code
stringlengths
1
13.8M
if (Sys.getenv("POSTGRES_USER") != "" & Sys.getenv("POSTGRES_HOST") != "" & Sys.getenv("POSTGRES_DATABASE") != "") { stopifnot(require(RPostgreSQL)) stopifnot(require(datasets)) drv <- dbDriver("PostgreSQL") con <- dbConnect(drv, user=Sys.getenv("POSTGRES_USER"), password=Sys.getenv("POSTGRES_PASSWD"), host=Sys.getenv("POSTGRES_HOST"), dbname=Sys.getenv("POSTGRES_DATABASE"), port=ifelse((p<-Sys.getenv("POSTGRES_PORT"))!="", p, 5432)) if (dbExistsTable(con, "rock.data")) { cat("Removing rock'data\n") dbRemoveTable(con, "rock.data") } dbWriteTable(con, "rock.data", rock) cat("Does rock.data exist? \n") res <- dbExistsTable(con, "rock.data") if(res){ cat("PASS: true\n") }else{ cat("FAIL: false\n") } cat("create schema testschema and change the search_path\n") dbGetQuery(con, 'CREATE SCHEMA testschema') dbGetQuery(con, 'SET search_path TO testschema') cat("Does rock.data exist? \n") res <- dbExistsTable(con, "rock.data") if(res){ cat("FAIL: true despite search_path change\n") }else{ cat("PASS: false as the search_path changed\n") } cat("Does testschema.\"rock.data\" exist? \n") res <- dbExistsTable(con, c('testschema', "rock.data")) if(res){ cat("FAIL: true despite testschema specified\n") }else{ cat("PASS: false as the testschema specified\n") } cat("Does public.\"rock.data\" exist? \n") res <- dbExistsTable(con, c('public', "rock.data")) if(res){ cat("PASS: true despite search_path change\n") }else{ cat("FAIL: false as the search_path changed\n") } cat("write in current schema\n") dbWriteTable(con, "rock.data", rock) cat("Does rock.data exist? \n") res <- dbExistsTable(con, "rock.data") if(res){ cat("PASS: true\n") }else{ cat("FAIL: false\n") } dbGetQuery(con, 'DROP TABLE "public"."rock.data"') dbGetQuery(con, 'DROP TABLE "testschema"."rock.data"') dbGetQuery(con, 'DROP schema "testschema"') dbDisconnect(con) }
dataset_sbb<-function(NUM){ sbb<-rep(0,NUM) for (i in 1:NUM){ W<-rwiener() V2<-W+(2*(1:1000)/1000-3*((1:1000)^2)/(1000^2))*W[1000]+(6*((1:1000)^2/(1000^2))-6*(1:1000)/1000)*sum(W)/1000 sbb[i]<-sum(V2^2)/1000 } return(sbb) }
p <- position(c(a = 1, b = 2)) as.data.frame(p) p <- position(1:2, instrument = c("Equity 1", "Equity 2")) as.data.frame(p)
BayesianMass <- function(lambda,r,n){ if(n<=1){ stop('error in Bayesian Mass\n') }else{ Card=c(0,1); for(i in 1:(n-1)){ Card=c(Card,(Card+1)); } } Card[1]=1; mt=lambda*(1/Card)^r; mt[1]=0; md=mt/sum(mt); return(md) }
srktie_d <- function(n,alpha,eps1,eps2,d) { u_pl <- 0 for (i in 1:(n-1)) for (j in (i+1):n) u_pl <- u_pl + trunc(0.5*(sign(d[i]+d[j]) + 1)) u_pl <- u_pl*2/n/(n-1) u_0 <- 0 for (i in 1:(n-1)) for (j in (i+1):n) u_0 <- u_0 + 1 - (sign(abs(d[i]+d[j]))) u_0 <- u_0*2/n/(n-1) qh_pl <- 0 for (i in 1:(n-2)) for (j in (i+1):(n-1)) for (k in (j+1):n) qh_pl <- qh_pl + trunc(0.5*(sign(min(d[i]+d[j],d[i]+d[k])) + 1)) + trunc(0.5*(sign(min(d[j]+d[i],d[j]+d[k])) + 1)) + trunc(0.5*(sign(min(d[k]+d[i],d[k]+d[j])) + 1)) qh_pl <- qh_pl*2/n/(n-1)/(n-2) qh_0 <- 0 for (i in 1:(n-2)) for (j in (i+1):(n-1)) for (k in (j+1):n) qh_0 <- qh_0 + 1 - sign(max(abs(d[i]+d[j]),abs(d[i]+d[k]))) + 1 - sign(max(abs(d[i]+d[j]),abs(d[j]+d[k]))) + 1 - sign(max(abs(d[i]+d[k]),abs(d[j]+d[k]))) qh_0 <- qh_0*2/n/(n-1)/(n-2) qh_0pl <- 0 for (i in 1:(n-2)) for (j in (i+1):(n-1)) for (k in (j+1):n) qh_0pl <- qh_0pl + trunc(0.5*(sign(d[i]+d[j])+1)) * (1-sign(abs(d[i]+d[k]))) + trunc(0.5*(sign(d[i]+d[j])+1)) * (1-sign(abs(d[j]+d[k]))) + trunc(0.5*(sign(d[i]+d[k])+1)) * (1-sign(abs(d[j]+d[k]))) + trunc(0.5*(sign(d[i]+d[k])+1)) * (1-sign(abs(d[i]+d[j]))) + trunc(0.5*(sign(d[j]+d[k])+1)) * (1-sign(abs(d[i]+d[j]))) + trunc(0.5*(sign(d[j]+d[k])+1)) * (1-sign(abs(d[i]+d[k]))) qh_0pl <- qh_0pl/n/(n-1)/(n-2) ssq_pl <- (4*(n-2)/(n-1)) * (qh_pl-u_pl**2) + (2/(n-1))*u_pl*(1-u_pl) ssq_0 <- (4*(n-2)/(n-1)) * (qh_0-u_0**2) + (2/(n-1))*u_0*(1-u_0) ss_0pl <- (4*(n-2)/(n-1)) * (qh_0pl-u_0*u_pl) + (2/(n-1))*u_0*u_pl tauhsqas <- ssq_pl/(1-u_0)**2 + u_pl**2*ssq_0/(1-u_0)**4 + 2*u_pl*ss_0pl/(1-u_0)**3 uas_pl <- u_pl/(1-u_0) eqctr <- (1-eps1+eps2)/2 tauhas <- sqrt(tauhsqas) crit <- sqrt(qchisq(alpha,1,n*(eps1+eps2)**2/4/tauhsqas)) if (sqrt(n)*abs((uas_pl-eqctr)/tauhas) >= crit) rej <- 0 if (sqrt(n)*abs((uas_pl-eqctr)/tauhas) < crit) rej <- 1 if (is.na(tauhas) || is.na(crit)) rej <- 0 cat(" n =",n," alpha =",alpha," eps1 =",eps1," eps2 =",eps2, " U_PL =",u_pl," U_0 =",u_0," UAS_PL =",uas_pl," TAUHAS =",tauhas, " CRIT =",crit," REJ =",rej) }
.onAttach <- function(libname, pkgname) { if (stats::runif(1) > .8) { packageStartupMessage("Learn more about sjPlot with 'browseVignettes(\"sjPlot\")'.") } else if (stats::runif(1) > .8) { packageStartupMessage("Install package \"strengejacke\" from GitHub (`devtools::install_github(\"strengejacke/strengejacke\")`) to load all sj-packages at once!") } else if (stats::runif(1) > .8) { packageStartupMessage(" } }
"margex"
"metadata_large_example"
print.poLCA <- function(x, ...) { R <- length(x$P) S <- ifelse(is.na(x$coeff[1]),1,nrow(x$coeff)) cat("Conditional item response (column) probabilities,\n by outcome variable, for each class (row) \n \n") print(lapply(x$probs,round,4)) cat("Estimated class population shares \n", round(x$P,4), "\n \n") cat("Predicted class memberships (by modal posterior prob.) \n",round(table(x$predclass)/x$N,4), "\n \n") cat("========================================================= \n") cat("Fit for", R, "latent classes: \n") cat("========================================================= \n") if (S>1) { for (r in 2:R) { cat(r,"/ 1 \n") disp <- data.frame(coeff=round(x$coeff[,(r-1)],5), se=round(x$coeff.se[,(r-1)],5), tval=round(x$coeff[,(r-1)]/x$coeff.se[,(r-1)],3), pr=round(1-(2*abs(pt(x$coeff[,(r-1)]/x$coeff.se[,(r-1)],x$resid.df)-0.5)),3)) colnames(disp) <- c("Coefficient"," Std. error"," t value"," Pr(>|t|)") print(disp) cat("========================================================= \n") } } cat("number of observations:", x$N, "\n") if(x$N != x$Nobs) cat("number of fully observed cases:", x$Nobs, "\n") cat("number of estimated parameters:", x$npar, "\n") cat("residual degrees of freedom:", x$resid.df, "\n") cat("maximum log-likelihood:", x$llik, "\n \n") cat("AIC(",R,"): ",x$aic,"\n",sep="") cat("BIC(",R,"): ",x$bic,"\n",sep="") if (S==1) cat("G^2(",R,"): ",x$Gsq," (Likelihood ratio/deviance statistic) \n",sep="") cat("X^2(",R,"): ",x$Chisq," (Chi-square goodness of fit) \n \n",sep="") if (x$numiter==x$maxiter) cat("ALERT: iterations finished, MAXIMUM LIKELIHOOD NOT FOUND \n \n") if (!x$probs.start.ok) cat("ALERT: error in user-specified starting values; new start values generated \n \n") if (x$npar>x$N) cat("ALERT: number of parameters estimated (",x$npar,") exceeds number of observations (",x$N,") \n \n") if (x$resid.df<0) cat("ALERT: negative degrees of freedom; respecify model \n \n") if (x$eflag) cat("ALERT: estimation algorithm automatically restarted with new initial values \n \n") flush.console() invisible(x) }
getPeakVec <- function(peakData = c(10, 100), StartDate = "2020-03-03", EndDate = "2020-06-24") { observedPeriod <- 1 + as.numeric(as.Date(EndDate) - as.Date(StartDate)) v <- rep(0, observedPeriod) n <- length(peakData) / 2 for (i in 1:n) { v[peakData[2 * i - 1]] <- peakData[2 * i] } return(v) }
merge.tbl_tree <- function(x, y, ...) { res <- NextMethod() class(res) <- class(x) return(res) }
library(testthat) context("ConditionalSet") test_that("construction", { expect_silent(ConditionalSet$new(function(x) x == 0)) expect_equal(ConditionalSet$new(function(x) x == 0)$lower, NA) expect_equal(ConditionalSet$new(function(x) x == 0)$upper, NA) expect_equal(ConditionalSet$new(function(x) x == 0)$min, NaN) expect_equal(ConditionalSet$new(function(x) x == 0)$max, NaN) expect_error(ConditionalSet$new(function(x) x), "'condition' should result") expect_error(ConditionalSet$new(1), "'condition' must be") expect_silent(ConditionalSet$new(function(x, y) x + y == 0)) expect_silent(ConditionalSet$new(function(x) TRUE, list(x = Reals$new()))) expect_error(ConditionalSet$new(function(x) TRUE, list(x = Reals))) }) test_that("contains", { c <- ConditionalSet$new(function(x, y) x + y == 0) expect_true(c$contains(Set$new(2, -2))) expect_true(c$contains(Tuple$new(0, 0))) expect_false(c$contains(Set$new(1, 2))) expect_error(c$contains(Set$new(1)), "Set is of length") expect_equal(c$contains(list(Set$new(0, 1), Set$new(-1, 1))), c(FALSE, TRUE)) expect_false(c$contains(list(Set$new(0, 1), Set$new(-1, 1)), all = TRUE)) expect_true(c$contains(list(Set$new(2, -2), Set$new(-1, 1)), all = TRUE)) expect_error(c$contains(list(Set$new(1), Set$new(1, 1)))) expect_true(ConditionalSet$new(function(x) x == 0)$contains(0)) expect_false(ConditionalSet$new(function(x) x == 0)$contains(1)) }) test_that("equals", { c1 <- ConditionalSet$new(function(x, y) x + y == 0) c2 <- ConditionalSet$new(function(z, q) z + q == 0) c3 <- ConditionalSet$new(function(x, y) x + y == 0) c4 <- ConditionalSet$new(function(x, y) x == 0) c5 <- ConditionalSet$new(function(x, y) x + y == 0, argclass = list(x = Complex$new())) expect_true(c1 == c2) expect_true(c1 == c3) expect_true(c1 != c4) expect_true(c1 != c5) expect_false(c1 == Set$new()) expect_true(ConditionalSet$new(function(x, y) x == 0) == ConditionalSet$new(function(z) z == 0)) expect_true(ConditionalSet$new(function(z) z == 0) == ConditionalSet$new(function(x, y) x == 0)) }) test_that("strprint", { useUnicode(TRUE) expect_equal(ConditionalSet$new(function(x) TRUE)$strprint(), "{x \u2208 \U1D54D}") useUnicode(FALSE) expect_equal(ConditionalSet$new(function(x) TRUE)$strprint(), "{x in V}") useUnicode(TRUE) }) test_that("summary", { expect_output(expect_equal(ConditionalSet$new(function(x) TRUE)$summary(), ConditionalSet$new(function(x) TRUE)$print())) }) test_that("isSubset", { expect_message(ConditionalSet$new(function(x) TRUE)$isSubset(Set$new(1)), "undefined") expect_message(ConditionalSet$new(function(x) TRUE)$isSubset(1), "undefined") }) test_that("fields", { c <- ConditionalSet$new(function(x) TRUE) expect_equal(c$condition, function(x) TRUE) expect_equal(c$class, list(x = Universal$new())) expect_equal(c$elements, NA) })
Spatial <- function(bbox, proj4string = CRS(as.character(NA))) { new("Spatial", bbox=bbox, proj4string=proj4string) } if (!isGeneric("addAttrToGeom")) setGeneric("addAttrToGeom", function(x, y, match.ID, ...) standardGeneric("addAttrToGeom")) if (!isGeneric("bbox")) setGeneric("bbox", function(obj) standardGeneric("bbox")) if (!isGeneric("coordinates")) setGeneric("coordinates", function(obj, ...) standardGeneric("coordinates")) if (!isGeneric("coordinates<-")) setGeneric("coordinates<-", function(object, value) standardGeneric("coordinates<-")) if (!isGeneric("coordnames")) setGeneric("coordnames", function(x) standardGeneric("coordnames")) if (!isGeneric("coordnames<-")) setGeneric("coordnames<-", function(x,value) standardGeneric("coordnames<-")) if (!isGeneric("dimensions")) setGeneric("dimensions", function(obj) standardGeneric("dimensions")) if (!isGeneric("fullgrid")) setGeneric("fullgrid", function(obj) standardGeneric("fullgrid")) if (!isGeneric("fullgrid<-")) setGeneric("fullgrid<-", function(obj, value) standardGeneric("fullgrid<-")) if (!isGeneric("geometry")) setGeneric("geometry", function(obj) standardGeneric("geometry")) if (!isGeneric("geometry<-")) setGeneric("geometry<-", function(obj, value) standardGeneric("geometry<-")) if (!isGeneric("gridded")) setGeneric("gridded", function(obj) standardGeneric("gridded")) if (!isGeneric("gridded<-")) setGeneric("gridded<-", function(obj, value) standardGeneric("gridded<-")) if (!isGeneric("is.projected")) setGeneric("is.projected", function(obj) standardGeneric("is.projected")) if (!isGeneric("over")) setGeneric("over", function(x, y, returnList = FALSE, fn = NULL, ...) standardGeneric("over")) if (!isGeneric("plot")) setGeneric("plot", function(x, y, ...) standardGeneric("plot")) if (!isGeneric("polygons")) setGeneric("polygons", function(obj) standardGeneric("polygons")) if (!isGeneric("polygons<-")) setGeneric("polygons<-", function(object, value) standardGeneric("polygons<-")) if (!isGeneric("proj4string")) setGeneric("proj4string", function(obj) standardGeneric("proj4string")) if (!isGeneric("proj4string<-")) setGeneric("proj4string<-", function(obj, value) standardGeneric("proj4string<-")) if (!isGeneric("sppanel")) setGeneric("sppanel", function(obj, ...) standardGeneric("sppanel")) if (!isGeneric("spplot")) setGeneric("spplot", function(obj, ...) standardGeneric("spplot")) if (!isGeneric("spsample")) setGeneric("spsample", function(x, n, type, ...) standardGeneric("spsample")) if (!isGeneric("summary")) setGeneric("summary", function(object, ...) standardGeneric("summary")) if (!isGeneric("spChFIDs")) setGeneric("spChFIDs", function(obj, x) standardGeneric("spChFIDs")) if (!isGeneric("spChFIDs<-")) setGeneric("spChFIDs<-", function(obj, value) standardGeneric("spChFIDs<-")) if (!isGeneric("surfaceArea")) setGeneric("surfaceArea", function(m, ...) standardGeneric("surfaceArea")) if (!isGeneric("split")) setGeneric("split", function(x, f, drop = FALSE, ...) standardGeneric("split")) if (!isGeneric("spTransform")) setGeneric("spTransform", function(x, CRSobj, ...) standardGeneric("spTransform")) setMethod("spTransform", signature("Spatial", "CRS"), function(x, CRSobj, ...) { if (!requireNamespace("rgdal", quietly = TRUE)) stop("package rgdal is required for spTransform methods") spTransform(x, CRSobj, ...) } ) setMethod("spTransform", signature("Spatial", "character"), function(x, CRSobj, ...) spTransform(x, CRS(CRSobj), ...) ) setMethod("spTransform", signature("Spatial", "ANY"), function(x, CRSobj, ...) stop("second argument needs to be of class CRS") ) bbox.default <- function(obj) { is_points <- function(obj) { is <- FALSE if(is.array(obj)) if(length(dim(obj))==2) if(dim(obj)[2]>=2) is <- TRUE is } if(!is_points(obj))stop('object not a >= 2-column array') xr <- range(obj[,1],na.rm=TRUE) yr <- range(obj[,2],na.rm=TRUE) res <- rbind(x=xr, y=yr) colnames(res) <- c("min","max") res } setMethod("bbox", "ANY", bbox.default) setMethod("bbox", "Spatial", function(obj) obj@bbox) setMethod("dimensions", "Spatial", function(obj) nrow(bbox(obj))) setMethod("polygons", "Spatial", function(obj) { if (is(obj, "SpatialPolygons")) as(obj, "SpatialPolygons") else stop("polygons method only available for objects of class or deriving from SpatialPolygons") } ) summary.Spatial = function(object, ...) { obj = list() obj[["class"]] = class(object) obj[["bbox"]] = bbox(object) obj[["is.projected"]] = is.projected(object) obj[["proj4string"]] = object@proj4string@projargs if (is(object, "SpatialPoints")) obj[["npoints"]] = nrow(object@coords) if (is(object, "SpatialGrid") || is(object, "SpatialPixels")) obj[["grid"]] = gridparameters(object) if ("data" %in% slotNames(object) && ncol(object@data) > 0) obj[["data"]] = summary(object@data) class(obj) = "summary.Spatial" obj } setMethod("summary", "Spatial", summary.Spatial) print.summary.Spatial = function(x, ...) { cat(paste("Object of class ", x[["class"]], "\n", sep = "")) cat("Coordinates:\n") print(x[["bbox"]], ...) cat(paste("Is projected:", x[["is.projected"]], "\n")) pst <- paste(strwrap(x[["proj4string"]]), collapse="\n") if (nchar(pst) < 40) cat(paste("proj4string : [", pst, "]\n", sep="")) else cat(paste("proj4string :\n[", pst, "]\n", sep="")) if (!is.null(x$npoints)) { cat("Number of points: ") cat(x$npoints) cat("\n") } if (!is.null(x$n.polygons)) { cat("Number of polygons: ") cat(x$n.polygons) cat("\n") } if (!is.null(x$grid)) { cat("Grid attributes:\n") print(x$grid, ...) } if (!is.null(x$data)) { cat("Data attributes:\n") print(x$data, ...) } invisible(x) } bb2merc = function(x, cls = "ggmap") { WGS84 = CRS("+init=epsg:4326") merc = CRS("+init=epsg:3857") if (cls == "ggmap") { b = sapply(attr(x, "bb"), c) pts = cbind(c(b[2],b[4]),c(b[1],b[3])) } else if (cls == "RgoogleMaps") pts = rbind(x$BBOX$ll, x$BBOX$ur)[,2:1] else stop("unknown cls") bbox(spTransform(SpatialPoints(pts, WGS84), merc)) } plot.Spatial <- function(x, xlim = NULL, ylim = NULL, asp = NA, axes = FALSE, bg = par("bg"), ..., xaxs, yaxs, lab, setParUsrBB = FALSE, bgMap = NULL, expandBB = c(0,0,0,0)) { bbox <- bbox(x) expBB = function(lim, expand) c(lim[1] - expand[1] * diff(lim), lim[2] + expand[2] * diff(lim)) if (is.null(xlim)) xlim <- expBB(bbox[1,], expandBB[c(2,4)]) if (is.null(ylim)) ylim <- expBB(bbox[2,], expandBB[c(1,3)]) if (is.na(asp)) asp <- ifelse(is.na(slot(slot(x, "proj4string"), "projargs")) || is.projected(x), 1.0, 1/cos((mean(ylim) * pi)/180)) plot.new() args = list(xlim = xlim, ylim = ylim, asp = asp) if (!missing(xaxs)) args$xaxs = xaxs if (!missing(yaxs)) args$yaxs = yaxs if (!missing(lab)) args$lab = lab do.call(plot.window, args) if (setParUsrBB) par(usr=c(xlim, ylim)) pl_reg <- par("usr") rect(xleft=pl_reg[1], ybottom=pl_reg[3], xright=pl_reg[2], ytop=pl_reg[4], col=bg, border=FALSE) if (axes) { box() if (identical(is.projected(x), FALSE)) { degAxis(1, ...) degAxis(2, ...) } else { axis(1, ...) axis(2, ...) } } localTitle <- function(..., col, bg, pch, cex, lty, lwd) title(...) localTitle(...) if (!is.null(bgMap)) { is3875 = function(x) length(grep("+init=epsg:3857", x@proj4string@projargs)) > 0 mercator = FALSE if (is(bgMap, "ggmap")) { bb = bb2merc(bgMap, "ggmap") mercator = TRUE } else if (all(c("lat.center","lon.center","zoom","myTile","BBOX") %in% names(bgMap))) { bb = bb2merc(bgMap, "RgoogleMaps") bgMap = bgMap$myTile mercator = TRUE } else bb = rbind(xlim, ylim) if (mercator && !is3875(x)) warning(paste('CRS of plotting object differs from that of bgMap, which is assumed to be CRS("+init=epsg:3857")')) rasterImage(bgMap, bb[1,1], bb[2,1], bb[1,2], bb[2,2], interpolate = FALSE) } } setMethod("plot", signature(x = "Spatial", y = "missing"), function(x,y,...) plot.Spatial(x,...)) degAxis = function (side, at, labels, ...) { if (missing(at)) at = axTicks(side) if (missing(labels)) { labels = FALSE if (side == 1 || side == 3) labels = parse(text = degreeLabelsEW(at)) else if (side == 2 || side == 4) labels = parse(text = degreeLabelsNS(at)) } axis(side, at = at, labels = labels, ...) } setReplaceMethod("spChFIDs", signature(obj = "Spatial", value = "ANY"), function(obj, value) { spChFIDs(obj, as.character(value)) } ) setReplaceMethod("coordinates", signature(object = "Spatial", value = "ANY"), function(object, value) stop("setting coordinates cannot be done on Spatial objects, where they have already been set") ) setMethod("[[", c("Spatial", "ANY", "missing"), function(x, i, j, ...) { if (!("data" %in% slotNames(x))) stop("no [[ method for object without attributes") x@data[[i]] } ) setReplaceMethod("[[", c("Spatial", "ANY", "missing", "ANY"), function(x, i, j, value) { if (!("data" %in% slotNames(x))) stop("no [[ method for object without attributes") if (is.character(i) && any(!is.na(match(i, dimnames(coordinates(x))[[2]])))) stop(paste(i, "is already present as a coordinate name!")) x@data[[i]] <- value x } ) setMethod("$", "Spatial", function(x, name) { if (!("data" %in% slotNames(x))) stop("no $ method for object without attributes") x@data[[name]] } ) setReplaceMethod("$", "Spatial", function(x, name, value) { if (name %in% coordnames(x)) stop(paste(name, "is a coordinate name, please choose another name")) if (!("data" %in% slotNames(x))) { df = list(value); names(df) = name return(addAttrToGeom(x, data.frame(df), match.ID = FALSE)) } x@data[[name]] = value x } ) setMethod("geometry", "Spatial", function(obj) { if ("data" %in% slotNames(obj)) stop(paste("geometry method missing for class", class(obj))) obj } ) setReplaceMethod("geometry", c("data.frame", "Spatial"), function(obj, value) addAttrToGeom(value, obj) ) setReplaceMethod("[", c("Spatial", "ANY", "ANY", "ANY"), function(x, i, j, value) { if (!("data" %in% slotNames(x))) stop("no [ method for object without attributes") if (is.character(i) && any(!is.na(match(i, dimnames(coordinates(x))[[2]])))) stop(paste(i, "is already present as a coordinate name!")) x@data[i,j] <- value x } ) setMethod("rebuild_CRS", signature(obj = "Spatial"), function(obj) { slot(obj, "proj4string") <- rebuild_CRS(slot(obj, "proj4string")) obj } ) head.Spatial <- function (x, n = 6L, ...) { if (n > 0L) { n <- min(n, nrow(x)) ix <- seq_len(n) } else if (n < 0L) { n <- min(abs(n), nrow(x)) ix <- seq_len(nrow(x) - n) } else { ix <- seq_len(0) } x[ix, , drop = FALSE] } tail.Spatial <- function(x, n=6L, ...) { ix <- sign(n)*rev(seq(nrow(x), by=-1L, len=abs(n))) x[ ix , , drop=FALSE] }
plot.speMCA <- function(x,type='v',axes=1:2,points='all',col='dodgerblue4',app=0, ...) { tit1 <- paste('Dim ',axes[1],' (',round(x$eig$mrate[axes[1]],1),'%)',sep='') tit2 <- paste('Dim ',axes[2],' (',round(x$eig$mrate[axes[2]],1),'%)',sep='') if (type=='v') { cmin <- apply(x$var$coord[,axes],2,min)*1.1 cmax <- apply(x$var$coord[,axes],2,max)*1.1 clim <- cbind(cmin,cmax) nv <- nrow(x$var$coord) if(points=='all') condi <- 1:nv if (points=='besth') condi <- x$var$contrib[,axes[1]]>=100/nv if (points=='bestv') condi <- x$var$contrib[,axes[2]]>=100/nv if (points=='best') condi <- x$var$contrib[,axes[1]]>=100/nv | x$var$contrib[,axes[2]]>=100/nv coord <- x$var$coord[condi,axes] prop <- round(x$var$weight[-x$call$excl]/nrow(x$ind$coord)*2+0.5,1)[condi] plot(coord,col='white',xlim=clim[1,],ylim=clim[2,],xlab=tit1,ylab=tit2,...) if(app==0) text(coord,rownames(coord),col=col,cex=1) if(app==1) text(coord,rownames(coord),col=col,cex=prop) if(app==2) { points(coord,pch=17,col=col,cex=prop) text(coord,rownames(coord),pos=3,col=col,cex=1) } } if (type %in% c('i','inames')) { cmin <- apply(x$ind$coord[,axes],2,min)*1.1 cmax <- apply(x$ind$coord[,axes],2,max)*1.1 clim <- cbind(cmin,cmax) ni <- nrow(x$ind$coord) if(points=='all') condi <- 1:ni if (points=='besth') condi <- x$ind$contrib[,axes[1]]>=100/ni if (points=='bestv') condi <- x$ind$contrib[,axes[2]]>=100/ni if (points=='best') condi <- x$ind$contrib[,axes[1]]>=100/ni | x$ind$contrib[,axes[2]]>=100/ni coord <- x$ind$coord[condi,axes] if(type=='i') pcol <- col if(type=='inames') pcol <- 'white' plot(coord,col=pcol,xlim=clim[1,],ylim=clim[2,],xlab=tit1,ylab=tit2,pch=19,cex=0.2,...) if(type=='inames') text(coord,rownames(coord),col=col) } abline(h=0,v=0,col='grey') }
hook_pdfcrop = function(before, options, envir) { if (before) return() in_base_dir(for (f in get_plot_files()) plot_crop(f)) } get_plot_files = function() { unique(opts_knit$get('plot_files')) } hook_optipng = function(before, options, envir) { hook_png(before, options, envir, 'optipng') } hook_png = function( before, options, envir, cmd = c('optipng', 'pngquant', 'mogrify'), post_process = identity ) { if (before) return() cmd = match.arg(cmd) if (!nzchar(Sys.which(cmd))) { warning('cannot find ', cmd, '; please install and put it in PATH'); return() } paths = get_plot_files() paths = grep('[.]png$', paths, ignore.case = TRUE, value = TRUE) in_base_dir( lapply(paths, function(x) { message('optimizing ', x) cmd = paste(cmd, if (is.character(options[[cmd]])) options[[cmd]], shQuote(x)) (if (is_windows()) shell else system)(cmd) post_process(x) }) ) return() } hook_pngquant = function(before, options, envir) { if (is.null(options[['pngquant']])) options$pngquant = '--skip-if-larger' options[['pngquant']] = paste(options[['pngquant']], '--ext -fs8.png') hook_png(before, options, envir, 'pngquant', function(x) { x2 = sub("\\.png$", "-fs8.png", x) if (file.exists(x2)) file.rename(x2, x) }) } hook_mogrify = function(before, options, envir) { if (is.null(options[['mogrify']])) options$mogrify = '-trim' hook_png(before, options, envir, cmd = 'mogrify', identity) } hook_plot_custom = function(before, options, envir){ if (before) return() if (options$fig.show == 'hide') return() ext = dev2ext(options) hook = knit_hooks$get('plot') n = options$fig.num if (n == 0L) n = options$fig.num = 1L res = unlist(lapply(seq_len(n), function(i) { options$fig.cur = i hook(fig_path(ext, options, i), reduce_plot_opts(options)) }), use.names = FALSE) paste(res, collapse = '') } hook_purl = function(before, options, envir) { if (before || !options$purl || options$engine != 'R') return() output = .knitEnv$tangle.file if (isFALSE(.knitEnv$tangle.start)) { .knitEnv$tangle.start = TRUE unlink(output) params = .knitEnv$tangle.params if (length(params)) write_utf8(params, output) .knitEnv$tangle.params = NULL } code = options$code if (isFALSE(options$eval)) code = comment_out(code, ' if (is.character(output)) { code = c( if (file.exists(output)) read_utf8(output), label_code(code, options$params.src) ) write_utf8(code, output) } }
rSCA.env = new.env() rSCA.env$o_result_tree_p = 0 rSCA.env$n_result_tree_rows_p = 0 rSCA.env$o_mean_y_p = 0 rSCA.env$n_y_cols_p = 0 rSCA.env$o_predictors_p = 0 rSCA.env$n_predictors_rows_p = 0 rSCA.env$o_predictants_p = 0 rSCA.env$s_result_file_p = "" rSCA.env$s_result_filepath_p = "" rSCA.env$n_model_type_p = "" rSCA.inference <- function(xfile, x.row.names = FALSE, x.col.names = FALSE, x.missing.flag = "NA", x.type = ".txt", model) { o_xdata = 0 if (x.type == ".txt") { if (x.row.names == TRUE && x.col.names == TRUE) o_xdata = read.table(xfile, header = TRUE, row.names = 1, na.strings = x.missing.flag) else if (x.row.names == TRUE && x.col.names == FALSE) o_xdata = read.table(xfile, header = FALSE, row.names = 1, na.strings = x.missing.flag) else if (x.row.names == FALSE && x.col.names == TRUE) o_xdata = read.table(xfile, header = TRUE, na.strings = x.missing.flag) else if (x.row.names == FALSE && x.col.names == FALSE) o_xdata = read.table(xfile, header = FALSE, na.strings = x.missing.flag) } if (x.type == ".csv") { if (x.row.names == TRUE && x.col.names == TRUE) o_xdata = read.csv(xfile, header = TRUE, row.names = 1, na.strings = x.missing.flag) else if (x.row.names == TRUE && x.col.names == FALSE) o_xdata = read.csv(xfile, header = FALSE, row.names = 1, na.strings = x.missing.flag) else if (x.row.names == FALSE && x.col.names == TRUE) o_xdata = read.csv(xfile, header = TRUE, na.strings = x.missing.flag) else if (x.row.names == FALSE && x.col.names == FALSE) o_xdata = read.csv(xfile, header = FALSE, na.strings = x.missing.flag) } o_xdata = na.omit(o_xdata) rSCA.env$o_predictors_p = o_xdata rSCA.env$n_predictors_rows_p = nrow(o_xdata) rSCA.env$o_result_tree_p = read.table(model$treefile, header = TRUE) rSCA.env$n_result_tree_rows_p = nrow(rSCA.env$o_result_tree_p) rSCA.env$o_mean_y_p = read.table(model$mapfile, header = TRUE) rSCA.env$n_y_cols_p = ncol(rSCA.env$o_mean_y_p) rSCA.env$s_result_file_p = model$s_rslfile rSCA.env$s_result_filepath_p = model$s_rslfilepath rSCA.env$n_model_type_p = model$type do_prediction() }
knitr::opts_chunk$set( collapse = TRUE, comment = " fig.width=5, fig.height=5 ,fig.align="center" ) fpath <- "vignettefigs/" library(condvis2) library(mclust) data(banknote) bankDA <- MclustDA(banknote[,-1], banknote[,1],verbose=F) table(banknote$Status, CVpredict(bankDA, banknote)) knitr::include_graphics(paste0(fpath, "mclustda1.png")) bankDAe <- MclustDA(banknote[,-1], banknote[,1], modelType="EDDA",verbose=F) knitr::include_graphics(paste0(fpath, "mclustda6.png")) data(banknote) dens2 <- densityMclust(banknote[,c("Diagonal","Left")],verbose=F) summary(dens2) knitr::include_graphics(paste0(fpath, "left1.png")) dens3 <- densityMclust(banknote[,c("Right", "Bottom", "Diagonal")],verbose=F) summary(dens3) library(ks) kdens3 <- kde(banknote[,c("Right", "Bottom", "Diagonal")]) knitr::include_graphics(paste0(fpath, "dens3Right2.png"))
IATdescriptives <- function(IATdata, byblock = FALSE) { if(!byblock) { group_by(IATdata, subject) %>% summarize( N_trials = n(), Nmissing_latency = sum(is.na(latency)), Nmissing_accuracy = sum(is.na(correct)), Prop_error = mean(!correct, na.rm = TRUE), M_latency = mean(latency, na.rm = TRUE), SD_latency = sd(latency, na.rm = TRUE), min_latency = min(latency, na.rm = TRUE), max_latency = max(latency, na.rm = TRUE), Prop_latency300 = mean(latency < 400, na.rm = TRUE), Prop_latency400 = mean(latency < 300, na.rm = TRUE), Prop_latency10s = mean(latency > 10000, na.rm = TRUE) ) } else { group_by(IATdata, subject, blockcode) %>% summarize( N_trials = n(), Nmissing_latency = sum(is.na(latency)), Nmissing_accuracy = sum(is.na(correct)), Prop_error = mean(!correct, na.rm = TRUE), M_latency = mean(latency, na.rm = TRUE), SD_latency = sd(latency, na.rm = TRUE), min_latency = min(latency, na.rm = TRUE), max_latency = max(latency, na.rm = TRUE), Prop_latency300 = mean(latency < 400, na.rm = TRUE), Prop_latency400 = mean(latency < 300, na.rm = TRUE), Prop_latency10s = mean(latency > 10000, na.rm = TRUE) ) } }
get.Q <- function(TL,beta=0){ p=length(TL) M=nrow(TL[[1]]) A=Matrix(0,nrow=M,ncol=M,sparse=T) for(i in 1:p){ A=A+beta[i]*TL[[i]] } A@x=exp(A@x) m=rowSums(A) Q=Diagonal(M,m)-A Q=1/2*(Q+t(Q)) rm(A) Q }
data(Chile, package="carData") RegModel.1 <- lm(income~age, data=Chile) summary(RegModel.1) .data <- edit(data.frame(age = numeric(0))) .data predict(RegModel.1, .data) remove(.data)
calcSpaceMat<- function (adjacent.mat,par.space=0.9){ if( !is.matrix(adjacent.mat)) stop("space matrix must be a square matrix.") if(!is.numeric(par.space)) stop("par.space must be a number") if( par.space<=0 | par.space>1 ) stop("par.space must be a number between 0 and 1.") if( any(c( !is.numeric(adjacent.mat) , length(table(adjacent.mat)) !=2, max(adjacent.mat)!=1, min(adjacent.mat)!=0 )) ) stop("adjacent.mat must contain 0 or 1 ") if( is.null(rownames(adjacent.mat) ) ) stop("row names of adjacent.mat is necessary!") if( any( is.na( as.numeric(rownames(adjacent.mat)) ) ) )stop("row names of adjacent.mat must be matched with location(number)") diag(adjacent.mat) <- par.space adjacent.mat[which(adjacent.mat==1)] <- par.space*(1-par.space) return (adjacent.mat) }
NULL identify_outliers <- function(data, ..., variable = NULL){ is.outlier <- NULL if(is_grouped_df(data)){ results <- data %>% doo(identify_outliers, ..., variable = variable) if(nrow(results) == 0) results <- as.data.frame(results) return(results) } if(!inherits(data, "data.frame")) stop("data should be a data frame") variable <- data %>% get_selected_vars(..., vars = variable) n.vars <- length(variable) if(n.vars > 1) stop("Specify only one variable") values <- data %>% pull(!!variable) results <- data %>% mutate( is.outlier = is_outlier(values), is.extreme = is_extreme(values) ) %>% filter(is.outlier == TRUE) if(nrow(results) == 0) results <- as.data.frame(results) results } is_outlier <- function(x, coef = 1.5){ res <- x Q1 <- quantile(x, 0.25, na.rm = TRUE) Q3 <- quantile(x, 0.75, na.rm = TRUE) .IQR <- IQR(x, na.rm = TRUE) upper.limit <- Q3 + (coef*.IQR) lower.limit <- Q1 - (coef*.IQR) outlier <- ifelse(x < lower.limit | x > upper.limit, TRUE, FALSE ) outlier } is_extreme <- function(x){ is_outlier(x, coef = 3) }
Dcond <- function(x,a,b,c,d,zi,zk) { res <- a+(x^(b-1))*zi - (x^(d-1))*zk return(res) }
vertboot <- function(m1, boot_rep){ res <- list() for (i in 1:boot_rep) { blist <- sample(0:(dim(m1)[1]-1), replace = TRUE) res <- c(res, list(vertboot_matrix_rcpp(m1,blist))) } res }
labelLayer <- function(x, spdf, df, spdfid = NULL, dfid = NULL, txt, col = "black", cex = 0.7, overlap = TRUE, show.lines = TRUE, halo = FALSE, bg = "white", r = 0.1, ...){ if (missing(x)){ x <- convertToSf(spdf = spdf, df = df, spdfid = spdfid, dfid = dfid) } if (methods::is(x, 'Spatial')){ x <- sf::st_as_sf(x) } words <- x[[txt]] cc <- sf::st_coordinates(sf::st_centroid( x = sf::st_geometry(x), of_largest_polygon = max(sf::st_is(sf::st_as_sf(x), "MULTIPOLYGON")) )) if(nrow(x) == 1){ overlap <- TRUE } if (!overlap){ x <- unlist(cc[,1]) y <- unlist(cc[,2]) lay <- wordlayout(x,y,words,cex) if(show.lines){ for(i in 1:length(x)){ xl <- lay[i,1] yl <- lay[i,2] w <- lay[i,3] h <- lay[i,4] if(x[i]<xl || x[i]>xl+w || y[i]<yl || y[i]>yl+h){ points(x[i],y[i],pch=16,col=col,cex=.5) nx <- xl+.5*w ny <- yl+.5*h lines(c(x[i],nx),c(y[i],ny), col=col, lwd = 1) } } } cc <- matrix(data = c(lay[,1]+.5*lay[,3], lay[,2]+.5*lay[,4]), ncol = 2, byrow = FALSE) } if (halo){ shadowtext(x = cc[,1], y = cc[,2], labels = words, cex = cex, col = col, bg = bg, r = r, ...) }else{ text(x = cc[,1], y = cc[,2], labels = words, cex = cex, col = col, ...) } }
if (requireNamespace("rmarkdown") && !rmarkdown::pandoc_available("1.13.1")) stop("These vignettes assume pandoc version 1.13.1; older versions will not work.") library(devtools) library(recexcavAAR) library(dplyr) library(kriging) library(magrittr) library(rgl) edges <- data.frame( x = c(0, 3, 0, 3, 0, 3, 0, 3), y = c(0, 0, 0, 0, 1, 1, 1, 1), z = c(0, 0, 2, 2, 0, 0, 2, 2) ) open3d(useNULL = TRUE) plot3d( edges$x, edges$y, edges$z, type="s", aspect = c(3, 1, 2), xlab = "x", ylab = "y", zlab = "z", sub = "Grab me and rotate me!" ) bbox3d( xat = c(0, 1, 2, 3), yat = c(0, 0.5, 1), zat = c(0, 0.5, 1, 1.5, 2), back = "lines" ) rglwidget() df1 <- data.frame( x = c(rep(0, 6), seq(0.2, 2.8, 0.2), seq(0.2, 2.8, 0.2), rep(3,6)), y = c(seq(0, 1, 0.2), rep(0, 14), rep(1, 14), seq(0, 1, 0.2)), z = c(seq(0.95, 1.2, 0.05), 0.9+0.05*rnorm(14), 1.3+0.05*rnorm(14), seq(0.95, 1.2, 0.05)) ) df2 <- data.frame( x = c(rep(0, 6), seq(0.2, 2.8, 0.2), seq(0.2, 2.8, 0.2), rep(3,6)), y = c(seq(0, 1, 0.2), rep(0, 14), rep(1, 14), seq(0, 1, 0.2)), z = c(seq(0.65, 0.9, 0.05), 0.6+0.05*rnorm(14), 1.0+0.05*rnorm(14), seq(0.65, 0.9, 0.05)) ) points3d( df1$x, df1$y, df1$z, col = "darkgreen", add = TRUE ) points3d( df2$x, df2$y, df2$z, col = "blue", add = TRUE ) rglwidget() lpoints <- list(df1, df2) maps <- kriglist(lpoints, lags = 3, model = "spherical", pixels = 30) surf1 <- spatialwide(maps[[1]]$x, maps[[1]]$y, maps[[1]]$pred, 3) surf2 <- spatialwide(maps[[2]]$x, maps[[2]]$y, maps[[2]]$pred, 3) surface3d( surf1$x, surf1$y, t(surf1$z), color = c("black", "white"), alpha = 0.5, add = TRUE ) surface3d( surf2$x, surf2$y, t(surf2$z), color = c("black", "white"), alpha = 0.5, add = TRUE ) rglwidget() hexatestdf <- data.frame( x = c(1, 1, 1, 1, 2, 2, 2, 2), y = c(0, 1, 0, 1, 0, 1, 0, 1), z = c(0.8, 0.8, 1, 1, 0.8, 0.8, 1, 1) ) cx = fillhexa(hexatestdf, 0.1) completeraster <- points3d( cx$x, cx$y, cx$z, col = "red", add = TRUE ) rglwidget() rgl.pop(id = completeraster) cuberasterlist <- list(cx) crlist <- posdeclist(cuberasterlist, maps) hexa <- crlist[[1]] a <- filter( hexa, pos == 0 ) b <- filter( hexa, pos == 1 ) c <- filter( hexa, pos == 2 ) points3d( a$x, a$y, a$z, col = "red", add = TRUE ) points3d( b$x, b$y, b$z, col = "blue", add = TRUE ) points3d( c$x, c$y, c$z, col = "green", add = TRUE ) rglwidget() sapply( crlist, function(x){ x$pos %>% table() %>% prop.table() %>% multiply_by(100) %>% round(2) } ) %>% t
"Smokdat"
weightedSetCover <- function(idsInSet, costs, topN, nThreads=4) { cat("Begin weighted set cover...\n") names(costs) <- names(idsInSet) if (.Platform$OS.type == "windows") { nThreads = 1 } multiplier <- 10 max_num_set <- multiplier * topN if (length(idsInSet) > max_num_set) { index <- order(abs(costs), decreasing=FALSE) costs <- costs[index][1:max_num_set] idsInSet <- idsInSet[index][1:max_num_set] } s.hat <- 1.0 all.genes <- unique(unlist(idsInSet)) remain <- s.hat * length(all.genes) cur.res <- c() all.set.names <- names(idsInSet) mc_results <- mclapply(all.set.names, function(cur_name, cur_res, idsInSet, costs) { cur_gain <- marginalGain(cur_name, cur_res, idsInSet, costs) cur_size <- length(idsInSet[[cur_name]]) return(data.frame(geneset.name=cur_name, gain=cur_gain, size=cur_size, stringsAsFactors=FALSE)) }, cur_res=cur.res, idsInSet=idsInSet, costs=costs, mc.cores=nThreads) candidates <- mc_results %>% bind_rows() topN <- min(topN, nrow(candidates)) for (i in seq(topN)) { if (nrow(candidates) == 0) { covered.genes <- unique(unlist(idsInSet[cur.res])) s.hat <- length(covered.genes) / length(all.genes) cat("No more candidates, ending weighted set cover\n") return(list(topSets=cur.res, coverage=s.hat)) } candidates <- candidates[order(-candidates$gain, -candidates$size), ] remain <- remain - length(marginalBenefit(candidates[1, "geneset.name"], cur.res, idsInSet)) cur.res <- c(cur.res, candidates[1,"geneset.name"]) if (remain == 0) { covered.genes <- unique(unlist(idsInSet[cur.res])) s.hat <- length(covered.genes) / length(all.genes) cat("Remain is 0, ending weighted set cover\n") return(list(topSets=cur.res, coverage=s.hat)) } candidates <- candidates[-1, ] if (nrow(candidates) > 0) { mc_results <- mclapply(seq(nrow(candidates)), function(row, candidates, cur_res, idsInSet, costs){ cur_name <- candidates[row, "geneset.name"] cur_gain <- marginalGain(cur_name, cur_res, idsInSet, costs) if(cur_gain != 0) { candidates[candidates$geneset.name == cur_name, "gain"] <- cur_gain tmp_candidate <- candidates[candidates$geneset.name == cur_name,] return(tmp_candidate) } }, candidates=candidates, cur_res=cur.res, idsInSet=idsInSet, costs=costs, mc.cores=nThreads) new_candidates <- mc_results %>% bind_rows() candidates <- new_candidates } } covered.genes <- unique(unlist(idsInSet[cur.res])) s.hat <- length(covered.genes) / length(all.genes) cat("End weighted set cover...\n") return(list(topSets=cur.res, coverage=s.hat)) } marginalBenefit <- function(cur.set.name, cur.res, idsInSet) { all.genes <- unique(unlist(idsInSet)) cur.genes <- idsInSet[[cur.set.name]] if(length(cur.res) == 0){ not.covered.genes <- cur.genes } else{ covered.genes <- unique(unlist(idsInSet[cur.res])) not.covered.genes <- setdiff(cur.genes, covered.genes) } return(not.covered.genes) } marginalGain <- function(cur.set.name, cur.res, idsInSet, costs) { abs_cur_cost <- abs(costs[cur.set.name]) cur.mben <- marginalBenefit(cur.set.name, cur.res, idsInSet) return(length(cur.mben) / abs_cur_cost) }
stochParamsSetterUI <- function(id, show_var=FALSE, show_biol_sigma = TRUE, show_est_sigma = TRUE, show_est_bias = TRUE, init_biol_sigma=0.0, init_est_sigma=0.0, init_est_bias=0.0){ ns <- NS(id) show_var <- checkboxInput(ns("show_var"), label = "Show variability options", value = show_var) options <- list() if (show_biol_sigma){ options[[length(options)+1]] <- tags$span(title="Natural variability in the stock biological processes (e.g. recruitment and growth)", numericInput(ns("biol_sigma"), label = "Biological variability", value = init_biol_sigma, min=0, max=1, step=0.05)) } if (show_est_sigma){ options[[length(options)+1]] <- tags$span(title="Simulating the difference between the 'true' biomass and the 'estimated' biomass used by the HCR by applying randomly generated noise", numericInput(ns("est_sigma"), label = "Estimation variability", value = init_est_sigma, min=0, max=1, step=0.05)) } if (show_est_bias){ options[[length(options)+1]] <- tags$span(title="Simulating the difference between the 'true' biomass and the 'estimated' biomass used by the HCR by applying a continuous bias (positive or negative)", numericInput(ns("est_bias"), label = "Estimation bias", value = init_est_bias, min=-0.5, max=0.5, step=0.05)) } vars <- conditionalPanel(condition="input.show_var == true", ns=ns, options) out <- tagList(show_var, vars) return(out) } stochParamsSetterServer <- function(id){ moduleServer(id, function(input, output, session){ reactive({return(set_stoch_params(input))}) }) } set_stoch_params <- function(input){ params <- c("biol_sigma", "est_sigma", "est_bias") out <- lapply(params, function(x) ifelse(is.null(input[[x]]), 0.0, input[[x]])) names(out) <- params return(out) }
which_lto <- function() stoRy_env$active_version print_lto <- function() { version <- which_lto() if (!is_lto_file_cached("metadata_tbl.Rds", version)) { msg <- get_metadata_tbl_file_not_found_msg(version) abort(msg, class = "lto_file_not_found") } if (isTRUE(version == "demo")) { metadata_tbl <- metadata_tbl } else if (isTRUE(version == "latest")) { file_path <- file.path(stoRy_cache_path(), get_latest_version_tag(), "metadata_tbl.Rds" ) metadata_tbl <- readRDS(file_path) } else { file_path <- file.path(stoRy_cache_path(), version, "metadata_tbl.Rds") metadata_tbl <- readRDS(file_path) } timestamp <- metadata_tbl %>% filter(.data$name == "timestamp") %>% select(.data$value) git_commit_id <- metadata_tbl %>% filter(.data$name == "git_commit_id") %>% select(.data$value) encoding <- metadata_tbl %>% filter(.data$name == "encoding") %>% select(.data$value) theme_count <- metadata_tbl %>% filter(.data$name == "theme_count") %>% select(.data$value) story_count <- metadata_tbl %>% filter(.data$name == "story_count") %>% select(.data$value) collection_count <- metadata_tbl %>% filter(.data$name == "collection_count") %>% select(.data$value) cli_text("Version: {.val {version}}") cli_text("Timestamp: {.val {timestamp}}") cli_text("Git Commit ID: {.val {git_commit_id}}") cli_text("Encoding: {.val {encoding}}") cli_text("Theme Count: {.val {theme_count}}") cli_text("Story Count: {.val {story_count}}") cli_text("Collection Count: {.val {collection_count}}") return(invisible(NULL)) } fetch_lto_version_tags <- function(verbose = TRUE) { if (verbose) cli_text("Retrieving LTO version tags...") response <- httr::GET(lto_repo_url()) fetched_versions <- rawToChar(response$content) %>% as.tbl_json %>% gather_array %>% spread_all %>% pull(.data$name) downloadable_versions <- c("dev", fetched_versions[!fetched_versions %in% defunct_versions()]) versions <- c("demo", "dev", fetched_versions) versions } lto_version_statuses <- function(verbose = TRUE) { if (verbose) cli_text("Summarizing LTO version info...") versions <- fetch_lto_version_tags(verbose) version <- "demo" cli_li("{.val {version}}: A stoRy package included LTO demo version") cli_alert_info("Enter {.code ?lto-demo} for more details") downloadable_versions <- versions[which(versions != "demo")] for (version in downloadable_versions) { if (are_lto_files_cached(lto_json_file_names(version), version)) { cli_li("{.val {version}}: Cached in {.file {file.path(stoRy_cache_path(), version)}}") if (!are_newest_lto_json_files_cached(version)) { if (isTRUE(version == "dev")) { cli_alert_warning("A newly updated developmental version is available for download") } else { cli_alert_warning("More recently generated JSON files are available for download") } } } else { cli_li("{.val {version}}: Available for download") } } for (version in defunct_versions()) { cli_li("{.val {version}}: Defunct version") } cli_end() if (verbose) cli_text("Access LTO version JSON files directly at {.url https://github.com/theme-ontology/theming/releases}") } configure_lto <- function( version, verbose = TRUE, overwrite_json = FALSE, overwrite_rds = FALSE) { if (is_missing(version)) { message <- get_missing_arg_msg(variable_name = "version") abort(message, class = "missing_argument") } if (isTRUE(!is.character(version) || length(version) != 1)) { message <- get_single_string_msg(string = version, variable_name = "version") abort(message, class = "function_argument_type_check_fail") } if (isTRUE(version == "demo")) { if (verbose) cli_text("The LTO {.val {version}} version does not require configuration") if (verbose) cli_alert_info("Enter {.code ?lto-demo} for more details") return(invisible(NULL)) } if (verbose) cli_text("Verifying that {.val {version}} is a valid version tag...") if(!is_lto_version_tag_valid(version)) { message <- get_invalid_lto_version_msg(version) abort(message, class = "lto_version_tag_not_found") } else if (verbose) { cli_text("Version tag verified") } are_json_files_cached <- are_lto_files_cached(lto_json_file_names(version), version) are_rds_files_cached <- are_lto_files_cached(lto_rds_file_names(), version) if (isTRUE(!overwrite_json && !overwrite_rds && are_json_files_cached && are_rds_files_cached)) { if (isTRUE(version %in% c("dev", "latest") && verbose)) { cli_text("LTO {.val {version}} version is already configured") } else if (verbose) { cli_text("LTO {.val {version}} is already configured") } return(invisible(TRUE)) } if (isTRUE(overwrite_json && !overwrite_rds)) { cli_alert_warning("Overwriting LTO JSON files without regenerating cached Rds files is not recommended") cli_alert_info("Run {.code configure_lto(version = \"{version}\", overwrite_json = TRUE, overwrite_rds = TRUE)} to reinstall LTO {.val {version}} from scratch") } if (isTRUE(version == "latest")) version <- get_latest_version_tag() for (file_name in lto_json_file_names(version)) { fetch_lto_file(file_name, verbose, overwrite_json) } generate_themes_tbl(version, overwrite_rds, verbose) generate_stories_tbl(version, overwrite_rds, verbose) generate_collections_tbl(version, overwrite_rds, verbose) generate_metadata_tbl(version, overwrite_rds, verbose) generate_background_collection(version, overwrite_rds, verbose) if (isTRUE(version == "dev" && verbose)) { cli_text("Successfully configured LTO {.val {version}} version!") } else if (verbose) { cli_text("Successfully configured LTO {.val {version}}!") } return(invisible(NULL)) } set_lto <- function( version, verbose = TRUE, load_background_collection = TRUE) { if (is_missing(version)) { message <- get_missing_arg_msg(variable_name = "version") abort(message, class = "missing_argument") } if (isTRUE(!is.character(version) || length(version) != 1)) { msg <- get_single_string_msg(string = version, variable_name = "version") abort(msg, class = "function_argument_type_check_fail") } if (isTRUE(version == stoRy_env$active_version)) { if (verbose) cli_text("LTO {.val {version}} is already the active version") return(invisible(NULL)) } if (verbose) cli_text("Verifying that {.val {version}} is a valid version tag...") if(!is_lto_version_tag_valid(version)) { msg <- get_invalid_lto_version_msg(version) abort(msg, class = "lto_version_tag_not_found") } if (!are_lto_files_cached(lto_json_file_names(version), version)) { msg <- get_lto_json_file_not_found_msg(version) abort(msg, class = "lto_json_file_not_found") } if (isTRUE(!are_lto_files_cached(lto_rds_file_names(), version) && load_background_collection)) { msg <- get_lto_rds_file_not_found_msg(version) abort(msg, class = "lto_json_file_not_found") } if (isTRUE(version == "latest")) version <- get_latest_version_tag() base_path <- file.path(stoRy_cache_path(), version) if (verbose) cli_text("Setting {.pkg stoRy} package level environmental variable {.envvar active_version} to {.val {version}}...") assign("active_version", version, stoRy_env) if (isTRUE(version != "demo")) { if (verbose) cli_text("Loading {.file {file.path(base_path, \"collections_tbl.Rds\")}} into {.pkg stoRy} package level environment") assign("collections_tbl", readRDS(file.path(base_path, "collections_tbl.Rds")), stoRy_env) if (verbose) cli_text("Loading {.file {file.path(base_path, \"stories_tbl.Rds\")}} into {.pkg stoRy} package level environment") assign("stories_tbl", readRDS(file.path(base_path, "stories_tbl.Rds")), stoRy_env) if (verbose) cli_text("Loading {.file {file.path(base_path, \"themes_tbl.Rds\")}} into {.pkg stoRy} package level environment") assign("themes_tbl", readRDS(file.path(base_path, "themes_tbl.Rds")), stoRy_env) if (verbose) cli_text("Loading {.file {file.path(base_path, \"metadata_tbl.Rds\")}} into {.pkg stoRy} package level environment") assign("metadata_tbl", readRDS(file.path(base_path, "metadata_tbl.Rds")), stoRy_env) if (load_background_collection) { if (verbose) cli_text("Loading {.file {file.path(base_path, \"background_collection.Rds\")}} into {.pkg stoRy} package level environment") assign("background_collection", readRDS(file.path(base_path, "background_collection.Rds")), stoRy_env) } } if (verbose) cli_text("Successfully set active LTO version to {.val {stoRy_env$active_version}}!") return(invisible(NULL)) } fetch_lto_file <- function( file_name, verbose = TRUE, overwrite_json = FALSE) { if (is_missing(file_name)) { message <- get_missing_arg_msg(variable_name = "file_name") abort(message, class = "missing_argument") } has_lto_file_been_updated <- FALSE version <- unlist(strsplit(file_name, split = "-"))[2] base_path <- file.path(stoRy_cache_path(), version) file_path <- file.path(base_path, file_name) if (isTRUE(is_lto_file_cached(file_name, version) && !overwrite_json)) { if (verbose) cli_text("The file {.file {file_path}} is cached and will not be downloaded") return(invisible(NULL)) } if (isTRUE(is_lto_file_cached(file_name, version) && overwrite_json && verbose)) { cli_alert_warning("The cached file {.file {file_path}} will be overwritten") } dir.create(base_path, showWarnings = FALSE, recursive = TRUE) file_url <- file.path(base_url(), file_name) file_size <- download_size(url = file_url) temp_file_path <- tempfile() if (verbose) cli_text("Downloading {.file {file_url}}...") if (requireNamespace("curl", quietly = TRUE)) { if (requireNamespace("progress", quietly = TRUE)) { url_payload <- download_url_with_progress_bar(file_url) response <- url_payload$response contents <- url_payload$contents } else { cli_alert_warning("{.pkg progress} package not installed, downloading file without an accompanying progress bar") response <- curl::curl_fetch_stream(file_url) } handle_curl_errors(response, file_path) if (verbose) cli_text("Caching {.file {file_path}}... ({formatted_file_size(file_size)})") if(requireNamespace("jsonlite", quietly = TRUE)) { write(jsonlite::prettify(rawToChar(contents)), temp_file_path) } else { cli_alert_warning("{.pkg jsonlite} package not installed, falling back to writing unprettified JSON data to file") write(rawToChar(contents), temp_file_path) } file.rename(temp_file_path, file_path) } else { cli_alert_warning("{.pkg curl} package not installed, falling back to using {.fn download.file}") utils::download.file(file_url, file_path) if (verbose) cli_text("Cached {.file {file_path}}") } file_path <- file.path(base_path, "lto_file_timestamps.Rds") if (!file.exists(file_path)) { lto_file_timestamps_tbl <- tibble(file = lto_json_file_names(version), timestamp = "Missing") } else { lto_file_timestamps_tbl <- readRDS(file_path) } timestamp <- get_website_lto_file_timestamp(file_name) lto_file_timestamps_tbl$timestamp[which(lto_json_file_names(version) == file_name)] <- timestamp saveRDS(lto_file_timestamps_tbl, file = file_path, compress = TRUE) file_size <- file.info(file_path)$size return(invisible(NULL)) } generate_themes_tbl <- function( version, overwrite_rds = FALSE, verbose = TRUE) { if (is_missing(version)) { message <- get_missing_arg_msg(variable_name = "version") abort(message, class = "missing_argument") } outfile_name <- "themes_tbl.Rds" base_path <- file.path(stoRy_cache_path(), version) outfile_path <- file.path(base_path, outfile_name) if (isTRUE(file.exists(outfile_path) && !overwrite_rds && verbose)) { cli_text("The file {.file {outfile_name}} is already cached and will not be regenerated") return(invisible(NULL)) } if (verbose) cli_text("Processing themes...") infile_name <- paste0("lto-", version, "-themes.json") infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_lto_json_file_not_found_msg(version, infile_path) abort(message, class = "file_not_found") } json <- read_json(infile_path) %>% as.tbl_json() main <- json %>% enter_object('themes') %>% gather_array('theme_index') %>% spread_values( theme_name = jstring('name'), description = jstring('description'), source = jstring('source') ) %>% select(-.data$document.id) %>% as_tibble() aliases <- json %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('aliases') %>% gather_array %>% append_values_string %>% rename(aliases = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() notes <- json %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('notes') %>% gather_array %>% append_values_string %>% rename(notes = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() parents <- json %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('parents') %>% gather_array %>% append_values_string %>% rename(parents = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() template <- json %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('template') %>% gather_array %>% append_values_string %>% rename(template = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() examples <- json %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('examples') %>% gather_array %>% append_values_string %>% rename(examples = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() references <- json %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('references') %>% gather_array %>% append_values_string %>% rename(references = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() themes_tbl <- main %>% nest_join(notes, by = "theme_index") %>% nest_join(aliases, by = "theme_index") %>% nest_join(template, by = "theme_index") %>% nest_join(parents, by = "theme_index") %>% nest_join(examples, by = "theme_index") %>% nest_join(references, by = "theme_index") %>% relocate(source, .after = "references") if (verbose) cli_text("Found {.val {nrow(themes_tbl)}} theme{?/s}") ancestors_lst <- vector(mode = "list", length = nrow(themes_tbl)) for (i in seq(nrow(themes_tbl))) { ancestors <- character(0) theme_queue <- themes_tbl %>% `[[`(i, 2) while (length(theme_queue) > 0) { popped_theme_name <- theme_queue[1] theme_queue <- theme_queue[-1] parents <- themes_tbl %>% filter(.data$theme_name == !!popped_theme_name) %>% pull(parents) %>% unlist(use.names = FALSE) ancestors <- c(ancestors, parents) theme_queue <- c(theme_queue, parents) } ancestors_lst[[i]] <- as_tibble_col(ancestors, column_name = "ancestors") } themes_tbl <- themes_tbl %>% add_column(ancestors = ancestors_lst, .after = "parents") saveRDS(themes_tbl, file = outfile_path, compress = TRUE) outfile_size <- file.info(outfile_path)$size if (verbose) cli_text("Cached themes tibble to {.file {outfile_path}} ({formatted_file_size(outfile_size)})") return(invisible(NULL)) } generate_stories_tbl <- function( version, overwrite_rds = FALSE, verbose = TRUE) { if (is_missing(version)) { message <- get_missing_arg_msg(variable_name = "version") abort(message, class = "missing_argument") } base_path <- file.path(stoRy_cache_path(), version) stories_outfile_name <- "stories_tbl.Rds" stories_outfile_path <- file.path(base_path, stories_outfile_name) stub_stories_outfile_name <- "stub_stories_tbl.Rds" stub_stories_outfile_path <- file.path(base_path, stub_stories_outfile_name) if (isTRUE(file.exists(stories_outfile_path) && !overwrite_rds && verbose)) { cli_text("The file {.file {stories_outfile_name}} is already cached and will not be regenerated") return(invisible(NULL)) } if (verbose) cli_text("Processing stories...") infile_name <- paste0("lto-", version, "-stories.json") infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_lto_json_file_not_found_msg(version, infile_path) abort(message, class = "file_not_found") } json <- read_json(infile_path) %>% as.tbl_json() main <- json %>% enter_object('stories') %>% gather_array('story_index') %>% spread_values( story_id = jstring('story-id'), title = jstring('title'), date = jstring('date'), description = jstring('description'), source = jstring('source') ) %>% select(-.data$document.id) %>% as_tibble() component_story_ids <- json %>% enter_object('stories') %>% gather_array('story_index') %>% enter_object('component-story-ids') %>% gather_array %>% append_values_string %>% rename(component_story_ids = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() collections <- json %>% enter_object('stories') %>% gather_array('story_index') %>% enter_object('collections') %>% gather_array %>% append_values_string %>% rename(collections = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() references <- json %>% enter_object('stories') %>% gather_array('story_index') %>% enter_object('references') %>% gather_array %>% append_values_string %>% rename(references = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() theme_names <- json %>% enter_object('stories') %>% gather_array('story_index') %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('name') %>% append_values_string %>% rename(theme_name = string) %>% select(-.data$document.id) %>% as_tibble() theme_capacities <- json %>% enter_object('stories') %>% gather_array('story_index') %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('capacity') %>% append_values_string %>% rename(capacity = string) %>% select(-.data$document.id) %>% as_tibble() theme_levels <- json %>% enter_object('stories') %>% gather_array('story_index') %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('level') %>% append_values_string %>% rename(level = string) %>% select(-.data$document.id) %>% as_tibble() theme_motivations <- json %>% enter_object('stories') %>% gather_array('story_index') %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('motivation') %>% append_values_string %>% rename(motivation = string) %>% select(-.data$document.id) %>% as_tibble() themes <- theme_names %>% right_join(theme_capacities, by = c('story_index', 'theme_index')) %>% right_join(theme_levels, by = c('story_index', 'theme_index')) %>% right_join(theme_motivations, by = c('story_index', 'theme_index')) %>% select(-.data$theme_index) %>% as_tibble() stories_tbl <- main %>% nest_join(component_story_ids, by = "story_index") %>% nest_join(collections, by = "story_index") %>% nest_join(references, by = "story_index") %>% nest_join(themes, by = "story_index") %>% relocate(source, .after = "themes") infile_name <- "themes_tbl.Rds" infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_missing_lto_rds_file_msg(version, infile_path) abort(message, class = "file_not_found") } themes_tbl <- readRDS(infile_path) all_theme_names <- themes_tbl %>% pull(.data$theme_name) for (i in seq(nrow(stories_tbl))) { story_index <- stories_tbl$story_index[i] story_id <- stories_tbl$story_id[story_index] themes <- stories_tbl %>% filter(.data$story_id == !!story_id) %>% select(.data$themes) %>% unnest(cols = .data$themes) if(nrow(themes) > 0) { undefined_theme_names <- stories_tbl %>% filter(.data$story_id == !!story_id) %>% select(.data$themes) %>% unnest(cols = .data$themes) %>% pull(.data$theme_name) %>% setdiff(all_theme_names) has_undefined_theme <- ifelse(identical(undefined_theme_names, character(0)), FALSE, TRUE) for (j in seq_along(undefined_theme_names)) { themes <- themes %>% filter(.data$theme_name != undefined_theme_names[j]) if (verbose) cli_text("Dropped undefined theme {.val {undefined_theme_names[j]}} from {.val {story_id}}") } themes <- themes %>% mutate(themes, theme_index = 1:nrow(themes), .before = .data$theme_name) duplicate_themes <- themes %>% filter(duplicated(cbind(.data$theme_name, .data$capacity))) duplicate_theme_index <- duplicate_themes %>% pull(.data$theme_index) duplicate_theme_names <- duplicate_themes %>% pull(.data$theme_name) duplicate_theme_capacities <- duplicate_themes %>% pull(.data$capacity) has_duplicated_theme <- ifelse(identical(duplicate_theme_names, character(0)), FALSE, TRUE) for (j in seq_along(duplicate_theme_names)) { if (verbose) { if (isTRUE(duplicate_theme_capacities[j] == "")) { cli_text("Dropped duplicate theme {.val {duplicate_theme_names[j]}} from {.val {story_id}}") } else { cli_text("Dropped duplicate theme {.val {duplicate_theme_names[j]}} <{.val {duplicate_theme_capacities[j]}}> from {.val {story_id}}") } themes <- themes %>% filter(.data$theme_index != duplicate_theme_index[j]) } } themes <- themes %>% select(-.data$theme_index) if (isTRUE(has_undefined_theme || has_duplicated_theme)) { stories_tbl$themes[story_index][[1]] <- themes %>% distinct(.data$theme_name, .keep_all = TRUE) } } } if (isTRUE(file.exists(stub_stories_outfile_path) && !overwrite_rds && verbose)) { cli_text("The file {.file {stub_stories_outfile_name}} is already cached and will not be regenerated") } else { stub_story_indices <- NULL for (i in seq(nrow(stories_tbl))) { story_index <- stories_tbl$story_index[i] story_id <- stories_tbl$story_id[story_index] component_story_ids <- stories_tbl %>% filter(.data$story_id == !!story_id) %>% select(.data$component_story_ids) %>% unlist(use.names = FALSE) number_of_component_stories <- length(component_story_ids) number_of_themes <- stories_tbl %>% filter(.data$story_id == !!story_id) %>% select(.data$themes) %>% unnest(cols = .data$themes) %>% nrow() total_number_of_component_story_themes <- 0 for (component_story_id in component_story_ids) { number_of_component_story_themes <- stories_tbl %>% filter(.data$story_id == !!component_story_id) %>% select(.data$themes) %>% unnest(cols = .data$themes) %>% nrow() total_number_of_component_story_themes <- total_number_of_component_story_themes + length(number_of_component_story_themes) } if (isTRUE(number_of_themes == 0 && total_number_of_component_story_themes == 0)) { stub_story_indices <- c(stub_story_indices, story_index) } } if (isTRUE(length(stub_story_indices) > 0)) { stub_stories_tbl <- stories_tbl[stub_story_indices, ] } else { stub_stories_tbl <- stories_tbl[-stories_tbl$story_index, ] } } if (verbose) cli_text("Found {.val {nrow(stories_tbl)}} stor{?y/ies} of which {.val {nrow(stub_stories_tbl)}} {?is/are} stub{?/s}") if (isTRUE(nrow(stub_stories_tbl) > 0)) { stories_tbl <- stories_tbl[-stub_story_indices, ] stories_tbl$story_index <- 1 : nrow(stories_tbl) stub_stories_tbl$story_index <- (nrow(stories_tbl) + 1) : (nrow(stub_stories_tbl) + nrow(stories_tbl)) } saveRDS(stories_tbl, file = stories_outfile_path, compress = TRUE) stories_outfile_size <- file.info(stories_outfile_path)$size if (verbose) cli_text("Cached stories tibble to {.file {stories_outfile_path}} ({formatted_file_size(stories_outfile_size)})") saveRDS(stub_stories_tbl, file = stub_stories_outfile_path, compress = TRUE) stub_stories_outfile_size <- file.info(stub_stories_outfile_path)$size if (verbose) cli_text("Cached stub stories tibble to {.file {stub_stories_outfile_path}} ({formatted_file_size(stub_stories_outfile_size)})") return(invisible(NULL)) } generate_collections_tbl <- function( version, overwrite_rds = FALSE, verbose = TRUE) { if (is_missing(version)) { message <- get_missing_arg_msg(variable_name = "version") abort(message, class = "missing_argument") } base_path <- file.path(stoRy_cache_path(), version) collections_outfile_name <- "collections_tbl.Rds" collections_outfile_path <- file.path(base_path, collections_outfile_name) stub_collections_outfile_name <- "stub_collections_tbl.Rds" stub_collections_outfile_path <- file.path(base_path, stub_collections_outfile_name) if (isTRUE(file.exists(collections_outfile_path) && !overwrite_rds && verbose)) { cli_text("The file {.file {collections_outfile_name}} is already cached and will not be regenerated") return(invisible(NULL)) } if (verbose) cli_text("Processing collections...") infile_name <- paste0("lto-", version, "-collections.json") infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_lto_json_file_not_found_msg(version, infile_path) abort(message, class = "file_not_found") } json <- read_json(infile_path) %>% as.tbl_json() main <- json %>% enter_object('collections') %>% gather_array('collection_index') %>% spread_values( collection_id = jstring('collection-id'), title = jstring('title'), date = jstring('date'), description = jstring('description'), source = jstring('source') ) %>% select(-.data$document.id) %>% as_tibble() component_story_ids <- json %>% enter_object('collections') %>% gather_array('collection_index') %>% enter_object('component-story-ids') %>% gather_array %>% append_values_string %>% rename(component_story_ids = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() references <- json %>% enter_object('collections') %>% gather_array('collection_index') %>% enter_object('references') %>% gather_array %>% append_values_string %>% rename(references = string) %>% select(-.data$document.id, -.data$array.index) %>% as_tibble() theme_names <- json %>% enter_object('collections') %>% gather_array('collection_index') %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('name') %>% append_values_string %>% rename(theme_name = string) %>% select(-.data$document.id) %>% as_tibble() theme_capacities <- json %>% enter_object('collections') %>% gather_array('collection_index') %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('capacity') %>% append_values_string %>% rename(capacity = string) %>% select(-.data$document.id) %>% as_tibble() theme_levels <- json %>% enter_object('collections') %>% gather_array('collection_index') %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('level') %>% append_values_string %>% rename(level = string) %>% select(-.data$document.id) %>% as_tibble() theme_motivations <- json %>% enter_object('collections') %>% gather_array('collection_index') %>% enter_object('themes') %>% gather_array('theme_index') %>% enter_object('motivation') %>% append_values_string %>% rename(motivation = string) %>% select(-.data$document.id) %>% as_tibble() themes <- theme_names %>% right_join(theme_capacities, by = c('collection_index', 'theme_index')) %>% right_join(theme_levels, by = c('collection_index', 'theme_index')) %>% right_join(theme_motivations, by = c('collection_index', 'theme_index')) %>% select(-.data$theme_index) %>% as_tibble() collections_tbl <- main %>% nest_join(component_story_ids, by = "collection_index") %>% nest_join(references, by = "collection_index") %>% nest_join(themes, by = "collection_index") %>% relocate(source, .after = "themes") infile_name <- "themes_tbl.Rds" infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_missing_lto_rds_file_msg(version, infile_path) abort(message, class = "file_not_found") } themes_tbl <- readRDS(infile_path) all_theme_names <- themes_tbl %>% pull(.data$theme_name) for (i in seq(nrow(collections_tbl))) { collection_index <- collections_tbl$collection_index[i] collection_id <- collections_tbl$collection_id[collection_index] themes <- collections_tbl %>% filter(.data$collection_id == !!collection_id) %>% select(.data$themes) %>% unnest(cols = .data$themes) has_undefined_theme <- FALSE undefined_theme_names <- collections_tbl %>% filter(.data$collection_id == !!collection_id) %>% select(.data$themes) %>% unnest(cols = .data$themes) %>% pull(.data$theme_name) %>% setdiff(all_theme_names) for (j in seq_along(undefined_theme_names)) { has_undefined_theme <- TRUE themes <- themes %>% filter(.data$theme_name != undefined_theme_names[j]) if (verbose) cli_text("Dropped undefined theme {.val {undefined_theme_names[j]}} from {.val {collection_id}}") } duplicate_theme_name_tokens <- themes %>% filter(duplicated(.data$theme_name)) %>% pull(.data$theme_name) duplicate_theme_counts <- table(duplicate_theme_name_tokens) duplicate_theme_names <- duplicate_theme_name_tokens %>% unique() has_duplicated_theme <- ifelse(identical(duplicate_theme_names, character(0)), FALSE, TRUE) for (j in seq_along(duplicate_theme_names)) { duplicate_theme_count <- as.numeric(duplicate_theme_counts[duplicate_theme_names[j]]) if (isTRUE(duplicate_theme_count > 1 && verbose)) { cli_text("Dropped {.val {duplicate_theme_count - 1}} of {.val {duplicate_theme_count}} occurrences of {.val {duplicate_theme_names[j]}} from {.val {story_id}}") } } if (isTRUE(has_undefined_theme || has_duplicated_theme)) { stories_tbl$themes[.data$story_index][[1]] <- themes %>% distinct(.data$theme_name, .keep_all = TRUE) } } infile_name <- "stub_stories_tbl.Rds" infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_missing_lto_rds_file_msg(version, infile_path) abort(message, class = "file_not_found") } stub_stories_tbl <- readRDS(infile_path) stub_collection_indices <- NULL candidate_stub_collection_ids <- intersect(collections_tbl$collection_id, str_c("Collection: ", stub_stories_tbl$story_id)) for (i in seq(nrow(collections_tbl))) { collection_index <- collections_tbl$collection_index[i] collection_id <- collections_tbl$collection_id[collection_index] if (isTRUE(collection_id %in% candidate_stub_collection_ids)) { component_story_ids <- collections_tbl %>% filter(.data$collection_id == !!collection_id) %>% select(.data$component_story_ids) %>% unlist(use.names = FALSE) nonstub_component_story_ids <- setdiff(component_story_ids, stub_stories_tbl$story_id) if (isTRUE(length(nonstub_component_story_ids) == 0)) { stub_collection_indices <- c(stub_collection_indices, collection_index) } } } if (isTRUE(length(stub_collection_indices) > 0)) { stub_collections_tbl <- collections_tbl[stub_collection_indices, ] } else { stub_collections_tbl <- collections_tbl[-collections_tbl$collection_index, ] } if (isTRUE(nrow(collections_tbl) > 0)) { for (i in seq(nrow(collections_tbl))) { collection_index <- collections_tbl$collection_index[i] collection_id <- collections_tbl$collection_id[collection_index] component_story_ids <- collections_tbl %>% filter(.data$collection_id == !!collection_id) %>% pull(.data$component_story_ids) %>% unlist(use.names = FALSE) nonstub_component_story_ids <- setdiff(component_story_ids , stub_stories_tbl$story_id) number_of_stub_component_story_ids <- length(component_story_ids) - length(nonstub_component_story_ids) if (isTRUE(number_of_stub_component_story_ids > 0)) { if (verbose) cli_text("Dropped {.val {number_of_stub_component_story_ids}} stub component stor{?y/ies} from {.val {collection_id}}") collections_tbl$component_story_ids[collection_index][[1]] <- tibble(component_story_ids = nonstub_component_story_ids) } } } if (isTRUE(length(stub_collection_indices) > 0)) { collections_tbl <- collections_tbl[-stub_collection_indices, ] collections_tbl$collection_index <- 1 : nrow(collections_tbl) stub_collections_tbl$collection_index <- (nrow(collections_tbl) + 1) : (nrow(stub_collections_tbl) + nrow(collections_tbl)) } if (verbose) cli_text("Found {.val {nrow(collections_tbl)}} collection{?/s} of which {.val {nrow(stub_collections_tbl)}} {?is a/are} stub{?/s}") infile_name <- "stories_tbl.Rds" infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_missing_lto_rds_file_msg(version, infile_path) abort(message, class = "file_not_found") } stories_tbl <- readRDS(infile_path) collections_tbl <- collections_tbl %>% add_row(tibble( collection_index = NA, collection_id = "Collection: All Stories", title = "All Stories", date = NA, description = "All LTO thematically annotated stories.", component_story_ids = list(tibble(component_story_ids = stories_tbl$story_id)), references = list(tibble(references = character(0))), themes = list(tibble(data.frame(theme_name = character(0), level = character(0), motivation = character(0)))), source = NA)) collections_tbl$collection_index <- 1 : nrow(collections_tbl) saveRDS(collections_tbl, file = collections_outfile_path, compress = TRUE) collections_outfile_size <- file.info(collections_outfile_path)$size if (verbose) cli_text("Cached collections tibble to {.file {collections_outfile_path}} ({formatted_file_size(collections_outfile_size)})") saveRDS(stub_collections_tbl, file = stub_collections_outfile_path, compress = TRUE) stub_collections_outfile_size <- file.info(stub_collections_outfile_path)$size if (verbose) cli_text("Cached stub collections tibble to {.file {stub_collections_outfile_path}} ({formatted_file_size(stub_collections_outfile_size)})") return(invisible(NULL)) } generate_metadata_tbl <- function( version, overwrite_rds = FALSE, verbose = TRUE) { if (is_missing(version)) { message <- get_missing_arg_msg(variable_name = "version") abort(message, class = "missing_argument") } outfile_name <- "metadata_tbl.Rds" base_path <- file.path(stoRy_cache_path(), version) outfile_path <- file.path(base_path, outfile_name) if (isTRUE(file.exists(outfile_path) && !overwrite_rds && verbose)) { cli_text("The file {.file {outfile_name}} is already cached and will not be regenerated") return(invisible(NULL)) } if (verbose) cli_text("Processing metadata...") metadata_tbl <- tibble( name = character(), value = character() ) infile_name <- paste0("lto-", version, "-themes.json") infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_lto_json_file_not_found_msg(version, infile_path) abort(message, class = "file_not_found") } json <- read_json(infile_path) %>% as.tbl_json() themes_metadata_tbl <- json %>% enter_object('lto') %>% gather_object %>% append_values_string metadata_tbl <- metadata_tbl %>% add_row(name = "version", value = themes_metadata_tbl %>% `[[`(1, 3)) metadata_tbl <- metadata_tbl %>% add_row(name = "timestamp", value = themes_metadata_tbl %>% `[[`(2, 3)) metadata_tbl <- metadata_tbl %>% add_row(name = "git_commit_id", value = themes_metadata_tbl %>% `[[`(3, 3)) metadata_tbl <- metadata_tbl %>% add_row(name = "encoding", value = themes_metadata_tbl %>% `[[`(4, 3)) infile_name <- "themes_tbl.Rds" infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_missing_lto_rds_file_msg(version, infile_path) abort(message, class = "file_not_found") } themes_tbl <- readRDS(infile_path) metadata_tbl <- metadata_tbl %>% add_row(name = "theme_count", value = as.character(nrow(themes_tbl))) infile_name <- "stories_tbl.Rds" infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_lto_json_file_not_found_msg(version, infile_path) abort(message, class = "file_not_found") } stories_tbl <- readRDS(infile_path) metadata_tbl <- metadata_tbl %>% add_row(name = "story_count", value = as.character(nrow(stories_tbl))) infile_name <- "collections_tbl.Rds" infile_path <- file.path(base_path, infile_name) if (!file.exists(infile_path)) { message <- get_missing_lto_rds_file_msg(version, infile_path) abort(message, class = "file_not_found") } collections_tbl <- readRDS(infile_path) metadata_tbl <- metadata_tbl %>% add_row(name = "collection_count", value = as.character(nrow(collections_tbl))) saveRDS(metadata_tbl, file = outfile_path, compress = TRUE) outfile_size <- file.info(outfile_path)$size if (verbose) cli_text("Cached metadata tibble to {.file {outfile_path}} ({formatted_file_size(outfile_size)})") return(invisible(NULL)) } generate_background_collection <- function( version, overwrite_rds = FALSE, verbose = TRUE) { if (is_missing(version)) { message <- get_missing_arg_msg(variable_name = "version") abort(message, class = "missing_argument") } outfile_name <- "background_collection.Rds" base_path <- file.path(stoRy_cache_path(), version) outfile_path <- file.path(base_path, outfile_name) if (isTRUE(file.exists(outfile_path) && !overwrite_rds && verbose)) { cli_text("The file {.file {outfile_name}} is already cached and will not be regenerated") return(invisible(NULL)) } if (verbose) cli_text("Generating default background collection...") old_active_version <- which_lto() set_lto(version, verbose = FALSE, load_background_collection = FALSE) collections_tbl <- get_collections_tbl() %>% filter(.data$collection_id == "Collection: All Stories") background_collection <- Collection$new(collection_id = "Collection: All Stories") set_lto(version = old_active_version, verbose = FALSE) saveRDS(background_collection, file = outfile_path, compress = TRUE) outfile_size <- file.info(outfile_path)$size if (verbose) cli_text("Cached default background collection to {.file {outfile_path}} ({formatted_file_size(outfile_size)})") return(invisible(NULL)) }
register_namespace_callback = function(pkgname, namespace, callback) { assert_string(pkgname) assert_string(namespace) assert_function(callback) remove_hook = function(event) { hooks = getHook(event) pkgnames = vapply(hooks, function(x) { ee = environment(x) if (isNamespace(ee)) environmentName(ee) else environment(x)$pkgname }, NA_character_) setHook(event, hooks[pkgnames != pkgname], action = "replace") } remove_hooks = function(...) { remove_hook(packageEvent(namespace, "onLoad")) remove_hook(packageEvent(pkgname, "onUnload")) } if (isNamespaceLoaded(namespace)) { callback() } setHook(packageEvent(namespace, "onLoad"), callback, action = "append") setHook(packageEvent(pkgname, "onUnload"), remove_hooks, action = "append") }
plotSEMM_setup2 <- function(setup, alpha = .025, boot = NULL, boot.CE=FALSE, boot.CI=TRUE, points = 50, fixed_value=NA){ if(!is.na(fixed_value)) points <- points + 1 nclass <- classes <- setup$nclass nparam <- setup$nparm; acov <- setup$acov; loc <- setup$loc c_loc <- loc$c_loc; alpha_loc <- loc$alpha_loc; beta_loc <- loc$beta_loc; psi_loc <- loc$psi_loc locations <- c(c_loc,alpha_loc,beta_loc,psi_loc[seq(from=1, to=length(psi_loc), by=2)]) p <- nclass*(4)+(nclass-1) p1 <- length(unique(locations)) pars <- setup$pars alphaarray <- pars$alphaarray; psiarray <- pars$psiarray; gamma <- betavec <- pars$betavec; ci_v <- pars$ci_v means <- setup$means if(any(psiarray < 0)) stop('Negative variances supplied. Please fix.') sum_expi <- sum(exp(ci_v)) pi_v <- exp(ci_v) / sum_expi alphaarray2 <- array(data = NA, c(2, 1, classes)) betaarray <- array(data = NA, c(2, 2, classes)) psiarray2 <- array(data = NA, c(2, 2, classes)) for (i in 1:classes) { alphaarray2[, , i] <- matrix(c(alphaarray[1, i], alphaarray[2, i]), 2, 1, byrow = TRUE) betaarray[, , i] <- matrix(c(0, 0, betavec[i], 0), 2, 2, byrow = TRUE) psiarray2[, , i] <- matrix(c(psiarray[1, i], 0, 0, psiarray[2, i]), 2, 2, byrow = TRUE) } IMPCOV <- array(data = NA, c(2, 2, classes)) IMPMEAN <- array(data = NA, c(2, 2, classes)) for (i in 1:classes) { IMPCOV[, , i] <- solve(diag(x = 1, nrow = 2, ncol = 2) - betaarray[, , i]) %*% (psiarray2[, , i]) %*% t(solve(diag(x = 1, nrow = 2, ncol = 2) - betaarray[, , i])) IMPMEAN[, , i] <- solve(diag(x = 1, nrow = 2, ncol = 2) - betaarray[, , i]) %*% (alphaarray2[, , i]) } MuEta_1 <- vector(mode = "numeric", length = classes) MuEta_2 <- vector(mode = "numeric", length = classes) VEta_1 <- vector(mode = "numeric", length = classes) VEta_2 <- vector(mode = "numeric", length = classes) COVKSIETA <- vector(mode = "numeric", length = classes) for (i in 1:classes) { MuEta_1[i] = IMPMEAN[1, 1, i] MuEta_2[i] = IMPMEAN[2, 2, i] VEta_1[i] = IMPCOV[1, 1, i] VEta_2[i] = IMPCOV[2, 2, i] COVKSIETA[i] = IMPCOV[1, 2, i] } muEta1 <- 0 muEta2 <- 0 for (i in 1:classes) { muEta1 <- muEta1 + pi_v[i] * MuEta_1[i] muEta2 <- muEta2 + pi_v[i] * MuEta_2[i] } vEta1 <- 0 vEta2 <- 0 for (i in 1:classes) { for (j in 1:classes) { if (i < j) { vEta1 <- vEta1 + pi_v[i] * pi_v[j] * (MuEta_1[i] - MuEta_1[j])^2 vEta2 <- vEta2 + pi_v[i] * pi_v[j] * (MuEta_2[i] - MuEta_2[j])^2 } } } for (i in 1:classes) { vEta1 <- vEta1 + pi_v[i] * VEta_1[i] vEta2 <- vEta2 + pi_v[i] * VEta_2[i] } LEta1 = muEta1 - 3 * sqrt(vEta1) UEta1 = muEta1 + 3 * sqrt(vEta1) LEta2 = muEta2 - 3 * sqrt(vEta2) UEta2 = muEta2 + 3 * sqrt(vEta2) LB = min(LEta1, LEta2) UB = max(UEta1, UEta2) Eta1 <- seq(LEta1, UEta1, length = points - !is.na(fixed_value)) Eta2 <- seq(LEta2, UEta2, length = points - !is.na(fixed_value)) if(!is.na(fixed_value)){ Eta1 <- c(Eta1, fixed_value) Eta2 <- c(Eta2, fixed_value) } r <- vector(mode = "numeric", length = classes) for (i in 1:classes) { r[i] <- COVKSIETA[i]/sqrt(VEta_1[i] * VEta_2[i]) } denKE <- function(Eta1, Eta2) { placeholder <- 0 denKE_ <- matrix(data = 0, nrow = length(Eta1), ncol = classes) for (i in 1:classes) { z <- ((Eta1 - MuEta_1[i])^2)/VEta_1[i] + ((Eta2 - MuEta_2[i])^2)/VEta_2[i] - 2 * r[i] * (Eta1 - MuEta_1[i]) * (Eta2 - MuEta_2[i])/sqrt(VEta_1[i] * VEta_2[i]) denKE_[, i] <- (1/(2 * 22/7 * sqrt(VEta_1[i]) * sqrt(VEta_2[i]) * sqrt(1 - r[i]^2))) * exp(-z/(2 * (1 - r[i]^2))) } for (i in 1:classes) { placeholder <- placeholder + pi_v[i] * denKE_[, i] } denKE <- placeholder } z <- outer(Eta1, Eta2, denKE) x <- Eta1 x2 <- Eta2 phi <- array(data = 0, c(points, classes)) for (i in 1:classes) { phi[, i] <- dnorm(x, mean = alphaarray[1, i], sd = sqrt(psiarray[1, i])) } a_pi <- array(data = 0, c(points, classes)) a_pi2 <- array(data = 0, c(points, classes)) for (i in 1:classes) { a_pi[, i] <- pi_v[i] * dnorm(x, mean = MuEta_1[i], sd = sqrt(VEta_1[i])) a_pi2[, i] <- pi_v[i] * dnorm(x2, mean = MuEta_2[i], sd = sqrt(VEta_2[i])) } sumpi <- array(data = 0, c(points, 1)) sumpi2 <- array(data = 0, c(points, 1)) for (i in 1:classes) { sumpi[, 1] <- sumpi[, 1] + a_pi[, i] sumpi2[, 1] <- sumpi2[, 1] + a_pi2[, i] } pi <- array(data = 0, c(points, classes)) for (i in 1:classes) { pi[, i] <- a_pi[, i]/sumpi[, 1] } y <- 0 for (i in 1:classes) { y <- y + pi[, i] * (alphaarray[2, i] + gamma[i] * x) } D <- 0 for (i in 1:classes) { D = D + exp(ci_v[i]) * phi[, i] } dalpha <- array(data = 0, c(points, classes)) dphi <- array(data = 0, c(points, classes)) dc <- array(data = 0, c(points, classes - 1)) for (i in 1:classes) { for (j in 1:classes) { if (i != j) { dalpha[, i] <- dalpha[, i] + ((exp(ci_v[j]) * phi[, j] * ((alphaarray[2, i] - alphaarray[2, j]) + (gamma[i] - gamma[j]) * x))) dphi[, i] <- dphi[, i] + ((exp(ci_v[j]) * phi[, j] * ((alphaarray[2, i] - alphaarray[2, j]) + (gamma[i] - gamma[j]) * x))) } } dalpha[, i] <- (dalpha[, i] * exp(ci_v[i]) * phi[, i] * ((x - alphaarray[1, i])/psiarray[1, i])) * (1/D^2) dphi[, i] <- dphi[, i] * exp(ci_v[i]) * phi[, i] * (((x - alphaarray[1, i])^2 - 1)/psiarray[1, i]) * (1/(2 * psiarray[1, i])) * (1/D^2) } if(classes > 1){ for (i in 1:(classes - 1)) { for (j in 1:(classes)) { if (i != j) { dc[, i] <- dc[, i] + (exp(ci_v[j]) * phi[, j] * ((alphaarray[2, i] - alphaarray[2, j]) + (gamma[i] - gamma[j]) * x)) } } dc[, i] <- dc[, i] * exp(ci_v[i]) * phi[, i] * (1/D^2) } } dkappa <- array(data = 0, c(points, classes)) dgamma <- array(data = 0, c(points, classes)) for (i in 1:classes) { dkappa[, i] <- exp(ci_v[i]) * phi[, i]/D dgamma[, i] <- exp(ci_v[i]) * phi[, i] * x/D } ct <- 0 varordered <- c() for (i in 1:classes) { varordered <- c(varordered, alpha_loc[i + ct], alpha_loc[i + 1 + ct], beta_loc[i]) ct <- ct + 1 } varordered <- c(varordered, c_loc) ct <- 0 for (i in 1:classes) { varordered <- c(varordered, psi_loc[i + ct]) ct <- ct + 1 } acovd <- acov[varordered, varordered] deriv <- c() for (i in 1:classes) { deriv <- cbind(deriv, dalpha[, i], dkappa[, i], dgamma[, i]) } deriv <- c(deriv, dc, dphi) deriv <- matrix(deriv, nrow = points, ncol = p) se <- sqrt(diag(deriv %*% acovd %*% t(deriv))) q <- abs(qnorm(alpha/2, mean = 0, sd = 1)) sq <- sqrt(qchisq(1 - alpha, p)) lo <- y - q * se hi <- y + q * se slo <- y - sq * se shi <- y + sq * se if(boot.CI){ draws <- 1000 bs <- bs.CE(boot, x=x, alpha=alpha, boot=TRUE) yall <- bs$bs.yall yall <- apply(yall, 2, sort) LCL = (alpha/2) * draws UCL = (1 - (alpha/2)) * draws LCLall = yall[LCL, ] UCLall = yall[UCL, ] } else { LCLall <- UCLall <- numeric(length(lo)) } Ksi <- Eta1 Eta <- Eta2 denKsi <- sumpi denEta <- sumpi2 post <- pi pKsi <- a_pi pEta <- a_pi2 etahmat <- matrix(data = 0, nrow = length(Ksi), ncol = classes) for (i in 1:classes) { etahmat[, i] <- alphaarray[2, i] + gamma[i] * Ksi } etah_ <- y lo_ <- lo hi_ <- hi slo_ <- slo shi_ <- shi LCLall_ <- LCLall UCLall_ <- UCLall bs_lo <- bs_high <- 0 if(boot.CE){ bs <- bs.CE(boot, x=x, alpha=alpha, boot=FALSE) bs_lo <- bs$lb bs_high <- bs$ub } SEMLIdatapks <- data.frame(Eta1=Ksi, Eta2=Eta, agg_denEta1=denKsi, agg_denEta2=denEta, agg_pred=etah_, class_pred=I(etahmat), contour=I(z), classes=classes, class_prob=I(post), class_denEta1=I(pKsi), class_denEta2=I(pEta), bs_CIlo=LCLall_, bs_CIhi=UCLall_, delta_CIlo=lo_, delta_CIhi=hi_, delta_CElo=slo_, delta_CEhi=shi_, x, alpha=alpha, setup2=TRUE, boot=boot.CE, bs_CElo=bs_lo, bs_CEhi=bs_high) SEMLIdatapks }
ReadGem_v0.85C = function(nums = 0:9999, path = './', SN = character(), alloutput = FALSE, verbose = TRUE, requireGPS = FALSE, requireAbsoluteGPS = FALSE, t0 = '2000-01-01 00:01:00'){ tf0 = strptime(t0, format = '%Y-%m-%d %H:%M:%OS', tz = 'GMT') last_millis = NaN preamble_length = 4 fn = list.files(path, '^FILE[[:digit:]]{4}\\.[[:alnum:]]{3}$') num_strings = paste('000', nums, sep = '') num_strings = substr(num_strings, nchar(num_strings) - 3, nchar(num_strings)) fn = fn[substr(fn, 1, 8) %in% paste('FILE', num_strings, sep = '')] fn = paste(path, fn, sep = '/') ext = substr(fn, nchar(fn)-2, nchar(fn)) if(0 == length(SN) || is.na(SN)){ uext = unique(ext[ext != 'TXT']) SN = uext[which.max(sapply(uext, function(x)sum(ext == x)))] if(0 != length(SN) && !is.na(SN)){ warning(paste('Serial number not set; using', SN)) } } if(0 != length(SN)){ fn = fn[ext %in% c(SN, 'TXT')] } empty_time = Sys.time()[-1] OUTPUT = list(t = empty_time, p = numeric(), header = list(), metadata = list(), gps = list()) for(i in 1:length(fn)){ if(verbose) print(paste('File', i, 'of', length(fn), ':', fn[i])) L = list() SN_i = scan(fn[i], skip = preamble_length, nlines = 1, sep = ',', what = character(), quiet = TRUE)[2] if((0 == length(SN) || is.na(SN)) && i == 1){ SN = SN_i warning(paste('Serial number not set; using', SN_i)) }else if(length(SN_i) == 0 || is.na(SN_i) || SN_i != SN){ warning(paste('Skipping file ', fn[i], ': wrong or missing serial number', sep = '')) next } L$SN = SN_i R = readLines(fn[i]) if(length(R) == 0){ warning(paste('Skipping empty file', fn[i])) next } body = R[(preamble_length+2):length(R)] body = body[!is.na(iconv(body))] linetype = substr(body, 1, 1) wg = which(linetype == 'G') wp = which(linetype == 'P') if(length(wg) == 0 && requireAbsoluteGPS){ warning(paste('Skipping file (no GPS strings): ', fn[i])) next }else if(length(wp) == 0 && requireGPS){ warning(paste('Skipping file (no GPS at all): ', fn[i])) next } wm = which(linetype == 'M') wd = which(linetype == 'D') wr = which(linetype == 'R') if(length(wd) == 0){ next } L2M_input = paste('D,', substring(body[wd], first = 2)) L$d = Lines2Matrix(L2M_input, 2) if(length(wp) > 0){ pps = Lines2Matrix(body[wp], 1) }else{ pps = NULL } if(length(attr(L$d, 'na.values')) > 0){ warning('Skipping ', length(attr(L$d, 'na.values')), ' corrupt data lines in file ', fn[i], ': could cause timing errors') wd = wd[-attr(L$d, 'na.values')] } L$d = as.data.frame(L$d); names(L$d) = c('millis', 'pressure') L$d$pressure = cumsum(L$d$pressure) if(length(wg) > 0){ L$g = Lines2Matrix(body[wg], 10) if(length(attr(L$g, 'na.values')) > 0){ warning('Skipping ', length(attr(L$g, 'na.values')), ' corrupt GPS lines in file ', fn[i], ': could cause timing errors') wg = wg[-attr(L$g, 'na.values')] } L$g = as.data.frame(L$g); names(L$g) = c('millis', 'millisLag', 'yr', 'mo', 'day', 'hr', 'min', 'sec', 'lat', 'lon') L$g$td = getjul(L$g$yr, L$g$mo, L$g$day) + L$g$hr/24 + L$g$min/1440 + L$g$sec/86400 L$g$tf = 0 + strptime(paste(paste(L$g$yr, L$g$mo, L$g$day, sep = '-'), paste(L$g$hr, L$g$min, L$g$sec, sep=':')), format = '%Y-%m-%d %H:%M:%OS', tz = 'GMT') }else if(length(wp) > 0){ L$g = vector('list', 10) L$g$millis = pps } if(length(wm) > 0){ L$m = Lines2Matrix(body[wm], 12) if(length(attr(L$m, 'na.values')) > 0){ warning('Skipping ', length(attr(L$m, 'na.values')), ' corrupt metadata lines in file ', fn[i], ': could cause timing errors') wm = wm[-attr(L$m, 'na.values')] } L$m = as.data.frame(L$m); names(L$m) = c('millis', 'batt', 'temp', 'A2', 'A3', 'maxWriteTime', 'minFifoFree', 'maxFifoUsed', 'maxOverruns', 'gpsOnFlag', 'unusedStack1', 'unusedStackIdle') L$m$t = rep(NA, length(L$m$millis)) class(L$m$t) = c('POSIXct', 'POSIXt') } if(!(requireAbsoluteGPS && length(wg)==0)){ millis = 0*1:length(body) millis[wd] = L$d$millis if(length(wg) > 0){ millis[wg] = L$g$millis } if(length(wm) > 0){ millis[wm] = L$m$millis } if(length(wp) > 0){ millis[wp] = pps } wn = which(!((1:length(millis)) %in% c(wd, wm, wg, wp))) if(length(wn) > 0){ millis[wn[wn>1]] = millis[wn[wn>1]-1] if(any(wn == 1)){ millis[1] = millis[2] } } millis_unwrap = unwrap(millis, 2^13) L$d$millis = millis_unwrap[wd] if(length(wg) > 0){ L$g$millis = millis_unwrap[wg] } if(length(wm) > 0){ L$m$millis = millis_unwrap[wm] } if(length(wg) > 1){ n = length(L$g$tf) time_min = 0+strptime('1776-07-04 00:00:00', '%Y-%m-%d %H:%M:%S', 'GMT') time_max = 0+strptime('9999-12-31 23:59:59', '%Y-%m-%d %H:%M:%S', 'GMT') wna = (L$g$yr == 2000 | L$g$sec != round(L$g$sec) | L$g$lat == 0 | L$g$millisLag > 1000 | L$g$yr > 2025 | L$g$yr < 2014 | L$g$mo > 12 | L$g$day > 31 | L$g$hr > 23 | L$g$min > 59 | L$g$sec > 60 | L$g$tf[1:n] > c(L$g$tf[2:n],time_max) | L$g$tf[1:n] < c(time_min, L$g$tf[1:(n-1)]) ) wna = wna & !is.na(wna) wgood = !wna if(sum(wgood) > 1){ l = lm(L$g$tf[wgood] ~ L$g$millis[wgood]) l$residuals = as.numeric(l$residuals) } while(any(abs(l$residuals) > 3*sd(l$residuals)) && sum(wgood) > 1){ wgood[which(wgood)[abs(l$residuals) > 3*sd(l$residuals)]] = FALSE wna = !wgood l = lm(L$g$tf[wgood] ~ L$g$millis[wgood]) l$residuals = as.numeric(l$residuals) } if(sum(wna)>0){ L$g[wna,3:11] = NaN wg = wg[wgood] L$g = L$g[wgood,] } }else if(length(pps) > 1){ L$g$millis = millis_unwrap[wp] objective_function = function(pars){ offset = pars[1] drift = pars[2] mean(mod_pm(L$g$millis - offset, 1000 * (1 + drift))^2) + (drift/3e-5)^2/10000 } l = optim(c(mod_pm(L$g$millis[1], 1000), 0), objective_function) L$g$tf = tf0 + (L$g$millis - l$par[1]) / (1000 * (1 + l$par[2])) L$g$yr = as.numeric(format(L$g$tf, format = '%Y')) L$g$mo = as.numeric(format(L$g$tf, format = '%m')) L$g$day = as.numeric(format(L$g$tf, format = '%d')) L$g$hr = as.numeric(format(L$g$tf, format = '%H')) L$g$min = as.numeric(format(L$g$tf, format = '%M')) L$g$sec = as.numeric(format(L$g$tf, format = '%OS')) L$g$lat = rep(NaN, length(L$g$yr)) L$g$lon = rep(NaN, length(L$g$yr)) L$g$td = getjul(L$g$yr, L$g$mo, L$g$day) + L$g$hr/24 + L$g$min/1440 + L$g$sec/86400 } if(length(L$g$tf) > 1){ l = lm(L$g$tf ~ L$g$millis) l$residuals = as.numeric(l$residuals) timecorrected = as.POSIXct(l$coefficients[1] + millis_unwrap * l$coefficients[2], origin = '1970-01-01') L$g$t = timecorrected[wg] L$d$t = timecorrected[wd] if(length(wm) > 0){ L$m$t = timecorrected[wm] } }else{ if(length(wm) > 0){ L$m$t = L$m$millis + NA class(L$m$t) = c('POSIXct', 'POSIXt') } L$d$t = L$d$millis + NA } sampledelayerrors = abs((diff(L$d$t) - 0.01)) if(any(sampledelayerrors > 0.0025, na.rm = TRUE)){ warning('File ', fn[i], ': ', sum(sampledelayerrors > 0.0025), ' samples with time errors > 0.0025 s; max time error ', max(sampledelayerrors)) } } if(is.na(last_millis)) last_millis = millis[wd[1]] OUTPUT$p = c(OUTPUT$p, L$d$pressure) if(length(wm) > 0){ OUTPUT$metadata = rbind(OUTPUT$metadata, L$m) } if(length(wg) > 1){ OUTPUT$gps = rbind(OUTPUT$gps, as.data.frame(cbind(year = L$g$yr, date = L$g$td, lat = L$g$lat, lon = L$g$lon))) } if(length(wp) > 1){ pps_combined = list(millis = sort(unique(millis_unwrap[c(wp,wg)]))) w = (pps_combined$millis %in% millis_unwrap[wg]) for(k in c('tf', 'td', 'lat', 'lon')){ pps_combined[[k]][w] = L$g[[k]] pps_combined[[k]][!w] = NaN } pps_combined$millis = pps_combined$millis - L$d$millis[1] + (millis[wd[1]] - last_millis) OUTPUT$pps = rbind(OUTPUT$pps, as.data.frame(pps_combined)) } OUTPUT$header$file[i] = fn[i] OUTPUT$header$SN[i] = L$SN if(length(wg) != 0){ OUTPUT$header$lat[i] = median(L$g$lat, na.rm=TRUE) OUTPUT$header$lon[i] = median(L$g$lon, na.rm = TRUE) OUTPUT$header$t1[i] = min(L$d$t) OUTPUT$header$t2[i] = max(L$d$t) }else{ OUTPUT$header$lat[i] = NaN OUTPUT$header$lon[i] = NaN OUTPUT$header$t1[i] = NaN OUTPUT$header$t2[i] = NaN } if(alloutput){ OUTPUT$header$alloutput[[i]] = L } if(!requireGPS && length(wg) == 0 && length(wp) == 0){ warning('File ', fn[i], ': No timing/location info available from GPS') OUTPUT$t = c(OUTPUT$t, L$d$t) }else if(!requireGPS && length(wg) == 0 && length(wp) > 0){ warning('File ', fn[i], ': Clock drift corrected, but no absolute timing/location info available from GPS') OUTPUT$t = c(OUTPUT$t, tf0 + (millis[wd[1]] - last_millis)/1000 + (L$d$t-L$d$t[1])) }else{ OUTPUT$t = c(OUTPUT$t, L$d$t) } if(length(wm) == 0){ warning('File ', fn[i], ': No metadata available') } print(c(length(L$d$t), length(L$d$pressure))) tf0 = OUTPUT$t[length(OUTPUT$t)] last_millis = millis[wd[length(wd)]] } OUTPUT$p = to_int16(OUTPUT$p) invisible(OUTPUT) } Lines2Matrix = function(x, n){ NaNcheck = function(x){ q = as.numeric(x[1 + 1:n]) if(any(is.na(q))) rep(NaN, n) else q } y = t(sapply(strsplit(x, ','), NaNcheck)) w = is.na(y[,1]) y = y[!w,] if(length(y) == n) y = matrix(y, 1, n) attr(y, 'na.values') = which(w) y } unwrap = function(x, m){ cumsum(c(x[1], (((diff(x)+m/2) %% m)-m/2))) } to_int16 = function(x){ ((x + 2^15) %% 2^16) - 2^15 } mod_pm = function(x, m){ ((x + m/2) %% m) - m/2 }
rbind.compareGroups<-function(..., caption) { list.names <- function(...) { deparse.level<-1 l <- as.list(substitute(list(...)))[-1L] nm <- names(l) fixup <- if (is.null(nm)) seq_along(l) else nm == "" dep <- sapply(l[fixup], function(x) switch(deparse.level + 1, "", if (is.symbol(x)) as.character(x) else "", deparse(x, nlines = 1)[1L])) if (is.null(nm)) dep else { nm[fixup] <- dep nm } } args<-list(...) if (missing(caption)) caption<-list.names(...) else{ if (!is.null(caption)) if (length(caption)!=length(args)) stop("length of caption must be the number of 'compareGroups' objects to be combined") } cc<-unlist(lapply(args, function(x) !inherits(x,"compareGroups"))) if (any(cc)) stop("arguments must be of class 'compareGroups'") out<-list() nn<-varnames.orig<-character(0) k<-1 for (i in 1:length(args)){ args.i<-args[[i]] if (!is.null(caption) && !is.null(attr(args.i,"caption"))) warning(paste("Captions for",caption[i],"table will be removed")) for (j in 1:length(args.i)){ out[[k]]<-args.i[[j]] k<-k+1 } nn<-c(nn,names(args.i)) varnames.orig<-c(varnames.orig,attr(args.i,"varnames.orig")) } Xlong <- as.data.frame(lapply(args, function(args.i) attr(args.i,"Xlong"))) names(out)<-nn attr(out,"yname")<-attr(args[[1]],"yname") attr(out,"yname.orig")<-attr(args[[1]],"yname.orig") attr(out,"ny")<-attr(args[[1]],"ny") attr(out,"groups")<-attr(args[[1]],"groups") attr(out,"varnames.orig")<-varnames.orig attr(out,"Xlong")<-Xlong attr(out,"ylong")<-attr(args.i,"ylong") if (!is.null(caption)){ lc<-cumsum(unlist(lapply(args,length))) cc<-rep("",sum(unlist(lapply(args,length)))) lc<-c(0,lc[-length(lc)])+1 cc[lc]<-caption attr(out,"caption")<-cc } class(out)<-c("rbind.compareGroups","compareGroups") out }
bwconncomp = function(infile, outfile = NULL, retimg = TRUE, conn = 26, reorient = FALSE, spmdir = spm_dir(), verbose = TRUE, install_dir = NULL){ install_spm12(verbose = verbose, install_dir = install_dir) infile = checkimg(infile, gzipped = FALSE) infile = path.expand(infile) if (retimg) { if (is.null(outfile)) { outfile = tempfile(fileext = ".nii") } } else { stopifnot(!is.null(outfile)) } outfile = path.expand(outfile) if (grepl("\\.gz$", infile)) { infile = R.utils::gunzip(infile, remove = FALSE, temporary = TRUE, overwrite = TRUE) } else { infile = paste0(nii.stub(infile), ".nii") } stopifnot(file.exists(infile)) gzip_outfile = FALSE if (grepl("\\.gz$", outfile)) { gzip_outfile = TRUE outfile = nii.stub(outfile) outfile = paste0(outfile, ".nii") } cmd = "" if (!is.null(spmdir)) { spmdir = path.expand(spmdir) cmd = paste(cmd, sprintf("addpath(genpath('%s'));", spmdir)) } cmds = c(cmd, sprintf("ROI = '%s'", infile), sprintf("ROIf = '%s'", outfile), "%-Connected Component labelling", "V = spm_vol(ROI);", "dat = spm_read_vols(V);", paste0("cc = bwconncomp(dat > 0, ", conn, ");"), "dat = labelmatrix(cc);", "%-Write new image", "V.fname = ROIf;", "V.private.cal = [0 1];", "spm_write_vol(V,dat);") sname = paste0(tempfile(), ".m") writeLines(cmds, con = sname) if (verbose) { message(paste0(" } res = run_matlab_script(sname) if (gzip_outfile) { R.utils::gzip(outfile, overwrite = TRUE, remove = TRUE) outfile = paste0(nii.stub(outfile), ".nii.gz") } if (retimg) { if (verbose) { message(paste0(" } res = readnii(outfile, reorient = reorient) } else { res = outfile } return(res) }
lp.control <- function(lprec, ..., reset = FALSE) { if(reset) .Call(RlpSolve_reset_params, lprec) status <- list() dots <- list(...) dot.names <- names(dots) controls <- c("anti.degen", "basis.crash", "bb.depthlimit", "bb.floorfirst", "bb.rule", "break.at.first", "break.at.value", "epslevel", "epsb", "epsd", "epsel", "epsint", "epsperturb", "epspivot", "improve", "infinite", "maxpivot", "mip.gap", "negrange", "obj.in.basis", "pivoting", "presolve", "scalelimit", "scaling", "sense", "simplextype", "timeout", "verbose") dot.names <- match.arg(dot.names, controls, several.ok = TRUE) for(dot.name in dot.names) { switch(dot.name, "anti.degen" = { anti.degen <- dots[[dot.name]] methods <- c("none", "fixedvars", "columncheck", "stalling", "numfailure", "lostfeas", "infeasible", "dynamic", "duringbb", "rhsperturb", "boundflip") anti.degen <- match.arg(anti.degen, methods, several.ok = TRUE) if(any(anti.degen == "none")) anti.degen <- 0 else { idx <- 2^(0:9) names(idx) <- methods[-1] anti.degen <- sum(idx[anti.degen]) } .Call(RlpSolve_set_anti_degen, lprec, as.integer(anti.degen)) }, "basis.crash" = { basis.crash <- dots[[dot.name]] methods <- c("none", "mostfeasible", "leastdegenerate") basis.crash <- match.arg(basis.crash, methods, several.ok = FALSE) idx <- c(0, 2, 3) names(idx) <- methods basis.crash <- idx[basis.crash] .Call(RlpSolve_set_basiscrash, lprec, as.integer(basis.crash)) }, "bb.depthlimit" = { bb.depthlimit <- dots[[dot.name]] .Call(RlpSolve_set_bb_depthlimit, lprec, as.integer(bb.depthlimit)) }, "bb.floorfirst" = { bb.floorfirst <- dots[[dot.name]] methods <- c("ceiling", "floor", "automatic") bb.floorfirst <- match.arg(bb.floorfirst, methods, several.ok = FALSE) idx <- c(0, 1, 2) names(idx) <- methods bb.floorfirst <- idx[bb.floorfirst] .Call(RlpSolve_set_bb_floorfirst, lprec, as.integer(bb.floorfirst)) }, "bb.rule" = { bb.rule <- dots[[dot.name]] rules <- c("first", "gap", "range", "fraction", "pseudocost", "pseudononint", "pseudoratio") rule <- match.arg(bb.rule[1], rules, several.ok = FALSE) idx <- 0:6 names(idx) <- rules rule <- idx[rule] bb.rule <- bb.rule[-1] if(length(bb.rule)) { all.values <- c("weightreverse", "branchreverse", "greedy", "pseudocost", "depthfirst", "randomize", "gub", "dynamic", "restart", "breadthfirst", "autoorder", "rcostfixing", "stronginit") values <- match.arg(bb.rule, all.values, several.ok = TRUE) idx <- 2^(3:15) names(idx) <- all.values values <- idx[values] } else values <- double(0) bb.rule <- sum(c(rule, values)) .Call(RlpSolve_set_bb_rule, lprec, as.integer(bb.rule)) }, "break.at.first" = { break.at.first <- dots[[dot.name]] .Call(RlpSolve_set_break_at_first, lprec, as.logical(break.at.first)) }, "break.at.value" = { break.at.value <- dots[[dot.name]] .Call(RlpSolve_set_break_at_value, lprec, as.double(break.at.value)) }, "epslevel" = { epslevel <- dots[[dot.name]] methods <- c("tight", "medium", "loose", "baggy") epslevel <- match.arg(epslevel, methods, several.ok = FALSE) idx <- 0:3 names(idx) <- methods epslevel <- idx[epslevel] .Call(RlpSolve_set_epslevel, lprec, as.integer(epslevel)) }, "epsb" = { epsb <- dots[[dot.name]] .Call(RlpSolve_set_epsb, lprec, as.double(epsb)) }, "epsd" = { epsd <- dots[[dot.name]] .Call(RlpSolve_set_epsd, lprec, as.double(epsd)) }, "epsel" = { epsel <- dots[[dot.name]] .Call(RlpSolve_set_epsel, lprec, as.double(epsel)) }, "epsint" = { epsint <- dots[[dot.name]] .Call(RlpSolve_set_epsint, lprec, as.double(epsint)) }, "epsperturb" = { epsperturb <- dots[[dot.name]] .Call(RlpSolve_set_epsperturb, lprec, as.double(epsperturb)) }, "epspivot" = { epspivot <- dots[[dot.name]] .Call(RlpSolve_set_epspivot, lprec, as.double(epspivot)) }, "improve" = { improve <- dots[[dot.name]] methods <- c("none", "solution", "dualfeas", "thetagap", "bbsimplex") improve <- match.arg(improve, methods, several.ok = TRUE) if(any(improve == "none")) improve <- 0 else { idx <- 2^(0:3) names(idx) <- methods[-1] improve <- sum(idx[improve]) } .Call(RlpSolve_set_improve, lprec, as.integer(improve)) }, "infinite" = { infinite <- dots[[dot.name]] .Call(RlpSolve_set_infinite, lprec, as.double(infinite)) }, "maxpivot" = { maxpivot <- dots[[dot.name]] .Call(RlpSolve_set_maxpivot, lprec, as.integer(maxpivot)) }, "mip.gap" = { mip.gap <- dots[[dot.name]] if(length(mip.gap) != 2) mip.gap <- rep(mip.gap[1], 2) .Call(RlpSolve_set_mip_gap, lprec, as.logical(TRUE), as.double(mip.gap[1])) .Call(RlpSolve_set_mip_gap, lprec, as.logical(FALSE), as.double(mip.gap[2])) }, "negrange" = { negrange <- dots[[dot.name]] .Call(RlpSolve_set_negrange, lprec, as.double(negrange)) }, "obj.in.basis" = { obj.in.basis <- dots[[dot.name]] .Call(RlpSolve_set_obj_in_basis, lprec, as.logical(obj.in.basis)) }, "pivoting" = { pivoting <- dots[[dot.name]] rules <- c("firstindex", "dantzig", "devex", "steepestedge") rule <- match.arg(pivoting[1], rules, several.ok = FALSE) idx <- 0:3 names(idx) <- rules rule <- idx[rule] pivoting <- pivoting[-1] if(length(pivoting)) { all.modes <- c("primalfallback", "multiple", "partial", "adaptive", "randomize", "autopartial", "loopleft", "loopalternate", "harristwopass", "truenorminit") modes <- match.arg(pivoting, all.modes, several.ok = TRUE) idx <- c(4, 8, 16, 32, 128, 512, 1024, 2048, 4096, 16384) names(idx) <- all.modes modes <- idx[modes] } else modes <- double(0) pivoting <- sum(c(rule, modes)) .Call(RlpSolve_set_pivoting, lprec, as.integer(pivoting)) }, "presolve" = { presolve <- dots[[dot.name]] methods <- c("none", "rows", "cols", "lindep", "sos", "reducemip", "knapsack", "elimeq2", "impliedfree", "reducedgcd", "probefix", "probereduce", "rowdominate", "coldominate", "mergerows", "impliedslk", "colfixdual", "bounds", "duals", "sensduals") presolve <- match.arg(presolve, methods, several.ok = TRUE) if(any(presolve == "none")) presolve <- 0 else { idx <- c(2^(0:2), 2^(5:20)) names(idx) <- methods[-1] presolve <- sum(idx[presolve]) } loops <- .Call(RlpSolve_get_presolveloops, lprec) .Call(RlpSolve_set_presolve, lprec, as.integer(presolve), as.integer(loops)) }, "scalelimit" = { scalelimit <- dots[[dot.name]] .Call(RlpSolve_set_scalelimit, lprec, as.double(scalelimit)) }, "scaling" = { scaling <- dots[[dot.name]] types <- c("none", "extreme", "range", "mean", "geometric", "curtisreid") type <- match.arg(scaling[1], types, several.ok = FALSE) if(any(type == "none")) scaling <- 0 else { idx <- c(0, 1, 2, 3, 4, 7) names(idx) <- types type <- idx[type] scaling <- scaling[-1] if(length(scaling)) { all.modes <- c("quadratic", "logarithmic", "power2", "equilibrate", "integers", "dynupdate", "rowsonly", "colsonly") modes <- match.arg(scaling, all.modes, several.ok = TRUE) idx <- 2^(3:10) names(idx) <- all.modes modes <- idx[modes] } else modes <- double(0) scaling <- sum(c(type, modes)) } .Call(RlpSolve_set_scaling, lprec, as.integer(scaling)) }, "sense" = { sense <- dots[[dot.name]] sense <- match.arg(sense, c("minimize", "maximize")) sense <- sense == "maximize" .Call(RlpSolve_set_sense, lprec, as.logical(sense)) }, "simplextype" = { simplextype <- dots[[dot.name]] simplextype <- match.arg(simplextype, c("primal", "dual"), several.ok = TRUE) if(length(simplextype) != 2) simplextype <- rep(simplextype[1], 2) if(simplextype[1] == "primal" && simplextype[2] == "primal") simplextype <- 5 else if(simplextype[1] == "primal" && simplextype[2] == "dual") simplextype <- 9 else if(simplextype[1] == "dual" && simplextype[2] == "primal") simplextype <- 6 else if(simplextype[1] == "dual" && simplextype[2] == "dual") simplextype <- 10 .Call(RlpSolve_set_simplextype, lprec, as.integer(simplextype)) }, "timeout" = { timeout <- dots[[dot.name]] .Call(RlpSolve_set_timeout, lprec, as.integer(timeout)) }, "verbose" = { verbose <- dots[[dot.name]] ch <- c("neutral", "critical", "severe", "important", "normal", "detailed", "full") verbose <- match.arg(verbose, choices = ch) verbose <- match(verbose, table = ch) - 1 .Call(RlpSolve_set_verbose, lprec, as.integer(verbose)) } ) } anti.degen <- .Call(RlpSolve_is_anti_degen, lprec, as.integer(c(0,1,2,4,8,16,32,64,128,256,512))) anti.degen <- c("none", "fixedvars", "columncheck", "stalling", "numfailure", "lostfeas", "infeasible", "dynamic", "duringbb", "rhsperturb", "boundflip")[anti.degen] basis.crash <- .Call(RlpSolve_get_basiscrash, lprec) basis.crash <- c("none", "NOT USED", "mostfeasible", "leastdegenerate")[1 + basis.crash] bb.depthlimit <- .Call(RlpSolve_get_bb_depthlimit, lprec) bb.floorfirst <- .Call(RlpSolve_get_bb_floorfirst, lprec) bb.floorfirst <- c("ceiling", "floor", "automatic")[1 + bb.floorfirst] bb.rule.index <- .Call(RlpSolve_get_bb_rule, lprec) bb.rule <- bb.rule.index %% 8 bb.rule <- c("first", "gap", "range", "fraction", "pseudocost", "pseudononint", "pseudoratio", "user")[1 + bb.rule] bb.value.index <- integer(0) for(i in 15:3) { temp <- 2^i if(floor(bb.rule.index / temp) == 1) { bb.value.index <- c(i, bb.value.index) bb.rule.index <- bb.rule.index - temp } } bb.rule <- c(bb.rule, c("weightreverse", "branchreverse", "greedy", "pseudocost", "depthfirst", "randomize", "gub", "dynamic", "restart", "breadthfirst", "autoorder", "rcostfixing", "stronginit")[bb.value.index - 2]) break.at.first <- .Call(RlpSolve_is_break_at_first, lprec) break.at.value <- .Call(RlpSolve_get_break_at_value, lprec) epsilon <- c(epsb = .Call(RlpSolve_get_epsb, lprec), epsd = .Call(RlpSolve_get_epsd, lprec), epsel = .Call(RlpSolve_get_epsel, lprec), epsint = .Call(RlpSolve_get_epsint, lprec), epsperturb = .Call(RlpSolve_get_epsperturb, lprec), epspivot = .Call(RlpSolve_get_epspivot, lprec)) improve <- .Call(RlpSolve_get_improve, lprec) improve.index <- integer(0) for(i in 3:0) { temp <- 2^i if(floor(improve / temp) == 1) { improve.index <- c(i, improve.index) improve <-improve - temp } } if(length(improve.index)) improve <- c("solution", "dualfeas", "thetagap", "bbsimplex")[1 + improve.index] else improve <- "none" infinite <- .Call(RlpSolve_get_infinite, lprec) maxpivot <- .Call(RlpSolve_get_maxpivot, lprec) mip.gap <- c(absolute = .Call(RlpSolve_get_mip_gap, lprec, TRUE), relative = .Call(RlpSolve_get_mip_gap, lprec, FALSE)) negrange <- .Call(RlpSolve_get_negrange, lprec) obj.in.basis <- .Call(RlpSolve_is_obj_in_basis, lprec) pivot.rule <- .Call(RlpSolve_is_piv_rule, lprec, as.integer(0:3)) pivot.rule <- c("firstindex", "dantzig", "devex", "steepestedge")[pivot.rule] pivot.mode <- .Call(RlpSolve_is_piv_mode, lprec, as.integer(c(2^(2:5), 128, 2^(9:12), 16384))) pivot.mode <- c("primalfallback", "multiple", "partial", "adaptive", "randomize", "autopartial", "loopleft", "loopalternate", "harristwopass", "truenorminit")[pivot.mode] pivoting <- c(pivot.rule, pivot.mode) presolve <- .Call(RlpSolve_is_presolve, lprec, as.integer(c(0, 2^(0:2), 2^(5:20)))) presolve <- c("none", "rows", "cols", "lindep", "sos", "reducemip", "knapsack", "elimeq2", "impliedfree", "reducedgcd", "probefix", "probereduce", "rowdominate", "coldominate", "mergerows", "impliedslk", "colfixdual", "bounds", "duals", "sensduals")[presolve] scalelimit <- .Call(RlpSolve_get_scalelimit, lprec) scale.type <- .Call(RlpSolve_is_scaletype, lprec, as.integer(c(0, 1,2,3,4,7))) scale.type <- c("none", "extreme", "range", "mean", "geometric", "curtisreid")[scale.type] scale.mode <- .Call(RlpSolve_is_scalemode, lprec, as.integer(c(8, 16, 2^(5:10)))) scale.mode <- c("quadratic", "logarithmic", "power2", "equilibrate", "integers", "dynupdate", "rowsonly", "colsonly")[scale.mode] scaling <- c(scale.type, scale.mode) sense <- ifelse(.Call(RlpSolve_is_maxim, lprec), "maximize", "minimize") simplextype <- switch(as.character(.Call(RlpSolve_get_simplextype, lprec)), "5" = c("primal", "primal"), "6" = c("dual", "primal"), "9" = c("primal", "dual"), "10" = c("dual", "dual") ) timeout <- .Call(RlpSolve_get_timeout, lprec) ch <- c("neutral", "critical", "severe", "important", "normal", "detailed", "full") verbose <- ch[1+.Call(RlpSolve_get_verbose, lprec)] list(anti.degen = anti.degen, basis.crash = basis.crash, bb.depthlimit = bb.depthlimit, bb.floorfirst = bb.floorfirst, bb.rule = bb.rule, break.at.first = break.at.first, break.at.value = break.at.value, epsilon = epsilon, improve = improve, infinite = infinite, maxpivot = maxpivot, mip.gap = mip.gap, negrange = negrange, obj.in.basis = obj.in.basis, pivoting = pivoting, presolve = presolve, scalelimit = scalelimit, scaling = scaling, sense = sense, simplextype = simplextype, timeout = timeout, verbose = verbose) }
library(ggplot2) data=data.frame(group=c("A ","B ","C ","D ") , value=c(33,62,56,67) , number_of_obs=c(100,500,459,342)) data$right=cumsum(data$number_of_obs) + 30*c(0:(nrow(data)-1)) data$left=data$right - data$number_of_obs ggplot(data, aes(ymin = 0)) + geom_rect(aes(xmin = left, xmax = right, ymax = value, colour = group, fill = group)) + xlab("number of obs") + ylab("value")
insert_paragraphs <- function( denv, vec ){ vec <- unlist(vec, recursive = TRUE) valid_elements <- gsub("[[:space:]]|\n|\n\r|\r", "", vec) != "" vec <- vec[valid_elements] vec <- gsub("\n$|\n\r$", "", vec) vec <- vec[vec != ""] iteration <- 0 for(i in vec){ officer::cursor_end(denv$docx) cursor_pos <- denv$docx$doc_obj$get_at_cursor() iteration <- iteration + 1 string <- i new_string <- paste0( '<w:p xmlns:w=\"http://schemas.openxmlformats.org/wordprocessingml/', '2006/main\" xmlns:wp=\"http://schemas.openxmlformats.org/drawingml/', '2006/wordprocessingDrawing\" xmlns:r=\"http://schemas.openxmlformats.', 'org/officeDocument/2006/relationships\" xmlns:w14=\"http://schemas.', 'microsoft.com/office/word/2010/wordml\">', htmltools::htmlEscape(string), '</w:p>' ) tryCatch( { new_string <- iconv(new_string, to = "latin1") new_string <- xml2::as_xml_document(new_string) xml2::xml_add_sibling( cursor_pos, new_string, .where = "after", .copy = TRUE ) }, error = function(e){} ) } }
long_to_wide_converter <- function(data, x, y, subject.id = NULL, paired = TRUE, spread = TRUE, ...) { data %<>% select({{ x }}, {{ y }}, rowid = {{ subject.id }}) %>% mutate({{ x }} := droplevels(as.factor({{ x }}))) %>% arrange({{ x }}) if (!"rowid" %in% names(data)) { if (paired) data %<>% group_by({{ x }}) data %<>% mutate(rowid = row_number()) } data %<>% ungroup(.) %>% nest_by(rowid, .key = "df") %>% filter(sum(is.na(df)) == 0) %>% tidyr::unnest(cols = c(df)) if (spread && paired) data %<>% tidyr::pivot_wider(names_from = {{ x }}, values_from = {{ y }}) as_tibble(relocate(data, rowid) %>% arrange(rowid)) }
`chron.stabilized` <- function(x, winLength, biweight = TRUE, running.rbar = FALSE) { if(!is.int(winLength)) stop("'winLength' must be an integer.") if(winLength > nrow(x)) stop("'winLength' must be (considerably) shorter than the chronology length.") if(winLength <= 30) warning("'winLength' < 30 is not recommended.\n Consider a longer window.") if(winLength/nrow(x) > 0.5) warning("'winLength' > 50% of chronology length is not recommended.\n Consider a shorter window.") rbarWinLength <-function (x, WL=winLength) { corMat <- cor(x, use="pairwise.complete.obs") diag(corMat) <- NA presenceMatrix <- ifelse(is.na(x),0,1) overlapMatrix <- t(presenceMatrix)%*%presenceMatrix corMat[overlapMatrix < (WL/3)] <- NA res <- mean(corMat, na.rm=TRUE) res } mean.x <-mean(rowMeans(x,na.rm=TRUE,dims=1)) x0 <- x-mean.x nSamps <- rowSums(!is.na(x0)) xCrn <- rowMeans(x0,na.rm=T) if(biweight) { xCrn <- apply(x0,1,tbrm) } xCorrelMat <- cor(x0,use="pairwise.complete.obs") diag(xCorrelMat) <- NA rbar <- mean(xCorrelMat, na.rm =TRUE) movingRbarVec <- rep(NA,nrow(x0)) if(winLength%%2 == 1){ for(i in 1:(nrow(x0)-winLength+1)){ movingRbarVec[i+(winLength-1)/2] <- rbarWinLength(x0[i:(i+winLength-1),]) } } else{ for(i in 1:(nrow(x0)-winLength+1)){ movingRbarVec[i+(winLength)/2] <- rbarWinLength(x0[i:(i+winLength-1),]) } } idxNA <- which(!is.na(movingRbarVec)) padLow <- min(idxNA) padHigh <- max(idxNA) movingRbarVec[1:padLow] <- movingRbarVec[padLow] movingRbarVec[padHigh:length(movingRbarVec)] <- movingRbarVec[padHigh] movingRbarVec[nSamps==0] <- NA nSampsEff <- nSamps/(1+(nSamps-1)*movingRbarVec) nSampsEff <- pmin(nSampsEff,nSamps,na.rm=TRUE) xCrnAdjusted <- xCrn*(nSampsEff*rbar)^.5 xCrnAdjusted <- scale(xCrnAdjusted, center=-mean.x, scale=FALSE)[,1] if(running.rbar){ res <- data.frame(adj.crn = xCrnAdjusted, running.rbar = movingRbarVec, samp.depth = nSamps) } else{ res <- data.frame(adj.crn = xCrnAdjusted, samp.depth = nSamps) } rownames(res)<-rownames(x0) return(res) }
reduc <- function(R,B=c(0,1),hm=FALSE,cm=FALSE) { storage.mode(R) <- "double" storage.mode(B) <- "integer" storage.mode(hm) <- "integer" storage.mode(cm) <- "integer" .Call("ReductionStepForR", R, B, hm, cm) }
add_css_header <- function(tableHTML, css, headers) { if (!inherits(tableHTML, 'tableHTML')) stop('tableHTML needs to be a tableHTML object') if (length(css[[1]]) != length(css[[2]])) stop('css needs to be a list of two elements of the same length') attributes <- attributes(tableHTML) css_comp <- paste0(css[[1]], ':', css[[2]], ';') css_comp <- paste(css_comp, collapse = '') style <- paste0('style="', css_comp, '"') if (grepl('id="tableHTML_header_0"', tableHTML)) { for (i in (headers - 1)) { tableHTML <- gsub(paste0('id="tableHTML_header_', i, '" style='), paste0('id="tableHTML_header_', i, '"'), tableHTML) tableHTML <- gsub(paste0('id="tableHTML_header_', i, '"'), paste0('id="tableHTML_header_', i, '" ', style), tableHTML) tableHTML <- gsub(';""', ';', tableHTML) } } else { for (i in headers) { tableHTML <- gsub(paste0('id="tableHTML_header_', i, '" style='), paste0('id="tableHTML_header_', i, '"'), tableHTML) tableHTML <- gsub(paste0('id="tableHTML_header_', i, '"'), paste0('id="tableHTML_header_', i, '" ', style), tableHTML) tableHTML <- gsub(';""', ';', tableHTML) } } attributes(tableHTML) <- attributes tableHTML }
data("airquality") dsc = "Daily air quality measurements in New York, May to September 1973. This data is taken from R." cit = "Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data Analysis. Belmont, CA: Wadsworth." desc_airquality = makeOMLDataSetDescription(name = "airquality", description = dsc, creator = "New York State Department of Conservation (ozone data) and the National Weather Service (meteorological data)", collection.date = "May 1, 1973 to September 30, 1973", language = "English", licence = "GPL-2", url = "https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html", default.target.attribute = "Ozone", citation = cit, tags = "R") airquality_oml = makeOMLDataSet(desc = desc_airquality, data = airquality, colnames.old = colnames(airquality), colnames.new = colnames(airquality), target.features = "Ozone")
make_poisson_reg <- function() { parsnip::set_new_model("poisson_reg") parsnip::set_model_mode("poisson_reg", "regression") parsnip::set_model_engine("poisson_reg", "regression", "glm") parsnip::set_dependency("poisson_reg", "glm", "stats") parsnip::set_dependency("poisson_reg", "glm", "poissonreg") parsnip::set_fit( model = "poisson_reg", eng = "glm", mode = "regression", value = list( interface = "formula", protect = c("formula", "data", "weights"), func = c(pkg = "stats", fun = "glm"), defaults = list(family = expr(stats::poisson)) ) ) parsnip::set_encoding( model = "poisson_reg", eng = "glm", mode = "regression", options = list( predictor_indicators = "traditional", compute_intercept = TRUE, remove_intercept = TRUE, allow_sparse_x = FALSE ) ) parsnip::set_pred( model = "poisson_reg", eng = "glm", mode = "regression", type = "numeric", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list( object = expr(object$fit), newdata = expr(new_data), type = "response" ) ) ) parsnip::set_pred( model = "poisson_reg", eng = "glm", mode = "regression", type = "raw", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list(object = expr(object$fit), newdata = expr(new_data)) ) ) parsnip::set_model_engine("poisson_reg", "regression", "hurdle") parsnip::set_dependency("poisson_reg", "hurdle", "pscl") parsnip::set_dependency("poisson_reg", "hurdle", "poissonreg") parsnip::set_fit( model = "poisson_reg", eng = "hurdle", mode = "regression", value = list( interface = "formula", protect = c("formula", "data", "weights"), func = c(pkg = "pscl", fun = "hurdle"), defaults = list() ) ) parsnip::set_encoding( model = "poisson_reg", eng = "hurdle", mode = "regression", options = list( predictor_indicators = "none", compute_intercept = FALSE, remove_intercept = FALSE, allow_sparse_x = FALSE ) ) parsnip::set_pred( model = "poisson_reg", eng = "hurdle", mode = "regression", type = "numeric", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list( object = expr(object$fit), newdata = expr(new_data) ) ) ) parsnip::set_pred( model = "poisson_reg", eng = "hurdle", mode = "regression", type = "raw", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list(object = expr(object$fit), newdata = expr(new_data)) ) ) parsnip::set_model_engine("poisson_reg", "regression", "zeroinfl") parsnip::set_dependency("poisson_reg", "zeroinfl", "pscl") parsnip::set_dependency("poisson_reg", "zeroinfl", "poissonreg") parsnip::set_fit( model = "poisson_reg", eng = "zeroinfl", mode = "regression", value = list( interface = "formula", protect = c("formula", "data", "weights"), func = c(pkg = "pscl", fun = "zeroinfl"), defaults = list() ) ) parsnip::set_encoding( model = "poisson_reg", eng = "zeroinfl", mode = "regression", options = list( predictor_indicators = "none", compute_intercept = FALSE, remove_intercept = FALSE, allow_sparse_x = FALSE ) ) parsnip::set_pred( model = "poisson_reg", eng = "zeroinfl", mode = "regression", type = "numeric", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list( object = expr(object$fit), newdata = expr(new_data) ) ) ) parsnip::set_pred( model = "poisson_reg", eng = "zeroinfl", mode = "regression", type = "raw", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list(object = expr(object$fit), newdata = expr(new_data)) ) ) parsnip::set_model_engine("poisson_reg", "regression", "glmnet") parsnip::set_dependency("poisson_reg", "glmnet", "glmnet") parsnip::set_dependency("poisson_reg", "glmnet", "poissonreg") parsnip::set_model_arg( model = "poisson_reg", eng = "glmnet", parsnip = "penalty", original = "lambda", func = list(pkg = "dials", fun = "penalty"), has_submodel = TRUE ) parsnip::set_model_arg( model = "poisson_reg", eng = "glmnet", parsnip = "mixture", original = "alpha", func = list(pkg = "dials", fun = "mixture"), has_submodel = FALSE ) parsnip::set_fit( model = "poisson_reg", eng = "glmnet", mode = "regression", value = list( interface = "matrix", protect = c("x", "y", "weights"), func = c(pkg = "glmnet", fun = "glmnet"), defaults = list(family = "poisson") ) ) parsnip::set_encoding( model = "poisson_reg", eng = "glmnet", mode = "regression", options = list( predictor_indicators = "traditional", compute_intercept = TRUE, remove_intercept = TRUE, allow_sparse_x = TRUE ) ) parsnip::set_pred( model = "poisson_reg", eng = "glmnet", mode = "regression", type = "numeric", value = list( pre = NULL, post = organize_glmnet_pred, func = c(fun = "predict"), args = list( object = expr(object$fit), newx = expr(as.matrix(new_data[, rownames(object$fit$beta)])), type = "response", s = expr(object$spec$args$penalty) ) ) ) parsnip::set_pred( model = "poisson_reg", eng = "glmnet", mode = "regression", type = "raw", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list(object = expr(object$fit), newx = expr(as.matrix(new_data[, rownames(object$fit$beta)]))) ) ) parsnip::set_model_engine("poisson_reg", "regression", "stan") parsnip::set_dependency("poisson_reg", "stan", "rstanarm") parsnip::set_dependency("poisson_reg", "stan", "poissonreg") parsnip::set_fit( model = "poisson_reg", eng = "stan", mode = "regression", value = list( interface = "formula", protect = c("formula", "data", "weights"), func = c(pkg = "rstanarm", fun = "stan_glm"), defaults = list(family = expr(stats::poisson)) ) ) parsnip::set_encoding( model = "poisson_reg", eng = "stan", mode = "regression", options = list( predictor_indicators = "none", compute_intercept = FALSE, remove_intercept = FALSE, allow_sparse_x = FALSE ) ) parsnip::set_pred( model = "poisson_reg", eng = "stan", mode = "regression", type = "numeric", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list(object = expr(object$fit), newdata = expr(new_data)) ) ) parsnip::set_pred( model = "poisson_reg", eng = "stan", mode = "regression", type = "conf_int", value = list( pre = NULL, post = function(results, object) { res <- tibble( .pred_lower = parsnip::convert_stan_interval( results, level = object$spec$method$pred$conf_int$extras$level ), .pred_upper = parsnip::convert_stan_interval( results, level = object$spec$method$pred$conf_int$extras$level, lower = FALSE ), ) if (object$spec$method$pred$conf_int$extras$std_error) res$.std_error <- apply(results, 2, sd, na.rm = TRUE) res }, func = c(pkg = "rstanarm", fun = "posterior_linpred"), args = list( object = expr(object$fit), newdata = expr(new_data), transform = TRUE, seed = expr(sample.int(10^5, 1)) ) ) ) parsnip::set_pred( model = "poisson_reg", eng = "stan", mode = "regression", type = "pred_int", value = list( pre = NULL, post = function(results, object) { res <- tibble( .pred_lower = parsnip::convert_stan_interval( results, level = object$spec$method$pred$pred_int$extras$level ), .pred_upper = parsnip::convert_stan_interval( results, level = object$spec$method$pred$pred_int$extras$level, lower = FALSE ), ) if (object$spec$method$pred$pred_int$extras$std_error) res$.std_error <- apply(results, 2, sd, na.rm = TRUE) res }, func = c(pkg = "rstanarm", fun = "posterior_predict"), args = list( object = expr(object$fit), newdata = expr(new_data), seed = expr(sample.int(10^5, 1)) ) ) ) parsnip::set_pred( model = "poisson_reg", eng = "stan", mode = "regression", type = "raw", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list(object = expr(object$fit), newdata = expr(new_data)) ) ) }
xvals <- seq(0, 20, length = 1000) plot(xvals, dexp(xvals, 1/5), xlab = "Survival time in years", ylab = "density", frame = FALSE, type = "l") polygon(c(xvals[xvals >= 6], rev(xvals[xvals >= 6])), c(dexp(xvals[xvals >= 6], 1/5), rep(0, sum(xvals >= 6))), col = grey(.5) )
expected <- eval(parse(text="structure(c(-0.56047564655221-1.68669331074241i, 0.7424437487+0.837787044494525i, 1.39139505579429+0.15337311783652i, 0.92871076411383-1.13813693701195i, -0.46926798541295+1.25381492106993i, 0.7424437487+0.426464221476814i, 0.460916205989202-0.295071482992271i, -0.452623703774585+0.895125661045022i, -0.094501186832143+0.878133487533042i, -0.331818442379127+0.821581081637487i, 1.39139505579429+0.68864025410009i, -0.452623703774585+0.553917653537589i, 0.400771450594052-0.061911710576722i, -0.927967220342259-0.305962663739917i, -0.790922791530657-0.380471001012383i, 0.928710764113827-0.694706978920513i, -0.094501186832143-0.207917278019599i, -0.92796722034226-1.26539635156826i, 0.70135590156369+2.16895596533851i, -0.60084131850954+1.20796199830499i, -0.46926798541295-1.12310858320335i, -0.331818442379127-0.402884835299076i, -0.790922791530657-0.466655353623219i, -0.600841318509537+0.779965118336318i, -0.625039267849257-0.083369066471829i), .Dim = c(5L, 5L))")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(-0.560475646552213+0i, 0.7424437487+0i, 1.39139505579429+0i, 0.928710764113827+0i, -0.469267985412949+0i, 0.7424437487+0i, 0.460916205989202+0i, -0.452623703774585+0i, -0.0945011868321433+0i, -0.331818442379127+0i, 1.39139505579429+0i, -0.452623703774585+0i, 0.400771450594052+0i, -0.927967220342259+0i, -0.790922791530657+0i, 0.928710764113827+0i, -0.0945011868321433+0i, -0.927967220342259+0i, 0.701355901563686+0i, -0.600841318509537+0i, -0.469267985412949+0i, -0.331818442379127+0i, -0.790922791530657+0i, -0.600841318509537+0i, -0.625039267849257+0i), .Dim = c(5L, 5L)), c(0-1.68669331074241i, 0+0.837787044494525i, 0+0.153373117836515i, 0-1.13813693701195i, 0+1.25381492106993i, 0+0.426464221476814i, 0-0.295071482992271i, 0+0.895125661045022i, 0+0.878133487533042i, 0+0.821581081637487i, 0+0.688640254100091i, 0+0.553917653537589i, 0-0.0619117105767217i, 0-0.305962663739917i, 0-0.380471001012383i, 0-0.694706978920513i, 0-0.207917278019599i, 0-1.26539635156826i, 0+2.16895596533851i, 0+1.20796199830499i, 0-1.12310858320335i, 0-0.402884835299076i, 0-0.466655353623219i, 0+0.779965118336318i, 0-0.0833690664718293i))")); do.call(`+`, argv); }, o=expected);
NULL NULL memeApp <- function(){ shiny::runApp(system.file("shiny", "memeApp", package = "memery")) } .no_magick <- "The `magick` package must be installed to use `meme_gif`." .check_for_magick <- function(){ requireNamespace("magick", quietly = TRUE) }
context("PipeOpEnsemble") test_that("PipeOpEnsemble - basic properties", { op = PipeOpEnsemble$new(4, id = "ensemble", param_vals = list()) expect_pipeop(op) expect_pipeop_class(PipeOpEnsemble, list(3, id = "ensemble", param_vals = list())) expect_pipeop_class(PipeOpEnsemble, list(1, id = "ensemble", param_vals = list())) expect_pipeop_class(PipeOpEnsemble, list(0, id = "ensemble", param_vals = list())) truth = rnorm(70) prds = replicate(4, PredictionRegr$new(row_ids = seq_len(70), truth = truth, response = truth + rnorm(70, sd = 0.1))) expect_list(train_pipeop(op, rep(list(NULL), 4)), len = 1) expect_error(predict_pipeop(op, prds), "Abstract") op = PipeOpEnsemble$new(0, id = "ensemble", param_vals = list()) expect_pipeop(op) op = PipeOpEnsemble$new(0, collect_multiplicity = TRUE, id = "ensemble", param_vals = list()) expect_pipeop(op) expect_list(train_pipeop(op, list(as.Multiplicity(rep(list(NULL), 4)))), len = 1) expect_error(predict_pipeop(op, list(as.Multiplicity(prds))), "Abstract") expect_error(PipeOpEnsemble$new(1, collect_multiplicity = TRUE, id = "ensemble", param_vals = list()), regexp = "collect_multiplicity only works with innum == 0") }) test_that("PipeOpWeightedRegrAvg - train and predict", { truth = rnorm(70) prds = replicate(4, PredictionRegr$new(row_ids = seq_len(70), truth = truth, response = truth + rnorm(70, sd = 0.1)), simplify = FALSE) po = PipeOpRegrAvg$new(4) expect_pipeop(po) expect_list(train_pipeop(po, rep(list(NULL), 4)), len = 1) out = predict_pipeop(po, prds) po = PipeOpRegrAvg$new(4) po$param_set$values$weights = c(0, 0, 1, 0) expect_list(train_pipeop(po, rep(list(NULL), 4)), len = 1) out = predict_pipeop(po, prds) expect_equal(out, list(output = prds[[3]])) po = PipeOpRegrAvg$new() expect_pipeop(po) expect_list(train_pipeop(po, rep(list(NULL), 4)), len = 1) out = predict_pipeop(po, prds) po = PipeOpRegrAvg$new() po$param_set$values$weights = c(0, 0, 1, 0) expect_list(train_pipeop(po, rep(list(NULL), 4)), len = 1) out = predict_pipeop(po, prds) expect_equal(out, list(output = prds[[3]])) }) test_that("PipeOpWeightedClassifAvg - response - train and predict", { nulls = rep(list(NULL), 4) prds = replicate(4, make_prediction_obj_classif(n = 100, noise = TRUE, predict_types = "response", nclasses = 3), simplify = FALSE ) lapply(prds, function(x) x$data$tab$truth = prds[[1]]$data$tab$truth) po = PipeOpClassifAvg$new(4) expect_pipeop(po) expect_list(train_pipeop(po, nulls), len = 1) out = predict_pipeop(po, prds) expect_class(out[[1]], "PredictionClassif") po = PipeOpClassifAvg$new(4) po$param_set$values$weights = c(0, 0, 0, 1) expect_list(train_pipeop(po, nulls), len = 1) out = predict_pipeop(po, prds) expect_class(out[[1]], "PredictionClassif") expect_equal(out[[1]]$data$tab, prds[[4]]$data$tab) po = PipeOpClassifAvg$new() expect_pipeop(po) expect_list(train_pipeop(po, nulls), len = 1) out = predict_pipeop(po, prds) expect_class(out[[1]], "PredictionClassif") po = PipeOpClassifAvg$new() po$param_set$values$weights = c(0, 0, 0, 1) expect_list(train_pipeop(po, nulls), len = 1) out = predict_pipeop(po, prds) expect_class(out[[1]], "PredictionClassif") expect_equal(out[[1]]$data$tab, prds[[4]]$data$tab) }) test_that("PipeOpWeightedClassifAvg - prob - train and predict", { nulls = rep(list(NULL), 4) prds = replicate(4, make_prediction_obj_classif(n = 100, noise = TRUE, predict_types = c("response", "prob"), nclasses = 3), simplify = FALSE ) lapply(prds, function(x) x$data$truth = prds[[1]]$data$truth) po = PipeOpClassifAvg$new(4) expect_pipeop(po) expect_list(train_pipeop(po, nulls), len = 1) out = predict_pipeop(po, prds) expect_class(out[[1]], "PredictionClassif") po = PipeOpClassifAvg$new(4) po$param_set$values$weights = c(0, 0, 0, 1) expect_list(train_pipeop(po, nulls), len = 1) out = predict_pipeop(po, prds) expect_class(out[[1]], "PredictionClassif") expect_equivalent(as.data.table(out[[1]]), as.data.table(prds[[4]])) po = PipeOpClassifAvg$new() expect_pipeop(po) expect_list(train_pipeop(po, nulls), len = 1) out = predict_pipeop(po, prds) expect_class(out[[1]], "PredictionClassif") po = PipeOpClassifAvg$new() po$param_set$values$weights = c(0, 0, 0, 1) expect_list(train_pipeop(po, nulls), len = 1) out = predict_pipeop(po, prds) expect_class(out[[1]], "PredictionClassif") expect_equivalent(as.data.table(out[[1]]), as.data.table(prds[[4]])) })
hypothmat <- function(sfit,mmat,n,p){ q <- length(mmat[,1]) bpart <- mmat%*%sfit$coefficients varpart <- mmat%*%sfit$betacov%*%t(mmat) tst <- t(bpart)%*%solve(varpart)%*%bpart pvf <- 1 - pf(tst/q,q,n-p) hypothmat <- c(tst,pvf) return(hypothmat) }
bayescopulaglm <- function( formula.list, family.list, data, histdata = NULL, b0 = NULL, c0 = NULL, alpha0 = NULL, gamma0 = NULL, Gamma0 = NULL, S0beta = NULL, sigma0logphi = NULL, v0 = NULL, V0 = NULL, beta0 = NULL, phi0 = NULL, M = 10000, burnin = 2000, thin = 1, adaptive = TRUE ) { if ( burnin > 0 ) { smpl <- bayescopulaglm_wrapper( formula.list, family.list, data, M = burnin, histdata, b0, c0, alpha0, gamma0, Gamma0, S0beta, sigma0logphi, v0, V0, beta0, phi0, thin = 1 ) beta0 <- lapply(smpl$betasample, function(x) as.matrix(x)[nrow(x), ] ) beta0 <- lapply(beta0, as.numeric) phi0 <- smpl$phisample[burnin, ] Gamma0 <- smpl$Gammasample[, , burnin] if ( adaptive ) { cd.sq <- sapply(smpl$betasample, ncol) cd.sq <- 2.4 ^ 2 / cd.sq smpl$betasample <- lapply(smpl$betasample, function(x) as.matrix(x)[-(1:ceiling(burnin / 2)), , drop = F] ) S0beta <- mapply(function(a, b) a * cov(b), a = cd.sq, b = smpl$betasample, SIMPLIFY = FALSE) sigma0logphi <- apply( log( smpl$phisample[-(1:ceiling(burnin/2)), ] ), 2, sd ) sigma0logphi <- ifelse(sigma0logphi == 0, .1, sigma0logphi) } } smpl <- bayescopulaglm_wrapper( formula.list, family.list, data, M = M, histdata, b0, c0, alpha0, gamma0, Gamma0, S0beta, sigma0logphi, v0, V0, beta0, phi0, thin = thin ) smpl$formula.list <- formula.list smpl$family.list <- family.list class(smpl) <- c(class(smpl), 'bayescopulaglm') return(smpl) } bayescopulaglm_wrapper <- function( formula.list, family.list, data, M = 10000, histdata = NULL, b0 = NULL, c0 = NULL, alpha0 = NULL, gamma0 = NULL, Gamma0 = NULL, S0beta = NULL, sigma0logphi = NULL, v0 = NULL, V0 = NULL, beta0 = NULL, phi0 = NULL, thin = 1 ) { if ( class(formula.list) != 'list' ) { stop('formula.list must be a list of formulas') } if ( any( sapply(formula.list, class) != 'formula') ) { stop('At least one element of formula.list is not a formula') } J <- length(formula.list) if ( M <= 0 ) { stop("M must be a positive integer") } if ( class(data) != 'data.frame' ) { stop('data must be a data.frame') } if (!is.null(histdata)) { if(class(histdata) != 'data.frame') { stop('histdata must be a NULL or a data.frame') } } if ( is.null(b0) ) { if ( ! is.null(histdata) ) { stop('b0 must be a number in (0, 1] if histdata is specified') } } if ( !is.null(b0) ) { if( is.null(histdata) ) { stop('b0 must be NULL if histdata is NULL') } } famlist <- sapply(family.list, function(f)f$family) if ( any( !( famlist %in% c('gaussian', 'poisson', 'Gamma', 'binomial') ) ) ) { stop("Family must be one of gaussian, poisson, Gamma, or binomial") } if( is.null(b0) ) { b0 <- 0 } get_depvar <- function(f, data) { data[, all.vars(f, data)[1] ] } get_desmat <- function(f, data) { model.matrix(f, data) } ymat <- sapply(formula.list, get_depvar, data) Xlist <- lapply(formula.list, get_desmat, data) if( !is.null( histdata ) ) { y0mat <- sapply(formula.list, get_depvar, histdata) Xlist <- lapply(formula.list, get_desmat, histdata) } else { b0 <- 0 y0mat <- matrix(rep(0, J), ncol = J) X0list <- lapply(rep(0, J), function(x) as.matrix(x)) n0 <- 0 } distnamevec <- sapply(family.list, function(x) x$family) linknamevec <- sapply(family.list, function(x) x$link) if ( is.null(alpha0) ) { alpha0 = rep(.1, J) } if ( is.null(gamma0) ) { gamma0 = rep(.1, J) } if ( length(alpha0) != J ) { stop('alpha0 must have length = number of endpoints') } if ( length(gamma0) != J ) { stop('gamma0 must have length = number of endpoints') } if ( is.null( S0beta ) ) { get_cov_mtx <- function(f, data) { X <- model.matrix(f, data) chol2inv(chol(crossprod(X))) } S0beta <- lapply(formula.list, get_cov_mtx, data = data) } if ( class(S0beta) != 'list' ) { stop('S0beta must be a list of matrices') } if ( is.null(sigma0logphi) ) { sigma0logphi <- rep(0.1, times = J) } if ( length(sigma0logphi) != J ) { stop('sigma0logphi must have length = number of endpoints') } if ( is.null(v0) ) { v0 <- J + 2 } if ( v0 <= J ) { stop("v0 must be larger than number of endpoints") } if ( is.null(V0) ) { V0 <- diag(.001, J) } if (nrow(V0) != J | ncol(V0) != J) { stop('V0 must be a square matrix of dimension = number of endpoints') } if ( is.null(c0) ) { c0 <- rep(10000, J) } if ( length(c0) < J) { stop("c0 must have same length as formula.list") } if ( is.null(beta0) ) { get_glm_coef <- function(fmla, fam, data) { coef( glm( fmla, fam, data ) ) } beta0 <- mapply(get_glm_coef, formula.list, family.list, MoreArgs = list('data' = data), SIMPLIFY = FALSE ) } if ( class(beta0) != 'list' | length(beta0) != J | any(sapply(beta0, class) != 'numeric')) { stop('beta0 must be a list of dimension = number of endpoint and each element of the list must be of type numeric') } if ( is.null( phi0 ) ) { get_glm_disp <- function(fmla, fam, data) { summary( glm( fmla, fam, data ) )$dispersion } phi0 <- mapply(get_glm_disp, formula.list, family.list, MoreArgs = list('data' = data), SIMPLIFY = TRUE ) } if ( length(phi0) != J ) { stop('phi0 must be a numeric vector with length = number of endpoints') } if ( is.null( Gamma0 ) ) { Gamma0 <- cor(ymat) } if (nrow(Gamma0) != J | ncol(Gamma0) != J) { stop('Gamma0 must be a square matrix of dimension = number of endpoints') } smpl <- sample_copula_cpp ( ymat, Xlist, distnamevec, linknamevec, c0, S0beta, sigma0logphi, alpha0, gamma0, Gamma0, v0, V0, b0, y0mat, X0list, M, beta0, phi0, thin ) get_col_names <- function(f, data) { colnames(model.matrix(f, data)) } colNames <- lapply(formula.list, get_col_names, data = data) for(j in 1:J) { colnames( smpl$betasample[[j]] ) <- colNames[[j]] } smpl }
bootIsotonicResample <- function (data, mle) { .responseSequence <- data$responseSequence; .doseSequence <- data$doseSequence; .sequenceLength <- length(.responseSequence) .shortSequenceLength <- .sequenceLength - 1; .pavaProbability <- mle$baselinePava$pavaProbability; .nDoses <- mle$baselinePava$nDoses; .firstDose <- mle$firstDose; PROBABILITY.GAMMA <- mle$PROBABILITY.GAMMA; isGAMMALow <- PROBABILITY.GAMMA < 0.5; isGAMMAMid <- PROBABILITY.GAMMA == 0.5; isGAMMAHigh <- PROBABILITY.GAMMA > 0.5; PROBABILITY.BETA <- { if (PROBABILITY.GAMMA < 0.5) { PROBABILITY.BETA <- PROBABILITY.GAMMA/(1 -PROBABILITY.GAMMA); } else if (PROBABILITY.GAMMA == 0.5) { PROBABILITY.BETA <- 1; } else PROBABILITY.BETA <- (1 - PROBABILITY.GAMMA)/PROBABILITY.GAMMA; } { if (runif(1) <= .pavaProbability[.nDoses == .firstDose]) { .firstResponse <- 1; } else { .firstResponse <- 0; } } .resampleDoseSequence <- c(.firstDose, rep(0, times = .shortSequenceLength)); .resampleResponseSequence <- c(.firstResponse, rep(0, times = .shortSequenceLength)); for (i in 1:.shortSequenceLength) { isResponsePositive <- .resampleResponseSequence[i] == 1; isResponseNegative <- !isResponsePositive; isDoseMinimum <- .resampleDoseSequence[i] == min(.nDoses); isDoseMaximum <- .resampleDoseSequence[i] == max(.nDoses); isDoseBetween <- .resampleDoseSequence[i] != min(.nDoses) && .resampleDoseSequence[i] != max(.nDoses); isBeta <- runif(1) <= PROBABILITY.BETA; isNotBeta <- !isBeta; { if (isGAMMALow && isDoseMinimum && isResponsePositive) { .resampleDoseSequence[i + 1] <- .resampleDoseSequence[i]; } else if (isGAMMALow && isDoseMinimum && isResponseNegative && isNotBeta) { .resampleDoseSequence[i + 1] <- .resampleDoseSequence[i]; } else if (isGAMMALow && isDoseMinimum && isResponseNegative && isBeta) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) + 1]; } else if (isGAMMALow && isDoseBetween && isResponsePositive) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) - 1]; } else if (isGAMMALow && isDoseBetween && isResponseNegative && isNotBeta) { .resampleDoseSequence[i + 1] <- .resampleDoseSequence[i]; } else if (isGAMMALow && isDoseBetween && isResponseNegative && isBeta) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) + 1]; } else if (isGAMMALow && isDoseMaximum && isResponseNegative) { .resampleDoseSequence[i + 1] <- .resampleDoseSequence[i]; } else if (isGAMMALow && isDoseMaximum && isResponsePositive) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) - 1]; } else if (isGAMMAMid && isDoseMinimum && isResponsePositive) { .resampleDoseSequence[i + 1] <- .resampleDoseSequence[i]; } else if (isGAMMAMid && isDoseMinimum && isResponseNegative) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) + 1]; } else if (isGAMMAMid && isDoseBetween && isResponsePositive) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) - 1]; } else if (isGAMMAMid && isDoseBetween && isResponseNegative) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) + 1]; } else if (isGAMMAMid && isDoseMaximum && isResponsePositive) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) - 1]; } else if (isGAMMAMid && isDoseMaximum && isResponseNegative) { .resampleDoseSequence[i + 1] <- .resampleDoseSequence[i]; } else if (isGAMMAHigh && isDoseMinimum && isResponsePositive) { .resampleDoseSequence[i + 1] <- .resampleDoseSequence[i]; } else if (isGAMMAHigh && isDoseMinimum && isResponseNegative) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) + 1]; } else if (isGAMMAHigh && isDoseBetween && isResponsePositive && isBeta) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) - 1]; } else if (isGAMMAHigh && isDoseBetween && isResponsePositive && isNotBeta) { .resampleDoseSequence[i + 1] <- .resampleDoseSequence[i]; } else if (isGAMMAHigh && isDoseBetween && isResponseNegative) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) + 1]; } else if (isGAMMAHigh && isDoseMaximum && isResponsePositive && isBeta) { .resampleDoseSequence[i + 1] <- .nDoses[match(.resampleDoseSequence[i], .nDoses) - 1]; } else if (isGAMMAHigh && isDoseMaximum && isResponsePositive && isNotBeta) { .resampleDoseSequence[i + 1] <- .resampleDoseSequence[i]; } else if (isGAMMAHigh && isDoseMaximum && isResponseNegative) { .resampleDoseSequence[i + 1] <- .resampleDoseSequence[i]; } } { if (runif(1) <= .pavaProbability[.nDoses == .resampleDoseSequence[i + 1]]) { .resampleResponseSequence[i + 1] <- 1; } else { .resampleResponseSequence[i + 1] <- 0; } } } estimates <- data.frame( responseSequence = .resampleResponseSequence, doseSequence = .resampleDoseSequence); }
equivalent_at <- function(result) { if (any(result$region_high != abs(result$region_low))) { warning(paste( "Asymmetrical equivalence region(s) detected, which violates", "code\n assumptions in `equivalent_at`.", "This needs fixing." )) } result <- split(result, seq(nrow(result))) result <- lapply( result, function(x) { x$equivalent_at <- get_absolute_equivalent_at(x) if (x$scale == "relative") { x$equivalent_at <- x$equivalent_at / x$mean_y } x } ) do.call(rbind, result) } get_absolute_equivalent_at <- function(result) { eq_at <- max( abs(c(result$CI_low, result$CI_high)) ) eq_at + (0.001 * eq_at) }
.align.timeSeries <- function(x, by = "1d", offset = "0s", method = c("before", "after", "interp", "fillNA", "fmm", "periodic", "natural", "monoH.FC"), include.weekends = FALSE, ...) { Title <- x@title Documentation <- x@documentation if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") if (is.unsorted(x)) x <- sort(x) Method <- match.arg(method) fun <- switch(Method, before = function(x, u, v) approxfun(x = u, y = v, method = "constant", f = 0, ...)(x), after = function(x, u, v) approxfun(x = u, y = v, method = "constant", f = 1, ...)(x), interp = , fillNA = function(x, u, v) approxfun(x = u, y = v, method = "linear", f = 0.5, ...)(x), fmm = , periodic = , natural = , monoH.FC = function(x, u, v) splinefun(x = u, y = v, method = Method, ...)(x)) td1 <- time(x) td2 <- align(td1, by = by, offset = offset) u <- as.numeric(td1, units = "secs") xout <- as.numeric(td2, units = "secs") N = NCOL(x) data <- matrix(ncol = N, nrow = length(td2)) xx <- getDataPart(x) for (i in 1:N) { v <- as.vector(xx[, i]) yout <- fun(xout, u, v) if (Method == "fillNA") yout[!(xout %in% u)] = NA data[, i] = yout } ans <- timeSeries(data, td2, units = colnames(x)) if(!include.weekends) ans <- ans[isWeekday(td2), ] ans@title <- Title ans@documentation <- Documentation ans } setMethod("align", "timeSeries", .align.timeSeries)
tv.bib <- function(x='all', db, dict = tv.dict(db), quiet=FALSE, tv_home, ...) { if(missing(tv_home)) tv_home <- tv.home() if(missing(db) & missing(dict)) { message('Using tvrefenc.dbf from default dictionary.') dict = '' } if(dict == 'default') dict <- '' bibliopath <- file.path(tv_home, 'Popup', dict, 'tvrefenc.dbf') biblio <- read.dbf(bibliopath, as.is=TRUE) for(i in c('AUTHOR','TITLE','PUBLISHED', 'ADDRESS')) if(i %in% names(biblio)) biblio[,i] <- iconv(biblio[,i], getOption('tv.iconv'), "") if(x[1] != 'all') { x <- as.numeric(unique(x)) biblio <- biblio[match(x, as.numeric(biblio$REFERENCE)),] if(!quiet) print(biblio) } invisible(biblio) } tv.biblio <- tv.bib
test_that("good input", { mock_res = structure( list(), class = "gh_response", response = list( "x-ratelimit-limit" = "5000", "x-ratelimit-remaining" = "4999", "x-ratelimit-reset" = "1580507619" ) ) limit = gh_rate_limit(mock_res) expect_equal(limit$limit, 5000L) expect_equal(limit$remaining, 4999L) expect_s3_class(limit$reset, "POSIXct") }) test_that("errors", { expect_error(gh_rate_limit(list())) expect_error(gh_rate_limit(.token = "bad")) }) test_that("missing rate limit", { mock_res = structure( list(), class = "gh_response", response = list( ) ) limit = gh_rate_limit(mock_res) expect_equal(limit$limit, NA_integer_) expect_equal(limit$remaining, NA_integer_) expect_equal(as.double(limit$reset), NA_real_) })
model <- function(y, components, seas.period = NULL, cycle.period = NULL){ y <- as.matrix(y) if("trend" %in% components & "slope" %in% components){ mt<-paste("SSM","trend","(", "degree = 2", " , ", "Q = list(matrix(NA), matrix(NA))",")", sep="") } else if ("trend" %in% components & !("slope" %in% components)) { mt<-paste("SSM","trend","(", "degree = 1", " , ", "Q = matrix(NA)",")", sep="") } else { mt <- NULL } if("seasonal" %in% components){ if(is.null(seas.period)){ stop("A seasonal model needs a seas.period") } ms <- paste("SSM","seasonal", "(", "period = ", seas.period, " , ", "Q = matrix(NA)", ")", sep="") } else { ms <- NULL } if("cycle" %in% components){ if(is.null(cycle.period)){ stop("A cyclical model needs a cycle.period") } mc <- paste("SSM","cycle", "(", "period = ", cycle.period, " , ", "Q = matrix(NA)", ")", sep="") } else { mc <- NULL } formula <- as.formula(paste("y ~ ", paste(unlist(list(mt,ms,mc)), collapse = " + "))) m <- SSModel(formula) return(m) }
detectKit <- function(data, index = FALSE, debug = FALSE) { if (is.data.frame(data)) { if (!"Marker" %in% colnames(data)) { stop("Data frame must contain a column 'Marker'") } } else if (is.vector(data)) { if (!is.character(data)) { stop("Vector must be a character vector with marker names") } } attribute <- attr(x = data, which = "kit", exact = TRUE) if (!is.null(attribute)) { if (!index) { detectedKit <- getKit(attribute, what = "Short.Name") } else { detectedKit <- getKit(attribute, what = "Index") } if (!is.na(detectedKit)) { message(paste( "Found matching attribute 'kit':", detectedKit, "(attr =", attribute, ")" )) if (debug) { print("Attribute:") print(attribute) print("Detected kit:") print(detectedKit) } return(detectedKit) } } if (is.data.frame(data)) { markers <- unique(data$Marker) } else if (is.vector(data)) { markers <- unique(data) } else { stop("'data' must be a data.frame or character vector.") } if (any(is.na(markers))) { markers <- markers[!is.na(markers)] message("Removed NA from markers.") } kits <- getKit() kitMarkers <- list() score <- vector() detectedKit <- vector() for (k in seq(along = kits)) { kitMarkers[[k]] <- getKit(kits[k], what = "Marker") } if (debug) { print("Kit markers:") print(kitMarkers) print("Data markers:") print(markers) } for (k in seq(along = kitMarkers)) { score[k] <- sum(markers %in% kitMarkers[[k]]) score[k] <- score[k] / length(kitMarkers[[k]]) } bestFit <- max(score, na.rm = TRUE) detectedKit <- which(score %in% bestFit) candidates <- length(detectedKit) if (debug) { print("Number of matching markers:") print(score) print("Detected kit:") print(detectedKit) } prevDetected <- detectedKit if (candidates > 1) { if (debug) { print("Multiple kits with equal score!") print("Trying to resolve by closest match of marker order.") } kitScore <- vector() for (c in seq(along = detectedKit)) { kitString <- paste(kitMarkers[[detectedKit[c]]], collapse = "") score <- vector() matchStart <- 0 matchEnd <- 0 prevPos <- 0 for (m in seq(along = markers)) { match <- regexpr( pattern = markers[m], text = kitString, ignore.case = FALSE, perl = FALSE, fixed = TRUE, useBytes = FALSE ) if (match < 0) { score <- NA break } else { matchStart <- match matchEnd <- match + attr(match, "match.length") if (matchStart < prevPos) { score[m] <- -1 } else { score[m] <- 1 } } prevPos <- matchEnd } kitScore[c] <- sum(score) } bestFit <- suppressWarnings(max(kitScore, na.rm = TRUE)) kitIndex <- which(kitScore %in% bestFit) detectedKit <- detectedKit[kitIndex] if (debug) { print("Marker position matching:") print(kitScore) print("Detected kit:") print(detectedKit) } } candidates <- length(detectedKit) if (candidates == 0) { detectedKit <- prevDetected if (debug) { print("No match with this method!") print("Revert to previous match:") print(detectedKit) } } else { prevDetected <- detectedKit } if (candidates > 1) { message("Could not resolve kit. Multiple candidates returned.") } if (!index) { detectedKit <- getKit(detectedKit, what = "Short.Name") } message(paste("Detected kit(s):", paste(detectedKit, collapse = ", "))) if (debug) { print("Detected kit:") print(detectedKit) } return(detectedKit) }
ui.mfssa <- fluidPage( tags$head(tags$style(HTML("body { max-width: 1250px !important; }"))), titlePanel("MFSSA Illustration"), sidebarLayout( sidebarPanel( width = 3, tags$head(tags$style(type = "text/css", ".well { max-width: 300px; }")), radioButtons("bs.fr", "Choose Basis:", choices = c("B-spline", "Fourier"), selected = "B-spline", inline = TRUE), uiOutput("xdeg", width = "250px"), uiOutput("xdf", width = "250px"), tags$hr(style = "border-color: red;", width = "150px"), column(6, uiOutput("g")), column(6, uiOutput("sg")), column(6, uiOutput("d")), column(6, uiOutput("dmd.uf")), sliderInput("mssaL", HTML("Win.L. (MSSA):"), min = 1, max = 50, value = 50, step = 1, width = "210px"), sliderInput("fssaL", HTML("Win.L. (MFSSA):"), min = 1, max = 50, value = 20, step = 1, width = "210px"), column(6, uiOutput("run.fpca")), column(6, uiOutput("run.ssa")) ), mainPanel( width = 9, tags$style(type = "text/css", ".shiny-output-error { visibility: hidden; }", ".shiny-output-error:before { visibility: hidden; },"), tabsetPanel( id = "Panel", type = "tabs", tabPanel( title = "Data", value = "Data", column(12, uiOutput("ts.selected", align = "center"), style = "color:red;"), fluidRow( column(4, radioButtons("f.choice", "Choose from:", c("Server" = "server", "Upload" = "upload", "Simulate" = "sim"), selected = "sim", inline = TRUE, width = "250px")), column(4, uiOutput("s.choice", width = "250px"), column(6, uiOutput("a1.f")), column(6, uiOutput("a1.l"))), column(2, uiOutput("noise.t", width = "125px")), column(2, uiOutput("noise.p", width = "125px")), column(4, uiOutput("file")), column(4, uiOutput("sep"), uiOutput("header")) ), column(4, uiOutput("model")), column(4, uiOutput("t.len")), column(2, uiOutput("a2.f")), column(2, uiOutput("n.sd")), column(12, plotOutput("data.plot", height = 500, width = 900)) ), tabPanel( "Basis Functions", column(8, plotOutput("basis.desc", height = 600, width = 600)), column(4, uiOutput("basis.n", width = "300px")) ), tabPanel( "Data Description (SSA Summary)", column(4, uiOutput("desc", width = "250px")), column(4, uiOutput("as.choice", width = "400px"), uiOutput("run.fda.gcv", width = "200px"), uiOutput("rec.type", width = "300px")), column(2, uiOutput("freq")), column(2, uiOutput("sts.choice")), fluidRow( column( 8, conditionalPanel(condition = "output.flag_plot", plotOutput("res.plot", height = 600, width = 600)), conditionalPanel(condition = "output.flag_plotly", plotlyOutput("res.ly", height = 600, width = 600)) ), column(4, uiOutput("var.which"), uiOutput("s.plot"), fluidRow(column(8, uiOutput("b.indx")), column(4, uiOutput("s.CI"))), column(12, uiOutput("comp.obs"), verbatimTextOutput("RMSEs"))) ) ), tabPanel( "Forecasting", column(3, checkboxGroupInput("fcast.method", "Forecasting Method:", choices = c("Recurrent" = "recurrent", "Vector" = "vector"), selected = "recurrent", width = "250px")), column(4, uiOutput("fcast.horizon")), column(2, uiOutput("run.fcast")), column(3, uiOutput("fcast.type")), fluidRow(column(8, plotlyOutput("fcast.ly", height = 600, width = 600)), column(4, uiOutput("fcast.select"), uiOutput("fcast.var"))) ), tabPanel("Manual", includeMarkdown(system.file("shiny/rmd", "report.Rmd", package = "Rfssa"))) ) ) ) ) server.mfssa <- function(input, output, clientData, session) { iTs <- reactiveVal(list()) iTrs <- reactiveVal(list()) iXs <- reactiveVal(list()) itmp <- reactiveVal(0) df <- 100 vf <- 20 T <- 100 output$flag_plotly <- reactive(input$desc %in% c("mfssa.reconst", "ssa.reconst") && input$rec.type %in% c("heatmap", "line", "3Dline", "3Dsurface")) output$flag_plot <- reactive(!(input$desc %in% c("mfssa.reconst", "ssa.reconst") && input$rec.type %in% c("heatmap", "line", "3Dline", "3Dsurface"))) outputOptions(output, "flag_plotly", suspendWhenHidden = FALSE) outputOptions(output, "flag_plot", suspendWhenHidden = FALSE) hideTab(inputId = "Panel", target = "Forecasting") rfar <- function(N, norm, psi, Eps, basis) { OpsMat <- function(kernel, basis) { u <- seq(0, 1, by = 0.01) n <- length(u) K_mat <- outer(u, u, FUN = kernel) K_t <- smooth.basis(u, K_mat, basis)$fd A <- inprod(K_t, basis) K <- smooth.basis(u, A, basis)$fd B <- inprod(K, basis) return(B) } Psi_mat0 <- OpsMat(psi, basis) Gram <- inprod(basis, basis) Psi_mat <- solve(Gram) %*% Psi_mat0 E <- Eps$coefs X <- E for (i in 2:N) X[, i] <- Psi_mat %*% X[, i - 1] + E[, i] X_fd <- fd(X, basis) return(X_fd) } gamma0 <- function(norm) { f <- function(x) { g <- function(y) psi0(x, y)^2 return(integrate(g, 0, 1)$value) } f <- Vectorize(f) A <- integrate(f, 0, 1)$value return(norm / A) } psi0 <- function(x, y) 2 - (2 * x - 1)^2 - (2 * y - 1)^2 fpca_proj <- function(i, U) { harm <- U$harmonics[i] scores <- U$scores[, i] m <- nrow(harm$coefs) n <- length(scores) coef <- matrix(NA, nrow = m, ncol = n) for (i0 in 1:m) for (j in 1:n) coef[i0, j] <- harm$coefs[i0] * scores[j] pc <- fd(coef, harm$basis) return(pc) } fpca_rec <- function(d1, d2, U) { s <- fpca_proj(d1, U) if (d2 > d1) for (i0 in (d1 + 1):d2) s <- s + fpca_proj(i0, U) return(s) } Tr1 <- function(tau, t) { tr1 <- ifelse("f1" %in% input$model, 1, 0) * (cos(2 * pi * input$a1.f * (t + input$a1.l)) * exp(tau^2) - sin(2 * pi * input$a1.f * t) * cos(4 * pi * tau)) if ("f2" %in% input$model) tr1 <- tr1 + (cos(2 * pi * input$a2.f * t) * exp(1 - tau^2) + sin(2 * pi * input$a2.f * t) * sin(pi * tau)) return(tr1) } Tr2 <- function(tau, t) { ifelse("f1" %in% input$model, 1, 0) * (sin(2 * pi * input$a1.f * t) * exp(tau^2) + cos(2 * pi * input$a1.f * (t - input$a1.l)) * cos(4 * pi * tau)) } simulate <- function() { if (is.null(input$a1.f) || ("f2" %in% input$model && is.null(input$a2.f))) { return() } tau <- seq(0, 1, length = T) t <- 1:input$t.len noise <- list() Trs <- list(outer(tau, t, FUN = Tr1), outer(tau, t, FUN = Tr2)) set.seed(T * input$t.len * input$n.sd) for (i in 1:length(Trs)) { noise[[i]] <- Z <- matrix(rnorm(input$t.len * T, 0, input$n.sd), nrow = T) if (input$noise.t == "ar1") { if (input$noise.p) { Z[1, ] <- 0 A <- diag(1, T) if (T > 2) for (j in 1:(T - 2)) diag(A[-(1:j), ]) <- input$noise.p^j if (T > 1) A[T, 1] <- input$noise.p^(T - 1) noise[[i]] <- A %*% Z } } if (input$noise.t == "swn") { Z <- matrix(rnorm(input$t.len * input$xdf, 0, input$n.sd), ncol = input$t.len) basis.Z <- fda::create.bspline.basis(c(0, 1), input$xdf) tau <- seq(0, 1, length = T) basis.noise <- fda::fd(Z, basis.Z) noise[[i]] <- eval.fd(tau, basis.noise) } if (input$noise.t == "far1") { k0 <- gamma0(input$noise.p) psi <- function(x, y) k0 * psi0(x, y) Z[1, ] <- 0 noise[[i]] <- apply(Z, 2, cumsum) if (input$bs.fr == "B-spline") { basis.Z <- fda::create.bspline.basis(c(0, 1), input$xdf) } else { basis.Z <- fda::create.fourier.basis(c(0, 1), input$xdf) } tau <- seq(0, 1, length = T) Eps <- smooth.basis(tau, noise[[i]], basis.Z)$fd basis.noise <- rfar(input$t.len, input$noise.p, psi, Eps, basis.Z) noise[[i]] <- eval.fd(tau, basis.noise) } } return(list(Trs = Trs, noise = noise)) } observeEvent(input$dmd.uf, { updateTabsetPanel(session, "Panel", selected = "Data") updateCheckboxGroupInput(session, "s.plot", selected = "") }) observeEvent(input$run.ssa, { showTab(inputId = "Panel", target = "Forecasting") }) output$xdeg <- renderUI({ if (input$bs.fr == "Fourier") { return() } sliderInput("xdeg", HTML("Degree of B-spline Basis:"), min = 0, max = 5, value = 3, step = 1, width = "250px") }) output$xdf <- renderUI({ sliderInput("xdf", paste("Deg. of freedom of", input$bs.fr, "Basis:"), min = ifelse(input$bs.fr == "B-spline", input$xdeg + 1, 3), max = df, value = vf, step = ifelse(input$bs.fr == "B-spline", 1, 2), width = "250px") }) output$g <- renderUI({ textInput("g", "Groups", value = "1:2") }) output$sg <- renderUI({ m <- length(eval(parse(text = paste0("list(", input$g, ")")))) sliderInput("sg", "Select G:", min = 1, max = m, value = c(1, m), step = 1) }) output$dmd.uf <- renderUI({ checkboxGroupInput("dmd.uf", "Functions", choices = c("Demean" = "dmd", "Dbl Range" = "dbl", "Univ. FSSA" = "uf"), selected = "uf") }) output$d <- renderUI({ sliderInput("d", "d", min = 1, max = min(input$fssaL, input$mssaL), value = c(1, 2), step = 1) }) output$run.ssa <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } actionButton("run.ssa", paste("run M(F)SSA")) }) output$run.fpca <- renderUI({ return() if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } actionButton("run.fpca", paste("run (D)FPCA")) }) run_ssa <- eventReactive(input$run.ssa, { withProgress(message = "MSSA.MFSSA: Running", value = 0, { if (input$bs.fr == "B-spline") { bas.fssa <- fda::create.bspline.basis(c(0, 1), nbasis = input$xdf, norder = input$xdeg + 1) } else { bas.fssa <- fda::create.fourier.basis(c(0, 1), nbasis = input$xdf) } tau <- seq(0, 1, length = nrow(iTs()[[1]])) uUf <- list() if ("uf" %in% input$dmd.uf) { for (i in 1:length(iTs())) { uUf[[i]] <- fssa(Rfssa::fts(X = list(iTs()[[i]]), B = list(eval.basis(tau, bas.fssa)), grid = list(tau)), input$fssaL) } } fts.Y <- Rfssa::fts(X = iTs(), B = rep(list(eval.basis(tau, bas.fssa)), length(iTs())), grid = rep(list(tau), length(iTs()))) mUf <- fssa(fts.Y, input$fssaL) Ys <- NULL for (i in 1:length(iTs())) { Ys <- cbind(Ys, t(iTs()[[i]])) } Us <- ssa(Ys, input$mssaL, kind = "mssa") return(list(Us = Us, mUf = mUf, uUf = uUf, tau = tau, bas.fssa = bas.fssa)) }) }) run_fpca <- function() { withProgress(message = "(D)FPCA: Running", value = 0, { if (input$bs.fr == "B-spline") { bas.fssa <- fda::create.bspline.basis(c(0, 1), nbasis = input$xdf, norder = input$xdeg + 1) } else { bas.fssa <- fda::create.fourier.basis(c(0, 1), nbasis = input$xdf) } tau <- seq(0, 1, length = nrow(iTs()[[1]])) Y <- smooth.basis(tau, iTs()[[ifelse(is.null(input$var.which), 1, as.numeric(input$var.which))]], bas.fssa)$fd f.pca <- pca.fd(Y, nharm = min(input$d[2], input$xdf), centerfns = FALSE) fpca.rec <- fpca_rec(min(input$d[1], input$xdf), min(input$d[2], input$xdf), f.pca) fpca.re <- eval.fd(tau, fpca.rec) return(list(fpca = fpca.re, dfpca = fpca.re)) }) } output$s.choice <- renderUI({ if (input$f.choice != "server") { return() } if (!length(iXs())) { load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Callcenter.RData") load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Jambi.RData") Callcenter <- get("Callcenter", envir = .GlobalEnv) Jambi <- get("Jambi", envir = .GlobalEnv) Xs <- list() Xs[[1]] <- matrix(sqrt(Callcenter$calls), nrow = 240) Xs[[2]] <- Xs[[3]] <- matrix(NA, nrow = 128, ncol = dim(Jambi$NDVI)[3]) for (i in 1:dim(Jambi$NDVI)[3]) { Xs[[2]][, i] <- density(Jambi$NDVI[, , i], from = 0, to = 1, n = 128)$y Xs[[3]][, i] <- density(Jambi$EVI[, , i], from = 0, to = 1, n = 128)$y } colnames(Xs[[2]]) <- colnames(Xs[[3]]) <- Jambi$Date names(Xs) <- c("Callcenter", "NDVI", "EVI") Xs[[4]] <- Xs[2:3] names(Xs) <- c(names(Xs[1:3]), "xDI") iXs(Xs) } s.choices <- 1:length(iXs()) names(s.choices) <- names(iXs()) selectInput("s.choice", "Select a file from server: ", choices = s.choices, width = "250px") }) output$noise.t <- renderUI({ if (input$f.choice != "sim") { return() } selectInput("noise.t", "Type of noice: ", choices = c("AR(1)" = "ar1", "FAR(1)" = "far1", "Smooth WN" = "swn"), width = "125px") }) output$noise.p <- renderUI({ if (input$f.choice != "sim") { return() } if (!is.null(input$noise.t)) { if (input$noise.t == "swn") { return() } } sliderInput("noise.p", "AR Parameter:", min = 0, max = 1, value = 0, step = 0.01, width = "125px") }) output$model <- renderUI({ if (input$f.choice != "sim") { return() } choices <- c("A.1t(w1,l) F1 +" = "f1", "A.2t(w2) F2" = "f2") checkboxGroupInput("model", "Model:", choices = choices, selected = "f1", inline = TRUE, width = "250px") }) output$t.len <- renderUI({ if (input$f.choice != "sim") { return() } sliderInput("t.len", "Length of TS", min = 1, max = 200, value = 50, width = "250px") }) output$n.sd <- renderUI({ if (input$f.choice != "sim") { return() } sliderInput("n.sd", "Noise SD:", min = 0, max = 1, value = 0.05, width = "125px") }) output$a1.f <- renderUI({ if (input$f.choice != "sim" || !("f1" %in% input$model)) { return() } sliderInput("a1.f", HTML("&omega;1, Ang. Freq:"), min = 0, max = 0.5, value = 0.1, step = 0.01, width = "125px") }) output$a1.l <- renderUI({ if (input$f.choice != "sim" || !("f1" %in% input$model)) { return() } sliderInput("a1.l", HTML("Par. &ell; in A<sub>1t</sub>:"), min = -10, max = 10, value = 0, step = 1, width = "125px") }) output$a2.f <- renderUI({ if (input$f.choice != "sim" || !("f2" %in% input$model)) { return() } sliderInput("a2.f", HTML("&omega;2, Ang. Freq:"), min = 0, max = 0.5, value = 0.25, step = 0.01, width = "125px") }) output$file <- renderUI({ if (input$f.choice != "upload") { return() } fileInput("file", "Choose CSV File", accept = c("text/csv", "text/comma-separated-values,text/plain", ".csv")) }) output$sep <- renderUI({ if (input$f.choice != "upload") { return() } radioButtons("sep", "Separator", c("," = ",", ":" = ":", ";" = ";", Tab = "\t"), ",", inline = TRUE) }) output$header <- renderUI({ if (input$f.choice != "upload") { return() } checkboxInput("header", "Header", TRUE) }) output$ts.selected <- renderText({ if (input$f.choice == "upload" && is.null(input$file)) { return("<b>Select a 'csv' file that contain the time series in its columns</b>") } if (input$f.choice == "upload") { Ts <- as.matrix(read.table(input$file$datapath, header = input$header, sep = input$sep)) if (!input$header && !is.numeric(Ts)) { headers <- as.factor(Ts[1, ]) TS <- list() for (l in levels(headers)) TS[[l]] <- matrix(as.numeric(Ts[-1, headers == l]), nrow = nrow(Ts) - 1) Ts <- TS } else { Ts <- list(Ts) } } else if (input$f.choice == "server") { if (is.null(input$s.choice)) { return() } i <- as.numeric(input$s.choice) Ts <- iXs()[[i]] if (is.matrix(Ts)) Ts <- list(Ts) } else { simul <- simulate() Ts <- Map("+", simul$Trs, simul$noise) } if (!length(Ts)) { return() } if (is.null(colnames(Ts[[1]]))) { for (i in 1:length(Ts)) colnames(Ts[[i]]) <- paste("fn", 1:ncol(Ts[[i]])) } if ("dmd" %in% input$dmd.uf) { for (i in length(Ts)) { Ts[[i]] <- Ts[[i]] - mean(Ts[[i]]) if (input$f.choice == "sim") simul$Trs[[i]] <- simul$Trs[[i]] - mean(simul$Trs[[i]]) } } if (is.null(names(Ts)) || sum(is.na(names(Ts)))) names(Ts) <- paste("Variable", 1:length(Ts)) updateSelectInput(session, "desc", selected = "ts") updateSliderInput(session, "dimn", max = min(10, ncol(Ts[[1]])), value = min(2, ncol(Ts[[1]]))) updateSliderInput(session, "mssaL", max = trunc(ncol(Ts[[1]]) / 2)) updateSliderInput(session, "fssaL", max = min(120, trunc(ncol(Ts[[1]]) / 2))) text <- paste("<b>", ncol(Ts[[1]]), ifelse(length(Ts) == 1, "Univariate", "Multivariate"), "Time series of length", nrow(Ts[[1]]), "</b>") if (input$f.choice == "sim") iTrs(simul$Trs) iTs(Ts) return(text) }) output$data.plot <- renderPlot({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model)) || !length(iTs())) { return() } if (input$f.choice == "server") { i <- as.numeric(input$s.choice) fname <- names(iXs())[i] } else if (input$f.choice == "upload") { fname <- input$file$name } else { fname <- "Simulation" } par(mfrow = c(1, length(iTs())), mgp = c(1.5, .5, 0), mar = c(3, 3, 2.5, 1.75)) for (i in 1:length(iTs())) { ts.plot(iTs()[[i]], main = paste("Time Series -", fname, "-", names(iTs()[i])), ylab = "", ylim = range(iTs()[[i]]), gpars = list(xaxt = "n"), xlab = "tau") if (input$f.choice == "sim") for (j in 1:ncol(iTrs()[[i]])) points(iTrs()[[i]][, j], type = "l", col = 2) } }) output$basis.n <- renderUI({ sliderInput("basis.n", "Basis }) output$basis.desc <- renderPlot({ if (is.null(input$basis.n)) { return() } xs <- seq(0, 1, length.out = 1000) if (input$bs.fr == "B-spline") { Bx <- fda::bsplineS(xs, breaks = seq(0, 1, length.out = input$xdf - input$xdeg + 1), norder = input$xdeg + 1) } else { Bx <- fda::fourier(xs, nbasis = input$xdf) } ts.plot(Bx, col = 8, main = "B-spline Basis", xlab = "Grid Points", gpars = list(xaxt = "n")) points(Bx[, input$basis.n], type = "l", lwd = 2, col = 2) axis(1, trunc(summary(1:nrow(Bx))[-4])) }) output$desc <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } choices <- list( Summary = c("Functional Time Series" = "ts", "How many basis? (GCV)" = "gcv"), MFSSA = c("Scree" = "mfssa.scree", "W.Correlation" = "mfssa.wcor", "Paired" = "mfssa.pair", "Singular Vectors" = "mfssa.singV", "Periodogram" = "mfssa.perGr", "Singular Functions" = "mfssa.singF", "Reconstruction" = "mfssa.reconst"), MSSA = c("Scree" = "ssa.scree", "W.Correlation" = "ssa.wcor", "Paired" = "ssa.pair", "Singular Vectors" = "ssa.vec", "Functions" = "ssa.funs", "Reconstruction" = "ssa.reconst") ) selectInput("desc", "Select", choices = choices, width = "250px") }) output$as.choice <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } if (is.null(input$desc)) { return() } else if (input$desc != "ts") { return() } radioButtons("as.choice", "Plot Choices:", c("All" = "all", "Multiple" = "mult", "Single" = "single"), selected = "all", inline = TRUE, width = "400px") }) output$sts.choice <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } if (((input$desc == "ts" && input$as.choice != "all")) && !(input$s.plot == "bf" && length(input$s.plot) == 1) && length(input$s.plot)) { if (input$as.choice == "single") { sliderInput("sts.choice", "Choose function:", min = 1, max = ncol(iTs()[[1]]), value = ifelse(is.null(input$sts.choice), 1, input$sts.choice), step = 1, width = "400px") } else { sliderInput("sts.choice", "Choose clusters:", min = 1, max = input$freq, value = ifelse(is.null(input$sts.choice), 0, input$sts.choice), step = 1, width = "200px") } } }) output$rec.type <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } if (is.null(input$desc)) { return() } else if (!input$desc %in% c("mfssa.reconst", "mfssa.singF", "ssa.reconst")) { return() } if (input$desc == "mfssa.singF") { selectInput("rec.type", "Type", choices = c("Heat plot" = "lheats", "Regular Plot" = "lcurves"), width = "250px") } else if (input$desc == "ssa.reconst") { selectInput("rec.type", "Type", choices = c("Heat Plot" = "heatmap", "Regular Plot" = "line", "3D Plot (line)" = "3Dline", "3D Plot (surface)" = "3Dsurface"), width = "250px") } else { selectInput("rec.type", "Type", choices = c("Heat Plot" = "heatmap", "Regular Plot" = "line", "3D Plot (line)" = "3Dline", "3D Plot (surface)" = "3Dsurface"), width = "250px") } }) output$freq <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } if (((input$desc == "ts" && input$as.choice == "mult")) && !(input$s.plot == "bf" && length(input$s.plot) == 1) && length(input$s.plot)) { sliderInput("freq", "Period:", min = 1, max = trunc(ncol(iTs()[[1]]) / 2), value = ifelse(is.null(input$freq), 1, input$freq), step = 1, width = "200px") } }) output$var.which <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model)) || is.null(input$desc)) { return() } if (!input$desc %in% c("ts", "gcv", "ssa.reconst", "mfssa.reconst", "mfssa.singF") || length(iTs()) == 1) { return() } choic <- as.character(1:length(iTs())) names(choic) <- names(iTs()) if (!is.null(input$rec.type) && input$desc == "mfssa.reconst" && length(choic) != 1) if (input$rec.type %in% c("heatmap", "line")) choic <- c("All Variables" = "all", choic) selectInput("var.which", NULL, choices = choic, selected = "1", width = "125px") }) output$s.plot <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } if (is.null(input$desc)) { return() } else if (input$desc != "ts") { return() } choices <- c("Time Series" = "ts", "True Functions" = "tf", "Basis Func." = "bf", "Smoothing" = "bss", "Functional PCA" = "fpca", "Multivariate SSA" = "ssa", "Multivariate FSSA" = "mfssa") if ("uf" %in% input$dmd.uf) { choices <- append(choices, "fssa", 6) names(choices)[7] <- "Functional SSA" } if (input$f.choice != "sim") { choices <- choices[-2] } checkboxGroupInput("s.plot", "Plot:", choices = choices, selected = choices[1], width = "250px") }) output$b.indx <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || !input$desc %in% c("ts") || !length(intersect(input$s.plot, c("bf", "bss")))) { return() } val <- c(1, input$xdf) if (length(input$b.indx) == 2) val <- input$b.indx sliderInput("b.indx", "Basis Contr.", min = 1, max = input$xdf, value = val, dragRange = TRUE, step = 1, width = "200px") }) output$s.CI <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } if (input$desc == "ts" && length(intersect(input$s.plot, c("bss")))) { if (input$as.choice == "single") checkboxInput("s.CI", "Show CI", ifelse(is.null(input$s.CI), FALSE, input$s.CI), width = "200px") } }) output$comp.obs <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } if (is.null(input$desc)) { return() } else if (input$desc != "ts") { return() } checkboxInput("comp.obs", "Compare fit. vs obs.", FALSE, width = "200px") }) output$run.fda.gcv <- renderUI({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } if (is.null(input$desc)) { return() } else if (input$desc != "gcv") { return() } actionButton("run.fda.gcv", paste("update GCV")) }) fda.gcv <- eventReactive(input$run.fda.gcv, { withProgress(message = "FDA.GCV: GCV <- NULL df <- min(df, nrow(iTs()[[1]])) if (input$bs.fr == "B-spline") nbasis <- (input$xdeg + 1):(df - 1) else nbasis <- seq(3, df, by = 2) for (l in 1:length(nbasis)) { if (input$bs.fr == "B-spline") { bas.fssa <- fda::create.bspline.basis(c(0, 1), nbasis = nbasis[l], norder = input$xdeg + 1) } else { bas.fssa <- fda::create.fourier.basis(c(0, 1), nbasis = nbasis[l]) } GCV[l] <- sum(smooth.basis(seq(0, 1, length.out = nrow(iTs()[[1]])), iTs()[[ifelse(is.null(input$var.which), 1, min(length(iTs()), as.numeric(input$var.which)))]], bas.fssa)$gcv) incProgress(1 / length(nbasis), detail = l) } itmp(1) return(list(GCV = GCV, nbasis = nbasis)) }) }) output$res.plot <- renderPlot({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } if (input$desc %in% c("mfssa.reconst", "ssa.reconst") && !is.null(input$rec.type)) { if (input$rec.type %in% c("heatmap", "line", "3Dline", "3Dsurface")) { return() } } if (!is.null(input$var.which) && length(iTs()) != 1) var.which <- as.numeric(input$var.which) else var.which <- 1 if (input$f.choice == "server") { fname <- names(iXs())[as.numeric(input$s.choice)] } else if (input$f.choice == "upload") { fname <- input$file$name } else { fname <- "Simulation" } indx <- as.numeric(input$sts.choice) Ts <- iTs()[[var.which]] name.Ts <- names(iTs())[var.which] if (length(intersect(input$s.plot, c("bf", "bss")))) { if (is.null(input$b.indx)) { return() } b.indx <- input$b.indx[1]:input$b.indx[2] } if (length(intersect(input$s.plot, c("bss")))) { if (input$bs.fr == "B-spline") { B <- fda::bsplineS(seq(0, 1, length.out = nrow(Ts)), breaks = seq(0, 1, length.out = input$xdf - input$xdeg + 1), norder = input$xdeg + 1) } else { B <- fda::fourier(seq(0, 1, length.out = nrow(Ts)), nbasis = input$xdf) } if ("bss" %in% input$s.plot) { cB <- solve(t(B) %*% B) %*% t(B) if (input$desc == "ts") { S <- B %*% cB vB <- ifelse(nrow(Ts) > ncol(B), sum((Ts - S %*% Ts)^2) / ((nrow(Ts) - ncol(B)) * ncol(Ts)) * diag(S), 0) } } } if ("bf" %in% input$s.plot || input$desc == "basis") { if (input$bs.fr == "B-spline") { Bs <- fda::bsplineS(seq(0, 1, length.out = 1000), breaks = seq(0, 1, length.out = input$xdf - input$xdeg + 1), norder = input$xdeg + 1) } else { Bs <- fda::fourier(seq(0, 1, length.out = 1000), nbasis = input$xdf) } Bs <- Bs * sd(Ts) } if (substr(input$desc, 1, 5) == "mfssa" || sum(c("mfssa", "fssa", "ssa") %in% input$s.plot) || substr(input$desc, 1, 3) == "ssa") { sr <- run_ssa() input.g <- eval(parse(text = paste0("list(", input$g, ")"))) mQ <- uQ <- Qs <- matrix(0, nrow = nrow(Ts), ncol = ncol(Ts)) isolate(sr$Qs <- reconstruct(sr$Us, groups = input.g)) if ("uf" %in% input$dmd.uf) { isolate(sr$uQf <- freconstruct(sr$uUf[[var.which]], input.g)) uQf <- sr$uQf[[1]] uQf@C[[1]][, ] <- 0 } isolate(sr$mQf <- freconstruct(sr$mUf, input.g)) mQf <- uQf for (i in input$sg[1]:input$sg[2]) { Qs <- Qs + t(sr$Qs[[i]][, ((var.which - 1) * nrow(Ts) + 1):(var.which * nrow(Ts))]) if ("uf" %in% input$dmd.uf) { uQf@C[[1]] <- uQf@C[[1]] + sr$uQf[[i]]@C[[1]] } mQf@C[[1]] <- mQf@C[[1]] + sr$mQf[[i]]@C[[var.which]] } if ("uf" %in% input$dmd.uf) uQ <- uQf@B[[1]] %*% uQf@C[[1]] mQ <- mQf@B[[1]] %*% mQf@C[[1]] } if ("fpca" %in% input$s.plot || "dfpca" %in% input$s.plot) { f.pca <- run_fpca() fpca <- f.pca$fpca dfpca <- f.pca$dfpca } if (substr(input$desc, 1, 5) == "mfssa") { if (input$desc == "mfssa.scree") { plot(sr$mUf, type = "values", d = input$d[2]) } else if (input$desc == "mfssa.wcor") { mfwcor <- fwcor(sr$mUf, groups = input$d[1]:input$d[2]) wplot(W = mfwcor, cuts = 10) } else if (input$desc == "mfssa.pair") { plot(sr$mUf, type = "paired", idx = input$d[1]:input$d[2]) } else if (input$desc == "mfssa.singV") { plot(sr$mUf, type = "vectors", idx = input$d[1]:input$d[2]) } else if (input$desc == "mfssa.perGr") { plot(sr$mUf, type = "periodogram", idx = input$d[1]:input$d[2]) } else if (input$desc == "mfssa.singF") { plot(sr$mUf, type = ifelse(is.null(input$rec.type), "lheats", input$rec.type), var = var.which, idx = input$d[1]:input$d[2]) } } else if (substr(input$desc, 1, 3) == "ssa") { if (input$desc == "ssa.scree") { plot(sr$Us, type = "values", numvalues = input$d[2]) } else if (input$desc == "ssa.wcor") { plot(sr$Us, type = "wcor", groups = input$d[1]:input$d[2]) } else if (input$desc == "ssa.pair") { plot(sr$Us, type = "paired", idx = input$d[1]:input$d[2]) } else if (input$desc == "ssa.vec") { plot(sr$Us, type = "vectors", idx = input$d[1]:input$d[2]) } else if (input$desc == "ssa.funs") plot(sr$Us, type = "series", groups = input$d[1]:input$d[2]) } else if (input$desc == "gcv") { res <- fda.gcv() ind.m <- which(res$GCV == min(res$GCV)) plot(res$nbasis, res$GCV, type = "b", xlab = "n.basis", log = "y", ylab = "GCV", main = paste("Gen. Cross Validation -", fname), cex.lab = 1.5, pch = 20) if (itmp()) { updateSliderInput(session, "xdf", value = res$nbasis[ind.m]) itmp(0) } abline(v = input$xdf, col = 1, lty = 2) } else { m.lab <- paste(fname, "-", colnames(Ts)[indx]) if (input$as.choice == "all") { indx <- 1:ncol(Ts) m.lab <- fname } else if (input$as.choice == "mult") { indt <- 1:ncol(Ts) %% input$freq indt[indt == 0] <- input$freq indx <- (1:ncol(Ts))[which(indt == indx)] } if ("ts" %in% input$s.plot) { clcol <- rep(1, ncol(Ts)) } else { clcol <- rep(0, ncol(Ts)) } if ("dbl" %in% input$dmd.uf) rng <- range(Ts, -Ts) else rng <- range(Ts) ts.plot(Ts[, indx], col = clcol[indx], main = paste("Time Series -", m.lab, "-", name.Ts), ylab = "", ylim = rng, gpars = list(xaxt = "n")) if ("ssa" %in% input$s.plot) { for (i in indx) points(Qs[, i], type = "l", col = 5) } if ("fssa" %in% input$s.plot) { for (i in indx) points(uQ[, i], type = "l", col = 7) } if ("mfssa" %in% input$s.plot) { for (i in indx) points(mQ[, i], type = "l", col = 6) } if ("fpca" %in% input$s.plot) { for (i in indx) points(fpca[, i], type = "l", col = 2, lty = 2) } if ("dfpca" %in% input$s.plot) { for (i in indx) points(dfpca[, i], type = "l", col = 3, lty = 2) } if ("bss" %in% input$s.plot) { f.est <- matrix(0, nrow = nrow(Ts), ncol = ncol(Ts)) for (i in indx) { f.est[, i] <- as.matrix(B[, b.indx]) %*% (cB %*% Ts[, i])[b.indx] if (input$as.choice == "single") { if (input$s.CI) { polygon(c(1:nrow(Ts), nrow(Ts):1), c(f.est[, i] - 2 * sqrt(vB), rev(f.est[, i]) + 2 * rev(sqrt(vB))), border = 4, lwd = 1, col = 5) if ("ts" %in% input$s.plot) points(Ts[, i], type = "l", col = 1) } } points(f.est[, i], col = 4, type = "l") } } if ("tf" %in% input$s.plot) { for (i in indx) points(iTrs()[[var.which]][, i], type = "l", col = 2) } if ("bf" %in% input$s.plot) { for (i in b.indx) points(seq(1, nrow(Ts), length.out = 1000), Bs[, i], col = 8, type = "l", lty = 2) } axis(1, trunc(summary(1:nrow(Ts))[-4])) if (input$f.choice == "sim" || input$comp.obs) { if (input$comp.obs) Ys <- Ts else Ys <- iTrs()[[var.which]] if (input$comp.obs) RMSEs <- NULL else RMSEs <- paste(" RMSE.obs =", round(sqrt(mean((Ts[, indx] - Ys[, indx])^2)), 4), "\n") if ("bss" %in% input$s.plot) RMSEs <- paste(RMSEs, "RMSE.bs.smooth =", round(sqrt(mean((f.est[, indx] - Ys[, indx])^2)), 4), "\n") if ("fpca" %in% input$s.plot) RMSEs <- paste(RMSEs, "RMSE.fpca =", round(sqrt(mean((fpca[, indx] - Ys[, indx])^2)), 4), "\n") if ("ssa" %in% input$s.plot) RMSEs <- paste(RMSEs, "RMSE.ssa =", round(sqrt(mean((Qs[, indx] - Ys[, indx])^2)), 4), "\n") if ("fssa" %in% input$s.plot) RMSEs <- paste(RMSEs, "RMSE.fssa =", round(sqrt(mean((uQ[, indx] - Ys[, indx])^2)), 4), "\n") if ("mfssa" %in% input$s.plot) RMSEs <- paste(RMSEs, "RMSE.mfssa =", round(sqrt(mean((mQ[, indx] - Ys[, indx])^2)), 4), "\n") if (input$comp.obs) RMSEs <- paste(RMSEs, "\n") else RMSEs <- paste(RMSEs, "\n Ang.obs =", round(max(acos(diag(t(scale(Ts[, indx], center = F)) %*% scale(Ys[, indx], center = F)) / (nrow(Ts) - 1)) * 180 / pi), 4), "\n") if ("bss" %in% input$s.plot) RMSEs <- paste(RMSEs, "Ang.bs.smooth =", round(max(acos(diag(t(scale(f.est[, indx], center = F)) %*% scale(Ys[, indx], center = F)) / (nrow(Ts) - 1)) * 180 / pi), 4), "\n") if ("fpca" %in% input$s.plot) RMSEs <- paste(RMSEs, "Ang.fpca =", round(max(acos(diag(t(scale(fpca[, indx], center = F)) %*% scale(Ys[, indx], center = F)) / (nrow(Ts) - 1)) * 180 / pi), 4), "\n") if ("ssa" %in% input$s.plot) RMSEs <- paste(RMSEs, "Ang.ssa =", round(max(acos(diag(t(scale(Qs[, indx], center = F)) %*% scale(Ys[, indx], center = F)) / (nrow(Ts) - 1)) * 180 / pi), 4), "\n") if ("fssa" %in% input$s.plot) RMSEs <- paste(RMSEs, "Ang.fssa =", round(max(acos(diag(t(scale(uQ[, indx], center = F)) %*% scale(Ys[, indx], center = F)) / (nrow(Ts) - 1)) * 180 / pi), 4), "\n") if ("mfssa" %in% input$s.plot) RMSEs <- paste(RMSEs, "Ang.mfssa =", round(max(acos(diag(t(scale(mQ[, indx], center = F)) %*% scale(Ys[, indx], center = F)) / (nrow(Ts) - 1)) * 180 / pi), 4), "\n") output$RMSEs <- renderText({ RMSEs }) } else { output$RMSEs <- renderText({ "Real Data" }) } } }) output$res.ly <- renderPlotly({ if ((input$f.choice == "upload" && is.null(input$file)) || (input$f.choice == "sim" && !length(input$model))) { return() } if (input$desc %in% c("mfssa.reconst", "ssa.reconst")) { if (!input$rec.type %in% c("heatmap", "line", "3Dline", "3Dsurface")) { return() } } sr <- run_ssa() input.g <- eval(parse(text = paste0("list(", input$g, ")"))) if (input$desc == "mfssa.reconst") { isolate(sr$mQf <- freconstruct(sr$mUf, input.g)) mQf <- 0 if (input$var.which == "all" || is.null(input$var.which)) { var.which <- NULL types <- rep(input$rec.type, length(sr$mQf[[1]]@C)) vars <- 1:length(sr$mQf[[1]]@C) } else { var.which <- as.numeric(input$var.which) types <- input$rec.type vars <- var.which } for (i in input$sg[1]:input$sg[2]) { mQf <- mQf + sr$mQf[[i]] } myplot <- plot(mQf, types = types, vars = vars) } else { if (is.null(input$var.which)) var.which <- 1 else var.which <- as.numeric(input$var.which) isolate(sr$Qs <- reconstruct(sr$Us, groups = input.g)) Qs <- matrix(0, nrow = nrow(iTs()[[1]]), ncol = ncol(iTs()[[1]])) for (i in input$sg[1]:input$sg[2]) { Qs <- Qs + t(sr$Qs[[i]][, ((var.which - 1) * nrow(iTs()[[1]]) + 1):(var.which * nrow(iTs()[[1]]))]) } Qs <- Rfssa::fts(X = list(Qs), B = list(eval.basis(sr$tau, sr$bas.fssa)), grid = list(sr$tau)) myplot <- plot(Qs, type = input$rec.type) } if (substr(input$rec.type, 1, 2) != "3D") print(myplot) else print(myplot[[1]]) }) output$fcast.horizon <- renderUI({ if (is.null(nrow(iTs()[[1]]))) { return() } sliderInput("fcast.horizon", HTML("Forecasting Horizon:"), min = 0, max = ncol(iTs()[[1]]), value = min(50, ncol(iTs()[[1]]) / 2), step = 1, width = "250px") }) output$run.fcast <- renderUI({ if (is.null(nrow(iTs()[[1]]))) { return() } actionButton("run.fcast", paste("run Forecast")) }) output$fcast.type <- renderUI({ if (is.null(input$run.fcast)) { return() } selectInput("fcast.type", "Type", choices = c("Heat Plot" = "heatmap", "Regular Plot" = "line", "3D Plot (line)" = "3Dline", "3D Plot (surface)" = "3Dsurface"), width = "250px") }) run_fcast <- eventReactive(input$run.fcast, { withProgress(message = "MFSSA Forecast: Running", value = 0, { sr <- run_ssa() input.g <- eval(parse(text = paste0("list(", input$g, ")"))) fc <- list() if ("recurrent" %in% input$fcast.method) fc$rec <- fforecast(U = sr$mUf, groups = input.g, h = input$fcast.horizon, method = "recurrent") if ("vector" %in% input$fcast.method) fc$vector <- fforecast(U = sr$mUf, groups = input.g, h = input$fcast.horizon, method = "vector") return(fc) }) }) output$fcast.var <- renderUI({ if (is.null(input$run.fcast) || input$run.fcast == 0 || length(iTs()) == 1) { return() } choic <- as.character(1:length(iTs())) names(choic) <- names(iTs()) if (!is.null(input$fcast.type) && length(choic) != 1) if (input$fcast.type %in% c("heatmap", "line")) choic <- c("All Variables" = "all", choic) selectInput("fcast.var", NULL, choices = choic, width = "125px") }) output$fcast.select <- renderUI({ if (is.null(input$run.fcast) || input$run.fcast == 0) { return() } if (length(input$fcast.method) > 1) selectInput("fcast.select", "Select Output", choices = c("Recurrent Forecasting" = "1", "Vector Forecasting" = "2"), width = "250px") }) output$fcast.ly <- renderPlotly({ if (is.null(input$run.fcast)) { return() } fc <- run_fcast() mQf <- 0 if (length(fc) == 1) i <- 1 else i <- as.numeric(input$fcast.select) if (input$fcast.var == "all" || is.null(input$fcast.var)) { types <- rep(input$fcast.type, length(fc[[1]][[1]]@C)) vars <- 1:length(fc[[1]][[1]]@C) } else { types <- input$fcast.type vars <- as.numeric(input$fcast.var) } for (j in input$sg[1]:input$sg[2]) { mQf <- mQf + fc[[i]][[j]] } myplot <- plot(mQf, types = types, vars = vars) if (substr(input$fcast.type, 1, 2) != "3D") print(myplot) else print(myplot[[1]]) }) }
MVTMLEsymm2 <- function(X, nu = 1, eps = 1e-06, maxiter = 100) { .Call( "cMVTMLEsymm2", X, nu, eps, maxiter, PACKAGE = "fastM") }
predict.AccurateGLM <- function(object, newx=NULL, s=NULL, type=c("link","response","coefficients","nonzero","class"), exact=FALSE, newoffset, ...) { model <- object type <- match.arg(type) if (class(newx)[1] != "data.frame") newx <- data.frame(newx) for (i in seq(dim(newx)[2])) { var_info <- model@vars_info[[i]] if (var_info$type == "quan") newx[, i] <- as.numeric(newx[, i]) else if (var_info$type == "qual") { if (var_info$use_OD & !is.ordered(newx[, i])) newx[, i] <- ordered(newx[, i]) else if (!is.factor(newx[, i])) newx[, i] <- factor(newx[, i]) } } newx <- new("AGLM_Input", vars_info=model@vars_info, data=newx) x_for_backend <- getDesignMatrix(newx) backend_model <- model@backend_models[[1]] model_name <- names(model@backend_models)[[1]] if (model_name == "cv.glmnet") { if (is.character(s)) { if (s == "lambda.min") s <- [email protected] if (s == "lambda.1se") s <- [email protected] } } glmnet_result <- predict(backend_model, x_for_backend, s=s, type=type, exact=exact, newoffset, ...) return(glmnet_result) }
layerStats <- function(x, stat, w, asSample=TRUE, na.rm=FALSE, ...) { stat <- tolower(stat) stopifnot(stat %in% c('cov', 'weighted.cov', 'pearson')) stopifnot(is.logical(asSample) & !is.na(asSample)) nl <- nlayers(x) n <- ncell(x) mat <- matrix(NA, nrow=nl, ncol=nl) colnames(mat) <- rownames(mat) <- names(x) pb <- pbCreate(nl^2, label='layerStats', ...) if (stat == 'weighted.cov') { if (missing(w)) { stop('to compute weighted covariance a weights layer should be provided') } stopifnot( nlayers(w) == 1 ) if (na.rm) { nas <- calc(x, function(i) sum(i)) * w x <- mask(x, nas) w <- mask(w, nas) } sumw <- cellStats(w, stat='sum', na.rm=na.rm) means <- cellStats(x * w, stat='sum', na.rm=na.rm) / sumw sumw <- sumw - asSample x <- (x - means) * sqrt(w) for(i in 1:nl) { for(j in i:nl) { r <- raster(x, layer=i) * raster(x,layer=j) v <- cellStats(r, stat='sum', na.rm=na.rm) / sumw mat[j,i] <- mat[i,j] <- v pbStep(pb) } } pbClose(pb) cov.w <- list(mat, means) names(cov.w) <- c("weigthed covariance", "weighted mean") return(cov.w) } else if (stat == 'cov') { means <- cellStats(x, stat='mean', na.rm=na.rm) x <- (x - means) for(i in 1:nl) { for(j in i:nl) { r <- raster(x, layer=i) * raster(x, layer=j) if (na.rm) { v <- cellStats(r, stat='sum', na.rm=na.rm) / (n - cellStats(r, stat='countNA') - asSample) } else { v <- cellStats(r, stat='sum', na.rm=na.rm) / (n - asSample) } mat[j,i] <- mat[i,j] <- v pbStep(pb) } } pbClose(pb) covar <- list(mat, means) names(covar) <- c("covariance", "mean") return(covar) } else if (stat == 'pearson') { means <- cellStats(x, stat='mean', na.rm=na.rm) sds <- cellStats(x, stat='sd', na.rm=na.rm) x <- (x - means) for(i in 1:nl) { for(j in i:nl) { r <- raster(x, layer=i) * raster(x, layer=j) if (na.rm) { v <- cellStats(r, stat='sum', na.rm=na.rm) / ((n - cellStats(r, stat='countNA') - asSample) * sds[i] * sds[j]) } else { v <- cellStats(r, stat='sum', na.rm=na.rm) / ((n - asSample) * sds[i] * sds[j]) } mat[j,i] <- mat[i,j] <- v pbStep(pb) } } pbClose(pb) covar <- list(mat, means) names(covar) <- c("pearson correlation coefficient", "mean") return(covar) } }
generate_c_equations <- function(dat, rewrite) { lapply(dat$equations, generate_c_equation, dat, rewrite) } generate_c_equation <- function(eq, dat, rewrite) { f <- switch( eq$type, expression_scalar = generate_c_equation_scalar, expression_inplace = generate_c_equation_inplace, expression_array = generate_c_equation_array, alloc = generate_c_equation_alloc, alloc_interpolate = generate_c_equation_alloc_interpolate, alloc_ring = generate_c_equation_alloc_ring, copy = generate_c_equation_copy, interpolate = generate_c_equation_interpolate, user = generate_c_equation_user, delay_index = generate_c_equation_delay_index, delay_continuous = generate_c_equation_delay_continuous, delay_discrete = generate_c_equation_delay_discrete, stop("Unknown type")) data_info <- dat$data$elements[[eq$lhs]] stopifnot(!is.null(data_info)) f(eq, data_info, dat, rewrite) } generate_c_equation_scalar <- function(eq, data_info, dat, rewrite) { location <- data_info$location if (location == "transient") { lhs <- sprintf("%s %s", data_info$storage_type, eq$lhs) } else if (location == "internal") { lhs <- rewrite(eq$lhs) } else { offset <- dat$data[[location]]$contents[[data_info$name]]$offset storage <- if (location == "variable") dat$meta$result else dat$meta$output lhs <- sprintf("%s[%s]", storage, rewrite(offset)) } rhs <- rewrite(eq$rhs$value) sprintf("%s = %s;", lhs, rhs) } generate_c_equation_inplace <- function(eq, data_info, dat, rewrite) { location <- data_info$location lhs <- rewrite(eq$lhs) fn <- eq$rhs$value[[1]] args <- lapply(eq$rhs$value[-1], rewrite) switch( fn, rmultinom = generate_c_equation_inplace_rmultinom(eq, lhs, dat, rewrite), rmhyper = generate_c_equation_inplace_rmhyper( eq, lhs, data_info, dat, rewrite), stop("unhandled array expression [odin bug]")) } generate_c_equation_inplace_rmultinom <- function(eq, lhs, dat, rewrite) { args <- eq$rhs$value[-1] len <- rewrite(dat$data$elements[[args[[2]]]]$dimnames$length) stopifnot(!is.null(len)) sprintf_safe("Rf_rmultinom(%s, %s, %s, %s);", rewrite(args[[1]]), rewrite(args[[2]]), len, lhs) } generate_c_equation_inplace_rmhyper <- function(eq, lhs, data_info, dat, rewrite) { len <- data_info$dimnames$length n <- eq$rhs$value[[2]] src <- eq$rhs$value[[3]] src_type <- dat$data$elements[[src]]$storage_type fn <- if (src_type == "int") "rmhyper_i" else "rmhyper_d" sprintf_safe("%s(%s, %s, %s, %s);", fn, rewrite(n), rewrite(src), rewrite(len), lhs) } generate_c_equation_array <- function(eq, data_info, dat, rewrite) { lhs <- generate_c_equation_array_lhs(eq, data_info, dat, rewrite) lapply(eq$rhs, function(x) generate_c_equation_array_rhs(x$value, x$index, lhs, rewrite)) } generate_c_equation_alloc <- function(eq, data_info, dat, rewrite) { lhs <- rewrite(eq$lhs) ctype <- data_info$storage_type len <- rewrite(data_info$dimnames$length) c(sprintf_safe("Free(%s);", lhs), sprintf_safe("%s = (%s*) Calloc(%s, %s);", lhs, ctype, len, ctype)) } generate_c_equation_alloc_interpolate <- function(eq, data_info, dat, rewrite) { data_info_target <- dat$data$elements[[eq$interpolate$equation]] data_info_t <- dat$data$elements[[eq$interpolate$t]] data_info_y <- dat$data$elements[[eq$interpolate$y]] len_t <- rewrite(data_info_t$dimnames$length) lhs <- rewrite(eq$lhs) if (data_info_target$rank == 0L) { len_result <- rewrite(1L) len_y <- rewrite(data_info_y$dimnames$length) check <- sprintf_safe( 'interpolate_check_y(%s, %s, 0, "%s", "%s");', len_t, len_y, data_info_y$name, eq$interpolate$equation) } else { len_result <- rewrite(data_info_target$dimnames$length) rank <- data_info_target$rank len_y <- vcapply(data_info_y$dimnames$dim, rewrite) i <- seq_len(rank + 1) if (rank == 1L) { len_expected <- c(len_t, rewrite(data_info_target$dimnames$length)) } else { len_expected <- c( len_t, vcapply(data_info_target$dimnames$dim[seq_len(rank)], rewrite)) } check <- sprintf_safe( 'interpolate_check_y(%s, %s, %d, "%s", "%s");', len_expected, len_y, seq_len(rank + 1), data_info_y$name, eq$interpolate$equation) } rhs <- sprintf_safe( 'cinterpolate_alloc("%s", %s, %s, %s, %s, true, false)', eq$interpolate$type, len_t, len_result, rewrite(eq$interpolate$t), rewrite(eq$interpolate$y)) c(check, sprintf_safe("cinterpolate_free(%s);", lhs), sprintf_safe("%s = %s;", lhs, rhs)) } generate_c_equation_interpolate <- function(eq, data_info, dat, rewrite) { if (data_info$rank == 0L) { lhs <- rewrite(eq$lhs) ret <- sprintf_safe("cinterpolate_eval(%s, %s, &%s);", dat$meta$time, rewrite(eq$interpolate), rewrite(eq$lhs)) if (data_info$location == "transient") { ret <- c(sprintf_safe("double %s = 0.0;", eq$lhs), ret) } } else { ret <- sprintf_safe("cinterpolate_eval(%s, %s, %s);", dat$meta$time, rewrite(eq$interpolate), rewrite(eq$lhs)) } ret } generate_c_equation_alloc_ring <- function(eq, data_info, dat, rewrite) { data_info_contents <- dat$data$elements[[eq$delay]] lhs <- rewrite(eq$lhs) n_history <- DEFAULT_HISTORY_SIZE if (data_info_contents$rank == 0L) { len <- 1L } else { len <- rewrite(data_info_contents$dimnames$length) } c(sprintf_safe("if (%s) {", lhs), sprintf_safe(" ring_buffer_destroy(%s);", lhs), sprintf_safe("}"), sprintf_safe("%s = ring_buffer_create(%s, %s * sizeof(double), %s);", lhs, n_history, len, "OVERFLOW_OVERWRITE")) } generate_c_equation_copy <- function(eq, data_info, dat, rewrite) { x <- dat$data$output$contents[[data_info$name]] target <- c_variable_reference(x, data_info, "output", rewrite) if (data_info$rank == 0L) { sprintf_safe("%s = %s;", target, rewrite(eq$lhs)) } else { len <- rewrite(data_info$dimnames$length) lhs <- rewrite(eq$lhs) if (data_info$storage_type == "double") { sprintf_safe("memcpy(%s, %s, %s * sizeof(%s));", target, lhs, len, data_info$storage_type) } else { offset <- rewrite(x$offset) c(sprintf_safe("for (int i = 0; i < %s; ++i) {", len), sprintf_safe(" output[%s + i] = %s[i];", offset, lhs), sprintf_safe("}")) } } } generate_c_equation_user <- function(eq, data_info, dat, rewrite) { user <- dat$meta$user rank <- data_info$rank lhs <- rewrite(eq$lhs) storage_type <- data_info$storage_type is_integer <- if (storage_type == "int") "true" else "false" min <- rewrite(eq$user$min %||% "NA_REAL") max <- rewrite(eq$user$max %||% "NA_REAL") previous <- lhs if (eq$user$dim) { free <- sprintf_safe("Free(%s);", lhs) len <- data_info$dimnames$length if (rank == 1L) { ret <- sprintf_safe( '%s = (%s*) user_get_array_dim(%s, %s, %s, "%s", %d, %s, %s, &%s);', lhs, storage_type, user, is_integer, previous, eq$lhs, rank, min, max, rewrite(len)) } else { ret <- c( sprintf_safe("int %s[%d];", len, rank + 1), sprintf_safe( '%s = (%s*) user_get_array_dim(%s, %s, %s, "%s", %d, %s, %s, %s);', lhs, storage_type, user, is_integer, previous, eq$lhs, rank, min, max, len), sprintf_safe("%s = %s[%d];", rewrite(len), len, 0), sprintf_safe("%s = %s[%d];", vcapply(data_info$dimnames$dim, rewrite), len, seq_len(rank))) } } else { if (rank == 0L) { ret <- sprintf_safe( '%s = user_get_scalar_%s(%s, "%s", %s, %s, %s);', lhs, data_info$storage_type, user, eq$lhs, lhs, min, max) } else { if (rank == 1L) { dim <- rewrite(data_info$dimnames$length) } else { dim <- paste(vcapply(data_info$dimnames$dim, rewrite), collapse = ", ") } ret <- sprintf_safe( '%s = (%s*) user_get_array(%s, %s, %s, "%s", %s, %s, %d, %s);', lhs, storage_type, user, is_integer, previous, eq$lhs, min, max, rank, dim) } } ret } generate_c_equation_delay_index <- function(eq, data_info, dat, rewrite) { delay <- dat$equations[[eq$delay]]$delay lhs <- rewrite(eq$lhs) state <- rewrite(delay$state) alloc <- c(sprintf_safe("Free(%s);", lhs), sprintf_safe("%s = Calloc(%s, int);", lhs, rewrite(delay$variables$length)), sprintf_safe("Free(%s);", state), sprintf_safe("%s = Calloc(%s, double);", state, rewrite(delay$variables$length))) index1 <- function(v) { d <- dat$data$elements[[v$name]] offset <- dat$data$variable$contents[[v$name]]$offset if (d$rank == 0L) { sprintf_safe("%s[%s] = %s;", lhs, v$offset, offset) } else { loop <- sprintf_safe( "for (int i = 0, j = %s; i < %s; ++i, ++j) {", rewrite(offset), rewrite(d$dimnames$length)) c(loop, sprintf_safe(" %s[%s + i] = j;", lhs, rewrite(v$offset)), "}") } } index <- c_flatten_eqs(lapply(delay$variables$contents, index1)) c(alloc, index) } generate_c_equation_delay_continuous <- function(eq, data_info, dat, rewrite) { delay <- eq$delay time <- dat$meta$time time_true <- sprintf("%s_true", time) initial_time <- rewrite(dat$meta$initial_time) state <- rewrite(delay$state) index <- rewrite(delay$index) len <- rewrite(delay$variables$length) if (is.recursive(delay$time)) { dt <- rewrite(call("(", delay$time)) } else { dt <- rewrite(delay$time) } time_set <- c( sprintf_safe("const double %s = %s;", time_true, time), sprintf_safe("const double %s = %s - %s;", time, time_true, dt)) lookup_vars <- sprintf_safe( "lagvalue(%s, %s, %s, %s, %s);", time, rewrite(dat$meta$c$use_dde), index, len, state) unpack_vars <- c_flatten_eqs(lapply( delay$variables$contents, c_unpack_variable2, dat$data$elements, state, rewrite)) eqs_src <- ir_substitute(dat$equations[delay$equations], delay$substitutions) eqs <- c_flatten_eqs(lapply(eqs_src, generate_c_equation, dat, rewrite)) unpack_initial1 <- function(x) { d <- dat$data$elements[[x$name]] sprintf_safe("%s = %s;", x$name, rewrite(x$initial)) } decl1 <- function(x) { d <- dat$data$elements[[x$name]] fmt <- if (d$rank == 0L) "%s %s;" else "%s *%s;" sprintf_safe(fmt, d$storage_type, x$name) } decl <- c_flatten_eqs(lapply(delay$variables$contents, decl1)) rhs_expr <- ir_substitute_sexpr(eq$rhs$value, delay$substitutions) if (data_info$rank == 0L) { lhs <- rewrite(eq$lhs) expr <- sprintf_safe("%s = %s;", lhs, rewrite(rhs_expr)) } else { lhs <- generate_c_equation_array_lhs(eq, data_info, dat, rewrite) expr <- generate_c_equation_array_rhs(rhs_expr, eq$rhs$index, lhs, rewrite) } needs_variables <- length(delay$variables$contents) > 0L if (is.null(delay$default)) { if (needs_variables) { unpack_initial <- lapply(dat$data$variable$contents[names(delay$variables$contents)], unpack_initial1) unpack <- c(decl, c_expr_if( sprintf_safe("%s <= %s", time, initial_time), c_flatten_eqs(unpack_initial), c(lookup_vars, unpack_vars))) } else { unpack <- NULL } body <- c(time_set, unpack, eqs, expr) } else { if (data_info$rank == 0L) { default <- sprintf_safe("%s = %s;", lhs, rewrite(delay$default)) } else { default <- generate_c_equation_array_rhs(delay$default, eq$rhs$index, lhs, rewrite) } if (needs_variables) { unpack <- c(lookup_vars, unpack_vars) } else { unpack <- NULL } body <- c(time_set, c_expr_if( sprintf_safe("%s <= %s", time, initial_time), default, c(decl, unpack, eqs, expr))) } if (data_info$location == "transient") { setup <- sprintf_safe("%s %s;", data_info$storage_type, eq$lhs) } else { setup <- NULL } header <- sprintf_safe("// delay block for %s", eq$name) c(header, setup, "{", paste0(" ", body), "}") } generate_c_equation_delay_discrete <- function(eq, data_info, dat, rewrite) { if (!is.null(eq$delay$default)) { stop("Discrete delays with default not yet supported [odin bug]") } stopifnot(data_info$storage_type == "double") head <- sprintf("%s_head", eq$delay$ring) tail <- sprintf("%s_tail", eq$delay$ring) ring <- rewrite(eq$delay$ring) lhs <- rewrite(eq$lhs) get_ring_head <- sprintf_safe( "double * %s = (double*) ring_buffer_head(%s);", head, ring) if (data_info$rank == 0L) { push <- sprintf("%s[0] = %s;", head, rewrite(eq$rhs$value)) } else { data_info_ring <- data_info data_info_ring$name <- head lhs_ring <- generate_c_equation_array_lhs(eq, data_info_ring, dat, rewrite) push <- generate_c_equation_array_rhs(eq$rhs$value, eq$rhs$index, lhs_ring, rewrite) } advance <- sprintf_safe("ring_buffer_head_advance(%s);", ring) time_check <- sprintf_safe( "(int)%s - %s <= %s", dat$meta$time, rewrite(eq$delay$time), rewrite(dat$meta$initial_time)) data_initial <- sprintf_safe( "%s = (double*)ring_buffer_tail(%s);", tail, ring) data_offset <- sprintf_safe( "%s = (double*) ring_buffer_head_offset(%s, %s);", tail, ring, rewrite(eq$delay$time)) if (data_info$rank == 0L) { assign <- sprintf("double %s = %s[0];", lhs, tail) } else { assign <- sprintf("memcpy(%s, %s, %s * sizeof(double));", lhs, tail, rewrite(data_info$dimnames$length)) } c(get_ring_head, push, advance, sprintf_safe("double * %s;", tail), c_expr_if(time_check, data_initial, data_offset), assign) -> ret } generate_c_equation_array_lhs <- function(eq, data_info, dat, rewrite) { if (eq$type == "expression_array") { index <- vcapply(eq$rhs[[1]]$index, "[[", "index") } else { index <- lapply(eq$rhs$index, "[[", "index") } location <- data_info$location f <- function(i) { if (i == 1) { sprintf("%s - 1", index[[i]]) } else { sprintf("%s * (%s - 1)", rewrite(data_info$dimnames$mult[[i]]), index[[i]]) } } pos <- paste(vcapply(seq_along(index), f), collapse = " + ") if (location == "internal") { lhs <- sprintf("%s[%s]", rewrite(data_info$name), pos) } else { offset <- rewrite(dat$data[[location]]$contents[[data_info$name]]$offset) storage <- if (location == "variable") dat$meta$result else dat$meta$output lhs <- sprintf("%s[%s + %s]", storage, offset, pos) } lhs } generate_c_equation_array_rhs <- function(value, index, lhs, rewrite) { ret <- sprintf("%s = %s;", lhs, rewrite(value)) seen_range <- FALSE for (idx in rev(index)) { if (idx$is_range) { seen_range <- TRUE loop <- sprintf_safe("for (int %s = %s; %s <= %s; ++%s) {", idx$index, rewrite(idx$value[[2]]), idx$index, rewrite(idx$value[[3]]), idx$index) ret <- c(loop, paste0(" ", ret), "}") } else { ret <- c(sprintf("int %s = %s;", idx$index, rewrite(idx$value)), ret) } } if (!seen_range || !index[[1]]$is_range) { ret <- c("{", paste(" ", ret), "}") } ret }
context("labels") test_that("can add a row labels to single horizontal heatmap",{ test_plot <- main_heatmap(a) %>% add_row_labels() expect_iheatmap(test_plot, "row_labels_horizontal") }) test_that("can add a row labels to single vertical heatmap",{ test_plot <- main_heatmap(a, orientation = "vertical") %>% add_row_labels() expect_iheatmap(test_plot, "row_labels_vertical", "vertical") }) test_that("can add a column labels to single horizontal heatmap",{ test_plot <- main_heatmap(a) %>% add_col_labels() expect_iheatmap(test_plot, "col_labels_horizontal") }) test_that("can add a column labels to single vertical heatmap",{ test_plot <- main_heatmap(a, orientation = "vertical") %>% add_col_labels() expect_iheatmap(test_plot, "col_labels_vertical","vertical") }) test_that("can add a row labels with custom ticktext of same length",{ test_plot <- main_heatmap(a) %>% add_row_labels(ticktext = as.character(1:20 - 5)) expect_iheatmap(test_plot, "row_labels_custom_ticktext1_horizontal") }) test_that("can add a row labels with custom ticktext selection",{ test_plot <- main_heatmap(a) %>% add_row_labels(ticktext = c("1","5")) expect_iheatmap(test_plot, "row_labels_custom_ticktext2_horizontal") }) test_that("get errors on invalid ticktext for row labels",{ expect_error(main_heatmap(a) %>% add_row_labels(ticktext = c("-1","5"))) expect_error(main_heatmap(a) %>% add_row_labels(ticktext = 1:21)) }) test_that("can add a row labels with custom tickvals selection",{ test_plot <- main_heatmap(a) %>% add_row_labels(ticktext = c(1,5)) expect_iheatmap(test_plot, "row_labels_custom_tickvals_horizontal") }) test_that("get errors on invalid tickvals for row labels",{ expect_error(main_heatmap(a) %>% add_row_labels(tickvals = c(-1,5))) expect_error(main_heatmap(a) %>% add_row_labels(tickvals = 1:21)) }) test_that("can add a row labels with custom tickvals and ticktext selection",{ test_plot <- main_heatmap(a) %>% add_row_labels(tickvals = c(1,5), ticktext = c("A","B")) expect_iheatmap(test_plot, "row_labels_custom_ticktext_tickvals_horizontal") }) test_that("get errors on invalid tickvals and ticktext for row labels",{ expect_error(main_heatmap(a) %>% add_row_labels(tickvals = c(1,5), ticktext = letters[1:3])) }) test_that("can add a row labels to single horizontal heatmap",{ test_plot <- main_heatmap(a, y_categorical = TRUE) %>% add_row_labels() expect_iheatmap(test_plot, "row_labels_continuous_horizontal") }) test_that("can add a row labels to single vertical heatmap",{ test_plot <- main_heatmap(a, orientation = "vertical", y_categorical = TRUE) %>% add_row_labels() expect_iheatmap(test_plot, "row_labels_continuous_vertical", "vertical") }) test_that("can add a column labels to single horizontal heatmap",{ test_plot <- main_heatmap(a, x_categorical = TRUE) %>% add_col_labels() expect_iheatmap(test_plot, "col_labels_continuous_horizontal") }) test_that("can add a column labels to single vertical heatmap",{ test_plot <- main_heatmap(a, orientation = "vertical", x_categorical = TRUE) %>% add_col_labels() expect_iheatmap(test_plot, "col_labels_continuous_vertical","vertical") }) test_that("can add continuous row labels with custom ticktext of same length",{ test_plot <- main_heatmap(a, y_categorical = TRUE) %>% add_row_labels(ticktext = as.character(1:20 - 5)) expect_iheatmap(test_plot, "row_labels_custom_ticktext1_horizontal") }) test_that("can add continuous row labels with custom ticktext selection",{ test_plot <- main_heatmap(a, y_categorical = TRUE) %>% add_row_labels(ticktext = c("1","5")) expect_iheatmap(test_plot, "row_labels_custom_ticktext2_horizontal") }) test_that("get errors on invalid ticktext for continuous row labels",{ expect_error(main_heatmap(a, y_categorical = TRUE) %>% add_row_labels(ticktext = c("-1","5"))) expect_error(main_heatmap(a) %>% add_row_labels(ticktext = 1:21)) }) test_that("can add continuous row labels with custom tickvals selection",{ test_plot <- main_heatmap(a, y_categorical = TRUE) %>% add_row_labels(ticktext = c(1,5)) expect_iheatmap(test_plot, "row_labels_custom_tickvals_horizontal") }) test_that("get errors on invalid tickvals for continuous row labels",{ expect_error(main_heatmap(a, y_categorical = TRUE) %>% add_row_labels(tickvals = c(-1,5))) expect_error(main_heatmap(a, y_categorical = TRUE) %>% add_row_labels(tickvals = 1:21)) }) test_that("can add continuous row labels with custom tickvals and ticktext",{ test_plot <- main_heatmap(a, y_categorical = TRUE) %>% add_row_labels(tickvals = c(1,5), ticktext = c("A","B")) expect_iheatmap(test_plot, "row_labels_custom_ticktext_tickvals_horizontal") }) test_that("get errors on bad tickvals and ticktext for continuous row labels",{ expect_error(main_heatmap(a, y_categorical = TRUE) %>% add_row_labels(tickvals = c(1,5), ticktext = letters[1:3])) })
tm_freq <- function(data, token = "words", stopwords = NULL, keep = 100, return = "plot"){ text_df <- suppressMessages(tm_clean(data = data, token = token, stopwords = stopwords)) text_count <- text_df %>% count(word, sort = TRUE) %>% stats::na.omit() %>% top_n(keep) p <- ggplot(text_count, aes(x=as.factor(word), y=n)) + geom_bar(stat="identity", fill=alpha("skyblue", 0.7)) + ylim(-100,max(text_count$n) + 10) + theme_minimal() + theme( axis.text = element_blank(), axis.title = element_blank(), panel.grid = element_blank(), plot.margin = unit(rep(-1,4), "cm") ) + coord_polar(start = 0) + ggrepel::geom_text_repel( data = text_count, aes(x=word, y=n+10, label=word), color = "black", fontface = "bold", alpha = 0.6, size = 2.5, inherit.aes = FALSE) if(return == "table"){ text_count %>% as_tibble() %>% return() } else if(return == "plot"){ return(p) } else { stop("Please enter a valid input for `return`.") } }
GowerProximities<- function(x, y=NULL, Binary=NULL, Classes=NULL, transformation=3, IntegerAsOrdinal=FALSE, BinCoef= "Simple_Matching", ContCoef="Gower", NomCoef="GOW", OrdCoef="GOW") { if (!is.data.frame(x)) stop("Main data is not organized as a data frame") NewX=AdaptDataFrame(x, Binary=Binary, IntegerAsOrdinal=IntegerAsOrdinal) if (is.null(y)) NewY=NewX else{ if (!is.data.frame(y)) stop("Suplementary data is not organized as a data frame") NewY=AdaptDataFrame(y, Binary=Binary, IntegerAsOrdinal=IntegerAsOrdinal) } n = dim(NewX$X)[1] p = dim(NewX$X)[2] n1 = dim(NewY$X)[1] p1 = dim(NewY$X)[2] if (!(p==p1)) stop("Number of columns of the two matrices are not the same") transformations= c("Identity", "1-S", "sqrt(1-S)", "-log(s)", "1/S-1", "sqrt(2(1-S))", "1-(S+1)/2", "1-abs(S)", "1/(S+1)") if (is.numeric(transformation)) transformation=transformations[transformation] if (transformation==1) Type="similarity" else Type="dissimilarity" if ( (BinCoef== "Simple_Matching") & (ContCoef=="Gower") & (NomCoef=="GOW") & (OrdCoef=="GOW")) coefficient="Gower Similarity" else paste("Binary: ",BinCoef, ", Continuous: ", ContCoef, ", Nominal: ", NomCoef, ", Ordinal: ", OrdCoef) result= list() result$TypeData="Mixed" result$Type=Type result$Coefficient=coefficient result$Transformation=transformation result$Data=NewX$X result$SupData=NewY$X result$Types=NewX$Types result$Proximities=GowerSimilarities(NewX$X, y=NewY$X, transformation=transformation, Classes=NewX$Types, BinCoef= BinCoef, ContCoef=ContCoef, NomCoef=NomCoef, OrdCoef=OrdCoef) rownames(result$Proximities)=rownames(x) colnames(result$Proximities)=rownames(x) result$SupProximities=NULL if (!is.null(y)) result$SupProximities=GowerSimilarities(x,y, transformation) class(result)="proximities" return(result) }
sample.quantile<-function(x,tau){ if (!is.numeric(tau)|!is.vector(tau)|any(!is.finite(tau))){stop("The quantile order 'tau' must be a single number")} if(sum((tau>=1)|(tau<=0))!=0) stop("The parameter 'tau' must be a single number or a vector between 0 and 1") if (!is.numeric(x)|!is.vector(x)){stop("The sample 'x' must be a numeric vector")} if(sum(is.na(x))!=0){x=x[-which(is.na(x))]; warning("Missing values have been removed from 'x'")} if (any(!is.finite(x))){stop(" The sample 'x' must be a numeric vector")} if(!length(x)>1){stop("'x' must be a sample of size bigger than one")} x=sort(x) quant=numeric(length(tau)) for(i in 1:length(tau)){ if((tau[i]<=0) | (tau[i]>=1)) stop("The parameter tau must be a vector of numbers between zero and one") ord=tau[i]*length(x) if(ord==as.integer(ord)){ quant[i]=(x[ord]+x[ord+1])/2 }else{ quant[i]=x[as.integer(ord)+1] } } return(quant) }
hhg.example.datagen = function(n, example) { if (example == '') { } else if (example == '4indclouds') { .datagen4indclouds(n) } else if (example == '2Parabolas') { .datagen2Parabolas(n) } else if (example == 'W') { .datagenW(n) } else if (example == 'Parabola') { .datagenParabola(n) } else if (example == 'Diamond') { .datagenDiamond(n) } else if (example == 'Circle') { .datagenCircle(n) } else if (example == 'TwoClassUniv') { .datagenTwoClassUniv(n) } else if (example == 'FourClassUniv') { .datagenFourClassUniv(n) } else if (example == 'TwoClassMultiv') { .datagenTwoClassMultiv(n) } else { stop('Unexpected example specified. Please consult the documentation.') } } .datagen4indclouds = function(n) { dx = rnorm(n) / 3 dy = rnorm(n) / 3 cx = sample(c(-1, 1), size = n, replace = T) cy = sample(c(-1, 1), size = n, replace = T) u = cx + dx v = cy + dy return (rbind(u, v)) } .datagen2Parabolas = function(n) { x = seq(-1, 1, length = n) y = (x ^ 2 + runif(n) / 2) * (sample(c(-1, 1), size = n, replace = T)) return (rbind(x, y)) } .datagenW = function(n) { x = seq(-1, 1, length = n) u = x + runif(n)/3 v = 4*( ( x^2 - 1/2 )^2 + runif(n)/500 ) return (rbind(u,v)) } .datagenParabola = function(n) { x = seq(-1, 1, length = n) y = (x ^ 2 + runif(n)) / 2 return (rbind(x,y)) } .datagenDiamond = function(n) { x = runif(n, min = -1, max = 1) y = runif(n, min = -1, max = 1) theta = -pi / 4 rr = rbind(c(cos(theta), -sin(theta)), c(sin(theta), cos(theta))) tmp = cbind(x, y) %*% rr u = tmp[,1] v = tmp[,2] return (rbind(u, v)) } .datagenCircle = function(n) { x = seq(-1, 1, length = n) u = sin(x * pi) + rnorm(n) / 8 v = cos(x * pi) + rnorm(n) / 8 return (rbind(u, v)) } .datagenTwoClassUniv = function(n) { y = as.double(runif(n) < 0.5) x = y * rnorm(n, mean = -0.2) + (1 - y) * rnorm(n, mean = 0.2) return (list(x = x, y = y)) } .datagenFourClassUniv = function(n) { y = as.double(sample(x = 0:3, size = n, replace = T)) x = (y == 1) * rnorm(n, mean = -0.4) + (y == 2) * rnorm(n, mean = -0.2) + (y == 3) * rnorm(n, mean = 0.2) + (y == 4) * rnorm(n, mean = 0.4) return (list(x = x, y = y)) } .datagenTwoClassMultiv = function(n) { m = 10 x = matrix(as.double((runif(n * m) < 0.4) + (runif(n * m) < 0.4)), ncol = m) y = as.double(xor(rowSums(x[, 1:5] > 0) > 2, rowSums(x[, 6:10] > 0) > 2)) return (list(x = x, y = y)) }
source("helper-chromer.R") context("Testing data processing and summary") cp <- chrom_counts("Castilleja", "genus") sum_res <- summarize_counts(cp) parse_counts <- chromer:::parse_counts get_counts_n <- chromer:::get_counts_n test_that("Summary returns correct object", { expect_that(sum_res, is_a("data.frame")) expect_that(ncol(sum_res), equals(5)) coln <- c("resolved_binomial", "count_type", "count", "inferred_n", "num_records") expect_that(colnames(sum_res), equals(coln)) sp_cnt <- unique(cp$resolved_binomial) sp_sum <- sum_res$resolved_binomial expect_that(all(sp_sum %in% sp_cnt), is_true()) expect_that(all(is.numeric(sum_res$count)), is_true()) expect_that(all(is.numeric(sum_res$num_records)), is_true()) }) test_that("Only takes a chrom.counts object", { tmp <- cp attr(tmp, "class") <- "data.frame" expect_that(summarize_counts(tmp), throws_error()) }) test_that("Parsing works properly", { tmp <- c(1,2,3) expect_that(parse_counts(as.character(tmp)), equals(tmp)) tmp2 <- c(0,1,2,3) expect_that(parse_counts(as.character(tmp2)), equals(tmp)) tmp3 <- c(1, 2, "3-4", "c.5", "6/7") expect_that(parse_counts(tmp3), equals(seq_len(7))) })
is_valid_primary_key <- function(data, key, verbose = TRUE) { is_valid <- identical(nrow(data), nrow(unique(data[key]))) if (isTRUE(verbose)) { if (is_valid) { message("[", paste(key, collapse = ", "), "]", " is a valid primary key for ", deparse(substitute(data)), ".") } else { warning("[", paste(key, collapse = ", "), "]", " is not a valid primary key for `", deparse(substitute(data)), "`!") } } return(is_valid) }
context("Testing dual-host without structure") test_that("Transmission is coherent with single introduction (host A) same for both hosts", { skip_if_not_installed("igraph") library(igraph) t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} set.seed(66) test.nosoiA <- nosoiSim(type="dual", popStructure="none", length.sim=40, max.infected.A=100, max.infected.B=100, init.individuals.A=1, init.individuals.B=0, pExit.A = p_Exit_fct, param.pExit.A = NA, timeDep.pExit.A=FALSE, nContact.A = time_contact, param.nContact.A = NA, timeDep.nContact.A=FALSE, pTrans.A = proba, param.pTrans.A = list(p_max=p_max_fct, t_incub=t_incub_fct), timeDep.pTrans.A=FALSE, prefix.host.A="H", pExit.B = p_Exit_fct, param.pExit.B = NA, timeDep.pExit.B=FALSE, nContact.B = time_contact, param.nContact.B = NA, timeDep.nContact.B=FALSE, pTrans.B = proba, param.pTrans.B = list(p_max=p_max_fct, t_incub=t_incub_fct), timeDep.pTrans.B=FALSE, prefix.host.B="V") expect_output(print(test.nosoiA), "a dual host with no structure") full.results.nosoi <- rbindlist(list(getHostData(test.nosoiA, "table.host", "A"),getHostData(test.nosoiA, "table.host", "B"))) g <- graph.data.frame(full.results.nosoi[inf.by != "NA-1",c(1,2)],directed=F) expect_equal(transitivity(g, type="global"), 0) expect_equal(clusters(g, "weak")$no, 1) expect_equal(diameter(g, directed=F, weights=NA), 6) expect_equal(all(grepl("H-", getHostData(test.nosoiA, "table.host", "A")$inf.by) == FALSE),TRUE) expect_equal(all(grepl("V-", getHostData(test.nosoiA, "table.host", "A")[-1]$inf.by) == TRUE),TRUE) expect_equal(all(grepl("V-", getHostData(test.nosoiA, "table.host", "B")$inf.by) == FALSE),TRUE) expect_equal(all(grepl("H-", getHostData(test.nosoiA, "table.host", "B")[-1]$inf.by) == TRUE),TRUE) expect_equal(test.nosoiA$total.time, 20) expect_equal(getHostData(test.nosoiA, "N.infected", "A"), 126) expect_equal(getHostData(test.nosoiA, "N.infected", "B"), 87) expect_equal(test.nosoiA$type, "dual") expect_equal(getHostData(test.nosoiA, "popStructure", "A"), "none") expect_equal(getHostData(test.nosoiA, "popStructure", "B"), "none") test <- summary(test.nosoiA) expect_equal(test$R0$N.inactive.A, 20) expect_equal(test$R0$N.inactive.B, 7) expect_equal(test$R0$R0.hostA.mean, 0) expect_equal(test$R0$R0.hostB.mean, 0.2857143) expect_equal(test$dynamics[21]$t, 10) expect_equal(test$dynamics[21]$Count, 1) expect_equal(test$dynamics[21]$type, "H") expect_equal(test$cumulative[26]$t, 12) expect_equal(test$cumulative[26]$Count, 9) expect_equal(test$cumulative[26]$type, "V") expect_error(test.stateTable.A <- getTableState(test.nosoiA, pop="B"), "There is no state information kept when the host population B has no structure.") skip_if_not_installed("dplyr") dynOld <- getDynamicOld(test.nosoiA) dynNew <- getDynamic(test.nosoiA) expect_equal(dynOld, dynNew) r_0 <- getR0(test.nosoiA) expect_equal(r_0$N.inactive.A, ifelse(length(r_0$R0.hostA.dist) == 1 && is.na(r_0$R0.hostA.dist), 0, length(r_0$R0.hostA.dist))) expect_equal(r_0$N.inactive.B, ifelse(length(r_0$R0.hostB.dist) == 1 && is.na(r_0$R0.hostB.dist), 0, length(r_0$R0.hostB.dist))) }) test_that("Transmission is coherent with single introduction (host A) differential according to host, shared parameter", { skip_if_not_installed("igraph") library(igraph) t_infectA_fct <- function(x){rnorm(x,mean = 12,sd=3)} pTrans_hostA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=sin(pi*t/t_infectA)} if(t/t_infectA > 1){p=0} return(p) } p_Exit_fctA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=0} if(t/t_infectA > 1){p=1} return(p) } time_contact_A = function(t){sample(c(0,1,2),1,prob=c(0.2,0.4,0.4))} t_incub_fct_B <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct_B <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct_B <- function(t){return(0.08)} pTrans_hostB <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact_B = function(t){round(rnorm(1, 3, 1), 0)} set.seed(150) test.nosoiA <- nosoiSim(type="dual", popStructure="none", length.sim=40, max.infected.A=100, max.infected.B=200, init.individuals.A=1, init.individuals.B=0, pExit.A = p_Exit_fctA, param.pExit.A = list(t_infectA = t_infectA_fct), timeDep.pExit.A=FALSE, nContact.A = time_contact_A, param.nContact.A = NA, timeDep.nContact.A=FALSE, pTrans.A = pTrans_hostA, param.pTrans.A = list(t_infectA=t_infectA_fct), timeDep.pTrans.A=FALSE, prefix.host.A="H", pExit.B = p_Exit_fct_B, param.pExit.B = NA, timeDep.pExit.B=FALSE, nContact.B = time_contact_B, param.nContact.B = NA, timeDep.nContact.B=FALSE, pTrans.B = pTrans_hostB, param.pTrans.B = list(p_max=p_max_fct_B, t_incub=t_incub_fct_B), timeDep.pTrans.B=FALSE, prefix.host.B="V") full.results.nosoi <- rbindlist(list(getHostData(test.nosoiA, "table.host", "A")[,c(1,2)],getHostData(test.nosoiA, "table.host", "B")[,c(1,2)])) g <- graph.data.frame(full.results.nosoi[inf.by != "NA-1",c(1,2)],directed=F) expect_equal(transitivity(g, type="global"), 0) expect_equal(clusters(g, "weak")$no, 1) expect_equal(diameter(g, directed=F, weights=NA), 10) expect_equal(all(grepl("H-", getHostData(test.nosoiA, "table.host", "A")$inf.by) == FALSE),TRUE) expect_equal(all(grepl("V-", getHostData(test.nosoiA, "table.host", "A")[-1]$inf.by) == TRUE),TRUE) expect_equal(all(grepl("V-", getHostData(test.nosoiA, "table.host", "B")$inf.by) == FALSE),TRUE) expect_equal(all(grepl("H-", getHostData(test.nosoiA, "table.host", "B")[-1]$inf.by) == TRUE),TRUE) expect_equal(test.nosoiA$total.time, 17) expect_equal(getHostData(test.nosoiA, "N.infected", "A"), 105) expect_equal(getHostData(test.nosoiA, "N.infected", "B"), 226) expect_equal(colnames(getHostData(test.nosoiA, "table.host", "A"))[6],"t_infectA") skip_if_not_installed("dplyr") dynOld <- getDynamicOld(test.nosoiA) dynNew <- getDynamic(test.nosoiA) expect_equal(dynOld, dynNew) r_0 <- getR0(test.nosoiA) expect_equal(r_0$N.inactive.A, ifelse(length(r_0$R0.hostA.dist) == 1 && is.na(r_0$R0.hostA.dist), 0, length(r_0$R0.hostA.dist))) expect_equal(r_0$N.inactive.B, ifelse(length(r_0$R0.hostB.dist) == 1 && is.na(r_0$R0.hostB.dist), 0, length(r_0$R0.hostB.dist))) }) test_that("Transmission is coherent with single introduction (host A) differential according to host, shared parameter, time dependancy for host B pExit", { skip_if_not_installed("igraph") library(igraph) t_infectA_fct <- function(x){rnorm(x,mean = 12,sd=3)} pTrans_hostA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=sin(pi*t/t_infectA)} if(t/t_infectA > 1){p=0} return(p) } p_Exit_fctA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=0} if(t/t_infectA > 1){p=1} return(p) } time_contact_A = function(t){sample(c(0,1,2),1,prob=c(0.2,0.4,0.4))} t_incub_fct_B <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct_B <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct_B <- function(t,prestime){(sin(prestime/12)+1)/5} pTrans_hostB <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact_B = function(t){round(rnorm(1, 3, 1), 0)} set.seed(90) test.nosoiA <- nosoiSim(type="dual", popStructure="none", length.sim=40, max.infected.A=100, max.infected.B=200, init.individuals.A=1, init.individuals.B=0, pExit.A = p_Exit_fctA, param.pExit.A = list(t_infectA = t_infectA_fct), timeDep.pExit.A=FALSE, nContact.A = time_contact_A, param.nContact.A = NA, timeDep.nContact.A=FALSE, pTrans.A = pTrans_hostA, param.pTrans.A = list(t_infectA=t_infectA_fct), timeDep.pTrans.A=FALSE, prefix.host.A="H", pExit.B = p_Exit_fct_B, param.pExit.B = NA, timeDep.pExit.B=TRUE, nContact.B = time_contact_B, param.nContact.B = NA, timeDep.nContact.B=FALSE, pTrans.B = pTrans_hostB, param.pTrans.B = list(p_max=p_max_fct_B, t_incub=t_incub_fct_B), timeDep.pTrans.B=FALSE, prefix.host.B="V") full.results.nosoi <- rbindlist(list(getHostData(test.nosoiA, "table.host", "A")[,c(1,2)],getHostData(test.nosoiA, "table.host", "B")[,c(1,2)])) g <- graph.data.frame(full.results.nosoi[inf.by != "NA-1",c(1,2)],directed=F) expect_equal(transitivity(g, type="global"), 0) expect_equal(clusters(g, "weak")$no, 1) expect_equal(diameter(g, directed=F, weights=NA), 12) expect_equal(all(grepl("H-", getHostData(test.nosoiA, "table.host", "A")$inf.by) == FALSE),TRUE) expect_equal(all(grepl("V-", getHostData(test.nosoiA, "table.host", "A")[-1]$inf.by) == TRUE),TRUE) expect_equal(all(grepl("V-", getHostData(test.nosoiA, "table.host", "B")$inf.by) == FALSE),TRUE) expect_equal(all(grepl("H-", getHostData(test.nosoiA, "table.host", "B")[-1]$inf.by) == TRUE),TRUE) expect_equal(test.nosoiA$total.time, 39) expect_equal(getHostData(test.nosoiA, "N.infected", "A"), 71) expect_equal(getHostData(test.nosoiA, "N.infected", "B"), 221) skip_if_not_installed("dplyr") dynOld <- getDynamicOld(test.nosoiA) dynNew <- getDynamic(test.nosoiA) expect_equal(dynOld, dynNew) r_0 <- getR0(test.nosoiA) expect_equal(r_0$N.inactive.A, ifelse(length(r_0$R0.hostA.dist) == 1 && is.na(r_0$R0.hostA.dist), 0, length(r_0$R0.hostA.dist))) expect_equal(r_0$N.inactive.B, ifelse(length(r_0$R0.hostB.dist) == 1 && is.na(r_0$R0.hostB.dist), 0, length(r_0$R0.hostB.dist))) }) test_that("Epidemic dying out", { skip_if_not_installed("igraph") library(igraph) t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} set.seed(2) test.nosoiA <- nosoiSim(type="dual", popStructure="none", length.sim=40, max.infected.A=100, max.infected.B=100, init.individuals.A=1, init.individuals.B=0, pExit.A = p_Exit_fct, param.pExit.A = NA, timeDep.pExit.A=FALSE, nContact.A = time_contact, param.nContact.A = NA, timeDep.nContact.A=FALSE, pTrans.A = proba, param.pTrans.A = list(p_max=p_max_fct, t_incub=t_incub_fct), timeDep.pTrans.A=FALSE, prefix.host.A="H", pExit.B = p_Exit_fct, param.pExit.B = NA, timeDep.pExit.B=FALSE, nContact.B = time_contact, param.nContact.B = NA, timeDep.nContact.B=FALSE, pTrans.B = proba, param.pTrans.B = list(p_max=p_max_fct, t_incub=t_incub_fct), timeDep.pTrans.B=FALSE, prefix.host.B="V") expect_equal(all(grepl("H-", getHostData(test.nosoiA, "table.host", "A")$inf.by) == FALSE),TRUE) expect_equal(all(grepl("V-", getHostData(test.nosoiA, "table.host", "A")[-1]$inf.by) == TRUE),TRUE) expect_equal(test.nosoiA$total.time, 5) expect_equal(getHostData(test.nosoiA, "N.infected", "A"), 1) expect_equal(getHostData(test.nosoiA, "N.infected", "B"), 0) expect_equal(test.nosoiA$type, "dual") expect_equal(getHostData(test.nosoiA, "popStructure", "A"), "none") expect_equal(getHostData(test.nosoiA, "popStructure", "B"), "none") skip_if_not_installed("dplyr") dynOld <- getDynamicOld(test.nosoiA) dynNew <- getDynamic(test.nosoiA) expect_equal(dynOld, dynNew) r_0 <- getR0(test.nosoiA) expect_equal(r_0$N.inactive.A, ifelse(length(r_0$R0.hostA.dist) == 1 && is.na(r_0$R0.hostA.dist), 0, length(r_0$R0.hostA.dist))) expect_equal(r_0$N.inactive.B, ifelse(length(r_0$R0.hostB.dist) == 1 && is.na(r_0$R0.hostB.dist), 0, length(r_0$R0.hostB.dist))) })
add_best_levels <- function(d, longsheet, id, groups, outcome, n_levels = 100, min_obs = 1, positive_class = "Y", cohesion_weight = 2, levels = NULL, fill, fun = sum, missing_fill = NA) { id <- rlang::enquo(id) groups <- rlang::enquo(groups) outcome <- rlang::enquo(outcome) fill <- rlang::enquo(fill) add_as_empty <- character() if (is.null(levels)) { to_add <- get_best_levels(d, longsheet, !!id, !!groups, !!outcome, n_levels, min_obs, positive_class) add_as_empty <- character() } else { levels_name <- paste0(rlang::quo_name(groups), "_levels") if (is.model_list(levels) || is.data.frame(levels)) { levels <- attr(levels, "best_levels")[[levels_name]] if (is.null(levels)) stop("Looked for ", levels_name, " as an attribute of ", match.call()$levels, " but it was NULL.") } else if (is.list(levels)) { levels <- levels[[levels_name]] } else if (!is.character(levels)) { stop("You passed a ", class(levels), " to levels. It should be a data frame ", "returned from add_best_levels, a model_list trained on such a data frame ", "the 'best_levels' attribute from such a data frame, or a character ", "vector of levels to use.") } present_levels <- unique(dplyr::pull(longsheet, !!groups)) to_add <- levels[levels %in% present_levels] add_as_empty <- levels[!levels %in% present_levels] } if (purrr::is_empty(to_add)) { simplified_id <- d %>% dplyr::select(!!id) empty_col_names <- paste0(quo_name(eval(groups)), "_", add_as_empty) class(missing_fill) <- class(d[[rlang::quo_name(fill)]]) pivoted <- matrix(missing_fill, nrow = length(simplified_id), ncol = length(empty_col_names), dimnames = list(NULL, empty_col_names)) %>% tibble::as_tibble() %>% bind_cols(simplified_id, .) } else { longsheet <- dplyr::filter(longsheet, (!!groups) %in% to_add) pivot_args <- list( d = longsheet, grain = eval(id), spread = eval(groups), fun = fun, missing_fill = missing_fill ) if (!missing(fill)) pivot_args$fill <- eval(fill) if (length(add_as_empty)) pivot_args$extra_cols <- add_as_empty pivoted <- do.call(pivot, pivot_args) } pivoted <- pivoted %>% dplyr::left_join(d, ., by = rlang::quo_name(id)) new_cols <- setdiff(names(pivoted), names(d)) if (!is.na(missing_fill)) { pivoted[new_cols][is.na(pivoted[new_cols])] <- missing_fill } attr(pivoted, "best_levels") <- c(attr(d, "best_levels"), setNames(list(dplyr::union(to_add, add_as_empty)), paste0(rlang::quo_name(groups), "_levels"))) return(pivoted) } get_best_levels <- function(d, longsheet, id, groups, outcome, n_levels = 100, min_obs = 1, positive_class = "Y", cohesion_weight = 2) { id <- rlang::enquo(id) groups <- rlang::enquo(groups) outcome <- rlang::enquo(outcome) missing_check(d, outcome) if (!is.numeric(n_levels) || !is.numeric(min_obs)) stop("n_levels and min_obs should both be integers") id_ft <- dplyr::count(d, !!id) %>% dplyr::filter(n > 1) if (nrow(id_ft)) stop("d can have only one row per observation. The following ID(s) had more ", "than one observation: ", list_variables(dplyr::pull(id_ft, !!id))) if (isTRUE(all.equal(d, longsheet))) { longsheet <- longsheet %>% select_not(outcome) d <- select_not(d, groups) } tomodel <- longsheet %>% dplyr::distinct(!!id, !!groups) %>% dplyr::filter(!is.na(!!groups)) %>% dplyr::inner_join(d, ., by = rlang::quo_name(id)) %>% group_by(!!groups) %>% filter(n_distinct(!!sym(quo_name(id))) >= min_obs) %>% ungroup() if (!nrow(tomodel)) { warning("No levels present in at least ", min_obs, " observations") return(character()) } if (is.numeric(dplyr::pull(tomodel, !!outcome))) { tomodel <- tomodel %>% mutate(!!rlang::quo_name(outcome) := !!outcome - mean(!!outcome)) %>% group_by(!!groups) %>% summarize(mean_ssd = mean(!!outcome) / sqrt(stats::var(!!outcome) / n())) %>% arrange(desc(abs(mean_ssd))) tozip <- split(tomodel, sign(tomodel$mean_ssd)) %>% purrr::map(~ pull(.x, !!groups)) } else { total_observations <- n_distinct(dplyr::pull(tomodel, !!id)) levs <- tomodel %>% group_by(!!groups) %>% summarize(fraction_positive = mean(!!outcome == positive_class), fraction_positive = dplyr::case_when( fraction_positive == 1 ~ 1 - (.5 / total_observations), fraction_positive == 0 ~ .5 / total_observations, TRUE ~ fraction_positive), present_in = ifelse(n_distinct(rlang::quo_name(id)) == total_observations, total_observations - .5, n_distinct(rlang::quo_name(id))), log_dist_from_in_all = -log(present_in / total_observations)) %>% dplyr::select(-present_in) median_positive <- stats::median(levs$fraction_positive) levs <- levs %>% mutate(predictor_of = as.integer(fraction_positive > stats::median(fraction_positive)), log_loss = - (predictor_of * log(fraction_positive) + (1 - predictor_of) * log(1 - fraction_positive)), badness = log_loss ^ cohesion_weight * log_dist_from_in_all) %>% arrange(badness) tozip <- split(levs, levs$predictor_of) %>% purrr::map(~ pull(.x, !!groups)) } out <- if (length(tozip) == 1) { tozip[[1]] } else { zip_vectors(tozip[[1]], tozip[[2]]) } if (length(out) > n_levels) out <- out[seq_len(n_levels)] return(out) } zip_vectors <- function(v1, v2) { ll <- list(v1, v2) lengths <- purrr::map_int(ll, length) zipped <- lapply(seq_len(min(lengths)), function(i) { c(ll[[1]][i], ll[[2]][i]) }) %>% unlist() if (length(unique(lengths)) > 1) zipped <- c(zipped, ll[[which.max(lengths)]][(min(lengths) + 1):max(lengths)]) return(zipped) }
geo_address_lookup_sf <- function(osm_ids, type = c("N", "W", "R"), full_results = FALSE, return_addresses = TRUE, verbose = FALSE, custom_query = list(), points_only = TRUE) { api <- "https://nominatim.openstreetmap.org/lookup?" nodes <- paste0(type, osm_ids, collapse = ",") url <- paste0(api, "osm_ids=", nodes, "&format=geojson") if (!isTRUE(points_only)) { url <- paste0(url, "&polygon_geojson=1") } if (full_results) { url <- paste0(url, "&addressdetails=1") } if (length(custom_query) > 0) { opts <- NULL for (i in seq_len(length(custom_query))) { nlist <- names(custom_query)[i] val <- paste0(custom_query[[i]], collapse = ",") opts <- paste0(opts, "&", nlist, "=", val) } url <- paste0(url, "&", opts) } json <- tempfile(fileext = ".geojson") res <- api_call(url, json, quiet = isFALSE(verbose)) if (isFALSE(res)) { message(url, " not reachable.") result_out <- data.frame(query = paste0(type, osm_ids)) return(invisible(result_out)) } sfobj <- sf::st_read(json, stringsAsFactors = FALSE, quiet = isFALSE(verbose) ) if (length(names(sfobj)) == 1) { message("No results for query ", nodes) result_out <- data.frame(query = paste0(type, osm_ids)) return(invisible(result_out)) } result_out <- data.frame(query = paste0(type, osm_ids)) df_sf <- tibble::as_tibble(sf::st_drop_geometry(sfobj)) names(df_sf) <- gsub("address", "osm.address", names(df_sf)) names(df_sf) <- gsub("display_name", "address", names(df_sf)) if (return_addresses || full_results) { disp_name <- df_sf["address"] result_out <- cbind(result_out, disp_name) } if (full_results) { rest_cols <- df_sf[, !names(df_sf) %in% "address"] result_out <- cbind(result_out, rest_cols) } result_out <- sf::st_sf(result_out, geometry = sf::st_geometry(sfobj)) return(result_out) }
FindDistm <- function(x, normalize = FALSE, method = 'euclidean'){ if(!inherits(x, 'data.frame') && !inherits(x, 'matrix')) stop('arg x must be data frame or matrix') if(nrow(x) == 0) stop('x is empty. Cannot calculate distance matrix.') if(!inherits(normalize, 'logical')) stop('arg normalize must be boolean') if(normalize){ sds <- apply(x, 2, stats::sd) distm <- stats::dist(scale(x, center = FALSE, scale = sds), method = method, upper = TRUE) }else{ distm <- stats::dist(x, upper = TRUE, method = method) } return(distm) }
SNPtm <- function(trange,tsl,x6,r6,...) UseMethod("SNPtm")
loglikedw3<-function(par,x) { sum(-log(ddweibull3(x,par[1],par[2]))) }
BEMM.1PLG=function(data, PriorBeta=c(0,4), PriorGamma=c(-1.39,0.25), InitialBeta=NA, InitialGamma=NA, Tol=0.0001, max.ECycle=2000L, max.MCycle=100L, n.decimal=3L, n.Quadpts =31L, Theta.lim=c(-6,6), Missing=-9, ParConstraint=FALSE, BiasSE=FALSE){ Time.Begin=Sys.time() Model='1PLG' D=1 Check.results=Input.Checking(Model=Model, data=data, PriorBeta=PriorBeta, PriorGamma=PriorGamma, InitialBeta=InitialBeta, InitialGamma=InitialGamma, Tol=Tol, max.ECycle=max.ECycle, max.MCycle=max.MCycle, n.Quadpts =n.Quadpts, n.decimal=n.decimal, Theta.lim=Theta.lim, Missing=Missing, ParConstraint=ParConstraint, BiasSE=BiasSE) data=Check.results$data data.simple=Check.results$data.simple CountNum=Check.results$CountNum I=Check.results$I J=Check.results$J n.class=Check.results$n.class PriorBeta=Check.results$PriorBeta PriorGamma=Check.results$PriorGamma Prior=list(PriorBeta=PriorBeta, PriorGamma=PriorGamma) InitialBeta=Check.results$InitialBeta InitialGamma=Check.results$InitialGamma max.ECycle=Check.results$max.ECycle max.MCycle=Check.results$max.MCycle n.Quadpts=Check.results$n.Quadpts n.decimal=Check.results$n.decimal ParConstraint=Check.results$ParConstraint BiasSE=Check.results$BiasSE Par.est0=list(Beta=InitialBeta, Gamma=InitialGamma) Par.SE0=list(SEBeta=InitialBeta*0, SEGamma=InitialGamma*0) np=J*2 Est.results=BEMM.1PLG.est(Model=Model, data=data, data.simple=data.simple, CountNum=CountNum, n.class=n.class, Prior=Prior, Par.est0=Par.est0, Par.SE0=Par.SE0, D=D, np, Tol=Tol, max.ECycle=max.ECycle, max.MCycle=max.MCycle, n.Quadpts =n.Quadpts, n.decimal=n.decimal, Theta.lim=Theta.lim, Missing=Missing, ParConstraint=ParConstraint, BiasSE=BiasSE, I=I, J=J, Time.Begin=Time.Begin) if (Est.results$StopNormal==1){ message('PROCEDURE TERMINATED NORMALLY') }else{ message('PROCEDURE TERMINATED WITH ISSUES') } message('IRTEMM version: 1.0.7') message('Item Parameter Calibration for the 1PL-G Model.','\n') message('Quadrature: ', n.Quadpts, ' nodes from ', Theta.lim[1], ' to ', Theta.lim[2], ' were used to approximate Gaussian distribution.') message('Method for Items: Ability-based Bayesian Expectation-Maximization-Maximization (BEMM) Algorithm.') if (BiasSE){ message('Method for Item SEs: directly estimating SEs from inversed Hession matrix.') warning('Warning: The SEs maybe not trustworthy!', sep = '') }else{ message('Method for Item SEs: Updated SEM algorithm.') } message('Method for Theta: Expected A Posteriori (EAP).') if (Est.results$StopNormal==1){ message('Converged at LL-Change < ', round(Est.results$cr, 6), ' after ', Est.results$Iteration, ' EMM iterations.', sep = '') }else{ warning('Warning: Estimation cannot converged under current max.ECycle and Tol!', sep = '') warning('Warning: The reults maybe not trustworthy!', sep = '') message('Terminated at LL-Change = ', round(Est.results$cr, 6), ' after ', Est.results$Iteration, ' EMM iterations.', sep = '') } message('Running time:', Est.results$Elapsed.time, '\n') message('Log-likelihood (LL):', as.character(round(Est.results$Loglikelihood, n.decimal))) message('Estimated Parameters:', as.character(np)) message('AIB: ', round(Est.results$fits.test$AIC, n.decimal), ', BIC: ', round(Est.results$fits.test$BIC, n.decimal), ', RMSEA = ', round(Est.results$fits.test$RMSEA, n.decimal)) message('G2 (', round(Est.results$fits.test$G2.df, n.decimal), ') = ', round(Est.results$fits.test$G2, n.decimal), ', p = ', round(Est.results$fits.test$G2.P, n.decimal), ', G2/df = ', round(Est.results$fits.test$G2.ratio, n.decimal), sep='') return(Est.results) } BEMM.1PLG.est=function(Model=Model, data=data, data.simple=data.simple, CountNum=CountNum, n.class=n.class, Prior=Prior, Par.est0=Par.est0, Par.SE0=Par.SE0, D=D, np, Tol=Tol, max.ECycle=max.ECycle, max.MCycle=max.MCycle, n.Quadpts =n.Quadpts, n.decimal=n.decimal, Theta.lim=Theta.lim, Missing=Missing, ParConstraint=ParConstraint, BiasSE=BiasSE, I=I, J=J, Time.Begin=Time.Begin){ node.Quadpts=seq(Theta.lim[1],Theta.lim[2],length.out = n.Quadpts) weight.Quadpts=dnorm(node.Quadpts,0,1) weight.Quadpts=weight.Quadpts/sum(weight.Quadpts) InitialValues=Par.est0 LH=rep(0,max.ECycle) IBeta=rep(0,J) IGamma=rep(0,J) TBeta=matrix(0,max.ECycle,J) TGamma=matrix(0,max.ECycle,J) deltahat.Beta=rep(0,J) deltahat.Gamma=rep(0,J) n.ECycle=1L StopNormal=0L E.exit=0L LLinfo=LikelihoodInfo(data.simple, CountNum, Model, Par.est0, n.Quadpts, node.Quadpts, weight.Quadpts, D) LH0=LLinfo$LH f=LLinfo$f r=LLinfo$r fz=LLinfo$fz rz=LLinfo$rz while(E.exit==0L && (n.ECycle <= max.ECycle)){ for (j in 1:J){ gt0 = Par.est0$Gamma[j] bt0 = Par.est0$Beta[j] n.MCycle = 1 M.exit = 0L while (M.exit==0L && (n.MCycle <= max.MCycle)){ pstar = 1 / (1 + exp(-(node.Quadpts - bt0))) ag = 1 / (1 + exp(-(gt0))) lg1 = sum(r[j,] - rz[j,] - (f - fz[j,]) * ag) lgg = sum(-(f - fz[j,]) * ag * (1 - ag)) lb1 = sum(-(rz[j,] - f * pstar)) lbb = sum(-(f * pstar * (1 - pstar))) if (Prior$PriorBeta[j]!=-9 && Prior$PriorBeta[j + J]!=-9) { lb1 = lb1 -((bt0-Prior$PriorBeta[j])/Prior$PriorBeta[j + J]) lbb = lbb -1/Prior$PriorBeta[j + J] } Ibb = - 1 / lbb bt1 = bt0 + (Ibb * lb1) if (abs(bt1-bt0) >= 0.01){ bt0 = bt1 } if (Prior$PriorGamma[j]!=-9 && Prior$PriorGamma[j + J]!=-9) { lg1 = lg1 -((gt0-Prior$PriorGamma[j])/Prior$PriorGamma[j + J]) lgg = lgg -1/Prior$PriorGamma[j + J] } Igg = - 1 / lgg gt1 = gt0 + (Igg * lg1) if (abs(gt1-gt0) >= 0.01){ gt0 = gt1 } if (abs(bt1-bt0) < 0.01 && abs(gt1-gt0) < 0.01){ bt0 = bt1 gt0 = gt1 M.exit = 1L } else{ bt0 = bt1 gt0 = gt1 n.MCycle = n.MCycle+1 } } if (is.finite(gt0) && is.finite(bt0)){ if (ParConstraint){ if (bt0>=-6 && bt0<=6){ Par.est0$Beta[j] = bt0 TBeta[n.ECycle,j] = bt0 IBeta[j] = Ibb } if (gt0>=-7 && gt0<=0){ Par.est0$Gamma[j] = gt0 TGamma[n.ECycle,j] = gt0 IGamma[j] = Igg } }else{ Par.est0$Beta[j] = bt0 Par.est0$Gamma[j] = gt0 TBeta[n.ECycle,j] = bt0 TGamma[n.ECycle,j] = gt0 IBeta[j] = Ibb IGamma[j] = Igg } }else{ if (n.ECycle!=1){ TBeta[n.ECycle,j] = TBeta[n.ECycle-1,j] TGamma[n.ECycle,j] = TGamma[n.ECycle-1,j] }else{ TBeta[n.ECycle,j] = Par.est0$Beta[j] TGamma[n.ECycle,j] = Par.est0$Gamma[j] } } } LLinfo=LikelihoodInfo(data.simple, CountNum, Model, Par.est0, n.Quadpts, node.Quadpts, weight.Quadpts, D) LH[n.ECycle]=LLinfo$LH f=LLinfo$f r=LLinfo$r fz=LLinfo$fz rz=LLinfo$rz cr=LH[n.ECycle]-LH0 LH0=LH[n.ECycle] if (abs(cr)<Tol){ n.ECycle = n.ECycle + 1 E.exit=1 StopNormal=1L }else{ n.ECycle = n.ECycle + 1 } } n.ECycle = n.ECycle - 1 if (BiasSE==FALSE){ start.SEM=0 end.SEM=n.ECycle delta=rep(0,2) delta0=rep(0,2) delta1=rep(0,2) cr.SEM0=1 cr.SEM1=1 cr.SEM2=1 for (i in 1:(n.ECycle-1)){ deltatemp=exp(-(LH[i+1]-LH[i])) if (deltatemp>=0.9 && deltatemp<=0.999){ if (cr.SEM0==0){ end.SEM=i }else{ start.SEM=i cr.SEM0=0 } } } Time.Mid=Sys.time() message(paste('Estimating SEs via USEM algorithm (Requires about ',as.character(round(difftime(Time.Mid, Time.Begin, units="mins"), 2)), ' mins).', sep=''),'\n') for (j in 1:J){ z=start.SEM SEM.exit=0 cr.SEM1=1 cr.SEM2=1 while (SEM.exit==0 && z<=end.SEM){ for (ParClass in 1:2){ if (ParClass==1 && z>=2 && cr.SEM1<sqrt(Tol)){ next } if (ParClass==2 && z>=2 && cr.SEM2<sqrt(Tol)){ next } deltahat=Par.est0 if (ParClass==1){deltahat$Beta[j]=TBeta[z,j]} if (ParClass==2){deltahat$Gamma[j]=TGamma[z,j]} LLinfo=LikelihoodInfo(data.simple, CountNum, Model, deltahat, n.Quadpts, node.Quadpts, weight.Quadpts, D) f=LLinfo$f r=LLinfo$r fz=LLinfo$fz rz=LLinfo$rz bt0 = deltahat$Beta[j] gt0 = deltahat$Gamma[j] n.MCycle = 1 M.exit = 0 while (M.exit==0 && (n.MCycle <= max.MCycle)) { if (ParClass==1){ pstar = 1 / (1 + exp(-(node.Quadpts - bt0))) lb1 = sum(-(rz[j,] - f * pstar)) lbb = sum(-(f * pstar * (1 - pstar))) if (Prior$PriorBeta[j]!=-9 && Prior$PriorBeta[j + J]!=-9) { lb1 = lb1 -((bt0-Prior$PriorBeta[j])/Prior$PriorBeta[j + J]) lbb = lbb -1/Prior$PriorBeta[j + J] } Ibb = - 1 / lbb bt1 = bt0 + (Ibb * lb1) if (abs(bt1-bt0) < 0.01){ bt0 = bt1 M.exit = 1 } else{ bt0 = bt1 n.MCycle = n.MCycle + 1 } } if (ParClass==2){ ag = 1 / (1 + exp(-(gt0))) lg1 = sum(r[j,] - rz[j,] - (f - fz[j,]) * ag) lgg = sum(-(f - fz[j,]) * ag * (1 - ag)) if (Prior$PriorGamma[j]!=-9 && Prior$PriorGamma[j + J]!=-9) { lg1 = lg1 -((gt0-Prior$PriorGamma[j])/Prior$PriorGamma[j + J]) lgg = lgg -1/Prior$PriorGamma[j + J] } Igg = - 1 / lgg gt1 = gt0 + (Igg * lg1) if (abs(gt1-gt0) < 0.01){ gt0 = gt1 M.exit =1 } else{ gt0 = gt1 n.MCycle = n.MCycle + 1 } } } if (is.finite(gt0) && is.finite(bt0)){ if (ParConstraint){ if (bt0>=-6 && bt0<=6){ deltahat$Beta[j] = bt0 } if (gt0>=-7 && gt0<=0){ deltahat$Gamma[j] = gt0 } }else{ deltahat$Beta[j] = bt0 deltahat$Gamma[j] = gt0 } } if (ParClass==1){ delta1[1]=(deltahat$Beta[j]-Par.est0$Beta[j])/(TBeta[z,j]-Par.est0$Beta[j]+0.0001) break } if (ParClass==2){ delta1[2]=(deltahat$Gamma[j]-Par.est0$Gamma[j])/(TGamma[z,j]-Par.est0$Gamma[j]+0.0001) break } } cr_SEM1=abs(delta1[1]-delta0[1]); cr_SEM2=abs(delta1[2]-delta0[2]); if (cr.SEM1<sqrt(Tol) && cr.SEM2<sqrt(Tol) && z>=2){ SEM.exit=1 }else{ z=z+1 } delta0[is.finite(delta1)] = delta1[is.finite(delta1)] } delta[1]=1-delta0[1]; delta[2]=1-delta0[2]; delta1[1] = 1 / delta[1]; delta1[2] = 1 / delta[2]; if (is.finite(delta1[1])==F || delta1[1]<=0){delta1[1] = 1} if (is.finite(delta1[2])==F || delta1[2]<=0){delta1[2] = 0} Par.SE0$SEBeta[j]= sqrt(IBeta[j] * delta1[1]) Par.SE0$SEGamma[j]= sqrt(IGamma[j] * delta1[2]) if (is.finite(Par.SE0$SEBeta[j])){if (Par.SE0$SEBeta[j]>1){Par.SE0$SEBeta[j]= sqrt(IBeta[j])}} if (is.finite(Par.SE0$SEGamma[j])){if (Par.SE0$SEGamma[j]>1){Par.SE0$SEGamma[j]= sqrt(IGamma[j])}} } }else{ message('Directly estimating SEs from inversed Hession matrix.', '\n') for (j in 1:J){ Par.SE0$SEBeta[j]= sqrt(IBeta[j]) Par.SE0$SEGamma[j]= sqrt(IGamma[j]) } } Par.est0$Beta=round(Par.est0$Beta, n.decimal) Par.est0$Gamma=round(Par.est0$Gamma, n.decimal) Par.SE0$SEBeta=round(Par.SE0$SEBeta, n.decimal) Par.SE0$SEGamma=round(Par.SE0$SEGamma, n.decimal) EM.Map=list(Map.Beta=TBeta[1:n.ECycle,], Map.Gamma=TGamma[1:n.ECycle,]) Est.ItemPars=as.data.frame(list(est.beta=Par.est0$Beta, est.gamma=Par.est0$Gamma, se.beta=Par.SE0$SEBeta, se.gamma=Par.SE0$SEGamma)) P.Quadpts=lapply(as.list(node.Quadpts), Prob.model, Model=Model, Par.est0=Par.est0, D=D) Joint.prob=mapply('*',lapply(P.Quadpts, function(P,data){apply(data*P+(1-data)*(1-P),2,prod,na.rm = T)}, data=t(data)), as.list(weight.Quadpts), SIMPLIFY = FALSE) Whole.prob=Reduce("+", Joint.prob) LogL=sum(log(Whole.prob)) Posterior.prob=lapply(Joint.prob, '/', Whole.prob) EAP.JP=simplify2array(Joint.prob) EAP.Theta=rowSums(matrix(1,I,1)%*%node.Quadpts*EAP.JP)/rowSums(EAP.JP) EAP.WP=EAP.JP*simplify2array(lapply(as.list(node.Quadpts), function(node.Quadpts, Est.Theta){(node.Quadpts-Est.Theta)^2}, Est.Theta=EAP.Theta)) hauteur=node.Quadpts[2:n.Quadpts]-node.Quadpts[1:(n.Quadpts-1)] base.JP=colSums(t((EAP.JP[,1:(n.Quadpts-1)]+EAP.JP[,2:n.Quadpts])/2)*hauteur) base.WP=colSums(t((EAP.WP[,1:(n.Quadpts-1)]+EAP.WP[,2:n.Quadpts])/2)*hauteur) EAP.Theta.SE=sqrt(base.WP/base.JP) Est.Theta=as.data.frame(list(Theta=EAP.Theta, Theta.SE=EAP.Theta.SE)) N2loglike=-2*LogL AIC=2*np+N2loglike BIC=N2loglike+log(I)*np Theta.uni=sort(unique(EAP.Theta)) Theta.uni.len=length(Theta.uni) G2=NA df=NA G2.P=NA G2.ratio=NA G2.size=NA RMSEA=NA if (Theta.uni.len>=11){ n.group=10 cutpoint=rep(NA,n.group) cutpoint[1]=min(Theta.uni)-0.001 cutpoint[11]=max(Theta.uni)+0.001 for (i in 2:n.group){ cutpoint[i]=Theta.uni[(i-1)*Theta.uni.len/n.group] } Index=cut(EAP.Theta, cutpoint, labels = FALSE) } if (Theta.uni.len>=3 & Theta.uni.len<11){ n.group=Theta.uni.len-1 cutpoint=rep(NA,n.group) cutpoint[1]=min(Theta.uni)-0.001 cutpoint[n.group]=max(Theta.uni)+0.001 if (Theta.uni.len>=4){ for (i in 2:(Theta.uni.len-2)){ cutpoint[i]=Theta.uni[i] } } Index=cut(EAP.Theta, cutpoint, labels = FALSE) } if (Theta.uni.len>=3){ X2.item=matrix(NA, n.group, J) G2.item=matrix(NA, n.group, J) Index.Uni=unique(Index) for (k in 1:n.group){ data.group=data[Index==Index.Uni[k],] Theta.group=EAP.Theta[Index==Index.Uni[k]] Obs.P=colMeans(data.group) Exp.P=Reduce('+',lapply(Theta.group, Prob.model, Model=Model, Par.est0=Par.est0, D=D))/nrow(data.group) Obs.P[Obs.P>=1]=0.9999 Obs.P[Obs.P<=0]=0.0001 Exp.P[Exp.P>=1]=0.9999 Exp.P[Exp.P<=0]=0.0001 X2.item[k,]=nrow(data.group)*(Obs.P-Exp.P)^2/(Exp.P*(1-Exp.P)) Odds1=log(Obs.P/Exp.P) Odds2=log((1-Obs.P)/(1-Exp.P)) G2.item[k,]=nrow(data.group)*(Obs.P*Odds1+(1-Obs.P)*Odds2) } X2=sum(colSums(X2.item, na.rm = T)) G2=sum(2*colSums(G2.item, na.rm = T)) df=J*(n.group-3) G2.P=1-pchisq(G2,df) G2.ratio=G2/df RMSEA=sqrt(((X2-df)/(nrow(data)-1))/X2) }else{ warning('The frequence table is too small to do fit tests.') } fits.test=list(G2=G2, G2.df=df, G2.P=G2.P, G2.ratio=G2.ratio, RMSEA=RMSEA, AIC=AIC, BIC=BIC) Time.End=Sys.time() Elapsed.time=paste('Elapsed time:', as.character(round(difftime(Time.End, Time.Begin, units="mins"), digits = 4)), 'mins') return(list(Est.ItemPars=Est.ItemPars, Est.Theta=Est.Theta, Loglikelihood=LogL, Iteration=n.ECycle, EM.Map=EM.Map, fits.test=fits.test, Elapsed.time=Elapsed.time, StopNormal=StopNormal, InitialValues=InitialValues, cr=cr)) }
context("Guides") skip_on_cran() test_that("colourbar trains without labels", { g <- guide_colorbar() sc <- scale_colour_continuous(limits = c(0, 4), labels = NULL) out <- guide_train(g, sc) expect_equal(names(out$key), c("colour", ".value")) }) test_that("Colorbar respects show.legend in layer", { df <- data_frame(x = 1:3, y = 1) p <- ggplot(df, aes(x = x, y = y, color = x)) + geom_point(size = 20, shape = 21, show.legend = FALSE) expect_false("guide-box" %in% ggplotGrob(p)$layout$name) p <- ggplot(df, aes(x = x, y = y, color = x)) + geom_point(size = 20, shape = 21, show.legend = TRUE) expect_true("guide-box" %in% ggplotGrob(p)$layout$name) }) test_that("show.legend handles named vectors", { n_legends <- function(p) { g <- ggplotGrob(p) gb <- which(g$layout$name == "guide-box") if (length(gb) > 0) { n <- length(g$grobs[[gb]]) - 1 } else { n <- 0 } n } df <- data_frame(x = 1:3, y = 20:22) p <- ggplot(df, aes(x = x, y = y, color = x, shape = factor(y))) + geom_point(size = 20) expect_equal(n_legends(p), 2) p <- ggplot(df, aes(x = x, y = y, color = x, shape = factor(y))) + geom_point(size = 20, show.legend = c(color = FALSE)) expect_equal(n_legends(p), 1) p <- ggplot(df, aes(x = x, y = y, color = x, shape = factor(y))) + geom_point(size = 20, show.legend = c(color = FALSE, shape = FALSE)) expect_equal(n_legends(p), 0) p <- ggplot(df, aes(x = x, y = y, color = x, shape = factor(y))) + geom_point(size = 20, show.legend = c(shape = FALSE, color = TRUE)) expect_equal(n_legends(p), 1) }) test_that("axis_label_overlap_priority always returns the correct number of elements", { expect_identical(axis_label_priority(0), numeric(0)) expect_setequal(axis_label_priority(1), seq_len(1)) expect_setequal(axis_label_priority(5), seq_len(5)) expect_setequal(axis_label_priority(10), seq_len(10)) expect_setequal(axis_label_priority(100), seq_len(100)) }) test_that("axis_label_element_overrides errors when angles are outside the range [0, 90]", { expect_is(axis_label_element_overrides("bottom", 0), "element") expect_error(axis_label_element_overrides("bottom", 91), "`angle` must") expect_error(axis_label_element_overrides("bottom", -91), "`angle` must") }) test_that("a warning is generated when guides are drawn at a location that doesn't make sense", { plot <- ggplot(mpg, aes(class, hwy)) + geom_point() + scale_y_continuous(guide = guide_axis(position = "top")) built <- expect_silent(ggplot_build(plot)) expect_warning(ggplot_gtable(built), "Position guide is perpendicular") }) test_that("a warning is not generated when a guide is specified with duplicate breaks", { plot <- ggplot(mpg, aes(class, hwy)) + geom_point() + scale_y_continuous(breaks = c(20, 20)) built <- expect_silent(ggplot_build(plot)) expect_silent(ggplot_gtable(built)) }) test_that("a warning is generated when more than one position guide is drawn at a location", { plot <- ggplot(mpg, aes(class, hwy)) + geom_point() + guides( y = guide_axis(position = "left"), y.sec = guide_axis(position = "left") ) built <- expect_silent(ggplot_build(plot)) expect_warning(ggplot_gtable(built), "Discarding guide") }) test_that("a warning is not generated when properly changing the position of a guide_axis()", { plot <- ggplot(mpg, aes(class, hwy)) + geom_point() + guides( y = guide_axis(position = "right") ) built <- expect_silent(ggplot_build(plot)) expect_silent(ggplot_gtable(built)) }) test_that("guide_none() can be used in non-position scales", { p <- ggplot(mpg, aes(cty, hwy, colour = class)) + geom_point() + scale_color_discrete(guide = guide_none()) built <- ggplot_build(p) plot <- built$plot guides <- build_guides( plot$scales, plot$layers, plot$mapping, "right", theme_gray(), plot$guides, plot$labels ) expect_identical(guides, zeroGrob()) }) test_that("Using non-position guides for position scales results in an informative error", { p <- ggplot(mpg, aes(cty, hwy)) + geom_point() + scale_x_continuous(guide = guide_legend()) built <- ggplot_build(p) expect_error(ggplot_gtable(built), "does not implement guide_transform()") }) test_that("guide merging for guide_legend() works as expected", { merge_test_guides <- function(scale1, scale2) { scale1$guide <- guide_legend(direction = "vertical") scale2$guide <- guide_legend(direction = "vertical") scales <- scales_list() scales$add(scale1) scales$add(scale2) guide_list <- guides_train(scales, theme = theme_gray(), labels = labs(), guides = guides()) guides_merge(guide_list) } different_limits <- merge_test_guides( scale_colour_discrete(limits = c("a", "b", "c", "d")), scale_linetype_discrete(limits = c("a", "b", "c")) ) expect_length(different_limits, 2) same_limits <- merge_test_guides( scale_colour_discrete(limits = c("a", "b", "c")), scale_linetype_discrete(limits = c("a", "b", "c")) ) expect_length(same_limits, 1) expect_equal(same_limits[[1]]$key$.label, c("a", "b", "c")) same_labels_different_limits <- merge_test_guides( scale_colour_discrete(limits = c("a", "b", "c")), scale_linetype_discrete(limits = c("one", "two", "three"), labels = c("a", "b", "c")) ) expect_length(same_labels_different_limits, 1) expect_equal(same_labels_different_limits[[1]]$key$.label, c("a", "b", "c")) same_labels_different_scale <- merge_test_guides( scale_colour_continuous(limits = c(0, 4), breaks = 1:3, labels = c("a", "b", "c")), scale_linetype_discrete(limits = c("a", "b", "c")) ) expect_length(same_labels_different_scale, 1) expect_equal(same_labels_different_scale[[1]]$key$.label, c("a", "b", "c")) repeated_identical_labels <- merge_test_guides( scale_colour_discrete(limits = c("one", "two", "three"), labels = c("label1", "label1", "label2")), scale_linetype_discrete(limits = c("1", "2", "3"), labels = c("label1", "label1", "label2")) ) expect_length(repeated_identical_labels, 1) expect_equal(repeated_identical_labels[[1]]$key$.label, c("label1", "label1", "label2")) }) test_that("axis guides are drawn correctly", { theme_test_axis <- theme_test() + theme(axis.line = element_line(size = 0.5)) test_draw_axis <- function(n_breaks = 3, break_positions = seq_len(n_breaks) / (n_breaks + 1), labels = as.character, positions = c("top", "right", "bottom", "left"), theme = theme_test_axis, ...) { break_labels <- labels(seq_along(break_positions)) axes <- lapply(positions, function(position) { draw_axis(break_positions, break_labels, axis_position = position, theme = theme, ...) }) axes_grob <- gTree(children = do.call(gList, axes)) gt <- gtable( widths = unit(c(0.05, 0.9, 0.05), "npc"), heights = unit(c(0.05, 0.9, 0.05), "npc") ) gt <- gtable_add_grob(gt, list(axes_grob), 2, 2, clip = "off") plot(gt) } expect_doppelganger("axis guides basic", function() test_draw_axis()) expect_doppelganger("axis guides, zero breaks", function() test_draw_axis(n_breaks = 0)) expect_doppelganger( "axis guides, check overlap", function() test_draw_axis(20, labels = function(b) comma(b * 1e9), check.overlap = TRUE) ) expect_doppelganger( "axis guides, zero rotation", function() test_draw_axis(10, labels = function(b) comma(b * 1e3), angle = 0) ) expect_doppelganger( "axis guides, positive rotation", function() test_draw_axis(10, labels = function(b) comma(b * 1e3), angle = 45) ) expect_doppelganger( "axis guides, negative rotation", function() test_draw_axis(10, labels = function(b) comma(b * 1e3), angle = -45) ) expect_doppelganger( "axis guides, vertical rotation", function() test_draw_axis(10, labels = function(b) comma(b * 1e3), angle = 90) ) expect_doppelganger( "axis guides, vertical negative rotation", function() test_draw_axis(10, labels = function(b) comma(b * 1e3), angle = -90) ) expect_doppelganger( "axis guides, text dodged into rows/cols", function() test_draw_axis(10, labels = function(b) comma(b * 1e9), n.dodge = 2) ) }) test_that("axis guides are drawn correctly in plots", { expect_doppelganger("align facet labels, facets horizontal", qplot(hwy, reorder(model, hwy), data = mpg) + facet_grid(manufacturer ~ ., scales = "free", space = "free") + theme_test() + theme(strip.text.y = element_text(angle = 0)) ) expect_doppelganger("align facet labels, facets vertical", qplot(reorder(model, hwy), hwy, data = mpg) + facet_grid(. ~ manufacturer, scales = "free", space = "free") + theme_test() + theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) ) expect_doppelganger("thick axis lines", qplot(wt, mpg, data = mtcars) + theme_test() + theme(axis.line = element_line(size = 5, lineend = "square")) ) }) test_that("axis guides can be customized", { plot <- ggplot(mpg, aes(class, hwy)) + geom_point() + scale_y_continuous( sec.axis = dup_axis(guide = guide_axis(n.dodge = 2)), guide = guide_axis(n.dodge = 2) ) + scale_x_discrete(guide = guide_axis(n.dodge = 2)) expect_doppelganger("guide_axis() customization", plot) }) test_that("guides can be specified in guides()", { plot <- ggplot(mpg, aes(class, hwy)) + geom_point() + guides( x = guide_axis(n.dodge = 2), y = guide_axis(n.dodge = 2), x.sec = guide_axis(n.dodge = 2), y.sec = guide_axis(n.dodge = 2) ) expect_doppelganger("guides specified in guides()", plot) }) test_that("guides have the final say in x and y", { df <- data_frame(x = 1, y = 1) plot <- ggplot(df, aes(x, y)) + geom_point() + guides( x = guide_none(title = "x (primary)"), y = guide_none(title = "y (primary)"), x.sec = guide_none(title = "x (secondary)"), y.sec = guide_none(title = "y (secondary)") ) expect_doppelganger("position guide titles", plot) }) test_that("guides are positioned correctly", { df <- data_frame(x = 1, y = 1, z = factor("a")) p1 <- ggplot(df, aes(x, y, colour = z)) + geom_point() + labs(title = "title of plot") + theme_test() + theme( axis.text.x = element_text(angle = 90, vjust = 0.5), legend.background = element_rect(fill = "grey90"), legend.key = element_rect(fill = "grey90") ) + scale_x_continuous(breaks = 1, labels = "very long axis label") + scale_y_continuous(breaks = 1, labels = "very long axis label") expect_doppelganger("legend on left", p1 + theme(legend.position = "left") ) expect_doppelganger("legend on bottom", p1 + theme(legend.position = "bottom") ) expect_doppelganger("legend on right", p1 + theme(legend.position = "right") ) expect_doppelganger("legend on top", p1 + theme(legend.position = "top") ) expect_doppelganger("facet_grid, legend on left", p1 + facet_grid(x~y) + theme(legend.position = "left") ) expect_doppelganger("facet_grid, legend on bottom", p1 + facet_grid(x~y) + theme(legend.position = "bottom") ) expect_doppelganger("facet_grid, legend on right", p1 + facet_grid(x~y) + theme(legend.position = "right") ) expect_doppelganger("facet_grid, legend on top", p1 + facet_grid(x~y) + theme(legend.position = "top") ) expect_doppelganger("facet_wrap, legend on left", p1 + facet_wrap(~ x) + theme(legend.position = "left") ) expect_doppelganger("facet_wrap, legend on bottom", p1 + facet_wrap(~ x) + theme(legend.position = "bottom") ) expect_doppelganger("facet_wrap, legend on right", p1 + facet_wrap(~ x) + theme(legend.position = "right") ) expect_doppelganger("facet_wrap, legend on top", p1 + facet_wrap(~ x) + theme(legend.position = "top") ) dat <- data_frame(x = LETTERS[1:3], y = 1) p2 <- ggplot(dat, aes(x, y, fill = x, colour = 1:3)) + geom_bar(stat = "identity") + guides(color = "colorbar") + theme_test() + theme(legend.background = element_rect(colour = "black")) expect_doppelganger("padding in legend box", p2) expect_doppelganger("legend inside plot, centered", p2 + theme(legend.position = c(.5, .5)) ) expect_doppelganger("legend inside plot, bottom left", p2 + theme(legend.justification = c(0,0), legend.position = c(0,0)) ) expect_doppelganger("legend inside plot, top right", p2 + theme(legend.justification = c(1,1), legend.position = c(1,1)) ) expect_doppelganger("legend inside plot, bottom left of legend at center", p2 + theme(legend.justification = c(0,0), legend.position = c(.5,.5)) ) }) test_that("guides title and text are positioned correctly", { df <- data_frame(x = 1:3, y = 1:3) p <- ggplot(df, aes(x, y, color = factor(x), fill = y)) + geom_point(shape = 21) + guides(color = guide_legend(order = 2), fill = guide_colorbar(order = 1)) + theme_test() expect_doppelganger("multi-line guide title works", p + scale_color_discrete(name = "the\ndiscrete\ncolorscale") + scale_fill_continuous(name = "the\ncontinuous\ncolorscale") ) expect_doppelganger("vertical gap of 1cm between guide title and guide", p + theme(legend.spacing.y = grid::unit(1, "cm")) ) expect_doppelganger("horizontal gap of 1cm between guide and guide text", p + theme(legend.spacing.x = grid::unit(1, "cm")) ) df <- data_frame(x = c(1, 10, 100)) p <- ggplot(df, aes(x, x, color = x, size = x)) + geom_point() + guides(shape = guide_legend(order = 1), color = guide_colorbar(order = 2)) + theme_test() expect_doppelganger("guide title and text positioning and alignment via themes", p + theme( legend.title = element_text(hjust = 0.5, margin = margin(t = 30)), legend.text = element_text(hjust = 1, margin = margin(l = 5, t = 10, b = 10)) ) ) df <- data_frame(x = c(5, 10, 15)) p <- ggplot(df, aes(x, x, color = x, fill = 15 - x)) + geom_point(shape = 21, size = 5, stroke = 3) + scale_colour_continuous( name = "value", guide = guide_colorbar( title.theme = element_text(size = 11, angle = 0, hjust = 0.5, vjust = 1), label.theme = element_text(size = 0.8*11, angle = 270, hjust = 0.5, vjust = 1), order = 2 ) ) + scale_fill_continuous( breaks = c(5, 10, 15), limits = c(5, 15), labels = paste("long", c(5, 10, 15)), name = "fill value", guide = guide_legend( direction = "horizontal", title.position = "top", label.position = "bottom", title.theme = element_text(size = 11, angle = 180, hjust = 0, vjust = 1), label.theme = element_text(size = 0.8*11, angle = 90, hjust = 1, vjust = 0.5), order = 1 ) ) expect_doppelganger("rotated guide titles and labels", p ) }) test_that("colorbar can be styled", { df <- data_frame(x = c(0, 1, 2)) p <- ggplot(df, aes(x, x, color = x)) + geom_point() expect_doppelganger("white-to-red colorbar, white ticks, no frame", p + scale_color_gradient(low = 'white', high = 'red') ) expect_doppelganger("white-to-red colorbar, thick black ticks, green frame", p + scale_color_gradient( low = 'white', high = 'red', guide = guide_colorbar( frame.colour = "green", frame.linewidth = 1.5, ticks.colour = "black", ticks.linewidth = 2.5 ) ) ) }) test_that("guides can handle multiple aesthetics for one scale", { df <- data_frame(x = c(1, 2, 3), y = c(6, 5, 7)) p <- ggplot(df, aes(x, y, color = x, fill = y)) + geom_point(shape = 21, size = 3, stroke = 2) + scale_colour_viridis_c( name = "value", option = "B", aesthetics = c("colour", "fill") ) expect_doppelganger("one combined colorbar for colour and fill aesthetics", p) }) test_that("bin guide can be styled correctly", { df <- data_frame(x = c(1, 2, 3), y = c(6, 5, 7)) p <- ggplot(df, aes(x, y, size = x)) + geom_point() + scale_size_binned() expect_doppelganger("guide_bins looks as it should", p) expect_doppelganger("guide_bins can show limits", p + guides(size = guide_bins(show.limits = TRUE)) ) expect_doppelganger("guide_bins can show arrows", p + guides(size = guide_bins(axis.arrow = arrow(length = unit(1.5, "mm"), ends = "both"))) ) expect_doppelganger("guide_bins can remove axis", p + guides(size = guide_bins(axis = FALSE)) ) expect_doppelganger("guide_bins work horizontally", p + guides(size = guide_bins(direction = "horizontal")) ) }) test_that("coloursteps guide can be styled correctly", { df <- data_frame(x = c(1, 2, 4), y = c(6, 5, 7)) p <- ggplot(df, aes(x, y, colour = x)) + geom_point() + scale_colour_binned(breaks = c(1.5, 2, 3)) expect_doppelganger("guide_coloursteps looks as it should", p) expect_doppelganger("guide_coloursteps can show limits", p + guides(colour = guide_coloursteps(show.limits = TRUE)) ) expect_doppelganger("guide_coloursteps can have bins relative to binsize", p + guides(colour = guide_coloursteps(even.steps = FALSE)) ) expect_doppelganger("guide_bins can show ticks", p + guides(colour = guide_coloursteps(ticks = TRUE)) ) }) test_that("a warning is generated when guides(<scale> = FALSE) is specified", { df <- data_frame(x = c(1, 2, 4), y = c(6, 5, 7)) expect_warning(g <- guides(colour = FALSE), "`guides(<scale> = FALSE)` is deprecated.", fixed = TRUE) expect_equal(g[["colour"]], "none") p <- ggplot(df, aes(x, y, colour = x)) + scale_colour_continuous(guide = FALSE) built <- expect_silent(ggplot_build(p)) expect_warning(ggplot_gtable(built), "It is deprecated to specify `guide = FALSE`") })
draw.t=function(nrep,dof){ if (dof<=1){ stop("Degrees of freedom must be greater than 1!\n") } x=numeric(nrep) for (i in 1:nrep){ index=0 while (index<1){ v1=runif(1,-1,1) v2=runif(1,-1,1) r2=v1^2+v2^2 r=sqrt(r2) w=(r2<1) x[i]=v1*sqrt(abs((dof*(r^(-4/dof)-1)/r2))) index=sum(w) } } if(dof>1){ emp.mean=round(mean(x), 5) theo.mean=0 theo.mean=round(theo.mean, 5) } else { warning("Mean only defined when dof>1.") theo.mean="Mean only defined when dof>1." emp.mean=NA } if(dof>2){ emp.var=round(var(x), 5) theo.var=dof/(dof-2) theo.var=round(theo.var, 5) } else { warning("Variance only defined when dof>2.") theo.var="Variance only defined when dof>2." emp.var=NA } return(list(y=x, theo.mean=theo.mean, emp.mean=emp.mean, theo.var=theo.var, emp.var=emp.var)) }
stableFit <- function(x, alpha = 1.75, beta = 0, gamma = 1, delta = 0, type = c("q", "mle"), doplot = TRUE, control = list(), trace = FALSE, title = NULL, description = NULL) { ans = .qStableFit(x, doplot, title, description) if (type[1] == "mle") { Alpha = ans@fit$estimate[1] Beta = ans@fit$estimate[2] Gamma = ans@fit$estimate[3] Delta = ans@fit$estimate[4] if (is.na(Alpha)) Alpha = alpha if (is.na(Beta)) Beta = beta if (is.na(Gamma)) Gamma = gamma if (is.na(Delta)) Delta = delta ans = .mleStableFit(x, Alpha, Beta, Gamma, Delta, doplot, control, trace, title, description) } ans } .phiStable <- function() { alpha = c(seq(0.50, 1.95, by = 0.1), 1.95, 1.99) beta = c(-0.95, seq(-0.90, 0.90, by = 0.10), 0.95) m = length(alpha) n = length(beta) phi1 = function(alpha, beta) { ( stabledist::qstable(0.95, alpha, beta) - stabledist::qstable(0.05, alpha, beta) ) / ( stabledist::qstable(0.75, alpha, beta) - stabledist::qstable(0.25, alpha, beta) ) } phi2 = function(alpha, beta) { ( ( stabledist::qstable(0.95, alpha, beta) - stabledist::qstable(0.50, alpha, beta) ) - ( stabledist::qstable(0.50, alpha, beta) - stabledist::qstable(0.05, alpha, beta) ) ) / ( stabledist::qstable(0.95, alpha, beta) - stabledist::qstable(0.05, alpha, beta) ) } Phi1 = Phi2 = matrix(rep(0, n*m), ncol = n) for ( i in 1:m ) { for ( j in 1:n ) { Phi1[i,j] = phi1(alpha[i], beta[j]) Phi2[i,j] = phi2(alpha[i], beta[j]) print( c(alpha[i], beta[j], Phi1[i,j], Phi2[i,j]) ) } } contour(alpha, beta, Phi1, levels = c(2.5, 3, 5, 10, 20, 40), xlab = "alpha", ylab = "beta", labcex = 1.5, xlim = c(0.5, 2.0)) contour(alpha, beta, Phi2, levels = c(-0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8), col = "red", labcex = 1.5, add = TRUE) .PhiStable <- list(Phi1 = Phi1, Phi2 = Phi2, alpha = alpha, beta = beta) if (FALSE) dump(".PhiStable", "PhiStable.R") .PhiStable } .PhiStable <- structure( list( Phi1 = structure(c(28.1355600962322, 15.7196640771722, 10.4340722145276, 7.72099712337154, 6.14340919629241, 5.14081963876442, 4.45927409495436, 3.97057677836415, 3.60450193720703, 3.31957820409758, 3.09091185492284, 2.9029090263133, 2.74659551412658, 2.61782756430233, 2.51560631141019, 2.47408801877228, 2.44525363752631, 28.3483300097440, 15.8035063527296, 10.4727953966709, 7.74141823634036, 6.15576314177463, 5.14915506532249, 4.46531988542058, 3.97505189771183, 3.60736868847651, 3.32104702700423, 3.09111342044363, 2.90219825204304, 2.74552084086904, 2.61707392900167, 2.51531961206501, 2.47401179006119, 2.44525268403340, 28.9048147202382, 16.0601313263480, 10.6117049719320, 7.8237753182648, 6.20955682299195, 5.18679961805621, 4.49216000186678, 3.99373973242068, 3.61933010719953, 3.3275594162867, 3.09331226057454, 2.90155994459038, 2.74368539137288, 2.61555847928520, 2.51479444686423, 2.47387109904253, 2.44525093764076, 29.8026200973137, 16.5596243974224, 10.9360864131028, 8.04563520952583, 6.35889612112486, 5.28397230078563, 4.55431822343012, 4.03266384946799, 3.64246979110989, 3.33973615437707, 3.09810405845187, 2.90191073816964, 2.7422687239301, 2.61421528380001, 2.51433181630644, 2.47374639426837, 2.44524854839106, 31.1711919144382, 17.3256645589998, 11.4257682914949, 8.37916374365985, 6.59111369941092, 5.4435297531592, 4.65827423282770, 4.09593909348039, 3.67827370972420, 3.35788028768518, 3.10538249512478, 2.90322430476313, 2.7411383952518, 2.61307358265729, 2.51393064512464, 2.47363793686619, 2.44524473760244, 33.1948934984822, 18.4071500759968, 12.0794579487667, 8.80181848446003, 6.8744516193679, 5.6351929385469, 4.78568154439060, 4.17585254205654, 3.72404890551037, 3.38077811930023, 3.11457663716798, 2.90522469731234, 2.74043557937936, 2.61209710262770, 2.51359601849030, 2.47354590407541, 2.44523688699559, 35.9578028398622, 19.7936882741385, 12.8664734285429, 9.28349135864713, 7.18278427917665, 5.83729171895546, 4.91779143967590, 4.25960094973301, 3.77307337255403, 3.4057709031586, 3.12469898537975, 2.90767817230573, 2.7399388028832, 2.61130578115398, 2.51330169831474, 2.47347041290067, 2.4452243360266, 38.9647018181828, 21.2269841758554, 13.6587928142908, 9.75737930074977, 7.47910500668215, 6.02679068365276, 5.03975173429821, 4.33641171958119, 3.81844774991854, 3.42948489228359, 3.13453596844362, 2.91006724722144, 2.73965159366498, 2.61068126597691, 2.51309087992836, 2.47342375837911, 2.44524639012562, 41.7818369588849, 22.4602363370435, 14.3128567516975, 10.1435099877839, 7.72005687380391, 6.18048140792379, 5.13779081982581, 4.39769218775219, 3.85488105109873, 3.44880791704519, 3.14262443869137, 2.91215029990006, 2.73947335432536, 2.61026149741526, 2.51293721037603, 2.47333463795113, 2.44523871005695, 43.8597008728084, 23.308181530155, 14.7432127411421, 10.3930748979735, 7.87518470289541, 6.2796283727218, 5.20095216574708, 4.43724315622136, 3.87838777226609, 3.46128790559551, 3.14792806986726, 2.91355836113947, 2.7394048824397, 2.60999397178590, 2.51287974154683, 2.4733261698261, 2.44523291863013, 44.6351177921226, 23.612190997173, 14.8937659530932, 10.4791077126402, 7.9285095195091, 6.31375867971341, 5.2228691158165, 4.45085115209764, 3.88645952709398, 3.46562279514434, 3.14978921717977, 2.91402779433739, 2.73939000980242, 2.60993524495366, 2.51289337121820, 2.47330017392183, 2.44524525291192, 43.8597008728085, 23.3081815301550, 14.7432127411420, 10.3930748979735, 7.87518470289542, 6.2796283727218, 5.20095216574709, 4.43724315622136, 3.87838777226609, 3.46128790559551, 3.14792806986726, 2.91355836113947, 2.7394048824397, 2.60999397178590, 2.51287974154683, 2.4733261698261, 2.44523291863013, 41.7818369588849, 22.4602363370436, 14.3128567516975, 10.1435099877840, 7.72005687380392, 6.18048140792379, 5.13779081982581, 4.39769218775219, 3.85488105109874, 3.44880791704519, 3.14262443869137, 2.91215029990006, 2.73947335432536, 2.61026149741526, 2.51293721037603, 2.47333463795113, 2.44523871005695, 38.9647018181828, 21.2269841758554, 13.6587928142909, 9.75737930074976, 7.47910500668216, 6.02679068365277, 5.0397517342982, 4.33641171958119, 3.81844774991854, 3.42948489228359, 3.13453596844362, 2.91006724722144, 2.73965159366498, 2.61068126597691, 2.51309087992836, 2.47342375837911, 2.44524639012562, 35.9578028398623, 19.7936882741384, 12.8664734285429, 9.28349135864712, 7.18278427917667, 5.83729171895546, 4.91779143967590, 4.25960094973301, 3.77307337255403, 3.4057709031586, 3.12469898537975, 2.90767817230572, 2.7399388028832, 2.61130578115398, 2.51330169831474, 2.47347041290067, 2.4452243360266, 33.1948934984822, 18.4071500759967, 12.0794579487667, 8.80181848446, 6.8744516193679, 5.6351929385469, 4.78568154439059, 4.17585254205653, 3.72404890551037, 3.38077811930023, 3.11457663716797, 2.90522469731234, 2.74043557937936, 2.61209710262770, 2.51359601849030, 2.47354590407541, 2.44523688699559, 31.1711919144381, 17.3256645589999, 11.4257682914948, 8.37916374365983, 6.59111369941092, 5.44352975315921, 4.65827423282769, 4.09593909348039, 3.67827370972420, 3.35788028768518, 3.10538249512478, 2.90322430476312, 2.7411383952518, 2.61307358265729, 2.51393064512464, 2.47363793686619, 2.44524473760245, 29.8026200973136, 16.5596243974222, 10.9360864131028, 8.04563520952581, 6.35889612112487, 5.28397230078562, 4.55431822343012, 4.03266384946799, 3.64246979110989, 3.33973615437707, 3.09810405845187, 2.90191073816964, 2.7422687239301, 2.61421528380001, 2.51433181630644, 2.47374639426837, 2.44524854839106, 28.904814720238, 16.0601313263481, 10.6117049719320, 7.82377531826481, 6.20955682299195, 5.18679961805620, 4.49216000186678, 3.99373973242068, 3.61933010719952, 3.3275594162867, 3.09331226057455, 2.90155994459037, 2.74368539137288, 2.61555847928520, 2.51479444686423, 2.47387109904253, 2.44525093764076, 28.3483300097438, 15.8035063527296, 10.4727953966709, 7.74141823634038, 6.15576314177465, 5.1491550653225, 4.46531988542057, 3.97505189771183, 3.60736868847651, 3.32104702700424, 3.09111342044363, 2.90219825204304, 2.74552084086904, 2.61707392900167, 2.51531961206501, 2.47401179006119, 2.44525268403340, 28.1355600962322, 15.7196640771723, 10.4340722145275, 7.72099712337151, 6.1434091962924, 5.14081963876442, 4.45927409495435, 3.97057677836415, 3.60450193720703, 3.31957820409757, 3.09091185492284, 2.9029090263133, 2.74659551412658, 2.61782756430233, 2.51560631141019, 2.47408801877228, 2.44525363752631), .Dim = as.integer(c(17, 21))), Phi2 = structure(c(-0.984831521754346, -0.96178750287388, -0.925815277018118, -0.877909786944587, -0.820184465666658, -0.755031918545081, -0.684592921700777, -0.610570901457792, -0.534175805219629, -0.456236240234657, -0.377306837254648, -0.297867095171864, -0.218666685919607, -0.141143940005887, -0.0674987199592516, -0.0328701597273596, -0.00642990194045526, -0.984833720280198, -0.96124832221758, -0.92402252050786, -0.87419335313835, -0.81415246030398, -0.74662653505109, -0.674063099101783, -0.598388680797427, -0.520979416823626, -0.442739494396008, -0.364272193075272, -0.286088382456793, -0.208957354222478, -0.1342789733294, -0.0640144100029875, -0.0311490271069921, -0.006091726394748, -0.979153629182453, -0.95106168789293, -0.909673941239617, -0.85602448791855, -0.791828629762056, -0.720369142925194, -0.644748722301942, -0.567214164881932, -0.489279988980024, -0.411880943403832, -0.335605401995838, -0.260987626602553, -0.188786833912990, -0.120269390643364, -0.0570145517746281, -0.0277025095388298, -0.0054153433806392, -0.956099620177616, -0.91510100889139, -0.863494586547947, -0.804340589970157, -0.739811913292119, -0.670992067490536, -0.598508014750715, -0.523938483324115, -0.449119649196787, -0.375320171482799, -0.303334211640077, -0.233819259537015, -0.167632931803862, -0.105970645511563, -0.0499759998221647, -0.0242509183116938, -0.00473892214395457, -0.91091521430624, -0.854269872890404, -0.792380659464175, -0.728324327412516, -0.663641470500818, -0.598766118303959, -0.533390833007158, -0.466958108675312, -0.399718402638334, -0.332810169846175, -0.267433026630897, -0.204649764654678, -0.145582752525226, -0.0913961065988934, -0.042902827489912, -0.0207949382390745, -0.004062467796571, -0.838142578217344, -0.767730556629547, -0.699387193072487, -0.634346095207953, -0.572568000770375, -0.513428073110925, -0.456016815864829, -0.399237447140644, -0.342164056355244, -0.284798223846443, -0.228151639956042, -0.173628819918976, -0.122674652213850, -0.0765638152109311, -0.0358016086121756, -0.0173352283908653, -0.00338423605633909, -0.732960648615699, -0.655211639338905, -0.586717060962992, -0.525770503418058, -0.470570307907465, -0.419573011635011, -0.371434023729476, -0.324886123523844, -0.278750785874156, -0.232309518692667, -0.185933156371725, -0.140978784025337, -0.0990680854456507, -0.0615175707971035, -0.0286670029088599, -0.0138724303903631, -0.00270395845154647, -0.592691443906747, -0.517917221384721, -0.456902886405761, -0.405327421204478, -0.360251537992231, -0.319685291504111, -0.282167838420900, -0.246496132463733, -0.211596523966543, -0.176602222829403, -0.141397972727901, -0.106937786396409, -0.0748572933895385, -0.0462908166605395, -0.0215205174484398, -0.0104071747947459, -0.00203767706388774, -0.418561278354954, -0.359043286074154, -0.313110693536944, -0.275656631235694, -0.243720459128403, -0.215493360906447, -0.18976206222188, -0.165585707487220, -0.142157842427747, -0.118764989711438, -0.0951531051692878, -0.0718822809574559, -0.0501702371114745, -0.0309413187181704, -0.0143569748225324, -0.00693928545290556, -0.00135914851834483, -0.217058958479026, -0.183957984146554, -0.159253973812649, -0.139529858864502, -0.122956050946611, -0.108468261383110, -0.095363933833862, -0.0831489044941912, -0.0713807547092049, -0.0596749091239935, -0.0478406346829651, -0.0361189030171852, -0.0251638752545685, -0.0154951657479659, -0.00718251696063777, -0.00347157285038577, -0.000682830247122471, -1.30195010613456e-15, -7.12101008020212e-16, -9.8472751183435e-16, -1.13492047149954e-15, -1.21096413626332e-15, -1.05505102779748e-15, -1.11782289130157e-15, -8.13224377427617e-16, -5.85149540688739e-16, 4.61239028385592e-16, 1.45510576814449e-16, -4.733934001018e-16, -3.36773719381392e-16, 0, 9.23542032962673e-17, -1.87944839722067e-16, -2.8550539469612e-16, 0.217058958479025, 0.183957984146551, 0.159253973812647, 0.139529858864502, 0.12295605094661, 0.108468261383109, 0.0953639338338615, 0.0831489044941909, 0.0713807547092042, 0.0596749091239931, 0.0478406346829641, 0.036118903017185, 0.0251638752545679, 0.0154951657479665, 0.00718251696063749, 0.00347157285038558, 0.00068283024712209, 0.418561278354956, 0.359043286074156, 0.313110693536942, 0.275656631235694, 0.243720459128404, 0.215493360906444, 0.189762062221879, 0.165585707487219, 0.142157842427746, 0.118764989711438, 0.0951531051692875, 0.0718822809574556, 0.0501702371114741, 0.0309413187181703, 0.0143569748225322, 0.00693928545290556, 0.00135914851834492, 0.59269144390675, 0.517917221384721, 0.456902886405764, 0.405327421204478, 0.360251537992232, 0.319685291504111, 0.2821678384209, 0.246496132463732, 0.211596523966543, 0.176602222829402, 0.141397972727901, 0.106937786396409, 0.074857293389538, 0.0462908166605391, 0.0215205174484394, 0.0104071747947454, 0.00203767706388774, 0.7329606486157, 0.655211639338903, 0.58671706096299, 0.525770503418055, 0.470570307907467, 0.419573011635009, 0.371434023729475, 0.324886123523844, 0.278750785874155, 0.232309518692667, 0.185933156371724, 0.140978784025336, 0.0990680854456504, 0.0615175707971032, 0.0286670029088598, 0.0138724303903627, 0.00270395845154656, 0.838142578217343, 0.767730556629544, 0.699387193072486, 0.634346095207951, 0.572568000770374, 0.513428073110924, 0.456016815864827, 0.399237447140644, 0.342164056355244, 0.284798223846443, 0.228151639956042, 0.173628819918976, 0.122674652213850, 0.0765638152109311, 0.0358016086121755, 0.0173352283908648, 0.00338423605633909, 0.910915214306239, 0.854269872890404, 0.792380659464175, 0.728324327412515, 0.663641470500817, 0.598766118303959, 0.533390833007157, 0.466958108675312, 0.399718402638334, 0.332810169846175, 0.267433026630897, 0.204649764654678, 0.145582752525226, 0.0913961065988931, 0.0429028274899118, 0.020794938239074, 0.00406246779657053, 0.956099620177616, 0.915101008891389, 0.863494586547946, 0.804340589970156, 0.739811913292119, 0.670992067490536, 0.598508014750714, 0.523938483324114, 0.449119649196786, 0.375320171482798, 0.303334211640076, 0.233819259537015, 0.167632931803862, 0.105970645511562, 0.0499759998221642, 0.0242509183116936, 0.00473892214395428, 0.979153629182453, 0.95106168789293, 0.909673941239617, 0.85602448791855, 0.791828629762055, 0.720369142925193, 0.644748722301942, 0.567214164881931, 0.489279988980024, 0.411880943403833, 0.335605401995838, 0.260987626602552, 0.188786833912991, 0.120269390643364, 0.0570145517746277, 0.0277025095388299, 0.00541534338063891, 0.984833720280198, 0.96124832221758, 0.92402252050786, 0.87419335313835, 0.81415246030398, 0.746626535051091, 0.674063099101783, 0.598388680797427, 0.520979416823626, 0.442739494396008, 0.364272193075271, 0.286088382456793, 0.208957354222478, 0.1342789733294, 0.0640144100029874, 0.0311490271069919, 0.00609172639474771, 0.984831521754346, 0.96178750287388, 0.925815277018118, 0.877909786944586, 0.820184465666658, 0.75503191854508, 0.684592921700776, 0.610570901457792, 0.534175805219629, 0.456236240234657, 0.377306837254648, 0.297867095171864, 0.218666685919607, 0.141143940005886, 0.0674987199592513, 0.0328701597273591, 0.00642990194045459), .Dim = as.integer(c(17, 21))), alpha = c(0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.95, 1.99), beta = c(-0.95, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95)), .Names = c("Phi1", "Phi2", "alpha", "beta") ) .qStableFit <- function(x, doplot = TRUE, title = NULL, description = NULL) { CALL = match.call() Phi1 = .PhiStable$Phi1 Phi2 = .PhiStable$Phi2 alpha = .PhiStable$alpha beta = .PhiStable$beta r = sort(x) N = length(r) q95 = r[round(0.95*N)] q75 = r[round(0.75*N)] q50 = r[round(0.50*N)] q25 = r[round(0.25*N)] q05 = r[round(0.05*N)] phi1 = max( (q95-q05) / (q75-q25), 2.4389 ) phi2 = ((q95-q50)-(q50-q05)) / (q95-q05) if (doplot) { contour(alpha, beta, Phi1, levels = c(2.5, 3, 5, 10, 20, 40), xlab = "alpha", ylab = "beta", xlim = c(0.5, 2.0)) contour(alpha, beta, Phi2, levels = c(-0.8, -0.6, -0.4, -0.2, 0.2, 0.4, 0.6, 0.8), col = "red", add = TRUE) lines(c(0.5, 2), c(0, 0), col = "red") contour(alpha, beta, Phi1, levels = phi1, add = TRUE, lty = 3, col = "blue") contour(alpha, beta, Phi2, levels = phi2, add = TRUE, lty = 3, col = "blue") title(main = "Stable Quantiles") } u = contourLines(alpha, beta, Phi1, levels = phi1) Len = length(u) if( Len > 0) { u = u[[1]][-1] v = contourLines(alpha, beta, Phi2, levels = phi2) v = v[[1]][-1] xout = seq(min(v$y), max(v$y), length = 200) z = approx(v$y, v$x, xout = xout)$y - approx(u$y, u$x, xout = xout)$y index = which.min(abs(z)) V = round(xout[index], 3) U = round(approx(v$y, v$x, xout = xout[index])$y, 3) if (doplot) points(U, V, pch = 19, cex = 1) } else { U = V = NA } if (is.null(title)) title = "Stable Parameter Estimation" if (is.null(description)) description = description() if (is.na(U) | is.na(V)) { GAM = NA } else { phi3 = stabledist::qstable(0.75, U, V) - stabledist::qstable(0.25, U, V) GAM = (q75-q25) / phi3 } if (is.na(U) | is.na(V)) { DELTA = NA } else { phi4 = -stabledist::qstable(0.50, U, V) + V*tan(pi*U/2) DELTA = phi4*GAM - V*GAM*tan(pi*U/2) + q50 } fit = list(estimate = c(alpha = U, beta = V, gamma = GAM, delta = DELTA)) new("fDISTFIT", call = as.call(CALL), model = "Stable Distribution", data = as.data.frame(x), fit = fit, title = as.character(title), description = description() ) } .mleStableFit <- function(x, alpha = 1.75, beta = 0, gamma = 1, delta = 0, doplot = TRUE, control = list(), trace = FALSE, title = NULL, description = NULL) { x.orig = x x = as.vector(x) CALL = match.call() obj = function(x, y = x, trace = FALSE) { f = -mean(log(stabledist::dstable(y, alpha = x[1], beta = x[2], gamma = x[3], delta = x[4]))) if (trace) { cat("\n Objective Function Value: ", -f) cat("\n Stable Estimate: ", x) cat("\n") } f } eps = 1e-4 r <- nlminb( objective = obj, start = c(alpha, beta, gamma, delta), lower = c( eps, -1+eps, 0+eps, -Inf), upper = c(2-eps, 1-eps, Inf, Inf), y = x, control = control, trace = trace) alpha = r$par[1] beta = r$par[2] gamma = r$par[3] delta = r$par[4] if (doplot) .stablePlot(x, alpha, beta, gamma, delta) if (is.null(title)) title = "Stable Parameter Estimation" if (is.null(description)) description = description() fit = list(estimate = c(alpha, beta, gamma, delta), minimum = -r$objective, code = r$convergence, gradient = r$gradient) new("fDISTFIT", call = as.call(CALL), model = "Stable Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = description() ) } .stablePlot <- function(x, alpha, beta, gamma, delta) { span.min <- stabledist::qstable(0.01, alpha, beta, gamma, delta) span.max <- stabledist::qstable(0.99, alpha, beta, gamma, delta) span = seq(span.min, span.max, length = 100) par(err = -1) z = density(x, n = 100) x = z$x[z$y > 0] y = z$y[z$y > 0] y.points = stabledist::dstable(span, alpha, beta, gamma, delta) ylim = log(c(min(y.points), max(y.points))) plot(x, log(y), xlim = c(span[1], span[length(span)]), ylim = ylim, type = "p", xlab = "x", ylab = "log f(x)") title("Stable Distribution: Parameter Estimation") lines(x = span, y = log(y.points), col = "steelblue") grid() invisible() }
knitr::opts_chunk$set( collapse = TRUE, comment = " fig.width = 7, fig.height = 6, fig.align = 'center' ) library(NFCP) set.seed(412) model_parameters_2F <- NFCP_parameters(N_factors = 2, GBM = TRUE, initial_states = FALSE, N_ME = 5) print(model_parameters_2F) SS_oil_stitched <- stitch_contracts(futures = SS_oil$contracts, futures_TTM = c(1, 5, 9, 13, 17)/12, maturity_matrix = SS_oil$contract_maturities, rollover_frequency = 1/12, verbose = TRUE) matplot(as.Date(rownames(SS_oil_stitched$maturities)), SS_oil_stitched$maturities, type = 'l', main = "Stitched Contract Maturities", ylab = "Time To Maturity (Years)", xlab = "Date", col = 1) print(SS_oil$two_factor) Oil_2F <- NFCP_Kalman_filter( parameter_values = SS_oil$two_factor, parameter_names = names(SS_oil$two_factor), log_futures = log(SS_oil$stitched_futures), futures_TTM = SS_oil$stitched_TTM, dt = SS_oil$dt, verbose = TRUE, debugging = TRUE) Oil_2F_parameters <- SS_oil$two_factor[1:7] Oil_2F_parameters["ME_1"] <- 0.01 Oil_2F_contracts <- NFCP_Kalman_filter( parameter_values = Oil_2F_parameters, parameter_names = names(Oil_2F_parameters), log_futures = log(SS_oil$contracts), futures_TTM = SS_oil$contract_maturities, dt = SS_oil$dt, verbose = TRUE, debugging = TRUE) print(SS_oil$two_factor[8:12]) Oil_1F <- NFCP_MLE( log_futures = log(SS_oil$stitched_futures), dt = SS_oil$dt, futures_TTM= SS_oil$stitched_TTM, N_factors = 1, N_ME = 3, ME_TTM = c(0.5, 1, 1.5), print.level = 0) print(round(rbind(`Estimated Parameter` = Oil_1F$estimated_parameters, `Standard Error` = Oil_1F$standard_errors),4)) print(matrix(c(Oil_1F$MLE, Oil_2F$`Log-Likelihood`), dimnames = list(c("One-Factor", "Two-Factor"), "Log-Likelihood"))) print(round(rbind("One-Factor" = Oil_1F$`Information Criteria`, "Two-Factor" = Oil_2F$`Information Criteria`), 4)) print(round(t(Oil_2F[["Term Structure Fit"]]),4)) CN_table3 <- matrix(nrow = 2, ncol = 2, dimnames = list(c("One-Factor","Two-Factor"), c("RMSE", "Bias"))) CN_table3[,"Bias"] <- c(Oil_1F$`Filtered Error`["Bias"], Oil_2F$`Filtered Error`["Bias"]) CN_table3[,"RMSE"] <- c(Oil_1F$`Filtered Error`["RMSE"], Oil_2F$`Filtered Error`["RMSE"]) print(round(CN_table3, 4)) matplot(as.Date(rownames(Oil_1F$V)), Oil_1F$V, type = 'l', xlab = "", ylab = "Observation Error", main = "Contract Observation Error: One-Factor Model"); legend("bottomright", colnames(Oil_2F$V),col=seq_len(5),cex=0.8,fill=seq_len(5)) matplot(as.Date(rownames(Oil_2F$V)), Oil_2F$V, type = 'l', xlab = "", ylab = "Observation Error", ylim = c(-0.3, 0.2), main = "Contract Observation Error: Two-Factor Model"); legend("bottomright", colnames(Oil_2F$V),col=seq_len(5),cex=0.8,fill=seq_len(5)) matplot(cbind(Oil_1F$`Term Structure Fit`["RMSE",], Oil_2F$`Term Structure Fit`["RMSE",]), type = 'l', main = "Root Mean Squared Error of Futures Contracts", xlab = "Contract", ylab = "RMSE"); legend("right",c("One-Factor", "Two-Factor"), col=1:2,cex=0.8,fill=1:2) SS_figure_4 <- cbind(`Equilibrium Price` = exp(Oil_2F$X[,1]), `Spot Price` = Oil_2F$Y[,"filtered Spot"]) matplot(as.Date(rownames(SS_figure_4)), SS_figure_4, type = 'l', xlab = "", ylab = "Oil Price ($/bbl, WTI)", col = 1, main = "Estimated Spot and Equilibrium Prices for the Futures Data") plot(as.Date(rownames(SS_oil$contracts)), sqrt(Oil_2F_contracts$P_t[1,1,]), type = 'l', xlab = "Date", ylab = "Std. Dev.", main = "Time Series of the Std. Dev for State Variable 1") Enron_values <- c(0.0300875, 0.0161, 0.014, 1.19, 0.115, 0.158, 0.189) names(Enron_values) <- NFCP_parameters(2, TRUE, FALSE, 0, FALSE, FALSE) SS_expected_spot <- spot_price_forecast(x_0 = c(2.857, 0.119), parameters = Enron_values, t = seq(0,9,1/12), percentiles = c(0.1, 0.9)) equilibrium_theta <- Enron_values[!names(Enron_values) %in% c("kappa_2", "lambda_2", "sigma_2", "rho_1_2")] SS_expected_equilibrium <- spot_price_forecast(x_0 = c(2.857, 0), equilibrium_theta, t = seq(0,9,1/12), percentiles = c(0.1, 0.9)) SS_figure_1 <- cbind(SS_expected_spot, SS_expected_equilibrium) matplot(seq(0,9,1/12), SS_figure_1, type = 'l', col = 1, lty = c(rep(1,3), rep(2,3)), xlab = "Time (Years)", ylab = "Spot Price ($/bbl, WTI)", main = "Probabilistic Forecasts for Spot and Equilibrium Prices") SS_expected_spot <- spot_price_forecast(x_0 = c(2.857, 0.119), parameters = Enron_values, t = seq(0,9,1/12), percentiles = c(0.1, 0.9)) SS_futures_curve <- futures_price_forecast(x_0 = c(2.857, 0.119), parameters = Enron_values, futures_TTM = seq(0,9,1/12)) SS_figure_2 <- cbind(SS_expected_spot[,2], SS_futures_curve) matplot(seq(0,9,1/12), log(SS_figure_2), type = 'l', col = 1, xlab = "Time (Years)", ylab = "Log(Price)", main = "Futures Prices and Expected Spot Prices") max_maturity <- max(tail(SS_oil$contract_maturities,1), na.rm = TRUE) oil_TS_1F <- futures_price_forecast(x_0 = Oil_1F$x_t, parameters = Oil_1F$estimated_parameters, futures_TTM = seq(0,max_maturity,1/12)) oil_TS_2F <- futures_price_forecast(x_0 = Oil_2F$x_t, parameters = SS_oil$two_factor, futures_TTM = seq(0,max_maturity,1/12)) matplot(seq(0,max_maturity,1/12), cbind(oil_TS_1F, oil_TS_2F), type = 'l', xlab = "Maturity (Years)", ylab = "Futures Price ($)", main = "Estimated and observed oil futures prices on 1995-02-14"); points(tail(SS_oil$contract_maturities,1), tail(SS_oil$contracts,1)) legend("bottomleft", c("One-factor", "Two-Factor", "Observed"), col=2:4,cex=0.8,fill=c(1,2,0)) V_TSFit <- TSfit_volatility( parameters = SS_oil$two_factor, futures = SS_oil$stitched_futures, futures_TTM = SS_oil$stitched_TTM, dt = SS_oil$dt) matplot(V_TSFit["Maturity",], cbind(Oil_1F$`Term Structure Volatility Fit`["Theoretical Volatility",], V_TSFit["Theoretical Volatility",]), type = 'l', xlab = "Maturity (Years)", ylab = "Volatility (%)", ylim = c(0, 0.5), main = "Volatility Term Structure of Futures Returns"); points( V_TSFit["Maturity",], V_TSFit["Empirical Volatility",]); legend("bottomleft", c("Empirical", "One-Factor", "Two-Factor"),col=0:2,cex=0.8,fill=0:2) simulated_spot_prices <- spot_price_simulate( x_0 = Oil_2F$x_t, parameters = SS_oil$two_factor, t = 1, dt = 1/12, N_simulations = 1e3, antithetic = TRUE, verbose = TRUE) matplot(seq(0,1,1/12), simulated_spot_prices$spot_prices, type = 'l', xlab = "Forecasting Horizon (Years)", ylab = "Spot Price ($/bbl, WTI)", main = "Simulated Crude Oil prices") prediction_interval <- rbind.data.frame(apply(simulated_spot_prices$spot_prices, 1, FUN = function(x) stats::quantile(x, probs = c(0.025, 0.975))), Mean = rowMeans(simulated_spot_prices$spot_prices)) matplot(seq(0,1,1/12), t(prediction_interval), type = 'l', col = c(2,2,1), lwd = 2, lty = c(2,2,1), xlab = "Forecasting Horizon (Years)", ylab = "Spot Price ($/bbl, WTI)", main = "Simulated Crude Oil 95% Confidence Interval") simulated_contracts <- futures_price_simulate(x_0 = c(log(SS_oil$spot[1,1]), 0), parameters = Oil_2F_parameters, dt = SS_oil$dt, N_obs = nrow(SS_oil$contracts), futures_TTM = SS_oil$contract_maturities) matplot(as.Date(rownames(SS_oil$contracts)), simulated_contracts$futures_prices, type = 'l', ylab = "Futures Price ($/bbl, WTI)", xlab = "Observations", main = "Simulated Futures Contracts") Option_prices <- matrix(rep(0,2), nrow = 2, ncol = 3, dimnames = list(c("One-Factor", "Two-Factor"), c("European", "American", "Early Exercise Value"))) strike <- 20 risk_free <- 0.05 option <- 1 future <- 2 time_step <- 1/50 monte_carlo <- 1e5 Option_prices[1,1] <- European_option_value(x_0 = Oil_1F$x_t, parameters = Oil_1F$estimated_parameters, futures_maturity = future, option_maturity = option, K = strike, r = risk_free) Option_prices[2,1] <- European_option_value(x_0 = Oil_2F$x_t, parameters = SS_oil$two_factor, futures_maturity = future, option_maturity = option, K = strike, r = risk_free) Option_prices[1,2] <- American_option_value(x_0 = Oil_1F$x_t, parameters = Oil_1F$estimated_parameters, futures_maturity = future, option_maturity = option, K = strike, r = risk_free, N_simulations = monte_carlo, dt = time_step) Option_prices[2,2] <- American_option_value(x_0 = Oil_2F$x_t, parameters = SS_oil$two_factor, futures_maturity = future, option_maturity = option, K = strike, r = risk_free, N_simulations = monte_carlo, dt = time_step) Option_prices[,3] <- Option_prices[,2] - Option_prices[,1] print(round(Option_prices,3))
IRT.simulate <- function (object, ...) { UseMethod("IRT.simulate") } simulate_mml <- function(object, iIndex=NULL, theta=NULL, nobs=NULL, ...){ nnodes <- nobs A <- object$A xsi <- object$xsi$xsi B <- object$B ndim <- dim(B)[3] guess <- object$guess maxK <- dim(A)[2] if(is.null(iIndex)){ iIndex <- 1:dim(A)[1] } nI <- length(iIndex) if(is.null(theta)){ if(is.null(nnodes)){ nnodes <- nrow(object$person) } t.mean <- object$beta t.sigma <- object$variance if(ndim==1){ theta <- stats::rnorm(nnodes, mean=t.mean, sd=sqrt(t.sigma)) } else { theta <- CDM::CDM_rmvnorm(nnodes, mean=t.mean, sigma=t.sigma) } theta <- matrix(theta, ncol=ndim) } if(is.null(dim(theta)) & ndim==1){ warning("Theta points should be either NULL or a matrix of same dimensionality as the trait distribution.") theta <- matrix(theta, ncol=ndim) } if(ncol(theta) !=ndim){ warning("Theta points should be either NULL or a matrix of same dimensionality as the trait distribution.") theta <- matrix(theta, ncol=ndim) } nnodes <- nrow(theta) p <- IRT.irfprob(object=class(object), A=A, B=B, xsi=xsi, theta=theta, guess=guess, nnodes=nnodes, iIndex=iIndex, maxK=maxK, ... ) res <- matrix( stats::runif(nnodes * nI), nrow=nnodes, ncol=nI) for(ii in 1:nI){ cat.success.ii <- (res[, ii] > t(apply(p[ii,, ], 2, cumsum))) cat.success.ii[is.na(cat.success.ii)] <- FALSE res[, ii] <- c(cat.success.ii %*% rep(1, maxK)) } if ( nrow(object$resp)==nnodes ){ res[ is.na(object$resp) ] <- NA } class(res) <- "IRT.simulate" return(res) } IRT.simulate.tam.mml <- simulate_mml IRT.simulate.tam.mml.2pl <- simulate_mml IRT.simulate.tam.mml.3pl <- simulate_mml IRT.simulate.tam.mml.mfr <- simulate_mml
cols <- c("athlete_display_name", "team_short_display_name", "min", "fg", "fg3", "ft", "oreb", "dreb", "reb", "ast", "stl", "blk", "to", "pf", "pts", "starter", "ejected", "did_not_play", "active", "athlete_jersey", "athlete_id", "athlete_short_name", "athlete_headshot_href", "athlete_position_name", "athlete_position_abbreviation", "team_name", "team_logo", "team_id", "team_abbreviation", "team_color", "team_alternate_color") test_that("ESPN - WBB Player Box", { skip_on_cran() x <- espn_wbb_player_box(game_id = 401276115) expect_equal(colnames(x), cols) expect_s3_class(x, "data.frame") })
subFasID <- function(text = text){ id = list() sum = 0 for (i in 1:length(text)) { if(strsplit(text[i],split = "")[[1]][1] == ">"){ sum = sum + 1 id[[sum]] <- text[i] } } return(unlist(id)) }
split_vectors <- function(x, len_cuts){ if (length(x) != sum(len_cuts)) { return(NULL) } cut_test <- x; dim_each_split <- len_cuts entris <- list() v = 1; s = 1 h <- dim_each_split[v] for (j in 1:length(dim_each_split)) { entris[[v]] <- cut_test[s:h] s = s + dim_each_split[v] v = v + 1 h <- h + dim_each_split[v] } return(entris) }
make.spaghetti = function(x, y, id, group = NULL, data, col = NULL, pch = 16, lty = 1, lwd = 1, title = '', xlab = NA, ylab = NA, legend.title = '', ylim = NULL, cex.axis = 1, cex.title = 1, cex.lab = 1, cex.leg = 1, margins = NULL, legend.inset = -0.3, legend.space = 1) { par.init = par() if (is.na(xlab)) xlab = deparse(substitute(x)) if (is.na(ylab)) ylab = deparse(substitute(y)) sort.x = order(data[ , deparse(substitute(x))]) data = data[sort.x, ] na.x = which(is.na(data[ , deparse(substitute(x))])) na.y = which(is.na(data[ , deparse(substitute(y))])) na.either = union(na.x, na.y) if (length(na.either) > 0) { data = data[-na.either, ] } x = data[ , deparse(substitute(x))] y = data[ , deparse(substitute(y))] id = data[ , deparse(substitute(id))] if (is.null(ylim)) ylim = range(y, na.rm = T) if (length(ylim) !=2) warning('ylim should be a vector of length 2') check = missing(group) if (check) group = NULL if (!check) group = data[ , deparse(substitute(group))] par(bty = 'l') if (is.null(group)) { par(mar = c(4, 4, 2, 2)) if (is.null(col)) col = 'deepskyblue3' } if (!is.null(group)) { par(mar = c(4, 4, 2, 7)) nlevs = length(unique(group)) if (is.null(col)) { palette = c(" " if (nlevs > 11) palette = rep(palette, 50) palette = palette[1:nlevs] } if (!is.null(margins)) par(mar = margins) if (!is.null(col)) palette = col group = as.factor(group) group.names = levels(group) col = group levels(col) = palette col = as.character(col) } plot(y ~ x, col = col, pch = pch, main = title, xlab = xlab, ylab = ylab, ylim = ylim, cex.axis = cex.axis, cex.lab = cex.lab) data.long = data.frame(x, y, id, col, stringsAsFactors = F) seg.list = names(which(table(data.long$id) >= 2)) nsegm = length(seg.list) for (i in 1:nsegm) { subset = data.long[data.long$id == seg.list[i],] for (j in 1:(nrow(subset)-1)) { segments(x0 = subset$x[j], x1 = subset$x[j+1], y0 = subset$y[j], y1 = subset$y[j+1], col = subset$col[j], lwd = lwd) } } if (!is.null(group)) { par(xpd = T) legend(x = "right", inset=c(legend.inset, 0), levels(group), title = legend.title, pch = pch, y.intersp = legend.space, col = palette, bty = 'n', cex = cex.leg) } par(bty = par.init$bty, xpd = par.init$xpd, mar = par.init$mar) }
EvaluationModel.Criterion = function(criterion, ...) { evaluationmodel = EvaluationModel() evaluationmodel = evaluationmodel + criterion args = list(...) if (length(args)>0) { for (i in 1:length(args)){ evaluationmodel = evaluationmodel + args[[i]] } } return(evaluationmodel) }
if (FALSE) { shiny.NormalAndTplot <- function(x=NULL, ...) { UseMethod("shiny.NormalAndTplot") } shiny.NormalAndTplot.htest <- function(x=NULL, ..., NTmethod="htest") { shiny.NormalAndTplot(NormalAndTplot.htest(x, ...), ..., NTmethod=NTmethod) } shiny.NormalAndTplot.default <- function(x=NULL, ...) { distribution.name <- list(...)$distribution.name if (is.null(distribution.name) || (!is.null(distribution.name) && distribution.name != "binomial")) shiny.NormalAndTplot(NormalAndTplot.default(...)) else { xlab <- list(...)$xlab if (is.null(xlab)) xlab <- '"w = p = population proportion"' shiny.NormalAndTplot(NormalAndTplot.default(..., xlab=xlab), df=1) } } shiny.NormalAndTplot.NormalAndTplot <- function(x=NULL, ..., NT=attr(x, "call.list"), NTmethod="default") { if (FALSE) { list(mean0=ifelse(type=="hypothesis", mean0, NA), mean1=mean1, xbar=ifelse(type=="confidence", mean0, xbar), sd=sd, df=df, n=n, xlim=xlim, ylim=ylim, alpha.right=alpha.right, alpha.left=alpha.left, float=float, ntcolors=ntcolors, digits=digits, distribution.name=distribution.name, type=type, zaxis=zaxis, cex.z=cex.z, cex.prob=cex.prob, main=main, xlab=xlab, prob.labels=prob.labels, cex.main=1, key.axis.padding=4.5, number.vars=1, sub=NULL, NTmethod=NTmethod, power=power, beta=beta, ... ) } mean0=NT$mean0 mean1=NT$mean1 xbar=NT$xbar sd=NT$sd logsd=log(sd, 10) df=NT$df n=NT$n stderr=sd/sqrt(n) logstderr=log(stderr, 10) xlim.initial=NT$xlim xlim.potential=NT$xlim + c(-1.1, 1.1)*stderr xlim.xbar=NT$xlim + c(-1, 1)*stderr diff.xlim=diff(NT$xlim)/100 ylim=NT$ylim alpha.right=NT$alpha.right alpha.left=NT$alpha.left float=NT$float ntcolors=NT$ntcolors digits=NT$digits distribution.name=NT$distribution.name type=NT$type zaxis=NT$zaxis cex.z=NT$cex.z cex.prob=NT$cex.prob main=NT$main xlab=NT$xlab prob.labels=NT$prob.labels cex.main=NT$cex.main key.axis.padding=NT$key.axis.padding number.vars=NT$number.vars sub=NT$sub power=NT$power beta=NT$beta x.xx=c("xbar","xbar1-xbar2")[number.vars] list.dots <- list(...) for (i in names(list.dots)) assign(i, list.dots[[i]]) if (type == "confidence" && is.na(mean0)) mean0 <- xbar if (distribution.name %in% c("normal", "z", "binomial") && is.infinite(df)) df <- 0 mu1display <- (!(is.null(mean1)||is.na(mean1))) xbardisplay <- (!(is.null(xbar)||is.na(xbar))) mean1 <- if (mu1display) mean1 else mean0+2*stderr xbar <- if (xbardisplay) xbar else mean0+1.8*stderr ExpressionOrText <- function(x) { if (is.character(x)) return(x) xdp <- if (length(x)>1) deparse(x[[1]], width.cutoff=500) else deparse(x, width.cutoff=500) xdp } numericInput10 <- function (inputId, label, value, min = NA, max = NA, step = NA) { inputTag <- tags$input(id = inputId, type = "number", value = formatNoSci(value)) if (!is.na(min)) inputTag$attribs$min = min if (!is.na(max)) inputTag$attribs$max = max if (!is.na(step)) inputTag$attribs$step = step tagList(label %AND% tags$label(label, `for` = inputId), inputTag) } formatNoSci <- function (x) { if (is.null(x)) return(NULL) format(x, scientific = FALSE, digits = 15) } `%AND%` <- function (x, y) { if (!is.null(x) && !is.na(x)) if (!is.null(y) && !is.na(y)) return(y) return(NULL) } normal.controls <- tabsetPanel( tabPanel("General", shiny::column(6, radioButtons("Binomial", NULL, c("Normal and t"="NorT", "Normal Approximation to the Binomial"="Binom"), if (distribution.name == "binomial") "Binom" else "NorT", inline=TRUE), radioButtons("HypOrConf", NULL, c("Hypothesis"="hypothesis", "Confidence"="confidence"), type, inline=TRUE), radioButtons("NDF", NULL, c("Ignore df slider"="idfs", "Ignore n slider"="ins", "Honor both df and n sliders"="hon2"), switch(NTmethod, default="hon2", htest="ins", power.htest="idfs", binomial="idfs"), inline=TRUE) ), shiny::column(3, div(class="numericOverride", "ylim-hi", numericInput10("ylim-hi", NULL, if (distribution.name == "binomial") 5 else ylim[2], min=.01, step=.1)), checkboxGroupInput("mu1xbar", NULL, c("Display mu[1]", "Display xbar"), c("Display mu[1]","Display xbar")[c(mu1display, xbardisplay)], inline = TRUE) ), shiny::column(3, div(class="sliderInputOverride", "alpha/conf: left, center, right", sliderInput("alpha", NULL, 0, 1, c(alpha.left, 1-alpha.right), .005, width="200px", sep="")), div(class="sliderInputOverride", "n", sliderInput("n", NULL, 1, 150, n, 1, animate=list(interval=2000), width="150px", sep="")) ) ), tabPanel("Normal and t", shiny::column(3, div(class="sliderInputOverride", "mu[0]", sliderInput("mu0", NULL, mean0-50*diff.xlim, mean0+50*diff.xlim, mean0, diff.xlim, width="150px", sep="")), div(class="sliderInputOverride", "mu[a]", sliderInput("mu1", NULL, mean1-50*diff.xlim, mean1+50*diff.xlim, mean1, diff.xlim, animate=list(interval=2000), width="150px", sep="")) ), shiny::column(3, div(class="sliderInputOverride", paste("w=",x.xx, sep=""), sliderInput("xbar", NULL, xbar-50*diff.xlim, xbar+50*diff.xlim, xbar, diff.xlim, animate=list(interval=2000), width="150px", sep="")), div(class="sliderInputOverride", "xlim", sliderInput("xlim", NULL, xlim.potential[1], xlim.potential[2], xlim.initial, 5*diff.xlim, width="150px", sep="")) ), shiny::column(3, div(class="sliderInputOverride", "log(sd, 10)", sliderInput("logsd", NULL, -.5+logsd, .5+logsd, 0+logsd, .1, animate=list(interval=2000), width="150px", sep="")), br(), paste(c("sd: lo","init","hi"), signif(10^(c(-.5+logsd, logsd, .5+logsd)), digits=3), sep="=", collapse=" "), br(), br() ), shiny::column(3, div(class="sliderInputOverride", "df (0=normal)", sliderInput("df", NULL, 0, 200, df, 1, animate=list(interval=2000), width="150px", sep="")) ) ), tabPanel("Normal approximation to the Binomial", shiny::column(4, div(class="sliderInputOverride", "p[0]", sliderInput("p0", NULL, 0, 1, .5, .01, width="150px", sep="")), div(class="sliderInputOverride", "p[1]", sliderInput("p1", NULL, 0, 1, .8, .01, animate=list(interval=2000), width="150px", sep="")) ), shiny::column(4, div(class="sliderInputOverride", "p.hat", sliderInput("p-hat", NULL, 0, 1, .75, .01, animate=list(interval=2000), width="150px", sep="")) ), shiny::column(4, div(class="sliderInputOverride", "xlimBinomial", sliderInput("xlimBinomial", NULL, 0, 1, c(0,1), .1, width="150px", sep="")) ) ), tabPanel("Display Options", shiny::column(5, checkboxGroupInput("displays", NULL, c("Power", "Beta", "Table", "Call", "z axes"), c("Power"[NT$power], "Beta"[NT$beta], "Table"), inline=TRUE) ), shiny::column(4, checkboxGroupInput("probs", NULL, c("Prob values on Graph"="Values","Labels"), c("Values","Labels"), inline=TRUE) ), shiny::column(3, radioButtons("ntcolors", NULL, c("Original Colors"="original", Stoplight="stoplight"), ntcolors, inline=TRUE) )), tabPanel("Fonts", shiny::column(2, div(class="numericOverride", "digits-axis", numericInput10("digits-axis", NULL, digits, min=1, step=1)), br(), div(class="numericOverride", "digits-float", numericInput10("digits-float", NULL, digits, min=1, step=1)), br() ), shiny::column(2, div(class="numericOverride", "cex-top-axis", numericInput10("cex-top-axis", NULL, 1, min=.1, step=.1)), br(), div(class="numericOverride", "cex-prob", numericInput10("cex-prob", NULL, cex.prob, min=.1, step=.1)), br() ), shiny::column(2, div(class="numericOverride", "cex-z", numericInput10("cex-z", NULL, cex.z, min=.1, step=.1)), br(), div(class="numericOverride", "cex-table", numericInput10("cex-table", NULL, 1.2, min=.1, step=.1)), br() ), shiny::column(2, div(class="numericOverride", "cex-main", numericInput10("cex-main", NULL, 1.6, min=.1, step=.1)), br() ), shiny::column(3, div(class="numericOverride", "key-axis-padding", numericInput10("key-axis-padding", NULL, 7, min=.1, step=.1)), br(), div(class="numericOverride", "position.2", numericInput10("position-2", NULL, .17, min=.1, step=.1)), br() )) ) shiny::shinyApp( ui = shiny::fluidPage( shiny::titlePanel(title=NULL, windowTitle="NormalAndT-12"), sidebarLayout(mainPanel=mainPanel( plotOutput("distPlot", width="100%", height="975px"), textOutput("call") ), sidebarPanel=sidebarPanel( tags$head(tags$style(type="text/css", ".sliderInputOverride {display: inline-block; font-size: 12px; line-height: 12px}", ".jslider {display: inline-block; margin-top: 12px}")), tags$head(tags$style(type="text/css", ".radio.inline {font-size: 11px; line-height: 10px}")), tags$head(tags$style(type="text/css", ".checkbox.inline {font-size: 11px; line-height: 10px}")), tags$head(tags$style(type="text/css", ".numericOverride {display: inline-block}", "input[type=number]::-webkit-inner-spin-button, input[type=number]::-webkit-outer-spin-button { -webkit-appearance: none; margin: 0;}")), tags$head(tags$style(type="text/css", " tags$head(tags$style(type="text/css", " tags$head(tags$style(type="text/css", " tags$head(tags$style(type="text/css", " tags$head(tags$style(type="text/css", " tags$head(tags$style(type="text/css", " tags$head(tags$style(type="text/css", " tags$head(tags$style(type="text/css", " tags$head(tags$style(type="text/css", " tags$head(tags$style(type="text/css", " h6( shiny::fluidRow(normal.controls)))) ), server = function(input, output) { NormalAndTInterface <- function( distribution.name, mean0, mu1display, mean1, xbardisplay, xbar, sd, df, n, xlim.lo, xlim.hi, ylim.lo, ylim.hi, alpha.right, alpha.left, float, ntcolors, digits=4, digits.axis, digits.float, HypOrConf, zaxes, cex.z, cex.prob, cex.top.axis, main, xlab, prob.labels, cex.main, key.axis.padding, number.vars, sub, power=power, beta=beta) { NormalAndTplot( mean0=mean0, mean1=mean1, xbar=xbar, sd=sd, df=df, n=n, xlim=c(xlim.lo, xlim.hi), ylim=c(ylim.lo, ylim.hi), alpha.right=alpha.right, alpha.left=alpha.left, float=float, ntcolors=ntcolors, digits=4, digits.axis=digits.axis, digits.float=digits.float, distribution.name=distribution.name, type=HypOrConf, z1axis=zaxes, zaxis=zaxes, cex.z=cex.z, cex.prob=cex.prob, cex.top.axis=cex.top.axis, main=main, xlab=xlab, prob.labels=prob.labels, cex.main=cex.main, key.axis.padding=key.axis.padding, xhalf.multiplier=.65, number.vars=number.vars, sub=sub, power=power, beta=beta ) } ResultNT <- reactive({ NDF <- input$NDF mean0.f <- if (input$HypOrConf=="hypothesis") input$mu0 else NA mean1.f <- if ("Display mu[1]" %in% input$mu1xbar) input$mu1 else NA xbar.f <- if ("Display xbar" %in% input$mu1xbar || input$HypOrConf=="confidence") input$xbar else NA n.f <- switch(NDF, idfs=input$n, ins=NT$n, hon2=input$n) df.f <- switch(NDF, idfs=number.vars*(input$n-1), ins=input$df, hon2=input$df) stderr.f <- (10^input$logsd)/sqrt(n.f) float.f <- "Values" %in% input$probs zaxes.f <- "z axes" %in% input$displays prob.labels.f <- "Labels" %in% input$probs distribution.name.f <- if (df.f==0) "z" else "t" xlim.lo.f <- input$xlim[1] xlim.hi.f <- input$xlim[2] xlab.f <- input$xlab type.f <- input$HypOrConf if (input$Binomial=="Binom") { p0 <- input$p0 p1 <- input$p1 p.hat <- input$"p-hat" n.f <- input$n df.f <- Inf sigma.p0 <- sqrt(p0*(1-p0)/n.f) sigma.p1 <- sqrt(p1*(1-p1)/n.f) s.p.hat <- sqrt(p.hat*(1-p.hat)/n.f) z.calc <- (p.hat-p0)/sigma.p0 mean0.f <- if (input$HypOrConf=="hypothesis") p0 else NA mean1.f <- if ("Display mu[1]" %in% input$mu1xbar) p1 else NA xbar.f <- if ("Display xbar" %in% input$mu1xbar || input$HypOrConf=="confidence") p.hat else NA stderr.f <- if (type=="hypothesis") sigma.p0 else s.p.hat distribution.name.f <- "binomial" xlim.lo.f <- input$xlimBinomial[1] xlim.hi.f <- input$xlimBinomial[2] xlab.f <- "w = p = population proportion" } NormalAndTInterface( distribution.name=distribution.name.f, mean0 =mean0.f, mu1display ="Display mu[1]" %in% input$mu1xbar, mean1 =mean1.f, xbardisplay ="Display xbar" %in% input$mu1xbar, xbar =xbar.f, sd =stderr.f*sqrt(n.f), df =df.f, n =n.f, xlim.lo =xlim.lo.f, xlim.hi =xlim.hi.f, ylim.lo =0, ylim.hi =input$"ylim-hi", alpha.right =1-input$alpha[2], alpha.left =input$alpha[1], float =float.f, ntcolors =input$ntcolors, digits =4, digits.axis =input$"digits-axis", digits.float =input$"digits-float", HypOrConf =type.f, zaxes =zaxes.f, cex.z =input$"cex-z", cex.prob =input$"cex-prob", cex.top.axis =input$"cex-top-axis", main=list( MainSimpler(mean0.f, mean1.f, xbar.f, stderr.f, n.f, df.f, distribution.name.f, digits=input$"digits-axis", number.vars=number.vars, type=type.f), cex=input$"cex-main" ), xlab =xlab.f, prob.labels =prob.labels.f, cex.main =input$"cex-main", key.axis.padding =input$"key-axis-padding", number.vars =number.vars, sub =sub, power ="Power" %in% input$displays, beta ="Beta" %in% input$displays ) }) Result <- reactive({ ResultNT() }) output$distPlot <- renderPlot({ print(Result(), tablesOnPlot="Table" %in% input$displays, cex.table=input$"cex-table", scales=FALSE, prob=FALSE, position.2=input$"position-2") }) output$call <- renderText({ if ("Call" %in% input$displays) attr(ResultNT(), "call") else "" }) }) } }
library(sanitizers) stackAddressSanitize(42)
library(knotR) filename <- "9_26.svg" a <- reader(filename) sym926 <- symmetry_object(a,celtic=FALSE,xver=27) a <- symmetrize(a,sym926) ou926 <- matrix( c( 02,18, 20,04, 06,21, 17,07, 08,26, 15,10, 11,24, 23,13, 25,16 ), byrow=TRUE,ncol=2) jj <- knotoptim(filename, symobj=sym926, ou = ou926, prob=0, iterlim=1000,print.level=2 ) write_svg(jj,filename,safe=FALSE) save(jj,file=sub('.svg','.S',filename))
mxScores <- function(x, control) { if (OpenMx::imxHasDefinitionVariable(x)) { return(mxScores_df(x = x, control = control)) } else { return(mxScores_standard(x = x, control = control)) } } mxScores_standard <- function(x, control) { p <- control$scores_info$p mean_structure <- control$scores_info$mean_structure p_star <- control$scores_info$p_star p_star_seq <- seq_len(p_star) p_star_means <- control$scores_info$p_star_means exp_cov <- OpenMx::mxGetExpected(model = x, component = "covariance") exp_cov_inv <- solve(exp_cov) data_obs <- x$data$observed[, x$manifestVars, drop = FALSE] N <- nrow(data_obs) if (control$linear) { q <- control$scores_info$q q_seq <- control$scores_info$q_seq p_unf <- control$scores_info$p_unf A_deriv <- control$scores_info$A_deriv S_deriv <- control$scores_info$S_deriv m_deriv <- control$scores_info$m_deriv F_RAM <- x$F$values m <- t(x$M$values) B <- solve(diag(x = 1, nrow = NROW(x$A$values)) - x$A$values) E <- B %*% x$S$values %*% t(B) FB <- F_RAM %*% B jac <- matrix(0, nrow = p_star_means, ncol = q) for (i in seq_len(q)) { symm <- FB %*% A_deriv[[i]] %*% E %*% t(F_RAM) jac[p_star_seq, i] <- lavaan::lav_matrix_vech(symm + t(symm) + FB %*% S_deriv[[i]] %*% t(FB)) } for (i in seq_len(q)) { jac[(p_star+1):p_star_means, i] <- FB %*% A_deriv[[i]] %*% B %*% m + FB %*% m_deriv[[i]] } colnames(jac) <- names(x$output$estimate) } else { jac <- OpenMx::omxManifestModelByParameterJacobian(model = x) } if (mean_structure == FALSE) {jac <- jac[p_star_seq, , drop = FALSE]} Dup <- lavaan::lav_matrix_duplication(n = p) V <- 0.5 * t(Dup) %*% kronecker(X = exp_cov_inv, Y = exp_cov_inv) %*% Dup if (mean_structure) { V_m_cov <- matrix(data = 0, nrow = p_star_means, ncol = p_star_means) V_m_cov[p_star_seq, p_star_seq] <- V V_m_cov[(p_star + 1):p_star_means, (p_star + 1):p_star_means] <- exp_cov_inv V <- V_m_cov } cd <- scale(x = data_obs, center = TRUE, scale = FALSE) if (p == 1) { mc <- matrix(apply(X = cd, MARGIN = 1, FUN = function(x) {lavaan::lav_matrix_vech(x %*% t(x))})) } else { mc <- t(apply(X = cd, MARGIN = 1, FUN = function(x) {lavaan::lav_matrix_vech(x %*% t(x))})) } vech_cov <- matrix(data = rep(x = lavaan::lav_matrix_vech(exp_cov), times = N), byrow = TRUE, nrow = N, ncol = p_star) md <- mc - vech_cov if (mean_structure) { exp_means <- OpenMx::mxGetExpected(model = x, component = "means") means <- matrix(data = rep(x = exp_means, times = N), byrow = TRUE, nrow = N, ncol = p) mean_dev <- data_obs - means md <- as.matrix(cbind(md, mean_dev)) } scores <- md %*% V %*% jac return(scores) } mxScores_df <- function(x, control) { p <- control$scores_info$p mean_structure <- control$scores_info$mean_structure p_star <- control$scores_info$p_star p_star_seq <- seq_len(p_star) p_star_means <- control$scores_info$p_star_means p_star_p_means_seq <- (p_star + 1):p_star_means p_unf <- control$scores_info$p_unf data_obs <- x$data$observed[, x$manifestVars, drop = FALSE] N <- nrow(data_obs) Ident <- diag(x = 1, nrow = p_unf) Dup <- lavaan::lav_matrix_duplication(n = p) scores <- matrix(NA, nrow = N, ncol = control$scores_info$q) colnames(scores) <- names(x$output$estimate) cd <- scale(x = data_obs, center = TRUE, scale = FALSE) if (p == 1) { mc <- matrix(apply(X = cd, MARGIN = 1, FUN = function(x) {lavaan::lav_matrix_vech(x %*% t(x))})) } else { mc <- t(apply(X = cd, MARGIN = 1, FUN = function(x) {lavaan::lav_matrix_vech(x %*% t(x))})) } if (mean_structure) { md <- matrix(NA, nrow = N, ncol = p_star_means) } else { md <- matrix(NA, nrow = N, ncol = p_star) } df <- identify_definition_variables(x) df_labels <- df[[1]] df_nr <- length(df_labels) df_data <- x$data$observed[, df[[2]], drop = FALSE] df_indices <- seq_along(df_labels) F_RAM <- x$F$values A <- x$A$values S <- x$S$values m <- t(x$M$values) B <- solve(Ident - A) FB <- F_RAM %*% B E <- B %*% S %*% t(B) if (control$linear) { q <- control$scores_info$q q_seq <- control$scores_info$q_seq A_deriv <- control$scores_info$A_deriv S_deriv <- control$scores_info$S_deriv m_deriv <- control$scores_info$m_deriv jac <- matrix(0, nrow = p_star_means, ncol = q) } RAM_df <- rep(NA, times = df_nr) RAM_df[which(df_labels %in% x$A$labels)] <- "A" RAM_df[which(df_labels %in% x$S$labels)] <- "S" RAM_df[which(df_labels %in% x$M$labels)] <- "M" RAM_coord <- list() for (j in df_indices) { if (RAM_df[j] == "A") { RAM_coord[[j]] <- which(x$A$labels == df_labels[j], arr.ind = TRUE) } if (RAM_df[j] == "S") { RAM_coord[[j]] <- which(x$S$labels == df_labels[j], arr.ind = TRUE) } if (RAM_df[j] == "M") { RAM_coord[[j]] <- which(t(x$M$labels) == df_labels[j], arr.ind = TRUE) } } group <- transform(df_data, group_ID = as.numeric(interaction(df_data, drop = TRUE))) unique_groups <- unique(group$group_ID) for (i in unique_groups) { group_rows <- which(group$group_ID == i) group_n <- NROW(group_rows) df_values <- as.numeric(group[group$group_ID == i, ][1, ]) for (j in df_indices){ if (RAM_df[j] == "A") { A[RAM_coord[[j]]] <- df_values[j] } if (RAM_df[j] == "S") { S[RAM_coord[[j]]] <- df_values[j] } if (RAM_df[j] == "M") { m[RAM_coord[[j]]] <- df_values[j] } } B <- solve(Ident - A) FB <- F_RAM %*% B E <- B %*% S %*% t(B) exp_cov <- F_RAM %*% E %*% t(F_RAM) exp_cov_inv <- solve(exp_cov) if (control$linear) { for (j in seq_len(q)) { symm <- FB %*% A_deriv[[j]] %*% E %*% t(F_RAM) jac[p_star_seq, j] <- lavaan::lav_matrix_vech(symm + t(symm) + FB %*% S_deriv[[j]] %*% t(FB)) } if (mean_structure) { for (j in seq_len(q)) { jac[(p_star+1):p_star_means, j] <- FB %*% A_deriv[[j]] %*% B %*% m + FB %*% m_deriv[[j]] } } } else { x <- OpenMx::omxSetParameters(model = x, labels = df$labels, values = df_values[df_indices]) x <- suppressMessages(OpenMx::mxRun(model = x, useOptimizer = FALSE)) jac <- OpenMx::omxManifestModelByParameterJacobian(model = x) } if (mean_structure == FALSE) {jac <- jac[p_star_seq, , drop = FALSE]} V <- 0.5 * t(Dup) %*% kronecker(X = exp_cov_inv, Y = exp_cov_inv) %*% Dup if (mean_structure) { V_m_cov <- matrix(data = 0, nrow = p_star_means, ncol = p_star_means) V_m_cov[p_star_seq, p_star_seq] <- V V_m_cov[p_star_p_means_seq, p_star_p_means_seq] <- exp_cov_inv V <- V_m_cov } vech_cov <- matrix(data = rep(x = lavaan::lav_matrix_vech(exp_cov), times = group_n), byrow = TRUE, nrow = group_n, ncol = p_star) md[group_rows, 1:p_star] <- mc[group_rows, ] - vech_cov if (mean_structure) { means <- matrix(data = rep(x = FB %*% m, times = group_n), byrow = TRUE, nrow = group_n, ncol = p) means_dev <- as.matrix(data_obs[group_rows, ]) - means md[group_rows, (p_star+1):p_star_means] <- means_dev } scores[group_rows, ] <- md[group_rows, ] %*% V %*% jac } scores } identify_definition_variables <- function(x) { definition_variables <- c() for (i in 1:length(x@matrices)) { definition_variables <- c(definition_variables, sapply(x@matrices[[i]]$labels, OpenMx::imxIsDefinitionVariable)) } definition_variables <- names(which(definition_variables)) list(labels = definition_variables, data = sub(".*\\.", "", definition_variables)) }
isPositiveIntegerOrNaOrNanScalarOrNull <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = 1, zeroAllowed = TRUE, negativeAllowed = FALSE, positiveAllowed = TRUE, nonIntegerAllowed = FALSE, naAllowed = TRUE, nanAllowed = TRUE, infAllowed = FALSE, message = message, argumentName = argumentName) }
source('~/git/derivmkts/R/simprice.R') library(testthat) load('~/git/derivmkts/tests/testthat/option_testvalues.Rdata') test_that(paste('simprice', 'works'), { correct = simprice_S unknown = do.call(simprice, simprice_params) expect_equivalent(as.data.frame(correct), unknown[-1]) } ) print('simprice okay')
knitr::opts_chunk$set(echo = TRUE) library(medfate)
test_that("praatScriptCentreOfGravity default arguments works", { script <- paste( "\nselect Sound 'sampleName$'", "\nfast$ = \"yes\"", "\nTo Spectrum: fast$", "\ncog_2 = Get centre of gravity: 2", "\nprint 'cog_2:0' 'newline$'", "\nRemove\n", sep="") expect_equal(praatScriptCentreOfGravity(), script) }) test_that("praatScriptCentreOfGravity with powers works", { script <- paste( "\nselect Sound 'sampleName$'", "\nfast$ = \"yes\"", "\nTo Spectrum: fast$", "\ncog_2 = Get centre of gravity: 2", "\nprint 'cog_2:0' 'newline$'", "\ncog_1 = Get centre of gravity: 1", "\nprint 'cog_1:0' 'newline$'", "\ncog_0_666666666666667 = Get centre of gravity: 0.666666666666667", "\nprint 'cog_0_666666666666667:0' 'newline$'", "\nRemove\n", sep="") expect_equal(praatScriptCentreOfGravity(powers = c(2,1,2/3)), script) }) test_that("praatScriptCentreOfGravity without fast setting works", { script <- paste( "\nselect Sound 'sampleName$'", "\nfast$ = \"no\"", "\nTo Spectrum: fast$", "\ncog_2 = Get centre of gravity: 2", "\nprint 'cog_2:0' 'newline$'", "\nRemove\n", sep="") expect_equal(praatScriptCentreOfGravity(spectrum.fast = F), script) })
stri_match_all <- function(str, ..., regex) { stri_match_all_regex(str, regex, ...) } stri_match_first <- function(str, ..., regex) { stri_match_first_regex(str, regex, ...) } stri_match_last <- function(str, ..., regex) { stri_match_last_regex(str, regex, ...) } stri_match <- function(str, ..., regex, mode = c("first", "all", "last")) { mode <- match.arg(mode) switch(mode, first = stri_match_first_regex(str, regex, ...), last = stri_match_last_regex(str, regex, ...), all = stri_match_all_regex(str, regex, ...)) } stri_match_all_regex <- function(str, pattern, omit_no_match = FALSE, cg_missing = NA_character_, ..., opts_regex = NULL) { if (!missing(...)) opts_regex <- do.call(stri_opts_regex, as.list(c(opts_regex, ...))) .Call(C_stri_match_all_regex, str, pattern, omit_no_match, cg_missing, opts_regex) } stri_match_first_regex <- function(str, pattern, cg_missing = NA_character_, ..., opts_regex = NULL) { if (!missing(...)) opts_regex <- do.call(stri_opts_regex, as.list(c(opts_regex, ...))) .Call(C_stri_match_first_regex, str, pattern, cg_missing, opts_regex) } stri_match_last_regex <- function(str, pattern, cg_missing = NA_character_, ..., opts_regex = NULL) { if (!missing(...)) opts_regex <- do.call(stri_opts_regex, as.list(c(opts_regex, ...))) .Call(C_stri_match_last_regex, str, pattern, cg_missing, opts_regex) }
RDestimate<-function(formula, data, subset=NULL, cutpoint=NULL, bw=NULL, kernel="triangular", se.type="HC1", cluster=NULL, verbose=FALSE, model=FALSE, frame=FALSE) { call<-match.call() if(missing(data)) data<-environment(formula) formula<-as.Formula(formula) X<-model.frame(formula,rhs=1,lhs=0,data=data,na.action=na.pass)[[1]] Y<-model.frame(formula,rhs=0,lhs=NULL,data=data,na.action=na.pass)[[1]] if(!is.null(subset)){ X<-X[subset] Y<-Y[subset] if(!is.null(cluster)) cluster<-cluster[subset] } if (!is.null(cluster)) { cluster<-as.character(cluster) robust.se <- function(model, cluster){ M <- length(unique(cluster)) N <- length(cluster) K <- model$rank dfc <- (M/(M - 1)) * ((N - 1)/(N - K)) uj <- apply(estfun(model), 2, function(x) tapply(x, cluster, sum)); rcse.cov <- dfc * sandwich(model, meat. = crossprod(uj)/N) rcse.se <- coeftest(model, rcse.cov) return(rcse.se[2,2]) } } na.ok<-complete.cases(X)&complete.cases(Y) if(length(all.vars(formula(formula,rhs=1,lhs=F)))>1){ type<-"fuzzy" Z<-model.frame(formula,rhs=1,lhs=0,data=data,na.action=na.pass)[[2]] if(!is.null(subset)) Z<-Z[subset] na.ok<-na.ok&complete.cases(Z) if(length(all.vars(formula(formula,rhs=1,lhs=F)))>2) stop("Invalid formula. Read ?RDestimate for proper syntax") } else { type="sharp" } covs<-NULL if(length(formula)[2]>1){ covs<-model.frame(formula,rhs=2,lhs=0,data=data,na.action=na.pass) if(!is.null(subset)) covs<-subset(covs,subset) na.ok<-na.ok&complete.cases(covs) covs<-subset(covs,na.ok) } X<-X[na.ok] Y<-Y[na.ok] if(type=="fuzzy") Z<-as.double(Z[na.ok]) if(is.null(cutpoint)) { cutpoint<-0 if(verbose) cat("No cutpoint provided. Using default cutpoint of zero.\n") } if(frame) { if(type=="sharp") { if (!is.null(covs)) dat.out<-data.frame(X,Y,covs) else dat.out<-data.frame(X,Y) } else { if (!is.null(covs)) dat.out<-data.frame(X,Y,Z,covs) else dat.out<-data.frame(X,Y,Z) } } if(is.null(bw)) { bw<-IKbandwidth(X=X,Y=Y,cutpoint=cutpoint,kernel=kernel, verbose=verbose) bws<-c(bw,.5*bw,2*bw) names(bws)<-c("LATE","Half-BW","Double-BW") } else if (length(bw)==1) { bws<-c(bw,.5*bw,2*bw) names(bws)<-c("LATE","Half-BW","Double-BW") } else { bws<-bw } o<-list() o$type<-type o$call<-call o$est<-vector(length=length(bws),mode="numeric") names(o$est)<-names(bws) o$bw<-as.vector(bws) o$se<-vector(mode="numeric") o$z<-vector(mode="numeric") o$p<-vector(mode="numeric") o$obs<-vector(mode="numeric") o$ci<-matrix(NA,nrow=length(bws),ncol=2) o$model<-list() if(type=="fuzzy") { o$model$firststage<-list() o$model$iv<-list() } o$frame<-list() o$na.action<-which(na.ok==FALSE) class(o)<-"RD" X<-X-cutpoint Xl<-(X<0)*X Xr<-(X>=0)*X Tr<-as.integer(X>=0) for(bw in bws){ ibw<-which(bw==bws) sub<- X>=(-bw) & X<=(+bw) if(kernel=="gaussian") sub<-TRUE w<-kernelwts(X,0,bw,kernel=kernel) o$obs[ibw]<-sum(w>0) if(type=="sharp"){ if(verbose) { cat("Running Sharp RD\n") cat("Running variable:",all.vars(formula(formula,rhs=1,lhs=F))[1],"\n") cat("Outcome variable:",all.vars(formula(formula,rhs=F,lhs=1))[1],"\n") if(!is.null(covs)) cat("Covariates:",paste(names(covs),collapse=", "),"\n") } if(!is.null(covs)) { data<-data.frame(Y,Tr,Xl,Xr,covs,w) form<-as.formula(paste("Y~Tr+Xl+Xr+",paste(names(covs),collapse="+",sep=""),sep="")) } else { data<-data.frame(Y,Tr,Xl,Xr,w) form<-as.formula(Y~Tr+Xl+Xr) } mod<-lm(form,weights=w,data=subset(data,w>0)) if(verbose==TRUE) { cat("Model:\n") print(summary(mod)) } o$est[ibw]<-coef(mod)["Tr"] if (is.null(cluster)) { o$se[ibw]<-coeftest(mod,vcovHC(mod,type=se.type))[2,2] } else { o$se[ibw]<-robust.se(mod,cluster[na.ok][w>0]) } o$z[ibw]<-o$est[ibw]/o$se[ibw] o$p[ibw]<-2*pnorm(abs(o$z[ibw]),lower.tail=F) o$ci[ibw,]<-c(o$est[ibw]-qnorm(.975)*o$se[ibw],o$est[ibw]+qnorm(.975)*o$se[ibw]) if(model) o$model[[ibw]]=mod if(frame) o$frame[[ibw]]=dat.out } else { if(verbose){ cat("Running Fuzzy RD\n") cat("Running variable:",all.vars(formula(formula,rhs=1,lhs=F))[1],"\n") cat("Outcome variable:",all.vars(formula(formula,rhs=F,lhs=1))[1],"\n") cat("Treatment variable:",all.vars(formula(formula,rhs=1,lhs=F))[2],"\n") if(!is.null(covs)) cat("Covariates:",paste(names(covs),collapse=", "),"\n") } if(!is.null(covs)) { data<-data.frame(Y,Tr,Xl,Xr,Z,covs,w) form<-as.Formula(paste( "Y~Z+Xl+Xr+",paste(names(covs),collapse="+"), "|Tr+Xl+Xr+",paste(names(covs),collapse="+"),sep="")) form1<-as.Formula(paste("Z~Tr+Xl+Xr+",paste(names(covs),collapse="+",sep=""))) } else { data<-data.frame(Y,Tr,Xl,Xr,Z,w) form<-as.Formula(Y~Z+Xl+Xr|Tr+Xl+Xr) form1<-as.formula(Z~Tr+Xl+Xr) } mod1<-lm(form1,weights=w,data=subset(data,w>0)) mod<-ivreg(form,weights=w,data=subset(data,w>0)) if(verbose==TRUE) { cat("First stage:\n") print(summary(mod1)) cat("IV-RD:\n") print(summary(mod)) } o$est[ibw]<-coef(mod)["Z"] if (is.null(cluster)) { o$se[ibw]<-coeftest(mod,vcovHC(mod,type=se.type))[2,2] } else { o$se[ibw]<-robust.se(mod,cluster[na.ok][w>0]) } o$z[ibw]<-o$est[ibw]/o$se[ibw] o$p[ibw]<-2*pnorm(abs(o$z[ibw]),lower.tail=F) o$ci[ibw,]<-c(o$est[ibw]-qnorm(.975)*o$se[ibw],o$est[ibw]+qnorm(.975)*o$se[ibw]) if(model) { o$model$firststage[[ibw]]<-mod1 o$model$iv[[ibw]]=mod } if(frame) o$frame=dat.out } } return(o) }
plot.tune_xrnet <- function(x, p = NULL, pext = NULL, ...) { if (is.null(x$fitted_model$alphas) || !is.null(p) || !is.null(pext)) { if (is.null(x$fitted_model$alphas)) { xval <- log(as.numeric(rownames(x$cv_mean))) cverr <- x$cv_mean[, 1] cvsd <- x$cv_sd[, 1] xlab <- "log(Penalty)" xopt_val <- log(x$opt_penalty) } else { if (!is.null(p) && !is.null(pext)) { stop("Please only specify either penalty or penalty_ext, cannot specify both at the same time") } else if (!is.null(p)) { if (p == "opt") { p <- x$opt_penalty } p_idx <- match(p, x$fitted_model$penalty) if (is.na(p_idx)) { stop("The penalty value 'p' is not in the fitted model") } xval <- log(as.numeric(colnames(x$cv_mean))) cverr <- x$cv_mean[p_idx, ] cvsd <- x$cv_sd[p_idx, ] xlab <- "log(External Penalty)" xopt_val <- log(x$opt_penalty_ext) } else { if (pext == "opt") { pext <- x$opt_penalty_ext } pext_idx <- match(pext, x$fitted_model$penalty_ext) if (is.na(pext_idx)) { stop("The penalty value 'p' is not in the fitted model") } xval <- log(as.numeric(rownames(x$cv_mean))) cverr <- x$cv_mean[, pext_idx] cvsd <- x$cv_sd[, pext_idx] xlab <- "log(Penalty)" xopt_val <- log(x$opt_penalty) } } graphics::plot( x = xval, y = cverr, ylab = paste0("Mean CV Error (", x$loss, ")"), xlab = xlab, ylim=range(c(cverr - cvsd, cverr + cvsd)), type = "n" ) graphics::arrows( xval, cverr - cvsd, xval, cverr + cvsd, length = 0.025, angle = 90, code = 3, col = "lightgray" ) graphics::points( x = xval, y = cverr, col = "dodgerblue4", pch = 16, ) graphics::abline(v = xopt_val, col = "firebrick") } else { cvgrid <- x$cv_mean cvgrid <- cvgrid[rev(seq_len(nrow(cvgrid))), ] cvgrid <- cvgrid[ , rev(seq_len(ncol(cvgrid)))] minx <- log(x$opt_penalty_ext) miny <- log(x$opt_penalty) contour_colors <- c(" " graphics::filled.contour( x = log(as.numeric(colnames(cvgrid))), y = log(as.numeric(rownames(cvgrid))), z = t(cvgrid), col = colorRampPalette(contour_colors)(25), xlab = "log(External Penalty)", ylab = "log(Penalty)", plot.axes = {axis(1); axis(2); points(minx, miny, col = "red", pch = 16)} ) } }
plotPotential = function(filename, main_title = NULL){ if(filename$file_type != "full"){ stop("This function will not work with a reduced data set.") } plot(x = filename$time, y = filename$potential, lwd = 2, col = "blue", type = "l", xlab = "time (sec)", ylab = "potential (V)", main = main_title) grid() }
tbplots.by.var <- function (xmat, log = FALSE, logx = FALSE, notch = FALSE, xlab = "Measured Variables", ylab = "Reported Values", main = "", label = NULL, plot.order = NULL, xpos = NA, las = 1, cex = 1, adj = 0.5, colr = 8, ...) { zz <- var2fact(xmat) x <- zz[, 1] y <- as.numeric(zz[, 2]) if (is.null(label)) label <- sort(unique(x)) tbplots(split(y, x), log = log, logx = logx, notch = notch, xlab = xlab, ylab = ylab, main = main, label = label, plot.order = plot.order, xpos = xpos, las = las, cex = cex, adj = adj, colr = colr, ...) invisible() }
`cddews` <- function (data, filter.number = 1, family = "DaubExPhase", switch = "direction", correct = TRUE, verbose = FALSE, smooth = TRUE, sm.filter.number = 4, sm.family = "DaubExPhase", levels = 3:6, type = "hard", policy = "LSuniversal", by.level = FALSE, value = 0, dev = var) { now <- proc.time()[1:2] if (nrow(data) != ncol(data)) stop(paste("Sorry, but imwd has only been coded for square images!")) data.wd <- imwd(data, filter.number = filter.number, family = family, type = "station") RawPer <- getdata(data.wd, switch = switch) if (smooth == TRUE) { cat("Now starting to smooth\n") test <- RawPer NS <- dim(test)[1] for (i in 1:NS) { tmp <- test[i, , ] tmp.imwd <- imwd(tmp, filter.number = sm.filter.number, family = sm.family) tmp.imwdTH <- threshold.imwd(tmp.imwd, levels = levels, type = type, policy = policy, value = value, by.level = by.level, dev = dev, compression = FALSE) tmp.imwr <- imwr(tmp.imwdTH) test[i, , ] <- tmp.imwr } RawPer <- test if (correct == FALSE) { cat("OK, so you've chosen to use the raw (uncorrected) periodogram!\n") l <- list(S = RawPer, datadim = dim(data), filter.number = filter.number, family = "DaubExPhase", structure = switch, nlevels = data.wd$nlevels, correct = correct, smooth = smooth, sm.filter.number = sm.filter.number, sm.family = sm.family, levels = levels, type = type, policy = policy, date = date()) } if (correct == TRUE) { A <- D2Amat(-data.wd$nlevels, filter.number = data.wd$filter$filter.number, family = data.wd$filter$family, switch = switch, verbose = verbose) Ainv <- solve(A) first.last.d <- data.wd$fl.dbase$first.last.d first.last.c <- data.wd$fl.dbase$first.last.c firstD <- first.last.d[data.wd$nlevels, 1] lastD <- first.last.d[data.wd$nlevels, 2] LengthD <- lastD - firstD + 1 LEVELS <- data.wd$nlevels TMP <- matrix(aperm(RawPer), nrow = 3 * LEVELS, ncol = LengthD^2,byrow = TRUE) TMP2 <- Ainv %*% TMP data2 <- array(0, dim(RawPer)) for (i in (1:(3 * LEVELS))) { data2[i, , ] <- matrix(TMP2[i, ], nrow = LengthD, ncol = LengthD, byrow = TRUE) } speed <- proc.time()[1:2] - now cat("Took ", sum(speed), "seconds \n") l <- list(S = data2, datadim = dim(data), filter.number = filter.number, family = "DaubExPhase", structure = switch, nlevels = data.wd$nlevels, correct = correct, smooth = smooth, sm.filter.number = sm.filter.number, sm.family = sm.family, levels = levels, type = type, policy = policy, date = date()) } class(l) <- "cddews" return(l) } if (smooth == FALSE) { if (correct == FALSE) { cat("OK, so you've chosen to use the raw (uncorrected periodogram!\n") l <- list(S = RawPer, datadim = dim(data), filter.number = filter.number, family = "DaubExPhase", structure = switch, nlevels = data.wd$nlevels, correct = correct, smooth = smooth, date = date()) } if (correct == TRUE) { A <- D2Amat(-data.wd$nlevels, filter.number = data.wd$filter$filter.number, family = data.wd$filter$family, switch = switch, verbose = verbose) Ainv <- solve(A) first.last.d <- data.wd$fl.dbase$first.last.d first.last.c <- data.wd$fl.dbase$first.last.c firstD <- first.last.d[data.wd$nlevels, 1] lastD <- first.last.d[data.wd$nlevels, 2] LengthD <- lastD - firstD + 1 LEVELS <- data.wd$nlevels TMP <- matrix(aperm(RawPer), nrow = 3 * LEVELS, ncol = LengthD^2, byrow = TRUE) TMP2 <- Ainv %*% TMP data2 <- array(0, dim(RawPer)) for (i in (1:(3 * LEVELS))) { data2[i, , ] <- matrix(TMP2[i, ], nrow = LengthD, ncol = LengthD, byrow = TRUE) } speed <- proc.time()[1:2] - now cat("Took ", sum(speed), "seconds \n") l <- list(S = data2, datadim = dim(data), filter.number = filter.number, family = "DaubExPhase", structure = switch, nlevels = data.wd$nlevels, correct = correct, smooth = smooth, date = date()) } class(l) <- "cddews" return(l) } }