code
stringlengths
1
13.8M
sms_test_prob <- predict(sms_classifier, sms_test, type = "raw") head(sms_test_prob) sms_results <- data.frame(actual_type = sms_test_labels, predict_type = sms_test_pred, prob_spam = round(sms_test_prob[ , 2], 5), prob_ham = round(sms_test_prob[ , 1], 5)) sms_results <- read.csv("sms_results.csv", stringsAsFactors = TRUE) head(sms_results) head(subset(sms_results, prob_spam > 0.40 & prob_spam < 0.60)) head(subset(sms_results, actual_type != predict_type)) table(sms_results$actual_type, sms_results$predict_type) xtabs(~ actual_type + predict_type, sms_results) library(gmodels) CrossTable(sms_results$actual_type, sms_results$predict_type) (152 + 1203) / (152 + 1203 + 4 + 31) (4 + 31) / (152 + 1203 + 4 + 31) 1 - 0.9748201 library(caret) confusionMatrix(sms_results$predict_type, sms_results$actual_type, positive = "spam") pr_a <- 0.865 + 0.109 pr_a pr_e <- 0.868 * 0.888 + 0.132 * 0.112 pr_e k <- (pr_a - pr_e) / (1 - pr_e) k library(vcd) Kappa(table(sms_results$actual_type, sms_results$predict_type)) library(irr) kappa2(sms_results[1:2]) sens <- 152 / (152 + 31) sens spec <- 1203 / (1203 + 4) spec library(caret) sensitivity(sms_results$predict_type, sms_results$actual_type, positive = "spam") specificity(sms_results$predict_type, sms_results$actual_type, negative = "ham") prec <- 152 / (152 + 4) prec rec <- 152 / (152 + 31) rec library(caret) posPredValue(sms_results$predict_type, sms_results$actual_type, positive = "spam") sensitivity(sms_results$predict_type, sms_results$actual_type, positive = "spam") f <- (2 * prec * rec) / (prec + rec) f f <- (2 * 152) / (2 * 152 + 4 + 31) f library(pROC) sms_roc <- roc(sms_results$actual_type, sms_results$prob_spam) plot(sms_roc, main = "ROC curve for SMS spam filter", col = "blue", lwd = 2, legacy.axes = TRUE) sms_results_knn <- read.csv("sms_results_knn.csv") sms_roc_knn <- roc(sms_results$actual_type, sms_results_knn$p_spam) plot(sms_roc_knn, col = "red", lwd = 2, add = TRUE) auc(sms_roc) auc(sms_roc_knn) library(caret) credit <- read.csv("credit.csv", stringsAsFactors = TRUE) random_ids <- order(runif(1000)) credit_train <- credit[random_ids[1:500],] credit_validate <- credit[random_ids[501:750], ] credit_test <- credit[random_ids[751:1000], ] in_train <- createDataPartition(credit$default, p = 0.75, list = FALSE) credit_train <- credit[in_train, ] credit_test <- credit[-in_train, ] folds <- createFolds(credit$default, k = 10) str(folds) credit01_test <- credit[folds$Fold01, ] credit01_train <- credit[-folds$Fold01, ] library(caret) library(C50) library(irr) credit <- read.csv("credit.csv", stringsAsFactors = TRUE) RNGversion("3.5.2") set.seed(123) folds <- createFolds(credit$default, k = 10) cv_results <- lapply(folds, function(x) { credit_train <- credit[-x, ] credit_test <- credit[x, ] credit_model <- C5.0(default ~ ., data = credit_train) credit_pred <- predict(credit_model, credit_test) credit_actual <- credit_test$default kappa <- kappa2(data.frame(credit_actual, credit_pred))$value return(kappa) }) str(cv_results) mean(unlist(cv_results))
setGeneric("qoffset_z", function(object) standardGeneric("qoffset_z")) setMethod("qoffset_z", "nifti", function(object) object@"qoffset_z") setGeneric("qoffset_z<-", function(object, value) standardGeneric("qoffset_z<-")) setMethod("qoffset_z<-", signature(object="nifti"), function(object, value) { if ( "qoffset_z" %in% slotNames(object) ){ object@"qoffset_z" <- value audit.trail(object) <- niftiAuditTrailEvent(object, "modification", match.call(), paste("qoffset_z <-", value)) } else { warning("qoffset_z is not in slotNames of object") } return(object) }) setGeneric("qoffset.z", function(object) standardGeneric("qoffset.z")) setMethod("qoffset.z", "nifti", function(object) object@"qoffset_z") setGeneric("qoffset.z<-", function(object, value) standardGeneric("qoffset.z<-")) setMethod("qoffset.z<-", signature(object="nifti"), function(object, value) { if ( "qoffset_z" %in% slotNames(object) ){ object@"qoffset_z" <- value audit.trail(object) <- niftiAuditTrailEvent(object, "modification", match.call(), paste("qoffset_z <-", value)) } else { warning("qoffset_z is not in slotNames of object") } return(object) })
undo_interleave <- function(x){ l <- seq(1, length(x[is.na(x) == FALSE]), 1) evens <- l[l %% 2 != 1] odds <- l[l %% 2 == 1] resort_index <- order(c(seq_along(odds), seq_along(evens))) if(any(is.na(x)) == TRUE){ pad <- seq(max(c(odds, evens) + 1), length(x), 1) resort_index <- c(resort_index, pad) } x <- x[resort_index] return(x) }
context("Test date_between") test_that("date_between works as expected", { date1 <- as.Date("2016-02-22") date2 <- as.Date("2016-02-11") date_column <- "STD_1" expect_identical( date_between(date_column, date1), "STD_1 between to_date('2016-02-22', 'yyyy-mm-dd') and to_date('2016-02-22', 'yyyy-mm-dd')") expect_identical( date_between(date_column, c(date1, date2)), "STD_1 between to_date('2016-02-11', 'yyyy-mm-dd') and to_date('2016-02-22', 'yyyy-mm-dd')") }) test_that("date_between checks dates", { date1 <- as.Date("2016-02-22") date_column <- "STD" expect_error(date_between(date_column, as.POSIXct(date1))) expect_error(date_between(date_column, as.Date(NA))) expect_error(date_between(date_column, date1 + 1:11)) expect_error(date_between(date_column, date1[0])) expect_error(date_between(date_column, NULL)) }) test_that("date_between checks column_names", { date1 <- as.Date("2016-02-22") expect_error(date_between("", date1)) expect_error(date_between(NA, date1)) expect_error(date_between(1L, date1)) expect_error(date_between("'wrong'", date1)) expect_error(date_between("wrong wrong", date1)) expect_error(date_between("123", date1)) expect_error(date_between("ABC$", date1)) })
plotscore <- function(param=c(2,.5), fam="pow", bounds, reverse=FALSE, legend=TRUE, ...){ if(length(param) > 2) stop("plotscore is only for two-alternative rules.\n") dots <- list(...) if(exists("dots$scaling")){ if(dots$scaling) bounds <- c(0,1) } p <- seq(.01,.99,.01) if(missing(bounds)) bounds <- NULL sc1 <- calcscore(p, rep(1,length(p)), fam, param, bounds=bounds, reverse=reverse) sc0 <- calcscore(p, rep(0,length(p)), fam, param, bounds=bounds, reverse=reverse) ymin <- min(sc1,sc0) ymax <- max(sc1,sc0) yl <- c(ymin - .05*(ymax - ymin), ymax + .05*(ymax - ymin)) main.arg <- list(x=p, y=sc1) supplied <- list(...) default <- list(type="l", ylim=yl, xlab="Forecast", ylab="Score") nomatch <- setdiff(c("type","xlab","ylab","ylim"), names(supplied)) plot.args <- c(main.arg, supplied, default[nomatch]) do.call(plot, plot.args) lines(p, sc0, lty=2) if(legend) legend(.8, yl[2] - .1, c("d=1","d=0"), lty=c(1,2)) }
plot.lacfCI <- function (x, plotcor = TRUE, type = "line", lags = 0:as.integer(10 * log10(nrow(x$lacf))), tcex = 1, lcol = 1, llty = 1, ylim = NULL, segwid = 1, segandcross = TRUE, conf.level = 0.95, plot.it=TRUE, xlab, ylab, sub, ...) { if (conf.level < 0 || conf.level > 1) stop("conf.level has to be between 0 and 1") siz <- 1 - conf.level qval <- qnorm(1 - siz/2) XCI <- x x <- x$the.lacf nlags <- length(lags) ntime <- nrow(x$lacf) if (max(lags) + 1 > ncol(x$lacf)) stop("Maximum lag is too high") if (length(lcol) == 1) lcol <- rep(lcol, length(lags)) if (length(llty) == 1) llty <- rep(llty, length(lags)) if (length(lcol) != length(lags)) stop("Length of lcol vector has to be 1 or the same as the length of the lags vector") if (length(llty) != length(lags)) stop("Length of llty vector has to be 1 or the same as the length of the lags vector") if (type == "line") { if (plotcor == TRUE) { if (plot.it==TRUE) { if (missing(xlab)) xlab <- "Time" if (missing(ylab)) ylab <- "Autocorrelation" plot(c(1, max(ntime)), c(-1, 1), type = "n", xlab = xlab, ylab = ylab, ...) for (i in 1:nlags) { lines(1:ntime, x$lacr[, 1 + lags[i]], col = lcol[i], lty = llty[i]) pp <- seq(from = 1, to = ntime, length = 5) text(pp, x$lacr[pp, 1 + lags[i]], labels = lags[i], cex = tcex) } } } else { yl <- range(x$lacf[,1+lags]) if (plot.it==TRUE) { if (missing(xlab)) xlab <- "Time" if (missing(ylab)) ylab <- "Autocovariance" plot(c(1, max(ntime)), c(yl[1], yl[2]), type = "n", xlab = xlab, ylab = ylab, ...) for (i in 1:nlags) { lines(1:ntime, x$lacf[, 1 + lags[i]], col = lcol[i], lty = llty[i]) pp <- seq(from = 1, to = ntime, length = 5) text(pp, x$lacf[pp, 1 + lags[i]], labels = lags[i], cex = tcex) } } ans <- x$lacf[, 1+ lags] dimnames(ans) <- list(NULL, as.character(lags)) return(invisible(ans)) } } else if (type == "persp") { if (plotcor == TRUE) { m <- x$lacr[, lags + 1] zlab <- "Autocorrelation" } else { m <- x$lacf[, lags + 1] zlab <- "Autocovariance" } if (plot.it==TRUE) { if (missing(xlab)) xlab <- "Time" if (missing(ylab)) ylab <- "Lag" persp(x = 1:ntime, y = lags, z = m[, lags + 1], xlab = xlab, ylab = ylab, zlab = zlab, ...) } } else if (type == "acf") { the.time <- XCI$nz if (missing(sub)) sub <- paste("c(", the.time, ", lag)") if (plotcor == TRUE) { acfvals <- x$lacr[the.time, lags + 1] if (missing(ylab)) ylab <- "Autocorrelation" } else { acfvals <- x$lacf[the.time, lags + 1] if (missing(ylab)) ylab <- "Autocovariance" } vlags <- XCI$lag acvvar <- XCI$cvar sv <- match(vlags, lags) sw <- 0.2 x0v <- x1v <- yuv <- ylv <- NULL for (i in 1:length(vlags)) { if (!is.null(sv[i])) { x0v <- c(x0v, vlags[i] - sw/2) x1v <- c(x1v, vlags[i] + sw/2) yuv <- c(yuv, x$lacf[the.time, vlags[i] + 1] + qval * sqrt(acvvar[i])) ylv <- c(ylv, x$lacf[the.time, vlags[i] + 1] - qval * sqrt(acvvar[i])) } else { x0v <- c(x0v, NULL) x1v <- c(x1v, NULL) yuv <- c(yuv, NULL) ylv <- c(ylv, NULL) } } if (is.null(ylim)) { if (plotcor == FALSE) { ylim <- range(c(yuv, ylv, min(acfvals, 0))) } else ylim <- range(min(acfvals, 0), 1) } if (plot.it==TRUE) { if (missing(xlab)) xlab <- "Lag" plot(c(0, max(lags)), c(min(acfvals, 0), 1), type = "n", xlab = xlab, ylab = ylab, ylim = ylim, sub=sub, ...) segments(x0 = lags, y0 = 0, x1 = lags, y1 = acfvals, lwd = segwid) abline(h = 0) if (segandcross == TRUE) points(lags, acfvals, pch = 18) if (plotcor == FALSE) { for (i in 1:length(vlags)) { if (!is.null(sv[i])) { polygon(x = c(x0v[i], x1v[i], x1v[i], x0v[i]), y = c(ylv[i], ylv[i], yuv[i], yuv[i]), density = 50, col = rgb(red = 0.9, green = 0.6, blue = 0.6)) } } } } return(invisible(acfvals)) } }
lmnet <- function(Y, X, directed=TRUE, tmax=1, nodes=NULL, reweight=FALSE, type="exchangeable", tol=1e-6, maxit=1e4, ndstop=TRUE, verbose=FALSE) { tmax <- as.numeric(tmax) directed <- as.logical(directed) if(tmax == 1){ temp <- node_preprocess(Y,X,directed,nodes) } else { temp <- node_preprocess_time(Y,X,directed,nodes,tmax,type,subtract=NULL) } Y <- temp$Y ; X <- temp$X ; missing <- temp$missing ; row_list <- temp$row_list ; dyads <- temp$dyads ; n <- temp$n ; type <- temp$type rm(temp) reweight <- as.logical(reweight) tol <- as.numeric(tol) maxit <- as.numeric(maxit) verbose <- as.logical(verbose) if(sum(is.na(X))!=0){warning("NAs in X; no action taken.")} if(missing & tmax > 1){ stop("Missing data not yet implemented for temporal data") } fit <- lm(Y ~ X - 1) beta_ols <- coef(fit) X <- model.matrix(fit) p <- ncol(X) XX <- solve(crossprod(X)) e <- Y - X %*% beta_ols meat <- meat.E.row(row_list, X, e) phi_ols <- meat$phi v0 <- make.positive.var( XX %*% meat$M %*% XX ) Vhat_ols <- v0$V Vflag_ols <- v0$flag if(reweight){ if(tmax ==1){ fit_weighted <- GEE.est(row_list, Y, X, n, directed, tol.in=tol, beta_start=beta_ols, missing=missing, dyads=dyads, ndstop=ndstop, verbose=verbose) } else if (tmax > 1){ fit_weighted <- GEE_est_time(Y, X, n, tmax, directed, type, write_dir=NULL, missing=missing, tol.in=tol, maxit=maxit, verbose=verbose) } else { stop("tmax must be a positive integer") } beta_weighted <- fit_weighted$beta v0 <- make.positive.var( solve( fit_weighted$bread ) ) e <- fit_weighted$residuals Vhat_weighted <- v0$V Vflag_weighted <- v0$flag phiout <- as.numeric(fit_weighted$phi) nit <- as.numeric(fit_weighted$nit) conv <- as.logical(fit_weighted$convergence) if(!conv){warning("Iteratively reweighted least squares procedure stopped based on maximum number of iterations (did not converge)\n")} betaout <- beta_weighted Vout <- Vhat_weighted flagout <- as.logical(Vflag_weighted == 1) bread = Vout W <- fit_weighted$W } else { beta_weighted <- Vhat_weighted <- Vflag_weighted <- nit <- tol <- conv <- NA betaout <- beta_ols Vout <- Vhat_ols flagout <- as.logical(Vflag_ols == 1) phiout=phi_ols W <- diag(nrow(X)) bread <- XX } df <- nrow(X) - length(betaout) - 1 if(length(betaout) == ncol(X)){names(betaout) <- colnames(X)} fitout <- list(call=match.call(), coefficients=betaout, residuals=e, vcov=Vout, fitted.values=X %*% betaout, df=df, sigma=sqrt(phiout[1]), reweight=reweight, corrected=flagout, phi_hat=phiout, nit=nit, converged=conv, X=X, nodes=nodes, bread=bread, W=W, tmax=tmax, type=type, ndstop=ndstop) class(fitout) <- "lmnet" return(fitout) } print.lmnet <- function(x, ...) { cat("\nCall: \n") print(x$call) cat("\nCoefficients:\n") print(x$coefficients) cat("\n") } coef.lmnet <- function(object, ...) { object$coefficients } vcov.lmnet <- function(object, ...) { object$vcov } summary.lmnet <- function(object, ...) { x <- object out <- matrix(coef(x), ncol=1) out <- cbind(out, sqrt(diag(vcov(x)))) out <- cbind(out, out[,1] / out[,2]) out <- cbind(out, 1-pt(abs(out[,3]), df=x$df)) rownames(out) <- names(coef(x)) colnames(out) <- c("Estimate", "Std. Error", "t value", "Pr(|t| > 0)") listout <- list(coefficients=out, call=x$call) class(listout) <- "summary.lmnet" return(listout) } print.summary.lmnet <- function(x, ...) { cat("\nCall:\n") print(x$call) cat("\nCoefficients:\n") printCoefmat(x$coefficients) } plot.lmnet <- function(x, ...) { hist(scale(resid(x)), freq=F, xlab="standardized residuals", main="") plot(fitted.values(x), scale(resid(x)), xlab="fitted values", ylab="standardized residuals", main="") qqnorm(scale(resid(x)), main="Normal Q-Q Plot for residuals") abline(0,1, col="red") } model.matrix.lmnet <- function(object, ...) { object$X }
plotPostPredStats <- function(data, prob = c(0.9, 0.95), col = NULL, side = "both") { if (is.list(data) == FALSE) stop("Argument data must be a list.") if ("simulated" %in% names(data) == FALSE) stop("Argument data must be a contain an element called simulated.") if ("observed" %in% names(data) == FALSE) stop("Argument data must be a contain an element called observed.") if (is.data.frame(data$simulated) == FALSE) stop("data$simulated must be a data.frame.") if (is.data.frame(data$observed) == FALSE) stop("data$observed must be a data.frame.") if (side %in% c("both", "left", "right") == FALSE) stop("Invalid side argument.") if (is.null(col)) { col <- grDevices::colorRampPalette(colFun(2))(length(prob)) } if (length(col) != length(prob)) stop("Number of colors does not match the number of quantiles.") prob <- sort(prob) sim <- data$simulated obs <- data$observed sim_stats <- colnames(sim) obs_stats <- colnames(obs) names <- intersect(sim_stats, obs_stats) if (length(names) == 0) { stop("data$simulated and data$observed do not contain the same statistics.") } if (length(setdiff(obs_stats, sim_stats)) > 0) { warning( "data$simulated and data$observed do not share all the same statistics. Only the shared statistics will be plotted." ) } plots <- vector("list", length(names)) for (i in seq_len(length(names))) { min_value <- min(sim[, i], obs[[i]]) max_value <- max(sim[, i], obs[[i]]) spread_value <- max_value - min_value kde <- density(sim[, i]) pdf <- approxfun(kde) if (side == "both") { dens <- pdf(obs[, i]) if (is.na(dens)) { p_value <- 0.0 } else { p_value <- mean(pdf(sim[, i]) <= dens) } } else if (side == "left") { p_value <- mean(sim[, i] <= obs[, i]) } else if (side == "right") { p_value <- mean(sim[, i] >= obs[, i]) } df <- data.frame((kde)[c("x", "y")]) p_lab <- paste0("p=", sprintf("%.3f", p_value)) p_x <- max_value + 0.25 * spread_value p_y <- max(df$y) p <- ggplot2::ggplot(df, ggplot2::aes(x, y)) for (q in seq_len(length(prob))) { this_q <- prob[q] if (side == "left") { l <- 1 - this_q p <- p + ggplot2::geom_area(data = df[df$x <= quantile(sim[, i], prob = l), ], fill = col[q]) } else if (side == "right") { u <- this_q p <- p + ggplot2::geom_area(data = df[df$x >= quantile(sim[, i], prob = u), ], fill = col[q]) } else { l <- (1 - this_q) / 2 u <- 1 - l p <- p + ggplot2::geom_area(data = df[df$x <= quantile(sim[, i], prob = l), ], fill = col[q]) p <- p + ggplot2::geom_area(data = df[df$x >= quantile(sim[, i], prob = u), ], fill = col[q]) } } p <- p + ggplot2::geom_line() + ggplot2::xlim(c( min_value - 0.25 * spread_value, max_value + 0.25 * spread_value )) + ggplot2::geom_vline(xintercept = obs[[i]], linetype = "dashed") + ggplot2::xlab(names[i]) + ggplot2::ylab("Density") + ggplot2::theme_bw() + ggplot2::theme( panel.grid.major = ggplot2::element_blank(), panel.grid.minor = ggplot2::element_blank() ) + ggplot2::annotate( "text", x = p_x, y = p_y, label = p_lab, size = 3, hjust = 1 ) plots[[i]] <- p } names(plots) <- colnames(data[[2]]) return(plots) }
rbfKernDiagGradX <- function(kern, X) { gX = array(0,dim(as.array(X))) return (gX) }
testthat::context("Testing the primary mtlr function.") testthat::test_that("mtlr function is consistent for basic survival dataset",{ formula <- survival::Surv(time,status)~. data <- survival::leukemia expect_equal_to_reference(mtlr(formula,data),"mtlr_leuk.rds") }) testthat::test_that("mtlr function doesn't fail for 0 varaince features",{ formula <- survival::Surv(time,status)~. data <- survival::leukemia data$x <- 1 expect_warning(mtlr(formula,data)) }) testthat::test_that("mtlr function is consistent for more complex survival dataset",{ formula <- survival::Surv(time,status)~. data <- survival::lung expect_equal_to_reference(mtlr(formula,data),"mtlr_lung.rds") }) testthat::test_that("mtlr function is consistent for more complex survival dataset - no extra bias training",{ formula <- survival::Surv(time,status)~. data <- survival::lung expect_equal_to_reference(mtlr(formula,data, train_biases = F),"mtlr_lung_nobias.rds") }) testthat::test_that("mtlr function is consistent for all censored survival dataset",{ formula <- survival::Surv(time,status)~. data <- survival::leukemia data <- data[data$status == 0,] expect_equal_to_reference(mtlr(formula,data),"mtlr_censored.rds") }) testthat::test_that("mtlr function is consistent for all uncensored survival dataset",{ formula <- survival::Surv(time,status)~. data <- survival::leukemia data <- data[data$status == 1,] expect_equal_to_reference(mtlr(formula,data),"mtlr_uncensored.rds") }) testthat::test_that("mtlr function is consistent for basic survival dataset UNNORMALIZED",{ formula <- survival::Surv(time,status)~. data <- survival::leukemia expect_equal_to_reference(mtlr(formula,data, normalize = F),"mtlr_leukUNNORMALIZED.rds") }) testthat::test_that("mtlr function is consistent for basic survival dataset for chosen nintervals",{ formula <- survival::Surv(time,status)~. data <- survival::leukemia expect_equal_to_reference(mtlr(formula,data, nintervals = 3),"mtlr_leuk_timepoints.rds") }) testthat::test_that("mtlr function works with left censoring",{ formula <- survival::Surv(time,status, type = "left")~. data <- survival::lung expect_equal_to_reference(mtlr(formula,data),"mtlr_leuk_left.rds") }) testthat::test_that("mtlr function works with multiple types of censoring",{ time1 <- c(NA, 4, 7, 12, 10, 6, NA, 3,5,9,10,12,NA,4,6,2,NA,16,15,11) time2 <- c(14, 4, 10, 12, NA, 9, 5, NA, NA, NA, NA, 15,22,4,8,6,2,20,23,11) set.seed(42) dat <- cbind.data.frame(time1, time2, importantfeature1 = rnorm(20),importantfeature2 = rnorm(20), importantfeature3 = rnorm(20),importantfeature4 = rnorm(20),importantfeature5 = rnorm(20), importantfeature6 = rbinom(20,1,.3),importantfeature7 = rbinom(20,1,.3)) formula <- survival::Surv(time1,time2,type = "interval2")~. expect_equal_to_reference(mtlr(formula, dat),"mtlr_mixed_censoring.rds", tolerance = 1e-3) }) testthat::test_that("mtlr argument specifications are working.",{ formula <- survival::Surv(time,status)~. data <- survival::leukemia data$time[1] <- -10 expect_error(mtlr(formula,data),"All event times must be non-negative") data$time[1] <- 10 formula <- time~. expect_error(mtlr(formula,data),"The response must be a Surv object.") formula <- survival::Surv(time,status)~. expect_error(mtlr(formula,data, C1 = -10),"C1 must be non-negative.") expect_error(mtlr(formula,data, C1 = -1e-10),"C1 must be non-negative.") expect_error(mtlr(formula,data, threshold = -1e-10),"The threshold must be positive.") expect_error(mtlr(formula,data, threshold = 0),"The threshold must be positive.") expect_error(mtlr(formula,data.frame()),"Dimensions of the dataset must be non-zero.") }) testthat::test_that("when training mtlr fails optim error is caught",{ formula <- survival::Surv(time,status)~. data <- survival::lung data$meal.cal <- data$meal.cal*1e100 expect_error(mtlr(formula,data,normalize = F)) })
gen_fmridata = function( signal = 1.5, noise = 20, arfactor = .3 ){ gkernsm <- function(y,h=1) { grid <- function(d) { d0 <- d%/%2+1 gd <- seq(0,1,length=d0) if (2*d0==d+1) gd <- c(gd,-gd[d0:2]) else gd <- c(gd,-gd[(d0-1):2]) gd } dy <- dim(y) if (is.null(dy)) dy<-length(y) ldy <- length(dy) if (length(h)!=ldy) h <- rep(h[1],ldy) kern <- switch(ldy,dnorm(grid(dy),0,2*h/dy), outer(dnorm(grid(dy[1]),0,2*h[1]/dy[1]), dnorm(grid(dy[2]),0,2*h[2]/dy[2]),"*"), outer(outer(dnorm(grid(dy[1]),0,2*h[1]/dy[1]), dnorm(grid(dy[2]),0,2*h[2]/dy[2]),"*"), dnorm(grid(dy[3]),0,2*h[3]/dy[3]),"*")) kern <- kern/sum(kern) kernsq <- sum(kern^2) list(gkernsm=convolve(y,kern,conj=TRUE),kernsq=kernsq) } create.mask <- function(){ mask <- array(0,dim=c(65,65,26)) mask[5:10,5:10,] <- 1 mask[7:8,7:8,] <- 0 mask[8:10,8:10,] <- 0 mask[14:17,14:17,] <- 1 mask[16:17,16:17,] <- 0 mask[21:23,21:23,] <- 1 mask[22:23,23,] <- 0 mask[23,22,] <- 0 mask[27:28,27:28,] <- 1 mask[28,28,] <- 0 mask[5:7,29:33,] <- 1 mask[7,32:33,] <- 0 mask[14:15,30:33,] <- 1 mask[15,30,] <- 0 mask[21,31:33,] <- 1 mask[22,33,] <- 1 mask[27,32:33,] <- 1 mask[29:33,5:7,] <- 1 mask[32:33,7,] <- 0 mask[30:33,14:15,] <- 1 mask[30,15,] <- 0 mask[31:33,21,] <- 1 mask[33,22,] <- 1 mask[32:33,27,] <- 1 mask[34:65,1:33,] <- mask[32:1,1:33,] mask[1:33,34:65,] <- mask[1:33,32:1,] mask[34:65,34:65,] <- mask[32:1,32:1,] mask } create.sig <- function(signal=1.5,efactor=1.2){ sig <- array(0,dim=c(65,65,26)) sig[29:37,38:65,] <- signal sig[38:65,38:65,] <- signal * efactor sig[38:65,29:37,] <- signal * efactor^2 sig[38:65,1:28,] <- signal * efactor^3 sig[29:37,1:28,] <- signal * efactor^4 sig[1:28,1:28,] <- signal * efactor^5 sig[1:28,29:37,] <- signal * efactor^6 sig[1:28,38:65,] <- signal * efactor^7 sig * create.mask() } i <- 65 j <- 65 k <- 26 scans <- 107 ttt <- array(0,dim=c(i,j,k,scans)) sig <- array(0,dim=c(i,j,k)) mask <- create.mask() sig <- create.sig(signal) hrf <- signal * fmri.stimulus(scans, c(18, 48, 78), 15, 2) dim(sig) <- c(i*j*k,1) dim(hrf) <- c(1,scans) sig4 <- sig %*% hrf dim(sig) <- c(i,j,k) dim(sig4) <- c(i,j,k,scans) set.seed(1) noisy4 <- rnorm(i*j*k*scans,0,noise) dim(noisy4) <- c(i,j,k,scans) for (t in 2:scans) noisy4[,,,t] <- noisy4[,,,t] + arfactor*noisy4[,,,t-1] for (t in 1:scans) noisy4[,,,t] <- gkernsm(noisy4[,,,t],c(0.8,0.8,0.4))$gkernsm ttt <- sig4 + noisy4 ex_fmridata <- list(ttt=writeBin(as.numeric(ttt),raw(),4),dim=c(i,j,k,scans),weights=c(1,1,2), mask=array(1,c(i,j,k)), delta = rep(1, 4)) class(ex_fmridata) <- "fmridata" return(ex_fmridata) }
library(shiny) library(shinydashboard) library(shinyBS) library(ggplot2) ui <- dashboardPage( dashboardHeader(title = "Demo - add popover to infoBox", titleWidth = 400), dashboardSidebar( sidebarMenu( menuItem("Dashboard", tabName = "dashboard", icon = icon("dashboard")) ) ), dashboardBody( tags$head( tags$link(rel = "stylesheet", type = "text/css", href = "custom3.css") ), bsPopover(id="q1", title = "Mean", content = "Mean price of diamonds", trigger = "hover", placement = "right", options = list(container = "body")), bsPopover(id="info2", title = "Median", content = "Median price of diamonds", trigger = "hover", placement = "right", options = list(container="body")), tabItems( tabItem(tabName = "dashboard", fluidRow( infoBoxOutput("info1"), infoBoxOutput("info2") ) )))) server <- function(input, output, session) { output$info1 <- renderInfoBox({ infoBox("Mean", round(mean(diamonds$price), 2), icon = icon("usd"), subtitle = tags$a(icon("question-circle"), id="q1")) }) output$info2 <- renderInfoBox({ infoBox("Median", median(diamonds$price), icon = icon("usd")) }) } shinyApp(ui, server)
pkg_data <- new.env(parent = emptyenv()) .onLoad <- function(libname, pkgname) { utils::data( pak_sitrep_data, package = pkgname, envir = environment(.onLoad) ) if (Sys.getenv("_R_CHECK_PACKAGE_NAME_", "") == "") { check_platform(libname, pkgname) } pkg_data$ns <- list() worker <- Sys.getenv("R_PKG_PKG_WORKER", "") if (worker == "") { fix_macos_path_in_rstudio() } else if (worker == "true") { Sys.setenv("R_PKG_PKG_WORKER" = "false") options( cli.num_colors = as.numeric(Sys.getenv("R_PKG_NUM_COLORS", "1")), rlib_interactive = (Sys.getenv("R_PKG_INTERACTIVE") == "TRUE"), cli.dynamic = (Sys.getenv("R_PKG_DYNAMIC_TTY") == "TRUE") ) ca_path <- system.file(package = "pak", "curl-ca-bundle.crt") if (ca_path != "") options(async_http_cainfo = ca_path) use_private_lib() } else { use_private_lib() } invisible() } check_platform <- function(libname = dirname(find.package("pak")), pkgname = "pak", data = pak_sitrep_data) { if (!file.exists(file.path(libname, pkgname, "help"))) return(TRUE) if (Sys.getenv("R_PACKAGE_DIR", "") != "") return(TRUE) current <- R.Version()$platform install <- data$platform if (!platform_match(install, current)) { warning( "! Wrong OS or architecture, pak is probably dysfunctional.\n", " Call `pak_update()` to fix this.", call. = FALSE ) } } platform_match <- function(install, current) { os_ins <- get_os_from_platform(install) os_cur <- get_os_from_platform(current) arch_ins <- get_arch_from_platform(install) arch_cur <- get_arch_from_platform(current) if (os_ins != os_cur) return(FALSE) if (os_ins == "windows") return(TRUE) if (os_ins == "macos") return(arch_ins == arch_cur) if (os_ins == "solaris") return(arch_ins == arch_cur) if (os_ins == "linux") { if (arch_ins != arch_cur) return(FALSE) libc_ins <- get_libc_from_platform(install) libc_cur <- get_libc_from_platform(current) same <- !is.na(libc_ins) && !is.na(libc_cur) && libc_ins == libc_cur return(same || identical(libc_ins, "musl")) } install == current } get_os_from_platform <- function(x) { pcs <- strsplit(x, "-", fixed = TRUE)[[1]] if (pcs[3] == "mingw32") return("windows") if (pcs[2] == "apple") return("macos") if (pcs[3] == "linux") return("linux") if (grepl("^solaris", pcs[3])) return("solaris") sub("[0-9.]*$", "", pcs[3]) } get_arch_from_platform <- function(x) { pcs <- strsplit(x, "-", fixed = TRUE)[[1]] pcs[1] } get_libc_from_platform <- function(x) { pcs <- strsplit(x, "-", fixed = TRUE)[[1]] if (pcs[3] != "linux") return(NA_character_) pcs[4] }
read_copynumber <- function(input, pattern = NULL, ignore_case = FALSE, seg_cols = c("Chromosome", "Start.bp", "End.bp", "modal_cn"), samp_col = "sample", add_loh = FALSE, loh_min_len = 1e4, loh_min_frac = 0.05, join_adj_seg = TRUE, skip_annotation = FALSE, use_all = add_loh, min_segnum = 0L, max_copynumber = 20L, genome_build = c("hg19", "hg38", "mm10", "mm9"), genome_measure = c("called", "wg"), complement = FALSE, ...) { stopifnot( is.character(samp_col), length(samp_col) == 1, min_segnum >= 0 ) timer <- Sys.time() send_info("Started.") on.exit(send_elapsed_time(timer)) genome_build <- match.arg(genome_build) genome_measure <- match.arg(genome_measure) send_info("Genome build : ", genome_build, ".") send_info("Genome measure: ", genome_measure, ".") if (add_loh) { use_all <- TRUE send_info("When add_loh is TRUE, use_all is forced to TRUE. Please drop columns you don't want to keep before reading.") } if (genome_build %in% c("mm10", "mm9")) { valid_chr <- c(paste0("chr", 1:19), "chrX", "chrY") } else { valid_chr <- c(paste0("chr", 1:22), "chrX", "chrY") } chrlen <- get_genome_annotation( data_type = "chr_size", chrs = valid_chr, genome_build = genome_build ) data.table::setDT(chrlen) send_success("Chromosome size database for build obtained.") send_info("Reading input.") if (tryCatch(dir.exists(input), error = function(e) FALSE)) { send_success("A directory as input detected.") if (length(input) != 1) { send_stop("Only can take one directory as input!") } all.files <- list.files( path = input, pattern = pattern, all.files = FALSE, recursive = FALSE, ignore.case = ignore_case ) files <- all.files[!file.info(file.path(input, all.files))$isdir] if (length(files) == 0) { send_stop("No files exist, please check!") } files_path <- file.path(input, files) data_list <- list() dropoff_list <- list() sb <- cli::cli_status("{symbol$arrow_right} About to read files.") Sys.sleep(0.5) for (i in seq_along(files_path)) { cli::cli_status_update(id = sb, "{symbol$arrow_right} Reading file {files_path[i]}.") temp <- data.table::fread(files_path[i], ...) if (!all(seg_cols %in% colnames(temp))) { send_stop("Not all seg_cols are in file, please check.") } if (length(samp_col %in% colnames(temp)) == 0 | !(samp_col %in% colnames(temp))) { cli::cli_status_update(id = sb, "{symbol$arrow_right} Select file names as sample names.") temp[, "sample"] <- files[i] sample_col <- "sample" } tempName <- unique(temp[[samp_col]]) if (length(tempName) > 1) { send_stop("When input is a directory, a file can only contain one sample.") } data.table::setcolorder(temp, neworder = c(seg_cols, samp_col)) new_cols <- c("chromosome", "start", "end", "segVal", "sample") colnames(temp)[1:5] <- new_cols if (any(is.na(temp$segVal))) { temp <- temp[!is.na(temp$segVal)] } cli::cli_status_update(id = sb, "{symbol$arrow_right} Checking chromosome names.") temp[, chromosome := sub( pattern = "chr", replacement = "chr", x = as.character(chromosome), ignore.case = TRUE )] temp$chromosome <- ifelse(startsWith(temp$chromosome, "chr"), temp$chromosome, paste0("chr", temp$chromosome) ) temp[, chromosome := sub( pattern = "x", replacement = "X", x = chromosome )] temp[, chromosome := sub( pattern = "y", replacement = "Y", x = chromosome )] temp[["chromosome"]] <- sub("23", "X", temp[["chromosome"]]) temp[["chromosome"]] <- sub("24", "Y", temp[["chromosome"]]) if (complement) { cli::cli_status_update( id = sb, "{symbol$arrow_right} Fill value 2 (normal copy) to uncalled chromosomes." ) miss_index <- !valid_chr %in% unique(temp[["chromosome"]]) miss_index[length(miss_index)] <- FALSE if (any(miss_index)) { comp_df <- temp[rep(1, sum(miss_index))] comp_df[, c("chromosome", "start", "end", "segVal") := .( chrlen[["chrom"]][miss_index], 1, chrlen[["size"]][miss_index], 2 )] comp_df[, setdiff( colnames(comp_df), c("chromosome", "start", "end", "segVal", "sample") ) := NA] temp <- rbind(temp, comp_df, fill = TRUE) } } if (!use_all) temp <- temp[, new_cols, with = FALSE] if (nrow(temp) < min_segnum) { dropoff_list[[tempName]] <- temp } else { data_list[[tempName]] <- temp } } cli::cli_status_clear(sb) if (length(data_list) >= 1) { data_df <- data.table::rbindlist(data_list, use.names = TRUE, fill = TRUE) } else { data_df <- data.table::data.table() } if (length(dropoff_list) >= 1) { dropoff_df <- data.table::rbindlist(dropoff_list, use.names = TRUE, fill = TRUE) } else { dropoff_df <- data.table::data.table() } } else if (all(is.character(input)) | is.data.frame(input)) { if (!is.data.frame(input)) { send_success("A file as input detected.") if (length(input) > 1) { send_stop("Muliple files are not a valid input, please use directory as input.") } if (!file.exists(input)) { send_stop("Input file not exists.") } temp <- data.table::fread(input, ...) } else { send_success("A data frame as input detected.") temp <- data.table::as.data.table(input) } if (is.null(samp_col)) { send_stop("'samp_col' parameter must set!") } if (!all(seg_cols %in% colnames(temp))) { send_stop("Not all seg_cols are in file, please check.") } if (!(samp_col %in% colnames(temp))) { send_stop("Column ", samp_col, " does not exist.") } send_success("Column names checked.") data.table::setcolorder(temp, neworder = c(seg_cols, samp_col)) new_cols <- c("chromosome", "start", "end", "segVal", "sample") colnames(temp)[1:5] <- new_cols send_success("Column order set.") if (is.factor(temp$sample)) { temp$sample <- as.character(temp$sample) } if (any(is.na(temp$segVal))) { temp <- temp[!is.na(temp$segVal)] send_success("Rows with NA copy number removed.") } temp[, chromosome := sub( pattern = "chr", replacement = "chr", x = as.character(chromosome), ignore.case = TRUE )] if (any(!grepl("chr", temp$chromosome))) { temp$chromosome[!grepl("chr", temp$chromosome)] <- paste0("chr", temp$chromosome[!grepl("chr", temp$chromosome)]) } temp[, chromosome := sub( pattern = "x", replacement = "X", x = chromosome )] temp[, chromosome := sub( pattern = "y", replacement = "Y", x = chromosome )] temp[["chromosome"]] <- sub("23", "X", temp[["chromosome"]]) temp[["chromosome"]] <- sub("24", "Y", temp[["chromosome"]]) send_success("Chromosomes unified.") if (complement) { comp <- data.table::data.table() for (i in unique(temp[["sample"]])) { tmp_sample <- temp[i, on = "sample"] miss_index <- !valid_chr %in% unique(tmp_sample[["chromosome"]]) miss_index[length(miss_index)] <- FALSE if (any(miss_index)) { comp_df <- tmp_sample[rep(1, sum(miss_index))] comp_df[, c("chromosome", "start", "end", "segVal") := .( chrlen[["chrom"]][miss_index], 1, chrlen[["size"]][miss_index], 2 )] comp <- rbind(comp, comp_df, fill = TRUE) } } comp[, setdiff( colnames(comp), c("chromosome", "start", "end", "segVal", "sample") ) := NA] temp <- rbind(temp, comp, fill = TRUE) send_success("Value 2 (normal copy) filled to uncalled chromosomes.") } if (!use_all) temp <- temp[, new_cols, with = FALSE] dropoff_samples <- temp[, .N, by = .(sample)][N < min_segnum][["sample"]] keep_samples <- base::setdiff(unique(temp[["sample"]]), dropoff_samples) data_df <- temp[sample %in% keep_samples] dropoff_df <- temp[sample %in% dropoff_samples] } else { send_stop("Invalid input.") } send_success("Data imported.") if (!all(data_df$chromosome %in% valid_chr)) { data_drop <- data_df[!chromosome %in% valid_chr] if (nrow(dropoff_df) >= 1) { dropoff_df <- base::rbind(dropoff_df, data_drop) } else { dropoff_df <- data_drop } data_df <- data_df[chromosome %in% valid_chr] send_success("Some invalid segments (not 1:22 and X, Y) dropped.") } send_info("Segments info:") send_info(" Keep - ", nrow(data_df)) send_info(" Drop - ", nrow(dropoff_df)) data_df$segVal[data_df$segVal > max_copynumber] <- max_copynumber data_df[["segVal"]] <- as.integer(round(data_df[["segVal"]])) data_df$start <- as.numeric(data_df$start) data_df$end <- as.numeric(data_df$end) data.table::setorderv(data_df, c("sample", "chromosome", "start")) send_success("Segments sorted.") if (add_loh) { send_info("Adding LOH labels...") if (!"minor_cn" %in% colnames(data_df)) { send_stop("When you want to add LOH infor, a column named as 'minor_cn' should exist!") } data_df$minor_cn <- pmin( data_df$segVal - data_df$minor_cn, data_df$minor_cn ) data_df$loh <- data_df$segVal >= 1 & data_df$minor_cn == 0 & (data_df$end - data_df$start > loh_min_len - 1) data_df[data_df$chromosome %in% c("chrX", "chrY")]$loh <- FALSE } if (join_adj_seg) { send_info("Joining adjacent segments with same copy number value. Be patient...") data_df <- helper_join_segments2(data_df, add_loh = add_loh, loh_min_frac = loh_min_frac ) send_success(nrow(data_df), " segments left after joining.") } else { send_info("Skipped joining adjacent segments with same copy number value.") } data.table::setorderv(data_df, c("sample", "chromosome", "start")) data.table::setcolorder(data_df, c("chromosome", "start", "end", "segVal", "sample")) if ("groups" %in% names(attributes(data_df))) { attr(data_df, "groups") <- NULL } send_success("Segmental table cleaned.") if (skip_annotation) { annot <- data.table::data.table() send_info("Annotation skipped.") } else { send_info("Annotating.") annot <- get_LengthFraction(data_df, genome_build = genome_build, seg_cols = new_cols[1:4], samp_col = new_cols[5] ) send_success("Annotation done.") } send_info("Summarizing per sample.") sum_sample <- get_cnsummary_sample(data_df, genome_build = genome_build, genome_measure = genome_measure ) send_success("Summarized.") send_info("Generating CopyNumber object.") res <- CopyNumber( data = data_df, summary.per.sample = sum_sample, genome_build = genome_build, genome_measure = genome_measure, annotation = annot, dropoff.segs = dropoff_df ) send_success("Generated.") send_info("Validating object.") res <- validate_segTab(res) send_success("Done.") res } utils::globalVariables( c( ".", "N", ".N", ".SD", "flag", "p_start", "p_end", "q_start", "q_end", "total_size" ) )
ReadCodeChunks <- function(path) { checkmate::assertFileExists(path, extension=c("rnw", "rmd", "r")) ext <- tools::file_ext(path) src <- readLines(path) if (tolower(ext) %in% c("rnw", "rmd")) src <- strsplit(knitr::purl(text=src, quiet=TRUE), "\n")[[1]] lin <- grep(" nam <- gsub("^ is.unnamed <- which(grepl("=", nam) | nam == "") nam[is.unnamed] <- paste0("unnamed-chunk-", is.unnamed) m <- cbind(from = lin, to = c(lin[-1] - 1, length(src))) chunks <- apply(m, 1, function(x) src[x[1]:x[2]]) chunks <- lapply(chunks, function(x) x[1:max(which(x != ""))]) names(chunks) <- nam attr(chunks, "path") <- path chunks }
DataFrame2Matrix4Regression <- function(X, last=TRUE, Intercept=FALSE){ if (!is.data.frame(X)) stop("You must provide a data frame to prepare for regression") n=dim(X)[1] p=dim(X)[2] rnames=rownames(X) names=colnames(X) print(names) XN=NULL newnames=NULL for (i in 1:p){ if (is.numeric(X[[i]])) { XN=cbind(XN,X[[i]]) newnames=c(newnames, names[i]) } if (is.factor(X[[i]])){ Z=Factor2Binary(X[[i]], Name=names[i]) pp=dim(Z)[2] nn=colnames(Z) if (last) {Z=as.matrix(Z[,-pp]) nn=nn[-pp]} else {Z=as.matrix(Z[,-1]) nn=nn[-1]} newnames=c(newnames, nn) XN=cbind(XN,Z) } } if (Intercept){ XN=cbind(rep(1,n),XN) newnames=c("Intercept", newnames) } colnames(XN)<- newnames rownames(XN) =rnames return(XN) }
est.h <- function(introgress.data=NULL, loci.data=NULL, ind.touse=NULL, fixed=FALSE, p1.allele=NULL, p2.allele=NULL){ if (is.null(dim(loci.data))==TRUE) stop("Locus information was not supplied") else if (is.null(introgress.data)==TRUE) stop("The count was not supplied") if (fixed==FALSE & is.list(introgress.data)==FALSE) stop("introgress.data must be a list if fixed=FALSE") cat("est.h is working; this may take a few minutes", fill=TRUE) if (is.list(introgress.data)==TRUE) admix.gen<-as.matrix(introgress.data$Admix.gen) if (fixed==TRUE & (sum(loci.data[,2]=="D") + sum(loci.data[,2]=="d")) > 0) stop("dominant data can not be modeled as fixed") if (fixed==TRUE & is.null(admix.gen)==TRUE){ if (is.null(p1.allele)==TRUE | is.null(p2.allele)==TRUE) stop("parental alleles must be provided if fixed==TRUE") admix.gen<-array(dim=dim(introgress.data)) for (i in 1:dim(admix.gen)[1]){ if (loci.data[i,2]=="C" | loci.data[i,2]=="c"){ for (j in 1:dim(admix.gen)[2]){ if (is.na(introgress.data[i,j])==TRUE) admix.gen[i,j]=NA else { if (as.numeric(introgress.data[i,j])==2) admix.gen[i,j]<-as.character(paste(p1.allele,"/",p1.allele)) else if (as.numeric(introgress.data[i,j])==1) admix.gen[i,j]<-as.character(paste(p1.allele,"/",p2.allele)) else if (as.numeric(introgress.data[i,j])==0) admix.gen[i,j]<-as.character(paste(p2.allele,"/",p2.allele)) } } } else if (loci.data[i,2]=="H" | loci.data[i,]=="h"){ for (j in 1:dim(admix.gen)[2]){ if (is.na(introgress.data[i,j])==TRUE) admix.gen[i,j]<-NA else{ if (as.numeric(introgress.data[i,j])==1) admix.gen[i,j]<-p1.allele else if (as.numeric(introgress.data[i,j])==0) admix.gen[i,j]<-p2.allele } } } } p1.freq<-cbind(rep(1,dim(admix.gen)[1]),rep(0,dim(admix.gen)[1])) p2.freq<-cbind(rep(0,dim(admix.gen)[1]),rep(1,dim(admix.gen)[1])) alleles<-cbind(rep(p1.allele,dim(admix.gen)[1]),rep(p2.allele,dim(admix.gen)[1])) introgress.data<-list(NULL,introgress.data,NULL,p1.freq,p2.freq,alleles) names(introgress.data)<-c("Individual.data","Count.matrix","Combos.to.use", "Parental1.allele.freq","Parental2.allele.freq","Alleles") } if (fixed==TRUE & is.null(admix.gen)==FALSE){ if (is.null(p1.allele)==TRUE | is.null(p2.allele)==TRUE) stop("parental alleles must be provided if fixed==TRUE") p1.freq<-cbind(rep(1,dim(admix.gen)[1]),rep(0,dim(admix.gen)[1])) p2.freq<-cbind(rep(0,dim(admix.gen)[1]),rep(1,dim(admix.gen)[1])) alleles<-cbind(rep(p1.allele,dim(admix.gen)[1]),rep(p2.allele,dim(admix.gen)[1])) introgress.data[[4]]<-p1.freq introgress.data[[5]]<-p2.freq introgress.data[[6]]<-alleles } if (is.null(ind.touse)==FALSE) { if (is.character(ind.touse)==TRUE & is.character(colnames(introgress.data[[2]]))==FALSE){ stop ("individual names were not supplied for subsetting") } admix.gen<-admix.gen[,ind.touse] } hi<-data.frame(lower=numeric(ncol(admix.gen)), h=numeric(ncol(admix.gen)), upper=numeric(ncol(admix.gen))) for(i in 1:ncol(admix.gen)){ hi[i, ] <- h.func(geno=admix.gen[,i], locustype=loci.data[,"type"], r=introgress.data$Parental2.allele.freq, s=introgress.data$Parental1.allele.freq, alleles=introgress.data$Alleles) } return(zapsmall(hi)) }
simPtsOptNet <- function(formula, loc=NULL, data, fitmodel, BLUE=FALSE, n, popSize, generations, xmin, ymin, xmax, ymax, plotMap=FALSE, spMap=NULL, ...){ evaluate <- function(string=c()) { returnVal = NA; pts2 <- as.data.frame(matrix(0, ncol=ncol(as.data.frame(data)), nrow=n)) names(pts2) <- colnames(as.data.frame(data)) if(is.data.frame(data)) { if(is.null(loc)) stop(paste("loc must be provided")) x1 <- all.vars(loc)[1] y1 <- all.vars(loc)[2] } if(class(data)=="SpatialPointsDataFrame") { x1 <- colnames(coordinates(data))[1] y1 <- colnames(coordinates(data))[2] } for (i in 1:n){ pts2[i,x1] <- round(string[i], 1) } for (j in 1:n){ pts2[j,y1] <- round(string[n + j], 1) } coordinates(pts2) = c(x1, y1) if (plotMap==TRUE) { if(is.null(spMap)) stop(paste("if plotMap=TRUE, spMap must also be provided")) plot(spMap, xlim=c(bbox(spMap)[1],bbox(spMap)[3]), ylim=c(bbox(spMap)[2],bbox(spMap)[4]), ...) plot(pts2, add=TRUE) } g <- gstat(formula=formula, locations= loc, data=data, model = fitmodel, ...) interp <- predict(g, newdata = pts2, BLUE = BLUE) returnVal <- sum(sqrt(interp[["var1.var"]]))/n returnVal } results <- rbga(as.matrix(c(rep(xmin,n), rep(ymin, n))), as.matrix(c(rep(xmax,n), rep(ymax, n))), popSize=popSize, evalFunc=evaluate, verbose=TRUE, iters=generations, ...) return(results) }
construct.ilab<-function(org, item, measurand, x, u, df, k, U, U.lower, U.upper, distrib=NULL, distrib.pars=NULL, study=NA, title=NA, p=0.95, ...) { rv<-list() rv$title <- title rv$subset <- NA L <- length(x) org<-rep(org, length.out=L) if(is.character(org)) org <- factor(org) item<-rep(item, length.out=L) measurand<-rep(measurand, length.out=L) study<-rep(study, length.out=L) l. <- as.data.frame(list(...)) if(missing(df)) df <- rep(NA, L) if( !missing(U) ) { if( is.factor(U) ) U <- as.character(U) if( is.character(U) ) { U.l <- U.r <- U.lower <- U.upper <- rep(NA, L) AtoB <- grep("[-+.0-9]+ *- *[-+.0-9]+",U) U.l[AtoB] <- as.numeric(gsub("([-+]?[.0-9]+) *- *[-+]?[.0-9]+","\\1", U[AtoB])) U.r[AtoB] <- as.numeric(gsub("[-+]?[.0-9]+ *- *([-+]?[.0-9]+)","\\1", U[AtoB])) U.lower[AtoB] <- x[AtoB] - pmin(U.l[AtoB], U.r[AtoB]) U.upper[AtoB] <- pmax(U.l[AtoB], U.r[AtoB]) - x[AtoB] if( any( c(U.lower[AtoB], U.upper[AtoB]) <0 ) ) stop("Some x values outside range given by U=\"a-b\"") AslashB <- grep("[-+.0-9]+ */ *[-+.0-9]+",U) U.l[AslashB] <- as.numeric(gsub("([-+]?[.0-9]+) */ *[-+]?[.0-9]+","\\1", U[AslashB])) U.r[AslashB] <- as.numeric(gsub("[-+]?[.0-9]+ */ *([-+]?[.0-9]+)","\\1", U[AslashB])) U.lower[AslashB] <- - pmin(U.l[AslashB], U.r[AslashB]) U.upper[AslashB] <- pmax(U.l[AslashB], U.r[AslashB]) simple <- (1:L)[- c(AtoB, AslashB)] U.l[simple] <- U.lower[simple] <- U.upper[simple] <- as.numeric(U[simple]) U <- rep(NA, L) U[simple] <- U.l[simple] } else { U.lower <- U.upper <- U } } else { if(!missing(u) && !missing(k) && missing(U.lower) && missing(U.upper) ) { U <- k * u } else U <- rep(NA, L) } if(missing(U.lower)) U.lower <- if(!missing(U)) U else rep(NA, L) if(missing(U.upper)) U.upper <- if(!missing(U)) U else rep(NA, L) if(missing(u)) { if(!missing(U) && !missing(k) ) { u <- U / k } else u <- rep(NA, L) } if(missing(k)) { if(!missing(U) && !missing(u) ) { k <- U / u } else k <- rep(NA, L) } rv$data <- data.frame( org=org, item=item, measurand=measurand, x=x, u=u, df=df, k=k, U=U, U.lower=U.lower, U.upper=U.upper, study=study ) l. <- list(...) if( length(l.) > 0) rv$data <- cbind(rv$data, as.data.frame(l.)) if(!is.null(distrib) ) { if(is.list(distrib)) { rv$distrib<-distrib } else { if(length(distrib) < L ) distrib <- rep(distrib, length.out=L) rv$distrib<-as.list(distrib) } for(n in 1:L) { if(is.na(rv$data$df[n]) && rv$distrib[[n]] %in% c("t", "t.scaled")) { if(!is.na(rv$data$k[n])) rv$data$df[n] <- .get.df(rv$data$k[n], p) } } if(!is.null(distrib.pars)) { rv$distrib.pars<-as.list(distrib.pars) } else { rv$distrib.pars<-list() for( n in 1:L ) { rv$distrib.pars[[n]]<-.get.pars(distrib[[n]], rv$data$x[n], rv$data$u[n], rv$data$df[n]) } } } else { rv$distrib<-as.list(rep(NA, L)) rv$distrib.pars<-as.list(rep(NA, L)) } class(rv) <- "ilab" return(rv) } print.ilab <- function(x, ..., digits=NULL, right=FALSE) { maxwidth<-12L if(!is.na(x$title[1])) { for(s in x$title) cat(sprintf("%s\n", s)) } else { cat("Interlaboratory study:\n") } if(!is.na(x$subset)) { cat(sprintf("Subset: %s\n", x$subset)) } dp<-x$data if(!is.null(x[["distrib", exact=TRUE]]) ) { fdp<-function(x) { if(is.function(x)) deparse(x)[1] else paste(x) } distrib.labels<- as.vector( sapply(x$distrib, fdp ) ) dp$distrib<-sub(paste("(.{",maxwidth,",",maxwidth,"})(.+)", sep=""), "\\1...",distrib.labels) } if(!is.null(x$distrib.pars)) { dp$distrib.pars <- vector("character", length=nrow(x$data) ) for(nn in 1:nrow(x$data) ) { dp[nn,"distrib.pars"]<- paste(names(x$distrib.pars[[nn]]), format(x$distrib.pars[[nn]], digits=digits), sep="=", collapse=", ") } } print.data.frame(dp,digits=digits, right=right, ...) } plot.ilab <- function(x, ...) { pars<-c(list(x=x), list(...) ) do.call("kplot", pars) } subset.ilab <- function(x, subset, drop=FALSE, ...) { if (!missing(subset)) { e <- substitute(subset) r <- eval(e, x$data, parent.frame()) if (!is.logical(r)) stop("'subset' must evaluate to logical") r <- r & !is.na(r) x$subset <- sprintf("subset(%s, %s)", deparse(substitute(x)), deparse(substitute(subset))) x$data<-x$data[r, ,drop=drop] if(!is.null(x$distrib)) x$distrib <- x$distrib[r] if(!is.null(x$distrib.pars)) x$distrib.pars <- x$distrib.pars[r] } return(x) } '[.ilab' <- function(x, i, j) { x$subset <- sprintf("%s[%s, %s]", deparse(substitute(x)), deparse(substitute(i)), deparse(substitute(j))) x$data <- x$data[i,j, drop=FALSE] if( !is.null(x$distrib) ) x$distrib <- x$distrib[i] if( !is.null(x$distrib.pars) ) x$distrib.pars <- x$distrib.pars[i] return(x) } rbind<-function(..., deparse.level = 1) UseMethod("rbind") rbind.default <- function(..., deparse.level=1) base::rbind(..., deparse.level=deparse.level) rbind.ilab<-function(..., deparse.level = 1) { ilab.list <- list(...) il.classes <- sapply(ilab.list, function(x) class(x)[1]) if(any(il.classes != "ilab")) stop("All objects must be of class 'ilab'", call.=TRUE) if(length(ilab.list) == 0 ) { return(NULL) } else if(length(ilab.list) == 1) { return(ilab.list[[1]]) } else { rv <- ilab.list[[1]] if(is.null(rv$distrib)) rv$distrib<-rep(NA, nrow(rv$data)) if(is.null(rv$distrib.pars)) rv$distrib.pars<-as.list(rep(NA, nrow(rv$data))) for( i in 2:length(ilab.list) ) { if(!isTRUE(all.equal(sort(names(rv)), sort(names(ilab.list[[i]])) ))) { stop(sprintf("Names in %s do not match previous names.", names(ilab.list)[i]), call.=TRUE) } else { print(paste("Binding ", i, "\n")) rv$data<-rbind(rv$data, ilab.list[[i]]$data, deparse.level=deparse.level) if(is.null(ilab.list[[i]]$distrib)) ilab.list[[i]]$distrib<-rep(NA, nrow(ilab.list[[i]]$data)) if(is.null(ilab.list[[i]]$distrib.pars)) ilab.list[[i]]$distrib.pars<-as.list(rep(NA, nrow(ilab.list[[i]]$data))) rv$distrib<-c(rv$distrib, ilab.list[[i]]$distrib) rv$distrib.pars<-c(rv$distrib.pars, ilab.list[[i]]$distrib.pars) } } } return(rv) } c.ilab<-function(..., recursive=FALSE) { rbind.ilab(...) } cbind<-function(..., deparse.level = 1) UseMethod("cbind") cbind.default <- function(..., deparse.level=1) base::cbind(..., deparse.level=deparse.level) cbind.ilab<-function(..., deparse.level = 1) { l<-list(...) L<-length(l) i.ilab <- which( sapply( l, function(x) class(x)[1] ) =="ilab") if(length(i.ilab) == 0) stop("Only one ilab object permitted in cbind.ilab", call.=TRUE) if(length(i.ilab) > 1) stop("cbind.ilab requires one ilab object", call.=TRUE) i.args <- (1:L)[-i.ilab] args.ok <- sapply(l[i.args], is.atomic) | sapply(l[i.args], is.data.frame) if( any(!args.ok) ) stop("Arguments to cbind.ilab must be atomic, data frame or class 'ilab'", call.=TRUE) ilab<-l[[i.ilab]] for(i in i.args) { nm <- names(l)[i] if(is.null(nm)) nm <- sprintf("argument %d", i+1) if(length(dim(l[[i]]))>2) stop(sprintf("Number of dimensions of parameter %s exceeds 2", nm), call.=TRUE) if(length(dim(l[[i]]))==2) { if( nrow(l[[i]])>nrow(ilab$data) ) stop(sprintf("Number of rows in %s exceeds rows in %s", nm, deparse(substitute(ilab))), call.=TRUE) } else { if(length(l[[i]])>nrow(ilab$data)) stop(sprintf("Length of %s exceeds rows in %s", nm, deparse(substitute(ilab))), call.=TRUE) } } ilab$data <- do.call(base::cbind, c(list(ilab$data), l[i.args], list(deparse.level = deparse.level))) return(ilab) }
GEX_cluster_genes <- function(GEX, min.pct, filter, base, platypus.version){ platypus.version <- "does not matter" automate_GEX.output <- GEX GEX <- NULL if(missing(min.pct)) min.pct <- 0.25 if (missing(filter)) {filter <- c("MT-", "RPL", "RPS")} if(missing(base)){base <- 2} Seurat::Idents(automate_GEX.output) <- automate_GEX.output$seurat_clusters number_of_clusters <- length(unique(automate_GEX.output$seurat_clusters)) cluster_markers <- list() for(i in 1:number_of_clusters){ cluster_markers[[i]] <- Seurat::FindMarkers(automate_GEX.output, ident.1 = i-1, min.pct = min.pct, base=base) colnames(cluster_markers[[i]])[2] <- "avg_logFC" cluster_markers[[i]]$SYMBOL <- rownames(cluster_markers[[i]]) cluster_markers[[i]]$cluster <- rep((i-1), nrow(cluster_markers[[i]])) exclude <- c() for (j in filter) { exclude <- c(exclude, stringr::str_which(rownames(cluster_markers[[i]]), j)) } cluster_markers[[i]] <- cluster_markers[[i]][-exclude,] } return(cluster_markers) }
SL.polymars <- function(Y, X, newX, family, obsWeights, ...){ .SL.require('polspline') if(family$family == "gaussian") { fit.mars <- polspline::polymars(Y, X, weights = obsWeights) pred <- predict(fit.mars, x = newX) fit <- list(object = fit.mars) } if(family$family == "binomial") { fit.mars <- polspline::polyclass(Y, X, cv = 5, weight = obsWeights) pred <- polspline::ppolyclass(cov = newX, fit = fit.mars)[, 2] fit <- list(fit = fit.mars) } out <- list(pred = pred, fit = fit) class(out$fit) <- c("SL.polymars") return(out) } predict.SL.polymars <- function(object, newdata, family, ...) { .SL.require('polspline') if(family$family=="gaussian"){ pred <- predict(object = object$object, x = newdata) } if(family$family=="binomial"){ pred <- polspline::ppolyclass(cov=newdata, fit=object$fit)[, 2] } return(pred) }
print.gv <- function(x, ...) { multi <- FALSE if ("gamma.mat" %in% names(x)) multi <- TRUE line1 <- "Variogram" if (multi) { line1 <- paste(line1, "with multiple genetic distance matrices.") } else { line1 <- paste(line1, "with a single genetic distance matrix.") } n.obs <- nrow(x$x) n.dstcl <- length(x$lag) line2 <- paste(n.obs, "observations and", n.dstcl, "distance classes (from", round(min(x$x), 2), "to", round(max(x$x), 2), ")") line3 <- paste(round(x$param$lag, 2), "lag size with", round(x$param$tol, 2), "tolerance.") mtest <- mtest.gv(x) if (mtest) { line4 <- paste("A", x$model$type, "model is fitted with", x$model$sill, "sill,", x$model$range, "range and", x$model$nugget, "nugget.") } else { line4 <- "No model fitted" } cat(line1, "\n", line2, "\n", line3, "\n", line4, "\n") }
context("xmlConverter unit tests") test_that("XML Strings can be imported", { doc <- parse.xmlstring("<foo><bar><baz val='the baz attribute'/></bar></foo>") expect_equal(doc$toString(), "<foo><bar><baz val='the baz attribute'></baz></bar></foo>") }) test_that("XML files can be imported", { doc <- parse.xmlfile("pom.xml") root <- doc$getRootElement() expect_equal(root$getName(), "project") findByArtifactId <- function(dependencies, artifactId) { for (dependency in dependencies$getChildren()) { if (dependency$getChild("artifactId")$getText() == artifactId) { return (dependency) } } } dep <- findByArtifactId(root$getChild("dependencies"), "testthat") groupId <- dep$getChild("groupId")$getText() expect_equal("org.renjin.cran", groupId) })
.readRasterCellsNetCDF <- function(x, cells) { if (canProcessInMemory(x, 2)) { r <- getValues(x) r <- r[cells] return(r) } row1 <- rowFromCell(x, min(cells)) row2 <- rowFromCell(x, max(cells)) if ((row2 - row1) < 10 ) { ncl <- (row2 - row1 + 1) * x@ncols r <- raster(nrow=1, ncol=ncl) v <- getValues(x, row1, row2-row1+1) v <- v[cells-cellFromRowCol(x, row1, 1)+1] return(v) } colrow <- matrix(ncol=3, nrow=length(cells)) colrow[,1] <- colFromCell(x, cells) colrow[,2] <- rowFromCell(x, cells) colrow[,3] <- NA rows <- sort(unique(colrow[,2])) readrows <- rows if ( x@file@toptobottom ) { readrows <- x@nrows - readrows + 1 } zvar = x@data@zvar time = x@data@band nc <- ncdf4::nc_open(x@file@name, suppress_dimvals = TRUE) on.exit( ncdf4::nc_close(nc) ) if (nc$var[[zvar]]$ndims == 1) { ncx <- x@ncols count <- ncx for (i in 1:length(rows)) { start <- (readrows[i]-1) * ncx + 1 v <- as.vector(ncdf4::ncvar_get(nc, varid=zvar, start=start, count=count)) thisrow <- subset(colrow, colrow[,2] == rows[i]) colrow[colrow[,2]==rows[i], 3] <- v[thisrow[,1]] } } else if (nc$var[[zvar]]$ndims == 2) { count <- c(x@ncols, 1) for (i in 1:length(rows)) { start <- c(1, readrows[i]) v <- as.vector(ncdf4::ncvar_get(nc, varid=zvar, start=start, count=count)) thisrow <- subset(colrow, colrow[,2] == rows[i]) colrow[colrow[,2]==rows[i], 3] <- v[thisrow[,1]] } } else if (nc$var[[zvar]]$ndims == 3) { count <- c(x@ncols, 1, 1) for (i in 1:length(rows)) { start <- c(1, readrows[i], time) v <- as.vector(ncdf4::ncvar_get(nc, varid=zvar, start=start, count=count)) thisrow <- subset(colrow, colrow[,2] == rows[i]) colrow[colrow[,2]==rows[i], 3] <- v[thisrow[,1]] } } else { if (x@data@dim3 == 4) { count <- c(x@ncols, 1, 1, 1) for (i in 1:length(rows)) { start <- c(1, readrows[i], x@data@level, time) v <- as.vector(ncdf4::ncvar_get(nc, varid=zvar, start=start, count=count)) thisrow <- subset(colrow, colrow[,2] == rows[i]) colrow[colrow[,2]==rows[i], 3] <- v[thisrow[,1]] } } else { count <- c(x@ncols, 1, 1, 1) for (i in 1:length(rows)) { start <- c(1, readrows[i], time, x@data@level) v <- as.vector(ncdf4::ncvar_get(nc, varid=zvar, start=start, count=count)) thisrow <- subset(colrow, colrow[,2] == rows[i]) colrow[colrow[,2]==rows[i], 3] <- v[thisrow[,1]] } } } colrow <- colrow[,3] colrow[colrow == x@file@nodatavalue] <- NA return(colrow) } .readBrickCellsNetCDF <- function(x, cells, layer, nl) { i <- which(!is.na(cells)) if (length(cells) > 1000) { if (canProcessInMemory(x, 2)) { endlayer <- layer+nl-1 r <- getValues(x) r <- r[cells, layer:endlayer] return(r) } } zvar <- x@data@zvar dim3 <- x@data@dim3 cols <- colFromCell(x, cells) rows <- rowFromCell(x, cells) if ( x@file@toptobottom ) { rows <- x@nrows - rows + 1 } nc <- ncdf4::nc_open(x@file@name, suppress_dimvals = TRUE) on.exit( ncdf4::nc_close(nc) ) j <- which(!is.na(cells)) if (nc$var[[zvar]]$ndims == 2) { count <- c(1, 1) res <- matrix(NA, nrow=length(cells), ncol=1) for (i in j) { start <- c(cols[i], rows[i]) res[i] <- ncdf4::ncvar_get(nc, varid=zvar, start=start, count=count) } } else if (nc$var[[zvar]]$ndims == 3) { count <- c(1, 1, nl) res <- matrix(NA, nrow=length(cells), ncol=nl) for (i in j) { start <- c(cols[i], rows[i], layer) res[i,] <- ncdf4::ncvar_get(nc, varid=zvar, start=start, count=count) } } else { if (x@data@dim3 == 4) { count <- c(1, 1, 1, nl) res <- matrix(NA, nrow=length(cells), ncol=nl) for (i in j) { start <- c(cols[i], rows[i], x@data@level, layer) res[i,] <- ncdf4::ncvar_get(nc, varid=zvar, start=start, count=count) } } else { count <- c(1, 1, nl, 1) res <- matrix(nrow=length(cells), ncol=nl) for (i in 1:length(cells)) { start <- c(cols[i], rows[i], layer, x@data@level) res[i,] <- ncdf4::ncvar_get(nc, varid=zvar, start=start, count=count) } } } res[res == x@file@nodatavalue] <- NA return(res) }
simplex<-function(x, dist="weibull", tz=0, debias="none", optcontrol=NULL) { default_tz=0 default_sign=1 if(class(x)!="data.frame") {stop("mlefit takes a structured dataframe input, use mleframe")} if(ncol(x)!=3) {stop("mlefit takes a structured dataframe input, use mleframe")} xnames<-names(x) if(xnames[1]!="left" || xnames[2]!="right"||xnames[3]!="qty") { stop("mlefit takes a structured dataframe input, use mleframe") } if(tolower(dist) %in% c("weibull","weibull2p","weibull3p")){ fit_dist<-"weibull" }else{ if(tolower(dist) %in% c("lnorm", "lognormal","lognormal2p", "lognormal3p")){ fit_dist<-"lnorm" }else{ stop(paste0("dist argument ", dist, "is not recognized for mle fitting")) } } if(tolower(dist) %in% c("weibull3p", "lognormal3p")){ npar<-3 } Nf=0 Ns=0 Nd=0 Ni=0 failNDX<-which(x$right==x$left) suspNDX<-which(x$right<0) Nf_rows<-length(failNDX) if(Nf_rows>0) { Nf<-sum(x[failNDX,3]) } Ns_rows<-length(suspNDX) if(Ns_rows>0) { Ns<-sum(x[suspNDX,3]) } discoveryNDX<-which(x$left==0) Nd_rows<-length(discoveryNDX) if(Nd_rows>0) { Nd<-sum(x[discoveryNDX,3]) } testint<-x$right-x$left intervalNDX<-which(testint>0) interval<-x[intervalNDX,] intervalsNDX<-which(interval$left>0) Ni_rows<-length(intervalsNDX) if(Ni_rows>0) { Ni<-sum(interval[intervalsNDX,3]) } fsiq<-rbind(x[failNDX,], x[suspNDX,], x[discoveryNDX,], interval[intervalsNDX,]) fsd<-NULL if((Nf+Ns)>0) { fsd<-fsiq$left[1:(Nf_rows + Ns_rows)] } if(Nd>0) { fsd<-c(fsd,fsiq$right[(Nf_rows + Ns_rows + 1):(Nf_rows + Ns_rows + Nd_rows)]) } if(Ni>0) { fsdi<-c(fsd, fsiq$left[(Nf_rows + Ns_rows + Nd_rows + 1):nrow(fsiq)], fsiq$right[(Nf_rows + Ns_rows + Nd_rows + 1):nrow(fsiq)]) }else{ fsdi<-fsd } q<-fsiq$qty N<-c(Nf_rows,Ns_rows,Nd_rows,Ni_rows) mrr_fail_data<- c(rep(x[failNDX,1],x[failNDX,3]), rep( x[discoveryNDX,2]/2, x[discoveryNDX,3]), rep((interval[intervalsNDX,1]+(interval[intervalsNDX,2]-interval[intervalsNDX,1])/2), interval[intervalsNDX,3]) ) mrr_susp_data<-rep(x[suspNDX,1], x[suspNDX,3]) if(fit_dist=="weibull"){ dist_num=1 if(Nf==1 && Nd+Ni==0) { weibayes_scale <-x[failNDX,1]+sum(x[suspNDX,1]) vstart<- c(1, weibayes_scale) warning("single failure data set may be candidate for weibayes fitting") }else{ mrr_fit<-lslr(getPPP(mrr_fail_data, mrr_susp_data), abpval=FALSE) shape<-mrr_fit[2] scale<- mrr_fit[1] vstart <- c(shape, scale) } }else{ if(fit_dist=="lnorm"){ dist_num=2 mrr_fit<-lslr(getPPP(mrr_fail_data, mrr_susp_data), dist="lognormal", abpval=FALSE) ml<- mrr_fit[1] sdl<- mrr_fit[2] vstart<-c(ml,sdl) }else{ stop("distribution not resolved for mle fitting") } } limit<-1e-6 maxit<-100 listout<-FALSE if(length(optcontrol)>0) { if(length(optcontrol$vstart>0)) { vstart<-optcontrol$vstart } if(length(optcontrol$limit)>0) { limit<-optcontrol$limit } if(length(optcontrol$maxit)>0) { maxit<-optcontrol$maxit } if(length(optcontrol$listout)>0) { listout<-optcontrol$listout } } pos<-1 Q<-sum(q) for(j in seq(1,4)) { if(N[j]>0) { Q<-c(Q, sum(q[pos:(pos+N[j]-1)])) pos<-pos+N[j] }else{ Q<-c(Q, 0) } } names(Q)<-c("n","fo", "s", "d", "i") MLEclassList<-list(fsdi=fsdi,q=q,N=N,dist_num=dist_num) LLtest<-.Call(MLEloglike,MLEclassList,vstart, default_sign, default_tz) if(!is.finite(LLtest)) { stop("Cannot start mle optimization with given parameters") } ControlList<-list(limit=limit,maxit=maxit) if(debias!="none" && dist_num==1) { if(tolower(debias)!="rba"&&tolower(debias)!="mean"&&tolower(debias)!="hrbu") { stop("debias method not resolved") } } listout_int<-0 result_of_simplex_call<-.Call(MLEsimplex,MLEclassList, ControlList, vstart, default_tz, listout_int) if(result_of_simplex_call[4]>0) { warning("simplex does not converge") } result_of_simplex_call }
"to_real" <- function(o){ out <- c(rbind(Re(o),Im(o))) if(!is.null(names(o))){ names(out) <- apply(expand.grid(c("_real","_imag"),names(o))[,2:1],1,paste,collapse="") } else { names(out) <- NULL } return(out) } "to_complex" <- function(p){ if(is.vector(p)){ jj <- Recall(t(p)) out <- c(jj) names(out) <- colnames(jj) return(out) } out <- ( p[,seq(from=1,by=2,to=ncol(p)),drop=FALSE] + 1i*p[,seq(from=2,by=2,to=ncol(p)),drop=FALSE] ) f <- function(string){sub("_real","",string)} colnames(out) <- sapply(colnames(out),f) return(out) } "complex_ode" <- function(y, times, func, parms=NA, method=NULL, u, udash, ...){ out <- ode(y=to_real(y), times=times, func=func, parms=to_real(parms), method, u=u, udash=udash, ...) out <- cbind(z=u(out[,1]),to_complex(out[,-1])) class(out) <- c("deSolve", "matrix") return(out) } hypergeo_press <- function(A,B,C,z, ...){ if(Re(z)<=0){ startz <- -0.5 } else if( (Re(z)<=0.5)){ startz <- 0.5 } else if(Im(z)>=0){ startz <- 0.5i } else if(Im(z)<0){ startz <- -0.5i } initial_value <- hypergeo(A,B,C,z=startz) initial_deriv <- (A*B)/C*hypergeo(A+1,B+1,C+1,z=startz) complex_ode(y = c(F=initial_value, Fdash=initial_deriv), times = seq(0,1,by=0.05), func = hypergeo_func, parms = c(A=A, B=B, C=C)+0i, u = function(u){startz + (z-startz)*u}, udash = function(u){z-startz}, ...) } "hypergeo_func" <- function(Time, State, Pars, u, udash) { with(as.list(c(to_complex(State), to_complex(Pars))), { z <- u(Time) dz <- udash(Time) dF <- dz * Fdash dFdash <- dz * (A*B*F -(C-(A+B+1)*z)*Fdash)/(z*(1-z)) out <- to_real(c(dF,dFdash)) names(out) <- names(State) return(list(out)) }) } f15.5.1 <- function(A,B,C,z,startz,u,udash,give=FALSE, ...){ out <- complex_ode(y = c(F=hypergeo(A,B,C,startz), Fdash=hypergeo(A+1,B+1,C+1,startz)*A*B/C), times = seq(0,1,by=0.1), func = hypergeo_func, parms = c(A=A, B=B, C=C)+0i, u = u, udash = udash, ...) if(give){ return(out) } else { return(unname(out[11,2])) } } "semicircle" <- function(t,z0,z1,clockwise=TRUE){ if(clockwise){m <- -1} else {m <- 1} center <- (z0+z1)/2 center + (z0-center)*exp(1i*t*pi*m) } "semidash" <- function(t,z0,z1,clockwise=TRUE){ if(clockwise){m <- -1} else {m <- 1} center <- (z0+z1)/2 (z0-center)*(1i*pi*m)*exp(1i*t*pi*m) } "straight" <- function(t,z0,z1){ z0 + t*(z1-z0) } "straightdash" <- function(t,z0,z1){ (z1-z0) }
context("commands - server") test_that("CLIENT KILL", { expect_equal(redis_cmds$CLIENT_KILL(ID = "12", SKIPME = "yes"), list("CLIENT", "KILL", NULL, list("ID", "12"), NULL, NULL, list("SKIPME", "yes"))) expect_equal(redis_cmds$CLIENT_KILL(ID = "11", SKIPME = "no"), list("CLIENT", "KILL", NULL, list("ID", "11"), NULL, NULL, list("SKIPME", "no"))) }) test_that("CLIENT LIST", { expect_equal(redis_cmds$CLIENT_LIST(), list("CLIENT", "LIST")) }) test_that("CLIENT GETNAME", { expect_equal(redis_cmds$CLIENT_GETNAME(), list("CLIENT", "GETNAME")) }) test_that("CLIENT PAUSE", { expect_equal(redis_cmds$CLIENT_PAUSE(1000), list("CLIENT", "PAUSE", 1000)) }) test_that("CLIENT REPLY", { expect_error(redis_cmds$CLIENT_REPLY("SKIP"), "Do not use CLIENT_REPLY") }) test_that("CLIENT SETNAME", { name <- rand_str() expect_equal(redis_cmds$CLIENT_SETNAME(name), list("CLIENT", "SETNAME", name)) }) test_that("COMMAND", { expect_equal(redis_cmds$COMMAND(), list("COMMAND")) }) test_that("COMMAND COUNT", { expect_equal(redis_cmds$COMMAND_COUNT(), list("COMMAND", "COUNT")) }) test_that("COMMAND GETKEYS", { cmd <- redis_cmds$MSET(letters[1:3], 1:3) expect_equal(redis_cmds$COMMAND_GETKEYS(cmd), c(list("COMMAND", "GETKEYS"), cmd)) }) test_that("COMMAND INFO", { cmds <- c("get", "set", "eval") expect_equal(redis_cmds$COMMAND_INFO(cmds), list("COMMAND", "INFO", cmds)) }) test_that("CONFIG GET", { query <- "*max-*-entries*" expect_equal(redis_cmds$CONFIG_GET(query), list("CONFIG", "GET", query)) }) test_that("DBSIZE", { expect_equal(redis_cmds$DBSIZE(), list("DBSIZE")) }) test_that("FLUSHALL", { expect_equal(redis_cmds$FLUSHALL(), list("FLUSHALL")) }) test_that("FLUSHDB", { expect_equal(redis_cmds$FLUSHDB(), list("FLUSHDB")) }) test_that("INFO", { expect_equal(redis_cmds$INFO(), list("INFO", NULL)) }) test_that("LASTSAVE", { expect_equal(redis_cmds$LASTSAVE(), list("LASTSAVE")) }) test_that("ROLE", { expect_equal(redis_cmds$ROLE(), list("ROLE")) }) test_that("SLOWLOG", { expect_equal(redis_cmds$SLOWLOG("LEN"), list("SLOWLOG", "LEN", NULL)) expect_equal(redis_cmds$SLOWLOG("GET", "1"), list("SLOWLOG", "GET", "1")) }) test_that("TIME", { expect_equal(redis_cmds$TIME(), list("TIME")) }) test_that("BGREWRITEAOF", { expect_equal(redis_cmds$BGREWRITEAOF(), list("BGREWRITEAOF")) }) test_that("BGSAVE", { expect_equal(redis_cmds$BGSAVE(), list("BGSAVE")) }) test_that("CONFIG REWRITE", { expect_equal(redis_cmds$CONFIG_REWRITE(), list("CONFIG", "REWRITE")) }) test_that("CONFIG SET", { expect_equal(redis_cmds$CONFIG_SET("SAVE", "900 1 300 10"), list("CONFIG", "SET", "SAVE", "900 1 300 10")) }) test_that("CONFIG RESETSTAT", { expect_equal(redis_cmds$CONFIG_RESETSTAT(), list("CONFIG", "RESETSTAT")) }) test_that("DEBUG OBJECT", { expect_equal(redis_cmds$DEBUG_OBJECT("key"), list("DEBUG", "OBJECT", "key")) }) test_that("DEBUG SEGFAULT", { expect_equal(redis_cmds$DEBUG_SEGFAULT(), list("DEBUG", "SEGFAULT")) }) test_that("MONITOR", { expect_equal(redis_cmds$MONITOR(), list("MONITOR")) }) test_that("SAVE", { expect_equal(redis_cmds$SAVE(), list("SAVE")) }) test_that("SHUTDOWN", { expect_equal(redis_cmds$SHUTDOWN("SAVE"), list("SHUTDOWN", "SAVE")) expect_equal(redis_cmds$SHUTDOWN("NOSAVE"), list("SHUTDOWN", "NOSAVE")) }) test_that("SLAVEOF", { expect_equal(redis_cmds$SLAVEOF("NO", "ONE"), list("SLAVEOF", "NO", "ONE")) }) test_that("SYNC", { expect_equal(redis_cmds$SYNC(), list("SYNC")) })
mipplot_autofill_color <- function(rule_table_without_colors) { random_colors_for_the_not_matched <- c(" " " " " " " " " rule_table_with_colors <- rule_table_without_colors ith_LHS <- NA n_rule <- nrow(rule_table_with_colors) for (i_rule in 1:n_rule) { ith_rule <- rule_table_with_colors[i_rule, ] if (has_LHS_in(ith_rule)) { ith_LHS <- extract_LHS_from_rule(ith_rule) } if (nchar(ith_rule$Right_side) == 0) next if (nchar(ith_rule$Color_code) > 0) next ith_rule$Left_side <- ith_LHS V <- extract_specific_category_from_rule(ith_rule) standard_color_scheme_table <- mipplot::mipplot_default_color_palette[[1]] n_standard_color_scheme <- length(standard_color_scheme_table) distance_list <- numeric(n_standard_color_scheme) for (i_standard_color_scheme in 1:n_standard_color_scheme) { V_prime <- names(standard_color_scheme_table)[i_standard_color_scheme] distance <- levenshtein_distance(tolower(V), tolower(V_prime)) distance_list[i_standard_color_scheme] <- distance } minimum_distance <- min(distance_list) DISTANCE_THRESHOLD <- as.integer(max(nchar(V), nchar(V_prime)) * 0.8) if (minimum_distance < DISTANCE_THRESHOLD) { i_minimum_distance <- which.min(distance_list) rule_table_with_colors[i_rule, INDEX_COL_COLOR_CODE] <- standard_color_scheme_table[i_minimum_distance] print(paste( '[message] ', "'", V, "'", ' matched to ', "'", names(standard_color_scheme_table)[i_minimum_distance], "'", sep = '')) }else{ random_color_code <- random_colors_for_the_not_matched[1] random_colors_for_the_not_matched <- random_colors_for_the_not_matched[ 2:length(random_colors_for_the_not_matched)] if (length(random_colors_for_the_not_matched) == 0) { random_colors_for_the_not_matched <- c(" } rule_table_with_colors[i_rule, INDEX_COL_COLOR_CODE] <- random_color_code print(paste( '[message] ', 'Similar name of variable to ', "'", V, "'",' is not found. ', 'random color code ', random_color_code, ' is inserted.', sep = '')) } } return(rule_table_with_colors) } INDEX_COL_LHS <- 2 INDEX_COL_RHS <- 3 INDEX_COL_COLOR_CODE <- 4 extract_LHS_from_rule <- function(rule) { return(rule[1, INDEX_COL_LHS]) } has_LHS_in <- function(rule) { if (nchar(rule[1, INDEX_COL_LHS]) == 0) { return(FALSE) }else{ return(TRUE) } } extract_specific_category_from_rule <- function(rule) { LHS <- rule[1, INDEX_COL_LHS] RHS <- rule[1, INDEX_COL_RHS] category <- LHS specific_category <- gsub(paste(category, "|", sep=""), "", RHS, fixed = TRUE) return(specific_category) } levenshtein_distance <- function(s, t) { m <- nchar(s) n <- nchar(t) d <- matrix(0, nrow = m + 1, ncol = n + 1) for (i in 1:m) { d[i+1, 0+1] <- i } for (j in 1:n) { d[0+1, j+1] <- j } for (j in 1:n) { for (i in 1:m) { if (substr(s, i, i) == substr(t, j, j)) { substitution_cost <- 0 } else { substitution_cost <- 1 } d[i+1, j+1] <- min( d[i-1+1, j+1]+1, d[i+1, j-1+1]+1, d[i-1+1, j-1+1] + substitution_cost) } } return(d[m+1, n+1]) }
as_tcclimate <- function(x, varnames = NULL) { msg1 <- "Format of climate data was not recognized. It is absolutely necessary that only complete years (months 1-12) are provided." if (any(class(x) == "list")) { n <- length(x) minyrs <- maxyrs <- numeric(n) for (i in 1:n) { y <- x[[i]] if (dim(y)[2] == 13) { perf_seq <- seq(y[1,1], y[dim(y)[1],1], 1) if (length(y[,1]) != length(perf_seq)) { stop(msg1) } if (!any(y[,1] == perf_seq)) { stop(msg1) } else { minyrs[i] <- min(y[,1]) maxyrs[i] <- max(y[,1]) } } } yrs <- max(minyrs):min(maxyrs) nyrs <- length(yrs) output_matrix <- matrix(NA, ncol = n + 2, nrow = nyrs*12) output_matrix[,1] <- rep(yrs, each = 12) output_matrix[,2] <- rep(1:12, nyrs) for (i in 1:n) { y <- x[[i]] for (j in 1:nyrs) { if (any(y[,1] == yrs[j])) { output_matrix[which(output_matrix[,1] == yrs[j]), 2+i] <- unlist(y[which(y[,1] == yrs[j]), 2:13]) } } } } else { if (dim(x)[2] == 13) { perf_seq <- seq(x[1,1], x[dim(x)[1],1], 1) if (length(x[,1]) != length(perf_seq)) { stop(msg1) } if (!any(x[,1] == perf_seq)) { stop(msg1) } else { yrs <- unique(x[,1]) nyrs <- length(yrs) output_matrix <- matrix(NA, ncol = 3, nrow = nyrs*12) output_matrix[,1] <- rep(yrs, each = 12) output_matrix[,2] <- rep(1:12, nyrs) for (i in 1:nyrs) { output_matrix[which(output_matrix[,1] == yrs[i]), 3] <- unlist(x[which(x[,1] == yrs[i]), 2:13]) } } } else { perf_seq <- rep(x[1,1]:x[dim(x)[1],1], each = 12) if (length(x[,1]) != length(perf_seq)) { stop(msg1) } if (!any(x[,1] == perf_seq)) { stop(msg1) } else { if (!(any(x[,2] == rep(1:12, length(unique(x[,1])))))) { stop(msg1) } else { output_matrix <- x } } } } output <- data.frame(output_matrix) if (!is.null(varnames)) { if (length(varnames) == dim(output[2])) { colnames(output)[-c(1,2)] <- varnames } else { stop("`var_names` has to be of the same length as the number of parameters.") } } if (is.null(varnames) & !is.null(names(x)) & (class(x) == "list")) { colnames(output)[-c(1,2)] <- names(x) } class(output) <- c("tc_climate", "data.frame") output }
library(ggplot2) library(patchwork) pie_sales = data.frame( ratio = c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12), name = c("蓝莓", "樱桃", "苹果", "波士顿奶油", "其它", "香草奶油")) pie_sales = pie_sales[order(-pie_sales$ratio), ] pie_sales$name = factor( pie_sales$name, levels = pie_sales$name[order(pie_sales$ratio)]) pie1 = ggplot(pie_sales, aes(x = "", y = ratio, fill = name)) + geom_bar(width = 1, stat = "identity", color = "white") + coord_polar("y", start = 0) + labs(fill = "口味") + theme_void() dot1 = ggplot(pie_sales, aes(name, ratio, color = name)) + geom_point() + coord_flip() + theme(legend.position = "", axis.title = element_blank()) col1 = ggplot(pie_sales, aes(name, ratio, fill = name)) + geom_col() + coord_flip() + theme(legend.position = "", axis.title = element_blank()) print(pie1 / dot1 / col1)
context("Test tk_tbl") FB_tbl <- FANG %>% filter(symbol == "FB") test_that("tbl tot tbl test returns tibble with correct rows and columns.", { test_tbl_1 <- tk_tbl(FB_tbl, preserve_index = F, rename_index = "date") expect_is(test_tbl_1, "tbl") expect_equal(nrow(test_tbl_1), 1008) expect_equal(ncol(test_tbl_1), 8) expect_equal(colnames(test_tbl_1)[[2]], "date") expect_warning(tk_tbl(FB_tbl, preserve_index = T)) }) FB_xts <- tk_xts(FB_tbl, select = -c(date, symbol), date_var = date) test_that("xts to tbl test returns tibble with correct rows and columns.", { test_tbl_2 <- tk_tbl(FB_xts, preserve_index = T, rename_index = "date") expect_equal(nrow(test_tbl_2), 1008) expect_equal(ncol(test_tbl_2), 7) expect_equal(colnames(test_tbl_2)[[1]], "date") expect_equal(ncol(tk_tbl(FB_xts, preserve_index = F, rename_index = "date")), 6) }) FB_zoo <- tk_zoo(FB_tbl, silent = TRUE) test_that("zoo to tbl test returns tibble with correct rows and columns.", { test_tbl_3 <- tk_tbl(FB_zoo, preserve_index = T, rename_index = "date") expect_equal(nrow(test_tbl_3), 1008) expect_equal(ncol(test_tbl_3), 7) expect_equal(colnames(test_tbl_3)[[1]], "date") expect_equal(ncol(tk_tbl(FB_zoo, preserve_index = F, rename_index = "date")), 6) }) FB_zooreg <- tk_zooreg(FB_tbl, start = 2015, frequency = 250, silent = TRUE) test_that("zooreg to tbl test returns tibble with correct rows and columns.", { test_tbl_3a <- tk_tbl(FB_zooreg, preserve_index = T, rename_index = "date") expect_equal(nrow(test_tbl_3a), 1008) expect_equal(ncol(test_tbl_3a), 7) expect_equal(colnames(test_tbl_3a)[[1]], "date") expect_equal(ncol(tk_tbl(FB_zooreg, preserve_index = F, rename_index = "date")), 6) test_tbl_3b <- FB_zooreg %>% tk_tbl(rename_index = "date", timetk_idx = TRUE) expect_identical(test_tbl_3b, FB_tbl %>% select(-symbol)) zooreg_1 <- zoo::zooreg(1:5, start = as.Date("2000-01-01")) expect_true(inherits(tk_tbl(zooreg_1)$index, "Date")) zooreg_2 <- zoo::zooreg(1:5, end = zoo::yearmon(2000)) expect_true(inherits(tk_tbl(zooreg_2)$index, "yearmon")) zooreg_3 <- zoo::zooreg(1:5, start = zoo::yearqtr(2000), frequency = 4) expect_true(inherits(tk_tbl(zooreg_3)$index, "yearqtr")) }) FB_mts <- tk_ts(FB_tbl, select = -c(date, symbol), start = 2015, frequency = 252) test_that("mts to tbl test returns tibble with correct rows and columns.", { test_tbl_4 <- tk_tbl(FB_mts, preserve_index = T, rename_index = "date") expect_equal(nrow(test_tbl_4), 1008) expect_equal(ncol(test_tbl_4), 7) expect_equal(colnames(test_tbl_4)[[1]], "date") expect_equal(ncol(tk_tbl(FB_mts, preserve_index = F, rename_index = "date")), 6) expect_warning(tk_tbl(tk_ts(FB_mts, start = 1), select = -date, preserve_index = T)) expect_warning( WWWusage %>% tk_tbl(timetk_idx = TRUE) ) test_tbl_4b <- FB_mts %>% tk_tbl(rename_index = "date", timetk_idx = TRUE) expect_identical(test_tbl_4b, FB_tbl %>% select(-symbol)) }) FB_matrix <- FB_xts %>% as.matrix() test_that("matrix to tbl test returns tibble with correct rows and columns.", { test_tbl_5 <- tk_tbl(FB_matrix, preserve_index = T, rename_index = "date") expect_equal(nrow(test_tbl_5), 1008) expect_equal(ncol(test_tbl_5), 7) expect_equal(colnames(test_tbl_5)[[1]], "date") expect_equal(ncol(tk_tbl(FB_matrix, preserve_index = F, rename_index = "date")), 6) rownames(FB_matrix) <- NULL expect_warning(tk_tbl(FB_matrix)) }) test_timeSeries <- timeSeries::timeSeries(1:100, timeDate::timeSequence(length.out = 100, by = "sec")) test_that("timeSeries to tbl test returns tibble with correct rows and columns.", { test_tbl_6 <- tk_tbl(test_timeSeries, preserve_index = T, rename_index = "date-time") expect_equal(nrow(test_tbl_6), 100) expect_equal(ncol(test_tbl_6), 2) expect_equal(colnames(test_tbl_6)[[1]], "date-time") }) n <- 10 t <- cumsum(rexp(n, rate = 0.1)) v <- rnorm(n) test_tseries <- tseries::irts(t, v) test_that("tseries to tbl test returns tibble with correct rows and columns.", { test_tbl_7 <- tk_tbl(test_tseries, preserve_index = T, rename_index = "date-time") expect_equal(nrow(test_tbl_7), 10) expect_equal(ncol(test_tbl_7), 2) expect_equal(colnames(test_tbl_7)[[1]], "date-time") }) test_msts <- forecast::msts(forecast::taylor, seasonal.periods=c(48,336), start=2000+22/52) test_that("forecast::msts to tbl test returns tibble with correct rows and columns.", { test_tbl_8 <- tk_tbl(test_msts, preserve_index = T, rename_index = "index") expect_equal(nrow(test_tbl_8), 4032) expect_equal(ncol(test_tbl_8), 2) expect_equal(colnames(test_tbl_8)[[1]], "index") }) test_that("forecast::msts to tbl test returns tibble with correct rows and columns.", { test_default <- 4 expect_warning( tk_tbl(test_default, preserve_index = T, rename_index = "index") ) test_tbl_9 <- tk_tbl(test_default, preserve_index = F, rename_index = "index") expect_equal(nrow(test_tbl_9), 1) expect_equal(ncol(test_tbl_9), 1) })
library(hamcrest) expected <- c(0x1.654e88411a9ccp+4 + -0x1.7p-47i, 0x1.5e242f0d84897p+4 + -0x1.8p-50i, 0x1.6d062ceb53381p+4 + 0x1p-46i, 0x1.91d15da3a3161p+4 + 0x1.f8p-46i, 0x1.cac2d754c9d36p+4 + 0x1.4cp-45i, 0x1.0a47b94df6325p+5 + 0x1.8a5981113790ep-47i, 0x1.354d3c5e5ea19p+5 + 0x1.315996a08e8f8p-46i, 0x1.63a3c3ee53814p+5 + 0x1.6dc867ee77cdp-46i, 0x1.9230c6ffbac1dp+5 + 0x1.ecbeea8c701f6p-46i, 0x1.bdc782af897a2p+5 + 0x1.c398a8a7dce9ep-46i, 0x1.e365417b2cd7bp+5 + 0x1.0b933bdc0d397p-45i, 0x1.00359059b7d81p+6 + 0x1.1630c8580c19fp-45i, 0x1.096869dca93fdp+6 + 0x1.ca513fb84dfd2p-46i, 0x1.0ca63500727bcp+6 + 0x1.0b14fe82b0144p-45i, 0x1.09b5f96e00eccp+6 + 0x1.e4f08fbb2b031p-46i, 0x1.00cf7815fab35p+6 + 0x1.442734d0d2c58p-45i, 0x1.e52ec9a9e289fp+5 + 0x1.52ed79f90004ep-45i, 0x1.c026c47135e7ep+5 + 0x1.6162cb3b791d6p-45i, 0x1.952d4b63c5d6cp+5 + 0x1.a568e1a8f9d27p-45i, 0x1.67517b03eee11p+5 + 0x1.d9680e84495e5p-45i, 0x1.39d0cf4dee4d2p+5 + 0x1.1e0a3f86e9328p-45i, 0x1.0fd9713a3994cp+5 + 0x1.54c3d2e17628ap-45i, 0x1.d89bce5007f8ap+4 + 0x1.c6efa7e2ee849p-45i, 0x1.a31da36b5087ep+4 + 0x1.1215d3d3aca7bp-44i, 0x1.829dce69ce6a4p+4 + 0x1.3aa8af688dfe2p-44i, 0x1.78e927fa53076p+4 + 0x1.05a9bff0bfde6p-45i, 0x1.86172a2875094p+4 + 0x1.4e3caba1f2803p-45i, 0x1.a88f44580d41bp+4 + 0x1.ae97873918978p-45i, 0x1.dd2fc9998a4cdp+4 + 0x1.05235bdc2bbc8p-44i, 0x1.0fc9a795d31bfp+5 + 0x1.1ca50dc5935eap-44i, 0x1.3537747edd9d6p+5 + 0x1.57e2e30bd4fedp-45i, 0x1.5c00dc5517199p+5 + 0x1.9649bfb646d26p-45i, 0x1.81467082f7ce6p+5 + 0x1.9558f57cfdecp-45i, 0x1.a26520df7ebc9p+5 + 0x1.ffddb964a97e6p-45i, 0x1.bd2c392bd4c38p+5 + 0x1.18895ba82b4a7p-44i, 0x1.d009a4d177605p+5 + 0x1.03775b0ef7229p-44i, 0x1.da28e383d1cfep+5 + 0x1.251f4a70e6062p-44i, 0x1.db8227b156efcp+5 + 0x1.1957c1c86c666p-44i, 0x1.d4d85b51fd97fp+5 + 0x1.5c542378bfbb8p-44i, 0x1.c7a627602a482p+5 + 0x1.8e542b43bf5ffp-44i, 0x1.b5fb7a7fcfef9p+5 + 0x1.53a9faf0c4adap-44i, 0x1.a24e501a95402p+5 + 0x1.7f9e566edbe65p-44i, 0x1.8f428884d1bacp+5 + 0x1.94da4f3c929a7p-44i, 0x1.7f6d668a158b4p+5 + 0x1.c60ce6dda154dp-44i, 0x1.7519aeb529ab7p+5 + 0x1.f33e8b28515fp-44i, 0x1.72116780c822fp+5 + 0x1.6c1fd99e21b54p-44i, 0x1.7771d5ee0d04cp+5 + 0x1.90cd080fa488dp-44i, 0x1.858d8e6005077p+5 + 0x1.ae4e15ae223e2p-44i, 0x1.9bdf5c48e5be6p+5 + 0x1.ad58f11f523e1p-44i, 0x1.b90f70fb5c4adp+5 + 0x1.ad1290bb4cc7ep-44i, 0x1.db0ad4a96b7a5p+5 + 0x1.50c0ff1a12dc1p-44i, 0x1.ff2b9932159c5p+5 + 0x1.5c511e0fa5aefp-44i, 0x1.113775542118p+6 + 0x1.5353bc7d2ca93p-44i, 0x1.20da74ee27f21p+6 + 0x1.441957df6adb3p-44i, 0x1.2d02ad333db9ep+6 + 0x1.37290bbfce092p-44i, 0x1.3469d56fb8571p+6 + 0x1.35c30b3e10b48p-44i, 0x1.361e638caf46bp+6 + 0x1.3edc38b408b3ep-44i, 0x1.319cbe8966cf2p+6 + 0x1.238a848e5eb6bp-44i, 0x1.26e0809cd50d3p+6 + 0x1.545d6a0b7e6ep-44i, 0x1.166c20222276p+6 + 0x1.856fb793a23efp-44i, 0x1.01460be7152c6p+6 + 0x1.4c8ded54aa9d3p-44i, 0x1.d1d628714ec94p+5 + 0x1.7d348a21e4a21p-44i, 0x1.9e6d9da017542p+5 + 0x1.8bed066e2de7dp-44i, 0x1.6c86e0ad836f1p+5 + 0x1.00f5408023e51p-43i, 0x1.4086957f5319bp+5 + 0x1.367956c6d5921p-43i, 0x1.1ead5bbd989bp+5 + 0x1.93612771eb7dp-44i, 0x1.0ac287a924a41p+5 + 0x1.e654f9bd0253fp-44i, 0x1.07c449f6f834fp+5 + 0x1.0c287548b79e8p-43i, 0x1.17a38681ca916p+5 + 0x1.36639cdabbfe4p-43i, 0x1.3b10e7e6e5077p+5 + 0x1.5791d8ea6da96p-43i, 0x1.715f9d05b471ap+5 + 0x1.d6e2642bc7132p-44i, 0x1.b880b033d396p+5 + 0x1.07ba7d034b901p-43i, 0x1.068c14aff537dp+6 + 0x1.0a6614c10d418p-43i, 0x1.3555a622757d8p+6 + 0x1.f622dad8e946ep-44i, 0x1.65f2b29902998p+6 + 0x1.d95e2c6da8bc2p-44i, 0x1.95776ea23b8f7p+6 + 0x1.e410ef3c8ee37p-44i, 0x1.c0e86dcae5159p+6 + 0x1.de4b8087ff6f9p-44i, 0x1.e56f5442c5a42p+6 + 0x1.992ad0c15c27fp-44i, 0x1.00475c31c9e54p+7 + 0x1.48904c661657ap-44i, 0x1.0828bd23eb073p+7 + 0x1.1df003bb78305p-44i, 0x1.09b909f55debp+7 + 0x1.b9e73e01faf1ap-44i, 0x1.04bb712da63e8p+7 + 0x1.a52e9edfa2bdp-44i, 0x1.f2c120600f642p+6 + 0x1.671faf87b0c5ap-44i, 0x1.d08d3025427ep+6 + 0x1.7070e8da905e2p-44i, 0x1.a4e3d4667d378p+6 + 0x1.a49e14686272ap-44i, 0x1.727d07c8a860dp+6 + 0x1.8a43938c940f4p-44i, 0x1.3c96278d94d18p+6 + 0x1.afdc315f7ba86p-44i, 0x1.06be1284e2858p+6 + 0x1.c94974904f496p-44i, 0x1.a93539cdb1ae4p+5 + 0x1.2295e9268d75p-43i, 0x1.53567eb868df3p+5 + 0x1.60700f949631cp-43i, 0x1.121a513ca122ap+5 + 0x1.89350848bfcap-44i, 0x1.d513419870bd4p+4 + 0x1.e69f7b4e823dfp-44i, 0x1.c0435e670553bp+4 + 0x1.14afc569a6ccbp-43i, 0x1.e925a7993d394p+4 + 0x1.49a5f9bf01bacp-43i, 0x1.279d04806898cp+5 + 0x1.6c5afc5efca38p-43i, 0x1.770ce8ec0265p+5 + 0x1.ba2b9533b603cp-44i, 0x1.deda075e8252p+5 + 0x1.00384dc1f1615p-43i, 0x1.2cb22c013bad4p+6 + 0x1.fa4da68889c72p-44i, 0x1.6fe6b07e3fe5dp+6 + 0x1.dff25849b3608p-44i, 0x1.b5338ac52eb56p+6 + 0x1.bf382cfe4ebf3p-44i, 0x1.f89896678ab3ap+6 + 0x1.ec9950fff5972p-44i, 0x1.1b1727aaa9267p+7 + 0x1.ea0f25525763fp-44i, 0x1.353320243993p+7 + 0x1.89b93c41b726fp-44i, 0x1.4922e898303ap+7 + 0x1.2352bd0d482dap-44i, 0x1.55cbc25e2ae0fp+7 + 0x1.f6f9b5a89e54ep-45i, 0x1.5a87ac6b1b7bcp+7 + 0x1.eb4e51cb6065fp-44i, 0x1.572fee5f7ea76p+7 + 0x1.cc6002893d37ep-44i, 0x1.4c1f4c82bf23ap+7 + 0x1.7be99f83cc8fep-44i, 0x1.3a2bc39fcda2ap+7 + 0x1.5ae1849beba7p-44i, 0x1.22983e8a9e894p+7 + 0x1.89f3c03b15d2ap-44i, 0x1.06ff41af0c6bap+7 + 0x1.b05f49733fd18p-44i, 0x1.d27003961cea8p+6 + 0x1.bf081fab6dbcap-44i, 0x1.966f7318ceca4p+6 + 0x1.cb43be517a80cp-44i, 0x1.5de29f7ff1346p+6 + 0x1.0b53189206e76p-43i, 0x1.2c6af1e88886dp+6 + 0x1.3a3e34f237f54p-43i, 0x1.052ae4b4085dep+6 + 0x1.6af8f15cb15c3p-44i, 0x1.d52905e585829p+5 + 0x1.ac6e0946f7434p-44i, 0x1.bc88431d02184p+5 + 0x1.dbb9d2b9f3133p-44i, 0x1.c1d34974b8289p+5 + 0x1.1501a670a2ce6p-43i, 0x1.e483401f34307p+5 + 0x1.281cacf7ae922p-43i, 0x1.111e879c04b21p+6 + 0x1.5171a7056b576p-44i, 0x1.3b810fc119e27p+6 + 0x1.89454030c797dp-44i, 0x1.6ebdd4b4cbd8fp+6 + 0x1.77a502fe3f634p-44i, 0x1.a7ad82c2f5c4ep+6 + 0x1.6995c9c18b2f8p-44i, 0x1.e2e40d4a249f3p+6 + 0x1.4eb30a48be2d3p-44i, 0x1.0e758b90a5efep+7 + 0x1.6c64883ea09c2p-44i, 0x1.293dc51f92d5p+7 + 0x1.74026a6ac7ef8p-44i, 0x1.40593fd4d3cccp+7 + 0x1.21a33a29349f3p-44i, 0x1.529f00254310dp+7 + 0x1.afb8e01ee132ap-45i, 0x1.5f3f656ca35fp+7 + 0x1.a02f8e1f4f63p-45i, 0x1.65ce8f03c8cbp+7 + 0x1.8e6bb8b287b66p-44i, 0x1.6647bc5cee78ep+7 + 0x1.7f751b65d7464p-44i, 0x1.6109a14439f87p+7 + 0x1.40915a748e292p-44i, 0x1.56cc254492771p+7 + 0x1.16616edcabda6p-44i, 0x1.489077cd1ee82p+7 + 0x1.476f3960aa1a3p-44i, 0x1.378cc2112c6cap+7 + 0x1.808aea9ff0b4ap-44i, 0x1.2515054908667p+7 + 0x1.82f92ecd7f134p-44i, 0x1.1282db7d9475ep+7 + 0x1.7bed26bb69959p-44i, 0x1.011dd82dbf6bcp+7 + 0x1.86266f44fa626p-44i, 0x1.e40c5a2a2d881p+6 + 0x1.b19675f1f610ep-44i, 0x1.cc46015a77adap+6 + 0x1.37f8b435d84d9p-44i, 0x1.bc2b28aea8ad9p+6 + 0x1.4be4120ee7debp-44i, 0x1.b463eba520708p+6 + 0x1.493d0f9d7a171p-44i, 0x1.b4fb14c70d7b3p+6 + 0x1.522ad0308e199p-44i, 0x1.bd66a43f6dbd1p+6 + 0x1.42ea9ef306a6fp-44i, 0x1.cc9aaf06feceap+6 + 0x1.c1a37e2fc5e0ep-45i, 0x1.e124c5184411fp+6 + 0x1.dd1f33103e149p-45i, 0x1.f94d7b31d1702p+6 + 0x1.8addd35b9fff1p-45i, 0x1.099eaa4d01f9p+7 + 0x1.59502f9db416ap-45i, 0x1.1691108e98543p+7 + 0x1.1ddc54db6c2adp-45i, 0x1.22a8fa66651b1p+7 + 0x1.668c23368c0a1p-45i, 0x1.2d34939605f5ep+7 + 0x1.6d5be3cbc64c6p-45i, 0x1.35b09fd7bb9bdp+7 + 0x1.0a7ccf459c371p-45i, 0x1.3bcfa9bbe3345p+7 + 0x1.8de5b23897becp-46i, 0x1.3f7c8785880ccp+7 + 0x1.e85b940fe160cp-46i, 0x1.40d833f3a10d2p+7 + 0x1.7a07123179bbfp-45i, 0x1.4033570317cccp+7 + 0x1.8579137dcb533p-45i, 0x1.3e042f2db703p+7 + 0x1.5fb3024617a74p-45i, 0x1.3ad9d022d03cp+7 + 0x1.35b2435639865p-45i, 0x1.374ddb704ff3ep+7 + 0x1.9e6ae15ca41b5p-45i, 0x1.33f5eec5057bdp+7 + 0x1.a831c9e719f8fp-45i, 0x1.31560106d75c3p+7 + 0x1.b1a936c611624p-45i, 0x1.2fd4cc157c526p+7 + 0x1.97ef6b1f1651ap-45i, 0x1.2fb32f57f5959p+7 + 0x1.5febefb5ebe01p-45i, 0x1.31073371ae71cp+7 + 0x1.66bba9ab29c93p-45i, 0x1.33bb075eece66p+7 + 0x1.8035b2bd08856p-45i, 0x1.378ff94ee4dbbp+7 + 0x1.6533b9a7e23f3p-45i, 0x1.3c2518caef7c6p+7 + 0x1.01a494d7fd189p-45i, 0x1.4100e2d80a3d4p+7 + 0x1.303f02eafcce8p-46i, 0x1.459d19d01fc29p+7 + 0x1.477005e7228e8p-48i, 0x1.4973be96c52c5p+7 + 0x1.c5a9030932282p-46i, 0x1.4c0c0ae19245dp+7 + 0x1.532e29dafd5a8p-46i, 0x1.4d064e1d57394p+7 + 0x1.2efb3d8a72afap-48i, 0x1.4c25a7afc3683p+7 + -0x1.11a5e3874c608p-47i, 0x1.4956c7be19d0ep+7 + -0x1.252e0bfef5305p-46i, 0x1.44b31f5f726b5p+7 + 0x1.0b2de321a285dp-48i, 0x1.3e8034fb54044p+7 + -0x1.55f2d5a693c8p-54i, 0x1.372b23648f2fbp+7 + -0x1.7b690f68f8d38p-48i, 0x1.2f409b6afdd3fp+7 + -0x1.7b26e74e4d15ep-47i, 0x1.276209a020e6p+7 + -0x1.8bbaa4be143fcp-48i, 0x1.2038bef54afc7p+7 + -0x1.43d34ca4d4136p-47i, 0x1.1a6825cfc500dp+7 + -0x1.1b92d5ab9c004p-47i, 0x1.168022c222c0dp+7 + -0x1.16a0786193a9ep-48i, 0x1.14f0be905c977p+7 + -0x1.ae82448b0316fp-48i, 0x1.16001e9b1a9bbp+7 + 0x1.d544a50554d6p-50i, 0x1.19c3a335edeadp+7 + -0x1.3c31414739762p-47i, 0x1.201cc45f4aeffp+7 + -0x1.29f7cce584204p-47i, 0x1.28b9f9cd490c5p+7 + -0x1.673bc742a8999p-47i, 0x1.331ba941e9a83p+7 + -0x1.3b06a3bef46e8p-46i, 0x1.3e9cc41bd8eefp+7 + -0x1.837c563db35bep-46i, 0x1.4a7e719da9921p+7 + -0x1.2ad9d75ce2937p-48i, 0x1.55f5e46c6fe56p+7 + -0x1.5f9b0ae1b7dd9p-47i, 0x1.603b4c5404df3p+7 + -0x1.af3c7cb1ee55ep-46i, 0x1.6898bd184da71p+7 + -0x1.544be35a789e4p-45i, 0x1.6e77e1fba13dcp+7 + -0x1.c3141a660f99p-45i, 0x1.716d6bd5187b3p+7 + -0x1.1b87c0d11561dp-47i, 0x1.7141536ad56cfp+7 + -0x1.36e8081b92ed2p-46i, 0x1.6df347e3bc8dcp+7 + -0x1.1c5ccc8f84205p-45i, 0x1.67baecb751c8fp+7 + -0x1.952ce248837cp-45i, 0x1.5f03dda511192p+7 + -0x1.db526d08e428ep-45i, 0x1.5465c36dfd0dp+7 + -0x1.b8e3adb069694p-46i, 0x1.489912b04fa6dp+7 + -0x1.1d6e7f74e5ae3p-45i, 0x1.3c69512d86874p+7 + -0x1.2d5a847213929p-45i, 0x1.30a5efa465f3ep+7 + -0x1.8457f25b2c46p-45i, 0x1.2612e34a79c8bp+7 + -0x1.91edf0f7ce102p-45i, 0x1.1d5a2f7cafd43p+7 + -0x1.9c532ec419155p-45i, 0x1.16ff7df0fa5cbp+7 + -0x1.c3347df4205bcp-45i, 0x1.1356bae6081d4p+7 + -0x1.97a7a3ae471f8p-45i, 0x1.127e6ea1b6b05p+7 + -0x1.e66684f152a35p-45i, 0x1.145e42aaf32a6p+7 + -0x1.042e379e0c73p-44i, 0x1.18a9cd64ddf0ap+7 + -0x1.08d091f65abbap-44i, 0x1.1ee76894e5d3p+7 + -0x1.20452494db4d9p-44i, 0x1.267a85b062c92p+7 + -0x1.2bca0cabccb6ep-44i, 0x1.2eb0ac036673cp+7 + -0x1.5227a7b2b4406p-44i, 0x1.36d0167ad6032p+7 + -0x1.74e7bebde3e42p-44i, 0x1.3e26c573c204fp+7 + -0x1.06e28ab172edp-44i, 0x1.4418cf27e6fap+7 + -0x1.25722590ccd65p-44i, 0x1.482cc80aa772dp+7 + -0x1.51d755056c194p-44i, 0x1.4a1542a5bd11bp+7 + -0x1.692741dd75213p-44i, 0x1.49b6a1615f6a4p+7 + -0x1.7da22019567b5p-44i, 0x1.4728bf9c1c72dp+7 + -0x1.d56595787c838p-45i, 0x1.42b44cb95eb78p+7 + -0x1.0375f28304914p-44i, 0x1.3ccc0cadeb169p+7 + -0x1.19f7a0a823bf8p-44i, 0x1.3602870bc88bp+7 + -0x1.2d2c8365046ebp-44i, 0x1.2efcf8d4273efp+7 + -0x1.33aaad0b51954p-44i, 0x1.28649854b2c53p+7 + -0x1.dcf7b44dd799ep-45i, 0x1.22d76035c4a51p+7 + -0x1.05520b3df82bbp-44i, 0x1.1ed9a4644eaa5p+7 + -0x1.f28202a52b8cep-45i, 0x1.1cc9a7528ececp+7 + -0x1.313a2bc74be05p-44i, 0x1.1cd640cc76c1fp+7 + -0x1.58b51b0fa63a5p-44i, 0x1.1ef96bf09573p+7 + -0x1.2b5b8941292acp-44i, 0x1.22f7442f6eb67p+7 + -0x1.579e573e71468p-44i, 0x1.28619f647f0b8p+7 + -0x1.596d8cf005f55p-44i, 0x1.2ea0141791ccap+7 + -0x1.b8f870aad357ep-44i, 0x1.34fbde24e84a7p+7 + -0x1.055c7f2776639p-43i, 0x1.3aaec0c7f56fap+7 + -0x1.809d9de22bafep-44i, 0x1.3ef3c204a7006p+7 + -0x1.c1dc51834705p-44i, 0x1.41186e393a203p+7 + -0x1.e4f1a5dd3ae82p-44i, 0x1.408d3f2ce9693p+7 + -0x1.135ca9d88e775p-43i, 0x1.3cf3ca351e52p+7 + -0x1.2f9d7ccc9fdfp-43i, 0x1.36297cebee84ap+7 + -0x1.b36e5d3497966p-44i, 0x1.2c4ded2cffce6p+7 + -0x1.e150489d70044p-44i, 0x1.1fc413603336ap+7 + -0x1.f11a9dd65d33dp-44i, 0x1.112e278fe4c37p+7 + -0x1.dcea66e6a07f3p-44i, 0x1.0164432b12582p+7 + -0x1.cb5aecfebfb52p-44i, 0x1.e2cca55cf0111p+6 + -0x1.a80b8ed1c7f1ep-44i, 0x1.c4948756e7557p+6 + -0x1.a88a145b751d7p-44i, 0x1.aa4f5a45fb74dp+6 + -0x1.7f3f0e8063f78p-44i, 0x1.9604d6c199bb6p+6 + -0x1.4c5eeed376864p-44i, 0x1.896b90e93ec39p+6 + -0x1.2db3384234ee1p-44i, 0x1.85c3982abc8d4p+6 + -0x1.7cad8ffea3271p-44i, 0x1.8bb860bd66a04p+6 + -0x1.75f228c0ae8aep-44i, 0x1.9b4c7c08ac438p+6 + -0x1.490267e93ee1bp-44i, 0x1.b3d0fc2767718p+6 + -0x1.69276d260e81ap-44i, 0x1.d3e98def54ec4p+6 + -0x1.9e07f9f21bcbbp-44i, 0x1.f99d6b194711bp+6 + -0x1.6bea26a2e32bep-44i, 0x1.113a2a1ec0c6bp+7 + -0x1.99f3452f711aap-44i, 0x1.25ceed0c1cec4p+7 + -0x1.b13ca8b65b35p-44i, 0x1.391038292bfb4p+7 + -0x1.18d8a16222096p-43i, 0x1.498690c14c4d4p+7 + -0x1.55b2b2c340218p-43i, 0x1.55da28836ed38p+7 + -0x1.9372f147a04e1p-44i, 0x1.5cebe64c16764p+7 + -0x1.f0986fc75b0ecp-44i, 0x1.5deb44b1a2e1ep+7 + -0x1.1739572471896p-43i, 0x1.586763298a446p+7 + -0x1.4916e5d0ce49cp-43i, 0x1.4c59f4bb2464cp+7 + -0x1.6ce7382a3c621p-43i, 0x1.3a2b1f5cd129fp+7 + -0x1.d706934034ed8p-44i, 0x1.22adda30c5e99p+7 + -0x1.0c6b9ea67450cp-43i, 0x1.0714de4ce3b54p+7 + -0x1.0ba8046833f4ep-43i, 0x1.d1c1883905a64p+6 + -0x1.f774728cb2d42p-44i, 0x1.9390ca37cb9eep+6 + -0x1.d61a6749964e3p-44i, 0x1.573a0b1a56284p+6 + -0x1.fbeb9206489dcp-44i, 0x1.205837ca315ep+6 + -0x1.f5846ba69e0c8p-44i, 0x1.e482f773f524fp+5 + -0x1.9d4976192f10ap-44i, 0x1.9f9b25866231ap+5 + -0x1.3a982c0b6572p-44i, 0x1.76472242ac93fp+5 + -0x1.0ca734719e21dp-44i, 0x1.6b255367be2cep+5 + -0x1.e2283b68af042p-44i, 0x1.7ef187d5af1bcp+5 + -0x1.c4b9fd69d1559p-44i, 0x1.b0718f77060bep+5 + -0x1.79b400d1e05fep-44i, 0x1.fc82ed9ba6234p+5 + -0x1.6b6918b2eee15p-44i, 0x1.2f24898b4554ap+6 + -0x1.9ccc1b71e7641p-44i, 0x1.67bca8f83280dp+6 + -0x1.a3aa36579a0e4p-44i, 0x1.a45fd75a349bcp+6 + -0x1.bdb2dca97fb64p-44i, 0x1.e11afc2e2a5d6p+6 + -0x1.d2d141d18eee4p-44i, 0x1.0cf951c5f276cp+7 + -0x1.1dd70f111b7c2p-43i, 0x1.259250c484ed4p+7 + -0x1.56966716c968cp-43i, 0x1.38b31b311e012p+7 + -0x1.7afb926e9110cp-44i, 0x1.450d44e0025f2p+7 + -0x1.ce81eb383422cp-44i, 0x1.49beeb3c1ffedp+7 + -0x1.0647e5172c9a4p-43i, 0x1.466131d54dcdep+7 + -0x1.37d0aef32a56dp-43i, 0x1.3b0eaf38e494cp+7 + -0x1.54e11f95404b9p-43i, 0x1.28615fb8ff58fp+7 + -0x1.8a301442402ffp-44i, 0x1.0f6846e5a4df9p+7 + -0x1.cd78a9760bff5p-44i, 0x1.e32af0e5ac4c2p+6 + -0x1.c2b60956b1419p-44i, 0x1.a14b882cfd45cp+6 + -0x1.aff100740f49ep-44i, 0x1.5d0759099998ap+6 + -0x1.92598d4bff217p-44i, 0x1.1a4f414696a6dp+6 + -0x1.b9b3e6edacf96p-44i, 0x1.b9de67ee2fe4cp+5 + -0x1.bce54e4c42278p-44i, 0x1.50a126290413ap+5 + -0x1.5f4b1340afa74p-44i, 0x1.fd0ee08e24d87p+4 + -0x1.029f40b73504cp-44i, 0x1.8f50dcb8d836cp+4 + -0x1.d16d748d024acp-45i, 0x1.5caa8d12502dp+4 + -0x1.cf5aade2362a2p-44i, 0x1.65f6a2bcddf9ep+4 + -0x1.b5fa68f2078b5p-44i, 0x1.a84d01c5d53f4p+4 + -0x1.6998ffbca5333p-44i, 0x1.0ea34bed3ab7p+5 + -0x1.3ed6bec0006ep-44i, 0x1.5dbd4d5337a3bp+5 + -0x1.6dc2d3f6f3685p-44i, 0x1.bb95dd778c167p+5 + -0x1.a731d4be37795p-44i, 0x1.10c62f4759547p+6 + -0x1.ad81350bef409p-44i, 0x1.44586d9f187f9p+6 + -0x1.af4dfc3b50837p-44i, 0x1.751c8307621eap+6 + -0x1.d8f2acebe0f95p-44i, 0x1.9ff7d36346a64p+6 + -0x1.0ef56607e3a0bp-43i, 0x1.c24b87859b189p+6 + -0x1.56ab8d86b6364p-44i, 0x1.da1c1ec005f29p+6 + -0x1.8182a19635762p-44i, 0x1.e62ce85e1e86ep+6 + -0x1.99ed31104d3f7p-44i, 0x1.e60ddaa85e3e9p+6 + -0x1.c83c160b6651ap-44i, 0x1.da1b38df540f6p+6 + -0x1.d4890114d0c7dp-44i, 0x1.c36f7a08b019ep+6 + -0x1.17d60c2fa46f3p-44i, 0x1.a3c8d50a683p+6 + -0x1.3cce025003ad1p-44i, 0x1.7d64aa5d4d738p+6 + -0x1.20e2e4b40e78fp-44i, 0x1.52d3aa0c80dc1p+6 + -0x1.111be438697dbp-44i, 0x1.26ca02bf6f2d4p+6 + -0x1.ecbda25e5bcf4p-45i, 0x1.f7de2aeb0ec11p+5 + -0x1.10e3dda717b04p-44i, 0x1.a9602ebf20226p+5 + -0x1.18fa9c117b5efp-44i, 0x1.663175476a913p+5 + -0x1.ad44ff60b7814p-45i, 0x1.3168de315e37ep+5 + -0x1.454470b89c64ap-45i, 0x1.0cf43090ac609p+5 + -0x1.59154b3a26715p-45i, 0x1.f30d11ef026a2p+4 + -0x1.2f170d47a32acp-44i, 0x1.ed3c4518150edp+4 + -0x1.2bcd9e07553f5p-44i, 0x1.02a01b786ae8p+5 + -0x1.0172dc5fb66adp-44i, 0x1.1b0742fd71932p+5 + -0x1.c03519884fd0ep-45i, 0x1.3ca1b0bcd897dp+5 + -0x1.13f18d3288098p-44i, 0x1.63d7f0cbc1223p+5 + -0x1.3938bf0c5d005p-44i, 0x1.8cf806d8a739ep+5 + -0x1.3bd5a71be4e76p-44i, 0x1.b47e73e4c761cp+5 + -0x1.2fb7c07ec1e06p-44i, 0x1.d757c4b850e11p+5 + -0x1.21f5a5cdd6268p-44i, 0x1.f315f1c1f3be4p+5 + -0x1.36e1ac5320c77p-44i, 0x1.030af920a62eap+6 + -0x1.079a421098176p-44i, 0x1.07c99e7bedc87p+6 + -0x1.0800d87f3f466p-44i, 0x1.07d43629829d3p+6 + -0x1.d617590a1d7eep-45i, 0x1.039ede8b1eaa2p+6 + -0x1.a132a4bafe392p-45i, 0x1.f7e7872a7a00ap+5 + -0x1.526d731a1c22p-45i, 0x1.e3b804f9a95f9p+5 + -0x1.5601c4f739996p-45i, 0x1.cd08a7bb75786p+5 + -0x1.42d572ddaff7fp-45i, 0x1.b63fc59c92b86p+5 + -0x1.a9d44b6f70d18p-46i, 0x1.a197985cd94d2p+5 + -0x1.0e970a449db49p-46i, 0x1.90eb468a52dedp+5 + -0x1.07c0c7a184fc4p-47i, 0x1.858e158401ed2p+5 + -0x1.721b1950e46abp-46i, 0x1.802ff4eeb5a2p+5 + -0x1.5b0fd93332e44p-46i, 0x1.80d1696e6e8dbp+5 + -0x1.a0d4d9431a7ecp-47i, 0x1.86c78cfd125bdp+5 + -0x1.c53c3a960b11cp-48i, 0x1.90cf825d9ef8ep+5 + -0x1.bc3dc598c93acp-47i, 0x1.9d2f72988581cp+5 + -0x1.18a5a36d5877dp-46i, 0x1.a9e21103446d3p+5 + -0x1.3c77ee8071232p-46i, 0x1.b4c8ca2bee5dap+5 + -0x1.472e28893ad2cp-46i, 0x1.bbe03cb886ce2p+5 + -0x1.1a49ab3a59fcap-46i, 0x1.bd7272c6c9aebp+5 + -0x1.d79e7df14fceep-46i, 0x1.b842890d10417p+5 + -0x1.685e46ed1e7fdp-46i, 0x1.abae01c5f01ffp+5 + -0x1.7efd0c096a972p-46i, 0x1.97c0e00c9563cp+5 + -0x1.54e5036e1a49cp-46i, 0x1.7d3ac26353d14p+5 + -0x1.9de0388834c0ap-47i, 0x1.5d8471ad4bd2cp+5 + -0x1.553345b7bc8cep-47i, 0x1.3a96a32be2ba7p+5 + -0x1.81ba3cf2b2a61p-46i, 0x1.16d3e591717afp+5 + -0x1.2b8f30d9ef1dep-46i, 0x1.e9b1839fb216bp+4 + -0x1.a2e0520ad148p-49i, 0x1.ae8bd44b18ddap+4 + 0x1.a0b2fb730c445p-47i, 0x1.8111a896cdb87p+4 + 0x1.c4a3ce4b38c4ep-46i) assertThat(stats:::fft(inverse=TRUE,z=c(101.119971428571+0i, -29.0928136430285+4.7733132342952i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, -9.96827469726697-3.36903966620577i, 0+0i, 10.5831624331481-2.3897986984906i, 0+0i, -10.916223351644+6.3427574475901i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, -10.916223351644-6.3427574475901i, 0+0i, 10.5831624331481+2.3897986984906i, 0+0i, -9.96827469726698+3.36903966620576i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, 0+0i, -29.0928136430286-4.7733132342952i )) , identicalTo( expected, tol = 1e-6 ) )
setOldClass("POSIXt") setClassUnion("DateTime", "POSIXt") setClass("GPSTrack", representation(latitude = "numeric", longitude = "numeric", elevation = "numeric", time = "DateTime") ) scanGPSTrack <- function(con, ...) { fields <- list(date = "", time = "", x = 0., y = 0., z = 0.) data <- scan(con, fields) dateTime <- scanDateTime(textConnection( paste(data$date, data$time))) new("GPSTrack", latitude = data$x, longitude = data$y, elevation = data$z, time = dateTime) } scanDateTime <- function(con) { as.POSIXct(strptime(readLines(con), "20%y-%m-%d %H:%M:%S")) } geoCoords <- function(latitude, longitude, origin = c(40.7, -74.4)) { n = length(latitude) if(length(longitude) != n) stop("required equal length of latitude, longitude, got ", n, ", ", length(longitude)) x = geoDist(latitude, longitude, latitude, rep(origin[[2]], n)) *sign(longitude-origin[[2]]) y = geoDist(latitude, longitude, rep(origin[[1]], n), longitude) * sign(latitude - origin[[1]]) list(x=x, y=y) }
phrase.matrix = function( rules, n ) { if ( is.textreg.result( rules ) ) { n = rules$notes$n rules = rules$rules } mat = matrix( 0, nrow=n, ncol=length(rules) ) colnames(mat) = sapply( rules, function(x) { x$ngram } ) for ( i in 1:length(rules) ) { rl = rules[[i]]$support + 1 mat[ rl, i ] = rules[[i]]$weight } mat[ , "*intercept*"] = 1 mat } predict.textreg.result = function( object, new.text= NULL, return.matrix=FALSE, ... ) { stopifnot( is.textreg.result( object ) ) model = object if ( !is.null( new.text ) ) { keyphrase.mat = make.phrase.matrix( model$model$ngram, new.text ) keyphrase.mat[ , "*intercept*" ] = 1 } else { keyphrase.mat = phrase.matrix( model ) } model = model$model kp = sweep( keyphrase.mat, 2, model$Z, FUN="/" ) rsp = as.numeric( kp %*% model$beta ) if ( return.matrix ) { attr( rsp, "keyphrase.matrix" ) <- keyphrase.mat } rsp } calc.loss = function( model.blob, new.text=NULL, new.labeling=NULL, loss=c( "square.hinge", "square", "hinge") ) { loss = match.arg( loss ) model = model.blob$model pd = predict( model.blob, new.text ) if ( is.null( new.labeling ) ) { if ( !is.null( new.text ) ) { stop( "New text without new labeling" ) } new.labeling = model.blob$labeling } if ( loss =="square.hinge" ) { loss = sum( pmax( (1 - new.labeling*pd), 0 )^2 ) } else if ( loss == "square" ) { loss = sum( (pd-new.labeling)^2 ) } else if ( loss == "hinge" ) { loss = sum( pmax( (1 - pd* new.labeling), 0 ) ) } pen = model.blob$notes$C * sum( abs( model$beta[ -1 ] ) ) c( tot.loss=loss+pen, loss=loss, penalty=pen ) } reformat.textreg.model = function( model, short=TRUE ) { stopifnot( is.textreg.result( model ) ) npos = model$model$posCount[[1]] nneg = model$model$negCount[[1]] mod = model$model mod$per = mod$posCount / mod$totalDocs mod$perPos = mod$posCount / npos mod$perNeg = mod$negCount / nneg if ( !short ) { mod[ c( "ngram", "beta", "Z", "support", "totalDocs", "posCount", "negCount", "per", "perPos", "perNeg" ) ] } else { mod = mod[ c("ngram", "support", "totalDocs", "posCount", "per", "perPos") ] names(mod) = c("phrase", "num.phrase", "num.reports", "num.tag", "per.tag", "per.phrase" ) mod$per.tag = round( 100 * mod$per.tag ) mod$per.phrase = round( 100 * mod$per.phrase ) mod = mod[ order( mod$per.phrase, decreasing=TRUE ), ] mod } }
NULL climate <- function(series, first.yr=NULL, last.yr=NULL, max.perc.missing) { if(is.null(first.yr)) first.yr <- min(series$year) if(is.null(last.yr)) last.yr <- max(series$year) series_period<-series[series$year>=first.yr & series$year<=last.yr,] series_cli_med<-aggregate(series_period, by=list(series_period$month), FUN=mean, na.rm=T)[-(1:2)] if(sum(!is.na(series_period$Tn)) >0 & "Tn" %in% names(series_period)) series_abs_Tn<-aggregate(data.frame(series_period$month, series_period$Tn), by=list(series_period$month), FUN=min, na.rm=T)[3] else series_abs_Tn<-as.numeric(rep(NA,12)) names(series_abs_Tn)<-"AbsTn" missing<-aggregate(series_period, by=list(series_period$month), FUN=function(x) {count<-sum(is.na(x)) return(count)} )[-(1:3)] series_cli_med[-1][missing > max.perc.missing/100*(last.yr - first.yr +1)] <- NA if("Tn" %in% names(series) & "Tx" %in% names(series) & !"Tm" %in% names(series)) series_cli<-round(data.frame(series_cli_med, Tm=(series_cli_med$Tn + series_cli_med$Tx)/2, AbsTn=series_abs_Tn), 1) else series_cli<-round(data.frame(series_cli_med, AbsTn=series_abs_Tn), 1) if("Tn" %in% names(series)) series_cli$AbsTn[is.na(series_cli$Tn)]<-NA return(series_cli) }
setGeneric("as.trip", function(x, ...) standardGeneric("as.trip")) ltraj2trip <- function (ltr) { requireNamespace("adehabitatLT") || stop("adehabitatLT package is required, but unavailable") if (!inherits(ltr, "ltraj")) stop("ltr should be of class \"ltraj\"") ltr <- lapply(ltr, function(x) { x$id=attr(x, "id") x$burst=attr(x, "burst") x}) tr <- do.call("rbind", ltr) class(tr) <- "data.frame" xy <- tr[!is.na(tr$x), c("x", "y")] tr <- tr[!is.na(tr$x), ] tr$y <- tr$x <- NULL res <- SpatialPointsDataFrame(xy, tr) trip(res, c("date", "id")) } telemetry2trip <- function(x) { dat <- as.data.frame(setNames([email protected], x@names), stringsAsFactors = FALSE) if (!is.null(x@info$timezone) && !x@info$timezone == "UTC") warning("non-UTC timezone in telemetry (ctmm) object") dat[["identity"]] <- x@info$identity if (is.null(x@info$projection)) stop("variant of telemetry object not yet understood (gazelle)") if (!is.null(x@info$projection)) print(sprintf("nominal projection?? %s in telemetry (ctmm) object", x@info$projection)) sp::coordinates(dat) <- c("longitude", "latitude") sp::proj4string(dat) <- sp::CRS(.llproj(), doCheckCRSArgs = FALSE) tname <- "timestamps" if (!inherits(dat[[tname]], "POSIXt")) dat[[tname]] <- dat[[tname]] + ISOdatetime(1970, 1, 1, 0, 0, 0, tz = "UTC") trip(dat, c(tname,"identity")) } setMethod("as.trip", signature(x="ltraj"), function(x, ...) ltraj2trip(x)) setMethod("as.trip", signature(x = "track_xyt"), function(x, ...) trip(x)) setAs("ltraj", "trip", function(from) as.trip(from)) setAs("track_xyt", "trip", function(from) trip(from))
Rcpp::sourceCpp("cpp/RcppMisc.cpp") fun <- RcppFrameFunc dframe <- data.frame(fun()[[1]]) expect_equal(dframe, data.frame(A=c(1.23,4.56), B=c(42,21), C=c(FALSE,TRUE)), info = "RcppFrame") fun <- RcppListFunc expect_equal(fun(), list(foo=1L, bar=2, biz="xyz"), info="RcppList") fun <- RcppParams_Double expect_equal(fun(list(val=1.234)), 2*1.234, info="RcppParams.getDoubleValue") fun <- RcppParams_Int expect_equal(fun(list(val=42)), 2*42, info="RcppParams.getIntValue") fun <- RcppParams_String expect_equal(fun(list(val="a test string")), "a test stringa test string", info = "RcppParams.getStringValue") fun <- RcppParams_Bool expect_equal(fun(list(val=FALSE)), FALSE, info = "RcppParams.getBoolValue") fun <- RcppParams_Date expect_equal(fun(list(val=as.Date("2000-01-01")))[[1]], as.Date("2000-01-01"), info = "RcppParams.getDateValue") fun <- RcppParams_Datetime posixt <- as.POSIXct(strptime("2000-01-02 03:04:05.678", "%Y-%m-%d %H:%M:%OS")) attr(posixt, "tzone") <- NULL result <- fun(list(val=posixt))[[1]] expect_true( (result-posixt) == 0.0 , info = "RcppParams.getDatetimeValue")
rev.logit <- function(x) 1/(1+exp(-x))
explore.influence=function(x,cut.offs="default",plot=TRUE,cook=FALSE,...) { if ( (length(cut.offs) )==1 && (cut.offs=="default")){ q25=quantile(x,.25,na.rm=TRUE) q75=quantile(x,.75,na.rm=TRUE) if(q75<q25){ cut.low=q75-(q25-q75)*1.5 cut.upp=q25+(q25-q75)*1.5 } else{cut.low=q25-(q75-q25)*1.5 cut.upp=q75+(q75-q25)*1.5} } else if ( (is.numeric(cut.offs)==TRUE) && (length(cut.offs)==2) && (sum(is.na(cut.offs))==0) && (cut.offs[1]<cut.offs[2]) ){ cut.low=cut.offs[1] cut.upp=cut.offs[2] } else stop ("\"cut.offs\" must be a vector of 2 numeric elements, with the first element less than the second element") if (cook==TRUE) cut.low=max(0,cut.low) if (plot==TRUE) { plot(x,xlab="observations",ylab="influence", ylim=c(min(cut.low,min(x,na.rm=TRUE)),max(cut.upp,max(x,na.rm=TRUE))),...) if (cook==FALSE) abline(h=cut.low,lty=2) if ((cook==TRUE) && (cut.low>0)) abline(h=cut.low,lty=2) abline(h=cut.upp,lty=2) } ris=NULL n=length(x) id.row=c(1:n) not.allowed=id.row[is.na(x)==TRUE] less.cut.low=id.row[(is.na(x)==FALSE) & (x<=cut.low)] greater.cut.upp=id.row[(is.na(x)==FALSE) & (x>=cut.upp)] ris=list(n=n,cook=cook,cut.low=as.numeric(cut.low),cut.upp=as.numeric(cut.upp),not.allowed=not.allowed,less.cut.low=less.cut.low,greater.cut.upp=greater.cut.upp) return(ris) }
makeRLearner.classif.nnTrain = function() { makeRLearnerClassif( cl = "classif.nnTrain", package = "deepnet", par.set = makeParamSet( makeNumericVectorLearnerParam(id = "initW"), makeNumericVectorLearnerParam(id = "initB"), makeIntegerVectorLearnerParam(id = "hidden", default = 10, lower = 1), makeIntegerLearnerParam("max.number.of.layers", lower = 1L), makeDiscreteLearnerParam(id = "activationfun", default = "sigm", values = c("sigm", "linear", "tanh")), makeNumericLearnerParam(id = "learningrate", default = 0.8, lower = 0), makeNumericLearnerParam(id = "momentum", default = 0.5, lower = 0), makeNumericLearnerParam(id = "learningrate_scale", default = 1, lower = 0), makeIntegerLearnerParam(id = "numepochs", default = 3, lower = 1), makeIntegerLearnerParam(id = "batchsize", default = 100, lower = 1), makeDiscreteLearnerParam(id = "output", default = "sigm", values = c("sigm", "linear", "softmax")), makeNumericLearnerParam(id = "hidden_dropout", default = 0, lower = 0, upper = 1), makeNumericLearnerParam(id = "visible_dropout", default = 0, lower = 0, upper = 1) ), par.vals = list(output = "softmax"), properties = c("twoclass", "multiclass", "numerics", "prob"), name = "Training Neural Network by Backpropagation", short.name = "nn.train", note = "`output` set to `softmax` by default. `max.number.of.layers` can be set to control and tune the maximal number of layers specified via `hidden`.", callees = "nn.train" ) } trainLearner.classif.nnTrain = function(.learner, .task, .subset, .weights = NULL, max.number.of.layers = Inf, hidden = 10, ...) { d = getTaskData(.task, .subset, target.extra = TRUE) y = as.numeric(d$target) dict = sort(unique(y)) onehot = matrix(0, length(y), length(dict)) for (i in seq_along(dict)) { ind = which(y == dict[i]) onehot[ind, i] = 1 } deepnet::nn.train(x = data.matrix(d$data), y = onehot, hidden = head(hidden, max.number.of.layers), ...) } predictLearner.classif.nnTrain = function(.learner, .model, .newdata, ...) { type = switch(.learner$predict.type, response = "class", prob = "raw") pred = deepnet::nn.predict(.model$learner.model, data.matrix(.newdata)) colnames(pred) = .model$factor.levels[[1]] if (type == "class") { classes = colnames(pred)[max.col(pred)] return(as.factor(classes)) } return(pred) }
data(andalusia) o <- loca.p(x=andalusia$x[1:8], y=andalusia$y[1:8]) xmin <- min(andalusia$x) ymin <- min(andalusia$y) xmax <- max(andalusia$x) ymax <- max(andalusia$y) file = system.file('img', 'andalusian_provinces.png', package='orloca') img = readPNG(file) plot(o, img=img, main=gettext('Andalucia'), xleft=xmin, ybottom=ymin, xright=xmax, ytop=ymax) contour(o, img=img, main=gettext('Andalusia'), xleft=xmin, ybottom=ymin, xright=xmax, ytop=ymax) andalusia.loca.p <- loca.p(andalusia$x[1:8], andalusia$y[1:8]) sol <- distsummin(andalusia.loca.p) sol points(sol[1], sol[2], type='p', col='red')
sig <- matrix(c(1.0, 0.8, 0.5, 0.2, 0.8, 1.0, 0.5, 0.5, 0.5, 0.5, 1.0, 0.5, 0.2, 0.5, 0.5, 1.0), nrow = 4) sig library(MASS) df.4 <- data.frame(mvrnorm(n = 1000, mu = rep(0, 4), Sigma = sig, empirical = TRUE)) detach("package:MASS") summary(df.4) ncol(df.4) nrow(df.4) head(df.4) round(sig, 2) round(cor(df.4), 2)
fv_ecdf_single_budget_box <- function(width = 12, collapsible = T, collapsed = T) { box( title = HTML('<p style="font-size:120%;">Empirical Cumulative Distribution of the Fixed-Budget Values: Single Budgets</p>'), width = width, collapsible = collapsible, collapsed = collapsed, solidHeader = TRUE, status = "primary", sidebarLayout( sidebarPanel( width = 3, selectInput('FCEECDF.Single.Algs', label = 'Select which IDs to include:', multiple = T, selected = NULL, choices = NULL) %>% shinyInput_label_embed( custom_icon() %>% bs_embed_popover( title = "ID selection", content = alg_select_info, placement = "auto" ) ), HTML('Select the budgets for which EDCF curves are displayed '), textInput('FCEECDF.Single.Target', label = HTML('<p>\\(B_1\\)</p>'), value = ''), checkboxInput('FCEECDF.Single.Logx', label = 'Scale x axis \\(\\log_{10}\\)', value = F) ), mainPanel( width = 9, column( width = 12, align = "center", HTML_P('Each EDCF curve shows the proportion of the runs that have found within the given budget B a solution of at least the required target value given by the x-axis. The displayed curves can be selected by clicking on the legend on the right. A <b>tooltip</b> and <b>toolbar</b> appears when hovering over the figure.</p>'), plotlyOutput.IOHanalyzer("FCE_ECDF_PER_TARGET") ) ) ) ) } fv_ecdf_agg_budgets_box <- function(width = 12, collapsible = T, collapsed = T) { box( title = HTML('<p style="font-size:120%;">Empirical Cumulative Distribution of the Fixed-Budget Values: Aggregation</p>'), width = width, collapsible = collapsible, collapsed = collapsed, solidHeader = T, status = "primary", sidebarPanel( width = 3, selectInput('FCEECDF.Mult.Algs', label = 'Select which IDs to include:', multiple = T, selected = NULL, choices = NULL) %>% shinyInput_label_embed( custom_icon() %>% bs_embed_popover( title = "ID selection", content = alg_select_info, placement = "auto" ) ), HTML('<p align="justify">Set the range and the granularity of the budgets taken into account in the ECDF curve. The plot will show the ECDF curves for evenly spaced budgets.</p>'), textInput('FCEECDF.Mult.Min', label = RT_MIN_LABEL, value = ''), textInput('FCEECDF.Mult.Max', label = RT_MAX_LABEL, value = ''), textInput('FCEECDF.Mult.Step', label = RT_STEP_LABEL, value = ''), checkboxInput('FCEECDF.Mult.Logx', label = 'Scale x axis \\(\\log_{10}\\)', value = F), hr(), selectInput('FCEECDF.Mult.Format', label = 'Select the figure format', choices = supported_fig_format, selected = supported_fig_format[[1]]), downloadButton('FCEECDF.Mult.Download', label = 'Download the figure') ), mainPanel( width = 9, column( width = 12, align = "center", HTML_P('The evenly spaced budget values are:'), verbatimTextOutput('FCE_RT_GRID'), HTML_P('The fraction of (run,budget) pairs \\((i,B)\\) satisfying that the best solution that the algorithm has found in the \\(i\\)-th run within the first \\(B\\) evaluations has quality at <b>most</b> \\(v\\) is plotted against the target value \\(v\\). The displayed elements can be switched on and off by clicking on the legend on the right. A <b>tooltip</b> and <b>toolbar</b> appears when hovering over the figure.'), plotlyOutput.IOHanalyzer('FCE_ECDF_AGGR') ) ) ) } fv_ecdf_auc_box <- function(width = 12, collapsible = T, collapsed = T) { box( title = HTML('<p style="font-size:120%;">Area Under the ECDF</p>'), width = width, collapsible = collapsible, collapsed = collapsed, solidHeader = T, status = "primary", sidebarPanel( width = 3, selectInput('FCEECDF.AUC.Algs', label = 'Select which IDs to include:', multiple = T, selected = NULL, choices = NULL) %>% shinyInput_label_embed( custom_icon() %>% bs_embed_popover( title = "ID selection", content = alg_select_info, placement = "auto" ) ), HTML('<p align="justify">Set the range and the granularity of the evenly spaced budgets.</p>'), textInput('FCEECDF.AUC.Min', label = RT_MIN_LABEL, value = ''), textInput('FCEECDF.AUC.Max', label = RT_MAX_LABEL, value = ''), textInput('FCEECDF.AUC.Step', label = RT_STEP_LABEL, value = ''), hr(), selectInput('FCEECDF.AUC.Format', label = 'select the figure format', choices = supported_fig_format, selected = supported_fig_format[[1]]), downloadButton('FCEECDF.AUC.Download', label = 'download the figure') ), mainPanel( width = 9, column( width = 12, align = "center", HTML_P('The <b>area under the ECDF</b> is caculated for the sequence of budget values specified on the left. The displayed values are normalized against the maximal target value recorded for each algorithm. Intuitively, the <b>smaller</b> the area, the <b>better</b> the algorithm. The displayed IDs can be selected by clicking on the legend on the right. A <b>tooltip</b> and <b>toolbar</b> appears when hovering over the figure.'), plotlyOutput.IOHanalyzer("FCE_AUC") ) ) ) }
CreateLinePoints<-function(P1, P2){ if (P1[1]==P2[1]){ Line=c("Inf",P1[1]) names(Line)=c("slope","x-value") } else{ m=(P2[2]-P1[2])/(P2[1]-P1[1]) n=P1[2]-m*P1[1] Line=c(m,n) names(Line)=c("slope","intercept") } class(Line) <- append(class(Line),"Line") return(Line) }
ergm.getnetwork <- function (formula, loopswarning=TRUE){ nw <- eval_lhs.formula(formula) nw <- ensure_network(nw) if (loopswarning) { e <- as.edgelist(nw) if(any(e[,1]==e[,2])) { print("Warning: This network contains loops") } else if (has.loops(as.network(nw,populate=FALSE))) { print("Warning: This network is allowed to contain loops") } } nw } ensure_network <- function(nw){ if(!is.network(nw) && !is.ergm_state(nw)){ nw <- ERRVL( try(as.network(nw)), abort("A network object on the LHS of the formula or as a basis argument must be given") ) } nw }
set.seed(1) n=10*1000*1000 gshape=1.5 rate=0.0004 SlicePoint=400 shape=1.5 x<-rgamma(n,gshape,rate) x<-ifelse(x<SlicePoint,x,SlicePoint/(runif(n)^(1/shape))) hist(x, breaks = 200000, xlim = c(0,1.5e4), probability = T) lines(0:1e4,dSlicedGammaPareto(0:1e4,gshape,rate,SlicePoint,shape), col="red") step<-0.001 plot(log(quantile(x,seq(0+step, 1-step, step))) ,pSlicedGammaPareto(quantile(x,seq(0+step, 1-step, step)),gshape,rate,SlicePoint,shape) ,type = "l" ) lines(log(quantile(x,seq(0+step, 1-step, step))),seq(0+step, 1-step, step), type = "l", col="red") plot(log(qSlicedGammaPareto(seq(0+step, 1-step, step),gshape,rate,SlicePoint,shape)) ,seq(0+step, 1-step, step) ,type = "l" ) lines(log(quantile(x,seq(0+step, 1-step, step))),seq(0+step, 1-step, step), type = "l", col="red")
fitVoigtPeaksSMC <- function(wl, spc, lPriors, conc=rep(1.0,nrow(spc)), npart=10000, rate=0.9, mcAR=0.234, mcSteps=20, minESS=npart/2, destDir=NA, minPart=npart) { N_Peaks <- length(lPriors$loc.mu) N_WN_Cal <- length(wl) N_Obs_Cal <- nrow(spc) lPriors$noise.SS <- lPriors$noise.nu * lPriors$noise.sd^2 print(paste("SMC with",N_Obs_Cal,"observations at",length(unique(conc)),"unique concentrations,",npart,"particles, and",N_WN_Cal,"wavenumbers.")) ptm <- proc.time() Knots<-seq(min(wl),max(wl), length.out=lPriors$bl.knots) r <- max(diff(Knots)) NK<-lPriors$bl.knots X_Cal <- bs(wl, knots=Knots, Boundary.knots = range(Knots) + c(-r,+r), intercept = TRUE) class(X_Cal) <- "matrix" XtX <- Matrix(crossprod(X_Cal), sparse=TRUE) NB_Cal<-ncol(X_Cal) FD2_Cal <- diff(diff(diag(NB_Cal))) Pre_Cal <- Matrix(crossprod(FD2_Cal), sparse=TRUE) R = chol(XtX + Pre_Cal*1e-9) Rinv <- solve(R) Rsvd <- svd(crossprod(Rinv, Pre_Cal %*% Rinv)) Ru <- Rinv %*% Rsvd$u A <- X_Cal %*% Rinv %*% Rsvd$u lPriors$bl.basis <- X_Cal lPriors$bl.precision <- as(Pre_Cal, "dgCMatrix") lPriors$bl.XtX <- as(XtX, "dgCMatrix") lPriors$bl.orthog <- as.matrix(A) lPriors$bl.Ru <- as.matrix(Ru) lPriors$bl.eigen <- Rsvd$d print(paste0("Step 0: computing ",NB_Cal," B-spline basis functions (r=",r,") took ",(proc.time() - ptm)[3],"sec.")) ptm <- proc.time() Sample<-matrix(numeric(npart*(4*N_Peaks+3+N_Obs_Cal)),nrow=npart) Sample[,1:N_Peaks] <- rlnorm(N_Peaks*npart, lPriors$scaG.mu, lPriors$scaG.sd) Sample[,(N_Peaks+1):(2*N_Peaks)] <- rlnorm(N_Peaks*npart, lPriors$scaL.mu, lPriors$scaL.sd) for (k in 1:npart) { propLoc <- rtruncnorm(N_Peaks, a=min(wl), b=max(wl), mean=lPriors$loc.mu, sd=lPriors$loc.sd) Sample[k,(2*N_Peaks+1):(3*N_Peaks)] <- sort(propLoc) } exp_pen <- 15 if (exists("beta.mu", lPriors) && exists("beta.sd", lPriors)) { for (j in 1:N_Peaks) { Sample[,3*N_Peaks+j] <- rtruncnorm(npart, a=0, b=max(spc)/max(conc), mean=lPriors$beta.mu[j], sd=lPriors$beta.sd[j]) } } else { if (exists("beta.exp", lPriors)) exp_pen <- lPriors$beta.exp Sample[,(3*N_Peaks+1):(4*N_Peaks)] <- rexp(N_Peaks*npart, max(conc)*exp_pen/diff(range(spc))) lPriors$beta.rate <- max(conc)*exp_pen/diff(range(spc)) } Offset_1<-4*N_Peaks Offset_2<-Offset_1 + N_Obs_Cal + 1 Cal_I <- 1 Sample[,Offset_2+1] <- 1/rgamma(npart, lPriors$noise.nu/2, lPriors$noise.SS/2) Sample[,Offset_2+2] <- Sample[,Offset_2+1]/lPriors$bl.smooth print(paste("Mean noise parameter sigma is now",mean(sqrt(Sample[,Offset_2+1])))) print(paste("Mean spline penalty lambda is now",mean(Sample[,Offset_2+1]/Sample[,Offset_2+2]))) g0_Cal <- N_WN_Cal * lPriors$bl.smooth * Pre_Cal gi_Cal <- XtX + g0_Cal a0_Cal <- lPriors$noise.nu/2 ai_Cal <- a0_Cal + N_WN_Cal/2 b0_Cal <- lPriors$noise.SS/2 for(k in 1:npart) { Sigi <- conc[Cal_I] * mixedVoigt(Sample[k,2*N_Peaks+(1:N_Peaks)], Sample[k,(1:N_Peaks)], Sample[k,N_Peaks+(1:N_Peaks)], Sample[k,3*N_Peaks+(1:N_Peaks)], wl) Obsi <- spc[Cal_I,] - Sigi lambda <- lPriors$bl.smooth L_Ev <- computeLogLikelihood(Obsi, lambda, lPriors$noise.nu, lPriors$noise.SS, X_Cal, Rsvd$d, lPriors$bl.precision, lPriors$bl.XtX, lPriors$bl.orthog, lPriors$bl.Ru) Sample[k,Offset_1+2]<-L_Ev } Sample[,Offset_1+1]<-rep(1/npart,npart) T_Sample<-Sample T_Sample[,1:N_Peaks]<-log(T_Sample[,1:N_Peaks]) T_Sample[,(N_Peaks+1):(2*N_Peaks)]<-log(T_Sample[,(N_Peaks+1):(2*N_Peaks)]) T_Sample[,(3*N_Peaks+1):(4*N_Peaks)]<-log(T_Sample[,(3*N_Peaks+1):(4*N_Peaks)]) iTime <- proc.time() - ptm ESS<-1/sum(Sample[,Offset_1+1]^2) MC_Steps<-numeric(1000) MC_AR<-numeric(1000) ESS_Hist<-numeric(1000) ESS_AR<-numeric(1000) Kappa_Hist<-numeric(1000) Time_Hist<-numeric(1000) MC_Steps[1]<-0 MC_AR[1]<-1 ESS_Hist[1]<-ESS ESS_AR[1]<-npart Kappa_Hist[1]<-0 Time_Hist[1]<-iTime[3] print(paste("Step 1: initialization for",N_Peaks,"Voigt peaks took",iTime[3],"sec.")) i<-1 Cal_I <- 1 MADs<-numeric(4*N_Peaks) Alpha<-rate MC_AR[1]<-mcAR MCMC_MP<-1 repeat{ i<-i+1 iTime<-system.time({ ptm <- proc.time() Min_Kappa<-Kappa_Hist[i-1] Max_Kappa<-1 Kappa<-1 Temp_w<-Sample[,Offset_1+1]*exp((Kappa-Kappa_Hist[i-1])*(Sample[,Offset_1+Cal_I+1]-max(Sample[,Offset_1+Cal_I+1]))) Temp_W<-Temp_w/sum(Temp_w) US1<-unique(Sample[,1]) N_UP<-length(US1) Temp_W2<-numeric(N_UP) for(k in 1:N_UP){ Temp_W2[k]<-sum(Temp_W[which(Sample[,1]==US1[k])]) } Temp_ESS<-1/sum(Temp_W2^2) if(Temp_ESS<(Alpha*ESS_AR[i-1])){ while(abs(Temp_ESS-((Alpha*ESS_AR[i-1])))>1 & !isTRUE(all.equal(Kappa, Min_Kappa))){ if(Temp_ESS<((Alpha*ESS_AR[i-1]))){ Max_Kappa<-Kappa } else{ Min_Kappa<-Kappa } Kappa<-0.5*(Min_Kappa+Max_Kappa) Temp_w<-Sample[,Offset_1+1]*exp((Kappa-Kappa_Hist[i-1])*(Sample[,Offset_1+Cal_I+1]-max(Sample[,Offset_1+Cal_I+1]))) Temp_W<-Temp_w/sum(Temp_w) US1<-unique(Sample[,1]) N_UP<-length(US1) Temp_W2<-numeric(N_UP) for(k in 1:N_UP){ Temp_W2[k]<-sum(Temp_W[which(Sample[,1]==US1[k])]) } Temp_ESS<-1/sum(Temp_W2^2) } } Sample[,Offset_1+1]<-Temp_W Kappa_Hist[i]<-Kappa ESS_Hist[i]<-Temp_ESS print(paste0("Reweighting took ",format((proc.time()-ptm)[3],digits=3), "sec. for ESS ",format(Temp_ESS,digits=6)," with new kappa ",Kappa,".")) Acc<-0 Prop_Info<-cov.wt(T_Sample[,1:(4*N_Peaks)],wt=Sample[,Offset_1+1]) Prop_Mu<-Prop_Info$center Prop_Cor<-cov2cor(Prop_Info$cov) if(ESS_Hist[i] < minESS){ ptm <- proc.time() ReSam<-sample(1:npart,size=npart,replace=T,prob=Sample[,Offset_1+1]) Sample<-Sample[ReSam,] T_Sample<-T_Sample[ReSam,] Sample[,Offset_1+1]<-rep(1/npart,npart) T_Sample[,Offset_1+1]<-rep(1/npart,npart) print(paste("*** Resampling with",length(unique(Sample[,1])),"unique indices took", format((proc.time()-ptm)[3],digits=6),"sec ***")) } for(j in 1:(4*N_Peaks)){ Prop_Mu[j]<-median(T_Sample[,j]) MADs[j]<-median(abs((T_Sample[,j])-median(T_Sample[,j]))) } Prop_Cov<-(1.4826*MADs)%*%t(1.4826*MADs)*Prop_Cor US1<-unique(Sample[,1]) N_UP<-length(US1) Temp_W<-numeric(N_UP) for(k in 1:N_UP){ Temp_W[k]<-sum(Sample[which(Sample[,1]==US1[k]),Offset_1+1]) } Temp_ESS<-1/sum(Temp_W^2) ESS_AR[i]<-Temp_ESS if(!is.na(MC_AR[i-1]) && MC_Steps[i-1] > 0){ MCMC_MP<-2^(-5*(mcAR-MC_AR[i-1]))*MCMC_MP if (MC_AR[i-1] < 0.15) { print(paste("WARNING: M-H Acceptance Rate",MC_AR[i-1],"has fallen below minimum threshold.")) MCMC_MP <- MCMC_MP * MC_AR[i-1]^3 } } mhCov <- MCMC_MP*(2.38^2/(4*N_Peaks))*Prop_Cov ch <- try(chol(mhCov, pivot = FALSE)) if (inherits(ch, "try-error")) { v <- apply(T_Sample[,1:(4*N_Peaks)],2,var) mhCov <- (MCMC_MP/(4*N_Peaks))*diag(v, nrow=4*N_Peaks) + diag(1e-12, nrow=4*N_Peaks) ch <- chol(mhCov, pivot = FALSE) } mhChol <- t(ch) mcr <- 0 MC_AR[i] <- MC_AR[i-1] while(mcr < mcSteps && N_UP < minPart) { MC_Steps[i]<-MC_Steps[i]+1 mh_acc <- mhUpdateVoigt(spc, Cal_I, Kappa_Hist[i], conc, wl, Sample, T_Sample, mhChol, lPriors) Acc <- Acc + mh_acc mcr <- mcr + 1 US1<-unique(Sample[,1]) N_UP<-length(US1) Temp_W<-numeric(N_UP) for(k in 1:N_UP){ Temp_W[k]<-sum(Sample[which(Sample[,1]==US1[k]),Offset_1+1]) } Temp_ESS<-1/sum(Temp_W^2) print(paste(mh_acc,"M-H proposals accepted. Temp ESS is",format(Temp_ESS,digits=6), "with",N_UP,"unique particles.")) ESS_AR[i]<-Temp_ESS MC_AR[i]<-Acc/(npart*MC_Steps[i]) } }) Time_Hist[i]<-iTime[3] if (!is.na(destDir) && file.exists(destDir)) { iFile<-paste0(destDir,"/Iteration_",i,"/") dir.create(iFile) save(Sample,file=paste0(iFile,"Sample.rda")) print(paste("Interim results saved to",iFile)) } print(paste0("Iteration ",i," took ",format(iTime[3],digits=6),"sec. for ", MC_Steps[i]," MCMC loops (acceptance rate ",format(MC_AR[i],digits=5),")")) if (Kappa >= 1 || MC_AR[i] < 1/npart) { break } } if (Kappa < 1 && MC_AR[i] < 1/npart) { print(paste("SMC collapsed due to MH acceptance rate", Acc,"/",(npart*MC_Steps[i]),"=", MC_AR[i])) } return(list(priors=lPriors, ess=ESS_Hist[1:i], weights=Sample[,Offset_1+1], kappa=Kappa_Hist[1:i], accept=MC_AR[1:i], mhSteps=MC_Steps[1:i], essAR=ESS_AR[1:i], times=Time_Hist[1:i], scale_G=Sample[,1:N_Peaks], scale_L=Sample[,(N_Peaks+1):(2*N_Peaks)], location=Sample[,(2*N_Peaks+1):(3*N_Peaks)], beta=Sample[,(3*N_Peaks+1):(4*N_Peaks)], sigma=sqrt(Sample[,Offset_2+1]), lambda=Sample[,Offset_2+1]/Sample[,Offset_2+2])) }
install_local <- function(path = ".", subdir = NULL, dependencies = NA, upgrade = c("default", "ask", "always", "never"), force = FALSE, quiet = FALSE, build = !is_binary_pkg(path), build_opts = c("--no-resave-data", "--no-manual", "--no-build-vignettes"), build_manual = FALSE, build_vignettes = FALSE, repos = getOption("repos"), type = getOption("pkgType"), ...) { remotes <- lapply(path, local_remote, subdir = subdir) install_remotes(remotes, dependencies = dependencies, upgrade = upgrade, force = force, quiet = quiet, build = build, build_opts = build_opts, build_manual = build_manual, build_vignettes = build_vignettes, repos = repos, type = type, ...) } local_remote <- function(path, subdir = NULL, branch = NULL, args = character(0), ...) { remote("local", path = normalizePath(path), subdir = subdir ) } remote_download.local_remote <- function(x, quiet = FALSE) { bundle <- tempfile() dir.create(bundle) suppressWarnings( res <- file.copy(x$path, bundle, recursive = TRUE) ) if (!all(res)) { stop("Could not copy `", x$path, "` to `", bundle, "`", call. = FALSE) } dir(bundle, full.names = TRUE)[1] } remote_metadata.local_remote <- function(x, bundle = NULL, source = NULL, sha = NULL) { list( RemoteType = "local", RemoteUrl = x$path, RemoteSubdir = x$subdir ) } remote_package_name.local_remote <- function(remote, ...) { is_tarball <- !dir.exists(remote$path) if (is_tarball) { return(sub("_.*$", "", basename(remote$path))) } description_path <- file.path(remote$path, "DESCRIPTION") read_dcf(description_path)$Package } remote_sha.local_remote <- function(remote, ...) { is_tarball <- !dir.exists(remote$path) if (is_tarball) { return(NA_character_) } read_dcf(file.path(remote$path, "DESCRIPTION"))$Version } format.local_remote <- function(x, ...) { "local" }
generate_results_table <- function(sk_result, stations, param) { sk_result <- sk_result %>% filter(.data$station %in% stations) sk_result <- sk_result[order(sk_result$station), ] sk_result <- sk_result %>% select(param) return(sk_result) }
simCovariate <- function( cov.list=NULL, ..., n, add.yr = TRUE ) { if (is.null(cov.list)) { cov.list <- list(...) if (length(cov.list) == 1) { if (is.null(names(cov.list))) { cov.list <- cov.list[[1]] } } } datalist <- list() distribution <- c('uniform','normal','beta','binomial', 'poisson', 'bernoulli') seeds.used <- vector() for (i in 1:length(cov.list)) { cov <- cov.list[[i]] cov.name <- names(cov.list[i]) distr <- cov[['dist']] if (!is.function(distr)) { if (distr == "bernoulli") {dist <- 'binomial'} distr <- tolower(distr) if (substr(distr,1,1) == 'r') distr <- substr(distr,2,nchar(distr)) distr <- match.arg(distr,distribution) distr <- switch(distr, uniform=stats::runif, normal = stats::rnorm, beta = stats::rbeta, binomial = stats::rbinom, poisson = stats::rpois, bernoulli = stats::rbinom, sample = sample, multinomial = stats::rmultinom) } arg.names <- names(formals(fun = distr)) keepers <- names(cov) %in% arg.names rand.args <- cov[keepers == TRUE] rand.args$n <- n if(is.null(cov[['seed']])) {seed <- sample(.Random.seed,1) warning(paste("You did not provide a random seed for the simulation for covariate named ", cov.name , ". Data have been simulated using", seed, "as the random seed.", sep = ""))} else {seed <- cov[['seed']]} seed <- as.integer(seed) set.seed(seed) seeds.used <- append(seeds.used, values = seed) dataset <- do.call(what = distr, args = rand.args) if (!is.null(cov[['round']])) dataset <- round(dataset, cov[['round']]) datalist[[cov.name]] <- dataset } dataset <- as.data.frame(datalist) if (add.yr == TRUE) {dataset$yr <- 1:nrow(dataset)} attr(dataset, which = 'seeds.used') <- seeds.used attr(dataset, which = 'cov.list') <- cov.list attr(dataset, which = 'n') <- n return(dataset) }
req_suggested_packages <- c("emmeans", "multcomp", "ggplot2") pcheck <- lapply(req_suggested_packages, requireNamespace, quietly = TRUE) if (any(!unlist(pcheck))) { message("Required package(s) for this vignette are not available/installed and code will not be executed.") knitr::opts_chunk$set(eval = FALSE) } op <- options(width = 90) knitr::opts_chunk$set(dpi=72) library("afex") library("emmeans") library("multcomp") library("ggplot2") data(sk2011.1) str(sk2011.1) with(sk2011.1, table(inference, id, plausibility)) a1 <- aov_ez("id", "response", sk2011.1, between = "instruction", within = c("inference", "plausibility")) a1 knitr::kable(nice(a1)) print(xtable::xtable(anova(a1), digits = c(rep(2, 5), 3, 4)), type = "html") m1 <- emmeans(a1, ~ inference) m1 pairs(m1) summary(as.glht(pairs(m1)), test=adjusted("free")) m2 <- emmeans(a1, "inference", by = "instruction") m2 pairs(m2) m3 <- emmeans(a1, c("inference", "instruction")) m3 pairs(m3) c1 <- list( v_i.ded = c(0.5, 0.5, -0.5, -0.5, 0, 0, 0, 0), v_i.prob = c(0, 0, 0, 0, 0.5, 0.5, -0.5, -0.5) ) contrast(m3, c1, adjust = "holm") summary(as.glht(contrast(m3, c1)), test = adjusted("free")) afex_plot(a1, x = "inference", trace = "instruction", panel = "plausibility") afex_plot(a1, x = "inference", trace = "instruction", panel = "plausibility", error = "within") afex_plot(a1, x = "inference", trace = "instruction", panel = "plausibility", error = "none") p1 <- afex_plot(a1, x = "inference", trace = "instruction", panel = "plausibility", error = "none", mapping = c("color", "fill"), data_geom = geom_boxplot, data_arg = list(width = 0.4), point_arg = list(size = 1.5), line_arg = list(size = 1)) p1 p1 + theme_light() theme_set(theme_light()) a2 <- aov_ez("id", "response", sk2011.1, between = "instruction", within = c("validity", "plausibility", "what")) a2 afex_plot(a2, x = c("plausibility", "validity"), trace = "instruction", panel = "what", error = "none") (m4 <- emmeans(a2, ~instruction+plausibility+validity|what)) c2 <- list( diff_1 = c(1, -1, 0, 0, 0, 0, 0, 0), diff_2 = c(0, 0, 1, -1, 0, 0, 0, 0), diff_3 = c(0, 0, 0, 0, 1, -1, 0, 0), diff_4 = c(0, 0, 0, 0, 0, 0, 1, -1), val_ded = c(0.5, 0, 0.5, 0, -0.5, 0, -0.5, 0), val_prob = c(0, 0.5, 0, 0.5, 0, -0.5, 0, -0.5), plau_ded = c(0.5, 0, -0.5, 0, -0.5, 0, 0.5, 0), plau_prob = c(0, 0.5, 0, -0.5, 0, 0.5, 0, -0.5) ) contrast(m4, c2, adjust = "holm") summary(as.glht(contrast(m4, c2)), test = adjusted("free")) options(op)
confIntBootLogConROC_t0 <- function(controls, cases, grid = c(0.2, 0.8), conf.level = 0.95, M = 1000, smooth = TRUE, output = TRUE){ alpha <- 1 - conf.level boot.mat <- matrix(NA, nrow = length(grid), ncol = M) boot.mat.smooth <- boot.mat for (m in 1:M){ con.m <- sample(controls, replace = TRUE) cas.m <- sample(cases, replace = TRUE) roc <- logConROC(cas.m, con.m, grid, smooth = smooth) boot.mat[, m] <- roc$fROC if (identical(smooth, TRUE)){boot.mat.smooth[, m] <- roc$fROC.smooth} if (identical(output, TRUE)){print(paste(m, " of ", M, " runs done", sep = ""))} } qs <- data.frame(cbind(grid, t(apply(boot.mat, 1, quantile, c(alpha / 2, 1 - alpha / 2))))) colnames(qs) <- c("t", "CIlow", "CIup") qs.smooth <- NA if (identical(smooth, TRUE)){ qs.smooth <- data.frame(cbind(grid, t(apply(boot.mat.smooth, 1, quantile, c(alpha / 2, 1 - alpha / 2))))) colnames(qs.smooth) <- c("t", "CIlow", "CIup") } res <- list("quantiles" = qs, "boot.samples" = boot.mat, "quantiles.smooth" = qs.smooth, "boot.samples.smooth" = boot.mat.smooth) return(res) }
context("test-move_to") test_that("move_to works", { x <- list("a" = c("A" = 0.1, "B" = 0.5), "b" = c("A" = 0.2, "B" = 1)) a <- tidySet(x) a <- mutate_element(a, b = runif(2)) b <- move_to(a, from = "elements", to = "relations", "b") expect_equal(as.data.frame(a), as.data.frame(b)) expect_equal(ncol(elements(a)), 2) expect_equal(ncol(relations(a)), 3) expect_equal(ncol(elements(b)), 1) expect_equal(ncol(relations(b)), 4) })
Votes.getBillActionVoteByOfficial <- function (actionId, candidateId) { Votes.getBillActionVoteByOfficial.basic <- function (.actionId, .candidateId) { request <- "Votes.getBillActionVoteByOfficial?" inputs <- paste("&actionId=",.actionId,"&candidateId=",.candidateId,sep="") output <- pvsRequest(request,inputs) output$actionId <- .actionId output$candidateId <- .candidateId output } output.list <- lapply(actionId, FUN= function (y) { lapply(candidateId, FUN= function (s) { Votes.getBillActionVoteByOfficial.basic(.actionId=y, .candidateId=s) } ) } ) output.list <- do.call("c",output.list) coln <- which.is.max(sapply(output.list, ncol)); max.cols <- max(sapply(output.list, ncol)); output.list2 <- lapply(output.list, function(x){ if (ncol(x) < max.cols) x <- data.frame(cbind(matrix(NA, ncol=max.cols-ncol(x), nrow = 1, ),x),row.names=NULL) names(x) <- names(output.list[[coln]]) x }) output <- do.call("rbind",output.list2) output }
EM2partial <- function(tms, cens, pars, maxiter = 1000, tol = 1e-8, h.fn = function(x,p) dexp(x, rate = 1 / p), mu.fn = function(x, p){ exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE, log.p = TRUE)) }, H.fn = function(x, p) pexp(x, rate = 1 / p), logg.fn = function(x, p){ dweibull(x, shape = p[1], scale = p[2], log = TRUE) - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE, log.p = TRUE) - (x / p[2]) ^ p[1] }, Mu.fn=function(x, p){ - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE, log.p = TRUE) }){ p.mu <- pars[1:2] p.h <- pars[3] eta <- pars[4] n <- length(tms) iter<-1; diff<-10000 while(diff > tol & iter <=maxiter) { mu <- function(t) mu.fn(t, p.mu) Mu <- function(t) Mu.fn(t, p.mu) h <- function(t) h.fn(t, p.h) H <- function(t) H.fn(t, p.h) phi <- function(s) eta * sum(h(s - tms[tms < s])) mustar <- function(i,omega) sum(omega[i, 1:(i - 1)] * mu(tms[i] - tms[tms < tms[i]])) phi.fn <- function(s, p,eta) eta * sum(h.fn(s - tms[tms < s], p)) pik <- matrix(NA, nrow = n, ncol = n) for(i in 2:n) for(k in 1:(i - 1)) { pik[i, k] <- mu(tms[i] - tms[k]) / (mu(tms[i] - tms[k]) + phi(tms[i])) } pi <- numeric(n) pi[1] <- 1 pi[2] <- mu(tms[2] - tms[1]) / (mu(tms[2] - tms[1]) + phi(tms[2])) omega <- matrix(NA, nrow = n, ncol = n) omega[2, 1] <- 1 i <- 3 while(i <=n ){ c <- 1 - pik[i-1, 1:(i - 2)] omega[i, 1:(i - 2)] <- omega[i-1, 1:(i - 2)] * c omega[i, i-1] <- pi[i-1] pi[i] <- mustar(i, omega) / (mustar(i, omega) + phi(tms[i])) i <- i + 1 } c <- 1 - pik[n, 1:(n - 1)] wnp1 <- c(omega[n, 1:(n - 1)] * c, pi[n]) Qmu <- function(p.mu){ sum <- logg.fn(tms[1], p.mu) for(i in 2:n) for(j in 1:(i - 1)){ sum <- sum + omega[i, j] * pik[i, j] * log(mu.fn(tms[i] - tms[j], p.mu)) - omega[i, j] * pik[i, j] * Mu.fn(tms[i] - tms[j], p.mu) } sum <- sum - sum(wnp1 * Mu.fn(cens - tms, p.mu)) return(sum) } temp <- optim(par = p.mu, fn = Qmu, control = list(fnscale = -1)) pars.mu <- temp$par Qh <- function(pars){ tau0 <- pars[1]; eta <- pars[2] sum <- 0 for(i in 2:n){ sum <- sum + (1 - pi[i]) * log(phi.fn(tms[i], tau0, eta)) } sum <- sum - eta * sum(H.fn(cens - tms, tau0)) return(sum) } temp <- optim(par = c(p.h, eta), fn = Qh, control = list(fnscale = -1)) pars.h <- temp$par[1] pars.eta <- temp$par[2] diff <- sum(abs(c(pars.mu, pars.h, pars.eta)-c(p.mu ,p.h ,eta))) p.mu <- pars.mu p.h <- pars.h eta <- pars.eta print(c(p.mu, p.h, eta)) iter <- iter + 1 } list(iterations = iter-1, diff = diff, pars = c(p.mu, p.h, eta)) }
area.graph.statistics <- function(...) { .Deprecated("area.graph.statistics", package="GeNetIt", msg="this function is depreciated, please use graph.statistics with buffer argument") graph.statistics(...) }
workingDirectoryPopulate <- function (directoryName=".") { directoryName = sub("(.*)/$","\\1",directoryName) if(!file.exists(c(directoryName))[1]){ dir.create(directoryName,recursive=TRUE) } wkdir = configFilesDirectoryNameGet() if(is_absolute_path(wkdir)) { if(!file.exists(wkdir)) dir.create(wkdir, recursive=TRUE) } else { txdir = paste0(directoryName,"/",configFilesDirectoryNameGet()) if(!file.exists(c(txdir))) { dir.create(txdir,recursive=TRUE) } } localCopy<-function(n, fileType="text") { thisFile = paste0(directoryName,"/",n) if(file.exists(thisFile)) { timeLt = as.POSIXlt(Sys.time()) expandedName = paste0(thisFile,".",as.character(julian(Sys.Date())),as.character(timeLt$hour),as.character(timeLt$min),as.character(timeLt$sec)) if(!file.exists(expandedName)) { if(!all.equal(readBin(file(thisFile),"raw"), readBin(file(system.file("templates", n, package=packageName(),mustWork=TRUE)),"raw"))) { file.copy(thisFile,expandedName,overwrite=TRUE) warning("existing file ", thisFile, " saved as ", expandedName) } } else { warning("file ", thisFile, " could not be saved as ", expandedName, " because it already exists, file overwritten") } } print(paste("file to be copied ", n)) file.copy(system.file("templates", n, package=packageName(),mustWork=TRUE), directoryName) } localCopy("makerpt.ps1") localCopy("makerpt.sh") localCopy("logo.eps") localCopy("webanalytics.cls") localCopy("sampleRfile.R") localCopy("sample.config") }
itrax_image <- function(file = "optical.tif", meta = "document.txt", plot = FALSE, trim = TRUE){ image <- tiff::readTIFF(file) meta <- itrax_meta(meta) image <- aperm(image, c(2, 1, 3)) image <- image[c(dim(image)[1]: 1), , ] row.names(image) <- seq(from = as.numeric(meta[ 9, 2]), to = as.numeric(meta[10, 2]), length.out = dim(image)[1]) colnames(image) <- seq(from = 0, by = (as.numeric(meta[10, 2]) - as.numeric(meta[9, 2])) / dim(image)[1], length.out = dim(image)[2]) if(length(trim) == 2){ image <- image[ which(as.numeric(rownames(image)) >= trim[1] & as.numeric(rownames(image)) <= trim[2]) , , ] } else if(trim == TRUE){ image <- image[ which(as.numeric(rownames(image)) >= as.numeric(meta[6, 2]) & as.numeric(rownames(image)) <= as.numeric(meta[7, 2])) , , ] } else if(trim == FALSE){ } else{stop("If you define trim parameters, pass a two element numeric vector of the start and stop positions.")} if(plot == TRUE){ print(ggplot() + ylim(rev(range(as.numeric(rownames(image))))) + scale_x_continuous(limits = range(as.numeric(colnames(image))), breaks = range(as.numeric(colnames(image))), labels = round(range(as.numeric(colnames(image))),1)) + labs(y = "Position [mm]", x = "[mm]") + coord_fixed(ratio = 1) + annotation_custom(rasterGrob(image, width = unit(1, "npc"), height = unit(1, "npc")), ymax = max(as.numeric(rownames(image)))/-1, ymin = min(as.numeric(rownames(image)))/-1, xmin = min(as.numeric(colnames(image))), xmax = max(as.numeric(colnames(image)))) ) } return(list(image = image, meta = meta[6:11, ])) }
get_lang <- function(query, api_key = NULL){ check_internet() check_api_key(api_key) queryurl <- URLencode(query) url <- GET(paste0("http://apilayer.net/api/detect", "?access_key=", api_key, "&query=", queryurl)) check_status_code(url) content <- json_raw_to_char(url) check_success(content) content <- content$results res <- do.call(rbind, lapply(content, function(obj){ data.frame(query = query, language_code = obj$language_code %||% NA, language_name = obj$language_name %||% NA, probability = obj$probability %||% NA, percentage = obj$percentage %||% NA, reliable_result = obj$reliable_result %||% NA, stringsAsFactors = FALSE) })) as_tbl(res) }
gibble.POINT <- function(x, ...) {x <- tibble::as_tibble(ibble(x)); dplyr::mutate(x, type = names(types)[x$type])} gibble.MULTIPOINT <- function(x, ...) {dm <- dim(unclass(x)); tibble::tibble(nrow = dm[1], ncol = dm[2])} %>% dplyr::mutate(type = "MULTIPOINT") gibble.LINESTRING <- function(x, ...) {dm <- dim(unclass(x)); tibble::tibble(nrow = dm[1], ncol = dm[2])} %>% dplyr::mutate(type = "LINESTRING") gibble.MULTILINESTRING <- function(x, ...) lapply(unclass(x), gibble.MULTIPOINT) %>% dplyr::bind_rows() %>% dplyr::mutate(type = "MULTILINESTRING") gibble.POLYGON <- function(x, ...) lapply(unclass(x), gibble.MULTIPOINT) %>% dplyr::bind_rows() %>% dplyr::mutate(type = "POLYGON") gibble.POLYPART <- function(x, subobject = 1L, ...) { lapply(x, gibble.MULTIPOINT) %>% dplyr::bind_rows() %>% dplyr::mutate(subobject = subobject) } gibble.MULTIPOLYGON <- function(x, ...) { x <- unclass(x) lapply(seq_along(x), function(a) gibble.POLYPART(x[[a]], subobject = a)) %>% dplyr::bind_rows() %>% dplyr::mutate(type = "MULTIPOLYGON") } gibble.list <- function(x, ...) { out <- try(ibble.sfc(x), silent = TRUE) if (inherits(out, "try-error")) stop("we tried to interpret as an sf/sfc list-column but failed") dplyr::mutate(tibble::as_tibble(out), type = names(types)[out[, "type", drop = TRUE]]) } gibble.sfc <- function(x, ...) { xout <- tibble::as_tibble(ibble(x)) if (xout[["type"]][1L] == 11L) { classes <- unlist(lapply(x, function(xa) lapply(xa, function(xb) rev(class(xb))[2L]))) if (length(classes) == dim(xout)[1L]) { xout[["type"]] <- classes } } if (is.numeric(xout[["type"]][1L])) { xout[["type"]] <- names(types)[xout[["type"]]] } xout } gibble.sf <- function(x, ...) { gibble(x[[attr(x, "sf_column")]]) }
context("plot.word_coverage") test_that("plot() produces no error", { c <- word_coverage(twitter_dict, twitter_test) expect_error(plot(c, include_EOS = FALSE), NA) expect_error(plot(c, include_EOS = TRUE), NA) expect_error(plot(c, show_limit = FALSE), NA) })
trtcombo.std.order = function(n) { fact = letters[1:n] control = '1' trt.combo = array(dim=1) ini.1 = array(dim=1) trt.combo[1] = control for(i in 1:length(fact)) { v = fact[i] for(j in 1:length(trt.combo)) { if(trt.combo[j] == '1') { ini.1[j] = paste(v) }else { ini.1[j] = paste(trt.combo[j],v) } } trt.combo = c(trt.combo,ini.1) } return(trt.combo) }
test_that("correct number of rows", { expect_equal(nrow(imd_wales_msoa), 410) }) test_that("Welsh MSOAs", { expect_equal(unique(substr(imd_wales_msoa$msoa_code, 1, 1)), "W") })
SP <- function(x = 1, Data, AddInd = "B", rescale = "mean1", start = NULL, fix_dep = TRUE, fix_n = TRUE, LWT = NULL, n_seas = 4L, n_itF = 3L, use_r_prior = FALSE, r_reps = 1e2, SR_type = c("BH", "Ricker"), silent = TRUE, opt_hess = FALSE, n_restart = ifelse(opt_hess, 0, 1), control = list(iter.max = 5e3, eval.max = 1e4), ...) { SP_(x = x, Data = Data, AddInd = AddInd, state_space = FALSE, rescale = rescale, start = start, fix_dep = fix_dep, fix_n = fix_n, fix_sigma = TRUE, fix_tau = TRUE, LWT = LWT, n_seas = n_seas, n_itF = n_itF, use_r_prior = use_r_prior, r_reps = r_reps, SR_type = SR_type, integrate = FALSE, silent = silent, opt_hess = opt_hess, n_restart = n_restart, control = control, inner.control = list(), ...) } class(SP) <- "Assess" SP_SS <- function(x = 1, Data, AddInd = "B", rescale = "mean1", start = NULL, fix_dep = TRUE, fix_n = TRUE, fix_sigma = TRUE, fix_tau = TRUE, LWT = NULL, early_dev = c("all", "index"), n_seas = 4L, n_itF = 3L, use_r_prior = FALSE, r_reps = 1e2, SR_type = c("BH", "Ricker"), integrate = FALSE, silent = TRUE, opt_hess = FALSE, n_restart = ifelse(opt_hess, 0, 1), control = list(iter.max = 5e3, eval.max = 1e4), inner.control = list(), ...) { SP_(x = x, Data = Data, AddInd = AddInd, state_space = TRUE, rescale = rescale, start = start, fix_dep = fix_dep, fix_n = fix_n, fix_sigma = fix_sigma, fix_tau = fix_tau, early_dev = early_dev, LWT = LWT, n_seas = n_seas, n_itF = n_itF, use_r_prior = use_r_prior, r_reps = r_reps, SR_type = SR_type, integrate = integrate, silent = silent, opt_hess = opt_hess, n_restart = n_restart, control = control, inner.control = inner.control, ...) } class(SP_SS) <- "Assess" SP_Fox <- function(x = 1, Data, ...) { SP_args <- c(x = x, Data = Data, list(...)) SP_args$start$n <- 1 SP_args$fix_n <- TRUE do.call(SP, SP_args) } class(SP_Fox) <- "Assess" SP_ <- function(x = 1, Data, AddInd = "B", state_space = FALSE, rescale = "mean1", start = NULL, fix_dep = TRUE, fix_n = TRUE, fix_sigma = TRUE, fix_tau = TRUE, early_dev = c("all", "index"), LWT = NULL, n_seas = 4L, n_itF = 3L, use_r_prior = FALSE, r_reps = 1e2, SR_type = c("BH", "Ricker"), integrate = FALSE, silent = TRUE, opt_hess = FALSE, n_restart = ifelse(opt_hess, 0, 1), control = list(iter.max = 5e3, eval.max = 1e4), inner.control = list(), ...) { dependencies = "Data@Cat, Data@Ind" dots <- list(...) start <- lapply(start, eval, envir = environment()) early_dev <- match.arg(early_dev) if(any(names(dots) == "yind")) { yind <- eval(dots$yind) } else { ystart <- which(!is.na(Data@Cat[x, ]))[1] yind <- ystart:length(Data@Cat[x, ]) } Year <- Data@Year[yind] C_hist <- Data@Cat[x, yind] if(any(is.na(C_hist))) stop('Model is conditioned on complete catch time series, but there is missing catch.') ny <- length(C_hist) if(rescale == "mean1") rescale <- 1/mean(C_hist) Ind <- lapply(AddInd, Assess_I_hist, Data = Data, x = x, yind = yind) I_hist <- vapply(Ind, getElement, numeric(ny), "I_hist") I_sd <- vapply(Ind, getElement, numeric(ny), "I_sd") if(is.null(I_hist)) stop("No indices found.") nsurvey <- ncol(I_hist) if(state_space) { if(early_dev == "all") est_B_dev <- rep(1, ny) if(early_dev == "index") { first_year_index <- which(apply(I_hist, 1, function(x) any(!is.na(x))))[1] est_B_dev <- ifelse(1:ny < first_year_index, 0, 1) } } else { if(nsurvey == 1 && (AddInd == 0 | AddInd == "B")) { fix_sigma <- FALSE } est_B_dev <- rep(0, ny) } if(is.null(LWT)) LWT <- rep(1, nsurvey) if(length(LWT) != nsurvey) stop("LWT needs to be a vector of length ", nsurvey) data <- list(model = "SP", C_hist = C_hist, rescale = rescale, I_hist = I_hist, I_sd = I_sd, I_lambda = LWT, fix_sigma = as.integer(fix_sigma), nsurvey = nsurvey, ny = ny, est_B_dev = est_B_dev, nstep = n_seas, dt = 1/n_seas, n_itF = n_itF) if(use_r_prior) { if(!is.null(start$r_prior) && length(start$r_prior) == 2) { rp <- data$r_prior <- start$r_prior } else { rp <- r_prior_fn(x, Data, r_reps = r_reps, SR_type = SR_type) data$r_prior <- c(mean(rp), max(sd(rp), 0.1 * mean(rp))) } } else { rp <- data$r_prior <- c(0, 0) } params <- list() if(!is.null(start)) { if(!is.null(start$FMSY) && is.numeric(start$FMSY)) params$log_FMSY <- log(start$FMSY[1]) if(!is.null(start$MSY) && is.numeric(start$MSY)) params$MSYx <- log(start$MSY[1]) if(!is.null(start$dep) && is.numeric(start$dep)) params$log_dep <- log(start$dep[1]) if(!is.null(start$n) && is.numeric(start$n)) params$log_n <- log(start$n[1]) if(!is.null(start$sigma) && is.numeric(start$sigma)) params$log_sigma <- log(start$sigma) if(!is.null(start$tau) && is.numeric(start$tau)) params$log_tau <- log(start$tau[1]) } if(is.null(params$log_FMSY)) params$log_FMSY <- ifelse(is.na(Data@Mort[x]), 0.2, 0.5 * Data@Mort[x]) %>% log() if(is.null(params$MSYx)) params$MSYx <- mean(3 * C_hist * rescale) %>% log() if(is.null(params$log_dep)) params$log_dep <- log(1) if(is.null(params$log_n)) params$log_n <- log(2) if(is.null(params$log_sigma)) params$log_sigma <- rep(log(0.05), nsurvey) if(is.null(params$log_tau)) params$log_tau <- log(0.1) params$log_B_dev <- rep(0, ny) map <- list() if(fix_dep) map$log_dep <- factor(NA) if(fix_n) map$log_n <- factor(NA) if(fix_sigma) map$log_sigma <- factor(rep(NA, nsurvey)) if(fix_tau) map$log_tau <- factor(NA) if(any(!est_B_dev)) map$log_B_dev <- factor(ifelse(est_B_dev, 1:sum(est_B_dev), NA)) random <- NULL if(integrate) random <- "log_B_dev" info <- list(Year = Year, data = data, params = params, rp = rp, control = control, inner.control = inner.control) obj <- MakeADFun(data = info$data, parameters = info$params, hessian = TRUE, map = map, random = random, DLL = "SAMtool", silent = silent) high_F <- try(obj$report(c(obj$par, obj$env$last.par[obj$env$random]))$penalty > 0 || any(is.na(obj$report(c(obj$par, obj$env$last.par[obj$env$random]))$F)), silent = TRUE) if(!is.character(high_F) && !is.na(high_F) && high_F) { for(ii in 1:10) { obj$par["MSYx"] <- 0.5 + obj$par["MSYx"] if(all(!is.na(obj$report(obj$par)$F)) && obj$report(c(obj$par, obj$env$last.par[obj$env$random]))$penalty == 0) break } } mod <- optimize_TMB_model(obj, control, opt_hess, n_restart) opt <- mod[[1]] SD <- mod[[2]] report <- obj$report(obj$env$last.par.best) Yearplusone <- c(Year, max(Year) + 1) nll_report <- ifelse(is.character(opt), ifelse(integrate, NA, report$nll), opt$objective) report$dynamic_SSB0 <- SP_dynamic_SSB0(obj, data = info$data, params = info$params, map = map) %>% structure(names = Yearplusone) Assessment <- new("Assessment", Model = ifelse(state_space, "SP_SS", "SP"), Name = Data@Name, conv = SD$pdHess, FMSY = report$FMSY, MSY = report$MSY, BMSY = report$BMSY, VBMSY = report$BMSY, B0 = report$K, VB0 = report$K, FMort = structure(report$F, names = Year), F_FMSY = structure(report$F/report$FMSY, names = Year), B = structure(report$B, names = Yearplusone), B_BMSY = structure(report$B/report$BMSY, names = Yearplusone), B_B0 = structure(report$B/report$K, names = Yearplusone), VB = structure(report$B, names = Yearplusone), VB_VBMSY = structure(report$B/report$BMSY, names = Yearplusone), VB_VB0 = structure(report$B/report$K, names = Yearplusone), SSB = structure(report$B, names = Yearplusone), SSB_SSBMSY = structure(report$B/report$BMSY, names = Yearplusone), SSB_SSB0 = structure(report$B/report$K, names = Yearplusone), Obs_Catch = structure(C_hist, names = Year), Obs_Index = structure(I_hist, dimnames = list(Year, paste0("Index_", 1:nsurvey))), Catch = structure(report$Cpred, names = Year), Index = structure(report$Ipred, dimnames = list(Year, paste0("Index_", 1:nsurvey))), NLL = structure(c(nll_report, report$nll_comp, report$penalty, report$prior), names = c("Total", paste0("Index_", 1:nsurvey), "Dev", "Penalty", "Prior")), info = info, obj = obj, opt = opt, SD = SD, TMB_report = report, dependencies = dependencies) if(state_space) { Assessment@Dev <- structure(report$log_B_dev, names = Year) Assessment@Dev_type <- "log-Biomass deviations" Assessment@NLL <- structure(c(nll_report, report$nll_comp, report$penalty, report$prior), names = c("Total", paste0("Index_", 1:nsurvey), "Dev", "Penalty", "Prior")) } else { Assessment@NLL <- structure(c(nll_report, report$nll_comp[1:nsurvey], report$penalty, report$prior), names = c("Total", paste0("Index_", 1:nsurvey), "Penalty", "Prior")) } if(Assessment@conv) { if(state_space) { SE_Dev <- as.list(SD, "Std. Error")$log_B_dev Assessment@SE_Dev <- structure(ifelse(is.na(SE_Dev), 0, SE_Dev), names = Year) } Assessment@SE_FMSY <- SD$sd[names(SD$value) == "FMSY"] Assessment@SE_MSY <- SD$sd[names(SD$value) == "MSY"] Assessment@SE_F_FMSY <- SD$sd[names(SD$value) == "F_FMSY_final"] %>% structure(names = max(Year)) Assessment@SE_B_BMSY <- Assessment@SE_SSB_SSBMSY <- Assessment@SE_VB_VBMSY <- SD$sd[names(SD$value) == "B_BMSY_final"] %>% structure(names = max(Year)) Assessment@SE_B_B0 <- Assessment@SE_SSB_SSB0 <- Assessment@SE_VB_VB0 <- SD$sd[names(SD$value) == "B_K_final"] %>% structure(names = max(Year)) catch_eq <- function(Ftarget) { projection_SP(Assessment, Ftarget = Ftarget, p_years = 1, p_sim = 1, obs_error = list(matrix(1, 1, 1), matrix(1, 1, 1)), process_error = matrix(1, 1, 1)) %>% slot("Catch") %>% as.vector() } Assessment@forecast <- list(catch_eq = catch_eq) } return(Assessment) } r_prior_fn <- function(x = 1, Data, r_reps = 1e2, SR_type = c("BH", "Ricker"), seed = x) { SR_type <- match.arg(SR_type) set.seed(x) M <- trlnorm(r_reps, Data@Mort[x], Data@CV_Mort[x]) steep <- sample_steepness3(r_reps, Data@steep[x], Data@CV_steep[x], SR_type) max_age <- Data@MaxAge a <- Data@wla[x] b <- Data@wlb[x] Linf <- Data@vbLinf[x] K <- Data@vbK[x] t0 <- Data@vbt0[x] La <- Linf * (1 - exp(-K * (c(1:max_age) - t0))) Wa <- a * La ^ b A50 <- min(0.5 * max_age, iVB(t0, K, Linf, Data@L50[x])) A95 <- max(A50+0.5, iVB(t0, K, Linf, Data@L95[x])) mat_age <- 1/(1 + exp(-log(19) * (c(1:max_age) - A50)/(A95 - A50))) mat_age <- mat_age/max(mat_age) log_r <- vapply(1:r_reps, function(y) uniroot(Euler_Lotka_fn, c(-6, 2), M = M[y], h = steep[y], weight = Wa, mat = mat_age, maxage = max_age, SR_type = SR_type)$root, numeric(1)) return(exp(log_r)) } Euler_Lotka_fn <- function(log_r, M, h, weight, mat, maxage, SR_type) { M <- rep(M, maxage) NPR <- calc_NPR(exp(-M), maxage) SBPR <- sum(NPR * weight * mat) CR <- ifelse(SR_type == "BH", 4*h/(1-h), (5*h)^1.25) alpha <- CR/SBPR EL <- alpha * sum(NPR * weight * mat * exp(-exp(log_r) * c(1:maxage))) return(EL - 1) } SP_dynamic_SSB0 <- function(obj, par = obj$env$last.par.best, ...) { dots <- list(...) dots$data$C_hist <- rep(1e-8, dots$data$ny) dots$params$log_dep <- log(1) obj2 <- MakeADFun(data = dots$data, parameters = dots$params, map = dots$map, random = obj$env$random, DLL = "SAMtool", silent = TRUE) obj2$report(par)$B }
library(simstudy) library(data.table) library(ggplot2) library(knitr) library(data.table) options(digits = 3) opts_chunk$set(tidy.opts=list(width.cutoff=55), tidy=TRUE) plotcolors <- c(" cbbPalette <- c(" " ggtheme <- function(panelback = "white") { ggplot2::theme( panel.background = element_rect(fill = panelback), panel.grid = element_blank(), axis.ticks = element_line(colour = "black"), panel.spacing =unit(0.25, "lines"), panel.border = element_rect(fill = NA, colour="grey90"), plot.title = element_text(size = 8,vjust=.5,hjust=0), axis.text = element_text(size=8), axis.title = element_text(size = 8) ) } def <- defData(varname="age", dist="normal", formula=10, variance = 2) def <- defData(def, varname="female", dist="binary", formula="-2 + age * 0.1", link = "logit") def <- defData(def,varname="visits", dist="poisson", formula="1.5 - 0.2 * age + 0.5 * female", link="log") knitr::kable(def) def <- defData(varname="age", dist="normal", formula=10, variance = 2) def <- defData(def, varname="female", dist="binary", formula="-2 + age * 0.1", link = "logit") def <- defData(def,varname="visits", dist="poisson", formula="1.5 - 0.2 * age + 0.5 * female", link="log") set.seed(87261) dd <- genData(1000, def) dd genData(1000) study1 <- trtAssign(dd , n=3, balanced = TRUE, strata = c("female"), grpName = "rx") study1 study1[, .N, keyby = .(female, rx)] def <- defData(varname = "age", dist = "normal", formula=10, variance = 2) def <- defData(def, varname="female", dist="binary", formula="-2 + age * 0.1", link = "logit") def <- defData(def,varname="visits", dist="poisson", formula="1.5 - 0.2 * age + 0.5 * female", link="log") myinv <- function(x) { 1/x } def <- defData(varname = "age", formula=10, variance = 2, dist = "normal") def <- defData(def, varname="loginvage", formula="log(myinv(age))", variance = 0.1, dist="normal") genData(5, def) def10 <- updateDef(def, changevar = "loginvage", newformula = "log10(myinv(age))") def10 genData(5, def10) age_effect <- 3 def <- defData(varname = "age", formula=10, variance = 2, dist = "normal") def <- defData(def, varname="agemult", formula="age * ..age_effect", dist="nonrandom") def genData(2, def) age_effects <- c(0, 5, 10) list_of_data <- list() for (i in seq_along(age_effects)) { age_effect <- age_effects[i] list_of_data[[i]] <- genData(2, def) } list_of_data d <- list() d[[1]] <- data.table("beta", "mean", "both", "-", "dispersion", "X", "-", "X") d[[2]] <- data.table("binary", "probability", "both", "-", "-", "X", "-", "X") d[[3]] <- data.table("binomial", "probability", "both", "-", " d[[4]] <- data.table("categorical", "probability", "string", " p_1;p_2;...;p_n", "a;b;c", "X", "-", "-") d[[5]] <- data.table("exponential", "mean", "both", "-", "-", "X", "X", "-") d[[6]] <- data.table("gamma", "mean", "both", "-", "dispersion", "X", "X", "-") d[[7]] <- data.table("mixture", "formula", "string", "x_1 | p_1 + ... + x_n | p_n", "-", "X", "-", "-") d[[8]] <- data.table("negBinomial", "mean", "both", "-", "dispersion", "X", "X", "-") d[[9]] <- data.table("nonrandom", "formula", "both", "-", "-", "X", "-", "-") d[[10]] <- data.table("normal", "mean", "both", "-", "variance", "X", "-", "-") d[[11]] <- data.table("noZeroPoisson", "mean", "both", "-", "-", "X", "X", "-") d[[12]] <- data.table("poisson", "mean", "both", "-", "-", "X", "X", "-") d[[13]] <- data.table("trtAssign", "ratio", "string", "r_1;r_2;...;r_n", "stratification", "X", "X", "-") d[[14]] <- data.table("uniform", "range", "string", "from ; to", "-", "X", "-", "-") d[[15]] <- data.table("uniformInt", "range", "string", "from ; to", "-", "X", "-", "-") d <- rbindlist(d) setnames(d, c("name", "formula", "string/value", "format", "variance", "identity", "log", "logit")) knitr::kable(d, align = "lllllccc") def <- defRepeat(nVars = 4, prefix = "g", formula = "1/3;1/3;1/3", variance = 0, dist = "categorical") def <- defData(def, varname = "a", formula = "1;1", dist = "trtAssign") def <- defRepeat(def, 3, "b", formula = "5 + a", variance = 3, dist = "normal") def <- defData(def, "y", formula = "0.10", dist = "binary") def d1 <- defData(varname = "x1", formula = 0, variance = 1, dist = "normal") d1 <- defData(d1, varname = "x2", formula = 0.5, dist = "binary") d2 <- defRepeatAdd(nVars = 2, prefix = "q", formula = "5 + 3*rx", variance = 4, dist = "normal") d2 <- defDataAdd(d2, varname = "y", formula = "-2 + 0.5*x1 + 0.5*x2 + 1*rx", dist = "binary", link = "logit") dd <- genData(5, d1) dd <- trtAssign(dd, nTrt = 2, grpName = "rx") dd dd <- addColumns(d2, dd) dd d <- defData(varname = "x", formula = 0, variance = 9, dist = "normal") dc <- defCondition(condition = "x <= -2", formula = "4 + 3*x", variance = 2, dist = "normal") dc <- defCondition(dc, condition = "x > -2 & x <= 2", formula = "0 + 1*x", variance = 4, dist = "normal") dc <- defCondition(dc, condition = "x > 2", formula = "-5 + 4*x", variance = 3, dist = "normal") dd <- genData(1000, d) dd <- addCondition(dc, dd, newvar = "y") ggplot(data = dd, aes(y = y, x = x)) + geom_point(color = " grey60", size = .5) + geom_smooth(se = FALSE, size = .5) + ggtheme("grey90")
descript_d <- function(data, latex = FALSE){ if(is.na(class(data)[2])) { stop("data is not an object of class dscore or dsciat") } else if (class(data)[2] == "dscore" | class(data)[2] == "dsciat"){ if (class(data)[2] == "dscore"){ sel_var <- c(grep("dscore", colnames(data)), grep("d_practice", colnames(data)), grep("d_test", colnames(data))) names_table <- c("D-score", "D-practice", "D-test") } else if (class(data)[2] == "dsciat"){ sel_var <- c(grep("d_sciat", colnames(data)), grep("RT_mean.mappingA", colnames(data)), grep("RT_mean.mappingB", colnames(data))) names_table <- c("D-Sciat", "RT.MappingA", "RT.MappingB") } data <- data[ , sel_var] mean_all <- c(mean(data[,1]), mean(data[,2]), mean(data[,3])) sd_all <- c(sd(data[,1]), sd(data[,2]), sd(data[,3])) min_all <- c(min(data[,1]), min(data[,2]), min(data[,3])) max_all <- c(max(data[,1]), max(data[,2]), max(data[,3])) table_d <- data.frame(Mean = mean_all, SD = sd_all, Min = min_all, Max = max_all) rownames(table_d) <- names_table table_d <- round(table_d, 2) if (latex == TRUE){ return(xtable::xtable(table_d)) } else { return(table_d) } } else {stop("data is not an object of class dscore or dsciat")} }
"cdfkap" <- function(x,para) { if(! are.parkap.valid(para)) return() SMALL <- 1e-15 U <- para$para[1] A <- para$para[2] G <- para$para[3] H <- para$para[4] f <- sapply(1:length(x), function(i) { Y <- (x[i]-U)/A if(G == 0) { Y <- exp(-Y) } else { ARG <- 1-G*Y if(ARG > SMALL) { Y <- exp(-1*(-log(ARG)/G)) } else { if(G < 0) return(0) if(G > 0) return(1) stop("should not be here in execution") } } if(H == 0) return(exp(-Y)) ARG <- 1-H*Y if(ARG > SMALL) return(exp(-1*(-log(ARG)/H))) return(0) }) names(f) <- NULL return(f) }
ss.aipe.cv <- function(C.of.V=NULL, width=NULL, conf.level=.95, degree.of.certainty=NULL, assurance=NULL, certainty=NULL, mu=NULL, sigma=NULL, alpha.lower=NULL, alpha.upper=NULL, Suppress.Statement=TRUE, sup.int.warns=TRUE, ...) { if(!is.null(certainty)& is.null(degree.of.certainty)&is.null(assurance)) degree.of.certainty<-certainty if (is.null(assurance) && !is.null (degree.of.certainty)& is.null(certainty)) assurance <-degree.of.certainty if (!is.null(assurance) && is.null (degree.of.certainty)& is.null(certainty)) assurance -> degree.of.certainty if(C.of.V<=0) stop("The 'C.of.V' value should be positive (see Chattopadhyaya and Kelley, 2016)") if(!is.null(assurance) && !is.null (degree.of.certainty) && assurance!=degree.of.certainty) stop("The arguments 'assurance' and 'degree.of.certainty' must have the same value.") if(!is.null(assurance) && !is.null (certainty) && assurance!=certainty) stop("The arguments 'assurance' and 'certainty' must have the same value.") if(!is.null(degree.of.certainty) && !is.null (certainty) && degree.of.certainty!=certainty) stop("The arguments 'degree.of.certainty' and 'certainty' must have the same value.") if(sup.int.warns==TRUE) options(warn=-1) if(is.null(conf.level)) { if(alpha.lower>=1 | alpha.lower<0) stop("\'alpha.lower\' is not correctly specified.") if(alpha.upper>=1 | alpha.upper<0) stop("\'alpha.upper\' is not correctly specified.") } if(is.null(width)) stop("A value for \'width\' must be specified.") if(!is.null(conf.level)) { if(!is.null(alpha.lower) | !is.null(alpha.upper)) stop("Since \'conf.level\' is specified, \'alpha.lower\' and \'alpha.upper\' should be \'NULL\'.") alpha.lower <- (1-conf.level)/2 alpha.upper <- (1-conf.level)/2 } if(!is.null(degree.of.certainty)) { if((degree.of.certainty <= 0) | (degree.of.certainty >= 1)) stop("The 'degree.of.certainty' must either be NULL or some value greater than .50 and less than 1.", call.=FALSE) if(degree.of.certainty <= .50) stop("The 'degree.of.certainty' should be > .5 (but less than 1).", call.=FALSE) } minimal.N <- 4 Lim.0 <- ci.cv(cv=cv(C.of.V=C.of.V, N=minimal.N, unbiased=TRUE), n=minimal.N, alpha.lower=alpha.lower, alpha.upper=alpha.upper, conf.level=NULL) Current.Width <- Lim.0$Upper - Lim.0$Lower dif <- Current.Width - width N.0 <- minimal.N while(dif > 0) { N <- N.0+1 CI.for.CV <- ci.cv(cv=cv(C.of.V=C.of.V, N=N, unbiased=TRUE), n=N, alpha.lower=alpha.lower, alpha.upper=alpha.upper, conf.level=NULL) Current.Width <- CI.for.CV$Upper - CI.for.CV$Lower dif <- Current.Width - width N.0 <- N } if(!is.null(degree.of.certainty)) { beyond.CV.NCP <- qt(p=1-degree.of.certainty, df=N-1, ncp = sqrt(N)/C.of.V, lower.tail = TRUE, log.p = FALSE) Lim.for.Certainty <- sqrt(N)/beyond.CV.NCP N.gamma <- ss.aipe.cv(C.of.V=cv(C.of.V=Lim.for.Certainty, N=N, unbiased=TRUE), width=width, alpha.lower=alpha.lower, alpha.upper=alpha.upper, conf.level=NULL, degree.of.certainty=NULL, Suppress.Statement=TRUE) } if(is.null(degree.of.certainty)) { if(Suppress.Statement==FALSE) print(paste("In order the the expected confidence interval width to be no larger than", width, ",the sample size that should be used is:", N)) return(N) } if(!is.null(degree.of.certainty)) { if(Suppress.Statement==FALSE) print(paste("In order the the confidence interval width to be no less than", width, "with no less than", degree.of.certainty*100, "certainty, the sample size that should be used is:", N.gamma)) return(N.gamma) } if(sup.int.warns==TRUE) options(warn=1) }
SensTimePlot <- function(object, fdata = NULL, date.var = NULL, facet = FALSE, smooth = FALSE, nspline = NULL, ...) { if (is.HessMLP(object)) { object <- HessToSensMLP(object) } if (!is.SensMLP(object)) { if (is.null(fdata)) { stop("Must be passed fdata to calculate sensitivities of the model") } SensMLP <- NeuralSens::SensAnalysisMLP(object, trData = fdata, plot = FALSE, ...) rawSens <- SensMLP$raw_sens } else if(is.SensMLP(object)){ SensMLP <- object rawSens <- SensMLP$raw_sens fdata <- SensMLP$trData } else { stop(paste0("Class ", class(object)," is not accepted as object")) } if (is.null(date.var)) { if (any(apply(fdata, 2, function(x){inherits(x,"POSIXct") || inherits(x,"POSIXlt")}))) { date.var <- fdata[,sapply(fdata, function(x){ inherits(x,"POSIXct") || inherits(x,"POSIXlt")})] } else { date.var <- seq_len(dim(rawSens[[1]])[1]) } } if (is.null(nspline)) { nspline <- floor(sqrt(dim(rawSens[[1]])[1])) } plot_for_output <- function(rawSens, out, smooth, facet, SensMLP) { plotdata <- cbind(date.var,as.data.frame(rawSens[[out]])) plotdata <- reshape2::melt(plotdata,id.vars = names(plotdata)[1]) p <- ggplot2::ggplot(plotdata, ggplot2::aes(x = plotdata[,1], y = plotdata$value, group = plotdata$variable, color = plotdata$variable)) + ggplot2::geom_line() + ggplot2::labs(color = "Inputs") + ggplot2::xlab("Time") + ggplot2::ylab(NULL) if (smooth) p <- p + ggplot2::geom_smooth(method = "lm", color = "blue", formula = y ~ splines::bs(x, nspline), se = FALSE) if (facet) { args <- list(...) outname <- SensMLP$output_name labsvect <- c() for(ii in levels(plotdata$variable)) { labsvect <- c(labsvect, paste0("frac(partialdiff~",outname,",partialdiff~",ii,")")) } levels(plotdata$variable) <- labsvect p <- p + ggplot2::facet_wrap(plotdata$variable~., scales = "free_y", nrow = length(levels(plotdata$variable)), strip.position = "left", labeller = ggplot2::label_parsed) + ggplot2::theme(strip.background = ggplot2::element_blank(), strip.placement = "outside", legend.position = "none") } print(p) return(p) } plotlist <- list() for (out in 1:length(rawSens)) { plotlist[[out]] <- plot_for_output(rawSens, out, smooth, facet, SensMLP) } return(invisible(plotlist)) }
test_that("Password hidden", { db <- rocker::newDB(verbose = FALSE) expect_true(is.environment(db$.__enclos_env__)) expect_true(is.environment(db$.__enclos_env__$private)) expect_null(db$.__enclos_env__$private$key) expect_null(db$.__enclos_env__$private$settings) db$setupSQLite() expect_null(db$.__enclos_env__) expect_null(db$.__enclos_env__$private) expect_null(db$.__enclos_env__$private$key) expect_null(db$.__enclos_env__$private$settings) db$unloadDriver() expect_true(is.environment(db$.__enclos_env__)) expect_true(is.environment(db$.__enclos_env__$private)) expect_null(db$.__enclos_env__$private$key) expect_null(db$.__enclos_env__$private$settings) rm(db) })
context("set_label.data.frame") test_that( "cast an error if x is not a data frame", { expect_error( set_label.data.frame(letters, a = "A") ) } ) test_that( "Cast an error if any element in vars is not a column in x", { expect_error( set_label(mtcars, abc = "ABC") ) } ) test_that( "Cast an error if any element in vars is not an atomic vector", { A <- data.frame(abc = rep(NA, 3)) A[[1]][1] <- list(letters) A[[1]][2] <- list(LETTERS) A[[1]][3] <- list(months) expect_error( set_label(A, abc = "lists") ) } ) test_that( "set_label works for data frames", { expect_silent(set_label(mtcars, am = "Automatic", mpg = "Miles per gallon")) } ) test_that( "set_label casts and error when given an unnamed vector", { expect_error( set_label(mtcars, "") ) } )
context("get_hydro") test_that("get_hydro works", { vcr::use_cassette("get_hydro_works_single", { x <- get_hydro(dbkey = "15081", date_min = "2013-01-01", date_max = "2013-02-02") }) expect_is(x, "data.frame") vcr::use_cassette("get_hydro_works_multiple", { x <- get_hydro(dbkey = c("15081", "15069"), date_min = "2013-01-01", date_max = "2013-02-02") }) expect_is(x, "data.frame") }) vcr::use_cassette("get_hydro_fails", { test_that("get_hydro fails well", { expect_error( get_hydro(dbkey = "15081", date_min = "1980-01-01", date_max = "1980-02-02"), "No data found") }) }) vcr::use_cassette("non-character_dates", { test_that("non-character dates are handled", { expect_error(get_hydro(dbkey = "15081", date_min = 1980-01-01, date_max = "1980-02-02"), "Enter dates as quote-wrapped character strings in YYYY-MM-DD format") }) }) test_that("get_hydro retrieves dbkeys on-the-fly", { vcr::use_cassette("fly_dbykeys_single", { x <- get_hydro(stationid = "C-54", category = "GW", freq = "DA", date_min = "1990-01-01", date_max = "1990-02-02", longest = TRUE) }) expect_equal(ncol(x), 2) vcr::use_cassette("fly_dbykeys_multiple", { x <- get_hydro(stationid = c("C-54", "G-561"), category = "GW", freq = "DA", date_min = "1990-01-01", date_max = "1990-02-02", longest = TRUE) }) expect_equal(ncol(x), 3) })
library("testthat") library("arules") data(Groceries) itset <- new("itemsets", items = encode(c('whole milk', 'soda'), itemLabels = Groceries)) supp <- support(itset, Groceries, type = "absolute") expect_equal(crossTable(Groceries, measure='count')['whole milk', 'soda'], supp) expect_equal(crossTable(Groceries, measure='support')['whole milk', 'soda'], supp / length(Groceries)) expect_equal(crossTable(Groceries, measure='lift')['whole milk', 'soda'], supp / length(Groceries) / prod(itemFrequency(Groceries)[c('whole milk', 'soda')]))
"run09"
Matern52 <- R6::R6Class(classname = "GauPro_kernel_Matern52", inherit = GauPro_kernel_beta, public = list( sqrt5 = sqrt(5), k = function(x, y=NULL, beta=self$beta, s2=self$s2, params=NULL) { if (!is.null(params)) { lenparams <- length(params) if (self$beta_est) { beta <- params[1:self$beta_length] } else { beta <- self$beta } if (self$s2_est) { logs2 <- params[lenparams] } else { logs2 <- self$logs2 } s2 <- 10^logs2 } else { if (is.null(beta)) {beta <- self$beta} if (is.null(s2)) {s2 <- self$s2} } theta <- 10^beta if (is.null(y)) { if (is.matrix(x)) { val <- s2 * corr_matern52_matrix_symC(x, theta) return(val) } else { return(s2 * 1) } } if (is.matrix(x) & is.matrix(y)) { s2 * corr_matern52_matrixC(x, y, theta) } else if (is.matrix(x) & !is.matrix(y)) { s2 * corr_matern52_matvecC(x, y, theta) } else if (is.matrix(y)) { s2 * corr_matern52_matvecC(y, x, theta) } else { self$kone(x, y, theta=theta, s2=s2) } }, kone = function(x, y, beta, theta, s2) { if (missing(theta)) {theta <- 10^beta} r <- sqrt(sum(theta * (x-y)^2)) t1 <- self$sqrt5 * r s2 * (1 + t1 + t1^2 / 3) * exp(-t1) }, dC_dparams = function(params=NULL, X, C_nonug, C, nug) { n <- nrow(X) lenparams <- length(params) if (lenparams > 0) { if (self$beta_est) { beta <- params[1:self$beta_length] } else { beta <- self$beta } if (self$s2_est) { logs2 <- params[lenparams] } else { logs2 <- self$logs2 } } else { beta <- self$beta logs2 <- self$logs2 } theta <- 10^beta log10 <- log(10) s2 <- 10 ^ logs2 if (missing(C_nonug)) { C_nonug <- self$k(x=X, params=params) C <- C_nonug + diag(nug*s2, nrow(C_nonug)) } lenparams_D <- self$beta_length*self$beta_est + self$s2_est dC_dparams <- array(dim=c(lenparams_D, n, n), data = 0) if (self$s2_est) { dC_dparams[lenparams_D,,] <- C * log10 } if (self$beta_est) { for (i in seq(1, n-1, 1)) { for (j in seq(i+1, n, 1)) { tx2 <- sum(theta * (X[i,]-X[j,])^2) t1 <- sqrt(5 * tx2) t3 <- C[i,j] * ((1+2*t1/3)/(1+t1+t1^2/3) - 1) * self$sqrt5 * log10 half_over_sqrttx2 <- .5 / sqrt(tx2) for (k in 1:length(beta)) { dt1dbk <- half_over_sqrttx2 * (X[i,k] - X[j,k])^2 dC_dparams[k,i,j] <- t3 * dt1dbk * theta[k] dC_dparams[k,j,i] <- dC_dparams[k,i,j] } } } for (i in seq(1, n, 1)) { for (k in 1:length(beta)) { dC_dparams[k,i,i] <- 0 } } } return(dC_dparams) }, dC_dx = function(XX, X, theta, beta=self$beta, s2=self$s2) { if (missing(theta)) {theta <- 10^beta} if (!is.matrix(XX)) {stop()} d <- ncol(XX) if (ncol(X) != d) {stop()} n <- nrow(X) nn <- nrow(XX) dC_dx <- array(NA, dim=c(nn, d, n)) for (i in 1:nn) { for (j in 1:d) { for (k in 1:n) { r <- sqrt(sum(theta * (XX[i,] - X[k,]) ^ 2)) dC_dx[i, j, k] <- (-5*r/3 - 5/3*self$sqrt5*r^2) * s2 * exp(-self$sqrt5 * r) * theta[j] * (XX[i, j] - X[k, j]) / r } } } dC_dx } ) )
check_augment_newdata_precedence <- function(aug, model, data, strict = TRUE) { expect_true(TRUE) if (!strict) return(invisible()) if (nrow(data) < 6) stop( "Data for checking newdata predence must have at least 6 rows.", call. = FALSE ) newdata <- tail(data, 5) au_data <- aug(model, data = data) au_newdata <- aug(model, newdata = newdata) au_data_newdata <- aug(model, data = data, newdata = newdata) expect_true( all.equal(au_newdata, au_data_newdata), info = "Must specify either `data` or `newdata` argument." ) expect_false( all.equal(au_data, au_newdata), info = "Must specify either `data` or `newdata` argument." ) expect_false( all.equal(au_data, au_data_newdata), info = "Must specify either `data` or `newdata` argument." ) }
test_that("resolve", { skip_on_cran() skip_if_offline() conf <- current_config() tt <- dirname(dirname(attr(packageDescription("testthat"), "file"))) cache <- list( package = NULL, metadata = pkgcache::get_cranlike_metadata_cache(), installed = make_installed_cache(dirname(tt))) ref <- paste0("installed::", tt) res <- synchronise( resolve_remote_installed(parse_pkg_refs(ref)[[1]], TRUE, conf, cache, dependencies = "Imports") ) unun <- function(x) { attr(x, "unknown_deps") <- NULL x } expect_equal( unun(as.list(res[c("ref", "type", "direct", "status", "package", "version")])), list(ref = ref, type = "installed", direct = TRUE, status = "OK", package = "testthat", version = as.character(packageVersion("testthat"))) ) expect_true("crayon" %in% attr(res, "unknown_deps")) expect_false(is.null(res$extra[[1]]$repotype)) }) test_that("download", { skip_if_offline() skip_on_cran() dir.create(tmp <- tempfile()) on.exit(unlink(tmp, recursive = TRUE), add = TRUE) dir.create(tmp2 <- tempfile()) on.exit(unlink(tmp2, recursive = TRUE), add = TRUE) tt <- dirname(dirname(attr(packageDescription("testthat"), "file"))) ref <- paste0("installed::", tt) r <- pkg_plan$new( ref, library = dirname(tt), config = list(dependencies = FALSE, cache_dir = tmp)) expect_error(suppressMessages(r$resolve()), NA) expect_error(suppressMessages(r$download_resolution()), NA) dl <- r$get_resolution_download() expect_equal(dl$download_status, "Had") }) test_that("satisfy", { expect_true(satisfy_remote_installed()) })
DSBNormalizeProtein = function(cell_protein_matrix, empty_drop_matrix, denoise.counts = TRUE, use.isotype.control = TRUE, isotype.control.name.vec = NULL, define.pseudocount = FALSE, pseudocount.use, quantile.clipping = FALSE, quantile.clip = c(0.001, 0.9995), return.stats = FALSE){ a = isotype.control.name.vec b = rownames(empty_drop_matrix) c = rownames(cell_protein_matrix) if (!isTRUE(all.equal(rownames(cell_protein_matrix), rownames(empty_drop_matrix)))){ stopifnot(isTRUE(all.equal(nrow(cell_protein_matrix), nrow(empty_drop_matrix)))) diff = c(setdiff(c,b), setdiff(b,c)) if (length(diff) > 0) { stop(paste0('rows of cell and background matrices have mis-matching names: \n', diff)) } if (length(diff < 0)) { warning('rows (proteins) of cell_protein_matrix and empty_drop_matrix are not in the same order') rmatch = match(x = rownames(cell_protein_matrix), table = rownames(empty_drop_matrix) ) empty_drop_matrix = empty_drop_matrix[rmatch, ] print('reordered empty_drop_matrix rows to match cell_protein_matrix rows') } } if (!is.null(a) & !isTRUE(all(a %in% b)) & !isTRUE(all(a %in% c))){ stop(paste0("some elements of isotype.control.name.vec are not in input data rownames: \n", 'cell_protein_matrix - ', setdiff(a,b), ' \nempty_drop_matrix - ', setdiff(a,c)) ) } if (isFALSE(denoise.counts)) { print(paste0("Running step I ambient correction and log transformation, not running step II removal of cell to cell technical noise.", " Setting use.isotype.control and isotype.control.name.vec to FALSE and NULL")) use.isotype.control = FALSE isotype.control.name.vec = NULL } iso_detect = rownames(cell_protein_matrix)[grepl('sotype|Iso|iso|control|CTRL|ctrl|Ctrl', rownames(cell_protein_matrix))] if (isTRUE(use.isotype.control) & is.null(isotype.control.name.vec)) { stop('if use.isotype.control = TRUE, set isotype.control.name.vec to names of isotype control rows') if (length(iso_detect) > 0) { print('potential isotype controls detected: ') print(iso_detect) } } if (isTRUE(denoise.counts) & isFALSE(use.isotype.control)) { warning('denoise.counts = TRUE with use.isotype.control = FALSE not recommended if isotype controls are available.\n', ' If data include isotype controls, set `denoise.counts` = TRUE `use.isotype.control` = TRUE\n', ' and set `isotype.control.name.vec` to a vector of isotype control rownames from cell_protein_matrix' ) if (length(iso_detect) > 0) { print('potential isotype controls detected: ') print(iso_detect) } } adt = cell_protein_matrix %>% as.matrix() adtu = empty_drop_matrix %>% as.matrix() if(isTRUE(define.pseudocount)) { adtu_log = log(adtu + pseudocount.use) adt_log = log(adt + pseudocount.use) } else { adtu_log = log(adtu + 10) adt_log = log(adt + 10) } print("correcting ambient protein background noise") mu_u = apply(adtu_log, 1 , mean) sd_u = apply(adtu_log, 1 , sd) norm_adt = apply(adt_log, 2, function(x) (x - mu_u) / sd_u) if(isTRUE(denoise.counts)){ print(paste0('calculating dsb technical component for each cell to remove cell to cell techncial noise')) cellwise_background_mean = apply(norm_adt, 2, function(x) { g = mclust::Mclust(x, G=2, warn = FALSE, verbose = FALSE) return(g$parameters$mean[1]) }) gc() if (isTRUE(use.isotype.control)) { noise_matrix = rbind(norm_adt[isotype.control.name.vec, ], cellwise_background_mean) get_noise_vector = function(noise_matrix) { g = stats::prcomp(t(noise_matrix), scale = TRUE) return(g$x[ ,1]) } noise_vector = get_noise_vector(noise_matrix) norm_adt = limma::removeBatchEffect(norm_adt, covariates = noise_vector) } else { noise_vector = cellwise_background_mean norm_adt = limma::removeBatchEffect(norm_adt, covariates = noise_vector) } } if (isTRUE(quantile.clipping)) { ql = apply(norm_adt, 1, FUN = stats::quantile, quantile.clip[1]) qh = apply(norm_adt, 1, FUN = stats::quantile, quantile.clip[2]) for (i in 1:nrow(norm_adt)) { norm_adt[i, ] = ifelse(norm_adt[i, ] < ql[i], ql[i], norm_adt[i, ]) norm_adt[i, ] = ifelse(norm_adt[i, ] > qh[i], qh[i], norm_adt[i, ]) } } if(isTRUE(return.stats) & isTRUE(denoise.counts)) { print('returning list; access normalized matrix with x$dsb_normalized_matrix, protein stats list with x$protein_stats') technical_stats = cbind(t(noise_matrix), dsb_technical_component = noise_vector) protein_stats = list('background matrix stats' = data.frame(background_mean = mu_u, background_sd = sd_u), 'cell matrix stats' = data.frame(cell_mean = apply(adt_log, 1 , mean), cell_sd = apply(adt_log, 1 , sd)), 'dsb normalized stats' = data.frame(dsb_mean = apply(norm_adt, 1 , mean), dsb_sd = apply(adt_log, 1 , sd)) ) ret_obj = list( 'dsb_normalized_matrix' = norm_adt, 'technical_stats' = technical_stats, 'protein_stats' = protein_stats ) return(ret_obj) } if(isTRUE(return.stats) & isFALSE(denoise.counts)) { print('returning list; access normalized matrix with x$dsb_normalized_matrix, dsb and protein stats with x$protein_stats') protein_stats = list('background matrix stats' = data.frame(background_mean = mu_u, background_sd = sd_u), 'cell matrix stats' = data.frame(cell_mean = apply(adt_log, 1 , mean), cell_sd = apply(adt_log, 1 , sd)), 'dsb normalized stats' = data.frame(dsb_mean = apply(norm_adt, 1 , mean), dsb_sd = apply(adt_log, 1 , sd)) ) ret_obj = list( 'dsb_normalized_matrix' = norm_adt, 'protein_stats' = protein_stats ) return(ret_obj) } if(isFALSE(return.stats)) { return(norm_adt) } }
library(hadron) data <- matrix(rnorm(120), ncol = 10) data[, 3] <- NA print(data) cov(data) jackknife_cov(data) data <- matrix(rnorm(120), ncol = 10) data[2, ] <- NA print(data) cov(data) jackknife_cov(data) cov(data, use = 'complete') all(cov(data, use = 'complete') == cov(data[complete.cases(data), ])) jackknife_cov(data, na.rm = TRUE)
library(MixMatrix) context("Testing matrixmixture") test_that("Testing bad input", { set.seed(20180221) a_mat <- rmatrixnorm(15, mean = matrix(0, nrow = 3, ncol = 4)) b_mat <- rmatrixnorm(15, mean = matrix(2, nrow = 3, ncol = 4)) c_mat <- array(c(a_mat, b_mat), dim = c(3, 4, 30)) prior <- c(.5, .5) init <- list( centers = array(c(rep(0, 12), rep(2, 12)), dim = c(3, 4, 2)), U = array(c(diag(3), diag(3)), dim = c(3, 3, 2)), V = array(c(diag(4), diag(4)), dim = c(4, 4, 2)) ) expect_error(matrixmixture(c_mat, init, prior = c(.1, .1))) expect_error(matrixmixture(c_mat, init, prior = 0)) expect_error(matrixmixture(c_mat, init, prior = c(5, .1))) expect_error(matrixmixture(c_mat, init, prior = c(-1, .1))) expect_error(matrixmixture(c_mat, init)) expect_error(matrixmixture(list(), prior = c(.5, .5), model = "t", nu = 10 )) expect_error(matrixmixture(numeric(0), prior = c(.5, .5), model = "t", nu = 10 )) }) test_that("Bad results warn or stop", { set.seed(20180221) a_mat <- rmatrixnorm(15, mean = matrix(0, nrow = 3, ncol = 4)) b_mat <- rmatrixnorm(15, mean = matrix(2, nrow = 3, ncol = 4)) c_mat <- array(c(a_mat, b_mat), dim = c(3, 4, 30)) prior <- c(.5, .5) init <- list( centers = array(c(rep(0, 12), rep(2, 12)), dim = c(3, 4, 2)), U = array(c(diag(3), diag(3)), dim = c(3, 3, 2)), V = array(c(diag(4), diag(4)), dim = c(4, 4, 2)) ) expect_warning(capture.output(matrixmixture(c_mat, init, prior = c(.5, .5), iter = 1, verbose = 100 ), type = "output" )) expect_warning(matrixmixture(c_mat, init, prior = 2, model = "t", nu = 10, iter = 1 )) expect_warning(matrixmixture(c_mat, K = 2, model = "t", nu = 10, iter = 1 )) }) test_that("Mean restrictions work", { test_allequal <- function(x) all(abs(c(x) - c(x)[1]) < 1e-6) set.seed(20180221) a_mat <- rmatrixnorm(15, mean = matrix(0, nrow = 3, ncol = 4)) b_mat <- rmatrixnorm(15, mean = matrix(1, nrow = 3, ncol = 4)) c_mat <- array(c(a_mat, b_mat), dim = c(3, 4, 30)) prior <- c(.5, .5) expect_true(test_allequal(c(matrixmixture(c_mat, prior = c(.5, .5), col.mean = TRUE, row.mean = TRUE )$centers[, , 1]))) expect_true(test_allequal(c(matrixmixture(c_mat, prior = c(.5, .5), col.mean = FALSE, row.mean = TRUE )$centers[1, , 1]))) expect_true(test_allequal(matrixmixture(c_mat, prior = c(.5, .5), col.mean = TRUE, row.mean = FALSE )$centers[, 1, 1])) expect_true(!test_allequal(matrixmixture(c_mat, prior = c(.5, .5), col.mean = FALSE, row.mean = FALSE )$centers[1, , 1])) expect_true(test_allequal(matrixmixture(c_mat, prior = c(.5, .5), col.mean = TRUE, row.mean = TRUE, model = "t", nu = 5 )$centers[, , 1])) expect_true(test_allequal(matrixmixture(c_mat, prior = c(.5, .5), col.mean = FALSE, row.mean = TRUE, model = "t", nu = 5 )$centers[1, , 1])) expect_true(test_allequal(matrixmixture(c_mat, prior = c(.5, .5), col.mean = TRUE, row.mean = FALSE, model = "t", nu = 5 )$centers[, 1, 1])) expect_true(!test_allequal(matrixmixture(c_mat, prior = c(.5, .5), col.mean = FALSE, row.mean = FALSE, model = "t", nu = 5 )$centers[, 1, 1])) llrcmix <- logLik(matrixmixture(c_mat, prior = c(.5, .5), col.mean = TRUE, row.mean = TRUE )) llrmix <- logLik(matrixmixture(c_mat, prior = c(.5, .5), col.mean = FALSE, row.mean = TRUE )) llcmix <- logLik(matrixmixture(c_mat, prior = c(.5, .5), col.mean = TRUE, row.mean = FALSE )) llmix <- logLik(matrixmixture(c_mat, prior = c(.5, .5), col.mean = FALSE, row.mean = FALSE )) lltrcmix <- logLik(matrixmixture(c_mat, prior = c(.5, .5), col.mean = TRUE, row.mean = TRUE, model = "t", nu = 5 )) lltrmix <- logLik(matrixmixture(c_mat, prior = c(.5, .5), col.mean = FALSE, row.mean = TRUE, model = "t", nu = 5 )) lltcmix <- logLik(matrixmixture(c_mat, prior = c(.5, .5), col.mean = TRUE, row.mean = FALSE, model = "t", nu = 5 )) lltmix <- logLik(matrixmixture(c_mat, prior = c(.5, .5), col.mean = FALSE, row.mean = FALSE, model = "t", nu = 5 )) expect_equal(attributes(llrcmix)$df, attributes(lltrcmix)$df) expect_equal(attributes(llmix)$df, attributes(lltmix)$df) expect_equal(attributes(llcmix)$df, attributes(lltcmix)$df) expect_equal(attributes(llrmix)$df, attributes(lltrmix)$df) expect_lt(attributes(llrcmix)$df, attributes(llcmix)$df) expect_lt(attributes(llcmix)$df, attributes(llmix)$df) expect_lt(attributes(llrmix)$df, attributes(llmix)$df) }) test_that("Predict Mix Model works", { set.seed(20180221) a_mat <- rmatrixnorm(15, mean = matrix(0, nrow = 3, ncol = 4)) b_mat <- rmatrixnorm(15, mean = matrix(1, nrow = 3, ncol = 4)) c_mat <- array(c(a_mat, b_mat), dim = c(3, 4, 30)) prior <- c(.5, .5) mix <- matrixmixture(c_mat, prior = c(.5, .5)) mixt <- matrixmixture(c_mat, prior = c(.5, .5), model = "t", nu = 5) expect_error( predict(mix, newdata = matrix(0, nrow = 3, ncol = 2)), "dimension" ) expect_error( predict(mix, newdata = (matrix(0, nrow = 2, ncol = 3))), "dimension" ) expect_equal(sum(predict(mix, newdata = matrix( 0, nrow = 3, ncol = 4 ))$posterior), 1) expect_equal(sum(predict(mix, prior = c(.7, .3))$posterior[1, ]), 1) expect_equal(sum(predict(mixt, newdata = matrix( 0, nrow = 3, ncol = 4 ))$posterior), 1) expect_equal(sum(predict(mixt, prior = c(.7, .3))$posterior[1, ]), 1) }) test_that("Init function works", { set.seed(20180221) a_mat <- rmatrixnorm(15, mean = matrix(0, nrow = 3, ncol = 4)) b_mat <- rmatrixnorm(15, mean = matrix(1, nrow = 3, ncol = 4)) c_mat <- array(c(a_mat, b_mat), dim = c(3, 4, 30)) prior <- c(.5, .5) testinit <- init_matrixmixture(c_mat, K = 2, centers = matrix(7, 3, 4), U = 4 * diag(3), V = 3 * diag(4) ) testinit_two <- init_matrixmixture(c_mat, K = 2, init = list( centers = matrix(7, 3, 4), U = 4 * diag(3), V = 3 * diag(4) ) ) expect_equal(testinit$U[1, 1, 1], 4) expect_equal(testinit$U[2, 2, 2], 4) expect_equal(testinit$V[2, 2, 2], 3) expect_equal(testinit$centers[1, 1, 2], 7) expect_equal(testinit_two$U[1, 1, 1], 4) expect_equal(testinit_two$U[2, 2, 2], 4) expect_equal(testinit$V[2, 2, 2], 3) expect_equal(testinit_two$centers[1, 1, 2], 7) })
library(testthat) context('Spec v1.1, delimiters') test_that( "Pair Behavior", { template <- "{{=<% %>=}}(<%text%>)" data <- list(text = "Hey!") str <- whisker.render(template, data=data) expect_equal(str, "(Hey!)", label=deparse(str), info="The equals sign (used on both sides) should permit delimiter changes.") }) test_that( "Special Characters", { template <- "({{=[ ]=}}[text])" data <- list(text = "It worked!") str <- whisker.render(template, data=data) expect_equal(str, "(It worked!)", label=deparse(str), info="Characters with special meaning regexen should be valid delimiters.") }) test_that( "Sections", { template <- "[\n{{ data <- list(section = TRUE, data = "I got interpolated.") str <- whisker.render(template, data=data) expect_equal(str, "[\n I got interpolated.\n |data|\n\n {{data}}\n I got interpolated.\n]\n", label=deparse(str), info="Delimiters set outside sections should persist.") }) test_that( "Inverted Sections", { template <- "[\n{{^section}}\n {{data}}\n |data|\n{{/section}}\n\n{{= | | =}}\n|^section|\n {{data}}\n |data|\n|/section|\n]\n" data <- list(section = FALSE, data = "I got interpolated.") str <- whisker.render(template, data=data) expect_equal(str, "[\n I got interpolated.\n |data|\n\n {{data}}\n I got interpolated.\n]\n", label=deparse(str), info="Delimiters set outside inverted sections should persist.") }) test_that( "Partial Inheritence", { template <- "[ {{>include}} ]\n{{= | | =}}\n[ |>include| ]\n" data <- list(value = "yes") partials <- list(include = ".{{value}}.") str <- whisker.render(template, partials=partials, data=data) expect_equal(str, "[ .yes. ]\n[ .yes. ]\n", label=deparse(str), info="Delimiters set in a parent template should not affect a partial.") }) test_that( "Post-Partial Behavior", { template <- "[ {{>include}} ]\n[ .{{value}}. .|value|. ]\n" data <- list(value = "yes") partials <- list(include = ".{{value}}. {{= | | =}} .|value|.") str <- whisker.render(template, partials=partials, data=data) expect_equal(str, "[ .yes. .yes. ]\n[ .yes. .|value|. ]\n", label=deparse(str), info="Delimiters set in a partial should not affect the parent template.") }) test_that( "Surrounding Whitespace", { template <- "| {{=@ @=}} |" data <- list() str <- whisker.render(template, data=data) expect_equal(str, "| |", label=deparse(str), info="Surrounding whitespace should be left untouched.") }) test_that( "Outlying Whitespace (Inline)", { template <- " | {{=@ @=}}\n" data <- list() str <- whisker.render(template, data=data) expect_equal(str, " | \n", label=deparse(str), info="Whitespace should be left untouched.") }) test_that( "Standalone Tag", { template <- "Begin.\n{{=@ @=}}\nEnd.\n" data <- list() str <- whisker.render(template, data=data) expect_equal(str, "Begin.\nEnd.\n", label=deparse(str), info="Standalone lines should be removed from the template.") }) test_that( "Indented Standalone Tag", { template <- "Begin.\n {{=@ @=}}\nEnd.\n" data <- list() str <- whisker.render(template, data=data) expect_equal(str, "Begin.\nEnd.\n", label=deparse(str), info="Indented standalone lines should be removed from the template.") }) test_that( "Standalone Line Endings", { template <- "|\r\n{{= @ @ =}}\r\n|" data <- list() str <- whisker.render(template, data=data) expect_equal(str, "|\r\n|", label=deparse(str), info="\"\\r\\n\" should be considered a newline for standalone tags.") }) test_that( "Standalone Without Previous Line", { template <- " {{=@ @=}}\n=" data <- list() str <- whisker.render(template, data=data) expect_equal(str, "=", label=deparse(str), info="Standalone tags should not require a newline to precede them.") }) test_that( "Standalone Without Newline", { template <- "=\n {{=@ @=}}" data <- list() str <- whisker.render(template, data=data) expect_equal(str, "=\n", label=deparse(str), info="Standalone tags should not require a newline to follow them.") }) test_that( "Pair with Padding", { template <- "|{{= @ @ =}}|" data <- list() str <- whisker.render(template, data=data) expect_equal(str, "||", label=deparse(str), info="Superfluous in-tag whitespace should be ignored.") })
rvmedian <- function (x) { UseMethod("rvmedian") } rvmedian.rv <- function (x) { rvsimapply(x, median, na.rm=TRUE) } rvmedian.rvsummary <- function (x) { rvquantile(x, probs=0.50) }
require(rgdal) library(raster) library(sp) library(RgoogleMaps) library(maptools) library(ggplot2) library(car) library(spatsta) calib_inpath <-"/Users/hardimanb/Desktop/data.remote/biometry" calib_infile <-read.csv(file.path(calib_inpath,"biometry_trimmed.csv"), sep=",", header=T) coords<-data.frame(calib_infile$easting,calib_infile$northing) Sr1<- SpatialPoints(coords,proj4string=CRS("+proj=utm +zone=15 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0")) epsg4326String <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") Sr1_4google <- spTransform(Sr1,epsg4326String) wlef<-data.frame(paste(calib_infile$plot,calib_infile$subplot,sep="_")) Sr1_4google <- SpatialPointsDataFrame(Sr1_4google, wlef) writeOGR(Sr1_4google, layer=1, "WLEF.kml", driver="KML") disturbance_inpath <-"/Users/hardimanb/Desktop/data.remote/biometry" disturbance_infile <-read.csv(file.path(disturbance_inpath,"Cheas_coordinates_disturbance_year.csv"), sep=",", header=T) disturbance_coords<-data.frame(cbind(-1*disturbance_infile$dec_lon,disturbance_infile$dec_lat)) dist_df<-data.frame(disturbance_infile$distyr) coordinates(dist_df)<-disturbance_coords disturbance_Sr1<- SpatialPoints(dist_df,CRS(as.character(NA))) proj4string(disturbance_Sr1) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") writeOGR(dist_df, layer=1, "landtrendr_disturbances.kml", driver="KML") lakes <-file.path("/Users/hardimanb/Desktop/data.remote/plot_coords/Lakes.kml") lake_coord_list<-getKMLcoordinates(lakes,ignoreAltitude=FALSE) lake_pts<-data.frame() for(i in 1:length(lake_coord_list)){ lake_pts<-rbind(lake_pts,lake_coord_list[[i]]) } lake_pts<-lake_pts[,1:2] lake_coords<-coordinates(lake_pts) lake_Sr1<- SpatialPoints(lake_coords,CRS(as.character(NA))) proj4string(lake_Sr1) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") palsar_inpath <- file.path("/Users/hardimanb/Desktop/data.remote/palsar_scenes/geo_corrected_single_gamma") file.info<-read.table(file="/Users/hardimanb/Desktop/data.remote/output/metadata/output_metadata.csv",header=T,sep="\t") date.time<-as.vector(substr(file.info$scndate,1,8)) col_names<-c(rbind(paste(date.time, "HH",sep="_"),paste(date.time, "HV",sep="_"))) pol_bands<-c("HH", "HV") numfiles<-length(date.time) lake_extracted<-matrix(NA, nrow(lake_coords),length(pol_bands)*numfiles) disturbance_extracted_40m<-matrix(NA, nrow(disturbance_coords),length(pol_bands)*numfiles) colnames(lake_extracted)<-col_names colnames(disturbance_extracted)<-col_names colnames(disturbance_extracted_40m)<-col_names extracted_7m<-matrix(NA, nrow(coords),length(pol_bands)*numfiles) extracted<-matrix(NA, nrow(coords),length(pol_bands)*numfiles) extracted_40m<-matrix(NA, nrow(coords),length(pol_bands)*numfiles) colnames(extracted_7m)<-col_names colnames(extracted)<-col_names colnames(extracted_40m)<-col_names for(i in 1:numfiles){ for(j in 1:2){ filelist<-as.vector(list.files(file.path(palsar_inpath, pol_bands[j]), pattern=".tif" ,recursive=F)) inpath<-file.path(palsar_inpath,pol_bands[j],filelist[i]) rast<-raster(inpath) disturbance_data<-extract(rast, disturbance_Sr1, method="simple",buffer=40, small=T, fun=mean) disturbance_cols<-seq(j,ncol(disturbance_extracted_40m),by=2) disturbance_extracted_40m[,disturbance_cols[i]]<-disturbance_data print(paste("i=",i,sep="")) print(paste("j=",j,sep="")) } } write.table(extracted,file="/Users/hardimanb/Desktop/data.remote/output/data/WLEF_extracted.csv",quote=F,sep="\t",eol="\r\n", row.names=F,col.names=T) write.table(lake_extracted,file="/Users/hardimanb/Desktop/data.remote/output/data/lake_extracted.csv",quote=F,sep="\t",eol="\r\n", row.names=F,col.names=T) write.table(disturbance_extracted_40m,file="/Users/hardimanb/Desktop/data.remote/output/data/disturbance_extracted_40m.csv",quote=F,sep="\t",eol="\r\n", row.names=F,col.names=T) write.table(extracted_7m,file="/Users/hardimanb/Desktop/data.remote/output/data/WLEF_extracted_7m.csv",quote=F,sep="\t",eol="\r\n", row.names=F,col.names=T) write.table(extracted_40m,file="/Users/hardimanb/Desktop/data.remote/output/data/WLEF_extracted_40m.csv",quote=F,sep="\t",eol="\r\n", row.names=F,col.names=T) extracted <- read.table(file="/Users/hardimanb/Desktop/data.remote/output/data/WLEF_extracted.csv",sep="\t", header=T) lake_extracted <- read.table(file="/Users/hardimanb/Desktop/data.remote/output/data/lake_extracted.csv",sep="\t", header=T) disturbance_extracted <- read.table(file="/Users/hardimanb/Desktop/data.remote/output/data/disturbance_extracted.csv",sep="\t", header=T) sd_10m_extracted<-matrix(NA, nrow(coords),length(pol_bands)*numfiles) sd_20m_extracted<-matrix(NA, nrow(coords),length(pol_bands)*numfiles) sd_40m_extracted<-matrix(NA, nrow(coords),length(pol_bands)*numfiles) sd_60m_extracted<-matrix(NA, nrow(coords),length(pol_bands)*numfiles) sd_80m_extracted<-matrix(NA, nrow(coords),length(pol_bands)*numfiles) colnames(sd_10m_extracted)<-col_names colnames(sd_20m_extracted)<-col_names colnames(sd_40m_extracted)<-col_names colnames(sd_60m_extracted)<-col_names colnames(sd_80m_extracted)<-col_names coords<-Sr1@coords for(i in 1:numfiles){ for(j in 1:2){ for(k in 1:nrow(coords)){ filelist<-as.vector(list.files(file.path(palsar_inpath, pol_bands[j]), pattern=".tif" ,recursive=F)) inpath<-file.path(palsar_inpath,pol_bands[j],filelist[i]) rast<-raster(inpath) if(as.numeric(substr(projection(rast),17,18)) == as.numeric(substr(projection(Sr1),17,18))){ radius<-10 buffext<-as.vector(disc(radius=radius, centre=coords[k,])) ext<-extent(c(buffext[[2]],buffext[[3]])) cellnums<-cellsFromExtent(rast,ext) cols<-seq(j,ncol(sd_10m_extracted),by=2) sd_10m_extracted[k,cols[i]]<- sd(extract(rast,cellnums)) radius<-20 buffext<-as.vector(disc(radius=radius, centre=coords[k,])) ext<-extent(c(buffext[[2]],buffext[[3]])) cellnums<-cellsFromExtent(rast,ext) cols<-seq(j,ncol(sd_20m_extracted),by=2) sd_20m_extracted[k,cols[i]]<- sd(extract(rast,cellnums)) radius<-40 buffext<-as.vector(disc(radius=radius, centre=coords[k,])) ext<-extent(c(buffext[[2]],buffext[[3]])) cellnums<-cellsFromExtent(rast,ext) cols<-seq(j,ncol(sd_40m_extracted),by=2) sd_40m_extracted[k,cols[i]]<- sd(extract(rast,cellnums)) radius<-60 buffext<-as.vector(disc(radius=radius, centre=coords[k,])) ext<-extent(c(buffext[[2]],buffext[[3]])) cellnums<-cellsFromExtent(rast,ext) cols<-seq(j,ncol(sd_60m_extracted),by=2) sd_60m_extracted[k,cols[i]]<- sd(extract(rast,cellnums)) radius<-80 buffext<-as.vector(disc(radius=radius, centre=coords[k,])) ext<-extent(c(buffext[[2]],buffext[[3]])) cellnums<-cellsFromExtent(rast,ext) cols<-seq(j,ncol(sd_80m_extracted),by=2) sd_80m_extracted[k,cols[i]]<- sd(extract(rast,cellnums)) print(paste("i=",i,sep="")) print(paste("j=",j,sep="")) print(paste("k=",k,sep="")) } } } } par(mfrow=c(1,1)) for(i in 1:nrow(coords)){ plot(c(10,20,40,60,80),c(sd_10m_extracted[i,1],sd_20m_extracted[i,1],sd_40m_extracted[i,1], sd_60m_extracted[i,1], sd_80m_extracted[i,1]), xlim=c(10,80),ylim=c(0,3), xlab="plot radius (m)",ylab="STDEV of extracted PALSAR returns (HH, gamma (dB))",type="n") lines(c(10,20,40,60,80),c(sd_10m_extracted[i,1],sd_20m_extracted[i,1],sd_40m_extracted[i,1], sd_60m_extracted[i,1], sd_80m_extracted[i,1]), type="b") par(new=TRUE) } plot(sd_10m_extracted[,1],sd_20m_extracted[,1], xlim=c(0,2), ylim=c(0,2)) plot(sd_20m_extracted[,1],sd_40m_extracted[,1], xlim=c(0,2), ylim=c(0,2)) plot(sd_10m_extracted[,1],sd_40m_extracted[,1], xlim=c(0,2), ylim=c(0,2)) extracted <- extracted[ , !apply(is.na(extracted), 2, all)] lake_extracted <- lake_extracted[ , !apply(is.na(lake_extracted), 2, all)] disturbance_extracted <- disturbance_extracted[ , !apply(is.na(disturbance_extracted), 2, all)] head(extracted) head(lake_extracted) head(disturbance_extracted) extracted_7m extracted extracted_40m sd_7m_extracted sd_20m_extracted sd_40m_extracted odds<-seq(1,ncol(extracted),by=2) evens<-seq(2,ncol(extracted),by=2) HHscn.dates<-as.Date(substr(col_names[odds],1,8),"%Y%m%d") HVscn.dates<-as.Date(substr(col_names[evens],1,8),"%Y%m%d") HH_wlef<-extracted[,odds] HV_wlef<-extracted[,evens] par(mfrow=c(2,1)) boxplot(HV_wlef,ylab="HV_gamma",main='WLEF_plots (n=609)',xaxt="n") axis(1, at=seq(1, ncol(HV_wlef), by=1), labels = F) text(seq(1, ncol(HV_wlef), by=1),par("usr")[3]-0.02,labels = HVscn.dates, srt = 45, pos = 1, xpd = TRUE) boxplot(HH_wlef, ylab="HH_gamma", xaxt="n") axis(1, at=seq(1, ncol(HH_wlef), by=1), labels = F) text(seq(1, ncol(HH_wlef), by=1),par("usr")[3]-0.15,labels = HHscn.dates, srt = 45, pos = 1, xpd = TRUE) HH_lakes<-lake_extracted[,odds] HV_lakes<-lake_extracted[,evens] par(mfrow=c(2,1)) boxplot(HV_lakes,ylab="HV_gamma",main='lakes (n=25)',xaxt="n") axis(1, at=seq(1, 12, by=1), labels = F) text(seq(1, 12, by=1),par("usr")[3]-0.2,labels = HVscn.dates, srt = 45, pos = 1, xpd = TRUE) boxplot(HH_lakes, ylab="HH_gamma", xaxt="n") axis(1, at=seq(1, 12, by=1), labels = F) text(seq(1, 12, by=1),par("usr")[3]-0.2,labels = HHscn.dates, srt = 45, pos = 1, xpd = TRUE) dist_odds<-seq(1,ncol(disturbance_extracted),by=2) dist_evens<-seq(2,ncol(disturbance_extracted),by=2) HH_disturb<-disturbance_extracted[,dist_odds] HV_disturb<-disturbance_extracted[,dist_evens] par(mfrow=c(2,1)) boxplot(HV_disturb,ylab="HV_gamma",main='LandTrendr-Disturbance Plots (n=?)',xaxt="n") axis(1, at=seq(1, ncol(HV_disturb), by=1), labels = F) text(seq(0, ncol(HV_disturb)-1, by=1),par("usr")[3]-0.02,labels = HVscn.dates, srt = 45, pos = 1, xpd = TRUE) boxplot(HH_disturb, ylab="HH_gamma", xaxt="n") axis(1, at=seq(1, ncol(HH_disturb), by=1), labels = F) text(seq(0, ncol(HH_disturb)-1, by=1),par("usr")[3]-0.075,labels = HHscn.dates, srt = 45, pos = 1, xpd = TRUE) wlef_abg<-read.csv("/Users/hardimanb/Desktop/data.remote/biometry/biometry_trimmed.csv", sep="\t", header=T) HVcol_names<-col_names[evens] HHcol_names<-col_names[odds] par(mfrow=c(3,length(odds)/3)) for(i in 1:ncol(extracted)){ if(i%%2==0){ if(extracted[,i]) plot(wlef_abg$ABG_biomass,extracted[,i], ylim=c(0,0.18), xlab="ABG-biomass", ylab="HV", main=col_names[i]) par(new=F) } } par(mfrow=c(3,length(odds)/3)) for(i in 1:ncol(extracted)){ if(i%%2!=0){ plot(wlef_abg$ABG_biomass,extracted[,i], ylim=c(0,1), xlab="ABG-biomass", ylab="HH", main=col_names[i]) par(new=F) } } noise <- colMeans(lake_extracted,na.rm=TRUE,1) signal_extracted<-matrix(NA,nrow(extracted),ncol(extracted)) colnames(signal_extracted)<-colnames(extracted) for(i in 1:ncol(extracted)){ signal_extracted[,i]<-extracted[,i]-noise[i] } HH_signal<-signal_extracted[,odds] HV_signal<-signal_extracted[,evens] par(mfrow=c(2,1)) boxplot(HV_signal,ylab="HV_gamma",main='Corrected WLEF returns (n=609 plots)',xaxt="n") axis(1, at=seq(1, 12, by=1), labels = F) text(seq(1, 12, by=1),par("usr")[3]-0.025,labels = HVscn.dates, srt = 45, pos = 1, xpd = TRUE) boxplot(HH_signal, ylab="HH_gamma", xaxt="n") axis(1, at=seq(1, 12, by=1), labels = F) text(seq(1, 12, by=1),par("usr")[3]-0.2,labels = HHscn.dates, srt = 45, pos = 1, xpd = TRUE) HVcol_names<-col_names[evens] HHcol_names<-col_names[odds] par(mfrow=c(2,ncol(HV_signal)/2)) for(i in 1:ncol(HV_signal)){ plot(wlef_abg$ABG_biomass,HV_signal[,i], ylim=c(0,0.2),xlab="ABG-biomass", ylab="HV_signal", main=HVcol_names[i]) par(new=F) } par(mfrow=c(2,ncol(HH_signal)/2)) for(i in 1:ncol(HH_signal)){ plot(wlef_abg$ABG_biomass,HH_signal[,i], ylim=c(0,1),xlab="ABG-biomass", ylab="HH_signal", main=HHcol_names[i]) par(new=F) } par(mfrow=c(1,2)) plot(wlef_abg$ABG_biomass,HH_signal[,1], ylim=c(0,1),xlab="ABG-biomass", ylab="HV_signal", main=HHcol_names[1]) plot(wlef_abg$ABG_biomass,HV_signal[,1], ylim=c(0,0.2),xlab="ABG-biomass", ylab="HH_signal", main=HVcol_names[1]) par(mfrow=c(1,2)) scatter.smooth(wlef_abg$ABG_biomass,HH_signal[,1],col=" scatter.smooth(wlef_abg$ABG_biomass,HV_signal[,1],col=" k<-100 HVmax<-.07 sd<-sd(HV_signal[,1]) params<-c(k,HVmax,sd) y<-HV_signal[,1] x<-wlef_abg$ABG_biomass sel = which(x>0) x = x[sel];y=y[sel] ll.monod(params,x,y) fit1 = optim(par=params,ll.monod,x=x,y=y) fit1 params = fit1$par plot(x,y,ylim=c(0,max(y))) xseq = seq(min(x),max(x),length=1000) lines(xseq,params[2]*xseq/(xseq+params[1]),col=2,lwd=3) lines(cbind(biomass,HVvals),col=3,lwd=3) params2 = c(50,0.7,0.2,1) fit2 = optim(par=params2,ll.monod2,x=x,y=y) fit2 params2 = fit2$par lines(xseq,params2[2]*xseq/(xseq+params2[1])+params2[3],col=4,lwd=3) lines(lowess(x,y),col=5,lwd=3) bin.size = 25 xbin = seq(0,450,bin.size) bin = findInterval(x,xbin) bin.mu = tapply(y,bin,mean,na.rm=TRUE) bin.sd = tapply(y,bin,sd,na.rm=TRUE) points(xbin[sort(as.numeric(names(bin.mu)))]+bin.size/2,bin.mu,col="orange",cex=3,pch=18) points(xbin[sort(as.numeric(names(bin.mu)))]+bin.size/2,bin.mu+bin.sd,col="orange",cex=3,pch="_") points(xbin[sort(as.numeric(names(bin.mu)))]+bin.size/2,bin.mu-bin.sd,col="orange",cex=3,pch="_") biomass<-loess.smooth(wlef_abg$ABG_biomass,HV_signal[,1])$x HVvals<-loess.smooth(wlef_abg$ABG_biomass,HV_signal[,1])$y par(mfrow=c(1,1)) plot(cbind(biomass,HVvals)) plot(loess.smooth(wlef_abg$ABG_biomass,HV_signal[,1])) par(mfrow=c(2,ncol(HH_signal)/2)) for(i in 1:ncol(HH_signal)){ scatter.smooth(wlef_abg$ABG_biomass,HH_signal[,i],ylim=c(0,1),col=" par(new=F) } x<-loess.smooth(wlef_abg$ABG_biomass,HH_signal[,i])$x y<-loess.smooth(wlef_abg$ABG_biomass,HH_signal[,i])$y par(mfrow=c(2,ncol(HV_signal)/2)) for(i in 1:ncol(HV_signal)){ scatter.smooth(wlef_abg$ABG_biomass,HV_signal[,i],ylim=c(0,0.2),col=" par(new=F) } x<-loess.smooth(wlef_abg$ABG_biomass,HV_signal[,i])$x y<-loess.smooth(wlef_abg$ABG_biomass,HV_signal[,i])$y disturbance_signal<-matrix(NA,nrow(disturbance_extracted),ncol(disturbance_extracted)) colnames(disturbance_signal)<-colnames(disturbance_extracted) HH_noise<-mean(noise[seq(1,length(noise),by=2)]) HV_noise<-mean(noise[seq(2,length(noise),by=2)]) noise_constant<-c(HH_noise,HV_noise) for(i in 1:ncol(disturbance_extracted)){ if(i%%2==0){ disturbance_signal[,i]<-disturbance_extracted[,i]-noise_constant[1] }else{ disturbance_signal[,i]<-disturbance_extracted[,i]-noise_constant[2] } } HH_disturb<-disturbance_signal[,dist_odds] HV_disturb<-disturbance_signal[,dist_evens] scn.dates<-as.Date(substr(colnames(disturbance_extracted),2,9),"%Y%m%d") scn.yr<-substr(colnames(disturbance_extracted),2,5) scn.yr<-as.numeric(scn.yr[dist_odds]) colnames(HH_disturb)<-as.character(scn.dates[dist_odds]) colnames(HV_disturb)<-as.character(scn.dates[dist_evens]) disturbance_ages<-matrix(NA,nrow(HH_disturb),length(scn.yr)) colnames(disturbance_ages)<-as.character(scn.dates[dist_evens]) for(i in 1:length(scn.yr)){ disturbance_ages[,i]<-scn.yr[i]-disturbance_infile$distyr } disturbance_ages[is.na(HH_disturb)]=NA par(mfrow=c(1,1)) for(i in 1:ncol(HH_disturb)){ plot(disturbance_ages[,i]>0, HH_disturb[,i], pch=i) par(new=T) } ltzero<-HH_disturb[disturbance_ages[,1]<=0,1] ltfive<-HH_disturb[disturbance_ages[,1]>0 & disturbance_ages[,1]<=5,1] ltten<-HH_disturb[disturbance_ages[,1]>5 & disturbance_ages[,1]<=10,1] ltfifteen<-HH_disturb[disturbance_ages[,1]>10 & disturbance_ages[,1]<=15,1] lttwenty<-HH_disturb[disturbance_ages[,1]>15 & disturbance_ages[,1]<=20,1] lttwentyfive<-HH_disturb[disturbance_ages[,1]>20 & disturbance_ages[,1]<=25,1] n <- max(length(ltzero), length(ltfive), length(ltten) , length(ltfifteen) , length(lttwenty), length(lttwentyfive)) length(ltzero) <- n length(ltfive) <- n length(ltten) <- n length(ltfifteen) <- n length(lttwenty) <- n length(lttwentyfive) <- n binned<-cbind(ltfive,ltten,ltfifteen,lttwenty,lttwentyfive) par(mfrow=c(1,1)) boxplot(binned) par(mfrow=c(1,1)) plot(c(0,5,10,15,20,25),binned) neg<-mean(HH_disturb[disturbance_ages<=0],na.rm=T) five<-mean(HH_disturb[disturbance_ages>0 & disturbance_ages<=5],na.rm=T) ten<-mean(HH_disturb[disturbance_ages>5 & disturbance_ages<=10],na.rm=T) fif<-mean(HH_disturb[disturbance_ages>10 & disturbance_ages<=15],na.rm=T) twen<-mean(HH_disturb[disturbance_ages>15 & disturbance_ages<=20],na.rm=T) twenfi<-mean(HH_disturb[disturbance_ages>20 & disturbance_ages<=25],na.rm=T) binned<-cbind(c(0,5,10,15,20,25),c(neg,five,ten,fif,twen,twenfi)) par(mfrow=c(1,1)) plot(binned[,1],binned[,2], ylim=c(0,.2)) scatter.smooth(disturbance_ages[disturbance_ages>0 & disturbance_ages<=5],HH_disturb[disturbance_ages>0 & disturbance_ages<=5],col=" scatter.smooth(disturbance_ages[disturbance_ages>5 & disturbance_ages<=10],HH_disturb[disturbance_ages>5 & disturbance_ages<=10],col=" scatter.smooth(disturbance_ages[disturbance_ages>10 & disturbance_ages<=15],HH_disturb[disturbance_ages>10 & disturbance_ages<=15],col=" plot(disturbance_infile$distyr,HH_disturb[,1]) boxplot(HH_disturb, xlab="Time since disturbance (years)",ylab="HH_gamma", xaxt="n") axis(1, at=seq(1, length(age)-1, by=1), labels = F) text(seq(min(age), max(age), by=1),par("usr")[3]-0.01,labels = age, srt = 0, pos = 1, xpd = TRUE) boxplot(HH_disturb) ~ disturbance_ages),disturbance_ages,labels=NULL) Boxplot(HV_disturb,disturbance_ages,labels=NULL) if(i==1){ plot(x,y, xlab="Disturbance Age", ylab="HH",main="PALSAR returns from disturbed plots", pch=i) } else{plot(x,y,axes=F, xlab="",ylab="",pch=i) } par(new=T) } par(mfrow=c(1,2)) par(mfg=c(2,1)) for(i in 1:ncol(HH_disturb)){ if(i==1){plot(disturbance_ages[!is.na(HH_disturb[,i]),i],HH_disturb[!is.na(HH_disturb[,i]),i], xlab="Time since disturbance", ylab="HH",main="PALSAR returns from disturbed plots", pch=i) } else{plot(disturbance_ages[!is.na(HH_disturb[,i]),i],HH_disturb[!is.na(HH_disturb[,i]),i],axes=F, xlab="",ylab="",pch=i) } par(new=T) } par(mfg=c(1,2)) for(i in 1:ncol(HV_disturb)){ if(i==1){plot(disturbance_ages[!is.na(HV_disturb[,i]),i],HV_disturb[!is.na(HV_disturb[,i]),i], xlab="Time since disturbance", ylab="HV",main="PALSAR returns from disturbed plots", pch=i) } else{plot(disturbance_ages[!is.na(HV_disturb[,i]),i],HV_disturb[!is.na(HV_disturb[,i]),i],axes=F, xlab="",ylab="",pch=i) } par(new=T) } mean(HV_disturb[disturbance_ages[,1]<0,1]) plot(disturbance_ages[!is.na(HV_disturb[,1])],HV_disturb[!is.na(HV_disturb[,1]),1], xlab="Disturbance Date", ylab="HV",main=paste("scn date",scn.dates[1],sep=" ")) lm_data<-cbind(wlef_abg$ABG_biomass,extracted) summary(lm(wlef_abg$ABG_biomass ~ extracted[,1]+extracted[,2])) for(i in 1:nrow(extracted)){ plot(HH[i,],NULL, axes=F,ylim=c(0,max(HH)), main="HH",type="n") lines(HH[i,],NULL,'b') par(new=T) } par(mfrow=c(1,1), new=F) plot() for(i in 1:nrow(extracted)){ plot(HV[i,],NULL, axes=F,ylim=c(0,max(HV)), main="HV", type="n") lines(HV[i,],NULL,'b') par(new=T) } par(mfrow=c(2,1)) plot(extracted[,1],extracted[,3], xlim=c(0,.4), ylim=c(0,.6),xlab="2007 HH gamma", ylab="2010 HH gamma",main="2007 vs 2010 WLEF plots") abline(0,1,col="red") plot(extracted[,2],extracted[,4], xlab="2007 HV gamma", ylab="2010 HV gamma") abline(0,1,col="red") par(mfrow=c(2,1)) plot(infile$ANPPW,extracted[,1], xlab="ABG-biomass", ylab="HH") plot(infile$ANPPW,extracted[,2], xlab="ABG-biomass", ylab="HV")
seg.glm.fit.boot<-function(y, XREG, Z, PSI, w, offs, opz, n.boot=10, size.boot=NULL, jt=FALSE, nonParam=TRUE, random=FALSE, break.boot=n.boot){ extract.psi<-function(lista){ dev.values<-lista[[1]][-1] psi.values<-lista[[2]][-1] dev.ok<-min(dev.values) id.dev.ok<-which.min(dev.values) if(is.list(psi.values)) psi.values<-matrix(unlist(psi.values), nrow=length(dev.values), byrow=TRUE) if(!is.matrix(psi.values)) psi.values<-matrix(psi.values) psi.ok<-psi.values[id.dev.ok,] r<-list(dev.no.gap=dev.ok, psi=psi.ok) r } if(!nonParam){ nonParam<-TRUE warning("`nonParam' set to TRUE for segmented glm..", call.=FALSE) } visualBoot<-opz$visualBoot opz.boot<-opz opz.boot$pow=c(1,1) opz1<-opz opz1$it.max <-1 n<-length(y) o0<-try(suppressWarnings(seg.glm.fit(y, XREG, Z, PSI, w, offs, opz)), silent=TRUE) rangeZ <- apply(Z, 2, range) if(!is.list(o0)) { o0<- suppressWarnings(seg.glm.fit(y, XREG, Z, PSI, w, offs, opz, return.all.sol=TRUE)) o0<-extract.psi(o0) if(!nonParam) {warning("using nonparametric boot");nonParam<-TRUE} } if(is.list(o0)){ est.psi00<-est.psi0<-o0$psi ss00<-o0$dev.no.gap if(!nonParam) fitted.ok<-fitted(o0) } else { if(!nonParam) stop("semiparametric boot requires reasonable fitted values. try a different psi or use nonparam boot") if(random) { est.psi00<-est.psi0<-apply(rangeZ,2,function(r)runif(1,r[1],r[2])) PSI1 <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0)) o0<-try(suppressWarnings(seg.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE) ss00<-o0$dev.no.gap } else { est.psi00<-est.psi0<-apply(PSI,2,mean) ss00<-opz$dev0 } } n.intDev0<-nchar(strsplit(as.character(ss00),"\\.")[[1]][1]) all.est.psi.boot<-all.selected.psi<-all.est.psi<-matrix(, nrow=n.boot, ncol=length(est.psi0)) all.ss<-all.selected.ss<-rep(NA, n.boot) if(is.null(size.boot)) size.boot<-n Z.orig<-Z count.random<-0 for(k in seq(n.boot)){ n.boot.rev<- 3 diff.selected.ss <- rev(diff(na.omit(all.selected.ss))) if(length(diff.selected.ss)>=(n.boot.rev-1) && all(round(diff.selected.ss[1:(n.boot.rev-1)],6)==0)){ qpsi<-sapply(1:ncol(Z),function(i)mean(est.psi0[i]>=Z[,i])) qpsi<-ifelse(abs(qpsi-.5)<.1,.8,qpsi) est.psi0<-sapply(1:ncol(Z),function(i)quantile(Z[,i],probs=1-qpsi[i],names=FALSE)) } PSI <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0)) if(jt) Z<-apply(Z.orig,2,jitter) if(nonParam){ id<-sample(n, size=size.boot, replace=TRUE) o.boot<-try(suppressWarnings(seg.glm.fit(y[id], XREG[id,,drop=FALSE], Z[id,,drop=FALSE], PSI[id,,drop=FALSE], w[id], offs[id], opz)), silent=TRUE) } else { yy<-fitted.ok+sample(residuals(o0),size=n, replace=TRUE) o.boot<-try(suppressWarnings(seg.glm.fit(yy, XREG, Z.orig, PSI, weights, offs, opz)), silent=TRUE) } if(is.list(o.boot)){ all.est.psi.boot[k,]<-est.psi.boot<-o.boot$psi } else { est.psi.boot<-apply(rangeZ,2,function(r)runif(1,r[1],r[2])) } PSI <- matrix(rep(est.psi.boot, rep(nrow(Z), length(est.psi.boot))), ncol = length(est.psi.boot)) opz$h<-max(opz$h*.9, .2) opz$it.max<-opz$it.max+1 o<-try(suppressWarnings(seg.glm.fit(y, XREG, Z.orig, PSI, w, offs, opz)), silent=TRUE) if(!is.list(o) && random){ est.psi00<-est.psi0<-apply(rangeZ,2,function(r)runif(1,r[1],r[2])) PSI1 <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0)) o<-try(suppressWarnings(seg.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE) count.random<-count.random+1 } if(is.list(o)){ if(!"coefficients"%in%names(o$obj)) o<-extract.psi(o) all.est.psi[k,]<-o$psi all.ss[k]<-o$dev.no.gap if(o$dev.no.gap<=ifelse(is.list(o0), o0$dev.no.gap, 10^12)) o0<-o est.psi0<-o0$psi all.selected.psi[k,] <- est.psi0 all.selected.ss[k]<-o0$dev.no.gap } if (visualBoot) { flush.console() cat(paste("boot sample = ", sprintf("%2.0f",k), " opt.dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), o0$dev.no.gap), " n.psi = ",formatC(length(unlist(est.psi0)),digits=0,format="f"), " est.psi = ",paste(formatC(unlist(est.psi0),digits=3,format="f"), collapse=" "), sep=""), "\n") } asss<-na.omit(all.selected.ss) if(length(asss)>break.boot){ if(all(rev(round(diff(asss),6))[1:(break.boot-1)]==0)) break } } all.selected.psi<-rbind(est.psi00,all.selected.psi) all.selected.ss<-c(ss00, all.selected.ss) ris<-list(all.selected.psi=drop(all.selected.psi),all.selected.ss=all.selected.ss, all.psi=all.est.psi, all.ss=all.ss) if(is.null(o0$obj)){ PSI1 <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0)) o0<-try(suppressWarnings(seg.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE) } if(!is.list(o0)) return(0) o0$boot.restart<-ris rm(.Random.seed, envir=globalenv()) return(o0) }
context('.json.tabular.to.data.frame') source('utilities.R') test_that('edge cases are handled correctly', { .json.tabular.to.data.frame <- RPresto:::.json.tabular.to.data.frame expect_equal_data_frame( .json.tabular.to.data.frame(list(), character(0)), data.frame() ) expect_error( .json.tabular.to.data.frame(1, c(some_type='a')), 'Unexpected data class', label='Unexpected data class' ) expect_error( .json.tabular.to.data.frame( list(list(1)), c(unsupported_presto_type=NA_character_) ), 'Unsupported column type', label='Unsupported column type' ) expect_warning( .json.tabular.to.data.frame( list( list(a=1L), list(b=1L) ), c(integer='integer') ), 'Item .*, column names differ across rows', label='Different column names' ) expect_error( .json.tabular.to.data.frame( list(list(a=1)), c(integer='integer', varbinary='raw') ), 'Item .*,.+expected: 2 columns,.+received: 1', label='Not enough columns' ) e <- data.frame( logical=TRUE, integer=1L, numeric=0.0, character='', Date=as.Date('2014-03-01'), POSIXct_no_time_zone=as.POSIXct( '2015-03-01 12:00:00', tz=test.timezone() ), POSIXct_with_time_zone=as.POSIXct('2015-03-01 12:00:00', tz='UTC'), stringsAsFactors=FALSE) e[['list_unnamed']] <- list(list(1)) e[['list_named']] <- list(list(a=1)) e[['raw']] <- list(charToRaw('abc')) attr(e[['POSIXct_with_time_zone']], 'tzone') <- NULL column.types <- c( boolean='logical', integer='integer', double='numeric', varchar='character', date='Date', timestamp='POSIXct_no_time_zone', 'timestamp with time zone'='POSIXct_with_time_zone', array='list_unnamed', map='list_named', varbinary='raw' ) r <- .json.tabular.to.data.frame( list(), column.types, timezone=test.timezone() ) colnames(r) <- column.types expect_equal_data_frame(r, e[FALSE, ]) r <- .json.tabular.to.data.frame( rep(list(list()), 3), character(0), timezone=test.timezone() ) expect_equal_data_frame(r, data.frame(rep(NA, 3))[, FALSE, drop=FALSE]) }) with_locale(test.locale(), test_that)('regular data is converted correctly', { .json.tabular.to.data.frame <- RPresto:::.json.tabular.to.data.frame input <- list( list( TRUE, 1L, 0.0, '0', '', 'YQ==', '2015-03-01', '2015-03-01 12:00:00', '2015-03-01 12:00:00 Europe/Paris', iconv('\xFD\xDD\xD6\xF0', localeToCharset(test.locale()), 'UTF-8'), list(1, 2), list(a=1, b=2) ), list( FALSE, 2L, 1.0, '1.414', 'z', 'YmM=', '2015-03-02', '2015-03-02 12:00:00.321', '2015-03-02 12:00:00.321 Europe/Paris', { x <- '\xE1\xBD\xA0\x32'; Encoding(x) <- 'UTF-8'; x}, list(), structure(list(), names=character(0)) ) ) column.classes <- c( boolean='logical', integer='integer', double='numeric', varchar='character', varchar='character', varbinary='raw', date='Date', timestamp='POSIXct_no_time_zone', 'timestamp with time zone'='POSIXct_with_time_zone', varchar='character', array='list_unnamed', map='list_named' ) column.names <- column.classes column.names[length(column.names) - 2] <- '<odd_name>' e <- data.frame.with.all.classes() r <- .json.tabular.to.data.frame( input, column.classes, timezone=test.timezone() ) colnames(r) <- column.names expect_equal_data_frame(r, e, label='unnamed items') old.locale <- Sys.getlocale('LC_CTYPE') tryCatch({ if (.Platform[['OS.type']] == 'windows') { Sys.setlocale('LC_CTYPE', 'French_France.1252') } else { Sys.setlocale('LC_CTYPE', 'fr_FR.iso8859-15@euro') } }, warning=function(cond) { Sys.setlocale('LC_CTYPE', 'fr_FR.iso8859-15') } ) if (Sys.getlocale('LC_CTYPE') != old.locale) { expect_false(isTRUE(all.equal(r, e))) } input.with.names <- lapply(input, function(x) { names(x) <- column.names; return(x) } ) Sys.setlocale('LC_CTYPE', test.locale()) r <- .json.tabular.to.data.frame( input.with.names, column.classes, timezone=test.timezone() ) expect_equal_data_frame(r, e, label='auto parse names') }) test_that('NAs are handled correctly', { .json.tabular.to.data.frame <- RPresto:::.json.tabular.to.data.frame expect_equal_data_frame( .json.tabular.to.data.frame(list(list(A=NULL)), c(boolean='logical')), data.frame(A=NA) ) e <- data.frame(A=as.Date(NA), B=3L, C=as.POSIXct(NA)) attr(e[['C']], 'tzone') <- NULL expect_equal_data_frame( .json.tabular.to.data.frame( list(list(A=NULL, B=3L, C=NULL)), c( date='Date', integer='integer', 'timestamp with time zone'='POSIXct_with_time_zone' ), timezone=test.timezone() ), e ) column.classes <- c( boolean='logical', integer='integer', double='numeric', varchar='character', varbinary='raw', date='Date', timestamp='POSIXct_no_time_zone', 'timestamp with time zone'='POSIXct_with_time_zone', array='list_unnamed', map='list_named' ) r <- .json.tabular.to.data.frame( list(rep(list(NULL), length(column.classes))), column.classes, timezone=test.timezone() ) colnames(r) <- column.classes e <- data.frame(NA, NA_integer_, NA_real_, NA_character_, NA, as.Date(NA), as.POSIXct(NA_character_), as.POSIXct(NA_character_), NA, NA, stringsAsFactors=FALSE) colnames(e) <- column.classes e[['raw']] <- list(NA) e[['list_unnamed']] <- list(NA) e[['list_named']] <- list(NA) attr(e[['POSIXct_no_time_zone']], 'tzone') <- test.timezone() attr(e[['POSIXct_with_time_zone']], 'tzone') <- NULL expect_equal_data_frame(r, e) input <- list( list( logical=NULL, integer=1L, numeric=NULL, character='', raw=NULL, Date='2015-03-01', POSIXct_no_time_zone=NULL, POSIXct_with_time_zone='2015-04-01 01:02:03.456 Europe/Paris', list_unnamed=NULL, list_named=list(A=1) ), list( logical=TRUE, integer=NULL, numeric=0.0, character=NULL, raw='YQ==', Date=NULL, POSIXct_no_time_zone='2015-04-01 01:02:03.456', POSIXct_with_time_zone=NULL, list_unnamed=list(1), list_named=NULL ) ) e <- data.frame( logical=c(NA, TRUE), integer=c(1L, NA), numeric=c(NA, 0.0), character=c('', NA), raw=NA, Date=as.Date(c('2015-03-01', NA)), POSIXct_no_time_zone =as.POSIXct(c(NA, '2015-04-01 01:02:03.456'), tz=test.timezone()), POSIXct_with_time_zone=as.POSIXct( c('2015-04-01 01:02:03.456', NA), tz='Europe/Paris' ), list_unnamed=NA, list_named=NA, stringsAsFactors=FALSE ) e[['raw']] <- list(NA, charToRaw('a')) e[['list_unnamed']] <- list(NA, list(1)) e[['list_named']] <- list(list(A=1), NA) r <- .json.tabular.to.data.frame( input, column.classes, timezone=test.timezone() ) expect_equal_data_frame(r, e) e.reversed <- e[c(2, 1), ] rownames(e.reversed) <- NULL r <- .json.tabular.to.data.frame( input[c(2, 1)], column.classes, timezone=test.timezone() ) expect_equal_data_frame(r, e.reversed) }) test_that('Inf, -Inf and NaN are handled correctly', { .json.tabular.to.data.frame <- RPresto:::.json.tabular.to.data.frame expect_equal_data_frame( .json.tabular.to.data.frame( list(list(A='Infinity', B='-Infinity', C='NaN')), c(double='numeric', double='numeric', double='numeric') ), data.frame(A=Inf, B=-Inf, C=NaN) ) expect_equal_data_frame( .json.tabular.to.data.frame( list(list(A='Infinity', B='-Infinity', C='NaN')), c(varchar='character', varchar='character', varchar='character') ), data.frame(A='Infinity', B='-Infinity', C='NaN', stringsAsFactors=FALSE) ) expect_equal( .json.tabular.to.data.frame( list( list(A=1.0, B=1.0, C=1.0), list(A='Infinity', B='-Infinity', C='NaN'), list(A=1.0, B=1.0, C=1.0) ), c(double='numeric', double='numeric', double='numeric') ), data.frame(A=c(1.0, Inf, 1.0), B=c(1.0, -Inf, 1.0), C=c(1.0, NaN, 1.0)) ) })
nsk <- function(x, df=NULL, knots=NULL, intercept=FALSE, b=.05, Boundary.knots = quantile(x, c(b, 1-b), na.rm=TRUE)) { if (is.logical(Boundary.knots) || length(Boundary.knots) == 0) kx <- range(x, na.rm=TRUE) else if (length(knots) == 0) kx <- Boundary.knots else { if (Boundary.knots[2] <= max(knots)) Boundary.knots <- Boundary.knots[1] if (Boundary.knots[1] >= min(knots)) Boundary.knots <- Boundary.knots[-1] kx <- sort(c(knots, Boundary.knots)) } j <- c(1, length(kx)) bknot <- kx[j] iknot <- kx[-j] if (length(iknot) ==0) basis <- ns(x, df=df, intercept=intercept, Boundary.knots = bknot) else basis <- ns(x, df=df, knots= iknot, intercept=intercept, Boundary.knots = bknot) iknot <- attr(basis, "knots") kx <- c(bknot[1], iknot, bknot[2]) kbasis <- ns(kx, df=df, knots=iknot, intercept=intercept, Boundary.knots = bknot) if (intercept) ibasis <- basis %*% solve(kbasis) else ibasis <- (cbind(1, basis) %*% solve(cbind(1, kbasis)))[, -1] attributes(ibasis) <- attributes(basis) class(ibasis) <- c("nsk", class(basis)) ibasis } makepredictcall.nsk <- function(var, call) { if(as.character(call)[1L] == "nsk" || (is.call(call) && identical(eval(call[[1L]]), nsk))) { at <- attributes(var)[c("knots", "Boundary.knots", "intercept")] call <- call[1L:2L] call[names(at)] <- at } call }
predict.miss.lm <- function(object, newdata = NULL, seed = NA, ...) { if (!is.na(seed)) set.seed(seed) X.new = newdata mu.em = object$mu.X sig2.em = object$Sig.X beta.em = object$coef if (is(X.new, "data.frame")){ X.new <- as.matrix(X.new) } if (!is.matrix(X.new)){ stop("Error: parameter 'X.new' should be either a matrix or a data frame.") } if (sum(sapply(X.new, is.numeric)) < ncol(X.new)) { stop("Error: parameter 'X.new should be numeric'.") } X.prep <- cbind(rep(NA, nrow(X.new)), X.new) X.prep <- t(t(X.prep) - mu.em) Inv.Sigma.tmp <- solve(sig2.em) X.pred <- t(apply(X.prep, 1, imputeEllP, Inv.Sigma.tmp)) X.pred <- t(t(X.pred) + mu.em) return(pr.y=X.pred[,1]) }
expected <- eval(parse(text="NULL")); test(id=0, code={ argv <- eval(parse(text="list(\"'drop' argument will be ignored\", quote(`[.data.frame`(women, \"height\", drop = FALSE)))")); .Internal(`.dfltWarn`(argv[[1]], argv[[2]])); }, o=expected);
NULL is_matrix <- function(x) { is.matrix(x) } is_numeric_matrix <- function(x) { if (!is.matrix(x)) return(FALSE) is.numeric(x) } is_string_matrix <- function(x) { if (!is.matrix(x)) return(FALSE) is.character(x) } is_logical_matrix <- function(x) { if (!is.matrix(x)) return(FALSE) is.logical(x) } is_not_matrix <- function(x) { !is_matrix(x) }
library(TMB) dyn.load(dynlib("linreg_parallel")) set.seed(123) x <- seq(0, 10, length = 50001) data <- list(Y = rnorm(length(x)) + x, x = x) parameters <- list(a=0, b=0, logSigma=0) obj <- MakeADFun(data, parameters, DLL="linreg_parallel") opt <- nlminb(obj$par, obj$fn, obj$gr)
estimate.expression.cna.correlation <- function(exp.data = NULL, cna.data.log2 = NULL, corr.threshold = 0.3, corr.direction = "two.sided", subtypes.metadata = NULL, feature.ids = NULL, cancer.type = NULL, data.dir = NULL, graphs.dir = NULL) { if (!identical(colnames(exp.data), colnames(cna.data.log2))) { stop("\nDieing gracefully bcoz colnames(exp.data) != colnames(cna.data.log2)"); } if (!identical(rownames(exp.data), rownames(cna.data.log2))) { stop("\nDieing gracefully bcoz rownames(exp.data) != rownames(cna.data.log2)"); } if (!file.exists(data.dir)) { dir.create(data.dir, recursive = TRUE); } if (!file.exists(graphs.dir)) { dir.create(graphs.dir, recursive = TRUE); } plot.venn <- TRUE; subtype.samples.list <- subtypes.metadata[["subtype.samples.list"]]; corr.data <- matrix( data = NA, nrow = length(feature.ids), ncol = 3, dimnames= list(feature.ids, c("rho", "P", "Q")) ); corr.data.subtypes <- list(); corr.threshold.genes <- vector(); corr.threshold.genes.subtypes <- list(); for (subtype.name in names(subtype.samples.list)) { corr.threshold.genes.subtypes[[subtype.name]] <- vector(); } if (length(feature.ids) > 0) { for (subtype.name in names(subtype.samples.list)) { cat("\n[Correlation] mRNA v CNA: ", cancer.type, subtype.name); corr.data.subtype <- corr.data; for (gene.name in feature.ids) { corr.tmp <- cor.test( x = exp.data[gene.name, subtype.samples.list[[subtype.name]]], y = cna.data.log2[gene.name, subtype.samples.list[[subtype.name]]], method = "spearman" ); corr.data.subtype[gene.name, "rho"] <- corr.tmp$estimate; corr.data.subtype[gene.name, "P"] <- corr.tmp$p.value; } corr.data.subtype[, "rho"] <- round(corr.data.subtype[, "rho"], digits = 3); corr.data.subtype[, "Q"] <- p.adjust(corr.data.subtype[, "P"], method = "BH"); corr.data.subtypes[[subtype.name]] <- corr.data.subtype; if (corr.direction == "two.sided") { which.genes <- which(abs(corr.data.subtype[, "rho"]) > corr.threshold); } else if (corr.direction == "greater") { which.genes <- which(corr.data.subtype[, "rho"] > corr.threshold); } else if (corr.direction == "less") { which.genes <- which(corr.data.subtype[, "rho"] < corr.threshold); } else { stop("\nDieing gracefully bcoz corr.direction is invalid"); } if (length(which.genes) > 0) { corr.threshold.genes <- union( corr.threshold.genes, rownames(corr.data.subtype)[which.genes] ); corr.threshold.genes.subtypes[[subtype.name]] <- rownames(corr.data.subtype)[which.genes]; } else { plot.venn <- FALSE; corr.threshold.genes.subtypes[[subtype.name]] <- NULL; cat("\n\tvenn diagram will be not be plotted as empty correlation set for this subtype"); } write.table( x = corr.data.subtype[order(corr.data.subtype[, "rho"], decreasing = TRUE), , drop = FALSE], file = paste(data.dir, "mRNA_abundance_cna_correlation__", subtype.name, ".txt", sep = ""), row.names = TRUE, col.names = NA, sep = "\t", quote = FALSE ); } if (length(corr.threshold.genes) > 1 && cancer.type == "Metabric" && plot.venn) { venn.diagram( x = list( "Normal-like" = corr.threshold.genes.subtypes[["Normal"]], "LuminalA" = corr.threshold.genes.subtypes[["LumA"]], "LuminalB" = corr.threshold.genes.subtypes[["LumB"]], "Basal" = corr.threshold.genes.subtypes[["Basal"]], "Her2" = corr.threshold.genes.subtypes[["Her2"]] ), imagetype = "png", filename = paste(graphs.dir, "mRNA_abundance_cna_correlation__venn_PAM50.png", sep = ""), col = "black", fill = c("forestgreen", "dodgerblue3", "lightskyblue2", "red", "pink"), alpha = 0.50, fontface = "bold", cex = c(1.5, 1.5, 1.5, 1.5, 1.5, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 1, 1, 1, 1, 1.5), cat.col = "black", cat.cex = 1.5, cat.fontface = "bold", margin = 0.23, cat.dist = 0.32 ); } } return ( list( "corr.threshold.genes" = corr.threshold.genes, "correlated.genes.subtypes" = corr.threshold.genes.subtypes ) ); }
context("Studentize") test_that("Studentize", { N <- 100 declaration <- randomizr::declare_ra(N = N, m = 50) Z <- randomizr::conduct_ra(declaration) X <- rnorm(N) Y <- .9 * X + .2 * Z + rnorm(N) W <- runif(N) df <- data.frame(Y, X, Z, W) ri_out <- conduct_ri( formula = Y ~ Z, declaration = declaration, assignment = "Z", sharp_hypothesis = 0, studentize = TRUE, data = df, sims = 100 ) plot(ri_out) summary(ri_out) ri_out <- conduct_ri( formula = Y ~ Z + X, declaration = declaration, assignment = "Z", sharp_hypothesis = 0, studentize = TRUE, data = df, sims = 100 ) plot(ri_out) summary(ri_out) expect_true(TRUE) })
sigma2_DML <- function(all_residuals, betahat) { n <- length(all_residuals[[1]]$rY) d <- nrow(as.matrix(betahat)) q <- ncol(all_residuals[[1]]$rA) K <- length(all_residuals) Jzerohat <- matrix(0, nrow = d, ncol = q) cov_loss <- matrix(0, nrow = q, ncol = q) for (k in seq_len(K)) { mat_1 <- crossprod(all_residuals[[k]]$rA, all_residuals[[k]]$rX) / n mat_2_inv_mat_1 <- qr.solve(crossprod(all_residuals[[k]]$rA, all_residuals[[k]]$rA) / n, mat_1) Jzerohat <- Jzerohat + qr.solve(crossprod(mat_2_inv_mat_1, mat_1), t(mat_2_inv_mat_1)) loss <- sweep(all_residuals[[k]]$rA, 1, all_residuals[[k]]$rY - all_residuals[[k]]$rX %*% betahat, FUN = "*") cov_loss <- cov_loss + crossprod(loss, loss) / n } Jzerohat <- Jzerohat / K Jzerohat %*% tcrossprod(cov_loss / K, Jzerohat) / (n * K) } sigma2_DML_stable <- function(all_residuals, betahat) { n <- length(all_residuals[[1]]$rY) d <- nrow(as.matrix(betahat)) q <- ncol(all_residuals[[1]]$rA) K <- length(all_residuals) cov_loss <- matrix(0, nrow = q, ncol = q) mat_2_full <- matrix(0, nrow = q, ncol = q) mat_1_full <- matrix(0, nrow = d, ncol = q) for (k in seq_len(K)) { mat_1_full <- mat_1_full + crossprod(all_residuals[[k]]$rX, all_residuals[[k]]$rA) / n mat_2_full <- mat_2_full + crossprod(all_residuals[[k]]$rA, all_residuals[[k]]$rA) / n loss <- sweep(all_residuals[[k]]$rA, 1, all_residuals[[k]]$rY - all_residuals[[k]]$rX %*% betahat, FUN = "*") cov_loss <- cov_loss + crossprod(loss, loss) / n } mat_1_full <- t(mat_1_full) / K mat_2_full <- mat_2_full / K mat_2_full_inf_mat_1_full <- qr.solve(mat_2_full, mat_1_full) Jzerohat <- qr.solve(crossprod(mat_2_full_inf_mat_1_full, mat_1_full), t(mat_2_full_inf_mat_1_full)) warning("Essentially perfect fit: DML summary may be unreliable.") Jzerohat %*% tcrossprod(cov_loss / K, Jzerohat) / (n * K) } sigma2_gamma <- function(all_residuals, betahat, gamma) { n <- length(all_residuals[[1]]$rY) d <- length(betahat) q <- ncol(all_residuals[[1]]$rA) K <- length(all_residuals) D1 <- matrix(0, nrow = d, ncol = d) D2 <- matrix(0, nrow = d, ncol = d) D4 <- matrix(0, nrow = d, ncol = d) for (k in seq_len(K)) { res <- all_residuals[[k]]$rY - all_residuals[[k]]$rX %*% betahat losstilde <- sweep(all_residuals[[k]]$rX, 1, res, FUN = "*") loss <- sweep(all_residuals[[k]]$rA, 1, res, FUN = "*") loss_mean <- colSums(loss) / n loss1 <- array(apply(cbind(all_residuals[[k]]$rX, all_residuals[[k]]$rA), 1, function(x) outer(x[seq_len(d)], x[(d + 1):(d + q)])), dim = c(d, q, n)) loss1_mean <- apply(loss1, c(1, 2), mean) loss2 <- t(apply(as.matrix(all_residuals[[k]]$rA), 1, function(x) crossprod(rbind(x)))) loss2_mean <- if (q == 1) { mean(loss2) } else { colSums(loss2) / n } loss2_mean_inv <- qr.solve(matrix(loss2_mean, nrow = q, ncol = q)) loss3_mean <- crossprod(all_residuals[[k]]$rX, all_residuals[[k]]$rX) / n D1 <- D1 + loss3_mean D2 <- D2 + rbind(loss1_mean, deparse.level = 0) %*% tcrossprod(loss2_mean_inv, rbind(loss1_mean, deparse.level = 0)) D3 <- rbind(loss1_mean, deparse.level = 0) %*% loss2_mean_inv D5 <- loss2_mean_inv %*% cbind(loss_mean, deparse.level = 0) mu <- gamma - 1 lossBarPrime <- losstilde + mu * tcrossprod(loss, D3) + mu * if (q >= 2) { intermediate <- sweep(sweep(loss2, 2, loss2_mean, FUN = "-"), 2, rep(D5, each = q), FUN = "*") intermediate_summed <- matrix(0, nrow = n, ncol = q) for (i in seq_len(q)) { intermediate_summed[, i] <- rowSums(intermediate[, seq(i, q ^ 2, by = q)]) } t(apply(sweep(sweep(loss1, c(1, 2), loss1_mean, FUN = "-"), c(2, 3), as.vector(D5), FUN = "*"), c(1, 3), sum)) - tcrossprod(intermediate_summed, D3) } else { matrix(sweep(loss1, 3, as.vector(loss1_mean), FUN = "-"), nrow = n, byrow = TRUE) * as.vector(D5) - crossprod((loss2 - loss2_mean) * as.vector(D5), t(D3)) } D4 <- D4 + crossprod(lossBarPrime, lossBarPrime) / n } D1 <- D1 / K D2 <- D2 / K D1plusD2inv <- qr.solve(D1 + mu * D2) D4 <- D4 / K D1plusD2inv %*% tcrossprod(D4, D1plusD2inv) / (n * K) }
tidy.TMB <- function(x, effects = c("fixed", "random"), conf.int = FALSE, conf.level = 0.95, conf.method = c("wald", "uniroot", "profile"), ...) { assert_dependency("TMB") branch <- v <- param <- value <- zeta <- Estimate <- estimate <- std.error <- NULL sdr <- TMB::sdreport(x) retlist <- list() if ("fixed" %in% effects) { ss <- summary(sdr, select = "fixed") %>% as.data.frame() %>% tibble::rownames_to_column("term") %>% rename(estimate = Estimate, std.error = "Std. Error") if (conf.int) { if (tolower(conf.method == "wald")) { qval <- qnorm((1 + conf.level) / 2) ss <- mutate(ss, conf.low = estimate - qval * std.error, conf.high = estimate + qval * std.error ) } else if (conf.method == "uniroot") { tt <- do.call( rbind, lapply(seq(nrow(ss)), TMB::tmbroot, obj = x, ... ) ) ss$conf.low <- tt[, "lwr"] ss$conf.high <- tt[, "upr"] } else if (conf.method == "profile") { all_vars <- names(x$env$last.par.best) if (!is.null(rnd <- x$env$random)) { all_vars <- all_vars[-rnd] } prof0 <- purrr::map_dfr(seq_along(all_vars), ~ setNames(TMB::tmbprofile(x,name=.,trace=FALSE),c("focal","value")), .id="param") prof1 <- (prof0 %>% group_by(param) %>% mutate(zeta=sqrt(2*(value-min(value))), branch=ifelse(cumsum(zeta==0)<1, "lwr", "upr")) %>% ungroup() ) bad_prof_flag <- FALSE critval <- qnorm((1+conf.level)/2) interp_fun <- function(dd) { bakspl <-tryCatch(backSpline( forspl <- interpSpline(dd$focal, dd$zeta, na.action=na.omit)), error=function(e)e) if (inherits(bakspl, "error")) { bad_prof_flag <<- TRUE res <- approx(dd$zeta, dd$focal, xout=critval)$y } else { res <- predict(bakspl, critval)$y } return(res) } tt <- prof1 %>% group_by(param, branch) %>% unique() %>% summarise(v=interp_fun(.data)) ss$conf.low <- filter(tt, branch=="lwr") %>% pull(v) ss$conf.high <- filter(tt, branch=="upr") %>% pull(v) } else { stop(sprintf("conf.method=%s not implemented", conf.method)) } } } retlist$fixed <- ss ret <- dplyr::bind_rows(retlist, .id = "type") return(ret) }
function() { plot(1:10) } function() { plot(1:10) } function() { plot(1:10) } function(){ plot(1:10) } function(){ plot(1:10) } function() { warning("Should not test. Image size does not decrease with dimension decrease") plot(1:10) }
print.abnDag <- function(x, ...){ print(x$dag) cat("Class 'abnDag'.\n") invisible(x) } summary.abnDag <- function(object, ...) { su <- infoDag(object$dag) return(su) } plot.abnDag <- function(x, new=TRUE, ...){ if (new) dev.new() on.exit(dev.flush()) mygraph <- new("graphAM", adjMat = t(x$dag), edgemode = "directed") g <- Rgraphviz::plot(x = mygraph) invisible(g) } print.abnCache <- function(x, ...){ cat("Number of nodes in the network:",max(x$children), "\n\n") if(x$method=="bayes"){ cat("Distribution of the marginal likelihood: \n") print(summary(x[["mlik"]]), digits=3) } if(x$method=="mle"){ cat(" Distribution of the aic: \n") print(summary(x[["aic"]]), digits=3) cat("\n Distribution of the bic: \n") print(summary(x[["bic"]]), digits=3) cat("\n Distribution of the mdl: \n") print(summary(x[["mdl"]]), digits=3) } invisible(x) } print.abnHeuristic <- function(x, ...){ cat("Best DAG' score found with",x$algo,"algorithm with", x$num.searches,"different searches limited to" , x$max.steps,"steps:\n") print(max(unlist(x$scores)), digits=2) cat("\n Score distribution: \n") print(summary(unlist(x[["scores"]])), digits=2) invisible(x) } plot.abnHeuristic <- function(x, ...){ df <- unlist(x$scores) par(mfrow=c(1,2)) plot(NULL, lty=1, xlab="Index of heuristic search", ylab="BN score", ylim = range(df), xlim = c(1,length(df))) for(i in 1:length(df)){ if(sum(i==order(df, decreasing = FALSE)[1:10])){ points(x=i,y=df[i], type="p", pch=19, col=rgb(0,0,1, 0.8),lwd = 2) } else { points(x=i,y=df[i], type="p", pch=19, col=rgb(0,0,0, 0.3)) } } points(x = which.max(df), y = df[which.max(df)], col="red", pch=19) title("Networks final score") L <- (x$detailed.score) test <- array(unlist(L), dim = c(nrow(L[[1]]), ncol(L[[1]]), length(L))) plot(NULL,lty=1, xlab="Number of Steps",ylab="BN score", ylim = range(test), xlim = c(1,length(test[,,1]))) for(i in 1:length(L)){ if(sum(i==order(df,decreasing = FALSE)[1:10])){ points(x=1:(length(test[,,1])),y=test[1,,i], type="l", lty=1, col=rgb(0,0,1, 0.8),lwd = 2) } else { points(x=1:(length(test[,,1])),y=test[1,,i], type="l", lty=1, col=rgb(0,0,0, 0.17)) } } lines(x=1:(length(test[,,1])),y=test[1,,which.max(df)], type="l", col="red", lwd=3) title("Networks score trajectory") invisible(x) } print.abnHillClimber <- function(x, ...){ print(x$consensus) cat("Consensus DAG from 'searchHillClimber' (class 'abnHillClimber').\n") invisible(x) } plot.abnHillClimber <- function(x, new=TRUE, ...){ if (new) dev.new() on.exit(dev.flush()) mygraph <- new("graphAM", adjMat = x$consensus, edgemode = "directed") g <- Rgraphviz::plot(x = mygraph) invisible(g) } print.abnMostprobable <- function(x, ...){ print(x$dag) cat("Consensus DAG from 'mostProbable', can be use with 'fitAbn'.\n") invisible(x) } summary.abnMostprobable <- function(object, ...){ cat("Optimal DAG from 'mostProbable':\n") print(object$dag) cat( paste0("Calculated on ", dim(object$score.cache$data.df)[1], " observations.\n")) cat( paste0("(Cache length ", length(object$score.cache$mlik), '.)\n')) invisible( object) } plot.abnMostprobable <- function(x, new=TRUE, ...){ if (new) dev.new() on.exit(dev.flush()) mygraph <- new("graphAM", adjMat = t(x$dag), edgemode = "directed") g <- Rgraphviz::plot(x = mygraph) invisible(g) } print.abnFit <- function(x, ...){ if(x$method=="mle"){ cat("The ABN model was fitted using an mle approach. The estimated coefficients are:\n\n") print(x$coef, digits=3) cat(paste0("Number of nodes in the network:",length(x$coef), ".\n")) } if(x$method=="bayes"){ cat("The ABN model was fitted using a Bayesian approach. The estimated modes are:\n\n") print(x$modes, digits=3) cat(paste0("Number of nodes in the network: ",length(x$modes), ".\n")) } invisible(x) } summary.abnFit <- function(object, ...){ if(object$method=="mle"){ cat("The ABN model was fitted using an mle approach. The estimated coefficients are:\n") print(object$coef, digits=3) cat("Number of nodes in the network:",length(object$modes), ".\n") cat("The AIC network score per node is: \n") print(unlist(object[["aicnode"]]), digits=3) cat("\n The BIC network score per node is: \n") print(unlist(object[["bicnode"]]), digits=3) cat("\n The MDL network score per node is: \n") print(unlist(object[["mdlnode"]]), digits=3) } if(object$method=="bayes"){ cat("The ABN model was fitted using a Bayesian approach. The estimated modes are:\n") print(object$modes, digits=3) cat("Number of nodes in the network:",length(object$modes), ".\n\n") cat("The network score per node is:\n") print(unlist(object[1:length(object$modes)])) } invisible(object) } coef.abnFit <- function(object, ...){ if(object$method=="mle"){ cat("The ABN model was fitted using an mle approach. The estimated coefficients are:\n") print(object$coef, digits=3) } if(object$method=="bayes"){ cat("The ABN model was fitted using a Bayesian approach. The estimated modes are:\n") print(object$modes, digits=3) } invisible(object) } AIC.abnFit <- function(object, ...){ if(object$method=="mle"){ cat("The ABN model was fitted using an mle approach. The AIC network score per node is: \n") print(unlist(object[["aicnode"]]), digits=3) } if(object$method=="bayes"){ cat("The ABN model was fitted using a Bayesian approach. AIC does not make sense but the network score per node is is is:\n") print(unlist(object[1:length(object$modes)])) } invisible(object) } BIC.abnFit <- function(object, ...){ if(object$method=="mle"){ cat("The ABN model was fitted using an mle approach. The BIC network score per node is: \n") print(unlist(object[["bicnode"]]), digits=3) } if(object$method=="bayes"){ cat("The ABN model was fitted using a Bayesian approach. BIC does not make sense but the network score per node is is is:\n") print(unlist(object[1:length(object$modes)])) } invisible(object) } logLik.abnFit <- function(object, ...){ if(object$method=="mle"){ cat("The ABN model was fitted using an mle approach. The loglikelihood network score per node is: \n") print(unlist(object[["mliknode"]]), digits=3) } if(object$method=="bayes"){ cat("The ABN model was fitted using a Bayesian approach. Loglikelihood does not make sense but the network score per node is is is:\n") print(unlist(object[1:length(object$modes)])) } invisible(object) } family.abnFit <- function(object, ...){ cat("All link functions are canonical: \n gaussian node = identy, binomial node = logit, Poisson node = log and multinomial node = logit.\n\n") print(unlist(object$abnDag$data.dists)) invisible(object) } nobs.abnFit <- function(object, ...){ nrow(object$abnDag$data.df) } plot.abnFit <- function(x, which ="abnFit", ...){ if (which != "abnFit") stop('Function type not implemented yet. Use which="abnFit"') if(x$method=="mle"){ g <- plotAbn(x$abnDag$dag, data.dists = x$abnDag$data.dists, fitted.values = x$coef, ...) } else { g <- plotAbn(x$abnDag$dag, data.dists = x$abnDag$data.dists, fitted.values = x$modes, ...) } invisible(g) }
nearest.neighbour.distribution<-function(X,Y,Z,X2=X,Y2=Y,Z2=Z,same=TRUE,psz=25,main="Nearest neighbour distribution",file=NULL, return=FALSE) { if(!is.null(file))png(file) nn<-nearest.neighbours(X,Y,Z,X2,Y2,Z2,same=same,psz=psz) hist.nn<-hist(nn,freq=FALSE,n=100,xlab="Distance",main=main) graphics::lines(density(nn,na.rm=TRUE)) if(!is.null(file))dev.off() if(return)return(hist.nn) }
write_gitignore <- function(path) { writeLines( c(".Rproj.user", ".Rhistory", ".RData", ".Ruserdata"), file.path(path, ".gitignore") ) }
library(micompr) context("grpoutputs") test_that("grpoutputs constructs the expected objects", { outputs <- c("PopSheep", "PopWolf", "QtyGrass", "EnSheep", "EnWolf", "EnGrass", "All") dir_nl_ok <- system.file("extdata", "nl_ok", package = "micompr") dir_jex_ok <- system.file("extdata", "j_ex_ok", package = "micompr") dir_jex_noshuff <- system.file("extdata", "j_ex_noshuff", package = "micompr") dir_jex_diff <- system.file("extdata", "j_ex_diff", package = "micompr") dir_na <- system.file("extdata", "testdata", "NA", package = "micompr") files <- glob2rx("stats400v1*.tsv") filesA_na <- glob2rx("stats400v1*n20A.tsv") filesB_na <- glob2rx("stats400v1*n20B.tsv") go_ok <- grpoutputs(outputs, c(dir_nl_ok, dir_jex_ok), c(files, files), lvls = c("NLOK", "JEXOK"), concat = T) go_noshuff <- grpoutputs(outputs, c(dir_nl_ok, dir_jex_noshuff), c(files, files), lvls = c("NLOK", "JEXNOSHUF"), concat = T) go_diff <- grpoutputs(outputs, c(dir_nl_ok, dir_jex_diff), c(files, files), lvls = c("NLOK", "JEXDIFF"), concat = T) go_tri <- grpoutputs(6, c(dir_nl_ok, dir_jex_noshuff, dir_jex_diff), c(files, files, files)) go_1out <- grpoutputs("OnlyOne", c(dir_nl_ok, dir_jex_ok), c(files, files), concat = F) go_1lvl <- grpoutputs(3, dir_nl_ok, files) go_diflencatT <- grpoutputs(7, dir_na, c(filesA_na, filesB_na), concat = T) go_diflencatF <- grpoutputs(6, dir_na, c(filesA_na, filesB_na), concat = F) expect_is(go_ok, "grpoutputs") expect_is(go_noshuff, "grpoutputs") expect_is(go_diff, "grpoutputs") expect_is(go_tri, "grpoutputs") expect_is(go_1out, "grpoutputs") expect_is(go_1lvl, "grpoutputs") expect_is(go_diflencatT, "grpoutputs") expect_is(go_diflencatF, "grpoutputs") expect_equal(names(go_ok$data), outputs) expect_equal(names(go_noshuff$data), outputs) expect_equal(names(go_diff$data), outputs) expect_equal(names(go_tri$data), c("out1", "out2", "out3", "out4", "out5", "out6")) expect_equal(names(go_1out$data), "OnlyOne") expect_equal(names(go_1lvl$data), c("out1", "out2", "out3")) expect_equal(names(go_diflencatT$data), c("out1", "out2", "out3", "out4", "out5", "out6", "out7")) expect_equal(names(go_diflencatF$data), c("out1", "out2", "out3", "out4", "out5", "out6")) expect_equal(sum(sapply(go_ok$data[1:6], function(x) dim(x)[2])), dim(go_ok$data[[7]])[2]) expect_equal(sum(sapply(go_noshuff$data[1:6], function(x) dim(x)[2])), dim(go_noshuff$data[[7]])[2]) expect_equal(sum(sapply(go_diff$data[1:6], function(x) dim(x)[2])), dim(go_diff$data[[7]])[2]) expect_equal(sum(sapply(go_diflencatT$data[1:6], function(x) dim(x)[2])), dim(go_diflencatT$data[[7]])[2]) expect_equal(go_ok$groupsize, c(10, 10)) expect_equal(go_noshuff$groupsize, c(10, 10)) expect_equal(go_diff$groupsize, c(10, 10)) expect_equal(go_tri$groupsize, c(10, 10, 10)) expect_equal(go_1out$groupsize, c(10, 10)) expect_equal(go_1lvl$groupsize, 10) expect_equal(go_diflencatT$groupsize, c(3, 3)) expect_equal(go_diflencatF$groupsize, c(3, 3)) expect_equal(go_ok$lvls, c("NLOK", "JEXOK")) expect_equal(go_noshuff$lvls, c("NLOK", "JEXNOSHUF")) expect_equal(go_diff$lvls, c("NLOK", "JEXDIFF")) expect_equal(go_tri$lvls, c(1, 2, 3)) expect_equal(go_1out$lvls, c(1, 2)) expect_equal(go_1lvl$lvls, 1) expect_equal(go_diflencatT$lvls, c(1, 2)) expect_equal(go_diflencatF$lvls, c(1, 2)) expect_true(go_ok$concat) expect_true(go_noshuff$concat) expect_true(go_diff$concat) expect_false(go_tri$concat) expect_false(go_1out$concat) expect_false(go_1lvl$concat) expect_true(go_diflencatT$concat) expect_false(go_diflencatF$concat) }) test_that("grpoutputs throws errors when improperly invoked", { fs <- .Platform$file.sep expect_error( grpoutputs(4, c("dir1", "dir2"), glob2rx("*.tsv"), lvls = c("A", "B")), "Number of file sets is not the same as the given number of factor levels.", fixed = TRUE ) expect_error( grpoutputs(4, "some_fake_folder", c(glob2rx("fake_files*.csv"), glob2rx("also_fakes*.csv"))), paste("No files were found: some_fake_folder", fs, glob2rx("fake_files*.csv"), sep = ""), fixed = TRUE ) expect_error( grpoutputs(7, system.file("extdata", "nl_ok", package = "micompr"), "stats400v1r1.tsv", lvls = "just_the_one", concat = F), paste("Specified number of outputs is larger than the number ", "of outputs in file '", system.file("extdata", "nl_ok", package = "micompr"), fs, "stats400v1r1.tsv'.", sep = ""), fixed = TRUE ) expect_error( grpoutputs(4, c(system.file("extdata", "nl_ok", package = "micompr"), system.file("extdata", "testdata", "n50", package = "micompr")), c("stats400v1r1.tsv", "stats400v1r1n50.tsv")), paste("Length of outputs in file '", system.file("extdata", "testdata", "n50", package = "micompr"), fs, "stats400v1r1n50.tsv", "' does not match the length of outputs in file '", system.file("extdata", "nl_ok", package = "micompr"), fs, "stats400v1r1.tsv", "'.", sep = ""), fixed = TRUE ) expect_error( grpoutputs(2, c(system.file("extdata", "nl_ok", package = "micompr"), system.file("extdata", "j_ex_ok", package = "micompr")), c(glob2rx("stats400v1*.tsv"), glob2rx("stats400v1*.tsv")), concat = T), paste("A minimum of 3 outputs must be specified in order to use ", "output concatenation.", sep = ""), fixed = TRUE ) expect_error( grpoutputs(6, c(system.file("extdata", "nl_ok", package = "micompr"), system.file("extdata", "testdata", "NA", package = "micompr")), c(glob2rx("stats400v1*.tsv"), glob2rx("stats400v1*A.tsv"))), paste("Length of outputs in file '", system.file("extdata", "testdata", "NA", package = "micompr"), fs, "stats400v1r[0-9]+n20A.tsv' ", "does not match the length of outputs in file '", system.file("extdata", "nl_ok", package = "micompr"), fs, "stats400v1r[0-9]+.tsv'.", sep = "") ) })
tamaan.3pl.mixture <- function( res0, anal.list, con, ... ) { if ( ! is.null( anal.list$NSTARTS ) ){ NSTARTS <- anal.list$NSTARTS } else { NSTARTS <- c(0,0) } con0 <- con con0$maxiter <- NSTARTS[2] con0$progress <- FALSE devmin <- 1E100 itempartable <- res0$itempartable_MIXTURE itempartable.int <- itempartable[ itempartable$int==1, ] itempartable.slo <- itempartable[ itempartable$slo==1, ] gammaslope0 <- itempartable$val resp <- res0$resp items0 <- res0$items I <- ncol(resp) beta0 <- sapply( 1:I, FUN=function(ii){ ncat.ii <- items0[ii, "ncat"] - 1 l1 <- rep(0,ncat.ii) for (hh in 1:ncat.ii){ l1[hh] <- stats::qlogis( mean( resp[,ii] >=hh, na.rm=TRUE ) / ncat.ii ) } return(l1) } ) beta0 <- unlist( beta0) B0 <- length(beta0) ncl <- anal.list$NCLASSES if (NSTARTS[1] > 0 ){ for (nn in 1:(NSTARTS[1]) ){ gammaslope <- gammaslope0 gammaslope[ itempartable.int$index ] <- rep( beta0, ncl ) + stats::rnorm( ncl*B0, mean=0, sd=log(1+nn^(1/5) ) ) N0 <- nrow(itempartable.slo) if ( ! res0$raschtype ){ gammaslope[ itempartable.slo$index ] <- stats::runif( N0, max(.2,1-nn/5), min( 1.8, 1+nn/5) ) } if (nn==1){ delta.inits <- NULL } res <- tam.mml.3pl(resp=res0$resp, E=res0$E, skillspace="discrete", theta.k=res0$theta.k, gammaslope=gammaslope, gammaslope.constr.V=res0$gammaslope.constr.V, gammaslope.constr.c=res0$gammaslope.constr.c, notA=TRUE, control=con0, delta.inits=delta.inits, delta.designmatrix=res0$delta.designmatrix, delta.fixed=res0$delta.fixed, gammaslope.fixed=res0$gammaslope.fixed, ... ) if (con$progress){ cat( paste0( "*** Random Start ", nn, " | Deviance=", round( res$deviance, 2 ), "\n") ) utils::flush.console() } if ( res$deviance < devmin ){ devmin <- res$deviance gammaslope.min <- res$gammaslope delta.min <- res$delta } } } if (NSTARTS[1] > 0 ){ gammaslope <- gammaslope.min delta.inits <- delta.min } else { gammaslope <- NULL delta.inits <- NULL } res <- tam.mml.3pl(resp=res0$resp, E=res0$E, skillspace="discrete", theta.k=res0$theta.k, gammaslope=gammaslope, gammaslope.fixed=res0$gammaslope.fixed, gammaslope.constr.V=res0$gammaslope.constr.V, gammaslope.constr.c=res0$gammaslope.constr.c, notA=TRUE, delta.inits=delta.inits, delta.fixed=res0$delta.fixed, control=con, delta.designmatrix=res0$delta.designmatrix, ... ) itempartable <- res0$itempartable_MIXTURE theta_MIXTURE <- res0$theta_MIXTURE TG <- nrow(theta_MIXTURE) TP <- ncl*TG pi.k <- res$pi.k D <- ncol(theta_MIXTURE ) G <- 1 probs_MIXTURE <- rep(NA,ncl) names(probs_MIXTURE) <- paste0("Cl", 1:ncl ) moments_MIXTURE <- as.list( 1:ncl ) for (cl in 1:ncl){ cl.index <- 1:TG + (cl-1)*TG probs_MIXTURE[cl] <- sum(pi.k[ cl.index, 1 ] ) pi.ktemp <- pi.k[ cl.index,,drop=FALSE] pi.ktemp <- pi.ktemp / colSums( pi.ktemp) moments_MIXTURE[[cl]] <- tam_mml_3pl_distributionmoments( D=D, G=G, pi.k=pi.ktemp, theta.k=theta_MIXTURE ) } res$probs_MIXTURE <- probs_MIXTURE res$moments_MIXTURE <- moments_MIXTURE ipar <- res0$itempartable_MIXTURE p11 <- strsplit( paste(ipar$parm), split="_Cl" ) ipar$parm0 <- unlist( lapply( p11, FUN=function(pp){ pp[1] } ) ) ipar$est <- gammaslope[ ipar$index ] res$gammaslope <- gammaslope ipar2 <- ipar[ ipar$Class==1, c("item", "parm0")] colnames(ipar2)[2] <- "parm" for (cl in 1:ncl){ ipar2[, paste0("Cl", cl ) ] <- ipar[ ipar$Class==cl, "est" ] } res$itempartable_MIXTURE <- ipar2 res$ind_classprobs <- tamaan_3pl_mixture_individual_class_probabilities(hwt=res$hwt, NCLASSES=anal.list$NCLASSES) res$tamaan.method <- "tam.mml.3pl" return(res) }