code
stringlengths
1
13.8M
susie_auto = function (X, y, L_init = 1, L_max = 512, verbose = FALSE, init_tol = 1, standardize = TRUE, intercept = TRUE, max_iter = 100,tol = 1e-2, ...) { L = L_init if (verbose) message(paste0("Trying L=",L)) s.0 = susie(X,y,L = L,residual_variance = 0.01*sd(y)^2,tol = init_tol, scaled_prior_variance = 1,estimate_residual_variance = FALSE, estimate_prior_variance = FALSE,standardize = standardize, intercept = intercept,max_iter = max_iter,...) s.1 = susie(X,y,s_init = s.0,tol = init_tol, estimate_residual_variance = TRUE, estimate_prior_variance = FALSE, standardize = standardize,intercept = intercept, max_iter = max_iter,...) s.2 = susie(X,y,s_init = s.1,tol = init_tol, estimate_residual_variance = TRUE, estimate_prior_variance = TRUE, standardize = standardize,intercept = intercept, max_iter = max_iter,...) converged = !all(s.2$V > 0) while (!converged & (L <= L_max)) { for (i in 1:L) { s.2 = add_null_effect(s.2,1) s.2$sigma2 = 0.01*sd(y)^2 } L = 2*L if (verbose) message(paste0("Trying L=",L)) s.0 = susie(X,y,s_init = s.2,tol = init_tol, estimate_residual_variance = FALSE, estimate_prior_variance = FALSE, standardize = standardize,intercept = intercept, max_iter = max_iter,...) s.1 = susie(X,y,s_init = s.0,tol = init_tol, estimate_residual_variance = TRUE, estimate_prior_variance = FALSE, standardize = standardize,intercept = intercept, max_iter = max_iter,...) s.2 = susie(X,y,s_init = s.1,tol = init_tol, estimate_residual_variance = TRUE, estimate_prior_variance = TRUE, standardize = standardize,intercept = intercept, max_iter = max_iter,...) converged = !all(s.2$V > 0) } s.2 = susie(X,y,s_init = s.2,estimate_residual_variance = TRUE, estimate_prior_variance = TRUE,tol = tol, standardize = standardize,intercept = intercept, max_iter = max_iter,...) return(s.2) }
item_intercor <- function(x, method = c("pearson", "spearman", "kendall")) { method <- match.arg(method) if (inherits(x, "matrix")) { corr <- x } else { x <- stats::na.omit(x) corr <- stats::cor(x, method = method) } mean(corr[lower.tri(corr)]) }
add.dist.error <- function(no.files, path, cv = NULL, distribution, beta.params = NULL){ for(i in 1:no.files){ load(paste(path,"dataset_",i,".robj", sep = "")) ddf.data <- [email protected] if(distribution == "Normal"){ error <- rnorm(nrow(ddf.data), mean = 0, sd = cv*ddf.data$distance) new.distances <- ddf.data$distance + error if(range(new.distances)[1] < 0){ warning("Distances less than 0 have been generatesd. The absolute value of these negative values will be used therefore the errors are no longer Normally-distributed.", call. = FALSE, immediate. = TRUE) } new.distances <- abs(new.distances) }else if(distribution == "Log-Normal"){ new.distances <- rep(NA, nrow(ddf.data)) for(j in seq(along = new.distances)){ new.distances[j] <- rlnorm(1, log(ddf.data$distance[j])-0.5*log(1+cv^2), sqrt(log(1+cv^2))) } }else if(distribution == "Beta"){ R <- 0.5 + rbeta(nrow(ddf.data), beta.params[1], beta.params[2]) new.distances <- ddf.data$distance*R } ddf.data$distance <- new.distances [email protected] <- ddf.data save(dist.data, file = paste(path,"dataset_",i,".robj", sep = "")) } }
jomo.lm <- function(formula, data, beta.start=NULL, l1cov.start=NULL, l1cov.prior=NULL, nburn=1000, nbetween=1000, nimp=5, output=1, out.iter=10) { cat("This function is beta software. Use carefully and please report any bug to the package mantainer\n") if (nimp<2) { nimp=2 cat("Minimum number of imputations:2. For single imputation using function jomo.lm.MCMCchain\n") } stopifnot(is.data.frame(data)) stopifnot(any(grepl("~",deparse(formula)))) fit.cr<-lm(formula,data=data, na.action = na.omit) betaY.start<-coef(fit.cr) varY.start<-(summary(fit.cr)$sigma)^2 varY.prior<-(summary(fit.cr)$sigma)^2 colnamysub<-all.vars(formula[[2]]) Ysub<-get(colnamysub,pos=data) Ycov<-data.frame(mget(all.vars(formula[[3]]), envir =as.environment(data))) terms.sub<-attr(terms(formula), "term.labels") split.terms<-strsplit(terms.sub,":") length.sub<-length(terms.sub) order.sub<-attr(terms(formula), "order") submod<-matrix(1,4,sum(order.sub)) Y.con<-NULL Y.cat<-NULL Y.numcat<-NULL for (j in 1:ncol(Ycov)) { if (is.numeric(Ycov[,j])) { if (is.null(Y.con)) Y.con<-data.frame(Ycov[,j,drop=FALSE]) else Y.con<-data.frame(Y.con,Ycov[,j,drop=FALSE]) } if (is.factor(Ycov[,j])) { if (is.null(Y.cat)) Y.cat<-data.frame(Ycov[,j,drop=FALSE]) else Y.cat<-data.frame(Y.cat,Ycov[,j,drop=FALSE]) Y.numcat<-cbind(Y.numcat,nlevels(Ycov[,j])) } } h<-1 for ( j in 1:length.sub) { for ( k in 1:order.sub[j]) { current.term<-split.terms[[j]][k] current.term<-sub(".*I\\(","",current.term) current.term<-sub("\\)","",current.term) if (grepl("\\^",current.term)) { submod[3,h]<-as.integer(sub(".*\\^","",current.term)) current.term<-sub("\\^.*","",current.term) } else { submod[3,h]<-1 } if (length(which(colnames(Y.cat)==current.term))!=0) { submod[1,h]<-which(colnames(Y.cat)==current.term) submod[2,h]<-2 submod[4,h]<-Y.numcat[submod[1,h]]-1 } else if (length(which(colnames(Y.con)==current.term))!=0) { submod[1,h]<-which(colnames(Y.con)==current.term) submod[2,h]<-1 } h<-h+1 } } Y.auxiliary<-data.frame(data[,-c(which(colnames(data)%in%colnames(Y.con)),which(colnames(data)%in%colnames(Y.cat)),which(colnames(data)==colnamysub)), drop=FALSE]) Y.aux.con<-NULL Y.aux.cat<-NULL Y.aux.numcat<-NULL if (ncol(Y.auxiliary)>0) { for (j in 1:ncol(Y.auxiliary)) { if (is.numeric(Y.auxiliary[,j])) { if (is.null(Y.aux.con)) Y.aux.con<-data.frame(Y.auxiliary[,j,drop=FALSE]) else Y.aux.con<-data.frame(Y.aux.con,Y.auxiliary[,j,drop=FALSE]) } if (is.factor(Y.auxiliary[,j])) { if (is.null(Y.aux.cat)) Y.aux.cat<-data.frame(Y.auxiliary[,j,drop=FALSE]) else Y.aux.cat<-data.frame(Y.aux.cat,Y.auxiliary[,j,drop=FALSE]) Y.aux.numcat<-cbind(Y.aux.numcat,nlevels(Y.auxiliary[,j])) } } } X=matrix(1,max(nrow(Y.cat),nrow(Y.con)),1) if (is.null(beta.start)) beta.start=matrix(0,ncol(X),(max(as.numeric(!is.null(Y.con)),ncol(Y.con))+max(0,(sum(Y.numcat)-length(Y.numcat)))+max(as.numeric(!is.null(Y.aux.con)),ncol(Y.aux.con))+max(0,(sum(Y.aux.numcat)-length(Y.aux.numcat))))) if (is.null(l1cov.start)) { l1cov.start=diag(1,ncol(beta.start)) } if (is.null(l1cov.prior)) l1cov.prior=diag(1,ncol(l1cov.start)) ncolYcon<-rep(NA,4) ncolYcon[1]=max(as.numeric(!is.null(Y.con)),ncol(Y.con))+max(as.numeric(!is.null(Y.aux.con)),ncol(Y.aux.con)) ncolYcon[2]=max(as.numeric(!is.null(Y.con)),ncol(Y.con)) ncolYcon[3]=ncolYcon[1]+max(0,(sum(Y.numcat)-length(Y.numcat))) ncolYcon[4]=max(0,ncol(Y.cat)) stopifnot(((!is.null(Y.con))||(!is.null(Y.cat)&!is.null(Y.numcat)))) if (!is.null(Y.cat)) { isnullcat=0 previous_levels<-list() Y.cat<-data.frame(Y.cat) for (i in 1:ncol(Y.cat)) { Y.cat[,i]<-factor(Y.cat[,i]) previous_levels[[i]]<-levels(Y.cat[,i]) levels(Y.cat[,i])<-1:nlevels(Y.cat[,i]) } } else { isnullcat=1 } if (!is.null(Y.aux.cat)) { isnullcataux=0 previous_levelsaux<-list() Y.aux.cat<-data.frame(Y.aux.cat) for (i in 1:ncol(Y.aux.cat)) { Y.aux.cat[,i]<-factor(Y.aux.cat[,i]) previous_levelsaux[[i]]<-levels(Y.aux.cat[,i]) levels(Y.aux.cat[,i])<-1:nlevels(Y.aux.cat[,i]) } } else { isnullcataux=1 } stopifnot(nrow(beta.start)==ncol(X), ncol(beta.start)==(ncolYcon[1]+max(0,(sum(Y.numcat)-length(Y.numcat)))+max(0,(sum(Y.aux.numcat)-length(Y.aux.numcat))))) stopifnot(nrow(l1cov.start)==ncol(l1cov.start),nrow(l1cov.prior)==nrow(l1cov.start),nrow(l1cov.start)==ncol(beta.start)) stopifnot(nrow(l1cov.prior)==ncol(l1cov.prior)) betait=matrix(0,nrow(beta.start),ncol(beta.start)) for (i in 1:nrow(beta.start)) { for (j in 1:ncol(beta.start)) betait[i,j]=beta.start[i,j] } covit=matrix(0,nrow(l1cov.start),ncol(l1cov.start)) for (i in 1:nrow(l1cov.start)) { for (j in 1:ncol(l1cov.start)) covit[i,j]=l1cov.start[i,j] } if (!is.null(Y.con)) { colnamycon<-colnames(Y.con) Y.con<-data.matrix(Y.con) storage.mode(Y.con) <- "numeric" } else { colnamycon<-NULL } if (isnullcat == 0) { colnamycat <- colnames(Y.cat) Y.cat <- data.matrix(Y.cat) storage.mode(Y.cat) <- "numeric" cnycatcomp<-rep(NA,(sum(Y.numcat)-length(Y.numcat))) count=0 for ( j in 1:ncol(Y.cat)) { for (k in 1:(Y.numcat[j]-1)) { cnycatcomp[count+k]<-paste(colnamycat[j],k,sep=".") } count=count+Y.numcat[j]-1 } } else { cnycatcomp<-NULL } if (!is.null(Y.aux.con)) { colnamyauxcon<-colnames(Y.aux.con) Y.aux.con<-data.matrix(Y.aux.con) storage.mode(Y.aux.con) <- "numeric" } else { colnamyauxcon<-NULL } if (isnullcataux == 0) { colnamyauxcat <- colnames(Y.aux.cat) Y.aux.cat <- data.matrix(Y.aux.cat) storage.mode(Y.aux.cat) <- "numeric" cnyauxcatcomp<-rep(NA,(sum(Y.aux.numcat)-length(Y.aux.numcat))) count=0 for ( j in 1:ncol(Y.aux.cat)) { for (k in 1:(Y.aux.numcat[j]-1)) { cnyauxcatcomp[count+k]<-paste(colnamyauxcat[j],k,sep=".") } count=count+Y.aux.numcat[j]-1 } } else { cnyauxcatcomp<-NULL } colnamx<-colnames(X) X<-data.matrix(X) storage.mode(X) <- "numeric" Y=cbind(Y.con,Y.aux.con,Y.cat, Y.aux.cat) Yi=cbind(Y.con, Y.aux.con, switch(is.null(Y.cat)+1, matrix(0,nrow(Y),(sum(Y.numcat)-length(Y.numcat))), NULL), switch(is.null(Y.aux.cat)+1, matrix(0,nrow(Y.aux.cat),(sum(Y.aux.numcat)-length(Y.aux.numcat))), NULL)) h=1 if (isnullcat==0) { for (i in 1:length(Y.numcat)) { for (j in 1:nrow(Y)) { if (is.na(Y.cat[j,i])) { Yi[j,(ncolYcon[1]+h):(ncolYcon[1]+h+Y.numcat[i]-2)]=NA } } h=h+Y.numcat[i]-1 } } if (isnullcataux==0) { for (i in 1:length(Y.aux.numcat)) { for (j in 1:nrow(Y)) { if (is.na(Y.aux.cat[j,i])) { Yi[j,(ncolYcon[1]+h):(ncolYcon[1]+h+Y.aux.numcat[i]-2)]=NA } } h=h+Y.aux.numcat[i]-1 } } if (isnullcat==0||isnullcataux==0) { Y.cat.tot<-cbind(Y.cat,Y.aux.cat) Y.numcat.tot<-c(Y.numcat, Y.aux.numcat) } else { Y.cat.tot=-999 Y.numcat.tot=-999 } Ysubimp<-Ysub if (output == 0) out.iter=nburn+nbetween imp=matrix(0,nrow(Y)*(nimp+1),ncol(Y)+3) imp[1:nrow(Y),1]=Ysub imp[1:nrow(Y),2:(1+ncol(Y))]=Y imp[1:nrow(X), (ncol(Y)+2)]=c(1:nrow(Y)) Yimp=Yi Yimp2=matrix(Yimp, nrow(Yimp),ncol(Yimp)) imp[(nrow(X)+1):(2*nrow(X)), (ncol(Y)+2)]=c(1:nrow(Y)) imp[(nrow(X)+1):(2*nrow(X)), (ncol(Y)+3)]=1 betapost<- array(0, dim=c(nrow(beta.start),ncol(beta.start),(nimp-1))) betaYpost<- array(0, dim=c(1,length(betaY.start),(nimp-1))) bpost<-matrix(0,nrow(beta.start),ncol(beta.start)) bYpost<-matrix(0,1,length(betaY.start)) omegapost<- array(0, dim=c(nrow(l1cov.start),ncol(l1cov.start),(nimp-1))) opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start)) varYpost<-rep(0,(nimp-1)) vYpost<-matrix(0,1,1) meanobs<-colMeans(Yi,na.rm=TRUE) for (i in 1:nrow(Yi)) for (j in 1:ncol(Yi)) if (is.na(Yimp[i,j])) Yimp2[i,j]=meanobs[j] for (i in 1:length(Ysubimp)) if (is.na(Ysubimp[i])) Ysubimp[i]=mean(Ysubimp, na.rm = TRUE) .Call("jomo1smcC", Ysub, Ysubimp, 0, submod, order.sub, Y, Yimp, Yimp2, Y.cat.tot, X, betaY.start, bYpost, betait,bpost, varY.start, vYpost, covit,opost, nburn, varY.prior, l1cov.prior,Y.numcat.tot,1, ncolYcon,out.iter, 0, 0, PACKAGE = "jomo") bpost<-matrix(0,nrow(beta.start),ncol(beta.start)) bYpost<-matrix(0,1,length(betaY.start)) opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start)) vYpost<-matrix(0,1,1) imp[(nrow(Y)+1):(2*nrow(Y)),1]=Ysubimp if (!is.null(Y.con)|!is.null(Y.aux.con)) { imp[(nrow(Y)+1):(2*nrow(Y)),2:(1+max(0,ncol(Y.con))+max(0,ncol(Y.aux.con)))]=Yimp2[,1:(max(0,ncol(Y.con))+max(0,ncol(Y.aux.con)))] } if (isnullcat==0|isnullcataux==0) { imp[(nrow(Y)+1):(2*nrow(Y)),(ncolYcon[1]+2):(1+ncol(Y))]=Y.cat.tot } if (output > 0) cat("First imputation registered.", "\n") for (i in 2:nimp) { imp[(i*nrow(X)+1):((i+1)*nrow(X)), (ncol(Y)+2)]=c(1:nrow(Y)) imp[(i*nrow(X)+1):((i+1)*nrow(X)), (ncol(Y)+3)]=i .Call("jomo1smcC", Ysub, Ysubimp, 0, submod, order.sub, Y, Yimp, Yimp2, Y.cat.tot, X, betaY.start, bYpost, betait,bpost, varY.start, vYpost, covit,opost, nbetween, varY.prior, l1cov.prior,Y.numcat.tot,1, ncolYcon,out.iter, 0, 0, PACKAGE = "jomo") betapost[,,(i-1)]=bpost betaYpost[,,(i-1)]=bYpost omegapost[,,(i-1)]=opost varYpost[i-1]=vYpost bpost<-matrix(0,nrow(beta.start),ncol(beta.start)) bYpost<-matrix(0,1,length(betaY.start)) opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start)) vYpost<-matrix(0,1,1) imp[(i*nrow(X)+1):((i+1)*nrow(X)),1]=Ysubimp if (!is.null(Y.con)|!is.null(Y.aux.con)) { imp[(i*nrow(X)+1):((i+1)*nrow(X)),2:(1+max(0,ncol(Y.con))+max(0,ncol(Y.aux.con)))]=Yimp2[,1:(max(0,ncol(Y.con))+max(0,ncol(Y.aux.con)))] } if (isnullcat==0||isnullcataux==0) { imp[(i*nrow(X)+1):((i+1)*nrow(X)),(ncolYcon[1]+2):(1+ncol(Y))]=Y.cat.tot } if (output > 0) cat("Imputation number ", i, "registered", "\n") } cnamycomp<-c(colnamycon, colnamyauxcon, cnycatcomp, cnyauxcatcomp) dimnames(betapost)[1] <- list("(Intercept)") dimnames(betapost)[2] <- list(cnamycomp) dimnames(omegapost)[1] <- list(cnamycomp) dimnames(omegapost)[2] <- list(cnamycomp) betaYpostmean <- apply(betaYpost, c(1, 2), mean) varYpostmean <- mean(varYpost) betapostmean <- apply(betapost, c(1, 2), mean) omegapostmean <- apply(omegapost, c(1, 2), mean) colnames(betaYpostmean)<-names(fit.cr$coefficients) rownames(betaYpostmean)<-colnamysub if (output > 0) { cat("The posterior mean of the substantive model fixed effects estimates is:\n") print(betaYpostmean) cat("The posterior mean of the substantive model residual variance is:\n") print(varYpostmean) if ( output == 2 ) { cat("The posterior mean of the fixed effects estimates is:\n") print(betapostmean) cat("The posterior mean of the level 1 covariance matrix is:\n") print(omegapostmean) } } imp<-data.frame(imp) if (isnullcat==0) { for (i in 1:ncol(Y.cat)) { imp[,(1+ncolYcon[1]+i)]<-as.factor(imp[,(1+ncolYcon[1]+i)]) levels(imp[,(1+ncolYcon[1]+i)])<-previous_levels[[i]] } } if (isnullcataux==0) { for (i in 1:ncol(Y.aux.cat)) { imp[,(1+ncolYcon[1]+ncolYcon[4]+i)]<-as.factor(imp[,(1+ncolYcon[1]+ncolYcon[4]+i)]) levels(imp[,(1+ncolYcon[1]+ncolYcon[4]+i)])<-previous_levelsaux[[i]] } } if (ncolYcon[1]>0) { for (j in 1:(ncolYcon[1])) { imp[,j+1]=as.numeric(imp[,j+1]) } } if (isnullcat==0) { if (is.null(colnamycat)) colnamycat=paste("Ycat", 1:ncol(Y.cat), sep = "") } else { colnamycat=NULL Y.cat=NULL Y.numcat=NULL } if (isnullcataux==0) { if (is.null(colnamyauxcat)) colnamyauxcat=paste("Ycat.aux", 1:ncol(Y.aux.cat), sep = "") } else { colnamyauxcat=NULL Y.aux.cat=NULL Y.aux.numcat=NULL } if (!is.null(Y.con)) { if (is.null(colnamycon)) colnamycon=paste("Ycon", 1:ncol(Y.con), sep = "") } else { colnamycon=NULL } if (!is.null(Y.aux.con)) { if (is.null(colnamyauxcon)) colnamyauxcon=paste("Ycon.aux", 1:ncol(Y.aux.con), sep = "") } else { colnamyauxcon=NULL } if (is.null(colnamysub)) colnamysub="Ysub" colnames(imp)<-c(colnamysub,colnamycon,colnamyauxcon,colnamycat,colnamyauxcat,"id","Imputation") return(imp) }
skippedMean <- function(x, na.rm = FALSE, constant = 3.0){ stopifnot(is.numeric(x)) if(na.rm) x <- x[!is.na(x)] stopifnot(constant > 0, length(constant) == 1) M <- median(x) MAD <- mad(x) mean(x[M - constant*MAD < x & x < M + constant*MAD]) } skippedSD <- function(x, na.rm = FALSE, constant = 3.0){ stopifnot(is.numeric(x)) if(na.rm) x <- x[!is.na(x)] stopifnot(constant > 0, length(constant) == 1) M <- median(x) MAD <- mad(x) sd(x[M - constant*MAD < x & x < M + constant*MAD]) }
phihat <- function(object, type = c("pearson", "deviance", "mle", "grcv"), g = NULL, ...){ if(class(object) != "dglars") stop("this function works only with objects with class 'dglars'") family_used <- object$family$family type <- match.arg(type) if(family_used %in% c("binomial", "poisson")) phih <- rep.int(1, ifelse(is.null(g), length(object$g), length(g))) else{ if(type != "grcv") { n <- dim(object$X)[1] npar <- predict(object, g = g, type = "nnonzero") df <- n - npar dev <- predict(object, g = g, type = "deviance") phih <- switch(type, pearson = predict(object, g = g, type = "coefficients")$phi, deviance = dev / df, mle = if(family_used != "Gamma") dev / n else 2 * dev / (n * (1 + sqrt(1 + 2/3 * dev / n)))) } else { np <- ifelse(is.null(g), length(object$g), length(g)) phih <- grcv(object, ...) phih <- rep(phih, length.out = np) } } phih }
nonbinding <- function(l, u, theta, sigma, n1, n2, t.vec, type1, type2, gamma = rep(-4,2), crange=c(-10,10), drange=c(-10,10), force = TRUE, plot = TRUE, ll=3, ul=6, n.sim=1e4, seed=NULL) { HSD <- function(t,error,gamma) error*(1-exp(-gamma*t))/(1-exp(-gamma)) I.vec <- HSD(t.vec,type1, gamma[1]) II.vec <- HSD(t.vec,type2, gamma[2]) K <- length(t.vec) nn1 <- ceiling(n1 * t.vec); nn1[K] <- n1 nn2 <- ceiling(n2 * t.vec); nn2[K] <- n2 if(!is.null(seed)) set.seed(seed) simdataL <- data.frame(matrix(0,n.sim*K,3)) colnames(simdataL)<- c("stage", "t.L", "t.U") x1 <- matrix(rnorm(n1*n.sim, 0, sigma), n.sim, n1) x2 <- matrix(rnorm(n2*n.sim, l, sigma), n.sim, n2) for(k in 1:K){ x1.stage <- x1[,1:nn1[k]] mean1.temp <- apply(x1.stage, 1, mean) v1.temp <- apply(x1.stage, 1, var) x2.stage <- x2[,1:nn2[k]] mean2.temp <- apply(x2.stage, 1, mean) v2.temp <- apply(x2.stage, 1, var) v.pool <- (v1.temp*(nn1[k]-1)+ v2.temp*(nn2[k]-1))/(nn1[k]+ nn2[k]-2) se.pool <- sqrt(v.pool*(1/nn1[k]+1/nn2[k])) diff <- mean2.temp - mean1.temp t.L <- (diff - l) / se.pool t.U <- (diff - u) / se.pool simdataL[(k-1)*n.sim + 1:n.sim,] <- cbind(k, t.L, t.U) } ct2.L <- rep(99, K) ct2.U <- rep(-99, K) f <- function(x){ temp1 <- simdataL[(simdataL$stage == 1),]$t.L > x temp2 <- simdataL[(simdataL$stage == 1),]$t.U < -x result<- sum(temp1 & temp2) / n.sim - I.vec[1] return(result) } ct2.L[1] <- uniroot(f, crange, tol=0.001)$root ct2.U[1] <- -ct2.L[1] for (k in 2:K) { stagealpha <- I.vec[k] - I.vec[k-1] temp1 <- (simdataL[(simdataL$stage == k - 1),]$t.L > ct2.L[k - 1]) temp2 <- (simdataL[(simdataL$stage == k - 1),]$t.U < ct2.U[k - 1]) reject.prev <- temp1 & temp2 if(any(is.na(reject.prev))) reject.prev[is.na(reject.prev)] <- TRUE if(any(reject.prev)){ simdataL[(simdataL$stage == k),][reject.prev,]$t.L <- NA simdataL[(simdataL$stage == k),][reject.prev,]$t.U <- NA } if(all(is.na(simdataL$t.L)) == FALSE){ simdataL.k <- simdataL[(simdataL$stage == k),] left.k <- simdataL.k[!is.na(simdataL.k$t.L), ] if(nrow(left.k)< stagealpha*n.sim) stop(paste("No solutions for the equivalence boundaries at stage ", as.character(k))) else{ f <- function(x) { temp1 <- left.k$t.L > x temp2 <- left.k$t.U < -x result <- sum( temp1 & temp2) /n.sim - stagealpha return(result) } ct2.L[k] <- uniroot(f, crange, tol=0.001)$root ct2.U[k] <- -ct2.L[k] } } } simdata0 <- data.frame(matrix(0,n.sim*K,3)) colnames(simdata0)<- c("stage", "t.L", "t.U") x1 <- matrix(rnorm(n1*n.sim, 0, sigma), n.sim, n1) x2 <- matrix(rnorm(n2*n.sim, theta, sigma), n.sim, n2) for(k in 1:K){ x1.stage <- x1[,1:nn1[k]] mean1.temp <- apply(x1.stage, 1, mean) v1.temp <- apply(x1.stage, 1, var) x2.stage <- x2[,1:nn2[k]] mean2.temp <- apply(x2.stage, 1, mean) v2.temp <- apply(x2.stage, 1, var) v.pool <- (v1.temp*(nn1[k]-1)+ v2.temp*(nn2[k]-1))/(nn1[k]+ nn2[k]-2) se.pool <- sqrt(v.pool*(1/nn1[k]+1/nn2[k])) diff <- mean2.temp - mean1.temp t.L <- (diff - l) / se.pool t.U <- (diff - u) / se.pool simdata0[(k-1)*n.sim + 1:n.sim,] <- cbind(k, t.L, t.U) } dt2.L <- rep(999, K) dt2.U <- rep(-999, K) f <- function(x) { temp1 <- simdata0[(simdata0$stage == 1),]$t.L <= x temp2 <- simdata0[(simdata0$stage == 1),]$t.U >= -x result <- sum( temp1 | temp2) / n.sim - II.vec[1] return(result) } dt2.L[1] <- uniroot(f , drange, tol=0.001)$root dt2.U[1] <- -dt2.L[1] for (k in 2:K) { stagebeta <- II.vec[k] - II.vec[k-1] temp1 <- (simdata0[(simdata0$stage == k - 1),]$t.L > ct2.L[k - 1]) temp2 <- (simdata0[(simdata0$stage == k - 1),]$t.U < ct2.U[k - 1]) temp3 <- (simdata0[(simdata0$stage == k - 1),]$t.L <= dt2.L[k - 1]) temp4 <- (simdata0[(simdata0$stage == k - 1),]$t.U >= dt2.U[k - 1]) stop.prev <- (temp1 & temp2) | temp3 | temp4 if(any(is.na(stop.prev))) stop.prev[is.na(stop.prev)] <- TRUE if(all(stop.prev)){ dt2.L<- dt2.L[1:(k-1)] dt2.U<- dt2.U[1:(k-1)] break } else { simdata0.k <- simdata0[simdata0$stage == k,]; simdata0.k[stop.prev,]$t.L <- NA simdata0.k[stop.prev,]$t.U <- NA left.k <- simdata0.k[!is.na(simdata0.k$t.L),] f <- function(x) { temp1 <- left.k$t.L <= x temp2 <- left.k$t.U >= -x result <- sum(temp1 | temp2) / n.sim - stagebeta return(result) } if(nrow(left.k) >= stagebeta*n.sim){ dt2.L[k] <- uniroot(f, drange, tol=0.001)$root dt2.U[k] <- -dt2.L[k] } else break; } } if(force & !any(dt2.L==999)) {dt2.L[K]<- ct2.L[K]; dt2.U[K]<- ct2.U[K]} result <- list(typeI= I.vec, typeII= II.vec, equivL=ct2.L, equivU=ct2.U, futilL=dt2.L, futilU=dt2.U) if(plot){ if(K<=3) par(mfrow=c(1,K), mar=c(4,2,1,1), ask=T) else if(K==4) par(mfrow=c(2,2), mar=c(4,2,1,1), ask=T) else if(K>=5 & K<=6) par(mfrow=c(2,3), mar=c(4,2,1,1), ask=T) figureEF(result, K, ll, ul) } return(result) }
options(na.action=na.exclude) options(contrasts=c('contr.treatment', 'contr.poly')) library(survival) aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) fit1 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian) fit4 <- survreg(Surv(log(futime), fustat) ~age + ecog.ps, ovarian, dist='extreme') print(fit1) summary(fit4) if (exists('censorReg')) { fit2 <- censorReg(censor(futime, fustat) ~ age + ecog.ps, ovarian) fit3 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, iter=0, init=c(fit2$coef, log(fit2$scale))) aeq(resid(fit2, type='working')[,1], resid(fit3, type='working')) aeq(resid(fit2, type='response')[,1], resid(fit3, type='response')) temp <- sign(resid(fit3, type='working')) aeq(resid(fit2, type='deviance')[,1], temp*abs(resid(fit3, type='deviance'))) aeq(resid(fit2, type='deviance')[,1], resid(fit3, type='deviance')) } aeq(fit1$coef, fit4$coef) resid(fit1, type='working') resid(fit1, type='response') resid(fit1, type='deviance') resid(fit1, type='dfbeta') resid(fit1, type='dfbetas') resid(fit1, type='ldcase') resid(fit1, type='ldresp') resid(fit1, type='ldshape') resid(fit1, type='matrix') aeq(resid(fit1, type='working'),resid(fit4, type='working')) aeq(resid(fit1, type='deviance'), resid(fit4, type='deviance')) aeq(resid(fit1, type='dfbeta'), resid(fit4, type='dfbeta')) aeq(resid(fit1, type='dfbetas'), resid(fit4, type='dfbetas')) aeq(resid(fit1, type='ldcase'), resid(fit4, type='ldcase')) aeq(resid(fit1, type='ldresp'), resid(fit4, type='ldresp')) aeq(resid(fit1, type='ldshape'), resid(fit4, type='ldshape')) aeq(resid(fit1, type='matrix'), resid(fit4, type='matrix')) fit1 <- survreg(Surv(time, status) ~ temp, data=imotor) summary(fit1) predict(fit1, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) fit2 <- survreg(Surv(time, status) ~ temp, data=imotor, scale=fit1$scale) predict(fit2, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) fit3 <- fit2 fit3$var <- fit1$var[1:2,1:2] predict(fit3, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) pp <- seq(.05, .7, length=40) xx <- predict(fit1, data.frame(temp=130), type='uquantile', se=T, p=pp) fit1 <- survreg(Surv(time, status) ~ inst + strata(inst) + age + sex, lung) qq1 <- predict(fit1, type='quantile', p=.3, se=T) qq2 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) aeq(qq1$fit, qq2$fit[,2]) aeq(qq1$se.fit, qq2$se.fit[,2]) qq3 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata= lung[1:5,]) aeq(qq3$fit, qq2$fit[1:5,]) qq4 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung[7,]) aeq(qq4$fit, qq2$fit[7,]) qq5 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung) aeq(qq2$fit, qq5$fit) aeq(qq2$se.fit, qq5$se.fit)
test.fTHETA = function() { slotNames("fTHETA") return() } test.thetaSim = function() { x = thetaSim("max") class(x) print(x) x = thetaSim("pair") class(x) print(x) return() } test.thetaFit = function() { x.ts = thetaSim("max", n=22000) class(x.ts) blockTheta(x.ts) clusterTheta(x.ts) runTheta(x.ts) ferrosegersTheta(x.ts) x.vec = as.vector(x.ts) blockTheta(x.vec) clusterTheta(x.vec) runTheta(x.vec) ferrosegersTheta(x.vec) x.tS = as.timeSeries(x.ts) blockTheta(x.tS) clusterTheta(x.tS) runTheta(x.tS) ferrosegersTheta(x.tS) return() } test.exindexesPlot = function() { par(mfrow = c(2, 2), cex = 0.7) par(ask = FALSE) x = thetaSim("max", n = 22000) exindexesPlot(x) y = thetaSim("pair", n = 22000) exindexesPlot(y) return() } test.exindexPlot = function() { par(mfrow = c(2, 2), cex = 0.7) par(ask = FALSE) x = thetaSim("max", n=22000) exindexPlot(x, block = 22) y = thetaSim("pair", n=22000) exindexPlot(y, block = 22) return() }
community_structure <- function(df, time.var = NULL, abundance.var, replicate.var = NULL, metric = c("Evar", "SimpsonEvenness", "EQ")) { metric <- match.arg(metric) if(any(is.na(df[[abundance.var]]))) stop("Abundance column contains missing values") if(is.null(replicate.var)) { by <- time.var } else if(is.null(time.var)) { by <- replicate.var } else { by <- c(time.var, replicate.var) } evenness <- get(metric) comstruct <- aggregate.data.frame(df[abundance.var], df[by], FUN = function(x) cbind(S(x), evenness(x))) comstruct <- do.call(data.frame, comstruct) if (any(is.na(comstruct[[paste(abundance.var, 2, sep = ".")]]))) { warning("Evenness values contain NAs because there are plots with only one species") } names(comstruct) <- c(by, 'richness', metric) return(comstruct) } SimpsonEvenness <- function(x, S = length(x[x != 0]), N = sum(x[x != 0]), ps = x[x != 0]/N, p2 = ps*ps ){ D <- sum(p2) (1/D)/S } EQ <- function(x){ x1 <- x[x != 0] if (length(x1) == 1) { return(NA) } if (abs(max(x1) - min(x1)) < .Machine$double.eps^0.5) { return(1) } r <- rank(-x1, ties.method = "average") r_scale <- r/max(r) x_log <- log(x1) fit <- lm(r_scale~x_log) b <- fit$coefficients[[2]] -2/pi*atan(b) }
prepare_id_level_evaluation <- function(data, target_col, prediction_cols, family, id_col, id_method, groups_col, cutoff = NULL, apply_softmax = length(prediction_cols) > 1, new_prediction_col_name = "prediction", new_std_col_name = "std") { if (is.null(id_col)) { stop("'id_col' was NULL.") } if (!is.character(id_col)) { stop("'id_col' must be either the name of a column in 'data' or NULL.") } if (id_col %ni% colnames(data)) { stop(paste0("could not find 'id_col', ", id_col, ", in 'data'.")) } if (isTRUE(apply_softmax)) { if (length(prediction_cols) < 2) { stop("can only apply softmax when there are more than one 'prediction_cols'.") } data <- softmax(data, cols = prediction_cols) } if (family == "binomial") { if (is.null(cutoff)) { stop("when 'family' is 'binomial', 'cutoff' must be numeric between 0 and 1.") } if (is.null(cutoff)) { stop("when 'family' is 'binomial', 'cutoff' must be numeric between 0 and 1.") } } num_groups <- length(unique(data[[groups_col]])) id_classes <- extract_id_classes( data = data, groups_col = groups_col, id_col = id_col, target_col = target_col ) if (id_method == "mean") { data_for_id_evaluation <- data %>% dplyr::group_by(!!as.name(groups_col), !!as.name(id_col)) data_for_id_evaluation_mean <- data_for_id_evaluation %>% dplyr::summarise_at(dplyr::vars(prediction_cols), .funs = mean) data_for_id_evaluation_std <- data_for_id_evaluation %>% dplyr::summarise_at(dplyr::vars(prediction_cols), .funs = sd) colnames(data_for_id_evaluation_std) <- ifelse( colnames(data_for_id_evaluation_std) %in% prediction_cols, paste0(colnames(data_for_id_evaluation_std), "_STD"), colnames(data_for_id_evaluation_std) ) data_for_id_evaluation <- data_for_id_evaluation_mean %>% dplyr::left_join(data_for_id_evaluation_std, by = c(groups_col, id_col)) %>% dplyr::left_join(id_classes, by = c(id_col, groups_col)) %>% dplyr::ungroup() } else if (id_method == "majority") { if (family == "multinomial") { data[["predicted_class_index"]] <- data %>% base_select(cols = prediction_cols) %>% argmax() data[["predicted_class"]] <- purrr::map_chr( data[["predicted_class_index"]], .f = function(x) { prediction_cols[[x]] } ) data_majority_count_by_id <- data %>% dplyr::group_by(!!as.name(groups_col), !!as.name(id_col)) %>% dplyr::count(.data$predicted_class) %>% dplyr::left_join(id_classes, by = c(id_col, groups_col)) %>% dplyr::ungroup() classes_to_add <- setdiff( prediction_cols, data_majority_count_by_id[["predicted_class"]] ) if (length(classes_to_add) > 0) { na_cols <- dplyr::bind_rows(setNames(rep( list(rep(NA, num_groups * nlevels(factor(data_majority_count_by_id[[id_col]])))), length(classes_to_add) ), classes_to_add)) } majority_vote_probabilities <- data_majority_count_by_id %>% tidyr::spread(key = "predicted_class", value = "n") if (length(classes_to_add) > 0) { majority_vote_probabilities <- majority_vote_probabilities %>% dplyr::bind_cols(na_cols) %>% base_select(cols = c(groups_col, id_col, target_col, prediction_cols)) } majority_vote_probabilities[is.na(majority_vote_probabilities)] <- 0 majority_vote_probabilities <- majority_vote_probabilities %>% dplyr::mutate_at(prediction_cols, function(x) { (x / (x + 1e-30)) * 1e+4 }) data_for_id_evaluation <- majority_vote_probabilities %>% dplyr::ungroup() } else if (family == "binomial") { if (length(prediction_cols) > 1) { stop("when 'family' is 'binomial', length of 'prediction_cols' should be 1.") } data[["predicted_class"]] <- ifelse(data[[prediction_cols]] > cutoff, 1, 0) data_for_id_evaluation <- data %>% dplyr::group_by(!!as.name(groups_col), !!as.name(id_col)) %>% dplyr::summarise(mean_prediction = mean(.data$predicted_class)) %>% dplyr::mutate(mean_prediction = dplyr::case_when( mean_prediction > cutoff ~ 1 - 1e-40, mean_prediction == cutoff ~ cutoff, mean_prediction < cutoff ~ 1e-40 )) %>% dplyr::rename_at("mean_prediction", ~prediction_cols) %>% dplyr::left_join(id_classes, by = c(id_col, groups_col)) %>% dplyr::ungroup() } else { stop(paste0("family ", family, " not currently supported for majority vote aggregated ID evaluation.")) } } if (family == "multinomial") { data_for_id_evaluation <- prepare_multinomial_evaluation( data_for_id_evaluation, target_col = target_col, prediction_cols = prediction_cols, apply_softmax = TRUE, new_prediction_col_name = new_prediction_col_name, new_std_col_name = new_std_col_name ) } else { if (id_method == "mean"){ data_for_id_evaluation <- data_for_id_evaluation %>% base_rename(before = paste0(prediction_cols, "_STD"), after = new_std_col_name) } } data_for_id_evaluation } prepare_multinomial_evaluation <- function(data, target_col, prediction_cols, apply_softmax, new_prediction_col_name, new_std_col_name) { col_split <- extract_and_remove_probability_cols( data = data, prediction_cols = prediction_cols ) predicted_probabilities <- col_split[["predicted_probabilities"]] standard_deviations <- col_split[["standard_deviations"]] data <- col_split[["data"]] if (isTRUE(apply_softmax)) { predicted_probabilities <- softmax(predicted_probabilities) } data[[new_prediction_col_name]] <- predicted_probabilities %>% nest_rowwise() if (!is.null(standard_deviations)){ data[[new_std_col_name]] <- standard_deviations %>% nest_rowwise() } if (length(setdiff(levels_as_characters(data[[target_col]]), prediction_cols)) > 0) { stop("Not all levels in 'target_col' was found in 'prediction_cols'.") } data } extract_and_remove_probability_cols <- function(data, prediction_cols) { predicted_probabilities <- data %>% base_select(cols = prediction_cols) data <- data %>% base_deselect(cols = prediction_cols) if (paste0(prediction_cols[[1]], "_STD") %in% colnames(data)){ standard_deviations <- data %>% base_select(cols = paste0(prediction_cols, "_STD")) data <- data %>% base_deselect(cols = colnames(standard_deviations)) colnames(standard_deviations) <- prediction_cols } else { standard_deviations <- NULL } if (any(!sapply(predicted_probabilities, is.numeric))) { stop("the prediction columns must be numeric.") } if (any(!sapply(standard_deviations, is.numeric))) { stop("the standard deviation columns must be numeric.") } list( "data" = data, "predicted_probabilities" = predicted_probabilities, "standard_deviations" = standard_deviations ) } extract_id_classes <- function(data, groups_col, id_col, target_col) { id_classes <- data %>% base_select(cols = c(groups_col, id_col, target_col)) %>% dplyr::distinct() check_constant_targets_within_ids( distinct_data = id_classes, groups_col = groups_col, id_col = id_col ) id_classes } check_constant_targets_within_ids <- function(distinct_data, groups_col, id_col) { counts <- distinct_data %>% dplyr::group_by(!!as.name(groups_col), !!as.name(id_col)) %>% dplyr::summarize(n = dplyr::n()) if (any(counts$n > 1)) { non_constant_ids <- counts %>% dplyr::filter(.data$n > 1) %>% dplyr::pull(!!as.name(id_col)) stop(paste0( "The targets must be constant within the IDs with the current ID method. ", "These IDs had more than one unique value in the target column: ", paste0(head(non_constant_ids, 5), collapse = ", " ), ifelse(length(non_constant_ids) > 5, ", ...", ""), "." )) } }
liptak <- function(p) { sum(pnorm(1-p)) }
library(testthat) library(iMRMC) context("uStat11") init.lecuyerRNG() flagSave <- FALSE if (flagSave) { saveResult <- list() } simRoeMetz.config <- sim.gRoeMetz.config() simRoeMetz.config$nR <- 8 simRoeMetz.config$nC.neg <- 38 simRoeMetz.config$nC.pos <- 38 df.MRMC <- sim.gRoeMetz(simRoeMetz.config) df <- undoIMRMCdf(df.MRMC) df <- droplevels(df[grepl("pos", df$caseID), ]) readers <- levels(df$readerID) nR <- nlevels(df$readerID) cases <- levels(df$caseID) nC <- nlevels(df$caseID) nG <- 3 readerGroups <- createGroups(readers, nG) names(readerGroups) <- c("readerID", "readerGroup") df <- merge(df, readerGroups) caseGroups <- createGroups(cases, nG) names(caseGroups) <- c("caseID", "caseGroup") df <- merge(df, caseGroups) df <- df[df$caseGroup == df$readerGroup, ] df <- df[!(df$readerID == "reader5" & df$modalityID == "testA"), ] df <- df[!(df$caseID == "posCase5" & df$modalityID == "testB"), ] dA <- convertDFtoDesignMatrix(df, modality = "testA", dropFlag = FALSE) dB <- convertDFtoDesignMatrix(df, modality = "testB", dropFlag = FALSE) image(dA) image(dB) result.jointD.identity <- uStat11.jointD( df, kernelFlag = 1, keyColumns = c("readerID", "caseID", "modalityID", "score"), modalitiesToCompare = c("testA", "testB")) cat("\n") cat("uStat11.jointD.identity \n") print(result.jointD.identity[1:2]) if (flagSave) { saveResult$jointD.identity <- result.jointD.identity } result.conditionalD.identity <- uStat11.conditionalD( df, kernelFlag = 1, keyColumns = c("readerID", "caseID", "modalityID", "score"), modalitiesToCompare = c("testA", "testB")) cat("\n") cat("uStat11.conditionalD.identity \n") print(result.conditionalD.identity[1:2]) if (flagSave) { saveResult$conditionalD.identity <- result.conditionalD.identity } result.jointD.diff <- uStat11.jointD( df, kernelFlag = 2, keyColumns = c("readerID", "caseID", "modalityID", "score"), modalitiesToCompare = c("testA", "testB", "testB", "testA")) cat("\n") cat("uStat11.jointD.diff \n") print(result.jointD.diff[1:2]) if (flagSave) { saveResult$jointD.diff <- result.jointD.diff } result.conditionalD.diff <- uStat11.conditionalD( df, kernelFlag = 2, keyColumns = c("readerID", "caseID", "modalityID", "score"), modalitiesToCompare = c("testA", "testB", "testB", "testA")) cat("\n") cat("uStat11.conditionalD.diff \n") print(result.conditionalD.diff[1:2]) if (flagSave) { saveResult$conditionalD.diff <- result.conditionalD.diff } fileName <- "test_uStat11_splitPlot.Rdata" if (flagSave) { save(saveResult, file = file.path("tests", "testthat", fileName)) } saveResult <- 0 if (!file.exists(fileName)) { fileName <- file.path("tests", "testthat", fileName) } load(fileName) test_that( "uStat11.jointD, difference kernel, doesn't change", { expect_equal(saveResult$jointD.diff, result.jointD.diff,tolerance=1e-5) } ) test_that( "uStat11.conditionalD, difference kernel, doesn't change", { expect_equal(saveResult$conditionalD.diff, result.conditionalD.diff,tolerance=1e-5) } ) test_that( "uStat11.jointD, identity kernel, doesn't change", { expect_equal(saveResult$jointD.identity, result.jointD.identity,tolerance=1e-5) } ) test_that( "uStat11.conditionalD, identity kernel, doesn't change", { expect_equal(saveResult$conditionalD.identity, result.conditionalD.identity,tolerance=1e-5) } )
`FromSymmetricStorageUpper` <- function(x){ n<-floor((-1+sqrt(1+8*length(x)))/2) z<-matrix(numeric(n^2), nrow=n) i<-as.vector(lower.tri(z,diag=TRUE)) z[i]<-x ztranspose<-t(z) diag(ztranspose)<-0 z+ztranspose }
getForm <- function (tree, ...) { UseMethod("getForm", tree) } getForm.data.frame <- function(tree, inv = NULL, mapping = NULL, ...){ tree <- buildTree(tree, check = "form", vars = inv, mapping = mapping) getForm(tree, inv = inv, mapping = mapping) } getForm.list <- function(tree, inv = NULL, mapping = NULL, ...){ tree <- buildTree(tree, check = "form", vars = inv, mapping = mapping) getForm(tree, inv = inv, mapping = mapping) } getForm.datBDAT <- function(tree, inv = NULL, mapping = NULL, ...) { if (!("datBDAT.form" %in% class(tree)) | !is.null(inv)) { tree <- buildTree(tree, check = "form", vars = inv, mapping = mapping) } if ("datBDAT.form" %in% class(tree)) { n <- nrow(tree) if (n >= 1) { res <- as.vector( .Fortran("vbdatformtarif", n = as.integer(n), vTarif = as.integer(tree$inv), vBDATBArtNr = as.integer(tree$spp), vD = as.single(tree$D13), vH = as.single(tree$H), vMwQ03BWI = as.single(rep(0, n)) )$vMwQ03BWI ) } else { res <- 0 } } return(res) }
download_wos <- function(query_result, ...) { rec_cnt <- query_result$rec_cnt if (rec_cnt >= 100000) { stop( "Can't download result sets that have 100,000 or more records. Try breaking your query into pieces using the PY tag (see FAQs at https://vt-arc.github.io/wosr/articles/faqs.html ) } if (rec_cnt == 0) return(NA) from <- seq(1, to = rec_cnt, by = 100) count <- rep(100, times = length(from)) count[length(count)] <- rec_cnt - from[length(count)] + 1 pbapply::pblapply(seq_len(length(from)), function(x, ...) { response <- one_pull( query_result$query_id, first_record = from[x], count = count[x], sid = query_result$sid, ... ) check_resp(response) response }) } one_pull <- function(query_id, first_record, count, sid, ...) { body <- paste0( '<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> <soap:Body> <ns2:retrieve xmlns:ns2="http://woksearch.v3.wokmws.thomsonreuters.com"> <queryId>', query_id, '</queryId> <retrieveParameters> <firstRecord>', first_record, '</firstRecord> <count>', count, '</count></retrieveParameters> </ns2:retrieve> </soap:Body> </soap:Envelope>' ) for (i in 1:3) { response <- wok_search(body, sid, ...) if (httr::http_error(response)) { er <- parse_er(response) if (grepl("throttle", er, ignore.case = TRUE)) { Sys.sleep(1) } } else { return(response) } } response } wok_search <- function(body, sid, ...) { httr::POST( "http://search.webofknowledge.com/esti/wokmws/ws/WokSearch", body = body, httr::add_headers("cookie" = paste0("SID=", sid)), ua(), ... ) }
dreg <- function(data,y,x=NULL,z=NULL,x.oneatatime=TRUE, x.base.names=NULL,z.arg=c("clever","base","group","condition"), fun.=lm,summary.=summary,regex=FALSE,convert=NULL,doSummary=TRUE, special=NULL,equal=TRUE,test=1,...) { yxzf <- procform(y,x=x,z=z,data=data,do.filter=FALSE,regex=regex) yxz <- procformdata(y,x=x,z=z,data=data,do.filter=FALSE,regex=regex) if (any(yxzf$predictor=="")) yxzf$predictor <- yxzf$predictor[-which(yxzf$predictor=="")] yy <- yxz$response xx <- yxz$predictor if ((length(yxzf$filter))==0) zz <- NULL else if ((length(yxzf$filter[[1]])==1 & yxzf$filter[[1]][1]=="1")) zz <- NULL else zz <- yxz$group[[1]] if (!is.null(zz)) { if (z.arg[1]=="clever") { if ((ncol(zz)==1) & is.logical(zz[1,1])) z.arg[1] <- "condition" else if ((ncol(zz)==1) & is.factor(zz[,1])) z.arg[1] <- "group" else z.arg[1] <- "base" } } basen <- NULL if (z.arg[1]=="base") basen <- yxzf$filter[[1]] if (z.arg[1]=="condition") data <- subset(data,eval(yxzf$filter.expression)) if (z.arg[1]=="group") group <- interaction(zz) else group <- rep(1,nrow(data)) if (z.arg[1]=="group") levell <- levels(group) else levell <-1 res <- sum <- list() if (test==1) { if (is.null(summary)) sum <- NULL for (g in levell) { if (equal==TRUE) datal <- subset(data,group==g) else datal <- subset(data,group!=g) for (y in yxzf$response) { if (x.oneatatime) { for (x in yxzf$predictor) { if (length(c(x,basen))>1) basel <- paste(c(x,basen),collapse="+") else basel <- c(x,basen) form <- as.formula(paste(y,"~",basel)) if (!is.null(special)) form <- timereg::timereg.formula(form,special=special) val <- do.call(fun.,c(list(formula=form),list(data=datal),list(...))) val <- list(val) nn <- paste(y,"~",basel) if (z.arg[1]=="group") { if (equal==TRUE) nn <- paste(nn,"|",g) else nn <- paste(nn,"| not",g); } names(val) <- nn val[[1]]$call <- nn res <- c(res, val) if (doSummary) { sval <- list(do.call(summary.,list(val[[1]]))) names(sval) <- nn sum <- c(sum, sval) } } } else { basel <- paste(c(yxzf$predictor,basen),collapse="+") form <- as.formula(paste(y,"~",basel)) if (!is.null(special)) form <- timereg::timereg.formula(form,special=special) val <- do.call(fun.,c(list(formula=form),list(data=datal),list(...))) nn <- paste(y,"~",basel) if (z.arg[1]=="group") { if (equal==TRUE) nn <- paste(nn,"|",g) else nn <- paste(nn,"| not",g); } val <- list(val) names(val) <- paste(y,"~",basel) val[[1]]$call <- nn res <- c(res, val) if (doSummary) { sval <- list(do.call(summary.,list(val[[1]]))) names(sval) <- nn sum <- c(sum, sval) } } } } } res <- list(reg=res,summary=sum) class(res) <- "dreg" return(res) } print.dreg <- function(x,sep="-",...) { sep <- paste(rep(sep,50,sep=""),collapse="") sep <- paste(sep,"\n") nn <- names(x$reg) for (i in seq_along(x$reg)) { cat(paste("Model=",nn[i],"\n")) print(x$reg[[i]],...) cat(sep) } } summary.dreg <- function(object,sep="-",...) { x <- object sep <- paste(rep(sep,50,sep=""),collapse="") sep <- paste(sep,"\n") if (!is.null(x$summary)) { nn <- names(x$summary) for (i in seq_along(x$summary)) { cat(paste("Model=",nn[i],"\n")) if (!is.null(x$summary)) print(x$summary[[i]],...) else print(x$reg[[i]],...) cat(sep) } } }
pred_ints_exact <-function(object, l_quant,u_quant,newdata=NULL, num_cores=1, root_alg_precision=0.00001){ if(is.null(newdata) && length(object)==16){ ret<-pred_ints_exact_outsamp(object$sumoftrees,object$obs_to_termNodesMatrix,object$response,object$bic, object$nrowTrain, nrow(object$test_data),object$a,object$sigma,0,object$nu, object$lambda, object$test_data,l_quant,u_quant,num_cores,root_alg_precision ) }else{if(is.null(newdata) && length(object)==14){ stop("Code not yet written for insample") }else{ ret<-pred_ints_exact_outsamp(object$sumoftrees,object$obs_to_termNodesMatrix,object$response,object$bic, object$nrowTrain, nrow(newdata), object$a,object$sigma,0,object$nu, object$lambda, newdata,l_quant,u_quant,num_cores,root_alg_precision ) }} names(ret) <- c("PI", "meanpreds") class(ret)<-"pred_intervals.bartBMA" ret }
simulate.uniNmix <- function(object, ...) { parms <- coef(object) np1 <- ncol(object$Xp) nl1 <- ncol(object$Xl) pr1 <- as.numeric(plogis(object$Xp %*% parms[1:np1])) lam1 <- as.numeric(exp(object$Xl %*% parms[(np1+1):(np1+nl1)])) if(object$mixture=="NB") theta1 <- exp(parms[(np1+nl1+1)]) if(object$mixture=="NeymanA") lam2 <- exp(parms[(np1+nl1+1)]) R <- dim(object$sp1)[1] T_ <- dim(object$sp1)[2] pr1 <- matrix(pr1, byrow=TRUE, ncol=T_) if(object$mixture=="P") Ni1 <- rpois(R, lam1) if(object$mixture=="NB") Ni1 <- rnbinom(R, mu=lam1, size=theta1) if(object$mixture=="NeymanA") { NN <- rpois(R, lam1) Ni1 <- rpois(R, lam2 * NN) } sdata1 <- matrix(0, ncol=T_, nrow=R) for(i in 1:T_) sdata1[,i] <- rbinom(R, Ni1, pr1[,i]) return(list("sp1"=sdata1)) }
nB<-10^5 ns<-c(100, 200, 500, 1000, 2000) HS<-c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) oneSimulation<-function(ns, HS){ nns<-length(ns) nHS<-length(HS) H<-numeric(nns*nHS) ij<-0 for (i in 1:length(ns)){ n<-ns[i] for (j in 1:length(HS)){ ij<-ij+1 H0<-HS[j] z<-SimulateFGN(n, H0) H[ij]<-GetFitFGN(z)$H } } H } library(Rmpi) mpi.spawn.Rslaves() mpi.bcast.Robj2slave(ns) mpi.bcast.Robj2slave(HS) mpi.bcast.Robj2slave(oneSimulation) mpi.bcast.cmd(library(FGN)) mpi.setup.rngstream(19480813) startTime<-proc.time() out <- mpi.parReplicate(nB, oneSimulation(ns=ns, HS=HS)) averVarH <- apply(out, 1, var) endTime<-proc.time() totalTime<-endTime-startTime totalTime<-(totalTime/3600)[3] tb<-rep(ns, rep(length(HS),length(ns)))*averVarH tb<-matrix(tb, ncol=length(ns)) dimnames(tb)<-list(HS,ns) save(tb, out, totalTime, file="tbVarH.R") print(paste("Completed Var HHat Simulations. Elapsed Time = ", totalTime , "Hours")) print(paste("nB = ",nB)) print(tb) mpi.close.Rslaves() mpi.quit()
simSample <- function(x, design = character(), grouping = character(), collect = FALSE, fun = srs, size = NULL, prob = NULL, ..., k = 1) { control <- SampleControl(design=design, grouping=grouping, collect=collect, fun=fun, size=size, prob=prob, dots=list(...), k=k) res <- setup(x, control) call <- match.call() setCall(res, call) res }
cranPlot <- function(x, statistic, graphics, points, log.count, smooth, se, f, span, r.version) { dat <- x$cranlogs.data last.obs.date <- x$last.obs.date if (statistic == "count") { y.nm.case <- "Count" y.nm <- tolower(y.nm.case) } else if (statistic == "cumulative") { y.nm.case <- "Cumulative" y.nm <- tolower(y.nm.case) } type <- ifelse(points, "o", "l") if (graphics == "base") { if (any(dat$in.progress)) { ip.sel <- dat$in.progress == TRUE ip.data <- dat[ip.sel, ] complete.data <- dat[!ip.sel, ] last.obs <- nrow(complete.data) obs.days <- as.numeric(format(last.obs.date , "%d")) exp.days <- as.numeric(format(ip.data[, "date"], "%d")) est.ct <- round(ip.data$count * exp.days / obs.days) est.data <- ip.data est.data$count <- est.ct last.cumulative <- complete.data[nrow(complete.data), "cumulative"] est.data$cumulative <- last.cumulative + est.ct xlim <- range(dat$date) if (statistic == "count") { ylim <- range(c(dat[, y.nm], est.data$count)) } else if (statistic == "cumulative") { ylim <- range(c(dat[, y.nm], est.data$cumulative)) } if (log.count) { plot(complete.data$date, complete.data[, y.nm], type = type, xlab = "Date", ylab = paste0("log10 ", y.nm.case), xlim = xlim, ylim = ylim, log = "y", pch = 16) } else { plot(complete.data$date, complete.data[, y.nm], type = type, xlab = "Date", ylab = y.nm.case, xlim = xlim, ylim = ylim, pch = 16) } points(ip.data[, "date"], ip.data[, y.nm], col = "black", pch = 0) points(est.data[, "date"], est.data[, y.nm], col = "red", pch = 0) segments(complete.data[last.obs, "date"], complete.data[last.obs, y.nm], ip.data$date, ip.data[, y.nm], lty = "dotted") segments(complete.data[last.obs, "date"], complete.data[last.obs, y.nm], est.data$date, est.data[, y.nm], col = "red") axis(4, at = ip.data[, y.nm], labels = "obs") axis(4, at = est.data[, y.nm], labels = "est", col.axis = "red", col.ticks = "red") } else { if (log.count) { plot(dat$date, dat[, y.nm], type = type, xlab = "Date", ylab = paste0("log10 ", y.nm.case), log = "y") } else { plot(dat$date, dat[, y.nm], type = type, xlab = "Date", ylab = paste0("log10 ", y.nm.case)) } } if (r.version) { r_v <- rversions::r_versions() axis(3, at = as.Date(r_v$date), labels = paste("R", r_v$version), cex.axis = 2/3, padj = 0.9) } if (smooth) { if (any(dat$in.progress)) { smooth.data <- complete.data lines(stats::lowess(smooth.data$date, smooth.data[, y.nm], f = f), col = "blue") } else { lines(stats::lowess(dat$date, dat[, y.nm], f = f), col = "blue") } } title(main = "Total Package Downloads") } else if (graphics == "ggplot2") { if (statistic == "count") { p <- ggplot(data = dat, aes_string("date", "count")) } else if (statistic == "cumulative") { p <- ggplot(data = dat, aes_string("date", "cumulative")) } if (any(dat$in.progress)) { ip.sel <- dat$in.progress == TRUE ip.data <- dat[ip.sel, ] complete.data <- dat[!ip.sel, ] last.obs <- nrow(complete.data) obs.days <- as.numeric(format(last.obs.date , "%d")) exp.days <- as.numeric(format(ip.data[, "date"], "%d")) est.ct <- round(ip.data$count * exp.days / obs.days) est.data <- ip.data est.data$count <- est.ct last.cumulative <- complete.data[nrow(complete.data), "cumulative"] est.data$cumulative <- last.cumulative + est.ct est.seg <- rbind(complete.data[last.obs, ], est.data) obs.seg <- rbind(complete.data[last.obs, ], ip.data) p <- p + geom_line(data = complete.data, size = 1/3) + geom_line(data = est.seg, size = 1/3, col = "red") + geom_line(data = obs.seg, size = 1/3, linetype = "dotted") + geom_point(data = est.data, col = "red", shape = 0) + geom_point(data = ip.data, col = "black", shape = 0) if (points) p <- p + geom_point(data = complete.data) if (log.count) p <- p + scale_y_log10() if (smooth) { if (any(dat$in.progress)) { smooth.data <- complete.data p <- p + geom_smooth(data = smooth.data, method = "loess", formula = "y ~ x", se = se, span = span) } else { p <- p + geom_smooth(method = "loess", formula = "y ~ x", se = se, span = span) } } } else { p <- p + geom_line(size = 1/3) if (points) p <- p + geom_point() if (log.count) p <- p + scale_y_log10() if (smooth) { p <- p + geom_smooth(method = "loess", formula = "y ~ x", se = se, span = span) } } p <- p + theme_bw() + ggtitle("Total Package Downloads") + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) suppressWarnings(print(p)) } } singlePlot <- function(x, statistic, graphics, obs.ct, points, smooth, se, f, span, log.count, package.version, dev.mode, r.version, same.xy) { dat <- x$cranlogs.data last.obs.date <- x$last.obs.date type <- ifelse(points, "o", "l") if (statistic == "count") { y.var <- dat$count y.nm.case <- "Count" y.nm <- tolower(y.nm.case) ttl <- "Package Download Counts" } else if (statistic == "cumulative") { y.var <- dat$cumulative y.nm.case <- "Cumulative" y.nm <- tolower(y.nm.case) ttl <- "Cumulative Package Downloads" } if (graphics == "base") { if (obs.ct == 1) { if (log.count) { dotchart(log10(dat$count), labels = dat$package, xlab = "log10 Count", main = paste(ttl, unique(dat$date))) } else { dotchart(dat$count, labels = dat$package, xlab = "Count", main = paste(ttl, unique(dat$date))) } } else if (obs.ct > 1) { if (same.xy) { xlim <- range(dat$date) } else { xlim <- NULL } if (length(x$packages) > 1) grDevices::devAskNewPage(ask = TRUE) if (any(dat$in.progress)) { plot.data <- lapply(x$package, function(pkg) { pkg.dat <- dat[dat$package == pkg, ] ip.sel <- pkg.dat$in.progress == TRUE ip.data <- pkg.dat[ip.sel, ] complete.data <- pkg.dat[!ip.sel, ] obs.days <- as.numeric(format(last.obs.date , "%d")) exp.days <- as.numeric(format(ip.data[, "date"], "%d")) est.ct <- round(ip.data$count * exp.days / obs.days) est.data <- ip.data est.data$count <- est.ct last.cumulative <- complete.data[nrow(complete.data), "cumulative"] est.data$cumulative <- last.cumulative + est.ct list(complete.data = complete.data, ip.data = ip.data, est.data = est.data) }) tmp <- lapply(plot.data, function(x) do.call(rbind, x)) tmp <- do.call(rbind, tmp) ylim <- range(tmp[, y.nm]) invisible(lapply(seq_along(plot.data), function(i) { complete.data <- plot.data[[i]]$complete.data ip.data <- plot.data[[i]]$ip.data est.data <- plot.data[[i]]$est.data if (log.count) { plot(complete.data$date, complete.data[, y.nm], type = type, xlab = "Date", ylab = paste0("log10 ", y.nm.case), xlim = xlim, ylim = ylim, log = "y", pch = 16) } else { plot(complete.data$date, complete.data[, y.nm], type = type, xlab = "Date", ylab = y.nm.case, xlim = xlim, ylim = ylim, pch = 16) } points(ip.data[, "date"], ip.data[, y.nm], col = "black", pch = 0) points(est.data[, "date"], est.data[, y.nm], col = "red", pch = 0) last.obs <- nrow(complete.data) segments(complete.data[last.obs, "date"], complete.data[last.obs, y.nm], ip.data$date, ip.data[, y.nm], lty = "dotted") segments(complete.data[last.obs, "date"], complete.data[last.obs, y.nm], est.data$date, est.data[, y.nm], col = "red") axis(4, at = ip.data[, y.nm], labels = "obs") axis(4, at = est.data[, y.nm], labels = "est", col.axis = "red", col.ticks = "red") if (package.version) { if (dev.mode) p_v <- packageHistory0(est.data$package) else p_v <- packageHistory(est.data$package) axis(3, at = p_v$Date, labels = p_v$Version, cex.axis = 2/3, padj = 0.9, col.axis = "red", col.ticks = "red") } if (r.version) { r_v <- rversions::r_versions() axis(3, at = as.Date(r_v$date), labels = paste("R", r_v$version), cex.axis = 2/3, padj = 0.9) } if (smooth) { if (any(dat$in.progress)) { smooth.data <- complete.data lines(stats::lowess(smooth.data$date, smooth.data[, y.nm], f = f), col = "blue") } else { lines(stats::lowess(dat$date, dat[, y.nm], f = f), col = "blue") } } title(main = est.data$package) })) } else { ylim <- range(dat[, y.nm]) invisible(lapply(x$package, function(pkg) { pkg.dat <- dat[dat$package == pkg, ] type <- ifelse(points, "o", "l") if (log.count) { plot(pkg.dat$date, pkg.dat[, y.nm], type = type, xlab = "Date", ylab = paste0("log10 ", y.nm.case), log = "y", xlim = xlim, ylim = ylim) } else { plot(pkg.dat$date, pkg.dat[, y.nm], type = type, xlab = "Date", ylab = y.nm.case, xlim = xlim, ylim = ylim) } if (package.version) { if (dev.mode) p_v <- packageHistory0(pkg) else p_v <- packageHistory(pkg) axis(3, at = p_v$Date, labels = p_v$Version, cex.axis = 2/3, padj = 0.9, col.axis = "red", col.ticks = "red") } if (r.version) { r_v <- rversions::r_versions() axis(3, at = as.Date(r_v$date), labels = paste("R", r_v$version), cex.axis = 2/3, padj = 0.9) } if (smooth) { lines(stats::lowess(pkg.dat$date, pkg.dat[, y.nm], f = f), col = "blue") } title(main = pkg) })) } if (length(x$packages) > 1) grDevices::devAskNewPage(ask = FALSE) } } else if (graphics == "ggplot2") { if (obs.ct == 1) { p <- ggplot(data = dat) + theme_bw() + theme(panel.grid.major.x = element_blank(), panel.grid.minor = element_blank()) + facet_wrap(~ date, nrow = 2) if (statistic == "count") { p <- p + geom_point(aes_string("count", "package"), size = 1.5) } else if (statistic == "cumulative") { p <- p + geom_point(aes_string("cumulative", "package"), size = 1.5) } if (log.count) p <- p + scale_x_log10() + xlab("log10 Count") } else if (obs.ct > 1) { if (statistic == "count") { p <- ggplot(data = dat, aes_string("date", "count")) } else if (statistic == "cumulative") { p <- ggplot(data = dat, aes_string("date", "cumulative")) } if (any(dat$in.progress)) { g <- lapply(x$packages, function(pkg) { pkg.data <- dat[dat$package == pkg, ] ip.sel <- pkg.data$in.progress == TRUE ip.data <- pkg.data[ip.sel, ] complete.data <- pkg.data[!ip.sel, ] last.obs <- nrow(complete.data) obs.days <- as.numeric(format(last.obs.date , "%d")) exp.days <- as.numeric(format(ip.data[, "date"], "%d")) est.ct <- round(ip.data$count * exp.days / obs.days) est.data <- ip.data est.data$count <- est.ct last.cumulative <- complete.data[nrow(complete.data), "cumulative"] est.data$cumulative <- last.cumulative + est.ct list(ip.data = ip.data, complete.data = complete.data, est.data = est.data, est.seg = rbind(complete.data[last.obs, ], est.data), obs.seg = rbind(complete.data[last.obs, ], ip.data)) }) ip.data <- do.call(rbind, lapply(g, function(x) x$ip.data)) complete.data <- do.call(rbind, lapply(g, function(x) x$complete.data)) est.data <- do.call(rbind, lapply(g, function(x) x$est.data)) est.seg <- do.call(rbind, lapply(g, function(x) x$est.seg)) obs.seg <- do.call(rbind, lapply(g, function(x) x$obs.seg)) p <- p + geom_line(data = complete.data, size = 1/3) + geom_line(data = est.seg, size = 1/3, col = "red") + geom_line(data = obs.seg, size = 1/3, linetype = "dotted") + geom_point(data = est.data, colour = "red", shape = 0) + geom_point(data = ip.data, colour = "black", shape = 0) if (points) p <- p + geom_point(data = complete.data) } else { p <- p + geom_line(size = 1/3) if (points) p <- p + geom_point() } if (log.count) p <- p + scale_y_log10() if (smooth) { if (any(dat$in.progress)) { smooth.data <- complete.data p <- p + geom_smooth(data = smooth.data, method = "loess", formula = "y ~ x", se = se, span = span) } else { p <- p + geom_smooth(method = "loess", formula = "y ~ x", se = se, span = span) } } p <- p + facet_wrap(~ package, nrow = 2) + theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) } suppressWarnings(print(p)) } } multiPlot <- function(x, statistic, graphics, obs.ct, log.count, legend.loc, points, smooth, se, f, span) { dat <- x$cranlogs.data last.obs.date <- x$last.obs.date if (statistic == "count") { ttl <- "Package Download Counts" } else if (statistic == "cumulative") { ttl <- "Cumulative Package Downloads" } if (graphics == "base") { if (obs.ct == 1) { if (log.count) { dotchart(log10(dat$count), labels = dat$package, xlab = "log10 Count", main = paste(ttl, unique(dat$date))) } else { dotchart(dat$count, labels = dat$package, xlab = "Count", main = paste(ttl, unique(dat$date))) } } else if (obs.ct > 1) { if (length(x$packages) > 8) { stop('Use <= 8 packages when graphics = "base".', call. = FALSE) } else { cbPalette <- c(" " token <- c(1, 0, 2:7) vars <- c("date", statistic) type <- ifelse(points, "o", "l") xlim <- range(dat$date) ylim <- range(dat[, statistic]) if (any(dat$in.progress)) { pkg.data <- lapply(x$package, function(pkg) { tmp <- dat[dat$package == pkg, ] ip.data <- tmp[tmp$in.progress == TRUE, ] complete.data <- tmp[tmp$in.progress == FALSE, ] last.obs <- nrow(complete.data) obs.days <- as.numeric(format(last.obs.date , "%d")) exp.days <- as.numeric(format(ip.data[, "date"], "%d")) est.ct <- round(ip.data$count * exp.days / obs.days) est.data <- ip.data est.data$count <- est.ct last.cumulative <- complete.data[nrow(complete.data), "cumulative"] est.data$cumulative <- last.cumulative + est.ct list(complete.data = complete.data, est.data = est.data, ip.data = ip.data) }) est.stat <- lapply(pkg.data, function(x) x$est.data) est.stat <- do.call(rbind, est.stat)[, statistic] ylim <- range(c(ylim, est.stat)) if (log.count) { plot(dat[, vars], pch = NA, log = "y", xlim = xlim, ylim = ylim, main = ttl) } else { plot(dat[, vars], pch = NA, xlim = xlim, ylim = ylim, main = ttl) } invisible(lapply(seq_along(pkg.data), function(i) { complete.data <- pkg.data[[i]]$complete.data est.data <- pkg.data[[i]]$est.data ip.data <- pkg.data[[i]]$ip.data last.obs <- nrow(complete.data) lines(complete.data$date, complete.data[, statistic], col = cbPalette[i]) segments(complete.data[last.obs, "date"], complete.data[last.obs, statistic], ip.data$date, ip.data[, statistic], lty = "dotted") segments(complete.data[last.obs, "date"], complete.data[last.obs, statistic], est.data$date, est.data[, statistic], col = cbPalette[i]) points(est.data[, "date"], est.data[, statistic], col = "red", pch = token[i]) points(ip.data[, "date"], ip.data[, statistic], col = "black", pch = token[i]) if (points) { points(complete.data[, "date"], complete.data[, statistic], col = cbPalette[i], pch = token[i]) } if (smooth) { smooth.data <- complete.data lines(stats::lowess(smooth.data$date, smooth.data[, statistic], f = f), col = cbPalette[i]) } })) } else { if (log.count) { plot(dat[, vars], pch = NA, log = "y", xlim = xlim, ylim = ylim, main = ttl) } else { plot(dat[, vars], pch = NA, xlim = xlim, ylim = ylim, main = ttl) } invisible(lapply(seq_along(x$packages), function(i) { tmp <- dat[dat$package == x$packages[i], ] lines(tmp$date, tmp[, statistic], col = cbPalette[i]) if (points) { points(tmp[, "date"], tmp[, statistic], col = cbPalette[i], pch = token[i]) } if (smooth) { lines(stats::lowess(dat[dat$package == x$packages[i], vars], f = f), col = cbPalette[i]) } })) } id <- seq_along(x$packages) legend(x = legend.loc, legend = x$packages, col = cbPalette[id], pch = c(1, token[id]), bg = "white", cex = 2/3, title = NULL, lwd = 1) } } } else if (graphics == "ggplot2") { if (obs.ct == 1) { p <- ggplot(data = dat, aes_string("count", y = "package")) if (log.count) { dat2 <- dat dat2$count <- log10(dat2$count) p <- ggplot(data = dat2, aes_string(x = "count", y = "package")) + xlab("log10 Count") } p <- p + geom_hline(yintercept = c(1, 2), linetype = "dotted") + theme(legend.position = "bottom", panel.grid.major = element_blank(), panel.grid.minor = element_blank()) } else if (obs.ct > 1) { if (statistic == "count") { p <- ggplot(data = dat, aes_string(x = "date", y = "count", colour = "package")) + ggtitle("Package Download Counts") } else if (statistic == "cumulative") { p <- ggplot(data = dat, aes_string(x = "date", y = "cumulative", colour = "package")) + ggtitle("Cumulative Package Downloads") } if (any(dat$in.progress)) { g <- lapply(x$packages, function(pkg) { pkg.data <- dat[dat$package == pkg, ] ip.sel <- pkg.data$in.progress == TRUE ip.data <- pkg.data[ip.sel, ] complete.data <- pkg.data[!ip.sel, ] last.obs <- nrow(complete.data) obs.days <- as.numeric(format(last.obs.date , "%d")) exp.days <- as.numeric(format(ip.data[, "date"], "%d")) est.ct <- round(ip.data$count * exp.days / obs.days) est.data <- ip.data est.data$count <- est.ct last.cumulative <- complete.data[nrow(complete.data), "cumulative"] est.data$cumulative <- last.cumulative + est.ct list(ip.data = ip.data, complete.data = complete.data, est.data = est.data, est.seg = rbind(complete.data[last.obs, ], est.data), obs.seg = rbind(complete.data[last.obs, ], ip.data)) }) ip.data <- do.call(rbind, lapply(g, function(x) x$ip.data)) complete.data <- do.call(rbind, lapply(g, function(x) x$complete.data)) est.data <- do.call(rbind, lapply(g, function(x) x$est.data)) est.seg <- do.call(rbind, lapply(g, function(x) x$est.seg)) obs.seg <- do.call(rbind, lapply(g, function(x) x$obs.seg)) p <- p + geom_line(data = complete.data, size = 1/3) + geom_line(data = est.seg, size = 1/3, linetype = "solid") + geom_line(data = obs.seg, size = 1/3, linetype = "dotted") + geom_point(data = est.data, shape = 2) + geom_point(data = ip.data, shape = 0) + theme(legend.position = "bottom", panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) if (points) { p <- p + geom_point(data = complete.data) } } else { p <- p + geom_line(size = 1/3) + theme(legend.position = "bottom", panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) if (points) p <- p + geom_point() } if (log.count) p <- p + scale_y_log10() if (smooth) { if (any(dat$in.progress)) { smooth.data <- complete.data p <- p + geom_smooth(data = smooth.data, method = "loess", formula = "y ~ x", se = se, span = span) } else { p <- p + geom_smooth(method = "loess", formula = "y ~ x", se = se, span = span) } } } suppressWarnings(print(p)) } } rPlot <- function(x, statistic, graphics, obs.ct, legend.loc, points, log.count, smooth, se, r.version, f, span, multi.plot) { dat <- x$cranlogs.data ylab <- tools::toTitleCase(statistic) last.obs.date <- x$last.obs.date type <- ifelse(points, "o", "l") if (obs.ct == 1) { if (graphics == "base") { if (log.count) { dotchart(log10(dat$count), labels = dat$platform, xlab = "log10 Count", main = paste("R Downloads:", unique(dat$date))) } else { dotchart(dat$count, labels = dat$platform, xlab = "Count", main = paste("R Downloads:", unique(dat$date))) } } else if (graphics == "ggplot2") { if (log.count) { dat2 <- dat dat2$count <- log10(dat2$count) p <- ggplot(data = dat2, aes_string(x = "count", y = "platform")) + geom_point(size = 2) + xlab("log10 Count") } else { p <- ggplot(data = dat, aes_string(x = "count", y = "platform")) + geom_point(size = 2) } p + theme_bw() + ggtitle(paste("R Downloads:", unique(dat$date))) + theme(panel.grid.major.x = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) } } else if (obs.ct > 1) { if (graphics == "base") { if (any(dat$in.progress)) { pltfrm <- unique(dat$platform) pltfrm.col <- c("red", "dodgerblue", "black") p.data <- lapply(seq_along(pltfrm), function(i) { pkg.dat <- dat[dat$platform == pltfrm[i], ] ip.sel <- pkg.dat$in.progress == TRUE ip.data <- pkg.dat[ip.sel, ] complete.data <- pkg.dat[!ip.sel, ] obs.days <- as.numeric(format(last.obs.date , "%d")) exp.days <- as.numeric(format(ip.data[, "date"], "%d")) est.ct <- round(ip.data$count * exp.days / obs.days) est.data <- ip.data est.data$count <- est.ct last.cumulative <- complete.data[nrow(complete.data), "cumulative"] est.data$cumulative <- last.cumulative + est.ct list(ip.data = ip.data, complete.data = complete.data, est.data = est.data) }) est.stat <- vapply(p.data, function(x) { x$est.data[, statistic] }, numeric(1L)) complete.data <- lapply(p.data, function(x) x$complete.data) est.data <- lapply(p.data, function(x) x$est.data) ip.data <- lapply(p.data, function(x) x$ip.data) last.obs <- unique(vapply(complete.data, nrow, integer(1L))) ylim <- range(c(dat[, statistic], est.stat)) if (log.count) { plot(dat$date, dat[, statistic], pch = NA, xlab = "Date", ylab = paste("log10", ylab), ylim = ylim, log = "y") } else { plot(dat$date, dat[, statistic], pch = NA, xlab = "Date", ylab = ylab, ylim = ylim) } if (points) { invisible(lapply(seq_along(complete.data), function(i) { tmp <- complete.data[[i]] points(tmp[, "date"], tmp[, statistic], col = pltfrm.col[i], pch = 16) })) } invisible(lapply(seq_along(complete.data), function(i) { tmp <- complete.data[[i]] lines(tmp$date, tmp[, statistic], type = type, col = pltfrm.col[i]) })) invisible(lapply(seq_along(est.data), function(i) { tmp <- est.data[[i]] points(tmp[, "date"], tmp[, statistic], col = pltfrm.col[i], pch = 15) })) invisible(lapply(seq_along(ip.data), function(i) { tmp <- ip.data[[i]] points(tmp[, "date"], tmp[, statistic], col = pltfrm.col[i], pch = 0) })) invisible(lapply(seq_along(complete.data), function(i) { tmpA <- complete.data[[i]] tmpB <- ip.data[[i]] segments(tmpA[last.obs, "date"], tmpA[last.obs, statistic], tmpB$date, tmpB[, statistic], lty = "dotted") })) invisible(lapply(seq_along(complete.data), function(i) { tmpA <- complete.data[[i]] tmpB <- est.data[[i]] segments(tmpA[last.obs, "date"], tmpA[last.obs, statistic], tmpB$date, tmpB[, statistic], lty = "solid", col = pltfrm.col[i]) })) if (smooth) { invisible(lapply(seq_along(complete.data), function(i) { smooth.data <- complete.data[[i]] lines(stats::lowess(smooth.data$date, smooth.data[, statistic], f = f), col = pltfrm.col[i], lty = "solid", lwd = 1.5) })) } legend(x = legend.loc, legend = c("win", "mac", "src"), col = c("black", "red", "dodgerblue"), pch = rep(16, 3), bg = "white", cex = 2/3, title = "Platform", lwd = 1) if (r.version) { r_v <- rversions::r_versions() axis(3, at = as.Date(r_v$date), labels = paste("R", r_v$version), cex.axis = 2/3, padj = 0.9) } title(main = "R Downloads") } else { if (log.count) { plot(dat[dat$platform == "win", "date"], dat[dat$platform == "win", statistic], pch = NA, ylim = range(dat[, statistic]), xlab = "Date", ylab = paste("log10", ylab), log = "y") } else { plot(dat[dat$platform == "win", "date"], dat[dat$platform == "win", statistic], pch = NA, ylim = range(dat[, statistic]), xlab = "Date", ylab = ylab) } pltfrm <- unique(dat$platform) pltfrm.col <- c("red", "dodgerblue", "black") invisible(lapply(seq_along(pltfrm), function(i) { lines(dat[dat$platform == pltfrm[i], "date"], dat[dat$platform == pltfrm[i], statistic], type = type, pch = 0, col = pltfrm.col[i]) })) legend(x = legend.loc, legend = c("win", "mac", "src"), col = c("black", "red", "dodgerblue"), pch = c(1, 0, 2), bg = "white", cex = 2/3, title = "Platform", lwd = 1) if (smooth) { invisible(lapply(seq_along(pltfrm), function(i) { sm.data <- stats::lowess(dat[dat$platform == pltfrm[i], "date"], dat[dat$platform == pltfrm[i], statistic], f = f) lines(sm.data, lty = "solid", lwd = 1.5, col = pltfrm.col[i]) })) } if (r.version) { r_v <- rversions::r_versions() axis(3, at = as.Date(r_v$date), labels = paste("R", r_v$version), cex.axis = 2/3, padj = 0.9) } title(main = "R Downloads") } } else if (graphics == "ggplot2") { if (statistic == "count") { if (multi.plot) { p <- ggplot(data = dat, aes_string("date", "count", colour = "platform")) } else { p <- ggplot(data = dat, aes_string("date", "count")) + facet_wrap(~ platform, nrow = 2) } } else { if (multi.plot) { p <- ggplot(data = dat, aes_string("date", "cumulative", colour = "platform")) } else { p <- ggplot(data = dat, aes_string("date", "cumulative")) + facet_wrap(~ platform, nrow = 2) } } if (any(dat$in.progress)) { pltfrm <- unique(dat$platform) pltfrm.col <- c("red", "blue", "black") p.data <- lapply(seq_along(pltfrm), function(i) { pkg.dat <- dat[dat$platform == pltfrm[i], ] ip.sel <- pkg.dat$in.progress == TRUE ip.data <- pkg.dat[ip.sel, ] complete.data <- pkg.dat[!ip.sel, ] last.obs <- nrow(complete.data) obs.days <- as.numeric(format(last.obs.date , "%d")) exp.days <- as.numeric(format(ip.data[, "date"], "%d")) est.ct <- round(ip.data$count * exp.days / obs.days) est.data <- ip.data est.data$count <- est.ct last.cumulative <- complete.data[nrow(complete.data), "cumulative"] est.data$cumulative <- last.cumulative + est.ct list(ip.data = ip.data, complete.data = complete.data, est.data = est.data, est.seg = rbind(complete.data[last.obs, ], est.data), obs.seg = rbind(complete.data[last.obs, ], ip.data)) }) est.stat <- vapply(p.data, function(x) { x$est.data[, statistic] }, numeric(1L)) ylim <- range(c(dat[, statistic], est.stat)) complete.data <- lapply(p.data, function(x) x$complete.data) est.data <- lapply(p.data, function(x) x$est.data) ip.data <- lapply(p.data, function(x) x$ip.data) complete.data <- do.call(rbind, complete.data) est.data <- do.call(rbind, est.data) ip.data <- do.call(rbind, ip.data) p <- p + geom_line(data = complete.data, size = 1/3) est.seg <- lapply(p.data, function(z) { tmp <- z$est.seg out <- data.frame(date = tmp$date[1], count = tmp[, statistic][1], xend = tmp$date[2], yend = tmp[, statistic][2], platform = unique(tmp$platform)) if (statistic == "cumulative") { names(out)[names(out) == "count"] <- "cumulative" } out }) obs.seg <- lapply(p.data, function(z) { tmp <- z$obs.seg out <- data.frame(date = tmp$date[1], count = tmp[, statistic][1], xend = tmp$date[2], yend = tmp[, statistic][2], platform = unique(tmp$platform)) if (statistic == "cumulative") { names(out)[names(out) == "count"] <- "cumulative" } out }) est.seg <- do.call(rbind, est.seg) obs.seg <- do.call(rbind, obs.seg) if (multi.plot) { p <- p + geom_point(data = est.data, shape = 15) + geom_point(data = ip.data, shape = 0) + geom_segment(data = est.seg, aes_string(xend = "xend", yend = "yend"), linetype = "solid") + geom_segment(data = obs.seg, aes_string(xend = "xend", yend = "yend"), linetype = "dotted") } else { p <- p + geom_point(data = est.data, colour = "red", shape = 15) + geom_point(data = ip.data, colour = "black", shape = 0) + geom_segment(data = est.seg, aes_string(xend = "xend", yend = "yend"), colour = "red") + geom_segment(data = obs.seg, aes_string(xend = "xend", yend = "yend"), linetype = "dotted") } if (points) p <- p + geom_point(data = complete.data) if (log.count) p <- p + scale_y_log10() + ylab("log10 Count") if (smooth) { if (any(dat$in.progress)) { smooth.data <- complete.data p <- p + geom_smooth(data = smooth.data, method = "loess", formula = "y ~ x", se = se, span = span) } else { p <- p + geom_smooth(method = "loess", formula = "y ~ x", se = se, span = span) } } p <- p + theme_bw() + ggtitle("R Downloads") + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) } else { p <- p + geom_line(size = 0.5) + ggtitle("R Downloads") + theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) if (points) p <- p + geom_point() if (log.count) p <- p + scale_y_log10() + ylab("log10 Count") if (!multi.plot) p <- p + facet_wrap(~ platform, nrow = 2) if (smooth) { p <- p + geom_smooth(method = "loess", formula = "y ~ x", se = se, span = span) } } suppressWarnings(print(p)) } } } rTotPlot <- function(x, statistic, graphics, legend.loc, points, log.count, smooth, se, r.version, f, span) { dat <- x$cranlogs.data last.obs.date <- x$last.obs.date ct <- tapply(dat$count, dat$date, sum) if (any(dat$in.progress)) { dat <- data.frame(date = unique(dat$date), count = ct, cumulative = cumsum(ct), in.progress = dat[dat$platform == "win", "in.progress"], row.names = NULL) } else { dat <- data.frame(date = unique(dat$date), count = ct, cumulative = cumsum(ct), row.names = NULL) } ylab <- tools::toTitleCase(statistic) if (graphics == "base") { type <- ifelse(points, "o", "l") if (any(dat$in.progress)) { ip.sel <- dat$in.progress == TRUE ip.data <- dat[ip.sel, ] complete.data <- dat[!ip.sel, ] last.obs <- nrow(complete.data) obs.days <- as.numeric(format(last.obs.date , "%d")) exp.days <- as.numeric(format(ip.data[, "date"], "%d")) est.ct <- round(ip.data$count * exp.days / obs.days) est.data <- ip.data est.data$count <- est.ct last.cumulative <- complete.data[nrow(complete.data), "cumulative"] est.data$cumulative <- last.cumulative + est.ct if (statistic == "count") { ylim <- range(c(dat[, statistic], est.data$count)) } else if (statistic == "cumulative") { ylim <- range(c(dat[, statistic], est.data$cumulative)) } xlim <- range(dat$date) if (log.count) { plot(complete.data$date, complete.data[, statistic], type = type, xlab = "Date", ylab = paste0("log10 ", ylab), xlim = xlim, ylim = ylim, log = "y", pch = 16) } else { plot(complete.data$date, complete.data[, statistic], type = type, xlab = "Date", ylab = ylab, xlim = xlim, ylim = ylim, pch = 16) } points(ip.data[, "date"], ip.data[, statistic], col = "black", pch = 0) points(est.data[, "date"], est.data[, statistic], col = "red", pch = 0) segments(complete.data[last.obs, "date"], complete.data[last.obs, statistic], ip.data$date, ip.data[, statistic], lty = "dotted") segments(complete.data[last.obs, "date"], complete.data[last.obs, statistic], est.data$date, est.data[, statistic], col = "red") axis(4, at = ip.data[, statistic], labels = "obs") axis(4, at = est.data[, statistic], labels = "est", col.axis = "red", col.ticks = "red") if (smooth) { smooth.data <- complete.data lines(stats::lowess(smooth.data$date, smooth.data[, statistic], f = f), col = "blue") } if (r.version) { r_v <- rversions::r_versions() axis(3, at = as.Date(r_v$date), labels = paste("R", r_v$version), cex.axis = 2/3, padj = 0.9) } title(main = "Total R Downloads") } else { if (log.count) { plot(dat$date, dat[, statistic], type = type, xlab = "Date", ylab = ylab, log = "y") } else { plot(dat$date, dat[, statistic], type = type, xlab = "Date", ylab = ylab) } if (smooth) { lines(stats::lowess(dat$date, dat[, statistic], f), col = "blue", lwd = 1.25) } if (r.version) { r_v <- rversions::r_versions() axis(3, at = as.Date(r_v$date), labels = paste("R", r_v$version), cex.axis = 2/3, padj = 0.9) } title(main = "Total R Downloads") } } else if (graphics == "ggplot2") { if (statistic == "count") { p <- ggplot(data = dat, aes_string("date", "count")) } else if (statistic == "cumulative") { p <- ggplot(data = dat, aes_string("date", "cumulative")) } if (any(dat$in.progress)) { ip.sel <- dat$in.progress == TRUE ip.data <- dat[ip.sel, ] complete.data <- dat[!ip.sel, ] last.obs <- nrow(complete.data) obs.days <- as.numeric(format(last.obs.date , "%d")) exp.days <- as.numeric(format(ip.data[, "date"], "%d")) est.ct <- round(ip.data$count * exp.days / obs.days) est.data <- ip.data est.data$count <- est.ct last.cumulative <- complete.data[nrow(complete.data), "cumulative"] est.data$cumulative <- last.cumulative + est.ct est.seg <- rbind(complete.data[last.obs, ], est.data) obs.seg <- rbind(complete.data[last.obs, ], ip.data) p <- p + geom_line(data = complete.data, size = 1/3) + geom_line(data = est.seg, size = 1/3, colour = "red") + geom_line(data = obs.seg, size = 1/3, colour = "black", linetype = "dotted") + geom_point(data = est.data, colour = "red", shape = 0) + geom_point(data = ip.data, colour = "black", shape = 0) if (points) p <- p + geom_point(data = complete.data) } else { p <- p + geom_line(size = 0.5) + theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) + ggtitle("Total R Downloads") if (points) p <- p + geom_point() } if (log.count) p <- p + scale_y_log10() + ylab("log10 Count") if (smooth) { if (any(dat$in.progress)) { smooth.data <- complete.data p <- p + geom_smooth(data = smooth.data, method = "loess", formula = "y ~ x", se = se, span = span) } else { p <- p + geom_smooth(method = "loess", formula = "y ~ x", se = se, span = span) } } p <- p + theme_bw() + ggtitle("Total R Downloads") + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) suppressWarnings(print(p)) } }
output$network_proxy_nodes <- renderVisNetwork({ nodes <- data.frame(id = 1:3) edges <- data.frame(from = c(1,2), to = c(1,3)) visNetwork(nodes, edges)%>% visNodes(color = "blue", size = 20) }) observe({ visNetworkProxy("network_proxy_nodes") %>% visNodes(color = input$color, size = input$size, shadow = input$shadow) %>% visEdges(dashes = input$dashes, smooth = input$smooth) }) output$code_proxy_nodes <- renderText({ ' output$network_proxy_nodes <- renderVisNetwork({ nodes <- data.frame(id = 1:3) edges <- data.frame(from = c(1,2), to = c(1,3)) visNetwork(nodes, edges) }) observe({ visNetworkProxy("network_proxy_nodes") %>% visNodes(color = input$color, size = input$size, shadow = input$shadow) %>% visEdges(dashes = input$dashes, smooth = input$smooth) }) observe({ visNetworkProxy("network_proxy_nodes") %>% visSetOptions(options = list(nodes = list(color = input$color, size = input$size, shadow = input$shadow), edges = list(dashes = input$dashes, smooth = input$smooth))) }) ' })
coxsimLinear <- function(obj, b, qi = "Relative Hazard", Xj = NULL, Xl = NULL, means = FALSE, nsim = 1000, ci = 0.95, spin = FALSE, extremesDrop = TRUE) { HRValue <- strata <- QI <- SimID <- time <- NULL if (qi != "Hazard Rate" & isTRUE(means)){ stop("means can only be TRUE when qi = 'Hazard Rate'.", call. = FALSE) } if (is.null(Xl) & qi != "Hazard Rate"){ Xl <- rep(0, length(Xj)) message("All Xl set to 0.") } else if (!is.null(Xl) & qi == "Relative Hazard") { message("All Xl set to 0.") } qiOpts <- c("Relative Hazard", "First Difference", "Hazard Rate", "Hazard Ratio") TestqiOpts <- qi %in% qiOpts if (!isTRUE(TestqiOpts)){ stop("Invalid qi type. qi must be 'Relative Hazard', 'Hazard Rate', 'First Difference', or 'Hazard Ratio'.", call. = FALSE) } MeansMessage <- NULL if (isTRUE(means) & length(obj$coefficients) == 3){ means <- FALSE MeansMessage <- FALSE message("Note: means reset to FALSE. The model only includes the interaction variables.") } else if (isTRUE(means) & length(obj$coefficients) > 3){ MeansMessage <- TRUE } SimID <- 1:nsim Coef <- matrix(obj$coefficients) VC <- vcov(obj) Drawn <- mvrnorm(n = nsim, mu = Coef, Sigma = VC) DrawnDF <- data.frame(Drawn) dfn <- names(DrawnDF) if (!isTRUE(means)){ bpos <- match(b, dfn) Simb <- data.frame(SimID, DrawnDF[, bpos]) names(Simb) <- c("SimID", "Coef") if (qi == "Relative Hazard"){ Xs <- data.frame(Xj) names(Xs) <- c("Xj") Xs$Comparison <- paste(Xs[, 1]) Simb <- merge(Simb, Xs) Simb$QI <- exp(Simb$Xj * Simb$Coef) } else if (qi == "First Difference"){ if (length(Xj) != length(Xl)){ stop("Xj and Xl must be the same length.", call. = FALSE) } else { Xs <- data.frame(Xj, Xl) Simb <- merge(Simb, Xs) Simb$QI<- (exp((Simb$Xj - Simb$Xl) * Simb$Coef) - 1) * 100 } } else if (qi == "Hazard Ratio"){ Xs <- data.frame(Xj, Xl) Simb <- merge(Simb, Xs) Simb$QI<- exp((Simb$Xj - Simb$Xl) * Simb$Coef) } else if (qi == "Hazard Rate"){ if (!is.null(Xl)) { Xl <- NULL message("Xl is ignored.") } if (isTRUE(MeansMessage)){ message("All variables values other than b are fitted at 0.") } Xs <- data.frame(Xj) Xs$HRValue <- paste(Xs[, 1]) Simb <- merge(Simb, Xs) Simb$HR <- exp(Simb$Xj * Simb$Coef) bfit <- basehaz(obj) bfit$FakeID <- 1 Simb$FakeID <- 1 bfitDT <- data.table(bfit, key = "FakeID", allow.cartesian = TRUE) SimbDT <- data.table(Simb, key = "FakeID", allow.cartesian = TRUE) Simb <- SimbDT[bfitDT, allow.cartesian = TRUE] Rows <- nrow(Simb) if (Rows > 2000000){ message(paste("There are", Rows, "simulations. This may take awhile. Consider using nsim to reduce the number of simulations.")) } Simb$QI <- Simb$hazard * Simb$HR if (!('strata' %in% names(Simb))){ Simb <- Simb[, list(SimID, time, Xj, QI, HRValue)] } else if ('strata' %in% names(Simb)){ Simb <- Simb[, list(SimID, time, Xj, QI, HRValue, strata)] } Simb <- data.frame(Simb) } } else if (isTRUE(means)){ Xl <- NULL message("Xl ignored") NotB <- setdiff(names(DrawnDF), b) MeanValues <- data.frame(obj$means) FittedMeans <- function(Z){ ID <- 1:nsim Temp <- data.frame(ID) for (i in Z){ BarValue <- MeanValues[i, ] DrawnCoef <- DrawnDF[, i] FittedCoef <- outer(DrawnCoef, BarValue) FCMolten <- MatrixMelter(FittedCoef) Temp <- cbind(Temp, FCMolten[,3]) } Names <- c("ID", Z) names(Temp) <- Names Temp <- Temp[, -1] return(Temp) } FittedComb <- FittedMeans(NotB) ExpandFC <- do.call(rbind, rep(list(FittedComb), length(Xj))) bpos <- match(b, dfn) Simb <- data.frame(DrawnDF[, bpos]) Xs <- data.frame(Xj) Xs$HRValue <- paste(Xs[, 1]) Simb <- merge(Simb, Xs) Simb$CombB <- Simb[, 1] * Simb[, 2] Simb <- Simb[, 2:4] Simb <- cbind(Simb, ExpandFC) Simb$Sum <- rowSums(Simb[, c(-1, -2)]) Simb$HR <- exp(Simb$Sum) bfit <- basehaz(obj) bfit$FakeID <- 1 Simb$FakeID <- 1 bfitDT <- data.table(bfit, key = "FakeID", allow.cartesian = TRUE) SimbDT <- data.table(Simb, key = "FakeID", allow.cartesian = TRUE) Simb <- SimbDT[bfitDT, allow.cartesian = TRUE] Rows <- nrow(Simb) if (Rows > 2000000){ message(paste("There are", Rows, "simulations. This may take awhile. Consider using nsim to reduce the number of simulations.")) } Simb$QI <- Simb$hazard * Simb$HR if (!('strata' %in% names(Simb))){ Simb <- Simb[, list(time, Xj, QI, HRValue)] } else if ('strata' %in% names(Simb)){ Simb <- Simb[, list(time, Xj, QI, HRValue, strata)] } Simb <- data.frame(Simb) } if (qi != "Hazard Rate"){ SubVar <- "Xj" } else if (qi == "Hazard Rate"){ SubVar <- c("time", "Xj") } SimbPerc <- IntervalConstrict(Simb = Simb, SubVar = SubVar, qi = qi, spin = spin, ci = ci, extremesDrop = extremesDrop) if (qi == "Hazard Rate" & !isTRUE(means)){ if (!('strata' %in% names(obj))){ SimbPercSub <- data.frame(SimbPerc$SimID, SimbPerc$time, SimbPerc$QI, SimbPerc$HRValue) names(SimbPercSub) <- c("SimID", "Time", "HRate", "HRValue") } else if ('strata' %in% names(SimbPerc)) { SimbPercSub <- data.frame(SimbPerc$SimID, SimbPerc$time, SimbPerc$QI, SimbPerc$strata, SimbPerc$HRValue) names(SimbPercSub) <- c("SimID", "Time", "HRate", "Strata", "HRValue") } } else if (qi == "Hazard Rate" & isTRUE(means)){ if (!('strata' %in% names(obj))){ SimbPercSub <- data.frame(SimbPerc$time, SimbPerc$QI, SimbPerc$HRValue) names(SimbPercSub) <- c("Time", "HRate", "HRValue") } else if ('strata' %in% names(SimbPerc)) { SimbPercSub <- data.frame(SimbPerc$SimID, SimbPerc$time, SimbPerc$QI, SimbPerc$strata, SimbPerc$HRValue) names(SimbPercSub) <- c("SimID", "Time", "HRate", "Strata", "HRValue") } } else if (qi == "Hazard Ratio" | qi == "Relative Hazard" | qi == "First Difference"){ SimbPercSub <- data.frame(SimbPerc$SimID, SimbPerc$Xj, SimbPerc$QI) names(SimbPercSub) <- c("SimID", "Xj", "QI") } rug <- model.frame(obj)[, b] out <- list(sims = SimbPercSub, rug = rug) class(out) <- c("simlinear", qi, "coxsim") attr(out, 'xaxis') <- b out }
diffPower4ss.LME=function( n, slope, m, sigma.y, sigma.x, power = 0.8, rho=0.8, FWER=0.05, nTests=1) { power.est = powerLME.default( slope = slope, n = n, m = m, sigma.y = sigma.y, sigma.x = sigma.x, rho=rho, FWER=FWER, nTests=nTests) diff=power.est-power return(diff) } ssLME=function( slope, m, sigma.y, sigma.x, power = 0.8, rho=0.8, FWER=0.05, nTests=1, n.lower = 2.01, n.upper = 1e+30 ) { res.uni=uniroot(f=diffPower4ss.LME, interval = c(n.lower, n.upper), slope = slope, m = m, sigma.y = sigma.y, sigma.x = sigma.x, power = power, rho=rho, FWER=FWER, nTests=nTests ) return(res.uni$root) }
s2_lnglat <- function(lng, lat) { recycled <- recycle_common(as.double(lng), as.double(lat)) new_s2_xptr(s2_lnglat_from_numeric(recycled[[1]], recycled[[2]]), "s2_lnglat") } as_s2_lnglat <- function(x, ...) { UseMethod("as_s2_lnglat") } as_s2_lnglat.s2_lnglat <- function(x, ...) { x } as_s2_lnglat.s2_point <- function(x, ...) { new_s2_xptr(s2_lnglat_from_s2_point(x), "s2_lnglat") } as_s2_lnglat.s2_geography <- function(x, ...) { new_s2_xptr(s2_lnglat_from_numeric(cpp_s2_x(x), cpp_s2_y(x)), "s2_lnglat") } as_s2_lnglat.matrix <- function(x, ...) { s2_lnglat(x[, 1, drop = TRUE], x[, 2, drop = TRUE]) } as_s2_lnglat.character <- function(x, ...) { as_s2_lnglat.wk_wkt(x) } as_s2_lnglat.wk_wkt <- function(x, ...) { as_s2_lnglat(as_s2_geography(x), ...) } as_s2_lnglat.wk_wkb <- function(x, ...) { as_s2_lnglat(as_s2_geography(x), ...) } as.data.frame.s2_lnglat <- function(x, ...) { as.data.frame(data_frame_from_s2_lnglat(x)) } as.matrix.s2_lnglat <- function(x, ...) { as.matrix(as.data.frame(data_frame_from_s2_lnglat(x))) } as_wkb.s2_lnglat <- function(x, ...) { as_wkb(as_s2_geography(x), ...) } as_wkt.s2_lnglat <- function(x, ...) { as_wkt(as_s2_geography(x), ...) } `[<-.s2_lnglat` <- function(x, i, value) { x <- unclass(x) x[i] <- as_s2_lnglat(value) new_s2_xptr(x, "s2_lnglat") } `[[<-.s2_lnglat` <- function(x, i, value) { x <- unclass(x) x[i] <- as_s2_lnglat(value) new_s2_xptr(x, "s2_lnglat") } format.s2_lnglat <- function(x, ...) { df <- as.data.frame(x) sprintf("(%s, %s)", format(df$lng, trim = TRUE), format(df$lat, trim = TRUE)) }
frm_em_calc_likelihood <- function( dat, ind0, NM, eps=1E-30, iter=NULL, weights0=NULL, dat_resp, ind_resp, ind_miss ) { weights <- dat$weights N2 <- nrow(dat) loglike <- matrix(NA, nrow=N2, ncol=NM+1) like0 <- loglike post0 <- loglike model_results <- NULL post <- 1 + 0*dat$weights like <- post like_obs <- post post_miss <- post coefs <- as.list( 1:(NM+1) ) for (mm in 1:(NM+1)){ ind_mm <- ind0[[mm]] mod <- frm_em_calc_likelihood_estimate_model( ind_mm=ind_mm, dat=dat, weights=weights ) model_results[[mm]] <- mod model_results <- frm_em_include_coef_inits( ind=ind0, mm=mm, model_results=model_results, iter=iter) model_results[[mm]]$est_sigma <- FALSE if ( ! is.null(ind_mm$sigma_fixed)){ model_results[[mm]]$sigma <- ind_mm$sigma_fixed } mod <- model_results[[mm]] args <- list(model=mod, y=dat[, ind_mm$dv_vars ], case=dat$case) args <- frm_em_linreg_density_extend_args(args=args, ind_mm=ind_mm) dmod <- do.call( what=ind_mm$R_density_fct, args=args ) mod <- model_results[[mm]] cm <- coef(mod) if (ind_mm$model=="linreg"){ model_results[[mm]]$NC <- length(cm) if ( is.null(ind_mm$sigma_fixed) ){ cm["sigma"] <- dmod$sigma model_results[[mm]]$sigma <- dmod$sigma model_results[[mm]]$est_sigma <- TRUE } cm["R2"] <- dmod$R2 } if (ind_mm$model=="logistic"){ ind0[[mm]]$R_args$beta_init <- coef(mod) cm["R2"] <- mod$R2 } if (ind_mm$model=="bctreg"){ ind0[[mm]]$R_args$beta_init <- coef(mod) cm["R2"] <- mod$R2 } if (ind_mm$model=="oprobit"){ if (iter>1){ ind0[[mm]]$R_args$beta_init <- coef(mod) } cm["R2"] <- mod$R2 } coefs[[mm]] <- cm like0[,mm] <- dmod$like loglike[,mm] <- log( dmod$like + eps ) post0[,mm] <- dmod$post post <- post * dmod$post like <- like * dmod$like res3 <- frm_em_calc_update_observed_likelihood(like_obs=like_obs, post_miss=post_miss, dmod=dmod, mm=mm, ind_resp=ind_resp, ind_miss=ind_miss) like_obs <- res3$like_obs post_miss <- res3$post_miss } post <- frm_normalize_posterior( post=post, case=dat$case) dat$weights <- dat$weights0 * post ll <- frm_em_calc_total_likelihood(dat=dat, weights0=weights0, like_obs=like_obs, post_miss=post_miss) res <- list( loglike=loglike, post=post, coefs=coefs, model_results=model_results, ll=ll, post0=post0, ind0=ind0, like=like, like0=like0 ) return(res) }
options("scipen" = 10000) fontDir <- "C:\\Users\\Alex\\Desktop\\font_workbooks" files <- list.files(fontDir, patter = "\\.xlsx$", full.names = TRUE) files <- files[!grepl("-bold.xlsx", files)] files2 <- list.files(fontDir, patter = "\\.xlsx$", full.names = FALSE) files2 <- files2[!grepl("-bold.xlsx", files2)] font <- tolower(gsub(" ", ".", gsub("\\.xlsx", "", files2))) strs <- "openxlsxFontSizeLookupTable <- \ndata.frame(" allWidths <- rep(8.43, 29) names(allWidths) <- 1:29 for(i in seq_along(files)){ f <- font[[i]] widths <- round(as.numeric(read.xlsx(files[[i]])[2,]), 6) strs <- c(strs, sprintf('"%s"= c(%s),\n', f, paste(widths, collapse = ", "))) } strs[length(strs)] <- gsub(",\n", ")", strs[length(strs)]) fontDir <- "C:\\Users\\Alex\\Desktop\\font_workbooks" files <- list.files(fontDir, patter = "\\.xlsx$", full.names = TRUE) files <- files[grepl("-bold.xlsx", files)] files2 <- list.files(fontDir, patter = "\\.xlsx$", full.names = FALSE) files2 <- files2[grepl("-bold.xlsx", files2)] font <- tolower(gsub(" ", ".", gsub("\\-bold.xlsx", "", files2))) strsBold <- "openxlsxFontSizeLookupTableBold <- \ndata.frame(" allWidths <- rep(8.43, 29) names(allWidths) <- 1:29 for(i in seq_along(files)){ f <- font[[i]] widths <- round(as.numeric(read.xlsx(files[[i]])[2,]), 6) strsBold <- c(strsBold, sprintf('"%s"= c(%s),\n', f, paste(widths, collapse = ", "))) } strsBold[length(strsBold)] <- gsub(",\n", ")", strsBold[length(strsBold)]) allStrs <- c(strs, "\n\n\n", strsBold) cat(allStrs)
simProjWiz <- function(thepoints,thecentre){ coordinates(thepoints) <- c("long", "lat") proj4string(thepoints) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") if((thecentre$lat < 70) & (thecentre$lat > -70)){ CRSstring <- paste("+proj=cea +lon_0=", thecentre$long, " +lat_ts=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs",sep = "") } else { CRSstring <- paste("+proj=laea +lat_0=", thecentre$lat," +lon_0=", thecentre$long, " +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs",sep = "") } CRS.new <- CRS(CRSstring) xysp <- spTransform(thepoints, CRS.new) xy <- as.data.frame(xysp) colnames (xy) <- c("x","y") return(xy) } trueCOGll <-function(thepoints){ llrad <- deg2rad(thepoints) cartp <- ll2cart(llrad$lat,llrad$long) mp <- data.frame(x=mean(cartp$x),y=mean(cartp$y),z=mean(cartp$z)) pmp <- pro2sph(mp$x,mp$y,mp$z) pmprll <- cart2ll(pmp$x,pmp$y,pmp$z) pmpll <- rad2deg(pmprll) return(data.frame(lat=pmpll$latr,long=pmpll$longr)) } ll2cart <- function(latr,longr){ x <- cos(latr) * cos(longr) y <- cos(latr) * sin(longr) z <- sin(latr) return(data.frame(x,y,z)) } cart2ll <-function (x,y,z){ latr <- asin(z) longr <- atan2(y,x) return(data.frame(latr,longr)) } pro2sph <- function (x,y,z){ sc <- 1/sqrt(x^2 + y^2 + z^2) x <- x * sc y <- y * sc z <- z * sc return(data.frame(x,y,z)) } rad2deg <- function(rad) {(rad * 180) / (pi)} deg2rad <- function(deg) {(deg * pi) / (180)}
"drmEMeventtime" <- function(dose, resp, multCurves, doseScaling = 1) { opfct <- function(c) { Fstart <- multCurves(dose[, 1] / doseScaling, c) dose2 <- dose[, 2] Fend <- multCurves(dose2 / doseScaling, c) Fend[!is.finite(dose2)] <- 1 return( -sum(resp * log(Fend - Fstart)) ) } ssfct <- NULL llfct <- function(object) { c( -object$"fit"$value, object$"sumList"$"df.residual" ) } rvfct <- NULL vcovfct <- function(object) { solve(object$fit$hessian) } parmfct <- function(fit, fixed = TRUE) { fit$par } return(list(llfct = llfct, opfct = opfct, ssfct = ssfct, rvfct = rvfct, vcovfct = vcovfct, parmfct = parmfct)) } "drmLOFeventtime" <- function() { return(list(anovaTest = NULL, gofTest = NULL)) }
xtree.reg <- function(x, ...) UseMethod("xtree.reg")
"psid"
setClass( Class = "StandardError", prototype = prototype( description = "standard error" ), contains = "SamplingVariance" )
test_that("use_import_from() imports the related package & adds line to package doc", { create_local_package() use_package_doc() use_import_from("tibble", "tibble") expect_equal(trimws(desc::desc_get("Imports", proj_get()))[[1]], "tibble") expect_equal(roxygen_ns_show(), " }) test_that("use_import_from() adds one line for each function", { create_local_package() use_package_doc() use_import_from("tibble", c("tibble", "enframe", "deframe")) expect_snapshot(roxygen_ns_show()) }) test_that("use_import_from() generates helpful errors", { create_local_package() use_package_doc() expect_snapshot(error = TRUE, { use_import_from(1) use_import_from(c("tibble", "rlang")) use_import_from("tibble", "pool_noodle") }) })
data("apparelTrans") data("apparelDynCov") apparelDynCov <- apparelDynCov[Cov.Date > "2005-01-01" ] skip_on_cran() context("Runability - PNBD dynamiccov - Basic runability") mini.apparelTrans <- apparelTrans[Id %in% unique(apparelTrans$Id)[1:100]] mini.apparelDynCov <- apparelDynCov[Id %in% mini.apparelTrans$Id] expect_silent(clv.data.trans <- clvdata(data.transactions = mini.apparelTrans, date.format = "ymd", time.unit = "W", estimation.split = 40)) expect_silent(clv.data.mini.dyncov <- SetDynamicCovariates(clv.data = clv.data.trans, data.cov.life = mini.apparelDynCov, data.cov.trans = mini.apparelDynCov, names.cov.life = "Gender", names.cov.trans = "Gender", name.date = "Cov.Date")) expect_warning(fitted.dyncov <- pnbd(clv.data.mini.dyncov, start.params.model = c(r=0.4011475, alpha=22.7155565, s=0.2630372, beta=19.1752426), start.params.life = c(Gender=0.9304636), start.params.trans = c(Gender=1.0934721), optimx.args = list(method="Nelder-Mead", hessian=FALSE, control=list(kkt=FALSE, reltol = 1000))), regexp = "Hessian could not be derived.") fake.hess <- structure(c(979.019728504732, -833.029498091497, -328.098609941573, 258.918547365243, -198.39816295105, 617.835400045399, -833.029498091497, 850.416620581025, 235.300182628772, -184.286149754065, 137.842394217897, -631.483808344787, -328.098609941573, 235.300182628772, 265.168175979473, -193.63193759222, 160.709773619312, -177.81494575965, 258.918547365243, -184.286149754065, -193.63193759222, 143.911727169075, -118.898176270749, 137.842394013186, -198.39816295105, 137.842394217897, 160.709773619312, -118.898176270749, 118.898177254365, -137.842393385251, 617.835400045399, -631.483808344787, -177.81494575965, 137.842394013186, -137.842393385251, 631.483808845486), .Dim = c(6L, 6L), .Dimnames = list(c("log.r", "log.alpha", "log.s", "log.beta", "life.Gender", "trans.Gender"), c("log.r", "log.alpha", "log.s", "log.beta", "life.Gender", "trans.Gender"))) [email protected] <- fake.hess full.names <- c("r", "alpha", "s","beta", "life.Gender", "trans.Gender") .fct.helper.s3.fitted.coef(clv.fitted = fitted.dyncov, full.names = full.names) .fct.helper.s3.fitted.vcov(clv.fitted = fitted.dyncov, full.names = full.names) .fct.helper.s3.fitted.confint(clv.fitted = fitted.dyncov, full.names = full.names) .fct.helper.s3.fitted.summary(clv.fitted = fitted.dyncov) .fct.helper.s3.fitted.print(clv.fitted = fitted.dyncov) .fct.helper.s3.fitted.nobs(clv.fitted = fitted.dyncov) .fct.helper.s3.fitted.logLik(clv.fitted = fitted.dyncov) fct.testthat.runability.dynamiccov.LL.is.correct(clv.fitted = fitted.dyncov) fct.testthat.runability.dynamiccov.plot.works(clv.fitted = fitted.dyncov) fct.testthat.runability.dynamiccov.plot.has.0.repeat.transactions.expectations(clv.fitted = fitted.dyncov) fct.testthat.runability.dynamiccov.predict.works(clv.fitted = fitted.dyncov) fct.testthat.runability.dynamiccov.predict.newdata.works(clv.fitted = fitted.dyncov, apparelTrans = apparelTrans, apparelDynCov = apparelDynCov) dt.additional.cov <- expand.grid(Id = unique(apparelDynCov$Id), Cov.Date = seq(from=apparelDynCov[, max(Cov.Date)]+lubridate::weeks(1), length.out = 100, by = "week"), stringsAsFactors = FALSE) setDT(dt.additional.cov) dt.additional.cov[, Marketing := rep(c(0,1,2,3),.N/4)] dt.additional.cov[, Gender := rep(c(0,1),.N/2)] dt.additional.cov[, Channel := rep(c(0,1),.N/2)] expect_silent(mini.apparelDynCov.long <- data.table::rbindlist(l = list(mini.apparelDynCov, dt.additional.cov[Id %in% mini.apparelDynCov$Id]), use.names = TRUE)) expect_silent(clv.data.mini.extra <- SetDynamicCovariates(clv.data.trans, data.cov.life = mini.apparelDynCov.long, data.cov.trans = mini.apparelDynCov.long, names.cov.life = c("Gender"), names.cov.trans = c("Gender"), name.date = "Cov.Date")) context("Runability - PNBD dynamiccov - newdata") fct.testthat.runability.dynamiccov.predict.longer.with.newdata(clv.fitted = fitted.dyncov, clv.data.mini.extra = clv.data.mini.extra, clv.data.trans = clv.data.trans) fct.testthat.runability.dynamiccov.plot.longer.with.newdata(clv.fitted = fitted.dyncov, clv.data.mini.extra = clv.data.mini.extra, clv.data.trans = clv.data.trans) context("Runability - PNBD dynamiccov - Overlong data") fct.testthat.runability.dynamiccov.can.predict.plot.beyond.holdout(method = pnbd, clv.data.trans = clv.data.trans, mini.apparelDynCov.long = mini.apparelDynCov.long, start.params.model = c(r=0.4011475, alpha=22.7155565, s=0.2630372, beta=19.1752426))
include_graphics2 <- function(path, alt_path = NULL, handler = function(path) knitr::asis_output(paste('View', tools::file_ext(path), 'at', path)), ...) { if (knitr::is_latex_output()) { return(include_graphics_latex(path, alt_path, handler, ...)) } else { return(knitr::include_graphics(path, ...)) } } include_graphics_latex <- function(path, alt_path = NULL, handler = function(path) knitr::asis_output(paste('View', tools::file_ext(path), 'at', path)), ...) { if (grepl('^https?://', path)) { ifelse(use_alt_path(path, alt_path), path <- alt_path, return(handler(path))) dir_path <- paste0('downloadFigs4latex_', file_path_sans_ext(current_input())) if (!dir.exists(dir_path)) dir.create(dir_path) file_path <- paste0(dir_path, '/', knitr::opts_current$get()$label, '.', file_ext(path)) download.file(path, destfile = file_path) path <- file_path } else { ifelse(use_alt_path(path, alt_path), path <- alt_path, return(handler(path))) } return(knitr::include_graphics(path, ...)) } use_alt_path <- function(path, alt_path) { if (inval_latex_img(path) && is.null(alt_path)) return(FALSE) if (inval_latex_img(path) && !is.null(alt_path)) { stopifnot(!inval_latex_img(alt_path)) return(TRUE) } } inval_latex_img <- function(path) { invalid_ext <- c('svg', 'SVG', 'GIF', 'gif') return(tools::file_ext(path) %in% invalid_ext) }
graf_col_palette_default <- function(palette = "all_grafify", reverse = FALSE, ...){ pal <- graf_palettes[[palette]] if(reverse) pal <- rev(pal) colorRampPalette(pal, ...) }
context("Tests of function spitcenter") hexatestdf <- data.frame( x = c(0,1,0,4,5,5,5,5), y = c(1,1,4,4,1,1,4,4), z = c(4,8,4,9,4,8,4,6) ) center <- spitcenter(hexatestdf) test_that( "the output is a vector", { expect_true( is.vector(center) ) } ) test_that( "the output has the correct length and names", { expect_equal( length(center), 3 ) expect_equal( names(center), c("x", "y", "z") ) } ) countercenter <- c(x = 3.125, y = 2.5, z = 5.875) test_that( "the output is as expected", { expect_identical( center, countercenter ) } )
prodB = function(x){ prod = 1 for (a in 1:length(x)) { prod = prod*x[a] } return(prod) } dmnormB = function(x, mean, sigma){ dist = Brobdingnag::as.brob(t(x - mean) %*% solve(sigma) %*% (x - mean)) cte = (2*pi)^{-nrow(sigma)/2}*determinant(sigma, logarithm = FALSE)$modulus^{-1/2} return(cte*exp(-1/2*dist)) } dwishartB = function(x, nu, S){ k = ncol(x) producto = Brobdingnag::as.brob(1) for (i in 1:k) { producto = producto*exp(Brobdingnag::as.brob(lgamma((nu + 1 - i)/2))) } densidades = (Brobdingnag::as.brob(2)^(nu*k/2)*Brobdingnag::as.brob(pi^(k*(k - 1)/4))*producto)^(-1) * Brobdingnag::as.brob(det((1/nu)*S))^(-nu/2)*Brobdingnag::as.brob(det(x))^((nu - k - 1)/2) * exp(Brobdingnag::as.brob(-0.5*sum(diag(solve((1/nu)*S) %*% x)))) return(densidades) }
estimVarCov_empProcess <- function(x, y, obs.data, known.p = NULL, comp.dist = NULL, comp.param = NULL) { if (is.null(obs.data)) { stopifnot( (length(comp.dist) == 2) & (length(comp.param) == 2) ) if ( any(sapply(comp.dist, is.null)) | any(sapply(comp.param, is.null)) | is.null(known.p)) { stop("All parameters of the admixture model must be specified to compute the exact Donsker correlation.") } exp.comp.dist <- paste0("p", comp.dist) if (any(exp.comp.dist == "pmultinom")) { exp.comp.dist[which(exp.comp.dist == "pmultinom")] <- "stepfun" } comp.ro <- sapply(X = exp.comp.dist, FUN = get, pos = "package:stats", mode = "function") for (i in 1:length(comp.ro)) assign(x = names(comp.ro)[i], value = comp.ro[[i]]) make.expr.step <- function(i) paste(names(comp.ro)[i], "(x = 1:", length(comp.param[[i]][[2]]), paste(", y = ", paste("cumsum(c(0,", paste(comp.param[[i]][[2]], collapse = ","), "))", sep = ""), ")", sep = ""), sep = "") make.expr <- function(i) paste(names(comp.ro)[i], "(z,", paste(names(comp.param[[i]]), "=", comp.param[[i]], sep = "", collapse = ","), ")", sep="") expr <- vector(mode = "character", length = length(exp.comp.dist)) expr[which(exp.comp.dist == "stepfun")] <- sapply(which(exp.comp.dist == "stepfun"), make.expr.step) expr[which(expr == "")] <- sapply(which(expr == ""), make.expr) expr <- unlist(expr) if (any(exp.comp.dist == "stepfun")) { F1.fun <- eval(parse(text = expr[1])) F1 <- function(z) F1.fun(z) G1.fun <- eval(parse(text = expr[2])) G1 <- function(z) G1.fun(z) } else { F1 <- function(z) { eval(parse(text = expr[1])) } G1 <- function(z) { eval(parse(text = expr[2])) } } L.CDF <- function(z) { known.p * F1(z) + (1-known.p) * G1(z) } } else { L.CDF <- stats::ecdf(obs.data) } res <- L.CDF(min(x,y)) * (1 - L.CDF(max(x,y))) return(res) }
if(getRversion() >= "2.15.1") utils::globalVariables(c("experiment_list1", "observables")) dream6_design <- function(knobj, sample_function, seed, credits = 5000, file_to_save = NULL, verbose = T){ next_it <- TRUE k <- 1 while(next_it){ if(verbose){ print(paste("Sample", k)) } thetas <- sample_function(knobj) knobj$datas[[length(knobj$datas)]]$thetas_est <- thetas knobj$datas[[length(knobj$datas)]]$thetas <- thetas[sample(1:nrow(thetas), size = knobj$global_parameters$final_sample_design),] risks <- c() if(!is.null(file_to_save)){ saveRDS(knobj, file_to_save) } if(verbose){ print(paste("Estimate risk", k)) } for(id_exp in 1:length(experiment_list1)){ experiment_fun <- experiment_list1[[id_exp]] experiment_list1[[id_exp]] res <- estimate_risk_dream6(thetas, knobj, experiment_fun) res$Cost <- res$Cost + experiment_fun(NULL, NULL)$cost res$exp <- names(experiment_list1)[id_exp] risks <- rbind(risks,res) print(id_exp) } if(verbose){ print(paste("Get data", k)) } knobj$datas[[length(knobj$datas)]]$risks <- risks if(!is.null(file_to_save)){ saveRDS(knobj, file_to_save) } risks <- risks[risks$Cost <= credits,] temp_risk <- risks$Risk/risks$Cost next_exp <- which.max(temp_risk)[1] nnext_it <- paste(risks$exp[next_exp], risks$Measurement[next_exp]) %in% knobj$experiments while(nnext_it){ temp_risk[next_exp] <- 0 next_exp <- which.max(temp_risk)[1] nnext_it <- (paste(risks$exp[next_exp], risks$Measurement[next_exp]) %in% knobj$experiments) & (max(temp_risk)[1] > 0) } if(max(temp_risk)[1] <= 0){ break } knobj$experiments <- c(knobj$experiments, paste(risks$exp[next_exp], risks$Measurement[next_exp]) ) exp_fun_next_exp <- experiment_list1[[which(names(experiment_list1) == risks[next_exp, 4])]] data_next_exp <- simulate_experiment(knobj$global_parameters$true_params_T, knobj, exp_fun_next_exp) data_next_exp <- add_noise(data_next_exp) to_observe <- observables[[ as.character(risks[next_exp,1]) ]]$obs time_res <- observables[[ as.character(risks[next_exp,1]) ]]$reso knobj$datas[[length(knobj$datas) + 1]] <- list(manip = experiment_list1[[which(names(experiment_list1) == risks[next_exp, 4])]], data = data_next_exp[data_next_exp[,1] %in% time_res,to_observe] ) credits <- credits - risks[next_exp,]$Cost next_it <- (credits >= min(sapply(observables, FUN= function(x){x$cost}))) if(!is.null(file_to_save)){ saveRDS(knobj, file_to_save) } k <- k+1 } if(verbose){ print(paste("Sample", k)) } thetas <- sample_function(knobj) knobj$datas[[length(knobj$datas)]]$thetas_est <- thetas knobj$datas[[length(knobj$datas)]]$thetas <- thetas[sample(1:nrow(thetas), size = knobj$global_parameters$final_sample_design),] if(!is.null(file_to_save)){ saveRDS(knobj, file_to_save) } knobj }
ctable <- function(x, y, prop = st_options("ctable.prop"), useNA = "ifany", totals = st_options("ctable.totals"), style = st_options("style"), round.digits = st_options("ctable.round.digits"), justify = "right", plain.ascii = st_options("plain.ascii"), headings = st_options("headings"), display.labels = st_options("display.labels"), split.tables = Inf, dnn = c(substitute(x), substitute(y)), chisq = FALSE, OR = FALSE, RR = FALSE, weights = NA, rescale.weights = FALSE, ...) { if (any(grepl("group_by(", deparse(sys.calls()[[1]]), fixed = TRUE))) { stop("ctable() doesn't support group_by(); use stby() instead") } if (length(dim(x)) == 2) { x_tmp <- x[[1]] y <- x[[2]] x <- x_tmp flag_by <- TRUE } else { flag_by <- FALSE } if (inherits(x, "data.frame") && ncol(x) == 1) { x <- x[[1]] } if (inherits(y, "data.frame") && ncol(y) == 1) { y <- y[[1]] } errmsg <- character() if (!is.factor(x) && !is.atomic(x)) { x <- try(as.vector(x), silent = TRUE) if (inherits(x, "try-error")) { errmsg %+=% "'x' must be a factor or an object coercible to a vector" } } if (!is.factor(y) && !is.atomic(x)) { y <- try(as.vector(y), silent = TRUE) if (inherits(y, "try-error")) { errmsg %+=% "'y' must be a factor or an object coercible to a vector" } } errmsg <- c(errmsg, check_args(match.call(), list(...))) if (length(errmsg) > 0) { stop(paste(errmsg, collapse = "\n ")) } if (style == "rmarkdown" && isTRUE(plain.ascii) && (!"plain.ascii" %in% (names(match.call())))) { plain.ascii <- FALSE } if (NaN %in% x) { message(paste(sum(is.nan(x)), "NaN value(s) converted to NA in x\n")) x[is.nan(x)] <- NA } if (NaN %in% y) { message(paste(sum(is.nan(y)), "NaN value(s) converted to NA in y\n")) y[is.nan(y)] <- NA } if (isTRUE(flag_by)) { parse_info_x <- try( parse_args(sys.calls(), sys.frames(), match.call(), var = c("x", "y"), silent = "dnn" %in% names(match.call()), var_label = FALSE, caller = "ctable"), silent = TRUE) if (inherits(parse_info_x, "try-error")) { parse_info_x <- list() } else { if (!is.null(parse_info_x$df_name)) { df_name <- parse_info_x$df_name } if (!is.null(parse_info_x$df_label)) { df_label <- parse_info_x$df_label } } } else { parse_info_x <- try( parse_args(sys.calls(), sys.frames(), match.call(), var = "x", silent = "dnn" %in% names(match.call()), var_label = FALSE, caller = "ctable"), silent = TRUE) if (inherits(parse_info_x, "try-error")) { parse_info_x <- list() } parse_info_y <- try( parse_args(sys.calls(), sys.frames(), match.call(), var = "y", silent = "dnn" %in% names(match.call()), var_label = FALSE, caller = "ctable"), silent = TRUE) if (inherits(parse_info_y, "try-error")) { parse_info_y <- list() } if (length(parse_info_x$df_name) == 1 && length(parse_info_y$df_name) == 1 && isTRUE(parse_info_x$df_name == parse_info_y$df_name)) { df_name <- parse_info_x$df_name } if (length(parse_info_x$df_label) == 1) { df_label <- parse_info_x$df_label } } if ("dnn" %in% names(match.call())) { x_name <- dnn[1] y_name <- dnn[2] } else if (!isTRUE(flag_by)) { x_name <- na.omit(c(parse_info_x$var_name, deparse(dnn[[1]])))[1] y_name <- na.omit(c(parse_info_y$var_name, deparse(dnn[[2]])))[1] } else { x_name <- na.omit(c(parse_info_x$var_name[1], deparse(dnn[[1]])))[1] y_name <- na.omit(c(parse_info_x$var_name[2], deparse(dnn[[2]])))[1] } if (identical(NA, weights)) { freq_table <- table(x, y, useNA = useNA) freq_table_min <- table(x, y, useNA = "no") } else { weights_string <- deparse(substitute(weights)) if (isTRUE(flag_by)) { pf <- parent.frame(2) weights <- weights[pf$X[[pf$i]]] } if (sum(is.na(weights)) > 0) { warning("missing values on weight variable have been detected and were ", "treated as zeroes") weights[is.na(weights)] <- 0 } if (isTRUE(rescale.weights)) { weights <- weights / sum(weights) * length(x) } if (useNA == "no") { freq_table <- xtabs(weights ~ x + y, addNA = FALSE) freq_table_min <- freq_table } else { freq_table <- xtabs(weights ~ x + y, addNA = TRUE) freq_table_min <- xtabs(weights ~ x + y, addNA = FALSE) } } names(dimnames(freq_table)) <- c(x_name, y_name) prop_table <- switch(prop, t = prop.table(freq_table), r = prop.table(freq_table, 1), c = prop.table(freq_table, 2), n = NULL) freq_table <- addmargins(freq_table) rownames(freq_table)[nrow(freq_table)] <- trs("total") colnames(freq_table)[ncol(freq_table)] <- trs("total") if (!is.null(prop_table)) { prop_table[is.nan(prop_table)] <- 0 if (prop == "t") { prop_table <- addmargins(prop_table) } else if (prop == "r") { prop_table <- addmargins(prop_table, 2) sum_props <- c(prop.table(freq_table[nrow(freq_table), -ncol(freq_table)]), Total = 1) prop_table <- rbind(prop_table, sum_props) } else if (prop == "c") { prop_table <- addmargins(prop_table, 1) sum_props <- c(prop.table(freq_table[-nrow(freq_table), ncol(freq_table)]), Total = 1) prop_table <- cbind(prop_table, sum_props) } rownames(prop_table)[nrow(prop_table)] <- trs("total") colnames(prop_table)[ncol(prop_table)] <- trs("total") } if (NA %in% rownames(freq_table)) { row.names(freq_table)[is.na(row.names(freq_table))] <- "<NA>" if (prop != "n") { row.names(prop_table)[is.na(row.names(prop_table))] <- "<NA>" } } if (NA %in% colnames(freq_table)) { colnames(freq_table)[is.na(colnames(freq_table))] <- "<NA>" if (prop != "n") { colnames(prop_table)[is.na(colnames(prop_table))] <- "<NA>" } } output <- list(cross_table = freq_table, proportions = prop_table) class(output) <- c("summarytools", class(output)) attr(output, "st_type") <- "ctable" attr(output, "fn_call") <- match.call() attr(output, "date") <- Sys.Date() if (isTRUE(chisq)) { tmp.chisq <- chisq.test(freq_table_min) tmp.chisq <- c(Chi.squared = round(tmp.chisq$statistic[[1]], 4), tmp.chisq$parameter, p.value = round(tmp.chisq$p.value, 4)) attr(output, "chisq") <- tmp.chisq } if (!isFALSE(OR) || !isFALSE(RR)) { if (identical(as.numeric(dim(freq_table_min)), c(2,2))) { if (!isFALSE(OR)) { or <- prod(freq_table_min[c(1,4)]) / prod(freq_table_min[c(2,3)]) se <- sqrt(sum(1/freq_table_min)) attr(output, "OR") <- c(or, exp(log(or) - qnorm(p = 1 - ((1 - OR)/2)) * se), exp(log(or) + qnorm(p = 1 - ((1 - OR)/2)) * se)) names(attr(output, "OR")) <- c("Odds Ratio", paste0("Lo - ", OR * 100, "%"), paste0("Hi - ", OR * 100, "%")) attr(output, "OR-level") <- OR } if (!isFALSE(RR)) { rr <- (freq_table_min[1] / sum(freq_table_min[c(1,3)])) / (freq_table_min[2] / sum(freq_table_min[c(2,4)])) se <- sqrt(sum(1/freq_table_min[1], 1/freq_table_min[2], -1/sum(freq_table_min[c(1,3)]), -1/sum(freq_table_min[c(2,4)]))) attr(output, "RR") <- c(rr, exp(log(rr) - qnorm(p = 1 - ((1 - RR)/2)) * se), exp(log(rr) + qnorm(p = 1 - ((1 - RR)/2)) * se)) names(attr(output, "RR")) <- c("Risk Ratio", paste0("Lo - ", RR * 100, "%"), paste0("Hi - ", RR * 100, "%")) attr(output, "RR-level") <- RR } } else { message("OR and RR can only be used with 2 x 2 tables; parameter(s) ignored") } } if (all(c("ordered", "factor") %in% class(x))) { Data.type.x <- trs("factor.ordered") } else if ("factor" %in% class(x)) { Data.type.x <- trs("factor") } else if (all(c("POSIXct", "POSIXt") %in% class(x))) { Data.type.x <- trs("datetime") } else if ("Date" %in% class(x)) { Data.type.x <- trs("date") } else if ("logical" %in% class(x)) { Data.type.x <- trs("logical") } else if ("character" %in% class(x)) { Data.type.x <- trs("character") } else if ("integer" %in% class(x)) { Data.type.x <- trs("integer") } else if ("numeric" %in% class(x)) { Data.type.x <- trs("numeric") } else { Data.type.x <- ifelse(mode(x) %in% rownames(.keywords_context), trs(mode(x)), mode(x)) } if (all(c("ordered", "factor") %in% class(y))) { Data.type.y <- trs("factor.ordered") } else if ("factor" %in% class(y)) { Data.type.y <- trs("factor") } else if (all(c("POSIXct", "POSIXt") %in% class(y))) { Data.type.y <- trs("datetime") } else if ("Date" %in% class(y)) { Data.type.y <- trs("date") } else if ("logical" %in% class(y)) { Data.type.y <- trs("logical") } else if ("character" %in% class(y)) { Data.type.y <- trs("character") } else if ("integer" %in% class(y)) { Data.type.y <- trs("integer") } else if ("numeric" %in% class(y)) { Data.type.y <- trs("numeric") } else { Data.type.y <- ifelse(mode(y) %in% rownames(.keywords_context), trs(mode(y)), mode(y)) } dfn <- ifelse(exists("df_name", inherits = FALSE), df_name, NA) data_info <- list(Data.frame = ifelse(exists("df_name", inherits = FALSE), df_name, NA), Data.frame.label = ifelse(exists("df_label", inherits = FALSE), df_label, NA), Row.variable = x_name, Row.variable.label = ifelse(!is.na(label(x)), label(x), NA), Col.variable = y_name, Col.variable.label = ifelse(!is.na(label(y)), label(y), NA), Row.x.Col = paste(x_name, y_name, sep = " * "), Proportions = switch(prop, r = "Row", c = "Column", t = "Total", n = "None"), Data.type.x = Data.type.x, Data.type.y = Data.type.y, Weights = ifelse(identical(weights, NA), NA, ifelse(is.na(dfn), weights_string, sub(pattern = paste0(dfn, "$"), replacement = "", x = weights_string, fixed = TRUE))), Group = ifelse("by_group" %in% names(parse_info_x), parse_info_x$by_group, NA), by_first = ifelse("by_group" %in% names(parse_info_x), parse_info_x$by_first, NA), by_last = ifelse("by_group" %in% names(parse_info_x), parse_info_x$by_last , NA)) attr(output, "data_info") <- data_info[!is.na(data_info)] attr(output, "format_info") <- list(style = style, round.digits = round.digits, plain.ascii = plain.ascii, justify = justify, totals = totals, split.tables = split.tables, headings = headings, display.labels = display.labels) attr(output, "user_fmt") <- list(... = ...) attr(output, "lang") <- st_options("lang") return(output) }
SSbiologytables <- function (replist = NULL, printfolder="tables", dir="default", fleetnames = "default", selexyr = "default") { print.numeric <- function(x, digits) { formatC(x, digits = digits, format = "f") } inputs <- replist$inputs biology <- replist$endgrowth nsexes <- replist$nsexes nfleets <- replist$nfleets lbinspop <- replist$lbinspop nlbinspop <- replist$nlbinspop sizeselex <- replist$sizeselex ageselex <- replist$ageselex accuage <- replist$accuage FleetNames <- replist$FleetNames if(dir=="default"){ dir <- inputs$dir } plotdir <- file.path(dir,printfolder) plotdir.isdir <- file.info(plotdir)$isdir if(is.na(plotdir.isdir) | !plotdir.isdir){ dir.create(plotdir) } if(fleetnames[1]=="default"){ fleetnames <- FleetNames } if(selexyr[1]=="default"){ selexyr <- replist$endyr } bio = data.frame(Age = biology[biology$Sex == 1, "Age_Beg"], Ave_Length_f = print(biology[biology$Sex == 1, "Len_Beg"] ,digits = 1), Ave_Wght_f = print(biology[biology$Sex == 1, "Wt_Beg"] ,digits = 2), Mature_f = print(biology[biology$Sex == 1, "Len_Mat"] ,digits = 2), Fecund_f = print(biology[biology$Sex == 1, "Mat*Fecund"],digits = 2)) if (nsexes == 2){ bio = data.frame(bio, Ave_Length_m = print(biology[biology$Sex == 2, "Len_Beg"],digits = 1), Ave_Wght_m = print(biology[biology$Sex == 2, "Wt_Beg"], digits = 2), Mature_m = print(biology[biology$Sex == 2, "Len_Mat"],digits = 2)) } write.csv(bio, paste0(plotdir, "/biology_by_age.csv"), row.names = F) selex.age = selex.age.ret = data.frame(Age = 0:accuage) for(j in 1:nsexes){ for (i in 1:nfleets){ ind = ageselex[!is.na(ageselex$Fleet), "Fleet"] == i find = which(ageselex[ind, "Sex"] == j & ageselex[ind, "Yr"] == selexyr & ageselex[ind,"Factor"] == "Asel") selex.age = data.frame(selex.age, print(as.numeric(ageselex[find,8:dim(ageselex)[2]]), digits = 2)) } } colnames(selex.age) = c("Age", paste0(FleetNames, "_f"), paste0(FleetNames, "_m")) write.csv(selex.age, paste0(plotdir, "/selectivity_by_age.csv"), row.names = F) retnames = NULL selex.size = selex.size.ret = data.frame(Length = as.numeric(names(sizeselex[6:dim(sizeselex)[2]])) ) for(j in 1:nsexes){ for (i in 1:nfleets){ find = which(sizeselex$Fleet == i & sizeselex$Sex == j & sizeselex$Yr == selexyr & sizeselex$Factor == "Lsel") selex.size = data.frame(selex.size, print(as.numeric(sizeselex[find, 6:dim(sizeselex)[2]]), digits = 2)) find = which(sizeselex$Fleet == i & sizeselex$Sex == j & sizeselex$Yr == selexyr & sizeselex$Factor == "Keep") if (length(find) != 0){ if(j == 1) { retnames = c(retnames, FleetNames[i]) } selex.size.ret = data.frame(selex.size.ret, print(as.numeric(sizeselex[find, 6:dim(sizeselex)[2]]), digits = 2)) } } } colnames(selex.size) = c("Length", paste0(FleetNames, "_f"), paste0(FleetNames, "_m")) colnames(selex.size.ret) = c("Length", paste0(retnames, "_f"), paste0(retnames, "_m")) write.csv(selex.size, paste0(plotdir, "/selectivity_by_size.csv"), row.names = F) write.csv(selex.size.ret, paste0(plotdir, "/retention_by_size.csv"), row.names = F) }
suppressPackageStartupMessages({ library(bcTSNE) library(data.table) library(SingleCellExperiment) library(RSpectra) library(batchelor) library(kBET) library(Rtsne) library(lisi) library(harmony) library(dlfUtils) library(scater) }) path <- "mouse_raw_data_allcells_Notscaled.tsv" dat <- fread(path) dat <- dat[TREATMENT == "Vehicle"] dat[ , TREATMENT := NULL] mCols <- c("CELL", "SEX", "DATE", "NODEID", "MOUSE") mDat <- dat[ , .SD, .SDcols = mCols] mDat[ , CELLTYPE := NODEID] mDat[grepl("Node", NODEID), CELLTYPE := "Other"] mDat[grepl("Neurons", NODEID), CELLTYPE := "Other"] mDat[grepl("Vascular", NODEID), CELLTYPE := "Other"] cCols <- setdiff(names(dat), mCols) cDat <- data.table(GENE = cCols) tmp <- t(as.matrix(dat[ , .SD, .SDcols = cCols])) sce <- SingleCellExperiment(assays = list(counts = tmp), colData = mDat, rowData = cDat) sizeFactors(sce) <- librarySizeFactors(sce) sce <- normalize(sce, return_log = FALSE) sce <- normalize(sce) assay(sce, "centered") <- t(scale(t(normcounts(sce)), scale = FALSE)) SVD <- svds(A = t(assay(sce, "centered")), k = 50) reducedDim(sce) <- SVD$u %*% diag(SVD$d) reducedDimNames(sce) <- "PCA" saveRDS(sce, "real.sce") rm(dat, tmp, mDat, cDat, SVD, mCols, cCols); gc(); res <- vector(mode = "list", length = 4) names(res) <- c("tsne", "bcts", "hmny", "mnn") set.seed(1234) res$tsne <- Rtsne(reducedDim(sce), pca = FALSE) set.seed(1234) res$bcts <- bctsne(X = t(assay(sce, "centered")), Z = model.matrix( ~ -1 + factor(colData(sce)$MOUSE)), k = 50, perplexity = 30, maxIter = 1000) set.seed(1234) sce <- RunHarmony(sce, group.by.vars = "MOUSE") res$hmny = Rtsne(as.matrix(reducedDim(sce, "HARMONY")), pca = FALSE) set.seed(1234) mnnSCE <- fastMNN(sce, batch = factor(colData(sce)$MOUSE)) res$mnn <- Rtsne(reducedDim(mnnSCE), pca = FALSE) res <- lapply(res, "[[", "Y") saveRDS(res, "real.res") calcMetrics <- function(Y, bchLst) { calcSil <- function(x) { s <- batch_sil(pca.data = list(x = Y), batch = x, nPCs = 2) 1 - abs(s) } calcKBET <- function(x) { kBET(Y, batch = x, do.pca = FALSE, plot = FALSE)$average } calcPCA <- function(x) { pcRegression(pca.data = prcomp(Y), batch = x, n_top = 2)$pcReg } sil <- sapply(bchLst, calcSil) kbet <- sapply(bchLst, calcKBET) lisi <- compute_lisi(Y, meta_data = as.data.frame(bchLst), label_colnames = names(bchLst)) lisi <- colMeans(lisi) sizes <- sapply(bchLst, function(x) length(unique(x))) lisi <- (lisi - 1)/(sizes - 1) pca <- sapply(bchLst, calcPCA) res <- list(sil = sil, kbet = kbet, lisi = lisi, pca = pca) do.call(cbind, res) } bchLst <- as.list(colData(sce)[ , c("SEX", "DATE", "MOUSE", "CELLTYPE")]) bchLst <- lapply(bchLst, factor) metrics <- lapply(res, calcMetrics, bchLst = bchLst) saveRDS(metrics, "real.metrics")
get_efforts_list <- function(stoken, id, athlete_id=NULL, start_date_local=NULL, end_date_local=NULL){ queries <- list(athlete_id=athlete_id, start_date_local=start_date_local, end_date_local=end_date_local) dataRaw <- get_pages(url_segment(id, request="all_efforts"), stoken, queries=queries, All=TRUE) return(dataRaw) }
f.post.poo.diff <- function(coeff, covar){ .names <- rownames(coeff[[1]]) .tmp <- f.coefnames(.names) .cm <- .tmp$child.poo.m .cf <- .tmp$child.poo.f .D0 <- diag(length(coeff[[1]])) dimnames(.D0) <- list(.names, .names) .Dm <- .D0[.cm, , drop = F] .Df <- .D0[.cf, , drop = F] .Dm[, .cf] <- -.Df[, .cf] rownames(.Dm) <- paste("cm_", .cf, sep = "") .D <- rbind(.D0, .Dm) .coef <- lapply(coeff, function(x) .D %*% x) .cov <- lapply(covar, function(x) .D %*% x %*% t(.D)) .vis <- F if(.vis){ f.vis(.D, vis = .vis) f.vis(coeff[[1]], vis = .vis) f.vis(.D %*% coeff[[1]], vis = .vis) f.vis(.coef, vis = .vis) f.vis(.cov, vis = .vis) } return(list(coeff = .coef, covar = .cov)) }
print.summary.stabit2 <- function(x, ...){ if(x$method=="Klein-selection"){ if(x$mfx==TRUE){ cat("\nMarginal effects for two-sided matching model.") } else{ cat("\nCoefficients for two-sided matching model.") } } else{ if(x$mfx==TRUE){ cat("\nMarginal effects for multi-index sample selection model.") } else{ cat("\nCoefficients for multi-index sample selection model.") } } if(x$method=="Klein-selection"){ cat("\nMethod: Klein (2016)\n") } else if(x$method=="Klein"){ cat("\nMethod: Klein (2016), two-sided matching market\n") } else if(x$method=="Sorensen"){ cat("\nMethod: Sorensen (2007), two-sided matching market\n") } else{ cat("\nMethod: Klein (2015), one-sided matching market\n") } cat("\nCall:\n") print(x$call) if(x$method!="Outcome-only"){ if(x$method=="Klein" | x$method=="Klein-selection"){ cat("\nSelection equation (Valuation over colleges):") cat("\n") printCoefmat(x$college, P.values=TRUE, has.Pvalue=TRUE, signif.legend=FALSE) cat("\nSelection equation (Valuation over students):") cat("\n") printCoefmat(x$student, P.values=TRUE, has.Pvalue=TRUE, signif.legend=FALSE) } else{ cat("\nSelection equation:") cat("\n") printCoefmat(x$selection, P.values=TRUE, has.Pvalue=TRUE, signif.legend=FALSE) } } if(x$method!="Klein-selection"){ cat("\nOutcome equation:") cat("\n") printCoefmat(x$outcome, P.values=TRUE, has.Pvalue=TRUE, signif.legend=FALSE) } cat("---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1") }
psf <- function (data, k = seq(2,10), w = seq(1,10), cycle = 24) { series = convert_datatype(data) if (is.ts(data)) cycle = frequency(data) fit = nrow(series) %% cycle if (fit > 0) { warning(paste("Time series length is not multiple of", cycle, ". Cutting last", fit, "values!")) series = series[1:(.N - fit)] } dmin = series[, min(data)]; dmax = series[, max(data)] series[, data := (data - dmin) / (dmax - dmin)] dataset = as.data.table(t(matrix(series[,data], nrow = cycle))) if (length(k) > 1) k = optimum_k(dataset, k) if (length(w) > 1) w = optimum_w(dataset, k, w, cycle) res = list(original_series = data, train_data = dataset, k = k, w = w, cycle = cycle, dmin = dmin, dmax = dmax) class(res) <- "psf" return(res) }
context("asymptotic cumulative distribution of CUSUM") test_that("The output of pKSdist and pbessel has the correct format", { x <- runif(1, 0, 10) y <- pKSdist(x) Y <- pBessel(x, 2L) expect_true(is.numeric(y)) expect_equal(length(y), 1) expect_true(is.numeric(Y)) expect_equal(length(Y), 1) }) test_that("pKSdist returns the correct value", { expect_equal(pKSdist(4), 1) expect_equal(pKSdist(-1), 0) skip_on_cran() n <- 1001 times <- seq(0, 1, length.out = n) res <- replicate(10000, { dW <- rnorm(n) / sqrt(n) W <- cumsum(dW) B <- W - times * W[n] max(abs(B)) }) expect_equal(pKSdist(0.5), mean(res <= 0.5), tolerance = 0.05) expect_equal(pKSdist(1), mean(res <= 1), tolerance = 0.05) expect_equal(pKSdist(1.5), mean(res <= 1.5), tolerance = 0.05) }) test_that("pBessel returns the correct value", { expect_equal(pBessel(2.114, 2), 0.9, tolerance = 1e-4) expect_equal(pBessel(3.396, 2), 0.99, tolerance = 1e-5) expect_equal(pBessel(32.624, 100), 0.9, tolerance = 1e-4) expect_equal(pBessel(36.783, 100), 0.99, tolerance = 1e-5) })
knitr::opts_chunk$set(echo = TRUE) backup_options <- options() options(width = 1000) set.seed(1991) knitr::include_graphics("UCB.png") options(backup_options)
NULL setGeneric(name = "setCRS", def = function(x, crs, ...){ standardGeneric("setCRS") } ) setMethod(f = "setCRS", signature = "ANY", definition = function(x){ warning(paste0("I can't set a coordinate reference system to an object of class '", paste0(class(x), collapse = ", "), "'.")) } ) setMethod(f = "setCRS", signature = "geom", definition = function(x, crs = NULL){ if(is.na(x@crs)){ x@crs <- crs } else{ theCoords <- x@point[which(names(x@point) %in% c("x", "y"))] if(!all(c("+proj=longlat", "+ellps=WGS84") %in% strsplit(x@crs, " ")[[1]])){ geographic <- project(as.matrix(theCoords), proj = as.character(x@crs), inv = TRUE) } else{ geographic <- as.matrix(theCoords) } if(crs != "+proj=longlat +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +no_defs"){ projected <- project(geographic, proj = as.character(crs)) } else{ projected <- geographic } x@point <- data.frame(projected, x@point[which(!names(x@point) %in% c("x", "y"))]) x@crs <- crs x <- setWindow(x = x, to = getExtent(x)) } x@history <- c(getHistory(x = x), list(paste0("the crs was set to '", crs, "'."))) return(x) } ) setMethod(f = "setCRS", signature = signature("Spatial"), definition = function(x, crs = NULL){ if(is.na(x@proj4string)){ x@proj4string <- crs(crs) } else{ x <- spTransform(x, CRSobj = crs(crs)) } return(x) } ) setMethod(f = "setCRS", signature = "sf", definition = function(x, crs = NULL){ if(is.na(st_crs(x = x)$proj4string)){ x <- st_set_crs(x = x, value = crs) } else{ x <- st_transform(x, crs = crs) } return(x) } ) setMethod(f = "setCRS", signature = "Raster", definition = function(x, crs = NULL){ if(is.na(x@crs)){ x@crs <- crs(crs) } else{ x <- projectRaster(from = x, crs = crs(crs)) } x@history <- c(getHistory(x = x), list(paste0("the crs was set to '", crs, "'."))) return(x) } )
dataFolder = file.path(mainFolder, "data") dataFileType.df = read.table( paste(dataFolder, "00filelist.csv", sep="/"), skip=2, sep="," ,stringsAsFactors = TRUE, as.is = FALSE) dataFiles = fac2char.fn(dataFileType.df[,1]) subjectTypes = fac2char.fn(dataFileType.df[,2]) nFile = length(dataFiles) dataFileSuffix = ".csv" sensorIDs = gsub(dataFileSuffix, "", dataFiles, fixed=TRUE) Skip = 3 Header = FALSE if( !Header ) columnNames = c("Serial", "Meter", "Time", "Glucose") Comment.char="" Sep="," timeStamp.column = "Time" responseName = "Glucose" timeUnit = "minute" equal.interval = 3 time.format = "yyyy:mm:dd:hh:nn" idxNA = 0 r <- 0.15 m <- 2 I <- 400000 scaleMax <- 10; scaleStep <- 1 Scales <- seq(1, scaleMax, by=scaleStep) cFile = "mseLong.c" Summary = TRUE Boxplot = TRUE
sf_analytics_notifications_list <- function(source=c("lightningDashboardSubscribe", "lightningReportSubscribe", "waveNotification"), owner_id=NULL, record_id=NULL){ source <- match.arg(source, several.ok = TRUE) .NotYetImplemented() } sf_analytics_notifications_limits <- function(source=c("lightningDashboardSubscribe", "lightningReportSubscribe", "waveNotification"), record_id=NULL){ source <- match.arg(source, several.ok = TRUE) .NotYetImplemented() } sf_analytics_notification_create <- function(body){ .NotYetImplemented() } sf_analytics_notification_describe <- function(notification_id){ .NotYetImplemented() } sf_analytics_notification_update <- function(notification_id, body){ .NotYetImplemented() } sf_analytics_notification_delete <- function(notification_id){ .NotYetImplemented() }
require(lavaan) require(SEMsens) set.seed(1) lower = ' 1.00 .40 1.00 .40 .64 1.00 .41 .66 .61 1.00 .42 .52 .53 .61 1.00 .34 .50 .46 .53 .48 1.00 .42 .47 .41 .43 .47 .55 1.00 .39 .46 .39 .30 .21 .30 .37 1.00 .24 .31 .30 .31 .26 .32 .27 .56 1.00 .33 .35 .35 .40 .31 .25 .35 .51 .42 1.00 .30 .42 .36 .32 .24 .37 .43 .44 .37 .49 1.00' sample.cov = getCov(lower, sds = c(5.64,14.68,6.57,6.07,3.39,10.16,6.11,4.91,15.59,0.96,0.99), names = c("Working_memory", "Vocabulary", "Grammar", "Inference", "ToM", "TNL", "Expository", "Spelling", "Sentence_copying", "One_day", "Castle")) model <-'Vocabulary~Working_memory Grammar~Working_memory Inference~Vocabulary+Grammar+Working_memory ToM~Vocabulary+Grammar+Working_memory Spelling~Working_memory Sentence_copying~Working_memory Discourse~Inference+ToM+Vocabulary+Grammar+Working_memory Writing~Spelling+Sentence_copying+Discourse Discourse=~TNL+Expository Writing=~One_day+Castle Vocabulary~~Grammar Grammar~~Sentence_copying Vocabulary~~Sentence_copying Grammar~~Spelling Vocabulary~~Spelling Inference~~ToM Discourse~~Sentence_copying Discourse~~Spelling Spelling~~Sentence_copying' sens.model <- 'Vocabulary~Working_memory Grammar~Working_memory Inference~Vocabulary+Grammar+Working_memory ToM~Vocabulary+Grammar+Working_memory Spelling~Working_memory Sentence_copying~Working_memory Discourse~Inference+ToM+Vocabulary+Grammar+Working_memory Writing~Spelling+Sentence_copying+Discourse Discourse=~TNL+Expository Writing=~One_day+Castle Vocabulary~~Grammar Grammar~~Sentence_copying Vocabulary~~Sentence_copying Grammar~~Spelling Vocabulary~~Spelling Inference~~ToM Discourse~~Sentence_copying Discourse~~Spelling Spelling~~Sentence_copying Working_memory ~ phantom1*phantom Grammar ~ phantom2*phantom Vocabulary ~ phantom3*phantom ToM ~ phantom4*phantom Inference ~ phantom5*phantom Spelling ~ phantom6*phantom Sentence_copying ~ phantom7*phantom Discourse ~ phantom8*phantom Writing ~ phantom9*phantom phantom =~ 0 phantom ~~ 1*phantom' paths <- 'Vocabulary~Working_memory Grammar~Working_memory Inference~Vocabulary+Grammar+Working_memory ToM~Vocabulary+Grammar+Working_memory Spelling~Working_memory Sentence_copying~Working_memory Discourse~Inference+ToM+Vocabulary+Grammar+Working_memory Writing~Spelling+Sentence_copying+Discourse' my.sa <-sa.aco(model = model, sens.model = sens.model, sample.cov = sample.cov, sample.nobs = 193, k = 50, max.value= 2000, max.iter = 100, opt.fun = 4, paths = paths, seed = 1, verbose = FALSE) my.table <- sens.tables(my.sa) my.table[[1]] my.table[[2]] my.table[[3]] my.table[[4]] my.table[[5]]
test_that("as.data.frame with src_yaml", { expect_equal(as.data.frame(supreme(src_yaml(example_yaml()))), structure( list( name = c( "server", "customers_tab_module_server", "items_tab_module_server", "transactions_tab_module_server", "module_modal_dialog" ), input = list( NA_character_, "customers_list", c("items_list", "is_fired"), c("table", "button_clicked"), "text" ), output = list( NA_character_, c("paid_customers_table", "free_customers_table"), NA_character_, "transactions_table", NA_character_ ), return = structure(c(NA, NA, NA, "transactions_keys", NA), class = "AsIs"), calling_modules = structure( list( list( list(items_tab_module_server = "ItemsTab"), list(customers_tab_module_server = "CustomersTab"), list(transactions_tab_module_server = "TransactionsTab") ), NA_character_, list(list(module_modal_dialog = NULL)), NA_character_, NA_character_ ), class = "AsIs" ), src = c( "app.R", "module-customers.R", "module-items.R", "module-transactions.R", "module-utils.R" ) ), row.names = c(NA,-5L), class = "data.frame" )) model <- " - name: childModuleA input: [input.data, reactive] calling_modules: - grandChildModule1: ~ - name: grandChildModule1 input: selected.model " obj <- supreme(src_yaml(text = model)) expect_equal(as.data.frame(obj), structure( list( name = c("childModuleA", "grandChildModule1"), input = structure(list( c("input.data", "reactive"), "selected.model" ), class = "AsIs"), output = structure(c(NA_character_, NA_character_), class = "AsIs"), return = structure(c(NA_character_, NA_character_), class = "AsIs"), calling_modules = structure(list(list( list(grandChildModule1 = NULL) ), NA_character_), class = "AsIs"), src = c(NA_character_, NA_character_) ), row.names = c(NA,-2L), class = "data.frame" )) }) test_that("as.data.frame with src_file", { expect_equal(as.data.frame(supreme(src_file(example_app_path()))), structure( list( name = c( "server", "customers_tab_module_server", "items_tab_module_server", "transactions_tab_module_server", "module_modal_dialog" ), input = list( NA_character_, "customers_list", c("items_list", "is_fired"), c("table", "button_clicked"), "text" ), output = list( NA_character_, c("paid_customers_table", "free_customers_table"), NA_character_, "transactions_table", NA_character_ ), return = structure(c(NA, NA, NA, "transactions_keys", NA), class = "AsIs"), calling_modules = structure( list( list( list(items_tab_module_server = "ItemsTab"), list(customers_tab_module_server = "CustomersTab"), list(transactions_tab_module_server = "TransactionsTab") ), NA_character_, list(list(module_modal_dialog = NULL)), NA_character_, NA_character_ ), class = "AsIs" ), src = c( "app.R", "module-customers.R", "module-items.R", "module-transactions.R", "module-utils.R" ) ), row.names = c(NA,-5L), class = "data.frame" )) })
require(testthat) context("Test mccr") test_that("calc MCC value",{ set.seed(18) act <- abs(round(rnorm(100))) %% 2 pred <- abs(round(rnorm(100))) %% 2 score <- mccr(act, pred) score <- round(score, 1) expect_equal(0, 0) })
to_network <- function(x){ if (!requireNamespace("network", quietly = TRUE)) { stop("network package required to coerce data to 'network' type!", call. = FALSE) } UseMethod("to_network", x) } to_network.network <- function(x){ x } to_network.edgeList <- function(x){ if(num.edges(x) > 0){ adj <- as.matrix(get.adjacency.matrix(x)) network::as.network(adj, matrix.type = "adjacency") } else{ network::network.initialize(num.nodes(x)) } } to_network.graphNEL <- function(x){ to_network(to_edgeList(x)) } to_network.igraph <- function(x){ to_network(to_edgeList(x)) } to_network.bn <- function(x){ to_network(to_edgeList(x)) } to_network.sparsebnFit <- function(x){ x$edges <- to_network(x$edges) x } to_network.sparsebnPath <- function(x){ sparsebnPath(lapply(x, to_network)) } edgeList_to_network_edgelist <- function(el){ edgeList_to_igraph_edgelist(el) } to_edgeList.network <- function(x){ edgeList(network_to_edgeList_list(x)) } network_to_edgeList_list <- function(net){ net.edgelist <- network::as.edgelist(net) numnode <- network::network.size(net) edgelist_mat_to_edgeList_list(net.edgelist, numnode) }
print.criterionRkh <- function(x,...){ if (!inherits(x, "criterionRkh")) stop("use only with \"criterionRkh\" objects") cat("Trace criterion estimated by boostrap", "\n") cat(" \n") cat(paste("Reduction method performed:", x$method),"\n") cat(paste("Number of observations:", x$n),"\n") cat(" \n") cat("Value of K tried:") cat(" \n") cat(x$K) cat(" \n") cat("Value of H tried:") cat(" \n") cat(x$H) cat(" \n") cat(" \n") cat("Result of the bootsrap estimate of the trace criterion R(k,h) \n" ) tmp <- x$Rkhbootmean row.names(tmp) <- x$H colnames(tmp) <- x$K cat("\n") prmatrix(signif(tmp,3)) cat("\n") }
cat("this will be hidden; use for general initializations.\n") library(superb) library(ggplot2) options(superb.feedback = 'none') superb:::is.superbPlot.function("superbPlot.line") testdata <- GRD( RenameDV = "score", SubjectsPerGroup = 25, BSFactors = "Difficulty(3)", WSFactors = "Day(day1, day2)", Population = list(mean = 65,stddev = 12,rho = 0.5), Effects = list("Day" = slope(-5), "Difficulty" = slope(3) ) ) head(testdata) mp <- function(data, style, ...) { superbPlot(data, WSFactors = "Day(2)", BSFactors = "Difficulty", variables = c("score.day1", "score.day2"), adjustments = list(purpose="difference", decorrelation="CM"), plotStyle = style, ... )+labs(title = paste("Layout is ''",style,"''",sep="")) } p1 <- mp(testdata, "bar") p2 <- mp(testdata, "point") p3 <- mp(testdata, "line") p4 <- mp(testdata, "pointjitter" ) p5 <- mp(testdata, "pointjitterviolin") p6 <- mp(testdata, "pointindividualline") library(gridExtra) grid.arrange(p1,p2,p3,p4,p5,p6,ncol=2) mp(testdata, "raincloud") + coord_flip() ornate = list( scale_colour_manual( name = "Difference", labels = c("Easy", "Hard", "Unthinkable"), values = c("blue", "black", "purple")) , scale_fill_manual( name = "Difference", labels = c("Easy", "Hard", "Unthinkable"), values = c("blue", "black", "purple")) , scale_shape_manual( name = "Difference", labels = c("Easy", "Hard", "Unthinkable") , values = c(0, 10, 13)) , theme_bw(base_size = 9) , labs(x = "Days of test", y = "Score in points" ), scale_x_discrete(labels=c("1" = "Former day", "2" = "Latter day")) ) library(gridExtra) grid.arrange( p1+ornate, p2+ornate, p3+ornate, p4+ornate, p5+ornate, p6+ornate, ncol=2) superbPlot.foo <- function( summarydata, xfactor, groupingfactor, addfactors, rawdata ) { plot <- ggplot() return(plot) } superbPlot.simple <- function( summarydata, xfactor, groupingfactor, addfactors, rawdata ) { plot <- ggplot( data = summarydata, mapping = aes_string( x = xfactor, y = "center", group= groupingfactor) ) + geom_point( ) + geom_errorbar( mapping = aes_string(ymin = "center + lowerwidth", ymax = "center + upperwidth") )+ facet_grid( addfactors ) return(plot) } superbPlot(TMB1964r, WSFactors = "T(7)", BSFactors = "Condition", variables = c("T1","T2","T3","T4","T5","T6","T7"), plotStyle = "simple" ) superbPlot.simple <- function( summarydata, xfactor, groupingfactor, addfactors, rawdata ) { plot <- ggplot( data = summarydata, mapping = aes_string( x = xfactor, y = "center", group=groupingfactor) ) + geom_point( ) + geom_errorbar( mapping = aes_string(ymin = "center + lowerwidth", ymax = "center + upperwidth") )+ facet_grid( addfactors ) return(plot) } superb:::is.superbPlot.function("superbPlot.simple") superbPlot(TMB1964r, WSFactors = "T(7)", BSFactors = "Condition", variables = c("T1","T2","T3","T4","T5","T6","T7"), plotStyle = "simple" ) superbPlot.simpleWithOptions <- function( summarydata, xfactor, groupingfactor, addfactors, rawdata, myownParams = list() ) { plot <- ggplot( data = summarydata, mapping = aes_string( x = xfactor, y = "center", group="Condition") ) + do.call( geom_point, modifyList( list( color ="black" ), myownParams )) + do.call( geom_errorbar, modifyList( list( mapping = aes_string(ymin = "center + lowerwidth", ymax = "center + upperwidth") ), myownParams )) + facet_grid( addfactors ) return(plot) } superb:::is.superbPlot.function("superbPlot.simpleWithOptions") superbPlot.empty <- function( summarydata, xfactor, groupingfactor, addfactors, rawdata ) { runDebug( 'inempty', "Dumping the two dataframes", c("summary","raw"), list(summarydata, rawdata)) plot <- ggplot() return(plot) } options(superb.feedback = 'inempty') superbPlot(TMB1964r, WSFactors = "T(7)", BSFactors = "Condition", variables = c("T1","T2","T3","T4","T5","T6","T7"), plotStyle = "empty" ) superbPlot.simple(summary, "T", "Condition", ".~.", raw) library(emojifont) superbPlot.smiley <- function( summarydata, xfactor, groupingfactor, addfactors, rawdata ) { plot <- ggplot( data = summarydata, mapping = aes_string( x = xfactor, y = "center", fill = groupingfactor, shape = groupingfactor, colour = groupingfactor) ) + geom_point(position = position_dodge(width = .95)) + geom_errorbar( width = .6, position = position_dodge(.95), mapping = aes_string(ymin = "center + lowerwidth", ymax = "center + upperwidth") )+ geom_text(data = rawdata, position = position_jitter(0.5), family="EmojiOne", label=emoji("smile"), size=6, mapping=aes_string(x=xfactor, y="DV", group = groupingfactor) ) + facet_grid( addfactors ) return(plot) } superb:::is.superbPlot.function("superbPlot.smiley") superbPlot(TMB1964r, WSFactors = "T(7)", BSFactors = "Condition", variables = c("T1","T2","T3","T4","T5","T6","T7"), plotStyle = "smiley" )
credInt<-function(theta, cdf = NULL, conf = 0.95, type="twosided"){ if(conf <=0 | conf >=1) stop("conf must be between 0 and 1") if(length(grep('^[Ll]',type))>0){ type<-'lower' }else if(length(grep('^[Tt]',type))>0){ type<-'twosided' }else if(length(grep('^[Uu]',type))>0){ type<-'upper' }else{ stop("type must be one of lower, upper or twosided") } alpha<-1-conf n<-length(theta) if(n<10) stop("theta must have at least ten values") if(!is.null(cdf)){ suppressWarnings(Finv<-approxfun(cdf, theta)) if(type=='lower'){ lower.bound = Finv(alpha) cat(paste("Lower credible bound is : ", lower.bound, "\n",sep="")) invisible(list(lower.bound=lower.bound)) }else if(type=='upper'){ upper.bound<-Finv(1-alpha) cat(paste("Upper credible bound is : ", upper.bound, "\n",sep="")) invisible(list(upper.bound=upper.bound)) }else{ lower.bound = Finv(alpha/2) upper.bound<-Finv(1-alpha/2) cat(paste("Credible interval is : (", lower.bound, ",", upper.bound,")\n",sep="")) invisible(list(lower.bound=lower.bound,upper.bound=upper.bound)) } }else{ if(type=='lower'){ lower.bound <- quantile(theta, alpha) cat(paste("Lower credible bound is ", lower.bound, "\n", sep="")) invisible(list(lower.bound=lower.bound)) }else if(type=='upper'){ upper.bound <- quantile(theta, 1-alpha) cat(paste("Upper credible bound is ", upper.bound, "\n", sep="")) invisible(list(upper.bound=upper.bound)) }else{ bounds<-quantile(theta, c(alpha/2,1-alpha/2)) lower.bound <-bounds[1] upper.bound <-bounds[2] cat(paste("Credible interval is (", lower.bound, ',', upper.bound,")\n", sep="")) invisible(list(lower.bound=lower.bound,upper.bound=upper.bound)) } } }
library(Hapi) library(HMM) data(gmt) rownames(gmt) <- gmt$pos head(gmt) hapOutput <- hapiAutoPhase(gmt = gmt, code = 'atcg') head(hapOutput) hetDa <- gmt[,1:4] ref <- hetDa$ref alt <- hetDa$alt gmtDa <- gmt[,-(1:4)] gmtDa <- base2num(gmt = gmtDa, ref = ref, alt = alt) head(gmtDa) hmm = initHMM(States=c("S","D"), Symbols=c("s","d"), transProbs=matrix(c(0.99999,0.00001,0.00001,0.99999),2), emissionProbs=matrix(c(0.99,0.01,0.01,0.99),2), startProbs = c(0.5,0.5)) hmm gmtDa <- hapiFilterError(gmt = gmtDa, hmm = hmm) gmtFrame <- hapiFrameSelection(gmt = gmtDa, n = 3) imputedFrame <- hapiImupte(gmt = gmtFrame, nSPT = 2, allowNA = 0) head(imputedFrame) draftHap <- hapiPhase(gmt = imputedFrame) head(draftHap) draftHap[draftHap$cvlink>=1,] cvCluster <- hapiCVCluster(draftHap = draftHap, cvlink = 2) cvCluster filter <- c() for (i in 1:nrow(cvCluster)) { filter <- c(filter, which (rownames(draftHap) >= cvCluster$left[i] & rownames(draftHap) <= cvCluster$right[i])) } length(filter) if (length(filter) > 0) { imputedFrame <- imputedFrame[-filter, ] draftHap <- hapiPhase(imputedFrame) } finalDraft <- hapiBlockMPR(draftHap = draftHap, gmtFrame = gmtFrame, cvlink = 1) head(finalDraft) consensusHap <- hapiAssemble(draftHap = finalDraft, gmt = gmtDa) head(consensusHap) consensusHap <- hapiAssembleEnd(gmt = gmtDa, draftHap = finalDraft, consensusHap = consensusHap, k = 300) hap1 <- sum(consensusHap$hap1==0) hap2 <- sum(consensusHap$hap1==1) hap7 <- sum(consensusHap$hap1==7) max(hap1, hap2)/sum(hap1, hap2) snp <- which(rownames(hetDa) %in% rownames(consensusHap)) ref <- hetDa$ref[snp] alt <- hetDa$alt[snp] consensusHap <- num2base(hap = consensusHap, ref = ref, alt = alt) head(consensusHap) hapOutput <- data.frame(gmt[snp,], consensusHap) head(hapOutput) data(gamete11) head(gamete11) data(hg19) head(hg19) hap <- hapOutput[,10:11] head(hap) gmt <- hapOutput[,5:9] head(gmt) cvOutput <- hapiIdentifyCV(hap = hap, gmt = gmt) cvOutput sessionInfo()
weight_cause_cox <- function(data, time, time2 = NULL, Event.var, Event, weight.type, ties = NULL){ Event. <- ifelse(data[,Event.var]==Event,1,0) if(is.null(time2)){ s1 <- Surv(time = data[,time], event = Event.) }else{ s1 <- Surv(time = data[,time], time2 = data[,time2], event = Event.) } if(weight.type=="Unstabilized"){ if(is.null(ties)){ fit1 <- coxph(s1 ~ data[,"Trt"], weights = data[,"ipw_ate_unstab"]) }else{ fit1 <- coxph(s1 ~ data[,"Trt"], weights = data[,"ipw_ate_unstab"],ties = ties) } }else if(weight.type=="Stabilized"){ if(is.null(ties)){ fit1 <- coxph(s1 ~ data[,"Trt"], weights = data[,"ipw_ate_stab"]) }else{ fit1 <- coxph(s1 ~ data[,"Trt"], weights = data[,"ipw_ate_stab"],ties = ties) } }else{ stop("Weights type misspecified") } sand_var <- as.numeric(sandwich(fit1)) out <- summary(fit1)$coefficients[, c(1, 4, 5, 6), drop = FALSE] out[,2] <- sqrt(sand_var) out[,3] <- out[,1]/out[,2] out[,4] <- 2 * pnorm(abs(out[,3]),lower.tail=FALSE) CIs <- summary(fit1)$conf.int[, c(1, 3:4), drop = FALSE] CIs[, 1] <- paste('$',round(CIs[,1],3),'$',sep = "") CIs[, 2] <- paste('($', round(exp(as.numeric(out[,1] - qnorm(0.975) * out[,2])),3), '$, $', round(exp(as.numeric(out[,1] + qnorm(0.975) * out[,2])),3), '$)', sep = '') out <- cbind(out, CIs[, 1:2, drop = FALSE]) out[, 1:3] <- paste('$', round(as.numeric(out[, 1:3]),3), '$', sep = '') out[, 4] <- pvalFormat(out[, 4]) colnames(out) <- c('Estimate', 'Robust SE', 'z-value', 'p-value', 'Hazard Ratio', '95\\% CI') rownames(out) <- levels(data[,"Trt"])[2] return(out) }
logAdd <- function(lx, ly) { max(lx, ly) + log1p(exp(-abs(lx - ly))) } mstepMisreport <- function(y, x.misreport, w, treat, misreport.treatment, weight) { lrep <- rep(c(1, 0), each = length(y)) if(misreport.treatment == TRUE) { xrep <- as.matrix(rbind(cbind(x.misreport, treat), cbind(x.misreport, treat))) } else if(misreport.treatment == FALSE) { xrep <- as.matrix(rbind(x.misreport, x.misreport)) } wrep <- c(w[, 1] + log(weight), w[, 2] + log(weight)) lrep <- lrep[wrep > -Inf] xrep <- xrep[wrep > -Inf, , drop = FALSE] wrep <- wrep[wrep > -Inf] X <- xrep if(ncol(X) == 1) { fit.misreport <- glm(cbind(lrep, 1 - lrep) ~ 1, weights = exp(wrep), family = binomial) } else if(ncol(X) > 1) { fit.misreport <- glm(cbind(lrep, 1 - lrep) ~ -1 + X, weights = exp(wrep), family = binomial) } coefs <- coef(fit.misreport) names(coefs) <- gsub("^X1|^X2|^X3|^X", "", names(coefs)) return(coefs) } mstepSensitive <- function(y, treat, x.sensitive, w, d, sensitive.response, weight, model.misreport) { if(model.misreport == TRUE) { zrep <- rep(c(sensitive.response, abs(1 - sensitive.response)), each = length(y)) xrep <- as.matrix(rbind(x.sensitive, x.sensitive)) wrep <- c(apply(w[, 1:2], 1, function(x) logAdd(x[1], x[2])) + log(weight), w[, 3] + log(weight)) zrep <- zrep[wrep > -Inf] xrep <- xrep[wrep > -Inf, , drop = FALSE] wrep <- wrep[wrep > -Inf] X <- xrep if(ncol(X) == 1) fit <- glm(cbind(zrep, 1 - zrep) ~ 1, weights = exp(wrep), family = binomial) if(ncol(X) > 1) fit <- glm(cbind(zrep, 1 - zrep) ~ -1 + X, weights = exp(wrep), family = binomial) coefs <- coef(fit) } else { zrep <- rep(c(1, 0), each = length(y)) xrep <- as.matrix(rbind(x.sensitive, x.sensitive)) wrep <- c(w[, 1] + log(weight), w[, 2] + log(weight)) zrep <- zrep[wrep > -Inf] xrep <- xrep[wrep > -Inf, , drop = FALSE] wrep <- wrep[wrep > -Inf] X <- xrep if(ncol(X) == 1) fit <- glm(cbind(zrep, 1 - zrep) ~ 1, weights = exp(wrep), family = binomial) if(ncol(X) > 1) fit <- glm(cbind(zrep, 1 - zrep) ~ -1 + X, weights = exp(wrep), family = binomial) coefs <- coef(fit) } names(coefs) <- gsub("^X1|^X2|^X3|^X", "", names(coefs)) return(coefs) } mstepControl <- function(y, treat, J, x.control, w, d, sensitive.response, weight, model.misreport, control.constraint) { if(model.misreport == TRUE) { if(control.constraint == "none") { yrep <- c((y - treat * as.numeric(sensitive.response == 1)), (y - treat * as.numeric(sensitive.response == 1)), (y - treat * as.numeric(sensitive.response == 0))) xrep <- as.matrix(rbind(x.control, x.control, x.control)) zrep1 <- rep(c(1, 0, 0), each = length(y)) zrep2 <- rep(c(sensitive.response, sensitive.response, 1 - sensitive.response), each = length(y)) wrep <- c(w[, 1] + log(weight), w[, 2] + log(weight), w[, 3] + log(weight)) yrep <- yrep[wrep > -Inf] xrep <- xrep[wrep > -Inf, , drop = FALSE] zrep1 <- zrep1[wrep > -Inf] zrep2 <- zrep2[wrep > -Inf] wrep <- wrep[wrep > -Inf] X <- cbind(xrep, U = zrep1, Z = zrep2) control.fit <- glm(cbind(yrep, J - yrep) ~ -1 + X, weights = exp(wrep), family = binomial) coefs <- coef(control.fit) } else if(control.constraint == "partial") { yrep <- c((y - treat * as.numeric(sensitive.response == 1)), (y - treat * as.numeric(sensitive.response == 0))) xrep <- as.matrix(rbind(x.control, x.control)) zrep1 <- rep(c(sensitive.response, 1 - sensitive.response), each = length(y)) wrep <- c(apply(w[, 1:2], 1, function(x) logAdd(x[1], x[2])) + log(weight), w[, 3] + log(weight)) yrep <- yrep[wrep > -Inf] xrep <- xrep[wrep > -Inf, , drop = FALSE] zrep1 <- zrep1[wrep > -Inf] wrep <- wrep[wrep > -Inf] X <- cbind(xrep, Z = zrep1) control.fit <- glm(cbind(yrep, J - yrep) ~ -1 + X, weights = exp(wrep), family = binomial) coefs <- coef(control.fit) } else if(control.constraint == "full") { yrep <- c((y - treat * as.numeric(sensitive.response == 1)), (y - treat * as.numeric(sensitive.response == 0))) xrep <- as.matrix(rbind(x.control, x.control)) wrep <- c(apply(w[, 1:2], 1, function(x) logAdd(x[1], x[2])) + log(weight), w[, 3] + log(weight)) yrep <- yrep[wrep > -Inf] xrep <- xrep[wrep > -Inf, , drop = FALSE] wrep <- wrep[wrep > -Inf] X <- xrep if(ncol(X) == 1) control.fit <- glm(cbind(yrep, J - yrep) ~ 1 , weights = exp(wrep), family = binomial) if(ncol(X) > 1) control.fit <- glm(cbind(yrep, J - yrep) ~ -1 + X, weights = exp(wrep), family = binomial) coefs <- coef(control.fit) } } else { yrep <- c(y - treat, y) xrep <- as.matrix(rbind(x.control, x.control)) zrep1 <- rep(c(1, 0), each = length(y)) zrep2 <- rep(c(0, 1), each = length(y)) wrep <- c(w[, 1] + log(weight), w[, 2] + log(weight)) yrep <- yrep[wrep > -Inf] xrep <- xrep[wrep > -Inf, , drop = FALSE] zrep1 <- zrep1[wrep > -Inf] zrep2 <- zrep2[wrep > -Inf] wrep <- wrep[wrep > -Inf] if(control.constraint == "none") { X <- cbind(xrep, Z = zrep1) fit.partial <- glm(cbind(yrep, J - yrep) ~ -1 + X, weights = exp(wrep), family = binomial) coefs <- c(coef(fit.partial)) } if(control.constraint == "full") { X <- xrep if(ncol(X) == 1) fit.full <- glm(cbind(yrep, J - yrep) ~ 1 , weights = exp(wrep), family = binomial) if(ncol(X) > 1) fit.full <- glm(cbind(yrep, J - yrep) ~ -1 + X, weights = exp(wrep), family = binomial) coefs <- c(coef(fit.full)) } } names(coefs) <- gsub("^X1|^X2|^X3|^X", "", names(coefs)) names(coefs)[names(coefs) == "(Intercept):1"] <- "(Intercept)" return(coefs) } mstepOutcome <- function(y, treat, x.outcome, w, d, sensitive.response, o, trials, weight, outcome.model, model.misreport, outcome.constrained, control.constraint) { coefs.aux <- NULL if(outcome.constrained == TRUE) { if(model.misreport == TRUE) { xrep <- as.matrix(rbind(x.outcome, x.outcome)) zrep <- rep(c(1, 0), each = length(y)) orep <- as.matrix(c(o, o)) trialsrep <- as.matrix(c(trials, trials)) wrep <- c(apply(w[, 1:2], 1, function(x) logAdd(x[1], x[2])) + log(weight), w[, 3] + log(weight)) } else { xrep <- as.matrix(rbind(x.outcome, x.outcome)) zrep <- rep(c(1, 0), each = length(y)) orep <- as.matrix(c(o, o)) trialsrep <- as.matrix(c(trials, trials)) wrep <- c(w[, 1] + log(weight), w[, 2] + log(weight)) } xrep <- xrep[wrep > -Inf, , drop = FALSE] zrep <- zrep[wrep > -Inf] orep <- orep[wrep > -Inf] trialsrep <- trialsrep[wrep > -Inf] wrep <- wrep[wrep > -Inf] X <- cbind(xrep, Z = zrep)[, -1, drop = FALSE] if(outcome.model == "logistic") { fit.constrained.logistic <- glm(cbind(orep, 1 - orep) ~ 1 + X, weights = exp(wrep), family = binomial) coefs <- coef(fit.constrained.logistic) } else if(outcome.model == "binomial") { fit.constrained.binomial <- glm(cbind(orep, trialsrep - orep) ~ 1 + X, family = binomial, weights = exp(wrep)) coefs <- coef(fit.constrained.binomial) } else if(outcome.model == "betabinomial") { fit.constrained.betabinomial <- VGAM::vglm(cbind(orep, trialsrep - orep) ~ 1 + X, VGAM::betabinomial, weights = exp(wrep)) coefs <- coef(fit.constrained.betabinomial)[-2] coefs.aux <- c(rho = mean(fit.constrained.betabinomial@misc$rho)) } } else if(outcome.constrained == FALSE) { if(model.misreport == TRUE) { xrep <- as.matrix(rbind(x.outcome, x.outcome, x.outcome)) zrep1 <- rep(c(1, 0, 0), each = length(y)) zrep2 <- rep(c(1, 1, 0), each = length(y)) orep <- as.matrix(c(o, o, o)) trialsrep <- as.matrix(c(trials, trials, trials)) wrep <- c(w[, 1] + log(weight), w[, 2] + log(weight), w[, 3] + log(weight)) } else { stop("\noutcome.constrained = TRUE is only possible when a direct question is included.") } xrep <- xrep[wrep > -Inf, , drop = FALSE] zrep1 <- zrep1[wrep > -Inf] zrep2 <- zrep2[wrep > -Inf] orep <- orep[wrep > -Inf] trialsrep <- trials[wrep > -Inf] wrep <- wrep[wrep > -Inf] X <- cbind(xrep, U = zrep1, Z = zrep2)[, -1, drop = FALSE] if(outcome.model == "logistic") { fit.unconstrained.logitistic <- glm(cbind(orep, 1 - orep) ~ 1 + X, weights = log(wrep), family = binomial) coefs <- coef(fit.unconstrained.logitistic) } else if(outcome.model == "binomial") { fit.unconstrained.binomial <- glm(cbind(orep, trialsrep - orep) ~ 1 + X, family = binomial, weights = log(wrep)) coefs <- coef(fit.unconstrained.binomial) } else if(outcome.model == "betabinomial") { fit.constrained.betabinomial <- VGAM::vglm(cbind(orep, trialsrep - orep) ~ 1 + X, VGAM::betabinomial, weights = log(wrep)) coefs <- coef(fit.constrained.betabinomial)[-2] coefs.aux <- c(rho = mean(fit.constrained.betabinomial@misc$rho)) } } names(coefs) <- gsub("^X", "", names(coefs)) names(coefs)[names(coefs) == ""] <- "Z" names(coefs)[names(coefs) == "(Intercept):1"] <- "(Intercept)" return(list(coefs = coefs, coefs.aux = coefs.aux)) } estep <- function(y, w, x.control, x.sensitive, x.outcome, x.misreport, treat, J, par.sensitive, par.control, par.outcome, par.outcome.aux, par.misreport, d, sensitive.response, model.misreport, o, trials, outcome.model, weight, outcome.constrained, control.constraint, respondentType, misreport.treatment) { log.lik <- rep(as.numeric(NA), length(y)) if(model.misreport == TRUE) { if(control.constraint == "none") { hX.misreport.sensitive <- plogis(cbind(x.control, 1, sensitive.response) %*% par.control, log.p = TRUE) hX.truthful.sensitive <- plogis(cbind(x.control, 0, sensitive.response) %*% par.control, log.p = TRUE) hX.truthful.nonsensitive <- plogis(cbind(x.control, 0, 1 - sensitive.response) %*% par.control, log.p = TRUE) } if(control.constraint == "partial") { hX.misreport.sensitive <- plogis(cbind(x.control, sensitive.response) %*% par.control, log.p = TRUE) hX.truthful.sensitive <- plogis(cbind(x.control, sensitive.response) %*% par.control, log.p = TRUE) hX.truthful.nonsensitive <- plogis(cbind(x.control, 1 - sensitive.response) %*% par.control, log.p = TRUE) } if(control.constraint == "full") { hX.misreport.sensitive <- plogis(x.control %*% par.control, log.p = TRUE) hX.truthful.sensitive <- plogis(x.control %*% par.control, log.p = TRUE) hX.truthful.nonsensitive <- plogis(x.control %*% par.control, log.p = TRUE) } hX.misreport.sensitive <- dbinom((y - treat * as.numeric(sensitive.response == 1)), size = J, prob = exp(hX.misreport.sensitive), log = TRUE) hX.truthful.sensitive <- dbinom((y - treat * as.numeric(sensitive.response == 1)), size = J, prob = exp(hX.truthful.sensitive), log = TRUE) hX.truthful.nonsensitive <- dbinom((y - treat * as.numeric(sensitive.response == 0)), size = J, prob = exp(hX.truthful.nonsensitive), log = TRUE) if(outcome.model != "none") { if(outcome.constrained == TRUE) { if(outcome.model %in% c("logistic", "binomial", "betabinomial")) { fX.misreport.sensitive <- plogis(cbind(x.outcome, 1) %*% par.outcome, log.p = TRUE) fX.truthful.sensitive <- plogis(cbind(x.outcome, 1) %*% par.outcome, log.p = TRUE) fX.truthful.nonsensitive <- plogis(cbind(x.outcome, 0) %*% par.outcome, log.p = TRUE) } } else { if(outcome.model %in% c("logistic", "binomial", "betabinomial")) { fX.misreport.sensitive <- plogis(cbind(x.outcome, 1, 1) %*% par.outcome, log.p = TRUE) fX.truthful.sensitive <- plogis(cbind(x.outcome, 0, 1) %*% par.outcome, log.p = TRUE) fX.truthful.nonsensitive <- plogis(cbind(x.outcome, 0, 0) %*% par.outcome, log.p = TRUE) } } } else { fX.misreport.sensitive <- rep(0, length(y)) fX.truthful.sensitive <- rep(0, length(y)) fX.truthful.nonsensitive <- rep(0, length(y)) } if(outcome.model == "logistic") { fX.misreport.sensitive <- dbinom(o, size = 1, prob = exp(fX.misreport.sensitive), log = TRUE) fX.truthful.sensitive <- dbinom(o, size = 1, prob = exp(fX.truthful.sensitive), log = TRUE) fX.truthful.nonsensitive <- dbinom(o, size = 1, prob = exp(fX.truthful.nonsensitive), log = TRUE) } else if(outcome.model == "binomial") { fX.misreport.sensitive <- dbinom(o, size = trials, prob = exp(fX.misreport.sensitive), log = TRUE) fX.truthful.sensitive <- dbinom(o, size = trials, prob = exp(fX.truthful.sensitive), log = TRUE) fX.truthful.nonsensitive <- dbinom(o, size = trials, prob = exp(fX.truthful.nonsensitive), log = TRUE) } else if(outcome.model == "betabinomial") { fX.misreport.sensitive <- VGAM::dbetabinom(o, size = trials, prob = exp(fX.misreport.sensitive), rho = par.outcome.aux["rho"], log = TRUE) fX.truthful.sensitive <- VGAM::dbetabinom(o, size = trials, prob = exp(fX.truthful.sensitive), rho = par.outcome.aux["rho"], log = TRUE) fX.truthful.nonsensitive <- VGAM::dbetabinom(o, size = trials, prob = exp(fX.truthful.nonsensitive), rho = par.outcome.aux["rho"], log = TRUE) } if(sensitive.response == 1) { gX.misreport.sensitive <- plogis(x.sensitive %*% par.sensitive, log.p = TRUE) gX.truthful.sensitive <- plogis(x.sensitive %*% par.sensitive, log.p = TRUE) gX.truthful.nonsensitive <- log1p(-exp(plogis(x.sensitive %*% par.sensitive, log.p = TRUE))) } else { gX.misreport.sensitive <- log1p(-exp(plogis(x.sensitive %*% par.sensitive, log.p = TRUE))) gX.truthful.sensitive <- log1p(-exp(plogis(x.sensitive %*% par.sensitive, log.p = TRUE))) gX.truthful.nonsensitive <- plogis(x.sensitive %*% par.sensitive, log.p = TRUE) } if(misreport.treatment == TRUE) { lX.misreport.sensitive <- plogis(cbind(x.misreport, treat) %*% par.misreport, log.p = TRUE) lX.truthful.sensitive <- log1p(-exp(plogis(cbind(x.misreport, treat) %*% par.misreport, log.p = TRUE))) lX.truthful.nonsensitive <- log(rep(1, length(y))) } else { lX.misreport.sensitive <- plogis(x.misreport %*% par.misreport, log.p = TRUE) lX.truthful.sensitive <- log1p(-exp(plogis(x.misreport %*% par.misreport, log.p = TRUE))) lX.truthful.nonsensitive <- log(rep(1, length(y))) } w[, 1] <- lX.misreport.sensitive + gX.misreport.sensitive + hX.misreport.sensitive + fX.misreport.sensitive w[, 2] <- lX.truthful.sensitive + gX.truthful.sensitive + hX.truthful.sensitive + fX.truthful.sensitive w[, 3] <- lX.truthful.nonsensitive + gX.truthful.nonsensitive + hX.truthful.nonsensitive + fX.truthful.nonsensitive w[respondentType == "Misreport sensitive", 1] <- log(1) w[respondentType == "Misreport sensitive", 2] <- log(0) w[respondentType == "Misreport sensitive", 3] <- log(0) w[respondentType == "Truthful sensitive", 1] <- log(0) w[respondentType == "Truthful sensitive", 2] <- log(1) w[respondentType == "Truthful sensitive", 3] <- log(0) w[respondentType == "Non-sensitive", 1] <- log(0) w[respondentType == "Non-sensitive", 2] <- log(0) w[respondentType == "Non-sensitive", 3] <- log(1) w[respondentType == "Non-sensitive or misreport sensitive", 2] <- log(0) denominator <- apply(w, 1, function(x) logAdd(logAdd(x[1], x[2]), x[3])) w[, 1] <- w[, 1] - denominator w[, 2] <- w[, 2] - denominator w[, 3] <- w[, 3] - denominator w[respondentType == "Misreport sensitive", 1] <- log(1) w[respondentType == "Misreport sensitive", 2] <- log(0) w[respondentType == "Misreport sensitive", 3] <- log(0) w[respondentType == "Truthful sensitive", 1] <- log(0) w[respondentType == "Truthful sensitive", 2] <- log(1) w[respondentType == "Truthful sensitive", 3] <- log(0) w[respondentType == "Non-sensitive", 1] <- log(0) w[respondentType == "Non-sensitive", 2] <- log(0) w[respondentType == "Non-sensitive", 3] <- log(1) w[respondentType == "Non-sensitive or misreport sensitive", 2] <- log(0) log.lik[respondentType == "Non-sensitive or misreport sensitive"] <- apply(data.frame(lX.truthful.nonsensitive[respondentType == "Non-sensitive or misreport sensitive"] + gX.truthful.nonsensitive[respondentType == "Non-sensitive or misreport sensitive"] + hX.truthful.nonsensitive[respondentType == "Non-sensitive or misreport sensitive"] + fX.truthful.nonsensitive[respondentType == "Non-sensitive or misreport sensitive"], lX.misreport.sensitive[respondentType == "Non-sensitive or misreport sensitive"] + gX.misreport.sensitive[respondentType == "Non-sensitive or misreport sensitive"] + hX.misreport.sensitive[respondentType == "Non-sensitive or misreport sensitive"] + fX.misreport.sensitive[respondentType == "Non-sensitive or misreport sensitive"]), 1, function(x) logAdd(x[1], x[2])) log.lik[respondentType == "Truthful sensitive"] <- lX.truthful.sensitive[respondentType == "Truthful sensitive"] + gX.truthful.sensitive[respondentType == "Truthful sensitive"] + hX.truthful.sensitive[respondentType == "Truthful sensitive"] + fX.truthful.sensitive[respondentType == "Truthful sensitive"] log.lik[respondentType == "Non-sensitive"] <- lX.truthful.nonsensitive[respondentType == "Non-sensitive"] + gX.truthful.nonsensitive[respondentType == "Non-sensitive"] + hX.truthful.nonsensitive[respondentType == "Non-sensitive"] + fX.truthful.nonsensitive[respondentType == "Non-sensitive"] log.lik[respondentType == "Misreport sensitive"] <- lX.misreport.sensitive[respondentType == "Misreport sensitive"] + gX.misreport.sensitive[respondentType == "Misreport sensitive"] + hX.misreport.sensitive[respondentType == "Misreport sensitive"] + fX.misreport.sensitive[respondentType == "Misreport sensitive"] } if(model.misreport == FALSE) { if(control.constraint == "none") { hX.1 <- plogis(cbind(x.control, 1) %*% par.control) hX.0 <- plogis(cbind(x.control, 0) %*% par.control) } if(control.constraint == "full") { hX.1 <- plogis(x.control %*% par.control) hX.0 <- plogis(x.control %*% par.control) } hX.1 <- dbinom((y - treat), size = J, prob = hX.1, log = TRUE) hX.0 <- dbinom(y, size = J, prob = hX.0, log = TRUE) if(outcome.model %in% c("logistic", "binomial", "betabinomial")) { fX.1 <- plogis(cbind(x.outcome, 1) %*% par.outcome) fX.0 <- plogis(cbind(x.outcome, 0) %*% par.outcome) } else { fX.1 <- rep(0, length(y)) fX.0 <- rep(0, length(y)) } if(outcome.model == "logistic") { fX.1 <- dbinom(o, size = 1, prob = fX.1, log = TRUE) fX.0 <- dbinom(o, size = 1, prob = fX.0, log = TRUE) } else if(outcome.model == "binomial") { fX.1 <- dbinom(o, size = trials, prob = fX.1, log = TRUE) fX.0 <- dbinom(o, size = trials, prob = fX.0, log = TRUE) } else if(outcome.model == "betabinomial") { fX.1 <- VGAM::dbetabinom(o, size = trials, prob = fX.1, rho = par.outcome.aux["rho"], log = TRUE) fX.0 <- VGAM::dbetabinom(o, size = trials, prob = fX.0, rho = par.outcome.aux["rho"], log = TRUE) } gX.1 <- plogis(x.sensitive %*% par.sensitive, log.p = TRUE) gX.0 <- log(1 - exp(gX.1)) w[, 1] <- gX.1 + hX.1 + fX.1 w[, 2] <- gX.0 + hX.0 + fX.0 w[respondentType == "1", 1] <- log(1) w[respondentType == "1", 2] <- log(0) w[respondentType == "0", 1] <- log(0) w[respondentType == "0", 2] <- log(1) denominator <- apply(w, 1, function(x) logAdd(x[1], x[2])) w[, 1] <- w[, 1] - denominator w[, 2] <- w[, 2] - denominator w[respondentType == "1", 1] <- log(1) w[respondentType == "1", 2] <- log(0) w[respondentType == "0", 1] <- log(0) w[respondentType == "0", 2] <- log(1) log.lik[respondentType == "0"] <- gX.0[respondentType == "0"] + hX.0[respondentType == "0"] + fX.0[respondentType == "0"] log.lik[respondentType == "1"] <- gX.1[respondentType == "1"] + hX.1[respondentType == "1"] + fX.1[respondentType == "1"] log.lik[respondentType == "0 or 1"] <- apply(data.frame(gX.1[respondentType == "0 or 1"] + hX.1[respondentType == "0 or 1"] + fX.1[respondentType == "0 or 1"], gX.0[respondentType == "0 or 1"] + hX.0[respondentType == "0 or 1"] + fX.0[respondentType == "0 or 1"]), 1, function(x) logAdd(x[1], x[2])) log.lik[respondentType == "0 or 1"] <- log(exp(gX.1[respondentType == "0 or 1"] + hX.1[respondentType == "0 or 1"] + fX.1[respondentType == "0 or 1"]) + exp(gX.0[respondentType == "0 or 1"] + hX.0[respondentType == "0 or 1"] + fX.0[respondentType == "0 or 1"])) } return(list(w = w, ll = sum(weight * log.lik))) } listExperiment <- function(formula, data, treatment, J, direct = NULL, sensitive.response = NULL, outcome = NULL, outcome.trials = NULL, outcome.model = "logistic", outcome.constrained = TRUE, control.constraint = "none", misreport.treatment = TRUE, weights = NULL, se = TRUE, tolerance = 1E-8, max.iter = 10000, n.runs = 3, verbose = TRUE, get.data = FALSE, par.control = NULL, par.sensitive = NULL, par.misreport = NULL, par.outcome = NULL, par.outcome.aux = NULL, formula.control = NULL, formula.sensitive = NULL, formula.misreport = NULL, formula.outcome = NULL, get.boot = 0, ...) { function.call <- match.call(expand.dots = FALSE) if(missing(data)) data <- environment(formula) mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "na.action"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf$na.action <- "na.pass" mf[[1]] <- quote(model.frame) mt <- attr(eval(mf, parent.frame()), "terms") xlevels.formula <- .getXlevels(attr(eval(mf, parent.frame()), "terms"), eval(mf, parent.frame())) if(!is.null(formula.control)) { mf.control <- mf mf.control$formula <- formula.control xlevels.formula.control <- .getXlevels(attr(eval(mf.control, parent.frame()), "terms"), eval(mf.control, parent.frame())) mf.control <- eval(mf.control, parent.frame()) x.control <- model.matrix(attr(mf.control, "terms"), data = mf.control) } else { formula.control <- as.formula(mf$formula) xlevels.formula.control <- xlevels.formula mf.control <- eval(mf, parent.frame()) x.control <- model.matrix(attr(mf.control, "terms"), data = mf.control) } if(!is.null(formula.sensitive)) { mf.sensitive <- mf mf.sensitive$formula <- formula.sensitive xlevels.formula.sensitive <- .getXlevels(attr(eval(mf.sensitive, parent.frame()), "terms"), eval(mf.sensitive, parent.frame())) mf.sensitive <- eval(mf.sensitive, parent.frame()) x.sensitive <- model.matrix(attr(mf.sensitive, "terms"), data = mf.sensitive) } else { formula.sensitive <- as.formula(mf$formula) xlevels.formula.sensitive <- xlevels.formula mf.sensitive <- eval(mf, parent.frame()) x.sensitive <- model.matrix(attr(mf.sensitive, "terms"), data = mf.sensitive) } if(!is.null(formula.misreport)) { mf.misreport <- mf mf.misreport$formula <- formula.misreport xlevels.formula.misreport <- .getXlevels(attr(eval(mf.misreport, parent.frame()), "terms"), eval(mf.misreport, parent.frame())) mf.misreport <- eval(mf.misreport, parent.frame()) x.misreport <- model.matrix(attr(mf.misreport, "terms"), data = mf.misreport) } else { formula.misreport <- as.formula(mf$formula) xlevels.formula.misreport <- xlevels.formula mf.misreport <- eval(mf, parent.frame()) x.misreport <- model.matrix(attr(mf.misreport, "terms"), data = mf.misreport) } if(!is.null(formula.outcome)) { mf.outcome <- mf mf.outcome$formula <- formula.outcome xlevels.formula.outcome <- .getXlevels(attr(eval(mf.outcome, parent.frame()), "terms"), eval(mf.outcome, parent.frame())) mf.outcome <- eval(mf.outcome, parent.frame()) x.outcome <- model.matrix(attr(mf.outcome, "terms"), data = mf.outcome) } else { formula.outcome <- as.formula(mf$formula) xlevels.formula.outcome <- xlevels.formula mf.outcome <- eval(mf, parent.frame()) x.outcome <- model.matrix(attr(mf.outcome, "terms"), data = mf.outcome) } mf <- eval(mf, parent.frame()) y <- model.response(mf, type = "any") treat <- data[, paste(treatment)] xlevels <- c(xlevels.formula, xlevels.formula.control, xlevels.formula.sensitive, xlevels.formula.misreport, xlevels.formula.outcome) xlevels <- xlevels[-which(duplicated(xlevels))] x.control.na <- apply(x.control, 1, function(X) all(!is.na(X))) x.sensitive.na <- apply(x.sensitive, 1, function(X) all(!is.na(X))) x.misreport.na <- apply(x.misreport, 1, function(X) all(!is.na(X))) x.outcome.na <- apply(x.outcome, 1, function(X) all(!is.na(X))) y.na <- !is.na(y) treat.na <- !is.na(treat) if(!is.null(direct)) { d <- data[, paste(direct)] d.na <- !is.na(d) model.misreport <- TRUE } else { model.misreport <- FALSE d <- rep(NA, length(y)) d.na <- rep(TRUE, length(y)) } if(!is.null(outcome) & outcome.model %in% c("logistic")) { o <- data[, paste(outcome)] trials <- rep(NA, length(y)) o.na <- !is.na(o) } else if(!is.null(outcome) & outcome.model %in% c("binomial", "betabinomial")) { o <- data[, paste(outcome)] trials <- data[, paste(outcome.trials)] o.na <- !is.na(o) & !is.na(trials) } else { o <- rep(NA, length(y)) trials <- rep(NA, length(y)) o.na <- rep(TRUE, length(y)) outcome.model <- "none" } if(!is.null(weights)) { weight <- data[, paste(weights)] weight.na <- !is.na(weight) } else { weight <- rep(1, length(y)) weight.na <- !is.na(weight) } y <- y[y.na & x.control.na & x.sensitive.na & x.outcome.na & x.misreport.na & treat.na & d.na & weight.na] x.control <- as.matrix(x.control[y.na & x.control.na & x.sensitive.na & x.outcome.na & x.misreport.na & treat.na & d.na & weight.na, , drop = FALSE]) x.sensitive <- as.matrix(x.sensitive[y.na & x.control.na & x.sensitive.na & x.outcome.na & x.misreport.na & treat.na & d.na & weight.na, , drop = FALSE]) x.outcome <- as.matrix(x.outcome[y.na & x.control.na & x.sensitive.na & x.outcome.na & x.misreport.na & treat.na & d.na & weight.na, , drop = FALSE]) x.misreport <- as.matrix(x.misreport[y.na & x.control.na & x.sensitive.na & x.outcome.na & x.misreport.na & treat.na & d.na & weight.na, , drop = FALSE]) treat <- treat[y.na & x.control.na & x.sensitive.na & x.outcome.na & x.misreport.na & treat.na & d.na & weight.na] d <- d[y.na & x.control.na & x.sensitive.na & x.outcome.na & x.misreport.na & treat.na & d.na & weight.na] o <- o[y.na & x.control.na & x.sensitive.na & x.outcome.na & x.misreport.na & treat.na & d.na & weight.na] trials <- trials[y.na & x.control.na & x.sensitive.na & x.outcome.na & x.misreport.na & treat.na & d.na & weight.na] weight <- weight[y.na & x.control.na & x.sensitive.na & x.outcome.na & x.misreport.na & treat.na & d.na & weight.na] n <- nrow(x.control) if(get.boot > 0) { boot.sample <- sample(1:length(weight), prob = weight, replace = TRUE) y <- as.matrix(y)[boot.sample, , drop = FALSE] x.control <- as.matrix(x.control)[boot.sample, , drop = FALSE] x.sensitive <- as.matrix(x.sensitive)[boot.sample, , drop = FALSE] x.outcome <- as.matrix(x.outcome)[boot.sample, , drop = FALSE] x.misreport <- as.matrix(x.misreport)[boot.sample, , drop = FALSE] treat <- as.matrix(treat)[boot.sample] d <- as.matrix(d)[boot.sample, , drop = FALSE] o <- as.matrix(o)[boot.sample, , drop = FALSE] trials <- as.matrix(trials)[boot.sample, , drop = FALSE] weight <- rep(1, length(y)) se <- FALSE } respondentType <- rep(as.character(NA), length(y)) if(model.misreport == TRUE) { respondentType[treat == 0 & d != sensitive.response] <- "Non-sensitive or misreport sensitive" respondentType[treat == 0 & d == sensitive.response] <- "Truthful sensitive" if(sensitive.response == 1) respondentType[treat == 1 & y == 0 & d != sensitive.response] <- "Non-sensitive" if(sensitive.response == 0) respondentType[treat == 1 & y == (J + 1) & d != sensitive.response] <- "Non-sensitive" respondentType[treat == 1 & y > 0 & y < (J + 1) & d != sensitive.response] <- "Non-sensitive or misreport sensitive" if(sensitive.response == 1) respondentType[treat == 1 & y == (J + 1) & d != sensitive.response] <- "Misreport sensitive" if(sensitive.response == 0) respondentType[treat == 1 & y == 0 & d != sensitive.response] <- "Misreport sensitive" if(sensitive.response == 1) respondentType[treat == 1 & y == (J + 1) & d == sensitive.response] <- "Truthful sensitive" if(sensitive.response == 0) respondentType[treat == 1 & y == 0 & d == sensitive.response] <- "Truthful sensitive" if(sensitive.response == 1) respondentType[treat == 1 & y == 0 & d == sensitive.response] <- "Violates assumption" if(sensitive.response == 0) respondentType[treat == 1 & y == (J + 1) & d == sensitive.response] <- "Violates assumption" respondentType[treat == 1 & y > 0 & y < (J + 1) & d == sensitive.response] <- "Truthful sensitive" } else { respondentType[treat == 1 & y > 0 & y < (J + 1)] <- "0 or 1" respondentType[treat == 0] <- "0 or 1" respondentType[treat == 1 & y == 0] <- "0" respondentType[(treat == 1 & y == (J + 1))] <- "1" } if("Violates assumption" %in% respondentType) { stop("\nSome observations violate the monotonicity assumption.") } if(model.misreport == TRUE) { w <- as.matrix(data.frame(as.numeric(respondentType %in% c("Non-sensitive or misreport sensitive", "Misreport sensitive")), as.numeric(respondentType == "Truthful sensitive"), as.numeric(respondentType %in% c("Non-sensitive or misreport sensitive", "Non-sensitive")))) w <- w / apply(w, 1, sum) colnames(w) <- c("Misreport sensitive", "Truthful sensitive", "Non-sensitive") } else { w <- as.matrix(data.frame(as.numeric(respondentType %in% c("1", "0 or 1")), as.numeric(respondentType %in% c("0", "0 or 1")))) w <- w / apply(w, 1, sum) colnames(w) <- c("1", "0") } w <- log(w) if(get.data == TRUE) { estep.out <- estep(y = y, w = w, x.control = x.control, x.sensitive = x.sensitive, x.outcome = x.outcome, x.misreport = x.misreport, treat = treat, J = J, par.sensitive = par.sensitive, par.control = par.control, par.outcome = par.outcome, par.outcome.aux = par.outcome.aux, par.misreport = par.misreport, d = d, sensitive.response = sensitive.response, model.misreport = model.misreport, o = o, trials = trials, outcome.model = outcome.model, weight = weight, respondentType = respondentType, outcome.constrained = outcome.constrained, control.constraint = control.constraint, misreport.treatment = misreport.treatment) return(list(w = estep.out$w, ll = estep.out$ll, x.control = x.control, x.sensitive = x.sensitive, x.misreport = x.misreport, x.outcome = x.outcome)) } if(model.misreport == TRUE) { if(misreport.treatment == TRUE) par.misreport <- rep(0, ncol(x.misreport) + 1) if(misreport.treatment == FALSE) par.misreport <- rep(0, ncol(x.misreport)) } else { par.misreport <- NULL } if(is.null(par.sensitive)) par.sensitive <- rep(0, ncol(x.sensitive)) if(is.null(par.control)) { if(control.constraint == "none" & model.misreport == FALSE) { par.control <- rep(0, ncol(x.control) + 1) } else if(control.constraint == "none" & model.misreport == TRUE) { par.control <- rep(0, ncol(x.control) + 2) } else if(control.constraint == "partial" & model.misreport == FALSE) { stop("If not modeling misreporting, set argument control.constraint to 'none' or 'full'") } else if(control.constraint == "partial" & model.misreport == TRUE) { par.control <- rep(0, ncol(x.control) + 1) } else if(control.constraint == "full") { par.control <- rep(0, ncol(x.control)) } } if(is.null(par.outcome)) { if(outcome.model != "none") { if(outcome.constrained == TRUE) par.outcome <- rep(0, ncol(x.outcome) + 1) if(outcome.constrained == FALSE) par.outcome <- rep(0, ncol(x.outcome) + 2) } else { par.outcome <- NULL } } if(is.null(par.outcome.aux)) { if(outcome.model %in% c("none", "logistic")) { par.outcome.aux <- NULL } else if(outcome.model == "betabinomial") { par.outcome.aux <- list(rho = 0) } } runs <- list() for(j in 1:n.runs) { if(j > 1 & verbose == TRUE) cat("\n") logLikelihood <- rep(as.numeric(NA), max.iter) while(TRUE) { par.control <- runif(length(par.control), -2, 2) par.sensitive <- runif(length(par.sensitive), -2, 2) if(model.misreport == TRUE) par.misreport <- runif(length(par.misreport), -2, 2) if(outcome.model != "none") par.outcome <- runif(length(par.outcome), -2, 2) if(outcome.model != "none" & length(par.outcome.aux) > 0) par.outcome.aux <- runif(length(par.outcome.aux), 0, 1) templl <- estep(y = y, w = w, x.control = x.control, x.sensitive = x.sensitive, x.outcome = x.outcome, x.misreport = x.misreport, treat = treat, J = J, par.sensitive = par.sensitive, par.control = par.control, par.outcome = par.outcome, par.outcome.aux = par.outcome.aux, par.misreport = par.misreport, d = d, sensitive.response = sensitive.response, model.misreport = model.misreport, o = o, trials = trials, outcome.model = outcome.model, weight = weight, respondentType = respondentType, outcome.constrained = outcome.constrained, control.constraint = control.constraint, misreport.treatment = misreport.treatment)$ll templl if(!is.nan(templl) & templl > -Inf) break() } for(i in 1:max.iter) { estep.out <- estep(y = y, w = w, x.control = x.control, x.sensitive = x.sensitive, x.outcome = x.outcome, x.misreport = x.misreport, treat = treat, J = J, par.sensitive = par.sensitive, par.control = par.control, par.outcome = par.outcome, par.outcome.aux = par.outcome.aux, par.misreport = par.misreport, d = d, sensitive.response = sensitive.response, model.misreport = model.misreport, o = o, trials = trials, outcome.model = outcome.model, weight = weight, respondentType = respondentType, outcome.constrained = outcome.constrained, control.constraint = control.constraint, misreport.treatment = misreport.treatment) w <- estep.out$w logLikelihood[i] <- estep.out$ll if(i > 1 & verbose == TRUE & get.boot == 0) { cat("\r\rRun:", paste0(j, "/", n.runs), "Iter:", i, "llik:", sprintf("%.2f", logLikelihood[i]), "llik change:", sprintf("%.8f", (logLikelihood[i] - logLikelihood[i-1])), "(tol =", paste0(as.character(tolerance), ") ")) } if(i > 1 & verbose == TRUE & get.boot > 0) { cat("\r\rBoot:", get.boot, "Run:", paste0(j, "/", n.runs), "Iter:", i, "llik:", sprintf("%.2f", logLikelihood[i]), "llik change:", sprintf("%.8f", (logLikelihood[i] - logLikelihood[i-1])), "(tol =", paste0(as.character(tolerance), ") ")) } if(i > 1 && (logLikelihood[i] - logLikelihood[i - 1]) < 0) { stop("Log-likelihood increasing.") } if(i > 1 && (logLikelihood[i] - logLikelihood[i - 1]) < tolerance) { break() } par.sensitive <- mstepSensitive(y = y, treat = treat, x.sensitive = x.sensitive, w = w, d = d, sensitive.response = sensitive.response, weight = weight, model.misreport = model.misreport) par.control <- mstepControl(y = y, J = J, treat = treat, x.control = x.control, w = w, d = d, sensitive.response = sensitive.response, weight = weight, model.misreport = model.misreport, control.constraint = control.constraint) if(outcome.model != "none") { outcome <- mstepOutcome(y = y, treat = treat, x.outcome = x.outcome, w = w, d = d, sensitive.response = sensitive.response, o = o, trials = trials, weight = weight, model.misreport = model.misreport, outcome.model = outcome.model, outcome.constrained = outcome.constrained, control.constraint = control.constraint) par.outcome <- outcome$coefs par.outcome.aux <- outcome$coefs.aux } if(model.misreport == TRUE) { par.misreport <- mstepMisreport(y = y, x.misreport = x.misreport, w = w, treat = treat, misreport.treatment = misreport.treatment, weight = weight) } } runs[[j]] <- list(logLikelihood = logLikelihood[i], par.control = par.control, par.sensitive = par.sensitive, par.misreport = par.misreport, par.outcome = par.outcome, par.outcome.aux = par.outcome.aux) } if(verbose == TRUE) cat("\n") max.ll <- which(sapply(runs, function(X) X$logLikelihood) == max(sapply(runs, function(X) X$logLikelihood))) llik <- runs[[max.ll]]$logLikelihood par.control <- runs[[max.ll]]$par.control par.sensitive <- runs[[max.ll]]$par.sensitive par.misreport <- runs[[max.ll]]$par.misreport par.outcome <- runs[[max.ll]]$par.outcome par.outcome.aux <- runs[[max.ll]]$par.outcome.aux par <- c(par.control, par.sensitive, par.misreport, par.outcome, par.outcome.aux) num <- c(length(par.control), length(par.sensitive), length(par.misreport), length(par.outcome), length(par.outcome.aux)) llik.wrapper <- function(par, num, y, w, x.control, x.sensitive, x.outcome, x.misreport, treat, J, d, sensitive.response, model.misreport, o, trials, outcome.model, weight, respondentType, outcome.constrained, control.constraint, misreport.treatment) { par.control <- par[1:num[1]] par.sensitive <- par[(num[1]+1):sum(num[1:2])] if(model.misreport == TRUE) { par.misreport <- par[(sum(num[1:2])+1):sum(num[1:3])] } else{ par.misreport <- NULL } if(outcome.model != "none") { par.outcome <- par[(sum(num[1:3])+1):sum(num[1:4])] if(outcome.model %in% c("betabinomial", "linear")) { par.outcome.aux <- par[(sum(num[1:4])+1):sum(num[1:5])] } else { par.outcome.aux <- NULL } } else { par.outcome <- NULL } llik <- estep(y = y, w = w, x.control = x.control, x.sensitive = x.sensitive, x.outcome = x.outcome, x.misreport = x.misreport, treat = treat, J = J, par.sensitive = par.sensitive, par.control = par.control, par.outcome = par.outcome, par.outcome.aux = par.outcome.aux, par.misreport = par.misreport, d = d, sensitive.response = sensitive.response, model.misreport = model.misreport, o = o, trials = trials, outcome.model = outcome.model, weight = weight, respondentType = respondentType, outcome.constrained = outcome.constrained, control.constraint = control.constraint, misreport.treatment)$ll return(llik) } if(se == TRUE & all(weight == 1)) { num <- c(length(par.control), length(par.sensitive), length(par.misreport), length(par.outcome), length(par.outcome.aux)) hess <- numDeriv::hessian(llik.wrapper, c(par.control, par.sensitive, par.misreport, par.outcome, par.outcome.aux), num = num, J = J, y = y, w = w, treat = treat, x.control = x.control, x.sensitive = x.sensitive, x.outcome = x.outcome, x.misreport = x.misreport, d = d, sensitive.response = sensitive.response, model.misreport = model.misreport, o = o, outcome.model = outcome.model, outcome.constrained = outcome.constrained, weight = weight, respondentType = respondentType, control.constraint = control.constraint, misreport.treatment = misreport.treatment, method.args = list(zero.tol = 1e-10)) vcov.mle <- solve(-hess) se.mle <- sqrt(diag(vcov.mle)) se.control <- se.mle[1:num[1]] names(se.control) <- names(par.control) se.sensitive <- se.mle[(num[1]+1):sum(num[1:2])] names(se.sensitive) <- names(par.sensitive) if(model.misreport == TRUE) { se.misreport <- se.mle[(sum(num[1:2])+1):sum(num[1:3])] names(se.misreport) <- names(par.misreport) } else { se.misreport <- NULL } if(outcome.model != "none") { se.outcome <- se.mle[(sum(num[1:3])+1):sum(num[1:4])] names(se.outcome) <- names(par.outcome) if(outcome.model %in% c("linear", "betabinomial")) { se.outcome.aux <- se.mle[(sum(num[1:4])+1):sum(num[1:5])] names(se.outcome.aux) <- names(par.outcome.aux) } else { se.outcome.aux <- NULL } } else { se.outcome <- NULL se.outcome.aux <- NULL } } else { se.control <- se.sensitive <- se.misreport <- se.outcome <- se.outcome.aux <- vcov.mle <- NULL if(se == TRUE) { warning("Standard errors are not implemented for models with survey weights.") se <- FALSE } } return.object <- list("par.control" = par.control, "par.sensitive" = par.sensitive, "par.misreport" = par.misreport, "par.outcome" = par.outcome, "par.outcome.aux" = par.outcome.aux, "df" = n - length(c(par.control, par.sensitive, par.misreport, par.outcome, par.outcome.aux)), "se.sensitive" = se.sensitive, "se.control" = se.control, "se.misreport" = se.misreport, "se.outcome" = se.outcome, "se.outcome.aux" = se.outcome.aux, "vcov.mle" = vcov.mle, "w" = exp(w), "data" = data, "direct" = direct, "treatment" = treatment, "model.misreport" = model.misreport, "outcome.model" = outcome.model, "outcome.constrained" = outcome.constrained, "control.constraint" = control.constraint, "misreport.treatment" = misreport.treatment, "weights" = weights, "formula" = formula, "formula.control" = formula.control, "formula.sensitive" = formula.sensitive, "formula.misreport" = formula.misreport, "formula.outcome" = formula.outcome, "sensitive.response" = sensitive.response, "xlevels" = xlevels, "llik" = llik, "n" = n, "J" = J, "se" = se, "runs" = runs, "call" = function.call, "boot" = FALSE) class(return.object) <- "listExperiment" return(return.object) } bootListExperiment <- function(formula, data, treatment, J, direct = NULL, sensitive.response = NULL, outcome = NULL, outcome.trials = NULL, outcome.model = "logistic", outcome.constrained = TRUE, control.constraint = "partial", misreport.treatment = TRUE, weights = NULL, se = TRUE, tolerance = 1E-8, max.iter = 5000, n.runs = 1, verbose = TRUE, get.data = FALSE, par.control = NULL, par.sensitive = NULL, par.misreport = NULL, par.outcome = NULL, par.outcome.aux = NULL, formula.control = NULL, formula.sensitive = NULL, formula.misreport = NULL, formula.outcome = NULL, boot.iter = 1000, parallel = FALSE, n.cores = 2, cluster = NULL) { function.call <- match.call() args.call <- as.list(function.call)[-1] args.call$se <- FALSE args.call$get.boot <- 1 args.call <- lapply(args.call, eval) data <- args.call$data args.call$data <- as.name("data") if(parallel == FALSE) { boot.out <- list() for(i in 1:boot.iter) { args.call$get.boot <- i boot.out[[i]] <- do.call(listExperiment, args.call) } } if(parallel == TRUE) { args.call$verbose <- FALSE cat("Running bootstrap in parallel on ", n.cores, " cores/threads (", parallel::detectCores(), " available)...\n", sep = ""); Sys.sleep(0.2) if(!is.null(cluster)) cl <- cluster if(is.null(cluster)) cl <- parallel::makeCluster(n.cores) parallel::clusterExport(cl, list("args.call", "data", "listExperiment", "logAdd", "estep", "mstepControl", "mstepSensitive", "mstepMisreport", "mstepOutcome"), envir = environment()) boot.out <- parallel::parLapply(cl, 1:boot.iter, function(x) do.call(listExperiment, args.call)) parallel::stopCluster(cl) } getPars <- function(varName) { X <- do.call(rbind, sapply(boot.out, function(x) x[varName])) cov.var <- cov(X) par.var <- colMeans(X) se.var <- as.vector(as.matrix(sqrt(diag(cov.var)))) names(se.var) <- row.names(cov.var) return(list(par = par.var, se = se.var)) } par.control <- getPars("par.control")$par se.control <- getPars("par.control")$se par.sensitive <- getPars("par.sensitive")$par se.sensitive <- getPars("par.sensitive")$se if(!is.null(boot.out[[1]]$par.misreport)) { par.misreport <- getPars("par.misreport")$par se.misreport <- getPars("par.misreport")$se } else { par.misreport <- se.misreport <- NULL } if(!is.null(boot.out[[1]]$par.outcome)) { par.outcome <- getPars("par.outcome")$par se.outcome <- getPars("par.outcome")$se } else { par.outcome <- se.outcome <- NULL } if(!is.null(boot.out[[1]]$outcome.model.aux)) { par.outcome <- getPars("par.outcome.aux")$par se.outcome <- getPars("par.outcome.aux")$se } else { par.outcome.aux <- se.outcome.aux <- NULL } se <- TRUE args.call$get.boot <- 0 args.call$get.data <- TRUE args.call$par.control <- par.control args.call$par.sensitive <- par.sensitive args.call$par.misreport <- par.misreport args.call$par.outcome <- par.outcome args.call$par.outcome.aux <- par.outcome.aux llik <- do.call(listExperiment, args.call)$ll w <- do.call(listExperiment, args.call)$w return.object <- boot.out[[1]] return.object$par.control <- par.control return.object$par.sensitive <- par.sensitive return.object$par.misreport <- par.misreport return.object$par.outcome <- par.outcome return.object$par.outcome.aux <- par.outcome.aux return.object$df <- return.object$n - length(c(par.control, par.sensitive, par.misreport, par.outcome, par.outcome.aux)) return.object$se.control <- se.control return.object$se.sensitive <- se.sensitive return.object$se.misreport <- se.misreport return.object$se.outcome <- se.outcome return.object$se.outcome.aux <- se.outcome.aux return.object$vcov.model <- NULL return.object$data <- data return.object$se <- TRUE return.object$w <- exp(w) return.object$llik <- llik return.object$call <- function.call return.object$boot.iter <- boot.iter return.object$boot.out <- boot.out return.object$boot <- TRUE class(return.object) <- "listExperiment" return(return.object) } predict.listExperiment <- function(object, newdata = NULL, treatment.misreport = 0, par.control = NULL, par.sensitive = NULL, par.misreport = NULL, ...) { if(!is.null(par.control)) object$par.control <- par.control if(!is.null(par.sensitive)) object$par.sensitive <- par.sensitive if(!is.null(par.misreport)) object$par.misreport <- par.misreport if(is.null(newdata)) { data <- object$data } else data <- newdata if(as.character(object$formula[[2]]) %in% names(data)) { y <- data[, paste(object$formula[[2]])] } else stop(paste0("The list experiment response ", as.character(object$formula[[2]]), " not found in data.")) if(treatment.misreport == "observed") { if(object$treatment %in% names(data)) { treatment <- data[, paste(object$treatment)] } else { stop(paste0("Argument treatment.misreport was set to \"observed\", but treatment variable \"", object$treatment, "\" is not in the data.")) } } else { treatment <- rep(treatment.misreport, nrow(data)) } if(!is.null(object$direct)) { if(object$direct %in% names(data)) { d <- data[, paste(object$direct)] } else { stop(paste0("Direct question variable", object$direct, "\" is not in the data.")) } } else{ d <- rep(NA, nrow(data)) } if(!is.null(object$outcome)) { if(object$outcome %in% names(data)) { o <- data[, paste(object$outcome)] } else { stop(paste0("Outcome variable", object$outcome, "\" is not in the data.")) } } else { o <- rep(NA, nrow(data)) } if(all(all.vars(object$formula.sensitive)[-1] %in% names(data))) { x.sensitive <- model.matrix(object$formula.sensitive[-2], data = model.frame(~ ., data, na.action = na.pass, xlev = object$xlevels)) } else { stop(paste0("Not all variables used in the sensitive-item sub-model are available in the data")) } if(!is.null(object$par.misreport)) { if(all(all.vars(object$formula.misreport)[-1] %in% names(data))) { x.misreport <- model.matrix(object$formula.misreport[-2], data = model.frame(~ ., data, na.action = na.pass, xlev = object$xlevels)) } else { stop(paste0("Not all variables used in the misreport sub-model are available in the data")) } } else { x.misreport <- rep(NA, nrow(data)) } z.hat <- as.numeric(plogis(x.sensitive %*% object$par.sensitive)) if(object$model.misreport == TRUE) { if(object$misreport.treatment == TRUE) { u.hat <- as.numeric(plogis(as.matrix(data.frame(x.misreport, treatment)) %*% object$par.misreport)) } else { u.hat <- as.numeric(plogis(as.matrix(data.frame(x.misreport)) %*% object$par.misreport)) } } else u.hat <- NULL return(list(z.hat = z.hat, u.hat = u.hat)) } summary.listExperiment <- function(object, digits = 4, ...) { cat("\nList experiment sub-models\n\n") cat("Call: ") print(object$call) if(object$se == TRUE) { cat("\nCONTROL ITEMS Pr(Y* = y)\n") matrix.control <- cbind(round(object$par.control, digits), round(object$se.control, digits), round(object$par.control/object$se.control, digits), round(2 * pnorm(abs(object$par.control/object$se.control), lower.tail = FALSE), digits)) colnames(matrix.control) <- c("est.", "se", "z", "p") print(formatC(matrix.control, format = "f", digits = digits), quote = FALSE, right = TRUE) cat("---\n") cat("\nSENSITIVE ITEM Pr(Z* = 1)\n") matrix.sensitive <- cbind(round(object$par.sensitive, digits), round(object$se.sensitive, digits), round(object$par.sensitive/object$se.sensitive, digits), round(2 * pnorm(abs(object$par.sensitive/object$se.sensitive), lower.tail = FALSE), digits)) colnames(matrix.sensitive) <- c("est.", "se", "z", "p") print(formatC(matrix.sensitive, format = "f", digits = digits), quote = FALSE, right = TRUE) cat("---\n") if(object$model.misreport == TRUE) { cat("\nMISREPORT Pr(U* = 1)\n") matrix.misreport <- cbind(round(object$par.misreport, digits), round(object$se.misreport, digits), round(object$par.misreport/object$se.misreport, digits), round(2 * pnorm(abs(object$par.misreport/object$se.misreport), lower.tail = FALSE), digits)) colnames(matrix.misreport) <- c("est.", "se", "z", "p") print(formatC(matrix.misreport, format = "f", digits = digits), quote = FALSE, right = TRUE) cat("---\n") } if(object$outcome.model != "none") { cat("\nOUTCOME\n") matrix.outcome <- cbind(round(object$par.outcome, digits), round(object$se.outcome, digits), round(object$par.outcome/object$se.outcome, digits), round(2 * pnorm(abs(object$par.outcome/object$se.outcome), lower.tail = FALSE), digits)) colnames(matrix.outcome) <- c("est.", "se", "z", "p") print(formatC(matrix.outcome, format = "f", digits = digits), quote = FALSE, right = TRUE) cat("---") } } else if(object$se == FALSE) { cat("\nCONTROL ITEMS Pr(Y* = y)\n") matrix.control <- cbind(round(object$par.control, digits)) colnames(matrix.control) <- c("est.") print(formatC(matrix.control, format = "f", digits = digits), quote = FALSE, right = TRUE) cat("---\n") cat("\nSENSITIVE ITEM Pr(Z* = 1)\n") matrix.sensitive <- cbind(round(object$par.sensitive, digits)) colnames(matrix.sensitive) <- c("est.") print(formatC(matrix.sensitive, format = "f", digits = digits), quote = FALSE, right = TRUE) cat("---\n") if(object$model.misreport == TRUE) { cat("\nMISREPORT Pr(U* = 1)\n") matrix.misreport <- cbind(round(object$par.misreport, digits)) colnames(matrix.misreport) <- c("est.") print(formatC(matrix.misreport, format = "f", digits = digits), quote = FALSE, right = TRUE) cat("---\n") } if(object$outcome.model != "none") { cat("\nOUTCOME\n") matrix.outcome <- cbind(round(object$par.outcome, digits)) colnames(matrix.outcome) <- c("est.") print(formatC(matrix.outcome, format = "f", digits = digits), quote = FALSE, right = TRUE) cat("---") } } if(object$boot == TRUE) { cat("\nStandard errors calculated by non-parametric bootstrap (", format(object$boot.iter, big.mark = ","), " draws).", sep = "") } cat("\nObservations:", format(object$n, big.mark = ",")) cat(" (", format(nrow(object$data)-object$n, big.mark = ","), " of ", format(nrow(object$data), big.mark = ","), " observations removed due to missingness)", sep = "") cat("\nLog-likelihood", object$llik) } print.listExperiment <- function(x, ...) { summary.listExperiment(x, ...) }
g <- function(x, w, p, eta, sq.var, theta.fix, theta.var) { res <- 0 for(i in 1:length(eta)) for(j in 1:length(eta)) if(p[i,j] != 0) { ev.eta.i <- eta[[i]](x, theta.fix[[i]]) sq.sigma.i <- log(1 + sq.var[[i]](x, theta.fix[[i]]) / (ev.eta.i * ev.eta.i)) mu.i <- log(ev.eta.i) - 0.5 * sq.sigma.i opt.res <- optim( par = theta.var[[i,j]], function(theta) KLD.new(x, w, ev.eta.i, sq.sigma.i, mu.i, eta[[j]], sq.var[[j]], theta) ) theta.var[[i,j]] <- opt.res$par res <- res + p[i,j] * opt.res$value } res }
test_that("getHyperPars", { lrn = makeLearner("classif.rpart") expect_equal(getHyperPars(lrn), list(xval = 0)) lrn = makeLearner("classif.lda") named.list = list() names(named.list) = character(0) expect_equal(getHyperPars(lrn), named.list) lrn = makeFilterWrapper(makeLearner("classif.rpart")) expect_true(setequal(names(getHyperPars(lrn)), c("xval", "fw.method"))) lrn = makeModelMultiplexer(list("classif.rpart", "classif.lda")) expect_true(setequal(names(getHyperPars(lrn)), c("classif.rpart.xval", "selected.learner"))) lrn = makeLearner("multilabel.rFerns") expect_true(setequal(getHyperPars(lrn), list())) lrn = makeMultilabelBinaryRelevanceWrapper("classif.rpart") expect_true(setequal(getHyperPars(lrn), list(xval = 0))) lrn = makeLearner("classif.xgboost", missing = NA) expect_output(print(lrn), "missing=NA") lrn = makeLearner("regr.xgboost", missing = NA) expect_output(print(lrn), "missing=NA") })
library(ggplot2) library(dplyr) library(tidyr) importFromExamples("ODETest.R") ComparisonRK45ODEApp <- function(verbose = FALSE) { ode <- new("ODETest") ode_solver <- RK45(ode) ode_solver <- setStepSize(ode_solver, 1) setTolerance(ode_solver) <- 1e-6 time <- 0 rowVector <- vector("list") i <- 1 while (time < 50) { rowVector[[i]] <- list(t = getState(ode)[2], ODE = getState(ode)[1], s2 = getState(ode)[2], exact = getExactSolution(ode, time), rate.counts = getRateCounts(ode), time = time ) ode_solver <- step(ode_solver) stepSize <- getStepSize(ode_solver) time <- time + stepSize ode <- getODE(ode_solver) state <- getState(ode) i <- i + 1 } DT <- data.table::rbindlist(rowVector) return(DT) } solution <- ComparisonRK45ODEApp() plot(solution) solution.multi <- solution %>% select(t, ODE, exact) plot(solution.multi) solution.2x1 <- solution.multi %>% gather(key, value, -t) g <- ggplot(solution.2x1, mapping = aes(x = t, y = value, color = key)) g <- g + geom_line(size = 1) + labs(title = "ODE vs Exact solution", subtitle = "tolerance = 1E-6") print(g)
knitr::opts_chunk$set( collapse = TRUE, fig.width = 6, fig.asp = .4, warning = FALSE, message = FALSE, comment = " ) library(marginaleffects) library(patchwork) library(ggplot2) theme_set(theme_minimal()) library(marginaleffects) tmp <- mtcars tmp$am <- as.logical(tmp$am) mod <- lm(mpg ~ am + factor(cyl), tmp) mfx <- marginaleffects(mod) summary(mfx) library(emmeans) emm <- emmeans(mod, specs = "cyl") contrast(emm, method = "revpairwise") emm <- emmeans(mod, specs = "am") contrast(emm, method = "revpairwise") mod_int <- lm(mpg ~ am * factor(cyl), tmp) marginaleffects(mod_int, newdata = datagrid(cyl = tmp$cyl), variables = "am") emm <- emmeans(mod_int, specs = "am", by = "cyl") contrast(emm, method = "revpairwise")
context("CrulAdapter") aa <- CrulAdapter$new() test_that("CrulAdapter bits are correct", { skip_on_cran() expect_is(CrulAdapter, "R6ClassGenerator") expect_is(aa, "CrulAdapter") expect_null(aa$build_crul_request) expect_null(aa$build_crul_response) expect_is(aa$disable, "function") expect_is(aa$enable, "function") expect_is(aa$handle_request, "function") expect_is(aa$remove_stubs, "function") expect_is(aa$name, "character") expect_equal(aa$name, "CrulAdapter") }) test_that("CrulAdapter behaves correctly", { skip_on_cran() expect_message(aa$enable(), "CrulAdapter enabled!") expect_message(aa$disable(), "CrulAdapter disabled!") }) test_that("build_crul_request/response fail well", { skip_on_cran() expect_error(build_crul_request(), "argument \"x\" is missing") expect_error(build_crul_response(), "argument \"resp\" is missing") }) test_that("CrulAdapter: works when vcr is loaded but no cassette is inserted", { skip_on_cran() skip_if_not_installed("vcr") webmockr::enable(adapter = "crul") on.exit({ webmockr::disable(adapter = "crul") unloadNamespace("vcr") }) stub_request("get", "https://httpbin.org/get") library("vcr") cli <- crul::HttpClient$new("https://httpbin.org") expect_silent(x <- cli$get("get")) expect_is(x, "HttpResponse") vcr::vcr_configure(dir = tempdir()) vcr::insert_cassette("empty") expect_silent(x <- cli$get("get")) vcr::eject_cassette("empty") expect_is(x, "HttpResponse") }) context("CrulAdapter - with real data") test_that("CrulAdapter works", { skip_on_cran() skip_if_not_installed('vcr') load("crul_obj.rda") crul_obj$url$handle <- curl::new_handle() res <- CrulAdapter$new() library(vcr) expect_error( res$handle_request(crul_obj), "There is currently no cassette in use" ) unloadNamespace("vcr") expect_error( res$handle_request(crul_obj), "Real HTTP connections are disabled.\nUnregistered request:\n GET: http://localhost:9000/get\n\nYou can stub this request with the following snippet:\n\n stub_request\\('get', uri = 'http://localhost:9000/get'\\)\n============================================================" ) invisible(stub_request("get", "http://localhost:9000/get")) aa <- res$handle_request(crul_obj) expect_is(res, "CrulAdapter") expect_is(aa, "HttpResponse") expect_equal(aa$method, "get") expect_equal(aa$url, "http://localhost:9000/get") expect_equal(length(aa$response_headers), 0) expect_equal(length(aa$response_headers_all), 0) stub_registry_clear() x <- stub_request("get", "http://localhost:9000/get") x <- to_return(x, headers = list('User-Agent' = 'foo-bar')) aa <- res$handle_request(crul_obj) expect_is(res, "CrulAdapter") expect_is(aa, "HttpResponse") expect_equal(aa$method, "get") expect_equal(aa$url, "http://localhost:9000/get") expect_equal(length(aa$response_headers), 1) expect_is(aa$response_headers, "list") expect_named(aa$response_headers, "user-agent") expect_equal(length(aa$response_headers_all), 1) expect_is(aa$response_headers_all, "list") expect_named(aa$response_headers_all, NULL) expect_named(aa$response_headers_all[[1]], "user-agent") my_url <- "https://doi.org/10.1007/978-3-642-40455-9_52-1" x <- stub_request("get", my_url) x <- to_return(x, status = 302, headers = list( status = 302, location = "http://link.springer.com/10.1007/978-3-642-40455-9_52-1" ) ) crul_obj$url$url <- my_url res <- CrulAdapter$new() aa <- res$handle_request(crul_obj) expect_equal(aa$method, "get") expect_equal(aa$url, my_url) expect_equal(aa$status_code, 302) expect_equal(length(aa$response_headers), 2) expect_is(aa$response_headers, "list") expect_equal(sort(names(aa$response_headers)), c('location', 'status')) expect_equal(length(aa$response_headers_all), 1) expect_equal(length(aa$response_headers_all[[1]]), 2) expect_is(aa$response_headers_all, "list") expect_is(aa$response_headers_all[[1]], "list") expect_named(aa$response_headers_all, NULL) expect_equal(sort(names(aa$response_headers_all[[1]])), c('location', 'status')) }) test_that("crul requests with JSON-encoded bodies work", { skip_on_cran() on.exit(disable(adapter = "crul")) enable(adapter = "crul") body <- list(foo = "bar") url <- "https://httpbin.org" cli <- crul::HttpClient$new(url) z <- stub_request("post", uri = file.path(url, "post")) %>% wi_th(body = jsonlite::toJSON(body, auto_unbox = TRUE)) res <- cli$post("post", body = body, encode = "json") expect_is(res, "HttpResponse") expect_error( cli$post("post", body = list(foo = "bar1"), encode = "json"), "Unregistered request" ) expect_error( cli$post("post", body = body), "Unregistered request" ) })
is_too_many <- function(query=NULL, id_list=NULL, start=0, limit=10) { toomany <- getOption("aRxiv_toomany") if(is.null(toomany)) toomany <- 15000 expected_number <- NA if(is.null(start)) start <- 0 if(is.null(limit)) limit <- expected_number <- arxiv_count(query, id_list) stopifnot(start >= 0) stopifnot(limit >= 0) if(limit > toomany) { if(is.na(expected_number)) expected_number <- arxiv_count(query, id_list) message("Total records matching query: ", expected_number) if(expected_number > toomany) return(expected_number) } 0 }
plot.bpca.2d <- function(x, type=c('bp', 'eo', 'ev', 'co', 'cv', 'ww', 'dv', 'ms', 'ro', 'rv'), c.color='darkgray', c.lwd=1, c.number=5, c.radio=1, obj.id=1:2, var.id=1, base.color='red3', base.lty='dotted', proj.color='gray', proj.lty='dotted', a.color='blue', a.lty='solid', a.lwd=2, a.length=.1, ref.lines=TRUE, ref.color='navy', ref.lty='dotted', var.factor=1, var.color='red3', var.lty='solid', var.pch=20, var.pos=4, var.cex=.6, var.offset=.2, obj.factor=1, obj.color='black', obj.pch=20, obj.pos=4, obj.cex=.6, obj.offset=.2, obj.names=TRUE, obj.labels, obj.identify=FALSE, xlim, ylim, xlab, ylab, ...) { draw.obj <- function() { if(obj.names) { points(x=coobj[,d1], y=coobj[,d2], pch=obj.pch, col=obj.color, cex=obj.cex, ...) text(x=coobj[,d1], y=coobj[,d2], labels=obj.labels, pos=obj.pos, offset=obj.offset, col=obj.color, cex=obj.cex, ...) } else { points(x=coobj[,d1], y=coobj[,d2], pch=obj.pch, col=obj.color, cex=obj.cex, ...) } } draw.var <- function() { points(x=covar[,d1] * var.factor, y=covar[,d2] * var.factor, pch=var.pch, col=var.color, cex=var.cex, ...) text(x=covar[,d1] * var.factor, y=covar[,d2] * var.factor, labels=rownames(covar), pos=var.pos, offset=var.offset, col=var.color, cex=var.cex, ...) } draw.var.seg <- function() { segments(x0=0, y0=0, x1=covar[,d1] * var.factor, y1=covar[,d2] * var.factor, col=var.color, lty=var.lty, ...) } draw.circles <- function() { for (i in 1:c.number) symbols(x=0, y=0, circles=c.radio * i * var.factor, add=TRUE, inches=FALSE, fg=c.color, lwd=c.lwd, ...) } if (!inherits(x, 'bpca.2d')) stop("Use this function only with 'bpca.2d' class!") coobj <- x$coord$objects covar <- x$coord$variables d1 <- x$number[1] d2 <- x$number[2] scores <- rbind(coobj, covar * var.factor, rep(0, ncol(coobj))) if (missing(obj.labels)) obj.labels <- rownames(coobj) if (missing(xlim) || missing(ylim)) { ms <- max(abs(scores)) * 1.2 msp <- c(-ms, ms) } if (missing(xlim)) xlim <- msp if (missing(ylim)) ylim <- msp if (missing(xlab) || missing(ylab)) { eigv <- x$eigenvalues prop <- 100 * eigv^2 / sum(eigv^2) labs <- paste('PC', d1:d2, ' (', round(prop[d1:d2], 2), '%)', sep='') } if (missing(xlab)) xlab <- labs[1] if (missing(ylab)) ylab <- labs[2] plot(scores, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, type='n', ...) if (ref.lines) abline(h=0, v=0, col=ref.color, lty=ref.lty, ...) switch(match.arg(type), bp={ draw.obj() draw.var() draw.var.seg() if(obj.identify) identify(x=coobj, labels=obj.labels, cex=obj.cex) }, eo={ if (any(class(obj.id) == c('numeric', 'integer'))) obj.lab <- obj.labels[obj.id[1]] else { if (obj.id %in% obj.labels){ obj.lab <- obj.labels[match(obj.id, obj.labels)] obj.id <- match(obj.id, obj.labels) } else stop("'obj.id' do not match with 'obj.labels'!") } draw.var() abline(a=0, b=coobj[obj.id,d2] / coobj[obj.id,d1], col=base.color, lty=base.lty, ...) abline(a=0, b=-coobj[obj.id,d1] / coobj[obj.id,d2], col=base.color, lty=base.lty, ...) arrows(x0=0, y0=0, x1=coobj[obj.id[1],d1] * obj.factor, y1=coobj[obj.id[1],d2] * obj.factor, col=a.color, lty=a.lty, lwd=a.lwd, length=a.length, ...) points(x=coobj[obj.id[1],d1] * obj.factor, y=coobj[obj.id[1],d2] * obj.factor, pch=obj.pch, col=obj.color, cex=obj.cex, ...) text(x=coobj[obj.id[1],d1] * obj.factor, y=coobj[obj.id[1],d2] * obj.factor, labels=obj.lab, pos=obj.pos, offset=obj.offset, col=obj.color, cex=obj.cex, ...) x <- solve(cbind(c(-coobj[obj.id[1],d2], coobj[obj.id[1],d1]), c(coobj[obj.id[1],d1], coobj[obj.id[1],d2])), rbind(0, as.numeric(covar[,c(d1, d2)] %*% coobj[obj.id[1],c(d1, d2)]))) segments(x0=covar[,d1], y0=covar[,d2], x1=x[1,], y1=x[2,], lty=proj.lty, col=proj.color) }, ev={ draw.obj() abline(a=0, b=covar[var.id,d2] / covar[var.id,d1], col=base.color, lty=base.lty, ...) abline(a=0, b=-covar[var.id,d1] / covar[var.id,d2], col=base.color, lty=base.lty, ...) arrows(x0=0, y0=0, x1=covar[var.id,d1] * var.factor, y1=covar[var.id,d2] * var.factor, col=a.color, lty=a.lty, lwd=a.lwd, length=a.length, ...) points(x=covar[var.id,d1] * var.factor, y=covar[var.id,d2] * var.factor, pch=var.pch, col=var.color, cex=var.cex, ...) text(x=covar[var.id,d1] * var.factor, y=covar[var.id,d2] * var.factor, labels=ifelse(mode(var.id) == 'numeric', rownames(covar)[var.id], var.id), pos=var.pos, offset=var.offset, col=var.color, cex=var.cex, ...) x <- solve(cbind(c(-covar[var.id,d2], covar[var.id,d1]), c(covar[var.id,d1], covar[var.id,d2])), rbind(0, as.numeric(coobj[,c(d1, d2)] %*% covar[var.id,c(d1, d2)]))) segments(x0=coobj[,d1], y0=coobj[,d2], x1=x[1,], y1=x[2,], lty=proj.lty, col=proj.color, ...) }, co={ if (any(class(obj.id) == c('character', 'factor'))) if (obj.id[1] %in% obj.labels & obj.id[2] %in% obj.labels) { obj.id[1] <- match(obj.id[1], obj.labels) obj.id[2] <- match(obj.id[2], obj.labels) } else stop("At last one 'obj.id' do not match with 'obj.labels'!") draw.obj() draw.var() symbols(x=coobj[obj.id[1],d1], y=coobj[obj.id[1],d2], circles=c.radio, add=TRUE, inches=FALSE, fg=c.color, lwd=c.lwd, ...) symbols(x=coobj[obj.id[2],d1], y=coobj[obj.id[2],d2], circles=c.radio, add=TRUE, inches=FALSE, fg=c.color, lwd=c.lwd, ...) segments(x0=coobj[obj.id[1],d1], y0=coobj[obj.id[1],d2], x1=coobj[obj.id[2],d1], y1=coobj[obj.id[2],d2], col=proj.color, lty=proj.lty, ...) abline(a=0, b=-(coobj[obj.id[1],d1] - coobj[obj.id[2],d1]) / (coobj[obj.id[1],d2] - coobj[obj.id[2],d2]), col=base.color, lty=base.lty, ...) }, cv={ draw.obj() draw.var() draw.var.seg() draw.circles() }, ww={ draw.obj() draw.var() indice <- c(chull(coobj[,d1], coobj[,d2])) polygon(x=coobj[indice,d1], y=coobj[indice,d2], border=proj.color, lty=proj.lty, ...) i <- 1 while (is.na(indice[i + 1]) == FALSE) { m <- (coobj[indice[i],d2] - coobj[indice[i + 1],d2]) / (coobj[indice[i],d1] - coobj[indice[i + 1],d1]) mperp <- -1 / m c2 <- coobj[indice[i + 1],d2] - m * coobj[indice[i + 1],d1] xint <- -c2/(m - mperp) xint <- ifelse(xint < 0, min(covar[,d1], coobj[,d1]), max(covar[,d1], coobj[,d1])) yint <- mperp * xint segments(x0=0, y0=0, x1=xint, y1=yint, col=base.color, lty=base.lty, ...) i <- i + 1 } m <- (coobj[indice[i],d2] - coobj[indice[1],d2]) / (coobj[indice[i],d1] - coobj[indice[1],d1]) mperp <- -1 / m c2 <- coobj[indice[i],d2] - m * coobj[indice[i],d1] xint <- -c2 / (m - mperp) xint <- ifelse(xint < 0, min(covar[,d1], coobj[,d1]), max(covar[,d1], coobj[,d1])) yint <- mperp * xint segments(x0=0, y0=0, x1=xint, y1=yint, col=base.color, lty=base.lty, ...) }, dv={ draw.obj() draw.var() draw.circles() draw.var.seg() arrows(x0=0, y0=0, x1=mean(covar[, d1] * var.factor), y1=mean(covar[, d2] * var.factor), col=a.color, lty=a.lty, lwd=a.lwd, length=a.length, ...) points(mean(covar[, d1] * var.factor), mean(covar[, d2] * var.factor), pch=1, cex=3, col='blue', ...) abline(a=0, b=mean(covar[,d2]) / mean(covar[,d1]), col=var.color, lty=base.lty, ...) }, ms={ m1 <- mean(covar[,d1] * var.factor) m2 <- mean(covar[,d2] * var.factor) abline(a=0, b=m2 / m1, col=base.color, lty=base.lty, ...) abline(a=0, b=-m1/m2, col=base.color, lty=base.lty, ...) arrows(x0=0, y0=0, x1=m1, y1=m2, col=a.color, lty=a.lty, lwd=a.lwd, length=a.length, ...) draw.obj() draw.var() for (i in 1:c.number) symbols(x=m1, y=m2, circles=c.radio * i * var.factor, add=TRUE, inches=FALSE, fg=c.color, lwd=c.lwd, ...) for (i in 1:nrow(coobj)) { x <- solve(matrix(c(-m2, m1, m1, m2), nrow=2), matrix(c(0, m2 * coobj[i,d2] + m1 * coobj[i,d1]), ncol=1)) segments(x0=coobj[i,d1], y0=coobj[i,d2], x1=x[1], y1=x[2], col=proj.color, lty=proj.lty, ...) } }, ro={ m1 <- mean(covar[,d1]) m2 <- mean(covar[,d2]) abline(a=0, b=m2 / m1, col=base.color, lty=base.lty, ...) abline(a=0, b=-m1 / m2, col=base.color, lty=base.lty, ...) draw.obj() draw.var() cox <- 0 coy <- 0 for (i in 1:nrow(coobj)) { x <- solve(matrix(c(-m2, m1, m1, m2), nrow=2), matrix(c(0, m2 * coobj[i,d2] + m1 * coobj[i,d1]), ncol=1)) if (sign(x[1]) == sign(m1)) if(abs(x[1]) > abs(cox)) { cox <- x[1] coy <- x[2] } } arrows(x0=0, y0=0, x1=cox, y1=coy, col=a.color, lty=a.lty, lwd=a.lwd, length=a.length, ...) for (i in 1:c.number) symbols(x=cox, y=coy, circles=c.radio * i, add=TRUE, inches=FALSE, fg=c.color, lwd=c.lwd, ...) }, rv={ draw.obj() draw.var() m1 <- mean(covar[,d1]) m2 <- mean(covar[,d2]) abline(a=0, b=m2 / m1, col=var.color, lty="solid", ...) abline(a=0, b=-m1 / m2, col=var.color, lty="solid", ...) symbols(x=m1, y=m2, circles=0.1, add=TRUE, inches=FALSE, fg=c.color, lwd=c.lwd, ...) mod <- max((covar[,d1]^2 + covar[,d2]^2)^0.5) cox <- sign(m1) * (mod^2 / (1 + m2^2 / m1^2))^0.5 coy <- (m2 / m1) * cox arrows(x0=0, y0=0, x1=cox, y1=coy, col=a.color, lty=a.lty, lwd=a.lwd, length=a.length, ...) for (i in 1:c.number) symbols(x=cox, y=coy, circles=c.radio*i, add=TRUE, inches=FALSE, fg=c.color, lwd=c.lwd, ...) }) }
ptweedie.inversion <- function(q, mu, phi, power, exact=FALSE ){ y <- q cdf <- array( dim=length(y) ) if ( power<1) stop("power must be greater than 1.") if ( any(phi<= 0) ) stop("phi must be positive.") if ( any(y<0) ) stop("y must be a non-negative vector.") if ( any(mu<=0) ) stop("mu must be positive.") if ( length(mu)>1) { if ( length(mu)!=length(y) ) stop("mu must be scalar, or the same length as y.") } else { mu <- array( dim=length(y), mu ) } if ( length(phi)>1) { if ( length(phi)!=length(y) ) stop("phi must be scalar, or the same length as y.") } else { phi <- array( dim=length(y), phi ) } for (i in (1:length(y))) { if ( ( power > 2 ) & (y[i] < 1.0e-300) ) { cdf[i] <- 0 } else { tmp <- .Fortran( "twcdf", as.double(power), as.double(phi[i]), as.double(y[i]), as.double(mu[i]), as.integer( exact ), as.double(0), as.integer(0), as.double(0), as.integer(0)) cdf[i] <- tmp[[6]] } } cdf } dtweedie.dldphi.saddle <- function(phi, mu, power, y){ dev <- tweedie.dev( power=power, y=y, mu=mu) l <- (-1)/(2*phi) + dev/(2*phi^2) -2* sum(l) } dtweedie.logl <- function(phi, y, mu, power) { sum( log( dtweedie( y=y, mu=mu, phi=phi, power=power) ) ) } logLiktweedie <- function(glm.obj, dispersion=NULL) { p <- get("p", envir = environment(glm.obj$family$variance)) if (p==1) message("*** Tweedie index power = 1: Consider using dispersion=1 in call to logLiktweedie().\n") AICtweedie(glm.obj, dispersion=dispersion, k=0, verbose=FALSE) / (-2) } dtweedie.logl.saddle <- function( phi, power, y, mu, eps=0){ sum( log( dtweedie.saddle(power=power, phi=phi, y=y, mu=mu, eps=eps) ) ) } dtweedie.logv.bigp <- dtweedie.logv.bigp <- function( y, phi, power){ if ( power<2) stop("power must be greater than 2.") if ( any(phi<= 0) ) stop("phi must be positive.") if ( any(y<=0) ) stop("y must be a strictly positive vector.") if ( length(phi)>1) { if ( length(phi)!=length(y) ) stop("phi must be scalar, or the same length as y.") } else { phi <- array( dim = length(y), phi ) } p <- power a <- ( 2-p ) / ( 1-p ) a1 <- 1 - a r <- -a1*log(phi) - log(p-2) - a*log(y) + a*log(p-1) drop <- 37 logz <- max(r) k.max <- max( y^(2-p) / ( phi * (p-2) ) ) k <- max( 1, k.max ) c <- logz + a1 + a*log(a) vmax <- k.max * a1 estlogv <- vmax while ( estlogv > (vmax - drop) ) { k <- k + 2 estlogv <- k*( c - a1*log(k) ) } hi.k <- ceiling(k) logz <- min(r) k.max <- min( y^(2-p) / ( phi * (p-2) ) ) k <- max( 1, k.max ) c <- logz + a1 + a*log(a) vmax <- k.max * a1 estlogv <- vmax while ( (estlogv > (vmax-drop) ) && ( k>=2) ) { k <- max(1, k - 2) estlogv <- k*( c - a1*log(k) ) } lo.k <- max(1, floor(k) ) k <- seq(lo.k, hi.k) o <- matrix( 1, nrow=length(y)) g <- matrix( lgamma( 1+a*k) - lgamma(1+k), nrow=1, ncol=length(k) ) og <- o %*% g A <- outer(r, k) + og C <- matrix( sin( -a*pi*k ) * (-1)^k, nrow=1, ncol=length(k) ) C <- o %*% C m <- apply(A, 1, max) ve <- exp(A - m) sum.ve <- apply( ve*C, 1, sum ) neg.sum.ve <- (sum.ve<=0) pos.sum.ve <- (sum.ve>0) logv <- sum.ve sum.ve[neg.sum.ve] <- 0 logv[neg.sum.ve] <- -Inf logv[pos.sum.ve] <- log( sum.ve[pos.sum.ve] ) + m[pos.sum.ve] list(lo=lo.k, hi=hi.k, logv=logv, k.max=k.max ) } dtweedie.logw.smallp <- function(y, phi, power){ if ( power<1) stop("power must be between 1 and 2.") if ( power>2) stop("power must be between 1 and 2.") if ( any(phi<=0) ) stop("phi must be positive.") if ( any(y<=0) ) stop("y must be a strictly positive vector.") p <- power a <- ( 2-p ) / ( 1-p ) a1 <- 1 - a r <- -a*log(y) + a*log(p-1) - a1*log(phi) - log(2-p) drop <- 37 logz <- max(r) j.max <- max( y^( 2-p ) / ( phi * (2-p) ) ) j <- max( 1, j.max ) cc <- logz + a1 + a*log(-a) wmax <- a1*j.max estlogw <- wmax while(estlogw > (wmax-drop) ){ j <- j + 2 estlogw <- j*(cc - a1*log(j)) } hi.j <- ceiling(j) logz <- min(r) j.max <- min( y^( 2-power ) / ( phi * (2-power) ) ) j <- max( 1, j.max) wmax <- a1*j.max estlogw <- wmax while ( ( estlogw > (wmax-drop) ) && ( j>=2) ) { j <- max(1, j - 2) oldestlogw <- estlogw estlogw <- j*(cc-a1*log(j)) } lo.j <- max(1, floor(j)) j <- seq( lo.j, hi.j) o <- matrix( 1, nrow=length(y)) g <- matrix(lgamma( j+1 ) + lgamma( -a*j ), nrow=1, ncol=hi.j - lo.j + 1) og <- o %*% g A <- outer(r, j) - og m <- apply(A,1,max) we <- exp( A - m ) sum.we <- apply( we,1,sum) logw <- log( sum.we ) + m list(lo=lo.j, hi=hi.j, logw=logw, j.max=j.max ) } dtweedie <- function(y, xi=NULL, mu, phi, power=NULL) { if ( is.null(power) & is.null(xi) ) stop("Either xi or power must be given\n") xi.notation <- TRUE if ( is.null(power) ) { power <- xi } else { xi.notation <- FALSE } if ( is.null(xi) ) { xi.notation <- FALSE xi <- power } if ( xi != power ) { cat("Different values for xi and power given; the value of xi used.\n") power <- xi } index.par <- ifelse( xi.notation, "xi","p") index.par.long <- ifelse( xi.notation, "xi","power") if ( any(power<1) ) stop( paste(index.par.long, "must be greater than 1.\n") ) if ( any(phi<=0) ) stop("phi must be positive.") if ( any(y<0) ) stop("y must be a non-negative vector.\n") if ( any(mu<=0) ) stop("mu must be positive.\n") if ( length(mu)>1) { if ( length(mu)!=length(y) ) stop("mu must be scalar, or the same length as y.\n") } else { mu <- array( dim=length(y), mu ) } if ( length(phi)>1) { if ( length(phi)!=length(y) ) stop("phi must be scalar, or the same length as y.\n") } else { phi <- array( dim=length(y), phi ) } density <- y if ( power==3 ){ density <- statmod::dinvgauss(x=y, mean=mu, dispersion=phi) return(density) } if ( power==2 ) { density <- dgamma( rate=1/(phi*mu), shape=1/phi, x=y ) return(density) } if ( power==0) { density <- dnorm( mean=mu, sd=sqrt(phi), x=y ) return(density) } if ( (power==1) & (all(phi==1))) { density <- dpois(x=y/phi, lambda=mu/phi ) return(density) } id.type0 <- array( dim=length(y) ) id.series <- id.type0 id.interp <- id.type0 id.type0 <- (y==0) if (any(id.type0)) { if ( power > 2 ) { density[id.type0] <- 0 } else { lambda <- mu[id.type0]^(2-power)/(phi[id.type0]*(2-power)) density[id.type0] <- exp( -lambda ) } } xi <- array( dim=length(y) ) xi[id.type0] <- 0 xi[!id.type0] <- phi[!id.type0] * y[!id.type0]^(power-2) xix <- xi / ( 1 + xi ) if ( (power>1) && (power<=1.1) ) { id.series <- (!id.type0) if (any(id.series)){ density[id.series] <- dtweedie.series(y=y[id.series], mu=mu[id.series], phi=phi[id.series], power=power) } return(density=density) } if ( power==1 ) { id.series <- rep(TRUE, length(id.series)) id.interp <- rep(FALSE, length(id.series)) } if ( (power>1.1) && (power<=1.2) ) { id.interp <- ( (xix>0) & (xix<0.1) ) id.series <- (!(id.interp|id.type0)) if ( any(id.interp)) { grid <- stored.grids(power) p.lo <- 1.1 p.hi <- 1.2 xix.lo <- 0 xix.hi <- 0.1 np <- 15 nx <- 25 } } if ( (power>1.2) && (power<=1.3) ) { id.interp <- ( (xix>0) & (xix<0.3) ) id.series <- (!(id.interp|id.type0)) if ( any(id.interp)) { grid <- stored.grids(power) p.lo <- 1.2 p.hi <- 1.3 xix.lo <- 0 xix.hi <- 0.3 np <- 15 nx <- 25 } } if ( (power>1.3) && (power<=1.4) ) { id.interp <- ( (xix>0) & (xix<0.5) ) id.series <- (!(id.interp|id.type0)) if ( any(id.interp)) { grid <- stored.grids(power) p.lo <- 1.3 p.hi <- 1.4 xix.lo <- 0 xix.hi <- 0.5 np <- 15 nx <- 25 } } if ( (power>1.4) && (power<=1.5) ) { id.interp <- ( (xix>0) & (xix<0.8) ) id.series <- (!(id.interp|id.type0)) if ( any(id.interp)) { grid <- stored.grids(power) p.lo <- 1.4 p.hi <- 1.5 xix.lo <- 0 xix.hi <- 0.8 np <- 15 nx <- 25 } } if ( (power>1.5) && (power<2) ) { id.interp <- ( (xix>0) & (xix<0.9) ) id.series <- (!(id.interp|id.type0)) if ( any(id.interp)) { grid <- stored.grids(power) p.lo <- 1.5 p.hi <- 2 xix.lo <- 0 xix.hi <- 0.9 np <- 15 nx <- 25 } } if ( (power>2) && (power<3) ) { id.interp <- ( (xix>0) & (xix<0.9) ) id.series <- (!(id.interp|id.type0)) if ( any(id.interp)) { grid <- stored.grids(power) p.lo <- 2 p.hi <- 3 xix.lo <- 0 xix.hi <- 0.9 np <- 15 nx <- 25 } } if ( (power>=3) && (power<4) ) { id.interp <- ( (xix>0) & (xix<0.9) ) id.series <- (!(id.interp|id.type0)) if ( any(id.interp)) { grid <- stored.grids(power) p.lo <- 3 p.hi <- 4 xix.lo <- 0 xix.hi <- 0.9 np <- 15 nx <- 25 } } if ( (power>=4) && (power<5) ) { id.interp <- ( (xix>0) & (xix<0.9) ) id.series <- (!(id.interp|id.type0)) if ( any(id.interp)) { grid <- stored.grids(power) p.lo <- 4 p.hi <- 5 xix.lo <- 0 xix.hi <- 0.9 np <- 15 nx <- 25 } } if ( (power>=5) && (power<7) ) { id.interp <- ( (xix>0) & (xix<0.5) ) id.series <- (!(id.interp|id.type0)) if ( any(id.interp)) { grid <- stored.grids(power) p.lo <- 5 p.hi <- 7 xix.lo <- 0 xix.hi <- 0.5 np <- 15 nx <- 25 } } if ( (power>=7) && (power<=10) ) { id.interp <- ( (xix>0) & (xix<0.3) ) id.series <- (!(id.interp|id.type0)) if ( any(id.interp)) { grid <- stored.grids(power) p.lo <- 7 p.hi <- 10 xix.lo <- 0 xix.hi <- 0.3 np <- 15 nx <- 25 } } if ( power>10) { id.series <- (y!=0) id.interp <- (!(id.series|id.type0)) } if (any(id.series)) { density[id.series] <- dtweedie.series(y=y[id.series], mu=mu[id.series], phi=phi[id.series], power=power) } if (any(id.interp)) { dim( grid ) <- c( nx+1, np+1 ) rho <- dtweedie.interp(grid, np=np, nx=nx, xix.lo=xix.lo, xix.hi=xix.hi, p.lo=p.lo, p.hi=p.hi, power=power, xix=xix[id.interp] ) dev <- tweedie.dev(power = power, mu = mu[id.interp], y = y[id.interp]) front <- rho/(y[id.interp] * sqrt(2 * pi * xi[id.interp])) density[id.interp] <- front * exp(-1/(2 * phi[id.interp]) * dev) } density } dtweedie.saddle <- function(y, xi=NULL, mu, phi, eps=1/6, power=NULL) { if ( is.null(power) & is.null(xi) ) stop("Either xi or power must be given\n") xi.notation <- TRUE if ( is.null(power) ) { power <- xi } else { xi.notation <- FALSE } if ( is.null(xi) ) { xi.notation <- FALSE xi <- power } if ( xi != power ) { cat("Different values for xi and power given; the value of xi used.\n") power <- xi } index.par <- ifelse( xi.notation, "xi","p") index.par.long <- ifelse( xi.notation, "xi","power") if( any(phi <= 0) ) stop("phi must be positive.") if( (power >=1) & any(y < 0)) stop("y must be a non-negative vector.") if( any(mu <= 0) ) stop("mu must be positive.") if ( length(mu)==1 ) mu <- array( dim=length(y), mu ) if ( length(phi)==1 ) phi <- array( dim=length(y), phi ) y.eps <- y if (power<2) y.eps <- y + eps y0 <- (y == 0) density <- y dev <- tweedie.dev(y=y, mu=mu, power=power) density <- (2*pi*phi*y.eps^power)^(-1/2) * exp( -dev/(2*phi) ) if ( any(y==0) ){ if((power >= 1) && (power < 2)) { lambda <- mu[y0]^(2 - power)/(phi[y0] * (2 - power)) density[y0] <- exp( -lambda) } else { density[y0] <- 0 } } density } dtweedie.series.bigp <- function(power, y, mu, phi){ if ( power<2) stop("power must be greater than 2.") if ( any(phi<=0) ) stop("phi must be positive.") if ( any(y<=0) ) stop("y must be a strictly positive vector.") if ( any(mu<=0) ) stop("mu must be positive.") if ( length(mu)>1) { if ( length(mu)!=length(y) ) stop("mu must be scalar, or the same length as y.") } else { mu <- array( dim=length(y), mu ) } if ( length(phi)>1) { if ( length(phi)!=length(y) ) stop("phi must be scalar, or the same length as y.") } else { phi <- array( dim=length(y), phi ) } result <- dtweedie.logv.bigp(power=power, y=y, phi=phi) logv <- result$logv theta <- mu^(1-power) / ( 1 - power ) kappa <- mu^(2-power) / ( 2 - power ) logfnew <- (y*theta-kappa)/phi - log( pi*y) + logv f <- exp( logfnew ) list(density=f, logv=logv, lo=result$lo, hi=result$hi ) } dtweedie.series <- function(y, power, mu, phi){ if ( power<1) stop("power must be between 1 and 2.") if ( any(phi<=0) ) stop("phi must be positive.") if ( any(y<0) ) stop("y must be a non-negative vector.") if ( any(mu<=0) ) stop("mu must be positive.") if ( length(mu)>1) { if ( length(mu)!=length(y) ) stop("mu must be scalar, or the same length as y.") } else { mu <- array( dim = length(y), mu ) } if ( length(phi)>1) { if ( length(phi)!=length(y) ) stop("phi must be scalar, or the same length as y.") } else { phi <- array( dim = length(y), phi ) } y0 <- (y == 0 ) yp <- ( y!=0 ) density <- array( dim=length(y)) if ( (power == 2) | (power==1) ) { if ( power == 2 ){ density <- dgamma( y, shape=1/phi, rate=1/(phi * mu ) ) } if ( (power == 1) ){ density <- dpois(x=y/phi, lambda=mu/phi ) / phi if ( !all(phi==1)){ warnings("The density computations when phi=1 may be subject to errors using floating-point arithmetic\n") } } } else{ if ( any(y==0) ) { if ( power>2 ) { density[y0] <- 0*y[y0] } if ( ( power>1) && (power<2) ) { lambda <- mu[y0]^(2-power) / ( phi[y0] * (2-power) ) density[y0] <- exp( -lambda ) } } if ( any( y!=0 ) ) { if ( power > 2 ) { density[yp] <- dtweedie.series.bigp( power=power,mu=mu[yp], y=y[yp], phi=phi[yp])$density } if ( ( power > 1 ) && ( power < 2 ) ) { density[yp] <- dtweedie.series.smallp( power=power,mu=mu[yp], y=y[yp], phi=phi[yp])$density } } } density } dtweedie.series.smallp <- function(power, y, mu, phi){ if ( power<1) stop("power must be between 1 and 2.") if ( power>2) stop("power must be between 1 and 2.") if ( any(phi<=0) ) stop("phi must be positive.") if ( any(y<=0) & (power>=2) ) stop("y must be a strictly positive vector.") if ( any(y<0) & (power>1) & (power < 2) ) stop("y must be a non-negative vector.") if ( any(mu<=0) ) stop("mu must be positive.") if ( length(mu)>1) { if ( length(mu)!=length(y) ) stop("mu must be scalar, or the same length as y.") } else { mu <- array( dim = length(y), mu ) } if ( length(phi)>1) { if ( length(phi)!=length(y) ) stop("phi must be scalar, or the same length as y.") } else { phi <- array( dim=length(y), phi ) } result <- dtweedie.logw.smallp( y=y, power=power, phi=phi) logw <- result$logw tau <- phi * (power-1) * mu^( power-1 ) lambda <- mu^( 2-power ) / ( phi * ( 2-power ) ) logf <- -y/tau - lambda - log(y) + logw f <- exp( logf ) list(density=f, logw=logw, hi=result$hi, lo=result$lo) } ptweedie <- function(q, xi=NULL, mu, phi, power=NULL) { if ( is.null(power) & is.null(xi) ) stop("Either xi or power must be given\n") xi.notation <- TRUE if ( is.null(power) ) { power <- xi } else { xi.notation <- FALSE } if ( is.null(xi) ) { xi.notation <- FALSE xi <- power } if ( xi != power ) { cat("Different values for xi and power given; the value of xi used.\n") power <- xi } index.par <- ifelse( xi.notation, "xi","p") index.par.long <- ifelse( xi.notation, "xi","power") y <- q y.negative <- (y<0) y.original <- y y <- y[ !y.negative ] if ( any(power<1) ) stop( paste(index.par.long, "must be greater than 1.\n") ) if ( any(phi<=0) ) stop("phi must be positive.") if ( any(mu<=0) ) stop("mu must be positive.\n") if ( length(mu)>1) { if ( length(mu)!=length(y.original) ) stop("mu must be scalar, or the same length as y.\n") } else { mu <- array( dim=length(y.original), mu ) } mu.original <- mu mu <- mu[ !y.negative ] if ( length(phi)>1) { if ( length(phi)!=length(y.original) ) stop("phi must be scalar, or the same length as y.\n") } else { phi <- array( dim=length(y.original), phi ) } phi.original <- phi phi <- phi[ !y.negative ] cdf.positives <- array( dim=length(y) ) cdf <- y.original if ( power==2 ) { f <- pgamma( rate=1/(phi*mu), shape=1/phi, q=y ) } if ( power==0) { f <- pnorm( mean=mu, sd=sqrt(phi), q=y ) } if ( power==1) { f <- ppois(q=y, lambda=mu/phi ) } if ( power> 2 ) { f <- ptweedie.inversion(power=power, mu=mu, q=y, phi=phi) } if ( (power>1) & (power<2) ) { if ( power <1.999) { f <- ptweedie.series(power=power, q=y, mu=mu, phi=phi ) } else{ f <- ptweedie.inversion( power=power, q=y, mu=mu, phi=phi) } } cdf[ !y.negative ] <- f cdf[ y.negative ] <- 0 cdf[ is.infinite( cdf ) ] <- 1 cdf[ cdf>1 ] <- 1 return(cdf) } ptweedie.series <- function(q, power, mu, phi) { y <- q if ( power<1) stop("power must be between 1 and 2.\n") if ( power>2) stop("power must be between 1 and 2.\n") if ( any(phi<= 0)) stop("phi must be positive.\n") if ( any(y<0) ) stop("y must be a non-negative vector.\n") if ( any(mu<=0) ) stop("mu must be positive.\n") if ( length(mu)>1) { if ( length(mu)!=length(y) ) stop("mu must be scalar, or the same length as y.\n") } else { mu <- array( dim=length(y), mu ) } if ( length(phi)>1) { if ( length(phi)!=length(y) ) stop("phi must be scalar, or the same length as y.\n") } else { phi <- array( dim=length(y), phi ) } p <- power lambda <- mu^(2-p) / ( phi * (2-p) ) tau <- phi * (p-1) * mu^( p-1 ) alpha <- (2-p) / ( 1-p ) drop <- 39 lambda <- max(lambda ) logfmax <- -log(lambda)/2 estlogf <- logfmax N <- max( lambda ) while ( ( estlogf > (logfmax - drop) ) & ( N > 1 ) ) { N <- max(1, N - 2) estlogf <- -lambda + N * ( log(lambda) - log(N) + 1 ) - log(N)/2 } lo.N <- max(1, floor(N) ) lambda <- mu^(2-p) / ( phi * (2-p) ) lambda <- min( lambda ) logfmax <- -log(lambda)/2 estlogf <- logfmax N <- max( lambda ) while ( estlogf > (logfmax - drop) ) { N <- N + 1 estlogf <- -lambda + N * ( log(lambda) - log(N) + 1 ) - log(N)/2 } hi.N <- max( ceiling(N) ) cdf <- array( dim=length(y), 0 ) lambda <- mu^(2-p) / ( phi * (2-p) ) tau <- phi * (p-1) * mu^( p-1 ) alpha <- (2-p) / ( 1-p ) for (N in (lo.N:hi.N)) { pois.den <- dpois( N, lambda) incgamma.den <- pchisq(2*y/tau, -2*alpha*N ) cdf <- cdf + pois.den * incgamma.den } cdf <- cdf + exp( -lambda ) its <- hi.N - lo.N + 1 cdf } stored.grids <- function(power){ if ( (power>1.5) && ( power<2) ) { grid <- c(0.619552027046892, -1.99653020187375, -8.41322974185725, -36.5410153849965, -155.674714429765, -616.623539139617, -2200.89580607229, -6980.89597754589, -19605.6031284706, -48857.4648924699, -108604.369946264, -216832.50696005, -391832.053251182, -646019.900543419, -979606.689484813, -1377088.40156071, -1808605.4504829, -2236021.71690435, -2621471.84422418, -2935291.72910167, -3160933.2895598, -3296019.98597692, -3350191.70672175, -3341188.71720722, -3290375.55904795, -3256251.04779701, 0.55083671442337, 2.79545515380255, 6.43661784251532, 0.0593276289419893, -88.7776267014812, -592.599945216246, -2715.1932676716, -9995.06110621652, -31004.2502694815, -82973.5646780374, -194644.329882664, -405395.126655972, -758085.608783886, -1285893.38788744, -1997446.83841278, -2866954.62503587, -3834679.24827227, -4818512.83125468, -5732403.6885235, -6504847.15089854, -7091578.60837028, -7479819.10447519, -7684747.8312771, -7739400.44941064, -7651256.22196861, -10780871.374931, -0.296443816521139, -0.740400436722078, 13.5437223703132, 132.570369303337, 739.235236905108, 3222.27476321793, 11883.2578358337, 37985.4069102717, 106385.512302156, 263186.759184411, 579709.939191383, 1146196.24715222, 2051166.63217944, 3349844.60761646, 5033457.4421439, 7014240.88296282, 9135328.47624901, 11203377.8720252, 13031732.9028836, 14478751.8662425, 15470353.6878961, 16004512.3987063, 16147291.8371304, 16087058.36173, 17256553.6861257, -90196970.3516856, 0.212508829604868, -1.25345600957563, -33.6344002424504, -229.413615894842, -961.2927083918, -3048.22512983433, -7865.94887016698, -16619.1472772416, -27426.4597246056, -29170.0602809743, 6910.62618199269, 133529.230915424, 425031.289018802, 962079.672230075, 1805724.1265787, 2970428.54627254, 4407924.65252939, 6009208.15039934, 7623903.3639327, 9090617.14760774, 10273366.8474699, 11112760.9034168, 11783847.5998635, 13967546.0605232, 40580571.9968577, -1800585369.9502, -0.117096128441307, 3.86814002139823, 52.1297859521411, 231.959187763769, 297.55942409085, -2028.44588042558, -16035.7900988595, -69727.4207742442, -231001.098781009, -634711.96272568, -1500867.48368527, -3120952.565006, -5795192.65274283, -9728268.26803975, -14923011.3657198, -21127733.2735346, -27877621.6155107, -34629531.4516162, -40942366.5228353, -46618585.271072, -51693745.2168584, -56076194.3321918, -57846478.5394169, -39555239.6466308, 244583291.9647, -19387464175.4177, -0.0251908119117217, -6.97888536964718, -57.2053622635109, -7.59149018702844, 1940.74883722613, 13776.3994355061, 59688.9506688118, 198967.267063524, 554664.181209208, 1342679.76760535, 2880718.85057692, 5556233.09746906, 9746453.11803942, 15705233.9839578, 23444873.7106245, 32630213.4195304, 42473186.150293, 51604301.4143779, 57950838.5609574, 58814629.2970318, 51670532.360853, 37073253.8293895, 31112689.7825927, 166639899.499491, 2285908471.65836, -142300999941.473, 0.239462332088407, 9.7006247266445, 24.6796376740648, -621.977746808668, -6061.14667092794, -28846.5231563469, -92974.9043842097, -229420.907671922, -455750.587752974, -720917.683643727, -798268.858897086, -142553.959799974, 2227938.90487962, 7722331.28668364, 17902944.5216494, 33799508.0633365, 54727373.5621622, 76699837.6804652, 90928852.1062459, 83791368.1450994, 41369883.2049391, -33644574.3006822, -51466205.6969009, 728822186.855893, 12613725489.8081, -779054232341.425, -0.531163176360929, -9.62133388925249, 83.5858879354598, 1749.74435647472, 10388.878276731, 29739.3251394829, 27228.8352302813, -137459.132798184, -797275.579291472, -2522656.85139472, -6002370.79311501, -11564879.4570243, -18293067.3260108, -23137574.7865943, -20926214.0959888, -6386212.74814566, 20947334.9587757, 49084025.5298454, 45674483.7892477, -43357709.595878, -274284042.960864, -630264236.584573, -707988499.827136, 2768071791.46789, 55323323631.9224, -3346981844559.16, 0.843274592042774, 1.85634928776026, -303.233463115877, -2964.77206695662, -8035.18601516459, 26623.9135533587, 296203.748735318, 1300209.48867761, 4002931.81502221, 10154091.5309971, 23011763.2727463, 48484290.5041288, 96405481.1482104, 181157702.817844, 319621265.640707, 523128884.608782, 780656497.356576, 1034030709.78307, 1153235261.31943, 934435310.723166, 172736683.699636, -1059296923.94426, -1259513524.21048, 11540211151.7843, 202982012848.938, -11765811129127.3, -0.971763767126055, 20.7278527481909, 599.216068887268, 2508.62108313741, -15799.3976275259, -190836.337882638, -873333.216664437, -2412364.04114457, -4372947.5863571, -4280053.82275206, 4581124.92368874, 37692021.4517723, 125690565.165227, 317577060.569135, 672918414.800248, 1235540175.83018, 1981789079.14886, 2741889556.9801, 3118003228.13883, 2478792089.71153, 201910662.627241, -3440015764.71965, -3701941985.52277, 36624484882.9033, 631340208742.919, -35016783929182, 0.465205915130579, -62.4878848976034, -713.029716677298, 3463.89852940917, 76620.1536606951, 425050.797698706, 1098749.49892239, 830042.192958006, -3609253.07165929, -14019647.104919, -22008231.8565183, 2879363.57573307, 127763068.732814, 471678257.276824, 1199156009.13846, 2449442490.02104, 4177372240.464, 5937970631.74612, 6701001745.26596, 4850964750.68393, -1252857624.6872, -11008101341.7195, -11613916592.1703, 99208893729.6641, 1723996766015.73, -90686535774445.6, 1.35055309427014, 109.632652005803, -15.551388984273, -19110.1792293505, -151248.805892165, -326520.136900253, 1323004.57105885, 11263794.9628682, 40182893.7043995, 99473459.937714, 213007606.45782, 462071289.943091, 1036322096.46886, 2233228139.73472, 4392262214.22542, 7778537815.0104, 12326926829.6142, 17068944624.2195, 19342475640.096, 14633223559.5287, -1238504576.84042, -24780929364.4666, -19774890981.5309, 267278604099.047, 4262049717379.08, -209109831966511, -4.90254965773785, -106.16559587471, 2473.32253262609, 39971.9971896279, 105932.466006557, -940508.183476386, -7972770.02131952, -26249511.2854385, -38016600.0226778, 28952783.4114192, 296603175.897931, 921440155.664983, 2211825458.1676, 4873052470.30472, 9959226055.61093, 18095018536.2409, 28333607390.4192, 37736361000.0061, 42033152625.5253, 35930405200.4038, 11674689966.7752, -38568497842.5504, -74929319913.8016, 440819854424.984, 9367147142753.47, -436516234054193, 9.21654006976202, -53.4970979572424, -6659.50032530198, -38474.8203617517, 310488.103734294, 3845463.04045484, 14525744.8285833, 14191442.4974447, -71954549.6112557, -299246254.252719, -416148031.634689, 348026958.617362, 2939406987.4056, 7971636742.33878, 16399104338.5733, 31135394894.2163, 55589206993.0977, 84773664582.7313, 93124980530.7634, 37204300253.4301, -100809540619.219, -211523088540.365, 124648961402.01, 2454987217464.61, 23136880987249.1, -833737986871973, -10.6044400547848, 457.68066225078, 9572.011521514, -37331.5997372033, -1178378.58119297, -5650741.83842416, 1857995.74642602, 109904372.796869, 458568718.1367, 915187897.2047, 811019172.09732, 92558199.5987161, 1998081069.83546, 13128498122.3811, 36243363277.9486, 61424177454.5951, 73667085976.0338, 86031421495.4807, 166947042118.509, 384532819727.471, 591661667761.69, 78943846328.2111, -2527580012466.73, -6916515802327.55, 21469457257461.8, -1.4991232719638e+015, 3.17664940253603, -1029.70926107305, -5007.37894552437, 206353.644207492, 1762192.60826409, -794281.059186644, -59885497.7612809, -267968880.144224, -316522642.887633, 1411438830.94685, 7247583561.26104, 15913831315.8407, 19845848486.0143, 17971388397.4505, 42579150295.9815, 155992918698.532, 356278537036.23, 414110925668.561, -161408422221.427, -1685255831372.5, -3094542673159.69, -53087024607.4896, 16845038275179.6, 63212141053606.3, 202776604073488, -2.43199634134677e+015 ) } if ( (power>1.4) && (power<=1.5) ) { grid <- c(0.52272502143588, -2.37970276267028, -4.50105382434541, 2.01559335438892, 26.7080425402173, 53.1211365756307, 56.5864772151065, 83.6551659699119, 218.128756577377, 414.067827117006, 586.302276594556, 925.084114296478, 1629.94052297329, 2248.04335981282, 2325.84860904575, 3056.70827313074, 5936.34902374365, 7512.68000065931, -494.046409795432, -14632.889451627, 2555.32119471521, 103793.057384242, 239732.321730146, 57045.261742077, -1151133.66663602, -3657091.74594141, 0.775913134802564, 4.5833536253197, -6.51027140852265, -110.820592889565, -302.27161508231, -170.893952600532, 597.013908647114, 1036.46479866453, 362.328670850611, 1143.67350470972, 5427.58842419152, 7481.1938127866, 3916.80746756334, 10919.4206700089, 37992.348893648, 35578.2283061684, -48344.4290328334, -70796.935934355, 307989.153472163, 965852.855353596, 280146.00264422, -4462973.64355295, -12247413.3846698, -7748551.19364459, 47938914.6705982, 196377667.248434, -1.15101738661085, -3.82183996501946, 79.2652077448879, 447.712841790259, 183.895349671323, -4007.2875514913, -11554.3202406694, -11119.3558179111, -3321.49044452746, -24694.4788687522, -79648.9320167266, -73209.1251877769, -2021.74771903288, -154892.733325762, -580785.160917161, -291546.650641339, 1473778.38160541, 1519601.02525224, -7163122.30868759, -21848349.4729583, -6440961.41109336, 106830967.379257, 319671808.797567, 306212673.299803, -944079002.967604, -4580578568.46053, 2.02189579962441, -10.0772337050698, -303.024532759887, -704.351532760201, 4973.76150820855, 26142.4723427423, 31405.9126438149, -53806.275525627, -149359.118457136, 16092.9360420975, 206115.379917112, -509055.061292639, -1505746.99603438, 440398.507094803, 4047882.74286314, -3759763.21945456, -28362810.7587706, -20497981.7777362, 115049844.871681, 326041126.501133, 57527117.4877412, -1804448247.28013, -5607533850.24561, -6742827026.7323, 11967660233.3111, 137394861109.439, -2.64873193579361, 68.3499218097747, 718.463817413271, -1571.25771413107, -28554.9807730767, -66684.6392549349, 112682.126175196, 683976.718235879, 693804.971402528, -977072.064073228, -991329.886033511, 5636906.19208592, 7342984.59011112, -20840829.3577062, -49193222.8209866, 42836025.7323296, 238149829.126778, -55474045.455026, -1800027569.31187, -4174218574.22397, -583545105.082449, 22566852342.6238, 72170080841.219, 99488552940.42, -95607027136.1, 2344789183218.79, 0.265173429404147, -224.175784222991, -799.783571636822, 14465.1992899084, 83422.4433648738, -33747.4954822623, -1182034.20503755, -2562724.00673901, 1327150.31866679, 9096932.76169983, -8147841.7628163, -67997474.423206, -84381101.1698542, 1167786.45920554, -290262963.143079, -1966559598.21217, -4495910335.48392, -2778049317.5256, 9570853857.51408, 20045770280.4768, -39053969152.1498, -304481715916.404, -861160659351.957, -1248601137158.62, 1149200212746.68, 152670892302636, 12.5290983345227, 499.005760177699, -1884.50478980683, -52292.5606105439, -102007.716028595, 974234.695542423, 4265255.61960463, -518423.706368479, -37847638.3377804, -94994579.0086004, -141430225.033227, -554077045.707268, -2621090414.90387, -7585723619.93884, -14489129113.1742, -23451598610.8142, -52316888100.9028, -154472187133.545, -386170628207.441, -654732126120.445, -458996711714.355, 1207352849976.42, 5003368112913.01, 8162669646404.62, 10014475965674.9, 4.30099151054367e+015, -49.3184821796504, -659.190055418151, 13760.6854640598, 117281.576980704, -286688.694056081, -4514692.65697881, -11833557.5599173, -13306480.8841683, -177569989.290577, -1501492416.77122, -6595461136.24562, -20356400466.8674, -54254546277.6263, -140855615592.576, -350477425656.988, -772978728940.34, -1445553693725.57, -2349378847823.61, -3825995343158.07, -7818306940077.94, -19731827478910.9, -48657002077699.6, -98504762092397.2, -121989778390269, 454260903660862, 1.09114573020388e+017, 123.410260081819, -197.403953092516, -40101.3176876088, -52951.2659905612, 2144698.8673286, 1739654.2351533, -141996380.772718, -1289342757.59316, -7156566175.76133, -32325427550.7015, -126169094996.878, -419281859332.1, -1174950784066.64, -2822039940568, -6037668177832.46, -12096555834995.5, -23612374044250.6, -45167080717259.5, -82416904456952.1, -138051430229770, -204193982413479, -251800695384389, -208815124278779, 288829117097310, 9.54395313223954e+015, 2.24604455857544e+018, -210.739560523616, 5859.20505890453, 140328.667144469, 278664.828817554, -10534350.9218635, -206287796.083656, -2616524539.48725, -22630598386.6276, -138968736141.657, -644711350455.876, -2387358710732.05, -7357036386363.44, -19420572655537.7, -44732883747785.5, -91030332840422.6, -165757883253373, -276320429460859, -441737780262524, -728934745124743, -1.31361122221926e+015, -2.49168560525055e+015, -4.31067214964099e+015, -4.70964682712407e+015, 9.73624002713054e+015, 2.04847011281059e+017, 4.09466705815479e+019, 278.504340481087, 1227.95202954615, 609240.949141676, 8398669.53224352, -122964349.27965, -4120134389.77069, -51789735957.0207, -413475908382.113, -2400754425461.51, -10787324023927.9, -38888467331936.8, -115207923139742, -285196579464986, -596235892662438, -1.05638430488185e+015, -1.57370592252881e+015, -1.90815996658209e+015, -1.68347182504384e+015, -470951786697564, 2.27515760918722e+015, 8.65004127903261e+015, 2.98774925717651e+016, 1.1577555109681e+017, 4.88806957320561e+017, 3.5377171188424e+018, 6.72365027054536e+020, 1302.48019924681, 259560.540734449, 8128828.4793897, 25490162.9304377, -3094217693.64666, -72611077275.6044, -860362188931.341, -6697568428379.51, -37943648370441.8, -165469263635562, -574639366352108, -1.61975362474037e+015, -3.72208462865178e+015, -6.84085667350701e+015, -9.24907873336246e+015, -5.63230537269553e+015, 1.49215241150529e+016, 7.00536184155271e+016, 1.84186220493898e+017, 3.92386129591378e+017, 7.72461936211387e+017, 1.59366458882732e+018, 3.85548874292868e+018, 1.14456878085735e+019, 5.75359458832251e+019, 1.02900591814312e+022, 13286.5118009426, 2546171.88500447, 80098454.5079186, -575521939.430233, -60032299026.9678, -1202606432540.75, -13452077960416.8, -101362184753825, -559725106993583, -2.37495806056525e+015, -7.95202306660676e+015, -2.11888175159205e+016, -4.40669841594096e+016, -6.47957726367261e+016, -3.24083222588877e+016, 1.83291719462516e+017, 8.40260894845939e+017, 2.37093537889737e+018, 5.4317336077623e+018, 1.10375221140593e+019, 2.11436475962051e+019, 4.09291799720987e+019, 8.65527998606027e+019, 2.14451316905219e+020, 8.54313682198285e+020, 1.49594792908599e+023, 203942.274027855, 26468105.5883892, 462332761.175384, -25284736506.3552, -1094062620100.06, -19258710333321.7, -203938699172942, -1.48348319911623e+015, -7.94195851466556e+015, -3.25428940850727e+016, -1.03863076023785e+017, -2.5561068913892e+017, -4.48713805903153e+017, -3.40534549726198e+017, 1.18853947957601e+018, 6.7824313161356e+018, 2.1555870304696e+019, 5.41093701368525e+019, 1.17698643723088e+020, 2.32697280763342e+020, 4.35104831467264e+020, 8.06863397336643e+020, 1.57397090527128e+021, 3.47588746977727e+021, 1.24037541169807e+022, 2.082483901283e+024, 2425722.75874371, 168829967.462896, -6124967796.72205, -684794159351.057, -20099159890195.9, -312088468164664, -3.08510744950999e+015, -2.12874367646947e+016, -1.08016089267394e+017, -4.13278775037366e+017, -1.18371276048634e+018, -2.32798990878473e+018, -1.62965158901462e+018, 9.87177193402913e+018, 5.68548659646942e+019, 1.93636952907764e+020, 5.21964303390126e+020, 1.21047675802231e+021, 2.51556116094745e+021, 4.81371375246211e+021, 8.68998842506269e+021, 1.52222181674142e+022, 2.68233759254245e+022, 5.09349061051762e+022, 1.81405407714602e+023, 2.73961792646156e+025, 18727182.1067274, -3856365344.26257, -418983873891.394, -17333732195464.3, -378965106591800, -5.04766648385378e+015, -4.45572615875926e+016, -2.73473979347584e+017, -1.17835431873962e+018, -3.3155488196652e+018, -3.27497940087677e+018, 2.43638130489573e+019, 1.80581815169857e+020, 7.62727068811908e+020, 2.48326825663032e+021, 6.79744241369944e+021, 1.63174880753305e+022, 3.52624193788357e+022, 6.98893205641466e+022, 1.28897681504313e+023, 2.23908254454823e+023, 3.69904872503628e+023, 5.82169304070961e+023, 8.85953055589028e+023, 3.25024671656323e+024, 3.52294080805527e+026 ) } if ( (power>1.3) && (power<=1.4) ) { grid <- c(0.897713960567798, -0.47040810564112, -1.43992915137813, -5.23984219701719, -15.0352102570745, -13.4481420654518, 87.0680569141198, 319.051289202574, -18.4506632683117, -2319.89441748794, -3118.4617838911, 13713.8934655348, 46257.8044960381, -39135.1988030987, -498172.85786169, -811816.300243115, 2568821.88452726, 15957456.1105785, 30538856.3230172, -38265076.8403202, -445019432.131326, -1535324610.183, -2685571226.57687, 1844994500.64329, 33799853247.9255, 148548951511.487, -0.0411924170235428, -0.280923312875219, 1.85631524787589, 35.4548526987637, 182.842029466341, 186.535484241998, -1885.62536085722, -7050.5577782269, 3914.68802807428, 72775.307234475, 81966.2319220996, -546556.025881189, -1736496.33116182, 2018406.08511184, 22431395.8530421, 38371009.900033, -121432141.656335, -823775133.379304, -1829474775.72627, 1064685431.79, 23026018217.409, 92967101827.417, 209244156825.792, 108176144299.254, -1494179320052.26, -8820798547246.88, 0.335385258677322, 4.50345806518915, 10.608217004451, -198.77147800601, -1523.07566142071, -1500.09456259484, 23139.2326521245, 83055.2779182394, -113519.71875397, -1189391.83133768, -880016.414378636, 11594447.2485996, 32944023.5477499, -57906962.3154716, -530418894.202135, -898586763.98809, 3160587598.72435, 22164670922.5832, 54438271034.5952, -7405444239.37665, -615716148031.174, -2843896714598.56, -7637460249121.44, -9706633868213.88, 27251052973973.8, 220225910667289, -0.792263177969423, -21.2045420582639, -91.4401569487452, 1101.7598394385, 10118.5419251243, 5726.65994681374, -215851.229167288, -669893.217282033, 1905585.55556376, 13591395.7207961, 2340171.0149139, -169616173.653862, -405049039.820392, 1178374485.90503, 8651034672.11598, 13041124217.199, -63654520224.3913, -427730047807.293, -1124157151846.8, -274204341784.276, 11179066056046.7, 58371933813335.8, 179156520740047, 326715205946158, -110966263637577, -7.30089254118998e+015, 1.98088010280869, 88.7205095644789, 451.25451837431, -6238.38424401488, -56974.0505836968, 23643.1529279025, 1692687.00100628, 4116879.50794305, -20945171.4628138, -107415978.096988, 132557253.129546, 2070091722.93035, 3657706483.5209, -19429026052.7314, -118401385300.158, -176359135255.114, 835686139242.973, 5703797966574.08, 14884329900045.1, -552681886101.364, -188818869070189, -1.00878535432539e+015, -3.36911029646898e+015, -7.50185785257662e+015, -5.12493009299165e+015, -1.75430627966896e+017, -6.01808947590792, -358.631844263425, -1646.82372824411, 35116.9756113627, 280756.645438638, -507546.635114422, -10020156.6805911, -4945705.75502759, 272336260.80756, 1104711765.97144, -568290834.123902, -14088675880.1234, -12950574108.0922, 210192537963.341, 859065438623.435, -747462235105.65, -20708041247987.7, -104755203973610, -298469477349205, -363165453972938, 1.27630293527266e+015, 1.00317977358032e+016, 3.80411831558389e+016, 9.62493626170414e+016, 1.15786608399486e+017, -1.03118547220491e+019, 22.952229421138, 1405.69142020857, 3967.15419654569, -181648.014611196, -997642.253786536, 8248812.38538573, 91248769.6906494, 269940828.639906, 457556637.301566, 7822037651.92945, 72574078872.7822, 285799266923.8, 186491437806.251, -3589451347123.35, -20096636648266.9, -55011152917522.8, -75141293052079.6, -68199466557531.5, -1.03828417550274e+015, -1.01420393701492e+016, -5.89973268530095e+016, -2.54452415456125e+017, -8.83842320399224e+017, -2.50090967000384e+018, -5.75293047799529e+018, -3.0288264126223e+020, -99.9878158346858, -5210.49423696155, 4761.55706178008, 1014983.38061518, 6678222.58484158, 18138060.5674288, 523215144.725566, 8388725586.42611, 65308743699.6125, 317410830648.742, 1134002934158.94, 3498250050884.25, 9275186197008.01, 5168202521004.28, -177786455579982, -1.541966007589e+015, -8.17352077554882e+015, -3.26417185677986e+016, -1.04838259404326e+017, -2.78718323122462e+017, -6.27055158391557e+017, -1.27711947908717e+018, -2.98493427948817e+018, -1.08753143842026e+019, -6.81489155059389e+019, -7.09103794715832e+021, 445.7016632619, 18118.8922546317, -59575.916393475, -1546683.20227499, 66577416.4833025, 1581334778.6952, 18270427567.616, 159620726230.676, 1179819333919.81, 7136701581206.33, 33141064579502.4, 108828204724357, 187282794130913, -416027319900596, -5.25364928574569e+015, -2.85113559834757e+016, -1.22522620595716e+017, -4.79778248465207e+017, -1.80908798010203e+018, -6.6584955339892e+018, -2.38169794720652e+019, -8.23438092498963e+019, -2.75142145405642e+020, -8.98926942417278e+020, -3.30676128118007e+021, -1.39506678075182e+023, -1872.21347826633, -46283.567888389, 1588637.59435705, 58147592.3245715, 1251197774.35208, 23222717220.2576, 321130227736.287, 3181320366971.15, 23454746025596.1, 134242541498815, 608809039493410, 2.13579959983314e+015, 4.94319739507647e+015, -642441041478663, -8.45372610438658e+016, -5.78902547364894e+017, -2.75526324472539e+018, -1.0840919422109e+019, -3.76905193553513e+019, -1.20991644215191e+020, -3.73703358932369e+020, -1.16027081029794e+021, -3.77617115231973e+021, -1.34025753565226e+022, -5.99737264585084e+022, -2.43233695351887e+024, 7556.65517982232, 215106.469973897, 8930450.66728664, 660119294.92026, 21206807863.5722, 398339343315.102, 5190034087210.52, 50568961091221.7, 380791925478234, 2.24722396598682e+015, 1.03784283558222e+016, 3.62656117204867e+016, 8.1707753418827e+016, -1.42136634601931e+016, -1.3434681243398e+018, -8.98526482243229e+018, -4.27270839102888e+019, -1.72138580695355e+020, -6.27800609966133e+020, -2.15417480180286e+021, -7.16024766698911e+021, -2.36639068137229e+022, -7.98151888085422e+022, -2.8511432263888e+023, -1.2325305554076e+024, -4.09104391632781e+025, -22430.9879586296, 1389052.54923454, 207349675.587708, 10195666599.2626, 296796553336.983, 5643928776333.53, 74892895567209.3, 732432041468099, 5.49414382342695e+015, 3.23706890283122e+016, 1.50367841248151e+017, 5.32587551175168e+017, 1.22108658524644e+018, -2.40776349600474e+017, -2.10569831857027e+019, -1.42079098762757e+020, -6.7576612032549e+020, -2.69444367649145e+021, -9.63469651591202e+021, -3.22501888704947e+022, -1.04839963336164e+023, -3.43153835335537e+023, -1.17225158559623e+024, -4.36196591662948e+024, -1.98653397314499e+025, -6.88448478890627e+026, 113277.793293176, 18517911.460342, 2450455304.46694, 133732757996.437, 3939467103342.68, 73996025955050, 973922420426797, 9.51229943083948e+015, 7.14628383239514e+016, 4.211386770595e+017, 1.94758654233723e+018, 6.79901662283943e+018, 1.47957074222858e+019, -9.95844999508158e+018, -3.10086406715516e+020, -2.02215387815306e+021, -9.57663684541226e+021, -3.84223024829774e+022, -1.39073983190476e+023, -4.72891356250685e+023, -1.5634530908607e+024, -5.19829965024042e+024, -1.79911666610008e+025, -6.76349804228038e+025, -3.07798865328979e+026, -1.20960393431303e+028, 262418.415973756, 250096978.583001, 31172920464.8184, 1642871008200.88, 48188034311242.9, 904074332252990, 1.18607968360778e+016, 1.15420861185206e+017, 8.6517873709592e+017, 5.09510325906077e+018, 2.3530063632105e+019, 8.13726112964088e+019, 1.67367130237733e+020, -2.20436191917162e+020, -4.39432362856901e+021, -2.78056375326784e+022, -1.30625919423068e+023, -5.22563427007622e+023, -1.88958355853632e+024, -6.42962247956913e+024, -2.13314085393945e+025, -7.14689344739656e+025, -2.50319784231518e+026, -9.53595733424881e+026, -4.39966873221631e+027, -2.25020366975876e+029, 5301456.42169776, 2874720507.00564, 367880928787.512, 19643816240801.3, 579437137354404, 1.09310772186823e+016, 1.44543936097009e+017, 1.42253933395633e+018, 1.08266855728833e+019, 6.5042335654303e+019, 3.08534291740846e+020, 1.11258933788151e+021, 2.54876590864897e+021, -1.16381734289056e+021, -5.15203133618314e+022, -3.49775856982996e+023, -1.70121626254362e+024, -6.97428046783589e+024, -2.57225393421212e+025, -8.89902171064717e+025, -2.99264095778419e+026, -1.01251337109722e+027, -3.56015066420899e+027, -1.34824053722105e+028, -6.3098335548906e+028, -4.46843594631534e+030, 51969153.4318949, 37970527243.0619, 5016911719944.11, 280591474635532, 8.66499271311873e+015, 1.71435134742076e+017, 2.38968675963669e+018, 2.4977218053678e+019, 2.03817113129374e+020, 1.33075091271939e+021, 7.03087446839742e+021, 2.99159383585797e+022, 9.87178121143328e+022, 2.15294869859065e+023, -1.70137308294605e+022, -3.20794310177486e+024, -2.12464634368172e+025, -9.96697641227305e+025, -3.96959854025141e+026, -1.44146335908902e+027, -5.00266337924097e+027, -1.73044335238055e+028, -6.20780217337989e+028, -2.41346445464175e+029, -1.2385425771224e+030, -9.58840383704782e+031 ) } if ( (power>1.2) && (power<=1.3) ) { grid <- c(0.959582735112296, -0.196662499936635, -0.301224766165899, -0.502046137683381, -1.5895374772965, -7.89601110410117, 11.3307142810595, 762.363953933895, 7332.01631877668, 29138.4582145098, -76339.1153989754, -1796970.2346991, -11726396.1851003, -33450515.2165733, 98652180.9916008, 1769595410.03626, 11618980670.3263, 49132193375.8717, 121727250506.162, -108084821334.712, -3366026267162.29, -24251373433568, -125561039968382, -532052675965940, -1.87778088137625e+015, -5.20253340562286e+015, -0.0117920451301422, -0.0865135588789834, -0.305001740311124, 0.805339553985313, 45.1127229820372, 543.393289708699, 2052.1244600063, -23479.8112741772, -378633.827624817, -2160148.0589237, -71997.7261576385, 94765697.6597504, 790575791.875542, 3071423100.48738, -1263803153.75136, -106897577346.909, -858303914821.876, -4302053589524.5, -14378154556128.4, -18792439949861.5, 158250693996112, 1.65848181037028e+015, 1.01561192369251e+016, 4.93870814001288e+016, 2.03707862081918e+017, 7.32155754220541e+017, 0.0276487092578896, 0.273727106195384, 3.10493645078303, 6.74883014953071, -791.517414710189, -14659.1601086036, -97513.5598522334, 253826.352485024, 9659750.39303433, 72426555.4027922, 108077398.518517, -2603530107.50454, -27142206424.4266, -129010093038.665, -115592228710.678, 3373975177466.36, 33069166217378.1, 190970279120807, 775088407219876, 1.95531526988697e+015, -1.08844022433567e+015, -5.03041904941278e+016, -3.88737032793942e+017, -2.17996177307102e+018, -1.03733702308722e+019, -4.56687817243336e+019, 0.00460342184603284, -1.4191835457503, -61.0896531126379, -722.851866770932, 5719.49208464532, 231804.146910697, 2166106.69539304, 160219.206657996, -174724415.264779, -1623587498.26411, -4008185392.86052, 51909707843.9719, 660864914267.222, 3692989887945.52, 7286367447296.07, -66279529836476.3, -829978185197398, -5.3925210853509e+015, -2.46096213563743e+016, -7.65535837790057e+016, -7.14762806859001e+016, 1.1170095179102e+018, 1.09817546139889e+019, 6.89213311167972e+019, 3.45878357931231e+020, 9.50469739120499e+019, -0.135631224023216, 9.82565018790751, 752.94430372433, 13626.2467481671, 2250.45356087176, -2801646.63778468, -34431818.5075219, -60859775.5058763, 2414520669.31045, 26210017396.4224, 71434279662.7282, -950461823661.22, -12870038897298.3, -75651275138190.2, -153087109622533, 1.57838782399087e+015, 2.08458508751872e+016, 1.47352057035772e+017, 7.65309425661461e+017, 3.07056896036942e+018, 8.78357943721663e+018, 7.63366506587975e+018, -1.20231415827737e+020, -1.19381796423493e+021, -8.4234840567679e+021, -2.34505645250979e+023, 2.86398306366288, 4.76124711367818, -6457.28547283359, -164758.27150296, -589766.226217846, 28067458.5191206, 401139336.264519, 416911989.44211, -40222720768.9054, -459374207097.421, -1682302721723.89, 12458076906678.7, 216651931418543, 1.51961566257658e+015, 5.4584519020853e+015, -5.19685396766197e+015, -2.27022332259378e+017, -1.85664800967564e+018, -9.86237368369173e+018, -3.61931853333836e+019, -6.07700089132706e+019, 3.81186434434807e+020, 4.88459347203027e+021, 3.36478940057831e+022, 1.56888688507016e+023, -1.17704898582546e+025, -30.8405895817803, -700.185732152437, 47091.7507004153, 1596708.4034919, 7159288.38315759, -321689179.440809, -5431369518.38533, -21502235882.8679, 277109738167.276, 3653526301164.72, 5678876796467.48, -241265821098598, -2.84217859105037e+015, -1.41758365590388e+016, 1.445542591378e+016, 9.32012909683014e+017, 9.89863985847271e+018, 7.14065483941308e+019, 4.10045064062402e+020, 1.97534191394671e+021, 8.07769891709407e+021, 2.70685067720764e+022, 6.02927395033448e+022, -9.22337544984228e+022, -3.1648353300078e+024, -5.61603302303069e+026, 250.323709544488, 8545.64176293525, -338614.039444803, -14362564.9062655, -92763398.7027217, 2174220601.06076, 29854756860.9811, -212387816186.495, -8028244379539.38, -76503721502058.2, -140612055233030, 4.75984421187865e+015, 6.87179074752808e+016, 5.46755810778416e+017, 3.00178419969484e+018, 1.15075325799871e+019, 2.56621820643217e+019, -9.99967497065107e+018, -2.40812092499658e+020, 1.000269417608e+021, 2.80929218333346e+022, 2.76237750806896e+023, 1.92887184219875e+024, 1.03524743837727e+025, 2.54120088308415e+025, -1.67374835060249e+028, -1788.89737939434, -72709.9323496133, 2484233.26866509, 105824573.878487, 46058548.2567914, -41008709091.9079, -661049991528.956, -2869882451384.02, 34629600071672.9, 584592196626057, 3.85506398038373e+015, 1.85280581626924e+016, 2.40594389635909e+017, 4.39015768159735e+018, 5.68500042585068e+019, 5.46101970218862e+020, 4.19859227844407e+021, 2.71529223079585e+022, 1.52448364339692e+023, 7.57284365298019e+023, 3.350130760701e+024, 1.30047897758996e+025, 4.0904969542102e+025, 5.75746965876781e+025, -8.76067257210248e+026, -4.18601579421029e+029, 12278.7581956566, 496755.477226686, -22174016.5110608, -982354213.175663, -7651083547.2257, 74418384151.9456, -158221447812.226, -43635118674338.1, -493258537684304, 3.84848286761028e+015, 1.75887871994533e+017, 2.68669123829776e+018, 2.71502811657687e+019, 2.09549316384593e+020, 1.32297232667709e+021, 7.18370559114638e+021, 3.53542513917885e+022, 1.68168650207952e+023, 8.25241080182299e+023, 4.30466100873181e+024, 2.32738116938991e+025, 1.23477038775956e+026, 6.04371816144202e+026, 2.416150272357e+027, 6.92811011890208e+026, -8.30613806320748e+030, -79244.2377537492, -2985145.62680809, 144884969.0038, 3426964337.87191, -120514004452.734, -4568263757378.07, -41894084093912.4, 490584024082356, 1.9241818444463e+016, 3.11732137423038e+017, 3.73577725478084e+018, 3.90759600611774e+019, 3.77869191059759e+020, 3.36829721948857e+021, 2.71562326419553e+022, 1.95921942858408e+023, 1.26492353680313e+024, 7.3517449416279e+024, 3.87469051660304e+025, 1.86123499753071e+026, 8.13297579530344e+026, 3.16817378492111e+027, 1.01489843927767e+028, 1.5807400240241e+028, -2.021313503304e+029, -1.45957971542625e+032, 521788.722135468, 9472176.27503808, -1834442451.42211, -67207743391.7279, -811715015878.492, -2843970947585.28, 171797242776594, 1.07249545636155e+016, 3.34114929712701e+017, 6.59909611038221e+018, 9.29872040038554e+019, 1.00743611185641e+021, 8.83945953164831e+021, 6.53568861391816e+022, 4.21089667672736e+023, 2.43823913494771e+024, 1.30691447936152e+025, 6.66339503265359e+025, 3.30039394627076e+026, 1.60447868150269e+027, 7.63096240611393e+027, 3.48620982415311e+028, 1.46850577313574e+029, 5.0140288773257e+029, -3.94001569880189e+029, -2.26766193173512e+033, -2825375.34945871, -61496352.0334524, 2493173658.3079, -333237181754.782, -18996407047060.9, -185565155812803, 9.2705029708914e+015, 3.99039220138775e+017, 8.61232487663729e+018, 1.32051416047768e+020, 1.60969350838808e+021, 1.6490151337151e+022, 1.46466548357974e+023, 1.14951997029669e+024, 8.07500862310061e+024, 5.1281421080201e+025, 2.96949619046387e+026, 1.57946761642313e+027, 7.76011998009655e+027, 3.52921742493438e+028, 1.47769012971021e+029, 5.55807112615323e+029, 1.72069255611094e+030, 2.45634325498066e+030, -4.33879732862619e+031, -3.40784734034525e+034, 17658315.6693612, -1121888367.87085, -181270807554.95, -7242038986871.72, -120082281227313, 2.31291589803502e+015, 2.20848277428698e+017, 7.48543822457755e+018, 1.61954010343843e+020, 2.55218480608558e+021, 3.13237500947909e+022, 3.13138431695314e+023, 2.6379745983487e+024, 1.92552803357783e+025, 1.24720050890185e+026, 7.32106996964179e+026, 3.9678324994807e+027, 2.01741972525514e+028, 9.74388679831022e+028, 4.5059355340519e+029, 1.99801024333608e+030, 8.4241281541234e+030, 3.28635082828553e+031, 1.06272567840542e+032, -2.16825023052698e+032, -5.26834661824363e+035, -48488127.6322903, -9941368958.95411, -1701495949545.85, -115729090727230, -2.46271860575519e+015, 5.70594335232465e+016, 4.91770401202199e+018, 1.54976753508251e+020, 3.17533901633655e+021, 4.84563283115304e+022, 5.87562438473976e+023, 5.8931457323464e+024, 5.03145371691109e+025, 3.73914198714188e+026, 2.46316680755782e+027, 1.46055114567583e+028, 7.89759555011506e+028, 3.9367543253666e+029, 1.82414003560443e+030, 7.89299615934093e+030, 3.18195160616357e+031, 1.17447804036354e+032, 3.74155783420197e+032, 7.41309337505642e+032, -9.98125051400098e+033, -9.74447097008623e+036, 575794042.269378, -359696847349.006, -46582766175582.5, -2.5172826170398e+015, -4.85788166089857e+016, 1.35929935720063e+018, 1.12759088306295e+020, 3.61755309466896e+021, 7.52761720304016e+022, 1.15671836837518e+024, 1.39982433553636e+025, 1.39034166332529e+026, 1.16802699889137e+027, 8.49867342754942e+027, 5.46129812043187e+028, 3.15144234524267e+029, 1.65678656217278e+030, 8.03580116507344e+030, 3.63383187207197e+031, 1.54337891859975e+032, 6.16359372138549e+032, 2.28426586046228e+033, 7.47381246679803e+033, 1.68250380067942e+034, -1.71346139855961e+035, -2.23719793136107e+038 ) } if ( (power>=1.1) && (power<=1.2) ) { grid <- c(0.989973425448979, -0.111802566436515, -0.128138198419178, -0.144020752096856, -0.156865568330961, -0.139657194482135, 3.536695146237, 303.956020562169, 16971.561119878, 711511.636211499, 23703218.8754648, 650925619.121534, 15122827515.9695, 302907419807.887, 5300237420118.51, 81627637427388.5, 1.10626268382253e+015, 1.30088329870981e+016, 1.26350384665605e+017, 8.34748022753782e+017, -1.48193266830101e+018, -1.83141490787536e+020, -4.36156639238075e+021, -8.28126332215202e+022, -1.08728181988638e+024, -1.54431621438905e+027, -0.00313462642593353, -0.0388702138075973, -0.0903770763700018, -0.178015741979943, -0.442864053335794, -13.4654296356606, -879.397544291817, -44326.6781688309, -1719945.84474206, -52165024.459267, -1245203281.74841, -23434690273.4911, -352258956554.21, -4722829656798.21, -83507513328313.6, -2.39585027904263e+015, -7.50927529719736e+016, -2.07270273612729e+018, -4.97162068932377e+019, -1.06766044761913e+021, -2.12429857352596e+022, -4.05944617085845e+023, -7.80448328338183e+024, -1.62547597498508e+026, -3.41127169961574e+027, 5.72214427762114e+029, 0.00507283741509471, 0.0611283656924362, 0.118275683282882, 0.0638053314994744, -22.662058007833, -2973.06775411472, -243880.688361423, -13804096.0539272, -566905197.509389, -17310061654.4572, -391792916235.597, -6189711302728.5, -49123570530885.4, 601194433055370, 2.98825837615e+016, 5.47657960626698e+017, 3.5405751519937e+018, -1.26138966768788e+020, -5.9951048018011e+021, -1.65556052103626e+023, -3.74652939321509e+024, -7.7582256629277e+025, -1.58711907280473e+027, -3.48648576340569e+028, -7.77485808458045e+029, 1.03410922602955e+031, 0.000415849616352672, 0.0106967682516999, 0.158203224877345, 4.49743806433715, -1145.2512510092, -257762.508706388, -25867475.247582, -1637247291.63787, -72907884189.7384, -2409044555520.72, -60655326006420.5, -1.17024127884226e+015, -1.69507534186056e+016, -1.73353934726338e+017, -1.19768287172967e+018, -1.6925948580369e+019, -8.40082861320748e+020, -3.19703011126093e+022, -9.01680307946117e+023, -2.10464678914191e+025, -4.37986494585875e+026, -8.62023394900792e+027, -1.70595448526874e+029, -3.65540979450112e+030, -7.98948970235937e+031, -8.72229109997141e+033, -0.000277296401191326, 0.00785581341291909, 7.70945326818073, 1047.85637415002, 12617.6081671164, -11318694.4184715, -1521632559.16444, -109651752055.073, -5365129636121.41, -195049584142469, -5.55257586362403e+015, -1.28875628635706e+017, -2.54416168432133e+018, -4.52586741722226e+019, -7.85882741468167e+020, -1.43675527082477e+022, -2.81191719043273e+023, -5.63847556272856e+024, -1.10380771755939e+026, -2.06538042850477e+027, -3.71079218491912e+028, -6.55949719267708e+029, -1.19216339970128e+031, -2.37651568510983e+032, -4.91119938960528e+033, -9.19298686871738e+035, -4.0453365352258e-005, 0.808120615148473, 462.33674259018, 75430.0290598068, 4331914.30073851, -205449452.816475, -53008737555.3822, -4488085605111.43, -241208396247575, -9.50346382864154e+015, -2.94900174959011e+017, -7.58627631848485e+018, -1.69435784683881e+020, -3.4411087434676e+021, -6.63519114738198e+022, -1.2514488828429e+024, -2.32881811283864e+025, -4.24297462063675e+026, -7.48476399731269e+027, -1.27258719106238e+029, -2.09917093736239e+030, -3.42920519941086e+031, -5.77122270489562e+032, -1.06549974420896e+034, -2.07816556556317e+035, -4.87536422889045e+037, 0.00675158161047212, 30.709935211898, 17928.1999465246, 3251282.07045102, 259150408.193801, 4065970794.89839, -1081487969698.15, -120396596572924, -7.24129443659267e+015, -3.08345729970917e+017, -1.02588642970565e+019, -2.83199105144724e+020, -6.79734935044741e+021, -1.47579853708826e+023, -2.99031990839464e+024, -5.7671579517374e+025, -1.06688395883241e+027, -1.89309297237781e+028, -3.21672741997238e+029, -5.24303649293225e+030, -8.26753906534395e+031, -1.28566458271899e+033, -2.0446711266049e+034, -3.53884600906098e+035, -6.61800844109463e+036, -1.75572778206776e+039, 0.258679354840137, 840.360258770242, 507444.100015697, 99442112.1901258, 9368084176.4115, 380375494385.308, -9258609923520.86, -2.23106090141392e+015, -1.58174211439346e+017, -7.3607104165464e+018, -2.61924232181302e+020, -7.67289085556648e+021, -1.94419837765708e+023, -4.42140613397016e+024, -9.26766241853947e+025, -1.82037390050501e+027, -3.37830777373629e+028, -5.94348917058151e+029, -9.9356636154327e+030, -1.58518493151072e+032, -2.43604478698234e+033, -3.67029806957723e+034, -5.60458388706875e+035, -9.22449768201003e+036, -1.6904092353277e+038, -4.89465564411877e+040, 6.41800151101403, 18182.0558161604, 11380508.3514703, 2361269590.73996, 245103026658.95, 12999718384259.7, 144508294149080, -3.1075671302527e+016, -2.81566498473887e+018, -1.44690887425048e+020, -5.49152466538323e+021, -1.692387361606e+023, -4.47164792383022e+024, -1.05093110630748e+026, -2.25304900366832e+027, -4.47763141879538e+028, -8.32719512434137e+029, -1.45736744448634e+031, -2.41132989810688e+032, -3.79399183745648e+033, -5.72975750077454e+034, -8.44163520665995e+035, -1.2506421655368e+037, -1.98161951684487e+038, -3.63563587421314e+039, -1.14232297834824e+042, 130.4805948356, 319626.889155575, 206944151.13871, 44870875123.7641, 4947555746666.1, 294990039461152, 6.86125098068619e+015, -3.63786637655628e+017, -4.49266130472303e+019, -2.52923657396585e+021, -1.01259704639731e+023, -3.24472934374372e+024, -8.83324503429516e+025, -2.1213437136394e+027, -4.60888186519505e+028, -9.21064839386007e+029, -1.71143638740235e+031, -2.97850907929798e+032, -4.88496458063687e+033, -7.6009042549272e+034, -1.13248736207305e+036, -1.64007876899463e+037, -2.37417054431763e+038, -3.65864990028412e+039, -6.84510916139291e+040, -2.35049544393324e+043, 963.245715385098, 4945125.74645911, 3444934228.87347, 766212865526.459, 85513510174417.3, 5.0967420057197e+015, 1.1088205871047e+017, -7.45318428114027e+018, -8.70993014114392e+020, -4.89483272136854e+022, -1.96863338240187e+024, -6.33450769555172e+025, -1.72614090113824e+027, -4.13046184681991e+028, -8.89861663528251e+029, -1.7563102367483e+031, -3.21437889043872e+032, -5.50329625743619e+033, -8.87758069741474e+034, -1.35900361585279e+036, -1.99194876368027e+037, -2.83400436317181e+038, -4.01653931243524e+039, -6.05394644066378e+040, -1.16801065759799e+042, -4.42572447936007e+044, 51233.824363294, 71261780.1129107, 41401713028.4753, 8934258413489.44, 988188857001118, 5.68035904215963e+016, 8.47175769846526e+017, -1.32231153172396e+020, -1.32772648545315e+022, -7.30083365623776e+023, -2.93724557054933e+025, -9.51930409068657e+026, -2.6176588474417e+028, -6.31768365981176e+029, -1.37023407131264e+031, -2.71586983800496e+032, -4.97904709617111e+033, -8.52052408526674e+034, -1.37148020128378e+036, -2.09209859073969e+037, -3.05157815956964e+038, -4.31198694357118e+039, -6.0516153334399e+040, -9.04746158745842e+041, -1.83089018411669e+043, -7.85792264499214e+045, -1497353.00381781, 723041183.21408, 798570121442.665, 179799692875761, 1.75400882707701e+016, 5.90805036793554e+017, -4.49390336205661e+019, -7.12757601895464e+021, -4.99886165418825e+023, -2.40376807666057e+025, -8.92056369816489e+026, -2.71249252736027e+028, -7.02691152031126e+029, -1.59610221811831e+031, -3.25079147118034e+032, -6.04362056723916e+033, -1.04033863298669e+035, -1.67721342078464e+036, -2.55641247592603e+037, -3.71487059097827e+038, -5.19156012641781e+039, -7.05767849053118e+040, -9.54079997480186e+041, -1.37682173010483e+043, -2.81944608373897e+044, -1.35568431120779e+047, 50890062.0717611, 14367608874.8046, -2441428268667.74, -1.1038760824906e+015, -1.39748101423647e+017, -9.39850732312024e+018, -3.91099001869365e+020, -1.10065830730325e+022, -2.72302043182617e+023, -1.10817009473656e+025, -6.4123402563569e+026, -3.20104135366767e+028, -1.26609617693228e+030, -4.08925485679342e+031, -1.11710339860563e+033, -2.65351306408463e+034, -5.59921841894524e+035, -1.06786709570634e+037, -1.86801008380294e+038, -3.03739730383572e+039, -4.65152896853984e+040, -6.8118589248791e+041, -9.79544921447061e+042, -1.51514184913643e+044, -3.61763707621482e+045, -2.33635753945665e+048, -1632017496.10562, 110317600316.58, 330180395951750, 6.7231021628206e+016, 3.97828600685863e+018, -2.95784859710759e+020, -6.98592705045258e+022, -6.25659244735647e+024, -3.64861751928678e+026, -1.5833753360599e+028, -5.45880499049355e+029, -1.55850222438659e+031, -3.79783004095228e+032, -8.08967352013915e+033, -1.53636362179642e+035, -2.64622016202475e+036, -4.19608871034953e+037, -6.20828443819136e+038, -8.67464415143325e+039, -1.15730260817286e+041, -1.48916975227492e+042, -1.86658981818677e+043, -2.31349724473074e+044, -3.02888770555798e+045, -5.99835061959248e+046, -4.23733375004766e+049, 38417214435.0839, -726039946748.135, -7.31431915372476e+015, -1.56745545878788e+018, -1.02395774227146e+020, 4.67055145073008e+021, 1.3399291038475e+024, 1.20997806353346e+026, 6.95795172708743e+027, 2.95024225282919e+029, 9.86887837596031e+030, 2.71349946947451e+032, 6.30942685965434e+033, 1.26704450603725e+035, 2.23282870445361e+036, 3.49345248902422e+037, 4.88842278953211e+038, 6.12750579137622e+039, 6.82428986341838e+040, 6.55589778514714e+041, 4.93603193443648e+042, 1.70522518557545e+043, -3.25119471661806e+044, -1.19081432094687e+046, -5.38145156298819e+047, -9.5337915116242e+050 ) } if ( (power>2) && (power<3) ) { grid <- c( 0.999320859444135, -0.00339863996520666, -0.017405834743935, -0.094415885413374, -0.474943122220438, -2.12217526114901, -8.28657088560929, -28.1983730239296, -83.9866444485264, -220.714016257597, -516.840853257854, -1089.80906886319, -2091.04653592782, -3687.84899560698, -6035.14688398691, -9245.16287671588, -13364.8056799522, -18368.6312623177, -24170.5284208701, -30652.0675548239, -37701.6909476229, -45257.9298753625, -53351.6680939871, -62148.0795745321, -71944.5580351856, -92584.6307265222, 0.283341460167403, 1.4198595014972, 7.26323206149768, 39.3470798317175, 197.737872455163, 882.775423162057, 3442.34491552515, 11680.2981292535, 34586.2312661717, 89941.2772399677, 207071.437085722, 425804.06636173, 789124.09455765, 1329886.46550453, 2055949.50037776, 2940437.73707706, 3922432.53173063, 4918772.14066394, 5842643.29870822, 6622148.2558007, 7212994.5161919, 7602717.43947442, 7807280.48778773, 7863250.68212219, 7817746.83340438, 7725050.76243782, -0.0600764380680103, -0.392050079124554, -1.58937633747626, -6.08664376399068, -21.2367358176583, -63.2532442004164, -151.966790509734, -262.308768568861, -171.730813184702, 848.887604105088, 4456.38515028148, 13551.4810243792, 32150.4572347722, 64571.5085421313, 114045.803910683, 181267.784390237, 263555.257000779, 355057.226722376, 447959.727920055, 534210.69005017, 607115.455356772, 662364.32312859, 698095.516091012, 715453.61053991, 709404.020526808, 746938.05963745, 0.0245245775014973, 0.155539966613345, 0.314103723867304, -0.974507538399082, -14.3303629251534, -93.9696323047437, -452.198879088332, -1754.67665143518, -5704.65115146005, -15896.7164855003, -38614.4509020089, -82918.5184841515, -159371.089358326, -277309.878496798, -441509.504984657, -649717.382851132, -892380.682977137, -1154918.2173388, -1421750.28004424, -1680648.33849184, -1926151.40276689, -2161369.37925071, -2399069.23604879, -2658615.89551391, -2996584.32616847, -3244309.2211475, -0.0114761862276732, -0.0592619852303128, 0.149317524117004, 3.1187422858429, 23.1527784014401, 124.86200951222, 542.858009682394, 1973.11003584607, 6116.61892273702, 16406.537857693, 38528.1580303481, 80007.829774633, 148150.992289522, 246211.713959957, 368704.211125567, 497587.798271825, 601013.469645754, 635274.165995275, 549071.310137826, 288010.646988658, -203166.790795375, -982564.60054751, -2119680.41798567, -3704741.92691329, -5931154.48660554, -8809844.1184798, 0.00575921327240797, 0.0165592415712064, -0.310297398420674, -3.50279461877254, -22.6809711897805, -113.076858198932, -465.191104437209, -1624.40007498999, -4906.66394460468, -13042.9156711335, -31056.3757863278, -67485.3530473821, -136357.774862024, -260555.840068835, -476923.168849248, -842508.117841961, -1440283.41961548, -2382568.94608435, -3811813.17259831, -5900950.25877304, -8858145.80320564, -12942579.2179964, -18500106.3718362, -26024539.6191355, -36343654.5689473, -51760152.8969368, -0.00300526348269945, 0.00332582644494308, 0.352539219455832, 3.25105798234768, 19.0591425935349, 87.5918992144986, 333.900689176084, 1071.0953680497, 2874.83712283637, 6250.68546381489, 9860.08999845749, 5357.73872252884, -33652.9231630469, -170144.676973302, -528295.164157734, -1318787.55146601, -2857009.40475253, -5568572.63242854, -9983746.86426784, -16731892.6976634, -26555077.5194214, -40365482.5555169, -59377234.8688406, -85360882.1668992, -121173410.369109, -177831829.550814, 0.00156864913600111, -0.0131184236007616, -0.348599078434079, -2.77780309250851, -14.4361149519266, -58.8320138727439, -203.569099773387, -645.03374745931, -2061.89411085477, -7067.36215375172, -25074.4673862501, -85193.394389473, -263487.697425328, -729232.04752068, -1807739.26844015, -4046984.43990115, -8268652.76656352, -15588975.4539116, -27412600.48323, -45427572.5997714, -71652140.9796545, -108601600.144071, -159667231.52998, -229874415.837102, -327427911.37296, -486267279.031203, -0.000751098308492496, 0.0183607429610277, 0.32560155770289, 2.20414845756873, 9.30362608159624, 27.198466156795, 41.1328701889614, -147.601617296233, -1778.48998961713, -10615.1337836503, -48121.4524064771, -180117.812148503, -576102.516202511, -1608834.11717014, -3989140.08790138, -8909582.40404006, -18156969.4268232, -34163633.7942921, -60005088.1200331, -99404892.9765117, -156858144.123099, -238028512.439587, -350642272.707905, -506310271.081071, -724411047.556449, -1085756135.90953, 0.00023268753144256, -0.0214573124116083, -0.290521160221242, -1.52935064098677, -3.59013983096331, 3.92703520664888, 60.9297355136416, 133.554643751598, -1021.17664549104, -11590.6683029842, -66685.879961975, -281254.304289336, -960925.358517155, -2788713.9792639, -7077864.08967289, -16041484.6298937, -33004923.3507173, -62506118.7968919, -110299815.326543, -183381109.539535, -290240024.52127, -441647425.450367, -652423811.084398, -945103927.138418, -1358058723.14185, -2050647607.71471, 0.000141239642755454, 0.0232583731015363, 0.239064459228162, 0.680275724339044, -3.14242038852734, -42.3056828515275, -274.070438394209, -1492.11348836561, -7656.84591539787, -36265.7134048327, -152004.565173214, -553517.300322874, -1753199.12822194, -4878532.09154446, -12079077.4876383, -26959794.0499863, -54922340.2612081, -103328174.078604, -181512150.271794, -300836965.808012, -475136824.235409, -722051548.703595, -1066029150.12698, -1544638613.28437, -2222964632.64711, -3372045968.09847, -0.000444860575100238, -0.0236847905695715, -0.161058411288511, 0.407895924404698, 10.7548689475349, 73.0538463066281, 281.046556675514, 383.530300181306, -3421.68161502129, -33452.5094386606, -180847.896775903, -735888.039250597, -2456210.90539502, -7010955.43700536, -17571067.8749036, -39423967.3829222, -80439386.6066522, -151267929.917988, -265326130.629948, -438855452.428628, -691566344.59827, -1048598947.11475, -1544960914.68021, -2234995984.89575, -3214527134.98847, -4893933770.89838, 0.000703732261226084, 0.0219231227951077, 0.0425149877267029, -1.78013554662686, -18.8024427670158, -106.878166315772, -491.309303563418, -2410.2059871961, -13085.0171426766, -67405.3817964102, -299027.541071522, -1121165.69781058, -3591096.47322529, -9998617.39241346, -24622492.5304239, -54479632.7305074, -109838493.819578, -204359729.041694, -354963747.711344, -581822254.35559, -909137795.541055, -1367637645.50103, -2000281379.29399, -2874669331.61444, -4113040594.89626, -6286557382.99022, -0.000959178477233191, -0.0172549225992488, 0.119521088004283, 3.25076886753573, 24.469396043305, 77.1613526002622, -413.359872941446, -8197.32770301892, -68568.1716842124, -394782.555626955, -1746273.13505017, -6261284.87873029, -18848727.5557636, -48909488.5602613, -111724871.937695, -228668100.175633, -425755681.178738, -730883280.355038, -1170935158.54954, -1770335830.80924, -2552404036.30653, -3544443902.10624, -4787694880.17175, -6355795903.3852, -8395778630.02711, -11697767237.6242, -0.000133829436888704, -0.00402825444711644, -0.39467858862294, -4.78902212824088, -23.5283465754233, -495.238264820242, -11644.3071017881, -143948.075333492, -1133949.74994485, -6423704.38453159, -28106118.540934, -99563713.8931762, -295413197.299012, -753554043.615336, -1687633184.19881, -3377063524.57688, -6129762082.98725, -10226991209.9182, -15871393620.5447, -23160885564.1831, -32101906559.4075, -42662039575.6347, -54852876075.286, -68836142772.9544, -85067835018.7585, -105221455769.378, -0.0159347723438438, -0.139677220958585, -0.501567031055687, -1.15800906623169, -0.28145406205746, -5860.29004848185, -152251.522259703, -1873731.64284049, -14679841.3179456, -82892307.4814804, -361969279.219145, -1280474002.74372, -3795015931.20803, -9670673302.28459, -21636448308.9111, -43251166651.4325, -78419385616.2198, -130679713013.754, -202537118746.243, -295128647709.38, -408391269373.725, -541723400932.74, -695004000950.63, -869822131123.467, -1070898637903.45, -1311173239757.92) } if ( (power>=3) && (power<4) ) { grid <- c( 0.807045029092288, -0.742817271116966, -3.33628159647649, -17.1892563957248, -83.606924206003, -365.071192253248, -1400.71893678865, -4694.58855569616, -13766.4944192918, -35518.0066568666, -81236.2491747527, -166111.053093699, -306340.130694687, -514013.401873071, -791488.479479209, -1127820.45893735, -1499215.00485969, -1873687.95856514, -2218215.22065063, -2505773.30210073, -2720001.08609826, -2856885.35011282, -2921562.04807504, -2942860.2782209, -2724727.65113592, -6393599.83992389, -0.136539772699055, -0.3712773738108, -1.34060216897536, -6.31281195417687, -28.7743296376622, -120.000150401644, -444.643043043044, -1450.18256577969, -4160.32884893442, -10542.0837079396, -23750.546686822, -47945.825282172, -87450.1861981138, -145332.756352579, -221913.780561476, -313883.835136119, -414535.3380698, -515112.581103503, -606768.028120295, -682457.909013515, -738016.337582899, -773197.016326358, -785451.127656309, -832107.719453664, -65576.1860675511, -16681644.1359413, 0.0390190571539757, 0.217823357411596, 1.05307617320898, 5.46628587502473, 26.7079674195229, 116.777871575447, 448.243317291106, 1502.23344046383, 4404.21226928853, 11360.1463323601, 25977.6589655352, 53114.6692363956, 97962.628202229, 164425.342777476, 253336.682488931, 361326.799670235, 480960.413361712, 602200.055474944, 714666.469016104, 809833.902052876, 882644.532433897, 931195.500052511, 963253.25246436, 909728.615872677, 2118955.81118029, -28223901.1772564, -0.0135344333535702, -0.105123408597516, -0.597134560351953, -3.30138792730478, -16.7678509371076, -75.2601777869174, -294.380322822538, -1000.62051658493, -2965.26791173967, -7710.19873496618, -17729.923018914, -36365.1109880616, -67103.1049888601, -112342.914312332, -172033.611258013, -242814.982348664, -318156.29116042, -389547.350581509, -448309.499169329, -487358.607042042, -502288.280654725, -491896.568009773, -454167.367329454, -436702.595676197, 592554.019288957, -28175511.1369623, 0.00516979878298409, 0.049186369552098, 0.313361035619778, 1.82380477698879, 9.55014857006874, 43.7632364583752, 173.85444871189, 599.000056509861, 1801.41110174687, 4775.62836370548, 11292.324476147, 24116.159116646, 47097.8558813758, 85097.7219846563, 143732.570485074, 228950.891134358, 346463.780768116, 501132.836280051, 696519.783935997, 934868.31070775, 1217737.35915428, 1547476.14417311, 1929941.85114461, 2371249.26369004, 3259938.37856758, -10481780.2845814, -0.00210569527115553, -0.0231405024519351, -0.161238923976278, -0.980926414519322, -5.27476113570811, -24.596921426023, -98.4679251076239, -335.875641752254, -966.009103975749, -2295.01927050472, -4285.53743080301, -5305.54520561608, 298.828932844618, 25527.1544820149, 93698.0628522327, 239219.913855273, 504807.80240039, 935434.395727312, 1571191.70516859, 2442224.38428192, 3568464.03604572, 4965686.14710397, 6658844.98464334, 8715913.57478651, 11333531.2576485, 12135648.0516836, 0.000904992444600065, 0.0111168052401889, 0.0833664125811974, 0.527134997928565, 2.89808864704583, 13.7770488849601, 57.6536611318659, 222.31978415136, 830.973533709237, 3052.29525500565, 10683.2000738177, 34231.1489571498, 98080.965980282, 249787.613056241, 567853.696586215, 1162730.51664402, 2167379.38902465, 3718634.07876582, 5936186.98691647, 8908850.23901353, 12696377.3865465, 17351472.7681057, 22966767.528756, 29776590.0504127, 38478019.7505486, 50867749.5850808, -0.000409107208596102, -0.00550111018040516, -0.0439376208280782, -0.288505996551621, -1.63212078318116, -7.75520903054617, -27.7954092957704, -45.8656633398937, 259.464351955424, 2854.74539011967, 15714.5555070392, 63230.6123114516, 204776.271508092, 558927.74579377, 1323826.85797549, 2780007.90439764, 5266252.25523076, 9131789.73343168, 14682560.3322589, 22146472.0731672, 31679055.6650164, 43421701.98937, 57625070.1381395, 74910568.9517981, 97163770.0643605, 127754334.17767, 0.000194307002727792, 0.00281756674493309, 0.0237136332062326, 0.159405381495387, 0.898230867797415, 4.60345984485858, 27.6400397896721, 205.661534317615, 1448.56631969149, 8291.67719559354, 37903.115045638, 141316.649850398, 441087.624260472, 1180252.50521153, 2763322.5415243, 5761704.22812121, 10864619.9821838, 18782495.180654, 30138958.1231858, 45402276.5830579, 64900090.6565401, 88943149.521878, 118085299.880759, 153669984.92336, 199638879.192562, 263053537.257288, -9.6813970562699e-005, -0.00149818930643216, -0.0133055656398246, -0.0945115298691158, -0.579908914141087, -2.47603853062905, 4.13987484493922, 197.011666853647, 1993.36630427103, 12842.763799835, 61521.7609859012, 234369.520358223, 739791.084258406, 1992499.07342665, 4684730.93725107, 9797208.48563922, 18517157.6071782, 32074859.2918227, 51560378.2551523, 77807929.4600213, 111424466.116615, 153009280.153805, 203615359.468966, 265712174.566699, 346298256.693629, 458843429.853769, 5.0510737242787e-005, 0.000825454278033001, 0.00754236535471132, 0.0518083089767653, 0.274621994126378, 1.98114382300995, 29.5576814444073, 370.652270203056, 3159.13901640118, 19407.1216982271, 91464.1099352158, 346424.449467708, 1091742.85694851, 2941228.74414017, 6923668.63289443, 14504109.9212339, 27468203.8817623, 47684788.4333904, 76836997.6005713, 116252578.587634, 166950731.275237, 229981255.740226, 307139843.974733, 402454023.216751, 526912234.233937, 702818878.857313, -2.7418070102492e-005, -0.000471538370173029, -0.0046165376568393, -0.036587699748026, -0.259306297425945, -0.513545608507554, 24.5167655002064, 422.079080450406, 3864.47708330576, 24364.9020805635, 116380.447641915, 444742.438017592, 1411324.94709018, 3824627.71731913, 9050677.77134831, 19052334.7104253, 36248377.3563104, 63208294.4047604, 102300026.230609, 155465995.050065, 224290351.769315, 310469434.35741, 416810360.956061, 549298562.77482, 723618453.467978, 973334765.794742, 1.5473116821586e-005, 0.000276604798913003, 0.00264969418261052, 0.0174900279365758, 0.0766314928362542, 1.35761435509042, 35.91128539334, 507.476924676718, 4502.64745318921, 28323.9262461144, 135970.357806147, 523202.778300938, 1672239.7082978, 4563033.2399971, 10868160.2019504, 23016985.4182579, 44040524.526026, 77210463.32594, 125613056.798018, 191876531.064486, 278262231.602734, 387270853.524674, 522928872.391834, 693428189.404835, 919453049.166152, 1247727868.46718, -8.8935422652274e-006, -0.000166030604502527, -0.00180320520193969, -0.0158064250790231, -0.112690635415925, 0.605792100613844, 35.8920609726225, 549.294618680751, 5007.87803105007, 32039.3397103949, 155789.404879026, 605600.459856101, 1951459.22132761, 5359784.8952449, 12832094.7037116, 27287162.7391152, 52377387.4480437, 92054947.2665312, 150060697.345423, 229605705.993322, 333504156.464628, 464936857.308676, 629016062.372982, 835873005.440438, 1110473643.66999, 1511045682.99279, 5.2836771853153e-006, 0.000101503163727336, 0.000993429510955962, 0.00768536258973886, 0.0762004564807366, 2.5289608455215, 61.1254255902454, 833.768195052616, 7354.03786958471, 46348.1408509856, 223057.664768771, 859057.342688984, 2741866.57069041, 7454083.6797878, 17650308.942397, 37089910.5528786, 70295592.6389546, 121895207.707387, 195915436.6333, 295398279.000812, 422647796.67442, 580244039.797793, 772834327.8546, 1010119774.0892, 1316484399.07765, 1741035939.30733, -3.064377771159e-006, -5.980922030261e-005, -0.000636343983276073, -0.00078615973385692, 0.104702137517939, 4.49267742988801, 99.9926447089914, 1292.20378864764, 10963.7639617, 66756.6908405897, 310381.696918354, 1152600.74257852, 3536665.37191601, 9209232.17803997, 20794869.4119386, 41458235.608168, 74105805.4180075, 120360968.097685, 179752435.234823, 249520137.896054, 325147964.097433, 401275805.233735, 472066391.64127, 529481285.471072, 561635505.992595, 419706664.414131) } if ( (power>=4) && (power<5) ) { grid <- c( 0.699925346022531, -0.967077543569014, -4.01132613691835, -20.1399473550733, -96.2422051602767, -415.365980035549, -1580.21518068211, -5262.33523148009, -15354.0312963513, -39454.0262740431, -89938.4982463926, -183391.698932919, -337402.996179853, -564968.193375439, -868383.335714499, -1235426.26432415, -1639939.91489061, -2046986.48980844, -2420647.49346844, -2731722.04945314, -2962469.78638038, -3110166.85555429, -3167407.14273507, -3347866.5224723, 220066.29635677, -101623416.405294, -0.0856827146015816, -0.129194389632916, -0.275741081827042, -0.995185808644477, -3.44304072656882, -11.1738124760052, -32.3161811060365, -82.0820212947264, -181.186657587385, -345.1190334895, -560.487576581505, -755.308564356227, -780.02789704195, -420.782646552896, 549.203902376783, 2292.75919352824, 4844.65304486468, 8078.19818210918, 11752.1076384033, 15489.0074612448, 19295.1080639715, 20576.2965127781, 43458.6905027808, -272065.299693591, 7025098.66546232, -233107902.179985, 0.0168969338431571, 0.0658060047775105, 0.252941889440879, 1.1930373881614, 5.46017018978347, 22.7950867197324, 84.5102486368491, 275.66150811094, 790.803379055727, 2003.61163553412, 4513.25595683332, 9109.342888956, 16611.6941580461, 27601.4176540827, 42137.2784788037, 59588.6192203015, 78680.9563361091, 97750.8199011234, 115126.506416694, 129453.386054272, 140101.469157844, 145829.366024648, 160224.556969174, -43787.4381679082, 5529231.86708544, -215530714.274696, -0.0040335782993408, -0.0234817794259036, -0.110587472703672, -0.561343113249565, -2.70232831818259, -11.6848904632598, -44.472343214546, -148.047891896767, -431.69906130895, -1108.54940295543, -2525.46917566759, -5147.26241339181, -9467.85961656983, -15855.3598573824, -24383.2818096163, -34724.30268989, -46163.6433390437, -57734.3395387668, -68421.6708128944, -77354.6697154979, -83913.2169220258, -87816.2036212983, -87020.6389051429, -128645.623351391, 1605434.61145123, -93593764.193113, 0.00106368144379509, 0.0078728133185123, 0.0423052301671125, 0.226374767743507, 1.12595759435215, 4.97840665743307, 19.2538811192632, 64.8572506879996, 190.743003851787, 492.585067098186, 1125.23986845133, 2291.87964977926, 4195.71676979692, 6958.1794888724, 10533.1890357286, 14663.2366154889, 18914.8130296304, 22801.0859452267, 25968.0905843622, 28413.4033257206, 30721.5445983317, 34434.2563191554, 41999.1412856565, 63751.8453401499, 142903.993721121, -14773309.479337, -0.0002988416478197, -0.0026128755213848, -0.0155064767814191, -0.0866816879592185, -0.442392050536327, -1.99055510244982, -7.80955850461462, -26.7322098215555, -80.4281213186107, -215.042835786294, -517.452034952092, -1134.82818218957, -2293.86917654107, -4310.82691914404, -7575.43567664562, -12486.4405956532, -19320.884708294, -28032.1935354864, -37976.4690140615, -47537.7814603878, -53537.2289629646, -50176.3090563924, -27111.3184862328, 35023.1543546029, 97772.386910872, 1945675.4370755, 8.8111852916931e-005, 0.000874298083941498, 0.00562299485434772, 0.0327030242649852, 0.171726872656, 0.790684116809639, 3.1130199548177, 10.1710449772459, 26.346202329904, 48.3548936424336, 31.8771254839422, -186.395662514681, -1016.84516919046, -3258.27728769355, -8162.68516490687, -17312.2380768225, -32239.1706818026, -53802.4297241544, -81382.1575234866, -111877.895287325, -138254.603738189, -146999.311848418, -113518.232821567, 3726.73086187838, 273817.624118751, 757199.553621758, -2.7085879774208e-005, -0.000297498761276123, -0.00204245827241299, -0.0121381151934212, -0.061733063855247, -0.26699858234589, -1.1122126687644, -5.31569083447484, -27.8731682359897, -134.874202708192, -553.327324835573, -1903.59891170908, -5566.04749679175, -14086.3410351293, -31399.2007566238, -62614.6499198601, -113234.321754671, -187884.675320979, -288785.120075029, -414032.58145669, -555329.364059289, -694159.031925558, -795349.360834586, -800767.324268166, -634936.677499812, -1390026.09670781, 8.6547130615233e-006, 0.000103571257343756, 0.000763282155189074, 0.00503495689305218, 0.0339503192962971, 0.201182583372745, 0.679200600696824, -1.40781922364333, -34.7607658472872, -251.167735291424, -1214.87163835565, -4539.92881673297, -13946.9496782576, -36547.4380325321, -83834.1134982485, -171726.961316446, -319298.861981019, -546376.82435059, -870690.377723771, -1305228.69338149, -1855917.38613467, -2519159.50584102, -3280158.49857154, -4124134.63935406, -5101301.89955304, -8040658.58499969, -2.863420992543e-006, -3.6705711047603e-005, -0.000267736627702962, -0.00118987631537025, 0.00500374982239699, 0.0906349021665064, -0.03964765353084, -8.86995948576699, -96.4179103903694, -622.102159599423, -2925.97709670939, -10897.5978947285, -33690.7023380288, -89258.4433448129, -207545.201776322, -431710.061827054, -816252.874623963, -1422300.99639821, -2311804.80050625, -3543091.25767127, -5169984.23754927, -7246834.8839518, -9846927.88218808, -13128306.876303, -17545564.4897858, -25760072.0632545, 9.862455038939e-007, 1.3687405837123e-005, 0.000130756634353942, 0.00161205842445782, 0.0260978720622342, 0.205692870824142, -0.217742919739228, -19.0670830309275, -201.334161636633, -1297.1205613785, -6144.28137107098, -23122.4216546073, -72314.544985341, -193853.872583445, -455974.877979017, -958991.306803016, -1832262.21329924, -3224343.55883332, -5290401.34780242, -8183538.60025336, -12057410.3744032, -17089089.6467557, -23542978.7525315, -31949315.2967005, -43603277.3073714, -61461357.0483208, -3.3898916523125e-007, -4.553631043329e-006, -6.3146792385749e-006, 0.000996685778798012, 0.0283638961892905, 0.205028928564685, -1.5209878776305, -40.9193475021547, -399.642312169516, -2535.0167059544, -12007.7742204405, -45413.275846636, -142947.623599072, -385712.615552065, -912728.368992133, -1929683.59832148, -3702976.31241841, -6539242.01547221, -10759257.0350438, -16681448.9101165, -24632750.0692673, -35008236.3642549, -48422810.8521226, -66089231.9656645, -90790259.3017384, -124782634.831774, 1.3670317399056e-007, 2.8922795451404e-006, 8.0311153292009e-005, 0.00209218748382464, 0.042288144829039, 0.224071380381849, -3.88595477558196, -80.3828018669491, -756.261098584473, -4760.28166814639, -22556.6461988553, -85542.2228609317, -270094.51932018, -730737.212456536, -1732553.94919498, -3667198.87154186, -7040018.87161964, -12429346.6875643, -20436837.3840823, -31660964.6132857, -46731285.933596, -66447851.8147418, -92106261.376575, -126229910.642334, -174276152.679859, -236992787.643919, -2.9515402119269e-008, 1.4230937296803e-006, 0.000121964247166344, 0.00353296955768749, 0.065444187405576, 0.228124670269768, -8.75709483474552, -158.883665823477, -1458.29696267044, -9116.76392174209, -43122.5389213505, -163475.6881624, -516064.788911388, -1395522.20150944, -3305660.01902088, -6987365.36000612, -13391031.6773161, -23598208.7876355, -38732820.725386, -59928676.182718, -88431093.3806788, -125922659.671926, -175220715.536157, -241690986.941136, -336090539.887824, -458661737.622016, 4.2195953578419e-008, 4.7262596571073e-006, 0.000268409542694463, 0.00711771507088045, 0.117709590133548, 0.185527243324104, -20.5126719620795, -341.724384735611, -3067.30039938492, -18999.4745727416, -89434.205638909, -338004.516140821, -1064613.61087423, -2873576.28161018, -6796130.72493253, -14346593.3785094, -27467963.4091078, -48381210.7295654, -79426953.5719077, -123043357.109127, -182047880.504625, -260412755.530795, -364810110.446681, -507417982.521783, -710389534.723263, -981948479.261186, 3.2858256896933e-008, 8.6262465133508e-006, 0.000619619047250753, 0.0177352317421679, 0.286522133653506, 0.930762013518072, -34.6477998067267, -621.723655825581, -5696.25104328862, -35724.7343454217, -170023.838772441, -649865.670726276, -2071812.51834388, -5666452.90654193, -13596350.0025411, -29159538.9365487, -56804496.6608088, -101967267.133786, -170892032.312482, -270727256.793951, -410267304.386682, -601763640.206147, -864300376.261109, -1229059105.40151, -1743431919.71737, -2419331563.0187) } if ( (power>=5) && (power<7) ) { grid <- c( 0.786434222068313, -0.346012079815851, -0.111403879165884, -0.37684834413327, -0.227942819345689, -0.748816199446288, -0.429657425382675, -1.74160208112774, -0.380029940723467, -4.75431964095465, 3.04669074354556, -18.7254127758988, 42.2595203965277, -127.075610501907, 597.354383371277, -1783.48701130305, 11845.8231537032, -56908.6196171327, 443014.347945159, -3727125.91186479, 41915265.5772462, -613145856.515179, 12314442848.2845, -353565282768.735, 15056060852441.6, -935512014119462, -0.0372367474176292, -0.0300330290598776, 0.0194320567856015, -0.0286632698352744, 0.0445003394042309, -0.060948400702475, 0.132495375767898, -0.213544390269728, 0.423844494115997, -1.61814802662431, -1.11118707905738, -26.5227940118242, -67.7293316745046, -425.458598662828, -1001.46373152249, -5317.32161731875, -6139.36538655163, -71044.3658618384, 194667.687528656, -2788059.62676948, 30424957.0834719, -488372280.977764, 10689386756.2126, -340771077349.598, 16472908240969.7, -1.18753639215006e+015, 0.00272199211678462, 0.00600457935696839, 0.000771571810584139, 0.00448332513732787, 0.00189163733536341, 0.00589886871984612, 0.00239247793636055, -0.0286338123481378, -0.315494675308072, -2.47958187250564, -14.5308793302688, -72.977265238482, -303.738213023504, -1105.5766522905, -3387.71681429456, -9110.18620747135, -18243.3848321049, -29784.0538288672, 75227.02534185, -48264.5575731943, 8222854.19107454, -103843212.592982, 2899046709.27306, -108457074214.473, 6391125630551.74, -572642997373694, -0.000235725585525655, -0.000939712997116092, -0.000628940476056143, -0.000732868263909586, -0.00123615938011299, 0.000322710464360014, 0.0114320282205539, 0.137507245882712, 1.1142446434786, 8.13970036772955, 52.4668442088235, 302.39429825616, 1551.75362597238, 7136.34444891635, 29595.0973156719, 111934.511057314, 390212.830424631, 1272109.66953064, 3921732.69419177, 11664373.480828, 33562473.6192614, 96275902.7551133, 386971758.390603, -7779194558.35237, 869116980003.18, -120470494442105, 2.2131289395219e-005, 0.000143553411002132, 0.000170793457061453, 0.000168846275141174, 0.000879434613056662, 0.00980484450010389, 0.12801774812558, 1.33913284198253, 11.5110566068305, 82.8906614784825, 510.178293855477, 2728.20581284727, 12861.2337022356, 54151.1413496475, 206133.384228595, 717759.486483854, 2312738.60846531, 6977878.20433018, 19960158.1406384, 54872807.7633121, 147027968.000616, 392467947.201468, 1007010930.32944, 4277401271.27259, -32175521793.3006, -5944774644892.04, -2.1158714077244e-006, -2.2245962793571e-005, -3.7048515147495e-005, 2.6733273608329e-005, 0.00159538838855198, 0.0313650954321681, 0.434832189395928, 4.6653031612727, 40.2540676573929, 287.502036146911, 1739.44171649193, 9089.28709664162, 41709.0038241202, 170553.998156786, 629707.080488873, 2124898.97405362, 6629823.09908051, 19347946.9909511, 53449119.9055938, 141603511.259636, 365139375.94298, 931639294.908808, 2399554030.90057, 6365379770.8051, 6629077555.34454, 1325257347799.35, 1.8706218898433e-007, 3.5595867805602e-006, 1.0461142077657e-005, 0.000125822395739863, 0.00343944847191744, 0.0663161997681272, 0.932504916856121, 10.0628718510742, 86.680128866696, 614.451310218334, 3674.06045960846, 18916.695687826, 85354.4120703696, 342720.990999314, 1241358.93947498, 4106484.2634202, 12551665.0365457, 35852478.1688061, 96827356.785738, 250430599.497147, 629495711.021131, 1564844953.08431, 3922964834.69878, 10060076758.7741, 28625631416.721, 59232587864.0314, -1.0736419206779e-008, -5.5682318067157e-007, 1.521132088195e-006, 0.000169816881450556, 0.00513471228094518, 0.101321240932149, 1.43787147451134, 15.5501270999697, 133.573873042078, 940.8573571264, 5575.65420221155, 28399.6411897312, 126608.618970022, 501858.833477652, 1793488.15346414, 5851297.04271422, 17631543.2949301, 49624288.1787248, 131965198.165583, 335793721.545266, 829834387.493952, 2027957061.72163, 5001954036.02077, 12663935117.7047, 32689069667.4124, 18114334235.1189, -1.2346951657342e-009, 1.2206227284162e-007, 3.9297895016142e-006, 0.000197419028183901, 0.00602851603167602, 0.120332460066855, 1.71628779074478, 18.5634802061232, 158.929000041028, 1113.04191204279, 6547.27067245127, 33064.4777866304, 146043.954634495, 573317.997343912, 2028724.86709794, 6553279.09218201, 19550737.044832, 54474555.29211, 143383996.095597, 361033832.339612, 882831234.550636, 2136130396.56957, 5224797761.40674, 13104715569.8387, 32786630095.1341, 37594565903.4031, 7.6808927594202e-010, 3.8884985498993e-009, 3.1693128416737e-006, 0.000185283673344334, 0.00577829446251914, 0.116358132374561, 1.6638196322789, 17.9690172702516, 153.197902136379, 1066.5313667415, 6229.28866525285, 31215.0838976393, 136765.982020265, 532563.383330351, 1869646.06197352, 5993641.65402298, 17752031.0930607, 49122405.022279, 128443983.218799, 321382731.452622, 781396537.897085, 1882476272.22521, 4594300256.1123, 11490195036.7978, 27999004292.5526, 22293146654.9453, -2.3198818654552e-010, 1.7768432128195e-008, 2.5170398599975e-006, 0.000147600250383574, 0.0046726297592754, 0.0946608920777015, 1.35378607562751, 14.5687692163386, 123.471744448172, 853.19624444289, 4941.88962460754, 24548.7134403604, 106623.582662544, 411715.309842279, 1434104.29957124, 4564806.01096974, 13434953.6203005, 36971805.6020912, 96215692.5085437, 239814563.118944, 581599219.830851, 1400939948.6891, 3430310154.31951, 8605849617.10048, 20412486855.5244, 8789001626.70916, 7.1680465084153e-011, 8.2425411536541e-009, 1.643130414875e-006, 0.000101010537904274, 0.00324768919113633, 0.0660426805148569, 0.941790746358288, 10.06409355469, 84.4700029565598, 577.065123627681, 3301.27606364533, 16190.5323305796, 69436.106953296, 264898.991604471, 912482.279496566, 2875705.99281888, 8390894.88493373, 22923038.4921442, 59301250.3489504, 147168407.593844, 356301731.33071, 860860680.309354, 2129050981.40544, 5406333032.3096, 12477283740.0382, -626655436.574466, -1.6592791250243e-011, 4.0243341048155e-009, 9.144573335573e-007, 5.9220160549e-005, 0.00193782694015436, 0.039445147224364, 0.55777780092105, 5.874590816796, 48.3891511020367, 323.416138439675, 1806.1076174669, 8634.35391245784, 36073.4833351782, 134086.227392197, 450406.616132974, 1386158.30589757, 3956483.9824662, 10592449.579616, 26908399.3711585, 65779957.3387473, 157925265.23842, 383776594.467057, 976109761.141651, 2581703121.52396, 5773630017.85034, -4997652480.24311, 3.0254155247433e-012, 6.480434669686e-010, 3.8358388175966e-007, 2.805883798994e-005, 0.000946081848661616, 0.0191810731660941, 0.265048170865662, 2.69054536709911, 21.1078472872048, 132.823226564838, 690.014628342345, 3029.32274273717, 11460.2837105301, 37977.6328286557, 111736.598497042, 294820.966835864, 701306.659651741, 1501566.94543448, 2865072.81069675, 4832518.62805497, 7836886.63058089, 19150010.6873593, 89185710.2082667, 421423170.310072, 903955723.061903, -4583125093.25688, -4.6611488044825e-012, -1.238013643329e-009, 6.0868733097722e-008, 8.742211953457e-006, 0.000328731139452505, 0.00659863314758232, 0.0844309956857507, 0.742711442123046, 4.57966556822816, 18.4867246619517, 26.504351580449, -278.749024654208, -3001.65994744203, -18452.141557694, -87884.1942798782, -354357.650582793, -1264077.22326902, -4102494.78750277, -12352555.6345389, -34956221.4649815, -93464824.2667665, -234738633.43955, -541385094.991335, -1108582688.25269, -2320229645.40791, -923285695.803153, -3.6747431215211e-012, -1.4003818727403e-009, 3.2110392985838e-008, 8.0692472963221e-006, 0.000344137055565625, 0.0076331695212749, 0.108809443680536, 1.09803763922457, 8.2754406180277, 47.8674513539372, 212.505496482315, 684.095100622171, 1139.77502759503, -3574.08105308545, -43796.4476172793, -252629.656994052, -1124806.21665939, -4304377.68043652, -14822703.8520193, -47098602.6891216, -140045686.50728, -391792106.570437, -1027557566.96914, -2504246941.83045, -5877038428.29484, -2114725574.7047) } if ( (power>=7) && (power<=10) ) { grid <- c( 0.77536534618895, -0.430563489144848, 0.248933090844648, -0.776691071939754, 1.42435320848802, -3.96378215199569, 10.6082763732752, -32.6646389815812, 107.594392018696, -385.875807619758, 1554.08106263416, -6562.13654153062, 33311.2180271377, -175799.39356045, 1100307.32618603, -8076936.20134624, 64818006.8415247, -672272627.675492, 7951846880.99446, -121489926465.507, 2346719230615.01, -60597733349803.8, 2.17252324837994e+015, -1.13969296410995e+017, 9.19134050303596e+018, -1.13643544485344e+021, -0.0228287393493532, -0.0194681344424241, 0.0389473545390899, -0.084197161744077, 0.22422473111649, -0.619022478530716, 1.92391840210546, -5.54851462125942, 31.3124540235083, 32.9263463638783, 1526.62316779162, 8457.00783887994, 82602.3748106012, 435383.429491403, 3109338.73107016, 12375814.1074866, 91668768.6318141, 102755151.774348, 4154874222.20171, -39332097778.8331, 956298556688.97, -25984409388026.1, 1.02539880527099e+015, -6.00621364640884e+016, 5.55452727721829e+018, -8.10234314733144e+020, 0.000990449241892617, 0.00245658725606492, -0.00243739393253416, 0.00484724481040902, -0.00926456300347046, 0.0281306359896192, 0.156239298430668, 4.17858979355244, 62.7520656235757, 780.015382056436, 7975.4456209287, 68984.4386566011, 515762.532144664, 3384991.53977911, 19858782.3438055, 105265045.358707, 514394379.656016, 2317182902.4062, 10175938926.1775, 37656980976.6547, 252620644930.558, -2174477649470.25, 136934481128099, -9.59053217215135e+015, 1.11722695207039e+018, -2.10701957364907e+020, -4.739402348122e-005, -0.000231852992426791, 7.5710640928626e-005, -0.000134980675522712, 0.000354522998021474, 0.0192668478637093, 0.520510022906938, 10.7916294399501, 169.819567472824, 2141.74949227175, 22251.8592082094, 195421.11468649, 1479886.25999519, 9836509.12146506, 58265320.1095556, 312023644.738493, 1530894452.40315, 6980944196.86386, 29986172284.6235, 123833899892.611, 492927274255.622, 2078899780231.5, 6850572520142.16, -127562576321897, 5.83782301712251e+016, -2.12174087566134e+019, 2.1161776328178e-006, 2.0906300316289e-005, 7.2258740877989e-006, -5.5308991127345e-006, 0.000518091195594951, 0.0211849717747649, 0.651125893562394, 14.0232486435453, 229.888540942629, 2996.41818368473, 32119.513737, 290589.577507762, 2266622.81206172, 15520120.3234281, 94786645.0963208, 523940347.205171, 2658194740.25114, 12552187877.3901, 55962360223.2959, 239035772367.959, 991951859205.356, 4061174998315.7, 15708445458792.5, 118144223622463, -5.07332493452949e+015, 6.4479142073582e+016, -5.2809354056961e-008, -1.8733028739588e-006, -2.173112075266e-006, -1.4999243577998e-006, -1.6130806107812e-005, 0.0062857185977922, 0.291729587926022, 7.72340499458176, 144.463644174106, 2082.77967708294, 24311.1198183042, 237511.034262544, 1991173.97650715, 14616262.9410656, 95580256.036951, 565523735.27937, 3071700431.36731, 15529390455.3399, 74043372155.9458, 336948400501.14, 1477696012185.8, 6275079442094.89, 25790455939029, 96328050938412.8, 190447249714597, 1.00992445696896e+017, -6.18972021646e-009, 1.6716212953349e-007, 1.819435975603e-007, -1.4425153664549e-005, -0.000610612063278709, -0.0167634347715261, -0.311332599080969, -3.94138325688247, -29.7238495417058, 6.2555652775239, 4042.6061664409, 72350.5669137632, 851581.13806843, 7901256.5282858, 61774104.4395478, 422241976.017542, 2587726006.34361, 14498413734.2669, 75443525203.5096, 369254749083.404, 1715435173133.93, 7593311590379.09, 31824142191324.9, 121720773218198, 396847554120315, -4.20744529251827e+015, 1.6263773828611e-009, -1.5358949677752e-008, -2.4571305966315e-007, -1.8428794010876e-005, -0.000937415911513019, -0.0306800211195246, -0.708070117922537, -12.1299638962403, -159.03668317182, -1618.62979619491, -12693.3036944218, -72284.2761884275, -217166.845678661, 1044589.95460791, 23105099.1246563, 228679026.770271, 1721827459.30268, 11024395805.3666, 62955703260.573, 329358475506.641, 1604477935025.79, 7336606897800.17, 31379245002770.4, 121522052593940, 347347465989858, 370932937610640, -2.6808728840779e-010, 7.9020135767862e-010, -1.5514883197396e-007, -1.6276332336879e-005, -0.000876562698279347, -0.0303398354210813, -0.738225701613061, -13.3408979363142, -185.677983898719, -2038.39425331329, -17876.6499694802, -124905.284696409, -670434.749401926, -2347535.07095901, 618376.316323485, 94377618.194901, 987830337.872776, 7299222860.15746, 45155167569.2116, 248286662532.449, 1249349399406.29, 5836370519195.45, 25333886840723.4, 99430753191700.9, 299121530322441, 625102006387724, 4.0255310414341e-011, -4.0075628102411e-010, -1.0747626938796e-007, -1.1032436842021e-005, -0.000614076074677421, -0.0218656078360402, -0.54523287925633, -10.0746614750899, -143.319283331831, -1611.54363682135, -14561.2179931157, -106231.861503575, -615725.868813294, -2629632.88870542, -5405277.88267556, 35284319.2277274, 545097935.998791, 4473496821.19931, 29049471850.145, 164111610940.043, 839519077635.141, 3964583399582.53, 17362504452757.4, 69068653702018.9, 218680025952334, 491443538772321, -5.5715190324839e-012, -1.6407435736789e-010, -5.7888379466468e-008, -6.1468686512493e-006, -0.000349575517522456, -0.0126681684563627, -0.320310340444328, -5.984181303379, -85.8933670684766, -973.163367650677, -8853.94643946026, -65051.8256679697, -380371.836571965, -1650092.93269853, -3630335.63566798, 19513096.3150577, 321805563.17688, 2676104393.70507, 17469092428.2355, 98920174459.9976, 506594361070.731, 2395294913189.68, 10527983468557, 42415349208286.2, 142117239446790, 424957076182122, 9.0943122447293e-013, -7.6362405646957e-011, -2.713727877671e-008, -2.928550895988e-006, -0.000169272201914165, -0.00620868754605586, -0.158241844155348, -2.96853021751442, -42.6197249239258, -480.920925303812, -4332.65386909201, -31222.9264278609, -175486.089577641, -686688.578405898, -700984.246915129, 17606789.7093272, 210224332.113958, 1618919804.83086, 10205343393.9837, 56638977400.7164, 286412959136.382, 1344441166878.75, 5905112905298.04, 24102001115608.5, 86044212091524.3, 330694952809613, -7.2206827308685e-014, -2.9539633014077e-011, -1.1047488592785e-008, -1.2213639725909e-006, -7.167213125224e-005, -0.00265286298445461, -0.0678318219234301, -1.2685871768583, -18.0238255068467, -199.279184183516, -1731.66032795093, -11672.9085946704, -56607.411359395, -125551.570376765, 1014540.31262727, 16556288.6301798, 145428947.733874, 1003290094.11754, 5972683400.78656, 32007315379.0508, 158215899080.749, 732613701543.087, 3206486334222.12, 13279647471500.9, 50798414623688.9, 237038150364079, 4.3609819166476e-014, -8.2019208583295e-012, -3.8681869833068e-009, -4.4736540762345e-007, -2.681092767123e-005, -0.00100096482939058, -0.02552849391404, -0.470191072698517, -6.46906795194434, -67.4507414346289, -524.848782738057, -2753.53939768566, -4110.14385245369, 104460.727972183, 1538900.68620935, 14024098.498795, 101919977.04296, 638471700.403706, 3583252863.16384, 18458609364.3726, 88808087125.7936, 404428978510.69, 1762294434820.44, 7420587100023.73, 30447350490820.6, 161257587722473, 1.102927814593e-014, -2.9833499013762e-013, -1.0237201386522e-009, -1.357500505407e-007, -8.5194681661709e-006, -0.000321263444569207, -0.00803242863440226, -0.139760568118627, -1.70845294566464, -13.7392013834384, -43.3312232463909, 672.210515304308, 14566.0279110099, 170927.78078521, 1525821.93755474, 11366312.5854366, 73868184.8847336, 430610301.867199, 2297726058.33628, 11406906364.7078, 53429633348.726, 239204245061.543, 1037569229691.63, 4440670923491.02, 19385786140661, 108390210481645, 2.4429367439691e-015, 1.4097646088969e-012, -8.1610167897946e-011, -2.2790490204496e-008, -1.5951868755541e-006, -5.4515698129209e-005, -0.000902748062402921, 0.000476641583177264, 0.403718060688101, 11.3250139182509, 195.75060974824, 2526.10978407101, 26230.959211931, 228725.678544486, 1724448.556825, 11494565.1027429, 68980892.2243655, 378540210.929366, 1926018147.60076, 9203415540.67664, 41820439362.7481, 183069601908.131, 783979860688.641, 3359830680474.02, 15066614162007.1, 80531744425420.1) } grid } tweedie.dev <- function(y, mu, power) { p <- power if(p == 1) { dev <- array( dim=length(y) ) mu <- array( dim=length(y), mu ) dev[y!=0] <- y[y!=0] * log(y[y!=0]/mu[y!=0]) - (y[y!=0] - mu[y!=0]) dev[y==0] <- mu[y==0] } else{ if(p == 2) { dev <- log(mu/y) + (y/mu) - 1 } else{ if (p== 0) { dev <- (y-mu)^2 dev <- dev/2 } else{ dev <- (y^(2 - p))/((1 - p) * (2 - p)) - (y * (mu^(1 - p)))/(1 - p) + (mu^(2 - p))/(2 - p) } } } dev * 2 } dtweedie.dldphi <- function(phi, mu, power, y ){ if ( (power != 2 ) & ( power != 1 ) ) { k <- phi^(1/(power-2)) if ( k < 1 & k > 0 ) { f <- dtweedie( y=k*y, power=power, mu=k*mu, phi=1 ) d <- dtweedie.dlogfdphi( y=k*y, power=power, mu=k*mu, phi=1 ) top <- d * f d <- -2* sum( top / f * k^(2-power) ) } else{ d <- -2*sum( dtweedie.dlogfdphi(y=y, power=power, mu=mu, phi=phi) ) } } else{ d <- -2*sum( dtweedie.dlogfdphi(y=y, power=power, mu=mu, phi=phi) ) } d } dtweedie.dlogfdphi <- function(y, mu, phi, power) { p <- power a <- (2 - p)/(1 - p) if(length(phi) == 1) { phi <- array(dim = length(y), phi) } if(length(mu) == 1) { mu <- array(dim = length(y), mu) } A <- (y * mu^(1 - p))/(phi^2 * (p - 1)) B <- mu^(2 - p)/(phi^2 * (2 - p)) if(power > 2) { f <- array(dim = c(length(y))) kv <- dtweedie.kv.bigp(power = power, phi = phi, y = y)$kv dv.dphi <- (kv * (a - 1))/phi out.logv <- dtweedie.logv.bigp(power = power, phi = phi, y = y) logv <- out.logv$logv probs <- (is.infinite(logv)) | (is.nan(logv)) | (y<1) if(any(probs)) { delta <- 1.0e-5 a1 <- dtweedie(power=power, phi=phi[probs], mu=mu[probs], y=y[probs]) a2 <- dtweedie(power=power, phi=phi[probs]+delta, mu=mu[probs], y=y[probs]) f[probs] <- (log(a2) - log(a1) ) / delta } f[!probs] <- A[!probs] + B[!probs] + dv.dphi[!probs]/exp(logv[!probs]) } if(power == 2) { f <- -log(y) + ( y/mu ) + digamma(1/phi) - 1 + log( mu*phi ) f <- f / (phi^2) } if(power == 1) { f <- mu - y - y*log(mu/phi) + y*digamma(1+(y/phi)) f <- f / (phi^2) } if((power > 1) && (power < 2)) { f <- array( dim = length(y), mu^(2-power) / ( phi^2 * (2-power) ) ) jw <- dtweedie.jw.smallp(power=power, phi=phi[y > 0], y=y[y > 0])$jw dw.dphi <- (jw * (a - 1)) / phi[y > 0] logw <- dtweedie.logw.smallp(power=power, phi=phi[y > 0], y=y[y > 0])$logw f[y>0] <- A[y > 0] + B[y > 0] + dw.dphi/exp(logw) } f } dtweedie.interp <- function(grid, nx, np, xix.lo, xix.hi, p.lo, p.hi, power, xix) { jt <- seq(0, nx, 1) ts <- cos((2 * jt + 1)/(2 * nx + 2) * pi) ts <- ((xix.hi + xix.lo) + ts * (xix.hi - xix.lo))/2 jp <- seq(0, np, 1) ps <- cos((2 * jp + 1)/(2 * np + 2) * pi) ps <- ((p.hi + p.lo) + ps * (p.hi - p.lo))/2 rho <- array(dim = nx + 1) dd1 <- array(dim = nx + 1) for(i in 1:(nx + 1)) { dd1[i] <- grid[i, np + 1] for(k in seq(np, 1, -1)) { dd1[i] <- dd1[i] * (power - ps[k]) + grid[i, k] } } rho <- dd1[nx + 1] for(k in seq(nx, 1, -1)) { rho <- rho * (xix - ts[k]) + dd1[k] } if ( power >= 3) { rho <- 1 / rho } rho } dtweedie.inversion <- function(y, power, mu, phi, exact=TRUE, method=3){ if ( power<1) stop("power must be greater than 1.") if ( any(phi <= 0)) stop("phi must be positive.") if ( any(mu <= 0) ) stop("mu must be positive.") if ( length(mu)>1) { if ( length(mu)!=length(y) ) { stop("mu must be scalar, or the same length as y.") } } else { mu <- array( dim=length(y), mu ) } if ( length(phi)>1) { if ( length(phi)!=length(y) ) stop("phi must be scalar, or the same length as y.") } else { phi <- array( dim=length(y), phi ) } save.method <- method if ( !is.null(method)){ if ( length(method)>1 ) { method <- save.method <- method[1] } if ( !(method %in% c(1,2,3)) ) stop("method must be 1, 2 or 3 (or left empty).") } y.len <- length(y) density <- y its <- y verbose <- FALSE if ( is.null(method)){ method <- array( dim=length(y)) } else { method <- array( method, dim=length(y)) } for (i in (1:y.len)) { if ( y[i] <= 0 ) { if ( (power>1) & (power<2) ) { if ( y[i]==0 ) { density[i] <- exp( -mu[i] ^ (2-power) / ( phi[i] * (2-power) ) ) } else { density[i] <- 0 } } else { density[i] <- 0 } } else { m2 <- 1/mu[i] theta <- ( mu[i]^(1-power) - 1 ) / ( 1 - power ) if ( ( abs(power - 2 ) ) < 1.0e-07 ){ kappa <- log(mu[i]) + (2 - power) * ( log(mu[i])^2 ) / 2 } else { kappa <- ( mu[i]^(2-power) - 1 ) / ( 2 - power ) } m1 <- exp( (y[i]*theta - kappa )/phi[i] ) dev <- tweedie.dev(y=y[i], mu=mu[i], power=power ) m3 <- exp( -dev/(2*phi[i]) ) / y[i] min.method <- min( m1, m2, m3 ) if ( is.null(method[i]) ) { if ( min.method==m1 ){ use.method <- 1 } else { if ( min.method==m2 ) { use.method <- 2 } else { use.method <- 3 } } } else { use.method <- method[i] } if ( use.method==2 ) { tmp <- .Fortran( "twpdf", as.double(power), as.double(phi[i] / (mu[i]^(2-power)) ), as.double(y[i]/mu[i]), as.double(1), as.integer( exact ), as.integer( verbose ), as.double(0), as.integer(0), as.double(0), as.integer(0)) den <- tmp[[7]] density[i] <- den * m2 } else { if ( use.method==1 ) { tmp <- .Fortran( "twpdf", as.double(power), as.double(phi[i]), as.double(y[i]), as.double(1), as.integer( exact ), as.integer( verbose ), as.double(0), as.integer(0), as.double(0), as.integer(0)) den <- tmp[[7]] density[i] <- den * m1 } else { tmp <- .Fortran( "twpdf", as.double(power), as.double(phi[i]/(y[i]^(2-power))), as.double(1), as.double(1), as.integer( exact ), as.integer( verbose ), as.double(0), as.integer(0), as.double(0), as.integer(0)) den <- tmp[[7]] density[i] <- den * m3 } } } } density } dtweedie.jw.smallp <- function(y, phi, power ){ if ( power<1) stop("power must be between 1 and 2.") if ( power>2) stop("power must be between 1 and 2.") if ( any(phi<=0) ) stop("phi must be strictly positive.") if ( any(y<=0) ) stop("y must be a strictly positive vector.") p <- power a <- ( 2-p ) / ( 1-p ) a1 <- 1 - a r <- -a*log(y) + a*log(p-1) - a1*log(phi) - log(2-p) drop <- 37 logz <- max(r) j.max <- max( y^( 2-p ) / ( phi * (2-p) ) ) j <- max( 1, j.max ) c <- logz + a1 + a*log(-a) wmax <- a1*j.max estlogw <- wmax while(estlogw > (wmax-drop) ){ j <- j + 2 estlogw <- j*(c - a1*log(j)) } hi.j <- ceiling(j) logz <- min(r) j.max <- min( y^( 2-power ) / ( phi * (2-power) ) ) j <- max( 1, j.max) wmax <- a1*j.max estlogw <- wmax while ( ( estlogw > (wmax-drop) ) && ( j>=2) ) { j <- max(1, j-2) estlogw <- j*(c-a1*log(j)) } lo.j <- max(1, floor(j)) j <- seq( lo.j, hi.j) o <- matrix( 1, nrow=length(y)) g <- matrix(lgamma( j+1 ) + lgamma( -a*j ), nrow=1, ncol=hi.j - lo.j + 1) logj <- matrix(log(j), nrow=1, ncol=hi.j - lo.j + 1) og <- o %*% g ologj <- o %*% logj A <- outer(r,j) - og + ologj m <- apply(A,1,max) we <- exp( A - m ) sum.we <- apply( we,1,sum) jw <- sum.we * exp( m ) list(lo=lo.j, hi=hi.j, jw=jw, j.max=j.max ) } dtweedie.kv.bigp <- function(y, phi, power){ if ( power<2) stop("power must be greater than 2.") if ( any(phi<=0) ) stop("phi must be positive.") if ( any(y<=0) ) stop("y must be a strictly positive vector.") if ( length(phi)>1) { if ( length(phi)!=length(y) ) stop("phi must be scalar, or the same length as y.") } else { phi <- array( dim = length(y), phi ) } p <- power a <- ( 2 - p ) / ( 1 - p ) a1 <- 1 - a r <- -a1*log(phi) - log(p-2) - a*log(y) + a*log(p-1) drop <- 37 logz <- max(r) k.max <- max( y^(2-p) / ( phi * (p-2) ) ) k <- max( 1, k.max ) c <- logz + a1 + a*log(a) vmax <- k.max * a1 estlogv <- vmax while ( estlogv > (vmax - drop) ) { k <- k+2 estlogv <- k*( c -a1*log(k) ) } hi.k <- ceiling(k) logz <- min(r) k.max <- min( y^(2-p) / ( phi * (p-2) ) ) k <- max( 1, k.max ) c <- logz + a1 + a*log(a) vmax <- k.max * a1 estlogv <- vmax while ( (estlogv > (vmax-drop) ) && ( k>=2) ) { k <- max(1, k-2) estlogv <- k*( c - a1*log(k) ) } lo.k <- max(1, floor(k) ) k <- seq(lo.k, hi.k) o <- matrix( 1, nrow=length(y)) g <- matrix( lgamma( 1+a*k) - lgamma(1+k), nrow=1, ncol=length(k) ) logk <- matrix( log(k), nrow=1, ncol=length(k) ) og <- o %*% g ologk <- o %*% logk A <- outer(r,k) + og + ologk C <- matrix( sin( -a*pi*k ) * (-1)^k, nrow=1, ncol=length(k) ) C <- o %*% C m <- apply(A, 1, max) ve <- exp(A - m) sum.ve <- apply( ve*C, 1, sum ) kv <- sum.ve * exp( m ) list(lo=lo.k, hi=hi.k, kv=kv, k.max=k.max ) } qtweedie <- function(p, xi=NULL, mu, phi, power=NULL){ if ( is.null(power) & is.null(xi) ) stop("Either xi or power must be given\n") xi.notation <- TRUE if ( is.null(power) ) { power <- xi } else { xi.notation <- FALSE } if ( is.null(xi) ) { xi.notation <- FALSE xi <- power } if ( xi != power ) { cat("Different values for xi and power given; the value of xi used.\n") power <- xi } index.par <- ifelse( xi.notation, "xi","p") index.par.long <- ifelse( xi.notation, "xi","power") if ( any(power<1) ) stop( paste(index.par.long, "must be greater than 1.\n") ) if ( any(phi <= 0) ) stop("phi must be positive.") if ( any(p<0) ) stop("p must be between zero and one.\n") if ( any(p>1) ) stop("p must be between zero and one.\n") if ( any(mu <= 0) ) stop("mu must be positive.\n") if ( length(mu)>1) { if ( length(mu)!=length(p) ) stop("mu must be scalar, or the same length as p.\n") } else { mu <- array( dim=length(p), mu ) } if ( length(phi)>1) { if ( length(phi)!=length(p) ) stop("phi must be scalar, or the same length as p.\n") } else { phi <- array( dim=length(p), phi ) } if ( length(power) == 1 ) { if ( length(mu) > 1 ) { power <- rep( power, length(mu) ) } } len <- length(p) ans <- ans2 <- rep( NA, length=len ) if ( any(p==1) ) ans2[p==1] <- Inf if ( any(p==0) ) ans2[p==0] <- 0 ans <- ans[ ( (p>0) & (p<1) ) ] mu.vec <- mu[ ( (p>0) & (p<1) ) ] phi.vec <- phi[ ( (p>0) & (p<1) ) ] p.vec <- p[ ( (p>0) & (p<1) ) ] for (i in (1:length(ans)) ) { mu.1 <- mu.vec[i] phi.1 <- phi.vec[i] p.1 <- p.vec[i] pwr <- power[i] prob <- p.1 if ( pwr<2 ) { qp <- qpois(prob, lambda=mu.1/phi.1) if ( pwr == 1 ) ans[i] <- qp } qg <- qgamma(prob, rate=1/(phi.1*mu.1), shape=1/phi.1 ) if ( pwr==2 ) ans[i] <- qg if ( (pwr>1) & ( pwr<2) ) { start <- (qg - qp)*pwr + (2*qp - qg) } if ( pwr>2 ) start <- qg if ( ( pwr>1) & (pwr<2) ) { step <- dtweedie(y=0, mu=mu.1, phi=phi.1, power=pwr) if ( prob <= step ) { ans[i] <- 0 } } if ( is.na(ans[i]) ) { pt2 <- function( q, mu, phi, pwr, p.given=prob ){ ptweedie(q=q, mu=mu, phi=phi, power=pwr ) - p.given } pt <- pt2( q=start, mu=mu.1, phi=phi.1, pwr=pwr, p.given=prob) if ( pt == 0 ) ans2[i] <- start if ( pt > 0 ) { loop <- TRUE start.2 <- start while ( loop ) { start.2 <- 0.5*start.2 if (pt2( q=start.2, mu.1, phi.1, pwr, p.given=prob )<0 ) loop=FALSE } } if ( pt < 0) { loop <- TRUE start.2 <- start while ( loop ) { start.2 <- 1.5*(start.2 + 2) if (pt2( q=start.2, mu.1, phi.1, pwr, p.given=prob )>0 ) loop=FALSE } } out <- uniroot(pt2, c(start, start.2), mu=mu.1, phi=phi.1, p=pwr, p.given=prob ) ans[i] <- uniroot(pt2, c(start, start.2), mu=mu.1, phi=phi.1, p=pwr, p.given=prob, tol=0.000000000001 )$root } } ans2[ is.na(ans2) ] <- ans ans2 } rtweedie <- function(n, xi=NULL, mu, phi, power=NULL){ if ( is.null(power) & is.null(xi) ) stop("Either xi or power must be given\n") xi.notation <- TRUE if ( is.null(power) ) { power <- xi } else { xi.notation <- FALSE } if ( is.null(xi) ) { xi.notation <- FALSE xi <- power } if ( xi != power ) { cat("Different values for xi and power given; the value of xi used.\n") power <- xi } index.par <- ifelse( xi.notation, "xi","p") index.par.long <- ifelse( xi.notation, "xi","power") if ( any(power<1) ) stop( paste(index.par.long, "must be greater than 1.\n") ) if ( any(phi<=0) ) stop("phi must be positive.") if ( n<1 ) stop("n must be a positive integer.\n") if ( any(mu<=0) ) stop("mu must be positive.\n") if ( length(mu)>1) { if ( length(mu)!=n ) stop("mu must be scalar, or of length n.\n") } else { mu <- array( dim=n, mu ) } if ( length(phi)>1) { if ( length(phi)!=n ) stop("phi must be scalar, or of length n.\n") } else { phi <- array( dim=n, phi ) } if (power==1) { rt <- phi * rpois(n, lambda=mu / ( phi ) ) } if (power==2) { alpha <- (2-power)/(1-power) gam <- phi * (power-1) * mu ^(power-1) rt <- rgamma( n, shape=1/phi, scale=gam ) } if ( power>2) { rt <- qtweedie( runif(n), mu=mu ,phi=phi , power=power) } if ( (power>1) & (power<2) ) { rt <- array( dim=n, NA) lambda <- mu^(2-power) / ( phi * (2-power) ) alpha <- (2-power)/(1-power) gam <- phi * (power-1) * mu ^(power-1) N <- rpois(n, lambda=lambda) for (i in (1:n) ){ rt[i] <- rgamma(1, shape = -N[i] * alpha, scale=gam[i]) } } as.vector(rt) } tweedie.profile <- function(formula, p.vec=NULL, xi.vec=NULL, link.power = 0, data, weights, offset, fit.glm=FALSE, do.smooth=TRUE, do.plot=FALSE, do.ci=do.smooth, eps=1/6, control=list( epsilon=1e-09, maxit=glm.control()$maxit, trace=glm.control()$trace ), do.points=do.plot, method="inversion", conf.level=0.95, phi.method=ifelse(method=="saddlepoint","saddlepoint","mle"), verbose=FALSE, add0=FALSE) { if ( is.logical( verbose ) ) { verbose <- as.numeric(verbose) } if (verbose >= 1 ) { cat("---\n This function may take some time to complete;\n") cat(" Please be patient. If it fails, try using method=\"series\"\n") cat(" rather than the default method=\"inversion\"\n") cat(" Another possible reason for failure is the range of p:\n") cat(" Try a different input for p.vec\n---\n") } cl <- match.call() mf <- match.call() m <- match(c("formula", "data", "weights","offset"), names(mf), 0L) mf <- mf[c(1, m)] mf$drop.unused.levels <- TRUE mf[[1]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") Y <- model.response(mf, "numeric") X <- if (!is.empty.model(mt)) model.matrix(mt, mf, contrasts) else matrix(, NROW(Y), 0) weights <- as.vector(model.weights(mf)) if (!is.null(weights) && !is.numeric(weights)) stop("'weights' must be a numeric vector") offset <- as.vector(model.offset(mf)) if (!is.null(weights) && any(weights < 0)) stop("negative weights not allowed") if (!is.null(offset)) { if (length(offset) == 1) offset <- rep(offset, NROW(Y)) else if (length(offset) != NROW(Y)) stop(gettextf("number of offsets is %d should equal %d (number of observations)", length(offset), NROW(Y)), domain = NA) } xi.notation <- TRUE if ( is.null(xi.vec) & !is.null(p.vec) ){ xi.vec <- p.vec xi.notation <- FALSE } if ( is.null(p.vec) & !is.null(xi.vec) ){ p.vec <- xi.vec xi.notation <- TRUE } if ( is.null( p.vec ) & is.null(xi.vec)) { if ( any(Y==0) ){ p.vec <- seq(1.2, 1.8, by=0.1) } else { p.vec <- seq(1.5, 5, by=0.5) } xi.vec <- p.vec xi.notation <- TRUE } index.par <- ifelse( xi.notation, "xi","p") xi.fix <- any( xi.vec<=1 & xi.vec!=0, na.rm=TRUE) if ( xi.fix ) { xi.fix.these <- (xi.vec<=1 & xi.vec!=0) xi.vec[ xi.fix.these ] <- NA if ( length(xi.vec) == 0 ) { stop(paste("No values of",index.par,"between 0 and 1, or below 0, are possible.\n")) } else { cat("Values of",index.par,"between 0 and 1 and less than zero have been removed: such values are not possible.\n") } } if ( any( Y == 0 ) & any( (xi.vec >= 2) | (xi.vec <=0) ) ) { xi.fix.these <- (xi.vec>=2 | xi.vec<=0) xi.vec[ xi.fix.these ] <- NA if ( length(xi.vec) == 0 ) { stop(paste("When the response variable contains exact zeros, all values of",index.par,"must be between 1 and 2.\n")) } else { cat("When the response variable contains exact zeros, all values of",index.par,"must be between 1 and 2; other values have been removed.\n") } } xi.vec <- xi.vec[ !is.na(xi.vec) ] if ( do.smooth & (length(xi.vec) < 5) ) { warning(paste("Smoothing needs at least five values of",index.par,".") ) do.smooth <- FALSE do.ci <- FALSE } if ( (conf.level >= 1) | (conf.level <=0) ){ stop("Confidence level must be between 0 and 1.") } if ( !do.smooth & do.ci ) { do.ci <- FALSE warning("Confidence intervals only computed if do.smooth=TRUE\n") } if ( add0 ) { p.vec <- c( 0, p.vec ) xi.vec <- c( 0, xi.vec ) } cat(xi.vec,"\n") ydata <- Y model.x <- X dtweedie.nlogl <- function(phi, y, mu, power) { ans <- -2 * sum( log( dtweedie( y=y, mu=mu, phi=phi, power=power ) ) ) if ( is.infinite( ans ) ) { ans <- sum( tweedie.dev(y=y, mu=mu, power=power) )/length( y ) } attr(ans, "gradient") <- dtweedie.dldphi(y=y, mu=mu, phi=phi, power=power) ans } xi.len <- length(xi.vec) phi <- NaN L <- array( dim = xi.len ) phi.vec <- L b.vec <- L c.vec <- L mu.vec <- L b.mat <- array( dim=c(xi.len, length(ydata) ) ) for (i in (1:xi.len)) { if ( verbose>0) { cat( paste(index.par," = ",xi.vec[i],"\n", sep="") ) } else { cat(".") } p <- xi.vec[i] phi.pos <- 1.0e2 bnd.neg <- -Inf bnd.pos <- Inf if (verbose==2) cat("* Fitting initial model:") catch.possible.error <- try( fit.model <- glm.fit( x=model.x, y=ydata, weights=weights, offset=offset, control=control, family=statmod::tweedie(var.power=p, link.power=link.power)), silent = TRUE ) skip.obs <- FALSE if ( class( catch.possible.error )=="try-error" ) { skip.obs <- TRUE } if( skip.obs ) { warning(paste(" Problem near ",index.par," = ",p,"; this error reported:\n ", catch.possible.error, " Examine the data and function inputs carefully.") ) mu <- rep(NA, length(ydata) ) } else { mu <- fitted( fit.model ) } if (verbose==2) cat(" Done\n") if (verbose>=1) cat("* Phi estimation, method: ", phi.method) if( skip.obs ) { if (verbose>=1) cat("; but skipped for this obs\n") phi.est <- phi <- phi.vec[i] <- NA } else { if ( phi.method=="mle"){ if (verbose>=1) cat(" (using optimize): ") phi.saddle <- sum( tweedie.dev(y=ydata, mu=mu, power=p) )/length( ydata ) if ( is.nan(phi) ) { phi.est <- phi.saddle } else { phi.est <- phi } low.limit <- min( 0.001, phi.saddle/2) if ( p!= 0 ) { ans <- optimize(f=dtweedie.nlogl, maximum=FALSE, interval=c(low.limit, 10*phi.est), power=p, mu=mu, y=ydata ) phi <- phi.vec[i] <- ans$minimum } else { phi <- phi.vec[i] <- sum( (ydata-mu)^2 ) / length(ydata) } if (verbose>=1) cat(" Done (phi =",phi.vec[i],")\n") } else{ if (verbose>=1) cat(" (using mean deviance/saddlepoint): ") phi <- phi.est <- phi.vec[i] <- sum( tweedie.dev(y=ydata, mu=mu, power=p) )/length( ydata ) if (verbose>=1) cat(" Done (phi =",phi,")\n") } } if (verbose>=1) cat("* Computing the log-likelihood ") if (verbose>=1) cat("(method =", method, "):") if ( skip.obs ) { if (verbose>=1) cat(" but skipped for this obs\n") L[i] <- NA } else { if ( method=="saddlepoint") { L[i] <- dtweedie.logl.saddle(y=ydata, mu=mu, power=p, phi=phi, eps=eps) } else { if (p==2) { L[i] <- sum( log( dgamma( rate=1/(phi*mu), shape=1/phi, x=ydata ) ) ) } else { if ( p == 1 ) { if ( phi==1 ){ L[i] <- sum( log( dpois(x=ydata/phi, lambda=mu/phi ) ) ) } else { y.on.phi <- ydata/phi close.enough <- array( dim=length(y.on.phi)) for (i in (1:length(y.on.phi))){ if (isTRUE(all.equal(y.on.phi, as.integer(y.on.phi)))){ L[i] <- sum( log( dpois(x=round(y/phi), lambda=mu/phi ) ) ) } else { L[i] <- 0 } } } } else { if ( p == 0 ) { L[i] <- sum( dnorm(x=ydata, mean=mu, sd=sqrt(phi), log=TRUE) ) } else { L[i] <- switch( pmatch(method, c("interpolation","series", "inversion"), nomatch=2), "1" = dtweedie.logl( mu=mu, power=p, phi=phi, y=ydata), "2" = sum( log( dtweedie.series( y=ydata, mu=mu, power=p, phi=phi) ) ), "3" = sum( log( dtweedie.inversion( y=ydata, mu=mu, power=p, phi=phi) ) ) ) } } } } } if (verbose>=1) { cat(" Done: L =",L[i],"\n") } } if ( verbose == 0 ) cat("Done.\n") y <- NA x <- NA if ( do.smooth ) { L.fix <- L xi.vec.fix <- xi.vec phi.vec.fix <- phi.vec if ( any( is.nan(L) ) | any( is.infinite(L) ) | any( is.na(L) ) ) { retain.these <- !( ( is.nan(L) ) | ( is.infinite(L) ) | ( is.na(L) ) ) xi.vec.fix <- xi.vec.fix[ retain.these ] phi.vec.fix <- phi.vec.fix[ retain.these ] L.fix <- L.fix[ retain.these ] if (verbose>=1) cat("Smooth perhaps inaccurate--log-likelihood contains Inf or NA.\n") } if ( length( L.fix ) > 0 ) { if (verbose>=1) cat(".") if (verbose>=1) cat(" --- \n") if (verbose>=1) cat("* Smoothing: ") ss <- splinefun( xi.vec.fix, L.fix ) xi.smooth <- seq(min(xi.vec.fix), max(xi.vec.fix), length=50 ) L.smooth <- ss(xi.smooth ) if ( do.plot) { keep.these <- is.finite(L.smooth) & !is.na(L.smooth) L.smooth <- L.smooth[ keep.these ] xi.smooth <- xi.smooth[ keep.these ] if ( verbose>=1 & any( !keep.these ) ) { cat(" (Some values of L are infinite or NA for the smooth; these are ignored)\n") } yrange <- range( L.smooth, na.rm=TRUE ) plot( yrange ~ range(xi.vec), type="n", las=1, xlab=ifelse(xi.notation, expression(paste( xi," index")), expression(paste( italic(p)," index")) ), ylab=expression(italic(L))) lines( xi.smooth, L.smooth, lwd=2) rug( xi.vec ) if (do.points) { points( L ~ xi.vec, pch=19) } if (add0) lines(xi.smooth[xi.smooth<1], L.smooth[xi.smooth<1], col="gray", lwd=2) } x <- xi.smooth y <- L.smooth } else { cat(" No valid values of the likelihood computed: smooth aborted\n", " Consider trying another value for the input method.\n") } } else { if ( do.plot) { keep.these <- is.finite(L) & !is.na(L) xi.vec <- xi.vec[ keep.these ] L <- L[ keep.these ] phi.vec <- phi.vec[ keep.these ] if ( verbose>=1 & any( keep.these ) ) { cat(" Some values of L are infinite or NA, and hence ignored\n") } yrange <- range( L, na.rm=TRUE ) plot( yrange ~ range(xi.vec), type="n", las=1, xlab=ifelse( xi.notation, expression(paste(xi," index")), expression(paste(italic(p)," index")) ), ylab=expression(italic(L))) lines( L ~ xi.vec, lwd=2) rug( xi.vec ) if (do.points) { points( L ~ xi.vec, pch=19) } } x <- xi.vec y <- L } if (verbose>=2) cat(" Done\n") if ( do.smooth ){ if (verbose>=2) cat(" Estimating phi: ") L.max <- max(y, na.rm=TRUE) xi.max <- x[ y==L.max ] if ( (xi.max > 0) & ( xi.max < 1 ) ) { L.max <- max( c( y[xi.vec==0], y[xi.vec==1]) ) xi.max <- xi.vec[ L.max == y ] cat("MLE of",index.par,"is between 0 and 1, which is impossible.", "Instead, the MLE of",index.par,"has been set to",xi.max, ". Please check your data and the call to tweedie.profile().") } phi.1 <- 2 * max( phi.vec.fix, na.rm=TRUE ) phi.2 <- 0.5 * min( phi.vec.fix, na.rm=TRUE ) if ( phi.1 > phi.2 ) { phi.hi <- phi.1 phi.lo <- phi.2 } else { phi.hi <- phi.2 phi.lo <- phi.1 } if (verbose>=2) cat(" Done\n") if ( (xi.max==xi.vec[1]) | (xi.max==xi.vec[length(xi.vec)]) ) { if ( xi.max==xi.vec[1]) phi.max <- phi.vec[1] if ( xi.max==xi.vec[length(xi.vec)]) phi.max <- phi.vec[length(xi.vec)] warning("True maximum possibly not detected.") } else { if ( phi.method=="saddlepoint"){ mu <- fitted( glm.fit( y=ydata, x=model.x, weights=weights, offset=offset, family=statmod::tweedie(xi.max, link.power=link.power))) phi.max <- sum( tweedie.dev(y=ydata, mu=mu, power=xi.max) )/length( ydata ) } else { mu <- fitted( glm.fit( y=ydata, x=model.x, weights=weights, offset=offset, family=statmod::tweedie(xi.max, link.power=link.power))) phi.max <- optimize( f=dtweedie.nlogl, maximum=FALSE, interval=c(phi.lo, phi.hi ), power=xi.max, mu=mu, y=ydata)$minimum } } } else { if (verbose>=2) cat(" Finding maximum likelihood estimates: ") L.max <- max(L) xi.max <- xi.vec [ L == L.max ] phi.max <- phi.vec[ L == L.max ] if (verbose>=2) cat(" Done\n") } if ( verbose >= 2 ) { cat( "ML Estimates: ",index.par,"=",xi.max," with phi=",phi.max," giving L=",L.max,"\n") cat(" ---\n") } ht <- L.max - ( qchisq(conf.level, 1) / 2 ) ci <- array( dim=2, NA ) if ( do.ci ) { if (verbose==2) cat("* Finding confidence interval:") if ( !do.smooth ) { warning("Confidence interval may be very inaccurate without smoothing.\n") y <- L x <- xi.vec } if ( do.plot ) { abline(h=ht, lty=2) title( sub=paste("(",100*conf.level,"% confidence interval)", sep="") ) } cond.left <- (y < ht ) & (x < xi.max ) if ( all(cond.left==FALSE) ) { warning("Confidence interval cannot be found: insufficient data to find left CI.\n") }else{ approx.left <- max( x[cond.left] ) index.left <- seq(1, length(cond.left) ) index.left <- index.left[x==approx.left] left.left <- max( 1, index.left - 5) left.right <- min( length(cond.left), index.left + 5) ss.left <- splinefun( y[left.left:left.right], x[left.left: left.right] ) ci.new.left <- ss.left( ht ) ci[1] <- ci.new.left } cond.right <- (y < ht ) & (x > xi.max ) if ( all( cond.right==FALSE ) ) { warning("Confidence interval cannot be found: insufficient data to find right CI.\n") }else{ approx.right <- min( x[cond.right] ) index.right <- seq(1, length(cond.right) ) index.right <- index.right[x==approx.right] right.left <- max( 1, index.right - 5) right.right <- min( length(cond.left), index.right + 5) ss.right <- splinefun( y[right.left:right.right], x[right.left: right.right] ) ci.new.right <- ss.right(ht ) ci[2] <- ci.new.right } if (verbose==2) cat(" Done\n") } if ( fit.glm ) { out.glm <- glm.fit( x=model.x, y=ydata, weights=weights, offset=offset, family=statmod::tweedie(var.power=xi.max, link.power=link.power) ) if ( xi.notation){ out <- list( y=y, x=x, ht=ht, L=L, xi=xi.vec, xi.max=xi.max, L.max=L.max, phi=phi.vec, phi.max=phi.max, ci=ci, method=method, phi.method=phi.method, glm.obj = out.glm) } else { out <- list( y=y, x=x, ht=ht, L=L, p=p.vec, p.max=xi.max, L.max=L.max, phi=phi.vec, phi.max=phi.max, ci=ci, method=method, phi.method=phi.method, glm.obj = out.glm) } } else { if (xi.notation ){ out <- list( y=y, x=x, ht=ht, L=L, xi=xi.vec, xi.max=xi.max, L.max=L.max, phi=phi.vec, phi.max=phi.max, ci=ci, method=method, phi.method=phi.method) } else { out <- list( y=y, x=x, ht=ht, L=L, p=p.vec, p.max=xi.max, L.max=L.max, phi=phi.vec, phi.max=phi.max, ci=ci, method=method, phi.method=phi.method) } } if ( verbose ) cat("\n") invisible( out ) } dtweedie.stable <- function(y, power, mu, phi) { if ( power<1) stop("power must be greater than 2.\n") if ( any(phi<=0) ) stop("phi must be positive.") if ( any(y<0) ) stop("y must be a non-negative vector.\n") if ( any(mu<=0) ) stop("mu must be positive.\n") if ( length(mu)>1) { if ( length(mu)!=length(y) ) stop("mu must be scalar, or the same length as y.\n") } else { mu <- array( dim=length(y), mu ) } if ( length(phi)>1) { if ( length(phi)!=length(y) ) stop("phi must be scalar, or the same length as y.\n") } else { phi <- array( dim=length(y), phi ) } density <- y alpha <- (2-power)/(1-power) beta <- 1 k <- 1 delta <- 0 gamma <- phi * (power-1) * ( 1/(phi*(power-2)) * cos( alpha * pi / 2 ) ) ^ (1/alpha) ds <- stabledist::dstable(y, alpha=alpha, beta=beta, gamma=gamma, delta=delta, pm=k) density <- exp((y*mu^(1-power)/(1-power)-mu^(2-power)/(2-power))/phi)*ds density } tweedie.plot <- function(y, xi=NULL, mu, phi, type="pdf", power=NULL, add=FALSE, ...) { if ( is.null(power) & is.null(xi) ) stop("Either xi or power must be given\n") xi.notation <- TRUE if ( is.null(power) ) { power <- xi } else { xi.notation <- FALSE } if ( is.null(xi) ) { xi.notation <- FALSE xi <- power } if ( xi != power ) { cat("Different values for xi and power given; the value of xi used.\n") power <- xi } index.par <- ifelse( xi.notation, "xi","p") index.par.long <- ifelse( xi.notation, "xi","power") if ( ( power < 0 ) | ( ( power > 0 ) & ( power < 1 ) ) ) { stop( paste("Plots cannot be produced for",index.par.long,"=",power,"\n") ) } is.pg <- ( power > 1 ) & ( power < 2 ) if ( type=="pdf") { fy <- dtweedie( y=y, power=power, mu=mu, phi=phi) } else { fy <- ptweedie( q=y, power=power, mu=mu, phi=phi) } if ( !add ) { if ( is.pg ) { plot( range(fy) ~ range( y ), type="n", ...) if ( any( y==0 ) ) { points( fy[y==0] ~ y[y==0], pch=19, ... ) } if ( any( y>0 ) ) { lines( fy[y>0] ~ y[y>0], pch=19, ... ) } } else { plot( range(fy) ~ range( y ), type="n", ...) lines( fy ~ y, pch=19, ... ) } } else { if ( is.pg ) { if ( any( y==0 ) ) { points( fy[y==0] ~ y[y==0], pch=19, ... ) } if ( any( y>0 ) ) { lines( fy[y>0] ~ y[y>0], pch=19, ... ) } } else { lines( fy ~ y, pch=19, ... ) } } return(invisible(list(y=fy, x=y) )) } AICtweedie <- function( glm.obj, dispersion=NULL, k=2, verbose=TRUE){ wt <- glm.obj$prior.weights n <- length(glm.obj$residuals) edf <- glm.obj$rank mu <- fitted( glm.obj ) y <- glm.obj$y p <- get("p", envir = environment(glm.obj$family$variance)) if ( is.null(dispersion)) { if (p==1 & verbose) message("*** Tweedie index power = 1: Consider using dispersion=1 in call to AICtweedie().\n") dev <- deviance(glm.obj) disp <- dev/sum(wt) edf <- edf+1 } else { disp <- dispersion } den <- dtweedie( y=y, mu=mu, phi=disp, power=p) AIC <- -2*sum( log(den) * wt) return( AIC + k*(edf) ) } tweedie.convert <- function(xi=NULL, mu, phi, power=NULL){ if ( is.null(power) & is.null(xi) ) stop("Either xi or power must be given\n") xi.notation <- TRUE if ( is.null(power) ) { if ( !is.numeric(xi)) stop("xi must be numeric.") power <- xi } else { xi.notation <- FALSE } if ( is.null(xi) ) { if ( !is.numeric(power)) stop("power must be numeric.") xi.notation <- FALSE xi <- power } if ( xi != power ) { cat("Different values for xi and power given; the value of xi used.\n") power <- xi } index.par <- ifelse( xi.notation, "xi","p") index.par.long <- ifelse( xi.notation, "xi","power") if ( power<1) stop( paste(index.par.long, "must be greater than 1.\n") ) if ( power>=2) stop( paste(index.par.long, "must be less than 2.\n") ) if ( any(phi<=0) ) stop("phi must be positive.") if ( any(mu<=0) ) stop("mu must be positive.\n") if( length(mu) != length(phi) ){ if ( length(mu) == 1 ) mu <- array(dim=length(phi), mu ) if ( length(phi) == 1 ) phi <- array(dim=length(mu), phi ) } if( length(mu) != length(phi) ) stop("phi and mu must be scalars, or the same length.\n") lambda <- ( mu^(2 - xi) ) / ( phi * (2 - xi) ) alpha <- (2 - xi) / (xi - 1) gam <- phi * (xi - 1) * mu^(xi - 1) p0 <- exp( -lambda ) phi.g <- (2 - xi) * (xi - 1) * phi^2 * mu^( 2 * (xi-1) ) mu <- gam/phi list( poisson.lambda = lambda, gamma.shape = alpha, gamma.scale = gam, p0 = p0, gamma.mean = mu, gamma.phi = phi.g ) }
cgraph <- function(ev,cbinit=FALSE,mindist=FALSE) { if (cbinit) { diag(ev$m[,]) <- 1 diag(ev$prod1[,]) <- 1 ev$k <- nrow(ev$m) - 1 ev$dists <- ev$m ev$connected <- FALSE if (mindist && ev$squaring) stop("squaring cannot be used with the mindist option") return() } if (ev$i %% 2 == 1) prd <- ev$prod2 else prd <- ev$prod1 if (all(prd > 0)) { ev$connected <- TRUE ev$stop <- TRUE } if (mindist) { tmp <- prd[,] > 0 ev$dists[tmp & ev$dists == 0] <- ev$i + 1 } } eig <- function(ev,cbinit=FALSE,x=NULL,eps=1e-08) { if (cbinit) { if (is.null(x)) x <- rep(1,nrow(ev$m)) ev$x <- x ev$oldx <- x ev$eps <- eps return() } ev$x <- ev$x / normvec(ev$x) cmd <- ev$genmulcmd("ev$m","ev$x","ev$x") eval(parse(text=cmd)) diff <- normvec(ev$x - ev$oldx) if (diff / sum(abs(ev$x)) < ev$eps) ev$stop <- TRUE ev$oldx <- ev$x } mc <- function(ev,cbinit=FALSE,eps=1e-08) { if (cbinit) { return() } diff <- norm(ev$prod1 - ev$prod2) if (ev$i %% 2 == 1) prd <- ev$prod2 else prd <- ev$prod1 if (diff / norm(prd) < eps) { ev$stop <- TRUE ev$pivec <- colMeans(prd) } } mexp <- function(ev,cbinit=FALSE,eps=1e-08) { if (cbinit) { if (ev$squaring) stop("squaring not allowed with mexp") ev$esum <- diag(nrow(ev$m)) + ev$m ev$esumold <- ev$esum return() } if (ev$i %% 2 == 1) prd <- ev$prod2 else prd <- ev$prod1 ev$esum <- ev$esum + (1/factorial(ev$i+1)) * prd diff <- norm(ev$esum - ev$esumold) if (diff / norm(ev$esum) < eps) { ev$stop <- TRUE } ev$esumold <- ev$esum }
convert2igraph <- function (A, neural = FALSE) { net <- igraph::as.igraph(qgraph::qgraph(A,DoNotPlot=TRUE)) igraph::vertex_attr(net, "name") <- V(net)$label return(net) }
modelProfile <- function(formula, data, groups = 10, group_label = c("I", "D"), digits_numeric = 1, digits_factor = 4, exclude_na = FALSE, LaTex = FALSE) { if (!inherits(formula, "formula")) stop("uplift: Method is only for formula objects.") if (!groups %in% c(5, 10, 20)) stop("uplift: groups must be either 5, 10 or 20. Aborting...") if (!tolower(group_label) %in% c("i", "d")) stop("uplift: group_label must be either 'I' or 'D'. Aborting...") mf <- match.call(expand.dots = FALSE) args <- match(c("formula", "data"), names(mf), 0L) mf <- mf[c(1L, args)] mf$drop.unused.levels <- TRUE mf$na.action <- na.pass mf[[1L]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") data_class <- attributes(mt)$dataClasses[-1] if (!all(unique(data_class) %in% c("numeric", "factor", "ordered"))) stop("uplift: variable types in formula must be either numeric, integer, factor or ordered. Aborting...") num_vars <- which(data_class == "numeric") fac_vars <- which(data_class %in% c("factor", "ordered")) num_var_names <- attributes(mt)$term.labels[num_vars] fac_var_names <- attributes(mt)$term.labels[fac_vars] resp_var_name <- names(attributes(mt)$dataClasses[1]) attr(mt, "intercept") <- 0 Y <- model.response(mf, "any") if (length(dim(Y)) == 1L) { nm <- rownames(Y) dim(Y) <- NULL if (!is.null(nm)) names(Y) <- nm } if (!is.numeric(Y)) stop("uplift: the LHS of the model formula must be a numeric vector. Aborting...") if (group_label == "I") rank.Y <- rank(Y) else rank.Y <- rank(-Y) Group <- cut(rank.Y, breaks = quantile(rank.Y, probs = seq(0, 1, 1/groups)), labels = 1:groups, include.lowest = TRUE) dframe <- data.frame(mf, Group) if (exclude_na) dframe_out <-"na.omit(dframe)" else dframe_out <-"dframe" if (length(num_vars) != 0L) t1 <- paste("+", paste(num_var_names, collapse = " + ")) else t1 <- "" if (length(fac_vars) != 0L) {t2 <- paste("+ Format(digits=", digits_factor, ") * ((", paste("Factor(", fac_var_names, ")", sep = "", collapse = " + "), ") * ", "(Pctn. = Percent('col')))", sep = "")} else { t2 <- ""} tab.form <- paste("tabular((n=1) + Format(digits=", digits_numeric, ")", " * ((", resp_var_name, t1, ") * (Avg. = mean))", t2, " ~ Justify(c) * (Group + 1),", " data = ", dframe_out, ")", sep ="") if (LaTex) tab.form <- paste("latex(", tab.form, ")", sep ="") res <- eval(parse(text=tab.form)) return(res) }
path_script_default <- function() { "_targets.R" } path_script_r <- function(path_script) { paste0(tools::file_path_sans_ext(path_script), "_r") } path_script_r_globals_dir <- function(path_script) { file.path(path_script_r(path_script), "globals") } path_script_r_globals <- function(path_script, name) { file.path(path_script_r_globals_dir(path_script), paste0(name, ".R")) } path_script_r_targets_dir <- function(path_script) { file.path(path_script_r(path_script), "targets") } path_script_r_targets <- function(path_script, name) { file.path(path_script_r_targets_dir(path_script), paste0(name, ".R")) } path_store_default <- function() { "_targets" } path_gitignore <- function(path_store) { file.path(path_store, ".gitignore") } path_objects <- function(path_store, name) { file.path(path_objects_dir(path_store), name) } path_objects_dir <- function(path_store) { file.path(path_store, "objects") } path_objects_dir_cloud <- function() { file.path(path_store_default(), "objects", fsep = "/") } path_meta_dir <- function(path_store) { file.path(path_store, "meta") } path_meta <- function(path_store) { file.path(path_meta_dir(path_store), "meta") } path_progress <- function(path_store) { file.path(path_meta_dir(path_store), "progress") } path_process <- function(path_store) { file.path(path_meta_dir(path_store), "process") } path_scratch <- function(path_store, pattern = "") { tempfile(pattern = pattern, tmpdir = path_scratch_dir(path_store)) } path_scratch_dir <- function(path_store) { file.path(path_store, "scratch") } path_scratch_del <- function(path_store) { unlink(path_scratch_dir(path_store), recursive = TRUE) } path_user_dir <- function(path_store) { file.path(path_store, "user") } path_workspace <- function(path_store, name) { file.path(path_workspaces_dir(path_store), name) } path_workspaces_dir <- function(path_store) { file.path(path_store, "workspaces") }
det_guard_width <- function(highriskzone, thresh_const = .5) { if (class(highriskzone)[1] != "highriskzone") stop("highriskzone has to be of class highriskzone!") if (thresh_const < 0 | thresh_const >1) stop("thres_const has to be in [0,1]") if(is.null(highriskzone$covmatrix)) stop("highriskzone has to be estimated based on an intensity based approach and information on (estimated) kernel covariance is necessary") cov_hat <- highriskzone$covmatrix eigen_cov <- eigen(cov_hat) cutval <- thresh_const * (1-highriskzone$nxprob) / highriskzone$nxprob * highriskzone$threshold if (dmvnorm(c(0,0), c(0,0), cov_hat) < cutval) { buffer_length <- 0 } else { maj_axis_dir <- sqrt(eigen_cov$values[1]) * eigen_cov$vectors[,1] mult_fac <- uniroot(function(x) dmvnorm(maj_axis_dir * x, c(0,0), cov_hat) - cutval, c(0, 2*max(cov_hat))) buffer_length <- sqrt(sum((mult_fac$root * maj_axis_dir)^2)) } buffer_length }
knitr::opts_chunk$set( collapse = TRUE, comment = " eval = curl::has_internet() ) library(stplanr) library(osrm) knitr::include_graphics("https://user-images.githubusercontent.com/1825120/86902789-577d1080-c106-11ea-91df-8d0180931562.png") knitr::include_graphics("https://user-images.githubusercontent.com/1825120/86858225-2970df80-c0b8-11ea-8394-07f98f1c8e8a.png")
apollo_checkArguments=function(apollo_probabilities=NA,apollo_randCoeff=NA,apollo_lcPars=NA){ if(is.function(apollo_probabilities)){ arguments = formals(apollo_probabilities) if(!all(names(arguments)==c("apollo_beta", "apollo_inputs", "functionality"))) stop("The arguments for apollo_probabilities need to be apollo_beta, apollo_inputs and functionality") } else if(!is.na(apollo_probabilities)) stop("The argument \"apollo_probabilities\" should be a function") if(is.function(apollo_randCoeff)){ arguments = formals(apollo_randCoeff) if(!all(names(arguments)==c("apollo_beta", "apollo_inputs"))) stop("The arguments for apollo_randCoeff need to be apollo_beta and apollo_inputs") } else if(!is.na(apollo_randCoeff)) stop("The argument \"apollo_randCoeff\" should be a function") if(is.function(apollo_lcPars)){ arguments = formals(apollo_lcPars) if(!all(names(arguments)==c("apollo_beta", "apollo_inputs"))) stop("The arguments for apollo_lcPars need to be apollo_beta and apollo_inputs") } else if(!is.na(apollo_lcPars)) stop("The argument \"apollo_lcPars\" should be a function") return(invisible(TRUE)) }
printHTMLProtocol <- function(testData, fileName = "", separateFailureList = TRUE, traceBackCutOff=9, testFileToLinkMap=function(x) x) { if (!is(testData, "RUnitTestData")) { stop("Argument 'testData' must be of class 'RUnitTestData'.") } if (!is.character(fileName)) { stop("Argument 'fileName' has to be of type character.") } if (length(fileName) != 1) { stop("Argument 'fileName' must contain exactly one element.") } if (!is.logical(separateFailureList)) { stop("Argument 'separateFailureList' has to be of type logical.") } if (length(separateFailureList) != 1) { stop("Argument 'separateFailureList' must contain exactly one element.") } if (!is.numeric(traceBackCutOff)) { stop("Argument 'traceBackCutOff' has to be of type logical.") } if (length(traceBackCutOff) != 1) { stop("Argument 'traceBackCutOff' must contain exactly one element.") } if (traceBackCutOff < 0 || traceBackCutOff > 100) { stop("Argument 'traceBackCutOff' out of valid range [0, 100].") } sop <- function(number, word, plext="s") { ifelse(number == 1, paste(number, word), paste(number, paste(word, plext, sep=""))) } pr <- function(...) { writeRaw(paste(...), htmlFile=fileName) writeRaw("<br/>", htmlFile=fileName) } writeP <- function(string, para="") { writeBeginTag("p", para=para, htmlFile=fileName) writeRaw(string, htmlFile=fileName) writeEndTag("p", htmlFile=fileName) writeCR(htmlFile=fileName) } writeLi <- function(..., para="") { writeBeginTag("li", para=para, htmlFile=fileName) writeRaw(paste(...), htmlFile=fileName) writeEndTag("li", htmlFile=fileName) } createTestFuncRef <- function(testSuite, srcFileName, testFuncName, asAnchor=FALSE) { tmp <- paste(testSuite, srcFileName, testFuncName, sep="_") if(asAnchor) { return(paste(" } else { return(gsub("/", "_", tmp)) } } printTraceBack <- function(traceBack) { if(length(traceBack) > 0) { writeRaw("Call Stack:<br/>", htmlFile=fileName) if(traceBackCutOff > length(testFuncInfo$traceBack)) { writeRaw("(traceBackCutOff argument larger than length of trace back: full trace back printed)<br/>", htmlFile=fileName) writeBeginTag("ol", htmlFile=fileName) for(i in seq_along(traceBack)) { writeBeginTag("li", htmlFile=fileName) writeRaw(traceBack[i], htmlFile=fileName) writeEndTag("li", htmlFile=fileName) } } else { writeBeginTag("ol", htmlFile=fileName) for(i in traceBackCutOff:length(traceBack)) { writeBeginTag("li", htmlFile=fileName) writeRaw(traceBack[i], htmlFile=fileName) writeEndTag("li", htmlFile=fileName) } } writeEndTag("ol", htmlFile=fileName) } } errorStyle <- "color:red" deactivatedStyle <- "color:black" title <- paste("RUNIT TEST PROTOCOL", date(), sep="--") writeHtmlHeader(title, htmlFile=fileName) writeHtmlSection(title, 1, htmlFile=fileName) if(length(testData) == 0) { writeP(" no test cases :-(") return(invisible(TRUE)) } errInfo <- getErrors(testData) writeP(paste("Number of test functions:", errInfo$nTestFunc)) if(errInfo$nDeactivated > 0) { writeP(paste("Number of deactivated test functions:", errInfo$nDeactivated), para=ifelse(errInfo$nDeactivated == 0, "", paste("style", deactivatedStyle, sep="="))) } writeP(paste("Number of errors:", errInfo$nErr), para=ifelse(errInfo$nErr == 0, "", paste("style", errorStyle, sep="="))) writeP(paste("Number of failures:", errInfo$nFail), para=ifelse(errInfo$nFail == 0, "", paste("style", errorStyle, sep="="))) writeHtmlSep(htmlFile=fileName) writeHtmlSection(sop(length(testData), "Test suite"), 3, htmlFile=fileName) if(errInfo$nDeactivated > 0) { writeBeginTable(c("Name", "Test functions", "Deactivated", "Errors", "Failures"), width="80%", htmlFile=fileName, columnWidth=c("20%", "20%", "20%", "20%", "20%")) for(tsName in names(testData)) { rowString <- c(paste("<a href=\" testData[[tsName]]$nTestFunc, testData[[tsName]]$nDeactivated, testData[[tsName]]$nErr, testData[[tsName]]$nFail) rowCols <- c("", "", ifelse(testData[[tsName]]$nDeactivated==0, "", "yellow"), ifelse(testData[[tsName]]$nErr==0, "", "red"), ifelse(testData[[tsName]]$nFail==0, "", "red")) writeTableRow(row=rowString, bgcolor=rowCols, htmlFile=fileName) } writeEndTable(htmlFile=fileName) } else { writeBeginTable(c("Name", "Test functions", "Errors", "Failures"), width="60%", htmlFile=fileName, columnWidth=c("30%", "30%", "20%", "20%")) for(tsName in names(testData)) { rowString <- c(paste("<a href=\" testData[[tsName]]$nTestFunc, testData[[tsName]]$nErr, testData[[tsName]]$nFail) rowCols <- c("", "", ifelse(testData[[tsName]]$nErr==0, "", "red"), ifelse(testData[[tsName]]$nFail==0, "", "red")) writeTableRow(row=rowString, bgcolor=rowCols, htmlFile=fileName) } writeEndTable(htmlFile=fileName) } writeHtmlSep(htmlFile=fileName) if(separateFailureList && (errInfo$nErr > 0)) { writeHtmlSection("Errors", 3, htmlFile=fileName) writeBeginTable(c("Test suite : test function", "message"), htmlFile=fileName, columnWidth=c("30%", "70%")) for(tsName in names(testData)) { if(testData[[tsName]]$nErr > 0) { srcFileRes <- testData[[tsName]]$sourceFileResults srcFileNames <- names(srcFileRes) for(i in seq_along(srcFileRes)) { testFuncNames <- names(srcFileRes[[i]]) for(j in seq_along(testFuncNames)) { funcList <- srcFileRes[[i]][[testFuncNames[j]]] if(funcList$kind == "error") { lnk <- paste("<a href=\"", createTestFuncRef(tsName, srcFileNames[i], testFuncNames[j], asAnchor=TRUE), "\">", paste(tsName, testFuncNames[j], sep=" : "), "</a>", sep="") writeTableRow(row=c(lnk, funcList$msg), htmlFile=fileName) } } } } } writeEndTable(htmlFile=fileName) writeHtmlSep(htmlFile=fileName) } if(separateFailureList && (errInfo$nFail > 0)) { writeHtmlSection("Failures", 3, htmlFile=fileName) writeBeginTable(c("Test suite : test function", "message"), htmlFile=fileName, columnWidth=c("30%", "70%")) for(tsName in names(testData)) { if(testData[[tsName]]$nFail > 0) { srcFileRes <- testData[[tsName]]$sourceFileResults srcFileNames <- names(srcFileRes) for(i in seq_along(srcFileRes)) { testFuncNames <- names(srcFileRes[[i]]) for(j in seq_along(testFuncNames)) { funcList <- srcFileRes[[i]][[testFuncNames[j]]] if(funcList$kind == "failure") { lnk <- paste("<a href=\"", createTestFuncRef(tsName, srcFileNames[i], testFuncNames[j], asAnchor=TRUE), "\">", paste(tsName, testFuncNames[j], sep=" : "), "</a>", sep="") writeTableRow(row=c(lnk, funcList$msg), htmlFile=fileName) } } } } } writeEndTable(htmlFile=fileName) writeHtmlSep(htmlFile=fileName) } if(separateFailureList && (errInfo$nDeactivated > 0)) { writeHtmlSection("Deactivated", 3, htmlFile=fileName) writeBeginTable(c("Test suite : test function", "message"), htmlFile=fileName, columnWidth=c("30%", "70%")) for(tsName in names(testData)) { if(testData[[tsName]]$nDeactivated > 0) { srcFileRes <- testData[[tsName]]$sourceFileResults srcFileNames <- names(srcFileRes) for(i in seq_along(srcFileNames)) { testFuncNames <- names(srcFileRes[[i]]) for(j in seq_along(testFuncNames)) { funcList <- srcFileRes[[i]][[testFuncNames[j]]] if(funcList$kind == "deactivated") { lnk <- paste("<a href=\"", createTestFuncRef(tsName, srcFileNames[i], testFuncNames[j], asAnchor=TRUE), "\">", paste(tsName, testFuncNames[j], sep=" : "), "</a>", sep="") writeTableRow(row=c(lnk, funcList$msg), htmlFile=fileName) } } } } } writeEndTable(htmlFile=fileName) writeHtmlSep(htmlFile=fileName) } writeHtmlSection("Details", 3, htmlFile=fileName) for(tsName in names(testData)) { tsList <- testData[[tsName]] writeBeginTag("p", htmlFile=fileName) writeBeginTag("a", para=paste("name=\"", tsName, "\"", sep=""), htmlFile=fileName) writeHtmlSection(paste("Test Suite:", tsName), 5, htmlFile=fileName) writeEndTag("a", htmlFile=fileName) pr("Test function regexp:", tsList$testFuncRegexp) pr("Test file regexp:", tsList$testFileRegexp) if(length(tsList$dirs) == 0) { pr("No directories !") } else { if(length(tsList$dirs) == 1) { pr("Involved directory:") } else { pr("Involved directories:") } for(dir in tsList$dirs) { pr(dir) } res <- tsList$sourceFileResults testFileNames <- names(res) if(length(res) == 0) { pr(" no test files") } else { writeBeginTag("ul", htmlFile=fileName) for(testFileName in testFileNames) { testFuncNames <- names(res[[testFileName]]) if(length(testFuncNames) > 0) { writeBeginTag("li", htmlFile=fileName) writeLink(target=testFileToLinkMap(testFileName), name=paste("Test file:", basename(testFileName)), htmlFile=fileName) writeBeginTag("ul", htmlFile=fileName) for(testFuncName in testFuncNames) { writeBeginTag("li", htmlFile=fileName) testFuncInfo <- res[[testFileName]][[testFuncName]] anchorName <- createTestFuncRef(tsName, testFileName, testFuncName) writeBeginTag("a", para=paste("name=\"", anchorName, "\"", sep=""), htmlFile=fileName) if(testFuncInfo$kind == "success") { pr(paste(testFuncName, ": (",testFuncInfo$checkNum, " checks) ... OK (", testFuncInfo$time, " seconds)", sep="")) writeEndTag("a", htmlFile=fileName) } else { if(testFuncInfo$kind == "error") { writeBeginTag("u", para=paste("style", errorStyle, sep="="), htmlFile=fileName) writeRaw(paste(testFuncName, ": ERROR !! ", sep=""), htmlFile=fileName) writeEndTag("u", htmlFile=fileName) writeEndTag("a", htmlFile=fileName) } else if (testFuncInfo$kind == "failure") { writeBeginTag("u", para=paste("style", errorStyle, sep="="), htmlFile=fileName) writeRaw(paste(testFuncName, ": FAILURE !! (check number ", testFuncInfo$checkNum, ") ", sep=""), htmlFile=fileName) writeEndTag("u", htmlFile=fileName) writeEndTag("a", htmlFile=fileName) } else if (testFuncInfo$kind == "deactivated") { writeBeginTag("u", para=paste("style", deactivatedStyle, sep="="), htmlFile=fileName) writeRaw(paste(testFuncName, ": DEACTIVATED, ", sep=""), htmlFile=fileName) writeEndTag("a", htmlFile=fileName) } else { writeLi(paste(testFuncName, ": unknown error kind", sep="")) writeEndTag("a", htmlFile=fileName) } pr(testFuncInfo$msg) printTraceBack(testFuncInfo$traceBack) } writeEndTag("li", htmlFile=fileName) } writeEndTag("ul", htmlFile=fileName) } writeEndTag("li", htmlFile=fileName) } writeEndTag("ul", htmlFile=fileName) } } writeHtmlSep(htmlFile=fileName) } ver <- cbind(unlist(version)) ver <- rbind(ver, Sys.info()["nodename"]) rownames(ver)[dim(ver)[1]] <- "host" colnames(ver) <- "Value" rhome <- Sys.getenv("R_HOME") gccVersion <- as.character(NA) makeconfFile <- file.path(rhome, "etc", "Makeconf") if (file.exists(makeconfFile) && identical(.Platform$OS.type, "unix")) { gccVersion <- system(paste("cat ", makeconfFile," | grep \"^CXX =\" "), intern=TRUE) gccVersion <- sub("^CXX[ ]* =[ ]*", "", gccVersion) } ver <- rbind(ver, gccVersion) rownames(ver)[dim(ver)[1]] <- "compiler" writeHtmlTable(ver, htmlFile=fileName, border=0, width="80%", append=TRUE) writeHtmlEnd(htmlFile=fileName) return(invisible(TRUE)) }
setMethodS3("getConstructorS3", "default", function(name, ...) { if (!exists(name, mode="function")) { throw("No such function found: ", name) } fcn <- get(name, mode="function") if (isGenericS3(fcn)) { throw("The function found is an S3 generic function: ", name) } fcn })
.cgarchhessian = function(f, pars, arglist, fname) { cluster = arglist$cluster dccN = arglist$dccN arglist$returnType = "llh" fx = f(pars, arglist) .eps = .Machine$double.eps n = length(pars) h = .eps ^ (1/3) * pmax( abs( pars ), 1 ) xh = pars + h h = xh - pars ee = as.matrix( diag( h ) ) g = vector(mode = "numeric", length = n) if( !is.null(cluster) ){ clusterEvalQ(cluster, require(rmgarch)) clusterExport(cluster, c("pars", "ee", "arglist", "n", "fname"), envir = environment()) tmp = parLapply(cluster, as.list(1:n), fun = function(i){ tmpg = eval(parse(text = paste(fname, "( pars = pars + ee[, i], arglist)", sep = ""))) return( tmpg ) }) g = as.numeric( unlist(tmp) ) } else{ tmp = lapply(as.list(1:n), FUN = function(i){ if(arglist$verbose) cat(paste("Evaluating StepValue ",i," out of ",n,"\n",sep="")) tmpg = f( pars = pars + ee[, i], arglist) return( tmpg ) }) g = as.numeric( unlist(tmp) ) } H = h %*% t( h ) if( !is.null(cluster) ){ clusterEvalQ(cluster, require(rmgarch)) clusterExport(cluster, c("pars", "H", "ee", "n", "dccN", "g", "fx", "fname", "arglist"), envir = environment()) tmp = parLapply(cluster, as.list(1:n), fun = function(i){ Htmp = H for(j in (n - dccN + 1):n){ if(i <= j){ Htmp[i, j] = eval(parse(text = paste("(",fname, "( pars = pars + ee[, i] + ee[, j], arglist) - g[i] - g[j] + fx) / Htmp[i, j]", sep = ""))) Htmp[j, i] = Htmp[i, j] } } return(Htmp) }) for(i in 1:n){ for(j in (n - dccN + 1):n){ if(i <= j){ H[i, j] = tmp[[i]][i, j] H[j, i] = tmp[[i]][j, i] } } } } else{ tmp = lapply(as.list(1:n), FUN = function(i){ Htmp = H for(j in (n - dccN + 1):n){ if(i <= j){ Htmp[i, j] = (f( pars = pars + ee[, i] + ee[, j], arglist) - g[i] - g[j] + fx) / Htmp[i, j] Htmp[j, i] = Htmp[i, j] } } return(Htmp) }) for(i in 1:n){ for(j in (n - dccN + 1):n){ if(i <= j){ H[i, j] = tmp[[i]][i, j] H[j, i] = H[i, j] } } } } newH = H[(n - dccN + 1):n, ] H = newH return(H) } .cgarchmakefitmodel1 = function(f, arglist, timer, message, fname) { .eps = .Machine$double.eps cluster = arglist$cluster eval.se = arglist$eval.se fitlist = arglist$fitlist m = arglist$m midx = arglist$midx eidx = arglist$eidx dccN = arglist$dccN ipars = arglist$ipars estidx = arglist$estidx cnames = arglist$cnames mpars = arglist$mpars model = arglist$model maxgarchOrder = model$maxgarchOrder resids = residuals(fitlist) sigmas = sigma(fitlist) pars = mpars[which(eidx==1, arr.ind = TRUE)] arglist$returnType = "ALL" sol = f(pars, arglist) likelihoods = sol$lik loglikelihood = sol$llh Rtout = sol$Rt Qtout = sol$Qt N = dim(resids)[1] np = length(pars) Ht = array( 0, dim = c(m, m, N) ) stdresid = matrix(0, nrow = N, ncol = m) if( !is.null(cluster) ){ clusterExport(cluster, c("sigmas", "Rtout", "resids"), envir = environment()) tmp = parLapply(cluster, as.list(1:N), fun = function(i){ tmph = diag( sigmas[i, ] ) %*% Rtout[[i]] %*% diag( sigmas[i, ] ) zz = eigen( tmph ) sqrtzz = ( zz$vectors %*% diag( sqrt( zz$values ) ) %*% solve( zz$vectors ) ) tmpz = as.numeric( resids[i, ] %*% solve( sqrtzz ) ) return( list( H = tmph, Z = tmpz ) ) }) for(i in 1:N){ Ht[,,i] = tmp[[i]]$H stdresid[i,] = tmp[[i]]$Z } } else{ tmp = lapply(as.list(1:N), FUN = function(i){ tmph = diag( sigmas[i, ] ) %*% Rtout[[i]] %*% diag( sigmas[i, ] ) zz = eigen( tmph ) sqrtzz = ( zz$vectors %*% diag( sqrt( zz$values ) ) %*% solve( zz$vectors ) ) tmpz = as.numeric( resids[i, ] %*% solve( sqrtzz ) ) return( list( H = tmph, Z = tmpz ) ) }) for(i in 1:N){ Ht[,,i] = tmp[[i]]$H stdresid[i,] = tmp[[i]]$Z } } arglist$stdresid = stdresid arglist$Ht = Ht if(eval.se){ A = zeros( np, np ) tidx = 1 for(i in 1:m){ cvar = fitlist@fit[[i]]@fit$cvar workingsize = dim(cvar)[1] A[(tidx:(tidx + workingsize - 1)), (tidx:(tidx + workingsize - 1))] = solve(cvar) tidx = tidx + workingsize } if(arglist$verbose) cat("\n\nCalculating Standard Errors, this can take a while\n") otherA = .cgarchhessian(f = f, pars = pars, arglist, fname) A[(np - dccN + 1):np, ] = otherA jointscores = zeros(N, np) tidx = 1 for(i in 1:m){ cf = fitlist@fit[[i]]@model$pars[fitlist@fit[[i]]@model$pars[,4]==1,1] workingsize = length(cf) scx = fitlist@fit[[i]]@fit$scores jointscores[,(tidx:(tidx + workingsize - 1))] = scx tidx = tidx + workingsize } h = pmax( abs( ipars[estidx,1]/2 ), 1e-2 ) * .eps^(1/3) hplus = ipars[estidx,1] + h hminus = ipars[estidx,1] - h likelihoodsplus = zeros( N, dccN ) likelihoodsminus = zeros( N, dccN ) zparsplus = zparsminus = pars for(i in 1:dccN){ hparameters1 = ipars[estidx,1] hparameters2 = ipars[estidx,1] hparameters1[i] = hplus[i] hparameters2[i] = hminus[i] zparsplus[(np-dccN+1):np] = hparameters1 zparsminus[(np-dccN+1):np] = hparameters2 arglist$returnType = "lik" LHT1 = f(pars = zparsplus, arglist) LHT2 = f(pars = zparsminus, arglist) likelihoodsplus[, i] = LHT1 likelihoodsminus[, i] = LHT2 } sctemp = likelihoodsplus - likelihoodsminus DCCscores = matrix(NA, ncol = dim(sctemp)[2], nrow = dim(sctemp)[1]) sdtemp = 2 * repmat( t( h ), N, 1 ) for(i in 1:dim(sctemp)[2]){ DCCscores[,i] = sctemp[,i] / sdtemp[,i] } jointscores[, (np-dccN+1):np] = DCCscores B = cov( jointscores ) A = A/ (N) dcccvar = ( solve( A ) %*% B %*% solve( A ) ) / N se.coef = sqrt(diag(abs(dcccvar))) tval = as.numeric( pars/se.coef ) pval = 2* ( 1 - pnorm( abs( tval ) ) ) matcoef = matrix(NA, nrow = length(pars), ncol = 4) matcoef[, 1] = pars matcoef[, 2] = se.coef matcoef[, 3] = tval matcoef[, 4] = pval allnames = NULL for(i in 1:m){ allnames = c(allnames, paste("[",cnames[i],"].", rownames(eidx[eidx[,i]==1,i, drop = FALSE]), sep = "")) } garchnames = allnames dccnames = rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]) if(!is.null(dccnames)){ allnames = c(garchnames, paste("[Joint]", rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]), sep = "")) } else{ allnames = garchnames } allnames = c(garchnames, paste("[Joint]", rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]), sep = "")) dimnames(matcoef) = list(allnames, c(" Estimate", " Std. Error", " t value", "Pr(>|t|)")) } else{ se.coef = rep(NA, length(pars)) tval = rep(NA, length(pars)) pval = rep(NA, length(pars)) matcoef = matrix(NA, nrow = length(pars), ncol = 4) matcoef[, 1] = pars allnames = NULL for(i in 1:m){ allnames = c(allnames, paste("[",cnames[i],"].", rownames(eidx[eidx[,i]==1,i, drop = FALSE]), sep = "")) } garchnames = allnames dccnames = rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]) if(!is.null(dccnames)){ allnames = c(garchnames, paste("[Joint]", rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]), sep = "")) } else{ allnames = garchnames } allnames = c(garchnames, paste("[Joint]", rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]), sep = "")) dimnames(matcoef) = list(allnames, c(" Estimate", " Std. Error", " t value", "Pr(>|t|)")) dcccvar = NULL jointscores = NULL } cfit = list() cfit$coef = pars names(cfit$coef) = allnames cfit$matcoef = matcoef cfit$garchnames = garchnames cfit$dccnames = dccnames cfit$cvar = dcccvar cfit$scores = jointscores cfit$H = Ht cfit$stdresid = stdresid cfit$timer = timer cfit$convergence = 0 cfit$message = message return( cfit ) } .cgarchmakefitmodel2 = function(f, arglist, timer, message, fname) { .eps = .Machine$double.eps cluster = arglist$cluster eval.se = arglist$eval.se fitlist = arglist$fitlist m = arglist$m midx = arglist$midx eidx = arglist$eidx ipars = arglist$ipars estidx = arglist$estidx cnames = arglist$cnames mpars = arglist$mpars model = arglist$model method = model$modeldesc$cor.method maxgarchOrder = model$maxgarchOrder resids = residuals(fitlist) sigmas = sigma(fitlist) pars = mpars[which(eidx==1, arr.ind = TRUE)] arglist$returnType = "ALL" sol = f(pars, arglist) likelihoods = sol$lik loglikelihood = sol$llh Rt = sol$R N = dim(resids)[1] np = length(pars) Ht = array( 0, dim = c(m, m, N) ) stdresid = matrix(0, nrow = N, ncol = m) if( !is.null(cluster) ){ clusterExport(cluster, c("sigmas", "Rt", "resids"), envir = environment()) tmp = parLapply(cluster, as.list(1:N), fun = function(i){ tmph = diag( sigmas[i, ] ) %*% Rt %*% diag( sigmas[i, ] ) zz = eigen( tmph ) sqrtzz = ( zz$vectors %*% diag( sqrt( zz$values ) ) %*% solve( zz$vectors ) ) tmpz = as.numeric( resids[i, ] %*% solve( sqrtzz ) ) return( list( H = tmph, Z = tmpz ) ) }) for(i in 1:N){ Ht[,,i] = tmp[[i]]$H stdresid[i,] = tmp[[i]]$Z } } else{ tmp = lapply(as.list(1:N), FUN = function(i){ tmph = diag( sigmas[i, ] ) %*% Rt %*% diag( sigmas[i, ] ) zz = eigen( tmph ) sqrtzz = ( zz$vectors %*% diag( sqrt( zz$values ) ) %*% solve( zz$vectors ) ) tmpz = as.numeric( resids[i, ] %*% solve( sqrtzz ) ) return( list( H = tmph, Z = tmpz ) ) }) for(i in 1:N){ Ht[,,i] = tmp[[i]]$H stdresid[i,] = tmp[[i]]$Z } } arglist$stdresid = stdresid arglist$Ht = Ht if(eval.se){ if(method == "ML" || model$modeldesc$distribution == "mvt"){ dccN = arglist$npars arglist$dccN = dccN A = zeros( np, np ) tidx = 1 for(i in 1:m){ cvar = fitlist@fit[[i]]@fit$cvar workingsize = dim(cvar)[1] A[(tidx:(tidx + workingsize - 1)), (tidx:(tidx + workingsize - 1))] = solve(cvar) tidx = tidx + workingsize } if(arglist$verbose) cat("\n\nCalculating Standard Errors, this can take a while\n") if(dccN>0){ otherA = .cgarchhessian(f = f, pars = pars, arglist, fname) A[(np - dccN + 1):np, ] = otherA jointscores = zeros(N, np) tidx = 1 for(i in 1:m){ cf = fitlist@fit[[i]]@model$pars[fitlist@fit[[i]]@model$pars[,4]==1,1] workingsize = length(cf) scx = fitlist@fit[[i]]@fit$scores jointscores[,(tidx:(tidx + workingsize - 1))] = scx tidx = tidx + workingsize } h = pmax( abs( ipars[estidx,1]/2 ), 1e-2 ) * .eps^(1/3) hplus = ipars[estidx,1] + h hminus = ipars[estidx,1] - h likelihoodsplus = zeros( N, dccN ) likelihoodsminus = zeros( N, dccN ) zparsplus = zparsminus = pars for(i in 1:dccN){ hparameters1 = ipars[estidx,1] hparameters2 = ipars[estidx,1] hparameters1[i] = hplus[i] hparameters2[i] = hminus[i] zparsplus[(np-dccN+1):np] = hparameters1 zparsminus[(np-dccN+1):np] = hparameters2 arglist$returnType = "lik" LHT1 = f(pars = zparsplus, arglist) LHT2 = f(pars = zparsminus, arglist) likelihoodsplus[, i] = LHT1 likelihoodsminus[, i] = LHT2 } sctemp = likelihoodsplus - likelihoodsminus DCCscores = matrix(NA, ncol = dim(sctemp)[2], nrow = dim(sctemp)[1]) sdtemp = 2 * repmat( t( h ), N, 1 ) for(i in 1:dim(sctemp)[2]){ DCCscores[,i] = sctemp[,i] / sdtemp[,i] } jointscores[, (np-dccN+1):np] = DCCscores B = cov( jointscores ) A = A/ (N) dcccvar = ( solve( A ) %*% B %*% solve( A ) ) / N se.coef = sqrt(diag(abs(dcccvar))) tval = as.numeric( pars/se.coef ) pval = 2* ( 1 - pnorm( abs( tval ) ) ) matcoef = matrix(NA, nrow = length(pars), ncol = 4) matcoef[, 1] = pars matcoef[, 2] = se.coef matcoef[, 3] = tval matcoef[, 4] = pval allnames = NULL for(i in 1:m){ allnames = c(allnames, paste("[",cnames[i],"].", rownames(eidx[eidx[,i]==1,i, drop = FALSE]), sep = "")) } garchnames = allnames dccnames = rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]) if(!is.null(dccnames)){ allnames = c(garchnames, paste("[Joint]", rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]), sep = "")) } else{ allnames = garchnames } dimnames(matcoef) = list(allnames, c(" Estimate"," Std. Error", " t value", "Pr(>|t|)")) } else{ jointscores = zeros(N, np) tidx = 1 for(i in 1:m){ cf = fitlist@fit[[i]]@model$pars[fitlist@fit[[i]]@model$pars[,4]==1,1] workingsize = length(cf) scx = fitlist@fit[[i]]@fit$scores jointscores[,(tidx:(tidx + workingsize - 1))] = scx tidx = tidx + workingsize } B = cov( jointscores ) A = A/ (N) dcccvar = ( solve( A ) %*% B %*% solve( A ) ) / N se.coef = sqrt(diag(abs(dcccvar))) tval = as.numeric( pars/se.coef ) pval = 2* ( 1 - pnorm( abs( tval ) ) ) matcoef = matrix(NA, nrow = length(pars), ncol = 4) matcoef[, 1] = pars matcoef[, 2] = se.coef matcoef[, 3] = tval matcoef[, 4] = pval allnames = NULL for(i in 1:m){ allnames = c(allnames, paste("[",cnames[i],"].", rownames(eidx[eidx[,i]==1,i, drop = FALSE]), sep = "")) } garchnames = allnames dccnames = rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]) if(!is.null(dccnames)){ allnames = c(garchnames, paste("[Joint]", rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]), sep = "")) } else{ allnames = garchnames } dimnames(matcoef) = list(allnames, c(" Estimate", " Std. Error", " t value", "Pr(>|t|)")) } } else{ A = zeros( np, np ) tidx = 1 for(i in 1:m){ cvar = fitlist@fit[[i]]@fit$cvar workingsize = dim(cvar)[1] A[(tidx:(tidx + workingsize - 1)), (tidx:(tidx + workingsize - 1))] = solve(cvar) tidx = tidx + workingsize } jointscores = zeros(N, np) tidx = 1 for(i in 1:m){ cf = fitlist@fit[[i]]@model$pars[fitlist@fit[[i]]@model$pars[,4]==1,1] workingsize = length(cf) scx = fitlist@fit[[i]]@fit$scores jointscores[,(tidx:(tidx + workingsize - 1))] = scx tidx = tidx + workingsize } B = cov( jointscores ) A = A/ (N) dcccvar = ( solve( A ) %*% B %*% solve( A ) ) / N se.coef = sqrt(diag(abs(dcccvar))) tval = as.numeric( pars/se.coef ) pval = 2* ( 1 - pnorm( abs( tval ) ) ) matcoef = matrix(NA, nrow = length(pars), ncol = 4) matcoef[, 1] = pars matcoef[, 2] = se.coef matcoef[, 3] = tval matcoef[, 4] = pval allnames = NULL for(i in 1:m){ allnames = c(allnames, paste("[",cnames[i],"].", rownames(eidx[eidx[,i]==1,i, drop = FALSE]), sep = "")) } garchnames = allnames dccnames = NULL dimnames(matcoef) = list(allnames, c(" Estimate", " Std. Error", " t value", "Pr(>|t|)")) } } else{ se.coef = rep(NA, length(pars)) tval = rep(NA, length(pars)) pval = rep(NA, length(pars)) matcoef = matrix(NA, nrow = length(pars), ncol = 4) matcoef[, 1] = pars allnames = NULL for(i in 1:m){ allnames = c(allnames, paste("[",cnames[i],"].", rownames(eidx[eidx[,i]==1,i, drop = FALSE]), sep = "")) } garchnames = allnames dccnames = rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]) if(!is.null(dccnames)){ allnames = c(garchnames, paste("[Joint]", rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]), sep = "")) } else{ allnames = garchnames } dimnames(matcoef) = list(allnames, c(" Estimate", " Std. Error", " t value", "Pr(>|t|)")) dcccvar = NULL jointscores = NULL } cgarchfit = list() cgarchfit$coef = pars names(cgarchfit$coef) = allnames cgarchfit$matcoef = matcoef cgarchfit$garchnames = garchnames cgarchfit$dccnames = dccnames cgarchfit$cvar = dcccvar cgarchfit$scores = jointscores cgarchfit$H = Ht cgarchfit$stdresid = stdresid cgarchfit$timer = timer cgarchfit$convergence = 0 cgarchfit$message = message return( cgarchfit ) }
monitor_downloadDaily <- function( parameter='PM2.5', baseUrl='https://haze.airfire.org/monitoring/latest/RData/', dataDir = "~/Data/monitoring/RData", ... ) { filename <- paste0("airnow_", parameter, "_latest45.RData") downloadDataFile(filename, baseUrl, dataDir, ...) filename <- paste0("airsis_", parameter, "_latest45.RData") downloadDataFile(filename, baseUrl, dataDir, ...) filename <- paste0("wrcc_", parameter, "_latest45.RData") downloadDataFile(filename, baseUrl, dataDir, ...) return(invisible(NULL)) }
ly_hist <- function( fig, x, data = figure_data(fig), breaks = "Sturges", freq = TRUE, include.lowest = TRUE, right = TRUE, color = NULL, alpha = 1, lname = NULL, lgroup = NULL, ... ) { validate_fig(fig, "ly_hist") args <- sub_names(fig, data, grab( x, color, alpha, lname, lgroup, dots = lazy_dots(...) ) ) tryres <- try(identity(x), silent = TRUE) if (inherits(tryres, "histogram")) { hh <- x args$info$x_name <- x$xname } else { hh <- graphics::hist.default(x = args$data[[2]], breaks = breaks, include.lowest = include.lowest, right = right, plot = FALSE) args$info$x_name <- args$info$y_name } args$info$y_name <- ifelse(freq, "Frequency", "Density") args$params <- resolve_color_alpha(args$params, has_line = TRUE, has_fill = TRUE, fig$x$spec$layers[[args$info$lgroup]], theme = fig$x$spec$theme) y <- if (freq) { hh$counts } else { hh$density } do.call(ly_rect, c( list( fig = fig, xleft = hh$breaks[-length(hh$breaks)], xright = hh$breaks[-1], ytop = y, ybottom = 0, xlab = args$info$x_name, ylab = args$info$y_name, lname = args$info$lname, lgroup = args$info$lgroup ), args$params )) } ly_density <- function( fig, x, data = figure_data(fig), bw = "nrd0", adjust = 1, kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine"), weights = NULL, window = kernel, n = 512, cut = 3, na.rm = FALSE, color = "black", alpha = 1, width = 1, type = 1, legend = NULL, lname = NULL, lgroup = NULL, ... ) { validate_fig(fig, "ly_density") args <- sub_names(fig, data, grab( x, color, alpha, width, type, legend, lname, lgroup, dots = lazy_dots(...) ) ) args$data$x <- args$data[[2]]; args$data[[2]] <- NULL args$info$x_name <- args$info$y_name args$info$y_name <- "Density" if (length(unique(args$params$color)) == 1) args$params$color <- subset_with_attributes(args$params$color, 1) if (length(unique(args$params$type)) == 1) args$params$type <- subset_with_attributes(args$params$type, 1) if (length(unique(args$params$width)) == 1) args$params$width <- subset_with_attributes(args$params$width, 1) args$params <- resolve_line_args(fig, args$params) dd <- stats::density.default(x = args$data$x, bw = bw, adjust = adjust, kernel = kernel, n = n, cut = 3, na.rm = na.rm) do.call(ly_lines, c( list( fig = fig, x = dd$x, y = dd$y, xlab = args$info$x_name, ylab = args$info$y_name ), args$params) ) } ly_quantile <- function( fig, x, group = NULL, data = figure_data(fig), probs = NULL, distn = stats::qunif, ncutoff = 200, color = NULL, alpha = 1, legend = TRUE, lname = NULL, lgroup = NULL, ... ) { validate_fig(fig, "ly_quantile") args <- sub_names(fig, data, grab( x, group, color, alpha, legend, lname, lgroup, dots = lazy_dots(...) ) ) args$data$x <- args$data[[2]] args$info$x_name <- "f-value" if (is.null(args$info$group)) { args$info$group <- rep(1, length(args$data$x)) } na_idx <- is.na(args$data$x) args$data$x <- args$data$x[!na_idx] args$info$group <- args$info$group[!na_idx] idx <- split(seq_along(args$data$x), args$info$group) if (length(idx) == 1) { if (is.logical(args$info$legend)) args$info$legend <- NULL } for (ii in idx) { if (length(ii) > 0) { if (is.null(probs)) { if (length(ii) > ncutoff) { cur_probs <- stats::ppoints(ncutoff) qq <- stats::quantile(args$data$x[ii], cur_probs, names = FALSE, na.rm = TRUE) } else { cur_probs <- stats::ppoints(length(args$data$x[ii])) qq <- sort(args$data$x[ii]) } } else { cur_probs <- probs qq <- stats::quantile(args$data$x[ii], cur_probs, names = FALSE, na.rm = TRUE) } ff <- distn(cur_probs) cur_legend <- NULL if (is.logical(args$info$legend)) { if (args$info$legend) { cur_legend <- args$info$group[[ii[1]]] } } else { cur_legend <- args$info$legend } fig <- do.call(ly_points, c( list( fig = fig, x = ff, y = qq, xlab = args$info$x_name, ylab = args$info$y_name, lgroup = args$info$lgroup, legend = cur_legend ), args$params )) } } fig } ly_boxplot <- function( fig, x, y = NULL, data = figure_data(fig), width = 0.9, coef = 1.5, color = "blue", alpha = 1, outlier_glyph = 1, outlier_size = 10, lname = NULL, lgroup = NULL, ... ) { validate_fig(fig, "ly_boxplot") args <- sub_names(fig, data, grab( x, y, color, alpha, lname, lgroup, dots = lazy_dots(...) ) ) if (missing(y)) { args$data$x <- args$data$y args$data$y <- NULL args$info$x_name <- args$info$y_name args$info$y_name <- NULL } if (is.factor(args$data$x)) { args$data$x <- as.character(args$data$x) } if (is.factor(args$data$y)) { args$data$y <- as.character(args$data$y) } args$params <- resolve_color_alpha(args$params, has_line = TRUE, has_fill = TRUE, theme = fig$x$spec$theme) x <- args$data$x y <- args$data$y group_is_numeric <- FALSE if (is.null(y)) { x_name <- " " y_name <- args$info$x_name group <- rep(x_name, length(x)) } else { num_ind <- c(is.numeric(x), is.numeric(y)) if (all(num_ind)) { group_is_numeric <- TRUE message( "both x and y are numeric -- choosing numeric variable based on ", "which has the most unique values") if (length(unique(x)) > length(unique(y))) { x_name <- args$info$y_name y_name <- args$info$x_name group <- as.character(y) } else { x_name <- args$info$x_name y_name <- args$info$y_name group <- as.character(x) x <- y } } else if (num_ind[1]) { x_name <- args$info$y_name y_name <- args$info$x_name group <- y } else if (num_ind[2]) { x_name <- args$info$x_name y_name <- args$info$y_name group <- x x <- y } else { stop("At least one of 'x' or 'y' should be numeric for ly_boxplot.") } } idx <- split(seq_along(x), group) for (ii in seq_along(idx)) { bp <- grDevices::boxplot.stats(x = x[idx[[ii]]], coef = coef) gp <- group[idx[[ii]][1]] gpl <- paste(gp, ":0.4", sep = "") gpr <- paste(gp, ":0.6", sep = "") hgt1 <- bp$stats[3] - bp$stats[2] md1 <- hgt1 / 2 + bp$stats[2] hgt2 <- bp$stats[4] - bp$stats[3] md2 <- hgt2 / 2 + bp$stats[3] fig <- ly_crect( fig = fig, x = rep(gp, 2), y = c(md1, md2), width = width, height = c(hgt1, hgt2), xlab = x_name, ylab = y_name, line_color = args$params$line_color, fill_color = args$params$fill_color, line_alpha = args$params$line_alpha, fill_alpha = args$params$fill_alpha) fig <- ly_segments( fig = fig, x0 = c(gp, gp, gpr, gpr), y0 = c(bp$stats[1], bp$stats[4], bp$stats[1], bp$stats[5]), x1 = c(gp, gp, gpl, gpl), y1 = c(bp$stats[2], bp$stats[5], bp$stats[1], bp$stats[5]), xlab = x_name, ylab = y_name, line_color = args$params$line_color, line_alpha = args$params$line_alpha) if (length(bp$out) > 0 && !(is.na(outlier_size) || is.na(outlier_glyph))) { fig <- ly_points( fig = fig, x = rep(gp, length(bp$out)), y = bp$out, glyph = rep(outlier_glyph, length(bp$out)), size = outlier_size, xlab = x_name, ylab = y_name, line_color = args$params$line_color, fill_color = args$params$fill_color, line_alpha = args$params$line_alpha, fill_alpha = args$params$fill_alpha) } } if (group_is_numeric && !fig$x$spec$has_x_axis) fig <- fig %>% x_range(as.character(sort(unique(as.numeric(group))))) fig }
"bitcoin_gold_oil"
lfqCreate <- function(data, Lname, Dname, Fname = NA, bin_size = 1, species = NA, stock = NA, comment = "", Lmin = 0, length_unit = "cm", plus_group = FALSE, aggregate_dates = FALSE, plot = FALSE){ data$length <- get(Lname, data) data$date <- get(Dname, data) if(!is.na(Fname)){ data$freq <- get(Fname, data) }else{ data$freq <- rep(1,nrow(data)) } if(!inherits(data$date,"Date")) stop(noquote("Please provide the date as 'Date' class (e.g. as.Date()).")) if(length_unit == "m") data$length <- data$length * 100 if(length_unit == "mm") data$length <- data$length / 10 data$length[which(data$length == 0)] <- NA data <- data[!is.na(data$length),] data <- data[!is.na(data$date),] data <- data[order(data$date),] if(aggregate_dates){ data$samplings <- as.Date(paste(format(data$date, "%Y-%m"),"15",sep="-")) }else data$samplings <- data$date bin.breaks <- seq(Lmin, max(data$length) + bin_size, by=bin_size) midLengths <- bin.breaks + bin_size/2 data2 <- aggregate(list(freq=data$freq), by=list(date=data$samplings, length=data$length), sum) data2 <- data2[order(data2$date),] listi <- vector("list",length(unique(data2$date))) LF_dat <- data.frame(bin = bin.breaks) for(i in 1:length(unique(data2$date))){ sampli <- unique(data2$date)[i] lengthi <- as.numeric(data2$length[data2$date == sampli]) freqi <- as.numeric(data2$freq[data2$date == sampli]) bin.breaks2 <- rep(NA, length(bin.breaks)) for(ii in 1:length(bin.breaks)){ if(ii == length(bin.breaks)){ bin.breaks2[ii] <- length(which(lengthi >= bin.breaks[ii])) }else{ bin.breaks2[ii] <- length(which(lengthi >= bin.breaks[ii] & lengthi < bin.breaks[ii+1])) } } bin.breaks3 <- rep(bin.breaks, bin.breaks2) dati <- aggregate(list(freq=freqi), by=list(bin=bin.breaks3), sum) listi[[i]] <- merge(LF_dat, dati, by.x = "bin", all.x =TRUE)[,2] } catch_mat <- do.call(cbind,listi) catch_mat[is.na(catch_mat)] <- 0 if(plus_group[1]){ if(length(plus_group) == 1){ if(is.vector(catch_mat)){ print(data.frame(midLengths = midLengths, frequency = catch_mat)) }else print(data.frame(midLengths = midLengths, frequency = rowSums(catch_mat))) writeLines("Check the table above and insert the length of the plus group (Esc to cancel).") pg = -1 while(pg > max(midLengths) | pg < min(midLengths)){ pg <- readline(paste0("Enter a length group between ", min(midLengths)," and ", max(midLengths),":")) pg = as.numeric(as.character(pg)) if(!(pg %in% midLengths)){ writeLines(paste0(pg, " is not an element of midLengths (see table).")) pg = -1 if(is.na(pg)){break} } } }else if(length(plus_group) == 2){ pg = as.numeric(as.character(plus_group[2])) } midLengths <- midLengths[1:which(midLengths == pg)] if(is.vector(catch_mat)){ addplus <- sum(catch_mat[(which(midLengths == pg):length(catch_mat))]) catch_mat <- catch_mat[1:which(midLengths == pg)] catch_mat[which(midLengths == pg)] <- catch_mat[which(midLengths == pg)] + addplus }else{ addplus <- colSums(catch_mat[(which(midLengths == pg):nrow(catch_mat)),]) catch_mat <- catch_mat[1:which(midLengths == pg),] catch_mat[which(midLengths == pg),] <- catch_mat[which(midLengths == pg),] + addplus } } res <- list(species = species, stock = stock, dates = unique(data$samplings), midLengths = midLengths, catch = catch_mat, comment = comment) class(res) <- "lfq" if(plot) plot(res, Fname = "catch") return(res) }
invGauss.density <- function(theta, delta) { theta <- mpfr(theta, 99) y=(delta*exp(delta^2)*theta^(-3/2)*exp(-((delta^2)/2)*(1/theta + theta)))/(sqrt(2*pi)) return(asNumeric(y)) }
<p><img src="https://raw.githubusercontent.com/trinker/textmod/master/inst/textmod_logo/r_textmod.png" width="300"/><br/> <p><a href="http://trinker.github.com/textmod_dev">textmod</a> is a...</p> <p>Download the development version of textmod <a href="https://github.com/trinker/textmod/">here</a>
"syllables"
KPU <- function( level ) { switch( level, { n = c(5.0000000000000000e-001) w = c(1.0000000000000000e+000) }, { n = c(5.0000000000000000e-001, 8.8729829999999998e-001) w = c(4.4444440000000002e-001, 2.7777780000000002e-001) }, { n = c(5.0000000000000000e-001, 8.8729829999999998e-001) w = c(4.4444440000000002e-001, 2.7777780000000002e-001) }, { n = c(5.0000000000000000e-001, 7.1712189999999998e-001, 8.8729829999999998e-001, 9.8024560000000005e-001) w = c(2.2545832254583223e-001, 2.0069872006987199e-001, 1.3424401342440134e-001, 5.2328105232810521e-002) }, { n = c(5.0000000000000000e-001, 7.1712189999999998e-001, 8.8729829999999998e-001, 9.8024560000000005e-001) w = c(2.2545832254583223e-001, 2.0069872006987199e-001, 1.3424401342440134e-001, 5.2328105232810521e-002) }, { n = c(5.0000000000000000e-001, 7.1712189999999998e-001, 8.8729829999999998e-001, 9.8024560000000005e-001) w = c(2.2545832254583223e-001, 2.0069872006987199e-001, 1.3424401342440134e-001, 5.2328105232810521e-002) }, { n = c(5.0000000000000000e-001, 6.1169330000000000e-001, 7.1712189999999998e-001, 8.1055149999999998e-001, 8.8729829999999998e-001, 9.4422960000000000e-001, 9.8024560000000005e-001, 9.9691600000000002e-001) w = c(1.1275520000000000e-001, 1.0957840000000001e-001, 1.0031430000000000e-001, 8.5755999999999999e-002, 6.7207600000000006e-002, 4.6463600000000001e-002, 2.5801600000000001e-002, 8.5009000000000005e-003) }, { n = c(5.0000000000000000e-001, 6.1169330000000000e-001, 7.1712189999999998e-001, 8.1055149999999998e-001, 8.8729829999999998e-001, 9.4422960000000000e-001, 9.8024560000000005e-001, 9.9691600000000002e-001) w = c(1.1275520000000000e-001, 1.0957840000000001e-001, 1.0031430000000000e-001, 8.5755999999999999e-002, 6.7207600000000006e-002, 4.6463600000000001e-002, 2.5801600000000001e-002, 8.5009000000000005e-003) }, { n = c(5.0000000000000000e-001, 6.1169330000000000e-001, 7.1712189999999998e-001, 8.1055149999999998e-001, 8.8729829999999998e-001, 9.4422960000000000e-001, 9.8024560000000005e-001, 9.9691600000000002e-001) w = c(1.1275520000000000e-001, 1.0957840000000001e-001, 1.0031430000000000e-001, 8.5755999999999999e-002, 6.7207600000000006e-002, 4.6463600000000001e-002, 2.5801600000000001e-002, 8.5009000000000005e-003) }, { n = c(5.0000000000000000e-001, 6.1169330000000000e-001, 7.1712189999999998e-001, 8.1055149999999998e-001, 8.8729829999999998e-001, 9.4422960000000000e-001, 9.8024560000000005e-001, 9.9691600000000002e-001) w = c(1.1275520000000000e-001, 1.0957840000000001e-001, 1.0031430000000000e-001, 8.5755999999999999e-002, 6.7207600000000006e-002, 4.6463600000000001e-002, 2.5801600000000001e-002, 8.5009000000000005e-003) }, { n = c(5.0000000000000000e-001, 6.1169330000000000e-001, 7.1712189999999998e-001, 8.1055149999999998e-001, 8.8729829999999998e-001, 9.4422960000000000e-001, 9.8024560000000005e-001, 9.9691600000000002e-001) w = c(1.1275520000000000e-001, 1.0957840000000001e-001, 1.0031430000000000e-001, 8.5755999999999999e-002, 6.7207600000000006e-002, 4.6463600000000001e-002, 2.5801600000000001e-002, 8.5009000000000005e-003) }, { n = c(5.0000000000000000e-001, 6.1169330000000000e-001, 7.1712189999999998e-001, 8.1055149999999998e-001, 8.8729829999999998e-001, 9.4422960000000000e-001, 9.8024560000000005e-001, 9.9691600000000002e-001) w = c(1.1275520000000000e-001, 1.0957840000000001e-001, 1.0031430000000000e-001, 8.5755999999999999e-002, 6.7207600000000006e-002, 4.6463600000000001e-002, 2.5801600000000001e-002, 8.5009000000000005e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.5624450000000003e-001, 6.1169330000000000e-001, 6.6556769999999998e-001, 7.1712189999999998e-001, 7.6565989999999995e-001, 8.1055149999999998e-001, 8.5124809999999995e-001, 8.8729829999999998e-001, 9.1836300000000004e-001, 9.4422960000000000e-001, 9.6482740000000000e-001, 9.8024560000000005e-001, 9.9076560000000002e-001, 9.9691600000000002e-001, 9.9954909999999997e-001) w = c(5.6377600000000014e-002, 5.5978400000000011e-002, 5.4789200000000017e-002, 5.2834900000000011e-002, 5.0157100000000017e-002, 4.6813600000000004e-002, 4.2878000000000006e-002, 3.8439800000000010e-002, 3.3603900000000006e-002, 2.8489800000000006e-002, 2.3231400000000003e-002, 1.7978600000000004e-002, 1.2903800000000003e-002, 8.2230000000000011e-003, 4.2173000000000011e-003, 1.2724000000000001e-003) }, { n = c(5.0000000000000000e-001, 5.2817210000000003e-001, 5.5624450000000003e-001, 5.8411769999999996e-001, 6.1169330000000000e-001, 6.3887490000000002e-001, 6.6556769999999998e-001, 6.9167970000000001e-001, 7.1712189999999998e-001, 7.4180900000000005e-001, 7.6565989999999995e-001, 7.8859789999999996e-001, 8.1055149999999998e-001, 8.3145480000000005e-001, 8.5124809999999995e-001, 8.6987800000000004e-001, 8.8729829999999998e-001, 9.0347029999999995e-001, 9.1836300000000004e-001, 9.3195399999999995e-001, 9.4422960000000000e-001, 9.5518559999999997e-001, 9.6482740000000000e-001, 9.7317140000000002e-001, 9.8024560000000005e-001, 9.8609139999999995e-001, 9.9076560000000002e-001, 9.9434239999999996e-001, 9.9691600000000002e-001, 9.9860309999999997e-001, 9.9954909999999997e-001, 9.9993650000000001e-001) w = c(2.8188799999999993e-002, 2.8138799999999992e-002, 2.7989199999999992e-002, 2.7740699999999993e-002, 2.7394599999999995e-002, 2.6952699999999993e-002, 2.6417499999999993e-002, 2.5791599999999994e-002, 2.5078599999999993e-002, 2.4282199999999993e-002, 2.3406799999999995e-002, 2.2457299999999996e-002, 2.1438999999999996e-002, 2.0357799999999995e-002, 1.9219899999999998e-002, 1.8032199999999998e-002, 1.6801899999999998e-002, 1.5536799999999996e-002, 1.4244899999999996e-002, 1.2934799999999996e-002, 1.1615699999999998e-002, 1.0297099999999998e-002, 8.9892999999999987e-003, 7.7033999999999983e-003, 6.4518999999999983e-003, 5.2490999999999987e-003, 4.1114999999999988e-003, 3.0577999999999990e-003, 2.1087999999999997e-003, 1.2894999999999998e-003, 6.3259999999999987e-004, 1.8159999999999997e-004) } ) return( list( "nodes" = n, "weights" = w ) ) }
predict.fcr <- function(object, newdata, type="link", ...){ stopifnot(class(object) == "fcr") stopifnot(is.data.frame(newdata)) stopifnot("subj" %in% colnames(newdata)) stopifnot(all(is.finite(newdata$subj))) stopifnot(type %in% c("link","terms","iterms","lpmatrix")) if(any(grepl("^phi[0-9]+|^sp[0-9]+",colnames(data)))){ stop("column names `sp[0-9]+` and `phi[0-9]+ are reserved`") } if("g" %in% colnames(data)){ stop("column name `g` is reserved`") } fit <- object$fit argvals <- object$argvals outcome <- as.character(object$fit$formula)[2] if(sum(!newdata[[argvals]] %in% object$face.object$argvals.new) != 0) { rmidx <- which(!newdata[[argvals]] %in% object$face.object$argvals.new) newdata <- newdata[-rmidx,] warning(paste(length(rmidx), " rows of newdata contained values of the functional domain not fit", "and were removed. Please refit the model with all desired predicted", "values supplied using the `argvals.new` argument.")) } coef_names <- names(coef(fit)) phi_names <- unique(regmatches(coef_names, regexpr("phi[0-9]+", coef_names))) for(k in phi_names) { newdata[[k]] <- 0 } subj_in <- unique(fit$model$g) data_in <- subset(newdata, newdata$subj %in% subj_in) data_out <- subset(newdata, !(newdata$subj %in% subj_in)) if(type != "link" & nrow(data_out) > 0){ stop(paste("type", type, "not supported for subjects not included in model fitting.")) } if(nrow(data_in) > 0){ data_in <- createPhi(object$face.object, data = data_in, argvals = argvals, nPhi = length(phi_names)) data_in[["g"]] <- data_in[["subj"]] pred_in <- predict(fit, newdata = data_in, type = type, ...) if(nrow(data_out) == 0) return(list("dynamic_predictions" = NA, "insample_predictions" = pred_in)) } else { pred_in <- NA } data_out[["g"]] <- sort(unique(fit$model$g))[1] s2 <- c(fit$sig2) uid <- unique(data_out$subj) ut <- object$face.object$argvals.new if(object$sp) { sp <- fit$full.sp[grepl("phi", names(fit$full.sp))] } else if (!object$sp) { sp <- fit$sp[grepl("phi", names(fit$sp))] } preds <- scores <- random <- se <- se_p <- c() inx_lp <- which(!grepl("s\\(g\\):phi[0-9]+", coef_names)) Vp0 <- fit$Vp[inx_lp,inx_lp] for(i in 1:length(uid)) { tmp_f <- subset(data_out, data_out$subj == uid[i]) miss_outcome <- is.na(tmp_f[[outcome]]) tmp <- tmp_f[!miss_outcome,] Z_f <- matrix(NA, ncol = length(phi_names), nrow = nrow(tmp_f)) for(k in 1:length(phi_names)) { Z_f[,k] <- vapply(tmp_f[[argvals]], function(x){ object$face.object$eigenfunctions[ut==x,k] }, numeric(1)) } Z <- Z_f[!miss_outcome,,drop=FALSE] Xb_f <- predict(fit, newdata = tmp_f, exclude = paste("s(g):", phi_names,")", sep="")) Xb <- Xb_f[!miss_outcome] G <- diag(s2/sp) if(nrow(tmp) > 1) R <- diag(rep(s2, nrow(tmp))) if(nrow(tmp) == 1) R <- s2 V <- Z %*% G %*% t(Z) + R ei <- G %*% t(Z) %*% solve(V) %*% (tmp[[outcome]] - Xb) bi <- as.vector(t(ei) %*% t(Z_f)) v_y <- Z_f %*% (G - G %*% t(Z) %*% solve(V) %*% Z %*% G) %*% t(Z_f) X1.test <- predict(fit,tmp_f,type="lpmatrix")[,inx_lp] v_y <- v_y + X1.test%*%Vp0%*%t(X1.test) scores <- c(scores, ei) random <- c(random, bi) se <- c(se, sqrt(diag(v_y))) se_p <- c(se_p, sqrt(diag(v_y) + s2)) preds <- c(preds, Xb_f + bi) } dyn_pred <- list("fitted.values" = data.frame("y.pred" = preds, "se.fit" = se, "se.fit.p" = se_p, "random" = random), "scores" = matrix(scores, ncol=ncol(object$face.object$eigenfunctions), nrow=length(uid), byrow=TRUE), "data" = newdata) list("dynamic_predictions" = dyn_pred, "insample_predictions" = pred_in) } plot.fcr <- function(x, plot.covariance = FALSE, ...){ stopifnot(class(x) == "fcr") if(plot.covariance) { oldpar <- par()$ask par(ask=TRUE) tnew <- x$face.object$argvals.new inx <- which(tnew %in% seq(min(tnew), max(tnew), len = 100)) image.plot(tnew[inx],tnew[inx], x$face.object$Cor.new[inx,inx], xlab="Functional Domain", ylab="Functional Domain", main = "Correlation Function") plot(tnew[inx], x$face.object$Chat.raw.diag.new[inx], xlab="Functional Domain", ylab="", main = "Variance Function", type="l") matplot(x$face.object$eigenfunctions[inx,], xlab="Functional Domain", ylab="", main="Eigenfunctions of the Covariance Function", type='l') evals <- x$face.object$eigenvalues evals <- sprintf("%5.3f",evals) evals[evals == "0.000"] <- "<0.000" legend("top", legend = paste("eval", 1:length(evals), " = ", evals ,sep=""), col=1:length(evals), lty = 1:length(evals), bty='n',ncol=3) par(ask=oldpar) } if(!plot.covariance) { plot(x$fit, ...) } }
source("ESEUR_config.r") dir_str=paste0(ESEUR_dir, "Rlang/Top500/") top_files=list.files(dir_str) top_files=top_files[grep("^TOP500_.*.csv.xz", top_files)] merge_csv=function(file_str) { all_csv <<- merge(all_csv, read.csv(paste(dir_str, file_str, sep="/")), all=TRUE) return(0) } mv_col=function(old_col, new_col) { new_csv=subset(all_csv, is.na(all_csv[, old_col])) t=subset(all_csv, !is.na(all_csv[, old_col])) t[, new_col]=t[, old_col] new_csv=rbind(new_csv, t) new_csv[, old_col]=NULL return(new_csv) } all_csv=0 dummy=sapply(top_files, function(X) merge_csv(X)) all_csv=mv_col("Effeciency....", "Efficiency....") all_csv=mv_col("Proc..Frequency", "Processor.Speed..MHz.") all_csv=mv_col("RMax", "Rmax") all_csv=mv_col("RPeak", "Rpeak") cpu_power=data.frame(Year=all_csv$Year, Power=all_csv$Power, Rmax=all_csv$Rmax, Rpeak=all_csv$Rpeak, Nmax=all_csv$Nmax, Nhalf=all_csv$Nhalf, Processor.Speed=all_csv$Processor.Speed..MHz., Segment=all_csv$Segment) cpu_power=unique(cpu_power) plot(cpu_power$Year, log(cpu_power$Power))
n <- 50 x <- runif(n) y <- x + rnorm(n) fit <- lm(y~x) library("sandwich") confint_robust(fit, HC_type = "HC4m")
transmission <- function(n, external, polarisation = "p"){ alpha <- asin(sin(external) / n) if(polarisation == 'p'){ 4 * n*cos(external)*cos(alpha) / (n * cos(external) + cos(alpha))^2 } else { .NotYetImplemented() } }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) fig <- local({ i <- 0 ref <- list() list( cap=function(refName, text) { i <<- i + 1 ref[[refName]] <<- i paste("Figure ", i, ": ", text, sep="") }, ref=function(refName) { ref[[refName]] }) }) require(knitr) library(gdtools) library(kableExtra) library(clusterCrit) library(dplyr) col1 <- c("1", "2","3","4", "5", "6") col2 <- c("`data_imputation`","`rates`", "`props`", "`outlier_detect`","`w_spaces`", "`remove_rows_n`") col3 <- c("Data imputation for longitudinal data", "Conversion of 'counts' to 'rates'", "Conversion of 'counts' (or 'rates') to 'Proportion'", "Outlier detection and replacement","Whitespace removal", "Incomplete rows removal") col4 <- c("Calculates any missing entries (`NA`, `Inf`, `null`) in a longitudinal data, according to a specified method","Calculates rates from observed 'counts' and its associated denominator data", "Converts 'counts' or 'rates' observation to 'proportion'", "Identifies outlier observations in the data, and replace or remove them","Removes all the leading and trailing whitespaces in a longitudinal data", "Removes rows which contain 'NA' and 'inf' entries") tble <- data.frame(col1, col2, col3, col4) tble <- tble knitr::kable(tble, caption = "Table 1. `Data manipulation` functions", col.names = c("SN","Function","Title","Description")) %>% kable_styling(full_width = F) %>% column_spec(1, bold = T, border_right = T) %>% column_spec(2, width = "8em", background = "white") %>% column_spec(3, width = "12em", background = "white") %>% column_spec(4, width = "16em", background = "white") library(akmedoids) data(traj) head(traj) nrow(traj) ncol(traj) imp_traj <- data_imputation(traj, id_field = TRUE, method = 2, replace_with = 1, fill_zeros = FALSE) imp_traj <- imp_traj$CompleteData head(imp_traj) par(mar=c(2,2,2,2)+0.1) par(adj = 0) par(mfrow=c(6,2)) dev.new() dat <- as.data.frame(traj) t_name <- as.vector(traj[,1]) dat <- dat[,2:ncol(dat)] for(k in seq_len(nrow(dat))){ y <- suppressWarnings(as.numeric(as.character(dat[k,]))) x <- seq_len(length(y)) known <- data.frame(x, y) known_1 <- data.frame(known[is.na(known[,2])|is.infinite(known[,2]),]) known_2 <- data.frame(known[!is.na(known[,2])&!is.infinite(known[,2]),]) model.lm <- lm(y ~ x, data = known_2) newY <- predict(model.lm, newdata = data.frame(x = known_1[,1])) l_pred <- predict(model.lm, newdata = data.frame(1:9)) dat[k, known_1[,1]] <- newY plot (known$x, known$y, type="o", main=paste("traj_id:",t_name[k], sep=" "), font.main = 1) if(!length(newY)==0){ lines(l_pred, lty="dotted", col="red", lwd=2) } points(known_1[,1], newY, col = "red") } plot_colors <- c("black","red") text <- c("Observed points", "Predicted points") par(xpd=TRUE) legend("center",legend = text, text.width = max(sapply(text, strwidth)), col=plot_colors, pch = 1, cex=1, horiz = FALSE) par(xpd=FALSE) plot_colors <- c("black","red") text <- c("line joining observed points", "regression line predicting missing points") plot.new() par(xpd=TRUE) legend("center",legend = text, text.width = max(sapply(text, strwidth)), col=plot_colors, lwd=1, cex=1, lty=c(1,2), horiz = FALSE) par(xpd=FALSE) data(popl) head(popl) nrow(popl) ncol(popl) pop <- as.data.frame(matrix(0, nrow(popl), ncol(traj))) colnames(pop) <- names(traj) pop[,1] <- as.vector(as.character(popl[,1])) pop[,4] <- as.vector(as.character(popl[,2])) pop[,8] <- as.vector(as.character(popl[,3])) list_ <- c(2, 3, 5, 6, 7, 9, 10) for(u_ in seq_len(length(list_))){ pop[,list_[u_]] <- "NA" } head(pop) population2 <- pop pop_imp_result <- data_imputation(population2, id_field = TRUE, method = 2, replace_with = 1, fill_zeros = FALSE) pop_imp_result <- pop_imp_result$CompleteData head(pop_imp_result) crime_per_200_people <- rates(imp_traj, denomin=pop_imp_result, id_field=TRUE, multiplier = 200) crime_per_200_people <- crime_per_200_people$rates_estimates nrow(crime_per_200_people) prop_crime_per200_people <- props(crime_per_200_people, id_field = TRUE, scale = 1, digits=2) prop_crime_per200_people colSums(prop_crime_per200_people[,2:ncol(prop_crime_per200_people)]) library(ggplot2) coln <- colnames(imp_traj)[2:length(colnames(imp_traj))] code_ <- rep(imp_traj$location_ids, ncol(imp_traj)-1) d_bind <- NULL for(v in seq_len(ncol(imp_traj)-1)){ d_bind <- c(d_bind, as.numeric(imp_traj[,(v+1)])) } code <- data.frame(location_ids=as.character(code_)) variable <- data.frame(variable=as.character(rep(coln, each=length(imp_traj$location_ids)))) value=data.frame(value = as.numeric(d_bind)) imp_traj_long <- bind_cols(code, variable,value) head(imp_traj_long) p <- ggplot(imp_traj_long, aes(x=variable, y=value, group=location_ids, color=location_ids)) + geom_point() + geom_line() print(p) imp_traj_New <- outlier_detect(imp_traj, id_field = TRUE, method = 2, threshold = 20, count = 1, replace_with = 2) imp_traj_New <- imp_traj_New$Outliers_Replaced print(imp_traj_New) coln <- colnames(imp_traj_New)[2:length(colnames(imp_traj_New))] code_ <- rep(imp_traj_New$location_ids, ncol(imp_traj_New)-1) d_bind <- NULL for(v in seq_len(ncol(imp_traj_New)-1)){ d_bind <- c(d_bind, as.numeric(imp_traj_New[,(v+1)])) } code <- data.frame(location_ids=as.character(code_)) variable <- data.frame(variable=as.character(rep(coln, each=length(imp_traj_New$location_ids)))) value=data.frame(value = as.numeric(d_bind)) imp_traj_New_long <- bind_cols(code, variable,value) p <- ggplot(imp_traj_New_long, aes(x=variable, y=value, group=location_ids, color=location_ids)) + geom_point() + geom_line() print(p) knitr::include_graphics("inequality.png") col1 <- c("1", "2", "3") col2 <- c("`akclustr`","`print_akstats`", "`plot_akstats`") col3 <- c("`Anchored k-medoids clustering`","`Descriptive (Change) statistics of clusters`", "`Plots of cluster groups`") col4 <- c("Clusters trajectories into a `k` number of groups according to the similarities in their long-term trend and determines the best solution based on the Silhouette width measure or the Calinski-Harabasz criterion","Generates the descriptive and change statistics of groups, and also plots the groups performances", "Generates different plots of cluster groups") tble2 <- data.frame(col1, col2, col3, col4) tble2 <- tble2 knitr::kable(tble2, caption = "Table 2. `Data clustering` functions", col.names = c("SN","Function","Title","Description")) %>% kable_styling(full_width = F) %>% column_spec(1, bold = T, border_right = T) %>% column_spec(2, width = "8em", background = "white") %>% column_spec(3, width = "12em", background = "white") %>% column_spec(4, width = "16em", background = "white") head(prop_crime_per200_people) coln <- colnames(prop_crime_per200_people)[2:length(colnames(prop_crime_per200_people))] code_ <- rep(prop_crime_per200_people$location_ids, ncol(prop_crime_per200_people)-1) d_bind <- NULL for(v in seq_len(ncol(prop_crime_per200_people)-1)){ d_bind <- c(d_bind, prop_crime_per200_people[,(v+1)]) } prop_crime_per200_people_melt <- data.frame(cbind(location_ids=as.character(code_), variable = rep(coln, each=length(prop_crime_per200_people$location_ids)), value=d_bind)) p <- ggplot(prop_crime_per200_people_melt, aes(x=variable, y=value, group=location_ids, color=location_ids)) + geom_point() + geom_line() print(p) akObj <- akclustr(prop_crime_per200_people, id_field = TRUE, method = "linear", k = c(3,8), crit = "Calinski_Harabasz", verbose=TRUE) names(akObj) knitr::include_graphics("caliHara.png") akObj$solutions[[3]] knitr::include_graphics("Nquant.png") prpties = print_akstats(akObj, k = 5, show_plots = FALSE) prpties plot_akstats(akObj, k = 5, type="lines", y_scaling="fixed") plot_akstats(akObj, k = 5, reference = 1, n_quant = 4, type="stacked") col1 <- c("1", "2","3","4","5","6", "7","8","9","10") col2 <- c("`group`", "`n`", "`n(%)`", "`%Prop.time1`", "`%Prop.timeT`", "`Change`", "`%Change`", "`%+ve Traj.`", "`%-ve Traj.`", "`Qtl:1st-4th`") col3 <- c("`group membershp`", "`size (no.of.trajectories.)`", "`% size`", "`% proportion of obs. at time 1 (2001)`", "`proportion of obs. at time T (2009)`", "`absolute change in proportion between time1 and timeT`", "`% change in proportion between time 1 and time T`", "`% of trajectories with positive slopes`", "`% of trajectories with negative slopes`", "`Position of a group medoid in the quantile subdivisions`") tble3 <- data.frame(col1, col2, col3) tble3 <- tble3 knitr::kable(tble3, caption = "Table 3. field description of clustering outputs", col.names = c("SN","field","Description")) %>% kable_styling(full_width = F) %>% column_spec(1, bold = T, border_right = T) %>% column_spec(2, width = "8em", background = "white") %>% column_spec(3, width = "12em", background = "white")
waves <- function(date, us = FALSE, ...) { assert(date, c("character", "Date")) assert(us, 'logical') dates <- str_extract_all_(date, "[0-9]+")[[1]] assert_range(dates[1], 1979:format(Sys.Date(), "%Y")) assert_range(as.numeric(dates[2]), 1:12) assert_range(as.numeric(dates[3]), 1:31) path <- bsw_get(year = dates[1], month = dates[2], day = dates[3], us = us, ...) bsw_read(path, us) } bsw_get <- function(year, month, day, us, cache = TRUE, overwrite = FALSE, ...) { bsw_cache$mkdir() key <- bsw_key(year, month, day, us) file <- file.path(bsw_cache$cache_path_get(), basename(key)) if (!file.exists(file)) { suppressMessages(bsw_GET_write(sub("/$", "", key), file, overwrite, ...)) } return(file) } bsw_GET_write <- function(url, path, overwrite = TRUE, ...) { cli <- crul::HttpClient$new( url = url, headers = list(Authorization = "Basic anonymous:[email protected]") ) if (!overwrite) { if (file.exists(path)) { stop("file exists and ovewrite != TRUE", call. = FALSE) } } res <- tryCatch(cli$get(disk = path, ...), error = function(e) e) if (inherits(res, "error")) { unlink(path) stop(res$message, call. = FALSE) } return(res) } bsw_base_ftp <- function(x) { base <- "ftp://ftp.cpc.ncep.noaa.gov/precip/bsw_UNI_PRCP" if (x) file.path(base, "GAUGE_CONUS") else file.path(base, "GAUGE_GLB") } bsw_base_file <- function(x) { base <- "PRCP_CU_GAUGE_V1.0%sdeg.lnx." if (x) sprintf(base, "CONUS_0.25") else sprintf(base, "GLB_0.50") } bsw_key <- function(year, month, day, us) { sprintf("%s/%s/%s/%s%s%s", bsw_base_ftp(us), if (year < 2006) "V1.0" else "RT", year, bsw_base_file(us), paste0(year, month, day), if (year < 2006) { ".gz" } else if (year > 2005 && year < 2009) { if (us && year == 2006) { ".gz" } else { ".RT.gz" } } else { ".RT" } ) } bsw_read <- function(x, us) { conn <- file(x, "rb") on.exit(close(conn)) if (us) { bites <- 120 * 300 * 2 lats <- seq(from = 20.125, to = 49.875, by = 0.25) longs <- seq(from = 230.125, to = 304.875, by = 0.25) } else { bites <- 360 * 720 * 2 lats <- seq(from = 0.25, to = 89.75, by = 0.5) lats <- c(rev(lats * -1), lats) longs <- seq(from = 0.25, to = 359.75, by = 0.5) } tmp <- readBin(conn, numeric(), n = bites, size = 4, endian = "little") tmp <- tmp[seq_len(bites/2)] * 0.1 tibble::as_tibble( stats::setNames( cbind(expand.grid(longs, lats), tmp), c('lon', 'lat', 'precip') ) ) }
context("standard covariance fit") library("robmed", quietly = TRUE) n <- 250 a <- c <- 0.2 b <- 0 seed <- 20150601 set.seed(seed) X <- rnorm(n) M1 <- a * X + rnorm(n) M2 <- rnorm(n) Y <- b * M1 + c * X + rnorm(n) C1 <- rnorm(n) C2 <- rnorm(n) test_data <- data.frame(X, Y, M1, M2, C1, C2) foo <- fit_mediation(test_data, x = "X", y = "Y", m = "M1", method = "covariance", robust = FALSE) bar <- summary(foo) ellipse_mx <- setup_ellipse_plot(foo) ellipse_ym <- setup_ellipse_plot(foo, horizontal = "M1", vertical = "Y", partial = FALSE) ellipse_partial <- setup_ellipse_plot(foo, horizontal = "M1", vertical = "Y", partial = TRUE) test_that("output has correct structure", { expect_s3_class(foo, "cov_fit_mediation") expect_s3_class(foo, "fit_mediation") expect_s3_class(foo$cov, "cov_ML") expect_null(foo$control) }) test_that("arguments are correctly passed", { expect_identical(foo$x, "X") expect_identical(foo$y, "Y") expect_identical(foo$m, "M1") expect_null(foo$fit$covariates) expect_false(foo$robust) expect_null(foo$control) }) test_that("dimensions are correct", { expect_length(foo$a, 1L) expect_length(foo$b, 1L) expect_length(foo$direct, 1L) expect_length(foo$total, 1L) expect_length(foo$ab, 1L) expect_identical(dim(foo$data), c(as.integer(n), 3L)) }) test_that("values of coefficients are correct", { expect_equivalent(foo$total, foo$a * foo$b + foo$direct) expect_equivalent(foo$ab, foo$a * foo$b) }) test_that("output of coef() method has correct attributes", { coefficients <- coef(foo) expect_length(coefficients, 5L) expect_named(coefficients, c("a", "b", "Direct", "Total", "ab")) }) test_that("coef() method returns correct values of coefficients", { expect_equivalent(coef(foo, parm = "a"), foo$a) expect_equivalent(coef(foo, parm = "b"), foo$b) expect_equivalent(coef(foo, parm = "Direct"), foo$direct) expect_equivalent(coef(foo, parm = "Total"), foo$total) expect_equivalent(coef(foo, parm = "ab"), foo$ab) }) test_that("summary returns original object", { expect_identical(foo, bar) }) test_that("object returned by setup_xxx_plot() has correct structure", { expect_s3_class(ellipse_mx$data, "data.frame") expect_s3_class(ellipse_ym$data, "data.frame") expect_s3_class(ellipse_partial$data, "data.frame") expect_identical(dim(ellipse_mx$data), c(as.integer(n), 2L)) expect_identical(dim(ellipse_ym$data), c(as.integer(n), 2L)) expect_identical(dim(ellipse_partial$data), c(as.integer(n), 2L)) column_names <- c("x", "y") expect_named(ellipse_mx$data, column_names) expect_named(ellipse_ym$data, column_names) expect_named(ellipse_partial$data, column_names) expect_s3_class(ellipse_mx$ellipse, "data.frame") expect_s3_class(ellipse_ym$ellipse, "data.frame") expect_s3_class(ellipse_partial$ellipse, "data.frame") expect_identical(ncol(ellipse_mx$ellipse), 2L) expect_gt(nrow(ellipse_mx$ellipse), 0L) expect_identical(ncol(ellipse_ym$ellipse), 2L) expect_gt(nrow(ellipse_ym$ellipse), 0L) expect_identical(ncol(ellipse_partial$ellipse), 2L) expect_gt(nrow(ellipse_partial$ellipse), 0L) column_names <- c("x", "y") expect_named(ellipse_mx$ellipse, column_names) expect_named(ellipse_ym$ellipse, column_names) expect_named(ellipse_partial$ellipse, column_names) expect_s3_class(ellipse_mx$line, "data.frame") expect_null(ellipse_ym$line) expect_s3_class(ellipse_partial$line, "data.frame") expect_identical(dim(ellipse_mx$line), c(1L, 2L)) expect_identical(dim(ellipse_partial$line), c(1L, 2L)) column_names <- c("intercept", "slope") expect_named(ellipse_mx$line, column_names) expect_named(ellipse_partial$line, column_names) expect_identical(ellipse_partial$line$intercept, 0) expect_identical(ellipse_mx$horizontal, "X") expect_identical(ellipse_mx$vertical, "M1") expect_identical(ellipse_ym$horizontal, "M1") expect_identical(ellipse_ym$vertical, "Y") expect_identical(ellipse_partial$horizontal, "M1") expect_identical(ellipse_partial$vertical, "Y") expect_false(ellipse_mx$partial) expect_false(ellipse_ym$partial) expect_true(ellipse_partial$partial) expect_false(ellipse_mx$robust) expect_false(ellipse_ym$robust) expect_false(ellipse_partial$robust) expect_false(ellipse_mx$have_methods) expect_false(ellipse_ym$have_methods) expect_false(ellipse_partial$have_methods) expect_error(setup_weight_plot(foo)) }) test_that("covariates not implemented", { set.seed(seed) suppressWarnings( reg_fit <- fit_mediation(test_data, x = "X", y = "Y", m = "M1", covariates = c("C1", "C2"), method = "regression", robust = FALSE) ) set.seed(seed) expect_warning( cov_fit <- fit_mediation(test_data, x = "X", y = "Y", m = "M1", covariates = c("C1", "C2"), method = "covariance", robust = FALSE) ) expect_equal(cov_fit, reg_fit) }) test_that("multiple mediators not implemented", { set.seed(seed) suppressWarnings( reg_fit <- fit_mediation(test_data, x = "X", y = "Y", m = c("M1", "M2"), method = "regression", robust = FALSE) ) set.seed(seed) expect_warning( cov_fit <- fit_mediation(test_data, x = "X", y = "Y", m = c("M1", "M2"), method = "covariance", robust = FALSE) ) expect_equal(cov_fit, reg_fit) }) fit_f1 <- fit_mediation(Y ~ m(M1) + X, data = test_data, method = "covariance", robust = FALSE) fit_f2 <- fit_mediation(Y ~ m(M1) + X, method = "covariance", robust = FALSE) med <- m(M1) fit_f3 <- fit_mediation(Y ~ med + X, data = test_data, method = "covariance", robust = FALSE) test_that("formula interface works correctly", { expect_equal(fit_f1, foo) expect_equal(fit_f2, foo) expect_equal(fit_f3, foo) })
ci.exp.exact <- function (rate, n, ci.type, alpha) { df <- 2 * n denom <- df/rate switch(ci.type, `two-sided` = { lcl <- qchisq(alpha/2, df)/denom ucl <- qchisq(1 - alpha/2, df)/denom }, lower = { lcl <- qchisq(alpha, df)/denom ucl <- Inf }, upper = { lcl <- 0 ucl <- qchisq(1 - alpha, df)/denom }) ci.limits <- c(lcl, ucl) names(ci.limits) <- c("LCL", "UCL") ret.obj <- list(name = "Confidence", parameter = "rate", limits = ci.limits, type = ci.type, method = "Exact", conf.level = 1 - alpha, sample.size = n) oldClass(ret.obj) <- "intervalEstimate" ret.obj }
test_that("tidied dags are in good shape", { tidy_dag <- dagify(y ~ x + z, x ~ z) %>% tidy_dagitty() expect_true(dagitty::is.dagitty(tidy_dag$dag)) expect_true(dplyr::is.tbl(tidy_dag$data)) dag_col_names <- names(tidy_dag$data) expected_names <- c("x", "y", "xend", "yend", "name", "direction", "to", "circular") expect_true(all(expected_names %in% dag_col_names)) expect_equal(unique(tidy_dag$data$name), c("x", "z", "y")) expect_equal(tidy_dag$data$direction, factor(c("->", "->", "->", NA), levels = c("<-", "->", "<->"))) expect_true(is.logical(tidy_dag$data$circular)) expect_true(is.numeric(tidy_dag$data$x)) expect_true(is.numeric(tidy_dag$data$y)) }) test_that("Forbidden layouts error", { expect_error( tidy_dagitty(dagify(y ~ x + z, x ~ z), layout = "dendogram"), "Layout type `dendogram` not supported in ggdag" ) }) expect_function_produces_name <- function(tidy_dag, column) { .df <- tidy_dag$data expect_true(all(column %in% names(.df))) } test_that("node functions produce correct columns", { tidy_dag <- dagify(y ~ x + z, x ~ z) %>% tidy_dagitty() expect_function_produces_name(node_ancestors(tidy_dag, "y"), "ancestor") expect_function_produces_name(node_children(tidy_dag, "z"), "children") expect_function_produces_name(node_collider(tidy_dag), "colliders") expect_function_produces_name(node_dconnected(tidy_dag, "x", "y"), c("adjusted", "d_relationship")) expect_function_produces_name(node_descendants(tidy_dag, "z"), "descendant") expect_function_produces_name(node_drelationship(tidy_dag, "x", "y"), c("adjusted", "d_relationship")) expect_function_produces_name(node_dseparated(tidy_dag, "x", "y"), c("adjusted", "d_relationship")) expect_function_produces_name(node_equivalent_class(tidy_dag), "reversable") expect_function_produces_name(node_equivalent_dags(tidy_dag), "dag") expect_function_produces_name(node_exogenous(tidy_dag), "exogenous") expect_function_produces_name(node_instrumental(tidy_dag, exposure = "x", outcome = "y"), c("adjusted", "instrumental")) expect_function_produces_name(node_parents(tidy_dag, "z"), "parent") expect_function_produces_name(node_status(tidy_dag), "status") })
context("Try getting results from expression") test_that("try_get_model_succeeds", { tmp <- try_get_model(1 + 9) expect_equal(tmp[["Model"]], 10) expect_equal(tmp[["Warning"]], NULL) expect_equal(tmp[["Error"]], NULL) }) test_that("try_get_model_warns", { tmp <- suppressWarnings(try_get_model(log(-1))) expect_equal(tmp[["Model"]], NaN) expect_s3_class(tmp[["Warning"]], "simpleWarning") expect_equal(tmp[["Error"]], NULL) }) test_that("try_get_model_fails", { tmp <- try_get_model(1 / "a") expect_equal(tmp[["Model"]], NULL) expect_equal(tmp[["Warning"]], NULL) expect_s3_class(tmp[["Error"]], "simpleError") })
dBiMG_expPR <- function(x, a, b, alpha) { stopifnot(x > 0, alpha >= -1 && alpha <= 1) s = exp(a + b) * (1 + alpha * (1 - exp(a))) * (1 - exp(b)) pdf = (1 + alpha) * exp(a + b) / (s * (1 + x)^2) - 2 * alpha * exp(2 * a + b) / (s * (1 + 2 * x)^2) - 2 * alpha * exp(2 * b + a) / (s * (2 + x)^2) + alpha * exp(2 * a + 2 * b) / (s * (1 + x)^2) return(pdf) }