab), sep=":")
if(nrow(dg) > 1)
rownames(dg) <- dimnames(tab)[[3]]
else
rownames(dg) <- "All levels"
}
row.weights <- as.matrix(apply(tab, 1, sum, na.rm=TRUE))
col.weights <- as.matrix(apply(tab, 2, sum, na.rm=TRUE))
obj <- list(phi = phisk, row = sc, col = sc, diagonal = dg,
weighting = weighting, row.weights = row.weights, col.weights = col.weights,
vars = vars)
class(obj) <- c("assoc.yrcskew", "assoc.symm", "assoc")
obj
}
assoc <- function(model, weighting, ...) UseMethod("assoc", model) |
write.to.home <- NULL
systemRun <-
function(directory, output, write.to.home){
if (.Platform$OS.type=="unix"){
dir <- paste("cd",directory,sep=" ")
system(paste(dir,"open the_audiolyzr_mac_v5/the_audiolyzr_mac_v5.app", sep="; "))
if (!write.to.home)
system(paste("cd",output,";","open .."))
}
if (.Platform$OS.type=="windows"){
path <- normalizePath(file.path(directory,"the_audiolyzr_win_v5",
"the_audiolyzR_win_v5.exe"))
shell.exec(path)
if (!write.to.home)
shell.exec(file.path(output,".."))
}
if (!write.to.home)
message('To load plots to synthesizer: \n',
'Drag the folder entitled "json_matrix" \n',
'to the "Drop folder here to Audiolyze!" box \n',
'at the bottom of the synthesizer (you may have to scroll down).')
message ("Note: Audio plot files written to \n", file.path(output))
} |
drawPoliticalMap <- function(cls, dirichletTiles, Lines, Columns, Toroid, add=F, alphaV=0.2){
ccc <- DefaultColorSequence()[cls]
if(add==T) {
ccc <- alpha(ccc, alphaV)
plot(dirichletTiles,fillcol=ccc,close=T, showpoints=T, border=F, add=T)
}
else{
if(Toroid)
plot(1, type="n", ylim=c(Lines*2,1), xlim=c(1,Columns*2))
else
plot(1, type="n", ylim=c(Lines,1), xlim=c(1,Columns))
plot(dirichletTiles,fillcol=ccc,close=T, showpoints=T, border=F, add=T)
}
} |
glassopath=function (s, rholist=NULL, thr = 1e-04, maxit = 10000, approx = FALSE
,
penalize.diagonal = TRUE, w.init = NULL,
wi.init = NULL, trace = 1)
{
n = nrow(s)
if(is.null(rholist)){
rholist=seq(max(abs(s))/10,max(abs(s)),length=10)
}
rholist=sort(rholist)
ipen = 1 * (penalize.diagonal)
ia = 1 * approx
rho=xx=ww=matrix(0,n,n)
nrho=length(rholist)
beta=what=array(0,c(n,n,nrho))
jerrs=rep(0,nrho)
mode(rholist) = "double"
mode(nrho) = "integer"
mode(rho) = "double"
mode(s) = "double"
mode(ww) = "double"
mode(xx) = "double"
mode(n) = "integer"
mode(maxit) = "integer"
mode(ia) = "integer"
mode(trace) = "integer"
mode(ipen) = "integer"
mode(thr) = "double"
mode(beta) = "double"
mode(what) = "double"
mode(jerrs) = "integer"
junk <- .Fortran("glassopath", beta=beta,what=what,jerrs=jerrs,rholist,nrho,n, s, rho, ia, trace, ipen,
thr, maxit = maxit, ww = ww, xx = xx, niter = integer(1),
del = double(1), ierr = integer(1), PACKAGE="glasso")
xx = array(junk$beta, c(n,n,nrho))
what = array(junk$what, c(n,n,nrho))
return(list(w=what, wi = xx,
approx = approx, rholist=rholist, errflag = junk$jerrs))
} |
l_getNDimStates <- function(widget) {
UseMethod("l_getNDimStates", widget)
}
l_getNDimStates.loon <- function(widget) {
statesNames <- loon::l_nDimStateNames(widget)
states <- stats::setNames(
lapply(statesNames,
function(s) {
if(length(widget[s]) == 0) return(NULL)
widget[s]
}),
statesNames)
remove_null(states, as_list = FALSE)
}
l_getNDimStates.l_compound <- function(widget) {
lapply(widget, function(x) l_getNDimStates(x))
} |
setsetequal <-
function (x, y)
{
if (!is.list(x) && !is.list(y))
stop("Arguments must be lists")
all(c(setmatch(x, y, 0L) > 0L, setmatch(y, x, 0L) > 0L))
} |
predict.mvr <- function(object, newdata, ncomp = 1:object$ncomp, comps,
type = c("response", "scores"),
na.action = na.pass, ...)
{
if (missing(newdata) || is.null(newdata))
newX <- model.matrix(object)
else if (is.matrix(newdata)) {
if (ncol(newdata) != length(object$Xmeans))
stop("'newdata' does not have the correct number of columns")
newX <- newdata
} else {
Terms <- delete.response(terms(object))
m <- model.frame(Terms, newdata, na.action = na.action)
if (!is.null(cl <- attr(Terms, "dataClasses")))
.checkMFClasses(cl, m)
newX <- delete.intercept(model.matrix(Terms, m))
}
nobs <- dim(newX)[1]
if (!is.null(object$scale)) newX <- newX / rep(object$scale, each = nobs)
type <- match.arg(type)
if (type == "response") {
if (missing(comps) || is.null(comps)) {
if (missing(newdata)) return(fitted(object)[,,ncomp, drop=FALSE])
B <- coef(object, ncomp = ncomp, intercept = TRUE)
dPred <- dim(B)
dPred[1] <- dim(newX)[1]
dnPred <- dimnames(B)
dnPred[1] <-
if(is.null(dimnames(newX))) list(NULL) else dimnames(newX)[1]
pred <- array(dim = dPred, dimnames = dnPred)
for (i in seq(along = ncomp))
pred[,,i] <- newX %*% B[-1,,i] + rep(B[1,,i], each = nobs)
return(pred)
} else {
B <- rowSums(coef(object, comps = comps), dims = 2)
B0 <- object$Ymeans - object$Xmeans %*% B
pred <- newX %*% B + rep(B0, each = nobs)
if (missing(newdata) && !is.null(object$na.action))
pred <- napredict(object$na.action, pred)
return(pred)
}
} else {
if (missing(comps) || is.null(comps)) comps <- ncomp
if (missing(newdata)) {
TT <- object$scores[,comps]
if (!is.null(object$na.action))
TT <- napredict(object$na.action, TT)
} else {
if (is.null(object$projection))
stop("`object' has no `projection' component. Maybe it was fitted with `stripped = TRUE'.")
TT <- (newX - rep(object$Xmeans, each = nobs)) %*%
object$projection[,comps]
}
return(TT)
}
} |
CDMEAN0 <-
function(Train,Test, P, lambda=1e-5, C=NULL){
PTrain<-P[rownames(P)%in%Train,]
if (!is.null(C)){ PTrain<-C%*%PTrain}
CDmean<-mean(diag(PTrain%*%solve(crossprod(PTrain)+lambda*diag(ncol(PTrain)),t(PTrain)))/diag(tcrossprod(PTrain)))
return(CDmean)
} |
equ6 <- function(temp,rate, augment=F, return_fit=F){
try_test <- try({
R<-8.617343e-5
b <- 1
c <- 1.04
d <- 273.15
e <- 1.04
f <- 273.15
a <- max(rate)/max((((temp+273.15)/298.15)*exp(b/R*(1/298.15-1/(temp+273.15))))/(1+exp(c/R*(1/d-1/(temp+273.15)))+exp(e/R*(1/f-1/(temp+273.15)))))
fit = minpack.lm::nlsLM(rate ~ (a*((temp+273.15)/298.15)*exp(b/R*(1/298.15-1/(temp+273.15))))/(1+exp(c/R*(1/d-1/(temp+273.15)))+exp(e/R*(1/f-1/(temp+273.15)))),
control = minpack.lm::nls.lm.control(maxiter = 10^20),
start = list(a=a,b=b,c=c,d=d,e=e,f=f))
output <- broom::tidy(fit)
a <- output$estimate[output$term=="a"]
b <- output$estimate[output$term=="b"]
c <- output$estimate[output$term=="c"]
d <- output$estimate[output$term=="d"]
f_equ= function(t){(a*((t+273.15)/298.15)*exp(b/R*(1/298.15-1/(t+273.15))))/(1+exp(c/R*(1/d-1/(t+273.15)))+exp(e/R*(1/f-1/(t+273.15))))}
})
output <- temperatureresponse::amend_output(output,
fit,
f_equ,
temp,
rate,
try_test,
augment,
return_fit)
output$model <- "equ06"
print("equ06")
return(output)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
incl <- function(x){
path <- paste0("figures/", x)
knitr::include_graphics(path)
}
library("boxr")
incl("rstudio-cloud.png")
incl("interactive-four-steps.png")
incl("interactive-config.png") |
next_gBOIN_TB <- function(target, n, y, d, mu_1 = 0.6 * target, mu_2 = 1.4 * target){
ndose <- length(y)
if (y[d]/n[d] <=(target+mu_1)/2&& d != ndose) {
d = d + 1
}
else if (y[d]/n[d] >= (target+mu_2)/2 && d != 1) {
d = d - 1
}
else {
d = d
}
d
} |
random_r <- function(K = 100,
correlation = 0.5,
N = 10,
Fisher_Z = FALSE) {
if(length(N) != 1) {
samples <- sum(N)
theGroups <- rep(1:length(N), N)
finalN <- N
}
else {
samples <- K * N
theGroups <- rep(1:K, each = N)
finalN <- N
}
C <- matrix(c(1, correlation, correlation, 1), nrow = 2, ncol = 2)
random_XY <- data.frame(mvrnorm(n = samples, mu = c(0, 0), C),
group = theGroups)
theCor <- unlist(lapply(split(random_XY, random_XY$group),
function(x) return(cor(x[,1], x[,2]))))
random_r <- data.frame(r = theCor,
var_r = ((1.0 - theCor ^ 2.0) ^ 2.0)/(finalN - 2.0),
N = finalN)
if(Fisher_Z == TRUE) {
random_r <- cbind(random_r,
data.frame(Z = 0.5 * log((1.0 + random_r[, 1])/(1.0 - random_r[, 1])),
var_Z = 1.0 / (random_r[, 3] - 3)))
}
return(random_r)
} |
ltspca <- function(x, q, alpha=0.5, b.choice=NULL,tol=1e-6, N1=3, N2=2, N2bis=10, Npc=10){
determin.start <- function(x, strategy, alpha){
n <- nrow(x)
h <- n - floor(n*alpha)
Qn.x <- apply(x,2,robustbase::Qn)
rm.x <- which(Qn.x != 0)
R.x <- apply(x[,rm.x], 2, rank)
Med.x <- apply(x[,rm.x],2,median)
if(strategy=="spearman"){
Y <- R.x
Qn.y <- apply(Y,2,robustbase::Qn)
rm.y <- which(Qn.y !=0)
U <- sweep(Y[,rm.y], 2, (Qn.x[rm.x][rm.y]/Qn.y[rm.y]) , "*")
rm(Y)
median.coorwise.U <- apply(U,2,median)
Qn.coorwise.U <- apply(U,2,robustbase::Qn)
Z <- scale( U ,center= median.coorwise.U, scale= Qn.coorwise.U)
obswise.sqnorm <- apply(Z^2, 1, sum)
rm(Z)
U <- x[which(obswise.sqnorm <= sort(obswise.sqnorm)[h]),]
}else if(strategy=="tanh"){
Z <- scale(x[,rm.x] , center= Med.x, scale= Qn.x[rm.x])
Y <- apply(Z, 2, tanh)
Qn.y <- apply(Y,2,robustbase::Qn)
rm.y <- which(Qn.y !=0)
U <- sweep(Y[,rm.y], 2, (Qn.x[rm.x][rm.y]/Qn.y[rm.y]), "*")
rm(Y)
median.coorwise.U <- apply(U,2,median)
Qn.coorwise.U <- apply(U,2,robustbase::Qn)
Z <- scale( U , center= median.coorwise.U, scale= Qn.coorwise.U)
obswise.sqnorm <- apply(Z^2, 1, sum)
rm(Z)
U <- x[which(obswise.sqnorm <= sort(obswise.sqnorm)[h]),]
}else if(strategy=="normalscore"){
Y <- qnorm( (R.x - (1/3) ) / (n + (1/3) ) )
Qn.y <- apply(Y,2,robustbase::Qn)
rm.y <- which(Qn.y !=0)
U <- sweep(Y[,rm.y], 2, (Qn.x[rm.x][rm.y]/Qn.y[rm.y]) , "*")
rm(Y)
median.coorwise.U <- apply(U,2,median)
Qn.coorwise.U <- apply(U,2,robustbase::Qn)
Z <- scale( U , center= median.coorwise.U, scale= Qn.coorwise.U)
obswise.sqnorm <- apply(Z^2, 1, sum)
rm(Z)
U <- x[which(obswise.sqnorm <= sort(obswise.sqnorm)[h]),]
}else if(strategy=="closesubset"){
Z <- scale(x[,rm.x] , center= Med.x, scale= Qn.x[rm.x])
obswise.sqnorm <- apply(Z^2, 1, sum)
rm(Z)
U <- x[which(obswise.sqnorm <= sort(obswise.sqnorm)[h]),]
}else if(strategy=="spatialsign"){
Z <- scale(x[,rm.x] , center= Med.x, scale=FALSE)
obswise.norm <- sqrt( apply(Z^2, 1, sum) )
U <- sweep(Z,1,obswise.norm,"/")
median.coorwise.U <- apply(U,2,median)
Qn.coorwise.U <- apply(U,2,robustbase::Qn)
Z <- scale( U , center= median.coorwise.U, scale= Qn.coorwise.U)
obswise.sqnorm <- apply(Z^2, 1, sum)
rm(Z)
U <- x[which(obswise.sqnorm <= sort(obswise.sqnorm)[h]),]
}
return(U)
}
x<-as.matrix(x)
n<-dim(x)[1]
p<-dim(x)[2]
h<-n-floor(n*alpha)
keep_s <- Inf
cand <- c("spearman", "tanh", "normalscore", "closesubset", "spatialsign")
for(i in cand){
U <- determin.start(x=x, strategy=i, alpha=alpha)
mu <- apply(U,2,mean)
if(is.null(b.choice))
{
set.seed(321)
bM <- mvtnorm::rmvnorm(p,mean = rep(0,q),sigma = diag(q))
b <- qr.Q(qr(bM))
update=findpcs0(x=U, B=b, mu=mu, Npc=Npc, tol=tol)
b=update$Bmat
mu=update$mu
}else{
b <- b.choice
}
rm(U)
update=findpcs2(x=x, B=b, mu=mu, h=h, s=0, N1=N1, N2=N2, Npc=Npc, tol=tol,
fixed=!is.null(b.choice))
b=update$Bmat
mu=update$mu
s=update$scale
if(s < keep_s){
opt_cand <- i
keep_s <- s
keep_mu <- mu
keep_b <- b
}
}
mu <- keep_mu
b <- keep_b
s <- keep_s
update=findpcs(x=x, B=b, mu=mu, h=h, s=s, N1=0, N2=N2bis, Npc=Npc, tol=tol,
fixed=!is.null(b.choice))
b=update$Bmat
mu=update$mu
s=update$scale
ws <- rep(0,n)
ws[update$index] <- 1
res<-list(b=b, mu=mu, best.obj=s, ws=ws, best.cand=opt_cand)
return(res)
} |
qasl <- function(p, theta = 0, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE){
if(sigma <= 0){
stop("sigma > 0 is required.")
}
kappa <- (sqrt(2 * sigma^2 + mu^2) - mu) / sqrt(2 * sigma)
qasla(p, theta, kappa, sigma, lower.tail = lower.tail, log.p = log.p)
}
qasla <- function(p, theta = 0, kappa = 1, sigma = 1, lower.tail = TRUE,
log.p = FALSE){
if(sigma <= 0){
stop("sigma > 0 is required.")
}
if(kappa <= 0){
stop("kappa > 0 is required.")
}
ret <- do.call("c", lapply(p, qasla.one.log, theta, kappa, sigma,
lower.tail = lower.tail, log.p = log.p))
ret
}
qasla.one.log <- function(p, theta, kappa, sigma, lower.tail = TRUE,
log.p = FALSE){
if(log.p){
if(p > 0){
return(NaN)
}
} else{
if(p < 0 | p > 1){
return(NaN)
}
}
if(log.p){
p <- exp(p)
}
if(! lower.tail){
p <- 1 - p
}
if(p == 0){
ret <- -Inf
} else if(p == 1){
ret <- Inf
} else{
ret <- theta
if(p <= kappa^2 / (1 + kappa^2)){
ret <- ret + sigma * kappa / sqrt(2) * log((1 + kappa^2) / kappa^2 * p)
} else{
ret <- ret - sigma / (sqrt(2) * kappa) * log((1 + kappa^2)* (1- p))
}
}
ret
} |
grid_terrain = function(las, res = 1, algorithm, ..., keep_lowest = FALSE, full_raster = FALSE, use_class = c(2L,9L), Wdegenerated = TRUE, is_concave = FALSE)
{
UseMethod("grid_terrain", las)
}
grid_terrain.LAS = function(las, res = 1, algorithm, ..., keep_lowest = FALSE, full_raster = FALSE, use_class = c(2L,9L), Wdegenerated = TRUE, is_concave = FALSE)
{
if (!is_a_number(res) & !is(res, "RasterLayer")) stop("res is not a number or a RasterLayer", call. = FALSE)
if (is_a_number(res)) assert_all_are_non_negative(res)
assert_is_algorithm(algorithm)
assert_is_algorithm_spi(algorithm)
assert_is_a_bool(keep_lowest)
assert_is_a_bool(full_raster)
assert_is_a_bool(is_concave)
if (full_raster & is_concave) stop("'full_raster' and 'is_concave' cannot both be 'TRUE'", call. = FALSE)
if (!"Classification" %in% names(las@data)) stop("LAS object does not contain 'Classification' attribute", call. = FALSE)
if (any(as.integer(use_class) != use_class)) stop("'add_class' is not a vector of integers'", call. = FALSE)
use_class <- as.integer(use_class)
ellipsis <- list(...)
fast <- isTRUE(ellipsis[["fast"]])
. <- Z <- Zref <- X <- Y <- Classification <- NULL
ground <- las@data[Classification %in% c(use_class), .(X,Y,Z)]
if (nrow(ground) == 0) stop("No ground points found. Impossible to compute a DTM.", call. = FALSE)
ground <- check_degenerated_points(ground, Wdegenerated)
verbose("Generating interpolation coordinates...")
layout <- rOverlay(las, res)
names(layout) <- "Z"
grid <- raster2dataframe(layout, xy = TRUE, fast = fast)
data.table::setDT(grid)
grid[, Z := NULL]
data.table::setnames(grid, names(grid), c("X", "Y"))
if (!full_raster)
{
if (is_concave)
hull <- concaveman(coordinates(las), concavity = 10, length_threshold = 100)
else
hull <- convex_hull(las@data$X, las@data$Y)
hull <- sf::st_polygon(list(as.matrix(hull)))
hull <- sf::st_sfc(hull)
hull <- sf::st_buffer(hull, dist = raster::res(layout)[1])
hull <- sf::st_coordinates(hull)[,1:2]
keep <- sp::point.in.polygon(grid$X, grid$Y, hull[,1], hull[,2], TRUE) > 0
if (!all(keep)) grid = grid[keep]
}
verbose("Interpolating ground points...")
lidR.context <- "grid_terrain"
ground <- LAS(ground, las@header, proj4string = las@proj4string, check = FALSE, index = las@index)
Zg <- algorithm(ground, grid)
Zg[is.nan(Zg)] <- NA_real_
fast_quantization(Zg, las@header@PHB[["Z scale factor"]], las@header@PHB[["Z offset"]])
cells <- raster::cellFromXY(layout, grid[, .(X,Y)])
if (fast) {
layout@data@values[cells] <- Zg
layout@data@inmemory <- TRUE
} else {
suppressWarnings(layout[cells] <- Zg)
}
if (keep_lowest)
{
verbose("Forcing the lowest ground points to be retained...")
reso <- raster::res(layout)[1]
lasg <- filter_poi(las, Classification %in% c(use_class))
rmin <- grid_metrics(lasg, ~list(Z = min(Z)), reso)
suppressWarnings(layout[] <- pmin(layout[], rmin[], na.rm = TRUE))
}
return(layout)
}
grid_terrain.LAScluster = function(las, res = 1, algorithm, ..., keep_lowest = FALSE, full_raster = FALSE, use_class = c(2L,9L), Wdegenerated = TRUE, is_concave = FALSE)
{
x <- readLAS(las)
if (is.empty(x)) return(NULL)
bbox <- raster::extent(las)
dtm <- grid_terrain(x, res, algorithm, keep_lowest = keep_lowest, full_raster = full_raster, use_class = use_class, Wdegenerated = Wdegenerated, is_concave = is_concave)
dtm <- raster::crop(dtm, bbox)
raster::crs(dtm) <- crs(x)
return(dtm)
}
grid_terrain.LAScatalog = function(las, res = 1, algorithm, ..., keep_lowest = FALSE, full_raster = FALSE, use_class = c(2L,9L), Wdegenerated = TRUE, is_concave = FALSE)
{
if (!is_a_number(res) & !is(res, "RasterLayer")) stop("res is not a number or a RasterLayer")
if (is_a_number(res)) assert_all_are_non_negative(res)
assert_is_algorithm(algorithm)
assert_is_algorithm_spi(algorithm)
opt_select(las) <- "xyzc"
alignment <- list(res = res, start = c(0,0))
if (is(res, "RasterLayer"))
{
ext <- raster::extent(res)
r <- raster::res(res)[1]
las <- catalog_intersect(las, res)
start <- c(ext@xmin, ext@ymin)
alignment <- list(res = r, start = start)
}
if (opt_chunk_size(las) > 0 && opt_chunk_size(las) < 2*alignment$res)
stop("The chunk size is too small. Process aborted.", call. = FALSE)
options <- list(need_buffer = TRUE, drop_null = TRUE, raster_alignment = alignment, automerge = TRUE)
output <- catalog_apply(las, grid_terrain, res = res, algorithm = algorithm, ..., keep_lowest = keep_lowest, full_raster = full_raster, use_class = use_class, Wdegenerated = Wdegenerated, is_concave = is_concave, .options = options)
return(output)
} |
setAs("CHMfactor", "sparseMatrix", function(from) .Call(CHMfactor_to_sparse, from))
setAs("CHMfactor", "triangularMatrix", function(from) .Call(CHMfactor_to_sparse, from))
setAs("CHMfactor", "Matrix", function(from) .Call(CHMfactor_to_sparse, from))
setAs("CHMfactor", "pMatrix", function(from) as(from@perm + 1L, "pMatrix"))
setMethod("expand", signature(x = "CHMfactor"),
function(x, ...)
list(P = as(x, "pMatrix"), L = as(x, "sparseMatrix")))
isLDL <- function(x)
{
stopifnot(is(x, "CHMfactor"))
as.logical(! x@type[2])
}
.isLDL <- function(x) as.logical(! x@type[2])
setMethod("image", "CHMfactor",
function(x, ...) image(as(as(x, "sparseMatrix"), "dgTMatrix"), ...))
.CHM_solve <-
function(a, b,
system = c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt"),
...)
{
chk.s(..., which.call=-2)
sysDef <- eval(formals()$system)
.Call(CHMfactor_solve,
a, b,
match(match.arg(system, sysDef), sysDef, nomatch = 0L))
}
setMethod("solve", signature(a = "CHMfactor", b = "ddenseMatrix"),
.CHM_solve, valueClass = "dgeMatrix")
setMethod("solve", signature(a = "CHMfactor", b = "matrix"),
.CHM_solve, valueClass = "dgeMatrix")
setMethod("solve", signature(a = "CHMfactor", b = "numeric"),
function(a, b, ...)
.CHM_solve(a, matrix(if(is.double(b)) b else as.double(b),
length(b), 1L), ...),
valueClass = "dgeMatrix")
setMethod("solve", signature(a = "CHMfactor", b = "dsparseMatrix"),
function(a, b,
system = c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt"),
...) {
chk.s(..., which.call=-2)
sysDef <- eval(formals()$system)
.Call(CHMfactor_spsolve,
a, as(as(b, "CsparseMatrix"), "dgCMatrix"),
match(match.arg(system, sysDef), sysDef, nomatch = 0L))
}, valueClass = "CsparseMatrix")
setMethod("solve", signature(a = "CHMfactor", b = "diagonalMatrix"),
function(a, b, ...) solve(a, as(b, "dsparseMatrix"), ...))
setMethod("solve", signature(a = "CHMfactor", b = "missing"),
function(a, b,
system = c("A", "LDLt", "LD","DLt", "L","Lt", "D", "P","Pt"),
...) {
chk.s(..., which.call=-2)
sysDef <- eval(formals()$system)
system <- match.arg(system, sysDef)
i.sys <- match(system, sysDef, nomatch = 0L)
as(.Call(CHMfactor_spsolve, a,
.sparseDiagonal(a@Dim[1], shape="g"), i.sys),
switch(system,
A=, LDLt = "symmetricMatrix",
LD=, DLt=, L=, Lt =,
D = "dtCMatrix",
P=, Pt = "pMatrix"))
})
setMethod("solve", signature(a = "CHMfactor", b = "ANY"),
function(a, b, system = c("A", "LDLt", "LD","DLt", "L","Lt", "D", "P","Pt"),
...)
solve(a, as(b, "dMatrix"), system, ...))
setMethod("chol2inv", signature(x = "CHMfactor"),
function (x, ...) {
chk.s(..., which.call=-2)
solve(x, system = "A")
})
setMethod("determinant", signature(x = "CHMfactor", logarithm = "missing"),
function(x, logarithm, ...) determinant(x, TRUE))
setMethod("determinant", signature(x = "CHMfactor", logarithm = "logical"),
function(x, logarithm, ...)
{
ldet <- .Call(CHMfactor_ldetL2, x) / 2
mkDet(logarithm=logarithm, ldet=ldet, sig = 1L)
})
setMethod("update", signature(object = "CHMfactor"),
function(object, parent, mult = 0, ...)
{
stopifnot(extends(clp <- class(parent), "sparseMatrix"))
d <- dim(parent)
if(!extends(clp, "dsparseMatrix"))
clp <- class(parent <- as(parent, "dsparseMatrix"))
if(!extends(clp, "CsparseMatrix"))
clp <- class(parent <- as(parent, "CsparseMatrix"))
if(d[1] == d[2] && !extends(clp, "dsCMatrix") &&
!is.null(v <- getOption("Matrix.verbose")) && v >= 1)
message(gettextf("Quadratic matrix '%s' (=: A) is not formally\n symmetric. Will be treated as A A' ",
"parent"), domain=NA)
chk.s(..., which.call=-2)
.Call(CHMfactor_update, object, parent, mult)
})
.updateCHMfactor <- function(object, parent, mult)
.Call(CHMfactor_update, object, parent, mult)
setMethod("updown", signature(update="ANY", C="ANY", L="ANY"),
function(update,C,L)
stop("'update' must be logical or '+' or '-'; 'C' a matrix, and 'L' a \"CHMfactor\""))
setMethod("updown", signature(update="logical", C="mMatrix", L="CHMfactor"),
function(update,C,L){
bnew <- as(L,'pMatrix') %*% C
.Call(CHMfactor_updown,update, as(bnew,'sparseMatrix'), L)
})
setMethod("updown", signature(update="character", C="mMatrix", L="CHMfactor"),
function(update,C,L){
if(! update %in% c("+","-"))
stop("update must be TRUE/FALSE or '+' or '-'")
update <- update=="+"
bnew <- as(L,'pMatrix') %*% C
.Call(CHMfactor_updown,update, as(bnew,'sparseMatrix'), L)
})
ldetL2up <- function(x, parent, Imult)
{
stopifnot(is(x, "CHMfactor"),
is(parent, "CsparseMatrix"),
nrow(x) == nrow(parent))
.Call(CHMfactor_ldetL2up, x, parent, as.double(Imult))
}
destructive_Chol_update <- function(L, parent, Imult = 1)
{
stopifnot(is(L, "CHMfactor"),
is(parent, "sparseMatrix"))
.Call(destructive_CHM_update, L, parent, Imult)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(JWileymisc)
mtcars$cyl <- factor(mtcars$cyl)
m <- stats::lm(mpg ~ hp + cyl, data = mtcars)
mp <- modelPerformance(m)
print(mp)
mp$Performance[, F2]
mt <- modelTest(m)
print(mt)
APAStyler(mt)
m2 <- stats::lm(mpg ~ hp * cyl, data = mtcars)
APAStyler(modelTest(m2)) |
knitr::opts_chunk$set(collapse = TRUE, comment = "
fig.width = 6, fig.height = 4, fig.align = "center")
library(simmer)
library(parallel)
patient <- trajectory("patients' path") %>%
seize("nurse", 1) %>%
timeout(function() rnorm(1, 15)) %>%
release("nurse", 1) %>%
seize("doctor", 1) %>%
timeout(function() rnorm(1, 20)) %>%
release("doctor", 1) %>%
seize("administration", 1) %>%
timeout(function() rnorm(1, 5)) %>%
release("administration", 1)
envs <- mclapply(1:100, function(i) {
simmer("SuperDuperSim") %>%
add_resource("nurse", 1) %>%
add_resource("doctor", 2) %>%
add_resource("administration", 1) %>%
add_generator("patient", patient, function() rnorm(1, 10, 2)) %>%
run(80) %>%
wrap()
})
library(simmer.plot)
resources <- get_mon_resources(envs)
plot(resources, metric = "utilization")
plot(resources, metric = "usage", c("nurse", "doctor"), items = "server")
plot(get_mon_resources(envs[[6]]), metric = "usage", "doctor", items = "server", steps = TRUE)
arrivals <- get_mon_arrivals(envs)
plot(arrivals, metric = "flow_time") |
context("semicont_single")
library(testthat)
library(hmi)
set.seed(123)
y_imp <- iris[, 1]
y_imp[sample(1:length(y_imp), size = 60)] <- 0
y_imp[sample(1:length(y_imp), size = 20)] <- NA
X_imp <- cbind(1, iris[, 2:4])
imp1 <- imp_semicont_single(y_imp = y_imp,
X_imp = X_imp,
pvalue = 1)
test_that("semicont_single returns plausible values", {
expect_equal(class(imp1$y_ret), "array")
expect_equal(sum(is.na(imp1$y_ret)), 0)
}) |
rf_list_to_matrix <- function(input.twopt,
thresh.LOD.ph = 0,
thresh.LOD.rf = 0,
thresh.rf = 0.5,
ncpus = 1L,
shared.alleles = FALSE,
verbose = TRUE) {
if (inherits(input.twopt, "mappoly.twopt")){
pair_input <- input.twopt$pairwise
marnames <- rownames(get(input.twopt$data.name, pos = 1)$geno.dose)[sort(input.twopt$seq.num)]
marindex <- sort(input.twopt$seq.num)
lod.ph.mat <- lod.mat <- rec.mat <- matrix(NA, input.twopt$n.mrk, input.twopt$n.mrk)
if(shared.alleles)
ShP <- ShQ <- lod.mat
if (ncpus > 1) {
start <- proc.time()
if (verbose)
cat("INFO: Using ", ncpus, " CPUs.\n")
cl <- parallel::makeCluster(ncpus)
parallel::clusterExport(cl,
varlist = c("thresh.LOD.ph", "thresh.LOD.rf", "thresh.rf", "shared.alleles"),
envir = environment())
rf.lod.mat <- parallel::parSapply(cl, pair_input, "select_rf",
thresh.LOD.ph, thresh.LOD.rf, thresh.rf, shared.alleles)
parallel::stopCluster(cl)
end <- proc.time()
if (verbose) {
cat("INFO: Done with",
length(pair_input),
" pairs of markers \n")
cat("INFO: Operation took:",
round((end - start)[3],
digits = 3),
"seconds\n")
}
} else {
if (verbose) {
cat("INFO: Going singlemode. Using one CPU.\n")
}
rf.lod.mat <- sapply(pair_input, select_rf, thresh.LOD.ph, thresh.LOD.rf, thresh.rf, shared.alleles)
}
rec.mat[lower.tri(rec.mat)] <- as.numeric(rf.lod.mat[1,])
rec.mat[upper.tri(rec.mat)] <- t(rec.mat)[upper.tri(rec.mat)]
lod.mat[lower.tri(lod.mat)] <- as.numeric(rf.lod.mat[2,])
lod.mat[upper.tri(lod.mat)] <- t(lod.mat)[upper.tri(lod.mat)]
lod.ph.mat[lower.tri(lod.ph.mat)] <- as.numeric(rf.lod.mat[3,])
lod.ph.mat[upper.tri(lod.ph.mat)] <- t(lod.ph.mat)[upper.tri(lod.ph.mat)]
dimnames(lod.ph.mat) <- dimnames(rec.mat) <- dimnames(lod.mat) <- list(marnames, marnames)
if(shared.alleles){
ShP[lower.tri(ShP)] <- as.numeric(rf.lod.mat[4,])
ShP[upper.tri(ShP)] <- t(ShP)[upper.tri(ShP)]
ShQ[lower.tri(ShQ)] <- as.numeric(rf.lod.mat[5,])
ShQ[upper.tri(ShQ)] <- t(ShQ)[upper.tri(ShQ)]
dimnames(ShP) <- dimnames(ShQ) <- list(marindex, marindex)
} else{
ShP <- ShQ <- NULL
}
structure(list(thresh.LOD.ph = thresh.LOD.ph,
thresh.LOD.rf = thresh.LOD.rf,
thresh.rf = thresh.rf,
rec.mat = rec.mat,
lod.mat = abs(lod.mat),
lod.ph.mat = abs(lod.ph.mat),
ShP = ShP,
ShQ = ShQ,
data.name = input.twopt$data.name,
chisq.pval.thres = input.twopt$chisq.pval.thres,
chisq.pval = input.twopt$chisq.pval,
cl = class(input.twopt)),
class = "mappoly.rf.matrix")
}
else if (inherits(input.twopt, "mappoly.twopt2")){
rec.mat <- input.twopt$pairwise$rf
lod.mat <- abs(input.twopt$pairwise$LOD.rf)
lod.ph.mat <- abs(input.twopt$pairwise$LOD.ph)
ShP <- input.twopt$pairwise$Sh.P1
ShQ <- input.twopt$pairwise$Sh.P2
dimnames(rec.mat) <- dimnames(lod.mat) <-
dimnames(lod.ph.mat) <- dimnames(ShP) <-
dimnames(ShQ) <- list(input.twopt$seq.mrk.names,
input.twopt$seq.mrk.names)
if(thresh.LOD.ph > 0){
rec.mat[lod.ph.mat < thresh.LOD.ph] <- NA
lod.mat[lod.ph.mat < thresh.LOD.ph] <- NA
lod.ph.mat[lod.ph.mat < thresh.LOD.ph] <- NA
ShP[lod.ph.mat < thresh.LOD.ph] <- NA
ShQ[lod.ph.mat < thresh.LOD.ph] <- NA
}
if(thresh.LOD.rf > 0){
rec.mat[lod.mat < thresh.LOD.rf] <- NA
lod.mat[lod.mat < thresh.LOD.rf] <- NA
lod.ph.mat[lod.mat < thresh.LOD.rf] <- NA
ShP[lod.mat < thresh.LOD.rf] <- NA
ShQ[lod.mat < thresh.LOD.rf] <- NA
}
if(thresh.rf < 0.5){
rec.mat[rec.mat < thresh.rf] <- NA
lod.mat[rec.mat < thresh.rf] <- NA
lod.ph.mat[rec.mat < thresh.rf] <- NA
ShP[rec.mat < thresh.rf] <- NA
ShQ[rec.mat < thresh.rf] <- NA
}
structure(list(thresh.LOD.ph = thresh.LOD.ph,
thresh.LOD.rf = thresh.LOD.rf,
thresh.rf = thresh.rf,
rec.mat = rec.mat,
lod.mat = lod.mat,
lod.ph.mat = lod.ph.mat,
ShP = ShP,
ShQ = ShQ,
data.name = input.twopt$data.name,
chisq.pval.thres = input.twopt$chisq.pval.thres,
chisq.pval = input.twopt$chisq.pval),
class = "mappoly.rf.matrix")
}
else{
stop(deparse(substitute(input.twopt)),
" is not an object of class 'mappoly.twopt' or 'mappoly.twopt2'")
}
}
print.mappoly.rf.matrix <- function(x, ...) {
cat(" This is an object of class 'mappoly.rf.matrix'\n\n")
cat(" Criteria used to filter markers:\n\n")
cat(
" Configuration phase LOD: ",
x$thresh.LOD.ph,
"\n Recombination fraction LOD: ",
x$thresh.LOD.rf,
"\n Maximum recombination fraction: ",
x$thresh.rf,
"\n"
)
n.mrk <- ncol(x$rec.mat)
per.fill <-
round(100 * sum(!is.na(x$rec.mat)) / (length(x$rec.mat)-ncol(x$rec.mat)), 1)
cat("\n No. markers: ", n.mrk, "\n")
cat(" Percentage filled: ", per.fill, "%\n")
}
plot.mappoly.rf.matrix <- function(x, type = c("rf", "lod"), ord = NULL, rem = NULL,
main.text = NULL, index = FALSE, fact = 1, ...){
type <- match.arg(type)
if(inherits(ord, "mappoly.sequence"))
ord <- ord$seq.mrk.names
if(type == "rf"){
w <- x$rec.mat
if(!is.null(ord))
{
w <- w[ord,ord]
}
if(!(is.null(rem) || sum(colnames(x$rec.mat)%in%rem) == 0))
{
o <- which(colnames(x$rec.mat)%in%rem)
w <- w[-o,-o]
}
if(fact > 1)
w <- aggregate_matrix(w, fact)
if(is.null(main.text))
main.text <- "Recombination fraction matrix"
col.range <-
na.omit(rev(fields::tim.colors())[1:(ceiling(128 * max(x$rec.mat, na.rm = TRUE)) + 1)])
brks <- NULL
} else if(type == "lod")
{
w <- x$lod.mat
if(!is.null(ord))
{
w <- w[ord,ord]
}
if(!(is.null(rem) || sum(colnames(x$rec.mat)%in%rem) == 0))
{
o <- which(colnames(x$rec.mat)%in%rem)
w <- w[-o,-o]
}
if(fact > 1)
w <- aggregate_matrix(w, fact)
w[w < 1e-4] <- 1e-4
w <- log10(w)
if(is.null(main.text))
main.text <- "log(LOD) Score matrix"
col.range <- na.omit(fields::tim.colors()[1:(ceiling(128 * max(x$lod.mat, na.rm = TRUE)) + 1)])
col.range <- col.range[ceiling(seq(1, length(col.range), length.out = 10))]
brks <- seq(min(w, na.rm = TRUE), max(w, na.rm = TRUE), length.out = 11)
brks <- round(exp(brks/log10(exp(1))),1)
} else stop("Invalid matrix type.")
fields::image.plot(
w,
col = col.range,
lab.breaks = brks,
main = main.text,
useRaster = FALSE,
axes = FALSE
)
if(ncol(w) < 100)
ft <- .7
else
ft <- 100/ncol(w)
if(index)
text(x = seq(0,1, length.out = ncol(w)), y = seq(0,1, length.out = ncol(w)),
labels = colnames(w), cex = ft)
}
select_rf <- function(x, thresh.LOD.ph, thresh.LOD.rf, thresh.rf, shared.alleles = FALSE)
{
if(any(is.na(x)))
{
if(shared.alleles){return(c(NA,NA,NA,NA,NA))} else return(c(NA,NA,NA))
}
if((nrow(x) == 1 || abs(x[2 , 1]) >= thresh.LOD.ph) &&
abs(x[1, 3]) >= thresh.LOD.rf &&
abs(x[1, 2]) <= thresh.rf)
{
if(shared.alleles){
y <- strsplit(rownames(x), "-")
return(c(x[1,2:3], x[2,1], as.numeric(y[[1]][1]), as.numeric(y[[1]][2])))
} else {
return(c(x[1,2:3], x[2,1]))
}
}
else{
{
if(shared.alleles){return(c(NA,NA,NA,NA,NA))} else return(c(NA,NA,NA))
}
}
} |
cifti_brain_structs = function(file) {
if (is.cifti(file)) {
cii = file
} else {
cii = read_cifti(file)
}
struct_names = sapply(cii$BrainModel, attr, "BrainStructure")
return(struct_names)
} |
probitCJS = function(ddl,dml,parameters,design.parameters,burnin, iter, initial=NULL, imat=NULL){
sample.z = function(id, mu.y, mu.z, yvec){
.Call("sampleZ", ID=id, PVec=pnorm(mu.y), PhiVec=pnorm(mu.z), yVec=yvec, PACKAGE="marked")
}
make.ztilde.idx = function(id, zvec){
.Call("makeZtildeIdx", ID=id, zvec=zvec, PACKAGE="marked")
}
restricted.dml = create.dml(ddl,parameters,design.parameters,restrict=TRUE)
is.phi.re=!is.null(restricted.dml$Phi$re)
is.p.re=!is.null(restricted.dml$p$re)
yvec = as.vector(t(ddl$ehmat[,-1]))
yvec=yvec[ddl$p$Time>=ddl$p$Cohort]
n=length(yvec)
ddl$p = ddl$p[ddl$p$Time>=ddl$p$Cohort,]
Xy = as.matrix(restricted.dml$p$fe)
pn.p = colnames(Xy)
Xz = as.matrix(restricted.dml$Phi$fe)
pn.phi = colnames(Xz)
id = ddl$p$id
if(is.phi.re){
n.phi.re=sapply(restricted.dml$Phi$re$re.list, function(x){dim(x)[2]})
K.phi=do.call("cbind", restricted.dml$Phi$re$re.list)
ind.phi.re=rep(1:length(n.phi.re), n.phi.re)
if(length(n.phi.re)>1){
m.phi.re=model.matrix(~factor(ind.phi.re)-1)
} else{
m.phi.re=matrix(1, nrow=n.phi.re[[1]])
}
colnames(m.phi.re)=names(n.phi.re)
}
if(is.p.re){
n.p.re=sapply(restricted.dml$p$re$re.list, function(x){dim(x)[2]})
K.p=do.call("cbind", restricted.dml$p$re$re.list)
ind.p.re=rep(1:length(n.p.re), n.p.re)
if(length(n.p.re)>1){
m.p.re=model.matrix(~factor(ind.p.re)-1)
} else m.p.re=matrix(1, nrow=n.p.re[[1]])
colnames(m.p.re)=names(n.p.re)
}
if(is.null(parameters$Phi$prior)){
tau.b.z = 0.01
mu.b.z = rep(0,ncol(Xz))
}else{
tau.b.z = parameters$Phi$prior$tau
mu.b.z = parameters$Phi$prior$mu
}
if(is.null(parameters$p$prior)){
tau.b.y = 0.01
mu.b.y = rep(0,ncol(Xy))
}else{
tau.b.y = parameters$p$prior$tau
mu.b.y = parameters$p$prior$mu
}
if(is.phi.re){
if(is.null(parameters$Phi$prior$re)){
a.phi=rep(2,length(n.phi.re))
b.phi=rep(1.0E-4,length(n.phi.re))
Q.phi=lapply(n.phi.re, function(x){Diagonal(x)})
rnks.phi=n.phi.re
}
else{
a.phi=parameters$Phi$prior$re$a
b.phi=parameters$Phi$prior$re$b
Q.phi=parameters$Phi$prior$re$Q
if(!is.list(Q.phi)) {Q.phi = list(Q.phi)}
rnks.phi=unlist(lapply(Q.phi, function(x){sum(eigen(x)$values>nrow(x)*.Machine$double.eps)}))
}
Q.phi=.bdiag(Q.phi)
dimnames(Q.phi)=list(colnames(K.phi), colnames(K.phi))
}
if(is.p.re){
if(is.null(parameters$p$prior$re)){
a.p=rep(2,length(n.p.re))
b.p=rep(1.0E-4,length(n.p.re))
Q.p=lapply(n.p.re, function(x){Diagonal(x)})
rnks.p=n.p.re
}else{
a.p=parameters$p$prior$re$a
b.p=parameters$p$prior$re$b
Q.p=parameters$p$prior$re$Q
if(!is.list(Q.p)) {Q.p = list(Q.p)}
rnks.p=unlist(lapply(Q.p, function(x){sum(eigen(x)$values>nrow(x)*.Machine$double.eps)}))
}
Q.p=.bdiag(Q.p)
dimnames(Q.p)=list(colnames(K.p), colnames(K.p))
}
if(is.null(initial)) {
beta = cjs.initial(dml,imat=imat,link="probit")
} else beta = set.initial(c("Phi","p"),dml,initial)$par
beta.z = beta$Phi
beta.y = beta$p
if(is.phi.re){
alpha.phi = rep(0,ncol(K.phi))
eta.phi = as.vector(K.phi%*%alpha.phi)
tau.phi = a.phi/b.phi
Tau.phi.mat = Matrix(diag(x=rep(tau.phi, n.phi.re)))
Q.alpha.phi = suppressMessages(Tau.phi.mat%*%Q.phi)
} else eta.phi = rep(0,nrow(Xz))
if(is.p.re){
alpha.p = rep(0,ncol(K.p))
eta.p = as.vector(K.p%*%alpha.p)
tau.p = a.p/b.p
Tau.p.mat = Diagonal(x=rep(tau.p, n.p.re))
Q.alpha.p = suppressMessages(Tau.p.mat%*%Q.p)
} else eta.p = rep(0,nrow(Xy))
beta.z.stor = matrix(NA, iter, ncol(Xz))
beta.y.stor = matrix(NA, iter, ncol(Xy))
colnames(beta.z.stor) = pn.phi
colnames(beta.y.stor) = pn.p
if(is.phi.re){
alpha.phi.stor = matrix(NA, iter, length(alpha.phi))
colnames(alpha.phi.stor) = colnames(K.phi)
eta.phi.stor = matrix(NA, iter, length(eta.phi))
tau.phi.stor = matrix(NA, iter, length(n.phi.re))
}
if(is.p.re){
alpha.p.stor = matrix(NA, iter, n.p.re)
colnames(alpha.p.stor) = colnames(K.p)
eta.p.stor = matrix(NA, iter, length(eta.p))
tau.p.stor = matrix(NA, iter, length(n.p.re))
}
message("probitCJS MCMC beginning...")
message("p model = ", as.character(parameters$p$formula))
message("phi model = ", as.character(parameters$Phi$formula))
flush.console()
tot.iter = burnin + iter
st = Sys.time()
for(m in 1:tot.iter){
zvec = sample.z(id=id, mu.y=as.vector(Xy%*%beta.y+eta.p), mu.z=as.vector(Xz%*%beta.z+eta.phi), yvec)
a = ifelse(zvec==0, -Inf, 0)
b = ifelse(zvec==0, 0, Inf)
z.tilde = truncnorm::rtruncnorm(n, a=a, b=b, mean=as.vector(Xz%*%beta.z+eta.phi), sd=1)
idx.z.tilde = make.ztilde.idx(id, zvec)
V.beta.z.inv = crossprod(Xz[idx.z.tilde,]) + tau.b.z
m.beta.z = solve(V.beta.z.inv, crossprod(Xz[idx.z.tilde,],z.tilde[idx.z.tilde]-eta.phi[idx.z.tilde]) + tau.b.z*mu.b.z)
beta.z = m.beta.z + solve(chol(V.beta.z.inv), rnorm(ncol(Xz),0,1))
if(m>burnin)beta.z.stor[m-burnin,] = beta.z
a = ifelse(yvec==0, -Inf, 0)
b = ifelse(yvec==0, 0, Inf)
y.tilde = truncnorm::rtruncnorm(n, a=a, b=b, mean=as.vector(Xy%*%beta.y+eta.p), sd=1)
V.beta.y.inv = crossprod(Xy[zvec==1,]) + tau.b.y
m.beta.y = solve(V.beta.y.inv, crossprod(Xy[zvec==1,],y.tilde[zvec==1]-eta.p[zvec==1])+tau.b.y*mu.b.y)
beta.y = m.beta.y + solve(chol(V.beta.y.inv), rnorm(ncol(Xy),0,1))
if(m>burnin) beta.y.stor[m-burnin,] = beta.y
if(is.phi.re){
Xbeta = Xz[idx.z.tilde,]%*%beta.z
V.alpha.phi.inv = crossprod(K.phi[idx.z.tilde,]) + Q.alpha.phi
m.alpha.phi = solve(V.alpha.phi.inv, crossprod(K.phi[idx.z.tilde,],z.tilde[idx.z.tilde]-Xbeta))
alpha.phi = m.alpha.phi + solve(chol(V.alpha.phi.inv), rnorm(ncol(K.phi),0,1))
eta.phi = K.phi%*%alpha.phi
quad.phi = suppressMessages(crossprod(m.phi.re*alpha.phi,Q.phi))%*%(m.phi.re*alpha.phi)/2
tau.phi = rgamma(length(n.phi.re), rnks.phi/2 + a.phi, as.numeric(quad.phi) + b.phi)
Tau.phi.mat = Diagonal(x=rep(tau.phi, n.phi.re))
Q.alpha.phi = Tau.phi.mat%*%Q.phi
if(m>burnin) {
alpha.phi.stor[m-burnin,] = as.vector(alpha.phi)
eta.phi.stor[m-burnin,] = as.vector(eta.phi)
tau.phi.stor[m-burnin,] = as.vector(tau.phi)
}
}
if(is.p.re){
Xbeta = Xy[zvec==1,]%*%beta.y
V.alpha.p.inv = crossprod(K.p[zvec==1,]) + Q.alpha.p
m.alpha.p = solve(V.alpha.p.inv, crossprod(K.p[zvec==1,],y.tilde[zvec==1]-Xbeta))
alpha.p = m.alpha.p + solve(chol(V.alpha.p.inv), rnorm(ncol(K.p),0,1))
eta.p = K.p%*%alpha.p
quad.p = suppressMessages(crossprod(m.p.re*alpha.p,Q.p))%*%(m.p.re*alpha.p)/2
tau.p = rgamma(length(n.p.re), rnks.p/2 + a.p, as.numeric(quad.p) + b.p)
Tau.p.mat = Diagonal(x=rep(tau.p, n.p.re))
Q.alpha.p = Tau.p.mat%*%Q.p
if(m>burnin) {
alpha.p.stor[m-burnin,] = as.vector(alpha.p)
eta.p.stor[m-burnin,] = as.vector(eta.p)
tau.p.stor[m-burnin,] = as.vector(tau.p)
}
}
if(m==30){
tpi = as.numeric(difftime(Sys.time(), st, units="secs"))/30
ttc = round((tot.iter-30)*tpi/3600, 2)
if(ttc>=1) cat("Approximate time till completion: ", ttc, " hours\n")
else cat("Approximate time till completion: ", ttc*60, " minutes\n")
}
if(100*(m/tot.iter) >= 10 & (100*(m/tot.iter))%%10==0)
{
cat(100*(m/tot.iter), "% completed\n")
flush.console()
}
}
message("MCMC complete, processing output...")
phibeta.mcmc = mcmc(beta.z.stor)
hpd.phi = HPDinterval(phibeta.mcmc)
beta.phi = data.frame(mode = apply(beta.z.stor, 2, mcmc_mode), mean=apply(beta.z.stor, 2, mean),
sd=apply(beta.z.stor,2,sd),CI.lower=hpd.phi[,1], CI.upper=hpd.phi[,2])
pbeta.mcmc = mcmc(beta.y.stor)
hpd.p = HPDinterval(pbeta.mcmc)
beta.p = data.frame( mode = apply(beta.y.stor, 2, mcmc_mode),
mean=apply(beta.y.stor, 2, mean),
sd=apply(beta.y.stor,2,sd),
CI.lower=hpd.p[,1], CI.upper=hpd.p[,2])
if(is.phi.re){
vc.phi=mcmc(1/tau.phi.stor)
colnames(vc.phi) = names(n.phi.re)
vc.phi.df=data.frame(mode=apply(vc.phi, 2, mcmc_mode),mean=apply(vc.phi, 2, mean),
sd=apply(vc.phi,2,sd),
CI.lower=HPDinterval(vc.phi)[,1], CI.upper=HPDinterval(vc.phi)[,2])
re.struc.Phi=list(K=K.phi, Q=Q.phi)
phialpha.mcmc=mcmc(alpha.phi.stor)
hpd.phi = HPDinterval(phialpha.mcmc)
alpha.phi = data.frame( mode = apply(alpha.phi.stor, 2, mcmc_mode),
mean=apply(alpha.phi.stor, 2, mean),
sd=apply(alpha.phi.stor,2,sd),
CI.lower=hpd.phi[,1], CI.upper=hpd.phi[,2])
} else {
vc.phi=NULL
vc.phi.df=NULL
re.struc.Phi=NULL
alpha.phi=NULL
phialpha.mcmc=NULL
}
if(is.p.re){
vc.p=mcmc(1/tau.p.stor)
colnames(vc.p) = names(n.p.re)
vc.p.df=data.frame(mode=apply(vc.p, 2, mcmc_mode),mean=apply(vc.p, 2, mean),
sd=apply(vc.p,2,sd),
CI.lower=HPDinterval(vc.p)[,1], CI.upper=HPDinterval(vc.p)[,2])
re.struc.p=list(K=K.p, Q=Q.p)
palpha.mcmc=mcmc(alpha.p.stor)
hpd.p = HPDinterval(palpha.mcmc)
alpha.p = data.frame( mode = apply(alpha.p.stor, 2, mcmc_mode),
mean=apply(alpha.p.stor, 2, mean),
sd=apply(alpha.p.stor,2,sd),
CI.lower=hpd.p[,1], CI.upper=hpd.p[,2])
} else {
vc.p=NULL
vc.p.df=NULL
re.struc.p=NULL
alpha.p=NULL
palpha.mcmc=NULL
}
res=list(beta=list(Phi=beta.phi,p=beta.p),
alpha=list(Phi=alpha.phi,p=alpha.p),
var.comp=list(Phi=vc.phi.df, p=vc.p.df),
beta.mcmc=list(Phi=phibeta.mcmc, p=pbeta.mcmc),
alpha.mcmc=list(Phi=phialpha.mcmc, p=palpha.mcmc),
var.comp.mcmc=list(Phi=vc.phi, p=vc.p),
model_data=list(Phi.dm=dml$Phi$fe,p.dm=dml$p$fe),
re.struct=list(Phi=re.struc.Phi, p=re.struc.p)
)
class(res)=c("crm","mcmc","probitCJS")
return(res)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
mets <- lava:::versioncheck('mets', 1)
fullVignette <- Sys.getenv("_R_FULL_VIGNETTE_") %in% c("1","TRUE")
library('lava')
f <- function(x) cos(1.25*x) + x - 0.25*x^2
m <- lvm(x1+x2+x3 ~ eta1, y1+y2+y3 ~ eta2, latent=~eta1+eta2)
regression(m) <- eta1+eta2 ~ z
functional(m, eta2~eta1) <- f
d <- sim(m, n=200, seed=42)
plot(m, plot.engine="visNetwork")
m1 <- lvm(x1+x2+x3 ~ eta1, eta1 ~ z, latent=~eta1)
m2 <- lvm(y1+y2+y3 ~ eta2, eta2 ~ z, latent=~eta2)
nonlinear(m2, type="quadratic") <- eta2 ~ eta1
e1 <- twostage(m1, m2, data=d)
e1
e0 <- estimate(regression(m1%++%m2, eta2~eta1), d)
estimate(e0,keep="^eta2~[a-z]",regex=TRUE)
newd <- expand.grid(eta1=seq(-4, 4, by=0.1), z=0)
pred1 <- predict(e1, newdata=newd, x=TRUE)
head(pred1)
kn <- seq(-3,3,length.out=5)
nonlinear(m2, type="spline", knots=kn) <- eta2 ~ eta1
e2 <- twostage(m1, m2, data=d)
e2
p <- cbind(eta1=newd$eta1,
estimate(e2,f=function(p) predict(e2,p=p,newdata=newd))$coefmat)
head(p)
plot(I(eta2-z) ~ eta1, data=d, col=Col("black",0.5), pch=16,
xlab=expression(eta[1]), ylab=expression(eta[2]), xlim=c(-4,4))
lines(Estimate ~ eta1, data=as.data.frame(p), col="darkblue", lwd=5)
confband(p[,1], lower=p[,4], upper=p[,5], polygon=TRUE,
border=NA, col=Col("darkblue",0.2))
m2a <- nonlinear(m2, type="linear", eta2~eta1)
m2b <- nonlinear(m2, type="quadratic", eta2~eta1)
kn1 <- seq(-3,3,length.out=5)
kn2 <- seq(-3,3,length.out=8)
m2c <- nonlinear(m2, type="spline", knots=kn1, eta2~eta1)
m2d <- nonlinear(m2, type="spline", knots=kn2, eta2~eta1)
if (fullVignette) {
fit.cv$fit <- NULL
saveRDS(fit.cv, "nonlinear_fitcv.rds")
} else {
fit.cv <- readRDS("nonlinear_fitcv.rds")
}
summary(fit.cv)
fit <- lapply(list(m2a,m2b,m2c,m2d),
function(x) {
e <- twostage(m1,x,data=d)
pr <- cbind(eta1=newd$eta1,predict(e,newdata=newd$eta1,x=TRUE))
return(list(estimate=e,predict=as.data.frame(pr)))
})
plot(I(eta2-z) ~ eta1, data=d, col=Col("black",0.5), pch=16,
xlab=expression(eta[1]), ylab=expression(eta[2]), xlim=c(-4,4))
col <- c("orange","darkred","darkgreen","darkblue")
lty <- c(3,4,1,5)
for (i in seq_along(fit)) {
with(fit[[i]]$pr, lines(eta2 ~ eta1, col=col[i], lwd=4, lty=lty[i]))
}
legend("bottomright",
c("linear","quadratic","spline(df=4)","spline(df=6)"),
col=col, lty=lty, lwd=3)
if (fullVignette) {
saveRDS(summary(selmod), "nonlinear_selmod.rds")
} else {
selmod <- readRDS("nonlinear_selmod.rds")
}
selmod
d$g <- (d$z<0)*1
mm1 <- regression(m1, ~g)
mm2 <- regression(m2, eta2~ u1+u2+u1:g+u2:g+z)
pred <- function(mu,var,data,...) {
cbind("u1"=mu[,1],"u2"=mu[,1]^2+var[1],
"u1:g"=mu[,1]*data[,"g"],"u2:g"=(mu[,1]^2+var[1])*data[,"g"])
}
ee1 <- twostage(mm1, model2=mm2, data=d, predict.fun=pred)
estimate(ee1,keep="eta2~u",regex=TRUE)
summary(estimate(ee1,keep="(:g)", regex=TRUE))
m1 <- baptize(m1)
intercept(m1, ~x1+eta1) <- list(0,NA)
regression(m1,x1~eta1) <- 1
if (fullVignette) {
saveRDS(em0, "nonlinear_em0.rds")
} else {
em0 <- readRDS("nonlinear_em0.rds")
}
summary(em0)
e0 <- estimate(m1,data=d)
AIC(e0,em0)
em2 <- twostage(em0,m2,data=d)
em2
plot(I(eta2-z) ~ eta1, data=d, col=Col("black",0.5), pch=16,
xlab=expression(eta[1]), ylab=expression(eta[2]))
lines(Estimate ~ eta1, data=as.data.frame(p), col="darkblue", lwd=5)
confband(p[,1], lower=p[,4], upper=p[,5], polygon=TRUE,
border=NA, col=Col("darkblue",0.2))
pm <- cbind(eta1=newd$eta1,
estimate(em2, f=function(p) predict(e2,p=p,newdata=newd))$coefmat)
lines(Estimate ~ eta1, data=as.data.frame(pm), col="darkred", lwd=5)
confband(pm[,1], lower=pm[,4], upper=pm[,5], polygon=TRUE,
border=NA, col=Col("darkred",0.2))
legend("bottomright", c("Gaussian","Mixture"),
col=c("darkblue","darkred"), lwd=2, bty="n") |
"print.varstabil" <-
function(x, ...){
print(x[[1]], ...)
} |
mvNcdf <- function(l, u, Sig, n = 1e5){
d=length(l);
if (length(u) !=d | d != sqrt(length(Sig)) | any(l > u)){
stop('l, u, and Sig have to match in dimension with u>l')
}
if(d == 1L){
return(list(prob = exp(lnNpr(a = l / sqrt(Sig[1]), b = u / sqrt(Sig[1]))), err = NA, relErr = NA, upbnd = NA))
}
out <- cholperm(Sig, l, u)
L <- out$L
l <- out$l
u <- out$u
D <- diag(L)
if (any(D < 1e-10)){
warning('Method may fail as covariance matrix is singular!')
}
L <- L / D
u <- u / D
l <- l / D
L <- L - diag(d)
x0 <- rep(0, 2 * length(l) - 2)
solvneq <- nleqslv::nleqslv(x0, fn = gradpsi, jac = jacpsi,
L = L, l = l, u = u, global = "pwldog", method = "Broyden",
control = list(maxit = 500L))
xmu <- solvneq$x
exitflag <- solvneq$termcd
flag <- TRUE
if(!(exitflag %in% 1:2) || !isTRUE(all.equal(solvneq$fvec, rep(0, length(x0)), tolerance = 1e-6))){
flag <- FALSE
}
x <- xmu[1:(d-1)]
mu <- xmu[d:(2*d-2)]
if(any((out$L %*% c(x,0) - out$u)[-d] > 0, (-out$L %*% c(x,0) + out$l)[-d] > 0)){
warning("Solution to exponential tilting problem using Powell's dogleg method \n does not lie in convex set l < Lx < u.")
flag <- FALSE
}
if(!flag){
solvneqc <- alabama::auglag(par = xmu,
fn = function(par, l=l, L=L, u=u){
ps <- try(-psy(x = c(par[1:(d-1)],0), mu = c(par[d:(2*d-2)],0),
l = l, L = L, u = u))
return(ifelse(is.character(ps), -1e10, ps))},
gr = function(x, l=l, L=L, u=u){gradpsi(y=x, L=L,l=l, u=u)},
L=L, l=l, u=u,
heq = function(x, l, L, u){gradpsi(y = x, l=l, L=L, u = u)[d:(2*d-2)]},
hin= function(par,...){c((out$u - out$L %*% c(par[1:(d-1)],0))[-d] > 0, (out$L %*% c(par[1:(d-1)],0) - out$l)[-d])},
control.outer = list(trace = FALSE,method="nlminb"))
if(solvneqc$convergence == 0){
x <- solvneqc$par[1:(d-1)]
mu <- solvneqc$par[d:(2*d-2)]
} else{
stop('Did not find a solution to the nonlinear system in `mvNqmc`!')
}
}
est <- mvnpr(n, L, l, u, mu)
est$upbnd <- exp(psy(x, L, l, u, mu))
return(est)
} |
utils::globalVariables(c("."))
NULL |
setUnderlyingBounds = function(variable, data){
variable$lowerBoundZ[data[variable$variableName] == 0] = -Inf
variable$lowerBoundZ[data[variable$variableName] == 1] = 0
variable$upperBoundZ[data[variable$variableName] == 0] = 0
variable$upperBoundZ[data[variable$variableName] == 1] = Inf
return(variable)
} |
QRLMM = function(y,x,z,groups,p=0.5,precision=0.0001,MaxIter=300,M=10,cp=0.25,beta=NA,sigma=NA,Psi=NA,show.convergence=TRUE,CI=95)
{
nj = c(as.data.frame(table(groups))[,2])
if(length(p)==1)
{
if( (length(x) == 0) | (length(y) == 0) | (length(z) == 0)) stop("All parameters must be provided.")
if(sum(y[is.na(y)==TRUE]) > 0) stop("There are some NA's values in y")
if(sum(y[is.na(x)==TRUE]) > 0) stop("There are some NA's values in x")
if(sum(y[is.na(z)==TRUE]) > 0) stop("There are some NA's values in z")
if(ncol(as.matrix(y)) > 1) stop("y must have just one column")
if( length(y) != sum(nj) ) stop("nj does not match with the provided data. (length(y) != sum(nj))")
if( length(y) != nrow(as.matrix(x)) ) stop("x variable does not have the same number of lines than y")
if( length(y) != nrow(as.matrix(z)) ) stop("z variable does not have the same number of lines than y")
if(p >= 1 | p <= 0) stop("p must be a real number in (0,1)")
if(precision <= 0) stop("precision must be a positive value (suggested to be small)")
if(MaxIter <= 0 |MaxIter%%1!=0) stop("MaxIter must be a positive integer value")
if(M <= 0 |M%%1!=0) stop("M must be a positive integer value >= 10")
if(cp > 1 | cp < 0) stop("cp must be a real number in [0,1]")
if(is.logical(show.convergence) == FALSE) stop("show.convergence must be TRUE or FALSE.")
namesz <- ('z1')
if(ncol(as.matrix(z))>1){
for(i in 2:ncol(as.matrix(z))){namesz <- c(namesz, paste("z",i,sep=""))}
}
if(is.na(beta) == FALSE)
{if(length(beta) != ncol(as.matrix(x))) stop("beta must be a vector of dimension equal to columns of x")}
if(is.na(sigma) == FALSE)
{if(sigma <= 0) stop("sigma must be a positive number")}
if(is.na(Psi) == FALSE)
{
if( (ncol(as.matrix(D)) != ncol(as.matrix(z))) | ((nrow(as.matrix(D)) != ncol(as.matrix(z)))) ) stop("D must be a square matrix of dims equal to the columns of z")
if(det(D)<=0) stop("D must be a square symmetrical real posite definite matrix.")
}
if(is.na(beta) == TRUE){beta = suppressWarnings(rq(y ~ -1 + x,tau = p))$coefficients}
if(is.na(sigma) == TRUE){dif = y - x%*%beta;
sigma = (1/length(y))*(sum(p*dif[dif>0]) - sum((1-p)*dif[dif<0]))}
if(is.na(Psi) == TRUE){Psi = diag(ncol(as.matrix(z)))}
out <- suppressWarnings(QSAEM_COM_7(y,x,z,nj,p,precision,MaxIter,M,pc=cp,beta=beta,sigmae=sigma,D=Psi))
cat('\n')
cat('---------------------------------------------------\n')
cat('Quantile Regression for Linear Mixed Model\n')
cat('---------------------------------------------------\n')
cat('\n')
cat("Quantile =",p)
cat('\n')
cat("Subjects =",length(nj),";",'Observations =',sum(nj),
ifelse(sum(nj==nj[1])==length(nj),'; Balanced =',""),
ifelse(sum(nj==nj[1])==length(nj),nj[1],""))
cat('\n')
cat('\n')
cat('-----------\n')
cat('Estimates\n')
cat('-----------\n')
cat('\n')
cat('- Fixed effects \n')
cat('\n')
print(round(out$res$table,5))
cat('\n')
cat('sigma =',round(out$res$sigmae,5),'\n')
cat('\n')
cat('Random effects \n')
cat('\n')
cat('i) Weights \n')
print(round(out$res$weights,5))
cat('\n')
cat('ii) Variance-Covariance Matrix \n')
dimnames(out$res$D) <- list(namesz,namesz)
print(round(out$res$D,5))
cat('\n')
cat('------------------------\n')
cat('Model selection criteria\n')
cat('------------------------\n')
cat('\n')
critFin <- c(out$res$loglik, out$res$AIC, out$res$BIC, out$res$HQ)
critFin <- round(t(as.matrix(critFin)),digits=3)
dimnames(critFin) <- list(c("Value"),c("Loglik", "AIC", "BIC","HQ"))
print(critFin)
cat('\n')
cat('-------\n')
cat('Details\n')
cat('-------\n')
cat('\n')
cat("Convergence reached? =",(out$res$iter < MaxIter))
cat('\n')
cat('Iterations =',out$res$iter,"/",MaxIter)
cat('\n')
cat('Criteria =',round(out$res$criterio,5))
cat('\n')
cat('MC sample =',M)
cat('\n')
cat('Cut point =',cp)
cat('\n')
cat("Processing time =",out$res$time,units(out$res$time))
if(show.convergence=="TRUE")
{
cpl = cp*MaxIter
d = dim(x)[2]
q = dim(z)[2]
ndiag = (q*(1+q)/2)
npar = d+1+ndiag
labels = list()
for(i in 1:d){labels[[i]] = bquote(beta[.(i)])}
labels[[d+1]] = bquote(sigma)
for(i in 1:ndiag){labels[[i+d+1]] = bquote(psi[.(i)])}
par(mar=c(4, 4.5, 1, 0.5))
op <- par(mfrow=c(ifelse(npar%%3==0,npar%/%3,(npar%/%3)+1),3))
for(i in 1:npar)
{
plot.ts(out$conv$teta[i,],xlab="Iteration",ylab=labels[[i]])
abline(v=cpl,lty=2)
}
}
par(mfrow=c(1,1))
res = list(iter = out$res$iter,criteria = out$res$criterio,beta = out$res$beta,weights = round(out$res$weights,5), sigma= out$res$sigmae,Psi = out$res$D,SE=out$res$EP,table = out$res$table,loglik=out$res$loglik,AIC=out$res$AIC,BIC=out$res$BIC,HQ=out$res$HQ,time = out$res$time)
obj.out = list(conv=out$conv,res = res)
class(obj.out) = "QRLMM"
return(obj.out)
}
else
{
p = sort(p)
obj.out = vector("list", length(p))
if( (length(x) == 0) | (length(y) == 0) | (length(z) == 0)) stop("All parameters must be provided.")
if(sum(y[is.na(y)==TRUE]) > 0) stop("There are some NA's values in y")
if(sum(y[is.na(x)==TRUE]) > 0) stop("There are some NA's values in x")
if(sum(y[is.na(z)==TRUE]) > 0) stop("There are some NA's values in z")
if(ncol(as.matrix(y)) > 1) stop("y must have just one column")
if( length(y) != sum(nj) ) stop("nj does not match with the provided data. (length(y) != sum(nj))")
if( length(y) != nrow(as.matrix(x)) ) stop("x variable does not have the same number of lines than y")
if( length(y) != nrow(as.matrix(z)) ) stop("z variable does not have the same number of lines than y")
if(all(p > 0 && p < 1) == FALSE) stop("p vector must contain real values in (0,1)")
if(precision <= 0) stop("precision must be a positive value (suggested to be small)")
if(MaxIter <= 0 |MaxIter%%1!=0) stop("MaxIter must be a positive integer value")
if(M <= 0 |M%%1!=0) stop("M must be a positive integer value >= 10")
if(cp >= 1 | cp <= 0) stop("cp must be a real number in [0,1]")
if(is.logical(show.convergence) == FALSE) stop("show.convergence must be TRUE or FALSE.")
namesz <- ('z1')
if(ncol(as.matrix(z))>1){
for(i in 2:ncol(as.matrix(z))){namesz <- c(namesz, paste("z",i,sep=""))}
}
pb2 = tkProgressBar(title = "QRLMM for several quantiles", min = 0,max = length(p), width = 300)
for(k in 1:length(p))
{
setTkProgressBar(pb2, k-1, label=paste("Running quantile ",p[k]," - ",k-1,"/",length(p)," - ",round((k-1)/length(p)*100,0),"% done",sep = ""))
beta = suppressWarnings(rq(y ~ -1 + x,tau = p[k]))$coefficients
dif = y - x%*%beta
sigma = (1/length(y))*(sum(p[k]*dif[dif>0]) - sum((1-p[k])*dif[dif<0]))
Psi = diag(ncol(as.matrix(z)))
out <- suppressWarnings(QSAEM_COM_7(y,x,z,nj,p[k],precision,MaxIter,M,pc=cp,beta=beta,sigmae=sigma,D=Psi))
cat('\n')
cat('---------------------------------------------------\n')
cat('Quantile Regression for Linear Mixed Model\n')
cat('---------------------------------------------------\n')
cat('\n')
cat("Quantile =",p)
cat('\n')
cat("Subjects =",length(nj),";",'Observations =',sum(nj),
ifelse(sum(nj==nj[1])==length(nj),'; Balanced =',""),
ifelse(sum(nj==nj[1])==length(nj),nj[1],""))
cat('\n')
cat('\n')
cat('-----------\n')
cat('Estimates\n')
cat('-----------\n')
cat('\n')
cat('- Fixed effects \n')
cat('\n')
print(round(out$res$table,5))
cat('\n')
cat('sigma =',round(out$res$sigmae,5),'\n')
cat('\n')
cat('Random effects Variance-Covariance Matrix matrix \n')
dimnames(out$res$D) <- list(namesz,namesz)
print(round(out$res$D,5))
cat('\n')
cat('------------------------\n')
cat('Model selection criteria\n')
cat('------------------------\n')
cat('\n')
critFin <- c(out$res$loglik, out$res$AIC, out$res$BIC, out$res$HQ)
critFin <- round(t(as.matrix(critFin)),digits=3)
dimnames(critFin) <- list(c("Value"),c("Loglik", "AIC", "BIC","HQ"))
print(critFin)
cat('\n')
cat('-------\n')
cat('Details\n')
cat('-------\n')
cat('\n')
cat("Convergence reached? =",(out$res$iter < MaxIter))
cat('\n')
cat('Iterations =',out$res$iter,"/",MaxIter)
cat('\n')
cat('Criteria =',round(out$res$criterio,5))
cat('\n')
cat('MC sample =',M)
cat('\n')
cat('Cut point =',cp)
cat('\n')
cat("Processing time =",out$res$time,units(out$res$time))
res = list(iter = out$res$iter,criteria = out$res$criterio,beta = out$res$beta,weights = round(out$res$weights,5),sigma= out$res$sigmae,Psi = out$res$D,SE=out$res$EP,table = out$res$table,loglik=out$res$loglik,AIC=out$res$AIC,BIC=out$res$BIC,HQ=out$res$HQ,time = out$res$time)
obj.outk = list(conv=out$conv,res = res)
obj.out[[k]] = obj.outk
}
close(pb2)
par(mfrow=c(1,1))
d=length(obj.out[[1]]$res$beta)
betas = eps = matrix(NA,length(p),d+1)
for (i in 1:length(p))
{
j = p[i]
betas[i,] = rbind(obj.out[[i]]$res$beta,obj.out[[i]]$res$sigma)
eps[i,] = obj.out[[i]]$res$SE[1:(d+1)]
}
LIMSUP = t(betas + qnorm(1-((1-(CI/100))/2))*eps)
LIMINF = t(betas - qnorm(1-((1-(CI/100))/2))*eps)
labels = list()
for(i in 1:d){labels[[i]] = bquote(beta[.(i)])}
labels[[d+1]] = bquote(sigma)
par(mar=c(4, 4.5, 1, 0.5))
op <- par(mfrow=c(ifelse((d+1)%%2==0,(d+1)%/%2,((d+1)%/%2)+1),2),oma=c(0,0,2,0))
for(i in 1:(d+1)){
if(length(p)<4)
{
ymin = min(betas[,i],LIMSUP[i,],LIMINF[i,])
ymax = max(betas[,i],LIMSUP[i,],LIMINF[i,])
plot(p,betas[,i],ylim=c(ymin-2*mean(eps[,i]),ymax+2*mean(eps[,i])),xaxt='n', type='n',xlab='quantiles',ylab=labels[[i]])
axis(side=1, at=p)
polygon(c(p,rev(p)),c(LIMSUP[i,],rev(LIMINF[i,])), col = "gray50", border = NA)
lines(p,betas[,i])
lines(p,LIMSUP[i,])
lines(p,LIMINF[i,])
}
else
{
smoothingSpline = smooth.spline(p, betas[,i], spar=0.1)
smoothingSplineU = smooth.spline(p, betas[,i]+(qnorm(1-((1-(CI/100))/2)))*eps[,i], spar=0.1)
smoothingSplineL = smooth.spline(p, betas[,i]-(qnorm(1-((1-(CI/100))/2)))*eps[,i], spar=0.1)
plot(p, betas[,i], type='n',xaxt='n',xlab='quantiles',lwd=2,ylim=c(min(smoothingSplineL$y)-2*mean(eps[,i]),max(smoothingSplineU$y)+2*mean(eps[,i])),ylab=labels[[i]])
axis(side=1, at=p)
polygon(c(smoothingSplineL$x,rev(smoothingSplineU$x)),c(smoothingSplineU$y,rev(smoothingSplineL$y)), col = "gray50", border = NA)
lines(p, betas[,i], type='l',lwd=1)
lines(smoothingSplineU,lwd=1)
lines(smoothingSplineL,lwd=1)
}
}
title("Point estimative and 95% CI for model parameters", outer=TRUE)
par(mfrow=c(1,1))
if(show.convergence=="TRUE")
{
cpl = cp*MaxIter
d = dim(x)[2]
q = dim(z)[2]
ndiag = (q*(1+q)/2)
npar = d+1+ndiag
labels = list()
for(i in 1:d){labels[[i]] = bquote(beta[.(i)])}
labels[[d+1]] = bquote(sigma)
for(i in 1:ndiag){labels[[i+d+1]] = bquote(psi[.(i)])}
for(k in 1:length(p))
{
cat('\n')
cat ("Press [ENTER] to see next plot:")
line <- readline()
par(mar=c(4, 4.5, 1, 0.5))
op <- par(mfrow=c(ifelse(npar%%3==0,npar%/%3,(npar%/%3)+1),3),oma=c(0,0,2,0))
for(i in 1:npar)
{
plot.ts(obj.out[[k]]$conv$teta[i,],xlab="Iteration",ylab=labels[[i]])
abline(v=cpl,lty=2)
}
title(paste("Convergence plots for quantile",p[k]), outer=TRUE)
par(mfrow=c(1,1))
}
}
class(obj.out) = "QRLMM"
return(obj.out)
}
} |
setClass("tscopula", contains = c("VIRTUAL"))
setGeneric("sim", function(object, ...) {
standardGeneric("sim")
})
setClass("swncopula", contains = "tscopula")
swncopula <- function() {
new("swncopula")
}
setMethod("sim", "swncopula", function(object, n = 1000) {
runif(n)
})
setMethod("coef", "swncopula", function(object) {
NULL
})
setMethod("show", "swncopula", function(object) {
cat("SWN \n")
})
setGeneric("kendall", function(object, ...) {
standardGeneric("kendall")
}) |
fit.c.clines <-
function(reg.out=NULL, hi.index=NULL, sam=NULL, n.ind=NULL){
if (length(coef(reg.out))>2){
AA.slope<-coef(reg.out)[2,2]
AA.int<-coef(reg.out)[2,1]
Aa.slope<-coef(reg.out)[1,2]
Aa.int<-coef(reg.out)[1,1]
Hx<-exp(AA.slope*hi.index+AA.int) + exp(Aa.slope*hi.index+Aa.int)
AA.fitted<-exp(AA.slope*hi.index+AA.int)/(1+Hx)
Aa.fitted<-exp(Aa.slope*hi.index+Aa.int)/(1+Hx)
aa.fitted<-1-(Aa.fitted+AA.fitted)
}
else if (length(coef(reg.out))==2){
if(sum(sam==2,na.rm=TRUE)>=1 & sum(sam==1,na.rm=TRUE)>=1){
AA.slope<-coef(reg.out)[2]
AA.int<-coef(reg.out)[1]
Aa.slope<-NA
Aa.int<-NA
Hx<-exp(AA.slope*hi.index+AA.int)
AA.fitted<-exp(AA.slope*hi.index+AA.int)/(1+Hx)
Aa.fitted<-1-exp(AA.slope*hi.index+AA.int)/(1+Hx)
aa.fitted<-rep(0,n.ind)
}
else if(sum(sam==2,na.rm=TRUE)>=1 & sum(sam==0,na.rm=TRUE)>=1){
AA.slope<-coef(reg.out)[2]
AA.int<-coef(reg.out)[1]
Aa.slope<-NA
Aa.int<-NA
Hx<-exp(AA.slope*hi.index+AA.int)
AA.fitted<-exp(AA.slope*hi.index+AA.int)/(1+Hx)
Aa.fitted<-rep(0,n.ind)
aa.fitted<-1-exp(AA.slope*hi.index+AA.int)/(1+Hx)
}
else if(sum(sam==1,na.rm=TRUE)>=1 & sum(sam==0,na.rm=TRUE)>=1){
AA.slope<-NA
AA.int<-NA
Aa.slope<-coef(reg.out)[2]
Aa.int<-coef(reg.out)[1]
Hx<-exp(Aa.slope*hi.index+Aa.int)
AA.fitted<-rep(0,n.ind)
Aa.fitted<-exp(Aa.slope*hi.index+Aa.int)/(1+Hx)
aa.fitted<-1-exp(Aa.slope*hi.index+Aa.int)/(1+Hx)
}
}
fitted.mat<-rbind(AA.fitted,Aa.fitted,aa.fitted)
return(fitted.mat)
} |
context("library() ok")
test_that("library is ok here", {
library("stats")
expect_true(TRUE)
}) |
test_that("helpers run before tests", {
expect_equal(abcdefghi, 10)
}) |
context("Test on CDF")
test_that("CDF in [0,1]", {
tVect <-seq(from = -10, to = 200, by = 1)
expect_cdfRange_01 <- function(t, m, devel, thres) {
cdfValue <- givitiStatCdf(t, m, devel, thres)
expect_equal(cdfValue >= 0 & cdfValue <= 1, T)
}
for (t in tVect) {
expect_cdfRange_01(t,1,"external",0.95)
expect_cdfRange_01(t,2,"external",0.95)
expect_cdfRange_01(t,3,"external",0.95)
expect_cdfRange_01(t,4,"external",0.95)
expect_cdfRange_01(t,2,"internal",0.95)
expect_cdfRange_01(t,3,"internal",0.95)
expect_cdfRange_01(t,4,"internal",0.95)
expect_cdfRange_01(t,1,"external",0.8)
expect_cdfRange_01(t,2,"external",0.8)
expect_cdfRange_01(t,3,"external",0.8)
expect_cdfRange_01(t,4,"external",0.8)
expect_cdfRange_01(t,2,"internal",0.8)
expect_cdfRange_01(t,3,"internal",0.8)
expect_cdfRange_01(t,4,"internal",0.8)
}
}) |
fhm_new <- function(v, n) {
.Call(`_phangorn_fhm_new`, v, n)
}
allDescCPP <- function(orig, nTips) {
.Call(`_phangorn_allDescCPP`, orig, nTips)
}
countCycle_cpp <- function(M) {
.Call(`_phangorn_countCycle_cpp`, M)
}
countCycle2_cpp <- function(M) {
.Call(`_phangorn_countCycle2_cpp`, M)
}
out_cpp <- function(d, r, n) {
.Call(`_phangorn_out_cpp`, d, r, n)
}
getIndex <- function(left, right, n) {
.Call(`_phangorn_getIndex`, left, right, n)
}
Transfer_Index <- function(bp, orig, l) {
.Call(`_phangorn_Transfer_Index`, bp, orig, l)
}
bipartCPP <- function(orig, nTips) {
.Call(`_phangorn_bipartCPP`, orig, nTips)
}
bipCPP <- function(orig, nTips) {
.Call(`_phangorn_bipCPP`, orig, nTips)
}
bip_shared <- function(tree1, tree2, nTips) {
.Call(`_phangorn_bip_shared`, tree1, tree2, nTips)
}
allChildrenCPP <- function(orig) {
.Call(`_phangorn_allChildrenCPP`, orig)
}
allSiblingsCPP <- function(edge) {
.Call(`_phangorn_allSiblingsCPP`, edge)
}
p2dna <- function(xx, eps = 0.999) {
.Call(`_phangorn_p2dna`, xx, eps)
}
node_height_cpp <- function(edge1, edge2, edge_length) {
.Call(`_phangorn_node_height_cpp`, edge1, edge2, edge_length)
}
cophenetic_cpp <- function(edge, edge_length, nTips, nNode) {
.Call(`_phangorn_cophenetic_cpp`, edge, edge_length, nTips, nNode)
}
threshStateC <- function(x, thresholds) {
.Call(`_phangorn_threshStateC`, x, thresholds)
} |
thresholds <- function(object)UseMethod("thresholds") |
context("Check TS_on_LDA functions")
data(rodents)
lda_data <- rodents$document_term_table
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
topics <- 2
nseeds <- 1
formulas <- ~ 1
nchangepoints <- 0
weights <- document_weights(document_term_table)
timename <- "newmoon"
LDAs <- LDA_set(document_term_table, topics, nseeds)
LDA_models <- select_LDA(LDAs)
mods <- TS_on_LDA(LDA_models, document_covariate_table, formulas,
nchangepoints = 0:1, timename, weights,
control = list(nit = 20))
test_that("check prep_TS_data", {
mods <- expand_TS(LDA_models, formulas=c(~1, ~sin_year, ~newmoon),
nchangepoints = 0:1)
nmods <- nrow(mods)
TSmods <- vector("list", nmods)
for (i in 1:nmods){
data_i <- prep_TS_data(document_covariate_table, LDA_models, mods, i)
expect_is(data_i, "data.frame")
expect_equal(dim(data_i), c(436, 4))
}
expect_error(prep_TS_data(document_covariate_table, LDA_models, mods, "ok"))
expect_error(prep_TS_data(document_covariate_table, LDA_models, "ok", i))
expect_error(prep_TS_data(document_covariate_table, "ok", mods, i))
expect_error(prep_TS_data("ok", LDA_models, mods, i))
data_1 <- prep_TS_data(document_covariate_table, LDA_models[[1]], mods, 1)
data_i <- prep_TS_data(document_covariate_table, LDA_models, mods, 1)
expect_equal(data_1, data_i)
})
test_that("check select_TS", {
sel_mod <- select_TS(mods, list())
expect_equal(length(mods), 2)
expect_equal(length(sel_mod), 17)
expect_is(mods, "TS_on_LDA")
expect_is(sel_mod, "TS_fit")
expect_error(select_TS(mods, "ok"))
expect_error(select_TS("ok", list()))
xxfun <- function(x){x}
expect_warning(select_TS(mods, list(selector = xxfun)))
})
test_that("check package_TS_on_LDA", {
mods <- expand_TS(LDA_models, formulas, nchangepoints = 0:1)
nmods <- nrow(mods)
TSmods <- vector("list", nmods)
for(i in 1:nmods){
print_model_run_message(mods, i, LDA_models, list())
formula_i <- mods$formula[[i]]
nchangepoints_i <- mods$nchangepoints[i]
data_i <- prep_TS_data(document_covariate_table, LDA_models, mods, i)
TSmods[[i]] <- TS(data_i, formula_i, nchangepoints_i,timename, weights,
control = list(nit = 20))
}
expect_is(package_TS_on_LDA(TSmods, LDA_models, mods), "TS_on_LDA")
expect_is(package_TS_on_LDA(TSmods, LDA_models[[1]], mods), "TS_on_LDA")
expect_error(package_TS_on_LDA(TSmods, LDA_models, "ok"))
expect_error(package_TS_on_LDA("ok", LDA_models, mods))
expect_error(package_TS_on_LDA(TSmods, "ok", mods))
})
test_that("check TS_on_LDA", {
expect_is(mods, "TS_on_LDA")
expect_equal(length(mods), 2)
expect_is(mods[[1]], "TS_fit")
expect_is(mods[[2]], "TS_fit")
expect_error(TS_on_LDA())
expect_error(TS_on_LDA("ok", document_covariate_table, formulas,
nchangepoints, timename, weights, list()))
expect_error(TS_on_LDA(LDA_models, "ok", formulas,
nchangepoints, timename, weights, list()))
expect_error(TS_on_LDA(LDA_models, document_covariate_table, "ok",
nchangepoints, timename, weights, list()))
expect_error(TS_on_LDA(LDA_models, document_covariate_table, formulas,
"ok", timename, weights, list()))
expect_error(TS_on_LDA(LDA_models, document_covariate_table, formulas,
nchangepoints, timename, "ok", list()))
expect_error(TS_on_LDA(LDA_models, document_covariate_table, formulas,
nchangepoints, "ok", weights, list()))
expect_error(TS_on_LDA(LDA_models, document_covariate_table, formulas,
nchangepoints, timename, weights, "ok"))
})
test_that("check printing for TS_on_LDA", {
expect_output(print(mods))
})
test_that("check print_model_run_message", {
mods <- expand_TS(LDA_models, formulas, nchangepoints)
expect_message(print_model_run_message(mods, 1, LDA_models, list()))
expect_silent(print_model_run_message(mods, 1, LDA_models,
control = list(quiet = TRUE)))
})
test_that("check expand_TS", {
exp_TS <- expand_TS(LDA_models, formulas, nchangepoints)
expect_is(exp_TS, "data.frame")
expect_equal(dim(exp_TS), c(1, 3))
exp_TS <- expand_TS(LDA_models, c(~1, ~newmoon), 3:10)
expect_is(exp_TS, "data.frame")
expect_equal(dim(exp_TS), c(16, 3))
exp_TS <- expand_TS(LDA_models[[1]], c(~1, ~newmoon), 3:10)
expect_is(exp_TS, "data.frame")
expect_equal(dim(exp_TS), c(16, 3))
expect_error(expand_TS("ok", formulas, nchangepoints))
expect_error(expand_TS(LDA_models, "ok", nchangepoints))
expect_error(expand_TS(LDA_models, c("~1", "ok"), nchangepoints))
expect_error(expand_TS(LDA_models, list("~1", "ok"), nchangepoints))
expect_error(expand_TS(LDA_models, formulas, 2.5))
})
test_that("check check_nchangepoints", {
expect_silent(check_nchangepoints(1))
expect_silent(check_nchangepoints(0))
expect_silent(check_nchangepoints(1:10))
expect_error(check_nchangepoints(2.5))
expect_error(check_nchangepoints(-1))
expect_error(check_nchangepoints(NULL))
})
test_that("check check_weights", {
expect_equal(check_weights(TRUE), NULL)
expect_error(check_weights(FALSE))
expect_silent(check_weights(weights))
expect_silent(check_weights(1))
expect_silent(check_weights(NULL))
expect_error(check_weights("ok"))
expect_error(check_weights(-1))
expect_warning(check_weights(100))
})
test_that("check check_LDA_models", {
expect_silent(check_LDA_models(LDA_models))
expect_silent(check_LDA_models(LDA_models[[1]]))
expect_error(check_LDA_models("ok"))
})
test_that("check check_document_covariate_table", {
expect_silent(check_document_covariate_table(document_covariate_table))
expect_silent(check_document_covariate_table(document_covariate_table,
LDA_models = LDA_models))
expect_silent(check_document_covariate_table(document_covariate_table,
LDA_models = LDAs))
expect_silent(check_document_covariate_table(document_covariate_table,
document_term_table = document_term_table))
expect_error(check_document_covariate_table(document_covariate_table,
LDA_models = 1))
expect_error(check_document_covariate_table(document_covariate_table,
document_term_table = 1))
expect_error(check_document_covariate_table(document_covariate_table = 1,
LDA_models = LDA_models))
expect_error(check_document_covariate_table(document_covariate_table = 1,
document_term_table = document_term_table))
expect_error(check_document_covariate_table(lm(1~1), LDA_models))
})
test_that("check check_timename", {
expect_silent(check_timename(document_covariate_table, timename))
expect_error(check_timename("ok", timename))
expect_error(check_timename(document_covariate_table, "ok"))
expect_error(check_timename(document_covariate_table, 1))
expect_error(check_timename(document_covariate_table,
rep(timename, 2)))
expect_error(check_timename(document_covariate_table, 1))
expect_error(check_timename(data.frame(letters), "letters"))
dct2 <- document_covariate_table
dct2[,timename] <- dct2[,timename] + 0.1
expect_error(check_timename(dct2, timename))
})
test_that("check check_formulas", {
expect_silent(check_formulas(formulas, document_covariate_table, list()))
expect_error(check_formulas("ok", document_covariate_table, list()))
expect_error(check_formulas(~newmoon, "ok", list()))
expect_error(check_formulas(c(~1, "ok"),
document_covariate_table, list()))
expect_error(check_formulas(list(~1, "ok"),
document_covariate_table, list()))
expect_error(check_formulas(formulas, document_covariate_table, "ok"))
})
test_that("check check_TS_on_LDA_inputs", {
expect_silent(
check_TS_on_LDA_inputs(LDA_models, document_covariate_table, formulas,
nchangepoints, timename, weights, list()))
expect_error(
check_TS_on_LDA_inputs(LDA_models, document_covariate_table, formulas,
nchangepoints, timename, weights, "ok"))
expect_error(
check_TS_on_LDA_inputs(LDA_models, document_covariate_table, formulas,
nchangepoints, timename, "ok", list()))
expect_error(
check_TS_on_LDA_inputs(LDA_models, document_covariate_table, formulas,
"ok", weights, timename, weights, list()))
expect_error(
check_TS_on_LDA_inputs(LDA_models, document_covariate_table, "ok",
nchangepoints, timename, weights, list()))
expect_error(
check_TS_on_LDA_inputs(LDA_models, "ok", formulas,
nchangepoints, timename, weights, list()))
expect_error(
check_TS_on_LDA_inputs("ok", document_covariate_table, formulas,
nchangepoints, timename, weights, list()))
expect_error(
check_TS_on_LDA_inputs(LDA_models, document_covariate_table, formulas,
nchangepoints, "ok", weights, list()))
}) |
get.minutesplayed = function (AllEvents)
{
Matches <- AllEvents %>% group_by(match_id) %>% filter(ElapsedTime ==
max(ElapsedTime)) %>% select(match_id, GameEnd = ElapsedTime) %>%
dplyr::slice(1)
StartingXI <- AllEvents %>% filter(type.name == "Starting XI") %>%
select(id, match_id, team.id, tactics.lineup)
myList <- StartingXI$tactics.lineup
fixnull <- function(x) {
if (is.data.frame(x)) {
return(x)
}
else {
return(setNames(data.frame(matrix(ncol = ncol(myList[[1]]),
nrow = 1)), names(myList[[1]])))
}
}
myList <- lapply(myList, fixnull)
df <- bind_rows(myList, .id = "id")
idtable <- df %>% mutate(id = as.numeric(id)) %>% group_by(id) %>%
dplyr::slice(1) %>% select(id) %>% ungroup() %>% mutate(sbid = StartingXI$id) %>%
mutate(id = as.character(id)) %>% mutate(match_id = StartingXI$match_id,
team.id = StartingXI$team.id)
df <- left_join(df, idtable)
df <- df %>% select(-id) %>% rename(id = sbid) %>% select(id,
everything())
df <- df %>% mutate(TimeOn = 0)
df <- df %>% select(player.id, match_id, team.id, TimeOn)
Subs <- AllEvents %>% filter(type.name == "Substitution" | bad_behaviour.card.name=="Red Card" | foul_committed.card.name=="Red Card" | bad_behaviour.card.name=="Second Yellow" | foul_committed.card.name=="Second Yellow") %>%
select(match_id, ElapsedTime, Off = player.id, team.id,
On = substitution.replacement.id) %>% tidyr::gather(Off,
On, key = "Player", value = "OnOff") %>% arrange(match_id,
ElapsedTime)
SubsOff <- Subs %>% filter(Player == "Off") %>% select(-Player,
TimeOff = ElapsedTime, player.id = OnOff)
df <- left_join(df, SubsOff, by = c("player.id", "match_id",
"team.id"), suffix = c("", ".S"))
SubsOn <- Subs %>% filter(Player == "On") %>% select(-Player,
TimeOn = ElapsedTime, player.id = OnOff)
df <- bind_rows(df, SubsOn) %>% arrange(match_id, team.id,
TimeOn)
df <- df %>% left_join(Matches)
df <- df %>% mutate(TimeOff = ifelse(is.na(TimeOff), GameEnd,
TimeOff))
df <- df %>% mutate(MinutesPlayed = (TimeOff - TimeOn)/60,
TimeOn = TimeOn/60, TimeOff = TimeOff/60, GameEnd = GameEnd/60) %>%
filter(!is.na(player.id))
return(df)
} |
wrangled_csv <- function(casestudy, outpath = NULL){
repo_names = c("ocs-bp-rural-and-urban-obesity", "ocs-bp-air-pollution",
"ocs-bp-vaping-case-study", "ocs-bp-opioid-rural-urban",
"ocs-bp-RTC-wrangling", "ocs-bp-RTC-analysis",
"ocs-bp-youth-disconnection", "ocs-bp-youth-mental-health",
"ocs-bp-school-shootings-dashboard", "ocs-bp-co2-emissions",
"ocs-bp-diet")
if (casestudy %in% repo_names){
if (is.null(outpath)) {
if (interactive()){
wd = getwd()
cat(paste("No destination directory specified. Would you like to save the",
"data files to your current working directory?\n"))
cat(paste("Current working directory:\n", wd, "\n"))
cat(paste("Responses:", "1. Yes, save to my current working directory.",
"2. Specify a different directory", "3. Cancel ", sep = "\n"))
response = readline(prompt = "Answer with a number 1-3: ")
if (response == '1'){
outpath = wd
} else if (response == '2'){
cat(paste("Enter the file path of the desired directory\n"))
outpath = readline(prompt = "File path: ")
} else {
return("Canceled.")
}
} else{
msg = paste("Error: No destination directory specified. Please enter the file path for where the data files should be downloaded in the 'outpath' argument.")
return(msg)
}
}
if (dir.exists(outpath)) {
outpath = file.path(outpath,'OCS_data')
dir.create(outpath, showWarnings = FALSE)
datapath = file.path(outpath,'data')
dir.create(datapath, showWarnings = FALSE)
wrangledpath = file.path(datapath,'wrangled')
dir.create(wrangledpath, showWarnings = FALSE)
repo_url = paste0("https://api.github.com/repos/opencasestudies/",
casestudy, "/git/trees/master?recursive=1")
repo = GET(url=repo_url)
repocont = content(repo)
repounlist = unlist(repocont, recursive = FALSE)
paths = map(repounlist,'path')
paths = paths[!sapply(paths,is.null)]
for (fname in paths){
if (grepl('data/', fname, fixed = TRUE)) {
if (grepl('/wrangled/', fname, fixed = TRUE)) {
if (grepl('.', fname, fixed = TRUE)) {
if (grepl('.csv',fname, fixed = TRUE)) {
githuburl = paste0('https://github.com/opencasestudies/', casestudy, '/blob/master/',fname,'?raw=true')
GET(githuburl, write_disk(file.path(outpath, fname)))
}
} else {
subpath = file.path(outpath, fname)
dir.create(subpath)
}
}
}
}
cat(paste("The downloaded files are in:", wrangledpath, " "))
return(TRUE)
} else {
return("The specified directory does not exist.")
}
} else {
return(cat(paste("Not a valid case study name. Please use the name of the case study \nGitHub repository.",
"Use ?wrangled_data to view a list of valid names.")))
}
} |
gradient.truncation.region.function <-
function(x, q, r){
q/2/sqrt(x) + r/2/sqrt(1+x)
} |
boolSkip=F
test_that("Check 22.1 - isQuasiBalancedGame - 3 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0,0,0,60,60,60,72)
result = isQuasiBalancedGame(v)
expect_equal(result, FALSE)
})
test_that("Check 22.2 - isQuasiBalancedGame - 3 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(2,4,5,18,14,9,24)
result = isQuasiBalancedGame(v)
expect_equal(result, TRUE)
})
test_that("Check 22.3 - isQuasiBalancedGame - 3 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0,0,0,40,50,20,100)
result = isQuasiBalancedGame(v)
expect_equal(result, TRUE)
})
test_that("Check 22.4 - isQuasiBalancedGame - 3 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(2,4,5,18,20,20,24)
result = isQuasiBalancedGame(v)
expect_equal(result, FALSE)
})
test_that("Check 22.5 - isQuasiBalancedGame - 3 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(2,4,5,18,20,20,18)
result = isQuasiBalancedGame(v)
expect_equal(result, FALSE)
})
test_that("Check 22.6 - isQuasiBalancedGame - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0, 0, 0, 0, 30, 30, 30, 30, 30, 60, 72, 72, 72, 72, 108)
result = isQuasiBalancedGame(v)
expect_equal(result, TRUE)
})
test_that("Check 22.7 - isQuasiBalancedGame - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0, 0, 0, 0, 30, 30, 30, 30, 30, 60, 72, 72, 72, 72, 50)
result = isQuasiBalancedGame(v)
expect_equal(result, FALSE)
})
test_that("Check 22.8 - isQuasiBalancedGame - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
result = isQuasiBalancedGame(v)
expect_equal(result, FALSE)
})
test_that("Check 22.9 - isQuasiBalancedGame - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 12, 12, 12, 12, 22)
result = isQuasiBalancedGame(v)
expect_equal(result, TRUE)
})
test_that("Check 22.10 - isQuasiBalancedGame - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 3, 3, 3, 3, 4)
result = isQuasiBalancedGame(v)
expect_equal(result, FALSE)
})
test_that("Check 22.11 - isQuasiBalancedGame - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 4, 3, 2, 1, 7)
result = isQuasiBalancedGame(v)
expect_equal(result, TRUE)
})
test_that("Check 22.12 - isQuasiBalancedGame - 4 players - example from TUGLAB",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 4, 3, 2, 1, -2)
result = isQuasiBalancedGame(v)
expect_equal(result, FALSE)
}) |
context("Test server error messages")
test_that("error messages from server are shown to the user", {
skip_on_cran()
ss <- function(lon, lat) {
mt_subset(product = "MOD11A2",
lat = lat,
lon = lon,
band = "LST_Day_1km",
start = "2004-01-01",
end = "2004-01-02",
progress = FALSE)
}
expect_silent(
x <- ss(-110, 40)
)
expect_error(
ss(40, -110),
"Invalid argument: Latitude must be between -90 and 90 degrees."
)
expect_error(
ss(400, -40),
"Invalid argument: Longitude must be between -180 and 180 degrees."
)
}) |
filter.rare.variants <- function(x, ref.level = NULL, filter = c("whole", "controls", "any"), maf.threshold = 0.01, min.nb.snps = 2, min.cumulative.maf = NULL, group = NULL, genomic.region = NULL) {
if (is.null(genomic.region) & !("genomic.region" %in% colnames(x@snps))) stop("genomic.region should be provided or already in x@snps")
if (!is.null(genomic.region)){
if(nrow(x@snps)!=length(genomic.region)) stop("genomic.region should have the same length as the number of markers in x")
if("genomic.region" %in% colnames(x@snps)) warning("genomic.region was already in x@snps, x@snps will be replaced.\n")
x@snps$genomic.region=genomic.region
}
if(!is.factor(x@snps$genomic.region)) stop("'x@snps$genomic.region' should be a factor")
x@snps$genomic.region <- droplevels(x@snps$genomic.region)
filter <- match.arg(filter)
if(filter != "whole"){
if(is.null(group)){
group <- x@ped$pheno
}else{
if(length(group) != nrow(x@ped)) stop("group has wrong length")
}
if(!is.factor(group)) stop("'group' should be a factor")
}
filter <- match.arg(filter)
if(filter == "controls") {
if(is.null(ref.level)) stop("Need to specify the controls group")
which.controls <- group == ref.level
st <- .Call('gg_geno_stats_snps', PACKAGE = "Ravages", x@bed, rep(TRUE, ncol(x)), which.controls)$snps
p <- (st$N0.f + 0.5*st$N1.f)/(st$N0.f + st$N1.f + st$N2.f)
maf <- pmin(p, 1-p)
w <- (maf < maf.threshold)
}
if(filter == "any"){
w <- rep(FALSE, ncol(x))
for(i in unique(group)) {
which.c <- (group == i)
st <- .Call('gg_geno_stats_snps', PACKAGE = "Ravages", x@bed, rep(TRUE, ncol(x)), which.c)$snps
p <- (st$N0.f + 0.5*st$N1.f)/(st$N0.f + st$N1.f + st$N2.f)
maf <- pmin(p, 1-p)
w <- w | (maf < maf.threshold)
}
}
if(filter == "whole"){
w <- (x@snps$maf < maf.threshold)
}
x <- select.snps(x, w & x@snps$maf > 0)
nb.snps <- table(x@snps$genomic.region)
keep <- names(nb.snps)[nb.snps >= min.nb.snps]
x <- select.snps(x, x@snps$genomic.region %in% keep)
x@snps$genomic.region <- droplevels(x@snps$genomic.region)
if(!is.null(min.cumulative.maf)) {
cmaf.snps <- by(x@snps$maf, x@snps$genomic.region, sum)
keep <- names(cmaf.snps)[cmaf.snps >= min.cumulative.maf]
x <- select.snps(x, x@snps$genomic.region %in% keep)
x@snps$genomic.region <- droplevels(x@snps$genomic.region)
}
x
} |
heatmap_wave.local.multiple.correlation <-
function(Lst, xaxt="s", ci=NULL, pdf.write=NULL) {
if (xaxt[1]!="s"){
at <- xaxt[[1]]
label <- xaxt[[2]]
xaxt <- "n"
}
cor <- Lst$cor
J <- length(Lst$YmaxR)-1
par(mfcol=c(1,1), las=1, pty="m", mar=c(2,3,1,0)+.1, oma=c(0.1,1.2,1.2,1.2))
scale.labs <- c(paste0(2^(1:J),"-",2^((1:J)+1)),"smooth")
if (!is.null(pdf.write))
cairo_pdf(paste0("heat_",pdf.write,"_WLMC.pdf"), width=11.69,height=8.27)
if (is.null(ci)||ci=="center") {val <- sapply(cor,function(x){x[["val"]]})
} else if (ci=="lower") {val <- sapply(cor,function(x){x[["lo"]]})
} else if (ci=="upper"){val <- sapply(cor,function(x){x[["up"]]})}
clim <- range(sapply(cor,function(x){x[["val"]]}))
mark <- paste0("\u00A9jfm-wavemulcor3.1.0_",Sys.time()," ")
plot3D::image2D(z=val, x=1:nrow(val), y=1:ncol(val),
main="", sub="", xlab="", ylab="",
xaxt=xaxt, yaxt="n", cex.axis=0.75,
colkey=list(cex.axis=0.75), clim=clim, clab=expression(varphi),
rasterImage=TRUE, contour=list(lwd=2, col=plot3D::jet.col(11)))
if(xaxt!="s") {axis(side=1, at=at, labels=label, cex.axis=0.75)}
axis(side=2, at=1:ncol(val),labels=scale.labs, las=1, cex.axis=0.75)
text(x=grconvertX(0.1,from="npc"), y=grconvertY(0.98,from="npc"), labels=mark,
col=rgb(0,0,0,.1),cex=.2)
par(las=0)
title(main='Wavelet Local Multiple Correlation', outer=TRUE)
mtext("period", side=2, outer=TRUE, adj=0.5)
if (!is.null(pdf.write)) dev.off()
return()
} |
somersD = function(formula, data)
{
if(methods::is(data, "survey.design")!=TRUE) message(paste(sep="","Warning: Dataset \"", deparse(substitute(data)), "\" not a design dataset. Try gssD, nesD, statesD, or worldD instead."))
tablesomersDC(survey::svytable(formula, data))
} |
def_ren <- new.env(parent = emptyenv())
.onLoad <- function(...) {
register_s3_method("knitr", "knit_print", "gganim")
register_s3_method("knitr", "knit_print", "gif_image")
register_s3_method("knitr", "knit_print", "video_file")
register_s3_method("knitr", "knit_print", "sprite_image")
def_ren$has_proper <- TRUE
if (requireNamespace('gifski', quietly = TRUE)) {
def_ren$renderer <- gifski_renderer()
} else if (requireNamespace('magick', quietly = TRUE)) {
def_ren$renderer <- magick_renderer()
} else if (requireNamespace('av', quietly = TRUE)) {
def_ren$renderer <- av_renderer()
} else {
def_ren$renderer <- file_renderer()
def_ren$has_proper <- FALSE
}
invisible()
}
.onAttach <- function(...) {
if (!isTRUE(def_ren$has_proper)) {
packageStartupMessage(
'No renderer backend detected. gganimate will default to writing frames to separate files\n',
'Consider installing:\n',
'- the `gifski` package for gif output\n',
'- the `av` package for video output\n',
'and restarting the R session'
)
}
}
register_s3_method <- function(pkg, generic, class, fun = NULL) {
stopifnot(is.character(pkg), length(pkg) == 1)
stopifnot(is.character(generic), length(generic) == 1)
stopifnot(is.character(class), length(class) == 1)
if (is.null(fun)) {
fun <- get(paste0(generic, ".", class), envir = parent.frame())
} else {
stopifnot(is.function(fun))
}
if (pkg %in% loadedNamespaces()) {
registerS3method(generic, class, fun, envir = asNamespace(pkg))
}
setHook(
packageEvent(pkg, "onLoad"),
function(...) {
registerS3method(generic, class, fun, envir = asNamespace(pkg))
}
)
} |
num1to100.gen <- setNumericWithRange("Numeric", min = 1, max = 100)
par.gen <- setRefClass("Graph",
properties(list(size = "NumericWithMin1Max100")))
pars <- par.gen$new(size = new("NumericWithMin1Max100", 5))
pars$size
try(pars$size <- 300)
pars$size <- 10
par.gen <- setRefClass("PI", properties(list(size = "PositiveInteger"),
list(size = PositiveInteger(2))))
obj <- par.gen$new()
try(obj$size <- -1)
obj$size <- 3 |
htmlTr <- function(children=NULL, id=NULL, n_clicks=NULL, n_clicks_timestamp=NULL, key=NULL, role=NULL, accessKey=NULL, className=NULL, contentEditable=NULL, contextMenu=NULL, dir=NULL, draggable=NULL, hidden=NULL, lang=NULL, spellCheck=NULL, style=NULL, tabIndex=NULL, title=NULL, loading_state=NULL, ...) {
wildcard_names = names(dash_assert_valid_wildcards(attrib = list('data', 'aria'), ...))
props <- list(children=children, id=id, n_clicks=n_clicks, n_clicks_timestamp=n_clicks_timestamp, key=key, role=role, accessKey=accessKey, className=className, contentEditable=contentEditable, contextMenu=contextMenu, dir=dir, draggable=draggable, hidden=hidden, lang=lang, spellCheck=spellCheck, style=style, tabIndex=tabIndex, title=title, loading_state=loading_state, ...)
if (length(props) > 0) {
props <- props[!vapply(props, is.null, logical(1))]
}
component <- list(
props = props,
type = 'Tr',
namespace = 'dash_html_components',
propNames = c('children', 'id', 'n_clicks', 'n_clicks_timestamp', 'key', 'role', 'accessKey', 'className', 'contentEditable', 'contextMenu', 'dir', 'draggable', 'hidden', 'lang', 'spellCheck', 'style', 'tabIndex', 'title', 'loading_state', wildcard_names),
package = 'dashHtmlComponents'
)
structure(component, class = c('dash_component', 'list'))
} |
H.als.b <-
function(Z, Hs, Ht, Hst.ls, rho, reg, b.lag=-1, Hs0=NULL, Ht0=NULL, Hst0.ls=NULL) {
tau <- nrow(Z)
n <- ncol(Z)
Z.als <- matrix(NA, tau, n)
if( is.null( Hs ) ) { use.Hs <- FALSE ; d.s <- 0 } else { use.Hs <- TRUE ; d.s <- ncol( Hs ) }
if( is.null( Ht ) ) { use.Ht <- FALSE ; d.t <- 0 } else { use.Ht <- TRUE ; d.t <- ncol( Ht ) }
if( is.null( Hst.ls ) ) { use.Hst.ls <- FALSE ; d.st <- 0 } else { use.Hst.ls <- TRUE ; d.st <- ncol( Hst.ls[[1]] ) }
d <- d.s + d.t + d.st
B <- matrix(0, tau, d)
reg.mx <- diag( reg, d )
LHH <- 0
LHy <- 0
g <- 1
use.H0 <- !is.null(Hs0) | !is.null(Ht0) | !is.null(Hst0.ls)
if( use.H0 ) {
if( !is.null(Hs0) ) { n0 <- nrow(Hs0) ; Z.als.0 <- matrix(NA, tau, n0) } else { n0 <- nrow(Hst0.ls[[1]]) }
}
low.ndx <- max( 1, 1-b.lag )
top.ndx <- min( tau, tau-b.lag )
for(i in low.ndx:top.ndx) {
if( use.Ht ) { this.Ht.mx <- matrix( Ht[ i, ], n, d.t, byrow=TRUE ) } else { this.Ht.mx <- NULL }
this.H <- cbind( Hs, this.Ht.mx, Hst.ls[[i]] )
if( use.H0 ) {
if( use.Ht ) { this.Ht0.mx <- matrix( Ht0[ i, ], n0, d.t, byrow=TRUE ) } else { this.Ht0.mx <- NULL }
this.H0 <- cbind( Hs0, this.Ht0.mx, Hst0.ls[[i]] )
}
this.HH <- crossprod(this.H)
this.Hy <- crossprod(this.H, Z[ i, ])
LHH <- LHH + g * ( this.HH - LHH )
LHy <- LHy + g * ( this.Hy - LHy )
inv.LHH <- try( solve( LHH + reg.mx ), silent=TRUE )
if( is(inv.LHH, "try-error") ) { inv.LHH <- matrix(0, d, d) }
B[ i, ] <- inv.LHH %*% LHy
Z.als[ i, ] <- B[ i + b.lag, ] %*% t(this.H)
if( use.H0 ) { Z.als.0[ i, ] <- B[ i + b.lag, ] %*% t(this.H0) } else { Z.als.0 <- NULL }
g <- (g+rho) / (g+rho+1)
}
return( list("Z.hat"=Z.als, "B"=B, "Z0.hat"=Z.als.0, "inv.LHH"=inv.LHH, "ALS.g"=g) )
} |
src_sqlite <- function(dbname = ":memory:",
...) {
con <- DBI::dbConnect(
drv = RSQLite::SQLite(),
dbname = dbname,
...)
if (inherits(
try(
DBI::dbGetQuery(
conn = con,
statement = paste0("SELECT json_patch('{\"a\":1}','{\"a\":9}');")
), silent = TRUE
), "try-error")) {
stop("SQLite does not have json1 extension enabled. Call ",
"install.packages('RSQLite') to install a current version.")
}
if (inherits(
try({
RSQLite::initRegExp(db = con)
DBI::dbExecute(
conn = con,
statement = paste0('SELECT * FROM (VALUES ("Astring")) WHERE 1 REGEXP "[A-Z]+";'))
}, silent = TRUE
), "try-error")) {
stop("SQLite does not support REGEXP. Call ",
"install.packages('RSQLite') to install a current version.")
}
DBI::dbExecute(con, "PRAGMA busy_timeout = 10000;")
structure(list(con = con,
dbname = dbname,
...),
class = c("src_sqlite", "docdb_src"))
}
print.src_sqlite <- function(x, ...) {
dbname <- x$dbname
dbsize <- file.size(dbname)
srv <- rev(RSQLite::rsqliteVersion())[1]
cat(sprintf(
"src: sqlite\nSQLite library version: %s\n size: %s kBytes\n dbname: %s\n",
srv, dbsize / 2^10, dbname))
if (grepl(":memory:", dbname)) {
warning(
"Database is only in memory, will not persist after R ends! Consider to copy ",
"it with \nRSQLite::sqliteCopyDatabase(\n",
" from = <your nodbi::src_sqlite() object>$con, \n",
" to = <e.g. RSQLite::dbConnect(RSQLite::SQLite(), 'local_file.db')>\n",
" )",
call. = FALSE)
}
} |
toLatex.sts <- function(object, caption = "",label=" ", columnLabels = NULL,
subset = NULL,
alarmPrefix = "\\textbf{\\textcolor{red}{",
alarmSuffix = "}}", ubColumnLabel = "UB", ...) {
isEmpty <- function(o) is.null(o)
if (isEmpty(object))
stop("object must not be null or NA.")
if (is.list(object))
stop("supplying a list of sts has been removed from the api. Sorry.")
if (!isS4(object) || !is(object, "sts"))
stop("object must be of type sts from the surveillance package.")
if (!is.character(caption))
stop("caption must be a character.")
if (!isEmpty(labels) && length(labels) != length(object))
stop("number of labels differ from the number of sts objects.")
tableLabels <- colnames(object@observed)
if (!is.null(columnLabels) &&
length(columnLabels) != ncol(object@observed) * 2 + 2) {
stop("the number of labels must match the number of columns in the
resulting table; i.e. 2 * columns of sts + 2.")
}
tableCaption <- caption
tableLabel <- label
vectorOfDates <- epoch(object, as.Date = TRUE)
yearColumn <- Map(function(d)isoWeekYear(d)$ISOYear, vectorOfDates)
if (object@freq == 12 )
monthColumn <- Map(function(d) as.POSIXlt(d)$mon, vectorOfDates)
if (object@freq == 52 )
weekColumn <- Map(function(d)isoWeekYear(d)$ISOWeek, vectorOfDates)
dataTable <- data.frame(unlist(yearColumn))
colnames(dataTable) <- "year"
if (object@freq == 12 ) {
dataTable$month <- unlist(monthColumn)
}
if (object@freq == 52 ) {
dataTable$week <- unlist(weekColumn)
}
if (object@freq == 365 ) {
dataTable$day <- unlist(vectorOfDates)
dataTable <- dataTable[c(2)]
}
noCols <- ncol(dataTable)
j <- 1 + noCols
tableLabelsWithUB <- c()
for (k in 1:(ncol(object@observed))) {
upperbounds <- round(object@upperbound[,k], 2)
observedValues <- object@observed[,k]
alarms <- object@alarm[,k]
ubCol <- c()
for (l in 1:length(upperbounds)) {
if (is.na(upperbounds[l])) {
ubCol <- c(ubCol, NA)
} else {
ubCol <- c(ubCol, upperbounds[l])
if (!is.na(alarms[l]) && alarms[l]) {
observedValues[l] <- paste0(alarmPrefix, observedValues[l], alarmSuffix)
}
}
}
dataTable[,(j)] <- observedValues
dataTable[,(j + 1)] <- ubCol
tableLabelsWithUB <- c(tableLabelsWithUB, tableLabels[k])
tableLabelsWithUB <- c(tableLabelsWithUB, ubColumnLabel)
j <- j + 2
}
if (is.null(subset))
subset <- 1:nrow(dataTable)
else if (min(subset) < 1 || max(subset) > nrow(dataTable))
stop("'subset' must be a subset of 1:nrow(observed), i.e., 1:",
nrow(dataTable))
dataTable <- dataTable[subset,]
newColNames <- c(colnames(dataTable)[1:noCols], tableLabelsWithUB)
if (!is.null(columnLabels)) {
colnames(dataTable) <- columnLabels
} else {
colnames(dataTable) <- newColNames
}
xDataTable <- xtable(dataTable, label = tableLabel, caption = tableCaption, digits = c(0))
toLatex(xDataTable, ...)
}
setMethod("toLatex", "sts", toLatex.sts) |
context("datasets [backPain]")
tol <- 1e-4
backPainLong <- expandCategorical(backPain, "pain")
stereotype <- gnm(count ~ pain + Mult(pain, x1 + x2 + x3),
eliminate = id, family = "poisson",
data = backPainLong, verbose = FALSE)
test_that("sterotype model as expected for backPain data", {
size <- tapply(backPainLong$count, backPainLong$id, sum)[backPainLong$id]
expect_equal(round(sum(stereotype$y * log(stereotype$fitted/size)), 2),
-151.55)
expect_equivalent(stereotype$rank - nlevels(stereotype$eliminate), 12)
}) |
l1.reg.default <-
function (X, Y, lambda=1)
{
if (length(Y)!=ncol(X))
stop("Dimention doesn't match!
Columns of feature matrix X must be the number of cases")
cases <- length(Y)
predictors <- nrow(X)
X <-rbind(rep(1,ncol(X)),X)
return_data <- .Fortran ("L1GREEDY",
as.double(X),
Y=as.double(as.vector(Y)),
as.double (lambda),
as.integer (cases),
as.integer (predictors+1),
L1 = as.double(0),
penalty = as.double(0),
objective = as.double(0),
estimate = as.double(as.vector(rep(0,predictors+1))),
r = as.double(as.vector(rep(0,cases))),
PACKAGE = "CDLasso")
selected<-c()
nonzeros<-0
for (j in 2:(predictors+1))
{
if (return_data$estimate[j]!=0)
{
nonzeros<-nonzeros+1
selected<-c(selected,j-1)
}
}
out <- list (X = X,
Y = Y,
cases = cases,
predictors = predictors,
lambda = lambda,
objective = return_data$objective,
residual = return_data$r,
L1 = return_data$L1,
intercept = return_data$estimate[1],
estimate = return_data$estimate[2:(predictors+1)],
nonzeros = nonzeros,
selected = selected,
call=sys.call ())
class (out) <- "l1.reg"
return(out)
} |
summary.colspace <- function(object, by = NULL, ...) {
chkDots(...)
if (is.null(attr(object, "clrsp"))) {
message("Cannot return full colspace summary on subset data")
return(summary(as.data.frame(object)))
}
if (is.numeric(by) && attr(object, "clrsp") == "tcs" && nrow(object) %% by != 0) {
stop("The value passed to 'by' is not a multiple of the number of spectra")
}
if (!is.null(attr(object, "data.maxgamut"))) {
maxgamut <- attr(object, "data.maxgamut")
if (attr(object, "clrsp") == "dispace") {
maxvol <- max(maxgamut) - min(maxgamut)
} else {
maxvol <- tryCatch(
convhulln(attr(object, "data.maxgamut"), "FA")$vol,
error = function(e) NA
)
}
} else {
maxvol <- NA
}
cat(
"Colorspace & visual model options:\n",
"* Colorspace:", attr(object, "clrsp"), "\n",
"* Quantal catch:", attr(object, "qcatch"), "\n",
"* Visual system, chromatic:", attr(object, "visualsystem.chromatic"), "\n",
"* Visual system, achromatic:", attr(object, "visualsystem.achromatic"), "\n",
"* Illuminant:", attr(object, "illuminant"), "\n",
"* Background:", attr(object, "background"), "\n",
"* Relative:", attr(object, "relative"), "\n",
"* Max possible chromatic volume:", maxvol, "\n"
)
cat("\n")
if (attr(object, "clrsp") != "tcs") {
return(summary.data.frame(object))
}
if (attr(object, "clrsp") == "tcs") {
if (!is.null(by)) {
if (length(by) == 1) {
by.many <- by
by <- rep(seq_len(dim(object)[1] / by), each = by)
by <- factor(by,
labels = row.names(object)[seq(1, length(row.names(object)), by = by.many)]
)
}
by <- factor(by)
res.c <- data.frame(t(sapply(levels(by), function(z) tcssum(object[which(by == z), ]))))
row.names(res.c) <- levels(by)
} else {
res.c <- data.frame(t(tcssum(object)))
row.names(res.c) <- "all.points"
}
if (anyNA(res.c$c.vol)) {
warning("Not enough points to calculate volume", call. = FALSE)
}
res.c
}
} |
GITHUB_PATTERN <- '^https?://github.com'
get_pkgs_url <- function() {
pkgs <-
utils::installed.packages(priority = 'NA',
fields = c('URL', 'BugReports', 'GithubRepo', 'GithubUsername'))
repos_from_cran_url <- filter_github_cran(pkgs[, c('URL')])
repos_from_cran_bugreports <- filter_github_cran(pkgs[, c('BugReports')])
repos_from_cran <- union(repos_from_cran_url, repos_from_cran_bugreports)
repos_by_devtools <-
filter_github_devtool(pkgs[, c('GithubRepo', 'GithubUsername')])
repos <- union(repos_from_cran, repos_by_devtools)
return(repos)
}
filter_github_cran <- function(pkgs) {
GITHUB_PATTERN <- '^https?://github.com'
pkgs <- strsplit(pkgs, '( |,|
pkgs <-
sapply(pkgs, function(pkg) {
grep(GITHUB_PATTERN, pkg, value = TRUE)[1]
})
pkgs <- pkgs[!is.na(pkgs)]
pkgs <- strsplit(pkgs, '/')
repo_name <-
sapply(pkgs, function(vec)
paste(vec[4:5], collapse = '/'))
return(repo_name)
}
filter_github_devtool <- function(pkgs) {
pkgs <- na.omit(data.frame(pkgs))
repos_name <-
paste(pkgs$GithubUsername, pkgs$GithubRepo, sep = "/")
return(repos_name)
} |
lavMultipleGroups <-
function(model = NULL,
dataList = NULL,
ndat = length(dataList),
cmd = "sem",
...,
store.slots = c("partable"),
FUN = NULL,
show.progress = FALSE,
parallel = c("no", "multicore", "snow"),
ncpus = max(1L, parallel::detectCores() - 1L),
cl = NULL) {
dotdotdot <- list()
fit <- do.call("lavaanList", args = c(list(model = model,
dataList = dataList, ndat = ndat, cmd = cmd,
store.slots = store.slots, FUN = FUN,
show.progress = show.progress,
parallel = parallel, ncpus = ncpus, cl = cl), dotdotdot))
fit@meta$lavMultipleGroups <- TRUE
fit@meta$group.label <- names(dataList)
fit
} |
scatterD3 <- function(x, y, data = NULL, lab = NULL,
x_log = FALSE, y_log = FALSE,
point_size = 64, labels_size = 10,
labels_positions = NULL,
point_opacity = 1,
opacities = NULL,
hover_size = 1,
hover_opacity = NULL,
fixed = FALSE,
col_var = NULL,
col_continuous = NULL,
colors = NULL,
ellipses = FALSE,
ellipses_level = 0.95,
symbol_var = NULL,
symbols = NULL,
size_var = NULL,
size_range = c(10,300),
sizes = NULL,
col_lab = NULL,
symbol_lab = NULL,
size_lab = NULL,
key_var = NULL,
type_var = NULL,
opacity_var = NULL,
unit_circle = FALSE,
url_var = NULL,
tooltips = TRUE,
tooltip_text = NULL,
tooltip_position = "bottom right",
xlab = NULL, ylab = NULL,
html_id = NULL,
width = NULL, height = NULL,
legend_width = 150,
left_margin = 30,
xlim = NULL, ylim = NULL,
dom_id_reset_zoom = "scatterD3-reset-zoom",
dom_id_svg_export = "scatterD3-svg-export",
dom_id_lasso_toggle = "scatterD3-lasso-toggle",
transitions = FALSE,
menu = TRUE,
lasso = FALSE,
lasso_callback = NULL,
click_callback = NULL,
init_callback = NULL,
zoom_callback = NULL,
zoom_on = NULL,
zoom_on_level = NULL,
disable_wheel = FALSE,
lines = data.frame(slope = c(0, Inf),
intercept = c(0, 0),
stroke_dasharray = c(5,5)),
axes_font_size = "100%",
legend_font_size = "100%",
caption = NULL) {
if (is.null(xlab)) xlab <- deparse(substitute(x))
if (is.null(ylab)) ylab <- deparse(substitute(y))
if (is.null(col_lab)) col_lab <- deparse(substitute(col_var))
if (is.null(symbol_lab)) symbol_lab <- deparse(substitute(symbol_var))
if (is.null(size_lab)) size_lab <- deparse(substitute(size_var))
opacity_lab <- deparse(substitute(opacity_var))
if (is.null(html_id)) html_id <- paste0("scatterD3-", paste0(sample(LETTERS, 8, replace = TRUE), collapse = ""))
if (!is.null(data)) {
null_or_name <- function(varname) {
if (varname != "NULL") return(data[, varname])
else return(NULL)
}
x <- data[, deparse(substitute(x))]
y <- data[, deparse(substitute(y))]
lab <- deparse(substitute(lab))
col_var <- deparse(substitute(col_var))
size_var <- deparse(substitute(size_var))
symbol_var <- deparse(substitute(symbol_var))
opacity_var <- deparse(substitute(opacity_var))
url_var <- deparse(substitute(url_var))
key_var <- deparse(substitute(key_var))
type_var <- deparse(substitute(type_var))
lab <- null_or_name(lab)
col_var <- null_or_name(col_var)
size_var <- null_or_name(size_var)
symbol_var <- null_or_name(symbol_var)
opacity_var <- null_or_name(opacity_var)
url_var <- null_or_name(url_var)
key_var <- null_or_name(key_var)
type_var <- null_or_name(type_var)
}
x_categorical <- is.factor(x) || !is.numeric(x)
y_categorical <- is.factor(y) || !is.numeric(y)
x_levels <- levels(x)
y_levels <- levels(y)
if (x_log) {
if (any(x <= 0))
stop("Logarithmic scale and negative values in x")
lines <- lines[!(lines$slope == 0 & lines$intercept == 0),]
}
if (y_log) {
if (any(y <= 0))
stop("Logarithmic scale and negative values in y")
lines <- lines[!(lines$slope == Inf & lines$intercept == 0),]
}
if (!is.null(colors) && !is.null(names(colors))) {
colors <- as.list(colors)
if (!setequal(names(colors), unique(col_var))) warning("Set of colors and col_var values do not match")
}
if (!is.null(symbols) && !is.null(names(symbols))) {
symbols <- as.list(symbols)
if (!setequal(names(symbols), unique(symbol_var))) warning("Set of symbols and symbol_var values do not match")
}
if (!is.null(sizes) && !is.null(names(sizes))) {
sizes <- as.list(sizes)
if (!setequal(names(sizes), unique(size_var))) warning("Set of sizes and size_var values do not match")
}
if (!is.null(opacities) && !is.null(names(opacities))) {
opacities <- as.list(opacities)
if (!setequal(names(opacities), unique(opacity_var))) warning("Set of opacities and opacity_var values do not match")
}
if (is.null(col_continuous)) {
col_continuous <- FALSE
if (!is.factor(col_var) && is.numeric(col_var) && length(unique(col_var)) > 6) {
col_continuous <- TRUE
}
}
if (is.character(caption)) {
caption <- list(text = caption)
}
tooltip_position_x <- gsub("^.* ([a-z]+) *$", "\\1", tooltip_position)
tooltip_position_y <- gsub("^ *([a-z]+) .*$", "\\1", tooltip_position)
if (!(tooltip_position_x %in% c("left", "right")) ||
!(tooltip_position_y %in% c("top", "bottom"))) {
warning("tooltip_position must be a combination of 'top' or 'bottom' and 'left' or 'right'.")
tooltip_position_x <- "right"
tooltip_position_y <- "bottom"
}
data <- data.frame(x = x, y = y)
col_levels <- NULL
symbol_levels <- NULL
if (!is.null(lab)) data <- cbind(data, lab = lab)
if (!is.null(col_var) && !col_continuous) {
if (is.factor(col_var)) col_levels <- levels(col_var)
col_var <- as.character(col_var)
col_var[is.na(col_var)] <- "NA"
data <- cbind(data, col_var = col_var)
}
if (!is.null(col_var) && col_continuous) {
if (any(is.na(col_var))) warning("NA values in continuous col_var. Values set to min(0, col_var)")
col_var[is.na(col_var)] <- min(0, col_var, na.rm = TRUE)
data <- cbind(data, col_var = col_var)
}
if (!is.null(symbol_var)) {
if (is.factor(symbol_var)) symbol_levels <- levels(symbol_var)
symbol_var <- as.character(symbol_var)
symbol_var[is.na(symbol_var)] <- "NA"
data <- cbind(data, symbol_var = symbol_var)
}
if (!is.null(size_var)) {
if (any(is.na(size_var))) warning("NA values in size_var. Values set to min(0, size_var)")
size_var[is.na(size_var)] <- min(0, size_var, na.rm = TRUE)
data <- cbind(data, size_var = size_var)
}
if (!is.null(type_var)) data <- cbind(data, type_var = type_var)
if (!is.null(url_var)) {
url_var[is.na(url_var)] <- ""
data <- cbind(data, url_var = url_var)
if (!is.null(click_callback)) {
click_callback <- NULL
warning("Both url_var and click_callback defined, click_callback set to NULL")
}
}
if (!is.null(opacity_var)) data <- cbind(data, opacity_var = opacity_var)
if (!is.null(key_var)) {
data <- cbind(data, key_var = key_var)
} else {
data <- cbind(data, key_var = seq_along(x))
}
if (!is.null(tooltip_text)) data <- cbind(data, tooltip_text = tooltip_text)
compute_ellipse <- function(x, y, level = ellipses_level, npoints = 50) {
cx <- mean(x)
cy <- mean(y)
data.frame(ellipse::ellipse(stats::cov(cbind(x,y)), centre = c(cx, cy), level = level, npoints = npoints))
}
ellipses_data <- list()
if (ellipses && !col_continuous && !x_categorical && !y_categorical) {
if (is.null(col_var)) {
ell <- compute_ellipse(x, y)
ellipses_data <- append(ellipses_data, list(list(level = "_scatterD3_all", data = ell)))
} else {
for (l in unique(col_var)) {
sel <- col_var == l & !is.na(col_var)
if (sum(sel) > 2) {
tmpx <- x[sel]
tmpy <- y[sel]
ell <- compute_ellipse(tmpx, tmpy)
ellipses_data <- append(ellipses_data, list(list(level = l, data = ell)))
}
}
}
} else {
ellipses <- FALSE
}
hashes <- list()
if (transitions) {
for (var in c("x", "y", "lab", "key_var", "col_var", "symbol_var", "size_var", "ellipses_data", "opacity_var", "lines", "labels_positions")) {
hashes[[var]] <- digest::digest(get(var), algo = "sha256")
}
}
n_lab <- sum(lab != "")
if (n_lab > 500 && !is.null(labels_positions) && labels_positions == "auto") {
warning(gettext("More than 500 labels, automatic labels positioning has been disabled"))
labels_positions <- NULL
}
settings <- list(
x_log = x_log,
y_log = y_log,
labels_size = labels_size,
labels_positions = labels_positions,
point_size = point_size,
point_opacity = point_opacity,
opacities = opacities,
hover_size = hover_size,
hover_opacity = hover_opacity,
xlab = xlab,
ylab = ylab,
has_labels = !is.null(lab),
col_lab = col_lab,
col_continuous = col_continuous,
col_levels = col_levels,
colors = colors,
ellipses = ellipses,
ellipses_data = ellipses_data,
symbol_lab = symbol_lab,
symbol_levels = symbol_levels,
symbols = symbols,
size_range = size_range,
size_lab = size_lab,
sizes = sizes,
opacity_lab = opacity_lab,
opacities = opacities,
unit_circle = unit_circle,
has_color_var = !is.null(col_var),
has_symbol_var = !is.null(symbol_var),
has_size_var = !is.null(size_var),
has_opacity_var = !is.null(opacity_var),
has_url_var = !is.null(url_var),
has_legend = (!is.na(col_lab) && !is.null(col_var)) ||
(!is.na(symbol_lab) && !is.null(symbol_var)) ||
(!is.na(size_lab) && !is.null(size_var)),
has_tooltips = tooltips,
tooltip_text = tooltip_text,
tooltip_position_x = tooltip_position_x,
tooltip_position_y = tooltip_position_y,
has_custom_tooltips = !is.null(tooltip_text),
click_callback = htmlwidgets::JS(click_callback),
init_callback = htmlwidgets::JS(init_callback),
zoom_callback = htmlwidgets::JS(zoom_callback),
zoom_on = zoom_on,
zoom_on_level = zoom_on_level,
disable_wheel = disable_wheel,
fixed = fixed,
legend_width = legend_width,
left_margin = left_margin,
html_id = html_id,
xlim = xlim,
ylim = ylim,
x_categorical = x_categorical,
y_categorical = y_categorical,
x_levels = x_levels,
y_levels = y_levels,
menu = menu,
lasso = lasso,
lasso_callback = htmlwidgets::JS(lasso_callback),
dom_id_reset_zoom = dom_id_reset_zoom,
dom_id_svg_export = dom_id_svg_export,
dom_id_lasso_toggle = dom_id_lasso_toggle,
transitions = transitions,
axes_font_size = axes_font_size,
legend_font_size = legend_font_size,
caption = caption,
lines = lines,
hashes = hashes
)
x <- list(
data = data,
settings = settings
)
htmlwidgets::createWidget(
name = 'scatterD3',
x,
width = width,
height = height,
package = 'scatterD3',
sizingPolicy = htmlwidgets::sizingPolicy(
browser.fill = TRUE,
browser.defaultWidth = "100%",
browser.defaultHeight = "85vh",
viewer.fill = TRUE,
viewer.defaultWidth = "100%",
viewer.defaultHeight = "85vh"
)
)
}
scatterD3Output <- function(outputId, width = '100%', height = '600px'){
htmlwidgets::shinyWidgetOutput(outputId, 'scatterD3', width, height, package = 'scatterD3')
}
renderScatterD3 <- function(expr, env = parent.frame(), quoted = FALSE) {
if (!quoted) { expr <- substitute(expr) }
htmlwidgets::shinyRenderWidget(expr, scatterD3Output, env, quoted = TRUE)
} |
context("test-g01-lin_ops")
NEG <- "neg"
PARAM <- "param"
DENSE_CONST <- "dense_const"
SPARSE_CONST <- "sparse_const"
SCALAR_CONST <- "scalar_const"
SUM_ENTRIES <- "sum_entries"
VARIABLE <- "variable"
create_const <- CVXR:::create_const
create_eq <- CVXR:::create_eq
create_leq <- CVXR:::create_leq
create_param <- CVXR:::create_param
create_var <- CVXR:::create_var
get_expr_vars <- CVXR:::get_expr_vars
lo.neg_expr <- CVXR:::lo.neg_expr
lo.sum_expr <- CVXR:::lo.sum_expr
lo.sum_entries <- CVXR:::lo.sum_entries
test_that("Test creating a variable", {
skip_on_cran()
var <- create_var(c(5, 4), var_id = 1)
expect_equal(var$dim, c(5, 4))
expect_equal(var$data, 1)
expect_equal(length(var$args), 0)
expect_equal(var$type, VARIABLE)
})
test_that("Test creating a parameter", {
skip_on_cran()
A <- Parameter(5, 4)
var <- create_param(A, c(5, 4))
expect_equal(var$dim, c(5, 4))
expect_equal(length(var$args), 0)
expect_equal(var$type, PARAM)
})
test_that("Test creating a constant", {
skip_on_cran()
dim <- c(1, 1)
mat <- create_const(1.0, dim)
expect_equal(mat$dim, dim)
expect_equal(length(mat$args), 0)
expect_equal(mat$type, SCALAR_CONST)
expect_equal(mat$data, 1.0)
dim <- c(5, 4)
mat <- create_const(matrix(1, nrow = dim[1], ncol = dim[2]), dim)
expect_equal(mat$dim, dim)
expect_equal(length(mat$args), 0)
expect_equal(mat$type, DENSE_CONST)
expect_equal(mat$data, matrix(1, nrow = dim[1], ncol = dim[2]))
dim <- c(5, 5)
mat <- create_const(Matrix::sparseMatrix(i = 1:5, j = 1:5, x = 1), dim, sparse = TRUE)
expect_equal(mat$dim, dim)
expect_equal(length(mat$args), 0)
expect_equal(mat$type, SPARSE_CONST)
expect_equivalent(as.matrix(mat$data), diag(rep(1, 5)))
})
test_that("Test adding lin expr", {
skip_on_cran()
dim <- c(5, 4)
x <- create_var(dim)
y <- create_var(dim)
add_expr <- lo.sum_expr(list(x, y))
expect_equal(add_expr$dim, dim)
expect_equal(length(add_expr$args), 2)
})
test_that("Test getting vars from an expression", {
skip_on_cran()
dim <- c(5, 4)
x <- create_var(dim)
y <- create_var(dim)
A <- create_const(matrix(1, nrow = dim[1], ncol = dim[2]), dim)
add_expr <- lo.sum_expr(list(x, y, A))
vars_ <- get_expr_vars(add_expr)
expect_equal(vars_[[1]], list(x$data, dim))
expect_equal(vars_[[2]], list(y$data, dim))
})
test_that("Test negating an expression", {
skip_on_cran()
dim <- c(5, 4)
var <- create_var(dim)
expr <- lo.neg_expr(var)
expect_equal(length(expr$args), 1)
expect_equal(expr$dim, dim)
expect_equal(expr$type, NEG)
})
test_that("Test creating an equality constraint", {
skip_on_cran()
dim <- c(5, 5)
x <- create_var(dim)
y <- create_var(dim)
lh_expr <- lo.sum_expr(list(x, y))
value <- matrix(1, nrow = dim[1], ncol = dim[2])
rh_expr <- create_const(value, dim)
constr <- create_eq(lh_expr, rh_expr)
expect_equal(constr$dim, dim)
vars_ <- get_expr_vars(constr$expr)
ref <- list(list(x$data, dim), list(y$data, dim))
expect_equal(vars_, ref)
})
test_that("Test creating a less than or equal constraint", {
skip_on_cran()
dim <- c(5, 5)
x <- create_var(dim)
y <- create_var(dim)
lh_expr <- lo.sum_expr(list(x, y))
value <- matrix(1, nrow = dim[1], ncol = dim[2])
rh_expr <- create_const(value, dim)
constr <- create_leq(lh_expr, rh_expr)
expect_equal(constr$dim, dim)
vars_ <- get_expr_vars(constr$expr)
ref <- list(list(x$data, dim), list(y$data, dim))
expect_equal(vars_, ref)
})
test_that("Test sum entries op", {
skip_on_cran()
dim <- c(5, 5)
x <- create_var(dim)
expr <- lo.sum_entries(x, c(1, 1))
expect_equal(expr$dim, c(1, 1))
expect_equal(length(expr$args), 1)
expect_equal(expr$type, SUM_ENTRIES)
}) |
context("optimize_folder")
test_that("optimize non recursively in a folder", {
tmp_dir <- tempdir()
base_dir <- paste0(tmp_dir, "/folder1/")
sub_dir <- paste0(base_dir, "subdir/")
unlink(base_dir, force = TRUE, recursive = TRUE)
dir.create(base_dir, showWarnings = FALSE)
dir.create(sub_dir, showWarnings = FALSE)
file_opt <- paste0(base_dir, "file_opt.R")
file_unopt <- paste0(base_dir, "file_unopt.R")
subd_file_opt <- paste0(sub_dir, "file_opt.R")
subd_file_unopt <- paste0(sub_dir, "file_unopt.R")
opt_code <- "var1 <- 3; var2 <- 15"
unopt_code <- "var1 <- 3; var2 <- var1 * 5"
write_code_file(opt_code, file_opt)
expect_true(file.copy(file_opt, subd_file_opt))
write_code_file(unopt_code, file_unopt)
expect_true(file.copy(file_unopt, subd_file_unopt))
optimize_folder(base_dir, recursive = FALSE)
expect_true(length(dir(base_dir)) == 4)
expect_true(length(dir(sub_dir)) == 2)
expect_equal(
read_code_file(paste0(base_dir, "optimized_", basename(file_unopt))),
read_code_file(file_opt)
)
})
test_that("optimize recursively in a folder", {
tmp_dir <- tempdir()
base_dir <- paste0(tmp_dir, "/folder2/")
sub_dir <- paste0(base_dir, "subdir/")
unlink(base_dir, force = TRUE, recursive = TRUE)
dir.create(base_dir, showWarnings = FALSE)
dir.create(sub_dir, showWarnings = FALSE)
file_opt <- paste0(base_dir, "file_opt.R")
file_unopt <- paste0(base_dir, "file_unopt.R")
subd_file_opt <- paste0(sub_dir, "file_opt.R")
subd_file_unopt <- paste0(sub_dir, "file_unopt.R")
opt_code <- "var1 <- 3; var2 <- 15"
unopt_code <- "var1 <- 3; var2 <- var1 * 5"
write_code_file(opt_code, file_opt)
expect_true(file.copy(file_opt, subd_file_opt))
write_code_file(unopt_code, file_unopt)
expect_true(file.copy(file_unopt, subd_file_unopt))
optimize_folder(base_dir, recursive = TRUE)
expect_true(length(dir(base_dir)) == 4)
expect_true(length(dir(sub_dir)) == 3)
expect_equal(
read_code_file(paste0(base_dir, "optimized_", basename(file_unopt))),
read_code_file(file_opt)
)
expect_equal(
read_code_file(paste0(sub_dir, "optimized_", basename(file_unopt))),
read_code_file(file_opt)
)
})
test_that("error on non-exiting folder", {
expect_error(optimize_folder("non_existing_folder"))
})
test_that("optimize empty folder", {
tmp_dir <- tempdir()
base_dir <- paste0(tmp_dir, "/folder3/")
unlink(base_dir, force = TRUE, recursive = TRUE)
dir.create(base_dir, showWarnings = FALSE)
expect_null(optimize_folder(base_dir))
}) |
.googlesheets4 <- new.env(parent = emptyenv()) |
context("rl_version functions")
test_that("rl_version works", {
skip_on_cran()
vcr::use_cassette("rl_version", {
aa <- rl_version()
expect_is(aa, "character")
expect_match(aa, "[0-9]{4}-[0-9]")
})
})
test_that("rl_version curl options work", {
skip_on_cran()
expect_error(rl_version(timeout_ms = 1), "Timeout was reached")
}) |
CondIndTest <- function(Y, E, X,
method = "KCI",
alpha = 0.05,
parsMethod = list(),
verbose = FALSE){
dimY <- NCOL(Y)
dimE <- NCOL(E)
if(method %in% c("KCI", "InvariantEnvironmentPrediction")) dimY <- 1
if(!(method %in% c("InvariantEnvironmentPrediction",
"InvariantResidualDistributionTest",
"InvariantConditionalQuantilePrediction"))) dimE <- 1
nTests <- dimY*dimE
results <- vector("list", nTests)
pval_bonf <- 1
k <- 1
for(de in 1:dimE){
for(dy in 1:dimY){
argsSet <- list(Y = if(dimY > 1) Y[, dy] else Y,
E = if(dimE > 1) E[, de] else E,
X = X,
alpha = alpha,
verbose = verbose)
switch(method,
"KCI" = {
result <- do.call(KCI, c(argsSet, parsMethod))
},
"InvariantConditionalQuantilePrediction" = {
result <- do.call(InvariantConditionalQuantilePrediction, c(argsSet, parsMethod))
},
"InvariantEnvironmentPrediction" = {
result <- do.call(InvariantEnvironmentPrediction, c(argsSet, parsMethod))
},
"InvariantResidualDistributionTest" = {
result <- do.call(InvariantResidualDistributionTest, c(argsSet, parsMethod))
},
"InvariantTargetPrediction" = {
result <- do.call(InvariantTargetPrediction, c(argsSet, parsMethod))
},
"ResidualPredictionTest" = {
result <- do.call(ResidualPredictionTest, c(argsSet, parsMethod))
},
{
stop(paste("Method ", method," not implemented"))
}
)
pval_bonf <- min(pval_bonf, result$pvalue)
results[[k]] <- result
names(results[[k]])[which(names(results[[k]]) == "pvalue")] <- "pvalue_individual"
if(dimY > 1 & dimE > 1)
name <- paste("Y", dy, "E", de, sep = "")
else if(dimY > 1)
name <- paste("Y", dy, sep = "")
else if(dimE > 1)
name <- paste("E", de, sep = "")
else
name <- paste("Y", dy, sep = "")
names(results)[[k]] <- name
k <- k+1
}
}
results$pvalue <- min(1, pval_bonf*nTests)
return(results)
} |
meBb <- function (x,size,warn=FALSE) {
if(!requireNamespace("rmutil"))
stop("The package \"rmutil\" seems not to be available.\n")
x <- x[!is.na(x)]
m1 <- mean(x)
m2 <- mean(x^2)
denom <- size*(m2/m1 - m1 - 1) + m1
numAlpha <- size*m1 - m2
numBeta <- (size - m1)*(size - m2/m1)
alphaHat <- numAlpha/denom
betaHat <- numBeta/denom
sHat <- alphaHat + betaHat
mHat <- alphaHat/sHat
if(warn) {
if(sHat <= 0 | mHat < 0 | mHat > 1) {
whinge <- paste0("The moment estimates of the parameters are\n",
" sHat = ",sHat," and mHat = ",mHat,". The value of\n",
" \"sHat\" should be strictly positive and\n",
" the value of \"mHat\" should be between 0 and 1.\n")
warning(whinge)
}
}
c(m=mHat,s=sHat)
} |
plot.gofobj <- function(x, parm = TRUE, ...)
{
stopifnot(inherits(x, 'gofobj'))
stopifnot(is.logical(parm) & length(parm) == 1)
SimStats <- attributes(x)$SimStats
N <- attributes(x)$N
directed <- attributes(x)$directed
nd <- N * (N - 1) / (2 - directed)
stats <- names(SimStats)
nsim <- nrow(SimStats[[1]]) - 1
ngofst <- length(stats)
if(directed){
allstats <- c('idegree', 'odegree', 'esp', 'dsp', 'triadcensus', 'distance')
allxlab <- c('in degree', 'out degree', 'edge-wise shared partners', 'dyad-wise shared partners', 'triad census', 'minimum geodesic distance')
allylab <- c('proportion of nodes', 'proportion of nodes', 'proportion of edges', 'proportion of dyads', 'proportion of triads', 'proportion of dyads')
} else {
allstats <- c('degree', 'esp', 'dsp', 'triadcensus', 'distance')
allxlab <- c('degree', 'edge-wise shared partners', 'dyad-wise shared partners', 'triad census', 'minimum geodesic distance')
allylab <- c('proportion of nodes', 'proportion of edges', 'proportion of dyads', 'proportion of triads', 'proportion of dyads')
}
names(allxlab) <- allstats
names(allylab) <- allstats
GOFxlab <- allxlab[stats %in% allstats]
GOFylab <- allylab[stats %in% allstats]
sumstats <- list()
if(parm){
if(ngofst == 2 ){
par(mfrow = c(1,2))
}
if(ngofst %in% c(3,4) ){
par(mfrow = c(2,2))
}
if(ngofst > 4 ){
par(mfrow = c(2,3))
}
}
for(gf in stats) {
if(gf != 'distance'){
if(gf %in% c('degree', 'idegree', 'odegree')){
sumstats <- cbind(x[[gf]][,1],
apply(SimStats[[gf]][, -(nsim + 1)], 1, quantile, probs = .025),
apply(SimStats[[gf]][, -(nsim + 1)], 1, mean),
apply(SimStats[[gf]][, -(nsim + 1)], 1, quantile, probs = .975)) / N
simstats <- t(SimStats[[gf]][, -(nsim + 1)]) / N
}
if(gf == 'esp'){
ne <- colSums(attributes(x)$SimStats[['esp']])
sumstats <- cbind(x[[gf]][,1] / ne[nsim + 1],
apply(t(SimStats[[gf]][, -(nsim + 1)]) / ne[ -(nsim + 1)], 2, quantile, probs = .025),
apply(t(SimStats[[gf]][, -(nsim + 1)]) / ne[ -(nsim + 1)], 2, mean),
apply(t(SimStats[[gf]][, -(nsim + 1)]) / ne[ -(nsim + 1)], 2, quantile, probs = .975))
simstats <- t(SimStats[[gf]][, -(nsim + 1)]) / ne[ -(nsim + 1)]
}
if(gf == 'dsp'){
sumstats <- cbind(x[[gf]][,1],
apply(SimStats[[gf]][, -(nsim + 1)], 1, quantile, probs = .025),
apply(SimStats[[gf]][, -(nsim + 1)], 1, mean),
apply(SimStats[[gf]][, -(nsim + 1)], 1, quantile, probs = .975)) / nd
simstats <- t(SimStats[[gf]][, -(nsim + 1)]) / nd
}
if(gf == 'triadcensus'){
nt <- sum(x[['triadcensus']][,1])
sumstats <- cbind(x[[gf]][,1],
apply(SimStats[[gf]][, -(nsim + 1)], 1, quantile, probs = .025),
apply(SimStats[[gf]][, -(nsim + 1)], 1, mean),
apply(SimStats[[gf]][, -(nsim + 1)], 1, quantile, probs = .975)) / nt
simstats <- t(SimStats[[gf]][, -(nsim + 1)]) / nt
}
boxplot(simstats, xlab = GOFxlab[gf] , ylab = GOFylab[gf],
ylim = range(simstats, sumstats[,1]), outline = FALSE)
matlines(sumstats[, c(2, 4)], col = 'gray', lty = 1)
matpoints(sumstats[, c(2,4)], col = 1, pch = 1)
lines(sumstats[,1], col = 'red', lwd = 2)
} else {
obsstats <- x[[gf]][,1] / nd
simstatsCI <- t(apply(SimStats[[gf]][, -(nsim + 1)], 1, quantile, probs = c(.025, .975))) / nd
simstats <- t(SimStats[[gf]][, -(nsim + 1)]) / nd
nssd <- length(obsstats)
boxplot(simstats, xlab = GOFxlab[gf] , ylab =GOFylab[gf], ylim = range(simstats, obsstats), outline = FALSE)
matlines(simstatsCI[-nssd, ], col = 'gray', lty = 1)
matpoints(simstatsCI, col = 1, pch = 1)
points(rep(nssd,2), simstatsCI[nssd, ] / nd, col = 'gray', pch = '_')
lines(obsstats[-nssd], col = 'red', lwd = 2)
points(nssd, obsstats[nssd], col = 'red', pch = 16, cex = 1)
}
}
mtext("Goodness-of-fit diagnostics", side = 3, outer = TRUE, cex = 1.5, padj = 2)
if(parm) par(mfrow = c(1,1))
} |
ReistTrans <-
function(data,reg,Rp=0,Ri=0){
dat.rem.ind.pop<-function(data,ind=0,pop=0){
data=as.data.frame(data);
dat.rem.ind<-function(dat,ind){
nb.rem.ind=length(ind);
nb.ind=dim(dat)[1];
for(i in 1:nb.rem.ind) dat=dat[row.names(dat)[1:(nb.ind-i+1)]!=ind[i],];
return(dat)};
dat.rem.pop<-function(dat,pop){
nb.rem.pop=length(pop);
for(i in 1:nb.rem.pop) dat=dat[dat[,1]!=pop[i],];
return(dat);}
if (ind[1]!=0) data=dat.rem.ind(data,ind);
if (pop[1]!=0) data=dat.rem.pop(data,pop);
return(data);}
Reitra.va<-function(dat,clm,re){
dat=dat[is.finite(dat[,re]),];
log.dat=dat;
mea=mean(dat[is.finite(dat[,clm]),re]);
log.dat[,clm]=log(dat[,clm],base=10);
log.dat[,re]=log(dat[,re],base=10);
mea.clm=mean(log.dat[is.finite(log.dat[,clm]),clm],na.rm=TRUE);
mea.reg=mean(log.dat[is.finite(log.dat[,clm]),re],na.rm=TRUE);
a=sum((log.dat[is.finite(log.dat[,clm]),re]-mea.reg)*log.dat[is.finite(log.dat[,clm]),clm])/sum((log.dat[is.finite(log.dat[,clm]),re]-mea.reg)*(log.dat[is.finite(log.dat[,clm]),re]-mea.reg));
dat[,clm]=log.dat[,clm]-a*(log.dat[,re]-log(mea,base=10));
return(dat);}
nb.var=dim(data)[2]-1;
for (i in 1:nb.var) {if (names(data)[i+1]==reg) reg=i};
if (is.numeric(reg)==FALSE) return("reg value does not exist!");
data=dat.rem.ind.pop(data,ind=Ri,pop=Rp);
if (reg==1) for (i in 2:nb.var) data=Reitra.va(data,clm=i+1,re=2)
else {for (i in 2:reg) data=Reitra.va(data,clm=i,re=reg+1);
if (reg<nb.var) for (j in (reg+1):nb.var) data=Reitra.va(data,clm=j+1,re=reg+1);};
return(data[-(reg+1)]);} |
context("Preparation of master matrix")
test_that("Correct creation of master_matrix", {
variables <- raster::stack(system.file("extdata/variables.tif",
package = "biosurvey"))
names(variables) <- c("Mean_temperature", "Max_temperature",
"Min_temperature", "Annual_precipitation",
"Prec_wettest_month", "Prec_driest_month")
m_matrix <- prepare_master_matrix(region = mx, variables = variables)
m_matrix1 <- prepare_master_matrix(region = mx, variables = variables,
do_pca = T, scale = T,
variables_in_matrix = c("Mean_temperature",
"Annual_precipitation"))
cnam <- names(m_matrix)
inams <- colnames(m_matrix$data_matrix)
inams1 <- colnames(m_matrix1$data_matrix)
anames <- c("data_matrix", "preselected_sites", "region", "mask",
"raster_base", "PCA_results" )
enams <- c("Longitude", "Latitude", "Mean_temperature", "Max_temperature",
"Min_temperature", "Annual_precipitation", "Prec_wettest_month",
"Prec_driest_month")
enams1 <- c("Longitude", "Latitude", "Mean_temperature",
"Annual_precipitation", "PC1", "PC2")
testthat::expect_s3_class(m_matrix, "master_matrix")
testthat::expect_null(m_matrix$mask)
testthat::expect_null(m_matrix$PCA_results)
testthat::expect_s3_class(m_matrix1$PCA_results, "prcomp")
testthat::expect_s4_class(m_matrix$region, "SpatialPolygonsDataFrame")
testthat::expect_s4_class(m_matrix$raster_base, "RasterLayer")
testthat::expect_length(m_matrix, 6)
testthat::expect_equal(cnam, anames)
testthat::expect_equal(inams, enams)
testthat::expect_equal(inams1, enams1)
})
test_that("Errors and messages master_matrix", {
variables <- raster::stack(system.file("extdata/variables.tif",
package = "biosurvey"))
testthat::expect_message(prepare_master_matrix(region = mx,
variables = variables))
testthat::expect_error(prepare_master_matrix(region = mx,
variables = variables[[1]]))
testthat::expect_error(prepare_master_matrix(region = mx))
testthat::expect_error(prepare_master_matrix(variables = variables))
testthat::expect_error(prepare_master_matrix(region = mx, variables = mx))
testthat::expect_error(prepare_master_matrix(region = variables,
variables = variables))
}) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.