code
stringlengths 1
13.8M
|
---|
NULL
if (getRversion() >= "2.15.1") utils::globalVariables(c(".", "n")) |
boolSkip=F
test_that("Check 25.1 - getUtopiaPayoff - 3 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0,0,0,40,50,20,100)
result = getUtopiaPayoff(v)
expect_equal(result, c(80,50,60) )
})
test_that("Check 25.2 - getUtopiaPayoff - 3 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0,0,0,6,5,5,10)
result = getUtopiaPayoff(v)
expect_equal(result, c(5,5,4) )
})
test_that("Check 25.3 - getUtopiaPayoff - 3 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0, 0, 0, 60, 60, 60, 72)
result = getUtopiaPayoff(v)
expect_equal(result, c(12,12,12) )
})
test_that("Check 25.4 - getUtopiaPayoff - 3 players - example from TUGLAB",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0, 0, 0, 9, 4, 7, 11)
result = getUtopiaPayoff(v)
expect_equal(result, c(4,7,2) )
})
test_that("Check 25.5 - getUtopiaPayoff - 3 players - example from TUGLAB modified I",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(3, 0, 0, 9, 4, 7, 11)
result = getUtopiaPayoff(v)
expect_equal(result, c(4,7,2) )
})
test_that("Check 25.6 - getUtopiaPayoff - 3 players - example from TUGLAB modified II",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(3, 1, 2, 9, 4, 7, 11)
result = getUtopiaPayoff(v)
expect_equal(result, c(4,7,2) )
})
test_that("Check 25.7 - getUtopiaPayoff - 3 players - example from TUGLAB modified III",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(3, 6, 2, 9, 4, 7, 11)
result = getUtopiaPayoff(v)
expect_equal(result, c(4,7,2) )
})
test_that("Check 25.8 - getUtopiaPayoff - 3 players - example from TUGLAB modified IV",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(3, 6, 1, 9, 4, 7, 11)
result = getUtopiaPayoff(v)
expect_equal(result, c(4,7,2) )
})
test_that("Check 25.9 - getUtopiaPayoff - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0,0,0,0,7,7,7,7,7,7,12,12,12,12,22)
result = getUtopiaPayoff(v)
expect_equal(result, c(10,10,10,10) )
})
test_that("Check 25.10 - getUtopiaPayoff - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(2,5,2,5,7,7,7,7,7,7,12,12,12,12,22)
result = getUtopiaPayoff(v)
expect_equal(result, c(10,10,10,10) )
})
test_that("Check 25.11 - getUtopiaPayoff - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(2,5,2,5,7,7,7,7,7,7,10,11,12,13,22)
result = getUtopiaPayoff(v)
expect_equal(result, c(9,10,11,12) )
})
test_that("Check 25.12 - getUtopiaPayoff - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(2,5,2,5,7,8,7,9,7,5,10,11,12,13,22)
result = getUtopiaPayoff(v)
expect_equal(result, c(9,10,11,12) )
})
test_that("Check 25.13 - getUtopiaPayoff - 4 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0,0,0,0,6,8,7,9,7,5,10,11,12,13,22)
result = getUtopiaPayoff(v)
expect_equal(result, c(9,10,11,12) )
})
test_that("Check 25.14 - getUtopiaPayoff - 5 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(0, 0, 0, 0, 0, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72)
result = getUtopiaPayoff(v)
expect_equal(result, c(0,0,0,0,0) )
})
test_that("Check 25.15 - getUtopiaPayoff - 5 players",{
if(boolSkip){
skip("Test was skipped")
}
v <- c(73, 0, 72, 74, 75, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 80)
result = getUtopiaPayoff(v)
expect_equal(result, c(8,8,8,8,8) )
}) |
RooksNeighFind <- function(vfdf) {
if (is.element("PatternCt", colnames(vfdf)) == FALSE) {
stop("Must run PatternDetect function first to calculate PatternCt variable")
}
if (sum(vfdf$PatternCt, na.rm = TRUE) < 1) {
stop("Must be at least one candidate (one) in PatternCt column")
}
vfdfout <- vfdf
vfdfout$NeighType <- rep(0, dim(vfdfout)[1])
diffx <- abs(as.numeric(outer(vfdf$colcent, vfdf$colcent, FUN = "-")))
diffx[diffx == 0] <- NA
facth <- min(diffx, na.rm = TRUE)
diffy <- abs(as.numeric(outer(vfdf$rowcent, vfdf$rowcent, FUN = "-")))
diffy[diffy == 0] <- NA
factv <- min(diffy, na.rm = TRUE)
if (factv != facth) {
stop("Currently, factv must equal facth (see DispField function documentation)")
}
distmat <- sqrt((outer(vfdfout$colcent, vfdfout$colcent, FUN = "-")^2) +
outer(vfdfout$rowcent, vfdfout$rowcent, FUN = "-") ^2)
diag(distmat) <- 0
distmat[distmat > factv] <- 0
for (i in 1:dim(vfdfout)[1]) {
if (is.na(vfdfout$Pattern[i]) == FALSE & vfdfout$Pattern[i] == "partconv") {
vfdfout$NeighType[distmat[i,] > 0] <- 4
}
if (is.na(vfdfout$Pattern[i]) == FALSE & vfdfout$Pattern[i] == "partdiv") {
vfdfout$NeighType[distmat[i,] > 0] <- 3
}
if (is.na(vfdfout$Pattern[i]) == FALSE & vfdfout$Pattern[i] == "convergence") {
vfdfout$NeighType[distmat[i,] > 0] <- 2
}
if (is.na(vfdfout$Pattern[i]) == FALSE & vfdfout$Pattern[i] == "divergence") {
vfdfout$NeighType[distmat[i,] > 0] <- 1
}
}
return(vfdfout)
} |
`print.sfts` <- function (x, ...)
{
if (class(x)[1] == "sfts"){
cat("Sliced functional time series")
cat(paste("\n y:", x$yname))
cat(paste("\n x:", x$xname, "\n"))
}
else {
stop("object is not a sliced functional time series.")
}
} |
boot_stat <- function(u,Y_tilde,X,D,epsilon,N3,p,prec,N,sample_mat,generalized,weights,y_grid,phi_n,M_bar,DX){
T_reps = matrix(0,prec,1)
b_sample = sample_mat[u,]
T_n_grid_b<- matrix(0,prec,1)
D_b <- D[ b_sample]
W_b <- ((1-D_b)/sum((1-D_b)) - D_b / sum(D_b))*N
Y_tilde_b <-Y_tilde[ b_sample]
if( generalized =="Add" | generalized =="Mult"){
yy_b <- Y_tilde_b[D_b==1]
ypsi_b <- Y_tilde_b[D_b==0]
if( generalized =="Add" ){
alpha_b <-mean(yy_b)-mean(ypsi_b)
Y_tilde_b[D_b==1] <- Y_tilde_b[D_b==1]-alpha_b
}else if( generalized =="Mult"){
alpha_b <-mean(yy_b)/mean(ypsi_b)
Y_tilde_b[D_b==1] <- Y_tilde_b[D_b==1]/alpha_b
}
}
for (i in 1:prec){
y <- y_grid[i]
eq_1 <- W_b*Y_tilde_b
ineq_1 <- - W_b*(y-Y_tilde_b)*(Y_tilde_b <= y)
data_test <- cbind(ineq_1,eq_1)
N_k = dim(data_test)[2]
if( N_k >1){
M_ineq_b = data_test[,1]
M_eq_b = data_test[,2]
}else{
M_ineq_b = data_test
}
X_b = as.matrix(X[b_sample,] )
X_mean_b = colMeans(X_b)
Sigma_hat_b = var(X_b)
if(max(Sigma_hat_b) ==0){Sigma_hat_b =1}
r_n = ceiling((N3/2)^(1/2/DX)/2)
X_adj_b = pnorm((X_b-X_mean_b)%*%sqrt(Sigma_hat_b^(-1)))
res <- c_cube(X_adj_b, N, DX, r_n)
g_col_b <- res[[3]]
Q_AR_b <- res[[4]]
G_X_b <- res[[5]]
N_g_b = dim(G_X_b)[2]
if( N_k >1){
m_n_b = cbind(M_ineq_b,M_eq_b)
}else{
m_n_b = M_ineq_b
}
N_k_b = dim(data_test)[2]
if( is.null( N_k_b)){
N_k_b = 1
}
y_b<- Y_tilde[b_sample]
D_b <- D[b_sample]
sig <- var( y_b)
if( N_k ==1){
sigma_1_hat_b = sig
}else{
sigma_1_hat_b = diag(rep(sig,N_k ))
}
S_m_b = matrix(0,N_g_b,1)
M_g_b = matrix(0,N,N_g_b * N_k_b)
M_bar_b = matrix(0,N_k_b*N_g_b,1)
Sigma_bar_b = matrix(0,N_k_b*N_g_b,N_k_b*N_g_b)
for (index in 1:N_g_b){
M_temp_b = m_n_b * G_X_b[,index]
M_g_b[,((index-1)*N_k_b+1):(index*N_k_b)] = M_temp_b
M_bar_b[(N_k*(index-1)+1):(N_k_b*index),1] = sqrt(N)*colMeans(M_temp_b)
sigma_n_hat_b = var(M_temp_b)
if( sum(diag(sigma_1_hat_b)==0)>0 ){
sigma_n_bar_b = diag(diag(sigma_n_hat_b)) + epsilon * diag(diag(sigma_1_hat_b)+epsilon )
}else{
if( N_k_b ==1){
sigma_n_bar_b = sigma_n_hat_b + epsilon * sigma_1_hat_b
}else{
sigma_n_bar_b = diag(diag(sigma_n_hat_b)) + epsilon * diag(diag(sigma_1_hat_b))
}
}
Sigma_bar_b[(N_k_b*(index-1)+1):(N_k_b*index),(N_k_b*(index-1)+1):(N_k_b*index)] = sigma_n_bar_b
}
M_boot = (M_bar_b-M_bar[,i]) + phi_n[,i]
T_reps[i,1] = T_stat(M_boot,Sigma_bar_b,Q_AR_b,N_g_b,N_k_b,p)
}
return( as.numeric(max(T_reps[,1])) )
} |
library('TreeTools', quietly = TRUE, warn.conflicts = FALSE)
library('TreeDist')
treesMatchingSplit <- c(
AB.CDEF = TreesMatchingSplit(2, 4),
ABC.DEF = TreesMatchingSplit(3, 3)
)
treesMatchingSplit
proportionMatchingSplit <- treesMatchingSplit / NUnrooted(6)
proportionMatchingSplit
splitInformation <- -log2(proportionMatchingSplit)
splitInformation
treesMatchingBoth <- TreesConsistentWithTwoSplits(6, 2, 3)
combinedInformation <- -log2(treesMatchingBoth / NUnrooted(6))
sharedInformation <- sum(splitInformation) - combinedInformation
sharedInformation
SplitSharedInformation(n = 6, 2, 3)
library('TreeDist')
H <- function(inBracket) {
expression(paste(italic('H'), plain('('), italic(inBracket), plain(')')))
}
oldPar <- par(mar = c(3.1, 0.1, 0, 0.1))
joint <- Entropy(c(1, 2, 1, 2) / 6)
plot(0, type = 'n', xlim = c(0, joint), ylim = c(5, 0), axes = FALSE)
axis(1, at = c(0, 0.5, 1, 1.5, round(joint, 2)))
mtext('Entropy / bits', 1, 2)
rect(joint - 1, 3.1, 1, 3.9, col = "
rect(0, 0.1, joint - 1, 0.9, col = "
rect(1, 1.1, joint, 1.9, col = "
rect(joint - 1, 1.1, 1, 1.9, col = "
rect(joint - 1, 0.1, 1, 0.9, col = "
text(1, 3.5, pos=4,
expression(paste(italic(I), plain('('), italic('A;B'), plain(')'))))
rect(0, 2.1, joint, 2.9)
text(joint / 2, 2.5,
expression(paste(italic('H'), plain('('), italic('A, B'), plain(')'))))
rect(0, 0.1, 1, 0.9)
text(0.5, 0.5,
expression(paste(italic('H'), plain('('), italic(A), plain(')'))))
rect(joint - 1, 1.1, joint - 0, 1.9)
text(joint - 0.5, 1.5,
expression(paste(italic('H'), plain('('), italic(B), plain(')'))))
rect(0, 4.1, joint - 1, 4.9, col = "
rect(1, 4.1, joint, 4.9, col = "
text(joint / 2, 4.5,
expression(paste(italic('H'['D']), plain('('), italic('A, B'), plain(')'))))
par(oldPar) |
NHDaux <-
function(r,lambdaC, lambdaD,posC,typeC, posD,typeD, T)
{
posWC<-posC[(posC>=r)&(posC<=(T-r))]
typeWC<-typeC[(posC>=r)&(posC<=(T-r))]
lambdaWC<-lambdaC[cbind(ceiling(posWC),typeWC)]
lWnuC<-sum(1/lambdaWC, na.rm=TRUE)
L1D<-1-min(lambdaD)/lambdaD
L1C0<-sapply(posWC, FUN = prodN2, r=r,L1D=L1D,posD=posD, typeD=typeD)
NHD<-sum(L1C0/lambdaWC)
return(c(lWnuC,NHD))
} |
layer_batch_normalization <- function(object, axis = -1L, momentum = 0.99, epsilon = 0.001, center = TRUE, scale = TRUE,
beta_initializer = "zeros", gamma_initializer = "ones",
moving_mean_initializer = "zeros", moving_variance_initializer = "ones",
beta_regularizer = NULL, gamma_regularizer = NULL, beta_constraint = NULL,
gamma_constraint = NULL, renorm = FALSE, renorm_clipping = NULL,
renorm_momentum = 0.99, fused = NULL, virtual_batch_size = NULL,
adjustment = NULL, input_shape = NULL, batch_input_shape = NULL,
batch_size = NULL, dtype = NULL, name = NULL, trainable = NULL, weights = NULL) {
stopifnot(is.null(adjustment) || is.function(adjustment))
create_layer(keras$layers$BatchNormalization, object, list(
axis = as.integer(axis),
momentum = momentum,
epsilon = epsilon,
center = center,
scale = scale,
beta_initializer = beta_initializer,
gamma_initializer = gamma_initializer,
moving_mean_initializer = moving_mean_initializer,
moving_variance_initializer = moving_variance_initializer,
beta_regularizer = beta_regularizer,
gamma_regularizer = gamma_regularizer,
beta_constraint = beta_constraint,
gamma_constraint = gamma_constraint,
renorm = renorm,
renorm_clipping = renorm_clipping,
renorm_momentum = renorm_momentum,
fused = fused,
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
virtual_batch_size = as_nullable_integer(virtual_batch_size),
adjustment = adjustment,
weights = weights
))
}
layer_layer_normalization <- function(
object,
axis=-1,
epsilon=0.001,
center=TRUE,
scale=TRUE,
beta_initializer="zeros",
gamma_initializer="ones",
beta_regularizer=NULL,
gamma_regularizer=NULL,
beta_constraint=NULL,
gamma_constraint=NULL,
trainable=TRUE,
name=NULL
) {
create_layer(keras$layers$LayerNormalization, object, list(
axis=as.integer(axis),
epsilon=epsilon,
center=center,
scale=scale,
beta_initializer=beta_initializer,
gamma_initializer=gamma_initializer,
beta_regularizer=beta_regularizer,
gamma_regularizer=gamma_regularizer,
beta_constraint=beta_constraint,
gamma_constraint=gamma_constraint,
trainable=trainable,
name=name
))
} |
context("postdl_templates")
test_that("canNotPostProcess", {
dlfiles <- data.frame(
platform = LETTERS[1:3],
file = file.path(
LETTERS[1:3],
LETTERS[4:6]
),
processed = rep(TRUE, 3),
stringsAsFactors = FALSE
)
procdlfiles <- noproc_dlfiles(dlfiles)
expect_identical(procdlfiles[["processed"]], c("A/D", "B/E", "C/F"))
})
test_that("canUnzipFile", {
zipf <- system.file("exdata", "samplefiles.zip", package = "binman")
ziptemp <- tempfile(fileext = ".zip")
on.exit(unlink(ziptemp))
file.copy(zipf, ziptemp)
dlfiles <- data.frame(
platform = LETTERS[1],
file = ziptemp,
processed = TRUE,
stringsAsFactors = FALSE
)
procdlfiles <- unziptar_dlfiles(dlfiles, chmod = TRUE)
zfiles <- utils::unzip(ziptemp, list = TRUE)
zout <- file.path(dirname(ziptemp), basename(zfiles[["Name"]]))
fmode <- file.mode(zout)
expect_true(all(file.exists(zout)))
if (binman:::get_os() != "win") {
expect_identical(fmode, structure(c(493L, 493L), class = "octmode"))
}
unlink(zout)
})
test_that("canUntarFile", {
gzipf <- system.file("exdata", "samplefiles.tar.gz", package = "binman")
gziptemp <- tempfile(fileext = ".tar.gz")
on.exit(unlink(gziptemp))
file.copy(gzipf, gziptemp)
dlfiles <- data.frame(
platform = LETTERS[1],
file = gziptemp,
processed = TRUE,
stringsAsFactors = FALSE
)
procdlfiles <- unziptar_dlfiles(dlfiles, chmod = TRUE)
gzfiles <- utils::untar(gziptemp, list = TRUE)
gzout <- file.path(dirname(gziptemp), basename(gzfiles))
fmode <- file.mode(gzout)
expect_true(all(file.exists(gzout)))
if (binman:::get_os() != "win") {
expect_identical(fmode, structure(c(493L, 493L), class = "octmode"))
}
unlink(gzout)
}) |
tdmMapDesLoad <- function(tdm=list()) {
if (is.null(tdm$tdmPath)) {
mapPath <- find.package("TDMR");
} else {
mapPath <- paste(tdm$tdmPath,"inst",sep="/");
}
tdmMapFile=paste(mapPath,"tdmMapDesign.csv",sep="/")
if (!file.exists(tdmMapFile)) stop(sprintf("Could not find map file %s",tdmMapFile));
tdm$map <- read.table(tdmMapFile,sep=";",header=T);
cat(sprintf("Read tdmMapDesign.csv from %s\n",mapPath));
userMapFile=paste(tdm$path,"userMapDesign.csv",sep="");
if (file.exists(userMapFile)) {
tdm$mapUser <- read.table(userMapFile,sep=";",header=T);
cat(sprintf("Read userMapDesign.csv from %s\n",tdm$path));
} else {
tdm$mapUser <- NULL;
cat(sprintf("Note: No file userMapDesign.csv in %s\n",tdm$path));
}
tdm;
}
tdmMapDesApply <- function(des,opts,k,spotConfig,tdm) {
cRound <- function(n,map,x) {
x <- ifelse(map$isInt[n]==1,round(x),x);
x;
}
setMapValue <- function(n,map,des,opts,k) {
cmd = paste("if(!is.null(des$",map$roiValue[n],")) ",map$optsValue[n],"=cRound(n,map,des$",map$roiValue[n],"[k])",sep="");
eval(parse(text=cmd));
opts;
}
pNames=row.names(spotConfig$alg.roi);
for (d in pNames) {
if (length(which(tdm$map$roiValue==d))+length(which(tdm$mapUser$roiValue==d))==0)
stop(sprintf("tdmMapDesApply: cannot find a mapping for design variable %s.\n ",d),
sprintf("Please check spelling in spotConfig$alg.roi \n"),
sprintf("or extend tdmMapDesign.csv or userMapDesign.csv appropriately!\n"));
}
if (nrow(tdm$map)>0) {
for (n in 1:nrow(tdm$map)) {
opts <- setMapValue(n,tdm$map,des,opts,k);
}
}
if (!is.null(tdm$mapUser)) {
if (nrow(tdm$mapUser)>0) {
for (n in 1:nrow(tdm$mapUser)) {
opts <- setMapValue(n,tdm$mapUser,des,opts,k);
}
}
}
if (!is.null(opts$CLS.CLASSWT) && is.na(opts$CLS.CLASSWT[1])) opts$CLS.CLASSWT[1]=10;
opts;
}
tdmMapDesInt <- function(des,printSummary=T,spotConfig=NULL)
{
if (!is.null(des$MTRY)) des$MTRY <- round(des$MTRY);
if (!is.null(des$NTREE)) des$NTREE <- round(des$NTREE);
if (!is.null(des$NODESIZE)) des$NODESIZE <- round(des$NODESIZE);
if (!is.null(des$SAMPSIZE1)) des$SAMPSIZE1 <- round(des$SAMPSIZE1);
if (!is.null(des$SAMPSIZE2)) des$SAMPSIZE2 <- round(des$SAMPSIZE2);
if (!is.null(des$SAMPSIZE3)) des$SAMPSIZE3 <- round(des$SAMPSIZE3);
if (!is.null(des$SAMPSIZE4)) des$SAMPSIZE4 <- round(des$SAMPSIZE4);
if (!is.null(des$SAMPSIZE5)) des$SAMPSIZE5 <- round(des$SAMPSIZE5);
if (!is.null(des$PRE_NPC)) des$PRE_NPC = round(des$PRE_NPC);
if (printSummary) print(summary(des));
des;
}
tdmMapOpts <- function(umode,opts,tdm)
{
tdm <- tdmDefaultsFill(tdm);
setOpts.RSUB <- function(opts) {
opts$TST.kind <- "rand"
opts$TST.valiFrac=tdm$TST.testFrac
opts;
}
setOpts.TST <- function(opts) {
opts$TST.kind <- "col"
if (!is.null(tdm$U.trnFrac))
opts$TST.trnFrac=tdm$U.trnFrac
opts$TST.COL=tdm$tstCol
opts;
}
setOpts.CV <- function(opts) {
opts$TST.kind <- "cv"
opts$TST.NFOLD = tdm$nfold
opts;
}
setOpts.SP_T <- function(opts) {
if (!is.null(tdm$U.trnFrac))
opts$TST.trnFrac=tdm$U.trnFrac
if (!is.null(tdm$TST.valiFrac))
opts$TST.valiFrac=tdm$TST.valiFrac
opts$TST.NFOLD = tdm$nfold
opts;
}
opts <- switch(umode
, "RSUB" = setOpts.RSUB(opts)
, "CV" = setOpts.CV(opts)
, "TST" = setOpts.TST(opts)
, "SP_T" = setOpts.SP_T(opts)
, "INVALID"
);
if (opts[1]=="INVALID")
stop(sprintf("*** Invalid umode=%s ***\n",umode));
opts$NRUN = tdm$nrun
opts$test2.string=tdm$test2.string
opts$VERBOSE <- opts$SRF.verbose <- tdm$optsVerbosity;
opts;
}
tdmMapOpts.OLD <- function(umode,opts,test2.string="no postproc",nfold=10) {
tdm = list();
tdm$test2.string=test2.string;
tdm$nfold=nfold;
opts <- tdmMapOpts(umode,opts,tdm);
}
tdmMapCutoff <- function(des,k,spotConfig) {
if (!is.null(des$CUTOFF2)) {
hig=spotConfig$alg.roi["CUTOFF1","upper"];
low=spotConfig$alg.roi["CUTOFF1","lower"];
OLD.VER=F;
constr=ifelse(OLD.VER,0,1);
eps <- runif(1, min=0.0001, max=0.03);
csum <- des$CUTOFF1[k]+des$CUTOFF2[k];
if (!is.null(des$CUTOFF3)) csum <- csum + des$CUTOFF3[k];
if (!is.null(des$CUTOFF4)) csum <- csum + des$CUTOFF4[k];
if (csum+eps>constr) {
des$CUTOFF1[k] <- des$CUTOFF1[k]/(csum+eps);
des$CUTOFF2[k] <- des$CUTOFF2[k]/(csum+eps);
if (!is.null(des$CUTOFF3)) des$CUTOFF3[k] <- des$CUTOFF3[k]/(csum+eps);
if (!is.null(des$CUTOFF4)) des$CUTOFF4[k] <- des$CUTOFF4[k]/(csum+eps);
}
cutoffs=c(des$CUTOFF1[k],des$CUTOFF2[k],des$CUTOFF3[k],des$CUTOFF4[k]);
if (!OLD.VER) {
while (any(cutoffs<low)) {
cutoffs = c(cutoffs,1-sum(cutoffs));
wmin = which(cutoffs==min(cutoffs));
wmax = which(cutoffs==max(cutoffs));
delta = low-cutoffs[wmin];
cutoffs[wmin] = cutoffs[wmin]+delta;
cutoffs[wmax] = cutoffs[wmax]-delta;
cutoffs=cutoffs[1:(length(cutoffs)-1)];
}
if (!is.null(des$CUTOFF1[k])) des$CUTOFF1[k]=cutoffs[1];
if (!is.null(des$CUTOFF2[k])) des$CUTOFF2[k]=cutoffs[2];
if (!is.null(des$CUTOFF3[k])) des$CUTOFF3[k]=cutoffs[3];
if (!is.null(des$CUTOFF4[k])) des$CUTOFF4[k]=cutoffs[4];
}
if (any(cutoffs>hig)) {
msg=sprintf("Some cutoffs violate high ROI constraint %f (for k=%d)",hig,k);
warning(msg);
print(cutoffs);
}
if (any(cutoffs<low)) {
msg=sprintf("Some cutoffs violate low ROI constraint %f (for k=%d)",low,k);
warning(msg);
print(cutoffs);
}
}
des;
}
tdmMapDesFromX <- function(x,envT) {
des <- as.data.frame(x);
names(des) <- rownames(envT$spotConfig$alg.roi);
des <- tdmMapDesInt(des,printSummary=F,envT$spotConfig);
if (!is.null(envT$res)) {
des$CONFIG = max(envT$res$CONFIG)+1;
} else des$CONFIG=1;
if (!is.null(envT$bst)) {
des$STEP = nrow(envT$bst);
} else des$STEP=0;
des$REPEATS=envT$spotConfig$replicates;
des$SEED=envT$spotConfig$alg.seed + seq(1,nrow(x));
if (is.null(des$repeatsLastConfig)) des$repeatsLastConfig=1;
des;
} |
getreadcounts <-
function(hits, windowlength, chrlength){
windows <- seq(1,chrlength,windowlength)
readcount <- numeric(length=length(windows))
count <- 0
i <- 1
hits <- sort(hits)
for (hit in hits){
if (!isbetween(hit,windows[i],(windows[i]+windowlength-1))){
readcount[i] <- count
count <- 0
while(!isbetween(hit,windows[i],(windows[i]+windowlength-1))){
i <- i + 1
}
}
count <- count+1
}
readcount[i] <- count
return(readcount)
} |
custom_eucast_rules <- function(...) {
dots <- tryCatch(list(...),
error = function(e) "error")
stop_if(identical(dots, "error"),
"rules must be a valid formula inputs (e.g., using '~'), see `?custom_eucast_rules`")
n_dots <- length(dots)
stop_if(n_dots == 0, "no custom rules were set. Please read the documentation using `?custom_eucast_rules`.")
out <- vector("list", n_dots)
for (i in seq_len(n_dots)) {
stop_ifnot(inherits(dots[[i]], "formula"),
"rule ", i, " must be a valid formula input (e.g., using '~'), see `?custom_eucast_rules`")
qry <- dots[[i]][[2]]
if (inherits(qry, "call")) {
qry <- as.expression(qry)
}
qry <- as.character(qry)
qry <- gsub("&&", "&", qry, fixed = TRUE)
qry <- gsub("||", "|", qry, fixed = TRUE)
qry <- gsub(" *([&|+-/*^><==]+) *", " \\1 ", qry)
qry <- gsub(" ?, ?", ", ", qry)
qry <- gsub("'", "\"", qry, fixed = TRUE)
out[[i]]$query <- as.expression(qry)
result <- dots[[i]][[3]]
stop_ifnot(deparse(result) %like% "==",
"the result of rule ", i, " (the part after the `~`) must contain `==`, such as in `... ~ ampicillin == \"R\"`, see `?custom_eucast_rules`")
result_group <- as.character(result)[[2]]
if (paste0("AB_", toupper(result_group), "S") %in% DEFINED_AB_GROUPS) {
result_group <- paste0(result_group, "s")
}
if (paste0("AB_", toupper(result_group)) %in% DEFINED_AB_GROUPS) {
result_group <- eval(parse(text = paste0("AB_", toupper(result_group))), envir = asNamespace("AMR"))
} else {
result_group <- tryCatch(
suppressWarnings(as.ab(result_group,
fast_mode = TRUE,
flag_multiple_results = FALSE)),
error = function(e) NA_character_)
}
stop_if(any(is.na(result_group)),
"this result of rule ", i, " could not be translated to a single antimicrobial agent/group: \"",
as.character(result)[[2]], "\".\n\nThe input can be a name or code of an antimicrobial agent, or be one of: ",
vector_or(tolower(gsub("AB_", "", DEFINED_AB_GROUPS)), quotes = FALSE), ".")
result_value <- as.character(result)[[3]]
result_value[result_value == "NA"] <- NA
stop_ifnot(result_value %in% c("R", "S", "I", NA),
"the resulting value of rule ", i, " must be either \"R\", \"S\", \"I\" or NA")
result_value <- as.rsi(result_value)
out[[i]]$result_group <- result_group
out[[i]]$result_value <- result_value
}
names(out) <- paste0("rule", seq_len(n_dots))
set_clean_class(out, new_class = c("custom_eucast_rules", "list"))
}
c.custom_eucast_rules <- function(x, ...) {
if (length(list(...)) == 0) {
return(x)
}
out <- unclass(x)
for (e in list(...)) {
out <- c(out, unclass(e))
}
names(out) <- paste0("rule", seq_len(length(out)))
set_clean_class(out, new_class = c("custom_eucast_rules", "list"))
}
as.list.custom_eucast_rules <- function(x, ...) {
c(x, ...)
}
print.custom_eucast_rules <- function(x, ...) {
cat("A set of custom EUCAST rules:\n")
for (i in seq_len(length(x))) {
rule <- x[[i]]
rule$query <- format_custom_query_rule(rule$query)
if (is.na(rule$result_value)) {
val <- font_red("<NA>")
} else if (rule$result_value == "R") {
val <- font_rsi_R_bg(font_black(" R "))
} else if (rule$result_value == "S") {
val <- font_rsi_S_bg(font_black(" S "))
} else {
val <- font_rsi_I_bg(font_black(" I "))
}
agents <- paste0(font_blue(ab_name(rule$result_group, language = NULL, tolower = TRUE),
collapse = NULL),
" (", rule$result_group, ")")
agents <- sort(agents)
rule_if <- word_wrap(paste0(i, ". ", font_bold("If "), font_blue(rule$query), font_bold(" then "),
"set to {result}:"),
extra_indent = 5)
rule_if <- gsub("{result}", val, rule_if, fixed = TRUE)
rule_then <- paste0(" ", word_wrap(paste0(agents, collapse = ", "), extra_indent = 5))
cat("\n ", rule_if, "\n", rule_then, "\n", sep = "")
}
}
format_custom_query_rule <- function(query, colours = has_colour()) {
query <- gsub(" & ", font_black(font_bold(" and ")), query, fixed = TRUE)
query <- gsub(" | ", font_black(" or "), query, fixed = TRUE)
query <- gsub(" + ", font_black(" plus "), query, fixed = TRUE)
query <- gsub(" - ", font_black(" minus "), query, fixed = TRUE)
query <- gsub(" / ", font_black(" divided by "), query, fixed = TRUE)
query <- gsub(" * ", font_black(" times "), query, fixed = TRUE)
query <- gsub(" == ", font_black(" is "), query, fixed = TRUE)
query <- gsub(" > ", font_black(" is higher than "), query, fixed = TRUE)
query <- gsub(" < ", font_black(" is lower than "), query, fixed = TRUE)
query <- gsub(" >= ", font_black(" is higher than or equal to "), query, fixed = TRUE)
query <- gsub(" <= ", font_black(" is lower than or equal to "), query, fixed = TRUE)
query <- gsub(" ^ ", font_black(" to the power of "), query, fixed = TRUE)
query <- gsub(" %in% ", font_black(" is one of "), query, fixed = TRUE)
query <- gsub(" %like% ", font_black(" resembles "), query, fixed = TRUE)
if (colours == TRUE) {
query <- gsub('"R"', font_rsi_R_bg(font_black(" R ")), query, fixed = TRUE)
query <- gsub('"S"', font_rsi_S_bg(font_black(" S ")), query, fixed = TRUE)
query <- gsub('"I"', font_rsi_I_bg(font_black(" I ")), query, fixed = TRUE)
}
query <- gsub("\033[39m", "\033[34m", as.character(query), fixed = TRUE)
query <- paste0("\033[34m", query)
if (colours == FALSE) {
query <- font_stripstyle(query)
}
query
} |
"supreme_court" |
library(shiny.fluent)
if (interactive()) {
title <- "Long_file_name_with_underscores_used_to_separate_all_of_the_words"
previewImages <- list(
list(
previewImageSrc = "https://picsum.photos/318/196",
width = 318,
height = 196
)
)
shinyApp(
ui = DocumentCard(
DocumentCardPreview(previewImages = previewImages),
DocumentCardTitle(
title = title,
shouldTruncate = TRUE
),
DocumentCardActivity(
activity = "Created a few minutes ago",
people = list(list(name = "Annie Lindqvist"))
)
),
server = function(input, output) {}
)
} |
context("Testing 'modulePreservation' function")
gn1 <- paste0("N_", 1:100)
gn2 <- paste0("N_", seq(2, 200, length=100))
sn1 <- paste0("S_", 1:50)
sn2 <- paste0("S_", 1:75)
coexpSets <- list(
a=matrix(rnorm(100*100), 100, dimnames=list(gn1, gn1)),
b=matrix(rnorm(100*100), 100, dimnames=list(gn2, gn2))
)
adjSets <- coexpSets
exprSets <- list(
a=matrix(rnorm(50*100), 50, dimnames=list(sn1, gn1)),
b=matrix(rnorm(75*100), 75, dimnames=list(sn2, gn2))
)
moduleAssignments <- list(a=sample(1:7, 100, replace=TRUE), b=NULL)
names(moduleAssignments[[1]]) <- gn1
modules <- moduleAssignments[[1]][intersect(names(moduleAssignments[[1]]),
colnames(adjSets[[2]]))]
modules <- table(modules)
modules <- names(modules[modules > 2])
nModules <- length(modules)
test_that("Main routine runs and produces sane output", {
res1 <- modulePreservation(
adjSets, exprSets, coexpSets, moduleAssignments, modules,
discovery=1, test=2, nPerm=1000, verbose=FALSE, nThreads=2
)
expect_equal(dim(res1$nulls), c(nModules , 7, 1000))
expect_equal(dim(res1$observed), c(nModules , 7))
expect_equal(dim(res1$p.values), c(nModules , 7))
expect_equal(length(res1$propVarsPresent), nModules)
expect_equal(length(res1$nVarsPresent), nModules)
res2 <- modulePreservation(
adjSets, NULL, coexpSets, moduleAssignments,
modules, discovery=1, test=2, nPerm=1000,
verbose=FALSE, nThreads=2
)
expect_equal(dim(res2$nulls), c(nModules, 4, 1000))
expect_equal(dim(res2$observed), c(nModules, 4))
expect_equal(dim(res2$p.values), c(nModules, 4))
expect_equal(length(res2$propVarsPresent), nModules)
expect_equal(length(res2$nVarsPresent), nModules)
res1 <- modulePreservation(
adjSets, exprSets, coexpSets, moduleAssignments,
modules, discovery="a", test="b", nPerm=4,
verbose=FALSE, nThreads=2
)
})
rm(exprSets, coexpSets, adjSets)
gc() |
deltaFinder <-
function(a,
lambda1,
lambda2,
gamma){
return(sqrt(sum((deltaValue(a, lambda1, lambda2, gamma))^2))-1)
} |
source('loadTestDataFunc.R')
test_that("Test Assign Strain Traits for non pH traits",{
num=40
meanT=5
for (distn in c('normal','uniform')){
strainOptions=list(percentTraitRange=20,distribution=distn)
traits=assignStrainTraits(num,meanT,strainOptions,pHtrait=FALSE)
expect_equal(length(traits),num)
expect_equal(mean(traits),meanT,tolerance=0.1*meanT)
max.range=meanT*(1+strainOptions$percentTraitRange/100)
min.range=meanT*(1-strainOptions$percentTraitRange/100)
if (distn=='uniform'){
expect_true(max(traits) <= max.range)
expect_true(min(traits) >= min.range)
}
if (distn=='normal'){
sds=NA*seq(1,1000)
for (i in 1:1000){
traits=assignStrainTraits(num,meanT,strainOptions,pHtrait=FALSE)
sds[i]=sd(traits)
}
expect_equal(mean(sds),meanT*strainOptions$percentTraitRange/200,
0.1*meanT*strainOptions$percentTraitRange/200)
}
}
})
test_that("Test Assign Strain Traits for pH traits",{
num=40
meanT=5
for (distn in c('normal','uniform')){
strainOptions=list(distribution=distn,maxPHshift=0.7)
traits=assignStrainTraits(num,meanT,strainOptions,pHtrait=TRUE)
expect_equal(length(traits),num)
expect_equal(mean(traits),meanT,tolerance=0.1*meanT)
max.pHrange=meanT*(1+strainOptions$maxPHshift)
min.pHrange=meanT*(1-strainOptions$maxPHshift)
if (distn=='uniform'){
expect_true(max(traits) <= max.pHrange)
expect_true(min(traits) >= min.pHrange)
}
if (distn=='normal'){
sds=NA*seq(1,1000)
for (i in 1:1000){
traits=assignStrainTraits(num,meanT,strainOptions,pHtrait=TRUE)
sds[i]=sd(traits)
}
expect_equal(mean(sds),strainOptions$maxPHshift/2,
0.1*strainOptions$maxPHshift/2)
}
}
})
test_that("Test applyTraitTradeOffs",{
loadTestDataFunc(2)
tradeOffParams=strainOptions$tradeOffParams
traits=applyTraitTradeOffs(microbeNames,tradeOffParams,numPaths,
numStrains,parms$Pmats,resourceNames)
expect_true(is.list(traits))
Bac.K=c(traits$halfSat$Bacteroides.1[1,'NSP'],traits$halfSat$Bacteroides.2[1,'NSP'],
traits$halfSat$Bacteroides.3[1,'NSP'])
Ace.K=c(traits$halfSat$Acetogens.1[1,'NSP'],traits$halfSat$Acetogens.2[1,'NSP'],
traits$halfSat$Acetogens.3[1,'NSP'])
expect_true(all(diff(Bac.K)<=0))
expect_true(all(diff(Ace.K)<=0))
Bac.G=c(traits$maxGrowthRate$Bacteroides.1[1,'NSP'],
traits$maxGrowthRate$Bacteroides.2[1,'NSP'],
traits$maxGrowthRate$Bacteroides.3[1,'NSP'])
Ace.G=c(traits$maxGrowthRate$Acetogens.1[1,'NSP'],
traits$maxGrowthRate$Acetogens.2[1,'NSP'],
traits$maxGrowthRate$Acetogens.3[1,'NSP'])
expect_true(all(diff(Bac.G)<=0))
expect_true(all(diff(Ace.G)<=0))
})
test_that("Test non pH corners bit of getStrainParametersFromFile.R",{
filename=system.file('extdata/strainParams.csv',package='microPop')
loadTestDataFunc(2)
PARdata = read.csv(filename, header = TRUE, stringsAsFactors = FALSE)
strainOptions = list(paramsSpecified = TRUE, paramDataName = PARdata)
expect_warning(getStrainParamsFromFile(out$parms$Pmats, out$parms$strainPHcorners, strainOptions))
PARdata[2,1]='Bacteroides.3'
strainOptions = list(paramsSpecified = TRUE, paramDataName = PARdata)
x=getStrainParamsFromFile(out$parms$Pmats, out$parms$strainPHcorners, strainOptions)
expect_true(is.list(x))
expect_equal(x[[1]][['maxGrowthRate']][['Bacteroides.1']][1,'NSP'],PARdata[1,3])
})
test_that("Test pH corners bit of getStrainParametersFromFile.R",{
filename=system.file('extdata/strainParams.csv',package='microPop')
loadTestDataFunc(2)
PARdata = read.csv(filename, header = TRUE, stringsAsFactors = FALSE)
PARdata[2,1]='Bacteroides.3'
strainOptions = list(paramsSpecified = TRUE, paramDataName = PARdata)
x=getStrainParamsFromFile(out$parms$Pmats, out$parms$strainPHcorners, strainOptions)
expect_warning(getStrainParamsFromFile(out$parms$Pmats, out$parms$strainPHcorners, strainOptions),NA)
expect_true(is.list(x))
expect_true(x[[2]]['Acetogens.2',1]-as.numeric(PARdata[3,3])==0)
expect_true(x[[2]]['Acetogens.2',2]-as.numeric(PARdata[3,4])==0)
expect_true(x[[2]]['Acetogens.2',3]-as.numeric(PARdata[3,5])==0)
expect_true(x[[2]]['Acetogens.2',4]-as.numeric(PARdata[3,6])==0)
})
test_that("Test getStrainPHcorners.R",{
loadTestDataFunc(2)
pHcorners = getPHcorners(microbeNames, pHLimit=TRUE)
pHcorners[1,]=c(1,2,3,4)
oneStrainRandomParams=FALSE
x=getStrainPHcorners(microbeNames,allStrainNames,numStrains,
pHcorners,pHLimit=TRUE,
strainOptions=list(randomParams='pHtrait',
distribution='uniform',maxPHshift=0.1),oneStrainRandomParams)
expect_equal(dim(x),c(numStrains*length(microbeNames),4))
expect_true(diff(range(x[1:numStrains,1]))<=0.2)
expect_true(diff(range(x[1:numStrains,2]))<=0.2)
expect_true(diff(range(x[1:numStrains,3]))<=0.2)
expect_true(diff(range(x[1:numStrains,4]))<=0.2)
expect_true(mean(x[1:numStrains,1])<=1.1)
expect_true(mean(x[1:numStrains,2])>=1.9)
expect_true(mean(x[1:numStrains,4])<=4.1)
expect_false(isTRUE(all.equal(x[1,],c(1,2,3,4))))
x=getStrainPHcorners(microbeNames,allStrainNames,numStrains=1,
pHcorners,pHLimit=TRUE,
strainOptions=list(randomParams='pHtrait',
distribution='uniform',maxPHshift=0.1),oneStrainRandomParams)
expect_equal(x[1,],c(1,2,3,4))
x=getStrainPHcorners(microbeNames,allStrainNames,numStrains=1,
pHcorners,pHLimit=TRUE,
strainOptions=list(randomParams='pHtrait',
distribution='uniform',maxPHshift=0.1),
oneStrainRandomParams=TRUE)
expect_false(isTRUE(all.equal(x[1,],c(1,2,3,4))))
}) |
multi_regression_forest <- function(X, Y,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)) {
has.missing.values <- validate_X(X, allow.na = TRUE)
validate_sample_weights(sample.weights, X)
Y <- validate_observations(Y, X, allow.matrix = TRUE)
clusters <- validate_clusters(clusters, X)
samples.per.cluster <- validate_equalize_cluster_weights(equalize.cluster.weights, clusters, sample.weights)
num.threads <- validate_num_threads(num.threads)
data <- create_train_matrices(X, outcome = Y, sample.weights = sample.weights)
args <- list(num.trees = num.trees,
clusters = clusters,
samples.per.cluster = samples.per.cluster,
sample.fraction = sample.fraction,
mtry = mtry,
min.node.size = min.node.size,
honesty = honesty,
honesty.fraction = honesty.fraction,
honesty.prune.leaves = honesty.prune.leaves,
alpha = alpha,
imbalance.penalty = imbalance.penalty,
compute.oob.predictions = compute.oob.predictions,
num.threads = num.threads,
seed = seed)
forest <- do.call.rcpp(multi_regression_train, c(data, args))
class(forest) <- c("multi_regression_forest", "grf")
forest[["X.orig"]] <- X
forest[["Y.orig"]] <- Y
forest[["sample.weights"]] <- sample.weights
forest[["clusters"]] <- clusters
forest[["equalize.cluster.weights"]] <- equalize.cluster.weights
forest[["has.missing.values"]] <- has.missing.values
forest
}
predict.multi_regression_forest <- function(object,
newdata = NULL,
num.threads = NULL,
...) {
outcome.names <- if (is.null(colnames(object[["Y.orig"]]))) {
paste0("Y", 1:NCOL(object[["Y.orig"]]))
} else {
colnames(object[["Y.orig"]])
}
if (is.null(newdata) && !is.null(object$predictions)) {
colnames(object$predictions) <- outcome.names
return(list(predictions = object$predictions))
}
num.threads <- validate_num_threads(num.threads)
forest.short <- object[-which(names(object) == "X.orig")]
X <- object[["X.orig"]]
train.data <- create_train_matrices(X)
args <- list(forest.object = forest.short,
num.threads = num.threads,
num.outcomes = NCOL(object[["Y.orig"]]))
if (!is.null(newdata)) {
validate_newdata(newdata, X, allow.na = TRUE)
test.data <- create_test_matrices(newdata)
ret <- do.call.rcpp(multi_regression_predict, c(train.data, test.data, args))
} else {
ret <- do.call.rcpp(multi_regression_predict_oob, c(train.data, args))
}
colnames(ret$predictions) <- outcome.names
list(predictions = ret$predictions)
} |
HttpFileResourceGetter <- R6::R6Class(
"HttpFileResourceGetter",
inherit = FileResourceGetter,
public = list(
initialize = function() {},
isFor = function(resource) {
if (super$isFor(resource)) {
super$parseURL(resource)$scheme %in% c("http", "https")
} else {
FALSE
}
},
downloadFile = function(resource, ...) {
if (self$isFor(resource)) {
fileName <- super$extractFileName(resource)
downloadDir <- super$makeDownloadDir()
path <- file.path(downloadDir, fileName)
httr::GET(resource$url, private$addHeaders(resource), write_disk(path, overwrite = TRUE))
super$newFileObject(path, temp = TRUE)
} else {
stop("Resource file is not located in a HTTP server")
}
}
),
private = list(
addHeaders = function(resource) {
if (!is.null(resource$identity) && nchar(resource$identity)>0 && !is.null(resource$secret) && nchar(resource$secret)>0) {
httr::add_headers(Authorization = jsonlite::base64_enc(paste0("Basic ", resource$identity, ":", resource$secret)))
} else {
httr::add_headers()
}
}
)
) |
infer_multittree_share_param = function(ptree_lst,w.shape=2,w.scale=1,ws.shape=w.shape,ws.scale=w.scale,mcmcIterations=1000,
thinning=1,startNeg=100/365,startOff.r=1,startOff.p=0.5,startPi=0.5,prior_pi_a=1,prior_pi_b=1,
updateNeg=TRUE,updateOff.r=TRUE,updateOff.p=FALSE,updatePi=TRUE,share=NULL,
startCTree_lst=rep(NA,length(ptree_lst)),updateTTree=TRUE,optiStart=2,dateT=Inf,verbose=F) {
if (length(ptree_lst)>=1) for (i in 1:length(ptree_lst)) class(ptree_lst[[i]])<-'list'
ptree_lst <- purrr::map(ptree_lst, function(x) within(x, ptree[,1] <- ptree[,1]+runif(nrow(ptree))*1e-10))
neg <- startNeg
off.r <- startOff.r
off.p <- startOff.p
pi <- startPi
ctree_lst <- vector("list", length(ptree_lst))
for(k in seq_along(ptree_lst)){
if(is.na(startCTree_lst[[k]]))
ctree_lst[[k]] <- makeCTreeFromPTree(ptree_lst[[k]],off.r,off.p,neg,pi,w.shape,w.scale,ws.shape,ws.scale,dateT,optiStart)
else
ctree_lst[[k]] <- startCTree_lst[[k]]
}
ntree <- length(ptree_lst)
neg_lst <- as.list(rep(neg, ntree))
off.r_lst <- as.list(rep(off.r, ntree))
off.p_lst <- as.list(rep(off.p, ntree))
pi_lst <- as.list(rep(pi, ntree))
not_share <- setdiff(c("neg", "off.r", "off.p", "pi"), share)
one_update <- function(ctree, pTTree, pPTree, neg, off.r, off.p, pi, not_share){
ttree <- extractTTree(ctree)
if (updateTTree) {
if (verbose) message("Proposing ttree update")
prop <- proposal(ctree$ctree)
ctree2 <- list(ctree=prop$tree,nam=ctree$nam)
class(ctree2)<-'ctree'
ttree2 <- extractTTree(ctree2)
pTTree2 <- probTTree(ttree2$ttree,off.r,off.p,pi,w.shape,w.scale,ws.shape,ws.scale,dateT)
pPTree2 <- probPTreeGivenTTree(ctree2$ctree,neg)
if (log(runif(1)) < log(prop$qr)+pTTree2 + pPTree2-pTTree-pPTree) {
ctree <- ctree2
ttree <- ttree2
pTTree <- pTTree2
pPTree <- pPTree2
}
}
if (("neg" %in% not_share) && updateNeg) {
neg2 <- abs(neg + (runif(1)-0.5)*0.5)
if (verbose) message(sprintf("Proposing unshared Ne*g update %f->%f",neg,neg2))
pPTree2 <- probPTreeGivenTTree(ctree$ctree,neg2)
if (log(runif(1)) < pPTree2-pPTree-neg2+neg) {neg <- neg2;pPTree <- pPTree2}
}
if (("off.r" %in% not_share) && updateOff.r) {
off.r2 <- abs(off.r + (runif(1)-0.5)*0.5)
if (verbose) message(sprintf("Proposing unshared off.r update %f->%f",off.r,off.r2))
pTTree2 <- probTTree(ttree$ttree,off.r2,off.p,pi,w.shape,w.scale,ws.shape,ws.scale,dateT)
if (log(runif(1)) < pTTree2-pTTree-off.r2+off.r) {off.r <- off.r2;pTTree <- pTTree2}
}
if (("off.p" %in% not_share) && updateOff.p) {
off.p2 <- abs(off.p + (runif(1)-0.5)*0.1)
if (off.p2>1) off.p2=2-off.p2
if (verbose) message(sprintf("Proposing unshared off.p update %f->%f",off.p,off.p2))
pTTree2 <- probTTree(ttree$ttree,off.r,off.p2,pi,w.shape,w.scale,ws.shape,ws.scale,dateT)
if (log(runif(1)) < pTTree2-pTTree) {off.p <- off.p2;pTTree <- pTTree2}
}
if (("pi" %in% not_share) && updatePi) {
pi2 <- pi + (runif(1)-0.5)*0.1
if (pi2<0.01) pi2=0.02-pi2
if (pi2>1) pi2=2-pi2
if (verbose) message(sprintf("Proposing unshared pi update %f->%f",pi,pi2))
pTTree2 <- probTTree(ttree$ttree,off.r,off.p,pi2,w.shape,w.scale,ws.shape,ws.scale,dateT)
log_beta_ratio <- (prior_pi_a - 1) * log(pi2) + (prior_pi_b - 1) * log(1 - pi2) -
(prior_pi_a - 1) * log(pi) - (prior_pi_b - 1) * log(1 - pi)
if (log(runif(1)) < pTTree2-pTTree + log_beta_ratio) {pi <- pi2;pTTree <- pTTree2}
}
list(ctree=ctree, pTTree=pTTree, pPTree=pPTree, neg=neg, off.r=off.r, off.p=off.p, pi=pi)
}
one_update_share <- function(ctree_lst, pTTree_lst, pPTree_lst, neg_lst, off.r_lst, off.p_lst, pi_lst, share){
ttree_lst <- purrr::map(ctree_lst, extractTTree)
ttree_lst <- purrr::map(ttree_lst, "ttree")
if(("neg" %in% share) && updateNeg){
neg <- neg_lst[[1]]
neg2 <- abs(neg + (runif(1)-0.5)*0.5)
if (verbose) message(sprintf("Proposing shared Ne*g update %f->%f",neg,neg2))
pPTree <- purrr::flatten_dbl(pPTree_lst)
pPTree2 <- purrr::map_dbl(ctree_lst, function (x,neg) probPTreeGivenTTree(x$ctree,neg), neg = neg2)
if (log(runif(1)) < sum(pPTree2)-sum(pPTree)-neg2+neg){
neg_lst <- as.list(rep(neg2, ntree))
pPTree_lst <- as.list(pPTree2)
}
}
if(("off.r" %in% share) && updateOff.r) {
off.r <- off.r_lst[[1]]
off.r2 <- abs(off.r + (runif(1)-0.5)*0.5)
if (verbose) message(sprintf("Proposing shared off.r update %f->%f",off.r,off.r2))
pTTree <- purrr::flatten_dbl(pTTree_lst)
pTTree2 <- purrr::pmap_dbl(list(ttree=ttree_lst, pOff=off.p_lst, pi=pi_lst), probTTree, rOff=off.r2,
shGen=w.shape, scGen=w.scale, shSam=ws.shape, scSam=ws.scale, dateT=dateT)
if (log(runif(1)) < sum(pTTree2)-sum(pTTree)-off.r2+off.r){
off.r_lst <- as.list(rep(off.r2, ntree))
pTTree_lst <- as.list(pTTree2)
}
}
if(("off.p" %in% share) && updateOff.p) {
off.p <- off.p_lst[[1]]
off.p2 <- abs(off.p + (runif(1)-0.5)*0.1)
if (off.p2>1) off.p2=2-off.p2
if (verbose) message(sprintf("Proposing shared off.p update %f->%f",off.p,off.p2))
pTTree <- purrr::flatten_dbl(pTTree_lst)
pTTree2 <- purrr::pmap_dbl(list(ttree=ttree_lst, rOff=off.r_lst, pi=pi_lst), probTTree, pOff=off.p2,
shGen=w.shape, scGen=w.scale, shSam=ws.shape, scSam=ws.scale, dateT=dateT)
if (log(runif(1)) < sum(pTTree2)-sum(pTTree)){
off.p_lst <- as.list(rep(off.p2, ntree))
pTTree_lst <- as.list(pTTree2)
}
}
if(("pi" %in% share) && updatePi){
pi <- pi_lst[[1]]
pi2 <- pi + (runif(1)-0.5)*0.1
if (pi2<0.01) pi2=0.02-pi2
if (pi2>1) pi2=2-pi2
if (verbose) message(sprintf("Proposing shared pi update %f->%f",pi,pi2))
pTTree <- purrr::flatten_dbl(pTTree_lst)
pTTree2 <- purrr::pmap_dbl(list(ttree=ttree_lst, rOff=off.r_lst, pOff=off.p_lst), probTTree, pi=pi2,
shGen=w.shape, scGen=w.scale, shSam=ws.shape, scSam=ws.scale, dateT=dateT)
log_beta_ratio <- (prior_pi_a - 1) * log(pi2) + (prior_pi_b - 1) * log(1 - pi2) -
(prior_pi_a - 1) * log(pi) - (prior_pi_b - 1) * log(1 - pi)
if (log(runif(1)) < sum(pTTree2) - sum(pTTree) + ntree * log_beta_ratio){
pi_lst <- as.list(rep(pi2, ntree))
pTTree_lst <- as.list(pTTree2)
}
}
list(ctree=ctree_lst, pTTree=pTTree_lst, pPTree=pPTree_lst, neg=neg_lst, off.r=off.r_lst, off.p=off.p_lst, pi=pi_lst)
}
record <- vector('list', ntree)
for(i in seq_along(record)){
record[[i]] <- vector("list", mcmcIterations/thinning)
}
pTTree_lst <- vector("list", ntree)
pPTree_lst <- vector("list", ntree)
for(k in 1:ntree){
ttree <- extractTTree(ctree_lst[[k]])
pTTree_lst[[k]] <- probTTree(ttree$ttree,off.r,off.p,pi,w.shape,w.scale,ws.shape,ws.scale,dateT)
pPTree_lst[[k]] <- probPTreeGivenTTree(ctree_lst[[k]]$ctree,neg)
}
mcmc_state <- list(ctree=ctree_lst, pTTree=pTTree_lst, pPTree=pPTree_lst,
neg=neg_lst, off.r=off.r_lst, off.p=off.p_lst, pi=pi_lst)
if (verbose==F) pb <- utils::txtProgressBar(min=0,max=mcmcIterations,style = 3)
for (i in 1:mcmcIterations) {
out <- with(mcmc_state, one_update_share(ctree, pTTree, pPTree, neg, off.r, off.p, pi, share))
mcmc_state[["ctree"]] <- out[["ctree"]]
mcmc_state[["pTTree"]] <- out[["pTTree"]]
mcmc_state[["pPTree"]] <- out[["pPTree"]]
mcmc_state[["neg"]] <- out[["neg"]]
mcmc_state[["off.r"]] <- out[["off.r"]]
mcmc_state[["off.p"]] <- out[["off.p"]]
mcmc_state[["pi"]] <- out[["pi"]]
state_new <- purrr::pmap(mcmc_state, one_update, not_share=not_share)
if (i%%thinning == 0) {
if (verbose==F) utils::setTxtProgressBar(pb, i)
if (verbose==T) message(sprintf('it=%d',i))
for(k in seq_along(ctree_lst)){
record[[k]][[i/thinning]]$ctree <- state_new[[k]]$ctree
record[[k]][[i/thinning]]$pTTree <- state_new[[k]]$pTTree
record[[k]][[i/thinning]]$pPTree <- state_new[[k]]$pPTree
record[[k]][[i/thinning]]$neg <- state_new[[k]]$neg
record[[k]][[i/thinning]]$off.r <- state_new[[k]]$off.r
record[[k]][[i/thinning]]$off.p <- state_new[[k]]$off.p
record[[k]][[i/thinning]]$pi <- state_new[[k]]$pi
record[[k]][[i/thinning]]$w.shape <- w.shape
record[[k]][[i/thinning]]$w.scale <- w.scale
record[[k]][[i/thinning]]$ws.shape <- ws.shape
record[[k]][[i/thinning]]$ws.scale <- ws.scale
record[[k]][[i/thinning]]$source <- with(state_new[[k]]$ctree, ctree[ctree[which(ctree[,4]==0),2],4])
if (record[[k]][[i/thinning]]$source<=length(state_new[[k]]$ctree$nam))
record[[k]][[i/thinning]]$source=state_new[[k]]$ctree$nam[record[[k]][[i/thinning]]$source]
else record[[k]][[i/thinning]]$source='Unsampled'
}
}
mcmc_state <- purrr::transpose(state_new)
}
class(record)<-'resTransPhylo'
return(record)
} |
CUSUM_stream_jumpdetect_prechange <- function(stream, BL, params, mu0, sigma0){
d <- params[[1]]
B <- params[[2]]
streampos <- 1
N <- length(stream)
detected_count <- 0
M <- 1
detect_pos_vec <- rep(0, M)
jump_found <- FALSE
while ((streampos < N) && (jump_found==FALSE)){
mean_j <- mu0
var_j <- sigma0^2
sd_j <- sqrt(var_j)
nu_j <- d*sd_j
control_j <- B*sd_j
S_j <- 0
T_j <- 0
isOutOfLimitsBool <- FALSE
j <- 0
timedetected <- N
while ((jump_found==FALSE) && (streampos < N)) {
j <- j+1
x_new <- get_nextobs_fromstream(stream, streampos)
streampos <- update_streampos(streampos)
S_j <- S_j + x_new - mean_j - nu_j
S_j <- S_j*(S_j>0)
T_j <- T_j + mean_j - x_new - nu_j
T_j <- (T_j)*(T_j>0)
S_isOut <- (S_j > control_j)
T_isOut <- (T_j > control_j)
jump_found <- S_isOut | T_isOut
if (jump_found==TRUE){
detected_count <- detected_count + 1
detect_pos_vec[detected_count] <- streampos
}
}
}
detect_pos_vec <- detect_pos_vec[1:detected_count]
return(detect_pos_vec)
}
EWMA_stream_jumpdetect_prechange <- function(stream, BL, params, mu0, sigma0){
r <- params[[1]]
L <- params[2]
streampos <- 1
N <- length(stream)
detected_count <- 0
detect_pos_vec <- rep(0, 1)
delta <- r / (2-r)
rFactorSigmaZ <- 1
sigmaZ <- 1
jump_found <- FALSE
while ((streampos < N) && (jump_found==FALSE)){
mu_1 <- mu0
sigma1_sq <- sigma0^2
sigma_1 <- sqrt(sigma1_sq)
UL <- mu_1 + L * sigma_1 * delta
LL <- mu_1 - L * sigma_1 * delta
jump_found <- FALSE
isOutOfLimitsBool <- FALSE
timedetected <- N
W <- 0
delta <- r/(2-r)
rFactorSigmaZ <- 1
sigmaZ <- 1
while ((jump_found==FALSE) && (streampos < N)) {
x_new <- get_nextobs_fromstream(stream, streampos)
streampos <- update_streampos(streampos)
W <- r * x_new + (1-r)*W
rFactorSigmaZ <- rFactorSigmaZ * (1-r)^2
sigmaZ <- sqrt( delta * (1-rFactorSigmaZ) ) * sigma_1
UL <- mu_1 + L * sigmaZ
LL <- mu_1 - L * sigmaZ
if((W > UL) | (W < LL)){
jump_found <- TRUE
detected_count <- detected_count + 1
detect_pos_vec[detected_count] <- streampos
}
}
}
detect_pos_vec <- detect_pos_vec[1:detected_count]
return(detect_pos_vec)
}
FFF_stream_jumpdetect_prechange <- function(stream, BL, ffparams, mu0, sigma0){
lambda <- ffparams[[1]]
p <- ffparams[[2]]
resettozero <- ffparams[[3]]
u_new <- ffparams[[4]]
v_new <- ffparams[[5]]
v_old <- v_new
w_new <- ffparams[[6]]
ffmean_new <- ffparams[[7]]
ffvar_new <- ffparams[[8]]
streampos <- 1
N <- length(stream)
detected_count <- 0
detect_pos_vec <- rep(0, 1)
jump_found <- FALSE
while ( (streampos < N) && (jump_found==FALSE)){
lambda_beforeBL <- 1
w_BL_new <- 0
u_BL_new <- 0
v_BL_new <- 0
v_BL_old <- 0
mean_BL_new <- 0
var_BL_new <- 0
mean_burn <- mu0
var_burn <- sigma0^2
burnvec <- c(p, mean_burn, var_burn)
if (resettozero==0){
w_new <- 0
u_new <- 0
v_new <- 0
v_old <- 0
ffmean_new <- mu0
ffvar_new <- sigma0^2
}
thelimits <- c(0,0)
while((jump_found==FALSE) && (streampos < N)){
x_new <- get_nextobs_fromstream(stream, streampos)
streampos <- update_streampos(streampos)
w_new <- update_w(w_new, lambda)
u_new <- update_u(u_new, w_new)
v_old <- v_new
v_new <- getv_from_u_and_w(u_new, w_new)
ffmean_old <- ffmean_new
ffmean_new <- update_ffmean(ffmean_old, w_new, x_new)
ffvar_old <- ffvar_new
ffvar_new <- update_var(ffvar_old, ffmean_old, lambda, v_old, v_new, w_new, x_new)
sigma_sq_u <- u_new*var_burn
thelimits <- getNormalLimitsFromList(burnvec, u_new)
inLimitsBool <- isInLimitsNormal(ffmean_new, thelimits)
if(inLimitsBool == FALSE)
{
jump_found <- TRUE
detected_count <- detected_count + 1
detect_pos_vec[detected_count] <- streampos-1
}
}
}
detect_pos_vec <- detect_pos_vec[1:detected_count]
return(detect_pos_vec)
}
AFF_scaled_stream_jumpdetect_prechange <- function(stream, BL, affparams,
mu0, sigma0){
lambda <- affparams[[1]]
p <- affparams[[2]]
resettozero <- affparams[[3]]
u_new <- affparams[[4]]
v_new <- affparams[[5]]
v_old <- v_new
w_new <- affparams[[6]]
affmean_new <- affparams[[7]]
m_new <- affmean_new*w_new
affvar_new <- affparams[[8]]
low_bound <- affparams[[9]]
up_bound <- affparams[[10]]
signchosen <- affparams[[11]]
alpha <- affparams[[12]]
xbar_new_deriv <- 0
Delta_new <- 0
Omega_new <- 0
streampos <- 0
N <- length(stream)
detected_count <- 0
detect_pos_vec <- rep(0, 1)
inv_AFFderiv_estim_BL <- 0
inv_var_burn <- 0
lambda_vec <- rep(0, N)
jumpdetected <- FALSE
while ( (streampos < N) && (jumpdetected==FALSE) ){
lambda_beforeBL <- 1
w_BL_new <- 0
u_BL_new <- 0
v_BL_new <- 0
v_BL_old <- 0
mean_BL_new <- 0
var_BL_new <- 0
AFFderiv_estim_BL <- 0
BLcount <- 0
mean_burn <- mu0
var_burn <- sigma0^2
burnvec <- c(p, mean_burn, var_burn)
if (var_burn > 0){
inv_var_burn <- 1 / var_burn
} else {
inv_var_burn <- 1
}
thelimits <- c(0,0)
jumpdetected <- FALSE
while((jumpdetected==FALSE) && (streampos < N)){
streampos <- update_streampos(streampos)
x_new <- get_nextobs_fromstream(stream, streampos)
Delta_new <- update_Delta(Delta_new, lambda, m_new)
Omega_new <- update_Omega(Omega_new, lambda, w_new)
m_new <- update_m(m_new, lambda, x_new)
w_new <- update_w(w_new, lambda)
u_new <- update_u(u_new, w_new)
v_old <- v_new
v_new <- getv_from_u_and_w(u_new, w_new)
affmean_old <- affmean_new
affmean_new <- get_xbar(m_new, w_new)
xbar_old_deriv <- xbar_new_deriv
xbar_new_deriv <- get_xbar_deriv(Delta_new, affmean_new, Omega_new, w_new)
affvar_old <- affvar_new
affvar_new <- update_var(affvar_old, affmean_old, lambda, v_old, v_new, w_new, x_new)
thelimits <- getNormalLimitsFromList(burnvec, u_new)
inLimitsBool <- isInLimitsNormal(affmean_new, thelimits)
if(inLimitsBool == FALSE)
{
jumpdetected <- TRUE
detected_count <- detected_count + 1
detect_pos_vec[detected_count] <- streampos
}
L_deriv_new <- get_L_deriv(affmean_old, xbar_old_deriv, x_new)
L_deriv_scaled <- L_deriv_new*inv_var_burn
lambda <- update_lambda(lambda, signchosen, alpha, L_deriv_scaled)
lambda <- inbounds(lambda, low_bound, up_bound)
lambda_vec[streampos] <- lambda
}
}
detect_pos_vec <- detect_pos_vec[1:detected_count]
return( list(tau=detect_pos_vec, lambda=lambda_vec) )
} |
expected <- eval(parse(text="structure(list(name = \"list\", objs = structure(list(`package:base` = .Primitive(\"list\"), .Primitive(\"list\")), .Names = c(\"package:base\", \"\")), where = c(\"package:base\", \"namespace:base\"), visible = c(TRUE, FALSE), dups = c(FALSE, TRUE)), .Names = c(\"name\", \"objs\", \"where\", \"visible\", \"dups\"))"));
test(id=0, code={
argv <- eval(parse(text="list(name = \"list\", objs = structure(list(`package:base` = .Primitive(\"list\"), .Primitive(\"list\")), .Names = c(\"package:base\", \"\")), where = c(\"package:base\", \"namespace:base\"), visible = c(TRUE, FALSE), dups = c(FALSE, TRUE))"));
do.call(`list`, argv);
}, o=expected); |
.D_0 <- function(log.p) if(log.p) -Inf else 0
.D_1 <- function(log.p) as.integer(!log.p)
.DT_0 <- function(lower.tail, log.p)
if(lower.tail) .D_0(log.p) else .D_1(log.p)
.DT_1 <- function(lower.tail, log.p)
if(lower.tail) .D_1(log.p) else .D_0(log.p)
.D_Lval <- function(p, lower.tail) if(lower.tail) p else (1 - p)
.D_Cval <- function(p, lower.tail) if(lower.tail) (1 - p) else p
.D_val <- function(x, log.p) if(log.p) log(x) else x
.D_qIv <- function(p, log.p) if(log.p) exp(p) else p
.D_exp <- function(x, log.p) if(log.p) x else exp(x)
.D_log <- function(p, log.p) if(log.p) p else log(p)
.D_Clog<- function(p, log.p) if(log.p) log1p(-p) else ((0.5 - p) + 0.5)
M_LN2 <- log(2)
M_SQRT2 <- sqrt(2)
log1mexp <- function(x) ifelse(x <= M_LN2, log(-expm1(-x)), log1p(-exp(-x)))
.D_LExp <- function(x, log.p) if(log.p) log1mexp(-x) else log1p(-x)
.DT_val <- function(x, lower.tail, log.p)
.D_val(.D_Lval(x, lower.tail), log.p)
.DT_Cval <- function(x, lower.tail, log.p)
.D_val(.D_Cval(x, lower.tail), log.p)
.DT_qIv <- function(p, lower.tail, log.p) {
if(log.p) if(lower.tail) exp(p) else - expm1(p)
else .D_Lval(p, lower.tail)
}
.DT_CIv <- function(p, lower.tail, log.p) {
if(log.p) if(lower.tail) -expm1(p) else exp(p)
else .D_Cval(p, lower.tail)
}
.DT_exp <- function(x, lower.tail, log.p)
.D_exp(.D_Lval(x, lower.tail), log.p)
.DT_Cexp <- function(x, lower.tail, log.p)
.D_exp(.D_Cval(x, lower.tail), log.p)
.DT_log <- function(p, lower.tail, log.p)
if(lower.tail) .D_log(p, log.p) else .D_LExp(p, log.p)
.DT_Clog <- function(p, lower.tail, log.p)
if(lower.tail) .D_LExp(p, log.p) else .D_log(p, log.p)
.DT_Log <- function(p, lower.tail)
if(lower.tail) p else log1mexp(-p)
.D_fexp <- function(f, x, log.p) if(log.p) -0.5*log(f)+ x else exp(x)/sqrt(f)
.D_rtxp <- function(rf, x, log.p) if(log.p) -log(rf) + x else exp(x)/rf |
find_scale <- function(aes, x, env = parent.frame()) {
type <- scale_type(x)
candidates <- paste("scale", aes, type, sep = "_")
for (scale in candidates) {
scale_f <- find_global(scale, env, mode = "function")
if (!is.null(scale_f))
return(scale_f())
}
return(NULL)
}
find_global <- function(name, env, mode = "any") {
if (exists(name, envir = env, mode = mode)) {
return(get(name, envir = env, mode = mode))
}
nsenv <- asNamespace("animint2")
if (exists(name, envir = nsenv, mode = mode)) {
return(get(name, envir = nsenv, mode = mode))
}
NULL
}
scale_type <- function(x) UseMethod("scale_type")
scale_type.default <- function(x) {
message("Don't know how to automatically pick scale for object of type ",
paste(class(x), collapse = "/"), ". Defaulting to continuous.")
"continuous"
}
scale_type.AsIs <- function(x) "identity"
scale_type.logical <- function(x) "discrete"
scale_type.character <- function(x) "discrete"
scale_type.ordered <- function(x) c("ordinal", "discrete")
scale_type.factor <- function(x) "discrete"
scale_type.POSIXt <- function(x) c("datetime", "continuous")
scale_type.Date <- function(x) c("date", "continuous")
scale_type.numeric <- function(x) "continuous" |
SeSpPPVNPV <-function(cutpoint,T,delta,marker,other_markers=NULL,cause,weighting="marginal",times,iid=FALSE){
if (length(delta)!=length(T) | length(marker)!=length(T) | length(delta)!=length(T)){
stop("lengths of vector T, delta and marker have to be equal\n") }
if (missing(times)){
stop("Choose at least one time for computing the time-dependent AUC\n") }
if (!weighting %in% c("marginal","cox","aalen")){
stop("the weighting argument must be marginal (default), cox or aalen.\n") }
if (weighting %in% c("cox","aalen") & !missing(other_markers) & !("matrix" %in% class(other_markers))){
stop("argument other_markers must be a matrix\n") }
if (weighting %in% c("cox","aalen") & !missing(other_markers)){
if(!nrow(other_markers)==length(marker)) stop("lengths of vector T, delta, marker and number of rows of other_markers have to be equal\n")
}
if(weighting!="marginal" & iid){
stop("Weighting must be marginal for computing the iid representation \n Choose iid=FALSE or weighting=marginal in the input arguments")
}
if (weighting %in% c("cox","aalen") & !missing(other_markers) ){
is_not_na <- as.logical(apply(!is.na(cbind(T,delta,marker,other_markers)),1,prod))
T <- T[is_not_na]
delta <- delta[is_not_na]
marker <- marker[is_not_na]
other_markers <- as.matrix(other_markers[is_not_na,])
}else{
is_not_na <- as.logical(apply(!is.na(cbind(T,delta,marker)),1,prod))
T <- T[is_not_na]
delta <- delta[is_not_na]
marker <- marker[is_not_na]
}
start_computation_time <- Sys.time()
n <- length(T)
n_times <- length(times)
if (n_times==1){times<-c(0,times)
n_times<-2}
times <- times[order(times)]
times_names <- paste("t=",times,sep="")
CumInci <- rep(NA,n_times)
surv <- rep(NA,n_times)
names(CumInci) <- times_names
names(surv) <- times_names
Stats <- matrix(NA,nrow=n_times,ncol=6)
colnames(Stats) <- c("Cases","survivor at t","Other events at t","Censored at t","Positive (X>c)","Negative (X<=c)")
rownames(Stats) <- times_names
Stats[,c("Positive (X>c)","Negative (X<=c)")] <- matrix(c(sum(marker>cutpoint),sum(marker<=cutpoint)),byrow=TRUE,ncol=2,nrow=nrow(Stats))
order_T<-order(T)
T <- T[order_T]
delta <- delta[order_T]
marker<- marker[order_T]
if(weighting=="marginal"){
weights <- pec::ipcw(Surv(failure_time,status)~1,data=data.frame(failure_time=T,status=as.numeric(delta!=0)),method="marginal",times=times,subjectTimes=T,subjectTimesLag=1)
}
if(weighting=="cox"){
if (missing(other_markers)){marker_censoring<-marker }
other_markers<-other_markers[order_T,]
marker_censoring<-cbind(marker,other_markers)
colnames(marker_censoring)<-paste("X", 1:ncol(marker_censoring), sep="")
fmla <- as.formula(paste("Surv(T,status)~", paste(paste("X", 1:ncol(marker_censoring), sep=""), collapse= "+")))
data_weight<-as.data.frame(cbind(data.frame(T=T,status=as.numeric(delta!=0)),marker_censoring))
weights <- pec::ipcw(fmla,data=data_weight,method="cox",times=as.matrix(times),subjectTimes=data_weight[,"T"],subjectTimesLag=1)
}
if(weighting=="aalen"){
if (missing(other_markers)){marker_censoring<-marker }
other_markers<-other_markers[order_T,]
marker_censoring<-cbind(marker,other_markers)
colnames(marker_censoring)<-paste("X", 1:ncol(marker_censoring), sep="")
fmla <- as.formula(paste("Surv(T,status)~", paste(paste("X", 1:ncol(marker_censoring), sep=""), collapse= "+")))
data_weight<-as.data.frame(cbind(data.frame(T=T,status=as.numeric(delta!=0)),marker_censoring))
weights <- pec::ipcw(fmla,data=data_weight,method="aalen",times=as.matrix(times),subjectTimes=data_weight[,"T"],subjectTimesLag=1)
}
Mat.data<-cbind(T,delta,marker)
colnames(Mat.data)<-c("T","delta","marker")
Weights_cases_all<-1/(weights$IPCW.subjectTimes*n)
Weights_cases_all<-Weights_cases_all
FP_1 <- rep(NA,n_times)
TP <- rep(NA,n_times)
FP_2 <- rep(NA,n_times)
PPV <- rep(NA,n_times)
NPV_1<- rep(NA,n_times)
NPV_2<- rep(NA,n_times)
names(FP_1) <- times_names
names(TP) <- times_names
names(FP_2) <- times_names
names(PPV) <- times_names
names(NPV_1) <- times_names
names(NPV_2) <- times_names
if (iid){
MatInt0TcidhatMCksurEff <- Compute.iid.KM(T,delta!=0)
epsiloni.Se <- matrix(NA,nrow=n,ncol=n_times)
epsiloni.Sp1 <- matrix(NA,nrow=n,ncol=n_times)
epsiloni.Sp2 <- matrix(NA,nrow=n,ncol=n_times)
epsiloni.PPV <- matrix(NA,nrow=n,ncol=n_times)
epsiloni.NPV1 <- matrix(NA,nrow=n,ncol=n_times)
epsiloni.NPV2 <- matrix(NA,nrow=n,ncol=n_times)
se.Se <- rep(NA,n_times)
se.Sp1 <- rep(NA,n_times)
se.Sp2 <- rep(NA,n_times)
names(se.Sp1) <- times_names
names(se.Sp2) <- times_names
names(se.Se) <- times_names
colnames(epsiloni.Se) <- times_names
colnames(epsiloni.Sp1) <- times_names
colnames(epsiloni.Sp2) <- times_names
colnames(epsiloni.PPV) <- times_names
colnames(epsiloni.NPV1) <- times_names
colnames(epsiloni.NPV2) <- times_names
}
for(t in 1:n_times){
Cases<-(Mat.data[,"T"]< times[t] & Mat.data[,"delta"]==cause)
Controls_1<-(Mat.data[,"T"]> times[t] )
Controls_2<-(Mat.data[,"T"]< times[t] & Mat.data[,"delta"]!=cause & Mat.data[,"delta"]!=0)
if (weights$method!="marginal"){
Weights_controls_1<-1/(weights$IPCW.times[,t]*n)
}else{
Weights_controls_1<-rep(1/(weights$IPCW.times[t]*n),times=n)
}
Weights_controls_1<-Weights_controls_1
Weights_cases<-Weights_cases_all
Weights_controls_2<-Weights_cases_all
Weights_cases[!Cases]<-0
Weights_controls_1[!Controls_1]<-0
Weights_controls_2[!Controls_2]<-0
den_TP_t<-sum(Weights_cases)
den_FP_1_t<-sum(Weights_controls_1)
den_FP_2_t<-sum(Weights_controls_2)+sum(Weights_controls_1)
den_PPV_t <- sum(Weights_cases[which(Mat.data[,"marker"] > cutpoint)] + Weights_controls_1[which(Mat.data[,"marker"] > cutpoint)] + Weights_controls_2[which(Mat.data[,"marker"] > cutpoint)])
den_NPV_t <- sum(Weights_cases[which(Mat.data[,"marker"] <= cutpoint)] + Weights_controls_1[which(Mat.data[,"marker"] <= cutpoint)] + Weights_controls_2[which(Mat.data[,"marker"] <= cutpoint)])
if(den_TP_t!=0){
TP[t] <- sum(Weights_cases[which(Mat.data[,"marker"] > cutpoint)])/den_TP_t
}
if(den_FP_1_t!=0){
FP_1[t] <- sum(Weights_controls_1[which(Mat.data[,"marker"] > cutpoint)])/den_FP_1_t
}
if(den_FP_2_t!=0){
FP_2[t] <- sum(Weights_controls_1[which(Mat.data[,"marker"] > cutpoint)] + Weights_controls_2[which(Mat.data[,"marker"] > cutpoint)])/den_FP_2_t
NPV_2[t] <- ((1-FP_2[t])*den_FP_2_t)/den_NPV_t
}
CumInci[t] <- c(den_TP_t)
surv[t] <- c(den_FP_1_t)
Stats[t,1:4] <- c(sum(Cases),sum(Controls_1),sum(Controls_2),n-sum(Cases)-sum(Controls_1)-sum(Controls_2))
PPV[t] <- (TP[t]*CumInci[t])/den_PPV_t
NPV_1[t] <- ((1-FP_1[t])*surv[t])/den_NPV_t
if (iid){
Int0tdMCsurEffARisk <- NA
Int0tdMCsurEffARisk <- MatInt0TcidhatMCksurEff[max(which(Mat.data[,"T"] <= times[t])),]
Weights_cases <- Weights_cases
Weights_controls_2 <- Weights_controls_2
Weights_controls_1 <- Weights_controls_1
epsiloni.Se[,t] <- Weights_cases*n*(as.numeric(Mat.data[,"marker"] > cutpoint)-TP[t])/CumInci[t] + colMeans(MatInt0TcidhatMCksurEff*(Weights_cases*n*(as.numeric(Mat.data[,"marker"] > cutpoint)-TP[t])/CumInci[t]))
epsiloni.Sp1[,t] <- (n/sum(Controls_1))*as.numeric(Mat.data[,"T"]>times[t])*(as.numeric(Mat.data[,"marker"] <= cutpoint)-(1-FP_1[t]))
epsiloni.Sp2[,t] <- (Weights_controls_2*n + Weights_controls_1*n)*(as.numeric(Mat.data[,"marker"] <= cutpoint)-(1-FP_2[t]))/(1-CumInci[t]) + colMeans(MatInt0TcidhatMCksurEff*((Weights_controls_2*n)*(as.numeric(Mat.data[,"marker"] <= cutpoint)-(1-FP_2[t]))/(1-CumInci[t]))) + mean((Weights_controls_1*n)*(as.numeric(Mat.data[,"marker"] <= cutpoint)-(1-FP_2[t]))/(1-CumInci[t]))*Int0tdMCsurEffARisk
epsiloni.PPV[,t] <- (as.numeric(Mat.data[,"marker"] > cutpoint)/den_PPV_t)*((Weights_cases*n + Weights_controls_2*n)*(as.numeric(Mat.data[,"delta"]==cause)-as.numeric(Mat.data[,"delta"]!=0)*PPV[t]
) - Weights_controls_1*n*PPV[t]
) + colMeans(MatInt0TcidhatMCksurEff*((as.numeric(Mat.data[,"marker"] > cutpoint)/den_PPV_t
)*(Weights_cases*n + Weights_controls_2*n
)*(as.numeric(Mat.data[,"delta"]==cause)-as.numeric(Mat.data[,"delta"]!=0)*PPV[t]
))
)-mean((as.numeric(Mat.data[,"marker"] > cutpoint)/den_PPV_t
)* Weights_controls_1*n*PPV[t]
)*Int0tdMCsurEffARisk
epsiloni.NPV2[,t] <- (as.numeric(Mat.data[,"marker"] <= cutpoint)/den_NPV_t)*((Weights_cases*n + Weights_controls_2*n)*(as.numeric(Mat.data[,"delta"]!=0 & Mat.data[,"delta"]!=cause)-as.numeric(Mat.data[,"delta"]!=0)*NPV_2[t]
) + Weights_controls_1*n*(1-NPV_2[t])
) + colMeans(MatInt0TcidhatMCksurEff*((as.numeric(Mat.data[,"marker"] <= cutpoint)/den_NPV_t
)*(Weights_cases*n + Weights_controls_2*n
)*(as.numeric(Mat.data[,"delta"]!=0 & Mat.data[,"delta"]!=cause)-as.numeric(Mat.data[,"delta"]!=0)*NPV_2[t]
))
)+mean((as.numeric(Mat.data[,"marker"] <= cutpoint)/den_NPV_t
)* Weights_controls_1*n*(1-NPV_2[t]))*Int0tdMCsurEffARisk
epsiloni.NPV1[,t] <- (as.numeric(Mat.data[,"marker"] <= cutpoint)/den_NPV_t)*((Weights_cases*n + Weights_controls_2*n)*(-as.numeric(Mat.data[,"delta"]!=0)*NPV_1[t]
) + Weights_controls_1*n*(1-NPV_1[t])
) + colMeans(MatInt0TcidhatMCksurEff* ((as.numeric(Mat.data[,"marker"] <= cutpoint)/den_NPV_t
)*(Weights_cases*n + Weights_controls_2*n
)*(-as.numeric(Mat.data[,"delta"]!=0)*NPV_1[t]
))
)+mean((as.numeric(Mat.data[,"marker"] <= cutpoint)/den_NPV_t
)*Weights_controls_1*n*(1-NPV_1[t])
)*Int0tdMCsurEffARisk
}
}
if (iid){
se.Se <- apply(epsiloni.Se,2,sd)/sqrt(n)
se.Sp1 <- apply(epsiloni.Sp1,2,sd)/sqrt(n)
se.Sp2 <- apply(epsiloni.Sp2,2,sd)/sqrt(n)
se.PPV <- apply(epsiloni.PPV,2,sd)/sqrt(n)
se.NPV1 <- apply(epsiloni.NPV1,2,sd)/sqrt(n)
se.NPV2 <- apply(epsiloni.NPV2,2,sd)/sqrt(n)
}
if (iid){
inference<-list(mat_iid_rep_Se=epsiloni.Se,
mat_iid_rep_Sp1=epsiloni.Sp1,
mat_iid_rep_Sp2=epsiloni.Sp2,
mat_iid_rep_PPV=epsiloni.PPV,
mat_iid_rep_NPV1=epsiloni.NPV1,
mat_iid_rep_NPV2=epsiloni.NPV2,
vect_se_Se=se.Se,
vect_se_Sp1=se.Sp1,
vect_se_Sp2=se.Sp2,
vect_se_PPV=se.PPV,
vect_se_NPV1=se.NPV1,
vect_se_NPV2=se.NPV2
)
}else{
inference<-NA
}
stop_computation_time<-Sys.time()
if (max(Stats[,3])==0){
out <- list(TP=TP,FP=FP_1,PPV=PPV,NPV=NPV_1,Stats=Stats[,-3],
inference=inference,
computation_time=difftime(stop_computation_time,start_computation_time,units="secs"),
iid=iid,
n=n,times=times,weights=weights,
cutpoint=cutpoint)
class(out) <- "ipcwsurvivalSeSpPPVNPV"
out
}else{
out <- list(TP=TP,FP_1=FP_1,FP_2=FP_2,PPV=PPV,NPV_1=NPV_1,NPV_2=NPV_2,
Stats=Stats,
inference=inference,
computation_time=difftime(stop_computation_time,start_computation_time,units="secs"),
iid=iid,
n=n,times=times,weights=weights,
cutpoint=cutpoint)
class(out) <- "ipcwcompetingrisksSeSpPPVNPV"
out
}
} |
"wic_col6" |
noiseParamInit <-
function(noise, y) {
noise$spherical = 0
noise$logconcave = 1
fhandle <- get(paste(noise$type, "NoiseParamInit", sep=""), mode="function")
if (nargs() > 1)
noise = fhandle(noise, y)
else
noise = fhandle(noise)
return (noise)
} |
modelAvg <-
function(fitList,ID,nonCon=TRUE){
fitList$distribution<-as.character(fitList$distribution)
dists<-unique(fitList[,ID])
outAIC<-c()
outBIC<-c()
outAICavg<-c()
outBICavg<-c()
outWeightsAIC<-c()
outWeightsBIC<-c()
outWeightsAIC<-rep(NA, nrow(fitList))
outWeightsBIC<-rep(NA, nrow(fitList))
for(i in dists){
use.i<-which(fitList[,ID]==i)
dat.i<-fitList[use.i,]
if(nonCon==TRUE){
con.i<-which(dat.i$didConverge==TRUE&is.na(dat.i$estMean)==FALSE)
}else{
con.i<-which(is.na(dat.i$est)==FALSE)
}
if(length(con.i)==0){
bestMod<-'nothingConverged'
avgAIC.i<-'nothingConverged'
avgBIC.i<-'nothingConverged'
}else{
bestMod.aic<-which(dat.i$aic[con.i]==min(dat.i$aic[con.i],na.rm=TRUE))
bestMod.bic<-which(dat.i$bic[con.i]==min(dat.i$bic[con.i],na.rm=TRUE))
use.AIC.i<-which(fitList[,ID]==i&fitList$distribution==dat.i$distribution[con.i][bestMod.aic])[1]
use.BIC.i<-which(fitList[,ID]==i&fitList$distribution==dat.i$distribution[con.i][bestMod.bic])[1]
wAIC.i<-makeWeightsAIC(dat.i$aic[con.i])
wBIC.i<-makeWeightsAIC(dat.i$bic[con.i])
avgAIC.i<-mAvg(dat.i$estMean[con.i],wAIC.i)
avgBIC.i<-mAvg(dat.i$estMean[con.i],wBIC.i)
outAIC<-c(outAIC, use.AIC.i)
outBIC<-c(outBIC, use.BIC.i)
outWeightsAIC[use.i[con.i]]<-wAIC.i
outWeightsBIC[use.i[con.i]]<-wBIC.i
}
outAICavg<-c(outAICavg,avgAIC.i)
outBICavg<-c(outBICavg,avgBIC.i)
}
aicOut<-matrix(NA, ncol=ncol(fitList), nrow=length(dists))
aicOut<-as.data.frame(aicOut)
use.aic<-which(outAICavg!='nothingConverged')
if(length(use.aic)>0){
aicOut[use.aic,]<-fitList[outAIC,]
}
aicOut[,1]<-dists
colnames(aicOut)<-colnames(fitList)
bicOut<-matrix(NA, ncol=ncol(fitList), nrow=length(dists))
bicOut<-as.data.frame(bicOut)
use.bic<-which(outBICavg!='nothingConverged')
if(length(use.bic)>0){
bicOut[use.bic,]<- fitList[outBIC,]
}
bicOut[,1]<-dists
colnames(bicOut)<-colnames(fitList)
out<-list('aic'= aicOut,'bic'= bicOut,'aicAvg'=outAICavg,'bicAvg'=outBICavg,'waic'=outWeightsAIC,'wbic'=outWeightsBIC)
return(out)
} |
library("PEcAn.all")
library("PEcAn.utils")
library("RCurl")
library("REddyProc")
library("tidyverse")
library("furrr")
library("R.utils")
library("dynutils")
plan(multisession)
outputPath <- "/projectnb/dietzelab/kzarada/US_WCr_SDA_output/NoData/"
nodata <- TRUE
restart <- FALSE
days.obs <- 1
setwd(outputPath)
c(
'Utils.R',
'download_WCr.R',
"gapfill_WCr.R",
'prep.data.assim.R'
) %>% walk( ~ source(
system.file("WillowCreek",
.x,
package = "PEcAn.assim.sequential")
))
setwd("/projectnb/dietzelab/kzarada/US_WCr_SDA_output/NoData/")
settings <- read.settings("/fs/data3/kzarada/pecan/modules/assim.sequential/inst/WillowCreek/nodata.xml")
con <-try(PEcAn.DB::db.open(settings$database$bety), silent = TRUE)
sda.start <- Sys.Date()
sda.end <- sda.start + lubridate::days(3)
met.start <- sda.start - lubridate::days(2)
met.end <- met.start + lubridate::days(16)
date <-
seq(
from = lubridate::with_tz(as.POSIXct(sda.start, format = "%Y-%m-%d %H:%M:%S"), tz = "UTC"),
to = lubridate::with_tz(as.POSIXct(sda.end, format = "%Y-%m-%d %H:%M:%S"), tz = "UTC"),
by = "1 hour"
)
pad.prep <- as.data.frame(cbind(Date = as.character(date), means = rep("NA", length(date)), covs = rep("NA", length(date)))) %>%
dynutils::tibble_as_list()
names(pad.prep) <-date
prep.data = pad.prep
obs.mean <- prep.data %>%
purrr::map('means') %>%
setNames(names(prep.data))
obs.cov <- prep.data %>% purrr::map('covs') %>% setNames(names(prep.data))
if (nodata) {
obs.mean <- obs.mean %>% purrr::map(function(x)
return(NA))
obs.cov <- obs.cov %>% purrr::map(function(x)
return(NA))
}
sapply(paste0("/projectnb/dietzelabe/pecan.data/dbfiles/IC_site_0-676_", 1:100, ".nc"), unlink)
settings$run$start.date <- as.character(met.start)
settings$run$end.date <- as.character(met.end)
settings$run$site$met.start <- as.character(met.start)
settings$run$site$met.end <- as.character(met.end)
settings$info$date <- paste0(format(Sys.time(), "%Y/%m/%d %H:%M:%S"), " +0000")
settings <- PEcAn.settings::prepare.settings(settings, force=FALSE)
setwd(settings$outdir)
PEcAn.settings::write.settings(settings, outputfile = "pecan.CHECKED.xml")
statusFile <- file.path(settings$outdir, "STATUS")
if (length(which(commandArgs() == "--continue")) == 0 && file.exists(statusFile)) {
file.remove(statusFile)
}
settings <- PEcAn.workflow::do_conversions(settings, T, T, T)
if (PEcAn.utils::status.check("TRAIT") == 0) {
PEcAn.utils::status.start("TRAIT")
settings <- PEcAn.workflow::runModule.get.trait.data(settings)
PEcAn.settings::write.settings(settings, outputfile = 'pecan.TRAIT.xml')
PEcAn.utils::status.end()
} else if (file.exists(file.path(settings$outdir, 'pecan.TRAIT.xml'))) {
settings <-
PEcAn.settings::read.settings(file.path(settings$outdir, 'pecan.TRAIT.xml'))
}
if (!is.null(settings$meta.analysis)) {
if (PEcAn.utils::status.check("META") == 0) {
PEcAn.utils::status.start("META")
PEcAn.MA::runModule.run.meta.analysis(settings)
PEcAn.utils::status.end()
}
}
get.parameter.samples(settings, ens.sample.method = settings$ensemble$samplingspace$parameters$method)
settings$state.data.assimilation$start.date <-as.character(first(names(obs.mean)))
settings$state.data.assimilation$end.date <-as.character(last(names(obs.mean)))
if(restart == TRUE){
if(!dir.exists("SDA")) dir.create("SDA",showWarnings = F)
temp<- new.env()
load(file.path(restart.path, "SDA", "sda.output.Rdata"), envir = temp)
temp <- as.list(temp)
if(length(temp$ANALYSIS) > 1){
for(i in 1:days.obs + 1){
temp$ANALYSIS[[i]] <- temp$ANALYSIS[[i + 24]]
}
for(i in rev((days.obs + 2):length(temp$ANALYSIS))){
temp$ANALYSIS[[i]] <- NULL
}
for(i in 1:days.obs + 1){
temp$FORECAST[[i]] <- temp$FORECAST[[i + 24]]
}
for(i in rev((days.obs + 2):length(temp$FORECAST))){
temp$FORECAST[[i]] <- NULL
}
for(i in 1:days.obs + 1){
temp$enkf.params[[i]] <- temp$enkf.params[[i + 24]]
}
for(i in rev((days.obs + 2):length(temp$enkf.params))){
temp$enkf.params[[i]] <- NULL
}
}
temp$t = 1
for(i in 1: length(temp$inputs$ids)){
temp$inputs$samples[i] <- settings$run$inputs$met$path[temp$inputs$ids[i]]
}
temp1<- new.env()
list2env(temp, envir = temp1)
save(list = c("ANALYSIS", "enkf.params", "ensemble.id", "ensemble.samples", 'inputs', 'new.params', 'new.state', 'run.id', 'site.locs', 't', 'Viz.output', 'X'),
envir = temp1,
file = file.path(settings$outdir, "SDA", "sda.output.Rdata"))
temp.out <- new.env()
load(file.path(restart.path, "SDA", 'outconfig.Rdata'), envir = temp.out)
temp.out <- as.list(temp.out)
temp.out$outconfig$samples <- NULL
temp.out1 <- new.env()
list2env(temp.out, envir = temp.out1)
save(list = c('outconfig'),
envir = temp.out1,
file = file.path(settings$outdir, "SDA", "outconfig.Rdata"))
if(!dir.exists("run")) dir.create("run",showWarnings = F)
files <- list.files(path = file.path(restart.path, "run/"), full.names = T, recursive = T, include.dirs = T, pattern = "sipnet.clim")
readfiles <- list.files(path = file.path(restart.path, "run/"), full.names = T, recursive = T, include.dirs = T, pattern = "README.txt")
newfiles <- gsub(pattern = restart.path, settings$outdir, files)
readnewfiles <- gsub(pattern = restart.path, settings$outdir, readfiles)
rundirs <- gsub(pattern = "/sipnet.clim", "", files)
rundirs <- gsub(pattern = restart.path, settings$outdir, rundirs)
for(i in 1 : length(rundirs)){
dir.create(rundirs[i])
file.copy(from = files[i], to = newfiles[i])
file.copy(from = readfiles[i], to = readnewfiles[i])}
file.copy(from = paste0(restart.path, '/run/runs.txt'), to = paste0(settings$outdir,'/run/runs.txt' ))
if(!dir.exists("out")) dir.create("out",showWarnings = F)
files <- list.files(path = file.path(restart.path, "out/"), full.names = T, recursive = T, include.dirs = T, pattern = "sipnet.out")
newfiles <- gsub(pattern = restart.path, settings$outdir, files)
outdirs <- gsub(pattern = "/sipnet.out", "", files)
outdirs <- gsub(pattern = restart.path, settings$outdir, outdirs)
for(i in 1 : length(outdirs)){
dir.create(outdirs[i])
file.copy(from = files[i], to = newfiles[i])}
}
settings$host$name <- "geo.bu.edu"
settings$host$user <- 'kzarada'
settings$host$folder <- "/projectnb/dietzelab/kzarada/US_WCr_SDA_output"
settings$host$job.sh <- "module load udunits/2.2.26 R/3.5.1"
settings$host$qsub <- 'qsub -l h_rt=24:00:00 -V -N @NAME@ -o @STDOUT@ -e @STDERR@'
settings$host$qsub.jobid <- 'Your job ([0-9]+) .*'
settings$host$qstat <- 'qstat -j @JOBID@ || echo DONE'
settings$host$tunnel <- '/tmp/tunnel'
settings$model$binary = "/usr2/postdoc/istfer/SIPNET/1023/sipnet"
unlink(c('run','out'), recursive = T)
if ('state.data.assimilation' %in% names(settings)) {
if (PEcAn.utils::status.check("SDA") == 0) {
PEcAn.utils::status.start("SDA")
PEcAn.assim.sequential::sda.enkf(
settings,
restart=restart,
Q=0,
obs.mean = obs.mean,
obs.cov = obs.cov,
control = list(
trace = TRUE,
interactivePlot =FALSE,
TimeseriesPlot =TRUE,
BiasPlot =FALSE,
debug = FALSE,
pause=FALSE
)
)
PEcAn.utils::status.end()
}
} |
library(hamcrest)
expected <- c(0x1.44bb4ae97c518p+5 + 0x1.91e58e87adfbap-1i, -0x1.626c2c360043p+5 + -0x1.947a06bc775a3p-1i,
0x1.35158d8000922p+5 + 0x1.96a84ef60e64ap-1i, -0x1.17b23a8683d72p+5 + -0x1.986fda28ed77ep-1i,
0x1.70d326f5b4514p+5 + 0x1.99d0353e47574p-1i, -0x1.55cb510aecc68p+5 + -0x1.9ac907311aa09p-1i,
0x1.8370f08eb310dp+4 + 0x1.9b5a1124af155p-1i, -0x1.bda50ebeee6c8p+4 + -0x1.9b832e7477924p-1i,
0x1.2e7864fb7c5c6p+5 + 0x1.9b4454bd53cbep-1i, -0x1.0af35401e355ep+5 + -0x1.9a9d93e0301acp-1i,
0x1.918f08e743c4ap+5 + 0x1.998f15fe02935p-1i, -0x1.4d0150cb65e6p+5 + -0x1.98191f6d262eep-1i,
0x1.afc81e864128fp+5 + 0x1.963c0ea81746ep-1i, -0x1.6cf38b042cb57p+5 + -0x1.93f85c3594beap-1i,
0x1.f5640f9e0432ap+4 + 0x1.914e9a8a2d094p-1i, -0x1.3e7a73fae9b7cp+5 + -0x1.8e3f75e33e022p-1i,
0x1.9c864b8d39404p+5 + 0x1.8acbb41b70ee3p-1i, -0x1.097cedbfbc078p+5 + -0x1.86f43478be625p-1i,
0x1.47e436da70c71p+5 + 0x1.82b9ef740576ep-1i, -0x1.6714c0b457a5ep+5 + -0x1.7e1df67a45bfcp-1i,
0x1.32fa6b4fe51f7p+5 + 0x1.792173a78b4fep-1i, -0x1.863cb817c2386p+4 + -0x1.73c5a97b9dae1p-1i,
0x1.bb57629f4b85p+3 + 0x1.6e0bf2888674ep-1i, -0x1.06421c5899433p+5 + -0x1.67f5c11b0205p-1i,
0x1.32d7d4c216a0cp+5 + 0x1.61849edcf2298p-1i, -0x1.7b88d8461e664p+5 + -0x1.5aba2c71e9783p-1i,
0x1.dde30e7a0255p+5 + 0x1.5398210de8a1bp-1i, -0x1.4ec56e8c709ffp+5 + -0x1.4c204a06689e8p-1i,
0x1.0f51eb688f2eep+2 + 0x1.44548a5dcd442p-1i, -0x1.364fcf88478b7p+4 + -0x1.3c36da495e284p-1i,
0x1.cac6dc9ea6418p+5 + 0x1.33c946b1e484cp-1i, -0x1.26f1dac561a51p+5 + -0x1.2b0df0af0dd18p-1i,
0x1.92e187428b8bp+1 + 0x1.22070cfdb5aaap-1i, -0x1.3574ce42f861fp+4 + -0x1.18b6e3713881cp-1i,
0x1.d7f15cff6a3bcp+4 + 0x1.0f1fce5ff415ap-1i, -0x1.5d3052395742p+0 + -0x1.05443a0b1ac72p-1i,
0x1.61346db077beep+4 + 0x1.f64d4803ff37cp-2i, -0x1.df78522cf1fc1p+4 + -0x1.e193350207854p-2i,
0x1.6994b84cfb498p+5 + 0x1.cc5f779899796p-2i, -0x1.958396a5aa6a5p+4 + -0x1.b6b76b0cdcce1p-2i,
0x1.e1d8148c5796ap+3 + 0x1.a0a08806654ep-2i, -0x1.d78f45b9e5b04p+5 + -0x1.8a20632d55fc8p-2i,
0x1.a7efbc0a1bbfbp+5 + 0x1.733cabc1714eep-2i, -0x1.5766bb36e786cp+5 + -0x1.5bfb2a2a70e02p-2i,
0x1.f628ae5c65bd1p+4 + 0x1.4461be8202d3cp-2i, -0x1.0f236fe739e6ep+5 + -0x1.2c765f17cac38p-2i,
0x1.27893b9ba5a93p+5 + 0x1.143f16efc508ep-2i, -0x1.755eb005a137ep+5 + -0x1.f7840876e1aa5p-3i,
0x1.6c6ee12c68db7p+4 + 0x1.c60aad9c401cbp-3i, -0x1.6a6d33900990fp+5 + -0x1.941e9d19a7f2ap-3i,
0x1.9d9fdf4e54212p+5 + 0x1.61cc73b414821p-3i, -0x1.507783f31b667p+4 + -0x1.2f20e7fbc1366p-3i,
0x1.b16c28306aac2p+4 + 0x1.f8518e2bdbbe6p-4i, -0x1.566c6b8ca731cp+5 + -0x1.91e1e301d9776p-4i,
0x1.3ebcb5f7404cbp+5 + 0x1.2b0cafa69d28ep-4i, -0x1.50945256ea418p+5 + -0x1.87d7dddbf546cp-5i,
0x1.e045e8e73cc1p+4 + 0x1.7266bb08c65fp-6i, -0x1.0359c8b61d9c6p+5 + 0x1.59fece252028p-9i,
0x1.fc5858c7b6a66p+4 + -0x1.c8db815db7cfp-6i, -0x1.ef10d2c302158p+4 + 0x1.b301de9943d0cp-5i,
0x1.277505947ab72p+5 + -0x1.40940af70790ep-4i, -0x1.4ed1f3cf15bfcp+5 + 0x1.a75628dedd1f2p-4i,
0x1.7cc6d1eac03c5p+5 + -0x1.06d6a98149086p-3i, -0x1.58b95a831e596p+5 + 0x1.39bfd732ebecbp-3i,
0x1.36229b500c72cp+5 + -0x1.6c59c0cced9afp-3i, -0x1.f4c6ea7fddba6p+4 + 0x1.9e979d9e821c7p-3i,
0x1.912c3fd11f08bp+5 + -0x1.d06cbc384c9e8p-3i, -0x1.0dafb43d44f87p+5 + 0x1.00e642d0a78c4p-2i,
0x1.921587300e703p+5 + -0x1.19554042969ap-2i, -0x1.4896dd6e68f74p+5 + 0x1.317d2a2d77a1cp-2i,
0x1.b4df3296cadf8p+4 + -0x1.4957e641bef06p-2i, -0x1.17879ae882e6bp+5 + 0x1.60df6daf85524p-2i,
0x1.34ec7af3d3962p+4 + -0x1.780dceac4eb46p-2i, -0x1.22224cd82b083p+5 + 0x1.8edd2df3822f8p-2i,
0x1.1de6f2acb56edp+4 + -0x1.a547c841308d1p-2i, -0x1.a64dda97ea832p+5 + 0x1.bb47f3c6cac3ap-2i,
0x1.ea4606fe1dcadp+5 + -0x1.d0d821996a1f3p-2i, -0x1.2df53b92874f5p+5 + 0x1.e5f2df194c83dp-2i,
0x1.5e064b44310c8p+5 + -0x1.fa92d7522bd1bp-2i, -0x1.9d15fedfcf5fp+5 + 0x1.07596a2a0abb8p-1i,
0x1.497ac870ea508p+5 + -0x1.1126e042364a4p-1i, -0x1.46f032bb31ed6p+5 + 0x1.1aaf53f36058ap-1i,
0x1.87f2d12d2c9c5p+5 + -0x1.23f05cae92dd2p-1i, -0x1.2fc6c0ce212dp+5 + 0x1.2ce7a3efdedffp-1i,
0x1.03629cfdfe445p+5 + -0x1.3592e5d5920ccp-1i, -0x1.2a39043ee8366p+5 + 0x1.3deff1b2b70a1p-1i,
0x1.1174374db5768p+4 + -0x1.45fcaa9cbc249p-1i, -0x1.0755e9de15eb2p+5 + 0x1.4db707f41b31dp-1i,
0x1.e9ef27504eed2p+4 + -0x1.551d15e7e1e2bp-1i, -0x1.d66dd4ff673aep+4 + 0x1.5c2cf5f3f7c09p-1i,
0x1.f06d6efbebc75p+4 + -0x1.62e4df5a02a3ep-1i, -0x1.b11b9e017b26ap+5 + 0x1.69431f94cb59bp-1i,
0x1.39aaa7a6d132ap+5 + -0x1.6f461ac604718p-1i, -0x1.217b095bd2e05p+5 + 0x1.74ec4c1e588aap-1i,
0x1.c2afb13318019p+4 + -0x1.7a34463fa4ddep-1i, -0x1.d2aa2cd9565b8p+4 + 0x1.7f1cb39947eeep-1i,
0x1.10fe722c71a3ep+5 + -0x1.83a456be6c93fp-1i, -0x1.dd5fedc9a5ef9p+3 + 0x1.87ca0ab63bc16p-1i,
0x1.c88b207d07798p+5 + -0x1.8b8cc345e0dfep-1i, -0x1.6960930329e97p+5 + 0x1.8eeb8d344de77p-1i,
0x1.e728958a84cfp+4 + -0x1.91e58e87adf7ap-1i, -0x1.3912929bae491p+5 + 0x1.947a06bc7766ap-1i,
0x1.4ef211cd5e8c4p+5 + -0x1.96a84ef60e69fp-1i, -0x1.2bd176a45a882p+6 + 0x1.986fda28ed848p-1i,
0x1.1f461336da6dep+5 + -0x1.99d0353e4764cp-1i, -0x1.d2bc24fd6971p+4 + 0x1.9ac907311a99dp-1i,
0x1.0d02919cf6faap+5 + -0x1.9b5a1124af1bcp-1i, -0x1.792ace20a6967p+5 + 0x1.9b832e74779e6p-1i,
0x1.87cb1c85d6353p+5 + -0x1.9b4454bd53d8ap-1i, -0x1.778e54a28166fp+4 + 0x1.9a9d93e030235p-1i,
0x1.3a2250ab2c68ap+5 + -0x1.998f15fe028dep-1i, -0x1.4e76c8a93d06ep+5 + 0x1.98191f6d263c2p-1i,
0x1.63c38e8996076p+5 + -0x1.963c0ea81751p-1i, -0x1.bffe80c53a7d1p+5 + 0x1.93f85c3594c8ep-1i,
0x1.dc10f1eafa2edp+4 + -0x1.914e9a8a2d11ep-1i, -0x1.d53bd4de3bdbfp+4 + 0x1.8e3f75e33e01ep-1i,
0x1.7ba85aab02a8ep+5 + -0x1.8acbb41b70f8cp-1i, -0x1.161ed77f84915p+5 + 0x1.86f43478be6b8p-1i,
0x1.8211085b6602ep+4 + -0x1.82b9ef74057e4p-1i, -0x1.a241385d6eca2p+4 + 0x1.7e1df67a45d28p-1i,
0x1.05b2b1e368c3cp+5 + -0x1.792173a78b4f2p-1i, -0x1.a0af9ac3297a4p+4 + 0x1.73c5a97b9db8ap-1i,
0x1.def4d7ad16e96p+4 + -0x1.6e0bf2888680ep-1i, -0x1.7791b6a8d7366p+5 + 0x1.67f5c11b020b3p-1i,
0x1.49047516b8107p+5 + -0x1.61849edcf2344p-1i, -0x1.5c7f4461f37bcp+5 + 0x1.5aba2c71e978fp-1i,
0x1.34d84eb6f01eap+5 + -0x1.5398210de8b03p-1i, -0x1.8600b95eaf6ccp+5 + 0x1.4c204a0668a35p-1i,
0x1.01f4583bf7d32p+5 + -0x1.44548a5dcd491p-1i, -0x1.0ce0999488e99p+5 + 0x1.3c36da495e355p-1i,
0x1.71f0fd11cc9ffp+5 + -0x1.33c946b1e481ap-1i, -0x1.6ca9de07c3b4ap+5 + 0x1.2b0df0af0ddcdp-1i,
0x1.6a8cdfa4b3456p+5 + -0x1.22070cfdb5b52p-1i, -0x1.9285597c6bdfbp+5 + 0x1.18b6e3713887ep-1i,
0x1.63d23a04e38aep+5 + -0x1.0f1fce5ff422p-1i, -0x1.a16758d7d889cp+4 + 0x1.05443a0b1ac4cp-1i,
0x1.6e4ab45498ca2p+5 + -0x1.f64d4803ff51ep-2i, -0x1.1c703a40efef1p+5 + 0x1.e193350207a19p-2i,
0x1.9a85242602b26p+5 + -0x1.cc5f7798998ecp-2i, -0x1.9721b3af1754fp+5 + 0x1.b6b76b0cdcda2p-2i,
0x1.157e5e4b7fafap+5 + -0x1.a0a0880665503p-2i, -0x1.299141628f355p+3 + 0x1.8a20632d561a9p-2i,
0x1.94bbc755d455dp+4 + -0x1.733cabc1715f6p-2i, -0x1.2a9d649867656p+5 + 0x1.5bfb2a2a70eap-2i,
0x1.207bfa079da6ap+5 + -0x1.4461be8202f45p-2i, -0x1.dbd8f750ad94cp+4 + 0x1.2c765f17caba6p-2i,
0x1.02e011d623e16p+5 + -0x1.143f16efc5201p-2i, -0x1.2902f52efa88bp+5 + 0x1.f7840876e1d78p-3i,
0x1.8f368a47e2517p+5 + -0x1.c60aad9c404c6p-3i, -0x1.16e5cb867a20cp+5 + 0x1.941e9d19a81bp-3i,
0x1.62e4157940336p+5 + -0x1.61cc73b414756p-3i, -0x1.54419fc4f07fep+5 + 0x1.2f20e7fbc1546p-3i,
0x1.4ff51c69111e6p+5 + -0x1.f8518e2bdc008p-4i, -0x1.9f3d64c2ae5bep+4 + 0x1.91e1e301d9a64p-4i,
0x1.6dd70dab81989p+5 + -0x1.2b0cafa69d80cp-4i, -0x1.0796f4cf1d492p+3 + 0x1.87d7dddbf4e78p-5i,
0x1.2cb0976ac80ap+3 + -0x1.7266bb08c797p-6i, -0x1.324c49c07280bp+5 + -0x1.59fece251a88p-9i,
0x1.e464b2c793c02p+4 + 0x1.c8db815db744p-6i, -0x1.553adec90351dp+5 + -0x1.b301de9942f58p-5i,
0x1.47a9daca1853ap+5 + 0x1.40940af707b18p-4i, -0x1.bae2c0981df9cp+5 + -0x1.a75628dedcd52p-4i,
0x1.1cc65b6f8613bp+5 + 0x1.06d6a98148d27p-3i, -0x1.017464175bc4ep+5 + -0x1.39bfd732ebc74p-3i,
0x1.3df621b32beeep+5 + 0x1.6c59c0cced6fp-3i, -0x1.690fe2ee5efa2p+4 + -0x1.9e979d9e821d2p-3i,
0x1.4a5484522daedp+5 + 0x1.d06cbc384c615p-3i, -0x1.6b4f355732caep+5 + -0x1.00e642d0a77eep-2i,
0x1.7d316ea69a05ep+5 + 0x1.1955404296884p-2i, -0x1.630e9a1e9dad3p+5 + -0x1.317d2a2d77813p-2i,
0x1.7ca994a25ff8bp+4 + 0x1.4957e641beee4p-2i, -0x1.ec216ae24408dp+4 + -0x1.60df6daf8535dp-2i,
0x1.108ac35bd05e3p+5 + 0x1.780dceac4e9dp-2i, -0x1.1822b5c92fa6ap+5 + -0x1.8edd2df3821aap-2i,
0x1.1f6c005cf8141p+5 + 0x1.a547c8413069ep-2i, -0x1.298d5d913716ep+5 + -0x1.bb47f3c6cac0ap-2i,
0x1.7f2a3c5ecb74cp+5 + 0x1.d0d821996a07ap-2i, -0x1.bb2caca6d191ap+5 + -0x1.e5f2df194c6edp-2i,
0x1.ab38ba7e74fbdp+5 + 0x1.fa92d7522bbc3p-2i, -0x1.a3482a780ce4p+5 + -0x1.07596a2a0ab15p-1i,
0x1.8605264b45b82p+3 + 0x1.1126e042364dfp-1i, -0x1.5b5fb5261e9c4p+5 + -0x1.1aaf53f3604afp-1i,
0x1.5e9f067ab6c07p+5 + 0x1.23f05cae92d1p-1i, -0x1.f0efcd7ba5035p+4 + -0x1.2ce7a3efded93p-1i,
0x1.bbcc2ee1735acp+4 + 0x1.3592e5d592046p-1i, -0x1.460a0b19a8dd9p+5 + -0x1.3deff1b2b70cap-1i,
0x1.04a635ab84269p+5 + 0x1.45fcaa9cbc15ep-1i, -0x1.17f3ebde3a195p+5 + -0x1.4db707f41b258p-1i,
0x1.033e1e3c1ca65p+5 + 0x1.551d15e7e1dffp-1i, -0x1.02d58c24b0638p+5 + -0x1.5c2cf5f3f7b4fp-1i,
0x1.d27e27df37f6ap+4 + 0x1.62e4df5a02a47p-1i, -0x1.3fb9a1815073cp+4 + -0x1.69431f94cb4d6p-1i,
0x1.0942c99bf5aaep+5 + 0x1.6f461ac604699p-1i, -0x1.ff1de3f252849p+4 + -0x1.74ec4c1e58838p-1i,
0x1.9c1b7296fd186p+5 + 0x1.7a34463fa4d3ap-1i, -0x1.0f96c42b7a39ap+5 + -0x1.7f1cb39947f15p-1i,
0x1.ad8dab5db6cd7p+5 + 0x1.83a456be6c882p-1i, -0x1.245005428c46fp+5 + -0x1.87ca0ab63bb42p-1i,
0x1.9601e9803eab4p+4 + 0x1.8b8cc345e0dacp-1i, -0x1.3164558f846f4p+5 + -0x1.8eeb8d344ddcp-1i
)
assertThat(stats:::fft(inverse=TRUE,z=c(0+0i, 0.277990726331056+0.283859957361672i, -0.153011905862873-0.415408324585186i,
0.459263743326068-0.430763048741859i, 0.461851772200813-0.091711596079432i,
-0.167776786507607+0.370355046006962i, 0.378446716359935+0.110975920435485i,
0.312154699823781-0.101547186157582i, -0.465746230618912+0.337453085650942i,
-0.384894950717506+0.403299602349128i, -0.340076408840021+0.676300517817609i,
-0.644257660504963-0.258692893991019i, 0.576500607755741+0.372571615416856i,
0.073085633598748-0.463636340068287i, -1.11915541580676+0.68039982767274i,
0.156431306436988-0.313673476880138i, -0.0231455247875635+0.0259451725814705i,
0.24845219819362-0.224300185153389i, 0.023646972380485+0.810092137377691i,
-0.741641748046385-0.500789303827088i, -0.519816624502179+0.58303185544541i,
-0.02654448381671-0.946236910402169i, 0.444207123496369+0.03171782980979i,
0.463384027617483-0.235888552565784i, 0.3763143736212-0.403201702305321i,
-0.535693078225493-0.636202773896567i, -0.142675497564056+0.490069390222119i,
0.289783511076224-0.124158758345734i, -0.282704417623729-0.465017107050711i,
-0.415769018174555-0.381772444428206i, -1.03024589339925-0.41698467281857i,
0.288030438328045+0.575601906066335i, -0.309207209980628-0.040881324520974i,
-0.151260301949768-0.617273797141171i, 0.642233195953593-0.322709524184646i,
0.333696213297984+0.149540053726833i, 0.05981701298287+0.71361296322696i,
-0.261340363994831-0.731744905820977i, -0.430523179786904+0.757394073850871i,
0.317116718075609+0.273633462041475i, 0.551180209580412-0.21910140930435i,
-0.210492871735569+0.218342200645588i, -0.42769475226975-1.50951956390273i,
0.002561467029191-0.406659906517777i, -0.202365862498274+0.13985318727883i,
0.15296090668448+1.06811823766963i, -0.143870658163906+0.976274608647189i,
1.45985518907918+0.71996866389408i, 1.11788679229154-0.70541307773082i,
-0.534383810365882+0.137771151980333i, -0.551585599414697-0.403257502122809i,
-0.25455839313801+1.56553653000046i, 0.719753046987267-0.122283725904319i,
0.384469347000308-0.393453777608803i, 0.00797067027684-1.07575830492549i,
0.422853840141482+0.48652488107657i, -0.442834035957946-0.65341236116936i,
0.721030181504573+0.398626303920949i, -0.050204214300124+0.520265028980529i,
0.152023586580515+0.915318103628573i, -0.683951284620146+0.004869075220198i,
1.1563988545656-0.59645405526443i, 0.069937813777675-0.212604380284395i,
0.324457018413502-0.88189136951786i, -0.365209855838877-0.611261236614891i,
0.093411981615043+0.732869793898158i, -0.218765477742456+0.941883757470505i,
0.881770882849447+0.358588970530506i, 0.926140662452227-0.303620730620059i,
-0.326168231797809-0.44856666670098i, -0.405782273173213-0.371235770884278i,
0.559040215684595+0.275645530453479i, -1.45146596074992+0.05132344338728i,
-0.95512124328633+0.372402599370354i, 0.640253523409145+0.056129037397681i,
0.007149706953279+0.863411868993062i, 0.527101715445533+0.973904134498329i,
-0.453853404127109+0.663881517303922i, -0.883458201061049+0.248226529245188i,
-0.41109309505347-0.604101459375926i, 0.262569825259832-0.078811132911252i,
-0.046371708147184-0.317741969635582i, 0.012073570264548+0.72682826896826i,
-0.877664131420104-0.757147649834965i, 1.08210971546017+1.13487422256458i,
0.952631711895761+0.325264869163943i, -0.445200694400294-0.200414569087134i,
-0.055439801078333-0.882203012370466i, 0.0078568252919-1.65786618360731i,
-0.312100701694185+0.413794584883038i, 0.396106847459553+0.399590981014919i,
0.693389029661321-0.771116625581733i, 0.6129994721567+0.286482121236585i,
-0.645550254889037-0.89412125572164i, 0.032166842134184+0.971338563175306i,
-0.521787472359195+0.950760664700239i, -0.125868594377156+0.816985722899626i,
0.777844567079473-0.099084032938823i, 0.567010395254169-0.343194525085422i,
-0.577840003363656+0i, 36.95629+0i, -0.405086760934773+0.78495450407262i,
0.567010395254169+0.343194525085422i, 0.777844567079473+0.099084032938823i,
-0.125868594377156-0.816985722899625i, -0.521787472359195-0.95076066470024i,
0.032166842134184-0.971338563175306i, -0.645550254889037+0.89412125572164i,
0.612999472156701-0.286482121236585i, 0.693389029661321+0.771116625581733i,
0.396106847459553-0.399590981014919i, -0.312100701694185-0.413794584883038i,
0.0078568252919+1.65786618360731i, -0.055439801078333+0.882203012370465i,
-0.445200694400294+0.200414569087134i, 0.952631711895761-0.325264869163943i,
1.08210971546017-1.13487422256458i, -0.877664131420104+0.757147649834965i,
0.012073570264548-0.72682826896826i, -0.046371708147184+0.317741969635582i,
0.262569825259832+0.078811132911252i, -0.41109309505347+0.604101459375926i,
-0.883458201061049-0.248226529245188i, -0.453853404127109-0.663881517303921i,
0.527101715445533-0.973904134498329i, 0.007149706953279-0.863411868993062i,
0.640253523409145-0.056129037397681i, -0.95512124328633-0.372402599370354i,
-1.45146596074992-0.05132344338728i, 0.559040215684594-0.275645530453479i,
-0.405782273173213+0.371235770884278i, -0.326168231797809+0.44856666670098i,
0.926140662452227+0.303620730620059i, 0.881770882849447-0.358588970530506i,
-0.218765477742456-0.941883757470505i, 0.093411981615043-0.732869793898158i,
-0.365209855838877+0.611261236614892i, 0.324457018413502+0.881891369517861i,
0.069937813777675+0.212604380284395i, 1.1563988545656+0.59645405526443i,
-0.683951284620148-0.004869075220198i, 0.152023586580515-0.915318103628573i,
-0.050204214300124-0.520265028980529i, 0.721030181504573-0.398626303920949i,
-0.442834035957946+0.65341236116936i, 0.422853840141482-0.48652488107657i,
0.00797067027684+1.07575830492549i, 0.384469347000308+0.393453777608803i,
0.719753046987268+0.122283725904319i, -0.25455839313801-1.56553653000046i,
-0.551585599414697+0.403257502122809i, -0.534383810365882-0.137771151980333i,
1.11788679229154+0.70541307773082i, 1.45985518907918-0.71996866389408i,
-0.143870658163906-0.97627460864719i, 0.15296090668448-1.06811823766963i,
-0.202365862498275-0.13985318727883i, 0.002561467029191+0.406659906517777i,
-0.42769475226975+1.50951956390273i, -0.210492871735569-0.218342200645588i,
0.551180209580412+0.21910140930435i, 0.317116718075609-0.273633462041475i,
-0.430523179786904-0.757394073850871i, -0.261340363994831+0.731744905820977i,
0.05981701298287-0.713612963226961i, 0.333696213297984-0.149540053726833i,
0.642233195953593+0.322709524184647i, -0.151260301949768+0.617273797141171i,
-0.309207209980628+0.040881324520974i, 0.288030438328045-0.575601906066335i,
-1.03024589339925+0.41698467281857i, -0.415769018174554+0.381772444428206i,
-0.282704417623729+0.465017107050711i, 0.289783511076224+0.124158758345734i,
-0.142675497564056-0.490069390222119i, -0.535693078225493+0.636202773896567i,
0.3763143736212+0.403201702305321i, 0.463384027617483+0.235888552565784i,
0.444207123496369-0.03171782980979i, -0.02654448381671+0.946236910402169i,
-0.519816624502177-0.583031855445408i, -0.741641748046385+0.500789303827088i,
0.023646972380485-0.810092137377691i, 0.24845219819362+0.224300185153389i,
-0.0231455247875635-0.0259451725814705i, 0.156431306436988+0.313673476880138i,
-1.11915541580676-0.68039982767274i, 0.073085633598748+0.463636340068287i,
0.576500607755741-0.372571615416856i, -0.644257660504964+0.258692893991019i,
-0.340076408840021-0.676300517817609i, -0.384894950717507-0.403299602349128i,
-0.465746230618912-0.337453085650942i, 0.312154699823781+0.101547186157582i,
0.378446716359935-0.110975920435485i, -0.167776786507607-0.370355046006963i,
0.461851772200813+0.091711596079432i, 0.459263743326068+0.430763048741859i,
-0.153011905862873+0.415408324585187i, 0.277990726331056-0.283859957361672i
))
, identicalTo( expected, tol = 1e-6 ) ) |
context("bbox")
test_that("bounding box correctly calculated", {
bb <- function( x, cols = NULL ) {
unname( unclass( sfheaders:::rcpp_calculate_bbox( x, cols ) ) )
}
expect_error( bb( 1L ), "geometries - incorrect size of bounding box")
expect_error( bb( "a" ) )
expect_error( bb( matrix(1L) ), "geometries - incorrect size of bounding box")
expect_error( bb( matrix(1.2) ), "geometries - incorrect size of bounding box")
bbox <- bb( 1L:2L )
expect_equal( bbox, c(1,2,1,2) )
bbox <- bb( c(1.0, 2.0) )
expect_equal( bbox, c(1,2,1,2) )
bbox <- bb( 1L:2L, c(0L,1L) )
expect_equal( bbox, c(1,2,1,2) )
bbox <- bb( c(1.0, 2.0), c(0L,1L) )
expect_equal( bbox, c(1,2,1,2) )
x <- matrix(c(0,0,0,1), ncol = 2 )
bbox <- bb( x )
expect_equal( bbox, c(0,0,0,1) )
x <- matrix( c( 1, 2, 3, 4 ), ncol = 2 )
bbox <- bb( x )
expect_equal( bbox, c(1,3,2,4) )
x <- matrix( c( 1, 2, 3, 4 ), ncol = 2, byrow = T )
bbox <- bb( x )
expect_equal( bbox, c(1,2,3,4) )
x <- matrix( c( 1L:4L ), ncol = 2, byrow = T )
bbox <- bb( x )
expect_equal( bbox, c(1,2,3,4) )
x <- matrix( c( 1.2, 2, 3, 4 ), ncol = 2, byrow = T )
bbox <- bb( x, c(0,1) )
expect_equal( bbox, c(1.2,2,3,4) )
x <- matrix( c( 1L:4L ), ncol = 2, byrow = T )
bbox <- bb( x, c(0L,1L) )
expect_equal( bbox, c(1,2,3,4) )
x <- matrix( c( 1L:4L ), ncol = 2, byrow = T )
x <- as.data.frame( x )
x <- as.matrix( x )
bbox <- bb( x, c("V1","V2") )
expect_equal( bbox, c(1,2,3,4) )
x <- matrix( c( 1.2,2,3,4 ), ncol = 2, byrow = T )
x <- as.data.frame( x )
x <- as.matrix( x )
bbox <- bb( x, c("V1","V2") )
expect_equal( bbox, c(1.2,2,3,4) )
x <- 1:2
bbox <- bb( x, c("x","y") )
expect_equal( bbox, c(1,2,1,2) )
x <- c(1.1, 2)
bbox <- bb( x, c("x","y") )
expect_equal( bbox, c(1.1,2,1.1,2) )
x <- data.frame( x = 1:5, y = 2:6 )
bbox <- bb( x )
expect_equal( bbox, c(1,2,5,6) )
x <- 1
expect_error( bb( x ), "geometries - incorrect size of bounding box")
x <- matrix(1)
expect_error( bb( x ), "geometries - incorrect size of bounding box")
x <- matrix(1.1)
expect_error( bb( x ), "geometries - incorrect size of bounding box")
})
test_that("z_range correctly calculated", {
zr <- function( x ) {
sfheaders:::rcpp_calculate_z_range( x )
}
err <- "sfheaders - incorrect size of z_range"
expect_error( zr( 1L:2L ), err )
expect_error( zr( c(1.2,2) ), err )
expect_equal( zr(1:3), c(3,3) )
expect_equal( zr(c(1.2,2,3)), c(3,3) )
x <- matrix(c(0,0,0,1), ncol = 2 )
expect_error( zr( x ), err )
x <- matrix( c( 1, 2, 3, 4 ), ncol = 2 )
expect_error( zr( x ), err )
x <- matrix( c( 1, 2, 3, 4 ), ncol = 2, byrow = T )
expect_error( zr( x ), err )
x <- matrix( c( 1L:4L ), ncol = 2, byrow = T )
expect_error( zr( x ), err )
x <- data.frame( x = 1:5, y = 2:6 )
expect_error( zr( x ), err )
expect_equal( zr(1:3), c(3,3) )
x <- matrix(c(1L:6L), ncol = 3)
expect_equal( zr(x), c(5L,6L))
x <- as.data.frame( matrix(c(1L:6L), ncol = 3) )
expect_equal( zr(x), c(5L,6L))
})
test_that("m_range correctly calculated", {
mr <- function( x, xyzm = "") {
sfheaders:::rcpp_calculate_m_range( x, xyzm )
}
err <- "sfheaders - incorrect size of m_range"
expect_error( mr( 1:2, "XY" ), err )
expect_error( mr( 1:2, "XYM" ), err )
expect_error( mr( 1:2, "XYZ" ), err )
expect_error( mr( c(1.2,2.2) ), err )
expect_equal( mr(1:4), c(4,4) )
x <- matrix(c(0,0,0,0,0,0), ncol = 3 )
expect_error( mr( x ), err )
x <- matrix( c( 1, 2, 3, 4 ), ncol = 2 )
expect_error( mr( x ), err )
x <- matrix( c( 1, 2, 3, 4 ), ncol = 2, byrow = T )
expect_error( mr( x ), err )
x <- matrix( c( 1L:4L ), ncol = 2, byrow = T )
expect_error( mr( x ), err )
x <- data.frame( x = 1:5, y = 2:6 )
expect_error( mr( x ), err )
expect_equal( mr(1:4), c(4,4) )
expect_equal( mr(c(1.2,2:4)), c(4,4) )
x <- matrix(c(1L:8L), ncol = 4)
expect_equal( mr(x), c(7L,8L))
x <- matrix(c(1.1,2,3,4), ncol = 4)
expect_equal( mr(x), c(4,4))
x <- as.data.frame( matrix(c(1L:8L), ncol = 4) )
expect_equal( mr(x), c(7,8))
})
test_that("bbox calculated on data.frame, sfg, sfc, sf", {
df <- data.frame(
id1 = c(1,1,1,1,1,1,1,1,2,2,2,2)
, id2 = c(1,1,1,1,2,2,2,2,1,1,1,1)
, x = c(0,0,1,1,1,1,2,2,3,4,4,3)
, y = c(0,1,1,0,1,2,2,1,3,3,4,4)
)
expect_equal(unclass(unname(sf_bbox( df, x = "x", y = "y" ))), c(0,0,4,4))
pt <- sfg_point(obj = df[1, ], x = "x", y = "y", z = "id1")
mpt <- sfg_multipoint(obj = df, x = "x", y = "y")
ls <- sfg_linestring(obj = df, x = "x", y = "y")
mls <- sfg_multilinestring(obj = df, x = "x", y = "y")
p <- sfg_polygon(obj = df, x = "x" , y = "y")
mp <- sfg_multipolygon(obj = df, x = "x", y = "y", close = FALSE )
expect_equal(unclass(unname(sf_bbox( pt ))), c(0,0,0,0))
expect_equal(unclass(unname(sf_bbox( mpt ))), c(0,0,4,4) )
expect_equal(unclass(unname(sf_bbox( ls ))), c(0,0,4,4) )
expect_equal(unclass(unname(sf_bbox( mls ))), c(0,0,4,4) )
expect_equal(unclass(unname(sf_bbox( p ))), c(0,0,4,4) )
expect_equal(unclass(unname(sf_bbox( mp ))), c(0,0,4,4) )
pt <- sfc_point(obj = df, x = "x", y = "y", z = "id1")
mpt <- sfc_multipoint(obj = df, x = "x", y = "y", multipoint_id = "id1")
ls <- sfc_linestring(obj = df, x = "x", y = "y", linestring_id = "id1")
mls <- sfc_multilinestring(obj = df, x = "x", y = "y", multilinestring_id = "id1")
p <- sfc_polygon(
obj = df
, x = "x"
, y = "y"
, polygon_id = "id1"
, linestring_id = "id2"
, close = FALSE
)
mp <- sfc_multipolygon(
obj = df
, x = "x"
, y = "y"
, multipolygon_id = "id1"
, linestring_id = "id2"
, close = FALSE
)
expect_equal(sf_bbox( pt ), attr(pt, "bbox"))
expect_equal(sf_bbox( mpt ), attr(mpt, "bbox"))
expect_equal(sf_bbox( ls ), attr(ls, "bbox"))
expect_equal(sf_bbox( mls ), attr(mls, "bbox"))
expect_equal(sf_bbox( p ), attr(p, "bbox"))
expect_equal(sf_bbox( mp ), attr(mp, "bbox"))
pt <- sf_point(obj = df, x = "x", y = "y", z = "id1")
mpt <- sf_multipoint(obj = df, x = "x", y = "y", multipoint_id = "id1")
ls <- sf_linestring(obj = df, x = "x", y = "y", linestring_id = "id1")
mls <- sf_multilinestring(obj = df, x = "x", y = "y", multilinestring_id = "id1")
p <- sf_polygon(
obj = df
, x = "x"
, y = "y"
, polygon_id = "id1"
, linestring_id = "id2"
, close = FALSE
)
mp <- sf_multipolygon(
obj = df
, x = "x"
, y = "y"
, multipolygon_id = "id1"
, linestring_id = "id2"
, close = FALSE
)
expect_equal(sf_bbox( pt ), attr(pt$geometry, "bbox"))
expect_equal(sf_bbox( mpt ), attr(mpt$geometry, "bbox"))
expect_equal(sf_bbox( ls ), attr(ls$geometry, "bbox"))
expect_equal(sf_bbox( mls ), attr(mls$geometry, "bbox"))
expect_equal(sf_bbox( p ), attr(p$geometry, "bbox"))
expect_equal(sf_bbox( mp ), attr(mp$geometry, "bbox"))
})
test_that("z and m range correctly reported",{
df <- data.frame(
id1 = c(1,1,1,1,1,1,1,1,2,2,2,2)
, id2 = c(1,1,1,1,2,2,2,2,1,1,1,1)
, x = c(0,0,1,1,1,1,2,2,3,4,4,3)
, y = c(0,1,1,0,1,2,2,1,3,3,4,4)
, z = 1:12
, m = 20:9
)
pt <- sf_point(obj = df, x = "x", y = "y", z = "z")
mpt <- sf_multipoint(obj = df, x = "x", y = "y", z = "z", multipoint_id = "id1")
ls <- sf_linestring(obj = df, x = "x", y = "y", z = "z", linestring_id = "id1")
mls <- sf_multilinestring(obj = df, x = "x", y = "y", z = "z", multilinestring_id = "id1")
p <- sf_polygon(
obj = df
, x = "x"
, y = "y"
, z = "z"
, polygon_id = "id1"
, linestring_id = "id2"
, close = FALSE
)
mp <- sf_multipolygon(
obj = df
, x = "x"
, y = "y"
, z = "z"
, multipolygon_id = "id1"
, linestring_id = "id2"
, close = FALSE
)
expect_true( all( attr( pt$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( mpt$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( ls$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( mls$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( p$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( mp$geometry, "z_range" ) == c(1,12) ) )
expect_true( is.null( attr( pt$geometry, "m_range" ) ) )
expect_true( is.null( attr( mp$geometry, "m_range" ) ) )
expect_true( is.null( attr( ls$geometry, "m_range" ) ) )
expect_true( is.null( attr( mls$geometry, "m_range" ) ) )
expect_true( is.null( attr( p$geometry, "m_range" ) ) )
expect_true( is.null( attr( mp$geometry, "m_range" ) ) )
pt <- sf_point(obj = df, x = "x", y = "y", m = "m")
mpt <- sf_multipoint(obj = df, x = "x", y = "y", m = "m", multipoint_id = "id1")
ls <- sf_linestring(obj = df, x = "x", y = "y", m = "m", linestring_id = "id1")
mls <- sf_multilinestring(obj = df, x = "x", y = "y", m = "m", multilinestring_id = "id1")
p <- sf_polygon(
obj = df
, x = "x"
, y = "y"
, m = "m"
, polygon_id = "id1"
, linestring_id = "id2"
, close = FALSE
)
mp <- sf_multipolygon(
obj = df
, x = "x"
, y = "y"
, m = "m"
, multipolygon_id = "id1"
, linestring_id = "id2"
, close = FALSE
)
expect_true( all( attr( pt$geometry, "m_range" ) == c(9,20) ) )
expect_true( all( attr( mpt$geometry, "m_range" ) == c(9,20) ) )
expect_true( all( attr( ls$geometry, "m_range" ) == c(9,20) ) )
expect_true( all( attr( mls$geometry, "m_range" ) == c(9,20) ) )
expect_true( all( attr( p$geometry, "m_range" ) == c(9,20) ) )
expect_true( all( attr( mp$geometry, "m_range" ) == c(9,20) ) )
expect_true( is.null( attr( pt$geometry, "z_range" ) ) )
expect_true( is.null( attr( mp$geometry, "z_range" ) ) )
expect_true( is.null( attr( ls$geometry, "z_range" ) ) )
expect_true( is.null( attr( mls$geometry, "z_range" ) ) )
expect_true( is.null( attr( p$geometry, "z_range" ) ) )
expect_true( is.null( attr( mp$geometry, "z_range" ) ) )
pt <- sf_point(obj = df, x = "x", y = "y", z = "z", m = "m")
mpt <- sf_multipoint(obj = df, x = "x", y = "y", z = "z", m = "m", multipoint_id = "id1")
ls <- sf_linestring(obj = df, x = "x", y = "y", z = "z", m = "m", linestring_id = "id1")
mls <- sf_multilinestring(obj = df, x = "x", y = "y", z = "z", m = "m", multilinestring_id = "id1")
p <- sf_polygon(
obj = df
, x = "x"
, y = "y"
, z = "z"
, m = "m"
, polygon_id = "id1"
, linestring_id = "id2"
, close = FALSE
)
mp <- sf_multipolygon(
obj = df
, x = "x"
, y = "y"
, z = "z"
, m = "m"
, multipolygon_id = "id1"
, linestring_id = "id2"
, close = FALSE
)
expect_true( all( attr( pt$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( mpt$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( ls$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( mls$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( p$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( mp$geometry, "z_range" ) == c(1,12) ) )
expect_true( all( attr( pt$geometry, "m_range" ) == c(9,20) ) )
expect_true( all( attr( mpt$geometry, "m_range" ) == c(9,20) ) )
expect_true( all( attr( ls$geometry, "m_range" ) == c(9,20) ) )
expect_true( all( attr( mls$geometry, "m_range" ) == c(9,20) ) )
expect_true( all( attr( p$geometry, "m_range" ) == c(9,20) ) )
expect_true( all( attr( mp$geometry, "m_range" ) == c(9,20) ) )
})
test_that("C++ functions correctly 'guess' the dimension", {
df <- data.frame(x = 1, y = 2)
res <- sfheaders:::rcpp_sfg_linestring(
x = df
, geometry_columns = c("x","y")
, xyzm = ""
)
expect_true( attr( res , "class" )[1] == "XY" )
df <- data.frame(x = 1, y = 2, z = 3)
res <- sfheaders:::rcpp_sfg_linestring(
x = df
, geometry_columns = c("x","y","z")
, xyzm = ""
)
expect_true( attr( res , "class" )[1] == "XYZ" )
df <- data.frame(x = 1, y = 2, m = 3)
res <- sfheaders:::rcpp_sfg_linestring(
x = df
, geometry_columns = c("x","y","m")
, xyzm = ""
)
expect_true( attr( res , "class" )[1] == "XYZ" )
df <- data.frame(x = 1, y = 2, z = 3, m = 4)
res <- sfheaders:::rcpp_sfg_linestring(
x = df
, geometry_columns = c("x","y","m")
, xyzm = ""
)
expect_true( attr( res , "class" )[1] == "XYZ" )
df <- data.frame(x = 1, y = 2, z = 3, m = 4)
res <- sfheaders:::rcpp_sfg_linestring(
x = df
, geometry_columns = c("x","y","z", "m")
, xyzm = ""
)
expect_true( attr( res , "class" )[1] == "XYZM" )
}) |
dotchartpl <- function(x, major=NULL, minor=NULL,
group=NULL, mult=NULL,
big=NULL, htext=NULL,
num=NULL, denom=NULL,
numlabel='', denomlabel='',
fun=function(x) x, ifun=function(x) x,
op='-',
lower=NULL, upper=NULL,
refgroup=NULL, sortdiff=TRUE, conf.int=0.95,
minkeep=NULL,
xlim=NULL, xlab='Proportion',
tracename=NULL, limitstracename='Limits',
nonbigtracename='Stratified Estimates',
dec=3, width=800, height=NULL,
col=colorspace::rainbow_hcl
) {
if (!requireNamespace("plotly"))
stop("This function requires the 'plotly' package.")
mu <- markupSpecs$html
bold <- mu$bold
if(! length(xlim)) xlim <- c(min(c(x, lower), na.rm=TRUE),
max(c(x, upper), na.rm=TRUE))
majorpres <- length(major) > 0
major <- if(majorpres) as.character(major) else rep(' ', length(x))
minorpres <- length(minor) > 0
if(! (majorpres || minorpres)) stop('must specify major or minor or both')
grouppres <- length(group) > 0
multpres <- length(mult) > 0
limspres <- length(lower) * length(upper) > 0
rgpres <- length(refgroup) > 0
if(minorpres) minor <- as.character(minor)
if(grouppres) group <- as.character(group)
if(multpres) mult <- as.character(mult)
ugroup <- if(grouppres) unique(group) else ''
fmt <- function(x) format(round(x, dec))
if(rgpres) {
if(! grouppres || multpres || length(big))
stop('when refgroup is given, group must be given and mult and big must not be used')
if(length(ugroup) != 2)
stop('refgroup only works for 2 groups')
if(refgroup %nin% unique(group))
stop(paste('refgroup must be one of the following:',
paste(unique(group), collapse=', ')))
altgroup <- setdiff(ugroup, refgroup)
}
cols <- if(length(col)) {
if(! is.function(col)) col
else
if(grouppres) col(length(unique(group)))
else
col(1) }
if(! length(col) && ! grouppres) cols <- 'black'
dropped <- character(0)
D <- NULL
if(rgpres && minorpres) {
z <- pairUpDiff(x, major, minor, group,
refgroup=refgroup, lower=lower, upper=upper,
minkeep=minkeep, sortdiff=sortdiff, conf.int=conf.int)
Z <- z$X
D <- z$D
dropped <- z$dropped
i <- Z[,'subscripts']
x <- x[i]
major <- major[i]
minor <- minor[i]
group <- group[i]
if(length(num)) num <- num[i]
if(length(denom)) denom <- denom[i]
if(length(mult)) mult <- mult[i]
if(length(big)) big <- big[i]
if(length(lower)) lower <- lower[i]
if(length(upper)) upper <- upper[i]
if(length(htext)) htext <- htext[i]
}
ht <- htext
if(numlabel != '') numlabel <- paste0(' ', numlabel)
if(denomlabel != '') denomlabel <- paste0(' ', denomlabel)
if(length(num))
ht <- paste0(ht, if(length(htext)) mu$lspace,
fmt(fun(x)), mu$lspace,
mu$frac(paste0(num, numlabel),
paste0(denom, denomlabel), size=95))
if(length(ugroup) != 2 && limspres)
ht <- paste0(ht, ' [',
fmt(fun(lower)), ', ',
fmt(fun(upper)), ']')
ht <- paste0(ht, if(length(ht)) '<br>',
if(majorpres) paste0(major, ': '))
if(minorpres) ht <- paste0(ht, minor)
if(grouppres) ht <- paste0(ht, '<br>',
gsub(' stratified<br>by .*', '', group))
if(multpres) ht <- paste0(ht, '<br>', mult)
n <- length(x)
minor <- if(minorpres) minor else rep('', n)
group <- if(grouppres) group else rep('', n)
mult <- if(multpres) mult else rep('', n)
if(! length(big)) big <- rep(TRUE, n)
w <- c(length(x), length(major), length(minor), length(group),
length(num), length(denom),
length(mult), length(big), length(htext),
length(lower), length(upper))
w <- w[w > 0]
if(diff(range(w)) > 0)
stop('x, major, minor, group, num, denom, mult, big, htext, lower, upper must all have same length when used')
y <- 1
X <- Y <- Ydiff <- Lower <- Upper <- numeric(0)
Group <- Htext <- Htextl <- character(0)
Big <- logical(0)
yl <- numeric(0); yt <- ytnb <- character(0)
difflower <- diffupper <- Diff <- numeric(0)
coldiff <- htdiff <- character(0)
lines <- 0
for(ma in unique(major)) {
y <- y - 1
yl <- c(yl, y)
yt <- c(yt, bold(ma))
ytnb <- c(ytnb, ma)
lminor <- unique(minor[major == ma])
y <- y + if(all(lminor == '')) 0.4 else 0
lines <- lines + 1
for(mi in lminor) {
y <- y - 0.4
lines <- lines + (mi != '')
j <- which(major == ma & minor == mi)
X <- c(X, x[j])
Y <- c(Y, ifelse(big[j], y, y - .14))
if(length(D)) {
k <- which(D$major == ma & D$minor == mi)
if(length(k) != 1)
stop('must have one observation for a major/minor/group combination')
diff <- D$diff[k]
coldiff <- c(coldiff,
ifelse(diff > 0,
paste0(altgroup, ' ',
htmlTranslate('>'), ' ', refgroup),
paste0(refgroup, ' ',
htmlTranslate('>='), ' ', altgroup)))
Ydiff <- c(Ydiff, y)
htd <- if(majorpres) paste0(ma, ': ') else ''
if(minorpres) htd <- paste0(htd, mi)
htd <- paste0(htd, '<br>', altgroup, ' ', op, ' ',
refgroup, ': ', fmt(fun(diff)))
if(! is.logical(conf.int) && limspres && length(D)) {
dlower <- fmt(fun(D$lower[k]))
dupper <- fmt(fun(D$upper[k]))
htd <- paste0(htd, '<br>', conf.int, ' C.L.: [', dlower,
', ', dupper, ']')
Diff <- c(Diff, diff)
difflower <- c(difflower, D$lowermid[k])
diffupper <- c(diffupper, D$uppermid[k])
}
htdiff <- c(htdiff, htd)
}
if(limspres && ! length(D)) {
Lower <- c(Lower, lower[j])
Upper <- c(Upper, upper[j])
Htextl <- c(Htextl,
paste0('[',
fmt(fun(lower[j])), ', ',
fmt(fun(upper[j])), ']' ) )
}
Group <- c(Group, group[j])
Big <- c(Big, big[j])
Htext <- c(Htext, ht[j])
if(mi != '') {
yl <- c(yl, y)
yt <- c(yt, mi)
ytnb <- c(ytnb, mi)
}
}
}
d <- data.frame(X, Y, Group, Htext, Big)
if(limspres && ! length(D)) {
d$Lower <- Lower
d$Upper <- Upper
d$Htextl <- Htextl
}
if(! grouppres) d$Group <- NULL
if(any(d$Big)) {
db <- subset(d, Big)
p <- plotly::plot_ly(data=db, colors=cols,
height=if(length(height)) height else
plotlyParm$heightDotchart(lines), width=width)
if(limspres && length(D)) {
ddiff <- data.frame(Diff, difflower, diffupper, Ydiff, coldiff, htdiff)
nDiff <- Diff[! is.na(Diff)]
if(length(nDiff)) {
if(any(nDiff > 0))
p <- plotly::add_segments(p, data=subset(ddiff, Diff > 0),
x= ~ difflower, xend= ~ diffupper,
y= ~ Ydiff, yend= ~ Ydiff,
color = I('lightgray'),
text = ~ htdiff, hoverinfo='text',
name = paste0(htmlSpecial('half'),
' CL of difference<br>',
coldiff[Diff > 0][1]))
if(any(nDiff <= 0))
p <- plotly::add_segments(p, data=subset(ddiff, Diff <= 0),
x= ~ difflower, xend= ~ diffupper,
y= ~ Ydiff, yend= ~ Ydiff,
color = I('lavender'),
text = ~ htdiff, hoverinfo='text',
name = paste0(htmlSpecial('half'),
' CL of difference<br>',
coldiff[Diff <= 0][1]))
}
}
if(limspres && ! length(D) && length(ugroup) == 2)
p <- if(grouppres)
plotly::add_segments(p, data=db,
x=~ Lower, xend=~ Upper,
y=~ Y, yend=~ Y,
color=~ Group, text= ~ Htextl,
colors=cols, hoverinfo='text')
else
plotly::add_segments(p, x=~ Lower, xend=~ Upper,
y=~ Y, yend=~ Y,
text= ~ Htextl,
color=I('lightgray'), hoverinfo='text',
name=limitstracename)
p <- if(grouppres)
plotly::add_markers(p, x=~ X, y=~ Y,
color=~ Group, text=~ Htext,
colors=cols, hoverinfo='text')
else
plotly::add_markers(p, x=~ X, y=~ Y,
text=~ Htext, color=I('black'),
hoverinfo='text',
name=if(length(tracename)) tracename
else
if(any(! d$Big)) 'All' else '')
} else p <- plotly::plot_ly(colors=cols)
if(any(! d$Big)) {
dnb <- subset(d, ! Big)
if(limspres)
p <- if(grouppres && length(ugroup) == 2)
plotly::add_segments(p, data=dnb,
x=~ Lower, xend=~ Upper,
y=~ Y, yend=~ Y,
color=~ Group, text=~ Htextl,
colors=cols, hoverinfo='text')
else plotly::add_segments(p, data=dnb,
x=~ Lower, xend=~ Upper,
y=~ Y, yend=~ Y,
text=~ Htextl,
color=I('lightgray'), hoverinfo='text',
name=limitstracename)
dnb$sGroup <- paste0(dnb$Group, '\nby ',
gsub('Stratified by\n', '', nonbigtracename))
p <- if(grouppres)
plotly::add_markers(p, data=dnb,
x=~ X, y=~ Y,
color=~ Group,
text=~ Htext,
colors=cols,
marker=list(opacity=0.45, size=4),
hoverinfo='text')
else
plotly::add_markers(p, data=dnb,
x=~ X, y=~ Y,
text=~ Htext,
marker=list(opacity=0.45, size=4),
color=I('black'), hoverinfo='text',
name=nonbigtracename)
}
leftmargin <- plotlyParm$lrmargin(ytnb)
tickvals <- pretty(fun(xlim), n=10)
xaxis <- list(title=xlab, range=xlim, zeroline=FALSE,
tickvals=ifun(tickvals), ticktext=tickvals)
yaxis <- list(title='',
range=c(min(Y) - 0.2, 0.2),
zeroline=FALSE, tickvals=yl, ticktext=yt)
p <- plotly::layout(p,
xaxis=xaxis,
yaxis=yaxis,
margin=list(l=leftmargin),
legend=list(traceorder=if(length(difflower))
'reversed' else 'normal'))
attr(p, 'levelsRemoved') <- dropped
p
} |
context("MA 1: evalmod")
test_that("m1 scores", {
s1 <- c(3, 2, 2, 1)
l1 <- c(1, 0, 1, 0)
mdat1 <- mmdata(s1, l1)
cv1 <- evalmod(mdat1, x_bins = 4)
expect_equal(cv1[["rocs"]][[1]][["x"]], c(0, 0, 0.25, 0.5, 0.75, 1))
expect_equal(cv1[["rocs"]][[1]][["y"]], c(0, 0.5, 0.75, 1, 1, 1))
expect_equal(cv1[["prcs"]][[1]][["x"]], c(0, 0.25, 0.5, 0.75, 1, 1))
expect_equal(cv1[["prcs"]][[1]][["y"]], c(1, 1, 1, 0.75, 0.6666666667, 0.5),
tolerance = 1e-2)
})
test_that("m2 scores", {
s2 <- c(4, 3, 2, 1)
l2 <- c(0, 0, 1, 1)
mdat2 <- mmdata(s2, l2)
cv2 <- evalmod(mdat2, x_bins = 4)
expect_equal(cv2[["rocs"]][[1]][["x"]], c(0, 0.25, 0.5, 0.75, 1, 1, 1))
expect_equal(cv2[["rocs"]][[1]][["y"]], c(0, 0, 0, 0, 0, 0.5, 1))
expect_equal(cv2[["prcs"]][[1]][["x"]], c(0, 0.25, 0.5, 0.75, 1))
expect_equal(cv2[["prcs"]][[1]][["y"]], c(0, 0.2, 0.3333333333, 0.4285714286,
0.5),
tolerance = 1e-2)
})
test_that("m3 scores", {
s3 <- c(3, 3, 2, 1)
l3 <- c(1, 0, 0, 1)
mdat3 <- mmdata(s3, l3)
cv3 <- evalmod(mdat3, x_bins = 4)
expect_equal(cv3[["rocs"]][[1]][["x"]], c(0, 0.25, 0.5, 0.75, 1, 1))
expect_equal(cv3[["rocs"]][[1]][["y"]], c(0, 0.25, 0.5, 0.5, 0.5, 1))
expect_equal(cv3[["prcs"]][[1]][["x"]], c(0, 0.25, 0.5, 0.5, 0.75, 1))
expect_equal(cv3[["prcs"]][[1]][["y"]], c(0.5, 0.5, 0.5, 0.3333333333,
0.4285714286, 0.5),
tolerance = 1e-2)
})
test_that("'mode' must be consistent between 'mmdata' and 'evalmode'", {
s1 <- c(1, 2, 3, 4)
s2 <- c(5, 6, 7, 8)
s3 <- c(2, 4, 6, 8)
scores <- join_scores(s1, s2, s3)
l1 <- c(1, 0, 1, 0)
l2 <- c(1, 1, 0, 0)
l3 <- c(0, 1, 0, 1)
labels <- join_labels(l1, l2, l3)
md1 <- mmdata(scores, labels)
expect_equal(attr(md1, "args")[["mode"]], "rocprc")
expect_error(evalmod(md1), NA)
em1_1 <- evalmod(md1)
expect_equal(attr(evalmod(md1), "args")[["mode"]], "rocprc")
expect_error(evalmod(md1, mode = 'rocprc'), NA)
em1_2 <- evalmod(md1, mode = 'rocprc')
expect_equal(attr(em1_2, "args")[["mode"]], "rocprc")
expect_error(evalmod(md1, mode = 'basic'), NA)
em1_3 <- evalmod(md1, mode = 'basic')
expect_equal(attr(em1_3, "args")[["mode"]], "basic")
expect_error(evalmod(md1, mode = 'aucroc'), NA)
em1_4 <- evalmod(md1, mode = 'aucroc')
expect_equal(attr(em1_4, "args")[["mode"]], "aucroc")
md2 <- mmdata(scores, labels, mode = 'basic')
expect_equal(attr(md2, "args")[["mode"]], "basic")
expect_error(evalmod(md2), NA)
em2_1 <- evalmod(md2)
expect_equal(attr(em2_1, "args")[["mode"]], "basic")
expect_error(evalmod(md2, mode = 'rocprc'), NA)
em2_2 <- evalmod(md2, mode = 'rocprc')
expect_equal(attr(em2_2, "args")[["mode"]], "rocprc")
expect_error(evalmod(md2, mode = 'basic'), NA)
em2_3 <- evalmod(md2, mode = 'basic')
expect_equal(attr(em2_3, "args")[["mode"]], "basic")
expect_error(evalmod(md2, mode = 'aucroc'), NA)
em2_4 <- evalmod(md2, mode = 'aucroc')
expect_equal(attr(em2_4, "args")[["mode"]], "aucroc")
md3 <- mmdata(scores, labels, mode = 'aucroc')
expect_equal(attr(md3, "args")[["mode"]], "aucroc")
expect_error(evalmod(md3), NA)
em3_1 <- evalmod(md3)
expect_equal(attr(em3_1, "args")[["mode"]], "aucroc")
expect_error(evalmod(md3, mode = 'rocprc'), "Invalid 'mode':")
expect_error(evalmod(md3, mode = 'basic'), "Invalid 'mode':")
expect_error(evalmod(md3, mode = 'aucroc'), NA)
em3_4 <- evalmod(md3, mode = 'aucroc')
expect_equal(attr(em3_4, "args")[["mode"]], "aucroc")
}) |
grep_leading <- function( pattern, x, value=FALSE )
{
ind <- which( substring( x, 1, nchar(pattern) )==pattern )
if (value){
ind <- x[ind]
}
return(ind)
} |
qtlambda <- function(p, lambda, lower.tail = TRUE, log.p = FALSE) {
cpp_qtlambda(p, lambda, lower.tail[1L], log.p[1L])
}
rtlambda <- function(n, lambda) {
if (length(n) > 1) n <- length(n)
cpp_rtlambda(n, lambda)
} |
compute.approx.lr <-
function(theta, mu, sigma, y, Py, M){
n = length(y)
-M*theta - 0.5*M*theta^2 - n*log(sigma) - 0.5*sum((y -theta*Py - mu)^2)/sigma^2
} |
if (keras_available()) {
mod <- Sequential()
mod$add(Dense(units = 50, input_shape = 10))
mod$add(Dropout(rate = 0.5))
mod$add(Activation("relu"))
mod$add(Dense(units = 3))
mod$add(ActivityRegularization(l1 = 1))
mod$add(Activation("softmax"))
keras_compile(mod, loss = 'categorical_crossentropy', optimizer = RMSprop())
keras_save(mod, tf <- tempfile())
mod2 <- keras_load(tf)
keras_save_weights(mod, tf <- tempfile())
keras_load_weights(mod, tf)
tf <- tempfile(fileext = ".json")
keras_model_to_json(mod, tf)
cat(readLines(tf))
mod3 <- keras_model_from_json(tf)
} |
is.qr <- function(x) inherits(x, "qr")
qr <- function(x, ...) UseMethod("qr")
qr.default <- function(x, tol = 1e-07, LAPACK = FALSE, ...)
{
x <- as.matrix(x)
if(is.complex(x))
return(structure(.Call("La_zgeqp3", x, PACKAGE = "base"), class="qr"))
if(!is.double(x))
storage.mode(x) <- "double"
if(LAPACK) {
res <- .Call("La_dgeqp3", x, PACKAGE = "base")
if(!is.null(cn <- colnames(x)))
colnames(res$qr) <- cn[res$pivot]
attr(res, "useLAPACK") <- TRUE
class(res) <- "qr"
return(res)
}
p <- ncol(x)
n <- nrow(x)
res <- .Fortran("dqrdc2",
qr=x,
n,
n,
p,
as.double(tol),
rank=integer(1L),
qraux = double(p),
pivot = as.integer(1L:p),
double(2*p),
PACKAGE="base")[c(1,6,7,8)]
if(!is.null(cn <- colnames(x)))
colnames(res$qr) <- cn[res$pivot]
class(res) <- "qr"
res
}
qr.coef <- function(qr, y)
{
if( !is.qr(qr) )
stop("first argument must be a QR decomposition")
n <- nrow(qr$qr)
p <- ncol(qr$qr)
k <- as.integer(qr$rank)
im <- is.matrix(y)
if (!im) y <- as.matrix(y)
ny <- ncol(y)
if (p == 0L) return( if (im) matrix(0, p, ny) else numeric() )
ix <- if ( p > n ) c(seq_len(n), rep(NA, p - n)) else seq_len(p)
if(is.complex(qr$qr)) {
if(!is.complex(y)) y[] <- as.complex(y)
coef <- matrix(NA_complex_, nrow = p, ncol = ny)
coef[qr$pivot,] <-
.Call("qr_coef_cmplx", qr, y, PACKAGE = "base")[ix, ]
return(if(im) coef else c(coef))
}
a <- attr(qr, "useLAPACK")
if(!is.null(a) && is.logical(a) && a) {
if(!is.double(y)) storage.mode(y) <- "double"
coef <- matrix(NA_real_, nrow = p, ncol = ny)
coef[qr$pivot,] <-
.Call("qr_coef_real", qr, y, PACKAGE = "base")[ix,]
return(if(im) coef else c(coef))
}
if (k == 0L) return( if (im) matrix(NA, p, ny) else rep.int(NA, p))
storage.mode(y) <- "double"
if( nrow(y) != n )
stop("'qr' and 'y' must have the same number of rows")
z <- .Fortran("dqrcf",
as.double(qr$qr),
n, k,
as.double(qr$qraux),
y,
ny,
coef=matrix(0, nrow=k,ncol=ny),
info=integer(1L),
NAOK = TRUE, PACKAGE="base")[c("coef","info")]
if(z$info) stop("exact singularity in 'qr.coef'")
if(k < p) {
coef <- matrix(NA_real_, nrow=p, ncol=ny)
coef[qr$pivot[1L:k],] <- z$coef
}
else coef <- z$coef
if(!is.null(nam <- colnames(qr$qr)))
if(k < p) rownames(coef)[qr$pivot] <- nam
else rownames(coef) <- nam
if(im && !is.null(nam <- colnames(y)))
colnames(coef) <- nam
if(im) coef else drop(coef)
}
qr.qy <- function(qr, y)
{
if(!is.qr(qr)) stop("argument is not a QR decomposition")
if(is.complex(qr$qr)) {
y <- as.matrix(y)
if(!is.complex(y)) y[] <- as.complex(y)
return(.Call("qr_qy_cmplx", qr, y, 0, PACKAGE = "base"))
}
a <- attr(qr, "useLAPACK")
if(!is.null(a) && is.logical(a) && a)
return(.Call("qr_qy_real", qr, as.matrix(y), 0, PACKAGE = "base"))
n <- nrow(qr$qr)
k <- as.integer(qr$rank)
ny <- NCOL(y)
storage.mode(y) <- "double"
if(NROW(y) != n)
stop("'qr' and 'y' must have the same number of rows")
.Fortran("dqrqy",
as.double(qr$qr),
n, k,
as.double(qr$qraux),
y,
ny,
qy = y,
PACKAGE="base")$qy
}
qr.qty <- function(qr, y)
{
if(!is.qr(qr)) stop("argument is not a QR decomposition")
if(is.complex(qr$qr)){
y <- as.matrix(y)
if(!is.complex(y)) y[] <- as.complex(y)
return(.Call("qr_qy_cmplx", qr, y, 1, PACKAGE = "base"))
}
a <- attr(qr, "useLAPACK")
if(!is.null(a) && is.logical(a) && a)
return(.Call("qr_qy_real", qr, as.matrix(y), 1, PACKAGE = "base"))
n <- nrow(qr$qr)
k <- as.integer(qr$rank)
ny <- NCOL(y)
if(NROW(y) != n)
stop("'qr' and 'y' must have the same number of rows")
storage.mode(y) <- "double"
.Fortran("dqrqty",
as.double(qr$qr),
n, k,
as.double(qr$qraux),
y,
ny,
qty = y,
PACKAGE = "base")$qty
}
qr.resid <- function(qr, y)
{
if(!is.qr(qr)) stop("argument is not a QR decomposition")
if(is.complex(qr$qr)) stop("not implemented for complex 'qr'")
a <- attr(qr, "useLAPACK")
if(!is.null(a) && is.logical(a) && a)
stop("not supported for LAPACK QR")
k <- as.integer(qr$rank)
if (k==0) return(y)
n <- nrow(qr$qr)
ny <- NCOL(y)
if( NROW(y) != n )
stop("'qr' and 'y' must have the same number of rows")
storage.mode(y) <- "double"
.Fortran("dqrrsd",
as.double(qr$qr), n, k,
as.double(qr$qraux),
y,
ny,
rsd = y,
PACKAGE="base")$rsd
}
qr.fitted <- function(qr, y, k=qr$rank)
{
if(!is.qr(qr)) stop("argument is not a QR decomposition")
if(is.complex(qr$qr)) stop("not implemented for complex 'qr'")
a <- attr(qr, "useLAPACK")
if(!is.null(a) && is.logical(a) && a)
stop("not supported for LAPACK QR")
n <- nrow(qr$qr)
k <- as.integer(k)
if(k > qr$rank) stop("'k' is too large")
ny <- NCOL(y)
if( NROW(y) != n )
stop("'qr' and 'y' must have the same number of rows")
storage.mode(y) <- "double"
.Fortran("dqrxb",
as.double(qr$qr),
n, k,
as.double(qr$qraux),
y,
ny,
xb = y,
DUP=FALSE, PACKAGE="base")$xb
}
qr.Q <- function (qr, complete = FALSE,
Dvec = rep.int(if (cmplx) 1 + 0i else 1,
if (complete) dqr[1] else min(dqr)))
{
if(!is.qr(qr)) stop("argument is not a QR decomposition")
dqr <- dim(qr$qr)
cmplx <- mode(qr$qr) == "complex"
D <-
if (complete) diag(Dvec, dqr[1L])
else {
ncols <- min(dqr)
diag(Dvec[1L:ncols], nrow = dqr[1L], ncol = ncols)
}
qr.qy(qr, D)
}
qr.R <- function (qr, complete = FALSE)
{
if(!is.qr(qr)) stop("argument is not a QR decomposition")
R <- qr$qr
if (!complete)
R <- R[seq.int(min(dim(R))), , drop = FALSE]
R[row(R) > col(R)] <- 0
R
}
qr.X <- function (qr, complete = FALSE,
ncol = if (complete) nrow(R) else min(dim(R)))
{
if(!is.qr(qr)) stop("argument is not a QR decomposition")
pivoted <- !identical(qr$pivot, ip <- seq_along(qr$pivot))
R <- qr.R(qr, complete = TRUE)
if(pivoted && ncol < length(qr$pivot))
stop("need larger value of 'ncol' as pivoting occurred")
cmplx <- mode(R) == "complex"
p <- dim(R)[2L]
if (ncol < p)
R <- R[, 1L:ncol, drop = FALSE]
else if (ncol > p) {
tmp <- diag(if (!cmplx) 1 else 1 + 0i, nrow(R), ncol)
tmp[, 1L:p] <- R
R <- tmp
}
res <- qr.qy(qr, R)
cn <- colnames(res)
if(pivoted) {
res[, qr$pivot] <- res[, ip]
if(!is.null(cn)) colnames(res)[qr$pivot] <- cn[ip]
}
res
} |
OLS.ART <-
function(x,p,h,prob)
{
x <- as.matrix(x)
n <- nrow(x)
B <- LSMT(x,p)
b <- B$coef
e <- B$resid
f <- {}; PImat <- {}
if(h > 0)
{
f <- ART.Fore(x,b,h)
s2 <- sum(e^2)/(nrow(x)-length(b))
mf <- mainf(b,h,p)
se <- as.matrix(sqrt(s2*cumsum(mf[1:h]^2)))
PImat <- matrix(NA,ncol=length(prob),nrow=h)
for( i in 1:length(prob))
{PImat[,i] <- f + qnorm(prob[i])*se }
}
return(list(coef=b,resid=e,forecast=f,PI=PImat))
} |
nmkb2 <- function (par, fn, lower = -Inf, upper = Inf, control = list(), ...)
{
ctrl <- list(tol = 1e-06, maxfeval = min(5000, max(1500,
20 * length(par)^2)), regsimp = TRUE, maximize = FALSE,
restarts.max = 3, trace = FALSE)
namc <- match.arg(names(control), choices = names(ctrl),
several.ok = TRUE)
if (!all(namc %in% names(ctrl)))
stop("unknown names in control: ", namc[!(namc %in% names(ctrl))])
if (!is.null(names(control)))
ctrl[namc] <- control
ftol <- ctrl$tol
maxfeval <- ctrl$maxfeval
regsimp <- ctrl$regsimp
restarts.max <- ctrl$restarts.max
maximize <- ctrl$maximize
trace <- ctrl$trace
n <- length(par)
clipToRegion <- function(xc,lowerP,upperP) {
xc = pmax(xc,lowerP+1e-13)
xc = pmin(xc,upperP-1e-13)
return(xc)
}
par = clipToRegion(par,lower,upper)
g <- function(x) {
gx <- x
gx[c1] <- atanh(2 * (x[c1] - lower[c1]) / (upper[c1] - lower[c1]) - 1)
gx[c3] <- log(x[c3] - lower[c3])
gx[c4] <- log(upper[c4] - x[c4])
gx
}
ginv <- function(x) {
gix <- x
gix[c1] <- lower[c1] + (upper[c1] - lower[c1])/2 * (1 + tanh(x[c1]))
gix[c3] <- lower[c3] + exp(x[c3])
gix[c4] <- upper[c4] - exp(x[c4])
gix
}
if (length(lower) == 1) lower <- rep(lower, n)
if (length(upper) == 1) upper <- rep(upper, n)
if (any(c(par < lower, upper < par))) stop("Infeasible starting values!", call.=FALSE)
low.finite <- is.finite(lower)
upp.finite <- is.finite(upper)
c1 <- low.finite & upp.finite
c2 <- !(low.finite | upp.finite)
c3 <- !(c1 | c2) & low.finite
c4 <- !(c1 | c2) & upp.finite
if (all(c2)) stop("Use `nmk()' for unconstrained optimization!", call.=FALSE)
if (maximize)
fnmb <- function(par) -fn(ginv(par), ...)
else fnmb <- function(par) fn(ginv(par), ...)
x0 <- g(par)
if (n == 1)
stop(call. = FALSE, "Use `optimize' for univariate optimization")
if (n > 30)
warning("Nelder-Mead should not be used for high-dimensional optimization")
V <- cbind(rep(0, n), diag(n))
f <- rep(0, n + 1)
f[1] <- fnmb(x0)
V[, 1] <- x0
scale <- max(1, sqrt(sum(x0^2)))
if (regsimp) {
alpha <- scale/(n * sqrt(2)) * c(sqrt(n + 1) + n - 1,
sqrt(n + 1) - 1)
V[, -1] <- (x0 + alpha[2])
diag(V[, -1]) <- x0[1:n] + alpha[1]
for (j in 2:ncol(V)) f[j] <- fnmb(V[, j])
}
else {
V[, -1] <- x0 + scale * V[, -1]
for (j in 2:ncol(V)) f[j] <- fnmb(V[, j])
}
f[is.nan(f)] <- Inf
f[is.na(f)] <- Inf
nf <- n + 1
ord <- order(f)
f <- f[ord]
V <- V[, ord]
rho <- 1
gamma <- 0.5
chi <- 2
sigma <- 0.5
conv <- 1
oshrink <- 0
restarts <- 0
orth <- 0
dist <- f[n + 1] - f[1]
v <- V[, -1] - V[, 1]
delf <- f[-1] - f[1]
diam <- sqrt(colSums(v^2))
sgrad <- c(crossprod(t(v), delf))
alpha <- 1e-04 * max(diam)/sqrt(sum(sgrad^2))
simplex.size <- sum(abs(V[, -1] - V[, 1]))/max(1, sum(abs(V[,
1])))
if (is.nan(simplex.size)) simplex.size=Inf
if (is.na(simplex.size)) simplex.size=Inf
if (is.nan(dist)) dist <- Inf
if (is.na(dist)) dist <- Inf
itc <- 0
conv <- 0
message <- "Succesful convergence"
while (nf < maxfeval & restarts < restarts.max & dist > ftol &
simplex.size > 1e-06) {
fbc <- mean(f)
happy <- 0
itc <- itc + 1
xbar <- rowMeans(V[, 1:n])
xr <- (1 + rho) * xbar - rho * V[, n + 1]
fr <- fnmb(xr)
nf <- nf + 1
if (is.nan(fr)) fr <- Inf
if (is.na(fr)) fr <- Inf
if (fr >= f[1] & fr < f[n]) {
happy <- 1
xnew <- xr
fnew <- fr
}
else if (fr < f[1]) {
xe <- (1 + rho * chi) * xbar - rho * chi * V[, n +
1]
fe <- fnmb(xe)
if (is.nan(fe)) fe <- Inf
if (is.na(fe)) fe <- Inf
nf <- nf + 1
if (fe < fr) {
xnew <- xe
fnew <- fe
happy <- 1
}
else {
xnew <- xr
fnew <- fr
happy <- 1
}
}
else if (fr >= f[n] & fr < f[n + 1]) {
xc <- (1 + rho * gamma) * xbar - rho * gamma * V[,
n + 1]
fc <- fnmb(xc)
if (is.nan(fc)) fc <- Inf
if (is.na(fc)) fc <- Inf
nf <- nf + 1
if (fc <= fr) {
xnew <- xc
fnew <- fc
happy <- 1
}
}
else if (fr >= f[n + 1]) {
xc <- (1 - gamma) * xbar + gamma * V[, n + 1]
fc <- fnmb(xc)
if (is.nan(fc)) fc <- Inf
if (is.na(fc)) fc <- Inf
nf <- nf + 1
if (fc < f[n + 1]) {
xnew <- xc
fnew <- fc
happy <- 1
}
}
if (happy == 1 & oshrink == 1) {
fbt <- mean(c(f[1:n], fnew))
delfb <- fbt - fbc
armtst <- alpha * sum(sgrad^2)
if (delfb > -armtst/n) {
if (trace)
cat("Trouble - restarting: \n")
restarts <- restarts + 1
orth <- 1
diams <- min(diam)
sx <- sign(0.5 * sign(sgrad))
happy <- 0
V[, -1] <- V[, 1]
diag(V[, -1]) <- diag(V[, -1]) - diams * sx[1:n]
}
}
if (happy == 1) {
V[, n + 1] <- xnew
f[n + 1] <- fnew
ord <- order(f)
V <- V[, ord]
f <- f[ord]
}
else if (happy == 0 & restarts < restarts.max) {
if (orth == 0)
orth <- 1
V[, -1] <- V[, 1] - sigma * (V[, -1] - V[, 1])
for (j in 2:ncol(V)) f[j] <- fnmb(V[, j])
nf <- nf + n
ord <- order(f)
V <- V[, ord]
f <- f[ord]
}
v <- V[, -1] - V[, 1]
delf <- f[-1] - f[1]
diam <- sqrt(colSums(v^2))
simplex.size <- sum(abs(v))/max(1, sum(abs(V[, 1])))
if (is.nan(simplex.size)) simplex.size=Inf
if (is.na(simplex.size)) simplex.size=Inf
f[is.nan(f)] <- Inf
f[is.na(f)] <- Inf
dist <- f[n + 1] - f[1]
sgrad <- c(crossprod(t(v), delf))
if (trace & !(itc%%2))
cat("iter: ", itc, "\n", "value: ", f[1], "\n")
if (is.nan(dist)) dist <- Inf
if (is.na(dist)) dist <- Inf
}
if (dist <= ftol | simplex.size <= 1e-06) {
conv <- 0
message <- "Successful convergence"
}
else if (nf >= maxfeval) {
conv <- 1
message <- "Maximum number of fevals exceeded"
}
else if (restarts >= restarts.max) {
conv <- 2
message <- "Stagnation in Nelder-Mead"
}
return(list(par = ginv(V[, 1]), value = f[1] * (-1)^maximize, feval = nf,
restarts = restarts, convergence = conv, message = message))
} |
inPSphere2D = function(data,paretoRadius=NULL){
if(is.null(paretoRadius))
paretoRadius = ParetoRadius(data)
nData = nrow(data)
nVar = ncol(data)
x = data[,1]
y = data[,2]
noNaNInd = (!is.nan(x)&!is.nan(y))
x = x[noNaNInd]
y = y[noNaNInd]
xMin = min(x)
xMax = max(x)
yMin = min(y)
yMax = max(y)
xBinWidth = paretoRadius
yBinWidth = paretoRadius
xedge = seq(xMin,(xMax+xBinWidth),by=xBinWidth)
yedge = seq(yMin,(yMax+yBinWidth),by=yBinWidth)
if(min(x)<xedge[1])
xedge = rbind(min(x),xedge)
if(max(x)>xedge[length(xedge)])
xedge = rbind(xedge,max(x))
if(min(y)<yedge[1])
yedge = rbind(min(y),yedge)
if(max(y)>yedge[length(yedge)])
yedge = rbind(yedge,max(y))
e = hist(x,xedge,plot=FALSE)
xBinNr = findInterval(x,e$breaks)
e = hist(y,yedge,plot=FALSE)
yBinNr = findInterval(y,e$breaks)
nrXBins = length(xedge)
nrYBins = length(yedge)
nInPsphere = c_inPSphere2D(data, xBinNr, yBinNr, nrXBins, nrYBins, nData, paretoRadius)
return (nInPsphere)
} |
base64url_encode <- function(bin){
text <- base64_encode(bin)
sub("=+$", "", chartr('+/', '-_', text))
}
base64url_decode <- function(text){
text <- fix_padding(chartr('-_', '+/', text))
base64_decode(text)
}
fix_padding <- function(text){
text <- gsub("[\r\n]", "", text)[[1]]
mod <- nchar(text) %% 4;
if(mod > 0){
padding <- paste(rep("=", (4 - mod)), collapse = "")
text <- paste0(text, padding)
}
text
} |
test_that("trimmed before NA detection", {
expect_equal(parse_logical(c(" TRUE ", "FALSE", " NA ")), c(TRUE, FALSE, NA))
}) |
.onLoad <- function(libname, pkgname) {
tzdir_set()
on_package_load("vctrs", {
register_s3_method("vctrs", "vec_proxy", "Period")
register_s3_method("vctrs", "vec_proxy_compare", "Period")
register_s3_method("vctrs", "vec_proxy_equal", "Period")
register_s3_method("vctrs", "vec_restore", "Period")
register_s3_method("vctrs", "vec_ptype2", "Period.Period")
register_s3_method("vctrs", "vec_cast", "Period.Period")
register_s3_method("vctrs", "vec_proxy", "Duration")
register_s3_method("vctrs", "vec_proxy_compare", "Duration")
register_s3_method("vctrs", "vec_proxy_equal", "Duration")
register_s3_method("vctrs", "vec_restore", "Duration")
register_s3_method("vctrs", "vec_ptype2", "Duration.Duration")
register_s3_method("vctrs", "vec_ptype2", "Duration.difftime")
register_s3_method("vctrs", "vec_ptype2", "difftime.Duration")
register_s3_method("vctrs", "vec_cast", "Duration.Duration")
register_s3_method("vctrs", "vec_cast", "Duration.difftime")
register_s3_method("vctrs", "vec_cast", "difftime.Duration")
register_s3_method("vctrs", "vec_proxy", "Interval")
register_s3_method("vctrs", "vec_proxy_compare", "Interval")
register_s3_method("vctrs", "vec_proxy_equal", "Interval")
register_s3_method("vctrs", "vec_restore", "Interval")
register_s3_method("vctrs", "vec_ptype2", "Interval.Interval")
register_s3_method("vctrs", "vec_cast", "Interval.Interval")
})
}
register_s3_method <- function(pkg, generic, class, fun = NULL) {
stopifnot(is.character(pkg), length(pkg) == 1)
stopifnot(is.character(generic), length(generic) == 1)
stopifnot(is.character(class), length(class) == 1)
if (is.null(fun)) {
fun <- get(paste0(generic, ".", class), envir = parent.frame())
} else {
stopifnot(is.function(fun))
}
if (pkg %in% loadedNamespaces()) {
registerS3method(generic, class, fun, envir = asNamespace(pkg))
}
setHook(
packageEvent(pkg, "onLoad"),
function(...) {
registerS3method(generic, class, fun, envir = asNamespace(pkg))
}
)
}
on_package_load <- function(pkg, expr) {
if (isNamespaceLoaded(pkg)) {
expr
} else {
thunk <- function(...) expr
setHook(packageEvent(pkg, "onLoad"), thunk)
}
} |
solve_block <- function(mat){
x <- mat
diag(x) <- 1
g <- igraph::graph_from_adjacency_matrix(adjmatrix = as.matrix(x),
mode = "directed", weighted = TRUE, diag = TRUE)
groups <- Map(sort, igraph::neighborhood(g, nrow(mat)))
groups <- unique(Map(as.numeric, groups))
sub.Mat <- Map(`[`, list(mat), groups, groups, drop = FALSE)
inv.sub.Mat <- Map(ginv,sub.Mat)
mat.inv <- matrix(0, nrow(mat), ncol(mat))
for (i in 1:length(sub.Mat)) {
mat.inv[groups[[i]], groups[[i]]] <- inv.sub.Mat[[i]]
}
return(mat.inv)
} |
test_that("multiple arguments matching", {
expect_error(
new_interval(y = 1, m = 2, mi = 3, second = 4),
"Invalid argument:"
)
expect_error(new_interval(hour = NULL, minute = 30), "accepts one input")
expect_error(new_interval(hour = 1:2, minute = 30), "accepts one input")
})
int <- new_interval(hour = 1, minute = 30)
test_that("interval class", {
expect_s3_class(int, "interval")
expect_equal(format(int), "1h 30m")
expect_s3_class(new_interval(), "interval")
expect_equal(format(new_interval()), "?")
expect_s3_class(new_interval(.regular = FALSE), "interval")
expect_equal(format(new_interval(.regular = FALSE)), "!")
})
test_that("as.period() & as.duration()", {
expect_identical(
lubridate::as.period(int), lubridate::period(hour = 1, minute = 30)
)
expect_identical(
lubridate::as.duration(int),
lubridate::as.duration(lubridate::period(hour = 1, minute = 30))
)
}) |
print.decomposition_X11=function (x, digits = max(3L, getOption("digits") - 3L),
enable_print_style = getOption("enable_print_style"), ...){
if(enable_print_style){
bold_pre_code <- "\033[1m"
bold_post_code <- "\033[22m"
}else{
bold_pre_code <- bold_post_code <- ""
}
m <- x$mstats
s_flt <- x$s_filter
t_flt <- x$t_filter
if (!is.null(m)){
cat(bold_pre_code,
"Monitoring and Quality Assessment Statistics:",
bold_post_code,"\n")
printCoefmat(m, digits = digits, P.values= FALSE, na.print = "NA", ...)
}
cat("\n")
cat("Final filters:","\n")
cat("Seasonal filter: ",s_flt)
cat("\n")
cat("Trend filter: ",t_flt)
cat("\n")
}
print.decomposition_SEATS=function (x, digits = max(3L, getOption("digits") - 3L),
enable_print_style = getOption("enable_print_style"),...){
if(enable_print_style){
bold_pre_code <- "\033[1m"
bold_post_code <- "\033[22m"
}else{
bold_pre_code <- bold_post_code <- ""
}
model <-x$model$model
sa <- x$model$sa
t <- x$model$trend
s <- x$model$seasonal
trans <- x$model$transitory
i <- x$model$irregular
var <- list(model, sa, t, s, trans, i)
var_names <- c("Model","SA","Trend","Seasonal","Transitory","Irregular")
for (ii in 1:length(var_names)){
if (!all(sapply(var[[ii]],is.null))){
cat(bold_pre_code,var_names[ii],bold_post_code,"\n", sep="")
print_formula(var[[ii]][1,-1],"AR")
print_formula(var[[ii]][2,-1],"D")
print_formula(var[[ii]][3,-1],"MA")
if (var[[ii]][4,1]==1) {
cat("\n\n")
}else{
cat("Innovation variance: ",var[[ii]][4,1], "\n\n")
}
}
}
}
print_formula <- function(x, var){
non_0 <- which(x != 0 )
if(length(non_0) == 0)
return(NULL)
polynome_degre <- paste0("B^", non_0)
polynome_degre[non_0 == 1] <- "B"
polynome_coef <- sprintf("%+f", x[non_0], polynome_degre)
polynome_coef <- gsub("-","- ", polynome_coef)
polynome_coef <- gsub("\\+","+ ", polynome_coef)
polynome_coef[x[non_0] == -1] <- "-"
polynome_coef[x[non_0] == 1] <- "+"
polynome_formula <- paste(polynome_coef, polynome_degre, collapse = " ")
polynome_formula <- paste("1", polynome_formula)
cat(var,": ",polynome_formula,"\n")
}
print.combined_test <- function(x, digits = max(3L, getOption("digits") - 3L),
...){
tests_pval <- x$tests_for_stable_seasonality[,"P.value", drop = FALSE]
cat("Non parametric tests for stable seasonality")
cat("\n")
cat(paste0(" ",
capture.output(
printCoefmat(tests_pval, digits = digits,
na.print = "NA", ...)
),
sep ="\n"))
cat("\n")
combined_test_result <- c(Present = "Identifiable seasonality present",
ProbablyNone = "Identifiable seasonality probably present",
None = "Identifiable seasonality not present")
combined_test_result <- combined_test_result[x$combined_seasonality_test]
cat(combined_test_result)
invisible(x)
}
print.diagnostics = function (x, digits = max(3L, getOption("digits") - 3L),
enable_print_style = getOption("enable_print_style"),
...){
if(enable_print_style){
bold_pre_code <- "\033[1m"
bold_post_code <- "\033[22m"
}else{
bold_pre_code <- bold_post_code <- ""
}
residuals_test <- x$residuals_test
combined_test <- x$combined_test
variance_decomposition <- x$variance_decomposition
cat(bold_pre_code,
"Relative contribution of the components to the stationary\n",
"portion of the variance in the original series,\n",
"after the removal of the long term trend",
bold_post_code)
cat("\n")
cat(" Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)")
cat("\n")
cat(paste0(" ",
capture.output(
printCoefmat(variance_decomposition, digits = digits, ...)
)),
sep ="\n")
cat("\n")
cat(bold_pre_code,
"Combined test in the entire series",
bold_post_code)
cat("\n")
cat(paste0(" ",
capture.output(print.combined_test(combined_test, digits = digits,
...))
),
sep ="\n")
cat("\n")
cat(bold_pre_code,
"Residual seasonality tests",
bold_post_code)
cat("\n")
cat(paste0(" ",
capture.output(
printCoefmat(residuals_test[,"P.value", drop = FALSE], digits = digits,
na.print = "NA", ...)
)
),
sep ="\n")
invisible(x)
}
print.final <- function(x, calendar, n_last_obs = frequency(x$series), print_forecasts = TRUE, ...){
cat("Last observed values\n")
print(tail(
.preformat.ts(x[[1]], calendar = calendar),
n_last_obs
))
if(print_forecasts){
if(!is.null(x[[2]])){
cat("\nForecasts:\n")
print(head(
.preformat.ts(x[[2]], calendar = calendar),
n_last_obs
))
}else{
cat("\nNo forecast")
}
}
invisible(x)
}
print.user_defined <- function(x, ...){
if(is.null(x) || length(x) == 0)
return(invisible(x))
cat(ngettext((length(x)!= 1) + 1,
"One additional variable (",
"Names of additional variables ("))
cat(length(x),"):","\n", sep="")
cat(names(x),sep = ", ")
invisible(x)
}
print.SA <- function(x, enable_print_style = getOption("enable_print_style"), ...){
if(enable_print_style){
style_pre_code <- "\033[4m\033[1m"
style_post_code <- "\033[22m\033[24m"
}else{
style_pre_code <- style_post_code <- ""
}
cat(style_pre_code, "RegARIMA", style_post_code,"\n",sep="")
print(x$regarima, enable_print_style = enable_print_style)
cat("\n\n", style_pre_code, "Decomposition", style_post_code,"\n",sep="")
print(x$decomposition, enable_print_style = enable_print_style)
cat("\n\n", style_pre_code, "Final", style_post_code,"\n",sep="")
print(x$final, enable_print_style = enable_print_style)
cat("\n\n", style_pre_code, "Diagnostics", style_post_code,"\n",sep="")
print(x$diagnostics, enable_print_style = enable_print_style)
cat("\n\n", style_pre_code, "Additional output variables", style_post_code,"\n",sep="")
print(x$user_defined)
} |
set_couleur_ronds <-
function(map,colorPos="
{
msg_error1<-msg_error2<-msg_error3<-msg_error4 <- NULL
if(any(!any(class(map) %in% "leaflet"), !any(class(map) %in% "htmlwidget"))) if(!any(class(map) %in% "leaflet_proxy")) msg_error1 <- "La carte doit etre un objet leaflet ou leaflet_proxy / "
if(!is.null(colorPos)) if(any(class(colorPos)!="character")) msg_error2 <- "La couleur doit etre de type caractere (nommee ou hexadecimal) / "
if(!is.null(colorNeg)) if(any(class(colorNeg)!="character")) msg_error3 <- "La couleur doit etre de type caractere (nommee ou hexadecimal) / "
if(!is.null(map_leaflet)) if (any(!any(class(map_leaflet) %in% "leaflet"), !any(class(map_leaflet) %in% "htmlwidget"))) msg_error4 <- "La carte doit etre un objet leaflet / "
if(any(!is.null(msg_error1),!is.null(msg_error2),!is.null(msg_error3),!is.null(msg_error4)))
{
stop(simpleError(paste0(msg_error1,msg_error2,msg_error3,msg_error4)))
}
if(!is.null(map_leaflet))
{
map_proxy <- map
map <- map_leaflet
}
idx_maille <- NULL
idx_carte <- NULL
classes <- F
for(i in 1:length(map$x$calls))
{
if(map$x$calls[[i]]$method %in% "addPolygons")
{
if(map$x$calls[[i]]$args[[3]] %in% c("carte_ronds","carte_ronds_elargi","carte_classes","carte_classes_elargi"))
{
idx_maille <- c(idx_maille,i)
}
if(map$x$calls[[i]]$args[[3]] %in% c("carte_classes","carte_classes_elargi"))
{
classes <- T
}
}
if(map$x$calls[[i]]$method %in% "addCircles")
{
if(map$x$calls[[i]]$args[[5]] %in% c("carte_ronds","carte_ronds_elargi"))
{
idx_carte <- c(idx_carte,i)
}
}
}
if(is.null(map_leaflet))
{
for(i in 1:length(idx_carte))
{
if(!classes)
{
valeurs <- map$x$calls[[idx_carte[i]]]$args[[4]]$analyse$donnees$save
val_pos <- which(valeurs>=0)
if(length(val_pos)>0)
{
map$x$calls[[idx_carte[i]]]$args[[6]]$fillColor[val_pos] <- colorPos
}
val_neg <- which(valeurs<0)
if(length(val_neg)>0)
{
map$x$calls[[idx_carte[i]]]$args[[6]]$fillColor[val_neg] <- colorNeg
}
}
}
}else
{
map_leaflet <- map
map <- map_proxy
clearGroup(map, group = "carte_ronds")
clearGroup(map, group = "carte_ronds_elargi")
analyse_WGS84 <- map_leaflet$x$calls[[idx_carte[2]]]$args[[4]]$analyse_WGS84
analyse <- map_leaflet$x$calls[[idx_carte[2]]]$args[[4]]$analyse
code_epsg <- map_leaflet$x$calls[[idx_carte[2]]]$args[[4]]$code_epsg
emprise <- map_leaflet$x$calls[[idx_carte[2]]]$args[[4]]$emprise
max_var <- map_leaflet$x$calls[[idx_carte[2]]]$args[[4]]$max_var
varVolume <- map_leaflet$x$calls[[idx_carte[2]]]$args[[4]]$var_volume
rayonRond <- map_leaflet$x$calls[[idx_carte[2]]]$args[[4]]$rayonRond
if(!classes)
{
if(any(map_leaflet$x$calls[[idx_carte[1]]]$args[[4]]$nom_fond %in% c("fond_ronds_pos_elargi_carte","fond_ronds_neg_elargi_carte")))
{
maille_WGS84_elargi <- map_leaflet$x$calls[[idx_maille[1]]]$args[[2]]$maille_WGS84_elargi
analyse_WGS84_elargi <- map_leaflet$x$calls[[idx_carte[1]]]$args[[4]]$analyse_WGS84_elargi
opacityElargi <- map_leaflet$x$calls[[idx_carte[1]]]$args[[6]]$fillOpacity
colBorderPos <- map_leaflet$x$calls[[idx_carte[2]]]$args[[4]]$colBorderPos
colBorderNeg <- map_leaflet$x$calls[[idx_carte[2]]]$args[[4]]$colBorderNeg
epaisseurBorder <- map_leaflet$x$calls[[idx_carte[2]]]$args[[4]]$epaisseurBorder
map <- addPolygons(map = map, data = maille_WGS84_elargi,
stroke = TRUE, color = "grey", opacity = opacityElargi,
weight = 0.5,
options = pathOptions(pane = "fond_maille_elargi", clickable = T),
popup = paste0("<b> <font color=
fill = T, fillColor = "white", fillOpacity = 0.001,
group = "carte_ronds_elargi",
layerId = list(maille_WGS84_elargi=maille_WGS84_elargi,code_epsg=code_epsg,nom_fond="fond_maille_elargi")
)
map <- addCircles(map = map,
lng = st_coordinates(analyse_WGS84_elargi)[,1],
lat = st_coordinates(analyse_WGS84_elargi)[,2],
stroke = TRUE, color = sapply(analyse$donnees_elargi$save, function(x) if(x>0){colBorderPos}else{colBorderNeg}),
opacity = opacityElargi,
weight = epaisseurBorder,
radius = rayonRond*sqrt(analyse$donnees_elargi[,varVolume]/max_var),
options = pathOptions(pane = "fond_ronds_elargi", clickable = T),
popup = paste0("<b> <font color=
fill = T,
fillColor = sapply(analyse$donnees_elargi$save, function(x) if(x>0){colorPos}else{colorNeg}),
fillOpacity = opacityElargi,
group = "carte_ronds_elargi",
layerId = list(analyse=analyse,analyse_WGS84_elargi=analyse_WGS84_elargi,rayonRond=rayonRond,code_epsg=code_epsg,emprise=emprise,
nom_fond=c(if(max(analyse$donnees_elargi$save)>0){"fond_ronds_pos_elargi_carte"}else{" "},
if(min(analyse$donnees_elargi$save)<0){"fond_ronds_neg_elargi_carte"}else{" "}),
max_var=max_var,var_volume=varVolume,colBorderPos=colBorderPos,colBorderNeg=colBorderNeg,epaisseurBorder=epaisseurBorder)
)
}
map <- addCircles(map = map,
lng = st_coordinates(analyse_WGS84)[,1],
lat = st_coordinates(analyse_WGS84)[,2],
stroke = TRUE, color = sapply(analyse$donnees$save, function(x) if(x>0){colBorderPos}else{colBorderNeg}),
opacity = 1,
weight = epaisseurBorder,
radius = rayonRond*sqrt(analyse$donnees[,varVolume]/max_var),
options = pathOptions(pane = "fond_ronds", clickable = T),
popup = paste0("<b> <font color=
fill = T,
fillColor = sapply(analyse$donnees$save, function(x) if(x>0){colorPos}else{colorNeg}),
fillOpacity = 1,
group = "carte_ronds",
layerId = list(analyse=analyse,analyse_WGS84=analyse_WGS84,rayonRond=rayonRond,code_epsg=code_epsg,emprise=emprise,
nom_fond=c(if(max(analyse$donnees$save)>0){"fond_ronds_pos_carte"}else{" "},
if(min(analyse$donnees$save)<0){"fond_ronds_neg_carte"}else{" "}),
max_var=max_var,var_volume=varVolume,colBorderPos=colBorderPos,colBorderNeg=colBorderNeg,epaisseurBorder=epaisseurBorder)
)
}else
{
stop(simpleWarning("L'apparence de la couleur de remplissage des ronds ne s'applique que pour les analyses en ronds. Pour les analyses en classes dans les ronds (ronds_classes) ou en ronds sur les classes (classes_ronds), passez par la fonction set_couleur_classes()."))
}
}
return(map)
} |
convert.to.Claddis <- function(data) {
output <- list()
output$topper$head <- "List generated by dispRity::Claddis.ordination"
output$matrix_1$block_name <- NA
output$matrix_1$datatype <- "STANDARD"
output$matrix_1$matrix <- do.call(rbind, data)
output$matrix_1$ordering <- rep("unord", length(data[[1]]))
output$matrix_1$character_weights <- rep(1, length(data[[1]]))
op <- options(warn = -1)
output$matrix_1$minimum_values <- unlist(apply(output$matrix_1$matrix, 2, function(x) min(as.numeric(x), na.rm = TRUE)))
is_nas <- is.na(output$matrix_1$minimum_values)
output$matrix_1$maximum_values <- unlist(apply(output$matrix_1$matrix, 2, function(x) max(as.numeric(x), na.rm = TRUE)))
output$matrix_1$characters$symbols <- unique(as.numeric(unlist(data)[-which(is.na(unlist(data)))]))
op <- options(warn = 0)
output$matrix_1$characters$missing <- "?"
output$matrix_1$characters$gap <- "-"
output$matrix_1$matrix <- ifelse(output$matrix_1$matrix == "?", NA, output$matrix_1$matrix)
output$matrix_1$matrix <- ifelse(output$matrix_1$matrix == "-", "", output$matrix_1$matrix)
class(output) <- "cladisticMatrix"
return(output)
} |
isNumberOrNanScalar <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) {
checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = 1, zeroAllowed = TRUE, negativeAllowed = TRUE, positiveAllowed = TRUE, nonIntegerAllowed = TRUE, naAllowed = FALSE, nanAllowed = TRUE, infAllowed = FALSE, message = message, argumentName = argumentName)
} |
expected <- eval(parse(text="c(0L, 0L, 1L, 0L)"));
test(id=0, code={
argv <- eval(parse(text="list(1:4, 3L, 0L, NULL)"));
.Internal(`match`(argv[[1]], argv[[2]], argv[[3]], argv[[4]]));
}, o=expected); |
Warp <- R6Class("Warp",
public = list(
y = NULL,
t = NULL,
b = NULL,
lambda=NULL,
ker= NULL,
tw = NULL,
initialize = function(y = NULL, t=NULL,b=NULL,lambda=NULL,ker=NULL) {
self$y = y
self$t = t
self$b = b
self$lambda = lambda
self$ker = ker
self$greet()
},
greet = function() {
cat(paste("warp ",self$ker$greet(),".\n"))
},
showker = function () {
cat(paste0("ker is", self$ker$greet(), ".\n"))
},
warpLoss = function( par,len,p0,eps ) {
tor = as.matrix(self$t)
n = max(dim(tor))
lam=par[1]
self$ker$k_par=exp(len)
lambda_t = self$lambda
y_r = self$y
self$b = par[2:(n+1)]
kw=(2*pi/ (p0 + eps*tanh(lam) ) )^2
tw = matrix(c(0),ncol = n,nrow=1)
for (i in 1:n)
{
tw[1,i] = self$ker$kern(tor[i,1],t(tor[,1]))%*%self$b^2
}
t=t(tw)
h=diff(t)
z_t1 = matrix(c(0),ncol = n,nrow=1)
z_t2 = matrix(c(0),ncol = n,nrow=2)
y_t = matrix(c(0),ncol = n,nrow=2)
for(i in 2:(n-1) )
{
z_t1[1,i] = (y_r[i+1]-y_r[i-1])/ (h[i]+h[i-1])
}
z_t1[1,1]=(y_r[2]-y_r[1])/h[1]
z_t1[1,n]=(y_r[n]-y_r[n-1])/h[n-1]
for(i in 2:(n-1) )
{
z_t2[1,i] = (z_t1[i+1]-z_t1[i-1])/ (h[i]+h[i-1])
}
z_t2[1,1]=(z_t1[2]-z_t1[1])/h[1]
z_t2[1,n]=(z_t1[n]-z_t1[n-1])/h[n-1]
y_t[1,]= y_r
res= sum( (z_t2[1,] + kw*y_t[1,])^2 ) + lambda_t*( (tor[1,1]- t[1,1])^2+ (tor[n,1]- t[n,1])^2 )
if( is.nan( sum(z_t1) ) )
{
print(len)
return(res= 100000)
}
if( sum(abs(z_t1) )<1000 )
{
z_t2[1,] = tryCatch( {
predict(sm.spline(t, y_r,df=n-5),t, 2)
}, warning = function(war)
{
print(paste("MY_WARNING: ",war))
},
error = function(err)
{
print(paste("warp_ERROR: ",err,i))
return(list(-10000,0) )
},finally = { } )
if(z_t2[[1]][1]==-10000){
return(res= 100000)
}
y_t[1,] = predict(sm.spline(t, y_r,df=n-5),t, 0)
res= sum( (z_t2[1,] + kw*y_t[1,])^2 ) + lambda_t*( (tor[1,1]- t[1,1])^2+ (tor[n,1]- t[n,1])^2 )
}
res
},
warpLossLen=function(par,lam,p0,eps ){
tor = as.matrix(self$t)
n = max(dim(tor))
lam = lam
self$ker$k_par=exp(par)
lambda_t = self$lambda
y_r = self$y
kw=(2*pi/ (p0 + eps*tanh(lam) ) )^2
tw = matrix(c(0),ncol = n,nrow=1)
for (i in 1:n)
{
tw[1,i] = self$ker$kern(tor[i,1],t(tor[,1]))%*%self$b^2
}
t=t(tw)
h=diff(t)
z_t1 = matrix(c(0),ncol = n,nrow=1)
z_t2 = matrix(c(0),ncol = n,nrow=2)
y_t = matrix(c(0),ncol = n,nrow=2)
for(i in 2:(n-1) )
{
z_t1[1,i] = (y_r[i+1]-y_r[i-1])/ (h[i]+h[i-1])
}
z_t1[1,1]=(y_r[2]-y_r[1])/h[1]
z_t1[1,n]=(y_r[n]-y_r[n-1])/h[n-1]
for(i in 2:(n-1) )
{
z_t2[1,i] = (z_t1[i+1]-z_t1[i-1])/ (h[i]+h[i-1])
}
z_t2[1,1]=(z_t1[2]-z_t1[1])/h[1]
z_t2[1,n]=(z_t1[n]-z_t1[n-1])/h[n-1]
y_t[1,]= y_r
res= sum( (z_t2[1,] + kw*y_t[1,])^2 ) + lambda_t*( (tor[1,1]- t[1,1])^2+ (tor[n,1]- t[n,1])^2 )
if( is.nan( sum(z_t1) ) )
{
print(len)
return(res= 100000)
}
if( sum(abs(z_t1) )<1000 ){
z_t2[1,] = predict(sm.spline(t, y_r),t, 2)
y_t[1,] = predict(sm.spline(t, y_r),t, 0)
res= sum( (z_t2[1,] + kw*y_t[1,])^2 ) + lambda_t*( (tor[1,1]- t[1,1])^2+ (tor[n,1]- t[n,1])^2 )
}
res
},
warpSin = function( len ,lop,p0,eps ) {
kw1= 1
lout = length(self$t)
bw = self$b
for(i in 1:lop)
{
par<-c(kw1,bw)
test <- tryCatch({ optim(par,self$warpLoss,gr=NULL,len,p0,eps,method="BFGS")
}, warning = function(war)
{
print(paste("MY_WARNING: ",war))
},
error = function(err)
{
print(paste("warp_ERROR: ",err,i))
return(list(-10000,0) )
},finally = { } )
if(test[[1]][1]==-10000)
{
wscore=100000
break
}else
{
self$b= test$par[2:(lout+1)]
kw1 = test$par[1]
par2=len
bw= self$b
test2<-tryCatch({ optim(par2,self$warpLossLen,gr=NULL,kw1,p0,eps,method="L-BFGS-B")
}, warning = function(war)
{
print(paste("MY_WARNING: ",war))
},
error = function(err)
{
print(paste("warp_ERROR: ",err,i))
return(list(-10000,0) )
},finally = { } )
if(test2[[1]][1]==-10000){
wscore= 100000
break }
wscore=test2$value
len=test2$par
}
}
self$ker$k_par = exp(len)
n = length(self$t)
tw = matrix(c(0),ncol = n,nrow=1)
for (i in 1:n)
{
tw[1,i] = self$ker$kern(self$t[i],t(self$t))%*%self$b^2
}
self$tw = tw
return( list( "rescore"=wscore,"len"=len) )
},
slowWarp = function(lens,p0,eps)
{
bw = rep(c(1),length(self$t))
kw = 1
loscore=c(0)
for(iii in 1:length(lens))
{
par<-c(kw,bw)
len=lens[iii]
ptm <- proc.time()
test<-optim(par,self$warpLoss,gr=NULL,len,p0,eps,method="BFGS")
proc.time() - ptm
loscore[iii]= test$value
}
len=lens[which(loscore==min(loscore) )][1]
return(list("len"=len,"loscore"=loscore))
}
)
) |
.Power <- function(a, b) {
return(a^b)
}
E <- exp(1)
.ksmooth2 <- function(x, v, h) {
res.f <- sum((1 - (x[1] - v[, 1])^2 / h[1]^2)^2 *
(1 - (x[2] - v[, 2])^2 / h[2]^2)^2 *
((v[, 1] - x[1])^2 <= h[1]^2) *
((v[, 2] - x[2])^2 <= h[2]^2)) / (h[1] * h[2]) * 15^2 /
16^2 / dim(v)[1]
return(res.f)
}
.integrand <- function(x, Lfsample, Lbootsample, h) {
res.f <- (.ksmooth2(x, Lfsample, h) - .ksmooth2(x, Lbootsample, h))^2
return(res.f)
} |
diffPower4slope.scRNAseq=function(
slope,
n,
m,
power,
sigma.y,
MAF=0.2,
rho=0.8,
FWER=0.05,
nTests=1)
{
est.power=powerEQTL.scRNAseq.default(
slope = slope,
n = n,
m = m,
sigma.y = sigma.y,
MAF=MAF,
rho=rho,
FWER=FWER,
nTests=nTests)
diff=est.power - power
return(diff)
}
minSlopeEQTL.scRNAseq=function(n,
m,
power = 0.8,
sigma.y = 0.29,
MAF=0.2,
rho=0.8,
FWER=0.05,
nTests=1)
{
res.root=uniroot(f=diffPower4slope.scRNAseq,
interval = c(0.000001, 1.0e+30),
n = n,
m = m,
power = power,
sigma.y = sigma.y,
MAF=MAF,
rho=rho,
FWER=FWER,
nTests=nTests
)
return(res.root$root)
} |
library(testthat)
urlExists <- function(target) {
tryCatch({
con <- url(target)
a <- capture.output(suppressWarnings(readLines(con)))
close(con)
TRUE;
},
error = function(err) {
occur <- grep("cannot open the connection", capture.output(err));
if(length(occur) > 0) FALSE;
}
)
}
testthat::expect_true(urlExists("https://raw.githubusercontent.com/chadwickbureau/baseballdatabank/master/core/AllstarFull.csv"))
testthat::expect_true(urlExists("https://raw.githubusercontent.com/keberwein/baseballdatabank/master/core/AllstarFull.csv"))
testthat::expect_true(urlExists("http://www.fangraphs.com/guts.aspx?type=cn")) |
w <- matrix(c(0.1, 0.2, -0.05, 0.1))
Sigma <- Semidef(4)
obj <- Maximize(t(w) %*% Sigma %*% w)
constraints <- list(Sigma[1,1] == 0.2, Sigma[2,2] == 0.1, Sigma[3,3] == 0.3, Sigma[4,4] == 0.1,
Sigma[1,2] >= 0, Sigma[1,3] >= 0, Sigma[2,3] <= 0, Sigma[2,4] <= 0, Sigma[3,4] >= 0)
prob <- Problem(obj, constraints)
result <- solve(prob, solver = "SCS")
result$getValue(Sigma) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
fig.width=10, fig.height=8.5
)
library(ggplot2)
library(dplyr)
library(partykit)
library(StratifiedMedicine)
library(survival)
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A
length(Y)
table(A)
dim(X)
res_f <- filter_train(Y, A, X, filter="glmnet")
res_f$filter.vars
plot_importance(res_f)
res_f2 <- filter_train(Y, A, X, filter="glmnet", hyper=list(interaction=T))
res_f2$filter.vars
plot_importance(res_f2)
res_p1 <- ple_train(Y, A, X, ple="ranger", meta="T-learner")
summary(res_p1$mu_train)
plot_ple(res_p1)
plot_dependence(res_p1, X=X, vars="X1")
res_p2 <- ple_train(Y, A, X, ple="ranger", meta="T-learner", hyper=list(mtry=5))
plot_dependence(res_p2, X=X, vars=c("X1", "X2"))
res_s1 <- submod_train(Y, A, X, submod="lmtree")
table(res_s1$Subgrps.train)
plot(res_s1$fit$mod)
res_s2 <- submod_train(Y, A, X, mu_train=res_p2$mu_train,
submod="otr", delta=">0.10")
plot(res_s2$fit$mod)
param.dat1 <- param_est(Y, A, X, Subgrps = res_s1$Subgrps.train, param="lm")
param.dat1
param.dat2 <- param_est(Y, A, X, Subgrps = res_s1$Subgrps.train,
mu_hat = res_p1$mu_train, param="dr")
param.dat2 %>% filter(estimand=="mu_1-mu_0")
library(knitr)
summ.table = data.frame( `Step` = c("estimand(s)", "filter", "ple", "submod", "param"),
`gaussian` = c("E(Y|A=0)<br>E(Y|A=1)<br>E(Y|A=1)-E(Y|A=0)",
"Elastic Net<br>(glmnet)",
"X-learner: Random Forest<br>(ranger)",
"MOB(OLS)<br>(lmtree)",
"Double Robust<br>(dr)"),
`binomial` = c("E(Y|A=0)<br>E(Y|A=1)<br>E(Y|A=1)-E(Y|A=0)",
"Elastic Net<br>(glmnet)",
"X-learner: Random Forest<br>(ranger)",
"MOB(GLM)<br>(glmtree)",
"Doubly Robust<br>(dr)"),
`survival` = c("HR(A=1 vs A=0)",
"Elastic Net<br>(glmnet)",
"T-learner: Random Forest<br>(ranger)",
"MOB(OLS)<br>(lmtree)",
"Hazard Ratios<br>(cox)") )
kable( summ.table, caption = "Default PRISM Configurations (With Treatment)", full_width=T)
summ.table = data.frame(`Step` = c("estimand(s)", "filter", "ple", "submod", "param"),
`gaussian` = c("E(Y)",
"Elastic Net<br>(glmnet)",
"Random Forest<br>(ranger)",
"Conditional Inference Trees<br>(ctree)",
"OLS<br>(lm)"),
`binomial` = c("Prob(Y)",
"Elastic Net<br>(glmnet)",
"Random Forest<br>(ranger)",
"Conditional Inference Trees<br>(ctree)",
"OLS<br>(lm)"),
`survival` = c("RMST", "Elastic Net<br>(glmnet)",
"Random Forest<br>(ranger)",
"Conditional Inference Trees<br>(ctree)",
"RMST<br>(rmst)"))
kable( summ.table, caption = "Default PRISM Configurations (Without Treatment, A=NULL)", full_width=T)
res0 = PRISM(Y=Y, A=A, X=X)
summary(res0)
plot(res0)
res_prog = PRISM(Y=Y, X=X)
summary(res_prog)
plot(res0$filter.mod)
res0$filter.vars
plot_importance(res0)
summary(res0$mu_train)
plot_ple(res0)
plot_dependence(res0, vars=c("X2"))
plot(res0$submod.fit$mod, terminal_panel = NULL)
table(res0$out.train$Subgrps)
table(res0$out.test$Subgrps)
res0$param.dat
dat_bin = generate_subgrp_data(family="binomial", seed = 5558)
Y = dat_bin$Y
X = dat_bin$X
A = dat_bin$A
res0 = PRISM(Y=Y, A=A, X=X)
summary(res0)
data("GBSG2", package = "TH.data")
surv.dat = GBSG2
Y = with(surv.dat, Surv(time, cens))
X = surv.dat[,!(colnames(surv.dat) %in% c("time", "cens")) ]
set.seed(6345)
A = rbinom(n = dim(X)[1], size=1, prob=0.5)
res_weib = PRISM(Y=Y, A=A, X=X)
summary(res_weib)
plot(res_weib) |
apportion_web <- function(reach_dist, w, max_dist = Inf, min_frac = 0, reach_name = NULL, dist_name = NULL) {
if (!is.null(reach_name)) names(reach_dist)[names(reach_dist) == reach_name] <- "reach"
if (!is.null(dist_name)) names(reach_dist)[names(reach_dist) == dist_name] <- "dist"
df_out <-
reach_dist %>%
subset(dist <= max_dist) %>%
transform(frac_depletion_pt = (1 / dist^w) / sum((1 / dist^w))) %>%
dplyr::group_by(reach) %>%
dplyr::summarize(frac_depletion = sum(frac_depletion_pt)) %>%
dplyr::select(reach, frac_depletion)
if (min(df_out$frac_depletion) < min_frac) {
depl_low <- sum(df_out$frac_depletion[df_out$frac_depletion < min_frac])
df_out <- subset(df_out, frac_depletion >= min_frac)
df_out$frac_depletion <- df_out$frac_depletion + depl_low * (df_out$frac_depletion / (1 - depl_low))
return(df_out)
} else {
return(df_out)
}
} |
skip_on_cran()
oldtz <- Sys.getenv('TZ', unset = NA)
Sys.setenv(TZ = 'UTC')
tests.home <- getwd()
setwd(tempdir())
exampleWorkspace("exampleWorkspace")
setwd("exampleWorkspace")
bio <- read.csv("biometrics.csv")
deployments <- read.csv("deployments.csv")
spatial <- read.csv("spatial.csv")
detections <- example.detections
detections$ExtraCol <- NA
dot <- paste(unique(spatial$Array[spatial$Type == "Hydrophone"]), collapse = "--")
test_that("Correct error is triggered if datapack is not valid", {
expect_error(results <- explore(datapack = "a"),
"The datapack's token is invalid or missing. Please the function preload() to compile the input data.
Additionally, data must to be compiled during the current R session.", fixed = TRUE)
expect_error(results <- migration(datapack = "a"),
"The datapack's token is invalid or missing. Please the function preload() to compile the input data.
Additionally, data must to be compiled during the current R session.", fixed = TRUE)
expect_error(results <- residency(datapack = "a"),
"The datapack's token is invalid or missing. Please the function preload() to compile the input data.
Additionally, data must to be compiled during the current R session.", fixed = TRUE)
})
expect_warning(d <- preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = detections,
dot = dot, tz = "Europe/Copenhagen"),
"No detections were found for receiver(s) 132907", fixed = TRUE)
test_that("checkArguments complains if preload is used together with tz", {
expect_warning(explore(datapack = d, tz = "Europe/Copenhagen"),
"Argument 'tz' was set but a datapack was provided. Disregarding set arguments.", fixed = TRUE)
})
test_that("checkArguments stops if wrong override is provided with preload", {
expect_error(explore(datapack = d, override = 1234),
"Some tag signals listed in 'override' (1234) are not listed in the biometrics data", fixed = TRUE)
})
test_that("explore with preload yields the same results as with traditional loading", {
results <- suppressWarnings(explore(datapack = d))
results2 <- suppressWarnings(explore(tz = "Europe/Copenhagen"))
for (i in 1:length(results$valid.movements)) {
expect_equal(results$movements[[i]], results2$movements[[i]])
expect_equal(results$valid.movements[[i]], results2$valid.movements[[i]])
}
expect_equal(extractSignals(names(results$valid.movements)), extractSignals(names(results2$valid.movements)))
expect_equal(results$arrays, results2$arrays)
expect_equal(results$spatial, results2$spatial)
})
test_that("migration and residency don't start if datapack is incompatible", {
xspatial <- spatial[, -match("Section", colnames(spatial))]
expect_warning(d <- preload(biometrics = bio, deployments = deployments, spatial = xspatial, detections = detections, tz = "Europe/Copenhagen"),
"The spatial input does not contain a 'Section' column. This input is only valid for explore() analyses.", fixed = TRUE)
expect_error(results <- migration(datapack = d, GUI = "never"),
"To run migration(), please assign the arrays to their sections using a 'Section' column in the spatial input.", fixed = TRUE)
expect_error(results <- residency(datapack = d, GUI = "never"),
"To run residency(), please assign the arrays to their sections using a 'Section' column in the spatial input.", fixed = TRUE)
})
test_that("migration and residency with preload yield the same results as with traditional loading", {
expect_warning(d2 <- preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = detections,
tz = "Europe/Copenhagen"),
"No detections were found for receiver(s) 132907", fixed = TRUE)
results <- suppressWarnings(migration(datapack = d2))
results2 <- suppressWarnings(migration(tz = "Europe/Copenhagen"))
expect_equal(extractSignals(names(results$valid.movements)), extractSignals(names(results2$valid.movements)))
expect_equal(results$status.df[, -1], results2$status.df[, -1])
for (i in 1:length(results$valid.movements)) {
expect_equal(results$movements[[i]], results2$movements[[i]])
expect_equal(results$valid.movements[[i]], results2$valid.movements[[i]])
}
results <- suppressWarnings(residency(datapack = d2))
results2 <- suppressWarnings(residency(tz = "Europe/Copenhagen"))
for (i in 1:length(results$valid.movements)) {
expect_equal(results$movements[[i]], results2$movements[[i]])
expect_equal(results$valid.movements[[i]], results2$valid.movements[[i]])
}
expect_equal(extractSignals(names(results$valid.movements)), extractSignals(names(results2$valid.movements)))
expect_equal(results$arrays, results2$arrays)
expect_equal(results$status.df[, -1], results2$status.df[, -1])
})
test_that("tz and exclude.tags stops are working", {
expect_error(preload(tz = "test"), "'tz' could not be recognized as a timezone. Check available timezones with OlsonNames()", fixed = TRUE)
expect_error(preload(tz = "Europe/Copenhagen", exclude.tags = "test"),
"Not all contents in 'exclude.tags' could be recognized as tags (i.e. 'codespace-signal'). Valid examples: 'R64K-1234', A69-1303-1234'", fixed = TRUE)
})
test_that("dot stop is working", {
expect_error(
expect_warning(preload(biometrics = bio, deployments = deployments, spatial = spatial,
detections = detections, tz = "Europe/Copenhagen", dot = 1),
"No detections were found for receiver(s) 132907", fixed = TRUE),
"'dot' was set but could not recognised as a string. Please prepare a dot string and include it in the dot argument.
You can use readDot to check the quality of your dot string.", fixed = TRUE)
})
test_that("start.time and stop.time are working fine in preload", {
expect_message(suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial,
detections = detections, tz = "Europe/Copenhagen", start.time = "2018-05-01 00:00")),
"M: Discarding detection data previous to 2018-05-01 00:00 per user command (9866 detections discarded).", fixed = TRUE)
expect_message(suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial,
detections = detections, tz = "Europe/Copenhagen", stop.time = "2018-05-08 00:00")),
"M: Discarding detection data posterior to 2018-05-08 00:00 per user command (544 detections discarded).", fixed = TRUE)
expect_message(suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial,
detections = detections, tz = "Europe/Copenhagen", start.time = "2018-05-01 00:00",
stop.time = "2018-05-08 00:00")),
"M: Data time range: 2018-05-01 00:04:30 to 2018-05-07 23:59:47 (Europe/Copenhagen).", fixed = TRUE)
})
write.csv(example.distances, "distances.csv")
test_that("distances are correctly handled with preload", {
d2 <- suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = detections,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen"))
results <- suppressWarnings(explore(datapack = d2))
results2 <- suppressWarnings(explore(tz = "Europe/Copenhagen"))
for (i in 1:length(results$valid.movements)) {
expect_equal(results$movements[[i]], results2$movements[[i]])
expect_equal(results$valid.movements[[i]], results2$valid.movements[[i]])
}
expect_equal(extractSignals(names(results$valid.movements)), extractSignals(names(results2$valid.movements)))
expect_equal(results$arrays, results2$arrays)
expect_equal(results$spatial, results2$spatial)
})
test_that("preload stops if mandatory columns are missing or have NAs", {
x <- detections[, -1]
expect_error(suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = x,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen")),
"The following mandatory columns are missing in the detections: Timestamp", fixed = TRUE)
x <- detections[, -match("Signal", colnames(detections))]
expect_error(suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = x,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen")),
"The following mandatory columns are missing in the detections: Signal
The functions extractSignals and extractCodeSpaces can be used to break transmitter codes apart.", fixed = TRUE)
x <- detections
x[1, 1] <- NA
expect_error(suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = x,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen")),
"There is missing data in the following mandatory columns of the detections: Timestamp", fixed = TRUE)
})
test_that("Data conversion warnings and errors kick in", {
d <- detections
d$Signal <- as.character(d$Signal)
expect_warning(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = d,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen"),
"The 'Signal' column in the detections is not of type integer. Attempting to convert.", fixed = TRUE)
d <- detections
d$Receiver <- as.character(d$Receiver)
expect_warning(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = d,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen"),
"The 'Receiver' column in the detections is not of type integer. Attempting to convert.", fixed = TRUE)
d <- detections
d$Receiver <- paste0("a-", d$Receiver)
expect_warning(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = d,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen"),
"Attempting to convert the 'Receiver' to integer failed. Attempting to extract only the serial numbers.", fixed = TRUE)
d <- detections
d$Receiver <- "a"
expect_error(suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = d,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen")),
"Extracting the serial numbers failed. Aborting.", fixed = TRUE)
d <- detections
d$Sensor.Value <- "1"
expect_warning(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = d,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen"),
"The 'Sensor.Value' column in the detections is not of type numeric. Attempting to convert.", fixed = TRUE)
d <- detections
d$Sensor.Value <- "b"
expect_error(suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = d,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen")),
"Attempting to convert the 'Sensor.Value' to numeric failed. Aborting.", fixed = TRUE)
d <- detections
d$Timestamp <- as.character(d$Timestamp)
expect_message(suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = d,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen")),
"Converting detection timestamps to POSIX objects", fixed = TRUE)
d <- detections
d$Timestamp <- "b"
expect_error(suppressWarnings(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = d,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen")),
"Converting the timestamps failed. Aborting.", fixed = TRUE)
d <- detections
d$Valid <- "b"
expect_warning(preload(biometrics = bio, deployments = deployments, spatial = spatial, detections = d,
dot = dot, distances = example.distances, tz = "Europe/Copenhagen"),
"The detections have a column named 'Valid' but its content is not logical. Resetting to Valid = TRUE.", fixed = TRUE)
})
setwd("..")
unlink("exampleWorkspace", recursive = TRUE)
setwd(tests.home)
if (is.na(oldtz)) Sys.unsetenv("TZ") else Sys.setenv(TZ = oldtz)
rm(list = ls()) |
color.clusters = function(x, idx = seq_along(x$clusters), col = grDevices::hcl.colors(length(idx))) {
if (class(x) != "scan" & class(x) != "smerc_cluster") {
stop("x should be an object of class scan or smerc_cluster.")
}
if (min(idx) < 1 | max(idx) > length(x$clusters)) {
stop("invalid idx values")
}
if (length(idx) != length(col)) {
stop("The number of colors must match the length of idx.")
}
mycol = numeric(nrow(x$coords))
for (i in seq_along(x$clusters)) {
mycol[x$clusters[[i]]$loc] = col[i]
}
return(mycol)
} |
Sys.ps.cmd <- function() {
sys <- (si <- Sys.info())[["sysname"]]
if(sys == "Linux") {
s.rel <- si[["release"]]
rel <- c(as.integer(strsplit(s.rel,"[[:punct:]]")[[1]][1:2]) %*% c(1000,1))
if(is.na(rel)) rel <- 3000
if(rel >= 2006) "/bin/ps w"
else if(rel >= 2002) "/bin/ps --width 1000"
else structure("/bin/ps w",type="BSD")
}
else if(sys == "SunOS") "/usr/bin/ps"
else {
warning("Unknown OS [Operating System]; 'ps' may not be compatible")
"ps"
}
}
u.sys <- function(..., intern=TRUE) system(paste0(...), intern=intern)
u.date <- function(short = FALSE)
format(Sys.time(), paste0("%d/%h/%Y", if(!short) ", %H:%M"))
u.Datumvonheute <- function(W.tag = 2, Zeit = FALSE)
{
dat <- as.integer(strsplit(format(Sys.time(),"%w %d %m %Y %H %M"), " ")[[1]])
DMY <- paste0(dat[2], ". ", C.Monatsname[dat[3]], " ", dat[4])
r <- if (W.tag) {
W <- ifelse(dat[1]==0, 7, dat[1])
if (W.tag==2) Wtag <- C.Wochentag[W]
else Wtag <- C.Wochentagkurz[W]
paste(Wtag, DMY, sep=", ")
} else DMY
if(Zeit) {
paste(r, if (Zeit==2) paste(dat[5:6], collapse=":") else dat[5],
sep="; ")
} else r
}
C.Monatsname <- c("Januar", "Februar", "Maerz", "April", "Mai", "Juni",
"Juli", "August", "September", "Oktober", "November", "Dezember")
C.Wochentag <- c("Montag", "Dienstag", "Mittwoch", "Donnerstag",
"Freitag", "Samstag", "Sonntag")
C.Wochentagkurz <- c("Mon", "Die", "Mit", "Don", "Fre", "Sam", "Son")
C.weekday <- c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
u.datumdecode <-
function(d, YMDHMnames = c("Jahr", "Monat", "Tag", "Std", "Min"))
{
if(length(YMDHMnames) != 5 || !is.character(YMDHMnames))
stop("invalid `YMDHMnames': must be character(5)")
n <- length(d)
z <- matrix(NA, n, 5, dimnames = list(names(d), YMDHMnames))
for(j in 5:1) {
h <- d %/% 100
z[, j] <- d - 100 * h
d <- h
}
drop(z)
} |
cut_off_point_method <-
function(x, cut_points, names_activity_ranges = NA, hidden_PA_levels = NA, bout_lengths = NULL, plotting= 0)
{
if (is.null(bout_lengths))
{
stop("Set variable 'bout_lengths' to use this function. See help-manual for further information. For example: bout_lengths=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,12,13,20,21,40,41,60,61,80,81,120,121,240,241,480,481,1440,1,1440)")
}
cut_points <- c(0, cut_points)
number_of_activity_ranges <- length(cut_points)
activity_ranges <- array(data = NA, dim = c(1,2,number_of_activity_ranges))
colnames(activity_ranges) <- c("[lower boundary,","upper boundary)")
bouts <- function(counts, sequence_activity_range, cut_points, bout_lengthss)
{
for_plotting_a <- sequence_activity_range
for (i in 1:length(cut_points))
{
for_plotting_a[for_plotting_a == i] <- cut_points[i]
}
for_plotting_a[sequence_activity_range == (length(cut_points) + 1)] <- max(counts)
for_plotting_b <- sequence_activity_range
for_plotting_b <- for_plotting_b - 1
for (i in 1:length(cut_points))
{
for_plotting_b[for_plotting_b == i] <- cut_points[i]
}
for_plotting_b[for_plotting_b == 0] <- 0
dimension_columns_of_next_arry <- max(length(bout_lengthss), length(x), max(bout_lengthss))
if (dimension_columns_of_next_arry == Inf)
{
dimension_columns_of_next_arry <- max(bout_lengthss[!bout_lengthss == Inf], length(x))
}
bout_periods <- array(0, dim = c((length(cut_points) + 1), dimension_columns_of_next_arry, 1))
if (all(!is.na(names_activity_ranges)))
{
dimnames(bout_periods) <- list(activity_range = names_activity_ranges, Countbouts = 1: dimension_columns_of_next_arry)
} else {
dimnames(bout_periods) <- list(activity_range = 1:(length(cut_points) + 1), Countbouts = 1: dimension_columns_of_next_arry)
}
temp_sequence_activity_range <- c(sequence_activity_range, -Inf)
for (j in 1:(length(cut_points) + 1))
{
temp_vec <- 0
for (i in 1:length(temp_sequence_activity_range))
{
if (temp_sequence_activity_range[i] == j)
{
temp_vec <- temp_vec + 1
} else {
temp_which_bout <- temp_vec
bout_periods[j,temp_which_bout,1] <- bout_periods[j,temp_which_bout,1] + 1
temp_vec <- 0
}
if (temp_vec == length(temp_sequence_activity_range))
{
temp_which_bout <- temp_vec
bout_periods[j,temp_which_bout,1] = bout_periods[j,temp_which_bout,1] + 1
temp_vec <- 0
}
}
}
quantity_of_bouts <- sum(bout_periods)
return(list(quantity_of_bouts = quantity_of_bouts,
bout_periods = bout_periods,
for_plotting_a = for_plotting_a,
for_plotting_b = for_plotting_b))
}
for (i in 1:number_of_activity_ranges)
{
activity_ranges[1,1,i] <- cut_points[i]
activity_ranges[1,2,i] <- cut_points[i+1]
}
activity_ranges[1,2,number_of_activity_ranges] <- Inf
classification <- rep(NA, times = length(x))
if (any(is.na(hidden_PA_levels)))
{
for (i in 1:length(x))
{
for (j in 1:number_of_activity_ranges)
{
if (x[i] >= activity_ranges[1,1,j] & x[i] < activity_ranges[1,2,j])
{
classification[i] <- c(j)
}
}
}
classification_per_activity_range <- pairlist(NA)
for (i in 1:number_of_activity_ranges)
{
classification_per_activity_range[[i]] <- x
for (j in 1:length(classification_per_activity_range[[i]]))
{
if (!classification[j] == i)
{
classification_per_activity_range[[i]][j] <- NA
}
}
}
}
if (any(!is.na(hidden_PA_levels)))
{
for (i in 1:length(x))
{
for (j in 1:number_of_activity_ranges)
{
if (hidden_PA_levels[i] >= activity_ranges[1,1,j] & hidden_PA_levels[i] < activity_ranges[1,2,j])
{
classification[i] <- c(j)
}
}
}
classification_per_activity_range <- pairlist(NA)
for (i in 1:number_of_activity_ranges)
{
classification_per_activity_range[[i]] <- x
for (j in 1:length(classification_per_activity_range[[i]]))
{
if (!classification[j] == i)
{
classification_per_activity_range[[i]][j] <- NA
}
}
}
}
freq_acitvity_range <- table(c(seq(1, number_of_activity_ranges), classification))
freq_acitvity_range <- freq_acitvity_range - 1
rel_freq_acitvity_range <- freq_acitvity_range / sum(table(classification))
if (all(!is.na(names_activity_ranges)))
{
rownames(freq_acitvity_range) <- names_activity_ranges
rownames(rel_freq_acitvity_range) <- names_activity_ranges
colnames(activity_ranges[1,,]) <- names_activity_ranges
names(classification_per_activity_range ) <- names_activity_ranges
}
bout_extraction <- bouts(counts = x, sequence_activity_range = classification, cut_points = cut_points[c(-1)], bout_lengthss = bout_lengths)
quantity_of_bouts <- bout_extraction$quantity_of_bouts
bout_periods <- bout_extraction$bout_periods
bout_classes <- matrix(bout_lengths, nrow = 2, byrow = FALSE)
names = NULL
for (i in seq(1, dim(bout_classes)[2]))
{
if (bout_classes[1,i] == bout_classes[2,i])
{
names <- c(names, toString(bout_classes[1,i]))
} else {
names <- c(names, paste(toString(bout_classes[1,i]), '-', toString(bout_classes[2,i])) )
}
}
colnames(bout_classes) <- names
rownames(bout_classes) <- c("from", "to")
abs_freq_bouts_el <- rep(0, times = length(names))
for (i in 1:(length(names)))
{
abs_freq_bouts_el[i] <- sum(bout_periods[,seq(bout_classes[1,i], bout_classes[2,i]),1])
}
names(abs_freq_bouts_el) <- names
abs_freq_bouts_el <- pairlist(all_activity_ranges = abs_freq_bouts_el)
for (j in 1: number_of_activity_ranges)
{
abs <- rep(0, times = length(names))
for (i in 1:(length(names)))
{
abs[i] <- sum(bout_periods[j,seq(bout_classes[1,i], bout_classes[2,i]),1])
}
names(abs) <- names
if (all(!is.na(names_activity_ranges)))
{
abs_freq_bouts_el[[names_activity_ranges[j]]] <- abs
} else {
abs_freq_bouts_el[[j+1]] <- abs
}
}
if (!is.na(plotting))
{
if (plotting == 0)
{
par(mfrow = c(2,2))
if (any(!is.na(hidden_PA_levels)))
{
plot(x, main = "classification (HMM)", xlab = "time", ylab= "counts", col = "white")
} else {
plot(x, main = "classification", xlab = "time", ylab = "counts", col = "white")
}
abline(h = cut_points[c(-1)], col = "grey50", lty = "dashed")
for (i in 1: number_of_activity_ranges)
{
points(as.numeric(classification_per_activity_range[[i]]), col = i)
}
if (all(!is.na(names_activity_ranges)))
{
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(names_activity_ranges[i], '(', round(100 * rel_freq_acitvity_range[i], digits = 2), "%", ')')))
}
} else {
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(i, '(', round(100 * rel_freq_acitvity_range[i], digits=2), "%",')')))
}
}
if (any(!is.na(hidden_PA_levels)))
{
barplot(rel_freq_acitvity_range, main = c("fragmentation into acitvity ranges (HMM)"), xlab = "activity range", ylab = "relative frequency", names.arg = foo)
} else {
barplot(rel_freq_acitvity_range, main = c("fragmentation into acitvity ranges"), xlab = "activity range", ylab = "relative frequency", names.arg = foo)
}
if (any(!is.na(hidden_PA_levels)))
{
plot(x, ylim = c(0, max(x) + max(x) * 0.1), main = c("
} else {
plot(x, ylim = c(0, max(x) + max(x) * 0.1), main = c("
}
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
if (any(!is.na(hidden_PA_levels)))
{
points(hidden_PA_levels, col = "green", type = "l")
}
abline(h = cut_points[c(-1)], col = "grey50", lty = "dashed")
if (any(!is.na(hidden_PA_levels)))
{
barplot(ylab = ("abs. frequency"), xlab = c("length of bout [epoch period]"), ylim = c(0, max(abs_freq_bouts_el[[1]])), abs_freq_bouts_el[[1]], names.arg = names, main = "bouts in relation to their length (HMM)")
} else {
barplot(ylab = ("abs. frequency"), xlab = c("length of bout [epoch period]"), ylim = c(0, max(abs_freq_bouts_el[[1]])), abs_freq_bouts_el[[1]], names.arg = names, main = "bouts in relation to their length")
}
par(mfrow = c(1,1))
if (any(!is.na(hidden_PA_levels)))
{
plot(x, main = "classification (HMM)", xlab = "time", ylab = "counts", col = "white")
} else {
plot(x, main = "classification", xlab = "time", ylab = "counts", col = "white")
}
abline(h = cut_points[c(-1)], col = "grey50", lty = "dashed")
for (i in 1: number_of_activity_ranges)
{
points(as.numeric(classification_per_activity_range[[i]]), col = i)
}
par(mfrow = c(1,1))
if (any(!is.na(hidden_PA_levels)))
{
plot(x, ylim = c(0, max(x) + max(x) * 0.1), main = c("
} else {
plot(x, ylim = c(0, max(x) + max(x) * 0.1), main = c("
}
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
if (any(!is.na(hidden_PA_levels)))
{
points(hidden_PA_levels, col = "green", type = "l")
}
abline(h = cut_points[c(-1)], col = "grey50", lty = "dashed")
par(mfrow = c(2,1))
if (all(!is.na(names_activity_ranges)))
{
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(names_activity_ranges[i] , '(', round(100 * rel_freq_acitvity_range[i], digits=2), "%", ')')))
}
} else {
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(i , '(', round(100 * rel_freq_acitvity_range[i], digits=2), "%", ')')))
}
}
if (any(!is.na(hidden_PA_levels)))
{
barplot(rel_freq_acitvity_range, main = c("fragmentation into acitvity ranges (HMM)"), xlab = "activity range", ylab = "relative frequency", names.arg = foo)
} else {
barplot(rel_freq_acitvity_range, main = c("fragmentation into acitvity ranges"), xlab = "activity range", ylab = "relative frequency", names.arg = foo)
}
if (all(!is.na(names_activity_ranges)))
{
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(names_activity_ranges[i] , '(
}
} else {
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(i , '(
}
}
if (any(!is.na(hidden_PA_levels)))
{
barplot(freq_acitvity_range, main = c("fragmentation into acitvity ranges (HMM)"), xlab = "activity range", ylab = "absolute frequency", names.arg = foo)
} else {
barplot(freq_acitvity_range, main = c("fragmentation into acitvity ranges"), xlab = "activity range", ylab = "absolute frequency", names.arg = foo)
}
par(mfrow = c(number_of_activity_ranges / 2 + 1, 2))
for (i in 1:(number_of_activity_ranges + 1))
{
if (any(!is.na(hidden_PA_levels)))
{
barplot(ylab = ("abs. frequency"), xlab = c("length of bout [epoch period]"), ylim = c(0, max(abs_freq_bouts_el[[1]])), abs_freq_bouts_el[[i]], names.arg = names, main = "bouts in relation to their length (HMM)")
} else {
barplot(ylab = ("abs. frequency"), xlab = c("length of bout [epoch period]"), ylim = c(0, max(abs_freq_bouts_el[[1]])), abs_freq_bouts_el[[i]], names.arg = names, main = "bouts in relation to their length")
}
if (all(!is.na(names_activity_ranges)))
{
legend("topright", bg = "white", c("all", names_activity_ranges)[i], fill = c("gray"))
} else {
legend("topright", bg = "white", c("all",seq(1, number_of_activity_ranges))[i], fill = c("gray"))
}
}
par(mfrow = c(1,1))
}
if (plotting == 1)
{
par(mfrow = c(2,2))
if (any(!is.na(hidden_PA_levels)))
{
plot(x, main = "classification (HMM)", xlab = "time", ylab = "counts", col = "white")
} else {
plot(x, main = "classification", xlab = "time", ylab = "counts", col = "white")
}
abline(h = cut_points[c(-1)], col = "grey50", lty = "dashed")
for (i in 1: number_of_activity_ranges)
{
points(as.numeric(classification_per_activity_range[[i]]), col = i)
}
if (all(!is.na(names_activity_ranges)))
{
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(names_activity_ranges[i] , '(', round( 100* rel_freq_acitvity_range[i], digits = 2), "%", ')')))
}
} else {
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(i , '(', round( 100* rel_freq_acitvity_range[i], digits = 2), "%", ')')))
}
}
if (any(!is.na(hidden_PA_levels)))
{
barplot(rel_freq_acitvity_range, main = c("fragmentation into acitvity ranges (HMM)"), xlab = "activity range", ylab = "relative frequency", names.arg = foo)
} else {
barplot(rel_freq_acitvity_range, main = c("fragmentation into acitvity ranges"), xlab = "activity range", ylab = "relative frequency", names.arg = foo)
}
if (any(!is.na(hidden_PA_levels)))
{
plot(x, main = c("
} else {
plot(x, main = c("
}
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
if (any(!is.na(hidden_PA_levels)))
{
points(hidden_PA_levels, col = "green", type = "l")
}
abline(h = cut_points[c(-1)], col = "grey50", lty = "dashed")
if (any(!is.na(hidden_PA_levels)))
{
barplot(ylab = ("abs. frequency"), xlab = c("length of bout [epoch period]"), ylim = c(0, max(abs_freq_bouts_el[[1]])),
abs_freq_bouts_el[[1]], names.arg = names, main = "bouts in relation to their length (HMM)")
} else {
barplot(ylab = ("abs. frequency"), xlab = c("length of bout [epoch period]"), ylim = c(0, max(abs_freq_bouts_el[[1]])),
abs_freq_bouts_el[[1]], names.arg = names, main = "bouts in relation to their length")
}
par(mfrow = c(1,1))
}
if (plotting == 2)
{
par(mfrow = c(1,1))
if (any(!is.na(hidden_PA_levels)))
{
plot(x, main = "classification (HMM)", xlab = "time", ylab = "counts", col = "white")
} else {
plot(x, main = "classification", xlab = "time", ylab = "counts", col = "white")
}
abline(h = cut_points[c(-1)], col = "grey50", lty = "dashed")
for (i in 1: number_of_activity_ranges)
{
points(as.numeric(classification_per_activity_range[[i]]), col = i)
}
}
if (plotting == 3)
{
par(mfrow = c(1,1))
if (any(!is.na(hidden_PA_levels)))
{
plot(x, ylim = c(0, max(x) + max(x) * 0.1), main = c("
} else {
plot(x, ylim = c(0, max(x) + max(x) * 0.1), main = c("
}
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_a, col = "black", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
points(bout_extraction$for_plotting_b, col = "white", type="h")
if (any(!is.na(hidden_PA_levels)))
{
points(hidden_PA_levels, col = "green", type = "l")
}
abline(h = cut_points[c(-1)], col = "grey50", lty = "dashed")
}
if (plotting == 4)
{
par(mfrow = c(2,1))
if (all(!is.na(names_activity_ranges)))
{
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(names_activity_ranges[i] , '(', round( 100* rel_freq_acitvity_range[i], digits = 2), "%", ')')))
}
} else {
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(i , '(', round( 100* rel_freq_acitvity_range[i], digits = 2), "%", ')')))
}
}
if (any(!is.na(hidden_PA_levels)))
{
barplot(rel_freq_acitvity_range, main = c("fragmentation into acitvity ranges (HMM)"), xlab = "activity range", ylab = "relative frequency", names.arg = foo)
} else {
barplot(rel_freq_acitvity_range, main = c("fragmentation into acitvity ranges"), xlab = "activity range", ylab = "relative frequency", names.arg = foo)
}
if (all(!is.na(names_activity_ranges)))
{
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(names_activity_ranges[i] ,'(
}
} else {
foo <- NULL
for (i in 1: number_of_activity_ranges)
{
foo <- c(foo, c(paste(i ,'(
}
}
if (any(!is.na(hidden_PA_levels)))
{
barplot(freq_acitvity_range, main = c("fragmentation into acitvity ranges (HMM)"), xlab = "activity range", ylab = "absolute frequency", names.arg = foo)
} else {
barplot(freq_acitvity_range, main = c("fragmentation into acitvity ranges"), xlab = "activity range", ylab = "absolute frequency", names.arg = foo)
}
par(mfrow = c(1,1))
}
if (plotting == 5)
{
par(mfrow = c(number_of_activity_ranges/2+1,2))
for (i in 1:(number_of_activity_ranges+1))
{
if (any(!is.na(hidden_PA_levels)))
{
barplot(ylab = ("abs. frequency"), xlab = c("length of bout [epoch period]"), ylim = c(0, max(abs_freq_bouts_el[[1]])), abs_freq_bouts_el[[i]], names.arg = names, main = "bouts in relation to their length (HMM)")
} else {
barplot(ylab = ("abs. frequency"), xlab = c("length of bout [epoch period]"), ylim = c(0, max(abs_freq_bouts_el[[1]])), abs_freq_bouts_el[[i]], names.arg = names, main = "bouts in relation to their length")
}
if (all(!is.na(names_activity_ranges)))
{
legend("topright", bg = "white", c("all",names_activity_ranges)[i], fill =c("gray"))
} else {
legend("topright", bg = "white", c("all",seq(1, number_of_activity_ranges))[i], fill =c("gray"))
}
}
par(mfrow = c(1,1))
}
}
print(list(activity_ranges = activity_ranges,
classification = classification,
rel_freq_acitvity_range = rel_freq_acitvity_range,
quantity_of_bouts = quantity_of_bouts,
abs_freq_bouts_el = abs_freq_bouts_el$all_activity_ranges))
return(list(activity_ranges = activity_ranges,
classification = classification,
classification_per_activity_range = classification_per_activity_range,
freq_acitvity_range = freq_acitvity_range,
rel_freq_acitvity_range = rel_freq_acitvity_range,
quantity_of_bouts = quantity_of_bouts,
bout_periods = bout_periods,
abs_freq_bouts_el = abs_freq_bouts_el))
} |
context("test build.panel")
n=1000
attr = 7
my.dir = system.file(package = "psidR","testdata")
load(file.path(my.dir,"FAM1985ER.rda"))
load(file.path(my.dir,"FAM1986ER.RData"))
load(file.path(my.dir,"IND2017ER.RData"))
test_that("check balanced sample design", {
famvars <- data.frame(year=c(1985,1986),money=c("Money85","Money86"),age=c("age85","age86"))
indvars <- data.frame(year=c(1985,1986),ind.weight=c("ER30497","ER30534"))
d <- build.panel(datadir=my.dir,fam.vars=famvars,ind.vars=indvars,sample=NULL,heads.only=FALSE,design="all",loglevel=DEBUG)
dd = d
attrited <- subset(IND2017ER,(ER30463!=0) & (ER30498 == 0) )
attrited$pernum <- attrited$ER30001*1000 + attrited$ER30002
expect_true(nrow(attrited) == attr)
expect_true(dd[pid %in% attrited$pernum,unique(year)] == 1985)
dd = dd[!(pid %in% attrited$pernum)]
setkey(dd,pid,year)
expect_true( all( dd[,list(dage=diff(age)),by=pid][,dage] == 1 ))
setkey(dd,pid,year)
expect_true( all( dd[,list(dage=diff(year)),by=pid][,dage] == 1 ))
d <- build.panel(datadir=my.dir,fam.vars=famvars,ind.vars=indvars,sample=NULL,heads.only=FALSE,design="balanced")
dd = d
expect_true(any(dd[,pid] %in% attrited$pernum) == FALSE)
expect_true( "relation.head" %in% names(dd) )
expect_true( !all( dd[,sequence == 1]))
expect_true( !all( dd[,relation.head == 10]))
} )
test_that("check subsetting to head and wife sample", {
famvars <- data.frame(year=c(1985,1986),money=c("Money85","Money86"),age=c("age85","age86"))
indvars <- data.frame(year=c(1985,1986),ind.weight=c("ER30497","ER30534"))
core <- build.panel(datadir=my.dir,fam.vars=famvars,ind.vars=indvars,sample=NULL,heads.only=TRUE,design="all")
cored = core
expect_true( all( cored[,(sequence >0) & (sequence < 21) ]))
expect_true( all( cored[,relation.head == 10]))
})
test_that("check subsetting to current heads only", {
famvars <- data.frame(year=c(1985,1986),money=c("Money85","Money86"),age=c("age85","age86"))
indvars <- data.frame(year=c(1985,1986),ind.weight=c("ER30497","ER30534"))
core <- build.panel(datadir=my.dir,fam.vars=famvars,ind.vars=indvars,sample=NULL,current.heads.only=TRUE,design="all")
cored = core
expect_true( all( cored[,sequence==1]))
expect_true( all( cored[,relation.head == 10]))
})
test_that("check subsetting to core/immigrant/latino", {
famvars <- data.frame(year=c(1985,1986),money=c("Money85","Money86"),age=c("age85","age86"))
indvars <- data.frame(year=c(1985,1986),ind.weight=c("ER30497","ER30534"))
src <- build.panel(datadir=my.dir,fam.vars=famvars,ind.vars=indvars,sample="SRC",heads.only=FALSE,design="all")
seo <- build.panel(datadir=my.dir,fam.vars=famvars,ind.vars=indvars,sample="SEO",heads.only=FALSE,design="all")
lat <- build.panel(datadir=my.dir,fam.vars=famvars,ind.vars=indvars,sample="latino",heads.only=FALSE,design="all")
imm <- build.panel(datadir=my.dir,fam.vars=famvars,ind.vars=indvars,sample="immigrant",heads.only=FALSE,design="all")
expect_true( all( src[,ID1968 < 3000 ]))
expect_true( all( seo[,ID1968 > 5000 & ID1968 < 7000 ]))
expect_true( all( lat[,ID1968 > 7000 & ID1968 < 9308]))
expect_true( all( imm[,ID1968 > 3000 & ID1968 < 7000 ]))
} ) |
pxweb_api_name <- function(x){
UseMethod("pxweb_api_name")
}
pxweb_api_name.url <- function(x){
checkmate::assert_class(x, "url")
x <- x$hostname
assert_path(x)
x
}
pxweb_api_name.pxweb <- function(x){
pxweb_api_name(x$url)
}
pxweb_api_name.pxweb_api_catalogue_entry <- function(x){
pxweb_api_name(httr::parse_url(x$url))
}
pxweb_api_name.pxweb_explorer <- function(x){
if(is.null(x$pxweb)){
return("")
}
pxweb_api_name(x$pxweb)
}
pxweb_api_rootpath <- function(x){
UseMethod("pxweb_api_rootpath")
}
pxweb_api_rootpath.url <- function(x){
checkmate::assert_class(x, "url")
x$path <- ""
p <- build_pxweb_url(x)
p <- gsub(pattern = "/$", replacement = "", p)
assert_path(p)
p
}
pxweb_api_rootpath.pxweb <- function(x){
checkmate::assert_class(x, "pxweb")
pxweb_api_rootpath(x$url)
}
pxweb_api_rootpath.pxweb_explorer <- function(x){
checkmate::assert_class(x, "pxweb_explorer")
pxweb_api_rootpath(x$pxweb)
}
pxweb_api_subpath <- function(x, init_slash = TRUE, as_vector = FALSE){
checkmate::assert_flag(init_slash)
checkmate::assert_flag(as_vector)
UseMethod("pxweb_api_subpath")
}
pxweb_api_subpath.pxweb <- function(x, init_slash = TRUE, as_vector = FALSE){
if(as_vector) {
return(x$paths$api_subpath$vector)
}
if(init_slash) {
p <- paste0("/", x$paths$api_subpath$path)
} else {
p <- x$paths$api_subpath$path
}
p <- gsub(pattern = "/$", replacement = "", p)
assert_path(p)
p
}
pxweb_api_subpath.pxweb_explorer <- function(x, init_slash = TRUE, as_vector = FALSE){
if(is.null(x$pxweb)){
return("")
}
pxweb_api_subpath(x$pxweb, init_slash, as_vector)
}
pxweb_api_path <- function(x, init_slash = TRUE, as_vector = FALSE){
checkmate::assert_flag(init_slash)
checkmate::assert_flag(as_vector)
UseMethod("pxweb_api_path")
}
pxweb_api_path.url <- function(x, init_slash = TRUE, as_vector = FALSE){
p <- x$path
p <- gsub(pattern = "/$", replacement = "", p)
if(as_vector) {
return(strsplit(p, "/")[[1]])
}
if(init_slash) {
p <- paste0("/", p)
}
assert_path(p)
p
}
pxweb_api_path.pxweb <- function(x, init_slash = TRUE, as_vector = FALSE){
pxweb_api_path(x$url, init_slash, as_vector)
}
pxweb_api_path.pxweb_explorer <- function(x, init_slash = TRUE, as_vector = FALSE){
pxweb_api_path(x$pxweb, init_slash, as_vector)
}
pxweb_api_dbpath <- function(x, init_slash = TRUE, as_vector = FALSE){
checkmate::assert_flag(init_slash)
checkmate::assert_flag(as_vector)
UseMethod("pxweb_api_dbpath")
}
pxweb_api_dbpath.pxweb <- function(x, init_slash = TRUE, as_vector = FALSE){
p1 <- pxweb_api_subpath(x, as_vector = TRUE)
p2 <- pxweb_api_path(x, as_vector = TRUE)
checkmate::assert_set_equal(p1, p2[1:length(p1)])
pv <- p2[(length(p1)+1):length(p2)]
if(as_vector) {
return(pv)
}
p <- paste(pv, collapse = "/")
p <- gsub(pattern = "/$", replacement = "", p)
if(init_slash) {
p <- paste0("/", p)
}
assert_path(p)
p
}
pxweb_api_path.pxweb_explorer <- function(x, init_slash = TRUE, as_vector = FALSE){
pxweb_api_path(x$pxweb, init_slash, as_vector)
}
assert_path <- function(x){
checkmate::assert_string(x)
} |
node.keep <- function(x, keep.list, clist) {
if (!is.null(clist)) {
tmp <- unlist(lapply(clist, node.parent))
}
if (!x@path %in% keep.list & (x@leaf | (!is.null(clist) && !x@path %in% tmp))) {
x@pruned[] <- TRUE
}
return(x)
}
node.parent <- function(x, segmented=FALSE) {
if (x@order==1) {
parent <- "e"
} else {
parent <- unlist(strsplit(x@path,"-"))
parent <- parent[2:length(parent)]
parent <- paste(parent, collapse="-")
}
if (segmented) {
parent <- cbind(parent, group=rownames(x@prob))
}
return(parent)
}
node.gain <- function(x, plist, gain, C, clist) {
parent <- plist[[node.parent(x)]]
if (!is.null(clist)) {
tmp <- unlist(lapply(clist, node.parent))
children <- clist[which(tmp==x@path)]
if (length(children)>0) {
children <- unlist(lapply(children, function(x) rownames(x@prob)))
}
} else {
children <- NULL
}
glist <- rownames(x@prob)
for (n in 1:nrow(x@prob)) {
if (!x@pruned[n] & (x@leaf[n] || (!is.null(clist) & !glist[n] %in% children))) {
x@pruned[n] <- !do.call(gain, args=list(p1=x@prob[n,], p2=parent@prob[glist[n],], N=x@n[n], C=C))
}
}
return(x)
}
node.prune <- function(x) {
x@pruned[] <- TRUE
return(x)
}
node.nmin <- function(x,nmin) {
x@pruned <- x@n < nmin
return(x)
}
node.leaf <- function(x) {
x@leaf[] <- TRUE
return(x)
}
is.leaf <- function(x) {
return(x@leaf)
}
is.pruned <- function(x) {
return(x@pruned)
}
delete.pruned <- function(x) {
if (any(x@pruned)) {
idxnp <- !x@pruned
x@index <- x@index[idxnp,, drop=FALSE]
x@prob <- x@prob[idxnp,, drop=FALSE]
x@counts <- x@counts[idxnp,, drop=FALSE]
x@pruned <- x@pruned[idxnp,,drop=FALSE]
x@leaf <- x@leaf[idxnp,,drop=FALSE]
x@n <- x@n[idxnp,,drop=FALSE]
}
return(x)
}
select.segment <- function(x, group, position) {
select <- matrix(FALSE, nrow=nrow(x@index), ncol=ncol(x@index), dimnames=dimnames(x@index))
if (!is.null(group)) {
idx.group <- which(x@index[,"group"]==group)
select[idx.group,"group"] <- TRUE
} else {
select[,"group"] <- TRUE
}
if (!is.null(position)) {
idx.pos <- which(x@index[, "position"]==position)
select[idx.pos,"position"] <- TRUE
} else {
select[,"position"] <- TRUE
}
idx <- which(rowSums(select)==2)
if (length(idx)>0) {
x@index <- x@index[idx,,drop=FALSE]
x@prob <- x@prob[idx,, drop=FALSE]
x@counts <- x@counts[idx,, drop=FALSE]
x@pruned <- x@pruned[idx,, drop=FALSE]
x@leaf <- x@leaf[idx,, drop=FALSE]
x@n <- x@n[idx,, drop=FALSE]
} else {
x <- NULL
}
return(x)
}
node.mine <- function(x, pmin, pmax, state) {
if (!missing(pmin)) {
tmp <- rowSums(x@prob[, state, drop=FALSE]) >= pmin
} else if (!missing(pmax)) {
tmp <- rowSums(x@prob[, state, drop=FALSE]) < pmax
}
if (sum(tmp)>0) {
res <- new("cprobd", x@prob[tmp, , drop=FALSE], context=x@path)
} else {
res <- NULL
}
return(res)
}
node.merge <- function(x, y, segmented) {
if (segmented) {
x@prob <- rbind(x@prob, y@prob)
x@counts <- rbind(x@counts, y@counts)
x@n <- c(x@n, y@n)
x@pruned <- c(x@pruned, y@pruned)
x@leaf <- c(x@leaf, y@leaf)
} else {
x@counts <- rbind(x@prob, y@counts)
x@prob <- x@counts/sum(x@counts)
x@n <- x@n+y@n
x@pruned <- x@pruned & y@pruned
x@leaf <- x@leaf & y@leaf
}
return(x)
}
set.leaves <- function(x, clist, cplist) {
child <- which(x@path==cplist)
pchild <- unique(as.vector(unlist(clist[child])))
leaves <- !rownames(x@leaf) %in% pchild
if (sum(leaves)>0) { x@leaf[leaves] <- TRUE }
return(x)
}
which.child <- function(PST) {
class <- class(PST)
child.list <- names(PST)[unlist(lapply(PST, is, class))]
return(child.list)
} |
"dat.gatb" |
convert <- function(x, ...)
{
if ((!is.null(attr(x, "class"))) && (attr(x, "class") == "aquaenv"))
{
return(convert.aquaenv(x, ...))
}
else
{
return(convert.standard(x, ...))
}
}
aquaenv <- function(S, t, p=pmax((P-Pa), gauge_p(d, lat, Pa)), P=Pa, Pa=1.01325, d=0, lat=0,
SumCO2=0, SumNH4=0, SumH2S=0, SumH3PO4=0, SumSiOH4=0, SumHNO3=0, SumHNO2=0,
SumBOH3=NULL, SumH2SO4=NULL, SumHF=NULL,
TA=NULL, pH=NULL, fCO2=NULL, CO2=NULL,
speciation=TRUE,
dsa=FALSE,
ae=NULL,
from.data.frame=FALSE,
SumH2SO4_Koffset=0,
SumHF_Koffset=0,
revelle=FALSE,
skeleton=FALSE,
k_w=NULL,
k_co2=NULL,
k_hco3=NULL,
k_boh3=NULL,
k_hso4=NULL,
k_hf=NULL,
k1k2="lueker",
khf="dickson",
khso4="dickson",
fCO2atm=0.000400,
fO2atm=0.20946)
{
if (from.data.frame)
{
return (from.data.frame(ae))
}
else if (!is.null(ae))
{
return (cloneaquaenv(ae, TA=TA, pH=pH, k_co2=k_co2, k1k2=k1k2, khf=khf, khso4=khso4))
}
else
{
aquaenv <- list()
attr(aquaenv, "class") <- "aquaenv"
aquaenv[["S"]] <- S ; attr(aquaenv[["S"]], "unit") <- "p2su"
aquaenv[["t"]] <- t ; attr(aquaenv[["t"]], "unit") <- "deg C"
aquaenv[["p"]] <- p ; attr(aquaenv[["p"]], "unit") <- "bar"
aquaenv[["T"]] <- T(t) ; attr(aquaenv[["T"]], "unit") <- "deg K"
aquaenv[["Cl"]] <- Cl(S) ; attr(aquaenv[["Cl"]], "unit") <- "permil"
aquaenv[["I"]] <- I(S) ; attr(aquaenv[["I"]], "unit") <- "mol/kg-H2O"
aquaenv[["P"]] <- p+Pa ; attr(aquaenv[["P"]], "unit") <- "bar"
aquaenv[["Pa"]] <- Pa ; attr(aquaenv[["Pa"]], "unit") <- "bar"
aquaenv[["d"]] <- round(watdepth(P=p+Pa, lat=lat),2) ; attr(aquaenv[["d"]], "unit") <- "m"
aquaenv[["density"]] <- seadensity(S=S, t=t) ; attr(aquaenv[["density"]], "unit") <- "kg/m3"
aquaenv[["SumCO2"]] <- SumCO2
aquaenv[["SumNH4"]] <- SumNH4 ; attr(aquaenv[["SumNH4"]], "unit") <- "mol/kg-soln"
aquaenv[["SumH2S"]] <- SumH2S ; attr(aquaenv[["SumH2S"]], "unit") <- "mol/kg-soln"
aquaenv[["SumHNO3"]] <- SumHNO3 ; attr(aquaenv[["SumHNO3"]], "unit") <- "mol/kg-soln"
aquaenv[["SumHNO2"]] <- SumHNO2 ; attr(aquaenv[["SumHNO2"]], "unit") <- "mol/kg-soln"
aquaenv[["SumH3PO4"]] <- SumH3PO4 ; attr(aquaenv[["SumH3PO4"]], "unit") <- "mol/kg-soln"
aquaenv[["SumSiOH4"]] <- SumSiOH4 ; attr(aquaenv[["SumSiOH4"]], "unit") <- "mol/kg-soln"
if (is.null(SumBOH3))
{
SumBOH3 = seaconc("B", S)
}
else if (length(S)>1)
{
SumBOH3 = rep(SumBOH3, length(S))
}
aquaenv[["SumBOH3"]] <- SumBOH3 ; attr(aquaenv[["SumBOH3"]], "unit") <- "mol/kg-soln"
if (is.null(SumH2SO4))
{
SumH2SO4 = seaconc("SO4", S)
}
else if (length(S)>1)
{
SumH2SO4 = rep(SumH2SO4, length(S))
}
aquaenv[["SumH2SO4"]] <- SumH2SO4 ; attr(aquaenv[["SumH2SO4"]], "unit") <- "mol/kg-soln"
if (is.null(SumHF))
{
SumHF = seaconc("F", S)
}
else if (length(S)>1)
{
SumHF = rep(SumHF, length(S))
}
aquaenv[["SumHF"]] <- SumHF ; attr(aquaenv[["SumHF"]], "unit") <- "mol/kg-soln"
if(!skeleton)
{
aquaenv[["Br"]] <- seaconc("Br", S) ; attr(aquaenv[["Br"]], "unit") <- "mol/kg-soln"
aquaenv[["ClConc"]] <- seaconc("Cl", S) ; attr(aquaenv[["ClConc"]], "unit") <- "mol/kg-soln"
aquaenv[["Na"]] <- seaconc("Na", S) ; attr(aquaenv[["Na"]], "unit") <- "mol/kg-soln"
aquaenv[["Mg"]] <- seaconc("Mg", S) ; attr(aquaenv[["Mg"]], "unit") <- "mol/kg-soln"
aquaenv[["Ca"]] <- seaconc("Ca", S) ; attr(aquaenv[["Ca"]], "unit") <- "mol/kg-soln"
aquaenv[["K"]] <- seaconc("K", S) ; attr(aquaenv[["K"]], "unit") <- "mol/kg-soln"
aquaenv[["Sr"]] <- seaconc("Sr", S) ; attr(aquaenv[["Sr"]], "unit") <- "mol/kg-soln"
aquaenv[["molal2molin"]] <- molal2molin(S) ; attr(aquaenv[["molal2molin"]], "unit") <- "(mol/kg-soln)/(mol/kg-H2O)"
scaleconvs <- scaleconvert(S, t, p, SumH2SO4, SumHF, khf=khf, khso4=khso4)
aquaenv[["free2tot"]] <- scaleconvs$free2tot ; attr(aquaenv[["free2tot"]], "pH scale") <- "free -> tot"
aquaenv[["free2sws"]] <- scaleconvs$free2sws ; attr(aquaenv[["free2sws"]], "pH scale") <- "free -> sws"
aquaenv[["tot2free"]] <- scaleconvs$tot2free ; attr(aquaenv[["tot2free"]], "pH scale") <- "total -> free"
aquaenv[["tot2sws"]] <- scaleconvs$tot2sws ; attr(aquaenv[["tot2sws"]], "pH scale") <- "total -> sws"
aquaenv[["sws2free"]] <- scaleconvs$sws2free ; attr(aquaenv[["sws2free"]], "pH scale") <- "sws -> free"
aquaenv[["sws2tot"]] <- scaleconvs$sws2tot ; attr(aquaenv[["sws2tot"]], "pH scale") <- "sws -> total"
aquaenv[["K0_CO2"]] <- K0_CO2 (S, t)
aquaenv[["K0_O2"]] <- K0_O2 (S, t)
aquaenv[["fCO2atm"]] <- fCO2atm ; attr(aquaenv[["fCO2atm"]], "unit") <- "atm"
aquaenv[["fO2atm"]] <- fO2atm ; attr(aquaenv[["fO2atm"]], "unit") <- "atm"
aquaenv[["CO2_sat"]] <- aquaenv[["fCO2atm"]] * aquaenv[["K0_CO2"]] ; attr(aquaenv[["CO2_sat"]], "unit") <- "mol/kg-soln"
aquaenv[["O2_sat"]] <- aquaenv[["fO2atm"]] * aquaenv[["K0_O2"]] ; attr(aquaenv[["O2_sat"]], "unit") <- "mol/kg-soln"
}
len <- max(length(t), length(S), length(p))
if (is.null(k_w))
{
aquaenv[["K_W"]] <- K_W(S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, khf=khf, khso4=khso4)
}
else
{
aquaenv[["K_W"]] <- eval(att(rep(k_w,len)))
}
if (is.null(k_hso4))
{
aquaenv[["K_HSO4"]] <- K_HSO4(S, t, p, khso4)
}
else
{
aquaenv[["K_HSO4"]] <- eval(att(rep(k_hso4,len)))
}
if (is.null(k_hf))
{
aquaenv[["K_HF"]] <- K_HF(S, t, p, SumH2SO4=(SumH2SO4 + SumH2SO4_Koffset), SumHF=(SumHF + SumHF_Koffset), khf=khf, khso4=khso4)
}
else
{
aquaenv[["K_HF"]] <- eval(att(rep(k_hf,len)))
}
if (is.null(k_co2))
{
aquaenv[["K_CO2"]] <- K_CO2 (S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, k1k2=k1k2, khf=khf, khso4=khso4)
}
else
{
aquaenv[["K_CO2"]] <- eval(att(rep(k_co2,len)))
}
if (is.null(k_hco3))
{
aquaenv[["K_HCO3"]] <- K_HCO3(S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, k1k2=k1k2, khf=khf, khso4=khso4)
}
else
{
aquaenv[["K_HCO3"]] <- eval(att(rep(k_hco3,len)))
}
if (is.null(k_boh3))
{
aquaenv[["K_BOH3"]] <- K_BOH3(S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, khf=khf, khso4=khso4)
}
else
{
aquaenv[["K_BOH3"]] <- eval(att(rep(k_boh3,len)))
}
aquaenv[["K_NH4"]] <- K_NH4 (S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, khf=khf, khso4=khso4)
aquaenv[["K_H2S"]] <- K_H2S (S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, khf=khf, khso4=khso4)
aquaenv[["K_H3PO4"]] <- K_H3PO4 (S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, khf=khf, khso4=khso4)
aquaenv[["K_H2PO4"]] <- K_H2PO4 (S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, khf=khf, khso4=khso4)
aquaenv[["K_HPO4"]] <- K_HPO4 (S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, khf=khf, khso4=khso4)
aquaenv[["K_SiOH4"]] <- K_SiOH4 (S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, khf=khf, khso4=khso4)
aquaenv[["K_SiOOH3"]] <- K_SiOOH3(S, t, p, SumH2SO4 + SumH2SO4_Koffset, SumHF + SumHF_Koffset, khf=khf, khso4=khso4)
aquaenv[["K_HNO2"]] <- PhysChemConst$K_HNO2 ; attr(aquaenv[["K_HNO2"]], "unit") <- "mol/kg-soln; mol/kg-H2O; mol/l"
aquaenv[["K_HNO3"]] <- PhysChemConst$K_HNO3 ; attr(aquaenv[["K_HNO3"]], "unit") <- "mol/kg-soln; mol/kg-H2O; mol/l"
aquaenv[["K_H2SO4"]] <- PhysChemConst$K_H2SO4 ; attr(aquaenv[["K_H2SO4"]], "unit") <- "mol/kg-soln; mol/kg-H2O; mol/l"
aquaenv[["K_HS"]] <- PhysChemConst$K_HS ; attr(aquaenv[["K_HS"]], "unit") <- "mol/kg-soln; mol/kg-H2O; mol/l"
if (!skeleton)
{
aquaenv[["Ksp_calcite"]] <- Ksp_calcite(S, t, p)
aquaenv[["Ksp_aragonite"]] <- Ksp_aragonite(S, t, p)
}
if (!(is.null(TA) && is.null(pH) && is.null(fCO2) && is.null(CO2)))
{
if (is.null(SumCO2))
{
if (!is.null(pH))
{
if (!is.null(fCO2))
{
CO2 <- aquaenv[["K0_CO2"]] * fCO2
SumCO2 <- calcSumCO2_pH_CO2(aquaenv, pH, CO2)
TA <- calcTA(c(aquaenv, list(SumCO2, "SumCO2")), 10^(-pH))
}
else if (!is.null(CO2))
{
SumCO2 <- calcSumCO2_pH_CO2(aquaenv, pH, CO2)
fCO2 <- CO2 / aquaenv[["K0_CO2"]]
TA <- calcTA(c(aquaenv, list(SumCO2, "SumCO2")), 10^(-pH))
}
else if (!is.null(TA))
{
SumCO2 <- calcSumCO2_pH_TA(aquaenv, pH, TA)
CO2 <- H2Abi(SumCO2, aquaenv[["K_CO2"]], aquaenv[["K_HCO3"]], 10^(-pH))
fCO2 <- CO2 / aquaenv[["K0_CO2"]]
}
else
{
print(paste("Error! Underdetermined system!"))
print("To calculate [SumCO2], please enter one pair of: (pH/CO2), (pH,fCO2), (TA,pH), (TA/CO2), (TA/fCO2)")
return(NULL)
}
}
else if (!is.null(TA))
{
if (!is.null(fCO2))
{
CO2 <- aquaenv[["K0_CO2"]] * fCO2
SumCO2 <- calcSumCO2_TA_CO2(aquaenv, TA, CO2)
pH <- -log10(calcH_TA(c(aquaenv, list(SumCO2, "SumCO2")), TA))
}
else if (!is.null(CO2))
{
SumCO2 <- calcSumCO2_TA_CO2(aquaenv, TA, CO2)
fCO2 <- CO2 / aquaenv[["K0_CO2"]]
pH <- -log10(calcH_TA(c(aquaenv, list(SumCO2, "SumCO2")), TA))
}
else
{
print(paste("Error! Underdetermined system!"))
print("To calculate [SumCO2], please enter one pair of: (pH/CO2), (pH,fCO2), (TA,pH), (TA/CO2), (TA/fCO2)")
return(NULL)
}
}
else
{
print(paste("Error! Underdetermined system!"))
print("To calculate [SumCO2], please enter one pair of: (pH/CO2), (pH,fCO2), (TA,pH), (TA/CO2), (TA/fCO2)")
return(NULL)
}
}
else
{
if (is.null(fCO2) && is.null(CO2) && !is.null(pH) && !is.null(TA))
{
TAcalc <- calcTA(aquaenv, 10^(-pH))
print(paste("Error! Overdetermined system: entered TA:", TA, ", calculated TA:", TAcalc))
print("Please enter only one of: pH, TA, CO2, or fCO2.")
return(NULL)
}
if ((!is.null(pH) || !is.null(TA)) && (is.null(fCO2) && is.null(CO2)))
{
if (!is.null(pH))
{
H <- 10^(-pH)
TA <- calcTA(aquaenv, H)
attributes(TA) <- NULL
}
else
{
pH <- -log10(calcH_TA(aquaenv, TA))
}
CO2 <- H2Abi(SumCO2, aquaenv[["K_CO2"]], aquaenv[["K_HCO3"]], 10^(-pH))
attributes(CO2) <- NULL
fCO2 <- CO2 / aquaenv[["K0_CO2"]]
attributes(fCO2) <- NULL
}
else if (!is.null(fCO2) && !is.null(CO2) && is.null(pH) && is.null(TA))
{
fCO2calc <- CO2 / aquaenv[["K0_CO2"]]
print(paste("Error! Overdetermined system: entered fCO2:", fCO2, ", calculated fCO2:", fCO2calc))
print("Please enter only one of: pH, TA, CO2, or fCO2.")
return(NULL)
}
else if ((!is.null(fCO2) || !is.null(CO2)) && (is.null(pH) && is.null(TA)))
{
if(!is.null(fCO2))
{
CO2 <- aquaenv[["K0_CO2"]] * fCO2
attributes(CO2) <- NULL
}
else
{
fCO2 <- CO2 / aquaenv[["K0_CO2"]]
attributes(fCO2) <- NULL
}
H <- calcH_CO2(aquaenv, CO2)
TA <- calcTA(aquaenv, H)
pH <- -log10(H)
}
else if ((!is.null(fCO2) || !is.null(CO2)) && !is.null(pH) && is.null(TA))
{
if (!is.null(fCO2))
{
CO2 <- aquaenv[["K0_CO2"]] * fCO2
}
pHcalc <- -log10(calcH_CO2(aquaenv, CO2))
print(paste("Error! Overdetermined system: entered pH:", pH, ", calculated pH:", pHcalc))
print("Please enter only one of: pH, TA, CO2, or fCO2.")
return(NULL)
}
else if ((!is.null(fCO2) || !is.null(CO2)) && is.null(pH) && !is.null(TA))
{
if (!is.null(fCO2))
{
CO2 <- aquaenv[["K0_CO2"]] * fCO2
}
H <- calcH_CO2(aquaenv, CO2)
TAcalc <- calcTA(aquaenv, H)
print(paste("Error! Overdetermined system: entered TA:", TA, ", calculated TA:", TAcalc))
print("Please enter only one of: pH, TA, CO2, or fCO2.")
return(NULL)
}
}
aquaenv[["TA"]] <- TA ; attr(aquaenv[["TA"]], "unit") <- "mol/kg-soln"
aquaenv[["pH"]] <- pH ; attr(aquaenv[["pH"]], "pH scale") <- "free"
aquaenv[["SumCO2"]] <- SumCO2 ; attr(aquaenv[["SumCO2"]], "unit") <- "mol/kg-soln"
aquaenv[["fCO2"]] <- fCO2 ; attr(aquaenv[["fCO2"]], "unit") <- "atm"
aquaenv[["CO2"]] <- CO2 ; attr(aquaenv[["CO2"]], "unit") <- "mol/kg-soln"
if (speciation)
{
H <- 10^(-pH)
with (aquaenv,
{
aquaenv[["HCO3"]] <<- HAbi (SumCO2, K_CO2, K_HCO3, H) ; attr(aquaenv[["HCO3"]], "unit") <<- "mol/kg-soln"
aquaenv[["CO3"]] <<- Abi (SumCO2, K_CO2, K_HCO3, H) ; attr(aquaenv[["CO3"]], "unit") <<- "mol/kg-soln"
aquaenv[["BOH3"]] <<- HAuni (SumBOH3, K_BOH3, H) ; attr(aquaenv[["BOH3"]], "unit") <<- "mol/kg-soln"
aquaenv[["BOH4"]] <<- Auni (SumBOH3, K_BOH3, H) ; attr(aquaenv[["BOH4"]], "unit") <<- "mol/kg-soln"
aquaenv[["OH"]] <<- K_W / H ; attr(aquaenv[["OH"]], "unit") <<- "mol/kg-soln"
aquaenv[["H3PO4"]] <<- H3Atri(SumH3PO4, K_H3PO4, K_H2PO4, K_HPO4, H) ; attr(aquaenv[["H3PO4"]], "unit") <<- "mol/kg-soln"
aquaenv[["H2PO4"]] <<- H2Atri(SumH3PO4, K_H3PO4, K_H2PO4, K_HPO4, H) ; attr(aquaenv[["H2PO4"]], "unit") <<- "mol/kg-soln"
aquaenv[["HPO4"]] <<- HAtri (SumH3PO4, K_H3PO4, K_H2PO4, K_HPO4, H) ; attr(aquaenv[["HPO4"]], "unit") <<- "mol/kg-soln"
aquaenv[["PO4"]] <<- Atri (SumH3PO4, K_H3PO4, K_H2PO4, K_HPO4, H) ; attr(aquaenv[["PO4"]], "unit") <<- "mol/kg-soln"
aquaenv[["SiOH4"]] <<- H2Abi (SumSiOH4, K_SiOH4, K_SiOOH3, H) ; attr(aquaenv[["SiOH4"]], "unit") <<- "mol/kg-soln"
aquaenv[["SiOOH3"]] <<- HAbi (SumSiOH4, K_SiOH4, K_SiOOH3, H) ; attr(aquaenv[["SiOOH3"]], "unit") <<- "mol/kg-soln"
aquaenv[["SiO2OH2"]]<<- Abi (SumSiOH4, K_SiOH4, K_SiOOH3, H) ; attr(aquaenv[["SiO2OH2"]], "unit") <<- "mol/kg-soln"
aquaenv[["H2S"]] <<- H2Abi (SumH2S, K_H2S, K_HS, H) ; attr(aquaenv[["H2S"]], "unit") <<- "mol/kg-soln"
aquaenv[["HS"]] <<- HAbi (SumH2S, K_H2S, K_HS, H) ; attr(aquaenv[["HS"]], "unit") <<- "mol/kg-soln"
aquaenv[["S2min"]] <<- Abi (SumH2S, K_H2S, K_HS, H) ; attr(aquaenv[["S2min"]], "unit") <<- "mol/kg-soln"
aquaenv[["NH4"]] <<- HAuni (SumNH4, K_NH4, H) ; attr(aquaenv[["NH4"]], "unit") <<- "mol/kg-soln"
aquaenv[["NH3"]] <<- Auni (SumNH4, K_NH4, H) ; attr(aquaenv[["NH3"]], "unit") <<- "mol/kg-soln"
aquaenv[["H2SO4"]] <<- H2Abi (SumH2SO4, K_H2SO4, K_HSO4, H) ; attr(aquaenv[["H2SO4"]], "unit") <<- "mol/kg-soln"
aquaenv[["HSO4"]] <<- HAbi (SumH2SO4, K_H2SO4, K_HSO4, H) ; attr(aquaenv[["HSO4"]], "unit") <<- "mol/kg-soln"
aquaenv[["SO4"]] <<- Abi (SumH2SO4, K_H2SO4, K_HSO4, H) ; attr(aquaenv[["SO4"]], "unit") <<- "mol/kg-soln"
aquaenv[["HF"]] <<- HAuni (SumHF, K_HF, H) ; attr(aquaenv[["HF"]], "unit") <<- "mol/kg-soln"
aquaenv[["F"]] <<- Auni (SumHF, K_HF, H) ; attr(aquaenv[["F"]], "unit") <<- "mol/kg-soln"
aquaenv[["HNO3"]] <<- HAuni (SumHNO3, K_HNO3, H) ; attr(aquaenv[["HNO3"]], "unit") <<- "mol/kg-soln"
aquaenv[["NO3"]] <<- Auni (SumHNO3, K_HNO3, H) ; attr(aquaenv[["NO3"]], "unit") <<- "mol/kg-soln"
aquaenv[["HNO2"]] <<- HAuni (SumHNO2, K_HNO2, H) ; attr(aquaenv[["HNO2"]], "unit") <<- "mol/kg-soln"
aquaenv[["NO2"]] <<- Auni (SumHNO2, K_HNO2, H) ; attr(aquaenv[["NO2"]], "unit") <<- "mol/kg-soln"
aquaenv[["omega_calcite"]] <<- aquaenv[["Ca"]]*aquaenv[["CO3"]]/aquaenv[["Ksp_calcite"]]
attributes(aquaenv[["omega_calcite"]]) <<- NULL
aquaenv[["omega_aragonite"]] <<- aquaenv[["Ca"]]*aquaenv[["CO3"]]/aquaenv[["Ksp_aragonite"]]
attributes(aquaenv[["omega_aragonite"]]) <<- NULL
})
if (revelle)
{
aquaenv[["revelle"]] <- revelle(aquaenv)
attributes(aquaenv[["revelle"]]) <- NULL
}
}
if (dsa)
{
with (aquaenv,
{
if (!((length(SumCO2)==1) && (SumCO2==0)))
{
aquaenv[["c1"]] <<- CO2 /SumCO2 ; attributes(aquaenv[["c1"]]) <<- NULL
aquaenv[["c2"]] <<- HCO3/SumCO2 ; attributes(aquaenv[["c2"]]) <<- NULL
aquaenv[["c3"]] <<- CO3 /SumCO2 ; attributes(aquaenv[["c3"]]) <<- NULL
aquaenv[["dTAdSumCO2"]] <<- aquaenv[["c2"]] + 2*aquaenv[["c3"]]
attr(aquaenv[["dTAdSumCO2"]], "unit") <<- "(mol-TA/kg-soln)/(mol-SumCO2/kg-soln)"
}
if(!((length(SumBOH3)==1) && (SumBOH3==0)))
{
aquaenv[["b1"]] <<- BOH3/SumBOH3 ; attributes(aquaenv[["b1"]]) <<- NULL
aquaenv[["b2"]] <<- BOH4/SumBOH3 ; attributes(aquaenv[["b2"]]) <<- NULL
aquaenv[["dTAdSumBOH3"]] <<- aquaenv[["b2"]]
attr(aquaenv[["dTAdSumBOH3"]], "unit") <<- "(mol-TA/kg-soln)/(mol-SumBOH3/kg-soln)"
}
if(!((length(SumH3PO4)==1) && (SumH3PO4==0)))
{
aquaenv[["p1"]] <<- H3PO4/SumH3PO4 ; attributes(aquaenv[["p1"]]) <<- NULL
aquaenv[["p2"]] <<- H2PO4/SumH3PO4 ; attributes(aquaenv[["p2"]]) <<- NULL
aquaenv[["p3"]] <<- HPO4 /SumH3PO4 ; attributes(aquaenv[["p3"]]) <<- NULL
aquaenv[["p4"]] <<- PO4 /SumH3PO4 ; attributes(aquaenv[["p4"]]) <<- NULL
aquaenv[["dTAdSumH3PO4"]] <<- aquaenv[["p3"]] + 2*aquaenv[["p4"]] - aquaenv[["p1"]]
attr(aquaenv[["dTAdSumH3PO4"]], "unit") <<- "(mol-TA/kg-soln)/(mol-SumH3PO4/kg-soln)"
}
if(!((length(SumSiOH4)==1) && (SumSiOH4==0)))
{
aquaenv[["si1"]] <<- SiOH4 /SumSiOH4 ; attributes(aquaenv[["si1"]]) <<- NULL
aquaenv[["si2"]] <<- SiOOH3 /SumSiOH4 ; attributes(aquaenv[["si2"]]) <<- NULL
aquaenv[["si3"]] <<- SiO2OH2/SumSiOH4 ; attributes(aquaenv[["si3"]]) <<- NULL
aquaenv[["dTAdSumSumSiOH4"]] <<- aquaenv[["si2"]]
attr(aquaenv[["dTAdSumSumSiOH4"]], "unit") <<- "(mol-TA/kg-soln)/(mol-SumSiOH4/kg-soln)"
}
if(!((length(SumH2S)==1) && (SumH2S==0)))
{
aquaenv[["s1"]] <<- H2S /SumH2S ; attributes(aquaenv[["s1"]]) <<- NULL
aquaenv[["s2"]] <<- HS /SumH2S ; attributes(aquaenv[["s2"]]) <<- NULL
aquaenv[["s3"]] <<- S2min/SumH2S ; attributes(aquaenv[["s3"]]) <<- NULL
aquaenv[["dTAdSumH2S"]] <<- aquaenv[["s2"]] + 2*aquaenv[["s3"]]
attr(aquaenv[["dTAdSumH2S"]], "unit") <<- "(mol-TA/kg-soln)/(mol-SumH2S/kg-soln)"
}
if(!((length(SumNH4)==1) && (SumNH4==0)))
{
aquaenv[["n1"]] <<- NH4/SumNH4 ; attributes(aquaenv[["n1"]]) <<- NULL
aquaenv[["n2"]] <<- NH3/SumNH4 ; attributes(aquaenv[["n2"]]) <<- NULL
aquaenv[["dTAdSumNH4"]] <<- aquaenv[["n2"]]
attr(aquaenv[["dTAdSumNH4"]], "unit") <<- "(mol-TA/kg-soln)/(mol-SumNH4/kg-soln)"
}
if(!((length(SumH2SO4)==1) && (SumH2SO4==0)))
{
aquaenv[["so1"]] <<- H2SO4/SumH2SO4 ; attributes(aquaenv[["so1"]]) <<- NULL
aquaenv[["so2"]] <<- HSO4 /SumH2SO4 ; attributes(aquaenv[["so2"]]) <<- NULL
aquaenv[["so3"]] <<- SO4 /SumH2SO4 ; attributes(aquaenv[["so3"]]) <<- NULL
aquaenv[["dTAdSumH2SO4"]] <<- -aquaenv[["so2"]]
attr(aquaenv[["dTAdSumH2SO4"]], "unit") <<- "(mol-TA/kg-soln)/(mol-SumH2SO4/kg-soln)"
}
if(!((length(SumHF)==1) && (SumHF==0)))
{
aquaenv[["f1"]] <<- HF/SumHF ; attributes(aquaenv[["f1"]]) <<- NULL
aquaenv[["f2"]] <<- F /SumHF ; attributes(aquaenv[["f2"]]) <<- NULL
aquaenv[["dTAdSumHF"]] <<- -aquaenv[["f1"]]
attr(aquaenv[["dTAdSumHF"]], "unit") <<- "(mol-TA/kg-soln)/(mol-SumHF/kg-soln)"
}
if(!((length(SumHNO3)==1) && (SumHNO3==0)))
{
aquaenv[["na1"]] <<- HNO3/SumHNO3 ; attributes(aquaenv[["na1"]]) <<- NULL
aquaenv[["na2"]] <<- NO3 /SumHNO3 ; attributes(aquaenv[["na2"]]) <<- NULL
aquaenv[["dTAdSumHNO3"]] <<- -aquaenv[["na1"]]
attr(aquaenv[["dTAdSumHNO3"]], "unit") <<- "(mol-TA/kg-soln)/(mol-SumHNO3/kg-soln)"
}
if(!((length(SumHNO2)==1) && (SumHNO2==0)))
{
aquaenv[["ni1"]] <<- HNO2/SumHNO2 ; attributes(aquaenv[["ni1"]]) <<- NULL
aquaenv[["ni2"]] <<- NO2 /SumHNO2 ; attributes(aquaenv[["ni2"]]) <<- NULL
aquaenv[["dTAdSumHNO2"]] <<- -aquaenv[["ni1"]]
attr(aquaenv[["dTAdSumHNO2"]], "unit") <<- "(mol-TA/kg-soln)/(mol-SumHNO2/kg-soln)"
}
})
aquaenv[["dTAdH"]] <- dTAdH(aquaenv) ; attr(aquaenv[["dTAdH"]], "unit") <- "(mol-TA/kg-soln)/(mol-H/kg-soln)"
aquaenv[["dTAdKdKdS"]] <- dTAdKdKdS(aquaenv) ; attr(aquaenv[["dTAdKdKdS"]], "unit") <- "(mol-TA/kg-soln)/\"psu\""
aquaenv[["dTAdKdKdT"]] <- dTAdKdKdT(aquaenv) ; attr(aquaenv[["dTAdKdKdT"]], "unit") <- "(mol-TA/kg-soln)/K"
aquaenv[["dTAdKdKdp"]] <- dTAdKdKdp(aquaenv) ; attr(aquaenv[["dTAdKdKdp"]], "unit") <- "(mol-TA/kg-soln)/m"
aquaenv[["dTAdKdKdSumH2SO4"]] <- dTAdKdKdSumH2SO4(aquaenv) ; attr(aquaenv[["dTAdKdKdSumH2SO4"]], "unit") <- "(mol-TA/kg-soln)/(mol-SumH2SO4/kg-soln)"
aquaenv[["dTAdKdKdSumHF"]] <- dTAdKdKdSumHF(aquaenv) ; attr(aquaenv[["dTAdKdKdSumHF"]], "unit") <- "(mol-TA/kg-soln)/(mol-SumHF/kg-soln)"
}
}
return(aquaenv)
}
}
plot.aquaenv <- function(x, xval, what=NULL, bjerrum=FALSE, cumulative=FALSE, newdevice=TRUE, setpar=TRUE, device="x11", ...)
{
if ((!bjerrum) && (!cumulative))
{
if (is.null(what))
{
plotall(aquaenv=x, xval=xval, newdevice=newdevice, setpar=setpar, device=device, ...)
}
else
{
selectplot(aquaenv=x, xval=xval, what=what, newdevice=newdevice, setpar=setpar, device=device, ...)
}
}
else if (bjerrum)
{
bjerrumplot(aquaenv=x, what=what, newdevice=newdevice, setpar=setpar, device=device, ...)
}
else
{
cumulativeplot(aquaenv=x, xval=xval, what=what, newdevice=newdevice, setpar=setpar, device=device, ...)
}
if (!(device=="x11"))
{
dev.off()
}
}
as.data.frame.aquaenv <- function(x, ...)
{
len <- length(x)
temp <- list()
for (e in x)
{
if (length(e) > 1)
{
temp <- c(temp, list(e))
}
else
{
temp <- c(temp, list(rep(e,len)))
}
}
names(temp) <- names(x)
return(as.data.frame(temp))
}
BufferFactors <- function(ae = NULL, parameters = NA,
species = c("SumCO2"), k_w = NULL,
k_co2 = NULL, k_hco3 = NULL, k_boh3 = NULL,
k_hso4 = NULL, k_hf = NULL, k1k2 = "lueker",
khf = "dickson", khso4 = "dickson")
{
if(!is.null(ae)) {
if((class(ae)=="aquaenv")==FALSE) {
print(paste("Error! Object 'ae' is not of class 'aquaenv"))
return(NULL) } else {
if(is.na(parameters["DIC"])) {
parameters["DIC"] <- ae$SumCO2}
if(is.na(parameters["TotNH3"])) {
parameters["TotNH3"] <- ae$SumNH4}
if(is.na(parameters["TotP"])) {
parameters["TotP"] <- ae$SumH3PO4}
if(is.na(parameters["TotNO3"])) {
parameters["TotNO3"] <- ae$SumHNO3}
if(is.na(parameters["TotNO2"])) {
parameters["TotNO2"] <- ae$SumHNO2}
if(is.na(parameters["TotS"])) {
parameters["TotS"] <- ae$SumH3PO4}
if(is.na(parameters["TotSi"])) {
parameters["TotSi"] <- ae$SumSiOH4}
if(is.na(parameters["TB"])) {
parameters["TB"] <- ae$SumBOH3}
if(is.na(parameters["TotF"])) {
parameters["TotF"] <- ae$SumHF}
if(is.na(parameters["TotSO4"])) {
parameters["TotSO4"] <- ae$SumH2SO4}
if(is.na(parameters["sal"])) {
parameters["sal"] <- ae$S}
if(is.na(parameters["temp"])) {
parameters["temp"] <- ae$t}
if(is.na(parameters["pres"])) {
parameters["pres"] <- ae$p}
if(is.na(parameters["Alk"])) {
parameters["Alk"] <- ae$TA}
}
} else {
if(is.na(parameters["DIC"])) {
parameters["DIC"] <- 1e-6*2017.14}
if(is.na(parameters["TotNH3"])) {parameters["TotNH3"] <-
convert(1e-6*0.3, "conc", "molar2molin", S = 34.617,
t = 18.252, p = 0.1*1.008)}
if(is.na(parameters["TotP"])) {parameters["TotP"] <-
convert(1e-6*0.530, "conc", "molar2molin", S = 34.617,
t = 18.252, p = 0.1*1.008)}
if(is.na(parameters["TotNO3"])) {parameters["TotNO3"] <-
convert(1e-6*5.207, "conc", "molar2molin", S = 34.617,
t = 18.252, p = 0.1*1.008)}
if(is.na(parameters["TotNO2"])) {parameters["TotNO2"] <-
convert(1e-6*0.1, "conc", "molar2molin", S = 34.617,
t = 18.252, p = 0.1*1.008)}
if(is.na(parameters["TotS"])) {parameters["TotS"] <-
convert(1e-9*2.35, "conc", "molar2molin", S = 34.617,
t = 18.252, p = 0.1*1.008)}
if(is.na(parameters["TotSi"])) {parameters["TotSi"] <-
convert(1e-6*7.466, "conc", "molar2molin", S = 34.617,
t = 18.252, p = 0.1*1.008)}
if(is.na(parameters["TB"])) {
parameters["TB"] <- 1e-6*428.4}
if(is.na(parameters["TotF"])) {
parameters["TotF"] <- 1e-6*67.579}
if(is.na(parameters["TotSO4"])) {
parameters["TotSO4"] <- 0.02793}
if(is.na(parameters["sal"])) {
parameters["sal"] <- 34.617}
if(is.na(parameters["temp"])) {
parameters["temp"] <- 18.252}
if(is.na(parameters["pres"])) {
parameters["pres"] <- 0.1*1.008}
if(is.na(parameters["Alk"])) {
parameters["Alk"] <- 1e-6*2304.91}
}
with(as.list(parameters),
{
ae <- aquaenv(S=sal, t=temp, p=pres, TA=Alk, SumCO2=DIC, SumBOH3 =
TB, SumNH4 = TotNH3, SumH3PO4 = TotP, SumHNO3 =
TotNO3, SumHNO2 = TotNO2, SumH2S = TotS, SumSiOH4 =
TotSi, SumH2SO4 = TotSO4, SumHF = TotF, speciation =
TRUE, dsa = TRUE, k_w = k_w, k_co2 = k_co2,
k_hco3 = k_hco3, k_boh3 = k_boh3, k_hso4 = k_hso4,
k_hf = k_hf, k1k2 = k1k2, khf = khf, khso4 = khso4)
with(as.list(ae),
{
H <- 10^(-pH)
dTA.dH <- dtotX.dH <- dTA.dX <- dtotX.dX <- dTA.dpH <- dtotX.dpH <-
dH.dTA <- dX.dTA <- dX.dtotX <- dpH.dTA <-
rep(NA, length.out = length(species))
dH.dtotX <- dpH.dtotX <- rep(NA, length.out = length(species) + 5)
names(dTA.dH) <- names(dtotX.dH) <- names(dTA.dX) <-
names(dtotX.dX) <- names(dTA.dpH) <- names(dtotX.dpH) <-
names(dH.dTA) <- names(dX.dTA) <- names(dX.dtotX) <-
names(dpH.dTA) <- species
names(dH.dtotX) <- names(dpH.dtotX) <-
c(species,"sal", "temp", "pres", "SumH2SO4_scaleconv",
"SumHF_scaleconv")
TA.species <- function(X.name)
{
if(X.name == "CO2" || X.name == "HCO3" || X.name == "CO3" ||
X.name == "SumCO2") {HCO3 + 2*CO3} else
if(X.name == "NH3" || X.name == "NH4" || X.name == "SumNH4") {
NH3} else
if(X.name == "H2PO4" || X.name == "H3PO4" ||
X.name == "HPO4" || X.name == "PO4" ||
X.name == "SumH3PO4") {-H3PO4 + HPO4 + 2*PO4} else
if(X.name == "NO3" || X.name == "HNO3" ||
X.name == "SumHNO3") {-HNO3} else
if(X.name == "NO2" || X.name == "HNO2" ||
X.name == "SumHNO2") {-HNO2} else
if(X.name == "H2S" || X.name == "HS" ||
X.name == "S2min" || X.name == "SumH2S") {
HS + 2*S2min} else
if(X.name == "SiOH4" || X.name == "SiOOH3" ||
X.name == "SiO2OH2" || X.name == "SumSiOH4") {
SiOOH3 + 2*SiO2OH2} else
if(X.name == "BOH3" || X.name == "BOH4" ||
X.name == "SumBOH3") {BOH4} else
if(X.name == "F" || X.name == "HF" ||
X.name == "SumHF") {-HF} else
if(X.name == "SO4" || X.name == "H2SO4" ||
X.name == "HSO4" || X.name == "SumH2SO4") {
-2*H2SO4 - HSO4} else
NULL
}
n.function <- function(X.name)
{
if(X.name == "CO2" || X.name == "BOH3" || X.name == "NH4" ||
X.name == "H2PO4" || X.name == "NO3" || X.name == "NO2" ||
X.name == "H2S" || X.name == "SiOH4" || X.name == "F" ||
X.name == "SO4" || X.name == "SumCO2" || X.name == "SumBOH3" ||
X.name == "SumNH4" || X.name == "SumH3PO4" ||
X.name == "SumHNO3" || X.name == "SumHNO2" ||
X.name == "SumH2S" || X.name == "SumSiOH4" ||
X.name == "SumHF" || X.name == "SumH2SO4") {n <- 0} else
if(X.name == "HCO3" || X.name == "NH3" ||
X.name == "HPO4" || X.name == "HS" ||
X.name == "SiOOH3" || X.name == "BOH4") {n <- 1} else
if(X.name == "CO3" || X.name == "PO4" || X.name == "S2min" ||
X.name == "SiO2OH2") {n <- 2} else
if(X.name == "H3PO4" || X.name == "HNO3" ||
X.name == "HNO2" || X.name == "HF" || X.name == "HSO4") {
n <- -1} else
if(X.name == "H2SO4") {n <- -2} else
NULL
}
dTAdH.function <- function(X.name)
{
n <- n.function(X.name)
TA.X <- TA.species(X.name)
if(parameters["DIC"]!=0) {
if(X.name == "CO2" || X.name == "HCO3" || X.name == "CO3" ||
X.name == "SumCO2") {
dTAdH.CO2 <- (-1/H)*(-n*TA.X + HCO3 + 4*CO3)} else {
dTAdH.CO2 <- (-1/H)*(HCO3*(c1-c3) + 2*CO3*(2*c1+c2))}
} else dTAdH.CO2 <- 0
if(parameters["TotNH3"]!=0) {
if(X.name == "NH3" || X.name == "NH4" || X.name == "SumNH4") {
dTAdH.NH4 <- (-1/H)*(-n*TA.X + NH3)} else {
dTAdH.NH4 <- (-1/H)*(NH3*n1)}
} else dTAdH.NH4 <- 0
if(parameters["TotP"]!=0) {
if(X.name == "H2PO4" || X.name == "H3PO4" || X.name == "HPO4" ||
X.name == "PO4" || X.name == "SumH3PO4") {
dTAdH.H2PO4 <- (-1/H)*(-n*TA.X + H3PO4 + HPO4 + 4*PO4)} else {
dTAdH.H2PO4 <- (-1/H)*(-H3PO4*(-p2-2*p3-3*p4) +
HPO4*(2*p1+p2-p4) + 2*PO4*(3*p1+2*p2+p3))}
} else dTAdH.H2PO4 <- 0
if(parameters["TotNO3"]!=0) {
if(X.name == "NO3" || X.name == "HNO3" || X.name == "SumHNO3") {
dTAdH.NO3 <- (-1/H)*(-n*TA.X + HNO3)} else {
dTAdH.NO3 <- (-1/H)*(-HNO3*na2)}
} else dTAdH.NO3 <- 0
if(parameters["TotNO2"]!=0) {
if(X.name == "NO2" || X.name == "HNO2" || X.name == "SumHNO2") {
dTAdH.NO2 <- (-1/H)*(-n*TA.X + HNO2)} else {
dTAdH.NO2 <- (-1/H)*(-HNO2*ni2)}
} else dTAdH.NO2 <- 0
if(parameters["TotS"]!=0) {
if(X.name == "H2S" || X.name == "HS" || X.name == "S2min" ||
X.name == "SumH2S") {
dTAdH.H2S <- (-1/H)*(-n*TA.X + HS + 4*S2min)} else {
dTAdH.H2S <- (-1/H)*(HS*(s1-s3) + 2*S2min*(2*s1+s2))}
} else dTAdH.H2S <- 0
if(parameters["TotSi"]!=0) {
if(X.name == "SiOH4" || X.name == "SiOOH3" ||
X.name == "SiO2OH2" || X.name == "SumSiOH4") {
dTAdH.SiOH4 <- (-1/H)*(-n*TA.X + SiOOH3 + 4*SiO2OH2)} else {
dTAdH.SiOH4 <- (-1/H)*(SiOOH3*(si1-si3) +
2*SiO2OH2*(2*si1+si2))}
} else dTAdH.SiOH4 <- 0
if(parameters["TB"]!=0) {
if(X.name == "BOH3" || X.name == "BOH4" || X.name == "SumBOH3") {
dTAdH.BOH3 <- (-1/H)*(-n*TA.X + BOH4)} else {
dTAdH.BOH3 <-(-1/H)*(BOH4*b1)}
} else dTAdH.BOH3 <- 0
if(parameters["TotF"]!=0) {
if(X.name == "F" || X.name == "HF" || X.name == "SumHF") {
dTAdH.F <- (-1/H)*(-n*TA.X + HF)} else {
dTAdH.F <- (-1/H)*(-HF*f2)}
} else dTAdH.F <- 0
if(parameters["TotSO4"]!=0) {
if(X.name == "SO4" || X.name == "H2SO4" || X.name == "HSO4" ||
X.name == "SumH2SO4") {
dTAdH.SO4 <- (-1/H)*(-n*TA.X + 4*H2SO4 + HSO4)} else {
dTAdH.SO4 <- (-1/H)*(-2*H2SO4*(-so2-2*so3) - HSO4*(so1-so3))}
} else dTAdH.SO4 <- 0
dTAdH.H <- (-1/H)*(OH+H)
return(dTAdH.CO2 + dTAdH.NH4 + dTAdH.H2PO4 + dTAdH.NO3 +
dTAdH.NO2 + dTAdH.H2S + dTAdH.SiOH4 + dTAdH.BOH3 + dTAdH.F +
dTAdH.SO4 + dTAdH.H)
}
totX.function <- function(X.name)
{
if(X.name == "CO2" || X.name == "HCO3" || X.name == "CO3" ||
X.name == "SumCO2") {SumCO2} else
if(X.name == "NH3" || X.name == "NH4" || X.name == "SumNH4") {
SumNH4} else
if(X.name == "H2PO4" || X.name == "H3PO4" ||
X.name == "HPO4" || X.name == "PO4" ||
X.name == "SumH3PO4") {SumH3PO4} else
if(X.name == "NO3" || X.name == "HNO3" ||
X.name == "SumHNO3") {SumHNO3} else
if(X.name == "NO2" || X.name == "HNO2" ||
X.name == "SumHNO2") {SumHNO2} else
if(X.name == "H2S" || X.name == "HS" ||
X.name == "S2min" || X.name == "SumH2S") {SumH2S} else
if(X.name == "SiOH4" || X.name == "SiOOH3" ||
X.name == "SiO2OH2" || X.name == "SumSiOH4") {
SumSiOH4} else
if(X.name == "BOH3" || X.name == "BOH4" ||
X.name == "SumBOH3") {SumBOH3} else
if(X.name == "F" || X.name == "HF" ||
X.name == "SumHF") {SumHF} else
if(X.name == "SO4" || X.name == "H2SO4" ||
X.name == "HSO4" || X.name == "SumH2SO4") {
SumH2SO4} else
NULL
}
Revelle_func <- function(species)
{
X.name <- "CO2"
X <- get(X.name)
n <- n.function(X.name)
TA.X <- TA.species(X.name)
totX <- totX.function(X.name)
dTA.dH <- dTAdH.function(X.name)
dX.dtotX <- X * H * dTA.dH / (TA.X^2 + (H*dTA.dH - n*TA.X)*totX)
RF <- as.numeric(ae$SumCO2 / ae$CO2 * dX.dtotX)
return(RF)
}
for (i in 1:length(species))
{
X.name <- species[i]
if(X.name == "SumCO2") X <- get("CO2") else
if(X.name == "SumNH4") X <- get("NH4") else
if(X.name == "SumH3PO4") X <- get("H2PO4") else
if(X.name == "SumHNO3") X <- get("NO3") else
if(X.name == "SumHNO2") X <- get("NO2") else
if(X.name == "SumH2S") X <- get("H2S") else
if(X.name == "SumSiOH4") X <- get("SiOH4") else
if(X.name == "SumBOH3") X <- get("BOH3") else
if(X.name == "SumHF") X <- get("F") else
if(X.name == "SumH2SO4") X <- get("SO4") else
X <- get(species[i])
n <- n.function(X.name)
TA.X <- TA.species(X.name)
totX <- totX.function(X.name)
dTA.dH[i] <- dTAdH.function(X.name)
dtotX.dH[i] <- (n*totX - TA.X) / H
dTA.dX[i] <- TA.X / X
dtotX.dX[i] <- totX / X
dH.dpH <- -log(10)*H
dTA.dpH[i] <- dH.dpH * dTA.dH[i]
dtotX.dpH[i] <- dH.dpH * dtotX.dH[i]
dH.dTA[i] <- totX*H / (TA.X^2 + (H*dTA.dH[i] - n*TA.X)*totX)
dH.dtotX[i] <- -TA.X*H / (TA.X^2 + (H*dTA.dH[i] - n*TA.X)*totX)
dX.dTA[i] <- -X * (n*totX - TA.X) / (TA.X^2 + (H*dTA.dH[i] -
n*TA.X)*totX)
dX.dtotX[i] <- X * H * dTA.dH[i] / (TA.X^2 + (H*dTA.dH[i] -
n*TA.X)*totX)
dpH.dH <- 1/(-log(10)*H)
dpH.dTA[i] <- dpH.dH * dH.dTA[i]
dpH.dtotX[i] <- dpH.dH * dH.dtotX[i]
}
RF <- Revelle_func(species)
dH.dtotX[1+length(species)] <- (dTAdKdKdS) / (-dTAdH)
dH.dtotX[2+length(species)] <- (dTAdKdKdT) / (-dTAdH)
dH.dtotX[3+length(species)] <- (dTAdKdKdp) / (-dTAdH)
dH.dtotX[4+length(species)] <- (dTAdKdKdSumH2SO4) / (-dTAdH)
dH.dtotX[5+length(species)] <- (dTAdKdKdSumHF) / (-dTAdH)
dpH.dtotX[1+length(species)] <- dpH.dH * dH.dtotX[1+length(species)]
dpH.dtotX[2+length(species)] <- dpH.dH * dH.dtotX[2+length(species)]
dpH.dtotX[3+length(species)] <- dpH.dH * dH.dtotX[3+length(species)]
dpH.dtotX[4+length(species)] <- dpH.dH * dH.dtotX[4+length(species)]
dpH.dtotX[5+length(species)] <- dpH.dH * dH.dtotX[5+length(species)]
return(list(ae = ae, dTA.dH = dTA.dH, dtotX.dH = dtotX.dH,
dTA.dX = dTA.dX, dtotX.dX = dtotX.dX, dTA.dpH = dTA.dpH,
dtotX.dpH = dtotX.dpH, dH.dTA = dH.dTA,
dH.dtotX = dH.dtotX, dX.dTA = dX.dTA,
dX.dtotX = dX.dtotX, dpH.dTA = dpH.dTA,
dpH.dtotX = dpH.dtotX, beta.H = as.numeric(dTAdH),
RF = RF))
})
})
} |
context("download_r5")
testthat::skip_on_cran()
test_that("download_r5 - expected behavior", {
testthat::expect_vector(download_r5(force_update = TRUE, temp_dir = TRUE))
testthat::expect_vector(download_r5(force_update = TRUE, temp_dir = FALSE))
testthat::expect_vector(download_r5(force_update = FALSE, temp_dir = TRUE))
testthat::expect_vector(download_r5(force_update = FALSE, quiet = TRUE))
})
test_that("download_r5 - expected errors", {
testthat::expect_error( download_r5(version = "0") )
testthat::expect_error( download_r5(version = NULL ) )
testthat::expect_error(download_r5(force_update = 'a'))
testthat::expect_error(download_r5(quiet = 'a'))
testthat::expect_error(download_r5(temp_dir = 'a'))
}) |
context("Checking misc: to.long() function")
source("settings.r")
test_that("to.long() works correctly for measure='MD'", {
dat <- dat.normand1999
sav <- to.long(measure="MD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4)
sav <- sav[,c(1,10:13)]
expected <- structure(list(study = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L), group = structure(c(2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L), .Label = c("2", "1"), class = "factor"), mean = c(55L, 75L, 27L, 29L, 64L, 119L, 66L, 137L), sd = c(47L, 64L, 7L, 4L, 17L, 29L, 20L, 48L), n = c(155L, 156L, 31L, 32L, 75L, 71L, 18L, 18L)), class = "data.frame", row.names = c(NA, 8L))
expect_equivalent(sav, expected)
})
test_that("to.table() works correctly for measure='MD'", {
dat <- dat.normand1999
sav <- to.table(measure="MD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4)
expected <- structure(c(55L, 75L, 47L, 64L, 155L, 156L, 27L, 29L, 7L, 4L, 31L, 32L, 64L, 119L, 17L, 29L, 75L, 71L, 66L, 137L, 20L, 48L, 18L, 18L), .Dim = 2:4, .Dimnames = list(c("Grp1", "Grp2"), c("Mean", "SD", "n"), c("1", "2", "3", "4")))
expect_equivalent(sav, expected)
})
test_that("to.long() works correctly for measure='COR'", {
dat <- dat.molloy2014
sav <- to.long(measure="COR", ri=ri, ni=ni, data=dat, subset=1:4)
sav <- sav[,c(11:13)]
expected <- structure(list(study = structure(1:4, .Label = c("1", "2", "3", "4"), class = "factor"), r = c(0.187, 0.162, 0.34, 0.32), n = c(109L, 749L, 55L, 107L)), class = "data.frame", row.names = c(NA, 4L ))
expect_equivalent(sav, expected)
})
test_that("to.table() works correctly for measure='COR'", {
dat <- dat.molloy2014
sav <- to.table(measure="COR", ri=ri, ni=ni, data=dat, subset=1:4)
expected <- structure(c(0.187, 109, 0.162, 749, 0.34, 55, 0.32, 107), .Dim = c(1L, 2L, 4L), .Dimnames = list("Grp", c("r", "n"), c("1", "2", "3", "4")))
expect_equivalent(sav, expected)
})
test_that("to.long() works correctly for measure='PR'", {
dat <- dat.debruin2009
sav <- to.long(measure="PR", xi=xi, ni=ni, data=dat, subset=1:4)
sav <- sav[,c(11:13)]
expected <- structure(list(study = structure(1:4, .Label = c("1", "2", "3", "4"), class = "factor"), out1 = c(11L, 24L, 179L, 82L), out2 = c(18L, 9L, 147L, 158L)), class = "data.frame", row.names = c(NA, 4L))
expect_equivalent(sav, expected)
})
test_that("to.table() works correctly for measure='PR'", {
dat <- dat.debruin2009
sav <- to.table(measure="PR", xi=xi, ni=ni, data=dat, subset=1:4)
expected <- structure(c(11, 18, 24, 9, 179, 147, 82, 158), .Dim = c(1, 2, 4), .Dimnames = list("Grp", c("Out1", "Out2"), c("1", "2", "3", "4")))
expect_equivalent(sav, expected)
})
test_that("to.long() works correctly for measure='IR'", {
dat <- dat.hart1999
sav <- to.long(measure="IR", xi=x1i, ti=t1i, data=dat, subset=1:4)
sav <- sav[,c(1,14:15)]
expected <- structure(list(trial = 1:4, events = c(9L, 8L, 3L, 6L), ptime = c(413L, 263L, 487L, 237L)), class = "data.frame", row.names = c(NA, 4L))
expect_equivalent(sav, expected)
})
test_that("to.table() works correctly for measure='IR'", {
dat <- dat.hart1999
sav <- to.table(measure="IR", xi=x1i, ti=t1i, data=dat, subset=1:4)
expected <- structure(c(9, 413, 8, 263, 3, 487, 6, 237), .Dim = c(1, 2, 4), .Dimnames = list("Grp", c("Events", "Person-Time"), c("1", "2", "3", "4")))
expect_equivalent(sav, expected)
})
test_that("to.long() works correctly for measure='MN'", {
dat <- dat.normand1999
sav <- to.long(measure="MN", mi=m1i, sdi=sd1i, ni=n1i, data=dat, subset=1:4)
sav <- sav[,c(1,10:12)]
expected <- structure(list(study = 1:4, mean = c(55L, 27L, 64L, 66L), sd = c(47L, 7L, 17L, 20L), n = c(155L, 31L, 75L, 18L)), class = "data.frame", row.names = c(NA, 4L))
expect_equivalent(sav, expected)
})
test_that("to.table() works correctly for measure='MN'", {
dat <- dat.normand1999
sav <- to.table(measure="MN", mi=m1i, sdi=sd1i, ni=n1i, data=dat, subset=1:4)
expected <- structure(c(55, 47, 155, 27, 7, 31, 64, 17, 75, 66, 20, 18), .Dim = c(1, 3, 4), .Dimnames = list("Grp", c("Mean", "SD", "n"), c("1", "2", "3", "4")))
expect_equivalent(sav, expected)
})
datT <- data.frame(
m_pre = c(30.6, 23.5, 0.5, 53.4, 35.6),
m_post = c(38.5, 26.8, 0.7, 75.9, 36.0),
sd_pre = c(15.0, 3.1, 0.1, 14.5, 4.7),
sd_post = c(11.6, 4.1, 0.1, 4.4, 4.6),
ni = c(20, 50, 9, 10, 14),
ri = c(.47, .64, .77, .89, .44))
test_that("to.long() works correctly for measure='SMCR'", {
sav <- to.long(measure="SMCR", m1i=m_post, m2i=m_pre, sd1i=sd_pre, ni=ni, ri=ri, data=datT, subset=2:4)
sav <- sav[,c(7:12)]
expected <- structure(list(study = structure(1:3, .Label = c("2", "3", "4"), class = "factor"), mean1 = c(26.8, 0.7, 75.9), mean2 = c(23.5, 0.5, 53.4), sd1 = c(3.1, 0.1, 14.5), n = c(50, 9, 10), r = c(0.64, 0.77, 0.89)), class = "data.frame", row.names = c(NA, 3L))
expect_equivalent(sav, expected)
})
test_that("to.table() works correctly for measure='SMCR'", {
sav <- to.table(measure="SMCR", m1i=m_post, m2i=m_pre, sd1i=sd_pre, ni=ni, ri=ri, data=datT, subset=2:4)
expected <- structure(c(26.8, 23.5, 3.1, 50, 0.64, 0.7, 0.5, 0.1, 9, 0.77, 75.9, 53.4, 14.5, 10, 0.89), .Dim = c(1, 5, 3), .Dimnames = list("Grp", c("Mean1", "Mean2", "SD1", "n", "r"), c("2", "3", "4")))
expect_equivalent(sav, expected)
})
test_that("to.long() works correctly for measure='ARAW'", {
dat <- dat.bonett2010
sav <- to.long(measure="AHW", ai=ai, mi=mi, ni=ni, data=dat, subset=1:4)
sav <- sav[,c(1,8:10)]
expected <- structure(list(study = 1:4, alpha = c(0.93, 0.91, 0.94, 0.89), m = c(20L, 20L, 20L, 20L), n = c(103L, 64L, 118L, 401L)), class = "data.frame", row.names = c(NA, 4L))
expect_equivalent(sav, expected)
})
test_that("to.table() works correctly for measure='ARAW'", {
dat <- dat.bonett2010
sav <- to.table(measure="AHW", ai=ai, mi=mi, ni=ni, data=dat, subset=1:4)
expected <- structure(c(0.93, 20, 103, 0.91, 20, 64, 0.94, 20, 118, 0.89, 20, 401), .Dim = c(1, 3, 4), .Dimnames = list("Grp", c("alpha", "m", "n"), c("1", "2", "3", "4")))
expect_equivalent(sav, expected)
})
test_that("to.wide() works correctly.", {
dat.l <- dat.hasselblad1998
dat.c <- to.wide(dat.l, study="study", grp="trt", ref="no_contact", grpvars=6:7)
expect_equivalent(dat.c$xi.1, c(363, 10, 23, 9, 237, 9, 16, 31, 26, 29, 12, 17, 77, 21, 107, 20, 3, 32, 8, 34, 9, 19, 143, 36, 73, 54))
expect_equivalent(dat.c$xi.2, c(75, 9, 9, 2, 58, 0, 20, 3, 1, 11, 11, 6, 79, 18, 64, 12, 9, 7, 5, 20, 0, 8, 95, 15, 78, 69))
expect_equivalent(dat.c$comp, c("in-no", "gr-no", "in-no", "in-no", "in-no", "in-no", "in-se", "in-no", "in-no", "gr-se", "in-se", "in-no", "se-no", "se-no", "in-no", "gr-in", "gr-in", "gr-se", "in-no", "in-no", "gr-no", "se-no", "in-no", "in-no", "in-no", "in-no"))
expect_equivalent(dat.c$design, c("in-no", "gr-in-no", "gr-in-no", "in-no", "in-no", "in-no", "in-se", "in-no", "in-no", "gr-in-se", "gr-in-se", "in-no", "se-no", "se-no", "in-no", "gr-in", "gr-in", "gr-se", "in-no", "in-no", "gr-no", "se-no", "in-no", "in-no", "in-no", "in-no"))
dat.l$trt <- factor(dat.l$trt, levels=c("no_contact", "ind_counseling", "grp_counseling", "self_help"))
dat.c <- to.wide(dat.l, study="study", grp="trt", grpvars=5:7, postfix=c(".T",".C"), minlen=1)
expect_equivalent(dat.c$xi.T, c(363, 23, 10, 9, 237, 9, 16, 31, 26, 12, 29, 17, 77, 21, 107, 12, 9, 32, 8, 34, 9, 19, 143, 36, 73, 54))
expect_equivalent(dat.c$xi.C, c(75, 9, 9, 2, 58, 0, 20, 3, 1, 11, 11, 6, 79, 18, 64, 20, 3, 7, 5, 20, 0, 8, 95, 15, 78, 69))
expect_equivalent(dat.c$comp, c("i-n", "i-n", "g-n", "i-n", "i-n", "i-n", "i-s", "i-n", "i-n", "i-s", "g-s", "i-n", "s-n", "s-n", "i-n", "i-g", "i-g", "g-s", "i-n", "i-n", "g-n", "s-n", "i-n", "i-n", "i-n", "i-n"))
expect_equivalent(dat.c$design, c("i-n", "i-g-n", "i-g-n", "i-n", "i-n", "i-n", "i-s", "i-n", "i-n", "i-g-s", "i-g-s", "i-n", "s-n", "s-n", "i-n", "i-g", "i-g", "g-s", "i-n", "i-n", "g-n", "s-n", "i-n", "i-n", "i-n", "i-n"))
})
rm(list=ls()) |
eachcol.apply<-function(x,y,indices = NULL,oper = "*",apply = "sum"){
.Call(Rfast_eachcol_apply,x,y,indices,oper,apply)
} |
sjplot <- function(data, ..., fun = c("grpfrq", "xtab", "aov1", "likert")) {
if (!is.data.frame(data)) stop("`data` must be a data frame.", call. = F)
fun <- match.arg(fun)
x <- get_dot_data(data, match.call(expand.dots = FALSE)$`...`)
args <- match.call(expand.dots = FALSE)$`...`
args <- args[names(args) != ""]
p <- NULL
pl <- NULL
if (inherits(x, "grouped_df")) {
grps <- get_grouped_data(x)
for (i in seq_len(nrow(grps))) {
tmp <- sjlabelled::copy_labels(grps$data[[i]], x)
tmp.args <- get_grouped_title(x, grps, args, i, sep = "\n")
plots <- plot_sj(tmp, fun, tmp.args)
if (!is.null(plots$p)) pl <- c(pl, list(plots$p))
if (!is.null(plots$pl)) pl <- c(pl, plots$pl)
}
} else {
plots <- plot_sj(x, fun, args)
p <- plots$p
pl <- plots$pl
}
if (!is.null(pl)) {
for (p in pl) suppressWarnings(graphics::plot(p))
invisible(pl)
} else {
suppressWarnings(graphics::plot(p))
invisible(p)
}
}
sjtab <- function(data, ..., fun = c("xtab", "stackfrq")) {
if (!is.data.frame(data)) stop("`data` must be a data frame.", call. = F)
fun <- match.arg(fun)
x <- get_dot_data(data, match.call(expand.dots = FALSE)$`...`)
tabs.list <- list()
args <- match.call(expand.dots = FALSE)$`...`
args <- args[names(args) != ""]
if (inherits(x, "grouped_df")) {
grps <- get_grouped_data(x)
for (i in seq_len(nrow(grps))) {
tmp <- sjlabelled::copy_labels(grps$data[[i]], x)
tmp.args <- get_grouped_title(x, grps, args, i, sep = "<br>")
tl <- tab_sj(tmp, fun, tmp.args)
tabs.list[[length(tabs.list) + 1]] <- tl
}
final.table <- paste0(
tl$header,
tl$page.style,
"\n</head>\n<body>\n"
)
final.knitr <- ""
for (i in seq_len(length(tabs.list))) {
final.table <- paste0(final.table, tabs.list[[i]]$page.content, sep = "\n<p> </p>\n")
final.knitr <- paste0(final.knitr, tabs.list[[i]]$knitr, sep = "\n<p> </p>\n")
}
final.table <- paste0(final.table, "\n</body>\n</html>")
return(structure(
class = c("sjTable", "sjtab"),
list(
page.style = tl$page.style,
header = tl$header,
page.content = final.table,
page.complete = final.table,
knitr = final.knitr,
file = eval(args[["file"]]),
viewer = if (is.null(args[["use.viewer"]])) TRUE else eval(args[["use.viewer"]])
)
))
} else {
tab_sj(x, fun, args)
}
}
get_grouped_plottitle <- function(x, grps, i, sep = "\n") {
tp <- get_title_part(x, grps, 1, i)
title <- sprintf("%s: %s", tp[1], tp[2])
if (length(dplyr::group_vars(x)) > 1) {
tp <- get_title_part(x, grps, 2, i)
title <- sprintf("%s%s%s: %s", title, sep, tp[1], tp[2])
}
title
}
get_grouped_title <- function(x, grps, args, i, sep = "\n") {
tp <- get_title_part(x, grps, 1, i)
title <- sprintf("%s: %s", tp[1], tp[2])
if (length(dplyr::group_vars(x)) > 1) {
tp <- get_title_part(x, grps, 2, i)
title <- sprintf("%s%s%s: %s", title, sep, tp[1], tp[2])
}
c(args, `title` = title)
}
get_title_part <- function(x, grps, level, i) {
var.name <- colnames(grps)[level]
vals <- sjlabelled::get_values(x[[var.name]])
if (is.null(vals)) vals <- unique(x[[var.name]])
lab.pos <- which(vals == grps[[var.name]][i])
t1 <- sjlabelled::get_label(x[[var.name]], def.value = var.name)
t2 <- sjlabelled::get_labels(x[[var.name]])[lab.pos]
if (is.null(t2)) t2 <- vals[lab.pos]
c(t1, t2)
}
get_grouped_data <- function(x) {
grps <- x %>%
dplyr::group_modify(~ dplyr::filter(.x, stats::complete.cases(.y))) %>%
tidyr::nest()
if (length(dplyr::group_vars(x)) == 1)
reihe <- order(grps[[1]])
else
reihe <- order(grps[[1]], grps[[2]])
grps <- grps[reihe, ]
grps
}
plot_sj <- function(x, fun, args) {
p <- NULL
pl <- NULL
if (sjmisc::is_empty(args)) {
if (fun == "grpfrq") {
p <- plot_grpfrq(x[[1]], x[[2]])
} else if (fun == "likert") {
p <- plot_likert(x)
} else if (fun == "xtab") {
p <- plot_xtab(x[[1]], x[[2]])
} else if (fun == "aov1") {
p <- sjp.aov1(x[[1]], x[[2]])
}
} else {
if (fun == "grpfrq") {
p <- do.call(plot_grpfrq, args = c(list(var.cnt = x[[1]], var.grp = x[[2]]), args))
} else if (fun == "likert") {
p <- do.call(plot_likert, args = c(list(items = x), args))
} else if (fun == "xtab") {
p <- do.call(plot_xtab, args = c(list(x = x[[1]], grp = x[[2]]), args))
} else if (fun == "aov1") {
p <- do.call(sjp.aov1, args = c(list(var.dep = x[[1]], var.grp = x[[2]]), args))
}
}
list(p = p, pl = pl)
}
tab_sj <- function(x, fun, args) {
if (sjmisc::is_empty(args)) {
if (fun == "xtab") {
tab_xtab(x[[1]], x[[2]])
} else if (fun == "stackfrq") {
tab_stackfrq(x)
}
} else {
if (fun == "stackfrq") {
do.call(tab_stackfrq, args = c(list(items = x), args))
} else if (fun == "xtab") {
do.call(tab_xtab, args = c(list(var.row = x[[1]], var.col = x[[2]]), args))
}
}
} |
print.fpcad <-
function(x, mean.print=FALSE, var.print=FALSE, cor.print=FALSE,
skewness.print=FALSE, kurtosis.print=FALSE, digits=2, ...)
{
cat("group variable: ",x$group, "\n")
cat("variables: ", x$variables, "\n")
cat("---------------------------------------------------------------\n")
cat("inertia\n"); print(x$inertia, digits=3, ...)
cat("---------------------------------------------------------------\n")
cat("contributions\n"); print(x$contributions, ...)
cat("---------------------------------------------------------------\n")
cat("qualities\n"); print(x$qualities, ...)
cat("---------------------------------------------------------------\n")
cat("scores\n"); print(x$scores, ...)
if (mean.print)
{n.group <- length(x$means)
n.var <- length(x$means[[1]])
Means <- matrix(unlist(x$means), nrow = n.group, ncol = n.var, byrow = TRUE,
dimnames = list(NULL, paste("mean", x$variables, sep = ".")))
Means <- data.frame(group=names(x$means), Means, stringsAsFactors = TRUE)
colnames(Means)[1]=colnames(x$contributions)[1]
if (n.var > 1) {
st.dev <- unlist(lapply(lapply(x$variances, diag), sqrt))
} else {
st.dev <- unlist(lapply(x$variances, sqrt))
}
Means <- data.frame(Means, matrix(st.dev, nrow = n.group, ncol = n.var, byrow = TRUE,
dimnames = list(NULL, paste("sd", x$variables))),
stringsAsFactors = TRUE)
Means <- data.frame(Means, norm = x$norm$norm, stringsAsFactors = TRUE)
cat("---------------------------------------------------------------\n")
cat("means, standard deviations and norm by group\n")
print(Means, digits=digits, ...)
}
if (var.print)
{cat("---------------------------------------------------------------\n")
cat("variances/covariances by group\n"); print(x$variances, digits=digits, ...)
}
if (cor.print)
{cat("---------------------------------------------------------------\n")
cat("correlations by group\n"); print(x$correlations, digits=digits, ...)
}
if (skewness.print)
{cat("---------------------------------------------------------------\n")
cat("skewness coefficients by group\n"); print(x$skewness, digits=digits, ...)
}
if (kurtosis.print)
{cat("---------------------------------------------------------------\n")
cat("kurtosis coefficients by group\n"); print(x$kurtosis, digits=digits, ...)
}
return(invisible(x))
} |
library(testthat)
escapeString <- function(s) {
t <- gsub("(\\\\)", "\\\\\\\\", s)
t <- gsub("(\n)", "\\\\n", t)
t <- gsub("(\r)", "\\\\r", t)
t <- gsub("(\")", "\\\\\"", t)
return(t)
}
prepStr <- function(s) {
t <- escapeString(s)
u <- eval(parse(text=paste0("\"", t, "\"")))
if(s!=u) stop("Unable to escape string!")
t <- paste0("\thtml <- \"", t, "\"")
utils::writeClipboard(t)
return(invisible())
}
evaluationMode <- "sequential"
processingLibrary <- "dplyr"
description <- "test: sequential dplyr"
countFunction <- "n()"
isDevelopmentVersion <- (length(strsplit(packageDescription("pivottabler")$Version, "\\.")[[1]]) > 3)
testScenarios <- function(description="test", releaseEvaluationMode="batch", releaseProcessingLibrary="dplyr", runAllForReleaseVersion=FALSE) {
isDevelopmentVersion <- (length(strsplit(packageDescription("pivottabler")$Version, "\\.")[[1]]) > 3)
if(isDevelopmentVersion||runAllForReleaseVersion) {
evaluationModes <- c("sequential", "batch")
processingLibraries <- c("dplyr", "data.table")
}
else {
evaluationModes <- releaseEvaluationMode
processingLibraries <- releaseProcessingLibrary
}
testCount <- length(evaluationModes)*length(processingLibraries)
c1 <- character(testCount)
c2 <- character(testCount)
c3 <- character(testCount)
c4 <- character(testCount)
testCount <- 0
for(evaluationMode in evaluationModes)
for(processingLibrary in processingLibraries) {
testCount <- testCount + 1
c1[testCount] <- evaluationMode
c2[testCount] <- processingLibrary
c3[testCount] <- paste0(description, ": ", evaluationMode, " ", processingLibrary)
c4[testCount] <- ifelse(processingLibrary=="data.table", ".N", "n()")
}
df <- data.frame(evaluationMode=c1, processingLibrary=c2, description=c3, countFunction=c4, stringsAsFactors=FALSE)
return(df)
}
context("EXPORT TESTS")
scenarios <- testScenarios("export tests: as Matrix (without row headings)")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE, noDataGroupNBSP=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$evaluatePivot()
text <- "3079 22133 5638 2137 32987 NA NA 8849 6457 15306 NA 732 NA NA 732 3079 22865 14487 8594 49025 830 63 5591 NA 6484 NA NA 28201 NA 28201 830 63 33792 NA 34685 3909 22928 48279 8594 83710"
expect_equal(sum(pt$cells$asMatrix(), na.rm=TRUE), 502260)
expect_equal(mean(pt$cells$asMatrix(), na.rm=TRUE), 16742)
expect_equal(min(pt$cells$asMatrix(), na.rm=TRUE), 63)
expect_equal(max(pt$cells$asMatrix(), na.rm=TRUE), 83710)
expect_identical(paste(as.character(pt$asMatrix(includeHeaders=FALSE, rawValue=TRUE)), sep=" ", collapse=" "), text)
})
}
scenarios <- testScenarios("export tests: as Matrix (with row headings)")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE, noDataGroupNBSP=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$evaluatePivot()
text <- " Arriva Trains Wales CrossCountry London Midland Virgin Trains Total Express Passenger DMU 3079 22133 5638 2137 32987 EMU 8849 6457 15306 HST 732 732 Total 3079 22865 14487 8594 49025 Ordinary Passenger DMU 830 63 5591 6484 EMU 28201 28201 Total 830 63 33792 34685 Total 3909 22928 48279 8594 83710"
expect_identical(paste(as.character(pt$asMatrix(includeHeaders=TRUE)), sep=" ", collapse=" "), text)
})
}
scenarios <- testScenarios("export tests: as Data Matrix")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(dplyr)
library(pivottabler)
data <- filter(bhmtrains, (Status=="A")|(Status=="C"))
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode, compatibility=list(noDataGroupNBSP=TRUE))
pt$addData(data)
pt$addColumnDataGroups("PowerType", addTotal=FALSE)
pt$addColumnDataGroups("Status", addTotal=FALSE)
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$evaluatePivot()
text <- " DMU|A DMU|C EMU|A EMU|C HST|A HST|C Arriva Trains Wales 3833 74 NA NA NA NA CrossCountry 21621 548 NA NA 709 23 London Midland 11054 168 35930 1082 NA NA Virgin Trains 2028 107 6331 119 NA NA Total 38536 897 42261 1201 709 23"
expect_identical(paste(capture.output(print(pt$asDataMatrix(separator="|"))), sep=" ", collapse=" "), text)
})
}
scenarios <- testScenarios("export tests: as Data Frame")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE, noDataGroupNBSP=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$evaluatePivot()
text <- "c(3079, 22133, 5638, 2137, 32987) c(NA, NA, 8849, 6457, 15306) c(NA, 732, NA, NA, 732) c(3079, 22865, 14487, 8594, 49025) c(830, 63, 5591, NA, 6484) c(NA, NA, 28201, NA, 28201) c(830, 63, 33792, NA, 34685) c(3909, 22928, 48279, 8594, 83710)"
text2 <- "c(\"Arriva Trains Wales\", \"CrossCountry\", \"London Midland\", \"Virgin Trains\", \"Total\") c(3079, 22133, 5638, 2137, 32987) c(NA, NA, 8849, 6457, 15306) c(NA, 732, NA, NA, 732) c(3079, 22865, 14487, 8594, 49025) c(830, 63, 5591, NA, 6484) c(NA, NA, 28201, NA, 28201) c(830, 63, 33792, NA, 34685) c(3909, 22928, 48279, 8594, 83710)"
expect_equal(sum(pt$asDataFrame(), na.rm=TRUE), 502260)
expect_identical(paste(as.character(pt$asDataFrame()), sep=" ", collapse=" "), text)
expect_identical(paste(as.character(pt$asDataFrame(stringsAsFactors=FALSE, rowGroupsAsColumns=TRUE)), sep=" ", collapse=" "), text2)
})
}
scenarios <- testScenarios("export tests: as Tidy Data Frame")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE, noDataGroupNBSP=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$evaluatePivot()
text <- paste0("c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5) c(1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8) c(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) c(\"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"London Midland\", \"London Midland\", \"London Midland\", \"London Midland\", \"London Midland\", \"London Midland\", \"London Midland\", \"London Midland\", \"Virgin Trains\", \"Virgin Trains\", \"Virgin Trains\", \n\"Virgin Trains\", \"Virgin Trains\", \"Virgin Trains\", \"Virgin Trains\", \"Virgin Trains\", \"Total\", \"Total\", \"Total\", \"Total\", \"Total\", \"Total\", \"Total\", \"Total\") c(\"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Total\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Total\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Total\", \"Express Passenger\", \"Express Passenger\", \n\"Express Passenger\", \"Express Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Total\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Total\") c(\"DMU\", \"EMU\", \"HST\", \"Total\", \"DMU\", \"EMU\", \"Total\", \"\", \"DMU\", \"EMU\", \"HST\", \"Total\", \"DMU\", \"EMU\", \"Total\", \"\", \"DMU\", \"EMU\", \"HST\", \"Total\", \"DMU\", \"EMU\", \"Total\", \"\", \"DMU\", \"EMU\", \"HST\", \"Total\", \"DMU\", \"EMU\", \"Total\", \"\", \"DMU\", \"EMU\", \"HST\", \"Total\", \"DMU\", \"EMU\", \"Total\", \"\") c(\"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"Arriva Trains Wales\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"CrossCountry\", \"London Midland\", \"London Midland\", \"London Midland\", \"London Midland\", \"London Midland\", \"London Midland\", \"London Midland\", \"London Midland\", \"Virgin Trains\", \"Virgin Trains\", \"Virgin Trains\", \n\"Virgin Trains\", \"Virgin Trains\", ",
"\"Virgin Trains\", \"Virgin Trains\", \"Virgin Trains\", \"NA\", \"NA\", \"NA\", \"NA\", \"NA\", \"NA\", \"NA\", \"NA\") c(\"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"NA\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"NA\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"NA\", \"Express Passenger\", \"Express Passenger\", \n\"Express Passenger\", \"Express Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"NA\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Express Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"Ordinary Passenger\", \"NA\") c(\"DMU\", \"EMU\", \"HST\", \"NA\", \"DMU\", \"EMU\", \"NA\", \"NA\", \"DMU\", \"EMU\", \"HST\", \"NA\", \"DMU\", \"EMU\", \"NA\", \"NA\", \"DMU\", \"EMU\", \"HST\", \"NA\", \"DMU\", \"EMU\", \"NA\", \"NA\", \"DMU\", \"EMU\", \"HST\", \"NA\", \"DMU\", \"EMU\", \"NA\", \"NA\", \"DMU\", \"EMU\", \"HST\", \"NA\", \"DMU\", \"EMU\", \"NA\", \"NA\") c(\"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \n\"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\", \"TotalTrains\") c(\"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\", \"default\") c(3079, NA, NA, 3079, 830, NA, 830, 3909, 22133, NA, 732, 22865, 63, NA, 63, 22928, 5638, 8849, NA, 14487, 5591, 28201, 33792, 48279, 2137, 6457, NA, 8594, NA, NA, NA, 8594, 32987, 15306, 732, 49025, 6484, 28201, 34685, 83710) c(\"3079\", NA, NA, \"3079\", \"830\", NA, \"830\", \"3909\", \"22133\", NA, \"732\", \"22865\", \"63\", NA, \"63\", \"22928\", \"5638\", \"8849\", NA, \"14487\", \"5591\", \"28201\", \"33792\", \"48279\", \"2137\", \"6457\", NA, \"8594\", NA, NA, NA, \"8594\", \"32987\", \"15306\", \"732\", \"49025\", \"6484\", \"28201\", \"34685\", \"83710\")")
expect_equal(sum(pt$asTidyDataFrame()$rawValue, na.rm=TRUE), 502260)
expect_identical(paste(as.character(pt$asTidyDataFrame(stringsAsFactors=FALSE)), sep=" ", collapse=" "), text)
})
}
scenarios <- testScenarios("export tests: NA, NaN, -Inf and Inf")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
someData <- data.frame(Colour=c("Red", "Yellow", "Green", "Blue", "White", "Black"),
SomeNumber=c(1, 2, NA, NaN, -Inf, Inf))
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(someData)
pt$addRowDataGroups("Colour")
pt$defineCalculation(calculationName="Total", summariseExpression="sum(SomeNumber)")
pt$evaluatePivot()
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Black</th>\n <td class=\"Cell\">Inf</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Blue</th>\n <td class=\"Cell\">NaN</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Green</th>\n <td class=\"Cell\">NA</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Red</th>\n <td class=\"Cell\">1</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">White</th>\n <td class=\"Cell\">-Inf</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Yellow</th>\n <td class=\"Cell\">2</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Total</th>\n <td class=\"Cell\">NA</td>\n </tr>\n</table>"
expect_identical(as.character(pt$getHtml()), html)
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Black</th>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Blue</th>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Green</th>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Red</th>\n <td class=\"Cell\">1</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">White</th>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Yellow</th>\n <td class=\"Cell\">2</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Total</th>\n <td class=\"Cell\"></td>\n </tr>\n</table>"
expect_identical(as.character(pt$getHtml(exportOptions=list(skipNegInf=TRUE, skipPosInf=TRUE, skipNA=TRUE, skipNaN=TRUE))), html)
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Black</th>\n <td class=\"Cell\">Infinity</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Blue</th>\n <td class=\"Cell\">Not a Number</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Green</th>\n <td class=\"Cell\">Nothing</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Red</th>\n <td class=\"Cell\">1</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">White</th>\n <td class=\"Cell\">-Infinity</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Yellow</th>\n <td class=\"Cell\">2</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Total</th>\n <td class=\"Cell\">Nothing</td>\n </tr>\n</table>"
expect_identical(as.character(pt$getHtml(exportOptions=list(exportNegInfAs="-Infinity", exportPosInfAs="Infinity",
exportNAAs="Nothing", exportNaNAs="Not a Number"))), html)
})
}
basictblrversion <- utils::packageDescription("basictabler")$Version
if (requireNamespace("lubridate", quietly = TRUE) &&
requireNamespace("basictabler", quietly = TRUE) &&
(numeric_version(basictblrversion) >= numeric_version("0.2.0"))) {
scenarios <- testScenarios("export tests: as basictable")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
library(basictabler)
library(dplyr)
library(lubridate)
trains <- mutate(bhmtrains,
GbttDate=if_else(is.na(GbttArrival), GbttDeparture, GbttArrival),
GbttMonth=make_date(year=year(GbttDate), month=month(GbttDate), day=1))
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode, compatibility=list(noDataGroupNBSP=TRUE))
pt$addData(trains)
pt$addColumnDataGroups("GbttMonth", dataFormat=list(format="%B %Y"))
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$evaluatePivot()
bt <- pt$asBasicTable()
bt$cells$insertRow(5)
bt$cells$setCell(5, 2, rawValue="The values below are significantly higher than expected.",
styleDeclarations=list("text-align"="left", "background-color"="yellow",
"font-weight"="bold", "font-style"="italic"))
bt$mergeCells(rFrom=5, cFrom=2, rSpan=1, cSpan=13)
bt$setStyling(rFrom=6, cFrom=2, rTo=6, cTo=14,
declarations=list("text-align"="left", "background-color"="yellow"))
if (numeric_version(basictblrversion) >= numeric_version("0.3.0")) {
html <- "<table class=\"Table\">\n <tr>\n <th rowspan=\"2\" class=\"RowHeader\"> </th>\n <th colspan=\"4\" class=\"ColumnHeader\">December 2016</th>\n <th colspan=\"4\" class=\"ColumnHeader\">January 2017</th>\n <th colspan=\"4\" class=\"ColumnHeader\">February 2017</th>\n <th class=\"ColumnHeader\">Total</th>\n </tr>\n <tr>\n <th class=\"ColumnHeader\">DMU</th>\n <th class=\"ColumnHeader\">EMU</th>\n <th class=\"ColumnHeader\">HST</th>\n <th class=\"ColumnHeader\">Total</th>\n <th class=\"ColumnHeader\">DMU</th>\n <th class=\"ColumnHeader\">EMU</th>\n <th class=\"ColumnHeader\">HST</th>\n <th class=\"ColumnHeader\">Total</th>\n <th class=\"ColumnHeader\">DMU</th>\n <th class=\"ColumnHeader\">EMU</th>\n <th class=\"ColumnHeader\">HST</th>\n <th class=\"ColumnHeader\">Total</th>\n <th class=\"ColumnHeader\"></th>\n </tr>\n <tr>\n <th class=\"RowHeader\">Arriva Trains Wales</th>\n <td class=\"Cell\">1291</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">1291</td>\n <td class=\"Cell\">1402</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">1402</td>\n <td class=\"Cell\">1216</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">1216</td>\n <td class=\"Total\">3909</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">CrossCountry</th>\n <td class=\"Cell\">7314</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">236</td>\n <td class=\"Total\">7550</td>\n <td class=\"Cell\">7777</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">256</td>\n <td class=\"Total\">8033</td>\n <td class=\"Cell\">7105</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">240</td>\n <td class=\"Total\">7345</td>\n <td class=\"Total\">22928</td>\n </tr>\n <tr>\n <th class=\"RowHeader\"></th>\n <td colspan=\"13\" class=\"Cell\" style=\"text-align: left; background-color: yellow; font-weight: bold; font-style: italic; \">The values below are significantly higher than expected.</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">London Midland</th>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">3635</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">11967</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \"></td>\n <td class=\"Total\" style=\"text-align: left; background-color: yellow; \">15602</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">3967</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">13062</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \"></td>\n <td class=\"Total\" style=\"text-align: left; background-color: yellow; \">17029</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">3627</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">12021</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \"></td>\n <td class=\"Total\" style=\"text-align: left; background-color: yellow; \">15648</td>\n <td class=\"Total\" style=\"text-align: left; background-color: yellow; \">48279</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">Virgin Trains</th>\n <td class=\"Cell\">740</td>\n <td class=\"Cell\">2137</td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">2877</td>\n <td class=\"Cell\">728</td>\n <td class=\"Cell\">2276</td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">3004</td>\n <td class=\"Cell\">669</td>\n <td class=\"Cell\">2044</td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">2713</td>\n <td class=\"Total\">8594</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">Total</th>\n <td class=\"Total\">12980</td>\n <td class=\"Total\">14104</td>\n <td class=\"Total\">236</td>\n <td class=\"Total\">27320</td>\n <td class=\"Total\">13874</td>\n <td class=\"Total\">15338</td>\n <td class=\"Total\">256</td>\n <td class=\"Total\">29468</td>\n <td class=\"Total\">12617</td>\n <td class=\"Total\">14065</td>\n <td class=\"Total\">240</td>\n <td class=\"Total\">26922</td>\n <td class=\"Total\">83710</td>\n </tr>\n</table>"
css <- ".Table {display: table; border-collapse: collapse; }\r\n.ColumnHeader {font-family: Arial; font-size: 0.75em; border: 1px solid lightgray; vertical-align: middle; font-weight: bold; background-color:
}
else {
html <- "<table class=\"Table\">\n <tr>\n <td rowspan=\"2\" colspan=\"1\" class=\"RowHeader\"></td>\n <td rowspan=\"1\" colspan=\"4\" class=\"ColumnHeader\">December 2016</td>\n <td rowspan=\"1\" colspan=\"4\" class=\"ColumnHeader\">January 2017</td>\n <td rowspan=\"1\" colspan=\"4\" class=\"ColumnHeader\">February 2017</td>\n <td class=\"ColumnHeader\">Total</td>\n </tr>\n <tr>\n <td class=\"ColumnHeader\">DMU</td>\n <td class=\"ColumnHeader\">EMU</td>\n <td class=\"ColumnHeader\">HST</td>\n <td class=\"ColumnHeader\">Total</td>\n <td class=\"ColumnHeader\">DMU</td>\n <td class=\"ColumnHeader\">EMU</td>\n <td class=\"ColumnHeader\">HST</td>\n <td class=\"ColumnHeader\">Total</td>\n <td class=\"ColumnHeader\">DMU</td>\n <td class=\"ColumnHeader\">EMU</td>\n <td class=\"ColumnHeader\">HST</td>\n <td class=\"ColumnHeader\">Total</td>\n <td class=\"ColumnHeader\"></td>\n </tr>\n <tr>\n <td class=\"RowHeader\">Arriva Trains Wales</td>\n <td class=\"Cell\">1291</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">1291</td>\n <td class=\"Cell\">1402</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">1402</td>\n <td class=\"Cell\">1216</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">1216</td>\n <td class=\"Total\">3909</td>\n </tr>\n <tr>\n <td class=\"RowHeader\">CrossCountry</td>\n <td class=\"Cell\">7314</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">236</td>\n <td class=\"Total\">7550</td>\n <td class=\"Cell\">7777</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">256</td>\n <td class=\"Total\">8033</td>\n <td class=\"Cell\">7105</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">240</td>\n <td class=\"Total\">7345</td>\n <td class=\"Total\">22928</td>\n </tr>\n <tr>\n <td class=\"RowHeader\"></td>\n <td rowspan=\"1\" colspan=\"13\" class=\"Cell\" style=\"text-align: left; background-color: yellow; font-weight: bold; font-style: italic; \">The values below are significantly higher than expected.</td>\n </tr>\n <tr>\n <td class=\"RowHeader\">London Midland</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">3635</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">11967</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \"></td>\n <td class=\"Total\" style=\"text-align: left; background-color: yellow; \">15602</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">3967</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">13062</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \"></td>\n <td class=\"Total\" style=\"text-align: left; background-color: yellow; \">17029</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">3627</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \">12021</td>\n <td class=\"Cell\" style=\"text-align: left; background-color: yellow; \"></td>\n <td class=\"Total\" style=\"text-align: left; background-color: yellow; \">15648</td>\n <td class=\"Total\" style=\"text-align: left; background-color: yellow; \">48279</td>\n </tr>\n <tr>\n <td class=\"RowHeader\">Virgin Trains</td>\n <td class=\"Cell\">740</td>\n <td class=\"Cell\">2137</td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">2877</td>\n <td class=\"Cell\">728</td>\n <td class=\"Cell\">2276</td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">3004</td>\n <td class=\"Cell\">669</td>\n <td class=\"Cell\">2044</td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">2713</td>\n <td class=\"Total\">8594</td>\n </tr>\n <tr>\n <td class=\"RowHeader\">Total</td>\n <td class=\"Total\">12980</td>\n <td class=\"Total\">14104</td>\n <td class=\"Total\">236</td>\n <td class=\"Total\">27320</td>\n <td class=\"Total\">13874</td>\n <td class=\"Total\">15338</td>\n <td class=\"Total\">256</td>\n <td class=\"Total\">29468</td>\n <td class=\"Total\">12617</td>\n <td class=\"Total\">14065</td>\n <td class=\"Total\">240</td>\n <td class=\"Total\">26922</td>\n <td class=\"Total\">83710</td>\n </tr>\n</table>"
css <- ".Table {display: table; border-collapse: collapse; }\r\n.ColumnHeader {font-family: Arial; font-size: 0.75em; border: 1px solid lightgray; vertical-align: middle; font-weight: bold; background-color:
}
expect_identical(as.character(bt$getHtml()), html)
expect_identical(bt$getCss(), css)
})
}
}
basictblrversion <- utils::packageDescription("basictabler")$Version
if (requireNamespace("basictabler", quietly = TRUE) &&
(numeric_version(basictblrversion) >= numeric_version("0.3.0"))) {
scenarios <- testScenarios("export tests: same html for pivottable and basictable")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
library(basictabler)
pt <- qpvt(bhmtrains, "TOC", "TrainCategory", "n()", compatibility=list(noDataGroupNBSP=TRUE))
pthtml <- as.character(pt$getHtml())
ptcss <- as.character(pt$getCss())
bt <- pt$asBasicTable()
bthtml <- as.character(bt$getHtml())
btcss <- as.character(bt$getCss())
exppthtml <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\"> </th>\n <th class=\"ColumnHeader\">Express Passenger</th>\n <th class=\"ColumnHeader\">Ordinary Passenger</th>\n <th class=\"ColumnHeader\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\">Arriva Trains Wales</th>\n <td class=\"Cell\">3079</td>\n <td class=\"Cell\">830</td>\n <td class=\"Total\">3909</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">CrossCountry</th>\n <td class=\"Cell\">22865</td>\n <td class=\"Cell\">63</td>\n <td class=\"Total\">22928</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">London Midland</th>\n <td class=\"Cell\">14487</td>\n <td class=\"Cell\">33792</td>\n <td class=\"Total\">48279</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">Virgin Trains</th>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">8594</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">Total</th>\n <td class=\"Total\">49025</td>\n <td class=\"Total\">34685</td>\n <td class=\"Total\">83710</td>\n </tr>\n</table>"
expptcss <- ".Table {display: table; border-collapse: collapse; }\r\n.ColumnHeader {font-family: Arial; font-size: 0.75em; border: 1px solid lightgray; vertical-align: middle; font-weight: bold; background-color:
expbthtml <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\"> </th>\n <th class=\"ColumnHeader\">Express Passenger</th>\n <th class=\"ColumnHeader\">Ordinary Passenger</th>\n <th class=\"ColumnHeader\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\">Arriva Trains Wales</th>\n <td class=\"Cell\">3079</td>\n <td class=\"Cell\">830</td>\n <td class=\"Total\">3909</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">CrossCountry</th>\n <td class=\"Cell\">22865</td>\n <td class=\"Cell\">63</td>\n <td class=\"Total\">22928</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">London Midland</th>\n <td class=\"Cell\">14487</td>\n <td class=\"Cell\">33792</td>\n <td class=\"Total\">48279</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">Virgin Trains</th>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">8594</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">Total</th>\n <td class=\"Total\">49025</td>\n <td class=\"Total\">34685</td>\n <td class=\"Total\">83710</td>\n </tr>\n</table>"
expbtcss <- ".Table {display: table; border-collapse: collapse; }\r\n.ColumnHeader {font-family: Arial; font-size: 0.75em; border: 1px solid lightgray; vertical-align: middle; font-weight: bold; background-color:
htmlMatch <- pthtml==bthtml
cssMatch <- ptcss==btcss
expect_identical(pthtml, exppthtml)
expect_identical(ptcss, expptcss)
expect_identical(bthtml, expbthtml)
expect_identical(btcss, expbtcss)
expect_identical(htmlMatch, TRUE)
expect_identical(cssMatch, TRUE)
})
}
}
basictblrversion <- utils::packageDescription("basictabler")$Version
if (requireNamespace("lubridate", quietly = TRUE) &&
requireNamespace("basictabler", quietly = TRUE) &&
(numeric_version(basictblrversion) >= numeric_version("0.2.0"))) {
scenarios <- testScenarios("export tests: basictable with row group headings")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(dplyr)
library(lubridate)
library(pivottabler)
trains <- mutate(bhmtrains,
GbttDate=if_else(is.na(GbttArrival), GbttDeparture, GbttArrival),
GbttMonth=make_date(year=year(GbttDate), month=month(GbttDate), day=1))
trains <- filter(trains, GbttMonth>=make_date(year=2017, month=1, day=1))
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode, compatibility=list(noDataGroupNBSP=TRUE))
pt$addData(trains)
pt$addColumnDataGroups("GbttMonth", dataFormat=list(format="%B %Y"))
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC", header="Train Company", addTotal=FALSE)
pt$addRowDataGroups("TrainCategory", header="Train Category", addTotal=FALSE)
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$theme <- getStandardTableTheme(pt)
pt$evaluatePivot()
bt <- pt$asBasicTable(showRowGroupHeaders=TRUE)
if (numeric_version(basictblrversion) >= numeric_version("0.3.0")) {
html <- "<table class=\"Table\">\n <tr>\n <th rowspan=\"2\" class=\"LeftColumnHeader\">Train Company</th>\n <th rowspan=\"2\" class=\"LeftColumnHeader\">Train Category</th>\n <th colspan=\"4\" class=\"CentreColumnHeader\">January 2017</th>\n <th colspan=\"4\" class=\"CentreColumnHeader\">February 2017</th>\n <th class=\"CentreColumnHeader\">Total</th>\n </tr>\n <tr>\n <th class=\"CentreColumnHeader\">DMU</th>\n <th class=\"CentreColumnHeader\">EMU</th>\n <th class=\"CentreColumnHeader\">HST</th>\n <th class=\"CentreColumnHeader\">Total</th>\n <th class=\"CentreColumnHeader\">DMU</th>\n <th class=\"CentreColumnHeader\">EMU</th>\n <th class=\"CentreColumnHeader\">HST</th>\n <th class=\"CentreColumnHeader\">Total</th>\n <th class=\"CentreColumnHeader\"></th>\n </tr>\n <tr>\n <th rowspan=\"2\" class=\"LeftCell\">Arriva Trains Wales</th>\n <th class=\"LeftCell\">Express Passenger</th>\n <td class=\"RightCell\">1088</td>\n <td class=\"RightCell\"></td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">1088</td>\n <td class=\"RightCell\">974</td>\n <td class=\"RightCell\"></td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">974</td>\n <td class=\"Total\">2062</td>\n </tr>\n <tr>\n <th class=\"LeftCell\">Ordinary Passenger</th>\n <td class=\"RightCell\">314</td>\n <td class=\"RightCell\"></td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">314</td>\n <td class=\"RightCell\">242</td>\n <td class=\"RightCell\"></td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">242</td>\n <td class=\"Total\">556</td>\n </tr>\n <tr>\n <th rowspan=\"2\" class=\"LeftCell\">CrossCountry</th>\n <th class=\"LeftCell\">Express Passenger</th>\n <td class=\"RightCell\">7755</td>\n <td class=\"RightCell\"></td>\n <td class=\"RightCell\">256</td>\n <td class=\"Total\">8011</td>\n <td class=\"RightCell\">7085</td>\n <td class=\"RightCell\"></td>\n <td class=\"RightCell\">240</td>\n <td class=\"Total\">7325</td>\n <td class=\"Total\">15336</td>\n </tr>\n <tr>\n <th class=\"LeftCell\">Ordinary Passenger</th>\n <td class=\"RightCell\">22</td>\n <td class=\"RightCell\"></td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">22</td>\n <td class=\"RightCell\">20</td>\n <td class=\"RightCell\"></td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">20</td>\n <td class=\"Total\">42</td>\n </tr>\n <tr>\n <th rowspan=\"2\" class=\"LeftCell\">London Midland</th>\n <th class=\"LeftCell\">Express Passenger</th>\n <td class=\"RightCell\">1956</td>\n <td class=\"RightCell\">3108</td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">5064</td>\n <td class=\"RightCell\">1793</td>\n <td class=\"RightCell\">2879</td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">4672</td>\n <td class=\"Total\">9736</td>\n </tr>\n <tr>\n <th class=\"LeftCell\">Ordinary Passenger</th>\n <td class=\"RightCell\">2011</td>\n <td class=\"RightCell\">9954</td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">11965</td>\n <td class=\"RightCell\">1834</td>\n <td class=\"RightCell\">9142</td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">10976</td>\n <td class=\"Total\">22941</td>\n </tr>\n <tr>\n <th class=\"LeftCell\">Virgin Trains</th>\n <th class=\"LeftCell\">Express Passenger</th>\n <td class=\"RightCell\">728</td>\n <td class=\"RightCell\">2276</td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">3004</td>\n <td class=\"RightCell\">669</td>\n <td class=\"RightCell\">2044</td>\n <td class=\"RightCell\"></td>\n <td class=\"Total\">2713</td>\n <td class=\"Total\">5717</td>\n </tr>\n</table>"
css <- ".Table {display: table; border-collapse: collapse; }\r\n.LeftColumnHeader {font-family: Arial; font-size: 0.75em; padding: 2px; border: 1px solid lightgray; vertical-align: middle; font-weight: bold; background-color:
expect_identical(as.character(bt$getHtml()), html)
expect_identical(bt$getCss(), css)
}
else {
expect_identical(1, 1)
}
})
}
} |
hache.barycenter <- function(ratios, weights, xreg, method,
tol, maxit, echo)
{
weights.s <- rowSums(weights, na.rm = TRUE)
has.data <- which(weights.s > 0)
ncontracts <- nrow(ratios)
eff.ncontracts <- length(has.data)
p <- ncol(xreg)
n <- nrow(xreg)
w <- colSums(weights, na.rm = TRUE)/sum(weights.s)
Xqr <- qr(xreg * sqrt(w))
R <- qr.R(Xqr)
x <- qr.Q(Xqr) / sqrt(w)
f <- function(i)
{
z <-
if (i %in% has.data)
{
y <- ratios[i, ]
not.na <- !is.na(y)
lm.wfit(x[not.na, , drop = FALSE], y[not.na], weights[i, not.na])
}
else
lm.fit(x, rep.int(0, n))
z[c("coefficients", "residuals", "weights", "rank", "qr")]
}
fits <- lapply(seq_len(ncontracts), f)
ind <- sapply(fits, coef)
ind[is.na(ind)] <- 0
S <- function(z)
{
nQr <- NROW(z$qr$qr)
rank <- z$rank
r <- z$residuals
w <- z$weights
sum(w * r^2) / (nQr - rank)
}
sigma2 <- sapply(fits[has.data], S)
sigma2[is.nan(sigma2)] <- 0
cred <- W <- array(0, c(p, p, ncontracts))
A <- W.s <- matrix(0, p, p)
coll <- numeric(p)
W[1, 1, ] <- weights.s
for (i in 2:p)
W[i, i, has.data] <-
colSums(t(weights[has.data, ]) * x[, i]^2, na.rm = TRUE)
s2 <- mean(sigma2)
do.iter <- method == "iterative" && diff(range(weights, na.rm = TRUE)) > .Machine$double.eps^0.5
for (i in seq_len(p))
{
a <- A[i, i] <- bvar.unbiased(ind[i, has.data], W[i, i, has.data],
s2, eff.ncontracts)
if (do.iter)
{
a <- A[i, i] <-
if (a > 0)
bvar.iterative(ind[i, has.data], W[i, i, has.data],
s2, eff.ncontracts, start = a,
tol = tol, maxit = maxit, echo = echo)
else
0
}
if (a > 0)
{
z <- cred[i, i, has.data] <- 1/(1 + s2/(W[i, i, has.data] * a))
z. <- W.s[i, i] <- sum(z)
coll[i] <- drop(crossprod(z, ind[i, has.data])) / z.
}
else
{
w <- W[i, i, has.data]
w. <- W.s[i, i] <- sum(w)
coll[i] <- drop(crossprod(w, ind[i, ])) / w.
}
}
for (i in seq_len(ncontracts))
fits[[i]]$coefficients <- coll + drop(cred[, , i] %*% (ind[, i] - coll))
names(coll) <- rownames(ind)
list(means = list(coll, ind),
weights = list(W.s, W),
unbiased = if (method == "unbiased") list(A, s2),
iterative = if (method == "iterative") list(A, s2),
cred = cred,
nodes = list(ncontracts),
adj.models = fits,
transition = R)
} |
completeWord <-
function(tree, string){
UseMethod("completeWord",tree)
} |
listn <- function(...) {
input <- sapply(match.call(), deparse)[-1]
if (is.null(names(input))) {
names(input) <- rep("", times=length(input))
}
names(input) <- ifelse(names(input)=="", input, names(input))
listWithName <- list(...)
names(listWithName) <- names(input)
return(listWithName)
} |
data('ARG_TRE', package = 'sapfluxnetr')
data('ARG_MAZ', package = 'sapfluxnetr')
data('AUS_CAN_ST2_MIX', package = 'sapfluxnetr')
test_that("sfn_filter returns correct results", {
foo_timestamp <- get_timestamp(ARG_TRE)
foo_timestamp_trimmed <- foo_timestamp[1:100]
foo_solar_timestamp <- get_solar_timestamp(ARG_TRE)
foo_solar_timestamp_trimmed <- foo_solar_timestamp[1:100]
ws_threshold <- 25
foo_subset <- sfn_filter(ARG_TRE, TIMESTAMP %in% foo_timestamp_trimmed)
foo_subset_2 <- sfn_filter(ARG_TRE, ws <= ws_threshold)
foo_subset_3 <- sfn_filter(
ARG_TRE, TIMESTAMP %in% foo_solar_timestamp_trimmed,
solar = TRUE
)
multi_sfn <- sfn_data_multi(ARG_TRE, ARG_MAZ)
multi_sfn_filter <- sfn_filter(
multi_sfn, dplyr::between(lubridate::day(TIMESTAMP), 19, 23)
)
multi_sfn_filter_2 <- sfn_filter(multi_sfn, ws <= ws_threshold)
multi_sfn_2 <- sfn_data_multi(ARG_TRE, ARG_MAZ, AUS_CAN_ST2_MIX)
suppressWarnings(multi_sfn_filter_3 <- sfn_filter(
multi_sfn_2, dplyr::between(lubridate::year(TIMESTAMP), 1998, 1999)
))
suppressWarnings(multi_sfn_filter_4 <- sfn_filter(
multi_sfn_2, dplyr::between(lubridate::year(TIMESTAMP), 2008, 2009)
))
suppressWarnings(multi_sfn_filter_5 <- sfn_filter(
multi_sfn_2, dplyr::between(lubridate::year(TIMESTAMP), 2006, 2007)
))
expect_s4_class(foo_subset, 'sfn_data')
expect_length(get_solar_timestamp(foo_subset), 100)
expect_s4_class(foo_subset_2, 'sfn_data')
expect_true(all(get_env_data(foo_subset_2)[['ws']] <= 25))
expect_length(get_solar_timestamp(foo_subset_2), 212)
expect_s4_class(foo_subset_3, 'sfn_data')
expect_length(get_solar_timestamp(foo_subset_3), 100)
expect_identical(foo_subset, foo_subset_3)
expect_s4_class(multi_sfn_filter, 'sfn_data_multi')
expect_length(multi_sfn_filter, 2)
expect_s4_class(multi_sfn_filter[[1]], 'sfn_data')
expect_s4_class(multi_sfn_filter[[2]], 'sfn_data')
expect_length(get_timestamp(multi_sfn_filter[[1]]), 24*5)
expect_length(get_timestamp(multi_sfn_filter[[2]]), 24*5)
expect_s4_class(multi_sfn_filter_2, 'sfn_data_multi')
expect_length(multi_sfn_filter_2, 2)
expect_s4_class(multi_sfn_filter_2[[1]], 'sfn_data')
expect_s4_class(multi_sfn_filter_2[[2]], 'sfn_data')
expect_length(get_solar_timestamp(multi_sfn_filter_2[[1]]), 212)
expect_length(get_solar_timestamp(multi_sfn_filter_2[[2]]), 210)
expect_s4_class(multi_sfn_filter_3, 'sfn_data_multi')
expect_length(multi_sfn_filter_3, 0)
expect_warning(
sfn_filter(
multi_sfn_2, dplyr::between(lubridate::year(TIMESTAMP), 1998, 1999)
), 'Any sites met the criteria, returning empty results'
)
expect_s4_class(multi_sfn_filter_4, 'sfn_data_multi')
expect_length(multi_sfn_filter_4, 2)
expect_warning(
sfn_filter(
multi_sfn_2, dplyr::between(lubridate::year(TIMESTAMP), 2008, 2009)
), 'AUS_CAN_ST2_MIX'
)
expect_s4_class(multi_sfn_filter_5, 'sfn_data_multi')
expect_length(multi_sfn_filter_5, 1)
expect_warning(
sfn_filter(
multi_sfn_2, dplyr::between(lubridate::year(TIMESTAMP), 2006, 2007)
), 'ARG_TRE'
)
})
test_that('sfn_mutate returns correct results', {
foo_mutated <- sfn_mutate(ARG_TRE, ws = dplyr::if_else(ws > 25, NA_real_, ws))
multi_sfn <- sfn_data_multi(ARG_TRE, ARG_MAZ, AUS_CAN_ST2_MIX)
multi_mutated <- sfn_mutate(
multi_sfn, ws = dplyr::if_else(ws > 25, NA_real_, ws)
)
expect_s4_class(foo_mutated, 'sfn_data')
expect_equal(sum(is.na(get_env_data(foo_mutated)[['ws']])), 100)
expect_match(get_env_flags(foo_mutated)[['ws']], 'USER_MODF', all = TRUE)
expect_match(get_env_flags(foo_mutated)[['ws']], 'RANGE_WARN', all = FALSE)
expect_equal(sum(is.na(get_env_data(foo_mutated)[['ta']])), 0)
expect_failure(
expect_match(get_env_flags(foo_mutated)[['ta']], 'USER_MODF', all = TRUE)
)
expect_identical(attr(get_timestamp(foo_mutated), 'tz'), 'Etc/GMT+3')
expect_identical(attr(get_solar_timestamp(foo_mutated), 'tz'), 'UTC')
expect_s4_class(multi_mutated, 'sfn_data_multi')
expect_length(multi_mutated, 3)
expect_s4_class(multi_mutated[[1]], 'sfn_data')
expect_s4_class(multi_mutated[[2]], 'sfn_data')
expect_s4_class(multi_mutated[[3]], 'sfn_data')
expect_identical(attr(get_timestamp(multi_mutated[[1]]), 'tz'), 'Etc/GMT+3')
expect_identical(attr(get_solar_timestamp(multi_mutated[[1]]), 'tz'), 'UTC')
expect_identical(attr(get_timestamp(multi_mutated[[2]]), 'tz'), 'Etc/GMT+3')
expect_identical(attr(get_solar_timestamp(multi_mutated[[2]]), 'tz'), 'UTC')
expect_identical(attr(get_timestamp(multi_mutated[[3]]), 'tz'), 'Etc/GMT-10')
expect_identical(attr(get_solar_timestamp(multi_mutated[[3]]), 'tz'), 'UTC')
expect_equal(sum(is.na(get_env_data(multi_mutated[[1]])[['ws']])), 100)
expect_match(get_env_flags(multi_mutated[[1]])[['ws']], 'USER_MODF', all = TRUE)
expect_match(get_env_flags(multi_mutated[[1]])[['ws']], 'RANGE_WARN', all = FALSE)
expect_equal(sum(is.na(get_env_data(multi_mutated[[2]])[['ws']])), 78)
expect_match(get_env_flags(multi_mutated[[2]])[['ws']], 'USER_MODF', all = TRUE)
expect_match(get_env_flags(multi_mutated[[2]])[['ws']], 'RANGE_WARN', all = FALSE)
expect_failure(
expect_match(get_env_flags(multi_mutated[[3]])[['ws']], 'USER_MODF', all = TRUE)
)
expect_match(get_env_flags(multi_mutated[[3]])[['ws']], 'OUT_WARN', all = FALSE)
expect_identical(multi_sfn[['AUS_CAN_ST2_MIX']], multi_mutated[['AUS_CAN_ST2_MIX']])
})
test_that('sfn_mutate_at returns correct results', {
vars_to_mutate <- names(get_sapf_data(ARG_TRE)[,-1])
foo_mutated <- sfn_mutate_at(
ARG_TRE,
.vars = dplyr::vars(dplyr::one_of(vars_to_mutate)),
.funs = list(
~ dplyr::case_when(
ws > 25 ~ NA_real_,
TRUE ~ .
)
)
)
vars_to_not_mutate <- names(get_env_data(ARG_TRE))
multi_sfn <- sfn_data_multi(ARG_TRE, ARG_MAZ, AUS_CAN_ST2_MIX)
multi_mutated <- suppressWarnings(sfn_mutate_at(
multi_sfn,
.vars = dplyr::vars(-dplyr::one_of(vars_to_not_mutate)),
.funs = list(
~ dplyr::case_when(
ws > 25 ~ NA_real_,
TRUE ~ .
)
)
))
expect_s4_class(foo_mutated, 'sfn_data')
expect_equal(sum(is.na(get_sapf_data(foo_mutated)[[2]])), 100)
expect_equal(sum(is.na(get_sapf_data(foo_mutated)[[3]])), 100)
expect_equal(sum(is.na(get_sapf_data(foo_mutated)[[4]])), 100)
expect_equal(sum(is.na(get_sapf_data(foo_mutated)[[5]])), 100)
expect_match(get_sapf_flags(foo_mutated)[[2]], 'USER_MODF', all = TRUE)
expect_match(get_sapf_flags(foo_mutated)[[3]], 'USER_MODF', all = TRUE)
expect_match(get_sapf_flags(foo_mutated)[[4]], 'USER_MODF', all = TRUE)
expect_match(get_sapf_flags(foo_mutated)[[5]], 'USER_MODF', all = TRUE)
expect_s4_class(multi_mutated, 'sfn_data_multi')
expect_length(multi_mutated, 3)
expect_s4_class(multi_mutated[[1]], 'sfn_data')
expect_s4_class(multi_mutated[[2]], 'sfn_data')
expect_s4_class(multi_mutated[[3]], 'sfn_data')
expect_equal(sum(is.na(get_sapf_data(multi_mutated[[1]])[[2]])), 100)
expect_equal(sum(is.na(get_sapf_data(multi_mutated[[1]])[[3]])), 100)
expect_equal(sum(is.na(get_sapf_data(multi_mutated[[1]])[[4]])), 100)
expect_equal(sum(is.na(get_sapf_data(multi_mutated[[1]])[[5]])), 100)
expect_equal(sum(is.na(get_sapf_data(multi_mutated[[2]])[[2]])), 78)
expect_equal(sum(is.na(get_sapf_data(multi_mutated[[2]])[[3]])), 78)
expect_equal(sum(is.na(get_sapf_data(multi_mutated[[2]])[[4]])), 78)
expect_equal(sum(is.na(get_sapf_data(multi_mutated[[2]])[[5]])), 78)
expect_match(get_sapf_flags(multi_mutated[[1]])[[2]], 'USER_MODF', all = TRUE)
expect_match(get_sapf_flags(multi_mutated[[1]])[[3]], 'USER_MODF', all = TRUE)
expect_match(get_sapf_flags(multi_mutated[[1]])[[4]], 'USER_MODF', all = TRUE)
expect_match(get_sapf_flags(multi_mutated[[1]])[[5]], 'USER_MODF', all = TRUE)
expect_match(get_sapf_flags(multi_mutated[[2]])[[2]], 'USER_MODF', all = TRUE)
expect_match(get_sapf_flags(multi_mutated[[2]])[[3]], 'USER_MODF', all = TRUE)
expect_match(get_sapf_flags(multi_mutated[[2]])[[4]], 'USER_MODF', all = TRUE)
expect_match(get_sapf_flags(multi_mutated[[2]])[[5]], 'USER_MODF', all = TRUE)
expect_failure(
expect_match(get_sapf_flags(multi_mutated[[3]])[[2]], 'USER_MODF', all = TRUE)
)
expect_failure(
expect_match(get_sapf_flags(multi_mutated[[3]])[[3]], 'USER_MODF', all = TRUE)
)
expect_failure(
expect_match(get_sapf_flags(multi_mutated[[3]])[[4]], 'USER_MODF', all = TRUE)
)
expect_failure(
expect_match(get_sapf_flags(multi_mutated[[3]])[[5]], 'USER_MODF', all = TRUE)
)
expect_identical(multi_sfn[['AUS_CAN_ST2_MIX']], multi_mutated[['AUS_CAN_ST2_MIX']])
}) |
single_realtime_station <- function(station_number) {
if (!is.null(station_number)) {
sym_STATION_NUMBER <- sym("STATION_NUMBER")
if (any(tidyhydat::allstations$STATION_NUMBER %in% station_number)) {
choose_df <- dplyr::filter(tidyhydat::allstations, !!sym_STATION_NUMBER %in% station_number)
STATION_NUMBER_SEL <- choose_df$STATION_NUMBER
PROV <- choose_df$PROV_TERR_STATE_LOC
} else {
choose_df <- dplyr::filter(realtime_stations(), !!sym_STATION_NUMBER %in% station_number)
STATION_NUMBER_SEL <- choose_df$STATION_NUMBER
PROV <- choose_df$PROV_TERR_STATE_LOC
}
}
base_url <- "https://dd.weather.gc.ca/hydrometric"
type <- c("hourly", "daily")
url <- sprintf("%s/csv/%s/%s", base_url, PROV, type)
infile <- sprintf(
"%s/%s_%s_%s_hydrometric.csv",
url,
PROV,
STATION_NUMBER_SEL,
type
)
colHeaders <-
c(
"STATION_NUMBER",
"Date",
"Level",
"Level_GRADE",
"Level_SYMBOL",
"Level_CODE",
"Flow",
"Flow_GRADE",
"Flow_SYMBOL",
"Flow_CODE"
)
url_check <- httr::GET(infile[1], httr::user_agent("https://github.com/ropensci/tidyhydat"))
if (httr::http_error(url_check) == TRUE) {
info(paste0("No hourly data found for ", STATION_NUMBER_SEL))
h <- dplyr::tibble(
A = STATION_NUMBER_SEL, B = NA, C = NA, D = NA, E = NA,
F = NA, G = NA, H = NA, I = NA, J = NA
)
colnames(h) <- colHeaders
} else {
h <- httr::content(
url_check,
type = "text/csv",
encoding = "UTF-8",
skip = 1,
col_names = colHeaders,
col_types = readr::cols(
STATION_NUMBER = readr::col_character(),
Date = readr::col_datetime(),
Level = readr::col_double(),
Level_GRADE = readr::col_character(),
Level_SYMBOL = readr::col_character(),
Level_CODE = readr::col_integer(),
Flow = readr::col_double(),
Flow_GRADE = readr::col_character(),
Flow_SYMBOL = readr::col_character(),
Flow_CODE = readr::col_integer()
)
)
}
url_check_d <- httr::GET(infile[2], httr::user_agent("https://github.com/ropensci/tidyhydat"))
if (httr::http_error(url_check_d) == TRUE) {
info(paste0("No daily data found for ", STATION_NUMBER_SEL))
d <- dplyr::tibble(
A = STATION_NUMBER_SEL, B = NA, C = NA, D = NA, E = NA,
F = NA, G = NA, H = NA, I = NA, J = NA
)
colnames(d) <- colHeaders
} else {
d <- httr::content(
url_check_d,
type = "text/csv",
encoding = "UTF-8",
skip = 1,
col_names = colHeaders,
col_types = readr::cols(
STATION_NUMBER = readr::col_character(),
Date = readr::col_datetime(),
Level = readr::col_double(),
Level_GRADE = readr::col_character(),
Level_SYMBOL = readr::col_character(),
Level_CODE = readr::col_integer(),
Flow = readr::col_double(),
Flow_GRADE = readr::col_character(),
Flow_SYMBOL = readr::col_character(),
Flow_CODE = readr::col_integer()
)
)
}
p <- dplyr::filter(d, .data$Date < min(h$Date))
output <- dplyr::bind_rows(p, h)
realtime_tidy_data(output, PROV)
}
all_realtime_station <- function(PROV){
base_url <- "https://dd.weather.gc.ca/hydrometric/csv/"
prov_url <- paste0(base_url, PROV,"/daily/",PROV,"_daily_hydrometric.csv")
res <- httr::GET(prov_url, httr::progress("down"), httr::user_agent("https://github.com/ropensci/tidyhydat"))
httr::stop_for_status(res)
colHeaders <-
c(
"STATION_NUMBER",
"Date",
"Level",
"Level_GRADE",
"Level_SYMBOL",
"Level_CODE",
"Flow",
"Flow_GRADE",
"Flow_SYMBOL",
"Flow_CODE"
)
output <- httr::content(
res,
type = "text/csv",
encoding = "UTF-8",
skip = 1,
col_names = colHeaders,
col_types = readr::cols(
STATION_NUMBER = readr::col_character(),
Date = readr::col_datetime(),
Level = readr::col_double(),
Level_GRADE = readr::col_character(),
Level_SYMBOL = readr::col_character(),
Level_CODE = readr::col_integer(),
Flow = readr::col_double(),
Flow_GRADE = readr::col_character(),
Flow_SYMBOL = readr::col_character(),
Flow_CODE = readr::col_integer()
)
)
realtime_tidy_data(output, PROV)
}
realtime_tidy_data <- function(data, prov){
sym_temp <- sym("temp")
sym_val <- sym("val")
sym_key <- sym("key")
data <- dplyr::rename(data, `Level_` = .data$Level, `Flow_` = .data$Flow)
data <- tidyr::gather(data, !!sym_temp, !!sym_val, -.data$STATION_NUMBER, -.data$Date)
data <- tidyr::separate(data, !!sym_temp, c("Parameter", "key"), sep = "_", remove = TRUE)
data <- dplyr::mutate(data, key = ifelse(.data$key == "", "Value", .data$key))
data <- tidyr::spread(data, !!sym_key, !!sym_val)
data <- dplyr::rename(data, Code = .data$CODE, Grade = .data$GRADE, Symbol = .data$SYMBOL)
data <- dplyr::mutate(data, PROV_TERR_STATE_LOC = prov)
data <- dplyr::select(
data, .data$STATION_NUMBER, .data$PROV_TERR_STATE_LOC, .data$Date, .data$Parameter, .data$Value,
.data$Grade, .data$Symbol, .data$Code
)
data <- dplyr::arrange(data, .data$Parameter, .data$STATION_NUMBER, .data$Date)
data$Value <- as.numeric(data$Value)
data
}
has_internet <- function() {
z <- try(suppressWarnings(readLines('https://www.google.ca', n = 1)),
silent = TRUE)
!inherits(z, "try-error")
} |
optimize_knots <- function(lambda, rho, alpha, gams,
d, n.ints, n.nodes, natural){
c.alpha <- stats::qnorm(1 - alpha/2)
start <- standard_CI(d, n.ints, alpha)
low <- c(rep(-100, n.ints - 1), rep(0.5, n.ints))
up <- c(rep(100, n.ints - 1), rep(200, n.ints))
obj_fun <- functional::Curry(objective, lambda = lambda, d = d,
n.ints = n.ints, n.nodes = n.nodes, alpha = alpha,
natural = natural)
cons_fun <- functional::Curry(constraints_slsqp_gausslegendre, gams = gams, rho = rho,
d = d, n.ints = n.ints,
alpha = alpha, n.nodes = n.nodes, natural = natural)
res <- nloptr::slsqp(start, obj_fun, hin = cons_fun, lower = low,
upper = up, nl.info = FALSE)
new.par <- res$par
out <- new.par
} |
knitr::opts_chunk$set(
message = FALSE,
digits = 3,
collapse = TRUE,
comment = "
)
options(digits = 3)
library(tidymodels)
library(tidymodels)
tag_show() |
context("tinter")
test_that("package", {
expect_length(tinter("blue", 10, 1, adjust = 0.2), 19)
expect_length(tinter("blue", 10, 1, "shades", adjust = 0.1), 10)
expect_length(tinter("blue", 10, 1, "tints", adjust = 0.2), 10)
expect_true("
expect_false("
expect_false("
expect_true("
expect_true("
expect_true("
expect_true("
expect_is(tinter("blue"), "character")
expect_length(darken(tinter("blue"), amount = 0.1), 9L)
expect_length(lighten(tinter("blue"), amount = 0.1), 9L)
}) |
setMethod("residuals", "lavaan",
function(object, type = "raw", labels = TRUE) {
type <- tolower(type)
if(type %in% c("casewise","case","obs","observations","ov")) {
return( lav_residuals_casewise(object, labels = labels) )
} else {
out <- lav_residuals(object = object, type = type, h1 = TRUE,
add.type = TRUE,
rename.cov.cor = FALSE,
add.labels = labels, add.class = TRUE,
drop.list.single.group = TRUE)
}
out
})
setMethod("resid", "lavaan",
function(object, type = "raw") {
residuals(object, type = type, labels = TRUE)
})
lavResiduals <- function(object, type = "cor.bentler", custom.rmr = NULL,
se = FALSE, zstat = TRUE, summary = TRUE,
h1.acov = "unstructured",
add.type = TRUE, add.labels = TRUE, add.class = TRUE,
drop.list.single.group = TRUE,
maximum.number = length(res.vech),
output = "list") {
out <- lav_residuals(object = object, type = type, h1 = TRUE,
custom.rmr = custom.rmr, se = se, zstat = zstat,
summary = summary,
summary.options = list(se = TRUE, zstat = TRUE, pvalue = TRUE,
unbiased = TRUE, unbiased.se = TRUE, unbiased.ci = TRUE,
unbiased.ci.level = 0.90, unbiased.zstat = TRUE,
unbiased.test.val = 0.05, unbiased.pvalue = TRUE),
h1.acov = h1.acov, add.type = add.type,
add.labels = add.labels, add.class = add.class,
drop.list.single.group = drop.list.single.group)
if(output == "table") {
res <- out$cov
res.vech <- lav_matrix_vech(res, diagonal = FALSE)
P <- nrow(res)
NAMES <- colnames(res)
nam <- expand.grid(NAMES,
NAMES)[lav_matrix_vech_idx(P, diagonal = FALSE),]
NAMES.vech <- paste(nam[,1], "~~", nam[,2], sep = "")
TAB <- data.frame(name = NAMES.vech, res = round(res.vech, 3),
stringsAsFactors = FALSE)
idx <- sort.int(abs(TAB$res), decreasing = TRUE,
index.return = TRUE)$ix
out.sorted <- TAB[idx,]
if(maximum.number == 0L || maximum.number > length(res.vech)) {
maximum.number <- length(res.vech)
}
out <- out.sorted[seq_len(maximum.number), ]
} else {
}
out
}
lav_residuals <- function(object, type = "raw", h1 = TRUE, custom.rmr = NULL,
se = FALSE, zstat = FALSE, summary = FALSE,
summary.options = list(se = TRUE, zstat = TRUE,
pvalue = TRUE, unbiased = TRUE, unbiased.se = TRUE,
unbiased.ci = TRUE, unbiased.ci.level = 0.90,
unbiased.zstat = FALSE, unbiased.test.val = 0.05,
unbiased.pvalue = FALSE),
h1.acov = "unstructured", add.type = FALSE,
rename.cov.cor = FALSE,
add.labels = FALSE, add.class = FALSE,
drop.list.single.group = FALSE) {
type <- tolower(type)[1]
if(!type %in% c("raw", "cor", "cor.bollen", "cor.bentler", "cor.eqs",
"rmr", "srmr", "crmr",
"normalized", "standardized", "standardized.mplus")) {
stop("lavaan ERROR: unknown argument for type: ", dQuote(type))
}
if(type == "cor") {
if(object@Options$mimic == "EQS") {
type <- "cor.bentler"
} else {
type <- "cor.bollen"
}
}
if(type == "cor.eqs") {
type <- "cor.bentler"
}
if(type == "rmr") {
type <- "raw"
}
if(type == "srmr") {
type <- "cor.bentler"
}
if(type == "crmr") {
type <- "cor.bollen"
}
lavdata <- object@Data
lavmodel <- object@Model
if(lavmodel@categorical) {
if([email protected] || length(unlist([email protected])) > 0L) {
zstat <- se <- FALSE
summary <- FALSE
summary.options <- list(se = FALSE, zstat = FALSE,
pvalue = FALSE, unbiased = FALSE,
unbiased.se = FALSE,
unbiased.ci = FALSE, unbiased.ci.level = 0.90,
unbiased.zstat = FALSE, unbiased.test.val = 0.05,
unbiased.pvalue = FALSE)
}
}
if(!lavmodel@categorical && [email protected]) {
zstat <- se <- FALSE
summary <- FALSE
summary.options <- list(se = FALSE, zstat = FALSE,
pvalue = FALSE, unbiased = FALSE,
unbiased.se = FALSE,
unbiased.ci = FALSE, unbiased.ci.level = 0.90,
unbiased.zstat = FALSE, unbiased.test.val = 0.05,
unbiased.pvalue = FALSE)
}
obsList <- lav_object_inspect_sampstat(object, h1 = h1,
add.labels = add.labels, add.class = add.class,
drop.list.single.group = FALSE)
estList <- lav_object_inspect_implied(object,
add.labels = add.labels, add.class = add.class,
drop.list.single.group = FALSE)
nblocks <- length(obsList)
if(type %in% c("cor.bentler", "cor.bollen")) {
for(b in seq_len(nblocks)) {
var.obs <- if([email protected]) {
diag(obsList[[b]][["res.cov"]])
} else {
diag(obsList[[b]][["cov"]])
}
var.est <- if([email protected]) {
diag(estList[[b]][["res.cov"]])
} else {
diag(estList[[b]][["cov"]])
}
obsList[[b]] <-
lav_residuals_rescale(x = obsList[[b]], diag.cov = var.obs)
if(type == "cor.bentler") {
estList[[b]] <-
lav_residuals_rescale(x = estList[[b]], diag.cov = var.obs)
} else if(type == "cor.bollen") {
estList[[b]] <- lav_residuals_rescale(x = estList[[b]],
diag.cov = var.est, diag.cov2 = var.obs)
}
}
}
resList <- vector("list", length = nblocks)
for(b in seq_len(nblocks)) {
resList[[b]] <- lapply(seq_len(length(obsList[[b]])),
FUN = function(el) {
obsList[[b]][[el]] - estList[[b]][[el]]})
NAMES <- names(obsList[[b]])
names(resList[[b]]) <- NAMES
}
if(se || zstat) {
seList <- lav_residuals_se(object, type = type, z.type = "standardized",
h1.acov = h1.acov,
add.class = add.class, add.labels = add.labels)
} else if(type %in% c("normalized", "standardized", "standardized.mplus")) {
seList <- lav_residuals_se(object, type = "raw", z.type = type,
h1.acov = h1.acov,
add.class = add.class, add.labels = add.labels)
} else {
seList <- NULL
}
if(type %in% c("normalized", "standardized", "standardized.mplus")) {
for(b in seq_len(nblocks)) {
if(add.labels) {
NAMES <- names(resList[[b]])
}
resList[[b]] <- lapply(seq_len(length(resList[[b]])),
FUN = function(el) {
A <- resList[[b]][[el]]
B <- seList[[b]][[el]]
near.zero.idx <- which(abs(A) < 1e-05)
if(length(near.zero.idx) > 0L) {
B[near.zero.idx] <- 1
}
A/B })
if(add.labels) {
names(resList[[b]]) <- NAMES
}
}
}
resList.orig <- resList
if(se) {
for(b in seq_len(nblocks)) {
NAMES.res <- names(resList[[b]])
NAMES.se <- paste0(NAMES.res, ".se")
resList[[b]] <- c(resList[[b]], seList[[b]])
names(resList[[b]]) <- c(NAMES.res, NAMES.se)
}
}
if(zstat) {
for(b in seq_len(nblocks)) {
NAMES.res <- names(resList[[b]])
NAMES.z <- paste0(names(resList.orig[[b]]), ".z")
tmp <- lapply(seq_len(length(resList.orig[[b]])),
FUN = function(el) {
A <- resList.orig[[b]][[el]]
B <- seList[[b]][[el]]
near.zero.idx <- which(abs(A) < 1e-04)
if(length(near.zero.idx) > 0L) {
B[near.zero.idx] <- 1.0
}
A/B })
resList[[b]] <- c(resList[[b]], tmp)
names(resList[[b]]) <- c(NAMES.res, NAMES.z)
}
}
if(summary) {
args <- c(list(object = object, type = type, h1.acov = h1.acov,
add.class = add.class, custom.rmr = custom.rmr),
summary.options)
sumStat <- do.call("lav_residuals_summary", args)
for(b in seq_len(nblocks)) {
NAMES <- names(resList[[b]])
resList[[b]] <- c(resList[[b]], list(sumStat[[b]][[1]]))
NAMES <- c(NAMES, "summary")
names(resList[[b]]) <- NAMES
}
}
if(add.type) {
for(b in seq_len(nblocks)) {
NAMES <- names(resList[[b]])
resList[[b]] <- c(type, resList[[b]])
NAMES <- c("type", NAMES)
names(resList[[b]]) <- NAMES
}
}
if(rename.cov.cor && type %in% c("cor.bentler", "cor.bollen")) {
for(b in seq_len(nblocks)) {
NAMES <- names(resList[[b]])
NAMES <- gsub("cov", "cor", NAMES)
names(resList[[b]]) <- NAMES
}
}
OUT <- resList
if(nblocks == 1L && drop.list.single.group) {
OUT <- OUT[[1]]
} else {
if(lavdata@nlevels == 1L &&
length([email protected]) > 0L) {
names(OUT) <- unlist([email protected])
} else if(lavdata@nlevels > 1L &&
length([email protected]) == 0L) {
names(OUT) <- [email protected]
}
}
OUT
}
lav_residuals_acov <- function(object, type = "raw", z.type = "standardized",
h1.acov = "unstructured") {
if(z.type %in% c("normalized", "standardized.mplus") && type != "raw") {
stop("lavaan ERROR: z.type = ", dQuote(z.type), " can only be used ",
"with type = ", dQuote("raw"))
}
lavdata <- object@Data
lavmodel <- object@Model
lavsamplestats <- object@SampleStats
ACOV.res <- vector("list", length = lavdata@ngroups)
if(lavmodel@categorical) {
NACOV.obs <- lavsamplestats@NACOV
ACOV.obs <- lapply(NACOV.obs, function(x) x / lavsamplestats@ntotal)
} else {
ACOV.obs <- lav_model_h1_acov(lavobject = object,
h1.information = h1.acov)
}
if(z.type == "normalized") {
ACOV.res <- ACOV.obs
return(ACOV.res)
} else {
if(z.type == "standardized") {
A1 <- lav_model_h1_information(object)
if(lavmodel@estimator == "DWLS" || lavmodel@estimator == "ULS") {
A1 <- lapply(A1, diag)
}
if(type %in% c("cor.bentler", "cor.bollen")) {
sampstat <- lavTech(object, "sampstat")
}
} else if(z.type == "standardized.mplus") {
VCOV <- lavTech(object, "vcov")
}
DELTA <- lavTech(object, "delta")
}
for(g in seq_len(lavdata@ngroups)) {
gw <- object@SampleStats@nobs[[g]] / object@SampleStats@ntotal
if(z.type == "standardized.mplus") {
ACOV.est.g <- DELTA[[g]] %*% VCOV %*% t(DELTA[[g]])
ACOV.res[[g]] <- ACOV.obs[[g]] - ACOV.est.g
} else if(z.type == "standardized") {
this.options <- object@Options
this.options$observed.information[1] <- "h1"
A0.g.inv <- lav_model_information(lavmodel = lavmodel,
lavsamplestats = object@SampleStats,
lavdata = lavdata,
lavcache = object@Cache,
lavimplied = object@implied,
lavh1 = object@h1,
lavoptions = this.options,
extra = FALSE,
augmented = TRUE,
inverted = TRUE,
use.ginv = TRUE)
ACOV.est.g <- gw * (DELTA[[g]] %*% A0.g.inv %*% t(DELTA[[g]]))
Q <- diag(nrow = nrow(ACOV.est.g)) - ACOV.est.g %*% A1[[g]]
ACOV.res[[g]] <- Q %*% ACOV.obs[[g]] %*% t(Q)
if(type == "cor.bentler") {
if(lavmodel@categorical) {
if([email protected] ||
length(unlist([email protected])) > 0L) {
stop("lavaan ERROR: SE for cor.bentler not available (yet) if categorical = TRUE, and conditional.x = TRUE OR some endogenous variables are continuous") } else {
}
} else {
COV <- if([email protected]) {
sampstat[[g]][["res.cov"]]
} else { sampstat[[g]][["cov"]] }
SS <- 1/sqrt(diag(COV))
tmp <- lav_matrix_vech(tcrossprod(SS))
G.inv.sqrt <- diag( tmp, nrow = length(tmp) )
if(lavmodel@meanstructure) {
GG <- lav_matrix_bdiag(diag(SS, nrow = length(SS)),
G.inv.sqrt)
} else {
GG <- G.inv.sqrt
}
ACOV.res[[g]] <- GG %*% ACOV.res[[g]] %*% GG
}
} else if(type == "cor.bollen") {
if(lavmodel@categorical) {
if([email protected] ||
length(unlist([email protected])) > 0L) {
stop("lavaan ERROR: SE for cor.bentler not available (yet) if categorical = TRUE, and conditional.x = TRUE OR some endogenous variables are continuous") } else {
}
} else {
COV <- if([email protected]) {
sampstat[[g]][["res.cov"]]
} else { sampstat[[g]][["cov"]] }
F1 <- lav_deriv_cov2corB(COV)
if(lavmodel@meanstructure) {
SS <- 1/sqrt(diag(COV))
FF <- lav_matrix_bdiag(diag(SS, nrow = length(SS)), F1)
} else {
FF <- F1
}
ACOV.res[[g]] <- FF %*% ACOV.res[[g]] %*% t(FF)
}
}
}
}
ACOV.res
}
lav_residuals_se <- function(object, type = "raw", z.type = "standardized",
h1.acov = "unstructured",
add.class = FALSE, add.labels = FALSE) {
lavdata <- object@Data
lavmodel <- object@Model
lavpta <- object@pta
seList <- vector("list", length = lavdata@ngroups)
ACOV.res <- lav_residuals_acov(object = object, type = type,
z.type = z.type, h1.acov = h1.acov)
if(add.labels) {
ov.names <- object@pta$vnames$ov
ov.names.res <- object@pta$vnames$ov.nox
ov.names.x <- object@pta$vnames$ov.x
}
for(g in seq_len(lavdata@ngroups)) {
nvar <- object@pta$nvar[[g]]
diag.ACOV <- diag(ACOV.res[[g]])
diag.ACOV[!is.finite(diag.ACOV)] <- NA
diag.ACOV[ diag.ACOV < 0 ] <- NA
if(lavmodel@categorical) {
if([email protected] ||
length(unlist([email protected])) > 0L) {
stop("not ready yet!")
}
nth <- length([email protected][[g]])
tmp <- sqrt(diag.ACOV[-(1:nth)])
cov.se <- lav_matrix_vech_reverse(tmp, diagonal = FALSE)
mean.se <- rep(as.numeric(NA), nth)
th.se <- sqrt(diag.ACOV[1:nth])
if(add.class) {
class(cov.se) <- c("lavaan.matrix.symmetric", "matrix")
class(mean.se) <- c("lavaan.vector", "numeric")
class(th.se) <- c("lavaan.vector", "numeric")
}
if(add.labels) {
rownames(cov.se) <- colnames(cov.se) <- ov.names[[g]]
names(mean.se) <- ov.names[[g]]
names(th.se) <- lavpta$vnames$th.mean[[g]]
}
seList[[g]] <- list(cov.se = cov.se, mean.se = mean.se,
th.se = th.se)
} else if(lavdata@nlevels == 1L) {
if([email protected]) {
stop("not ready yet")
} else {
if(lavmodel@meanstructure) {
tmp <- sqrt(diag.ACOV[-(1:nvar)])
cov.se <- lav_matrix_vech_reverse(tmp)
mean.se <- sqrt(diag.ACOV[1:nvar])
if(add.class) {
class(cov.se) <- c("lavaan.matrix.symmetric", "matrix")
class(mean.se) <- c("lavaan.vector", "numeric")
}
if(add.labels) {
rownames(cov.se) <- colnames(cov.se) <- ov.names[[g]]
names(mean.se) <- ov.names[[g]]
}
seList[[g]] <- list(cov.se = cov.se, mean.se = mean.se)
} else {
cov.se <- lav_matrix_vech_reverse(sqrt(diag.ACOV))
if(add.class) {
class(cov.se) <- c("lavaan.matrix.symmetric", "matrix")
}
if(add.labels) {
rownames(cov.se) <- colnames(cov.se) <- ov.names[[g]]
}
seList[[g]] <- list(cov.se = cov.se)
}
}
} else if(lavdata@nlevels > 1L) {
stop("not ready yet")
}
}
seList
}
lav_residuals_summary <- function(object, type = c("rmr", "srmr", "crmr"),
h1.acov = "unstructured", custom.rmr = NULL,
se = FALSE, zstat = FALSE, pvalue = FALSE,
unbiased = FALSE, unbiased.se = FALSE,
unbiased.ci = FALSE, unbiased.ci.level = 0.90,
unbiased.zstat = FALSE,
unbiased.test.val = 0.05,
unbiased.pvalue = FALSE,
add.class = FALSE) {
if (length(custom.rmr)) {
if (!is.list(custom.rmr)) stop('custom.rmr must be a list')
customNAMES <- names(custom.rmr)
if (is.null(customNAMES)) stop('custom.rmr list must have names')
if (length(unique(customNAMES)) < length(custom.rmr)) {
stop('custom.rmr must have a unique name for each summary')
}
for (i in seq_along(custom.rmr)) {
if (!is.list(custom.rmr[[i]])) {
stop('Each element in custom.rmr must be a list')
}
if (is.null(names(custom.rmr[[i]]))) {
stop('The list in custom.rmr must have names')
}
if (!all(names(custom.rmr[[i]]) %in% c("cov","mean"))) {
stop('Elements in custom.rmr must be names "cov" and/or "mean"')
}
}
} else {
customNAMES <- NULL
}
if(pvalue) {
zstat <- TRUE
}
if(zstat) {
se <- TRUE
}
if(unbiased.pvalue) {
unbiased.zstat <- TRUE
}
if(unbiased.zstat) {
unbiased.se <- TRUE
}
if(!all(type %in% c("rmr", "srmr", "crmr",
"raw", "cor.bentler", "cor.bollen"))) {
stop("lavaan ERROR: unknown type: ", dQuote(type))
}
idx <- which(type == "raw")
if(length(idx) > 0L) {
type[idx] <- "rmr"
}
idx <- which(type == "cor.bentler")
if(length(idx) > 0L) {
type[idx] <- "srmr"
}
idx <- which(type == "cor.bollen")
if(length(idx) > 0L) {
type[idx] <- "crmr"
}
lavdata <- object@Data
lavmodel <- object@Model
rmrFlag <- srmrFlag <- crmrFlag <- FALSE
if("rmr" %in% type || "raw" %in% type) {
rmrList <- lav_residuals(object = object, type = "raw")
if(se || unbiased) {
rmrList.se <- lav_residuals_acov(object = object, type = "raw",
z.type = "standardized",
h1.acov = "unstructured")
}
}
if("srmr" %in% type || "cor.bentler" %in% type || "cor" %in% type) {
srmrList <- lav_residuals(object = object, type = "cor.bentler")
if(se || unbiased) {
srmrList.se <- lav_residuals_acov(object = object,
type = "cor.bentler",
z.type = "standardized",
h1.acov = "unstructured")
}
}
if("crmr" %in% type || "cor.bollen" %in% type) {
crmrList <- lav_residuals(object = object, type = "cor.bollen")
if(se || unbiased) {
crmrList.se <- lav_residuals_acov(object = object,
type = "cor.bollen",
z.type = "standardized",
h1.acov = "unstructured")
}
}
sumStat <- vector("list", length = lavdata@ngroups)
for(g in seq_len(lavdata@ngroups)) {
nvar <- object@pta$nvar[[g]]
if(lavdata@nlevels == 1L && lavmodel@categorical) {
if([email protected] ||
length(unlist([email protected])) > 0L) {
stop("not ready yet")
} else {
OUT <- vector("list", length(type))
names(OUT) <- type
for(typ in seq_len(length(type))) {
if(type[typ] == "rmr") {
rmsList.g <- rmrList[[g]]
if(se || unbiased) {
rmsList.se.g <- rmrList.se[[g]]
}
} else if(type[typ] == "srmr") {
rmsList.g <- srmrList[[g]]
if(se || unbiased) {
rmsList.se.g <- srmrList.se[[g]]
}
} else if(type[typ] == "crmr") {
rmsList.g <- crmrList[[g]]
if(se || unbiased) {
rmsList.se.g <- crmrList.se[[g]]
}
}
nth <- length([email protected][[g]])
STATS <- lav_matrix_vech(rmsList.g[["cov"]],
diagonal = FALSE)
if(type == "crmr") {
pstar <- length(STATS)
} else {
pstar <- length(STATS) + nvar
}
ACOV <- NULL
if(se || unbiased) {
ACOV <- rmsList.se.g[-seq_len(nth),
-seq_len(nth), drop = FALSE]
}
RMS.COR <- lav_residuals_summary_rms(STATS = STATS,
ACOV = ACOV, se = se, zstat = zstat, pvalue = pvalue,
unbiased = unbiased, unbiased.se = unbiased.se,
unbiased.ci = unbiased.ci,
unbiased.ci.level = unbiased.ci.level,
unbiased.zstat = unbiased.zstat,
unbiased.test.val = unbiased.test.val,
unbiased.pvalue = unbiased.pvalue,
pstar = pstar, type = type[typ])
STATS <- rmsList.g[["th"]]
pstar <- length(STATS)
ACOV <- NULL
if(se || unbiased) {
ACOV <- rmsList.se.g[seq_len(nth),
seq_len(nth), drop = FALSE]
}
RMS.TH <- lav_residuals_summary_rms(STATS = STATS,
ACOV = ACOV, se = se, zstat = zstat, pvalue = pvalue,
unbiased = unbiased, unbiased.se = unbiased.se,
unbiased.ci = unbiased.ci,
unbiased.ci.level = unbiased.ci.level,
unbiased.zstat = unbiased.zstat,
unbiased.test.val = unbiased.test.val,
unbiased.pvalue = unbiased.pvalue,
pstar = pstar, type = type[typ])
STATS <- numeric(0L)
pstar <- length(STATS)
ACOV <- NULL
if(se || unbiased) {
}
RMS.MEAN <- lav_residuals_summary_rms(STATS = STATS,
ACOV = ACOV, se = se, zstat = zstat, pvalue = pvalue,
unbiased = unbiased, unbiased.se = unbiased.se,
unbiased.ci = unbiased.ci,
unbiased.ci.level = unbiased.ci.level,
unbiased.zstat = unbiased.zstat,
unbiased.test.val = unbiased.test.val,
unbiased.pvalue = unbiased.pvalue,
pstar = pstar, type = type[typ])
STATS <- numeric(0L)
pstar <- length(STATS)
ACOV <- NULL
if(se || unbiased) {
}
RMS.VAR <- lav_residuals_summary_rms(STATS = STATS,
ACOV = ACOV, se = se, zstat = zstat, pvalue = pvalue,
unbiased = unbiased, unbiased.se = unbiased.se,
unbiased.ci = unbiased.ci,
unbiased.ci.level = unbiased.ci.level,
unbiased.zstat = unbiased.zstat,
unbiased.test.val = unbiased.test.val,
unbiased.pvalue = unbiased.pvalue,
pstar = pstar, type = type[typ])
STATS <- c(lav_matrix_vech(rmsList.g[["cov"]],
diagonal = FALSE),
rmsList.g[["th"]])
pstar <- length(STATS)
ACOV <- NULL
if(se || unbiased) {
ACOV <- rmsList.se.g
}
RMS.TOTAL <- lav_residuals_summary_rms(STATS = STATS,
ACOV = ACOV, se = se, zstat = zstat, pvalue = pvalue,
unbiased = unbiased, unbiased.se = unbiased.se,
unbiased.ci = unbiased.ci,
unbiased.ci.level = unbiased.ci.level,
unbiased.zstat = unbiased.zstat,
unbiased.test.val = unbiased.test.val,
unbiased.pvalue = unbiased.pvalue,
pstar = pstar, type = type[typ])
TABLE <- as.data.frame(cbind(RMS.COR,
RMS.TH,
RMS.TOTAL))
colnames(TABLE) <- c("cor", "thresholds", "total")
if(add.class) {
class(TABLE) <- c("lavaan.data.frame", "data.frame")
}
OUT[[typ]] <- TABLE
}
}
} else if(lavdata@nlevels == 1L) {
if([email protected]) {
stop("not ready yet")
} else {
nvar.x <- pstar.x <- 0L
if([email protected]) {
nvar.x <- lavmodel@nexo[g]
pstar.x <- nvar.x * (nvar.x + 1) / 2
}
OUT <- vector("list", length(type))
names(OUT) <- type
for(typ in seq_len(length(type))) {
if(type[typ] == "rmr") {
rmsList.g <- rmrList[[g]]
if(se || unbiased) {
rmsList.se.g <- rmrList.se[[g]]
}
} else if(type[typ] == "srmr") {
rmsList.g <- srmrList[[g]]
if(se || unbiased) {
rmsList.se.g <- srmrList.se[[g]]
}
} else if(type[typ] == "crmr") {
rmsList.g <- crmrList[[g]]
if(se || unbiased) {
rmsList.se.g <- crmrList.se[[g]]
}
}
STATS <- lav_matrix_vech(rmsList.g[["cov"]])
pstar <- ( length(STATS) - pstar.x )
if(type[typ] == "crmr") {
pstar <- pstar - ( nvar - nvar.x )
}
ACOV <- NULL
if(se || unbiased) {
ACOV <- if(lavmodel@meanstructure) {
rmsList.se.g[-seq_len(nvar),
-seq_len(nvar), drop = FALSE]
} else { rmsList.se.g }
}
RMS.COV <- lav_residuals_summary_rms(STATS = STATS,
ACOV = ACOV, se = se, zstat = zstat, pvalue = pvalue,
unbiased = unbiased, unbiased.se = unbiased.se,
unbiased.ci = unbiased.ci,
unbiased.ci.level = unbiased.ci.level,
unbiased.zstat = unbiased.zstat,
unbiased.test.val = unbiased.test.val,
unbiased.pvalue = unbiased.pvalue,
pstar = pstar, type = type[typ])
if(lavmodel@meanstructure) {
STATS <- rmsList.g[["mean"]]
pstar <- ( length(STATS) - nvar.x )
ACOV <- NULL
if(se || unbiased) {
ACOV <- rmsList.se.g[seq_len(nvar),
seq_len(nvar), drop = FALSE]
}
RMS.MEAN <- lav_residuals_summary_rms(STATS = STATS,
ACOV = ACOV,
se = se, zstat = zstat, pvalue = pvalue,
unbiased = unbiased, unbiased.se = unbiased.se,
unbiased.ci = unbiased.ci,
unbiased.ci.level = unbiased.ci.level,
unbiased.zstat = unbiased.zstat,
unbiased.test.val = unbiased.test.val,
unbiased.pvalue = unbiased.pvalue,
pstar = pstar, type = type[typ])
}
if(lavmodel@meanstructure) {
STATS <- c(rmsList.g[["mean"]],
lav_matrix_vech(rmsList.g[["cov"]]))
pstar <- ( length(STATS) - ( pstar.x + nvar.x) )
if(type[typ] == "crmr") {
pstar <- pstar - ( nvar - nvar.x )
}
ACOV <- NULL
if(se || unbiased) {
ACOV <- rmsList.se.g
}
RMS.TOTAL <- lav_residuals_summary_rms(STATS = STATS,
ACOV = ACOV,
se = se, zstat = zstat, pvalue = pvalue,
unbiased = unbiased, unbiased.se = unbiased.se,
unbiased.ci = unbiased.ci,
unbiased.ci.level = unbiased.ci.level,
unbiased.zstat = unbiased.zstat,
unbiased.test.val = unbiased.test.val,
unbiased.pvalue = unbiased.pvalue,
pstar = pstar, type = type[typ])
}
if (length(custom.rmr)) {
if ([email protected] && [email protected]) {
x.idx <- which(rownames(rmsList.g$cov) %in% object@[email protected][[g]])
}
RMS.CUSTOM.LIST <- vector("list", length(customNAMES))
for (cus in customNAMES) {
STATS <- NULL
ACOV.idx <- NULL
if (lavmodel@meanstructure) {
if ("mean" %in% names(custom.rmr[[cus]])) {
if (is.logical(custom.rmr[[cus]]$mean)) {
if (length(custom.rmr[[cus]]$mean) != length(rmsList.g[["mean"]])) {
stop('length(custom.rmr$', cus, '$mean) must ',
'match length(lavResiduals(fit)$mean)')
}
ACOV.idx <- which(custom.rmr[[cus]]$mean)
if ([email protected] && [email protected]) {
ACOV.idx[x.idx] <- FALSE
}
} else if (!is.numeric(custom.rmr[[cus]]$mean)) {
stop('custom.rmr$', cus, '$mean must contain ',
'logical or numeric indices.')
} else {
ACOV.idx <- custom.rmr[[cus]]$mean
if ([email protected] && [email protected]) {
ACOV.idx <- setdiff(ACOV.idx, x.idx)
}
ACOV.idx <- ACOV.idx[!is.na(ACOV.idx)]
if (max(ACOV.idx) > length(rmsList.g[["mean"]])) {
stop('custom.rmr$', cus, '$mean[',
which.max(ACOV.idx),
'] is an out-of-bounds index')
}
}
STATS <- rmsList.g[["mean"]][ACOV.idx]
}
}
if ("cov" %in% names(custom.rmr[[cus]])) {
if (is.numeric(custom.rmr[[cus]]$cov)) {
cusCOV <- rmsList.g[["cov"]] == "start with all FALSE"
if (length(dim(custom.rmr[[cus]]$cov))) {
if (max(custom.rmr[[cus]]$cov[,1:2] > nrow(rmsList.g[["cov"]]))) {
stop('numeric indices in custom.rmr$', cus, '$cov',
' cannot exceed ', nrow(rmsList.g[["cov"]]))
}
for (RR in 1:nrow(custom.rmr[[cus]]$cov)) {
cusCOV[ custom.rmr[[cus]]$cov[RR, 1] ,
custom.rmr[[cus]]$cov[RR, 2] ] <- TRUE
}
} else {
if (max(custom.rmr[[cus]]$cov > length(rmsList.g[["cov"]]))) {
stop('numeric indices in custom.rmr$', cus, '$cov',
' cannot exceed ', length(rmsList.g[["cov"]]))
}
cusCOV[custom.rmr[[cus]]$cov] <- TRUE
}
custom.rmr[[cus]]$cov <- cusCOV
} else if (!is.logical(custom.rmr[[cus]]$cov)) {
stop('custom.rmr$', cus, '$cov must be a logical ',
'square matrix or a numeric matrix of ',
'(row/column) indices.')
}
if (!all(dim(custom.rmr[[cus]]$cov) == dim(rmsList.g[["cov"]]))) {
stop('dim(custom.rmr$', cus, '$cov) must ',
'match dim(lavResiduals(fit)$cov)')
}
custom.rmr[[cus]]$cov <- custom.rmr[[cus]]$cov | t(custom.rmr[[cus]]$cov)
custom.rmr[[cus]]$cov[upper.tri(custom.rmr[[cus]]$cov)] <- FALSE
if (type[typ] == "crmr") diag(custom.rmr[[cus]]$cov) <- FALSE
vech.idx <- which(lav_matrix_vech(custom.rmr[[cus]]$cov))
STATS <- c(STATS, lav_matrix_vech(rmsList.g[["cov"]])[vech.idx])
ACOV.idx <- c(ACOV.idx, vech.idx)
}
pstar <- length(STATS)
ACOV <- NULL
if (se || unbiased) {
ACOV <- rmsList.se.g[ACOV.idx, ACOV.idx, drop = FALSE]
}
RMS.CUSTOM.LIST[[cus]] <- lav_residuals_summary_rms(STATS = STATS,
ACOV = ACOV,
se = se, zstat = zstat, pvalue = pvalue,
unbiased = unbiased, unbiased.se = unbiased.se,
unbiased.ci = unbiased.ci,
unbiased.ci.level = unbiased.ci.level,
unbiased.zstat = unbiased.zstat,
unbiased.test.val = unbiased.test.val,
unbiased.pvalue = unbiased.pvalue,
pstar = pstar, type = type[typ])
}
RMS.CUSTOM <- do.call(rbind, RMS.CUSTOM.LIST)
} else {
RMS.CUSTOM <- NULL
}
if(lavmodel@meanstructure) {
TABLE <- as.data.frame(cbind(RMS.COV,
RMS.MEAN,
RMS.TOTAL,
RMS.CUSTOM))
colnames(TABLE) <- c("cov", "mean", "total",
customNAMES)
} else {
TABLE <- as.data.frame(cbind(RMS.COV, RMS.CUSTOM))
colnames(TABLE) <- c("cov", customNAMES)
}
if(add.class) {
class(TABLE) <- c("lavaan.data.frame", "data.frame")
}
OUT[[typ]] <- TABLE
}
}
} else if(lavdata@nlevels > 1L) {
stop("not ready yet")
}
sumStat[[g]] <- OUT
}
sumStat
}
lav_residuals_summary_rms <- function(STATS = NULL, ACOV = NULL,
se = FALSE,
level = 0.90,
zstat = FALSE, pvalue = FALSE,
unbiased = FALSE,
unbiased.se = FALSE,
unbiased.ci = FALSE,
unbiased.ci.level = 0.90,
unbiased.zstat = FALSE,
unbiased.test.val = 0.05,
unbiased.pvalue = FALSE,
pstar = 0, type = "rms") {
OUT <- vector("list", length = 0L)
if(length(STATS) > 0L) {
rms <- sqrt(sum(STATS * STATS)/pstar)
} else {
rms <- 0
se <- unbiased <- zstat <- FALSE
}
rms.se <- rms.z <- rms.pvalue <- NULL
urms <- urms.se <- urms.z <- urms.pvalue <- NULL
urms.ci.lower <- urms.ci.upper <- NULL
if(!unbiased.zstat) {
unbiased.test.val <- NULL
}
if(se || unbiased) {
TR2 <- sum(diag( ACOV %*% ACOV ))
TR1 <- sum(diag( ACOV ))
if(se) {
rms.avar <- TR2/(TR1 * 2 * pstar)
if(!is.finite(rms.avar) || rms.avar < .Machine$double.eps) {
rms.se <- as.numeric(NA)
} else {
rms.se <- sqrt(rms.avar)
}
}
}
if(zstat) {
E.rms <- ( sqrt(TR1/pstar) * (4 * TR1 * TR1 - TR2) / (4 * TR1 * TR1) )
rms.z <- max((rms - E.rms), 0) / rms.se
if(pvalue) {
rms.pvalue <- 1 - pnorm(rms.z)
}
}
if(unbiased) {
T.cov <- as.numeric( crossprod(STATS) )
eVe <- as.numeric(t(STATS) %*% ACOV %*% STATS)
k.cov <- 1 - (TR2 + 2 * eVe) / (4 * T.cov * T.cov)
urms <- ( 1/k.cov * sqrt( max((T.cov - TR1), 0) / pstar ) )
if(unbiased.se) {
urms.avar <- ( 1/(k.cov*k.cov) * (TR2 + 2*eVe) / (2*pstar * T.cov) )
if(!is.finite(urms.avar) || urms.avar < .Machine$double.eps) {
urms.se <- as.numeric(NA)
} else {
urms.se <- sqrt(urms.avar)
}
if(unbiased.ci) {
a <- (1 - unbiased.ci.level)/2
a <- c(a, 1-a)
fac <- stats::qnorm(a)
urms.ci.lower <- urms + urms.se * fac[1]
urms.ci.upper <- urms + urms.se * fac[2]
}
if(unbiased.zstat) {
urms.z <- (urms - unbiased.test.val) / urms.se
if(unbiased.pvalue) {
urms.pvalue <- 1 - pnorm(urms.z)
}
}
}
}
if(type == "rmr") {
OUT <- list(rmr = rms, rmr.se = rms.se,
rmr.exactfit.z = rms.z, rmr.exactfit.pvalue = rms.pvalue,
urmr = urms, urmr.se = urms.se,
urmr.ci.lower = urms.ci.lower,
urmr.ci.upper = urms.ci.upper,
urmr.closefit.h0.value = unbiased.test.val,
urmr.closefit.z = urms.z,
urmr.closefit.pvalue = urms.pvalue)
} else if(type == "srmr") {
OUT <- list(srmr = rms, srmr.se = rms.se,
srmr.exactfit.z = rms.z, srmr.exactfit.pvalue = rms.pvalue,
usrmr = urms, usrmr.se = urms.se,
usrmr.ci.lower = urms.ci.lower,
usrmr.ci.upper = urms.ci.upper,
usrmr.closefit.h0.value = unbiased.test.val,
usrmr.closefit.z = urms.z,
usrmr.closefit.pvalue = urms.pvalue)
} else if(type == "crmr") {
OUT <- list(crmr = rms, crmr.se = rms.se,
crmr.exactfit.z = rms.z, crmr.exactfit.pvalue = rms.pvalue,
ucrmr = urms, ucrmr.se = urms.se,
ucrmr.ci.lower = urms.ci.lower,
ucrmr.cilupper = urms.ci.upper,
ucrmr.closefit.h0.value = unbiased.test.val,
ucrmr.closefit.z = urms.z,
ucrmr.closefit.pvalue = urms.pvalue)
}
unlist(OUT)
}
lav_residuals_summary_old <- function(resList = NULL,
add.class = FALSE, add.labels = FALSE) {
nblocks <- length(resList)
for(b in seq_len(nblocks)) {
x <- vector("list", length = 0L)
nel <- length(resList[[b]])
NAMES <- names(resList[[b]])
for(el in seq_len(nel)) {
EL <- resList[[b]][[el]]
if(!is.null(NAMES)) {
NAME <- NAMES[el]
}
if(is.character(EL)) {
new.x <- list(EL);
if(add.labels) {
names(new.x) <- "type"
}
x <- c(x, new.x)
} else if(is.matrix(EL) && isSymmetric(EL)) {
tmp <- na.omit(lav_matrix_vech(EL))
rms <- sqrt(sum(tmp*tmp)/length(tmp))
mabs <- mean(abs(tmp))
tmp2 <- na.omit(lav_matrix_vech(EL, diagonal = FALSE))
rms.nodiag <- sqrt(sum(tmp2*tmp2)/length(tmp2))
mabs.nodiag <- mean(abs(tmp2))
cov.summary <- c(rms, rms.nodiag, mabs, mabs.nodiag)
if(add.labels) {
names(cov.summary) <-
c("rms", "rms.nodiag", "mabs", "mabs.nodiag")
}
if(add.class) {
class(cov.summary) <- c("lavaan.vector", "numeric")
}
new.x <- list(EL, cov.summary)
if(add.labels && !is.null(NAMES)) {
names(new.x) <- c(NAME, paste0(NAME,".summary"))
}
x <- c(x, new.x)
} else {
tmp <- na.omit(EL)
rms <- sqrt(sum(tmp*tmp)/length(tmp))
mabs <- mean(abs(tmp))
mean.summary <- c(rms, mabs)
if(add.labels) {
names(mean.summary) <- c("rms", "mabs")
}
if(add.class) {
class(mean.summary) <- c("lavaan.vector", "numeric")
}
new.x <- list(EL, mean.summary)
if(add.labels && !is.null(NAMES)) {
names(new.x) <- c(NAME, paste0(NAME,".summary"))
}
x <- c(x, new.x)
}
}
resList[[b]] <- x
}
resList
}
lav_residuals_rescale <- function(x, diag.cov = NULL, diag.cov2 = NULL) {
if(is.null(diag.cov2)) {
diag.cov2 <- diag.cov
}
diag.cov[!is.finite(diag.cov)] <- NA
diag.cov[ diag.cov < .Machine$double.eps ] <- NA
scale.cov <- tcrossprod(1/sqrt(diag.cov))
diag.cov2[!is.finite(diag.cov2)] <- NA
diag.cov2[ diag.cov2 < .Machine$double.eps ] <- NA
scale.mean <- 1/sqrt(diag.cov2)
if(!is.null(x[["cov"]])) {
near.zero.idx <- which(abs(x[["cov"]]) < 1e-05)
scale.cov[near.zero.idx] <- 1
x[["cov"]][] <- x[["cov"]] * scale.cov
}
if(!is.null(x[["res.cov"]])) {
near.zero.idx <- which(abs(x[["res.cov"]]) < 1e-05)
scale.cov[near.zero.idx] <- 1
x[["res.cov"]][] <- x[["res.cov"]] * scale.cov
}
if(!is.null(x[["res.int"]])) {
near.zero.idx <- which(abs(x[["res.int"]]) < 1e-05)
scale.mean[near.zero.idx] <- 1
x[["res.int"]] <- x[["res.int"]] * scale.mean
}
if(!is.null(x[["mean"]])) {
near.zero.idx <- which(abs(x[["mean"]]) < 1e-05)
scale.mean[near.zero.idx] <- 1
x[["mean"]] <- x[["mean"]] * scale.mean
}
x
} |
smi <- function(object, ...) UseMethod("smi")
smi.table <- function(object, normalize=TRUE, ...)
{
stopifnot(length(dim(object)) == 3)
if( dim(object)[1] != 2 )
stop("currently 'smi' supports only two groups")
pmm <- prop.table(object, c(1,2))
r <- diag( pmm[,,2] ) / pmm[1,2,2]
if( normalize )
return( (r - 1) / (r + 1) )
else return(r)
}
smi.igraph <- function(object, vattr, ...)
{
stopifnot(is.directed(object))
m <- mixingm(object, rattr=vattr, full=TRUE)
smi(m, ...)
}
smi.default <- function(object, ...)
{
smi.table(as.table(object), ...)
} |
wmonfromx <- function (xd, prior = "laplace", a = 0.5,
tol = 1e-08, maxits = 20) {
pr <- substring(prior, 1, 1)
nx <- length(xd)
wmin <- wfromt(sqrt(2 * log(length(xd))), prior=prior, a=a)
winit <- 1
if(pr == "l")
beta <- beta.laplace(xd, a=a)
if(pr == "c")
beta <- beta.cauchy(xd)
w <- rep(winit, length(beta))
for(j in (1:maxits)) {
aa <- w + 1/beta
ps <- w + aa
ww <- 1/aa^2
wnew <- isotone(ps, ww, increasing = FALSE)
wnew <- pmax(wmin, wnew)
wnew <- pmin(1, wnew)
zinc <- max(abs(range(wnew - w)))
w <- wnew
if(zinc < tol)
return(w)
}
warning("More iterations required to achieve convergence")
return(w)
} |
`%entails%` <- function(imps, imps2) {
conclusions <- imps2$get_RHS_matrix()
premises <- imps2$get_LHS_matrix()
entails <- sapply(seq(ncol(premises)),
function(i) {
p <- .extract_column(premises, i)
cl <- .compute_closure(
S = p,
LHS = imps$get_LHS_matrix(),
RHS = imps$get_RHS_matrix(),
attributes = imps$get_attributes())$closure
.subset(.extract_column(conclusions, i),
cl)
}) %>%
purrr::reduce(cbind) %>%
Matrix::as.matrix()
return(entails)
}
`%~%` <- function(imps, imps2) {
all(imps %entails% imps2) && all(imps2 %entails% imps)
} |
adorn_totals <- function(dat, where = "row", fill = "-", na.rm = TRUE, name = "Total", ...) {
if("both" %in% where){
where <- c("row", "col")
}
if (is.list(dat) && !is.data.frame(dat)) {
purrr::map(dat, adorn_totals, where, fill, na.rm, name)
} else {
if (!is.data.frame(dat)) {
stop("adorn_totals() must be called on a data.frame or list of data.frames")
}
numeric_cols <- which(vapply(dat, is.numeric, logical(1)))
non_numeric_cols <- setdiff(1:ncol(dat), numeric_cols)
if (rlang::dots_n(...) == 0) {
numeric_cols <- setdiff(numeric_cols, 1)
non_numeric_cols <- unique(c(1, non_numeric_cols))
cols_to_total <- numeric_cols
} else {
expr <- rlang::expr(c(...))
cols_to_total <- tidyselect::eval_select(expr, data = dat)
if (any(cols_to_total %in% non_numeric_cols)) {
cols_to_total <- setdiff(cols_to_total, non_numeric_cols)
}
}
if (length(cols_to_total) == 0) {
stop("at least one targeted column must be of class numeric. Control target variables with the ... argument. adorn_totals should be called before other adorn_ functions.")
}
if (sum(where %in% c("row", "col")) != length(where)) {
stop("\"where\" must be one of \"row\", \"col\", or c(\"row\", \"col\")")
}
if (length(name) == 1) name <- rep(name, 2)
if ("grouped_df" %in% class(dat)) {
dat <- dplyr::ungroup(dat)
}
dat <- as_tabyl(dat)
if (sum(where %in% attr(dat, "totals")) > 0) {
stop("trying to re-add a totals dimension that is already been added")
} else if (length(attr(dat, "totals")) == 1) {
attr(dat, "totals") <- c(attr(dat, "totals"), where)
} else {
attr(dat, "totals") <- where
}
if ("row" %in% where) {
col_sum <- function(a_col, na_rm = na.rm) {
if (is.numeric(a_col)) {
sum(a_col, na.rm = na_rm)
} else {
if (!is.character(fill)) {
switch(typeof(a_col),
"character" = NA_character_,
"integer" = NA_integer_,
"double" = if(inherits(a_col, "Date") || inherits(a_col, "POSIXt")) {
as.Date(NA_real_, origin = "1970-01-01")
} else {
NA_real_
},
"complex" = NA_complex_,
NA)
} else {
fill
}
}
}
if (is.character(fill)) {
col_totals <- purrr::map_df(dat, col_sum)
not_totaled_cols <- setdiff(1:length(col_totals), cols_to_total)
col_totals[not_totaled_cols] <- fill
dat[not_totaled_cols] <- lapply(dat[not_totaled_cols], as.character)
} else {
cols_idx <- seq_along(dat)
names(cols_idx) <- names(dat)
col_totals <- purrr::map_df(cols_idx, function(i) {
if (is.numeric(dat[[i]]) && !i %in% cols_to_total) {
switch(typeof(dat[[i]]),
"integer" = NA_integer_,
"double" = NA_real_,
NA)
} else {
col_sum(dat[[i]])
}
})
if (!is.character(dat[[1]]) && !1 %in% cols_to_total) {
dat[[1]] <- as.character(dat[[1]])
col_totals[[1]] <- as.character(col_totals[[1]])
}
}
if (! 1 %in% cols_to_total) {
col_totals[1, 1] <- name[1]
} else {
message("Because the first column was specified to be totaled, it does not contain the label 'Total' (or user-specified name) in the totals row")
}
dat[(nrow(dat) + 1), ] <- col_totals[1, ]
}
if ("col" %in% where) {
row_totals <- dat %>%
dplyr::select(cols_to_total) %>%
dplyr::select_if(is.numeric) %>%
dplyr::transmute(Total = rowSums(., na.rm = na.rm))
dat[[name[2]]] <- row_totals$Total
}
dat
}
} |
lpp <- function(X, L, ...) {
stopifnot(inherits(L, "linnet"))
if(missing(X) || is.null(X)) {
df <- data.frame(x=numeric(0), y=numeric(0))
lo <- data.frame(seg=integer(0), tp=numeric(0))
} else {
localnames <- c("seg", "tp")
spatialnames <- c("x", "y")
allcoordnames <- c(spatialnames, localnames)
if(is.matrix(X)) X <- as.data.frame(X)
if(checkfields(X, localnames)) {
X <- as.data.frame(X)
if(nrow(X) > 0) {
nedge <- nsegments(L)
if(with(X, any(seg < 1 | seg > nedge)))
stop("Segment index coordinate 'seg' exceeds bounds")
if(with(X, any(tp < 0 | tp > 1)))
stop("Local coordinate 'tp' outside [0,1]")
}
if(!checkfields(X, spatialnames)) {
Y <- local2lpp(L, X$seg, X$tp, df.only=TRUE)
X[,spatialnames] <- Y[,spatialnames,drop=FALSE]
}
lo <- X[ , localnames, drop=FALSE]
marknames <- setdiff(names(X), allcoordnames)
df <- X[, c(spatialnames, marknames), drop=FALSE]
} else {
if(!is.ppp(X))
X <- as.ppp(X, W=L$window, ...)
pro <- project2segment(X, as.psp(L))
df <- as.data.frame(pro$Xproj)
lo <- data.frame(seg=pro$mapXY, tp=pro$tp)
}
}
nmark <- ncol(df) - 2
if(nmark == 0) {
df <- cbind(df, lo)
ctype <- c(rep("s", 2), rep("l", 2))
} else {
df <- cbind(df[,1:2], lo, df[, -(1:2), drop=FALSE])
ctype <- c(rep("s", 2), rep("l", 2), rep("m", nmark))
}
out <- ppx(data=df, domain=L, coord.type=ctype)
class(out) <- c("lpp", class(out))
return(out)
}
print.lpp <- function(x, ...) {
stopifnot(inherits(x, "lpp"))
splat("Point pattern on linear network")
sd <- summary(x$data)
np <- sd$ncases
nama <- sd$col.names
splat(np, ngettext(np, "point", "points"))
ctype <- x$ctype
nam.m <- nama[ctype == "mark"]
nam.t <- nama[ctype == "temporal"]
nam.c <- setdiff(nama[ctype == "spatial"], c("x","y"))
nam.l <- setdiff(nama[ctype == "local"], c("seg", "tp"))
if(length(nam.c) > 0)
splat("Additional spatial coordinates", commasep(sQuote(nam.c)))
if(length(nam.l) > 0)
splat("Additional local coordinates", commasep(sQuote(nam.l)))
if(length(nam.t) > 0)
splat("Additional temporal coordinates", commasep(sQuote(nam.t)))
if((nmarks <- length(nam.m)) > 0) {
if(nmarks > 1) {
splat(nmarks, "columns of marks:", commasep(sQuote(nam.m)))
} else {
marx <- marks(x)
if(is.factor(marx)) {
exhibitStringList("Multitype, with possible types:", levels(marx))
} else splat("Marks of type", sQuote(typeof(marx)))
}
}
print(x$domain, ...)
return(invisible(NULL))
}
plot.lpp <- function(x, ..., main, add=FALSE,
use.marks=TRUE, which.marks=NULL,
show.all=!add, show.window=FALSE,
show.network=TRUE,
do.plot=TRUE, multiplot=TRUE) {
if(missing(main))
main <- short.deparse(substitute(x))
mx <- marks(x)
if(use.marks && !is.null(dim(mx))) {
implied.all <- is.null(which.marks)
want.several <- implied.all || !is.null(dim(mx <- mx[,which.marks,drop=TRUE]))
do.several <- want.several && !add && multiplot
if(want.several)
mx <- as.data.frame(mx)
if(do.several) {
y <- solapply(mx, setmarks, x=x)
out <- do.call(plot,
c(list(x=y, main=main, do.plot=do.plot,
show.window=show.window),
list(...)))
return(invisible(out))
}
if(is.null(which.marks)) {
which.marks <- 1
if(do.plot) message("Plotting the first column of marks")
}
}
P <- as.ppp(x)
a <- plot(P, ..., do.plot=FALSE,
use.marks=use.marks, which.marks=which.marks)
if(!do.plot) return(a)
if(!add) {
if(show.window) {
plot(Window(P), main=main, invert=TRUE, ...)
} else {
b <- attr(a, "bbox")
plot(b, type="n", main=main, ..., show.all=FALSE)
}
}
if(show.network) {
L <- as.linnet(x)
dont.complain.about(L)
do.call.matched(plot.linnet,
resolve.defaults(list(x=quote(L), add=TRUE),
list(...)),
extrargs=c("lty", "lwd", "col"))
}
ans <- do.call.matched(plot.ppp,
c(list(x=P, add=TRUE, main=main,
use.marks=use.marks, which.marks=which.marks,
show.all=show.all, show.window=FALSE),
list(...)),
extrargs=c("shape", "size", "pch", "cex",
"fg", "bg", "cols", "lty", "lwd", "etch",
"cex.main", "col.main", "line", "outer", "sub"))
return(invisible(ans))
}
summary.lpp <- function(object, ...) {
stopifnot(inherits(object, "lpp"))
L <- object$domain
result <- summary(L)
np <- npoints(object)
result$npoints <- np <- npoints(object)
result$intensity <- np/result$totlength
result$is.marked <- is.marked(object)
result$is.multitype <- is.multitype(object)
mks <- marks(object)
result$markformat <- mkf <- markformat(mks)
switch(mkf,
none = {
result$multiple.marks <- FALSE
},
vector = {
result$multiple.marks <- FALSE
if(result$is.multitype) {
tm <- as.vector(table(mks))
tfp <- data.frame(frequency=tm,
proportion=tm/sum(tm),
intensity=tm/result$totlength,
row.names=levels(mks))
result$marks <- tfp
result$is.numeric <- FALSE
} else {
result$marks <- summary(mks)
result$is.numeric <- is.numeric(mks)
}
result$marknames <- "marks"
result$marktype <- typeof(mks)
},
dataframe = ,
hyperframe = {
result$multiple.marks <- TRUE
result$marknames <- names(mks)
result$is.numeric <- FALSE
result$marktype <- mkf
result$is.multitype <- FALSE
result$marks <- summary(mks)
})
class(result) <- "summary.lpp"
return(result)
}
print.summary.lpp <- function(x, ...) {
what <- if(x$is.multitype) "Multitype point pattern" else
if(x$is.marked) "Marked point pattern" else "Point pattern"
splat(what, "on linear network")
splat(x$npoints, "points")
splat("Linear network with",
x$nvert, "vertices and",
x$nline, "lines")
u <- x$unitinfo
dig <- getOption('digits')
splat("Total length", signif(x$totlength, dig), u$plural, u$explain)
splat("Average intensity", signif(x$intensity, dig),
"points per", if(u$vanilla) "unit length" else u$singular)
if(x$is.marked) {
if(x$multiple.marks) {
splat("Mark variables:", commasep(x$marknames, ", "))
cat("Summary of marks:\n")
print(x$marks)
} else if(x$is.multitype) {
cat("Types of points:\n")
print(signif(x$marks,dig))
} else {
splat("marks are ",
if(x$is.numeric) "numeric, ",
"of type ", sQuote(x$marktype),
sep="")
cat("Summary:\n")
print(x$marks)
}
} else splat("Unmarked")
print(x$win, prefix="Enclosing window: ")
invisible(NULL)
}
intensity.lpp <- function(X, ...) {
len <- sum(lengths_psp(as.psp(as.linnet(X))))
if(is.multitype(X)) table(marks(X))/len else npoints(X)/len
}
is.lpp <- function(x) {
inherits(x, "lpp")
}
is.multitype.lpp <- function(X, na.action="warn", ...) {
marx <- marks(X)
if(is.null(marx))
return(FALSE)
if((is.data.frame(marx) || is.hyperframe(marx)) && ncol(marx) > 1)
return(FALSE)
if(!is.factor(marx))
return(FALSE)
if((length(marx) > 0) && anyNA(marx))
switch(na.action,
warn = {
warning(paste("some mark values are NA in the point pattern",
short.deparse(substitute(X))))
},
fatal = {
return(FALSE)
},
ignore = {}
)
return(TRUE)
}
as.lpp <- function(x=NULL, y=NULL, seg=NULL, tp=NULL, ...,
marks=NULL, L=NULL, check=FALSE, sparse) {
nomore <- is.null(y) && is.null(seg) && is.null(tp)
if(inherits(x, "lpp") && nomore) {
X <- x
if(!missing(sparse) && !is.null(sparse))
X$domain <- as.linnet(domain(X), sparse=sparse)
} else {
if(!inherits(L, "linnet"))
stop("L should be a linear network")
if(!missing(sparse) && !is.null(sparse))
L <- as.linnet(L, sparse=sparse)
if(is.ppp(x) && nomore) {
X <- lpp(x, L)
} else if(is.data.frame(x) && nomore) {
X <- do.call(as.lpp,
resolve.defaults(as.list(x),
list(...),
list(marks=marks, L=L, check=check)))
} else if(is.null(x) && is.null(y) && !is.null(seg) && !is.null(tp)){
X <- lpp(data.frame(seg=seg, tp=tp), L=L)
} else {
if(is.numeric(x) && length(x) == 2 && is.null(y)) {
xy <- list(x=x[1L], y=x[2L])
} else {
xy <- xy.coords(x,y)[c("x", "y")]
}
if(!is.null(seg) && !is.null(tp)) {
xy <- append(xy, list(seg=seg, tp=tp))
} else {
xy <- as.ppp(xy, W=as.owin(L), check=check)
}
X <- lpp(xy, L)
}
}
if(!is.null(marks))
marks(X) <- marks
return(X)
}
as.ppp.lpp <- function(X, ..., fatal=TRUE) {
verifyclass(X, "lpp", fatal=fatal)
L <- X$domain
Y <- as.ppp(coords(X, temporal=FALSE, local=FALSE),
W=L$window, check=FALSE)
if(!is.null(marx <- marks(X))) {
if(is.hyperframe(marx)) marx <- as.data.frame(marx)
marks(Y) <- marx
}
return(Y)
}
Window.lpp <- function(X, ...) { as.owin(X) }
"Window<-.lpp" <- function(X, ..., check=TRUE, value) {
if(check) {
X <- X[value]
} else {
Window(X$domain, check=FALSE) <- value
}
return(X)
}
as.owin.lpp <- function(W, ..., fatal=TRUE) {
as.owin(as.ppp(W, ..., fatal=fatal))
}
domain.lpp <- function(X, ...) { as.linnet(X) }
as.linnet.lpp <- function(X, ..., fatal=TRUE, sparse) {
verifyclass(X, "lpp", fatal=fatal)
L <- X$domain
if(!missing(sparse))
L <- as.linnet(L, sparse=sparse)
return(L)
}
unitname.lpp <- function(x) {
u <- unitname(x$domain)
return(u)
}
"unitname<-.lpp" <- function(x, value) {
w <- x$domain
unitname(w) <- value
x$domain <- w
return(x)
}
"marks<-.lpp" <- function(x, ..., value) {
NextMethod("marks<-")
}
unmark.lpp <- function(X) {
NextMethod("unmark")
}
as.psp.lpp <- function(x, ..., fatal=TRUE){
verifyclass(x, "lpp", fatal=fatal)
return(x$domain$lines)
}
nsegments.lpp <- function(x) {
return(x$domain$lines$n)
}
local2lpp <- function(L, seg, tp, X=NULL, df.only=FALSE) {
stopifnot(inherits(L, "linnet"))
if(is.null(X)) {
Ldf <- as.data.frame(L$lines)
dx <- with(Ldf, x1-x0)
dy <- with(Ldf, y1-y0)
x <- with(Ldf, x0[seg] + tp * dx[seg])
y <- with(Ldf, y0[seg] + tp * dy[seg])
} else {
x <- X$x
y <- X$y
}
data <- data.frame(x=x, y=y, seg=seg, tp=tp)
if(df.only) return(data)
ctype <- c("s", "s", "l", "l")
out <- ppx(data=data, domain=L, coord.type=ctype)
class(out) <- c("lpp", class(out))
return(out)
}
"[.lpp" <- function (x, i, j, drop=FALSE, ..., snip=TRUE) {
if(!missing(i) && !is.null(i)) {
if(is.owin(i)) {
xi <- x[,i,snip=snip]
} else {
da <- x$data
daij <- da[i, , drop=FALSE]
xi <- ppx(data=daij, domain=x$domain, coord.type=as.character(x$ctype))
if(drop)
xi <- xi[drop=TRUE]
class(xi) <- c("lpp", class(xi))
}
x <- xi
}
if(missing(j) || is.null(j))
return(x)
stopifnot(is.owin(j))
x <- repairNetwork(x)
w <- j
L <- x$domain
if(is.vanilla(unitname(w)))
unitname(w) <- unitname(x)
vertinside <- inside.owin(L$vertices, w=w)
from <- L$from
to <- L$to
if(snip) {
okedge <- vertinside[from] | vertinside[to]
x <- thinNetwork(x, retainedges=okedge)
b <- crossing.psp(as.psp(L), edges(w))
x <- insertVertices(x, unique(b))
boundarypoints <- attr(x, "id")
L <- x$domain
from <- L$from
to <- L$to
vertinside <- inside.owin(L$vertices, w=w)
vertinside[boundarypoints] <- TRUE
}
edgeinside <- vertinside[from] & vertinside[to]
xnew <- thinNetwork(x, retainedges=edgeinside)
Window(xnew, check=FALSE) <- w
return(xnew)
}
scalardilate.lpp <- function(X, f, ...) {
trap.extra.arguments(..., .Context="In scalardilate(X,f)")
check.1.real(f, "In scalardilate(X,f)")
stopifnot(is.finite(f) && f > 0)
Y <- X
Y$data$x <- f * as.numeric(X$data$x)
Y$data$y <- f * as.numeric(X$data$y)
Y$domain <- scalardilate(X$domain, f)
return(Y)
}
affine.lpp <- function(X, mat=diag(c(1,1)), vec=c(0,0), ...) {
verifyclass(X, "lpp")
Y <- X
Y$data[, c("x","y")] <- affinexy(X$data[, c("x","y")], mat=mat, vec=vec)
Y$domain <- affine(X$domain, mat=mat, vec=vec, ...)
return(Y)
}
shift.lpp <- function(X, vec=c(0,0), ..., origin=NULL) {
verifyclass(X, "lpp")
Y <- X
Y$domain <- if(missing(vec)) {
shift(X$domain, ..., origin=origin)
} else {
shift(X$domain, vec=vec, ..., origin=origin)
}
vec <- getlastshift(Y$domain)
Y$data[, c("x","y")] <- shiftxy(X$data[, c("x","y")], vec=vec)
attr(Y, "lastshift") <- vec
return(Y)
}
rotate.lpp <- function(X, angle=pi/2, ..., centre=NULL) {
verifyclass(X, "lpp")
if(!is.null(centre)) {
X <- shift(X, origin=centre)
negorigin <- getlastshift(X)
} else negorigin <- NULL
Y <- X
Y$data[, c("x","y")] <- rotxy(X$data[, c("x","y")], angle=angle)
Y$domain <- rotate(X$domain, angle=angle, ...)
if(!is.null(negorigin))
Y <- shift(Y, -negorigin)
return(Y)
}
rescale.lpp <- function(X, s, unitname) {
if(missing(unitname)) unitname <- NULL
if(missing(s)) s <- 1/unitname(X)$multiplier
Y <- scalardilate(X, f=1/s)
unitname(Y) <- rescale(unitname(X), s, unitname)
return(Y)
}
superimpose.lpp <- function(..., L=NULL) {
objects <- list(...)
if(!is.null(L) && !inherits(L, "linnet"))
stop("L should be a linear network")
if(length(objects) == 0) {
if(is.null(L)) return(NULL)
emptyX <- lpp(list(x=numeric(0), y=numeric(0)), L)
return(emptyX)
}
islpp <- unlist(lapply(objects, is.lpp))
if(is.null(L) && !any(islpp))
stop("Cannot determine linear network: no lpp objects given")
nets <- unique(lapply(objects[islpp], as.linnet))
if(length(nets) > 1)
stop("Point patterns are defined on different linear networks")
if(!is.null(L)) {
nets <- unique(append(nets, list(L)))
if(length(nets) > 1)
stop("Argument L is a different linear network")
}
L <- nets[[1L]]
if(any(!islpp))
objects[!islpp] <- lapply(objects[!islpp], lpp, L=L)
locns <- do.call(rbind, lapply(objects, coords))
marx <- superimposeMarks(objects, sapply(objects, npoints))
Y <- lpp(locns, L)
marks(Y) <- marx
return(Y)
}
identify.lpp <- function(x, ...) {
verifyclass(x, "lpp")
P <- as.ppp(x)
id <- identify(P$x, P$y, ...)
if(!is.marked(x)) return(id)
marks <- as.data.frame(P)[id, -(1:2)]
out <- cbind(data.frame(id=id), marks)
row.names(out) <- NULL
return(out)
}
cut.lpp <- function(x, z=marks(x), ...) {
if(missing(z) || is.null(z)) {
z <- marks(x, dfok=TRUE)
if(is.null(z))
stop("no data for grouping: z is missing, and x has no marks")
} else {
if(inherits(z, "linim")) {
z <- z[x, drop=FALSE]
} else if(inherits(z, "linfun")) {
z <- z(x)
} else if(inherits(z, "lintess")) {
z <- (as.linfun(z))(x)
}
}
if(is.character(z)) {
if(length(z) == npoints(x)) {
z <- factor(z)
} else if((length(z) == 1) && (z %in% colnames(df <- as.data.frame(x)))) {
zname <- z
z <- df[, zname]
if(zname == "seg") z <- factor(z)
} else stop("format of argument z not understood")
}
switch(markformat(z),
none = stop("No data for grouping"),
vector = {
stopifnot(length(z) == npoints(x))
g <- if(is.factor(z)) z else
if(is.numeric(z)) cut(z, ...) else factor(z)
marks(x) <- g
return(x)
},
dataframe = ,
hyperframe = {
stopifnot(nrow(z) == npoints(x))
z <- as.data.frame(z)
if(ncol(z) < 1) stop("No suitable data for grouping")
z <- z[,1L,drop=TRUE]
g <- if(is.numeric(z)) cut(z, ...) else factor(z)
marks(x) <- g
return(x)
},
list = stop("Don't know how to cut according to a list"))
stop("Format of z not understood")
}
points.lpp <- function(x, ...) {
points(coords(x, spatial=TRUE, local=FALSE), ...)
}
connected.lpp <- function(X, R=Inf, ..., dismantle=TRUE) {
if(!dismantle) {
if(is.infinite(R)) {
Y <- X %mark% factor(1)
attr(Y, "retainpoints") <- attr(X, "retainpoints")
return(Y)
}
check.1.real(R)
stopifnot(R >= 0)
nv <- npoints(X)
close <- (pairdist(X) <= R)
diag(close) <- FALSE
ij <- which(close, arr.ind=TRUE)
lab0 <- cocoEngine(nv, ij[,1] - 1L, ij[,2] - 1L, "connected.lpp")
lab <- lab0 + 1L
lab <- as.integer(factor(lab))
lab <- factor(lab)
Y <- X %mark% lab
attr(Y, "retainpoints") <- attr(X, "retainpoints")
return(Y)
}
L <- domain(X)
lab <- connected(L, what="labels")
if(length(levels(lab)) == 1) {
XX <- solist(X)
} else {
subsets <- split(seq_len(nvertices(L)), lab)
XX <- solist()
for(i in seq_along(subsets))
XX[[i]] <- thinNetwork(X, retainvertices=subsets[[i]])
}
YY <- solapply(XX, connected.lpp, R=R, dismantle=FALSE)
if(length(YY) == 1)
YY <- YY[[1]]
return(YY)
}
text.lpp <- function(x, ...) {
co <- coords(x)
graphics::text.default(x=co$x, y=co$y, ...)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(MultivariateAnalysis)
data("Dados.DBC.Misto")
head(Dados.DBC.Misto)
Res=MANOVA(Dados.DBC.Misto[,1:5],Modelo=2)
Res
DadosMed=Res$Med
DistMaha=Distancia(DadosMed,Metodo = 7,Cov = Res$CovarianciaResidual)
DistMaha
resumo=SummaryDistancia(DistMaha)
resumo
Dadosquali=Dados.DBC.Misto[,6:11]
id=is.na(Dadosquali$CorFolha)==FALSE
Dadosquali2=Dadosquali[id,]
rownames(Dadosquali2)=Dados.DBC.Misto[id,1]
Distquali=Distancia(Dadosquali2,Metodo = 10)
round(Distquali$Distancia,3)
dissimilaridades=list(DistMaha,Distquali)
n=c(ncol(DadosMed),ncol(Dadosquali2))
DistMisto=MediaDistancia(dissimilaridades,n)
DistMisto
Dendrograma(DistMaha,Metodo=3,Titulo="Dados quantiativos")
Dendrograma(Distquali,Metodo=3, Titulo="Dados qualitativos")
Dendrograma(DistMisto,Metodo=3,Titulo= "Qualitativos + Quantiativos")
Tocher(DistMisto)
CorrelacaoMantel(DistMaha,DistMisto)
CorrelacaoMantel(DistMaha,Distquali)
CorrelacaoMantel(Distquali,DistMisto) |
test_that("daily - on a yweek", {
base <- daily()
rrule <- base %>% recur_on_yweek(1)
start <- "1990-01-01"
stop <- "1990-01-31"
x <- alma_search(start, stop, rrule)
expect_equal(x[1], as.Date("1990-01-01"))
expect_equal(x[length(x)], as.Date("1990-01-07"))
expect_length(x, 7)
})
test_that("weekly - on a yweek", {
base <- weekly()
rrule <- base %>% recur_on_yweek(1)
start <- "1990-01-01"
stop <- "1990-01-31"
x <- alma_search(start, stop, rrule)
expect_equal(x[1], as.Date("1990-01-01"))
expect_equal(x[length(x)], as.Date("1990-01-07"))
expect_length(x, 7)
})
test_that("monthly - on a yweek", {
base <- monthly()
rrule <- base %>% recur_on_yweek(1)
start <- "1990-01-01"
stop <- "1990-01-31"
x <- alma_search(start, stop, rrule)
expect_equal(x[1], as.Date("1990-01-01"))
expect_equal(x[length(x)], as.Date("1990-01-07"))
expect_length(x, 7)
})
test_that("yearly - on a yweek", {
base <- yearly()
rrule <- base %>% recur_on_yweek(1)
start <- "1990-01-01"
stop <- "1990-01-31"
x <- alma_search(start, stop, rrule)
expect_equal(x[1], as.Date("1990-01-01"))
expect_equal(x[length(x)], as.Date("1990-01-07"))
expect_length(x, 7)
})
test_that("first week of the year correctly defaults to use a week start of Monday", {
rrule <- daily() %>% recur_on_yweek(1)
x <- alma_search("2017-01-01", "2017-01-31", rrule)
expect_equal(x[1], as.Date("2017-01-02"))
expect_length(x, 7)
x <- alma_search("2014-12-25", "2015-01-31", rrule)
expect_equal(x[1], as.Date("2014-12-29"))
expect_length(x, 7)
})
test_that("logic is correct when selecting from the back", {
rrule <- daily() %>% recur_on_yweek(-1)
x <- alma_search("2017-12-01", "2018-01-31", rrule)
expect_equal(x[1], as.Date("2017-12-25"))
expect_equal(x[length(x)], as.Date("2017-12-31"))
x <- alma_search("2014-12-01", "2015-01-31", rrule)
expect_equal(x[1], as.Date("2014-12-22"))
expect_equal(x[length(x)], as.Date("2014-12-28"))
})
test_that("week start option is respected", {
rrule <- daily() %>% recur_on_yweek(1) %>% recur_with_week_start("Tuesday")
x <- alma_search("2017-01-01", "2017-01-31", rrule)
expect_equal(x[1], as.Date("2017-01-03"))
rrule <- daily() %>% recur_on_yweek(1) %>% recur_with_week_start("Sunday")
x <- alma_search("2014-12-25", "2015-01-31", rrule)
expect_equal(x[1], as.Date("2015-01-04"))
})
test_that("cannot use `yweek > 53` or `yweek < -53` or `yweek == 0`", {
expect_error(yearly() %>% recur_on_yweek(54), "can only take values")
expect_error(yearly() %>% recur_on_yweek(-54), "can only take values")
expect_error(yearly() %>% recur_on_yweek(0), "can only take values")
})
test_that("yweek must be an integer", {
expect_error(yearly() %>% recur_on_yweek(30.5), class = "vctrs_error_cast_lossy")
}) |
print.SimBIID_model <- function(x, ...) {
writeLines(x$code)
} |
modelDisable <- function(factory){
command <- paste("UpdaterMethods.SetFactory('", factory,"');UpdaterMethods.Disable", sep = "")
invisible(.CmdInterpreter(command))
}
modelEnable <- function(factory){
command <- paste("UpdaterMethods.SetFactory('", factory,"');UpdaterMethods.Enable", sep = "")
invisible(.CmdInterpreter(command))
} |
als.mg.ho2.imp <- function (Z, rawz0, W01, W02, A0, W1, W2, A, V, I, PHT, nvar, nlv1, nlv, ng, missingvalue, itmax, ceps)
{
sizez <- ncol(Z)
sizea <- ncol(A)
aindex0 <- which(A0 >= 1)
W <- W1%*%W2
Psi <- Z%*%V%*%I
Gamma <- Z%*%W
it <- 0
imp <- 100000
f0 <- 10^10
while (it <= itmax && imp > ceps) {
it <- it + 1
for (t in 1:sizea) {
if ( !all(A0[,t] == 0) ) {
H1 <- diag(1,sizea)
H1[t,t] <- 0
aindex <- which(A0[,t] >= 1)
if(length(aindex) != 0) {
a <- A[,t,drop=FALSE]
a[aindex] <- 0
e <- matrix(0,1,sizea)
e[t] <- 1
Y <- Psi - Gamma%*%(A%*%H1 + a%*%e)
X <- Gamma[,aindex,drop=FALSE]
A[aindex,t] <- solve(t(X)%*%X, t(X)%*%Y%*%t(e))
}
}
}
vecA <- A[aindex0]
A[aindex0] <- PHT%*%vecA
W2A <- W2%*%A
kk <- 0
ii <- 0
ll <- 0
for (g in 1:ng) {
k <- kk + 1
kk <- kk + nlv1
i <- ii + 1
ii <- ii + nvar
l <- ll + 1
ll <- ll + nlv
s <- 0
for (j in k:kk) {
s <- s + 1
t <- sizea*(g-1) + 1
tt <- sizea*(g-1) + sizea
windex1 <- which(W01[,j] == 99)
w1 <- W1[,j,drop=FALSE]
w1[windex1] <- 0
m <- cbind(matrix(0,1,nvar),W2[j,l:ll,drop=FALSE])
H2 <- diag(1,nlv1)
H2[s,s] <- 0
Dj <- cbind(diag(1,nvar),W1[i:ii,k:kk,drop=FALSE]%*%H2%*%W2[k:kk,l:ll,drop=FALSE])
D <- V
D[i:ii,t:tt] <- Dj
beta <- m - W2A[j,,drop=FALSE]
H3 <- diag(1,ng*nlv1)
H3[j,j] <- 0
Delta <- W1%*%H3%*%W2A - D%*%I - w1%*%beta
Y <- Z%*%Delta
X <- Z[,windex1]
temptheta <- solve(t(X)%*%X,t(X)) %*% Y %*% t(beta)
theta <- t(solve(t(beta%*%t(beta)),t(temptheta)))
zw <- X%*%theta
theta <- theta%*%(1/sqrt(t(zw)%*%zw))
W1[windex1,j] <- theta
V[i:ii,t:tt] <- cbind(diag(1,nvar),W1[i:ii,k:kk]%*%W2[k:kk,l:ll])
}
}
ZW1 <- Z%*%W1
kk <- 0
ii <- 0
ll <- 0
for (g in 1:ng) {
k <- kk + 1
kk <- kk + nlv1
i <- ii + 1
ii <- ii + nvar
l <- ll + 1
ll <- ll + nlv
s <- 0
for (j in l:ll) {
s <- s + 1
t <- sizea*(g-1) + 1
tt <- sizea*(g-1) + sizea
windex2 <- which(W02[,j] == 99)
if ( nrow(as.matrix(windex2)) != 0 ) {
w2 <- W2[,j,drop=FALSE]
w2[windex2] <- 0
e <- matrix(0,1,nlv)
e[s] <- 1
m <- cbind(matrix(0,1,nvar),e)
H4 <- diag(1,nlv)
H4[s,s] <- 0
Dj <- cbind(diag(1,nvar),W1[i:ii,k:kk,drop=FALSE]%*%W2[k:kk,l:ll,drop=FALSE]%*%H4)
D <- V
D[i:ii,t:tt] <- Dj
beta <- m - A[j,,drop=FALSE]
H5 <- diag(1,ng*nlv)
H5[j,j] <- 0
Delta <- W1%*%W2%*%H5%*%A - D%*%I
Y <- Z%*%Delta - ZW1%*%w2%*%beta
X <- ZW1[,windex2,drop=FALSE]
temptheta <- solve(t(X)%*%X,t(X)) %*% Y %*% t(beta)
theta <- t(solve(t(beta%*%t(beta)),t(temptheta)))
zw <- X%*%theta
theta <- theta%*%(1/sqrt(t(zw)%*%zw))
W2[windex2,j] <- theta
V[i:ii,t:tt] <- cbind(diag(1,nvar),W1[i:ii,k:kk]%*%W2[k:kk,l:ll])
}
}
}
W <- W1%*%W2
Q <- V%*%I - W%*%A
for (j in 1:sizez) {
zindex <- which(rawz0[,j] == missingvalue)
if ( nrow(as.matrix(zindex)) != 0 ) {
z <- Z[,j,drop=FALSE]
q <- Q[j,,drop=FALSE]
H6 <- diag(1, sizez)
H6[j,j] <- 0
Y <- -Z%*%H6%*%Q
mz <- (Y%*%t(q))%*%(1/q%*%t(q))
z[zindex] <- mz[zindex]
Z[,j] <- z%*%(1/sqrt(t(z)%*%z))
}
}
Gamma <- Z%*%W
Psi <- Z%*%V%*%I
dif <- Psi-Gamma%*%A
f <- sum(diag(t(dif)%*%dif))
imp <- f0-f
info <- c(it,f,f0,imp)
f0 <- f
}
output.als.mg.ho2.imp <- list(W = W, W1 = W1, W2 = W2, A = A, Z = Z, Psi = Psi, Gamma = Gamma, f = f, it = it, imp = imp)
output.als.mg.ho2.imp
} |
snmatch <- function(x, y, p = c(0.025, 0.5, 0.975)){
if(!is.vector(x, mode = "numeric") || !is.vector(y, mode = "numeric") ||
!is.vector(p, mode = "numeric"))
stop("x, y, p must be numeric vectors")
if(length(x) != length(y))
stop("x and y must have the same length")
if(any(is.infinite(x)) | any(is.infinite(y)))
stop("x, y must contain finite values")
if(anyNA(x) | anyNA(y) | anyNA(p))
stop("x or y or p contain NA or NaN")
if(any(p < 0) | any(p > 1))
stop("probabilities must be between 0 and 1")
x <- sort(x)
y <- y[order(x)]
cubroot <- function(x) sign(x) * (abs(x)) ^ (1 / 3)
n <- length(x) - 1
dx <- diff(x)
gx <- x * y
trapezoid.vec <- rowSums(cbind(gx[1:n], gx[-1])) * .5
mom1 <- sum(trapezoid.vec * dx)
gx2 <- ((x - mom1) ^ 2) * y
trapezoid.vec <- rowSums(cbind(gx2[1:n], gx2[-1])) * .5
mom2 <- sum(trapezoid.vec * dx)
gx3 <- ((x - mom1) ^ 3) * y
trapezoid.vec <- rowSums(cbind(gx3[1:n], gx3[-1])) * .5
mom3 <- sum(trapezoid.vec * dx)
const.kappa <- (cubroot(mom3) * sqrt(pi)) / (cubroot(4 - pi) * (2 ^ (1 / 6)) *
sqrt(mom2))
psi.star <- sign(mom3) * sqrt(4 * (const.kappa ^ 2 +
(2 * (const.kappa ^ 4) / pi))) / (2 + (4 * const.kappa ^ 2) / pi)
if (psi.star < -1) {
psi.star <- (-1 + 1e-3)
}
if (psi.star > 1) {
psi.star <- (1 - 1e-3)
}
rho.star <- psi.star / (sqrt(1 - psi.star ^ 2))
zeta.star <- sqrt(mom2 / (1 - (2 / pi) * (psi.star ^ 2)))
mu.star <- mom1 - zeta.star * sqrt(2 / pi) * psi.star
xfine <- seq(min(x), max(x), length = 500)
snfit <- 2 * stats::dnorm(xfine, mean = mu.star, sd = zeta.star) *
stats::pnorm(rho.star * (xfine - mu.star) / zeta.star)
quantiles <- sapply(p, sn::qsn, xi = mu.star, omega = zeta.star,
alpha = rho.star)
list.out <- list(location = mu.star,
scale = zeta.star,
shape = rho.star,
snfit = snfit,
quant = quantiles,
xgrid = xfine)
return(list.out)
} |
test_that("raw_gen", {
testthat::expect_true(ncol(Cremains_measurements %>% mutate(Pop = rep("A", nrow(.))) %>% raw_gen(
Pop =
ncol(.)
)) == 23)
set.seed(123)
testthat::expect_true(round(raw_gen(baboon.parms_df, dist = "log")[1, 6][[1]], 2) == 43.96)
set.seed(123)
testthat::expect_true(round(raw_gen(baboon.parms_df, dist = "trunc")[1, 6][[1]], 2) == 45.39)
set.seed(123)
testthat::expect_true(round(raw_gen(baboon.parms_list)[1, 6][[1]], 2) == 58.55)
set.seed(123)
testthat::expect_true(round(raw_gen(baboon.parms_df, R.res = baboon.parms_R)[1, 6][[1]], 2) == 58.55)
testthat::expect_error(raw_gen(baboon.parms_R))
testthat::expect_error(raw_gen(baboon.parms_df, complete_cases = 95))
testthat::expect_error(raw_gen(baboon.parms_df, Pop = 500))
testthat::expect_error(raw_gen(baboon.parms_df, Trait = 500))
testthat::expect_true(ncol(raw_gen(baboon.parms_df, format = "long")) == 4)
testthat::expect_error(raw_gen(baboon.parms_df, R.res = baboon.parms_list))
testthat::expect_error(raw_gen(baboon.parms_list[1:5]))
}) |
calcICLNoPlots <- function(consensus_results){
ff <- tempfile()
grDevices::png(filename=ff)
res <- calcICL(consensus_results)
grDevices::dev.off()
unlink(ff)
return(res)
} |
gamcen.11 <-
function (x, mu = 0, sig = 1, eta = 0, kappa = 1, alf = 2, bet = 2)
{
r <- (x - mu)/sig
1/sig^2 * (s.1.m.singly.censored(r, alf, bet) - s.0.m.singly.censored(r,
alf, bet)^2)
} |
setCgram = function(type, nugget=sill*0, sill, anisRanges, extraPar=0){
utils::data("variogramModels")
stopifnot(all(dim(sill)==dim(nugget)),
ncol(sill)==nrow(sill),
type %in% gsi.validModels)
dim(sill) = c(1,dim(sill))
dim(anisRanges) = c(1,dim(anisRanges))
vgout <- list(type=type,
data=extraPar,
nugget=nugget,
sill=sill,
M=anisRanges
)
class(vgout) = "gmCgram"
return(vgout)
}
"[[.gmCgram"<- function(x,i,...){
nG = dim(x$M)[3]
nD = dim(x$nugget)[1]
nSo = length(i)
nSi = dim(x$M)[1]
if(i==0){
out = with(x, list(type=type[i],
data=data[i],
nugget=nugget,
sill=structure(0*sill[1,,], dim=c(nSo, nD, nD)),
M=structure(M[1,,], dim=c(nSo, nG, nG))))
}else if( (0 %in% i) & !any(i<0)){
j = i[i>0]
out = with(x, list(type=type[j],
data=data[j],
nugget=nugget,
sill=structure(sill[j,,], dim=c(nSo-1, nD, nD)),
M=structure(M[j,,], dim=c(nSo-1, nG, nG))))
}else if(all(i>0) | all(i<0)){
if(all(i<0)) nSo = nSi-nSo
out = with(x, list(type=type[i],
data=data[i],
nugget=nugget*0,
sill=structure(sill[i,,], dim=c(nSo, nD, nD)),
M=structure(M[i,,], dim=c(nSo, nG, nG))))
}else{
stop("index set i cannot merge 0 and negative numbers")
}
class(out) = class(x)
return(out)
}
"+.gmCgram" <- function(x,y) {
y = as.gmCgram(y)
stopifnot(class(y)=="gmCgram",
dim(x$sill)[-1]==dim(y$sill)[-1],
dim(x$M)[-1]==dim(y$M)[-1])
myfun = function(A,B){
D = dim(A)[2]
nA = dim(A)[1]
nB = dim(B)[1]
dim(A) = c(nA, D^2)
dim(B) = c(nB, D^2)
out = rbind(A, B)
dim(out) = c(nA+nB, D, D)
return(out)
}
x$type = c(x$type, y$type)
x$data= c(x$data, y$data)
x$nugget = x$nugget + y$nugget
x$sill = myfun(x$sill, y$sill)
x$M = myfun(x$M, y$M)
return(x)
}
"[.gmCgram"<- function(x,i,j=i,...){
nDi = length(i)
nDj = length(j)
nS = dim(x$M)[1]
out = with(x, list(type=type,
data=data,
nugget=structure(nugget[i,j, drop=F], dim=c(nDi, nDj)),
sill=structure(sill[,i,j, drop=F], dim=c(nS, nDi, nDj)),
M=M))
class(out) = class(x)
if(!all(i==j)) class(out) = unique(c("gmXCgram", class(out)))
return(out)
}
length.gmCgram = function(x) length(x$type)
if(!isGeneric("ncol")){
ncol <- function(x) UseMethod("ncol",x)
ncol.default <- base::ncol
}
if(!isGeneric("nrow")){
nrow <- function(x) UseMethod("nrow",x)
nrow.default <- base::nrow
}
ncol.gmCgram = function(x) ncol(x$nugget)
nrow.gmCgram = function(x) nrow(x$nugget)
as.function.gmCgram = function(x,...){
f <- function(X,Y=X){
if(is(X,"Spatial")) X = sp::coordinates(X)
X = as.matrix(X)
if(is(Y,"Spatial")) Y = sp::coordinates(Y)
Y = as.matrix(Y)
stopifnot(ncol(X)==ncol(Y), ncol(X)==dim(x$M)[3])
ijEqual = ifelse(nrow(X)==nrow(Y), all(X==Y), FALSE)
o = gsi.calcCgram(X,Y,x,ijEqual)
return(o)
}
return(f)
}
predict.gmCgram = function(object, newdata, ...){
as.function(object)(X=newdata)
}
as.gmCgram <- function(m, ...) UseMethod("as.gmCgram",m)
as.gmCgram.default <- function(m,...) m
plot.gmCgram = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, xlength=200, varnames = colnames(x$nugget),
add=FALSE, commonAxis=TRUE, cov =TRUE, closeplot=TRUE, ...){
Dg = dim(x$M)[2]
Ns = dim(x$M)[1]
Dv = dim(x$nugget)[1]
if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="")
if(is.null(vdir.up) & is.null(vdir.lo)){
vdir.lo = rep(0, Dg)
vdir.lo[1] = 1
dim(vdir.lo) = c(1,Dg)
if(!is.isotropic(x)){
aux = diag(Dg)
if(Dg==3){
vdir.lo = aux[3,]
vdir.up = aux[-3,]
}else
vdir.lo = aux
}
}
if(!is.null(vdir.up)) vdir.up = compositions::oneOrDataset(compositions::normalize(vdir.up))
if(!is.null(vdir.lo)) vdir.lo = compositions::oneOrDataset(compositions::normalize(vdir.lo))
fk = c(sqrt(3),1,3)[x$type+1]*1.25
if(is.null(xlim.up)){
if(add){
par(mfg=c(1,2))
xlim.up = par()$usr[1:2]
}else if(!is.null(vdir.up)){
maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.up), function(j) vdir.up[j,]%*%x$M[i,,]%*%vdir.up[j,])))
xlim.up = c(0, max(fk*maxdist))
}
}
if(is.null(xlim.lo)){
if(add){
par(mfg=c(2,1))
xlim.lo = par()$usr[1:2]
}else if(!is.null(vdir.lo)){
maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.lo), function(j) vdir.lo[j,]%*%x$M[i,,]%*%vdir.lo[j,])))
xlim.lo = c(0, max(fk*maxdist))
}
}
if(!is.null(xlim.up)){
xseq.up = seq(from=xlim.up[1], to=xlim.up[2], length.out=xlength)
}else{ xseq.up=NULL}
if(!is.null(xlim.lo)){
xseq.lo = seq(from=xlim.lo[1], to=xlim.lo[2], length.out=xlength)
}else{ xseq.lo=NULL}
opar = par()
opar = par_remove_readonly(opar)
if(closeplot) on.exit(par(opar))
getVdens = function(vdir, xseq){
if(is.null(vdir)|is.null(xseq)) return(NULL)
Vdens = sapply(1:nrow(vdir), function(k){
X = outer(xseq, vdir[k,])
Y = X[1,,drop=F]*0
gsi.calcCgram(X,Y,x,FALSE)
})
dim(Vdens) = c(Dv,xlength,Dv,nrow(vdir))
if(!cov){
Y = matrix(rep(0,Dg), ncol=Dg)
C0 = gsi.calcCgram(Y,Y,x,FALSE)
dim(C0) = c(Dv,Dv)
Vdens = sweep(-Vdens, c(1,3), C0, "+")
}
return(Vdens)
}
Vdens.up = getVdens(vdir.up, xseq.up)
Vdens.lo = getVdens(vdir.lo, xseq.lo)
myplot = function(...) matplot(type="l",ylab="", xlab="",xaxt="n", ...)
if(add) myplot = function(...) matlines(...)
if(!add){
par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA)
myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n")
}
for(i in 1:Dv){
for(j in 1:Dv){
if((i>=j)&!(is.null(vdir.lo)|is.null(xlim.lo))){
par(mfg=c(i+1,j,Dv+1,Dv+1))
ylim = range(Vdens.lo[,,j,])
if(commonAxis) ylim=range(Vdens.lo[,,j,])
myplot(xseq.lo, Vdens.lo[i,,j,], ylim=ylim, ...)
if(i==j & !add){
axis(side = 3)
mtext(text=varnames[i], side = 3, line=3)
mtext(text=varnames[i], side = 4, line=3)
}
}
if((i<=j)&!(is.null(vdir.up)|is.null(xlim.up))){
par(mfg=c(i,j+1,Dv+1,Dv+1))
ylim = range(Vdens.up[,,j,])
if(commonAxis) ylim=range(Vdens.up[,,j,])
myplot(xseq.up, Vdens.up[i,,j,], ylim=ylim,...)
if(i==j & !add){
axis(side = 1)
mtext(text=varnames[i], side = 1, line=3)
mtext(text=varnames[i], side = 2, line=3)
}
}
}}
mtext(text="lag distance", side=1, outer = TRUE, line=0)
mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2)
invisible(opar)
}
is.isotropic <- function(x, tol=1e-10, ...){ UseMethod("is.isotropic", x) }
is.isotropic.default = function(x, tol=1e-10, ...) NA
is.isotropic.gmCgram = function(x, tol=1e-10, ...){
all(apply(x$M, 1, function(y){
ev = eigen(y, only.values=TRUE)[[1]]
all(abs(ev-ev[1])<tol)
}))
}
is.isotropic.variogramModel = function(x, tol=1e-10, ...){
anis = x[,grep("anis", colnames(x))]
all(apply(anis, 2, function(y) all(abs(y-y[1])<tol) ) )
}
is.isotropic.variogramModelList = function(x, tol=1e-10, ...) is.isotropic(x[[1]], tol=tol)
is.isotropic.LMCAnisCompo = function(x, tol=1e-10, ...){
all(sapply(x["A",], 1, function(y){
ev = eigen(y$A, only.values=TRUE)[[1]]
all(abs(ev-ev[1])<tol)
}))
}
variogram_gmSpatialModel <- function(object, methodPars=NULL, ...){
if(!is.null(methodPars)) stop("use 'variogram' with named parameters only")
gstat::variogram(as.gstat(object), ...)
}
gsi.EVario2D = function(X,Z,Ff=rep(1, nrow(X)),
maxdist= max(dist(X[sample(nrow(X),min(nrow(X),1000)),]))/2,
lagNr = 15, lags = seq(from=0, to=maxdist, length.out=lagNr+1),
azimuthNr=4, azimuths = seq(from=0, to=180, length.out=azimuthNr+1)[1:azimuthNr],
maxbreadth=Inf, minpairs=10, cov=FALSE){
N = nrow(X)
Dv = ncol(Z)
Dg = ncol(X)
stopifnot(N==nrow(Z))
if(length(dim(Ff))==0){
stopifnot(N==length(Ff))
}else{
stopifnot(N==nrow(Ff))
}
if(length(dim(lags))==0){
lags = data.frame(minlag=lags[-length(lags)], maxlag=lags[-1])
if(maxbreadth!=Inf) lags[,"maxbreadth"]=maxbreadth
}else if(dim(lags)==2){
lags = data.frame(lags)
colnames(lags) = c("minlag","maxlag","maxbreadth")[1:ncol(lags)]
}else stop("lags can be either a vector of lags or a data.frame, see ?gsi.EVario2D")
if(length(dim(azimuths))==0){
tol = (azimuths[2]-azimuths[1])/2
if(is.na(tol)) tol=180
azimuths = data.frame(minaz=azimuths-tol, maxaz=azimuths+tol)
}else if(dim(azimuths)==2){
azimuths = data.frame(azimuths)
colnames(azimuths) = c("minaz","maxaz")
}else stop("azimuths can be either a vector of lags or a data.frame, see ?gsi.EVario2D")
if(cov){
kk = 1
if(dim(Z)==dim(Ff)){
Z = Z-Ff
}else if(ncol(Z)==length(c(unlist(Ff)))){
Z = sweep(Z, 2, Ff, "-")
}
}else{
kk = 1
Z = lm(as.matrix(Z)~as.matrix(Ff)+0)$residuals
}
ij = expand.grid(1:nrow(X), 1:nrow(X))
op = ifelse(cov, "*", "-")
ZZ = outer(as.matrix(Z),as.matrix(Z), op)
ZZ = aperm(ZZ, c(1,3,2,4))
dim(ZZ) = c(N*N, Dv, Dv)
XX = X[ij[,1],]-X[ij[,2],]
XXabs = gmApply(XX, 1, function(x) sqrt(sum(x^2)))
XXaz = gmApply(XX, 1, function(x) pi/2-atan2(x[2],x[1])) +2*pi
XXaz = XXaz %% pi
Nh = nrow(lags)
Na = nrow(azimuths)
vg = array(0, dim=c(Nh, Dv, Dv, Na))
n = array(0, dim=c(Nh, Na))
azs = azimuths * pi/180
res = sapply(1:Na, function(i){
tk_a = (azs[i,1]<=XXaz) & (azs[i,2]>=XXaz)
zz = ZZ[tk_a,,]
xxabs = XXabs[tk_a]
xxaz = XXaz[tk_a]
tk_h = outer(xxabs, lags[,1],">=") & outer(xxabs, lags[,2],"<=")
if(ncol(lags)>2){
tk_b = outer(xxabs * abs(sin((xxaz-(azs[i,2]-azs[i,1])))), lags[,3], "<=")
tk_h = tk_h & tk_b
}
n[,i] = colSums(tk_h)
for(j in 1:Nh){
if(n[j,i]>minpairs){
vg[j,,,i] = gmApply(zz[tk_h[,j],,], c(2,3),"sum")/(kk*n[j,i])
}else{
vg[j,,,i]=NA
}
}
return(list(gamma=vg[,,,i], lags=gsi.lagClass(lags), npairs =n[,i]))
})
attr(res, "directions") = gsi.azimuthInterval(azimuths)
attr(res, "type") = ifelse(cov, "covariance","semivariogram")
class(res) = "gmEVario"
return(res)
}
plot.gmEVario = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL,
varnames = dimnames(x$gamma)[[2]], type="o",
add=FALSE, commonAxis=TRUE, cov =attr(x,"type")=="covariance",
closeplot=TRUE, ...){
Dv = dim(x[1,1][[1]])[2]
if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="")
if(is.null(vdir.up)&is.null(vdir.lo)) vdir.lo <- 1:ndirections(x)
if( any(c(vdir.up, vdir.lo)>ndirections(x))){
stop("indicated directions (vdir.up or vdir.lo) do not exist in x")
}
if(is.null(xlim.up)){
if(add){
par(mfg=c(1,2))
xlim.up = par()$usr[1:2]
}else if(!is.null(vdir.up)){
maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) )
xlim.up = c(0, maxdist)
}
}
if(is.null(xlim.lo)){
if(add){
par(mfg=c(2,1))
xlim.lo = par()$usr[1:2]
}else if(!is.null(vdir.lo)){
maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) )
xlim.lo = c(0, maxdist)
}
}
opar = par()
opar = par_remove_readonly(opar)
if(closeplot) on.exit(par(opar))
myplot = function(...) matplot(type=type, ylab="", xlab="",xaxt="n", ...)
if(add) myplot = function(...) matpoints(type=type, ...)
if(!add){
myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n")
par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA)
}
for(i in 1:Dv){
for(j in 1:Dv){
if((i>=j)&(!is.null(vdir.lo))){
par(mfg=c(i+1,j,Dv+1,Dv+1))
ylim = range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]))
if(commonAxis) ylim=range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,,j]))
myplot(
sapply(vdir.lo, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])),
sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]), ylim=ylim, ...)
if(i==j){
axis(side = 3)
mtext(text=varnames[i], side = 3, line=3)
mtext(text=varnames[i], side = 4, line=3)
}
}
if((i<=j)&(!is.null(vdir.up))){
par(mfg=c(i,j+1,Dv+1,Dv+1))
ylim = range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]))
if(commonAxis) ylim=range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,,j]))
myplot(
sapply(vdir.up, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])),
sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]), ylim=ylim, ...)
if(i==j){
axis(side = 1)
mtext(text=varnames[i], side = 1, line=3)
mtext(text=varnames[i], side = 2, line=3)
}
}
}}
mtext(text="lag distance", side=1, outer = TRUE, line=0)
mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2)
attr(opar, "vdir.up")=vdir.up
attr(opar, "vdir.lo")=vdir.lo
invisible(opar)
}
as.gmEVario <- function(vgemp,...){ UseMethod("as.gmEVario",vgemp)}
as.gmEVario.default <- function(vgemp,...) vgemp
variogramModelPlot <- function(vg, ...) UseMethod("variogramModelPlot", vg)
variogramModelPlot.gmEVario <- function(vg, model = NULL,
col = rev(rainbow(ndirections(vg))),
commonAxis = FALSE,
newfig = TRUE, closeplot=TRUE, ...){
opar = plot(vg, commonAxis=commonAxis, add=!newfig, col=col, closeplot=is.null(model), ...)
opar = par_remove_readonly(opar)
if(closeplot) on.exit(par(opar))
vdir.lo = attr(opar, "vdir.lo")
vdir.up = attr(opar, "vdir.up")
if(is.null(model))
return(invisible(opar))
aux = as.directorVector(attr(vg, "directions"))
if(!is.null(vdir.lo)) vdir.lo = aux[vdir.lo,]
if(!is.null(vdir.up)) vdir.up = aux[vdir.up,]
opar = plot(as.gmCgram(model), vdir.up= vdir.up, vdir.lo= vdir.lo, add=TRUE, cov =FALSE, ...)
invisible(opar)
}
ndirections <- function(x){ UseMethod("ndirections", x) }
ndirections.default = function(x) nrow(x)
ndirections.azimuth = function(x) length(x)
ndirections.azimuthInterval = function(x) length(x[[1]])
ndirections.logratioVariogramAnisotropy = function(x) ndirections(attr(x,"directions"))
ndirections.logratioVariogram = function(x) 1
ndirections.gmEVario = function(x) ndirections(attr(x,"directions"))
ndirections.gstatVariogram = function(x){
length(unique(paste(x$dir.hor, x$dir.ver)))
}
gsi.azimuth = function(x){
class(x) = c("azimuth","directionClass")
return(x)
}
gsi.azimuthInterval = function(x){
class(x) = c("azimuthInterval","directionClass")
return(x)
}
gsi.directorVector = function(x){
if(length(dim(x))!=2) stop("provided director vectors are not a matrix!")
class(x) = c("directorVector", "directionClass")
return(x)
}
print.directionClass = function(x, complete=TRUE, ...){
cat(paste("with",nrow(as.directorVector(x)),"directions\n"))
if(complete){
print(unclass(x), ...)
}
}
as.directorVector <- function(x){ UseMethod("as.directorVector",x) }
as.directorVector.default = function(x,...) x
as.directorVector.azimuth = function(x, D=2){
res = cbind(cos(pi/2-x), sin(pi/2-x))
if(D>2){
res = cbind(res, matrix(0, ncol=D-2, nrow=nrow(res)))
}
colnames(res) = paste("v", 1:ncol(res), sep="")
return(gsi.directorVector(res))
}
as.directorVector.azimuthInterval = function(x, D=2){
res = (x[[1]]+x[[2]])/2
return(as.directorVector.azimuth(res))
}
gsi.lagdists = function(x){
class(x) = c("lagdist","lagClass")
return(x)
}
gsi.lagClass = function(x){
if(length(dim(x))!=2) stop("provided lag classes are not matrix-like!")
class(x) = c("lagClass")
return(x)
}
print.lagClass = function(x,...){
if(is.list(x)){
print(as.data.frame(unclass(x)), ...)
}else{
print(unclass(x), ...)
}
}
gsi.midValues <- function(x) UseMethod("gsi.midValues",x)
gsi.midValues.default = function(x) x
gsi.midValues.lagClass <- function(x){ (x[[1]]+x[[2]])/2 }
gsi.midValues.azimuthInterval <- function(x){ (x[[1]]+x[[2]])/2 }
setClassUnion(name="ModelStructuralFunctionSpecification",
members=c("NULL","gmCgram", "LMCAnisCompo", "variogramModelList", "variogramModel"))
setClass("gmGaussianModel",
slots = list(structure = "ModelStructuralFunctionSpecification",
formula="formula",
beta = "numeric")
)
setClassUnion(name="EmpiricalStructuralFunctionSpecification", members=c("NULL","gmEVario", "logratioVariogram", "logratioVariogramAnisotropy", "gstatVariogram")) |
mniRL <- readNIfTI(file.path(system.file("nifti", package="oro.nifti"),
"mniRL"))
image(mniRL)
orthographic(mniRL) |
rtnorm <- function(mu, sd, MIN) {
x <- rnorm(1, mu, sd)
if (x < MIN) {
x <- qnorm(runif(1, pnorm(MIN, mu, sd, 1, 0), 1), mu, sd, 1, 0)
}
return(x)
}
dtnorm <- function(x, mu, sd, MIN) {
if (x < MIN) {
return(-1e+15)
} else {
return(dnorm(x, mu, sd, 1) - log(1 - pnorm(MIN, mu, sd, 1, 0)))
}
} |
BTD_cov <- function (case_task, case_covar, control_task, control_covar,
alternative = c("less", "two.sided", "greater"),
int_level = 0.95, iter = 10000,
use_sumstats = FALSE, cor_mat = NULL, sample_size = NULL) {
if (use_sumstats & (is.null(cor_mat) | is.null(sample_size))) stop("Please supply both correlation matrix and sample size")
if (int_level < 0 | int_level > 1) stop("Interval level must be between 0 and 1")
if (length(case_task) != 1) stop("case_task should be single value")
if (!is.null(cor_mat)) if (sum(eigen(cor_mat)$values > 0) < length(diag(cor_mat))) stop("cor_mat is not positive definite")
if (!is.null(cor_mat) | !is.null(sample_size)) if (use_sumstats == FALSE) stop("If input is summary data, set use_sumstats = TRUE")
if (is.data.frame(control_covar)) control_covar <- as.matrix(control_covar)
alternative <- match.arg(alternative)
if (use_sumstats) {
sum_stats <- rbind(control_task, control_covar)
if (length(sum_stats[ , 2]) != nrow(cor_mat)) stop("Number of variables and number of correlations does not match")
cov_mat <- diag(sum_stats[ , 2]) %*% cor_mat %*% diag(sum_stats[ , 2])
lazy_gen <- MASS::mvrnorm(sample_size, mu = sum_stats[ , 1], Sigma = cov_mat, empirical = TRUE)
control_task <- lazy_gen[ , 1]
control_covar <- lazy_gen[ , -1]
}
alpha <- 1 - int_level
n <- length(control_task)
m <- length(case_covar)
k <- length(case_task)
m_ct <- mean(control_task)
sd_ct <- stats::sd(control_task)
df <- (n - m + k - 2)
X <- cbind(rep(1, n), control_covar)
Y <- control_task
B_ast <- solve(t(X) %*% X) %*% t(X) %*% Y
Sigma_ast <- t(Y - X %*% B_ast) %*% (Y - X %*% B_ast)
Sigma_hat <- c(CholWishart::rInvWishart(iter, df = (n - m + k - 2), Sigma_ast))
B_ast_vec <- c(B_ast)
lazy <- Sigma_hat[1] %x% solve(t(X) %*% X)
Lambda <- array(dim = c(nrow(lazy), ncol(lazy), iter))
for(i in 1:iter) Lambda[ , , i] <- Sigma_hat[i] %x% solve(t(X) %*% X)
rm(lazy)
B_vec <- matrix(ncol = (m+1)*k, nrow = iter)
for(i in 1:iter) B_vec[i, ] <- MASS::mvrnorm(1, mu = B_ast_vec, Lambda[ , , i])
mu_hat <- vector(length = iter)
for (i in 1:iter) mu_hat[i] <- matrix(B_vec[i, ], ncol = (m+1), byrow = TRUE) %*% c(1, case_covar)
z_hat_ccc <- (case_task - mu_hat) / sqrt(Sigma_hat)
if (alternative == "less") {
pval <- stats::pnorm(z_hat_ccc)
} else if (alternative == "greater") {
pval <- stats::pnorm(z_hat_ccc, lower.tail = FALSE)
} else if (alternative == "two.sided") {
pval <- 2 * stats::pnorm(abs(z_hat_ccc), lower.tail = FALSE)
}
mu_ast <- t(B_ast) %*% c(1, case_covar)
var_ast <- Sigma_ast/(n - 1)
zccc <- (case_task - mu_ast) / sqrt(var_ast)
zccc_int <- stats::quantile(z_hat_ccc, c(alpha/2, (1 - alpha/2)))
names(zccc_int) <- c("Lower Z-CCC CI", "Upper Z-CCC CI")
p_est <- mean(pval)
p_int <- stats::quantile(pval, c(alpha/2, (1 - alpha/2)))*100
if (alternative == "two.sided") p_int <- stats::quantile(pval/2, c(alpha/2, (1 - alpha/2)))*100
names(p_int) <- c("Lower p CI", "Upper p CI")
estimate <- round(c(zccc, p_est*100), 6)
if (alternative == "two.sided") estimate <- c(zccc, (p_est/2)*100)
zccc.name <- paste0("Std. case score (Z-CCC), ",
100*int_level, "% CI [",
format(round(zccc_int[1], 2), nsmall = 2),", ",
format(round(zccc_int[2], 2), nsmall = 2),"]")
if (alternative == "less") {
alt.p.name <- "Proportion below case (%), "
} else if (alternative == "greater") {
alt.p.name <- "Proportion above case (%), "
} else {
if (zccc < 0) {
alt.p.name <- "Proportion below case (%), "
} else {
alt.p.name <- "Proportion above case (%), "
}
}
p.name <- paste0(alt.p.name,
100*int_level, "% CI [",
format(round(p_int[1], 2), nsmall = 2),", ",
format(round(p_int[2], 2), nsmall = 2),"]")
names(estimate) <- c(zccc.name, p.name)
control_task <- matrix(control_task, ncol = 1, dimnames = list(NULL, "Task"))
xname <- c()
for (i in 1:length(case_covar)) xname[i] <- paste0("COV", i)
control_covar <- matrix(control_covar, ncol = length(case_covar),
dimnames = list(NULL, xname))
cor.mat <- stats::cor(cbind(control_task, control_covar))
desc <- data.frame(Means = colMeans(cbind(control_task, control_covar)),
SD = apply(cbind(control_task, control_covar), 2, stats::sd),
Case_score = c(case_task, case_covar))
typ.int <- 100*int_level
names(typ.int) <- "Interval level (%)"
interval <- c(typ.int, zccc_int, p_int)
names(df) <- "df"
null.value <- 0
names(null.value) <- "diff. between case and controls"
output <- list(parameter = df,
p.value = p_est,
estimate = estimate,
null.value = null.value,
interval = interval,
desc = desc,
cor.mat = cor.mat,
sample.size = n,
alternative = alternative,
method = paste("Bayesian Test of Deficit with Covariates"),
data.name = paste0("Case = ", format(round(case_task, 2), nsmall = 2),
", Controls (m = ", format(round(m_ct, 2), nsmall = 2),
", sd = ", format(round(sd_ct, 2), nsmall = 2),
", n = ", n, ")"))
class(output) <- "htest"
output
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.