code
stringlengths
1
13.8M
context("Privacy controls") test_that("Privacy control list created correctly", { pc <- make_privacy_controls(list(suppression = 10)) expect_equal( names(pc), c("round", "suppression_matrix", "suppress", "suppress_quantile", "rse_matrix", "markup", "has", "get") ) expect_is(pc$round, "function") expect_is(pc$suppression_matrix, "function") expect_is(pc$suppress, "function") }) test_that("Suppression matrix created correctly", { pc <- make_privacy_controls(list(suppression = 10)) tab <- as.table(c(A = 20, B = 30, C = 5)) st <- pc$suppression_matrix(tab) expect_equivalent(st, c(FALSE, FALSE, TRUE, TRUE)) expect_equivalent( pc$suppress(c(tab, sum(tab)), st), c("20", "30", "S", "S") ) tab <- as.table(cbind(c(20, 30, 5), c(30, 40, 8), c(5, 20, 40))) st <- pc$suppression_matrix(tab) expect_equivalent(rowSums(st), c(2, 0, 2)) expect_equivalent( pc$suppress(cbind(tab, rowSums(tab)), st), cbind(c(20, 30, "S"), c(30, 40, "S"), c("S", 20, 40), c("S", 90, 53)) ) }) test_that("Rounding is correct", { pc <- make_privacy_controls(list(rounding = "RR3")) expect_true( all(pc$round(sample(0:10, 100L, TRUE)) %% 3L == 0) ) pc <- make_privacy_controls(list(rounding = "GRR")) expect_true( all( pc$round(c(0, 5, 18, 25, 100, 123, 898, 2041)) %% c(3, 3, 3, 5, 10, 10, 10, 100) == 0L ) ) pc <- make_privacy_controls(list(rounding = 100L)) expect_true( all( pc$round(sample(1e5, 100)) %% 100L == 0L ) ) }) test_that("RSE checking/annotation/suppression", { pc <- make_privacy_controls( list( check_rse = list( cut = c(50, 100), output = c(" *", "suppress") ) ) ) x <- matrix(c(50, 5, 10, 200), nrow = 2L) e <- matrix(c(20, 4, 12, 20), nrow = 2L) m <- pc$rse_matrix(x, e) expect_equal( as.character(m), c(NA_character_, " *", "suppress", NA_character_, NA_character_, NA_character_) ) ms <- pc$suppression_matrix(x) | !(is.na(m) | m != "suppress") x <- cbind(x, rowSums(x)) x <- pc$suppress(x, ms) r <- pc$markup(x, m) expect_equal( as.character(r), c("50", "5 *", "S", "200", "60", "205") ) }) library(survey) data(api) dclus2 <- svydesign(~dnum+snum, fpc=~fpc1+fpc2, data = apiclus2) test_that("Unweighted survey counts", { inf <- inzsummary(sch.wide ~ both, data = apiclus2, privacy_controls = list(rounding = "RR3") ) expect_match( inf[grep("Table of Counts", inf) + 4L], "Yes\\s+0" ) tb <- read.table( textConnection(inf[grep("Table of Counts", inf) + 3:4]), ) expect_true(all(tb[,-1] %% 3L == 0L)) }) test_that("Weighted survey counts", { inf <- inzsummary(~ stype, design = dclus2, privacy_controls = list( rounding = 100L, suppression = 700L, secondary_suppression = FALSE ) ) tbl <- read.table( textConnection( inf[grep("Population Estimates", inf) + 3L] ) ) expect_true(all(tbl[c(2, 4:5)] %% 100 == 0L)) expect_equivalent(tbl[3], "S") inf <- inzsummary(sch.wide ~ stype, design = dclus2, table.direction = "v", privacy_controls = list( check_rse = list( cut = c(20, 30, 50), output = c(" *", " **", "suppress") ) ) ) expect_match(inf, "242 **", fixed = TRUE, all = FALSE) expect_match(inf, "689 *", fixed = TRUE, all = FALSE) inf <- inzsummary(sch.wide ~ stype, design = dclus2, privacy_controls = list( suppression_raw_counts = 6L ) ) }) test_that("Value magnitudes (cell totals and means)", { inf <- inzsummary(api00 ~ stype | awards + both, g1.level = "Yes", g2.level = "Yes", design = dclus2, privacy_controls = list( suppression = 500L, suppression_magnitude = 200L ) ) popest <- read.table( textConnection( inf[grep("Population estimates", inf) + 3:5] ) ) expect_equal(popest[2, 5], "S") expect_equal(popest[2, 7], "S") expect_equal(popest[2, 8], "S") expect_equal(popest[3, 8], "S") }) test_that("Medians, quantiles, and percentiles", { inf <- inzsummary(api00 ~ stype | awards + both, g1.level = "Yes", g2.level = "Yes", design = dclus2, privacy_controls = list( suppression_quantiles = list( p = c(0.25, 0.5, 0.75), n = c(20, 10, 20) ) ) ) popest <- read.table( textConnection( inf[grep("Population estimates", inf) + 3:5] ) ) expect_equal(popest[2, 2], "S") }) test_that("Percentages, proportions, and ratios", { inf <- inzsummary(~stype, design = dclus2, round_percent = 1L) pr <- inf[grep("Population Estimates", inf) + 5] prs <- strsplit(pr, "\\s+")[[1]][3:5] expect_match( prs, "[0-9]+\\.[0-9]\\%" ) })
context("plotAlgoPerfDensities") test_that("plotAlgoPerfDensities", { s = plotAlgoPerfDensities(testscenario1) })
rssSplit<-function(fit,df0=max(1,floor(fit$df/10)),seed=-71407){ e<-fit$res U<-qr.Q(fit$qr) n<-nrow(U) set.seed(seed) Z<-matrix(rnorm(n*df0),n,df0) V<-svd(Z-U%*%crossprod(U,Z))$u ss0<-sum( (t(V)%*%e)^2 ) ss1<-sum(e^2) - ss0 ss<-c(ss0,ss1) names(ss)<-paste0("df",c(df0,n-ncol(U)-df0) ) ss }
check_missing <- function(data, ..., ret_prop = TRUE) { check_missing_(data, .dots = lazyeval::lazy_dots(...), ret_prop = ret_prop) } check_missing_ <- function(data, ..., .dots, ret_prop = TRUE) { dots <- lazyeval::all_dots(.dots, ...) vars <- dplyr::select_vars_(names(data), dots) if (ret_prop) { fun <- dplyr::funs_(quote(sum(is.na(.)) / n())) } else { fun <- dplyr::funs_(quote(sum(is.na(.)))) } dplyr::summarise_at(data, .cols = vars, .funs = fun) }
context("Ranges") test_that("R6 inheritance works", { expect_error(ContinuousRange$new(), NA) expect_error(DiscreteRange$new(), NA) expect_true(R6::is.R6(ContinuousRange$new())) expect_true(R6::is.R6(DiscreteRange$new())) }) test_that("Mutable ranges work", { x <- ContinuousRange$new() x$train(c(-1, 45, 10)) expect_equal(x$range, c(-1, 45)) x$train(c(1000)) expect_equal(x$range, c(-1, 1000)) x$reset() expect_equal(x$range, NULL) x <- DiscreteRange$new() x$train(factor(letters[1:3])) expect_equal(x$range, c("a", "b", "c")) x$train(factor("a", "h")) expect_equal(x$range, c("a", "b", "c", "h")) x$reset() expect_equal(x$range, NULL) }) test_that("starting with NULL always returns new", { expect_equal(discrete_range(NULL, 1:3), 1:3) expect_equal(discrete_range(NULL, 3:1), 1:3) expect_equal(discrete_range(NULL, c("a", "b", "c")), c("a", "b", "c")) expect_equal(discrete_range(NULL, c("c", "b", "a")), c("a", "b", "c")) f1 <- factor(letters[1:3], levels = letters[1:4]) expect_equal(discrete_range(NULL, f1, drop = FALSE), letters[1:4]) expect_equal(discrete_range(NULL, f1, drop = TRUE), letters[1:3]) f2 <- factor(letters[1:3], levels = letters[4:1]) expect_equal(discrete_range(NULL, f2, drop = FALSE), letters[4:1]) expect_equal(discrete_range(NULL, f2, drop = TRUE), letters[3:1]) }) test_that("factor discrete ranges stay in order", { f <- factor(letters[1:3], levels = letters[3:1]) expect_equal(discrete_range(f, f), letters[3:1]) expect_equal(discrete_range(f, "c"), letters[3:1]) expect_equal(discrete_range(f, c("a", "b", "c")), letters[3:1]) })
context("Visualize clinical data with error bars") library(plotly) test_that("The data is correctly displayed in vertical error bars", { data <- data.frame( AVISIT = c("Baseline", "Week 2"), Mean = c(25.6, 40), SE = c(2, 3), stringsAsFactors = FALSE ) pl <- errorbarClinData( data = data, xVar = "AVISIT", yVar = "Mean", yErrorVar = "SE" ) expect_s3_class(pl, "plotly") plData <- plotly_build(pl)$x$data plDataScatter <- plData[sapply(plData, function(x) x$type == "scatter")] plDataScatterDf <- do.call(rbind, lapply(plDataScatter, function(x) data.frame( x = as.character(x[["x"]]), y = x[["y"]], yError = x[["error_y"]]$array, stringsAsFactors = FALSE ) ) ) expect_equivalent( object = plDataScatterDf, expected = data[, c("AVISIT", "Mean", "SE")] ) }) test_that("The data is correctly displayed in horizontal error bars", { data <- data.frame( AVISIT = c("Baseline", "Week 2"), Mean = c(25.6, 40), SE = c(2, 3), stringsAsFactors = FALSE ) pl <- errorbarClinData( data = data, yVar = "AVISIT", xVar = "Mean", xErrorVar = "SE" ) expect_s3_class(pl, "plotly") plData <- plotly_build(pl)$x$data plDataScatter <- plData[sapply(plData, function(x) x$type == "scatter")] plDataScatterDf <- do.call(rbind, lapply(plDataScatter, function(x) data.frame( x = x[["x"]], xError = x[["error_x"]]$array, y = as.character(x[["y"]]), stringsAsFactors = FALSE ) ) ) expect_equal( object = plDataScatterDf, expected = data[, c("Mean", "SE", "AVISIT")], check.attributes = FALSE ) }) test_that("Vertical error bars are correctly colored based on a specified variable", { data <- data.frame( AVISIT = factor( c("Baseline", "Screening", "Baseline", "Screening"), levels = c("Screening", "Baseline") ), Mean = c(25.6, 40, 12, 5), SE = c(2, 3, 1, 2), TRT = c("A", "A", "B", "B"), stringsAsFactors = FALSE ) pl <- errorbarClinData( data = data, xVar = "AVISIT", yVar = "Mean", yErrorVar = "SE", colorVar = "TRT" ) plData <- plotly_build(pl)$x$data plData <- plData[sapply(plData, function(x) x$type == "scatter")] plData <- do.call(rbind, lapply(plData, function(x) data.frame( x = round(x[["x"]], 0), y = x[["y"]], yError = x[["error_y"]]$array, color = as.character(x[["error_y"]]$color), group = x[["name"]], stringsAsFactors = FALSE ) ) ) colors <- with(plData, tapply(color, group, unique)) expect_type(colors, "character") expect_length(colors, 2) plData <- plData[, c("x", "y", "yError", "group")] dataReference <- data[, c("AVISIT", "Mean", "SE", "TRT")] dataReference$AVISIT <- as.numeric(as.factor(dataReference$AVISIT)) expect_equivalent( object = plData[do.call(order, plData), ], expected = dataReference[do.call(order, dataReference), ] ) plXAxis <- plotly_build(pl)$x$layout$xaxis plXTickLab <- plXAxis$ticktext plXTickLab <- plXTickLab[order(plXAxis$tickvals, decreasing = FALSE)] expect_equal(object = unname(plXTickLab), c("Screening", "Baseline")) }) test_that("Horizontal error bars are correctly colored based on a specified variable", { data <- data.frame( AVISIT = factor( c("Baseline", "Screening", "Baseline", "Screening"), levels = c("Screening", "Baseline") ), Mean = c(25.6, 40, 12, 5), SE = c(2, 3, 1, 2), TRT = c("A", "A", "B", "B"), stringsAsFactors = FALSE ) pl <- errorbarClinData( data = data, yVar = "AVISIT", xVar = "Mean", xErrorVar = "SE", colorVar = "TRT" ) plData <- plotly_build(pl)$x$data plData <- plData[sapply(plData, function(x) x$type == "scatter")] plData <- do.call(rbind, lapply(plData, function(x) data.frame( y = round(x[["y"]], 0), x = x[["x"]], xError = x[["error_x"]]$array, color = as.character(x[["error_x"]]$color), group = x[["name"]], stringsAsFactors = FALSE ) ) ) colors <- with(plData, tapply(color, group, unique)) expect_type(colors, "character") expect_length(colors, 2) plData <- plData[, c("y", "x", "xError", "group")] dataReference <- data[, c("AVISIT", "Mean", "SE", "TRT")] dataReference$AVISIT <- as.numeric(as.factor(dataReference$AVISIT)) dataReference$AVISIT <- max(dataReference$AVISIT)-dataReference$AVISIT+1 expect_equivalent( object = plData[do.call(order, plData), ], expected = dataReference[do.call(order, dataReference), ] ) plYAxis <- plotly_build(pl)$x$layout$yaxis plYTickLab <- plYAxis$ticktext plYTickLab <- plYTickLab[order(plYAxis$tickvals, decreasing = TRUE)] expect_equal(object = unname(plYTickLab), c("Screening", "Baseline")) }) test_that("A color palette is correctly set in the errorbar visualization", { data <- data.frame( AVISIT = c("Baseline", "Week 2", "Baseline", "Week 2"), Mean = c(25.6, 40, 12, 5), SE = c(2, 3, 1, 2), TRT = c("A", "A", "B", "B"), stringsAsFactors = FALSE ) colorPalette <- c(B = "blue", A = "red") pl <- errorbarClinData( data = data, xVar = "AVISIT", yVar = "Mean", yErrorVar = "SE", colorVar = "TRT", colorPalette = colorPalette ) plData <- plotly_build(pl)$x$data plData <- plData[sapply(plData, function(x) x$type == "scatter")] plColorPalette <- do.call(c, lapply(plData, function(x) setNames( as.character(x[["error_y"]]$color), x[["name"]] ) ) ) colorPaletteRGB <- col2rgb(colorPalette) colorPaletteRGBA <- paste0( "rgba(", apply(colorPaletteRGB, 2, paste, collapse = ","), ",1)" ) names(colorPaletteRGBA) <- names(colorPalette) expect_mapequal(object = plColorPalette, expected = colorPaletteRGBA) }) test_that("An interactive table is correctly included in the errorbar visualization", { data <- data.frame( AVISIT = c("Baseline", "Week 2"), Mean = c(25.6, 40), SE = c(2, 3), stringsAsFactors = FALSE ) res <- errorbarClinData( data = data, xVar = "AVISIT", yVar = "Mean", yErrorVar = "SE", table = TRUE ) expect_s3_class(res$table, "datatables") dataTable <- res$table$x$data[, colnames(data)] dataTable$AVISIT <- as.character(dataTable$AVISIT) expect_equal( object = dataTable, expected = data[, colnames(data)] ) }) test_that("Specified variables for the interactive table are correctly included in the errorbar visualization", { data <- data.frame( AVISIT = c("Baseline", "Week 2"), Mean = c(25.6, 40), SE = c(2, 3), TRT = "A", stringsAsFactors = FALSE ) tableVars <- c("TRT", "AVISIT", "Mean") res <- errorbarClinData( data = data, xVar = "AVISIT", yVar = "Mean", yErrorVar = "SE", table = TRUE, tableVars = tableVars ) expect_s3_class(res$table, "datatables") dataTable <- res$table$x$data[, tableVars] dataTable[, c("TRT", "AVISIT")] <- lapply(dataTable[, c("TRT", "AVISIT")], as.character) expect_identical( object = dataTable, expected = data[, tableVars] ) }) test_that("Labels are correctly extracted for the hover", { data <- data.frame( AVISIT = "Baseline", Mean = 25.6, SE = 2, stringsAsFactors = FALSE ) labelVars <- c( AVISIT = "Actual Visit", "Mean" = "Observed Mean", SE = "Standard Error" ) pl <- errorbarClinData( data = data, xVar = "AVISIT", yVar = "Mean", yErrorVar = "SE", labelVars = labelVars ) plData <- plotly_build(pl)$x$data plData <- plData[sapply(plData, function(x) x$type == "scatter")] plData <- do.call(rbind, lapply(plData, function(x) data.frame( x = x[["x"]], y = x[["y"]], yError = x[["error_y"]]$array, hover = x[["hovertemplate"]], stringsAsFactors = FALSE ) ) ) expect_match( object = subset(plData, x == "Baseline" & y == 25.6)$hover, regexp = "Actual Visit: Baseline.+Observed Mean: 25.6.+Standard Error: 2" ) }) test_that("Labels for the x-axis are correctly set from variables", { dataPlot <- data.frame( AVISIT = factor( c("Week 2", "Screening"), levels = c("Screening", "Baseline", "Week 2") ), Mean = c(12, 15), SE = c(1, 2), n = c("N = 3", "N = 5"), stringsAsFactors = FALSE ) pl <- errorbarClinData( data = dataPlot, xVar = "AVISIT", xLabVars = c("AVISIT", "n"), yVar = "Mean", yErrorVar = "SE" ) plXAxis <- plotly_build(pl)$x$layout$xaxis expect_equal(plXAxis$tickvals, c(1, 2)) plXTickLab <- plXAxis$ticktext plXTickLab <- plXTickLab[order(plXAxis$tickvals, decreasing = FALSE)] expect_match(object = plXTickLab[1], regexp = "Screening.+N = 5") expect_match(object = plXTickLab[2], regexp = "Week 2.+N = 3") }) test_that("Symbols correctly set based on a specified variable", { data <- data.frame( AVISIT = factor( c("Baseline", "Screening", "Baseline", "Screening"), levels = c("Screening", "Baseline") ), Mean = c(25.6, 40, 12, 5), SE = c(2, 3, 1, 2), TRT = c("A", "A", "B", "B"), stringsAsFactors = FALSE ) pl <- errorbarClinData( data = data, xVar = "AVISIT", yVar = "Mean", yErrorVar = "SE", shapeVar = "TRT" ) plData <- plotly_build(pl)$x$data plData <- plData[sapply(plData, function(x) x$type == "scatter")] plData <- do.call(rbind, lapply(plData, function(x) data.frame( x = x[["x"]], y = x[["y"]], yError = x[["error_y"]]$array, shape = as.character(x[["marker"]]$symbol), group = x[["name"]], stringsAsFactors = FALSE ) ) ) shapes <- with(plData, tapply(shape, group, unique)) expect_type(shapes, "character") expect_length(shapes, 2) plData <- plData[, c("x", "y", "yError", "group")] dataReference <- data[, c("AVISIT", "Mean", "SE", "TRT")] expect_equivalent( object = plData[do.call(order, plData), ], expected = dataReference[do.call(order, dataReference), ] ) }) test_that("The points are correctly shaped with a specified palette", { data <- data.frame( AVISIT = c("Baseline", "Week 2", "Baseline", "Week 2"), Mean = c(25.6, 40, 12, 5), SE = c(2, 3, 1, 2), TRT = c("A", "A", "B", "B"), stringsAsFactors = FALSE ) shapePalette <- c(B = "diamond", A = "cross") pl <- errorbarClinData( data = data, xVar = "AVISIT", yVar = "Mean", yErrorVar = "SE", shapeVar = "TRT", shapePalette = shapePalette ) plData <- plotly_build(pl)$x$data plData <- plData[sapply(plData, function(x) x$type == "scatter")] plShapePalette <- do.call(c, lapply(plData, function(x) setNames( as.character(x[["marker"]]$symbol), x[["name"]] ) ) ) expect_mapequal(object = plShapePalette, expected = shapePalette) })
as_survey_twophase <- function(.data, ...) { UseMethod("as_survey_twophase") } as_survey_twophase.data.frame <- function(.data, id, strata = NULL, probs = NULL, weights = NULL, fpc = NULL, subset, method = c("full", "approx", "simple"), ...) { id <- srvyr_select_vars_list(rlang::enquo(id), .data) strata <- srvyr_select_vars_list(rlang::enquo(strata), .data) probs <- srvyr_select_vars_list(rlang::enquo(probs), .data) weights <- srvyr_select_vars_list(rlang::enquo(weights), .data) fpc <- srvyr_select_vars_list(rlang::enquo(fpc), .data) subset <- srvyr_select_vars(rlang::enquo(subset), .data) out <- survey::twophase( data = .data, id = id, strata = strata, probs = probs, weights = weights, fpc = fpc, subset = subset, method = method ) as_tbl_svy(out, list(ids = id, strata = strata, probs = probs, weights = weights, fpc = fpc, subset = subset)) } as_survey_twophase.twophase2 <- function(.data, ...) { as_tbl_svy(.data) } as_survey_twophase_ <- function(.data, id, strata = NULL, probs = NULL, weights = NULL, fpc = NULL, subset, method = c("full", "approx", "simple")) { as_survey_twophase( .data, id = !!n_compat_lazy(id), strata = !!n_compat_lazy(strata), probs = !!n_compat_lazy(probs), weights = !!n_compat_lazy(weights), fpc = !!n_compat_lazy(fpc), subset = !!n_compat_lazy(subset), method = method ) }
p.oGFisher = function(p, DF, W, M, p.type="two", method="HYB", combine="cct", nsim=NULL, seed=NULL){ out = stat.oGFisher(p, DF, W, M, p.type="two", method="HYB", nsim=NULL, seed=NULL) if(combine=="cct"){ thr = out$cct pval = 0.5 - atan(thr)/pi }else{ thr = out$minp nd = dim(DF)[1] COR_GFisher = getGFisherCOR(DD=DF, M=M, p.type=p.type) pval = 1 - pmvnorm(lower=rep(-Inf,nd), upper=qnorm(1-thr), mean=rep(0,nd), corr=COR_GFisher)[1] } return(list(pval=pval, pval_indi=out$PVAL)) }
`person.reports` <- function(LC, n.c, ud, treat.extreme, max.iter, conv.crit, steps, as.LCA){ matcher <- match(ud$people,ud$x.x) matcher.d <- match(ud$people,ud$degen.x.x) for(c in 1:n.c){ namer <- c("theta", "SE.theta", "r", "infit", "in.Z", "outfit", "out.Z") suppressWarnings(LC[[c]]$person.par <- data.frame(cbind(LC[[c]]$person.par$theta[matcher], LC[[c]]$person.par$SE.theta[matcher], ud$r[matcher], LC[[c]]$person.par$in.out[matcher,])) ) colnames(LC[[c]]$person.par) <- namer if(length(ud$degen.r) > 0){ skiprest <- FALSE ud$degen.r <- ifelse(ud$degen.r == 0, ud$degen.r + treat.extreme, ud$degen.r - treat.extreme) degen.theta <- rep(0,length(ud$degen.r)) if(! as.LCA) for(its in 1:max.iter) { odt <- degen.theta degen.theta <- deg.theta(LC[[c]], ud$degen.r, ud$degen.x.i, degen.theta, steps) if(any(is.na(degen.theta))) { warning("Extreme person estimates did not converge \n") skiprest <- TRUE break} if(abs(max(odt - degen.theta)) < conv.crit) break } if(! skiprest){ LC[[c]]$person.par$theta[! is.na(matcher.d)] <- degen.theta[na.omit(matcher.d)] Pxji <- array(apply(LC[[c]]$item.par$delta,2,P.xj, th=degen.theta), dim=c(steps,length(degen.theta),LC[[c]]$i.stat$n.i)) LC[[c]]$person.par$SE.theta[! is.na(matcher.d)] <- (-1*d.v(Pxji, ud$degen.r, matrix(! is.na(ud$degen.x.i), nrow=length(ud$degen.r)))$d2[na.omit(matcher.d)])^(-.5) } } } LC }
NULL all_continuous <- function(continuous2 = TRUE) { if (continuous2 == TRUE) { return(broom.helpers::all_continuous()) } else { return( .generic_selector("variable", "var_type", .data$var_type %in% "continuous", fun_name = "all_continuous" ) ) } } all_continuous2 <- function() { .generic_selector("variable", "var_type", .data$var_type %in% "continuous2", fun_name = "all_continuous" ) } all_categorical <- broom.helpers::all_categorical all_dichotomous <- broom.helpers::all_dichotomous all_tests <- function(tests = NULL) { if (is.null(tests) || !is.character(tests) || any(!tests %in% df_add_p_tests$test_name)) { paste( "The `tests=` argument must be one or more of the following:", paste(shQuote(df_add_p_tests$test_name), collapse = ", ") ) %>% stop(call. = FALSE) } .generic_selector("variable", "test_name", .data$test_name %in% .env$tests, fun_name = "all_tests" ) } all_stat_cols <- function(stat_0 = TRUE) { if (stat_0 == TRUE) { return( union( dplyr::matches("^stat_\\d+$"), dplyr::matches("^stat_\\d+_.*$") ) ) } if (stat_0 == FALSE) { return( union( dplyr::matches("^stat_\\d*[1-9]\\d*$"), dplyr::matches("^stat_\\d*[1-9]\\d*_.*$") ) ) } } all_interaction <- broom.helpers::all_interaction all_intercepts <- broom.helpers::all_intercepts all_contrasts <- broom.helpers::all_contrasts
setupV <- function(fit, f, xvar, nn, cond, type, trans, xtrans, alpha, jitter, by, yName, ...) { if (length(xvar) > 1 & length(cond) > 1) stop("Cannot specify 'by' and multiple x variables simultaneously", call.=FALSE) J <- max(length(xvar), length(cond)) Attempt <- try(max(attr(terms(as.formula(formula(fit))), "order")) > 1, silent=TRUE) hasInteraction <- ifelse(inherits(Attempt, 'try-error'), FALSE, Attempt) lev <- attr(cond, "lev") xy <- vector("list", J) for (j in 1:J) { cond.j <- if (length(cond) > 1) cond[[j]] else cond[[1]] name <- if (length(xvar) > 1) xvar[j] else xvar xy[[j]] <- getXY(fit, f, name, nn, cond.j, type, trans, xtrans, alpha, jitter, ...) } if (!missing(by)) xy <- subsetV(xy, f, by, lev, type) meta <- list(x=xvar, y=xy[[1]]$y$name, hasInteraction=hasInteraction, yName=yName, trans=trans, class=class(fit)) K <- xy[[1]]$y$n if (K==1) { if (!missing(by)) { meta$by <- by v <- list(fit=NULL, res=NULL, meta=meta) for (j in 1:length(xy)) { fit.j <- data.frame(xy[[j]]$x$DD, visregFit=xy[[j]]$y$fit, visregLwr=xy[[j]]$y$lwr, visregUpr=xy[[j]]$y$upr) res.j <- data.frame(xy[[j]]$x$D, visregRes=xy[[j]]$y$r, visregPos=xy[[j]]$y$pos) fit.j[, xvar] <- xy[[j]]$x$xx res.j[, xvar] <- xy[[j]]$x$x v$fit <- rbind(v$fit, fit.j) v$res <- rbind(v$res, res.j) } class(v) <- "visreg" } else { v <- vector("list", J) for (j in 1:J) { meta.j <- meta meta.j$x <- xvar[j] v[[j]] <- list(fit=data.frame(xy[[j]]$x$DD, visregFit=xy[[j]]$y$fit, visregLwr=xy[[j]]$y$lwr, visregUpr=xy[[j]]$y$upr), res=data.frame(xy[[j]]$x$D, visregRes=xy[[j]]$y$r, visregPos=xy[[j]]$y$pos), meta=meta.j) v[[j]]$fit[, xvar[j]] <- xy[[j]]$x$xx v[[j]]$res[, xvar[j]] <- xy[[j]]$x$x class(v[[j]]) <- "visreg" } if (J==1) { v <- v[[1]] } else { class(v) <- "visregList" } } } else { if (!missing(by)) { meta$by <- by v <- vector("list", K) for (k in 1:K) { meta.k <- meta meta.k$y <- meta$y[k] meta.k$yName <- meta$yName[k] v[[k]] <- list(fit=NULL, res=NULL, meta=meta.k) for (j in 1:J) { fit.jk <- data.frame(xy[[j]]$x$DD, visregFit=xy[[j]]$y$fit[,k], visregLwr=xy[[j]]$y$lwr[,k], visregUpr=xy[[j]]$y$upr[,k]) res.jk <- data.frame(xy[[j]]$x$D, visregRes=xy[[j]]$y$r[,k], visregPos=xy[[j]]$y$pos[,k]) fit.jk[, xvar] <- xy[[j]]$x$xx res.jk[, xvar] <- xy[[j]]$x$x v[[k]]$fit <- rbind(v[[k]]$fit, fit.jk) v[[k]]$res <- rbind(v[[k]]$res, res.jk) } class(v[[k]]) <- "visreg" } class(v) <- "visregList" } else { v <- vector("list", J*K) for (j in 1:J) { for (k in 1:K) { meta.jk <- meta meta.jk$x <- meta$x[j] meta.jk$y <- meta$y[k] meta.jk$yName <- meta$yName[k] l <- (j-1)*K + k v[[l]] <- list(fit=data.frame(xy[[j]]$x$DD, visregFit=xy[[j]]$y$fit[,k], visregLwr=xy[[j]]$y$lwr[,k], visregUpr=xy[[j]]$y$upr[,k]), res=data.frame(xy[[j]]$x$D, visregRes=xy[[j]]$y$r[,k], visregPos=xy[[j]]$y$pos[,k]), meta=meta.jk) v[[l]]$fit[, xvar[j]] <- xy[[j]]$x$xx v[[l]]$res[, xvar[j]] <- xy[[j]]$x$x class(v[[l]]) <- "visreg" } } class(v) <- "visregList" } } v }
neldermead.isrkelley <- function(this=this){ istorestart <- FALSE if (this$kelleystagnationflag){ status <- optimbase.get(this=this$optbase,key='status') if (status =='kelleystagnation') istorestart <- TRUE } varargout <- list(this=this,istorestart=istorestart) return(varargout) }
makeAirrClone <- function(data, id="sequence_id", seq="sequence_alignment", germ="germline_alignment_d_mask", v_call="v_call", j_call="j_call", junc_len="junction_length", clone="clone_id", mask_char="N", max_mask=0, pad_end=TRUE, text_fields=NULL, num_fields=NULL, seq_fields=NULL, add_count=TRUE, verbose=FALSE, collapse=TRUE, chain="H", heavy=NULL, cell="cell_id", locus="locus", traits=NULL, mod3=TRUE, randomize=TRUE, use_regions=TRUE, dup_singles=FALSE){ check <- alakazam::checkColumns(data, unique(c(id, seq, germ, v_call, j_call, junc_len, clone, text_fields, num_fields, seq_fields, traits))) if (check != TRUE) { stop(check) } if(chain=="HL"){ check <- alakazam::checkColumns(data, c(cell,locus)) if (check != TRUE) { stop(check) } if(is.null(heavy)){ stop(paste("clone",unique(dplyr::pull(data,clone)), "heavy chain loci ID must be specified if combining loci!")) } text_fields <- text_fields[text_fields != rlang::sym(cell)] text_fields <- text_fields[text_fields != rlang::sym(locus)] seq_fields <- seq_fields[seq_fields != rlang::sym(cell)] seq_fields <- seq_fields[seq_fields != rlang::sym(locus)] tmp_df <- data[, unique(c(id, seq, junc_len, text_fields, num_fields, seq_fields, cell, locus, traits))] tmp_df[[seq]] <- alakazam::maskSeqGaps(tmp_df[[seq]], mask_char=mask_char, outer_only=FALSE) hc <- dplyr::filter(tmp_df,!!rlang::sym(locus)==rlang::sym(heavy)) alt <- dplyr::filter(tmp_df,!!rlang::sym(locus)!=rlang::sym(heavy)) if(nrow(hc) == 0){ stop(paste("clone",unique(dplyr::pull(data,clone)), "heavy chain locus not found in dataset!")) } if(nrow(alt) == 0){ chain <- "H" }else{ if(length(unique(dplyr::pull(alt,!!locus))) > 1){ stop(paste("clone",paste(unique(dplyr::pull(data,clone)),collapse=""), "currently only one alternate loci per clone supported")) } } }else{ tmp_df <- data[, unique(c(id, seq, text_fields, num_fields, seq_fields, traits))] tmp_df[[seq]] <- alakazam::maskSeqGaps(tmp_df[[seq]], mask_char=mask_char, outer_only=FALSE) } if(chain=="HL"){ hc[[seq]] <- alakazam::maskSeqEnds(hc[[seq]], mask_char=mask_char, max_mask=max_mask, trim=FALSE) alt[[seq]] <- alakazam::maskSeqEnds(alt[[seq]], mask_char=mask_char, max_mask=max_mask, trim=FALSE) if(pad_end) { hc[[seq]] <- alakazam::padSeqEnds(hc[[seq]], pad_char=mask_char, mod3=mod3) alt[[seq]] <- alakazam::padSeqEnds(alt[[seq]], pad_char=mask_char, mod3=mod3) } hc_length <- unique(nchar(dplyr::pull(hc,rlang::sym(seq)))) alt_length <- unique(nchar(dplyr::pull(alt,rlang::sym(seq)))) if(length(hc_length) > 1){ stop(paste("clone",unique(dplyr::pull(data,clone)), "Heavy chain sequences must be same length!")) } if(length(hc_length) > 1){ stop(paste("clone",unique(dplyr::pull(data,clone)), "Light chain sequences must be same length!")) } hc$lsequence <- "" hc$hlsequence <- "" for(cell_name in unique(dplyr::pull(hc,!!rlang::sym(cell)))){ if(!cell_name %in% dplyr::pull(alt,rlang::sym(cell))){ altseq <- paste(rep(mask_char,alt_length),collapse="") }else{ altseq <- dplyr::pull(dplyr::filter(alt, !!rlang::sym(cell) == cell_name),rlang::sym(seq)) } hc[dplyr::pull(hc,!!rlang::sym(cell)) == cell_name,]$lsequence <- altseq hc[dplyr::pull(hc,!!rlang::sym(cell)) == cell_name,]$hlsequence <- paste0(hc[dplyr::pull(hc,!!rlang::sym(cell)) == cell_name,seq],altseq) } hcd <- dplyr::filter(data,!!rlang::sym(locus)==rlang::sym(heavy)) altd <- dplyr::filter(data,!!rlang::sym(locus)!=rlang::sym(heavy)) germline <- alakazam::maskSeqGaps(hcd[[germ]][1], mask_char=mask_char, outer_only=FALSE) lgermline <- alakazam::maskSeqGaps(altd[[germ]][1], mask_char=mask_char, outer_only=FALSE) if(pad_end){ germline <- alakazam::padSeqEnds(germline, pad_char=mask_char, mod3=mod3) lgermline <- alakazam::padSeqEnds(lgermline, pad_char=mask_char, mod3=mod3) } hlgermline <- paste0(germline,lgermline) tmp_df <- hc loci <- unique(dplyr::pull(data,!!locus)) tmp_df[[locus]] <- NULL tmp_df[[locus]] <- paste(loci,collapse=",") chains <- c(rep(unique(dplyr::pull(hc,!!locus)),times=hc_length), rep(unique(dplyr::pull(alt,!!locus)),times=alt_length)) numbers <- c(1:hc_length,1:alt_length) if(use_regions){ hregions <- as.character( shazam::setRegionBoundaries(unique(hc[[junc_len]]), germline, shazam::IMGT_VDJ_BY_REGIONS)@boundaries) lregions <- as.character( shazam::setRegionBoundaries(unique(alt[[junc_len]]), lgermline, shazam::IMGT_VDJ_BY_REGIONS)@boundaries) regions <- c(hregions, lregions) }else{ regions <- rep("N", times=nchar(hlgermline)) } if(length(chains) != unique(nchar(tmp_df$hlsequence))){ stop(paste("clone",unique(dplyr::pull(data,clone)), "chains vector not equal to total sequence length!")) } if(length(chains) != nchar(hlgermline)){ stop(paste("clone",unique(dplyr::pull(data,clone)), "chains vector not equal to germline sequence length!")) } new_seq <- "hlsequence" }else{ tmp_df[[seq]] <- alakazam::maskSeqEnds(tmp_df[[seq]], mask_char=mask_char, max_mask=max_mask, trim=FALSE) if(pad_end){ tmp_df[[seq]] <- alakazam::padSeqEnds(tmp_df[[seq]], pad_char=mask_char, mod3=mod3) } germline <- alakazam::maskSeqGaps(data[[germ]][1], mask_char=mask_char, outer_only=FALSE) if(pad_end){ germline <- alakazam::padSeqEnds(germline, pad_char=mask_char, mod3=mod3) } check <- alakazam::checkColumns(data, c(locus)) if(check == TRUE){ loci <- unique(dplyr::pull(data,locus)) if(length(loci) > 1){ warning(paste("clone",unique(dplyr::pull(data,clone)), "mutliple loci present but not dealt with!")) loci <- paste(loci,collapse=",") } }else{ loci <- "N" } chains <- rep(loci,times=nchar(germline)) numbers <- 1:nchar(germline) lgermline <- "" hlgermline <- germline tmp_df$lsequence <- "" tmp_df$hlsequence <- tmp_df[[seq]] new_seq <- seq if(use_regions){ regions <- as.character( shazam::setRegionBoundaries(unique(data[[junc_len]]), germline, shazam::IMGT_VDJ_BY_REGIONS)@boundaries) }else{ regions <- rep("N", times=nchar(germline)) } } seq_len <- nchar(tmp_df[[seq]]) if(any(seq_len != seq_len[1])){ len_message <- paste0("All sequences are not the same length for data with first ", id, " = ", tmp_df[[id]][1], ".") if (!pad_end) { len_message <- paste(len_message, "Consider specifying pad_end=TRUE and verify the multiple alignment.") } else { len_message <- paste(len_message, "Verify that all sequences are properly multiple-aligned.") } stop(len_message) } if(collapse){ if(is.null(traits)){ tmp_df <- alakazam::collapseDuplicates(tmp_df, id=id, seq=new_seq, text_fields=text_fields, num_fields=num_fields, seq_fields=seq_fields, add_count=add_count, verbose=verbose) }else{ tmp_df <- tmp_df %>% dplyr::group_by_at(dplyr::vars(tidyselect::all_of(traits))) %>% dplyr::do(alakazam::collapseDuplicates(!!rlang::sym("."), id=id, seq=new_seq, text_fields=text_fields, num_fields=num_fields, seq_fields=seq_fields, add_count=add_count, verbose=verbose)) %>% dplyr::ungroup() } } if(randomize){ tmp_df <- tmp_df[sample(1:nrow(tmp_df),replace=FALSE),] } tmp_names <- names(tmp_df) if ("sequence" %in% tmp_names & seq != "sequence") { tmp_df <- tmp_df[, tmp_names != "sequence"] tmp_names <- names(tmp_df) } names(tmp_df)[tmp_names == seq] <- "sequence" names(tmp_df)[tmp_names == id] <- "sequence_id" if(chain=="HL"){ phylo_seq <- "hlsequence" }else if(chain=="L"){ phylo_seq <- "lsequence" }else{ phylo_seq <- "sequence" } if(nrow(tmp_df) == 1 && dup_singles){ tmp_df2 <- tmp_df tmp_df2[[id]] <- paste0(tmp_df[[id]],"_DUPLICATE") tmp_df <- bind_rows(tmp_df, tmp_df2) } outclone <- new("airrClone", data=as.data.frame(tmp_df), clone=as.character(data[[clone]][1]), germline=alakazam::maskSeqGaps(germline, mask_char=mask_char, outer_only=FALSE), lgermline=alakazam::maskSeqGaps(lgermline, mask_char=mask_char, outer_only=FALSE), hlgermline=alakazam::maskSeqGaps(hlgermline, mask_char=mask_char, outer_only=FALSE), v_gene=alakazam::getGene(data[[v_call]][1]), j_gene=alakazam::getGene(data[[j_call]][1]), junc_len=data[[junc_len]][1], locus=chains, region=regions, numbers=numbers, phylo_seq=phylo_seq) outclone } cleanAlignment <- function(clone, seq="sequence"){ if(seq=="hlsequence"){ g <- strsplit(clone@hlgermline[1],split="")[[1]] }else{ g <- strsplit(clone@germline[1],split="")[[1]] } sk <- strsplit(clone@data[[seq]],split="") sites=seq(1,length(g)-3,by=3) ns <- c() for(i in sites){ l=lapply(sk,function(x) paste(x[i:(i+2)],collapse="")=="NNN") ns <- c(ns,sum(unlist(l)),sum(unlist(l)),sum(unlist(l))) } informative <- ns != length(sk) l=lapply(sk,function(x) x=paste(x[informative],collapse="")) gm=paste(g[informative],collapse="") if(.hasSlot(clone,"locus")){ clone@locus <- clone@locus[informative] } if(.hasSlot(clone,"region")){ clone@region <- clone@region[informative] } if(.hasSlot(clone,"numbers")){ clone@numbers <- clone@numbers[informative] } if(seq=="hlsequence"){ clone@hlgermline=gm }else{ clone@germline=gm } clone@data[[seq]]=unlist(l) return(clone) } formatClones <- function(data, seq="sequence_alignment", clone="clone_id", subclone="subclone_id", nproc=1, chain="H", heavy="IGH", cell="cell_id", locus="locus", minseq=2, split_light=FALSE, majoronly=FALSE, columns=NULL, ...) { if(majoronly){ if(!subclone %in% names(data)){ stop("Need subclone designation if majoronly=TRUE") } data <- filter(data, !!rlang::sym(subclone) <= 1) } if(chain == "H"){ if(!is.null(heavy)){ if(locus %in% names(data)){ data <- filter(data, !!rlang::sym(locus) == rlang::sym(heavy)) } } } if(chain == "HL"){ if(!subclone %in% names(data)){ stop("Need subclone designation for heavy+light chain clones") } if(!locus %in% names(data)){ stop("Need locus designation for heavy+light chain clones") } if(is.null(heavy)){ stop("Need heavy chain (heavy) designation for heavy+light chain clones") } lcells <- filter(data,!!rlang::sym(locus)!=rlang::sym(heavy))[[cell]] hcells <- filter(data,!!rlang::sym(locus)==rlang::sym(heavy))[[cell]] nohcells <- lcells[!lcells %in% hcells] if(length(nohcells) > 0){ data <- filter(data,!(!!rlang::sym(cell) %in% nohcells)) warning(paste("Removed",length(nohcells), "cells with no heavy chain information")) } } if(split_light){ if(!subclone %in% names(data)){ stop("Need subclone designation for heavy+light chain clones") } if(sum(data[[subclone]] == 0) > 0){ warning("Assigning subclone 0 (missing light chain) to subclone 1") data[data[[subclone]] == 0,][[subclone]] <- 1 } data[[clone]] <- paste0(data[[clone]],"_",data[[subclone]]) }else if(!split_light && chain=="HL"){ data <- filter(data, !(!!rlang::sym(locus) != rlang::sym(heavy) & !!rlang::sym(subclone) > 1)) } if(!is.null(columns)){ if(sum(!columns %in% names(data)) != 0){ stop(paste("column", paste(columns[!columns %in% names(data)]), "not in data table!")) } } if(sum(is.na(data[[seq]])) > 0){ warning(paste("Removing",sum(is.na(data[[seq]])) ,"with missing sequences")) } counts <- table(data[[clone]]) rmclones <- names(counts[counts < minseq]) data <- data[!data[[clone]] %in% rmclones,] data <- data[!is.na(data[[seq]]),] clones <- data %>% dplyr::group_by(!!rlang::sym(clone)) %>% dplyr::do(data=makeAirrClone(.data, seq=seq, clone=clone, chain=chain, heavy=heavy, cell=cell,...)) if(chain == "HL"){ seq_name <- "hlsequence" }else{ seq_name <- "sequence" } fclones <- processClones(clones, nproc=nproc, seq=seq_name, minseq=minseq) if(clone != "clone_id"){ fclones$clone_id <- fclones[[clone]] fclones <- dplyr::select(fclones, -!!clone) } colpaste <- function(x){ s <- sort(unique(x)) if(length(s) > 1){ paste(s,collapse=",") }else{ s } } if(!is.null(columns)){ d <- data %>% dplyr::select(!!rlang::sym(clone),dplyr::all_of(columns)) %>% dplyr::group_by(!!rlang::sym(clone)) %>% dplyr::summarize(dplyr::across(dplyr::all_of(columns), dplyr::n_distinct)) %>% dplyr::ungroup() %>% dplyr::summarize(dplyr::across(dplyr::all_of(columns),max)) %>% unlist() multi <- names(d[d > 1]) if(length(multi) > 0){ warning(paste("columns",paste(multi,collapse=" "), "contain multiple values per clone, flattening with comma")) } d <- data %>% dplyr::select(!!rlang::sym(clone),columns) %>% dplyr::group_by(!!rlang::sym(clone)) %>% dplyr::summarize(dplyr::across(columns, colpaste)) m <- match(fclones[[clone]],d[[clone]]) fclones[,columns] <- d[m,columns] } fclones } maskCodons <- function(id, q, s, keep_alignment=FALSE, gap_opening=5, gap_extension=1, keep_insertions=FALSE, mask=TRUE){ results <- list( sequence_id =id, sequence_masked="", masking_note="", insertions="", subject_alignment="", query_alignment="") sg <- gsub("\\.\\.\\.","",s) if(sg == q || !mask){ results$subject_alignment <- sg results$query_alignment <- q results$sequence_masked_v <- s return(results) } gaps <- stringr::str_locate_all(s,"\\.\\.\\.") sgf <- gsub("---", "", sg) if(grepl("-",sgf)){ results$sequence_masked_v <- NA results$masking_note <- "Frameshift in sequence" return(results) } sg <- gsub("---", "XXX", sg) n <- Biostrings::pairwiseAlignment(q, sg, type="global", gapOpening=gap_opening, gapExtension=gap_extension) qa <- as.character(n@pattern) sa <- as.character(n@subject) if(keep_alignment){ results$subject_alignment <- sa results$query_alignment <- qa } if(keep_insertions){ insertions <- stringr::str_locate_all(sa,"\\-+")[[1]] indels <- "" if(nrow(insertions) > 0){ for(i in 1:nrow(insertions)){ ins <- substr(qa,insertions[i,1],insertions[i,2]) if(i == 1){ indels <- paste0(insertions[i,1],"-",ins) }else{ indels <- paste0(indels,",", paste0(insertions[i,1],"-",ins)) } } } results$insertions <- indels } if(grepl("^\\.\\.",sg)){ sa <- paste0("..",sa) if(keep_alignment){ results$subject_alignment <- sa } }else if(grepl("^\\.",sg)){ sa <- paste0(".",sa) if(keep_alignment){ results$subject_alignment <- sa } } if(nchar(sa) < nchar(sg) || nchar(qa) < nchar(q)){ results$sequence_masked_v <- NA results$masking_note <- "Alignment error" return(results) } sgf <- gsub("---", "", sa) if(grepl("-",sgf)){ results$sequence_masked_v <- NA results$masking_note <- "Frameshift after alignment" return(results) } if(qa != sa && grepl("\\-",sa)){ sas <- strsplit(sa,split="")[[1]] mask <- c() nseq <- c() for(j in 1:ceiling(length(sas)/3)){ index <- (j-1)*3 + 1 triple <- paste0(sas[index:(index+2)],collapse="") triple <- gsub("NA","",triple) m <- 0 if(grepl("\\-",triple)){ triple <- gsub("[A-Z]","N",triple) triple <- gsub("\\-","",triple) if(nchar(triple) != 0){ m <- 1 } } mask <- c(mask,m) nseq <- c(nseq,triple) } maskseq <- paste0(nseq,collapse="") if(nchar(maskseq) != nchar(sg)){ print(paste(maskseq,"\n",sg)) stop("Sequence masking failed") } sequence_alignment <- maskseq if(nrow(gaps[[1]]) > 0){ for(j in 1:nrow(gaps[[1]])){ sequence_alignment <- paste0(substr(sequence_alignment,1,gaps[[1]][j,1]-1), "...",substr(sequence_alignment,gaps[[1]][j,1], nchar(sequence_alignment))) } } sequence_alignment <- gsub("X","-",sequence_alignment) if(alakazam::seqDist(sequence_alignment,s) != 0){ print(paste(sequence_alignment,"\n",s)) stop("Adding gaps failed") } results$sequence_masked_v <- sequence_alignment if(sum(mask == 1) > 0){ results$masking_note <- paste(which(mask == 1),collapse=",") } return(results) }else{ results$sequence_masked_v <- s return(results) } } maskSequences <- function(data, sequence_id = "sequence_id", sequence = "sequence", sequence_alignment="sequence_alignment", v_sequence_start = "v_sequence_start", v_sequence_end = "v_sequence_end", v_germline_start = "v_germline_start", v_germline_end = "v_germline_end", junction_length="junction_length", keep_alignment = FALSE, keep_insertions=FALSE, mask_codons=TRUE, mask_cdr3=TRUE, nproc=1){ ids <- data[[sequence_id]] qi <- substr(data[[sequence]], data[[v_sequence_start]],data[[v_sequence_end]]) si <- substr(data[[sequence_alignment]], data[[v_germline_start]], data[[v_germline_end]]) ei <- substr(data[[sequence_alignment]], data[[v_germline_end]]+1, nchar(data[[sequence_alignment]])) if(max(table(ids)) > 1){ stop("Sequence IDs are not unique") } results <- dplyr::bind_rows( parallel::mclapply(1:length(qi),function(x){ mask <- maskCodons(ids[x], qi[x], si[x], keep_alignment=keep_alignment, keep_insertions=keep_insertions, mask=mask_codons) if(is.na(mask$sequence_masked_v)){ mask$sequence_masked <- NA }else{ mask$sequence_masked <- paste0(mask$sequence_masked_v,ei[x]) } mask }, mc.cores=nproc)) m <- match(data[[sequence_id]], results[[sequence_id]]) if(sum(results[m,]$sequence_id != data$sequence_id) > 0){ stop("Sequence ids don't match") } data <- bind_cols(data, sequence_masked=results[m,]$sequence_masked, masking_note=results [m,]$masking_note) if(keep_alignment){ data <- bind_cols(data, subject_alignment=results[m,]$subject_alignment, query_alignment=results[m,]$query_alignment) } if(keep_insertions){ data <- bind_cols(data, insertions=results[m,]$insertions) } if(mask_cdr3){ data$sequence_masked <- unlist(lapply(1:nrow(data),function(x){ if(is.na(data$sequence_masked[x])){ return(data$sequence_masked[x]) } regions <- as.character( shazam::setRegionBoundaries(data[[junction_length]][x], data$sequence_masked[x], shazam::IMGT_VDJ_BY_REGIONS)@boundaries) if(!is.na(data$sequence_masked[x]) && sum(regions == "cdr3") > 0){ s <- strsplit(data$sequence_masked[x],split="")[[1]] s[regions == "cdr3"] = "N" s <- paste(s, collapse="") }else{ s <- data$sequence_masked[x] } s })) } include <- !is.na(data$sequence_masked) if(sum(include) == 0){ warning("Masking failed for all sequences") return(data) } diffs <- nchar(data$sequence_alignment[include]) - nchar(data$sequence_masked[include]) if(sum(diffs) > 0){ print(data[diffs > 0,]$sequence_id) stop("Error in masking above sequences (length)") } dists <- unlist(parallel::mclapply(1:nrow(data[include,]), function(x) alakazam::seqDist(data$sequence_alignment[include][x], data$sequence_masked[include][x]),mc.cores=nproc)) if(sum(dists) > 0){ print(data[dists > 0,]$sequence_id) stop("Error in masking above sequences (mismatches)") } return(data) } getSubclones <- function(heavy, light, nproc=1, minseq=1, id="sequence_id", seq="sequence_alignment", clone="clone_id", cell_id="cell_id", v_call="v_call", j_call="j_call", junc_len="junction_length", nolight="missing"){ subclone <- "subclone_id" scount <- table(heavy[[clone]]) big <- names(scount)[scount >= minseq] heavy <- filter(heavy,(!!rlang::sym(clone) %in% big)) heavy$vj_gene <- nolight heavy$vj_alt_cell <- nolight heavy$subclone_id <- 0 light$vj_gene <- nolight light$vj_alt_cell <- nolight light$subclone_id <- 0 light[[clone]] <- -1 paired <- parallel::mclapply(unique(heavy[[clone]]),function(cloneid){ hd <- filter(heavy,!!rlang::sym(clone) == cloneid) ld <- filter(light,!!rlang::sym(cell_id) %in% hd[[!!cell_id]]) hd <- filter(hd,(!!rlang::sym(cell_id) %in% ld[[!!cell_id]])) if(nrow(ld) == 0){ return(hd) } ltemp <- ld ltemp$clone_id <- -1 ld <- dplyr::tibble() lclone <- 1 while(nrow(ltemp) > 0){ lvs <- strsplit(ltemp[[v_call]],split=",") ljs <- strsplit(ltemp[[j_call]],split=",") combos <- lapply(1:length(lvs),function(w) unlist(lapply(lvs[[w]],function(x) lapply(ljs[[w]],function(y)paste(x,y,sep=":"))))) cells <- unique(ltemp[[cell_id]]) cellcombos <- lapply(cells,function(x) unique(unlist(combos[ltemp[[cell_id]] == x]))) lcounts <- table(unlist(lapply(cellcombos,function(x)x))) max <- names(lcounts)[which.max(lcounts)] cvs <- unlist(lapply(combos,function(x)max %in% x)) ltemp[cvs,][[subclone]] <- lclone ltemp[cvs,]$vj_gene <- max rmseqs <- c() cell_counts <- table(ltemp[cvs,][[cell_id]]) mcells <- names(cell_counts)[cell_counts > 1] for(cell in mcells){ ttemp <- filter(ltemp,cvs & !!rlang::sym(cell_id) == cell) ttemp$str_counts <- stringr::str_count(ttemp[[seq]],"[A|C|G|T]") rmtemp <- ttemp[-which.max(ttemp$str_counts),] rmseqs <- c(rmseqs,rmtemp[[id]]) } include <- filter(ltemp,cvs & !(!!rlang::sym(id) %in% rmseqs)) leave <- filter(ltemp,!cvs | (!!rlang::sym(id) %in% rmseqs)) mcells <- unique(include[[cell_id]]) for(cell in mcells){ if(cell %in% leave[[cell_id]]){ include[include[[cell_id]] == cell,]$vj_alt_cell <- paste(paste0(leave[leave[[cell_id]] == cell,][[v_call]],":", leave[leave[[cell_id]] == cell,][[j_call]]), collapse=",") } } ld <- bind_rows(ld,include) ltemp <- filter(ltemp,!(!!rlang::sym(cell_id) %in% ltemp[cvs,][[!!cell_id]])) lclone <- lclone + 1 } ld[[clone]] <- cloneid for(cell in unique(hd[[cell_id]])){ if(cell %in% ld[[cell_id]]){ lclone <- ld[ld[[cell_id]] == cell,][[subclone]] ld[ld[[cell_id]] == cell,][[subclone]] <- lclone hd[hd[[cell_id]] == cell,][[subclone]] <- lclone hd[hd[[cell_id]] == cell,]$vj_gene <- ld[ld[[cell_id]] == cell,]$vj_gene hd[hd[[cell_id]] == cell,]$vj_alt_cell <- ld[ld[[cell_id]] == cell,]$vj_alt_cell } } comb <- bind_rows(hd,ld) comb$vj_clone <- paste0(comb[[clone]],"_",comb[[subclone]]) comb$vj_cell <- paste(comb$vj_gene,comb$vj_alt_cell,sep=",") comb },mc.cores=nproc) paired <- bind_rows(paired) return(paired) } processClones <- function(clones, nproc=1 ,minseq=2, seq){ if(!"tbl" %in% class(clones)){ print(paste("clones is of class",class(clones))) stop("clones must be a tibble of airrClone objects!") }else{ if(class(clones$data[[1]]) != "airrClone"){ print(paste("clones is list of class",class(clones$data[[1]]))) stop("clones$data must be a list of airrClone objects!") } } threshold <- unlist(lapply(clones$data,function(x) length(x@data[[seq]]) >= minseq)) clones <- clones[threshold,] if(nrow(clones) == 0){ warning(paste("All clones have less than minseq =",minseq,"sequences")) return(clones) } clones$data <- lapply(clones$data,function(x){ x@data$sequence_id= gsub(":","_",x@data$sequence_id); x }) clones$data <- lapply(clones$data,function(x){ x@data$sequence_id=gsub(";","_",x@data$sequence_id); x }) clones$data <- lapply(clones$data,function(x){ x@data$sequence_id=gsub(",","_",x@data$sequence_id); x }) clones$data <- lapply(clones$data,function(x){ x@data$sequence_id=gsub("=","_",x@data$sequence_id); x }) clones$data <- lapply(clones$data,function(x){ x@data$sequence_id=gsub(" ","_",x@data$sequence_id); x }) max <- max(unlist(lapply(clones$data,function(x)max(nchar(x@data$sequence_id))))) if(max > 1000){ wc <- which.max(unlist(lapply(clones$data,function(x) max(nchar(x@data$sequence_id))))) stop(paste("Sequence ID of clone",clones$data[[wc]]@clone,"index", wc,"too long - over 1000 characters!")) } or <- order(unlist(lapply(clones$data,function(x) nrow(x@data))), decreasing=TRUE) clones <- clones[or,] clones$data <- parallel::mclapply(clones$data, function(x)cleanAlignment(x,seq),mc.cores=nproc) if(.hasSlot(clones$data[[1]],"locus")){ clones$locus <- unlist(lapply(clones$data,function(x) paste(sort(unique(x@locus)),collapse=","))) } clones$seqs <- unlist(lapply(clones$data,function(x)nrow(x@data))) clones <- dplyr::rowwise(clones) clones <- dplyr::ungroup(clones) clones }
render_heatmap <- reactive({ req(length(DATA()) > 0) withProgress({ target <- as.numeric(input$RT_Stats.Overview.Target) data <- subset(DATA(), ID %in% input$RT_Stats.Overview.ID) Plot.Stats.Significance_Heatmap(data, target, alpha = as.numeric(input$RT_Stats.Overview.Alpha), bootstrap.size = input$RT_Stats.Overview.Samples) }, message = "Creating plot") }) output$RT_Stats.Overview.Heatmap <- renderPlotly( render_heatmap() ) create_stats_table <- reactive({ req(length(DATA()) > 0) req(length(get_id(DATA())) > 1) data <- subset(DATA(), ID %in% input$RT_Stats.Overview.ID) target <- as.numeric(input$RT_Stats.Overview.Target) df <- pairwise.test(data, target, bootstrap.size = input$RT_Stats.Overview.Samples) df <- format(df, digits = 3) df }) output$RT_Stats.Overview.Pmatrix <- DT::renderDataTable({ create_stats_table() }, options = list(dom = 'lrtip', pageLength = 15, scrollX = T, server = T)) output$RT_Stats.Overview.Graph <- renderPlot({ render_graph() }) render_graph <- reactive({ req(length(DATA()) > 0) withProgress({ target <- as.numeric(input$RT_Stats.Overview.Target) data <- subset(DATA(), ID %in% input$RT_Stats.Overview.ID) Plot.Stats.Significance_Graph(data, target, alpha = as.numeric(input$RT_Stats.Overview.Alpha), bootstrap.size = input$RT_Stats.Overview.Samples) }, message = "Creating plot") }) output$RT_Stats.Overview.DownloadTable <- downloadHandler( filename = function() { eval(RT_Stats_table_name) }, content = function(file) { df <- create_stats_table() save_table(df, file) } ) output$RT_Stats.Overview.DownloadHeatmap <- downloadHandler( filename = function() { eval(RT_Stats_heatmap_name) }, content = function(file) { save_plotly(render_heatmap(), file) }, contentType = paste0('image/', input$RT_Stats.Overview.Format) ) data_table_glicko2 <- reactive({ input$RT_Stats.Glicko.Create isolate({ withProgress({ data <- RT_glicko_data() nr_games <- as.numeric(input$RT_Stats.Glicko.Nrgames) df <- glicko2_ranking(data, nr_games, target_dt = RT_stats_glicko_targets_obj, which = 'by_FV')$ratings format(df, digits = 3) }, message = "Creating Ranking, this might take a while") }) }) output$RT_Stats.Glicko.Dataframe <- DT::renderDataTable({ req(length(DATA_RAW()) > 0) data_table_glicko2() }, options = list(dom = 'lrtip', pageLength = 15, scrollX = T, server = T)) render_glico2_plot <- reactive({ isolate({ data <- RT_glicko_data() nr_games <- as.numeric(input$RT_Stats.Glicko.Nrgames) }) Plot.Stats.Glicko2_Candlestick(data, nr_games, data_table_glicko2(), which = 'by_FV', target_dt = RT_stats_glicko_targets_obj) }) output$RT_Stats.Glicko.Candlestick <- renderPlotly({ render_glico2_plot() }) output$RT_Stats.Glicko.DownloadTable <- downloadHandler( filename = function() { eval(RT_Glicko2_table_name) }, content = function(file) { df <- data_table_glicko2() save_table(df, file) } ) output$RT_Stats.Glicko.Download <- downloadHandler( filename = function() { eval(RT_Glicko2_figure_name) }, content = function(file) { save_plotly(render_glico2_plot(), file) }, contentType = paste0('image/', input$RT_Stats.Glicko.Format) ) RT_glicko_data <- function() { data <- subset(DATA_RAW(), ID %in% isolate(input$RT_Stats.Glicko.ID)) if (length(data) == 0) return(NULL) data <- subset(data, DIM %in% input$RT_Stats.Glicko.Dim) data <- subset(data, funcId %in% input$RT_Stats.Glicko.Funcid) if (length(unique(get_id(data))) < 2) { shinyjs::alert("This plot is only available when the dataset contains multiple IDs for the selected functions and dimensions.") return(NULL) } data } RT_stats_glicko_targets <- reactive({ data <- RT_glicko_data() if (is.null(data)) return(NULL) get_target_dt(data, "by_FV") }) RT_stats_glicko_targets_obj <- NULL proxy_RT_Stats.Glicko.Targets <- dataTableProxy('RT_Stats.Glicko.Targets') output$RT_Stats.Glicko.Targets <- DT::renderDataTable({ req(length(DATA_RAW()) > 0) RT_stats_glicko_targets_obj <<- RT_stats_glicko_targets() RT_stats_glicko_targets_obj }, editable = list(target = 'cell', disable = list(columns = c(0,1))), rownames = FALSE, options = list(pageLength = 5, lengthMenu = c(5, 10, 25, -1), scrollX = T, server = T)) observeEvent(input$RT_Stats.Glicko.Targets_cell_edit, { info <- input$RT_Stats.Glicko.Targets_cell_edit i <- info$row j <- info$col v <- info$value data <- RT_glicko_data() if (is.null(data)) return(NULL) RT_stats_glicko_targets_obj$target[[i]] <<- v replaceData(proxy, RT_stats_glicko_targets_obj, resetPaging = FALSE, rownames = FALSE) })
Hals.snow <- function(j, Z, Hs, Ht, Hst.ls, b.lag, GP.mx) { rho <- GP.mx[j, 1] reg <- GP.mx[j, 2] Z.hat <- H.als.b(Z=Z, Hs=Hs, Ht=Ht, Hst.ls=Hst.ls, rho=rho, reg=reg, b.lag=b.lag, Hs0=NULL, Ht0=NULL, Hst0.ls=NULL)$Z.hat return(Z.hat) }
test_that("Check github_commits()", { testthat::skip_on_cran() local_edition(3) df <- data.frame(x = "test", y = 1:10) expect_output(Luminescence:::.as.latex.table.data.frame(df)) })
"print.psych.omega" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,...) { xx <- x if(!is.null(x$ci)) { x <- x$om} if(is.null(cut)) cut <- .2 cat( x$title,"\n") cat("Call: ") print(x$call) cat("Alpha: ",round(x$alpha,digits),"\n") cat("G.6: ",round(x$G6,digits),"\n") cat("Omega Hierarchical: " ,round(x$omega_h,digits),"\n") cat("Omega H asymptotic: " ,round(x$omega.lim,digits),"\n") cat("Omega Total " ,round(x$omega.tot,digits),"\n") cat("\nSchmid Leiman Factor loadings greater than ",cut, "\n") loads <- x$schmid$sl nfactor <- ncol(loads)-3 if(sort) { ord <- sort(abs(loads[,1]),decreasing=TRUE,index.return=TRUE) loads[,] <- loads[ord$ix,] rownames(loads) <- rownames(loads)[ord$ix] loads <- cbind(v=ord$ix,loads) } tn <- colnames(loads) loads <- data.frame(loads) colnames(loads) <- tn if(sort) {loads[,1] <- as.integer(loads[,1]) load.2 <- loads[,2:(nfactor+1)]} else {load.2 <- loads[,1:nfactor] } h2 <- round(loads[,"h2"],digits) u2 <- round(loads[,"u2"],digits) loads <-round(loads,digits) fx <- format(loads,digits=digits) nc <- nchar(fx[1,3], type = "c") fx[abs(loads)< cut] <- paste(rep(" ", nc), collapse = "") p2 <- loads[,"p2"] mp2 <- mean(p2) vp2 <- var(p2) p2 <- round(p2,digits) print(cbind(fx[,1:(nfactor+sort)],h2,u2,p2),quote="FALSE") numfactors <- dim(x$schmid$sl)[2] -3 eigenvalues <- diag(t(x$schmid$sl[,1:numfactors]) %*% x$schmid$sl[,1:numfactors]) cat("\nWith eigenvalues of:\n") ev.rnd <- round(eigenvalues,digits) print(ev.rnd,digits=digits) maxmin <- max(eigenvalues[2:numfactors])/min(eigenvalues[2:numfactors]) gmax <- eigenvalues[1]/max(eigenvalues[2:numfactors]) cat("\ngeneral/max " ,round(gmax,digits)," max/min = ",round(maxmin,digits)) cat("\nmean percent general = ",round(mp2,digits), " with sd = ", round(sqrt(vp2),digits), "and cv of ",round(sqrt(vp2)/mp2,digits),"\n") if(!is.null(x$ECV)) cat("Explained Common Variance of the general factor = ", round(x$ECV,digits),"\n") if(!is.null(x$schmid$dof)) {cat("\nThe degrees of freedom are",x$schmid$dof," and the fit is ",round(x$schmid$objective,digits),"\n") if(!is.null(x$schmid$n.obs)&&!is.na(x$schmid$n.obs)) {cat("The number of observations was ",x$schmid$n.obs, " with Chi Square = ",round(x$schmid$STATISTIC,digits), " with prob < ", signif(x$schmid$PVAL,digits))} } if(!is.null(x$schmid$rms)) {cat("\nThe root mean square of the residuals is ", round(x$schmid$rms,digits),"\n") } if(!is.null(x$schmid$crms)) {cat("The df corrected root mean square of the residuals is ", round(x$schmid$crms,digits)) } if(!is.null(x$schmid$RMSEA)) {cat("\nRMSEA index = ",round(x$schmid$RMSEA[1],digits+1), " and the", (1- x$schmid$RMSEA[4])*100,"% confidence intervals are ",round(x$schmid$RMSEA[2:3],digits+1)) } if(!is.null(x$schmid$BIC)) {cat("\nBIC = ",round(x$schmid$BIC,digits))} cat("\n\nCompare this with the adequacy of just a general factor and no group factors") if(!is.null(x$gstats$dof)) {cat("\nThe degrees of freedom for just the general factor are",x$gstats$dof," and the fit is ",round(x$gstats$objective,digits),"\n") if(!is.null(x$gstats$n.obs)&&!is.na(x$gstats$n.obs)) {cat("The number of observations was ",x$gstats$n.obs, " with Chi Square = ",round(x$gstats$STATISTIC,digits), " with prob < ", signif(x$gstats$PVAL,digits))} } if(!is.null(x$gstats$rms)) {cat("\nThe root mean square of the residuals is ", round(x$gstats$rms,digits),"\n") } if(!is.null(x$gstats$crms)) {cat("The df corrected root mean square of the residuals is ", round(x$gstats$crms,digits),"\n") } if(!is.null(x$gstats$RMSEA)) {cat("\nRMSEA index = ",round(x$gstats$RMSEA[1],digits+1), " and the", (1- x$gstats$RMSEA[4])*100,"% confidence intervals are ",round(x$gstats$RMSEA[2:3],digits+1)) } if(!is.null(x$gstats$BIC)) {cat("\nBIC = ",round(x$gstats$BIC,digits),"\n")} stats.df <- t(data.frame(sqrt(x$stats$R2),x$stats$R2,2*x$stats$R2 -1)) cat("\nMeasures of factor score adequacy \n") rownames(stats.df) <- c("Correlation of scores with factors ","Multiple R square of scores with factors ","Minimum correlation of factor score estimates") print(round(stats.df,digits)) cat("\n Total, General and Subset omega for each subset\n") colnames(x$omega.group) <- c("Omega total for total scores and subscales","Omega general for total scores and subscales ", "Omega group for total scores and subscales") print(round(t(x$omega.group),digits)) if(!is.null(xx$ci)) { cat("\n Estimates and bootstrapped confidence intervals\n") li <- data.frame(lower=xx$ci$ci[,1],estimate=xx$ci$means,upper=xx$ci$ci[,2]) li[1,2] <- x$omega_h li[2,2] <- x$alpha li[3,2] <- x$omega.tot li[4,2] <- x$G6 li[5,2] <- x$omega.lim print(li,digits=digits)} } "print.psych.omegaSem" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,...) { if(is.null(cut)) cut <- .2 cat( x$title,"\n") if(!is.null(x$Call)) { cat("Call: ") print(x$Call) print.psych.omega(x$omegaSem,digits=digits,all=all,cut=cut,sort=sort,...) x <- x$omega.efa } loads <- x$cfa.loads class(loads) <- NULL nfactor <- ncol(loads) cat("\n The following analyses were done using the ", x$sem," package \n") if(nfactor > 1) { cat("\n Omega Hierarchical from a confirmatory model using sem = ", round(x$omega,digits)) } else { cat("\n With only 1 factor specified in the sem model, we can only calculate omega Total.\n You should probably rerun the sem specifying either a bifactor or hierarchical model.\n") } cat("\n Omega Total from a confirmatory model using sem = ", round(x$omega.tot,digits),"\n") cat("With loadings of \n") loads <- data.frame(loads) if(nfactor > 1) { tn <- c("g", paste0("F",1:(nfactor-1),"*")) colnames(loads) <- tn } load.2 <- as.matrix(loads) h2 <- round(rowSums(load.2^2),digits) loads <- round(loads,digits) fx <- format(loads,digits=digits) if(nfactor > 1 ) { nc <- nchar(fx[1,3], type = "c") fx[abs(loads)< cut] <- paste(rep(" ", nc), collapse = "")} h2 <- round(rowSums(load.2^2),digits) u2 <- 1 - h2 p2 <- loads[,1]^2/h2 mp2 <- mean(p2) vp2 <- var(p2) p2 <- round(p2,digits) print(cbind(fx,h2,u2,p2),quote="FALSE") loads <- as.matrix(load.2) eigenvalues <- diag(t(loads) %*% loads) cat("\nWith sum of squared loadings of:\n") ev.rnd <- round(eigenvalues,digits) print(ev.rnd,digits=digits) maxmin <- max(eigenvalues[2:nfactor])/min(eigenvalues[2:nfactor]) gmax <- eigenvalues[1]/max(eigenvalues[2:nfactor]) ECV <- eigenvalues[1]/sum(eigenvalues) if(!is.null(x$Fit)) { cat("\nThe degrees of freedom of the confirmatory model are ",x$Fit[[1]]$df, " and the fit is ", x$Fit[[1]]$stat, " with p = ",x$Fit[[1]]$pvalue) } cat("\ngeneral/max " ,round(gmax,digits)," max/min = ",round(maxmin,digits)) cat("\nmean percent general = ",round(mp2,digits), " with sd = ", round(sqrt(vp2),digits), "and cv of ",round(sqrt(vp2)/mp2,digits),"\n") cat("Explained Common Variance of the general factor = ", round(ECV,digits),"\n") if(nfactor > 1) { cat("\nMeasures of factor score adequacy \n") fsa.df <- t(data.frame(sqrt(x$gR2),x$gR2,2*x$gR2 -1)) rownames(fsa.df) <- c("Correlation of scores with factors ","Multiple R square of scores with factors ","Minimum correlation of factor score estimates") colnames(fsa.df) <- tn print(round(fsa.df,digits)) cat("\n Total, General and Subset omega for each subset\n") colnames(x$omega.group) <- c("Omega total for total scores and subscales","Omega general for total scores and subscales ", "Omega group for total scores and subscales") rownames(x$omega.group) <- tn print(round(t(x$omega.group),digits)) } cat("\nTo get the standard sem fit statistics, ask for summary on the fitted object") }
knitr::opts_chunk$set(fig.width=6, fig.height=6) set.seed(52523) d <- data.frame( wt = 100*rnorm(100), stringsAsFactors = FALSE) WVPlots::PlotDistCountNormal(d,'wt','example') WVPlots::PlotDistDensityNormal(d,'wt','example') set.seed(34903490) x = rnorm(50) y = 0.5*x^2 + 2*x + rnorm(length(x)) frm = data.frame( x=x, y=y, yC=y>=as.numeric(quantile(y,probs=0.8)), stringsAsFactors = FALSE) frm$absY <- abs(frm$y) frm$posY = frm$y > 0 WVPlots::ScatterHist(frm, "x", "y", smoothmethod="lm", title="Example Linear Fit") set.seed(34903490) y = abs(rnorm(20)) + 0.1 x = abs(y + 0.5*rnorm(20)) frm = data.frame( model=x, value=y, stringsAsFactors = FALSE) frm$costs=1 frm$costs[1]=5 frm$rate = with(frm, value/costs) frm$isValuable = (frm$value >= as.numeric(quantile(frm$value, probs=0.8))) gainx = 0.10 labelfun = function(gx, gy) { pctx = gx*100 pcty = gy*100 paste("The top ", pctx, "% most valuable points by the model\n", "are ", pcty, "% of total actual value", sep='') } WVPlots::GainCurvePlotWithNotation(frm, "model", "value", title="Example Gain Curve with annotation", gainx=gainx,labelfun=labelfun) set.seed(52523) d = data.frame( meas=rnorm(100), stringsAsFactors = FALSE) threshold = 1.5 WVPlots::ShadedDensity(d, "meas", threshold, tail="right", title="Example shaded density plot, right tail") set.seed(34903490) frm = data.frame( x=rnorm(50), y=rnorm(50), stringsAsFactors = FALSE) frm$z <- frm$x+frm$y WVPlots::ScatterHistN(frm, "x", "y", "z", title="Example Joint Distribution") set.seed(34903490) x = rnorm(50) y = 0.5*x^2 + 2*x + rnorm(length(x)) frm = data.frame( x = x, yC = y>=as.numeric(quantile(y,probs=0.8)), stringsAsFactors = FALSE) WVPlots::ROCPlot(frm, "x", "yC", TRUE, title="Example ROC plot")
context("Infix") test_that("Infix operators for S3", { Test <- function(.x) { ".+" <- function(e2) Test(getX() + e2) ".==" <- function(e2) getX() == e2 ".>=" <- function(e2) getX() >= e2 ".-" <- function(e2) { if (missing(e2)) -.x else .x - e2 } getX <- function() .x retList(c("Test", "Infix")) } expect_equal(-Test(3), -3) expect_equal(Test(3) - 2, 1) expect_true(Test(2) + 2 == 4) expect_true(Test(2) == 2) expect_false(Test(3) == 2) expect_true(Test(2) >= 1) expect_true(Test(2) >= 2) expect_false(Test(2) >= 3) }) test_that("Infix selects next method.", { Test <- function(.x) { ".+" <- function(e2) Test(getX() + e2) ".==" <- function(e2) getX() == e2 getX <- function() .x retList(c("Test", "Infix")) } expect_true(Test(2) + 2 == 4) expect_error(Test(2) - 2 == 4) })
summary.pvol <- function(object, ...) { print.pvol(object) } print.pvol <- function(x, digits = max(3L, getOption("digits") - 3L), ...) { stopifnot(inherits(x, "pvol")) cat(" Polar volume (class pvol)\n\n") cat(" cat(" radar: ", x$radar, "\n") cat(" source: ", x$attributes$what$source, "\n") cat("nominal time: ", as.character(x$datetime), "\n\n") } is.pvol <- function(x) { inherits(x, "pvol") } dim.pvol <- function(x) { stopifnot(inherits(x, "pvol")) c(length(x$scans)) }
source("incl/start.R") message("*** BatchtoolsFuture() and garbage collection ...") plan(batchtools_local) for (how in c("resolve", "value")) { f <- future({ 1 }) if (how == "value") { v <- value(f) print(v) } else if (how == "resolve") { resolve(f) } stopifnot(resolved(f)) reg <- f$config$reg rm(list = "f") gc() stopifnot(!file_test("-d", reg$file.dir)) fail <- try(checkIds(reg, ids = 1L), silent = TRUE) stopifnot(inherits(fail, "try-error")) } message("*** BatchtoolsFuture() and garbage collection ... DONE") source("incl/end.R")
expected <- eval(parse(text="1:2")); test(id=0, code={ argv <- eval(parse(text="list(TRUE, FALSE, c(FALSE, FALSE))")); .Internal(`order`(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
make.thresholds.character <- function(item.params,design.matrix="normal",...) { return(make.thresholds(CQmodel(show=item.params),...)) }
get_time_bounds_run <- function(times, nts) { time_bnds <- array(NA, dim = c(2, length(times)-(nts-1))) for (j in 1:(length(times)-(nts-1))) { time_bnds[1, j] <- times[j] time_bnds[2, j] <- times[j+(nts-1)] } return(time_bnds) }
build_hist_binning <- function(actual, predicted, bins=NULL){ decide_on_break <- function(predicted, breaks=15){ if (length(predicted)<=75){ breaks <- floor(length(predicted)/6) } if(all(predicted<=1) && all(predicted>=0)){ histogram <- hist(predicted, breaks=seq(0,1,(1/breaks)), plot=FALSE) while(sum(histogram$counts>0 & histogram$counts<18) > 3 && !breaks <= 7){ breaks <- breaks-1 histogram <- hist(predicted, breaks=seq(0,1,(1/breaks)), plot=FALSE) }} else { histogram <- hist(predicted, breaks=breaks, plot=FALSE) while(sum(histogram$counts>0 & histogram$counts<18) > 3 && !breaks <= 7){ breaks <- breaks-1 histogram <- hist(predicted, breaks=breaks, plot=FALSE) }} return(suggested_break_number=breaks) } if (is.null(bins)){ n_bins <- decide_on_break(predicted) } else n_bins <- bins predicted_real <- data.frame() predicted_real[1:length(predicted),1] <- predicted predicted_real[,2] <- actual predicted_real <- na.omit(predicted_real) histogram <- hist(predicted_real[,1], breaks=seq(0,1,(1/n_bins)), plot=FALSE, include.lowest = T) true_bin <- data.frame() true_bin[c(1:length(histogram$count)),1] <- seq(1,length(histogram$count)) true_bin[,2] <- 0 true_bin[,3] <- 0 true_bin[,4] <- 0 colnames(predicted_real) <- c("ML score", "real score") for(i in 1:nrow(predicted_real)){ for (j in 1:(length(histogram$breaks)-1)){ if (predicted_real[i,1]==histogram$breaks[1]){ true_bin[1,3] <- true_bin[1,3] + 1 true_bin[1,2] <- true_bin[1,2] + predicted_real[i,2] break } if (histogram$breaks[j] < predicted_real[i,1] && predicted_real[i,1]<= histogram$breaks[j+1]){ true_bin[j,3] <- true_bin[j,3] + 1 true_bin[j,2] <- true_bin[j,2] + predicted_real[i,2] break } } } true_bin[,4] <- true_bin[,2]/true_bin[,3] true_bin[,4][is.na(true_bin[,4])] <- 0 p_values_binom <- unlist(apply(cbind(true_bin[,2], true_bin[,3]),1,binom_for_histogram)) true_bin[,5] <- p_values_binom for (i in 1:nrow(true_bin)){ if(is.nan(true_bin[i,4])){ true_bin[i,6] <- "no value" } else if(true_bin[i,5]<0.001){ true_bin[i,6] <- "***" } else if(true_bin[i,5]<0.01){ true_bin[i,6] <- "**" } else if(true_bin[i,5]<0.05){ true_bin[i,6] <- "*" } else true_bin[i,6] <- "ns" } colnames(true_bin) <- c("no bin", "true cases", "all", "prob_case", "p_value", "significance") colnames(predicted_real) <- c("ML score", "real score") min <- min(predicted) max <- max(predicted) calibration_points <- true_bin[,4] calibration_points_sign <- true_bin[,5]<0.05 calibration_points_number <- length((true_bin[,4])) calibration_points_number_sign <- length((subset(true_bin[,4], true_bin[,5]<0.05))) calibration_range <- range(true_bin[,4]) if(sum(calibration_points_sign) != 0){ calibration_range_sign <- range(true_bin[,4][true_bin[,5]<0.05]) } else{ calibration_range_sign <- 0 } return(list(type="hist", histogram=histogram,probs_per_bin=true_bin[,4], binnning_scheme=true_bin, min=min, max=max, calibration_points=list(calibration_points=calibration_points,calibration_points_sign=calibration_points_sign), calibration_range=list(calibration_range=calibration_range, calibration_range_sign=calibration_range_sign), calibration_points_number=list(calibration_points_number=calibration_points_number, calibration_points_number_sign=calibration_points_number_sign))) }
prov.summarize <- function (save=FALSE, create.zip=FALSE) { tool <- get.tool() if (tool == "rdtLite") { prov.json <- rdtLite::prov.json } else { prov.json <- rdt::prov.json } prov <- provParseR::prov.parse(prov.json(), isFile = FALSE) summarize.prov (prov, save, create.zip) } prov.summarize.file <- function (prov.file, save=FALSE, create.zip=FALSE) { if (!file.exists(prov.file)) { cat("Provenance file not found.\n") return() } prov <- provParseR::prov.parse(prov.file) summarize.prov (prov, save, create.zip) } prov.summarize.run <- function(r.script, save=FALSE, create.zip=FALSE, ...) { tool <- get.tool() if (tool == "rdtLite") { prov.run <- rdtLite::prov.run prov.json <- rdtLite::prov.json } else { prov.run <- rdt::prov.run prov.json <- rdt:: prov.json } tryCatch (prov.run(r.script, ...), error = function(x) {print (x)}) prov <- provParseR::prov.parse(prov.json(), isFile=FALSE) summarize.prov (prov, save, create.zip) } summarize.prov <- function (prov, save, create.zip) { environment <- provParseR::get.environment(prov) if (save) { save.to.text.file(prov, environment) } else { generate.summaries(prov, environment) } if (create.zip) { save.to.zip.file (environment) } } get.tool <- function () { loaded <- loadedNamespaces() if ("rdtLite" %in% loaded) { return("rdtLite") } if ("rdt" %in% loaded) { return("rdt") } installed <- utils::installed.packages () if ("rdtLite" %in% installed) { return("rdtLite") } if ("rdt" %in% installed) { return("rdt") } stop ("One of rdtLite or rdt must be installed.") } save.to.text.file <- function(prov, environment) { prov.path <- environment[environment$label == "provDirectory", ]$value prov.file <- paste(prov.path, "/prov-summary.txt", sep="") sink(prov.file, split=TRUE) generate.summaries(prov, environment) sink() cat(paste("Saving provenance summmary in", prov.file)) } generate.summaries <- function(prov, environment) { script.path <- environment[environment$label == "script", ]$value script.file <- sub(".*/", "", script.path) generate.environment.summary (environment, provParseR::get.tool.info(prov), script.file) generate.library.summary (provParseR::get.libs(prov)) if (script.file != "") { generate.script.summary (provParseR::get.scripts(prov)) } generate.preexisting.summary(provParseR::get.preexisting(prov)) generate.file.summary ("INPUTS:", provParseR::get.input.files(prov), prov) generate.file.summary ("OUTPUTS:", provParseR::get.output.files(prov), prov) if (script.file != "") { generate.stdout.summary (prov) generate.error.summary (prov) } } generate.environment.summary <- function (environment, tool.info, script.file) { if (script.file != "") { cat (paste ("PROVENANCE SUMMARY for", script.file, "\n\n")) } else { cat (paste ("PROVENANCE SUMMARY for Console Session\n\n")) } cat (paste ("ENVIRONMENT:\n")) cat (paste ("Executed at", environment[environment$label == "provTimestamp", ]$value, "\n")) cat (paste ("Total execution time is", environment[environment$label == "totalElapsedTime", ]$value, "seconds\n")) if (script.file != "") { cat (paste ("Script last modified at", environment[environment$label == "scriptTimeStamp", ]$value, "\n")) } cat (paste ("Executed with", environment[environment$label == "langVersion", ]$value, "\n")) cat (paste ("Executed on", environment[environment$label == "architecture", ]$value, "running", environment[environment$label == "operatingSystem", ]$value, "\n")) cat (paste ("Provenance was collected with", tool.info$tool.name, tool.info$tool.version, "\n")) cat (paste ("Provenance is stored in", environment[environment$label == "provDirectory", ]$value, "\n")) cat (paste ("Hash algorithm is", environment[environment$label == "hashAlgorithm", ]$value, "\n" )) cat ("\n") } generate.library.summary <- function (libs) { cat ("LIBRARIES:\n") cat (paste (libs$name, libs$version, collapse="\n")) cat ("\n\n") } generate.script.summary <- function (scripts) { cat (paste ("SOURCED SCRIPTS:\n")) if (nrow(scripts) > 1) { script.info <- dplyr::select(scripts[2:nrow(scripts), ], "script", "timestamp") for (i in 1:nrow(script.info)) { cat(script.info[i, "script"], "\n") cat(" ", script.info[i, "timestamp"], "\n") } } else { cat("None\n") } cat ("\n") } generate.preexisting.summary <- function(vars) { cat (paste ("PRE-EXISTING:\n")) if (is.null(vars) || nrow(vars) == 0) { cat("None\n") } else { for (i in 1:nrow(vars)) { cat(vars[i, "name"], "\n") } } cat("\n") } generate.file.summary <- function (direction, files, prov) { cat(direction, "\n") if (nrow(files) == 0) { cat ("None\n") } else { file.info <- dplyr::select(files, "type", "name", "value", "location", "hash", "timestamp") tool.info <- provParseR::get.tool.info(prov) tool <- tool.info$tool.name version <- tool.info$tool.version if (tool == "rdtLite" && utils::compareVersion (version, "1.0.3") < 0) { use.original.timestamp <- TRUE } else if (tool == "rdt" && utils::compareVersion (version, "3.0.3") < 0) { use.original.timestamp <- TRUE } else { use.original.timestamp <- FALSE } if (use.original.timestamp) { file.info$filetime <- as.character (file.mtime(file.info$location)) } else { environment <- provParseR::get.environment(prov) prov.dir <- environment[environment$label == "provDirectory", ]$value file.info$filetime <- as.character (file.mtime(paste0 (prov.dir, "/", file.info$value))) } for (i in 1:nrow(file.info)) { cat(file.info[i, "type"], ": ") if (file.info[i, "type"] == "File") { cat(file.info[i, "location"], "\n") } else { cat(file.info[i, "name"], "\n") } if (is.na (file.info[i, "filetime"])) { if (file.info[i, "timestamp"] != "") { cat(" ", file.info[i, "timestamp"], "\n") } } else { cat(" ", file.info[i, "filetime"], "\n") } if (file.info[i, "hash"] != "") cat(" ", file.info[i, "hash"], "\n") } } cat("\n") } generate.stdout.summary <- function (prov) { stdout.nodes <- provParseR::get.stdout.nodes(prov) generate.message.summary(prov, stdout.nodes, "CONSOLE") } generate.error.summary <- function (prov) { error.nodes <- provParseR::get.error.nodes(prov) generate.message.summary(prov, error.nodes, "ERRORS") } generate.message.summary <- function (prov, output.nodes, msg) { cat (msg, ":\n", sep="") if (nrow(output.nodes) == 0) { cat ("None\n\n") return() } proc.data.edges <- provParseR::get.proc.data(prov) proc.nodes <- provParseR::get.proc.nodes(prov) output.report <- merge (output.nodes, proc.data.edges, by.x="id", by.y="entity") output.report <- merge (output.report, proc.nodes, by.x="activity", by.y="id") scripts <- provParseR::get.scripts(prov) scripts <- sub (".*/", "", scripts$script) for (i in 1:nrow(output.nodes)) { script.name <- scripts[output.report[i, "scriptNum"]] if (!is.na (script.name)) { cat ("In", scripts[output.report[i, "scriptNum"]]) if (is.na (output.report[i, "startLine"])) { cat (" on line:\n") cat (" ", output.report[i, "name"], "\n") } else if (output.report[i, "startLine"] == output.report[i, "endLine"] || is.na (output.report[i, "endLine"])){ cat (" on line ", output.report[i, "startLine"], ":\n") } else { cat (" on lines ", output.report[i, "startLine"], " to ", output.report[i, "endLine"], ":\n") } } cat (" ", output.report[i, "value"], "\n") } cat("\n") } save.to.zip.file <- function (environment) { cur.dir <- getwd() prov.path <- environment[environment$label == "provDirectory", ]$value setwd(prov.path) prov.dir <- sub (".*/", "", prov.path) zipfile <- paste0 (prov.dir, "_", environment[environment$label == "provTimestamp", ]$value, ".zip") zippath <- paste0 (cur.dir, "/", zipfile) if (file.exists (zippath)) { warning (zippath, " already exists.") } else { zip.program <- Sys.getenv("R_ZIPCMD", "zip") if (.Platform$OS.type == "windows" && endsWith (zip.program, "7z.exe")) { zip.result <- utils::zip (zippath, ".", flags="a", extras="-r -x!debug") } else { zip.result <- utils::zip (zippath, ".", flags="-r", extras="-x debug/") } if (zip.result == 0) { cat (paste ("Provenance saved in", zipfile)) } else if (zip.result == 127) { warning ("Unable to create a zip file. Please check that you have a zip program, such as 7-zip, on your path, and have the R_ZIPCMD environment variable set.") } else if (zip.result == 124) { warning ("Unable to create a zip file. The zip program timed out.") } else { warning ("Unable to create a zip file. The zip program ", zip.program, " returned error ", zip.result) } } setwd(cur.dir) }
na.skip <- function (x, FUN=NULL, ...) { nx <- na.omit(x) fx <- FUN(nx, ... = ...) if (is.vector(fx)) { result <- .xts(fx, .index(x), .indexCLASS = indexClass(x)) } else { result <- merge(fx, .xts(, .index(x))) } return(result) }
library(FDboost) library(fda) data("CanadianWeather", package = "fda") dataM <- with(CanadianWeather, list( temp = t(monthlyTemp), l10precip = t(log10(monthlyPrecip)), lat = coordinates[,"N.latitude"], lon = coordinates[,"W.longitude"], region = factor(region), place = factor(place) )) dataM$lon["Pr. George"] <- 122.75 dataM$lat["Pr. George"] <- 53.9 dataM$tempRaw <- dataM$temp dataM$temp <- sweep(dataM$temp, 2, colMeans(dataM$temp)) dataM$month.t <- 1:12 dataM$month.s <- 1:12 par(mfrow=c(1,2)) with(dataM, { matplot(t(l10precip), type = "l", lty = as.numeric(region), col = as.numeric(region), xlab = "", ylab = "", ylim = c(-1.2, 1)) legend("bottom", col = 1:4, lty = 1:4, legend = levels(region), cex = 1, bty = "n") }) mtext("time [month]", 1, line = 2) mtext("log(precipitation) [mm]", 2, line = 2) with(dataM, { matplot(t(tempRaw), type = "l", lty = as.numeric(region), col = as.numeric(region), xlab = "", ylab = "") }) mtext("time [month]", 1, line = 2) mtext("temperature [C]", 2, line = 2) locations <- cbind(dataM$lon, dataM$lat) rownames(locations) <- as.character(dataM$place) library(fields) dist <- rdist.earth(locations, miles = FALSE, R = 6371) r.5 <- Matern.cor.to.range(500, nu = 0.5, cor.target = .2) r1 <- Matern.cor.to.range(1500, nu = 1.0, cor.target = .2) r10 <- Matern.cor.to.range(3000, nu = 10.0, cor.target = .2) corr_nu.5 <- apply(dist, 1, Matern, nu = .5, range = r.5) corr_nu1 <- apply(dist, 1, Matern, nu = 1, range = r1) corr_nu10 <- apply(dist, 1, Matern, nu = 10, range = r10) P_nu.5 <- solve(corr_nu.5) P_nu1 <- solve(corr_nu1) if(FALSE){ curve(Matern(x, nu = .5, range = r.5), 0, 5000, ylab = "Correlation(d)", xlab = "d [km]", lty = 2) curve(Matern(x, nu = 1, range = r1), 0, 5000, add = TRUE, lty = 3) curve(Matern(x, nu = 10, range = r10), 0, 5000, add = TRUE, lty = 4) legend("topright", inset = 0.2, lty = c(2, NA, 3, NA, 4), legend = c(".5", "", "1", "", "10"), title = expression(nu), cex = .8, bty = "n") } set.seed(210114) mod3 <- FDboost(l10precip ~ bols(region, df = 2.5, contrasts.arg = "contr.dummy") + bsignal(temp, month.s, knots = 11, cyclic = TRUE, df = 2.5, boundary.knots = c(0.5, 12.5), check.ident = FALSE) + bolsc(place, df = 2.5, K = P_nu.5, contrasts.arg = "contr.dummy"), timeformula = ~ bbs(month.t, knots = 11, cyclic = TRUE, df=3, boundary.knots = c(0.5, 12.5)), offset="scalar", offset_control = o_control(k_min = 5), data=dataM) mod3 <- mod3[47] par(mfrow=c(1,2)) predRegion <- predict(mod3, which = 1, newdata = list(region = factor(c("Arctic", "Atlantic", "Continental", "Pacific")), month.t = seq(1, 12, l=20))) + mod3$offset matplot(seq(1, 12, l = 20), t(predRegion), col = 1:4, type = "l", lwd = 2, lty = 1:4, main = "region", ylab = "", xlab = "") mtext("t, time [month]", 1, line = 2) legend("bottom", lty = 1:4, legend = levels(dataM$region), col = 1:4, bty = "n", lwd = 2) plot(mod3, which = 2, pers = TRUE, main = "temperature", zlab = "", xlab = "s, time [month]", ylab = "t, time [month]") mod3 <- mod3[750] par(mfrow=c(1,2)) predRegion <- predict(mod3, which=1, newdata = list(region = factor(c("Arctic", "Atlantic", "Continental", "Pacific")), month.t=seq(1, 12, l = 20))) + mod3$offset matplot(seq(1, 12, l=20), t(predRegion), col = 1:4, type = "l", lwd = 2, lty = 1:4, main = "region", ylab = "", xlab = "") mtext("t, time [month]", 1, line = 2) legend("bottom", lty = 1:4, legend = levels(dataM$region), col = 1:4, bty = "n", lwd = 2) plot(mod3, which = 2, pers = TRUE, main = "temperature", zlab = "", xlab = "s, time [month]", ylab = "t, time [month]") ord <- c("Dawson", "Whitehorse", "Yellowknife", "Uranium City", "Churchill", "Edmonton", "Pr. Albert", "The Pas", "Calgary", "Regina", "Winnipeg", "Thunder Bay", "Pr. George", "Pr. Rupert", "Kamloops", "Vancouver", "Victoria", "Scheffervll", "Bagottville", "Arvida", "St. Johns", "Quebec", "Fredericton", "Sydney", "Ottawa", "Montreal", "Sherbrooke", "Halifax", "Yarmouth", "Toronto", "London", "Charlottvl", "Inuvik", "Resolute", "Iqaluit" ) ind <- sapply(1:35, function(s){ which(dataM$place == ord[s]) }) smoothRes <- predict(mod3, which=3) if( is.null(dim(smoothRes)) ) smoothRes <- matrix(0, ncol = 12, nrow = 35) smoothRes <- (smoothRes )[ind, ] regionOrd <- dataM$region[ind] fit3 <- (predict(mod3))[ind, ] response <- dataM$l10precip[ind, ] par(mar = c(2.55, 2.05, 2.05, 1.05), oma=c(0, 0, 0, 0)) layout(rbind(matrix(1:36, 6, 6), rep(37, 6), rep(37, 6))) for(i in 1:35) { plot(1:12, smoothRes[i, ], col = as.numeric(regionOrd[i]), type = "l", ylim = range(smoothRes, response-fit3), main = paste(ord[i], " (", i, ")", sep = ""), cex = 1.2, cex.axis = .8, ylab = "", xlab = "") abline(h = 0, col = 8) lines(1:12, smoothRes[i, ], col = as.numeric(regionOrd[i])) points(1:12, response[i, ] - fit3[i, ], cex = 0.8) } plot(0, 0, col = "white", xaxt = "n", yaxt = "n", bty = "n") if(require(maps) & require(mapdata)){ mapcanada <- map(database="world", regions="can", plot=FALSE) plot(mapcanada, type = "l", xaxt = "n", yaxt = "n", ylab = "", xlab = "", bty = "n", xlim = c(-141, -50), ylim=c(43, 74), col = "grey", mar = c(0, 0, 0, 0)) for(i in 1:35) { text(-dataM$lon[ind[i]], dataM$lat[ind[i]], col = as.numeric(regionOrd[i]), labels = as.character(i), cex = 0.8) } }
.separate_img = function(img, levels = NULL, drop_zero = TRUE){ if (is.null(levels)) { levels = unique(c(img)) } else { levels = unique(levels) } if (drop_zero) { levels = setdiff(levels, 0) } if (length(levels) == 0) { stop("No non-zero values in the levels this image!") } levels = sort(levels) res = lapply(levels, function(x) { img == x }) names(res) = levels return(res) } setGeneric("separate_img", function(img, levels = NULL, drop_zero = TRUE) standardGeneric("separate_img")) setMethod("separate_img", "nifti", function(img, levels = NULL, drop_zero = TRUE) { res = .separate_img(img = img, levels = levels, drop_zero = drop_zero) return(res) }) setMethod("separate_img", "array", function(img, levels = NULL, drop_zero = TRUE) { res = .separate_img(img = img, levels = levels, drop_zero = drop_zero) return(res) }) setMethod("separate_img", "ANY", function(img, levels = NULL, drop_zero = TRUE) { if (inherits(img, "niftiImage")) { res = .separate_img(img = img, levels = levels, drop_zero = drop_zero) res = lapply(res, function(x) { RNifti::updateNifti(x, template = img) }) return(res) } else { stop("Not implemented for this type!") } return(img) }) setMethod("separate_img", "factor", function(img, levels = NULL, drop_zero = TRUE) { img = as.character(img) img = separate_img(img, levels = levels, drop_zero = drop_zero) return(img) }) setMethod("separate_img", "character", function(img, levels = NULL, drop_zero = TRUE) { img = check_nifti(img) img = separate_img(img, levels = levels, drop_zero = drop_zero) return(img) }) setMethod("separate_img", "list", function(img, levels = NULL, drop_zero = TRUE) { img = lapply(img, separate_img, levels = levels, drop_zero = drop_zero ) return(img) })
censRegLogLikPanel <- function( beta, yMat, xArr, left, right, nInd, nTime, obsBelow, obsBetween, obsAbove, nGHQ = nGHQ, ghqPoints ) { yMatHat <- matrix( matrix( xArr, ncol = dim( xArr )[3] ) %*% beta[ 1:( length( beta ) - 2 ) ], nrow = nInd, ncol = nTime ) sigmaMu <- exp( beta[ length( beta ) - 1 ] ) sigmaNu <- exp( beta[ length( beta ) ] ) logLikIndMat <- matrix( NA, nrow = nInd, ncol = nGHQ ) grad1LogIndArr <- array( NA, c( nInd, length( beta ), nGHQ ) ) grad2IndArr <- array( NA, c( nInd, length( beta ), nGHQ ) ) for( h in 1:nGHQ ) { likGhqInner <- matrix( NA, nrow = nInd, ncol = nTime ) likGhqInner[ obsBelow ] <- ( left - yMatHat[ obsBelow ] - sqrt( 2 ) * sigmaMu * ghqPoints$zeros[ h ] ) / sigmaNu likGhqInner[ obsAbove ] <- ( yMatHat[ obsAbove ] - right + sqrt( 2 ) * sigmaMu * ghqPoints$zeros[ h ] ) / sigmaNu likGhqInner[ obsBetween ] <- ( yMat[ obsBetween ] - yMatHat[ obsBetween ] - sqrt( 2 ) * sigmaMu * ghqPoints$zeros[ h ] ) / sigmaNu logLikGhq <- matrix( 0, nrow = nInd, ncol = nTime ) logLikGhq[ obsBelow | obsAbove ] <- pnorm( likGhqInner[ obsBelow | obsAbove ], log.p = TRUE ) logLikGhq[ obsBetween ] <- dnorm( likGhqInner[ obsBetween ], log = TRUE ) - log( sigmaNu ) logLikGhqSum <- apply( logLikGhq, 1, sum ) logLikIndMat[ , h ] <- log( ghqPoints$weights[ h ] ) + logLikGhqSum gradPartGhqLog <- matrix( 0, nrow = nInd, ncol = nTime ) gradPartGhqSign <- gradPartGhqLog grad2PartGhq <- gradPartGhqLog gradPartGhqSign[ obsBelow ] <- -1 gradPartGhqLog[ obsBelow ] <- dnorm( likGhqInner[ obsBelow ], log = TRUE ) - log( sigmaNu ) gradPartGhqSign[ obsAbove ] <- 1 gradPartGhqLog[ obsAbove ] <- dnorm( likGhqInner[ obsAbove ], log = TRUE ) - log( sigmaNu ) gradPartGhqSign[ obsBetween ] <- sign( likGhqInner[ obsBetween ] ) gradPartGhqLog[ obsBetween ] <- dnorm( likGhqInner[ obsBetween ], log = TRUE ) + log( abs( likGhqInner[ obsBetween ] ) ) - 2 * log(sigmaNu) for( i in 1:( length( beta ) - 2 ) ) { grad1LogIndArr[ , i, h ] <- log( ghqPoints$weights[ h ] ) + logLikGhqSum grad2IndArr[ , i, h ] <- rowSums( exp( gradPartGhqLog - logLikGhq ) * gradPartGhqSign * xArr[ , , i ], na.rm = TRUE ) } grad1LogIndArr[ , length( beta ) - 1, h ] <- log( sigmaMu ) + log( ghqPoints$weights[ h ] ) + logLikGhqSum grad2IndArr[ , length( beta ) - 1, h ] <- rowSums( exp( gradPartGhqLog - logLikGhq ) * gradPartGhqSign * sqrt( 2 ) * ghqPoints$zeros[ h ] ) grad2PartGhq[ obsBelow ] <- exp( gradPartGhqLog[ obsBelow ] - logLikGhq[ obsBelow ] ) * gradPartGhqSign[ obsBelow ] * likGhqInner[ obsBelow ] grad2PartGhq[ obsAbove ] <- - exp( gradPartGhqLog[ obsAbove ] - logLikGhq[ obsAbove ] ) * gradPartGhqSign[ obsAbove ] * likGhqInner[ obsAbove ] grad2PartGhq[ obsBetween ] <- exp( gradPartGhqLog[ obsBetween ] - logLikGhq[ obsBetween ] ) * gradPartGhqSign[ obsBetween ] * likGhqInner[ obsBetween ] - 1 / sigmaNu grad1LogIndArr[ , length( beta ), h ] <- log( sigmaNu ) + log( ghqPoints$weights[ h ] ) + logLikGhqSum grad2IndArr[ , length( beta ), h ] <- rowSums( grad2PartGhq ) } logLikInd <- rep( NA, nInd ) gradInd <- matrix( NA, nrow = nInd, ncol = length( beta ) ) for( i in 1:nInd ) { val <- logLikIndMat[ i, ] logLikInd[ i ] <- log( sum( exp( val - max( val ) ) ) ) + max( val ) for( j in 1:length( beta ) ) { gradInd[ i, j ] <- sum( exp( grad1LogIndArr[ i, j, ] - logLikInd[ i ] ) * grad2IndArr[ i, j, ] ) } } ll <- logLikInd - 0.5 * log( pi ) attr( ll, "gradient" ) <- gradInd return( ll ) }
structure(list(url = "/api/datasets/5b6c9f/actions/", status_code = 202L, headers = structure(list(date = "Thu, 25 Mar 2021 15:23:51 GMT", `content-type` = "application/json;charset=utf-8", `content-length` = "179", server = "nginx", `content-encoding` = "gzip", vary = "Cookie, Accept-Encoding", allow = "GET, HEAD, OPTIONS, POST", `x-timing` = "", `x-xss-protection` = "1; mode=block", `strict-transport-security` = "max-age=31536000; includeSubDomains", `x-content-type-options` = "nosniff"), class = c("insensitive", "list")), all_headers = list(list(status = 202L, version = "HTTP/2", headers = structure(list(date = "Thu, 25 Mar 2021 15:23:51 GMT", `content-type` = "application/json;charset=utf-8", `content-length` = "179", server = "nginx", `content-encoding` = "gzip", vary = "Cookie, Accept-Encoding", allow = "GET, HEAD, OPTIONS, POST", `x-timing` = "", `x-xss-protection` = "1; mode=block", `strict-transport-security` = "max-age=31536000; includeSubDomains", `x-content-type-options` = "nosniff"), class = c("insensitive", "list")))), cookies = structure(list(domain = logical(0), flag = logical(0), path = logical(0), secure = logical(0), expiration = structure(numeric(0), class = c("POSIXct", "POSIXt")), name = logical(0), value = logical(0)), row.names = integer(0), class = "data.frame"), content = charToRaw("{\"element\": \"shoji:view\", \"self\": \"/api/datasets/5b6c9f/actions/\", \"value\": \"/api/progress/\"}"), date = structure(1616685831, class = c("POSIXct", "POSIXt" ), tzone = "GMT"), times = c(redirect = 0, namelookup = 2.9e-05, connect = 3.1e-05, pretransfer = 8.8e-05, starttransfer = 9.2e-05, total = 0.810913)), class = "response")
SimShiny <- function(filename = NULL, dir = getwd(), design, ...){ if(!is.null(filename)) on.exit(sink()) UI_CONDITION <- function(condition, name){ cond <- unique(condition) is_numeric <- is.numeric(cond) cat(sprintf(' selectInput("%s", "Select %s:",\n', name, name)) cat(sprintf(' choices = c(%s)),\n\n', if(is_numeric) paste0(cond, collapse = ',') else paste0('"', cond, '"', collapse = ','))) invisible(NULL) } if(!is.null(filename)){ cat(sprintf('Writing SimShiny components to file \"%s\" in \n directory \"%s\"', filename, dir)) sink(filename) } nms <- names(design) dots <- list(...) inputs <- cbind(names(dots), '=', names(dots)) pick <- inputs[!(inputs[,1] %in% c('generate', 'analyse', 'summarise')), 1L] if(length(pick)){ for(i in 1:length(pick)) inputs[which(pick[i] == inputs[,1]), 3] <- as.character(dots[pick[i]][[1L]]) } inputs <- paste0(apply(inputs, 1, paste0, collapse=''), collapse=', \n ') design_is_numeric <- sapply(design, is.numeric) Functions <- dots[c('generate', 'analyse', 'summarise')] for(i in seq_len(3L)){ if(!is.null(Functions[[i]])){ output <- capture.output(print(Functions[[i]])) if(grepl('<bytecode: ', output[length(output)])) output <- output[-length(output)] output <- paste0(output, '\n', collapse='') cat(sprintf('%s <- %s\n', names(Functions[i]), output)) } } cat(' cat('library(SimDesign)\n') cat('library(shiny)\n\n') cat(sprintf('design_is_numeric <- c(%s)\n\n', paste0(design_is_numeric, collapse=','))) cat('ui <- fluidPage(\n\n') cat(' titlePanel("Simulation"),\n\n') cat(' sidebarLayout(\n') cat(' sidebarPanel(\n') cat(' numericInput("reps", "Number of replications:", 0),\n\n') for(i in seq_len(ncol(design))) UI_CONDITION(design[,i], name=nms[i]) cat(' submitButton("Run Simulation")\n') cat(' ),\n\n') cat(' mainPanel(\n') cat(' tableOutput("results")\n') cat(' )\n') cat(' )\n') cat(')\n') cat('\nserver <- function(input, output) {\n\n') cat(' Design <- reactive({\n') cat(sprintf(' df <- data.frame(%s, stringsAsFactors = FALSE)\n', paste0('input$', nms, collapse=',\n '))) cat(sprintf(' names(df) <- c(%s)\n', paste0('"', nms, '"', collapse=',\n '))) cat(' for(i in seq_len(length(df))) if(design_is_numeric[i]) df[,i] <- as.numeric(df[,i])\n') cat(' df\n') cat(' })\n\n') cat(' output$results <- renderTable({\n') cat(' reps <- input$reps\n') cat(' if(reps > 0){\n') cat(' res <- runSimulation(design=Design(), replications=reps,\n') cat(sprintf(' %s)\n', inputs)) cat(' res <- res[,(ncol(Design())+1):ncol(res)]\n') cat(' res$REPLICATIONS <- NULL\n') cat(' res$SEED <- NULL\n') cat(' return(res)\n') cat(' } else return(NULL)\n') cat(' }, digits = 3)\n') cat('}\n\n') cat('shinyApp(ui=ui, server=server)\n\n') invisible(NULL) }
stri_datetime_format <- function( time, format = "uuuu-MM-dd HH:mm:ss", tz = NULL, locale = NULL ) { .Call(C_stri_datetime_format, time, format, tz, locale) } stri_datetime_parse <- function( str, format = "uuuu-MM-dd HH:mm:ss", lenient = FALSE, tz = NULL, locale = NULL ) { .Call(C_stri_datetime_parse, str, format, lenient, tz, locale) } stri_datetime_fstr <- function(x, ignore_special=TRUE) { x <- .Call(C_stri_datetime_fstr, x) ignore_special <- (is.logical(ignore_special) && length(ignore_special) == 1L && !is.na(ignore_special) && ignore_special) if (length(x) > 0 && !ignore_special) { formats <- outer( c("date", "time", "datetime", "date_relative", "datetime_relative"), c("full", "long", "medium", "short"), stri_paste, sep="_" ) which_p <- match(x, stringi::stri_sprintf("'%s'", formats)) x[which(!is.na(which_p))] <- formats[which_p[!is.na(which_p)]] } x }
NULL makeTuneMultiCritResult = function(learner, ind, x, y, resampling, control, opt.path, measures, ...) { or = makeOptResult(learner, control, x, y, resampling, NULL, opt.path, "TuneMultiCritResult", ...) or$ind = ind or$measures = measures return(or) } makeTuneMultiCritResultFromOptPath = function(learner, par.set, measures, resampling, control, opt.path) { j = getOptPathParetoFront(opt.path, index = TRUE) els = lapply(j, getOptPathEl, op = opt.path) xs = extractSubList(els, "x", simplify = FALSE) xs = lapply(xs, trafoValue, par = par.set) xs = lapply(xs, removeMissingValues) ys = extractSubList(els, "y", simplify = "rows") colnames(ys) = opt.path$y.names makeTuneMultiCritResult(learner, j, xs, ys, resampling, control, opt.path, measures) } print.TuneMultiCritResult = function(x, ...) { catf("Tune multicrit result:") catf("Points on front: %i", length(x$x)) }
context('ESF_p151') s0=c(rep(4,8),rep(16,8),rep(64,8),rep(256,8)) n0.tmp=rep(c(2^2,2^4,2^8,2^12),8) n0=s0*n0.tmp e0.tmp=rep(c(rep(2^2,4),rep(2^10,4)),4) e0=n0*e0.tmp
timePlot <- function(mydata, pollutant = "nox", group = FALSE, stack = FALSE, normalise = NULL, avg.time = "default", data.thresh = 0, statistic = "mean", percentile = NA, date.pad = FALSE, type = "default", cols = "brewer1", plot.type = "l", key = TRUE, log = FALSE, windflow = NULL, smooth = FALSE, ci = TRUE, y.relation = "same", ref.x = NULL, ref.y = NULL, key.columns = 1, key.position = "bottom", name.pol = pollutant, date.breaks = 7, date.format = NULL, auto.text = TRUE, ...) { variable <- year <- NULL if (log) nlog <- 10 else nlog <- FALSE vars <- c("date", pollutant) if (length(cols) == 1 && cols == "greyscale") { trellis.par.set(list(strip.background = list(col = "white"))) } current.strip <- trellis.par.get("strip.background") current.font <- trellis.par.get("fontsize") on.exit(trellis.par.set( fontsize = current.font )) Args <- list(...) Args$xlab <- if ("xlab" %in% names(Args)) { quickText(Args$xlab, auto.text) } else { quickText("", auto.text) } Args$ylab <- if ("ylab" %in% names(Args)) { quickText(Args$ylab, auto.text) } else { NULL } if ("main" %in% names(Args)) { if (!is.list(Args$main)) Args$main <- quickText(Args$main, auto.text) } if ("fontsize" %in% names(Args)) { trellis.par.set(fontsize = list(text = Args$fontsize)) } xlim <- if ("xlim" %in% names(Args)) { Args$xlim } else { NULL } if (!"pch" %in% names(Args)) { Args$pch <- NA } if (!"lwd" %in% names(Args)) { Args$lwd <- 1 } if (!"lty" %in% names(Args)) { Args$lty <- NULL } if (!"layout" %in% names(Args)) { Args$layout <- NULL } strip <- if ("strip" %in% names(Args)) { Args$strip } else { TRUE } len.all <- length(mydata$date) len.unique <- length(unique(mydata$date)) if (type == "default" & "site" %in% names(mydata) & len.all != len.unique) { if (length(unique(factor(mydata$site))) > 1) stop("More than one site has been detected: choose type = 'site' and pollutant(s)") } if (length(percentile) > 1 & length(pollutant) > 1) { stop("Only one pollutant allowed when considering more than one percentile") } if (!missing(statistic) & missing(avg.time)) { message("No averaging time applied, using avg.time ='month'") avg.time <- "month" } if (!is.null(windflow)) { vars <- unique(c(vars, "wd", "ws")) } mydata <- checkPrep(mydata, vars, type, remove.calm = FALSE) theStrip <- strip if (date.pad) mydata <- date.pad(mydata, type = type) mydata <- cutData(mydata, type, ...) if (avg.time != "default") { if (length(percentile) > 1) { mydata <- group_by(mydata, UQS(syms(type))) %>% do(calcPercentile( ., pollutant = pollutant, avg.time = avg.time, data.thresh = data.thresh, percentile = percentile )) pollutant <- paste("percentile.", percentile, sep = "") if (missing(group)) group <- TRUE } else { mydata <- timeAverage( mydata, pollutant = pollutant, type = type, statistic = statistic, avg.time = avg.time, data.thresh = data.thresh, percentile = percentile ) } } if (type == "default") mydata$default <- "default" if (!is.null(windflow)) { mydata <- gather(mydata, key = variable, value = value, UQS(syms(pollutant))) } else { mydata <- gather(mydata, key = variable, value = value, UQS(syms(pollutant))) } if (type != "default") group <- TRUE npol <- length(unique(mydata$variable)) if (is.null(Args$layout) & !group & !stack) Args$layout <- c(1, npol) divide.by.mean <- function(x) { Mean <- mean(x$value, na.rm = TRUE) x$value <- x$value / Mean x } norm.by.date <- function(x, thedate) { temp <- na.omit(x) id <- which(abs(temp$date - thedate) == min(abs(temp$date - thedate))) id <- temp$date[id] x$value <- 100 * x$value / x$value[x$date == id] x } if (!missing(normalise)) { mydata <- mutate(mydata, variable = factor(variable, levels = unique(variable))) if (is.null(Args$ylab)) { Args$ylab <- "normalised level" } if (normalise == "mean") { mydata <- group_by(mydata, variable) %>% do(divide.by.mean(.)) } else { thedate <- as.POSIXct(strptime(normalise, format = "%d/%m/%Y", tz = "GMT")) mydata <- group_by(mydata, variable) %>% do(norm.by.date(., thedate = thedate)) } } if (is.null(Args$ylab)) { Args$ylab <- quickText(paste(pollutant, collapse = ", "), auto.text) } mylab <- sapply(seq_along(pollutant), function(x) quickText(pollutant[x], auto.text)) if (!missing(name.pol)) { mylab <- sapply(seq_along(name.pol), function(x) quickText(name.pol[x], auto.text)) } myColors <- if (length(cols) == 1 && cols == "greyscale") { openColours(cols, npol + 1)[-1] } else { openColours(cols, npol) } myform <- formula(paste("value ~ date |", type)) if (is.null(Args$strip)) { strip <- TRUE } strip.left <- FALSE dates <- dateBreaks(mydata$date, date.breaks)$major if (is.null(date.format)) { formats <- dateBreaks(mydata$date, date.breaks)$format } else { formats <- date.format } scales <- list( x = list(at = dates, format = formats), y = list(log = nlog, relation = y.relation, rot = 0) ) if (!group) { if (is.null(Args$strip)) { strip <- FALSE } myform <- formula("value ~ date | variable") if (npol == 1) { strip.left <- FALSE } else { strip.left <- strip.custom( par.strip.text = list(cex = 0.9), horizontal = FALSE, factor.levels = mylab ) } scales <- list( x = list(at = dates, format = formats), y = list( relation = y.relation, rot = 0, log = nlog ) ) if (is.null(Args$lty)) Args$lty <- 1 } if (is.null(Args$lty)) { Args$lty <- 1:length(pollutant) } if (type == "default") strip <- FALSE if (stack) { mydata$year <- as.character(year(mydata$date)) if (is.null(Args$layout)) { Args$layout <- c(1, length(unique(mydata$year))) } strip <- FALSE myform <- formula("value ~ date | year") strip.left <- strip.custom(par.strip.text = list(cex = 0.9), horizontal = FALSE) dates <- as.POSIXct(unique(paste(format(mydata$date, "%Y-%m"), "-01", sep = "")), "GMT") scales <- list(x = list(format = "%d-%b", relation = "sliced"), y = list(log = nlog)) xlim <- lapply(split(mydata, mydata["year"]), function(x) range(x$date)) } if (missing(key.columns)) key.columns <- npol if (key) { if (any(!is.na(Args$pch))) { key <- list( lines = list( col = myColors[1:npol], lty = Args$lty, lwd = Args$lwd ), points = list( pch = Args$pch, col = myColors[1:npol] ), text = list(lab = mylab), space = key.position, columns = key.columns ) } else { key <- list( lines = list( col = myColors[1:npol], lty = Args$lty, lwd = Args$lwd ), text = list(lab = mylab), space = key.position, columns = key.columns ) } } else { key <- NULL } if (theStrip) { strip <- strip strip.left <- strip.left } else { strip <- FALSE strip.left <- FALSE } if (length(type) == 1 & type[1] == "wd" & is.null(Args$layout)) { wds <- c("NW", "N", "NE", "W", "E", "SW", "S", "SE") mydata$wd <- ordered(mydata$wd, levels = wds) wd.ok <- sapply(wds, function(x) { if (x %in% unique(mydata$wd)) FALSE else TRUE }) skip <- c(wd.ok[1:4], TRUE, wd.ok[5:8]) mydata$wd <- factor(mydata$wd) Args$layout <- c(3, 3) if (!"skip" %in% names(Args)) { Args$skip <- skip } } if (!"skip" %in% names(Args)) { Args$skip <- FALSE } gap <- difftime(max(mydata$date), min(mydata$date), units = "secs") / 80 if (is.null(xlim)) xlim <- range(mydata$date) + c(-1 * gap, gap) mydata$variable <- factor(mydata$variable, levels = pollutant) xyplot.args <- list( x = myform, data = mydata, groups = mydata$variable, as.table = TRUE, par.strip.text = list(cex = 0.8), scales = scales, key = key, xlim = xlim, strip = strip, strip.left = strip.left, windflow = windflow, yscale.components = yscale.components.log10ticks, panel = panel.superpose, panel.groups = function(x, y, col.line, col.symbol, col, col.se, type, group.number, lty, lwd, pch, subscripts, windflow, ...) { if (group.number == 1) { panel.grid(-1, 0) panel.abline(v = dates, col = "grey90") } if (!group & !stack) { panel.abline(v = dates, col = "grey90") panel.grid(-1, 0) } panel.xyplot( x, y, type = plot.type, lty = lty, lwd = lwd, pch = pch, col.line = myColors[group.number], col.symbol = myColors[group.number], ... ) if (any(!is.na(Args$pch))) { lpoints( x, y, type = "p", pch = Args$pch[group.number], col.symbol = myColors[group.number], ... ) } if (!is.null(windflow)) { list1 <- list(x, y, dat = mydata, subscripts) list2 <- windflow flow.args <- listUpdate(list1, list2) do.call(panel.windflow, flow.args) } if (smooth) { panel.gam( x, y, col = myColors[group.number], col.se = myColors[group.number], lty = 1, lwd = 1, se = ci, k = NULL, ... ) } if (!is.null(ref.x)) do.call(panel.abline, ref.x) if (!is.null(ref.y)) do.call(panel.abline, ref.y) } ) xyplot.args <- listUpdate(xyplot.args, Args) plt <- do.call(xyplot, xyplot.args) plot(plt) newdata <- mydata output <- list(plot = plt, data = newdata, call = match.call()) class(output) <- "openair" invisible(output) } panel.windflow <- function(x, y, dat, subscripts, scale = 0.2, ws = "ws", wd = "wd", col = "black", lwd = 1, length = 0.1, angle = 20, ...) { max.ws <- max(dat[[ws]], na.rm = TRUE) delta.x <- scale * diff(current.panel.limits()$xlim) delta.y <- scale * diff(current.panel.limits()$ylim) delta.x.cm <- diff(current.panel.limits(unit = "cm")$xlim) delta.y.cm <- diff(current.panel.limits(unit = "cm")$ylim) if (delta.x.cm > delta.y.cm) { delta.y <- delta.y * delta.x.cm / delta.y.cm } else { delta.x <- delta.x * delta.y.cm / delta.x.cm } x0 <- delta.x * dat[[ws]][subscripts] * sin(2 * pi * dat[[wd]][subscripts] / 360) / max.ws y0 <- delta.y * dat[[ws]][subscripts] * cos(2 * pi * dat[[wd]][subscripts] / 360) / max.ws panel.arrows( x0 = x - x0 / 2, y0 = y - y0 / 2, x1 = x + x0 / 2, y1 = y + y0 / 2, length = length, angle = angle, code = 1, col = col, lwd = lwd ) }
example8 <- function(t, y, parameters) { list(c(y[2], -y[1] - y[2])) }
qCompound <- function(p,parent,compound,compoundDist,params,...) { if (!exists(paste("p",parent,sep=""))) { return(paste("The parent distribution",parent,"doesn't exist")) } if (!is.element(compound,compoundDist)) { return(paste("The discrete distribution",compound,"doesn't exist")) } l <- p[p<0|p>1] if (length(l)>0) stop("Parameter p is probability") xval <- double(length(p)) Finv <- get(paste("q", parent, sep = ""), mode = "function") phi <- get(paste("pgf", compound, sep = ""), mode = "function") phiInv <- get(paste("pgfI", compound, sep = ""), mode = "function") xval <- Finv(1-phiInv(1-p*(1-phi(0,params)),params),...) return(xval) }
runDataTypeTests <- function(db, redshift=FALSE) { test_that("integer works", { events <- data.frame(counter=c(1, 2)) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$counter, events$counter) }) test_that("bigint works", { events <- data.frame(bigcounter=c(1, 2)) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$bigcounter, events$bigcounter) }) test_that("large bigint", { dbxExecute(db, "INSERT INTO events (bigcounter) VALUES (9007199254740991)") dbxSelect(db, "SELECT * FROM events ORDER BY id") dbxExecute(db, "INSERT INTO events (bigcounter) VALUES (9007199254740992)") res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$bigcounter, c(9007199254740991, 9007199254740992)) }) test_that("small bigint", { dbxExecute(db, "INSERT INTO events (bigcounter) VALUES (-9007199254740991)") dbxSelect(db, "SELECT * FROM events ORDER BY id") dbxExecute(db, "INSERT INTO events (bigcounter) VALUES (-9007199254740992)") res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$bigcounter, c(-9007199254740991, -9007199254740992)) }) test_that("float works", { events <- data.frame(speed=c(1.2, 3.4)) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$speed, events$speed, tolerance=0.000001) }) test_that("decimal works", { events <- data.frame(distance=c(1.2, 3.4)) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$distance, events$distance) }) test_that("boolean works", { events <- data.frame(active=c(TRUE, FALSE)) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") if (isSQLite(db) || isRMariaDB(db)) { res$active <- res$active != 0 } else if (isODBCPostgres(db)) { res$active <- res$active != "0" } expect_equal(res$active, events$active) }) test_that("json works", { skip_if(isRMariaDB(db)) events <- data.frame(properties=c('{"hello": "world"}'), stringsAsFactors=FALSE) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$properties, events$properties) }) test_that("jsonb works", { skip_if(!isPostgres(db)) events <- data.frame(propertiesb=c('{"hello": "world"}'), stringsAsFactors=FALSE) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$propertiesb, events$propertiesb) }) test_that("jsonlite with jsonb works", { skip_if(!isPostgres(db)) events <- data.frame(propertiesb=c(jsonlite::toJSON(list(hello="world"))), stringsAsFactors=FALSE) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(jsonlite::fromJSON(res$propertiesb), jsonlite::fromJSON(events$propertiesb)) }) test_that("dates works", { events <- data.frame(created_on=as.Date(c("2018-01-01", "2018-01-02"))) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") if (isSQLite(db)) { res$created_on <- as.Date(res$created_on) } expect_equal(res$created_on, events$created_on) expect_true(all(format(res$created_on, "%Z") == "UTC")) }) test_that("datetimes works", { t1 <- as.POSIXct("2018-01-01 12:30:55") t2 <- as.POSIXct("2018-01-01 16:59:59") events <- data.frame(updated_at=c(t1, t2)) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") if (isSQLite(db)) { res$updated_at <- as.POSIXct(res$updated_at, tz="Etc/UTC") attr(res$updated_at, "tzone") <- Sys.timezone() } expect_equal(res$updated_at, events$updated_at) res <- dbxSelect(db, "SELECT COUNT(*) AS count FROM events WHERE updated_at = '2018-01-01 20:30:55.000000'") expect_equal(1, res$count) }) test_that("datetimes with time zones works", { t1 <- as.POSIXct("2018-01-01 12:30:55", tz="America/New_York") t2 <- as.POSIXct("2018-01-01 16:59:59", tz="America/New_York") events <- data.frame(updated_at=c(t1, t2)) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") if (isSQLite(db)) { res$updated_at <- as.POSIXct(res$updated_at, tz="Etc/UTC") attr(res$updated_at, "tzone") <- Sys.timezone() } attr(events$updated_at, "tzone") <- Sys.timezone() expect_equal(res$updated_at, events$updated_at) res <- dbxSelect(db, "SELECT COUNT(*) AS count FROM events WHERE updated_at = '2018-01-01 17:30:55.000000'") expect_equal(res$count, 1) }) test_that("timestamp with time zone works", { skip_if(isSQLite(db)) t1 <- as.POSIXct("2018-01-01 12:30:55", tz="America/New_York") t2 <- as.POSIXct("2018-01-01 16:59:59", tz="America/New_York") events <- data.frame(deleted_at=c(t1, t2)) dbxInsert(db, "events", events) attr(events$deleted_at, "tzone") <- Sys.timezone() res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$deleted_at, events$deleted_at) res <- dbxSelect(db, "SELECT COUNT(*) AS count FROM events WHERE deleted_at = '2018-01-01 17:30:55'") expect_equal(res$count, 1) }) test_that("datetimes have precision", { t1 <- as.POSIXct("2018-01-01 12:30:55.123456") events <- data.frame(updated_at=c(t1)) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") if (isSQLite(db)) { res$updated_at <- as.POSIXct(res$updated_at, tz="Etc/UTC") attr(res$updated_at, "tzone") <- Sys.timezone() } expect_equal(res$updated_at, events$updated_at) res <- dbxSelect(db, "SELECT COUNT(*) AS count FROM events WHERE updated_at = '2018-01-01 20:30:55.123456'") expect_equal(res$count, 1) }) test_that("time zone is UTC", { skip_if(isSQLite(db) || isSQLServer(db)) if (isPostgres(db)) { expect_equal("UTC", dbxSelect(db, "SHOW timezone")$TimeZone) } else { expect_equal("+00:00", dbxSelect(db, "SELECT @@session.time_zone")$`@@session.time_zone`) } }) test_that("times work", { events <- data.frame(open_time=c("12:30:55", "16:59:59"), stringsAsFactors=FALSE) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$open_time, events$open_time) res <- dbxSelect(db, "SELECT COUNT(*) AS count FROM events WHERE open_time = '12:30:55'") expect_equal(res$count, 1) }) test_that("times with time zone work", { skip_if(!isPostgres(db)) events <- data.frame(close_time=c("12:30:55", "16:59:59"), stringsAsFactors=FALSE) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") if (isODBCPostgres(db)) { expect_equal(res$close_time, paste0(events$close_time, "+00")) } else { expect_equal(res$close_time, events$close_time) } res <- dbxSelect(db, "SELECT COUNT(*) AS count FROM events WHERE close_time = '12:30:55'") expect_equal(res$count, 1) }) test_that("hms with times work", { events <- data.frame(open_time=c(hms::as_hms("12:30:55"), hms::as_hms("16:59:59")), stringsAsFactors=FALSE) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$open_time, as.character(events$open_time)) res <- dbxSelect(db, "SELECT COUNT(*) AS count FROM events WHERE open_time = '12:30:55'") expect_equal(res$count, 1) }) test_that("binary works", { skip_if(redshift || isODBCPostgres(db) || isSQLServer(db)) images <- list(1:3, 4:6) serialized_images <- lapply(images, function(x) { serialize(x, NULL) }) events <- data.frame(image=I(serialized_images)) dbxInsert(db, "events", events) if (isRMySQL(db)) { res <- dbxSelect(db, "SELECT hex(image) AS image FROM events ORDER BY id") res$image <- lapply(res$image, hexToRaw) } else { res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") } expect_equal(lapply(res$image, unserialize), images) }) test_that("blob with binary works", { skip_if(redshift || isODBCPostgres(db) || isSQLServer(db)) images <- list(1:3, 4:6) serialized_images <- lapply(images, function(x) { serialize(x, NULL) }) events <- data.frame(image=blob::as_blob(serialized_images)) dbxInsert(db, "events", events) if (isRMySQL(db)) { res <- dbxSelect(db, "SELECT hex(image) AS image FROM events ORDER BY id") res$image <- lapply(res$image, hexToRaw) } else { res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") } expect_equal(blob::as_blob(res$image), events$image) }) test_that("empty blob works", { events <- data.frame(city=c("Boston")) dbxInsert(db, "events", events) sql <- "SELECT id, image FROM events WHERE image IS NULL" res <- dbxSelect(db, sql) expect_equal(nrow(res), 1) if (isRMySQL(db)) { expect_equal(res$image[[1]], as.character(NA)) } else { expect_null(res$image[[1]]) dbxUpdate(db, "events", res, where_cols=c("id")) res <- dbxSelect(db, sql) expect_equal(nrow(res), 1) } }) test_that("ts uses observation values", { events <- data.frame(counter=ts(1:3, start=c(2018, 1), end=c(2018, 3), frequency=12)) dbxInsert(db, "events", events) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res$counter, as.integer(events$counter)) }) test_that("can update what what just selected and get same result", { skip_if(isODBCPostgres(db) || isSQLServer(db)) df <- data.frame( active=c(TRUE, FALSE), created_on=as.Date(c("2018-01-01", "2018-02-01")), updated_at=as.POSIXct(c("2018-01-01 12:30:55", "2018-01-01 16:59:59")), open_time=c("09:30:55", "13:59:59"), properties=c('{"hello": "world"}', '{"hello": "r"}') ) dbxInsert(db, "events", df) all <- dbxSelect(db, "SELECT * FROM events ORDER BY id") dbxUpdate(db, "events", all, where_cols=c("id")) res <- dbxSelect(db, "SELECT * FROM events ORDER BY id") expect_equal(res, all) }) }
test_that("brk_manual", { expect_silent(brk_res(brk_manual(1:3, c(TRUE, TRUE, TRUE)))) expect_silent(brk_res(brk_manual(c(1, 2, 2, 3), c(TRUE, TRUE, FALSE, TRUE)))) expect_silent(brk_res(brk_manual(c(-Inf, 1, Inf), rep(TRUE, 3)))) expect_error(brk_res(brk_manual(c(1, 2, 2, 3), c(TRUE, FALSE, FALSE, TRUE)))) expect_error(brk_res(brk_manual(c(0, 3, 1), c(TRUE, TRUE, TRUE)))) }) test_that("categorize works", { x <- seq(0.5, 3.5, 0.5) breaks <- brk_res(brk_manual(1:3, c(TRUE, TRUE, TRUE))) r <- categorize(x, breaks) expect_equivalent(r, c(NA, 1, 1, 2, 2, NA, NA)) breaks <- brk_res(brk_manual(1:3, c(TRUE, TRUE, FALSE))) r <- categorize(x, breaks) expect_equivalent(r, c(NA, 1, 1, 2, 2, 2, NA)) breaks <- brk_res(brk_manual(c(1, 2, 2, 3), c(TRUE, TRUE, FALSE, TRUE))) r <- categorize(x, breaks) expect_equivalent(r, c(NA, 1, 1, 2, 3, NA, NA)) x <- c(Inf, 1, -Inf, NA, NaN) breaks <- brk_res(brk_manual(1:3, c(TRUE, TRUE, TRUE))) r <- categorize(x, breaks) expect_equivalent(r, c(NA, 1, NA, NA, NA)) }) test_that("categorize_impl/categorize_non_numeric equivalence", { replicate(100, { n <- 10 x <- rnorm(n) * 10 breaks_pop <- c(-Inf, -5:5, Inf) b <- sort(sample(breaks_pop, n, replace = FALSE)) left <- sample(c(TRUE, FALSE), n, replace = TRUE) x[c(3,5,7)] <- sample(breaks_pop, 3) b[3] <- b[2] b[8] <- b[7] left[2:3] <- left[7:8] <- c(TRUE, FALSE) ci <- categorize_impl(x, b, left) cnn <- categorize_non_numeric(x, b, left) expect_equal(ci, cnn) }) })
PW_C <- function(train, test, beta=8.0, ro=0.001, epsilon=0.001){ alg <- RKEEL::R6_PW_C$new() alg$setParameters(train, test, beta, ro, epsilon) return (alg) } R6_PW_C <- R6::R6Class("R6_PW_C", inherit = ClassificationAlgorithm, public = list( beta = 8.0, ro = 0.001, epsilon = 0.001, setParameters = function(train, test, beta=8.0, ro=0.001, epsilon=0.001){ super$setParameters(train, test) self$beta <- beta self$ro <- ro self$epsilon <- epsilon } ), private = list( jarName = "PW.jar", algorithmName = "PW-C", algorithmString = "Prototipe dependant classifier", getParametersText = function(){ text <- "" text <- paste0(text, "Beta = ", self$beta, "\n") text <- paste0(text, "Ro = ", self$ro, "\n") text <- paste0(text, "Epsilon = ", self$epsilon, "\n") return(text) } ) )
chisqFit <- function(resObserved, data, DstarM = FALSE, tt = NULL, formula = NULL) { if (is.DstarM.fitObs(resObserved)) { if (is.null(tt)) { tt <- resObserved$tt m <- resObserved$obs } else { m <- getPdfs(resObserved$resDecision, tt) } formula <- resObserved[["resDecision"]][["formula"]] } else { m <- resObserved } by <- unique(zapsmall(diff(tt))) if (length(by) != 1) { stop("Time grid tt must be equally spaced and length(unique(zapsmall(diff(tt)))) == 1 must be TRUE.", call. = FALSE) } if (!is.data.frame(data)) { stop(sprintf("Argument data should be dataframe. The supplied object has mode %s", mode(data))) } else { if (!is.matrix(resObserved)) formula <- resObserved$resDecision$formula data <- getData(formula, data) rtime <- data[["rtime"]] response <- data[["response"]] condition <- data[["condition"]] hasConditions <- data[["hasConditions"]] data <- data[["data"]] ncondition <- length(unique(data[[condition]])) if (is.DstarM.fitObs(resObserved) && !is.null(resObserved$ncondition) && ncondition != resObserved$ncondition) { stop(sprintf("Number of conditions in resObserved (%d) does not match number of conditions in the data (%d)", as.integer(resObserved$ncondition), as.integer(ncondition))) } else if (!is.DstarM.fitObs(resObserved) && 2 * ncondition != NCOL(resObserved)) { stop(sprintf("Number of conditions in resObserved (%d) does not match number of conditions in the data (%d)", as.integer(NCOL(resObserved)), as.integer(2 * ncondition))) } mm <- matrix(0, ncondition * 2, ncondition) mm[1:dim(mm)[1L] + dim(mm)[1L] * rep(1:dim(mm)[2L] - 1, each = 2)] <- 1 rt <- split(data[[rtime]], list(data[[response]], data[[condition]])) ncr <- lengths(rt) g <- getGhat(rt = rt, tt = tt, ncondition = ncondition, mm = mm, by = by) } if (DstarM) { tmp <- 1:(NCOL(m) - 1) ii <- rep(tmp, times = rev(tmp)) jj <- unlist(lapply(tmp, function(x, m) (x + 1):m, m = ncol(m))) out <- numeric(length(ii)) for (l in 1:length(ii)) { a <- customConvolveO(g[, ii[l]], by * rev(m[, jj[l]]))[seq_along(tt)] b <- customConvolveO(g[, jj[l]], by * rev(m[, ii[l]]))[seq_along(tt)] out[i] <- chisq(tt = tt, a = a, b = b) * 100 * (ncr[ii[l]] + ncr[jj[l]])/sum(ncr) } } else { out <- numeric(NCOL(m)) for (i in 1:NCOL(m)) { out[i] <- chisq(tt = tt, a = m[, i], b = g[, i]) * 100 * ncr[i]/sum(ncr) } } return(list(sum = sum(out), chisq = out)) }
R0types<-function(l11,l12,l21,l22,death1,death2){ L<-l11-l22-death1+death2 c<-sqrt(L*L+4*l12*l21) f1<-(c+L)/(c+L+2*l12) R0<-f1*(l11+l12)/death1+(1-f1)*(l22+l21)/death2 R0 }
drive_update <- function(file, media = NULL, ..., verbose = deprecated()) { warn_for_verbose(verbose) if ((!is.null(media)) && (!file.exists(media))) { drive_abort(c( "No file exists at the local {.arg media} path:", bulletize(gargle_map_cli(media, "{.path <<x>>}"), bullet = "x") )) } file <- as_dribble(file) file <- confirm_single_file(file) meta <- toCamel(list2(...)) if (is.null(media) && length(meta) == 0) { drive_bullets(c( "!" = "No updates specified." )) return(invisible(file)) } meta[["fields"]] <- meta[["fields"]] %||% "*" if (is.null(media)) { out <- drive_update_metadata(file, meta) } else { if (length(meta) == 0) { out <- drive_update_media(file, media) } else { media <- enc2utf8(media) out <- drive_update_multipart(file, media, meta) } } drive_bullets(c("File updated:", bulletize(gargle_map_cli(out)))) invisible(out) } drive_update_media <- function(file, media) { request <- request_generate( endpoint = "drive.files.update.media", params = list( fileId = file$id, uploadType = "media", fields = "*" ) ) request$body <- httr::upload_file(path = media) response <- request_make(request) as_dribble(list(gargle::response_process(response))) } drive_update_metadata <- function(file, meta) { params <- meta %||% list() params$fileId <- file$id request <- request_generate( endpoint = "drive.files.update", params = params ) response <- request_make(request) as_dribble(list(gargle::response_process(response))) } drive_update_multipart <- function(file, media, meta) { params <- meta %||% list() params$fileId <- file$id params$uploadType <- "multipart" request <- request_generate( endpoint = "drive.files.update.media", params = params ) meta_file <- withr::local_file( tempfile("drive-update-meta", fileext = ".json") ) write_utf8(jsonlite::toJSON(meta), meta_file) request$body <- list( metadata = httr::upload_file( path = meta_file, type = "application/json; charset=UTF-8" ), media = httr::upload_file(path = media) ) response <- request_make(request, encode = "multipart") as_dribble(list(gargle::response_process(response))) }
left_equal <- function(x1,x2){ x <- c(x1,x2)[which.min(c(nchar(x1),nchar(x2)))] object <- c(x1,x2)[which.max(c(nchar(x1),nchar(x2)))] tolower(x) == tolower(left(object,nchar(x))) } right_equal <- function(x1,x2){ x <- c(x1,x2)[which.min(c(nchar(x1),nchar(x2)))] object <- c(x1,x2)[which.max(c(nchar(x1),nchar(x2)))] tolower(x) == tolower(right(object,nchar(x))) }
rm(list = ls()) do.calc <- FALSE do.save <- FALSE if (do.calc == FALSE) message("For performance reasons, this vignette builds from pre-calculated data.\n\n To run all calculations, set 'do.calc <- TRUE' in the vignette's first code chunk. \n Building the vignette will take a while.") knitr::opts_chunk$set( collapse = TRUE, comment = " fig.align = "center", dev = "png", dpi=150, fig.height=7, fig.width=7, dev.args = list(), out.width = "90%" ) op <- par(no.readonly = TRUE) library(GUTS) packageVersion("GUTS") JA_data_file_name <- system.file("extdata", "Data_for_GUTS_software_ring_test_A_v05.xlsx", package = "GUTS", mustWork = TRUE) par_A <- data.frame(symbols = c("hb", "ke", "kk", "mn", "beta"), JAsymbols = c("hb", "kd", "kk", "mw", "beta"), SD = c(0.01, 0.8, 0.6, 3, NA), IT = c(0.02, 0.8, NA, 5, 5.3)) par_A library(xlsx) read.xlsx( file = paste0(JA_data_file_name), sheetName = "Data A", rowIndex = c(1:11), colIndex = seq(which(LETTERS == "A"), which(LETTERS == "G")), header = TRUE ) data_A_SD <- read.xlsx( file = paste0(JA_data_file_name), sheetName = "Data A", rowIndex = c(4:11), colIndex = seq(which(LETTERS == "B"), which(LETTERS == "G")), header = FALSE ) con_A_SD <- as.numeric(data_A_SD[1,]) data_A_SD <- data_A_SD[-1,] day_A_SD <- as.numeric( t( read.xlsx( file = paste0(JA_data_file_name), sheetName = "Data A", rowIndex = c(5:11), colIndex = seq(which(LETTERS == "A")), header = FALSE ) ) ) names(data_A_SD) <- paste0("c", con_A_SD) rownames(data_A_SD) <- paste0("d", day_A_SD) GUTS_A_SD <- list( C0 = guts_setup( C = rep_len(con_A_SD[1], length(day_A_SD)), Ct = day_A_SD, y = data_A_SD$c0, yt = day_A_SD, model = "SD" ), C2 = guts_setup( C = rep_len(con_A_SD[2], length(day_A_SD)), Ct = day_A_SD, y = data_A_SD$c2, yt = day_A_SD, model = "SD" ), C4 = guts_setup( C = rep_len(con_A_SD[3], length(day_A_SD)), Ct = day_A_SD, y = data_A_SD$c4, yt = day_A_SD, model = "SD" ), C6 = guts_setup( C = rep_len(con_A_SD[4], length(day_A_SD)), Ct = day_A_SD, y = data_A_SD$c6, yt = day_A_SD, model = "SD" ), C8 = guts_setup( C = rep_len(con_A_SD[5], length(day_A_SD)), Ct = day_A_SD, y = data_A_SD$c8, yt = day_A_SD, model = "SD" ), C16 = guts_setup( C = rep_len(con_A_SD[6], length(day_A_SD)), Ct = day_A_SD, y = data_A_SD$c16, yt = day_A_SD, model = "SD" ) ) library('adaptMCMC') logposterior <- function( pars, guts_objects, isOutOfBoundsFun = function(p) any( is.na(p), is.infinite(p) ) ) { if ( isOutOfBoundsFun(pars) ) return(-Inf) return( sum(sapply( guts_objects, function(obj) guts_calc_loglikelihood(obj, pars) )) ) } is_out_of_bounds_fun_SD <- function(p) any( is.na(p), is.infinite(p), p < 0, p["kk"] > 30 ) load(system.file("extdata", "vignetteGUTS-ringTest-SD-MCMCresults.Rdata", package = "GUTS", mustWork = TRUE) ) if (all(is.finite(mcmc_result_SD$log.p))) { par( mfrow = c(dim(mcmc_result_SD$samples)[2] + 1, 2) , mar = c(5,4,1,0.5)) plot(as.mcmc(cbind(mcmc_result_SD$samples, LL = mcmc_result_SD$log.p)), auto.layout = FALSE) par(op) } else { par( mfrow = c(dim(mcmc_result_SD$samples)[2], 2) , mar = c(5,4,1,0.5)) plot(as.mcmc(mcmc_result_SD$samples), auto.layout = FALSE) par(op) } eval_MCMC <- function(sampMCMC, expectedVal = NULL, plot = TRUE) { bestFit <- sampMCMC$samples[which.max(sampMCMC$log.p),] qu <- apply(sampMCMC$samples, 2, quantile, probs = c(0.025, 0.5, 0.975)) if (plot) { if(is.null(expectedVal)) expectedVal <- rep(NA, dim(sampMCMC$samples)[2]) plot(seq(dim(sampMCMC$samples)[2]), expectedVal, pch = 20, col = "darkgrey", cex = 2, ylim = range(qu), xaxt = "n", xlab = "Model parameter", ylab = "Parameter value") arrows(x0 = seq(dim(sampMCMC$samples)[2]), y0 = qu[1,], y1 = qu[3,], angle = 90, length = 0.1, code = 3) points(x = seq(dim(sampMCMC$samples)[2]), y = bestFit, pch = "-", cex = 4) axis(side = 1, at = seq(dim(sampMCMC$samples)[2]), dimnames(sampMCMC$samples)[[2]]) } res <- rbind(bestFit, qu) rownames(res)[1] <- "best" if (!all(is.na(expectedVal))) { res <- rbind(res, expectedVal) rownames(res)[dim(res)[1]] <- "expect" } return(res) } eval_MCMC(mcmc_result_SD, expectedVal = par_A$SD[-which(is.na(par_A$SD))]) data_A_IT <- read.xlsx( file = paste0(JA_data_file_name), sheetName = "Data A", rowIndex = c(17:24), colIndex = seq(which(LETTERS == "B"), which(LETTERS == "G")), header = FALSE ) con_A_IT <- as.numeric(data_A_IT[1,]) data_A_IT <- data_A_IT[-1,] day_A_IT <- as.numeric( t( read.xlsx( file = paste0(JA_data_file_name), sheetName = "Data A", rowIndex = c(18:24), colIndex = seq(which(LETTERS == "A")), header = FALSE ) ) ) names(data_A_IT) <- paste0("c", con_A_IT) rownames(data_A_IT) <- paste0("d", day_A_IT) GUTS_A_IT <- lapply(seq(length(con_A_IT)), function(i, dat, days, con) guts_setup( C = rep_len(con[i], length(days)), Ct = days, y = dat[,i], yt = days, model = "IT", dist = "loglogistic" ), dat = data_A_IT, days = day_A_IT, con = con_A_IT ) names(GUTS_A_IT) <- paste0("c", con_A_IT) is_out_of_bounds_fun_IT <- function(p) any( is.na(p), is.infinite(p), p < 0, p[4] <= 1, exp(8/p[4]) * p[3] > 1e200) load(system.file("extdata", "vignetteGUTS-ringTest-IT-MCMCresults.Rdata", package = "GUTS", mustWork = TRUE) ) if (all(is.finite(mcmc_result_IT$log.p))) { par( mfrow = c(dim(mcmc_result_IT$samples)[2] + 1, 2) , mar = c(5,4,1,0.5)) plot(as.mcmc(cbind(mcmc_result_IT$samples, LL = mcmc_result_IT$log.p)), auto.layout = FALSE) par(op) } else { par( mfrow = c(dim(mcmc_result_IT$samples)[2], 2) , mar = c(5,4,1,0.5)) plot(as.mcmc(mcmc_result_IT$samples), auto.layout = FALSE) par(op) } eval_MCMC(mcmc_result_IT, expectedVal = par_A$IT[-which(is.na(par_A$IT))]) conc <- seq(0, 16, by = 2) guts_obj_forecast <- lapply(conc, function(concentration) guts_setup( C = rep(concentration, 7), Ct = seq(0,12, by = 2), y = c(100, rep(0,6)), yt = seq(0,12, by = 2), model = "IT", dist = "loglogistic", N = 1000 ) ) mcmc_forecasts_paras <- mcmc_result_IT$samples mcmc_forecasts_paras[,1] <- 0 load(system.file("extdata", "vignetteGUTS-ringTest-forecast.Rdata", package = "GUTS", mustWork = TRUE) ) par(mfrow = c(2,3), mar = c(5,4,3, 0.5)) sapply(tail(names(forec), -2), function(day) plot(as.factor(forec$conc), forec[, day], ylim = c(0,1), xlab = "concentration (micromol/l)", ylab = "probability of survival", main = day) ) par(op) load(system.file("extdata", "vignetteGUTS-ringTest-logLC50.Rdata", package = "GUTS", mustWork = TRUE) ) LC50 <- quantile(exp(logLC50s), c(0.025, 0.5, 0.975))
calc_regres_coef_b <- function(y) { time_count <- seq_along(y) ones <- seq(1,1,length=length(y)) content.matrix <- c(ones, time_count) X <- matrix(content.matrix, byrow = FALSE, ncol = 2) suppressWarnings({ fm <- stats::lsfit(x = X, y = y, intercept = FALSE) data.b <- fm$coef[[2]] }) return(data.b) }
source(system.file("extdata", "utils.R", package = "nhdplusTools")) data_dir <- file.path(tempdir(check = TRUE), "nhdplusTools") download_pkg_data("petapsco_flowlines.gpkg", "https://usgs-r.github.io/nhdplusTools/data/petapsco_flowlines.gpkg", data_dir) sample_flines <- sf::read_sf(file.path(data_dir, "petapsco_flowlines.gpkg"))
.mergeFlow <- function(ct1=ct1, iSpec=iSpec, gageID=gageID, hydro.var=hydro.var , flow.detrended=flow.detrended) { tmp <- flow.detrended[[gageID]] tmp <- merge(ct1[, c("date",iSpec$dep)], tmp[ ,c("date",hydro.var)], by="date", all.x=TRUE) tmp[,iSpec$dep] <- if (iSpec$isSurv) impute(tmp[,iSpec$dep]) else tmp[,iSpec$dep] hydro.var.corr <- data.frame(hydro.var=hydro.var, spearman= NA_real_ , chosen="-", stringsAsFactors = FALSE) for (i in 1:nrow(hydro.var.corr)) { hydro.var.corr[i,"spearman"] <- cor(y = tmp[,iSpec$dep], x = tmp[,hydro.var[i]], use = "pairwise.complete.obs", method = "spearman") } hydro.var.corr[which.max(abs(hydro.var.corr[,"spearman"])),"chosen"] <- 'max' iSpec$hydro.var.corr <- hydro.var.corr iSpec$hydroTermSel.var <- hydro.var.corr[which.max(abs(hydro.var.corr[,"spearman"])),"hydro.var"] tmp <- flow.detrended[[gageID]] tmp <- merge(ct1, tmp[ ,c("date",iSpec$hydroTermSel.var )], by="date", all.x=TRUE) names(tmp)[names(tmp) == iSpec$hydroTermSel.var] <- 'flw_sal' ct1.list <- list(ct1=tmp,iSpec=iSpec) return(ct1.list) }
cogi <- function(data, targets = c(70,180), weights = c(.5,.35,.15)){ id = w_f = ir = br = stddev = weight_features = feature = scale_range = weight = NULL rm(list = c("id", "w_f", "ir", "br", "stddev", "weight_features", "feature", "scale_range", "weight")) data = check_data_columns(data) is_vector = attr(data, "is_vector") targets = sort(as.double(targets)) weight_features = function(feature, scale_range, weight = 1, increasing = FALSE) { if (increasing) { out = pmin(as.numeric(feature>min(scale_range))*(feature-min(scale_range))/(max(scale_range)-min(scale_range)), 1) return(out*weight) } else { out = pmin(as.numeric(feature<max(scale_range))*(feature-max(scale_range))/(min(scale_range)-max(scale_range)), 1) return(out*weight) } } ir = in_range_percent(data, list(targets))[,2] br = below_percent(data, targets_below = targets[1])[,2] stddev = sd_glu(data)$SD weighted_features = weight_features(ir,c(0,100),weight = weights[1], increasing = TRUE)+weight_features(br,c(0,15),weight = weights[2])+weight_features(stddev,c(18,108),weight = weights[3]) out = dplyr::tibble(weighted_features) out$id = sd_glu(data)$id out = out[,c(2,1)] colnames(out) = c("id", "COGI") if (is_vector) { out$id = NULL } return(out) }
test.gdi32 <- function() { dataPath <- file.path(path.package(package="clusterCrit"),"unitTests","data","testsInternal_400_4.Rdata") load(file=dataPath, envir=.GlobalEnv) idx <- intCriteria(traj_400_4, part_400_4[[4]], c("GDI32")) cat(paste("\nFound idx =",idx)) val <- 11.1643758011678 cat(paste("\nShould be =",val,"\n")) checkEqualsNumeric(idx[[1]],val) }
fitmm <- function(sequences, states, k = 1, init.estim = "mle") { if (!(is.list(sequences) & all(sapply(sequences, class) %in% c("character", "numeric")))) { stop("The parameter 'sequences' should be a list of vectors") } if (!all(unique(unlist(sequences)) %in% states)) { stop("Some states in the list of observed sequences 'sequences' are not in the state space 'states'") } if (!((k > 0) & ((k %% 1) == 0))) { stop("'k' must be a strictly positive integer") } processes <- processesMarkov(sequences = sequences, states = states, k = k) s <- processes$s Nij <- processes$Nij Ni <- processes$Ni Nstarti <- processes$Nstarti ptrans <- Nij / tcrossprod(Ni, rep.int(1, s)) ptrans[which(is.na(ptrans))] <- 0 ptrans <- .normalizePtrans(ptrans) if (is.vector(init.estim) & length(init.estim) == 1) { if (init.estim == "mle") { init <- Nstarti / sum(Nstarti) } else if (init.estim == "stationary") { if (k == 1) { init <- .stationaryDistribution(ptrans = ptrans) } else { init <- .stationaryDistribution(ptrans = .blockMatrix(ptrans = ptrans)) } } else if (init.estim == "freq") { Nstart <- as.vector(count(seq = unlist(sequences), wordsize = k, alphabet = states)) init <- Nstart / sum(Nstart) } else if (init.estim == "prod") { Nstart <- as.vector(count(seq = unlist(sequences), wordsize = 1, alphabet = states)) prob <- Nstart / sum(Nstart) init <- as.vector(.productProb(length = k, prob = prob)) } else if (init.estim == "unif") { init <- rep.int(x = 1 / (s ^ k), times = s ^ k) } else { stop("'init.estim' must be equal to \"mle\", \"stationary\", \"freq\", \"prod\" or \"unif\". 'init.estim' can also be a vector of length s ^ k for custom initial distribution") } } else { if (!(is.numeric(init.estim) & !anyNA(init.estim) & is.vector(init.estim) & length(init.estim) == s ^ k)) { stop("'init.estim' is not a numeric vector of length s ^ k") } if (!(all(init.estim >= 0) & all(init.estim <= 1))) { stop("Probabilities in 'init.estim' must be between [0, 1]") } if (!((sum(init.estim) >= 1 - sqrt(.Machine$double.eps)) | (sum(init.estim) <= 1 + sqrt(.Machine$double.eps)))) { stop("The sum of 'init.estim' is not equal to one") } init <- init.estim } init <- as.vector(init / sum(init)) mm <- mm(states = states, init = init, ptrans = ptrans, k = k) if (any(mm$init == 0)) { message("The probabilities of the initial state(s) \"", paste0(names(which(mm$init == 0)), collapse = "\", \""), "\" are 0.") } loglik <- .loglik(x = mm, processes = processes) estimate <- mmfit(mm = mm, M = processes$M, loglik = loglik, sequences = sequences) return(estimate) }
library(testthat) library(splines) test_that("Check regular glm", { n <- 100 set.seed(123) nl_ds <- data.frame( x = sample(seq( from = 0, to = pi * 3, length.out = n ), size = n, replace = TRUE ), sex = factor(sample(c("Male", "Female"), size = n, replace = TRUE )) ) nl_ds$y <- sin(nl_ds$x) * 2 + (nl_ds$sex == "Male") * 1 + rnorm(n = n, mean = 0, sd = .5) l_ds <- nl_ds l_ds$y <- nl_ds$x * 2 + (nl_ds$sex == "Male") * 1 + rnorm(n = n, mean = 0, sd = .5) vals <- sapply(2:7, function(x) { AIC(glm(sprintf( "y ~ ns(x, %d) + sex", x ), data = nl_ds)) }) expect_equivalent( AIC(addNonlinearity(glm(y ~ x + sex, data = nl_ds), min_fn = AIC, flex_param = 2:7, variable = "x", spline_fn = "ns", workers = FALSE )), min(vals) ) expect_equivalent( addNonlinearity(glm(y ~ x + sex, data = l_ds), min_fn = AIC, flex_param = 2:7, variable = "x", spline_fn = "ns", workers = FALSE ), glm(y ~ x + sex, data = l_ds) ) }) test_that("Check regular lm", { n <- 100 set.seed(123) nl_ds <- data.frame( x = sample(seq( from = 0, to = pi * 3, length.out = n ), size = n, replace = TRUE ), sex = factor(sample(c("Male", "Female"), size = n, replace = TRUE )) ) nl_ds$y <- sin(nl_ds$x) * 2 + (nl_ds$sex == "Male") * 1 + rnorm(n = n, mean = 0, sd = .5) l_ds <- nl_ds l_ds$y <- nl_ds$x * 2 + (nl_ds$sex == "Male") * 1 + rnorm(n = n, mean = 0, sd = .5) vals <- sapply(2:7, function(x) { AIC(lm(sprintf( "y ~ ns(x, %d) + sex", x ), data = nl_ds)) }) expect_equivalent( AIC(addNonlinearity(lm(y ~ x + sex, data = nl_ds), min_fn = AIC, flex_param = 2:7, variable = "x", spline_fn = "ns", workers = FALSE )), min(vals) ) expect_equivalent( addNonlinearity(lm(y ~ x + sex, data = l_ds), min_fn = AIC, flex_param = 2:7, variable = "x", spline_fn = "ns", workers = FALSE ), lm(y ~ x + sex, data = l_ds) ) }) test_that("That rms-functions work", { n <- 100 set.seed(123) nl_ds <- data.frame( x = sample(seq( from = 0, to = pi * 3, length.out = n ), size = n, replace = TRUE ), sex = factor(sample(c("Male", "Female"), size = n, replace = TRUE )) ) nl_ds$y <- sin(nl_ds$x) * 2 + (nl_ds$sex == "Male") * 1 + rnorm(n = n, mean = 0, sd = .5) l_ds <- nl_ds l_ds$y <- nl_ds$x * 2 + (nl_ds$sex == "Male") * 1 + rnorm(n = n, mean = 0, sd = .5) library(rms) vals <- sapply(3:7, function(x) { AIC(ols(as.formula(sprintf("y ~ rcs(x, %d) + sex", x)), data = nl_ds )) }) expect_equivalent( AIC(addNonlinearity(ols(y ~ x + sex, data = nl_ds), min_fn = AIC, flex_param = 3:7, variable = "x", spline_fn = "rcs", workers = FALSE )), min(vals) ) expect_error(AIC(addNonlinearity(ols(y ~ x + sex, data = nl_ds), min_fn = AIC, flex_param = 3:7, variable = "x", spline_fn = "ns", workers = FALSE ))) expect_equivalent( addNonlinearity(ols(y ~ x + sex, data = l_ds), min_fn = AIC, flex_param = 3:7, variable = "x", spline_fn = "rcs", workers = FALSE ), ols(y ~ x + sex, data = l_ds) ) })
Sncf <- function(x, y, z, w = NULL, df = NULL, type = "boot", resamp = 1000, npoints = 300, save = FALSE, filter = FALSE, fw = 0, max.it = 25, xmax = FALSE, na.rm = FALSE, latlon = FALSE, circ = FALSE, quiet = FALSE) { NAO <- FALSE if (any(!is.finite(unlist(z)))) { if (na.rm) { warning("Missing values exist; Pairwise deletion will be used") NAO <- TRUE } else { stop("Missing values exist; use na.rm = TRUE for pairwise deletion") } } if (is.null(w)) { n <- dim(z)[1] p <- dim(z)[2] z <- as.matrix(z) + 0 moran <- cor2(t(z), circ = circ) } else { n <- dim(z)[1] p <- dim(z)[2] z <- as.matrix(z) + 0 w <- as.matrix(w) + 0 moran <- cor2(t(z), t(w), circ = circ) } if (is.null(df)) { df <- sqrt(n) } if (latlon) { xdist <- gcdist(x, y) } else { xdist <- sqrt(outer(x, x, "-")^2 + outer(y, y, "-")^2) } maxdist <- ifelse(!xmax, max(na.omit(xdist)), xmax) if (is.null(w)) { triang <- lower.tri(xdist) } else { triang <- is.finite(xdist) } u <- xdist[triang] v <- moran[triang] sel <- is.finite(v) & is.finite(u) u <- u[sel] v <- v[sel] v <- v[u <= maxdist] u <- u[u <= maxdist] xpoints <- seq(0, maxdist, length = npoints) out <- gather(u = u, v = v, w = w, moran = moran, df = df, xpoints = xpoints, filter = filter, fw = fw) real <- list(cbar = out$cbar, x.intercept = out$xint, e.intercept = out$eint, y.intercept = out$yint, cbar.intercept = out$cint, predicted = list(x = matrix(out$x, nrow = 1), y = matrix(out$y, nrow = 1))) boot <- list(NULL) boot$boot.summary <- list(NULL) if (resamp != 0) { boot$boot.summary$x.intercept <- matrix(NA, nrow = resamp, ncol = 1) boot$boot.summary$y.intercept <- matrix(NA, nrow = resamp, ncol = 1) boot$boot.summary$e.intercept <- matrix(NA, nrow = resamp, ncol = 1) boot$boot.summary$cbar.intercept <- matrix(NA, nrow = resamp, ncol = 1) boot$boot.summary$cbar <- matrix(NA, nrow = resamp, ncol = 1) predicted <- list(x = matrix(NA, nrow = 1, ncol = npoints), y = matrix(NA, nrow = resamp, ncol = npoints)) type <- charmatch(type, c("boot", "perm"), nomatch = NA) if (is.na(type)) stop("method should be \"boot\", or \"perm\"") for (i in 1:resamp) { whn <- pretty(c(1, resamp), n = 10) if (!quiet & any(i == whn)) { cat(i, " of ", resamp, "\r") flush.console() } if (type == 1) { trekkx <- sample(1:n, replace = TRUE) trekky <- trekkx } if (type == 2) { trekky <- sample(1:n, replace = FALSE) trekkx <- 1:n } xdistb <- xdist[trekkx, trekkx] if (is.null(w)) { triang <- lower.tri(xdistb) } else { triang <- is.finite(xdistb) } xdistb <- xdistb[triang] moranb <- moran[trekky, trekky][triang] if (type == 1 & is.null(w)) { moranb <- moranb[!(xdistb == 0)] xdistb <- xdistb[!(xdistb == 0)] } u <- xdistb v <- moranb sel <- is.finite(v) & is.finite(u) u <- u[sel] v <- v[sel] v <- v[u <= maxdist] u <- u[u <= maxdist] out <- gather(u = u, v = v, w = w, moran = moranb, df = df, xpoints = xpoints, filter = filter, fw = fw) boot$boot.summary$cbar[i, 1] <- out$cbar boot$boot.summary$y.intercept[i, 1] <- out$yint boot$boot.summary$x.intercept[i, 1] <- out$xint boot$boot.summary$e.intercept[i, 1] <- out$eint boot$boot.summary$cbar.intercept[i, 1] <- out$cint predicted$x[1, ] <- out$x predicted$y[i, ] <- out$y } if (save == TRUE) { boot$boot <- list(predicted = predicted) } else { boot$boot <- NULL } ty <- apply(predicted$y, 2, quantile, probs = c(0, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975, 1), na.rm = TRUE) dimnames(ty) <- list(c(0, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975, 1), NULL) tx <- predicted$x boot$boot.summary$predicted <- list(x = tx,y = ty) } else { boot <- NULL boot.summary <- NULL } res <- list(real = real, boot = boot, max.distance = maxdist, call = deparse(match.call())) class(res) <- "Sncf" res } plot.Sncf <- function(x, ylim = c(-1, 1), add = FALSE, ...) { args.default <- list(xlab = "Distance", ylab = "Correlation") args.input <- list(...) args <- c(args.default[!names(args.default) %in% names(args.input)], args.input) cbar <- x$real$cbar if (!add) { do.call(plot, c(list(x = x$real$predicted$x, y = x$real$predicted$y, ylim = ylim, type = "l"), args)) } if (!is.null(x$boot$boot.summary)) { polygon(c(x$boot$boot.summary$predicted$x, rev(x$boot$boot.summary$predicted$x)), c(x$boot$boot.summary$predicted$y["0.025", ], rev(x$boot$boot.summary$predicted$y["0.975", ])), col = gray(0.8), lty = 0) } lines(x$real$predicted$x, x$real$predicted$y) lines(c(0, max(x$real$predicted$x)), c(0, 0)) lines(c(0, max(x$real$predicted$x)), c(cbar, cbar)) } print.Sncf <- function(x, ...) { cat("This is an object of class Sncf produced by the call:\n\n", x$call, "\n\n Use summary() or plot() for inspection (or print.default() to see all the gory details).", ...) } summary.Sncf <- function(object, ...) { xy <- cbind(object$real$x.intercept, object$real$e.intercept, object$real$y.intercept, object$real$cbar.intercept) dimnames(xy) <- list(c("intercepts"), c("x", "e","y", "cbar")) if (!is.null(object$boot$boot.summary)) { yd <- apply(object$boot$boot.summary$y.intercept, 2, quantile, probs = c(0, 0.025, 0.25, 0.5, 0.75, 0.975, 1), na.rm = TRUE) xd <- apply(object$boot$boot.summary$x.intercept, 2, quantile, probs = c(0, 0.025, 0.25, 0.5, 0.75, 0.975, 1), na.rm = TRUE) ed <- apply(object$boot$boot.summary$e.intercept, 2, quantile, probs = c(0, 0.025, 0.25, 0.5, 0.75, 0.975, 1), na.rm = TRUE) synchd <- quantile(object$boot$boot.summary$cbar[, 1], probs = c(0, 0.025, 0.25, 0.5, 0.75, 0.975, 1), na.rm = TRUE) cbard <- quantile(object$boot$boot.summary$cbar.intercept[, 1], probs = c(0, 0.025, 0.25, 0.5, 0.75, 0.975, 1), na.rm = TRUE) xyd <- cbind(xd, ed, yd, cbard) dimnames(xyd) <- list(c(0, 0.025, 0.25, 0.5, 0.75, 0.975, 1), c("x", "e", "y", "cbar")) } if (is.null(object$boot$boot.summary)) { synchd <- NULL xyd <- NULL } res <- list(call = object$call, Regional.synch = object$real$cbar, Squantile = synchd, estimates = xy, quantiles = xyd) res } Sncf.srf <- function(x, y, z, w = NULL, avg = NULL, avg2 = NULL, corr = TRUE, df = NULL, type = "boot", resamp = 0, npoints = 300, save = FALSE, filter = FALSE, fw = 0, max.it = 25, xmax = FALSE, jitter = FALSE, quiet = FALSE) { p <- dim(z)[2] n <- dim(z)[1] if (is.null(df)) { df <- sqrt(n) } if (is.null(avg)) { avg <- mean(as.vector(z), na.rm = TRUE) if (!is.null(w)) { avg2 <- mean(as.vector(w), na.rm = TRUE) } } sca <- 1 sca2 <- 1 if (corr == TRUE) { sca <- sqrt(var(as.vector(z))) if (!is.null(w)) { sca2 <- sqrt(var(as.vector(w))) } } xdist <- sqrt(outer(x, x, "-")^2 + outer(y, y, "-")^2) if (jitter == TRUE) { xdist <- apply(xdist, 2, jitter) } if (is.null(w)) { moran <- crossprod((t(z) - avg)/(sca))/p } else { moran <- crossprod((t(z) - avg)/(sca), (t(w) - avg2)/(sca2))/p } maxdist <- ifelse(!xmax, max(xdist), xmax) if (is.null(w)) { triang <- lower.tri(xdist) } else { triang <- is.finite(xdist) } u <- xdist[triang] v <- moran[triang] v <- v[u <= maxdist] u <- u[u <= maxdist] xpoints <- seq(0, maxdist, length = npoints) out <- gather(u = u, v = v, w = w, moran = moran, df = df, xpoints = xpoints, filter = filter, fw = fw) real <- list(cbar = out$cbar, x.intercept = out$xint, e.intercept = out$eint, y.intercept = out$yint, cbar.intercept = out$cint, predicted = list(x = matrix(out$x, nrow = 1), y = matrix(out$y, nrow = 1))) boot <- list(NULL) boot$boot.summary <- list(NULL) if (resamp != 0) { boot$boot.summary$x.intercept <- matrix(NA, nrow = resamp, ncol = 1) boot$boot.summary$y.intercept <- matrix(NA, nrow = resamp, ncol = 1) boot$boot.summary$e.intercept <- matrix(NA, nrow = resamp, ncol = 1) boot$boot.summary$cbar.intercept <- matrix(NA, nrow = resamp, ncol = 1) boot$boot.summary$cbar <- matrix(NA, nrow = resamp, ncol = 1) predicted <- list(x = matrix(NA, nrow = 1, ncol = npoints), y = matrix(NA, nrow = resamp, ncol = npoints)) type <- charmatch(type, c("boot", "perm"), nomatch = NA) if (is.na(type)) stop("method should be \"boot\", or \"perm\"") for (i in 1:resamp) { whn <- pretty(c(1, resamp), n = 10) if (!quiet & any(i == whn)) { cat(i, " of ", resamp, "\r") flush.console() } if (type == 1) { trekkx <- sample(1:n, replace = TRUE) trekky <- trekkx } if (type == 2) { trekky <- sample(1:n, replace = FALSE) trekkx <- 1:n } xdistb <- xdist[trekkx, trekkx] if (is.null(w)) { triang <- lower.tri(xdistb) } else { triang <- is.finite(xdistb) } xdistb <- xdistb[triang] moranb <- moran[trekky, trekky][triang] if (type == 1 & is.null(w)) { moranb <- moranb[!(xdistb == 0)] xdistb <- xdistb[!(xdistb == 0)] } u <- xdistb v <- moranb v <- v[u <= maxdist] u <- u[u <= maxdist] out <- gather(u = u, v = v, w = w, moran = moranb, df = df, xpoints = xpoints, filter = filter, fw = fw) boot$boot.summary$cbar[i, 1] <- out$cbar boot$boot.summary$y.intercept[i, 1] <- out$yint boot$boot.summary$x.intercept[i, 1] <- out$xint boot$boot.summary$e.intercept[i, 1] <- out$eint boot$boot.summary$cbar.intercept[i, 1] <- out$cint predicted$x[1, ] <- out$x predicted$y[i, ] <- out$y } if (save == TRUE) { boot$boot <- list(predicted = predicted) } else { boot$boot <- NULL } ty <- apply(predicted$y, 2, quantile, probs = c(0, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975, 1), na.rm = TRUE) dimnames(ty) <- list(c(0, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975, 1), NULL) tx <- predicted$x boot$boot.summary$predicted <- list(x = tx, y = ty) } else { boot <- NULL boot.summary <- NULL } res <- list(real = real, boot = boot, max.distance = maxdist, call = deparse(match.call())) if (corr) { class(res) <- "Sncf" } else { class(res) <- "Sncf.cov" } res } plot.Sncf.cov <- function(x, ...) { args.default <- list(xlab = "Distance", ylab = "Covariance") args.input <- list(...) args <- c(args.default[!names(args.default) %in% names(args.input)], args.input) do.call(plot, c(list(x = x$real$predicted$x, y = x$real$predicted$y, type = "l"), args)) if (!is.null(x$boot$boot.summary)) { polygon(c(x$boot$boot.summary$predicted$x, rev(x$boot$boot.summary$predicted$x)), c(x$boot$boot.summary$predicted$y["0.025", ], rev(x$boot$boot.summary$predicted$y["0.975", ])), col = gray(0.8), lty = 0) } lines(x$real$predicted$x, x$real$predicted$y) lines(c(0, max(x$real$predicted$x)), c(0, 0)) }
resolved <- function(x, ...) UseMethod("resolved") resolved.default <- function(x, ...) TRUE resolved.list <- function(x, ...) { fs <- futures(x) res <- rep(TRUE, times = length(fs)) for (ii in seq_along(fs)) { f <- fs[[ii]] if (inherits(f, "Future")) res[[ii]] <- resolved(f, ...) } dim <- dim(fs) if (!is.null(dim)) { dim(res) <- dim dimnames(res) <- dimnames(fs) } names(res) <- names(fs) res } resolved.environment <- function(x, ...) { fs <- futures(x) names <- names(fs) fs <- as.list(fs) names(fs) <- names resolved(fs, ...) }
Return1 <- ISNUMBER(2) Return2 <- ISNUMBER("This is not a number 1") expect_equal(Return1,T) expect_equal(Return2,F)
f <- list.files(pattern = "*.pdf") f <- f[-which(f == "spatial-mv.pdf")] f <- f[-which(f == "cons-plans-n.pdf")] for(i in 1:length(f)) { system(paste0("pdftops -eps ", f[i])) }
lsm_c_ai <- function(landscape) { landscape <- landscape_as_list(landscape) result <- lapply(X = landscape, FUN = lsm_c_ai_calc) layer <- rep(seq_len(length(result)), vapply(result, nrow, FUN.VALUE = integer(1))) result <- do.call(rbind, result) tibble::add_column(result, layer, .before = TRUE) } lsm_c_ai_calc <- function(landscape) { if (!inherits(x = landscape, what = "matrix")) { landscape <- raster::as.matrix(landscape) } if (all(is.na(landscape))) { return(tibble::tibble(level = "class", class = as.integer(NA), id = as.integer(NA), metric = "ai", value = as.double(NA))) } like_adjacencies <- rcpp_get_coocurrence_matrix_diag(landscape, directions = as.matrix(4)) / 2 cells_class <- rcpp_get_composition_vector(landscape) cells_class <- tibble::tibble(class = names(cells_class), value = cells_class) cells_class$n <- trunc(sqrt(cells_class$value)) cells_class$m <- cells_class$value - cells_class$n ^ 2 cells_class$max_adj <- ifelse(test = cells_class$m == 0, yes = 2 * cells_class$n * (cells_class$n - 1), no = ifelse(test = cells_class$m <= cells_class$n, yes = 2 * cells_class$n * (cells_class$n - 1) + 2 * cells_class$m - 1, no = ifelse(test = cells_class$m > cells_class$n, yes = 2 * cells_class$n * (cells_class$n - 1) + 2 * cells_class$m - 2, no = NA))) if (anyNA(cells_class$max_adj)) { warning("NAs introduced by lsm_c_ai", call. = FALSE) } max_adj <- cells_class$max_adj ai <- (like_adjacencies / max_adj) * 100 ai[is.nan(ai)] <- NA return(tibble::tibble(level = "class", class = as.integer(names(like_adjacencies)), id = as.integer(NA), metric = "ai", value = as.double(ai))) }
create_zip <- function(x, ...) { UseMethod("create_zip", x) } create_zip.character <- function(x, ...) { f <- file.exists(x) if (any(!f)) { stop(paste0(ngettext(f, "One file does not", paste0(sum(f), " files do not"))), "exist: ", paste0(x[which(f)], collapse = ", ")) } else { tmp <- tempfile(fileext = ".zip") stopifnot(!utils::zip(tmp, x)) return(tmp) } } create_zip.data.frame <- function(x, ...) { tmpdf <- tempfile(fileext = ".zip") on.exit(file.remove(tmpdf), add = TRUE) tmp <- tempfile(fileext = ".zip") save(x, file = tmpdf) stopifnot(!utils::zip(tmp, tmpdf)) return(tmp) } create_zip.list <- function(x, ...) { tmpdf <- sapply(seq_along(x), tempfile(fileext = ".zip")) on.exit(file.remove(tmpdf), add = TRUE) mapply(x, tmpdf, function(x, f) save(x, file = f), SIMPLIFY = TRUE) tmp <- tempfile(fileext = ".zip") stopifnot(!utils::zip(tmp, tmpdf)) return(tmp) } add_file <- function(dataset, file, key = Sys.getenv("DATAVERSE_KEY"), server = Sys.getenv("DATAVERSE_SERVER"), ...) { if (inherits(dataset, "dataset_atom")) { u <- dataset$links[["edit-media"]] } else if (inherits(dataset, "dataset_statement")) { dataset <- prepend_doi(dataset$id) u <- paste0(api_url(server, prefix="dvn/api/"), "data-deposit/v1.1/swordv2/edit-media/study/", dataset) } else if (is.character(dataset) && grepl("^http", dataset)) { if (grepl("edit-media/study/", dataset)) { u <- dataset } else { stop("'dataset' not recognized.") } } else { dataset <- prepend_doi(dataset) u <- paste0(api_url(server, prefix="dvn/api/"), "data-deposit/v1.1/swordv2/edit/study/", dataset) } file <- create_zip(file) h <- httr::add_headers("Content-Disposition" = paste0("filename=", file), "Content-Type" = "application/zip", "Packaging" = "http://purl.org/net/sword/package/SimpleZip") r <- httr::POST(u, httr::authenticate(key, ""), h, body = httr::upload_file(file), ...) httr::stop_for_status(r, task = httr::content(r)$message) parse_atom(httr::content(r, as = "text", encoding = "UTF-8")) } delete_file <- function(id, key = Sys.getenv("DATAVERSE_KEY"), server = Sys.getenv("DATAVERSE_SERVER"), ...) { if (grepl("^http", id)) { u <- id } else { u <- paste0(api_url(server, prefix="dvn/api/"), "data-deposit/v1.1/swordv2/edit-media/file/", id) } r <- httr::DELETE(u, httr::authenticate(key, ""), ...) httr::stop_for_status(r, task = httr::content(r)$message) cont <- httr::content(r, as = "text", encoding = "UTF-8") if (cont == "") { return(TRUE) } else { return(cont) } }
Traverse = function(node, traversal = c("pre-order", "post-order", "in-order", "level", "ancestor"), pruneFun = NULL, filterFun = NULL) { nodes <- list() if(length(traversal) > 1L) { traversal <- traversal[1L] } if(is.function(traversal) || traversal == "pre-order" || traversal == "post-order") { if (length(pruneFun) == 0 || pruneFun(node)) { if (is.function(traversal)) { children <- traversal(node) if (is(children, "Node")) children <- list(children) if (is.null(children)) children <- list() } else children <- node$children for(child in children) { nodes <- c(nodes, Traverse(child, traversal = traversal, pruneFun = pruneFun, filterFun = filterFun)) } if(length(filterFun) == 0 || filterFun(node)) { if(is.function(traversal) || traversal == "pre-order") nodes <- c(node, nodes) else nodes <- c(nodes, node) } } } else if(traversal == "in-order") { if(!node$isBinary) stop("traversal in-order valid only for binary trees") if(length(pruneFun) == 0 || pruneFun(node)) { if(!node$isLeaf) { n1 <- Traverse(node$children[[1]], traversal = traversal, pruneFun = pruneFun, filterFun = filterFun) if(length(filterFun) == 0 || filterFun(node)) n2 <- node else n2 <- list() n3 <- Traverse(node$children[[2]], traversal = traversal, pruneFun = pruneFun, filterFun = filterFun) nodes <- c(n1, n2, n3) } else { if(length(filterFun) == 0 || filterFun(node)) n2 <- node else n2 <- list() nodes <- c(nodes, n2) } } } else if (traversal == "ancestor") { if (!isRoot(node)) { nodes <- Traverse(node$parent, traversal = traversal, pruneFun = pruneFun, filterFun = filterFun) } if(length(filterFun) == 0 || filterFun(node)) { nodes <- c(node, nodes) } } else if (traversal == "level") { nodes <- Traverse(node, filterFun = filterFun, pruneFun = pruneFun) if (length(nodes) > 0) nodes <- nodes[order(Get(nodes, function(x) x$level))] } else { stop("traversal must be pre-order, post-order, in-order, ancestor, or level") } return (nodes) } Get = function(nodes, attribute, ..., format = FALSE, inheritFromAncestors = FALSE, simplify = c(TRUE, FALSE, "array", "regular")) { if (length(nodes) == 0) return(NULL) if (!is(nodes, "list")) stop("nodes must be a list of Node objects!") simplify <- simplify[1] nodes <- unname(nodes) if (simplify == "regular") { regular = TRUE simplify = FALSE } else regular = FALSE res <- sapply(nodes, function(x) GetAttribute(x, attribute, ..., format = format, inheritFromAncestors = inheritFromAncestors), simplify = simplify ) if (is.character(attribute) && attribute == "name") { names(res) <- res } else { if(is.null(dim(res))){ names(res) <- Get(nodes, "name") } else { if(is.null(dimnames(res))) dimnames(res) <- list() dimnames(res)[[length(dim(res))]] <- Get(nodes, "name") } } if (regular) { res <- do.call(cbind, res) } return (res) } Do <- function(nodes, fun, ...) { if (length(nodes) == 0) invisible(nodes) if (!is(nodes, "list")) stop("nodes must be a list of Node objects!") for (node in nodes) fun(node, ...) invisible (nodes) } Set <- function(nodes, ...) { if (length(nodes) == 0) return(nodes) if (!is(nodes, "list")) stop("nodes must be a list of Node objects!") args <- list(...) argsnames <- sapply(substitute(list(...))[-1], deparse) gargsnames <- names(args) if (is.null(gargsnames)) gargsnames <- vector(mode = "character", length = length(args)) gargsnames[nchar(gargsnames) == 0] <- argsnames[nchar(gargsnames) == 0] names(args) <- gargsnames appFun <- function(x, arg, name) { x[[name]] <- arg } for(nme in names(args)) { arg <- args[[nme]] if (length(arg) == 0) arg <- vector("list", 1) mapply(appFun, nodes, arg, nme) } invisible (nodes) }
spodt <- function(formula ,data, weight=FALSE, graft=0, level.max=5, min.parent=10, min.child=5, rtwo.min=0.001) { if (class(data)!="SpatialPointsDataFrame") stop("use a SpatialPointsDataFrame") if (is.na((is.projected(data)))|(! is.projected(data)) ) warning("the coordinates are not projected. Please, provide projected coordinates or be sure to use euclidian coordinates!") coord.x <- coordinates(data)[,1] coord.y <- coordinates(data)[,2] loc.data <- as.numeric(row.names(data@data)) data.temp <- data@data Call <- match.call() indx <- match(c("formula", "data"), names(Call), nomatch = 0L) if (indx[1] == 0L) stop("a 'formula' with the cofactors is required\n for single spatial analysis (with no cofactor) the right hand side should be z~1") dataset.prep <- model.frame(Call$formula, data=data.temp) dataset <- cbind(loc.data, coord.x, coord.y, dataset.prep) colnames(dataset)[1:4] <- c("loc", "x", "y", "z") spodt.fct(dataset, weight=weight, graft=graft, level.max=level.max, min.parent=min.parent, min.child=min.child, rtwo.min=rtwo.min) }
posteriorPredictive <- function(fittedModel, M=100, numItems=NULL, expected=FALSE, nCPU=4){ mptInfo <- fittedModel$mptInfo tree <- mptInfo$MPT$Tree TreeNames <- unique(tree) sel.cat <- lapply(TreeNames, function(tt) tree %in% tt) S <- length(mptInfo$thetaUnique) numTrees <- length(TreeNames) chains <- length(fittedModel$runjags$mcmc) sample <- nrow(fittedModel$runjags$mcmc[[1]]) max.samp <- min(sample, ceiling(M/chains)) sel.thetaFE <- grep("thetaFE", varnames(fittedModel$runjags$mcmc), fixed=TRUE) n.thetaFE <- length(sel.thetaFE) if(missing(numItems) || is.null(numItems)){ pred.new <- FALSE N <- nrow(mptInfo$data) treeLabels <- unique(mptInfo$MPT$Tree) numItems <- matrix(NA, nrow(mptInfo$data), length(treeLabels)) colnames(numItems) <- treeLabels for(tl in treeLabels){ numItems[,tl] <- rowSums(mptInfo$data[,mptInfo$MPT$Tree == tl,drop=FALSE]) } }else{ pred.new <- TRUE if(length(numItems) != length(unique(fittedModel$mptInfo$MPT$Tree))){ stop("Length of 'numItems' does not match number of MPT trees.") } if(is.null(names(numItems))){ warning("numItems are ordered alphabetically:\n ", paste(TreeNames, sep =", ")) names(numItems) <- TreeNames } numItems <- matrix(numItems, nrow=1, dimnames=list(NULL, names(numItems))) N <- 1 } par.ind <- par.thetaFE <- c() for(m in 1:chains){ sel.samp <- sample(1:sample, max.samp) if(!pred.new){ sel.var <- setdiff(grep("theta", varnames(fittedModel$runjags$mcmc), fixed=TRUE), sel.thetaFE) par.tmp <- as.matrix(fittedModel$runjags$mcmc[[m]][sel.samp, sel.var,drop=FALSE]) }else{ par.tmp <- matrix(NA, max.samp, S, dimnames=list(NULL, paste0("theta[",1:S, ",1]"))) if(inherits(fittedModel, "betaMPT")){ if(S==1){ alpha <- as.matrix(fittedModel$runjags$mcmc[[m]][sel.samp, "alph",drop=FALSE]) beta <- as.matrix(fittedModel$runjags$mcmc[[m]][sel.samp, "bet",drop=FALSE]) }else{ alpha <- as.matrix(fittedModel$runjags$mcmc[[m]][ sel.samp, paste0("alph[",1:S,"]"),drop=FALSE]) beta <- as.matrix(fittedModel$runjags$mcmc[[m]][ sel.samp, paste0("bet[",1:S,"]"),drop=FALSE]) } for(i in 1:S){ par.tmp[,i] <- rbeta(max.samp, alpha[,i], beta[,i]) } }else if(inherits(fittedModel, "traitMPT")){ if(S==1){ mu <- as.matrix(fittedModel$runjags$mcmc[[m]][sel.samp, "mu",drop=FALSE]) sig <- as.matrix(fittedModel$runjags$mcmc[[m]][sel.samp, "sigma",drop=FALSE]) } else{ mu <- as.matrix(fittedModel$runjags$mcmc[[m]][ sel.samp, paste0("mu[",1:S,"]"),drop=FALSE]) sig <- as.matrix(fittedModel$runjags$mcmc[[m]][ sel.samp, paste0("sigma[",1:S,"]"),drop=FALSE]) } sel.rho <- grep("rho", varnames(fittedModel$runjags$mcmc)) rho <- as.matrix(fittedModel$runjags$mcmc[[m]][sel.samp, sel.rho,drop=FALSE]) for(mm in 1:max.samp){ Sig <- matrix(rho[mm,],S,S) *( sig[mm,] %*% t( sig[mm,] ) ) par.tmp[mm,] <- pnorm(mvrnorm(1, mu[mm,], Sig)) } } } par.ind <- rbind(par.ind, par.tmp) if(n.thetaFE > 0){ par.thetaFE <- rbind(par.thetaFE, as.matrix(fittedModel$runjags$mcmc[[m]][sel.samp, sel.thetaFE])) }else{ par.thetaFE <- NULL } } expectedFreq <- function(n, theta, thetaFE){ sapply(mptInfo$MPT$Equation,USE.NAMES = FALSE, function(ff) { eval(parse(text=ff), envir = list(n=n, theta=theta, thetaFE=thetaFE) ) }) } getPostPred <- function(tt){ theta <- matrix(tt[(n.thetaFE+1):length(tt)], S, N, byrow=FALSE) if(n.thetaFE>0){ thetaFE <- tt[1:n.thetaFE] }else{ thetaFE <- NULL } freq.exp <- t(sapply(1:N, expectedFreq, theta = theta, thetaFE = thetaFE))*numItems[,tree] if(!expected){ rmultinom_stable <- function(x){ if (sum(x) > 0) rand <- rmultinom(1, size=round(sum(x)), prob=x/sum(x)) else rand <- matrix(rep(0, length(x))) rand } for(k in 1:length(TreeNames)){ freq.exp[,sel.cat[[k]]] <- t(apply(freq.exp[,sel.cat[[k]],drop=FALSE], 1, rmultinom_stable)) } } colnames(freq.exp) <- mptInfo$MPT$Category list(freq.exp) } var.names <- apply(expand.grid("theta[",1:S,",",1:N,"]"), 1, paste0, collapse="") par.ind <- par.ind[,gsub(" ", "", var.names, fixed=TRUE)] if(nCPU >1){ cl <- makeCluster(nCPU) clusterExport(cl, c("S","N","mptInfo","numItems","expected","expectedFreq", "tree","TreeNames","n.thetaFE","sel.cat"), envir=environment()) freq.list <- parApply(cl, cbind(par.thetaFE, par.ind), 1, getPostPred) stopCluster(cl) }else{ freq.list <- apply(cbind(par.thetaFE, par.ind), 1, getPostPred) } freq.list <- lapply(freq.list, function(xx) xx[[1]]) if(M == 1){ freq.list[[1]] }else if(pred.new){ do.call("rbind", freq.list)[1:M,,drop=FALSE] }else{ freq.list[1:min(M, length(freq.list))] } }
source("incl/start.R") if (requireNamespace("doFuture", quietly = TRUE)) { library("doFuture", character.only = TRUE) registerDoFuture() for (strategy in c("sequential", "multisession", "multicore")) { future::plan(strategy) print(future::plan()) message("* with_progress()") with_progress({ p <- progressor(4) y <- foreach(n = 3:6) %dopar% { p() slow_sum(1:n, stdout=TRUE, message=TRUE) } }) message("* global progression handler") handlers(global = TRUE) local({ p <- progressor(4) y <- foreach(n = 3:6) %dopar% { p() slow_sum(1:n, stdout=TRUE, message=TRUE) } }) handlers(global = FALSE) } } source("incl/end.R")
FilterDISR = R6Class("FilterDISR", inherit = Filter, public = list( initialize = function() { param_set = ps( threads = p_int(lower = 0L, default = 0L, tags = "threads") ) param_set$values = list(threads = 1L) super$initialize( id = "disr", task_type = c("classif", "regr"), param_set = param_set, feature_types = c("integer", "numeric", "factor", "ordered"), packages = "praznik", man = "mlr3filters::mlr_filters_disr" ) } ), private = list( .calculate = function(task, nfeat) { call_praznik(self, task, praznik::DISR, nfeat) } ) ) mlr_filters$add("disr", FilterDISR)
e4ddp <- function(N, n, P1, P2, P3, P4, DEFF = 1, conf = 0.95, plot = FALSE) { Q1 <- 1 - P1 Q2 <- 1 - P2 Q3 <- 1 - P3 Q4 <- 1 - P4 S2 <- (P1 * Q1 + P2 * Q2 + P3 * Q3 + P4 * Q4) * DEFF Z <- 1 - ((1 - conf) / 2) f <- n/N VAR <- (1/n) * (1 - f) * S2 CVE <- 100 * sqrt(VAR) / abs((P1 - P2) - (P3 - P4)) ME <- 100 * qnorm(Z) * sqrt(VAR) if (plot == TRUE) { nseq <- seq(1, N, 10) cveseq <- rep(NA, length(nseq)) meseq <- rep(NA, length(nseq)) for (k in 1:length(nseq)) { fseq <- nseq[k]/N varseq <- (1/nseq[k]) * (1 - fseq) * S2 cveseq[k] <- 100 * sqrt(varseq)/abs((P1 - P2) - (P3 - P4)) meseq[k] <- 100 * qnorm(Z) * sqrt(varseq) } par(mfrow = c(1, 2)) plot(nseq, cveseq, type = "l", lty = 1, pch = 1, col = 3, ylab = "Coefficient of variation", xlab = "Sample Size") points(n, CVE, pch = 8, bg = "blue") abline(h = CVE, lty = 3) abline(v = n, lty = 3) plot(nseq, meseq, type = "l", lty = 1, pch = 1, col = 3, ylab = "Margin of error", xlab = "Sample Size") points(n, ME, pch = 8, bg = "blue") abline(h = ME, lty = 3) abline(v = n, lty = 3) } msg <- cat("With the parameters of this function: N =", N, "n = ", n, "P1 =", P1, "P2 =", P2, "DEFF = ", DEFF, "conf =", conf, ". \n \n \nThe estimated coefficient of variation is ", CVE, ". \n \nThe margin of error is", ME, ". \n \n") result <- list(cve = CVE, Margin_of_error = ME) result }
rdacca.hp <- function (dv,iv,method=c("RDA","dbRDA","CCA"),type=c("adjR2","R2"),scale=FALSE,add = FALSE, sqrt.dist = FALSE,n.perm=1000,var.part = FALSE) { if(is.data.frame(iv)) { if(sum(is.na(dv))>=1|sum(is.na(iv))>=1) {stop("NA/NaN/Inf is not allowed in this analysis")} if(nrow(iv)<=ncol(iv)) {stop("sample size (row) is less than the number of predictors")} else {method <- method[1] type <- type[1] if(inherits(dv, "dist")) {method <- "dbRDA"} if(method=="dbRDA"||method=="dbrda"||method=="DBRDA") { if(!inherits(dv, "dist")) return("response variables should be a 'dist' matrix for dbRDA") } if(method=="RDA"||method=="rda") {dv<-scale(dv,scale=scale)} iv <- data.frame(iv) ivname <- colnames(iv) iv.name <- ivname nvar <- dim(iv)[2] if (nvar < 2) stop("Analysis not conducted. Insufficient number of predictors.") totalN <- 2^nvar - 1 binarymx <- matrix(0, nvar, totalN) for (i in 1:totalN) { binarymx <- creatbin(i, binarymx) } commonM <- matrix(nrow = totalN, ncol = 3) for (i in 1:totalN) { tmp.design.ct <- iv[as.logical(binarymx[, i])] if(method=="RDA"||method=="rda") { gfa <- vegan::RsquareAdj(vegan::rda(dv~.,tmp.design.ct)) } if(method=="CCA"||method=="cca") {gfa <- vegan::RsquareAdj(vegan::cca(dv~.,tmp.design.ct,permutations = n.perm)) } if(method=="dbRDA"||method=="dbrda"||method=="DBRDA") { gfa <- vegan::RsquareAdj(vegan::capscale(dv~.,tmp.design.ct,add=add,sqrt.dist = sqrt.dist)) } if(type=="R2")commonM[i, 2] <- gfa$r.squared if(type=="adjR2")commonM[i, 2] <- gfa$adj.r.squared } commonlist <- vector("list", totalN) seqID <- vector() for (i in 1:nvar) { seqID[i] = 2^(i-1) } for (i in 1:totalN) { bit <- binarymx[1, i] if (bit == 1) ivname <- c(0, -seqID[1]) else ivname <- seqID[1] for (j in 2:nvar) { bit <- binarymx[j, i] if (bit == 1) { alist <- ivname blist <- genList(ivname, -seqID[j]) ivname <- c(alist, blist) } else ivname <- genList(ivname, seqID[j]) } ivname <- ivname * -1 commonlist[[i]] <- ivname } for (i in 1:totalN) { r2list <- unlist(commonlist[i]) numlist <- length(r2list) ccsum <- 0 for (j in 1:numlist) { indexs <- r2list[[j]] indexu <- abs(indexs) if (indexu != 0) { ccvalue <- commonM[indexu, 2] if (indexs < 0) ccvalue <- ccvalue * -1 ccsum <- ccsum + ccvalue } } commonM[i, 3] <- ccsum } orderList <- vector("list", totalN) index <- 0 for (i in 1:nvar) { for (j in 1:totalN) { nbits <- sum(binarymx[, j]) if (nbits == i) { index <- index + 1 commonM[index, 1] <- j } } } outputcommonM <- matrix(nrow = totalN + 1, ncol = 2) totalRSquare <- sum(commonM[, 3]) for (i in 1:totalN) { outputcommonM[i, 1] <- round(commonM[commonM[i, 1], 3], digits = 4) outputcommonM[i, 2] <- round((commonM[commonM[i, 1], 3]/totalRSquare) * 100, digits = 2) } outputcommonM[totalN + 1, 1] <- round(totalRSquare, digits = 4) outputcommonM[totalN + 1, 2] <- round(100, digits = 4) rowNames <- NULL for (i in 1:totalN) { ii <- commonM[i, 1] nbits <- sum(binarymx[, ii]) cbits <- 0 if (nbits == 1) rowName <- "Unique to " else rowName <- "Common to " for (j in 1:nvar) { if (binarymx[j, ii] == 1) { if (nbits == 1) rowName <- paste(rowName, iv.name[j], sep = "") else { cbits <- cbits + 1 if (cbits == nbits) { rowName <- paste(rowName, "and ", sep = "") rowName <- paste(rowName, iv.name[j], sep = "") } else { rowName <- paste(rowName, iv.name[j], sep = "") rowName <- paste(rowName, ", ", sep = "") } } } } rowNames <- c(rowNames, rowName) } rowNames <- c(rowNames, "Total") rowNames <- format.default(rowNames, justify = "left") colNames <- format.default(c("Fractions", " % Total"), justify = "right") dimnames(outputcommonM) <- list(rowNames, colNames) VariableImportance <- matrix(nrow = nvar, ncol = 4) for (i in 1:nvar) { VariableImportance[i, 3] <- round(sum(binarymx[i, ] * (commonM[,3]/apply(binarymx,2,sum))), digits = 4) } VariableImportance[,1] <- outputcommonM[1:nvar,1] VariableImportance[,2] <- VariableImportance[,3]-VariableImportance[,1] total=round(sum(VariableImportance[,3]),digits = 3) VariableImportance[, 4] <- round(100*VariableImportance[, 3]/total,2) dimnames(VariableImportance) <- list(iv.name, c("Unique","Average.share","Individual","I.perc(%)")) if(var.part) {outputList <- list(Method_Type=c(method,type),Total_explained_variation=total,Var.part = outputcommonM, Hier.part = VariableImportance)} else {outputList<-list(Method_Type=c(method,type),Total_explained_variation=total,Hier.part= VariableImportance)} class(outputList) <- "rdaccahp" outputList } } else {nvar <- length(iv) if(sum(unlist(lapply(iv,is.data.frame)))<nvar) stop("data.frame is required for each group explanatory table") if(sum(is.na(dv))>=1|sum(is.na(unlist(iv)))>=1) {stop("NA/NaN/Inf is not allowed in this analysis")} else {method <- method[1] type <- type[1] if(inherits(dv, "dist")) {method <- "dbRDA"} if(method=="dbRDA"||method=="dbrda"||method=="DBRDA"){ if(!inherits(dv, "dist")) return("dv should be a 'dist' matrix for dbRDA") } if(method=="RDA"||method=="rda") {dv<-scale(dv,scale=scale)} ilist <- names(iv) if(is.null(ilist)) {names(iv) <- paste("X",1:nvar,sep="")} else {whichnoname <- which(ilist=="") names(iv)[whichnoname] <- paste("X",whichnoname,sep="")} ilist <- names(iv) ivlist <- ilist iv.name <- ilist if (nvar < 2) stop("Analysis not conducted. Insufficient number of predictor groups.") ivID <- matrix(nrow = nvar, ncol = 1) for (i in 0:nvar - 1) { ivID[i + 1] <- 2^i } totalN <- 2^nvar - 1 binarymx <- matrix(0, nvar, totalN) for (i in 1:totalN) { binarymx <- creatbin(i, binarymx) } commonM <- matrix(nrow = totalN, ncol = 3) for (i in 1:totalN) { ivls <- iv[as.logical(binarymx[, i])] N <- length(ivls) if(N==1) { tmp.design.ct <- ivls[[1]] if(method=="RDA"||method=="rda") { gfa <- vegan::RsquareAdj(vegan::rda(dv~.,tmp.design.ct)) } if(method=="CCA"||method=="cca") {gfa <- vegan::RsquareAdj(vegan::cca(dv~.,tmp.design.ct,permutations = n.perm)) } if(method=="dbRDA"||method=="dbrda"||method=="DBRDA") { gfa <- vegan::RsquareAdj(vegan::dbrda(dv~.,tmp.design.ct,add=add,sqrt.dist = sqrt.dist)) } if(type=="R2")commonM[i, 2] <- gfa$r.squared if(type=="adjR2")commonM[i, 2] <- gfa$adj.r.squared } if(N>1) {tmp.design.ct <- ivls[[1]] for(k in 2:N) {tmp.design.ct <- cbind(tmp.design.ct,ivls[[k]])} if(method=="RDA"||method=="rda") { gfa <- vegan::RsquareAdj(vegan::rda(dv~.,tmp.design.ct)) } if(method=="CCA"||method=="cca") {gfa <- vegan::RsquareAdj(vegan::cca(dv~.,tmp.design.ct,permutations = n.perm)) } if(method=="dbRDA"||method=="dbrda"||method=="DBRDA") { gfa <- vegan::RsquareAdj(vegan::capscale(dv~.,tmp.design.ct,add=add,sqrt.dist = sqrt.dist)) } if(type=="R2")commonM[i, 2] <- gfa$r.squared if(type=="adjR2")commonM[i, 2] <- gfa$adj.r.squared } } commonalityList <- vector("list", totalN) for (i in 1:totalN) { bit <- binarymx[1, i] if (bit == 1) ilist <- c(0, -ivID[1]) else ilist <- ivID[1] for (j in 2:nvar) { bit <- binarymx[j, i] if (bit == 1) { alist <- ilist blist <- genList(ilist, -ivID[j]) ilist <- c(alist, blist) } else ilist <- genList(ilist, ivID[j]) } ilist <- ilist * -1 commonalityList[[i]] <- ilist } for (i in 1:totalN) { r2list <- unlist(commonalityList[i]) numlist <- length(r2list) ccsum = 0 for (j in 1:numlist) { indexs <- r2list[[j]] indexu <- abs(indexs) if (indexu != 0) { ccvalue <- commonM[indexu, 2] if (indexs < 0) ccvalue <- ccvalue * -1 ccsum <- ccsum + ccvalue } } commonM[i, 3] <- ccsum } orderList <- vector("list", totalN) index <- 0 for (i in 1:nvar) { for (j in 1:totalN) { nbits <- sum(binarymx[, j]) if (nbits == i) { index <- index + 1 commonM[index, 1] <- j } } } outputcommonM <- matrix(nrow = totalN + 1, ncol = 2) totalRSquare <- sum(commonM[, 3]) for (i in 1:totalN) { outputcommonM[i, 1] <- round(commonM[commonM[i, 1], 3], digits = 4) outputcommonM[i, 2] <- round((commonM[commonM[i, 1], 3]/totalRSquare) * 100, digits = 2) } outputcommonM[totalN + 1, 1] <- round(totalRSquare, digits = 4) outputcommonM[totalN + 1, 2] <- round(100, digits = 4) rowNames = NULL for (i in 1:totalN) { ii <- commonM[i, 1] nbits <- sum(binarymx[, ii]) cbits <- 0 if (nbits == 1) rowName <- "Unique to " else rowName = "Common to " for (j in 1:nvar) { if (binarymx[j, ii] == 1) { if (nbits == 1) rowName <- paste(rowName, ivlist[j], sep = "") else { cbits = cbits + 1 if (cbits == nbits) { rowName <- paste(rowName, "and ", sep = "") rowName <- paste(rowName, ivlist[j], sep = "") } else { rowName <- paste(rowName, ivlist[j], sep = "") rowName <- paste(rowName, ", ", sep = "") } } } } rowNames <- c(rowNames, rowName) } rowNames <- c(rowNames, "Total") rowNames <- format.default(rowNames, justify = "left") colNames <- format.default(c("Fractions", " % Total"), justify = "right") dimnames(outputcommonM) <- list(rowNames, colNames) VariableImportance <- matrix(nrow = nvar, ncol = 4) for (i in 1:nvar) { VariableImportance[i, 3] <- round(sum(binarymx[i, ] * (commonM[,3]/apply(binarymx,2,sum))), digits = 4) } VariableImportance[,1] <- outputcommonM[1:nvar,1] VariableImportance[,2] <- VariableImportance[,3]-VariableImportance[,1] total=round(sum(VariableImportance[,3]),digits = 3) VariableImportance[, 4] <- round(100*VariableImportance[, 3]/total,2) dimnames(VariableImportance) <- list(iv.name, c("Unique","Average.share","Individual","I.perc(%)")) if(var.part) {outputList <- list(Method_Type=c(method,type),Total_explained_variation=total,Var.part = outputcommonM, Hier.part = VariableImportance)} else {outputList<-list(Method_Type=c(method,type),Total_explained_variation=total,Hier.part= VariableImportance)} class(outputList) <- "rdaccahp" outputList } } }
IWLSiteration <- function(x, y, inib, iniscale, maxiter, tol, b, c1, c2) { n <- nrow(x) p <- ncol(x) res <- y - x %*% inib if (iniscale == 0) { scale <- median(abs(res))/.6745 } else { scale <- iniscale } oldbeta <- inib betadiff <- 2*tol iter <- 0 fwOpt <- function(x, cc) { tmp <- (-1.944 / cc^2 + 1.728 * x^2 / cc^4 - 0.312 * x^4 / cc^6 + 0.016 * x^6 / cc^8) / 3.25 tmp[abs(x) < 2*cc] <- 1 / (3.25*cc^2) tmp[abs(x) > 3*cc] <- 0 tmp } psixOpt <- function(x, cc) { tmp <- x^2 / (3.25*cc^2) tmp2 <- (-1.944 * x^2 / cc^2 + 1.728 * x^4 / cc^4 - 0.312 * x^6 / cc^6 + 0.016 * x^8 / cc^8) / 3.25 tmp[abs(x) > 2*cc] <- tmp2[abs(x) > 2*cc] tmp[abs(x) > 3*cc] <- 0 tmp } rhoOpt <- function(x, cc) { tmp <- x^2 / 2 / (3.25*cc^2) tmp2 <- (1.792 - 0.972 * x^2 / cc^2 + 0.432 * x^4 / cc^4 - 0.052 * x^6 / cc^6 + 0.002 * x^8 / cc^8) / 3.25 tmp[abs(x) > 2*cc] <- tmp2[abs(x) > 2*cc] tmp[abs(x) > 3*cc] <- 1 tmp } WtellerOpt <- function(x, cc) { tmp <- (3.584 - 0.864 * x^4 / cc^4 + 0.208 * x^6 / cc^6 - 0.012 * x^8 / cc^8) / 3.25 tmp[abs(x) < 2*cc] <- 0 tmp[abs(x) > 3*cc] <- 2 tmp } while ((betadiff > tol) && (iter < maxiter)) { scale <- sqrt( scale^2 * mean( rhoOpt(res/scale,c1) ) / b ) scaledres <- res/scale Wn.teller <- sum(WtellerOpt(scaledres,c2)) Wn.noemer <- sum(psixOpt(scaledres,c1)) Wn <- Wn.teller / Wn.noemer weights <- (Wn * fwOpt(scaledres,c1) + fwOpt(scaledres,c2)) weights <- apply(cbind(weights, 0), 1, max) sqweights <- sqrt(weights) xw <- x * as.vector(sqweights) yw <- y * sqweights newbeta <- qr.coef(qr(xw),yw) if (any(!is.finite(newbeta))) { newbeta <- inib scale <- iniscale break } betadiff <- sqrt(sum((oldbeta - newbeta)^2)) res <- y - x %*% newbeta oldbeta <- newbeta iter <- iter + 1 } return( list( betarw = newbeta, scalerw = scale ) ) }
library(dbglm) library(DBI) library(MonetDBLite) library(dplyr) library(dbplyr) library(purrr) library(tidyr) library(rlang) library(tibble) library(vctrs) library(tidypredict) ms <- MonetDBLite::src_monetdblite("~/VEHICLE") monetdb.read.csv(ms$con, "Fleet30Nov2017.csv",tablename="vehicles",quote="",nrow.check=10000,best.effort=TRUE,lower.case.names=TRUE) vehicles<-tbl(ms,"vehicles") cars <- filter(vehicles, vehicle_type == "PASSENGER CAR/VAN") %>% mutate(isred=ifelse(basic_colour=="RED",1,0)) %>% filter(number_of_seats >1 & number_of_seats < 7) %>% filter(number_of_axles==2) %>% compute() system.time({ model<-dbglm(isred~power_rating+number_of_seats+gross_vehicle_mass,tbl=cars) }) library(dbglm) library(RSQLite) library(dplyr) library(dbplyr) vehicles<-readr::read_csv("Fleet30Nov2017.csv") names(vehicles)<-tolower(names(vehicles)) vehicles$power_rating<-as.numeric(as.character(vehicles$power_rating)) vehicles$number_of_seats<-as.numeric(as.character(vehicles$number_of_seats)) vehicles$number_of_axles<-as.numeric(as.character(vehicles$number_of_axles)) sqlite<-dbDriver("SQLite") con<-dbConnect(sqlite,"nzcars.db") RSQLite:::initExtension(con) dbWriteTable(con,"vehicles",vehicles) rm(vehicles) dbDisconnect(con) library(dbglm) library(RSQLite) library(dplyr) library(dbplyr) sqlite<-dbDriver("SQLite") con<-dbConnect(sqlite,"nzcars.db") RSQLite:::initExtension(con) sqlitevehicles<-tbl(con,"vehicles") cars <- filter(sqlitevehicles, vehicle_type == "PASSENGER CAR/VAN") %>% mutate(isred=ifelse(basic_colour=="RED",1,0)) %>% filter(number_of_seats >1 & number_of_seats < 7) %>% filter(number_of_axles==2) %>% compute() system.time({ sqlitemodel<-dbglm(isred~power_rating+number_of_seats+gross_vehicle_mass,tbl=cars) }) sqrt(diag(sqlitemodel$hatV)*2917) library(duckdb) con_duck<- dbConnect(duckdb::duckdb(), "duck") vehicles<- read.csv("Fleet30Nov2017.csv") names(vehicles)<-tolower(names(vehicles)) vehicles$power_rating<-as.numeric(as.character(vehicles$power_rating)) vehicles$number_of_seats<-as.numeric(as.character(vehicles$number_of_seats)) vehicles$number_of_axles<-as.numeric(as.character(vehicles$number_of_axles)) dbWriteTable(con_duck, "cars", vehicles, overwrite = T) cars<- tbl(con_duck, "cars") cars1 <- filter(cars, vehicle_type == "PASSENGER CAR/VAN") %>% mutate(isred=ifelse(basic_colour=="RED",1,0)) %>% filter(number_of_seats >1 & number_of_seats < 7) %>% filter(number_of_axles==2) %>% compute() model<-dbglm(isred~power_rating+number_of_seats+gross_vehicle_mass,tbl=cars1)
library(animation) library(Cairo) saveHTML({ ani.options(interval = 0.05, nmax = 1) CairoPNG(filename = ani.options('img.fmt')) par(pty = 's', mar = rep(1, 4)) vi.lilac.chaser() dev.off() }, img.name='chaser_cairo', htmlfile='chaser.html', use.dev=FALSE, ani.type='png', description = 'Using the high-quality CairoPNG() device') saveHTML({ ani.options(interval = 0.05, nmax = 1) par(pty = 's', mar = rep(1, 4)) vi.lilac.chaser() }, img.name='chaser_png', htmlfile='chaser.html', use.dev=TRUE, ani.dev='png', ani.type='png', description = c("Using R's png() device; can you see the difference?", 'Note the borders of the dots.'))
library(dplyr) summarise(mtcars, mean(disp)) summarise(group_by(mtcars, cyl), mean(disp)) summarise(group_by(mtcars, cyl), m = mean(disp), sd = sd(disp))
cumskew <- function(x) sapply(seq_along(x), function(k, z) skewness(z[1:k]), z = x)
library(stringi) function(a=1){ list(msg=paste0("Welcome to the root URL! a = ", a)) } function(req, res){ if (!stri_startswith_fixed(req$QUERY_STRING, "?user=")){ res$status <- 401 return(list(err="Not authorized")) } user <- substr(req$QUERY_STRING, 7, nchar(req$QUERY_STRING)) req$username <- user forward() } function(req, res){ list(name=req$username) } function(req, res){ stop("I throw an error!") } function(req){ req$testVal <- 1 req$testVal } function(req){ req$testVal } function(){ '<html> <head> </head> <body> <h3>Expected answer (good): `{}`<h3> <h3>Shared TCP Connections answer (bad): `[1]`.</h3> <br/> <h3>Answer:</h3> <span id="answer"></span> <script src="https://code.jquery.com/jquery-2.1.4.min.js"></script> <script> $.get("/get").done(function(){ $.get("/set").done(function(){ $.get("/get").done(function(a){ window.document.getElementById("answer").append(JSON.stringify(a, null, " ")) }); }); }); </script> </body> </html>' }
`PlotPolysOnStaticMap` <-structure(function ( MyMap, polys, col, border = NULL, lwd = .25, verbose = 0, add=TRUE, textInPolys = NULL, ... ){ stopifnot(class(polys)[1] == "SpatialPolygons" | class(polys)[1] == "PolySet" | class(polys)[1] == "data.frame" | class(polys)[1] == "matrix") if (class(polys)[1] == "SpatialPolygons") polys = SpatialToPBS(polys)$xy Rcoords <- LatLon2XY.centered(MyMap,lat= polys[,"Y"],lon= polys[,"X"]); polys.XY <- as.data.frame(polys); polys.XY[,"X"] <- Rcoords$newX; polys.XY[,"Y"] <- Rcoords$newY; if ( !( "PID" %in% colnames(polys.XY)) ) polys.XY[,"PID"] <- 1; if ( !( "SID" %in% colnames(polys.XY)) ) polys.XY[,"SID"] <- 1; polys.XY[,"PIDSID"] <- apply(polys.XY[,c("PID","SID")],1,paste,collapse=":") if (!add) tmp <- PlotOnStaticMap(MyMap, verbose=0, ...) if (verbose>1) browser() if (!is.null(textInPolys)) Centers = PBSmapping::calcCentroid(polys.XY) if (requireNamespace("PBSmapping", quietly = TRUE) & all(c("PID","X","Y","POS") %in% colnames(polys.XY)) ) { attr(polys.XY, "projection") <- NULL; usr <- par('usr') PBSmapping::addPolys(polys.XY,col=col, border = border, lwd = lwd, xlim =usr[1:2], ylim = usr[3:4], ...) if (!is.null(textInPolys)) { text(Centers[,"X"],Centers[,"Y"],textInPolys,cex=0.75, col = "blue") } } else { if (!missing(col)) { polys.XY[,"col"] <- col; PIDtable <- as.numeric(table(polys.XY[,"PID"])); SIDtable <- as.numeric(table(polys.XY[,"PIDSID"])) if (length(SIDtable)==length(col)) polys.XY[,"col"] <- rep(col, SIDtable); if (length(PIDtable)==length(col)) polys.XY[,"col"] <- rep(col, PIDtable); } if ( !( "col" %in% colnames(polys.XY)) ) polys.XY[,"col"] <- rgb(.1,.1,.1,.05); pids = unique(polys.XY[,"PIDSID"]) for (i in pids){ jj = polys.XY[,"PIDSID"] == i; xx= polys.XY[jj,]; if ( ( "POS" %in% colnames(xx)) ) xx <- xx[order(xx[,"POS"]),] polygon( xx[, c("X","Y")], col=xx[,"col"]); if (!is.null(textInPolys)) { text(Centers[i,"X"],Centers[i,"Y"],textInPolys[i], col = "blue") } } } }, ex = function(){ if (0){ shpFile <- paste(system.file(package = "RgoogleMaps"), "/shapes/bg11_d00.shp", sep = "") shp=importShapefile(shpFile,projection="LL"); bb <- qbbox(lat = shp[,"Y"], lon = shp[,"X"]); MyMap <- GetMap.bbox(bb$lonR, bb$latR, destfile = "DC.png"); PlotPolysOnStaticMap(MyMap, shp, lwd=.5, col = rgb(0.25,0.25,0.25,0.025), add = F); mapOSM <- GetMap.bbox(bb$lonR, bb$latR, destfile = "DC.png", type="osm"); PlotPolysOnStaticMap(mapOSM, shp, lwd=.5, col = rgb(0.75,0.25,0.25,0.15), add = F); shpFile <- system.file("shapes/sids.shp", package="maptools"); shp=importShapefile(shpFile,projection="LL"); bb <- qbbox(lat = shp[,"Y"], lon = shp[,"X"]); MyMap <- GetMap.bbox(bb$lonR, bb$latR, destfile = "SIDS.png"); sid <- 100*attr(shp, "PolyData")$SID74/(attr(shp, "PolyData")$BIR74+500) b <- as.integer(cut(sid, quantile(sid, seq(0,1,length=8)) )); b[is.na(b)] <- 1; opal <- col2rgb(grey.colors(7), alpha=TRUE)/255; opal["alpha",] <- 0.2; shp[,"col"] <- rgb(0.1,0.1,0.1,0.2); for (i in 1:length(b)) shp[shp[,"PID"] == i,"col"] <- rgb(opal[1,b[i]],opal[2,b[i]],opal[3,b[i]],opal[4,b[i]]); PlotPolysOnStaticMap(MyMap, shp, lwd=.5, col = shp[,"col"], add = F); library(maptools); qk <- SpatialPointsDataFrame(as.data.frame(shp[, c("X","Y")]), as.data.frame(shp[, c("X","Y")])) sp::proj4string(qk) <- CRS("+proj=longlat"); tf <- "NC.counties"; SGqk <- GE_SpatialGrid(qk) png(file=paste(tf, ".png", sep=""), width=SGqk$width, height=SGqk$height, bg="transparent") par(mar=c(0,0,0,0), xaxs="i", yaxs="i");par(mai = rep(0,4)) PBSmapping::plotPolys(shp, plt=NULL) dev.off() maptools::kmlOverlay(SGqk, paste(tf, ".kml", sep=""), paste(tf, ".png", sep="")); MyMap <- GetMap.bbox(bb$lonR, bb$latR, destfile = "SIDS.png", size = c(640, 320), zoom = 7); PlotPolysOnStaticMap(MyMap, shp, lwd=.5, col = shp[,"col"], add = F); } })
uifit <- function(x.closedp) { if(!inherits(x.closedp, "closedp.t")) stop("'x.closedp' must be an object produced with 'closedp' or 'closedp.t") t <- x.closedp$t ifirstcap <- NULL for (i in 1:t) { ifirstcap <- c(ifirstcap,rep(i,2^(t-i))) } lmn<-rownames(x.closedp$results) nm<-length(lmn) tableau <- matrix(nrow=t+5,ncol=nm+1) dimnames(tableau) <- list(paste("u",1:(t+5),sep = ""),c("observed",lmn)) stat <- matrix(nrow=nm,ncol=1) dimnames(stat) <- list(lmn,c("Chi-suare value")) desc<- descriptive(x.closedp$X,x.closedp$dfreq) tableau[,1]<-c(desc$base.freq[,2],rep(NA,5)) for (j in 1:nm) { glmo <- x.closedp$glm[[j]] N <- x.closedp$parameters[[j]][1,1] if (lmn[j]=="M0") { p <- exp(glmo$coef[2])/(1+exp(glmo$coef[2])) tableau[,j+1] <- N*p*(1-p)^(0:(t+4)) } else if (lmn[j]=="Mb") { p <- 1-exp(glmo$coef[2])/(1+exp(glmo$coef[3])) tableau[,j+1] <- N*p*(1-p)^(0:(t+4)) } else if (lmn[j]=="Mh Poisson2") { EprobaP_general <- function(x,beta,tau,a,t,k){ (exp(beta)*(1+exp(beta)*a^x)^(t-k))*(a*tau)^x/(factorial(x)*sum(na.rm=TRUE,choose(t,0:t)*exp(beta*(0:t)+tau*a^(0:t)))) } value_Eproba <- rep(0,t+5) for (i in 1:(t+5)) { EprobaP <- function(x){ EprobaP_general(x,glmo$coef[2],glmo$coef[3],2,t,i)} value_Eproba[i] <- sum(na.rm=TRUE,EprobaP(0:100)) } tableau[,j+1] <- N*value_Eproba } else if (lmn[j]=="Mh Darroch") { if(glmo$coef[3]>0) { EprobaD_general <- function(x,beta,tau,t,k){ exp(-(x^2)/(2*tau))*((1+exp(beta+x))^(t-k))*exp(beta+x)/ (sqrt(2*pi*tau)*sum(na.rm=TRUE,choose(t,0:t)*exp(beta*(0:t)+tau*((0:t)^2)/2))) } value_Eproba <- rep(0,t+5) for (i in 1:(t+5)) { EprobaD <- function(x){EprobaD_general(x,glmo$coef[2],glmo$coef[3],t,i)} value_Eproba[i] <- integrate(EprobaD,-100,100)$value } tableau[,j+1] <- N*value_Eproba } else { for ( i in 1:t ) { tableau[i,j+1] <- sum(na.rm=TRUE,glmo$fitted.values[ifirstcap==i]) } } } else { for ( i in 1:t ) { tableau[i,j+1] <- sum(na.rm=TRUE,glmo$fitted.values[ifirstcap==i]) } } stat[j,1] <- sum(na.rm=TRUE,((tableau[1:t,1]-tableau[1:t,j+1])^2)/tableau[1:t,j+1]) } Mean <- colSums((1:t)*tableau[1:t,])/colSums(tableau[1:t,]) Variance <- colSums(((1:t)^2)*tableau[1:t,])/colSums(tableau[1:t,]) - Mean^2 firstcapt <- cbind(Mean,Variance) list(predicted=tableau,fit.stat=stat,day.first.capt=firstcapt) }
library(frbs) data(frbsData) data.train <- frbsData$MackeyGlass1000.dt[1: 500, ] data.fit <- data.train[, 1 : 4] data.tst <- frbsData$MackeyGlass1000.dt[501 : 1000, 1 : 4] real.val <- matrix(frbsData$MackeyGlass1000.dt[501 : 1000, 5], ncol = 1) range.data <- matrix(c(0.43462, 1.3105, 0.43462, 1.3105, 0.43462, 1.3105, 0.43462, 1.3105, 0.43462, 1.3105), nrow=2) method.type <- "GFS.MEMETIC" control.MA = list(maxEvals = 1000, effort = 0.8, alpha = 0.3, popsize = 20, istep = 100, ls = "cmaes") control <- list(num.labels = 4, type.snorm = "MAX", type.implication.func = "ZADEH", control.MA = control.MA, name = "GasFur") object <- frbs.learn(data.train, range.data, method.type, control) res.fit <- predict(object, data.fit) res.test <- predict(object, data.tst) y.pred <- res.test y.real <- real.val bench <- cbind(y.pred, y.real) colnames(bench) <- c("pred. val.", "real. val.") print("Comparison GFS.memetic Vs Real Value on Mackey Glass Data Set") print(bench) residuals <- (y.real - y.pred) MSE <- mean(residuals^2) RMSE <- sqrt(mean(residuals^2)) SMAPE <- mean(abs(residuals)/(abs(y.real) + abs(y.pred))/2)*100 err <- c(MSE, RMSE, SMAPE) names(err) <- c("MSE", "RMSE", "SMAPE") print("GFS.memetic: Error Measurement: ") print(err) op <- par(mfrow = c(2, 1)) x1 <- seq(from = 1, to = nrow(res.fit)) result.fit <- cbind(data.train[, 5], res.fit) plot(x1, result.fit[, 1], col="red", main = "Mackey Glass: Fitting phase (the training data(red) Vs Sim. result(blue))", type = "l", ylab = "MG") lines(x1, result.fit[, 2], col="blue") result.test <- cbind(real.val, res.test) x2 <- seq(from = 1, to = nrow(result.test)) plot(x2, result.test[, 1], col="red", main = "Mackey Glass: Predicting phase (the Real Data(red) Vs Sim. result(blue))", type = "l", ylab = "MG") lines(x2, result.test[, 2], col="blue", type = "l") par(op)
ShuffleMC <- function(MClist, Weights = rep(1, length(MClist)), CheckArguments = TRUE) { if (CheckArguments) CheckentropartArguments() if (is.null(names(MClist))) names(MClist) <- paste("MC", seq_along(MClist), sep="") Reduce(function(...) mergeandlabel(...), lapply(MClist, function(x) x$Nsi)) -> Gabundances Shuffled <- sample(seq_len(ncol(Gabundances))) NumCommunities <- unlist(lapply(MClist, function(x) length(x$Ni))) MCnames <- rep(names(MClist), NumCommunities) names(Gabundances) <- paste(MCnames, unlist(lapply(MClist, function(x) names(x$Ni))), sep=".")[Shuffled] FirstC <- 1 ShuffledMCList <- list() for (i in seq_along(MClist)) { LastC <- FirstC + length((MClist[[i]])$Wi) - 1 ShuffledMCList[[i]] <- MetaCommunity(Gabundances[, Shuffled[FirstC:LastC]], (MClist[[i]])$Wi) names(ShuffledMCList)[i] <- paste("MC", i, sep="") FirstC <- LastC + 1 } return(ShuffledMCList) }
get.hess <- function(data, knots.x, knots.y, Gr=NA, r=seq(0, 2, 0.01), p.bkg=0.5){ x <- data$x y <- data$y-data$SB sigma <- data$sigma lambda <- data$lambda Phi <- basisMatrix(x=x, knots.x=knots.x) bkg <- Phi %*% t(t(knots.y)) D <- DMatrix(knots.x=knots.x)$matrix cDc <- as.vector(t(knots.y) %*% D %*% t(t(knots.y))) E <- length(knots.y) bkg.pp <- D %*% t(t(knots.y)) hess.prior <- E/2 * (2*(D / cDc) - (4 * bkg.pp %*% t(bkg.pp)) / (cDc ^ 2) ) deviation <- y - bkg deviation.norm <- deviation/sigma grad.f <- as.vector(-deviation/sigma^2) hess.f <- as.vector(-1/sigma^2) funct.f <- (log(p.bkg) - 0.5 * log(2 * pi) - log(sigma) - 0.5 * deviation.norm ^ 2) f <- list(funct=funct.f, grad=grad.f, hess=hess.f) rho <- sigma/lambda z <- (y - bkg) / lambda qq <- z / rho - rho funct.h <- log(1 - p.bkg) - log(lambda) + pnorm(log.p=TRUE, q=qq) - z + 0.5 * (rho ^ 2) gamma.q <- exp(-0.5 * qq ^ 2 - pnorm(q=qq, log.p=TRUE)) / (rho * sqrt(2 * pi)) grad.h <- as.vector(-(1 - gamma.q) / lambda) hess.h <- as.vector(-gamma.q * (gamma.q + qq / rho) / (lambda ^ 2)) h <- list(funct=funct.h, grad=grad.h, hess=hess.h) f.fract <- as.vector(1 / (1 + exp(h$funct - f$funct))) h.fract <- 1 - f.fract grad.g <- hess.g <- NA grad.g <- (f.fract * f$grad + (1 - f.fract) * h$grad) f.contr <- f.fract*f$hess + f.fract*f$grad*f$grad h.contr <- h.fract*h$hess + h.fract*h$grad*h$grad hess.gg <- -(f.contr + h.contr - (grad.g)^2) Phi.prime <- hess.gg*Phi hess.g <- t(Phi.prime) %*% Phi hess.gr <- 0 if(!is.na(Gr[1])){ if(is.na(Gr$type1)) hess.gr.r1 <- 0 else if(Gr$type1=="gaussianNoise") hess.gr.r1 <- logLikelihoodGrGauss(y=data$y-data$SB, knots.y=knots.y, alpha=1, Phi=Phi, bkg.r=Gr$bkg.r, sigma.r=Gr$sigma.r, matrix.FT=Gr$matrix.FT1, Hessian=TRUE)$hess else if(Gr$type1=="correlatedNoise") hess.gr.r1 <- logLikelihoodGrCorr(knots.y=knots.y, Phi=Phi, bkg.r=Gr$bkg.r, KG.inv=Gr$KG.inv, matrix.FT=Gr$matrix.FT1, Hessian=TRUE)$hess if(is.na(Gr$type2)) hess.gr.r2 <- 0 else if(Gr$type2=="secondDeriv") hess.gr.r2 <- logPriorBkgRSmooth(bkg.r=Gr$matrix.FT2 %*% bkg, D=Gr$D, Hessian=TRUE, Phi=Phi, matrix.FT=Gr$matrix.FT2, knots.y=knots.y)$hess else if(Gr$type2=="gaussianProcess") hess.gr.r2 <- logPriorBkgRGP(bkg.r=Gr$matrix.FT2 %*% bkg, covMatrix=Gr$covMatrix, Hessian=TRUE)$hess hess.gr <- hess.gr.r1 + hess.gr.r2 } hess <- hess.prior + hess.gr + hess.g hess.inv <- solve(hess) Phi <- basisMatrix(x=data$x, knots.x=knots.x) H <- Phi%*%hess.inv%*%t(Phi) H <- H + diag((data$sigma)^2, length(data$x)) cov.diag <- diag(H) cov.diag[which(cov.diag<0)]<-0 stdev <- sqrt(cov.diag) MFT <- sineFT.matrix(Q=data$x, r=r) cov.r <- MFT %*% H %*% t(MFT) cov.diag.r <- diag(cov.r) cov.diag.r[which(cov.diag.r<0)]<-0 stdev.r <- sqrt(cov.diag.r) return(list(stdev=stdev, stdev.r=stdev.r, hess=hess, cov.matrix=hess.inv, cov.matrix.r=cov.r, hess.gg=hess.gg)) } get.hess.numerically <- function(data, knots.x, knots.y, Gr=NA, r=seq(0, 2, 0.01), p.bkg=0.5, h=1e-4){ n <- length(knots.y) incr <- function(cc, h, i=0, j=0){ if(i!=0) cc[i] <- cc[i]+h if(j!=0) cc[j] <- cc[j]+h return(cc) } hess <- matrix(0, nrow=n, ncol=n) for(i in 1:n){ cat("knot.i = ", i, " of ", n,"\n") for(j in 1:n){ a1 <- logPosterior(data=data, alpha=1, knots.x=knots.x, knots.y=incr(cc=knots.y,h=h,i=i,j=j), Gr=Gr, p.bkg=p.bkg) a2 <- logPosterior(data=data, alpha=1, knots.x=knots.x, knots.y=incr(cc=knots.y,h=h,i=i, j=0), Gr=Gr, p.bkg=p.bkg) a3 <- logPosterior(data=data, alpha=1, knots.x=knots.x, knots.y=incr(cc=knots.y,h=h,i=0, j=j), Gr=Gr, p.bkg=p.bkg) a4 <- logPosterior(data=data, alpha=1, knots.x=knots.x, knots.y=knots.y, Gr=Gr, p.bkg=p.bkg) hess[i,j] <- (a1-a2-a3+a4)/h^2 } } hess.inv <- solve(hess) Phi <- basisMatrix(x=data$x, knots.x=knots.x) H <- Phi%*%hess.inv%*%t(Phi) H <- H + diag((data$sigma)^2, length(data$x)) cov.diag <- diag(H) cov.diag[which(cov.diag<0)]<-0 stdev <- sqrt(cov.diag) MFT <- sineFT.matrix(Q=data$x, r=r) cov.r <- MFT %*% H %*% t(MFT) cov.diag.r <- diag(cov.r) cov.diag.r[which(cov.diag.r<0)]<-0 stdev.r <- sqrt(cov.diag.r) return(list(stdev=stdev, stdev.r=stdev.r, hess=hess, cov.matrix=hess.inv, cov.matrix.r=cov.r)) } grad.descent <- function(data, knots.x, knots.y, Gr=NA, p.bkg=0.5, eps=1e-3, N=10000){ x.p <- knots.y x.pp <- x.p lambda <- c(abs(0.0001/get.deriv(data=data, knots.x, x.p, Gr=Gr, p.bkg=0.5))) N <- round(N, digits=-2) if(N==0) N <- 100 cat("iterations will stop once convergence is reached \n") cat("indicating % of itermax... \n") for(j in 1:(N/100)){ cat("...",(j-1)/N*100*100, "% done \n") for(i in 1:100){ grad.f <- as.vector(get.deriv(data=data, knots.x=knots.x, knots.y=x.p, Gr=Gr, p.bkg=p.bkg)) x.f <- x.p - lambda*grad.f x.p <- x.f } if(max(abs(x.pp-x.f))<eps){ cat("\n convergence reached! \n") break } x.pp <- x.f } if(j == (N/100)){ cat("convergence not reached! \n") return(knots.y) } else return(x.f) } get.deriv.numerically <- function(data, knots.x, knots.y, Gr=NA, p.bkg=0.5, h=1e-6){ n <- length(knots.y) incr <- function(cc, h, i=0){ cc[i] <- cc[i]+h cc } der <- 0 for(i in 1:n){ a1 <- logPosterior(data=data, alpha=1, knots.x=knots.x, knots.y=incr(cc=knots.y,h=h,i=i), Gr=Gr, p.bkg=p.bkg) a2 <- logPosterior(data=data, alpha=1, knots.x=knots.x, knots.y=knots.y, Gr=Gr, p.bkg=p.bkg) der[i] <- (a1-a2)/h } return(der) } get.deriv <- function(data, knots.x, knots.y, Gr=NA, p.bkg=0.5){ x <- data$x y <- data$y-data$SB sigma <- data$sigma lambda <- data$lambda Phi <- basisMatrix(x=x, knots.x=knots.x) bkg <- Phi %*% t(t(knots.y)) D <- DMatrix(knots.x=knots.x)$matrix cDc <- as.vector(t(knots.y) %*% D %*% t(t(knots.y))) E <- length(knots.y) deviation <- y - bkg norm.dev <- deviation/sigma grad.f <- as.vector(deviation/sigma^2)*Phi funct.f <- (log(p.bkg) - 0.5 * log(2 * pi) - log(sigma) - 0.5 * norm.dev ^ 2) f <- list(funct=funct.f, grad=grad.f) rho <- sigma/lambda z <- (y - bkg) / lambda qq <- z / rho - rho funct.h <- (log(1 - p.bkg) - log(lambda) + pnorm(log.p=TRUE, q=qq) - z + 0.5 * (rho ^ 2)) gamma.q <- exp(-0.5 * qq ^ 2 - pnorm(q=qq, log.p=TRUE)) / (rho * sqrt(2 * pi)) grad.h <- as.vector((1 - gamma.q) / lambda) * Phi h <- list(funct=funct.h, grad=grad.h) f.fract <- as.vector(1 / (1 + exp(h$funct - f$funct))) grad.g <- hess.g <- NA grad.g <- f.fract * f$grad + (1 - f.fract) * h$grad grad.g <- f.fract * f$grad + (1 - f.fract) * h$grad grad <- -colSums(grad.g) + (t(knots.y) %*% D) * E / cDc if(!is.na(Gr[1])){ matrix.FT <- Gr$matrix.FT1 sigma.r <- Gr$sigma.r Mprime <- matrix.FT%*%Phi / (sqrt(2)*sigma.r) b.prime <- Gr$bkg.r / (sqrt(2)*sigma.r) grad.gr <- 2*t(Mprime) %*% Mprime %*%knots.y- 2*t(Mprime)%*%b.prime grad <- as.vector(grad) + as.vector(grad.gr) } return(grad) } golden.search = function(data, lower.bound=-.01, upper.bound=.01, tolerance=1e-6, knots.x, knots.y, Gr, p.bkg, grad.f){ f <- function(lambda){ logPosterior(data=data, alpha=1, knots.x=knots.x, knots.y=(knots.y - lambda*grad.f), Gr=Gr, p.bkg=p.bkg) } golden.ratio = 2/(sqrt(5) + 1) x1 = upper.bound - golden.ratio*(upper.bound - lower.bound) x2 = lower.bound + golden.ratio*(upper.bound - lower.bound) f1 = f(x1) f2 = f(x2) iteration = 0 while(abs(upper.bound - lower.bound) > tolerance){ iteration = iteration + 1 if (f2 > f1){ upper.bound = x2 x2 = x1 f2 = f1 x1 = upper.bound - golden.ratio*(upper.bound - lower.bound) f1 = f(x1) } else{ lower.bound = x1 x1 = x2 f1 = f2 x2 = lower.bound + golden.ratio*(upper.bound - lower.bound) f2 = f(x2) } } estimated.minimizer = (lower.bound + upper.bound)/2 estimated.minimizer } regularized.cholesky <- function(Matr, eps.max=1e-2, eps.min=1e-20, numTries=17) { baseVal <- min(diag(Matr)) U <- try(chol(Matr), silent=T) epsilon <- eps.min I <- diag(nrow(Matr)) while (!is.null(attr(U, "class")) && attr(U, "class") == "try-error" && epsilon <= eps.max) { U <- try(chol(Matr + baseVal * epsilon * I), silent=T) epsilon <- epsilon * 10 } if (epsilon >= eps.max) stop("We just couldn't Cholesky-decompose this matrix\n") return (U) } row.outer.product <- function(Phi) { rows <- nrow(Phi) cols <- ncol(Phi) ppt <- array(apply(Phi, 1, function(x) x %*% t(x)), dim=c(cols, cols, rows)) return (ppt) } covMatrixSE <- function(x, sig=0.05, l=0.1){ N <- length(x) covX <- matrix(nrow=N, ncol=N) if(length(l)==1){ covX <- outer(X=x, Y=x, FUN=function(x, y) { sig^2*exp( -0.5*((x - y) / l)^2 ) }) } else{ for(i in 1:N) for(j in 1:N) covX[i,j] <- sig^2*sqrt( 2*l[i]*l[j]/(l[i]^2+l[j]^2) )* exp( -(x[i]-x[j])^2/(l[i]^2+l[j]^2) ) } factor <- 1 while (det(covX)==0) { covX <- covX*1e1 factor <- factor*1e1 } list(cov=covX, factor=factor) } covMatrix.DI <- function(covMatrix){ U <- regularized.cholesky(covMatrix) covMatrix.inv <- chol2inv(U) covMatrix.det <- det(U) list(inv=covMatrix.inv, det=covMatrix.det) }
optimize <- function(population, Ly, harvest, biomass) { stats::optimize(yield_pi, c(0, 1), population = population, Ly = Ly, harvest = harvest, biomass = biomass, maximum = TRUE )$maximum } ypr_optimize <- function(population, Ly = 0, harvest = TRUE, biomass = FALSE) { chk_population(population) chk_number(Ly) chk_gte(Ly) chk_flag(biomass) chk_flag(harvest) yield <- optimize( population = population, Ly = Ly, harvest = harvest, biomass = biomass ) sanitize(yield) } ypr_optimise <- ypr_optimize
full_join.disk.frame <- function(x, y, by=NULL, copy=FALSE, ..., outdir = tempfile("tmp_disk_frame_full_join"), overwrite = TRUE, merge_by_chunk_id, .progress = FALSE) { stopifnot("disk.frame" %in% class(x)) overwrite_check(outdir, overwrite) if("data.frame" %in% class(y)) { ncx = nchunks(x) dy = shard(y, shardby = by, nchunks = ncx, overwrite = FALSE) dx = rechunk(x, shardby = by, outdir=tempfile(fileext = ".jdf"), overwrite = FALSE) return(full_join.disk.frame(dx, dy, by, copy=copy, outdir=outdir, merge_by_chunk_id = TRUE)) } else if("disk.frame" %in% class(y)) { if(is.null(merge_by_chunk_id)) { stop("both x and y are disk.frames. You need to specify merge_by_chunk_id = TRUE or FALSE explicitly") } if(is.null(by)) { by <- intersect(names(x), names(y)) } ncx = nchunks(x) ncy = nchunks(y) if (merge_by_chunk_id == FALSE) { warning("merge_by_chunk_id = FALSE. This will take significantly longer and the preparations needed are performed eagerly which may lead to poor performance. Consider making y a data.frame or set merge_by_chunk_id = TRUE for better performance.") x = rechunk(x, by, nchunks = max(ncy,ncx), outdir=tempfile(fileext = ".jdf"), overwrite = FALSE) y = rechunk(y, by, nchunks = max(ncy,ncx), outdir=tempfile(fileext = ".jdf"), overwrite = FALSE) return(full_join.disk.frame(x, y, by, copy = copy, outdir = outdir, merge_by_chunk_id = TRUE, overwrite = overwrite, .progress = .progress)) } else if ((identical(shardkey(x)$shardkey, "") & identical(shardkey(y)$shardkey, "")) | identical(shardkey(x), shardkey(y))) { res = cmap2(x, y, ~{ if(is.null(.y)) { return(.x) } else if (is.null(.x)) { return(.y) } full_join(.x, .y, by = by, copy = copy) }, outdir = outdir, overwrite = overwrite, .progress = .progress) return(res) } else { stop("merge_by_chunk_id is TRUE but shardkey(x) does NOT equal to shardkey(y). You may want to perform a hard_group_by() on both x and/or y or set merge_by_chunk_id = FALSE") } } }
testData = createData(sampleSize = 100, overdispersion = 0.5, randomEffectVariance = 0) fittedModel <- glm(observedResponse ~ Environment1 , family = "poisson", data = testData) simulationOutput <- simulateResiduals(fittedModel = fittedModel) plot(simulationOutput, quantreg = TRUE) testUniformity(simulationOutput) testCategorical(simulationOutput, testData$group) testDispersion(simulationOutput) testOutliers(simulationOutput, type = "binomial") testZeroInflation(simulationOutput) countOnes <- function(x) sum(x == 1) testGeneric(simulationOutput, summary = countOnes) testGeneric(simulationOutput, summary = countOnes, alternative = "less") means <- function(x) mean(x) testGeneric(simulationOutput, summary = means) spread <- function(x) sd(x) testGeneric(simulationOutput, summary = spread)
if (interactive()) pkgload::load_all(".") if (get_boolean_envvar("IS_RUNIT") && get_run_r_tests()) { test_r <- function() { wd <- setwd(tempdir()) on.exit(setwd(wd)) path <- tempfile() tempdir <- tempfile() dir.create(tempdir) packager::create(path, fakemake = FALSE) on.exit(unlink(path, recursive = TRUE), add = TRUE) description_path <- file.path(path, "DESCRIPTION") lines <- readLines(description_path) expectation <- fritools:::get_desc_value("Package", lines = lines) result <- basename(path) RUnit::checkIdentical(expectation, result) RUnit::checkException(fritools:::get_current_tarball(tempdir)) tarball <- fritools:::r_cmd_build(path = path, output_directory = tempdir) package_tarball <- list.files(tempdir, pattern = "file.*\\.tar\\.gz", full.names = TRUE) RUnit::checkTrue(file.exists(tarball)) RUnit::checkIdentical(tarball, package_tarball) touch(file.path(tempdir, "foo.tar.gz")) expectation <- file.path(tempdir, "bar.tar.gz") touch(expectation); touch(expectation) RUnit::checkIdentical(fritools:::get_current_tarball(tempdir), expectation) package_tarball <- list.files(tempdir, pattern = "file.*\\.tar\\.gz", full.names = TRUE) fake_tarball <- sub("_.*\\.tar.gz", "_99.0.0.tar.gz", package_tarball) file.copy(package_tarball, fake_tarball) result <- fritools:::get_current_tarball(tempdir) RUnit::checkIdentical(result, fake_tarball) result <- fritools:::get_current_tarball(tempdir, package_dir = tempdir) RUnit::checkIdentical(result, fake_tarball) result <- fritools:::get_current_tarball(tempdir, package_dir = path) RUnit::checkIdentical(result, package_tarball) RUnit::checkIdentical(fritools:::r_cmd_check(path = package_tarball), 0L) RUnit::checkIdentical(r_cmd_install(path = package_tarball), 0L) RUnit::checkIdentical(r_cmd_install(path = path), 0L) RUnit::checkIdentical(r_cmd_install(path = path, try_tarball = FALSE), 0L) } if (interactive()) { test_r() } }
sot <- function(Sigma,A,ncores=1,...) { if (is.list(Sigma)) sot_list(Sigma,A,dim(Sigma[[1]])[1],dim(A[[1]])[3],ncores=ncores,...) else sot_single(Sigma,A,dim(Sigma)[1],dim(A)[3],...) } sot_single <- function(Sigma,A,N=dim(Sigma)[1],H=dim(A)[3],perm=1:N) { res <- numeric(N*N) dim(res) <- c(N,N) scaling_factor <- 1/sqrt(.Call(C_fev,Sigma,A,N,H)) res[] <- 100*.sot_FAST(.Call(C_scaleSigma,Sigma,scaling_factor,N),.Call(C_scaleA,A,scaling_factor,N,H),N,H,perm) dimnames(res) <- dimnames(Sigma) res } sot_list <- function(Sigma,A,N=dim(Sigma[[1]])[1],H=dim(A[[1]])[3],perm=1:N,ncores=1) { len <- length(Sigma) res <- vector("list",len) if ( (ncores!=1) && (!requireNamespace("parallel")) ) { print("Parallelization not possible because package 'parallel' is not installed. Using single core version instead.") ncores <- 1 } if (ncores==1) { for (i in 1:len) res[[i]] <- sot_single(Sigma[[i]],A[[i]],N,H,perm) } else { if (ncores==0) { ncores <- detectCores() cat("Number of cores used:",ncores,"\n") } splitted <- splitIndices(len,ncores) cl <- makeCluster(ncores) clusterEvalQ(cl, library(fastSOM)) clusterExport(cl,c("Sigma","A","N","H","perm"),envir=environment()) tmp <- clusterApply(cl,1:ncores,function(ind) sot_list(Sigma[splitted[[ind]]],A[splitted[[ind]]],N,H,perm,1)) stopCluster(cl) for (i in 1:ncores) { res[splitted[[i]]] <- tmp[[i]] } } names(res) <- names(Sigma) res }
"dummyVars" <- function(formula, ...){ UseMethod("dummyVars") } dummyVars.default <- function (formula, data, sep = ".", levelsOnly = FALSE, fullRank = FALSE, ...) { formula <- as.formula(formula) if(!is.data.frame(data)) data <- as.data.frame(data, stringsAsFactors = FALSE) vars <- all.vars(formula) if(any(vars == ".")) { vars <- vars[vars != "."] vars <- unique(c(vars, colnames(data))) } isFac <- unlist(lapply(data[,vars,drop = FALSE], is.factor)) if(sum(isFac) > 0) { facVars <- vars[isFac] lvls <- lapply(data[,facVars,drop = FALSE], levels) if(levelsOnly) { tabs <- table(unlist(lvls)) if(any(tabs > 1)) { stop(paste("You requested `levelsOnly = TRUE` but", "the following levels are not unique", "across predictors:", paste(names(tabs)[tabs > 1], collapse = ", "))) } } } else { facVars <- NULL lvls <- NULL } trms <- attr(model.frame(formula, data), "terms") out <- list(call = match.call(), form = formula, vars = vars, facVars = facVars, lvls = lvls, sep = sep, terms = trms, levelsOnly = levelsOnly, fullRank = fullRank) class(out) <- "dummyVars" out } print.dummyVars <- function(x, ...) { cat("Dummy Variable Object\n\n") cat("Formula: ") print(x$form) cat(length(x$vars), " variables, ", length(x$facVars), " factors\n", sep = "") if(!is.null(x$sep) & !x$levelsOnly) cat("Variables and levels will be separated by '", x$sep, "'\n", sep = "") if(x$levelsOnly) cat("Factor variable names will be removed\n") if(x$fullRank) cat("A full rank encoding is used") else cat("A less than full rank encoding is used") cat("\n") invisible(x) } predict.dummyVars <- function(object, newdata, na.action = na.pass, ...) { if(is.null(newdata)) stop("newdata must be supplied") if(!is.data.frame(newdata)) newdata <- as.data.frame(newdata, stringsAsFactors = FALSE) if(!all(object$vars %in% names(newdata))) stop( paste("Variable(s)", paste("'", object$vars[!object$vars %in% names(newdata)], "'", sep = "", collapse = ", "), "are not in newdata")) Terms <- object$terms Terms <- delete.response(Terms) if(!object$fullRank) { oldContr <- options("contrasts")$contrasts newContr <- oldContr newContr["unordered"] <- "contr.ltfr" options(contrasts = newContr) on.exit(options(contrasts = oldContr)) } m <- model.frame(Terms, newdata, na.action = na.action, xlev = object$lvls) x <- model.matrix(Terms, m) cnames <- colnames(x) if(object$levelsOnly) { for(i in object$facVars) { for(j in object$lvls[[i]]) { from_text <- paste0(i, j) cnames[which(cnames == from_text)] <- j } } } if(!is.null(object$sep) & !object$levelsOnly) { for(i in object$facVars[order(-nchar(object$facVars))]) { for(j in object$lvls[[i]]) { from_text <- paste0(i, j) to_text <- paste(i, j, sep = object$sep) pos = which(cnames == from_text) if (length(pos) > 1) { if (which(object$lvls[[i]] == j) > 1) { cnames[pos][cnames[pos-1] == paste(i, object$lvls[[i]][which(object$lvls[[i]] == j)-1], sep = object$sep)] <- to_text } else { cnames[pos][cnames[pos-1] == paste(object$facVars[order(-nchar(object$facVars))][which(object$facVars[order(-nchar(object$facVars))] == i) - 1], utils::tail(object$lvls[[object$facVars[order(-nchar(object$facVars))][which(object$facVars[order(-nchar(object$facVars))] == i) - 1]]],n=1), sep = object$sep)] <- to_text } } else { cnames[pos] <- to_text } } } } colnames(x) <- cnames x[, colnames(x) != "(Intercept)", drop = FALSE] } contr.ltfr <- function (n, contrasts = TRUE, sparse = FALSE) { if (is.numeric(n) && length(n) == 1L) { if (n > 1L) levels <- as.character(seq_len(n)) else stop("not enough degrees of freedom to define contrasts") } else { levels <- as.character(n) n <- length(n) } contr <- .RDiag(levels, sparse = sparse) if (contrasts) { if (n < 2L) stop(gettextf("contrasts not defined for %d degrees of freedom", n - 1L), domain = NA) } contr } contr.dummy <- function(n, ...) { if (is.numeric(n) && length(n) == 1L) { if (n > 1L) levels <- as.character(seq_len(n)) else stop("not enough degrees of freedom to define contrasts") } else { levels <- as.character(n) n <- length(n) } out <- diag(n) rownames(out) <- levels colnames(out) <- levels out } class2ind <- function(x, drop2nd = FALSE) { if(!is.factor(x)) stop("'x' should be a factor") y <- model.matrix(~ x - 1) colnames(y) <- gsub("^x", "", colnames(y)) attributes(y)$assign <- NULL attributes(y)$contrasts <- NULL if(length(levels(x)) == 2 & drop2nd) { y <- y[,1] } y }
set.seed(9) rm(list = ls()) suppressMessages(library("knitr")) suppressMessages(library("ChemoSpec")) suppressMessages(library("mclust")) suppressMessages(library("RColorBrewer")) suppressMessages(library("ggplot2")) suppressMessages(library("patchwork")) CSdesc <- packageDescription("ChemoSpec") CSUdesc <- packageDescription("ChemoSpecUtils") tmp <- knitr::write_bib(c("knitr", "mclust", "baseline", "hyperSpec", "ggplot2", "plotly"), file = "manuals.bib", prefix = "R_") knitr::opts_hooks$set(sq.fig = function(options) { if (isFALSE(options$sq.fig)) { if ((!is.null(options$fig.width)) & (!is.null(options$fig.height))) return(options) if ((is.null(options$fig.width)) & (is.null(options$fig.height))) { options$fig.width = 6 options$fig.height = 3.5 } } if (isTRUE(options$sq.fig)) { options$fig.width = 5 options$fig.height = 5 } options }) knitr::opts_chunk$set(fig.align = "center", sq.fig = FALSE, fig.width = NULL, fig.height = NULL, out.width = "80%") knitr::include_graphics("MetabPreProcess.png") data(SrE.IR) sumSpectra(SrE.IR) myt <- expression(bolditalic(Serenoa)~bolditalic(repens)~bold(Extract~IR~Spectra)) p <- plotSpectra(SrE.IR, which = c(1, 2, 14, 16), yrange = c(0, 1.6), offset = 0.4, lab.pos = 2200) p <- p + ggtitle(myt) p p <- plotSpectra(SrE.IR, which = c(1, 2, 14, 16), yrange = c(0, 0.6), offset = 0.1, lab.pos = 1775) p <- p + ggtitle(myt) + coord_cartesian(xlim = c(1650, 1800)) p SrE.IR$names grep("OO", SrE.IR$names) SrE2.IR <- baselineSpectra(SrE.IR, int = FALSE, method = "modpolyfit", retC = TRUE) tmp <- binSpectra(SrE.IR, bin.ratio = 4) sumSpectra(tmp) noTD <- removeSample(SrE2.IR, rem.sam = c("TD_adSrE")) sumSpectra(noTD) grep("TD_adSrE", noTD$names) SrE <- grep("SrE", SrE2.IR$names) SrE2.IR$names[SrE] SrE p <- surveySpectra(SrE2.IR, method = "iqr", by.gr = FALSE) p <- p + ggtitle(myt) p p <- surveySpectra2(SrE2.IR, method = "iqr") p <- p + ggtitle(myt) p p <- surveySpectra(SrE2.IR, method = "iqr", by.gr = FALSE) p <- p + ggtitle("Detail of Carbonyl Region") + coord_cartesian(xlim = c(1650, 1800)) p p <- surveySpectra(SrE2.IR, method = "iqr", by.gr = TRUE) p <- p + ggtitle("Detail of Carbonyl Region") + coord_cartesian(xlim = c(1650, 1800)) p p <- surveySpectra(SrE2.IR, method = "iqr", by.gr = FALSE) p <- p + ggtitle("An Uninteresting Region") + coord_cartesian(xlim = c(1800, 2500), ylim = c(0.0, 0.03)) p SrE3.IR <- removeFreq(SrE2.IR, rem.freq = SrE2.IR$freq > 1800 & SrE2.IR$freq < 2500) sumSpectra(SrE3.IR) check4Gaps(SrE3.IR$freq, SrE3.IR$data[1,]) HCA <- hcaSpectra(SrE3.IR, main = myt) c_res <- c_pcaSpectra(SrE3.IR, choice = "noscale") p <- plotScores(SrE3.IR, c_res, pcs = c(1,2), ellipse = "rob", tol = 0.01) p <- p + plot_annotation(myt) p r_res <- r_pcaSpectra(SrE3.IR, choice = "noscale") p <- plotScores(SrE3.IR, r_res, pcs = c(1,2), ellipse = "rob", tol = 0.01) p p <- diagnostics <- pcaDiag(SrE3.IR, c_res, pcs = 2, plot = "OD") p p <- diagnostics <- pcaDiag(SrE3.IR, c_res, pcs = 2, plot = "SD") p p <- plotScree(c_res) + ggtitle(myt) p p <- plotScree(c_res, style = "trad") + ggtitle(myt) p out <- cv_pcaSpectra(SrE3.IR, pcs = 5) p <- plotLoadings(SrE3.IR, c_res, loads = c(1, 2), ref = 1) p <- p & ggtitle(myt) p p <- plot2Loadings(SrE3.IR, c_res, loads = c(1, 2), tol = 0.001) p <- p + ggtitle(myt) p p <- sPlotSpectra(SrE3.IR, c_res, pc = 1, tol = 0.001) p <- p + ggtitle(myt) p p <- sPlotSpectra(SrE3.IR, c_res, pc = 1, tol = 0.001) p <- p + coord_cartesian(xlim = c(-0.04, -0.01), ylim = c(-1.05, -0.9)) p <- p + ggtitle("Detail of s-Plot") p knitr::include_graphics("aovPCA2.png") knitr::include_graphics("aovPCA1.png") model <- mclustSpectra(SrE3.IR, c_res, plot = "BIC", main = myt) model <- mclustSpectra(SrE3.IR, c_res, plot = "proj", main = myt) model <- mclustSpectra(SrE3.IR, c_res, plot = "errors", main = myt, truth = SrE3.IR$groups) data(Col7) data(Col12) data(Sym12) data(Col8) data(Sym8) auto <- RColorBrewer::brewer.pal(8, "Set1") sp <- 0.75 tsp <- 0.15 h <- 0.25 y <- 0.0 plot(1:12, rep(0.0, 12), type = "n", yaxt = "n", xaxt = "n", bty = "n", xlab = "", ylab = "", ylim = c(0, 3.5) ) text(6.5, y + h + tsp * 4 + sp * 3.5, labels = "Automatic Color & Symbol Options", cex = 1.25, font = 2 ) for (i in 1:12) { rect(i - 0.5, y, i + 0.5, y + h, border = NA, col = Col12[i]) } points(1:12, rep(y + h + tsp, 12), pch = Sym12) text(0.6, y + h + tsp * 2, adj = 0, labels = "gr.cols = 'Col12' 12 mostly paired distinct colors/symbols" ) for (i in 1:8) { rect(i - 0.5, y + sp, i + 0.5, y + sp + h, border = NA, col = Col8[i]) } points(1:8, rep(y + h + tsp + sp, 8), pch = Sym8) text(0.6, y + h + tsp * 2 + sp, adj = 0, labels = "gr.cols = 'Col8' 8 distinct colors/symbols" ) for (i in 1:8) { rect(i - 0.5, y + sp * 2, i + 0.5, y + sp * 2 + h, border = NA, col = auto[i]) } points(1:8, rep(y + h + tsp + sp * 2, 8), pch = Sym8) text(0.6, y + h + tsp * 2 + sp * 2, adj = 0, labels = "gr.cols = 'auto' 8 distinct colors/symbols" ) for (i in 1:7) { rect(i - 0.5, y + sp * 3, i + 0.5, y + sp * 3 + h, border = NA, col = Col7[i]) } points(1:7, rep(y + h + tsp + sp * 3, 7), pch = Sym8[1:7]) text(0.6, y + h + tsp * 2 + sp * 3, adj = 0, labels = "gr.cols = 'Col7' 7 colorblind-friendly colors" )
span( h4(Mod6Step1_txt$title), p(HTML(Mod6Step1_txt$subgoal)), p(HTML(Mod6Step1_txt$intro)), p(HTML(Mod6Step1_txt$exercise)), p(paste0("$$",NOT$trait.1,"_{",NOT$time, NOT$ind,"}= ",EQ3$mean0,"+ ",NOT$devI,"_",NOT$ind,"+ ",NOT$mean," ",NOT$env,"_{",NOT$time, NOT$ind,"}+ ",NOT$error,"_{",NOT$time, NOT$ind,"}$$")), displayRCode(Mod6Step1_txt$RCode1), p(HTML(Mod6Step1_txt$para1)), p(paste0("$$",NOT$trait.1,"_{",NOT$time, NOT$ind,"}= ",EQ3$mean0,"+ ",NOT$devI,"_",NOT$ind,"+ (",NOT$mean,"+", NOT$devS,"_", NOT$ind,")", NOT$env,"_{",NOT$time, NOT$ind,"}+ ",NOT$error,"_{",NOT$time, NOT$ind,"}$$")), displayRCode(Mod6Step1_txt$RCode2), p(HTML(Mod6Step1_txt$para2)), getSliderInput("Mod6Step1_NI", Modules_VAR$NI), getSliderInput("Mod6Step1_NR", Modules_VAR$NR), fluidRow( column(8,getSliderInput("Mod6Step1_Vi", Modules_VAR$Vi)), column(4,textOutput("Mod6Step1_Vi_proportion", inline = TRUE)) ), fluidRow( column(8,getSliderInput("Mod6Step1_Ve", Modules_VAR$Ve)), column(4,textOutput("Mod6Step1_Ve_proportion", inline = TRUE)) ), div(info_msg(Mod6Step1_txt$note)), fluidRow( column(8,getSliderInput("Mod6Step1_Vbx", Modules_VAR$Vbx)), column(4,textOutput("Mod6Step1_Vbx_proportion", inline = TRUE)) ), fluidRow( column(8,getSliderInput("Mod6Step1_Vs", Modules_VAR$Vsx)), column(4,textOutput("Mod6Step1_Vs_proportion", inline = TRUE)) ), conditionalPanel( condition = "0", uiOutput("Mod6Step1_hidden") ), p(HTML(Mod6Step1_txt$para3)), actionButton("Mod6Step1_Run", label = Modules_VAR$Run$label, icon= Modules_VAR$Run$icon, class="runButton"), runningIndicator(), sim_msg(), p(HTML(Mod6Step1_txt$results)), uiOutput("Mod6Step1_summary_table"), p(HTML(Mod6Step1_txt$para4)), p(plotOutput("Mod6Step1_plot", width = Modules_VAR$Plot$width)), p(HTML(Mod6Step1_txt$point)), p(HTML(module1_txt$statModTitle)), p(paste0("$$",NOT$trait.1,"_{",NOT$time, NOT$ind,"}= ",EQ3$mean0,"+ ",NOT$devI,"_",NOT$ind,"+ (",NOT$mean,"+", NOT$devS,"_", NOT$ind,")", NOT$env,"_{",NOT$time, NOT$ind,"}+ ",NOT$error,"_{",NOT$time, NOT$ind,"}$$")), p(paste0("$$V_",NOT$total,"= V_",NOT$devI,"+ V_{",NOT$mean,"}+ V_{",NOT$devS,"}+ V_",NOT$residualUpper,"$$")), p("where"), p(paste0("$$V_{",NOT$mean,"}=",NOT$mean,"^2Var(",NOT$env,")=",NOT$mean,"^2$$")), p(paste0("$$V_{",NOT$devS,"}=Var(",NOT$devS,")Var(",NOT$env,")+E(",NOT$env,")^2Var(",NOT$devS,")=Var(",NOT$devS,")$$")), p(paste0("Note that $Var(",NOT$env,")$ is the true variance in $",NOT$env,"$, and $E(",NOT$env,")$ is the true mean of $",NOT$env,"$. Also, in SQuID each environmental variable $(",NOT$env,")$ is standardized (i.e., $Var(",NOT$env,")=1$ and $E(",NOT$env,")=0$)$")), displayRCode(Mod6Step1_txt$RCode), div(class="line"), actionLink("Mod6Step1GotoStep2", label = "Next Step (2) >>", class= "linkToModuleSteps") )
BIAR.phi.kalman<-function (x, y1, y2, t, yerr1, yerr2, zero.mean = "TRUE") { sigmay <- var(cbind(y1,y2)) if (zero.mean == "FALSE") { y1 = y1 - mean(y1) y2 = y2 - mean(y2) } n = length(y1) Sighat = sigmay %*% matrix(c(1, 0, 0, 1), 2, 2) xhat = matrix(0, nrow = 2, ncol = n) delta <- diff(t) Q = Sighat phi.R = x[1] phi.I = x[2] F = matrix(0, nrow = 2, ncol = 2) G = diag(2) phi = complex(1, real = phi.R, imaginary = phi.I) sum.Lambda = 0 sum.error = 0 phi = ifelse(is.na(phi) == TRUE, 1.1, phi) y=rbind(y1,y2) if (Mod(phi) < 1) { Phi = Mod(phi) psi <- acos(phi.R/Phi) if (phi.I < 0 & Mod(phi) < 1) psi = -acos(phi.R/Phi) for (i in 1:(n - 1)) { R= matrix(c(yerr1[i + 1]^2,0,0,yerr2[i + 1]^2),2,2) Lambda = G %*% Sighat %*% t(G) + R if (det(Lambda) <= 0 | length(which(is.na(Lambda)))>0) { sum.Lambda <- n * 1e+10 break } phi2.R <- (Phi^delta[i]) * cos(delta[i] * psi) phi2.I <- (Phi^delta[i]) * sin(delta[i] * psi) F[1, 1] = phi2.R F[1, 2] = -phi2.I F[2, 1] = phi2.I F[2, 2] = phi2.R phi2 <- 1 - Mod(phi^delta[i])^2 Qt <- phi2 * Q sum.Lambda = sum.Lambda + log(det(Lambda)) Theta=F%*%Sighat%*%t(G) sum.error = sum.error + t(y[,i] - G %*% xhat[, i]) %*% solve(Lambda) %*% (y[,i] - G %*% xhat[, i]) xhat[,i+1]=F%*%xhat[,i]+Theta%*%solve(Lambda)%*%(y[,i]-G%*%xhat[,i]) if(sum(R)==0) Sighat=Qt + F%*%(Sighat-t(Sighat))%*%t(F) else Sighat=F%*%Sighat%*%t(F)+ Qt - Theta%*%solve(Lambda)%*%t(Theta) } yhat = G %*% xhat out <- ifelse(is.na(sum.Lambda) == TRUE, 1e+10, (sum.Lambda + sum.error)/2) } else out = 1e+10 return(out) }
print.peperr <- function(x, ...){ cat("ESTIMATION OF PREDICTION ERROR","\n", "Data split in ", length(x$indices$sample.index), " samples","\n", sep="") if (is.list(x$selected.complexity)){ if ((all.equal(x$complexity,x$selected.complexity)!=TRUE)[1]){ cat("Selected complexity in full data set: ", "\n") print(unlist(x$selected.complexity)) cat("\n", "Selected sample complexity: ", "\n") for (i in 1:(length(x$sample.complexity)/2)){ print(x$sample.complexity[c((i*2)-1, i*2)]) } } else { cat("Passed complexity: ", "\n") print(x$complexity) } } else { if ((all.equal(x$complexity,x$selected.complexity)!=TRUE)[1]){ cat("Selected complexity in full data set: ", x$selected.complexity, "\n") cat("Selected sample complexity: ", x$sample.complexity, "\n") } else { cat("Passed complexity: ", x$sample.complexity, "\n") } } }
library(Ostats) context("Ostats_multivariate") iris_traits <- as.matrix(iris[,1:4]) result1 <- Ostats_multivariate(traits = iris_traits, plots = factor(rep(c('a','b'),times=75)), sp = iris$Species, random_seed = 111, run_null_model = FALSE, hypervolume_args = list(method = 'box'), hypervolume_set_args = list(num.points.max = 1000)) result1 <- as.numeric(result1$overlaps_norm) expected1 <- c(0.755, 0.783) test_that ( "Ostats_multivariate returns expected output", { expect_equal(result1, expected1, tolerance = 0.01) } ) result2 <- Ostats_multivariate(traits = iris_traits[,1,drop=FALSE], plots = factor(rep(c('a','b'),times=75)), sp = iris$Species, random_seed = 111, run_null_model = FALSE) expected2 <- Ostats(traits = iris_traits[,1,drop=FALSE], plots = factor(rep(c('a','b'),times=75)), sp = iris$Species, random_seed = 111, run_null_model = FALSE) test_that ( "Ostats_multivariate returns the same output as Ostats if one trait is selected", { expect_equivalent(result2$overlaps_norm, expected2$overlaps_norm, tolerance = 0.01) } ) result3 <- Ostats_multivariate(traits = iris_traits, plots = factor(rep(c('a','b'),times=75)), sp = iris$Species, random_seed = 111, run_null_model = FALSE, hypervolume_args = list(method = 'box'), hypervolume_set_args = list(distance.factor = 2, num.points.max = 1000)) result3 <- as.numeric(result3$overlaps_norm) expected3 <- c(0.93, 0.95) test_that ( "Ostats_multivariate correctly handles arguments to hypervolume functions", { expect_equal(result3, expected3, tolerance = 0.01) } )
NULL .knitEnv = new.env() .knitEnv$meta = list() `$.knitr_strict_list` = function(x, name) x[[name]] as.strict_list = function(x) { if (!is.list(x)) stop("'x' is not a list") class(x) = 'knitr_strict_list' x }
context("add_theme and rshiny-blue testing") test_that("Function fails for wrong inputs", { expect_error(mtcars %>% tableHTML() %>% add_theme('abc'), 'should be one of ') expect_error(mtcars %>% tableHTML() %>% add_theme('rshiny-blue'), NA) expect_true(grepl('"background-color: mtcars %>% tableHTML() %>% add_theme('rshiny-blue'))) expect_true(grepl('style="vertical-align:top;background-color:white;"', tableHTML(mtcars, rownames = TRUE, widths = c(110, 140, rep(50, 11)), row_groups = list(c(10, 10, 12), c('Group 1', 'Group 2', 'Group 3')), second_headers = list(c(2, 5, 6), c('', 'col2', 'col3'))) %>% add_theme('rshiny-blue'))) expect_true(grepl('style="font-size:25px;', tableHTML(mtcars, rownames = TRUE, widths = c(110, 140, rep(50, 11)), row_groups = list(c(10, 10, 12), c('Group 1', 'Group 2', 'Group 3')), second_headers = list(c(2, 5, 6), c('', 'col2', 'col3'))) %>% add_theme('rshiny-blue'))) })
library(CREAM) context("WindowSizeRecog") test_that("Specify window size for each order of COREs", { InputData <- read.table("A549_Chr21.bed", sep="\t") colnames(InputData) <- c("chr", "start", "end") MinLength <- 1000 if(nrow(InputData) < MinLength){ stop(paste( "Number of functional regions is less than ", MinLength, ".", sep = "", collapse = "")) } peakNumMin <- 2 WScutoff <- 1.5 WindowSize <- WindowSizeRecog(InputData, peakNumMin, WScutoff) expect_equal_to_reference(WindowSize, "windowSize.rds") })
options(width=49) options(prompt=" ") options(continue=" ") library(mactivate) set.seed(777) d <- 11 N <- 3000 X <- matrix(rnorm(N*d, 1, 1), N, d) colnames(X) <- paste0("x", I(1:d)) b <- rep_len( c(-1, 1), d ) ystar <- X %*% b + 1/3 * X[ , 1] * X[ , 2] * X[ , 3] - 1/3 * X[ , 3] * X[ , 4] * X[ , 5] * X[ , 6] + 1/2 * X[ , 8] * X[ , 9] - 2 * X[ , 1] * X[ , 2] * X[ , 7] * X[ , 11] xtrue_formula <- eval(parse(text="y ~ . + x1:x2:x3 + x3:x4:x5:x6 + x8:x9 + x1:x2:x7:x11")) xnoint_formula <- eval(parse(text="y ~ .")) errs <- rnorm(N, 0, 3) y <- ystar + errs Xall <- X yall <- y Nall <- N dfx <- data.frame("y"=yall, Xall) xlm <- lm(y ~ . , data=dfx) yhat <- predict(xlm, newdata=dfx) sqrt( mean( (yall - yhat)^2 ) ) xlm <- lm(xtrue_formula , data=dfx) yhat <- predict(xlm, newdata=dfx) sqrt( mean( (yall - yhat)^2 ) ) xcmact_hybrid <- f_control_mactivate( param_sensitivity = 10^10, w0_seed = 0.1, w_col_search = "one", bool_headStart = FALSE, max_internal_iter = 500, ss_stop = 10^(-8), escape_rate = 1.01, Wadj = 1/1, tol = 10^(-8) ) m_tot <- 5 Uall <- Xall xxnow <- Sys.time() xxls_out <- f_fit_hybrid_01( X = Xall, y = yall, m_tot = m_tot, U = Uall, m_start = 1, mact_control = xcmact_hybrid, verbosity = 5 ) cat( difftime(Sys.time(), xxnow, units="mins"), "\n" ) class(xxls_out) yhatall <- predict(object=xxls_out, X0=Xall, U0=Uall, mcols=m_tot) sqrt( mean( (yall - yhatall)^2 ) )
DBR <- function(raw.pvalues, pCDFlist, alpha = 0.05, lambda = NULL, ret.crit.consts = FALSE){ if(is.null(alpha) || is.na(alpha) || !is.numeric(alpha) || alpha < 0 || alpha > 1) stop("'alpha' must be a probability between 0 and 1!") if (is.null(lambda)){ lambda <- alpha }else{ if(is.na(lambda) || !is.numeric(lambda) || lambda < 0 || lambda > 1) stop("'lambda' must be a probability between 0 and 1!") } m <- length(raw.pvalues) if(m != length(pCDFlist)) stop("The lengths of 'raw.pvalues' and 'pCDFlist' must be equal!") pvec <- match.pvals(pCDFlist, raw.pvalues) o <- order(pvec) sorted.pvals <- pvec[o] pv.list.all <- sort(unique(as.numeric(unlist(pCDFlist)))) if(ret.crit.consts){ y <- kernel_DBR_crit(pCDFlist, pv.list.all, sorted.pvals, lambda, alpha) crit.constants <- y$crit.consts idx <- which(sorted.pvals <= crit.constants) } else{ y <- kernel_DBR_fast(pCDFlist, sorted.pvals, lambda) idx <- which(y <= alpha) } m.rej <- length(idx) if(m.rej){ idx <- which(pvec <= sorted.pvals[m.rej]) pvec.rej <- raw.pvalues[idx] }else{ idx <- integer(0) pvec.rej <- numeric(0) } output <- list(Rejected = pvec.rej, Indices = idx, Alpha = m.rej * alpha / m, Num.rejected = m.rej, Lambda = lambda) if(ret.crit.consts){ output$Critical.values = crit.constants pv.adj <- rev(cummin(rev(pmin(y$pval.transf, 1)))) } else{ pv.adj <- rev(cummin(rev(pmin(y, 1)))) } ro <- order(o) output$Adjusted = pv.adj[ro] output$Method <- paste("Discrete Blanchard-Roquain procedure (lambda = ", lambda, ")", sep = "") output$Signif.level <- alpha output$Tuning <- lambda output$Data <- list() output$Data$raw.pvalues <- raw.pvalues output$Data$pCDFlist <- pCDFlist output$Data$data.name <- paste(deparse(substitute(raw.pvalues)), "and", deparse(substitute(pCDFlist))) class(output) <- "DiscreteFDR" return(output) return(output) }
item_replace_files <- function(sb_id, files, ..., all=FALSE, session=current_session()){ if(length(files) > 50){ warning('Trying to attach a large number of files to a SB item. SB imposes file limits which may cause this to fail') } if(all){ item_rm_files(sb_id, ..., session=session) }else{ item_rm_files(sb_id, files, ..., session=session) } item_append_files(sb_id, files = files, ..., session=session) }
"NO2_2013"
fdiff<- function(x, d){ iT <- length(x) np2 <- nextn(2*iT - 1, 2) k <- 1:(iT-1) b <- c(1, cumprod((k - d - 1)/k)) dx <- fft(fft(c(b, rep(0, np2-iT)))* fft(c(x, rep(0, np2-iT))), inverse=T)/np2; return(Re(dx[1:iT])) }
datagrid <- function(data = list(), ..., sortable = TRUE, pagination = NULL, filters = FALSE, colnames = NULL, colwidths = "fit", align = "auto", theme = c("clean", "striped", "default"), draggable = FALSE, data_as_input = FALSE, contextmenu = FALSE, width = NULL, height = NULL, elementId = NULL) { data <- as.data.frame(data) theme <- match.arg(theme) filters_type <- simple_filters(data) if (!is.vector(colnames)) { colnames <- names(data) } else if (!identical(length(colnames), ncol(data))) { warning( "datagrid: if provided, 'colnames' must be a vector of same length as number of cols in data.", call. = FALSE ) colnames <- names(data) } options <- list( columns = lapply( X = seq_along(names(data)), FUN = function(i) { nm <- names(data)[i] dropNulls(list( header = colnames[i], name = nm, sortable = isTRUE(sortable), filter = if (isTRUE(filters)) filters_type[[nm]] )) } ), bodyHeight = "fitToParent", draggable = draggable ) options <- modifyList(x = options, val = list(...), keep.null = FALSE) if (!isTRUE(contextmenu)) options <- c(options, list(contextMenu = NULL)) if (!is.null(pagination)) { options$pageOptions <- list( perPage = pagination, useClient = TRUE ) options$bodyHeight <- "auto" } if (is.null(options$rowHeight)) options$rowHeight <- "auto" x <- dropNulls(list( data_df = data, nrow = nrow(data), ncol = ncol(data), data = data, colnames = names(data), options = options, theme = theme, themeOptions = getOption( x = "datagrid.theme", default = list( cell = list( normal = list( showHorizontalBorder = TRUE ) ) ) ), language = getOption("datagrid.language", default = "en"), languageOptions = getOption("datagrid.language.options", default = list()), filters = filters, rowAttributes = list(), updateEditOnClick = NULL, validationInput = FALSE, dataAsInput = data_as_input, dragInput = isTRUE(draggable) )) widget <- createWidget( name = "datagrid", x = x, width = width, height = height, package = "toastui", elementId = elementId, preRenderHook = function(widget) { widget$x$data_df <- NULL widget$x$data <- unname(widget$x$data) widget }, sizingPolicy = sizingPolicy( defaultWidth = "100%", defaultHeight = "auto", viewer.defaultHeight = "100%", viewer.defaultWidth = "auto", viewer.fill = TRUE, viewer.suppress = FALSE, viewer.padding = 0, knitr.figure = FALSE, knitr.defaultWidth = "100%", knitr.defaultHeight = `if`(identical(options$bodyHeight, "auto"), "auto", "600px"), browser.fill = TRUE, browser.external = TRUE ) ) if (!is.null(align)) { align <- match.arg(align, choices = c("auto", "left", "right", "center")) if (identical(align, "auto")) { widget <- grid_columns( grid = widget, align = get_align(data) ) } else { widget <- grid_columns( grid = widget, align = align ) } } if (identical(colwidths, "guess")) { widget <- grid_columns( grid = widget, minWidth = nchar_cols( data = data, add_header = isTRUE(sortable) * 10 + isTRUE(filters) * 10 ), whiteSpace = "normal", renderer = list( styles = list( wordBreak = "normal" ) ) ) } else if (identical(colwidths, "fit")) { widget <- grid_columns( grid = widget, columns = names(data), width = NULL, whiteSpace = "normal", renderer = list( styles = list( wordBreak = "normal" ) ) ) } else { widget <- grid_columns( grid = widget, columns = names(data), width = colwidths ) } return(widget) } datagrid_html <- function(id, style, class, ...) { tags$div( id = id, class = class, style = style, style = "margin-bottom: 15px;", tags$div( id = paste0(id, "-container"), class = class, style = style, ... ) ) }
make_exercise_transform_html <- function(converter = c("ttm", "tth", "pandoc", "tex2image"), base64 = TRUE, ...) { options <- strsplit(converter, "-", fixed = TRUE)[[1L]] converter <- match.arg(options[1L], c("ttm", "tth", "pandoc", "tex2image")) options <- options[-1L] options <- if(length(options) > 0L) { paste0("--", options, collapse = " ") } else { "--mathml" } if(converter %in% c("tth", "ttm")) { stopifnot(requireNamespace("tth")) } else if(converter == "pandoc") { stopifnot(requireNamespace("rmarkdown")) } if(is.null(base64)) base64 <- c("bmp", "gif", "jpeg", "jpg", "png", "svg") base64 <- if(isTRUE(base64)) { base64 <- .fileURI_mime_types[, "ext"] } else { if(is.logical(base64)) NA_character_ else tolower(base64) } if(b64 <- !all(is.na(base64))) stopifnot(requireNamespace("base64enc")) if(converter == "pandoc") { make_exercise_transform_pandoc(to = "html", base64 = base64, options = options, ...) } else if(converter == "tex2image") { function(x) { bsname <- if(is.null(x$metainfo$file)) basename(tempfile()) else x$metainfo$file sdir <- attr(x$supplements, "dir") images <- list(); inames <- NULL for(i in c("question", "questionlist", "solution", "solutionlist")) { if(!is.null(x[[i]])) { if(grepl("list", i)) { images <- c(images, as.list(x[[i]])) inames <- c(inames, paste(i, 1:length(x[[i]]), sep = "_")) } else { images <- c(images, list(x[[i]])) inames <- c(inames, i) } } } names(images) <- inames dir <- tex2image(images, width = 6, idir = sdir, name = bsname, ...) inames <- file_path_sans_ext(basename(dir)) if(b64) { for(i in seq_along(dir)) dir[i] <- sprintf('<img src="%s" />', base64enc::dataURI(file = dir[i], mime = paste('image', format = file_ext(dir[i]), sep = '/'))) for(sf in dir(sdir)) { if(length(grep(file_ext(sf), base64, ignore.case = TRUE))) { file.remove(file.path(sdir, sf)) x$supplements <- x$supplements[!grepl(sf, x$supplements)] attr(x$supplements, "dir") <- sdir } } } for(i in c("question", "questionlist", "solution", "solutionlist")) { if(!is.null(x[[i]])) { if(grepl("list", i)) { j <- grep(i, inames) } else { j <- grep(i, inames) j <- j[!grepl("list", inames[j])] } x[[i]] <- if(b64) { dir[j] } else { paste("<img src=\"", file.path(sdir, basename(dir[j])), "\" />", sep = "") } names(x[[i]]) <- inames[j] } } if(!b64) { for(i in dir) { fp <- file.path(sdir, basename(i)) file.copy(i, fp) if(!(fp %in% x$supplements)) x$supplements <- c(x$supplements, fp) } attr(x$supplements, "dir") <- sdir } x } } else { apply_ttx_on_list <- function(object, converter = "ttm", sep = "\\007\\007\\007\\007\\007", ...) { empty <- sapply(object, identical, "") object <- lapply(object, c, sep) rval <- switch(converter, "tth" = tth::tth(unlist(object), ...), "ttm" = tth::ttm(unlist(object), ...) ) img <- attr(rval, "images") ix <- grepl(sep, rval, fixed = TRUE) rval <- split(rval, c(0, head(cumsum(ix), -1L))) names(rval) <- rep(names(object), length.out = length(rval)) cleansep <- function(x) { n <- length(x) if(n < 1L) return(x) if(x[n] == sep) return(x[-n]) return(c(x[-n], gsub(sep, "", x[n], fixed = TRUE))) } rval <- lapply(rval, cleansep) if(any(empty)) rval[empty] <- rep.int(list(""), sum(empty)) attr(rval, "images") <- img rval } function(x) { owd <- getwd() setwd(sdir <- attr(x$supplements, "dir")) what <- c( "question" = list(x$question), "questionlist" = as.list(x$questionlist), "solution" = list(x$solution), "solutionlist" = as.list(x$solutionlist) ) args <- list("x" = what, ...) trex <- apply_ttx_on_list(what, converter, ...) namtrex <- names(trex) if(b64 && length(sfiles <- dir(sdir))) { for(sf in sfiles) { if(any(grepl(sf, unlist(trex), fixed = TRUE)) && file_ext(sf) %in% base64) { sfx <- rbind( c(sprintf('alt="%s"', sf), 'alt="\\007\\007_exams_supplement_\\007\\007"'), c(sprintf('href="%s"', sf), sprintf('href="%s" download="\\007\\007_exams_supplement_\\007\\007"', sf)), c(sprintf('="%s"', sf), sprintf('="%s"', fileURI(file = sf))), c('\\007\\007_exams_supplement_\\007\\007', sf) ) for(i in seq_along(trex)) { if(length(j <- grep(sf, trex[[i]], fixed = TRUE))) { for(k in 1L:nrow(sfx)) trex[[i]][j] <- gsub(sfx[k, 1L], sfx[k, 2L], trex[[i]][j], fixed = TRUE) } } file.remove(file.path(sdir, sf)) x$supplements <- x$supplements[!grepl(sf, x$supplements)] } } attr(x$supplements, "dir") <- sdir } x$question <- trex$question x$questionlist <- sapply(trex[grep("questionlist", namtrex)], paste, collapse = "\n") x$solution <- trex$solution x$solutionlist <- sapply(trex[grep("solutionlist", namtrex)], paste, collapse = "\n") for(j in c("question", "questionlist", "solution", "solutionlist")) { if(length(x[[j]]) < 1L) x[[j]] <- NULL } setwd(owd) x } } }
as.datatable_widget = function(data, ...){ stopif(!requireNamespace("DT", quietly = TRUE) || !requireNamespace("htmltools", quietly = TRUE), "DT and htmltools packages are required for 'as.datatable_widget' function. Please, install it with 'install.packages(\"DT\")'" ) UseMethod("as.datatable_widget") } as.datatable_widget.default = function(data, ...){ DT::datatable(data, ...) } as.datatable_widget.etable = function(data, ..., repeat_row_labels = FALSE, show_row_numbers = FALSE, digits = get_expss_digits() ){ data = round_dataframe(data, digits = digits) if(NCOL(data)>0){ first_lab = colnames(data)[1] row_labels = data[[1]] data[[1]] = NULL header = t(split_labels(colnames(data), split = "|", fixed = TRUE, remove_repeated = FALSE)) row_labels = split_labels(row_labels, split = "|", fixed = TRUE, remove_repeated = !repeat_row_labels) if(length(row_labels)){ row_labels = sheet(row_labels) } else { row_labels = sheet(matrix("", nrow = nrow(data), ncol = 1)) } if(show_row_numbers) { row_labels = sheet(seq_len(nrow(row_labels)), row_labels) } colnames(row_labels) = rep("", ncol(row_labels)) if(nrow(header)>0){ empty_corner = matrix("", nrow = nrow(header) , ncol = ncol(row_labels)) } else { empty_corner = matrix("", nrow = 1, ncol = ncol(row_labels)) } if(is.na(first_lab) || first_lab=="row_labels") first_lab = "" empty_corner[1, 1] = first_lab header = matrix_header_to_html(empty_corner, header) data = cbind(row_labels, data) } else { if(show_row_numbers) { row_labels = sheet(seq_len(nrow(data))) } else { row_labels = as.sheet(matrix(NA, nrow = nrow(data), ncol = 0)) } data = cbind(row_labels, data) header = '<table class="display"><thead><tr><th> </th></thead></table>' empty_corner = NULL } args = list(...) args[["class"]] = if_null(args[["class"]], 'stripe hover cell-border row-border order-column compact') args[["filter"]] = if_null(args[["filter"]], "none") args[["options"]] = if_null(args[["options"]], list(paging = FALSE, searching = FALSE, sorting = FALSE, ordering = FALSE, bFilter = FALSE, bInfo = FALSE, columnDefs = list( list( className = 'dt-head-left', targets = 0:(ncol(data)-1) ) ) ) ) args[["rownames"]] = if_null(args[["rownames"]], FALSE) args[["container"]] = header args[["data"]] = data res = do.call(DT::datatable, args) if(NCOL(data)>0) { DT::formatStyle(res, seq_len(NCOL(data))[-seq_len(NCOL(empty_corner))], textAlign = 'right') } else { res } } matrix_header_to_html = function(corner, m_cols){ thead = NULL tr = NULL th = NULL row_rle = list() if(NCOL(m_cols)>0){ m_cols[is.na(m_cols)] = "" strange = colSums(m_cols != "") ==0 m_cols[1, strange] = " " for(i in seq_len(nrow(m_cols))){ y = colSums((m_cols[1:i,-1L, drop = FALSE] != m_cols[1:i, -ncol(m_cols), drop = FALSE]))>0 changes = c(which(y | is.na(y)), ncol(m_cols)) row_rle[[i]] = structure(list(lengths = diff(c(0L, changes)), values = m_cols[i, changes])) } for (each_row in seq_along(row_rle)){ curr_col = 1 names(row_rle[[each_row]]) = c("colspan","values") row_rle[[each_row]][["rowspan"]] = rep(1, length(row_rle[[each_row]]$values)) curr_row = row_rle[[each_row]] for(each_item in seq_along(curr_row$values)){ for(each in m_cols[-(1:each_row), curr_col]){ if(each == "") { curr_row$rowspan[each_item] = curr_row$rowspan[each_item] + 1 } else { break } } curr_col = curr_col + curr_row$colspan[each_item] } empty = curr_row$values %in% "" curr_row$values = curr_row$values[!empty] curr_row$colspan = curr_row$colspan[!empty] curr_row$rowspan = curr_row$rowspan[!empty] row_rle[[each_row]] = curr_row } row_rle[[1]]$values = c(corner[1,1],row_rle[[1]]$values) row_rle[[1]]$colspan = c(ncol(corner),row_rle[[1]]$colspan) row_rle[[1]]$rowspan = c(nrow(corner),row_rle[[1]]$rowspan) } else { row_rle[[1]] = list(values = corner[1,1], colspan = ncol(corner), rowspan = nrow(corner) ) } htmltools::withTags(table( class = 'display', thead( lapply(row_rle, function(row){ tr(lapply(seq_along(row$values),function(item){ th( htmltools::tags$style(type = "text/css", htmltools::HTML("th { text-align: center; } ") ), htmltools::tags$style(type = "text/css", htmltools::HTML("th {border: 1px solid ), rowspan = row$rowspan[item], colspan = row$colspan[item], row$values[item] ) })) }) ) )) } as.datatable_widget.with_caption = function(data, ..., repeat_row_labels = FALSE, show_row_numbers = FALSE, digits = get_expss_digits()){ caption = get_caption(data) data = set_caption(data, NULL) as.datatable_widget( data, ..., repeat_row_labels = repeat_row_labels, show_row_numbers = show_row_numbers, digits = digits, caption = caption ) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(eatGADS) df <- data.frame(ID = 1:4, sex = c(0, 0, 1, 1), forename = c("Tim", "Bill", "Ann", "Chris"), stringsAsFactors = FALSE) varLabels <- data.frame(varName = c("ID", "sex", "forename"), varLabel = c("Person Identifier", "Sex as self reported", "first name as reported by teacher"), stringsAsFactors = FALSE) valLabels <- data.frame(varName = rep("sex", 3), value = c(0, 1, -99), valLabel = c("male", "female", "missing - omission"), missings = c("valid", "valid", "miss"), stringsAsFactors = FALSE) df varLabels valLabels gads <- import_raw(df = df, varLabels = varLabels, valLabels = valLabels) gads extractMeta(gads, vars = c("sex")) extractMeta(gads) dat1 <- extractData(gads, convertMiss = TRUE, convertLabels = "numeric") dat1 dat2 <- extractData(gads, convertMiss = TRUE, convertLabels = "character") dat2 gads2 <- changeVarLabels(gads, varName = c("ID"), varLabel = c("Test taker ID")) extractMeta(gads2, vars = "ID") gads3 <- changeVarNames(gads, oldNames = c("ID"), newNames = c("idstud")) extractMeta(gads3, vars = "idstud") extractData(gads3) gads4 <- recodeGADS(gads, varName = "sex", oldValues = c(0, 1, -99), newValues = c(1, 2, 99)) extractMeta(gads4, vars = "sex") extractData(gads4, convertLabels = "numeric") varChanges <- getChangeMeta(gads, level = "variable") varChanges[varChanges$varName == "ID", "varLabel_new"] <- "Test taker ID" gads5 <- applyChangeMeta(varChanges, gads) extractMeta(gads5, vars = "ID") haven_dat <- export_tibble(gads) haven_dat lapply(haven_dat, attributes)