code
stringlengths 1
13.8M
|
---|
confint.coxphw <- function(object, parm, level = 0.95, ...)
{
if (!is.null(object$betafix)) {
cat(paste("The following variables were not estimated in this model",
paste(names(object$coefficients)[!is.na(object$betafix)], collapse=", "),
"\n\n"), sep="") }
return(confint.default(object, ...))
} |
set.seed(8976)
n <- 200
trial <-
tibble::tibble(
trt = sample(c("Drug A", "Drug B"), n, replace = TRUE),
age = rnorm(n, mean = 50, sd = 15) %>% as.integer(),
marker = rgamma(n, 1, 1) %>% round(digits = 3),
stage = sample(c("T1", "T2", "T3", "T4"), size = n, replace = TRUE) %>% factor(),
grade = sample(c("I", "II", "III"), size = n, replace = TRUE) %>% factor(),
response_prob =
((trt == "Drug") - 0.2 * as.numeric(stage) - 0.1 * as.numeric(grade) + 0.1 * marker) %>% {
1 / (1 + exp(-.))
},
response = runif(n) < response_prob,
ttdeath_true =
exp(1 + 0.2 * response +
-0.1 * as.numeric(stage) +
-0.1 * as.numeric(grade) +
rnorm(n, sd = 0.5)) * 12,
death = ifelse(ttdeath_true <= 24, 1L, 0L),
ttdeath = pmin(ttdeath_true, 24) %>% round(digits = 2)
) %>%
dplyr::mutate(
age = ifelse(runif(n) < 0.95, age, NA_real_),
marker = ifelse(runif(n) < 0.95, marker, NA_real_),
response = ifelse(runif(n) < 0.95, response, NA_integer_)
) %>%
dplyr::select(-dplyr::one_of("response_prob", "ttdeath_true"))
summary(trial)
attr(trial$trt, "label") <- "Chemotherapy Treatment"
attr(trial$age, "label") <- "Age"
attr(trial$marker, "label") <- "Marker Level (ng/mL)"
attr(trial$stage, "label") <- "T Stage"
attr(trial$grade, "label") <- "Grade"
attr(trial$response, "label") <- "Tumor Response"
attr(trial$death, "label") <- "Patient Died"
attr(trial$ttdeath, "label") <- "Months to Death/Censor"
usethis::use_data(trial, overwrite = TRUE) |
gsAdaptSim <- function(SimStage, IniSim, TrialPar, SimPar, cp = 0, thetacp = -100, maxn = 100000, pdeltamin = 0, ...) {
x <- gsSimulate(nstage = TrialPar$gsx$k - 1, SimStage, IniSim, TrialPar, SimPar)
if (cp == 0) {
cp <- 1 - x$gsx$beta
}
Inew <- x$gsx$n.I[x$gsx$k] - x$gsx$n.I[x$gsx$k - 1]
nnewe <- ceiling(x$gsx$n.I[x$gsx$k] * x$ratio / (1 + x$ratio) - x$ne)
if (length(nnewe) == 1) {
nnewe <- rep(nnewe, TrialPar$nsim)
}
nnewc <- ceiling(x$gsx$n.I[x$gsx$k] / (1 + x$ratio) - x$nc)
if (length(nnewc) == 1) {
nnewc <- rep(nnewc, TrialPar$nsim)
}
bnew <- (x$gsx$upper$bound[x$gsx$k] - x$z * sqrt(x$gsx$n.I[x$gsx$k - 1] / x$gsx$n.I[x$gsx$k])) / sqrt(Inew / x$gsx$n.I[x$gsx$k])
lnew <- (x$gsx$lower$bound[x$gsx$k] - x$z * sqrt(x$gsx$n.I[x$gsx$k - 1] / x$gsx$n.I[x$gsx$k])) / sqrt(Inew / x$gsx$n.I[x$gsx$k])
thetahat <- x$z / sqrt(x$gsx$n.I[x$gsx$k - 1])
if (thetacp == -100) {
thetacp <- thetahat
}
ncp <- rep(maxn, TrialPar$nsim) - x$nc - x$ne
ncp[thetacp > 0] <- as.integer(ceiling(((bnew[thetacp > 0] + stats::qnorm(cp)) / thetacp[thetacp > 0])^2))
if (maxn > 0) {
maxn <- maxn - x$nc - x$ne
if (length(maxn) == 1) {
maxn <- rep(maxn, x$nsim)
}
ncp[ncp > maxn] <- maxn[ncp > maxn]
}
flag <- 1 * (x$outcome == 0)
flag <- flag * (x$xc / x$nc - x$xe / x$ne >= pdeltamin)
flag <- flag * (ncp > ceiling(Inew))
ncpe <- as.integer(ceiling(ncp * x$ratio / (1 + x$ratio)))
ncpc <- ncp - ncpe
nnewc[flag == 1] <- ncpc[flag == 1]
nnewe[flag == 1] <- ncpe[flag == 1]
zero <- rep(0, x$nsim)
y <- list(xc = zero, xe = zero, nc = nnewc, ne = nnewe, xadd = x$xadd, nadd = x$nadd)
for (j in 1:x$nsim)
{
if (x$outcome[j] == 0) {
y$xc[j] <- stats::rbinom(1, nnewc[j], x$pcsim)
y$xe[j] <- stats::rbinom(1, nnewe[j], x$pesim)
x$xc[j] <- x$xc[j] + y$xc[j]
x$xe[j] <- x$xe[j] + y$xe[j]
}
else {
y$xc[j] <- y$nc[j] / 2
y$xe[j] <- y$ne[j] / 2
}
}
if (length(x$nc) == 1) {
x$nc <- rep(x$nc, TrialPar$nsim)
}
x$nc[x$outcome == 0] <- x$nc[x$outcome == 0] + nnewc[x$outcome == 0]
if (length(x$ne) == 1) {
x$ne <- rep(x$ne, TrialPar$nsim)
}
x$ne[x$outcome == 0] <- x$ne[x$outcome == 0] + nnewe[x$outcome == 0]
y <- x$zStat(y)
x$y <- y
x$outcome <- x$outcome + (x$outcome == 0) * x$gsx$k * ((y$z >= bnew) - (y$z < lnew))
x
}
gsSimulate <- function(nstage = 0, SimStage, IniSim, TrialPar, SimPar) {
if (nstage == 0) {
nstage <- TrialPar$gsx$k
}
x <- IniSim(TrialPar, SimPar)
nim1 <- 0
for (i in 1:nstage)
{
x <- SimStage(x$gsx$n.I[i], x)
x$outcome <- x$outcome + (x$outcome == 0) * i *
((x$z >= x$gsx$upper$bound[i]) - (x$z < x$gsx$lower$bound[i]))
}
x
} |
"wffc.indiv" <-
structure(list(totalPlacings = c(20, 20, 22, 22, 22, 24, 24,
24, 25, 27, 27, 27, 30, 30, 30, 30, 30, 31, 32, 32, 34, 34, 35,
35, 36, 38, 38, 38, 39, 41, 42, 42, 42, 42, 43, 43, 43, 44, 44,
45, 47, 49, 49, 50, 53, 53, 53, 53, 53, 54, 54, 54, 55, 55, 56,
56, 57, 58, 58, 59, 59, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65,
65, 66, 66, 66, 66, 66, 67, 68, 68, 69, 69, 69, 70, 70, 72, 73,
74, 74, 75, 76, 79, 79, 83, 88, 88, 88, 93, 94), points = c(51360,
48540, 58980, 39480, 35240, 52800, 52140, 28540, 53180, 47180,
47060, 35500, 40460, 36380, 34400, 32460, 29660, 41000, 40660,
29440, 48020, 30720, 45020, 39840, 44680, 38680, 37900, 28560,
39040, 29040, 43840, 38260, 28500, 19200, 36320, 35720, 22260,
43040, 24900, 33520, 29800, 34020, 20220, 33200, 46480, 28300,
27340, 21140, 15800, 36240, 34440, 24140, 33460, 29620, 36200,
27700, 24180, 26580, 23880, 26880, 24780, 11660, 29240, 21160,
17680, 10920, 22640, 21280, 18340, 25680, 16320, 6240, 16080,
11980, 9980, 9660, 8920, 6340, 16440, 6900, 18340, 17080, 11880,
23440, 9080, 13880, 6600, 20420, 13640, 14800, 6600, 16620, 2880,
9740, 7080, 6540, 3420, 5120, 540), noofcaptures = c(78, 73, 98,
59, 56, 87, 90, 40, 87, 80, 71, 56, 65, 59, 55, 54, 41, 66, 64,
44, 78, 49, 60, 69, 73, 61, 66, 44, 65, 43, 78, 64, 40, 32, 65,
58, 36, 78, 40, 52, 47, 55, 32, 53, 80, 48, 43, 33, 23, 64, 59,
39, 60, 47, 57, 53, 38, 45, 38, 39, 42, 17, 53, 33, 30, 17, 40,
35, 30, 38, 31, 6, 26, 18, 12, 14, 14, 8, 28, 8, 26, 31, 21,
37, 14, 22, 10, 35, 21, 28, 11, 27, 3, 16, 12, 11, 6, 9, 1),
longest = c(540, 585, 515, 689, 580, 535, 552, 610, 475,
533, 518, 560, 535, 580, 498, 624, 627, 525, 585, 560, 550,
515, 568, 615, 652, 520, 563, 510, 580, 572, 474, 500, 615,
484, 503, 535, 498, 592, 541, 512, 590, 510, 530, 499, 501,
495, 574, 572, 604, 466, 450, 515, 513, 480, 570, 419, 530,
688, 580, 492, 514, 508, 522, 594, 477, 532, 528, 505, 493,
620, 340, 560, 571, 475, 572, 470, 486, 574, 568, 610, 548,
432, 342, 486, 480, 560, 432, 501, 590, 362, 511, 455, 450,
490, 380, 395, 332, 293, 218), individual = c(0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0),
country = c("CZE", "FRA", "CZE", "ENG", "POL", "NZL", "ENG",
"FIN", "CZE", "POL", "CZE", "SVK", "ITA", "ITA", "NZL", "CAN",
"NZL", "JPN", "NZL", "USA", "NZL", "CZE", "FRA", "USA", "FIN",
"CAN", "POL", "FRA", "ITA", "AUS", "CAN", "SVK", "SVK", "USA",
"IRE", "IRE", "ITA", "USA", "POL", "SVK", "POR", "SVK", "ENG",
"FRA", "FRA", "ENG", "ENG", "AUS", "RSA", "CRO", "USA", "FIN",
"POR", "POR", "AUS", "NED", "ITA", "FIN", "AUS", "JPN", "POL",
"SWE", "IRE", "FIN", "IRE", "JPN", "CAN", "NED", "RSA", "BUL",
"IRE", "FRA", "WAL", "WAL", "WAL", "AUS", "RSA", "WAL", "CRO",
"CAN", "RSA", "NED", "CRO", "CRO", "POR", "POR", "NED", "NED",
"WAL", "RSA", "JPN", "ROM", "IRE", "CRO", "NDI", "MAL", "CAN",
"JPN", "WAL"), iname = c("MartinDroz", "JulienDaguillanes",
"TomasStarychfojtu", "JohnHorsey", "LucjanBurda", "DesArmstrong",
"SimonRobinson", "JannePirkkalainen", "TomasAdam", "PiotrKonieczny",
"AntoninPesek", "JanBartko", "SandroSoldarini", "LucaPapandrea",
"AaronWest", "DonaldThom", "JohnBell", "KiyoshiNakagawa",
"LloydStruther", "JoshStephens", "CraigFarrar", "PavelMachan",
"ChristopheIdre", "LanceEgan", "OlliToivonen", "JohnNishi",
"MarekWalczyk", "BertrandJacquemin", "GianlucaMazzocco",
"VernBarby", "TerenceCourtoreille", "MiroslavAntal", "MichalBenatinsky",
"AnthonyNaranja", "WilliamKavenagh", "DamienWalsh", "ValerioSantiAmantini",
"GeorgeDaniel", "StanislawGuzdek", "PeterBienek", "JoseDias",
"BorisDzurek", "HowardCroston", "EricLelouvrier", "YannCaleri",
"AndrewDixon", "MikeTinnion", "JoeRiley", "GaryGlenYoung",
"IvicaMagdic", "BretBishop", "JarkkoSuominen", "PauloMorais",
"NunoDuarte", "CraigColtman", "PeterElberse", "AlessandroSgrani",
"VilleAnttiJaakkola", "ScottTucker", "SeiichiKomatsuzawa",
"ArturTrzaskos", "TorbjornEriksson", "JohnBuckley", "JouniNeste",
"JohnTrench", "TakashiKawahara", "ToddOishi", "ReneKoops",
"TimRolston", "StanislawMankou", "JohnFoxton", "ThibaultGuilpain",
"JamieHarries", "MichaelHeckler", "BrianJeremiah", "RickyLehman",
"RobertVanRensburg", "DavidEricDavies", "BoskoBarisic", "RandyTaylor",
"MarkYelland", "SimonGrootemaat", "PeterDindic", "MiroslavKaticic",
"AntonioRodrigues", "HelderRodrigues", "JanKwisthout", "HansBock",
"KimTribe", "AndreSteenkamp", "MisakoIshimura", "StefanFlorea",
"AidenHodgins", "MarinkoPuskaric", "SabahudinPehadzicBIHI",
"StephenVarga", "JohnBeaven", "YoshikoIzumiya", "DionDavies"
), comid = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99)), .Names = c("totalPlacings",
"points", "noofcaptures", "longest", "individual", "country", "iname",
"comid"), row.names = c("1", "2", "3", "4", "5", "6", "7", "8",
"9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19",
"20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30",
"31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41",
"42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52",
"53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63",
"64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74",
"75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85",
"86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96",
"97", "98", "99"), class = "data.frame") |
vcfR2DNAbin <- function( x,
extract.indels = TRUE,
consensus = FALSE,
extract.haps = TRUE,
unphased_as_NA = TRUE,
asterisk_as_del = FALSE,
ref.seq = NULL,
start.pos = NULL,
verbose = TRUE )
{
if( class(x) == 'chromR' ){ x <- x@vcf }
if( class(x) != 'vcfR' ){ stop( "Expecting an object of class chromR or vcfR" ) }
if( consensus == TRUE & extract.haps == TRUE){
stop("consensus and extract_haps both set to TRUE. These options are incompatible. A haplotype should not be ambiguous.")
}
if( !is.null(start.pos) & class(start.pos) == "character" ){
start.pos <- as.integer(start.pos)
}
if( extract.indels == FALSE & consensus == TRUE ){
msg <- "invalid selection: extract.indels set to FALSE and consensus set to TRUE."
msg <- c(msg, "There is no IUPAC ambiguity code for indels")
stop(msg)
}
if( class(ref.seq) != 'DNAbin' & !is.null(ref.seq) ){
stop( paste("expecting ref.seq to be of class DNAbin but it is of class", class(ref.seq)) )
}
if( is.list(ref.seq) ){
ref.seq <- ref.seq[[1]]
}
if( is.matrix(ref.seq) ){
ref.seq <- ref.seq[1,]
ref.seq <- ref.seq[1:ncol(ref.seq)]
}
if( is.null(start.pos) & !is.null(ref.seq) ){
if( verbose == TRUE ){
warning("start.pos == NULL, this means that I do not know where the variants are located in the ref.seq. I'll try start.pos == 1, but results may be unexpected")
}
start.pos <- 1
}
if( extract.indels == TRUE ){
x <- extract.indels(x)
if( verbose == TRUE ){
message(paste("After extracting indels,", nrow(x), "variants remain."))
}
} else {
equal_allele_len <- function(x){
alleles <- c(myRef[x], unlist(strsplit(myAlt[x], split = ",")))
alleles[is.na(alleles)] <- 'n'
alleles <- format(alleles, width=max(nchar(alleles)))
alleles <- gsub("\\s", "-", alleles)
myRef[x] <<- alleles[1]
myAlt[x] <<- paste(alleles[2:length(alleles)], collapse=",")
invisible()
}
myRef <- getREF(x)
myAlt <- getALT(x)
invisible(lapply(1:length(myRef), equal_allele_len))
x@fix[,'REF'] <- myRef
x@fix[,'ALT'] <- myAlt
}
pos <- getPOS(x)
if( nrow(x@fix) == 0 ){
x <- x@gt[ 0, -1 ]
} else if( sum(!is.na(x@gt[,-1])) == 0 ){
x <- x@gt[ 0, -1 ]
} else {
if( consensus == TRUE & extract.haps == FALSE ){
x <- extract.gt( x, return.alleles = TRUE )
x <- alleles2consensus( x )
} else {
x <- extract.haps( x, unphased_as_NA = unphased_as_NA, verbose = verbose )
}
}
if( asterisk_as_del == TRUE){
x[ x == "*" & !is.na(x) ] <- '-'
} else {
x[ x == "*" & !is.na(x) ] <- 'n'
}
if( is.null(ref.seq) == FALSE ){
variants <- x
x <- matrix( as.character(ref.seq),
nrow = length(ref.seq),
ncol = length(colnames(x)),
byrow = FALSE
)
colnames(x) <- colnames(variants)
variants <- variants[ pos < start.pos + length(ref.seq), , drop = FALSE]
pos <- pos[ pos < start.pos + length(ref.seq) ]
variants <- variants[ pos >= start.pos, , drop = FALSE]
pos <- pos[ pos >= start.pos ]
pos <- pos - start.pos + 1
x[pos,] <- variants
}
x[ is.na(x) ] <- 'n'
if( nrow(x) > 0 ){
x <- tolower( x )
}
if( extract.indels == FALSE ){
x <- apply(x, MARGIN=2, function(x){ unlist(strsplit(x,"")) })
}
x <- ape::as.DNAbin(t(x))
return(x)
} |
cancelAccountUpdates <- function(conn, acctCode="1")
{
if(!is.twsConnection(conn))
stop("requires twsConnection object")
.reqAccountUpdates(conn, "0", acctCode)
}
.reqAccountUpdates <- function(conn, subscribe=TRUE, acctCode="1")
{
if (!is.twsConnection(conn))
stop("requires twsConnection object")
con <- conn[[1]]
VERSION <- "2"
writeBin(.twsOutgoingMSG$REQ_ACCOUNT_DATA, con)
writeBin(VERSION, con)
writeBin(as.character(as.numeric(subscribe)), con)
writeBin(as.character(acctCode), con)
}
reqAccountUpdates <-
function (conn,
subscribe=TRUE,
acctCode="1",
eventWrapper=eWrapper(),
CALLBACK=twsCALLBACK, ...)
{
if (!is.twsConnection(conn))
stop("requires twsConnection object")
.reqAccountUpdates(conn, subscribe, acctCode)
on.exit(.reqAccountUpdates(conn, "0", acctCode))
verbose <- FALSE
acct <- list()
con <- conn[[1]]
eW <- eWrapper(NULL)
eW$assign.Data("data", structure(list(), class="eventAccountValue"))
eW$updatePortfolio <-
function (curMsg, msg, ...) {
version <- as.numeric(msg[1])
contract <- twsContract(conId = msg[2], symbol = msg[3],
sectype = msg[4], exch = msg[9], primary = msg[9], expiry = msg[5],
strike = msg[6], currency = msg[10], right = msg[7],
local = msg[11], multiplier = msg[8], combo_legs_desc = "",
comboleg = "", include_expired = "")
portfolioValue <- list()
portfolioValue$position <- as.numeric(msg[12])
portfolioValue$marketPrice <- as.numeric(msg[13])
portfolioValue$marketValue <- as.numeric(msg[14])
portfolioValue$averageCost <- as.numeric(msg[15])
portfolioValue$unrealizedPNL <- as.numeric(msg[16])
portfolioValue$realizedPNL <- as.numeric(msg[17])
portfolioValue$accountName <- msg[18]
p <- structure(list(contract = contract, portfolioValue = portfolioValue),
class = "eventPortfolioValue")
p
}
eW$updateAccountValue <-
function (curMsg, msg, ...) {
data <- eW$get.Data("data")
data[[msg[2]]] <- c(value=msg[3], currency=msg[4])
eW$assign.Data("data", data)
}
while (TRUE) {
socketSelect(list(con), FALSE, NULL)
curMsg <- readBin(con, character(), 1)
if (curMsg == .twsIncomingMSG$PORTFOLIO_VALUE) {
acct[[length(acct) + 1]] <- processMsg(curMsg, con, eW, timestamp, file)
} else {
processMsg(curMsg, con, eW, timestamp, file)
}
if (curMsg == .twsIncomingMSG$ACCT_DOWNLOAD_END)
break
}
return(structure(list(eW$get.Data("data"), acct), class="AccountUpdate"))
}
|
err <- "interleave - expecting a list input"
expect_error( interleave:::.test_list_rows( 1:5 ), err)
expect_error( interleave:::.test_list_rows( matrix(1:4, ncol = 2) ), err )
expect_error( interleave:::.test_list_rows( data.frame(x = 1:3, y = 1:3 ) ), err )
expect_equal( interleave:::.test_list_rows( list( data.frame(x = 1:3, y = 1:3 ) ) ), list( 3 ) )
l <- list(
1:10
, matrix(1:16, ncol = 2)
, list(
list( data.frame(x = 1:10, y = 10:1 ) )
)
)
expect_equal( interleave:::.test_list_rows( l ) , list(1,8,list(list(10))) )
expect_equal( unlist( interleave:::.test_list_rows( l ) ), c(1,8,10) )
l <- list(
1:10
, matrix(1:16, ncol = 2)
, list(
1:4
, matrix(1:10, ncol = 5)
)
, list(
list( data.frame(x = 1:10, y = 10:1 ) )
)
)
expect_equal( interleave:::.test_list_element_count( l ), list(10, 16, list(4, 10), list( list( 20 ) ) ) )
expect_error( interleave:::.test_unlist_list( 1:4 ), err )
expect_error( interleave:::.test_unlist_list( matrix(1:4, ncol = 2) ), err)
expect_error( interleave:::.test_unlist_list( data.frame( x = 1:4 ) ), err )
expect_equal( interleave:::.test_unlist_list( list(1:4) ), c(1:4) )
l <- list(
1:10
, list(
list(
matrix(1:20, ncol = 2)
)
)
)
expect_equal( interleave:::.test_unlist_list( l ), c(1:10, 1:20) )
l <- list(
c(TRUE, TRUE, FALSE)
, matrix(1:16, ncol = 2)
, list(
letters[1:4]
, matrix(rep(T, 10), ncol = 5)
)
, list(
list( data.frame(x = 1:10, y = 10:1 ) )
)
)
list_sizes <- interleave:::.test_list_element_count( l)
expect_equal( interleave:::.test_unlist_list( list_sizes ), unlist( list_sizes) )
expect_error( interleave:::.test_unlist_list( l ), err ) |
knitr::opts_chunk$set(
collapse = TRUE, fig.width=7,
fig.height = 5, comment = "
library(baggr)
library(ggplot2)
library(gridExtra)
df_yusuf <- read.table(text="
trial a n1i c n2i
Balcon 14 56 15 58
Clausen 18 66 19 64
Multicentre 15 100 12 95
Barber 10 52 12 47
Norris 21 226 24 228
Kahler 3 38 6 31
Ledwich 2 20 3 20
", header=TRUE)
df_ma <- prepare_ma(df_yusuf, group = "trial", effect = "logOR")
df_ma
bg_model_agg <- baggr(df_ma, iter = 2000, effect = "logarithm of odds ratio")
labbe(df_ma, plot_model = TRUE, shade_se = "or")
a <- 9; b <- 1; c <- 99; d <- 1
cat("Risk ratio is", (a/(a+b))/(c/(c+d)), "\n" )
cat("Odds ratio is", a*d/(b*c), "\n")
a <- 10; b <- 20; c <- 100; d <- 100
cat("Risk ratio is", (a/(a+b))/(c/(c+d)), "\n" )
cat("Odds ratio is", a*d/(b*c), "\n")
par(mfrow = c(2,3), oma = rep(2,4))
for(es in c(1, .9, .8, .5, .25, .1)){
p_bsl <- seq(0,1,length=100)
p_trt_rr <- es*p_bsl
odds_trt <- es*(p_bsl/(1-p_bsl))
p_trt_or <- odds_trt / (1 + odds_trt)
plot(p_trt_or ~ p_bsl, type = "l",
xlab = "control event rate", ylab = "treatment event rate", main = paste0("RR=OR=",es))
lines(p_trt_rr ~ p_bsl, lty = "dashed")
}
title(outer = TRUE, "Compare RR (dashed) and OR (solid) of the same magnitude")
bg_model_agg
forest_plot(bg_model_agg, show = "both", print = "inputs")
effect_plot(bg_model_agg)
gridExtra::grid.arrange(
plot(bg_model_agg, transform = exp) + xlab("Effect on OR"),
effect_plot(bg_model_agg, transform = exp) + xlim(0, 3) + xlab("Effect on OR"),
ncol = 2)
bg_c <- baggr_compare(df_ma, what = "pooling", effect = "logarithm of odds ratio")
plot(bg_c)
effect_plot(
"Partial pooling, default prior" = bg_c$models$partial,
"Full pooling, default prior" = bg_c$models$full) +
theme(legend.position = "bottom")
a <- loocv(df_ma, pooling = "partial", iter = 500, chains = 2)
b <- loocv(df_ma, pooling = "full", iter = 500, chains = 2)
loo_compare(a,b)
df_ind <- binary_to_individual(df_yusuf, group = "trial")
head(df_ind)
bg_model_ind <- baggr(df_ind, model = "logit", effect = "logarithm of odds ratio", chains = 2, iter = 500)
baggr_compare(bg_model_agg, bg_model_ind)
prepare_ma(df_ind, effect = "logOR")
prepare_ma(df_ind, effect = "logRR")
df_rare <- data.frame(group = paste("Study", LETTERS[1:5]),
a = c(0, 2, 1, 3, 1), c = c(2, 2, 3, 3, 5),
n1i = c(120, 300, 110, 250, 95),
n2i = c(120, 300, 110, 250, 95))
df_rare
df_rare_logor <- prepare_ma(df_rare, effect = "logOR")
df_rare_logor
pma01 <- prepare_ma(df_rare, effect = "logOR",
rare_event_correction = 0.1)
pma1 <- prepare_ma(df_rare, effect = "logOR",
rare_event_correction = 1)
pma01
bg_correction01 <- baggr(pma01, effect = "logOR", iter = 500)
bg_correction025 <- baggr(df_rare_logor, effect = "logOR", iter = 500)
bg_correction1 <- baggr(pma1, effect = "logOR", iter = 500)
bg_rare_ind <- baggr(df_rare, model = "logit", effect = "logOR")
bgc <- baggr_compare(
"Correct by .10" = bg_correction01,
"Correct by .25" = bg_correction025,
"Correct by 1.0" = bg_correction1,
"Individual data" = bg_rare_ind
)
bgc
plot(bgc) + theme(legend.position = "right")
df_rare <- data.frame(group = paste("Study", LETTERS[1:5]),
a = c(1, 2, 1, 3, 1), c = c(2, 2, 3, 3, 5),
n1i = c(120, 300, 110, 250, 95),
n2i = c(120, 300, 110, 250, 95))
df_rare_logor <- prepare_ma(df_rare, effect = "logOR")
bg_rare_agg <- baggr(df_rare_logor, effect = "logOR")
bg_rare_ind <- baggr(df_rare, effect = "logOR", model = "logit", iter = 500, chains = 2)
bgc <- baggr_compare(
"Summary-level (Rubin model on logOR)" = bg_rare_agg,
"Individual-level (logistic model)" = bg_rare_ind
)
bgc
plot(bgc)
bg_rare_pool_bsl <- baggr(df_rare, effect = "logOR", model = "logit",
pooling_control = "partial",
chains = 2, iter = 500,
prior_control = normal(-4.59, 1), prior_control_sd = normal(0, 2))
bg_rare_strong_prior <- baggr(df_rare, effect = "logOR", model = "logit",
chains = 2, iter = 500,
prior_control = normal(-4.59, 10))
bgc <- baggr_compare(
"Rubin model" = bg_rare_agg,
"Independent N(0,10^2)" = bg_rare_ind,
"Hierarchical prior" = bg_rare_pool_bsl,
"Independent N(-4.59, 10^2)" = bg_rare_strong_prior
)
bgc
plot(bgc) + theme(legend.position = "right")
df_ma$study_grouping <- c(1,1,1,0,0,0,0)
df_ma$different_contrasts <- c(1,1,1,0,0,0,0) - .5
bg_cov1 <- baggr(df_ma, covariates = c("study_grouping"), effect = "logarithm of odds ratio")
baggr_compare("No covariate" = bg_model_agg,
"With covariates, 0-1 coding" = bg_cov1)
bg_cov1 |
GetRegionOfInterest <- function(x, y=NULL, alpha=NULL, width=NULL, ...) {
checkmate::assertNumber(alpha, lower=0, finite=TRUE, null.ok=TRUE)
checkmate::assertNumber(width, finite=TRUE, null.ok=TRUE)
if (inherits(x, "Spatial")) {
xy <- sp::coordinates(x)
crs <- raster::crs(x)
} else {
xy <- do.call("cbind", grDevices::xy.coords(x, y)[1:2])
crs <- sp::CRS(as.character(NA))
}
if (is.null(alpha)) {
pts <- xy[grDevices::chull(xy), ]
ply <- sp::Polygons(list(sp::Polygon(pts)), ID=1)
} else {
ply <- .GeneralizeConvexHull(xy, alpha)
}
ply <- sp::SpatialPolygons(list(ply), proj4string=crs)
if (is.numeric(width))
ply <- rgeos::gBuffer(ply, width=width, ...)
ply
}
.GeneralizeConvexHull <- function(xy, alpha) {
checkmate::assertMatrix(xy, mode="numeric", any.missing=FALSE, ncols=2)
checkmate::assertNumber(alpha, lower=0, finite=TRUE)
for (pkg in c("alphahull", "maptools")) {
if (!requireNamespace(pkg, quietly=TRUE))
stop(sprintf("alpha-shape computation requires the %s package", pkg))
}
xy <- unique(xy)
shp <- alphahull::ashape(xy, alpha=alpha)
el <- cbind(as.character(shp$edges[, "ind1"]), as.character(shp$edges[, "ind2"]))
gr <- igraph::graph_from_edgelist(el, directed=FALSE)
clu <- igraph::components(gr, mode="strong")
ply <- sp::Polygons(lapply(seq_len(clu$no), function(i) {
vids <- igraph::groups(clu)[[i]]
g <- igraph::induced_subgraph(gr, vids)
if (any(igraph::degree(g) != 2))
stop("non-circular polygon, try increasing alpha value", call.=FALSE)
gcut <- g - igraph::E(g)[1]
ends <- names(which(igraph::degree(gcut) == 1))
path <- igraph::shortest_paths(gcut, ends[1], ends[2])$vpath[[1]]
idxs <- as.integer(igraph::V(g)[path]$name)
pts <- shp$x[c(idxs, idxs[1]), ]
sp::Polygon(pts)
}), ID=1)
maptools::checkPolygonsHoles(ply)
} |
cols <- t(col2rgb(palette()))
convertColor(cols, 'sRGB', 'Lab', scale.in=255)
XYZ <- convertColor(cols, 'sRGB', 'XYZ', scale.in=255)
fromXYZ <- vapply(
names(colorspaces), convertColor, FUN.VALUE=XYZ,
from='XYZ', color=XYZ, clip=NA
)
round(fromXYZ, 4)
tol <- 1e-5
toXYZ <- vapply(
dimnames(fromXYZ)[[3]],
function(x) all(abs(convertColor(fromXYZ[,,x], from=x, to='XYZ') - XYZ)<tol),
logical(1)
)
toXYZ
stopifnot(all(toXYZ | is.na(toXYZ)))
XYZ2 <- XYZ * .7 + .15
fromXYZ2 <- vapply(
c('Apple RGB', 'CIE RGB'), convertColor, FUN.VALUE=XYZ2,
from='XYZ', color=XYZ2, clip=NA
)
round(fromXYZ2, 4)
toXYZ2 <- vapply(
dimnames(fromXYZ2)[[3]],
function(x)
all(abs(convertColor(fromXYZ2[,,x], from=x, to='XYZ') - XYZ2)<tol),
logical(1)
)
stopifnot(all(toXYZ2))
stopifnot(identical(character(0),
gray(numeric(), alpha=1/2))) |
dtable <- function(x, bset, bsep = ".", asep = ";", missing = "x", noc = "0"){
x <- apply(x, 2 , function(x) tolower(x))
x <- as.data.frame(apply(x, 2,
function(x) gsub(' ', '', x)),
stringsAsFactors = FALSE)
names(x) <- c("id", "act", "obs")
x$act[is.na(x$act)] <- missing
ids <- sort(unique(x$id))
bsep <- paste("\\",bsep, sep="")
asep <- paste("\\",asep, sep="")
i <- 1
size <- dim(x)[1]
while (i <= size) {
act <- x$act[i]
if (grepl(asep, act)){
acts <- unlist(
regmatches(act, regexpr(asep, act), invert = TRUE)
)
x$act[i] <- acts[1]
x <-rbind(x[1:i,],
c(x$id[i], acts[2], x$obs[i]),
x[-(1:i),]
)
size <- size + 1
}
i = i + 1
}
dt <- stats::setNames(data.frame(matrix(ncol = 7, nrow = size)),
c("id1","id2","sender_id1","behavior","no_occurrence","missing","observer"))
for (i in 1:size) {
dt$id1[i] <- x$id[i]
act <- x$act[i]
if (grepl(bsep, act)){
act <- unlist(
strsplit(act, bsep)
)
dt$behavior[i] <- bset[stats::na.omit(match(act, bset))]
dt$sender_id1[i] = c(1,0)[!is.na(match(act, bset))]
dt$id2[i] <- act[dt$sender_id1[i] + 1]
}
if (x$act[i] == noc) {dt$no_occurrence[i] = 1}
if (x$act[i] == missing) {dt$missing[i] = 1}
dt$observer[i] <- x$obs[i]
}
dt
} |
theme_classic2 <- function() {
ggplot2::theme(
panel.background = ggplot2::element_blank(),
legend.background = ggplot2::element_blank(),
legend.key = ggplot2::element_blank(),
strip.background = ggplot2::element_blank(),
panel.grid = ggplot2::element_blank(),
axis.text = ggplot2::element_text(colour = "black"),
axis.line = ggplot2::element_line(colour = "black")
)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(SimplyAgree)
a1 = agree_test(x = reps$x,
y = reps$y,
agree.level = .8)
print(a1)
plot(a1, type = 1)
plot(a1, type = 2)
a2 = agree_reps(x = "x",
y = "y",
id = "id",
data = reps,
agree.level = .8)
print(a2)
plot(a2, type = 1)
plot(a2, type = 2)
a3 = agree_nest(x = "x",
y = "y",
id = "id",
data = reps,
agree.level = .8)
print(a3)
plot(a3, type = 1)
plot(a3, type = 2)
sf <- matrix(
c(9, 2, 5, 8,
6, 1, 3, 2,
8, 4, 6, 8,
7, 1, 2, 6,
10, 5, 6, 9,
6, 2, 4, 7),
ncol = 4,
byrow = TRUE
)
colnames(sf) <- paste("J", 1:4, sep = "")
rownames(sf) <- paste("S", 1:6, sep = "")
dat = as.data.frame(sf)
test1 = reli_stats(
data = dat,
wide = TRUE,
col.names = c("J1", "J2", "J3", "J4")
)
print(test1)
plot(test1)
power_res <- blandPowerCurve(
samplesizes = seq(10, 100, 1),
mu = 0.5,
SD = 2.5,
delta = c(6,7),
conf.level = c(.90,.95),
agree.level = c(.8,.9)
)
head(power_res)
find_n(power_res, power = .8)
plot(power_res) |
rmgarch.test1a = function(cluster = NULL)
{
tic = Sys.time()
data(dji30ret)
ex = as.matrix(cbind(apply(dji30ret[,4:8], 1, "mean"), apply(dji30ret[,12:20], 1, "mean")))
ex = rugarch:::.lagx(ex, n.lag = 1, pad = 0)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.1 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.2 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.1@mfit$A,
cluster = cluster)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2, external.regressors = ex),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.3 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], solver = "gosolnp",
solver.control = list(trace=1), out.sample = 0, A.init = fit.2@mfit$A,
cluster = cluster)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.4 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2, external.regressors = ex),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.5 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.4@mfit$A,
cluster = cluster)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2, external.regressors = ex, robust = TRUE),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.6 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.5@mfit$A,
cluster = cluster)
modellik = c(0, likelihood(fit.2)-likelihood(fit.1), likelihood(fit.3)-likelihood(fit.1),
likelihood(fit.4)-likelihood(fit.1), likelihood(fit.5)-likelihood(fit.1), likelihood(fit.6)-likelihood(fit.1))
postscript("test1a1.eps", width = 8, height = 5)
barplot(modellik, names.arg = c(paste("C[",round(likelihood(fit.1),0), "]", sep=""),"AR(2)", "ARX(2)", "VAR(2)", "VARX(2)", "robVARX(2)"),
ylab = "Diff Log-Likelihood", xlab = "Model", col = "steelblue", main = "GOGARCH with different\nconditional mean models")
dev.off()
postscript("test1a2.eps", width = 10, height = 8)
rc = rcor(fit.1)
D = as.POSIXct(dimnames(rc)[[3]])
plot(xts::xts(rc[1,2,], D), ylim = c(-0.4, 1),
main = "GOGARCH Correlation [AA-AXP] under\ndifferent mean models",
lty = 2, ylab = "Correlation", xlab = "Time", minor.ticks=FALSE,
auto.grid=FALSE)
rc = rcor(fit.2)
lines(xts::xts(rc[1,2,], D), col = 2, lty = 2)
rc = rcor(fit.3)
lines(xts::xts(rc[1,2,], D), col = 3)
rc = rcor(fit.4)
lines(xts::xts(rc[1,2,], D), col = 4, lty = 2)
rc = rcor(fit.5)
lines(xts::xts(rc[1,2,], D), col = 5)
rc = rcor(fit.6)
lines(xts::xts(rc[1,2,], D), col = 6)
legend("bottomleft", legend = c("C", "AR(2)", "ARX(2)", "VAR(2)", "VARX(2)", "robVARX(2)"),
col = 1:6, lty = c(2,2,1,2,1,1), cex = 0.8, bty = "n")
dev.off()
postscript("test1a3.eps", width = 12, height = 20)
T = fit.1@model$modeldata$T
D = fit.1@model$modeldata$index[1:T]
par(mfrow = c(3,1))
plot(xts::xts(fit.1@model$modeldata$data[1:T,1], D),
main = "AA Returns vs Fit under \ndifferent mean models",
xlab = "Time", ylab = "R_t", minor.ticks = FALSE, auto.grid=FALSE)
lines(fitted(fit.6)[,1], lty = 2, col = 3, lwd = 0.5)
lines(fitted(fit.2)[,1], lty = 2, col = 2)
legend("topleft", legend = c("Actual", "robVARX(2)", "AR(2)"),
col = c(1,3,2), lty = c(1,2,2), bty ="n")
plot(xts::xts(fit.1@model$modeldata$data[1:T,2], D),
main = "AXP Returns vs Fit under \ndifferent mean models",
xlab = "Time", ylab = "R_t", minor.ticks = FALSE, auto.grid=FALSE)
lines(fitted(fit.6)[,2], lty = 2, col = 3, lwd = 0.5)
lines(fitted(fit.2)[,2], lty = 2, col = 2)
legend("topleft", legend = c("Actual", "robVARX(2)", "AR(2)"),
col = c(1,3,2), lty = c(1,2,2), bty ="n")
plot(xts::xts(fit.1@model$modeldata$data[1:T,3], D), type = "l",
main = "BA Returns vs Fit under \ndifferent mean models",
xlab = "Time", ylab = "R_t", minor.ticks = FALSE, auto.grid=FALSE)
lines(fitted(fit.6)[,3], lty = 2, col = 3, lwd = 0.5)
lines(fitted(fit.2)[,3], lty = 2, col = 2)
legend("topleft", legend = c("Actual", "robVARX(2)", "AR(2)"),
col = c(1,3,2), lty = c(1,2,2), bty ="n")
dev.off()
toc = Sys.time()-tic
cat("Elapsed:", toc, "\n")
return(toc)
}
rmgarch.test1b = function(cluster = NULL)
{
tic = Sys.time()
require(vars)
data(dji30ret)
ex = as.matrix(cbind(apply(dji30ret[,4:8], 1, "mean"), apply(dji30ret[,12:20], 1, "mean")))
ex = rugarch:::.lagx(ex, n.lag = 1, pad = 0)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 1, lag.max = 6),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
v2 = VAR(dji30ret[,1:3,drop=FALSE], lag.max=6, ic = "AIC")
options(width = 120)
zz <- file("test1b-1.txt", open="wt")
sink(zz)
print(fit@mfit$varcoef)
cat("\n")
print(fit@model$modelinc)
cat("\nvars package output:\n")
print(Bcoef(v2))
sink(type="message")
sink()
close(zz)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 1, lag.max = 6, external.regressors = ex),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
v2 = VAR(dji30ret[,1:3,drop=FALSE], lag.max=6, ic = "AIC", exogen = ex)
options(width = 120)
zz <- file("test1b-2.txt", open="wt")
sink(zz)
print(fit@mfit$varcoef)
cat("\n")
print(fit@model$modelinc)
cat("\nvars package output:\n")
print(Bcoef(v2))
sink(type="message")
sink()
close(zz)
toc = Sys.time()-tic
cat("Elapsed:", toc, "\n")
return(toc)
}
rmgarch.test1c = function(cluster = NULL)
{
tic = Sys.time()
data(dji30ret)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica","radical")[1])
fit.1 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.2 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0, gfun = "tanh",
cluster = cluster)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[2])
fit.3 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
modellik = data.frame(fastica_pow3=likelihood(fit.1), fastica_tanh=likelihood(fit.2), radical=likelihood(fit.3))
rownames(modellik) = "LLH"
options(width = 120)
zz <- file("test1c.txt", open="wt")
sink(zz)
print(modellik)
sink(type="message")
sink()
close(zz)
toc = Sys.time()-tic
cat("Elapsed:", toc, "\n")
return(toc)
}
rmgarch.test1d = function(cluster = NULL)
{
tic = Sys.time()
data(dji30ret)
ex = as.matrix(cbind(apply(dji30ret[,4:8], 1, "mean"), apply(dji30ret[,12:20], 1, "mean")))
ex = rugarch:::.lagx(ex, n.lag = 1, pad = 0)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.1 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
filt.1 = gogarchfilter(fit.1, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
options(width = 120)
zz <- file("test1d-1.txt", open="wt")
sink(zz)
print(head(fitted(fit.1))==head(fitted(filt.1)))
cat("\n")
print(rcov(fit.1)[,,10]==rcov(filt.1)[,,10])
sink(type="message")
sink()
close(zz)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "pearson", "jade", "radical")[1])
fit.2 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.1@mfit$A,
cluster = cluster)
filt.2 = gogarchfilter(fit.2, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
options(width = 120)
zz <- file("test1d-2.txt", open="wt")
sink(zz)
print(head(fitted(fit.2))==head(fitted(filt.2)))
cat("\n")
print(rcov(fit.2)[,,10]==rcov(filt.2)[,,10])
sink(type="message")
sink()
close(zz)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2, external.regressors = ex),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.3 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], solver = "hybrid",
solver.control = list(trace=0), out.sample = 0, A.init = fit.2@mfit$A,
cluster = cluster)
filt.3 = gogarchfilter(fit.3, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
options(width = 120)
zz <- file("test1d-3.txt", open="wt")
sink(zz)
print(head(fitted(fit.3))==head(fitted(filt.3)))
cat("\n")
print(rcov(fit.3)[,,10]==rcov(filt.3)[,,10])
sink(type="message")
sink()
close(zz)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.4 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0)
filt.4 = gogarchfilter(fit.4, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
filt.44 = gogarchfilter(fit.4, data = dji30ret[1:10,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
options(width = 120)
zz <- file("test1d-4.txt", open="wt")
sink(zz)
print(head(fitted(fit.4))==head(fitted(filt.4)))
cat("\n")
print(head(fitted(filt.44))==head(fitted(filt.4)))
cat("\n")
print(rcov(fit.4)[,,10]==rcov(filt.4)[,,10])
sink(type="message")
sink()
close(zz)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2, external.regressors = ex),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.5 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.4@mfit$A,
cluster = cluster)
filt.5 = gogarchfilter(fit.5, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
options(width = 120)
zz <- file("test1d-5.txt", open="wt")
sink(zz)
print(head(fitted(fit.5))==head(fitted(filt.5)))
cat("\n")
print(rcov(fit.5)[,,10]==rcov(filt.5)[,,10])
sink(type="message")
sink()
close(zz)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2, external.regressors = ex, robust = TRUE),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit.6 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.5@mfit$A,
cluster = cluster)
filt.6 = gogarchfilter(fit.6, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
cluster = cluster)
options(width = 120)
zz <- file("test1d-6.txt", open="wt")
sink(zz)
print(head(fitted(fit.6))==head(fitted(filt.6)))
cat("\n")
print(rcov(fit.6)[,,10]==rcov(filt.6)[,,10])
sink(type="message")
sink()
close(zz)
toc = Sys.time()-tic
cat("Elapsed:", toc, "\n")
return(toc)
}
rmgarch.test1e = function(cluster = NULL)
{
tic = Sys.time()
data(dji30ret)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[2], ica = c("fastica", "radical")[1])
fit = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0, cluster = cluster)
options(width = 120)
zz <- file("test1e-1.txt", open="wt")
sink(zz)
print(likelihood(fit))
cat("\n")
print(as.matrix(fit, which = "A"))
cat("\n")
print(as.matrix(fit, which = "K"))
cat("\n")
print(as.matrix(fit, which = "U"))
cat("\n")
print(head(fitted(fit)))
cat("\n")
print(head(residuals(fit)))
cat("\n")
print(rcov(fit)[,,1])
cat("\n")
print(rcor(fit)[,,1])
cat("\n")
print(rcoskew(fit, from=1, to=2))
cat("\n")
print(rcokurt(fit, from=1, to=2))
cat("\n")
sink(type="message")
sink()
close(zz)
gp = gportmoments(fit, weights = rep(1/3,3))
cf = convolution(fit, weights = rep(1/3,3), fft.step = 0.001, fft.by = 0.0001, fft.support = c(-1, 1),
use.ff = TRUE, trace = 0, support.method = c("user", "adaptive")[2], cluster = cluster)
np = nportmoments(cf, trace=1)
postscript("test1e1.eps", width = 8, height = 12)
par(mfrow = c(2,2))
plot(gp[1:1000,1], type = "p", main = "Portfolio Mean", minor.ticks=FALSE, auto.grid=FALSE)
points(np[1:1000,1], col = 2, pch = 4)
legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"), col = 1:2, pch = c(1,4), bty="n")
plot(gp[1:1000,2], type = "o", main = "Portfolio Sigma", minor.ticks=FALSE, auto.grid=FALSE)
lines(np[1:1000,2], col = 2)
legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"), col = 1:2, fill=1:2, bty="n")
plot(gp[1:1000,3], type = "o", main = "Portfolio Skewness", minor.ticks=FALSE, auto.grid=FALSE)
lines(np[1:1000,3], col = 2)
legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"), col = 1:2, fill=1:2, bty="n")
plot(gp[1:1000,4], type = "o", main = "Portfolio Kurtosis", minor.ticks=FALSE, auto.grid=FALSE)
lines(np[1:1000,4], col = 2)
legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"), col = 1:2, fill=1:2, bty="n")
dev.off()
postscript("test1e2.eps", width = 8, height = 12)
par(mfrow = c(2,2))
qf = qfft(cf, index = 5521)
plot(seq(0.01, 0.99, by = 0.005), qf(seq(0.01, 0.99, by = 0.005)), type = "l", main = "Portfolio Quantile\nObs=5521",
xlab = "Value", ylab = "Probability")
lines(seq(0.01, 0.99, by = 0.005), qnorm(seq(0.01, 0.99, by = 0.005), gp[5521,1], gp[5521,2]), col = 2)
legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"), col = 1:2, fill = 1:2, bty = "n")
df = dfft(cf, index = 4823)
plot(seq(-0.3, 0.3, by = 0.005), df(seq(-0.3, 0.3, by = 0.005)), type = "l", main = "Portfolio Density",
xlab = "Value", ylab = "pdf")
lines(seq(-0.3, 0.3, by = 0.005), dnorm(seq(-0.3, 0.3, by = 0.005), gp[4823,1], gp[4823,2]), col = 2)
legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"), col = 1:2, fill = 1:2, bty = "n")
rf = qfft(cf, index = 5519)
rfx = runif(50000)
sx = rf(rfx)
plot(density(sx), type = "l", main = "Sampled Portfolio Density",
xlab = "Value", ylab = "pdf")
lines(density(qnorm(rfx, gp[5519,1], gp[5519,2])), col = 2)
legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"), col = 1:2, fill = 1:2, bty = "n")
dev.off()
qseq = seq(0.01, 0.99, by = 0.005)
qsurface = matrix(NA, ncol = length(qseq), nrow = 5521)
for(i in 1:5521){
qf = qfft(cf, index = i)
qsurface[i,] = qf(qseq)
}
png("test1e3.png", width = 800, height = 1200, res = 100)
par(mar=c(1.8,1.8,1.1,1), pty = "m")
x1 = shape::drapecol(qsurface, col = shape::femmecol(100), NAcol = "white")
persp( x = 1:5521,
y = qseq,
z = qsurface, col = x1, theta = 45, phi = 25, expand = 0.5,
ltheta = 120, shade = 0.75, ticktype = "simple", xlab = "Time",
ylab = "Quantile", zlab = "Value",cex.axis = 0.8)
dev.off()
png("test1e4.png", width = 800, height = 1200, res = 100)
ni = nisurface(fit, type = "cor", pair = c(1,3), factor = c(2,3), plot = TRUE)
dev.off()
toc = Sys.time()-tic
cat("Elapsed:", toc, "\n")
return(toc)
}
rmgarch.test1f = function(cluster = NULL)
{
tic = Sys.time()
data(dji30ret)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1),
submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[2],
ica = c("fastica", "radical")[1])
fit = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0, cluster = cluster)
filt = gogarchfilter(fit, data = dji30ret[,1:3,drop=FALSE], out.sample = 0)
options(width = 120)
zz <- file("test1f.txt", open="wt")
sink(zz)
print(likelihood(filt))
cat("\n")
print(as.matrix(filt, which = "A"))
cat("\n")
print(as.matrix(filt, which = "K"))
cat("\n")
print(as.matrix(filt, which = "U"))
cat("\n")
print(head(fitted(filt)))
cat("\n")
print(head(residuals(filt)))
cat("\n")
print(rcov(filt)[,,1])
cat("\n")
print(rcor(filt)[,,1])
cat("\n")
print(rcoskew(filt, from=1, to=2))
print(rcokurt(filt, from=1, to=2))
cat("\n")
sink(type="message")
sink()
close(zz)
gp = gportmoments(filt, weights = rep(1/3,3))
cf = convolution(filt, weights = rep(1/3,3), fft.step = 0.001,
fft.by = 0.0001, fft.support = c(-1, 1), use.ff = TRUE,
support.method = c("user", "adaptive")[2], cluster = cluster)
np = nportmoments(cf)
postscript("test1f1.eps", width = 8, height = 12)
par(mfrow = c(2,2))
plot(gp[1:1000,1], type = "p", main = "Portfolio Mean", minor.ticks=FALSE, auto.grid=FALSE)
points(np[1:1000,1], col = 2, pch = 4)
legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"),
col = 1:2, pch = c(1,4), bty="n")
plot(gp[1:1000,2], type = "l", main = "Portfolio Sigma", minor.ticks=FALSE, auto.grid=FALSE)
lines(np[1:1000,2], col = 2)
legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"),
col = 1:2, fill=1:2, bty="n")
plot(gp[1:1000,3], type = "l", main = "Portfolio Skewness", minor.ticks=FALSE, auto.grid=FALSE)
lines(np[1:1000,3], col = 2)
legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"),
col = 1:2, fill=1:2, bty="n")
plot(gp[1:1000,4], type = "l", main = "Portfolio Kurtosis", minor.ticks=FALSE, auto.grid=FALSE)
lines(np[1:1000,4], col = 2)
legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"),
col = 1:2, fill=1:2, bty="n")
dev.off()
postscript("test1f2.eps", width = 8, height = 12)
par(mfrow = c(2,2))
qf = qfft(cf, index = 5521)
plot(seq(0.01, 0.99, by = 0.005), qf(seq(0.01, 0.99, by = 0.005)),
type = "l", main = "Portfolio Quantile\nObs=5521", xlab = "Value",
ylab = "Probability")
lines(seq(0.01, 0.99, by = 0.005), qnorm(seq(0.01, 0.99, by = 0.005),
gp[5521,1], gp[5521,2]), col = 2)
legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"),
col = 1:2, fill = 1:2, bty = "n")
df = dfft(cf, index = 4823)
plot(seq(-0.3, 0.3, by = 0.005), df(seq(-0.3, 0.3, by = 0.005)), type = "l",
main = "Portfolio Density", xlab = "Value", ylab = "pdf")
lines(seq(-0.3, 0.3, by = 0.005), dnorm(seq(-0.3, 0.3, by = 0.005),
gp[4823,1], gp[4823,2]), col = 2)
legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"),
col = 1:2, fill = 1:2, bty = "n")
rf = qfft(cf, index = 5521)
rfx = runif(50000)
sx = rf(rfx)
plot(density(sx), type = "l", main = "Sampled Portfolio Density",
xlab = "Value", ylab = "pdf")
lines(density(qnorm(rfx, gp[5521,1], gp[5521,2])), col = 2)
legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"),
col = 1:2, fill = 1:2, bty = "n")
dev.off()
qseq = seq(0.01, 0.99, by = 0.005)
qsurface = matrix(NA, ncol = length(qseq), nrow = 5521)
for(i in 1:5521){
qf = qfft(cf, index = i)
qsurface[i,] = qf(qseq)
}
png("test1f3.png", width = 800, height = 1200, res = 100)
par(mar=c(1.8,1.8,1.1,1), pty = "m")
x1 = shape::drapecol(qsurface, col = shape::femmecol(100), NAcol = "white")
persp( x = 1:5521,
y = qseq,
z = qsurface, col = x1, theta = 45, phi = 25, expand = 0.5,
ltheta = 120, shade = 0.75, ticktype = "simple", xlab = "Time",
ylab = "Quantile", zlab = "Value",cex.axis = 0.8)
dev.off()
png("test1f4.png", width = 800, height = 1200, res = 100)
ni = nisurface(filt, type = "cor", pair = c(2,3), factor = c(1,3), plot = TRUE)
dev.off()
toc = Sys.time()-tic
cat("Elapsed:", toc, "\n")
return(toc)
}
rmgarch.test1g = function(cluster = NULL)
{
tic = Sys.time()
data(dji30ret)
cnames = colnames(dji30ret)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 2,
lag.max = 6),
variance.model = list(model = "sGARCH", submodel = "NULL",
garchOrder = c(1,1), variance.targeting = TRUE),
distribution.model = c("mvnorm", "manig", "magh")[2],
ica = c("fastica", "radical")[1])
fit = gogarchfit(spec, data = dji30ret[,1:5,drop=FALSE], out.sample = 500,
cluster = cluster, gfun="tanh", maxiter1=25000)
filt = gogarchfilter(fit, data = dji30ret[,1:5,drop=FALSE], out.sample = 500,
cluster = cluster)
filt2 = gogarchfilter(fit, data = dji30ret[,1:5,drop=FALSE], n.old = 5521-500,
cluster = cluster)
forc.1 = gogarchforecast(fit, n.ahead = 500, cluster = cluster)
forc.2 = gogarchforecast(fit, n.ahead = 1, n.roll = 499, cluster = cluster)
zz <- file("test1g-1.txt", open="wt")
sink(zz)
cat("\nFilter/Forecast Roll Check:\n")
print(all.equal(matrix(rmgarch::last(fitted(forc.2), 1), nrow=1), matrix(as.numeric(tail(fitted(filt2), 1)), nrow=1)))
print(round(rcor(forc.2)[[500]][,,1], 5) == round(rmgarch::last(rcor(filt2))[,,1],5))
print(matrix(rmgarch::last(sigma(forc.2, factors=FALSE), 1), nrow=1) - as.matrix(tail(sigma(filt2, factors=FALSE), 1)))
print(matrix(rmgarch::first(sigma(forc.2, factors=FALSE), 1), nrow=1) - as.matrix(sigma(filt2, factors=FALSE)[5521-500+1,]))
sink(type="message")
sink()
close(zz)
rc1 = rcor(forc.1)[[1]]
rc2 = rcor(forc.2)
postscript("test1g1.eps", width = 12, height = 12)
par(mfrow = c(2,2))
D = tail(fit@model$modeldata$index, 500)
plot(xts::xts(sapply(rc2, function(x) x[1,2,1]),D),
main = paste("Correlation Forecast\n", cnames[1],"-",
cnames[2], sep = ""), ylab = "Correlation", xlab = "Time",
minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(rc1[1,2,], D), col = 2 )
legend("topright", legend = c("Rolling", "Unconditional"),
col =1:2, fill = 1:2, bty = "n")
plot(xts::xts(sapply(rc2, function(x) x[1,3,1]), D), type = "l",
main = paste("Correlation Forecast\n", cnames[1],"-",
cnames[3], sep = ""), ylab = "Correlation", xlab = "Time",
minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(rc1[1,3,], D), col = 2 )
legend("topright", legend = c("Rolling", "Unconditional"),
col =1:2, fill = 1:2, bty = "n")
plot(xts::xts(sapply(rc2, function(x) x[2,3,1]), D), type = "l",
main = paste("Correlation Forecast\n", cnames[2],"-",
cnames[3], sep = ""), ylab = "Correlation", xlab = "Time",
minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(rc1[2,3,], D), col = 2 )
legend("topright", legend = c("Rolling", "Unconditional"),
col =1:2, fill = 1:2, bty = "n")
dev.off()
gp1 = gportmoments(forc.1, weights = rep(1/5,5))
gp2 = gportmoments(forc.2, weights = rep(1/5,5))
postscript("test1g2.eps", width = 12, height = 12)
par(mfrow = c(2,1))
D = tail(fit@model$modeldata$index, 500)
plot(xts::xts(tail(apply(fit@model$modeldata$data,1,"mean"), 500), D),
main = paste("Portfolio Return Forecast"), ylab = "returns",
xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(gp2[,"mu", ], D), col = 2 )
lines(xts::xts(gp1[,"mu",1], D), col = 3 )
legend("topright", legend = c("Actual", "Rolling", "Unconditional"),
col = 1:3, fill = 1:3, bty = "n")
plot(xts::xts(sqrt(tail(apply(fit@model$modeldata$data^2,1,"mean"), 500)), D),
main = paste("Portfolio Sigma Forecast"), ylab = "sigma",
xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(gp2[,"sigma", ], D), col = 2 )
lines(xts::xts(gp1[,"sigma",1], D), col = 3 )
legend("topright", legend = c("Abs Returns", "Rolling", "Unconditional"),
col = 1:3, fill = 1:3, bty = "n")
dev.off()
cf1 = convolution(forc.1, weights = rep(1/5,5), fft.step = 0.001,
fft.by = 0.0001, fft.support = c(-1, 1),
use.ff = TRUE, trace = 0, support.method = c("user", "adaptive")[1],
cluster = cluster)
cf2 = convolution(forc.2, weights = rep(1/5,5), fft.step = 0.001,
fft.by = 0.0001, fft.support = c(-1, 1),
use.ff = TRUE, trace = 0, support.method = c("user", "adaptive")[1],
cluster = cluster)
np1 = nportmoments(cf1, subdivisions = 400)
np2 = nportmoments(cf2, subdivisions = 400)
postscript("test1g3.eps", width = 12, height = 12)
par(mfrow = c(2,2))
plot(xts::xts(gp2[,"mu",], D), main = paste("Portfolio Return Forecast"), ylab = "returns",
xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(np2[,"mu",], D), col = 2 )
legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
col = 1:2, fill = 1:2, bty = "n")
plot(xts::xts(gp2[,"sigma",], D), main = paste("Portfolio Sigma Forecast"), ylab = "sigma",
xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(np2[,"sigma",], D), col = 2 )
legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
col = 1:2, fill = 1:2, bty = "n")
plot(xts::xts(gp2[,"skewness",], D), main = paste("Portfolio Skew Forecast"), ylab = "skewness",
xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(np2[,"skewness",], D), col = 2 )
plot(xts::xts(gp2[,"kurtosis",], D), main = paste("Portfolio Kurtosis Forecast"), ylab = "skewness",
xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(np2[,"kurtosis",], D), col = 2 )
legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
col = 1:2, fill = 1:2, bty = "n")
dev.off()
VaR = matrix(NA, ncol = 2, nrow = 500)
for(i in 0:499){
qx = qfft(cf2, index = i)
VaR[i+1,1:2] = qx(c(0.01, 0.05))
}
postscript("test1g4.eps", width = 12, height = 12)
par(mfrow = c(2,1))
VaRplot(0.01, actual = xts::xts(tail(apply(fit@model$modeldata$data,1,"mean"), 500),D),
VaR = xts::xts(VaR[,1], D))
VaRplot(0.05, actual = xts::xts(tail(apply(fit@model$modeldata$data,1,"mean"), 500),D),
VaR = xts::xts(VaR[,2], D))
dev.off()
zz <- file("test1g-2.txt", open="wt")
sink(zz)
cat("\nGOGARCH VaR:\n")
print(VaRTest(0.01, actual = tail(apply(fit@model$modeldata$data,1,"mean"), 500),
VaR = VaR[,1]))
print(VaRTest(0.05, actual = tail(apply(fit@model$modeldata$data,1,"mean"), 500),
VaR = VaR[,2]))
sink(type="message")
sink()
close(zz)
toc = Sys.time()-tic
cat("Elapsed:", toc, "\n")
return(toc)
}
rmgarch.test1h = function(cluster = NULL)
{
tic = Sys.time()
data(dji30retw)
cnames = colnames(dji30retw)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[3],
lag = 2),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1),
variance.targeting = TRUE),
distribution.model = c("mvnorm", "manig", "magh")[2],
ica = c("fastica", "radical")[1])
roll = gogarchroll(spec, data = dji30retw[,1:10,drop=FALSE], n.ahead = 1,
forecast.length = 500, refit.every = 20,
refit.window = c("recursive", "moving")[1],
cluster = cluster, gfun = "tanh", maxiter1=50000, rseed = 10)
cf = convolution(roll, weights = rep(1/10,10), fft.step = 0.001,
fft.by = 0.0001, fft.support = c(-1, 1),
use.ff = FALSE, trace = 0, support.method = c("user", "adaptive")[1],
cluster = cluster)
VaR = matrix(NA, ncol = 2, nrow = 500)
for(i in 0:499){
qx = qfft(cf, index = i)
VaR[i+1,1:2] = qx(c(0.01, 0.05))
}
postscript("test1h1.eps", width = 12, height = 12)
par(mfrow = c(2,1))
D = as.POSIXct(tail(rownames(dji30retw), 500))
Y = tail(apply(dji30retw[,1:10],1,"mean"), 500)
VaRplot(0.01, actual = xts::xts(Y, D), VaR = xts::xts(VaR[,1], D))
VaRplot(0.05, actual = xts::xts(Y, D), VaR = xts::xts(VaR[,2], D))
dev.off()
zz <- file("test1h-1.txt", open="wt")
sink(zz)
cat("\nGOGARCH Rolling Estimation VaR:\n")
print(VaRTest(0.01, actual = tail(apply(dji30retw[,1:10],1,"mean"), 500),
VaR = VaR[,1]))
print(VaRTest(0.05, actual = tail(apply(dji30retw[,1:10],1,"mean"), 500),
VaR = VaR[,2]))
sink(type="message")
sink()
close(zz)
zz <- file("test1h-2.txt", open="wt")
sink(zz)
cat("\nGOGARCH Rolling Methods:\n")
print(head(sigma(roll)))
print(rcor(roll)[,,1,drop=FALSE])
print(rcov(roll)[,,1,drop=FALSE])
print(rcoskew(roll)[,,1])
print(rcokurt(roll)[,,1])
sink(type="message")
sink()
close(zz)
gp = gportmoments(roll, rep(1/10,10))
np = nportmoments(cf)
D = as.POSIXct(rownames(tail(dji30retw, 500)))
postscript("test1h2.eps", width = 12, height = 12)
par(mfrow = c(2,2))
plot(xts::xts(gp[,"mu"], D), main = paste("Portfolio Return Forecast"), ylab = "returns",
xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(np[,"mu"], D), col = 2 )
legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
col = 1:2, fill = 1:2, bty = "n")
plot(xts::xts(gp[,"sigma"], D), main = paste("Portfolio Sigma Forecast"), ylab = "sigma",
xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(np[,"sigma"], D), col = 2 )
legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
col = 1:2, fill = 1:2, bty = "n")
plot(xts::xts(gp[,"skewness"], D), main = paste("Portfolio Skew Forecast"), ylab = "skewness",
xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(np[,"skewness"], D), col = 2 )
plot(xts::xts(gp[,"kurtosis"], D), main = paste("Portfolio Kurtosis Forecast"), ylab = "skewness",
xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
lines(xts::xts(np[,"kurtosis"], D), col = 2 )
legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
col = 1:2, fill = 1:2, bty = "n")
dev.off()
toc = Sys.time()-tic
cat("Elapsed:", toc, "\n")
return(toc)
}
rmgarch.test1i = function(cluster = NULL)
{
tic = Sys.time()
data(dji30ret)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[2], ica = c("fastica", "radical")[1])
fit = gogarchfit(spec, data = dji30ret[,1:5,drop=FALSE], out.sample = 0,
cluster = cluster, gfun = "tanh", maxiter1 = 20000, rseed = 12)
forc = gogarchforecast(fit, n.ahead = 1)
w = matrix(rep(1/5,5), ncol = 5)
gm = gportmoments(forc, weights = w)
sk = w%*%rcoskew(forc, standardize = FALSE)[,,1]%*%kronecker(t(w),t(w))/gportmoments(forc, weights = w)[1,2,1]^3
ku = w%*%rcokurt(forc, standardize = FALSE)[,,1]%*%kronecker(t(w), kronecker(t(w),t(w)))/gportmoments(forc, weights = w)[1,2,1]^4
cf = convolution(forc, weights = w)
nm = nportmoments(cf, weights = w)
df = dfft(cf, index=0)
m1 = gm[1,1,1]
f = function(x) (x-m1)^4*df(x)
nme = integrate(f, -Inf, Inf, rel.tol=1e-9, stop.on.error=FALSE)$value/gm[1,2,1]^4
zz <- file("test1i.txt", open="wt")
sink(zz)
cat("\nGOGARCH Forecast Weighted Kurtosis Differences in Methods:\n")
print(all.equal(gm[1,4,1], nme))
print(all.equal(as.numeric(nm[1,4,1]), nme))
print(all.equal(as.numeric(nm[1,4,1]), gm[1,4,1]))
print(all.equal(as.numeric(sk), gm[1,3,1]))
print(all.equal(as.numeric(ku), gm[1,4,1]))
sink(type="message")
sink()
close(zz)
toc = Sys.time()-tic
cat("Elapsed:", toc, "\n")
return(toc)
}
rmgarch.test1j = function(cluster = NULL)
{
tic = Sys.time()
data(dji30ret)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
variance.model = list(model = "sGARCH", garchOrder = c(1,1)),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit = gogarchfit(spec = spec, data = dji30ret[1:1010,1:3], out.sample = 10, solver = "solnp",
gfun = "tanh", maxiter1 = 20000, rseed = 25)
forc = gogarchforecast(fit, n.ahead = 1, n.roll = 10)
fc = matrix(fitted(forc), ncol = 3, nrow=11, byrow=TRUE)
p = fit@model$modelinc[2]
simM = matrix(NA, ncol = 3, nrow = 11)
filt = gogarchfilter(fit, data = dji30ret[1:1010,1:3], out.sample = 0, n.old = 1000)
T = fit@model$modeldata$T
for(i in 1:11){
preres = fit@mfit$Y[(T-p+i):(T-1+i),]
presigma = filt@mfilter$factor.sigmas[(T-p+i):(T-1+i),]
prereturns = fit@model$modeldata$data[(T-p+i):(T-1+i),,drop=FALSE]
sim = gogarchsim(fit, n.sim = 1, m.sim = 500, startMethod = "sample",
preres = preres, presigma = presigma, prereturns = prereturns)
simx = t(sapply(sim@msim$seriesSim, FUN = function(x) x))
simres = t(sapply(sim@msim$residSim, FUN = function(x) x))
simM[i, ] = simx[1,] - simres[1,]
}
zz <- file("test1j1.txt", open="wt")
sink(zz)
cat("\nAR-GOGARCH Rolling Forecast vs Rolling Simulation Check:\n")
print(all.equal(simM, fc))
sink(type="message")
sink()
close(zz)
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2),
variance.model = list(model = "sGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit = gogarchfit(spec = spec, data = dji30ret[1:1010,1:3], out.sample = 10, solver = "solnp",
gfun = "tanh", maxiter1 = 20000, rseed = 25)
forc = gogarchforecast(fit, n.ahead = 1, n.roll = 10)
fc = matrix(fitted(forc), ncol = 3, nrow=11, byrow=TRUE)
p = fit@model$modelinc[3]
simM = matrix(NA, ncol = 3, nrow = 11)
filt = gogarchfilter(fit, data = dji30ret[1:1010,1:3], out.sample = 0, n.old = 1000)
T = fit@model$modeldata$T
for(i in 1:11){
preres = fit@mfit$Y[(T-p+i):(T-1+i),]
presigma = filt@mfilter$factor.sigmas[(T-p+i):(T-1+i),]
prereturns = fit@model$modeldata$data[(T-p+i):(T-1+i),,drop=FALSE]
sim = gogarchsim(fit, n.sim = 1, m.sim = 100, startMethod = "sample",
preres = preres, presigma = presigma, prereturns = prereturns)
simx = t(sapply(sim@msim$seriesSim, FUN = function(x) x))
simres = t(sapply(sim@msim$residSim, FUN = function(x) x))
simM[i, ] = simx[1,] - simres[1,]
}
zz <- file("test1j2.txt", open="wt")
sink(zz)
cat("\nVAR-GOGARCH Rolling Forecast vs Rolling Simulation Check:\n")
print(all.equal(simM, fc))
sink(type="message")
sink()
close(zz)
cnames = colnames(dji30ret[,1:3])
spec = gogarchspec(
mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
variance.model = list(model = "sGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
fit = gogarchfit(spec = spec, data = dji30ret[1:1010,1:3], out.sample = 10, solver = "solnp")
forc = gogarchforecast(fit, n.ahead = 1, n.roll = 10)
fc = matrix(fitted(forc), ncol = 3, nrow=11, byrow=TRUE)
fs = matrix(sigma(forc, factors=FALSE), ncol = 3, nrow=11, byrow=TRUE)
p = fit@model$modelinc[2]
simX = vector(mode = "list", length = 11)
filt = gogarchfilter(fit, data = dji30ret[1:1010,1:3], out.sample = 0, n.old = 1000)
T = fit@model$modeldata$T
for(i in 1:11){
preres = fit@mfit$Y[(T-p+i):(T-1+i),]
presigma = filt@mfilter$factor.sigmas[(T-p+i):(T-1+i),]
prereturns = fit@model$modeldata$data[(T-p+i):(T-1+i),,drop=FALSE]
sim = gogarchsim(fit, n.sim = 1, m.sim = 500, startMethod = "sample",
preres = preres, presigma = presigma, prereturns = prereturns)
simX[[i]] = t(sapply(sim@msim$seriesSim, FUN = function(x) x))
}
simM = t(sapply(simX, FUN = function(x) colMeans(x)))
simS = t(sapply(simX, FUN = function(x) apply(x, 2, "sd")))
postscript("test1j.eps", width = 12, height = 12)
par(mfrow=c(2,2))
boxplot(simX[[1]], main = "T+1", names = cnames)
points(fc[1,], col = 3, lwd = 4, pch =12)
points(simM[1,], col = 2, lwd = 2, pch = 10)
points(fc[1,]+3*fs[1,], col = 4, lwd = 2, pch = 14)
points(fc[1,]-3*fs[1,], col = 4, lwd = 2, pch = 14)
legend("bottomleft", c("Mean[sim]", "Mean[forc]", "3sd"), col = c(2,3,4), pch=c(10,12,14),
bty="n", lwd=c(2,4,2), cex=0.7)
boxplot(simX[[4]], main = "T+4", names = cnames)
points(fc[4,], col = 3, lwd = 4, pch =12)
points(simM[4,], col = 2, lwd = 2, pch = 10)
points(fc[4,]+3*fs[4,], col = 4, lwd = 2, pch = 14)
points(fc[4,]-3*fs[4,], col = 4, lwd = 2, pch = 14)
legend("bottomleft", c("Mean[sim]", "Mean[forc]", "3sd"), col = c(2,3,4), pch=c(10,12,14),
bty="n", lwd=c(2,4,2), cex=0.7)
boxplot(simX[[6]], main = "T+6", names = cnames)
points(fc[6,], col = 3, lwd = 4, pch =12)
points(simM[6,], col = 2, lwd = 2, pch = 10)
points(fc[6,]+3*fs[6,], col = 4, lwd = 2, pch = 14)
points(fc[6,]-3*fs[6,], col = 4, lwd = 2, pch = 14)
legend("bottomleft", c("Mean[sim]", "Mean[forc]", "3sd"), col = c(2,3,4), pch=c(10,12,14),
bty="n", lwd=c(2,4,2), cex=0.7)
boxplot(simX[[11]], main = "T+11", names = cnames)
points(fc[11,], col = 3, lwd = 4, pch =12)
points(simM[11,], col = 2, lwd = 2, pch = 10)
points(fc[11,]+3*fs[11,], col = 4, lwd = 2, pch = 14)
points(fc[11,]-3*fs[11,], col = 4, lwd = 2, pch = 14)
legend("bottomleft", c("Mean[sim]", "Mean[forc]", "3sd"), col = c(2,3,4), pch=c(10,12,14),
bty="n", lwd=c(2,4,2), cex=0.7)
dev.off()
toc = Sys.time()-tic
cat("Elapsed:", toc, "\n")
return(toc)
} |
plot.fh <- function(x,
label = "orig",
color = c("blue", "lightblue3"),
gg_theme = NULL,
cooks = TRUE,
range = NULL, ...) {
plot_check(x = x, label = label, color = color, cooks = cooks, range = range)
if (any(is.na(x$model$std_real_residuals))) {
residuals <- x$model$std_real_residuals[!is.na(x$model$std_real_residuals)]
warning("At least one value in the standardized realized residuals is NA. Only
numerical values are plotted.")
} else {
residuals <- x$model$std_real_residuals
}
residuals <- (residuals - mean(residuals)) / sd(residuals)
rand.eff <- x$model$random_effects
srand.eff <- (rand.eff - mean(rand.eff)) / sd(rand.eff)
tmp <- srand.eff
NextMethod("plot", cooks = FALSE, boxcox = FALSE,
cook_df = NULL, indexer = NULL, likelihoods = NULL,
opt_lambda = FALSE, residuals = residuals, srand.eff = srand.eff, tmp = tmp
)
} |
plot_graph <- function(CytomeTreeObj, Ecex = 1, Ecolor = 8,
Vcex = .8, Vcolor = 0, ...)
{
if(!methods::is(CytomeTreeObj, "CytomeTree")){
stop("CytomeTreeObj must be of class CytomeTree.")
}
Tree <- CytomeTreeObj$mark_tree
if(is.null(Tree))
{
return(cat("CytomeTree found a single population.\n"))
}
Tree_level <- length(Tree)
adj_list <- c()
cptleaf <- 1
for(level in 1:(Tree_level - 1))
{
cpt <- 1
NnodeLevel <- length(Tree[[level]])
for(Nnode in 1:NnodeLevel){
if(Tree[[level]][[Nnode]] == as.character(cptleaf)){
cptleaf <- cptleaf + 1
next
}
L_child <- Tree[[level + 1]][[cpt]]
R_child <- Tree[[level + 1]][[cpt + 1]]
cpt <- cpt + 2
adj_list <- rbind(adj_list,
cbind(
Tree[[level]][[Nnode]],
c(L_child, R_child),
c("-","+")
)
)
}
}
g <- graph.data.frame(data.frame(parent=as.character(adj_list[,1]),
node=as.character(adj_list[,2]),
text=adj_list[,3])
)
E(g)$label.cex <- Ecex
E(g)$color <- Ecolor
V(g)$label.cex <- Vcex
V(g)$color <- Vcolor
igraph::plot.igraph(g, layout = igraph::layout_as_tree(g),
edge.label=E(g)$text, ...)
} |
"chdage" |
impute_IMU <- function(object, verbose) {
if (verbose) cat(
"\r Attending to any gaps in the file"
)
imu_names <- setdiff(names(object), "Timestamp")
any_gaps <- (!stats::complete.cases(
object[ ,imu_names]
)) %>% {do.call(
data.frame, rle(.)
)} %>% {cbind(.,
stop_index = cumsum(.$lengths)
)} %>% {cbind(.,
start_index = .$stop_index - .$lengths + 1
)} %>% {
.[.$values, ]
}
if (!length(any_gaps)) return(object)
gap_indices <- do.call(
c, mapply(
seq, from = any_gaps$start_index,
to = any_gaps$stop_index, SIMPLIFY = FALSE
))
object[gap_indices, imu_names] <- 0
object
} |
context("ProposalLineItemService")
skip("Reduce Total Test Runtime")
rdfp_options <- readRDS("rdfp_options.rds")
options(rdfp.network_code = rdfp_options$network_code)
options(rdfp.httr_oauth_cache = FALSE)
options(rdfp.application_name = rdfp_options$application_name)
options(rdfp.client_id = rdfp_options$client_id)
options(rdfp.client_secret = rdfp_options$client_secret)
dfp_auth(token = "rdfp_token.rds")
test_that("dfp_createProposalLineItems", {
expect_true(TRUE)
})
test_that("dfp_getProposalLineItemsByStatement", {
request_data <- list('filterStatement'=list('query'="WHERE status='ACTIVE'"))
expect_message(try(dfp_getProposalLineItemsByStatement(request_data), silent=T), 'PERMISSION_DENIED')
expect_error(dfp_getProposalLineItemsByStatement(request_data))
})
test_that("dfp_performProposalLineItemAction", {
expect_true(TRUE)
})
test_that("dfp_updateProposalLineItems", {
expect_true(TRUE)
}) |
pre_process_data <- function(data, x, y, facet = NULL, highlight = NULL,
highlight_color = NULL, sort = TRUE, top_n = NULL,
threshold = NULL, other = FALSE, limit = NULL) {
if (!is.null(limit)) {
suppressWarnings(fun_name <- rlang::ctxt_frame(n = 4)$fn_name)
what <- paste0(fun_name, "(limit=)")
with <- paste0(fun_name, "(top_n=)")
lifecycle::deprecate_warn("0.2.0", what, with, env = parent.frame())
top_n <- limit
}
if (!is.null(top_n) && !sort) {
rlang::abort("`top_n` must not be set when `sort = FALSE`.")
}
if (!is.null(threshold) && !sort) {
rlang::abort("`threshold` must not be set when `sort = FALSE`.")
}
if (!is.null(top_n) && !is.null(threshold)) {
rlang::abort("`top_n` and `threshold` must not be used simultaneously.")
}
if (is.null(threshold) && other) {
rlang::abort("`threshold` must be set when `other = TRUE`")
}
x <- rlang::enquo(x)
y <- rlang::enquo(y)
facet <- rlang::enquo(facet)
has_facet <- !rlang::quo_is_null(facet)
if (other && has_facet) {
rlang::abort("`other` and `facet` cannot be used in conjunction currently.")
}
if (rlang::quo_is_missing(y)) {
if (has_facet) {
data <- dplyr::count(data, !!facet, !!x)
} else {
data <- dplyr::count(data, !!x)
}
y <- rlang::sym("n")
}
if (!is.null(highlight)) {
if (!is_highlight_spec(highlight)) {
highlight <- highlight_spec(highlight)
}
data$.color <- create_highlight_colors(
dplyr::pull(data, !!x),
highlight
)
}
if (has_facet) {
data <- dplyr::group_by(data, !!facet)
}
if (sort) {
if (!is.null(top_n)) {
data <- dplyr::top_n(data, top_n, !!y)
} else if (!is.null(threshold)) {
data <- apply_threshold(data, !!x, !!y, threshold, other)
}
data <- dplyr::ungroup(data)
if (has_facet) {
data <- data %>%
dplyr::mutate(!!x := reorder_within(!!x, !!y, !!facet)) %>%
dplyr::arrange(!!facet, !!y)
} else {
data <- dplyr::mutate(data, !!x := reorder(!!x, !!y, other = other))
}
}
data
}
apply_threshold <- function(data, x, y, threshold, other) {
x <- rlang::enquo(x)
y <- rlang::enquo(y)
if (other) {
data %>%
dplyr::mutate(!!x := ifelse(!!y > threshold, as.character(!!x), "Other")) %>%
dplyr::group_by(!!x) %>%
dplyr::summarise(!!y := sum(!!y)) %>%
dplyr::ungroup()
} else {
data %>%
dplyr::arrange(!!y) %>%
dplyr::filter(!!y > threshold)
}
} |
full_factor <- function(
dataset, vars, method = "PCA", hcor = FALSE, nr_fact = 1,
rotation = "varimax", data_filter = "",
envir = parent.frame()
) {
df_name <- if (is_string(dataset)) dataset else deparse(substitute(dataset))
dataset <- get_data(dataset, vars, filt = data_filter, envir = envir) %>%
mutate_if(is.Date, as.numeric)
rm(envir)
if (length(vars) < ncol(dataset))
vars <- colnames(dataset)
anyCategorical <- sapply(dataset, function(x) is.numeric(x) || is.Date(x)) == FALSE
nrObs <- nrow(dataset)
nrFac <- max(1, as.numeric(nr_fact))
if (nrFac > ncol(dataset)) {
return("The number of factors cannot exceed the number of variables" %>%
add_class("full_factor"))
nrFac <- ncol(dataset)
}
if (hcor) {
cmat <- try(sshhr(polycor::hetcor(dataset, ML = FALSE, std.err = FALSE)), silent = TRUE)
dataset <- mutate_all(dataset, radiant.data::as_numeric)
if (inherits(cmat, "try-error")) {
warning("Calculating the heterogeneous correlation matrix produced an error.\nUsing standard correlation matrix instead")
hcor <- "Calculation failed"
cmat <- cor(dataset)
} else {
cmat <- cmat$correlations
}
} else {
dataset <- mutate_all(dataset, radiant.data::as_numeric)
cmat <- cor(dataset)
}
if (method == "PCA") {
fres <- psych::principal(
cmat, nfactors = nrFac, rotate = rotation, scores = FALSE,
oblique.scores = FALSE
)
m <- fres$loadings[, colnames(fres$loadings)]
cscm <- m %*% solve(crossprod(m))
fres$scores <- as.matrix(mutate_all(dataset, radiant.data::standardize)) %*% cscm
} else {
fres <- try(psych::fa(cmat, nfactors = nrFac, rotate = rotation, oblique.scores = FALSE, fm = "ml"), silent = TRUE)
if (inherits(fres, "try-error")) {
return(
"An error occured. Increase the number of variables or reduce the number of factors" %>%
add_class("full_factor")
)
}
if (sum(anyCategorical) == ncol(dataset) && isTRUE(hcor)) {
isMaxMinOne <- sapply(dataset, function(x) (max(x, na.rm = TRUE) - min(x, na.rm = TRUE) == 1))
dataset <- mutate_if(dataset, isMaxMinOne, ~ (. - min(., na.rm = TRUE)) / (max(., na.rm = TRUE) - min(., na.rm = TRUE)))
.irt.tau <- function() {
tau <- psych::irt.tau(dataset)
m <- fres$loadings[, colnames(fres$loadings), drop = FALSE]
nf <- dim(m)[2]
max_dat <- max(dataset)
min_dat <- min(dataset)
if (any(tau == Inf)) {
tau[tau == Inf] <- max((max_dat - min_dat) * 5, 4)
warning("Tau values of Inf found. Adjustment applied")
}
if (any(tau == -Inf)) {
tau[tau == -Inf] <- min(-(max_dat - min_dat) * 5, -4)
warning("Tau values of -Inf found. Adjustment applied")
}
diffi <- list()
for (i in 1:nf) diffi[[i]] <- tau/sqrt(1 - m[, i]^2)
discrim <- m/sqrt(1 - m^2)
new.stats <- list(difficulty = diffi, discrimination = discrim)
psych::score.irt.poly(new.stats, dataset, cut = 0, bounds = c(-4, 4))
}
scores <- try(.irt.tau(), silent = TRUE)
rm(.irt.tau)
if (inherits(scores, "try-error")) {
return(
paste0("An error occured estimating latent factor scores using psychIrt. The error message was:\n\n", attr(scores, 'condition')$message) %>% add_class("full_factor")
)
} else {
fres$scores <- apply(scores[,1:nrFac, drop=FALSE], 2, radiant.data::standardize)
rm(scores)
colnames(fres$scores) <- colnames(fres$loadings)
}
} else {
fres$scores <- psych::factor.scores(as.matrix(dataset), fres, method = "Thurstone")$scores
}
}
floadings <-
fres$loadings %>%
{
dn <- dimnames(.)
matrix(., nrow = length(dn[[1]])) %>%
set_colnames(., dn[[2]]) %>%
set_rownames(., dn[[1]]) %>%
data.frame(stringsAsFactors = FALSE)
}
as.list(environment()) %>% add_class("full_factor")
}
summary.full_factor <- function(
object, cutoff = 0, fsort = FALSE,
dec = 2, ...
) {
if (is.character(object)) return(cat(object))
cat("Factor analysis\n")
cat("Data :", object$df_name, "\n")
if (!radiant.data::is_empty(object$data_filter)) {
cat("Filter :", gsub("\\n", "", object$data_filter), "\n")
}
cat("Variables :", paste0(object$vars, collapse = ", "), "\n")
cat("Factors :", object$nr_fact, "\n")
cat("Method :", object$method, "\n")
cat("Rotation :", object$rotation, "\n")
cat("Observations:", format_nr(object$nrObs, dec = 0), "\n")
if (is.character(object$hcor)) {
cat(paste0("Correlation : Pearson (adjustment using polycor::hetcor failed)\n"))
} else if (isTRUE(object$hcor)) {
if (sum(object$anyCategorical) > 0) {
cat(paste0("Correlation : Heterogeneous correlations using polycor::hetcor\n"))
} else {
cat(paste0("Correlation : Pearson\n"))
}
} else {
cat("Correlation : Pearson\n")
}
if (sum(object$anyCategorical) > 0) {
if (isTRUE(object$hcor)) {
cat("** Variables of type {factor} are assumed to be ordinal **\n")
if (object$method == "PCA") {
cat("** Factor scores are biased when using PCA when one or more {factor} variables are included **\n\n")
} else if (sum(object$anyCategorical) == length(object$vars)) {
cat("** Factor scores calculated using psych::scoreIrt **\n\n")
} else if (sum(object$anyCategorical) < length(object$vars)) {
cat("** Factor scores are biased when a mix of {factor} and numeric variables are used **\n\n")
}
} else {
cat("** Variables of type {factor} included without adjustment **\n\n")
}
} else if (isTRUE(object$hcor)) {
cat("** No variables of type {factor} selected. No adjustment applied **\n\n")
} else {
cat("\n")
}
cat("Factor loadings:\n")
clean_loadings(object$floadings, cutoff = cutoff, fsort = fsort, dec = dec, repl = "") %>%
print()
cat("\nFit measures:\n")
colSums(object$floadings ^ 2) %>%
rbind(., . / nrow(object$floadings)) %>%
rbind(., cumsum(.[2, ])) %>%
as.data.frame(stringsAsFactors = FALSE) %>%
format_df(dec = dec) %>%
set_rownames(c("Eigenvalues", "Variance %", "Cumulative %")) %>%
print()
cat("\nAttribute communalities:")
data.frame(1 - object$fres$uniqueness, stringsAsFactors = FALSE) %>%
format_df(dec = dec, perc = TRUE) %>%
set_rownames(object$vars) %>%
set_colnames("") %>%
print()
cat("\nFactor scores (max 10 shown):\n")
as.data.frame(object$fres$scores, stringsAsFactors = FALSE) %>%
.[1:min(nrow(.), 10), , drop = FALSE] %>%
format_df(dec = dec) %>%
print(row.names = FALSE)
}
plot.full_factor <- function(x, plots = "attr", shiny = FALSE, custom = FALSE, ...) {
if (is.character(x)) {
return(plot(x = 1, type = "n", main = x, axes = FALSE, xlab = "", ylab = ""))
} else if (x$fres$factors < 2) {
x <- "Plots require two or more factors"
return(plot(x = 1, type = "n", main = x, axes = FALSE, xlab = "", ylab = ""))
}
df <- x$floadings
scores <- as.data.frame(x$fres$scores)
plot_scale <- if ("resp" %in% plots) max(scores) else 1
rnames <- rownames(df)
cnames <- colnames(df)
plot_list <- list()
for (i in 1:(length(cnames) - 1)) {
for (j in (i + 1):length(cnames)) {
i_name <- cnames[i]
j_name <- cnames[j]
df2 <- cbind(df[, c(i_name, j_name)], rnames)
p <- ggplot(df2, aes_string(x = i_name, y = j_name)) +
theme(legend.position = "none") +
coord_cartesian(xlim = c(-plot_scale, plot_scale), ylim = c(-plot_scale, plot_scale)) +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0)
if ("resp" %in% plots) {
p <- p + geom_point(data = scores, aes_string(x = i_name, y = j_name), alpha = 0.5)
}
if ("attr" %in% plots) {
p <- p + geom_point(aes_string(color = "rnames")) +
ggrepel::geom_text_repel(aes_string(color = "rnames", label = "rnames")) +
geom_segment(
aes_string(x = 0, y = 0, xend = i_name, yend = j_name, color = "rnames"),
size = 0.5, linetype = "dashed", alpha = 0.5
)
}
plot_list[[paste0(i_name, "_", j_name)]] <- p
}
}
if (length(plot_list) > 0) {
if (custom) {
if (length(plot_list) == 1) plot_list[[1]] else plot_list
} else {
patchwork::wrap_plots(plot_list, ncol = min(length(plot_list), 2)) %>%
{if (shiny) . else print(.)}
}
}
}
store.full_factor <- function(dataset, object, name = "", ...) {
if (radiant.data::is_empty(name)) name <- "factor"
fscores <- as.data.frame(object$fres$scores, stringsAsFactors = FALSE)
indr <- indexr(dataset, object$vars, object$data_filter)
fs <- data.frame(matrix(NA, nrow = indr$nr, ncol = ncol(fscores)), stringsAsFactors = FALSE)
fs[indr$ind, ] <- fscores
dataset[, sub("^[a-zA-Z]+([0-9]+)$", paste0(name, "\\1"), colnames(fscores))] <- fs
dataset
}
clean_loadings <- function(
floadings, cutoff = 0, fsort = FALSE, dec = 8, repl = NA
) {
if (fsort) {
floadings <- select(psych::fa.sort(floadings), -order)
}
if (cutoff == 0) {
floadings %<>% round(dec)
} else {
ind <- abs(floadings) < cutoff
floadings %<>% round(dec)
floadings[ind] <- repl
}
floadings
} |
.mpiopt_init <- function(envir = .GlobalEnv){
if(!exists(".pbd_env", envir = envir)){
envir$.pbd_env <- new.env()
}
envir$.pbd_env$SPMD.CT <- SPMD.CT()
envir$.pbd_env$SPMD.OP <- SPMD.OP()
envir$.pbd_env$SPMD.IO <- SPMD.IO()
envir$.pbd_env$SPMD.TP <- SPMD.TP()
envir$.pbd_env$SPMD.DT <- SPMD.DT()
envir$.pbd_env$SPMD.NB.BUFFER <- list()
invisible()
} |
require(knitr)
opts_chunk$set(
dev="pdf",
fig.path="figures/",
fig.height=3,
fig.width=4,
out.width=".47\\textwidth",
fig.keep="high",
fig.show="hold",
fig.align="center",
prompt=TRUE,
comment=NA
)
require(Sleuth3)
require(mosaic)
require(MASS)
trellis.par.set(theme=col.mosaic())
set.seed(123)
knit_hooks$set(inline = function(x) {
if (is.numeric(x)) return(knitr:::format_sci(x, 'latex'))
x = as.character(x)
h = knitr:::hilight_source(x, 'latex', list(prompt=FALSE, size='normalsize'))
h = gsub("([_
h = gsub('(["\'])', '\\1{}', h)
gsub('^\\\\begin\\{alltt\\}\\s*|\\\\end\\{alltt\\}\\s*$', '', h)
})
showOriginal=FALSE
showNew=TRUE
print.pval = function(pval) {
threshold = 0.0001
return(ifelse(pval < threshold, paste("p<", sprintf("%.4f", threshold), sep=""),
ifelse(pval > 0.1, paste("p=",round(pval, 2), sep=""),
paste("p=", round(pval, 3), sep=""))))
}
trellis.par.set(theme=col.mosaic())
options(digits=4)
summary(case1201)
pairs(~ Takers+Rank+Years+Income+Public+Expend+SAT, data=case1201)
panel.hist = function(x, ...)
{
usr = par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h = hist(x, plot=FALSE)
breaks = h$breaks; nB = length(breaks)
y = h$counts; y = y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)
}
panel.lm = function(x, y, col=par("col"), bg=NA,
pch=par("pch"), cex=1, col.lm="red", ...)
{
points(x, y, pch=pch, col=col, bg=bg, cex=cex)
ok = is.finite(x) & is.finite(y)
if (any(ok))
abline(lm(y[ok] ~ x[ok]))
}
pairs(~ Takers+Rank+Years+Income+Public+Expend+SAT,
lower.panel=panel.smooth, diag.panel=panel.hist,
upper.panel=panel.lm, data=case1201)
require(car)
scatterplotMatrix(~ Takers+Rank+Years+Income+Public+Expend+SAT, diagonal="histogram", smooth=F, data=case1201)
lm1 = lm(SAT ~ Rank+log(Takers), data=case1201)
summary(lm1)
lm2 = lm(SAT ~ log2(Takers)+Income+Years+Public+Expend+Rank, data=case1201)
summary(lm2)
plot(lm2, which=4)
case1201r = case1201[-c(29),]
lm3 = lm(SAT ~ log2(Takers) + Income+ Years + Public + Expend + Rank, data=case1201r)
anova(lm3)
crPlots(lm2, term = ~ Expend)
crPlots(lm3, term = ~ Expend)
lm4 = lm(SAT ~ log2(Takers), data=case1201r)
stepAIC(lm4, scope=list(upper=lm3, lower=~1),
direction="forward", trace=FALSE)$anova
stepAIC(lm3, direction="backward", trace=FALSE)$anova
stepAIC(lm3, direction="both", trace=FALSE)$anova
lm5 = lm(SAT ~ log2(Takers) + Expend + Years + Rank, data=case1201r)
summary(lm5)
sigma5 = summary(lm5)$sigma^2
sigma3 = summary(lm3)$sigma^2
n = 49
p = 4+1
Cp=(n-p)*sigma5/sigma3+(2*p-n)
Cp
require(leaps)
explanatory = with(case1201r, cbind(log(Takers), Income, Years, Public, Expend, Rank))
with(case1201r, leaps(explanatory, SAT, method="Cp"))$which[27,]
with(case1201r, leaps(explanatory, SAT, method="Cp"))$Cp[27]
plot(lm5, which=1)
lm7 = lm(SAT ~ Expend, data=case1201r)
summary(lm7)
lm8 = lm(SAT ~ Income + Expend, data=case1201r)
summary(lm8)
summary(case1202)
panel.hist = function(x, ...)
{
usr = par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h = hist(x, plot=FALSE)
breaks = h$breaks; nB = length(breaks)
y = h$counts; y = y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)
}
panel.lm = function(x, y, col=par("col"), bg=NA,
pch=par("pch"), cex=1, col.lm="red", ...)
{
points(x, y, pch=pch, col=col, bg=bg, cex=cex)
ok = is.finite(x) & is.finite(y)
if (any(ok))
abline(lm(y[ok] ~ x[ok]))
}
pairs(~ Bsal+Sex+Senior+Age+Educ+Exper+log(Bsal),
lower.panel=panel.smooth, diag.panel=panel.hist,
upper.panel=panel.lm, data=case1202)
require(leaps)
explanatory1 = with(case1202, cbind(Senior, Age, Educ, Exper, Senior*Educ, Age*Educ, Age*Exper))
with(case1202, leaps(explanatory1, log(Bsal), method="Cp"))$which[55,]
with(case1202, leaps(explanatory1, log(Bsal), method="Cp"))$Cp[55]
with(case1202, leaps(explanatory1, log(Bsal), method="Cp"))$which[49,]
with(case1202, leaps(explanatory1, log(Bsal), method="Cp"))$Cp[49]
BIC(lm(log(Bsal) ~ Senior+Age+Educ+Exper+Age*Educ+Age*Exper, data=case1202))
BIC(lm(log(Bsal) ~ Senior+Age+Educ+Exper+(Exper)^2+Age*Educ, data=case1202))
lm1 = lm(log(Bsal) ~ Senior + Age + Educ + Exper + Age*Educ + Age*Exper, data=case1202)
summary(lm1)
lm2 = lm(log(Bsal) ~ Senior + Age + Educ + Exper + Age*Educ + Age*Exper + Sex, data=case1202)
summary(lm2) |
get_default_netmhc2pan_version <- function() {
"3.2"
} |
badge_projectstatus <- function(status = "concept"){
name <- c("concept", "wip", "suspended", "abandoned", "active", "inactive", "unsupported", "moved")
if(!status %in% name)stop("status needs to be one of concept, wip, suspended, abandoned, active, inactive, unsupported, or moved")
projectstatus <- paste0("https://www.repostatus.org/badges/latest/",status, "_md.txt" )
repostatus <- readLines(con = projectstatus, encoding = "UTF-8" )
repostatus
}
licbadgebuilder <- function(licensetype){
switch (licensetype,
"GPL-2" = {badgepaste("https://img.shields.io/badge/license-GPL--2-blue.svg",
"https://www.gnu.org/licenses/old-licenses/gpl-2.0.html")},
"GPL-3" = {badgepaste("https://img.shields.io/badge/license-GPL--3-blue.svg",
"https://www.gnu.org/licenses/gpl-3.0.en.html")},
"MIT" = {badgepaste("https://img.shields.io/github/license/mashape/apistatus.svg",
"https://choosealicense.com/licenses/mit/")},
"CC0" = {badgepaste("https://img.shields.io/badge/license-CC0-blue.svg",
"https://choosealicense.com/licenses/cc0-1.0/")}
)
}
badge_travis <- function(ghaccount = NULL, ghrepo = NULL, branch = NULL,
location = "."){
if(any(is.null(ghaccount), is.null(ghrepo), is.null(branch))){
credentials<- github_credentials_helper(ghaccount = ghaccount,
ghrepo = ghrepo,
branch = branch,
location = location
)
}else{
credentials <- list(
ghaccount = ghaccount,
ghrepo = ghrepo,
branch = branch
)
}
referlink <- paste0("https://travis-ci.org/", credentials$ghaccount,"/",
credentials$ghrepo)
imagelink <- paste0(referlink,
".svg?branch=",credentials$branch)
badge <-badgepaste(imagelink, referlink, name = "Build Status")
badge
}
badge_codecov <- function(ghaccount = NULL, ghrepo = NULL, branch=NULL, location = "."){
if(any(is.null(ghaccount), is.null(ghrepo), is.null(branch))){
credentials<- github_credentials_helper(ghaccount = ghaccount,
ghrepo = ghrepo,
branch = branch,
location = location
)
}else{
credentials <- list(
ghaccount = ghaccount,
ghrepo = ghrepo,
branch = branch
)
}
referlink <- paste0("https://codecov.io/gh/", credentials$ghaccount, "/", credentials$ghrepo)
imagelink <- paste0(referlink,
"/branch/", credentials$branch,
"/graph/badge.svg" )
codecovbadge <-badgepaste(imagelink,referlink, name = "codecov")
codecovbadge
}
badge_minimal_r_version <- function(chunk = TRUE){
r_chunk <- c(
"```{r, echo = FALSE}",
eval(expression("dep <- as.vector(read.dcf('DESCRIPTION')[, 'Depends'])")),
eval(expression("m <- regexpr('R *\\\\(>= \\\\d+.\\\\d+.\\\\d+\\\\)', dep)")),
eval(expression("rm <- regmatches(dep, m)")),
eval(expression("rvers <- gsub('.*(\\\\d+.\\\\d+.\\\\d+).*', '\\\\1', rm)")),
"```")
img_link <- paste0("https://img.shields.io/badge/R%3E%3D-", "`r rvers`", "-6666ff.svg")
referlink <- "https://cran.r-project.org/"
result <- c(if(chunk){r_chunk},
badgepaste(img_link, referlink, name = "minimal R version"))
result
}
badge_cran <- function(packagename){
img_link <- paste0("https://www.r-pkg.org/badges/version/", packagename)
refer_link <- paste0("https://cran.r-project.org/package=", packagename)
badgepaste(imagelink =img_link,
referlink = refer_link,
name = "CRAN_Status_Badge")
}
badge_cran_version_ago <- function(packagename){
img_link <- paste0("https://www.r-pkg.org/badges/version-ago/", packagename)
refer_link <- paste0("https://cran.r-project.org/package=", packagename)
badgepaste(imagelink =img_link,
referlink = refer_link,
name = "CRAN_Status_Badge_version_ago")
}
badge_cran_version_release <- function(packagename){
img_link <- paste0("https://www.r-pkg.org/badges/version-last-release/", packagename)
refer_link <- paste0("https://cran.r-project.org/package=", packagename)
badgepaste(imagelink =img_link,
referlink = refer_link,
name = "CRAN_Status_Badge_version_last_release")
}
badge_cran_ago <- function(packagename){
img_link <- paste0("https://www.r-pkg.org/badges/ago/", packagename)
refer_link <- paste0("https://cran.r-project.org/package=", packagename)
badgepaste(imagelink =img_link,
referlink = refer_link,
name = "CRAN_time_from_release")
}
badge_cran_date <- function(packagename){
img_link <- paste0("https://www.r-pkg.org/badges/last-release/", packagename)
refer_link <- paste0("https://cran.r-project.org/package=", packagename)
badgepaste(imagelink =img_link,
referlink = refer_link,
name = "CRAN_latest_release_date")
}
badge_cran_downloads <- function(packagename, period = NULL){
if(is.null(period)){
paste_thing <- packagename
}else{
if(!period %in% c("last-week", "last-day","grand-total"))stop("Use last-week, last-day, or grand-total for period")
paste_thing <- paste0(period, "/",packagename)
}
badgepaste(imagelink = paste0("https://cranlogs.r-pkg.org/badges/",paste_thing),
referlink = paste0("https://cran.r-project.org/package=", packagename),
name = "metacran downloads")
}
badge_packageversion <- function(chunk = TRUE){
r_chunk <- c(
"```{r, echo = FALSE}",
eval(expression("version <- as.vector(read.dcf('DESCRIPTION')[, 'Version'])")),
eval(expression("version <- gsub('-', '.', version)")),
"```")
img_link <- paste0("https://img.shields.io/badge/Package%20version-", "`r version`",
"-orange.svg?style=flat-square")
referlink <- "commits/master"
result <- c(
if(chunk){r_chunk},
badgepaste(img_link, referlink, name = "packageversion"))
result
}
badge_last_change <- function(location = "."){
badgepaste(imagelink = paste0("https://img.shields.io/badge/last%20change-",
"`r ", "gsub('-', '--', Sys.Date())", "`",
"-yellowgreen.svg"),
referlink = "/commits/master",
name = "Last-changedate")
}
badge_last_change_static <- function(date = NULL){
date_1 <- ifelse(is.null(date), as.character(Sys.Date()), date)
paste_ready_date <- gsub('-', '--', date_1)
badgepaste(imagelink = paste0("https://img.shields.io/badge/last%20change-",
paste_ready_date,"-yellowgreen.svg"),
referlink = "/commits/master",
name = "Last-changedate")
}
badge_rdocumentation <- function(packagename){
badgepaste(
imagelink = paste0("https://www.rdocumentation.org/badges/version/", packagename),
referlink = paste0("https://www.rdocumentation.org/packages/", packagename),
name = "Rdoc"
)
}
badge_github_star <- function(ghaccount = NULL, ghrepo = NULL,
branch = NULL, location = "."){
credentials<- github_credentials_helper(ghaccount = ghaccount,
ghrepo = ghrepo,
branch = branch,
location = location
)
badgepaste(
imagelink = paste0("https://githubbadges.com/star.svg?user=",
credentials$ghaccount, "&repo=", credentials$ghrepo
),
referlink = paste0("https://github.com/",credentials$ghaccount,"/",
credentials$ghrepo),
name = "star this repo"
)
}
badge_github_fork <- function(ghaccount = NULL, ghrepo = NULL, location = "."){
credentials<- github_credentials_helper(ghaccount = ghaccount,
ghrepo = ghrepo,
branch = NULL,
location = location
)
badgepaste(
imagelink = paste0("https://img.shields.io/github/forks/",
credentials$ghaccount, "/",
credentials$ghrepo,".svg?style=social&label=Fork"),
referlink = paste0("https://github.com/",credentials$ghaccount,"/",
credentials$ghrepo,"/fork"),
name = "fork this repo"
)
}
badge_license <- function(license = NULL, location = "."){
if(is.null(license)){
description <- read.dcf(file.path(location, "DESCRIPTION"))
licensetype <- as.vector(description[1, "License"])
if(length(licensetype) == 0) stop("No license was described in DESCRIPTION")
} else {
licensetype <- license
}
recommended_licenses <- c(
"GPL-2", "GPL-3",
"MIT"
)
if(!(licensetype %in% recommended_licenses)){
message("the license ", licensetype, " is not recommended for R packages")
badgepaste(imagelink = paste0("https://img.shields.io/badge/license-",
gsub("-","--", licensetype), "-lightgrey.svg"),
referlink = "https://choosealicense.com/")
} else {
licbadgebuilder(licensetype)
}
}
badge_rank <- function(packagename){
badgepaste(
imagelink = paste0("https://www.rpackages.io/badge/", packagename, ".svg"),
referlink = paste0("https://www.rpackages.io/package/", packagename),
name = "rpackages.io rank"
)
}
badge_thanks_md <- function(add_file = TRUE){
if(!file.exists("THANKS.md") & add_file ){file.create("THANKS.md")}
badgepaste(
imagelink = "https://img.shields.io/badge/THANKS-md-ff69b4.svg",
referlink = "THANKS.md",
name = "thanks-md"
)
}
badge_lifecycle <- function(lifecycle = "experimental"){
lifecycle <- tolower(lifecycle)
if(lifecycle == "maturing"){
badge = "https://img.shields.io/badge/lifecycle-maturing-blue.svg"
}else if(lifecycle == "stable"){
badge = "https://img.shields.io/badge/lifecycle-stable-brightgreen.svg"
}else if(lifecycle == "questioning"){
badge = "https://img.shields.io/badge/lifecycle-questioning-blue.svg"
}else if(lifecycle == "retired"){
badge = "https://img.shields.io/badge/lifecycle-retired-orange.svg"
}else if(lifecycle == "dormant"){
badge = "https://img.shields.io/badge/lifecycle-dormant-blue.svg"
}else if(lifecycle == "experimental"){
badge = "https://img.shields.io/badge/lifecycle-experimental-orange.svg"
}else {
message("don't know what ", lifecycle, " is. So we're going for experimental")
badge = "https://img.shields.io/badge/lifecycle-experimental-orange.svg"
lifecycle <- "experimental"
}
badgepaste(
imagelink = badge,
referlink = paste0("https://www.tidyverse.org/lifecycle/
name = "lifecycle"
)
} |
BtamatW <-
function(X,y,delta,N,q,MAXIT,TOL,seed=153) {
n <- length(y); p <- ncol(X); if (q < p) q <- p
set.seed(seed)
indu <- (1:n)[delta==1]
inds <- apply(matrix(rep(indu,N),nrow=N,byrow=TRUE),1,sample,size = q)
intcp <- any(X[,1,drop=TRUE]!= 1)
if (intcp) X <- cbind(1,X)
beta <- apply(inds, 2, CandidateW, X, y, delta,MAXIT,TOL)
if (p==1) beta <- matrix(beta,ncol=1,nrow=N) else beta <- t(beta)
list(beta = beta)} |
spls.hybrid <-function(X,
Y,
ncomp = 2,
mode = c("regression", "canonical", "invariant", "classic"),
max.iter = 500,
tol = 1e-06,
keepX.constraint,
keepY.constraint,
keepX,
keepY,
near.zero.var = FALSE)
{
if (length(dim(X)) != 2)
stop("'X' must be a numeric matrix.")
X = as.matrix(X)
Y = as.matrix(Y)
if (!is.numeric(X) || !is.numeric(Y))
stop("'X' and/or 'Y' must be a numeric matrix.")
if(missing(keepX.constraint))
{
if(missing(keepX))
{
keepX=rep(ncol(X),ncomp)
}
keepX.constraint=list()
}else{
if(missing(keepX))
{
keepX=NULL
}
}
if(missing(keepY.constraint))
{
if(missing(keepY))
{
keepY=rep(ncol(Y),ncomp)
}
keepY.constraint=list()
}else{
if(missing(keepY))
{
keepY=NULL
}
}
if((length(keepX.constraint)+length(keepX))!=ncomp) stop("length (keepX.constraint) + length(keepX) should be ncomp")
if((length(keepY.constraint)+length(keepY))!=ncomp) stop("length (keepY.constraint) + length(keepY) should be ncomp")
keepX.temp=c(unlist(lapply(keepX.constraint,length)),keepX)
keepY.temp=c(unlist(lapply(keepY.constraint,length)),keepY)
check=Check.entry.pls(X,Y,ncomp,keepX.temp,keepY.temp)
X=check$X
Y=check$Y
ncomp=check$ncomp
X.names=check$X.names
Y.names=check$Y.names
ind.names=check$ind.names
if(length(keepX.constraint)>0)
{
X.indice=X[,unlist(keepX.constraint),drop=FALSE]
keepX.constraint=relist(colnames(X.indice),skeleton=keepX.constraint)
}
if(length(keepY.constraint)>0)
{
Y.indice=Y[,unlist(keepY.constraint),drop=FALSE]
keepY.constraint=relist(colnames(Y.indice),skeleton=keepY.constraint)
}
if(near.zero.var == TRUE)
{
nzv.X = nearZeroVar(X)
if (length(nzv.X$Position > 0))
{
names.remove.X=colnames(X)[nzv.X$Position]
warning("Zero- or near-zero variance predictors.\n Reset predictors matrix to not near-zero variance predictors.\n See $nzv$X for problematic predictors.")
X = X[, -nzv.X$Position]
if(ncol(X)==0) {stop("No more variables in X")}
}else{names.remove.X=NULL}
nzv.Y = nearZeroVar(Y)
if (length(nzv.Y$Position > 0))
{
names.remove.Y=colnames(Y)[nzv.Y$Position]
warning("Zero- or near-zero variance predictors.\n Reset predictors matrix to not near-zero variance predictors.\n See $nzv$Y for problematic predictors.")
Y = Y[, -nzv.Y$Position]
if(ncol(Y)==0) {stop("No more variables in Y")}
}else{names.remove.Y=NULL}
}else{
X.scale=scale(X)
sigma.X=attr(X.scale,"scaled:scale")
remove=which(sigma.X==0)
if(length(remove)>0)
{
names.remove.X=colnames(X)[remove]
X=X[,-remove,drop=FALSE]
X.names=X.names[-remove]
}else{names.remove.X=NULL}
if(ncol(X)==0) {stop("No more variables in X")}
Y.scale=scale(Y)
sigma.Y=attr(Y.scale,"scaled:scale")
remove=which(sigma.Y==0)
if(length(remove)>0)
{
names.remove.Y=colnames(Y)[remove]
Y=Y[,-remove,drop=FALSE]
Y.names=Y.names[-remove]
}else{names.remove.Y=NULL}
if(ncol(Y)==0) {stop("No more variables in Y")}
}
keepX.constraint=match.signature(X,names.remove.X,keepX.constraint)
keepY.constraint=match.signature(Y,names.remove.Y,keepY.constraint)
keepX.constraint= lapply(keepX.constraint,function(x){match(x,colnames(X))})
keepY.constraint= lapply(keepY.constraint,function(x){match(x,colnames(Y))})
keepX=c(unlist(lapply(keepX.constraint,length)),keepX)
keepY=c(unlist(lapply(keepY.constraint,length)),keepY)
n = nrow(X)
q = ncol(Y)
p = ncol(X)
mode = match.arg(mode)
X = scale(X, center = TRUE, scale = TRUE)
Y = scale(Y, center = TRUE, scale = TRUE)
means.X=attr(X,"scaled:center")
sigma.X=attr(X,"scaled:scale")
means.Y=attr(Y,"scaled:center")
sigma.Y=attr(Y,"scaled:scale")
X.temp = X
Y.temp = Y
mat.t = matrix(nrow = n, ncol = ncomp)
mat.u = matrix(nrow = n, ncol = ncomp)
mat.a = matrix(nrow = p, ncol = ncomp)
mat.b = matrix(nrow = q, ncol = ncomp)
mat.c = matrix(nrow = p, ncol = ncomp)
mat.d = matrix(nrow = q, ncol = ncomp)
mat.e = matrix(nrow = q, ncol = ncomp)
n.ones = rep(1, n)
p.ones = rep(1, p)
q.ones = rep(1, q)
na.X = FALSE
na.Y = FALSE
is.na.X = is.na(X)
is.na.Y = is.na(Y)
if (any(is.na.X)) na.X = TRUE
if (any(is.na.Y)) na.Y = TRUE
iter=NULL
for (h in 1:ncomp) {
nx=p-keepX[h]
ny=q-keepY[h]
X.aux = X.temp
if (na.X) {X.aux[is.na.X] = 0}
Y.aux = Y.temp
if (na.Y) {Y.aux[is.na.Y] = 0}
M = crossprod(X.aux, Y.aux)
svd.M = svd(M, nu = 1, nv = 1)
a.old = svd.M$u
b.old = svd.M$v
if (na.X)
{
t = X.aux %*% a.old
A = drop(a.old) %o% n.ones
A[t(is.na.X)] = 0
a.norm = crossprod(A)
t = t / diag(a.norm)
}else{
t = X.aux %*% a.old / drop(crossprod(a.old))
}
if (na.Y)
{
u = Y.aux %*% b.old
B = drop(b.old) %o% n.ones
B[t(is.na.Y)] = 0
b.norm = crossprod(B)
u = u / diag(b.norm)
}else{
u = Y.aux %*% b.old / drop(crossprod(b.old))
}
iterh = 1
repeat {
a = t(X.aux) %*% u
b = t(Y.aux) %*% t
if(h<=length(keepX.constraint))
{
if (nx != 0){a[-keepX.constraint[[h]]]=0}
a=l2.norm(as.vector(a))
}
if(h<=length(keepY.constraint))
{
if (ny != 0){a[-keepY.constraint[[h]]]=0}
b=l2.norm(as.vector(b))
}
if(h>length(keepX.constraint))
{
if (nx != 0){a=soft_thresholding(a,nx)}
a=l2.norm(as.vector(a))
}
if(h>length(keepY.constraint))
{
if (ny != 0){b=soft_thresholding(b,ny)}
b=l2.norm(as.vector(b))
}
if (na.X)
{
t = X.aux %*% a
A = drop(a) %o% n.ones
A[t(is.na.X)] = 0
a.norm = crossprod(A)
t = t / diag(a.norm)
}else{
t = X.aux %*% a / drop(crossprod(a))
}
if (na.Y)
{
u = Y.aux %*% b
B = drop(b) %o% n.ones
B[t(is.na.Y)] = 0
b.norm = crossprod(B)
u = u / diag(b.norm)
}else{
u = Y.aux %*% b / drop(crossprod(b))
}
if (crossprod(a - a.old) < tol) {break}
if (iterh == max.iter)
{
warning(paste("Maximum number of iterations reached for the component", h),
call. = FALSE)
break
}
a.old = a
b.old = b
iterh = iterh + 1
}
if (na.X)
{
c = crossprod(X.aux, t)
T = drop(t) %o% p.ones
T[is.na.X] = 0
t.norm = crossprod(T)
c = c / diag(t.norm)
}else{
c = crossprod(X.aux, t) / drop(crossprod(t))
}
X.temp = X.temp - t %*% t(c)
if (mode == "canonical")
{
if (na.Y)
{
e = crossprod(Y.aux, u)
U = drop(u) %o% q.ones
U[is.na.Y] = 0
u.norm = crossprod(U)
e = e / diag(u.norm)
}else{
e = crossprod(Y.aux, u) / drop(crossprod(u))
}
Y.temp = Y.temp - u %*% t(e)
}
if(mode == "regression")
{
if (na.Y)
{
d = crossprod(Y.aux, t)
T = drop(t) %o% q.ones
T[is.na.Y] = 0
t.norm = crossprod(T)
d = d / diag(t.norm)
}else{
d = crossprod(Y.aux, t) / drop(crossprod(t))
}
Y.temp = Y.temp - t %*% t(d)
}
mat.t[, h] = t
mat.u[, h] = u
mat.a[, h] = a
mat.b[, h] = b
mat.c[, h] = c
if (mode == "regression") {mat.d[, h] = d}
if (mode == "canonical") {mat.e[, h] = e}
if(mode == "classic") {Y.temp = Y.temp - t %*% t(b)}
if (mode == "invariant") {Y.temp = Y}
iter=c(iter,iterh)
}
rownames(mat.a) = rownames(mat.c) = X.names
rownames(mat.b) = Y.names
rownames(mat.t) = rownames(mat.u) = ind.names
dim = paste("comp", 1:ncomp)
colnames(mat.t) = colnames(mat.u) = dim
colnames(mat.a) = colnames(mat.b) = colnames(mat.c) = dim
cl = match.call()
cl[[1]] = as.name('spls')
result = list(call = cl,
X = X, Y = Y, ncomp = ncomp, mode = mode,
keepX.constraint = keepX.constraint,
keepY.constraint = keepY.constraint,
keepX=keepX,
keepY=keepY,
mat.c = mat.c,
mat.d = mat.d,
mat.e = mat.e,
variates = list(X = mat.t, Y = mat.u),
loadings = list(X = mat.a, Y = mat.b),
names = list(samples = ind.names, colnames=X.names, blocks=c("X","Y"), Y = Y.names),
tol = tol,
max.iter = max.iter,iter=iter
)
if (near.zero.var == TRUE)
{
result$nzv$X = nzv.X
result$nzv$Y = nzv.Y
}
result$coeff=list(means.X=means.X,sigma.X=sigma.X,means.Y=means.Y,sigma.Y=sigma.Y)
class(result) = c("pls","spls.hybrid")
return(invisible(result))
} |
basicOpGrob <- function(piece_side, suit, rank, cfg=pp_cfg(),
x=unit(0.5, "npc"), y=unit(0.5, "npc"), z=unit(0, "npc"),
angle=0, type="normal",
width=NA, height=NA, depth=NA,
op_scale=0, op_angle=45) {
grob <- cfg$get_grob(piece_side, suit, rank, type)
xy_p <- op_xy(x, y, z+0.5*depth, op_angle, op_scale)
cvp <- viewport(xy_p$x, xy_p$y, width, height, angle=angle)
grob <- grid::editGrob(grob, name="piece_side", vp=cvp)
shadow_fn <- cfg$get_shadow_fn(piece_side, suit, rank)
edge <- shadow_fn(piece_side, suit, rank, cfg,
x, y, z, angle, width, height, depth,
op_scale, op_angle)
edge <- grid::editGrob(edge, name="other_faces")
grobTree(edge, grob, cl="basic_projected_piece")
}
op_xy <- function(x, y, z, op_angle=45, op_scale=0) {
x <- x + op_scale * z * cos(to_radians(op_angle))
y <- y + op_scale * z * sin(to_radians(op_angle))
list(x=x, y=y)
}
basicShadowGrob <- function(piece_side, suit, rank, cfg=pp_cfg(),
x=unit(0.5, "npc"), y=unit(0.5, "npc"), z=unit(0, "npc"),
angle=0, width=NA, height=NA, depth=NA,
op_scale=0, op_angle=45) {
cfg <- as_pp_cfg(cfg)
opt <- cfg$get_piece_opt(piece_side, suit, rank)
piece <- get_piece(piece_side)
side <- ifelse(opt$back, "back", "face")
x <- as.numeric(convertX(x, "in"))
y <- as.numeric(convertY(y, "in"))
z <- as.numeric(convertX(z, "in"))
width <- as.numeric(convertX(width, "in"))
height <- as.numeric(convertY(height, "in"))
depth <- as.numeric(convertX(depth, "in"))
shape <- pp_shape(opt$shape, opt$shape_t, opt$shape_r, opt$back)
R <- side_R(side) %*% AA_to_R(angle, axis_x = 0, axis_y = 0)
whd <- get_scaling_factors(side, width, height, depth)
pc <- Point3D$new(x, y, z)
token <- Token2S$new(shape, whd, pc, R)
gl <- gList()
opp_side <- ifelse(opt$back, "face", "back")
opp_piece_side <- if (piece == "die") piece_side else paste0(piece, "_", opp_side)
opp_opt <- cfg$get_piece_opt(opp_piece_side, suit, rank)
gp_opp <- gpar(col=opp_opt$border_color, fill=opp_opt$background_color, lex=opp_opt$border_lex)
xyz_opp <- if (opt$back) token$xyz_face else token$xyz_back
xy_opp <- xyz_opp$project_op(op_angle, op_scale)
grob_opposite <- polygonGrob(x = xy_opp$x, y = xy_opp$y, default.units = "in",
gp = gp_opp, name="opposite_piece_side")
edges <- token$op_edges(op_angle)
for (i in seq_along(edges)) {
name <- paste0("edge", i)
gl[[i]] <- edges[[i]]$op_grob(op_angle, op_scale, name=name)
}
gp_edge <- gpar(col=opt$border_color, fill=opt$edge_color, lex=opt$border_lex)
grob_edge <- gTree(children=gl, gp=gp_edge, name="token_edges")
grobTree(grob_opposite, grob_edge)
}
basicEllipsoid <- function(piece_side, suit, rank, cfg=pp_cfg(),
x=unit(0.5, "npc"), y=unit(0.5, "npc"), z=unit(0, "npc"),
angle=0, type="normal",
width=NA, height=NA, depth=NA,
op_scale=0, op_angle=45) {
cfg <- as_pp_cfg(cfg)
opt <- cfg$get_piece_opt(piece_side, suit, rank)
x <- as.numeric(convertX(x, "in"))
y <- as.numeric(convertY(y, "in"))
z <- as.numeric(convertX(z, "in"))
width <- as.numeric(convertX(width, "in"))
height <- as.numeric(convertY(height, "in"))
depth <- as.numeric(convertX(depth, "in"))
xyz <- ellipse_xyz()$dilate(width, height, depth)$translate(x, y, z)
xy <- xyz$project_op(op_angle, op_scale)
hull <- grDevices::chull(as.matrix(xy))
x <- xy$x[hull]
y <- xy$y[hull]
gp <- gpar(col=opt$border_color, fill=opt$background_color, lex=opt$border_lex)
polygonGrob(x = x, y = y, default.units = "in", gp = gp)
}
ellipse_xyz <- function() {
xy <- expand.grid(x=seq(0.0, 1.0, 0.05), y = seq(0.0, 1.0, 0.05))
xy <- xy[which(xy$x^2 + xy$y^2 <= 1), ]
z <- sqrt(1 - xy$x^2 - xy$y^2)
ppp <- data.frame(x=xy$x, y=xy$y, z=z)
ppn <- data.frame(x=xy$x, y=xy$y, z=-z)
pnp <- data.frame(x=xy$x, y=-xy$y, z=z)
pnn <- data.frame(x=xy$x, y=-xy$y, z=-z)
nnp <- data.frame(x=-xy$x, y=-xy$y, z=z)
npp <- data.frame(x=-xy$x, y=xy$y, z=z)
npn <- data.frame(x=-xy$x, y=xy$y, z=-z)
nnn <- data.frame(x=-xy$x, y=-xy$y, z=-z)
df <- 0.5 * rbind(ppp, ppn, pnp, pnn, nnp, npp, npn, nnn)
Point3D$new(df)
}
basicPyramidTop <- function(piece_side, suit, rank, cfg=pp_cfg(),
x=unit(0.5, "npc"), y=unit(0.5, "npc"), z=unit(0, "npc"),
angle=0, type="normal",
width=NA, height=NA, depth=NA,
op_scale=0, op_angle=45) {
cfg <- as_pp_cfg(cfg)
x <- as.numeric(convertX(x, "in"))
y <- as.numeric(convertY(y, "in"))
z <- as.numeric(convertX(z, "in"))
width <- as.numeric(convertX(width, "in"))
height <- as.numeric(convertY(height, "in"))
depth <- as.numeric(convertX(depth, "in"))
xy_b <- Point2D$new(rect_xy)$npc_to_in(x, y, width, height, angle)
p <- Polygon$new(xy_b)
edge_types <- paste0("pyramid_", c("left", "back", "right", "face"))
order <- p$op_edge_order(op_angle)
df <- tibble(index = 1:4, edge = edge_types)[order, ]
gl <- gList()
for (i in 1:4) {
opt <- cfg$get_piece_opt(df$edge[i], suit, rank)
gp <- gpar(col = opt$border_color, lex = opt$border_lex, fill = opt$background_color)
edge <- p$edges[df$index[i]]
ex <- c(edge$p1$x, edge$p2$x, x)
ey <- c(edge$p1$y, edge$p2$y, y)
ez <- c(z - 0.5 * depth, z - 0.5 * depth, z + 0.5 * depth)
exy <- Point3D$new(x = ex, y = ey, z = ez)$project_op(op_angle, op_scale)
gl[[i]] <- polygonGrob(x = exy$x, y = exy$y, gp = gp, default.units = "in")
}
if (nigh((angle - op_angle) %% 90, 0)) {
base_mid <- exy[1]$midpoint(exy[2])
xy_mid <- base_mid$midpoint(exy[3])
vheight <- base_mid$distance_to(exy[3])
vp <- viewport(x = xy_mid$x, y = xy_mid$y, default.units = "in", angle = op_angle - 90,
width = width, height = vheight)
gl[[4]] <- grobTree(cfg$get_grob(df$edge[i], suit, rank, "picture"), vp = vp)
}
gTree(children=gl, cl="projected_pyramid_top")
}
basicPyramidSide <- function(piece_side, suit, rank, cfg=pp_cfg(),
x=unit(0.5, "npc"), y=unit(0.5, "npc"), z=unit(0, "npc"),
angle=0, type="normal",
width=NA, height=NA, depth=NA,
op_scale=0, op_angle=45) {
cfg <- as_pp_cfg(cfg)
x <- as.numeric(convertX(x, "in"))
y <- as.numeric(convertY(y, "in"))
z <- as.numeric(convertX(z, "in"))
width <- as.numeric(convertX(width, "in"))
height <- as.numeric(convertY(height, "in"))
depth <- as.numeric(convertX(depth, "in"))
xy_b <- Point2D$new(pyramid_xy)$npc_to_in(x, y, width, height, angle)
p <- Polygon$new(xy_b)
theta <- 2 * asin(0.5 * width / height)
yt <- 1 - cos(theta)
xy_t <- Point2D$new(x = 0:1, y = yt)$npc_to_in(x, y, width, height, angle)
gl <- gList()
opposite_edge <- switch(piece_side,
"pyramid_face" = "pyramid_back",
"pyramid_back" = "pyramid_face",
"pyramid_left" = "pyramid_right",
"pyramid_right" = "pyramid_left")
opt <- cfg$get_piece_opt(opposite_edge, suit, rank)
gp <- gpar(col = opt$border_color, lex = opt$border_lex, fill = opt$background_color)
exy <- Point3D$new(x = xy_b$x, y = xy_b$y, z = z - 0.5 * depth)$project_op(op_angle, op_scale)
gl[[1]] <- polygonGrob(x = exy$x, y = exy$y, gp = gp, default.units = "in")
gl[[2]] <- nullGrob()
gl[[3]] <- nullGrob()
edge_types <- paste0("pyramid_", switch(piece_side,
"pyramid_face" = c("right", "bottom", "left"),
"pyramid_left" = c("face", "bottom", "back"),
"pyramid_back" = c("left", "bottom", "right"),
"pyramid_right" = c("back", "bottom", "face")
))
order <- p$op_edge_order(op_angle)
df <- tibble(index = 1:3, edge = edge_types)[order, ]
gli <- 2
for (i in 1:3) {
edge_ps <- df$edge[i]
index <- df$index[i]
if (edge_ps == "pyramid_bottom") next
opt <- cfg$get_piece_opt(edge_ps, suit, rank)
gp <- gpar(col = opt$border_color, lex = opt$border_lex, fill = opt$background_color)
edge <- p$edges[index]
if (index == 1) {
ex <- c(edge$p1$x, edge$p2$x, edge$p2$x)
ey <- c(edge$p1$y, edge$p2$y, xy_t$y[1])
ez <- c(z - 0.5 * depth, z - 0.5 * depth, z + 0.5 * depth)
} else {
ex <- c(edge$p1$x, edge$p2$x, edge$p1$x)
ey <- c(edge$p1$y, edge$p2$y, xy_t$y[2])
ez <- c(z - 0.5 * depth, z - 0.5 * depth, z + 0.5 * depth)
}
exy <- Point3D$new(x = ex, y = ey, z = ez)$project_op(op_angle, op_scale)
gl[[gli]] <- polygonGrob(x = exy$x, y = exy$y, gp = gp, default.units = "in")
gli <- gli + 1
}
x_f <- xy_b$x
y_f <- c(xy_b$y[1], xy_t$y)
z_f <- c(z - 0.5 * depth, z + 0.5 * depth, z + 0.5 * depth)
opt <- cfg$get_piece_opt(piece_side, suit, rank)
gp <- gpar(col = opt$border_color, lex = opt$border_lex, fill = opt$background_color)
exy <- Point3D$new(x = x_f, y = y_f, z = z_f)$project_op(op_angle, op_scale)
gl[[4]] <- polygonGrob(x = exy$x, y = exy$y, gp = gp, default.units = "in")
diff_angle <- (op_angle - angle) %% 360
if ((nigh(diff_angle, 90) || nigh(diff_angle, 270)) && nigh(angle %% 90, 0)) {
base_mid <- exy[2]$midpoint(exy[3])
xy_mid <- base_mid$midpoint(exy[1])
vheight <- base_mid$distance_to(exy[1])
vp <- viewport(x = xy_mid$x, y = xy_mid$y, default.units = "in", angle = angle,
width = width, height = vheight)
gl[[4]] <- grobTree(cfg$get_grob(piece_side, suit, rank, "picture"), vp = vp)
}
gTree(children=gl, cl="projected_pyramid_side")
} |
pssm.survivalcurv <-
function(x,cov1,cov2,timeToProgression=FALSE,covariance=TRUE){
sp=length([email protected])==0
ss=length([email protected])==0
cd1=(!is.null(cov1))&(!sp)
cd2=(!is.null(cov2))&(!ss)
if(cd1) dc1=dim(cov1) else dc1=rep(0,2)
if(cd2) dc2=dim(cov2) else dc2=rep(0,2)
namesc1=c("rep","tdeath","cdeath","tprog0","tprog1",[email protected],[email protected])
namesc=namesc1[namesc1!=""]
if(!(sp|ss)){
tfcn2<-function(dt) llikef([email protected],[email protected],dt,
m=x@intervals,accumulate=FALSE,gradient=FALSE)
tfcn1<-function(dt) {
lp=dim(dt)[1]
outp<-function(vv){
out1<-tfcn2(dt)(vv)
gradient=matrix(NaN,lp,length(vv))
for(i in (1:lp)){
try(gradient[i,]<-grad(function (xt) tfcn2(dt[i,])(xt),vv),silent=FALSE)
}
attr(out1,"gradient")<-gradient
return(out1)
}
return(outp)
}
} else {
if (sp){
tfcn1<-function(dt) {
lp=dim(dt)[1]
outp=function(vv){
out1<-rsurv([email protected],dt,m=x@intervals,accumulate=FALSE)(vv)
gradient=matrix(NaN,lp,length(vv))
for (i in (1:lp))
try(gradient[i,]<-grad(function(xt) rsurv([email protected],data.frame(dt[i,]),m=x@intervals,accumulate=FALSE)(xt),vv),silent=TRUE)
attr(out1,"gradient")<-gradient
return(out1)
}
return(outp)
}
tfcn2<-function(dt) rsurv([email protected],dt,m=x@intervals,accumulate=FALSE)
} else
{
tfcn1<-function(dt){
mtt=dim(dt)[1]
outp=function(vv){
out1=rprog([email protected],dt,m=x@intervals,accumulate=FALSE)(vv)
gradient=matrix(NaN,mtt,length(vv))
for (i in (1:mtt))
try(gradient[i,]<-grad( function(xt) rprog([email protected],data.frame(dt[i,]),
m=x@intervals,accumulate=FALSE)(xt),vv),silent=TRUE)
attr(out1,"gradient")<-gradient
return(out1)}
return(outp)
}
tfcn2<-function(dt) rprog([email protected],dt,m=x@intervals,accumulate=FALSE)
}
}
curv1=NULL
if (!(sp|ss)) curv1=c('s1','s2') else curv1='s2'
curv1=unique(curv1)
nt=function(t1,t2,t3,t4,t5) return(data.frame(rep=t1,tdeath=t2,cdeath=t3,tprog0=t4,tprog1=t5,stringsAsFactors=FALSE))
repframe=function(x,m){out=NULL
for (i in (1:m)) out=rbind(out,x)
return(out)}
cls=function(t){
ls=list(pr=nt('pr',t,0,t,NA),s1=nt('s1',t,0,0,t),s2=nt('s2',t,0,t,NA),dp=nt('dp',t,0,t,t),ds=nt('ds',t,1,0,t))
inp=list(NULL,NULL)
lt=length(t)
for (i in 1:length(curv1)) {
inp[[1]]=rbind(inp[[1]],ls[[curv1[i]]])
inp[[2]]=rbind(inp[[2]],diag(rep(1,lt)))}
return(inp)
}
idt=function(ts){
tt=ts[[1]]
vs=dim(tt)[1]
rv=max(max(dc1[1],dc2[1]),1)
mm=rv*vs
inp=data.frame(rep=rep(tt[,1],rv),time=rep(tt[,2],rv),stringsAsFactors=FALSE)
if (cd1){ fcov1=data.frame(matrix(rep(cov1,each=vs),mm,dc1[2])); names(fcov1)<[email protected]
inp=cbind(inp,fcov1)}
if (cd2){ fcov2=data.frame(matrix(rep(cov2,each=vs),mm,dc2[2])); names(fcov2)<[email protected]
inp=cbind(inp,fcov2)}
rownames(inp)<-as.character(1:mm)
inp2=diag(rep(1,rv))%x%ts[[2]]
return(list(inp,inp2))
}
sortrows<-function(x,r){
out=x
for (i in seq(r,1,-1)) out=out[order(out[,i]),]
return(out)
}
outp=function(ts,p){
tt=ts[[1]]
vs=dim(tt)[1]
rv=max(max(dc1[1],dc2[1]),1)
mm=rv*vs
dt=data.frame(repframe(tt,rv),idt(ts)[[1]][,-(1:2)])
names(dt)<-namesc
if(covariance){
fcc=tfcn1(dt)
tmp1=fcc(x@estimates)
fc=exp(tmp1)
me=length(x@estimates)
dlogf=attr(tmp1,"gradient")
nrows=dim(dlogf)[1]
vlogf=dlogf%*%[email protected]%*%t(dlogf)
if (p!=0){
pp=p
E12=matrix([email protected][1:(me-1),me],me-1,1)
[email protected][me,me]
ED=rbind(cbind(matrix(0,me-1,me-1),pp*E12),
cbind(matrix(0,1,me-1),pp*e22))
EDE=rbind(cbind(pp*E12%*%t(E12),e22*pp*E12),
cbind(e22*pp*t(E12),pp*e22^2))
pest=x@estimates-(ED%*%matrix(x@estimates,me,1))/(1+e22*pp)
[email protected]/(1+pp*e22)
tmp1=fcc(pest)
fc=exp(tmp1)
dlogf=attr(tmp1,"gradient")
vlogf=dlogf%*%cvar%*%t(dlogf)
}
fk=matrix(fc,mm,mm)
cdc=fk*vlogf*t(fk)
ou=cbind(matrix(fc,nrows,1),cdc)
colnames(ou)<-c('estimate',as.character(1:mm))
rownames=as.character(1:mm)
return(ou)
}
else {
fcc=tfcn2(dt)
fc=exp(fcc(x@estimates))
ou=matrix(fc,length(fc),1)
colnames(ou)<-c('estimate')
rownames(ou)<as.character(1:length(fc))
return(ou)}
}
out<-function(ts,p=0) {
rt<-function(t){ifelse(t==0,0.00001,t*x@rescale)}
rti<-function(t){ifelse(t==0.00001,0,t/x@rescale)}
t=rt(ts)
vin=cls(t)
vt=idt(vin)
vu=outp(vin,p)
xvals=colnames((vt)[[1]])[-1]
vt[[1]][,2]<-rti(vt[[1]][,2])
v=cbind(vt[[1]],vu)
ninfo=dc1[2]+dc2[2]+2
names(v)<-c(names(vt[[1]]),colnames(vu))
if (!(sp|ss|timeToProgression)){
ou=cbind(v[v[,1]==v[1,1],1:ninfo],estimate=t(vt[[2]])%*%matrix(v[,"estimate"],length(v[,"estimate"]),1))
names(ou)[[ninfo+1]]="estimate"
}
else {
ou=data.frame(v[,c("rep",xvals),drop=FALSE],estimate=v[,"estimate"],stringsAsFactors=FALSE)
}
if (covariance){
cov=t(vt[[2]])%*% as.matrix(v[,-(1:(ninfo+1))]) %*%vt[[2]]
attr(ou,"covariance")<-cov
}
return(ou)}
return(out)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(FuzzySTs)
mat <- matrix(c(1,2,3,7,6,5), ncol = 2)
is.alphacuts(mat)
X <- TrapezoidalFuzzyNumber(1,2,3,4)
alpha.X <- alphacut(X, seq(0,1,0.01))
nbreakpoints(alpha.X)
GFN <- GaussianFuzzyNumber(mean = 0, sigma = 1, alphacuts = TRUE, plot=TRUE)
is.alphacuts(GFN)
GBFN <- GaussianBellFuzzyNumber(left.mean = -1, left.sigma = 1, right.mean = 2, right.sigma = 1, alphacuts = TRUE, plot=TRUE)
is.alphacuts(GBFN)
X <- TrapezoidalFuzzyNumber(5,6,7,8)
Y <- TrapezoidalFuzzyNumber(1,2,3,4)
Fuzzy.Difference(X,Y)
X <- TrapezoidalFuzzyNumber(1,2,3,4)
head(Fuzzy.Square(X, plot=TRUE))
mat <- array(c(1,1,2,2,3,3,5,5,6,6,7,7),dim=c(2,3,2))
is.fuzzification(mat)
mat <- matrix(c(1,1,2,2,3,3,4,4),ncol=4)
is.trfuzzification(mat)
data <- matrix(c(1,1,2,2,3,3,4,4),ncol=4)
data.tr <- tr.gfuzz(data)
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)
is.trfuzzification(data.fuzzified)
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)
data.fuzzified <- GFUZZ(data,mi=1,si=1,PA=PA11)
is.fuzzification(data.fuzzified)
X <- TrapezoidalFuzzyNumber(1,2,3,4)
Y <- TrapezoidalFuzzyNumber(4,5,6,7)
distance(X, Y, type = "DSGD.G")
distance(X, Y, type = "GSGD") |
confplot <- function(x, ...)
{
UseMethod("confplot")
}
confplot.default <- function(x, y1=NULL, y2=NULL, add=FALSE, xlab=NULL,
ylab=NULL, border=NA, col="lightgray", ...)
{
if(is.vector(x))
{
if(is.null(xlab))
xlab <- deparse(substitute(x))
if(is.null(y1))
stop("'y1' should not be NULL when 'x' is a vector")
if(is.vector(y1) && is.null(y2))
stop("'y2' should not be NULL when 'x' and 'y1' are vectors")
if(!is.null(ncol(y1)))
{
if(ncol(y1) != 2)
stop("'y1' should be a vector or contain 2 columns")
y2 <- y1[,2]
y1 <- y1[,1]
}
}
else if(ncol(x) == 3)
{
if(is.null(xlab))
xlab <- colnames(x)[1]
y1 <- x[,2]
y2 <- x[,3]
x <- x[,1]
}
else
stop("'x' should be a vector or contain 3 columns")
if(is.null(ylab))
ylab <- ""
na <- is.na(x) | is.na(y1) | is.na(y2)
x <- x[!na][order(x[!na])]
y1 <- y1[!na][order(x[!na])]
y2 <- y2[!na][order(x[!na])]
if(!add)
suppressWarnings(matplot(range(x), range(c(y1,y2)), type="n",
xlab=xlab, ylab=ylab, ...))
polygon(c(x,rev(x)), c(y1,rev(y2)), border=border, col=col, ...)
invisible(data.frame(x, y1, y2))
}
confplot.formula <- function(formula, data, subset, na.action=NULL, ...)
{
m <- match.call(expand.dots=FALSE)
if(is.matrix(eval(m$data,parent.frame())))
m$data <- as.data.frame(data)
m$... <- NULL
m[[1]] <- quote(model.frame)
mf <- eval(m, parent.frame())
if(is.matrix(mf[[1]]))
{
lhs <- as.data.frame(mf[[1]])
confplot.default(cbind(mf[-1],lhs), ...)
}
else
{
confplot.default(mf[2:1], ...)
}
} |
DataReader <- function(client) {
reader <- list(
client = client,
get = function(x) reader[[x]],
set = function(x, value) reader[[x]] <<- value
)
reader$CreateTs <- function(series) {
result <- list()
frequencies.seq <- list(A = "year", H = "6 month", Q = "quarter", M = "month", W = "week", D = "day")
for (i in 1:length(series)) {
title <- names(series[i])
freq <- substring(title, 1, 1)
freq.seq <- unlist(frequencies.seq)[freq]
dates <- as.Date(names(series[[i]]))
if (length(dates) == 0) {
next
}
min.date <- min(dates)
max.date <- max(dates)
all.dates <- seq(min.date, max.date, by = freq.seq)
values <- series[[i]][as.character(all.dates)]
values[sapply(values,is.null)] <- NA
values <- unname(unlist(values))
start.by.freq <- switch(freq,
"A" = c(year(min.date), 1),
"H" = c(year(min.date), (month(min.date)-1)%/%6+1),
"Q" = c(year(min.date), quarter(min.date)),
"M" = c(year(min.date), month(min.date)),
"W" = c(year(min.date), week(min.date)),
"D" = c(year(min.date), day(min.date)))
result[[title]] <- ts(values, start = start.by.freq, frequency = FrequencyToInt(freq))
}
return (result)
}
reader$CreateXts <- function(series) {
result <- list()
for (i in 1:length(series)) {
title <- names(series[i])
if (length(names(series[[i]])) == 0) {
next
}
dates <- as.Date(names(series[[i]]))
freq <- substring(title, 1, 1)
dates.xts <- switch (freq,
"Q" = as.yearqtr(dates),
"M" = as.yearmon(dates),
dates)
values <- unlist(series[[i]], use.names = FALSE)
result[[title]] <- xts(values, order.by = dates.xts, frequency = FrequencyToInt(freq))
}
return (result)
}
reader$CreateZoo <- function(series) {
result <- list()
for (i in 1:length(series)) {
title <- names(series[i])
dates <- as.Date(names(series[[i]]))
if (length(dates) == 0) {
next
}
freq <- substring(title, 1, 1)
dates.zoo <- switch (freq,
"A" = as.numeric(format(dates, "%Y")),
"Q" = as.yearqtr(dates),
"M" = as.yearmon(dates),
dates
)
values <- unlist(series[[i]], use.names = FALSE)
result[[title]] <- zoo(values, order.by = dates.zoo, frequency = FrequencyToInt(freq))
}
return (result)
}
reader$CreateSeriesForTsXtsZoo <- function (resp, series) {
for (serie.point in resp$data) {
if (is.null(serie.point$Value)) {
next
}
frequency <- serie.point$Frequency
name <- frequency
for (stub in resp$stub) {
dim <- stub$dimensionId
name <- paste(name, serie.point[[dim]], sep = " - ")
}
if (is.null(series[[name]])) {
series[[name]] <- list()
}
time <- tryCatch(format(as.Date(serie.point$Time), "%Y-%m-%d"), error = function(e) stop(simpleError("Types ts, xts, zoo are not supported for flat datasets")))
series[[name]][time] <- serie.point$Value
}
return (series)
}
reader$CreateMatrixForFrameOrTable <- function(data.rows, series) {
list.for.matrix <- sapply(1:length(series), function (i) {
t <- lapply(data.rows, function(j) {
series[[i]][[j]]})
t[sapply(t,is.null)]<-NA
unlist(t)
})
matrix <- matrix(list.for.matrix, nrow = length(data.rows), ncol = length(series))
return (matrix)
}
reader$GetFTableByData <- function (data.rows, data.columns, series, row.equal.dates = TRUE) {
matrix <- reader$CreateMatrixForFrameOrTable(data.rows, series)
length.by.columns <- unlist(lapply(1:length(data.columns), function(x) length(data.columns[[x]])), recursive = F)
length.of.all.dimension <- c(length(data.rows), length.by.columns)
matrix.arr <- array(matrix, length.of.all.dimension)
if (row.equal.dates) {
dimnames(matrix.arr) <- c(list(date = data.rows), data.columns)
} else {
dimnames(matrix.arr) <- c(list(attributes = data.rows), data.columns)
}
data.table <- ftable(matrix.arr, row.vars = 1, col.vars = 2:(length(data.columns) + 1))
return (data.table)
}
reader$GetDataFrameByData <- function(data.rows, series) {
matrix <- reader$CreateMatrixForFrameOrTable(data.rows, series)
data.frame <- as.data.frame(matrix, row.names = data.rows, stringsAsFactors = FALSE)
colnames(data.frame) <- names(series)
return (data.frame)
}
reader$GetXtsByData <- function(data.rows, series) {
matrix <- reader$CreateMatrixForFrameOrTable(data.rows, series)
data.frame <- xts(matrix, order.by = as.Date(data.rows))
colnames(data.frame) <- names(series)
return (data.frame)
}
reader$GetSeriesNameWithMetadata <- function(series.point) {
names <- list()
for (dim in reader$get("dimensions")) {
for (item in dim$items) {
if (item$name == series.point[dim$dim.model$id]) {
dim.attr <- item$fields
break
}
}
for (attr in dim$fields) {
if (!attr$isSystemField) {
for (i in 1: length(dim.attr)) {
if (IsEqualStringsIgnoreCase(names(dim.attr[i]), attr$name)) {
names[[paste(dim$dim.model$name, attr$displayName, sep=" ")]] <- dim.attr[[i]]
}
}
}
}
}
names[["Unit"]] <- series.point$Unit
names[["Scale"]] <- series.point$Scale
names[["Mnemonics"]] <- ifelse(is.null(series.point$Mnemonics), "NULL", series.point$Mnemonics)
for (attr in reader$dataset$time.series.attributes) {
names[[attr$name]] <- series.point[[attr$name]]
}
return (names)
}
reader$CreateAttributesNamesForMetadata <- function() {
data.rows <- NULL
for (dim in reader$dimensions) {
for (attr in dim$fields) {
if (!attr$isSystemField) {
data.rows <- c(data.rows, paste(dim$dim.model$name, attr$displayName, sep = " "))
}
}
}
data.rows <- c(data.rows, c("Unit", "Scale", "Mnemonics"))
for (attr in reader$dataset$time.series.attributes) {
data.rows <- c(data.rows, attr$name)
}
return(data.rows)
}
reader$CreateSeriesForMetaDataTable <- function(resp, series, data.columns) {
for (serie.point in resp$data) {
name <- NULL
name.meta <- list()
for (j in 1:length(resp$stub)) {
dim <- resp$stub[[j]]$dimensionId
dim.name <- reader$FindDimension(dim)$name
name.element <- serie.point[[dim]]
if (!name.element %in% data.columns[[dim.name]]) {
data.columns[[dim.name]] <- c(data.columns[[dim.name]], name.element)
}
name <- ifelse(is.null(name), name.element, paste(name, name.element, sep = " - "))
}
frequency <- serie.point$Frequency
name <- paste(name, frequency, sep = " - ")
name.meta <- reader$GetSeriesNameWithMetadata(serie.point)
if (!frequency %in% data.columns[["Frequency"]]) {
data.columns[["Frequency"]] <- c(data.columns[["Frequency"]], frequency)
}
if (is.null(series[[name]])) {
series[[name]] <- name.meta
}
}
return (list(series, data.columns))
}
reader$CreateSeriesForMetaDataFrame <- function (resp, series) {
for (serie.point in resp$data) {
if (is.null(serie.point$Value)) {
next
}
name <- NULL
name.meta <- list()
for (j in 1:length(resp$stub)) {
dim <- resp$stub[[j]]$dimensionId
name.element <- serie.point[[dim]]
name <- ifelse(is.null(name), name.element, paste(name, name.element, sep = " - "))
}
frequency <- serie.point$Frequency
name <- paste(name, frequency, sep = " - ")
name.meta <- reader$GetSeriesNameWithMetadata(serie.point)
if (is.null(series[[name]])) {
series[[name]] <- name.meta
}
}
return (series)
}
reader$CreateMetaDataFrame <- function(resp) {
data.rows <- reader$CreateAttributesNamesForMetadata()
series <- reader$CreateSeriesForMetaDataFrame (resp, list())[[1]]
data.table <- reader$GetDataFrameByData(data.rows, series)
return (data.table)
}
reader$CreateSeriesForDataTable <- function (resp, series, data.rows, data.columns) {
for (serie.point in resp$data) {
name <- NULL
for (stub in resp$stub) {
dim <- stub$dimensionId
dim.name <- reader$FindDimension(dim)$name
name.element <- serie.point[[dim]]
if (!name.element %in% data.columns[[dim.name]]) {
data.columns[[dim.name]] <- c(data.columns[[dim.name]], name.element)
}
name <- ifelse(is.null(name), name.element, paste(name, name.element, sep = " - "))
}
frequency <- serie.point$Frequency
name <- paste(name, frequency, sep = " - ")
if (!frequency %in% data.columns[["Frequency"]]) {
data.columns[["Frequency"]] <- c(data.columns[["Frequency"]], frequency)
}
if (is.null(series[[name]])) {
series[[name]] <- list()
}
time <- tryCatch(format(as.Date(serie.point$Time), "%Y-%m-%d"), error = function(e) serie.point$Time)
if (!time %in% data.rows) {
data.rows <- c(data.rows, time)
}
series[[name]][time] <- serie.point$Value
}
return (list(series, data.rows, data.columns))
}
reader$CreateDataTable <- function(resp) {
result <- reader$CreateSeriesForDataTable(resp, list(), NULL, list())
series <- result[[1]]
data.rows <- result[[2]]
data.columns <- result[[3]]
data.rows <- sort(data.rows)
data.table <- reader$GetFTableByData(data.rows, data.columns, series)
return (data.table)
}
reader$CreateSeriesForDataFrame <- function(resp, series, data.rows) {
for (serie.point in resp$data) {
if (is.null(serie.point$Value)) {
next
}
name <- NULL
for (stub in resp$stub) {
dim <- stub$dimensionId
name.element <- serie.point[[dim]]
name <- ifelse(is.null(name), name.element, paste(name, name.element, sep = " - "))
}
frequency <- serie.point$Frequency
name <- paste(name, frequency, sep = " - ")
if (is.null(series[[name]])) {
series[[name]] <- list()
}
time <- tryCatch(format(as.Date(serie.point$Time), "%Y-%m-%d"), error = function(e) serie.point$Time)
if (!time %in% data.rows) {
data.rows <- c(data.rows, time)
}
series[[name]][time] <- serie.point$Value
}
return (list(series, data.rows))
}
reader$CreateDataFrame <- function(resp) {
result <- reader$CreateSeriesForDataFrame(resp, list(), NULL)
series <- result[[1]]
data.rows <- sort(result[[2]])
data.table <- reader$GetDataFrameByData(data.rows, series)
return (data.table)
}
reader$CreateResultObjectByType <- function (result, type) {
switch (type,
"DataFrame" = {
series = result[[1]]
data.rows <- sort(result[[2]])
data.table <- reader$GetDataFrameByData(data.rows, series)
return (data.table)
},
"MetaDataFrame" = {
data.rows <- reader$CreateAttributesNamesForMetadata()
data.table <- reader$GetDataFrameByData(data.rows, result)
return (data.table)
},
"DataTable" = {
series = result [[1]]
data.rows <- sort(result[[2]])
data.columns <- result[[3]]
data.table <- reader$GetFTableByData(data.rows, data.columns, series)
return (data.table)
},
"MetaDataTable" = {
series = result[[1]]
data.rows <- reader$CreateAttributesNamesForMetadata()
data.columns <- result[[2]]
data.table <- reader$GetFTableByData(data.rows, data.columns, series, FALSE)
return (data.table)
},
"zoo" = {
return (reader$CreateZoo(result))
},
"xts" = {
series = result[[1]]
data.rows <- sort(result[[2]])
data.table <- reader$GetXtsByData(data.rows, series)
return (data.table)
},
"ts" = {
return (reader$CreateTs(result))
}
)
}
reader$CreateResultSeries <- function(data, result, type) {
switch (type,
"DataTable" = {
series <- result[[1]]
data.rows <- result[[2]]
data.columns <- result[[3]]
return(reader$CreateSeriesForDataTable(data, series, data.rows, data.columns))
},
"MetaDataTable" = {
series <- result [[1]]
data.columns <- result[[2]]
return(reader$CreateSeriesForMetaDataTable(data, series, data.columns))
},
"DataFrame" = {
series <- result[[1]]
data.rows <- result[[2]]
return(reader$CreateSeriesForDataFrame(data, series, data.rows))
},
"MetaDataFrame" = {
return(reader$CreateSeriesForMetaDataFrame(data, result))
},
"ts" = {
return(reader$CreateSeriesForTsXtsZoo(data, result))
},
"xts" = {
return(reader$CreateSeriesForTsXtsZoo(data, result))
},
"zoo" = {
return(reader$CreateSeriesForTsXtsZoo(data, result))
},
{
error <- simpleError(sprintf("Unknown type %1s", type))
stop(error)
}
)
}
reader$LoadDimensions <- function () {
l <- list ()
for (dim in reader$get("dataset")$dimensions) {
d <- Dimension(reader$client$GetDimension(reader$get("dataset")$id, dim$id))
l <- c(l, d)
}
reader$set("dimensions", l)
}
reader <- list2env(reader)
return(reader)
}
SelectionDataReader <- function(client, selection) {
reader <- DataReader (client)
reader$set("selection", selection)
reader$CheckCorrectFrequencies <- function (values) {
correct.freq <- list("A","H","Q","M","W","D")
list.condition <- !values %in% correct.freq
list.err <- values[list.condition]
if (length(list.err)>0) {
error <- simpleError(sprintf("The following frequencies are not correct: %1s", paste(list.err, sep="", collapse =",")))
stop(error)
}
return (TRUE)
}
reader$FindDimension <- function (dim.name.or.id) {
dim <- reader$dataset$FindDimensionByName(dim.name.or.id)
if (is.null(dim)) {
dim <- reader$dataset$FindDimensionById(dim.name.or.id)
}
return (dim)
}
reader$GetDimMembers <- function(dim, split.values) {
members <- NULL
for (value in split.values) {
if (is.null(value)) {
error <- simpleError(sprintf("Selection for dimension %1s is empty", dim$name))
stop(error)
}
member <- dim$FindMemberById(value)
if (is.null(member))
member <- dim$FindMemberByName(value)
if (is.null(member)& !is.na(suppressWarnings(as.numeric(value))))
member <- dim$FindMemberByKey(as.numeric(value))
members <- c(members, member$key)
}
return (members)
}
reader$AddFullSelectionByEmptyDimValues <- function(filter.dims, request) {
dims <- lapply(1:length(reader$dataset$dimensions), function(x) reader$dataset$dimensions[[x]]$id)
if (length(filter.dims)>0) {
dims.from.filter <- lapply(1:length(filter.dims), function(x) filter.dims[[x]]$id)
list.condition <- sapply(dims, function(x) ! x %in% dims.from.filter)
out.of.filter.dim.names <- dims[list.condition]
} else {
out.of.filter.dim.names <- dims
}
for (id in out.of.filter.dim.names)
{
l <- c(request$get("stub"), PivotItem(id, list()))
request$set("stub", l)
}
}
reader$CreatePivotRequest <- function () {
request <- PivotRequest(reader$dataset$id)
filter.dims <- list()
time.range <- NULL
for (item in names(reader$selection)) {
value <- reader$selection[item][[1]]
if (item == "timerange") {
time.range <- value
next
}
splited.values <- as.list(strsplit(value, ';')[[1]])
if (item == "frequency") {
if (reader$CheckCorrectFrequencies(splited.values)) {
request$set("frequencies", splited.values)
next
}
}
dim <- reader$FindDimension(item)
if (is.null(dim))
{
error <- simpleError(sprintf("Dimension with id or name %1s is not found", item))
stop(error)
}
filter.dims <- c(filter.dims, dim)
for (dimension in reader$dimensions) {
if(dimension$dim.model$id == dim$id)
{
dim2 <- dimension
break
}
}
members <- reader$GetDimMembers(dim2, splited.values)
if (length(members) == 0) {
e = simpleError(sprintf("Selection for dimension %1s is empty", dim$name))
stop(e)
}
l <- c(request$get("stub"), PivotItem(dim$id, members))
request$set("stub", l)
}
reader$AddFullSelectionByEmptyDimValues(filter.dims, request)
if (length(time.range != 0)) {
l <- c(request$get("header"), PivotTimeItem("Time", time.range, "range"))
request$set("header", l)
} else {
l <- c(request$get("header"), PivotTimeItem("Time", list(), "allData"))
request$set("header", l)
}
return (request)
}
return (reader)
}
PivotDataReader <- function(client, selection) {
reader <- SelectionDataReader (client, selection)
reader$GetObjectByType <- function(type) {
reader$LoadDimensions()
result <- switch (type,
"MetaDataTable" = {
list (list(), list())
},
"DataTable" = {
list (list(), NULL, list())
},
"DataFrame" = {
list (list(), NULL, list())
},
list()
)
return (reader$GetObjectForFlatDataset(type, result))
}
reader$GetObjectForFlatDataset <- function (type, result) {
pivot.request <- reader$CreatePivotRequest()
pivot.request.json <- pivot.request$SaveToJson()
data <- reader$client$GetData(pivot.request.json)
if (length(data$data) == 0) {
warning(simpleError("Dataset do not have data by this selection"))
return (NULL)
}
result <- reader$CreateResultSeries(data, result, type)
return (reader$CreateResultObjectByType(result, type))
}
return (reader)
}
StreamingDataReader <- function(client, selection) {
reader <- SelectionDataReader (client, selection)
reader$CreateSeriesForTsXtsZoo <- function (resp, series) {
frequencies.seq <- list(A = "year", H = "6 month", Q = "quarter", M = "month", W = "week", D = "day")
for (serie.point in resp) {
all.values <- serie.point$values
frequency <- serie.point$frequency
name <- frequency
for (dim in reader$dimensions) {
name <- paste(name, serie.point[[dim$dim.model$id]]$name, sep = " - ")
}
if (is.null(series[[name]])) {
series[[name]] <- list()
}
data.begin <- as.Date(serie.point$startDate)
data.end <- as.Date(serie.point$endDate)
if (frequency == "W") {
data.begin <- data.begin - days(as.numeric(strftime(data.begin, "%u"))-1)
data.end <- data.end - days(as.numeric(strftime(data.end, "%u"))-1)
}
all.dates<- seq(data.begin, data.end, by = frequencies.seq[[frequency]])
index.without.nan <- which(!all.values %in% list(NULL))
dates <- format(all.dates[index.without.nan], "%Y-%m-%d")
serie <- setNames(all.values[index.without.nan], dates)
series[[name]] <- serie
}
return (series)
}
reader$GetSeriesNameWithMetadata <- function(series.point) {
names <- list()
for (dim in reader$dimensions) {
for (item in dim$items) {
if (item$name == series.point[[dim$dim.model$id]]$name) {
dim.attr <- item$fields
break
}
}
for (attr in dim$fields) {
if (!attr$isSystemField) {
for (i in 1: length(dim.attr)) {
if (IsEqualStringsIgnoreCase(names(dim.attr[i]), attr$name)) {
names[[paste(dim$dim.model$name, attr$displayName, sep=" ")]] <- dim.attr[[i]]
}
}
}
}
}
names[["Unit"]] <- series.point$unit
names[["Scale"]] <- series.point$scale
names[["Mnemonics"]] <- ifelse(is.null(series.point$mnemonics), "NULL", series.point$mnemonics)
for (attr in reader$dataset$time.series.attributes) {
names[[attr$name]] <- series.point$timeseriesAttributes[[attr$name]]
}
return (names)
}
reader$CreateSeriesForMetaDataTable <- function(resp, series, data.columns) {
for (serie.point in resp) {
name <- NULL
name.meta <- list()
for (dim in reader$dimensions) {
name.element <- serie.point[[dim$dim.model$id]]$name
dim.name <- dim$dim.model$name
if (!name.element %in% data.columns[[dim.name]]) {
data.columns[[dim.name]] <- c(data.columns[[dim.name]], name.element)
}
name <- ifelse(is.null(name), name.element, paste(name, name.element, sep = " - "))
}
frequency <- serie.point$frequency
name <- paste(name, frequency, sep = " - ")
name.meta <- reader$GetSeriesNameWithMetadata(serie.point)
if (!frequency %in% data.columns[["Frequency"]]) {
data.columns[["Frequency"]] <- c(data.columns[["Frequency"]], frequency)
}
if (is.null(series[[name]])) {
series[[name]] <- name.meta
}
}
return (list(series, data.columns))
}
reader$CreateSeriesForMetaDataFrame <- function (resp, series) {
for (serie.point in resp) {
name <- NULL
name.meta <- list()
for (dim in reader$dimensions) {
name.element <- serie.point[[dim$dim.model$id]]$name
name <- ifelse(is.null(name), name.element, paste(name, name.element, sep = " - "))
}
frequency <- serie.point$frequency
name <- paste(name, frequency, sep = " - ")
name.meta <- reader$GetSeriesNameWithMetadata(serie.point)
if (is.null(series[[name]])) {
series[[name]] <- name.meta
}
}
return (series)
}
reader$CreateSeriesForDataTable <- function (resp, series, data.rows, data.columns) {
frequencies.seq <- list(A = "year", H = "6 month", Q = "quarter", M = "month", W = "week", D = "day")
for (serie.point in resp) {
all.values <- serie.point$values
name <- NULL
for (dim in reader$dimensions) {
name.element <- serie.point[[dim$dim.model$id]]$name
name <- ifelse(is.null(name), name.element, paste(name, name.element, sep = " - "))
dim.name <- dim$dim.model$name
if (!name.element %in% data.columns[[dim.name]]) {
data.columns[[dim.name]] <- c(data.columns[[dim.name]], name.element)
}
}
frequency <- serie.point$frequency
name <- paste(name, frequency, sep = " - ")
if (!frequency %in% data.columns[["Frequency"]]) {
data.columns[["Frequency"]] <- c(data.columns[["Frequency"]], frequency)
}
if (is.null(series[[name]])) {
series[[name]] <- list()
}
data.begin <- as.Date(serie.point$startDate)
data.end <- as.Date(serie.point$endDate)
if (frequency == "W") {
data.begin <- data.begin - days(as.numeric(strftime(data.begin,"%u"))-1)
data.end <- data.end - days(as.numeric(strftime(data.end,"%u"))-1)
}
all.dates<- seq(data.begin, data.end, by = frequencies.seq[[frequency]])
index.without.nan <- which(!all.values %in% list(NULL))
dates <- format(all.dates[index.without.nan ], "%Y-%m-%d")
data.rows <- unique(c(data.rows, dates))
serie <- setNames(all.values[index.without.nan], dates)
series[[name]] <- serie
}
return (list(series, data.rows, data.columns))
}
reader$CreateSeriesForDataFrame <- function(resp, series, data.rows) {
frequencies.seq <- list(A = "year", H = "6 month", Q = "quarter", M = "month", W = "week", D = "day")
for (serie.point in resp) {
all.values <- serie.point$values
name <- NULL
for (dim in reader$dimensions) {
name.element <- serie.point[[dim$dim.model$id]]$name
name <- ifelse(is.null(name), name.element, paste(name, name.element, sep = " - "))
}
frequency <- serie.point$frequency
name <- paste(name, frequency, sep = " - ")
if (is.null(series[[name]])) {
series[[name]] <- list()
}
data.begin <- as.Date(serie.point$startDate)
data.end <- as.Date(serie.point$endDate)
if (frequency == "W") {
data.begin <- data.begin - days(as.numeric(strftime(data.begin, "%u"))-1)
data.end <- data.end - days(as.numeric(strftime(data.end, "%u"))-1)
}
all.dates<- seq(data.begin, data.end, by = frequencies.seq[[frequency]])
index.without.nan <- which(!all.values %in% list(NULL))
dates <- format(all.dates[index.without.nan ], "%Y-%m-%d")
data.rows <- unique(c(data.rows, dates))
serie <- setNames(all.values[index.without.nan], dates)
series[[name]] <- serie
}
return (list(series, data.rows))
}
reader$CreateResultSeries <- function(data, result, type) {
switch (type,
"DataTable" = {
series <- result[[1]]
data.rows <- result[[2]]
data.columns <- result[[3]]
return(reader$CreateSeriesForDataTable(data, series, data.rows, data.columns))
},
"MetaDataTable" = {
series <- result [[1]]
data.columns <- result[[2]]
return(reader$CreateSeriesForMetaDataTable(data, series, data.columns))
},
"DataFrame" = {
series <- result[[1]]
data.rows <- result[[2]]
return(reader$CreateSeriesForDataFrame(data, series, data.rows))
},
"MetaDataFrame" = {
return(reader$CreateSeriesForMetaDataFrame(data, result))
},
"ts" = {
return(reader$CreateSeriesForTsXtsZoo(data, result))
},
"xts" = {
series <- result[[1]]
data.rows <- result[[2]]
return(reader$CreateSeriesForDataFrame(data, series, data.rows))
},
"zoo" = {
return(reader$CreateSeriesForTsXtsZoo(data, result))
},
{
error <- simpleError(sprintf("Unknown type %1s", type))
stop(error)
}
)
}
reader$GetObjectForRegularDataset <- function (type, result) {
pivot.request <- reader$CreatePivotRequest()
pivot.request.json <- pivot.request$SaveToJson()
data <- reader$client$GetRawData(pivot.request.json)
if (length(data) == 0) {
warning(simpleError("Dataset do not have data by this selection"))
return (NULL)
}
result <- reader$CreateResultSeries(data, result, type)
return (reader$CreateResultObjectByType(result, type))
}
reader$GetObjectByType <- function(type) {
reader$LoadDimensions()
result <- switch (type,
"MetaDataTable" = {
list (list(), list())
},
"DataTable" = {
list (list(), NULL, list())
},
"DataFrame" = {
list (list(), NULL, list())
},
"xts" = {
list (list(), NULL, list())
},
list()
)
return (reader$GetObjectForRegularDataset(type, result))
}
return (reader)
}
MnemonicsDataReader<- function(client, mnemonics) {
reader <- DataReader (client)
reader$set("mnemonics", mnemonics)
reader$CreateTs <- function(series) {
result <- list()
frequencies.seq <- list(A = "year", H = "6 month", Q = "quarter", M = "month", W = "week", D = "day")
for (i in 1:length(series)) {
title.with.freq <- names(series[i])
freq <- substring(title.with.freq, 1, 1)
title <- substring(title.with.freq, 5)
freq.seq <- unlist(frequencies.seq)[freq]
dates <- as.Date(names(series[[i]]))
if (length(dates) == 0) {
next
}
min.date <- min(dates)
max.date <- max(dates)
all.dates <- seq(min.date, max.date, by = freq.seq)
values <- sapply(1:length(all.dates), function(x) {
dat <- all.dates[x]
cond.v <- dat %in% dates
return(ifelse (cond.v, series[[i]][[as.character(dat)]], NA))
})
start.by.freq <- switch(freq,
"A" = c(year(min.date), 1),
"H" = c(year(min.date), (month(min.date)-1)%/%6+1),
"Q" = c(year(min.date), quarter(min.date)),
"M" = c(year(min.date), month(min.date)),
"W" = c(year(min.date), week(min.date)),
"D" = c(year(min.date), day(min.date)))
result[[title]] <- ts(values, start = start.by.freq, frequency = FrequencyToInt(freq))
}
return (result)
}
reader$CreateXts <- function(series) {
result <- list()
for (i in 1:length(series)) {
title.with.freq <- names(series[i])
if (length(names(series[[i]])) == 0) {
next
}
dates <- as.Date(names(series[[i]]))
freq <- substring(title.with.freq, 1, 1)
title <- substring(title.with.freq, 5)
dates.xts <- switch (freq,
"Q" = as.yearqtr(dates),
"M" = as.yearmon(dates),
dates)
values <- unlist(series[[i]], use.names = FALSE)
result[[title]] <- xts(values, order.by = dates.xts, frequency = FrequencyToInt(freq))
}
return (result)
}
reader$CreateZoo <- function(series) {
result <- list()
for (i in 1:length(series)) {
title.for.freq <- names(series[i])
dates <- as.Date(names(series[[i]]))
if (length(dates) == 0) {
next
}
freq <- substring(title.for.freq, 1, 1)
title <- substring(title.for.freq, 5)
dates.zoo <- switch (freq,
"A" = as.numeric(format(dates, "%Y")),
"Q" = as.yearqtr(dates),
"M" = as.yearmon(dates),
dates
)
values <- unlist(series[[i]], use.names = FALSE)
result[[title]] <- zoo(values, order.by = dates.zoo, frequency = FrequencyToInt(freq))
}
return (result)
}
reader$CreateSeriesForTsXtsZoo <- function (resp, series, mnemonic) {
for (serie.point in resp$data) {
if (is.null(serie.point$Value)) {
next
}
frequency <- serie.point$Frequency
name <- paste(frequency, mnemonic, sep = " - ")
if (is.null(series[[name]])) {
series[[name]] <- list()
}
time <- tryCatch(format(as.Date(serie.point$Time), "%Y-%m-%d"), error = function(e) stop(simpleError("Types ts, xts, zoo are not supported for flat datasets")))
series[[name]][time] <- serie.point$Value
}
return (series)
}
reader$GetDataFrameByData <- function(data.rows, series) {
matrix <- reader$CreateMatrixForFrameOrTable(data.rows, series)
data.frame <- as.data.frame(matrix, row.names = data.rows, stringsAsFactors = FALSE)
colnames(data.frame) <- substring(names(series),5)
return (data.frame)
}
reader$CreateSeriesForMetaDataTable <- function(resp, series, data.columns, data.rows, mnemonic) {
for (serie.point in resp$data) {
name.meta <- list()
frequency <- serie.point$Frequency
name <- paste(frequency, mnemonic, sep = " - ")
name.meta <- reader$GetSeriesNameWithMetadata(serie.point)
if (!mnemonic %in% data.columns[["Mnemonics"]]) {
data.columns[["Mnemonics"]] <- c(data.columns[["Mnemonics"]], mnemonic)
}
if (is.null(series[[name]])) {
series[[name]] <- name.meta
}
}
return (list(series, data.rows, data.columns))
}
reader$CreateSeriesForMetaDataFrame <- function (resp, series, mnemonic) {
for (serie.point in resp$data) {
if (is.null(serie.point$Value)) {
next
}
name.meta <- list()
frequency <- serie.point$Frequency
name <- paste(frequency, mnemonic, sep = " - ")
name.meta <- reader$GetSeriesNameWithMetadata(serie.point)
if (is.null(series[[name]])) {
series[[name]] <- name.meta
}
}
return (series)
}
reader$CreateSeriesForDataTable <- function (resp, series, data.rows, data.columns, mnemonic) {
for (serie.point in resp$data) {
frequency <- serie.point$Frequency
name <- paste(frequency, mnemonic, sep = " - ")
if (!mnemonic %in% data.columns[["Mnemonics"]]) {
data.columns[["Mnemonics"]] <- c(data.columns[["Mnemonics"]], mnemonic)
}
if (is.null(series[[name]])) {
series[[name]] <- list()
}
time <- tryCatch(format(as.Date(serie.point$Time), "%Y-%m-%d"), error = function(e) serie.point$Time)
if (!time %in% data.rows) {
data.rows <- c(data.rows, time)
}
series[[name]][time] <- serie.point$Value
}
return (list(series, data.rows, data.columns))
}
reader$CreateSeriesForDataFrame <- function(resp, series, data.rows, mnemonic) {
for (serie.point in resp$data) {
if (is.null(serie.point$Value)) {
next
}
frequency <- serie.point$Frequency
name <- paste(frequency, mnemonic, sep = " - ")
if (is.null(series[[name]])) {
series[[name]] <- list()
}
time <- tryCatch(format(as.Date(serie.point$Time), "%Y-%m-%d"), error = function(e) serie.point$Time)
if (!time %in% data.rows) {
data.rows <- c(data.rows, time)
}
series[[name]][time] <- serie.point$Value
}
return (list(series, data.rows))
}
reader$CreateAttributesNamesForMetadata <- function(data.rows) {
for (dim in reader$dimensions) {
for (attr in dim$fields) {
if (!attr$isSystemField) {
value <- paste(dim$dim.model$name, attr$displayName, sep = " ")
if (!value %in% data.rows) {
data.rows <- c(data.rows, value)
}
}
}
}
if (!"Unit" %in% data.rows) {
data.rows <- c(data.rows, c("Unit", "Scale", "Mnemonics"))
}
for (attr in reader$dataset$time.series.attributes) {
if (!attr$name %in% data.rows) {
data.rows <- c(data.rows, attr$name)
}
}
return(data.rows)
}
reader$CreateResultObjectByType <- function (result, type) {
switch (type,
"DataFrame" = {
series <- result[[1]]
data.rows <- sort(result[[2]])
data.table <- reader$GetDataFrameByData(data.rows, series)
return (data.table)
},
"MetaDataFrame" = {
series <- result[[1]]
data.rows <- sort(result[[2]])
data.table <- reader$GetDataFrameByData(data.rows, series)
return (data.table)
},
"DataTable" = {
series <- result [[1]]
data.rows <- sort(result[[2]])
data.columns <- result[[3]]
data.table <- reader$GetFTableByData(data.rows, data.columns, series)
return (data.table)
},
"MetaDataTable" = {
series <- result[[1]]
data.rows <- sort(result[[2]])
data.columns <- result[[3]]
data.table <- reader$GetFTableByData(data.rows, data.columns, series, FALSE)
return (data.table)
},
"zoo" = {
return (reader$CreateZoo(result))
},
"xts" = {
series <- result[[1]]
data.rows <- sort(result[[2]])
data.table <- reader$GetXtsByData(data.rows, series)
return (data.table)
},
"ts" = {
return (reader$CreateTs(result))
}
)
}
reader$CreateResultSeries <- function(data, result, type, mnemonic) {
switch (type,
"DataTable" = {
series <- result[[1]]
data.rows <- result[[2]]
data.columns <- result[[3]]
return(reader$CreateSeriesForDataTable(data, series, data.rows, data.columns, mnemonic))
},
"MetaDataTable" = {
series <- result [[1]]
data.columns <- result[[3]]
data.rows <- result[[2]]
return(reader$CreateSeriesForMetaDataTable(data, series, data.columns, data.rows, mnemonic))
},
"DataFrame" = {
series <- result[[1]]
data.rows <- result[[2]]
return(reader$CreateSeriesForDataFrame(data, series, data.rows, mnemonic))
},
"MetaDataFrame" = {
res <- reader$CreateSeriesForMetaDataFrame(data, result[[1]], mnemonic)
return (list(res, result[[2]]))
},
"ts" = {
return(reader$CreateSeriesForTsXtsZoo(data, result, mnemonic))
},
"xts" = {
series <- result[[1]]
data.rows <- result[[2]]
return(reader$CreateSeriesForDataFrame(data, series, data.rows, mnemonic))
},
"zoo" = {
return(reader$CreateSeriesForTsXtsZoo(data, result, mnemonic))
},
{
error <- simpleError(sprintf("Unknown type %1s", type))
stop(error)
}
)
}
reader$GetObjectForSearchingByMnemonicsInOneDataset <- function(type, result) {
mnemonics.resp <- reader$client$GetMnemonics(reader$mnemonics)
if (length(mnemonics.resp)==0) {
warning(simpleError("Series by these mnemonics don't found"))
return (NULL)
}
for (item in mnemonics.resp) {
data <- item$pivot
if (!IsEqualStringsIgnoreCase(reader$get("dataset")$id, data$dataset)) {
next
}
mnemonic <- item$mnemonics
if (type == "MetaDataFrame" || type == "MetaDataTable") {
result[[2]] <- reader$CreateAttributesNamesForMetadata (result[[2]])
}
result <- reader$CreateResultSeries(data, result, type, mnemonic)
}
return (reader$CreateResultObjectByType(result, type))
}
reader$GetObjectForSearchingByMnemonicsAccrossDatasets <- function(type, result) {
mnemonics.resp <- reader$client$GetMnemonics(reader$mnemonics)
if (length(mnemonics.resp)==0) {
warning(simpleError("Series by these mnemonics don't found"))
return (NULL)
}
datasets.list <- list()
dimensions.list <- list()
for (item in mnemonics.resp) {
data <- item$pivot
if (is.null(data)) {
next
}
mnemonic <- item$mnemonics
if (type == "MetaDataFrame" || type == "MetaDataTable") {
dataset.id <- data$dataset
if (!dataset.id %in% names(datasets.list)) {
dataset <- Dataset(reader$client$GetDataset(dataset.id))
reader$set("dataset", dataset)
datasets.list[[dataset.id]] <- dataset
reader$LoadDimensions()
dimensions.list[[dataset.id]] <- reader$get("dimensions")
result[[2]] <- reader$CreateAttributesNamesForMetadata (result[[2]])
} else {
reader$set("dataset", datasets.list[[dataset.id]])
reader$set("dimensions", dimensions.list[[dataset.id]])
}
}
result <- reader$CreateResultSeries(data, result, type, mnemonic)
}
return (reader$CreateResultObjectByType(result, type))
}
reader$GetObjectByType <- function(type) {
result <- switch (type,
"MetaDataTable" = {
list (list(), NULL, list())
},
"MetaDataFrame" = {
list (list(), NULL)
},
"DataTable" = {
list (list(), NULL, list())
},
"DataFrame" = {
list (list(), NULL, list())
},
"xts" = {
list (list(), NULL, list())
},
list()
)
if (!is.null(reader$dataset)) {
reader$LoadDimensions()
return (reader$GetObjectForSearchingByMnemonicsInOneDataset(type, result))
}
return (reader$GetObjectForSearchingByMnemonicsAccrossDatasets(type, result))
}
return (reader)
} |
ifunc_run_as_addin <- function() {
rstudioapi::isAvailable() && rstudioapi::getActiveDocumentContext()$id != "
}
ifunc_show_alert <- function(run_as_addin) {
show_alert <- is.null(getOption("questionr_hide_alert"))
if (show_alert) {
options(questionr_hide_alert = TRUE)
div(class = "alert alert-warning alert-dismissible",
HTML('<button type="button" class="close" data-dismiss="alert" aria-label="Close"><span aria-hidden="true">×</span></button>'),
HTML(gettext("<strong>Warning :</strong> This interface doesn't do anything by itself.", domain = "R-questionr")),
if (run_as_addin) {
HTML(gettext("It will generate R code, insert it in your current R script, and you'll have to run it yourself.", domain = "R-questionr"))
} else {
HTML(gettext("It only generates R code you'll have to copy/paste into your script and run yourself.", domain = "R-questionr"))
}
)}
}
ifunc_get_css <- function() {
css.file <- system.file(file.path("shiny", "css", "ifuncs.css"), package = "questionr")
out <- paste(readLines(css.file),collapse="\n")
HTML(out)
}
`%||%` <- function(x, y) {
if (!is.null(x)) x else y
} |
input_data <- function(m, filter = FALSE, na = ".", ...) {
UseMethod("input_data")
}
input_data.nm_generic <- function(m, filter = FALSE, na = ".", ...) {
file_name <- data_path(m)
if (is.na(file_name)) {
return(dplyr::tibble())
}
if (normalizePath(dirname(file_name), mustWork = FALSE) == normalizePath("DerivedData", mustWork = FALSE)) {
d <- read_derived_data(basename(tools::file_path_sans_ext(file_name)), ...)
} else {
d <- utils::read.csv(file_name, na = na, ...)
}
if (filter) {
data_filter <- parse(text = data_filter_char(m, data = d))
d <- subset(d, eval(data_filter))
}
d
}
input_data.nm_list <- function(m, filter = FALSE, na = ".", ...) {
data_paths <- data_path(m)
if (length(unique(data_paths)) != 1) stop("multiple data files detected. Aborting...")
m <- as_nm_generic(m[[1]])
d <- input_data(m, filter = filter, na = na, ...)
d
}
ignore <- function(ctl, ignore_char) {
UseMethod("ignore")
}
ignore.nm_generic <- function(ctl, ignore_char) {
m <- ctl
if (missing(ignore_char)) {
return(data_ignore_char(m))
}
ctl <- ctl_contents(m)
ctl <- update_ignore(ctl, ignore_char)
m <- m %>% ctl_contents_simple(ctl)
m
}
ignore.nm_list <- Vectorize_nm_list(ignore.nm_generic, replace_arg = "ignore_char")
update_ignore <- function(ctl, ignore_char) {
ctl <- ctl_list(ctl)
ignore_present <- any(grepl(".*IGNORE\\s*=\\s*\\(", ctl$DATA))
if (ignore_present) {
ctl$DATA <- ctl$DATA[!grepl("^(\\s*)IGNORE\\s*=\\s*\\(*\\S[^\\)]+\\)*(\\s*)$", ctl$DATA)]
ctl$DATA <- gsub(
"(.*)IGNORE\\s*=\\s*\\(+\\S[^\\)]+\\)+(.*)",
"\\1\\2", ctl$DATA
)
}
ignore_char <- gsub("\\s*\\|\\s*", ", ", ignore_char)
ignore_char <- gsub("==", ".EQ.", ignore_char)
ignore_char <- gsub("!=", ".NE.", ignore_char)
ignore_char <- gsub(">", ".GT.", ignore_char)
ignore_char <- gsub("<", ".LT.", ignore_char)
ignore_char <- gsub(">=", ".GE.", ignore_char)
ignore_char <- gsub("<=", ".LE.", ignore_char)
ignore_char <- gsub("\\s+(\\.\\S+\\.)\\s+", "\\1", ignore_char)
ignore_char <- paste0("IGNORE=(", ignore_char, ")")
last_line <- ctl$DATA[length(ctl$DATA)]
if (grepl("^\\s*$", last_line)) {
ctl$DATA[length(ctl$DATA)] <- ignore_char
} else {
ctl$DATA <- append(ctl$DATA, ignore_char)
}
ctl$DATA <- append(ctl$DATA, "")
ctl
} |
NULL
ip_address <- function(x = character()) {
wrap_parse_address(x)
}
new_ip_address <- function(address1 = integer(), address2 = integer(), address3 = integer(), address4 = integer(), is_ipv6 = logical()) {
vec_assert(address1, ptype = integer())
vec_assert(address2, ptype = integer())
vec_assert(address3, ptype = integer())
vec_assert(address4, ptype = integer())
vec_assert(is_ipv6, ptype = logical())
new_rcrd(list(
address1 = address1, address2 = address2, address3 = address3, address4 = address4,
is_ipv6 = is_ipv6
), class = "ip_address")
}
is_ip_address <- function(x) inherits(x, "ip_address")
as_ip_address <- function(x) UseMethod("as_ip_address")
as_ip_address.character <- function(x) ip_address(x)
as_ip_address.ip_interface <- function(x) {
new_ip_address(
field(x, "address1"),
field(x, "address2"),
field(x, "address3"),
field(x, "address4"),
field(x, "is_ipv6")
)
}
as.character.ip_address <- function(x, ...) wrap_print_address(x)
format.ip_address <- function(x, exploded = FALSE, ...) {
wrap_print_address(x, exploded)
}
vec_proxy_compare.ip_address <- function(x, ...) wrap_compare_address(x)
vec_ptype_abbr.ip_address <- function(x, ...) {
"ip_addr"
} |
teardown({
file.remove(exist_file)
purrr::walk(exist_file_list, file.remove)
})
test_that("Test files as expected", {
expect_true(file.exists(exist_file))
expect_true(all(file.exists(exist_file_vector)))
expect_false(file.exists(bad_file))
})
test_that("Test file utils work", {
expect_invisible(cmd_error_if_missing(exist_file_list))
expect_invisible(cmd_error_if_missing(exist_file_vector))
expect_invisible(cmd_error_if_missing(exist_file))
expect_error(cmd_error_if_missing(bad_file), "was not found")
})
test_that("UI file exists works", {
expect_invisible(cmd_ui_file_exists(exist_file))
expect_message(cmd_ui_file_exists(exist_file), cli::symbol$tick)
expect_message(cmd_ui_file_exists(bad_file), cli::symbol$cross)
expect_error(cmd_ui_file_exists(exist_file_vector), "length 1")
expect_error(cmd_ui_file_exists(exist_file_list))
}) |
mlnormal_soft_thresholding <- function( x, lambda )
{
x_abs <- abs(x)
x <- ifelse( x_abs > lambda, x - sign(x) * lambda, 0 )
return(x)
} |
nsplit <- function(p, G, use.all = TRUE,
fix.partition = NULL){
if(length(G)>1){
n.splits <- numeric(length(G))
for(g.ind in 1:length(G)){
n.splits[g.ind] <- nsplit(p, G[g.ind], use.all=use.all, fix.partition=fix.partition[[g.ind]])
}
return(n.splits)
}
if(any(c(!is.numeric(p), length(p)!=1, p<1, !(p%%1==0))))
stop("p should be a positive interger.")
if(any(c(!is.numeric(G), any(G<1), !any((G%%1==0)), any(G>p))))
stop("G should be a positive interger less or equal to p.")
if(!is.null(fix.partition)){
if(any(!is.matrix(fix.partition), ncol(fix.partition)!=G))
stop("fix.partition should be a matrix with G columns")
fix.sum <- rowSums(fix.partition)
if(use.all)
if(any(fix.sum!=p))
stop("The number of variables used does not sum to p. Set use.all to FALSE if needed.") else
if(any(fix.sum>p))
stop("Some fixed partitions have an invalid number of total variables")
}
if(G==p)
return(1)
n.splits <- numeric(1)
for(g in G){
if(is.null(fix.partition))
partitions <- generate_partitions(p, G, use.all) else
partitions <- fix.partition
for(n.partition in 1:nrow(partitions)){
n.splits <- n.splits + multicool::multinom(c(partitions[n.partition,],p-sum(partitions[n.partition,])), counts=TRUE)/
prod(factorial(table(partitions[n.partition,])))
}
}
return(n.splits)
} |
storeMetaChunkWise <- function(meta_envir,con,
schema = "timeseries",
tbl = "meta_data_unlocalized",
keys=NULL,
chunksize = NULL,
quiet = T){
warning("chunkwise storage is deprecated. Simply use updateMetaInformation,
which capable of COPY-based bulk inserts now.")
updateMetaInformation(meta = meta_envir,
con = con,
schema = schema,
tbl = tbl,
keys = ls(envir = meta_envir),
quiet = quiet)
} |
library(lavaan)
data(sesamesim)
sesameCFA <- sesamesim
names(sesameCFA)[6] <- "pea"
model1 <- '
A =~ Ab + Al + Af + An + Ar + Ac
B =~ Bb + Bl + Bf + Bn + Br + Bc
'
fit1 <- sem(model1, data = sesameCFA, std.lv = TRUE)
hypotheses1 <- "A=~Ab > .6 & A=~Al > .6 & A=~Af > .6 & A=~An > .6 & A=~Ar > .6 & A=~Ac >.6 &
B=~Bb > .6 & B=~Bl > .6 & B=~Bf > .6 & B=~Bn > .6 & B=~Br > .6 & B=~Bc >.6"
set.seed(100)
y <- bain(fit1,hypotheses1,standardize = TRUE)
y_gor <- gorica(fit1,hypotheses1, standardize = TRUE)
test_that("bain and gorica give similar results", {
expect_equivalent(y$fit$PMPb[1:2], y_gor$fit$gorica_weights, tolerance = .1)
}) |
Cy0 <- function(object, plot = FALSE, add = FALSE, ...)
{
cpD1 <- efficiency(object, plot = FALSE)$cpD1
Fluo <- as.numeric(predict(object, newdata = data.frame(Cycles = cpD1), which = "y"))
slope <- object$MODEL$d1(cpD1, t(coef(object)))
Cy0 <- cpD1 - (Fluo/slope)
if (plot) {
plot(object, ...)
add = TRUE
}
if (add) {
points(cpD1, Fluo, col = "blueviolet", pch = 16, ...)
abline((-cpD1 * slope) + Fluo, slope)
abline(h = 0)
points(Cy0, 0, col = "blueviolet", pch = 16, ...)
}
return(round(Cy0, 2))
} |
graphUpdateOne <- function (w, G, vec01) {
n <-length(w)
locZero <- which(vec01 == 0)
if (length(locZero) == 0) {
result <- list(w=w, G=G, vec01=vec01, isNodeRemoved=FALSE)
return (result)
}
rmIndex <- locZero[1]
for (i in 1:n) {
if (i != rmIndex) {
w[i] <- w[i] + w[rmIndex]*G[rmIndex,i]
for (j in 1:n) {
if ( (j != i) & (j != rmIndex)) {
G[i,j] <- (G[i,j] + G[i,rmIndex]*G[rmIndex,j])/(1-G[i,rmIndex]*G[rmIndex,i])
}
}
}
}
result <- list(w=w[-rmIndex], G=G[-rmIndex,-rmIndex], vec01=vec01[-rmIndex], isNodeRemoved=TRUE)
return (result)
}
graphUpdate <- function (w, G, vec01) {
n <-length(w)
locZero <- which(vec01 == 0)
if (length(locZero) == 0) {
result <- list(w=w, G=G, isNodeRemoved=FALSE)
return (result)
}
for (k in 1:length(locZero)) {
tmp <- graphUpdateOne(w=w,G=G,vec01=vec01)
w <- tmp$w
G <- tmp$G
vec01 <- tmp$vec01
}
result <- list(w=w, G=G, isNodeRemoved=TRUE)
return (result)
} |
.ts_lastplot_env <- new.env(parent = emptyenv())
ts_plot <- function(..., title, subtitle, ylab = "",
family = getOption("ts_font", "sans")) {
value <- NULL
id <- NULL
x <- ts_dts(ts_c(...))
if (nrow(ts_na_omit(x)) == 0L) stop0("no data values to plot")
x <- combine_id_cols(x)
if (missing("title")) {
has.title <- FALSE
} else {
has.title <- TRUE
}
if (missing("subtitle")) {
has.subtitle <- FALSE
} else {
has.subtitle <- TRUE
}
op <- par(no.readonly = TRUE)
cex <- 0.9
title.cex <- 1.2
text.col <- "grey10"
axis.text.col <- text.col
col.lab <- axis.text.col
if (number_of_series(x) > 1) {
has.legend <- TRUE
} else {
has.legend <- FALSE
}
if (has.legend) {
mar.b <- 4.5
} else {
mar.b <- 2
}
if (has.title && has.subtitle) {
mar.t <- 4
} else if (has.title || has.subtitle) {
mar.t <- 3
} else {
mar.t <- 1
}
if (ylab == "") {
mar.l <- 3
} else {
mar.l <- 4
}
par(
fig = c(0, 1, 0, 1), oma = c(0.5, 1, 2, 1), mar = c(0, 0, 0, 0),
col.lab = col.lab, cex.lab = 0.8, family = family
)
plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")
if (has.title) {
mtext(
title,
cex = title.cex, side = 3, line = 0, adj = 0, font = 2, col = text.col
)
}
if (has.subtitle) {
shift <- if (has.title) -1.2 else 0
mtext(
subtitle,
cex = cex, side = 3, line = shift, adj = 0, col = text.col
)
}
cid <- dts_cname(x)$id
ctime <- dts_cname(x)$time
cvalue <- dts_cname(x)$value
if (length(cid) == 0L) {
x$id <- "dummy"
cid <- "id"
setcolorder(x, c("id", ctime, cvalue))
}
setnames(
x, c(cid, ctime, cvalue),
c("id", "time", "value")
)
tind <- as.POSIXct(x[, time])
tnum <- as.numeric(tind)
xlim <- range(tnum)
values <- x[, value]
values[!is.finite(values)] <- NA
ylim <- range(values, na.rm = TRUE)
xticks <- pretty(tind)
xlabels <- attr(xticks, "labels")
ids <- as.character(unique(x[, id]))
if ((length(ids)) > 20L) {
message("too many series. Only showing the first 20.")
ids <- ids[1:20]
}
col <- getOption("tsbox.col", colors_tsbox())
lty <- getOption("tsbox.lty", "solid")
lwd <- getOption("tsbox.lwd", 1.5)
recycle_par <- function(x) {
x0 <- x[1:(min(length(x), length(ids)))]
cbind(ids, x0)[, 2]
}
col <- recycle_par(col)
lty <- recycle_par(lty)
lwd <- recycle_par(lwd)
if (has.legend) {
legend(
"bottomleft",
legend = ids, horiz = TRUE,
bty = "n", lty = lty, lwd = lwd, col = col, cex = 0.9 * cex, adj = 0,
text.col = text.col
)
}
par(mar = c(mar.b, mar.l, mar.t, 1.4), new = TRUE)
plot(
x = tind, type = "n", lty = lty[1], pch = 19, col = 1,
cex = 1.5, lwd = lwd[1], las = 1, bty = "n", xaxt = "n",
xlim = xlim, ylim = ylim, xlab = "", ylab = ylab,
yaxt = "n"
)
axis(
2,
at = axTicks(2), labels = sprintf("%s", axTicks(2)),
las = 1, cex.axis = 0.8, col = NA, line = -0.5, col.axis = axis.text.col
)
axis(
side = 1, at = (xticks),
labels = xlabels,
las = 1, cex.axis = 0.8, col = NA, line = 0.5, tick = TRUE, padj = -2,
col.axis = axis.text.col
)
abline(h = axTicks(2), v = xticks, col = "grey80", lty = "dotted", lwd = 0.5)
for (i in seq(ids)) {
.idi <- ids[i]
cd <- x[id == .idi]
cd <- cd[!is.na(value)]
x.i <- as.numeric(as.POSIXct(cd[, time]))
lines(
y = cd[, value],
x = x.i, col = col[i], lty = lty[i], lwd = lwd[i]
)
}
cl <- match.call()
assign("ts_lastplot_call", cl, envir = .ts_lastplot_env)
}
ts_lastplot_call <- function() {
get("ts_lastplot_call", envir = .ts_lastplot_env)
}
ts_save <- function(filename = tempfile(fileext = ".pdf"), width = 10,
height = 5, device = NULL, open = TRUE) {
if (!grepl("\\.[a-z]+$", filename) && is.null(device)) {
filename <- paste0(filename, ".pdf")
}
if (is.null(device)) {
device <- gsub(".*\\.([a-z]+)$", "\\1", tolower(filename))
} else {
filename <- gsub("\\.[a-z]+$", paste0(".", device), tolower(filename))
}
filename <- normalizePath(filename, mustWork = FALSE)
cl <- ts_lastplot_call()
if (is.null(cl) || !inherits(cl, "call")) {
stop0("ts_plot() must be called first.")
}
if (device == "pdf") {
pdf(file = filename, width = width, height = height)
} else if (device == "png") {
png(
filename = filename, width = width, height = height, units = "in",
res = 150
)
} else if (device == "bmp") {
bmp(
filename = filename, width = width, height = height, units = "in",
res = 150
)
} else if (device == "jpeg") {
jpeg(
filename = filename, width = width, height = height, units = "in",
res = 150
)
} else if (device == "tiff") {
tiff(
filename = filename, width = width, height = height, units = "in",
res = 150
)
} else {
stop0("device not supported: ", device)
}
eval(cl, envir = parent.frame())
dev.off()
if (open) browseURL(filename)
invisible(TRUE)
} |
context("scatterplot")
test_that("test scales", {
expect_silent(plot_scatterplot(na.omit(airquality), by = "Ozone", scale_x = "reverse", scale_y = "sqrt"))
expect_silent(plot_scatterplot(iris, by = "Species", scale_y = "log10"))
expect_error(plot_scatterplot(iris, by = "Species", scale_x = "log10"))
expect_error(plot_scatterplot(iris, by = "Species", scale_x = "log"))
})
test_that("test return object", {
scatterplot_list <- plot_scatterplot(iris, by = "Species")
expect_is(scatterplot_list, "list")
expect_equal(names(scatterplot_list), "page_1")
expect_true(is.ggplot(scatterplot_list[[1]]))
scatterplot_list2 <- plot_scatterplot(iris, by = "Species", nrow = 1L, ncol = 1L)
expect_is(scatterplot_list2, "list")
expect_equal(names(scatterplot_list2), c("page_1", "page_2", "page_3", "page_4"))
expect_true(all(vapply(scatterplot_list2, is.ggplot, TRUE)))
}) |
"data.gen1" |
context("looping in pipelines")
foo <- function(x){
sqrt(x) %v>% is.na
}
test_that("Lists over nested functions produce the correct output", {
expect_equal(
-1:1 %>>% { lapply(., foo) } %>% {sapply(.single_value(.), is_rmonad)},
c(TRUE, TRUE, TRUE)
)
expect_equal(
-1:1 %>>% { lapply(., foo) } %>>% combine %>% .single_value,
list(TRUE, FALSE, FALSE)
)
expect_equal(
-1:1 %>% { lapply(., foo) } %>% combine %>% .single_value,
-1:1 %>>% { lapply(., foo) } %>>% combine %>% .single_value
)
}) |
expected <- eval(parse(text="\"pkgB_.tar.gz\""));
test(id=0, code={
argv <- eval(parse(text="list(\"([[:digit:]]+[.-]){1,}[[:digit:]]+\", \"\", \"pkgB_1.0.tar.gz\", FALSE, FALSE, FALSE, FALSE)"));
.Internal(`gsub`(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]], argv[[7]]));
}, o=expected); |
context("Spellchecker")
test_that("Error if not interactive", {
skip_if(interactive())
expect_error(check_spelling(rstudio = TRUE), regexp = "interactive")
})
test_that("School funding report checks out", {
expect_null(check_spelling("./SchoolFunding/SchoolFunding.tex",
known.correct = c("SRS", "SE.XPD.TOTL.GD.XS", "WDI", "SSNP", "underfunded",
"overfund[a-z]*", "NMS", "WPI", "DET", "phas", "NP",
"SATs", "ENG", "th", "stds", "RCTs", "CAGR"),
ignore.lines = 1551))
})
test_that("Check spelling of multiple input document", {
expect_error(check_spelling("./spellcheck_multi_input/spellcheck_multi_input.tex"),
regexp = "failed on above line")
})
test_that("Abbreviations", {
expect_error(check_spelling("spellcheck-abbrevs.tex"))
})
test_that("Initalisms", {
expect_null(check_spelling("./spelling/abbrev/abbrev-defd-ok.tex"))
expect_null(check_spelling("./spelling/abbrev/abbrev-defd-ok-2.tex"))
expect_equal(extract_validate_abbreviations(readLines("./spelling/abbrev/abbrev-defd-ok-stopwords.tex")),
c("QXFEoC", "AIAS"))
expect_equal(extract_validate_abbreviations(readLines("./spelling/abbrev/abbrev-plural.tex")),
c("LVR"))
})
test_that("Initialism checking doesn't fail if at start of sentence", {
expect_null(check_spelling("./spelling/abbrev/abbrev-at-line-start.tex"))
})
test_that("Add to dictionary, ignore spelling in", {
expect_error(check_spelling("./spelling/add_to_dictionary-wrong.tex"), regexp = "[Ss]pellcheck failed")
expect_error(check_spelling("./spelling/ignore_spelling_in-wrong.tex", pre_release = FALSE),
regexp = "[Ss]pellcheck failed")
expect_null(check_spelling("./spelling/add_to_dictionary-ok.tex"))
expect_null(check_spelling("./spelling/ignore_spelling_in-ok.tex", pre_release = FALSE))
expect_null(check_spelling("./spelling/ignore_spelling_in-ok-2.tex", pre_release = FALSE))
expect_error(check_spelling("./spelling/ignore_spelling_in-ok.tex"),
regexp = "pre_release = TRUE")
expect_null(check_spelling("./spelling/add_to_dictionary-ok-req-hunspell.tex",
pre_release = FALSE))
})
test_that("Ignore spelling in input", {
expect_error(check_spelling("./spelling/input/a.tex", pre_release = TRUE),
regexp = "Spellcheck failed on above line with .asofihsafioh")
expect_null(check_spelling("./spelling/input/a.tex", pre_release = FALSE))
expect_null(check_spelling("./spelling/input/b.tex", pre_release = TRUE))
})
test_that("Stop if present", {
expect_error(check_spelling("./stop_if_present/should-stop.tex"), regexp = "skillset")
expect_error(check_spelling("./stop_if_present/should-stop-2.tex"), regexp = "skillset")
expect_error(check_spelling("./stop_if_present/stop_even_if_added.tex"), regexp = "skillset")
expect_error(check_spelling("./stop_if_present_inputs/stop-if-held-in-inputs.tex"), regexp = "skillset")
expect_error(check_spelling("./stop_if_present/should-stop-3.tex"), regexp = "percent")
expect_null(check_spelling("./stop_if_present/should-not-stop.tex"))
})
test_that("Lower-case governments should error", {
expect_error(check_spelling("./spelling/Govt/NSWgovt.tex"), regexp = "uppercase G")
expect_error(check_spelling("./spelling/Govt/ACTgovt.tex"), regexp = "uppercase G")
expect_error(check_spelling("./spelling/Govt/NTgovt.tex"), regexp = "uppercase G")
expect_error(check_spelling("./spelling/Govt/Queenslandgovt.tex"), regexp = "uppercase G")
expect_error(check_spelling("./spelling/Govt/WAgovt.tex"), regexp = "uppercase G")
})
test_that("Some lower-case governments should not", {
expect_null(check_spelling("./spelling/Govt/ok-as-adj.tex"))
expect_null(check_spelling("./spelling/Govt/ok-as-adj2.tex"))
})
test_that("'percent' error should only occur in a Grattan report", {
percent_spellcheck.tex <- tempfile(fileext = ".tex")
writeLines(
text = c("\\documentclass{article}",
"\\begin{document}",
"The word percent is not invalid.",
"\\end{document}"),
con = percent_spellcheck.tex
)
expect_null(check_spelling(percent_spellcheck.tex))
})
test_that("Includepdf doesn't result in a failed include message", {
expect_null(check_spelling("./spelling/includepdf-ok.tex"))
})
test_that("Should error", {
expect_error(check_spelling("spelling/misc-error.tex"), regexp = "Spellcheck")
expect_error(check_spelling("spelling/typo-suggest.tex"), regex = "Spellcheck")
})
test_that("RStudio API", {
skip_on_cran()
skip_if_not(interactive())
expect_error(check_spelling("spelling/typo-suggest.tex", rstudio = TRUE),
regexp = "Spellcheck")
expect_false(Sys.info()['sysname'] %in% "Windows" &&
utils::readClipboard() != "Sydney")
})
test_that("Inputs should respect dict_lang at top level", {
expect_null(check_spelling("spelling/dict-lang-input/root.tex",
dict_lang = "en_US"))
})
test_that("Lonesome footcites", {
footcite.tex <- tempfile(fileext = ".tex")
writeLines(c("\\documentclass{article}",
"\\begin{document}",
"A claim.\\footnote{textcite{not-yet-cited}.}",
"\\end{document}",
""),
footcite.tex)
expect_error(check_spelling(footcite.tex), regexp = "[Ss]pellcheck")
})
test_that("Multi-ignore", {
multi.tex <- tempfile(fileext = ".tex")
writeLines(c("\\documentclass{article}",
"\\begin{document}",
"A claim.\\mymulticmd{okay}{sudifhds}{ihsodfidoshf}",
"\\end{document}",
""),
multi.tex)
expect_null(check_spelling(multi.tex, ignore_spelling_in_nth = list("mymulticmd" = 2:3)))
expect_error(check_spelling(multi.tex, ignore_spelling_in_nth = list("mymulticmd" = c(1L, 3L))),
regexp = "sudifhds")
})
test_that("Like Energy-2018-WholesaleMarketPower", {
expect_null(check_spelling("spelling/chapref/in-comments.tex",
ignore_spelling_in_nth = list(Chaprefrange = 1:2)))
})
test_that("Spellcheck verb", {
expect_null(check_spelling("spelling/verb.tex"))
})
test_that("pre-release + add to dictionary outside", {
tempfile.tex <- tempfile(fileext = ".tex")
writeLines(c("\\documentclass{article}",
"% add_to_dictionary: ok",
"\\begin{document}",
"% add_to_dictionary: notok",
"Not ok.",
"\\end{document}"),
tempfile.tex)
expect_null(check_spelling(tempfile.tex, pre_release = FALSE))
expect_error(check_spelling(tempfile.tex, pre_release = TRUE),
regexp = "When pre_release = TRUE, % add_to_dictionary: lines must not be situated outside the document preamble.",
fixed = TRUE)
})
test_that("known.correct.fixed", {
tempfile.tex <- tempfile(fileext = ".tex")
writeLines(c("\\documentclass{article}",
"% add_to_dictionary: ok",
"\\begin{document}",
"QETYY-high.",
"\\end{document}"),
tempfile.tex)
expect_null(check_spelling(tempfile.tex, pre_release = FALSE, known.correct.fixed = "QETYY"))
})
test_that("get_file_path.works", {
expect_equal(get_input_file_path(.path = "./nest1",
.input = "nest1/nest2/file.tex"),
"./nest1/nest2/file.tex")
expect_equal(get_input_file_path(.path = "./nest1",
.input = "nest2/file.tex"),
"./nest1/nest2/file.tex")
expect_equal(get_input_file_path(.path = "./nest1",
.input = "file.tex"),
"./nest1/file.tex")
})
test_that("Nested inputs", {
skip_on_cran()
temp_dir <- tempfile()
hutils::provide.dir(temp_dir)
hutils::provide.dir(file.path(temp_dir, "tex"))
hutils::provide.dir(file.path(temp_dir, "tex", "bo"))
root.tex <- file.path(temp_dir, "root.tex")
skip_if_not(file.create(root.tex))
writeLines(c("\\documentclass{article}",
"\\input{tex/preamble}",
"\\begin{document}",
"\\input{tex/a}",
"\\input{tex/b}",
"\\end{document}"),
root.tex)
writeLines(c("\\input{tex/b}",
"\\input{tex/bo/ra}",
"\\end{document}"),
file.path(temp_dir, "tex", "a.tex"))
writeLines(c("\\textbf{ok}",
"ok"),
file.path(temp_dir, "tex", "b.tex"))
writeLines(c("\\textbf{njok}",
"ok"),
file.path(temp_dir, "tex", "bo", "ra.tex"))
expect_error(check_spelling(root.tex),
regexp = "njok")
expect_null(check_spelling(root.tex, ignore_spelling_in = "textbf"))
expect_null(check_spelling(file.path(temp_dir, "tex", "a.tex"),
tex_root = temp_dir,
ignore_spelling_in = "textbf"))
}) |
stat.anova <-
function(table, test=c("Rao","LRT","Chisq", "F", "Cp"), scale, df.scale, n)
{
test <- match.arg(test)
dev.col <- match("Deviance", colnames(table))
if (test == "Rao") dev.col <- match("Rao", colnames(table))
if (is.na(dev.col)) dev.col <- match("Sum of Sq", colnames(table))
switch(test,
"Rao" = ,"LRT" = ,"Chisq" = {
dfs <- table[, "Df"]
vals <- table[, dev.col]/scale * sign(dfs)
vals[dfs %in% 0] <- NA
vals[!is.na(vals) & vals < 0] <- NA
cbind(table,
"Pr(>Chi)" = pchisq(vals, abs(dfs), lower.tail = FALSE)
)
},
"F" = {
dfs <- table[, "Df"]
Fvalue <- (table[, dev.col]/dfs)/scale
Fvalue[dfs %in% 0] <- NA
Fvalue[!is.na(Fvalue) & Fvalue < 0] <- NA
cbind(table,
F = Fvalue,
"Pr(>F)" = pf(Fvalue, abs(dfs), df.scale, lower.tail = FALSE)
)
},
"Cp" = {
if ("RSS" %in% names(table)) {
cbind(table, Cp = table[, "RSS"] +
2*scale*(n - table[, "Res.Df"]))
} else {
cbind(table, Cp = table[, "Resid. Dev"] +
2*scale*(n - table[, "Resid. Df"]))
}
})
}
printCoefmat <-
function(x, digits = max(3L, getOption("digits") - 2L),
signif.stars = getOption("show.signif.stars"),
signif.legend = signif.stars,
dig.tst = max(1L, min(5L, digits - 1L)),
cs.ind = 1:k, tst.ind = k+1, zap.ind = integer(),
P.values = NULL,
has.Pvalue = nc >= 4L && length(cn <- colnames(x)) &&
substr(cn[nc], 1L, 3L) %in% c("Pr(", "p-v"),
eps.Pvalue = .Machine$double.eps,
na.print = "NA", quote = FALSE, right = TRUE, ...)
{
if(is.null(d <- dim(x)) || length(d) != 2L)
stop("'x' must be coefficient matrix/data frame")
nc <- d[2L]
if(is.null(P.values)) {
scp <- getOption("show.coef.Pvalues")
if(!is.logical(scp) || is.na(scp)) {
warning("option \"show.coef.Pvalues\" is invalid: assuming TRUE")
scp <- TRUE
}
P.values <- has.Pvalue && scp
}
else if(P.values && !has.Pvalue)
stop("'P.values' is TRUE, but 'has.Pvalue' is not")
if(has.Pvalue && !P.values) {
d <- dim(xm <- data.matrix(x[,-nc , drop = FALSE]))
nc <- nc - 1
has.Pvalue <- FALSE
} else xm <- data.matrix(x)
k <- nc - has.Pvalue - (if(missing(tst.ind)) 1 else length(tst.ind))
if(!missing(cs.ind) && length(cs.ind) > k) stop("wrong k / cs.ind")
Cf <- array("", dim=d, dimnames = dimnames(xm))
ok <- !(ina <- is.na(xm))
for (i in zap.ind) xm[, i] <- zapsmall(xm[, i], digits)
if(length(cs.ind)) {
acs <- abs(coef.se <- xm[, cs.ind, drop=FALSE])
if(any(ia <- is.finite(acs))) {
digmin <- 1 + if(length(acs <- acs[ia & acs != 0]))
floor(log10(range(acs[acs != 0], finite = TRUE))) else 0
Cf[,cs.ind] <- format(round(coef.se, max(1L, digits - digmin)),
digits = digits)
}
}
if(length(tst.ind))
Cf[, tst.ind] <- format(round(xm[, tst.ind], digits = dig.tst),
digits = digits)
if(any(r.ind <- !((1L:nc) %in% c(cs.ind, tst.ind, if(has.Pvalue) nc))))
for(i in which(r.ind)) Cf[, i] <- format(xm[, i], digits = digits)
ok[, tst.ind] <- FALSE
okP <- if(has.Pvalue) ok[, -nc] else ok
x1 <- Cf[okP]
dec <- getOption("OutDec")
if(dec != ".") x1 <- chartr(dec, ".", x1)
x0 <- (xm[okP] == 0) != (as.numeric(x1) == 0)
if(length(not.both.0 <- which(x0 & !is.na(x0)))) {
Cf[okP][not.both.0] <- format(xm[okP][not.both.0],
digits = max(1L, digits - 1L))
}
if(any(ina)) Cf[ina] <- na.print
if(P.values) {
if(!is.logical(signif.stars) || is.na(signif.stars)) {
warning("option \"show.signif.stars\" is invalid: assuming TRUE")
signif.stars <- TRUE
}
if(any(okP <- ok[,nc])) {
pv <- as.vector(xm[, nc])
Cf[okP, nc] <- format.pval(pv[okP],
digits = dig.tst, eps = eps.Pvalue)
signif.stars <- signif.stars && any(pv[okP] < .1)
if(signif.stars) {
Signif <- symnum(pv, corr = FALSE, na = FALSE,
cutpoints = c(0, .001,.01,.05, .1, 1),
symbols = c("***","**","*","."," "))
Cf <- cbind(Cf, format(Signif))
}
} else signif.stars <- FALSE
} else signif.stars <- FALSE
print.default(Cf, quote = quote, right = right, na.print = na.print, ...)
if(signif.stars && signif.legend) {
if((w <- getOption("width")) < nchar(sleg <- attr(Signif,"legend")))
sleg <- strwrap(sleg, width = w - 2, prefix = " ")
cat("---\nSignif. codes: ", sleg, sep = "",
fill = w+4 + max(nchar(sleg,"bytes") - nchar(sleg)))
}
invisible(x)
}
print.anova <- function(x, digits = max(getOption("digits") - 2L, 3L),
signif.stars = getOption("show.signif.stars"), ...)
{
if (!is.null(heading <- attr(x, "heading")))
cat(heading, sep = "\n")
nc <- dim(x)[2L]
if(is.null(cn <- colnames(x))) stop("'anova' object must have colnames")
has.P <- grepl("^(P|Pr)\\(", cn[nc])
zap.i <- 1L:(if(has.P) nc-1 else nc)
i <- which(substr(cn,2,7) == " value")
i <- c(i, which(!is.na(match(cn, c("F", "Cp", "Chisq")))))
if(length(i)) zap.i <- zap.i[!(zap.i %in% i)]
tst.i <- i
if(length(i <- grep("Df$", cn))) zap.i <- zap.i[!(zap.i %in% i)]
printCoefmat(x, digits = digits, signif.stars = signif.stars,
has.Pvalue = has.P, P.values = has.P,
cs.ind = NULL, zap.ind = zap.i, tst.ind = tst.i,
na.print = "",
...)
invisible(x)
} |
web_table <- function(data
, caption = NULL
, digits = 2
, rnames = FALSE
, buttons = NULL
, file_name = "file"
, scrolly = NULL
){
if(!is.data.frame(data)) stop("Use a data frame or table")
where <- NULL
if(is.null(scrolly)) scrolly <- "60vh"
if (is.null(buttons)) {
ext <- c('Buttons', 'Scroller')
} else { ext <- c('Scroller') }
botones <- list(
list(extend = 'copy')
, list(extend = 'excel', filename = file_name)
)
data %>%
mutate(across(where(is.numeric), ~round(., digits = digits))) %>%
datatable(extensions = ext
, rownames = rnames
, options = list(
dom = 'Bt'
, buttons = botones
, deferRender = TRUE
, scroller = TRUE
, scrollX = TRUE
, scrollY = scrolly
, columnDefs = list(list(width = '200px'
, targets = "_all"))
, initComplete = DT::JS(
"function(settings, json) {",
"$(this.api().table().header()).css({'background-color': '
"}")
)
, caption = caption)
} |
"States" |
library(Polychrome)
set.seed(4528)
tempPal <- createPalette(40, c("
tempPal <- tempPal[-(1:2)]
swatch(tempPal)
tempPal.deut <- colorDeficit(tempPal, "deut")
tempPal.prot <- colorDeficit(tempPal, "prot")
tempPal.trit <- colorDeficit(tempPal, "trit")
shift <- function(i, k=length(tempPal)) c(i, 1:(i-1), (1+i):k)
co <- shift(13)
pd <- computeDistances(tempPal.deut[co])
pp <- computeDistances(tempPal.prot[co])
pt <- computeDistances(tempPal.trit[co])
rd <- rank(pd)[order(names(pd))]
rp <- rank(pd)[order(names(pp))]
rt <- rank(pd)[order(names(pt))]
score <- 2*rd + 1.5*rp + rt
x <- tempPal[names(rev(sort(score)))][1:12]
plotDistances(x,cex=2)
y <- colorDeficit(x, "deut")
z <- colorDeficit(x, "prot")
w <- colorDeficit(x, "trit")
opar <- par(mfrow=c(2,2))
swatch(x, main="Normal")
swatch(y, main="Deuteranope")
swatch(z, main="Protanope")
swatch(w, main="Tritanope")
par(opar)
names(x) <- colorNames(x)
safeColors <- x
plotDistances(safeColors,cesafeColors=2)
opar <- par(mfrow=c(2,2))
swatch(safeColors)
swatchHue(safeColors)
swatchLuminance(safeColors)
ranswatch(safeColors)
par(opar)
rancurves(safeColors, lwd=3)
ranpoints(safeColors, cesafeColors=1.5)
uvscatter(safeColors)
luminance(safeColors)
plothc(safeColors)
plotpc(safeColors) |
policyMatrix <- function(network, ..., useDefaultPolicies = TRUE)
{
coll <- checkmate::makeAssertCollection()
utility_nodes <-
names(network[["nodeUtility"]])[vapply(X = network[["nodeUtility"]],
FUN = identity,
FUN.VALUE = logical(1))]
decision_nodes <-
names(network$nodeDecision)[vapply(X = network[["nodeDecision"]],
FUN = identity,
FUN.VALUE = logical(1))]
decision_nodes <- decision_nodes[!decision_nodes %in% utility_nodes]
defaultPolicies <- network[["nodePolicyValues"]][decision_nodes]
policies <- list(...)
policies <- policies[!names(policies) %in% utility_nodes]
if (!length(policies)) return(defaultPolicyMatrix(network))
checkmate::assertSubset(x = names(policies),
choices = network[["nodes"]],
add = coll)
checkmate::reportAssertions(coll)
if (any(names(policies) %in% names(defaultPolicies))){
defaultPolicies <-
defaultPolicies[!names(defaultPolicies) %in% names(policies)]
}
expand.grid(c(policies, defaultPolicies),
stringsAsFactors=FALSE)
}
defaultPolicyMatrix <- function(network)
{
coll <- checkmate::makeAssertCollection()
utility_nodes <-
names(network[["nodeUtility"]])[vapply(X = network[["nodeUtility"]],
FUN = identity,
FUN.VALUE = logical(1))]
decision_nodes <-
names(network[["nodeDecision"]])[vapply(X = network[["nodeDecision"]],
FUN = identity,
FUN.VALUE = logical(1))]
decision_nodes <- decision_nodes[!decision_nodes %in% utility_nodes]
if (!length(decision_nodes))
coll$push(paste0("There are no decision nodes in '",
substitute(network), "'."))
decision_options <- lapply(decision_nodes, policyMatrixValues, network)
names(decision_options) <- decision_nodes
expand.grid(decision_options)
} |
fit_univariate <- function(x, distribution, type = 'continuous') {
stopifnot(type == 'discrete' & is.integer(x) |
type == 'continuous' & is.double(x) |
type == 'empirical' & is.numeric(x))
discreteDists <- c('geom', 'nbinom', 'pois', 'dunif')
continuousDists <- c('exp', 'cauchy', 'gamma', 'lnorm',
'norm', 'unif', 'weibull', 'llogis', 'logis',
'invweibull', 'invgamma')
if (!distribution %in% c(discreteDists, continuousDists, 'empirical')) {
stop("distribution not in supported distributions")
}
if (distribution %in% 'empirical') {
fit_empirical(x)
} else {
build_dist(x, distribution)
}
}
build_dist <- function(x, distribution) {
type <- paste0(c('d', 'p', 'q', 'r'), distribution)
funs <- lapply(type, function(type) {
match.fun(type)
})
names(funs) <- type
if (distribution %in% 'dunif') {
parameters <- c(min = min(x), max = max(x))
} else {
parameters <- fitdistrplus::fitdist(data = x, distr = distribution)[['estimate']]
}
funs <- lapply(stats::setNames(funs, names(funs)), gen_dist_fun,
parameters = parameters)
funs[['parameters']] <- parameters
structure(funs,
class = "distfun")
}
fit_univariate_man <- function(distribution, parameters) {
type <- paste0(c('d', 'p', 'q', 'r'), distribution)
funs <- lapply(type, function(type) {
match.fun(type)
})
names(funs) <- type
allParams <- unique(names(unlist(lapply(unname(funs), formals))))
specParams <- names(parameters)
matchedArgs <- match.arg(specParams, allParams, several.ok = TRUE)
if (length(matchedArgs) != length(specParams)) {
stop("Specified names of parameters do not match argument names of functions")
}
funs <- lapply(stats::setNames(funs, names(funs)),
gen_dist_fun,
parameters = parameters)
funs[['parameters']] <- parameters
structure(funs,
class = "distfun")
}
gen_dist_fun <- function(f, parameters, ...) {
function(...)
do.call(f, c(list(...), parameters))
}
fit_empirical <- function(x) {
stopifnot(is.double(x) | is.integer(x))
if (is.integer(x)) {
fit_empirical_discrete(x)
} else {
fit_empirical_continuous(x)
}
}
fit_empirical_discrete <- function(x) {
stopifnot(is.integer(x))
x <- sort(x)
values <- unique(x)
probs <- tabulate(as.factor(x))/length(x)
names(probs) <- values
d <- Vectorize(function(x) {
probs[x == values]
})
p <- Vectorize(function(q) {
sum(probs[q >= values])
})
q <- Vectorize(function(p) {
if (p < 0 | p > 1) {
warning("NaNs produced", call. = FALSE)
NaN
} else {
max(values[1], values[cumsum(probs) <= p])
}
})
r <- function(n) {
sample(x = values, size = n, prob = probs, replace = TRUE)
}
structure(list(dempDis = d,
pempDis = p,
qempDis = q,
rempDis = r,
parameters = probs),
class = "distfun")
}
fit_empirical_continuous <- function(x) {
stopifnot(is.double(x))
x <- sort(x)
nbins <- diff(range(x)) / (2 * stats::IQR(x) / length(x)^(1/3))
bins <- sapply(split(x, cut(x, nbins)), length)
intervals <- get_interval_nums(names(bins))
mids <- sapply(intervals, mean)
leftEnds <- sapply(intervals, min)
rightEnds <- sapply(intervals, max)
probs <- bins/sum(bins)
d <- Vectorize(function(x) {
if ( x > max(rightEnds) | x < min(leftEnds)) {
0
} else {
probs[x >= leftEnds & x < rightEnds]
}
})
p <- Vectorize(function(q) {
sum(probs[q >= leftEnds])
})
q <- Vectorize(function(p) {
if (p < 0 | p > 1) {
warning("NaNs produced", call. = FALSE)
NaN
} else {
max(mids[1], mids[cumsum(probs) <= p])
}
})
r <- function(n) {
sample(x = mids, size = n, prob = probs, replace = TRUE)
}
structure(list(dempCont = d,
pempCont = p,
qempCont = q,
rempCont= r,
parameters = probs),
class = "distfun")
}
get_interval_nums <- function(cuts) {
numChars <- strsplit(gsub('\\(|\\]|\\)|\\]', "", cuts), ",")
lapply(numChars, as.numeric)
} |
tepBADA <- function(DATA,scale=TRUE,center=TRUE,DESIGN=NULL,make_design_nominal=TRUE,group.masses=NULL,weights=NULL,graphs=TRUE,k=0){
DESIGN <- texpoDesignCheck(DATA,DESIGN,make_design_nominal,force_bary=TRUE)
colDESIGN <- colnames(DESIGN)
massedDESIGN <- t(apply(DESIGN,1,'/',colSums(DESIGN)))
colnames(massedDESIGN) <- colDESIGN
main <- deparse(substitute(DATA))
DATA <- as.matrix(DATA)
R <- expo.scale(t(massedDESIGN) %*% DATA,scale=scale,center=center)
this.center <- attributes(R)$`scaled:center`
this.scale <- attributes(R)$`scaled:scale`
RMW <- computeMW(R,masses=group.masses,weights=weights)
colnames(R) <- colnames(DATA)
rownames(R) <- colnames(DESIGN)
Rdesign <- diag(nrow(R))
rownames(Rdesign) <- rownames(R)
res <- epGPCA(R, DESIGN=Rdesign, make_design_nominal=FALSE, scale = FALSE, center = FALSE, masses = RMW$M, weights = RMW$W, graphs = FALSE, k = k)
res <- res$ExPosition.Data
res$center <- this.center
res$scale <- this.scale
supplementaryRes <- supplementaryRows(DATA,res)
res$fii <- supplementaryRes$fii
res$dii <- supplementaryRes$dii
res$rii <- supplementaryRes$rii
res$lx <- res$fii
res$ly <- supplementaryCols(t(massedDESIGN),res,center=FALSE,scale=FALSE)$fjj
assignments <- fii2fi(DESIGN,res$fii,res$fi)
assignments$r2 <- R2(RMW$M,res$di,ind.masses=NULL,res$dii)
class(assignments) <- c("tepAssign","list")
res$assign <- assignments
class(res) <- c("tepBADA","list")
tepPlotInfo <- tepGraphs(res=res,DESIGN=DESIGN,main=main,graphs=graphs,lvPlots=FALSE)
return(tepOutputHandler(res=res,tepPlotInfo=tepPlotInfo))
} |
rxor <- function(n=1, p=0) {
y <- factor(rep(c(1,1,0,0), n))
x1 <- rep(c(1,0,1,0), n)
x2 <- rep(c(0,1,1,0), n)
X <- NULL
if (p > 0) {
X <- matrix(ifelse(runif(p*4*n)<0.5, 0, 1), ncol=p, nrow=4*n)
colnames(X) <- paste0("x", 3:(p+2))
}
if (p == 0) {
out <- data.frame(x1=x1, x2=x2, y=y)
} else {
out <- data.frame(x1=x1, x2=x2, X, y=y)
}
out
} |
if(getRversion() >= "2.15.1") utils::globalVariables(c("MouseGMT", "genesetHuman","en_ES_Rank_Matrix","MB_SampleInfo"))
MM2S.mouse<-function(InputMatrix, parallelize, seed, dir)
{
if(!missing(seed)){
set.seed(seed)
}
mouseData<-InputMatrix
mdm <- NULL
if (is.na(as.numeric(mouseData[1,1])))
{
mdm <- mouseData[-1,-1, drop=FALSE]
colnames(mdm) <- mouseData[1,][-1]
rownames(mdm) <- mouseData[,1][-1]
mouseData <- mdm
}
if (is.na(as.numeric(mouseData[1,ncol(mouseData)])))
{
mdm <- mouseData[-1,-1, drop=FALSE]
colnames(mdm) <- mouseData[1,][-ncol(mouseData)]
rownames(mdm) <- mouseData[,1][-1]
mouseData <- mdm
}
ExpressionMatrixMouse <- as.matrix(mouseData)
ExpressionMatrixMouse <- apply(ExpressionMatrixMouse, c(1,2), as.numeric)
rownames(ExpressionMatrixMouse) <- rownames(mouseData)
availcore=1
if(!is.numeric(parallelize))
{
message("Number of Cores needed")
stop()
} else{availcore=parallelize}
MouseData<-ExpressionMatrixMouse
set.seed(seed)
MouseGSVA<-gsva(MouseData, MouseGMT$genesets,method="ssgsea", ssgsea.norm=FALSE, min.sz=20,max.sz=100, parallel.sz=availcore,verbose=FALSE)
genesetMouse<-rownames(MouseGSVA)
commonSet<-intersect(genesetHuman,genesetMouse)
message("There are ",length(commonSet)," common genesets between Human MB and the Test Data.")
MouseGSVA<-MouseGSVA[commonSet,, drop=FALSE]
MouseGSVA<-t(MouseGSVA)
GenesetStatNormal<-GenesetStatNormal[commonSet]
GenesetStatGroup3<-GenesetStatGroup3[commonSet]
GenesetStatGroup4<-GenesetStatGroup4[commonSet]
GenesetStatWNT<-GenesetStatWNT[commonSet]
GenesetStatSHH<-GenesetStatSHH[commonSet]
geneset<-commonSet
FeatureSelection<-c(names(sort(GenesetStatSHH,decreasing=FALSE))[1:24],
names(sort(GenesetStatNormal,decreasing=FALSE))[1:24],
names(sort(GenesetStatGroup4,decreasing=FALSE))[1:24],
names(sort(GenesetStatGroup3,decreasing=FALSE))[1:24],
names(sort(GenesetStatWNT,decreasing=FALSE))[1:24])
NorthcottFeatures<-unique(FeatureSelection)
message("Of these, ", length(NorthcottFeatures)," feature-selected genesets are being used for classification")
MouseGSVA<-MouseGSVA[,NorthcottFeatures, drop=FALSE]
MouseGSVA<-t(MouseGSVA)
genesetMouse<-rownames(MouseGSVA)
Matrix_RANK_Human<-data.frame(NorthcottFeatures)
for(sample in 1:ncol(Frozen_ES_Rank_Matrix))
{
TempRankHuman<-Frozen_ES_Rank_Matrix[,sample]
TempRankHuman<-TempRankHuman[which(TempRankHuman %in% NorthcottFeatures)]
Matrix_RANK_Human[,(colnames(Frozen_ES_Rank_Matrix)[sample])]<-match(factor(NorthcottFeatures),factor(TempRankHuman))
}
rownames(Matrix_RANK_Human)<-NorthcottFeatures
Human_GSVA_Matrix<-Matrix_RANK_Human[,-1]
Matrix_RANK_Mouse<-data.frame(genesetMouse)
for(sample in 1:ncol(MouseGSVA))
{
TempRankMouse<-sort(MouseGSVA[,sample],decreasing=TRUE)
Matrix_RANK_Mouse[,(colnames(MouseGSVA)[sample])]<-match(Matrix_RANK_Mouse$geneset,names(TempRankMouse))
}
rownames(Matrix_RANK_Mouse)<-Matrix_RANK_Mouse$geneset
Mouse_GSVA_Matrix<-Matrix_RANK_Mouse[,-1, drop=FALSE]
Human_GSVA_Matrix80<-Human_GSVA_Matrix
Mouse_GSVA_Matrix80<-Mouse_GSVA_Matrix
geneset<-rownames(Human_GSVA_Matrix80)
Northcott<-t(Human_GSVA_Matrix80)
Mouse<-t(Mouse_GSVA_Matrix80)
Northcott<-as.data.frame(Northcott)
Northcott[,"Group"]<- MB_SampleInfo$subtype[match((rownames(Northcott)),MB_SampleInfo$Sample_ID)]
Mouse<-as.data.frame(Mouse)
Mouse[,"Group"]<- "MouseSamples"
Mouse$Group<-as.factor(Mouse$Group)
TrainSet<-Northcott
TestSet<-Mouse
TrainSet<-TrainSet[,-ncol(TrainSet)]
set.seed(seed)
TestKKNN<-kknn(formula = Northcott$Group ~ ., TrainSet, TestSet, na.action = na.omit(),k = 5, distance = 1, kernel = "rectangular", scale=TRUE)
MM2S_Prediction<-as.character(TestKKNN$fitted.values)
RESULTS<-(cbind(rownames(Mouse),MM2S_Prediction,TestKKNN$prob*100,TestKKNN$CL))
listOfCols<-c("SampleName","MM2S_Prediction","Gr3_Confidence","Gr4_Confidence","Normal_Confidence","SHH_Confidence","WNT_Confidence","Neighbor1","Neighbor2","Neighbor3","Neighbor4","Neighbor5")
colnames(RESULTS) <- listOfCols
message("\n")
message("OUTPUT OF MM2S:","\n")
print.table(RESULTS)
if(!missing(dir)){
write.table(RESULTS,file=file.path(dir, "MM2S_Predictions.xls"),sep="\t",col.names=listOfCols,row.names=FALSE)
}
FINAL<-TestKKNN$prob*100
colnames(FINAL)<-c("Group3","Group4","Normal","SHH","WNT")
rownames(FINAL)<-rownames(Mouse)
return(list(RankMatrixTesting=t(Mouse_GSVA_Matrix80), RankMatrixTraining=t(Human_GSVA_Matrix80), Predictions=FINAL,MM2S_Subtype=RESULTS[,1:2]))
} |
variable.fct <- function(
varname
,i
,T.mcDiff
,lagTerms
,Time
,varname.i
,dat
,dat.na
){
ti.temp <- rep(1, times = Time-lagTerms-1) + if(Time-lagTerms-1 - T.mcDiff > 0){c(rep(0, times = T.mcDiff - lagTerms), 1:(Time - T.mcDiff - 1))} else{rep(0, times = Time-lagTerms-1)}
tend.temp <- lagTerms:(Time-2)
Matrix::t(Matrix::bdiag(mapply(ti = ti.temp, t.end = tend.temp
, FUN = dat.fct, lagTerms = lagTerms, varname = varname
, MoreArgs = list(i = i
, Time = Time, varname.i = varname.i, dat = dat, dat.na = dat.na)
, SIMPLIFY = FALSE)))
}
variable.pre.fct <- function(
varname
,lagTerms
,T.mcDiff
,i
,Time
,varname.i
,dat
,dat.na
){
ti.temp <- rep(1, times = Time-lagTerms-1) + if(Time-lagTerms-1 - T.mcDiff > 0){c(rep(0, times = T.mcDiff - lagTerms), 1:(Time - T.mcDiff - 1))} else{rep(0, times = Time-lagTerms-1)}
tend.temp <- (lagTerms+1):(Time-1)
Matrix::t(Matrix::bdiag(mapply(ti = ti.temp, t.end = tend.temp, FUN = dat.fct.pre, lagTerms = lagTerms, varname = varname
, MoreArgs = list(i = i, Time = Time
, varname.i = varname.i, dat = dat, dat.na = dat.na), SIMPLIFY = FALSE)))
}
variable.ex.fct <- function(
varname
,lagTerms
,T.mcDiff
,i
,Time
,varname.i
,inst.reg.ex.expand
,dat
,dat.na
){
if(inst.reg.ex.expand){
t.start <- rep(1, times = Time-lagTerms-1) + if(Time-T.mcDiff > 0){c(rep(0, times = Time-lagTerms-1-(Time-T.mcDiff)), (1:(Time - T.mcDiff)))} else{0}
t.end <- t.start + (T.mcDiff-1)
t.req.i <- 1:(Time-lagTerms-1)
t.req.e <- (1:(Time-lagTerms-1)) + (lagTerms+1)
} else {
t.start <- rep(1, times = Time-lagTerms-1) + if(Time-T.mcDiff > 0){c(rep(0, times = Time-lagTerms-1-(Time-T.mcDiff)), (1:(Time - T.mcDiff)))} else{0}
t.end <- (lagTerms+2):(Time)
t.req.i <- 1:(Time-lagTerms-1)
t.req.e <- (1:(Time-lagTerms-1)) + (lagTerms+1)
}
err.term.start <- t.start
Matrix::t(Matrix::bdiag(mapply(ti = t.start, t.end = t.end, err.term.start = err.term.start, t.req.i = t.req.i, t.req.e = t.req.e, FUN = dat.fct.ex, varname = varname
, MoreArgs = list(i = i, Time = Time
, varname.i = varname.i, dat = dat, dat.na = dat.na), SIMPLIFY = FALSE)))
}
dat.fct <- function(
ti
,t.end
,i
,lagTerms
,varname
,Time
,varname.i
,dat
,dat.na
){
dat[dat[, varname.i] == i, varname][ti:t.end]*
(as.numeric(!is.na(dat.na[dat.na[, varname.i] == i, varname][t.end-lagTerms+1] *
dat.na[dat.na[, varname.i] == i, varname][t.end] *
dat.na[dat.na[, varname.i] == i, varname][t.end+1] *
dat.na[dat.na[, varname.i] == i, varname][t.end+2])))
}
dat.fct.pre <- function(
ti
,t.end
,i
,lagTerms
,varname
,Time
,varname.i
,dat
,dat.na
){
dat[dat[, varname.i] == i, varname][ti:t.end]*
(as.numeric(!is.na(dat.na[dat.na[, varname.i] == i, varname][t.end-lagTerms+1] *
dat.na[dat.na[, varname.i] == i, varname][t.end] *
dat.na[dat.na[, varname.i] == i, varname][t.end+1])))
}
dat.fct.ex <- function(
ti
,t.end
,t.req.i
,t.req.e
,err.term.start
,i
,varname
,Time
,varname.i
,dat
,dat.na
){
dat[dat[, varname.i] == i, varname][ti:t.end]*
(as.numeric(!is.na(dat.na[dat.na[, varname.i] == i, varname][ti:t.end] *
dat.na[dat.na[, varname.i] == i, varname][rep((err.term.start+2), times = length(ti:t.end))])))*
as.numeric(!is.na(dat.na[dat.na[, varname.i] == i, varname][rep(t.req.i, times = length(ti:t.end))]))*
as.numeric(!is.na(dat.na[dat.na[, varname.i] == i, varname][rep(t.req.e, times = length(ti:t.end))]))
}
LEV.fct <- function(
varname
,i
,T.mcLev
,lagTerms
,use.mc.diff
,inst.stata
,Time
,varname.i
,dat
,dat.na
){
if(use.mc.diff & !(inst.stata)){
ti.temp <- max(2,lagTerms)
tend.temp <- Time-1
Matrix::Diagonal(do.call(what = datLEV.fct, args = list(ti = ti.temp, t.end = tend.temp, i = i, varname = varname, lagTerms = lagTerms, use.mc.diff = use.mc.diff, inst.stata = inst.stata
, dat.na = dat.na, dat = dat, varname.i = varname.i, Time = Time)), n = Time-max(2,lagTerms))
} else{
ti.temp <- rep(max(2,lagTerms), times = Time-max(2,lagTerms)) + if(Time-max(2,lagTerms)-T.mcLev > 0){c(rep(0, times = T.mcLev-1), 1:(Time-max(2,lagTerms)-T.mcLev+1))} else{rep(0, times = Time-max(2,lagTerms))}
tend.temp <- max(2,lagTerms):(Time-1)
Matrix::t(Matrix::bdiag(mapply(ti = ti.temp, t.end = tend.temp, lagTerms = lagTerms, FUN = datLEV.fct, varname = varname,
MoreArgs = list(i = i, use.mc.diff = use.mc.diff, inst.stata = inst.stata
, dat.na = dat.na, dat = dat, varname.i = varname.i, Time = Time)) ))*
as.vector(!is.na(diff(dat.na[dat.na[, varname.i] == i, varname][(max(2,lagTerms)-1):(Time-1)])))
}
}
LEV.pre.fct <- function(
varname
,i
,T.mcLev
,lagTerms
,use.mc.diff
,inst.stata
,Time
,varname.i
,dat
,dat.na
){
if(use.mc.diff & !(inst.stata)){
ti.temp <- max(2,lagTerms)
tend.temp <- Time
Matrix::Diagonal(do.call(what = datLEV.pre.fct, args = list(ti = ti.temp, t.end = tend.temp, lagTerms = lagTerms, varname = varname, i = i, use.mc.diff = use.mc.diff, inst.stata = inst.stata
, dat = dat, dat.na = dat.na, varname.i = varname.i, Time = Time)), n = Time-max(2,lagTerms)+1)
} else{
ti.temp <- rep(max(2,lagTerms), times = Time-max(2,lagTerms)+1) + if(Time-max(2,lagTerms)-T.mcLev > 0){c(rep(0, times = T.mcLev), 1:(Time-max(2,lagTerms)-T.mcLev+1))} else{rep(0, times = Time-max(2,lagTerms)+1)}
tend.temp <- max(2,lagTerms):(Time)
Matrix::t(Matrix::bdiag(mapply(ti = ti.temp, t.end = tend.temp, lagTerms = lagTerms, FUN = datLEV.pre.fct, varname = varname,
MoreArgs = list(i = i, use.mc.diff = use.mc.diff, inst.stata = inst.stata
, dat = dat, dat.na = dat.na, varname.i = varname.i, Time = Time))) )*
as.vector(!is.na(diff(dat.na[dat.na[, varname.i] == i, varname][(lagTerms-1):Time])))
}
}
datLEV.fct <- function(
ti
,t.end
,i
,lagTerms
,varname
,use.mc.diff
,inst.stata
,Time
,varname.i
,dat
,dat.na
){
if(use.mc.diff & !(inst.stata)){
(dat[dat[, varname.i] == i, varname][ti:t.end]*
as.numeric(!is.na(dat.na[dat[, varname.i] == i, varname][(ti - max(2,lagTerms) + 1):(t.end - max(2,lagTerms) + 1)]*
dat.na[dat[, varname.i] == i, varname][(ti):(t.end)]*
dat.na[dat[, varname.i] == i, varname][(ti + 1):(t.end + 1)] )) -
dat[dat[, varname.i] == i, varname][(ti - 1):(t.end - 1)]*
as.numeric(!is.na(dat.na[dat[, varname.i] == i, varname][(ti - max(2,lagTerms) + 1):(t.end - max(2,lagTerms) + 1)]*
dat.na[dat[, varname.i] == i, varname][(ti):(t.end)]*
dat.na[dat[, varname.i] == i, varname][(ti + 1):(t.end + 1)] )) ) *
as.vector(!is.na(diff(dat.na[dat.na[, varname.i] == i, varname][(ti-1):(t.end)])))
} else{
(dat[dat[, varname.i] == i, varname][ti:t.end]*
as.numeric(!is.na(dat.na[dat[, varname.i] == i, varname][t.end - max(2,lagTerms) + 1]*
dat.na[dat[, varname.i] == i, varname][t.end]*
dat.na[dat[, varname.i] == i, varname][t.end+1] )) -
dat[dat[, varname.i] == i, varname][(ti - 1):(t.end - 1)]*
as.numeric(!is.na(dat.na[dat[, varname.i] == i, varname][t.end - max(2,lagTerms) + 1]*
dat.na[dat[, varname.i] == i, varname][t.end]*
dat.na[dat[, varname.i] == i, varname][t.end+1] )) ) *
as.vector(!is.na(diff(dat.na[dat.na[, varname.i] == i, varname][(ti-1):(t.end)])))
}
}
datLEV.pre.fct <- function(
ti
,t.end
,i
,varname
,lagTerms
,use.mc.diff
,inst.stata
,Time
,varname.i
,dat
,dat.na
){
if(is.na(dat.na[dat.na[, varname.i] == i, varname][ti])){
ti = ti+1
t.end = t.end+1
}
if(use.mc.diff & !(inst.stata)){
(dat[dat[, varname.i] == i, varname][(ti):t.end]*
as.numeric(!is.na(dat.na[dat[, varname.i] == i, varname][(ti):(t.end)] )) -
dat[dat[, varname.i] == i, varname][(ti-1):(t.end-1)]*
as.numeric(!is.na(dat.na[dat[, varname.i] == i, varname][(ti-1):(t.end-1)] )) ) *
as.vector(!is.na(diff(dat.na[dat.na[, varname.i] == i, varname][(ti-1):(t.end)])))
} else{
(dat[dat[, varname.i] == i, varname][(ti):t.end] *
as.numeric(!is.na(dat.na[dat[, varname.i] == i, varname][t.end - 1]*
dat.na[dat[, varname.i] == i, varname][t.end] )) -
dat[dat[, varname.i] == i, varname][(ti-1):(t.end - 1)]*
as.numeric(!is.na(dat.na[dat[, varname.i] == i, varname][t.end - 1]*
dat.na[dat[, varname.i] == i, varname][t.end] )) ) *
as.vector(!is.na(diff(dat.na[dat.na[, varname.i] == i, varname][(ti-1):(t.end)])))
}
}
Z_i.fct <- function(
i
,Time
,varname.i
,use.mc.diff
,use.mc.lev
,use.mc.nonlin
,use.mc.nonlinAS
,include.y
,varname.y
,inst.stata
,include.dum
,dum.diff
,dum.lev
,colnames.dum
,fur.con
,fur.con.diff
,fur.con.lev
,varname.reg.estParam.fur
,include.x
,end.reg
,varname.reg.end
,pre.reg
,varname.reg.pre
,ex.reg
,varname.reg.ex
,lagTerms.y
,maxLags.y
,max.lagTerms
,maxLags.reg.end
,maxLags.reg.pre
,maxLags.reg.ex
,inst.reg.ex.expand
,dat
,dat.na
){
i <- as.numeric(i)
if(use.mc.diff){
if(include.y){
Z_i.mc.diff_end.y <- do.call(what = "cbind", args = sapply(X = varname.y, FUN = variable.fct, i = i, T.mcDiff = maxLags.y,
lagTerms = max.lagTerms
, Time = Time, varname.i = varname.i, dat = dat, dat.na = dat.na) )
}
if(include.x){
if(end.reg){
if(length(varname.reg.end) == 1){
Z_i.mc.diff_end.x <- do.call(what = "cbind", args = sapply(FUN = variable.fct, varname.reg.end, i = i, T.mcDiff = maxLags.reg.end,
lagTerms = max.lagTerms
, Time = Time, varname.i = varname.i, dat = dat, dat.na = dat.na) )
} else{
Z_i.mc.diff_end.x <- do.call(what = "cbind", args = mapply(FUN = variable.fct, varname.reg.end, T.mcDiff = maxLags.reg.end
, MoreArgs = list(i = i, Time = Time, varname.i = varname.i, lagTerms = max.lagTerms
, dat = dat, dat.na = dat.na)) )
}
}
if(pre.reg){
if(length(varname.reg.pre) == 1){
Z_i.mc.diff_pre <- do.call(what = "cbind", args = sapply(FUN = variable.pre.fct, varname.reg.pre, i = i, T.mcDiff = maxLags.reg.pre,
lagTerms = max.lagTerms
, Time = Time, varname.i = varname.i, dat = dat, dat.na = dat.na) )
} else{
Z_i.mc.diff_pre <- do.call(what = "cbind", args = mapply(FUN = variable.pre.fct, varname.reg.pre, T.mcDiff = maxLags.reg.pre
, MoreArgs = list(i = i, Time = Time, varname.i = varname.i, lagTerms = max.lagTerms
, dat = dat, dat.na = dat.na)) )
}
}
if(ex.reg){
if(length(varname.reg.ex) == 1){
Z_i.mc.diff_ex <- do.call(what = "cbind", args = sapply(FUN = variable.ex.fct, varname.reg.ex, i = i, T.mcDiff = maxLags.reg.ex,
lagTerms = max.lagTerms, inst.reg.ex.expand = inst.reg.ex.expand
, Time = Time, varname.i = varname.i, dat = dat, dat.na = dat.na) )
} else{
Z_i.mc.diff_ex <- do.call(what = "cbind", args = mapply(FUN = variable.ex.fct, varname.reg.ex, T.mcDiff = maxLags.reg.ex
, MoreArgs = list(i = i, Time = Time, varname.i = varname.i, lagTerms = max.lagTerms
, inst.reg.ex.expand = inst.reg.ex.expand
, dat = dat, dat.na = dat.na)) )
}
}
}
Z_i.mc.diff_temp <- do.call(what = "cbind", args = mget(ls(pattern = "Z_i.mc.diff")))
n.inst.diff <- ncol(Z_i.mc.diff_temp)
n.obs.diff <- nrow(Z_i.mc.diff_temp)
}
if(use.mc.lev){
if(include.y){
Z_i.mc.lev_end.y <- do.call(what = "cbind", args = sapply(X = varname.y, FUN = LEV.fct, i = i, T.mcLev = maxLags.y, lagTerms = max.lagTerms,
use.mc.diff = use.mc.diff, inst.stata = inst.stata
, Time = Time, varname.i = varname.i, dat = dat, dat.na = dat.na) )
}
if(include.x){
if(end.reg){
if(length(varname.reg.end) == 1){
Z_i.mc.lev_end.x <- do.call(what = "cbind", args = sapply(FUN = LEV.fct, i = i, varname.reg.end, T.mcLev = maxLags.reg.end, lagTerms = max.lagTerms,
use.mc.diff = use.mc.diff, inst.stata = inst.stata
, Time = Time, varname.i = varname.i, dat = dat, dat.na = dat.na) )
} else{
Z_i.mc.lev_end.x <- do.call(what = "cbind", args = mapply(FUN = LEV.fct, varname.reg.end, T.mcLev = maxLags.reg.end
, MoreArgs = list(use.mc.diff = use.mc.diff, inst.stata = inst.stata
, i = i, Time = Time, varname.i = varname.i, lagTerms = max.lagTerms
, dat = dat, dat.na = dat.na)) )
}
}
if(ex.reg | pre.reg){
varname.ex.pre.temp <- c({if(!(is.null("varname.reg.ex"))){varname.reg.ex}}, {if(!(is.null("varname.reg.pre"))){varname.reg.pre}} )
T.mcLev.temp <- c({if(!(is.null("varname.reg.ex"))){maxLags.reg.ex - 1}}, {if(!(is.null("varname.reg.pre"))){maxLags.reg.pre}} )
if(length(varname.ex.pre.temp) == 1){
Z_i.mc.lev_ex.pre <- do.call(what = "cbind", args = sapply(FUN = LEV.pre.fct, i = i, varname.ex.pre.temp, T.mcLev = T.mcLev.temp
, use.mc.diff = use.mc.diff, inst.stata = inst.stata
, Time = Time, varname.i = varname.i, lagTerms = max.lagTerms
, dat = dat, dat.na = dat.na) )
} else{
Z_i.mc.lev_ex.pre <- do.call(what = "cbind", args = mapply(FUN = LEV.pre.fct, varname.ex.pre.temp, T.mcLev = T.mcLev.temp
,MoreArgs = list(i = i, use.mc.diff = use.mc.diff, inst.stata = inst.stata
, Time = Time, varname.i = varname.i, lagTerms = max.lagTerms
, dat = dat, dat.na = dat.na)) )
}
}
}
Z_i.mc.lev_end <- do.call(what = "cbind", args = mget(ls(pattern = "Z_i.mc.lev_end")))
if(include.x & (include.y | end.reg) & (ex.reg | pre.reg)){
Z_i.mc.lev <- cbind(rbind(0, Z_i.mc.lev_end), Z_i.mc.lev_ex.pre)
} else{
if((include.y | end.reg) & ((include.dum & dum.lev) | (fur.con & fur.con.lev))){
if(max.lagTerms == 1){
Z_i.mc.lev <- rbind(0, Z_i.mc.lev_end)
} else{
Z_i.mc.lev <- Z_i.mc.lev_end
}
} else{
Z_i.mc.lev <- Z_i.mc.lev_end
}
}
n.inst.lev <- ncol(Z_i.mc.lev)
n.obs.lev <- nrow(Z_i.mc.lev)
if(use.mc.diff){
Z_i.temp <- Matrix::bdiag(list(Z_i.mc.diff_temp, Z_i.mc.lev))
} else{
Z_i.temp <- Z_i.mc.lev
}
}
if(use.mc.nonlin){
if(use.mc.nonlinAS){
Z_i.mc.AS4 <- diag(as.numeric(!(is.na(diff(dat.na[dat[, varname.i] == i, varname.y], differences = max.lagTerms+2))) )[if(maxLags.y - (max.lagTerms+2) + 1 < Time - (max.lagTerms+2)){-(1:(Time - (max.lagTerms+2) - (maxLags.y - (max.lagTerms+2)+1)))}], nrow = Time - (max.lagTerms+2) - length((1:(Time - (max.lagTerms+2) - (maxLags.y - (max.lagTerms+2)+1)))))
} else {
Z_i.mc.AS4 <- diag(as.numeric(!(is.na(diff(dat.na[dat[, varname.i] == i, varname.y], differences = max.lagTerms+2))) ))
}
if(use.mc.diff & !(use.mc.lev)){
Z_i.temp <- Matrix::bdiag(list(Z_i.mc.diff_temp, Z_i.mc.AS4))
}
if(!(use.mc.diff) & use.mc.lev){
Z_i.temp <- Matrix::bdiag(Z_i.mc.AS4, Z_i.mc.lev)
}
if(!(use.mc.diff) & !(use.mc.lev)){
Z_i.temp <- Z_i.mc.AS4
}
if(use.mc.diff & use.mc.lev){
Z_i.temp <- Matrix::bdiag(Z_i.mc.diff_temp, Z_i.mc.AS4, Z_i.mc.lev)
}
n.inst.nl <- ncol(Z_i.mc.AS4)
n.obs.nl <- nrow(Z_i.mc.AS4)
}
if(!(use.mc.lev) & !(use.mc.nonlin)){
Z_i.temp <- Z_i.mc.diff_temp
}
if(include.dum){
ind_vec.diff.row <- is.na(diff(dat.na[dat[, varname.i] == i, varname.y][1:(Time)], differences = max.lagTerms+1) )
ind_vec.lev.row <- is.na(diff(dat.na[dat[, varname.i] == i, varname.y][1:(Time)], differences = max.lagTerms) )
ind_vec.diff.col <- is.na(diff(dat.na[dat[, varname.i] == i , varname.y][2:Time], differences = max.lagTerms) )
ind_vec.lev.col <- is.na(diff(dat.na[dat[, varname.i] == i , varname.y][1:Time], differences = max.lagTerms) )
if(dum.lev){
if(max.lagTerms > 1){
Z_i.dum_4.lev <- as.matrix(dat[dat[, varname.i] == i, colnames.dum[-c(1:(max.lagTerms-1))]][-c(1:max.lagTerms), ])
} else{
Z_i.dum_4.lev <- as.matrix(dat[dat[, varname.i] == i, colnames.dum][-c(1:max.lagTerms), ])
}
Z_i.dum_4.lev[ind_vec.lev.row, ] <- 0
Z_i.dum_4.lev[ ,ind_vec.lev.col] <- 0
colnames.dum_4.lev <- colnames(Z_i.dum_4.lev)
colnames(Z_i.dum_4.lev) <- NULL
rownames(Z_i.dum_4.lev) <- NULL
if(use.mc.nonlin){
Z_i.dum_2.nl <- matrix(0, ncol = ncol(Z_i.dum_4.lev), nrow = nrow(Z_i.mc.AS4))
colnames.dum_2.nl <- colnames.dum_4.lev
colnames(Z_i.dum_2.nl) <- NULL
}
if(dum.diff){
Z_i.dum_1.diff <- as.matrix(dat[dat[, varname.i] == i, colnames.dum[-c(1:max.lagTerms)]][(2+max.lagTerms):Time, ] -
rbind(dat[dat[, varname.i] == i, colnames.dum[-c(1:max.lagTerms)]][(2+(max.lagTerms-1)):(Time-1), ]))
colnames.dum_1.diff <- paste("D.", colnames.dum_4.lev, sep = "")
colnames(Z_i.dum_1.diff) <- NULL
rownames(Z_i.dum_1.diff) <- NULL
}
if(dum.diff & dum.lev){
if(use.mc.nonlin){
Z_i.dum <- Matrix::bdiag(Z_i.dum_1.diff, rbind(Z_i.dum_2.nl, Z_i.dum_4.lev))
} else{
Z_i.dum <- do.call(what = Matrix::bdiag, mget(ls(pattern = "Z_i.dum_")))
}
} else{
if((use.mc.diff | fur.con.diff) & !dum.diff){
Z_i.dum_1.diff <- matrix(0, ncol = ncol(Z_i.dum_4.lev), nrow = (Time-max.lagTerms-1))
colnames.dum_1.diff <- colnames(Z_i.dum_4.lev)
if(use.mc.nonlin){
Z_i.dum <- rbind(Z_i.dum_1.diff, Z_i.dum_2.nl, Z_i.dum_4.lev)
} else{
Z_i.dum <- rbind(Z_i.dum_1.diff, Z_i.dum_4.lev)
}
} else{
if(length(ls(pattern = "Z_i.dum_")) == 1){
Z_i.dum <- Z_i.dum_4.lev
} else{
Z_i.dum <- do.call(what = rbind, mget(ls(pattern = "Z_i.dum_")))
}
}
}
}
if(dum.diff & !(dum.lev)){
Z_i.dum_1.diff <- as.matrix(dat[dat[, varname.i] == i, colnames.dum[-c(1:max.lagTerms)]][(2+max.lagTerms):Time, ] -
rbind(dat[dat[, varname.i] == i, colnames.dum[-c(1:max.lagTerms)]][(2+(max.lagTerms-1)):(Time-1), ]))
Z_i.dum_1.diff[ind_vec.diff.row, ] <- 0
Z_i.dum_1.diff[ ,ind_vec.diff.col] <- 0
colnames.dum_1.diff <- paste("D.", colnames(Z_i.dum_1.diff), sep = "")
colnames(Z_i.dum_1.diff) <- NULL
rownames(Z_i.dum_1.diff) <- NULL
if(use.mc.nonlin){
Z_i.dum_2.nl <- matrix(0, ncol = ncol(Z_i.dum_1.diff), nrow = nrow(Z_i.mc.AS4))
colnames.dum_2.nl <- colnames(Z_i.dum_2.nl)
colnames(Z_i.dum_2.nl) <- NULL
}
if(use.mc.lev){
if(fur.con.lev | ex.reg | pre.reg){
Z_i.dum_4.lev <- matrix(0, ncol = ncol(Z_i.dum_1.diff), nrow = (Time - max.lagTerms))
} else{
Z_i.dum_4.lev <- matrix(0, ncol = ncol(Z_i.dum_1.diff), nrow = (Time - max(2,max.lagTerms)))
}
colnames.dum_4.lev <- colnames(Z_i.dum_1.diff)
colnames(Z_i.dum_4.lev) <- NULL
}
Z_i.dum <- do.call(what = "rbind", args = mget(ls(pattern = "Z_i.dum_")))
rownames(Z_i.dum) <- NULL
}
colnames_Z_i.dum <- unique(as.vector(do.call(what = "c", mget(ls(pattern = "colnames.dum_")))))
if(nrow(Z_i.temp) < nrow(Z_i.dum)){
if(use.mc.lev){
Z_i.temp <- rbind(matrix(0, ncol = ncol(Z_i.temp), nrow = nrow(Z_i.dum) - nrow(Z_i.temp)), Z_i.temp)
} else{
if(use.mc.diff){
Z_i.temp <- rbind(Z_i.temp, matrix(0, ncol = ncol(Z_i.temp), nrow = nrow(Z_i.dum) - nrow(Z_i.temp)))
} else{
if(use.mc.nonlin & !use.mc.diff & !use.mc.lev){
if(dum.diff){
Z_i.temp <- rbind(matrix(0, ncol = ncol(Z_i.temp), nrow = nrow(Z_i.dum) - nrow(Z_i.temp)), Z_i.temp)
} else{
Z_i.temp <- rbind(Z_i.temp, matrix(0, ncol = ncol(Z_i.temp), nrow = nrow(Z_i.dum) - nrow(Z_i.temp)))
}
}
}
}
}
Z_i.temp <- cbind(Z_i.temp, as.matrix(Z_i.dum))
if(dum.diff & dum.lev){
colnames_Z_i.dum <- colnames_Z_i.dum[-1]
n.inst.dum <- c(length(get(ls(pattern = "colnames.dum_1"))) -1, length(get(ls(pattern = "colnames.dum_4"))))
} else{
if(dum.diff & !(dum.lev)){
n.inst.dum <- length(get(ls(pattern = "colnames.dum_1")))
}
if(dum.lev & !(dum.diff)){
n.inst.dum <- length(get(ls(pattern = "colnames.dum_4")))
}
}
} else{
colnames_Z_i.dum <- NULL
}
if(fur.con){
ind_vec.diff.row <- is.na(diff(dat.na[dat[, varname.i] == i, varname.y][1:Time], differences = max.lagTerms+1) )
ind_vec.lev.row <- is.na(diff(dat.na[dat[, varname.i] == i, varname.y][1:(Time)], differences = max.lagTerms) )
if(fur.con.diff){
if(length(varname.reg.estParam.fur) == 1){
Z_i.furCon.temp_diff <- diff(as.matrix(dat.na[dat[, varname.i] == i, varname.reg.estParam.fur][-c(1:max.lagTerms)]), differences = 1)
Z_i.furCon.temp_diff[ind_vec.diff.row] <- 0
colnames.fur.con.diff <- varname.reg.estParam.fur
rownames(Z_i.furCon.temp_diff) <- NULL
colnames(Z_i.furCon.temp_diff) <- NULL
} else{
Z_i.furCon.temp_diff <- diff(as.matrix(dat.na[dat[, varname.i] == i, varname.reg.estParam.fur][-c(1:max.lagTerms), ]), differences = 1)
Z_i.furCon.temp_diff[ind_vec.diff.row, ] <- 0
colnames.fur.con.diff <- colnames(Z_i.furCon.temp_diff)
rownames(Z_i.furCon.temp_diff) <- NULL
colnames(Z_i.furCon.temp_diff) <- NULL
}
}
if(fur.con.lev){
if(length(varname.reg.estParam.fur) == 1){
Z_i.furCon.temp_lev <- as.matrix(dat.na[dat[, varname.i] == i, varname.reg.estParam.fur][1:Time][-c(1:max.lagTerms)] )
Z_i.furCon.temp_lev[ind_vec.lev.row] <- 0
colnames.fur.con.lev <- varname.reg.estParam.fur
rownames(Z_i.furCon.temp_lev) <- NULL
colnames(Z_i.furCon.temp_lev) <- NULL
} else{
Z_i.furCon.temp_lev <- as.matrix(dat.na[dat[, varname.i] == i, varname.reg.estParam.fur][1:Time, ][-c(1:max.lagTerms), ] )
Z_i.furCon.temp_lev[ind_vec.lev.row, ] <- 0
colnames.fur.con.lev <- colnames(Z_i.furCon.temp_lev)
rownames(Z_i.furCon.temp_lev) <- NULL
colnames(Z_i.furCon.temp_lev) <- NULL
}
}
if(fur.con.diff & fur.con.lev){
if(length(varname.reg.estParam.fur) == 1){
if(use.mc.nonlin){
Z_i.furCon.diff <- as.matrix(c(Z_i.furCon.temp_diff, rep(0, times = nrow(Z_i.furCon.temp_lev) + nrow(Z_i.mc.AS4))))
Z_i.furCon.lev <- as.matrix(c(rep(0, times = nrow(Z_i.furCon.temp_diff) + nrow(Z_i.mc.AS4)), Z_i.furCon.temp_lev))
} else{
Z_i.furCon.diff <- as.matrix(c(Z_i.furCon.temp_diff, rep(0, times = nrow(Z_i.furCon.temp_lev))))
Z_i.furCon.lev <- as.matrix(c(rep(0, times = nrow(Z_i.furCon.temp_diff)), Z_i.furCon.temp_lev))
}
} else{
if(use.mc.nonlin){
Z_i.furCon.diff <- rbind(Z_i.furCon.temp_diff, matrix(0, ncol = ncol(Z_i.furCon.temp_diff), nrow = nrow(Z_i.furCon.temp_lev) + nrow(Z_i.mc.AS4)))
Z_i.furCon.lev <- rbind(matrix(0, ncol = ncol(Z_i.furCon.temp_lev), nrow = nrow(Z_i.furCon.temp_diff) + nrow(Z_i.mc.AS4)), Z_i.furCon.temp_lev)
} else{
Z_i.furCon.diff <- rbind(Z_i.furCon.temp_diff, matrix(0, ncol = ncol(Z_i.furCon.temp_diff), nrow = nrow(Z_i.furCon.temp_lev)))
Z_i.furCon.lev <- rbind(matrix(0, ncol = ncol(Z_i.furCon.temp_lev), nrow = nrow(Z_i.furCon.temp_diff)), Z_i.furCon.temp_lev)
}
}
Z_i.furCon.temp <- cbind(Z_i.furCon.diff, Z_i.furCon.lev)
n.inst.furCon <- c(length(get(ls(pattern = "colnames.fur.con.diff"))), length(get(ls(pattern = "colnames.fur.con.lev"))))
} else{
if(fur.con.diff){
Z_i.furCon.temp <- Z_i.furCon.temp_diff
n.inst.furCon <- length(get(ls(pattern = "colnames.fur.con.diff")))
if(nrow(Z_i.furCon.temp) != nrow(Z_i.temp)){
if(!include.dum){
if((use.mc.lev | use.mc.nonlin) & !use.mc.diff){
Z_i.furCon.temp <- rbind(Z_i.furCon.temp, matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp)))
}
if(use.mc.diff & use.mc.lev){
Z_i.furCon.temp <- rbind(Z_i.furCon.temp, matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp) - nrow(Z_i.furCon.temp)))
}
if(use.mc.diff & use.mc.nonlin){
Z_i.furCon.temp <- rbind(Z_i.furCon.temp, matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp) - nrow(Z_i.furCon.temp)))
}
} else{
if((use.mc.lev | use.mc.nonlin) & !use.mc.diff){
Z_i.furCon.temp <- rbind(Z_i.furCon.temp, matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp) - nrow(Z_i.furCon.temp)))
}
if(use.mc.diff){
Z_i.furCon.temp <- rbind(Z_i.furCon.temp, matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp) - nrow(Z_i.furCon.temp)))
}
}
}
} else{
Z_i.furCon.temp <- Z_i.furCon.temp_lev
n.inst.furCon <- length(get(ls(pattern = "colnames.fur.con.lev")))
if(dum.diff & !dum.lev){
if(use.mc.lev & !use.mc.diff){
if(nrow(Z_i.temp) > nrow(Z_i.furCon.temp)){
Z_i.furCon.temp <- rbind(matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp)-nrow(Z_i.furCon.temp)), Z_i.furCon.temp)
}
} else{
if(use.mc.lev & use.mc.diff){
Z_i.furCon.temp <- rbind(matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp)-nrow(Z_i.furCon.temp)), Z_i.furCon.temp)
} else{
Z_i.furCon.temp <- rbind(matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp)), Z_i.furCon.temp)
}
}
} else{
if(use.mc.diff & !use.mc.lev & !include.dum){
Z_i.furCon.temp <- rbind(matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp)), Z_i.furCon.temp)
}
if(!use.mc.diff & !use.mc.lev & use.mc.nonlin){
if(dum.lev){
Z_i.furCon.temp <- rbind(matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp)-nrow(Z_i.furCon.temp)), Z_i.furCon.temp)
} else{
Z_i.furCon.temp <- rbind(matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp)), Z_i.furCon.temp)
}
}
if(nrow(Z_i.furCon.temp) < nrow(Z_i.temp)){
Z_i.furCon.temp <- rbind(matrix(0, ncol = ncol(Z_i.furCon.temp), nrow = nrow(Z_i.temp) - nrow(Z_i.furCon.temp)), Z_i.furCon.temp)
}
}
}
}
if(nrow(Z_i.temp) < nrow(Z_i.furCon.temp)){
if(use.mc.lev){
Z_i.temp <- rbind(matrix(0, ncol = ncol(Z_i.temp), nrow = nrow(Z_i.furCon.temp) - nrow(Z_i.temp)), Z_i.temp)
} else{
Z_i.temp <- rbind(Z_i.temp, matrix(0, ncol = ncol(Z_i.temp), nrow = nrow(Z_i.furCon.temp) - nrow(Z_i.temp)))
}
}
Z_i.temp <- cbind(Z_i.temp, Z_i.furCon.temp)
Z_i.temp[is.na(Z_i.temp)] <- 0
}
n.inst <- c(if(use.mc.diff){ n.inst.diff }, if(use.mc.lev){ n.inst.lev },
if(use.mc.nonlin){ n.inst.nl }, if(include.dum){ n.inst.dum }, if(fur.con){ n.inst.furCon } )
names(n.inst) <- c(if(use.mc.diff){ "inst.diff" }, if(use.mc.lev){ "inst.lev" },
if(use.mc.nonlin){ "inst.nl" },
if(include.dum & dum.diff){ "dum.diff" }, if(include.dum & dum.lev){ "dum.lev" },
if(fur.con & fur.con.diff){ "inst.furCon.diff" }, if(fur.con & fur.con.lev){ "inst.furCon.lev" } )
n.obs <- c(if(use.mc.diff){ n.obs.diff }, if(use.mc.lev){ n.obs.lev },
if(use.mc.nonlin){ n.obs.nl } )
names(n.obs) <- c(if(use.mc.diff){ "n.obs.diff" }, if(use.mc.lev){ "n.obs.lev" },
if(use.mc.nonlin){ "n.obs.nl" })
return(list(Z_i.temp = Z_i.temp, colnames.dum = colnames_Z_i.dum, n.inst = n.inst, n.obs = n.obs))
} |
layer_histograms <- function(vis, ..., width = NULL, center = NULL,
boundary = NULL, closed = c("right", "left"),
stack = TRUE, binwidth) {
if (!missing(binwidth)) {
width <- binwidth
deprecated("binwidth", "width", version = "0.3.0")
}
closed <- match.arg(closed)
new_props <- merge_props(cur_props(vis), props(...))
check_unsupported_props(new_props, c("x", "y", "x2", "y2"),
c("enter", "exit", "hover"), "layer_histograms")
x_var <- find_prop_var(new_props, "x.update")
x_val <- eval_vector(cur_data(vis), x_var)
vis <- set_scale_label(vis, "x", prop_label(new_props$x.update))
vis <- scale_numeric(vis, "y", domain = c(0, NA), expand = c(0, 0.05),
label = "count")
layer_f(vis, function(x) {
x <- compute_bin(x, x_var, width = width, center = center,
boundary = boundary, closed = closed)
if (stack) {
x <- compute_stack(x, stack_var = ~count_, group_var = ~x_)
rect_props <- merge_props(
new_props,
props(x = ~xmin_, x2 = ~xmax_, y = ~stack_upr_, y2 = ~stack_lwr_)
)
x <- emit_rects(x, rect_props)
} else {
rect_props <- merge_props(
new_props,
props(x = ~xmin_, x2 = ~xmax_, y = ~count_, y2 = 0)
)
x <- emit_rects(x, rect_props)
}
x
})
}
layer_freqpolys <- function(vis, ..., width = NULL, center = NULL, boundary = NULL,
closed = c("right", "left"), binwidth) {
if (!missing(binwidth)) {
width <- binwidth
deprecated("binwidth", "width", version = "0.3.0")
}
closed <- match.arg(closed)
new_props <- merge_props(cur_props(vis), props(...))
check_unsupported_props(new_props, c("x", "y"),
c("enter", "exit", "hover"), "layer_freqpolys")
x_var <- find_prop_var(new_props, "x.update")
x_val <- eval_vector(cur_data(vis), x_var)
vis <- set_scale_label(vis, "x", prop_label(new_props$x.update))
vis <- set_scale_label(vis, "y", "count")
params <- bin_params(range(x_val, na.rm = TRUE), width = value(width),
center = value(center), boundary = value(boundary),
closed = value(closed))
layer_f(vis, function(x) {
x <- compute_bin(x, x_var, width = params$width,
boundary = params$origin, closed = params$closed, pad = TRUE)
path_props <- merge_props(new_props, props(x = ~x_, y = ~count_))
x <- emit_paths(x, path_props)
x
})
} |
kppm <- function(X, ...) {
UseMethod("kppm")
}
kppm.formula <-
function(X, clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
..., data=NULL) {
callstring <- short.deparse(sys.call())
cl <- match.call()
if(!inherits(X, "formula"))
stop(paste("Argument 'X' should be a formula"))
formula <- X
if(spatstat.options("expand.polynom"))
formula <- expand.polynom(formula)
if(length(formula) < 3)
stop(paste("Formula must have a left hand side"))
Yexpr <- formula[[2L]]
trend <- formula[c(1L,3L)]
thecall <- call("kppm", X=Yexpr, trend=trend,
data=data, clusters=clusters)
ncall <- length(thecall)
argh <- list(...)
nargh <- length(argh)
if(nargh > 0) {
thecall[ncall + 1:nargh] <- argh
names(thecall)[ncall + 1:nargh] <- names(argh)
}
callenv <- list2env(as.list(data), parent=parent.frame())
result <- eval(thecall, envir=callenv, enclos=baseenv())
result$call <- cl
result$callframe <- parent.frame()
if(!("callstring" %in% names(list(...))))
result$callstring <- callstring
return(result)
}
kppm.ppp <- kppm.quad <-
function(X, trend = ~1,
clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
data=NULL,
...,
covariates = data,
subset,
method = c("mincon", "clik2", "palm", "adapcl"),
improve.type = c("none", "clik1", "wclik1", "quasi"),
improve.args = list(),
weightfun=NULL,
control=list(),
stabilize=TRUE,
algorithm,
statistic="K",
statargs=list(),
rmax = NULL,
epsilon=0.01,
covfunargs=NULL,
use.gam=FALSE,
nd=NULL, eps=NULL) {
cl <- match.call()
callstring <- paste(short.deparse(sys.call()), collapse="")
Xname <- short.deparse(substitute(X))
clusters <- match.arg(clusters)
improve.type <- match.arg(improve.type)
method <- match.arg(method)
if(method == "mincon")
statistic <- pickoption("summary statistic", statistic,
c(K="K", g="pcf", pcf="pcf"))
if(missing(algorithm)) {
algorithm <- if(method == "adapcl") "Broyden" else "Nelder-Mead"
} else check.1.string(algorithm)
ClusterArgs <- list(method = method,
improve.type = improve.type,
improve.args = improve.args,
weightfun=weightfun,
control=control,
stabilize=stabilize,
algorithm=algorithm,
statistic=statistic,
statargs=statargs,
rmax = rmax)
Xenv <- list2env(as.list(covariates), parent=parent.frame())
X <- eval(substitute(X), envir=Xenv, enclos=baseenv())
isquad <- is.quad(X)
if(!is.ppp(X) && !isquad)
stop("X should be a point pattern (ppp) or quadrature scheme (quad)")
if(is.marked(X))
stop("Sorry, cannot handle marked point patterns")
if(!missing(subset)) {
W <- eval(subset, covariates, parent.frame())
if(!is.null(W)) {
if(is.im(W)) {
W <- solutionset(W)
} else if(!is.owin(W)) {
stop("Argument 'subset' should yield a window or logical image",
call.=FALSE)
}
X <- X[W]
}
}
po <- ppm(Q=X, trend=trend, covariates=covariates,
forcefit=TRUE, rename.intercept=FALSE,
covfunargs=covfunargs, use.gam=use.gam, nd=nd, eps=eps)
XX <- if(isquad) X$data else X
if(is.null(weightfun))
switch(method,
adapcl = {
weightfun <- function(d) { as.integer(abs(d) <= 1)*exp(1/(d^2-1)) }
attr(weightfun, "selfprint") <-
"Indicator(-1 <= distance <= 1) * exp(1/(distance^2-1))"
},
mincon = { },
{
RmaxW <- (rmax %orifnull% rmax.rule("K", Window(XX),
intensity(XX))) / 2
weightfun <- function(d) { as.integer(d <= RmaxW) }
attr(weightfun, "selfprint") <-
paste0("Indicator(distance <= ", RmaxW, ")")
})
out <- switch(method,
mincon = kppmMinCon(X=XX, Xname=Xname, po=po, clusters=clusters,
control=control, stabilize=stabilize,
statistic=statistic,
statargs=statargs, rmax=rmax,
algorithm=algorithm, ...),
clik2 = kppmComLik(X=XX, Xname=Xname, po=po, clusters=clusters,
control=control, stabilize=stabilize,
weightfun=weightfun,
rmax=rmax, algorithm=algorithm, ...),
palm = kppmPalmLik(X=XX, Xname=Xname, po=po, clusters=clusters,
control=control, stabilize=stabilize,
weightfun=weightfun,
rmax=rmax, algorithm=algorithm, ...),
adapcl = kppmCLadap(X=XX, Xname=Xname, po=po, clusters=clusters,
control=control, epsilon=epsilon,
weightfun=weightfun, rmax=rmax,
algorithm=algorithm,
...))
h <- attr(out, "h")
out <- append(out, list(ClusterArgs=ClusterArgs,
call=cl,
callframe=parent.frame(),
callstring=callstring))
DPP <- list(...)$DPP
class(out) <- c(ifelse(is.null(DPP), "kppm", "dppm"), class(out))
if(improve.type != "none")
out <- do.call(improve.kppm,
append(list(object = out, type = improve.type),
improve.args))
attr(out, "h") <- h
return(out)
}
kppmMinCon <- function(X, Xname, po, clusters, control=list(), stabilize=TRUE, statistic, statargs,
algorithm="Nelder-Mead", DPP=NULL, ...) {
stationary <- is.stationary(po)
if(stationary) {
lambda <- summary(po)$trend$value
} else {
w <- as.owin(po, from="covariates")
if(!is.mask(w)) w <- NULL
lambda <- predict(po, locations=w)
}
if(!is.null(DPP)){
tmp <- dppmFixIntensity(DPP, lambda, po)
clusters <- tmp$clusters
lambda <- tmp$lambda
po <- tmp$po
}
mcfit <- clusterfit(X, clusters, lambda = lambda,
dataname = Xname, control = control, stabilize=stabilize,
statistic = statistic, statargs = statargs,
algorithm=algorithm, ...)
fitinfo <- attr(mcfit, "info")
attr(mcfit, "info") <- NULL
Fit <- list(method = "mincon",
statistic = statistic,
Stat = fitinfo$Stat,
StatFun = fitinfo$StatFun,
StatName = fitinfo$StatName,
FitFun = fitinfo$FitFun,
statargs = statargs,
pspace = fitinfo$pspace,
mcfit = mcfit,
maxlogcl = NULL)
if(!is.null(DPP)){
clusters <- update(clusters, as.list(mcfit$par))
out <- list(Xname = Xname,
X = X,
stationary = stationary,
fitted = clusters,
po = po,
Fit = Fit)
} else{
out <- list(Xname = Xname,
X = X,
stationary = stationary,
clusters = clusters,
modelname = fitinfo$modelname,
isPCP = fitinfo$isPCP,
po = po,
lambda = lambda,
mu = mcfit$mu,
par = mcfit$par,
clustpar = mcfit$clustpar,
clustargs = mcfit$clustargs,
modelpar = mcfit$modelpar,
covmodel = mcfit$covmodel,
Fit = Fit)
}
return(out)
}
clusterfit <- function(X, clusters, lambda = NULL, startpar = NULL,
...,
q=1/4, p=2, rmin=NULL, rmax=NULL,
ctrl=list(q=q, p=p, rmin=rmin, rmax=rmax),
statistic = NULL, statargs = NULL,
algorithm="Nelder-Mead", verbose=FALSE,
pspace=NULL){
if(verbose) splat("Fitting cluster model")
dataname <- list(...)$dataname
info <- spatstatClusterModelInfo(clusters)
if(verbose) splat("Retrieved cluster model information")
isPCP <- info$isPCP
isDPP <- inherits(clusters, "detpointprocfamily")
default.ctrl <- list(q=if(isDPP) 1/2 else 1/4,
p=2,
rmin=NULL,
rmax=NULL)
given.ctrl <- if(missing(ctrl)) list() else ctrl[names(default.ctrl)]
given.args <- c(if(missing(q)) NULL else list(q=q),
if(missing(p)) NULL else list(p=p),
if(missing(rmin)) NULL else list(rmin=rmin),
if(missing(rmax)) NULL else list(rmax=rmax))
ctrl <- resolve.defaults(given.args, given.ctrl, default.ctrl)
if(verbose) {
splat("Algorithm parameters:")
print(ctrl)
}
if(inherits(X, "ppp")){
if(verbose)
splat("Using point pattern data")
if(is.null(dataname))
dataname <- getdataname(short.deparse(substitute(X), 20), ...)
if(is.null(statistic))
statistic <- "K"
if(is.null(startpar))
startpar <- info$selfstart(X)
stationary <- is.null(lambda) || (is.numeric(lambda) && length(lambda)==1)
if(verbose) {
splat("Starting parameters:")
print(startpar)
cat("Calculating summary function...")
}
if(stationary) {
if(is.null(lambda)) lambda <- intensity(X)
StatFun <- if(statistic == "K") "Kest" else "pcf"
StatName <-
if(statistic == "K") "K-function" else "pair correlation function"
Stat <- do.call(StatFun,
resolve.defaults(list(X=quote(X)),
statargs,
list(correction="best")))
} else {
StatFun <- if(statistic == "K") "Kinhom" else "pcfinhom"
StatName <- if(statistic == "K") "inhomogeneous K-function" else
"inhomogeneous pair correlation function"
Stat <- do.call(StatFun,
resolve.defaults(list(X=quote(X), lambda=lambda),
statargs,
list(correction="best")))
}
if(verbose) splat("Done.")
} else if(inherits(X, "fv")){
if(verbose)
splat("Using the given summary function")
Stat <- X
stattype <- attr(Stat, "fname")
StatFun <- paste0(stattype)
StatName <- NULL
if(is.null(statistic)){
if(is.null(stattype) || !is.element(stattype[1L], c("K", "pcf")))
stop("Cannot infer the type of summary statistic from argument ",
sQuote("X"), " please specify this via argument ",
sQuote("statistic"))
statistic <- stattype[1L]
}
if(stattype[1L]!=statistic)
stop("Statistic inferred from ", sQuote("X"),
" not equal to supplied argument ",
sQuote("statistic"))
if(is.null(startpar)){
if(isDPP)
stop("No rule for starting parameters in this case. Please set ",
sQuote("startpar"), " explicitly.")
startpar <- info$checkpar(startpar, old=FALSE)
startpar[["scale"]] <- mean(range(Stat[[fvnames(Stat, ".x")]]))
}
} else{
stop("Unrecognised format for argument X")
}
if(statistic=="pcf"){
if(verbose) splat("Checking g(0)")
argu <- fvnames(Stat, ".x")
rvals <- Stat[[argu]]
if(rvals[1L] == 0 && (is.null(rmin) || rmin == 0)) {
if(verbose) splat("Ignoring g(0)")
rmin <- rvals[2L]
}
}
changealgorithm <- length(startpar)==1 && algorithm=="Nelder-Mead"
if(isDPP){
if(verbose) splat("Invoking dppmFixAlgorithm")
alg <- dppmFixAlgorithm(algorithm, changealgorithm, clusters, startpar)
algorithm <- alg$algorithm
}
dots <- info$resolvedots(...)
startpar <- info$checkpar(startpar)
theoret <- info[[statistic]]
desc <- paste("minimum contrast fit of", info$descname)
mcargs <- resolve.defaults(list(observed=Stat,
theoretical=theoret,
startpar=startpar,
ctrl=ctrl,
method=algorithm,
fvlab=list(label="%s[fit](r)",
desc=desc),
explain=list(dataname=dataname,
fname=statistic,
modelname=info$modelname),
margs=dots$margs,
model=dots$model,
funaux=info$funaux,
pspace=pspace),
list(...)
)
if(isDPP && algorithm=="Brent" && changealgorithm)
mcargs <- resolve.defaults(mcargs, list(lower=alg$lower, upper=alg$upper))
if(verbose) splat("Starting minimum contrast fit")
mcfit <- do.call(mincontrast, mcargs)
if(verbose) splat("Returned from minimum contrast fit")
optpar <- mcfit$par
names(optpar) <- names(startpar)
mcfit$par <- optpar
if(isDPP){
extra <- list(Stat = Stat,
StatFun = StatFun,
StatName = StatName,
modelname = info$modelabbrev,
lambda = lambda)
attr(mcfit, "info") <- extra
if(verbose) splat("Returning from clusterfit (DPP case)")
return(mcfit)
}
mcfit$modelpar <- info$interpret(optpar, lambda)
mcfit$internal <- list(model=ifelse(isPCP, clusters, "lgcp"))
mcfit$covmodel <- dots$covmodel
if(isPCP) {
kappa <- mcfit$par[["kappa"]]
mu <- lambda/kappa
} else {
sigma2 <- mcfit$par[["sigma2"]]
mu <- log(lambda) - sigma2/2
}
mcfit$mu <- mu
mcfit$clustpar <- info$checkpar(mcfit$par, old=FALSE)
mcfit$clustargs <- info$checkclustargs(dots$margs, old=FALSE)
FitFun <- paste0(tolower(clusters), ".est", statistic)
extra <- list(FitFun = FitFun,
Stat = Stat,
StatFun = StatFun,
StatName = StatName,
modelname = info$modelabbrev,
isPCP = isPCP,
lambda = lambda,
pspace = pspace)
attr(mcfit, "info") <- extra
if(verbose) splat("Returning from clusterfit")
return(mcfit)
}
kppmComLik <- function(X, Xname, po, clusters, control=list(), stabilize=TRUE, weightfun, rmax,
algorithm="Nelder-Mead", DPP=NULL, ..., pspace=NULL) {
W <- as.owin(X)
if(is.null(rmax))
rmax <- rmax.rule("K", W, intensity(X))
cl <- closepairs(X, rmax, what="ijd")
dIJ <- cl$d
if(is.function(weightfun)) {
wIJ <- weightfun(dIJ)
sumweight <- safePositiveValue(sum(wIJ))
} else {
npairs <- length(dIJ)
wIJ <- rep.int(1, npairs)
sumweight <- npairs
}
dcm <- do.call.matched(as.mask,
append(list(w=W), list(...)),
sieve=TRUE)
M <- dcm$result
otherargs <- dcm$otherargs
isDPP <- inherits(clusters, "detpointprocfamily")
if(stationary <- is.stationary(po)) {
lambda <- intensity(X)
g <- distcdf(W, delta=rmax/4096)
gscale <- npoints(X)^2
} else {
lambda <- lambdaM <- predict(po, locations=M)
g <- distcdf(M, dW=lambdaM, delta=rmax/4096)
gscale <- safePositiveValue(integral.im(lambdaM)^2, default=npoints(X)^2)
}
isDPP <- !is.null(DPP)
if(isDPP){
tmp <- dppmFixIntensity(DPP, lambda, po)
clusters <- tmp$clusters
lambda <- tmp$lambda
po <- tmp$po
}
g <- g[with(g, .x) <= rmax,]
info <- spatstatClusterModelInfo(clusters)
pcfun <- info$pcf
funaux <- info$funaux
selfstart <- info$selfstart
isPCP <- info$isPCP
parhandler <- info$parhandler
modelname <- info$modelname
pcfunargs <- list(funaux=funaux)
if(is.function(parhandler)) {
clustargs <- if("covmodel" %in% names(otherargs))
otherargs[["covmodel"]] else otherargs
clargs <- do.call(parhandler, clustargs)
pcfunargs <- append(clargs, pcfunargs)
} else clargs <- NULL
startpar <- selfstart(X)
paco <- function(d, par) {
do.call(pcfun, append(list(par=par, rvals=d), pcfunargs))
}
if(!is.function(weightfun)) {
objargs <- list(dIJ=dIJ, sumweight=sumweight, g=g, gscale=gscale,
envir=environment(paco),
BIGVALUE=1,
SMALLVALUE=.Machine$double.eps)
obj <- function(par, objargs) {
with(objargs, {
logprod <- sum(log(safePositiveValue(paco(dIJ, par))))
integ <- unlist(stieltjes(paco, g, par=par))
integ <- pmax(SMALLVALUE, integ)
logcl <- 2*(logprod - sumweight * log(integ))
logcl <- safeFiniteValue(logcl, default=-BIGVALUE)
return(logcl)
},
enclos=objargs$envir)
}
objargs$BIGVALUE <- bigvaluerule(obj, objargs, startpar)
} else {
force(weightfun)
wpaco <- function(d, par) {
y <- do.call(pcfun, append(list(par=par, rvals=d), pcfunargs))
w <- weightfun(d)
return(y * w)
}
objargs <- list(dIJ=dIJ, wIJ=wIJ, sumweight=sumweight, g=g, gscale=gscale,
envir=environment(wpaco),
BIGVALUE=1,
SMALLVALUE=.Machine$double.eps)
obj <- function(par, objargs) {
with(objargs,
{
integ <- unlist(stieltjes(wpaco, g, par=par))
integ <- pmax(SMALLVALUE, integ)
logcl <- safeFiniteValue(
2*(sum(wIJ * log(safePositiveValue(paco(dIJ, par))))
- sumweight * log(integ)),
default=-BIGVALUE)
return(logcl)
},
enclos=objargs$envir)
}
objargs$BIGVALUE <- bigvaluerule(obj, objargs, startpar)
}
if(stabilize) {
startval <- obj(startpar, objargs)
smallscale <- sqrt(.Machine$double.eps)
fnscale <- -max(abs(startval), smallscale)
parscale <- pmax(abs(startpar), smallscale)
scaling <- list(fnscale=fnscale, parscale=parscale)
} else {
scaling <- list(fnscale=-1)
}
control.updated <- resolve.defaults(control, scaling, list(trace=0))
optargs <- list(par=startpar, fn=obj, objargs=objargs,
control=control.updated, method=algorithm)
changealgorithm <- length(startpar)==1 && algorithm=="Nelder-Mead"
if(isDPP){
alg <- dppmFixAlgorithm(algorithm, changealgorithm, clusters,
startpar)
algorithm <- optargs$method <- alg$algorithm
if(algorithm=="Brent" && changealgorithm){
optargs$lower <- alg$lower
optargs$upper <- alg$upper
}
}
opt <- do.call(optim, optargs)
signalStatus(optimStatus(opt), errors.only=TRUE)
optpar <- opt$par
names(optpar) <- names(startpar)
opt$par <- optpar
opt$startpar <- startpar
if(!is.null(DPP)){
Fit <- list(method = "clik2",
clfit = opt,
weightfun = weightfun,
rmax = rmax,
objfun = obj,
objargs = objargs,
maxlogcl = opt$value,
pspace = pspace)
clusters <- update(clusters, as.list(opt$par))
result <- list(Xname = Xname,
X = X,
stationary = stationary,
fitted = clusters,
modelname = modelname,
po = po,
lambda = lambda,
Fit = Fit)
return(result)
}
modelpar <- info$interpret(optpar, lambda)
if(isPCP) {
kappa <- optpar[["kappa"]]
mu <- if(stationary) lambda/kappa else eval.im(lambda/kappa)
} else {
sigma2 <- optpar[["sigma2"]]
mu <- if(stationary) log(lambda) - sigma2/2 else
eval.im(log(lambda) - sigma2/2)
}
Fit <- list(method = "clik2",
clfit = opt,
weightfun = weightfun,
rmax = rmax,
objfun = obj,
objargs = objargs,
maxlogcl = opt$value,
pspace = pspace)
result <- list(Xname = Xname,
X = X,
stationary = stationary,
clusters = clusters,
modelname = modelname,
isPCP = isPCP,
po = po,
lambda = lambda,
mu = mu,
par = optpar,
clustpar = info$checkpar(par=optpar, old=FALSE),
clustargs = info$checkclustargs(clargs$margs, old=FALSE),
modelpar = modelpar,
covmodel = clargs,
Fit = Fit)
return(result)
}
kppmPalmLik <- function(X, Xname, po, clusters, control=list(), stabilize=TRUE, weightfun, rmax,
algorithm="Nelder-Mead", DPP=NULL, ..., pspace=NULL) {
W <- as.owin(X)
if(is.null(rmax))
rmax <- rmax.rule("K", W, intensity(X))
cl <- closepairs(X, rmax)
J <- cl$j
dIJ <- cl$d
if(is.function(weightfun)) {
wIJ <- weightfun(dIJ)
} else {
npairs <- length(dIJ)
wIJ <- rep.int(1, npairs)
}
dcm <- do.call.matched(as.mask,
append(list(w=W), list(...)),
sieve=TRUE)
M <- dcm$result
otherargs <- dcm$otherargs
isDPP <- inherits(clusters, "detpointprocfamily")
if(stationary <- is.stationary(po)) {
lambda <- intensity(X)
lambdaJ <- rep(lambda, length(J))
g <- distcdf(X, M, delta=rmax/4096)
gscale <- npoints(X)^2
} else {
lambdaX <- fitted(po, dataonly=TRUE)
lambda <- lambdaM <- predict(po, locations=M)
lambdaJ <- lambdaX[J]
g <- distcdf(X, M, dV=lambdaM, delta=rmax/4096)
gscale <- safePositiveValue(integral.im(lambdaM) * npoints(X),
default=npoints(X)^2)
}
isDPP <- !is.null(DPP)
if(isDPP){
tmp <- dppmFixIntensity(DPP, lambda, po)
clusters <- tmp$clusters
lambda <- tmp$lambda
po <- tmp$po
}
g <- g[with(g, .x) <= rmax,]
info <- spatstatClusterModelInfo(clusters)
pcfun <- info$pcf
funaux <- info$funaux
selfstart <- info$selfstart
isPCP <- info$isPCP
parhandler <- info$parhandler
modelname <- info$modelname
pcfunargs <- list(funaux=funaux)
if(is.function(parhandler)) {
clustargs <- if("covmodel" %in% names(otherargs))
otherargs[["covmodel"]] else otherargs
clargs <- do.call(parhandler, clustargs)
pcfunargs <- append(clargs, pcfunargs)
} else clargs <- NULL
startpar <- selfstart(X)
paco <- function(d, par) {
do.call(pcfun, append(list(par=par, rvals=d), pcfunargs))
}
if(!is.function(weightfun)) {
objargs <- list(dIJ=dIJ, g=g, gscale=gscale,
sumloglam=safeFiniteValue(sum(log(lambdaJ))),
envir=environment(paco),
BIGVALUE=1,
SMALLVALUE=.Machine$double.eps)
obj <- function(par, objargs) {
with(objargs, {
integ <- unlist(stieltjes(paco, g, par=par))
integ <- pmax(SMALLVALUE, integ)
logplik <- safeFiniteValue(
sumloglam + sum(log(safePositiveValue(paco(dIJ, par))))
- gscale * integ,
default=-BIGVALUE)
return(logplik)
},
enclos=objargs$envir)
}
objargs$BIGVALUE <- bigvaluerule(obj, objargs, startpar)
} else {
force(weightfun)
wpaco <- function(d, par) {
y <- do.call(pcfun, append(list(par=par, rvals=d), pcfunargs))
w <- weightfun(d)
return(y * w)
}
objargs <- list(dIJ=dIJ, wIJ=wIJ, g=g, gscale=gscale,
wsumloglam=safeFiniteValue(
sum(wIJ * safeFiniteValue(log(lambdaJ)))
),
envir=environment(wpaco),
BIGVALUE=1,
SMALLVALUE=.Machine$double.eps)
obj <- function(par, objargs) {
with(objargs, {
integ <- unlist(stieltjes(wpaco, g, par=par))
integ <- pmax(SMALLVALUE, integ)
logplik <- safeFiniteValue(wsumloglam +
sum(wIJ * log(safePositiveValue(paco(dIJ, par))))
- gscale * integ,
default=-BIGVALUE)
return(logplik)
},
enclos=objargs$envir)
}
objargs$BIGVALUE <- bigvaluerule(obj, objargs, startpar)
}
if(stabilize) {
startval <- obj(startpar, objargs)
smallscale <- sqrt(.Machine$double.eps)
fnscale <- -max(abs(startval), smallscale)
parscale <- pmax(abs(startpar), smallscale)
scaling <- list(fnscale=fnscale, parscale=parscale)
} else {
scaling <- list(fnscale=-1)
}
control.updated <- resolve.defaults(control, scaling, list(trace=0))
optargs <- list(par=startpar, fn=obj, objargs=objargs,
control=control.updated, method=algorithm)
changealgorithm <- length(startpar)==1 && algorithm=="Nelder-Mead"
if(isDPP){
alg <- dppmFixAlgorithm(algorithm, changealgorithm, clusters,
startpar)
algorithm <- optargs$method <- alg$algorithm
if(algorithm=="Brent" && changealgorithm){
optargs$lower <- alg$lower
optargs$upper <- alg$upper
}
}
opt <- do.call(optim, optargs)
signalStatus(optimStatus(opt), errors.only=TRUE)
optpar <- opt$par
names(optpar) <- names(startpar)
opt$par <- optpar
opt$startpar <- startpar
if(!is.null(DPP)){
Fit <- list(method = "palm",
clfit = opt,
weightfun = weightfun,
rmax = rmax,
objfun = obj,
objargs = objargs,
maxlogcl = opt$value,
pspace = pspace)
clusters <- update(clusters, as.list(optpar))
result <- list(Xname = Xname,
X = X,
stationary = stationary,
fitted = clusters,
modelname = modelname,
po = po,
lambda = lambda,
Fit = Fit)
return(result)
}
modelpar <- info$interpret(optpar, lambda)
if(isPCP) {
kappa <- optpar[["kappa"]]
mu <- if(stationary) lambda/kappa else eval.im(lambda/kappa)
} else {
sigma2 <- optpar[["sigma2"]]
mu <- if(stationary) log(lambda) - sigma2/2 else
eval.im(log(lambda) - sigma2/2)
}
Fit <- list(method = "palm",
clfit = opt,
weightfun = weightfun,
rmax = rmax,
objfun = obj,
objargs = objargs,
maxlogcl = opt$value,
pspace = pspace)
result <- list(Xname = Xname,
X = X,
stationary = stationary,
clusters = clusters,
modelname = modelname,
isPCP = isPCP,
po = po,
lambda = lambda,
mu = mu,
par = optpar,
clustpar = info$checkpar(par=optpar, old=FALSE),
clustargs = info$checkclustargs(clargs$margs, old=FALSE),
modelpar = modelpar,
covmodel = clargs,
Fit = Fit)
return(result)
}
kppmCLadap <- function(X, Xname, po, clusters, control, weightfun,
rmax=NULL, epsilon=0.01, DPP=NULL,
algorithm="Broyden", ...,
startpar=NULL, globStrat="dbldog") {
if(!requireNamespace("nleqslv", quietly=TRUE))
stop(paste("The package", sQuote("nleqslv"), "is required"),
call.=FALSE)
W <- as.owin(X)
if(is.null(rmax))
rmax <- shortside(Frame(W))
cl <- closepairs(X, rmax)
dIJ <- cl$d
Rmin <- min(dIJ)
indexmin <- which(dIJ==Rmin)
dcm <- do.call.matched(as.mask,
append(list(w=W), list(...)),
sieve=TRUE)
M <- dcm$result
otherargs <- dcm$otherargs
if(stationary <- is.stationary(po)) {
lambda <- intensity(X)
g <- distcdf(W, delta=rmax/4096)
gscale <- npoints(X)^2
} else {
lambda <- lambdaM <- predict(po, locations=M)
g <- distcdf(M, dW=lambdaM, delta=rmax/4096)
gscale <- safePositiveValue(integral.im(lambdaM)^2, default=npoints(X)^2)
}
isDPP <- !is.null(DPP)
if(isDPP){
tmp <- dppmFixIntensity(DPP, lambda, po)
clusters <- tmp$clusters
lambda <- tmp$lambda
po <- tmp$po
}
info <- spatstatClusterModelInfo(clusters)
pcfun <- info$pcf
dpcfun <- info$Dpcf
funaux <- info$funaux
selfstart <- info$selfstart
isPCP <- info$isPCP
parhandler <- info$parhandler
modelname <- info$modelname
pcfunargs <- list(funaux=funaux)
if(is.function(parhandler)) {
clustargs <- if("covmodel" %in% names(otherargs))
otherargs[["covmodel"]] else otherargs
clargs <- do.call(parhandler, clustargs)
pcfunargs <- append(clargs, pcfunargs)
} else clargs <- NULL
if(is.null(startpar)) {
startpar <- selfstart(X)
} else if(!isDPP){
checkpar <- info$checkpar
startpar <- checkpar(startpar, old=TRUE)
}
startparLog <- log(startpar)
pcfunLog <- function(par, ...) { pcfun(exp(par), ...) }
dpcfunLog <- function(par, ...) { dpcfun(exp(par), ...) }
paco <- function(d, par) {
do.call(pcfunLog, append(list(par=par, rvals=d), pcfunargs))
}
dpaco <- function(d, par) {
do.call(dpcfunLog, append(list(par=par, rvals=d), pcfunargs))
}
g <- g[with(g, .x) <= rmax,]
weight <- function(d, par) {
y <- paco(d=d, par=par)
M <- 1
if(!isDPP){
M <- abs(paco(d=0, par=par)-1)
}
return(weightfun(epsilon*M/(y-1)))
}
wlogcl2score <- function(par, paco, dpaco, dIJ, gscale, epsilon, cdf=g){
p <- length(par)
temp <- rep(0, p)
if(isDPP){
if(length(par)==1 && is.null(names(par)))
names(par) <- clusters$freepar
mod <- update(clusters, as.list(exp(par)))
if(!valid(mod)){
return(rep(Inf, p))
}
}
wdIJ <- weight(d=dIJ, par=par)
index <- unique(c(which(wdIJ!=0), indexmin))
dIJcurrent <- dIJ[index]
for(i in 1:p){
parname <- names(par)[i]
dpcfweighted <- function(d, par){
y <- dpaco(d = d, par = par)[parname,]*exp(par[i])
return(y*weight(d = d, par = par))
}
temp[i] <- sum(dpcfweighted(d = dIJcurrent, par=par)/paco(d = dIJcurrent, par = par)) - gscale * stieltjes(dpcfweighted,cdf, par=par)$f
}
return(temp)
}
opt <- nleqslv::nleqslv(x = startparLog, fn = wlogcl2score,
method = algorithm,
global = globStrat, control = control,
paco=paco, dpaco=dpaco,
dIJ=dIJ, gscale=gscale, epsilon=epsilon)
optpar <- exp(opt$x)
names(optpar) <- names(startpar)
opt$par <- optpar
opt$startpar <- startpar
if(isDPP){
Fit <- list(method = "adapcl",
cladapfit = opt,
weightfun = weightfun,
rmax = rmax,
epsilon = epsilon,
objfun = wlogcl2score,
objargs = control,
estfunc = opt$fvec)
clusters <- update(clusters, as.list(exp(opt$x)))
result <- list(Xname = Xname,
X = X,
stationary = stationary,
fitted = clusters,
modelname = modelname,
po = po,
lambda = lambda,
Fit = Fit)
return(result)
}
modelpar <- info$interpret(optpar, lambda)
if(isPCP) {
kappa <- optpar[["kappa"]]
mu <- if(stationary) lambda/kappa else eval.im(lambda/kappa)
} else {
sigma2 <- optpar[["sigma2"]]
mu <- if(stationary) log(lambda) - sigma2/2 else
eval.im(log(lambda) - sigma2/2)
}
Fit <- list(method = "adapcl",
cladapfit = opt,
weightfun = weightfun,
rmax = rmax,
epsilon = epsilon,
objfun = wlogcl2score,
objargs = control,
estfunc = opt$fvec)
result <- list(Xname = Xname,
X = X,
stationary = stationary,
clusters = clusters,
modelname = modelname,
isPCP = isPCP,
po = po,
lambda = lambda,
mu = mu,
par = optpar,
clustpar = info$checkpar(par=optpar, old=FALSE),
clustargs = info$checkclustargs(clargs$margs, old=FALSE),
modelpar = modelpar,
covmodel = clargs,
Fit = Fit)
return(result)
}
improve.kppm <- local({
fnc <- function(r, eps, g){ (g(r) - 1)/(g(0) - 1) - eps}
improve.kppm <- function(object, type=c("quasi", "wclik1", "clik1"),
rmax = NULL, eps.rmax = 0.01,
dimyx = 50, maxIter = 100, tolerance = 1e-06,
fast = TRUE, vcov = FALSE, fast.vcov = FALSE,
verbose = FALSE,
save.internals = FALSE) {
verifyclass(object, "kppm")
type <- match.arg(type)
gfun <- pcfmodel(object)
X <- object$X
win <- as.owin(X)
mask <- as.mask(win, dimyx = dimyx)
wt <- pixellate(win, W = mask)
wt <- wt[mask]
Uxy <- rasterxy.mask(mask)
U <- ppp(Uxy$x, Uxy$y, window = win, check=FALSE)
U <- U[mask]
Yu <- pixellate(X, W = mask)
Yu <- Yu[mask]
po <- object$po
Z <- model.images(po, mask)
Z <- sapply(Z, "[", i=U)
beta0 <- coef(po)
if (type != "clik1" && is.null(rmax))
{
diamwin <- diameter(win)
rmax <- if(fnc(diamwin, eps.rmax, gfun) >= 0) diamwin else
uniroot(fnc, lower = 0, upper = diameter(win),
eps=eps.rmax, g=gfun)$root
if(verbose)
splat(paste0("type: ", type, ", ",
"dependence range: ", rmax, ", ",
"dimyx: ", dimyx, ", g(0) - 1:", gfun(0) -1))
}
if (type == "wclik1")
Kmax <- 2*pi * integrate(function(r){r * (gfun(r) - 1)},
lower=0, upper=rmax)$value * exp(c(Z %*% beta0))
if (!fast || (vcov && !fast.vcov)){
if (verbose)
cat("computing the g(u_i,u_j)-1 matrix ...")
gminus1 <- matrix(gfun(c(pairdist(U))) - 1, U$n, U$n)
if (verbose)
cat("..Done.\n")
}
if ( (fast && type == "quasi") | fast.vcov ){
if (verbose)
cat("computing the sparse G-1 matrix ...\n")
cp <- crosspairs(U,U,rmax,what="ijd")
if (verbose)
cat("crosspairs done\n")
Gtap <- (gfun(cp$d) - 1)
if(vcov){
if(fast.vcov){
gminus1 <- Matrix::sparseMatrix(i=cp$i, j=cp$j,
x=Gtap, dims=c(U$n, U$n))
} else{
if(fast)
gminus1 <- matrix(gfun(c(pairdist(U))) - 1, U$n, U$n)
}
}
if (verbose & type!="quasi")
cat("..Done.\n")
}
if (type == "quasi" && fast){
mu0 <- exp(c(Z %*% beta0)) * wt
mu0root <- sqrt(mu0)
sparseG <- Matrix::sparseMatrix(i=cp$i, j=cp$j,
x=mu0root[cp$i] * mu0root[cp$j] * Gtap,
dims=c(U$n, U$n))
Rroot <- Matrix::Cholesky(sparseG, perm = TRUE, Imult = 1)
if (verbose)
cat("..Done.\n")
}
bt <- beta0
noItr <- 1
repeat {
mu <- exp(c(Z %*% bt)) * wt
mu.root <- sqrt(mu)
ff <- switch(type,
clik1 = Z,
wclik1= Z/(1 + Kmax),
quasi = if(fast){
Matrix::solve(Rroot, mu.root * Z)/mu.root
} else{
solve(diag(U$n) + t(gminus1 * mu), Z)
}
)
uf <- (Yu - mu) %*% ff
Jinv <- solve(t(Z * mu) %*% ff)
if(maxIter==0){
break
}
deltabt <- as.numeric(uf %*% Jinv)
if (any(!is.finite(deltabt))) {
warning(paste("Infinite value, NA or NaN appeared",
"in the iterative weighted least squares algorithm.",
"Returning the initial intensity estimate unchanged."),
call.=FALSE)
return(object)
}
bt <- bt + deltabt
if (verbose)
splat(paste0("itr: ", noItr, ",\nu_f: ", as.numeric(uf),
"\nbeta:", bt, "\ndeltabeta:", deltabt))
if (max(abs(deltabt/bt)) <= tolerance || max(abs(uf)) <= tolerance)
break
if (noItr > maxIter)
stop("Maximum number of iterations reached without convergence.")
noItr <- noItr + 1
}
out <- object
out$po$coef.orig <- beta0
out$po$coef <- bt
loc <- if(is.sob(out$lambda)) as.mask(out$lambda) else mask
out$lambda <- predict(out$po, locations = loc)
out$improve <- list(type = type,
rmax = rmax,
dimyx = dimyx,
fast = fast,
fast.vcov = fast.vcov)
if(save.internals){
out$improve <- append(out$improve, list(ff=ff, uf=uf, J.inv=Jinv))
}
if(vcov){
if (verbose)
cat("computing the asymptotic variance ...\n")
trans <- if(fast) Matrix::t else t
Sig <- trans(ff) %*% (ff * mu) + trans(ff * mu) %*% gminus1 %*% (ff * mu)
out$vcov <- as.matrix(Jinv %*% Sig %*% Jinv)
}
return(out)
}
improve.kppm
})
is.kppm <- function(x) { inherits(x, "kppm")}
print.kppm <- print.dppm <- function(x, ...) {
isPCP <- x$isPCP
isDPP <- inherits(x, "dppm")
if(!isDPP && is.null(isPCP)) isPCP <- TRUE
terselevel <- spatstat.options('terse')
digits <- getOption('digits')
splat(if(x$stationary) "Stationary" else "Inhomogeneous",
if(isDPP) "determinantal" else if(isPCP) "cluster" else "Cox",
"point process model")
Xname <- x$Xname
if(waxlyrical('extras', terselevel) && nchar(Xname) < 20) {
has.subset <- ("subset" %in% names(x$call))
splat("Fitted to",
if(has.subset) "(a subset of)" else NULL,
"point pattern dataset", sQuote(Xname))
}
if(waxlyrical('gory', terselevel)) {
switch(x$Fit$method,
mincon = {
splat("Fitted by minimum contrast")
splat("\tSummary statistic:", x$Fit$StatName)
},
clik =,
clik2 = {
splat("Fitted by maximum second order composite likelihood")
splat("\trmax =", x$Fit$rmax)
if(!is.null(wtf <- x$Fit$weightfun)) {
a <- attr(wtf, "selfprint") %orifnull% pasteFormula(wtf)
splat("\tweight function:", a)
}
},
palm = {
splat("Fitted by maximum Palm likelihood")
splat("\trmax =", x$Fit$rmax)
if(!is.null(wtf <- x$Fit$weightfun)) {
a <- attr(wtf, "selfprint") %orifnull% pasteFormula(wtf)
splat("\tweight function:", a)
}
},
adapcl = {
splat("Fitted by adaptive second order composite likelihood")
splat("\tepsilon =", x$Fit$epsilon)
if(!is.null(wtf <- x$Fit$weightfun)) {
a <- attr(wtf, "selfprint") %orifnull% pasteFormula(wtf)
splat("\tweight function:", a)
}
},
warning(paste("Unrecognised fitting method", sQuote(x$Fit$method)))
)
}
parbreak(terselevel)
if(!(isDPP && is.null(x$fitted$intensity)))
print(x$po, what="trend")
if(isDPP){
splat("Fitted DPP model:")
print(x$fitted)
return(invisible(NULL))
}
tableentry <- spatstatClusterModelInfo(x$clusters)
splat(if(isPCP) "Cluster" else "Cox",
"model:", tableentry$printmodelname(x))
cm <- x$covmodel
if(!isPCP) {
splat("\tCovariance model:", cm$model)
margs <- cm$margs
if(!is.null(margs)) {
nama <- names(margs)
tags <- ifelse(nzchar(nama), paste(nama, "="), "")
tagvalue <- paste(tags, margs)
splat("\tCovariance parameters:",
paste(tagvalue, collapse=", "))
}
}
pa <- x$clustpar
if (!is.null(pa)) {
splat("Fitted",
if(isPCP) "cluster" else "covariance",
"parameters:")
print(pa, digits=digits)
}
if(!is.null(mu <- x$mu)) {
if(isPCP) {
splat("Mean cluster size: ",
if(!is.im(mu)) paste(signif(mu, digits), "points") else "[pixel image]")
} else {
splat("Fitted mean of log of random intensity:",
if(!is.im(mu)) signif(mu, digits) else "[pixel image]")
}
}
if(isDPP) {
rx <- repul(x)
splat(if(is.im(rx)) "(Average) strength" else "Strength",
"of repulsion:", signif(mean(rx), 4))
}
invisible(NULL)
}
plot.kppm <- local({
plotem <- function(x, ..., main=dmain, dmain) { plot(x, ..., main=main) }
plot.kppm <- function(x, ...,
what=c("intensity", "statistic", "cluster"),
pause=interactive(),
xname) {
if(missing(xname)) xname <- short.deparse(substitute(x))
nochoice <- missing(what)
what <- pickoption("plot type", what,
c(statistic="statistic",
intensity="intensity",
cluster="cluster"),
multi=TRUE)
Fit <- x$Fit
if(is.null(Fit)) {
warning("kppm object is in outdated format")
Fit <- x
Fit$method <- "mincon"
}
loc <- list(...)$locations
inappropriate <- (nochoice & ((what == "intensity") & (x$stationary))) |
((what == "statistic") & (Fit$method != "mincon")) |
((what == "cluster") & (identical(x$isPCP, FALSE))) |
((what == "cluster") & (!x$stationary) & is.null(loc))
if(!nochoice && !x$stationary && "cluster" %in% what && is.null(loc))
stop("Please specify additional argument ", sQuote("locations"),
" which will be passed to the function ",
sQuote("clusterfield"), ".")
if(any(inappropriate)) {
what <- what[!inappropriate]
if(length(what) == 0){
message("Nothing meaningful to plot. Exiting...")
return(invisible(NULL))
}
}
pause <- pause && (length(what) > 1)
if(pause) opa <- par(ask=TRUE)
for(style in what)
switch(style,
intensity={
plotem(x$po, ...,
dmain=c(xname, "Intensity"),
how="image", se=FALSE)
},
statistic={
plotem(Fit$mcfit, ...,
dmain=c(xname, Fit$StatName))
},
cluster={
plotem(clusterfield(x, locations = loc, verbose=FALSE), ...,
dmain=c(xname, "Fitted cluster"))
})
if(pause) par(opa)
return(invisible(NULL))
}
plot.kppm
})
predict.kppm <- predict.dppm <- function(object, ...) {
se <- resolve.1.default(list(se=FALSE), list(...))
interval <- resolve.1.default(list(interval="none"), list(...))
if(se) warning("Standard error calculation assumes a Poisson process")
if(interval != "none")
warning(paste(interval, "interval calculation assumes a Poisson process"))
predict(as.ppm(object), ...)
}
fitted.kppm <- fitted.dppm <- function(object, ...) {
fitted(as.ppm(object), ...)
}
residuals.kppm <- residuals.dppm <- function(object, ...) {
type <- resolve.1.default(list(type="raw"), list(...))
if(type != "raw")
warning(paste("calculation of", type, "residuals",
"assumes a Poisson process"))
residuals(as.ppm(object), ...)
}
formula.kppm <- formula.dppm <- function(x, ...) {
formula(x$po, ...)
}
terms.kppm <- terms.dppm <- function(x, ...) {
terms(x$po, ...)
}
labels.kppm <- labels.dppm <- function(object, ...) {
labels(object$po, ...)
}
update.kppm <- function(object, ..., evaluate=TRUE, envir=environment(terms(object))) {
argh <- list(...)
nama <- names(argh)
callframe <- object$callframe
fmla <- formula(object)
jf <- integer(0)
if(!is.null(trend <- argh$trend)) {
if(!can.be.formula(trend))
stop("Argument \"trend\" should be a formula")
fmla <- newformula(formula(object), trend, callframe, envir)
jf <- which(nama == "trend")
} else if(any(isfo <- sapply(argh, can.be.formula))) {
if(sum(isfo) > 1) {
if(!is.null(nama)) isfo <- isfo & nzchar(nama)
if(sum(isfo) > 1)
stop(paste("Arguments not understood:",
"there are two unnamed formula arguments"))
}
jf <- which(isfo)
fmla <- argh[[jf]]
fmla <- newformula(formula(object), fmla, callframe, envir)
}
if(!is.null(X <- argh$X)) {
if(!inherits(X, c("ppp", "quad")))
stop(paste("Argument X should be a formula,",
"a point pattern or a quadrature scheme"))
jX <- which(nama == "X")
} else if(any(ispp <- sapply(argh, inherits, what=c("ppp", "quad")))) {
if(sum(ispp) > 1) {
if(!is.null(nama)) ispp <- ispp & nzchar(nama)
if(sum(ispp) > 1)
stop(paste("Arguments not understood:",
"there are two unnamed point pattern/quadscheme arguments"))
}
jX <- which(ispp)
X <- argh[[jX]]
} else {
X <- object$X
jX <- integer(0)
}
Xexpr <- if(length(jX) > 0) sys.call()[[2L + jX]] else NULL
jused <- c(jf, jX)
if(length(jused) > 0) {
argh <- argh[-jused]
nama <- names(argh)
}
thecall <- getCall(object)
methodname <- as.character(thecall[[1L]])
switch(methodname,
kppm.formula = {
if(!is.null(Xexpr)) {
lhs.of.formula(fmla) <- Xexpr
} else if(is.null(lhs.of.formula(fmla))) {
lhs.of.formula(fmla) <- as.name('.')
}
oldformula <- as.formula(getCall(object)$X)
thecall$X <- newformula(oldformula, fmla, callframe, envir)
},
{
oldformula <- as.formula(getCall(object)$trend %orifnull% (~1))
fom <- newformula(oldformula, fmla, callframe, envir)
if(!is.null(Xexpr))
lhs.of.formula(fom) <- Xexpr
if(is.null(lhs.of.formula(fom))) {
thecall$trend <- fom
if(length(jX) > 0)
thecall$X <- X
} else {
thecall$trend <- NULL
thecall$X <- fom
}
})
knownnames <- unique(c(names(formals(kppm.ppp)),
names(formals(mincontrast)),
names(formals(optim))))
knownnames <- setdiff(knownnames,
c("X", "trend",
"observed", "theoretical",
"fn", "gr", "..."))
ok <- nama %in% knownnames
thecall <- replace(thecall, nama[ok], argh[ok])
thecall$formula <- NULL
thecall[[1L]] <- as.name("kppm")
if(!evaluate)
return(thecall)
out <- eval(thecall, envir=parent.frame(), enclos=envir)
if(length(jX) == 1) {
mc <- match.call()
Xlang <- mc[[2L+jX]]
out$Xname <- short.deparse(Xlang)
}
return(out)
}
unitname.kppm <- unitname.dppm <- function(x) {
return(unitname(x$X))
}
"unitname<-.kppm" <- "unitname<-.dppm" <- function(x, value) {
unitname(x$X) <- value
if(!is.null(x$Fit$mcfit)) {
unitname(x$Fit$mcfit) <- value
} else if(is.null(x$Fit)) {
warning("kppm object in outdated format")
if(!is.null(x$mcfit))
unitname(x$mcfit) <- value
}
return(x)
}
as.fv.kppm <- as.fv.dppm <- function(x) {
if(x$Fit$method == "mincon")
return(as.fv(x$Fit$mcfit))
gobs <- if(is.stationary(x)) pcf(x$X, correction="good") else pcfinhom(x$X, lambda=x, correction="good", update=FALSE)
gfit <- (pcfmodel(x))(gobs$r)
g <- bind.fv(gobs,
data.frame(fit=gfit),
"%s[fit](r)",
"predicted %s for fitted model")
return(g)
}
coef.kppm <- coef.dppm <- function(object, ...) {
return(coef(object$po))
}
Kmodel.kppm <- function(model, ...) {
Kpcf.kppm(model, what="K")
}
pcfmodel.kppm <- function(model, ...) {
Kpcf.kppm(model, what="pcf")
}
Kpcf.kppm <- function(model, what=c("K", "pcf", "kernel")) {
what <- match.arg(what)
clusters <- model$clusters
tableentry <- spatstatClusterModelInfo(clusters)
if(is.null(tableentry))
stop("No information available for", sQuote(clusters), "cluster model")
fun <- tableentry[[what]]
if(is.null(fun))
stop("No expression available for", what, "for", sQuote(clusters),
"cluster model")
par <- model$par
funaux <- tableentry$funaux
cm <- model$covmodel
model <- cm$model
margs <- cm$margs
f <- function(r) as.numeric(fun(par=par, rvals=r,
funaux=funaux, model=model, margs=margs))
return(f)
}
is.stationary.kppm <- is.stationary.dppm <- function(x) {
return(x$stationary)
}
is.poisson.kppm <- function(x) {
switch(x$clusters,
Cauchy=,
VarGamma=,
Thomas=,
MatClust={
mu <- x$mu
return(!is.null(mu) && (max(mu) == 0))
},
LGCP = {
sigma2 <- x$par[["sigma2"]]
return(sigma2 == 0)
},
return(FALSE))
}
as.ppm.kppm <- as.ppm.dppm <- function(object) {
object$po
}
as.owin.kppm <- as.owin.dppm <- function(W, ..., from=c("points", "covariates"), fatal=TRUE) {
from <- match.arg(from)
as.owin(as.ppm(W), ..., from=from, fatal=fatal)
}
domain.kppm <- Window.kppm <- domain.dppm <-
Window.dppm <- function(X, ..., from=c("points", "covariates")) {
from <- match.arg(from)
as.owin(X, from=from)
}
model.images.kppm <-
model.images.dppm <- function(object, W=as.owin(object), ...) {
model.images(as.ppm(object), W=W, ...)
}
model.matrix.kppm <-
model.matrix.dppm <- function(object,
data=model.frame(object, na.action=NULL), ...,
Q=NULL,
keepNA=TRUE) {
if(missing(data)) data <- NULL
model.matrix(as.ppm(object), data=data, ..., Q=Q, keepNA=keepNA)
}
model.frame.kppm <- model.frame.dppm <- function(formula, ...) {
model.frame(as.ppm(formula), ...)
}
logLik.kppm <- logLik.dppm <- function(object, ...) {
cl <- object$Fit$maxlogcl
if(is.null(cl))
stop(paste("logLik is only available for kppm objects fitted with",
"method='palm' or method='clik2'"),
call.=FALSE)
ll <- logLik(as.ppm(object))
ll[] <- cl
return(ll)
}
AIC.kppm <- AIC.dppm <- function(object, ..., k=2) {
cl <- logLik(object)
df <- attr(cl, "df")
return(- 2 * as.numeric(cl) + k * df)
}
extractAIC.kppm <- extractAIC.dppm <- function (fit, scale = 0, k = 2, ...) {
cl <- logLik(fit)
edf <- attr(cl, "df")
aic <- - 2 * as.numeric(cl) + k * edf
return(c(edf, aic))
}
nobs.kppm <- nobs.dppm <- function(object, ...) { nobs(as.ppm(object)) }
psib <- function(object) UseMethod("psib")
psib.kppm <- function(object) {
clus <- object$clusters
info <- spatstatClusterModelInfo(clus)
if(!info$isPCP) {
warning("The model is not a cluster process")
return(NA)
}
g <- pcfmodel(object)
p <- 1 - 1/g(0)
return(p)
} |
getVMat.onePhase <- function(Z.Phase1, design.df, var.comp = NA) {
v.mat <- lapply(Z.Phase1, function(x) x %*% t(x))
if (all(is.na(var.comp))) {
return(v.mat)
} else {
if (names(v.mat)[1] == "e") {
match.names <- match(var.comp, names(v.mat))
if (any(is.na(match.names)))
match.names <- match.names[!is.na(match.names)]
return(v.mat[c(1, match.names)])
} else {
match.names <- match(var.comp, names(v.mat))
if (any(is.na(match.names)))
match.names <- match.names[!is.na(match.names)]
return(v.mat[match.names])
}
}
} |
qqnorm.rma.uni <- function(y, type="rstandard", pch=19, envelope=TRUE,
level=y$level, bonferroni=FALSE, reps=1000, smooth=TRUE, bass=0,
label=FALSE, offset=0.3, pos=13, lty, ...) {
mstyle <- .get.mstyle("crayon" %in% .packages())
.chkclass(class(y), must="rma.uni", notav="rma.uni.selmodel")
na.act <- getOption("na.action")
on.exit(options(na.action=na.act), add=TRUE)
x <- y
type <- match.arg(type, c("rstandard", "rstudent"))
if (x$k == 1)
stop(mstyle$stop("Stopped because k = 1."))
draw.envelope <- envelope
if (label == "out" & !envelope) {
envelope <- TRUE
draw.envelope <- FALSE
}
if (length(label) != 1L)
stop(mstyle$stop("Argument 'label' should be of length 1."))
if (missing(lty)) {
lty <- c("solid", "dotted")
} else {
if (length(lty) == 1L)
lty <- c(lty, lty)
}
ddd <- list(...)
lqqnorm <- function(..., seed) qqnorm(...)
labline <- function(..., seed) abline(...)
llines <- function(..., seed) lines(...)
ltext <- function(..., seed) text(...)
if (type == "rstandard") {
res <- rstandard(x)
not.na <- !is.na(res$z)
zi <- res$z[not.na]
slab <- res$slab[not.na]
ord <- order(zi)
slab <- slab[ord]
} else {
res <- rstudent(x)
not.na <- !is.na(res$z)
zi <- res$z[not.na]
slab <- res$slab[not.na]
ord <- order(zi)
slab <- slab[ord]
}
sav <- lqqnorm(zi, pch=pch, bty="l", ...)
labline(a=0, b=1, lty=lty[1], ...)
if (envelope) {
level <- .level(level)
if (!is.null(ddd$seed))
set.seed(ddd$seed)
dat <- matrix(rnorm(x$k*reps), nrow=x$k, ncol=reps)
options(na.action="na.omit")
H <- hatvalues(x, type="matrix")
options(na.action = na.act)
ImH <- diag(x$k) - H
ei <- ImH %*% dat
ei <- apply(ei, 2, sort)
if (bonferroni) {
lb <- apply(ei, 1, quantile, (level/2)/x$k)
ub <- apply(ei, 1, quantile, 1-(level/2)/x$k)
} else {
lb <- apply(ei, 1, quantile, (level/2))
ub <- apply(ei, 1, quantile, 1-(level/2))
}
temp.lb <- qqnorm(lb, plot.it=FALSE)
if (smooth)
temp.lb <- supsmu(temp.lb$x, temp.lb$y, bass=bass)
if (draw.envelope)
llines(temp.lb$x, temp.lb$y, lty=lty[2], ...)
temp.ub <- qqnorm(ub, plot.it=FALSE)
if (smooth)
temp.ub <- supsmu(temp.ub$x, temp.ub$y, bass=bass)
if (draw.envelope)
llines(temp.ub$x, temp.ub$y, lty=lty[2], ...)
}
if ((is.character(label) && label=="none") || .isFALSE(label))
return(invisible(sav))
if ((is.character(label) && label=="all") || .isTRUE(label))
label <- x$k
if (is.numeric(label)) {
label <- round(label)
if (label < 1 | label > x$k)
stop(mstyle$stop("Out of range value for 'label' argument."))
pos.x <- sav$x[ord]
pos.y <- sav$y[ord]
dev <- abs(pos.x - pos.y)
for (i in seq_len(x$k)) {
if (sum(dev > dev[i]) < label) {
if (pos <= 4)
ltext(pos.x[i], pos.y[i], slab[i], pos=pos, offset=offset, ...)
if (pos == 13)
ltext(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] >= 0, 1, 3), offset=offset, ...)
if (pos == 24)
ltext(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] <= 0, 2, 4), offset=offset, ...)
}
}
} else {
pos.x <- sav$x[ord]
pos.y <- sav$y[ord]
for (i in seq_len(x$k)) {
if (pos.y[i] < temp.lb$y[i] || pos.y[i] > temp.ub$y[i]) {
if (pos <= 4)
ltext(pos.x[i], pos.y[i], slab[i], pos=pos, offset=offset, ...)
if (pos == 13)
ltext(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] >= 0, 1, 3), offset=offset, ...)
if (pos == 24)
ltext(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] <= 0, 2, 4), offset=offset, ...)
}
}
}
invisible(sav)
} |
`detail.pick` <-
function(y, ex, dt, TIT="")
{
if(missing(TIT)) { TIT=NULL }
labs = c("DONE", "PROJ", "XING", "YMIN", "YMAX", "SAVED", "NONE" )
colabs = rep(1,length(labs))
pchlabs = rep(1,length(labs))
NSEL = 1
N = 0
NLABS = length(labs)
NOLAB = NLABS +1000
KSAVE = NULL
xsave = NULL
ysave = NULL
pwink = 0.01*diff(range(ex))
pcol=rgb(1,.5, 0)
plot(ex, y, type='n', col=1)
abline(h=0, col=1)
points(ex, y, col=rgb(0.75,0.75,0.8) )
lines(ex, y, col=1)
title(main=TIT)
buttons = RPMG::rowBUTTONS(labs, col=colabs, pch=pchlabs)
zloc = locator(1, type='p', col=pcol)
Nclick = length(zloc$x)
if(is.null(zloc$x)) { return(NULL) }
K = RPMG::whichbutt(zloc ,buttons)
sloc = zloc
while(Nclick>0)
{
xsave = c(xsave, zloc$x)
ysave = c(ysave, zloc$y)
N = N+1
if(K[Nclick] == match("DONE", labs, nomatch = NOLAB))
{
N = N-1
xsave = xsave[1:N]
ysave = ysave[1:N]
break;
}
if(K[Nclick] == match("Postscript", labs, nomatch = NOLAB))
{
}
if(K[Nclick] == match("XING", labs, nomatch = NOLAB))
{
N = N-1
xsave = xsave[1:N]
ysave = ysave[1:N]
LX = xsave[N]
LY = ysave[N]
rim = findInterval(LX, ex)
nflag = seq(from=(rim-5), to=rim+5, by=1)
lex = ex[nflag]
lwhy = y[nflag]
sy = sign(lwhy[1])
ww = which(sign(lwhy) !=sy)
x1 = lex[ww[1]-1]
y1 = lwhy[ww[1]-1]
x2 = lex[ ww[1] ]
y2 = lwhy[ww[1]]
m = (y2-y1)/(x2-x1)
b = y2-m*x2
xingx = -b/m
xingy = 0
points(c(x1,x2,xingx), c(y1, y2, xingy), col=2)
xsave[N] = xingx
ysave[N] = xingy
text(xsave[N], ysave[N], labels= N, pos=3)
}
if(K[Nclick] == match("PROJ", labs, nomatch = NOLAB))
{
n = length(xsave)
x1 = xsave[n-1]
y1 = ysave[n-1]
x2 = xsave[n-2]
y2 = ysave[n-2]
m = (y2-y1)/(x2-x1)
b = y2-m*x2
xingx = -b/m
xingy = 0
points(c(x1,x2,xingx), c(y1, y2, xingy), col=2)
N = N-2
xsave = xsave[1:N]
ysave = ysave[1:N]
xsave[N] = xingx
ysave[N] = xingy
text(xsave[N], ysave[N], labels= N, pos=3)
}
if(K[Nclick] == match("YMAX", labs, nomatch = NOLAB))
{
N = N-1
xsave = xsave[1:N]
ysave = ysave[1:N]
LX = xsave[N]
LY = ysave[N]
ax = LX
flag = ex > (ax-pwink) & ex < (ax+pwink)
w1 = which(flag)[1]-1
rim = which.max(y[flag])
abline(v=ex[w1+rim], col=4)
xsave[N] = ex[w1+rim]
ysave[N] = y[w1+rim]
text(xsave[N], ysave[N], labels= N, pos=3)
points(xsave[N], ysave[N] , col=3, pch=7)
}
if(K[Nclick] == match("YMIN", labs, nomatch = NOLAB))
{
N = N-1
xsave = xsave[1:N]
ysave = ysave[1:N]
LX = xsave[N]
LY = ysave[N]
ax = LX
flag = ex > (ax-pwink) & ex < (ax+pwink)
w1 = which(flag)[1]-1
points( ex[flag] , y[flag], col=5, pch=7)
rim = which.min(y[flag])
abline(v=ex[w1+rim], col=4)
xsave[N] = ex[w1+rim]
ysave[N] = y[w1+rim]
text(xsave[N], ysave[N], labels= N, pos=3)
points(xsave[N], ysave[N] , col=3, pch=7)
}
if(K[Nclick] == match("NONE", labs, nomatch = NOLAB))
{
N = 0
KSAVE = NULL
xsave = NULL
ysave = NULL
plot(ex, y, type='n', col=1)
abline(h=0, col=1)
points(ex, y, col=rgb(0.75,0.75,0.8) )
lines(ex, y, col=1)
title(main=TIT)
buttons = RPMG::rowBUTTONS(labs, col=colabs, pch=pchlabs)
}
if(K[Nclick] == match("POINTS", labs, nomatch = NOLAB))
{
if(N>1)
{
N = N-1
xsave = xsave[1:N]
ysave = ysave[1:N]
}
else
{
N = 0
xsave = NULL
ysave = NULL
}
points(ex, y, col=rgb(0.8,0.8,0.8) )
}
if(K[Nclick] == match("SAVED", labs, nomatch = NOLAB))
{
points(xsave, ysave, col=rgb(0.5,1, 0.5) )
text(xsave, ysave, labels=1:length(xsave), pos=1)
}
zloc = locator(1, type='p', col=pcol)
Nclick = length(zloc$x)
if(is.null(zloc$x)) { return(sloc) }
K = RPMG::whichbutt(zloc ,buttons)
}
KSAVE = list(x=xsave, y=ysave)
return(KSAVE)
} |
xgx_scale_y_percentchangelog10 <- function(breaks = NULL,
minor_breaks = NULL,
labels = NULL,
accuracy = 1,
n_breaks = 7,
...) {
if (is.null(breaks)){
breaks <- function(data_range) {
r <- range(log2(data_range + 1))
breaks <- 2^(labeling::extended(r[1], r[2], m = n_breaks, Q = c(1,2,4,8))) - 1
return(breaks)
}
}
if (is.null(minor_breaks)) {
minor_breaks <- function(x) xgx_minor_breaks_log10(x + 1) - 1
}
percentchangelog <- scales::trans_new(
name = "percentchangelog",
transform = function(x) log10(x + 1),
inverse = function(x) 10^(x) - 1)
if (is.null(labels)) {
labels = scales::percent_format(accuracy = accuracy)
}
ggplot2::scale_y_continuous(trans = percentchangelog,
labels = labels,
minor_breaks = minor_breaks,
breaks = breaks, ...)
}
xgx_scale_x_percentchangelog10 <- function(breaks = NULL,
minor_breaks = NULL,
labels = NULL,
accuracy = 1,
n_breaks = 7,
...) {
if (is.null(breaks)){
breaks <- function(data_range) {
r <- range(log2(data_range + 1))
breaks <- 2^(labeling::extended(r[1], r[2], m = n_breaks, Q = c(1,2,4,8))) - 1
return(breaks)
}
}
if (is.null(minor_breaks)) {
minor_breaks <- function(x) xgx_minor_breaks_log10(x + 1) - 1
}
percentchangelog <- scales::trans_new(
name = "percentchangelog",
transform = function(x) log10(x + 1),
inverse = function(x) 10^(x) - 1)
if (is.null(labels)) {
labels = scales::percent_format(accuracy = accuracy)
}
ggplot2::scale_x_continuous(trans = percentchangelog,
labels = labels,
minor_breaks = minor_breaks,
breaks = breaks, ...)
} |
fitacis2 <- function(data,
group1,
group2 = NA,
group3 = NA,
gm25 = 0.08701,
Egm = 47.650,
K25 = 718.40,
Ek = 65.50828,
Gstar25 = 42.75,
Egamma = 37.83,
fitmethod = "default",
fitTPU = TRUE,
Tcorrect = FALSE,
useRd = FALSE,
citransition = NULL,
alphag = 0,
PPFD = NULL,
Tleaf = NULL,
alpha = 0.24,
theta = 0.85,
varnames = list(ALEAF = "Photo",
Tleaf = "Tleaf",
Ci = "Ci",
PPFD = "PARi",
Rd = "Rd",
Press = "Press"),
...) {
data$group1 <- data[, group1]
data$Press <- data[, varnames$Press]
if (!is.na(group2)) {
data$group2 <- data[, group2]
}
if (!is.na(group3)) {
data$group3 <- data[, group3]
}
if (!is.na(group2) & !is.na(group3)) {
data <- unite(data, col = "group",
c("group1", "group2", "group3"),
sep = "_")
} else {
if (!is.na(group2) & is.na(group3)) {
data <- unite(data, col = "group",
c("group1", "group2"),
sep = "_")
} else {
data$group <- data$group1
}
}
data <- split(data, data$group)
fits <- as.list(1:length(data))
for (i in 1:length(data)) {
gmeso <- gm25 * exp(Egm *
(mean(data[[i]]$Tleaf +
273.15) - 298.15) /
(298.15 *
mean(data[[i]]$Tleaf + 273.15) *
0.008314))
Km <- K25 * exp(Ek *
(mean(data[[i]]$Tleaf +
273.15) - 298.15) /
(298.15 *
mean(data[[i]]$Tleaf + 273.15) *
0.008314))
Patm <- mean(data[[i]]$Press)
GammaStar <- Gstar25 * exp(Egamma *
(mean(data[[i]]$Tleaf +
273.15) - 298.15) /
(298.15 *
mean(data[[i]]$Tleaf + 273.15) *
0.008314))
fits[[i]] <- tryCatch(fitaci(data[[i]],
Patm = Patm,
varnames = varnames,
fitmethod = fitmethod,
Tcorrect = Tcorrect,
fitTPU = fitTPU,
gmeso = gmeso,
Km = Km,
GammaStar = GammaStar,
useRd = useRd,
citransition = citransition,
alphag = alphag,
PPFD = PPFD,
Tleaf = Tleaf,
alpha = alpha,
theta = theta,
...),
error = function(e) paste("Failed"))
names(fits)[i] <- data[[i]]$group[1]
}
return(fits)
} |
convert_creat_unit <- function(
value = NULL,
unit_in = "mg/dL") {
if(class(value) == "list" && !is.null(value$value) && !is.null(value$unit)) {
unit_in <- value$unit
value <- value$value
}
if(!tolower(unit_in) %in% c("mg/dl", "micromol/l", "mumol/l")) {
stop("Input unit needs to be either mg/dL or micromol/L.")
}
if(tolower(unit_in) == "mg/dl") {
out <- list(
value = value * 88.42,
unit = "micromol/L"
)
} else {
out <- list(
value = value / 88.42,
unit = "mg/dL"
)
}
return(out)
} |
tex_build <- function(tex_lines,
stem = "tex_temp",
tex_message,
fileDir = tex_opts$get('fileDir'),
engine = tex_opts$get('engine'),
...){
cwd <- getwd()
on.exit({setwd(cwd)},add = TRUE)
setwd(fileDir)
interaction_mode <- ifelse(tex_message, "nonstopmode", "batchmode")
temp_tex <- sprintf("%sDoc.tex",stem)
temp_log <- sprintf('%sDoc.log',stem)
temp_out <- sprintf('%s_stdout.txt',stem)
temp_err <- sprintf('%s_stderr.txt',stem)
tex_args <- c('-synctex=1',
sprintf('-interaction=%s',interaction_mode),
'--halt-on-error',
temp_tex)
writeLines(tex_lines, con = temp_tex)
system2(engine, args = tex_args, stdout = temp_out, stderr = temp_err,...)
log_lines <- readLines(temp_log)
attr(log_lines,'error') <- grepl('error',log_lines[length(log_lines)])
log_lines
} |
generate_shinyinput <- function(use_mbmodel = FALSE, mbmodel = NULL,
use_doc = FALSE, model_file = NULL,
model_function = NULL,
otherinputs = NULL, packagename = NULL)
{
myclassfct = function (x) {
tags$div(class="myinput", x)
}
if (use_mbmodel)
{
if (!is.list(mbmodel)) {return("Please provide a valid mbmodel list structure.")}
allv = lapply(1:length(mbmodel$var), function(n)
{
myclassfct(numericInput(mbmodel$var[[n]]$varname, paste0(mbmodel$var[[n]]$vartext,' (',mbmodel$var[[n]]$varname,')'),
value = mbmodel$var[[n]]$varval, min = 0,step = mbmodel$var[[n]]$varval/100)
)
})
allp = lapply(1:length(mbmodel$par), function(n)
{
myclassfct(numericInput(mbmodel$par[[n]]$parname, paste0(mbmodel$par[[n]]$partext,' (',mbmodel$par[[n]]$parname,')'),
value = mbmodel$par[[n]]$parval, min = 0, step = mbmodel$par[[n]]$parval/100)
)
})
allt = lapply(1:length(mbmodel$time), function(n) {
myclassfct(numericInput(mbmodel$time[[n]]$timename, paste0(mbmodel$time[[n]]$timetext,' (',mbmodel$time[[n]]$timename,')'),
value = mbmodel$time[[n]]$timeval, min = 0, step = mbmodel$time[[n]]$timeval/100)
)
})
modelargs = c(allv,allp,allt)
if ( (packagename == "DSAIDE") && grepl("_stochastic",model_function) )
{
stochasticui <- shiny::tagList(
shiny::numericInput("nreps", "Number of simulations", min = 1, max = 100, value = 1, step = 1),
shiny::numericInput("rngseed", "Random number seed", min = 1, max = 1000, value = 123, step = 1)
)
stochasticui = lapply(stochasticui,myclassfct)
modelargs = c(modelargs,stochasticui)
}
} else if (use_doc) {
if (!file.exists(model_file)) {return("Please provide path to a valid model R file.")}
x = readLines(model_file)
x2 = grep('@param', x, value = TRUE)
pattern = ".*[:](.+)[:].*"
x3 = gsub(pattern, "\\1",x2)
x3 = substr(x3,2,nchar(x3)-1);
ip = formals(model_function)
ip = ip[unlist(lapply(ip,is.numeric))]
modelargs = lapply(1:length(ip), function(n)
{
iplabel = paste0(names(ip[n]),', ', x3[n])
myclassfct(
shiny::numericInput(names(ip[n]), label = iplabel, value = ip[n][[1]], step = 0.01*ip[n][[1]])
)
})
} else {
if (is.null(model_function)) {return("Please provide a valid model function name.")}
ip = unlist(formals(model_function))
modelargs = lapply(1:length(ip), function(n)
{
myclassfct(
shiny::numericInput(names(ip[n]), label = names(ip[n]), value = ip[n][[1]], step = 0.01*ip[n][[1]])
)
})
}
otherargs = shiny::tagList(
shiny::selectInput("plotscale", "Log-scale for plot",c("none" = "none", 'x-axis' = "x", 'y-axis' = "y", 'both axes' = "both")),
shiny::selectInput("plotengine", "Plot engine",c("ggplot" = "ggplot", "plotly" = "plotly"))
)
otherargs = lapply(otherargs,myclassfct)
if (!is.null(otherinputs) && nchar(otherinputs)>1)
{
moreargs = lapply(eval(str2expression(otherinputs)),myclassfct)
otherargs = c(moreargs,otherargs)
}
if (packagename == "modelbuilder")
{
standardui <- shiny::tagList(
shiny::selectInput("modeltype", "Model to run",c("ODE" = "ode", 'stochastic' = 'stochastic', 'discrete time' = 'discrete'), selected = 'ode'),
shiny::selectInput("plotscale", "Log-scale for plot",c("none" = "none", 'x-axis' = "x", 'y-axis' = "y", 'both axes' = "both")),
shiny::selectInput("plotengine", "Plot engine",c("ggplot" = "ggplot", "plotly" = "plotly"))
)
standardui = lapply(standardui,myclassfct)
stochasticui <- shiny::tagList(
shiny::numericInput("nreps", "Number of simulations", min = 1, max = 500, value = 1, step = 1),
shiny::numericInput("rngseed", "Random number seed", min = 1, max = 1000, value = 123, step = 1)
)
stochasticui = lapply(stochasticui,myclassfct)
scanparui <- shiny::tagList(
shiny::selectInput("scanparam", "Scan parameter", c("No" = 0, "Yes" = 1)),
shiny::selectInput("partoscan", "Parameter to scan", sapply(mbmodel$par, function(x) x[[1]]) ),
shiny::numericInput("parmin", "Lower value of parameter", min = 0, max = 1000, value = 1, step = 1),
shiny::numericInput("parmax", "Upper value of parameter", min = 0, max = 1000, value = 10, step = 1),
shiny::numericInput("parnum", "Number of samples", min = 1, max = 1000, value = 10, step = 1),
shiny::selectInput("pardist", "Spacing of parameter values", c('linear' = 'lin', 'logarithmic' = 'log'))
)
scanparui = lapply(scanparui,myclassfct)
otherargs = tagList(otherargs,
standardui,
p('Settings for stochastic model:'),
stochasticui,
p('Settings for optional parameter scan for ODE/discrete models:'),
scanparui)
}
modelinputs <- tagList(
p(
shiny::actionButton("submitBtn", "Run Simulation", class = "submitbutton"),
shiny::actionButton(inputId = "reset", label = "Reset Inputs", class = "submitbutton"),
align = 'center'),
modelargs,
otherargs
)
return(modelinputs)
} |
context("JAGS marginal likelihood functions")
test_that("JAGS model functions work (simple)", {
skip_if_not_installed("rjags")
all_priors <- list(
p1 = prior("normal", list(0, 1)),
p2 = prior("normal", list(0, 1), list(1, Inf)),
p3 = prior("lognormal", list(0, .5)),
p4 = prior("t", list(0, .5, 5)),
p5 = prior("Cauchy", list(1, 0.1), list(-10, 0)),
p6 = prior("gamma", list(2, 1)),
p7 = prior("invgamma", list(3, 2), list(1, 3)),
p8 = prior("exp", list(1.5)),
p9 = prior("beta", list(3, 2)),
p10 = prior("uniform", list(1, 5)),
PET = prior_PET("normal", list(0, 1)),
PEESE = prior_PEESE("gamma", list(1, 1))
)
log_posterior <- function(parameters, data){
return(0)
}
for(i in seq_along(all_priors)){
prior_list <- all_priors[i]
model_syntax <- JAGS_add_priors("model{}", prior_list)
monitor <- JAGS_to_monitor(prior_list)
inits <- JAGS_get_inits(prior_list, chains = 2, seed = 1)
set.seed(1)
model <- rjags::jags.model(file = textConnection(model_syntax), inits = inits, n.chains = 2, quiet = TRUE)
samples <- rjags::coda.samples(model = model, variable.names = monitor, n.iter = 5000, quiet = TRUE, progress.bar = "none")
marglik <- JAGS_bridgesampling(samples, prior_list = prior_list, data = list(), log_posterior = log_posterior)
expect_equal(marglik$logml, 0, tolerance = 1e-2)
}
})
test_that("JAGS model functions work (weightfunctions)", {
skip_if_not_installed("rjags")
all_priors <- list(
prior_weightfunction("one.sided", list(c(.05), c(1, 1))),
prior_weightfunction("one.sided", list(c(.05, 0.10), c(1, 2, 3))),
prior_weightfunction("one.sided", list(c(.05, 0.60), c(1, 1), c(1, 5))),
prior_weightfunction("two.sided", list(c(.05), c(1, 1)))
)
log_posterior <- function(parameters, data){
return(0)
}
for(i in seq_along(all_priors)){
prior_list <- all_priors[i]
model_syntax <- JAGS_add_priors("model{}", prior_list)
monitor <- JAGS_to_monitor(prior_list)
inits <- JAGS_get_inits(prior_list, chains = 2, seed = 1)
set.seed(1)
model <- rjags::jags.model(file = textConnection(model_syntax), inits = inits, n.chains = 2, quiet = TRUE)
samples <- rjags::coda.samples(model = model, variable.names = monitor, n.iter = 5000, quiet = TRUE, progress.bar = "none")
marglik <- JAGS_bridgesampling(samples, prior_list = prior_list, data = list(), log_posterior = log_posterior)
expect_equal(marglik$logml, 0, tolerance = 1e-2)
}
})
test_that("JAGS model functions work (complex scenario)", {
skip_if_not_installed("rjags")
set.seed(1)
data <- list(
x = rnorm(50, 0, .5),
N = 50
)
priors1 <- list(
m = prior("normal", list(0, 1)),
s = prior("normal", list(0, 1), list(0, Inf))
)
priors2 <- list(
m = prior("normal", list(0, 1)),
s = prior("spike", list(1))
)
log_posterior <- function(parameters, data, return3){
if(return3){
return(3)
}else{
return(sum(stats::dnorm(data$x, mean = parameters[["m"]], sd = parameters[["s"]], log = TRUE)))
}
}
model_syntax <-
"model{
for(i in 1:N){
x[i] ~ dnorm(m, pow(s, -2))
}
}"
model1 <- rjags::jags.model(
file = textConnection(JAGS_add_priors(model_syntax, priors1)),
inits = JAGS_get_inits(priors1, chains = 2, seed = 1),
n.chains = 2,
data = data,
quiet = TRUE)
samples1 <- rjags::jags.samples(
model = model1,
variable.names = JAGS_to_monitor(priors1),
data = data,
n.iter = 5000,
quiet = TRUE,
progress.bar = "none")
marglik1 <- JAGS_bridgesampling(
samples1,
prior_list = priors1,
data = data,
log_posterior = log_posterior,
return3 = FALSE)
runjags::runjags.options(silent.jags = TRUE, silent.runjags = TRUE)
fit2 <- runjags::run.jags(
model = JAGS_add_priors(model_syntax, priors2),
data = data,
inits = JAGS_get_inits(priors2, chains = 2, seed = 1),
monitor = JAGS_to_monitor(priors2),
n.chains = 2,
sample = 5000,
burnin = 1000,
adapt = 500,
summarise = FALSE
)
marglik2 <- JAGS_bridgesampling(
fit2,
data = data,
prior_list = priors2,
log_posterior = log_posterior,
return3 = FALSE)
marglik3 <- JAGS_bridgesampling(
fit2,
data = data,
prior_list = priors2,
log_posterior = log_posterior,
return3 = TRUE)
expect_equal(marglik1$logml, -31.944, tolerance = 1e-2)
expect_equal(marglik2$logml, -52.148, tolerance = 1e-2)
expect_equal(marglik3$logml, 1.489, tolerance = 1e-2)
}) |
corrHLfit_body <- function(processed,
init.corrHLfit=list(),
ranFix=list(),
lower=list(),upper=list(),
control.corrHLfit=list(),
nb_cores=NULL,
...
) {
dotlist <- list(...)
if (is.list(processed)) {
proc1 <- processed[[1L]]
} else proc1 <- processed
verbose <- proc1$verbose
HLnames <- (c(names(formals(HLCor)),names(formals(HLfit)),
names(formals(mat_sqrt)),names(formals(make_scaled_dist))))
good_dotnames <- intersect(names(dotlist),HLnames)
if (length(good_dotnames)) {
HLCor.args <- dotlist[good_dotnames]
} else HLCor.args <- list()
if ( is.list(processed)) {
pnames <- names(processed[[1]])
} else pnames <- names(processed)
for (st in pnames) HLCor.args[st] <- NULL
optim.scale <- control.corrHLfit$optim.scale
if (is.null(optim.scale)) optim.scale="transformed"
sparse_precision <- proc1$is_spprec
user_init_optim <- init.corrHLfit
optim_blob <- .calc_optim_args(proc_it=proc1, processed=processed,
user_init_optim=init.corrHLfit, fixed=ranFix, lower=lower, upper=upper,
verbose=verbose, optim.scale=optim.scale, For="corrHLfit")
init.corrHLfit <- NaN
init.optim <- optim_blob$inits$`init.optim`
init.HLfit <- optim_blob$inits$`init.HLfit`
fixed <- optim_blob$fixed
corr_types <- optim_blob$corr_types
LUarglist <- optim_blob$LUarglist
moreargs <- LUarglist$moreargs
LowUp <- optim_blob$LowUp
lower <- LowUp$lower
upper <- LowUp$upper
HLCor.args$ranPars <- fixed
control.dist <- vector("list",length(moreargs))
for (nam in names(moreargs)) control.dist[[nam]] <- moreargs[[nam]]$control.dist
HLCor.args$control.dist <- control.dist
processedHL1 <- proc1$HL[1]
if (!is.null(processedHL1) && processedHL1=="SEM" && length(lower)) {
optimMethod <- "iterateSEMSmooth"
if (is.null(proc1$SEMargs$control_pmvnorm$maxpts)) {
.assignWrapper(processed,"SEMargs$control_pmvnorm$maxpts <- quote(250L*nobs)")
}
} else optimMethod <- ".new_locoptim"
HLCor.args$processed <- processed
anyHLCor_obj_args <- HLCor.args
initvec <- unlist(init.optim)
anyHLCor_obj_args$skeleton <- structure(init.optim, moreargs=moreargs,
type=relist(rep("fix",length(initvec)),init.optim),
moreargs=moreargs)
.assignWrapper(anyHLCor_obj_args$processed,
paste0("return_only <- \"",proc1$objective,"APHLs\""))
if (optimMethod=="iterateSEMSmooth") {
loclist <- list(anyHLCor_obj_args=anyHLCor_obj_args,
LowUp=LowUp,init.corrHLfit=user_init_optim,
control.corrHLfit=control.corrHLfit,
verbose=verbose[["iterateSEM"]],
nb_cores=nb_cores)
optr <- .probitgemWrap("iterateSEMSmooth",arglist=loclist, pack="probitgem")
optPars <- relist(optr$par,init.optim)
if (!is.null(optPars)) attr(optPars,"method") <-"optimthroughSmooth"
} else {
if (identical(verbose["getCall"][[1L]],TRUE)) {
optPars <- init.optim
} else {
optPars <- .new_locoptim(init.optim, LowUp=LowUp,anyHLCor_obj_args=anyHLCor_obj_args,
objfn_locoptim=.objfn_locoptim,
control=control.corrHLfit,
user_init_optim=user_init_optim, verbose=verbose[["TRACE"]])
}
}
if (!is.null(optPars)) {
ranPars_in_refit <- structure(.modify_list(HLCor.args$ranPars,optPars),
type=.modify_list(relist(rep("fix",length(unlist(HLCor.args$ranPars))),HLCor.args$ranPars),
relist(rep("outer",length(unlist(optPars))),optPars)),
moreargs=moreargs)
} else {
ranPars_in_refit <- structure(HLCor.args$ranPars,
type = relist(rep("fix", length(unlist(HLCor.args$ranPars))), HLCor.args$ranPars))
}
ranPars_in_refit <- .expand_hyper(ranPars_in_refit, processed$hyper_info, moreargs=moreargs)
HLCor.args$ranPars <- ranPars_in_refit
.assignWrapper(HLCor.args$processed,"return_only <- NULL")
.assignWrapper(HLCor.args$processed,"verbose['warn'] <- TRUE")
hlcor <- do.call("HLCor",HLCor.args)
if (is.call(hlcor)) { return(hlcor[]) }
attr(hlcor,"optimInfo") <- list(LUarglist=LUarglist, optim.pars=optPars,
objective=proc1$objective)
if ( ! is.null(optPars)) {
locoptr <- attr(optPars,"optr")
if (attr(optPars,"method")=="nloptr") {
if (locoptr$status<0L) hlcor$warnings$optimMessage <- paste0("nloptr() message: ",
locoptr$message," (status=",locoptr$status,")")
} else if ( attr(optPars,"method")=="optim" ) {
if (locoptr$convergence) hlcor$warnings$optimMessage <- paste0("optim() message: ",locoptr$message,
" (convergence=",locoptr$convergence,")")
} else if ( attr(optPars,"method")== "optimthroughSmooth") {
logLapp <- optr$value
attr(logLapp,"method") <- " logL (smoothed)"
hlcor$APHLs$logLapp <- logLapp
}
hlcor$warnings$suspectRho <- .check_suspect_rho(corr_types, ranPars_in_refit, LowUp)
if ( ! is.null(PQLdivinfo <- processed$envir$PQLdivinfo)) {
hlcor$divinfo <- PQLdivinfo
hlcor$warnings$divinfo <- "Numerical issue detected; see div_info(<fit object>) for more information."
warning(hlcor$warnings$divinfo)
}
}
lsv <- c("lsv",ls())
rm(list=setdiff(lsv,"hlcor"))
return(hlcor)
}
|
NULL
percent_weight <- function(){labs(W="Wt.%")}
weight_percent <- percent_weight
percent_atomic <- function(){labs(W="At.%")}
atomic_percent <- percent_atomic
percent_custom <- function(x){
if(class(x) == 'character'){
x = gsub("%","%",x)
x = gsub('([[:punct:]])\\1+', '\\1', x)
}
labs(W=x)
}
custom_percent <- percent_custom |
music.basic = function(Y, X, S, Sigma, iter.max, nu, eps){
k = ncol(X)
lm.D = nnls(X, Y)
r = resid(lm.D);
weight.gene = 1/(nu + r^2 + colSums( (lm.D$x*S)^2*t(Sigma) ))
Y.weight = Y*sqrt(weight.gene)
D.weight = sweep(X, 1, sqrt(weight.gene), '*')
lm.D.weight = nnls(D.weight, Y.weight)
p.weight = lm.D.weight$x/sum(lm.D.weight$x)
p.weight.iter = p.weight
r = resid(lm.D.weight)
for(iter in 1:iter.max){
weight.gene = 1/(nu + r^2 + colSums( (lm.D.weight$x*S)^2*t(Sigma) ))
Y.weight = Y*sqrt(weight.gene)
D.weight = X * as.matrix(sqrt(weight.gene))[,rep(1,k)]
lm.D.weight = nnls(D.weight, Y.weight )
p.weight.new = lm.D.weight$x/sum(lm.D.weight$x)
r.new = resid(lm.D.weight)
if(sum(abs(p.weight.new - p.weight)) < eps){
p.weight = p.weight.new;
r = r.new
R.squared = 1 - var(Y - X%*%as.matrix(lm.D.weight$x))/var(Y)
fitted = X%*%as.matrix(lm.D.weight$x)
var.p = diag(solve(t(D.weight)%*%D.weight)) * mean(r^2)/sum(lm.D.weight$x)^2
return(list(p.nnls = (lm.D$x)/sum(lm.D$x), q.nnls = lm.D$x, fit.nnls = fitted(lm.D), resid.nnls = resid(lm.D),
p.weight = p.weight, q.weight = lm.D.weight$x, fit.weight = fitted, resid.weight = Y - X%*%as.matrix(lm.D.weight$x),
weight.gene = weight.gene, converge = paste0('Converge at ', iter),
rsd = r, R.squared = R.squared, var.p = var.p));
}
p.weight = p.weight.new;
r = r.new;
}
fitted = X%*%as.matrix(lm.D.weight$x)
R.squared = 1 - var(Y - X%*%as.matrix(lm.D.weight$x))/var(Y)
var.p = diag(solve(t(D.weight)%*%D.weight)) * mean(r^2)/sum(lm.D.weight$x)^2
return(list(p.nnls = (lm.D$x)/sum(lm.D$x), q.nnls = lm.D$x, fit.nnls = fitted(lm.D), resid.nnls = resid(lm.D),
p.weight = p.weight, q.weight = lm.D.weight$x, fit.weight = fitted, resid.weight = Y - X%*%as.matrix(lm.D.weight$x),
weight.gene = weight.gene, converge = 'Reach Maxiter', rsd = r,
R.squared = R.squared, var.p = var.p))
}
music.iter = function(Y, D, S, Sigma, iter.max = 1000, nu = 0.0001, eps = 0.01, centered = FALSE, normalize = FALSE){
if(length(S)!=ncol(D)){
common.cell.type = intersect(colnames(D), names(S))
if(length(common.cell.type)<=1){
stop('Not enough cell types!')
}
D = D[,match(common.cell.type, colnames(D))]
S = S[match(common.cell.type, names(S))]
}
if(ncol(Sigma) != ncol(D)){
common.cell.type = intersect(colnames(D), colnames(Sigma))
if(length(common.cell.type)<=1){
stop('Not enough cell type!')
}
D = D[, match(common.cell.type, colnames(D))]
Sigma = Sigma[, match(common.cell.type, colnames(Sigma))]
S = S[match(common.cell.type, names(S))]
}
k = ncol(D);
common.gene = intersect(names(Y), rownames(D))
if(length(common.gene)< 0.1*min(length(Y), nrow(D))){
stop('Not enough common genes!')
}
Y = Y[match(common.gene, names(Y))];
D = D[match(common.gene, rownames(D)), ]
Sigma = Sigma[match(common.gene, rownames(Sigma)), ]
X = D
if(centered){
X = X - mean(X)
Y = Y - mean(Y)
}
if(normalize){
X = X/sd(as.vector(X));
S = S*sd(as.vector(X));
Y = Y/sd(Y)
}else{
Y = Y*100
}
lm.D = music.basic(Y, X, S, Sigma, iter.max = iter.max, nu = nu, eps = eps)
return(lm.D)
}
weight.cal.ct = function(Sp, Sigma.ct){
nGenes = ncol(Sigma.ct); n.ct = length(Sp);
weight = sapply(1:nGenes, function(g){
sum(Sp%*%t(Sp)*matrix(Sigma.ct[,g], n.ct))
})
return(weight)
}
Weight_cal <- function(p, M.S, Sigma){
Sigma%*%(M.S * t(p))^2
}
music.basic.ct = function(Y, X, S, Sigma.ct, iter.max, nu, eps){
k = ncol(X)
lm.D = nnls(X, Y)
r = resid(lm.D);
weight.gene = 1/(nu + r^2 + weight.cal.ct(lm.D$x*S, Sigma.ct))
Y.weight = Y*sqrt(weight.gene)
D.weight = sweep(X, 1, sqrt(weight.gene), '*')
lm.D.weight = nnls(D.weight, Y.weight)
p.weight = lm.D.weight$x/sum(lm.D.weight$x)
p.weight.iter = p.weight
r = resid(lm.D.weight)
for(iter in 1:iter.max){
weight.gene = 1/(nu + r^2 + weight.cal.ct(lm.D$x*S, Sigma.ct))
Y.weight = Y*sqrt(weight.gene)
D.weight = X * as.matrix(sqrt(weight.gene))[,rep(1,k)]
lm.D.weight = nnls(D.weight, Y.weight )
p.weight.new = lm.D.weight$x/sum(lm.D.weight$x)
r.new = resid(lm.D.weight)
if(sum(abs(p.weight.new - p.weight)) < eps){
p.weight = p.weight.new;
r = r.new
R.squared = 1 - var(Y - X%*%as.matrix(lm.D.weight$x))/var(Y)
fitted = X%*%as.matrix(lm.D.weight$x)
var.p = diag(solve(t(D.weight)%*%D.weight)) * mean(r^2)/sum(lm.D.weight$x)^2
return(list(p.nnls = (lm.D$x)/sum(lm.D$x), q.nnls = lm.D$x, fit.nnls = fitted(lm.D), resid.nnls = resid(lm.D),
p.weight = p.weight, q.weight = lm.D.weight$x, fit.weight = fitted, resid.weight = Y - X%*%as.matrix(lm.D.weight$x),
weight.gene = weight.gene, converge = paste0('Converge at ', iter),
rsd = r, R.squared = R.squared, var.p = var.p));
break;
}
p.weight = p.weight.new;
r = r.new;
}
fitted = X%*%as.matrix(lm.D.weight$x)
R.squared = 1 - var(Y - X%*%as.matrix(lm.D.weight$x))/var(Y)
var.p = diag(solve(t(D.weight)%*%D.weight)) * mean(r^2)/sum(lm.D.weight$x)^2
return(list(p.nnls = (lm.D$x)/sum(lm.D$x), q.nnls = lm.D$x, fit.nnls = fitted(lm.D), resid.nnls = resid(lm.D),
p.weight = p.weight, q.weight = lm.D.weight$x, fit.weight = fitted, resid.weight = Y - X%*%as.matrix(lm.D.weight$x),
weight.gene = weight.gene, converge = 'Reach Maxiter', rsd = r,
R.squared = R.squared, var.p = var.p))
}
music.iter.ct = function(Y, D, S, Sigma.ct, iter.max = 1000, nu = 0.0001, eps = 0.01, centered = FALSE, normalize = FALSE){
if(length(S)!=ncol(D)){
common.cell.type = intersect(colnames(D), names(S))
if(length(common.cell.type)<=1){
stop('Not enough cell types!')
}
D = D[,match(common.cell.type, colnames(D))]
S = S[match(common.cell.type, names(S))]
}
k = ncol(D);
common.gene = intersect(names(Y), rownames(D))
common.gene = intersect(common.gene, colnames(Sigma.ct))
if(length(common.gene)< 0.1*min(length(Y), nrow(D), ncol(Sigma.ct))){
stop('Not enough common genes!')
}
Y = Y[match(common.gene, names(Y))];
D = D[match(common.gene, rownames(D)), ]
Sigma.ct = Sigma.ct[, match(common.gene, colnames(Sigma.ct))]
X = D
if(centered){
X = X - mean(X)
Y = Y - mean(Y)
}
if(normalize){
X = X/sd(as.vector(X));
S = S*sd(as.vector(X));
Y = Y/sd(Y)
}else{
Y = Y*100
}
lm.D = music.basic.ct(Y, X, S, Sigma.ct, iter.max = iter.max, nu = nu, eps = eps)
return(lm.D)
} |
mz_place <- function(ids, ..., api_key = NULL) UseMethod("mz_place")
build_place_url <- function(ids, api_key = NULL) {
ids <- string_array(ids)
query <- list(
ids = ids,
api_key = api_key
)
do.call(search_url, c(endpoint = "place", query))
}
mz_place.character <- function(ids, ..., api_key = NULL) {
search_get(build_place_url(ids, api_key = api_key))
}
mz_place.mapzen_geo_list <- function(ids, ..., gid = "gid", api_key = NULL) {
geolist <- ids
getgid <- function(feature) {
feature$properties[[gid]]
}
ids <- vapply(geolist$features, getgid, FUN.VALUE = character(1))
search_get(build_place_url(ids, api_key))
} |
expected <- eval(parse(text="c(2, 3, 4, 5, 6, 7, 8, 9, 11)"));
test(id=0, code={
argv <- eval(parse(text="list(c(2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9, 11))"));
do.call(`floor`, argv);
}, o=expected); |
test_that("Validate GetDashboards using legacy credentials", {
skip_on_cran()
SCAuth(Sys.getenv("USER", ""), Sys.getenv("SECRET", ""))
dash <- GetDashboards("zwitchdev")
expect_is(dash, "data.frame")
}) |
require(testthat)
require(Rdiagnosislist)
require(bit64)
require(data.table)
context('SNOMED codelists')
test_that('Checking conversion of SNOMED concepts in data.table and data.frame', {
myconcepts <- SNOMEDconcept('Heart failure', SNOMED = sampleSNOMED())
frame <- data.frame(conceptId = myconcepts)
expect_equal(names(frame), 'conceptId')
expect_equal(class(frame[[1]]), 'integer64')
frame_int64 <- data.frame(conceptId = bit64::as.integer64(myconcepts))
expect_equal(names(frame_int64), 'conceptId')
expect_equal(class(frame_int64[[1]]), 'integer64')
frame_concept <- data.frame(conceptId = as.SNOMEDconcept(myconcepts))
expect_equal(names(frame_concept), 'conceptId')
expect_equal(class(frame_concept[[1]]), 'integer64')
table <- data.table(conceptId = myconcepts)
expect_equal(names(table), 'conceptId')
expect_equal(class(table[[1]]), c('SNOMEDconcept', 'integer64'))
table_int64 <- data.table(conceptId = bit64::as.integer64(myconcepts))
expect_equal(names(table_int64), 'conceptId')
expect_equal(class(table_int64[[1]]), 'integer64')
table_concept <- data.table(conceptId = as.SNOMEDconcept(myconcepts))
expect_equal(names(table_concept), 'conceptId')
expect_equal(class(table_concept[[1]]), c('SNOMEDconcept', 'integer64'))
})
test_that('Creating codelists from concept IDs or tables', {
myconcepts <- SNOMEDconcept('Heart failure', SNOMED = sampleSNOMED())
concept_codelist <- SNOMEDcodelist(myconcepts, SNOMED = sampleSNOMED(),
include_desc = TRUE)
table_codelist <- as.SNOMEDcodelist(data.frame(conceptId = myconcepts,
include_desc = TRUE), SNOMED = sampleSNOMED())
table_codelist3 <- as.SNOMEDcodelist(data.table(conceptId = myconcepts,
include_desc = TRUE), SNOMED = sampleSNOMED())
table_codelist4 <- as.SNOMEDcodelist(data.table(conceptId = myconcepts,
nice = 1, include_desc = TRUE), SNOMED = sampleSNOMED())
expect_equal(all.equal(concept_codelist, table_codelist), TRUE)
expect_equal(all.equal(concept_codelist, table_codelist3), TRUE)
expect_equal(all.equal(
concept_codelist[, .(conceptId, term)],
table_codelist4[, .(conceptId, term)]), TRUE)
expect_error(table_codelist <- as.SNOMEDcodelist(
data.frame(x = myconcepts, include_desc = TRUE),
SNOMED = sampleSNOMED()))
})
test_that('Codelist with missing descriptions', {
my_codelist <- SNOMEDcodelist('1234', SNOMED = sampleSNOMED())
expect_equal(nrow(my_codelist), 1)
expect_equal(my_codelist$conceptId, as.SNOMEDconcept('1234'))
expect_equal(my_codelist$term, as.character(NA))
})
test_that('Expand and contract codelists', {
my_concepts <- SNOMEDconcept('Heart failure',
SNOMED = sampleSNOMED())
orig <- SNOMEDcodelist(data.frame(conceptId = my_concepts,
include_desc = TRUE), SNOMED = sampleSNOMED(),
format = 'simple')[1:50]
e1 <- expandSNOMED(orig, SNOMED = sampleSNOMED())
e2 <- SNOMEDcodelist(orig, format = 'tree',
SNOMED = sampleSNOMED(), show_excluded_descendants = TRUE)
e3 <- SNOMEDcodelist(orig, format = 'exptree',
SNOMED = sampleSNOMED(), show_excluded_descendants = TRUE)
e4 <- contractSNOMED(e2, SNOMED = sampleSNOMED())
e5 <- contractSNOMED(e3, SNOMED = sampleSNOMED())
e1a <- SNOMEDcodelist(e1, format = 'simple', SNOMED = sampleSNOMED())
e2a <- SNOMEDcodelist(e2, format = 'simple', SNOMED = sampleSNOMED())
e3a <- SNOMEDcodelist(e3, format = 'simple', SNOMED = sampleSNOMED())
e4a <- SNOMEDcodelist(e4, format = 'simple', SNOMED = sampleSNOMED())
e5a <- SNOMEDcodelist(e5, format = 'simple', SNOMED = sampleSNOMED())
expect_equal(all.equal(e4, e5), TRUE)
expect_equal(all.equal(orig, e1a), TRUE)
expect_equal(all.equal(orig, e2a), TRUE)
expect_equal(all.equal(orig, e3a), TRUE)
expect_equal(all.equal(orig, e4a), TRUE)
expect_equal(all.equal(orig, e5a), TRUE)
})
test_that('Related concepts for a NULL list', {
my_concepts <- as.SNOMEDconcept('0')[-1]
related_concepts <- relatedConcepts(my_concepts,
SNOMED = sampleSNOMED())
expect_equal(my_concepts, related_concepts)
expect_equal(my_concepts, parents(related_concepts))
expect_equal(my_concepts, children(related_concepts))
expect_equal(my_concepts, ancestors(related_concepts))
expect_equal(my_concepts, descendants(related_concepts))
})
test_that('Expand codelist with nothing to expand', {
my_concepts <- as.SNOMEDconcept(
c('Heart failure', 'Acute heart failure'),
SNOMED = sampleSNOMED())
my_codelist <- SNOMEDcodelist(data.frame(conceptId = my_concepts,
include_desc = FALSE), SNOMED = sampleSNOMED(), format = 'tree')
expanded_codelist <- expandSNOMED(my_codelist,
SNOMED = sampleSNOMED())
roundtrip_codelist <- contractSNOMED(expanded_codelist,
SNOMED = sampleSNOMED())
data.table::setindex(my_codelist, NULL)
data.table::setindex(roundtrip_codelist, NULL)
expect_equal(all.equal(my_codelist, roundtrip_codelist), TRUE)
data.table::setattr(expanded_codelist, 'format', 'tree')
data.table::setindex(my_codelist, NULL)
data.table::setindex(expanded_codelist, NULL)
expect_equal(all.equal(my_codelist, expanded_codelist), TRUE)
})
test_that('Safely contract codelist', {
my_codelist <- as.SNOMEDcodelist(data.frame(
conceptId = SNOMEDconcept(c('Heart failure', 'Is a'),
SNOMED = sampleSNOMED()), include_desc = c(TRUE, NA)),
format = 'tree', SNOMED = sampleSNOMED())
expanded_codelist <- expandSNOMED(my_codelist,
SNOMED = sampleSNOMED())
roundtrip_codelist <- contractSNOMED(expanded_codelist,
SNOMED = sampleSNOMED())
data.table::setindex(my_codelist, NULL)
data.table::setindex(roundtrip_codelist, NULL)
expect_equal(all.equal(my_codelist, roundtrip_codelist), TRUE)
})
test_that('Codelist with some concepts not in dictionary', {
myconcepts <- SNOMEDconcept(c('78408007',
'78643003', '9999999999'))
expect_equal(nrow(SNOMEDcodelist(myconcepts,
SNOMED = sampleSNOMED())), 3)
}) |
setGeneric(name = 'hm_plot',
def = function(obj, slot_name, col_name, interactive = FALSE,
line_type = NULL, line_color = NULL,
line_size = NULL, line_alpha = NULL,
x_lab = 'date', y_lab = 'y', title_lab = NULL,
legend_lab = NULL, dual_yaxis = NULL,
from = NULL, to = NULL, scatter = NULL)
{
standardGeneric('hm_plot')
})
setMethod(f = 'hm_plot',
signature = 'hydromet_station',
definition = function(obj, slot_name, col_name, interactive = FALSE,
line_type = NULL, line_color = NULL,
line_size = NULL, line_alpha = NULL,
x_lab = 'date', y_lab = 'y', title_lab = NULL,
legend_lab = NULL, dual_yaxis = NULL,
from = NULL, to = NULL, scatter = NULL)
{
check_class(argument = obj, target = 'hydromet_station', arg_name = 'obj')
check_class(argument = slot_name, target = 'character', arg_name = 'slot_name')
check_string(argument = slot_name, target = slotNames(x = 'hydromet_station')[1:23],
arg_name = 'slot_name')
check_class(argument = col_name, target = c('list'), arg_name = 'col_name')
col_name_vect <- unlist(col_name)
check_class(argument = col_name_vect, target = 'character',
arg_name = 'col_name internal arguments')
column_names <- list()
for(i in 1:length(slot_name)){
column_names[[i]] <- colnames( hm_get(obj = obj, slot_name = slot_name[i]) )[-1]
}
check_string(argument = col_name_vect, target = unlist(column_names),
arg_name = 'col_name')
check_class(argument = interactive, target = 'logical', arg_name = 'interactive')
check_length(argument = interactive, max_allow = 1, arg_name = 'interactive')
if( is.null(scatter) ){
check_class(argument = line_type, target = 'character', arg_name = 'line_type')
if(interactive == FALSE){
check_string(argument = line_type, target = c('solid', 'twodash',
'longdash', 'dotted', 'dotdash', 'dashed', 'blank'),
arg_name = 'line_type')
} else{
check_string(argument = line_type, target = c('lines', 'lines+markers',
'markers'),
arg_name = 'line_type')
}
check_cross(ref_arg = col_name_vect, eval_arg = line_type,
arg_names = c('col_name', 'line_type') )
} else{
check_class(argument = line_type, target = 'numeric', arg_name = 'line_type (point shape)')
check_numeric(argument = line_type, target = 0:24, arg_name = 'line_type (point shape)')
check_length(argument = line_type, max_allow = 1, arg_name = 'line_type (point shape)')
}
check_class(argument = line_color, target = 'character', arg_name = 'line_color')
check_string(argument = line_color, target = colors(), arg_name = 'line_color')
if( is.null(scatter) ){
check_cross(ref_arg = col_name_vect, eval_arg = line_color,
arg_names = c('col_name', 'line_color'))
} else{
check_length(argument = line_color, max_allow = 1, arg_name = 'line_color (scatter)')
}
check_class(argument = line_size, target = c('numeric', 'integer'),
arg_name = 'line_size')
check_values <- sum( which(line_size < 0) )
if(check_values != 0){ stop('line_size argument(s) shuld be greater than 0!',
call. = FALSE) }
if( is.null(scatter) ){
check_cross(ref_arg = col_name_vect, eval_arg = line_size,
arg_names = c('col_name', 'line_size'))
} else{
check_length(argument = line_size, max_allow = 1, arg_name = 'line_size (scatter)')
}
check_class(argument = line_alpha, target = 'numeric', arg_name = 'line_alpha')
check_values <- sum( which(line_alpha < 0 | line_alpha > 1 ) )
if(check_values != 0){ stop('line_alpha argument(s) shuld be between 0 and 1!',
call. = FALSE) }
if( is.null(scatter) ){
check_cross(ref_arg = col_name_vect, eval_arg = line_alpha,
arg_names = c('col_name', 'line_alpha'))
} else{
check_length(argument = line_alpha, max_allow = 1, arg_name = 'line_alpha (scatter)')
}
check_class(argument = x_lab, target = 'character', arg_name = 'x_lab')
check_length(argument = x_lab, max_allow = 1, arg_name = 'x_lab')
check_class(argument = y_lab, target = 'character', arg_name = 'y_lab')
if( is.null(dual_yaxis) ){
check_length(argument = y_lab, max_allow = 1, arg_name = 'y_lab')
} else{
check_length(argument = y_lab, max_allow = 2, arg_name = 'y_lab')
}
check_class(argument = title_lab, target = 'character', arg_name = 'title_lab')
check_length(argument = title_lab, max_allow = 1, arg_name = 'title_lab')
check_class(argument = legend_lab, target = 'character', arg_name = 'legend_lab')
check_cross(ref_arg = col_name_vect, eval_arg = legend_lab,
arg_names = c('col_name', 'legend_lab'))
check_class(argument = dual_yaxis, target = 'character', arg_name = 'dual_yaxis')
check_string(argument = dual_yaxis, target = c('left', 'right'), arg_name = 'dual_yaxis')
check_cross(ref_arg = col_name_vect, eval_arg = dual_yaxis,
arg_names = c('col_name', 'dual_yaxis'))
check_class(argument = from, target = c('character', 'POSIXct'), arg_name = 'from')
check_length(argument = from, max_allow = 1, arg_name = 'from')
check_class(argument = to, target = c('character', 'POSIXct'), arg_name = 'to')
check_length(argument = to, max_allow = 1, arg_name = 'to')
check_class(argument = scatter, target = 'character', arg_name = 'scatter')
check_string(argument = scatter, target = c('x', 'y'), arg_name = 'scatter')
check_cross(ref_arg = col_name_vect, eval_arg = scatter, arg_names = 'scatter')
if( is.null(line_type) ){
if( is.null(scatter) ){
if(interactive == FALSE){
line_type <- rep('solid', length(col_name_vect))
} else {
line_type <- rep('lines', length(col_name_vect))
}
} else{
line_type <- 16
}
}
if( is.null(line_color) ){
if( is.null(scatter) ){
line_color <- heat.colors(n = length(col_name_vect) )
} else{
line_color <- 'dodgerblue'
}
}
if( is.null(line_size) ){
if( is.null(scatter) ){
line_size <- rep(0.8, length(col_name_vect) )
} else{
line_size <- 1
}
}
if( is.null(line_alpha) ){
if( is.null(scatter) ){
line_alpha <- rep(1, length(col_name_vect) )
} else{
line_alpha <- 1
}
}
if( !is.null(dual_yaxis) ){
if( length(y_lab) != 2){
y_lab <- c('y', 'y2')
}
}
c_table <- build_table(hm_obj = obj, slot_name = slot_name,
col_name = col_name, from = from, to = to)
if(interactive == FALSE){
if( is.null(scatter) == TRUE ) {
if( is.null(dual_yaxis) == TRUE ){
gg_table <- ggplot_table(df = c_table, l_color = line_color,
l_type = line_type, l_size = line_size,
l_legend = legend_lab)
gg_out <-
ggplot(data = gg_table,
aes_string(x = 'date', y = 'series', group = 'group') ) +
geom_line( aes_string(size = 'group', linetype = 'group', color = 'group', alpha = 'group') ) +
scale_color_manual( values = line_color ) +
scale_linetype_manual(values = line_type ) +
scale_size_manual(values = line_size ) +
scale_alpha_manual(values = line_alpha) +
theme(legend.title = element_blank()) +
ggtitle(label = title_lab) +
xlab(x_lab) + ylab(y_lab)
return(gg_out)
} else{
index_left <- which(dual_yaxis == 'left')
index_right <- which(dual_yaxis == 'right')
nm_table <- colnames(c_table)[-1]
left_names <- nm_table[index_left]
right_names <- nm_table[index_right]
dual_list <- dual_y_table(df = c_table,
y_left = left_names,
y_right = right_names)
dual_table <- dual_list[['table']]
gg_table <- ggplot_table(df = dual_table,
l_color = line_color,
l_type = line_type,
l_size = line_size,
l_legend = legend_lab)
a <- as.numeric( dual_list[['coefficients']][1] )
b <- as.numeric( dual_list[['coefficients']][2] )
sf <- as.numeric( dual_list[['coefficients']][3] )
trans <- dual_list[['transformation']]
gg_out <-
ggplot(data = gg_table,
aes_string(x = 'date', y = 'series', group = 'group') ) +
geom_line( aes_string(size = 'group', linetype = 'group', color = 'group', alpha = 'group') ) +
scale_y_continuous(sec.axis = sec_axis(trans = trans, name = y_lab[2]) ) +
scale_color_manual( values = line_color ) +
scale_linetype_manual(values = line_type ) +
scale_size_manual(values = line_size ) +
scale_alpha_manual(values = line_alpha) +
theme(legend.title = element_blank()) +
ggtitle(label = title_lab) +
xlab(x_lab) + ylab(y_lab)
return(gg_out)
}
} else {
index_x <- which(scatter == 'x')
index_y <- which(scatter == 'y')
nm_table <- colnames(c_table)[-1]
x_name <- nm_table[index_x]
y_name <- nm_table[index_y]
gg_out <-
ggplot(data = c_table,
aes(x = c_table[ , x_name], y = c_table[ , y_name]) ) +
geom_point(size = line_size, color = line_color, alpha = line_alpha, shape = line_type ) +
theme(legend.title = element_blank()) +
ggtitle(label = title_lab) +
xlab(x_lab) + ylab(y_lab)
return(gg_out)
}
} else{
if( is.null(scatter) == TRUE ){
if( is.null(dual_yaxis) == TRUE ){
ppout <- plot_ly(c_table, x = ~date)
n_plots <- ncol(c_table) - 1
for(i in 1:n_plots){
ppout <- ppout %>%
add_trace(y = c_table[ , (i + 1)], name = legend_lab[i],
type = 'scatter', mode = line_type[i], color = I(line_color[i]),
line = list( width = line_size[i]), opacity = line_alpha[i] )
}
ppout <-
ppout %>%
layout(title = title_lab,
xaxis = list(title = x_lab),
yaxis = list(title = y_lab) )
return(ppout)
} else {
ppout <- plot_ly(c_table, x = ~date)
n_plots <- ncol(c_table) - 1
for(i in 1:n_plots){
if(dual_yaxis[i] == 'left'){
ppout <- ppout %>%
add_trace(y = c_table[ , (i + 1)], name = legend_lab[i],
type = 'scatter', mode = line_type[i], color = I(line_color[i]),
line = list( width = line_size[i]), opacity = line_alpha[i] )
} else if (dual_yaxis[i] == 'right'){
ppout <- ppout %>%
add_trace(y = c_table[ , (i + 1)], name = legend_lab[i],
type = 'scatter', mode = line_type[i], color = I(line_color[i]),
line = list( width = line_size[i]), opacity = line_alpha[i],
yaxis = 'y2')
}
}
ppout <-
ppout %>%
layout(title = title_lab,
xaxis = list(title = x_lab),
yaxis = list(title = y_lab[1]),
yaxis2 = list(title = y_lab[2],
overlaying = 'y',
side = 'right') )
return(ppout)
}
} else {
index_x <- which(scatter == 'x')
index_y <- which(scatter == 'y')
nm_table <- colnames(c_table)[-1]
x_name <- nm_table[index_x]
y_name <- nm_table[index_y]
gg_out <-
ggplot(data = c_table,
aes(x = c_table[ , x_name], y = c_table[ , y_name]) ) +
geom_point(size = line_size, color = line_color, alpha = line_alpha, shape = line_type ) +
theme(legend.title = element_blank()) +
ggtitle(label = title_lab) +
xlab(x_lab) + ylab(y_lab)
pp_out <- ggplotly( gg_out )
return(pp_out)
}
}
})
setMethod(f = 'hm_plot',
signature = 'hydromet_compact',
definition = function(obj, slot_name, col_name, interactive = FALSE,
line_type = NULL, line_color = NULL,
line_size = NULL, line_alpha = NULL,
x_lab = 'date', y_lab = 'y', title_lab = NULL,
legend_lab = NULL, dual_yaxis = NULL,
from = NULL, to = NULL, scatter = NULL)
{
check_class(argument = obj, target = 'hydromet_compact', arg_name = 'obj')
check_class(argument = slot_name, target = 'character', arg_name = 'slot_name')
check_string(argument = slot_name, target = 'compact',
arg_name = 'slot_name')
check_class(argument = col_name, target = c('list'), arg_name = 'col_name')
col_name_vect <- unlist(col_name)
check_class(argument = col_name_vect, target = 'character',
arg_name = 'col_name internal arguments')
column_names <- list()
for(i in 1:length(slot_name)){
column_names[[i]] <- colnames( hm_get(obj = obj, slot_name = slot_name[i]) )[-1]
}
check_string(argument = col_name_vect, target = unlist(column_names),
arg_name = 'col_name')
check_class(argument = interactive, target = 'logical', arg_name = 'interactive')
check_length(argument = interactive, max_allow = 1, arg_name = 'interactive')
if( is.null(scatter) ){
check_class(argument = line_type, target = 'character', arg_name = 'line_type')
if(interactive == FALSE){
check_string(argument = line_type, target = c('solid', 'twodash',
'longdash', 'dotted', 'dotdash', 'dashed', 'blank'),
arg_name = 'line_type')
} else{
check_string(argument = line_type, target = c('lines', 'lines+markers',
'markers'),
arg_name = 'line_type')
}
check_cross(ref_arg = col_name_vect, eval_arg = line_type,
arg_names = c('col_name', 'line_type') )
} else{
check_class(argument = line_type, target = 'numeric', arg_name = 'line_type (point shape)')
check_numeric(argument = line_type, target = 0:24, arg_name = 'line_type (point shape)')
check_length(argument = line_type, max_allow = 1, arg_name = 'line_type (point shape)')
}
check_class(argument = line_color, target = 'character', arg_name = 'line_color')
check_string(argument = line_color, target = colors(), arg_name = 'line_color')
if( is.null(scatter) ){
check_cross(ref_arg = col_name_vect, eval_arg = line_color,
arg_names = c('col_name', 'line_color'))
} else{
check_length(argument = line_color, max_allow = 1, arg_name = 'line_color (scatter)')
}
check_class(argument = line_size, target = c('numeric', 'integer'),
arg_name = 'line_size')
check_values <- sum( which(line_size < 0) )
if(check_values != 0){ stop('line_size argument(s) shuld be greater than 0!',
call. = FALSE) }
if( is.null(scatter) ){
check_cross(ref_arg = col_name_vect, eval_arg = line_size,
arg_names = c('col_name', 'line_size'))
} else{
check_length(argument = line_size, max_allow = 1, arg_name = 'line_size (scatter)')
}
check_class(argument = line_alpha, target = 'numeric', arg_name = 'line_alpha')
check_values <- sum( which(line_alpha < 0 | line_alpha > 1 ) )
if(check_values != 0){ stop('line_alpha argument(s) shuld be between 0 and 1!',
call. = FALSE) }
if( is.null(scatter) ){
check_cross(ref_arg = col_name_vect, eval_arg = line_alpha,
arg_names = c('col_name', 'line_alpha'))
} else{
check_length(argument = line_alpha, max_allow = 1, arg_name = 'line_alpha (scatter)')
}
check_class(argument = x_lab, target = 'character', arg_name = 'x_lab')
check_length(argument = x_lab, max_allow = 1, arg_name = 'x_lab')
check_class(argument = y_lab, target = 'character', arg_name = 'y_lab')
if( is.null(dual_yaxis) ){
check_length(argument = y_lab, max_allow = 1, arg_name = 'y_lab')
} else{
check_length(argument = y_lab, max_allow = 2, arg_name = 'y_lab')
}
check_class(argument = title_lab, target = 'character', arg_name = 'title_lab')
check_length(argument = title_lab, max_allow = 1, arg_name = 'title_lab')
check_class(argument = legend_lab, target = 'character', arg_name = 'legend_lab')
check_cross(ref_arg = col_name_vect, eval_arg = legend_lab,
arg_names = c('col_name', 'legend_lab'))
check_class(argument = dual_yaxis, target = 'character', arg_name = 'dual_yaxis')
check_string(argument = dual_yaxis, target = c('left', 'right'), arg_name = 'dual_yaxis')
check_cross(ref_arg = col_name_vect, eval_arg = dual_yaxis,
arg_names = c('col_name', 'dual_yaxis'))
check_class(argument = from, target = c('character', 'POSIXct'), arg_name = 'from')
check_length(argument = from, max_allow = 1, arg_name = 'from')
check_class(argument = to, target = c('character', 'POSIXct'), arg_name = 'to')
check_length(argument = to, max_allow = 1, arg_name = 'to')
check_class(argument = scatter, target = 'character', arg_name = 'scatter')
check_string(argument = scatter, target = c('x', 'y'), arg_name = 'scatter')
check_cross(ref_arg = col_name_vect, eval_arg = scatter, arg_names = 'scatter')
if( is.null(line_type) ){
if( is.null(scatter) ){
if(interactive == FALSE){
line_type <- rep('solid', length(col_name_vect))
} else {
line_type <- rep('lines', length(col_name_vect))
}
} else{
line_type <- 16
}
}
if( is.null(line_color) ){
if( is.null(scatter) ){
line_color <- heat.colors(n = length(col_name_vect) )
} else{
line_color <- 'dodgerblue'
}
}
if( is.null(line_size) ){
if( is.null(scatter) ){
line_size <- rep(0.8, length(col_name_vect) )
} else{
line_size <- 1
}
}
if( is.null(line_alpha) ){
if( is.null(scatter) ){
line_alpha <- rep(1, length(col_name_vect) )
} else{
line_alpha <- 1
}
}
if( !is.null(dual_yaxis) ){
if( length(y_lab) != 2){
y_lab <- c('y', 'y2')
}
}
c_table <- build_table(hm_obj = obj, slot_name = slot_name,
col_name = col_name, from = from, to = to)
if(interactive == FALSE){
if( is.null(scatter) == TRUE ) {
if( is.null(dual_yaxis) == TRUE ){
gg_table <- ggplot_table(df = c_table, l_color = line_color,
l_type = line_type, l_size = line_size,
l_legend = legend_lab)
gg_out <-
ggplot(data = gg_table,
aes_string(x = 'date', y = 'series', group = 'group') ) +
geom_line( aes_string(size = 'group', linetype = 'group', color = 'group', alpha = 'group') ) +
scale_color_manual( values = line_color ) +
scale_linetype_manual(values = line_type ) +
scale_size_manual(values = line_size ) +
scale_alpha_manual(values = line_alpha) +
theme(legend.title = element_blank()) +
ggtitle(label = title_lab) +
xlab(x_lab) + ylab(y_lab)
return(gg_out)
} else{
index_left <- which(dual_yaxis == 'left')
index_right <- which(dual_yaxis == 'right')
nm_table <- colnames(c_table)[-1]
left_names <- nm_table[index_left]
right_names <- nm_table[index_right]
dual_list <- dual_y_table(df = c_table,
y_left = left_names,
y_right = right_names)
dual_table <- dual_list[['table']]
gg_table <- ggplot_table(df = dual_table,
l_color = line_color,
l_type = line_type,
l_size = line_size,
l_legend = legend_lab)
a <- as.numeric( dual_list[['coefficients']][1] )
b <- as.numeric( dual_list[['coefficients']][2] )
sf <- as.numeric( dual_list[['coefficients']][3] )
trans <- dual_list[['transformation']]
gg_out <-
ggplot(data = gg_table,
aes_string(x = 'date', y = 'series', group = 'group') ) +
geom_line( aes_string(size = 'group', linetype = 'group', color = 'group', alpha = 'group') ) +
scale_y_continuous(sec.axis = sec_axis(trans = trans, name = y_lab[2]) ) +
scale_color_manual( values = line_color ) +
scale_linetype_manual(values = line_type ) +
scale_size_manual(values = line_size ) +
scale_alpha_manual(values = line_alpha) +
theme(legend.title = element_blank()) +
ggtitle(label = title_lab) +
xlab(x_lab) + ylab(y_lab)
return(gg_out)
}
} else {
index_x <- which(scatter == 'x')
index_y <- which(scatter == 'y')
nm_table <- colnames(c_table)[-1]
x_name <- nm_table[index_x]
y_name <- nm_table[index_y]
gg_out <-
ggplot(data = c_table,
aes(x = c_table[ , x_name], y = c_table[ , y_name]) ) +
geom_point(size = line_size, color = line_color, alpha = line_alpha, shape = line_type ) +
theme(legend.title = element_blank()) +
ggtitle(label = title_lab) +
xlab(x_lab) + ylab(y_lab)
return(gg_out)
}
} else{
if( is.null(scatter) == TRUE ){
if( is.null(dual_yaxis) == TRUE ){
ppout <- plot_ly(c_table, x = ~date)
n_plots <- ncol(c_table) - 1
for(i in 1:n_plots){
ppout <- ppout %>%
add_trace(y = c_table[ , (i + 1)], name = legend_lab[i],
type = 'scatter', mode = line_type[i], color = I(line_color[i]),
line = list( width = line_size[i]), opacity = line_alpha[i] )
}
ppout <-
ppout %>%
layout(title = title_lab,
xaxis = list(title = x_lab),
yaxis = list(title = y_lab) )
return(ppout)
} else {
ppout <- plot_ly(c_table, x = ~date)
n_plots <- ncol(c_table) - 1
for(i in 1:n_plots){
if(dual_yaxis[i] == 'left'){
ppout <- ppout %>%
add_trace(y = c_table[ , (i + 1)], name = legend_lab[i],
type = 'scatter', mode = line_type[i], color = I(line_color[i]),
line = list( width = line_size[i]), opacity = line_alpha[i] )
} else if (dual_yaxis[i] == 'right'){
ppout <- ppout %>%
add_trace(y = c_table[ , (i + 1)], name = legend_lab[i],
type = 'scatter', mode = line_type[i], color = I(line_color[i]),
line = list( width = line_size[i]), opacity = line_alpha[i],
yaxis = 'y2')
}
}
ppout <-
ppout %>%
layout(title = title_lab,
xaxis = list(title = x_lab),
yaxis = list(title = y_lab[1]),
yaxis2 = list(title = y_lab[2],
overlaying = 'y',
side = 'right') )
return(ppout)
}
} else {
index_x <- which(scatter == 'x')
index_y <- which(scatter == 'y')
nm_table <- colnames(c_table)[-1]
x_name <- nm_table[index_x]
y_name <- nm_table[index_y]
gg_out <-
ggplot(data = c_table,
aes(x = c_table[ , x_name], y = c_table[ , y_name]) ) +
geom_point(size = line_size, color = line_color, alpha = line_alpha, shape = line_type ) +
theme(legend.title = element_blank()) +
ggtitle(label = title_lab) +
xlab(x_lab) + ylab(y_lab)
pp_out <- ggplotly( gg_out )
return(pp_out)
}
}
}) |
gc()
unlink(.temp_dir_to_use, recursive = TRUE) |
context("ggdend")
test_that("as.ggdend.dendrogram works", {
dend <- 1:3 %>%
dist() %>%
hclust() %>%
as.dendrogram() %>%
set("branches_k_color", k = 2) %>%
set("branches_lwd", c(1.5, 1, 1.5)) %>%
set("branches_lty", c(1, 1, 3, 1, 1, 2)) %>%
set("labels_colors") %>%
set("labels_cex", c(.9, 1.2)) %>%
set("nodes_pch", 19) %>%
set("nodes_col", c("orange", "black", "NA"))
gg1 <- as.ggdend(dend)
should_be <- structure(list(
segments = structure(list(x = c(
1.75, 1, 1.75,
2.5, 2.5, 2, 2.5, 3
), y = c(2, 2, 2, 2, 1, 1, 1, 1), xend = c(
1,
1, 2.5, 2.5, 2, 2, 3, 3
), yend = c(2, 0, 2, 1, 1, 0, 1, 0), col = c(
"
"
"
), lwd = c(1, 1, 1.5, 1.5, 1.5, 1.5, 1, 1), lty = c(
1,
1, 3, 3, 1, 1, 1, 1
)), .Names = c(
"x", "y", "xend", "yend", "col",
"lwd", "lty"
), row.names = c(NA, 8L), class = "data.frame"),
labels = structure(list(x = c(1, 2, 3), y = c(0, 0, 0), label = structure(1:3, .Label = c(
"3",
"1", "2"
), class = "factor"), col = c(
"
"
), cex = c(0.9, 1.2, 0.9)), .Names = c(
"x", "y",
"label", "col", "cex"
), row.names = c(NA, 3L), class = "data.frame"),
nodes = structure(list(x = c(1.75, 1, 2.5, 2, 3), y = c(
2,
0, 1, 0, 0
), pch = c(19, 19, 19, 19, 19), cex = c(
NA, NA,
NA, NA, NA
), col = c("orange", "black", "NA", "orange", "black"), members = c(3L, 1L, 2L, 1L, 1L), midpoint = c(
0.75, NA,
0.5, NA, NA
), height = c(2, 0, 1, 0, 0), leaf = c(
NA, TRUE,
NA, TRUE, TRUE
)), .Names = c(
"x", "y", "pch", "cex", "col",
"members", "midpoint", "height", "leaf"
), row.names = c(
NA,
-5L
), class = "data.frame")
), .Names = c(
"segments", "labels",
"nodes"
), class = "ggdend")
expect_identical(gg1, should_be)
dend <- 1:3 %>%
dist() %>%
hclust() %>%
as.dendrogram()
gg2 <- as.ggdend(dend)
should_be <- structure(list(segments = structure(list(x = c(
1.75, 1, 1.75,
2.5, 2.5, 2, 2.5, 3
), y = c(2, 2, 2, 2, 1, 1, 1, 1), xend = c(
1,
1, 2.5, 2.5, 2, 2, 3, 3
), yend = c(2, 0, 2, 1, 1, 0, 1, 0), col = c(
NA,
NA, NA, NA, NA, NA, NA, NA
), lwd = c(
NA, NA, NA, NA, NA, NA,
NA, NA
), lty = c(NA, NA, NA, NA, NA, NA, NA, NA)), .Names = c(
"x",
"y", "xend", "yend", "col", "lwd", "lty"
), row.names = c(
NA,
8L
), class = "data.frame"), labels = structure(list(x = c(
1,
2, 3
), y = c(0, 0, 0), label = structure(1:3, .Label = c(
"3",
"1", "2"
), class = "factor"), col = c(NA, NA, NA), cex = c(
NA,
NA, NA
)), .Names = c("x", "y", "label", "col", "cex"), row.names = c(
NA,
3L
), class = "data.frame"), nodes = structure(list(
x = c(
1.75,
1, 2.5, 2, 3
), y = c(2, 0, 1, 0, 0), pch = c(
NA, NA, NA, NA,
NA
), cex = c(NA, NA, NA, NA, NA), col = c(NA, NA, NA, NA, NA),
members = c(3L, 1L, 2L, 1L, 1L), midpoint = c(
0.75, NA, 0.5,
NA, NA
), height = c(2, 0, 1, 0, 0), leaf = c(
NA, TRUE, NA,
TRUE, TRUE
)
), .Names = c(
"x", "y", "pch", "cex", "col", "members",
"midpoint", "height", "leaf"
), row.names = c(NA, -5L), class = "data.frame")), .Names = c(
"segments",
"labels", "nodes"
), class = "ggdend")
expect_identical(gg2, should_be)
})
test_that("ggplot doesn't have warnings for dendrograms", {
library(ggplot2)
library(dendextend)
g <- ggplot(as.dendrogram(hclust(dist(mtcars))))
expect_warning(ggplot_build(g), NA)
}) |
library(animation)
saveHTML({
extList = c('http://i.imgur.com/rJ7xF.jpg',
'http://i.imgur.com/Lyr9o.jpg',
'http://i.imgur.com/18Qrb.jpg')
for (i in 1:length(extList)) {
download.file(url = extList[i], destfile = sprintf(ani.options('img.fmt'), i), mode = 'wb')
}
}, use.dev = FALSE, ani.width = 640, ani.height = 480, ani.type = 'jpg',
interval = 2, single.opts = "'dwellMultiplier': 1") |
test_that("bd handles strange data", {
expect_error(band_depth(dt = list()),
"Argument \"dt\" must be a nonempty numeric matrix or dataframe.")
dta <- data.frame()
expect_error(band_depth(dt = data.frame()))
expect_error(band_depth(dt = matrix(NA, nrow = 1, ncol = 3)))
expect_error(band_depth(dt = matrix(c(1:2, NA), nrow = 1, ncol = 3)))
})
test_that("bd gives correct result", {
dt1 <- simulation_model1(seed = 50)
bdd <- band_depth(dt1$data)
expect_equal(order(bdd)[1:10],
c(20, 43, 53, 70, 9, 6, 14, 36, 93, 8))
expect_equal(order(bdd)[90:100],
c(17, 54, 15, 34, 83, 74, 25, 24, 23, 47, 90))
}) |
is_constant <- function(x, nThread = getOption("hutilscpp.nThread", 1L)) {
if (!is.atomic(x)) {
stop("`x` was not atomic. ",
"Such objects are not supported.")
}
nThread <- check_omp(nThread)
ans <- .Call("Cis_constant", x, nThread, PACKAGE = packageName)
if (is.null(ans)) {
return(identical(rep_len(x[1], length(x)), x))
}
ans
}
isntConstant <- function(x) {
if (!is.atomic(x)) {
stop("`x` was not atomic. ",
"Such objects are not supported.")
}
if (length(x) <= 1L) {
return(0L)
}
x1 <- x[1L]
if (is.logical(x)) {
wmin <- which.min(x)
if (anyNA(x1)) {
if (length(wmin)) {
wmax <- which.max(x[seq_len(wmin)])
return(min(wmax, wmin))
} else {
return(0L)
}
} else {
if (wmin == 1L) {
wmax <- which.max(x)
if (wmax == 1L) {
return(0L)
} else {
return(wmax)
}
} else {
return(wmin)
}
}
}
ans <- .Call("Cisnt_constant", x, PACKAGE = packageName)
if (is.null(ans)) {
x1 <- x[1L]
for (i in seq_along(ans)) {
if (x[i] != x1) {
return(i)
}
}
return(0L)
}
ans
} |
context("Very basic tests of sequencing output")
dir <- tempdir(check = TRUE)
ref <- create_genome(5, 100)
tr <- ape::rcoal(4)
haps <- create_haplotypes(ref, haps_phylo(tr), sub = sub_JC69(0.1))
test_that("no weirdness with Illumina single-end reads on ref. genome", {
illumina(ref, out_prefix = sprintf("%s/%s", dir, "test"),
n_reads = 100, read_length = 100, paired = FALSE,
overwrite = TRUE)
expect_true(sprintf("%s_R1.fq", "test") %in% list.files(dir))
fasta <- readLines(sprintf("%s/%s_R1.fq", dir, "test"))
expect_length(fasta, 400L)
expect_true(all(grepl("^@", fasta[seq(1, 400, 4)])))
expect_identical(fasta[seq(3, 400, 4)], rep("+", 100))
file.remove(sprintf("%s/%s_R1.fq", dir, "test"))
})
test_that("no weirdness with Illumina paired-end reads on ref. genome", {
illumina(ref, out_prefix = sprintf("%s/%s", dir, "test"),
n_reads = 100, read_length = 100, paired = TRUE,
overwrite = TRUE)
expect_true(sprintf("%s_R1.fq", "test") %in% list.files(dir))
expect_true(sprintf("%s_R2.fq", "test") %in% list.files(dir))
fasta1 <- readLines(sprintf("%s/%s_R1.fq", dir, "test"))
fasta2 <- readLines(sprintf("%s/%s_R2.fq", dir, "test"))
expect_length(fasta1, 200L)
expect_length(fasta2, 200L)
expect_true(all(grepl("^@", fasta1[seq(1, 200, 4)])))
expect_true(all(grepl("^@", fasta2[seq(1, 200, 4)])))
expect_identical(fasta1[seq(3, 200, 4)], rep("+", 50))
expect_identical(fasta2[seq(3, 200, 4)], rep("+", 50))
file.remove(sprintf("%s/%s_R1.fq", dir, "test"))
file.remove(sprintf("%s/%s_R2.fq", dir, "test"))
})
profile_df <- expand.grid(nucleo = c("T", "C", "A", "G"),
pos = 0:99,
qual = c(255L, 1000L), stringsAsFactors = FALSE)
profile_df <- profile_df[order(profile_df$nucleo, profile_df$pos, profile_df$qual),]
write.table(profile_df, file = sprintf("%s/%s", dir, "test_prof.txt"), sep = "\t",
row.names = FALSE, col.names = FALSE, quote = FALSE)
test_that("proper pairs created with Illumina paired-end reads on ref. genome", {
chrom <- paste(c(rep('C', 25), rep('N', 150), rep('T', 25)), collapse = "")
poss_pairs <- c(paste(c(rep('C', 25), rep('N', 75)), collapse = ""),
paste(c(rep('A', 25), rep('N', 75)), collapse = ""))
rg <- ref_genome$new(jackalope:::make_ref_genome(chrom))
illumina(rg, out_prefix = paste0(dir, "/test"),
n_reads = 10e3, read_length = 100,
paired = TRUE, matepair = FALSE,
frag_len_min = 200, frag_len_max = 200,
ins_prob1 = 0, del_prob1 = 0,
ins_prob2 = 0, del_prob2 = 0,
profile1 = paste0(dir, "/test_prof.txt"),
profile2 = paste0(dir, "/test_prof.txt"),
overwrite = TRUE)
fq1 <- readLines(paste0(dir, "/test_R1.fq"))
fq2 <- readLines(paste0(dir, "/test_R2.fq"))
reads1 <- fq1[seq(2, length(fq1), 4)]
reads2 <- fq2[seq(2, length(fq2), 4)]
expect_identical(sort(unique(reads1)), sort(poss_pairs))
expect_identical(sort(unique(reads2)), sort(poss_pairs))
})
test_that("proper pairs created with Illumina mate-pair reads on ref. genome", {
chrom <- paste(c(rep('C', 25), rep('N', 150), rep('T', 25)), collapse = "")
poss_pairs <- c(paste(c(rep('N', 75), rep('T', 25)), collapse = ""),
paste(c(rep('N', 75), rep('G', 25)), collapse = ""))
rg <- ref_genome$new(jackalope:::make_ref_genome(chrom))
illumina(rg, out_prefix = paste0(dir, "/test"),
n_reads = 10e3, read_length = 100,
paired = TRUE, matepair = TRUE,
frag_len_min = 200, frag_len_max = 200,
ins_prob1 = 0, del_prob1 = 0,
ins_prob2 = 0, del_prob2 = 0,
profile1 = paste0(dir, "/test_prof.txt"),
profile2 = paste0(dir, "/test_prof.txt"),
overwrite = TRUE)
fq1 <- readLines(paste0(dir, "/test_R1.fq"))
fq2 <- readLines(paste0(dir, "/test_R2.fq"))
reads1 <- fq1[seq(2, length(fq1), 4)]
reads2 <- fq2[seq(2, length(fq2), 4)]
expect_identical(sort(unique(reads1)), sort(poss_pairs))
expect_identical(sort(unique(reads2)), sort(poss_pairs))
})
test_that("no weirdness with Illumina single-end reads on haplotypes", {
illumina(haps, out_prefix = sprintf("%s/%s", dir, "test"),
n_reads = 100, read_length = 100, paired = FALSE,
overwrite = TRUE)
expect_true(sprintf("%s_R1.fq", "test") %in% list.files(dir))
fasta <- readLines(sprintf("%s/%s_R1.fq", dir, "test"))
expect_length(fasta, 400L)
expect_true(all(grepl("^@", fasta[seq(1, 400, 4)])))
expect_identical(fasta[seq(3, 400, 4)], rep("+", 100))
file.remove(sprintf("%s/%s_R1.fq", dir, "test"))
})
test_that("no weirdness with Illumina single-end reads on haplotypes w/ sep. files", {
illumina(haps, out_prefix = sprintf("%s/%s", dir, "test"),
n_reads = 100, read_length = 100, paired = FALSE,
overwrite = TRUE, sep_files = TRUE)
fns <- sprintf("%s_%s_R1.fq", "test", haps$hap_names())
expect_true(all(fns %in% list.files(dir)))
fns <- paste0(dir, "/", fns)
fastas <- lapply(fns, readLines)
expect_identical(sum(sapply(fastas, length)), 400L)
expect_true(all(sapply(fastas,
function(fa) all(grepl("^@", fa[seq(1, length(fa), 4)])))))
expect_identical(do.call(c, lapply(fastas, function(fa) fa[seq(3, length(fa), 4)])),
rep("+", 100))
file.remove(fns)
})
test_that("no weirdness with Illumina paired-end reads on haplotypes", {
illumina(haps, out_prefix = sprintf("%s/%s", dir, "test"),
n_reads = 100, read_length = 100, paired = TRUE,
overwrite = TRUE)
expect_true(sprintf("%s_R1.fq", "test") %in% list.files(dir))
expect_true(sprintf("%s_R2.fq", "test") %in% list.files(dir))
fasta1 <- readLines(sprintf("%s/%s_R1.fq", dir, "test"))
fasta2 <- readLines(sprintf("%s/%s_R2.fq", dir, "test"))
expect_length(fasta1, 200L)
expect_length(fasta2, 200L)
expect_true(all(grepl("^@", fasta1[seq(1, 200, 4)])))
expect_true(all(grepl("^@", fasta2[seq(1, 200, 4)])))
expect_identical(fasta1[seq(3, 200, 4)], rep("+", 50))
expect_identical(fasta2[seq(3, 200, 4)], rep("+", 50))
file.remove(sprintf("%s/%s_R1.fq", dir, "test"))
file.remove(sprintf("%s/%s_R2.fq", dir, "test"))
})
test_that("no weirdness with Illumina paired-end reads on haplotypes w/ sep. files", {
illumina(haps, out_prefix = sprintf("%s/%s", dir, "test"),
n_reads = 100, read_length = 100, paired = TRUE,
overwrite = TRUE, sep_files = TRUE)
fns <- lapply(haps$hap_names(),
function(x) sprintf("%s_%s_R%i.fq", "test", x, 1:2))
expect_true(all(unlist(fns) %in% list.files(dir)))
fns <- lapply(fns, function(x) paste0(dir, "/", x))
fastas <- lapply(fns, function(x) lapply(x, readLines))
expect_true(all(sapply(fastas, function(x) length(x[[1]]) == length(x[[2]]))))
fastas <- unlist(fastas, recursive = FALSE)
expect_length(unlist(fastas), 400L)
expect_true(all(sapply(fastas,
function(fa) all(grepl("^@", fa[seq(1, length(fa), 4)])))))
expect_identical(do.call(c, lapply(fastas, function(fa) fa[seq(3, length(fa), 4)])),
rep("+", 100))
file.remove(unlist(fns))
})
test_that("no weirdness with PacBio reads on ref. genome", {
pacbio(ref, out_prefix = sprintf("%s/%s", dir, "test"),
n_reads = 100, overwrite = TRUE)
expect_true(sprintf("%s_R1.fq", "test") %in% list.files(dir))
fasta <- readLines(sprintf("%s/%s_R1.fq", dir, "test"))
expect_length(fasta, 400L)
expect_true(all(grepl("^@", fasta[seq(1, 400, 4)])))
expect_identical(fasta[seq(3, 400, 4)], rep("+", 100))
file.remove(sprintf("%s/%s_R1.fq", dir, "test"))
})
test_that("no weirdness with PacBio reads on haplotypes", {
pacbio(haps, out_prefix = sprintf("%s/%s", dir, "test"),
n_reads = 100, overwrite = TRUE)
expect_true(sprintf("%s_R1.fq", "test") %in% list.files(dir))
fasta <- readLines(sprintf("%s/%s_R1.fq", dir, "test"))
expect_length(fasta, 400L)
expect_true(all(grepl("^@", fasta[seq(1, 400, 4)])))
expect_identical(fasta[seq(3, 400, 4)], rep("+", 100))
file.remove(sprintf("%s/%s_R1.fq", dir, "test"))
}) |
context("build(hp) - ResNet")
source("utils.R")
test_succeeds("Can run hyper_class", {
library(keras)
library(dplyr)
library(kerastuneR)
cifar <- dataset_cifar10()
hypermodel = HyperResNet(input_shape = list(300L, 300L, 3L), classes = 10L)
hypermodel2 = HyperXception(input_shape = list(300L, 300L, 3L), classes = 10L)
testthat::expect_match(hypermodel %>% capture.output(),'keras_tuner.applications.resnet.HyperResNet')
tuner = Hyperband(
hypermodel = hypermodel,
objective = 'val_accuracy',
max_epochs = 1,
directory = 'my_dir',
project_name='helloworld')
testthat::expect_match(tuner %>% capture.output(),'keras_tuner.tuners.hyperband.Hyperband')
train_data = cifar$train$x[1:30,1:32,1:32,1:3]
test_data = cifar$train$y[1:30,1] %>% as.matrix()
rm(cifar)
os = switch(Sys.info()[['sysname']],
Windows= {paste("win")},
Linux = {paste("lin")},
Darwin = {paste("mac")})
if (os %in% 'win') {
print('Done')
} else {
print('Done')
}
}) |
addObservations <-
function(formLatticeOutput, observations){
if(class(formLatticeOutput) != "formLatticeOutput"){
stop("Should be the output from the function formLattice")
}
nodes <- formLatticeOutput$nodes
n_observ <- nrow(observations)
n_nodes <- nrow(nodes)
temp <- sp::bbox(rbind(observations, nodes))
bound_vect <- c(temp[1,1],temp[1,2],temp[2,1],temp[2,2])
X <- spatstat.geom::as.ppp(observations, W=bound_vect)
Y <- spatstat.geom::as.ppp(nodes, W=bound_vect)
closest <- spatstat.geom::nncross(X,Y)$which
out <- list(init_prob = tabulate(closest,nbins=n_nodes)/n_observ,
which_nodes = closest)
class(out) <- "initProbObject"
return(out)
} |
partition_roots <- function(roots, rtsize){
if(length(rtsize) > 1 && length(rtsize) == length(roots)){
threshold <- .002
epsilon <- .0005
rtsize_thresh_idx <- which.min(sapply(rtsize-threshold,abs))
rtsize_thresh <- rtsize[rtsize_thresh_idx]
if(abs(rtsize_thresh-threshold) > epsilon){
PEcAn.logger::logger.error(paste("Closest rtsize to fine root threshold of", threshold, "m (", rtsize_thresh,
") is greater than", epsilon,
"m off; fine roots can't be partitioned. Please improve rtsize dimensions."))
return(NULL)
} else{
fine.roots <- sum(roots[1:rtsize_thresh_idx-1])
coarse.roots <- sum(roots) - fine.roots
if(fine.roots >= 0 && coarse.roots >= 0){
PEcAn.logger::logger.info("Using partitioned root values", fine.roots, "for fine and", coarse.roots, "for coarse.")
return(list(fine.roots = fine.roots, coarse.roots = coarse.roots))
} else{
PEcAn.logger::logger.error("Roots could not be partitioned (fine or coarse is less than 0).")
return(NULL)
}
}
} else {
PEcAn.logger::logger.error("Inadequate or incorrect number of levels of rtsize associated with roots; please ensure roots and rtsize lengths match and are greater than 1.")
return(NULL)
}
} |
DarkWrap <- function(obj){
require(Dark)
P<- Start(obj, 5000)
MSC<-ModelSelect(obj,P)
MSC$AIC[3]<-MSC$AIC[3] + 1000
MSC$AIC[5]<-MSC$AIC[5] + 1000
MSC$AIC[6]<-MSC$AIC[6] + 1000
MSC$AIC[7]<-MSC$AIC[7] + 00
obj<-BestFit(obj,MSC)
obj<-MultiStart(obj,repeats = 50)
obj<-BootDark(obj,R = 200)
obj
} |
library(ggplot2)
load('output/result-model7-4.RData')
ms <- rstan::extract(fit)
qua <- apply(ms$y_new, 2, quantile, prob=c(0.025, 0.25, 0.5, 0.75, 0.975))
d_est <- data.frame(X=Time_new, t(qua), check.names=FALSE)
p <- ggplot() +
theme_bw(base_size=18) +
geom_ribbon(data=d_est, aes(x=X, ymin=`2.5%`, ymax=`97.5%`), fill='black', alpha=1/6) +
geom_ribbon(data=d_est, aes(x=X, ymin=`25%`, ymax=`75%`), fill='black', alpha=2/6) +
geom_line(data=d_est, aes(x=X, y=`50%`), size=0.5) +
geom_point(data=d, aes(x=Time, y=Y), size=3) +
labs(x='Time (hour)', y='Y') +
scale_x_continuous(breaks=d$Time, limit=c(0, 24)) +
ylim(-2.5, 16)
ggsave(file='output/fig7-6-right.png', plot=p, dpi=300, w=4, h=3) |
with.datlist <- function( data, expr, fun, ... )
{
pf<-parent.frame()
if (!is.null(match.call()$expr)){
expr<-substitute(expr)
results<-lapply(data, function(dataset) eval(expr, dataset, enclos=pf))
} else {
results<-lapply(data, fun,...)
}
if (all(sapply(results, inherits, what="imputationResult"))){
class(results)<-"imputationResultList"
results$call<-sys.call(-1)
} else {
attr(results,"call")<-sys.call(-1)
}
return(results)
} |
context("dose response model functions")
ud <- function(x) unname(drop(x))
test_that("betaMod does not produce NaN for large delta1, delta2", {
expect_equal(betaMod(100, 1, 2, 10, 10, 200), 3)
expect_equal(betaMod(100, 1, 2, 150, 150, 200), 3)
expect_equal(betaMod(100, 1, 2, 100, 50, 200), 1.000409)
expect_equal(betaMod(0, 1, 2, 50, 50, 200), 1)
expect_equal(betaMod(0, 1, 2, 75, 75, 200), 1)
expect_equal(ud(betaModGrad(100, 2, 50, 50, 200)), c(1, 1, 0, 0))
expect_equal(ud(betaModGrad(100, 2, 150, 150, 200)), c(1, 1, 0, 0))
expect_equal(ud(betaModGrad(0, 2, 50, 50, 200)), c(1, 0, 0, 0))
expect_equal(ud(betaModGrad(0, 2, 100, 100, 200)), c(1, 0, 0, 0))
})
test_that("sigEmax does not produce NaN for large dose and large h", {
expect_equal(sigEmax(100, 1, 1, 50, 2), 1.8)
expect_equal(sigEmax(100, 1, 1, 50, 150), 2)
expect_equal(sigEmax(150, 1, 1, 50, 150), 2)
expect_equal(sigEmax(0, 1, 1, 50, 10), 1)
expect_equal(sigEmax(0, 1, 1, 50, 400), 1)
expect_equal(sigEmax(c(50, 150), 1, 1, 50, 0), c(1.5, 1.5))
expect_equal(ud(sigEmaxGrad(100, 1, 50, 10)), c(1, 0.999024390243902, -0.000194931588340274, 0.000675581404300663))
expect_equal(ud(sigEmaxGrad(100, 1, 50, 150)), c(1, 1, 0, 0))
expect_equal(ud(sigEmaxGrad(150, 1, 50, 150)), c(1, 1, 0, 0))
expect_equal(ud(sigEmaxGrad(0, 1, 50, 0)), c(1, 0.5, 0, 0))
expect_equal(ud(sigEmaxGrad(0, 1, 50, 150)), c(1, 0, 0, 0))
expect_equal(sigEmax(0, 1, 1, 0, 5), NaN)
}) |
library(network)
net<-network.initialize(100000)
net<-add.edges(net,1:99999,2:100000)
set.edge.attribute(net,'LETTERS',LETTERS)
data(emon)
subG4<-get.inducedSubgraph(emon$MtStHelens,eid=which(emon$MtStHelens%e%'Frequency'==4))
if(network.size(subG4)!=24){
stop('wrong size eid induced subgraph')
}
if (any(subG4%e%'Frequency'!=4)){
stop('bad edges in eid induced subgraph')
}
set.edge.attribute(network.initialize(3),"test","a")
set.vertex.attribute(network.initialize(0),'foo','bar')
x2<-network.initialize(3)
x2[1,2]<-NA
if(is.na.network(x2)[1,2]!=1){
stop('problem iwth is.na.netowrk')
}
mat <- matrix(rbinom(200, 1, 0.2), nrow = 20)
naIndices <- sample(1:200, 20)
mat[naIndices] <- NA
nw <- network(mat)
net<-network.initialize(2,loops=TRUE,directed=FALSE)
net[1,1]<-1
net[1,2]<-1
net[2,2]<-1
if(get.edgeIDs(net,v=1,alter=1)!=1){
stop("problem with get.edgeIDs on undirected network with loops")
}
if(get.edgeIDs(net,v=2,alter=2)!=3){
stop("problem with get.edgeIDs on undirected network with loops")
}
net<-network.initialize(2,loops=TRUE,directed=FALSE)
net[1,2]<-1
if(length(get.edgeIDs(net,v=2,alter=2))>0){
stop("problem with get.edgeIDs on undirected network with loops")
}
result1 <- as.matrix.network.edgelist(network.initialize(5),as.sna.edgelist = TRUE)
if (nrow(result1) != 0){
stop('as.matrix.network.edgelist did not return correct value for net with zero edges')
}
result1a <- tibble::as_tibble(network.initialize(5))
if (nrow(result1a) != 0){
stop('as_tibble.network did not return correct value for net with zero edges')
}
result2<-as.matrix.network.adjacency(network.initialize(5))
if(nrow(result2) != 5 & ncol(result2) != 5){
stop('as.matrix.network.adjacency did not return matrix with correct dimensions')
}
result3<-as.matrix.network.adjacency(network.initialize(0))
if(nrow(result3) != 0 & ncol(result3) != 0){
stop('as.matrix.network.adjacency did not return matrix with correct dimensions')
}
result4<-as.matrix.network.incidence(network.initialize(5))
if(nrow(result4) != 5 & ncol(result4) != 0){
stop('as.matrix.network.incidence did not return matrix with correct dimensions')
}
result5<-as.matrix.network.incidence(network.initialize(0))
if(nrow(result5) != 0 & ncol(result5) != 0){
stop('as.matrix.network.incidence did not return matrix with correct dimensions')
} |
lists_subscribers <- function(list_id = NULL,
slug = NULL,
owner_user = NULL,
n = 20,
cursor = "-1",
parse = TRUE,
retryonratelimit = NULL,
verbose = TRUE,
token = NULL) {
params <- lists_params(
list_id = list_id,
slug = slug,
owner_user = owner_user
)
r <- TWIT_paginate_cursor(token, "/1.1/lists/subscribers", params,
n = n,
cursor = cursor,
retryonratelimit = retryonratelimit,
verbose = verbose,
page_size = 5000,
get_id = function(x) x$users$id_str
)
if (parse) {
r <- parse_lists_users(r)
}
r
}
parse_lists_users <- function(x) {
users <- lapply(x, function(x) x$users)
dfs <- lapply(users, wrangle_into_clean_data, type = "user")
dfs <- lapply(dfs, tibble::as_tibble)
df <- do.call("rbind", dfs)
copy_cursor(df, x)
} |
"adjust.linear.bayes" <-
function(lbo,ana.obj=lbo$call$ana.obj,...)
{
this.call <- match.call(expand.dots=TRUE)
specs <- lbo$specs
cl.1 <- lbo$hk$call
cl.1[[1]]<-cl.1$varcov<-cl.1$ana.obj<-NULL
cl.2 <- lbo$varcov.call
cl.2[[1]]<-cl.2$x<-cl.2$ana.obj<-NULL
one.gene.expr <- call("bqtl",reg.formula=lbo$varcov.call$x,
ana.obj=ana.obj)
extra.args <- unique(c(names(cl.1),names(cl.2)))
if (length(extra.args)!=0){
dummy.call <- expression("$<-"(one.gene.expr,arg.2,arg.3))[[1]]
for ( i in extra.args ){
dummy.call[[3]] <- dummy.call[[4]] <- i
eval(dummy.call)
one.gene.expr[[i]]<-lbo$call[[i]]
}
}
one.gene.smry.expr <-
call("summary.adj",adj.obj=as.name("one.gene.models"),
n.loc=1,coef.znames="",mode.names=NULL,imp.denom="")
one.gene.smry.expr$coef.znames <- call("$",ana.obj,"reg.names")
mf.expr <- call("$",ana.obj,"map.frame")
prior.expr <- call("$",mf.expr,"prior")
one.gene.smry.expr$imp.denom <- call("/",1,prior.expr)
if ( any(specs$gene.number == 1) ) {
one.gene.models <- eval(one.gene.expr)
one.gene.smry <- eval(one.gene.smry.expr)
}
else {
one.gene.smry <- NULL
}
swap.gene.expr <- one.gene.expr
swaps.expr <-
expression( configs( uniq.config(lbo$swaps[[1]])$uniq ) )[[1]]
swaps.expr[[2]][[2]][[2]][[2]][[2]] <- as.name(this.call$lbo)
n.gene.smry.expr <- one.gene.smry.expr
n.gene.smry.expr$adj.obj <- as.name("swaps.adj")
n.gene.smry.expr$imp.denom <- NULL
n.gene <- vector("list",length(lbo$swaps))
n.swap <- specs$gene.number[specs$n.cycles != 0]
for( i in n.swap ){
swaps.expr[[2]][[2]][[2]][[3]] <- i
swap.gene.expr$reg.formula[[3]] <- swaps.expr
swaps.adj <- eval(swap.gene.expr)
n.gene.smry.expr$n.loc <- i
n.gene.smry.expr$swap.obj <- swaps.expr[[2]][[2]][[2]]
n.gene[[i]] <- c( eval(n.gene.smry.expr), list(swaps=swaps.adj))
}
if ( is.null(lbo$odds) ){
odds <- loc.posterior <- coefs <- NULL
}
else
if ( any(specs$gene.number == 1) ){
odds <-
lbo$odds*cumprod(c(one.gene.smry$adj,
sapply(n.gene[n.swap],"[[","adj")))
post.pr <- odds/sum(odds)
loc.posterior <-
cbind(one.gene.smry$loc,sapply(n.gene[n.swap],"[[","loc")) %*%
( post.pr* c(1,n.swap))
coefs <-
cbind(one.gene.smry$coef,sapply(n.gene[n.swap],"[[","coef")) %*%
post.pr
}
else {
odds <-
lbo$odds*cumprod( sapply(n.gene[n.swap],"[[","adj") )/
n.gene[n.swap][[1]]$adj
post.pr <- odds/sum(odds)
loc.posterior <-
sapply(n.gene[n.swap],"[[","loc") %*%
( post.pr * n.swap )
coefs <-
sapply(n.gene[n.swap],"[[","coef") %*%
post.pr
}
res <- list(odds=odds,loc.posterior=loc.posterior,coefficients=coefs,
one.gene.adj=one.gene.smry,n.gene.adj=n.gene,
call=this.call)
class(res) <- "adjust.linear.bayes"
res
} |
predictive.distribution <-
function (document_sums, topics, alpha, eta)
{
smoothed.topics <- (topics + eta)/rowSums(topics + eta)
apply(document_sums, 2, function(x) {
props <- (x + alpha)/sum(x + alpha)
colSums(props * smoothed.topics)
})
} |
qfrac<-function(x,s,k,i,data,assumption,prop){
dig<-getOption("digits")
on.exit(options(digits = dig))
options(digits = 15)
if(assumption=="UDD"){
if(x==(nrow(data)-1)){
prop<-1
}
Q<-((1/k)*data[x+1,2]*prop)/(1-(s/k)*data[x+1,2]*prop)
}else if(assumption=="constant"){
if(x==(nrow(data)-1)){
prop<-1
}
ik<-Rate_converter(i,"i",1,"i",k,"frac")
p<-((1+i)^(s/k))*(1-(s/k)*(1-E(x,1,i,data,prop,"none",1)))
q.<-((1+i)^(s/k))*((1/k)*(1-E(x,1,i,data,prop,"none",1))*((s+1)*ik+1)-ik)
Q<-q./p
} else{
stop("Check assumption")
}
return(as.numeric(Q))
} |
corc <-
function(dataframe,varnames,subsampsize,nbsafe=5,mixties=FALSE,nthreads=2)
{
obs=dataframe[varnames]
obs=subset(obs,apply(is.na(obs),1,sum)==0)
nnm=length(obs[,1])
dimension=length(varnames)
obs=as.numeric(unlist(obs))
u=runif(1)*(2^31-1)
nboot=nbsafe*subsampsize^dimension
cop=corc0( obs, nnm, dimension, subsampsize, nboot, u, mixties, nthreads=nthreads )
nbootreel=cop[subsampsize^dimension+2]
ties=cop[subsampsize^dimension+1]
cop=cop[1:subsampsize^dimension]
cop=array(cop, rep(subsampsize,dimension))
cop=aperm(cop,dimension:1)
cop=cop/((nbootreel-ties)*subsampsize)
return(list(cop=cop,ties=ties,nsubsampreal=nbootreel,varnames=varnames,nnm=nnm))
} |
tagsDivPlot.l_graph<- function(loon.grob, tabPanelName,
loonWidgetsInfo, linkingGroup, displayedPanel) {
tagsDivPlot.l_plot(loon.grob, tabPanelName,
loonWidgetsInfo, linkingGroup, displayedPanel)
} |
knitr::opts_chunk$set(
echo = TRUE,
root.dir = "C:/Users/Dragos/Desktop/projects",
collapse = TRUE,
comment = "
out.width = "100%",
tidy.opts = list(width.cutoff = 120),
tidy = TRUE,
if (any(!requireNamespace("data.table", quietly = TRUE))) {
knitr::opts_chunk$set(eval = FALSE)
}
)
pks = c('data.table', 'knitr', 'kableExtra', 'replacer')
if(!any(pks %in% search())) {
invisible(lapply(pks, require, character.only = TRUE))
}
ll = lapply(c('data_id_vig.csv', 'lookup_id_vig.csv', 'outData.csv'), fread)
dat = ll[[1]]; orderDat = names(copy(dat))
lk = ll[[2]]; orderLk = names(copy(lk))
odat = ll[[3]]; orderOdat = names(copy(odat))
dat$Rw = seq_len(nrow(dat)); setcolorder(dat, neworder = c('Rw', orderDat))
lk$Rw = seq_len(nrow(lk)); setcolorder(lk, neworder = c('Rw', orderLk))
odat$Rw = seq_len(nrow(odat)); setcolorder(odat, neworder = c('Rw', orderOdat))
options(knitr.kable.NA = "")
kable_styling(kable(dat, format = 'html', caption = '*In-Data*', escape = TRUE, digits = 1),
'bordered', full_width = FALSE, position = 'float_left', font_size = 10)
kable_styling(kable(lk, format = 'html', caption = 'Lookup', escape = TRUE, digits = 1),
'bordered', full_width = FALSE, position = 'float_left', font_size = 10)
kable_styling(kable(odat, format = 'html', caption = '*Out-Data*', escape = TRUE, digits = 1),
'bordered', full_width = FALSE, position = 'float_left', font_size = 10)
dir = system.file('extdata', package = 'replacer')
inData = list.files(dir)
inData = inData[grep('.csv', inData)]
inData = inData[-grep('chile_id|chile_nadup|lookup', inData)]
lData = lapply(inData, function(i) paste0(dir,'/', i))
data = lapply(lData, fread, na.strings = c(NA_character_, ''))
n.chile = data$chile[, lapply(.SD, function(i) {sum(duplicated(i))/length(i)})]
names(data) = unlist(strsplit(inData, split = '.csv', fixed = TRUE))
ldup = lapply(data, function(i) whichDups(i)[length(i) > 0])
ldup$chile = sample(ldup$chile, size = 4, prob = n.chile)
nams = names(ldup) = names(data)
DUPS = lapply(nams, function(n) {kable(t(ldup[[n]])
, format = 'html'
, align='c'
, caption = 'Duplicated')
})
NAS = lapply(nams, function(n) {kable(t(data[[n]][, colSums(is.na(.SD))])
, format = 'html'
, align='c'
, caption = 'Missing')
})
names(DUPS) = paste0(nams, 'DUP')
names(NAS) = paste0(nams, 'NA')
cat(c('<table><tr valign="top"><td>', DUPS$data_idDUP , '</td><td>', NAS$data_idNA, '</td><tr></table>'), sep = '')
cat(c('<table><tr valign="top"><td>', DUPS$chileDUP , '</td><td>', NAS$chileNA, '</td><tr></table>'), sep = '')
cat(c('<table><tr valign="top"><td>', DUPS$dataDUP , '</td><td>', NAS$dataNA, '</td><tr></table>'), sep = '')
cat(c('<table><tr valign="top"><td>', DUPS$data_uniqueDUP , '</td><td>', NAS$data_uniqueNA, '</td><tr></table>'), sep = '')
sessionInfo()
knitr::write_bib(file = 'citation.bib') |
ghypCheckPars <- function(param) {
param <- as.numeric(param)
mu <- param[1]
delta <- param[2]
alpha <- param[3]
beta <- param[4]
lambda <- param[5]
case <- ""
errMessage <- ""
if (length(param) != 5) {
case <- "error"
errMessage <- "param vector must contain 5 values"
} else {
if (alpha < 0) {
case <- "error"
errMessage <- "alpha must not be less than zero"
} else {
if (lambda == 0) {
if (abs(beta) >= alpha) {
case <- "error"
errMessage <-
"absolute value of beta must be less than alpha when lambda = 0"
}
if (delta <= 0) {
case <- "error"
errMessage <- "delta must be greater than zero when lambda = 0"
}
if (abs(beta) >= alpha & delta <= 0) {
case <- "error"
errMessage <- "absolute value of beta must be less than alpha and delta must be greater than zero when lambda = 0"
}
}
if (lambda > 0) {
if (abs(beta) >= alpha) {
case <- "error"
errMessage <- "absolute value of beta must be less than alpha when lambda > 0"
}
if (delta < 0) {
case <- "error"
errMessage <- "delta must be non-negative when lambda > 0"
}
if (abs(beta) >= alpha & delta < 0) {
case <- "error"
errMessage <- "absolute value of beta must be less than alpha and delta must be less than zero when lambda > 0"
}
if (case != "error") {
if (lambda == 1) {
if (alpha > 0 & abs(beta) < abs(alpha) & delta == 0)
case <- "skew laplace"
if (alpha > 0 & beta == 0 & delta == 0)
case <- "laplace"
if (alpha > 0 & abs(beta) < abs(alpha) & delta > 0)
case <- "hyperbolic"
} else {
if (alpha > 0 & abs(beta) < abs(alpha) & delta == 0)
case <- "variance gamma"
}
}
}
if (lambda < 0) {
if (abs(beta) > alpha) {
case <- "error"
errMessage <- "absolute value of beta must be less than or equal to alpha when lambda < 0"
}
if (delta <= 0) {
case <- "error"
errMessage <- "delta must be greater than zero when lambda < 0"
}
if (abs(beta) > alpha & delta <= 0) {
case <- "error"
errMessage <-
"absolute value of beta must be less than or equal to alpha and delta must be greater than zero when lambda < 0"
}
if (case != "error") {
if (lambda == -1/2) {
if (alpha == 0 & beta == 0 & delta > 0)
case <- "cauchy"
if (alpha > 0 & abs(beta) < abs(alpha) & delta > 0)
case <- "normal inverse gaussian"
} else {
if (abs(alpha - abs(beta)) < 0.001 & beta >= 0 & delta > 0)
case <- "skew hyperbolic"
if (alpha == 0 & beta == 0 & delta > 0)
case <- "student's t"
}
}
}
}
}
if (case == "")
case <- "normal"
result <- list(case = case, errMessage = errMessage)
return(result)
} |
test_that("distance matrix creation works", {
num_cells <- 10
ras <- raster(nrows = num_cells, ncols = num_cells, vals = 1+runif(num_cells*num_cells))
coords <- rasterToPoints(ras)[, c("x", "y")]
tr <- transition(ras, function(x){1/x[1]}, 8, symm = FALSE)
co <- geoCorrection(tr, "c", multpl = TRUE)
gdist_m <- costDistance(tr*co, coords, coords)
landscapes <- stack_landscapes(list("r1" = list(ras)), 1)
h_mask <- get_habitable_mask(NULL, landscapes, 1)
local_distance <- get_local_distances(landscapes, h_mask, function(src, h_src, dest, h_dest){src},8, NULL)
dist_m <- get_distance_matrix(habitable_cells = 1:prod(dim(ras)),
num_cells = prod(dim(ras)),
dist_p = local_distance@p,
dist_i = local_distance@i,
dist_x = local_distance@x,
max_distance = Inf )
expect_true(isTRUE(all.equal(unname(dist_m), gdist_m)))
expect_false(is.null(rownames(dist_m)))
expect_false(is.null(colnames(dist_m)))
}) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.