code
stringlengths 1
13.8M
|
---|
sortedL1Prox <- function(x, lambda, method = c("stack", "pava")) {
prox_method <- switch(match.arg(method), stack = 0, pava = 1)
stopifnot(
length(x) == length(lambda),
!is.unsorted(rev(lambda)),
all(lambda >= 0),
all(is.finite(lambda)),
all(is.finite(x))
)
res <- sortedL1ProxCpp(as.matrix(x), lambda, prox_method)
as.vector(res)
} |
alpha.div<-function(x,index){
if(index=="simp")alpha<-Simp.index(x)
if(index=="inv.simp")alpha<-Simp.index(x,inv=TRUE)
if(index=="shan")alpha<-SW.index(x)
alpha
}
Simp.index<-function(x,inv=FALSE){
if(ncol(as.matrix(x))==1){
p.i<-x/sum(x)
D<-1-sum(p.i^2)}
if(ncol(as.matrix(x))>1){
p.i<-apply(x,1,function(x){x/sum(x)})
if(inv==FALSE)D<-1-apply(p.i^2,2,sum)
if(inv==TRUE)D<-1/apply(p.i^2,2,sum)
}
D
}
SW.index<-function(x){
if(ncol(as.matrix(x))==1){
p.i<-x/sum(x)
p.i.new<-p.i[p.i!=0]
h.prime<--1*sum(log(p.i.new)*p.i.new)}
if(ncol(as.matrix(x))>1){
p.i<-apply(x,1,function(x){x/sum(x)})
h<-apply(p.i,1,function(x){log(x)*x})
h.prime<- -1*apply(h,1,function(x){sum(x[!is.na(x)])})}
h.prime
} |
print.mcmcRocPrc <- function(x, ...) {
auc_roc <- x$area_under_roc
auc_prc <- x$area_under_prc
has_curves <- !is.null(x$roc_dat)
has_sims <- length(auc_roc) > 1
if (!has_sims) {
roc_msg <- sprintf("%.3f", round(auc_roc, 3))
prc_msg <- sprintf("%.3f", round(auc_prc, 3))
} else {
roc_msg <- sprintf("%.3f [80%%: %.3f - %.3f]",
round(mean(auc_roc), 3),
round(quantile(auc_roc, 0.1), 3),
round(quantile(auc_roc, 0.9), 3))
prc_msg <- sprintf("%.3f [80%%: %.3f - %.3f]",
round(mean(auc_prc), 3),
round(quantile(auc_prc, 0.1), 3),
round(quantile(auc_prc, 0.9), 3))
}
cat("mcmcRocPrc object\n")
cat(sprintf("curves: %s; fullsims: %s\n", has_curves, has_sims))
cat(sprintf("AUC-ROC: %s\n", roc_msg))
cat(sprintf("AUC-PR: %s\n", prc_msg))
invisible(x)
}
plot.mcmcRocPrc <- function(x, n = 40, alpha = .5, ...) {
stopifnot(
"Use mcmcRocPrc(..., curves = TRUE) to generate data for plots" = (!is.null(x$roc_dat)),
"alpha must be between 0 and 1" = (alpha >= 0 & alpha <= 1),
"n must be > 0" = (n > 0)
)
obj<- x
fullsims <- length(obj$roc_dat) > 1
if (!fullsims) {
graphics::par(mfrow = c(1, 2))
plot(obj$roc_dat[[1]], type = "s", xlab = "FPR", ylab = "TPR")
graphics::abline(a = 0, b = 1, lty = 3, col = "gray50")
prc_dat <- obj$prc_dat[[1]]
prc_dat$y[1] <- prc_dat$y[2]
plot(prc_dat, type = "l", xlab = "TPR", ylab = "Precision",
ylim = c(0, 1))
graphics::abline(a = attr(x, "y_pos_rate"), b = 0, lty = 3, col = "gray50")
} else {
graphics::par(mfrow = c(1, 2))
roc_dat <- obj$roc_dat
x <- lapply(roc_dat, `[[`, 1)
x <- do.call(cbind, x)
colnames(x) <- paste0("sim", 1:ncol(x))
y <- lapply(roc_dat, `[[`, 2)
y <- do.call(cbind, y)
colnames(y) <- paste0("sim", 1:ncol(y))
xavg <- rowMeans(x)
yavg <- rowMeans(y)
plot(xavg, yavg, type = "n", xlab = "FPR", ylab = "TPR")
samples <- sample(1:ncol(x), n)
for (i in samples) {
graphics::lines(
x[, i], y[, i], type = "s",
col = grDevices::rgb(127, 127, 127, alpha = alpha*255, maxColorValue = 255)
)
}
graphics::lines(xavg, yavg, type = "s")
prc_dat <- obj$prc_dat
x <- lapply(prc_dat, `[[`, 1)
y <- lapply(prc_dat, `[[`, 2)
point_cloud <- data.frame(
x = unlist(x),
y = unlist(y)
)
point_cloud <- stats::aggregate(point_cloud[, "y", drop = FALSE],
by = list(x = as.factor(point_cloud$x)),
FUN = mean)
point_cloud$x <- as.numeric(as.character(point_cloud$x))
xavg <- point_cloud$x
yavg <- point_cloud$y
plot(xavg, yavg, type = "n", xlab = "TPR", ylab = "Precision", ylim = c(0, 1))
samples <- sample(1:length(prc_dat), n)
for (i in samples) {
graphics::lines(
x[[i]], y[[i]],
col = grDevices::rgb(127, 127, 127, alpha = alpha*255, maxColorValue = 255)
)
}
graphics::lines(xavg, yavg)
}
invisible(x)
}
as.data.frame.mcmcRocPrc <- function(x, row.names = NULL, optional = FALSE,
what = c("auc", "roc", "prc"), ...) {
what <- match.arg(what)
if (what=="auc") {
return(as.data.frame(x[c("area_under_roc", "area_under_prc")]))
} else if (what %in% c("roc", "prc")) {
if (what=="roc") element <- "roc_dat" else element <- "prc_dat"
if (is.null(x[[element]])) {
stop("No curve data; use mcmcRocPrc(..., curves = TRUE)")
}
if (length(x[[element]])==1L) {
return(data.frame(sim = 1L, x[[element]][[1]]))
}
outlist <- x[[element]]
outlist <- Map(cbind, sim = (1:length(outlist)), outlist)
outdf <- do.call(rbind, outlist)
return(outdf)
}
stop("Developer error (I should not be here): please file an issue on GitHub")
} |
context("Splitting Pilot Set")
test_dat <- read.csv("test_data.csv")
test_that("split_pilot_set errors work", {
expect_error(
split_pilot_set(92,
treat = "treated"
),
"data must be a data.frame"
)
expect_error(
split_pilot_set(test_dat,
treat = c("treated", "control")
),
"treat must be a single string"
)
expect_error(
split_pilot_set(test_dat,
treat = "zombies"
),
"treat must be the name of a column in data"
)
test_dat$treat_cont <- rnorm(100)
test_dat$treat_char <- ifelse(test_dat$treated == 0, "a", "b")
test_dat$treat_12 <- test_dat$treated + 1
expect_error(
split_pilot_set(test_dat,
treat = "treat_cont"
),
"treatment column must be binary or logical"
)
expect_error(
split_pilot_set(test_dat,
treat = "treat_char"
),
"treatment column must be binary or logical"
)
expect_error(
split_pilot_set(test_dat,
treat = "treat_12"
),
"treatment column must be binary or logical"
)
expect_error(
split_pilot_set(test_dat,
treat = "treated",
pilot_fraction = "socks"
),
"pilot_fraction must be numeric"
)
expect_error(
split_pilot_set(test_dat,
treat = "treated",
pilot_fraction = -1
),
"pilot_fraction must be between 0 and 1"
)
expect_error(
split_pilot_set(test_dat,
treat = "treated",
pilot_size = 0
),
"pilot_size must be greater than 1"
)
expect_error(
split_pilot_set(test_dat,
treat = "treated",
pilot_size = "socks"
),
"pilot_size must be numeric"
)
expect_error(
split_pilot_set(test_dat,
treat = "treated",
pilot_size = 101
),
"Requested pilot size outnumbers control sample"
)
expect_warning(
split_pilot_set(test_dat,
treat = "treated",
pilot_size = 82
),
"Requested pilot size requires more than 70% of all controls"
)
expect_error(
split_pilot_set(test_dat,
treat = "treated",
group_by_covariates = "socks"
),
"All covariates in group_by_covariates must be columns of the data"
)
expect_error(
split_pilot_set(test_dat,
treat = "treated",
group_by_covariates = 9
),
"group_by_covariates should be a character vector"
)
})
test_that("split_pilot_set with pilot_fraction works", {
mysplit <- split_pilot_set(test_dat,
treat = "treated",
pilot_fraction = 0.2,
group_by_covariates = c("B1", "B2")
)
expect_true(dim(mysplit$analysis_set)[1] > 0)
expect_true(dim(mysplit$pilot_set)[1] > 0)
expect_true(all(mysplit$pilot_set$treated == 0))
expect_equal(dim(mysplit$analysis_set)[1] + dim(mysplit$pilot_set)[1], 100)
expect_equal(dim(mysplit$analysis_set)[2], 9)
expect_equal(dim(mysplit$pilot_set)[2], 9)
})
test_that("split_pilot_set with pilot_size works", {
mysplit <- split_pilot_set(test_dat,
treat = "treated",
pilot_size = 25
)
expect_true(dim(mysplit$analysis_set)[1] > 0)
expect_true(dim(mysplit$pilot_set)[1] > 0)
expect_true(all(mysplit$pilot_set$treated == 0))
expect_equal(dim(mysplit$analysis_set)[1] + dim(mysplit$pilot_set)[1], 100)
expect_equal(dim(mysplit$analysis_set)[2], 9)
expect_equal(dim(mysplit$pilot_set)[2], 9)
expect_equal(dim(mysplit$pilot_set)[1], 25)
}) |
context("detect_if")
test_that("works with any case", {
dfm <- data.frame(CensusID = c(1, 2, NA))
expect_true(detect_if(dfm, "censusid", is_multiple))
expect_false(detect_if(dfm, "censusid", is_duplicated))
dfm <- data.frame(CensusID = c(1, 1))
expect_true(detect_if(dfm, "censusid", is_duplicated))
expect_false(detect_if(dfm, "censusid", is_multiple))
dfm <- data.frame(CensusID = c(1, 1, 2))
expect_true(detect_if(dfm, "censusid", is_duplicated))
expect_true(detect_if(dfm, "censusid", is_multiple))
})
test_that("rejects invalid var", {
dfm <- data.frame(CensusID = c(1, 2, NA))
expect_error(detect_if(dfm, "bad", is_multiple), "invalid name")
expect_error(detect_if(dfm, "bad", is_duplicated), "invalid name")
})
dfm <- function(x) data.frame(Name = x, stringsAsFactors = TRUE)
test_that("creates a function that detects duplicates on a specific variable", {
expect_true(detect_if(dfm(c(1, 1)), "Name", is_duplicated))
expect_false(detect_if(dfm(c(1, NA)), "Name", is_duplicated))
expect_false(detect_if(dfm(c(1, 2)), "Name", is_duplicated))
})
test_that("works with upper or lowercase name", {
expect_true(detect_if(dfm(c(1, 1)), "Name", is_duplicated))
expect_true(detect_if(dfm(c(1, 1)), "name", is_duplicated))
expect_false(detect_if(dfm(c(1, 2)), "Name", is_duplicated))
expect_false(detect_if(dfm(c(1, 2)), "name", is_duplicated))
})
test_that("ignores groups but groups can be handled via map(nest()$data)", {
skip_if_not_installed("tidyr")
skip_if_not_installed("dplyr")
skip_if_not_installed("purrr")
library(tidyr)
library(dplyr)
library(purrr)
dfm <- data.frame(x = c(1, 1), g = c(1, 2), stringsAsFactors = TRUE)
expect_true(detect_if(group_by(dfm, g), "x", is_duplicated))
grouped <- group_by(dfm, g)
expect_false(any(
map_lgl(nest(grouped)$data, ~ detect_if(.x, "x", is_duplicated))
))
}) |
"GetResiduals" <-
function(obj)
{
class.obj = class(obj)[1]
if (class.obj != "ar" && class.obj != "arima0" && class.obj != "Arima" && class.obj != "varest" &&
class.obj != "ARIMA" && class.obj != "lm"
&& class.obj != "glm" && class.obj != "list" )
stop("obj must be class ar, arima0, Arima, (ARIMA forecast_ARIMA Arima), varest, lm, (glm lm), or list")
if (all(class.obj=="ar")){
order <- obj$order
res <- ts(as.matrix(obj$resid)[-(1:order),])
}
else if (all(class.obj == "arima0") || all(class.obj == "Arima")|| all (class.obj == "ARIMA")) {
pdq <- obj$arma
p <- pdq[1]
q <- pdq[2]
ps <- pdq[3]
qs <- pdq[4]
order <- p+q+ps+qs
res <- ts(obj$residuals)
}
else if (all(class.obj=="varest")){
order <- obj$p
res <- resid(obj)
}
else if (all(class.obj == "list")){
order <- obj$order
if(is.null(order))
order <- 0
else
order <- order
res <- obj$res
}
if (all(class.obj=="lm") || all(class.obj == "glm")){
order <- 0
res <- obj$residuals
}
return(list(order = order, res = res))
} |
pimeshed <- function(y, x, z, k=NULL, proj_dim=2,
family = "gaussian",
block_size = 30,
n_samples = 1000,
n_burnin = 100,
n_thin = 1,
n_threads = 4,
verbose = 0,
settings = list(adapting=TRUE, ps=TRUE, saving=FALSE),
prior = list(beta=NULL, tausq=NULL, sigmasq = NULL,
toplim = NULL, btmlim = NULL, set_unif_bounds=NULL),
starting = list(beta=NULL, tausq=NULL, theta=NULL, lambda=NULL, v=NULL,
mcmcsd=.05, mcmc_startfrom=0),
debug = list(sample_beta=TRUE, sample_tausq=TRUE,
sample_theta=TRUE, sample_w=TRUE, sample_lambda=TRUE,
verbose=FALSE, debug=FALSE)
){
if(verbose > 0){
cat("Bayesian pi-Meshed GP regression model fit via Markov chain Monte Carlo\n")
}
model_tag <- "Bayesian pi-Meshed GP regression\n
o --> o --> o
^ ^ ^
| | |
o --> o --> o
^ ^ ^
| | |
o --> o --> o\n\n"
set_default <- function(x, default_val){
return(if(is.null(x)){
default_val} else {
x
})}
if(1){
mcmc_keep <- n_samples
mcmc_burn <- n_burnin
mcmc_thin <- n_thin
mcmc_adaptive <- settings$adapting %>% set_default(TRUE)
mcmc_verbose <- debug$verbose %>% set_default(FALSE)
mcmc_debug <- debug$debug %>% set_default(FALSE)
saving <- settings$saving %>% set_default(FALSE)
use_ps <- settings$ps %>% set_default(TRUE)
which_hmc <- 4
low_mem <- FALSE
if(is.null(dim(y))){
y <- matrix(y, ncol=1)
orig_y_colnames <- colnames(y) <- "Y_1"
} else {
if(is.null(colnames(y))){
orig_y_colnames <- colnames(y) <- paste0('Y_', 1:ncol(y))
} else {
orig_y_colnames <- colnames(y)
colnames(y) <- paste0('Y_', 1:ncol(y))
}
}
if(verbose == 0){
mcmc_print_every <- 0
} else {
if(verbose <= 20){
mcmc_tot <- mcmc_burn + mcmc_thin * mcmc_keep
mcmc_print_every <- 1+round(mcmc_tot / verbose)
} else {
if(is.infinite(verbose)){
mcmc_print_every <- 1
} else {
mcmc_print_every <- verbose
}
}
}
X_pca <- prcomp(x)
coords <- X_pca$x[,1:proj_dim] %>% as.matrix()
colnames(coords) <- paste0("Var", 1:ncol(coords))
dd <- ncol(coords)
if(is.null(colnames(x))){
orig_X_colnames <- colnames(x) <- paste0('X_', 1:ncol(x))
} else {
orig_X_colnames <- colnames(x)
colnames(x) <- paste0('X_', 1:ncol(x))
}
if(is.null(colnames(z))){
orig_Z_colnames <- colnames(z) <- paste0('Z_', 1:ncol(z))
} else {
orig_Z_colnames <- colnames(z)
colnames(z) <- paste0('Z_', 1:ncol(z))
}
nr <- nrow(x)
q <- ncol(y)
k <- ifelse(is.null(k), q, k)
p <- ncol(x)
family <- if(length(family)==1){rep(family, q)} else {family}
family_in <- data.frame(family=family)
available_families <- data.frame(id=0:4, family=c("gaussian", "poisson", "binomial", "beta", "negbinomial"))
family_id <- family_in %>% left_join(available_families, by=c("family"="family")) %>% pull(.data$id)
latent <- "gaussian"
if(!(latent %in% c("gaussian"))){
stop("Latent process not recognized. Choose 'gaussian'")
}
axis_partition <- rep(round((nr/block_size)^(1/dd)), dd)
use_forced_grid <- FALSE
use_cache <- FALSE
sample_w <- debug$sample_w %>% set_default(TRUE)
sample_beta <- debug$sample_beta %>% set_default(TRUE)
sample_tausq <- debug$sample_tausq %>% set_default(TRUE)
sample_theta <- debug$sample_theta %>% set_default(TRUE)
sample_lambda <- debug$sample_lambda %>% set_default(TRUE)
}
if(1){
yrownas <- apply(y, 1, function(i) ifelse(sum(is.na(i))==q, NA, 1))
na_which <- ifelse(!is.na(yrownas), 1, NA)
simdata <- data.frame(ix=1:nrow(coords)) %>%
cbind(coords, y, na_which, x, z) %>%
as.data.frame()
simdata %<>%
dplyr::arrange(!!!rlang::syms(paste0("Var", 1:dd)))
coords <- simdata %>%
dplyr::select(dplyr::contains("Var")) %>%
as.matrix()
sort_ix <- simdata$ix
fixed_thresholds <- 1:dd %>% lapply(function(i) kthresholdscp(coords[,i], axis_partition[i]))
system.time(fake_coords_blocking <- coords %>%
as.matrix() %>%
gen_fake_coords(fixed_thresholds, 1) )
system.time(coords_blocking <- coords %>%
as.matrix() %>%
tessellation_axis_parallel_fix(fixed_thresholds, 1) %>%
dplyr::mutate(na_which = simdata$na_which, sort_ix=sort_ix) )
coords_blocking %<>% dplyr::rename(ix=sort_ix)
blocks_prop <- coords_blocking[,paste0("L", 1:dd)] %>% unique()
blocks_fake <- fake_coords_blocking[,paste0("L", 1:dd)] %>% unique()
if(nrow(blocks_fake) != nrow(blocks_prop)){
suppressMessages(adding_blocks <- blocks_fake %>% dplyr::setdiff(blocks_prop) %>%
dplyr::left_join(fake_coords_blocking))
coords_blocking <- dplyr::bind_rows(coords_blocking, adding_blocks)
coords_blocking %<>% dplyr::arrange(!!!rlang::syms(paste0("Var", 1:dd)))
}
}
nr_full <- nrow(coords_blocking)
if(dd < 4){
suppressMessages(parents_children <- mesh_graph_build(coords_blocking %>% dplyr::select(-.data$ix), axis_partition, FALSE))
} else {
suppressMessages(parents_children <- mesh_graph_build_hypercube(coords_blocking %>% dplyr::select(-.data$ix)))
}
parents <- parents_children[["parents"]]
children <- parents_children[["children"]]
block_names <- parents_children[["names"]]
block_groups <- parents_children[["groups"]]
suppressMessages(simdata_in <- coords_blocking %>%
dplyr::select(-na_which) %>% dplyr::left_join(simdata))
simdata_in %<>%
dplyr::arrange(!!!rlang::syms(paste0("Var", 1:dd)))
blocking <- simdata_in$block %>%
factor() %>% as.integer()
indexing <- (1:nrow(simdata_in)-1) %>%
split(blocking)
indexing_grid <- indexing
indexing_obs <- indexing_grid
if(1){
matern_nu <- FALSE
if(is.null(starting$nu)){
start_nu <- 0.5
matern_fix_twonu <- 1
} else {
start_nu <- starting$nu
if(start_nu %in% c(0.5, 1.5, 2.5)){
matern_fix_twonu <- 2 * start_nu
}
}
if(is.null(prior$beta)){
beta_Vi <- diag(ncol(z)) * 1/100
} else {
beta_Vi <- prior$beta
}
if(is.null(prior$tausq)){
tausq_ab <- c(2, 1)
} else {
tausq_ab <- prior$tausq
if(length(tausq_ab) == 1){
tausq_ab <- c(tausq_ab[1], 0)
}
}
if(is.null(prior$sigmasq)){
sigmasq_ab <- c(2, 1)
} else {
sigmasq_ab <- prior$sigmasq
}
if(is.null(starting$beta)){
start_beta <- matrix(0, nrow=ncol(z), ncol=q)
} else {
start_beta <- starting$beta
}
theta_names <- c("sigmasq", paste0("phi_", 1:p))
npar <- (p+1)
set_unif_bounds <- matrix(0, nrow=npar*k, ncol=2)
btmlim <- prior$btmlim %>% set_default(1e-3)
toplim <- prior$toplim %>% set_default(1e3)
set_unif_bounds[,1] <- btmlim
set_unif_bounds[,2] <- toplim
start_theta <- matrix(1, ncol=k, nrow=npar)
if(!is.null(prior$set_unif_bounds)){
set_unif_bounds <- prior$set_unif_bounds
}
if(!is.null(starting$theta)){
start_theta <- starting$theta
}
if(is.null(starting$mcmcsd)){
mcmc_mh_sd <- diag(k * npar) * 0.01
} else {
if(length(starting$mcmcsd) == 1){
mcmc_mh_sd <- diag(k * npar) * starting$mcmcsd
} else {
mcmc_mh_sd <- starting$mcmcsd
}
}
if(is.null(starting$tausq)){
start_tausq <- family %>% sapply(function(ff) if(ff == "gaussian"){.1} else {1})
} else {
start_tausq <- starting$tausq
}
if(is.null(starting$lambda)){
start_lambda <- matrix(0, nrow=q, ncol=k)
diag(start_lambda) <- 2
} else {
start_lambda <- starting$lambda
}
if(is.null(starting$lambda_mask)){
lambda_mask <- matrix(0, nrow=q, ncol=k)
lambda_mask[lower.tri(lambda_mask)] <- 1
diag(lambda_mask) <- 1
} else {
lambda_mask <- starting$lambda_mask
}
if(is.null(starting$mcmc_startfrom)){
mcmc_startfrom <- 0
} else {
mcmc_startfrom <- starting$mcmc_startfrom
}
if(is.null(starting$w)){
start_v <- matrix(0, nrow = nrow(simdata_in), ncol = k)
} else {
start_v <- starting$v
}
}
sort_ix <- simdata_in$ix
y <- simdata_in %>%
dplyr::select(dplyr::contains("Y_")) %>%
as.matrix()
colnames(y) <- orig_y_colnames
x <- simdata_in %>%
dplyr::select(dplyr::contains("X_")) %>%
as.matrix()
colnames(x) <- orig_X_colnames
x[is.na(x)] <- 0
z <- simdata_in %>%
dplyr::select(dplyr::contains("Z_")) %>%
as.matrix()
colnames(z) <- orig_Z_colnames
if(any(is.na(z))){
stop("Cannot have NA in Z matrix")
}
na_which <- simdata_in$na_which
coords <- simdata_in %>%
dplyr::select(dplyr::contains("Var")) %>%
as.matrix()
coordsdata <- simdata_in %>%
dplyr::select(1:dd)
mcmc_run <- meshed_mcmc
comp_time <- system.time({
results <- mcmc_run(y, family_id, z, x, k,
parents, children,
block_names, block_groups,
indexing_grid, indexing_obs,
set_unif_bounds,
beta_Vi,
sigmasq_ab,
tausq_ab,
matern_fix_twonu,
start_v,
start_lambda,
lambda_mask,
start_theta,
start_beta,
start_tausq,
mcmc_mh_sd,
mcmc_keep, mcmc_burn, mcmc_thin,
mcmc_startfrom,
n_threads,
which_hmc,
mcmc_adaptive,
use_cache,
use_forced_grid,
use_ps,
mcmc_verbose, mcmc_debug,
mcmc_print_every,
low_mem,
sample_beta, sample_tausq,
sample_lambda,
sample_theta, sample_w)
})
if(saving){
listN <- function(...){
anonList <- list(...)
names(anonList) <- as.character(substitute(list(...)))[-1]
anonList
}
saved <- listN(y, x, z, coords, k,
parents, children,
block_names, block_groups,
indexing_grid, indexing_obs,
set_unif_bounds,
beta_Vi,
tausq_ab,
start_v,
start_lambda,
lambda_mask,
start_theta,
start_beta,
start_tausq,
mcmc_mh_sd,
mcmc_keep, mcmc_burn, mcmc_thin,
mcmc_startfrom,
n_threads,
mcmc_adaptive,
use_forced_grid,
mcmc_verbose, mcmc_debug,
mcmc_print_every,
sample_beta, sample_tausq,
sample_lambda,
sample_theta, sample_w)
} else {
saved <- "Model data not saved."
}
returning <- list(data = simdata_in,
savedata = saved,
block_names = block_names,
block_groups = block_groups,
parents = parents,
children = children,
coordsblocking = coords_blocking) %>%
c(results)
return(returning)
} |
tam_mml_3pl_calc_total_ll <- function( iIndex, A, B, xsi, theta,
nnodes, guess, n.ik, eps, return_probs_na=FALSE, probs_na=NULL )
{
AXsi <- tam_mml_compute_AXsi(A=A, xsi=xsi)
maxK <- dim(A)[2]
probs0 <- tam_mml_3pl_calc_prob( iIndex=iIndex, A=A, AXsi=AXsi, B=B,
xsi=xsi, theta=theta, nnodes=nnodes, maxK=maxK,
guess=guess )$rprobs
if (is.null(probs_na)){
probs_na <- is.na(probs0)
}
if (sum(probs_na)>0){
probs0[ probs_na ] <- 0
}
n.ik <- n.ik[ iIndex,,, drop=FALSE ]
ll0 <- tam_mml_3pl_calc_ll( n.ik=n.ik, probs=probs0, eps=eps )
if (return_probs_na){
res <- list(ll0=ll0, probs_na=probs_na)
} else {
res <- ll0
}
return(res)
} |
FindReplace =
function(file, find, replace) {
if (file.exists(file)) {
cat("\n", file = file, append = TRUE)
OldText <- readLines(con = file)
NoLines = length(OldText)
if (NoLines > 2) {
if (all(OldText[c(NoLines - 1, NoLines)] == "\n")) {
NoLines = NoLines - 1
}
}
writeLines(gsub(find, replace, OldText, fixed=TRUE)[1:NoLines], con = file)
} else {
warning(
"The specified file does not exist.\nNo action has been taken.\n")
}
return(invisible(NULL))
} |
"odors" |
output$tabsetpanel0UI<-renderUI({
tabsetPanel(id="tabsetpanel0"
,tabPanel("1. Load example"
,tags$head(tags$style( HTML(' wpanel .tab-content {margin-left:50px;}')) )
,value="exampleTab"
,div(class = "wpanel",
uiOutput("examplepanel")
)
)
)
})
output$tabsetpanel1UI<-renderUI({
tabsetPanel(id="tabsetpanel1"
,tabPanel("1. Chr. data data.frame", value="dfChrTab",
uiOutput("dfchrpanel") )
,tabPanel("2. Marks' pos. d.f.", value="dfMarkTab",
uiOutput("dfmarkpanel") )
,tabPanel("3. Marks' style d.f.", value="dfMSTab",
uiOutput("dfMStylepanel") )
,tabPanel("4. Notes' data.frames", value="notesTab",
uiOutput("dfnotespanel") )
)
})
output$tabsetpanel5UI<-renderUI({
tabsetPanel(id="tabsetpanel5"
,tabPanel("Indices", value="indicesTab",
uiOutput("indicespanel") )
,tabPanel("Marks", value="marksTab",
uiOutput("markspanel") )
)
})
output$tabsetpanel2UI<-renderUI({
tabsetPanel(id="tabsetpanel2",
tabPanel("1. Parameters & Plot", value="paramTab"
,uiOutput("parameterPanel") )
,tabPanel("2. Log", value="logTab",
uiOutput("logpanel") )
,tabPanel("3. code", value="codeTab",
uiOutput("strpanel") )
)
})
output$tabsetpanel4UI<-renderUI({
tabsetPanel(id="tabsetpanel4",
tabPanel("1. Search", value="searchTab",
uiOutput("searchPanel") )
)
}) |
mfdb_unaggregated <- function (omitNA = FALSE, like = c(), not_like = c()) {
group <- structure(list(omitNA = omitNA, like = like, not_like = not_like),
class = c("mfdb_unaggregated", "mfdb_aggregate"))
group
}
select_clause.mfdb_unaggregated <- select_clause.numeric
gen_likes <- function(col, conditions, operator) {
if (length(conditions) == 0) return(c())
lookup <- if (!is.null(attr(col, 'lookup'))) attr(col, 'lookup') else gsub('(.*\\.)|_id', '', col)
if (lookup %in% mfdb_taxonomy_tables) {
return(paste0(
"(", col, " IN ",
"(SELECT ", lookup, "_id FROM ", lookup, " WHERE ",
paste0("name ", operator, sql_vquote(conditions), collapse = " OR "),
"))"))
}
return(paste0("(", paste0(col, operator, sql_vquote(conditions), collapse = " OR "), ")"))
}
where_clause.mfdb_unaggregated <- function(mdb, x, col, outputname, group_disabled = FALSE) {
lookup <- gsub('(.*\\.)|_id', '', col)
c(
if (x$omitNA) paste0(col, " IS NOT NULL") else c(),
gen_likes(col, x$like, " LIKE "),
gen_likes(col, x$not_like, " NOT LIKE "),
NULL
)
}
agg_summary.mfdb_unaggregated <- function(mdb, x, col, outputname, data, sample_num) {
if (is.null(data[[outputname]])) {
if (identical(names(data), c('bssample')) || nrow(data) == 0) {
return(list())
}
stop("Column ", outputname, " missing from data")
}
vals <- unique(data[[outputname]])
as.list(structure(vals, names = vals))
} |
split_chain <- function(expr, env) {
rhss <- list()
pipes <- list()
i <- 1L
while(is.call(expr) && is_pipe(get(deparse(expr[[1L]])))) {
pipes[[i]] <- expr[[1L]]
rhs <- expr[[3L]]
if (is_parenthesized(rhs))
rhs <- eval(rhs, env, env)
rhss[[i]] <-
if (is_function(rhs) || is_colexpr(rhs))
prepare_function(rhs)
else if (is_first(rhs))
prepare_first(rhs)
else
rhs
if (is.call(rhss[[i]]) && identical(rhss[[i]][[1L]], quote(`function`)))
stop("Anonymous functions must be parenthesized", call. = FALSE)
expr <- expr[[2L]]
i <- i + 1L
}
list(rhss = rev(rhss), pipes = rev(pipes), lhs = expr)
} |
dropEdge.gModel <-
function(object,name.1,name.2) {
form <- formula(object)
listform <- readf(form[2])
new.form <- .delete.edge(listform,c(name.1,name.2))
form <- paste("~",showf(new.form))
formula(object) <- as.formula(form)
if (inherits(object,"gRfit"))
object <- fit(object)
return(object)
}
addEdge.gModel <-
function(object,name.1,name.2) {
new.object <- object
form <- formula(object)
listform <- readf(form[2])
new.form <- .add.edge(listform,c(name.1,name.2))
form <- paste("~",showf(new.form))
formula(new.object) <- as.formula(form)
if (inherits(new.object,"gRfit"))
new.object <- fit(new.object)
return(new.object)
}
ggm <- function(formula=~.^1, gmData, marginal){
value <- processFormula(formula,gmData, marginal,"Continuous")
value$gmData <- gmData
class(value) <- c("ggm","gModel")
return(value)
}
fit.ggm <- function(object, ...){
Ydf <- observations(object$gmData)
nobs <- nrow(Ydf)
gc <- object$numformula
Ymat <- as.matrix(Ydf)
Smat <- cov(Ymat)*(nobs-1)/nobs
ipsFit <- ips(gc,Smat)
fit <- outfun( ipsFit$MLE, Smat,nrow(Ydf))
fit$n <- nobs
fit$mean <- apply(Ymat,2,mean)
fit$df <- length(which(fit$part==0))/2
fit$iterations <- ipsFit$iterations
value<-object
value$fit <- fit
class(value) <- c("gRfit", "ggm",class(object))
return(value)
}
partial.corr.matrix <- function(S){
A <- solve(S)
temp <- diag(1/sqrt(diag(A)))
temp <- zapsmall(-temp%*%A%*%temp)
diag(temp) <- 1
return(temp)
}
outfun <- function(Sigma, S, n){
.ell <- function(Sigma, S, n){
shdet <- function(Sigma){
prod(eigen(Sigma)[[1]])
}
p <- dim(S)[1]
const <- -n * p/2 * log(2 * pi)
const - n/2 * log(shdet(Sigma)) - n/2 * sum(diag( solve(Sigma) %*% S ))
}
return(list(Sigma=round(Sigma,3),
eigenvalues=eigen(Sigma)[[1]],
correlation=cov2cor(Sigma),
partial.correlations=partial.corr.matrix(Sigma),
loglik=.ell(Sigma,S,n)))
}
ips <- function(cliques, S){
if(!is.matrix(S)){
return("Second argument is not a matrix!")
}
if(dim(S)[1]!=dim(S)[2]){
return("Second argument is not a square matrix!")
}
if(min(eigen(S)[[1]])<=0){
return("Second argument is not a positive definite matrix!")
}
start <- diag(diag(S))
p <- dim(S)[1]
K <- solve(start)
i <- 0
if(length(cliques)==1){
return(list(MLE=S, iterations=1))
}
my.complement <- function(C) return(setdiff(1:p,C))
cliques.complements <- lapply(cliques, my.complement)
repeat{
K.old <- K
i <- i+1
for(j in 1:length(cliques)){
C <- cliques[[j]]
notC <- cliques.complements[[j]]
K[C,C] <- solve( S[C,C] ) +
K[C,notC]%*%solve(K[notC,notC])%*%K[notC,C]
}
if(sum(abs(K.old-K)) < 1e-10) break
}
return(list(MLE=solve(K), iterations=i))
}
globalVariables(c("rawdata", "loglm.formula"))
valueLabels <- function(x) UseMethod("valueLabels")
valueLabels.default <- function(x) attr(x,"dimnames")
valueLabels.gmData <- function(x) attr(x,"valueLabels")
varNames <- function(x)UseMethod("varNames")
varNames.default <- function(x) names(attr(x,"dimnames"))
varNames.gmData <- function(x)as.vector(x$varNames)
nLevels <- function(x)UseMethod("nLevels")
nLevels.default <- function(x) dim(x)
nLevels.gmData <- function(x)structure(as.vector(x$nLevels), .Names=varNames(x))
"latent.gmData" <- function(x){attr(x,"latent")}
"latent" <- function(x) UseMethod("latent")
"latent<-.gmData" <- function(tmp,value){attr(tmp,"latent")<-value; return(tmp)}
"latent<-" <- function(tmp,value) UseMethod("latent<-")
"valueLabels<-.gmData"<- function(tmp,value){attr(tmp,"valueLabels")<-value; return(tmp)}
"valueLabels<-" <- function(tmp,value) UseMethod("valueLabels<-")
observations <- function(x) UseMethod("observations")
obs <- function(x) UseMethod("observations")
observations.gmData <- function(x) attr(x,"observations")
"observations<-.gmData"<- function(tmp,value){attr(tmp,"observations")<-value; return(tmp)}
"observations<-" <- function(tmp,value)UseMethod("observations<-")
"description<-.gmData" <- function(tmp,value){attr(tmp,"description")<-value; return(tmp)}
"description<-" <- function(tmp,value) UseMethod("description<-")
"varTypes.gmData" <- function(x){structure(x$varTypes, .Names=varNames(x))}
"varTypes" <- function(x) UseMethod("varTypes")
"varTypes<-.gmData" <- function(tmp,value){ tmp$varTypes <-value; return(tmp)}
"varTypes<-" <- function(tmp,value) UseMethod("varTypes<-")
"varNames<-.gmData" <- function(tmp,value){ tmp$varNames <-value; return(tmp)}
"varNames<-" <- function(tmp,value) UseMethod("varNames<-")
"nLevels<-.gmData" <- function(tmp,value){ tmp$nLevels <-value; return(tmp)}
"nLevels<-" <- function(tmp,value) UseMethod("nLevels<-")
shortNames.gmData <- function(x)structure(as.vector(x$shortNames), .Names=varNames(x))
shortNames <- function(x)UseMethod("shortNames")
"shortNames<-.gmData" <- function(tmp,value){ tmp$shortNames <-value; return(tmp)}
"shortNames<-" <- function(tmp,value) UseMethod("shortNames<-")
dataOrigin.gmData <- function(x) attr(x,"dataOrigin")[1]
dataOrigin <- function(x)UseMethod("dataOrigin")
"ordinal" <- function(tmp) UseMethod("ordinal")
"ordinal<-" <- function(tmp,value) UseMethod("ordinal<-")
"ordinal.gmData" <- function(tmp)attr(tmp,"ordinal")
"ordinal<-.gmData" <- function(tmp,value){
varTypes(tmp)[match(value, varNames(tmp))]<-"Ordinal"
return(tmp)}
"nominal" <- function(tmp) UseMethod("nominal")
"nominal<-" <- function(tmp,value) UseMethod("nominal<-")
"nominal.gmData" <- function(tmp){
varNames(tmp)["Discrete"==varTypes(tmp)]
}
"nominal<-.gmData" <- function(tmp,value){
varTypes(tmp)[match(value, varNames(tmp))]<-"Discrete"
return(tmp)}
as.gmData <- function(from) UseMethod("as.gmData")
print.gmData <- function(x, ...){
xx<-attr(x,"description")
if (!is.null(xx))
cat("Description:", xx, "\n")
print.data.frame(x);
if (!is.null(latent(x)))
cat ("Latent variables:", paste(latent(x),collapse=' '), "\n")
if (!is.null(valueLabels(x)))
cat("To see the values of the factors use the 'valueLabels' function\n")
if (!is.null(observations(x)))
cat("To see the data use the 'observations' function\n")
return(invisible(x))
}
summary.gmData <- function(object, ...){
print(object)
mapply(function(xx,ll){
cat("Factor:", ll, "\n Levels:", paste(xx,sep=' '),"\n")
}, valueLabels(object),names(valueLabels(object)))
return(invisible(object))
}
newgmData <- function (varNames,
varTypes = rep(validVarTypes()[1], length(varNames)),
nLevels = NULL,
latent = NULL,
valueLabels = NULL,
observations = NULL,
description = NULL,
shortNames = NULL)
{
cl <- match.call()
.is.subset <- function(x,y){
setequal(intersect(x,y),x)
}
.simpleCap <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1,1)), substring(s, 2), sep="", collapse=" ")
}
if (is.null(shortNames)){
nam <- varNames
nama <- abbreviate(nam,1)
nc <- nchar(nama)
rest <- setdiff(c(letters,LETTERS), nama[nc==1])
if (length(which(nc>1)) <= length(rest))
nama[nc>1]<- rest[1:length(which(nc>1))]
} else {
nama <- shortNames
}
value <- data.frame(varNames, nama, row.names = NULL)
names(value) <- c("varNames", "shortNames")
varTypes <- sapply(varTypes, .simpleCap)
varTypes <- sapply(varTypes, match.arg, choices=validVarTypes(), several.ok = FALSE)
value$varTypes <- factor(varTypes, levels = validVarTypes())
discidx <- which("Discrete"==varTypes | "Ordinal"==varTypes)
aa <- rep(NA, length(varNames))
if (!is.null(valueLabels) & !is.list(valueLabels))
valueLabels <- list(valueLabels)
if (is.null(nLevels) & is.null(valueLabels)){
aa[discidx] <- 2
nLevels <- aa
}
if (!is.null(valueLabels)){
if (!.is.subset(varNames[discidx], names(valueLabels))){
vl <- rep(valueLabels, length(discidx))
valueLabels <- vl[1:length(discidx)]
names(valueLabels) <- varNames[discidx]
}
uu <- valueLabels[varNames[discidx]]
uu <- sapply(uu,length)
aa[discidx] <- uu
value$nLevels <- unlist(aa)
} else {
v <- nLevels[discidx]
v <- v[!is.na(v)]
if (length(v)==0)
v <- 2
v <- rep(v, length(discidx))
v <- v[discidx]
aa[discidx] <- v
value$nLevels <- unlist(aa)
uu <- varNames[discidx]
valueLabels <- mapply(function(nn,vv){paste(nn,1:vv,sep='')},uu,v, SIMPLIFY=FALSE)
}
class(value) <- c("gmData", "data.frame")
attr(value, "valueLabels") <- valueLabels
attr(value, "latent") <- latent
attr(value, "description") <- description
attr(value, "observations") <- observations
attr(value, "dataOrigin") <- class(observations)
obsclass <- class(observations)
if (is.null(obsclass)){
attr(value, "dataOrigin") <- NULL
} else {
if(is.element("table", obsclass))
attr(value, "dataOrigin") <- c("table",setdiff(obsclass, "table"))
else{
if(is.element("data.frame", obsclass))
attr(value, "dataOrigin") <- c("data.frame", setdiff(obsclass, "data.frame"))
else
attr(value, "dataOrigin") <- "other"
}
}
return(value)
}
validVarTypes <- function() {c("Discrete","Ordinal","Continuous")}
as.gmData.data.frame <- function(from){
fact <- unlist(lapply(1:ncol(from), function(j)
is.factor(from[,j])))
Types <- rep(validVarTypes()[3],length(fact))
Types[fact] <- validVarTypes()[1]
levels <- unlist(lapply(1:ncol(from),
function(j)
{
if(is.factor(from[,j]))
length(levels(from[,j]))
else NA}
)
)
if (length(which(fact))>0){
vallabels <- list()
for (j in which(fact)){
vallabels <- c(vallabels, list(levels(from[,j])))
}
names(vallabels) <- names(from[which(fact)])
} else {
vallabels <- list()
}
newgmData(
varNames=names(from),
varTypes=Types,
nLevels=levels,
valueLabels=vallabels,
observations=from
)
}
as.gmData.table <- function(from){
counts <- as.vector(from)
dn <- dimnames(from)
name <- names(lapply(dn,function(x)names(x)))
dim <- unlist(lapply(dn,length))
newgmData(
varNames=name,
varTypes=rep("Discrete",length(name)),
nLevels=dim,
valueLabels=dn,
observations=from
)
}
as.gmData.array <- function(from){
res <- as.gmData(as.table(from))
observations(res) <- from
res
}
gModel <- function(formula, gmData){
value <- list(formula=formula, gmData=gmData)
class(value) <- "gModel"
return(value)
}
"formula<-.gModel" <- function(tmp,value){tmp$formula<-value; return(tmp)}
"formula<-" <- function(tmp,value) UseMethod("formula<-")
"gmData.gModel" <- function(x){x$gmData}
"gmData" <- function(x) UseMethod("gmData")
"gmData<-.gModel" <- function(tmp,value){tmp$gmData<-value; return(tmp)}
"gmData<-" <- function(tmp,value) UseMethod("gmData<-")
print.gModel <- function(x, ...){
cat("Model information (gRbase)\n")
cat(" Class: ", paste(class(x),collapse=' <- '),"\n")
cat(" Formula: ", paste(paste(x$formula),collapse=''), "\n")
}
"getFit.gRfit" <- function(x){x$fit}
"getFit" <- function(x) UseMethod("getFit")
"getFit<-.gRfit" <- function(tmp,value){ tmp$fit <-value; return(tmp)}
"getFit<-" <- function(tmp,value) UseMethod("getFit<-")
print.gRfit <- function(x, ...){
print.gModel(x)
cat("Fit information (gRbase)\n")
cat(" logL", deviance(getFit(x)), "df", x$fit$df,"\n")
}
summary.gRfit <- function(object,...)
summary(getFit(object))
hllm <- function(formula = ~.^1, gmData, marginal){
stop("function 'hllm' from gRbase is defunct. Please use the gRim package for hierarchical log-linear models.")
}
fit.hllm <- function(object,engine="loglm",...){
stop("function 'fit.hllm' from gRbase is defunct. Please use the gRim package for hierarchical log-linear models.")
}
stepwise.hllm <- function (object, ...) {
stop("function 'stepwise.hllm' from gRbase is defunct. Please use the gRim package for hierarchical log-linear models.")
}
update.gModel <- function(object, addedge=NULL, dropedge=NULL, ...){
if (!is.null(addedge))
object <- addEdge.gModel(object, addedge[1], addedge[2])
if (!is.null(dropedge))
object <- dropEdge.gModel(object, dropedge[1], dropedge[2])
return(object)
} |
context("test-unique")
test_that("uniqueness along `axis = 1` is equal to vctrs for 1D / 2D", {
x <- new_array(c(1, 1, 2, 2, 3))
expect_equal(rray_unique(x, axis = 1), vec_unique(x))
expect_equal(rray_unique_loc(x, axis = 1), vec_unique_loc(x))
expect_equal(rray_unique_count(x, axis = 1), vec_unique_count(x))
x <- rray(c(1, 1, 2, 2), c(2, 2))
expect_equal(rray_unique(x, axis = 1), vec_unique(x))
expect_equal(rray_unique_loc(x, axis = 1), vec_unique_loc(x))
expect_equal(rray_unique_count(x, axis = 1), vec_unique_count(x))
})
test_that("can compute uniqueness along columns", {
x <- rray(c(1, 1, 2, 2), c(1, 4))
expect_equal(
rray_unique(x, axis = 2L),
rray(c(1, 2), c(1, 2))
)
expect_equal(
rray_unique_loc(x, 2),
c(1, 3)
)
expect_equal(
rray_unique_loc(x, 1),
1
)
expect_equal(
rray_unique_count(x, 2),
2
)
})
test_that("names are retained", {
x <- rray(c(1, 1, 2, 2), c(1, 4))
x <- rray_set_row_names(x, c("r1"))
x <- rray_set_col_names(x, c("c1", "c2", "c3", "c4"))
expect_equal(
rray_unique(x, axis = 2L),
x[, c(1, 3)]
)
xx <- rray_expand(x, 2)
expect_equal(
rray_unique(xx, 3L),
xx[, , c(1, 3)]
)
expect_equal(
rray_unique_loc(xx, axis = 3L),
c(1, 3)
)
expect_equal(
rray_unique_count(xx, axis = 3L),
2
)
})
test_that("`axis` is validated", {
axis <- c(1, 2)
expect_error(rray_unique(1, axis), "Invalid `axis`")
expect_error(rray_unique_loc(1, axis), "Invalid `axis`")
expect_error(rray_unique_count(1, axis), "Invalid `axis`")
axis <- -1
expect_error(rray_unique(1, axis), "Invalid `axis`")
expect_error(rray_unique_loc(1, axis), "Invalid `axis`")
expect_error(rray_unique_count(1, axis), "Invalid `axis`")
axis <- 2
expect_error(rray_unique(1, axis), "Invalid `axis`")
expect_error(rray_unique_loc(1, axis), "Invalid `axis`")
expect_error(rray_unique_count(1, axis), "Invalid `axis`")
})
test_that("rray_unique() is correctly defined over higher dimensions", {
x_dup_rows <- rray(c(1, 1, 3, 3, 2, 2, 4, 4), c(2, 2, 2))
x_dup_rows <- rray_set_row_names(x_dup_rows, c("r1", "r2"))
x_dup_rows <- rray_set_col_names(x_dup_rows, c("c1", "c2"))
expect_equal(rray_unique(x_dup_rows, 1), x_dup_rows[1,])
expect_equal(rray_unique(x_dup_rows, 2), x_dup_rows)
x_dup_cols <- rray_transpose(x_dup_rows, c(2, 1, 3))
expect_equal(rray_unique(x_dup_cols, 1), x_dup_cols)
expect_equal(rray_unique(x_dup_cols, 2), x_dup_cols[,1])
x_dup_layers <- rray_transpose(x_dup_rows, c(2, 3, 1))
expect_equal(rray_unique(x_dup_layers, 1), x_dup_layers)
expect_equal(rray_unique(x_dup_layers, 3), x_dup_layers[,,1])
})
test_that("rray_unique_loc() is correctly defined over higher dimensions", {
x_dup_rows <- rray(c(1, 1, 3, 3, 2, 2, 4, 4), c(2, 2, 2))
expect_identical(rray_unique_loc(x_dup_rows, 1), 1L)
expect_identical(rray_unique_loc(x_dup_rows, 2), 1:2)
x_dup_cols <- rray_transpose(x_dup_rows, c(2, 1, 3))
expect_identical(rray_unique_loc(x_dup_cols, 1), 1:2)
expect_identical(rray_unique_loc(x_dup_cols, 2), 1L)
x_dup_layers <- rray_transpose(x_dup_rows, c(2, 3, 1))
expect_identical(rray_unique_loc(x_dup_layers, 1), 1:2)
expect_identical(rray_unique_loc(x_dup_layers, 3), 1L)
})
test_that("rray_unique_count() is correctly defined over higher dimensions", {
x_dup_rows <- rray(c(1, 1, 3, 3, 2, 2, 4, 4), c(2, 2, 2))
expect_identical(rray_unique_count(x_dup_rows, 1), 1L)
expect_identical(rray_unique_count(x_dup_rows, 2), 2L)
x_dup_cols <- rray_transpose(x_dup_rows, c(2, 1, 3))
expect_identical(rray_unique_count(x_dup_cols, 1), 2L)
expect_identical(rray_unique_count(x_dup_cols, 2), 1L)
x_dup_layers <- rray_transpose(x_dup_rows, c(2, 3, 1))
expect_identical(rray_unique_count(x_dup_layers, 1), 2L)
expect_identical(rray_unique_count(x_dup_layers, 3), 1L)
})
context("test-base-unique")
test_that("results are the same as base R", {
x <- rray(c(1, 2, 1, 2, 3, 5))
x_base <- vec_data(x)
expect_equal(unique(x), as_rray(unique(x_base)))
})
test_that("matrix/array results are the same as base R", {
x <- rray(c(1, 2, 1, 2, 3, 5), dim = c(2, 3))
x_base <- vec_data(x)
expect_equal(unique(x), as_rray(unique(x_base)))
expect_equal(
unique(x, MARGIN = 2),
as_rray(unique(x_base, MARGIN = 2))
)
})
test_that("cannot use multiple margin", {
x <- rray(c(1, 2, 1, 2, 3, 5), dim = c(2, 3))
expect_error(unique(x, MARGIN = c(1, 2)))
})
test_that("cannot use margin of 0", {
x <- rray(c(1, 2, 1, 2, 3, 5), dim = c(2, 3))
expect_error(unique(x, MARGIN = 0))
})
test_that("incomparables is an error from base R", {
expect_error(unique(rray(1), incomparables = TRUE))
})
test_that("dim names are kept with base R rules", {
x <- rray(c(1, 2, 1, 2, 3, 5), dim = c(2, 3), dim_names = list(letters[1:2], letters[3:5]))
x_base <- vec_data(x)
expect_equal(
rray_dim_names(unique(x)),
rray_dim_names(unique(x_base))
)
expect_equal(
rray_dim_names(unique(x, MARGIN = 2)),
rray_dim_names(unique(x_base, MARGIN = 2))
)
})
test_that("fromLast works", {
x <- rray(c(1, 2, 1, 2, 3, 5), dim = c(2, 3))
x_base <- vec_data(x)
expect_equal(
unique(x, MARGIN = 2, fromLast = TRUE),
as_rray(unique(x_base, MARGIN = 2, fromLast = TRUE))
)
}) |
library(rainbow)
par(mfrow = c(1, 2))
plot(fts(x = 15:49, y = Australiafertility$y, xname = "Age", yname = "Fertility rate"))
plot(fts(x = 15:49, y = Australiasmoothfertility$y, xname = "Age", yname = "Smoothed fertility rate")) |
skip_on_cran()
test_that("lock bin: bin", {
skip_on_os("windows")
file_post(TXT, BIN_LOCK)
expect_true(bin_lock(BIN_LOCK))
expect_false(file_delete(TXT, BIN_LOCK))
expect_error(file_post(TXT, BIN_LOCK))
})
test_that("lock bin: URL", {
skip_on_os("windows")
url <- file.path(base_url(), bin_name_random())
expect_false(bin_lock(url))
}) |
library(testthat)
library(synthACS)
context("synth - employment")
test_that("get correct results", {
ca <- synthACS:::synth_data_edu(synthACS:::synth_data_mar(synthACS:::synth_data_ag(
unlist(ca_dat$estimates$age_by_sex[26,])),
unlist(ca_dat$estimates$marital_status[26,])),
unlist(ca_dat$estimates$edu[26,]))
ca_ag1 <- synthACS:::synth_data_emp(synthACS:::synth_data_edu(synthACS:::synth_data_mar(
synthACS:::synth_data_ag(unlist(ca_dat$estimates$age_by_sex[1,])),
unlist(ca_dat$estimates$marital_status[1,])),
unlist(ca_dat$estimates$edu[1,])),
unlist(ca_dat$estimates$emp_status[1,]))
ca_ag2 <- synthACS:::synth_data_emp(ca, unlist(ca_dat$estimates$emp_status[26,]))
ca_ag3 <- synthACS:::synth_data_emp(synthACS:::synth_data_edu(synthACS:::synth_data_mar(
synthACS:::synth_data_ag(unlist(ca_dat$estimates$age_by_sex[50,])),
unlist(ca_dat$estimates$marital_status[50,])),
unlist(ca_dat$estimates$edu[50,])),
unlist(ca_dat$estimates$emp_status[50,]))
expect_true(is.data.frame(ca_ag1[[1]]))
expect_true(is.data.frame(ca_ag2[[1]]))
expect_true(is.data.frame(ca_ag3[[1]]))
expect_true(is.list(ca_ag1))
expect_equal(length(ca_ag2), 2)
expect_equal(levels(ca_ag1[[1]]$age), ca_ag2[[2]])
expect_equal(ncol(ca_ag1[[1]]), ncol(ca_ag2[[1]]))
expect_equal(ncol(ca_ag1[[1]]), ncol(ca_ag3[[1]]))
expect_equal(names(ca_ag1[[1]]), names(ca_ag3[[1]]))
expect_equal(names(ca_ag1[[1]]),
c("age", "gender", "marital_status", "edu_attain", "emp_status", "p"))
expect_equal(sum(ca_ag1[[1]]$p), 1)
expect_equal(sum(ca_ag2[[1]]$p), 1)
expect_equal(sum(ca_ag3[[1]]$p), 1)
expect_equal(tapply(ca_ag2[[1]]$p, ca_ag2[[1]]$age, sum),
tapply(ca[[1]]$p, ca[[1]]$age, sum))
expect_equal(tapply(ca_ag2[[1]]$p, ca_ag2[[1]]$gender, sum),
tapply(ca[[1]]$p, ca[[1]]$gender, sum))
}) |
nldoc_network <- function(modelfiles)
{
nlogocode <- nldoc_read_nlogo(modelfiles)
nw <- nldoc_find_procedure_calls(nlogocode)
nw.ig <- igraph::graph_from_data_frame(nw)
nw.ig <- igraph::simplify(nw.ig, remove.multiple = T, remove.loops = T)
return(nw.ig)
} |
UnimixedContCont <- function(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("Full"),
Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, Number.Bootstraps=500,
Seed=sample(1:1000, size=1), T0T1=seq(-1, 1, by=.2), T0S1=seq(-1, 1, by=.2), T1S0=seq(-1, 1, by=.2), S0S1=seq(-1, 1, by=.2), ...){
if ((Model==c("Full") | Model==c("Reduced") | Model==c("SemiReduced"))==FALSE) {stop ("The specification of the Model=c(\"...\") argument of the call is incorrect. Use either Model=c(\"Full\"), Model=c(\"Reduced\"), or Model=c(\"SemiReduced\").")}
Surr <- Dataset[,paste(substitute(Surr))]
True <- Dataset[,paste(substitute(True))]
Treat <- Dataset[,paste(substitute(Treat))]
Trial.ID <- Dataset[,paste(substitute(Trial.ID))]
Pat.ID <- Dataset[,paste(substitute(Pat.ID))]
Data.Proc <- .Data.Processing(Dataset=Dataset, Surr=Surr, True=True, Treat=Treat, Trial.ID=Trial.ID, Pat.ID=Pat.ID, Min.Trial.Size=Min.Trial.Size)
wide <- Data.Proc$wide
dataS <- Data.Proc$dataS
dataT <- Data.Proc$dataT
Data.analyze <- Data.Proc$Data.analyze
N.total <- Data.Proc$N.total
N.trial <- Data.Proc$N.trial
Obs.per.trial <- Data.Proc$Obs.per.trial
S1 <- dataS$outcome[dataS$Treat==1]
S0 <- dataS$outcome[dataS$Treat!=1]
T1 <- dataT$outcome[dataS$Treat==1]
T0 <- dataT$outcome[dataS$Treat!=1]
r_T0S0 <- cor(T0,S0)
r_T1S1 <- cor(T1,S1)
set.seed(123); ICA <- ICA.ContCont(T0S0 = r_T0S0, T1S1 = r_T1S1,
T0T0 = var(T0), T1T1 = var(T1), S0S0 = var(S0), S1S1 = var(S1),
T0T1=T0T1, T0S1=T0S1, T1S0=T1S0, S0S1=S0S1)
Control=list(msMaxIter=500)
if (Model==c("Full")|Model==c("SemiReduced")){
Model.S <- lmer(outcome ~ Treat+(1+Treat|Trial.ID), data=dataS, ...)
Model.T <- lmer(outcome ~ Treat+(1+Treat|Trial.ID), data=dataT, ...)
Intercept.S <- coef(Model.S)$Trial.ID[,1]
Treatment.S <- coef(Model.S)$Trial.ID[,2]
Intercept.T <- coef(Model.T)$Trial.ID[,1]
Treatment.T <- coef(Model.T)$Trial.ID[,2]
Results.Stage.1 <- data.frame(Obs.per.trial$Trial, Obs.per.trial$Obs.per.trial, Intercept.S, Intercept.T, Treatment.S, Treatment.T, stringsAsFactors = TRUE)
colnames(Results.Stage.1) <- c(NULL, "Trial", "Obs.per.trial", "Intercept.S", "Intercept.T", "Treatment.S", "Treatment.T")
rownames(Results.Stage.1) <- NULL
D.equiv <- var(Results.Stage.1[,3:6])
Residuals.Model.S <- residuals(Model.S, type='response')
Residuals.Model.T <- residuals(Model.T, type='response')
Residuals.Stage.1 <- cbind(wide$Pat.ID, data.frame(Residuals.Model.S, Residuals.Model.T, stringsAsFactors = TRUE))
colnames(Residuals.Stage.1) <- c("Pat.ID", "Residuals.Model.S", "Residuals.Model.T")
rownames(Residuals.Stage.1) <- NULL
Fixed.effect.pars.S <- matrix(summary(Model.S)$coef[1:2], nrow=2)
Fixed.effect.pars.T <- matrix(summary(Model.T)$coef[1:2], nrow=2)
rownames(Fixed.effect.pars.S) <- c("Intercept.S" , "Treatment.S")
rownames(Fixed.effect.pars.T) <- c("Intercept.T" , "Treatment.T")
Fixed.Effect.Pars <- data.frame(rbind(Fixed.effect.pars.S, Fixed.effect.pars.T), stringsAsFactors = TRUE)
colnames(Fixed.Effect.Pars) <- c(" ")
Random.effect.pars.S <- data.frame(ranef(Model.S)$Trial.ID, stringsAsFactors = TRUE)
Random.effect.pars.T <- data.frame(ranef(Model.T)$Trial.ID, stringsAsFactors = TRUE)
colnames(Random.effect.pars.S) <- c("Intercept.S", "Treatment.S")
colnames(Random.effect.pars.T) <- c("Intercept.S", "Treatment.S")
Random.Effect.Pars <- cbind(Random.effect.pars.S, Random.effect.pars.T)
}
if (Model==c("Reduced")){
Model.S <- lmer(outcome ~ Treat+(-1+Treat|Trial.ID), data=dataS, ...)
Model.T <- lmer(outcome ~ Treat+(-1+Treat|Trial.ID), data=dataT, ...)
Treatment.S <- coef(Model.S)$Trial.ID[,2]
names(Treatment.S)<-"Treatment.S"
Treatment.T <- coef(Model.T)$Trial.ID[,2]
names(Treatment.T)<-"Treatment.T"
Results.Stage.1 <- data.frame(Obs.per.trial$Trial, Obs.per.trial$Obs.per.trial, Treatment.S, Treatment.T, stringsAsFactors = TRUE)
colnames(Results.Stage.1) <- c(NULL, "Trial", "Obs.per.trial", "Treatment.S", "Treatment.T")
rownames(Results.Stage.1) <- NULL
D.equiv <- var(Results.Stage.1[,3:4])
Residuals.Model.S <- residuals(Model.S, type='response')
Residuals.Model.T <- residuals(Model.T, type='response')
Residuals.Stage.1 <- cbind(wide$Pat.ID, data.frame(Surr=Residuals.Model.S, True=Residuals.Model.T, stringsAsFactors = TRUE))
colnames(Residuals.Stage.1) <- c("Pat.ID", "Residuals.Model.S", "Residuals.Model.T")
rownames(Residuals.Stage.1) <- NULL
Fixed.effect.pars.S <- matrix(summary(Model.S)$coef[1:2], nrow=2)
rownames(Fixed.effect.pars.S)[1:2]<-c("Intercept.S", "Treatment.S")
Fixed.effect.pars.T <- matrix(summary(Model.T)$coef[1:2], nrow=2)
rownames(Fixed.effect.pars.T)[1:2]<-c("Intercept.T", "Treatment.T")
Fixed.Effect.Pars <- data.frame(rbind(Fixed.effect.pars.S, Fixed.effect.pars.T), stringsAsFactors = TRUE)
colnames(Fixed.Effect.Pars) <- c(" ")
Random.effect.pars.S <- data.frame(ranef(Model.S)$Trial.ID, stringsAsFactors = TRUE)
colnames(Random.effect.pars.S) <- c("Treatment.S")
Random.effect.pars.T <- data.frame(ranef(Model.T)$Trial.ID, stringsAsFactors = TRUE)
colnames(Random.effect.pars.T) <- c("Treatment.T")
Random.Effect.Pars <- cbind(Random.effect.pars.S, Random.effect.pars.T)
}
if (Model==c("Full")){
if (Weighted==FALSE) {Results.Stage.2 <- lm(Results.Stage.1$Treatment.T ~ Results.Stage.1$Intercept.S + Results.Stage.1$Treatment.S)}
if (Weighted==TRUE) {Results.Stage.2 <- lm(Results.Stage.1$Treatment.T ~ Results.Stage.1$Intercept.S + Results.Stage.1$Treatment.S, weights=Results.Stage.1$Obs.per.trial)}
}
if (Model==c("Reduced") | Model==c("SemiReduced")){
if (Weighted==FALSE) {Results.Stage.2 <- lm(Results.Stage.1$Treatment.T ~ Results.Stage.1$Treatment.S)}
if (Weighted==TRUE) {Results.Stage.2 <- lm(Results.Stage.1$Treatment.T ~ Results.Stage.1$Treatment.S, weights=Results.Stage.1$Obs.per.trial)}
}
Trial.R2.value <- as.numeric(summary(Results.Stage.2)[c("r.squared")])
Trial.R2.sd <- sqrt((4*Trial.R2.value*(1-Trial.R2.value)^2)/(N.trial-3))
Trial.R2.lb <- max(0, Trial.R2.value + qnorm(Alpha/2) *(Trial.R2.sd))
Trial.R2.ub <- min(1, Trial.R2.value + qnorm(1-Alpha/2)*(Trial.R2.sd))
Trial.R2 <- data.frame(cbind(Trial.R2.value, Trial.R2.sd, Trial.R2.lb, Trial.R2.ub), stringsAsFactors = TRUE)
colnames(Trial.R2) <- c("R2 Trial", "Standard Error", "CI lower limit", "CI upper limit")
rownames(Trial.R2) <- c(" ")
Trial.R.value <- sqrt(as.numeric(summary(Results.Stage.2)[c("r.squared")]))
Z <- .5*log((1+Trial.R.value)/(1-Trial.R.value))
Trial.R.lb <- max(0, (exp(2*(Z-(qnorm(1-Alpha/2)*sqrt(1/(N.trial-3)))))-1)/(exp(2*(Z-(qnorm(1-Alpha/2)*sqrt(1/(N.trial-3)))))+1))
Trial.R.ub <- min(1, (exp(2*(Z+(qnorm(1-Alpha/2)*sqrt(1/(N.trial-3)))))-1)/(exp(2*(Z+(qnorm(1-Alpha/2)*sqrt(1/(N.trial-3)))))+1))
Trial.R.sd <- sqrt((1-Trial.R.value**2)/(N.trial-2))
Trial.R <- data.frame(cbind(Trial.R.value, Trial.R.sd, Trial.R.lb, Trial.R.ub), stringsAsFactors = TRUE)
colnames(Trial.R) <- c("R Trial", "Standard Error", "CI lower limit", "CI upper limit")
rownames(Trial.R) <- c(" ")
options(warn = -1)
Boot.r <- rep(0, Number.Bootstraps)
for (j in 1:Number.Bootstraps){
obs <- c(1:N.total)
set.seed(Seed)
Indicator <- sample(obs, N.total, replace=TRUE)
Seed <- Seed + 1
Sample.boot.S <- data.frame(dataS[Indicator,], stringsAsFactors = TRUE)
Sample.boot.T <- data.frame(dataT[Indicator,], stringsAsFactors = TRUE)
if (Model==c("Full") | Model==c("SemiReduced")){
Boot.model.S <- try(lmer(outcome ~ Treat+(1+Treat|Trial.ID), data=Sample.boot.S, ...), silent = FALSE)
Boot.model.T <- try(lmer(outcome ~ Treat+(1+Treat|Trial.ID), data=Sample.boot.T, ...), silent = FALSE)
}
if (Model==c("Reduced")){
Boot.model.S <- try(lmer(outcome ~ Treat+(-1+Treat|Trial.ID), data=Sample.boot.S, ...), silent = FALSE)
Boot.model.T <- try(lmer(outcome ~ Treat+(-1+Treat|Trial.ID), data=Sample.boot.T, ...), silent = FALSE)
}
Res.Boot.model.S <- residuals(Boot.model.S, type='response')
Res.Boot.model.T <- residuals(Boot.model.T, type='response')
Boot.r[j] <- (cor(Res.Boot.model.S,Res.Boot.model.T))
}
Boot.r2 <- Boot.r**2
options(warn=0)
R2ind <- (cor(Residuals.Model.T, Residuals.Model.S))**2
Var.Boot.r2 <- var(Boot.r2)
Indiv.R2.lb <- max(0, R2ind + qnorm(Alpha/2)*sqrt(Var.Boot.r2))
Indiv.R2.ub <- R2ind - qnorm(Alpha/2)*sqrt(Var.Boot.r2)
Indiv.R2 <- data.frame(cbind(R2ind, sqrt(Var.Boot.r2), Indiv.R2.lb, Indiv.R2.ub), stringsAsFactors = TRUE)
colnames(Indiv.R2) <- c("R2 Indiv", "Standard Error", "CI lower limit", "CI upper limit")
rownames(Indiv.R2) <- c(" ")
Rind <- (cor(Residuals.Model.T, Residuals.Model.S))
Var.Boot.r <- var(Boot.r)
Indiv.R.lb <- max(0, Rind + qnorm(Alpha/2)*sqrt(Var.Boot.r))
Indiv.R.ub <- min(1, Rind - qnorm(Alpha/2)*sqrt(Var.Boot.r))
Indiv.R <- data.frame(cbind(Rind, sqrt(Var.Boot.r), Indiv.R.lb, Indiv.R.ub), stringsAsFactors = TRUE)
colnames(Indiv.R) <- c("R Indiv", "Standard Error", "CI lower limit", "CI upper limit")
rownames(Indiv.R) <- c(" ")
NoTreat <- wide[wide$Treat!=1,]
Treat <- wide[wide$Treat==1,]
T0S0 <- cor(NoTreat$Surr, NoTreat$True)
T1S1 <- cor(Treat$Surr, Treat$True)
Z_T0S0 <- .5*log((1+T0S0)/(1-T0S0))
rho_lb <- max(0, (exp(2*(Z_T0S0-(qnorm(1-Alpha/2)*sqrt(1/(N.total-3)))))-1)/(exp(2*(Z_T0S0-(qnorm(1-Alpha/2)*sqrt(1/(N.total-3)))))+1))
rho_ub <- min(1, (exp(2*(Z_T0S0+(qnorm(1-Alpha/2)*sqrt(1/(N.total-3)))))-1)/(exp(2*(Z_T0S0+(qnorm(1-Alpha/2)*sqrt(1/(N.total-3)))))+1))
rho_sd <- sqrt((1-T0S0**2)/(N.total-2))
rho_results_T0S0 <- data.frame(cbind(T0S0, rho_sd , rho_lb, rho_ub), stringsAsFactors = TRUE)
colnames(rho_results_T0S0) <- c("Estimate", "Standard Error", "CI lower limit", "CI upper limit")
rownames(rho_results_T0S0) <- c(" ")
Z_T1S1 <- .5*log((1+T1S1)/(1-T1S1))
rho_lb <- max(0, (exp(2*(Z_T1S1-(qnorm(1-Alpha/2)*sqrt(1/(N.total-3)))))-1)/(exp(2*(Z_T1S1-(qnorm(1-Alpha/2)*sqrt(1/(N.total-3)))))+1))
rho_ub <- min(1, (exp(2*(Z_T1S1+(qnorm(1-Alpha/2)*sqrt(1/(N.total-3)))))-1)/(exp(2*(Z_T1S1+(qnorm(1-Alpha/2)*sqrt(1/(N.total-3)))))+1))
rho_sd <- sqrt((1-T1S1**2)/(N.total-2))
rho_results_T1S1 <- data.frame(cbind(T1S1, rho_sd , rho_lb, rho_ub), stringsAsFactors = TRUE)
colnames(rho_results_T1S1) <- c("Estimate", "Standard Error", "CI lower limit", "CI upper limit")
rownames(rho_results_T1S1) <- c(" ")
Cor.Endpoints <- data.frame(rbind(rho_results_T0S0, rho_results_T1S1), stringsAsFactors = TRUE)
rownames(Cor.Endpoints) <- c("r_T0S0", "r_T1S1")
colnames(Cor.Endpoints) <- c("Estimate", "Standard Error", "CI lower limit", "CI upper limit")
T0T0 = var(T0); T1T1 = var(T1); S0S0 = var(S0); S1S1 = var(S1)
fit <-
list(Data.Analyze=wide, Obs.Per.Trial=Obs.per.trial, Results.Stage.1=Results.Stage.1, Residuals.Stage.1=Residuals.Stage.1,
Fixed.Effect.Pars=Fixed.Effect.Pars, Random.Effect.Pars=Random.Effect.Pars, Results.Stage.2=Results.Stage.2, Trial.R2=Trial.R2, Indiv.R2=Indiv.R2, Trial.R=Trial.R, Indiv.R=Indiv.R, Cor.Endpoints=Cor.Endpoints,
D.Equiv=D.equiv, ICA=ICA, T0T0 = T0T0, T1T1 = T1T1, S0S0 = S0S0, S1S1 = S1S1, Call=match.call())
class(fit) <- "UnimixedContCont"
fit
} |
fpca_gauss <- function(Y, npc = 1, Kt = 8, maxiter = 20, t_min = NULL, t_max = NULL,
print.iter = FALSE, row_obj= NULL, seed = 1988, ...){
curr_iter = 1
error = rep(NA, maxiter)
error[1] = 100.0
if(is.null(row_obj)){
data = data_clean(Y)
Y = data$Y
rows = data$Y_rows
I = data$I
}else{
rows = row_obj
I = dim(rows)[1]
}
if(Kt < 3){
stop("Kt must be greater than or equal to 3.")
}
time = Y$index
if (is.null(t_min)) {t_min = min(time)}
if (is.null(t_max)) {t_max = max(time)}
knots = quantile(time, probs = seq(0, 1, length = Kt - 2))[-c(1, Kt - 2)]
Theta_phi = bs(c(t_min, t_max, time), knots = knots, intercept = TRUE)[-(1:2),]
set.seed(seed)
psi_coefs = matrix(rnorm(Kt * npc), Kt, npc) * 0.5
alpha_coefs = matrix(coef(glm(Y$value ~ 0 + Theta_phi, family = "gaussian")), Kt, 1)
sigma2 = 1
temp_alpha_coefs = alpha_coefs
temp_psi_coefs = psi_coefs
temp_sigma2 = sigma2
phi_a = list(NA, I)
phi_b = matrix(0, nrow = Kt * (npc+1), ncol = I)
scores = matrix(NA, I, npc)
sigma_vec = rep(NA, I)
while(curr_iter < maxiter && error[curr_iter] > 0.0001){
if(print.iter){
message("current iteration: ", curr_iter)
message("current error: ", error[curr_iter])
}
for(i in 1:I){
subject_rows = rows$first_row[i]:rows$last_row[i]
Yi = Y$value[subject_rows]
Di = length(Yi)
Theta_i = Theta_phi[subject_rows, ]
Theta_i_quad = crossprod(Theta_i)
mlist = expectedScores(Yi, temp_alpha_coefs, temp_psi_coefs, Theta_i, Theta_i_quad)
Ci = solve(1/sigma2 * crossprod(psi_coefs, Theta_i_quad) %*% psi_coefs + diag(npc))
mi_inner = 1/sigma2 * (crossprod(Yi, Theta_i) - crossprod(alpha_coefs, Theta_i_quad)) %*% psi_coefs
mi = tcrossprod(Ci, mi_inner)
mm = Ci + tcrossprod(mi)
sigma_vec[i] = -2 * t(mi) %*% t(psi_coefs) %*% t(Theta_i) %*% (Yi - Theta_i %*% alpha_coefs) +
crossprod((Yi - Theta_i %*% alpha_coefs)) +
sum(diag( crossprod(psi_coefs, Theta_i_quad) %*% psi_coefs %*% Ci)) +
t(mi) %*% crossprod(psi_coefs, Theta_i_quad) %*% psi_coefs %*% mi
si = rbind(mi, 1)
ss = cbind(rbind(mm, t(mi)), si)
phi_a[[i]] = kronecker(Theta_i_quad, ss)
phi_b[,i] = t(Yi) %*% kronecker(Theta_i, t(si))
scores[i,] = mi
}
sigma2 = 1/length(Y$value) * sum(sigma_vec)
phi_a_sum = Reduce("+", phi_a)
phi_vec = solve(phi_a_sum) %*% rowSums(phi_b)
phi_mat = matrix(phi_vec, nrow = Kt, ncol = npc + 1, byrow = TRUE)
alpha_coefs = phi_mat[, npc+1]
psi_coefs = phi_mat[, 1:npc]
if(npc == 1){ psi_coefs = matrix(psi_coefs, ncol = 1)}
curr_iter = curr_iter + 1
error[curr_iter] = sum((psi_coefs-temp_psi_coefs)^2) + sum((alpha_coefs-temp_alpha_coefs)^2) +
(sigma2 - temp_sigma2)^2
temp_psi_coefs = psi_coefs
temp_alpha_coefs = alpha_coefs
temp_sigma2 = sigma2
}
fits = rep(NA, dim(Y)[1])
subject_coef = alpha_coefs + tcrossprod(psi_coefs, scores)
for(i in 1:I){
subject_rows = rows$first_row[i]:rows$last_row[i]
fits[subject_rows] = Theta_phi[subject_rows, ] %*% subject_coef[,i]
}
fittedVals = data.frame(id = Y$id, index = Y$index, value = fits)
Theta_phi_mean = bs(seq(t_min, t_max, length.out = Di), knots = knots, intercept = TRUE)
psi_svd = svd(Theta_phi_mean %*% psi_coefs)
efunctions = psi_svd$u
evalues = ( psi_svd$d ) ^ 2
scores = scores %*% psi_svd$v
ret = list(
"knots" = knots,
"alpha" = Theta_phi_mean %*% alpha_coefs,
"mu" = Theta_phi_mean %*% alpha_coefs,
"efunctions" = efunctions,
"evalues" = evalues,
"npc" = npc,
"scores" = scores,
"subject_coefs" = subject_coef,
"Yhat" = fittedVals,
"Y" = Y,
"family" = "gaussian",
"sigma2" = sigma2
)
class(ret) = "fpca"
return(ret)
}
|
library(ggplot2)
load('output/result-model5-5.RData')
ms <- rstan::extract(fit)
qua <- apply(ms$q, 2, quantile, prob=c(0.1, 0.5, 0.9))
d_est <- data.frame(d, t(qua), check.names=FALSE)
d_est$Y <- as.factor(d_est$Y)
d_est$A <- as.factor(d_est$A)
p <- ggplot(data=d_est, aes(x=Y, y=`50%`)) +
theme_bw(base_size=18) +
coord_flip() +
geom_violin(trim=FALSE, size=1, color='grey80') +
geom_point(aes(color=A), position=position_jitter(w=0.3, h=0), size=0.5) +
scale_color_manual(values=c('grey5', 'grey50')) +
labs(x='Y', y='q')
ggsave(file='output/fig5-10.png', plot=p, dpi=300, w=4.5, h=3) |
bonchev2 <- function(g, dist=NULL, wien=NULL){
if(class(g)[1]!="graphNEL"){
stop("'g' must be a 'graphNEL' object")
}
if(is.null(wien)){
wien <- wiener(g)
}
if(is.null(dist)){
dist <- distanceMatrix(g)
}
rho <- max(dist)
ki <- table(dist)[2:(rho+1)]
i <- as.numeric(names(ki))
In <- i*ki * log2(i)
wien*log2(wien)-sum(In)
} |
context("lcd")
skip_on_cran()
lcd_cache$delete_all()
test_that("lcd", {
skip_on_cran()
skip_if_government_down()
aa <- lcd(station = "01338099999", year = 2017)
expect_is(aa, "tbl_df")
expect_type(aa$station, c('character'))
expect_type(aa$date, 'double')
expect_type(aa$latitude, 'double')
expect_type(aa$longitude, 'double')
expect_type(aa$elevation, 'double')
expect_type(aa$hourlysealevelpressure, 'character')
})
test_that("lcd fails well", {
skip_on_cran()
skip_if_government_down()
vcr::use_cassette("lcd_not_found", {
expect_error(lcd(station = "02413099999", year = "1945"),
"Not Found", class = "error")
})
expect_error(lcd(5),
"\"year\" is missing, with no default")
expect_error(lcd(5, 5),
"year must be between 1901")
expect_error(lcd(list(1), 5),
"station must be of class")
expect_error(lcd(5, list(1)),
"year must be of class")
expect_error(lcd(station = "01338099999", year = 2017, col_types = list(1)),
"col_types must be a")
})
test_that("lcd fails well when trying to read a bad file", {
skip_on_cran()
lcd_cache$cache_path_set(full_path = file.path(tempdir(), "foo_bar"))
lcd_cache$mkdir()
path <- file.path(tempdir(), "foo_bar", "2020_72517014737.csv")
file.create(path)
expect_error(lcd(72517014737, 2020), class = "error")
unlink(path)
}) |
library(gtable)
library(grid)
library(ggplot)
qplot(total_bill, tip, data = tips) + facet_grid(time ~ day) -> p
p
ggplot_gtable(ggplot_build(p)) -> x
gtable_show_layout(x)
qplot(total_bill, tip, data = tips, main = "test\ntitle") + facet_grid(time ~ day) -> p
p
ggplot_gtable(ggplot_build(p)) -> x2
gtable_show_layout(x2)
grid.draw(gtable_filter(x, "strip-top"))
grid.draw(gtable_filter(x, "strip-top")[1,])
gtable_show_layout(x)
gtable_show_layout(x2)
str(x2, max.level=2)
x2$heights[[3]] |
ray2mesh <- function(mesh1, tarmesh, tol=1e12, inbound=FALSE, mindist=FALSE,...)
{
if (is.character(tarmesh))
tarmesh <- vcgImport(tarmesh,clean=FALSE,updateNormals=FALSE)
if (inbound)
mesh1$normals <- -mesh1$normals
outmesh <- vcgRaySearch(mesh1,tarmesh,mindist=mindist,maxtol=tol)
return(outmesh)
} |
createbnFromData <- function(data, seed, debug = FALSE) {
columns <- colnames(data$x)
factorsPerColumns <- list()
for (i in 1:length(columns)) {
factors <- levels(data$x[,i])
factors
factorsPerColumns[[i]] <- factors
}
bn <- createbn(nodeNames = columns,
emissionOutputPerNode = factorsPerColumns,
seed = seed)
bn
} |
getPhyloTree<-function(QmatList,indexClsVec)
{
memberCLS<-sort(unique(indexClsVec))
C<-length(memberCLS)
N<-dim(QmatList[[2]])[1]
K<-length(QmatList)
minDiffAncestorMat<-matrix(K,N,N)
for(k in seq(2,K))
{
clusters <- apply( QmatList[[k]], 1, which.max)
for( i in seq(N-1))
for (j in seq(i+1,N))
{
if(clusters[i]!=clusters[j] && k<minDiffAncestorMat[i,j])
{
minDiffAncestorMat[i,j]<-k
minDiffAncestorMat[j,i]<-k
}
}
}
minDiffAncestorClsMat<-matrix(K,C,C)
for( cl1 in seq(1,C-1 ) )
{
for( cl2 in seq(cl1+1, C) )
{
currMat <- minDiffAncestorMat[indexClsVec==cl1,indexClsVec==cl2]
minDiffAncestorClsMat[cl1,cl2] <- median(currMat, na.rm = TRUE)
minDiffAncestorClsMat[cl2,cl1] <- median(currMat, na.rm = TRUE)
}
}
distMat<-max(c(C,minDiffAncestorClsMat))-minDiffAncestorClsMat+1
tree<-nj(distMat)
return(list(minDiffAncestorClsMat=minDiffAncestorClsMat,tree=tree))
} |
plotColorbarCol = function(groups, margin) {
if (missing(margin)) {
delta = 0.05
delta2 = 0.4
} else {
delta = margin[1]
delta2 = margin[2]
}
groups = as.numeric(groups)
ugroups = unique(groups)
for (i in 1:length(groups)) {
coli = which(groups[i]==ugroups)
a0 = c(i-1,i-1,i,i)/length(groups)
b0 = c(1+0.1*delta,1+0.9*delta,1+0.9*delta,1+0.1*delta)
polygon(a0,b0,col=coli,border=FALSE)
}
} |
makeRSSSOS <- function(x, y, type, deg.is.odd, K){
force(x)
force(y)
force(type)
force(deg.is.odd)
force(K)
function(par){
fit <- evalPolSOS(par, x, type, deg.is.odd, K)
sum((y-fit)^2)
}
}
makewRSSSOS <- function(x, y, w, type, deg.is.odd, K){
force(x)
force(y)
force(w)
force(type)
force(deg.is.odd)
force(K)
function(par){
fit <- evalPolSOS(par, x, type, deg.is.odd, K)
sum(w*(y-fit)^2)
}
}
evalPolSOS <- function(par, x, type, deg.is.odd, K){
beta <- evalCoefSOS(par, type, deg.is.odd, K)
evalPol(x, beta)
}
evalCoefSOS <- function(par, type, deg.is.odd, K){
d <- par[1L]
a <- par[2L]
if(K==0){
tmp <- c(d, a*par[3L])
}else{
if(type == 0){
M <- (length(par)-2L)/2L
gamma <- par[2L + 1L:M]
delta <- par[M+2L + 1L:M]
tmp <- convolve(gamma, rev(gamma), type="o")
tmp <- tmp + convolve(delta, rev(delta), type="o")
}else if(type == 1){
if(deg.is.odd){
M <- K+1
gamma <- par[2L + 1L:M]
delta <- par[M+2L + 1L:K]
tmp <- convolve(gamma, rev(gamma), type="o")
tmp <- tmp + c(0, convolve(delta, rev(delta), type="o"), 0)
}else{
gamma <- par[2L + 1L:K]
delta <- par[K+2L + 1L:K]
tmp <- c(convolve(gamma, rev(gamma), type="o"), 0)
tmp <- tmp + c(0, convolve(delta, rev(delta), type="o"))
}
}else if(type == 2){
if(deg.is.odd){
M <- K+1
gamma <- par[2L + 1L:M]
delta <- par[M+2L + 1L:K]
tmp <- convolve(gamma, rev(gamma), type="o")
tmp <- tmp + convolve(convolve(delta, rev(delta), type="o"),
c(-1,1,0),type="o")
}else{
gamma <- par[2L + 1L:K]
delta <- par[K+2L + 1L:K]
tmp <- convolve(gamma, rev(gamma), type="o")
tmp <- c(tmp, 0) - c(0, tmp)
tmp <- tmp + c(0, convolve(delta, rev(delta), type="o"))
}
}else{
stop("Why are we here.")
}
res <- c(d, a*tmp/(1:length(tmp)))
}
names(res) <- paste("beta", seq_along(res)-1, sep="")
res
} |
Id <- "$Id: c212.interim.1a.hier2.R,v 1.6 2016/12/08 13:55:27 clb13102 Exp clb13102 $"
c212.interim.1a.hier2 <- function(trial.data, sim_type = "SLICE", burnin = 10000,
iter = 40000, nchains = 3,
global.sim.params = data.frame(type = c("MH", "SLICE"), param = c("sigma_MH", "w"),
value = c(0.2,1), control = c(0,6), stringsAsFactors = FALSE),
sim.params = NULL,
monitor = data.frame(variable = c("theta", "gamma", "mu.gamma", "mu.theta",
"sigma2.theta", "sigma2.gamma"),
monitor = c(1, 1, 1, 1, 1, 1), stringsAsFactors = FALSE),
initial_values = NULL, level = 1,
hyper_params = list(mu.gamma.0 = 0, tau2.gamma.0 = 10, mu.theta.0 = 0,
tau2.theta.0 = 10, alpha.gamma = 3, beta.gamma = 1,
alpha.theta = 3, beta.theta = 1), memory_model = "HIGH")
{
if (level == 0) {
model_fit = c212.interim.1a.hier2.lev0(trial.data, sim_type, burnin,
iter, nchains, global.sim.params, sim.params,
monitor, initial_values,
hyper_params, memory_model)
}
else if (level == 1) {
model_fit = c212.interim.1a.hier2.lev1(trial.data, sim_type, burnin,
iter, nchains, global.sim.params, sim.params,
monitor, initial_values,
hyper_params, memory_model)
} else {
return(NULL)
}
return(model_fit)
} |
use_rstudio_secondary_repo <- function(..., .write_json = TRUE, .backup = TRUE) {
check_min_rstudio_version("1.3")
if (!interactive()) {
"{.code use_rstudio_secondary_repo()} must be run interactively." %>%
cli::cli_alert_danger()
return(invisible())
}
user_passed_updated_repos <- rlang::dots_list(...)
if (!rlang::is_named(user_passed_updated_repos)) {
rlang::abort("Each argument must be named.")
}
list_current_prefs <-
jsonlite::fromJSON(rstudio_config_path("rstudio-prefs.json"))
if (is.null(list_current_prefs$cran_mirror)) {
list_current_prefs$cran_mirror <-
list("name" = "Global (CDN)",
"host" = "RStudio",
"url" = "https://cran.rstudio.com/",
"repos" = "",
"country" = "us",
"secondary" = NULL)
}
current_repos <-
repo_string_as_named_list(list_current_prefs$cran_mirror$secondary)
user_passed_updated_repos <-
union(
current_repos[unlist(current_repos) %in% unlist(user_passed_updated_repos)] %>% names(),
current_repos[names(current_repos) %in% names(user_passed_updated_repos)] %>% names()
) %>%
purrr::compact() %>%
{stats::setNames(rep_len(list(NULL), length.out = length(.)), .)} %>%
purrr::list_modify(!!!purrr::compact(user_passed_updated_repos))
any_update <- pretty_print_updates(current_repos, user_passed_updated_repos)
if (!any_update) {
return(invisible(NULL))
}
if (!startsWith(tolower(readline("Would you like to continue? [y/n] ")), "y")) {
return(invisible(NULL))
}
list_current_prefs$cran_mirror$secondary <-
current_repos %>%
purrr::update_list(!!!user_passed_updated_repos) %>%
purrr::imap_chr(~paste0(.y, "|", .x)) %>%
paste(collapse = "|")
if (isTRUE(.write_json)) {
write_json(
list_current_prefs,
path = rstudio_config_path("rstudio-prefs.json"),
.backup = .backup
)
return(invisible(NULL))
}
else {
return(list_current_prefs)
}
}
repo_string_as_named_list <- function(x) {
if (is.null(x)) return(list())
xx <- strsplit(x, "|", fixed = TRUE) %>% unlist()
xx[!as.logical(seq_len(length(xx)) %% 2)] %>%
stats::setNames(xx[as.logical(seq_len(length(xx)) %% 2)]) %>%
as.list()
} |
set_vector_layout <- function(patients, height) {
treatment <- sapply(unique(patients$treat), function(x) length(which(patients$treat == x)))
l_trt <- treatment[-1]
l_trt1 <- treatment[1]
vec_lay <- c(1:l_trt1, rep(0, ifelse(l_trt1 %% height == 0, 0, height - l_trt1 %% height)))
if (length(l_trt) > 0) {
for (z in 1:length(l_trt)) {
if (l_trt[z] %% height == 0) {
diff <- 0
} else {
diff <- height - l_trt[z] %% height
}
vec_lay_add <- c((1:l_trt[z]) + max(vec_lay), rep(0, diff))
vec_lay <- c(vec_lay, vec_lay_add)
}
}
return(vec_lay)
} |
library("aroma.affymetrix")
ovars <- ls(all.names=TRUE)
oplan <- future::plan()
message("*** GcRmaBackgroundCorrection ...")
dataSet <- "GSE9890"
chipType <- "HG-U133_Plus_2"
csR <- AffymetrixCelSet$byName(dataSet, chipType=chipType)
csR <- csR[1:6]
print(csR)
cdf <- getCdf(csR)
acs <- getAromaCellSequenceFile(cdf)
print(acs)
strategies <- future:::supportedStrategies()
strategies <- setdiff(strategies, "multiprocess")
if (require("future.BatchJobs")) {
strategies <- c(strategies, "batchjobs_local")
if (any(grepl("PBS_", names(Sys.getenv())))) {
strategies <- c(strategies, "batchjobs_torque")
}
}
if (require("future.batchtools")) {
strategies <- c(strategies, "batchtools_local")
if (any(grepl("PBS_", names(Sys.getenv())))) {
strategies <- c(strategies, "batchtools_torque")
}
}
checksum <- NULL
for (strategy in strategies) {
message(sprintf("*** Using %s futures ...", sQuote(strategy)))
future::plan(strategy)
tags <- c("*", strategy)
bg <- GcRmaBackgroundCorrection(csR, seed=0xBEEF, tags=tags)
print(bg)
csB <- process(bg, verbose=verbose)
print(csB)
csBz <- getChecksumFileSet(csB)
print(csBz[[1]])
checksumT <- readChecksum(csBz[[1]])
if (is.null(checksum)) checksum <- checksumT
stopifnot(identical(checksumT, checksum))
message(sprintf("*** Using %s futures ... DONE", sQuote(strategy)))
}
message("*** GcRmaBackgroundCorrection ... DONE")
future::plan(oplan)
rm(list=setdiff(ls(all.names=TRUE), ovars)) |
MDG <- function(level){
x <- NULL
if(level==1){
x1 <- github.cssegisanddata.covid19(country = "Madagascar")
x2 <- ourworldindata.org(id = "MDG")
x <- full_join(x1, x2, by = "date")
}
return(x)
} |
redlist <-
function (x) {
n <- 0
x. <- x
while (length(names(x.))==0) {
x. <- do.call("c", x.)
n <- n + 1
}
if (n>1) {
for (i in 1:(n-1)) {
x <- do.call("c", x)
}
x
} else {
x
}
} |
markowitzHull <-
function (data, nFrontierPoints=50)
{
stopifnot(is.timeSeries(data))
Spec <- portfolioSpec()
setNFrontierPoints(Spec) <- nFrontierPoints
frontier <- portfolioFrontier(data, spec=Spec)
Risks <- risks <- frontierPoints(frontier)[, 1]
Returns <- frontierPoints(frontier)[, 2]
N <- ncol(data)
for (i in 1:(N - 1)) for (j in (i + 1):N) {
Data <- data[, c(i, j)]
ans <- portfolioFrontier(Data, spec=Spec)
coord <- frontierPoints(ans)
nextFrontier <- approx(coord[, 2], coord[, 1], xout = Returns)$y
naIndex <- which(is.na(nextFrontier))
nextFrontier[naIndex] <- Risks[naIndex]
risks <- rbind(risks, nextFrontier)
}
targetReturn <- Returns
minTargetRisk <- Risks
maxTargetRisk <- colMaxs(risks)
hull <- cbind(
targetReturn = Returns,
minTargetRisk = Risks,
maxTargetRisk = colMaxs(risks))
polygon <- cbind(
c(minTargetRisk, rev(maxTargetRisk)[-1]),
c(targetReturn, rev(targetReturn)[-1]) )
rownames(polygon) <- 1:nrow(polygon)
colnames(polygon) <- c("targetRisk", "targetReturn")
ans <- polygon
attr(ans, "data") <- data
attr(ans, "hull") <- hull
attr(ans, "frontier") <- frontier
invisible(ans)
}
feasibleGrid <-
function(hull, trace=FALSE)
{
polygon <- hull
data <- attr(hull, "data")
hull <- attr(hull, "hull")
if (trace) {
plot(polygon)
box(col="white")
polygon(polygon, col="grey")
grid()
}
minRisks <- as.vector(hull[, 2])
maxRisks <- as.vector(hull[, 3])
minRisk <- min(minRisks)
maxRisk <- max(maxRisks)
targetRisks <- seq(minRisk, maxRisk, length = length(minRisks))
targetReturns <- as.vector(hull[, 1])
N <- length(targetReturns)
Grid <- matrix(NA, ncol=N, nrow=N)
offset <- diff(range(targetRisks[1:2]))/2
for (i in 1:N) {
targetReturn <- targetReturns[i]
for (j in 1:N) {
targetRisk <- targetRisks[j] + offset
if (targetRisk >= minRisks[i] && targetRisk <= maxRisks[i]) {
Grid[j, i] <- 1
if (trace) points(targetRisk, targetReturn, pch=19)
}
}
}
ans <- list(x=targetRisks, y=targetReturns, z=Grid)
attr(ans, "data") <- data
attr(ans, "polygon") <- polygon
attr(ans, "hull") <- hull
class(ans) <- c("feasibleGrid", "list")
invisible(ans)
}
bestDiversification <-
function(grid, FUN="var", trace=FALSE)
{
data <- attr(grid, "data")
polygon <- attr(grid, "polygon")
targetRisks <- grid$x
targetReturns <- grid$y
Grid <- grid$z
N <- length(targetRisks)
objectiveFun <- match.fun(FUN)
nAssets <- ncol(data)
MEAN <- colMeans(data)
COV <- cov(data)
if(trace) {
image(grid, col="lightgrey")
box(col="white")
grid()
}
Weights <- Coord <- NULL
Objective <- NA * Grid
Start <- rep(1/nAssets, times = nAssets)
for (i in 1:N) {
targetReturn <- targetReturns[i]
for (j in 1:N) {
targetRisk <- targetRisks[j]
if (!is.na(Grid[j,i])) {
ans <- donlp2NLP(
start = Start,
objective <- objectiveFun,
par.lower = rep(0, times = nAssets),
par.upper = rep(1, times = nAssets),
eqA = rbind(rep(1, times = nAssets), MEAN),
eqA.bound = c(1, targetReturn),
eqFun = list(function(x) sqrt(t(x) %*% COV %*% x)),
eqFun.bound = targetRisk)
Weights <- rbind(Weights, ans$solution)
Objective[j,i] <- objectiveFun(ans$solution)
Coord <- rbind(Coord, c(j,i))
if(trace) {
points(targetRisk, targetReturn, pch=19, cex=0.7)
}
}
}
}
ans <- list(x=targetRisks, y=targetReturns, z=Objective)
attr(ans, "data") <- data
attr(ans, "polygon") <- polygon
attr(ans, "weights") <- cbind(Coord, Weights)
class(ans) <- c("bestDiversification", "list")
invisible(ans)
}
riskSurface <-
function(diversification, FUN=NULL, ...)
{
data <- attr(diversification, "data")
weights <- attr(diversification, "weights")
polygon <- attr(diversification, "polygon")
if (is.null(FUN)) FUN <- function(data, weights, ...) var(weights)
fun <- match.fun(FUN)
Coord <- attr(diversification, "weights")[, 1:2]
Weights <- attr(diversification, "weights")[, -(1:2)]
N <- nrow(Coord)
x <- diversification$x
y <- diversification$y
z <- diversification$z
Value <- NA * z
for (k in 1:N) {
Value[Coord[k, 1], Coord[k, 2]] <- fun(data, Weights[k, ], ...)
}
ans <- list(x=x, y=y, z=Value)
attr(ans, "data") <- data
attr(ans, "weights") <- weights
attr(ans, "polygon") <- polygon
class(ans) <- c("riskSurface", "list")
ans
}
surfacePlot <-
function(surface, type=c("image", "filled.contour"),
nlevels=11, palette=topo.colors, addContour=TRUE, addGrid=TRUE,
addHull=TRUE, addAssets=TRUE, ...)
{
x <- surface$x
y <- surface$y
z <- surface$z
colors <- .scaledColors(surface, palette=palette, nlevels=nlevels)
levels <- colors$levels
palette <- colors$palette
yOffset <- 0.025*diff(range(y))
yLim <- c(min(y)-yOffset, max(y)+yOffset)
xOffset <- 0.1*diff(range(x))
xLim <- c(min(x)-xOffset/4, max(x)+xOffset)
type <- match.arg(type)
if (type == "image") {
image(x, y, z, xlim=xLim, ylim=yLim, xlab="", ylab="", col=palette)
box(col="white")
}
else if (type == "filled.contour") {
image(x, y, z, xlim=xLim, ylim=yLim, xlab="", ylab="", col="white")
graphics::.filled.contour(
x = as.double(x),
y = as.double(y),
z = z,
levels = as.double(levels),
col = palette)
box(col="white")
}
if(addContour) contour(x, y, z, add=TRUE, levels=signif(levels, 3))
if(addHull) {
hull <- attr(surface, "polygon")
lines(hull, lwd=2, col="darkgreen")
}
if(addGrid) grid()
title(...)
cs <- cumsum(levels)
css <- ( cs - min(cs) ) / diff(range(cs))
css <- 0.95 * css + 0.025
cy <- min(y) + css * diff(range(y))
cx <- rep(xLim[2]-0.1 * xOffset, length(cy))
lines(cx, cy, lwd=3)
for (i in 1:(nlevels-1)) lines(c(cx[i], cx[i+1]), c(cy[i], cy[i+1]), lwd=3, col=palette[i])
for (i in 1:nlevels) points(cx[i], cy[i], pch=16, cex=1.1, col="black")
textOffset <- c(-0.0005, 0.0005, 0.0008, 0.0008, rep(0, 7))
text(cx, cy+textOffset, as.character(signif(levels, 2)), pos=2, cex=0.8)
if (addAssets) {
frontier <- portfolioFrontier(data)
pointCex <- 2.5
textCex <- 0.5
xy <- minvariancePoints(frontier, auto=FALSE,
pch=19, cex=pointCex, col = "red")
text(xy[, 1], xy[, 2], "MVP", font=2, col="white", cex=textCex)
xy <- tangencyPoints(frontier, auto=FALSE,
pch=19, cex=pointCex, col="orange")
text(xy[, 1], xy[, 2], "TGP", font=2, col="white", cex=textCex)
xy <- equalWeightsPoints(frontier, auto=FALSE,
pch=19, cex=pointCex, col="brown")
text(xy[, 1], xy[, 2], "EWP", font=2, col="white", cex=textCex)
xy <- singleAssetPoints(frontier, auto=FALSE,
pch=19, cex=pointCex, col="black", lwd=2)
text(xy[, 1], xy[, 2], rownames(xy), font=2, col="white", cex=textCex)
}
invisible(list(surface=surface, levels=levels))
}
.scaledColors <-
function(surface, palette=topo.colors, nlevels=11)
{
Z <- as.vector(surface$z)
levels <- quantile(Z, probs=seq(from=0, to=1, length=nlevels), na.rm=TRUE)
palette <- palette(nlevels-1)
list(palette=palette, levels=levels)
} |
"med.regressCOP" <-
function(u=seq(0.01,0.99, by=0.01), cop=NULL, para=NULL, level=NA, ...) {
if(is.null(cop)) {
warning("must have copula argument specified, returning NULL")
return(NULL)
}
UV <- qua.regressCOP(f=0.5, u=u, cop=cop, para=para, ...)
if(is.na(level)) return(UV)
if(length(level) > 1) {
warning("only the first value of 'level' is used")
level <- level[1]
}
lo <- ifelse(level > 0.5, (1-level)/2, level/2)
tmp <- UV$V; UV$V <- NULL
UV$Vlwr <- qua.regressCOP(f=lo, u=u, cop=cop, para=para, ...)$V
UV$V <- tmp
UV$Vupr <- qua.regressCOP(f=1-lo, u=u, cop=cop, para=para, ...)$V
return(UV)
} |
replace_emoji <- function(x, emoji_dt = lexicon::hash_emojis, ...){
gsub("\\s+", " ", .mgsub(emoji_dt[["x"]], paste0(" ", emoji_dt[["y"]], " "),
to_byte(x), ...))
}
replace_emoji_identifier <- function(x,
emoji_dt = lexicon::hash_emojis_identifier, ...){
gsub("\\s+", " ", .mgsub(emoji_dt[["x"]], paste0(" ", emoji_dt[["y"]], " "),
to_byte(x), ...))
} |
cpoint <-
function(a, b)
{
return(.Call("cpoint", a, b))
} |
LassoGEE <- function(X, y, id, family = binomial("probit"), lambda,
corstr = "independence", method = c("CGD", "RWL"),
beta.ini = NULL, R = NULL, scale.fix = TRUE,
scale.value = 1, maxiter = 50, tol = 1e-3,
silent = TRUE, Mv = NULL, verbose = TRUE) {
call <- match.call()
method=match.arg(method)
if (is.null(id)) {
stop("Id variable not found!")
}
if (length(id) != length(y))
stop("Id and y do not have the same length!")
if (!(is.double(X)))
X <- as.double(X)
if (!(is.double(y)))
y <- as.double(y)
if (!(is.double(id)))
id <- as.double(id)
N<-length(unique(id))
nx=ncol(X)
avec <- as.integer(unlist(lapply(split(id, id), "length")))
maxclsz <- max(avec)
maxcl <- maxclsz
nt <- avec
nobs <- sum(nt)
xnames <- dimnames(X)[[2]]
if (is.null(xnames)) {
xnames <- paste("x", 1:dim(X)[2], sep = "")
dimnames(X) <- list(NULL, xnames)
}
if (!(is.double(N)))
N <- as.double(N)
if (!(is.double(maxcl)))
maxcl <- as.double(maxcl)
if (!(is.double(nobs)))
nobs <- as.double(nobs)
if (missing(lambda))
stop("A value is not assiged for lambda!")
if (missing(family))
family = gaussian(link = "identity")
if (missing(corstr))
corstr = "independence"
if (missing(Mv))
Mv <- NULL
if (corstr == "stat_M_dep" && is.null(Mv))
stop("corstr is assumed to be 'stat_M_dep' but Mv is not specified!")
if (corstr == "non_stat_M_dep" && is.null(Mv))
stop("corstr is assumed to be 'non_stat_M_dep' but Mv is not specified!")
if ((corstr != "stat_M_dep" && corstr != "non_stat_M_dep") &&
!is.null(Mv))
stop("Mv is specified while corstr is assumed to be neither \n'stat_M_dep' nor 'non_stat_M_dep'!")
if (corstr == "non_stat_M_dep" && length(unique(nt)) != 1)
stop("corstr cannot be assumed to be 'non_stat_M_dep' for unbalanced data!")
if (corstr == "unstructured" && length(unique(nt)) != 1)
stop("corstr cannot be assumed to be 'unstructured' for unbalanced data!")
if (missing(R))
R <- NULL
if (corstr == "fixed" && is.null(R))
stop("corstr is assumed to be 'fixed' but R is not specified!")
if (corstr != "fixed" && !is.null(R))
stop("R is specified although corstr is not assumed to be 'fixed'!")
if (!is.null(R)) {
Rr <- nrow(R)
if (Rr != ncol(R))
stop("R is not square!")
if (Rr < maxclsz) {
stop("R is not big enough to accommodate some clusters!")
}
else if (Rr > maxclsz) {
stop("R is larger than the maximum cluster!")
}
}
if (missing(scale.fix))
scale.fix <- TRUE
scale.fix <- as.integer(scale.fix)
if (missing(scale.value))
scale.value = 1
scale.value <- as.integer(scale.value)
if (missing(maxiter))
maxiter <- 100
maxiter <- as.integer(maxiter)
if (missing(tol))
tol = 0.0001
tol = as.double(tol)
if (missing(silent))
silent <- TRUE
silent <- as.integer(silent)
if (is.character(family))
family <- get(family)
if (is.function(family))
family <- family()
links <- c("identity", "log", "logit", "inverse", "probit",
"cloglog")
fams <- c("gaussian", "poisson", "binomial", "Gamma", "quasi")
varfuns <- c("constant", "mu", "mu(1-mu)", "mu^2")
corstrs <- c("independence", "fixed", "stat_M_dep", "non_stat_M_dep",
"exchangeable", "AR-1", "unstructured")
linkv <- as.integer(match(c(family$link), links, -1))
if (linkv < 1)
stop("unknown link!")
famv <- match(family$family, fams, -1)
if (famv < 1)
stop("unknown family")
if (famv <= 4) {
varfunv <- famv
} else {
varfunv <- match(family$varfun, varfuns, -1)
}
if (varfunv < 1)
stop("unknown varfun!")
corstrv <- as.integer(match(corstr, corstrs, -1))
if (corstrv < 1)
stop("unknown corstr!")
Mv <- as.integer(Mv)
if (!is.null(beta.ini)) {
betaest <- matrix(beta.ini, ncol = 1)
if(nrow(betaest) != nx) {
stop("Dimension of beta != ncol(X)!")
}
} else {
betaest = c(rep(0,nx))
}
aindex=cumsum(nt)
index=c(0,aindex[-length(aindex)])
diff<-1
iter<-0
count <- c()
beta_all_step <- list()
while(iter < maxiter) {
R.fi.hat <- PGEE::mycor_gee2( N, nt, y, X, family, beta_new = betaest,
corstr = corstr, Mv = Mv, maxclsz = maxclsz,
R = R, scale.fix = scale.fix,
scale.value = scale.value)
Rhat <- R.fi.hat$Ehat
fihat <- R.fi.hat$fi
eta <- drop(X%*%betaest)
mu=family$linkinv(eta)
mu_eta = family$mu.eta(eta)
vari = family$variance(mu)
S.H.E.M.val = SHM(X = X, y = y, mu = mu, mu_eta = mu_eta, vari = vari,
nt = nt, index = index, Rhat = Rhat,
N = N, fihat = fihat)
S<-S.H.E.M.val$S
v<-S.H.E.M.val$H
u<- v%*%betaest + S
if(method == "CGD") {
inner.fit <- ac_prox_grad(u = u, v = v, lambda = rep(lambda*N, nx),
tol = tol, maxiter = maxiter, silent = silent)
betaest1 <- inner.fit$beta_k
diff<-sum(abs(betaest-betaest1))
betaest<-betaest1
iter<-iter+1
count[iter] <- inner.fit$k
beta_all_step[[iter]] <- inner.fit$beta_inner_step
if (diff <= tol) {
Smat <- S.H.E.M.val$Smat
if(verbose) cat("iter: ",iter, "diff: ",diff,"\n")
break
}
} else {
betaest1 <- WLreglass(v = v, u = u, lambda = rep(lambda*N, nx), tol = tol)
diff<-sum(abs(betaest-betaest1))
betaest<-betaest1
iter<-iter+1
if (diff <= tol) {
Smat <- S.H.E.M.val$Smat
if(verbose) cat("iter: ",iter, "diff: ",diff,"\n")
break
}
}
}
fit <- list()
attr(fit, "class") <- c("LassoGEE")
fit$title <- paste("LassoGEE by", method, "Algorithm")
fit$version <- "Version: 1.0"
links <- c("Identity", "Logarithm", "Logit", "Reciprocal",
"Probit", "Cloglog")
varfuns <- c("Gaussian", "Poisson", "Binomial", "Gamma")
corstrs <- c("Independent", "Fixed", "Stationary M-dependent",
"Non-Stationary M-dependent", "Exchangeable", "AR-1",
"Unstructured")
fit$model <- list()
fit$model$link <- links[linkv]
fit$model$varfun <- varfuns[varfunv]
fit$model$corstr <- corstrs[corstrv]
if (!is.na(match(c(corstrv), c(3, 4))))
fit$model$M <- Mv
fit$call <- call
fit$nobs <- nobs
fit$outer.iter <- iter
fit$betaest <- as.vector(betaest)
fit$nas <- is.na(fit$betaest)
if(method == "CGD"){
fit$beta_all_step <- beta_all_step
fit$inner.count <- count
}
names(fit$betaest) <- xnames
eta <- as.vector(X %*% fit$betaest)
fit$linear.predictors <- eta
mu <- as.vector(family$linkinv(eta))
fit$fitted.values <- mu
fit$residuals <- y - mu
fit$family <- family
fit$y <- as.vector(y)
fit$id <- as.vector(id)
fit$max.id <- maxcl
fit$working.correlation <- Rhat[1:maxclsz, 1:maxclsz, which(avec ==
maxclsz)[1]]
fit$scale <- fihat
fit$S <- S
fit$Smat <- Smat
fit$lambda.value <- lambda
fit$xnames <- xnames
fit$error <- diff
fit
}
prox_L1 = function(x, lambda){
return(sign(x) * pmax(0, abs(x) - lambda))
}
ac_prox_grad <- function(u, v, lambda, tol, maxiter, silent) {
L.max <- max(eigen(v)$values)
L.min <- min(eigen(v)$values)
L <- ifelse(L.max > 0, L.max, L.min)
beta_last <-solve(v)%*%u
z_last <- beta_last
t_last <- 1
k <- 0
beta_inner_step <- beta_last
while(k < maxiter) {
need_project <- z_last-(v%*%z_last)/L + u/L
beta_new <- prox_L1(need_project, lambda/abs(L))
distance <- beta_new-beta_last
k <- k+1
if (silent == 0) cat(k, fill = TRUE)
beta_inner_step <- cbind(beta_inner_step, beta_new)
if (sqrt(sum(distance^2)) <= tol * sqrt(sum(beta_last^2))) {
break
}
t_new <- (1 + sqrt(1 + 4 * t_last * t_last)) / 2
z_new <- beta_new + (t_last - 1) * distance / t_new
beta_last <- beta_new
t_last <- t_new
z_last <- z_new
}
return(list(beta_k = beta_new, beta_inner_step = beta_inner_step, k = k))
}
WLreglass<-function(v, u, lambda, tol){
p<-dim(v)[1]
diff<-1
beta<-solve(v)%*%u
while (diff > tol){
oldbeta<-beta
z<-u-v%*%oldbeta
for (j in 1:p){
beta[j]<- prox_L1((z[j]+v[j,j]*oldbeta[j]),lambda[j])/(v[j,j])
z<-z-(beta[j]-oldbeta[j])*v[,j]
}
diff<-max(abs(beta-oldbeta))
}
return(beta)
} |
context("tabularize_eml()")
test_that("parse summary table correctly", {
eml <- system.file("extdata", "test_data", "SoilMois2012_2017__full_metadata.xml",
package = "metajam")
metadata <- tabularize_eml(eml)
expect_equal(dim(metadata), c(16,2))
})
test_that("parse full table correctly", {
eml <- system.file("extdata", "test_data", "SoilMois2012_2017__full_metadata.xml",
package = "metajam")
metadata <- tabularize_eml(eml, full = TRUE)
expect_equal(dim(metadata), c(189,2))
})
test_that("test fails on non xml file", {
eml <- system.file("extdata", "test_data", "SoilMois2012_2017.csv",
package = "metajam")
expect_error(tabularize_eml(eml, full = TRUE))
}) |
source("ESEUR_config.r")
library("plyr")
library("mgcv")
norm_occurrences=function(df)
{
df$norm_occur=df$occurrences/sum(df$occurrences)
return(df)
}
loc_acc=read.csv(paste0(ESEUR_dir, "sourcecode/local-use/acc-per-obj.csv.xz"), as.is=TRUE)
loc_acc=ddply(loc_acc, .(total.access), norm_occurrences)
common_loc=subset(loc_acc, total.access <= 150)
around_100=subset(loc_acc, (total.access >= 95) & (total.access <= 105))
above_10=subset(loc_acc, (total.access >= 10))
locg_mod=gam(norm_occur ~ s(object.access, total.access, k=75),
data=common_loc, family=Gamma)
summary(locg_mod)
gam.check(locg_mod)
locp_mod=gam(norm_occur ~ s(object.access, k=50)+s(total.access, k=50),
data=common_loc, family=Gamma)
summary(locp_mod)
gam.check(locp_mod)
vis.gam(locg_mod, plot.type="contour")
loc100_mod=gam(norm_occur ~ s(object.access, k=40),
data=around_100, family=Gamma)
plot(around_100$object.access, around_100$norm_occur,
xlim=c(1, 60), ylim=c(0, 0.5),
xlab="Accesses", ylab="Occurrences (nomalised)")
lines(predict(loc100_mod, newdata=data.frame(object.access=1:100), type="response"),
col="red") |
medfilt1 <- function(x, n = 3, MARGIN = 2, na.omit = FALSE, ...) {
mf <- function(x, n, na.omit, ...) {
if (n %% 2 != 1 || n > length(x)) {
stop("n must be odd and smaller than the length of x")
}
if (any(is.na(x))) {
if (na.omit) {
x <- na.omit(x)
} else {
spl <- stats::splinefun(seq_along(x), x)
x <- spl(seq_along(x))
}
}
y <- stats::runmed(x, n, ...)
as.vector(y)
}
if (is.vector(x)) {
y <- mf(x, n, na.omit, ...)
} else {
y <- apply(x, MARGIN, mf, n, na.omit, ...)
}
y
} |
myget=function(x){
if (!is.null(x) && nzchar(x) &&
exists(x) && is.data.frame(get(x))) {
get(x)
}
} |
integrate_survdat <- function(dat, tau, alpha=0.05) {
if ( length(which(c('time', 'status') %in% colnames(dat))) != 2) {
stop('Column names must include time and status exactly.')
}
KMfit <- survival::survfit(Surv(time, status) ~ 1, data=dat)
n <- nrow(dat)
nUnique <- length(KMfit$time)
KMtab <- data.frame(time = KMfit$time, surv = KMfit$surv, nRisk = KMfit$n.risk, nEvent = KMfit$n.event) %>%
dplyr::filter(.data$time <= tau) %>%
dplyr::add_row(time=tau, surv=KMfit$surv[nUnique]) %>%
dplyr::mutate(nextTime = lead(.data$time)) %>%
dplyr::mutate(diffTime = .data$nextTime - .data$time) %>%
dplyr::mutate(aucChunk = .data$diffTime * .data$surv) %>%
dplyr::filter(!is.na(.data$aucChunk)) %>%
dplyr::mutate(cumAUC = cumsum(.data$aucChunk)) %>%
dplyr::mutate(cumAUC = .data$cumAUC + .data$time[1]) %>%
dplyr::mutate(intervalAUC = .data$cumAUC[length(.data$cumAUC)] - .data$cumAUC + .data$aucChunk)
aucTot <- KMtab$cumAUC[nrow(KMtab)]
multiplier <- ifelse(KMtab$nRisk - KMtab$nEvent == 0, 0, KMtab$nEven / (KMtab$nRisk * (KMtab$nRisk - KMtab$nEvent)))
varHat <- sum( KMtab$intervalAUC^2 * multiplier )
returnDF <- data.frame(Stat = c("RMST", "RMTL"), Est = c(aucTot, tau - aucTot),
se = c(sqrt(varHat), sqrt(varHat)),
pval = c(1 - pchisq(aucTot^2 / varHat, df=1), 1 - pchisq((tau - aucTot)^2 / varHat, df=1)),
CIlower = c(aucTot - qnorm(1 - alpha/2) * sqrt(varHat), tau - aucTot - qnorm(1 - alpha/2) * sqrt(varHat)),
CIupper = c(aucTot + qnorm(1 - alpha/2) * sqrt(varHat), tau - aucTot + qnorm(1 - alpha/2) * sqrt(varHat)))
return(returnDF)
} |
dvinecop <- function(u, vinecop, cores = 1) {
assert_that(inherits(vinecop, "vinecop_dist"))
u <- if_vec_to_matrix(u, dim(vinecop)[1] == 1)
vinecop_pdf_cpp(u, vinecop, cores)
}
pvinecop <- function(u, vinecop, n_mc = 10^4, cores = 1) {
assert_that(
inherits(vinecop, "vinecop_dist"),
is.number(n_mc), is.count(cores)
)
u <- if_vec_to_matrix(u, dim(vinecop)[1] == 1)
vinecop_cdf_cpp(as.matrix(u), vinecop, n_mc, cores, get_seeds())
}
rvinecop <- function(n, vinecop, qrng = FALSE, cores = 1) {
assert_that(
is.number(n),
inherits(vinecop, "vinecop_dist"),
is.flag(qrng),
is.number(cores)
)
U <- vinecop_sim_cpp(vinecop, n, qrng, cores, get_seeds())
if (!is.null(vinecop$names)) {
colnames(U) <- vinecop$names
}
U
}
print.vinecop_dist <- function(x, ...) {
cat(dim(x)[1], "-dimensional vine copula model ('vinecop_dist')", sep = "")
print_truncation_info(x)
invisible(x)
}
summary.vinecop_dist <- function(object,
trees = seq_len(dim(object)["trunc_lvl"]),
...) {
mat <- as_rvine_matrix(get_structure(object))
d <- dim(object)[1]
trees <- intersect(trees, seq_len(dim(object)["trunc_lvl"]))
n_pcs <- length(unlist(object$pair_copulas[trees], recursive = FALSE))
mdf <- as.data.frame(matrix(NA, n_pcs, 10))
names(mdf) <- c(
"tree", "edge",
"conditioned", "conditioning", "var_types",
"family", "rotation", "parameters", "df", "tau"
)
k <- 1
for (t in trees) {
for (e in seq_len(d - t)) {
mdf$tree[k] <- t
mdf$edge[k] <- e
mdf$conditioned[k] <- list(c(mat[d - e + 1, e], mat[t, e]))
mdf$conditioning[k] <- list(mat[rev(seq_len(t - 1)), e])
pc <- object$pair_copulas[[t]][[e]]
mdf$var_types[k] <- paste(pc$var_types, collapse = ",")
mdf$family[k] <- pc$family
mdf$rotation[k] <- pc$rotation
mdf$parameters[k] <- list(pc$parameters)
if (pc$family %in% setdiff(family_set_nonparametric, "indep"))
mdf$parameters[k] <- list("[30x30 grid]")
mdf$df[k] <- pc$npars
mdf$tau[k] <- par_to_ktau(pc)
k <- k + 1
}
}
class(mdf) <- c("summary_df", class(mdf))
mdf
}
predict.vinecop <- function(object, newdata, what = "pdf", n_mc = 10^4,
cores = 1, ...) {
assert_that(
in_set(what, c("pdf", "cdf")),
is.number(n_mc),
is.number(cores), cores > 0
)
newdata <- if_vec_to_matrix(newdata, dim(object)[1] == 1)
switch(
what,
"pdf" = vinecop_pdf_cpp(newdata, object, cores),
"cdf" = vinecop_cdf_cpp(newdata, object, n_mc, cores, get_seeds())
)
}
fitted.vinecop <- function(object, what = "pdf", n_mc = 10^4, cores = 1, ...) {
if (is.null(object$data)) {
stop("data have not been stored, use keep_data = TRUE when fitting.")
}
assert_that(
in_set(what, c("pdf", "cdf")),
is.number(n_mc),
is.number(cores), cores > 0
)
switch(
what,
"pdf" = vinecop_pdf_cpp(object$data, object, cores),
"cdf" = vinecop_cdf_cpp(object$data, object, n_mc, cores, get_seeds())
)
}
logLik.vinecop <- function(object, ...) {
structure(object$loglik, "df" = object$npars)
}
mBICV <- function(object, psi0 = 0.9, newdata = NULL) {
assert_that(inherits(object, "vinecop_dist"), is.number(psi0))
ll <- ifelse(is.null(newdata),
object$loglik,
sum(log(dvinecop(newdata, object)))
)
- 2 * ll + compute_mBICV_penalty(object, psi0)
}
compute_mBICV_penalty <- function(object, psi0) {
d <- dim(object)[1]
smr <- summary(object)
q_m <- tapply(smr$family, smr$tree, function(x) sum(x == "indep"))
q_m <- c(q_m, rep(0, d - 1 - length(q_m)))
m_seq <- seq_len(d - 1)
pen <- object$npars * log(object$nobs)
pen - 2 * sum(
q_m * log(psi0^m_seq) + (d - seq_len(d - 1) - q_m) * log(1 - psi0^m_seq)
)
}
print.vinecop <- function(x, ...) {
cat(dim(x)[1], "-dimensional vine copula fit ('vinecop')", sep = "")
print_truncation_info(x)
print_fit_info(x)
invisible(x)
}
summary.vinecop <- function(object, trees = seq_len(dim(object)["trunc_lvl"]), ...) {
trees <- intersect(trees, seq_len(dim(object)["trunc_lvl"]))
mdf <- summary.vinecop_dist(object, trees)
d <- dim(object)[1]
k <- 1
for (t in trees) {
for (e in seq_len(d - t)) {
mdf$loglik[k] <- object$pair_copulas[[t]][[e]]$loglik
k <- k + 1
}
}
mdf
}
dim.vinecop_dist <- function(x) {
dim(x$structure)
} |
indexes = function(data.x,data.y,
type='fixed-base'){
data.x2 = as.matrix(data.x)
data.y2 = as.matrix(data.y)
if(!(type %in% c('fixed-base','chained'))){
stop("'type' argument should be either 'chained' or 'fixed-base'")
}
nShares = ncol(data.x2)
matShares = matrix(0,ncol=nShares,nrow=nrow(data.x2))
for(j in 1:ncol(matShares)){
for(i in 1:nrow(matShares)){
matShares[i,j] = (data.x2[i,j] %*% data.y2[i,j]) /
(data.x2[i,] %*% data.y2[i,])
}
}
laspeyres = vector('list')
paasche = vector('list')
tornqvist = matrix(0,nrow=nrow(data.x2),ncol=ncol(data.x2))
torn= vector('list')
for(i in 1:nrow(data.x2)){
laspeyres[[i]] = (data.x2[i,]%*%data.y2[1,])/(t(data.x2[1,])%*%data.y2[1,])
paasche[[i]] = (data.x2[i,]%*%data.y2[i,])/(t(data.x2[1,])%*%data.y2[i,])
}
for(j in 1:ncol(matShares)){
for(i in 1:nrow(matShares)){
tornqvist[i,j] = (data.x2[i,j]/data.x2[1,j])^
(0.5*(matShares[1,j]+matShares[i,j]))
}
}
out=data.frame(laspeyres=unlist(laspeyres),
paasche = unlist(paasche))
out$fisher = sqrt(out$laspeyres * out$paasche)
out$tornqvist =apply(tornqvist,1,function(x) prod(x,na.rm=T))
out$spreadPL = abs(log(out$laspeyres/out$paasche))
if(type=='chained'){out=chaining(data.x2,data.y2)}
out.list = list(indexes=out,shares=matShares)
return(out.list)
}
multicomp = function(data.x,data.y,
idx='fisher',transitivity='mst',
var.agg,bench,period,
plotting=FALSE){
indxVars = var.agg
selVars = which(!(names(data.x) %in% indxVars))
labVars = which(names(data.x) %in% indxVars)
if(!is.null(period)){
rownames(data.x) = paste(data.x[,indxVars[2]],
data.x[,indxVars[1]],sep='.')
rownames(data.y) = paste(data.y[,indxVars[2]],
data.y[,indxVars[1]],sep='.')
}else{
rownames(data.x) = data.x[,var.agg]
rownames(data.y) = data.y[,var.agg]
}
I = diag(nrow(data.x))
n = nrow(I)
if(transitivity != 'mst'){
for(i in 1:n){
if(idx %in% c('fisher','tornqvist')){
I[i:n,i] = indexes(data.x[i:n,selVars],
data.y[i:n,selVars])$indexes[,idx]
I[i,i:n] = 1./I[i:n,i]
}else{
tempQuant = rbind(data.x[i,],data.x)
tempPrice = rbind(data.y[i,],data.y)
I[,i] = indexes(tempQuant[,selVars],
tempPrice[,selVars])$indexes[,idx][-1]
}
}
rownames(I)=rownames(data.x)
colnames(I)=rownames(I)
}
if(transitivity == 'eks' & !(idx %in% c('laspeyres','paasche')) ){
out = eks(I)
if(!is.null(period)){benchmark = paste(bench,period,sep='.')}
if(is.null(period)){benchmark=bench}
out = out[,which(colnames(out)==benchmark)]
out
return(out)
}else if(transitivity == 'mst'){
if(!idx %in% c('fisher','tornqvist')){
warning('MST should be comuted using the Fisher or Tornqvist formula')
}
listCheck = list()
for(i in 1:n){
tempQuant = rbind(data.x[i,],data.x)
tempPrice = rbind(data.y[i,],data.y)
I[,i] = indexes(tempQuant[,selVars],
tempPrice[,selVars])$indexes[,'spreadPL'][-1]
}
netwk = ape::mst(I)
rownames(netwk) = rownames(data.x)
colnames(netwk) = rownames(data.x)
rownames(I) = rownames(data.x)
colnames(I) = rownames(data.x)
ig = igraph::graph.adjacency(netwk)
mst0 = igraph::minimum.spanning.tree(ig)
if(plotting==TRUE){
igraph::tkplot(ig,vertex.size=10,
vertex.color='gold2',
vertex.label.font=2,
edge.arrow.width=0.6,
edge.arrow.size=0.6)
}
degrees = list()
for(u in 1:length(igraph::V(ig)$name)){
degrees[[u]] = igraph::degree(ig,igraph::V(ig)$name[u])
}
outerVerts = which(unlist(degrees)==2)
if(!is.null(period)){bench=paste(bench,period,sep='.')}
outerVerts = outerVerts[!(names(outerVerts) %in% bench)]
paths = list()
for(w in 1:length(outerVerts)){
startNode = which(as.character(igraph::V(ig)$name)== bench)
endNode = which(as.character(igraph::V(ig)$name) == names(outerVerts)[w])
paths[[w]] = names(igraph::shortest_paths(ig,from=startNode,
to=endNode)$vpath[[1]])
}
conns = list()
for(j in 1:length(paths)){
conns[[j]] = list()
conns[[j]][[1]] = paths[[j]]
conns[[j]][[2]] = matrix(0,nrow=length(paths[[j]]),
ncol=length(paths[[j]]))
ghindx = 1
for(gh in paths[[j]]){
tempQuant = rbind(data.x[rownames(data.x) == gh,],data.x[match(paths[[j]],rownames(data.x)), ])
tempPrice = rbind(data.y[rownames(data.y) ==gh,],data.y[match(paths[[j]],rownames(data.y)), ])
conns[[j]][[2]][,ghindx] = indexes(tempQuant[,selVars],
tempPrice[,selVars])$indexes[,idx][-1]
ghindx= ghindx+1
}
ghindx=1
rownames(conns[[j]][[2]]) = paths[[j]]
colnames(conns[[j]][[2]]) = paths[[j]]
matLinks = as.matrix(conns[[j]][[2]][,1])
for(ab in 2:nrow(conns[[j]][[2]])){
matLinks[ab,1] = conns[[j]][[2]][ab,ab-1] * matLinks[ab-1,1]
}
conns[[j]][[3]]=matLinks
}
res = conns[[1]][[3]]
if(length(paths)>1){
for(g in 2:length(conns)){
resTemp = conns[[g]][[3]]
resTemp = as.matrix(resTemp[which(!(rownames(resTemp) %in% rownames(res))),1])
res = rbind(res,resTemp)
}
}
out=res
return(out)
}else{
warning('Returning non-transitive indexes, besides in degenerate cases')
out = eks(I)
rownames(out) = rownames(data.x)
colnames(out) = rownames(data.x)
if(!is.null(period)){benchmark = paste(bench,period,sep='.')}
if(is.null(period)){benchmark=bench}
out = out[,which(colnames(out)==benchmark)]
out
return(out)
}
}
multicompPAR = function(data.x,data.y,
idx='fisher', transitivity='mst',
var.agg,bench,period,
plotting=FALSE,
Cores){
indxVars = var.agg
selVars = which(!(names(data.x) %in% indxVars))
labVars = which(names(data.x) %in% indxVars)
if(!is.null(period)){
rownames(data.x) = paste(data.x[,indxVars[2]],
data.x[,indxVars[1]],sep='.')
rownames(data.y) = paste(data.y[,indxVars[2]],
data.y[,indxVars[1]],sep='.')
}else{
rownames(data.x) = data.x[,var.agg]
rownames(data.y) = data.y[,var.agg]
}
I = diag(nrow(data.x))
n = nrow(I)
if(transitivity != 'mst'){
for(i in 1:n){
if(idx %in% c('fisher','tornqvist')){
I[i:n,i] = indexes(data.x[i:n,selVars],
data.y[i:n,selVars])$indexes[,idx]
I[i,i:n] = 1./I[i:n,i]
}else{
tempQuant = rbind(data.x[i,],data.x)
tempPrice = rbind(data.y[i,],data.y)
I[,i] = indexes(tempQuant[,selVars],
tempPrice[,selVars])$indexes[,idx][-1]
}
}
rownames(I)=rownames(data.x)
colnames(I)=rownames(I)
}
if(transitivity == 'eks' & !(idx %in% c('laspeyres','paasche')) ){
out = eks(I)
if(!is.null(period)){benchmark = paste(bench,period,sep='.')}
if(is.null(period)){benchmark=bench}
out = out[,which(colnames(out)==benchmark)]
return(out)
}else if(transitivity == 'mst'){
if(!idx %in% c('fisher','tornqvist')){
warning('MST should be computed using the Fisher or Tornqvist formula')
}
cl=parallel::makePSOCKcluster(Cores,outfile=NULL)
parallel::clusterExport(cl=cl, varlist=c('data.x',
'data.y','selVars','n','indexes','chaining'),
envir=environment())
I=parallel::parSapply(cl,1:n, function(i){
tempQuant = rbind(data.x[i,],data.x)
tempPrice = rbind(data.y[i,],data.y)
indexes(tempQuant[,selVars],
tempPrice[,selVars])$indexes[,'spreadPL'][-1]
})
set.seed(123)
netwk = ape::mst(I)
rownames(netwk) = rownames(data.x)
colnames(netwk) = rownames(data.x)
rownames(I) = rownames(data.x)
colnames(I) = rownames(data.x)
ig = igraph::graph.adjacency(netwk)
if(plotting==TRUE){
igraph::tkplot(ig,vertex.size=10,
vertex.color='gold2',
vertex.label.font=2,
edge.arrow.width=0.6,
edge.arrow.size=0.6)
}
degrees = list()
for(u in 1:length(igraph::V(ig)$name)){
degrees[[u]] = igraph::degree(ig,igraph::V(ig)$name[u])
}
outerVerts = which(unlist(degrees)==2)
if(!is.null(period)){bench=paste(bench,period,sep='.')}
outerVerts = outerVerts[!(names(outerVerts) %in% bench)]
paths = list()
for(w in 1:length(outerVerts)){
startNode = which(as.character(igraph::V(ig)$name)== bench)
endNode = which(as.character(igraph::V(ig)$name) == names(outerVerts)[w])
paths[[w]] = names(igraph::shortest_paths(ig,from=startNode,
to=endNode)$vpath[[1]])
}
conns = list()
parallel::clusterExport(cl=cl, varlist=c('paths',
'conns','idx'),
envir=environment())
conns = parallel::parLapply(cl,1:length(paths),function(j){
conns[[j]] = list()
conns[[j]][[1]] = paths[[j]]
conns[[j]][[2]] = matrix(0,nrow=length(paths[[j]]),
ncol=length(paths[[j]]))
ghindx = 1
for(gh in paths[[j]]){
tempQuant = rbind(data.x[rownames(data.x) == gh,],data.x[match(paths[[j]],rownames(data.x)), ])
tempPrice = rbind(data.y[rownames(data.y) == gh,],data.y[match(paths[[j]],rownames(data.y)), ])
conns[[j]][[2]][,ghindx] = indexes(tempQuant[,selVars],
tempPrice[,selVars])$indexes[,idx][-1]
ghindx= ghindx+1
}
ghindx=1
rownames(conns[[j]][[2]]) = paths[[j]]
colnames(conns[[j]][[2]]) = paths[[j]]
matLinks = as.matrix(conns[[j]][[2]][,1])
for(ab in 2:nrow(conns[[j]][[2]])){
matLinks[ab,1] = conns[[j]][[2]][ab,ab-1] * matLinks[ab-1,1]
}
conns[[j]][[3]]=matLinks
matLinks
})
res = conns[[1]]
if(length(paths)>1){
for(g in 2:length(conns)){
resTemp = conns[[g]]
resTemp = as.matrix(resTemp[which(!(rownames(resTemp) %in% rownames(res))),1])
res = rbind(res,resTemp)
}
}
out=res
parallel::stopCluster(cl)
return(out)
}else{
warning('Returning non-transitive indexes, besides in degenerate cases')
out = eks(I)
rownames(out) = rownames(data.x)
colnames(out) = rownames(data.x)
if(!is.null(period)){benchmark = paste(bench,period,sep='.')}
if(is.null(period)){benchmark=bench}
out = out[,which(colnames(out)==benchmark)]
out
return(out)
}
}
growth = function(dataset,var.agg){
varAggs = var.agg
selVars = which(!(names(dataset) %in% varAggs))
selVars0 = which(names(dataset) %in% varAggs)
livelli = levels(as.factor(dataset[[var.agg[2]]]))
res = dataset[1,]
res = res[-1,]
for(i in 1:length(livelli)){
subN = subset(dataset,dataset[[var.agg[2]]]==livelli[i])
subRowsT = 2:nrow(subN)
subRows0 = 1:(nrow(subN)-1)
subIndx = (subN[subRowsT,selVars]-subN[subRows0,selVars])/
subN[subRows0,selVars]
subIndxC = cbind(subN[subRowsT,selVars0],subIndx)
res = rbind(res,subIndxC)
}
res[[var.agg[2]]] = as.numeric(as.character(res[[var.agg[2]]]))
return(res)
}
eks = function(mat){
Idx = mat
for(i in 1:nrow(mat)){
for(j in 1:ncol(mat)){
idx = vector('list',length=length(nrow(mat)))
for(k in 1:nrow(mat)){
idx[[k]] = (mat[i,k]*mat[k,j])^(1/nrow(mat))
}
Idx[i,j] = prod(unlist(idx))
}
}
return(Idx)
}
multilateral = function(
data.x,
data.y,
idx='fisher',
transitivity='mst',
var.agg,
bench,
period,
PAR=TRUE,
plotting=FALSE,
Cores){
if(!(idx %in% c('paasche','laspeyres','fisher','tornqvist'))){
stop("'idx' argument should be either 'paasche','laspeyres','fisher' or 'tornqvist'")
}
if(!(transitivity %in% c('eks','mst'))){
stop("'transitivity' argument should be either 'eks' or 'mst'")
}
if(!all(var.agg %in% names(data.x))){
stop("'var.agg' arguments should be among data columns names")
}
if(PAR==TRUE){
out = multicompPAR(data.x,data.y,
idx=idx, transitivity=transitivity,
var.agg=var.agg,
bench=bench,period=period,
plotting=plotting,
Cores=Cores)
}else{
out = multicomp(data.x,data.y,
idx=idx, transitivity=transitivity,
var.agg=var.agg,
bench=bench,period=period,
plotting=plotting)
}
if(transitivity=='mst' & length(var.agg)==2){
name = paste(data.x[,var.agg[2]],data.x[,var.agg[1]],sep='.')
out = out[match(name,rownames(out)),]
}else if(transitivity=='mst' & length(var.agg)==1){
name = data.x[,var.agg]
out = out[match(name,rownames(out)),]
}
return(out)
}
chaining = function(data.x,data.y){
listIndex = list()
listIndex[[1]]=cbind(1,1,1)
colnames(listIndex[[1]]) = c('laspeyres','paasche','tornqvist')
data.x = as.matrix(data.x)
data.y = as.matrix(data.y)
for(i in 1:(nrow(data.x)-1)){
listIndex[[i+1]] = indexes(data.x[i:(i+1),],
data.y[i:(i+1),])$indexes[2,c('laspeyres','paasche','tornqvist')]
}
out = do.call('rbind',listIndex)
out = as.data.frame(apply(out,2,function(x) cumprod(x)))
out$fisher = sqrt(out$laspeyres * out$paasche)
out$spreadPL = abs(log(out$laspeyres/out$paasche))
out = out[,c('laspeyres','paasche','fisher','tornqvist','spreadPL')]
return(out)
} |
NULL
ssoadmin <- function(config = list()) {
svc <- .ssoadmin$operations
svc <- set_config(svc, config)
return(svc)
}
.ssoadmin <- list()
.ssoadmin$operations <- list()
.ssoadmin$metadata <- list(
service_name = "ssoadmin",
endpoints = list("*" = list(endpoint = "sso.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "sso.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "sso.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "sso.{region}.sc2s.sgov.gov", global = FALSE)),
service_id = "SSO Admin",
api_version = "2020-07-20",
signing_name = "sso",
json_version = "1.1",
target_prefix = "SWBExternalService"
)
.ssoadmin$service <- function(config = list()) {
handlers <- new_handlers("jsonrpc", "v4")
new_service(.ssoadmin$metadata, handlers, config)
} |
sampleFrom <- function
(
dstn,
n = 1
)
{
.assertClass(dstn, c("distribution", "mvdistribution"))
sampleFun <- match.fun(paste("r", dstn@RName, sep = ""))
do.call(sampleFun, c(n, as.list(dstn@parameters)))
}
.empCDF <- function(x, ordered = FALSE)
{
if(!ordered)
x <- sort(x, decreasing = FALSE)
probs <- seq(from = 0, to = 1, along = x)
approxfun(x, probs)
}
.empQuantile <- function(x, ordered = FALSE)
{
if(!ordered)
x <- sort(x, decreasing = FALSE)
probs <- seq(from = 0, to = 1, along = x)
approxfun(probs, x)
} |
vcgMeshres <- function(mesh)
{
if (!inherits(mesh,"mesh3d"))
stop("argument 'mesh' needs to be object of class 'mesh3d'")
mesh <- meshintegrity(mesh,facecheck=TRUE)
vb <- mesh$vb[1:3,,drop=FALSE]
it <- mesh$it-1
tmp <- .Call("Rmeshres",vb,it)
return(tmp)
} |
setConstructorS3("ChipEffectFile", function(..., probeModel=c("pm")) {
probeModel <- match.arg(probeModel)
this <- extend(ParameterCelFile(...), "ChipEffectFile",
"cached:.firstCells" = NULL,
probeModel = probeModel
)
setEncodeFunction(this, function(groupData, ...) {
theta <- .subset2(groupData, "theta")
stdvs <- .subset2(groupData, "sdTheta")
outliers <- .subset2(groupData, "thetaOutliers")
pixels <- NULL
if (!is.null(outliers))
pixels <- -as.integer(outliers)
res <- list()
if (!is.null(theta))
res$intensities <- theta
if (!is.null(stdvs))
res$stdvs <- stdvs
if (!is.null(pixels))
res$pixels <- pixels
res
})
setDecodeFunction(this, function(groupData, ...) {
res <- list()
if (!is.null(groupData$intensities))
res$theta <- groupData$intensities
if (!is.null(groupData$stdvs))
res$sdTheta <- groupData$stdvs
if (!is.null(groupData$pixels))
res$thetaOutliers <- as.logical(-groupData$pixels)
res
})
setAttributesByTags(this)
this
})
setMethodS3("as.character", "ChipEffectFile", function(x, ...) {
this <- x
s <- NextMethod("as.character")
s <- c(s, sprintf("Parameters: %s", getParametersAsString(this)))
s
}, protected=TRUE)
setMethodS3("getParameters", "ChipEffectFile", function(this, ...) {
params <- NextMethod("getParameters")
params$probeModel <- this$probeModel
params
}, protected=TRUE)
setMethodS3("createParamCdf", "ChipEffectFile", function(static, sourceCdf, ..., verbose=FALSE) {
verbose <- Arguments$getVerbose(verbose)
verbose && enter(verbose, "Creating CDF for chip effects")
verbose && cat(verbose, "Source chip type: ", getChipType(sourceCdf))
verbose && cat(verbose, "Source CDF: ", getPathname(sourceCdf))
for (sep in c(",", "-")) {
chipType <- paste(getChipType(sourceCdf), "monocell", sep=sep)
verbose && cat(verbose, "Looking for chip type: ", chipType)
pathname <- AffymetrixCdfFile$findByChipType(chipType)
if (!is.null(pathname)) {
verbose && cat(verbose, "Found: ", pathname)
break
}
}
if (is.null(pathname)) {
verbose && cat(verbose, "Pathname: Not found!")
verbose && cat(verbose, "Will create CDF for the chip-effect files from the original CDF. NOTE: This will take several minutes or more!")
verbose && enter(verbose, "Creating CDF")
cdf <- createMonocellCdf(sourceCdf, verbose=less(verbose))
verbose && exit(verbose)
} else {
verbose && cat(verbose, "Pathname: ", pathname)
cdf <- AffymetrixCdfFile$fromFile(pathname)
}
verbose && exit(verbose)
cdf
}, static=TRUE, private=TRUE)
setMethodS3("readUnits", "ChipEffectFile", function(this, units=NULL, cdf=NULL, ..., force=FALSE, cache=FALSE, verbose=FALSE) {
verbose <- Arguments$getVerbose(verbose)
key <- list(method="readUnits", class=class(this)[1],
pathname=getPathname(this),
cdf=cdf, units=units, ...)
if (getOption(aromaSettings, "devel/useCacheKeyInterface", FALSE)) {
key <- getCacheKey(this, method="readUnits", pathname=getPathname(this), cdf=cdf, units=units, ...)
}
id <- getChecksum(key)
res <- this$.readUnitsCache[[id]]
if (!force && !is.null(res)) {
verbose && cat(verbose, "readUnits.ChipEffectFile(): Returning cached data")
return(res)
}
if (is.null(cdf)) {
cdf <- getCellIndices(this, units=units, verbose=less(verbose))
}
res <- NextMethod("readUnits", cdf=cdf, force=force, verbose=less(verbose))
if (cache) {
verbose && cat(verbose, "readUnits.ChipEffectFile(): Updating cache")
this$.readUnitsCache <- list()
this$.readUnitsCache[[id]] <- res
}
res
})
setMethodS3("getCellIndices", "ChipEffectFile", function(this, ..., .cache=TRUE) {
cdf <- getCdf(this)
getCellIndices(cdf, ...)
}, protected=TRUE)
setMethodS3("updateUnits", "ChipEffectFile", function(this, units=NULL, cdf=NULL, data, ...) {
if (is.null(cdf))
cdf <- getCellIndices(this, units=units)
NextMethod("updateUnits", cdf=cdf, data=data)
}, private=TRUE)
setMethodS3("findUnitsTodo", "ChipEffectFile", function(this, units=NULL, ..., force=FALSE, verbose=FALSE) {
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Identifying non-fitted units in chip-effect file")
verbose && cat(verbose, "Pathname: ", getPathname(this))
idxs <- NULL
if (is.null(units)) {
cdf <- getCdf(this)
chipType <- getChipType(cdf)
key <- list(method="findUnitsTodo", class=class(this)[1],
chipType=chipType, params=getParameters(this))
dirs <- c("aroma.affymetrix", chipType)
if (!force) {
idxs <- loadCache(key, dirs=dirs)
if (!is.null(idxs))
verbose && cat(verbose, "Found indices cached on file")
}
}
if (is.null(idxs)) {
verbose && enter(verbose, "Identifying CDF units")
units0 <- units
if (is.null(units)) {
cdf <- getCdf(this)
units <- seq_len(nbrOfUnits(cdf))
}
nbrOfUnits <- length(units)
idxs <- lapplyInChunks(units, function(unitsChunk, ...) {
verbose && enter(verbose, "Reading CDF cell indices")
idxsChunk <- getCellIndices(this, units=unitsChunk, force=TRUE, verbose=less(verbose))
names(idxsChunk) <- NULL
verbose && exit(verbose)
verbose && enter(verbose, "Extracting first CDF group for each unit")
idxsChunk <- lapply(idxsChunk, FUN=function(unit) {
groups <- .subset2(unit, "groups")
fields <- .subset2(groups, 1)
.subset2(fields, 1)
})
verbose && exit(verbose)
gc <- gc()
idxsChunk
}, chunkSize=100e3, useNames=FALSE, verbose=verbose)
units <- units0
units0 <- NULL
idxs <- unlist(idxs, use.names=FALSE)
gc <- gc()
verbose && print(verbose, gc)
if (length(idxs) != nbrOfUnits) {
throw("Internal error: Expected ", nbrOfUnits, " cell indices, but got ", length(idxs), ".")
}
if (is.null(units)) {
verbose && enter(verbose, "Saving to file cache")
saveCache(idxs, key=key, dirs=dirs)
verbose && exit(verbose)
}
verbose && exit(verbose)
}
verbose && enter(verbose, "Reading data for these ", length(idxs), " cells")
value <- .readCel(getPathname(this), indices=idxs, readIntensities=FALSE,
readStdvs=TRUE, readPixels=FALSE)$stdvs
verbose && exit(verbose)
value <- which(value <= 0)
if (!is.null(units))
value <- units[value]
verbose && cat(verbose, "Looking for stdvs <= 0 indicating non-estimated units:")
verbose && str(verbose, value)
verbose && exit(verbose)
value
})
setMethodS3("getUnitGroupCellMap", "ChipEffectFile", function(this, units=NULL, force=FALSE, ..., verbose=FALSE) {
if (inherits(units, "UnitGroupCellMap")) {
return(units)
} else if (is.null(units)) {
} else if (is.list(units)) {
} else {
units <- Arguments$getIndices(units)
}
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Retrieving unit-to-cell map")
if (length(units) == 0 && !is.null(units)) {
map <- data.frame(unit=integer(0), group=integer(0), cell=integer(0))
class(map) <- c("UnitGroupCellMap", class(map))
verbose && exit(verbose)
return(map)
}
cdf <- getCdf(this)
useFileCache <- (is.null(units) || (!is.list(units) && length(units) > 100))
if (useFileCache) {
chipType <- getChipType(cdf)
key <- list(method="getUnitGroupCellMap", class=class(this)[1],
chipType=chipType, params=getParameters(this),
units=units)
dirs <- c("aroma.affymetrix", chipType)
if (!force) {
map <- loadCache(key, dirs=dirs)
if (!is.null(map)) {
verbose && cat(verbose, "Found (unit,group,cell) map cached on file")
verbose && exit(verbose)
return(map)
}
}
}
if (is.list(units)) {
cells <- units
units <- indexOf(cdf, names=names(units))
if (any(is.na(units))) {
throw("Argument 'units' is of unknown structure.")
}
verbose && enter(verbose, "Argument 'cells' is already a CDF cell-index structure")
unitNames <- names(cells)
unitSizes <- lapply(cells, FUN=function(unit) {
length(.subset2(unit, "groups"))
})
unitSizes <- unlist(unitSizes, use.names=FALSE)
cells <- unlist(cells, use.names=FALSE)
} else {
verbose && enter(verbose, "Retrieving cell indices for specified units")
if (is.null(units))
units <- seq_len(nbrOfUnits(cdf))
chunks <- splitInChunks(units, chunkSize=100e3)
nbrOfChunks <- length(chunks)
nbrOfUnits <- length(units)
unitNames <- vector("character", nbrOfUnits)
unitSizes <- vector("integer", nbrOfUnits)
cells <- vector("list", nbrOfChunks)
offset <- 0
for (kk in seq_len(nbrOfChunks)) {
verbose && printf(verbose, "Chunk
chunk <- chunks[[kk]]
chunks[[kk]] <- NA
cells0 <- getCellIndices(this, units=chunk, force=force, .cache=FALSE, verbose=less(verbose))
idxs <- offset + seq_along(chunk)
offset <- offset + length(chunk)
chunk <- NULL
unitNames[idxs] <- names(cells0)
names(cells0) <- NULL
unitSizes0 <- lapply(cells0, FUN=function(unit) {
length(.subset2(unit, "groups"))
})
unitSizes[idxs] <- unlist(unitSizes0, use.names=FALSE)
unitSizes0 <- NULL
cells[[kk]] <- unlist(cells0, use.names=FALSE)
cells0 <- idxs <- NULL
}
chunks <- NULL
gc <- gc()
verbose && print(verbose, gc)
}
cells <- unlist(cells, use.names=FALSE)
gc <- gc()
verbose && exit(verbose)
verbose && enter(verbose, "Creating return data frame")
uUnitSizes <- sort(unique(unitSizes))
verbose && cat(verbose, "Unique number of groups per unit: ",
paste(uUnitSizes, collapse=","))
verbose && cat(verbose, "Number of units: ", length(unitNames))
if (is.null(units))
units <- seq_len(nbrOfUnits(cdf))
verbose && printf(verbose, "Allocating matrix of size %dx%d.\n",
max(uUnitSizes), length(unitNames))
naValue <- as.integer(NA)
units2 <- groups <- matrix(naValue, nrow=max(uUnitSizes), ncol=length(unitNames))
for (size in uUnitSizes) {
cc <- which(unitSizes == size)
seq <- seq_len(size)
groups[seq,cc] <- seq
units2[seq,cc] <- rep(units[cc], each=size)
seq <- NULL
gc <- gc()
}
keep <- !is.na(groups)
groups <- groups[keep]
units2 <- units2[keep]
keep <- NULL
gc <- gc()
map <- data.frame(unit=units2, group=groups, cell=cells)
verbose && exit(verbose)
verbose && exit(verbose)
class(map) <- c("UnitGroupCellMap", class(map))
if (useFileCache) {
verbose && enter(verbose, "Saving to file cache")
saveCache(map, key=key, dirs=dirs)
verbose && exit(verbose)
}
map
}, private=TRUE)
setMethodS3("getUnitGroupCellChromosomePositionMap", "ChipEffectFile", function(this, units=NULL, chromosomes=NULL, orderByPosition=TRUE, ..., force=FALSE, verbose=FALSE) {
cdf <- getCdf(this)
ugcMap <- NULL
if (is.null(units)) {
} else if (isUnitGroupCellMap(units)) {
ugcMap <- units
units <- ugcMap[,"unit"]
}
if (!is.null(units)) {
units <- Arguments$getIndices(units, range=c(1, nbrOfUnits(cdf)))
}
units0 <- units
gi <- getGenomeInformation(cdf)
if (!is.null(chromosomes)) {
allChromosomes <- getChromosomes(gi)
unknown <- chromosomes[!(chromosomes %in% allChromosomes)]
if (length(unknown) > 0) {
throw("Argument 'chromosomes' contains unknown values: ",
paste(unknown, collapse=", "))
}
}
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Getting (unit, group, cell, chromosome, position) map")
verbose && enter(verbose, "Checking cache")
chipType <- getChipType(cdf)
key <- list(method="getUnitGroupCellChromosomePositionMap",
class=class(this)[1],
chipType=chipType, units=units, ugcMap=ugcMap,
chromosomes=chromosomes, orderByPosition=orderByPosition)
dirs <- c("aroma.affymetrix", chipType)
if (!force) {
map <- loadCache(key=key, dirs=dirs)
if (!is.null(map)) {
verbose && cat(verbose, "Found cached results")
verbose && exit(verbose)
return(map)
}
}
if (!is.null(chromosomes)) {
verbose && cat(verbose, "Units:")
verbose && str(verbose, units)
verbose && cat(verbose, "Subset by chromosomes:")
verbose && str(verbose, chromosomes)
units <- getUnitsOnChromosomes(gi, chromosomes)
verbose && cat(verbose, "Units:")
verbose && str(verbose, units)
if (!is.null(units0)) {
units <- intersect(units, units0)
}
}
verbose && cat(verbose, "Units:")
verbose && str(verbose, units)
if (!isUnitGroupCellMap(ugcMap)) {
ugcMap <- getUnitGroupCellMap(this, units=units, force=force, verbose=less(verbose, 10))
verbose && cat(verbose, "(unit, group, cell) map:")
verbose && str(verbose, ugcMap)
}
cpMap <- getData(gi, units=ugcMap[,"unit"], force=force, verbose=less(verbose, 10))
verbose && cat(verbose, "(chromosome, position) map:")
verbose && str(verbose, cpMap)
stopifnot(nrow(ugcMap) == nrow(cpMap))
map <- cbind(ugcMap, cpMap)
ugcMap <- cpMap <- NULL
if (orderByPosition) {
o <- with(map, order(chromosome, physicalPosition))
map <- map[o,,drop=FALSE]
o <- NULL
verbose && cat(verbose, "Reordered by genomic position")
}
rownames(map) <- NULL
if (object.size(map) > 50e3) {
saveCache(map, key=key, dirs=dirs)
verbose && cat(verbose, "Saved to file cache")
}
verbose && exit(verbose)
map
}, private=TRUE)
setMethodS3("getDataFlat", "ChipEffectFile", function(this, units=NULL, fields=c("theta", "sdTheta", "outliers"), ..., verbose=FALSE) {
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Retrieving data as a flat data frame")
suppressWarnings({
map <- getUnitGroupCellMap(this, units=units, ..., verbose=less(verbose))
})
verbose && enter(verbose, "Reading data fields")
celFields <- c(theta="intensities", sdTheta="stdvs", outliers="pixels")
suppressWarnings({
data <- getData(this, indices=map[,"cell"], fields=celFields[fields])
})
rownames(data) <- seq_len(nrow(data));
names <- colnames(data)
names <- gsub("intensities", "theta", names)
names <- gsub("stdvs", "sdTheta", names)
names <- gsub("pixels", "outliers", names)
colnames(data) <- names
verbose && str(verbose, data)
if ("outliers" %in% names) {
data[,"outliers"] <- as.logical(-data[,"outliers"])
}
verbose && exit(verbose)
len <- sapply(data, FUN=length)
keep <- (len == nrow(map))
data <- data[keep]
data <- as.data.frame(data)
data <- cbind(map, data)
verbose && exit(verbose)
data
}, private=TRUE)
setMethodS3("updateDataFlat", "ChipEffectFile", function(this, data, ..., verbose=FALSE) {
names <- colnames(data)
namesStr <- paste(names, collapse=", ")
if (!"cell" %in% names)
throw("Argument 'data' must contain a column 'cell': ", namesStr)
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose2 <- -as.integer(verbose)-2
verbose && enter(verbose, "Storing flat data to file")
if ("outliers" %in% names) {
data[,"outliers"] <- -as.integer(data[,"outliers"])
}
names <- gsub("theta", "intensities", names)
names <- gsub("sdTheta", "stdvs", names)
names <- gsub("outliers", "pixels", names)
colnames(data) <- names
verbose && enter(verbose, "Updating file")
indices <- data[,"cell"]
keep <- (names %in% c("intensities", "stdvs", "pixels"))
data <- data[,keep]
pathname <- getPathname(this)
pathname <- Arguments$getWritablePathname(pathname)
.updateCel(pathname, indices=indices, data, verbose=verbose2)
verbose && exit(verbose)
verbose && exit(verbose)
invisible(data)
}, private=TRUE)
setMethodS3("mergeGroups", "ChipEffectFile", function(this, fcn, fields=c("theta", "sdTheta"), ..., pathname, overwrite=FALSE, verbose=FALSE) {
if (!is.function(fcn)) {
throw("Argument 'fcn' is not a function: ", class(fcn)[1])
}
pathname <- Arguments$getWritablePathname(pathname, mustNotExist=!overwrite)
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Merging groups")
verbose && enter(verbose, "Testing merge function")
for (size in 1:10) {
y <- matrix(1000+1:(size*4), nrow=size)
yOut <- fcn(y)
if (!identical(dim(yOut), dim(y))) {
throw("Function 'fcn' must not change the dimension of the data: ",
paste(dim(yOut), collapse="x"), " != ",
paste(dim(y), collapse="x"))
}
}
verbose && exit(verbose)
map <- getUnitGroupCellMap(this, verbose=less(verbose))
verbose && str(verbose, map)
uSizes <- sort(unique(data[,"group"]))
verbose && cat(verbose, "Different number of groups per unit identified:")
verbose && print(verbose, uSizes)
data <- getDataFlat(this, units=map, ..., verbose=less(verbose))
verbose && str(verbose, data)
for (size in rev(uSizes)) {
verbose && enter(verbose, "Unit size ", size)
idxs <- which(data[,"group"] == size)
unitsS <- data[idxs, "unit"]
idxs <- which(data[,"unit"] %in% unitsS)
for (field in fields) {
y <- data[idxs, field]
y <- matrix(y, nrow=size)
verbose && str(verbose, y)
y <- fcn(y)
verbose && str(verbose, y)
data[idxs, field] <- as.vector(y)
}
verbose && exit(verbose)
}
verbose && enter(verbose, "Storing merged data")
verbose && cat(verbose, "Pathname: ", pathname)
verbose && enter(verbose, "Creating CEL file for results, if missing")
cfN <- createFrom(this, filename=pathname, path=NULL, methods="create", clear=TRUE, verbose=less(verbose))
verbose && print(verbose, cfN)
verbose && exit(verbose)
verbose && enter(verbose, "Writing merged data")
updateDataFlat(cfN, data=data, verbose=less(verbose))
verbose && exit(verbose)
verbose && exit(verbose)
verbose && exit(verbose)
cfN
}, protected=TRUE)
setMethodS3("extractMatrix", "ChipEffectFile", function(this, ..., field=c("theta", "sdTheta")) {
field <- match.arg(field)
NextMethod("extractMatrix", field=field)
}) |
.inputPrep <- function(...,
spatialData,
response,
sigmavar,
rr,
longlat,
nGibbs,
nBurn,
nThin,
x,
sigma2_beta,
sigma2_xi,
lambda,
dB,
gbf,
Qprior,
nw,
knots,
ffdir,
localCluster,
wishartScale,
dMax,
cage) {
spatialData <- .checkSpatialData(spatialData = spatialData)
nw <- .checkNW(spatialData = spatialData, nw = nw)
dB <- .checkDB(dB = dB, spatialData = spatialData, cage = cage)
cage <- dB$cage
dB <- dB$dB
response <- .verifyNumericVector(spatialData = spatialData,
numVec = response,
nm = 'response')
x <- .verifyCovariates(spatialData = spatialData, x = x)
sigmavar <- .verifyNumericVector(spatialData = spatialData,
numVec = sigmavar,
nm = 'sigmavar')
nBurn <- as.integer(x = round(x = nBurn, digits = 0L))
if (nBurn <= 0L) {
message("nBurn reset to 100")
nBurn <- 100L
}
nThin <- as.integer(x = round(x = nThin, digits = 0L))
if (nThin <= 0L) {
message("nThin reset to 1")
nThin <- 1L
}
gibbsKeep <- tryCatch(expr = seq(from = {nBurn+1L}, to = nGibbs, by = nThin),
condition = function(e){ stop(e$message) })
message("Gibbs sampler will keep ", length(x = gibbsKeep), " samples")
tst <- .verifyffdir(ffdir = ffdir,
nKept = length(x = gibbsKeep),
nR = length(x = response))
finestOnSource <- .hMatrix(spatialData = spatialData, dB = dB)
message("h matrix generated")
gbfObj <- .verifyGBF(gbf = gbf,
weight = rr,
knots = knots,
longlat = longlat,
spatialData = spatialData,
dB = dB)
Qprior <- .verifyQPrior(qPrior = Qprior)
message("Source Support")
basis <- .obledCruetinBasis(spatialData = spatialData,
dB = dB,
gbfObj = gbfObj,
nw = nw,
localCluster = localCluster,
verify = TRUE)
gbfObj <- basis$gbfObj
message("Finest Support")
idB <- NA
if (is.null(x = dB)) {
message("\tusing source support basis")
basisdB <- basis$phiOC
} else if (is.integer(x = dB)) {
basisdB <- .generatingBasis(spatialData = spatialData[[ dB ]],
nw = nw,
gbfObj = gbfObj,
db = min(10000L, nw),
localCluster = localCluster)
basisdB <- basisdB %*% basis$OCnorm
ortho <- t(x = basisdB) %*% basisdB
for (i in 1L:ncol(x = basisdB)) {
basisdB[,i] <- basisdB[,i] / sqrt(ortho[i,i])
}
} else {
basisdB <- .generatingBasis(spatialData = dB,
nw = nw,
gbfObj = gbfObj,
db = min(10000L, nw),
localCluster = localCluster)
basisdB <- basisdB %*% basis$OCnorm
ortho <- t(x = basisdB) %*% basisdB
for (i in 1L:ncol(x = basisdB)) {
basisdB[,i] <- basisdB[,i] / sqrt(ortho[i,i])
}
}
Qprior <- .qInv(qObj = Qprior,
basisdB = basisdB,
lambda = lambda,
scale = wishartScale,
spatialData = spatialData,
dB = dB,
dMax = dMax)
naResponse <- is.na(x = response) | is.nan(x = response)
if (sum(naResponse) > 0L) {
message("excluding ", sum(naResponse),
" cases from Gibbs due to incomplete response data")
}
notna <- !naResponse
spatialOnFinest <- Matrix::Matrix(data = t(x = finestOnSource[,notna,drop=FALSE]),
sparse = TRUE)
isEmpty <- colSums(as.matrix(x = spatialOnFinest) > 1e-8) == 0L
if (any(isEmpty)) {
message("excluding ", sum(isEmpty),
" elements of D_B from Gibbs step for lack of data")
spatialOnFinest <- spatialOnFinest[,!isEmpty]
}
if (is.matrix(x = sigmavar)) {
tsigmavar <- sigmavar[notna,notna,drop=FALSE]
} else {
tsigmavar <- sigmavar[notna]
}
gibbsSamples <- .gibbs(Z = response[notna],
X = x[notna,,drop=FALSE],
H = spatialOnFinest,
psi = basis$phiOC[notna,,drop=FALSE],
sigma2_eps = tsigmavar,
sigma2_beta = sigma2_beta,
sigma2_xi = sigma2_xi,
qObj = Qprior,
gibbsKeep = gibbsKeep,
ffdir = ffdir)
message("finished Gibbs sampling")
if (any(isEmpty)) {
xi <- .makeStorage(ffdir = ffdir,
nrow = nrow(x = finestOnSource),
ncol = ncol(x = gibbsSamples$xi))
for (i in 1L:ncol(x = gibbsSamples$xi)) {
xi[!isEmpty,i] <- gibbsSamples$xi[,i]
}
gibbsSamples$xi <- xi
}
yFinest <- .yFinest(ffdir = ffdir,
gibbsSamples = gibbsSamples,
x = x,
spatialData = spatialData,
dB = dB,
basisdB = basisdB,
fos = finestOnSource)
if (is.null(x = dB)) {
finestAreas <- .getArea(spatialData = spatialData, byid = TRUE)
} else if (is.numeric(x = dB)) {
finestAreas <- .getArea(spatialData = spatialData[[ dB ]], byid = TRUE)
} else {
finestAreas <- .getArea(spatialData = dB, byid = TRUE)
}
ySource <- .yCageSource(ffdir = ffdir,
gibbsSamples = gibbsSamples,
x = x,
spatialData = spatialData,
cage = cage,
basis = basis,
H = t(x = finestOnSource))
fos <- ySource$indicator %*% t(x = finestOnSource)
isEmpty <- rowSums(as.matrix(x = finestOnSource) > 1e-8) == 0L
return( list("gibbs" = gibbsSamples,
"yFinest" = yFinest,
"finestAreas" = finestAreas,
"psi" = basis,
"dB" = dB,
"gbfObj" = gbfObj,
"nw" = nw,
"ySource" = ySource$ySource,
"finestOnSource" = fos,
"sourceAreas" = ySource$areas,
"criterion" = cage,
"isEmpty" = isEmpty) )
} |
setwdKTS <-
function() {
dirPath <- tcltk::tk_choose.dir()
if (is.na(dirPath) == FALSE) {
setwd(dirPath)
}
} |
.print_bayesx <- function(x, digits = max(3L, getOption("digits") - 3L), ...)
{
if(!is.null(x$call)) {
cat("Call:\n")
print(x$call)
} else {
if(!is.null(x$model.fit$formula)) {
cat("Formula:\n")
if(is.character(x$model.fit$formula))
cat(x$model.fit$formula, "\n")
else
print(x$model.fit$formula)
}
}
if(!is.null(x$model.fit)) {
cat("Summary:\n")
mfn <- names(x$model.fit)
mfn <- mfn[mfn != "formula" & mfn != "order" &
mfn != "YLevels" & mfn != "nYLevels" &
mfn != "model.name"]
step <- 5L
for(i in 1L:length(mfn)) {
txt <- x$model.fit[[mfn[i]]]
if(is.numeric(txt))
txt <- round(txt, digits)
txt <- deparse(txt)
if(i < step) {
if(!is.null(txt) && txt != "") {
if(mfn[i] != "step.final.model")
cat(mfn[i], "=", gsub('\"', "", txt, fixed = TRUE), " ")
}
}
if(i == step) {
if(i != length(mfn))
cat("\n")
step <- step + step
}
}
cat("\n")
}
return(invisible(NULL))
}
.print_summary_bayesx <- function(x, digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"), ...)
{
if(!is.null(x$model.fit))
if(!is.null(x$model.fit$model.name))
if(length(grep("_hlevel", x$model.fit$model.name))) {
hlevel <- splitme(strsplit(x$model.fit$model.name, "_hlevel")[[1]][2])
go <- TRUE
hl <- NULL
for(i in 1:length(hlevel)) {
if(hlevel[i] == "_")
go <- FALSE
if(go)
hl <- c(hl, hlevel[i])
}
hlevel <- as.integer(resplit(hl))
if(hlevel > 1)
cat("Hierarchical random effects model results: stage", hlevel, "\n")
else {
cat("Main effects model results: stage", hlevel, "\n")
cat("\n")
}
}
if(!is.null(x$call)) {
cat("Call:\n")
cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n", sep = "")
} else {
if(!is.null(x$model.fit$formula)) {
cat("Formula:\n")
if(is.character(x$model.fit$formula))
cat(x$model.fit$formula, "\n")
else
print(x$model.fit$formula, showEnv = FALSE)
}
}
liner <- ""
fc <- FALSE
if(!is.null(x$fixed.effects)) {
fc <- TRUE
if(nrow(x$fixed.effects) < 2L) {
if(!any(is.na(x$fixed.effects)) && all(x$fixed.effects[1L,] == 0))
fc <- FALSE
} else {
if(!all(as.character(x$fixed.effects) == "NaN") && all(x$fixed.effects[1L,] == 0)) {
m <- ncol(x$fixed.effects)
nc <- colnames(x$fixed.effects)
nr <- rownames(x$fixed.effects)[2L:nrow(x$fixed.effects)]
x$fixed.effects <- matrix(x$fixed.effects[2L:nrow(x$fixed.effects),], ncol = m)
colnames(x$fixed.effects) <- nc
rownames(x$fixed.effects) <- nr
}
}
x$fixed.effects <- round(x$fixed.effects, digits)
}
if(fc || (!is.null(x$smooth.hyp))) {
cat(liner, "\n")
cat("Fixed effects estimation results:\n")
cat("\n")
}
if(fc) {
cat("Parametric coefficients:\n")
printCoefmat(x$fixed.effects)
}
if(!is.null(x$smooth.hyp)) {
if(fc)
cat("\n")
if(x$model.fit$method == "MCMC" || x$model.fit$method == "HMCMC")
cat("Smooth terms variances:\n")
else
cat("Smooth terms:\n")
ls <- ncol(x$smooth.hyp)
terms <- colnames(x$smooth.hyp)
rn <- rownames(x$smooth.hyp)
x$smooth.hyp <- round(x$smooth.hyp, digits)
printCoefmat(x$smooth.hyp)
}
cat(liner, "\n")
if(!is.null(x$random.hyp)) {
cat("Random effects variances:\n")
x$random.hyp <- round(x$random.hyp, digits)
printCoefmat(x$random.hyp)
cat(liner, "\n")
}
if(!is.null(x$model.fit)) {
if(x$model.fit$method == "MCMC") {
if(!is.null(x$variance)) {
cat("Scale estimate:\n")
x$variance <- round(x$variance, digits)
printCoefmat(x$variance)
cat(liner, "\n")
}
} else {
if(!is.null(x$variance)) {
cat("Scale estimate:", round(as.numeric(x$variance)[1], digits), "\n")
cat(liner, "\n")
}
}
x$model.fit <- delete.NULLs(x$model.fit)
mfn <- names(x$model.fit)
step <- 5L
mfn <- mfn[!is.null(x$model.fit)]
mfn <- mfn[mfn != "model.name"]
mfn <- mfn[mfn != "formula"]
mfn <- mfn[mfn != "step.final.model"]
mfn <- mfn[mfn != "YLevels"]
mfn <- mfn[mfn != "nYLevels"]
mfn <- mfn[mfn != "order"]
if(is.na(x$model.fit$N))
x$model.fit$N <- "NA"
if(x$model.fit$method == "")
x$model.fit$method <- "NA"
for(i in 1L:length(mfn)) {
if(!is.null(x$model.fit[[mfn[i]]]) && !is.na(x$model.fit[[mfn[i]]] != "")) {
if(length(splitme(as.character(x$model.fit[[mfn[i]]])))) {
if(i < step)
cat(mfn[i], "=", x$model.fit[[mfn[i]]], " ")
if(i == step) {
if(i != length(mfn))
cat("\n")
cat(mfn[i], "=", x$model.fit[[mfn[i]]], " ")
step <- step + step
}
}
}
}
cat("\n")
}
return(invisible(NULL))
} |
subsetByRegion <- function(data, region, margin = 1/2) {
UseMethod("subsetByRegion")
}
subsetByRegion.TopDomData <- function(data, region, margin = 1/2) {
stopifnot(is.data.frame(region))
stopifnot(margin >= 0)
if (margin < 1) {
margin <- margin * (region$to.coord - region$from.coord)
}
idxs <- with(data$bins, which(chr == region$chr & from.coord >= region$from.coord - margin & to.coord <= region$to.coord + margin))
data[idxs]
}
subsetByRegion.TopDom <- function(data, region, margin = 1/2) {
stopifnot(is.data.frame(region))
stopifnot(margin >= 0)
if (margin < 1) {
margin <- margin * (region$to.coord - region$from.coord)
}
idxs <- with(data$domain, which(chr == region$chr & from.coord >= region$from.coord - margin & to.coord <= region$to.coord + margin))
data[idxs, ]
} |
callBAplot = function(x, censortime, main, xlab, ylab, plot.type, smooth.graph, smooth.df,
combine.graphs, alpha.level, conf.int, log.ratio){
firstgroup = substr(colnames(x)[2], 4, 4)
dnames = colnames(x)[which(substr(colnames(x), 1, 1) == 'd')]
numbins = length(which(unlist(strsplit(dnames, '_'))[1:length(dnames)*2] == firstgroup))
M = log(numbins)/log(2)
hazgroups = unique(unlist(strsplit(dnames, '_'))[1:length(dnames)*2])
numhazards = length(hazgroups)
if(plot.type == 'r'){
if(log.ratio != TRUE){
start.betas = substr(colnames(x), 1, 4)
end.betas = substr(colnames(x), nchar(colnames(x))-3, nchar(colnames(x)))
beta.nphindex = 1:(2^M*(numhazards-1)) + which(start.betas == 'beta' & end.betas == 'bin1')[1] - 1
x[,beta.nphindex] = exp(x[,beta.nphindex])
}
dests.temp = summary.MRH(x, alpha.level = alpha.level, maxStudyTime = censortime)$beta
end.betas = substr(row.names(dests.temp), nchar(row.names(dests.temp))-3, nchar(row.names(dests.temp)))
beta.nph.index = 1:(2^M*(numhazards-1))+which(end.betas == 'bin1')[1]-1
dests.temp = dests.temp[beta.nph.index,]
} else if(!missing(censortime)){
dests.temp = t(CalcFunction(x, function.type = plot.type, alpha.level = alpha.level, maxStudyTime = censortime)[[1]])[,c(2,1,3)]
} else { dests.temp = t(CalcFunction(x, function.type = plot.type, alpha.level = alpha.level)[[1]])[,c(2,1,3)] }
if(plot.type %in% c('H','S')){ dests.temp = dests.temp[-((1:numhazards-1)*(2^M+1)+1),] }
if(smooth.graph == TRUE){
if(is.null(smooth.df)){ smooth.df = 2^M/2 }
smooth.timepts = 1:2^M*censortime/2^M-.5*censortime/2^M
dests = NULL
for(ctr in 1:(numhazards-1)){
dests = rbind(dests,
cbind(smooth.spline(dests.temp[1:2^M+2^M*(ctr-1),1]~smooth.timepts, df = smooth.df)$y,
smooth.spline(dests.temp[1:2^M+2^M*(ctr-1),2]~smooth.timepts, df = smooth.df)$y,
smooth.spline(dests.temp[1:2^M+2^M*(ctr-1),3]~smooth.timepts, df = smooth.df)$y))
}
if(plot.type != 'r'){
ctr = numhazards
dests = rbind(dests, cbind(smooth.spline(dests.temp[1:2^M+2^M*(ctr-1),1]~smooth.timepts, df = smooth.df)$y,
smooth.spline(dests.temp[1:2^M+2^M*(ctr-1),2]~smooth.timepts, df = smooth.df)$y,
smooth.spline(dests.temp[1:2^M+2^M*(ctr-1),3]~smooth.timepts, df = smooth.df)$y))
}
plot.timepts = smooth.timepts
max.index = 2^M
} else {
plot.timepts = pbfxn(2^M, censortime/2^M, rep(NA, 2^M))$x
dests = NULL
for(ctr in 1:(numhazards-1)){
dests = rbind(dests,
cbind(pbfxn(2^M, censortime/2^M, dests.temp[1:2^M+2^M*(ctr-1),1])$y,
pbfxn(2^M, censortime/2^M, dests.temp[1:2^M+2^M*(ctr-1),2])$y,
pbfxn(2^M, censortime/2^M, dests.temp[1:2^M+2^M*(ctr-1),3])$y))
}
if(plot.type != 'r'){
ctr = numhazards
dests = rbind(dests,
cbind(pbfxn(2^M, censortime/2^M, dests.temp[1:2^M+2^M*(ctr-1),1])$y,
pbfxn(2^M, censortime/2^M, dests.temp[1:2^M+2^M*(ctr-1),2])$y,
pbfxn(2^M, censortime/2^M, dests.temp[1:2^M+2^M*(ctr-1),3])$y))
}
max.index = 2^M*2
}
ylabel = 'Hazard rate'
if('H' == plot.type){
ylabel = 'Cumulative hazard'
} else if('S' == plot.type){
ylabel = 'Survival function'
} else if('r' == plot.type){
if(log.ratio == TRUE){
ylabel = 'Log hazard ratio'
} else {
ylabel = 'Hazard ratio'
}
}
timeptslabel = plot.timepts
ylimit = range(dests)
if(conf.int != TRUE){ ylimit = range(dests[,1]) }
if(plot.type == 'S'){ ylimit[1] = 0 }
if(combine.graphs != TRUE){
if('r' != plot.type){
plotnums = c(ceiling(numhazards/2), 2)
numplots = numhazards
mainnames = paste(hazgroups, 'group')
mtextname = 'Hazard Rates by Group'
} else {
if(numhazards > 2){ plotnums = c(ceiling((numhazards-1)/2), 2)
} else { plotnums = c(1,1) }
numplots = numhazards-1
mainnames = paste('Group', hazgroups[-1])
if(log.ratio == TRUE){
mtextname = paste('Log hazard Ratios: Comparison to Group', hazgroups[1])
} else {
mtextname = paste('Hazard Ratios: Comparison to Group', hazgroups[1])
}
}
par(mfrow = plotnums, mai = c(.35, .1, .25, 0), oma = c(0, 2, 2, 1), tck = -.02)
for(hazCtr in 1:numplots){
plot(plot.timepts, dests[1:max.index+max.index*(hazCtr-1),1], type = 'l', lwd = 3, ylab = '', xlab = '',
ylim = ylimit, main = mainnames[hazCtr], axes = FALSE)
if(plot.type == 'r'){
if(log.ratio == TRUE){ abline(h = 0, col = 'grey') } else { abline(h = 1, col = 'grey') }
}
if(conf.int == TRUE){
points(plot.timepts, dests[1:max.index+max.index*(hazCtr-1),2], type = 'l', lty = 2)
points(plot.timepts, dests[1:max.index+max.index*(hazCtr-1),3], type = 'l', lty = 2)
}
box()
axis(1, at = timeptslabel, labels = round(timeptslabel, 1), cex.axis = .75, padj = -2)
mtext('Time', side = 1, padj = 1.5, cex = .8)
if(hazCtr %% 2 != 0){ axis(2, padj = 1.25) }
}
mtext(mtextname, outer = TRUE, cex = 1.4)
} else {
plot(plot.timepts, dests[1:max.index,1], type = 'l', lwd = 2,
xlab = 'Time', ylab = ylabel, main = ylabel, ylim = ylimit)
if(plot.type == 'r'){
if(log.ratio == TRUE){ abline(h = 0, col = 'grey') } else { abline(h = 1, col = 'grey') }
}
if(conf.int == TRUE){
points(plot.timepts, dests[1:max.index,2], type = 'l', lty = 2)
points(plot.timepts, dests[1:max.index,3], type = 'l', lty = 2)
}
if((plot.type != 'r') | (plot.type == 'r' & numhazards > 2)){
for(hazCtr in 2:(numhazards-1)){
points(plot.timepts, dests[1:max.index+max.index*(hazCtr-1), 1], type = 'l', lwd = 2, col = hazCtr)
if(conf.int == TRUE){
points(plot.timepts, dests[1:max.index+max.index*(hazCtr-1), 2], type = 'l', lty = 2, col = hazCtr)
points(plot.timepts, dests[1:max.index+max.index*(hazCtr-1), 3], type = 'l', lty = 2, col = hazCtr)
}
}
}
if(plot.type != 'r'){
hazCtr = numhazards
points(plot.timepts, dests[1:max.index+max.index*(hazCtr-1), 1], type = 'l', lwd = 2, col = hazCtr)
if(conf.int == TRUE){
points(plot.timepts, dests[1:max.index+max.index*(hazCtr-1), 2], type = 'l', lty = 2, col = hazCtr)
points(plot.timepts, dests[1:max.index+max.index*(hazCtr-1), 3], type = 'l', lty = 2, col = hazCtr)
}
legend(x = "topright", paste('group', hazgroups), fill = 1:numhazards, cex = 1.2)
} else {
legend(x = "topright", paste('group', hazgroups[-1]), fill = 2:numhazards-1, cex = 1.2)
}
}
} |
context("conditions")
test_that("stop_bad_type() stores fields", {
err <- catch_cnd(stop_bad_type(NA, "`NULL`", actual = "a foobaz", arg = ".foo"))
expect_is(err, "purrr_error_bad_type")
expect_identical(err$x, NA)
expect_identical(err$expected, "`NULL`")
expect_identical(err$actual, "a foobaz")
expect_identical(err$arg, ".foo")
})
test_that("stop_bad_type() constructs default `what`", {
expect_error_cnd(
stop_bad_type(NA, "`NULL`"),
"Object must be `NULL`",
"purrr_error_bad_type"
)
expect_error_cnd(
stop_bad_type(NA, "`NULL`", arg = ".foo"),
"`.foo` must be `NULL`",
"purrr_error_bad_type"
)
expect_error_cnd(
stop_bad_type(NA, "`NULL`", arg = quote(.foo)),
"`arg` must be `NULL` or a string, not a symbol",
"purrr_error_bad_type"
)
})
test_that("stop_bad_element_type() constructs type errors", {
expect_error_cnd(
stop_bad_element_type(1:3, 3, "a foobaz"),
"Element 3 must be a foobaz, not an integer vector",
"purrr_error_bad_element_type"
)
expect_error_cnd(
stop_bad_element_type(1:3, 3, "a foobaz", actual = "a quux"),
"Element 3 must be a foobaz, not a quux",
"purrr_error_bad_element_type"
)
expect_error_cnd(
stop_bad_element_type(1:3, 3, "a foobaz", arg = "..arg"),
"Element 3 of `..arg` must be a foobaz, not an integer vector",
"purrr_error_bad_element_type"
)
})
test_that("stop_bad_element_type() accepts `what`", {
expect_error_cnd(
stop_bad_element_type(1:3, 3, "a foobaz", what = "Result"),
"Result 3 must be a foobaz, not an integer vector",
"purrr_error_bad_element_type"
)
})
test_that("stop_bad_length() stores fields", {
err <- catch_cnd(stop_bad_length(1:3, 10, actual = 100, arg = ".foo"))
expect_is(err, "purrr_error_bad_length")
expect_identical(err$x, 1:3)
expect_identical(err$expected_length, 10)
expect_identical(err$arg, ".foo")
})
test_that("stop_bad_length() constructs error message", {
expect_error_cnd(stop_bad_length(1:3, 10), "Vector must have length 10, not 3", "purrr_error_bad_length")
expect_error_cnd(stop_bad_length(1:3, 10, arg = ".foo"), "`.foo` must have length 10, not 3", "purrr_error_bad_length")
expect_error_cnd(stop_bad_length(1:3, 10, arg = ".foo", what = "This thing"), "This thing must have length 10, not 3", "purrr_error_bad_length")
expect_error_cnd(stop_bad_length(1:3, 10, arg = ".foo", what = "This thing", recycle = TRUE), "This thing must have length 1 or 10, not 3", "purrr_error_bad_length")
})
test_that("stop_bad_element_length() constructs error message", {
expect_error_cnd(stop_bad_element_length(1:3, 8, 10), "Element 8 must have length 10, not 3", "purrr_error_bad_element_length")
expect_error_cnd(stop_bad_element_length(1:3, 8, 10, arg = ".foo"), "Element 8 of `.foo` must have length 10, not 3", "purrr_error_bad_element_length")
expect_error_cnd(stop_bad_element_length(1:3, 8, 10, arg = ".foo", what = "Result"), "Result 8 of `.foo` must have length 10, not 3", "purrr_error_bad_element_length")
expect_error_cnd(stop_bad_element_length(1:3, 8, 10, arg = ".foo", what = "Result", recycle = TRUE), "Result 8 of `.foo` must have length 1 or 10, not 3", "purrr_error_bad_element_length")
})
test_that("stop_bad_vector() constructs error message", {
expect_error_cnd(stop_bad_vector(1:3, character(), 1), "Vector must be a single string, not an integer vector of length 3", "purrr_error_bad_vector")
expect_error_cnd(stop_bad_vector(factor(c("a", "b")), character(), 10), "Vector must be a character vector of length 10, not a vector of class `factor` and of length 2", "purrr_error_bad_vector")
expect_error_cnd(stop_bad_vector(1:3, character(), 10, recycle = TRUE), "Vector must be a character vector of length 1 or 10, not an integer vector of length 3", "purrr_error_bad_vector")
expect_error_cnd(stop_bad_vector(1:3, 1:2, 10, what = "This foobaz vector", recycle = TRUE), "This foobaz vector must be an integer vector of length 1 or 10, not an integer vector of length 3", "purrr_error_bad_vector")
expect_error_cnd(stop_bad_vector(list(1, 2), logical(), 10, arg = ".quux", recycle = TRUE), "`.quux` must be a logical vector of length 1 or 10, not a list of length 2", "purrr_error_bad_vector")
})
test_that("stop_bad_element_vector() constructs error message", {
expect_error_cnd(stop_bad_element_vector(1:3, 3, character(), 1), "Element 3 must be a single string, not an integer vector of length 3", "purrr_error_bad_element_vector")
expect_error_cnd(stop_bad_element_vector(1:3, 20, 1:2, 10, what = "Result", recycle = TRUE), "Result 20 must be an integer vector of length 1 or 10, not an integer vector of length 3", "purrr_error_bad_element_vector")
expect_error_cnd(stop_bad_element_vector(list(1, 2), 1, logical(), 10, arg = ".quux", recycle = TRUE), "Element 1 of `.quux` must be a logical vector of length 1 or 10, not a list of length 2", "purrr_error_bad_element_vector")
}) |
NULL
.dbGetRowCount <- function(res, ...) {
return(res@cursor$fetchedRowCount())
}
setMethod('dbGetRowCount', 'PrestoResult', .dbGetRowCount) |
source("ESEUR_config.r")
pal_col=rainbow(2)
rofpc=read.csv(paste0(ESEUR_dir, "projects/rofpc.csv.xz"), as.is=TRUE)
rofpc$Function.points=as.integer(0.1+rofpc$Function.points)
plot(rofpc$Function.points, rofpc$Cost.index, log="xy", col=pal_col[2],
xlab="Function points", ylab="Cost\n")
rof_mod=glm(log(Cost.index) ~ log(Function.points), data=rofpc)
xbounds=20:2000
pred=predict(rof_mod, newdata=data.frame(Function.points=xbounds), type="response")
lines(xbounds, exp(pred), col=pal_col[1]) |
catch_entries_commun = function(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, seed){
if(ncol(all_set)<=2){
stop("Data base (all_set) does not contain any covariate.")
}
if(type_outcome != "binary" && type_outcome != "continuous" && type_outcome != "survival" && type_outcome != "count"){
stop("Outcome (type_outcome) should be either continuous, binary or survival.")
}
if(sum((type_var != "continuous") & (type_var != "ordinal") & (type_var != "nominal")) > 0){
stop("Covariate types (type_var) must be either continuous, ordinal, or nominal.")
}
if(as.integer(L) != L){
L = as.integer(L)
print(paste("The maximum number of covariates to define subgroups L was transformed into integer: L=", L, sep=""))
}
if(L < 1){
stop("The maximum number of covariates to define subgroups L must be superior or equal to 1.")
}
if(as.integer(M) != M){
M = as.integer(M)
print(paste("The maximum number of best promising subgroups M was transformed into integer: M=", M, sep=""))
}
if(M < 1){
stop("The maximum number of best promising subgroups M must be superior or equal to 1.")
}
if(length(gamma)==1 && is.na(gamma)){
print("Vector of relative improvment gamma was not supplied and will be chosen by cross-validation. This is time-consuming and not recommended.")
}
if(length(gamma) != L){
stop("Lenght of vector of relative improvment gamma should be equal to L.")
}
if(as.integer(H) != H){
H = as.integer(H)
print(paste("The number of sets H was transformed into integer: H=", H, sep=""))
}
if(H < 1){
stop("The number of sets H must be superior or equal to 1.")
}
if(pct_rand < 0 || pct_rand > 1){
stop("Percentage of sample size allocated randomly between sets (pct_rand) must be comprised between 0 and 1.")
}
if(length(prop_gpe) != H){
stop("Vector of proportions in each set (prop_gpe) must be equal to the number of sets H.")
}
if(sum(prop_gpe<0)>0 || sum(prop_gpe> 1)>0){
stop("Proportions of sample size in each set (prop_gpe) must be comprised between 0 and 1.")
}
if(alloc_high_prob != TRUE && alloc_high_prob != FALSE){
alloc_high_prob = TRUE
print("The allocation rule (alloc_high_prob) was misspecified and was thus reset to its default value.")
}
if(num_crit != 1 && num_crit != 2 && num_crit != 3){
num_crit = 1
print("The number associated to splitting criterion (num_crit) was misspecified and was thus reset to its default value.")
}
if(is.na(gamma) && (step < 0 || step > 1)){
stop("step for cross-validation must be comprised between 0 and 1.")
}
if(is.na(gamma) && as.integer(nb_sub_cross) != nb_sub_cross){
nb_sub_cross = as.integer(nb_sub_cross)
print(paste("The number of folds for cross-validation (nb_sub_cross) was transformed into integer: nb_sub_cross=", nb_sub_cross, sep=""))
}
if(nb_sub_cross < 2){
stop("The number of folds for cross-validation (nb_sub_cross) must be superior or equal to 2.")
}
if(alpha < 0 || alpha > 1){
stop("Type I error rate (alpha) must be comprised between 0 and 1.")
}
if(as.integer(nsim) != nsim){
nsim = as.integer(nsim)
print(paste("The number of permutations for resampling-based methods to adjust pvalues (nsim) was transformed into integer: nsim=", nsim, sep=""))
}
if(nsim < 0){
stop("The number of permutations for resampling-based methods to adjust pvalues (nsim) must be superior or equal to 0.")
}
if(!is.na(gamma) && as.integer(nsim_cv) != nsim_cv){
nsim_cv = as.integer(nsim_cv)
print(paste("The number of permutations for resampling-based methods to adjust pvalues in the cross-validation part (nsim_cv) was transformed into integer: nsim_cv=", nsim_cv, sep=""))
}
if(!is.na(gamma) && nsim_cv < 0){
stop("The number of permutations for resampling-based methods to adjust pvalues in the cross-validation part (nsim_cv) must be superior or equal to 0.")
}
if(as.integer(ord.bin) != ord.bin){
ord.bin = as.integer(ord.bin)
print(paste("The number of classes to discretize covariates (ord.bin) was transformed into integer: ord.bin=", ord.bin, sep=""))
}
if(ord.bin < 2){
stop("The number of classes to discretize covariates (ord.bin) must be superior or equal to 2.")
}
if(M_per_covar != TRUE && M_per_covar != FALSE){
M_per_covar = FALSE
print("The selection rule for best promising child subgroups (M_per_covar) was misspecified and was thus reset to its default value.")
}
if(upper_best != TRUE && upper_best != FALSE){
upper_best = TRUE
print("Boolean indicating if greater values of the outcome mean better responses (upper_best) was misspecified and was thus reset to its default value.")
}
if(as.integer(seed) != seed){
seed = as.integer(seed)
print(paste("The seed was transformed into integer: seed=", seed, sep=""))
}
return(list(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, seed))
}
catch_entries1 = function(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, seed, selec){
catch = catch_entries_commun(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, seed)
all_set = catch[[1]]
type_var = catch[[2]]
type_outcome = catch[[3]]
level_control = catch[[4]]
D = catch[[5]]
L = catch[[6]]
S = catch[[7]]
M = catch[[8]]
gamma = catch[[9]]
H = catch[[10]]
pct_rand = catch[[11]]
prop_gpe = catch[[12]]
alloc_high_prob = catch[[13]]
num_crit = catch[[14]]
step = catch[[15]]
nb_sub_cross = catch[[16]]
alpha = catch[[17]]
nsim = catch[[18]]
nsim_cv = catch[[19]]
ord.bin = catch[[20]]
M_per_covar = catch[[21]]
upper_best = catch[[22]]
seed = catch[[23]]
if(selec != TRUE && selec != FALSE){
selec = FALSE
print("Boolean indicating if the function also print subgroups selected and not necessarily validated (selec) was misspecified and was thus reset to its default value.")
}
return(list(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, seed, selec))
}
catch_entries2 = function(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, seed, nrep){
catch = catch_entries_commun(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, seed)
all_set = catch[[1]]
type_var = catch[[2]]
type_outcome = catch[[3]]
level_control = catch[[4]]
D = catch[[5]]
L = catch[[6]]
S = catch[[7]]
M = catch[[8]]
gamma = catch[[9]]
H = catch[[10]]
pct_rand = catch[[11]]
prop_gpe = catch[[12]]
alloc_high_prob = catch[[13]]
num_crit = catch[[14]]
step = catch[[15]]
nb_sub_cross = catch[[16]]
alpha = catch[[17]]
nsim = catch[[18]]
nsim_cv = catch[[19]]
ord.bin = catch[[20]]
M_per_covar = catch[[21]]
upper_best = catch[[22]]
seed = catch[[23]]
if(as.integer(nrep) != nrep){
nrep = as.integer(nrep)
print(paste("The number of simulations (nrep) was transformed into integer: nrep=", nrep, sep=""))
}
if(nrep < 1){
stop("The number of simulations (nrep) must be superior or equal to 1.")
}
return(list(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, seed, nrep))
}
SIDES = function(all_set, type_var, type_outcome, level_control, D=0, L=3, S, M=5, gamma=rep(1,3), H=1, pct_rand=0.5, prop_gpe=c(1), alloc_high_prob=TRUE,
num_crit=1, step=0.5, nb_sub_cross=5, alpha, nsim=500, nsim_cv=500, ord.bin=10, M_per_covar=FALSE,
upper_best=TRUE, selec=FALSE, seed=42, modified=TRUE){
catch = catch_entries1(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, seed, selec)
all_set = catch[[1]]
type_var = catch[[2]]
type_outcome = catch[[3]]
level_control = catch[[4]]
D = catch[[5]]
L = catch[[6]]
S = catch[[7]]
M = catch[[8]]
gamma = catch[[9]]
H = catch[[10]]
pct_rand = catch[[11]]
prop_gpe = catch[[12]]
alloc_high_prob = catch[[13]]
num_crit = catch[[14]]
step = catch[[15]]
nb_sub_cross = catch[[16]]
alpha = catch[[17]]
nsim = catch[[18]]
nsim_cv = catch[[19]]
ord.bin = catch[[20]]
M_per_covar = catch[[21]]
upper_best = catch[[22]]
seed = catch[[23]]
selec = catch[[24]]
X_covariate = all_set[,-1]
alloc_btw_sets = allocation_procedure(H, pct_rand, X_covariate, type_var, prop_gpe, alloc_high_prob, FALSE, seed)
base = cbind(alloc_btw_sets, all_set)
training_set = all_set[which(base[,1]==1),]
if(is.na(gamma[1])==TRUE){
gamma = cross_validation(training_set, type_var, type_outcome, level_control, D, alpha, L, S, num_crit,
M, step, nb_sub_cross, nsim_cv, ord.bin, upper_best, M_per_covar, seed)
if(is.null(nrow(gamma))==FALSE){
gamma = as.numeric(gamma[1,])
}
}
res_candidates = subgroup_identification_candidates(training_set, type_var, type_outcome, level_control, D, L, S, num_crit, M, gamma, alpha, nsim, ord.bin, upper_best, M_per_covar, seed, modified)
candidates = res_candidates[[1]]
nb_candidates = length(candidates)
if(nb_candidates==0){
print("No subgroup identified")
res = list("candidates"=list(list(),c()), "confirmed"=list(list(),c()))
}
else{
if(nb_candidates > 1){
to_comp = combn(1:nb_candidates,2)
candidates_temp = candidates
pval_cand_temp = res_candidates[[3]]
ind_rem = c()
for(icol in 1:ncol(to_comp)){
if(identical_subgroups(candidates[[to_comp[1,icol]]], candidates[[to_comp[2,icol]]])==TRUE){
ind_rem = c(ind_rem, to_comp[2,icol])
}
}
ind_rem = sort(unique(ind_rem), decreasing=TRUE)
for(ir in ind_rem){
candidates_temp[[ir]] = NULL
}
candidates = candidates_temp
nb_candidates = length(candidates)
if(length(ind_rem)>0){
pval_cand = pval_cand_temp[-ind_rem]
}
else{
pval_cand = pval_cand_temp
}
}
else{
pval_cand = res_candidates[[3]]
}
if(H > 1){
confirmed = list()
pval_confirmed = c()
for(cand in 1:nb_candidates){
conf_all_set = TRUE
i=2
while(i<=H && conf_all_set==TRUE){
set_valid_cur = all_set[which(base[,1]==i),]
set_subg_cur = sub_sets_parents(set_valid_cur, candidates[[cand]])[[1]]
res_analyse = analyse(set_subg_cur, type_outcome, level_control, D, alpha, upper_best)
if(res_analyse[3]==FALSE){
conf_all_set = FALSE
}
else{
if(i == H){
confirmed[[length(confirmed)+1]] = candidates[[cand]]
pval_confirmed = c(pval_confirmed,res_analyse[2])
}
}
i=i+1
}
}
if(length(pval_confirmed) > 0){
if(selec==FALSE){
res = list("candidates"=list(list(),c()), "confirmed"=list(confirmed,pval_confirmed))
}
else{
res = list("candidates"=list(candidates,pval_cand),"confirmed"=list(confirmed,pval_confirmed))
}
}
else{
print("No subgroup confirmed")
res = list("candidates"=list(list(),c()), "confirmed"=list(list(),c()))
}
}
else{
res = list("candidates"=list(candidates,pval_cand),"confirmed"=list(list(),c()))
}
}
res = c(res,"base"=list(all_set),"training"=list(training_set))
class(res) = "SIDES"
return(res)
}
simulation_SIDES = function(all_set, type_var, type_outcome, level_control, D=0, L=3, S, M=5, num_crit=1, gamma=rep(1,3),
alpha, nsim=500, ord.bin=10, nrep=100, seed=42,
H=1, pct_rand=0.5, prop_gpe=c(1), alloc_high_prob=TRUE,
step=0.5, nb_sub_cross=5, nsim_cv=500,
M_per_covar=FALSE, upper_best=TRUE, nb_cores=NA, ideal=NA, modified=TRUE){
catch = catch_entries2(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, seed, nrep)
all_set = catch[[1]]
type_var = catch[[2]]
type_outcome = catch[[3]]
level_control = catch[[4]]
D = catch[[5]]
L = catch[[6]]
S = catch[[7]]
M = catch[[8]]
gamma = catch[[9]]
H = catch[[10]]
pct_rand = catch[[11]]
prop_gpe = catch[[12]]
alloc_high_prob = catch[[13]]
num_crit = catch[[14]]
step = catch[[15]]
nb_sub_cross = catch[[16]]
alpha = catch[[17]]
nsim = catch[[18]]
nsim_cv = catch[[19]]
ord.bin = catch[[20]]
M_per_covar = catch[[21]]
upper_best = catch[[22]]
seed = catch[[23]]
nrep = catch[[24]]
if(is.na(nb_cores)){
nb_cores = detectCores()-1
}
if(nb_cores>1){
cl = makeCluster(nb_cores, outfile="")
registerDoParallel(cl)
}
if(H==1){
n_rep = 1
}
list_selected = list()
list_top = list()
pct_selected = c()
pct_top = c()
pct_no_subgroup = 0
pct_sous_cov_select1 = 0
pct_sous_ens_top1 = 0
pct_sous_cov_select2 = 0
pct_sous_ens_top2 = 0
pct_ideal_selected = 0
pct_ideal_top = 0
mean_size = 0
if(nb_cores>1){
res_simu = foreach(r=1:nrep, .export=ls(globalenv()), .inorder=FALSE) %dopar% {
set.seed(seed+r)
print(r)
res_r = SIDES(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, selec=FALSE, seed+r, modified)
return(res_r)
}
}
else{
res_simu = list()
for(r in 1:nrep){
set.seed(seed+r)
print(r)
res_r = SIDES(all_set, type_var, type_outcome, level_control, D, L, S, M, gamma, H, pct_rand, prop_gpe, alloc_high_prob,
num_crit, step, nb_sub_cross, alpha, nsim, nsim_cv, ord.bin, M_per_covar, upper_best, selec=FALSE, seed+r, modified)
res_simu = c(res_simu, list(res_r))
}
}
for(r in 1:nrep){
res_r = res_simu[[r]]
if( (H==1 && length(res_r$candidates[[2]]) > 0) || (H>1 && length(res_r$confirmed[[2]]) > 0) ){
if(H > 1){
select_cur = res_r$confirmed[[1]]
pval_cur = res_r$confirmed[[2]]
}
else{
select_cur = res_r$candidates[[1]]
pval_cur = res_r$candidates[[2]]
}
find_sous_cov1 = FALSE
find_sous_ens1 = FALSE
find_sous_cov2 = FALSE
find_sous_ens2 = FALSE
if(length(list_selected)==0){
list_selected = c(list_selected, select_cur)
pct_selected = c(pct_selected, rep(1, length(select_cur)))
for(sg in 1:length(select_cur)){
cand_sg = select_cur[[sg]]
mean_size = mean_size + nrow(sub_sets_parents(res_r$training, cand_sg)[[1]])/length(select_cur)
if(identical_subgroups(ideal, cand_sg)==TRUE){
pct_ideal_selected = pct_ideal_selected+1
if(pval_cur[sg]==min(pval_cur)){
pct_ideal_top = pct_ideal_top+1
}
}
if(find_sous_cov1 == FALSE && included_subgroups(cand_sg, ideal)==TRUE){
find_sous_cov1 = TRUE
pct_sous_cov_select1 = pct_sous_cov_select1+1
}
if(find_sous_ens1 == FALSE && included_subgroups(ideal, cand_sg)==TRUE){
find_sous_ens1 = TRUE
pct_sous_ens_top1 = pct_sous_ens_top1+1
}
if(find_sous_cov2 == FALSE && included_subgroups(cand_sg, ideal)==TRUE && identical_subgroups(cand_sg, ideal)==FALSE){
find_sous_cov2 = TRUE
pct_sous_cov_select2 = pct_sous_cov_select2+1
}
if(find_sous_ens2 == FALSE && included_subgroups(ideal, cand_sg)==TRUE && identical_subgroups(cand_sg, ideal)==FALSE){
find_sous_ens2 = TRUE
pct_sous_ens_top2 = pct_sous_ens_top2+1
}
}
}
else{
if(length(select_cur)>0){
for(s in 1:length(select_cur)){
cand_s = select_cur[[s]]
different = TRUE
i=1
while(different==TRUE && i <= length(list_selected)){
if(identical_subgroups(cand_s, list_selected[[i]])==TRUE){
different=FALSE
pct_selected[i] = pct_selected[i]+1
}
i = i+1
}
if(different == TRUE){
list_selected = c(list_selected, list(cand_s))
pct_selected = c(pct_selected, 1)
}
mean_size = mean_size + nrow(sub_sets_parents(res_r$training, cand_s)[[1]])/length(select_cur)
if(identical_subgroups(ideal, cand_s)==TRUE){
pct_ideal_selected = pct_ideal_selected+1
if(pval_cur[s]==min(pval_cur)){
pct_ideal_top = pct_ideal_top+1
}
}
if(find_sous_cov1 == FALSE && included_subgroups(cand_s, ideal)==TRUE){
find_sous_cov1 = TRUE
pct_sous_cov_select1 = pct_sous_cov_select1+1
}
if(find_sous_ens1 == FALSE && included_subgroups(ideal, cand_s)==TRUE){
find_sous_ens1 = TRUE
pct_sous_ens_top1 = pct_sous_ens_top1+1
}
if(find_sous_cov2 == FALSE && included_subgroups(cand_s, ideal)==TRUE && identical_subgroups(cand_s, ideal)==FALSE){
find_sous_cov2 = TRUE
pct_sous_cov_select2 = pct_sous_cov_select2+1
}
if(find_sous_ens2 == FALSE && included_subgroups(ideal, cand_s)==TRUE && identical_subgroups(cand_s, ideal)==FALSE){
find_sous_ens2 = TRUE
pct_sous_ens_top2 = pct_sous_ens_top2+1
}
}
}
}
}
else{
pct_no_subgroup = pct_no_subgroup+1
}
}
mean_size = mean_size/(nrep-pct_no_subgroup)
pct_selected = pct_selected/nrep*100
pct_no_subgroup = pct_no_subgroup/nrep*100
or_pct_selected = order(pct_selected, decreasing=TRUE)
pct_ideal_selected = pct_ideal_selected/nrep*100
pct_ideal_top = pct_ideal_top/nrep*100
pct_sous_cov_select1 = pct_sous_cov_select1/nrep*100
pct_sous_ens_top1 = pct_sous_ens_top1/nrep*100
pct_sous_cov_select2 = pct_sous_cov_select2/nrep*100
pct_sous_ens_top2 = pct_sous_ens_top2/nrep*100
if(nb_cores>1){
stopCluster(cl)
}
res = list( "pct_no_subgroup"=pct_no_subgroup, "mean_size"=mean_size,
"pct_ideal_selected"=pct_ideal_selected, "pct_ideal_top"=pct_ideal_top,
"pct_sous_cov_select1"=pct_sous_cov_select1, "pct_sous_ens_top1"=pct_sous_ens_top1,
"pct_sous_cov_select2"=pct_sous_cov_select2, "pct_sous_ens_top2"=pct_sous_ens_top2,
"subgroups"=list_selected[or_pct_selected], "pct_selection"=pct_selected[or_pct_selected],
"ideal"=ideal )
res = c(res,"base"=list(all_set))
class(res) = "simulation_SIDES"
return(res)
}
identical_subgroups = function(g1, g2){
res = FALSE
if(sum(!is.element(g1[[1]], g2[[1]])) == 0 && sum(!is.element(g2[[1]], g1[[1]])) == 0){
for(j in 1:length(g1[[1]])){
ind_j = which(g1[[1]][j]==g2[[1]])
if(sum(!is.element(g1[[2]][[j]], g2[[2]][[ind_j]])) == 0 && sum(!is.element(g2[[2]][[ind_j]], g1[[2]][[j]])) == 0){
res = TRUE
}
}
}
return(res)
}
included_subgroups = function(g1, g2){
res = FALSE
if(sum(!is.element(g1[[1]], g2[[1]])) == 0){
for(j in 1:length(g1[[1]])){
ind_j = which(g1[[1]][j]==g2[[1]])
if(sum(!is.element(g1[[2]][[j]], g2[[2]][[ind_j]])) == 0){
res = TRUE
}
}
}
return(res)
}
print_gpe = function(subgroup, pval=NA, x, pct=NA){
icov = subgroup[[1]]
nb_cov = length(icov)
type_var = subgroup[[3]]
levels_icov = subgroup[[2]]
txt_sgpe = c()
for(i in 1:nb_cov){
levels_theo = sort(unique(x$base[,icov[i]]))
levels_sgpe = c()
if(type_var[i]=="ordinal"){
val_cut = as.numeric(substr(levels_icov[[i]],1,nchar(levels_icov[[i]])-1))
signe = substr(levels_icov[[i]],nchar(levels_icov[[i]]),nchar(levels_icov[[i]]))
levels_sgpe = ""
if(signe == "-"){
levels_sgpe = levels_theo[which(levels_theo<=val_cut)]
}
else{
levels_sgpe = levels_theo[which(levels_theo>val_cut)]
}
tlevels_sgpe = paste(levels_sgpe, collapse=",")
txt_sgpe = c(txt_sgpe, paste(names(x$base)[icov[i]], " = {", tlevels_sgpe,"}",sep=""))
}
else if(type_var[i]=="nominal"){
levels_sgpe = levels_icov[[i]]
tlevels_sgpe = paste(levels_sgpe, collapse=",")
txt_sgpe = c(txt_sgpe, paste(names(x$base)[icov[i]], " = {", tlevels_sgpe,"}",sep=""))
}
else if(type_var[i]=="continuous"){
val_cut = as.numeric(substr(levels_icov[[i]],1,nchar(levels_icov[[i]])-1))
signe = substr(levels_icov[[i]],nchar(levels_icov[[i]]),nchar(levels_icov[[i]]))
levels_sgpe = ""
if(signe == "-"){
signe = "<="
}
else{
signe = ">"
}
txt_sgpe = c(txt_sgpe, paste(names(x$base)[icov[i]], " ", signe, " ", val_cut, sep=""))
}
if(i < nb_cov){
txt_sgpe = c(txt_sgpe, " AND ")
}
else{
txt_sgpe = c(txt_sgpe, "\n")
}
}
cat(txt_sgpe)
if(!is.na(pval)){
cat("pvalue = ", pval, "\n")
}
if(!is.na(pct)){
cat("Percentage of selection = ", pct, "% \n")
}
}
print.SIDES = function(x, ...){
nb_cand = length(x$candidates[[2]])
nb_conf = length(x$confirmed[[2]])
if(nb_cand>0){
cat("Identified candidate subgroups before confirmation phase:\n")
for(i in 1:nb_cand){
print_gpe(subgroup=x$candidates[[1]][[i]], pval=x$candidates[[2]][i], x=x)
}
}
else{
cat("No candidate subgroups identified before confirmation phase:\n")
}
if(nb_conf>0){
cat("Confirmed candidate subgroups:\n")
for(i in 1:nb_conf){
print_gpe(subgroup=x$confirmed[[1]][[i]], pval=x$confirmed[[2]][i], x=x)
}
}
else{
cat("No candidate subgroups confirmed:\n")
}
}
print.simulation_SIDES = function(x, ...){
nb_ssgpe = length(x$pct_selection)
others = FALSE
cat("No subgroup selected in ", x$pct_no_subgroup, "% \n")
cat("Average size of the confirmed subgroups in the training data set in ", x$mean_size, "\n")
if(length(x$ideal) > 1 || (length(x$ideal) == 1 && is.na(x$ideal)==FALSE)){
cat("Percentage of simulations where the ideal subgroup is confirmed: ", x$pct_ideal_selected, "% \n")
cat("Percentage of simulations where the ideal subgroup is the top confirmed subgroup: ", x$pct_ideal_top, "% \n")
cat("Percentage of simulations where a subgroup containing a subset of the covariates used to define the ideal subgroup is selected (including the ideal): ", x$pct_sous_cov_select1, "% \n")
cat("Percentage of simulations where a subgroup containing a subset of the covariates used to define the ideal subgroup is selected (excluding the ideal): ", x$pct_sous_cov_select2, "% \n")
cat("Percentage of simulations where a subset of the ideal subgroup is selected (including the ideal): ", x$pct_sous_ens_top1, "% \n")
cat("Percentage of simulations where a subset of the ideal subgroup is selected (exluding the ideal): ", x$pct_sous_ens_top2, "% \n")
}
if(nb_ssgpe>0){
cat("Confirmed candidate subgroups:\n")
for(i in 1:nb_ssgpe){
if(x$pct_selection[i] >= 10){
print_gpe(subgroup=x$subgroups[[i]], x=x, pct=x$pct_selection[i])
}
else{
others = TRUE
}
}
if(others == TRUE){
cat("Others subgroups in less than 10% \n")
}
}
} |
.onLoad<- function(libname, pkgname) {
assign("pkg.globals", new.env(), envir=parent.env(environment()))
assign("pkg.basedir", NA, pkg.globals)
assign("pkg.modeldir", NA, pkg.globals)
assign("pkg.scenariodir", NA, pkg.globals)
assign("pkg.modellibdir", NA, pkg.globals)
assign("pkg.id", NA, pkg.globals)
assign("pkg.cwd", NA, pkg.globals)
assign("pkg.parameters", data.frame(), pkg.globals)
assign("pkg.results", data.frame(), pkg.globals)
assign("pkg.progressbar", NULL, pkg.globals)
assign("pkg.progressbar.enabled", FALSE, pkg.globals)
assign("pkg.stats.calls", 0, pkg.globals)
assign("pkg.parallelize", FALSE, pkg.globals)
assign("pkg.runcluster", NULL, pkg.globals)
assign("pkg.maxcores", getpkgdefaultcores(), pkg.globals)
assign("pkg.outputdir",paste0(Sys.getenv("TMP"),"/rrepast-deployment/"), pkg.globals)
assign("pkg.repastlibdir", "/repast.simphony/", pkg.globals)
assign("pkg.java.parameters","-server -Xms512m -Xmx1024m", pkg.globals)
assign("pkg.randomSeed","randomSeed", pkg.globals)
set.seed(exp(1)*10^6)
compatibility()
}
Model<- function(modeldir="",maxtime=300,dataset="none", load=FALSE) {
if(dir.exists(modeldir)) {
configModelDirs(modeldir)
jvm.init()
e<- Engine()
Engine.endAt(e,maxtime)
Engine.SetAggregateDataSet(e,dataset)
if(load == TRUE) {
Load(e)
}
return(e)
} else {
stop(paste0("The model directory does not exist: ", modeldir))
}
}
Load<- function(e) {
Engine.LoadModel(e,getScenarioDir())
setId(Engine.getId(e))
}
Run<- function(e,r=1,seed=c()) {
if(length(seed) == 0) {
seed= runif(r,-10^8,10^8)
} else if(length(seed) != r) {
stop("The provided set of random numbers doesn't match replications!")
}
p<- GetSimulationParameters(e)
ClearResults()
SetResultsParameters(p)
PB.init(1, r)
results<- c()
for(i in 1:r) {
if(r > 1) {
Engine.setParameter(e,getKeyRandom(),as.integer(seed[i]))
}
Engine.RunModel(e)
data<- GetOutput(e)
data$run<- i
AddResults(data)
results<- rbind(results,data)
PB.update(i)
}
PB.close()
return(results)
}
RunExperiment<- function(e, r=1, design, FUN) {
paramset<- c()
output<- c()
dataset<- c()
psets<- nrow(design)
PB.init(psets, r)
for(i in 1:psets) {
d<- design[i,]
SetSimulationParameters(e, d)
PB.pset(i)
results<- Run(e,r)
calibration<- FUN(d,results)
if(is.null(calibration)) {
stop("Invalid user provided calibration function!")
}
pset<- i
paramset<- rbind(paramset,cbind(pset,d))
output<- rbind(output,cbind(pset,calibration))
dataset<- rbind(dataset,cbind(pset,results))
}
PB.close()
return(list(paramset=paramset, output=output, dataset=dataset))
}
getExperimentParamSet<- function(e) {
v<- e$paramset
return(v)
}
getExperimentOutput<- function(e) {
v<- e$output
return(v)
}
getExperimentDataset<- function(e) {
v<- e$dataset
return(v)
}
GetOutput<- function(e) {
c<- textConnection(Engine.GetModelOutput(e))
read.csv(c)
}
GetSimulationParameterType<- function(e, k) {
Engine.getParameterType(e, k)
}
UpdateDefaultParameters<- function(e, p) {
if(is.null(e)) {
stop("Engine object is null!")
}
parameters<- GetSimulationParameters(e)
for(key in names(p)) {
if(key %in% names(parameters)) {
value<- sprintf("%s",p[key])
SetSimulationParameter(e, key, value)
} else {
print(sprintf("The model does not have a paramter with name [ %s ]",key))
}
}
}
SetSimulationParameters<- function(e, p) {
if(is.null(e)) {
stop("Engine object is null!")
}
for(key in names(p)) {
value<- p[1,key]
if(is.factor(value)) {
value<- levels(value)
}
SetSimulationParameter(e, key, value)
}
}
SetSimulationParameter<- function(e, key, value) {
if(is.null(e)) {
stop("Engine object is null!")
}
keys<- names(GetSimulationParameters(e))
if(key %in% keys) {
switch(typeof(value),
double = {
value<- as.double(value)
},
integer = {
value<- as.integer(value)
},
character = {
value<- as.character(value)
})
Engine.setParameter(e,key,value)
}
}
GetSimulationParameters<- function(e) {
keys<- ""
values<- ""
names<- Engine.getParameterNames(e)
for(n in names) {
v<- Engine.getParameterAsString(e,n)
if(nchar(keys) == 0){
keys<- n
values<- v
} else {
keys<- paste0(keys,",",n)
values<- paste0(values,",",v)
}
}
b<- rbind(keys,values)
c<- textConnection(b)
read.csv(c)
}
ClearResults<- function() {
assign("pkg.results", data.frame(), pkg.globals)
assign("pkg.parameters", data.frame(), pkg.globals)
}
GetResults<- function() {
return(get("pkg.results", pkg.globals))
}
SetResults<- function(d) {
assign("pkg.results", d, pkg.globals)
}
AddResults<- function(d) {
r<- GetResults()
SetResults(rbind(r,d))
}
GetResultsParameters<- function() {
return(get("pkg.parameters", pkg.globals))
}
SetResultsParameters<- function(d) {
assign("pkg.parameters", d, pkg.globals)
}
SaveSimulationData<- function(as="csv", experiment=NULL) {
createOutputDir()
filename<- getId()
if(is.na(filename)) {
stop("Model was not initialized correctly!")
}
paramset<- NULL
output<- NULL
dataset<- NULL
if(!is.null(experiment)) {
paramset<- getExperimentParamSet(experiment)
output<- getExperimentOutput(experiment)
dataset<- getExperimentDataset(experiment)
} else {
paramset<- GetResultsParameters()
dataset<- GetResults()
}
hash <- digest(Sys.time(), algo="crc32")
f0<- paste0(getOutputDir(),tolower(filename),"-paramset-",hash)
f1<- paste0(getOutputDir(),tolower(filename),"-output-",hash)
f2<- paste0(getOutputDir(),tolower(filename),"-dataset-",hash)
switch(as,
csv = {
f0<- paste0(f0,".csv")
f1<- paste0(f1,".csv")
f2<- paste0(f2,".csv")
write.csv(paramset, f0, row.names=FALSE)
if(!is.null(output)) {
write.csv(output, f1, row.names=FALSE)
}
write.csv(dataset, f2, row.names=FALSE)
},
xls = {
f0<- paste0(f0,".xlsx")
f1<- paste0(f1,".xlsx")
f2<- paste0(f2,".xlsx")
xlsx::write.xlsx(paramset, f0)
if(!is.null(output)) {
xlsx::write.xlsx(output, f1)
}
xlsx::write.xlsx(dataset, f0)
})
return(hash)
}
AddFactor<- function(factors=c(), lambda="qunif",name, min, max, int=FALSE) {
if(max < min) {
stop("Invalid factor range!")
}
rrow<- c(lambda=lambda,name=name,min=min,max=max, int=int)
rownames(rrow)<- NULL
if(length(factors) > 0 && any(factors[,"name"] == name)) {
i<- which(factors[,"name"] == name)
factors[i,]<- c(rrow)
} else {
factors<- rbind(factors,c(rrow))
}
return(factors)
}
AddFactor0<- function(factors=c(), ...) {
argv<- list(...)
v.lambda<- ifelse(is.null(lget(argv,"lambda")), "qunif", lget(argv,"lambda"))
v.int<- ifelse(is.null(lget(argv,"int")), FALSE, lget(argv,"int"))
is.range<- function(v) {
(lcontains(v,"name") && lcontains(v,"min") && lcontains(v,"max") && (!lcontains(v,"levels")))
}
is.levels<- function(v) {
(lcontains(v,"name") && lcontains(v,"levels") && !(lcontains(v,"min") || lcontains(v,"max")))
}
if(is.range(argv)) {
name<- lget(argv,"name")
v.min<- lget(argv,"min")
v.max<- lget(argv,"max")
if(v.max < v.min) {
stop("Invalid factor range!")
}
rrow<- c(lambda=v.lambda,name=name,min=v.min,max=v.max, int=v.int)
} else {
if (is.levels(argv)) {
name<- lget(argv,"name")
v.levels<- lget(argv,"levels")
rrow<- c(lambda=v.lambda,name=name,levels=as.list(v.levels))
} else {
stop("Invalid parameter combination!")
}
}
rownames(rrow)<- NULL
if(length(factors) > 0 && any(factors[,"name"] == name)) {
i<- which(factors[,"name"] == name)
factors[i,]<- c(rrow)
} else {
factors<- rbind(factors,c(rrow))
}
factors
}
GetFactorLevels<- function(factors, name) {
mylevels<- c()
if(length(factors) > 0 && any(factors[,"name"] == name)) {
i<- which(factors[,"name"] == name)
n<- ncol(factors)
for(j in (which(colnames(factors) == "levels1")):n) {
mylevels<- c(mylevels, factors[[i, j]])
}
}
mylevels
}
GetFactorsSize<- function(factors) {
n<- nrow(factors)
if(is.null(n)) n<- 0
return(n)
}
ApplyFactorRange<- function(design, factors) {
trunciftrue<- function(v, f) {
if(f) {
v<- trunc(v)
}
v
}
k<- GetFactorsSize(factors)
d<- sapply(1:k, function(p) {trunciftrue(match.fun( factors[p,"lambda"])(design[,p],as.numeric(factors[p,"min"]),as.numeric(factors[p,"max"])), factors[p,"int"])})
if(is.null(nrow(d))) {
d<- as.data.frame(t(d))
} else {
d<- as.data.frame(d)
}
names(d)<- factors[,"name"]
return(d)
}
BuildParameterSet<- function(design, parameters) {
v<- as.data.frame(design)
tmp.p<- parameters
for(n in names(v)) {
tmp.p[n]<- NULL
}
for(i in 1:length(names(tmp.p))) {
v<- cbind(tmp.p[i],v)
}
return(v)
} |
nd.moments <- function(A, k=3, metric=c("euclidean","maximum","manhattan","canberra","binary","minkowski"), out.dist=TRUE){
if ((!is.list(A))||(length(A)<=1)){
stop("* nd.moments : input 'A' should be a list of length larger than 1.")
}
listA = list_transform(A, NIflag="not")
N = length(listA)
myk = round(k)
if (missing(metric)){
mymetric = "euclidean"
} else {
mymetric = match.arg(metric)
}
myreturn = as.logical(out.dist)
features = array(0,c(N,myk))
for (n in 1:N){
features[n,] = (moment_single2(as.matrix(listA[[n]]), myk))
}
dmat = stats::dist(features, method=mymetric)
if (!myreturn){
dmat = as.matrix(dmat)
}
result = list()
result$D= dmat
return(result)
}
moment_single1 <- function(Amat, k){
n = nrow(Amat)
temp = Amat
mult = Amat
output = rep(0,k)
for (i in 1:k){
output[i] = (base::sum(base::diag(temp)))/(exp(1+(i/2.0)*log(n)))
if (i < k){
temp = temp%*%mult
}
}
return(log(output))
}
moment_single2 <- function(Amat, k){
n = nrow(Amat)
temp = Amat/n
mult = Amat/n
output = rep(0,k)
for (i in 1:k){
output[i] = base::sum(base::diag(temp))
temp = temp%*%mult
}
return(log(output))
} |
download_rba <- function(urls, path = tempdir()) {
check_rba_connection()
filenames <- basename(urls)
filenames_with_path <- file.path(path, filenames)
safely_download_files <- purrr::safely(do_download_files)
download_result <- safely_download_files(
urls = urls,
filenames_with_path = filenames_with_path
)
if (!is.null(download_result$error)) {
Sys.sleep(5)
download_result <- safely_download_files(
urls = urls,
filenames_with_path = filenames_with_path
)
}
if (!is.null(download_result$error)) {
stop("Could not download ", urls)
}
invisible(filenames_with_path)
}
do_download_files <- function(urls, filenames_with_path) {
user_timeout <- getOption("timeout")
options(timeout = 120)
purrr::walk2(
.x = urls,
.y = filenames_with_path,
.f = utils::download.file,
quiet = FALSE,
mode = "wb",
headers = readrba_header
)
options(timeout = user_timeout)
} |
require(geometa, quietly = TRUE)
require(testthat)
context("ISOImageryMetadata")
test_that("encoding/decoding",{
testthat::skip_on_cran()
md = ISOImageryMetadata$new()
md$setFileIdentifier("my-metadata-identifier")
md$setParentIdentifier("my-parent-metadata-identifier")
md$setCharacterSet("utf8")
md$setLanguage("eng")
md$setDateStamp(ISOdate(2015, 1, 1, 1))
md$setMetadataStandardName("ISO 19115:2003/19139")
md$setMetadataStandardVersion("1.0")
md$setDataSetURI("my-dataset-identifier")
for(i in 1:3){
rp <- ISOResponsibleParty$new()
rp$setIndividualName(paste0("Firstname",i," Lastname",i))
rp$setOrganisationName("somewhere")
rp$setPositionName(paste0("someposition",i))
rp$setRole("pointOfContact")
contact <- ISOContact$new()
phone <- ISOTelephone$new()
phone$setVoice(paste0("myphonenumber",i))
phone$setFacsimile(paste0("myfacsimile",i))
contact$setPhone(phone)
address <- ISOAddress$new()
address$setDeliveryPoint("theaddress")
address$setCity("thecity")
address$setPostalCode("111")
address$setCountry("France")
address$setEmail("[email protected]")
contact$setAddress(address)
res <- ISOOnlineResource$new()
res$setLinkage("http://somelink")
res$setName("someresourcename")
contact$setOnlineResource(res)
rp$setContactInfo(contact)
expect_true(md$addContact(rp))
}
expect_equal(length(md$contact), 3L)
expect_true(md$delContact(rp))
expect_equal(length(md$contact), 2L)
vsr <- ISOVectorSpatialRepresentation$new()
vsr$setTopologyLevel("geometryOnly")
geomObject <- ISOGeometricObjects$new()
geomObject$setGeometricObjectType("surface")
geomObject$setGeometricObjectCount(5L)
vsr$setGeometricObjects(geomObject)
expect_true(md$addSpatialRepresentationInfo(vsr))
expect_false(md$addSpatialRepresentationInfo(vsr))
geomObject$setGeometricObjectCount(6L)
expect_true(md$delSpatialRepresentationInfo(vsr))
rs <- ISOReferenceSystem$new()
rsId <- ISOReferenceIdentifier$new(code = "4326", codeSpace = "EPSG")
rs$setReferenceSystemIdentifier(rsId)
md$setReferenceSystemInfo(rs)
ident <- ISODataIdentification$new()
ident$setAbstract("abstract")
ident$setPurpose("purpose")
expect_true(ident$addCredit("credit1"))
expect_false(ident$addCredit("credit1"))
expect_true(ident$addCredit("credit2"))
expect_true(ident$addCredit("credit3"))
expect_equal(length(ident$credit), 3L)
expect_true(ident$delCredit("credit3"))
expect_equal(length(ident$credit), 2L)
expect_true(ident$addStatus("completed"))
expect_false(ident$addStatus("completed"))
expect_true(ident$addStatus("valid"))
expect_true(ident$addStatus("final"))
expect_equal(length(ident$status), 3L)
expect_true(ident$delStatus("final"))
expect_equal(length(ident$status), 2L)
ident$setLanguage("eng")
ident$setCharacterSet("utf8")
ident$addTopicCategory("biota")
ident$addTopicCategory("oceans")
rp <- ISOResponsibleParty$new()
rp$setIndividualName("John Who")
rp$setOrganisationName("somewhere")
rp$setPositionName("someposition")
rp$setRole("pointOfContact")
contact <- ISOContact$new()
phone <- ISOTelephone$new()
phone$setVoice("myphonenumber")
phone$setFacsimile("myfacsimile")
contact$setPhone(phone)
address <- ISOAddress$new()
address$setDeliveryPoint("theaddress")
address$setCity("thecity")
address$setPostalCode("111")
address$setCountry("France")
address$setEmail("[email protected]")
contact$setAddress(address)
res <- ISOOnlineResource$new()
res$setLinkage("http://somelink")
res$setName("somename")
contact$setOnlineResource(res)
rp$setContactInfo(contact)
ident$addPointOfContact(rp)
ct <- ISOCitation$new()
ct$setTitle("sometitle")
d1 <- ISODate$new()
d1$setDate(ISOdate(2015, 1, 1, 1))
d1$setDateType("creation")
ct$addDate(d1)
d2 <- ISODate$new()
d2$setDate(ISOdate(2015, 3, 31, 1))
d2$setDateType("publication")
ct$addDate(d2)
ct$setEdition("1.0")
ct$setEditionDate(as.Date(ISOdate(2015, 1, 1, 1)))
ct$addIdentifier(ISOMetaIdentifier$new(code = "identifier"))
ct$addPresentationForm("mapDigital")
ct$addCitedResponsibleParty(rp)
ident$setCitation(ct)
go1 <- ISOBrowseGraphic$new(
fileName = "http://wwww.somefile.org/png1",
fileDescription = "Map Overview 1",
fileType = "image/png"
)
go2 <- ISOBrowseGraphic$new(
fileName = "http://www.somefile.org/png2",
fileDescription = "Map Overview 2",
fileType = "image/png"
)
expect_true(ident$addGraphicOverview(go1))
expect_false(ident$addGraphicOverview(go1))
expect_true(ident$addGraphicOverview(go2))
expect_equal(length(ident$graphicOverview), 2L)
expect_true(ident$delGraphicOverview(go2))
expect_equal(length(ident$graphicOverview), 1L)
mi <- ISOMaintenanceInformation$new()
mi$setMaintenanceFrequency("daily")
ident$setResourceMaintenance(mi)
lc <- ISOLegalConstraints$new()
lc$addUseLimitation("limitation1")
lc$addUseLimitation("limitation2")
lc$addUseLimitation("limitation3")
lc$addAccessConstraint("copyright")
lc$addAccessConstraint("license")
lc$addUseConstraint("copyright")
lc$addUseConstraint("license")
expect_equal(length(lc$useLimitation), 3L)
expect_equal(length(lc$accessConstraints), 2L)
expect_equal(length(lc$useConstraints), 2L)
ident$addResourceConstraints(lc)
sc <- ISOSecurityConstraints$new()
sc$setClassification("secret")
sc$setUserNote("ultra secret")
sc$setClassificationSystem("no classification in particular")
sc$setHandlingDescription("description")
ident$addResourceConstraints(sc)
expect_equal(length(ident$resourceConstraints), 2L)
expect_true(ident$delResourceConstraints(sc))
expect_equal(length(ident$resourceConstraints), 1L)
extent <- ISOExtent$new()
bbox <- ISOGeographicBoundingBox$new(minx = -180, miny = -90, maxx = 180, maxy = 90)
extent$setGeographicElement(bbox)
vert <- ISOVerticalExtent$new()
vert$setMinimumValue(0)
vert$setMaximumValue(500)
extent$setVerticalElement(vert)
te <- ISOTemporalExtent$new()
start <- ISOdate(2000, 1, 12, 12, 59, 45)
end <- ISOdate(2010, 8, 22, 13, 12, 43)
tp <- GMLTimePeriod$new(beginPosition = start, endPosition = end)
te$setTimePeriod(tp)
extent$setTemporalElement(te)
ident$setExtent(extent)
kwds1 <- ISOKeywords$new()
kwds1$addKeyword("keyword1")
kwds1$addKeyword("keyword2")
kwds1$setKeywordType("theme")
th1 <- ISOCitation$new()
th1$setTitle("General1")
th1$addDate(d1)
kwds1$setThesaurusName(th1)
ident$addKeywords(kwds1)
kwds2 <- ISOKeywords$new()
kwds2$addKeyword("keyword1")
kwds2$addKeyword("keyword2")
kwds2$setKeywordType("theme")
th2 <- ISOCitation$new()
th2$setTitle("General2")
th2$addDate(d1)
kwds2$setThesaurusName(th2)
ident$addKeywords(kwds2)
kwds3 <- ISOKeywords$new()
kwds3$addKeyword("Dinophysis sp")
kwds3$addKeyword("Prorocentrum lima")
kwds3$addKeyword("Gambierdiscus toxicus")
kwds3$setKeywordType("theme")
th3 <- ISOCitation$new()
th3$setTitle("Taxonomy")
th3$addDate(d1)
kwds3$setThesaurusName(th3)
ident$addKeywords(kwds3)
ident$setSupplementalInformation("some additional information")
expect_true(ident$addSpatialRepresentationType("vector"))
expect_false(ident$addSpatialRepresentationType("vector"))
expect_true(ident$addSpatialRepresentationType("grid"))
expect_equal(length(ident$spatialRepresentationType), 2L)
expect_true(ident$delSpatialRepresentationType("grid"))
expect_equal(length(ident$spatialRepresentationType), 1L)
md$setIdentificationInfo(ident)
distrib <- ISODistribution$new()
dto <- ISODigitalTransferOptions$new()
for(i in 1:3){
or <- ISOOnlineResource$new()
or$setLinkage(paste0("http://somelink",i))
or$setName(paste0("name",i))
or$setDescription(paste0("description",i))
or$setProtocol("WWW:LINK-1.0-http--link")
dto$addOnlineResource(or)
}
distrib$setDigitalTransferOptions(dto)
md$setDistributionInfo(distrib)
dq <- ISODataQuality$new()
scope <- ISOScope$new()
scope$setLevel("dataset")
dq$setScope(scope)
dc <- ISODomainConsistency$new()
result <- ISOConformanceResult$new()
spec <- ISOCitation$new()
spec$setTitle("specification title")
spec$addAlternateTitle("specification alternate title")
d <- ISODate$new()
d$setDate(ISOdate(2015, 1, 1, 1))
d$setDateType("publication")
spec$addDate(d1)
result$setSpecification(spec)
result$setExplanation("some explanation about the conformance")
result$setPass(TRUE)
dc$addResult(result)
dq$addReport(dc)
lineage <- ISOLineage$new()
lineage$setStatement("statement")
dq$setLineage(lineage)
md$setDataQualityInfo(dq)
md = ISOImageryMetadata$new()
md$setFileIdentifier("my-metadata-identifier")
md$setParentIdentifier("my-parent-metadata-identifier")
md$setCharacterSet("utf8")
md$setLanguage("eng")
md$setDateStamp(ISOdate(2015, 1, 1, 1))
md$setMetadataStandardName("ISO 19115:2003/19139")
md$setMetadataStandardVersion("1.0")
md$setDataSetURI("my-dataset-identifier")
for(i in 1:3){
rp <- ISOResponsibleParty$new()
rp$setIndividualName(paste0("Firstname",i," Lastname",i))
rp$setOrganisationName("somewhere")
rp$setPositionName(paste0("someposition",i))
rp$setRole("pointOfContact")
contact <- ISOContact$new()
phone <- ISOTelephone$new()
phone$setVoice(paste0("myphonenumber",i))
phone$setFacsimile(paste0("myfacsimile",i))
contact$setPhone(phone)
address <- ISOAddress$new()
address$setDeliveryPoint("theaddress")
address$setCity("thecity")
address$setPostalCode("111")
address$setCountry("France")
address$setEmail("[email protected]")
contact$setAddress(address)
res <- ISOOnlineResource$new()
res$setLinkage("http://somelink")
res$setName("someresourcename")
contact$setOnlineResource(res)
rp$setContactInfo(contact)
expect_true(md$addContact(rp))
}
expect_equal(length(md$contact), 3L)
expect_true(md$delContact(rp))
expect_equal(length(md$contact), 2L)
vsr <- ISOVectorSpatialRepresentation$new()
vsr$setTopologyLevel("geometryOnly")
geomObject <- ISOGeometricObjects$new()
geomObject$setGeometricObjectType("surface")
geomObject$setGeometricObjectCount(5L)
vsr$setGeometricObjects(geomObject)
expect_true(md$addSpatialRepresentationInfo(vsr))
expect_false(md$addSpatialRepresentationInfo(vsr))
geomObject$setGeometricObjectCount(6L)
expect_true(md$delSpatialRepresentationInfo(vsr))
rs <- ISOReferenceSystem$new()
rsId <- ISOReferenceIdentifier$new(code = "4326", codeSpace = "EPSG")
rs$setReferenceSystemIdentifier(rsId)
md$setReferenceSystemInfo(rs)
ident <- ISODataIdentification$new()
ident$setAbstract("abstract")
ident$setPurpose("purpose")
expect_true(ident$addCredit("credit1"))
expect_false(ident$addCredit("credit1"))
expect_true(ident$addCredit("credit2"))
expect_true(ident$addCredit("credit3"))
expect_equal(length(ident$credit), 3L)
expect_true(ident$delCredit("credit3"))
expect_equal(length(ident$credit), 2L)
expect_true(ident$addStatus("completed"))
expect_false(ident$addStatus("completed"))
expect_true(ident$addStatus("valid"))
expect_true(ident$addStatus("final"))
expect_equal(length(ident$status), 3L)
expect_true(ident$delStatus("final"))
expect_equal(length(ident$status), 2L)
ident$setLanguage("eng")
ident$setCharacterSet("utf8")
ident$addTopicCategory("biota")
ident$addTopicCategory("oceans")
rp <- ISOResponsibleParty$new()
rp$setIndividualName("John Who")
rp$setOrganisationName("somewhere")
rp$setPositionName("someposition")
rp$setRole("pointOfContact")
contact <- ISOContact$new()
phone <- ISOTelephone$new()
phone$setVoice("myphonenumber")
phone$setFacsimile("myfacsimile")
contact$setPhone(phone)
address <- ISOAddress$new()
address$setDeliveryPoint("theaddress")
address$setCity("thecity")
address$setPostalCode("111")
address$setCountry("France")
address$setEmail("[email protected]")
contact$setAddress(address)
res <- ISOOnlineResource$new()
res$setLinkage("http://somelink")
res$setName("somename")
contact$setOnlineResource(res)
rp$setContactInfo(contact)
ident$addPointOfContact(rp)
ct <- ISOCitation$new()
ct$setTitle("sometitle")
d1 <- ISODate$new()
d1$setDate(ISOdate(2015, 1, 1, 1))
d1$setDateType("creation")
ct$addDate(d1)
d2 <- ISODate$new()
d2$setDate(ISOdate(2015, 3, 31, 1))
d2$setDateType("publication")
ct$addDate(d2)
ct$setEdition("1.0")
ct$setEditionDate(as.Date(ISOdate(2015, 1, 1, 1)))
ct$addIdentifier(ISOMetaIdentifier$new(code = "identifier"))
ct$addPresentationForm("mapDigital")
ct$addCitedResponsibleParty(rp)
ident$setCitation(ct)
go1 <- ISOBrowseGraphic$new(
fileName = "http://wwww.somefile.org/png1",
fileDescription = "Map Overview 1",
fileType = "image/png"
)
go2 <- ISOBrowseGraphic$new(
fileName = "http://www.somefile.org/png2",
fileDescription = "Map Overview 2",
fileType = "image/png"
)
expect_true(ident$addGraphicOverview(go1))
expect_false(ident$addGraphicOverview(go1))
expect_true(ident$addGraphicOverview(go2))
expect_equal(length(ident$graphicOverview), 2L)
expect_true(ident$delGraphicOverview(go2))
expect_equal(length(ident$graphicOverview), 1L)
mi <- ISOMaintenanceInformation$new()
mi$setMaintenanceFrequency("daily")
ident$setResourceMaintenance(mi)
lc <- ISOLegalConstraints$new()
lc$addUseLimitation("limitation1")
lc$addUseLimitation("limitation2")
lc$addUseLimitation("limitation3")
lc$addAccessConstraint("copyright")
lc$addAccessConstraint("license")
lc$addUseConstraint("copyright")
lc$addUseConstraint("license")
expect_equal(length(lc$useLimitation), 3L)
expect_equal(length(lc$accessConstraints), 2L)
expect_equal(length(lc$useConstraints), 2L)
ident$addResourceConstraints(lc)
sc <- ISOSecurityConstraints$new()
sc$setClassification("secret")
sc$setUserNote("ultra secret")
sc$setClassificationSystem("no classification in particular")
sc$setHandlingDescription("description")
ident$addResourceConstraints(sc)
expect_equal(length(ident$resourceConstraints), 2L)
expect_true(ident$delResourceConstraints(sc))
expect_equal(length(ident$resourceConstraints), 1L)
extent <- ISOExtent$new()
bbox <- ISOGeographicBoundingBox$new(minx = -180, miny = -90, maxx = 180, maxy = 90)
extent$setGeographicElement(bbox)
vert <- ISOVerticalExtent$new()
vert$setMinimumValue(0)
vert$setMaximumValue(500)
extent$setVerticalElement(vert)
te <- ISOTemporalExtent$new()
start <- ISOdate(2000, 1, 12, 12, 59, 45)
end <- ISOdate(2010, 8, 22, 13, 12, 43)
tp <- GMLTimePeriod$new(beginPosition = start, endPosition = end)
te$setTimePeriod(tp)
extent$setTemporalElement(te)
ident$setExtent(extent)
kwds1 <- ISOKeywords$new()
kwds1$addKeyword("keyword1")
kwds1$addKeyword("keyword2")
kwds1$setKeywordType("theme")
th1 <- ISOCitation$new()
th1$setTitle("General1")
th1$addDate(d1)
kwds1$setThesaurusName(th1)
ident$addKeywords(kwds1)
kwds2 <- ISOKeywords$new()
kwds2$addKeyword("keyword1")
kwds2$addKeyword("keyword2")
kwds2$setKeywordType("theme")
th2 <- ISOCitation$new()
th2$setTitle("General2")
th2$addDate(d1)
kwds2$setThesaurusName(th2)
ident$addKeywords(kwds2)
kwds3 <- ISOKeywords$new()
kwds3$addKeyword("Dinophysis sp")
kwds3$addKeyword("Prorocentrum lima")
kwds3$addKeyword("Gambierdiscus toxicus")
kwds3$setKeywordType("theme")
th3 <- ISOCitation$new()
th3$setTitle("Taxonomy")
th3$addDate(d1)
kwds3$setThesaurusName(th3)
ident$addKeywords(kwds3)
ident$setSupplementalInformation("some additional information")
expect_true(ident$addSpatialRepresentationType("vector"))
expect_false(ident$addSpatialRepresentationType("vector"))
expect_true(ident$addSpatialRepresentationType("grid"))
expect_equal(length(ident$spatialRepresentationType), 2L)
expect_true(ident$delSpatialRepresentationType("grid"))
expect_equal(length(ident$spatialRepresentationType), 1L)
md$setIdentificationInfo(ident)
distrib <- ISODistribution$new()
dto <- ISODigitalTransferOptions$new()
for(i in 1:3){
or <- ISOOnlineResource$new()
or$setLinkage(paste0("http://somelink",i))
or$setName(paste0("name",i))
or$setDescription(paste0("description",i))
or$setProtocol("WWW:LINK-1.0-http--link")
dto$addOnlineResource(or)
}
distrib$setDigitalTransferOptions(dto)
md$setDistributionInfo(distrib)
dq <- ISODataQuality$new()
scope <- ISOScope$new()
scope$setLevel("dataset")
dq$setScope(scope)
dc <- ISODomainConsistency$new()
result <- ISOConformanceResult$new()
spec <- ISOCitation$new()
spec$setTitle("specification title")
spec$addAlternateTitle("specification alternate title")
d <- ISODate$new()
d$setDate(ISOdate(2015, 1, 1, 1))
d$setDateType("publication")
spec$addDate(d1)
result$setSpecification(spec)
result$setExplanation("some explanation about the conformance")
result$setPass(TRUE)
dc$addResult(result)
dq$addReport(dc)
lineage <- ISOLineage$new()
lineage$setStatement("statement")
dq$setLineage(lineage)
md$setDataQualityInfo(dq)
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- ISOImageryMetadata$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- ISOImageryMetadata$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
})
test_that("encoding/decoding - i18n",{
testthat::skip_on_cran()
md = ISOImageryMetadata$new()
md$setFileIdentifier("my-metadata-identifier")
md$setParentIdentifier("my-parent-metadata-identifier")
md$setCharacterSet("utf8")
md$setLanguage("eng")
md$setDateStamp(ISOdate(2015, 1, 1, 1))
md$setMetadataStandardName("ISO 19115:2003/19139")
md$setMetadataStandardVersion("1.0")
md$setDataSetURI("my-dataset-identifier")
eng <- ISOLocale$new()
eng$setId("EN")
eng$setLanguage("EN")
eng$setCharacterSet("utf8")
md$addLocale(eng)
fr <- ISOLocale$new()
fr$setId("FR")
fr$setLanguage("FR")
fr$setCharacterSet("utf8")
md$addLocale(fr)
esp <- ISOLocale$new()
esp$setLanguage("ES")
esp$setCharacterSet("utf8")
md$addLocale(esp)
chi <- ISOLocale$new()
chi$setLanguage("ZH")
chi$setCharacterSet("utf8")
md$addLocale(chi)
ru <- ISOLocale$new()
ru$setLanguage("RU")
ru$setCharacterSet("utf8")
md$addLocale(ru)
ar <- ISOLocale$new()
ar$setLanguage("AR")
ar$setCharacterSet("utf8")
md$addLocale(ar)
for(i in 1:3){
rp <- ISOResponsibleParty$new()
rp$setIndividualName(
"someone",
locales = list(
EN = paste("name in english",i),
FR = paste("nom en français",i),
ES = paste("Nombre en español",i),
AR = paste("الاسم باللغة العربية",i),
RU = paste("имя на русском",i),
ZH = paste("中文名",i)
))
rp$setOrganisationName(
"organization",
locales = list(
EN = "organization",
FR = "organisation",
ES = "organización",
AR = "منظمة",
RU = "организация",
ZH = "组织"
))
rp$setPositionName(
"someposition",
locales = list(
EN = paste("my position",i),
FR = paste("mon poste",i),
ES = paste("mi posición",i),
AR = paste("موقعي",i),
RU = paste("моя позиция",i),
ZH = paste("我的位置",i)
)
)
rp$setRole("pointOfContact")
contact <- ISOContact$new()
phone <- ISOTelephone$new()
phone$setVoice(
"myphonenumber",
locales = list(
EN = "myphonenumber in UK",
FR = "mon numéro en France",
ES = "mi número en España",
AR = "رقم هاتفي في المملكة العربية السعودية",
RU = "мой номер телефона в России",
ZH = "我在中国的电话号码"
)
)
phone$setFacsimile(
"myfacsimile",
locales = list(
EN = "mi facsimile in UK",
FR = "mon cax en France",
ES = "mi fax en España",
AR = "فاكس بلدي في المملكة العربية السعودية",
RU = "мой факс в россии",
ZH = "我在中国的传真"
)
)
contact$setPhone(phone)
address <- ISOAddress$new()
address$setDeliveryPoint(
"theaddress",
locales = list(
EN = "address in UK",
FR = "adresse en France",
ES = "dirección en España",
AR = "العنوان في المملكة العربية السعودية",
RU = "адрес в россии",
ZH = "在中国的地址"
))
address$setCity(
"thecity",
locales = list(
EN = "thecity",
FR="ville",
ES="Ciudad",
AR="مدينة",
RU="город",
ZH="城市"
))
address$setPostalCode(
"111",
locales=list(
EN="111_UK",FR="111_FR",ES="111_ES",AR="111_AR",RU="111_RU",ZH="111_ZH"
)
)
address$setCountry(
"United Kingdom",
locales=list(
EN="United Kingdom", FR="France", ES="España", AR="العربية السعودية", RU="Россия", ZH = "网站名称"
)
)
address$setEmail(
"[email protected]",
locales = list(
EN=paste0("someoneinuk",i,"@theorg.org"),
FR=paste0("someoneinfrance",i,"@theorg.org"),
ES=paste0("someoneinspain",i,"@theorg.org"),
AR=paste0("someoneinsaudiarabia",i,"@theorg.org"),
RU=paste0("someoneinrussia",i,"@theorg.org"),
ZH=paste0("someoneinchina",i,"@theorg.org")
)
)
contact$setAddress(address)
res <- ISOOnlineResource$new()
res$setLinkage("http://www.somewhereovertheweb.org")
res$setName(
"name",
locales=list(
EN="name of the website",
FR="nom du site internet",
ES="nombre del sitio web",
AR="اسم الموقع",
RU="название сайта",
ZH="网站名称"
))
res$setDescription(
"description",
locales = list(
EN="description_EN",
FR="description_FR",
ES="description_ES",
AR="description_AR",
RU="description_RU",
ZH="description_ZH"
))
res$setProtocol(
"protocol",
locales=list(
EN="protocol_EN",
FR="protocol_FR",
ES="protocol_ES",
AR="protocol_AR",
RU="protocol_RU",
ZH="protocol_ZH"
))
contact$setOnlineResource(res)
rp$setContactInfo(contact)
expect_true(md$addContact(rp))
}
expect_equal(length(md$contact), 3L)
expect_true(md$delContact(rp))
expect_equal(length(md$contact), 2L)
vsr <- ISOVectorSpatialRepresentation$new()
vsr$setTopologyLevel("geometryOnly")
geomObject <- ISOGeometricObjects$new()
geomObject$setGeometricObjectType("surface")
geomObject$setGeometricObjectCount(5L)
vsr$setGeometricObjects(geomObject)
expect_true(md$addSpatialRepresentationInfo(vsr))
expect_false(md$addSpatialRepresentationInfo(vsr))
geomObject$setGeometricObjectCount(6L)
expect_true(md$delSpatialRepresentationInfo(vsr))
rs <- ISOReferenceSystem$new()
rsId <- ISOReferenceIdentifier$new(code = "4326", codeSpace = "EPSG")
rs$setReferenceSystemIdentifier(rsId)
md$setReferenceSystemInfo(rs)
ident <- ISODataIdentification$new()
ident$setAbstract(
"abstract",
locales = list(
EN = "abstract",
FR = "résumé",
ES = "resumen",
AR = "ملخص",
RU = "резюме",
ZH = "摘要"
))
ident$setPurpose(
"purpose",
locales = list(
EN = "purpose",
FR = "objectif",
ES = "objetivo",
AR = "غرض",
RU = "цель",
ZH = "目的"
))
ident$setLanguage("eng")
ident$setCharacterSet("utf8")
ident$addTopicCategory("biota")
ident$addTopicCategory("oceans")
rp <- ISOResponsibleParty$new()
rp$setIndividualName(
"someone",
locales = list(
EN = "name in english",
FR = "nom en français",
ES = "Nombre en español",
AR = "الاسم باللغة العربية",
RU = "имя на русском",
ZH = "中文名"
))
rp$setOrganisationName(
"organization",
locales = list(
EN = "organization",
FR = "organisation",
ES = "organización",
AR = "منظمة",
RU = "организация",
ZH = "组织"
))
rp$setPositionName(
"someposition",
locales = list(
EN = "my position",
FR = "mon poste",
ES = "mi posición",
AR = "موقعي",
RU = "моя позиция",
ZH = "我的位置"
)
)
rp$setRole("pointOfContact")
contact <- ISOContact$new()
phone <- ISOTelephone$new()
phone$setVoice(
"myphonenumber",
locales = list(
EN = "myphonenumber in UK",
FR = "mon numéro en France",
ES = "mi número en España",
AR = "رقم هاتفي في المملكة العربية السعودية",
RU = "мой номер телефона в России",
ZH = "我在中国的电话号码"
)
)
phone$setFacsimile(
"myfacsimile",
locales = list(
EN = "mi facsimile in UK",
FR = "mon cax en France",
ES = "mi fax en España",
AR = "فاكس بلدي في المملكة العربية السعودية",
RU = "мой факс в россии",
ZH = "我在中国的传真"
)
)
contact$setPhone(phone)
address <- ISOAddress$new()
address$setDeliveryPoint(
"theaddress",
locales = list(
EN = "address in UK",
FR = "adresse en France",
ES = "dirección en España",
AR = "العنوان في المملكة العربية السعودية",
RU = "адрес в россии",
ZH = "在中国的地址"
))
address$setCity(
"thecity",
locales = list(
EN = "thecity",
FR="ville",
ES="Ciudad",
AR="مدينة",
RU="город",
ZH="城市"
))
address$setPostalCode(
"111",
locales=list(
EN="111_UK",FR="111_FR",ES="111_ES",AR="111_AR",RU="111_RU",ZH="111_ZH"
)
)
address$setCountry(
"United Kingdom",
locales=list(
EN="United Kingdom", FR="France", ES="España", AR="العربية السعودية", RU="Россия", ZH = "网站名称"
)
)
address$setEmail(
"[email protected]",
locales = list(
EN="[email protected]",
FR="[email protected]",
ES="[email protected]",
AR="[email protected]",
RU="[email protected]",
ZH="[email protected]"
)
)
contact$setAddress(address)
res <- ISOOnlineResource$new()
res$setLinkage("http://www.somewhereovertheweb.org")
res$setName(
"name",
locales=list(
EN="name of the website",
FR="nom du site internet",
ES="nombre del sitio web",
AR="اسم الموقع",
RU="название сайта",
ZH="网站名称"
))
res$setDescription(
"description",
locales = list(
EN="description_EN",
FR="description_FR",
ES="description_ES",
AR="description_AR",
RU="description_RU",
ZH="description_ZH"
))
res$setProtocol(
"protocol",
locales=list(
EN="protocol_EN",
FR="protocol_FR",
ES="protocol_ES",
AR="protocol_AR",
RU="protocol_RU",
ZH="protocol_ZH"
))
contact$setOnlineResource(res)
rp$setContactInfo(contact)
ident$addPointOfContact(rp)
ct <- ISOCitation$new()
ct$setTitle(
"sometitle",
locales = list(
EN = "title",
FR = "titre",
ES = "título",
AR = "لقبان",
RU = "название",
ZH = "标题"
)
)
d <- ISODate$new()
d$setDate(ISOdate(2015, 1, 1, 1))
d$setDateType("publication")
ct$addDate(d)
ct$setEdition("1.0")
ct$setEditionDate(ISOdate(2015,1,1))
ct$addIdentifier(ISOMetaIdentifier$new(code = "identifier"))
ct$addPresentationForm("mapDigital")
ct$addCitedResponsibleParty(rp)
ident$setCitation(ct)
go <- ISOBrowseGraphic$new()
go$setFileName("http://wwww.somefile.org/png")
go$setFileDescription(
"Map overview",
locales = list(
EN = "Map overview",
FR = "Aperçu de carte",
ES = "Vista general del mapa",
AR = "نظرة عامة على الخريطة",
RU = "Обзор карты",
ZH = "地图概述"
)
)
ident$setGraphicOverview(go)
mi <- ISOMaintenanceInformation$new()
mi$setMaintenanceFrequency("daily")
ident$setResourceMaintenance(mi)
lc <- ISOLegalConstraints$new()
lc$addUseLimitation(
"use limitation 1",
locales= list(
EN = "use limitation 1",
FR = "limitation d'utilisation 1",
ES = "limitación de uso 1",
AR = "الحد من الاستخدام 1",
RU = "предел использования 1",
ZH = "使用限制1"
))
lc$addUseLimitation(
"use limitation 2",
locales= list(
EN = "use limitation 2",
FR = "limitation d'utilisation 2",
ES = "limitación de uso 2",
AR = "2 الحد من الاستخدام ",
RU = "предел использования 2",
ZH = "使用限制2"
))
lc$addAccessConstraint("copyright")
lc$addAccessConstraint("license")
lc$addUseConstraint("copyright")
lc$addUseConstraint("license")
expect_equal(length(lc$useLimitation), 2L)
expect_equal(length(lc$accessConstraints), 2L)
expect_equal(length(lc$useConstraints), 2L)
ident$setResourceConstraints(lc)
extent <- ISOExtent$new()
bbox <- ISOGeographicBoundingBox$new(minx = -180, miny = -90, maxx = 180, maxy = 90)
extent$setGeographicElement(bbox)
ident$setExtent(extent)
kwds <- ISOKeywords$new()
kwds$addKeyword(
"keyword1",
locales = list(
EN = "keyword 1",
FR = "mot-clé 1",
ES = "palabra clave 1",
AR = "1 الكلمة",
RU = "ключевое слово 1",
ZH = "关键词 1"
))
kwds$addKeyword(
"keyword1",
locales = list(
EN = "keyword 2",
FR = "mot-clé 2",
ES = "palabra clave 2",
AR = "2 الكلمة",
RU = "ключевое слово 2",
ZH = "关键词 2"
))
kwds$setKeywordType("theme")
th <- ISOCitation$new()
th$setTitle(
"General",
locales =list(
EN = "General",
FR = "Général",
ES = "General",
AR = "جنرال لواء",
RU = "генеральный",
ZH = "一般"
))
th$addDate(d)
kwds$setThesaurusName(th)
ident$addKeywords(kwds)
ident$setSupplementalInformation(
"additional information",
locales = list(
EN = "additional information",
FR = "information additionnelle",
ES = "información adicional",
AR = "معلومة اضافية",
RU = "Дополнительная информация",
ZH = "附加信息"
))
md$setIdentificationInfo(ident)
distrib <- ISODistribution$new()
dto <- ISODigitalTransferOptions$new()
or <- ISOOnlineResource$new()
or$setLinkage("http://somelink")
or$setName(
"name",
locales=list(
EN="name of the website",
FR="nom du site internet",
ES="nombre del sitio web",
AR="اسم الموقع",
RU="название сайта",
ZH="网站名称"
))
or$setDescription(
"description",
locales = list(
EN="description_EN",
FR="description_FR",
ES="description_ES",
AR="description_AR",
RU="description_RU",
ZH="description_ZH"
))
or$setProtocol(
"protocol",
locales=list(
EN="protocol_EN",
FR="protocol_FR",
ES="protocol_ES",
AR="protocol_AR",
RU="protocol_RU",
ZH="protocol_ZH"
))
dto$addOnlineResource(or)
distrib$setDigitalTransferOptions(dto)
format <- ISOFormat$new()
format$setName(
"someone",
locales = list(
EN = "name in english",
FR = "nom en français",
ES = "Nombre en español",
AR = "الاسم باللغة العربية",
RU = "имя на русском",
ZH = "中文名"
))
format$setVersion("1.0")
format$setAmendmentNumber("2")
format$setSpecification(
"specification title",
locales = list(
EN="specification title",
FR="Titre de la spécification",
ES="Título de la especificación",
AR="عنوان المواصفات",
RU="название спецификации",
ZH="规范的标题"
))
distrib$addFormat(format)
md$setDistributionInfo(distrib)
dq <- ISODataQuality$new()
scope <- ISOScope$new()
scope$setLevel("dataset")
dq$setScope(scope)
dc <- ISODomainConsistency$new()
result <- ISOConformanceResult$new()
spec <- ISOCitation$new()
spec$setTitle(
"specification title",
locales = list(
EN="specification title",
FR="Titre de la spécification",
ES="Título de la especificación",
AR="عنوان المواصفات",
RU="название спецификации",
ZH="规范的标题"
))
spec$addAlternateTitle(
"specification alternate title",
locales = list(
EN="specification alternate title",
FR="Titre alternatif de la spécification",
ES="Título alternativo de la especificación",
AR="عنوان بديل للمواصفات",
RU="альтернативное название спецификации",
ZH="规范的替代标题"
))
d <- ISODate$new()
d$setDate(ISOdate(2015, 1, 1, 1))
d$setDateType("publication")
spec$addDate(d)
result$setSpecification(spec)
result$setExplanation(
"explanation about the conformance",
locales = list(
EN = "explanation about the conformance",
FR = "explication à propos de la conformité",
ES = "explicación sobre la conformidad",
AR = "شرح حول التوافق",
RU = "объяснение о соответствии",
ZH = "关于一致性的解释"
))
result$setPass(TRUE)
dc$addResult(result)
dq$addReport(dc)
lineage <- ISOLineage$new()
lineage$setStatement(
"statement",
locales = list(
EN = "statement",
FR = "déclaration",
ES = "declaración",
AR = "بيان",
RU = "заявление",
ZH = "声明"
))
dq$setLineage(lineage)
md$setDataQualityInfo(dq)
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- ISOImageryMetadata$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
md$save("test.xml")
md3 <- readISO19139("test.xml")
expect_true(ISOAbstractObject$compare(md, md3))
}) |
setClass("Stream",
representation(url = "character",
requestedStarttime = "POSIXct",
requestedEndtime = "POSIXct",
act_flags = "integer",
io_flags = "integer",
dq_flags = "integer",
timing_qual = "numeric",
traces = "list"),
prototype(url = "",
requestedStarttime = as.POSIXct("1900-01-01T00:00:00",format="%Y-%m-%dT%H:%M:%OS6", tz="GMT"),
requestedEndtime = as.POSIXct("1900-01-01T00:00:00",format="%Y-%m-%dT%H:%M:%OS6", tz="GMT"),
act_flags = rep(as.integer(0),8),
io_flags = rep(as.integer(0),8),
dq_flags = rep(as.integer(0),8),
timing_qual = as.numeric(NA),
traces = list(new("Trace")))
)
if (!isGeneric("uniqueIds")) {
setGeneric("uniqueIds", function(x) {
standardGeneric("uniqueIds")
})
}
uniqueIds.Stream <- function(x, na.rm=FALSE) {
ids <- unlist(lapply(x@traces, slot, "id"))
return( unique(ids) )
}
setMethod("uniqueIds", signature(x="Stream"), function(x) uniqueIds.Stream(x))
if (!isGeneric("parallelLength")) {
setGeneric("parallelLength", function(x) {
standardGeneric("parallelLength")
})
}
parallelLength.Stream <- function(x, na.rm=FALSE) {
return( unlist(lapply(x@traces, function(element) length(element))) )
}
setMethod("parallelLength", signature(x="Stream"), function(x) parallelLength.Stream(x))
if (!isGeneric("parallelMax")) {
setGeneric("parallelMax", function(x, na.rm) {
standardGeneric("parallelMax")
})
}
parallelMax.Stream <- function(x, na.rm) {
return( unlist(lapply(x@traces, function(element) max(element, na.rm=na.rm))) )
}
setMethod("parallelMax", signature(x="Stream", na.rm="logical"), function(x, na.rm) parallelMax.Stream(x, na.rm=na.rm))
setMethod("parallelMax", signature(x="Stream", na.rm="missing"), function(x, na.rm) parallelMax.Stream(x, na.rm=FALSE))
if (!isGeneric("parallelMean")) {
setGeneric("parallelMean", function(x, na.rm) {
standardGeneric("parallelMean")
})
}
parallelMean.Stream <- function(x, na.rm) {
return( unlist(lapply(x@traces, function(element) mean(element, na.rm=na.rm))) )
}
setMethod("parallelMean", signature(x="Stream", na.rm="logical"), function(x, na.rm) parallelMean.Stream(x, na.rm=na.rm))
setMethod("parallelMean", signature(x="Stream", na.rm="missing"), function(x, na.rm) parallelMean.Stream(x, na.rm=FALSE))
if (!isGeneric("parallelMin")) {
setGeneric("parallelMin", function(x, na.rm) {
standardGeneric("parallelMin")
})
}
parallelMin.Stream <- function(x, na.rm) {
return( unlist(lapply(x@traces, function(element) min(element, na.rm=na.rm))) )
}
setMethod("parallelMin", signature(x="Stream", na.rm="logical"), function(x, na.rm) parallelMin.Stream(x, na.rm=na.rm))
setMethod("parallelMin", signature(x="Stream", na.rm="missing"), function(x, na.rm) parallelMin.Stream(x, na.rm=FALSE))
if (!isGeneric("parallelMedian")) {
setGeneric("parallelMedian", function(x, na.rm) {
standardGeneric("parallelMedian")
})
}
parallelMedian.Stream <- function(x, na.rm) {
return( unlist(lapply(x@traces, function(element) median(element, na.rm=na.rm))) )
}
setMethod("parallelMedian", signature(x="Stream", na.rm="logical"), function(x, na.rm) parallelMedian.Stream(x, na.rm=na.rm))
setMethod("parallelMedian", signature(x="Stream", na.rm="missing"), function(x, na.rm) parallelMedian.Stream(x, na.rm=FALSE))
if (!isGeneric("parallelSd")) {
setGeneric("parallelSd", function(x, na.rm) {
standardGeneric("parallelSd")
})
}
parallelSd.Stream <- function(x, na.rm) {
return( unlist(lapply(x@traces, function(element) sd(element, na.rm=na.rm))) )
}
setMethod("parallelSd", signature(x="Stream", na.rm="logical"), function(x, na.rm) parallelSd.Stream(x, na.rm=na.rm))
setMethod("parallelSd", signature(x="Stream", na.rm="missing"), function(x, na.rm) parallelSd.Stream(x, na.rm=FALSE))
if (!isGeneric("parallelRms")) {
setGeneric("parallelRms", function(x, na.rm) {
standardGeneric("parallelRms")
})
}
parallelRms.Stream <- function(x, na.rm) {
return( unlist(lapply(x@traces, function(element) rms(element, na.rm=na.rm))) )
}
setMethod("parallelRms", signature(x="Stream", na.rm="logical"), function(x, na.rm) parallelRms.Stream(x, na.rm=na.rm))
setMethod("parallelRms", signature(x="Stream", na.rm="missing"), function(x, na.rm) parallelRms.Stream(x, na.rm=FALSE))
if (!isGeneric("parallelRmsVariance")) {
setGeneric("parallelRmsVariance", function(x, na.rm) {
standardGeneric("parallelRmsVariance")
})
}
parallelRmsVariance.Stream <- function(x, na.rm) {
return( unlist(lapply(x@traces, function(element) rmsVariance(element, na.rm=na.rm))) )
}
setMethod("parallelRmsVariance", signature(x="Stream", na.rm="logical"), function(x, na.rm) parallelRmsVariance.Stream(x, na.rm=na.rm))
setMethod("parallelRmsVariance", signature(x="Stream", na.rm="missing"), function(x, na.rm) parallelRmsVariance.Stream(x, na.rm=FALSE))
length.Stream <- function(x) {
return( sum(parallelLength(x)) )
}
setMethod("length", signature(x="Stream"), function(x) length.Stream(x))
max.Stream <- function(x, ..., na.rm=FALSE) {
return( max(parallelMax(x, na.rm=na.rm)) )
}
setMethod("max", signature(x="Stream"), function(x, ...) max.Stream(x, ...))
mean.Stream <- function(x, ...) {
data <- unlist(lapply(x@traces, slot, "data"))
return( mean(data, ...) )
}
setMethod("mean", signature(x="Stream"), function(x, ...) mean.Stream(x, ...))
min.Stream <- function(x, ..., na.rm=FALSE) {
return( min(parallelMin(x, na.rm=na.rm)) )
}
setMethod("min", signature(x="Stream"), function(x, ...) min.Stream(x, ...))
median.Stream <- function(x, na.rm) {
data <- unlist(lapply(x@traces, slot, "data"))
return( median(data, na.rm=na.rm) )
}
setMethod("median", signature(x="Stream", na.rm="logical"), function(x, na.rm) median.Stream(x, na.rm=na.rm))
setMethod("median", signature(x="Stream", na.rm="missing"), function(x, na.rm) median.Stream(x, na.rm=FALSE))
sd.Stream <- function(x, na.rm) {
data <- unlist(lapply(x@traces, slot, "data"))
return( sd(data, na.rm=na.rm) )
}
setMethod("sd", signature(x="Stream", na.rm="logical"), function(x, na.rm) sd.Stream(x, na.rm=na.rm))
setMethod("sd", signature(x="Stream", na.rm="missing"), function(x, na.rm) sd.Stream(x, na.rm=FALSE))
if (!isGeneric("rms")) {
setGeneric("rms", function(x, na.rm) {
standardGeneric("rms")
})
}
rms.Stream <- function(x, na.rm) {
data <- unlist(lapply(x@traces, slot, "data"))
return( sqrt( mean((data)^2, na.rm=na.rm) ) )
}
setMethod("rms", signature("Stream", na.rm="logical"), function(x, na.rm) rms.Stream(x, na.rm=na.rm))
setMethod("rms", signature("Stream", na.rm="missing"), function(x, na.rm) rms.Stream(x, na.rm=FALSE))
if (!isGeneric("rmsVariance")) {
setGeneric("rmsVariance", function(x, na.rm) {
standardGeneric("rmsVariance")
})
}
rmsVariance.Stream <- function(x, na.rm) {
data <- unlist(lapply(x@traces, slot, "data"))
mean <- mean(data, na.rm=na.rm)
if (na.rm) {
n <- length(data)-length(which(is.na(data)))
} else {
n <- length(data)
}
return( sqrt( sum((data-mean)^2,na.rm=na.rm) / n ) )
}
setMethod("rmsVariance", signature("Stream", na.rm="logical"), function(x, na.rm) rmsVariance.Stream(x, na.rm=na.rm))
setMethod("rmsVariance", signature("Stream", na.rm="missing"), function(x, na.rm) rmsVariance.Stream(x, na.rm=FALSE))
if (!isGeneric("multiplyBy")) {
setGeneric("multiplyBy", function(x, y) {
standardGeneric("multiplyBy")
})
}
multiplyBy.Stream <- function(x, y) {
traces <- lapply(x@traces, function(element) multiplyBy(element, y=y))
return( new("Stream", url=x@url, requestedStarttime=x@requestedStarttime, requestedEndtime=x@requestedEndtime,
act_flags=x@act_flags, io_flags=x@io_flags, dq_flags=x@dq_flags, timing_qual=x@timing_qual,
traces=traces) )
}
setMethod("multiplyBy", signature("Stream", y="numeric"), function(x, y) multiplyBy.Stream(x, y=y))
if (!isGeneric("getGaps")) {
setGeneric("getGaps", function(x, min_gap) {
standardGeneric("getGaps")
})
}
getGaps.Stream <- function(x, min_gap) {
num_ids <- length(uniqueIds(x))
if (num_ids > 1) {
stop(paste("getGaps.Stream:",num_ids,"unique ids encountered in Stream."))
}
headers <- lapply(x@traces, slot, "stats")
num_headers <- length(headers)
sampling_rates <- sapply(headers, slot, "sampling_rate")
if (any(sampling_rates < 0 )) {
stop(paste("getGaps.Stream: encountered sampling rate < 0"))
}
gaps <- numeric(num_headers+1)
nsamples <- integer(num_headers+1)
for ( i in seq(from=1, to=num_headers)) {
if (i == 1) {
sampling_rate <- sampling_rates[1]
min_gap_new <- ifelse(is.null(min_gap), 1/sampling_rate, min_gap)
min_gap_new <- max(min_gap_new, 1/sampling_rate)
delta <- as.numeric(difftime(headers[[1]]@starttime, x@requestedStarttime, units="secs")) - 1/sampling_rate
if (delta > min_gap_new - 0.5/sampling_rate) {
gaps[1] <- delta + 1/sampling_rate
nsamples[1] <- as.integer(round(gaps[1] * sampling_rate))
} else {
gaps[1] <- 0
nsamples[1] <- 0
}
} else {
sampling_rate <- sampling_rates[[i-1]]
min_gap_new <- ifelse(is.null(min_gap), 1/sampling_rate, min_gap)
min_gap_new <- max(min_gap_new, 1/sampling_rate)
h1 <- headers[[i-1]]
h2 <- headers[[i]]
delta <- difftime(h2@starttime, h1@endtime, units="secs") - 1/sampling_rate
if (abs(delta) > min_gap_new - 0.5/sampling_rate) {
gaps[i] <- delta
nsamples[i] <- as.integer(round(abs(delta) * sampling_rate))
} else {
gaps[i] <- 0
nsamples[i] <- 0
}
}
if (i == num_headers) {
sampling_rate <- sampling_rates[[i]]
min_gap_new <- ifelse(is.null(min_gap), 1/sampling_rate, min_gap)
min_gap_new <- max(min_gap_new, 1/sampling_rate)
delta <- as.numeric(difftime(x@requestedEndtime, headers[[num_headers]]@endtime, units="secs")) - 1/sampling_rate
if (delta > min_gap_new - 0.5/sampling_rate) {
gaps[num_headers+1] <- delta
nsamples[num_headers+1] <- as.integer(round(delta * sampling_rate))
} else {
gaps[num_headers+1] <- 0
nsamples[num_headers+1] <- 0
}
}
}
gap_list <- list(gaps=gaps,
nsamples=nsamples)
return(gap_list)
}
setMethod("getGaps", signature(x="Stream", min_gap="numeric"),
function(x, min_gap) getGaps.Stream(x, min_gap))
setMethod("getGaps", signature(x="Stream", min_gap="missing"),
function(x, min_gap) getGaps.Stream(x, NULL))
if (!isGeneric("getUpDownTimes")) {
setGeneric("getUpDownTimes", function(x, min_signal, min_gap) {
standardGeneric("getUpDownTimes")
})
}
getUpDownTimes.Stream <- function(x,
min_signal,
min_gap) {
num_ids <- length(uniqueIds(x))
if (num_ids > 1) {
stop(paste("getUpDownTimes.Stream:",num_ids,"unique ids encountered in Stream."))
}
headerList <- lapply(x@traces, slot, "stats")
starttimeList <- lapply(headerList, slot, "starttime")
endtimeList <- lapply(headerList, slot, "endtime")
starttimes <- as.POSIXct(unlist(lapply(starttimeList, strftime, format="%Y-%m-%dT%H:%M:%OS", tz="GMT")),
format="%Y-%m-%dT%H:%M:%OS", tz="GMT")
endtimes <- as.POSIXct(unlist(lapply(endtimeList, strftime, format="%Y-%m-%dT%H:%M:%OS", tz="GMT")),
format="%Y-%m-%dT%H:%M:%OS", tz="GMT")
signal_durations <- difftime(endtimes, starttimes, units="sec")
good_traces_flag <- signal_durations >= min_signal
headerList <- headerList[good_traces_flag]
starttimes <- starttimes[good_traces_flag]
endtimes <- endtimes[good_traces_flag]
num_headers <- length(headerList)
if (num_headers == 1) {
up_down_times <- c(starttimes[1], endtimes[1])
return(up_down_times)
}
up_down_times <- c(starttimes,endtimes)
for (i in seq(num_headers-1)) {
delta <- difftime(starttimes[i+1], endtimes[i], units="secs")
if (delta < 0 || delta < min_gap) {
up_down_times[(2*i)] <- NA
up_down_times[(2*i)+1] <- NA
} else {
up_down_times[(2*i)] <- endtimes[i]
up_down_times[(2*i)+1] <- starttimes[i+1]
}
}
return(stats::na.omit(up_down_times))
}
setMethod("getUpDownTimes", signature(x="Stream", min_signal="numeric", min_gap="numeric"),
function(x, min_signal, min_gap) getUpDownTimes.Stream(x, min_signal, min_gap))
setMethod("getUpDownTimes", signature(x="Stream", min_signal="missing", min_gap="missing"),
function(x, min_signal, min_gap) getUpDownTimes.Stream(x, min_signal=30, min_gap=60))
if (!isGeneric("slice")) {
setGeneric("slice", function(x, starttime, endtime) {
standardGeneric("slice")
})
}
slice.Stream <- function(x, starttime, endtime) {
num_traces <- length(x@traces)
stream_start <- x@traces[[1]]@stats@starttime
stream_end <- x@traces[[num_traces]]@stats@endtime
if (starttime >= endtime) {
stop(paste("slice.Stream: requested starttime \"", starttime, "\" >= requested endtime \"", endtime, "\""))
}
if (starttime >= stream_end) {
stop(paste("slice.Stream: requested starttime \"", starttime, "\" >= Stream endtime \"", stream_end, "\""))
}
if (endtime <= stream_start) {
stop(paste("slice.Stream: requested endtime \"", endtime, "\" <= Stream starttime \"", stream_start, "\""))
}
traces <- list()
for (i in seq(num_traces)) {
tr <- x@traces[[i]]
if (starttime >= tr@stats@endtime || endtime <= tr@stats@starttime) {
} else if (starttime <= tr@stats@starttime && endtime >= tr@stats@endtime) {
traces <- append(traces,tr)
} else {
sliced_trace <- slice(tr, starttime, endtime)
traces <- append(traces, sliced_trace)
}
}
return( new("Stream", url=x@url, requestedStarttime=starttime, requestedEndtime=endtime,
act_flags=x@act_flags, io_flags=x@io_flags, dq_flags=x@dq_flags, timing_qual=x@timing_qual,
traces=traces) )
}
setMethod("slice", signature(x="Stream", starttime="POSIXct", endtime="POSIXct"),
function(x, starttime, endtime) slice.Stream(x, starttime=starttime, endtime=endtime))
if (!isGeneric("mergeTraces")) {
setGeneric("mergeTraces", function(x, fillMethod) {
standardGeneric("mergeTraces")
})
}
mergeTraces.Stream <- function(x, fillMethod) {
num_traces <- length(x@traces)
if (sum(getGaps(x)$nsamples) == 0 && num_traces == 1) { return(x) }
gapInfo <- getGaps(x)
num_gaps <- length(gapInfo$nsamples)
if (num_gaps != num_traces+1) {
stop(paste("mergeTraces.Stream: num_gaps (",num_gaps,") should be one more than num_traces (",num_traces,")", sep=""))
}
headers <- lapply(x@traces, slot, "stats")
sampling_rates <- sapply(headers, slot, "sampling_rate")
num_rates <- length(unique(round(sampling_rates,digits=4)))
if ( ! all(stats::dist(unique(sampling_rates)) < 0.0002 )) {
stop(paste("mergeTraces.Stream:",num_rates,"unique sampling rates encountered in Stream."))
}
if (gapInfo$nsamples[1] == 0) {
totalStart <- x@traces[[1]]@stats@starttime
} else {
totalStart <- x@requestedStarttime
}
if (gapInfo$nsamples[length(gapInfo$nsamples)] == 0) {
totalEnd <- x@traces[[length(x@traces)]]@stats@endtime
} else {
totalEnd <- x@requestedEndtime
}
totalSecs <- as.numeric(difftime(totalEnd, totalStart, units="secs"))
totalPoints <- as.integer(round(totalSecs) * x@traces[[1]]@stats@sampling_rate)
num_vectors <- num_gaps + num_traces
dataList <- vector('list',num_vectors)
if (fillMethod == "fillNA") {
for (i in seq(num_traces)) {
dataList[[2*i-1]] <- rep(NA,gapInfo$nsamples[i])
dataList[[2*i]] <- x@traces[[i]]@data
}
dataList[[num_vectors]] <- rep(NA,gapInfo$nsamples[[num_gaps]])
} else if (fillMethod == "fillZero") {
for (i in seq(num_traces)) {
dataList[[2*i-1]] <- rep(0,gapInfo$nsamples[i])
dataList[[2*i]] <- x@traces[[i]]@data
}
dataList[[num_vectors]] <- rep(0,gapInfo$nsamples[[num_gaps]])
} else {
stop(paste("mergeTraces.Stream: unknown fillMethod '", fillMethod, "'",sep=""))
}
data <- unlist(dataList)
missing_points <- totalPoints - length(data)
if ( missing_points > ceiling(2 * x@traces[[1]]@stats@sampling_rate) ) {
stop(paste("mergeTraces.Stream:", missing_points, "unaccounted for points after merge"))
} else if ( missing_points < ceiling(-2 * x@traces[[1]]@stats@sampling_rate) ) {
stop(paste("mergeTraces.Stream:", abs(missing_points), "extra points after merge"))
}
if (missing_points > 0) {
data <- c(data,rep(NA,missing_points))
}
stats <- x@traces[[1]]@stats
stats@npts <- as.integer(totalPoints)
if (gapInfo$nsamples[1] == 0) {
stats@starttime <- x@traces[[1]]@stats@starttime
} else {
stats@starttime <- x@requestedStarttime
}
if (gapInfo$nsamples[length(gapInfo$nsamples)] == 0) {
stats@endtime <- x@traces[[length(x@traces)]]@stats@endtime
} else {
stats@endtime <- x@requestedEndtime
}
stats@processing <- append(stats@processing,paste(num_traces," traces merged into a single trace using method '",fillMethod,"'",sep=""))
id <- x@traces[[1]]@id
Sensor <- x@traces[[1]]@Sensor
InstrumentSensitivity <- x@traces[[1]]@InstrumentSensitivity
SensitivityFrequency <- x@traces[[1]]@SensitivityFrequency
InputUnits <- x@traces[[1]]@InputUnits
traces <- list( new("Trace", id, stats, Sensor, InstrumentSensitivity, SensitivityFrequency, InputUnits, data=data[1:totalPoints]) )
return( new("Stream", url=x@url, requestedStarttime=x@requestedStarttime, requestedEndtime=x@requestedEndtime,
act_flags=x@act_flags, io_flags=x@io_flags, dq_flags=x@dq_flags, timing_qual=x@timing_qual,
traces=traces) )
}
setMethod("mergeTraces", signature(x="Stream", fillMethod="character"),
function(x, fillMethod) mergeTraces.Stream(x, fillMethod=fillMethod))
setMethod("mergeTraces", signature(x="Stream", fillMethod="missing"),
function(x, fillMethod) mergeTraces.Stream(x, fillMethod="fillNA"))
if (!isGeneric("plotUpDownTimes")) {
setGeneric("plotUpDownTimes", function(x, min_signal, min_gap, ...) {
standardGeneric("plotUpDownTimes")
})
}
plotUpDownTimes.Stream <- function(x, min_signal=30, min_gap=60, ...) {
upDownTimes <- getUpDownTimes(x, min_signal=min_signal, min_gap=min_gap)
GMTTimes <- as.POSIXct(upDownTimes, "%Y-%m-%dT%H:%M:%OS", tz="GMT")
onOffs <- seq(length(GMTTimes)) %% 2
allTimes <- c(x@requestedStarttime, GMTTimes, x@requestedEndtime)
allOnOffs <- c(0,onOffs,0)
plot(allTimes, allOnOffs, type="s", xlab="GMT", ylab="", yaxt="n", ...)
graphics::axis(2, at=c(0,1), labels=c("Off","On"), las=1, tick=TRUE)
graphics::abline(v=x@requestedEndtime, lwd=3, col='white')
graphics::box()
id <- stringr::str_sub(x@traces[[1]]@id, 1, stringr::str_length(x@traces[[1]]@id)-2)
main <- paste("On/Off transitions for ",id)
sensorText <- paste("(", x@traces[[1]]@Sensor, ")")
graphics::title(main)
graphics::mtext(sensorText, line=0.2)
}
plotUpDownTimes.POSIXct <- function(x, min_signal=30, min_gap=60, ...) {
upDownTimes <- x
GMTTimes <- as.POSIXct(upDownTimes, "%Y-%m-%dT%H:%M:%OS", tz="GMT")
onOff <- seq(length(GMTTimes)) %% 2
plot(GMTTimes, onOff, type="s", xlab="GMT", ylab="", yaxt="n", ...)
graphics::axis(2, at=c(0,1), labels=c("Off","On"), las=1, tick=TRUE)
graphics::abline(v=upDownTimes[length(upDownTimes)], lwd=2, col='white')
graphics::box()
}
setMethod("plotUpDownTimes", signature(x="Stream", min_signal="numeric", min_gap="numeric"),
function(x, min_signal, min_gap, ...) plotUpDownTimes.Stream(x, min_signal, min_gap=min_gap, ...))
setMethod("plotUpDownTimes", signature(x="Stream", min_signal="numeric", min_gap="missing"),
function(x, min_signal, min_gap, ...) plotUpDownTimes.Stream(x, min_signal, min_gap=60, ...))
setMethod("plotUpDownTimes", signature(x="Stream", min_signal="missing", min_gap="numeric"),
function(x, min_signal, min_gap, ...) plotUpDownTimes.Stream(x, min_signal=30, min_gap, ...))
setMethod("plotUpDownTimes", signature(x="Stream", min_signal="missing", min_gap="missing"),
function(x, min_signal, min_gap, ...) plotUpDownTimes.Stream(x, min_signal=30, min_gap=60, ...))
setMethod("plotUpDownTimes", signature(x="POSIXct", min_signal="numeric", min_gap="numeric"),
function(x, min_signal, min_gap, ...) plotUpDownTimes.POSIXct(x, min_signal, min_gap, ...))
setMethod("plotUpDownTimes", signature(x="POSIXct", min_signal="numeric", min_gap="missing"),
function(x, min_signal, min_gap, ...) plotUpDownTimes.POSIXct(x, min_signal=30, min_gap, ...))
setMethod("plotUpDownTimes", signature(x="POSIXct", min_signal="missing", min_gap="numeric"),
function(x, min_signal, min_gap, ...) plotUpDownTimes.POSIXct(x, min_signal, min_gap=60, ...))
setMethod("plotUpDownTimes", signature(x="POSIXct", min_signal="missing", min_gap="missing"),
function(x, min_signal, min_gap, ...) plotUpDownTimes.POSIXct(x, min_signal=30, min_gap=60, ...))
if (!isGeneric("mergeUpDownTimes")) {
setGeneric("mergeUpDownTimes", function(udt1,udt2,bothOn) {
standardGeneric("mergeUpDownTimes")
})
}
mergeUpDownTimes.POSIXct <- function(udt1,udt2,bothOn) {
if (is.null(udt1)) {
return(udt2)
}
if (is.null(udt2)) {
return(udt1)
}
unsorted_times <- c(udt1,udt2)
sort_indices <- order(unsorted_times)
times <- unsorted_times[sort_indices]
onOff1 <- (seq(length(udt1)) %% 2 - 0.5) * 2
onOff2 <- (seq(length(udt2)) %% 2 - 0.5) * 2
unsorted_onOff <- c(onOff1,onOff2)
onOff <- unsorted_onOff[sort_indices]
cumOnOff <- cumsum(onOff)
if (bothOn) {
both_up_indices <- which(cumOnOff == 2)
any_down_indices <- both_up_indices + 1
both_upDownTimes <- sort(times[c(both_up_indices,any_down_indices)])
return(both_upDownTimes)
} else {
both_down_indices <- which(cumOnOff == 0)
either_up_indices <- c(1, both_down_indices[-length(both_down_indices)] + 1)
either_upDownTimes <- sort(times[c(either_up_indices,both_down_indices)])
return(either_upDownTimes)
}
}
setMethod("mergeUpDownTimes", signature(udt1="POSIXct", udt2="POSIXct", bothOn="logical"),
function(udt1,udt2,bothOn) mergeUpDownTimes.POSIXct(udt1,udt2,bothOn))
setMethod("mergeUpDownTimes", signature(udt1="POSIXct", udt2="POSIXct", bothOn="missing"),
function(udt1,udt2,bothOn) mergeUpDownTimes.POSIXct(udt1,udt2,bothOn=FALSE))
setMethod("mergeUpDownTimes", signature(udt1="NULL", udt2="POSIXct", bothOn="logical"),
function(udt1,udt2,bothOn) mergeUpDownTimes.POSIXct(udt1,udt2,bothOn))
setMethod("mergeUpDownTimes", signature(udt1="NULL", udt2="POSIXct", bothOn="missing"),
function(udt1,udt2,bothOn) mergeUpDownTimes.POSIXct(udt1,udt2,bothOn=FALSE))
setMethod("mergeUpDownTimes", signature(udt1="POSIXct", udt2="NULL", bothOn="logical"),
function(udt1,udt2,bothOn) mergeUpDownTimes.POSIXct(udt1,udt2,bothOn))
setMethod("mergeUpDownTimes", signature(udt1="POSIXct", udt2="NULL", bothOn="missing"),
function(udt1,udt2,bothOn) mergeUpDownTimes.POSIXct(udt1,udt2,bothOn=FALSE))
plot.Stream <- function(x, ...) {
tr <- mergeTraces(x)@traces[[1]]
plot(tr, ...)
if (length(x@traces) == 1) {
graphics::mtext(paste(length(x@traces),"trace"), side=3, line=0.2, adj=0.95)
} else {
graphics::mtext(paste(length(x@traces),"traces"), side=3, line=0.2, adj=0.95)
}
}
setMethod("plot", signature(x="Stream"), function(x, ...) plot.Stream(x, ...)) |
rmarkdown::render('batch_correction.Rmd')
rmarkdown::render('correcting.Rmd')
rmarkdown::render('differential_expression.Rmd')
rmarkdown::render('seurat.Rmd')
rmarkdown::render('variance_stabilizing_transformation.Rmd')
rmarkdown::render('theta_regularization.Rmd')
rmarkdown::render('method_comparison.Rmd') |
tag <- function(thing, tag="") {
tryCatch(
withCallingHandlers(eval.parent(thing),
warning=function(w) {
w$tag <- tag
warning(w)
invokeRestart("muffleWarning")
}),
error=function(e) {
e$tag <- tag
stop(e)
}
)
invisible(NULL)
}
maybe <- function(f) {
function(...) {
returnValue <- NULL
warningValue <- NULL
warningTag <- NULL
errorValue <- NULL
errorTag <- NULL
returnValue <- tryCatch(
withCallingHandlers(f(...),
warning=function(w) {
warningValue <<- append(warningValue, w$message)
wtag <- if(is.null(w$tag)) "" else w$tag
warningTag <<- append(warningTag, wtag)
invokeRestart("muffleWarning")
}),
error=function(e) {
errorValue <<- e$message
errorTag <<- if(is.null(e$tag)) "" else e$tag
return(NULL)
}
)
rval <- list()
class(rval) <- "Maybe"
rval["value"] <- list(returnValue)
rval["warning"] <- list(warningValue)
rval["warningtag"] <- list(warningTag)
rval["error"] <- list(errorValue)
rval["errortag"] <- list(errorTag)
return(rval)
}
}
list2maybe <- function(x) {
rval <- list()
rval $ value <- as.list(x)
rval $ warnings <- maybeFrame()
rval $ errors <- maybeFrame()
class(rval) <- "maybeList"
return(rval)
}
maybeFrame <- function() {
data.frame(stage=character(), index=integer(), message=character(), stringsAsFactors=FALSE)
}
maybe_llply <- function(.data, .fun, .text="", ..., .progress=progress_simr(.text), .extract=FALSE) {
if(!is(.data, "maybeList")) {
.data <- list2maybe(.data)
}
maybenot <- seq_along(.data$value) %in% .data$errors$index
z <- list()
z[maybenot] <- llply(.data$errormessage[maybenot], function(e) maybe(stop(e))())
z[!maybenot] <- llply(.data$value[!maybenot], maybe(.fun), ..., .progress=.progress)
rval <- list()
rval $ value <- llply(z, `[[`, "value")
extractWarnings <- if(.extract) do.call(rbind, llply(rval$value, `[[`, "warnings")) else maybeFrame()
extractErrors <- if(.extract) do.call(rbind, llply(rval$value, `[[`, "errors")) else maybeFrame()
warnings <- llply(z, `[[`, "warning")
wtags <- llply(z, `[[`, "warningtag")
index <- rep(seq_along(warnings), laply(warnings, length))
message <- unlist(warnings)
stage <- unlist(wtags)
rval $ warnings <- rbind(
.data$warnings,
extractWarnings,
data.frame(stage, index, message, stringsAsFactors=FALSE)
)
errors <- llply(z, `[[`, "error")
etags <- llply(z, `[[`, "errortag")
index <- which(!laply(errors, is.null))
message <- unlist(errors)
stage <- unlist(etags)
rval $ errors <- rbind(
.data$errors,
extractErrors,
data.frame(stage, index, message, stringsAsFactors=FALSE)
)
class(rval) <- "maybeList"
return(rval)
}
list_to_atomic <- function(x) {
if(any(laply(x, length) > 1)) stop("vectors longer than one found")
if(any(laply(x, is.recursive))) stop("recursive elements found")
unlist(ifelse(laply(x, is.null), NA, x))
}
maybe_laply <- function(...) {
rval <- maybe_llply(...)
rval $ value <- list_to_atomic(rval $ value)
return(rval)
}
maybe_raply <- function(.N, .thing, ...) {
maybe_laply(seq_len(.N), eval.parent(substitute(function(.) .thing)), ...)
}
maybe_rlply <- function(.N, .thing, ...) {
maybe_llply(seq_len(.N), eval.parent(substitute(function(.) .thing)), ...)
}
sometimes <- function(x, p=0.01, emsg="x8x", pw=NA, wmsg="boo!", lambda=NA) {
if(!is.na(pw)) {
if(runif(1) < pw) {
nmsg <- if(is.na(lambda)) 1 else rpois(1, lambda)
for(i in seq_len(nmsg)) {
warning(sample(wmsg, 1))
}
}
}
if(runif(1) < p) test_error(emsg)
x
}
test_error <- function(e) stop(e) |
rvn_annual_quantiles <- function(hgdata, prd=NULL,
Qlower=0.1, Qupper=0.9,
water_year=TRUE, mm=9)
{
prd <- rvn_get_prd(hgdata, prd)
hgdata <- hgdata[prd]
maxyear <- year(end(hgdata))
monthday <- as.Date(paste0(toString(maxyear), "-", month(hgdata), "-", day(hgdata)))
if (water_year) {
monthday[month(monthday) > mm] = monthday[month(monthday) > mm] - years(1)
}
qdat <- xts(aggregate(hgdata, by=monthday, quantile,
probs=c(Qlower, .5, Qupper), na.rm=TRUE))
return(qdat)
} |
library("testthat")
context("test-multitypePoisson.R")
test_that("Small multi-type Poisson dense regression", {
dobson1 <- data.frame(
counts = c(18,17,15,20,10,20,25,13,12),
outcome = gl(3,1,9),
treatment = gl(3,3)
)
dobson <- rbind(dobson1, dobson1)
dobson$type = as.factor(c(rep("A",9),rep("B",9)))
tolerance <- 1E-4
goldFit <- glm(counts ~ outcome + treatment, data = dobson1, family = poisson())
glmFit <- glm(counts ~ outcome + treatment, data = dobson, contrasts = dobson$type,
family = poisson())
dataPtrD <- createCyclopsData(counts ~ outcome + treatment, data = dobson,
type = dobson$type,
modelType = "pr", method = "debug")
cyclopsFitD <- fitCyclopsModel(dataPtrD,
prior = createPrior("none"),
control = createControl(noiseLevel = "silent"))
dataPtrE <- createCyclopsData(Multitype(counts, type) ~ outcome + treatment, data = dobson,
modelType = "pr", method = "debug")
cyclopsFitE <- fitCyclopsModel(dataPtrE,
prior = createPrior("none"),
control = createControl(noiseLevel = "silent"))
expect_equal(coef(cyclopsFitD), coef(cyclopsFitE))
dataPtrI <- createCyclopsData(Multitype(counts, type) ~ 1, indicatorFormula = ~ outcome + treatment, data = dobson,
modelType = "pr", method = "debug")
cyclopsFitI <- fitCyclopsModel(dataPtrI,
prior = createPrior("none"),
control = createControl(noiseLevel = "silent"))
expect_equal(coef(cyclopsFitI), coef(cyclopsFitD))
dataPtrS <- createCyclopsData(Multitype(counts, type) ~ 1, sparseFormula = ~ outcome + treatment, data = dobson,
modelType = "pr", method = "debug")
cyclopsFitS <- fitCyclopsModel(dataPtrS,
prior = createPrior("none"),
control = createControl(noiseLevel = "silent"))
expect_equal(coef(cyclopsFitS), coef(cyclopsFitD))
})
test_that("coef throws error when not converged", {
dobson1 <- data.frame(
counts = c(18,17,15,20,10,20,25,13,12),
outcome = gl(3,1,9),
treatment = gl(3,3)
)
dobson2 <- data.frame(
counts = c(18,17,15,20,10,20,25,13,12)-10,
outcome = gl(3,1,9),
treatment = gl(3,3)
)
dobson <- rbind(dobson1, dobson2)
dobson$type = as.factor(c(rep("A",9),rep("B",9)))
tolerance <- 1E-4
dataPtrD <- createCyclopsData(Multitype(counts, type) ~ outcome + treatment, data = dobson,
modelType = "pr")
cyclopsFitD <- fitCyclopsModel(dataPtrD,
prior = createPrior(c("normal","normal"), c(0.0001,10), graph = "type"),
control = createControl(noiseLevel = "silent"))
expect_error(coef(cyclopsFitD), "did not converge")
})
test_that("confirm dimension check", {
dobson1 <- data.frame(
counts = c(18,17,15,20,10,20,25,13,12),
outcome = gl(3,1,9),
treatment = gl(3,3)
)
dobson2 <- data.frame(
counts = c(18,17,15,20,10,20,25,13,12)-10,
outcome = gl(3,1,9),
treatment = gl(3,3)
)
dobson <- rbind(dobson1, dobson2)
dobson$type = as.factor(c(rep("A",9),rep("B",9)))
tolerance <- 1E-4
dataPtrD <- createCyclopsData(Multitype(counts, type) ~ outcome + treatment, data = dobson,
modelType = "pr")
expect_error(fitCyclopsModel(dataPtrD,
prior = createPrior(c("normal"), c(0.0001,10), graph = "type"),
control = createControl(noiseLevel = "silent")), "dimensionality mismatch")
expect_error(fitCyclopsModel(dataPtrD,
prior = createPrior(c("normal", "normal"), c(0.0001), graph = "type"),
control = createControl(noiseLevel = "silent")), "dimensionality mismatch")
})
test_that("Small multi-type Poisson with hierarchical prior", {
dobson1 <- data.frame(
counts = c(18,17,15,20,10,20,25,13,12),
outcome = gl(3,1,9),
treatment = gl(3,3)
)
dobson2 <- data.frame(
counts = c(18,17,15,20,10,20,25,13,12)-10,
outcome = gl(3,1,9),
treatment = gl(3,3)
)
dobson <- rbind(dobson1, dobson2)
dobson$type = as.factor(c(rep("A",9),rep("B",9)))
tolerance <- 1E-4
glmFit <- glm(counts ~ outcome + treatment, data = dobson, contrasts = dobson$type,
family = poisson())
dataPtrD <- createCyclopsData(Multitype(counts, type) ~ outcome + treatment, data = dobson,
modelType = "pr")
cyclopsFitD <- fitCyclopsModel(dataPtrD,
prior = createPrior(c("normal","normal"), c(0.0001,10), graph = "type"),
control = createControl(noiseLevel = "silent", maxIterations = 2000))
cyclopsFitE <- fitCyclopsModel(dataPtrD,
prior = createPrior(c("normal","normal"), c(0.0001,0.0001), graph = "type"),
control = createControl(noiseLevel = "silent"))
})
test_that("Check multitype SCCS", {
}) |
epi.nomogram <- function(se, sp, lr, pre.pos, verbose = FALSE){
if(is.na(se) & is.na(sp) & !is.na(lr[1])& !is.na(lr[2])){
lr.pos <- lr[1]
lr.neg <- lr[2]
}
if(!is.na(se) & !is.na(sp) & is.na(lr[1]) & is.na(lr[2])){
lr.pos <- se / (1 - sp)
lr.neg <- (1 - se) / sp
}
pre.odds <- pre.pos / (1 - pre.pos)
post.odds.pos <- pre.odds * lr.pos
post.odds.neg <- pre.odds * lr.neg
post.opos.tpos <- post.odds.pos / (1 + post.odds.pos)
post.opos.tneg <- post.odds.neg / (1 + post.odds.neg)
lr <- data.frame(pos = lr.pos, neg = lr.neg)
prior <- data.frame(opos = pre.pos)
post <- data.frame(opos.tpos = post.opos.tpos, opos.tneg = post.opos.tneg)
rval <- list(lr = lr, prior = prior, post = post)
if(verbose == TRUE){
return(rval)
}
if(verbose == FALSE){
post.opos.tpos <- ifelse(post.opos.tpos < 0.01, round(post.opos.tpos, digits = 4), round(post.opos.tpos, digits = 2))
post.opos.tneg <- ifelse(post.opos.tneg < 0.01, round(post.opos.tneg, digits = 4), round(post.opos.tneg, digits = 2))
cat("Given a positive test result, the post-test probability of being outcome positive is", post.opos.tpos, "\n")
cat("Given a negative test result, the post-test probability of being outcome positive is", post.opos.tneg, "\n")
}
} |
NULL
NULL
NULL
NULL
'single quotes with
embedded and \n not embedded line breaks'
x <- ' 2'
x <- '\001'
'\x01'
"\001"
'\001'
NULL
NULL |
library("ggplot2")
agg.top.Spain.evol <- read.csv("aggregated-top-Spain-evol.csv",sep=';')
ggplot(agg.top.Spain.evol,aes(x=users,y=followers))+geom_line()+geom_point()
ggsave('users-vs-followers.png')
ggplot(agg.top.Spain.evol,aes(x=users,y=contributions))+geom_line()+geom_point()
ggsave('users-vs-contributions.png') |
context("LoremProvider works")
test_that("LoremProvider works", {
aa <- LoremProvider$new()
expect_is(aa, "LoremProvider")
expect_is(aa, "R6")
expect_is(aa$word, "function")
expect_is(aa$word(), "character")
expect_equal(length(aa$word()), 1)
expect_is(aa$words, "function")
expect_is(aa$words(), "character")
expect_equal(length(aa$words()), 3)
expect_is(aa$sentence, "function")
expect_is(aa$sentence(), "character")
expect_equal(length(aa$sentence()), 1)
expect_is(aa$sentences, "function")
expect_is(aa$sentences(), "character")
expect_equal(length(aa$sentences()), 3)
expect_is(aa$paragraph, "function")
expect_is(aa$paragraph(), "character")
expect_equal(length(aa$paragraph()), 1)
expect_is(aa$paragraphs, "function")
expect_is(aa$paragraphs(), "character")
expect_equal(length(aa$paragraphs()), 3)
expect_is(aa$text, "function")
expect_is(aa$text(), "character")
expect_equal(length(aa$text()), 1)
})
test_that("LoremProvider fails well", {
expect_error(LoremProvider$new(locale = "foobar"),
"foobar not in set of available locales")
expect_error(LoremProvider$new(sentence_punctuation = 5),
"sentence_punctuation must be of class character")
expect_error(LoremProvider$new(word_connector = 5),
"word_connector must be of class character")
aa <- LoremProvider$new()
expect_error(aa$word(ext_words = 5),
"ext_words must be of class character")
expect_error(aa$words(nb = "foobar"),
"nb must be of class numeric, integer")
expect_error(aa$words(ext_words = 5),
"ext_words must be of class character")
expect_error(aa$sentence(nb_words = "adf"),
"nb_words must be of class numeric, integer")
expect_error(aa$sentence(ext_words = 5),
"ext_words must be of class character")
expect_error(aa$sentence(variable_nb_words = 5),
"variable_nb_words must be of class logical")
expect_error(aa$sentences(nb = "adf"),
"nb must be of class numeric, integer")
expect_error(aa$sentences(ext_words = 5),
"ext_words must be of class character")
expect_error(aa$paragraph(nb_sentences = "foobar"),
"nb_sentences must be of class numeric, integer")
expect_error(aa$paragraph(variable_nb_sentences = 4),
"variable_nb_sentences must be of class logical")
expect_error(aa$paragraph(ext_words = 5),
"ext_words must be of class character")
expect_error(aa$paragraphs(nb = "adf"),
"nb must be of class numeric, integer")
expect_error(aa$paragraphs(ext_words = 5),
"ext_words must be of class character")
expect_error(aa$text(max_nb_chars = "adf"),
"max_nb_chars must be of class numeric, integer")
expect_error(aa$text(ext_words = 5),
"ext_words must be of class character")
}) |
loadGMT = function(target) {
fc = file(target)
aList = strsplit(readLines(fc), "\t")
close(fc)
nms = sapply(aList,function(x){return(x[1])})
out = sapply(aList,function(x){return(x[3:length(x)])})
names(out) = nms
return(out)
}
loadGCT = function(target) {
dat = utils::read.table(file=target, skip=2,header=TRUE,sep="\t")
rownames(dat) = dat[,1]
dat = dat[,3:dim(dat)[2]]
return(t(as.matrix(dat)))
}
loadCLS = function(target, sampleNames) {
fc = file(target)
l = readLines(fc)
close(fc)
out = c()
if(l[1] == "
out = sapply(strsplit(l[3]," |\t")[[1]],as.numeric)
} else {
nms = strsplit(l[2]," ")[[1]]
cls = strsplit(l[3]," |\t")[[1]]
nminds = sapply((0:length(nms)-2),as.character)
out = c()
for(i in cls) {
if(i %in% nminds){
out = c(out,nms[as.integer(i)+2])
} else {
out = c(out,i)
}
}
}
names(out) = sampleNames
return(out)
} |
siInner <- function(indPair, pVec, compMatch, object, indexMat, parmMat, varMat, level, reference, type, sifct, interval, degfree, logBase)
{
jInd <- indPair[1]
kInd <- indPair[2]
parmInd1 <- indexMat[, jInd]
parmInd2 <- indexMat[, kInd]
parmChosen1 <- parmMat[, jInd]
parmChosen2 <- parmMat[, kInd]
SIeval <- sifct(parmChosen1, parmChosen2, pVec, jInd, kInd, reference, type)
SIval <- SIeval$"val"
dSIval <- SIeval$"der"
oriMatRow <- c(SIval, sqrt(t(dSIval) %*% varMat %*% dSIval))
siMatRow <- matrix(NA, 1, 4)
siMatRow[1, 1] <- SIval
if (identical(object$"type", "continuous"))
{
qFct <- function(x) {qt(x, degfree)}
pFct <- function(x) {pt(x, degfree)}
} else {
qFct <- qnorm
pFct <- pnorm
}
if (identical(interval, "none"))
{
siMatRow[2] <- oriMatRow[2]
tempStat <- (siMatRow[1] - 1)/siMatRow[2]
siMatRow[3] <- tempStat
siMatRow[4] <- pFct(-abs(tempStat)) + (1 - pFct(abs(tempStat)))
}
if ( (identical(interval, "delta")) || (identical(interval, "fls")) )
{
stErr <- oriMatRow[2]
tquan <- qFct(1 - (1 - level)/2)
siMatRow[2] <- siMatRow[1] - tquan * stErr
siMatRow[3] <- siMatRow[1] + tquan * stErr
ciLabel <- "Delta method"
}
if (identical(interval, "tfls"))
{
lsVal <- log(oriMatRow[1])
lsdVal <- oriMatRow[2] / oriMatRow[1]
tquan <- qFct(1 - (1 - level)/2)
siMatRow[2] <- exp(lsVal - tquan * lsdVal)
siMatRow[3] <- exp(lsVal + tquan * lsdVal)
ciLabel <- "To and from log scale"
}
if ((!is.null(logBase)) && (identical(interval, "fls")))
{
siMatRow[1] <- logBase^(siMatRow[1])
siMatRow[2] <- logBase^(siMatRow[2])
siMatRow[3] <- logBase^(siMatRow[3])
ciLabel <- "From log scale"
}
if (identical(interval, "fieller"))
{
vcMat <- matrix(NA, 2, 2)
vcMat[1, 1] <- SIeval$"der1" %*% varMat %*% SIeval$"der1"
vcMat[2, 2] <- SIeval$"der2" %*% varMat %*% SIeval$"der2"
vcMat[1, 2] <- SIeval$"der1" %*% varMat %*% SIeval$"der2"
vcMat[2, 1] <- vcMat[1, 2]
muVec <- c(SIeval$"valnum", SIeval$"valden")
siMatRow[2:3] <- fieller(muVec, degfree, vcMat, level = level)
ciLabel <- "Fieller"
}
c(siMatRow, dSIval)
} |
read.tree.to.data.matrix <- function(data.file1, data.file2) {
G1 <- read.tree(data.file1)
G2 <- read.tree(data.file2)
n <- length(G1[[1]]$tip.label)
to <- G1[[1]]$tip.label
N1 <- length(G1)
N2 <- length(G2)
distVec_all1 <- as.matrix(G1, to)
distVec_all2 <- as.matrix(G2, to)
rownames(distVec_all1) <- NULL
rownames(distVec_all2) <- NULL
class <- as.factor(c(rep(1, N1), rep(2, N2)))
D <- data.frame(class, rbind(distVec_all1, distVec_all2))
return(D)
} |
spatial_clip <- function(
data,
quantile,
replace = NA,
normalise = TRUE
) {
if(missing(quantile) == TRUE) {
quantile <- 1
}
data@data@values[
data@data@values < quantile(data@data@values,
quantile,
na.rm = TRUE)] <- replace
if(normalise == TRUE) {
data@data@values <- (
data@data@values - min(data@data@values, na.rm = TRUE)) /
(max(data@data@values, na.rm = TRUE) -
min(data@data@values, na.rm = TRUE))
}
return(data)
} |
bindDist <- function(margins = NULL, ..., p = NULL, keepScale = TRUE, reverse = FALSE, copula = NULL, skewness = NULL, kurtosis = NULL) {
List <- list(...)
if(length(List) > 0) {
if(!is.null(skewness)) stop("CONFLICT: skewness and list of distributions cannot be both specified.")
if(!is.null(kurtosis)) stop("CONFLICT: kurtosis and list of distributions cannot be both specified.")
skewness <- rep(NA, length(List))
kurtosis <- rep(NA, length(List))
} else {
if(!is.null(skewness)) {
if(!is.null(kurtosis)) {
if(length(skewness) != length(kurtosis)) stop("CONFLICT: The length of skewness and kurtosis must be equal.")
} else {
kurtosis <- rep(0, length(skewness))
}
} else {
if(!is.null(kurtosis)) {
skewness <- rep(0, length(kurtosis))
} else {
stop("CONFLICT: Either the list of distributions and the skewness (or kurtosis) argument must be specified.")
}
}
List <- rep(list(NA), length(skewness))
}
if (is.null(p)) {
if(length(List) > 0) {
p <- length(List)
} else {
p <- length(skewness)
}
}
if (!is.null(margins)) {
if(length(margins) == 1) margins <- rep(margins, p)
} else {
margins <- rep("NA", p)
}
if (length(reverse) == 1)
reverse <- rep(reverse, p)
if (length(reverse) != p)
stop("Please specify the reverse option as TRUE or FALSE or the vector of TRUE/FALSE with the length of the number of the marginal distributions.")
if (length(margins) != p)
stop("Please specify the type of marginal distribution so that the length of the number of the marginal distributions is equal to the number of desired variables.")
if (length(keepScale) == 1)
keepScale <- rep(keepScale, p)
if (length(keepScale) != p)
stop("Please specify the keepScale option as TRUE or FALSE or the vector of TRUE/FALSE with the length of the number of the marginal distributions.")
if (length(List) != p)
List <- rep(List, length.out = p)
if (length(skewness) != p)
skewness <- rep(skewness, length.out = p)
if (length(kurtosis) != p)
kurtosis <- rep(kurtosis, length.out = p)
if (!is.null(copula)) {
if(!is(copula, "copula")) stop("The 'copula' argument is not a multivariate copula")
copula@dimension <- as.integer(p)
} else {
copula <- new("NullCopula")
}
return(new("SimDataDist", margins = margins, paramMargins = List, p = p, keepScale = keepScale,
reverse = reverse, copula = copula, skewness = skewness, kurtosis = kurtosis))
}
|
crssigtest <- function(model = NULL,
index = NULL,
boot.num = 399,
boot.type = c("residual","reorder"),
random.seed = 42,
boot = TRUE) {
if(exists(".Random.seed", .GlobalEnv)) {
save.seed <- get(".Random.seed", .GlobalEnv)
exists.seed <- TRUE
} else {
exists.seed <- FALSE
}
set.seed(random.seed)
if(is.null(model)) stop(" you must provide a crs model")
if(is.null(index)) index <- 1:NCOL(model$xz)
if(index < 1 || index > NCOL(model$xz)) stop(" you must provide a valid index")
boot.type <- match.arg(boot.type)
df1.vec <- numeric(length(index))
df2.vec <- numeric(length(index))
uss.vec <- numeric(length(index))
rss.vec <- numeric(length(index))
F.vec <- numeric(length(index))
P.vec.boot <- numeric(length(index))
P.vec.asy <- numeric(length(index))
F.boot <- numeric(length=boot.num)
F.boot.mat <- matrix(NA,nrow=boot.num,ncol=length(index))
for(ii in 1:length(index)) {
model.degree <- model$degree
model.lambda <- model$lambda
model.segments <- model$segments
model.basis <- model$basis
model.knots <- model$knots
degree.restricted <- model.degree
lambda.restricted <- model.lambda
segments.restricted <- model.segments
xz.numeric <- FALSE
if(is.numeric(model$xz[,index[ii]])) xz.numeric <- TRUE
if(xz.numeric) {
degree.index <- 0
for(jj in 1:index[ii]) if(is.numeric(model$xz[,jj])) degree.index <- degree.index + 1
model.degree[degree.index] <- ifelse(model$degree[degree.index]==0,1,model$degree[degree.index])
model.segments[degree.index] <- ifelse(model$degree[degree.index]==0,1,model$segments[degree.index])
degree.restricted[degree.index] <- 0
segments.restricted[degree.index] <- 1
} else {
lambda.index <- 0
for(jj in 1:index[ii]) if(!is.numeric(model$xz[,jj])) lambda.index <- lambda.index + 1
model.lambda[lambda.index] <- ifelse(isTRUE(all.equal(model$lambda[lambda.index],1)),.Machine$double.eps,model$lambda[lambda.index])
lambda.restricted[lambda.index] <- 1
}
model.unrestricted <- crs(xz=model$xz,
y=model$y,
cv="none",
degree=model.degree,
lambda=model.lambda,
segments=model.segments,
basis=model.basis,
knots=model.knots)
model.restricted <- crs(xz=model$xz,
y=model$y,
cv="none",
degree=degree.restricted,
lambda=lambda.restricted,
segments=segments.restricted,
basis=model.basis,
knots=model.knots)
uss.vec[ii] <- sum(residuals(model.unrestricted)^2)
rss.vec[ii] <- sum(residuals(model.restricted)^2)
df1.vec[ii] <- max(1,round(sum(model.unrestricted$hatvalues))-round(sum(model.restricted$hatvalues)))
df2.vec[ii] <- model$nobs-round(sum(model.unrestricted$hatvalues))
F.df <- df2.vec[ii]/df1.vec[ii]
F.pseudo <- F.df*(rss.vec[ii]-uss.vec[ii])/uss.vec[ii]
F.vec[ii] <- F.pseudo
if(boot) {
if(boot.type=="reorder") xz.boot <- model$xz
for(bb in 1:boot.num) {
if(boot.type=="reorder") {
xz.boot[,index[ii]] <- sample(model$xz[,index[ii]],replace=T)
model.unrestricted.boot <- crs(xz=xz.boot,
y=model$y,
cv="none",
degree=model.degree,
lambda=model.lambda,
segments=model.segments,
basis=model.basis,
knots=model.knots)
model.restricted.boot <- crs(xz=xz.boot,
y=model$y,
cv="none",
degree=degree.restricted,
lambda=lambda.restricted,
segments=segments.restricted,
basis=model.basis,
knots=model.knots)
} else {
y.boot <- fitted(model.restricted) + as.numeric(scale(sample(residuals(model),replace=T),center=TRUE,scale=FALSE))
model.unrestricted.boot <- crs(xz=model$xz,
y=y.boot,
cv="none",
degree=model.degree,
lambda=model.lambda,
segments=model.segments,
basis=model.basis,
knots=model.knots)
model.restricted.boot <- crs(xz=model$xz,
y=y.boot,
cv="none",
degree=degree.restricted,
lambda=lambda.restricted,
segments=segments.restricted,
basis=model.basis,
knots=model.knots)
}
uss.boot <- sum(residuals(model.unrestricted.boot)^2)
rss.boot <- sum(residuals(model.restricted.boot)^2)
F.boot[bb] <- F.df*(rss.boot-uss.boot)/uss.boot
}
F.boot.mat[,ii] <- F.boot
P.vec.boot[ii] <- mean(ifelse(F.boot > F.pseudo, 1, 0))
}
P.vec.asy[ii] <- pf(F.pseudo,df1=df1.vec[ii],df2=df2.vec[ii],lower.tail=FALSE)
}
if(exists.seed) assign(".Random.seed", save.seed, .GlobalEnv)
return(sigtest.crs(index=index,
P=P.vec.boot,
P.asy=P.vec.asy,
F=F.vec,
F.boot=F.boot.mat,
df1=df1.vec,
df2=df2.vec,
rss=rss.vec,
uss=uss.vec,
boot.num=boot.num,
boot.type=boot.type,
xnames=names(model$xz)))
}
sigtest.crs <- function(index,
P,
P.asy,
F,
F.boot,
df1,
df2,
rss,
uss,
boot.num,
boot.type,
xnames){
tsig <- list(index=index,
P=P,
P.asy=P.asy,
F=F,
F.boot=F.boot,
df1=df1,
df2=df2,
rss=rss,
uss=uss,
boot.num=boot.num,
boot.type=switch(boot.type,
"residual" = "Residual",
"reorder" = "Reorder"),
xnames=xnames)
tsig$reject <- rep('', length(F))
tsig$rejectNum <- rep(NA, length(F))
tsig$reject[a <- (P < 0.1)] <- '.'
tsig$rejectNum[a] <- 10
tsig$reject[a <- (P < 0.05)] <- '*'
tsig$rejectNum[a] <- 5
tsig$reject[a <- (P < 0.01)] <- '**'
tsig$rejectNum[a] <- 1
tsig$reject[a <- (P < 0.001)] <- '***'
tsig$rejectNum[a] <- 0.1
class(tsig) = "sigtest.crs"
return(tsig)
}
print.sigtest.crs <- function(x, ...){
cat("\nRegression Spline Significance Test",
"\nTest Type: ", x$boot.type," (",x$boot.num,
" replications)",
"\nPredictors tested for significance:\n",
paste(paste(x$xnames[x$index]," (",x$index,")", sep=""), collapse=", "),"\n\n",
sep="")
maxNameLen <- max(nc <- nchar(nm <- x$xnames[x$index]))
cat("\nSignificance Test Summary\n")
cat("P Value:", paste("\n", nm, ' ', blank(maxNameLen-nc), format.pval(x$P),
" ", formatC(x$reject,width=-4,format="s"),
"(F = ", formatC(x$F,digits=4,format="fg"),
", df1 = ", x$df1,
", df2 = ", x$df2,
", rss = ", formatC(x$rss,digits=6,format="fg"),
", uss = ", formatC(x$uss,digits=6,format="fg"),")",sep=''))
cat("\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n")
}
summary.sigtest.crs <- function(object, ...) {
print(object)
} |
rscontract_update <- function(host = "", type = "", hint = "") {
observer <- getOption("connectionObserver")
if (is.null(observer)) {
return(invisible(NULL))
}
observer$connectionUpdated(type = type, host = host, hint = hint)
} |
context("variable_label() replacement methods")
test_that(
"variable_label<-.default"
, {
object <- 1:4
variable_label(object) <- "Label 1"
expect_identical(
object = object
, expected = structure(
1:4
, label = "Label 1"
, class = c("tiny_labelled", "integer")
)
)
expect_error(
variable_label(object) <- NULL
, regexp = "Variable labels must not be NULL. To entirely remove variable labels, use unlabel()."
)
expect_error(
variable_label(object) <- 1:2
, regexp = "Trying to set a variable label of length greater than one: '1', '2'"
)
variable_label(object) <- list(b = list("a"))
expect_identical(
variable_label(object)
, "a"
)
}
)
test_that(
"variable_label<-.data.frame"
, {
object <- data.frame(a = 1:4, b = 5:8)
object$c <- list(1:2, 3:4, 5:6, 7:8)
expect_error(
variable_label(object) <- c("not_in_data" = "test")
, "While trying to set variable labels, some requested columns could not be found in data.frame:\n'not_in_data'"
, fixed = TRUE
)
expect_error(
variable_label(object) <- "a"
, "The assigned variable label(s) must be passed as a named vector or a named list."
, fixed = TRUE
)
variable_label(object) <- c("a" = "A beautiful test label.", c = "Deal with list columns")
expect_identical(
object = object
, expected = structure(
list(
a = structure(
1:4
, label = "A beautiful test label."
, class = c("tiny_labelled", "integer")
)
, b = 5:8
, c = structure(
list(1:2, 3:4, 5:6, 7:8)
, label = "Deal with list columns"
, class = c("tiny_labelled", "list")
)
)
, row.names = c(NA, -4L)
, class = "data.frame"
)
)
object <- label_variables(
object
, a = "A different, but equally beautiful, test label."
, b = "A mediocre reinterpretation of the a's label."
)
expect_identical(
object = object
, expected = structure(
list(
a = structure(
1:4
, label = "A different, but equally beautiful, test label."
, class = c("tiny_labelled", "integer")
)
, b = structure(
5:8
, label = "A mediocre reinterpretation of the a's label."
, class = c("tiny_labelled", "integer")
)
, c = structure(
list(1:2, 3:4, 5:6, 7:8)
, label = "Deal with list columns"
, class = c("tiny_labelled", "list")
)
)
, row.names = c(NA, -4L)
, class = "data.frame"
)
)
object <- npk
variable_label(object) <- c(
N = "Nitrogen"
, P = NULL
)
}
)
test_that(
"variable_label.data.frame() for duplicate column names"
, {
object <- data.frame(x = 1, x = 2, check.names = F)
variable_label(object) <- c(x = "Test duplicate columns")
expect_identical(
variable_label(object)
, list(x = "Test duplicate columns", x = "Test duplicate columns")
)
}
)
test_that(
"variable_label.data.frame() -- only modify columns if value is not NULL"
, {
object <- data.frame(
x = 1
, y = 2
)
variable_labels(object) <- list(
x = "A nice label"
, y = NULL
)
expect_identical(
variable_labels(object)
, list(x = "A nice label", y = NULL)
)
}
)
context("variable_label() extraction methods")
test_that(
"variable_label.tiny_labelled-method"
, {
object <- 1:10
class(object) <- c("tiny_labelled", "integer")
attr(object, "label") <- "label1"
expect_identical(
object = variable_label(object)
, expected = "label1"
)
}
)
test_that(
"variable_label.data.frame-method"
, {
x <- npk
variable_label(x) <- list(N = "Nitrogen", P = "Phosphate", K = expression(italic(K)))
expect_identical(
variable_label(x)
, list(
block = NULL
, N = "Nitrogen"
, P = "Phosphate"
, K = expression(italic(K))
, yield = NULL
)
)
}
) |
context("opt_dead_expr")
test_that("dead expr empty code", {
code <- paste(
"",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, paste(
"",
sep = "\n"
))
})
test_that("dont eliminate DE in parent env", {
code <- paste(
"8 + 8 + 1918",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, paste(
"8 + 8 + 1918",
sep = "\n"
))
})
test_that("eliminate DE in fun", {
code <- paste(
"8 + 8 + 1918",
"foo <- function() 8818",
"bar <- function() {",
" 8818",
" 8818",
"}",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, paste(
"8 + 8 + 1918",
"foo <- function() 8818",
"bar <- function() {",
" 8818",
"}",
sep = "\n"
))
})
test_that("eliminate DE in fun", {
code <- paste(
"8 + 8 + 1918",
"foo <- function() 8818",
"bar <- function(x) {",
" x + 8818",
" 8818",
"}",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, paste(
"8 + 8 + 1918",
"foo <- function() 8818",
"bar <- function(x) {",
" 8818",
"}",
sep = "\n"
))
})
test_that("eliminate DE in fun with ';", {
code <- paste(
"bar <- function(x) { 8818; 8818; 8818; 8818 }",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, paste(
"bar <- function(x) { ; ; ; 8818 }",
sep = "\n"
))
})
test_that("eliminate DE in loop", {
code <- paste(
"bar <- function(x) {",
" while (TRUE) {",
" x + 8818",
" }",
" while (TRUE) x + 8818",
" for (i in 1:10) {",
" x + 8818",
" }",
" for (i in 1:10) x + 8818",
" repeat {",
" x + 8818",
" }",
" repeat x + 8818",
"}",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, paste(
"bar <- function(x) {",
" while (TRUE) {",
" }",
" while (TRUE) {}",
" for (i in 1:10) {",
" }",
" for (i in 1:10) {}",
" repeat {",
" }",
" repeat {}",
"}",
sep = "\n"
))
})
test_that("dont eliminate DE in if/else", {
code <- paste(
"bar <- function(x) {",
" if (x == 0) {",
" x + 8818",
" } else if (x == 1) {",
" x + 8818",
" } else {",
" x + 8818",
" }",
"}",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, code)
})
test_that("eliminate DE in if/else", {
code <- paste(
"bar <- function(x) {",
" if (x == 0) {",
" x + 8818",
" } else if (x == 1) {",
" x + 8818",
" } else {",
" x + 8818",
" }",
" x + 8818",
"}",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, paste(
"bar <- function(x) {",
" if (x == 0) {",
" } else if (x == 1) {",
" } else {",
" }",
" x + 8818",
"}",
sep = "\n"
))
})
test_that("dont eliminate assigns", {
code <- paste(
"bar <- function(x) {",
" x <- 3",
" x <- x + 3",
" if (x == 0) {",
" x <- 3",
" x + 8818",
" } else if (x == 1) {",
" x <- 3",
" x + 8818",
" } else {",
" x <- 3",
" x + 8818",
" }",
" x <- 3",
" x + 8818",
"}",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, paste(
"bar <- function(x) {",
" x <- 3",
" x <- x + 3",
" if (x == 0) {",
" x <- 3",
" } else if (x == 1) {",
" x <- 3",
" } else {",
" x <- 3",
" }",
" x <- 3",
" x + 8818",
"}",
sep = "\n"
))
})
test_that("dont eliminate part of exprs", {
code <- paste(
"bar <- function(x) {",
" tp <- ip[startsWith(ip, token)]",
" completions <- lapply(tp, function(package) NULL)",
" x + 8818",
"}",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, code)
})
test_that("dont eliminate empty `if` or loop", {
code <- paste(
"foo <- function() {",
" if (cond) NULL",
" if (cond) NULL else NULL",
" while (cond) NULL",
" for (i in cond) NULL",
" 8818",
"}",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, code)
})
test_that("eliminate empty in one side of `ifelse`", {
code <- paste(
"foo <- function() {",
" if (cond) x else NULL",
" if (cond) NULL else x",
" 8818",
"}",
sep = "\n"
)
opt_code <- opt_dead_expr(list(code))$codes[[1]]
expect_equal(opt_code, paste(
"foo <- function() {",
" if (cond) {} else NULL",
" if (cond) NULL else {}",
" 8818",
"}",
sep = "\n"
))
}) |
NumCat <-
function(ColDes,DataMat,NADes){
ColDes=ColDes[[1]]
DataVec=DataMat[,ColDes]
CatNum=length(unique(DataVec[which((DataVec)!=NADes)]))
return(CatNum)} |
library(RSwissMaps)
library(tidyverse)
library(RMariaDB)
library(RMySQL) |
print.gofOutlier <-
function (x, ...)
{
coll.string <- paste("\n", space(33), sep = "")
cat("\nResults of Outlier Test\n")
cat("-------------------------\n\n")
cat("Test Method:", space(21), x$method, "\n\n", sep = "")
cat("Hypothesized Distribution:", space(7), x$distribution,
"\n\n", sep = "")
if (!is.null(x$n.param.est) && x$n.param.est > 0) {
cat("Estimated Parameter(s):", space(10), paste(paste(format(names(x$distribution.parameters),
justify = "left"), format(x$distribution.parameters,
nsmall = 0, ...), sep = " = "), collapse = coll.string),
"\n\n", sep = "")
cat("Estimation Method:", space(15), x$estimation.method,
"\n\n", sep = "")
}
if (is.null(names(x$data.name)))
cat("Data:", space(28), x$data.name, "\n\n", sep = "")
else cat("Data:", space(28), paste(paste(format(names(x$data.name),
justify = "left"), format(x$data.name, ...), sep = " = "),
collapse = coll.string), "\n\n", sep = "")
if (!is.null(x$subset.expression))
cat("Subset With:", space(21), x$subset.expression, "\n\n",
sep = "")
if (!is.null(x$parent.of.data))
cat("Data Source:", space(21), x$parent.of.data, "\n\n",
sep = "")
if (!is.null(x$bad.obs) && any(x$bad.obs > 0)) {
if (length(x$bad.obs) == 1)
cat("Number NA/NaN/Inf's Removed:", space(5), x$bad.obs,
"\n\n", sep = "")
else {
cat("Number NA/NaN/Inf's Removed:", space(5), paste(paste(format(names(x$bad.obs),
justify = "left"), format(x$bad.obs, nsmall = 0,
...), sep = " = "), collapse = coll.string),
"\n\n", sep = "")
}
}
if (length(x$sample.size) > 1) {
cat("Sample Sizes:", space(20), paste(paste(format(names(x$sample.size),
justify = "left"), format(x$sample.size, nsmall = 0,
...), sep = " = "), collapse = coll.string), "\n\n",
sep = "")
}
else {
cat("Sample Size:", space(21), x$sample.size, "\n\n",
sep = "")
}
string <- ifelse(length(x$statistic) == 1, paste("Test Statistic:",
space(18), sep = ""), paste("Test Statistics:", space(17),
sep = ""))
cat(string, paste(paste(format(names(x$statistic), justify = "left"),
format(x$statistic, nsmall = 0, ...), sep = " = "), collapse = coll.string),
"\n\n", sep = "")
n.params <- length(x$parameters)
if (n.params > 0) {
string <- ifelse(n.params > 1, paste("Test Statistic Parameters:",
space(7), sep = ""), paste("Test Statistic Parameter:",
space(8), sep = ""))
cat(string, paste(paste(format(names(x$parameters), justify = "left"),
format(x$parameters, nsmall = 0, ...), sep = " = "),
collapse = coll.string), "\n\n", sep = "")
}
if (!is.null(x$p.value)) {
if (length(x$p.value) == 1)
cat("P-value:", space(25), format(x$p.value, ...),
"\n\n", sep = "")
else {
if (!is.null(names(x$p.value)))
cat("P-values:", space(24), paste(paste(format(names(x$p.value),
justify = "left"), format(x$p.value, ...),
sep = " = "), collapse = coll.string), "\n\n",
sep = "")
else cat("P-values:", space(24), paste(format(x$p.value,
...), collapse = coll.string), "\n\n", sep = "")
}
}
cat("Alternative Hypothesis:", space(10), x$alternative,
"\n\n", sep = "")
if (!is.null(x$alpha))
cat("Type I Error:", space(20), paste(100 * x$alpha,
"%", sep = ""), "\n\n", sep = "")
if (!is.null(x$n.outliers))
cat("Number of Outliers Detected:", space(5), x$n.outliers,
"\n\n", sep = "")
if (!is.null(x$all.stats)) {
print(x$all.stats)
cat("\n\n")
}
invisible(x)
} |
test_that("oc_get returns a response object", {
skip_if_oc_offline()
withr::local_envvar(c("OPENCAGE_KEY" = key_200))
expect_s3_class(
oc_get(
oc_build_url(
query_par = list(
placename = "irrelevant",
key = Sys.getenv("OPENCAGE_KEY")
),
endpoint = "json"
)
),
"HttpResponse"
)
})
test_that("oc_get returns a response object for Namibia NA countrycode", {
skip_if_no_key()
skip_if_oc_offline()
expect_s3_class(
oc_get(
oc_build_url(
query_par = list(
placename = "Windhoek",
key = Sys.getenv("OPENCAGE_KEY"),
countrycode = "NA"
),
endpoint = "json"
)
),
"HttpResponse"
)
})
test_that("oc_get returns a response object for vector countrycode", {
skip_if_no_key()
skip_if_oc_offline()
expect_s3_class(
oc_get(
oc_build_url(
query_par = list(
placename = "Paris",
key = Sys.getenv("OPENCAGE_KEY"),
countrycode = c("FR", "US")
),
endpoint = "json"
)
),
"HttpResponse"
)
})
test_that("oc_get_limited is rate limited", {
skip_on_cran()
skip_if_offline("httpbin.org")
tm <- system.time({
replicate(2, oc_get_limited("https://httpbin.org/get"))
})
rate <- ratelimitr::get_rates(oc_get_limited)
expect_gte(tm[["elapsed"]], rate[[1]][["period"]] / rate[[1]][["n"]])
})
test_that("oc_get_memoise memoises", {
skip_on_cran()
skip_if_offline("httpbin.org")
oc_get_memoise("https://httpbin.org/get")
tm <- system.time({
oc_get_memoise("https://httpbin.org/get")
})
expect_lt(tm["elapsed"], 0.5)
}) |
evaluate_candidates_glmnet <- function(Y,X,Q,lambdas, ctmletype,
family,Qbounds, g.dataset, ab, candidates,
like_type, gbound,
training_set=1:length(Y),
best_k = NULL) {
Qstar_best <- 0
bestlambdas<-candidates$lambdas
test_set <- !training_set | all(training_set)
ncandidates <- length(lambdas)
j<-1
nextbestlambdas<-bestlambdas[j]
est <- likelihood <- varIC <- varDstar <-rep(Inf, ncandidates)
if(ctmletype==1){ epsilon<-matrix(rep(Inf,ncandidates*2),ncol=2) }
if(ctmletype==2){ epsilon<-matrix(rep(Inf,ncandidates*4),ncol=4) }
for (i in 1:ncandidates){
f1 <- eval(paste("A ~ ", paste(paste(names(X[,-1]), sep=''), collapse=" + ")))
f2 <- as.formula(f1)
lassox<- model.matrix(f2, X)[,-1]
lassoy<-as.factor(X[,1])
gbw <- glmnet(x=lassox,y=lassoy,family="binomial")
g <- predict(gbw,newx=lassox,s=lambdas[i],type="response")
g1W.total <- bound(g, c(gbound, 1-gbound))
g0W.total <- 1 - bound(g, c(gbound, 1-gbound))
H1W <- X[,1]/g1W.total
H0W <- (1 - X[,1])/g0W.total
if(ctmletype==1){
suppressWarnings(epsilon[i,]<- coef(glm(Y ~ -1 + offset(Q[, "QAW"]) + H0W+ H1W, family = family)))
Qstar <- Q + c((epsilon[i,1] * H0W + epsilon[i,2] * H1W), epsilon[i,1]/g0W.total, epsilon[i,2]/g1W.total)
}
if(ctmletype==2){
if(i==1){
g1<-predict(gbw,newx=lassox,s=(lambdas[i]+0.005),type="response")
}else{
g1<-predict(gbw,newx=lassox,s=(lambdas[i-1]),type="response")
}
g1W.total1 <- bound(g1, c(gbound, 1-gbound))
g0W.total1 <- 1 - bound(g1, c(gbound, 1-gbound))
ddg1<--(g1W.total-g1W.total1)
ddg1[which(ddg1==0)]<-1e-10
ddg0<--(g0W.total-g0W.total1)
ddg0[which(ddg0==0)]<-1e-10
ddH1W <- (X[,1]/(g1W.total^2))*ddg1
ddH0W <- ((1 - X[,1])/(g0W.total^2))*ddg0
suppressWarnings(epsilon[i,]<- coef(glm(Y ~ -1 +offset(Q[, "QAW"])+ H0W+H1W+ ddH0W + ddH1W, family = family)))
Qstar <- Q + cbind((epsilon[i,1] * H0W+ epsilon[i,2] * H1W),
epsilon[i,1]/g0W.total, epsilon[i,2]/g1W.total)+ cbind((epsilon[i,3] * ddH0W+ epsilon[i,4] * ddH1W),
(epsilon[i,3]/(g0W.total^2))*ddg0, (epsilon[i,4]/(g1W.total^2))*ddg1)
}
if(family=="binomial"){ Qstar <- plogis(Qstar) }
est[i] <- (mean(Qstar[training_set,"Q1W"]) - mean(Qstar[training_set,"Q0W"]))*diff(ab)
if(!is.null(best_k)){
if(i == best_k){
Qstar_best <- Qstar
}
}
if(like_type=="RSS"){
likelihood[i] <- sum((Y[test_set]-Qstar[test_set,"QAW"])^2)
}else{
likelihood[i] <- -sum(Y[test_set]*log(Qstar[test_set,"QAW"]) + (1-Y[test_set])*log(1-Qstar[test_set,"QAW"]))
}
temp <- calc_varIC(Y[test_set], Q=Qstar[test_set,], A=X[test_set,1], W=X[test_set, 2], g1W=g1W.total[test_set], ICg=TRUE)
varDstar[i] <- temp[1]
varIC[i] <- temp[2]
if(is.nan(est[i])|is.infinite(est[i])){est[i] <- NA}
if(is.nan(likelihood[i])|is.infinite(likelihood[i])){likelihood[i] <- NA}
if(is.nan(varIC[i])|is.infinite(varIC[i])){varIC[i] <- NA}
if(is.nan(varDstar[i])|is.infinite(varDstar[i])){varDstar[i] <- NA}
if(lambdas[i]==nextbestlambdas){
if(ctmletype==1){
Q <- Q + c((epsilon[i,1] * H0W + epsilon[i,2] * H1W),
epsilon[i,1]/g0W.total, epsilon[i,2]/g1W.total)
}
if(ctmletype==2){
Q <- Q + cbind((epsilon[i,1] * H0W+ epsilon[i,2] * H1W),
epsilon[i,1]/g0W.total, epsilon[i,2]/g1W.total)+
cbind((epsilon[i,3] * ddH0W+ epsilon[i,4] * ddH1W),
(epsilon[i,3]/(g0W.total^2))*ddg0,
(epsilon[i,4]/(g1W.total^2))*ddg1)
}
Q <- qlogis(bound(plogis(Q), Qbounds))
j <- j+1
if(length(bestlambdas)>=j){ nextbestlambdas<-bestlambdas[j] }else{ nextbestlambdas<-0 }
}
}
return(list(est=est, likelihood=likelihood, varDstar=varDstar, varIC=varIC, Qstar_best = Qstar_best))
}
construct_candidates_glmnet <- function(Y, X, Q, lambdas, ctmletype,
family,Qbounds,training_set,
gbound, like_type, verbose,
stopFactor){
g.dataset <- X
Epsilon <- scorelambdas<-NULL
bestlambdas<-NULL
minScore <- Inf
lambdas_remaining<-lambdas
ncandidates<-length(lambdas)
i <- 0
DONE <- ncandidates<= 0
while(!DONE) {
i <- i+1
if(verbose) {cat("\tBeginning construction of clever covariate", i,"\n")}
nlambdas<-length(lambdas_remaining)
epsilon <- NULL
score <- rep(NA, nlambdas)
if(ctmletype==1){ eps_try <- matrix(ncol=2,nrow=nlambdas) }
if(ctmletype==2){ eps_try <- matrix(ncol=4,nrow=nlambdas) }
if(verbose){ cat("\n\t Selecting best bandwidth to add to model...\n") }
for (j in 1:nlambdas){
if(verbose) { cat("\t\tTrying", lambdas_remaining[j],"\n") }
f1<-eval(paste("A ~ ", paste(paste(names(X[,-1]), sep=''), collapse=" + ")))
f2<-as.formula(f1)
lassox<- model.matrix(f2, X[training_set,])[,-1]
lassoy<-as.factor(X[training_set,1])
gbw<-glmnet(x=lassox,y=lassoy,family="binomial")
g<-predict(gbw,newx=lassox,s=lambdas_remaining[j],type="response")
g1W.total <- bound(g, c(gbound, 1-gbound))
g0W.total <- 1 - bound(g, c(gbound, 1-gbound))
H1W <- X[training_set,1]/g1W.total
H0W <- (1 - X[training_set,1])/g0W.total
if(ctmletype==1){
suppressWarnings(eps_try[j,]<- coef(glm(Y[training_set] ~ -1 +
offset(Q[training_set, "QAW"])
+ H0W + H1W, family = family)))
Qstar <- Q[training_set,] + c((eps_try[j,1] * H0W +
eps_try[j,2] * H1W),
eps_try[j,1]/g0W.total,
eps_try[j,2]/g1W.total)
}
if(ctmletype==2){
if(j==1){
g1<-predict(gbw,newx=lassox,s=(lambdas_remaining[j]+0.005),type="response")
}else{
g1<-predict(gbw,newx=lassox,s=(lambdas_remaining[j-1]),type="response")
}
g1W.total1 <- bound(g1, c(gbound, 1-gbound))
g0W.total1 <- 1 - bound(g1, c(gbound, 1-gbound))
ddg1<--(g1W.total-g1W.total1)
ddg1[which(ddg1==0)]<-1e-10
ddg0<--(g0W.total-g0W.total1)
ddg0[which(ddg0==0)]<-1e-10
ddH1W <- (X[training_set,1]/(g1W.total^2))*ddg1
ddH0W <- ((1 - X[training_set,1])/(g0W.total^2))*ddg0
suppressWarnings(eps_try[j,]<- coef(glm(Y[training_set] ~ -1 + offset(Q[training_set, "QAW"])+ H0W+H1W+ ddH0W + ddH1W, family = family)))
Qstar <- Q[training_set,] + cbind((eps_try[j,1] * H0W+ eps_try[j,2] * H1W),
eps_try[j,1]/g0W.total, eps_try[j,2]/g1W.total)+ cbind((eps_try[j,3] * ddH0W+ eps_try[j,4] * ddH1W),
(eps_try[j,3]/(g0W.total^2))*ddg0, (eps_try[j,4]/(g1W.total^2))*ddg1)
}
if(family=="binomial"){ Qstar <- plogis(Qstar)}
varIC <- calc_varIC(Y[training_set], Qstar, A=X[training_set,1],g1W=g1W.total)[1] * sum(training_set)/length(training_set)
if(like_type == "RSS"){
score[j] <- sum((Y[training_set] - Qstar[,"QAW"])^2) + varIC[1]
}else {
score[j] <- -sum(Y[training_set]*log(Qstar[,"QAW"]) + (1-Y[training_set])*log(1-Qstar[,"QAW"])) + varIC[1]
}
}
if(verbose) { cat("\t\t",paste("penalized", like_type,":"), round(score,5), "\n") }
score[is.nan(score)] <- Inf
best <- which.min(abs(score))
if(verbose) { cat("\t\tbest choice:", lambdas_remaining[best], "\n") }
bestScore <- score[best]
epsilon <- rbind(epsilon, eps_try[best,])
if(verbose) { cat("\t\tbest score:", bestScore, "\n") }
earlyStop <- minScore*stopFactor < bestScore
if(earlyStop & verbose){
cat("Stopping early because loss function of current candidate >", stopFactor, "times the best candidate seen so far\n")
cat("The ratio of best to current (",i,"), is ", round(bestScore/minScore, 2), "\n")
}
minScore <- ifelse(minScore<bestScore, minScore, bestScore)
if(bestScore==minScore){
Epsilon <- rbind(Epsilon, epsilon)
bestlambdas <- c(bestlambdas, lambdas_remaining[best])
f1<-eval(paste("A ~ ", paste(paste(names(X[,-1]), sep=''), collapse=" + ")))
f2<-as.formula(f1)
lassox<- model.matrix(f2, X)[,-1]
lassoy<-as.factor(X[,1])
gbw<-glmnet(x=lassox,y=lassoy,family="binomial")
g<-predict(gbw,newx=lassox,s=lambdas_remaining[best],type="response")
g1W.total <- bound(g, c(gbound, 1-gbound))
g0W.total <- 1 - bound(g, c(gbound, 1-gbound))
H1W <- X[,1]/g1W.total
H0W <- (1 - X[,1])/g0W.total
if(ctmletype==1){
Q[training_set,] <- Q[training_set,] +
c(( Epsilon[dim(Epsilon)[1],1] * H0W[training_set] +
Epsilon[dim(Epsilon)[1],2] * H1W[training_set]),
Epsilon[dim(Epsilon)[1],1]/g0W.total[training_set],
Epsilon[dim(Epsilon)[1],2]/g1W.total[training_set])
Q[training_set,]<-qlogis(bound(plogis(Q[training_set,]), Qbounds))
}
if(ctmletype==2){
if(best==1){
g1<-predict(gbw,newx=lassox,s=(lambdas_remaining[best]+0.005),
type="response")
}else{
g1<-predict(gbw,newx=lassox,s=(lambdas_remaining[best-1]),
type="response")
}
g1W.total1 <- bound(g1, c(gbound, 1-gbound))
g0W.total1 <- 1 - bound(g1, c(gbound, 1-gbound))
ddg1<--(g1W.total-g1W.total1)
ddg1[which(ddg1==0)]<-1e-10
ddg0<--(g0W.total-g0W.total1)
ddg0[which(ddg0==0)]<-1e-10
ddH1W <- (X[,1]/(g1W.total^2))*ddg1
ddH0W <- ((1 - X[,1])/(g0W.total^2))*ddg0
Q[training_set,] <- Q[training_set,] +
cbind(( Epsilon[dim(Epsilon)[1],1] * H0W[training_set] +
Epsilon[dim(Epsilon)[1],2] * H1W[training_set]),
Epsilon[dim(Epsilon)[1],1]/g0W.total[training_set], Epsilon[dim(Epsilon)[1],2]/g1W.total[training_set])+
cbind(( Epsilon[dim(Epsilon)[1],3] * ddH0W[training_set] +
Epsilon[dim(Epsilon)[1],4] * ddH1W[training_set]),
((Epsilon[dim(Epsilon)[1],3]/(g0W.total^2))*ddg0)[training_set], ((Epsilon[dim(Epsilon)[1],4]/(g1W.total^2))*ddg1)[training_set])
Q[training_set,]<-qlogis(bound(plogis(Q[training_set,]), Qbounds))
}
lambdas_remaining <- lambdas_remaining[which(lambdas_remaining<lambdas_remaining[best])]
ncandidates<-length(lambdas_remaining)
}else{
ncandidates<-0
}
DONE <- ncandidates <= 0 | earlyStop
if(verbose){
if(bestScore==minScore){
cat("\tThe model for clever covariate", i, "is complete.\n")
cat("\t\t...Calculating h(A,W) based on candidate g-estimator", i,"\n")
cat("\t\t...Running a logistic regression to fit epsilon\n")
cat("\t\t...Updating estimate of Q(A,W) = Q(A,W) + epsilon * h(A,W)\n")
}
if(DONE){
cat("\tAll candidate TMLE estimators have been constructed\n\n")
} else {
cat("\n\tReady to use the updated estimate of Q(A,W) to construct the next clever covariate.\n")
}
}
}
return(list(lambdas=bestlambdas, epsilon=Epsilon, earlyStop=earlyStop))
}
stage2_glmnet <- function(Y, X, Q, lambdas, ctmletype, family, Qbounds,
ab,training_set=rep(T,length(Y)),
like_type, gbound,verbose,
stopFactor=10^6, best_k = NULL) {
if(verbose) { cat ("\n\t\t-----Stage 2: Constructing candidate TMLE estimators-----\n\n") }
candidates <- construct_candidates_glmnet(Y, X, Q,lambdas,ctmletype,
family=family[1] ,
Qbounds,training_set=training_set,
gbound=gbound, like_type=like_type,
verbose=verbose,stopFactor=stopFactor)
results.all <- evaluate_candidates_glmnet(Y, X, Q,lambdas,ctmletype,
family[1],Qbounds, g.dataset=X,
candidates, ab=ab,
like_type=like_type, gbound=gbound,
training_set=training_set, best_k = best_k)
return(list(candidates=candidates, results.all=results.all))
}
cv_glmnet <- function(Y,X, est.all, Q, lambdas,ctmletype, family, Qbounds, ab, like_type, gbound,
verbose=FALSE, PEN, V=5, folds = NULL) {
n <- length(Y)
nconstructed <- length(est.all)
if(is.null(folds)){
folds <- by(sample(1:n,n), rep(1:V, length=n), list)
}else{
if(length(folds) != V){
stop("The number of user-specified folds information does not match V")
}else if(mean(sort(unlist(folds)) - 1:n)!= 0){
stop("Error in the indices of the user-specified folds")
}
}
likelihood <- varDstar <- bias <- c(rep(0,nconstructed))
est <- matrix(data=NA, nrow=nconstructed, ncol=V)
if(verbose) {cat("\tfold: ")}
for (v in 1:V){
if(verbose) {cat(v," ")}
test_set <- folds[[v]]
training_set <- rep(TRUE, n)
training_set[folds[[v]]] <- FALSE
candidates <- stage2_glmnet(Y,X, Q,lambdas,ctmletype, family=family,
Qbounds = Qbounds, ab=ab,
training_set=training_set, like_type=like_type, gbound=gbound,
verbose=FALSE)
est[,v] <- candidates$results.all$est
likelihood <- c(likelihood+candidates$results.all$likelihood)
varDstar <- c(varDstar+candidates$results.all$varDstar)
bias <- c(bias+(candidates$results.all$est-est.all))
}
bias <- bias
pen <- varDstar*(diff(ab))^2/V + n*(bias/V)^2
if(identical(family[1], gaussian) | identical(family[1], "gaussian")){
pen <- pen * log(n)
}
if(PEN){
score <- likelihood*(diff(ab)^2) + pen
} else {
score <- likelihood*(diff(ab)^2)
}
score[is.infinite(score)|is.nan(score)] <- Inf
best_k <- which.min(abs(score))
if(verbose){
cat("\n\n")
cat("\t terms: ", candidates$candidates$terms, "\n")
cat("\t all estimates: ", est.all, "\n")
cat("\t all RSS: ", score, "\n")
cat("\t best_k: ", best_k, "\n\n")
}
return(list(best_k=best_k, est=est, likelihood=likelihood, like_type=like_type,
penlikelihood=score, varIC=varDstar/V, bias=bias/V, pen=pen))
} |
print.summary.HDBRR<- function(x, ...){
if(!inherits(x, "summary.HDBRR")) stop("This function only works for objects of class 'HDBRR'\n");
model <- x$call
summary <- x$summary
lambda <- x$lambda
edf <- x$edf
cat("\nCall:\n", paste(deparse(model), sep = "\n", collapse = "\n"),
"\n\n", sep = "")
cat("\nCoefficients:\n")
print(summary)
cat("-----\n")
cat("Signif. codes: 10 '***' 6 '**' 2 '*' 0 ' ' \n\n")
cat("\nRidge parameter:", lambda)
cat("\nEffective degrees of freedom:", edf)
} |
test_that("summary and print.summary work", {
summary(data_corpus_inaugural[1:2])
summ <- summary(data_corpus_inaugural[1:2])
expect_is(summ, "data.frame")
expect_equal(
names(summ),
c("Text", "Types", "Tokens", "Sentences", "Year", "President", "FirstName", "Party")
)
expect_output(
print(summ),
"Corpus consisting of 2 documents, showing 2 documents:
Text Types Tokens Sentences Year President FirstName Party
1789-Washington 625 1537 23 1789 Washington George none
1793-Washington 96 147 4 1793 Washington George none"
)
}) |
robcor <- function(x, y = NULL, method = c("ssd", "quadrant", "mcd"), partial = FALSE, post = "psdcor", scaler = "s_FastQn", regress = "lmrob") {
method <- match.arg(method)
scaler <- match.fun(scaler)
if (!is.null(post))
post <- match.fun(post)
if (is.data.frame(y))
y <- as.matrix(y)
if (is.data.frame(x))
x <- as.matrix(x)
if (!is.matrix(x) && is.null(y))
stop("supply both 'x' and 'y' or a matrix-like 'x'")
if (!(is.numeric(x) || is.logical(x)))
stop("'x' must be numeric")
stopifnot(is.atomic(x))
if (!is.null(y)) {
if (!(is.numeric(y) || is.logical(y)))
stop("'y' must be numeric")
stopifnot(is.atomic(y))
if (method == "mcd")
stop(paste("'y' must be NULL for", method))
if (partial)
stop("'y' must be NULL for partial correlations")
}
if (partial && any(method == c("mcd")))
stop(paste("partial correlations unavailable for", method))
if (method == "mcd") {
ret <- covMcd(x, cor = TRUE)$cor
} else {
ret <- .PairwiseCorrelation(x, y, method, partial, post, scaler, regress)
}
ret
}
.PairwiseCorrelation <- function(x, y, method, partial, post, scaler, regress) {
if (method == "ssd") {
.Standardize <- function(x) {
musigma <- apply(x, 2, function(x) scaler(na.omit(x), mu.too=TRUE))
scale(x, musigma[1,], musigma[2,])
}
.PairCorrelation <- function(nx, ny) {
s2u <- scaler(nx + ny)^2
s2v <- scaler(nx - ny)^2
(s2u - s2v) / (s2u + s2v)
}
} else if (method == "quadrant") {
.Standardize <- function(x) {
center <- apply(x, 2, median, na.rm = TRUE)
sign(sweep(x, 2, center))
}
.PairCorrelation <- function(nx, ny) {
n <- nx * ny
sin(sum(n) / sum(abs(n)) * pi / 2)
}
} else {
stop("unimplemented method")
}
if (is.null(y)) {
ncy <- ncx <- ncol(x)
if (ncx == 0)
stop("'x' is empty")
if (!is.null(.Standardize))
x <- .Standardize(x)
if (partial) {
if (regress == "lmrob") {
require(robustbase)
}
regress <- match.fun(regress)
r <- .PartialToCorrelation(.BuildPartial(x, .Standardize, .PairCorrelation, regress))
} else {
r <- diag(ncx)
for (i in seq_len(ncx - 1)) {
for (j in i + seq_len(ncx - i)) {
x2 <- x[, i]
y2 <- x[, j]
ok <- complete.cases(x2, y2)
x2 <- x2[ok]
y2 <- y2[ok]
r[i, j] <- r[j, i] <- if (any(ok)) {
.PairCorrelation(x2, y2)
} else {
NA
}
}
}
}
if (is.function(post))
r <- post(r)
rownames(r) <- colnames(x)
colnames(r) <- colnames(x)
} else {
if (length(x) == 0L || length(y) == 0L)
stop("both 'x' and 'y' must be non-empty")
matrixResult <- is.matrix(x) || is.matrix(y)
if (!is.matrix(x))
x <- matrix(x, ncol = 1L)
if (!is.matrix(y))
y <- matrix(y, ncol = 1L)
if (!is.null(.Standardize)) {
x <- .Standardize(x)
y <- .Standardize(y)
}
ncx <- ncol(x)
ncy <- ncol(y)
r <- matrix(0, nrow = ncx, ncol = ncy)
for (i in seq_len(ncx)) {
for (j in seq_len(ncy)) {
x2 <- x[, i]
y2 <- y[, j]
ok <- complete.cases(x2, y2)
x2 <- x2[ok]
y2 <- y2[ok]
r[i, j] <- if (any(ok)) {
.PairCorrelation(x2, y2)
} else {
NA
}
}
}
if (is.function(post))
r <- post(r)
rownames(r) <- colnames(x)
colnames(r) <- colnames(y)
if (!matrixResult)
r <- drop(r)
}
r
}
.BuildPartial <- function(data, fStandardize, fCorrelate, fRegression) {
stopifnot(is.matrix(data))
p <- ncol(data)
result <- diag(p)
data <- as.data.frame(data)
colnames(data) <- paste0("x", seq_len(p))
for (i in seq_len(p - 1)) {
if (i == 1) {
for (j in i + seq_len(p - i)) {
result[i, j] <- result[j, i] <- fCorrelate(data[,i], data[,j])
}
} else {
vars <- paste0("x", seq_len(i - 1))
f.i <- as.formula(paste(paste0("x", i), "~", vars))
res.i <- residuals(fRegression(f.i, data))
res.i <- as.vector(fStandardize(as.matrix(res.i)))
for (j in i + seq_len(p - i)) {
f.j <- as.formula(paste(paste0("x", j), "~", vars))
res.j <- residuals(fRegression(f.j, data))
res.j <- as.vector(fStandardize(as.matrix(res.j)))
result[i, j] <- result[j, i] <- fCorrelate(res.i, res.j)
}
}
}
return(result)
}
.PartialToCorrelation <- function(mtx) {
stopifnot(nrow(mtx) == ncol(mtx))
stopifnot(isSymmetric(mtx))
p <- ncol(mtx)
result <- diag(p)
for (i in seq_len(p - 1)) {
for (j in i + seq_len(p - i)) {
r <- mtx[i, j]
for (n in seq_len(i - 1)) {
a <- mtx[i, i - n]
b <- mtx[i - n, j]
r <- a * b + r * sqrt(1 - a^2) * sqrt(1 - b^2)
}
result[i, j] <- result[j, i] <- r
}
}
result
} |
meanvarTall = function(lower=rep(-Inf,length(mu)),upper=rep(Inf,length(mu)),mu,Sigma,nu,omega = FALSE){
p = length(mu)
if(p == 1){
if(nu >= 3){
return(meanvarT16(a = lower,b = upper,mu = mu,Sigma = Sigma,nu=nu,omega))
}else{
if(omega){
return(RcppMCT.lin(n = 5000,a = lower,b = upper,mu = mu,S = as.matrix(Sigma),nu = nu,omega = omega))
}else{
return(dtmvtmuvar(a = lower,b = upper,mu = mu,S = Sigma,nu=nu))
}
}
}
bool1 = is.infinite(lower)
bool2 = is.infinite(upper)
if(sum(bool1*bool2) > 0){
if(sum(bool1*bool2) == p){
if(nu > 2){
varcov = nu/(nu-2)*Sigma
EYY = varcov + mu%*%t(mu)
return(list(mean = mu,EYY = EYY,varcov = varcov))
}else{
return(list(mean = mu,EYY = matrix(NaN,p,p),varcov = matrix(NaN,p,p)))
}
}else{
return(withinfsT(lower,upper,mu,Sigma,nu))
}
}
if(nu > 4){
if(sum(bool1) + sum(bool2) == 0){
return(meanvarT.Lin.IC(a = lower,b = upper,mu = mu,S = Sigma,nu=nu,omega))
}else{
if(sum(bool1) == p){
if(sum(bool2) == p){
varcov = nu/(nu-2)*Sigma
return(list(mean = mu,EYY = varcov + mu%*%t(mu),varcov = varcov))
}else{
return(meanvarT.Lin.RC(b = upper,mu = mu,S = Sigma,nu=nu,omega))
}
}else{
if(sum(bool2) == p){
return(meanvarT.Lin.LC(a = lower,mu = mu,S = Sigma,nu=nu,omega))
}else{
return(meanvarT.Lin.LRIC(a = lower,b = upper,mu = mu,S = Sigma,nu=nu,omega))
}
}
}
}
if(nu >= 3){
if(sum(bool1) + sum(bool2) == 0){
return(meanvarT16_finite(a = lower,b = upper,mu = mu,Sigma = Sigma,nu=nu,omega))
}else{
if(sum(bool1) == p){
if(sum(bool2) == p){
varcov = nu/(nu-2)*Sigma
return(list(mean = mu,EYY = varcov + mu%*%t(mu),varcov = varcov))
}else{
return(meanvarT16_upper(b = upper,mu = mu,Sigma = Sigma,nu=nu,omega))
}
}else{
if(sum(bool2) == p){
return(meanvarT16_lower(a = lower,mu = mu,Sigma = Sigma,nu=nu,omega))
}else{
return(meanvarT16(a = lower,b = upper,mu = mu,Sigma = Sigma,nu=nu,omega))
}
}
}
}
if(omega){
return(RcppMCT.lin(n = 5000,a = lower,b = upper,mu = mu,S = as.matrix(Sigma),nu = nu,omega = omega))
}else{
if(sum(bool1) + sum(bool2) == 0){
return(ftmvtmuvar(a = lower,b = upper,mu = mu,S = Sigma,nu=nu))
}else{
if(sum(bool1) == p){
if(sum(bool2) == p){
varcov = nu/(nu-2)*Sigma
return(list(mean = mu,EYY = varcov + mu%*%t(mu),varcov = varcov))
}else{
return(utmvtmuvar(b = upper,mu = mu,S = Sigma,nu=nu))
}
}else{
if(sum(bool2) == p){
return(ltmvtmuvar(a = lower,mu = mu,S = Sigma,nu=nu))
}else{
return(dtmvtmuvar(a = lower,b = upper,mu = mu,S = Sigma,nu=nu))
}
}
}
}
} |
dat <- dat[,c("{user_parms}")]
names(dat) <- c("case","session","phase","outcome")
dat <- preprocess_SCD(case = case,
phase = phase,
session = session,
outcome = outcome,
design = "{user_design}",
center = {user_model_center},
data = dat) |
NULL
assembleShadowTest <- function(
j, position, o,
eligible_flag,
exclude_index,
stimulus_record,
info,
config,
constants,
constraints
) {
administered_stimulus_index <- na.omit(unique(o@administered_stimulus_index))
xdata <- getXdataOfAdministered(constants, position, o, stimulus_record, constraints)
xdata_exclude <- getXdataOfExcludedEntry(constants, exclude_index[[j]])
xdata <- combineXdata(xdata, xdata_exclude)
if (constants$use_eligibility_control) {
current_segment <- o@theta_segment_index[position]
eligible_flag_in_current_theta_segment <- getEligibleFlagInSegment(eligible_flag, current_segment, constants)
eligible_flag_in_current_theta_segment <- flagAdministeredAsEligible(eligible_flag_in_current_theta_segment, o, position, constants)
}
if (constants$use_eligibility_control && constants$exposure_control_method %in% c("ELIGIBILITY")) {
xdata_elg <- applyEligibilityConstraintsToXdata(xdata, eligible_flag_in_current_theta_segment, constants, constraints)
shadowtest <- runAssembly(config, constraints, xdata = xdata_elg, objective = info)
is_optimal <- isShadowtestOptimal(shadowtest)
if (is_optimal) {
shadowtest$feasible <- TRUE
return(shadowtest)
}
shadowtest <- runAssembly(config, constraints, xdata = xdata, objective = info)
shadowtest$feasible <- FALSE
return(shadowtest)
}
if (constants$use_eligibility_control && constants$exposure_control_method %in% c("BIGM", "BIGM-BAYESIAN")) {
info <- applyEligibilityConstraintsToInfo(
info, eligible_flag_in_current_theta_segment, config, constants
)
shadowtest <- runAssembly(config, constraints, xdata = xdata, objective = info)
shadowtest$feasible <- TRUE
return(shadowtest)
}
if (!constants$use_eligibility_control) {
shadowtest <- runAssembly(config, constraints, xdata = xdata, objective = info)
shadowtest$feasible <- TRUE
return(shadowtest)
}
}
isShadowtestOptimal <- function(shadowtest) {
return(isOptimal(shadowtest$status, shadowtest$solver))
} |
test_that("Potential numerical issues",{
expect_equal( range( sapply(subtracks( diffinv(matrix(rep(sqrt(2),200),ncol=4,byrow=T)), 2 ),
overallAngle ) ), c(0,0) )
}) |
key.control <- function(plot = TRUE,
lab = NULL,
title = NULL,
between = 0)
{
return(list(plot = plot,
x = NULL,
lab = lab,
title = title,
between = between))
} |
SkewBoot <-
function(data,replicates,units,type){
MaxSkew<-NULL
Scalar<-NULL
MardiaSkewness<-NULL
rm("MardiaSkewness")
fine<-replicates+1
if(type!="Directional"&&type!="Partial"&&type!="Mardia"){
print("ERROR: type must be either Directional, Partial or Mardia")
}
else{
xxx<-matrix(c(0),ncol=1,nrow=fine)
uno<-matrix(c(1),nrow=units,ncol=1)
AA<-matrix(ncol=1, nrow=fine)
Y<-matrix(nrow=fine,ncol=1)
for (b in 1:fine){
xB<-matrix(sample(data,size=ncol(data)*units,replace=TRUE),nrow=units)
if (type=="Directional"){
proj<-MaxSkew(xB,5,2,FALSE)
xxx[b,1]<-FisherSkew(proj)[2,1]
}
if(type=="Partial"){
Scalar<-PartialSkew(xB)
xxx[b,1]<-Scalar
}
if(type=="Mardia"){
SkewMardia(xB)
Mardiaprova<-MardiaSkewness
xxx[b,1]<-Mardiaprova
}
xxx.mean<-mean(xxx)
m<-xxx-xxx.mean
xxx.sd<-sd(xxx)
Y[,1]<-m/xxx.sd
z<-Y[,1]
AA[b,1]<-round(mean(z^3),digits=4)
}
if(type=="Directional"){
hist(AA[2:fine,1],freq=FALSE,main="Histogram of bootstrapped Directional skewness",xlab="Skewness")
}
if(type=="Partial"){
hist(AA[2:fine,1],freq=FALSE,main="Histogram of bootstrapped Partial skewness",xlab="Skewness")
}
if(type=="Mardia"){
hist(AA[2:fine,1],freq=FALSE,main="Histogram of bootstrapped Mardia skewness",xlab="Skewness")
}
print("Vector")
print(AA[2:fine,1])
count<-0
for(i in 2:fine){
if(AA[i,1]>= FisherSkew(data)[2,1])
count<-count+1
}
pvalue.Skew<-(count+1)/fine
print("Pvalue")
print(pvalue.Skew)
}
} |
TestIndLS <-
function(posx, posy, posz=NULL,T, alpha=0.05, nTrans=100,PA=FALSE,cores=1, fixed.seed=NULL)
{
NumProcess<-2+(is.null(posz)==F)
n<-length(posx)
distObs<-DistObs(posx=posx,posy=posy,posz=posz, info='F', PA=PA)
cl<-makeCluster(cores)
clusterExport(cl, objects(, envir = .GlobalEnv))
if (is.null(fixed.seed)==F) set.seed(fixed.seed)
shi1<-round(runif(nTrans,1,(T-1)))
if(NumProcess==3)
{
if (is.null(fixed.seed)==F) set.seed((fixed.seed+1))
shi2<-round(runif(nTrans,1,(T-1)))
}
else {shi2<-NULL}
matdist<- parSapply(cl, c(1:nTrans), FUN=fn2B, posx=posx, posy=posy, posz=posz,NumProcess=NumProcess,
PA=PA, shi1=shi1, shi2=shi2, T=T)
matdistT<-cbind(distObs,matdist)
matperT<-parSapply(cl, c(1:length(distObs)), FUN=mirank,mat=matdistT)/(nTrans+1)
KSest<-parSapply(cl, c(1:(nTrans+1)), FUN=miKS,mat=matperT)
stopCluster(cl)
KSpv<-1-rank(KSest)[1]/(nTrans+1)
reject<-as.numeric(KSpv<alpha)
return(list(pv=KSpv, reject=reject, est=KSest))
} |
polygon_metrics = function(las, func, geometry, ...)
{
UseMethod("polygon_metrics", las)
}
polygon_metrics.LAS = function(las, func, geometry, ...)
{
stopifnot(is(geometry, "sf") | is(geometry, "sfc"))
geometry <- sf::st_geometry(geometry)
stopifnot(is(geometry, "sfc_POLYGON") | is(geometry, "sfc_MULTIPOLYGON"))
M <- template_metrics(las, func, geometry, ...)
M <- sf::st_set_geometry(M, geometry)
return(M)
} |
"bpy.colors" <-
function (n = 100, cutoff.tails = 0.1, alpha = 1)
{
n <- as.integer(n[1])
if (n <= 0)
return(character(0))
if (cutoff.tails >= 1 || cutoff.tails < 0)
stop("cutoff.tails should be in [0, 1]")
i = seq(0.5 * cutoff.tails, 1 - 0.5 * cutoff.tails, length.out = n)
r = ifelse(i < .25, 0, ifelse(i < .57, i / .32 - .78125, 1))
g = ifelse(i < .42, 0, ifelse(i < .92, 2 * i - .84, 1))
b = ifelse(i < .25, 4 * i, ifelse(i < .42, 1,
ifelse(i < .92, -2 * i + 1.84, i / .08 - 11.5)))
rgb(r, g, b, alpha)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.