code
stringlengths 1
13.8M
|
---|
cdm_pem_inits_assign_parmlist <- function(pem_pars, envir)
{
parmlist <- list()
NP <- length(pem_pars)
for (pp in 1:NP){
p1 <- get( pem_pars[pp], pos=envir )
parmlist[[ pp ]] <- p1
}
names(parmlist) <- pem_pars
return(parmlist)
} |
library("RUnit")
library("krm")
test.getSeqKernel <- function() {
tolerance=1e-3
if (R.Version()$system %in% c("x86_64, mingw32")) {
tolerance=1e-6
}
RNGkind("Mersenne-Twister", "Inversion")
fileName=paste(system.file(package="krm")[1],'/misc/SETpfamseed_aligned_for_testing.fasta', sep="")
K=getSeqKernel (fileName, kern.type="mi", tau=.01, call.C=T)
checkEqualsNumeric(
c(K[1:2, 1:2])
,
c(1.0000000, 0.1038921, 0.1038921, 1.0000000)
, tolerance = tolerance
)
K=getSeqKernel (fileName, kern.type="mi", tau=1, call.C=T)
checkEqualsNumeric(
c((K^0.01)[1:2, 1:2])
,
c(1.0000000, 0.1038921, 0.1038921, 1.0000000)
, tolerance = tolerance
)
seq.alignment <- readFastaFile(fileName)
K=getSeqKernel (seq.alignment[1:2], kern.type="mi", tau=.01)
checkEqualsNumeric(
c(K[1:2, 1:2])
,
c(1.0000000, 0.1038921, 0.1038921, 1.0000000)
, tolerance = tolerance
)
seq.alignment <- readFastaFile(fileName)
K=getSeqKernel (seq.alignment[1:2], kern.type="mi", tau=.01, seq.start=100, seq.end=200)
K.1=getSeqKernel (seq.alignment[1:2], kern.type="mi", tau=.01, seq.start=100, seq.end=200, call.C=FALSE)
checkEqualsNumeric(
c(K[1:2, 1:2])
,
c(K.1[1:2, 1:2])
, tolerance = tolerance
)
} |
get_Rversion <- function() {
rinfo <- data.frame( Name = "Version",
Value = R.version.string
)
return(rinfo)
} |
match.data.frame <- function(x, y, by, by.x=by, by.y=by,
grep., split, sep=':'){
if((missing(by.x) || missing(by.y)) && missing(by)){
by <- names(x)
}
kx <- length(by.x)
nx <- nrow(x)
if(kx<1){
warning('length(by.x)==0; nothing to match. Returning NAs')
return(rep(NA, nx))
}
chk.x <- which(!(by.x %in% names(x)))
if(length(chk.x)>0){
stop('by.x not in names(x); first error = ',
by.x[chk.x[1]])
}
if((ky <- length(by.y))!= kx){
stop('length(by.x) = ', kx, ' != length(by.y) = ', ky)
}
chk.y <- which(!(by.y %in% names(y)))
if(length(chk.y)>0){
stop('by.y not in names(y); first error = ',
by.y[chk.y[1]])
}
if(missing(grep.)){
grep. <- rep(NA, kx)
} else {
if((kg <- length(grep.)) == 1){
grep. <- rep(grep., kx)
} else if(kg != kx)
stop('length(by.x) = ', kx, ' != length(grep.) = ', kg)
}
if(missing(split)){
split <- c(NA, ' ')[1+!is.na(grep.)]
} else {
if((ks <- length(split))==1){
split <- rep(split, kx)
} else if(ks != kx)
stop('length(by.x) = ', kx, ' != length(split) = ', ks)
}
oops <- which(is.na(grep.) != is.na(split))
if(length(oops)>0){
stop('grep. cannot be NA when split is not and vice versa;',
' first error in position number ', oops[1],
' where grep. = ', grep[oops[1]],
' and split = ', split[oops[1]])
}
fullMatch <- (is.na(grep.) & is.na(split))
afM <- any(fullMatch)
if(afM){
matchx <- c(as.list(x[, by.x[fullMatch], drop=FALSE]), sep=sep)
keyfx <- with(x, do.call(paste, matchx))
matchy <- c(as.list(y[, by.y[fullMatch], drop=FALSE]), sep=sep)
keyfy <- with(y, do.call(paste, matchy))
}
anf <- any(!fullMatch)
if(anf){
parMatch <- ((1:kx)[!fullMatch])
x. <- mapply(function(z, s){
z. <- strsplit(z, s)
sapply(z., '[', 1)
}, x[, by.x[parMatch], drop=FALSE],
split[parMatch])
}
xyi <- rep(NA, nx)
ny <- nrow(y)
iy. <- 1:ny
for(ix in 1:nx){
if(afM){
iy <- which(regexpr(keyfx[ix], keyfy, fixed=TRUE)>0)
if((kiy <- length(iy))>0){
if(kiy<2) {
xyi[ix] <- iy
}
}
} else iy <- iy.
if(anf & (kiy>1)){
for(j in parMatch){
xij <- x.[ix, by.x[j]]
xiju <- do.call(grep.[j], list(xij, y[iy, by.y[j]],
fixed=TRUE) )
if((kiju <- length(xiju))<1) next
if(kiju<2){
xyi[ix] <- iy[xiju]
next
} else iy <- iy[xiju]
}
}
}
xyi
} |
test_that("hover_reload_button has expected structure", {
test_me <- hover_reload_button("id", "label")
expect_equal(
test_me$attribs$type,
"button"
)
expect_true(any("onClick" %in% names(test_me$attribs)))
expect_equal(
test_me$attribs$onClick,
"location.reload();"
)
}) |
amanida_read <- function(file, mode, coln, separator=NULL) {
. = NULL; foldchange = NULL; pvalue = NULL; N = NULL;
set.seed(123)
VAR_NAMES <- c('id', 'pvalue', 'foldchange', 'N', 'ref')
ext <- tools::file_ext(file)
if (ext %in% c("csv", "tsv", "txt")) {
stopifnot("Please, specify a separator."=!is.null(separator))
datafile <- readr::read_delim(file, delim = separator, col_types = readr::cols()) %>%
mutate(
across(coln[2:3], function(x) sub(",", ".", x, fixed = TRUE))
)
} else if (ext %in% c("xlsx", "xls")) {
datafile <- readxl::read_excel(file)
} else {
stop("Format not compatible; try csv, tsv, excel or txt. Aborting.")
}
misrow <- sum(!complete.cases(datafile))
if (mode == "quan") {
datafile <- datafile %>%
select(all_of(coln)) %>%
filter(complete.cases(.)) %>%
rename_with(.cols = everything(), .fn = ~ VAR_NAMES) %>%
mutate(
`foldchange` = as.numeric(`foldchange`),
`pvalue` = as.numeric(`pvalue`),
`N` = as.integer(`N`),
`foldchange` = case_when(
`foldchange` < 0 ~ 1 / abs(`foldchange`),
T ~ foldchange
),
trend = case_when(
`foldchange` < 1 ~ -1,
`foldchange` == 1 ~ 0,
T ~ 1
)
)
} else if (mode == "qual") {
VAR_NAMES <- c('id', 'trend', 'ref')
datafile <- datafile %>%
select(all_of(coln)) %>%
filter(complete.cases(.)) %>%
rename_with(.cols = everything(), .fn = ~ VAR_NAMES) %>%
mutate(trend = case_when(
tolower(trend) == "down" ~ -1,
T ~ 1
))
} else {
stop("Please, indicate mode: 'quan' for quantitative and 'qual' for qualitative")
}
message(paste("Loaded dataset with", nrow(datafile),"rows which contains",
length(unique(datafile$id)), "different identifiers. There are",
misrow, "rows skipped from original dataset because contained NA values."))
return(datafile)
} |
get.decision.obd.kb <- function(toxicity.low, toxicity.moderate,toxicity.high, efficacy.low, efficacy.moderate,
efficacy.high, target.toxicity, target.efficacy, cohortsize, ncohort, cutoff.eli.toxicity= 0.95, cutoff.eli.efficacy=0.3){
decision.matrix <- matrix(c("E","E","E","E","E","E","E","S","D","S","S","S", "D","D","D","D"),ncol=1, byrow=TRUE)
efficacy <-matrix(rep( c(0,efficacy.low,efficacy.low,efficacy.moderate,efficacy.moderate,efficacy.high,efficacy.high,1),4), ncol=2, byrow=TRUE)
toxicity <- matrix( c(0,toxicity.low,0,toxicity.low,0,toxicity.low,0,toxicity.low,toxicity.low,toxicity.moderate,toxicity.low,toxicity.moderate,toxicity.low,toxicity.moderate,toxicity.low,toxicity.moderate,toxicity.moderate,toxicity.high,toxicity.moderate,toxicity.high,toxicity.moderate,toxicity.high,toxicity.moderate,toxicity.high,toxicity.high,1,toxicity.high,1,toxicity.high,1,toxicity.high,1), ncol=2, byrow=TRUE)
decision.table <- cbind(toxicity,efficacy, decision.matrix)
colnames(decision.table) <- c("T1", "T2", "EF1","EF2","DECISION")
ntvector <- c()
ndvector <- c()
nrvector <- c()
for (i in 1:ncohort) {
nt<-rep(i*cohortsize,(i*cohortsize+1)^2)
ntvector <- append(ntvector, nt)
for (j in 0:(i*cohortsize)){
nd <- rep(j, (i*cohortsize+1))
ndvector <- append(ndvector, nd)
nr <- c(0:(i*cohortsize))
nrvector <- append(nrvector,nr)
}
}
ntmatrix <- matrix(ntvector,ncol=1)
ndmatrix <- matrix(ndvector,ncol=1)
nrmatrix <- matrix(nrvector,ncol=1)
outmatrix <- cbind(ntmatrix,ndmatrix,nrmatrix)
colnames(outmatrix)<- c("N", "T","R")
outmatrix <- as.data.frame(outmatrix)
pinfor <- function(mout, i){
out <- list( n = mout[i,1],
d = mout[i,2],
r = mout[i,3])
}
pdecision <- function(decisont, i){
out <- list (
t1 = as.numeric(decisont[i,1]),
t2 = as.numeric(decisont[i,2]),
e1 = as.numeric(decisont[i,3]),
e2 = as.numeric(decisont[i,4]),
d = decisont[i,5]
)
}
maxjupm <- function(decision.table, outmatrix, i){
outputoutm <- pinfor(outmatrix,i)
nt = outputoutm$n
dt = outputoutm$d
rt = outputoutm$r
jupmv <- c()
for (rowd in 1:nrow(decision.table)){
a = as.numeric(decision.table[rowd,1])
b = as.numeric(decision.table[rowd,2])
c = as.numeric(decision.table[rowd,3])
d = as.numeric(decision.table[rowd,4])
jupm = round((pbeta(b, (1+dt), (1+nt-dt))-pbeta(a, (1+dt), (1+nt-dt)))*(pbeta(d, (1+rt), (1+nt-rt))-pbeta(c, (1+rt), (1+nt-rt)))/((b-a)*(d-c)),2)
jupmv <- append(jupmv, jupm)
}
jupmv_matrix <- matrix(jupmv, ncol=1)
colnames(jupmv_matrix)<- "jupm"
decision.table_jupm <- cbind(decision.table,jupmv_matrix)
decision.table_jupm <- as.data.frame(decision.table_jupm)
decision.table_jupm$jupm <- as.numeric(as.character(decision.table_jupm$jupm))
jupm_max <-max(decision.table_jupm$jupm)
max_index <- which.max(decision.table_jupm$jupm)
decision <- decision.table_jupm$D[max_index]
out <- list(decision.table_jupm=decision.table_jupm, chosen_decision=decision, jupm_max_value =jupm_max)
}
decision_picking <-c()
jupm_picking <-c()
for (rowoutm in 1:nrow(outmatrix)){
outjupm <- maxjupm(decision.table, outmatrix, rowoutm)
decision_p <- outjupm$chosen_decision
decision_picking <- append(decision_picking,as.character(decision_p))
jupm_mv <- outjupm$jupm_max_value
jupm_picking <- append(jupm_picking,jupm_mv)
}
decision_matrix <- matrix(decision_picking, ncol=1)
colnames(decision_matrix)<- "Decision"
jupm_max_matrix <- matrix(jupm_picking, ncol=1)
colnames(jupm_max_matrix) <- "Jupm"
output.matrix <- cbind(outmatrix, decision_matrix,jupm_max_matrix)
output.matrix <- output.matrix[,-5]
output.matrix <- as.data.frame(output.matrix)
i <- sapply(output.matrix, is.factor)
output.matrix[i] <- lapply(output.matrix[i], as.character)
for (rowindex in 1:nrow(output.matrix)){
if (output.matrix$Decision[rowindex] == "D") {
if (1- pbeta(target.toxicity,output.matrix$T[rowindex]+1, output.matrix$N[rowindex]-output.matrix$T[rowindex]+1) > cutoff.eli.toxicity) {
output.matrix$Decision[rowindex] = "DUT"
} else if (1- pbeta(target.efficacy,output.matrix$R[rowindex]+1, output.matrix$N[rowindex]-output.matrix$R[rowindex]+1)< cutoff.eli.efficacy){
output.matrix$Decision[rowindex] = "DUE"
}
} else if (output.matrix$Decision[rowindex] == "E"){
if (1- pbeta(target.efficacy,output.matrix$R[rowindex]+1, output.matrix$N[rowindex]-output.matrix$R[rowindex]+1)< cutoff.eli.efficacy){
output.matrix$Decision[rowindex] = "EUE"
}
}
}
outlist =list(
boundary.table=decision.table,
decision.matrix=output.matrix)
return (outlist)
} |
t.test.mult <-
function(mean1, var1, n1, mean2=NULL, var2=NULL, n2=NULL,
samples=NULL, alternative=c("two.sided", "less", "greater"),
mu=0, var.equal=FALSE, conf.level=0.95, as.vector=FALSE)
{
alternative <- match.arg(alternative)
if (length(mean1) != length(var1)) {
stop("'mean1' and 'var1' must have the same length.")
}
if (any(is.na(var1))) { stop("'var1' must not be null or NA") }
if (!is.null(mean2) && (length(mean2) != length(var2))) {
stop("'mean2' and 'var2' must have the same length.")
}
if (!is.null(mean2) && any(is.na(var2))) { stop("'var2' must not be null or NA if 'mean2' is not null") }
if (!is.null(mean2) && length(mean1)!=length(mean2)) {
stop("'mean1' and 'mean2' must have the same length if both are not null")
}
if (length(n1)!=1) { stop("'n1' must have length 1") }
if ((length(n2)!=1) && (length(n2)!=NA)) { stop("'n2' must be null or have length 1") }
if (samples == 1) {
estimate <- mean1
df <- rep(n1-1, length(mean1))
stderr <- sqrt(var1/n1)
tstat <- (mean1-mu)/stderr
}
else {
estimate <- mean1 - mean2
if (var.equal) {
df <- rep(n1+n2-2, length(mean1))
v <- 0
if(n1 > 1) v <- v + (n1-1)*var1
if(n2 > 1) v <- v + (n2-1)*var2
v <- v/df
stderr <- sqrt(v*(1/n1+1/n2))
}
else {
stderr1 <- sqrt(var1/n1)
stderr2 <- sqrt(var2/n2)
stderr <- sqrt(stderr1^2 + stderr2^2)
df <- stderr^4/(stderr1^4/(n1-1) + stderr2^4/(n2-1))
}
tstat <- (estimate - mu)/stderr
}
if (alternative == "less") {
cint <- cbind(-Inf, tstat + qt(conf.level, df) )
}
else if (alternative == "greater") {
cint <- cbind(tstat - qt(conf.level, df), Inf)
}
else {
cint <- qt((1+conf.level)/2, df)
cint <- tstat + cbind(-cint, cint)
}
cint <- mu + cint * stderr
rval <- cbind(estimate, cint)
if (as.vector && length(mean1)==1) {
rval <- as.vector(rval);
names(rval) <- c("point","lower","upper")
}
else
dimnames(rval)[[2]] <- c("point","lower","upper")
return(rval)
} |
lda_shrink_mean <- function(x, ...) {
UseMethod("lda_shrink_mean")
}
lda_shrink_mean.default <- function(x, y, prior = NULL, ...) {
x <- pred_to_matrix(x)
y <- outcome_to_factor(y)
complete <- complete.cases(x) & complete.cases(y)
x <- x[complete,,drop = FALSE]
y <- y[complete]
obj <- diag_estimates(x = x, y = y, prior = prior, pool = TRUE,
est_mean = "tong")
obj$col_names <- colnames(x)
obj <- new_discrim_object(obj, "lda_shrink_mean")
obj
}
lda_shrink_mean.formula <- function(formula, data, prior = NULL, ...) {
formula <- no_intercept(formula, data)
mf <- model.frame(formula = formula, data = data)
.terms <- attr(mf, "terms")
x <- model.matrix(.terms, data = mf)
y <- model.response(mf)
est <- lda_shrink_mean.default(x = x, y = y, prior = prior)
est$.terms <- .terms
est <- new_discrim_object(est, class(est))
est
}
print.lda_shrink_mean <- function(x, ...) {
cat("Shrinkage-Mean-Based Diagonal LDA\n\n")
print_basics(x, ...)
invisible(x)
}
predict.lda_shrink_mean <- function(object, newdata, type = c("class", "prob", "score"), ...) {
type <- rlang::arg_match0(type, c("class", "prob", "score"), arg_nm = "type")
newdata <- process_newdata(object, newdata)
scores <- apply(newdata, 1, function(obs) {
sapply(object$est, function(class_est) {
with(class_est, sum((obs - xbar)^2 / object$var_pool) + log(prior))
})
})
if (type == "prob") {
means <- lapply(object$est, "[[", "xbar")
covs <- replicate(n=object$num_groups, object$var_pool, simplify=FALSE)
priors <- lapply(object$est, "[[", "prior")
res <- posterior_probs(x = newdata, means = means, covs = covs, priors = priors)
res <- as.data.frame(res)
} else if (type == "class") {
res <- score_to_class(scores, object)
} else {
res <- t(scores)
res <- as.data.frame(res)
}
res
} |
NULL
plot.SysConfig <- function(x, y, ...) {
plot(as.raster(x$PointerMatrix, background = x$WBColours[[1]]), ...)
}
print.SysConfig <- function(x, ...) {
cat(sprintf("Amiga system-configuration\nFontHeight:\t%i\nPrinter:\t%s %s\nInterlaced:\t%s",
x$FontHeight,
tolower(strsplit(as.character(x$PrinterPort), "_")[[1]][[1]]),
x$PrinterFilename,
as.character(x$LaceWB == "LACE")), ...)
}
as.raw.SysConfig <- function(x, ...) {
class(x) <- NULL
x$KeyRptSpeed <- as.raw(x$KeyRptSpeed)
x$KeyRptDelay <- as.raw(x$KeyRptDelay)
x$DoubleClick <- as.raw(x$DoubleClick)
x$PointerMatrix <- as.raw(x$PointerMatrix)
x$PointerMatrix[3] <- raw(1)
x$WBColours <- colourToAmigaRaw(x$WBColours, colour.depth = "12 bit", n.bytes = "2")
x$spriteColours <- colourToAmigaRaw(x$spriteColours, colour.depth = "12 bit", n.bytes = "2")
x$PrinterFilename <- charToRaw(x$PrinterFilename)[1:30]
x$PrtDevName <- charToRaw(x$PrtDevName)[1:16]
x[names(.SysConfigFactors)] <-
lapply(names(.SysConfigFactors), function(y) {
.match.factor.inv(x, y, .SysConfigFactors[[y]]$vals, .SysConfigFactors[[y]]$levs)
})
x$PrintFlags <- .match.multi.factor.inv(x,
"PrintFlags",
.SysConfigMultiFactors[["PrintFlags"]]$vals,
.SysConfigMultiFactors[["PrintFlags"]]$levs)
x$SerRWBits <- .bitmapToRaw(x$SerRWBits, F, F)
x$SerParShk <- .amigaIntToRaw(
16*.match.factor.inv(x$SerParShk, "SerialParity", 0:4, c("SPARITY_NONE", "SPARITY_EVEN", "SPARITY_ODD",
"SPARITY_MARK", "SPARITY_SPACE")) +
.match.factor.inv(x$SerParShk,
"HandshakeMode", 0:2, c("SHSHAKE_XON", "SHSHAKE_RTS", "SHSHAKE_NONE")),
8, F)
x$SerStopBuf <- .amigaIntToRaw(
16*(x$SerStopBuf$N.StopBits - 1) +
.match.factor.inv(x$SerStopBuf,
"BufSize", 0:5, c("SBUF_512", "SBUF_1024", "SBUF_2048", "SBUF_4096", "SBUF_8000", "SBUF_16000")),
8, F)
x <- .write.amigaData(x, .SysConfigData$byte, .SysConfigData$signed, .SysConfigData$par.names)
return(x)
}
.SysConfigMultiFactors <- list(
PrintFlags= data.frame(
vals = c(0x0001, 0x0002, 0x0004, 0x0008, 0x0000, 0x0010, 0x0020, 0x0040,
0x0080, 0x0100, 0x0000, 0x0200, 0x0400, 0x0800, 0x1000),
levs = c("CORRECT_RED", "CORRECT_GREEN", "CORRECT_BLUE", "CENTER_IMAGE",
"IGNORE_DIMENSIONS", "BOUNDED_DIMENSIONS", "ABSOLUTE_DIMENSIONS",
"PIXEL_DIMENSIONS", "MULTIPLY_DIMENSIONS", "INTEGER_SCALING",
"ORDERED_DITHERING", "HALFTONE_DITHERING", "FLOYD_DITHERING",
"ANTI_ALIAS", "GREY_SCALE2"),
stringsAsFactors = F
)
)
.SysConfigFactors <- list(
PrinterPort = data.frame(vals = c(0x00, 0x01),
levs = c("PARALLEL_PRINTER", "SERIAL_PRINTER"),
stringsAsFactors = F),
BaudRate = data.frame(vals = 0:7,
levs = c("BAUD_110", "BAUD_300", "BAUD_1200", "BAUD_2400",
"BAUD_4800", "BAUD_9600", "BAUD_19200", "BAUD_MIDI"),
stringsAsFactors = F),
PaperType = data.frame(vals = c(0x00, 0x80),
levs = c("FANFOLD", "SINGLE"),
stringsAsFactors = F),
PrintPitch = data.frame(vals = c(0x000, 0x400, 0x800),
levs = c("PICA", "ELITE", "FINE"),
stringsAsFactors = F),
PrintQuality = data.frame(vals = c(0x000, 0x100),
levs = c("DRAFT", "LETTER")),
PrintSpacing = data.frame(vals = c(0x000, 0x200),
levs = c("SIX_LPI", "EIGHT_LPI"),
stringsAsFactors = F),
PrintImage = data.frame(vals = c(0x00, 0x01),
levs = c("IMAGE_POSITIVE", "IMAGE_NEGATIVE"),
stringsAsFactors = F),
PrintAspect = data.frame(vals = c(0x00, 0x01),
levs = c("ASPECT_HORIZ", "ASPECT_VERT"),
stringsAsFactors = F),
PrintShade = data.frame(vals = c(0x00, 0x01, 0x02),
levs = c("SHADE_BW", "SHADE_GREYSCALE", "SHADE_COLOR"),
stringsAsFactors = F),
PaperSize = data.frame(vals = (0:13)*16,
levs = c("US_LETTER", "US_LEGAL", "N_TRACTOR", "W_TRACTOR", "CUSTOM", paste0("EURO_A", 0:8)),
stringsAsFactors = F),
PrinterType = data.frame(vals = 0:12,
levs = c("CUSTOM_NAME", "ALPHA_P_101", "BROTHER_15XL", "CBM_MPS1000",
"DIAB_630", "DIAB_ADV_D25", "DIAB_C_150", "EPSON", "EPSON_JX_80",
"OKIMATE_20", "QUME_LP_20", "HP_LASERJET", "HP_LASERJET_PLUS"),
stringsAsFactors = F),
LaceWB = data.frame(vals = 0:1,
levs = c("NO_LACE", "LACE"),
stringsAsFactors = F)
)
.SysConfigData <- data.frame(
byte = c(1, 1, 2, -8, -8, -8, -72, 1, 1, -6, 2, -8, 1, 1, 2, 2, -2, 2, -30, rep(2, 12),
rep(-1, 3), 1, -12, -16, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1),
signed = c(T, F, F, F, F, F, F, T, T, F, F, F, T, T, T, T, F, T, F, rep(F, 8), T, F, F, F,
rep( F, 3), F, F, F, T, T, F, F, F, F, F, F, F, F, F, F, F),
par.names = c("FontHeight", "PrinterPort", "BaudRate", "KeyRptSpeed",
"KeyRptDelay", "DoubleClick", "PointerMatrix", "XOffset", "YOffset",
"spriteColours", "PointerTicks", "WBColours", "ViewXOffset", "ViewYOffset", "ViewInitX",
"ViewInitY", "EnableCLI", "PrinterType", "PrinterFilename", "PrintPitch",
"PrintQuality", "PrintSpacing", "PrintLeftMargin", "PrintRightMargin",
"PrintImage", "PrintAspect", "PrintShade", "PrintThreshold", "PaperSize",
"PaperLength", "PaperType", "SerRWBits", "SerStopBuf", "SerParShk",
"LaceWB", "Pad", "PrtDevName", "DefaultPrtUnit", "DefaultSerUnit",
"RowSizeChange", "ColumnSizeChange", "PrintFlags", "PrintMaxWidth",
"PrintMaxHeight", "PrintDensity", "PrintXOffset", "wb_Width", "wb_Height",
"wb_Depth", "ext_size"),
stringsAsFactors = F
)
read.SysConfig <- function(file, disk = NULL) {
dat <- .read.generic(file, disk)
rawToSysConfig(dat)
}
write.SysConfig <- function(x, file, disk = NULL) {
if (!("SysConfig" %in% class(x))) stop("x should be of class SysConfig.")
.write.generic(x, file, disk)
}
rawToSysConfig <- function(x) {
system.configuration <- .read.amigaData(x, .SysConfigData$byte, .SysConfigData$signed, .SysConfigData$par.names)
system.configuration$KeyRptSpeed <- timeval(system.configuration$KeyRptSpeed)
system.configuration$KeyRptDelay <- timeval(system.configuration$KeyRptDelay)
system.configuration$DoubleClick <- timeval(system.configuration$DoubleClick)
system.configuration$PointerMatrix <- rawToHWSprite(system.configuration$PointerMatrix)
system.configuration$WBColours <- amigaRawToColour(system.configuration$WBColours, colour.depth = "12 bit", n.bytes = "2")
system.configuration$spriteColours <- amigaRawToColour(system.configuration$spriteColours, colour.depth = "12 bit", n.bytes = "2")
system.configuration$PointerMatrix@colours <- system.configuration$spriteColours
system.configuration$PrinterFilename <- .rawToCharNull(system.configuration$PrinterFilename)
system.configuration$PrtDevName <- .rawToCharNull(system.configuration$PrtDevName)
system.configuration[names(.SysConfigFactors)] <-
lapply(names(.SysConfigFactors), function(y) {
.match.factor(system.configuration, y, .SysConfigFactors[[y]]$vals, .SysConfigFactors[[y]]$levs)
})
system.configuration$PrintFlags <- .match.multi.factor(system.configuration,
"PrintFlags",
.SysConfigMultiFactors[["PrintFlags"]]$vals,
.SysConfigMultiFactors[["PrintFlags"]]$levs)
if (sum(grepl("DIMENSIONS", system.configuration$PrintFlags)) > 1)
system.configuration$PrintFlags <- system.configuration$PrintFlags[!grepl("IGNORE_DIMENSIONS",
system.configuration$PrintFlags)]
if (sum(grepl("DITHERING", system.configuration$PrintFlags)) > 1)
system.configuration$PrintFlags <- system.configuration$PrintFlags[!grepl("ORDERED_DITHERING",
system.configuration$PrintFlags)]
system.configuration$SerRWBits <- as.logical(.rawToBitmap(system.configuration$SerRWBits, F, F))
names(system.configuration$SerRWBits) <- c(t(outer(c("write.bit", "read.bit"), 0:3, paste0)))
system.configuration$SerParShk <- list(
SerialParity = .match.factor(list(SerialParity = ProTrackR::hiNybble(system.configuration$SerParShk)),
"SerialParity", 0:4, c("SPARITY_NONE", "SPARITY_EVEN", "SPARITY_ODD",
"SPARITY_MARK", "SPARITY_SPACE")),
HandshakeMode = .match.factor(list(HandshakeMode = ProTrackR::loNybble(system.configuration$SerParShk)),
"HandshakeMode", 0:2, c("SHSHAKE_XON", "SHSHAKE_RTS", "SHSHAKE_NONE"))
)
system.configuration$SerStopBuf <- list(
N.StopBits = ProTrackR::hiNybble(system.configuration$SerStopBuf) + 1L,
BufSize = .match.factor(list(BufSize = ProTrackR::loNybble(system.configuration$SerStopBuf)),
"BufSize", 0:5, c("SBUF_512", "SBUF_1024", "SBUF_2048", "SBUF_4096", "SBUF_8000", "SBUF_16000"))
)
class(system.configuration) <- "SysConfig"
return(system.configuration)
}
simpleSysConfig <- function(options) {
result <- paste0("789ce3606060650083c301608a53fd0090646460f0538088373430341c3c",
"e078e0b142f2836b02e51fce70d4ff38c152ffe70053fdbf038c60fac701",
"96fa0f0738ea1f1c1000d320fe9f06260686ffff4126fcffc8e7c2c0c0f7",
"8681916b150303ff7fb66ea06023830e482e3d352fb5283399012f6065f0",
"86b2d81914189cf02b46058c501a004f782dc6")
pos <- 1:(nchar(result)/2)
pos <- pos*2 - 1
result <- as.raw(as.numeric(
paste0("0x",c(sapply(result, substring, first = pos, last = pos + 1)))))
result <- memDecompress(result, "gzip")
result <- rawToSysConfig(result)
if (!missing(options)) {
for (opt in names(options)) {
result[[opt]] <- options[[opt]]
}
}
return(result)
}
`$<-.SysConfig` <- function(x, i, value) {
x[[i]] <- value
x
}
`[[<-.SysConfig` <- function(x, i, value) {
if (!("character" %in% class(i))) stop("Refer to elements by name, not by index number, when replacing them.")
cl <- class(x)
x <- x[.SysConfigData$par.names]
if (!(i %in% .SysConfigData$par.names)) stop(sprintf("Element \"%s\" is not part of SysConfig and cannot be assigned.", i))
class(x) <- NULL
if (i %in% c("WBColours", "spriteColours") && !all(.is.colour(value))) stop(sprintf("Can only assign colours to %s.", i))
if (i == "WBColours" && length(value) != 4) stop("WBColours needs a vector of 4 colours.")
if (i == "spriteColours" && length(value) != 3) stop("spriteColours needs a vector of 3 colours.")
if (i == "Pad") {
value <- as.raw(value)
if (length(value) != 12) stop("'Pad' should be a vector of 12 raw values.")
}
if (i == "SerRWBits") {
value <- as.logical(value)
if (length(value) != 12) stop("'SerRWBits' should be a vector of 8 logical values.")
names(sc$SerRWBits) <- c(paste0("write.bit", 0:3), paste0("read.bit", 0:3))
}
if (i == "SerStopBuf") {
if (typeof(value) == "list" && all(names(value) == c("N.StopBits", "BufSize"))) {
value$N.StopBits <- as.numeric(value$N.StopBits)
if (value$N.StopBits < 0 || value$N.StopBits > 15) stop("value is out of range.")
bfs <- c("SBUF_512", "SBUF_1024", "SBUF_2048", "SBUF_4096", "SBUF_8000", "SBUF_16000")
if (is.numeric(value$BufSize)) value$BufSize <- bfs[match(value$BufSize, 0:5)]
if (is.factor(value$BufSize)) value$BufSize <- as.character(value$BufSize)
value$BufSize <- factor(value$BufSize[1], bfs)
if (is.na(value$BufSize)) stop("Illegal value for SerStopBuf.")
} else {
stop("SerStopBuf should be a list with elements N.StopBits and BufSize")
}
}
if (i == "SerParShk") {
if (typeof(value) == "list" && all(names(value) == c("SerialParity", "HandshakeMode"))) {
sp <- c("SPARITY_NONE", "SPARITY_EVEN", "SPARITY_ODD", "SPARITY_MARK", "SPARITY_SPACE")
if (is.numeric(value$SerialParity)) value$SerialParity <- sp[match(value$SerialParity, 0:4)]
if (is.factor(value$SerialParity)) value$SerialParity <- as.character(value$SerialParity)
value$SerialParity <- factor(value$SerialParity[1], sp)
hs <- c("SHSHAKE_XON", "SHSHAKE_RTS", "SHSHAKE_NONE")
if (is.numeric(value$HandshakeMode)) value$HandshakeMode <- hs[match(value$HandshakeMode, 0:2)]
if (is.factor(value$HandshakeMode)) value$HandshakeMode <- as.character(value$HandshakeMode)
value$HandshakeMode <- factor(value$HandshakeMode[1], hs)
if (is.na(value$HandshakeMode) || is.na(value$SerialParity)) stop("Illegal value for SerParShk")
} else {
stop("SerStopBuf should be a list with elements N.StopBits and BufSize")
}
}
if (i == "EnableCLI") {
value <- as.raw(value)
if (length(value) != 2) stop("'EnableCLI' should be a vector of 2 raw values.")
}
if (i %in% c("PrtDevName", "PrinterFilename")) value <- as.character(value)
if (i %in% c("KeyRptSpeed", "KeyRptDelay", "DoubleClick")) {
if (is.numeric(value)) {
if (value < 0) stop(sprintf("Negative numbers are not allowed for %s", i))
class(value) <- "AmigaTimeVal"
}
if (!"AmigaTimeVal" %in% class(value)) stop("Value cannot be cast to 'timeval' class object.")
}
if (i == "PointerMatrix") {
if ("raster" %in% class(value)) value <- rasterToHWSprite(value)
if (!("hardwareSprite" %in% class(value)))
stop ("PointerMatrix element and its replacement should be an S4 class hardwareSprite object.")
if (!all(dim(value) == 16)) stop("The pointer sprite should be 16 pixels wide and 16 pixels high.")
x[["spriteColours"]] <- value@colours
}
fct <- .SysConfigFactors[[i]]
if (!is.null(fct)) {
if (is.factor(value)) {
if (!all(levels(value) == fct$levs)) stop(sprintf("Illegal levels for factor %s.", i))
value <- value[[1]]
}
if (is.numeric(value)) {
if (!(value[[1]] %in% fct$vals)) stop (sprintf("Illegal value for %s.", i))
value <- factor(fct$levs[fct$vals == value[[1]]], fct$levs)
}
if (is.character(value)) {
if (!(value[[1]] %in% fct$levs)) stop(sprintf("Illegal level for factor %s.", i))
value <- factor(value[[1]], fct$levs)
}
} else {
fct <- .SysConfigMultiFactors[[i]]
if (!is.null(fct)) {
if (is.factor(value)) value <- as.character(value)
if (is.character(value)) value <- match(value, .SysConfigMultiFactors[[i]]$levs)
if (is.numeric(value)) {
if (any(is.na(value))) stop(sprintf("Illegal value for %s.", i))
value <- .bitwOrAll(value)
if (value < 0) stop(sprintf("Illegal value for %s.", i))
temp <- eval(parse(text = sprintf("list(%s = %i)", i, value)))
value <- .match.multi.factor(temp, i,
.SysConfigMultiFactors[[i]]$vals,
.SysConfigMultiFactors[[i]]$levs)
}
} else {
bt <- .SysConfigData$byte[.SysConfigData$par.names == i]
sn <- .SysConfigData$signed[.SysConfigData$par.names == i]
if (bt > 0) {
value <- value[[1]]
rn <- c(0, 2^(bt*8) - 1)
if (sn) rn <- rn - ceiling(rn[2]/2)
if (!sn && value < 0) stop("Negative values are not allowed for %s", i)
if (value < rn[1] || value > rn[2]) stop("Value is out of range.")
}
}
}
x[[i]] <- value
class(x) <- cl
return(x)
} |
decision.finding <- function(out.matrix, n, t, r){
rowindex <- which(out.matrix$N==n & out.matrix$T==t & out.matrix$R == r)
decision <- out.matrix$Decision[rowindex]
decision <- as.character(decision)
return (decision)
} |
step_subset <- function(parent,
vars = parent$vars,
groups = parent$groups,
locals = parent$locals,
arrange = parent$arrange,
i = NULL,
j = NULL,
on = character(),
allow_cartesian = NULL,
needs_copy = FALSE
) {
stopifnot(is_step(parent))
stopifnot(is_expression(i) || is_call(i) || is_step(i))
stopifnot(is_expression(j) || is_call(j))
stopifnot(is.character(on))
new_step(
parent = parent,
vars = vars,
groups = groups,
locals = locals,
arrange = arrange,
i = i,
j = j,
on = on,
allow_cartesian = allow_cartesian,
implicit_copy = !is.null(i) || !is.null(j),
needs_copy = needs_copy || parent$needs_copy,
class = "dtplyr_step_subset"
)
}
step_subset_i <- function(parent, i) {
if (is_empty(i)) {
return(parent)
}
if (length(parent$groups) > 0) {
parent <- compute(parent)
nm <- sym(parent$name)
i <- expr((!!nm)[, .I[!!i]])
i <- add_grouping_param(i, parent, FALSE)
i <- call("$", i, quote(V1))
}
step_subset(parent, i = i)
}
step_subset_j <- function(parent,
vars = parent$vars,
groups = parent$groups,
arrange = parent$arrange,
j = NULL) {
if (can_merge_subset(parent)) {
i <- parent$i
on <- parent$on
parent <- parent$parent
} else {
i <- NULL
on <- character()
}
step_subset(
parent,
vars = vars,
groups = groups,
arrange = arrange,
i = i,
j = j,
on = on
)
}
can_merge_subset <- function(x) {
if (!inherits(x, "dtplyr_step_subset")) {
return(FALSE)
}
is.null(x$j)
}
dt_sources.dtplyr_step_subset <- function(x) {
if (is_step(x$i)) {
utils::modifyList(dt_sources(x$parent), dt_sources(x$i))
} else {
dt_sources(x$parent)
}
}
dt_call.dtplyr_step_subset <- function(x, needs_copy = x$needs_copy) {
if (is.null(x$i) && is.null(x$j)) {
return(dt_call(x$parent))
}
i <- if (is_step(x$i)) dt_call(x$i) else x$i
parent <- dt_call(x$parent, needs_copy)
if (is.null(i) && is.null(x$j)) {
out <- parent
} else if (is.null(i) && !is.null(x$j)) {
out <- call2("[", parent, , x$j)
} else if (!is.null(i) && is.null(x$j)) {
out <- call2("[", parent, i)
} else {
out <- call2("[", parent, i, x$j)
}
if (!is.null(x$j)) {
out <- add_grouping_param(out, x)
}
if (length(x$on) > 0) {
out$on <- call2(".", !!!syms(x$on))
out$allow.cartesian <- x$allow_cartesian
}
out
} |
collapse_tree_at_resolution = function( tree,
resolution = 0,
by_edge_count = FALSE,
shorten = TRUE,
rename_collapsed_nodes = FALSE,
criterion = 'max_tip_depth'){
Ntips = length(tree$tip.label);
Nnodes = tree$Nnode;
Nedges = nrow(tree$edge);
if(!(criterion %in% c('max_tip_depth','sum_tip_paths','max_tip_pair_dist'))) stop(sprintf("criterion must be one of 'max_tip_depth', 'sum_tip_paths', 'max_tip_pair_dist' (got '%s' instead)",criterion));
results = collapse_tree_at_resolution_CPP( Ntips = Ntips,
Nnodes = Nnodes,
Nedges = Nedges,
tree_edge = as.vector(t(tree$edge)) - 1,
edge_length = (if(by_edge_count || is.null(tree$edge.length)) numeric() else tree$edge.length),
resolution = resolution,
shorten = shorten,
criterion = criterion);
Ntips_new = results$Ntips_new
Nnodes_new = results$Nnodes_new
Nclades_new = Ntips_new+Nnodes_new
new2old_clade = results$new2old_clade + 1;
new2old_edge = results$new2old_edge + 1;
clade_labels = c(tree$tip.label, tree$node.label)
collapsed_nodes = results$collapsed_nodes + 1;
collapsed_tree = list( Nnode = Nnodes_new,
tip.label = clade_labels[new2old_clade[1:Ntips_new]],
node.label = (if(is.null(tree$node.label)) NULL else clade_labels[new2old_clade[(Ntips_new+1):Nclades_new]]),
edge = matrix(results$new_tree_edge,ncol=2,byrow=TRUE) + 1,
edge.length = (if(is.null(tree$edge.length)) NULL else (if(shorten) tree$edge.length[new2old_edge] else results$new_edge_length)),
root = results$new_root+1)
if(rename_collapsed_nodes){
old2new_clade = results$old2new_clade + 1;
collapsed_tree$tip.label[old2new_clade[Ntips+results$collapsed_nodes+1]] = tree$tip.label[results$farthest_tips+1];
}
class(collapsed_tree) = "phylo";
attr(collapsed_tree,"order") = NULL
return(list(tree = collapsed_tree,
root_shift = results$root_shift,
collapsed_nodes = collapsed_nodes,
farthest_tips = results$farthest_tips+1,
new2old_clade = new2old_clade,
new2old_edge = new2old_edge))
} |
library("bigmemory")
context("backingpath option when attaching")
tmp <- tempfile()
tmp.dir <- dirname(tmp)
tmp.file <- basename(tmp)
desc.path <- paste0(tmp.file, ".desc")
X <- big.matrix(10, 10, backingfile = tmp.file, backingpath = tmp.dir,
descriptorfile = desc.path, init = 0)
X.desc <- describe(X)
test_that("Format_path puts an '/' at the end if there isn't", {
expect_equal(format_path("test"), "test/")
expect_equal(format_path("test/"), "test/")
expect_equal(format_path("test/test/"), "test/test/")
})
test_that("New element 'dirname' in description", {
expect_equal(X.desc@description$dirname, format_path(tmp.dir))
})
test_that("you can attach from a full path", {
X2 <- attach.big.matrix(file.path(tmp.dir, desc.path))
expect_false(is.nil(X2@address), info = "the matrix exists")
X2[] <- 1
expect_equal(X[,], matrix(1, 10, 10),
info = "modifying X2 modifies also X")
})
test_that("you can attach from a composed path", {
X3 <- attach.big.matrix(desc.path, backingpath = tmp.dir)
expect_false(is.nil(X3@address), info = "the matrix exists")
X3[] <- 2
expect_equal(X[,], matrix(2, 10, 10),
info = "modifying X3 modifies also X")
})
test_that("you can attach with or without backingpath", {
X4 <- attach.big.matrix(X.desc)
expect_false(is.nil(X4@address), info = "the matrix exists")
X4[] <- 3
expect_equal(X[,], matrix(3, 10, 10),
info = "modifying X4 modifies also X")
X5 <- attach.big.matrix(X.desc, backingpath = tmp.dir)
expect_false(is.nil(X5@address), info = "the matrix exists")
X5[] <- 4
expect_equal(X[,], matrix(4, 10, 10),
info = "modifying X5 modifies also X")
})
test_that("you can sub with or without backingpath", {
X6 <- sub.big.matrix(X.desc, lastCol = 5)
expect_false(is.nil(X6@address), info = "the matrix exists")
X6[] <- 1
expect_equal(X[,], cbind(matrix(1, 10, 5), matrix(4, 10, 5)),
info = "modifying X6 modifies also X")
X7 <- sub.big.matrix(X.desc, firstCol = 6, backingpath = tmp.dir)
expect_false(is.nil(X7@address), info = "the matrix exists")
X7[] <- 2
expect_equal(X[,], cbind(matrix(1, 10, 5), matrix(2, 10, 5)),
info = "modifying X7 modifies also X")
}) |
which_points_on_edge <- function(front) {
which(.Call(do_which_points_on_edge, front))
} |
print_dust_latex <- function(x, ..., asis=TRUE)
{
if (!is.null(x$caption) & x$caption_number) increment_pixie_count()
label <-
if (is.null(x[["label"]]))
{
chunk_label <- knitr::opts_current$get("label")
if (is.null(chunk_label))
paste0("tab:pixie-", getOption("pixie_count"))
else
paste0("tab:", chunk_label)
}
else
{
paste0("tab:", x[["label"]])
}
label <-
if (x[["bookdown"]])
{
paste0("(\\
}
else
{
paste0("\\label{", label, "}")
}
if (!is.numeric(x$longtable) & x$longtable) longtable_rows <- 25L
else if (!is.numeric(x$longtable) & !x$longtable) longtable_rows <- as.integer(max(x$body$row))
else longtable_rows <- as.integer(x$longtable)
tab_env <- if (is.numeric(x$longtable) || x$longtable) "longtable" else "tabular"
Joint <- joint_reference_table(x)
col_width <- determine_column_width(Joint)
col_halign_default <- get_column_halign(Joint)
row_height <- lapply(list(x$head, x$body, x$foot, x$interfoot),
determine_row_height)
head <- part_prep_latex(x$head, col_width, col_halign_default, head = TRUE)
body <- part_prep_latex(x$body, col_width, col_halign_default)
foot <- if (!is.null(x$foot)) part_prep_latex(x$foot, col_width, col_halign_default) else NULL
interfoot <- if (!is.null(x$interfoot)) part_prep_latex(x$interfoot, col_width, col_halign_default) else NULL
prebegin <- numeric_longtable_newline(longtable_rows, is.numeric(x$longtable))
prebegin <- paste0(prebegin,
"\\setlength{\\tabcolsep}{", x$tabcolsep, "pt}", sep = "\n")
if (tab_env == "longtable")
{
begin <- paste0("\\begin{longtable}[",
gsub("n", "l", substr(x[["justify"]], 1, 1)), "]{",
paste0(col_halign_default$default_halign, collapse = ""), "}\n",
if (!is.null(x$caption))
paste0("\\caption",
if (x$caption_number) "" else "*",
"{", x$caption, "}")
else "",
"\n", label, "\\\\ \n")
end <- "\\end{longtable}"
}
else if (x$float)
{
begin <- paste0("\\begin{table}\n",
if (x[["justify"]] == "center") "\\centering\n" else "",
if (!is.null(x$caption))
paste0("\\caption",
if (x$caption_number) "" else "*",
"{", x$caption, "}")
else "",
"\n", label,
"\\begin{tabular}{",
paste0(col_halign_default$default_halign, collapse = ""), "}\n")
end <- paste0("\\end{tabular}\n\\end{table}\n")
}
else
{
begin <- paste0(if (x[["justify"]] == "center")
"\\begin{center}\n"
else
"",
if (!is.null(x$caption))
paste0("\\captionof{table}{", x$caption, "}")
else "",
"\n", label,
"\\begin{tabular}{",
paste0(col_halign_default$default_halign, collapse = ""), "}\n")
end <- paste0("\\end{tabular}\n",
if (x[["justify"]] == "center")
"\\end{center}\n"
else
"")
}
tbl <- mapply(paste_latex_part,
list(head, body, foot, interfoot),
row_height,
MoreArgs = list(newline = if (is.numeric(x$longtable)) " \\ltabnewline" else " \\\\"))
if (is.numeric(x$longtable) || x$longtable){
tbl <- paste0(tbl[c(1, 4, 3, 2)],
c("\n\\endhead\n", "\n\\endfoot\n", "\n\\endlastfoot\n", ""))
}
tbl <- paste(tbl, collapse = "\n")
if (asis) knitr::asis_output(paste(prebegin, begin, tbl, end, collapse = "\n"))
else paste(prebegin, begin, tbl, end, collapse = "\n")
}
part_prep_latex <- function(part, col_width, col_halign_default, head=FALSE)
{
part <- part[!names(part) %in% "width"]
part <- merge(part,
col_width,
by = "col",
all.x = TRUE,
sort = FALSE)
part <- merge(part,
col_halign_default,
by = "col",
all.x = TRUE,
sort = FALSE)
part$width_units <- rep("pt", nrow(part))
part$halign <- ifelse(part$halign == "",
part$default_halign,
part$halign)
Widths <- part[c("html_row", "html_col", "width", "merge")]
Widths <- Widths[!duplicated(Widths), ]
Widths <- split(Widths, Widths[c("html_row", "html_col")])
Widths <- lapply(Widths,
function(x){
x$width <- ifelse(x$merge == TRUE,
sum(x$width[x$merge]),
x$width)
x
})
Widths <- do.call(".rbind_internal", Widths)
numeric_classes <- c("double", "numeric")
part <- perform_function(part)
logic <- part$round == "" & part$col_class %in% numeric_classes
part$round[logic] <- getOption("digits")
logic <- part$col_class %in% numeric_classes
if (any(logic))
part$value[logic] <-
as.character(roundSafe(part$value[logic], as.numeric(part$round[logic])))
logic <- !is.na(part[["replace"]])
part[["value"]][logic] <- part[["replace"]][logic]
logic <- is.na(part$value) & !is.na(part$na_string)
part$value[logic] <-
part$na_string[logic]
logic <- part[["sanitize"]]
part[["value"]][logic] <- sanitize(part[["value"]][logic],
part[["sanitize_args"]][logic])
boldify <- part$bold
part$value[boldify] <- paste0("\\textbf{", part$value[boldify], "}")
italicize <- part$italic
part$value[italicize] <- paste0("\\emph{", part$value[italicize], "}")
logic <- part$font_color != ""
part$font_color <- vapply(part$font_color,
convertColor,
character(1))
part$value[logic] <-
paste0("\\textcolor", part$font_color[logic], "{", part$value[logic], "}")
logic <- part$font_size != ""
part$font_size_units[logic] <- ifelse(part$font_size_units[logic] %in% c("%", "px"),
"pt",
part$font_size_units[logic])
part$value[logic] <-
paste0("{\\fontsize{", part$font_size[logic],
part$font_size_units[logic], "}{1em}\\selectfont ",
part$value[logic], "}")
logic <- part$rotate_degree != ""
part$value[logic] <-
paste0("\\rotatebox{", part$rotate_degree[logic], "}{", part$value[logic], "}")
logic <- part$bg != ""
part$bg[logic] <-
paste0("{\\cellcolor", vapply(part$bg[logic],
convertColor,
character(1)), "}")
part$value[logic] <- paste(part$bg[logic], part$value[logic])
logic <- part$left_border != ""
part$left_border[logic] <-
vapply(part$left_border[logic], latex_vertical_border_code, character(1))
logic <- part$right_border != ""
part$right_border[logic] <-
vapply(part$right_border[logic], latex_vertical_border_code, character(1))
logic <- part$bottom_border != ""
part$bottom_border[logic] <-
mapply(latex_horizontal_border_code,
part$bottom_border[logic],
part$col[logic])
bottom_borders <- part[c("row", "col", "bottom_border")]
bottom_borders <- reshape2::dcast(bottom_borders,
row ~ col,
value.var = "bottom_border")
bottom_borders <- bottom_borders[!names(bottom_borders) %in% "row"]
bottom_borders <- apply(bottom_borders,
MARGIN = 1,
paste0,
collapse = "")
logic <- part$top_border != ""
part$top_border[logic] <-
mapply(latex_horizontal_border_code,
part$top_border[logic],
part$col[logic])
top_borders <- part[c("row", "col", "top_border")]
top_borders <- reshape2::dcast(top_borders,
row ~ col,
value.var = "top_border",
fill = "")
top_borders <- top_borders[!names(top_borders) %in% "row"]
top_borders <- apply(top_borders,
MARGIN = 1,
FUN = paste0,
collapse = "")
parbox <- needs_parbox(part)
part$halign_parbox <- part$halign
part$halign_parbox[parbox] <-
c("r" = "\\raggedleft",
"c" = "\\centering",
"l" = "\\raggedright",
"p" = "\\raggedright")[substr(part$halign[parbox], 1, 1)]
part$value[parbox] <-
paste0("\\parbox[", substr(part$valign[parbox], 1, 1), "]{", part$width[parbox], "pt}{",
part$halign_parbox[parbox], " ",
part$value[parbox], "}")
logic <- part$rowspan > 1
part$value[logic] <-
paste0("\\multirow{", part$rowspan[logic], "}{*}{", part$value[logic], "}")
logic <- part$html_row != part$row & part$html_col == part$col
part$value[logic] <- paste0("\\multicolumn{", part$colspan[logic], "}",
"{", part$left_border[logic], "c", part$right_border[logic], "}{}")
part$rowspan[logic] <- -1
part$colspan[logic] <- part$colspan[logic] * -1
logic <- part$colspan > 1 | (part$left_border != "" | part$right_border != "") |
!(part$html_row != part$row & part$html_col == part$col)
part$value[logic] <-
paste0("\\multicolumn{", part$colspan[logic], "}{",
part$left_border[logic],
sub("p", "r", substr(part$halign[logic], 1, 1)),
part$right_border[logic], "}{", part$value[logic], "}")
ncol <- max(part$col)
part <- part[!(part$rowspan == 0 | part$colspan == 0), ]
proper_multirow <- part[part$colspan != 1, ]
proper_multirow$group <- paste0(proper_multirow$html_row,
proper_multirow$html_col)
proper_multirow <- split(proper_multirow,
proper_multirow$group)
proper_multirow <- lapply(proper_multirow,
function(x){
x[order(x$colspan, decreasing = TRUE), ]
x$row <- sort(x$row)
x
})
proper_multirow <- do.call(".rbind_internal", proper_multirow)
part <- part[part$colspan == 1, ]
part <- .rbind_internal(part, proper_multirow)
part <- .make_dataframe_wide(part)
cbind(top_borders,
bottom_borders,
part)
}
paste_latex_part <- function(part, row_height, newline = " \\\\"){
paste_row <- function(r) paste(r[!is.na(r)], collapse = " & ")
if (is.null(part)) return("")
apply(part[, -(1:2), drop = FALSE], 1, paste_row) %>%
paste(row_height) %>%
paste(newline) %>%
paste(part[, 2]) %>%
paste(part[, 1], .) %>%
paste0(collapse = "\n")
}
convertColor <- function(color){
if (length(color) == 0) return(character(0))
color <- gsub("rgba[(]255,255,255,0[)]", "", color)
if (grepl("
return(paste0("[HTML]{", sub("
}
else if (grepl("rgb", color, ignore.case = TRUE)){
rgb <- str_extract_base(color, "\\d{1,3}")[1, 1:3]
return(paste0("[RGB]{", paste0(rgb, collapse=","), "}"))
}
else return(paste0("{", color, "}"))
}
numeric_longtable_newline <- function(n, redefine = FALSE){
if (redefine)
return(paste0("\\newcount\\mylineno \n",
"\\mylineno=0 \n",
"\\def\\ltabnewline{% \n",
"\\global\\advance\\mylineno by 1 \n",
"\\ifnum\\mylineno=", n, " \n",
"\\global\\mylineno=0 \n",
"\\\\ \n",
"\\newpage \n",
"\\else \n",
"\\\\ \n",
"\\fi \n",
"}"))
else return("")
}
needs_parbox <- function(x)
{
is.finite(x$width) |
(x$halign != x$default_halign) |
x$valign != "" |
x$merge
}
joint_reference_table <- function(x){
numeric_classes <- c("double", "numeric")
addPartCol <- function(p, part_name) {
if (is.null(p)) return(NULL)
p$part <- part_name
return(p)
}
Joint <-
mapply(addPartCol,
x[c("head", "body", "foot", "interfoot")],
part_name = c("head", "body", "foot", "interfoot"),
SIMPLIFY = FALSE)
Joint <- do.call(".rbind_internal", Joint)
Joint$width <- as.numeric(Joint$width)
Joint$table_width <- x$table_width * 72.27
Joint$width <- ifelse(Joint$width_units == "in",
Joint$width * 72.27,
ifelse(Joint$width_units == "cm",
Joint$width * 27.45,
ifelse(Joint$width_units == "%",
Joint$width/100 * Joint$table_width,
Joint$width)))
Joint <- perform_function(Joint)
logic <- Joint$round != "" & Joint$col_class %in% numeric_classes
if (any(logic))
Joint$value[logic] <-
as.character(roundSafe(Joint$value[logic], as.numeric(Joint$round[logic])))
Joint$halign[Joint$halign == ""] <-
vapply(Joint$col_class[Joint$halign == ""],
default_halign,
character(1))
Joint$halign <- substr(Joint$halign, 1, 1)
Joint <- split(Joint, Joint$col)
Joint <- lapply(Joint,
function(x){
x$default_halign <- names(sort(table(x$halign),
decreasing = TRUE))[1]
x
})
Joint <- do.call(".rbind_internal", Joint)
Joint$parbox <- needs_parbox(Joint)
Joint$width_by_char <- nchar(Joint$value) * 4.5
Joint <- split(Joint, Joint$col)
Joint <- lapply(Joint,
function(x){
x$replace <- all(is.na(x$width)) && any(Joint$parbox)
x$width_by_char <- max(x$width_by_char, na.rm = TRUE)
x
})
Joint <- do.call(".rbind_internal", Joint)
Joint$width <- ifelse(Joint$replace,
Joint$width_by_char,
Joint$width)
Joint <- Joint[c("col", "row", "width", "default_halign")]
Joint
}
determine_column_width <- function(Joint, x)
{
Joint <- Joint[c("row", "col", "width")]
suppressWarnings(Joint <- tapply(Joint$width, Joint$col, max, na.rm = TRUE))
Joint <- data.frame(col = names(Joint),
width = unname(Joint),
stringsAsFactors = FALSE)
Joint$width <- ifelse(is.finite(Joint$width),
Joint$width,
NA)
Joint
}
determine_row_height <- function(part)
{
if (is.null(part)) return("")
part <- part[c("row", "col", "height", "height_units")]
part$height <- as.numeric(part$height)
part$height <- ifelse(part$height_units == "in",
part$height * 72.27,
ifelse(part$height_units == "cm",
part$height * 28.45,
part$height))
suppressWarnings(part <- tapply(part$height,
INDEX = part$row,
FUN = max,
na.rm = TRUE))
part <- data.frame(row = names(part),
height = unname(part),
stringsAsFactors = FALSE)
part$height <- ifelse(!is.finite(part$height),
"",
paste0("\\\\[", part$height, "pt]"))
part$height
}
get_column_halign <- function(Joint){
Joint$default_halign <- ifelse(is.na(Joint$width),
Joint$default_halign,
paste0("p{", Joint$width, "pt}"))
Joint <- Joint[c("row", "col", "default_halign")]
Joint <- tapply(Joint$default_halign,
Joint$col,
function(x) x[1])
Joint <- data.frame(col = names(Joint),
default_halign = unname(Joint),
stringsAsFactors = FALSE)
Joint
}
default_halign <- function(col_class, print_method = "latex"){
tag <-
if (print_method == "latex") c("r", "l")
else c("right", "left")
if (col_class %in% c("numeric", "int", "double")) tag[1] else tag[2]
}
latex_vertical_border_code <- function(x){
border <- str_split_fixed_base(x, " ", 3)
border[, 1] <- gsub("px", "pt", border[, 1])
border[, 2] <- ifelse(border[, 2] %in% c("dashed", "dotted"),
"dashed",
ifelse(border[, 2] %in% c("groove", "ridge", "inset", "outset", "hidden"),
"solid", border[, 2]))
if (border[, 2] %in% c("hidden", "none")) return("")
if (border[, 2] == "dashed"){
border_code <- paste("!{\\color", convertColor(border[, 3]), "\\vdashline}")
return(border_code)
}
if (border[, 2] %in% c("solid", "double")){
border_code <- paste0("!{\\color", convertColor(border[, 3]), "\\vrule width ", border[, 1], "}")
return(border_code)
}
}
latex_horizontal_border_code <- function(x, col){
border <- str_split_fixed_base(x, " ", 3)
border[, 1] <- gsub("px", "pt", border[, 1])
border[, 2] <- ifelse(border[, 2] %in% c("dashed", "dotted"),
"dashed",
ifelse(border[, 2] %in% c("groove", "ridge", "inset", "outset", "hidden"),
"solid", border[, 2]))
if (border[, 2] %in% c("hidden", "none")) return("")
if (border[, 2] == "dashed"){
border_code <- paste0("\\arrayrulecolor", convertColor(border[, 3]),
"\\cdashline{", col, "-", col, "}")
return(border_code)
}
if (border[, 2] %in% c("solid", "double")){
border_code <- paste0("\\arrayrulecolor", convertColor(border[, 3]),
"\\cline{", col, "-", col, "}")
return(border_code)
}
}
sanitize <- function(x, args)
{
sanitize_index <- !is.na(x)
if (sum(sanitize_index))
{
x[sanitize_index] <-
do.call(what = sanitize_latex,
args = c(list(object = x[sanitize_index]),
eval(parse(text = args[sanitize_index])))
)
}
x
}
utils::globalVariables(c("halign", "left_border", "right_border",
"bottom_border", "top_border",
"require_multicol", "height", "width",
"height_units", "width_units", "table_width",
"parbox", "width_by_char", "html_row",
"html_col", "rowspan", "colspan", "value", "col_name",
"col_class", "group", ".")) |
import_mplus <- function(font_dir =system.file("fonts", "mplus", package="fontMPlus")) {
suppressWarnings(suppressMessages(extrafont::font_import(font_dir, prompt=FALSE)))
message(sprintf("You will likely need to install these fonts on your system as well.
You can find them in [%s]", font_dir))
}
"mplus.fonttable"
"mplus.fontfamilies" |
dsample <- function(expr, rpmat, n=1e3, nk=1e4, wconst){
variables <- all.vars(expr)
if(missing(wconst)) wconst <- 1
cl <- match.call(expand.dots=FALSE)
stopifnot(is.expression(expr), is.list(rpmat), is.numeric(nk), is.numeric(n), is.numeric(wconst))
y <- eval(expr=expr, envir=rpmat)
fmla <- stats::as.formula(paste("y~", expr, sep=""))
X <- as.data.frame(rpmat)
yX <- cbind(y, X)
yX <- yX[which(y>0),]
yX <- yX[order(yX$y, decreasing=TRUE), ]
cnt <- graphics::hist(yX$y, breaks=seq(from=min(yX$y), to=max(yX$y), length.out=nk+1), plot=FALSE)
cnames <- paste("e", seq_len(nk), sep="")
yX$cid <- cut(yX$y, cnt$breaks, include.lowest=TRUE)
yX$cnt.name <- cnames[match(yX$cid, names(table(yX$cid)))]
cnt.counts <- cnt$counts
cnt.mids <- cnt$mids
names(cnt.mids) <- names(cnt.counts) <- cnames
gpdf <- rev(cnt.counts * cnt.mids)
gpdf[nk] <- wconst*gpdf[nk]
rev.cntc <- rev(cnt.counts)
cdf <- cumsum(gpdf)/sum(gpdf)
cumcdf <- cumsum(cdf)
pptns <- graphics::hist(stats::runif(n), breaks=c(0,cdf), plot=FALSE)$counts
names(pptns) <- rev(paste("e", seq_len(nk), sep=""))
scnt <- mapply(FUN=sample, MoreArgs=list(replace=TRUE), rev.cntc, pptns)
idx <- unlist( mapply("+", as.list( c(0, cumsum(rev.cntc))[-(nk+1)] ), scnt) )
yX <- yX[order(yX$y, decreasing=TRUE)[idx], ]
robj <- list(formula=fmla, expr=expr, yX=yX, X=yX[all.vars(expr)], cnt.counts=cnt.counts, cnt.mids=cnt.mids, gpdf=gpdf, cdf=cdf, cumcdf=cumcdf, pptns=pptns, scnt=scnt, idx=idx)
class(robj) <- "dsample"
return(robj)
}
summary.dsample <- function(object, n=5, ...) {
stopifnot(inherits(object, "dsample"))
fmla <- object$formula
X <- object$X
hc <- stats::hclust(stats::dist(X))
grp <- stats::cutree(hc, ...)
cdf <- object$cdf
means <- colMeans(X)
stdevs <- do.call(c, lapply(X, stats::sd, na.rm=TRUE))
modes <- cbind(X)[1:n,]
robj <- list(formula=fmla, means=means, stdevs=stdevs, modes=modes, hc=hc, grp=grp, X=X, cdf=cdf)
class(robj) <- "dsample"
return(robj)
}
plot.dsample <- function(x, ...){
X <- x$X
cdf <- x$cdf
grp <- x$grp
graphics::par(mfrow=c(2,2))
graphics::plot(cdf, main="CDF", xlab="E", ylab="F(E)", cex=0.5)
graphics::plot(X, cex=0.5, main="Scatter and Contour Plots", xlab="x1", ylab="x2", col=grp)
density <- MASS::kde2d(X[,1], X[,2], n=1e3)
graphics::contour(density, nlevels=5, add=TRUE)
graphics::hist(X[,1], main="Histogram", ylab="density", xlab=expression(x[1]), prob=TRUE, breaks=20)
graphics::hist(X[,2], main="Histogram", ylab="density", xlab=expression(x[2]), prob=TRUE, breaks=20)
} |
library(difNLR)
data(GMAT, package = "difNLR")
Data <- GMAT[, 1:20]
zscore <- scale(rowSums(Data))
fun <- function(x, a, b, c, d) {
c + (d - c) * exp(a * (x - b)) / (1 + exp(a * (x - b)))
}
start <- startNLR(
Data, GMAT[, "group"], model = "4PLcgdg",
parameterization = "classic"
)[[1]][, 1:4]
fit2PL <- nls(Data[, 1] ~ fun(zscore, a, b, c = 0, d = 1),
algorithm = "port",
start = start[1:2]
)
fit3PL <- nls(Data[, 1] ~ fun(zscore, a, b, c, d = 1),
algorithm = "port",
start = start[1:3],
lower = c(-Inf, -Inf, 0),
upper = c(Inf, Inf, 1)
)
fit4PL <- nls(Data[, 1] ~ fun(zscore, a, b, c, d),
algorithm = "port",
start = start,
lower = c(-Inf, -Inf, 0, 0),
upper = c(Inf, Inf, 1, 1)
)
AIC(fit2PL)
AIC(fit3PL)
AIC(fit4PL)
BIC(fit2PL)
BIC(fit3PL)
BIC(fit4PL) |
combine_factor <- function(fac, variable=levels(fac), other.label="Other") {
n <- length(levels(fac))
if (length(variable) < n) {
nvar <- c(seq(1, length(variable)), rep(length(variable)+1, n - length(variable)))
factor(nvar[as.numeric(fac)], labels=c(levels(fac)[variable], other.label))
} else {
factor(variable[as.numeric(fac)], labels=levels(fac)[!duplicated(variable)])
}
} |
test_that("ansi_html", {
str <- c(
"\033[1mbold\033[22m",
"\033[2mfaint",
"\033[3mitalic\033[0m",
"\033[4munderline",
"\033[5mblink",
"\033[7minverse",
"\033[8mhide",
"\033[9mcrossedout",
"\033[30mblack",
"\033[31mred",
"\033[32mgreen",
"\033[33myellow",
"\033[34mblue",
"\033[35mmagenta",
"\033[36mcyan",
"\033[37mwhite",
"\033[90mbblack",
"\033[91mbred",
"\033[92mbgreen",
"\033[93mbyellow",
"\033[94mbblue",
"\033[95mbmagenta",
"\033[96mbcyan",
"\033[97mbwhite",
"\033[38;5;156mcolor-156",
"\033[38;2;1;22;255mcolor-1-22-255",
"\033[40mbg-black",
"\033[41mbg-red",
"\033[42mbg-green",
"\033[43mbg-yellow",
"\033[44mbg-blue",
"\033[45mbg-magenta",
"\033[46mbg-cyan",
"\033[47mbg-white",
"\033[100mbg-bblack",
"\033[101mbg-bred",
"\033[102mbg-bgreen",
"\033[103mbg-byellow",
"\033[104mbg-bblue",
"\033[105mbg-bmagenta",
"\033[106mbg-bcyan",
"\033[107mbg-bwhite",
"\033[48;5;156mbg-color-156",
"\033[48;2;1;22;255mbg-color-1-22-255"
)
expect_snapshot(
ansi_html(str)
)
})
test_that("multiple styles", {
expect_snapshot(
ansi_html("\033[1;2;35;45mmultiple")
)
})
test_that("CSI", {
expect_equal(
ansi_html("foo\033[10Abar", csi = "drop"),
"foobar"
)
expect_equal(
ansi_html("\033[1mfoo\033[0m\033[10Abar", csi = "drop"),
"<span class=\"ansi ansi-bold\">foo</span>bar"
)
expect_equal(
ansi_html("foo\033[10Abar", csi = "keep"),
"foo\033[10Abar"
)
expect_equal(
ansi_html("\033[1mfoo\033[0m\033[10Abar", csi = "keep"),
"<span class=\"ansi ansi-bold\">foo</span>\033[10Abar"
)
})
test_that("ansi_html_style", {
expect_snapshot(
ansi_html_style(colors = 8)
)
expect_snapshot(
ansi_html_style(colors = 256, palette = "ubuntu")
)
}) |
optimbase.checkx0 <- function(this=NULL){
this <- optimbase.log(this=this,msg='Checking initial guess...')
tmp <- optimbase.isfeasible(this=this,x=this$x0)
this <- tmp$this
isfeasible <- tmp$isfeasible
rm(tmp)
isok <- (isfeasible==1)
if (isok){
this <- optimbase.log(this=this,msg='... initial guess is feasible.')
} else {
this <- optimbase.log(this=this,msg='... initial guess is not feasible.')
}
varargout <- list(this=this,isok=isok)
return(varargout)
} |
`pair.sum` <-
function(X)
{
d<-dim(X)
matrix(.C("pairsum", as.double(X),as.integer(d), res=double(choose(d[1],2)*d[2]),PACKAGE="ICSNP")$res,ncol=d[2],byrow=T)
} |
library(dynbenchmark)
library(fs)
library(tidyverse)
readme_paths <- c(
fs::dir_ls("scripts", regexp = "README\\.Rmd", recursive = TRUE),
fs::dir_ls("derived", regexp = "README\\.Rmd", recursive = TRUE),
c("./README.Rmd", "results/README.Rmd")
)
walk(readme_paths, function(readme_path) {
print(paste0("Processing ", readme_path))
rmarkdown::render(
readme_path,
output_format = dynbenchmark::github_markdown_nested(html_preview = FALSE),
quiet = TRUE
)
}) |
plot.twostageTE <-
function(x, ...){
if(!inherits(x,"twostageTE")){
stop("Error: Object is not of class twostageTE")
}
plot_gpava <- function (x, main = "PAVA Plot", xlab = "Predictor", ylab = "Response",
col = "lightblue",...)
{
o <- order(x$z)
xval <- x$z[o]
yval <- x$x[o]
xcum <- c(xval[1] - mean(diff(xval)), xval)
jumps <- ((1:length(yval))[!duplicated(yval)]-1)[-1]
jumps <- c(1, jumps, length(xval))
lines(xval, yval, col = col, lwd = 1, type <- "S")
points(xval[jumps], yval[jumps], col = col, pch = 13)
}
pava1 <- gpava(z=x$X1, y=x$Y1)
if (!is.na(x$L2)) {
pava2 <- gpava(z=x$X2, y=x$Y2)
}
if (!is.na(x$L2)) {
plot(x=x$X1,y=x$Y1, pch="1", cex=1.5, xlab="", ylab="", ylim=range(c(x$Y1,x$Y2)), col="grey80")
abline(h=x$threshold, lty=3, lwd=1, col=2)
points(x=x$X2,y=x$Y2, pch="2", cex=1.5, col="grey65")
plot_gpava(pava2, col="blue")
}
else {
plot(x=x$X1,y=x$Y1, pch="1", cex=1.5, xlab="", ylab="", col="grey80")
abline(h=x$threshold, lty=3, lwd=1, col=2)
plot_gpava(pava1, col=1)
}
abline(v=x$L1, lty=2, lwd=2)
abline(v=x$U1, lty=2, lwd=2)
if (!is.na(x$L2)) {
abline(v=x$L2, col="blue", lwd=2)
abline(v=x$U2, col="blue", lwd=2)
}
points(x=x$estimate, y=x$threshold, col="blue", pch=4, cex=1.5)
if (!is.na(x$L2)) {
segments(x$estimate,min(c(x$Y1,x$Y2))-1,x$estimate, x$threshold , lwd=2, col="blue")
}
else {
segments(x$estimate,min(x$Y1)-1,x$estimate, x$threshold, lwd=2, col="blue")
}
mtext("Explanatory", side=1, line=2.5, cex=1.65)
mtext("Response", side=2 , line=2, cex=1.65)
if (!is.na(x$L2)) {
legend("topleft", c("Estimate", "1st Stage CI", "2nd Stage CI", "2nd Stage Iso-Regression"), pch=c(4, NA, NA, 13), col=c("blue",1, "blue","blue"), lty=c(NA,2,1,1), lwd=c(NA,2,2,1), bg="white")
}
else {
legend("topleft", c("Estimate", "1st Stage CI", "1st Stage Iso-Regression"), pch=c(4, NA, 13), col=c("blue",1,1), lty=c(NA,2,1), lwd=c(NA,2,1), bg="white")
}
} |
droplet <- function(id, ...) {
x <- do_GET(sprintf("droplets/%s", id), ...)
structure(x$droplet, class = "droplet")
}
as.droplet <- function(x) UseMethod("as.droplet")
as.droplet.numeric <- function(x) droplet(x)
as.droplet.character <- function(x) droplets()[[x]]
as.droplet.droplet <- function(x) x
as.droplet.action <- function(x) {
if (x$resource_type != "droplet") {
stop("Resource type: ", x$resource_type, call. = FALSE)
}
action_wait(x)
}
print.droplet <- function(x, ...) {
cat("<droplet>", x$name, " (", x$id, ")\n", sep = "")
cat(" IP: ", droplet_ip_safe(x), "\n", sep = "")
cat(" Status: ", x$status, "\n", sep = "")
cat(" Region: ", x$region$name, "\n", sep = "")
cat(" Image: ", x$image$name, "\n", sep = "")
cat(" Size: ", x$size_slug, "\n", sep = "")
cat(" Volumes: ", paste0(unlist(x$volume_ids), collapse = ", "),
"\n", sep = "")
}
summary.droplet <- function(object, ...) {
price <- object$size$price_hourly
crat <- as.POSIXct(strptime(object$created_at, "%Y-%m-%dT%H:%M:%S", "UTC"))
now <- as.POSIXlt(Sys.time(), "UTC")
cost <- round(difftime(now, crat, units = "hours")[[1]] * price, 3)
cat("<droplet_detail>", object$name, " (", object$id, ")\n", sep = "")
cat(" Status: ", object$status, "\n", sep = "")
cat(" Region: ", object$region$name, "\n", sep = "")
cat(" Image: ", object$image$name, "\n", sep = "")
cat(" Size: ", object$size_slug, " ($", price, " / hr)" ,"\n", sep = "")
cat(" Estimated cost ($): ", cost, "\n", sep = "")
cat(" Locked: ", object$locked, "\n", sep = "")
cat(" Created at: ", object$created_at, " UTC", "\n", sep = "")
cat(" Networks: ", "\n", sep = "")
cat(" v4: ", make_list(object$networks$v4), "\n", sep = "")
cat(" v6: ", make_list(object$networks$v6), "\n", sep = "")
cat(" Kernel: ", make_list(list(object$kernel)), "\n")
cat(" Snapshots: ", unlist(object$snapshot_ids), "\n")
cat(" Backups: ", unlist(object$backup_ids), "\n")
cat(" Tags: ", paste0(unlist(object$tags), collapse = ", "), "\n")
}
make_list <- function(y){
if(length(y) > 0){
y <- y[[1]]
out <- list()
for(i in seq_along(y)){
out[[i]] <- paste0(names(y)[i], " (", y[i], ")")
}
paste0(out, collapse = ", ")
} else { "none" }
} |
addNodeWeights = function(x, weights = NULL) {
n = getNumberOfNodes(x)
checkmate::assertNumeric(weights, len = n, any.missing = FALSE, all.missing = FALSE)
x$node.weights = weights
return(x)
} |
MEA = function(dataframe, sampRate, filter = "raw", id,
session, group, s1Name, s2Name,
uid = paste(group,id,session,sep="_")
){
x = list("MEA"=dataframe,
"ccf" = NULL,
"ccfRes" = NULL
)
attributes(x) = c(attributes(x),list(
id = id,
session = session,
group = group,
sampRate = sampRate,
filter = filter,
ccf = "",
s1Name = s1Name,
s2Name = s2Name,
uid = uid
))
class(x) = c("MEA",class(x))
return(x)
}
MEAlist = function(listOfMea){
if(!is.list(listOfMea) || any(!sapply(listOfMea, is.MEA) ) ) stop("The supplied object must be a list containing only MEA objects", call.=F)
if(length(listOfMea)==0) stop("The supplied list is empty",call.=F)
class(listOfMea) = "MEAlist"
attributes(listOfMea) = c(attributes(listOfMea), list(
nId = length(unique(sapply(listOfMea, attr, "id"))),
n = length(listOfMea),
groups = unique(sapply(listOfMea, attr, "group")),
sampRate = ifelse(length(unique(sapply(listOfMea, attr, "sampRate")))==1, unique(sapply(listOfMea, attr, "sampRate")), stop("Cannot construct a MEAlist with different sampling rates") ),
filter = ifelse(length(unique(sapply(listOfMea, attr, "filter")))==1, unique(sapply(listOfMea, attr, "filter")), stop("Cannot construct a MEAlist with different filtering procedures") ),
s1Name = ifelse(length(unique(sapply(listOfMea, attr, "s1Name")))==1, unique(sapply(listOfMea, attr, "s1Name")), stop("Cannot construct a MEAlist with multiple s1Name labels") ),
s2Name = ifelse(length(unique(sapply(listOfMea, attr, "s2Name")))==1, unique(sapply(listOfMea, attr, "s2Name")), stop("Cannot construct a MEAlist with multiple s2Name labels") ),
ccf = if(all( sapply(listOfMea, function(x) !is.null(x$ccf)) )) {
list(
filter = ifelse(length(unique(sapply(listOfMea, function(x) attr(x, "ccf")$filter )))==1, unique(sapply(listOfMea, function(x) attr(x, "ccf")$filter)), stop("Cannot construct a MEAlist with CCF computed with different settings") ),
lag = ifelse(length(unique(sapply(listOfMea, function(x) attr(x, "ccf")$lag )))==1, unique(sapply(listOfMea, function(x) attr(x, "ccf")$lag )), stop("Cannot construct a MEAlist with CCF computed with different settings") ),
win = ifelse(length(unique(sapply(listOfMea, function(x) attr(x, "ccf")$win )))==1, unique(sapply(listOfMea, function(x) attr(x, "ccf")$win )), stop("Cannot construct a MEAlist with CCF computed with different settings") ),
inc = ifelse(length(unique(sapply(listOfMea, function(x) attr(x, "ccf")$inc )))==1, unique(sapply(listOfMea, function(x) attr(x, "ccf")$inc )), stop("Cannot construct a MEAlist with CCF computed with different settings") )
)
} else if(all( sapply(listOfMea, function(x) is.null(x$ccf)) )){
""
} else stop("Cannot construct a MEAlist when only a part of the MEA objects have ccf analyses")
))
names(listOfMea) = sapply(listOfMea, attr, "uid")
return(listOfMea)
}
is.MEA = function(x) inherits(x,"MEA") && length(x)
hasCCF = function(x){
if(is.MEA(x))
!is.null(x$ccf)
else if(is.list(x))
all(sapply(x, hasCCF))
else stop()
}
is.MEAlist = function(x) inherits(x,"MEAlist") && length(x)
c.MEAlist = function(...){
dots = list(...)
dots = lapply(dots, function(x){attributes(x)=NULL;x})
MEAlist(do.call("c",dots))
}
"[.MEAlist" <- function(x,...,drop=FALSE){
y = NextMethod("[")
MEAlist(y)
}
setGroup = function(mea,group){
UseMethod("setGroup", mea)
}
setGroup.MEA = function(mea,group){
attr(mea,"uid") = paste(group, attr(mea,"id"), attr(mea, "session"),sep ="_")
attr(mea,"group") = group
mea
}
setGroup.default = function(mea,group){
if(is.list(mea)){
newNames = vector("character",length(mea))
for(i in 1:length(mea)){
if(is.MEA(mea[[i]])) {
mea[[i]] = setGroup(mea[[i]],group)
newNames[i] = attr(mea[[i]],"uid")
}
else stop("An object of a class different from MEA was found in the list")
}
} else stop("unrecognized format")
MEAlist(mea)
}
summary.MEAlist = function(object, ...){
filters = sapply(object, attr, "filter")
if (length(unique(filters))>1) stop("Different processing pipeline found in MEAlist:\r\n",unique(filters),call. = F)
s1_perc = sapply(object, function(x){length(x$MEA[[1]][x$MEA[[1]]>0])/nrow(x$MEA)})
s2_perc = sapply(object, function(x){length(x$MEA[[2]][x$MEA[[2]]>0])/nrow(x$MEA)})
noCCF = any(sapply(object, function(x){is.null(x$ccf)}))
if(noCCF){
Q = data.frame(
"dyad" = factor(sapply(object, function(mea){attr(mea, "id")})),
"session" = factor(sapply(object, function(mea){attr(mea, "session")})),
"group" = factor(sapply(object, function(mea){attr(mea, "group")})),
"s1_perc" = round(s1_perc*100,1),
"s2_perc" = round(s2_perc*100,1)
)
names(Q)[names(Q) == 's1_perc'] = paste0(attr(object, "s1Name"),"_%")
names(Q)[names(Q) == 's2_perc'] = paste0(attr(object, "s2Name"),"_%")
cat("\r\nMEA analysis results:\r\n")
print(Q)
cat("\r\nData processing: ",attr(object, "filter"))
} else {
pace = sapply(object, function(mea){mean(unlist(mea$ccf[, 1:(attr(mea, "ccf")$lag*attr(mea, "sampRate"))]),na.rm=T)} )
zero = sapply(object, function(mea){mean(unlist(mea$ccf[, (attr(mea, "ccf")$lag*attr(mea, "sampRate")+1)]),na.rm=T)} )
lead = sapply(object, function(mea){mean(unlist(mea$ccf[, (attr(mea, "ccf")$lag*attr(mea, "sampRate")+2):(attr(mea, "ccf")$lag*attr(mea, "sampRate")*2+1) ]),na.rm=T)} )
pace0 = sapply(object, function(mea){mean(unlist(mea$ccf[, 1:(attr(mea, "ccf")$lag*attr(mea, "sampRate") +1)]),na.rm=T)} )
lead0 = sapply(object, function(mea){mean(unlist(mea$ccf[, (attr(mea, "ccf")$lag*attr(mea, "sampRate") +1):(attr(mea, "ccf")$lag*attr(mea, "sampRate")*2+1) ]),na.rm=T)} )
grandAver = unlist(lapply(object, function(mea) { mean(unlist(mea$ccf),na.rm = T)}))
Q = data.frame(
"dyad" = factor(sapply(object, function(mea){attr(mea, "id")})),
"session" = factor(sapply(object, function(mea){attr(mea, "session")})),
"group" = factor(sapply(object, function(mea){attr(mea, "group")})),
"s1_perc" = round(s1_perc*100,1),
"s2_perc" = round(s2_perc*100,1),
"all_lags" = round(grandAver,4),
"s1_lead" = round(lead,4),
"s2_lead" = round(pace,4),
"lag_zero" = round(zero,4)
)
names(Q)[names(Q) == 's1_perc'] = paste0(attr(object, "s1Name"),"_%")
names(Q)[names(Q) == 's2_perc'] = paste0(attr(object, "s2Name"),"_%")
names(Q)[names(Q) == 's1_lead'] = paste0(attr(object, "s1Name"),"_lead")
names(Q)[names(Q) == 's2_lead'] = paste0(attr(object, "s2Name"),"_lead")
cat("\r\nMEA analysis results:\r\n")
print(Q)
cat("\r\nData processing: ",attr(object, "filter"))
cat0("\r\nCCF settings:\r\nWindow = ",attr(object, "ccf")$win, " s | Increments = ",attr(object, "ccf")$inc," s | Lag = ",attr(object, "ccf")$lag, " s.")
cat0("\r\n",attr(object, "ccf")$filter)
}
invisible(Q)
} |
RMGline <-
function(y) {
abline(h=y,col="gray",lwd=3)
} |
plot.equivalence_test <- function(x, ...) {
insight::check_if_installed("see", "to plot results from equivalence-test")
NextMethod()
}
plot.p_direction <- function(x, ...) {
insight::check_if_installed("see", "to plot results from p_direction()")
NextMethod()
}
plot.point_estimate <- function(x, ...) {
insight::check_if_installed("see", "to plot point-estimates")
NextMethod()
}
plot.map_estimate <- function(x, ...) {
insight::check_if_installed("see", "to plot point-estimates")
NextMethod()
}
plot.rope <- function(x, ...) {
insight::check_if_installed("see", "to plot ROPE")
NextMethod()
}
plot.bayestestR_hdi <- function(x, ...) {
insight::check_if_installed("see", "to plot HDI")
NextMethod()
}
plot.bayestestR_eti <- function(x, ...) {
insight::check_if_installed("see", "to plot credible intervals")
NextMethod()
}
plot.bayestestR_si <- function(x, ...) {
insight::check_if_installed("see", "to plot support intervals")
NextMethod()
}
plot.bayesfactor_parameters <- function(x, ...) {
insight::check_if_installed("see", "to plot Savage-Dickey Bayes factor")
NextMethod()
}
plot.bayesfactor_models <- function(x, ...) {
insight::check_if_installed("see", "to plot models' Bayes factors")
NextMethod()
}
plot.estimate_density <- function(x, ...) {
insight::check_if_installed("see", "to plot densities")
NextMethod()
}
plot.estimate_density_df <- function(x, ...) {
insight::check_if_installed("see", "to plot models' densities")
NextMethod()
}
plot.p_significance <- function(x, ...) {
insight::check_if_installed("see", "to plot practical significance")
NextMethod()
}
plot.describe_posterior <- function(x, stack = FALSE, ...) {
insight::check_if_installed("see", "to plot posterior samples")
insight::check_if_installed("ggplot2", "to plot posterior samples")
model <- .retrieve_model(x)
if (!is.null(model)) {
plot(estimate_density(model), stack = stack, ...) +
ggplot2::labs(title = "Posterior Samples", x = NULL, y = NULL)
} else {
warning(insight::format_message("Could not find model-object. Try ' plot(estimate_density(model))' instead."), call. = FALSE)
}
} |
are_equivalent_xml_files <- function(
filename_1,
filename_2,
section = NA
) {
beautier::check_file_exists(filename_1, "filename_1")
beautier::check_file_exists(filename_2, "filename_2")
are_equivalent_xml_lines(
readLines(filename_1),
readLines(filename_2),
section = section
)
}
are_equivalent_xml_lines <- function(
lines_1,
lines_2,
section = NA,
verbose = FALSE
) {
if (beautier::is_one_na(section)) {
return(
beautier::are_equivalent_xml_lines_all(
lines_1 = lines_1,
lines_2 = lines_2,
verbose = verbose
)
)
} else {
testit::assert(!beautier::is_one_na(section))
return(
beautier::are_equivalent_xml_lines_section(
lines_1 = lines_1,
lines_2 = lines_2,
section = section,
verbose = verbose
)
)
}
}
are_equivalent_xml_lines_all <- function(
lines_1,
lines_2,
verbose = FALSE
) {
lines_1 <- stringr::str_subset(
string = lines_1,
pattern = "^[:blank:]*$",
negate = TRUE
)
lines_2 <- stringr::str_subset(
string = lines_2,
pattern = "^[:blank:]*$",
negate = TRUE
)
if (length(lines_1) != length(lines_2)) {
if (verbose) {
message(
"different lengths: ",
length(lines_1), " vs ", length(lines_2)
)
}
return(FALSE)
}
for (line in lines_1) {
if (!line %in% lines_2) {
if (verbose) {
message("line '", line, "' not found")
}
return(FALSE)
}
}
TRUE
}
are_equivalent_xml_lines_section <- function(
lines_1,
lines_2,
section,
verbose = FALSE
) {
assertive::assert_is_a_string(section)
if (section == "operators") {
return(
beautier::are_equivalent_xml_lines_operators(lines_1, lines_2, verbose)
)
}
if (section == "loggers") {
return(
beautier::are_equivalent_xml_lines_loggers(lines_1, lines_2, verbose)
)
}
if (!beautier::has_xml_opening_tag(lines = lines_1, section = section)) {
stop(
"Opening tag for 'section' could not be found in 'lines_1', ",
"'section' has value '", section, "'"
)
}
if (!beautier::has_xml_closing_tag(lines = lines_1, section = section)) {
stop(
"Closing tag for 'section' could not be found in 'lines_1', ",
"'section' has value '", section, "'"
)
}
if (!beautier::has_xml_opening_tag(lines = lines_2, section = section)) {
stop(
"Opening tag for 'section' could not be found in 'lines_2', ",
"'section' has value '", section, "'"
)
}
if (!beautier::has_xml_closing_tag(lines = lines_2, section = section)) {
stop(
"Closing tag for 'section' could not be found in 'lines_2', ",
"'section' has value '", section, "'"
)
}
section_1 <- beautier::extract_xml_section_from_lines(
lines = lines_1, section = section)
section_2 <- beautier::extract_xml_section_from_lines(
lines = lines_2, section = section)
beautier::are_equivalent_xml_lines_all(
section_1, section_2, verbose = verbose
)
}
are_equivalent_xml_lines_operators <- function(
lines_1,
lines_2,
verbose = FALSE
) {
section_1 <- beautier::extract_xml_operators_from_lines(lines_1)
section_2 <- beautier::extract_xml_operators_from_lines(lines_2)
beautier::are_equivalent_xml_lines_all(
section_1, section_2, verbose = verbose
)
}
are_equivalent_xml_lines_loggers <- function(
lines_1,
lines_2,
verbose = FALSE
) {
section_1 <- beautier::extract_xml_loggers_from_lines(lines_1)
section_2 <- beautier::extract_xml_loggers_from_lines(lines_2)
beautier::are_equivalent_xml_lines_all(
section_1,
section_2,
verbose = verbose
)
} |
CheckInputs <- function(Y, DM, W, Time, Starting, Hypers, Tuning, MCMC, Family, Distance, Weights, Rho, ScaleY, ScaleDM) {
N <- length(Y)
M <- length(DM)
Nu <- length(Time)
if (!Family %in% c("normal", "probit", "tobit")) stop('Family: must be one of "normal", "probit" or "tobit"')
if (!Distance %in% c("euclidean", "circumference")) stop('Distance: must be one of "euclidean" or "circumference"')
if (!Weights %in% c("continuous", "binary")) stop('Weights: must be one of "continuous" or "binary"')
if (missing(Rho)) stop("Rho: missing")
if (!is.scalar(Rho)) stop('Rho must be a scalar')
if (is.na(Rho)) stop('Rho cannot be NA')
if (!is.finite(Rho)) stop('Rho cannot be infinite')
if (!((Rho < 1) & (Rho > 0))) stop('Rho must be in (0, 1)')
if (missing(ScaleY)) stop("ScaleY: missing")
if (!is.scalar(ScaleY)) stop('ScaleY must be a scalar')
if (is.na(ScaleY)) stop('ScaleY cannot be NA')
if (!is.finite(ScaleY)) stop('ScaleY cannot be infinite')
if (!(ScaleY > 0)) stop('ScaleY must be positive')
if (missing(ScaleDM)) stop("ScaleDM: missing")
if (!is.scalar(ScaleDM)) stop('ScaleDM must be a scalar')
if (is.na(ScaleDM)) stop('ScaleDM cannot be NA')
if (!is.finite(ScaleDM)) stop('ScaleDM cannot be infinite')
if (!(ScaleDM > 0)) stop('ScaleDM must be positive')
if (!is.numeric(Y)) stop('Y must be a vector')
if (length(Y) != N) stop(paste0('Y must have length ', N))
if (any(is.na(Y))) stop("Y may have no missing values")
if (any(!is.finite(Y))) stop("Y must have strictly finite entries")
if ((Family == "probit") & ((sum(Y == 1) + sum(Y == 0)) != N)) stop('Y: for "probit" observed data must be binary')
if ((Family == "tobit") & (any(Y < 0))) stop('Y: for "tobit" observed data must be non-negative')
if (!is.numeric(DM)) stop('DM must be a vector')
if (length(DM) != M) stop(paste0('DM must have length ', M))
if (any(is.na(DM))) stop("DM may have no missing values")
if (any(!is.finite(DM))) stop("DM must have strictly finite entries")
if (!is.matrix(W)) stop('W must be a matrix')
if (!dim(W)[1] == M) stop(paste0('W must be a ',M ,' x ', M, ' dimensional matrix'))
if (!dim(W)[2] == M) stop('W must be square')
if (sum(!((W) == t(W))) > 0) stop('W must be symmetric')
if (length(table(W)) > 2) stop('W must only contain binaries (i.e. 0\'s or 1\'s)')
if (any(diag(W) != 0)) stop('W must have only zeros on the diagonal')
if (!is.numeric(Time)) stop('Time must be a vector')
if (length(Time) != Nu) stop(paste0('Time must have length ', Nu))
if (any(is.na(Time))) stop("Time may have no missing values")
if (any(!is.finite(Time))) stop("Time must have strictly finite entries")
if (is.unsorted(Time)) stop('Time vector is not in increasing order')
if (!all(Time >= 0)) stop('Time vector has at least one negative point')
M_W <- dim(W)[1]
if (M != M_W) stop('DM and W have contradictory dimensions')
if ((N / M) != Nu) stop('Time, DM and Y have contradictory dimensions')
if (!is.null(Hypers)) {
if (!is.list(Hypers)) stop('Hypers must be a list')
if (!all(names(Hypers) %in% c("Delta", "Sigma", "Alpha"))) stop('Hypers: Can only contain lists with names "Delta", "Sigma" and "Alpha"')
if ("Delta" %in% names(Hypers)) {
if (!is.list(Hypers$Delta)) stop('Hypers: "Delta" must be a list')
if (!"Kappa2" %in% names(Hypers$Delta)) stop('Hypers: "Kappa2" value missing')
if (!is.scalar(Hypers$Delta$Kappa2)) stop('Hypers: "Kappa2" must be a scalar')
if (is.na(Hypers$Delta$Kappa2)) stop('Hypers: "Kappa2" cannot be NA')
if (!is.finite(Hypers$Delta$Kappa2)) stop('Hypers: "Kappa2" cannot be infinite')
if (Hypers$Delta$Kappa2 <= 0) stop('Hypers: "Kappa2" must be strictly positive')
}
if ("Sigma" %in% names(Hypers)) {
if (!is.list(Hypers$Sigma)) stop('Hypers: "Sigma" must be a list')
if (!"Xi" %in% names(Hypers$Sigma)) stop('Hypers: "Xi" value missing')
if (!is.scalar(Hypers$Sigma$Xi)) stop('Hypers: "Xi" must be a scalar')
if (is.na(Hypers$Sigma$Xi)) stop('Hypers: "Xi" cannot be NA')
if (!is.finite(Hypers$Sigma$Xi)) stop('Hypers: "Xi" cannot be infinite')
if (Hypers$Sigma$Xi < 3) stop('Hypers: "Xi" must be greater than or equal to 5')
if (!"Psi" %in% names(Hypers$Sigma)) stop('Hypers: "Psi" value missing')
if (!is.matrix(Hypers$Sigma$Psi)) stop('Hypers: "Psi" must be a matrix')
if (!dim(Hypers$Sigma$Psi)[1] == 5) stop('Hypers: "Psi" must be 5 dimensional')
if (!all(!is.na(Hypers$Sigma$Psi))) stop('Hypers: "Psi" cannot have missing values')
if (!all(is.finite(Hypers$Sigma$Psi))) stop('Hypers: "Psi" cannot have infinite values')
if (!dim(Hypers$Sigma$Psi)[2] == 5) stop('Hypers: "Psi" must be square')
if (sum( !( (Hypers$Sigma$Psi) == t(Hypers$Sigma$Psi) ) ) > 0) stop('Hypers: "Psi" must be symmetric')
if ((det(Hypers$Sigma$Psi) - 0) < 0.00001) stop('Hypers: "Psi" is close to singular')
}
if ("Alpha" %in% names(Hypers)) {
if (!is.list(Hypers$Alpha)) stop('Hypers: "Alpha" must be a list')
if (!"AAlpha" %in% names(Hypers$Alpha)) stop('Hypers: "AAlpha" value missing')
if (!is.scalar(Hypers$Alpha$AAlpha)) stop('Hypers: "AAlpha" must be a scalar')
if (is.na(Hypers$Alpha$AAlpha)) stop('Hypers: "AAlpha" cannot be NA')
if (!is.finite(Hypers$Alpha$AAlpha)) stop('Hypers: "AAlpha" cannot be infinite')
if (!"BAlpha" %in% names(Hypers$Alpha)) stop('Hypers: "BAlpha" value missing')
if (!is.scalar(Hypers$Alpha$BAlpha)) stop('Hypers: "BAlpha" must be a scalar')
if (is.na(Hypers$Alpha$BAlpha)) stop('Hypers: "BAlpha" cannot be NA')
if (!is.finite(Hypers$Alpha$BAlpha)) stop('Hypers: "BAlpha" cannot be infinite')
if (Hypers$Alpha$AAlpha < 0) stop('Hypers: "AAlpha" must be non-negative')
if (Hypers$Alpha$BAlpha <= 0) stop('Hypers: "BAlpha" must be strictly positive')
if (Hypers$Alpha$BAlpha < Hypers$Alpha$AAlpha) stop('Hypers: "BAlpha" must be greater than "AAlpha"')
}
}
if (!is.null(Starting)) {
if (!is.list(Starting)) stop('Starting must be a list')
if (!all(names(Starting) %in% c("Delta", "Sigma", "Alpha"))) stop('Starting: Can only contain objects with names "Delta", "Sigma" and "Alpha"')
if ("Delta" %in% names(Starting)) {
if (!is.numeric(Starting$Delta)) stop('Starting: "Delta" must be a vector')
if (length(Starting$Delta) != 5) stop('Starting: "Delta" must be length 5')
if (!all(!is.na(Starting$Delta))) stop('Starting: "Delta" cannot have missing values')
if (!all(is.finite(Starting$Delta))) stop('Starting: "Delta" cannot have infinite values')
}
if ("Sigma" %in% names(Starting)) {
if (!is.matrix(Starting$Sigma)) stop('Starting: "Sigma" must be a matrix')
if (!dim(Starting$Sigma)[1] == 5) stop('Starting: "Sigma" must be 5 dimensional')
if (!dim(Starting$Sigma)[2] == 5) stop('Starting: "Sigma" must be square')
if (!all(!is.na(Starting$Sigma))) stop('Starting: "Sigma" cannot have missing values')
if (!all(is.finite(Starting$Sigma))) stop('Starting: "Sigma" cannot have infinite values')
if (sum( !( (Starting$Sigma) == t(Starting$Sigma) ) ) > 0) stop('Starting: "Sigma" must be symmetric')
if ((det(Starting$Sigma) - 0) < 0.0000000001) stop('Starting: "Sigma" is close to singular')
}
if ("Alpha" %in% names(Starting)) {
if (!is.scalar(Starting$Alpha)) stop('Starting: "Alpha" must be a scalar')
if (is.na(Starting$Alpha)) stop('Starting: "Alpha" cannot be NA')
if (!is.finite(Starting$Alpha)) stop('Starting: "Alpha" cannot be infinite')
}
}
if (!is.null(Tuning)) {
if (!is.list(Tuning)) stop('Tuning must be a list')
if (!all(names(Tuning) %in% c("Lambda0Vec", "Lambda1Vec", "EtaVec", "Alpha"))) stop('Tuning: Can only contain objects with names "Lambda0Vec", "Lambda1Vec", "EtaVec" or "Alpha"')
if ("Lambda0Vec" %in% names(Tuning)) {
if (!is.numeric(Tuning$Lambda0Vec)) stop('Tuning: "Lambda0Vec" must be a vector')
if (length(Tuning$Lambda0Vec) != M) stop(paste0('Tuning: "Lambda0Vec" must have length ', M))
if (!all(!is.na(Tuning$Lambda0Vec))) stop('Tuning: "Lambda0Vec" cannot have missing values')
if (!all(is.finite(Tuning$Lambda0Vec))) stop('Tuning: "Lambda0Vec" cannot have infinite values')
if (any(Tuning$Lambda0Vec < 0)) stop('Tuning: "Lambda0Vec" must have non-negative components')
}
if ("Lambda1Vec" %in% names(Tuning)) {
if (!is.numeric(Tuning$Lambda1Vec)) stop('Tuning: "Lambda1Vec" must be a vector')
if (length(Tuning$Lambda1Vec) != M) stop(paste0('Tuning: "Lambda1Vec" must have length ', M))
if (!all(!is.na(Tuning$Lambda1Vec))) stop('Tuning: "Lambda1Vec" cannot have missing values')
if (!all(is.finite(Tuning$Lambda1Vec))) stop('Tuning: "Lambda1Vec" cannot have infinite values')
if (any(Tuning$Lambda1Vec < 0)) stop('Tuning: "Lambda1Vec" must have non-negative components')
}
if ("EtaVec" %in% names(Tuning)) {
if (!is.numeric(Tuning$EtaVec)) stop('Tuning: "EtaVec" must be a vector')
if (length(Tuning$EtaVec) != M) stop(paste0('Tuning: "EtaVec" must have length ', M))
if (!all(!is.na(Tuning$EtaVec))) stop('Tuning: "EtaVec" cannot have missing values')
if (!all(is.finite(Tuning$EtaVec))) stop('Tuning: "EtaVec" cannot have infinite values')
if (any(Tuning$EtaVec < 0)) stop('Tuning: "EtaVec" must have non-negative components')
}
if ("Alpha" %in% names(Tuning)) {
if (!is.scalar(Tuning$Alpha)) stop('Tuning: "Alpha" must be a scalar')
if (is.na(Tuning$Alpha)) stop('Tuning: "Alpha" cannot be NA')
if (!is.finite(Tuning$Alpha)) stop('Tuning: "Alpha" cannot be infinite')
if (Tuning$Alpha < 0) stop('Tuning: "Alpha" must be non-negative')
}
}
if (!is.null(MCMC)) {
if (!is.list(MCMC)) stop('MCMC must be a list')
if (!all(names(MCMC) %in% c("NBurn", "NSims", "NThin", "NPilot"))) stop('MCMC: Can only contain objects with names "NBurn", "NSims", "NThin" and "NPilot"')
if ("NBurn" %in% names(MCMC)) {
if (!is.scalar(MCMC$NBurn)) stop('MCMC: "NBurn" must be a scalar')
if (is.na(MCMC$NBurn)) stop('MCMC: "NBurn" cannot be NA')
if (!is.finite(MCMC$NBurn)) stop('MCMC: "NBurn" cannot be infinite')
if (!is.wholenumber(MCMC$NBurn) | MCMC$NBurn < 0) stop('MCMC: "NBurn" must be a non-negative integer')
if (MCMC$NBurn < 100) stop('MCMC: "NBurn" must be at least 100')
}
if ("NSims" %in% names(MCMC)) {
if (!is.scalar(MCMC$NSims)) stop('MCMC: "NSims" must be a scalar')
if (is.na(MCMC$NSims)) stop('MCMC: "NSims" cannot be NA')
if (!is.finite(MCMC$NSims)) stop('MCMC: "NSims" cannot be infinite')
if (!is.wholenumber(MCMC$NSims) | MCMC$NSims <= 0) stop('MCMC: "NSims" must be a positive integer')
if (MCMC$NSims < 100) stop('MCMC: "NSims" must be at least 100')
}
if ("NThin" %in% names(MCMC)) {
if (!is.scalar(MCMC$NThin)) stop('MCMC: "NThin" must be a scalar')
if (is.na(MCMC$NThin)) stop('MCMC: "NThin" cannot be NA')
if (!is.finite(MCMC$NThin)) stop('MCMC: "NThin" cannot be infinite')
if (!is.wholenumber(MCMC$NThin) | MCMC$NThin <= 0) stop('MCMC: "NThin" must be a positive integer')
}
if ("NPilot" %in% names(MCMC)) {
if (!is.scalar(MCMC$NPilot)) stop('MCMC: "NPilot" must be a scalar')
if (is.na(MCMC$NPilot)) stop('MCMC: "NPilot" cannot be NA')
if (!is.finite(MCMC$NPilot)) stop('MCMC: "NPilot" cannot be infinite')
if (!is.wholenumber(MCMC$NPilot) | MCMC$NPilot < 0) stop('MCMC: "NPilot" must be a positive integer')
}
}
}
is.scalar <- function(x) ((is.numeric(x)) & (length(x) == 1))
is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
knitr::include_graphics("figures/fig2.png")
knitr::include_graphics("figures/fig3.png")
knitr::include_graphics("figures/fig4.png") |
extendMPT <- function(fittedModel, n.iter = 10000, n.adapt = 1000, n.burnin = 0, ...){
args <- list(...)
if ("n.thin" %in% names(args))
warning("Thinnning interval cannot be changed and is ignored!")
args$n.thin <- args$burnin <- args$adapt <- args$sample <- args$summarise <- args$model <- NULL
sel.cor <- grep("cor_", varnames(fittedModel$runjags$mcmc), fixed=TRUE)
if (inherits(fittedModel, "betaMPT"))
sel.cor <- c(sel.cor, grep("rho", varnames(fittedModel$runjags$mcmc), fixed=TRUE))
if (length(sel.cor)>0)
fittedModel$runjags$mcmc <- fittedModel$runjags$mcmc[,- sel.cor]
args_extend <- c(list(runjags.object = fittedModel$runjags,
burnin = n.burnin,
sample = ceiling((n.iter-n.burnin)/fittedModel$runjags$thin),
adapt = n.adapt,
summarise = FALSE),
args)
fittedModel$runjags <- do.call("extend.jags", args_extend)
covData <- fittedModel$mptInfo$covData
predTable <- fittedModel$mptInfo$predTable
if (!is.null(covData) | fittedModel$mptInfo$model == "betaMPT"){
if (!is.null(predTable) & fittedModel$mptInfo$model == "traitMPT"){
isPred <- (1:ncol(covData)) %in% predTable$covIdx
} else {
isPred <- rep(FALSE, length(fittedModel$mptInfo$predType))
}
sel <- fittedModel$mptInfo$predType == "c" & !isPred
if (any(sel) || inherits(fittedModel, "betaMPT")){
cdat <- covData[,sel,drop = FALSE]
fittedModel$runjags$mcmc <- as.mcmc.list(
lapply(fittedModel$runjags$mcmc, corSamples,
covData=cdat,
thetaUnique=fittedModel$mptInfo$thetaUnique,
rho = ifelse(inherits(fittedModel, "betaMPT"), TRUE, FALSE),
corProbit = fittedModel$mptInfo$corProbit))
}
}
fittedModel$mcmc.summ <- summarizeMCMC(fittedModel$runjags$mcmc, batchSize = 10)
fittedModel$summary <- summarizeMPT(mcmc = fittedModel$runjags$mcmc,
summ = fittedModel$mcmc.summ,
mptInfo = fittedModel$mptInfo)
fittedModel$call <- c(fittedModel$call, match.call())
fittedModel
} |
Cens.SMN.PCR = function(x, y, c, cens="left", tt, nu=NULL, error=10^-6, iter.max=200, type = "Normal", alpha.FIX = TRUE, nu.FIX = TRUE, alpha.in = 10^-3, k = 1, Diagnostic = TRUE, a = 2)
{
namesx = ('x1 ')
if(ncol(as.matrix(x))>1)
{
for(i in 2:ncol(as.matrix(x))){namesx = cbind(namesx, paste("x",i," ",sep=""))}
}
if(ncol(as.matrix(y)) > 1) stop("Only univariate partially regression models, argument must be one-dimensional.")
if(ncol(as.matrix(tt)) > 1) stop("Only univariate partially regression models, argument must be one-dimensional.")
if(ncol(as.matrix(c)) > 1) stop("Only univariate partially regression models, argument must be one-dimensional.")
if( length(y) != nrow(as.matrix(x)) ) stop("The number of rows in the matrix X it must be the same than Y.")
if( length(c) != nrow(as.matrix(x)) ) stop("The number of rows in the matrix X it must be the same than c.")
if( length(tt) != nrow(as.matrix(x)) ) stop("The number of rows in the matrix X it must be the same than tt.")
if( (length(x) == 0) | (length(y) == 0) ) stop("All parameters must be provided.")
if(sum(is.na(y)==TRUE) > 0) stop("NA's values in y")
if(sum(is.na(tt)==TRUE) > 0) stop("NA's values in tt")
if(sum(is.na(x)==TRUE) > 0) stop("NA's values in X")
if( (type != "Normal") && (type != "T") && (type != "Slash") && (type != "NormalC")) stop("Family not recognized. Please check documentation.")
if( (cens != "left") && (cens != "right")) stop("Censoring not recognized: 'left' for left censoring and 'right' for right censoring.")
if(cens=="left"){cens = 1}else{cens = 2}
if(type == "Normal" && !is.null(nu)){warning("Nu parameter not considered for normal case.",immediate. = TRUE)}
if( type == "T")
{
if(length(nu) > 1 | nu <= 0) stop("For the Student's-t distribution, nu parameter must be a positive scalar")
if(is.null(nu)) stop("nu parameter must be provided.")
}
if( type == "Slash")
{
if(length(nu) > 1 | nu <= 0) stop("For the Slash distribution, nu parameter must be a positive scalar")
if(is.null(nu)) stop("nu parameter must be provided.")
}
if(type == "NormalC")
{
warning("When nu parameters are close to the bounds, i.e., 0 or 1, computational problems could arrise.",immediate. = TRUE)
if(length(nu) != 2) stop("For the Contaminated Normal distribution, nu must be a bidimensional vector.")
if(nu[1] <=0 | nu[1] >= 1) stop("nu1 must belong to the interval (0,1)")
if(nu[2] <=0 | nu[2] >= 1) stop("nu2 must belong to the interval (0,1)")
}
if(alpha.in <= 0) stop("alpha parameter must be positive.")
if(!any(k == seq(1,ncol(as.matrix(x))))) stop("k must be positive integer <= ncol(x).")
if(a <= 0) stop("a must be positive constant.")
if(iter.max <= 0 | iter.max%%1 != 0) stop("iter.max must be a positive integer.")
if(error <=0 | error > 1) stop("error must belong to the interval (0,1]")
if(!is.logical(alpha.FIX) | !is.logical(nu.FIX) | !is.logical(Diagnostic)) stop("Parameters lambda.FIX, nu.FIX and Diagnostic must be logical (TRUE/FALSE) variables.")
out.EM = EMSpline.censFinal_MobsSMN(x, y, c, cens, tt, nu, error, iter.max, type, delta.in=NA, alpha.FIX, nu.FIX, alpha.in, k)
betas = round(out.EM$beta, 4)
sigma2 = round(out.EM$sigma2, 4)
MI_obs = sqrt(diag(solve(out.EM$MI)))
SEbeta = MI_obs[1:length(betas)]
SEsigma2 = MI_obs[length(betas)+length(out.EM$ff)+1]
SE = round(c(SEbeta,SEsigma2), 4)
Estimates = cbind(rbind(betas,sigma2),SE)
namesEstimates = colnames(x)
colx = ncol(as.matrix(x))
greeks = c(alpha='\u03b1', sigma='\u03c3\u00B2', nu='\u03BD')
if(length(namesEstimates)==0) namesEstimates = namesx[1:colx]
dimnames(Estimates) = list(c(namesEstimates,paste0(greeks['sigma'])),c("Estimates", "SE"))
if( (type=="T") || (type=="Slash"))
{
param1 = matrix(round(out.EM$nu, 5),ncol=1,nrow=1)
dimnames(param1) = list(c(paste0(greeks['nu'])),"")
}
if( type=="NormalC")
{
param2 = matrix(round(out.EM$nu, 5),ncol=1,nrow=2)
dimnames(param2) = list(c(paste0(greeks['nu'],"1"), paste0(greeks['nu'],"2")),"")
}
if( type=="Normal")
{
alpha = t(as.matrix(out.EM$Alpha))
row.names(alpha) = paste0(greeks['alpha'])
colnames(alpha) = " "
}
if( (type=="T") || (type=="Slash"))
{
alpha1 = matrix(out.EM$Alpha,ncol=1,nrow=1)
dimnames(alpha1) = list(c(paste0(greeks['alpha'])),"")
}
if( type=="NormalC")
{
alpha2 = matrix(out.EM$Alpha,ncol=1,nrow=1)
dimnames(alpha2) = list(c(paste0(greeks['alpha'])),"")
}
cat('\n')
cat('---------------------------------------------------------------------\n')
cat(' Partially linear censored regression models with SMN errors \n')
cat('---------------------------------------------------------------------\n')
print(Estimates)
if(type!="Normal")
{
if(type=="T"|type=="Slash")
{
print(param1)
}
else
{
print(param2)
}
}
if ( type=="Normal") {
print(alpha)
} else if ( type=="T"|type=="Slash") {
print(alpha1)
} else
print(alpha2)
cat('--------------------------------------------------------------\n')
cat('\r \n')
criteriaPCR = c(out.EM$loglik, out.EM$AIC)
criteriaFin = round(t(as.matrix(criteriaPCR)),digits=3)
dimnames(criteriaFin) = list(c("Value"),c("Loglik", "AIC"))
cat('\n')
cat('Model selection criteria\n')
cat('------------------------------------\n')
print(criteriaFin)
cat('------------------------------------\n')
cat('\r \n')
if(Diagnostic=="TRUE")
{
CaseDeletion = plot(out.EM$D$GD1, las=1, ylab=expression(paste("GD"[i]^{1})))
dev.new()
par(mfrow=c(2,2), mar=c(4,4.5,1.5,1.5) + 0.1)
WeightScheme = plot(out.EM$D$Curvature_W, las=1, ylab="Case weight, M(0)")
abline(h=mean(out.EM$D$Curvature_W)+a*sd(out.EM$D$Curvature_W), col="red", lty=2)
ScaleScheme = plot(out.EM$D$Curvature_S, las=1, ylab="Case scale, M(0)")
abline(h=mean(out.EM$D$Curvature_S)+a*sd(out.EM$D$Curvature_S), col="red", lty=2)
ExplanatoryScheme = plot(out.EM$D$Curvature_E, las=1, ylab="Case explanatory, M(0)")
abline(h=mean(out.EM$D$Curvature_E)+a*sd(out.EM$D$Curvature_E), col="red", lty=2)
ResponseScheme = plot(out.EM$D$Curvature_R, las=1, ylab="Case response, M(0)")
abline(h=mean(out.EM$D$Curvature_R)+a*sd(out.EM$D$Curvature_R), col="red", lty=2)
}
out.EM
} |
GeneticFuzzyAprioriDC_A <- function(dat, seed=1286082570,NumberofEvaluations=10000,PopulationSize=50,ProbabilityofMutation=0.01,ProbabilityofCrossover=0.8,ParameterdforMMACrossover=0.35,NumberofFuzzyRegionsforNumericAttributes=3,UseMaxOperatorfor1FrequentItemsets="false",MinimumSupport=0.1,MinimumConfidence=0.8){
alg <- RKEEL::R6_GeneticFuzzyAprioriDC_A$new()
alg$setParameters(dat,seed,NumberofEvaluations,PopulationSize,ProbabilityofMutation,ProbabilityofCrossover,ParameterdforMMACrossover,NumberofFuzzyRegionsforNumericAttributes,UseMaxOperatorfor1FrequentItemsets,MinimumSupport,MinimumConfidence)
return (alg)
}
R6_GeneticFuzzyAprioriDC_A <- R6::R6Class("R6_GeneticFuzzyAprioriDC_A",
inherit = AssociationRulesAlgorithm,
public = list(
seed=1286082570,
NumberofEvaluations=10000,
PopulationSize=50,
ProbabilityofMutation=0.01,
ProbabilityofCrossover=0.8,
ParameterdforMMACrossover=0.35,
NumberofFuzzyRegionsforNumericAttributes=3,
UseMaxOperatorfor1FrequentItemsets="false",
MinimumSupport=0.1,
MinimumConfidence=0.8,
setParameters = function(dat, seed=1286082570,NumberofEvaluations=10000,PopulationSize=50,ProbabilityofMutation=0.01,ProbabilityofCrossover=0.8,ParameterdforMMACrossover=0.35,NumberofFuzzyRegionsforNumericAttributes=3,UseMaxOperatorfor1FrequentItemsets="false",MinimumSupport=0.1,MinimumConfidence=0.8){
super$setParameters(dat)
self$seed <- seed
self$NumberofEvaluations <- NumberofEvaluations
self$PopulationSize <- PopulationSize
self$ProbabilityofMutation <- ProbabilityofMutation
self$ProbabilityofCrossover <- ProbabilityofCrossover
self$ParameterdforMMACrossover <- ParameterdforMMACrossover
self$NumberofFuzzyRegionsforNumericAttributes <- NumberofFuzzyRegionsforNumericAttributes
self$UseMaxOperatorfor1FrequentItemsets <- UseMaxOperatorfor1FrequentItemsets
self$MinimumSupport <- MinimumSupport
self$MinimumConfidence <- MinimumConfidence
}
),
private = list(
jarName = "GeneticFuzzyAprioriDC.jar",
algorithmName = "GeneticFuzzyAprioriDC_A",
algorithmString = "GeneticFuzzyAprioriDC_A",
algorithmOutputNumTxt = 2,
getParametersText = function(){
text <- ""
text <- paste0(text, "seed = ", self$seed, "\n")
text <- paste0(text, "Number of Evaluations = ", self$NumberofEvaluations, "\n")
text <- paste0(text, "Population Size = ", self$PopulationSize, "\n")
text <- paste0(text, "Probability of Mutation = ", self$ProbabilityofMutation, "\n")
text <- paste0(text, "Probability of Crossover = ", self$ProbabilityofCrossover, "\n")
text <- paste0(text, "Parameter d for MMA Crossover = ", self$ParameterdforMMACrossover, "\n")
text <- paste0(text, "Number of Fuzzy Regions for Numeric Attributes = ", self$NumberofFuzzyRegionsforNumericAttributes, "\n")
text <- paste0(text, "Use Max Operator for 1-Frequent Itemsets = ", self$UseMaxOperatorfor1FrequentItemsets, "\n")
text <- paste0(text, "Minimum Support = ", self$MinimumSupport, "\n")
text <- paste0(text, "Minimum Confidence = ", self$MinimumConfidence, "\n")
return(text)
}
)
) |
context("Serialisation")
reportr::setOutputLevel(Warning)
options(reportrStderrLevel=reportr::OL$Fatal)
test_that("images can be serialised and deserialised", {
path <- system.file("extdata", "nifti", "maskedb0.nii.gz", package="tractor.base")
image <- readImageFile(path)
file <- tempfile()
image$serialise(file)
raw <- deserialiseReferenceObject(file, raw=TRUE)
object <- deserialiseReferenceObject(file)
expect_equal(serialiseReferenceObject(image), raw)
expect_true(isDeserialisable(raw))
expect_type(raw, "list")
expect_false(is.nilObject(object))
expect_s4_class(object, "MriImage")
}) |
rpartXse <- function(form,data,se=1,cp=0,minsplit=6,verbose=F,...) {
tree <- rpart::rpart(form,data,cp=cp,minsplit=minsplit,...)
if (verbose && ncol(tree$cptable) < 5)
warning("No pruning will be carried out because no estimates were obtained.")
rt.prune(tree,se,verbose)
}
rt.prune <- function(tree,se=1,verbose=T,...) {
if (ncol(tree$cptable) < 5) tree
else {
lin.min.err <- which.min(tree$cptable[,4])
if (verbose && lin.min.err == nrow(tree$cptable))
warning("Minimal Cross Validation Error is obtained
at the largest tree.\n Further tree growth
(achievable through smaller 'cp' parameter value),\n
could produce more accurate tree.\n")
tol.err <- tree$cptable[lin.min.err,4] + se * tree$cptable[lin.min.err,5]
se.lin <- which(tree$cptable[,4] <= tol.err)[1]
rpart::prune.rpart(tree,cp=tree$cptable[se.lin,1]+1e-9)
}
} |
check_factorstructure <- function(x, ...) {
kmo <- check_kmo(x, ...)
sphericity <- check_sphericity_bartlett(x, ...)
text <- paste0(" - KMO: ", attributes(kmo)$text, "\n - Sphericity: ", attributes(sphericity)$text)
if (attributes(kmo)$color == "red" | attributes(sphericity)$color == "red") {
color <- "red"
} else {
color <- "green"
}
out <- list(KMO = kmo, sphericity = sphericity)
attr(out, "text") <- text
attr(out, "color") <- color
attr(out, "title") <- "Is the data suitable for Factor Analysis?"
class(out) <- c("easystats_check", class(out))
out
}
check_kmo <- function(x, ...) {
cormatrix <- stats::cor(x, use = "pairwise.complete.obs", ...)
Q <- solve(cormatrix)
Q <- stats::cov2cor(Q)
diag(Q) <- 0
diag(cormatrix) <- 0
sumQ2 <- sum(Q^2)
sumr2 <- sum(cormatrix^2)
MSA <- sumr2 / (sumr2 + sumQ2)
MSA_variable <- colSums(cormatrix^2) / (colSums(cormatrix^2) + colSums(Q^2))
out <- list(MSA = MSA, MSA_variable = MSA_variable)
if (MSA < 0.5) {
text <- sprintf("The Kaiser, Meyer, Olkin (KMO) measure of sampling adequacy suggests that factor analysis is likely to be inappropriate (KMO = %.2f).", MSA)
color <- "red"
} else {
text <- sprintf("The Kaiser, Meyer, Olkin (KMO) measure of sampling adequacy suggests that data seems appropriate for factor analysis (KMO = %.2f).", MSA)
color <- "green"
}
attr(out, "text") <- text
attr(out, "color") <- color
attr(out, "title") <- "KMO Measure of Sampling Adequacy"
class(out) <- c("easystats_check", class(out))
out
}
check_sphericity_bartlett <- function(x, ...) {
cormatrix <- stats::cor(x, use = "pairwise.complete.obs", ...)
n <- nrow(x)
p <- dim(cormatrix)[2]
detR <- det(cormatrix)
statistic <- -log(detR) * (n - 1 - (2 * p + 5) / 6)
df <- p * (p - 1) / 2
pval <- stats::pchisq(statistic, df, lower.tail = FALSE)
out <- list(chisq = statistic, p = pval, dof = df)
if (pval < 0.001) {
text <- sprintf("Bartlett's test of sphericity suggests that there is sufficient significant correlation in the data for factor analysis (Chisq(%i) = %.2f, %s).", df, statistic, insight::format_p(pval))
color <- "green"
} else {
text <- sprintf("Bartlett's test of sphericity suggests that there is not enough significant correlation in the data for factor analysis (Chisq(%i) = %.2f, %s).", df, statistic, insight::format_p(pval))
color <- "red"
}
attr(out, "text") <- text
attr(out, "color") <- color
attr(out, "title") <- "Test of Sphericity"
class(out) <- c("easystats_check", class(out))
out
} |
exb_to_df <- function(file_name) {
l <- xml2::read_xml(file_name)
t <- xml2::xml_find_all(l, "basic-body/tier")
tier_names <- xml2::xml_attr(t, "display-name")
tier_types <- xml2::xml_attr(t, "type")
tier_categories <- xml2::xml_attr(t, "category")
tier_speakers <- xml2::xml_attr(t, "speaker")
r <- lapply(seq_along(t), function(i) {
content <- xml2::xml_text(xml2::xml_find_all(t[[i]], "event"))
ts1 <- xml2::xml_attr(xml2::xml_children(t[[i]]), "start")
ts2 <- xml2::xml_attr(xml2::xml_children(t[[i]]), "end")
if (length(content) == 0) {
content <- ""
}
if (length(ts1) == 0) {
ts1 <- ""
}
if (length(ts2) == 0) {
ts2 <- ""
}
data.frame(
tier = i,
id = seq_along(content),
content = content,
tier_name = tier_names[i],
tier_type = tier_types[i],
tier_category = tier_categories[i],
tier_speaker = tier_speakers[i],
ts_start = ts1,
ts_end = ts2,
stringsAsFactors = FALSE
)
})
r <- do.call(rbind, r)
tli <- xml2::xml_find_all(l, "basic-body/common-timeline/tli")
ts <- data.frame(
ts_id = xml2::xml_attr(tli, "id"),
time_value = xml2::xml_attr(tli, "time"),
stringsAsFactors = FALSE
)
r <- merge(r, ts, by.x = "ts_start", by.y = "ts_id")
names(r)[names(r) == "time_value"] <- "time_start"
r <- merge(r, ts, by.x = "ts_end", by.y = "ts_id")
names(r)[names(r) == "time_value"] <- "time_end"
r <- r[order(r$tier, r$id), -c(1:2)]
r$time_start <- as.double(r$time_start)
r$time_end <- as.double(r$time_end)
r$source <- basename(file_name)
return(r)
} |
comment_width <- function(width = "option", a4portrait_width = 80){
valid_width_arguments <- c("option", "script_width", "a4portrait", "a4landscape", "a3portrait", "a3landscape")
if ( !(is.numeric(width) | width %in% valid_width_arguments)){
stop("Invalid width argument! See ?comment_width for help!")
}
if (width == "option" & !is.null(getOption("comment_width"))){
width <- getOption("comment_width")
} else if (width == "option" & is.null(getOption("comment_width"))){
width <- "a4portrait"
}
a4portrait <- a4portrait_width
golden_ratio <- 8 / 5
text2num <- function(width_text){
if (is.character(width_text)){
switch(width_text,
"script_width" = getOption("width") - 5,
"a4portrait" = a4portrait,
"a4landscape" = a4portrait * golden_ratio,
"a3portrait" = a4portrait * golden_ratio,
"a3landscape" = 2 * a4portrait)
} else{
width_text
}
}
if (width %in% valid_width_arguments){
width <- text2num(width)
}
min(width, text2num("script_width"))
} |
defer <- function(expr, envir = parent.frame()) {
handler <- renv_exit_handlers_add(
list(expr = substitute(expr), envir = parent.frame()),
envir = envir
)
invisible(handler)
} |
xgb.opt.depth <- function(initial = 8, min_depth = 1, max_depth = 25, patience = 2, sd_effect = 0.001, worst_score = 0, learner = NA, better = max_better) {
Laurae.xgb.opt.depth.df = Laurae.xgb.opt.depth.iter = Laurae.xgb.opt.depth.best = NULL
Laurae.xgb.opt.depth.df <<- data.frame(depth = 1:max_depth, nrounds = rep(NA, max_depth), mean = rep(NA, max_depth), sd = rep(NA, max_depth), score = rep(NA, max_depth))
Laurae.xgb.opt.depth.iter <<- data.frame(Iteration = 1:3, Depth = c(initial, initial - 2, initial + 2), Score = rep(worst_score, 3), Best = rep(worst_score, 3))
for (i in 1:3) {
xgb.opt.depth.callback(i, learner, better, sd_effect)
}
if (Laurae.xgb.opt.depth.iter[1, "Score"] == better(Laurae.xgb.opt.depth.df[, "score"])) {
Laurae.xgb.opt.depth.iter[4, ] <<- c(4, initial - 1, worst_score, worst_score)
Laurae.xgb.opt.depth.iter[5, ] <<- c(5, initial + 1, worst_score, worst_score)
for (i in 4:5) {
xgb.opt.depth.callback(i, learner, better, sd_effect)
}
cat("\n")
cat("Best depth found was: ", Laurae.xgb.opt.depth.best, ".\n", sep = "")
return()
} else if (Laurae.xgb.opt.depth.iter[2, "Score"] == better(Laurae.xgb.opt.depth.df[, "score"])) {
Laurae.xgb.opt.depth.iter[4, ] <<- c(4, initial - 1, worst_score, worst_score)
xgb.opt.depth.callback(4, learner, better, sd_effect)
if (Laurae.xgb.opt.depth.iter[4, "Best"] == Laurae.xgb.opt.depth.iter[4, "Score"]) {
cat("\n")
cat("Best depth found was: ", Laurae.xgb.opt.depth.best, ".\n", sep = "")
return()
}
j <- 0
for (i in 5:99999) {
Laurae.xgb.opt.depth.iter[i, ] <<- c(i, initial - (i - 2), worst_score, worst_score)
xgb.opt.depth.callback(i, learner, better, sd_effect)
if ((Laurae.xgb.opt.depth.best == (initial - (i - 2))) & (Laurae.xgb.opt.depth.iter[i, "Depth"] > min_depth)) {
j <- 0
} else {
j <- j + 1
if ((j == patience) | (Laurae.xgb.opt.depth.iter[i, "Depth"] == min_depth)) {
cat("\n")
cat("Best depth found was: ", Laurae.xgb.opt.depth.best, ".\n", sep = "")
return()
}
}
}
} else {
Laurae.xgb.opt.depth.iter[4, ] <<- c(4, initial + 1, worst_score, worst_score)
xgb.opt.depth.callback(4, learner, better, sd_effect)
if (Laurae.xgb.opt.depth.iter[4, "Best"] == Laurae.xgb.opt.depth.iter[4, "Score"]) {
cat("\n")
cat("Best depth found was: ", Laurae.xgb.opt.depth.best, ".\n", sep = "")
return()
}
j <- 0
for (i in 5:99999) {
Laurae.xgb.opt.depth.iter[i, ] <<- c(i, initial + (i - 2), worst_score, worst_score)
xgb.opt.depth.callback(i, learner, better, sd_effect)
if ((Laurae.xgb.opt.depth.best == (initial + (i - 2))) & (Laurae.xgb.opt.depth.iter[i, "Depth"] < max_depth)) {
j <- 0
} else {
j <- j + 1
if ((j == patience) | (Laurae.xgb.opt.depth.iter[i, "Depth"] == max_depth)) {
cat("\n")
cat("Best depth found was: ", Laurae.xgb.opt.depth.best, ".\n", sep = "")
return()
}
}
}
}
} |
gg_partial_coplot.rfsrc <- function(object,
xvar,
groups,
surv_type=c("mort",
"rel.freq",
"surv",
"years.lost",
"cif",
"chf"),
time,
...){
if (inherits(object, "rfsrc") == FALSE){
stop(paste("This function only works for Forests grown with the",
"randomForestSRC package."))
}
if (is.null(object$forest)) {
stop(paste("The function requires the \"forest = TRUE\"",
"attribute when growing the randomForest"))
}
arg_list <- list(...)
surv_type <- match.arg(surv_type)
dta.train <- object$xvar
if(missing(groups)){
if(is.null(arg_list$subset))
stop(paste("partial_coplot requires a groups argument to",
"stratify the partial plots."))
else{
}
}
dta.train$group <- groups[1:nrow(dta.train)]
lvl <- levels(groups)
lng <- length(lvl)
sbst <- parallel::mclapply(1:lng, function(ind){
st <- which(dta.train$group == levels(groups)[ind])
if(length(st) == 0) NULL
else st
})
for (ind in lng:1){
if(is.null(sbst[[ind]])){
sbst[[ind]] <- NULL
lvl <- lvl[-ind]
}
}
pdat.partlist <- lapply(1:length(sbst), function(ind){
randomForestSRC::plot.variable(object, surv.type=surv_type, time=time,
subset = sbst[[ind]],
xvar.names=xvar, partial=TRUE)
})
gg_part <- parallel::mclapply(pdat.partlist, gg_partial)
for(ind in 1:length(gg_part)){
gg_part[[ind]]$group <- lvl[ind]
}
gg_merge <- do.call(rbind, gg_part)
gg_merge$group <- factor(gg_merge$group, levels=unique(gg_merge$group))
class(gg_merge) <- c("gg_partial_coplot", class(gg_merge))
gg_merge
}
gg_partial_coplot.default <- gg_partial_coplot.rfsrc
gg_partial_coplot <- function (object, xvar,
groups,
surv_type=c("mort",
"rel.freq",
"surv",
"years.lost",
"cif",
"chf"),
time, ...) {
UseMethod("gg_partial_coplot", object)
}
gg_partial_coplot.randomForest <- function(object,
xvar,
groups,
surv_type=NULL,
time = NULL,
...){
stop("gg_partial_coplot is not yet support for randomForest objects")
} |
population_transitions <- function(populations,
demographic_stochasticity,
fecundity_matrix,
fecundity_max,
survival_matrix) {
stages <- nrow(fecundity_matrix)
multiple_survival_columns <- which(.colSums(+(survival_matrix > 0), m = stages, n = stages) > 1)
abundance_array_indices <- array(1:(stages*populations), c(stages, populations))[, rep(1:populations, each = stages)]
t_array_indices <- aperm(array(1:(stages*stages*populations), c(stages, stages, populations)), c(2, 1, 3))
t_fecundity_indices <- matrix(which(array(t(fecundity_matrix), c(stages, stages, populations)) > 0), ncol = populations)
fecundity_t_indices <- matrix(t_array_indices[t_fecundity_indices], ncol = populations)
abundance_fecundity_indices <- matrix(abundance_array_indices[t_fecundity_indices], ncol = populations)
t_survival_indices <- matrix(which(array(t(survival_matrix), c(stages, stages, populations)) > 0), ncol = populations)
survival_t_indices <- matrix(t_array_indices[t_survival_indices], ncol = populations)
abundance_survival_indices <- matrix(abundance_array_indices[t_survival_indices], ncol = populations)
abundance_array_indices <- NULL
t_array_indices <- NULL
if (demographic_stochasticity && is.numeric(fecundity_max)) {
fecundity_lookup <- data.frame(original = NA, shifted = seq(0.00, fecundity_max, 0.01))
for (i in 1:nrow(fecundity_lookup)) {
fecundity_lookup$original[i] <- mean(pmin(stats::rpois(100000, fecundity_lookup$shifted[i]), fecundity_max))
}
}
calculate <- function(fecundity_array, survival_array, stage_abundance, occupied_indices) {
occupied_populations <- length(occupied_indices)
generated_newborns <- array(0, c(stages, stages, populations))
occupied_t_fecundity_indices <- as.vector(t_fecundity_indices[, occupied_indices])
if (demographic_stochasticity) {
if (is.numeric(fecundity_max)) {
original_fecundity <- fecundity_array[as.vector(fecundity_t_indices[, occupied_indices])]
shifted_fecundity <- array(0, length(original_fecundity))
for (i in 1:length(original_fecundity)) {
if (is.finite(original_fecundity[i])) {
shifted_fecundity[i] <-
fecundity_lookup$shifted[which.min(abs(fecundity_lookup$original - original_fecundity[i]))]
}
}
selected_abundance <- stage_abundance[as.vector(abundance_fecundity_indices[, occupied_indices])]
generated_newborns[occupied_t_fecundity_indices] <-
apply(matrix(1:length(shifted_fecundity)), 1,
function(i) sum(pmin(stats::rpois(selected_abundance[i], shifted_fecundity[i]), fecundity_max)))
} else {
generated_newborns[occupied_t_fecundity_indices] <-
stats::rpois(length(occupied_t_fecundity_indices),
stage_abundance[as.vector(abundance_fecundity_indices[, occupied_indices])]*
fecundity_array[as.vector(fecundity_t_indices[, occupied_indices])])
}
} else {
if (is.numeric(fecundity_max)) {
selected_abundance <- stage_abundance[as.vector(abundance_fecundity_indices[, occupied_indices])]
generated_newborns[occupied_t_fecundity_indices] <-
pmin(round(selected_abundance*fecundity_array[as.vector(fecundity_t_indices[, occupied_indices])]),
trunc(selected_abundance*fecundity_max))
} else {
generated_newborns[occupied_t_fecundity_indices] <-
round(stage_abundance[as.vector(abundance_fecundity_indices[, occupied_indices])]*
fecundity_array[as.vector(fecundity_t_indices[, occupied_indices])])
}
}
generated_survivals <- array(0, c(stages, stages, populations))
occupied_t_survival_indices <- as.vector(t_survival_indices[, occupied_indices])
if (demographic_stochasticity) {
generated_survivals[occupied_t_survival_indices] <-
stats::rbinom(length(occupied_t_survival_indices),
stage_abundance[as.vector(abundance_survival_indices[, occupied_indices])],
survival_array[as.vector(survival_t_indices[, occupied_indices])])
} else {
generated_survivals[occupied_t_survival_indices] <-
round(stage_abundance[as.vector(abundance_survival_indices[, occupied_indices])]*
survival_array[as.vector(survival_t_indices[, occupied_indices])])
}
for (mult_surv_col in multiple_survival_columns) {
excessive_survivals <- (.colSums(generated_survivals[mult_surv_col, , occupied_indices], m = stages, n = occupied_populations) -
stage_abundance[mult_surv_col, occupied_indices])
for (i in which(excessive_survivals > 0)) {
pop_index <- occupied_indices[i]
sample_indices <- sample(1:stages, size = excessive_survivals[i], replace = TRUE, prob = survival_array[, mult_surv_col, pop_index])
for (sample_index in sample_indices) {
generated_survivals[mult_surv_col, sample_index, pop_index] <- generated_survivals[mult_surv_col, sample_index, pop_index] - 1
}
}
}
stage_abundance[, occupied_indices] <- .colSums(generated_newborns[, , occupied_indices] + generated_survivals[, , occupied_indices],
m = stages, n = stages*occupied_populations)
return(stage_abundance)
}
return(calculate)
} |
BP <- Rcpp::setRcppClass("BP")
LVQs <- Rcpp::setRcppClass("LVQs")
MAM <- Rcpp::setRcppClass("MAM")
NN <- Rcpp::setRcppClass("NN") |
ts_daily_decomp <- function(data, start){
data$date <- as.Date(data$date, "%m/%d/%Y %H:%M")
dates <- unique(data$date)
z <- as.data.frame(table(data$date))
z$Var1 <- lubridate::parse_date_time(z$Var1, orders = "%Y-%m-%d")
z$Var1 <- z[order(as.Date(z$Var1)),]
dat <- z[,1]
dataseries <- stats::ts(dat$Freq, frequency=365, start=c(start,1))
ds_decomposed <- stats::stl(dataseries, "per")
tssmooth <- stats::HoltWinters(ds_decomposed$time.series[,1], beta=FALSE, gamma=FALSE)
ds_decomposed$time.series[2:nrow(ds_decomposed$time.series),1] <- tssmooth$fitted[,1]
return(ds_decomposed)
} |
diagnostics <- function(project = NULL) {
renv_scope_error_handler()
project <- renv_project_resolve(project)
renv_scope_lock(project = project)
if (renv_file_type(project, symlinks = FALSE) != "directory") {
fmt <- "project %s is not a directory"
stopf(fmt, renv_path_pretty(project))
}
renv_scope_options(renv.verbose = TRUE)
reporters <- list(
renv_diagnostics_session,
renv_diagnostics_project,
renv_diagnostics_status,
renv_diagnostics_packages,
renv_diagnostics_abi,
renv_diagnostics_profile,
renv_diagnostics_settings,
renv_diagnostics_options,
renv_diagnostics_envvars,
renv_diagnostics_path,
renv_diagnostics_cache
)
fmt <- "Diagnostics Report [renv %s]"
title <- sprintf(fmt, renv_package_version("renv"))
lines <- paste(rep.int("=", nchar(title)), collapse = "")
vwritef(c(title, lines, ""))
for (reporter in reporters) {
tryCatch(reporter(project), error = renv_error_handler)
vwritef()
}
}
renv_diagnostics_session <- function(project) {
vwritef(header("Session Info"))
renv_scope_options(width = 80)
print(sessionInfo())
}
renv_diagnostics_project <- function(project) {
vwritef(header("Project"))
vwritef("Project path: %s", renv_path_pretty(project))
}
renv_diagnostics_status <- function(project) {
vwritef(header("Status"))
status(project = project)
}
renv_diagnostics_packages <- function(project) {
vwritef(header("Packages"))
lockfile <- renv_diagnostics_packages_lockfile(project)
libstate <- renv_diagnostics_packages_library(project)
used <- unique(renv_diagnostics_packages_dependencies(project)$Package)
recdeps <- renv_package_dependencies(
packages = used,
project = project
)
all <- c(
names(lockfile$Packages),
names(libstate$Packages),
names(recdeps),
used
)
renv_scope_locale(category = "LC_COLLATE", locale = "C")
all <- sort(unique(all))
deps <- rep.int(NA_character_, length(all))
names(deps) <- all
deps[names(recdeps)] <- "indirect"
deps[used] <- "direct"
libpaths <- dirname(map_chr(all, renv_package_find))
flibpaths <- factor(libpaths, levels = .libPaths())
libcodes <- as.integer(flibpaths)
libcodes[!is.na(libcodes)] <- sprintf("[%i]", libcodes[!is.na(libcodes)])
data <- data.frame(
Library = renv_diagnostics_packages_version(libstate, all),
Source = renv_diagnostics_packages_sources(libstate, all),
Lockfile = renv_diagnostics_packages_version(lockfile, all),
Source = renv_diagnostics_packages_sources(lockfile, all),
Path = libcodes,
Dependency = deps,
stringsAsFactors = FALSE,
check.names = FALSE
)
renv_scope_options(width = 9000)
print(data)
fmt <- "[%s]: %s"
vwritef()
vwritef(fmt, format(seq_along(levels(flibpaths))), format(levels(flibpaths)))
}
renv_diagnostics_packages_version <- function(lockfile, all) {
data <- rep.int(NA_character_, length(all))
names(data) <- all
formatted <- map_chr(lockfile$Packages, `[[`, "Version")
data[names(formatted)] <- formatted
data
}
renv_diagnostics_packages_sources <- function(lockfile, all) {
data <- rep.int(NA_character_, length(all))
names(data) <- all
sources <- map_chr(lockfile$Packages, function(record) {
record$Repository %||% record$Source %||% "<unknown>"
})
data[names(sources)] <- sources
data
}
renv_diagnostics_packages_lockfile <- function(project) {
lockpath <- renv_lockfile_path(project = project)
if (!file.exists(lockpath)) {
vwritef("This project has not yet been snapshotted: 'renv.lock' does not exist.")
return(list())
}
renv_lockfile_read(lockpath)
}
renv_diagnostics_packages_library <- function(project) {
library <- renv_paths_library(project = project)
if (!file.exists(library)) {
fmt <- "The project library %s does not exist."
vwritef(fmt, renv_path_pretty(library))
}
snapshot(project = project, lockfile = NULL, type = "all")
}
renv_diagnostics_packages_dependencies <- function(project) {
dependencies(project,
progress = FALSE,
errors = "reported",
dev = TRUE)
}
renv_diagnostics_abi <- function(project) {
vwritef(header("ABI"))
tryCatch(
renv_abi_check(),
error = function(e) {
vwritef(conditionMessage(e))
}
)
}
renv_diagnostics_profile <- function(project) {
vwritef(header("User Profile"))
userprofile <- "~/.Rprofile"
if (!file.exists(userprofile))
return(vwritef("[no user profile detected]"))
deps <- dependencies(userprofile,
progress = FALSE,
errors = "reported",
dev = TRUE)
if (empty(deps))
return(vwritef("[no R packages referenced in user profile"))
renv_scope_options(width = 200)
print(deps)
}
renv_diagnostics_settings <- function(project) {
vwritef(header("Settings"))
str(renv_settings_get(project))
}
renv_diagnostics_options <- function(project) {
vwritef(header("Options"))
keys <- c(
"defaultPackages",
"download.file.method",
"download.file.extra",
"install.packages.compile.from.source",
"pkgType",
"repos",
grep("^renv[.]", names(.Options), value = TRUE)
)
vals <- .Options[keys]
names(vals) <- keys
str(vals)
}
renv_diagnostics_envvars <- function(project) {
vwritef(header("Environment Variables"))
envvars <- convert(as.list(Sys.getenv()), "character")
useful <- c(
"R_LIBS_USER", "R_LIBS_SITE", "R_LIBS",
"HOME", "LANG", "MAKE",
grep("^RENV_", names(envvars), value = TRUE)
)
matches <- envvars[useful]
if (empty(matches))
return(vwritef("[no renv environment variables available]"))
names(matches) <- useful
matches[is.na(matches)] <- "<NA>"
matches <- matches[order(names(matches))]
keys <- names(matches)
vals <- matches
formatted <- paste(format(keys), vals, sep = " = ")
vwritef(formatted)
}
renv_diagnostics_path <- function(project) {
vwritef(header("PATH"))
path <- strsplit(Sys.getenv("PATH"), .Platform$path.sep, fixed = TRUE)[[1]]
vwritef(paste("-", path))
}
renv_diagnostics_cache <- function(project) {
vwritef(header("Cache"))
fmt <- "There are a total of %i package(s) installed in the renv cache."
cachelist <- renv_cache_list()
vwritef(fmt, length(cachelist))
vwritef("Cache path: %s", renv_path_pretty(renv_paths_cache()))
} |
smoothm <- function(y, method="smhuber",
k=0.862,
sn=sqrt(2.046/length(y)), tol = 1e-06, s=mad(y),
init="median")
{
estim <- switch(method,
huber=sehuber(y,k,tol,s,init),
smhuber=smhuber(y,k,sn,tol,s,init=init),
bisquare=mbisquare(y,k,tol,s,init),
smbisquare=smbisquare(y,k,tol,sn,s,init),
cauchy=mlcauchy(y,tol,s),
smcauchy=smcauchy(y,tol,sn,s),
smmed=smhuber(y,k,sn,tol,s,smmed=TRUE,init))
out <- list(mu=estim$mu,method=method,k=k,sn=sn,tol=tol,s=s)
out
}
sehuber <- function (y, k = 0.862, tol = 1e-06, s=mad(y), init="median")
{
y <- y[!is.na(y)]
n <- length(y)
if (init=="median")
mu <- median(y)
if (init=="mean")
mu <- mean(y)
repeat {
yy <- pmin(pmax(mu - k * s, y), mu + k * s)
mu1 <- sum(yy)/n
if (abs(mu - mu1) < tol * s)
break
mu <- mu1
}
list(mu = mu, s = s)
}
psicauchy <- function(x) 2*x/(1+x^2)
psidcauchy <- function(x) (2*(1+x^2)-4*x^2)/(1+x^2)^2
likcauchy <- function(x,mu) prod(dcauchy(x-mu))
flikcauchy <- function(y,x,mu,sn){
out <- c()
for (i in 1:length(y))
out[i] <- sum(log(dcauchy(x-y[i]-mu)))*dnorm(y[i],sd=sn)
out
}
smtfcauchy <- function(x,mu,sn)
integrate(flikcauchy, -Inf, Inf, x=x, mu=mu, sn=sn)$value
smcipsi <- function(y, x, sn=sqrt(2/length(x)))
psicauchy(x-y)*dnorm(y,sd=sn)
smcipsid <- function(y, x, sn=sqrt(2/length(x)))
psidcauchy(x-y)*dnorm(y,sd=sn)
smcpsi <- function(x, sn=sqrt(2/length(x))){
out <- c()
for (y in x)
out <- c(out,integrate(smcipsi, -Inf, Inf, x=y, sn=sn)$value)
out
}
smcpsid <- function(x, sn=sqrt(2/length(x))){
out <- c()
for (y in x)
out <- c(out,integrate(smcipsid, -Inf, Inf, x=y, sn=sn)$value)
out
}
smbpsi <- function(y, x, k=4.685, sn=sqrt(2/length(x))){
require(MASS)
(x-y)*psi.bisquare(x-y,c=k)*dnorm(y,sd=sn)
}
smbpsid <- function(y, x, k=4.685, sn=sqrt(2/length(x))){
require(MASS)
psi.bisquare(x-y,c=k,deriv=1)*dnorm(y,sd=sn)
}
smbpsii <- function(x, k=4.685, sn=sqrt(2/length(x))){
out <- c()
for (y in x)
out <- c(out,integrate(smbpsi, -Inf, Inf, x=y, k=k, sn=sn)$value)
out
}
smbpsidi <- function(x, k=4.685, sn=sqrt(2/length(x))){
out <- c()
for (y in x)
out <- c(out,integrate(smbpsid, -Inf, Inf, x=y, k=k, sn=sn)$value)
out
}
mbisquare <- function (y, k=4.685, tol = 1e-06, s=mad(y), init="median")
{
require(MASS)
y <- y[!is.na(y)]
n <- length(y)
if (init=="median")
mu <- median(y)
if (init=="mean")
mu <- mean(y)
ic <- 0
repeat {
ic <- ic+1
s1 <- sum((y-mu)*psi.bisquare((y-mu)/s,c=k))
s2 <- sum(psi.bisquare((y-mu)/s,c=k,deriv=1))
if (abs(s2)>tol)
mu1 <- mu+s1/s2
else
mu1 <- mu
if (mu1>max(y) | mu1<min(y) | ic>200)
break
if (abs(mu - mu1) < tol * s)
break
mu <- mu1
}
list(mu = mu, s = s)
}
smbisquare <- function (y, k=4.685, tol = 1e-06, sn=sqrt(1.0526/length(y)), s=mad(y), init="median")
{
y <- y[!is.na(y)]
n <- length(y)
if (init=="median")
mu <- median(y)
if (init=="mean")
mu <- mean(y)
ic <- 0
repeat {
ic <- ic+1
s1 <- sum(s*smbpsii((y-mu)/s, k=k, sn=sn))
s2 <- sum(smbpsidi((y-mu)/s, k=k, sn=sn))
if (abs(s2)>tol)
mu1 <- mu+s1/s2
else
mu1 <- mu
if (mu1>max(y) | mu1<min(y) | ic>200)
break
if (abs(mu - mu1) < tol * s)
break
mu <- mu1
}
list(mu = mu, s = s)
}
mlcauchy <- function (y, tol = 1e-06, s=mad(y))
{
y <- y[!is.na(y)]
n <- length(y)
me <- mu <- median(y)
ic <- 0
lmed <- likcauchy(y,mu)
repeat {
ic <- ic+1
s1 <- sum(s*psicauchy((y-mu)/s))
s2 <- sum(psidcauchy((y-mu)/s))
mu1 <- mu+s1/s2
if (mu1>max(y) | mu1<min(y) | ic>200)
break
if (abs(mu - mu1) < tol * s)
break
mu <- mu1
}
lmu <- likcauchy(y,mu)
if (lmu<=lmed){
md <- abs(rank(y)-(n+1)/2)
bi <- 0
md[md==0] <- n
mus <- me
for (q in (1+2*(0:(ceiling(n/2)-2)))){
for (j in 0:1){
i <- order(md)[q+j]
mu <- y[i]
lmunew <- likcauchy(y,mu)
if (lmunew>lmed){
bi <- i
lmed <- lmunew
}
ic <- 0
repeat {
ic <- ic+1
s1 <- sum(s*psicauchy((y-mu)/s))
s2 <- sum(psidcauchy((y-mu)/s))
mu1 <- mu+s1/s2
if (mu1>max(y) | mu1<min(y) | ic>200)
break
if (abs(mu - mu1) < tol * s)
break
mu <- mu1
}
lk <- likcauchy(y,mu)
if(lk>lmu){
lmu <- lk
mus <- mu
}
}
mu <- mus
if (lmu>lmed)
break
}
if (lmu<=lmed){
mu <- max(y)
mu1 <- min(y)
sa <- sum(psicauchy((y-mu)/s))
sb <- sum(psicauchy((y-mu1)/s))
repeat{
mu2 <- (mu+mu1)/2
sc <- sum(psicauchy((y-mu2)/s))
if (sign(sc)==sign(sa)) mu <- mu2
else mu1 <- mu2
if (abs(mu - mu1) < tol * s)
break
}
lmu <- likcauchy(y,mu)
}
}
if (lmu>lmed) mu1 <- mu
else mu1 <- ifelse(bi==0,me,y[bi])
list(mu = mu1, s = s)
}
smcauchy <- function (y, tol = 1e-06, sn=sqrt(2/length(y)), s=mad(y))
{
y <- y[!is.na(y)]
n <- length(y)
me <- mu <- median(y)
ic <- 0
lmed <- smtfcauchy(y,mu,sn)
repeat {
ic <- ic+1
mu1 <- mu+sum(s*smcpsi((y-mu)/s, sn=sn))/
sum(smcpsid((y-mu)/s, sn=sn))
if (mu1>max(y) | mu1<min(y) | ic>200)
break
if (abs(mu - mu1) < tol * s)
break
mu <- mu1
}
lmu <- smtfcauchy(y,mu,sn)
if (lmu<=lmed){
md <- abs(rank(y)-(n+1)/2)
bi <- 0
md[md==0] <- n
mus <- me
for (q in (1+2*(0:(ceiling(n/2)-2)))){
for (j in 0:1){
i <- order(md)[q+j]
mu <- y[i]
lmunew <- smtfcauchy(y,mu,sn)
if (lmunew>lmed){
bi <- i
lmed <- lmunew
}
ic <- 0
repeat {
ic <- ic+1
mu1 <- mu+sum(s*smcpsi((y-mu)/s, sn=sn))/
sum(smcpsid((y-mu)/s, sn=sn))
if (mu1>max(y) | mu1<min(y) | ic>200)
break
if (abs(mu - mu1) < tol * s)
break
mu <- mu1
}
lk <- smtfcauchy(y,mu,sn)
if(lk>lmu){
lmu <- lk
mus <- mu
}
}
mu <- mus
if (lmu>lmed)
break
}
}
if (lmu>lmed) mu1 <- mu
else mu1 <- ifelse(bi==0,me,y[bi])
list(mu = mu1, s = s)
}
smpsi <- function(x,k=0.862,sn=sqrt(2/length(x)))
{
k*pnorm(x,k,sn)-k*(1-pnorm(x,-k,sn))+x*(pnorm(x,-k,sn)-pnorm(x,k,sn))+
sn*(dnorm((x+k)/sn)-dnorm((x-k)/sn))
}
smpmed <- function(x,sn=sqrt(1/5))
{
-pnorm(0,x,sn)+pnorm(0,-x,sn)
}
smhuber <- function (y, k = 0.862, sn=sqrt(2.046/length(y)), tol = 1e-06, s=mad(y),
smmed=FALSE, init="median")
{
y <- y[!is.na(y)]
n <- length(y)
if (init=="median")
mu <- median(y)
if (init=="mean")
mu <- mean(y)
repeat {
if(smmed){
w <- smpmed(y-mu,sn=sn)/(y-mu)
w[abs(w)==Inf] <- NA
w[is.na(w)] <- max(w,na.rm=TRUE)
w[is.na(w)] <- 1
}
else{
w <- smpsi(y-mu,k=k,sn=sn)/(y-mu)
w[abs(w)==Inf] <- NA
w[is.na(w)] <- max(w,na.rm=TRUE)
w[is.na(w)] <- 1
}
yy <- w*y
mu1 <- sum(yy)/sum(w)
if (abs(mu - mu1) < tol * s)
break
mu <- mu1
}
list(mu = mu, s = s)
}
dens <- function(x, dfunction, ...){
prod(dfunction(x, ...))
}
pdens <- function(z, x, dfunction, ...)
{
out <- c()
for (j in 1:length(z)){
out[j] <- z[j]*dens(x-z[j], dfunction, ...)
}
out
}
sdens <- function(z, x, dfunction, ...)
{
out <- c()
for (j in 1:length(z))
out[j] <- dens(x-z[j], dfunction, ...)
out
}
pitman <- function(y, d=ddoublex, lower=-Inf, upper=Inf, s=mad(y), ...)
{
n <- length(y)
z <- y/s
out <- s*integrate(pdens, lower, upper, x=z, dfunction=d, ...)$value/
integrate(sdens, lower, upper, x=z, dfunction=d, ...)$value
if (is.na(out)) out <- median(y)
out
}
edhuber <- function(x, k=0.862, mu=0, sigma=1)
{
z <- (x-mu)/sigma
fk <- dnorm(k)
eps <- 1-1/(pnorm(k)-pnorm(-k)+2*fk/k)
val=c()
for (y in z){
if (y<(-k))
val <- c(val,(1-eps)*fk*exp(k*(y+k)))
else{
if (y>k)
val <- c(val,(1-eps)*fk*exp(-k*(y-k)))
else
val <- c(val,(1-eps)*dnorm(y))
}
}
out <- list(val=val/sigma,eps=eps)
out
}
dhuber <- function(x, k=0.862, mu=0, sigma=1) edhuber(x, k, mu, sigma)$val
rhuber <- function(n,k=0.862, mu=0, sigma=1)
{
l <- c()
while(length(l)<n){
x <- rexp(1)
s <- sample(c(-1,1),size=1)
y <- s*x/k
u <- runif(1)
if (abs(y)>=k | u<=exp(k*abs(y)-(k*k+y*y)/2))
l <- c(l,y)
}
sigma*l+mu
}
ddoublex <- function(x, mu=0, lambda=1)
exp(-abs(x-mu)/lambda)/(2*lambda)
rdoublex <- function(n,mu=0,lambda=1)
{
x <- rexp(n)
s <- sample(c(-1,1),size=n,replace=TRUE)
y <- s*x
lambda*y+mu
}
|
flexit <- function(x, par=NULL, P=NULL, S=NULL, K1=NULL, K2=NULL, zero=1E-9, error0 = 0, error1 = 1) {
if (!is.null(par)) {
if (is.na(par["K1"])) par <- c(par, K1=1)
if (is.na(par["K2"])) par <- c(par, K2=1)
K1 <- ifelse(par["K1"] == 0, zero, par["K1"])
K2 <- ifelse(par["K2"] == 0, zero, par["K2"])
S <- par["S"]
P <- par["P"]
}
if (is.null(K1)) K1 <- 1
if (is.null(K2)) K2 <- 1
K1 <- ifelse(K1 == 0, zero, K1)
K2 <- ifelse(K2 == 0, zero, K2)
if (is.infinite(2^(K1))) {
S1 <- K1*S/2
} else {
S1 <- (2^(K1 - 1)*K1*S)/(2^(K1) - 1)
}
Test1 <- (1 + (2^K1 - 1) * exp(4 * S1 * (P - x)))
Test1_p <- ifelse(!is.infinite(Test1),
Test1^(-1/K1),
exp((-1/K1)*(K1*log(2)+(4*S1*(P-x)))))
if (is.infinite(2^(K2))) {
S2 <- K2*S/2
} else {
S2 <- (2^(K2 - 1)*K2*S)/(2^(K2) - 1)
}
Test2 <- (1 + (2^K2 - 1) * exp(4 * S2 * (x - P)))
Test2_p <- ifelse(!is.infinite(Test2),
1 - Test2^(-1/K2),
1 - exp((-1/K2)*(K2*log(2)+(4*S2*(x - P)))))
p <- ifelse(x < P, ifelse(Test1 < 0,
ifelse(S1 < 0, error1, error0),
Test1_p)
,
ifelse(Test2 < 0,
ifelse(S2 < 0, error0, error1),
Test2_p)
)
return(p)
} |
print.EFA_AVERAGE <- function(x, stat = c("average", "range"),
plot = TRUE, ...) {
checkmate::assert_subset(stat, c("average", "sd", "range", "min", "max"),
empty.ok = FALSE)
settings <- x$settings
method <- settings$method
rotation <- settings$rotation
N <- settings$N
grid <- x$implementations_grid
averaging <- settings$averaging
varied_settings <- grid
varied_settings[, c("errors", "error_m", "converged", "heywood", "chisq",
"p_chi", "cfi", "caf", "rmsea", "aic", "bic")] <- NULL
varied_settings <- apply(varied_settings, 2, function(x)unique(x[!is.na(x)]))
varied_settings <- sapply(varied_settings, length)
varied_settings <- names(varied_settings[varied_settings > 1])
no_efas <- nrow(grid)
cat("\n")
cat("Averaging performed with averaging method ",
crayon::bold(ifelse(averaging == "median", "median",
paste0("mean (trim = ", settings$trim, ")", sep = ""))),
" across ", crayon::bold(no_efas), " EFAs, ",
"varying the following settings: ",
.settings_string(varied_settings), ".", sep = "")
cat("\n")
cat("\n")
cat("The error rate is at ",
crayon::bold(round(mean(grid$errors, na.rm = TRUE) * 100), "%", sep = ""),
". Of the solutions that did not result in an error, ",
crayon::bold(round(mean(grid$converged == 0, na.rm = TRUE) * 100), "%",
sep = ""),
" converged, ",
crayon::bold(round(mean(grid$heywood, na.rm = TRUE) * 100), "%", sep = ""),
" contained Heywood cases, and ",
crayon::bold(round(mean(grid$admissible, na.rm = TRUE) * 100), "%", sep = ""),
" were admissible.", sep = "")
cat("\n")
cat("\n")
if(all(grid$converged != 0 | grid$errors | grid$heywood)){
warning(crayon::yellow$bold("!"), crayon::yellow(" No solutions were achieved across which averaging was possible. Best try again with a different number of factors.\n"))
} else {
fit <- x$fit_indices
rownames(fit) <- fit$index
cat("\n")
cat(cli::rule(left = crayon::bold("Indicator-to-Factor Correspondences"),
col = "blue", line = 2))
cat("\n")
cat("\n")
cat("For each cell, the proportion of solutions including the respective indicator-to-factor correspondence. A salience threshold of",
crayon::bold(settings$salience_threshold),
"was used to determine indicator-to-factor correspondences.")
cat("\n")
cat("\n")
cat(print.LOADINGS(x$ind_fac_corres, cutoff = 1e-4, digits = 2))
cat("\n")
cat("\n")
cat(cli::rule(left = crayon::bold("Loadings"), col = "blue", line = 2))
cat("\n")
.print_average(x, what = c("loadings"), stat = stat, averaging = averaging)
cat("\n")
if(!all(is.na(x$Phi))){
cat("\n")
cat(cli::rule(left = crayon::bold("Factor Intercorrelations from Oblique Solutions"), col = "blue", line = 2))
cat("\n")
.print_average(x, what = c("Phi"), stat = stat, averaging = averaging)
cat("\n")
}
cat("\n")
cat(cli::rule(left = crayon::bold("Variances Accounted for"), col = "blue",
line = 2))
cat("\n")
.print_average(x, what = c("vars_accounted"), stat = stat,
averaging = averaging)
cat("\n")
if (fit["df", "average"] == 0) {
cat("\n")
cat(crayon::yellow$bold("!"), crayon::yellow(" The model is just identified (df = 0). Goodness of fit indices may not be interpretable."))
cat("\n")
}
cat("\n")
cat(cli::rule(left = crayon::bold("Model Fit"), col = "blue", line = 2))
cat("\n")
cat("\n")
cat(crayon::blue(" ", ifelse(averaging == "mean", "M", "Md"),
" (SD) [Min; Max]", sep = ""))
cat("\n")
if(all(method == "PAF") || is.na(N)){
.print_gof(fit, ind = "caf", ind_name = "CAF: ", print_zero = FALSE, digits = 2)
cat(crayon::blue("df: "),
.numformat(fit["df", "average"], 0, print_zero = TRUE), "\n", sep = "")
} else {
.print_gof(fit, ind = c("chisq"), ind_name = "\U1D712\U00B2: ",
print_zero = TRUE, digits = 2)
cat(crayon::blue("df: "),
.numformat(fit["df", "average"], 0, print_zero = TRUE), "\n", sep = "")
.print_gof(fit, ind = c("p_chi", "cfi", "rmsea", "aic", "bic", "caf"),
ind_name = c(crayon::italic("p: "), "CFI: ", "RMSEA: ",
"AIC: ", "BIC: ", "CAF: "),
print_zero = c(FALSE, FALSE, FALSE, TRUE, TRUE, FALSE),
digits = c(3, 2, 2, 2, 2, 2))
}
if(isTRUE(plot)){
if(ncol(x$loadings$average) <= 10){
plot(x)
} else {
message(cli::col_cyan(cli::symbol$info, " The factor solution contained more than 10 factors, no plot was generated. If you still want to create the plot, use 'plot(", substitute(x) ,")'.\n"))
}
}
}
}
.print_average <- function(x, what, stat, averaging){
if("average" %in% stat){
if(averaging == "mean"){
cat("\n")
cat(cli::rule(left = crayon::bold("Mean"), col = "blue"))
cat("\n")
cat("\n")
} else {
cat("\n")
cat(cli::rule(left = crayon::bold("Median"), col = "blue"))
cat("\n")
cat("\n")
}
if(what == "loadings"){
print(x$loadings$average)
} else if(what == "Phi"){
cat(.get_compare_matrix(x$Phi$average, r_red = Inf, n_char = 17,
var_names = paste0("F",
seq_len(ncol(x$Phi$average)))))
} else {
cat(.get_compare_matrix(x$vars_accounted$average, r_red = Inf,
n_char = 17))
}
}
if("sd" %in% stat){
cat("\n")
cat(cli::rule(left = crayon::bold("Standard Deviation"), col = "blue"))
cat("\n")
cat("\n")
if(what == "loadings"){
cat(.get_compare_matrix(x$loadings$sd, r_red = Inf, n_char = 17))
} else if(what == "Phi"){
cat(.get_compare_matrix(x$Phi$sd, r_red = Inf, n_char = 17,
var_names = paste0("F",
seq_len(ncol(x$Phi$sd)))))
} else {
cat(.get_compare_matrix(x$vars_accounted$sd, r_red = Inf,
n_char = 17))
}
}
if("range" %in% stat){
cat("\n")
cat(cli::rule(left = crayon::bold("Range"), col = "blue"))
cat("\n")
cat("\n")
if(what == "loadings"){
cat(.get_compare_matrix(x$loadings$range, r_red = Inf, n_char = 17))
} else if(what == "Phi"){
cat(.get_compare_matrix(x$Phi$range, r_red = Inf, n_char = 17,
var_names = paste0("F",
seq_len(ncol(x$Phi$range)))))
} else {
cat(.get_compare_matrix(x$vars_accounted$range, r_red = Inf,
n_char = 17))
}
}
if("min" %in% stat){
cat("\n")
cat(cli::rule(left = crayon::bold("Minimum"), col = "blue"))
cat("\n")
cat("\n")
if(what == "loadings"){
print(x$loadings$min)
} else if(what == "Phi"){
cat(.get_compare_matrix(x$Phi$min, r_red = Inf, n_char = 17,
var_names = paste0("F",
seq_len(ncol(x$Phi$min)))))
} else {
cat(.get_compare_matrix(x$vars_accounted$min, r_red = Inf,
n_char = 17))
}
}
if("max" %in% stat){
cat("\n")
cat(cli::rule(left = crayon::bold("Maximum"), col = "blue"))
cat("\n")
cat("\n")
if(what == "loadings"){
print(x$loadings$max)
} else if(what == "Phi"){
cat(.get_compare_matrix(x$Phi$max, r_red = Inf, n_char = 17,
var_names = paste0("F",
seq_len(ncol(x$Phi$max)))))
} else {
cat(.get_compare_matrix(x$vars_accounted$max, r_red = Inf,
n_char = 17))
}
}
}
.print_gof <- function(fit, ind, ind_name, print_zero, digits){
for(i in seq_along(ind)){
if(ind[i] %in% c("p_chi", "cfi", "rmsea", "caf")){
cat(crayon::blue(ind_name[i], sep = ""),
ifelse(round(fit[ind[i], "average"], digits[i]) < 1,
substr(.numformat(fit[ind[i], "average"], digits = digits[i],
print_zero = print_zero[i]),
2, digits + 2),
.numformat(fit[ind[i], "average"], digits = digits[i],
print_zero = print_zero[i])), " (",
ifelse(round(fit[ind[i], "sd"], digits[i]) < 1,
substr(.numformat(fit[ind[i], "sd"], digits = digits[i],
print_zero = print_zero[i]),
2, digits + 2),
.numformat(fit[ind[i], "sd"], digits = digits[i],
print_zero = print_zero[i])),
") [",
ifelse(round(fit[ind[i], "min"], digits[i]) < 1,
substr(.numformat(fit[ind[i], "min"], digits = digits[i],
print_zero = print_zero[i]),
2, digits + 2),
.numformat(fit[ind[i], "min"], digits = digits[i],
print_zero = print_zero[i])), "; ",
ifelse(round(fit[ind[i], "max"], digits[i]) < 1,
substr(.numformat(fit[ind[i], "max"], digits = digits[i],
print_zero = print_zero[i]),
2, digits + 2),
.numformat(fit[ind[i], "max"], digits = digits[i],
print_zero = print_zero[i])),
"]\n", sep = "")
} else {
cat(crayon::blue(ind_name[i], sep = ""),
.numformat(fit[ind[i], "average"], digits = digits[i],
print_zero = print_zero[i]), " (",
.numformat(fit[ind[i], "sd"], digits = digits[i],
print_zero = print_zero[i]),
") [",
.numformat(fit[ind[i], "min"], digits = digits[i],
print_zero = print_zero[i]),
"; ",
.numformat(fit[ind[i], "max"], digits = digits[i],
print_zero = print_zero[i]),
"]\n", sep = "")
}
}
} |
zeroGrob <- function() .zeroGrob
.zeroGrob <- NULL
widthDetails.zeroGrob <- function(x) unit(0, "cm")
heightDetails.zeroGrob <- function(x) unit(0, "cm")
grobWidth.zeroGrob <- function(x) unit(0, "cm")
grobHeight.zeroGrob <- function(x) unit(0, "cm")
drawDetails.zeroGrob <- function(x, recording) {}
is.zero <- function(x) is.null(x) || inherits(x, "zeroGrob") |
library(tibble)
library(data.table)
data(din32645)
test_that("calibration() handles data.tables and tibbles well", {
expect_silent(calibration(Area ~ Conc, data = as_tibble(din32645),
check_assumptions = F))
expect_silent(calibration(Area ~ Conc, data = data.table(din32645),
check_assumptions = F))
})
data(clayloam)
test_that("texture() handles data.tables and tibbles well", {
expect_silent(texture(reading ~ blank + time + temperature, as_tibble(clayloam),
model = "W1.2"))
expect_silent(texture(reading ~ blank + time + temperature, data.frame(clayloam),
model = "W1.2"))
}) |
centdis<-function(C,num,Meth){
C<-t(C);
A<-as.matrix(C[1:num,]);
B<-as.matrix(C[(1+num):nrow(C),]);
if (Meth=="stat")
{
C<-rbind(A,B);
cr<-nrow(C);
cc<-ncol(C);
for(n in 1:cc){
A[,n]<-A[,n]*(1/sd(C[,n]));
B[,n]<-B[,n]*(1/sd(C[,n]));
}
AA<-apply(A,2,mean);
BB<-apply(B,2,mean);
C<-rbind(AA,BB)
D<-as.matrix(dist(C,method="euclidean",diag=TRUE,upper=TRUE))
}
else
{AA<-apply(A,2,mean);
BB<-apply(B,2,mean);
C<-rbind(AA,BB)
D<-as.matrix(dist(C,method=Meth,diag=TRUE,upper=TRUE));}
return (D[1,2])
} |
`studentGrowthProjections` <-
function(panel.data,
sgp.labels,
grade.progression,
content_area.progression=NULL,
year_lags.progression=NULL,
grade.projection.sequence=NULL,
content_area.projection.sequence=NULL,
year_lags.projection.sequence=NULL,
max.forward.progression.years=NULL,
max.forward.progression.grade=NULL,
max.order.for.progression=NULL,
use.my.knots.boundaries,
use.my.coefficient.matrices,
panel.data.vnames,
achievement.level.prior.vname=NULL,
performance.level.cutscores,
calculate.sgps=TRUE,
convert.0and100=TRUE,
trajectories.chunk.size=50000L,
sgp.projections.equated=NULL,
projection.unit="YEAR",
projection.unit.label=NULL,
percentile.trajectory.values=NULL,
return.percentile.trajectory.values=NULL,
return.projection.group.identifier=NULL,
return.projection.group.scale.scores=NULL,
return.projection.group.dates=NULL,
isotonize=TRUE,
lag.increment=0L,
sgp.exact.grade.progression=FALSE,
projcuts.digits=NULL,
sgp.projections.use.only.complete.matrices=NULL,
SGPt=NULL,
print.time.taken=TRUE) {
started.at=proc.time()
started.date <- prettyDate()
GRADE <- NULL
.smooth.bound.iso.row <- function(tmp.dt, grade, tmp.year, tmp.content_area, iso=isotonize, missing.taus, na.replace, equated.year) {
X <- NULL
if (!is.null(equated.year)) tmp.year <- equated.year
bnd <- eval(parse(text=paste0("panel.data[['Knots_Boundaries']]", get.my.knots.boundaries.path(tmp.content_area, tmp.year), "[['loss.hoss_", grade, "']]")))
tmp.dt[X < bnd[1L], X:=bnd[1L]]
tmp.dt[X > bnd[2L], X:=bnd[2L]]
if (!iso) return(round(tmp.dt[['X']], digits=5))
if (iso & missing.taus) {
na.row <- rep(NA,length(tmp.dt[['X']]))
na.row[na.replace] <- round(data.table(tmp.dt[!is.na(X)], key=c("ID", "X"))[['X']], digits=5)
return(na.row)
} else {
setkey(tmp.dt, ID, X)
return(round(tmp.dt[c(matrix(seq.int(dim(tmp.dt)[1L]), ncol=100L, byrow=TRUE))][['X']], digits=5))
}
}
.create.path <- function(labels, pieces=c("my.subject", "my.year", "my.extra.label")) {
sub(' ', '_', toupper(sub('\\.+$', '', paste(unlist(lapply(labels[pieces], as.character)), collapse="."))))
}
.get.trajectory.chunks <- function(seq.for.data) {
split(seq.for.data, ceiling(seq.for.data/trajectories.chunk.size))
}
get.my.knots.boundaries.path <- function(content_area, year) {
tmp.path.knots.boundaries <- paste(sgp.labels[['my.subject']], sgp.labels[['my.year']], sep=".")
if (is.null(sgp.projections.equated)) {
tmp.knots.boundaries.names <-
names(panel.data[['Knots_Boundaries']][[tmp.path.knots.boundaries]])[content_area==sapply(strsplit(names(panel.data[['Knots_Boundaries']][[tmp.path.knots.boundaries]]), "[.]"), '[', 1L)]
if (length(tmp.knots.boundaries.names)==0L) {
return(paste0("[['", tmp.path.knots.boundaries, "']]"))
} else {
tmp.knots.boundaries.years <- sapply(strsplit(tmp.knots.boundaries.names, "[.]"), function(x) x[2L])
tmp.sum <- sum(year >= sort(tmp.knots.boundaries.years), na.rm=TRUE)
return(paste0("[['", tmp.path.knots.boundaries, "']][['", paste(c(content_area, sort(tmp.knots.boundaries.years)[tmp.sum]), collapse="."), "']]"))
}
} else {
return(paste0("[['", tmp.path.knots.boundaries, "']][['", content_area, ".", sgp.projections.equated[['Year']], "']]"))
}
}
.get.panel.data <- function(tmp.data, grade.progression, content_area.progression, num.prior=NULL, completed.ids=NULL, bound.data=TRUE, equated.year=NULL) {
if (is.null(num.prior)) num.prior <- length(grade.progression)
if (is.character(tmp.data[[1L+num.panels]])) {
tmp.data <- eval(parse(text=paste0("na.omit(tmp.data[.(", paste(rev(paste0("'", grade.progression, "'"))[seq(num.prior)], collapse=", "), "), on=names(tmp.data)[c(", paste(1+num.panels-(1L:num.prior-1L), collapse=", ") , ")]], cols=names(tmp.data)[c(",paste(1L+2*num.panels-(1L:num.prior-1L), collapse=", "), ")])[,c(1, ", paste(rev(1+2*num.panels-(1L:num.prior-1L)), collapse=", "), ")]")))
} else {
tmp.data <- eval(parse(text=paste0("na.omit(tmp.data[.(", paste(rev(grade.progression)[seq(num.prior)], collapse=", "), "), on=names(tmp.data)[c(", paste(1+num.panels-(1L:num.prior-1L), collapse=", ") , ")]], cols=names(tmp.data)[c(",paste(1+2*num.panels-(1L:num.prior-1L), collapse=", "), ")])[,c(1, ", paste(rev(1+2*num.panels-(1L:num.prior-1L)), collapse=", "), ")]")))
}
if (!is.null(completed.ids)) tmp.data <- tmp.data[!ID %in% completed.ids]
if (bound.data) {
if (!is.null(equated.year)) tmp.year <- equated.year else tmp.year <- as.character(sgp.labels$my.year)
for (i in seq(dim(tmp.data)[2L]-1L)) {
bnd <- eval(parse(text=paste0("panel.data[['Knots_Boundaries']]", get.my.knots.boundaries.path(content_area.progression[i], tmp.year),
"[['loss.hoss_", grade.progression[i], "']]")))
eval(parse(text=paste0("tmp.data[", names(tmp.data)[i+1L], "<bnd[1L], names(tmp.data)[i+1L] := bnd[1L]]")))
eval(parse(text=paste0("tmp.data[", names(tmp.data)[i+1L], ">bnd[2L], names(tmp.data)[i+1L] := bnd[2L]]")))
}
}
return(tmp.data)
}
get.my.cutscore.state.year.sgprojection <- function(Cutscores, content_area, year, my.state) {
if (!is.na(my.state)) {
tmp.cutscore.state <- sapply(strsplit(names(Cutscores)[grep(content_area, names(Cutscores))], "[.]"), function(x) x[2L])
if (my.state %in% tmp.cutscore.state) {
content_area <- paste(content_area, my.state, sep=".")
year.split.index <- -2L
} else year.split.index <- -1L
} else year.split.index <- -1L
tmp.cutscore.years <- sapply(sapply(strsplit(names(Cutscores)[grep(content_area, names(Cutscores))], "[.]"), function(x) tail(x, year.split.index)), paste, collapse=".")
tmp.cutscore.years[tmp.cutscore.years==""] <- NA
if (any(!is.na(tmp.cutscore.years))) {
if (year %in% tmp.cutscore.years) {
return(paste(content_area, year, sep="."))
} else {
if (year==sort(c(year, tmp.cutscore.years))[1L]) {
return(content_area)
} else {
return(paste(content_area, sort(tmp.cutscore.years)[which(year==sort(c(year, tmp.cutscore.years)))-1L], sep="."))
}
}
} else {
return(content_area)
}
}
get.grade.projection.sequence.matrices <- function(
grade.progression,
content_area.progression,
year_lags.progression,
grade.projection.sequence,
content_area.projection.sequence,
year_lags.projection.sequence,
sgp.exact.grade.progression,
SGPt) {
add.missing.taus.to.matrix <- function(my.matrix) {
augmented.mtx <- matrix(NA, nrow=dim(my.matrix)[1L], ncol=100L)
tau.num <- ceiling(as.numeric(substr(colnames(my.matrix), 6, nchar(colnames(my.matrix))))*100L)
na.replace <- seq.int(100) %in% tau.num
augmented.mtx[,na.replace] <- my.matrix
return(augmented.mtx)
}
if (sgp.exact.grade.progression) grade.progression.index <- length(grade.progression) else grade.progression.index <- seq_along(grade.progression)
tmp.list <- list()
for (i in seq_along(grade.progression.index)) {
tmp.list[[i]] <- list()
for (j in seq_along(grade.projection.sequence)) {
tmp.years_lags <- c(tail(year_lags.progression, grade.progression.index[i]-1L), head(year_lags.projection.sequence, j))
if (length(grep("BASELINE", sgp.labels[['my.extra.label']])) > 0) {
tmp.years <- rep("BASELINE", length(tmp.years_lags)+1L)
} else {
tmp.years <- yearIncrement(sgp.labels$my.year, rev(c(0L, -cumsum(rev(tmp.years_lags)))))
}
tmp.matrix <- getsplineMatrices(
tmp.matrices,
c(tail(content_area.progression, grade.progression.index[i]), head(content_area.projection.sequence, j)),
c(tail(grade.progression, grade.progression.index[i]), head(grade.projection.sequence, j)),
tmp.years,
tmp.years_lags,
return.highest.order.matrix=TRUE,
my.matrix.highest.order=max.order.for.progression,
my.matrix.time.dependency=if (is.null(SGPt)) NULL else list(TIME="TIME", TIME_LAG="TIME_LAG"))
if (length(tmp.matrix)==0L) {
if (length(grep("BASELINE", sgp.labels[['my.extra.label']])) == 0) {
tmp.years2 <- yearIncrement(sgp.labels$my.year, rev(c(0L, -cumsum(rev(tmp.years_lags)))))
} else {
tmp.years2 <- rep("BASELINE", length(tmp.years_lags)+1L)
}
tmp.matrix <- getsplineMatrices(
tmp.matrices,
c(tail(content_area.progression, grade.progression.index[i]), head(content_area.projection.sequence, j)),
c(tail(grade.progression, grade.progression.index[i]), head(grade.projection.sequence, j)),
tmp.years2,
tmp.years_lags,
return.highest.order.matrix=TRUE,
my.matrix.highest.order=max.order.for.progression,
my.matrix.time.dependency=if (is.null(SGPt)) NULL else list(TIME="TIME", TIME_LAG="TIME_LAG"))
if (length(tmp.matrix)==0L) next
tmp.matrix[[1L]]@Time[[1L]] <- tmp.years
}
tmp.list[[i]][[j]] <- tmp.matrix[[1L]]
names(tmp.list[[i]])[j] <- content_area.projection.sequence[j]
if (dim(tmp.list[[i]][[j]]@.Data)[2L] != 100L) {
tmp.list[[i]][[j]]@.Data <- add.missing.taus.to.matrix(tmp.list[[i]][[j]]@.Data)
missing.taus <- TRUE
}
}
}
for (f in seq_along(tmp.list)) tmp.list[[f]] <- tmp.list[[f]][which(!sapply(tmp.list[[f]], is.null))]
return(rev(tmp.list))
}
.get.percentile.trajectories <- function(ss.data, projection.matrices) {
tmp.percentile.trajectories <- list()
completed.ids <- TEMP_1 <- TEMP_2 <- TIME <- TIME_LAG <- TMP_KEY <- NULL
for (i in seq_along(projection.matrices)) {
if (any(!ss.data[[1L]] %in% completed.ids)) {
tmp.dt <- .get.panel.data(
ss.data,
head(projection.matrices[[i]][[1L]]@Grade_Progression[[1L]], -1L),
head(projection.matrices[[i]][[1L]]@Content_Areas[[1L]], -1L),
completed.ids=completed.ids,
equated.year=yearIncrement(sgp.projections.equated[['Year']], -1L))
if (dim(tmp.dt)[1L] > 0L) {
completed.ids <- c(unique(tmp.dt, by=(1L))[[1L]], completed.ids)
tmp.dt <- tmp.dt[list(rep(tmp.dt[[1L]], 100L))]
missing.taus <- FALSE; na.replace <- NULL
label.iter <- 1L
for (j in seq_along(projection.matrices[[i]])) {
tmp.matrix <- projection.matrices[[i]][[j]]
mod <- character()
int <- "data.table(ID=tmp.dt[[1L]], INT=1L,"
for (k in seq_along(projection.matrices[[i]][[j]]@Time_Lags[[1L]])) {
knt <- paste0("tmp.matrix@Knots[[", k, "]]")
bnd <- paste0("tmp.matrix@Boundaries[[", k, "]]")
mod <- paste0(mod, ", bs(tmp.dt[[", dim(tmp.dt)[2L]-k+1L, "]], knots=", knt, ", Boundary.knots=", bnd, ")")
}
tmp.scores <- eval(parse(text=paste0(int, substring(mod, 2L), ", key='ID')")))
if (!is.null(SGPt)) {
grade.projection.sequence.labels <- c(paste(tail(grade.progression, 1L), "EOW", sep="."), grade.projection.sequence)
content_area.projection.sequence.labels <- c(tail(content_area.progression, 1L), content_area.projection.sequence)
if (j==1L) {
tmp.scores <- panel.data$Panel_Data[,c("ID", SGPt), with=FALSE][tmp.scores, on="ID"]
for (k in unlist(tmp.matrix@Version[['Matrix_Information']][['SGPt']][c("MAX_TIME_PRIOR", "MAX_TIME")])) {
tmp.scores[,TIME:=k]
tmp.time.shift.index <- getTimeShiftIndex(as.numeric(max(tmp.scores[[SGPt]])), tmp.matrix)
tmp.scores[,TIME_LAG:=(k+365*tmp.time.shift.index)-as.numeric(get(SGPt))]
tmp.scores[,TMP_KEY:=rep(seq.int(100), dim(tmp.scores)[1L]/100)]
tmp.dt[,TEMP_1:=tmp.scores[, as.matrix(.SD) %*% [email protected][,TMP_KEY], by=TMP_KEY, .SDcols=3:(dim(tmp.scores)[2L]-1L)][['V1']]]
tmp.dt[,TEMP_2:=.smooth.bound.iso.row(
data.table(ID=tmp.dt[[1L]], X=TEMP_1),
tail(grade.progression, 1L),
yearIncrement(sgp.labels[['my.year']], j, lag.increment),
content_area.projection.sequence[j],
missing.taus=missing.taus,
na.replace=na.replace,
equated.year=yearIncrement(sgp.projections.equated[['Year']], -1L))]
setnames(tmp.dt, "TEMP_2",
paste("SS", grade.projection.sequence.labels[label.iter], content_area.projection.sequence.labels[label.iter], sep="."))
tmp.dt[,TEMP_1:=NULL]
label.iter <- label.iter + 1
}
tmp.scores[,(SGPt):=NULL]
tmp.max.time <- k
} else {
tmp.scores[,TIME:=tmp.matrix@Version[['Matrix_Information']][['SGPt']][['MAX_TIME']]]
tmp.time.shift.index <- getTimeShiftIndex(as.numeric(tmp.max.time), tmp.matrix)
tmp.scores[,TIME_LAG:=(tmp.matrix@Version[['Matrix_Information']][['SGPt']][['MAX_TIME']]+365L*tmp.time.shift.index)-tmp.max.time]
tmp.scores[,TMP_KEY:=rep(seq.int(100), dim(tmp.scores)[1L]/100)]
tmp.max.time <- tmp.matrix@Version[['Matrix_Information']][['SGPt']][['MAX_TIME']]
tmp.dt[,TEMP_1:=tmp.scores[, as.matrix(.SD) %*% [email protected][,TMP_KEY], by=TMP_KEY, .SDcols=2:(dim(tmp.scores)[2L]-1L)][['V1']]]
tmp.dt[,TEMP_2:=.smooth.bound.iso.row(
data.table(ID=tmp.dt[[1L]], X=TEMP_1),
grade.projection.sequence[j],
yearIncrement(sgp.labels[['my.year']], j, lag.increment),
content_area.projection.sequence[j],
missing.taus=missing.taus,
na.replace=na.replace,
equated.year=yearIncrement(sgp.projections.equated[['Year']], -1L))]
setnames(tmp.dt, "TEMP_2", paste("SS", grade.projection.sequence.labels[label.iter], content_area.projection.sequence.labels[label.iter], sep="."))
tmp.dt[,TEMP_1:=NULL]
label.iter <- label.iter + 1L
}
} else {
grade.projection.sequence.labels <- grade.projection.sequence
content_area.projection.sequence.labels <- content_area.projection.sequence
tmp.scores[,TMP_KEY:=rep(seq.int(100), dim(tmp.scores)[1L]/100)]
tmp.dt[,TEMP_1:=tmp.scores[, as.matrix(.SD) %*% [email protected][,TMP_KEY], by=TMP_KEY, .SDcols=2:(dim(tmp.scores)[2L]-1L)][['V1']]]
tmp.dt[,TEMP_2:=.smooth.bound.iso.row(
data.table(ID=tmp.dt[[1L]], X=TEMP_1),
grade.projection.sequence[j],
yearIncrement(sgp.labels[['my.year']], j, lag.increment),
content_area.projection.sequence[j],
missing.taus=missing.taus,
na.replace=na.replace,
equated.year=yearIncrement(sgp.projections.equated[['Year']], -1L))]
setnames(tmp.dt, "TEMP_2", paste("SS", grade.projection.sequence.labels[label.iter], content_area.projection.sequence.labels[label.iter], sep="."))
tmp.dt[,TEMP_1:=NULL]
label.iter <- label.iter + 1L
}
}
setkeyv(tmp.dt, names(tmp.dt)[1L])
tmp.percentile.trajectories[[i]] <-
tmp.dt[,c("ID", intersect(names(tmp.dt), paste("SS", grade.projection.sequence.labels, content_area.projection.sequence.labels, sep="."))), with=FALSE]
}
}
}
return(rbindlist(tmp.percentile.trajectories))
}
.sgp.targets <- function(data, cut, convert.0and100) {
if (is.na(cut)) {
return(as.integer(NA))
} else {
tmp <- which.min(c(data < cut, FALSE))
if (tmp==101L) tmp <- 100L
if (convert.0and100 && tmp==0L) return(1L)
if (convert.0and100 && tmp==100L) return(99L)
return(tmp)
}
}
.get.trajectories.and.cuts <- function(percentile.trajectories, trajectories.tf, cuts.tf, projection.unit=projection.unit) {
CUT <- STATE <- NULL
if (!is.null(SGPt)) {
content_area.projection.sequence <- c(tail(content_area.progression, 1L), content_area.projection.sequence)
grade.projection.sequence.labels <- c(paste(tail(grade.progression, 1L), "EOW", sep="."), grade.projection.sequence)
grade.projection.sequence <- c(tail(grade.progression, 1L), grade.projection.sequence)
} else {
grade.projection.sequence.labels <- grade.projection.sequence
}
if (trajectories.tf) {
if (is.numeric(percentile.trajectory.values)) {
tmp.name.prefix <- "P"
tmp.traj <- percentile.trajectories[rep(seq.int(100), dim(percentile.trajectories)[1L]/100L) %in% percentile.trajectory.values]
tmp.num.years.forward <- length(grade.projection.sequence)
}
if (is.character(percentile.trajectory.values)) {
tmp.name.prefix <- "SCALE_SCORE_"
tmp.num.years.forward <- min(length(grade.projection.sequence),
lapply(strsplit(percentile.trajectory.values, "_")[[1L]], type.convert)[sapply(lapply(strsplit(percentile.trajectory.values, "_")[[1L]], type.convert), is.numeric)][[1L]])
if (!any(grepl("CURRENT", percentile.trajectory.values))) tmp.num.years.forward <- min(length(grade.projection.sequence), tmp.num.years.forward+1L)
tmp.indices <- as.integer(rep(dim(percentile.trajectories)[1L]/uniqueN(percentile.trajectories[['ID']])*(seq(uniqueN(percentile.trajectories[['ID']]))-1L),
each=length(percentile.trajectory.values)) + c(t(as.matrix(data.table(panel.data[["Panel_Data"]],
key="ID")[list(unique(percentile.trajectories, by='ID')[['ID']])][,percentile.trajectory.values, with=FALSE]))))
tmp.traj <- percentile.trajectories[tmp.indices, 1L:(2L+tmp.num.years.forward-1L), with=FALSE][,ID:=rep(unique(percentile.trajectories, by='ID')[['ID']], each=length(percentile.trajectory.values))]
if (tmp.num.years.forward==1L) {
tmp.target.name <- tail(names(tmp.traj), 1L)
if ("STATE" %in% names(panel.data[["Panel_Data"]])) {
included.states <- unique(panel.data[["Panel_Data"]][['STATE']])
content_area.index <- grep(sgp.labels$my.subject, sapply(names(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscores"]]),
function(x) strsplit(x, "[.]")[[1L]][1L], USE.NAMES=FALSE))
available.states <- unique(sapply(names(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscores"]]),
function(x) strsplit(x, "[.]")[[1L]][2L], USE.NAMES=FALSE)[content_area.index])
unavailable.states <- included.states[!included.states %in% available.states]
percentile.trajectories <- na.omit(data.table(panel.data[["Panel_Data"]][,c("ID", "STATE"), with=FALSE], key="ID")[STATE %in% available.states][percentile.trajectories], cols="STATE")
tmp.traj <- percentile.trajectories[which(!duplicated(percentile.trajectories[['ID']]))]
if (length(percentile.trajectory.values)==2L) tmp.traj <- data.table(rbindlist(list(tmp.traj, tmp.traj)), key="ID")
for (state.iter in unique(tmp.traj$STATE)) {
my.cutscore.year <- get.my.cutscore.state.year.sgprojection(Cutscores, content_area.projection.sequence[1L], yearIncrement(sgp.labels$my.year, 1L, lag.increment), my.state=state.iter)
tmp.cutscores.by.grade <- tmp.cutscores[[my.cutscore.year]][[paste0("GRADE_", grade.projection.sequence[1L])]]
if (length(percentile.trajectory.values)==1L) {
tmp.state.level <- which(sapply(lapply(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscore_Information"]][['State_Levels']],
'[[', 1L), function(x) state.iter %in% x))
cuku.level.to.get <- which.max(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscore_Information"]][[
'State_Levels']][[tmp.state.level]][["Levels"]]=="Proficient")-1L
tmp.traj[which(STATE==state.iter), (tmp.target.name):=tmp.cutscores.by.grade[cuku.level.to.get]]
}
if (length(percentile.trajectory.values)==2L) {
tmp.state.level <- which(sapply(lapply(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscore_Information"]][['State_Levels']],
'[[', 1L), function(x) state.iter %in% x))
cuku.level.to.get <- which.max(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscore_Information"]][[
'State_Levels']][[tmp.state.level]][["Levels"]]=="Proficient")-1L
musu.level.to.get <- which.max(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscore_Information"]][[
'State_Levels']][[tmp.state.level]][["Levels"]]=="Proficient")
tmp.traj[which(STATE==state.iter),
(tmp.target.name):=c(tmp.cutscores.by.grade[cuku.level.to.get], tmp.cutscores.by.grade[musu.level.to.get])]
}
}
tmp.traj[,STATE:=NULL]
} else {
my.cutscore.year <- get.my.cutscore.state.year.sgprojection(Cutscores, content_area.projection.sequence[1L], yearIncrement(sgp.labels$my.year, 1L, lag.increment), my.state=NA)
tmp.cutscores.by.grade <- tmp.cutscores[[my.cutscore.year]][[paste0("GRADE_", grade.projection.sequence[1L])]]
if (length(percentile.trajectory.values)==1L) {
cuku.level.to.get <- which.max(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Levels"]][["Proficient"]]=="Proficient")-1L
tmp.target.scores <- rep(tmp.cutscores.by.grade[cuku.level.to.get], uniqueN(tmp.traj[['ID']]))
}
if (length(percentile.trajectory.values)==2L) {
cuku.level.to.get <- which.max(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Levels"]][["Proficient"]]=="Proficient")-1L
musu.level.to.get <- which.max(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Levels"]][["Proficient"]]=="Proficient")
tmp.target.scores <- rep(c(tmp.cutscores.by.grade[cuku.level.to.get], tmp.cutscores.by.grade[musu.level.to.get]), uniqueN(tmp.traj[['ID']]))
}
tmp.target.scores[is.na(tmp.traj[[tmp.target.name]])] <- NA
tmp.traj[,(tmp.target.name):=tmp.target.scores]
}
}
}
tmp.traj[,(2:dim(tmp.traj)[2L]):=round(tmp.traj[,2:dim(tmp.traj)[2L], with=FALSE], digits=projcuts.digits)]
trajectories <- ddcast(tmp.traj[, CUT:=rep(percentile.trajectory.values, dim(tmp.traj)[1L]/length(percentile.trajectory.values))],
ID ~ CUT, value.var=setdiff(names(tmp.traj), c("ID", "CUT")), sep=".")
if (any(grepl("CURRENT", percentile.trajectory.values))) percentile.trajectory.values <- unlist(strsplit(percentile.trajectory.values, "_CURRENT"))
if (projection.unit=="GRADE") {
tmp.vec <- expand.grid(tmp.name.prefix, percentile.trajectory.values, paste0("_PROJ_", projection.unit.label, "_"), paste(grade.projection.sequence.labels, content_area.projection.sequence, sep="_"), lag.increment.label)[seq.int(length(percentile.trajectory.values)*tmp.num.years.forward),]
} else {
tmp.vec <- expand.grid(tmp.name.prefix, percentile.trajectory.values, paste0("_PROJ_", projection.unit.label, "_"), seq_along(grade.projection.sequence.labels), lag.increment.label)[seq.int(length(percentile.trajectory.values)*tmp.num.years.forward),]
}
setnames(trajectories, c("ID", do.call(paste0, tmp.vec)))
if (!cuts.tf) return(trajectories)
}
if (cuts.tf) {
setkey(percentile.trajectories, ID)
tmp.cuts.list <- list()
if ("STATE" %in% names(panel.data[["Panel_Data"]])) {
included.states <- unique(panel.data[["Panel_Data"]][['STATE']]); state.arg <- "STATE == states[n.state]"
content_area.index <- grep(sgp.labels$my.subject, sapply(names(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscores"]]), function(x) strsplit(x, "[.]")[[1L]][1L], USE.NAMES=FALSE))
available.states <- unique(sapply(names(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscores"]]), function(x) strsplit(x, "[.]")[[1L]][2L], USE.NAMES=FALSE)[content_area.index])
unavailable.states <- included.states[!included.states %in% available.states]
percentile.trajectories <- na.omit(data.table(panel.data[["Panel_Data"]][,c("ID", "STATE"), with=FALSE], key="ID")[STATE %in% available.states][percentile.trajectories], cols="STATE")
states <- included.states[included.states %in% available.states]
} else {
states <- NA; state.arg <- "is.na(STATE)"
percentile.trajectories[, STATE:=NA]
}
for (n.state in seq(states)) {
k <- 1L
cuts.arg <- names.arg <- character()
for (i in seq_along(grade.projection.sequence)) {
my.cutscore.state.year <- get.my.cutscore.state.year.sgprojection(Cutscores, content_area.projection.sequence[i], yearIncrement(sgp.labels[['my.year']], i, lag.increment), my.state=states[n.state])
tmp.cutscores.by.grade <- tmp.cutscores[[my.cutscore.state.year]][[paste0("GRADE_", grade.projection.sequence[i])]]
if (!is.null(tmp.cutscores.by.grade)) {
for (j in seq_along(tmp.cutscores.by.grade)) {
cuts.arg[k] <- paste0(".sgp.targets(SS", ".", grade.projection.sequence.labels[i], ".", content_area.projection.sequence[i], ", ", tmp.cutscores.by.grade[j], ", ", convert.0and100, ")")
if (projection.unit=="GRADE") {
names.arg[k] <- paste0("LEVEL_", j, "_SGP_TARGET_", projection.unit.label, "_", grade.projection.sequence.labels[i], lag.increment.label)
} else {
names.arg[k] <- paste0("LEVEL_", j, "_SGP_TARGET_", projection.unit.label, "_", i, lag.increment.label)
}
k <- k+1L
}
}
}
arg <- paste0("list(", paste(cuts.arg, collapse=", "), ")")
tmp.cuts.list[[n.state]] <- eval(parse(text=paste0("percentile.trajectories[which(", state.arg, "),", arg, ", by=ID]")))
setnames(tmp.cuts.list[[n.state]], c("ID", names.arg))
if (!is.na(states[n.state])) {
tmp.cuts.list[[n.state]][,STATE:=states[n.state]]
setcolorder(tmp.cuts.list[[n.state]], c("ID", "STATE", names.arg))
}
}
tmp.cuts <- rbindlist(tmp.cuts.list, fill=TRUE)
if (dim(tmp.cuts)[1L]==0L) {
if (!trajectories.tf) {
return(NULL)
} else {
return(trajectories)
}
} else {
setcolorder(tmp.cuts, names(tmp.cuts.list[[which.max(sapply(tmp.cuts.list, ncol))]]))
setkey(tmp.cuts, ID)
if (!trajectories.tf) {
return(tmp.cuts)
} else {
return(merge(tmp.cuts, trajectories, all=TRUE))
}
}
}
}
ID <- tmp.messages <- SGP_PROJECTION_GROUP <- SGP_PROJECTION_GROUP_SCALE_SCORES <- SGP_PROJECTION_GROUP_DATES <- index <- NULL
if (!calculate.sgps) {
tmp.messages <- c(tmp.messages, paste("\t\tNOTE: Student growth projections not calculated for", sgp.labels$my.year, sgp.labels$my.subject, "due to argument calculate.sgps=FALSE.\n"))
return(panel.data)
}
if (missing(panel.data)) {
stop("User must supply student achievement data for student growth percentile calculations. See help page for details.")
}
if (!is.list(panel.data)) {
stop("Supplied panel.data not of a supported class. See help for details of supported classes")
} else {
if (!(all(c("Panel_Data", "Coefficient_Matrices", "Knots_Boundaries") %in% names(panel.data)))) {
stop("Supplied panel.data missing Panel_Data, Coefficient_Matrices, and/or Knots_Boundaries. See help page for details")
}
if (identical(class(panel.data[["Panel_Data"]]), "data.frame")) {
panel.data[["Panel_Data"]] <- as.data.table(panel.data[["Panel_Data"]])
}}
if (missing(sgp.labels)) {
stop("User must supply a list of SGP function labels (sgp.labels). See help page for details.")
} else {
if (!is.list(sgp.labels)) {
stop("Please specify an appropriate list of SGP function labels (sgp.labels). See help page for details.")
}
if (!all(names(sgp.labels) %in% c("my.year", "my.subject")) &
!all(names(sgp.labels) %in% c("my.year", "my.subject", "my.grade")) &
!all(names(sgp.labels) %in% c("my.year", "my.subject", "my.extra.label")) &
!all(names(sgp.labels) %in% c("my.year", "my.subject", "my.grade", "my.extra.label"))) {
stop("Please specify an appropriate list for sgp.labels. See help page for details.")
}
sgp.labels <- lapply(sgp.labels, toupper)
tmp.path <- .create.path(sgp.labels)
}
if (missing(grade.progression)) {
stop("User must supply a grade progression from which projections/trajectories will be derived. See help page for details.")
}
grade.progression <- as.character(grade.progression)
if (!missing(use.my.knots.boundaries)) {
if (!is.list(use.my.knots.boundaries) & !is.character(use.my.knots.boundaries)) {
stop("use.my.knots.boundaries must be supplied as a list or character abbreviation. See help page for details.")
}
if (is.list(use.my.knots.boundaries)) {
if (!is.list(panel.data)) {
stop("use.my.knots.boundaries is only appropriate when panel data is of class list. See help page for details.")
}
if (!identical(names(use.my.knots.boundaries), c("my.year", "my.subject")) & !identical(names(use.my.knots.boundaries), c("my.year", "my.subject", "my.extra.label"))) {
stop("Please specify an appropriate list for use.my.knots.boundaries. See help page for details.")
}
if (is.null(panel.data[["Knots_Boundaries"]]) | is.null(panel.data[["Knots_Boundaries"]][[.create.path(use.my.knots.boundaries, pieces=c("my.subject", "my.year"))]])) {
stop("Knots and Boundaries indicated by use.my.knots.boundaries are not included.")
}
}
if (is.character(use.my.knots.boundaries)) {
if (!use.my.knots.boundaries %in% objects(SGP::SGPstateData)) {
stop(paste0("Knots and Boundaries are currently not implemented for the state (", use.my.knots.boundaries, ") indicated. Please contact the SGP package administrator to have your Knots and Boundaries included in the package"))
}
}
}
if (!missing(use.my.coefficient.matrices) & is.null(content_area.projection.sequence)) {
if (!is.list(use.my.coefficient.matrices)) {
stop("Please specify an appropriate list for use.my.coefficient.matrices. See help page for details.")
}
if (!identical(names(use.my.coefficient.matrices), c("my.year", "my.subject")) & !identical(names(use.my.coefficient.matrices), c("my.year", "my.subject", "my.extra.label"))) {
stop("Please specify an appropriate list for use.my.coefficient.matrices. See help page for details.")
}
tmp.path.coefficient.matrices <- .create.path(use.my.coefficient.matrices)
if (is.null(panel.data[["Coefficient_Matrices"]]) | is.null(panel.data[["Coefficient_Matrices"]][[tmp.path.coefficient.matrices]])) {
if (length(grep("BASELINE", sgp.labels[['my.extra.label']])) > 0 & !is.null(SGP::SGPstateData[[performance.level.cutscores]][["Baseline_splineMatrix"]])) {
panel.data[["Coefficient_Matrices"]][[tmp.path.coefficient.matrices]] <- SGP::SGPstateData[[performance.level.cutscores]][["Baseline_splineMatrix"]][["Coefficient_Matrices"]]
} else {
messageSGP("\t\tNOTE: Coefficient matrices indicated by argument use.my.coefficient.matrices are not included.")
return(NULL)
}
}
}
if (missing(use.my.coefficient.matrices) & is.null(content_area.projection.sequence)) {
if (length(grep("BASELINE", sgp.labels[['my.extra.label']])) > 0) {
tmp.path.coefficient.matrices <- paste(sgp.labels$my.subject, "BASELINE", sep=".")
if (is.null(panel.data[["Coefficient_Matrices"]]) | is.null(panel.data[["Coefficient_Matrices"]][[tmp.path.coefficient.matrices]])) {
stop(paste0("\t\tNOTE: Coefficient matrices indicated by argument sgp.labels, '", tmp.path.coefficient.matrices, "', are not included. Please check supplied list to make sure appropriate coefficient matrices are included.\n"))
return(NULL)
}
} else {
tmp.path.coefficient.matrices <- tmp.path
if (is.null(panel.data[["Coefficient_Matrices"]]) | is.null(panel.data[["Coefficient_Matrices"]][[tmp.path.coefficient.matrices]])) {
messageSGP(paste0("\t\tNOTE: Coefficient matrices indicated by argument sgp.labels, '", tmp.path.coefficient.matrices, "', are not included. Bypassing plot production.\n"))
return(NULL)
}
}
}
if (!is.null(content_area.projection.sequence)) {
if (length(grep("BASELINE", sgp.labels[['my.extra.label']])) > 0) {
tmp.path.coefficient.matrices <- paste(unique(content_area.projection.sequence), "BASELINE", sep=".")
} else {
tmp.path.coefficient.matrices <- paste(unique(content_area.projection.sequence), sgp.labels$my.year, sep=".")
}
}
if (!missing(performance.level.cutscores)) {
if (is.character(performance.level.cutscores)) {
if (!(performance.level.cutscores %in% objects(SGP::SGPstateData))) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: To use state cutscores, supply an appropriate two letter state abbreviation. \nRequested state may not be included. See help page for details.\n")
tf.cutscores <- FALSE
}
if (is.null(names(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscores"]]))) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: Cutscores are currently not implemented for the state indicated.\n\t\t\tPlease contact the SGP package administrator to have your cutscores included in the package.\n")
tf.cutscores <- FALSE
}
if (!sgp.labels$my.subject %in% unique(sapply(names(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscores"]]), function(x) strsplit(x, "[.]")[[1L]][1L], USE.NAMES=FALSE))) {
tmp.messages <- c(tmp.messages, paste("\t\tNOTE: Cutscores provided in SGPstateData does not include", sgp.labels$my.subject, "(CASE SENSITIVE). See help page for details.\n"))
tf.cutscores <- FALSE
} else {
tmp.cutscores <- SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscores"]]
if (!is.character(percentile.trajectory.values)) tf.cutscores <- TRUE else tf.cutscores <- FALSE
}}
if (is.list(performance.level.cutscores)) {
if (any(names(performance.level.cutscores) %in% sgp.labels$my.subject)) {
tmp.cutscores <- performance.level.cutscores
tf.cutscores <- TRUE
} else {
stop("\nList of cutscores provided in performance.level.cutscores must include a subject name that matches my.subject in sgp.labels (CASE SENSITIVE). See help page for details.\n\n")
tf.cutscores <- FALSE
}}} else {
tf.cutscores <- FALSE
}
if (!(toupper(projection.unit)=="YEAR" | toupper(projection.unit)=="GRADE")) {
stop("Projection unit must be specified as either YEAR or GRADE. See help page for details.")
}
if (is.null(percentile.trajectory.values) & !tf.cutscores) {
stop("\t\tNOTE: Either percentile trajectories and/or performance level cutscores must be supplied for the analyses.\n")
}
if (!is.null(percentile.trajectory.values) && is.numeric(percentile.trajectory.values) && !all(percentile.trajectory.values %in% seq.int(100))) {
messageSGP("\t\tNOTE: Integer supplied 'percentile.trajectory.values' must be between 1 and 100. Only supplied values in that range will be used.\n")
percentile.trajectory.values <- intersect(percentile.trajectory.values, seq.int(100))
}
if (!is.null(percentile.trajectory.values) && is.character(percentile.trajectory.values) && !all(percentile.trajectory.values %in% names(panel.data[["Panel_Data"]]))) {
messageSGP("\t\tNOTE: Character 'percentile.trajectory.values' must correspond to individual specific variable in panel.data[['Panel_Data']]. Please check for appropriate variables.\n")
}
if (!is.null(achievement.level.prior.vname)) {
if (!achievement.level.prior.vname %in% names(panel.data[["Panel_Data"]])) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: Supplied achievement.level.prior.vname is not in supplied panel.data. No ACHIEVEMENT_LEVEL_PRIOR variable will be produced.\n")
achievement.level.prior.vname <- NULL
}
}
if (lag.increment==0) lag.increment.label <- "_CURRENT" else lag.increment.label <- ""
if (!is.null(grade.projection.sequence) & !is.null(content_area.projection.sequence) && length(grade.projection.sequence) != length(content_area.projection.sequence)) {
stop("\t\tNOTE: Supplied 'grade.projection.sequence' and 'content_area.projection.sequence' must be of the same length.\n")
}
if (!is.null(grade.projection.sequence) & !is.null(year_lags.projection.sequence) && length(grade.projection.sequence)-1L != length(year_lags.projection.sequence)) {
stop("\t\tNOTE: Supplied 'year_lags.projection.sequence' must have length 1 less than 'grade.projection.sequence'.\n")
}
if (is.null(projcuts.digits)) {
projcuts.digits <- 3L
}
if (is.null(projection.unit.label)) {
projection.unit.label <- projection.unit
}
if (!is.null(return.projection.group.dates) && is.null(SGPt)) {
return.projection.group.dates <- NULL
}
if (identical(return.projection.group.dates, TRUE)) {
return.projection.group.dates <- "DATE[.]"
}
tmp.objects <- c("SGProjections", "Cutscores")
for (i in tmp.objects) {
if (!is.null(panel.data[[i]])) {
assign(i, panel.data[[i]])
} else {
assign(i, list())
}
}
if ((tf.cutscores || is.character(percentile.trajectory.values)) && exists("tmp.cutscores")) {
Cutscores <- tmp.cutscores
}
if (dim(panel.data[['Panel_Data']])[1L] == 0L) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: Supplied data together with grade progression contains no data for analysis. Check data, function arguments and see help page for details.\n")
messageSGP(paste("\tStarted studentGrowthProjections", started.date))
messageSGP(paste0("\t\tSubject: ", sgp.labels$my.subject, ", Year: ", sgp.labels$my.year, ", Grade Progression: ", paste(grade.progression, collapse=", "), " ", sgp.labels$my.extra.label))
messageSGP(c(tmp.messages, "\tFinished studentGrowthProjections: ", prettyDate(), " in ", convertTime(timetakenSGP(started.at)), "\n"))
return(
list(Coefficient_Matrices=panel.data[["Coefficient_Matrices"]],
Cutscores=panel.data[["Cutscores"]],
Goodness_of_Fit=panel.data[["Goodness_of_Fit"]],
Knots_Boundaries=panel.data[["Knots_Boundaries"]],
Panel_Data=NULL,
SGPercentiles=panel.data[["SGPercentiles"]],
SGProjections=panel.data[["SGProjections"]],
Simulated_SGPs=panel.data[["Simulated_SGPs"]]))
}
if (!missing(panel.data.vnames)) {
if (!all(panel.data.vnames %in% names(panel.data[["Panel_Data"]]))) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: Supplied 'panel.data.vnames' are not all in the supplied 'Panel_Data'.\n\t\t\tAnalyses will utilize the variables contained in both Panel_Data and those provided in the supplied argument 'panel.data.vnames'.\n")
}
ss.data <- panel.data[["Panel_Data"]][,intersect(panel.data.vnames, names(panel.data[["Panel_Data"]])), with=FALSE]
} else {
ss.data <- panel.data[["Panel_Data"]]
}
if (dim(ss.data)[2L] %% 2L != 1L) {
stop(paste("Number of columns of supplied panel data (", dim(ss.data)[2L], ") does not conform to data requirements. See help page for details."))
}
num.panels <- (dim(ss.data)[2L]-1L)/2L
if (length(grade.progression) > num.panels) {
tmp.messages <- c(tmp.messages, paste0("\t\tNOTE: Supplied 'grade progression', grade.progression=c(", paste(grade.progression, collapse=","), "), exceeds number of panels (", num.panels, ") in provided data.\n\t\t\tAnalyses will utilize maximum number of priors supplied by the data.\n"))
grade.progression <- tail(grade.progression, num.panels)
if (!is.null(content_area.progression)) content_area.progression <- tail(content_area.progression, length(grade.progression))
if (!is.null(year_lags.progression)) year_lags.progression <- tail(year_lags.progression, length(grade.progression)-1L)
}
if (!is.null(max.order.for.progression)) {
grade.progression <- tail(grade.progression, max.order.for.progression)
if (!is.null(content_area.progression)) content_area.progression <- tail(content_area.progression, length(grade.progression))
if (!is.null(year_lags.progression)) year_lags.progression <- tail(year_lags.progression, length(grade.progression)-1L)
}
tmp.last <- tail(grade.progression, 1L)
ss.data <- data.table(ss.data[,c(1L, (1L+num.panels-(length(grade.progression)-1L)):(1L+num.panels), (1L+2L*num.panels-(length(grade.progression)-1L)):(1L+2L*num.panels)), with=FALSE],
key=names(ss.data)[1L])
num.panels <- (dim(ss.data)[2L]-1L)/2L
setnames(ss.data, c(1L, (1L+num.panels-length(grade.progression)+1L):(1L+num.panels), (1L+2L*num.panels-length(grade.progression)+1L):(1L+2L*num.panels)),
c("ID", paste("GD", grade.progression, content_area.progression, sep="."), paste("SS", grade.progression, content_area.progression, sep=".")))
if (is.logical(sgp.projections.use.only.complete.matrices)) {
if (sgp.projections.use.only.complete.matrices) sgp.projections.use.only.complete.matrices <- NULL
}
if (is.null(sgp.projections.use.only.complete.matrices)) {
if (any(is.na(match(tmp.path.coefficient.matrices, names(panel.data[["Coefficient_Matrices"]]))))) {
tmp.fix.index <- which(is.na(match(tmp.path.coefficient.matrices, names(panel.data[["Coefficient_Matrices"]]))))
if (length(grep("BASELINE", sgp.labels[['my.extra.label']])) > 0) {
tmp.path.coefficient.matrices2 <- paste(unique(content_area.projection.sequence), sgp.labels$my.year, sep=".")[tmp.fix.index]
} else {
tmp.path.coefficient.matrices2 <- paste(unique(content_area.projection.sequence), "BASELINE", sep=".")[tmp.fix.index]
}
if (any(is.na(match(tmp.path.coefficient.matrices2, names(panel.data[["Coefficient_Matrices"]]))))) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: Requested grade & content area progression are missing one or more coefficient matrices.\n")
messageSGP(paste("\tStarted studentGrowthProjections", started.date))
messageSGP(paste0("\t\tSubject: ", sgp.labels$my.subject, ", Year: ", sgp.labels$my.year, ", Grade Progression: ", paste(grade.progression, collapse=", "), " ", sgp.labels$my.extra.label, " ", return.projection.group.identifier))
messageSGP(paste(tmp.messages, "\tStudent Growth Projections NOT RUN", prettyDate(), "\n"))
return(
list(Coefficient_Matrices=panel.data[["Coefficient_Matrices"]],
Cutscores=panel.data[["Cutscores"]],
Goodness_of_Fit=panel.data[["Goodness_of_Fit"]],
Knots_Boundaries=panel.data[["Knots_Boundaries"]],
Panel_Data=NULL,
SGPercentiles=panel.data[["SGPercentiles"]],
SGProjections=panel.data[["SGProjections"]],
Simulated_SGPs=panel.data[["Simulated_SGPs"]]))
} else {
if (length(grep("BASELINE", sgp.labels[['my.extra.label']])) > 0) {
tmp.messages <- c(tmp.messages, paste0("\t\tNOTE: Not all CONTENT_AREA values in content_area.progression have associated BASELINE referenced coefficient matrices.\n\tCOHORT referenced matrices for missing content areas (",
paste(gsub(paste0(".", sgp.labels$my.year), "", tmp.path.coefficient.matrices2), collapse=", "),
") have been found and will be used.\n\t\tPlease note the inconsistency and ensure this is correct!\n"))
} else {
tmp.messages <- c(tmp.messages, paste0("\t\tNOTE: Not all CONTENT_AREA values in content_area.progression have associated COHORT referenced coefficient matrices.\n\tBASELINE referenced matrices for missing content areas (",
paste(gsub(".BASELINE", "", tmp.path.coefficient.matrices2), collapse=", "),
") have been found and will be used.\n\t\tPlease note the inconsistency and ensure this is correct!\n"))
}
}
tmp.matrices <- unlist(panel.data[["Coefficient_Matrices"]][c(match(tmp.path.coefficient.matrices, names(panel.data[["Coefficient_Matrices"]])),
match(tmp.path.coefficient.matrices2, names(panel.data[["Coefficient_Matrices"]])))], recursive=FALSE)
} else {
tmp.matrices <- unlist(panel.data[["Coefficient_Matrices"]][match(tmp.path.coefficient.matrices, names(panel.data[["Coefficient_Matrices"]]))], recursive=FALSE)
}
} else {
if (any(is.na(match(tmp.path.coefficient.matrices, names(panel.data[["Coefficient_Matrices"]]))))) {
tmp.fix.index <- which(is.na(match(tmp.path.coefficient.matrices, names(panel.data[["Coefficient_Matrices"]]))))
tmp.messages <- c(tmp.messages, paste0("\t\tNOTE: Not all CONTENT_AREA values in content_area.progression have associated COHORT referenced coefficient matrices:\n\t\t", paste(tmp.path.coefficient.matrices[tmp.fix.index], collapse=", "), ".\n"))
}
tmp.match <- sort(match(tmp.path.coefficient.matrices, names(panel.data[["Coefficient_Matrices"]])))
tmp.matrices <- unlist(panel.data[["Coefficient_Matrices"]][tmp.match], recursive=FALSE)
tmp.tf <- content_area.projection.sequence %in% unique(unlist(lapply(tmp.matrices, function(x) x@Content_Areas))) & grade.projection.sequence %in% unique(unlist(lapply(tmp.matrices, function(x) x@Grade_Progression)))
grade.projection.sequence <- grade.projection.sequence[tmp.tf]
content_area.projection.sequence <- content_area.projection.sequence[tmp.tf]
}
if (is.null(content_area.progression)) {
content_area.progression <- rep(sgp.labels[['my.subject']], length(grade.progression))
} else {
if (!identical(class(content_area.progression), "character")) {
stop("content_area.progression should be a character vector. See help page for details.")
}
if (length(content_area.progression) != length(grade.progression)) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: The content_area.progression vector does not have the same number of elements as the grade.progression vector.\n")
}
}
if (is.null(year_lags.progression)) {
year_lags.progression <- rep(1L, length(grade.progression)-1L)
}
if (is.null(grade.projection.sequence)) {
grade.projection.sequence <- as.character(unique(sort(type.convert(sapply(tmp.matrices, function(x) tail(slot(x, "Grade_Progression")[[1L]], 2L)), as.is=TRUE))))
}
if (identical(grade.projection.sequence, numeric(0))) {
stop("Supplied grade.progression and coefficient matrices do not allow projection. See help page for details.")
}
if (is.null(content_area.projection.sequence)) {
content_area.projection.sequence <- rep(tail(content_area.progression, 1L), length(grade.projection.sequence))
}
grade.content_area.progression <- paste(content_area.progression, paste("GRADE", grade.progression, sep="_"), sep=".")
grade.content_area.projection.sequence <- paste(content_area.projection.sequence, paste("GRADE", grade.projection.sequence, sep="_"), sep=".")
tmp.index <- seq(which(tail(grade.content_area.progression, 1L)==grade.content_area.projection.sequence)+1L, length(grade.projection.sequence))
if (!is.null(max.forward.progression.grade)) {
tmp.index <- intersect(tmp.index, which(sapply(grade.projection.sequence, function(x) type.convert(x, as.is=TRUE) <= type.convert(as.character(max.forward.progression.grade), as.is=TRUE))))
}
if (!is.null(max.forward.progression.years)) tmp.index <- head(tmp.index, max.forward.progression.years)
grade.projection.sequence <- grade.projection.sequence[tmp.index]
content_area.projection.sequence <- content_area.projection.sequence[tmp.index]
if (is.null(year_lags.projection.sequence)) {
if (is.numeric(type.convert(grade.projection.sequence))) {
year_lags.projection.sequence <- diff(as.numeric(c(tail(grade.progression, 1L), grade.projection.sequence)))
} else {
year_lags.projection.sequence <- rep(1L, length(grade.projection.sequence))
}
} else {
year_lags.projection.sequence <- year_lags.projection.sequence[tmp.index-1L]
}
grade.content_area.projection.sequence <- grade.content_area.projection.sequence[tmp.index]
if (dim(.get.panel.data(ss.data, grade.progression, content_area.progression, 1L, bound.data=FALSE))[1L] == 0L | length(tmp.index)==0L) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: Supplied data together with grade progression contains no data for analysis. Check data, function arguments and see help page for details.\n")
messageSGP(paste("\tStarted studentGrowthProjections", started.date))
messageSGP(paste0("\t\tSubject: ", sgp.labels$my.subject, ", Year: ", sgp.labels$my.year, ", Grade Progression: ", paste(grade.progression, collapse=", "), " ", sgp.labels$my.extra.label))
messageSGP(c(tmp.messages, "\tFinished studentGrowthProjections: ", prettyDate(), " in ", convertTime(timetakenSGP(started.at)), "\n"))
return(
list(Coefficient_Matrices=panel.data[["Coefficient_Matrices"]],
Cutscores=panel.data[["Cutscores"]],
Goodness_of_Fit=panel.data[["Goodness_of_Fit"]],
Knots_Boundaries=panel.data[["Knots_Boundaries"]],
Panel_Data=NULL,
SGPercentiles=panel.data[["SGPercentiles"]],
SGProjections=panel.data[["SGProjections"]],
Simulated_SGPs=panel.data[["Simulated_SGPs"]]))
}
grade.projection.sequence.matrices <- get.grade.projection.sequence.matrices(
grade.progression,
content_area.progression,
year_lags.progression,
grade.projection.sequence,
content_area.projection.sequence,
year_lags.projection.sequence,
sgp.exact.grade.progression,
SGPt)
if (length(grade.projection.sequence.matrices[[1L]]) < 1L) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: Requested grade & content area progression are missing one or more coefficient matrices.\n")
messageSGP(paste("\tStarted studentGrowthProjections", started.date))
messageSGP(paste0("\t\tSubject: ", sgp.labels$my.subject, ", Year: ", sgp.labels$my.year, ", Grade Progression: ", paste(grade.progression, collapse=", "), " ", sgp.labels$my.extra.label, " ", return.projection.group.identifier))
messageSGP(paste(tmp.messages, "\tStudent Growth Projections NOT RUN", prettyDate(), "\n"))
return(
list(Coefficient_Matrices=panel.data[["Coefficient_Matrices"]],
Cutscores=panel.data[["Cutscores"]],
Goodness_of_Fit=panel.data[["Goodness_of_Fit"]],
Knots_Boundaries=panel.data[["Knots_Boundaries"]],
Panel_Data=NULL,
SGPercentiles=panel.data[["SGPercentiles"]],
SGProjections=panel.data[["SGProjections"]],
Simulated_SGPs=panel.data[["Simulated_SGPs"]]))
}
num.matrices <- max(sapply(grade.projection.sequence.matrices, length))
if (num.matrices < length(grade.projection.sequence)) {
if (is.null(sgp.projections.use.only.complete.matrices)) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: Requested grade & content area progression are missing one or more coefficient matrices.\n")
messageSGP(paste("\tStarted studentGrowthProjections", started.date))
messageSGP(paste0("\t\tSubject: ", sgp.labels$my.subject, ", Year: ", sgp.labels$my.year, ", Grade Progression: ", paste(grade.progression, collapse=", "), " ", sgp.labels$my.extra.label, " ", return.projection.group.identifier))
messageSGP(paste(tmp.messages, "\tStudent Growth Projections NOT RUN", prettyDate(), "\n"))
return(
list(Coefficient_Matrices=panel.data[["Coefficient_Matrices"]],
Cutscores=panel.data[["Cutscores"]],
Goodness_of_Fit=panel.data[["Goodness_of_Fit"]],
Knots_Boundaries=panel.data[["Knots_Boundaries"]],
Panel_Data=NULL,
SGPercentiles=panel.data[["SGPercentiles"]],
SGProjections=panel.data[["SGProjections"]],
Simulated_SGPs=panel.data[["Simulated_SGPs"]]))
}
tmp.matrices.tf <- content_area.projection.sequence %in% names(grade.projection.sequence.matrices[[1L]])
tmp.messages <- c(tmp.messages, paste0("\t\tNOTE: Not all CONTENT_AREA values in content_area.progression have the appropriate coefficient matrices - MISSING:\n\t\t\t", paste(content_area.projection.sequence[!tmp.matrices.tf], collapse=", "), ".\n"))
grade.projection.sequence <- grade.projection.sequence[tmp.matrices.tf]
content_area.projection.sequence <- content_area.projection.sequence[tmp.matrices.tf]
grade.content_area.projection.sequence <- grade.content_area.projection.sequence[tmp.matrices.tf]
}
if (dim(ss.data)[1L]/trajectories.chunk.size > 1.5) {
percentile.trajectories <- rbindlist(lapply(.get.trajectory.chunks(seq.int(dim(ss.data)[1L])), function(index) .get.percentile.trajectories(ss.data[index], grade.projection.sequence.matrices)))
} else {
percentile.trajectories <- .get.percentile.trajectories(ss.data, grade.projection.sequence.matrices)
}
if (tf.cutscores) {
tmp.cutscore.grade.content_area <- unlist(lapply(seq_along(tmp.cutscores), function(x) paste(unlist(strsplit(names(tmp.cutscores)[x], '[.]'))[1L], names(tmp.cutscores[[x]]), sep=".")))
if ("STATE" %in% names(panel.data[["Panel_Data"]])) {
included.states <- unique(panel.data[["Panel_Data"]][['STATE']]); state.arg <- "STATE == states[n.state]"
content_area.index <- grep(sgp.labels$my.subject, sapply(names(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscores"]]), function(x) strsplit(x, "[.]")[[1L]][1L], USE.NAMES=FALSE))
available.states <- unique(sapply(names(SGP::SGPstateData[[performance.level.cutscores]][["Achievement"]][["Cutscores"]]), function(x) strsplit(x, "[.]")[[1L]][2L], USE.NAMES=FALSE)[content_area.index])
unavailable.states <- included.states[!included.states %in% available.states]
if (length(unavailable.states) > 0L) {
tmp.messages <- c(tmp.messages, paste("\t\tNOTE: The required state specific cutscores for ", sgp.labels$my.subject, " provided in SGPstateData do not include:\n\t\t\t",
paste(unavailable.states[order(unavailable.states)], collapse = ", "), ".\n\t\t\tTarget projections will not be produced for students in these states.\n", sep = ""))
}
tmp.grade.content_area.projection.sequence <- sapply(available.states, function(x) paste(content_area.projection.sequence, x, paste("GRADE", grade.projection.sequence, sep="_"), sep="."))
if (!all(tmp.grade.content_area.projection.sequence %in% tmp.cutscore.grade.content_area)) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: Cutscores provided do not include cutscores for all grades/content areas in projection.\n\t\tProjections to grades/content areas without cutscores will be missing.\n")
}
} else {
if (!all(grade.content_area.projection.sequence %in% tmp.cutscore.grade.content_area)) {
tmp.messages <- c(tmp.messages, "\t\tNOTE: Cutscores provided do not include cutscores for all grades/content areas in projection.\n\t\tProjections to grades/content areas without cutscores will be missing.\n")
}}}
trajectories.and.cuts <- .get.trajectories.and.cuts(percentile.trajectories, !is.null(percentile.trajectory.values), tf.cutscores, toupper(projection.unit))
if (!is.null(achievement.level.prior.vname)) {
trajectories.and.cuts <- panel.data[["Panel_Data"]][,c("ID", achievement.level.prior.vname), with=FALSE][trajectories.and.cuts, on="ID"]
setnames(trajectories.and.cuts, achievement.level.prior.vname, "ACHIEVEMENT_LEVEL_PRIOR")
}
if (!is.null(return.percentile.trajectory.values) && percentile.trajectory.values %in% names(panel.data$Panel_Data)) {
trajectories.and.cuts <- panel.data[["Panel_Data"]][,c("ID", percentile.trajectory.values), with=FALSE][trajectories.and.cuts, on="ID"]
}
if (!is.null(return.projection.group.identifier)) {
trajectories.and.cuts[,SGP_PROJECTION_GROUP:=return.projection.group.identifier]
}
if (!is.null(return.projection.group.scale.scores)) {
my.tmp <- ss.data[,c("ID", grep("SS[.]", names(ss.data), value=TRUE)), with=FALSE][list(trajectories.and.cuts$ID),-1L,with=FALSE,on="ID"]
trajectories.and.cuts[,SGP_PROJECTION_GROUP_SCALE_SCORES:=gsub("NA; ", "", do.call(paste, c(my.tmp, list(sep="; "))))]
}
if (!is.null(return.projection.group.dates)) {
my.tmp <- panel.data$Panel_Data[,c("ID", grep(return.projection.group.dates, names(panel.data$Panel_Data), value=TRUE)), with=FALSE][list(trajectories.and.cuts$ID),-1L,with=FALSE,on="ID"]
trajectories.and.cuts[,SGP_PROJECTION_GROUP_DATES:=gsub("NA; ", "", do.call(paste, c(my.tmp, list(sep="; "))))]
}
if ("YEAR_WITHIN" %in% names(panel.data[["Panel_Data"]])) {
trajectories.and.cuts <- panel.data[["Panel_Data"]][,c("ID", "YEAR_WITHIN"), with=FALSE][trajectories.and.cuts, on="ID"]
}
if (!is.null(sgp.labels$my.grade)) {
trajectories.and.cuts[, GRADE := sgp.labels$my.grade]
}
SGProjections[[tmp.path]] <- rbindlist(list(SGProjections[[tmp.path]], trajectories.and.cuts), fill=TRUE)
if (print.time.taken) {
messageSGP(paste("\tStarted studentGrowthProjections:", started.date))
messageSGP(paste0("\t\tContent Area: ", sgp.labels$my.subject, ", Year: ", sgp.labels$my.year, ", Grade Progression: ", paste(grade.progression, collapse=", "), " ", sgp.labels$my.extra.label, " (N=", format(dim(trajectories.and.cuts)[1L], big.mark=","), ")"))
messageSGP(c(tmp.messages, "\tFinished studentGrowthProjections: ", prettyDate(), " in ", convertTime(timetakenSGP(started.at)), "\n"))
}
list(Coefficient_Matrices=panel.data[["Coefficient_Matrices"]],
Cutscores=Cutscores,
Goodness_of_Fit=panel.data[["Goodness_of_Fit"]],
Knots_Boundaries=panel.data[["Knots_Boundaries"]],
Panel_Data=panel.data[["Panel_Data"]],
SGPercentiles=panel.data[["SGPercentiles"]],
SGProjections=SGProjections,
Simulated_SGPs=panel.data[["Simulated_SGPs"]])
} |
bw.dnrd <- function(y,sig,error='normal')
{
homo = FALSE;
sig = sig^2;
if(length(sig)==1) homo=TRUE;
if(!homo){
if(length(y)!=length(sig))stop("Different length of 'y' and the variances.");
if(any(is.na(y))||any(is.na(sig))){
sele = (!is.na(y))&(!is.na(sig));
y=y[sele];sig=sig[sele];
}
s2bar = mean(sig);sbar=sqrt(s2bar);
}
else{
if(is.na(sig)||is.null(sig)) stop("SD(s) can not be empty!");
s2bar=sig;sbar=sqrt(s2bar);}
if(length(y)<3){stop("Data set is too small!");}
else{n=length(y);}
result= switch(substr(tolower(error),1,3),
lap = (5*sbar^4/n)^(1/9),
nor = sbar*(log(n)/2)^{-.5},
stop("This error type is not supported yet!")
);
return(result);
} |
NAM <- function(level){
x <- NULL
if(level==1){
x1 <- github.cssegisanddata.covid19(country = "Namibia")
x2 <- ourworldindata.org(id = "NAM")
x <- full_join(x1, x2, by = "date")
}
return(x)
} |
bondpv <- function(coupon, mat, yield, principal=1000, freq=1) {
couponpd <- coupon/freq
numpd <- mat*freq
yieldpd <- yield/freq
cf <- c(rep(couponpd, numpd-1), principal + couponpd)
pv <- sum(cf*(1+yieldpd)^(-(1:numpd)))
return(pv)
}
bondyield <- function(price, coupon, mat, principal=1000, freq=1) {
pricediff <- function(x) bondpv(coupon, mat, x, principal, freq) - price
irr <- uniroot(pricediff, c(-.25, 20), tol=1e-08)
return(irr$root)
}
duration <- function(price, coupon, mat, principal=1000, freq=1,
modified=FALSE) {
yield <- bondyield(price, coupon, mat, principal, freq)
yieldpd <- yield/freq
couponpd <- coupon/freq
numpd <- mat*freq
cf <- c(rep(couponpd, numpd-1), principal+couponpd)
dur <- sum((1:(numpd))*cf/(1+yieldpd)^(1:(numpd)))/
price/freq/(1+yieldpd*modified)
return(dur)
}
convexity <- function(price, coupon, mat, principal=1000, freq=1) {
numpd <- mat*freq
couponpd <- coupon/freq
yield <- bondyield(price, coupon, mat, principal, freq)
yieldpd <- yield/freq
cf <- c(rep(couponpd, (numpd)-1), principal+couponpd)
pv <- sum((1:numpd + (1:numpd)^2)*cf/(1+yieldpd)^(1:numpd))
conv <- pv/price/(1+yieldpd)^2/freq^2
return(conv)
} |
.representationPlot<-function(data,period,tm,varNames){
plotW<-tktoplevel()
tktitle(plotW)<-tm$titlePlotWindow
selectionFrame<-tkwidget(plotW,"labelframe",borderwidth = 0)
tkgrid(selectionFrame,column=0, row=0)
varList<-tk2listbox(selectionFrame, height=20, selectmode="single", background="white")
for(i in 1:length(varNames)){
tkinsert(varList,"end",varNames[i])
}
tkselection.set(varList, 0)
tkgrid(varList, row=0,column=0)
displayButton<-tk2button(selectionFrame,text=tm$displayButtonLabel,command=function(){
if (tclvalue(tkcurselection(varList))!="") {
selection<-as.numeric(tkcurselection(varList))+1
tempSelect<-varNames[selection]
myPlot<-tkrplot(plotW,hscale=2.5,vscale=2,function()plot(data[,tempSelect]~chron(period),ylab="Level",xlab="Date",main=tempSelect))
tkgrid(myPlot,row=0,column=1,sticky="w")
tkconfigure(myPlot, bg="white")
} else { tkmessageBox(message=tm$noParamMsg,type="ok",icon="info", title=tm$warningLabel) }
})
tkgrid(displayButton,row=1,column=0)
}
.savePlot<-function(data,period,tm,output){
for(i in 1:ncol(data)){
figure<-paste(output,colnames(data)[i],".jpg",sep="")
jpeg(figure,750,600)
plot(data[,i]~chron(period),xlab="Dates",ylab="Level",main=colnames(data)[i])
dev.off()
figure<-paste(output,"boxplot_",colnames(data)[i],".jpg",sep="")
jpeg(figure,750,600)
boxplot(data[,i],main=colnames(data)[i])
dev.off()
}
}
.boxplotWindow<-function(data,varNames,tm){
boxplotWin<-tktoplevel()
tktitle(boxplotWin)<-tm$titleBoxplotWindow
selectionFrame<-tkwidget(boxplotWin,"labelframe",borderwidth = 0)
tkgrid(selectionFrame,column=0, row=0)
varList<-tk2listbox(selectionFrame, height=20, selectmode="single", background="white")
for(i in 1:length(varNames)){tkinsert(varList,"end",varNames[i])}
tkselection.set(varList, 0)
tkgrid(varList, row=0,column=0)
displayButton<-tk2button(selectionFrame,text=tm$displayButtonLabel,command=function(){
if (tclvalue(tkcurselection(varList))!="") {
selection<-as.numeric(tkcurselection(varList))+1
tempVarNames<-varNames[selection]
myBoxplot<-tkrplot(boxplotWin,hscale=2.5,vscale=2,function(){boxplot(data[,tempVarNames],main=tempVarNames)})
tkgrid(myBoxplot,row=0,column=1)
tkconfigure(myBoxplot, bg="white")
} else { tkmessageBox(message=tm$noParamMsg,type="ok",icon="info", title=tm$warningLabel) }
})
tkgrid(displayButton,row=1,column=0)
}
.PCAwindow<-function(data,quanti.sup,tm){
fenetrePlotACP<-tktoplevel()
tktitle(fenetrePlotACP)<-tm$titlePcaCircle
ToRemove<-apply(is.na(data),MARGIN=1, FUN=any);
data <- data[!ToRemove,]
if (is.null(quanti.sup)){
PCAdudi<-PCA(X=data,scale.unit = TRUE,ncp=ncol(data),graph=FALSE)
}else{
PCAdudi<-PCA(X=data,quanti.sup=quanti.sup,scale.unit = TRUE,ncp=ncol(data),graph=FALSE)
}
monACP<-tkrplot(fenetrePlotACP,hscale=2.5,vscale=2,function()plot(PCAdudi, axes = c(1, 2), choix = "var",cex.axis=1.5,cex.lab=1.5,cex=1.5))
tkgrid(monACP,row=0,sticky="w")
tkconfigure(monACP, bg="white")
textblanc<-tklabel(fenetrePlotACP,text=" ")
tkgrid(textblanc,row=1, sticky="w")
dimensionFrame <- tkwidget(fenetrePlotACP,"labelframe",borderwidth = 0)
tkgrid(dimensionFrame , row=2)
textDim1 <-tklabel(dimensionFrame ,text="x : Dim ")
tkgrid(textDim1 ,row=0, column=0)
laDim1<-tkentry(dimensionFrame, width=3, textvariable=tclVar("1"))
tkgrid(laDim1, row=0, column=1, sticky="w")
textDim1 <-tklabel(dimensionFrame ,text=" ")
tkgrid(textDim1 ,row=0, column=2)
textDim2 <-tklabel(dimensionFrame ,text="y : Dim ")
tkgrid(textDim2 ,row=0, column=3)
laDim2<-tkentry(dimensionFrame, width=3, textvariable=tclVar("2"))
tkgrid(laDim2, row=0, column=4, sticky="w")
textDim1 <-tklabel(dimensionFrame ,text=" ")
tkgrid(textDim1 ,row=0, column=5)
boutonVisualiser<-tk2button(dimensionFrame,text=tm$displayButtonLabel,command=function(){
Dim1Ecrit<-as.numeric(tclvalue(tkget(laDim1)));
Dim2Ecrit<-as.numeric(tclvalue(tkget(laDim2)));
if(Dim1Ecrit>0){
if(Dim2Ecrit>0){
if(Dim1Ecrit<(ncol(data)+1)){
if(Dim2Ecrit<(ncol(data)+1)){
monACP<-tkrplot(fenetrePlotACP,hscale=2.5,vscale=2,function()plot(PCAdudi, axes = c(Dim1Ecrit, Dim2Ecrit), choix = "var",cex.axis=1.5,cex.lab=1.5,cex=1.5))
tkgrid(monACP,row=0,sticky="w")
tkconfigure(monACP, bg="white")
} else{
tkmessageBox(message=paste(tm$dimensionWarning,ncol(data),"!",sep=""),type="ok",icon="info", title=tm$warningLabel)
}
} else{
tkmessageBox(message=paste(tm$dimensionWarning,ncol(data),"!",sep=""),type="ok",icon="info", title=tm$warningLabel)
}
} else{
tkmessageBox(message=paste(tm$dimensionWarning,ncol(data),"!",sep=""),type="ok",icon="info", title=tm$warningLabel)
}
} else{
tkmessageBox(message=paste(tm$dimensionWarning,ncol(data),"!",sep=""),type="ok",icon="info", title=tm$warningLabel)
}
})
tkgrid(boutonVisualiser,row=0,column=6)
return(PCAdudi)
} |
plotNominalFittedVariable <- function(nameVar,numcateg,beta,varstudyC,rowCoords,levelsVar=NULL,numFactors=2,planex = 1,planey = 2,xi=-3.5,xu=3.5,yi=-3.5,yu=3.5,
CexVar=0.7,ColorVar="blue",PchVar=0.7,addToPlot=FALSE,QuitNotPredicted=TRUE,ShowResults=TRUE,
linesVoronoi=TRUE,LabelVar=TRUE){
mvv = mvvSingleVariable(nameVar,numcateg,beta,varstudyC,rowCoords,planex,planey,numFactors,
QuitNotPredicted,ShowResults)
AtLeastR2 = 0.01
LabValVar=levelsVar
if(addToPlot == FALSE){
dev.new()
plot(0, 0, cex = 0,asp=1, xaxt = "s", yaxt = "s" ,xlim=c(xi,xu),ylim=c(yi,yu),
main="Nominal Logistic Biplot", xlab=paste("Axis ",planex,sep=""), ylab=paste("Axis ",planey,sep=""))
}
if(mvv$numFit==1){
Barx=sum(rowCoords[,1])/nrow(rowCoords)
Bary=sum(rowCoords[,2])/nrow(rowCoords)
points(Barx,Bary,pch=PchVar,cex=CexVar,col=ColorVar)
text(Barx,Bary, paste(mvv$equivFit,"_",nameVar ,sep="") , col = ColorVar, cex = CexVar,pos=1,offset=0.1)
}else if(mvv$numFit==2){
if(numcateg == 2){
x = cbind(rowCoords[,1],rowCoords[,2])
plot2CategLine(mvv,x,AtLeastR2,line=linesVoronoi,LabelVar=LabelVar,CexVar=CexVar,ColorVar=ColorVar,PchVar=PchVar,LabValVar=LabValVar)
}else if(QuitNotPredicted == TRUE){
x = cbind(rowCoords[,1],rowCoords[,2])
plot2CategLine(mvv,x,AtLeastR2,line=linesVoronoi,LabelVar=LabelVar,CexVar=CexVar,ColorVar=ColorVar,PchVar=PchVar,LabValVar=LabValVar)
}else{
plot.voronoiprob(mvv,LabelVar=LabelVar,CexVar=CexVar,ColorVar=ColorVar,PchVar=PchVar,AtLeastR2=AtLeastR2,lines=linesVoronoi,LabValVar=LabValVar)
}
}else{
plot.voronoiprob(mvv,LabelVar=LabelVar,CexVar=CexVar,ColorVar=ColorVar,PchVar=PchVar,AtLeastR2=AtLeastR2,lines=linesVoronoi,LabValVar=LabValVar)
}
} |
makeListInstance<-function(
object
,targetClassName
,targetListClassName
,permittedValueClassName
,key_value_func
){
if(allElementsAreOfClass(object,targetClassName)){
return(as(object,targetListClassName))
}else{
if(allElementsAreOfClass(object,permittedValueClassName)){
keys=names(object)
l=lapply(
keys
,function(key){
value=object[[key]]
key_value_func(key,value)
}
)
return(as(l,targetListClassName))
}else{
stop(
paste(
'The list must contain either
instances of class '
,targetClassName
,'or must have values of class:',
,permittedValueClassName
,"but I got:"
,object
)
)
}
}
} |
continuous_summary <- function(variable) {
variable_to_summarize <- variable
function(data, stat_display, ...) {
summarize_continuous(
data = data,
variable = variable_to_summarize,
by = NULL,
stat_display = stat_display,
summary_type = "continuous"
) %>%
dplyr::select(-.data$variable, -.data$stat_display)
}
}
ratio_summary <- function(numerator, denominator, na.rm = TRUE, conf.level = 0.95) {
function(data, ...) {
num <- sum(data[[numerator]], na.rm = na.rm)
denom <- sum(data[[denominator]], na.rm = na.rm)
ratio <- num / denom
if (num %% 1 == 0) {
ci_poisson <- stats::poisson.test(num, denom, conf.level = conf.level)$conf.int
} else {
ci_poisson <- c(NA, NA)
}
dplyr::tibble(
num = num,
denom = denom,
ratio = ratio,
conf.low = ci_poisson[1],
conf.high = ci_poisson[2]
)
}
}
proportion_summary <- function(variable, value, weights = NULL, na.rm = TRUE,
conf.level = 0.95,
method = c("wilson", "wilson.no.correct", "exact", "asymptotic")) {
method <- match.arg(method)
variable_to_summarize <- variable
function(data, ...) {
if (is.null(weights)) {
n <- sum(data[[variable_to_summarize]] %in% value, na.rm = na.rm)
N <- sum(!is.na(data[[variable_to_summarize]]), na.rm = na.rm)
} else {
n <- sum((data[[variable_to_summarize]] %in% value) * data[[weights]], na.rm = na.rm)
N <- sum((!is.na(data[[variable_to_summarize]])) * data[[weights]], na.rm = na.rm)
}
if (anyNA(n, N)) {
ci <- c(NA, NA)
} else {
if (method %in% c("wilson", "wilson.no.correct")) {
ci <-
stats::prop.test(n, N,
conf.level = conf.level,
correct = isTRUE(method == "wilson")) %>%
purrr::pluck("conf.int")
}
else if (method %in% c("exact", "asymptotic")) {
assert_package("Hmisc", fn = 'proportion_summary(method = c("exact", "asymptotic"))')
ci <-
Hmisc::binconf(n, N,
method = method, alpha = 1 - conf.level)[2:3]
}
}
dplyr::tibble(
n = n,
N = N,
prop = n/N,
conf.low = ci[1],
conf.high = ci[2]
)
}
} |
metacont <- function(n.e, mean.e, sd.e, n.c, mean.c, sd.c, studlab,
data = NULL, subset = NULL, exclude = NULL, id = NULL,
median.e, q1.e, q3.e, min.e, max.e,
median.c, q1.c, q3.c, min.c, max.c,
method.mean = "Luo", method.sd = "Shi",
approx.mean.e, approx.mean.c = approx.mean.e,
approx.sd.e, approx.sd.c = approx.sd.e,
sm = gs("smcont"),
pooledvar = gs("pooledvar"),
method.smd = gs("method.smd"),
sd.glass = gs("sd.glass"),
exact.smd = gs("exact.smd"),
method.ci = gs("method.ci.cont"),
level = gs("level"), level.ma = gs("level.ma"),
fixed = gs("fixed"),
random = gs("random") | !is.null(tau.preset),
overall = fixed | random,
overall.hetstat = fixed | random,
hakn = gs("hakn"), adhoc.hakn = gs("adhoc.hakn"),
method.tau = gs("method.tau"),
method.tau.ci = gs("method.tau.ci"),
tau.preset = NULL, TE.tau = NULL,
tau.common = gs("tau.common"),
prediction = gs("prediction"),
level.predict = gs("level.predict"),
method.bias = gs("method.bias"),
backtransf = gs("backtransf"),
text.fixed = gs("text.fixed"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.fixed = gs("text.w.fixed"),
text.w.random = gs("text.w.random"),
title = gs("title"), complab = gs("complab"),
outclab = "",
label.e = gs("label.e"), label.c = gs("label.c"),
label.left = gs("label.left"),
label.right = gs("label.right"),
subgroup, subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
byvar,
keepdata = gs("keepdata"),
warn = gs("warn"), warn.deprecated = gs("warn.deprecated"),
control = NULL,
...) {
chknull(sm)
sm <- setchar(sm, gs("sm4cont"))
chklevel(level)
chklogical(hakn)
adhoc.hakn <- setchar(adhoc.hakn, gs("adhoc4hakn"))
method.tau <- setchar(method.tau, gs("meth4tau"))
missing.id <- missing(id)
if (is.null(method.tau.ci))
if (method.tau == "DL")
method.tau.ci <- "J"
else if (!missing.id)
method.tau.ci <- "PL"
else
method.tau.ci <- "QP"
method.tau.ci <- setchar(method.tau.ci, gs("meth4tau.ci"))
chklogical(tau.common)
chklogical(prediction)
chklevel(level.predict)
method.bias <-
setmethodbias(method.bias, c(1:3, if (sm == "SMD") 8))
if (!is.null(text.fixed))
chkchar(text.fixed, length = 1)
if (!is.null(text.random))
chkchar(text.random, length = 1)
if (!is.null(text.predict))
chkchar(text.predict, length = 1)
if (!is.null(text.w.fixed))
chkchar(text.w.fixed, length = 1)
if (!is.null(text.w.random))
chkchar(text.w.random, length = 1)
chklogical(keepdata)
fun <- "metacont"
if (sm != "MD")
method.ci <- "z"
method.ci <- setchar(method.ci, gs("ci4cont"))
method.mean <- setchar(method.mean, c("Luo", "Wan"))
method.sd <- setchar(method.sd, c("Shi", "Wan"))
chklogical(pooledvar)
method.smd <- setchar(method.smd, c("Hedges", "Cohen", "Glass"))
sd.glass <- setchar(sd.glass, c("control", "experimental"))
chklogical(warn)
args <- list(...)
chklogical(warn.deprecated)
level.ma <- deprecated(level.ma, missing(level.ma), args, "level.comb",
warn.deprecated)
chklevel(level.ma)
fixed <- deprecated(fixed, missing(fixed), args, "comb.fixed",
warn.deprecated)
chklogical(fixed)
random <- deprecated(random, missing(random), args, "comb.random",
warn.deprecated)
chklogical(random)
missing.subgroup.name <- missing(subgroup.name)
subgroup.name <-
deprecated(subgroup.name, missing.subgroup.name, args, "bylab",
warn.deprecated)
print.subgroup.name <-
deprecated(print.subgroup.name, missing(print.subgroup.name),
args, "print.byvar", warn.deprecated)
print.subgroup.name <- replaceNULL(print.subgroup.name, FALSE)
chklogical(print.subgroup.name)
sep.subgroup <-
deprecated(sep.subgroup, missing(sep.subgroup), args, "byseparator",
warn.deprecated)
if (!is.null(sep.subgroup))
chkchar(sep.subgroup, length = 1)
chklogical(overall)
chklogical(overall.hetstat)
nulldata <- is.null(data)
if (nulldata)
data <- sys.frame(sys.parent())
mf <- match.call()
missing.mean.e <- missing(mean.e)
missing.sd.e <- missing(sd.e)
missing.mean.c <- missing(mean.c)
missing.sd.c <- missing(sd.c)
missing.median.e <- missing(median.e)
missing.q1.e <- missing(q1.e)
missing.q3.e <- missing(q3.e)
missing.min.e <- missing(min.e)
missing.max.e <- missing(max.e)
missing.median.c <- missing(median.c)
missing.q1.c <- missing(q1.c)
missing.q3.c <- missing(q3.c)
missing.min.c <- missing(min.c)
missing.max.c <- missing(max.c)
if (!missing.id & is.null(id))
missing.id <- TRUE
if (missing.mean.e & missing.median.e)
stop("Provide either argument 'mean.e' or 'median.e'.",
call. = FALSE)
if (missing.mean.c & missing.median.c)
stop("Provide either argument 'mean.c' or 'median.c'.",
call. = FALSE)
if (missing.sd.e &
!((!missing.q1.e & !missing.q3.e) |
(!missing.min.e & !missing.max.e)))
stop("Provide either argument 'sd.e' and ",
"arguments 'q1.e' & 'q3.e' or 'min.e & 'max.e'.",
call. = FALSE)
if (missing.sd.c &
!((!missing.q1.c & !missing.q3.c) |
(!missing.min.c & !missing.max.c)))
stop("Provide either argument 'sd.c' and ",
"arguments 'q1.c' & 'q3.c' or 'min.c & 'max.c'.",
call. = FALSE)
n.e <- eval(mf[[match("n.e", names(mf))]],
data, enclos = sys.frame(sys.parent()))
chknull(n.e)
k.All <- length(n.e)
mean.e <- eval(mf[[match("mean.e", names(mf))]],
data, enclos = sys.frame(sys.parent()))
if (!missing.mean.e)
chknull(mean.e)
else
mean.e <- rep(NA, k.All)
sd.e <- eval(mf[[match("sd.e", names(mf))]],
data, enclos = sys.frame(sys.parent()))
if (!missing.sd.e)
chknull(sd.e)
else
sd.e <- rep(NA, k.All)
n.c <- eval(mf[[match("n.c", names(mf))]],
data, enclos = sys.frame(sys.parent()))
chknull(n.c)
mean.c <- eval(mf[[match("mean.c", names(mf))]],
data, enclos = sys.frame(sys.parent()))
if (!missing.mean.c)
chknull(mean.c)
else
mean.c <- rep(NA, k.All)
sd.c <- eval(mf[[match("sd.c", names(mf))]],
data, enclos = sys.frame(sys.parent()))
if (!missing.sd.c)
chknull(sd.c)
else
sd.c <- rep(NA, k.All)
id <- eval(mf[[match("id", names(mf))]],
data, enclos = sys.frame(sys.parent()))
studlab <- eval(mf[[match("studlab", names(mf))]],
data, enclos = sys.frame(sys.parent()))
studlab <- setstudlab(studlab, k.All)
missing.subgroup <- missing(subgroup)
subgroup <- eval(mf[[match("subgroup", names(mf))]],
data, enclos = sys.frame(sys.parent()))
missing.byvar <- missing(byvar)
byvar <- eval(mf[[match("byvar", names(mf))]],
data, enclos = sys.frame(sys.parent()))
subgroup <- deprecated2(subgroup, missing.subgroup, byvar, missing.byvar,
warn.deprecated)
by <- !is.null(subgroup)
subset <- eval(mf[[match("subset", names(mf))]],
data, enclos = sys.frame(sys.parent()))
missing.subset <- is.null(subset)
exclude <- eval(mf[[match("exclude", names(mf))]],
data, enclos = sys.frame(sys.parent()))
missing.exclude <- is.null(exclude)
median.e <- eval(mf[[match("median.e", names(mf))]],
data, enclos = sys.frame(sys.parent()))
q1.e <- eval(mf[[match("q1.e", names(mf))]],
data, enclos = sys.frame(sys.parent()))
q3.e <- eval(mf[[match("q3.e", names(mf))]],
data, enclos = sys.frame(sys.parent()))
min.e <- eval(mf[[match("min.e", names(mf))]],
data, enclos = sys.frame(sys.parent()))
max.e <- eval(mf[[match("max.e", names(mf))]],
data, enclos = sys.frame(sys.parent()))
median.c <- eval(mf[[match("median.c", names(mf))]],
data, enclos = sys.frame(sys.parent()))
q1.c <- eval(mf[[match("q1.c", names(mf))]],
data, enclos = sys.frame(sys.parent()))
q3.c <- eval(mf[[match("q3.c", names(mf))]],
data, enclos = sys.frame(sys.parent()))
min.c <- eval(mf[[match("min.c", names(mf))]],
data, enclos = sys.frame(sys.parent()))
max.c <- eval(mf[[match("max.c", names(mf))]],
data, enclos = sys.frame(sys.parent()))
missing.approx.mean.e <- missing(approx.mean.e)
approx.mean.e <- eval(mf[[match("approx.mean.e", names(mf))]],
data, enclos = sys.frame(sys.parent()))
if (!missing.approx.mean.e)
missing.approx.mean.c <- FALSE
else
missing.approx.mean.c <- missing(approx.mean.c)
approx.mean.c <- eval(mf[[match("approx.mean.c", names(mf))]],
data, enclos = sys.frame(sys.parent()))
missing.approx.sd.e <- missing(approx.sd.e)
approx.sd.e <- eval(mf[[match("approx.sd.e", names(mf))]],
data, enclos = sys.frame(sys.parent()))
if (!missing.approx.sd.e)
missing.approx.sd.c <- FALSE
else
missing.approx.sd.c <- missing(approx.sd.c)
approx.sd.c <- eval(mf[[match("approx.sd.c", names(mf))]],
data, enclos = sys.frame(sys.parent()))
if (!by & tau.common) {
warning("Value for argument 'tau.common' set to FALSE as ",
"argument 'subgroup' is missing.")
tau.common <- FALSE
}
if (by & !tau.common & !is.null(tau.preset)) {
warning("Argument 'tau.common' set to TRUE as ",
"argument tau.preset is not NULL.")
tau.common <- TRUE
}
arg <- "n.e"
chklength(mean.e, k.All, arg)
chklength(sd.e, k.All, arg)
chklength(n.c, k.All, arg)
chklength(mean.c, k.All, arg)
chklength(sd.c, k.All, arg)
chklength(studlab, k.All, arg)
if (!missing.id)
chklength(id, k.All, arg)
if (!missing.median.e)
chklength(median.e, k.All, arg)
if (!missing.q1.e)
chklength(q1.e, k.All, arg)
if (!missing.q3.e)
chklength(q3.e, k.All, arg)
if (!missing.min.e)
chklength(min.e, k.All, arg)
if (!missing.max.e)
chklength(max.e, k.All, arg)
if (!missing.median.c)
chklength(median.c, k.All, arg)
if (!missing.q1.c)
chklength(q1.c, k.All, arg)
if (!missing.q3.c)
chklength(q3.c, k.All, arg)
if (!missing.min.c)
chklength(min.c, k.All, arg)
if (!missing.max.c)
chklength(max.c, k.All, arg)
if (!missing.approx.mean.e) {
if (length(approx.mean.e) == 1)
rep_len(approx.mean.e, k.All)
else
chklength(approx.mean.e, k.All, arg)
approx.mean.e <- setchar(approx.mean.e, c("", "iqr.range", "iqr", "range"))
}
if (!missing.approx.mean.c) {
if (length(approx.mean.c) == 1)
rep_len(approx.mean.c, k.All)
else
chklength(approx.mean.c, k.All, arg)
approx.mean.c <- setchar(approx.mean.c, c("", "iqr.range", "iqr", "range"))
}
if (!missing.approx.sd.e) {
if (length(approx.sd.e) == 1)
rep_len(approx.sd.e, k.All)
else
chklength(approx.sd.e, k.All, arg)
approx.sd.e <- setchar(approx.sd.e, c("", "iqr.range", "iqr", "range"))
}
if (!missing.approx.sd.c) {
if (length(approx.sd.c) == 1)
rep_len(approx.sd.c, k.All)
else
chklength(approx.sd.c, k.All, arg)
approx.sd.c <- setchar(approx.sd.c, c("", "iqr.range", "iqr", "range"))
}
if (by) {
chklength(subgroup, k.All, arg)
chklogical(test.subgroup)
}
if (!missing.subset)
if ((is.logical(subset) & (sum(subset) > k.All)) ||
(length(subset) > k.All))
stop("Length of subset is larger than number of studies.")
if (!missing.exclude) {
if ((is.logical(exclude) & (sum(exclude) > k.All)) ||
(length(exclude) > k.All))
stop("Length of argument 'exclude' is larger than number of studies.")
exclude2 <- rep(FALSE, k.All)
exclude2[exclude] <- TRUE
exclude <- exclude2
}
else
exclude <- rep(FALSE, k.All)
if (keepdata) {
if (nulldata)
data <- data.frame(.n.e = n.e)
else
data$.n.e <- n.e
data$.mean.e <- mean.e
data$.sd.e <- sd.e
data$.n.c <- n.c
data$.mean.c <- mean.c
data$.sd.c <- sd.c
data$.studlab <- studlab
if (!missing.median.e)
data$.median.e <- median.e
if (!missing.q1.e)
data$.q1.e <- q1.e
if (!missing.q3.e)
data$.q3.e <- q3.e
if (!missing.min.e)
data$.min.e <- min.e
if (!missing.max.e)
data$.max.e <- max.e
if (!missing.median.c)
data$.median.c <- median.c
if (!missing.q1.c)
data$.q1.c <- q1.c
if (!missing.q3.c)
data$.q3.c <- q3.c
if (!missing.min.c)
data$.min.c <- min.c
if (!missing.max.c)
data$.max.c <- max.c
if (!missing.approx.mean.e)
data$.approx.mean.e <- approx.mean.e
if (!missing.approx.mean.c)
data$.approx.mean.c <- approx.mean.c
if (!missing.approx.sd.e)
data$.approx.sd.e <- approx.sd.e
if (!missing.approx.sd.c)
data$.approx.sd.c <- approx.sd.c
if (by)
data$.subgroup <- subgroup
if (!missing.subset) {
if (length(subset) == dim(data)[1])
data$.subset <- subset
else {
data$.subset <- FALSE
data$.subset[subset] <- TRUE
}
}
if (!missing.exclude)
data$.exclude <- exclude
if (!missing.id)
data$.id <- id
}
if (!missing.subset) {
n.e <- n.e[subset]
mean.e <- mean.e[subset]
sd.e <- sd.e[subset]
n.c <- n.c[subset]
mean.c <- mean.c[subset]
sd.c <- sd.c[subset]
studlab <- studlab[subset]
if (!missing.id)
id <- id[subset]
exclude <- exclude[subset]
if (!missing.median.e)
median.e <- median.e[subset]
if (!missing.q1.e)
q1.e <- q1.e[subset]
if (!missing.q3.e)
q3.e <- q3.e[subset]
if (!missing.min.e)
min.e <- min.e[subset]
if (!missing.max.e)
max.e <- max.e[subset]
if (!missing.median.c)
median.c <- median.c[subset]
if (!missing.q1.c)
q1.c <- q1.c[subset]
if (!missing.q3.c)
q3.c <- q3.c[subset]
if (!missing.min.c)
min.c <- min.c[subset]
if (!missing.max.c)
max.c <- max.c[subset]
if (!missing.approx.mean.e)
approx.mean.e <- approx.mean.e[subset]
if (!missing.approx.mean.c)
approx.mean.c <- approx.mean.c[subset]
if (!missing.approx.sd.e)
approx.sd.e <- approx.sd.e[subset]
if (!missing.approx.sd.c)
approx.sd.c <- approx.sd.c[subset]
if (by)
subgroup <- subgroup[subset]
}
k.all <- length(n.e)
if (k.all == 0)
stop("No studies to combine in meta-analysis.")
if (k.all == 1) {
fixed <- FALSE
random <- FALSE
prediction <- FALSE
overall <- FALSE
overall.hetstat <- FALSE
}
chknumeric(n.e)
chknumeric(mean.e)
chknumeric(sd.e)
chknumeric(n.c)
chknumeric(mean.c)
chknumeric(sd.c)
if (!missing.median.e)
chknumeric(median.e)
if (!missing.q1.e)
chknumeric(q1.e)
if (!missing.q3.e)
chknumeric(q3.e)
if (!missing.min.e)
chknumeric(min.e)
if (!missing.max.e)
chknumeric(max.e)
if (!missing.median.c)
chknumeric(median.c)
if (!missing.q1.c)
chknumeric(q1.c)
if (!missing.q3.c)
chknumeric(q3.c)
if (!missing.min.c)
chknumeric(min.c)
if (!missing.max.c)
chknumeric(max.c)
n.e <- int2num(n.e)
mean.e <- int2num(mean.e)
sd.e <- int2num(sd.e)
n.c <- int2num(n.c)
mean.c <- int2num(mean.c)
sd.c <- int2num(sd.c)
if (!missing.median.e)
median.e <- int2num(median.e)
if (!missing.q1.e)
q1.e <- int2num(q1.e)
if (!missing.q3.e)
q3.e <- int2num(q3.e)
if (!missing.min.e)
min.e <- int2num(min.e)
if (!missing.max.e)
max.e <- int2num(max.e)
if (!missing.median.c)
median.c <- int2num(median.c)
if (!missing.q1.c)
q1.c <- int2num(q1.c)
if (!missing.q3.c)
q3.c <- int2num(q3.c)
if (!missing.min.c)
min.c <- int2num(min.c)
if (!missing.max.c)
max.c <- int2num(max.c)
if (by) {
chkmiss(subgroup)
if (missing.subgroup.name & is.null(subgroup.name)) {
if (!missing.subgroup)
subgroup.name <- byvarname(mf[[match("subgroup", names(mf))]])
else if (!missing.byvar)
subgroup.name <- byvarname(mf[[match("byvar", names(mf))]])
}
}
if (!is.null(subgroup.name))
chkchar(subgroup.name, length = 1)
if (missing.approx.mean.e) {
approx.mean.e <- rep_len("", length(n.e))
sel.NA.e <- is.na(mean.e)
if (any(sel.NA.e) & !missing.median.e &
!missing.q1.e & !missing.q3.e &
!missing.min.e & !missing.max.e) {
j <- sel.NA.e & !is.na(median.e) & !is.na(q1.e) & !is.na(q3.e) &
!is.na(min.e) & !is.na(max.e)
approx.mean.e[j] <- "iqr.range"
mean.e[j] <- mean.sd.iqr.range(n.e[j], median.e[j], q1.e[j], q3.e[j],
min.e[j], max.e[j], method.mean)$mean
}
sel.NA.e <- is.na(mean.e)
if (any(sel.NA.e) & !missing.median.e & !missing.q1.e & !missing.q3.e) {
j <- sel.NA.e & !is.na(median.e) & !is.na(q1.e) & !is.na(q3.e)
approx.mean.e[j] <- "iqr"
mean.e[j] <- mean.sd.iqr(n.e[j], median.e[j], q1.e[j], q3.e[j],
method.mean)$mean
}
sel.NA.e <- is.na(mean.e)
if (any(sel.NA.e) & !missing.median.e & !missing.min.e & !missing.max.e) {
j <- sel.NA.e & !is.na(median.e) & !is.na(min.e) & !is.na(max.e)
approx.mean.e[j] <- "range"
mean.e[j] <- mean.sd.range(n.e[j], median.e[j], min.e[j], max.e[j],
method.mean)$mean
}
}
else {
j <- 0
for (i in approx.mean.e) {
j <- j + 1
if (i == "iqr.range")
mean.e[j] <- mean.sd.iqr.range(n.e[j], median.e[j], q1.e[j], q3.e[j],
min.e[j], max.e[j], method.mean)$mean
else if (i == "iqr")
mean.e[j] <- mean.sd.iqr(n.e[j], median.e[j], q1.e[j], q3.e[j],
method.mean)$mean
else if (i == "range")
mean.e[j] <- mean.sd.range(n.e[j], median.e[j], min.e[j], max.e[j],
method.mean)$mean
}
}
if (missing.approx.mean.c) {
approx.mean.c <- rep_len("", length(n.c))
sel.NA.c <- is.na(mean.c)
if (any(sel.NA.c) & !missing.median.c &
!missing.q1.c & !missing.q3.c &
!missing.min.c & !missing.max.c) {
j <- sel.NA.c & !is.na(median.c) & !is.na(q1.c) & !is.na(q3.c) &
!is.na(min.c) & !is.na(max.c)
approx.mean.c[j] <- "iqr.range"
mean.c[j] <- mean.sd.iqr.range(n.c[j], median.c[j], q1.c[j], q3.c[j],
min.c[j], max.c[j], method.mean)$mean
}
sel.NA.c <- is.na(mean.c)
if (any(sel.NA.c) & !missing.median.c & !missing.q1.c & !missing.q3.c) {
j <- sel.NA.c & !is.na(median.c) & !is.na(q1.c) & !is.na(q3.c)
approx.mean.c[j] <- "iqr"
mean.c[j] <- mean.sd.iqr(n.c[j], median.c[j], q1.c[j], q3.c[j],
method.mean)$mean
}
sel.NA.c <- is.na(mean.c)
if (any(sel.NA.c) & !missing.median.c & !missing.min.c & !missing.max.c) {
j <- sel.NA.c & !is.na(median.c) & !is.na(min.c) & !is.na(max.c)
approx.mean.c[j] <- "range"
mean.c[j] <- mean.sd.range(n.c[j], median.c[j], min.c[j], max.c[j],
method.mean)$mean
}
}
else {
j <- 0
for (i in approx.mean.c) {
j <- j + 1
if (i == "iqr.range")
mean.c[j] <- mean.sd.iqr.range(n.c[j], median.c[j], q1.c[j], q3.c[j],
min.c[j], max.c[j], method.mean)$mean
else if (i == "iqr")
mean.c[j] <- mean.sd.iqr(n.c[j], median.c[j], q1.c[j], q3.c[j],
method.mean)$mean
else if (i == "range")
mean.c[j] <- mean.sd.range(n.c[j], median.c[j], min.c[j], max.c[j],
method.mean)$mean
}
}
if (missing.median.e) {
median.e.sd <- mean.e
missing.median.e <- FALSE
export.median.e <- FALSE
}
else {
median.e.sd <- median.e
median.e.sd[is.na(median.e.sd)] <- mean.e[is.na(median.e.sd)]
export.median.e <- TRUE
}
if (missing.approx.sd.e) {
approx.sd.e <- rep_len("", length(n.e))
sel.NA.e <- is.na(sd.e)
if (any(sel.NA.e) & !missing.median.e &
!missing.q1.e & !missing.q3.e &
!missing.min.e & !missing.max.e) {
j <- sel.NA.e & !is.na(median.e.sd) & !is.na(q1.e) & !is.na(q3.e) &
!is.na(min.e) & !is.na(max.e)
approx.sd.e[j] <- "iqr.range"
sd.e[j] <- mean.sd.iqr.range(n.e[j], median.e.sd[j], q1.e[j], q3.e[j],
min.e[j], max.e[j],
method.sd = method.sd)$sd
}
sel.NA.e <- is.na(sd.e)
if (any(sel.NA.e) & !missing.median.e & !missing.q1.e & !missing.q3.e) {
j <- sel.NA.e & !is.na(median.e.sd) & !is.na(q1.e) & !is.na(q3.e)
approx.sd.e[j] <- "iqr"
sd.e[j] <- mean.sd.iqr(n.e[j], median.e.sd[j], q1.e[j], q3.e[j])$sd
}
sel.NA.e <- is.na(sd.e)
if (any(sel.NA.e) & !missing.median.e & !missing.min.e & !missing.max.e) {
j <- sel.NA.e & !is.na(median.e.sd) & !is.na(min.e) & !is.na(max.e)
approx.sd.e[j] <- "range"
sd.e[j] <- mean.sd.range(n.e[j], median.e.sd[j], min.e[j], max.e[j])$sd
}
}
else {
j <- 0
for (i in approx.sd.e) {
j <- j + 1
if (i == "iqr.range")
sd.e[j] <- mean.sd.iqr.range(n.e[j], median.e.sd[j], q1.e[j], q3.e[j],
min.e[j], max.e[j],
method.sd = method.sd)$sd
else if (i == "iqr")
sd.e[j] <- mean.sd.iqr(n.e[j], median.e.sd[j], q1.e[j], q3.e[j])$sd
else if (i == "range")
sd.e[j] <- mean.sd.range(n.e[j], median.e.sd[j], min.e[j], max.e[j])$sd
}
}
if (missing.median.c) {
median.c.sd <- mean.c
missing.median.c <- FALSE
export.median.c <- FALSE
}
else {
median.c.sd <- median.c
median.c.sd[is.na(median.c.sd)] <- mean.c[is.na(median.c.sd)]
export.median.c <- TRUE
}
if (missing.approx.sd.c) {
approx.sd.c <- rep_len("", length(n.c))
sel.NA.c <- is.na(sd.c)
if (any(sel.NA.c) & !missing.median.c &
!missing.q1.c & !missing.q3.c &
!missing.min.c & !missing.max.c) {
j <- sel.NA.c & !is.na(median.c.sd) & !is.na(q1.c) & !is.na(q3.c) &
!is.na(min.c) & !is.na(max.c)
approx.sd.c[j] <- "iqr.range"
sd.c[j] <- mean.sd.iqr.range(n.c[j], median.c.sd[j], q1.c[j], q3.c[j],
min.c[j], max.c[j],
method.sd = method.sd)$sd
}
sel.NA.c <- is.na(sd.c)
if (any(sel.NA.c) & !missing.median.c & !missing.q1.c & !missing.q3.c) {
j <- sel.NA.c & !is.na(median.c.sd) & !is.na(q1.c) & !is.na(q3.c)
approx.sd.c[j] <- "iqr"
sd.c[j] <- mean.sd.iqr(n.c[j], median.c.sd[j], q1.c[j], q3.c[j])$sd
}
sel.NA.c <- is.na(sd.c)
if (any(sel.NA.c) & !missing.median.c & !missing.min.c & !missing.max.c) {
j <- sel.NA.c & !is.na(median.c.sd) & !is.na(min.c) & !is.na(max.c)
approx.sd.c[j] <- "range"
sd.c[j] <- mean.sd.range(n.c[j], median.c.sd[j], min.c[j], max.c[j])$sd
}
}
else {
j <- 0
for (i in approx.sd.c) {
j <- j + 1
if (i == "iqr.range")
sd.c[j] <- mean.sd.iqr.range(n.c[j], median.c[j], q1.c[j], q3.c[j],
min.c[j], max.c[j],
method.sd = method.sd)$sd
else if (i == "iqr")
sd.c[j] <- mean.sd.iqr(n.c[j], median.c.sd[j], q1.c[j], q3.c[j])$sd
else if (i == "range")
sd.c[j] <- mean.sd.range(n.c[j], median.c.sd[j], min.c[j], max.c[j])$sd
}
}
if (keepdata) {
if (!isCol(data, ".subset")) {
data$.sd.e <- sd.e
data$.mean.e <- mean.e
data$.sd.c <- sd.c
data$.mean.c <- mean.c
if (!missing.approx.sd.e)
data$.approx.sd.e <- approx.sd.e
if (!missing.approx.sd.c)
data$.approx.sd.c <- approx.sd.c
if (!missing.approx.mean.e)
data$.approx.mean.e <- approx.mean.e
if (!missing.approx.mean.c)
data$.approx.mean.c <- approx.mean.c
}
else {
data$.sd.e[data$.subset] <- sd.e
data$.mean.e[data$.subset] <- mean.e
data$.sd.c[data$.subset] <- sd.c
data$.mean.c[data$.subset] <- mean.c
if (!missing.approx.sd.e)
data$.approx.sd.e[data$.subset] <- approx.sd.e
if (!missing.approx.sd.c)
data$.approx.sd.c[data$.subset] <- approx.sd.c
if (!missing.approx.mean.e)
data$.approx.mean.e[data$.subset] <- approx.mean.e
if (!missing.approx.mean.c)
data$.approx.mean.c[data$.subset] <- approx.mean.c
}
}
npn.n <- npn(n.e) | npn(n.c)
N <- n.e + n.c
if (sm == "MD" | sm == "ROM")
var.pooled <- ((n.e - 1) * sd.e^2 + (n.c - 1) * sd.c^2) / (N - 2)
if (any(npn.n) & warn)
warning("Note, studies with non-positive values for n.e and / or n.c get no weight in meta-analysis.")
if (sm == "MD") {
TE <- ifelse(npn.n, NA, mean.e - mean.c)
if (pooledvar)
seTE <-
ifelse(npn.n, NA, sqrt(var.pooled * (1 / n.e + 1 / n.c)))
else
seTE <-
ifelse(npn.n, NA, sqrt(sd.e^2 / n.e + sd.c^2 / n.c))
seTE[is.na(TE)] <- NA
if (method.ci == "t")
ci.study <- ci(TE, seTE, df = n.e + n.c - 2)
}
else if (sm == "SMD") {
J <- function(x)
exp(lgamma(x / 2) - log(sqrt(x / 2)) - lgamma((x - 1) / 2))
K <- function(x) 1 - (x - 2) / (x * J(x)^2)
if (method.smd %in% c("Hedges", "Cohen"))
S.within <- sqrt(((n.e - 1) * sd.e^2 + (n.c - 1) * sd.c^2) / (N - 2))
else
S.within <- if (sd.glass == "control") sd.c else sd.e
smd <- ifelse(npn.n, NA, (mean.e - mean.c) / S.within)
if (method.smd == "Cohen") {
TE <- smd
if (exact.smd) {
J <- function(x)
exp(lgamma(x / 2) - log(sqrt(x / 2)) - lgamma((x - 1) / 2))
K <- function(x) 1 - (x - 2) / (x * J(x)^2)
seTE <-
ifelse(npn.n, NA,
sqrt(1 / n.e + 1 / n.c + (J(N - 2) * smd)^2 * K(N - 2)))
}
else
seTE <-
ifelse(npn.n, NA, sqrt(1 / n.e + 1 / n.c + TE^2 / (2 * N)))
}
else if (method.smd == "Hedges") {
if (exact.smd) {
J <- function(x)
exp(lgamma(x / 2) - log(sqrt(x / 2)) - lgamma((x - 1) / 2))
K <- function(x) 1 - (x - 2) / (x * J(x)^2)
}
else {
J <- function(x) 1 - 3 / (4 * x - 1)
K <- function(x) 1 / (2 * (x - 1.94))
}
TE <- J(N - 2) * smd
seTE <-
ifelse(npn.n, NA, sqrt(1 / n.e + 1 / n.c + TE^2 * K(N - 2)))
}
else if (method.smd == "Glass") {
n.g <- if (sd.glass == "control") n.c else n.e
TE <- smd
seTE <-
ifelse(npn.n, NA, sqrt(1 / n.e + 1 / n.c + TE^2 / (2 * (n.g - 1))))
}
seTE[is.na(TE)] <- NA
}
else if (sm == "ROM") {
npn.mean <- npn(mean.e) | npn(mean.c)
if (any(npn.mean) & warn)
warning("Note, studies with negative or zero means get no weight in meta-analysis.")
TE <- ifelse(npn.n | npn.mean, NA, log(mean.e / mean.c))
if (pooledvar)
seTE <- ifelse(npn.n, NA,
sqrt(var.pooled * (1 / (n.e * mean.e^2) + 1 / (n.c * mean.c^2))))
else
seTE <- ifelse(npn.n | npn.mean, NA,
sqrt(sd.e^2 / (n.e * mean.e^2) + sd.c^2 / (n.c * mean.c^2)))
seTE[is.na(TE)] <- NA
}
sel <- sd.e <= 0 | sd.c <= 0
if (any(sel, na.rm = TRUE) & warn)
warning("Note, studies with non-positive values for sd.e or sd.c get no weight in meta-analysis.")
seTE[sel] <- NA
if (sm == "SMD")
TE[sel] <- NA
multi.level <- FALSE
sel.ni <- !is.infinite(TE) & !is.infinite(seTE)
if (!missing.id && length(unique(id[sel.ni])) != length(id[sel.ni]))
multi.level <- TRUE
if (multi.level) {
if (!(method.tau %in% c("REML", "ML"))) {
if (!missing(method.tau))
warning("For three-level model, argument 'method.tau' set to \"REML\".",
call. = FALSE)
method.tau <- "REML"
}
if (by & !tau.common) {
if (!missing(tau.common))
warning("For three-level model, argument 'tau.common' set to ",
"\"TRUE\".",
call. = FALSE)
tau.common <- TRUE
}
}
m <- metagen(TE, seTE, studlab,
exclude = if (missing.exclude) NULL else exclude,
id = id,
sm = sm,
level = level,
level.ma = level.ma,
fixed = fixed,
random = random,
overall = overall,
overall.hetstat = overall.hetstat,
hakn = hakn, adhoc.hakn = adhoc.hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.preset = tau.preset,
TE.tau = TE.tau,
tau.common = FALSE,
prediction = prediction,
level.predict = level.predict,
method.bias = method.bias,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed, text.w.random = text.w.random,
title = title, complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
keepdata = FALSE,
warn = warn,
control = control)
if (by & tau.common) {
hcc <- hetcalc(TE, seTE, method.tau, "",
TE.tau, level.ma, subgroup, control)
}
res <- list(n.e = n.e, mean.e = mean.e, sd.e = sd.e,
n.c = n.c, mean.c = mean.c, sd.c = sd.c,
pooledvar = pooledvar,
method.smd = method.smd, sd.glass = sd.glass,
exact.smd = exact.smd, method.ci = method.ci)
if (export.median.e)
res$median.e <- median.e
if (!missing.q1.e)
res$q1.e <- q1.e
if (!missing.q3.e)
res$q3.e <- q3.e
if (!missing.min.e)
res$min.e <- min.e
if (!missing.max.e)
res$max.e <- max.e
if (export.median.c)
res$median.c <- median.c
if (!missing.q1.c)
res$q1.c <- q1.c
if (!missing.q3.c)
res$q3.c <- q3.c
if (!missing.min.c)
res$min.c <- min.c
if (!missing.max.c)
res$max.c <- max.c
res$approx.sd.e <- approx.sd.e
res$approx.sd.c <- approx.sd.c
res$approx.mean.e <- approx.mean.e
res$approx.mean.c <- approx.mean.c
m$n.e <- NULL
m$n.c <- NULL
res <- c(res, m)
res$n.e.pooled <- sum(res$n.e, na.rm = TRUE)
res$n.c.pooled <- sum(res$n.c, na.rm = TRUE)
res$method.mean <- method.mean
res$method.sd <- method.sd
res$call <- match.call()
if (keepdata) {
res$data <- data
if (!missing.subset)
res$subset <- subset
}
if (method.ci == "t") {
res$lower <- ci.study$lower
res$upper <- ci.study$upper
res$statistic <- ci.study$statistic
res$pval <- ci.study$p
res$df <- ci.study$df
}
else if (!is.null(res$df) && all(is.na(res$df)))
res$df <- NULL
if (all(res$approx.mean.e == "")) {
res$approx.mean.e <- NULL
res$data$.approx.mean.e <- NULL
}
if (all(res$approx.sd.e == "")) {
res$approx.sd.e <- NULL
res$data$.approx.sd.e <- NULL
}
if (all(res$approx.mean.c == "")) {
res$approx.mean.c <- NULL
res$data$.approx.mean.c <- NULL
}
if (all(res$approx.sd.c == "")) {
res$approx.sd.c <- NULL
res$data$.approx.sd.c <- NULL
}
class(res) <- c(fun, "meta")
if (by) {
res$subgroup <- subgroup
res$subgroup.name <- subgroup.name
res$print.subgroup.name <- print.subgroup.name
res$sep.subgroup <- sep.subgroup
res$test.subgroup <- test.subgroup
res$tau.common <- tau.common
if (!tau.common)
res <- c(res, subgroup(res))
else if (!is.null(tau.preset))
res <- c(res, subgroup(res, tau.preset))
else
res <- c(res, subgroup(res, hcc$tau.resid))
if (!tau.common || !is.null(tau.preset)) {
res$tau2.resid <- res$lower.tau2.resid <- res$upper.tau2.resid <- NA
res$tau.resid <- res$lower.tau.resid <- res$upper.tau.resid <- NA
res$Q.resid <- res$df.Q.resid <- res$pval.Q.resid <- NA
res$H.resid <- res$lower.H.resid <- res$upper.H.resid <- NA
res$I2.resid <- res$lower.I2.resid <- res$upper.I2.resid <- NA
}
else {
res$Q.w.random <- hcc$Q.resid
res$df.Q.w.random <- hcc$df.Q.resid
res$pval.Q.w.random <- hcc$pval.Q.resid
res$tau2.resid <- hcc$tau2.resid
res$lower.tau2.resid <- hcc$lower.tau2.resid
res$upper.tau2.resid <- hcc$upper.tau2.resid
res$tau.resid <- hcc$tau.resid
res$lower.tau.resid <- hcc$lower.tau.resid
res$upper.tau.resid <- hcc$upper.tau.resid
res$sign.lower.tau.resid <- hcc$sign.lower.tau.resid
res$sign.upper.tau.resid <- hcc$sign.upper.tau.resid
res$Q.resid <- hcc$Q.resid
res$df.Q.resid <- hcc$df.Q.resid
res$pval.Q.resid <- hcc$pval.Q.resid
res$H.resid <- hcc$H.resid
res$lower.H.resid <- hcc$lower.H.resid
res$upper.H.resid <- hcc$upper.H.resid
res$I2.resid <- hcc$I2.resid
res$lower.I2.resid <- hcc$lower.I2.resid
res$upper.I2.resid <- hcc$upper.I2.resid
}
res$event.e.w <- NULL
res$event.c.w <- NULL
res$event.w <- NULL
res$n.w <- NULL
res$time.e.w <- NULL
res$time.c.w <- NULL
}
res$comb.fixed <- fixed
res$comb.random <- random
res$level.comb <- level.ma
if (by) {
res$byvar <- subgroup
res$bylab <- subgroup.name
res$print.byvar <- print.subgroup.name
res$byseparator <- sep.subgroup
}
class(res) <- c(fun, "meta")
res
} |
"jsmurf" <-
function(y, x = 1:length(y), x0 = 2 * x[1] - x[2], q, alpha = 0.05, r = 4e3, lengths = 2^(floor(log2(length(y))):floor(log2(max(length(param$kern) + 1, 1 / param$param$cutoff)))), param, rm.out = FALSE, jumpint = confband, confband = FALSE)
{
sdi <- sdrobnorm(y, lag = length(param$kern) + 1)
if(rm.out) {
cutmin <- quantile(y, 1e-4) + qnorm(1 / length(y)) * sdi
cutmax <- quantile(y, 1 - 1e-4) - qnorm(1 / length(y)) * sdi
outlier <- y < cutmin | y > cutmax
if(any(outlier)) {
ycut <- y[-neighbours(which(outlier), 1:length(y), length(param$kern) - 1)]
xcut <- x[-neighbours(which(outlier), 1:length(y), length(param$kern) - 1)]
} else {
ycut <- y
xcut <- x
}
} else {
ycut <- y
xcut <- x
}
if(missing(q)) {
if(is.null(r)) stop("q or r need to be specified!")
q <- kMRC.quant(1 - alpha, length(y), r, param$kern, lengths)
} else {
alpha <- NA
}
bs <- bounds.MRC(ycut, q = q, lengths = lengths, family = 'gaussKern', param = param)
allblocks <- stepbound.default(ycut, bounds = bs, x = xcut, x0 = x0, family = 'gaussKern', param = param, refit = FALSE, jumpint = jumpint, confband = confband)
if(!is.na(alpha)) attr(allblocks, "alpha") <- alpha
attr(allblocks, "q") <- q
attr(allblocks, "sd") <- sdi
allblocks
} |
sign_out_from_shiny <- function(
session = shiny::getDefaultReactiveDomain(),
redirect_page = "?page=sign_in"
) {
user <- isolate(session$userData$user())
if (is.null(user)) stop("session$userData$user() does not exist", call. = FALSE)
.global_sessions$sign_out(user$hashed_cookie)
shiny::updateQueryString(
queryString = redirect_page,
session = session,
mode = "replace"
)
} |
"isfuncCOP" <-
function(cop=NULL, para=NULL, delta=0.002, ...) {
if(is.null(cop)) {
warning("must have copula argument specified, returning NULL")
return(NULL)
}
if(delta < 0 | delta > 0.5) {
warning("invalid delta argument specified, returning NULL")
return(NULL)
}
uvs <- seq(delta, 1-delta, by=delta)
message("Checking condition C(u,0) = 0 for all u---", appendLF=FALSE)
cond <- unique(cop(u=uvs, v=0, cop=cop, para=para, ...))
if(length(cond) != 1 | cond[1] != 0) {
message("FALSE.")
return(FALSE)
} else {
message("TRUE.")
}
message("Checking condition C(0,v) = 0 for all v---", appendLF=FALSE)
cond <- unique(cop(u=0, v=uvs, cop=cop, para=para, ...))
if(length(cond) != 1 | cond[1] != 0) {
message("FALSE.")
return(FALSE)
} else {
message("TRUE.")
}
message("Checking condition C(u,1) = u for all u---", appendLF=FALSE)
cond <- unique(uvs - cop(u=uvs, v=1, cop=cop, para=para, ...))
if(length(cond) != 1 | cond[1] != 0) {
message("FALSE.")
return(FALSE)
} else {
message("TRUE.")
}
message("Checking condition C(1,v) = v for all v---", appendLF=FALSE)
cond <- unique(uvs - cop(u=1, v=uvs, cop=cop, para=para, ...))
if(length(cond) != 1 | cond[1] != 0) {
message("FALSE")
return(FALSE)
} else {
message("TRUE.")
}
message("Checking 2-increasing condition for all (u,v)---", appendLF=FALSE)
tmp <- sapply(uvs, function(u) {
if(any(densityCOP(u, uvs, cop=cop, para=para,
truncate.at.zero=FALSE, ...) < 0)) {
message("FALSE.")
return(FALSE)
}})
message("TRUE.")
return(TRUE)
} |
liuest <-
function(formula, data, d = 1.0, scaling = c("centered", "sc", "scaled"), ...) {
if (is.null(d)) {
d <- 1
} else {
d <- d
}
mf <- model.frame(formula = formula, data = data)
x <- model.matrix(attr(mf, "term"), data = mf)
y <- model.response(mf)
mt <- attr(mf, "terms")
p <- ncol(x)
n <- nrow(x)
if (Inter <- attr(mt, "intercept")) {
Xm <- colMeans(x[,-Inter])
Ym <- mean(y)
Y <- y - Ym
p <- p - 1
X <- x[,-Inter] - rep(Xm, rep(n,p))
} else{
Xm <- colMeans(x)
Ym <- mean(y)
Y <- y - Ym
X <- x - rep(Xm, rep(n,p))
}
scaling <- match.arg(scaling)
if (scaling == "sc") {
Xscale <- (drop(rep(1 / (n - 1), n) %*% X ^ 2) ^ 0.5) * sqrt(n - 1)
} else if (scaling == "scaled") {
Xscale <- drop(rep(1 / (n - 1), n) %*% X ^ 2) ^ 0.5
} else{
Xscale <- drop(rep(1,p))
}
X <- X / rep(Xscale, rep(n,p))
bols <- lm.fit(X , as.matrix(Y))$coefficients
coef <-
lapply(d, function(d) {
(solve(t(X) %*% X + diag(p)) %*% (t(X) %*% X + d * diag(p))) %*% bols
})
coef <- do.call(cbind, coef)
rownames(coef) <- colnames(X)
colnames(coef) <- paste("d=", d, sep = "")
lfit <- apply(coef, 2, function(x) {
X %*% x
})
list(
coef = coef, xscale = Xscale, xs = X, Inter = Inter, xm = Xm, y = Y,
scaling = scaling, call = match.call(), d = d, lfit = lfit, mf =mf, terms = mt
)
} |
context("walk_regions")
test_that("map_region works as expected", {
source(file.path(test_path(), "testdata", "testdata.R"))
x <- as_workbook(t_report_stack)
style <- openxlsx::createStyle(fgFill = "
walk_regions(x, .fun = openxlsx::addStyle, style = style)
walk_regions(x, .fun = openxlsx::setColWidths, widths = 2)
walk_regions(x, .fun = openxlsx::setRowHeights, heights = 32)
expect_identical(
x$rowHeights[[1]],
structure(c("32", "32", "32", "32", "32", "32", "32", "32", "32",
"32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32",
"32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32",
"32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32",
"32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32",
"32"), .Names = c("1", "2", "3", "4", "5", "7", "8", "9", "10",
"11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21",
"22", "23", "24", "25", "26", "27", "30", "31", "32", "33", "34",
"35", "38", "39", "40", "41", "42", "43", "44", "45", "48", "49",
"50", "52", "53", "54", "55", "56", "57", "58", "59", "61", "63",
"64"))
)
expect_identical(
x$rowHeights[[2]],
structure(c("32", "32", "32", "32", "32", "32", "32", "32", "32",
"32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32",
"32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32",
"32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32",
"32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32",
"32"), .Names = c("1", "2", "3", "4", "5", "7", "8", "9", "10",
"11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21",
"22", "23", "24", "25", "26", "27", "35", "36", "37", "38", "39",
"40", "48", "49", "50", "51", "52", "53", "54", "55", "63", "64",
"65", "67", "68", "69", "70", "71", "72", "73", "74", "76", "78",
"79"))
)
expect_identical(
x$colWidths,
list(structure(c("2", "2", "2", "2", "2", "2", "2", "2", "2",
"2", "2", "2"), .Names = c("1", "2", "3", "4", "5", "6", "7",
"8", "9", "10", "11", "12"), hidden = c("0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0")), structure(c("2", "2", "2",
"2", "2", "2", "2", "2", "2", "2", "2", "2"), .Names = c("1",
"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"), hidden = c("0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0")))
)
expect_identical(
length(openxlsx::getStyles(x)),
1066L
)
}) |
theme_graph <- function(base_family = 'Arial Narrow', base_size = 11,
background = 'white', foreground = NULL, border = TRUE,
text_colour = 'black', bg_text_colour = text_colour,
fg_text_colour = text_colour,
title_family = base_family, title_size = 18,
title_face = 'bold', title_margin = 10,
title_colour = bg_text_colour,
subtitle_family = base_family, subtitle_size = 12,
subtitle_face = 'plain', subtitle_margin = 15,
subtitle_colour = bg_text_colour,
strip_text_family = base_family, strip_text_size = 10,
strip_text_face = 'bold', strip_text_colour = fg_text_colour,
caption_family = base_family, caption_size = 9,
caption_face = 'italic', caption_margin = 10,
caption_colour = bg_text_colour,
plot_margin = margin(30, 30, 30, 30)) {
style <- theme_bw(base_size = base_size, base_family = base_family)
style <- style + theme(
text = element_text(colour = text_colour),
plot.title = element_text(
family = title_family,
size = title_size,
face = title_face,
colour = title_colour,
margin = margin(b = title_margin)
),
plot.subtitle = element_text(
family = subtitle_family,
size = subtitle_size,
face = subtitle_face,
colour = subtitle_colour,
margin = margin(b = subtitle_margin)
),
plot.caption = element_text(
family = caption_family,
size = caption_size,
face = caption_face,
colour = caption_colour,
margin = margin(t = caption_margin)
),
strip.text = element_text(
family = strip_text_family,
size = strip_text_size,
face = strip_text_face,
colour = strip_text_colour
),
plot.margin = plot_margin,
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank(),
panel.background = element_blank(),
axis.title = element_blank(),
axis.text = element_blank(),
axis.line = element_blank(),
axis.ticks = element_blank(),
panel.grid = element_blank(),
strip.background = if (is.null(foreground)) element_blank() else element_rect(fill = foreground, colour = foreground),
plot.background = if (is.null(background)) element_blank() else element_rect(fill = background, colour = NA),
panel.border = if (border && !is.null(foreground)) element_rect(fill = NA, colour = foreground) else element_blank()
)
style
}
th_foreground <- function(foreground = 'grey80', fg_text_colour = NULL, border = FALSE) {
th <- theme(
strip.background = if (is.null(foreground)) element_blank() else element_rect(fill = foreground, colour = foreground),
panel.border = if (border && !is.null(foreground)) element_rect(fill = NA, colour = foreground) else element_blank()
)
if (!is.null(fg_text_colour)) {
th <- th + theme(strip.text = element_text(colour = fg_text_colour))
}
th
}
th_no_axes <- function() {
theme(
panel.grid = element_blank(),
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.line = element_blank(),
NULL
)
}
set_graph_style <- function(family = 'Arial Narrow', face = 'plain', size = 11,
text_size = 11, text_colour = 'black', ...) {
style <- theme_graph(
base_family = family, base_size = size,
text_colour = text_colour, ...
)
theme_set(style)
text_size <- text_size / .pt
update_geom_defaults(GeomEdgePath, list(
family = family,
fontface = face,
label_size = text_size
))
update_geom_defaults(GeomText, list(
family = family,
fontface = face,
size = text_size
))
update_geom_defaults(GeomTextRepel, list(
family = family,
fontface = face,
size = text_size
))
update_geom_defaults(GeomLabel, list(
family = family,
fontface = face,
size = text_size
))
update_geom_defaults(GeomLabelRepel, list(
family = family,
fontface = face,
size = text_size
))
}
unset_graph_style <- function() {
style <- theme_gray()
theme_set(style)
update_geom_defaults(GeomEdgePath, list(
family = '',
fontface = 1,
label_size = 3.88
))
update_geom_defaults(GeomText, list(
family = '',
fontface = 1,
size = 3.88
))
update_geom_defaults(GeomTextRepel, list(
family = '',
fontface = 1,
size = 3.88
))
update_geom_defaults(GeomLabel, list(
family = '',
fontface = 1,
size = 3.88
))
update_geom_defaults(GeomLabelRepel, list(
family = '',
fontface = 1,
size = 3.88
))
update_geom_defaults(GeomAxisHive, list(
family = '',
fontface = 1,
size = 3.88
))
} |
write_command_via_csv <- function(x, path_terminal = "", fileName = "SystemControl"){
if(exists("x") == TRUE && nrow(x) != 0) {
for(i in 1:nrow(x))
{
composed_name <- paste0(fileName, as.character(x[i, 1]), ".csv")
f_name <- file.path(path_terminal, composed_name)
write.csv(x[i, ], file = f_name, row.names = FALSE)
}
}
} |
test_missMDA_EM <- function(X_hat, list) {
index <- lapply(list, is.na)
missMDA_EM_imp <- function(X) {
ncomp <- missMDA::estim_ncpPCA(X, ncp.max = ncol(X) - 2)
res.imp <- missMDA::imputePCA(X, ncp = ncomp$ncp, method = "EM")
imp_matrix <- res.imp$completeObs
list(Imputed = imp_matrix)
}
print("missMDA EM imputation - in progress")
start_time <- Sys.time()
log_output <- utils::capture.output(results <- lapply(list, missMDA_EM_imp))
end_time <- Sys.time()
time <- as.numeric(end_time - start_time, units = "mins")
orig_MCAR <- X_hat[index[[1]]]
orig_MAR <- X_hat[index[[2]]]
orig_MNAR <- X_hat[index[[3]]]
if (length(index) == 4)
orig_MAP <- X_hat[index[[4]]]
imp_MCAR <- results$MCAR_matrix$Imputed[index[[1]]]
imp_MAR <- results$MAR_matrix$Imputed[index[[2]]]
imp_MNAR <- results$MNAR_matrix$Imputed[index[[3]]]
if (length(index) == 4)
imp_MAP <- results$MAP_matrix$Imputed[index[[4]]]
rmse_MCAR <- sqrt(mean((orig_MCAR - imp_MCAR)^2))
rmse_MAR <- sqrt(mean((orig_MAR - imp_MAR)^2))
rmse_MNAR <- sqrt(mean((orig_MNAR - imp_MNAR)^2))
if (length(index) == 4)
rmse_MAP <- sqrt(mean((orig_MAP - imp_MAP)^2))
mae_MCAR <- mean(abs(orig_MCAR - imp_MCAR))
mae_MAR <- mean(abs(orig_MAR - imp_MAR))
mae_MNAR <- mean(abs(orig_MNAR - imp_MNAR))
if (length(index) == 4)
mae_MAP <- mean(abs(orig_MAP - imp_MAP))
ks_MCAR <- stats::ks.test(orig_MCAR, imp_MCAR, exact=TRUE)$statistic
ks_MAR <- stats::ks.test(orig_MAR, imp_MAR, exact=TRUE)$statistic
ks_MNAR <- stats::ks.test(orig_MNAR, imp_MNAR, exact=TRUE)$statistic
if (length(index) == 4)
ks_MAP <- stats::ks.test(orig_MAP, imp_MAP, exact=TRUE)$statistic
if (length(index) == 4)
list(Comp_time = time, MCAR_RMSE = rmse_MCAR, MAR_RMSE = rmse_MAR, MNAR_RMSE = rmse_MNAR, MAP_RMSE = rmse_MAP, MCAR_MAE = mae_MCAR, MAR_MAE = mae_MAR, MNAR_MAE = mae_MNAR, MAP_MAE = mae_MAP, MCAR_KS = ks_MCAR, MAR_KS = ks_MAR, MNAR_KS = ks_MNAR, MAP_KS = ks_MAP) else list(Comp_time = time, MCAR_RMSE = rmse_MCAR, MAR_RMSE = rmse_MAR, MNAR_RMSE = rmse_MNAR, MCAR_MAE = mae_MCAR, MAR_MAE = mae_MAR, MNAR_MAE = mae_MNAR, MCAR_KS = ks_MCAR, MAR_KS = ks_MAR, MNAR_KS = ks_MNAR)
} |
library(dplyr)
library(tidyr)
test_that("one-parameter eye plots work", {
skip_if_no_vdiffr()
set.seed(123)
df = data.frame(x = rnorm(1000), y = 1)
p = ggplot(df, aes(x = x, y = y))
expect_warning(vdiffr::expect_doppelganger("one-parameter horizontal eye",
p + geom_eyeh(n = 20)
), "Deprecated")
expect_warning(vdiffr::expect_doppelganger("one-parameter horizontal half-eye",
p + geom_halfeyeh(n = 20)
), "Deprecated")
p = ggplot(df, aes(x = y, y = x))
expect_warning(vdiffr::expect_doppelganger("one-parameter vertical eye",
p + geom_eye(n = 20)
), "Deprecated")
vdiffr::expect_doppelganger("one-parameter vertical halfeye", p + stat_halfeye(n = 20))
p = ggplot(df, aes(x = x, y = y))
expect_warning(vdiffr::expect_doppelganger("one-parameter horizontal eye (mode_hdi)",
p + stat_eyeh(point_interval = mode_hdi, n = 20)
), "Deprecated")
})
test_that("two-parameter eye plots work", {
skip_if_no_vdiffr()
set.seed(123)
df = data.frame(x = rnorm(1000), y = "a", y_int = 1) %>%
rbind(data.frame(x = rnorm(1000, 1), y = "b", y_int = 2))
p = ggplot(df, aes(x = x, y = y))
expect_warning(vdiffr::expect_doppelganger("two-parameter (factor) horizontal half-eye",
p + stat_halfeyeh(scale = 0.5, n = 20)
), "Deprecated")
vdiffr::expect_doppelganger("two-parameter (factor) horizontal eye (fill)", p + stat_eye(aes(fill = y), scale = 0.5, n = 20))
}) |
colVarsC <- function(x)
{
if (!is.matrix(x)) x <- as.matrix(x)
CN <- colnames(x)
if (NCOL(x) == 1) stop("colVarsC: 'x' should have more than one column!")
OUT <- .Call("C_colVarsC", x, PACKAGE = "propagate")
names(OUT) <- CN
OUT
}
rowVarsC <- function(x)
{
if (!is.matrix(x)) x <- as.matrix(x)
RN <- rownames(x)
if (NROW(t(x)) == 1) stop("rowVarsC: 'x' should have more than one row!")
OUT <- .Call("C_rowVarsC", x, PACKAGE = "propagate")
names(OUT) <- RN
OUT
} |
EQsampleDensity <-
function(sx, boundaryVec, NoNote=215, size=100){
n<-NoNote
SXdim<-length(sx[1,])
space<-NULL
for(i in 1:SXdim){
a<-boundaryVec[2*i-1]
b<-boundaryVec[2*i]
d<-(b-a)/(n-1)
space<-c(space, d)
}
d<-min(space)
XP<-NULL
vectorL<-NULL
for(i in 1:SXdim){
a<-boundaryVec[2*i-1]
b<-boundaryVec[2*i]
xposition<-seq(from=a, to=b, by=d)
L<-length(xposition)
XP<-c(XP,xposition)
vectorL<-c(vectorL,L)
}
NotePositions<-positions(XP, vectorL)
H<-ks::Hpi(x=sx)
fhat<-ks::kde(x=sx, H=H)
prob<-predict(fhat,x=NotePositions)
outSample<-actualPosition(vectorL, prob, boundaryVec, size)
return(outSample)
} |
ngraph<-function(el, vertexlabels, xyz=NULL, diam=NULL, directed=TRUE,
weights=FALSE, vertex.attributes=NULL, graph.attributes=NULL){
if(any(duplicated(vertexlabels))) stop("Vertex labels must be unique!")
rawel=match(t(el), vertexlabels)
if(isTRUE(weights) && !is.null(xyz)){
rawel.mat=matrix(rawel, nrow=2)
starts=rawel.mat[1,]
stops=rawel.mat[2,]
vecs=xyz[stops, , drop=FALSE] - xyz[starts, , drop=FALSE]
weights=sqrt(rowSums(vecs*vecs))
}
g=igraph::graph(rawel, n=length(vertexlabels), directed=directed)
igraph::V(g)$label=vertexlabels
if(is.numeric(weights))
igraph::E(g)$weight=weights
if(!is.null(xyz)) {
if(ncol(xyz)==4 && is.null(diam)){
diam=xyz[,4]
xyz=xyz[, 1:3, drop=FALSE]
}
xyzmatrix(g)<-xyz
}
if(!is.null(diam)) igraph::V(g)$diam=diam
for(n in names(vertex.attributes)){
g=igraph::set.vertex.attribute(g,name=n,value=vertex.attributes[[n]])
}
for(n in names(graph.attributes)){
g=igraph::set.graph.attribute(g,name=n,value=graph.attributes[[n]])
}
class(g)=c("ngraph",class(g))
g
}
as.ngraph<-function(x, ...) UseMethod('as.ngraph')
as.ngraph.ngraph<-function(x, ...) x
as.ngraph.data.frame<-function(x, directed=TRUE, ...){
el=x[x$Parent!=-1,c("Parent","PointNo")]
ngraph(data.matrix(el), x$PointNo, directed=directed, xyz=xyzmatrix(x), diam=x$W, ...)
}
as.ngraph.neuron<-function(x, directed=TRUE, method=c('swc','seglist'), ...){
method=match.arg(method, several.ok=TRUE)
if('swc'%in%method && !is.null(x$d$Parent) && !is.null(x$d$PointNo)){
as.ngraph(x$d, directed=directed, ...)
} else {
as.ngraph(seglist2swc(x)$d, directed=directed, ...)
}
}
as.ngraph.igraph<-function(x, directed=TRUE, root, mode=c('out','in'), ...){
if(inherits(x,'ngraph'))
if(igraph::is.directed(x)==directed) return(x)
if(igraph::is.directed(x) && !directed) x=as.undirected(x, ...)
else if(!igraph::is.directed(x) && directed) x=as.directed.usingroot(x, root, mode=mode, ...)
if(!inherits(x,'ngraph')){
class(x)=c("ngraph",class(x))
}
x
}
as.directed.usingroot<-function(g, root, mode=c('out','in')){
mode=match.arg(mode)
if(!igraph::is.directed(g))
dg=igraph::as.directed(g, mode='arbitrary')
else dg=g
dfs=igraph::graph.dfs(dg, root, unreachable=FALSE, dist=TRUE, neimode='all')
el=igraph::get.edgelist(dg)
connected_vertices=which(is.finite(dfs$order))
edges_to_check=which(el[,1]%in%connected_vertices)
parent.dists=dfs$dist[el[edges_to_check,1]]
child.dists=dfs$dist[el[edges_to_check,2]]
parent_closer=parent.dists<child.dists
same_dist=parent.dists==child.dists
parent_further=parent.dists>child.dists
if(any(same_dist)) warning(sum(same_dist)," edges connect vertices that are the same distance from the root => cycles.")
edges_to_flip <- edges_to_check[if(mode=='out') parent_further else parent_closer]
dg=igraph::delete.edges(dg,edges_to_flip)
dg=igraph::add.edges(dg,t(el[edges_to_flip,2:1]))
dg
}
spine <- function(n, UseStartPoint=FALSE, SpatialWeights=TRUE, invert=FALSE,
rval=c("neuron", "length", "ids")) {
ng <- as.ngraph(n, weights=SpatialWeights)
rval=match.arg(rval)
if(invert && rval=="length")
stop("invert=TRUE is not implemented for rval='length'")
if(UseStartPoint) {
lps=shortest.paths(graph = ng, n$StartPoint, to = n$EndPoints,
mode = 'all')
if(rval=='length') return(max(lps))
to=n$EndPoints[which.max(lps)]
longestpath=get.shortest.paths(ng, from = n$StartPoint, to = to, mode = 'all')$vpath[[1]]
} else {
if(rval=='length') {
return(diameter(ng, directed=FALSE))
} else {
longestpath=get.diameter(ng, directed=FALSE)
}
}
if(rval=='ids') {
if(invert) {
ie=setdiff(igraph::E(ng), igraph::E(ng, path=longestpath))
edgemat=igraph::get.edges(ng, ie)
return(unique(as.integer(t(edgemat))))
} else return(as.integer(longestpath))
}
prune_edges(ng, edges = longestpath, invert = !invert)
}
segmentgraph<-function(x, weights=TRUE, segids=FALSE, exclude.isolated=FALSE,
include.xyz=FALSE, reverse.edges=FALSE){
g=graph.empty()
pointnos=x$d$PointNo
sts=as.seglist(x, all=TRUE, flatten = TRUE)
topntail<-function(x) if(length(x)==1) x else x[c(1,length(x))]
simple_sts=lapply(sts,topntail)
all_nodes=sort(unique(unlist(simple_sts)))
g=graph.empty(n=length(all_nodes))
igraph::V(g)$label=pointnos[all_nodes]
igraph::V(g)$vid=all_nodes
el=EdgeListFromSegList(simple_sts)
if(reverse.edges)
el=el[,2:1]
elred=match(t(el),all_nodes)
if(identical(segids, FALSE)) {
segids=NULL
} else if(isTRUE(segids)){
segids=seq_along(sts)
}
if(weights){
weights=seglengths(x, all=TRUE)
g=add.edges(g, elred, weight=weights, segid=segids)
} else {
g=add.edges(g, elred, segid=segids)
}
if(include.xyz){
igraph::V(g)$x=x$d$X[all_nodes]
igraph::V(g)$y=x$d$Y[all_nodes]
igraph::V(g)$z=x$d$Z[all_nodes]
}
if(exclude.isolated){
isolated_vertices=igraph::V(g)[igraph::degree(g)==0]
g=igraph::delete.vertices(graph=g,isolated_vertices)
}
g
}
strahler_order<-function(x){
s=segmentgraph(x, weights = F)
roots=rootpoints(s, original.ids=FALSE)
if(length(roots)>1)
stop("strahler_order not yet defined for multiple subtrees")
b=graph.bfs(s, root=roots, neimode = 'out', unreachable=F, father=T)
n=neighborhood(s, 1, mode='out')
so_red_nodes=integer(vcount(s))
for(i in rev(b$order)) {
children=setdiff(n[[i]], i)
if(length(children)==0L) {
so_red_nodes[i]=1L
next
}
child_orders=so_red_nodes[children]
if(length(children)==1L) {
so_red_nodes[i]=max(child_orders)
} else if(max(child_orders)==min(child_orders)){
so_red_nodes[i]=max(child_orders)+1L
} else {
so_red_nodes[i]=max(child_orders)
}
}
so_orig_nodes=integer(length(nrow(x$d)))
sts=as.seglist(x, all=TRUE, flatten = TRUE)
so_segs=integer(length(sts))
svids=V(s)$vid
topntail<-function(x) x[c(1L,length(x))]
segendmat=sapply(sts, topntail)
idxs=apply(segendmat, 1, match, svids)
for(i in seq_along(sts)){
segends=segendmat[,i]
so_segends=so_red_nodes[idxs[i,]]
so_orig_nodes[segends]=so_segends
so_this_seg=min(so_segends)
so_segs[i]=so_this_seg
internal=setdiff(sts[[i]], segends)
if(length(internal)) {
so_orig_nodes[internal]=so_this_seg
}
}
list(points=so_orig_nodes, segments=so_segs)
}
prune_strahler<-function(x, orderstoprune=1:2, ...) {
tryCatch(
prune_vertices(x, which(strahler_order(x)$points %in% orderstoprune), ...),
error = function(c) stop(paste0("No points left after pruning. ",
"Consider lowering orders to prune!"))
)
}
prune_vertices<-function(x, verticestoprune, invert=FALSE, ...) {
g=as.ngraph(x)
if(inherits(verticestoprune, "igraph.vs"))
verticestoprune=as.integer(verticestoprune)
if(invert) {
nvertices=nrow(xyzmatrix(x))
verticestoprune=setdiff(seq_len(nvertices), verticestoprune)
}
dg=igraph::delete.vertices(g, verticestoprune)
as.neuron(as.ngraph(dg), ...)
}
prune_edges<-function(x, edges, invert=FALSE, ...) {
g=as.ngraph(x)
if(!inherits(edges, "igraph.es")){
if(!is.numeric(edges))
stop("I can't understand the edges you have given me!")
if(is.matrix(edges)){
if(ncol(edges)!=2) stop("Edge matrix must have 2 columns!")
} else {
edges=cbind(edges[-length(edges)], edges[-1])
}
edges=igraph::E(g, P = as.vector(t(edges)), directed = FALSE)
}
if(invert) edges=setdiff(igraph::E(g), edges)
dg=igraph::delete.edges(g, edges = edges)
dg=igraph::delete.vertices(dg, which(igraph::degree(dg, mode='all')==0))
as.neuron(as.ngraph(dg), ...)
}
EdgeListFromSegList<-function(SegList){
lsl=sapply(SegList,length)
sl=SegList[lsl>1]
lsl=lsl[lsl>1]
ends=unlist(lapply(sl,function(x) x[-1]))
starts=unlist(lapply(sl,function(x) x[-length(x)]))
cbind(starts,ends)
} |
str(dip2)
bs1 <- bootstrap_f2(data = dip2[dip2$batch %in% c("b0", "b4"), ],
tcol = 5:8, grouping = "batch", rand_mode = "complete",
R = 200, new_seed = 421, use_EMA = "no")
pbs1 <- plot(bs1)
class(bs1)
class(pbs1)
bs2 <- bootstrap_f2(data = dip2[dip2$batch %in% c("b0", "b4"), ],
tcol = 5:8, grouping = "batch", rand_mode = "individual",
R = 200, new_seed = 421, use_EMA = "no")
plot(bs2) |
import <- function(file, format, setclass, which, ...) {
if (grepl("^http.*://", file)) {
file <- remote_to_local(file, format = format)
}
if ((file != "clipboard") && !file.exists(file)) {
stop("No such file")
}
if (grepl("\\.zip$", file)) {
if (missing(which)) {
file <- parse_zip(file)
} else {
file <- parse_zip(file, which = which)
}
} else if(grepl("\\.tar", file)) {
if (missing(which)) {
which <- 1
}
file <- parse_tar(file, which = which)
}
if (missing(format)) {
fmt <- get_ext(file)
if (fmt %in% c("gz", "gzip")) {
fmt <- tools::file_ext(tools::file_path_sans_ext(file, compression = FALSE))
file <- gzfile(file)
} else {
fmt <- get_type(fmt)
}
} else {
fmt <- get_type(format)
}
args_list <- list(...)
class(file) <- c(paste0("rio_", fmt), class(file))
if (missing(which)) {
x <- .import(file = file, ...)
} else {
x <- .import(file = file, which = which, ...)
}
if (inherits(file, c("rio_rdata", "rio_rds", "rio_json"))) {
return(x)
}
if (missing(setclass) || is.null(setclass)) {
if ("data.table" %in% names(args_list) && isTRUE(args_list[["data.table"]])) {
return(set_class(x, class = "data.table"))
} else {
return(set_class(x, class = "data.frame"))
}
} else {
if ("data.table" %in% names(args_list) && isTRUE(args_list[["data.table"]])) {
if (setclass != "data.table") {
warning(sprintf("'data.table = TRUE' argument overruled. Using setclass = '%s'", setclass))
return(set_class(x, class = setclass))
} else {
return(set_class(x, class = "data.table"))
}
} else {
return(set_class(x, class = setclass))
}
}
} |
so_TargetToolMessages_new <- function() {
obj = .Call("r_so_TargetToolMessages_new")
}
so_TargetToolMessages_copy <- function(self) {
.Call("r_so_TargetToolMessages_copy", self)
}
so_TargetToolMessages_free <- function(self) {
.Call("r_so_TargetToolMessages_free", self)
}
so_TargetToolMessages_ref <- function(self) {
.Call("r_so_TargetToolMessages_ref", self)
}
so_TargetToolMessages_unref <- function(self) {
.Call("r_so_TargetToolMessages_unref", self)
}
so_TargetToolMessages_get_Termination <- function(self) {
.Call("r_so_TargetToolMessages_get_Termination", self)
}
so_TargetToolMessages_set_Termination <- function(self, value) {
.Call("r_so_TargetToolMessages_set_Termination", self, value)
}
so_TargetToolMessages_get_Warnings <- function(self) {
.Call("r_so_TargetToolMessages_get_Warnings", self)
}
so_TargetToolMessages_set_Warnings <- function(self, value) {
.Call("r_so_TargetToolMessages_set_Warnings", self, value)
}
so_TargetToolMessages_get_Errors <- function(self) {
.Call("r_so_TargetToolMessages_get_Errors", self)
}
so_TargetToolMessages_set_Errors <- function(self, value) {
.Call("r_so_TargetToolMessages_set_Errors", self, value)
}
so_TargetToolMessages_get_ElapsedTime <- function(self) {
.Call("r_so_TargetToolMessages_get_ElapsedTime", self)
}
so_TargetToolMessages_set_ElapsedTime <- function(self, value) {
.Call("r_so_TargetToolMessages_set_ElapsedTime", self, value)
}
so_TargetToolMessages_get_OutputFilePath <- function(self) {
.Call("r_so_TargetToolMessages_get_OutputFilePath", self)
}
so_TargetToolMessages_set_OutputFilePath <- function(self, value) {
.Call("r_so_TargetToolMessages_set_OutputFilePath", self, value)
}
so_TargetToolMessages_create_OutputFilePath <- function(self) {
.Call("r_so_TargetToolMessages_create_OutputFilePath", self)
}
so_TargetToolMessages_get_ChainsNumber <- function(self) {
.Call("r_so_TargetToolMessages_get_ChainsNumber", self)
}
so_TargetToolMessages_set_ChainsNumber <- function(self, value) {
.Call("r_so_TargetToolMessages_set_ChainsNumber", self, value)
}
so_TargetToolMessages_get_IterationNumber <- function(self) {
.Call("r_so_TargetToolMessages_get_IterationNumber", self)
}
so_TargetToolMessages_set_IterationNumber <- function(self, value) {
.Call("r_so_TargetToolMessages_set_IterationNumber", self, value)
}
Termination_acc <- function(value)
{
if (!isnull(.self$.cobj)) {
if (missing(value)) {
so_TargetToolMessages_get_Termination(.self$.cobj)
} else {
if (!is(value, "character")) {
stop("object must be of type 'character'")
}
so_TargetToolMessages_set_Termination(.self$.cobj, value)
}
}
}
Warnings_acc <- function(value)
{
if (!isnull(.self$.cobj)) {
if (missing(value)) {
so_TargetToolMessages_get_Warnings(.self$.cobj)
} else {
if (!is(value, "character")) {
stop("object must be of type 'character'")
}
so_TargetToolMessages_set_Warnings(.self$.cobj, value)
}
}
}
Errors_acc <- function(value)
{
if (!isnull(.self$.cobj)) {
if (missing(value)) {
so_TargetToolMessages_get_Errors(.self$.cobj)
} else {
if (!is(value, "character")) {
stop("object must be of type 'character'")
}
so_TargetToolMessages_set_Errors(.self$.cobj, value)
}
}
}
ElapsedTime_acc <- function(value)
{
if (!isnull(.self$.cobj)) {
if (missing(value)) {
so_TargetToolMessages_get_ElapsedTime(.self$.cobj)
} else {
if (!is(value, "numeric")) {
stop("object must be of type 'numeric'")
}
so_TargetToolMessages_set_ElapsedTime(.self$.cobj, value)
}
}
}
OutputFilePath_acc <- function(value)
{
if (!isnull(.self$.cobj)) {
if (missing(value)) {
child = so_TargetToolMessages_get_OutputFilePath(.self$.cobj)
if (!isnull(child)) {
so_ExternalFile_ref(child)
so_ExternalFile$new(cobj=child)
}
} else {
if (!is(value, "so_ExternalFile")) {
stop("object must be of type 'so_ExternalFile'")
}
so_TargetToolMessages_set_OutputFilePath(.self$.cobj, value$.cobj)
so_ExternalFile_ref(value$.cobj)
}
}
}
ChainsNumber_acc <- function(value)
{
if (!isnull(.self$.cobj)) {
if (missing(value)) {
so_TargetToolMessages_get_ChainsNumber(.self$.cobj)
} else {
if (!is(value, "numeric")) {
stop("object must be of type 'numeric'")
}
so_TargetToolMessages_set_ChainsNumber(.self$.cobj, value)
}
}
}
IterationNumber_acc <- function(value)
{
if (!isnull(.self$.cobj)) {
if (missing(value)) {
so_TargetToolMessages_get_IterationNumber(.self$.cobj)
} else {
if (!is(value, "numeric")) {
stop("object must be of type 'numeric'")
}
so_TargetToolMessages_set_IterationNumber(.self$.cobj, value)
}
}
}
so_TargetToolMessages = setRefClass("so_TargetToolMessages",
fields=list(
Termination = Termination_acc,
Warnings = Warnings_acc,
Errors = Errors_acc,
ElapsedTime = ElapsedTime_acc,
OutputFilePath = OutputFilePath_acc,
ChainsNumber = ChainsNumber_acc,
IterationNumber = IterationNumber_acc,
.cobj = "externalptr"
),
methods=list(
copy = function() {
copy = so_TargetToolMessages_copy(.self$.cobj)
so_TargetToolMessages$new(cobj=copy)
},
initialize = function(cobj) {
if (missing(cobj)) {
.cobj <<- so_TargetToolMessages_new()
} else {
.cobj <<- cobj
}
},
finalize = function() {
so_TargetToolMessages_unref(.self$.cobj)
}
)
) |
library(hamcrest)
library(stats)
set.seed(1)
test.rbinom.1 <- function() assertThat({set.seed(1);rbinom(n = 0x1p+0, size = c(0x0p+0, 0x1p+0, 0x1.4p+2, 0x1.4p+3, 0x1.4p+4), prob = c(0x0p+0, 0x1.999999999999ap-4, 0x1.999999999999ap-3, 0x1p-1, 0x1p+0))}, identicalTo(0L))
test.rbinom.2 <- function() assertThat({set.seed(1);rbinom(n = 1:5, size = c(0x0p+0, 0x1p+0, 0x1.4p+2, 0x1.4p+3, 0x1.4p+4), prob = c(0x0p+0, 0x1.999999999999ap-4, 0x1.999999999999ap-3, 0x1p-1, 0x1p+0))}, identicalTo(c(0L, 0L, 1L, 5L, 20L)))
test.rbinom.3 <- function() assertThat({set.seed(1);rbinom(n = 0x1.ep+3, size = c(0x0p+0, 0x1p+0, 0x1.4p+2, 0x1.4p+3, 0x1.4p+4), prob = c(0x0p+0, 0x1.999999999999ap-4, 0x1.999999999999ap-3, 0x1p-1, 0x1p+0))}, identicalTo(c(0L, 0L, 1L, 5L, 20L, 0L, 1L, 0L, 7L, 20L, 0L, 1L, 1L, 6L, 20L)))
test.rbinom.4 <- function() assertThat({set.seed(1);rbinom(n = numeric(0), size = c(0x0p+0, 0x1p+0, 0x1.4p+2, 0x1.4p+3, 0x1.4p+4), prob = c(0x0p+0, 0x1.999999999999ap-4, 0x1.999999999999ap-3, 0x1p-1, 0x1p+0))}, identicalTo(integer(0)))
test.rbinom.5 <- function() assertThat({set.seed(1);rbinom(n = 0x1.8p+1, size = c(NA, 0x1p+0, 0x1.4p+2, 0x1.4p+3, 0x1.4p+4), prob = c(0x0p+0, 0x1.999999999999ap-4, 0x1.999999999999ap-3, 0x1p-1, 0x1p+0))}, identicalTo(c(NA, 0L, 1L))) |
pl.mv <- function(port){
ggplot(data = port, aes_string(x = "stdev", "return")) + geom_point() +
ggtitle("Portfolio simulation") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(y = "Returns", x = "Standard Deviation")
} |
graph.diss <- function(G, sim=FALSE, loops=FALSE) {
dmat <- GraphDiss2(G)
dmat[is.na(dmat)] <- 1
if (!loops) diag(dmat) <- 0
if (sim) dmat <- 1-dmat
dmat
}
GraphDiss2 <- function(G) {
Gprod <- G %*% G
Gdiag <- Matrix::diag(Gprod)
degProd <- Gdiag %*% t(Gdiag)
1 - (Gprod / sqrt(degProd))
}
natural.connectivity <- function(G, eig=NULL, norm=TRUE) {
if (is.null(eig)) {
eig <- eigen(G)
}
estrind <- exp(eig$values)
nc <- log(mean(estrind))
if (norm) {
n <- length(estrind)
nc <- nc / (n - log(n))
}
return(nc)
}
.adj2elist <- function(G) {
if (inherits(G, "sparseMatrix")) {
G <- Matrix::triu(G, k=1)
return(Matrix::summary(G)[,-3])
} else {
p <- ncol(G)
return(arrayInd(which(as.logical(triu(G))), c(p,p)))
}
}
gcvec <- function(G, orbind=c(0, 2, 5, 7, 8, 10, 11, 6, 9, 4, 1)+1) {
if (length(orbind) < 2) stop("Only one orbit selected, need at least two to calculate graphlet correlations")
if (any(orbind > 15)) stop("Only 15 orbits, from 4-node graphlets, can be selected")
Elist <- .adj2elist(G)
n <- length(orbind)
if (ncol(Elist) < 1 || nrow(Elist) < 1) {
return(rep(0, n*(n-1)/2))
}
p <- ncol(G)
gcount <- orca::count4(Elist)
buffer <- matrix(0, nrow=p-nrow(gcount), ncol=ncol(gcount))
gcount <- rbind(gcount, buffer)
gcor <- suppressWarnings(cor(rbind(gcount[,orbind],1), method='spearman'))
gcor[upper.tri(gcor)]
}
subgraph.centrality <- function(Graph, eigs=NULL, rmdiag=FALSE) {
if (rmdiag) diag(Graph) <- 0
if (is.null(eigs))
eigs <- eigen(Graph)
l <- eigs$value
v <- eigs$vector
v2 <- v^2
dl <- l
edl <- exp(dl)
fb <- v2 %*% edl
sinhl <- sinh(dl)
fbodd <- v2 %*% sinhl
coshl <- cosh(dl)
feven <- v2 %*% coshl
out <- list(central=fb, odd=fbodd, even=feven, evec=v, evals=l)
class(out) <- 'subgraph.centrality'
return(out)
}
.SMA <- function(x) ((mean(abs(x))))
estrada.class <- function(G, evthresh=1e-3) {
if (class(G) != "subgraph.centrality")
G <- subgraph.centrality(G)
ev1 <- G$evec[,1]
eval <- G$evals[1]
if (length(unique(sign(ev1))) == 1 && G$evals[2] > 0) {
ev1 <- G$evec[,2]
eval <- G$evals[2]
}
subgodd <- G$odd
Evratio <- pmax(ev1^2 * sinh(eval) / subgodd, evthresh)
Evratio[is.nan(Evratio)] <- 0
if (sum(Evratio==evthresh) > (2/3)*length(Evratio)) return(0)
delLogEv1 <- log10(sqrt(Evratio))
delSplit <- split(delLogEv1, sign(delLogEv1))
Devs <- lapply(delSplit, .SMA)
if (is.null(Devs$`-1`) && is.null(Devs$`1`)) return(0)
if (is.null(Devs$`-1`)) Devs$`-1` <- 0
else if (is.null(Devs$`1`)) Devs$`1` <- 0
if (length(Devs) != 2) return(0)
if (log10(Devs$`1`+ 1e-3) > -2.1) eclass <- c(3,4) else eclass <- c(1,2)
if (log10(Devs$`-1`+1e-3) > -2.1) eclass <- eclass[2] else eclass <- eclass[1]
return(eclass)
} |
aoristic.plot <- function (data1){
df3 <- data.frame(matrix(0, ncol = 7, nrow = 24))
output.row <- 1
output.col <- 1
f <- the.hour <- the.day <- rat.hour <- NULL
for (k in 1:168)
{
cur.column.name <- paste("hour", k, sep = "")
z <- sum(as.numeric(data1[ ,cur.column.name]), na.rm = TRUE)
df3[output.row,output.col] <- trimws(format(round(z, 3), nsmall=3))
output.row <- output.row + 1
if (output.row == 25) {
output.row <- 1
output.col <- output.col + 1
}
}
colnames(df3) <- c('Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat')
Range <- c('0000-0059', '0000-0159', '0200-0259', '0300-0359', '0400-0459', '0500-0559',
'0600-0659', '0700-0759', '0800-0859', '0900-0959', '1000-1059', '1100-1159',
'1200-1259', '1300-1359', '1400-1459', '1500-1559', '1600-1659', '1700-1759',
'1800-1859', '1900-1959', '2000-2059', '2100-2159', '2200-2259', '2300-2359' )
df4 <- data.frame(Range)
df4 <- data.frame(df4,df3)
df4 <- df4[, c(1, 3, 4, 5, 6, 7, 8, 2)]
rm(df3)
for (j in 2:8){
df4[ ,j] <- as.numeric(df4[, j])
}
days=c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
df5 <- df4 %>%
select(-c(Range)) %>%
tidyr::gather (df4, f) %>%
mutate (the.hour = rep(0:23, 7)) %>%
mutate (the.day = rep(days, times = c(24, 24, 24, 24, 24, 24, 24))) %>%
mutate (rat.hour = (seq(1, 168, by = 1))) %>%
mutate (f = as.numeric(f))
a.min <- min(df5$f)
a.max <- max(df5$f)
a.med <- ((a.max-a.min)/2)+a.min
p <- ggplot(data = df5, aes(x = the.hour, y = reorder(the.day, -(rat.hour)))) +
geom_tile(aes(fill = f), color = "white") +
geom_text(aes(label = round(f))) +
scale_x_continuous(breaks = seq(0,23,1)) +
scale_fill_gradient2(low = muted("lightblue"), mid = "gray80",
high = scales::muted("red"), midpoint = a.med,
breaks = scales::pretty_breaks(n = 6)) +
labs(fill = "Frequency", x = "Hour", y = "")
p <- p + theme(legend.title = element_text( size = 16),
legend.key.height = unit(1, "cm"),
legend.text = element_text(size = 14),
axis.title.x = element_text(size = 14),
axis.title.y = element_text(size = 14),
axis.text = element_text(size = 14),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_rect(fill = 'white'),
panel.border = element_blank())
p <- p + ggtitle(" ")
p <- p + theme(plot.title = element_text(size = 16))
print(p)
} |
ts_seasonal <- function(ts.obj,
type = "normal",
title = NULL,
Ygrid = TRUE,
Xgrid = TRUE,
last = NULL,
palette = "Set1",
palette_normal = "viridis") {
`%>%` <- magrittr::`%>%`
hex_to_rgb <- function(hex){
rgb <- base::paste0(as.numeric(grDevices::col2rgb(hex) %>% base::t()), collapse = ",")
return(rgb)
}
df <- freq <- obj.name <- brewer_palettes <- viridis_palettes <- palette_type <- NULL
n_colors <- color_list_normal <- main <- NULL
diff_mean <- col_class <- date_col <- numeric_col <- NULL
obj.name <- base::deparse(base::substitute(ts.obj))
if(base::is.null(title)){
title <- paste("Seasonality Plot -", obj.name, sep = " ")
} else if(!base::is.character(title)){
warning("The 'title' object is not character object, using the default option")
title <- paste("Seasonality Plot -", obj.name, sep = " ")
}
if(!base::is.null(last)){
if(!base::is.numeric(last) | last <= 0){
stop("The 'last' parameter is not valid")
} else {
if(last != base::round(last)){
stop("The 'last' parameter is not integer")
}
}
}
if(type != "normal" && type != "cycle" &&
type != "box" && type != "all" ){
type <- "normal"
warning("The 'type' parameter is invalide,",
"using the default option - 'normal'")
}
if(!base::is.logical(Ygrid)){
Ygrid <- TRUE
warning("The 'Ygrid' argument is not a boolean operator, setting it to TRUE")
}
if(!base::is.logical(Xgrid)){
Xgrid <- TRUE
warning("The 'Xgrid' argument is not a boolean operator, setting it to TRUE")
}
if(stats::is.ts(ts.obj)){
if(stats::is.mts(ts.obj)){
ts.obj <- ts.obj[,1]
warning("The input object is a 'mts' class, by defualt will use only the first series as an input")
}
freq <- stats::frequency(ts.obj)
if(base::length(ts.obj) < freq){
stop("The length of the series is smaller than the length of full cycle")
}
start_main <- stats::start(ts.obj)[1]
start_minor <- stats::start(ts.obj)[2]
if(freq %in% c(7, 52, 365, 12, 4)){
minor1 <- base::seq(from = start_minor, to = freq, by = 1)
minor2 <- base::rep(x = 1:freq, length.out = base::length(ts.obj) - base::length(minor1))
main1 <- base::rep(x = start_main, length.out = base::length(minor1))
main2 <- base::rep(x = (start_main + 1):stats::end(ts.obj)[1],
each = freq,
len = base::length(ts.obj) - base::length(minor1))
df <- base::data.frame(main = c(main1, main2),
minor = c(minor1, minor2),
y = base::as.numeric(ts.obj))
if(freq == 12){
df$minor <- base::factor(base::month.abb[df$minor], levels = month.abb)
}
}
} else if(xts::is.xts(ts.obj) | zoo::is.zoo(ts.obj)){
if(!base::is.null(base::ncol(ts.obj))){
if(base::ncol(ts.obj) > 1){
ts.obj <- ts.obj[,1]
warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
}
}
if(lubridate::is.Date(zoo::index(ts.obj))){
if(xts::periodicity(ts.obj)$scale == "daily"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::yday(zoo::index(ts.obj)),
y = base::as.numeric(ts.obj[,1]))
} else if(xts::periodicity(ts.obj)$scale == "weekly"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::week(zoo::index(ts.obj)),
y = base::as.numeric(ts.obj[,1]))
} else if(xts::periodicity(ts.obj)$scale == "monthly"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::month(zoo::index(ts.obj), label = TRUE),
y = base::as.numeric(ts.obj[,1]))
} else if(xts::periodicity(ts.obj)$scale == "quarterly"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::quarter(zoo::index(ts.obj)),
y = base::as.numeric(ts.obj[,1]))
}
} else if(class(zoo::index(ts.obj)) == "yearqtr" & xts::periodicity(ts.obj)$scale == "quarterly"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::quarter(zoo::index(ts.obj)),
y = base::as.numeric(ts.obj[,1]))
} else if(class(zoo::index(ts.obj)) == "yearmon" & xts::periodicity(ts.obj)$scale == "monthly"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::quarter(zoo::index(ts.obj)),
y = base::as.numeric(ts.obj[,1]))
}
} else if(base::is.data.frame(ts.obj) |
dplyr::is.tbl(ts.obj) |
data.table::is.data.table(ts.obj)){
ts.obj <- base::as.data.frame(ts.obj)
col_class <- base::lapply(ts.obj, class)
col_date <- base::lapply(ts.obj, lubridate::is.Date)
col_POSIXt <- base::lapply(ts.obj, lubridate::is.POSIXt)
if(base::any(col_date == TRUE) & base::any(col_POSIXt == TRUE)){
d <- t <- NULL
d <- base::min(base::which(col_date == TRUE))
t <- base::min(base::which(col_POSIXt == TRUE))
if(d > t){
warning("The data frame contains multiple date or time objects,",
"using the first one as the plot index")
date_col <- t
} else {
warning("The data frame contains multiple date or time objects,",
"using the first one as the plot index")
date_col <- d
}
} else if(base::any(col_date == TRUE) | base::any(col_POSIXt == TRUE)){
if(base::any(col_date == TRUE)){
if(base::length(base::which(col_date == TRUE)) > 1){
date_col <- base::min(base::which(col_date == TRUE))
warning("There are multipe 'date' objects in the data frame,",
"using the first one object as the plot index")
} else {
date_col <- base::min(base::which(col_date == TRUE))
}
} else if(base::any(col_POSIXt == TRUE)){
if(base::length(base::which(col_POSIXt == TRUE)) > 1){
date_col <- base::min(base::which(col_POSIXt == TRUE))
warning("There are multipe 'POSIXt' objects in the data frame,",
"using the first one as the plot index")
} else {
date_col <- base::min(base::which(col_POSIXt == TRUE))
}
}
}else {
stop("No 'Date' or 'POSIXt' object available in the data frame,",
"please check if the data format defined properly")
}
numeric_col <- base::which(col_class == "numeric" | col_class == "integer")
if(base::length(numeric_col) == 0){
stop("None of the data frame columns is numeric,",
"please check if the data format is defined properly")
}
df_temp <- NULL
if(length(numeric_col) == 1){
df_temp <- base::data.frame(date = ts.obj[, date_col], y = ts.obj[, numeric_col])
} else {
warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
df_temp <- base::data.frame(date = ts.obj[, date_col], ts.obj[, numeric_col[1]])
}
dt_temp <- dt_temp %>% dplyr::arrange(date)
data_diff <- NULL
date_diff <- base::diff(as.numeric(df_temp$date))
if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 1){
df <- base::data.frame(main = lubridate::year(df_temp$date),
minor = lubridate::yday(df_temp$date),
y = df_temp$y)
} else if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 7){
df <- base::data.frame(main = lubridate::year(df_temp$date),
minor = lubridate::week(df_temp$date),
y = df_temp$y)
} else if(base::min(date_diff) >= 28 & base::max(date_diff) <= 31 &
base::mean(date_diff) < 31 & base::mean(date_diff) > 28){
df <- base::data.frame(main = lubridate::year(df_temp$date),
minor = lubridate::month(df_temp$date, label = TRUE),
y = df_temp$y)
} else if(base::min(date_diff) >= 90 & base::max(date_diff) <= 92 &
base::mean(date_diff) < 92 & base::mean(date_diff) > 90){
df <- base::data.frame(main = lubridate::year(df_temp$date),
minor = lubridate::quarter(df_temp$date),
y = df_temp$y)
} else{
stop("The frequency of the input dataset is not valid, must be on of the following - daily, weekly, monthly or quarterly")
}
}
if(!base::is.null(last)){
df <- df[(base::nrow(df) - last + 1):base::nrow(df),]
}
brewer_palettes <- row.names(RColorBrewer::brewer.pal.info)
viridis_palettes <- c("viridis", "magma", "plasma", "inferno", "cividis")
if(type %in% c("cycle", "box", "all")){
if(palette %in% brewer_palettes){
n_colors <- NULL
n_colors <- RColorBrewer::brewer.pal.info$maxcolors[row.names(RColorBrewer::brewer.pal.info) == palette]
colors_list <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(n_colors, palette))(base::length(base::unique(df$minor)))
} else if (palette %in% viridis_palettes){
colors_list <- viridis::viridis_pal(option = base::eval(palette))(base::length(base::unique(df$minor)))
} else {
warning("The value of the 'palette' argument is invalid, using the default option 'Set1'")
palette <- "Set1"
n_colors <- NULL
n_colors <- RColorBrewer::brewer.pal.info$maxcolors[row.names(RColorBrewer::brewer.pal.info) == palette]
colors_list <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(n_colors, palette))(base::length(base::unique(df$minor)))
}
}
if(type %in% c("normal", "all")){
if(palette_normal %in% brewer_palettes){
n_colros <- NULL
n_colors <- RColorBrewer::brewer.pal.info$maxcolors[row.names(RColorBrewer::brewer.pal.info) == palette_normal]
colors_list_normal <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(n_colors, palette_normal))(base::max(df$main) - base::min(df$main) + 1)
} else if (palette_normal %in% viridis_palettes){
colors_list_normal <- viridis::viridis_pal(option = base::eval(palette_normal))(base::max(df$main) - base::min(df$main) + 1)
} else {
warning("The value of the 'palette_normal' argument is in valid, using the default option 'Spectral'")
palette_normal <- "Spectral"
n_colors <- RColorBrewer::brewer.pal.info$maxcolors[row.names(RColorBrewer::brewer.pal.info) == palette_normal]
colors_list_normal <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(n_colors, palette_normal))(base::max(df$main) - base::min(df$main) + 1)
}
}
if(type == "normal" | type == "all"){
p_normal <- plotly::plot_ly()
for(i in base::min(df$main):base::max(df$main)){
temp <- NULL
temp <- df %>% dplyr::filter(main == i)
p_normal <- p_normal %>%
plotly::add_lines(x = temp$minor, y = temp$y, name = i, line = list(color = colors_list_normal[i + 1 - base::min(df$main)]))
}
p_normal <- p_normal %>% plotly::layout(yaxis = list(title = "By Frequency Cycle"))
}
if(type == "cycle" | type == "all"){
df_t <- NULL
df_t <- base::suppressMessages(df %>% reshape2::dcast(main ~ minor))
showlegend <- legendgroup <- NULL
showlegend <- TRUE
p_cycle <- plotly::plot_ly()
for(i in 2:ncol(df_t)){
legendgroup <- ifelse(type == "all",
base::paste("all", colnames(df_t)[i], sep = "_"),
base::paste("cycle", colnames(df_t)[i], sep = "_"))
p_cycle <- p_cycle %>%
plotly::add_lines(x = df_t[, 1], y = df_t[, i],
name = colnames(df_t)[i],
line = list(color = colors_list[i - 1]),
showlegend = showlegend,
legendgroup = legendgroup)
}
p_cycle <- p_cycle %>% plotly::layout(yaxis = list(title = "By Frequency Unit"))
}
if(type == "box" | type == "all"){
minor <- base::levels(df$minor)
showlegend <- legendgroup <- NULL
showlegend <- ifelse(type == "all", FALSE, TRUE)
p_box <- plotly::plot_ly()
c <- NULL
c <- 1
for(i in minor){
legendgroup <- ifelse(type == "all",
base::paste("all", i, sep = "_"),
base::paste("box", i, sep = "_"))
p_box <- p_box %>% plotly::add_trace(data = df %>% dplyr::filter(minor == i), y = ~ y, type = "box",
fillcolor = base::paste("rgba(", hex_to_rgb(colors_list[c]), ", 0.5)", sep = ""),
line = list(color = colors_list[c]),
marker = list(color = colors_list[c]),
boxpoints = "all",
jitter = 0.3,
pointpos = -1.8,
name = i,
showlegend = showlegend,
legendgroup = legendgroup)
c <- c + 1
}
p_box <- p_box %>% plotly::layout(yaxis = list(title = "By Frequency Unit"))
}
if(type == "all"){
p <- plotly::subplot(p_normal, p_cycle, p_box, nrows = 3, titleY = TRUE)
} else if(type == "normal"){
p <- p_normal
} else if(type == "cycle"){
p <- p_cycle
} else if(type == "box"){
p <- p_box
}
p <- p %>% plotly::layout(title = title)
return(p)
}
ts_polar <- function(ts.obj, title = NULL, width = 600, height = 600,
left = 25, right = 25, top = 25, bottom = 25) {
`%>%` <- magrittr::`%>%`
df <- df_wide <- p <- obj.name <- NULL
obj.name <- base::deparse(base::substitute(ts.obj))
if(is.null(title)){
title <- paste("Polar Plot -", obj.name)
} else if(!is.character(title)){
title <- paste("Polar Plot -", obj.name)
warning("The 'title' value is not valid, using the default title")
}
if (stats::is.ts(ts.obj)) {
if (stats::is.mts(ts.obj)) {
warning("The 'ts.obj' has multiple columns, only the first column will be plot")
ts.obj <- ts.obj[, 1]
}
df <- base::data.frame(dec_left = floor(stats::time(ts.obj)),
dec_right = stats::cycle(ts.obj), value = base::as.numeric(ts.obj))
if(stats::frequency(ts.obj) == 12){
df$dec_right <- base::factor(df$dec_right,
levels = base::unique(df$dec_right),
labels = base::month.abb[as.numeric(base::unique(df$dec_right))])
} else if(stats::frequency(ts.obj) == 4){
df$dec_right <- base::paste("Qr.", df$dec_right, sep = " ")
} else {
stop("The frequency of the series is invalid, ",
"the function support only 'monthly' or 'quarterly' frequencies")
}
} else if (xts::is.xts(ts.obj) | zoo::is.zoo(ts.obj)) {
if (!is.null(base::dim(ts.obj))) {
if (base::dim(ts.obj)[2] > 1) {
warning("The 'ts.obj' has multiple columns, only the first column will be plot")
ts.obj <- ts.obj[, 1]
}
}
freq <- xts::periodicity(ts.obj)[[6]]
if (freq == "quarterly") {
df <- base::data.frame(dec_left = lubridate::year(ts.obj),
dec_right = lubridate::quarter(ts.obj),
value = as.numeric(ts.obj))
} else if (freq == "monthly") {
df <- base::data.frame(dec_left = lubridate::year(ts.obj),
dec_right = lubridate::month(ts.obj), value = as.numeric(ts.obj))
df$dec_right <- base::factor(df$dec_right,
levels = base::unique(df$dec_right),
labels = base::month.abb[as.numeric(base::unique(df$dec_right))])
} else if (freq != "quarterly" & freq != "monthly") {
stop("The frequency of the series is invalid,",
"the function support only 'monthly' or 'quarterly' frequencies")
}
}
p <- plotly::plot_ly(r = df$value, t = df$dec_right,
width = width, height = height) %>%
plotly::add_area(color = factor(df$dec_left, ordered = TRUE)) %>%
plotly::layout(orientation = -90,
autosize = T,
title = title,
margin = list(
l = left,
r = right,
b = bottom,
t = top,
pad = 4
))
return(p)
}
ts_heatmap <- function(ts.obj, last = NULL, wday = TRUE, color = "Blues", title = NULL, padding = TRUE) {
`%>%` <- magrittr::`%>%`
df <- df1 <- df2 <- freq <- obj.name <- NULL
diff_mean <- col_class <- date_col <- numeric_col <- NULL
main <- minor <- wday1 <- week <- y <- NULL
obj.name <- base::deparse(base::substitute(ts.obj))
if(base::is.null(title)){
title <- base::paste("Heatmap -", obj.name, sep = " ")
} else if(!base::is.character(title)){
warning("The 'title' object is not character object, using the default option")
title <- base::paste("Heatmap -", obj.name, sep = " ")
}
if(!base::is.logical(padding)){
warning("The 'padding' argument is not valid, setting it to TRUE (default)")
padding <- TRUE
}
if(!base::is.null(last)){
if(!base::is.numeric(last) | last <= 0){
stop("The 'last' parameter is not valid")
} else {
if(last != base::round(last)){
stop("The 'last' parameter is not integer")
}
}
}
if(stats::is.ts(ts.obj)){
if(stats::is.mts(ts.obj)){
ts.obj <- ts.obj[,1]
warning("The input object is a 'mts' class, by defualt will use only the first series as an input")
}
freq <- stats::frequency(ts.obj)
if(base::length(ts.obj) < freq){
stop("The length of the series is smaller than the length of full cycle")
}
start_main <- stats::start(ts.obj)[1]
start_minor <- stats::start(ts.obj)[2]
if(freq %in% c(7, 52, 365, 12, 4)){
minor1 <- base::seq(from = start_minor, to = freq, by = 1)
minor2 <- base::rep(x = 1:freq, length.out = base::length(ts.obj) - base::length(minor1))
main1 <- base::rep(x = start_main, length.out = base::length(minor1))
main2 <- base::rep(x = (start_main + 1):stats::end(ts.obj)[1],
each = freq,
len = base::length(ts.obj) - base::length(minor1))
df <- base::data.frame(main = c(main1, main2),
minor = c(minor1, minor2),
y = base::as.numeric(ts.obj))
if(freq == 365){
time_unit <- "Day of the year"
} else if(freq == 7){
time_unit <- "Day of the week"
} else if(freq == 52){
time_unit <- "Week"
} else if(freq == 12){
df$minor <- base::factor(base::month.abb[df$minor], levels = month.abb)
time_unit <- "Month"
} else if(freq == 4){
time_unit <- "Quarter"
}
} else {
stop("The frequency of the input object is not valid, must be on of the following - daily, weekly, monthly or quarterly")
}
} else if(xts::is.xts(ts.obj) | zoo::is.zoo(ts.obj)){
if(!base::is.null(base::ncol(ts.obj))){
if(base::ncol(ts.obj) > 1){
ts.obj <- ts.obj[,1]
warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
}
}
if(lubridate::is.Date(zoo::index(ts.obj))){
if(xts::periodicity(ts.obj)$scale == "daily"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::yday(zoo::index(ts.obj)),
wday = lubridate::wday(zoo::index(ts.obj)),
wday1 = lubridate::wday(zoo::index(ts.obj),label = TRUE),
y = base::as.numeric(ts.obj[,1]))
time_unit <- "Day"
} else if(xts::periodicity(ts.obj)$scale == "weekly"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::week(zoo::index(ts.obj)),
y = base::as.numeric(ts.obj[,1]))
time_unit <- "Week"
} else if(xts::periodicity(ts.obj)$scale == "monthly"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::month(zoo::index(ts.obj), label = TRUE),
y = base::as.numeric(ts.obj[,1]))
time_unit <- "Month"
} else if(xts::periodicity(ts.obj)$scale == "quarterly"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::quarter(zoo::index(ts.obj)),
y = base::as.numeric(ts.obj[,1]))
time_unit <- "Quarter"
}
} else if(class(zoo::index(ts.obj)) == "yearqtr" & xts::periodicity(ts.obj)$scale == "quarterly"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::quarter(zoo::index(ts.obj)),
y = base::as.numeric(ts.obj[,1]))
time_unit <- "Quarter"
} else if(class(zoo::index(ts.obj)) == "yearmon" & xts::periodicity(ts.obj)$scale == "monthly"){
df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)),
minor = lubridate::month(zoo::index(ts.obj), label = TRUE),
y = base::as.numeric(ts.obj[,1]))
time_unit <- "Month"
}
} else if(base::is.data.frame(ts.obj) |
dplyr::is.tbl(ts.obj) |
data.table::is.data.table(ts.obj)){
ts.obj <- base::as.data.frame(ts.obj)
col_class <- base::lapply(ts.obj, class)
col_date <- base::lapply(ts.obj, lubridate::is.Date)
col_POSIXt <- base::lapply(ts.obj, lubridate::is.POSIXt)
if(base::any(col_date == TRUE) & base::any(col_POSIXt == TRUE)){
d <- t <- NULL
d <- base::min(base::which(col_date == TRUE))
t <- base::min(base::which(col_POSIXt == TRUE))
if(d > t){
warning("The data frame contains multiple date or time objects,",
"using the first one as the plot index")
date_col <- t
} else {
warning("The data frame contains multiple date or time objects,",
"using the first one as the plot index")
date_col <- d
}
} else if(base::any(col_date == TRUE) | base::any(col_POSIXt == TRUE)){
if(base::any(col_date == TRUE)){
if(base::length(base::which(col_date == TRUE)) > 1){
date_col <- base::min(base::which(col_date == TRUE))
warning("There are multipe 'date' objects in the data frame,",
"using the first one object as the plot index")
} else {
date_col <- base::min(base::which(col_date == TRUE))
}
} else if(base::any(col_POSIXt == TRUE)){
if(base::length(base::which(col_POSIXt == TRUE)) > 1){
date_col <- base::min(base::which(col_POSIXt == TRUE))
warning("There are multipe 'POSIXt' objects in the data frame,",
"using the first one as the plot index")
} else {
date_col <- base::min(base::which(col_POSIXt == TRUE))
}
}
}else {
stop("No 'Date' or 'POSIXt' object available in the data frame,",
"please check if the data format defined properly")
}
numeric_col <- base::which(col_class == "numeric" | col_class == "integer")
if(base::length(numeric_col) == 0){
stop("None of the data frame columns is numeric,",
"please check if the data format is defined properly")
}
df_temp <- NULL
if(length(numeric_col) == 1){
df_temp <- base::data.frame(date = ts.obj[, date_col], y = ts.obj[, numeric_col])
} else {
warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
df_temp <- base::data.frame(date = ts.obj[, date_col], ts.obj[, numeric_col[1]])
}
data_diff <- NULL
date_diff <- base::diff(as.numeric(df_temp$date))
if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 1){
df <- base::data.frame(main = lubridate::year(df_temp$date),
minor = lubridate::yday(df_temp$date),
wday = lubridate::wday(df_temp$date),
wday1 = lubridate::wday(df_temp$date, label = TRUE),
y = df_temp$y)
time_unit <- "Day"
} else if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 7){
df <- base::data.frame(main = lubridate::year(df_temp$date),
minor = lubridate::week(df_temp$date),
y = df_temp$y)
time_unit <- "Week"
} else if(base::min(date_diff) >= 28 & base::max(date_diff) <= 31 &
base::mean(date_diff) < 31 & base::mean(date_diff) > 28){
df <- base::data.frame(main = lubridate::year(df_temp$date),
minor = lubridate::month(df_temp$date, label = TRUE),
y = df_temp$y)
time_unit <- "Month"
} else if(base::min(date_diff) >= 90 & base::max(date_diff) <= 92 &
base::mean(date_diff) < 92 & base::mean(date_diff) > 90){
df <- base::data.frame(main = lubridate::year(df_temp$date),
minor = lubridate::quarter(df_temp$date),
y = df_temp$y)
time_unit <- "Quarter"
} else{
stop("The frequency of the input dataset is not valid, must be on of the following - daily, weekly, monthly or quarterly")
}
}
if(!base::is.null(last)){
df <- df[(base::nrow(df) - last + 1):base::nrow(df),]
}
if(padding){
if(time_unit %in% c("Month", "Quarter")){
xgap = 3
ygap = 3
} else if(time_unit == "Day" & wday){
xgap = 1
ygap = 1
}else {
xgap = 1
ygap = NULL
}
} else {
xgap <- NULL
ygap <- NULL
}
if(time_unit == "Day" & wday){
p_list <- vals <- o <- cols <- colz <- NULL
df$vals <- scales::rescale(df$y)
vals <- unique(scales::rescale(df$y))
o <- base::order(vals, decreasing = FALSE)
cols <- scales::col_numeric(color, domain = NULL)(vals)
colz <- stats::setNames(base::data.frame(vals[o], cols[o]), NULL)
colz_name <- colz
names(colz_name) <- c("vals", "cols")
df <- base::suppressMessages(df %>% dplyr::left_join(colz_name))
p_list <- base::lapply(base::min(df$main):base::max(df$main), function(i){
df1 <- NULL
df1 <- df %>% dplyr::filter(main == i) %>%
dplyr::arrange(minor)
if(df1$minor[1] != 1){
df1$week <- base::rep(base::ceiling(df1$minor[1] / 7):53, each = 7 )[df1$wday[1]:(base::nrow(df1) + df1$wday[1] - 1)]
} else if(df1$minor[1] == 1){
df1$week <- base::rep(1:53, each = 7)[df1$wday[1]:(base::nrow(df1) + df1$wday[1] - 1)]
}
colz_sub <- df1 %>% dplyr::select(vals, cols) %>%
dplyr::arrange(-vals)
colz_sub <- stats::setNames(colz_sub, NULL)
df2 <- base::suppressMessages(df1 %>% dplyr::select(wday1, week, y) %>%reshape2::dcast(wday1 ~ week))
z <- base::as.matrix(df2[, -1])
z_text <- base::matrix(NA, nrow = nrow(z), ncol = ncol(z))
for(c in 1:base::ncol(z_text)){
for(r in 1:base::nrow(z_text)){
z_text[r, c] <- base::paste('Value: ', z[r,c],
'<br> Year : ', i,
'<br>' ,time_unit, ' :', r, sep = " ")
}
}
if(i == base::min(df$main)){
showscale <- TRUE
} else {
showscale <- FALSE
}
df_temp <- base::suppressMessages(df1 %>% dplyr::select(y, cols) %>%
dplyr::distinct() %>%
dplyr::arrange(y))
df_temp$scale <- scales::rescale(df_temp$y)
colz_sub <- df_temp %>% dplyr::select(scale, cols)
colz_sub <- stats::setNames(colz_sub, NULL)
p_day <- plotly::plot_ly(z = z, x = colnames(df2[,-1]), y = df2[,1],
type = "heatmap",
colorscale = colz_sub,
hoverinfo = 'text',
text = z_text,
xgap = xgap,
ygap = xgap,
showscale = showscale
) %>% plotly::layout(
xaxis = list(title = i, range = c(0,54)),
yaxis = list(title = time_unit),
annotations = list(text = i,
showarrow = FALSE,
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "center",
x = 25,
y = -0.25)
) %>% plotly::colorbar(limits = c(base::min(df1$y), base::max(df1$y)))
return(p_day)
})
p <- plotly::subplot(p_list, nrows = base::length(base::unique(df$main))) %>%
plotly::layout(title = title)
} else {
df1 <- base::suppressMessages(df %>% reshape2::dcast(minor ~ main))
z <- base::as.matrix(df1[, -1])
z_text <- base::matrix(NA, nrow = nrow(z), ncol = ncol(z))
for(c in 1:base::ncol(z_text)){
for(r in 1:base::nrow(z_text)){
z_text[r, c] <- base::paste('Value: ', z[r,c],
'<br> Year : ', base::colnames(z)[c],
'<br>' ,time_unit, ' :', r, sep = " ")
}
}
vals <- base::unique(scales::rescale(c(df$y)))
o <- order(vals, decreasing = FALSE)
cols <- scales::col_numeric(color, domain = NULL)(vals)
colz <- stats::setNames(base::data.frame(vals[o], cols[o]), NULL)
p <- plotly::plot_ly(z = z, x = colnames(df1[,-1]), y = df1[,1],
type = "heatmap",
colorscale = colz,
hoverinfo = 'text',
text = z_text,
xgap = xgap,
ygap = ygap
) %>% plotly::layout(
title = title,
xaxis = list(title = "Year"),
yaxis = list(title = time_unit)
)
}
return(p)
}
ts_surface <- function(ts.obj) {
`%>%` <- magrittr::`%>%`
df <- p <- obj.name <- NULL
obj.name <- base::deparse(base::substitute(ts.obj))
df <- TSstudio::ts_reshape(ts.obj, type = "wide")
z <- base::as.matrix(df[, -1])
z_text <- base::matrix(NA, nrow = nrow(z), ncol = ncol(z))
time_unit <- base::trimws(base::names(df)[1])
time_unit_up <- base::paste(base::toupper(base::substr(time_unit, 1, 1)),
base::substr(time_unit,2, base::nchar(time_unit)), sep = "")
for(c in 1:base::ncol(z_text)){
for(r in 1:base::nrow(z_text)){
z_text[r, c] <- base::paste('Value: ', z[r,c],
'<br> Year : ', base::colnames(z)[c],
'<br>' ,time_unit_up, ' :', r, sep = " ")
}
}
p <- plotly::plot_ly(z = z, x = colnames(df[,-1]), y = df[,1],
hoverinfo = 'text',
text = z_text
) %>%
plotly::add_surface() %>% plotly::layout(
title = base::paste("Surface Plot -", obj.name, sep = " "),
scene = list(xaxis = list(title = "Years"),
yaxis= list(title = time_unit_up),
zaxis= list(title = "Value")
)
)
return(p)
}
ts_ma <- function(ts.obj,
n = c(3, 6, 9),
n_left = NULL,
n_right = NULL,
double = NULL,
plot = TRUE, show_legend = TRUE,
multiple = FALSE, separate = TRUE, margin = 0.03,
title = NULL, Xtitle = NULL, Ytitle = NULL){
`%>%` <- magrittr::`%>%`
obj.name <- ts_merged <- ts_obj <- ts_temp <- ts_ma <- c <- p <- p_m <- ma_order <- NULL
output <- titles <- dobule <- NULL
left_flag <- right_flag <- k_flag <- FALSE
obj.name <- base::deparse(base::substitute(ts.obj))
if(stats::is.ts(ts.obj)){
if(stats::is.mts(ts.obj)){
ts.obj <- ts.obj[,1]
warning("The input object is a 'mts' class, by defualt will use only the first series as an input")
}
} else if(xts::is.xts(ts.obj) | zoo::is.zoo(ts.obj)){
if(!base::is.null(base::ncol(ts.obj))){
if(base::ncol(ts.obj) > 1){
ts.obj <- ts.obj[,1]
warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
}
}
}
if((base::is.null(n) & base::is.null(n_left) & base::is.null(n_right)) |
(!base::is.numeric(n) & !base::is.numeric(n_left) & !base::is.numeric(n_right))){
stop("Neither of the moving averages arguments set properly ('n', 'n_left', 'n_right')")
}
if(!base::is.logical(plot)){
warning("The value of the 'plot' argument is not valid (can apply either TRUE or FALSE) and will be ignore")
plot <- TRUE
}
if(!base::is.logical(show_legend)){
warning("The value of the 'show_legend' argument is not valid (can apply either TRUE or FALSE) and will be ignore")
show_legend <- FALSE
}
if(!base::is.logical(separate)){
warning("The value of the 'separate' argument is not valid (can apply either TRUE or FALSE) and will be ignore")
separate <- TRUE
}
if(!base::is.logical(multiple)){
warning("The value of the 'multiple' argument is not valid (can apply either TRUE or FALSE) and will be ignore")
multiple <- FALSE
} else if(base::length(n) == 1 & multiple &
base::is.null(n_left) &
base::is.null(n_right)){
warning("The 'multiple' aregument cannot be used when using multiple moving averages")
multiple <- FALSE
} else if((base::length(n) > 1 | (base::length(n) ==1 &
(!base::is.null(n_left) | !base::is.null(n_right)))) &
multiple){
p_m <- list()
}
if(!base::is.null(title)){
if(!base::is.character(title)){
warning("The value of the 'title' is not valid (only character can be used as an input), and will be ignore")
title <- NULL
}
} else {
title <- paste(obj.name, "- Moving Average", sep = " ")
}
if(!base::is.null(Xtitle)){
if(!base::is.character(Xtitle)){
warning("The value of the 'Xtitle' is not valid (only character can be used as an input), and will be ignore")
Xtitle <- NULL
}
}
if(!base::is.null(Ytitle)){
if(!base::is.character(Ytitle)){
warning("The value of the 'Ytitle' is not valid (only character can be used as an input), and will be ignore")
Ytitle <- NULL
}
}
if(!base::is.null(double)){
if(!base::is.numeric(double)){
warning("The 'double' parameter is not a numeric number and will be ignore")
double <- NULL
} else if(!base::all(double %% 1 == 0)){
warning("The 'double' parameter is not an integer number and will be ignore")
double <- NULL
}
} else if(base::length(double) > 1){
warning("The 'double' parameter is restricted to single value (integer), only the first one will be used")
double <- dobule[1]
}
if(!base::is.null(n_left)){
if(!base::is.numeric(n_left)){
stop("The 'n_left' argument is not valid, please make sure that you are using only integers as input")
} else if(base::length(n_left) != 1){
warning("The 'n_left' argument has too many inputs, can hanlde only single integer. Will use only the first input")
n_left <- n_left[1]
} else if(n_left %% 1 != 0){
stop("The 'n_left' argument is not an integer type")
} else {
ma_order <- n_left
}
}
if(!base::is.null(n_right)){
if(!base::is.numeric(n_right)){
stop("The 'n_right' argument is not valid, please make sure that you are using only integers as input")
} else if(base::length(n_right) != 1){
warning("The 'n_right' argument has too many inputs, can hanlde only single integer. Will use only the first input")
n_right <- n_right[1]
} else if(n_right %% 1 != 0){
stop("The 'n_right' argument is not an integer type")
} else if(!base::is.null(n_left)){
ma_order <- n_left + n_right
} else {
ma_order <- n_right
}
}
if(!base::is.null(n)){
if(!base::is.numeric(n)){
stop("The 'n' argument is not valid, please make sure that you are using only integers as input")
} else if(!base::all(n %% 1 == 0)){
stop("The 'n' argument is not valid, please make sure that you are using only integers as input")
} else if(base::length(n) > 8){
warning("The 'n' parameter is restricted up to 8 inputs (integers), only the first 8 values will be used")
n <- n[1:8]
} else{
if(stats::is.ts(ts.obj) | xts::is.xts(ts.obj) | zoo::is.zoo(ts.obj)){
if(base::max(n) * 2 + 1 > base::as.data.frame(ts.obj) %>% base::nrow()){
stop("The length of the series is too short to apply the moving average with the given 'n' parameter")
}
} else if(base::is.data.frame(ts.obj) |
dplyr::is.tbl(ts.obj) |
data.table::is.data.table(ts.obj)){
if(base::max(n) * 2 + 1 > base::nrow(ts.obj)){
stop("The length of the series is too short to apply the moving average with the given 'n' parameter")
}
}
}
}
ma_fun <- function(ts.obj, n_left, n_right){
if(stats::is.ts(ts.obj)){
ts_left <- ts_right <- ts_intersect <- ma_order <- NULL
if(!base::is.null(n_left)){
for(i in 1:n_left){
ts_left <- stats::ts.intersect(stats::lag(ts.obj, k = -i), ts_left)
}
ma_order <- n_left
}
if(!base::is.null(n_right)){
for(i in 1:n_right){
ts_right <- stats::ts.intersect(stats::lag(ts.obj, k = i), ts_right)
}
if(!base::is.null(n_left)){
ma_order <- ma_order + n_right
} else {
ma_order <- n_right
}
}
ma_order <- ma_order + 1
ts_intersect <- TSstudio::ts_sum(stats::ts.intersect(ts_left, ts.obj, ts_right)) / (ma_order)
} else if(xts::is.xts(ts.obj)){
ts_left <- ts_right <- ts_intersect <- ma_order <- NULL
if(!base::is.null(n_left)){
ts_left <- stats::lag(ts.obj, k = c(1:n_left))
ma_order <- n_left
}
if(!base::is.null(n_right)){
ts_right <- stats::lag(ts.obj, k = c((-1):(-n_right)))
if(!base::is.null(n_left)){
ma_order <- ma_order + n_right
ts.merged <- xts::merge.xts(ts_left, ts.obj, ts_right)
} else {
ma_order <- n_right
ts.merged <- xts::merge.xts(ts.obj, ts_right)
}
} else if(!base::is.null(n_left)){
ts.merged <- xts::merge.xts(ts_left, ts.obj)
}
ma_order <- ma_order + 1
ts.merged$total <- base::rowSums(ts.merged) / (ma_order)
ts_intersect <- ts.merged$total
}else if(zoo::is.zoo(ts.obj)){
ts_left <- ts_right <- ts_intersect <- ma_order <- NULL
if(!base::is.null(n_left)){
ts_left <- stats::lag(ts.obj, k = c((-1):(-n_left)))
ma_order <- n_left
}
if(!base::is.null(n_right)){
ts_right <- stats::lag(ts.obj, k = c(1:n_right))
if(!base::is.null(n_left)){
ma_order <- ma_order + n_right
ts.merged <- zoo::merge.zoo(ts_left, ts.obj, ts_right)
} else {
ma_order <- n_right
ts.merged <- zoo::merge.zoo(ts.obj, ts_right)
}
} else if(!base::is.null(n_left)){
ts.merged <- zoo::merge.zoo(ts_left, ts.obj)
}
ma_order <- ma_order + 1
ts.merged$total <- base::rowSums(ts.merged) / (ma_order)
ts_intersect <- ts.merged$total
}
return(ts_intersect)
}
output <- list()
titles <- list()
if(!base::is.null(n)){
for(i in n){
ts_ma1 <- ma_title <- ma_order <- NULL
ma_order <- 2 * i + 1
ts_ma1 <- ma_fun(ts.obj = ts.obj, n_left = i, n_right = i)
ma_title <- paste("Two Sided Moving Average - Order", 2 * i + 1, sep = " ")
base::eval(base::parse(text = base::paste("output$ma_", i, " <- ts_ma1", sep = "")))
base::eval(base::parse(text = base::paste("titles$ma_", i, " <- ma_title", sep = "")))
if(!base::is.null(double)){
ts_ma_d <- ma_title <- NULL
ts_ma_d <- ma_fun(ts.obj = ts_ma1, n_left = double, n_right = double)
ma_title <- paste("Double Two Sided Moving Average - Order", 2 * double + 1, "x", ma_order, sep = " ")
base::eval(base::parse(text = base::paste("output$double_ma_", 2 * double + 1,"_x_", ma_order, " <- ts_ma_d", sep = "")))
base::eval(base::parse(text = base::paste("titles$double_ma_", 2 * double + 1,"_x_", ma_order, " <- ma_title", sep = "")))
}
}
}
if(!base::is.null(n_left) | !base::is.null(n_right)){
ts_ma2 <- ma_title <- ma_order <- NULL
ma_order <- 1
if(!base::is.null(n_right)){
ma_order <- ma_order + n_right
}
if(!base::is.null(n_left)){
ma_order <- ma_order + n_left
}
ts_ma2 <- ma_fun(ts.obj = ts.obj, n_left = n_left, n_right = n_right)
ma_title <- paste("Two Sided Moving Average - Order", ma_order, sep = " ")
base::eval(base::parse(text = base::paste("output$unbalanced_ma_", ma_order, " <- ts_ma2", sep = "")))
base::eval(base::parse(text = base::paste("titles$unbalanced_ma_", ma_order, " <- ma_title", sep = "")))
if(!base::is.null(double)){
ts_ma_d <- ma_title <- NULL
ts_ma_d <- ma_fun(ts.obj = ts_ma2, n_left = double, n_right = double)
ma_title <- paste("Double Two Sided Moving Average - Order", 2 * double + 1, "x", ma_order, sep = " ")
base::eval(base::parse(text = base::paste("output$double_unbalanced_ma_", 2 * double + 1,"_x_", ma_order, " <- ts_ma2", sep = "")))
base::eval(base::parse(text = base::paste("titles$double_unbalanced_ma_", 2 * double + 1,"_x_", ma_order, " <- ma_title", sep = "")))
}
}
ma_list <- base::names(output)[base::which(base::names(output) != "series")]
if(separate & multiple){
plots <- c <- NULL
plots <- list()
plots[[1]] <- plotly::plot_ly(x = stats::time(ts.obj),
y = base::as.numeric(ts.obj),
name = obj.name,
type = "scatter",
mode = "lines",
line = list(color = "
showlegend = show_legend) %>%
plotly::layout(annotations = list(text = obj.name,
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "cneter",
x = 0.5,
y = 1,
showarrow = FALSE,
font = list(size = 12)))
c <- 2
color_ramp <- viridis::inferno(base::length(output), alpha = 1, direction = 1, begin = 0, end = 0.9)
for(i in names(output)){
plots[[c]] <- plotly::plot_ly(x = stats::time(output[[i]]),
y = base::as.numeric(output[[i]]),
type = "scatter",
mode = "line",
line = list(color = color_ramp[c -1])) %>%
plotly::layout(annotations = list(text = titles[[i]],
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "cneter",
x = 0.5,
y = 1,
showarrow = FALSE,
font = list(size = 12)))
c <- c + 1
}
plot_rows <- ifelse(length(plots) > 5, base::ceiling(base::length(plots)/2), base::length(plots))
if(show_legend){
output$plot <- plotly::subplot(plots, nrows = plot_rows, margin = margin)
} else {
output$plot <- plotly::subplot(plots, nrows = plot_rows, margin = margin) %>% plotly::hide_legend()
}
} else if(!separate & multiple){
plots <- c <- NULL
plots <- list()
c <- 1
color_ramp <- viridis::inferno(base::length(output), alpha = 1, direction = 1, begin = 0, end = 0.9)
for(i in names(output)){
plots[[c]] <- plotly::plot_ly(x = stats::time(ts.obj),
y = base::as.numeric(ts.obj),
name = obj.name,
type = "scatter",
mode = "lines",
line = list(color = "
showlegend = show_legend) %>%
plotly::add_lines(x = stats::time(output[[i]]),
y = base::as.numeric(output[[i]]),
line = list(color = color_ramp[c - 1], dash = "dash")
) %>%
plotly::layout(annotations = list(text = titles[[i]],
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "cneter",
x = 0.5,
y = 1,
showarrow = FALSE,
font = list(size = 12)))
c <- c + 1
}
plot_rows <- ifelse(length(plots) > 5, base::ceiling(base::length(plots)/2), base::length(plots))
if(show_legend){
output$plot <- plotly::subplot(plots, nrows = plot_rows, margin = margin)
} else {
output$plot <- plotly::subplot(plots, nrows = plot_rows, margin = margin) %>% plotly::hide_legend()
}
} else if(separate & !multiple){
p1 <- p2 <- c <- NULL
p1 <- plotly::plot_ly(x = stats::time(ts.obj),
y = base::as.numeric(ts.obj),
name = obj.name,
type = "scatter",
mode = "lines",
line = list(color = "
showlegend = TRUE) %>%
plotly::layout(annotations = list(text = obj.name,
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "cneter",
x = 0.5,
y = 1,
showarrow = FALSE,
font = list(size = 12)))
c <- 1
color_ramp <- viridis::inferno(base::length(output), alpha = 1, direction = 1, begin = 0, end = 0.9)
p2 <- plotly::plot_ly()
for(i in names(output)){
p2 <- p2 %>%
plotly::add_lines(
x = stats::time(output[[i]]),
y = base::as.numeric(output[[i]]),
line = list(color = color_ramp[c], dash = "dash"),
name = titles[[i]]
)
c <- c + 1
}
p2 <- p2 %>%
plotly::layout(annotations = list(text = "Moving Average Output",
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "cneter",
x = 0.5,
y = 1,
showarrow = FALSE,
font = list(size = 12)))
if(show_legend){
output$plot <- plotly::subplot(p1, p2, nrows = 2, margin = margin)
} else {
output$plot <- plotly::subplot(p1, p2, nrows = 2, margin = margin) %>% plotly::hide_legend()
}
}else if(!separate & !multiple){
p <- c <- NULL
color_ramp <- viridis::inferno(base::length(output), alpha = 1, direction = 1, begin = 0, end = 0.9)
p <- plotly::plot_ly(x = stats::time(ts.obj),
y = base::as.numeric(ts.obj),
name = obj.name,
type = "scatter",
mode = "lines",
line = list(color = "
showlegend = TRUE) %>%
plotly::layout(annotations = list(text = obj.name,
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "cneter",
x = 0.5,
y = 1,
showarrow = FALSE,
font = list(size = 12)))
c <- 1
for(i in names(output)){
p <- p %>%
plotly::add_lines(
x = stats::time(output[[i]]),
y = base::as.numeric(output[[i]]),
line = list(color = color_ramp[c], dash = "dash"),
name = titles[[i]]
)
c <- c + 1
}
p <- p %>%
plotly::layout(annotations = list(text = "Moving Average Output",
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "cneter",
x = 0.5,
y = 1,
showarrow = FALSE,
font = list(size = 12)))
if(show_legend){
output$plot <- p
} else {
output$plot <- p %>% plotly::hide_legend()
}
}
if(plot){
print(output$plot)
}
output$series <- ts.obj
class(output) <- "ts_ma"
return(output)
}
ts_quantile <- function(ts.obj, upper = 0.75, lower = 0.25, period = NULL, n = 1, title = NULL, Xtitle = NULL, Ytitle = NULL){
`%>%` <- magrittr::`%>%`
freq <- quantiles <- palette <- obj.name <- NULL
category <- name <- maxcolors <- to <- data <- NULL
obj.name <- base::deparse(base::substitute(ts.obj))
if(base::is.null(title)){
title <- paste("Quantile Plot -", obj.name, sep = " ")
} else if(!base::is.character(title)){
warning("The 'title' object is not character object, using the default option")
title <- paste("Quantile Plot -", obj.name, sep = " ")
}
if(!base::is.null(Xtitle)){
if(!base::is.character(Xtitle)){
warning("The value of the 'Xtitle' is not valid")
Xtitle <- ""
}
} else {
Xtitle <- ""
}
if(!base::is.null(Ytitle)){
if(!base::is.character(Ytitle)){
warning("The value of the 'Ytitle' is not valid")
Ytitle <- ""
}
} else {
Ytitle <- ""
}
if(!base::is.numeric(upper)){
warning("The value of the 'upper' argument is invalid, using the default - 0.75")
upper <- 0.75
} else if(upper >1 | upper <= 0){
warning("The value of the 'upper' argument is invalid, using the default - 0.75")
upper <- 0.75
}
if(!base::is.numeric(lower)){
warning("The value of the 'upper' argument is invalid, using the default - 0.25")
lower <- 0.25
} else if(lower >=1 | lower < 0){
warning("The value of the 'lower' argument is invalid, using the default - 0.25")
upper <- 0.25
}
if(lower >= upper){
stop("The value of the 'lower' argument cannot be greater or equal than the 'upper' argument")
}
if(!base::is.numeric(n)){
warning("The value of the 'n' argument is invalid (cannot use non numeric and intgeres values as input),",
" using the default value - 1")
n <- 1
} else if(n%%1 != 0){
warning("The value of the 'n' argument is invalid (cannot use non integer values as input),",
" using the default value - 1")
n <- 1
}
if(n != 1 & base::is.null(period)){
warning("The value of the 'n' argument is invalid (cannot apply more than one row when period is set to NULL),",
" using the default value - 1")
n <- 1
}
quantiles <- c(lower, upper)
palette <- base::data.frame(name = row.names(RColorBrewer::brewer.pal.info),
RColorBrewer::brewer.pal.info,
stringsAsFactors = FALSE) %>%
dplyr::filter(category == "seq") %>%
dplyr::select(name, n = maxcolors)
palette <- palette[c(18, 1, 16, 3, 10, 17, 13, 8, 6, 2, 11, 5, 14, 12, 15, 9, 7, 4), ]
if(xts::is.xts(ts.obj) || zoo::is.zoo(ts.obj)){
df <- base::data.frame(date = zoo::index(ts.obj),
data = base::as.numeric(ts.obj))
if(xts::periodicity(ts.obj)$scale == "monthly"){
freq <- "monthly"
dtick <- 12
} else if(xts::periodicity(ts.obj)$scale == "daily"){
freq <- "daily"
if(base::is.null(period)){
}
} else if(xts::periodicity(ts.obj)$scale == "hourly" && xts::periodicity(ts.obj)$frequency == 3600){
freq <- "hourly"
} else if(xts::periodicity(ts.obj)$scale == "minute" && xts::periodicity(ts.obj)$frequency == 30){
freq <- "half-hour"
} else{
stop("The frequency of the input object is invalid, the function support only 'daily', 'hourly' or 'half-hour'")
}
} else if(base::is.data.frame(ts.obj) |
dplyr::is.tbl(ts.obj) |
data.table::is.data.table(ts.obj)){
ts.obj <- base::as.data.frame(ts.obj)
col_class <- base::lapply(ts.obj, class)
col_POSIXt <- base::lapply(ts.obj, lubridate::is.POSIXt)
col_date <- base::lapply(ts.obj, lubridate::is.Date)
numeric_col <- base::which(col_class == "numeric" | col_class == "integer")
if(base::any(col_date == TRUE) & base::any(col_POSIXt == TRUE)){
d <- t <- NULL
d <- base::min(base::which(col_date == TRUE))
t <- base::min(base::which(col_POSIXt == TRUE))
if(d > t){
warning("The data frame contains multiple date or time objects,",
"using the first one as the series index")
date_col <- t
} else {
warning("The data frame contains multiple date or time objects,",
"using the first one as the plot index")
date_col <- d
}
} else if(base::any(col_date == TRUE) | base::any(col_POSIXt == TRUE)){
if(base::any(col_date == TRUE)){
if(base::length(base::which(col_date == TRUE)) > 1){
date_col <- base::min(base::which(col_date == TRUE))
warning("There are multipe 'date' objects in the data frame,",
"using the first one object as the plot index")
} else {
date_col <- base::min(base::which(col_date == TRUE))
}
} else if(base::any(col_POSIXt == TRUE)){
if(base::length(base::which(col_POSIXt == TRUE)) > 1){
date_col <- base::min(base::which(col_POSIXt == TRUE))
warning("There are multipe 'POSIXt' objects in the data frame,",
"using the first one as the plot index")
} else {
date_col <- base::min(base::which(col_POSIXt == TRUE))
}
}
}else {
stop("No 'Date' or 'POSIXt' object available in the data frame,",
"please check if the data format defined properly")
}
numeric_col <- base::which(col_class == "numeric" | col_class == "integer")
if(base::length(numeric_col) == 0){
stop("None of the data frame columns is numeric,",
"please check if the data format is defined properly")
}
df <- NULL
if(length(numeric_col) == 1){
df<- base::data.frame(date = ts.obj[, date_col], data = ts.obj[, numeric_col])
} else {
warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
df <- base::data.frame(date = ts.obj[, date_col], data = ts.obj[, numeric_col[1]])
}
date_diff <- NULL
date_diff <- base::diff(base::as.numeric(df$date))
if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 1){
freq <- "daily"
} else if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 3600){
freq <- "hourly"
} else if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 1800){
freq <- "half-hour"
} else {
stop("The frequency of the input object is invalid, the function support only 'daily', 'hourly' or 'half-hour'")
}
} else {
stop("The input value is invalid, the function support only 'xts', 'zoo', 'data.frame', 'data.table' or 'tbl' objects")
}
if(!base::is.null(period)){
if(freq == "daily" && period == "weekdays"){
warning("The value of the period argument is invalid, cannot apply a 'weekdays' subset with daily frequency. Using the default value - NULL")
period <- NULL
}
}
if(freq == "quarterly"){
df$to <- lubridate::quarter(df$date)
df$to_num <- lubridate::quarter(df$date)
dtick <- 1
}else if(freq == "monthly"){
df$to <- lubridate::month(df$date, label = TRUE)
df$to_num <- lubridate::month(df$date)
dtick <- 1
} else if(freq == "daily"){
df$to <- lubridate::wday(df$date, label = TRUE)
df$to_num <- lubridate::wday(df$date)
dtick <- 1
} else if(freq == "hourly"){
df$to <- lubridate::hour(df$date)
df$to_num <- lubridate::hour(df$date)
dtick <- 4
} else if(freq == "half-hour"){
df$to <- lubridate::hour(df$date) + lubridate::minute(df$date) / 60
df$to_num <- lubridate::hour(df$date) + lubridate::minute(df$date) / 60
dtick <- 4
}
if(base::is.null(period)){
df$period <- "Total"
df$period_num <- 1
if(n != 1){
warning("The value of the 'n' argument is invalid, setting it to 1")
n <- 1
}
} else if(period == "weekdays"){
df$period <- lubridate::wday(df$date, label = TRUE)
df$period_num <- lubridate::wday(df$date)
} else if(period == "monthly"){
df$period <- lubridate::month(df$date, label = TRUE)
df$period_num <- lubridate::month(df$date)
} else if(period == "quarterly"){
df$period <- base::factor(base::paste("Qr.", lubridate::quarter(df$date), sep = ""))
df$period_num <- lubridate::quarter(df$date)
} else if(period == "yearly"){
df$period <- lubridate::year(df$date)
df$period_num <- lubridate::year(df$date) - min(lubridate::year(df$date)) + 1
}
min_q <- max_q <- NULL
plot <- base::lapply(unique(df$period), function(x){
plot_range <- c(base::min(df$data), base::max(df$data))
colors_set <- df1 <- p <- NULL
df1 <- df %>% dplyr::filter(period == x)
m <- base::unique(df1$period_num)
df1 <- df1 %>%
dplyr::group_by(to) %>%
dplyr::summarise(mean = base::mean(data, na.rm = TRUE),
median = stats::median(data, na.rm = TRUE),
upper = stats::quantile(data, probs = quantiles[2], na.rm = TRUE),
lower = stats::quantile(data, probs = quantiles[1], na.rm = TRUE))
min_q <- base::min(df1$lower)
max_q <- base::max(df1$upper)
colors_set <- RColorBrewer::brewer.pal(palette$n[m], palette$name[m])
p <- plotly::plot_ly(data = df1) %>%
plotly::add_ribbons(data = df1,
x = ~ to,
ymin = ~ lower,
ymax = ~ upper,
line = list(color = colors_set[4]),
fillcolor = colors_set[3],
showlegend = F,
name = "Quantiles") %>%
plotly::add_lines(x = ~ to,
y = ~ median,
line = list(color = colors_set[9]),
name = x) %>%
plotly::layout(xaxis = list(dtick = dtick),
annotations = list(text = x,
showarrow = FALSE,
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "center",
x = 0.1,
y = 0)
)
output <- base::list()
output$plot <- p
output$min <- min_q
output$max <- max_q
return(output)
})
min_q <- max_q <- NULL
for(i in 1:base::length(plot)){
if(i == 1){
min_q <- plot[[i]]$min
max_q <- plot[[i]]$max
} else{
if(min_q > plot[[i]]$min){
min_q <- plot[[i]]$min
}
if(max_q < plot[[i]]$max){
max_q <- plot[[i]]$max
}
}
}
p <- NULL
p <- base::lapply(1:base::length(plot), function(x){
plot[[x]]$plot %>% plotly::layout(yaxis = list(range = c(min_q, max_q)))
})
output <- plotly::subplot(p, nrows = n, shareY = T, shareX = T, titleX = F, titleY = F) %>%
plotly::layout(title = title, xaxis = list(title = Xtitle), yaxis = list(title = Ytitle))
return(output)
} |
opt_fisher <- function(obj) {
obj$est$NR_iter <- 1
obj$est$NR_status <- FALSE
obj$est$max_iter_flag <- FALSE
obj$est$step_err <- 1
obj$est$NR_step_len_ <- obj$est$NR_step_len
if (obj$verbose > 1) {
cat("\n")
}
if (any(is.nan(ergm.eta(obj$est$theta, obj$net$etamap)))) {
obj$est$ML_status_fail <- TRUE
}
while (!obj$est$NR_status & (obj$est$NR_iter <= obj$est$NR_max_iter) & !obj$est$ML_status_fail) {
if (obj$verbose > 1) {
cat("\n Computing step.")
}
weights <- comp_weights(obj)
if (weights == "broken") {
obj$est$ML_status_fail <- TRUE
}
if (!obj$est$par_flag & (obj$est$ML_status_fail == FALSE)) {
info_mat <- comp_info_mat(obj, weights)
} else if (obj$est$par_flag & (obj$est$ML_status_fail == FALSE)) {
info_mat <- comp_info_mat_par(obj, weights)
}
if (obj$est$ML_status_fail == FALSE) {
obj$est$info_mat <- info_mat
}
if (obj$est$ML_status_fail == FALSE) {
step_list <- comp_step(obj, weights, info_mat)
step <- step_list$step
if (!is.null(step_list$ML_status_fail)) {
obj$est$ML_status_fail <- step_list$ML_status_fail
}
if (obj$est$adaptive_step_len) {
obj$est$NR_step_len_ <- 1 / (1 + sum(abs(step)^2))
}
if (any(is.nan(ergm.eta(obj$est$theta + step * obj$est$NR_step_len_, obj$net$etamap)))) {
obj$est$ML_status_fail <- TRUE
}
}
if (!obj$est$ML_status_fail) {
if (obj$verbose > 1) {
val <- sum(abs(step))
print_1 <- val
print_1[val < 0.0001] <- "<.0001"
print_1[val >= 0.0001] <- formatC(val[val >= 0.0001], digits = 4, format = "f")
cat(paste0("\n L1-norm of increment of parameter vector: ", print_1))
}
obj$est$score_val <- step_list$score_val
if (obj$est$NR_iter > 1) {
if (norm(obj$est$score_val, type = "2") < norm(obj$est$score_min, type = "2")) {
obj$est$theta_min <- obj$est$theta
obj$est$score_min <- obj$est$score_val
}
} else {
obj$est$theta_min <- obj$est$theta
obj$est$score_min <- obj$est$score_val
}
obj$est$theta <- obj$est$theta + step * obj$est$NR_step_len_
if (any(is.nan(ergm.eta(obj$est$theta, obj$net$etamap)))) {
obj$est$ML_status_fail <- TRUE
}
if (obj$verbose > 1) {
cat(paste0("\n Iteration: ",
obj$est$NR_iter,
", ",
obj$net$theta_names,
" = ",
round(obj$est$theta, digits = 4)))
cat("\n")
}
if (!obj$est$ML_status_fail) {
obj$est$NR_iter <- obj$est$NR_iter + 1
obj <- check_convergence(obj, step)
}
} else {
if (obj$est$step_err < 3 & !obj$est$adaptive_step_len) {
if (obj$verbose > 1) {
cat("\n Optimization did not converge. Decreasing step length and restarting.\n")
}
obj$est$step_err <- obj$est$step_err + 1
obj$est$NR_step_len_ <- obj$est$NR_step_len_ * obj$est$NR_step_len_multiplier
obj$est$theta <- obj$est$theta_0
obj$est$NR_iter <- 1
obj$est$ML_status_fail <- FALSE
} else {
cat("\n Optimization failed to converge.")
cat("\n Proposed model may be near-degenerate or the MCMLE may be unstable or not exist.")
cat("\n Decreasing the step length (argument 'NR_step_len' in set_options())")
cat(" or increasing the MCMC sample-size may help.")
}
}
}
if (obj$est$NR_iter >= obj$est$NR_max_iter) {
if (obj$verbose > 0) {
cat("\n NOTE: Optimization reached maximum number of allowed iterations.")
cat(paste0("\n\n - Minimum theta found:"))
cat(paste0("\n ",
obj$net$theta_names,
" = ",
round(obj$est$theta_min, digits = 4)))
cat("\n\n")
cat(" - L2-norm of score at this theta: ")
cat(paste(round(sum(abs(obj$est$score_min^2)), digits = 4)))
}
obj$est$max_iter_flag <- TRUE
}
obj$est$theta_0 <- obj$est$theta
obj$est$NR_conv_thresh <- sqrt(sum(step^2))
return(obj)
}
comp_weights <- function(obj) {
if (obj$net$na_flag) {
weights <- list(weight_full = rep(list(numeric(obj$sim$num_obs)),
obj$net$num_clust),
weight_cond = rep(list(numeric(obj$sim$num_obs)),
obj$net$num_clust))
} else {
weights <- list(weight_full = rep(list(numeric(obj$sim$num_obs)),
obj$net$num_clust))
}
theta_diff <- ergm.eta(obj$est$theta, obj$net$etamap) - ergm.eta(obj$est$theta_0, obj$net$etamap)
for (i in 1:obj$net$num_clust) {
adjust_flag <- FALSE
if (any(is.na(obj$sim$stats[[i]] %*% theta_diff))) {
return("broken")
}
norm_const_full <- sum(exp_fun(obj$sim$stats[[i]] %*% theta_diff))
if (norm_const_full == Inf) {
norm_const_full <- .Machine$double.xmax
adjust_flag <- TRUE
}
if (norm_const_full == 0) {
norm_const_full <- .Machine$double.xmin
adjust_flag <- TRUE
}
weights$weight_full[[i]] <- exp_fun(obj$sim$stats[[i]] %*% theta_diff) /
norm_const_full
if (adjust_flag) {
weights$weight_full[[i]] <- weights$weight_full[[i]] / sum(weights$weight_full[[i]])
}
if (obj$net$na_flag) {
if (any(is.na(obj$sim$cond_stats[[i]] %*% theta_diff))) {
return("broken")
}
norm_const_cond <- sum(exp_fun(obj$sim$cond_stats[[i]] %*% theta_diff))
weights$weight_cond[[i]] <- exp_fun(obj$sim$cond_stats[[i]] %*% theta_diff) /
norm_const_cond
}
}
return(weights)
}
comp_info_mat <- function(obj, weights) {
info_mat <- rep(list(NULL), obj$net$num_clust)
theta_grad_val <- t(ergm.etagrad(obj$est$theta, obj$net$etamap))
for (i in 1:obj$net$num_clust) {
term_1_full <- numeric(obj$net$num_terms)
term_2_full <- numeric(obj$net$num_terms)
if (obj$net$na_flag) {
term_1_cond <- numeric(obj$net$num_terms)
term_2_cond <- numeric(obj$net$num_terms)
}
list_ <- as.list(data.frame(t(obj$sim$stats[[i]])))
outers_ <- lapply(list_, outer_fun)
term_1_full <- Reduce("+", Map("*", outers_, weights$weight_full[[i]]))
term_2_full <- as.vector(t(obj$sim$stats[[i]]) %*% weights$weight_full[[i]])
J_full <- t(theta_grad_val) %*%
(term_1_full - outer(term_2_full, term_2_full)) %*%
theta_grad_val
if (obj$net$na_flag) {
list_ <- as.list(data.frame(t(obj$sim$cond_stats[[i]])))
outers_ <- lapply(list_, outer_fun)
term_1_cond <- Reduce("+", Map("*", outers_, weights$weight_cond[[i]]))
term_2_cond <- as.vector(t(obj$sim$cond_stats[[i]]) %*%
weights$weight_cond[[i]])
J_cond <- t(theta_grad_val) %*%
(term_1_cond - outer(term_2_cond, term_2_cond)) %*%
theta_grad_val
}
if (obj$net$na_flag) {
info_mat[[i]] <- J_full - J_cond
} else {
info_mat[[i]] <- J_full
}
}
return(Reduce("+", info_mat))
}
comp_info_mat_par <- function(obj, weights) {
theta_grad_val <- t(ergm.etagrad(obj$est$theta, obj$net$etamap))
par_fun <- function(i, obj, weights, theta_grad_val, job_split) {
split_ <- job_split[[i]]
info_mat_list <- rep(list(NULL), length(split_))
for (ll in 1:length(split_)) {
cur_ind <- split_[ll]
term_1_full <- numeric(obj$net$num_terms)
term_2_full <- numeric(obj$net$num_terms)
if (obj$net$na_flag) {
term_1_cond <- numeric(obj$net$num_terms)
term_2_cond <- numeric(obj$net$num_terms)
}
list_ <- as.list(data.frame(t(obj$sim$stats[[cur_ind]])))
outers_ <- lapply(list_, outer_fun)
term_1_full <- Reduce("+", Map("*", outers_, weights$weight_full[[cur_ind]]))
term_2_full <- as.vector(t(obj$sim$stats[[cur_ind]]) %*% weights$weight_full[[cur_ind]])
J_full <- t(theta_grad_val) %*%
(term_1_full - outer(term_2_full, term_2_full)) %*%
theta_grad_val
if (obj$net$na_flag) {
list_ <- as.list(data.frame(t(obj$sim$cond_stats[[cur_ind]])))
outers_ <- lapply(list_, outer_fun)
term_1_cond <- Reduce("+", Map("*", outers_, weights$weight_cond[[cur_ind]]))
term_2_cond <- as.vector(t(obj$sim$cond_stats[[cur_ind]]) %*%
weights$weight_cond[[cur_ind]])
J_cond <- t(theta_grad_val) %*%
(term_1_cond - outer(term_2_cond, term_2_cond)) %*%
theta_grad_val
}
if (obj$net$na_flag) {
info_mat <- J_full - J_cond
} else {
info_mat <- J_full
}
info_mat_list[[ll]] <- info_mat
}
return(info_mat_list)
}
if (obj$est$par_n_cores > obj$net$num_clust) {
split_num <- obj$net$num_clust
} else if (obj$net$num_clust >= obj$est$par_n_cores) {
split_num <- obj$est$par_n_cores
}
split_ <- msplit(1:obj$net$num_clust, 1:split_num)
if (.Platform$OS.type == "windows") {
cl <- makeCluster(split_num)
clusterEvalQ(cl, library(mlergm))
info_mats <- clusterApply(cl, 1:length(split_), par_fun, obj = obj, weights = weights,
theta_grad_val = theta_grad_val, job_split = split_)
stopCluster(cl)
} else {
info_mats <- mclapply(1:length(split_), par_fun,
obj, weights, theta_grad_val, split_, mc.cores = split_num)
}
return(Reduce("+", unlist(info_mats, recursive = FALSE)))
}
comp_step <- function(obj, weights, info_mat) {
if (is.nan(norm(info_mat))) {
ML_status_fail <- TRUE
cat("\n Information matrix is near-singular.")
} else {
ML_status_fail <- FALSE
}
if (!ML_status_fail) {
info_mat_inv <- tryCatch({ solve(info_mat) },
error = function(e) {
return("error")
})
if (is.character(info_mat_inv)) {
ML_status_fail <- TRUE
cat("\n Information matrix is near-singular.")
}
}
if (!ML_status_fail) {
theta_grad_val <- t(ergm.etagrad(obj$est$theta, obj$net$etamap))
exp_approx <- as.vector(Reduce("+", Map("%*%", lapply(weights$weight_full, t),
obj$sim$stats)))
if (obj$net$na_flag) {
obs_approx <- as.vector(Reduce("+",
Map("%*%", lapply(weights$weight_cond, t),
obj$sim$cond_stats)))
} else {
obs_approx <- obj$net$obs_stats_step
}
if ((norm(theta_grad_val) == Inf) | is.nan(norm(theta_grad_val))) {
ML_status_fail <- TRUE
cat("\n Gradient is not finite. Stopping optimization.")
}
if (!ML_status_fail) {
score_val <- t(theta_grad_val) %*% (obs_approx - exp_approx)
step <- info_mat_inv %*% score_val
}
}
if (ML_status_fail) {
step <- NA
score_val <- NA
}
return(list(step = step, score_val = score_val, ML_status_fail = ML_status_fail))
}
check_convergence <- function(obj, step) {
step_norm <- sqrt(sum(step^2))
if (!(step_norm == Inf)) {
conv_check <- sum(abs(step) > obj$est$adj_NR_tol) == 0
if (conv_check) {
obj$est$NR_status <- TRUE
}
} else {
obj$est$step_err <- obj$est$step_err + 1
if (obj$est$step_err < 3) {
obj$est$NR_step_len_ <- obj$est$NR_step_len_ * obj$est$NR_step_len_multiplier
obj$est$NR_iter <- 1
} else {
obj$est$ML_status_fail <- TRUE
}
}
return(obj)
} |
setMethod(
f = "getCellSize",
signature = signature(
object = "CompactStratification"
),
definition = function(object) {
spatialPixelsDataFrame <- suppressWarnings(as(object, "SpatialPixelsDataFrame"))
cellSize <- getCellSize(spatialPixelsDataFrame)
cellSize
}
) |
FC_format <- function(log.base.data = 2, log.base.labels = 10, digits = 3, ...) {
function(x) FC_plain(x,
log.base.data = log.base.data,
log.base.labels = log.base.labels,
digits = digits, ...)
}
FC_plain <- function(x, log.base.data = 2, log.base.labels = 10, digits = 3, ...) {
if (log.base.data != log.base.labels) {
if (log.base.data %in% c(2, exp(1), 10)) {
x <- log.base.data^x
} else if (log.base.data) {
stop("Unsuported logarithm base ", log.base.data)
}
if (log.base.labels %in% c(2, exp(1), 10)) {
x <- log(x, base = log.base.labels)
} else if (log.base.labels) {
stop("Unsuported logarithm base ", log.base.labels)
}
}
if (log.base.labels) {
x <- signif(x, max(digits, 1))
format(x, trim = TRUE, scientific = FALSE, ...)
} else {
as.character(
ifelse(x < 1,
paste("1/", signif(1 / x, max(digits, 1)), sep = ""),
signif(x, max(digits, 1)))
)
}
}
FC_name <- function(name = "Abundance%unit",
log.base = FALSE,
format = getOption("photobiology.math",
default = "R.expression")) {
if (!grepl("%unit$", name)) {
return(name)
} else {
name <- sub("%unit$", "", name)
}
log.base <- as.integer(log.base)
stopifnot(log.base %in% c(0L, 2L, 10L))
if (tolower(format) == "latex") {
if (!log.base) {
paste(name, " (fold change)", sep = "")
} else {
paste(name, " ($log_", log.base, "$ fold change)", sep = "")
}
} else if (format %in% c("R.expression")) {
if (!log.base) {
bquote(plain(.(name))~~(plain("fold change")))
} else {
bquote(plain(.(name))~~(log[.(log.base)]~~plain("fold change")))
}
} else if (format == "R.character") {
if (!log.base) {
paste(name, "(fold change)", sep = "")
} else {
paste(name, "(log", log.base, " fold change)", sep = "")
}
} else {
warning("'format = ", format,
"' not implemented for fold change")
}
}
symmetric_limits <- function(x) {
max <- max(abs(x))
c(-max, max)
}
scale_x_logFC <- function(name = "Abundance of x%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.15, add = 0),
log.base.labels = FALSE,
log.base.data = 2L,
...) {
if (is.null(breaks)) {
if (!log.base.labels) {
breaks <- 10^seq(from = -4, to = 4, by = 1)
} else if (log.base.labels == 2L) {
breaks <- 2^seq(from = -10, to = 10, by = 3)
} else if (log.base.labels == 10L) {
breaks <- 10^seq(from = -4, to = 4, by = 1)
}
if (log.base.data) {
breaks <- log(breaks, base = log.base.data)
}
}
if (is.null(labels)) {
labels = FC_format(log.base.labels = log.base.labels,
log.base.data = log.base.data)
}
ggplot2::scale_x_continuous(name = FC_name(name = name, log.base = log.base.labels),
breaks = breaks,
labels = labels,
oob = oob,
expand = expand,
limits = limits,
...)
}
scale_y_logFC <- function(name = "Abundance of y%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.15, add = 0),
log.base.labels = FALSE,
log.base.data = 2L,
...) {
if (is.null(breaks)) {
if (!log.base.labels) {
breaks <- 10^seq(from = -4, to = 4, by = 1)
} else if (log.base.labels == 2L) {
breaks <- 2^seq(from = -10, to = 10, by = 3)
} else if (log.base.labels == 10L) {
breaks <- 10^seq(from = -4, to = 4, by = 1)
}
if (log.base.data) {
breaks <- log(breaks, base = log.base.data)
}
}
if (is.null(labels)) {
labels = FC_format(log.base.labels = log.base.labels,
log.base.data = log.base.data)
}
ggplot2::scale_y_continuous(name = FC_name(name = name, log.base = log.base.labels),
breaks = breaks,
labels = labels,
oob = oob,
expand = expand,
limits = limits,
...)
} |
lod_cca <- function(formula, df, type)
{
if (class(formula) != "formula")
stop("formula must be a formula")
if (!is.data.frame(df))
stop("df must be a data.frame")
type <- deparse(substitute(type))
type <- match.arg(type, c("linear", "logistic"))
df <- stats::na.omit(df)
mod.fr <- stats::model.frame(formula, data = df)
if (type == "linear")
model <- stats::lm(mod.fr)
else
model <- stats::glm(mod.fr, family = stats::binomial())
list(model = model, formula = formula, data = df)
}
lod_root2 <- function(formula, df, lod, type)
{
if (class(formula) != "formula")
stop("formula must be a formula")
if (!is.data.frame(df))
stop("df must be a data.frame")
transform.init <- rlang::parse_expr(labels(stats::terms(formula))[1])
exposure <- all.vars(transform.init)
if (length(exposure) > 1)
stop("Complicated transformation on exposure. See help for fix.")
assign(exposure, quote(x))
transform <- eval(substitute(substitute(transform.init)))
t.function <- function(x) x
body(t.function) <- transform
environment(t.function) <- rlang::caller_env()
assign("x", substitute(lod))
transform.lod <- deparse(eval(substitute(substitute(transform))))
lod <- deparse(substitute(lod))
if (is.null(df[[lod]]))
stop(paste(lod, "not in data."))
type <- deparse(substitute(type))
type <- match.arg(type, c("linear", "logistic"))
tmp <- df[[exposure]]
for (i in 1:nrow(df))
tmp[i] <- ifelse(is.na(tmp[i]), df[[lod]][i] / sqrt(2), tmp[i])
df[[exposure]] <- tmp
df[[transform.lod]] <- t.function(df[[lod]])
df[[deparse(transform.init)]] <- t.function(df[[exposure]])
mod.fr <- stats::model.frame(formula, data = df)
if (type == "lm")
model <- stats::lm(mod.fr)
else
model <- stats::glm(mod.fr, family = stats::binomial())
list(model = model, formula = formula, data = df, t.function = t.function)
} |
log.lik.data.z.p<-function(ntrial.temp,nsucc.temp,z.temp,p.temp) sum(dbinom(nsucc.temp,ntrial.temp,z.temp*p.temp,log=TRUE),na.rm=TRUE) |
prop_correct_sentence <- function(data, responses,
key, key.trial, id, id.trial,
cutoff = 0, flag = FALSE,
group.by = NULL,
token.split = " "){
DF <- as.data.frame(data)
colnames(DF)[grepl(responses, colnames(DF))] <- "Responses"
colnames(DF)[grepl(id, colnames(DF))] <- "Sub.ID"
colnames(DF)[grepl(id.trial, colnames(DF))] <- "Trial.ID"
if (length(key) > 1){
answer_key <- data.frame("Answer" = key, "Trial.ID" = key.trial)
} else {
answer_key <- data.frame("Answer" = data[ , key],
"Trial.ID" = data[ , key.trial])
}
answer_key <- unique(answer_key)
dups <- duplicated(answer_key$Trial.ID)
if(sum(dups) > 0){
stop("You have duplicate trial ids for your answer key. Please check your data.")
}
DF <- merge(DF, answer_key, by = "Trial.ID")
DF$Answer <- tolower(DF$Answer)
DF$Responses <- tolower(DF$Responses)
DF$Answer <- gsub("[[:punct:]]", "", DF$Answer)
DF$Responses <- gsub("[[:punct:]]", "", DF$Responses)
DF$Answer <- gsub("\\s+", " ", DF$Answer)
DF$Answer <- trimws(DF$Answer)
DF$Responses <- gsub("\\s+", " ", DF$Responses)
DF$Responses <- trimws(DF$Responses)
DF$Proportion.Match <- NA
DF$Shared.Items <- NA
DF$Corrected.Items <- NA
DF$Omitted.Items <- NA
DF$Extra.Items <- NA
for (i in 1:nrow(DF)){
answer.tokens <- unlist(strsplit(DF$Answer[i], split = token.split))
response.tokens <- unlist(strsplit(DF$Responses[i], split = token.split))
shared <- c()
omitted <- c()
extras <- c()
corrected <- c()
shared <- intersect(answer.tokens, response.tokens)
omitted <- setdiff(answer.tokens, response.tokens)
extras <- setdiff(response.tokens, answer.tokens)
omitted_final <- omitted
extras_final <- extras
if (length(extras) > 0 & length(omitted) > 0){
for (j in 1:length(extras)){
lev_score <- adist(extras[j], omitted)
names(lev_score) <- omitted
if(min(lev_score) <= cutoff) {
corrected <- c(corrected, extras[j])
extras_final <- extras_final[!grepl(extras[j], extras_final)]
omitted_final <- omitted_final[!grepl(attr(which.min(lev_score), "names"), omitted_final)]
}
}
}
if(length(shared) > 0){ DF$Shared.Items[i] <- paste(shared, collapse = " ") } else {
DF$Shared.Items[i] <- NA
}
if(length(omitted_final) > 0){ DF$Omitted.Items[i] <- paste(omitted_final, collapse = " ") } else {
DF$Omitted.Items[i] <- NA
}
if(length(corrected) > 0){ DF$Corrected.Items[i] <- paste(corrected, collapse = " ") } else {
DF$Corrected.Items[i] <- NA
}
if(length(extras_final) > 0){ DF$Extra.Items[i] <- paste(extras_final, collapse = " ") } else {
DF$Extra.Items[i] <- NA
}
DF$Proportion.Match[i] <- (length(shared) + length(corrected)) / length(answer.tokens)
}
k <- tapply(DF$Trial.ID, DF$Sub.ID, length)
if(min(k) != max(k)){
warning("The number of trials is not the same for every participant.
This summary represents an average of the avaliable trials
for each participant.")
}
if (!is.null(group.by)){
DF_participant <- aggregate(DF$Proportion.Match,
by = DF[ , c(group.by, "Sub.ID")],
mean)
colnames(DF_participant) <- c(group.by, "Sub.ID", "Proportion.Correct")
} else {
DF_participant <- aggregate(DF$Proportion.Match,
list(DF$Sub.ID), mean)
colnames(DF_participant) <- c("Sub.ID", "Proportion.Correct")
}
other.columns <- setdiff(colnames(DF),
c("Responses", "Sub.ID", "Answer", "Scored",
colnames(DF_participant)))
for (col in other.columns){
DF_temp <- unique(DF[ , c("Sub.ID", col)])
if (sum(duplicated(DF_temp$Sub.ID)) == 0){
DF_participant <- merge(DF_participant, DF_temp, by = "Sub.ID")
}
}
if (flag) {
if (!is.null(group.by)){
DF_participant$Z.Score.Group <- ave(DF_participant$Proportion.Correct,
DF_participant[ , group.by],
FUN = scale)
}
DF_participant$Z.Score.Participant <- scale(DF_participant$Proportion.Correct)
}
if (!is.null(group.by)){
DF_group_person <- aggregate(DF$Proportion.Match,
by = DF[ , c(group.by, "Sub.ID")],
mean)
colnames(DF_group_person) <- c(group.by,"Sub.ID", "Mean")
if (length(group.by) > 1){
DF_group <- aggregate(DF_group_person$Mean,
by = DF_group_person[ , group.by], mean)
DF_group$SD <- aggregate(DF_group_person$Mean,
by = DF_group_person[ , group.by], sd)$x
DF_group$N <- aggregate(DF_group_person$Mean,
by = DF_group_person[ , group.by], length)$x
} else {
DF_group <- aggregate(DF_group_person$Mean,
by = list(DF_group_person[ , group.by]), mean)
DF_group$SD <- aggregate(DF_group_person$Mean,
by = list(DF_group_person[ , group.by]), sd)$x
DF_group$N <- aggregate(DF_group_person$Mean,
by = list(DF_group_person[ , group.by]), length)$x
}
colnames(DF_group) <- c(group.by, "Mean", "SD", "N")
return(list(DF_Scored = DF,
DF_Participant = DF_participant,
DF_Group = DF_group))
} else {
return(list(DF_Scored = DF,
DF_Participant = DF_participant))
}
} |
context("test-getdata-method")
library(lme4)
my_data="my data"
test_that("glm with data in x$data", {
x<-list(data=my_data)
class(x)<-"glm"
expect_equal(getData(x),my_data)
})
test_that("glm with data in x$model", {
x<-list(model=my_data)
class(x)<-"glm"
expect_equal(getData(x),my_data)
})
test_that("lm with data extrated from call",{
x1<-rnorm(10)
x2<-rnorm(10)
y<-x1+x2+rnorm(10)
.dff<<-data.frame(xa=x1,xb=x2,yy=y)
lm.1<-lm(yy~xa+xb, data=.dff)
expect_equal(getData(lm.1),.dff)
.dff<<-NULL
})
test_that("lmer with data extrated from call",{
x1<-rnorm(10)
x2<-rnorm(10)
g<-gl(5,2)
y<-x1+x2+rnorm(10)
dff<-data.frame(xa=x1,xb=x2,yy=y,g=g)
lmer.1<-lmer(yy~xa+xb+(1|g), data=dff)
expect_equal(getData(lmer.1)[,colnames(dff)],dff)
})
test_that("lm with data extrated from model",{
x<-list(model=my_data)
class(x)<-"lm"
expect_equal(getData(x),my_data)
})
test_that("lm without data should raise error",{
x<-list()
class(x)<-"lm"
expect_error(getData(x),"Can't get data")
}) |
library(testthat)
library(rly)
context("A grammar with an unused rule")
Parser1 <- R6::R6Class("Parser1",
public = list(
tokens = c('NAME','NUMBER', 'PLUS','MINUS','TIMES','DIVIDE','EQUALS', 'LPAREN','RPAREN'),
precedence = list(c('left','PLUS','MINUS'),
c('left','TIMES','DIVIDE'),
c('right','UMINUS')),
names = new.env(hash=TRUE),
p_statement_assign = function(doc='statement : NAME EQUALS expression', p) {
self$names[[as.character(p$get(2))]] <- p$get(4)
},
p_statement_expr = function(doc='statement : expression', p) {
cat(p$get(2))
cat('\n')
},
p_expression_binop = function(doc='expression : expression PLUS expression
| expression MINUS expression
| expression TIMES expression
| expression DIVIDE expression', p) {
if(p$get(3) == 'PLUS') p$set(1, p$get(2) + p$get(4))
else if(p$get(3) == 'MINUS') p$set(1, p$get(2) - p$get(4))
else if(p$get(3) == 'TIMES') p$set(1, p$get(2) * p$get(4))
else if(p$get(3) == 'DIVIDE') p$set(1, p$get(2) / p$get(4))
},
p_expression_uminus = function(doc='expression : MINUS expression %prec UMINUS', p) {
p$set(1, -p$get(3))
},
p_expression_group = function(doc='expression : LPAREN expression RPAREN', p) {
p$set(1, p$get(3))
},
p_expression_number = function(doc='expression : NUMBER', p) {
p$set(1, p$get(2))
},
p_expression_name = function(doc='expression : NAME', p) {
p$set(1, self$names[[as.character(p$get(2))]])
},
p_expression_list = function(doc='exprlist : exprlist COMMA expression', p) {
},
p_error = function(p) {
cat(sprintf("Syntax error at '%s'", p$value))
}
)
)
Parser2 <- R6::R6Class("Parser2",
public = list(
tokens = c('NAME','NUMBER', 'PLUS','MINUS','TIMES','DIVIDE','EQUALS', 'LPAREN','RPAREN'),
precedence = list(c('left','PLUS','MINUS'),
c('left','TIMES','DIVIDE'),
c('right','UMINUS')),
names = new.env(hash=TRUE),
p_statement_assign = function(doc='statement : NAME EQUALS expression', p) {
self$names[[as.character(p$get(2))]] <- p$get(4)
},
p_statement_expr = function(doc='statement : expression', p) {
cat(p$get(2))
cat('\n')
},
p_expression_binop = function(doc='expression : expression PLUS expression
| expression MINUS expression
| expression TIMES expression
| expression DIVIDE expression', p) {
if(p$get(3) == 'PLUS') p$set(1, p$get(2) + p$get(4))
else if(p$get(3) == 'MINUS') p$set(1, p$get(2) - p$get(4))
else if(p$get(3) == 'TIMES') p$set(1, p$get(2) * p$get(4))
else if(p$get(3) == 'DIVIDE') p$set(1, p$get(2) / p$get(4))
},
p_expression_uminus = function(doc='expression : MINUS expression %prec UMINUS', p) {
p$set(1, -p$get(3))
},
p_expression_group = function(doc='expression : LPAREN expression RPAREN', p) {
p$set(1, p$get(3))
},
p_expression_number = function(doc='expression : NUMBER', p) {
p$set(1, p$get(2))
},
p_expression_name = function(doc='expression : NAME', p) {
p$set(1, self$names[[as.character(p$get(2))]])
},
p_expression_list_2 = function(doc='exprlist : expression', p) {
},
p_error = function(p) {
cat(sprintf("Syntax error at '%s'", p$value))
}
)
)
test_that("grammar", {
expect_output(expect_error(rly::yacc(Parser1), "Unable to build parser"),
"ERROR .* Symbol COMMA used, but not defined as a token or a rule
WARN .* Symbol COMMA is unreachable
WARN .* Symbol exprlist is unreachable
ERROR .* Infinite recursion detected for symbol exprlist")
expect_output(rly::yacc(Parser2),
"WARN .* Rule exprlist defined, but not used
WARN .* There is 1 unused rule
WARN .* Symbol exprlist is unreachable")
}) |
context("testing graph partitioning methods")
dat <- data.frame(
id = 1:48,
mom = c(NA, NA, 2L, 2L, 2L, NA, NA, 7L, 7L, 7L, 3L, 3L, 3L, 3L, NA, 15L, 15L, 43L, 18L, NA, NA, 21L, 21L, 9L, 9L, 9L, 9L, NA, NA, 29L, 29L, 29L, 30L, 30L, NA, NA, 36L, 36L, 36L, 38L, 38L, NA, NA, 43L, 43L, 43L, 32L, 32L),
dad = c(NA, NA, 1L, 1L, 1L, NA, NA, 6L, 6L, 6L, 8L, 8L, 8L, 8L, NA, 4L, 4L, 42L, 5L, NA, NA, 20L, 20L, 22L, 22L, 22L, 22L, NA, NA, 28L, 28L, 28L, 23L, 23L, NA, NA, 35L, 35L, 35L, 31L, 31L, NA, NA, 42L, 42L, 42L, 45L, 45L),
sex = c(1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L))
is_final <- c(16:17, 11:14, 24:27, 33:34, 40:41, 47:48, 19L)
dat$id_weight <- ifelse(dat$id %in% is_final, 1., 1e-5)
dat$father_weight <- dat$mother_weight <- ifelse(dat$id %in% is_final, 10., 1.)
test_that("the _pedigree methods give the same", {
cuts <- with(
dat, biconnected_components_pedigree(id = id, father.id = dad,
mother.id = mom))
expect_known_value(cuts, "biconnected_components_pedigree.RDS")
tree <- with(
dat, block_cut_tree_pedigree(id = id, father.id = dad, mother.id = mom))
expect_known_value(cuts, "block_cut_tree_pedigree.RDS")
partition <- with(
dat, max_balanced_partition_pedigree(
id = id, father.id = dad, mother.id = mom, do_reorder = FALSE))
expect_known_value(partition, "max_balanced_partition_pedigree.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(dat$id %in% c(partition$set_1, partition$set_2)))
partition_reordered <- with(
dat, max_balanced_partition_pedigree(
id = id, father.id = dad, mother.id = mom, do_reorder = TRUE))
expect_equal(partition, partition_reordered)
partition <- with(
dat, max_balanced_partition_pedigree(
id = id, father.id = dad, mother.id = mom, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, do_reorder = FALSE))
expect_known_value(partition, "max_balanced_partition_pedigree-w_cut.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(dat$id %in% c(partition$set_1, partition$set_2)))
partition_reordered <- with(
dat, max_balanced_partition_pedigree(
id = id, father.id = dad, mother.id = mom, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, do_reorder = TRUE))
expect_equal(partition, partition_reordered)
partition <- with(
dat, max_balanced_partition_pedigree(
id = id, father.id = dad, mother.id = mom, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, id_weight = id_weight, do_reorder = FALSE))
expect_known_value(partition, "max_balanced_partition_pedigree-w_cut-n-weights.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(dat$id %in% c(partition$set_1, partition$set_2)))
partition_reordered <- with(
dat, max_balanced_partition_pedigree(
id = id, father.id = dad, mother.id = mom, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, id_weight = id_weight, do_reorder = TRUE))
expect_equal(partition, partition_reordered)
partition <- with(
dat, max_balanced_partition_pedigree(
id = id, father.id = dad, mother.id = mom, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, id_weight = id_weight, do_reorder = FALSE,
father_weight = father_weight, mother_weight = mother_weight))
expect_known_value(partition, "max_balanced_partition_pedigree-w_cut-n-2xweights.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(dat$id %in% c(partition$set_1, partition$set_2)))
partition_reordered <- with(
dat, max_balanced_partition_pedigree(
id = id, father.id = dad, mother.id = mom, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, id_weight = id_weight, do_reorder = TRUE,
father_weight = father_weight, mother_weight = mother_weight))
expect_equal(partition, partition_reordered)
skip_on_os("solaris")
connected_partition <- partition
partition <- with(
dat, unconnected_partition_pedigree(
id = id, father.id = dad, mother.id = mom, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, id_weight = id_weight,
father_weight = father_weight, mother_weight = mother_weight))
expect_known_value(partition, "unconnected_partition_pedigree-w_cut-n-2xweights.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(dat$id %in% c(partition$set_1, partition$set_2)))
partition <- with(
dat, unconnected_partition_pedigree(
id = id, father.id = dad, mother.id = mom, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, id_weight = id_weight,
init = connected_partition$set_1))
expect_known_value(partition, "unconnected_partition_pedigree-start.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(dat$id %in% c(partition$set_1, partition$set_2)))
})
dat <- readRDS("graph.RDS")
test_that("the partitioning functions for graphs give the same", {
cuts <- with(
dat, biconnected_components(from = from, to = to))
expect_known_value(cuts, "biconnected_components.RDS")
tree <- with(
dat, block_cut_tree(from = from, to = to))
expect_known_value(cuts, "block_cut_tree.RDS")
partition <- with(
dat, max_balanced_partition(from = from, to = to, do_reorder = FALSE))
expect_known_value(partition, "max_balanced_partition.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(c(dat$from, dat$to) %in% c(partition$set_1, partition$set_2)))
partition_reordered <- with(
dat, max_balanced_partition(from = from, to = to, do_reorder = TRUE))
expect_equal(partition, partition_reordered)
connected_partition <- partition
partition <- with(
dat, max_balanced_partition(
from = from, to = to, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, do_reorder = FALSE))
expect_known_value(partition, "max_balanced_partition-w_cut.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(c(dat$from, dat$to) %in% c(partition$set_1, partition$set_2)))
partition_reordered <- with(
dat, max_balanced_partition(
from = from, to = to, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, do_reorder = FALSE))
expect_equal(partition, partition_reordered)
skip_on_os("solaris")
partition <- with(
dat, unconnected_partition(
from = from, to = to, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L))
expect_known_value(partition, "unconnected_partition-w_cut.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(c(dat$from, dat$to) %in% c(partition$set_1, partition$set_2)))
partition <- with(
dat, unconnected_partition(
from = from, to = to, slack = .1, max_kl_it = 50L,
max_kl_it_inner = 1000L, init = connected_partition$set_1))
expect_known_value(partition, "unconnected_partition-start-w_cut.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(c(dat$from, dat$to) %in% c(partition$set_1, partition$set_2)))
partition <- with(
dat, max_balanced_partition(
from = from, to = to, slack = .1, max_kl_it = 50L, do_reorder = FALSE,
max_kl_it_inner = 1000L, weight_data = list(id = dat$from[3],
weight = 100)))
expect_known_value(partition, "max_balanced_partition-w_cut-n-weights.RDS")
expect_true(length(intersect(partition$set_1, partition$set_2)) < 1)
expect_true(all(c(dat$from, dat$to) %in% c(partition$set_1, partition$set_2)))
partition_reordered <- with(
dat, max_balanced_partition(
from = from, to = to, slack = .1, max_kl_it = 50L, do_reorder = TRUE,
max_kl_it_inner = 1000L, weight_data = list(id = dat$from[3],
weight = 100)))
expect_equal(partition, partition_reordered)
}) |
transform_boundary <- function(data, noisy_centroids, new_centroids) {
original_poly <- sf::st_union(data)
original_boundary <- sf::st_boundary(original_poly)
if (sum(class(original_boundary) == "sfc_MULTILINESTRING") == 0) {
original_boundary <- sf::st_cast(original_boundary, "MULTILINESTRING")
}
boundary_points <- sf::st_cast(original_boundary, "MULTIPOINT")
boundary_coords <- data.frame(sf::st_coordinates(boundary_points))
prop <- lengths(original_boundary[[1]]) / sum(lengths(original_boundary[[1]]))
sample_size <- ceiling(prop * 1000)
sample_groups <- which(sample_size > 3)
subset <- boundary_coords[which(boundary_coords$L1 == sample_groups[1]),]
if (sample_size[sample_groups[1]] > nrow(subset)) {
index <- 1:nrow(subset)
} else {
index <- c(1, sort(sample(2:(nrow(subset)-1), sample_size[sample_groups[1]]-2)),
nrow(subset))
}
sample <- subset[index,]
if (length(sample_groups) > 1) {
for (i in 2:length(sample_groups)) {
subset <- boundary_coords[which(boundary_coords$L1 == sample_groups[i]),]
if (sample_size[sample_groups[i]] > nrow(subset)) {
index <- 1:nrow(subset)
} else {
index <- c(1, sort(sample(2:(nrow(subset)-1), sample_size[sample_groups[i]]-2)),
nrow(subset))
}
sample <- rbind(sample, subset[index,])
}
}
samp_points <- sf::st_sfc(sf::st_multipoint(as.matrix(sample[,1:2])), crs = sf::st_crs(data))
samp_points <- sf::st_cast(samp_points, "POINT")
k <- 3
dist_matrix <- matrix(as.numeric(sf::st_distance(samp_points, noisy_centroids)),
ncol = length(noisy_centroids))
M <- matrix(rep(0,nrow(sample)*k), ncol = k)
for (i in 1:nrow(sample)) {
M[i,] <- order(dist_matrix[i,])[1:k]
}
W <- matrix(rep(0,nrow(sample)*k), ncol = k)
for (i in 1:nrow(sample)) {
W[i,] <- exp(-dist_matrix[i,M[i,]]^2 / (2*min(dist_matrix[i,M[i,]]^2)))
}
W <- W / rowSums(W)
noisy_coords <- data.frame(sf::st_coordinates(noisy_centroids))
v <- matrix(rep(0, 2*nrow(sample)), ncol = 2)
for (i in 1:nrow(v)) {
x <- sum((sample[i,1] - noisy_coords[M[i,],1]) * W[i,])
y <- sum((sample[i,2] - noisy_coords[M[i,],2]) * W[i,])
v[i,] <- c(x,y)
}
new_coords <- data.frame(sf::st_coordinates(new_centroids))
new_boundary <- matrix(rep(0, 2*nrow(sample)), ncol = 2)
R <- length(noisy_centroids)
A <- sum(sf::st_area(data))
s <- as.numeric(sqrt(A/R))
for (i in 1:nrow(sample)) {
weighted_centroids <- new_coords[M[i,],] * W[i,]
x <- sum(weighted_centroids$X)
y <- sum(weighted_centroids$Y)
new_boundary[i,] <- v[i,] * sqrt(s / sqrt(sum(v[i,]^2))) + c(x,y)
}
new_boundary_coords <- data.frame(new_boundary)
colnames(new_boundary_coords) <- c("X","Y")
new_boundary_coords$L1 <- sample$L1
coords_list <- list()
for (i in 1:length(sample_groups)) {
points <- new_boundary_coords[which(new_boundary_coords$L1 == sample_groups[i]),1:2]
coords_list[[i]] <- as.matrix(points)
}
new_boundary <- sf::st_sfc(sf::st_polygon(coords_list), crs = sf::st_crs(data))
if (!sf::st_is_valid(new_boundary)) {
new_boundary <- sf::st_make_valid(new_boundary)
if ("sfc_GEOMETRYCOLLECTION" %in% class(new_boundary)) {
new_boundary <- sf::st_collection_extract(new_boundary, "POLYGON")
}
}
new_boundary
} |
context("wbt_exp")
test_that("Returns the exponential (base e) of values in a raster", {
skip_on_cran()
skip_if_not(check_whitebox_binary())
dem <- system.file("extdata", "DEM.tif", package = "whitebox")
ret <- wbt_exp(input = dem, output = "output.tif")
expect_match(ret, "Elapsed Time")
}) |
require(apsimx)
apsimx_options(warn.versions = FALSE)
run.inspect.tests <- get(".run.local.tests", envir = apsimx.options)
if(run.inspect.tests) ex.dir <- auto_detect_apsimx_examples()
if(run.inspect.tests){
i <- "Barley.apsimx"
inspect_apsimx(i, src.dir = ex.dir, node = "Clock")
inspect_apsimx(i, src.dir = ex.dir, node = "Weather")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Physical")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "SoilWater")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "SoilWater", parm = "SummerDate")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "SoilWater", parm = "SummerCona")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Organic")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "InitialWater")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Chemical")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "InitialN")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "CERESSoilTemperature")
inspect_apsimx(i, src.dir = ex.dir, node = "SurfaceOrganicMatter")
inspect_apsimx(i, src.dir = ex.dir, node = "MicroClimate")
inspect_apsimx(i, src.dir = ex.dir, node = "Crop")
inspect_apsimx(i, src.dir = ex.dir, node = "Manager")
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list("SowingFertiliser", NA))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list("Sow on a fixed date", NA))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list("Sow on a fixed date", 1))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list("Sow on a fixed date", 2))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list("Sow on a fixed date", 3))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list("Sow on a fixed date", 4))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list("Sow on a fixed date", 5))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list("Sow on a fixed date", 6))
inspect_apsimx(i, src.dir = ex.dir, node = "Report")
inspect_apsimx(i, src.dir = ex.dir, node = "Report", parm = "VariableNames")
inspect_apsimx(i, src.dir = ex.dir, node = "Report", parm = "EventNames")
i <- "Maize.apsimx"
inspect_apsimx(i, src.dir = ex.dir, node = "Clock")
inspect_apsimx(i, src.dir = ex.dir, node = "Weather")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Physical")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "SoilWater")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Organic")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Chemical")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "InitialWater")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "InitialN")
inspect_apsimx(i, src.dir = ex.dir, node = "SurfaceOrganicMatter")
inspect_apsimx(i, src.dir = ex.dir, node = "MicroClimate")
inspect_apsimx(i, src.dir = ex.dir, node = "Crop")
inspect_apsimx(i, src.dir = ex.dir, node = "Manager")
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule', NA))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingFertiliser', NA))
inspect_apsimx(i, src.dir = ex.dir, node = "Report", parm = "VariableNames")
inspect_apsimx(i, src.dir = ex.dir, node = "Report", parm = "EventNames")
i <- "Oats"
inspect_apsimx(i, src.dir = ex.dir, node = "Clock")
inspect_apsimx(i, src.dir = ex.dir, node = "Weather")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Water")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "SoilWater")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "SoilWater", parm = "SummerDate")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Organic")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "InitialWater")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Chemical")
inspect_apsimx(i, src.dir = ex.dir, node = "SurfaceOrganicMatter")
inspect_apsimx(i, src.dir = ex.dir, node = "MicroClimate")
inspect_apsimx(i, src.dir = ex.dir, node = "Crop")
inspect_apsimx(i, src.dir = ex.dir, node = "Manager")
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingFert', NA))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule1', NA))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule1', 1))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule1', 2))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule1', 3))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule1', 4))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule1', 5))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule1', 6))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule1', 7))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule1', 8))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list('SowingRule1', 9))
inspect_apsimx(i, src.dir = ex.dir, node = "Report", parm = "VariableNames")
inspect_apsimx(i, src.dir = ex.dir, node = "Report", parm = "EventNames")
i <- "OilPalm.apsimx"
inspect_apsimx(i, src.dir = ex.dir, node = "Clock")
inspect_apsimx(i, src.dir = ex.dir, node = "Weather")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Physical")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "SoilWater")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "SoilWater", parm = "SummerDate")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Organic")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "InitialWater")
inspect_apsimx(i, src.dir = ex.dir, node = "Soil", soil.child = "Chemical")
inspect_apsimx(i, src.dir = ex.dir, node = "SurfaceOrganicMatter")
inspect_apsimx(i, src.dir = ex.dir, node = "Manager")
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list("Palm Management", NA))
inspect_apsimx(i, src.dir = ex.dir, node = "Manager", parm = list("Palm Management", 3))
inspect_apsimx(i, src.dir = ex.dir, node = "Report")
inspect_apsimx(i, src.dir = ex.dir, node = "Report", parm = list("Annual", NA))
inspect_apsimx(i, src.dir = ex.dir, node = "Report", parm = list("Monthly", NA))
inspect_apsimx(i, src.dir = ex.dir, node = "Report", parm = list("Annual", "Variable"))
inspect_apsimx(i, src.dir = ex.dir, node = "Report", parm = list("Monthly", "Event"))
}
run.inspect.print.path.tests <- get(".run.local.tests", envir = apsimx.options)
if(run.inspect.print.path.tests){
i <- "Barley.apsimx"
pp <- inspect_apsimx(i, src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Clock")
stop("Error in inspect_apsimx, Barley, Clock, print.path")
pp <- inspect_apsimx(i, src.dir = ex.dir, parm = "Start", print.path = TRUE)
if(pp != ".Simulations.Simulation.Clock.Start")
stop("Error in inspect_apsimx, Barley, Start, print.path")
pp <- inspect_apsimx(i, node = "Weather", src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Weather")
stop("Error in inspect_apsimx, Barley, Weather, print.path")
pp <- inspect_apsimx(i, node = "Soil", src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil")
stop("Error in inspect_apsimx, Barley, Soil, Metadata, print.path")
pp <- inspect_apsimx(i, node = "Soil", src.dir = ex.dir,
parm = "Latitude", print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.Latitude")
stop("Error in inspect_apsimx, Barley, Soil, Metadata, Latitude, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "Physical",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.Physical")
stop("Error in inspect_apsimx, Barley, Soil, Physical, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "Physical",
parm = "DUL", src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.Physical.DUL")
stop("Error in inspect_apsimx, Barley, Soil, Physical, DUL, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "Physical",
parm = "Barley XF", src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.Physical.Barley XF")
stop("Error in inspect_apsimx, Barley, Soil, Physical, Barley XF, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "SoilWater",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.SoilWater")
stop("Error in inspect_apsimx, Barley, Soil, SoilWater, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "SoilWater", parm = "Salb",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.SoilWater.Salb")
stop("Error in inspect_apsimx, Barley, Soil, SoilWater, SWCON, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "SoilWater", parm = "SWCON",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.SoilWater.SWCON")
stop("Error in inspect_apsimx, Barley, Soil, SoilWater, SWCON, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "Chemical",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.Chemical")
stop("Error in inspect_apsimx, Barley, Soil, Chemical, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "Chemical", parm = "PH",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.Chemical.PH")
stop("Error in inspect_apsimx, Barley, Soil, Chemical, PH, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "InitialWater",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.InitialWater")
stop("Error in inspect_apsimx, Barley, Soil, InitialWater, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "InitialWater", parm = "FractionFull",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.InitialWater.FractionFull")
stop("Error in inspect_apsimx, Barley, Soil, InitialWater, FractionFull, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "Organic",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.Organic")
stop("Error in inspect_apsimx, Barley, Soil, Organic, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "Organic", parm = "Carbon",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.Organic.Carbon")
stop("Error in inspect_apsimx, Barley, Soil, Organic, Carbon, print.path")
pp <- inspect_apsimx(i, node = "Soil", soil.child = "InitialN",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.Soil.InitialN")
stop("Error in inspect_apsimx, Barley, Soil, InitialN, print.path")
pp <- inspect_apsimx(i, node = "Manager", src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field")
stop("Error in inspect_apsimx, Barley, Manager, print.path")
pp <- inspect_apsimx(i, node = "Manager", parm = list("SowingFertiliser", NA),
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.SowingFertiliser")
stop("Error in inspect_apsimx, Barley, Manager, SowingFertiliser, print.path")
pp <- inspect_apsimx(i, node = "Manager", parm = list("SowingFertiliser", 1),
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.SowingFertiliser.Amount")
stop("Error in inspect_apsimx, Barley, Manager, SowingFertiliser, Amount, print.path")
pp <- inspect_apsimx(i, node = "Surface",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.SurfaceOrganicMatter")
stop("Error in inspect_apsimx, Barley, SurfaceOrganicMatter, print.path")
pp <- inspect_apsimx(i, node = "Surface", parm = "InitialResidueMass",
src.dir = ex.dir, print.path = TRUE)
if(pp != ".Simulations.Simulation.Field.SurfaceOrganicMatter.InitialResidueMass")
stop("Error in inspect_apsimx, Barley, SurfaceOrganicMatter, InitialResidueMass print.path")
pp <- inspect_apsimx(i, node = "MicroClimate",
src.dir = ex.dir, print.path = TRUE)
pp <- inspect_apsimx(i, node = "MicroClimate", parm = "soil_albedo",
src.dir = ex.dir, print.path = TRUE)
}
inspect.replacement.test <- get(".run.local.tests", envir = apsimx.options)
if(inspect.replacement.test){
inspect_apsimx_replacement("Factorial", src.dir = ex.dir,
root = list("Experiment", 1),
node = "Base", node.child = "Clock")
inspect_apsimx("Factorial.apsimx", src.dir = ex.dir,
root = c("^Experiment","Base"),
node = "Clock")
inspect_apsimx_replacement("Factorial", src.dir = ex.dir,
root = list("Experiment", 1),
node = "Base", node.child = "Weather")
inspect_apsimx("Factorial.apsimx", src.dir = ex.dir,
root = c("^Experiment","Base"),
node = "Weather")
inspect_apsimx_replacement("Factorial", src.dir = ex.dir,
root = list("Experiment", 1),
node = "Base", node.child = "Field",
node.subchild = "Soil",
display.available = TRUE)
inspect_apsimx("Factorial.apsimx", src.dir = ex.dir,
root = c("^Experiment","Base"),
node = "Soil")
inspect_apsimx_replacement("Factorial", src.dir = ex.dir,
root = list("Experiment", 2),
node = "Base", node.child = "Field",
node.subchild = "Soil",
display.available = TRUE)
inspect_apsimx_replacement("Factorial", src.dir = ex.dir,
root = list("Experiment", 2),
node = "Base2", node.child = "Field",
node.subchild = "Soil",
node.subsubchild = "Water",
display.available = TRUE)
inspect_apsimx_replacement("Factorial", src.dir = ex.dir,
root = list("Experiment", 2),
node = "Base2", node.child = "Field",
node.subchild = "Soil",
node.subsubchild = "Water",
parm = "Depth")
}
inspect.replacement.test2 <- get(".run.local.tests", envir = apsimx.options)
extd.dir <- system.file("extdata", package = "apsimx")
if(inspect.replacement.test2){
pp <- inspect_apsimx("MaizeSoybean.apsimx", src.dir = extd.dir,
node = "Weather",
root = "SimulationSoybean",
parm = "FileName",
print.path = TRUE)
if(pp != ".Simulations.SimulationSoybean.Weather.FileName")
stop("pp does not match for inspect_apsimx MaizeSoybean.apsimx root = SimulationSoybean", call. = FALSE)
pp <- inspect_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir,
root = "SimulationSoybean",
node = "Weather", parm = "FileName", print.path = TRUE)
if(pp != ".Simulations.SimulationSoybean.Weather.FileName")
stop("pp does not match for inspect_apsimx_replacement MaizeSoybean.apsimx root = SimulationSoybean", call. = FALSE)
inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
display.available = TRUE)
inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Leaf",
display.available = TRUE)
inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Leaf",
parm = "Albedo")
inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Leaf",
parm = "Gsmax350")
inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Leaf",
parm = "R50")
inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Leaf",
node.subchild = "Photosynthesis",
node.subsubchild = "RUE")
inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Leaf",
node.subchild = "Photosynthesis",
node.subsubchild = "RUE",
parm = "FixedValue")
pp <- inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Cultivars",
node.subchild = "USA",
node.subsubchild = "PioneerP22T61_MG22",
parm = "Vegetative.Target.FixedValue",
print.path = TRUE)
if(pp != ".Simulations.Replacements.Soybean.Cultivars.USA.PioneerP22T61_MG22.Vegetative.Target.FixedValue")
stop("Error in inspect_apsimx_replacement, MaizeSoybean, PioneerP22T61_MG22, Vegetative.Target.FixedValue, print.path")
pp <- inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Cultivars",
node.subchild = "USA",
node.subsubchild = "PioneerP22T61_MG22",
parm = "EarlyFlowering",
print.path = TRUE)
if(pp != ".Simulations.Replacements.Soybean.Cultivars.USA.PioneerP22T61_MG22.EarlyFlowering")
stop("Error in inspect_apsimx_replacement, MaizeSoybean, PioneerP22T61_MG22, EarlyFlowering, print.path")
inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
root = "SimulationSoybean",
node = "Weather",
parm = "FileName")
inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
root = "SimulationMaize",
node = "Weather",
parm = "FileName")
inspect_apsimx_replacement("WheatRye.apsimx", src.dir = extd.dir,
node = "Wheat", node.child = "Cultivars",
node.subchild = "USA", node.subsubchild = "Yecora")
inspect_apsimx_replacement("WheatRye.apsimx", src.dir = extd.dir,
node = "Wheat", node.child = "Cultivars",
node.subchild = "USA", node.subsubchild = "Yecora",
parm = "MinimumLeafNumber")
inspect_apsimx_replacement("WheatRye.apsimx", src.dir = extd.dir,
node = "Wheat", node.child = "Cultivars",
node.subchild = "USA", node.subsubchild = "Yecora",
parm = "Vrn")
}
inspect.replacement.test.parm.path <- get(".run.local.tests", envir = apsimx.options)
if(inspect.replacement.test.parm.path){
pp <- inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
print.path = TRUE)
pp <- inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
print.path = TRUE)
pp <- inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Leaf",
print.path = TRUE)
pp <- inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Leaf",
parm = "Albedo",
print.path = TRUE)
pp <- inspect_apsimx_replacement("MaizeSoybean.apsimx",
src.dir = extd.dir,
node = "Soybean",
node.child = "Leaf",
parm = "Gsmax350",
print.path = TRUE)
} |
ext <- function(wt, scale=FALSE, plot=TRUE)
{
s <- wt$original
maxresoln <- wt$maxresoln
np <- wt$np
extrema <- matrix(0, nrow=maxresoln, ncol=np)
extrema <- t(extrema)
dim(extrema) <- c(length(extrema), 1)
t(wt$Wf)
dim(wt$Wf) <- c(length(wt$Wf), 1)
z <- .C("modulus_maxima",
a=as.double(extrema),
as.double(wt$Wf),
as.integer(maxresoln),
as.integer(np),
PACKAGE="Rwave")
extrema <- t(z$a)
dim(extrema) <- c(np, maxresoln)
cat("number of extrema =", sum(extrema!=0), "\n")
if(plot) plotResult(extrema, s, maxresoln, scale)
list(original=s,extrema=extrema,Sf=wt$Sf,maxresoln=maxresoln,np=np)
} |
pcaob_denied_firms <-
memoise::memoise(function() {
page <- read_html("https://pcaobus.org/International/Inspections/Pages/IssuerClientsWithoutAccess.aspx")
tables <- page %>% html_table(fill = T)
data <- tables[[length(tables)]] %>% as_tibble()
data <- data %>% set_names(c("name_issuer","name_audit_firm", "country_audit_firm")) %>%
mutate(is_pcaob_denied = T)
data %>%
munge_tbl()
})
pcaob_auditors <-
function(include_denied_firms = T) {
data <-
"https://pcaobus.org/RUSDocuments/FirmFilings.zip" %>% rio::import()
data <- data %>% janitor::clean_names() %>% as_tibble()
data <- data %>%
mutate_if(is.character, list(function(x) {
case_when(x == "" ~ NA_character_,
TRUE ~ x)
}))
data <- data %>%
rename(
id_firm = firm_id,
id_firm_filing = form_filing_id,
datetime_audit = audit_report_date,
datetime_fiscal_period_end = fiscal_period_end_date,
is_dual_dated = dual_dated,
datestime_dual_audit = audit_dual_date,
datetime_signed = signed_date,
datetime_filing = filing_date,
id_ticker = issuer_ticker,
id_cik = issuer_cik,
name_issuer = issuer_name,
name_audit_firm = firm_name,
name_audit_form_other = firm_other_name,
country_audit_country = firm_country,
country_issuer = firm_issuing_country,
state_issuer = firm_issuing_state,
city_issuer = firm_issuing_city,
id_issuer = issuer_id,
type_audit = audit_report_type,
telephone_signartory = signed_phone_number
) %>%
mutate_if(is.character,
list(function(x) {
case_when(is.na(x) ~ "",
TRUE ~ x)
})) %>%
mutate(
name_issuer_signatory = glue("{signed_first_name} {signed_last_name}") %>% str_squish(),
name_engagment_partner_primary = glue(
"{engagement_partner_first_name} {engagement_partner_last_name}"
) %>% str_squish(),
name_engagment_partner_secondary = glue(
"{secondary_engagement_partner_first_name} {secondary_engagement_partner_last_name}"
) %>% str_squish(),
location_issuer = glue("{city_issuer} {state_issuer}, {country_issuer}") %>% str_squish()
)
data <- data %>%
mutate_if(is.character, list(function(x) {
case_when(x == "" ~ NA_character_,
TRUE ~ x)
}))
data <- data %>%
mutate(datestime_dual_audit = datestime_dual_audit %>% str_replace_all("
dates <- data %>% select(matches('datetime')) %>% names()
data <-
data %>%
mutate_at(dates, lubridate::mdy_hms)
data <-
data %>%
munge_tbl(
data = data,
snake_names = T,
unformat = T,
include_address = F,
convert_case = T
)
if (include_denied_firms ) {
tbl_denied <- pcaob_denied_firms()
data %>%
left_join(
tbl_denied %>% select(name_issuer, is_pcaob_denied), by = "name_issuer"
)
}
data
} |
message("\nTesting handling of HTTP errors")
test_that("Error for invalid endpoint", {
skip_on_cran()
response <- get_response("/fakeEndpoint", query = list(format = "json", api_key = get_api_key()))
expect_error(process_json_response(response), "\\[404\\]: [a-zA-Z0-9:/.]+fakeEndpoint")
}) |
hybridize <- function(x1, x2, n, pop="hybrid",
res.type=c("genind","df","STRUCTURE"),
file=NULL, quiet=FALSE, sep="/", hyb.label="h"){
if(!is.genind(x1)) stop("x1 is not a valid genind object")
if(!is.genind(x2)) stop("x2 is not a valid genind object")
if(!all(ploidy(x1)==ploidy(x1)[1])) stop("varying ploidy (in x1) is not supported for this function")
if(!all(ploidy(x2)==ploidy(x2)[1])) stop("varying ploidy (in x2) is not supported for this function")
if(ploidy(x1)[1] %% 2 != 0) stop("not implemented for odd levels of ploidy")
if(ploidy(x1)[1] != ploidy(x2)[1]) stop("x1 and x2 have different ploidy")
checkType(x1)
checkType(x2)
n <- as.integer(n)
ploidy <- ploidy(x1)[1]
res.type <- match.arg(res.type)
popNames(x1) <- "pop1"
popNames(x2) <- "pop2"
x1x2 <- repool(x1, x2)
x1 <- x1x2[pop=1]
x2 <- x1x2[pop=2]
n1 <- nInd(x1)
n2 <- nInd(x2)
k <- nLoc(x1)
y1 <- genind2genpop(x1,pop=factor(rep(1,n1)),quiet=TRUE)
freq1 <- tab(y1, freq=TRUE)
freq1 <- split(freq1, [email protected])
freq1 <- freq1[locNames(x1)]
y2 <- genind2genpop(x2,pop=factor(rep(1,n2)),quiet=TRUE)
freq2 <- tab(y2, freq=TRUE)
freq2 <- split(freq2, [email protected])
freq2 <- freq2[locNames(x2)]
kX1 <- lapply(freq1, function(v) t(rmultinom(n,ploidy/2,v)))
names(kX1) <- locNames(x1)
vec.paste1<-NULL
Vec.all1<-NULL
for(i in 1:k) {
colnames(kX1[[i]]) <- alleles(x1)[[i]]
vec.paste1<-c(vec.paste1, alleles(x1)[[i]])
Vec.all1<-c(Vec.all1, length(alleles(x1)[[i]]))
}
kX2 <- lapply(freq2, function(v) t(rmultinom(n,ploidy/2,v)))
names(kX2) <- locNames(x2)
vec.paste2<-NULL
Vec.all2<-NULL
for(i in 1:k) {
colnames(kX2[[i]]) <- alleles(x2)[[i]]
vec.paste2<-c(vec.paste2, alleles(x2)[[i]])
Vec.all2<-c(Vec.all2, length(alleles(x2)[[i]]))
}
tab1 <- as.matrix(cbind.data.frame(kX1))
colnames(tab1)<-paste(rep(locNames(x1), Vec.all1), ".",vec.paste1, sep = "")
tab2 <- as.matrix(cbind.data.frame(kX2))
colnames(tab2)<-paste(rep(locNames(x2), Vec.all2), ".",vec.paste2, sep = "")
zyg.rownames <- .genlab(hyb.label,n)
zyg.colnames <- sort(unique(c(colnames(tab1),colnames(tab2))))
zyg <- matrix(0, nrow=n, ncol=length(zyg.colnames),
dimnames=list(zyg.rownames, zyg.colnames))
zyg[, colnames(tab1)] <- zyg[, colnames(tab1)] + tab1
zyg[, colnames(tab2)] <- zyg[, colnames(tab2)] + tab2
zyg <- zyg
zyg <- genind(zyg, type="codom", ploidy=ploidy)
if(res.type=="STRUCTURE"){
temp <- genind2df(repool(x1,x2,zyg), usepop=FALSE, sep=" ")
res <- unlist(apply(temp,1,strsplit," "))
res <- as.data.frame(matrix(res, nrow=nrow(temp), byrow=TRUE))
colnames(res) <- rep(colnames(temp),each=ploidy)
res[is.na(res)] <- "-9"
pop <- rep(1:3,c(nrow(x1@tab), nrow(x2@tab), n))
res <- cbind.data.frame(pop,res, stringsAsFactors = FALSE)
names(res)[1] <- ""
if(is.null(file)) {
file <- gsub("[[:space:]]|:","-",date())
file <- paste("hybrid",file,sep="_")
file <- paste(file,"str",sep=".")
}
write.table(res, file=file,row.names = TRUE, col.names = TRUE, quote=FALSE)
if(!quiet) cat("\nWrote results to file", file, "\n")
return(invisible())
}
if(res.type=="df"){
res <- genind2df(zyg, sep=sep)
return(res)
}
if(res.type=="genind"){
pop <- factor(rep(pop,n))
res <- zyg
pop(res) <- pop
res@call <- match.call()
return(res)
}
} |
wmf<-function(dat, times, scale.min=2, scale.max.input=NULL, sigma=1.05, f0 = 1){
errcheck_stdat(times,dat,"wmf")
errcheck_wavparam(scale.min,scale.max.input,sigma,f0,times,"wmf")
wtopt<-list(scale.min=scale.min,scale.max.input=scale.max.input,
sigma=sigma,f0=f0)
wavarray<-warray(dat, times, scale.min, scale.max.input, sigma, f0)
timescales<-wavarray$timescales
wavarray<-wavarray$wavarray
wavarray<-normforcoh(wavarray,"powall")
wmf<-apply(wavarray, c(2,3), mean, na.rm=T)
errcheck_tts(times,timescales,wmf,"wmf")
result<-list(values=wmf,times=times,timescales=timescales,dat=dat,wtopt=wtopt)
class(result)<-c("wmf","tts","list")
return(result)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.