code
stringlengths
1
13.8M
context("PipeOpOVRSplit") test_that("PipeOpOVRSplit - basic properties", { po = PipeOpOVRSplit$new() expect_pipeop(po) expect_data_table(po$input, nrows = 1) expect_data_table(po$output, nrows = 1) expect_pipeop_class(PipeOpOVRSplit) }) test_that("PipeOpOVRSplit - train and predict", { dat = data.table(target = as.factor(rep(c("a", "b", "rest"), each = 10)), feature = rnorm(30)) tsk = TaskClassif$new("test", backend = dat, target = "target") po = PipeOpOVRSplit$new() tout = train_pipeop(po, list(tsk)) expect_equal(po$state$levels, tsk$class_names) expect_multiplicity(tout[[1]]) expect_list(tout[[1]], len = 3) expect_named(tout[[1]], tsk$class_names) expect_true(all(pmap_lgl(list(tout[[1]], names(tout[[1]])), .f = function(task, name) { expect_task(task) all(task$target_names == tsk$target_names) && task$positive == name && task$negative == "rest." && all.equal(task$truth(), factor(ifelse(tsk$truth() == task$positive, task$positive, "rest."), levels = c(task$positive, "rest."))) }))) pout = predict_pipeop(po, list(tsk)) expect_multiplicity(pout[[1]]) expect_list(pout[[1]], len = 3) expect_named(pout[[1]], tsk$class_names) expect_true(all(pmap_lgl(list(pout[[1]], names(pout[[1]])), .f = function(task, name) { expect_task(task) task$target_names == tsk$target_names && task$positive == name && task$negative == "rest." && all.equal(task$truth(), factor(ifelse(tsk$truth() == task$positive, task$positive, "rest."), levels = c(task$positive, "rest."))) }))) }) context("PipeOpOVRUnite") test_that("PipeOpOVRUnite - basic properties", { po = PipeOpOVRUnite$new() expect_pipeop(po) expect_data_table(po$input, nrows = 1) expect_data_table(po$output, nrows = 1) expect_pipeop_class(PipeOpOVRUnite) }) test_that("PipeOpOVRUnite- train and predict", { feature = rep(c(1, 0), c(10, 20)) dat1 = data.table(target = as.factor(rep(c("a", "rest"), c(10, 20))), feature = feature) dat2 = data.table(target = as.factor(rep(c("rest", "b", "rest"), c(10, 10, 10))), feature = feature) dat3 = data.table(target = as.factor(rep(c("rest", "c"), c(20, 10))), feature = feature) tsk1 = TaskClassif$new("t1", backend = dat1, target = "target", positive = "a") tsk2 = TaskClassif$new("t2", backend = dat2, target = "target", positive = "b") tsk3 = TaskClassif$new("t3", backend = dat3, target = "target", positive = "c") po = PipeOpOVRUnite$new() lrn = LearnerClassifRpart$new() lrn$predict_type = "prob" tin = map(list(tsk1, tsk2, tsk3), .f = function(task) { lrn$train(task) lrn$predict(task) }) pout = po$predict(list(as.Multiplicity(tin))) expect_prediction_classif(pout[[1]]) lrn$predict_type = "response" tin = map(list(tsk1, tsk2, tsk3), .f = function(task) { lrn$train(task) lrn$predict(task) }) pout = po$predict(list(as.Multiplicity(tin))) expect_prediction_classif(pout[[1]]) na_response = tin[[1]]$response na_response[1] = NA tin[[1]] = PredictionClassif$new(row_ids = tin[[1]]$row_ids, truth = tin[[1]]$truth, response = na_response) pout = po$predict(list(as.Multiplicity(tin))) expect_prediction_classif(pout[[1]]) expect_equal(pout[[1]]$prob[1, ], c(a = 1/3, b = 1/3, c = 1/3)) tin[[1]] = PredictionClassif$new(row_ids = tin[[1]]$row_ids, truth = tin[[1]]$truth) expect_error(po$predict(list(as.Multiplicity(tin))), regexp = "PipeOpOVRUnite input predictions had missing 'prob' and missing 'response' values") }) context("PipeOpOVRSplit and PipeOpOVRUnite") test_that("PipeOpOVRSplit and PipeOpOVRUnite - train and predict", { feature = rep(c(1, 0), c(10, 20)) dat0 = data.table(target = as.factor(rep(c("a", "b", "c"), each = 10)), feature = feature) dat1 = data.table(target = as.factor(rep(c("a", "rest"), c(10, 20))), feature = feature) dat2 = data.table(target = as.factor(rep(c("rest", "b", "rest"), c(10, 10, 10))), feature = feature) dat3 = data.table(target = as.factor(rep(c("rest", "c"), c(20, 10))), feature = feature) tsk0 = TaskClassif$new("t0", backend = dat0, target = "target") tsk1 = TaskClassif$new("t1", backend = dat1, target = "target", positive = "a") tsk2 = TaskClassif$new("t2", backend = dat2, target = "target", positive = "b") tsk3 = TaskClassif$new("t3", backend = dat3, target = "target", positive = "c") po = PipeOpOVRUnite$new() lrn = LearnerClassifRpart$new() tin = map(list(tsk1, tsk2, tsk3), .f = function(task) { lrn$train(task) lrn$predict(task) }) pout_ref = po$predict(list(as.Multiplicity(tin))) gr = PipeOpOVRSplit$new() %>>% LearnerClassifRpart$new() %>>% PipeOpOVRUnite$new() expect_graph(gr) tout = gr$train(tsk0) expect_list(gr$state$ovrunite, len = 0) expect_null(tout[[1]]) pout = gr$predict(tsk0) expect_equal(pout_ref[[1]]$prob, pout[[1]]$prob) gr$param_set$values$ovrunite.weights = rep(0, 3) expect_true(all.equal(unique(gr$predict(tsk0)[[1]]$prob), t(c(a = 1/3, b = 1/3, c = 1/3)))) }) test_that("PipeOpOVRSplit and PipeOpOVRUnite - task size", { gr = PipeOpOVRSplit$new() %>>% LearnerClassifRpart$new() %>>% PipeOpOVRUnite$new() gr$train(tsk("iris")$filter(c(1:30, 51:80, 101:130))) prd = gr$predict(tsk("iris")$filter(c(1:30, 51:80, 101:130)))[[1]] expect_prediction_classif(prd) expect_true(nrow(prd$data$prob) == 90) })
path.lines <- function(x,plane='Pv',shade.between=FALSE,lab.cycle=FALSE,shade.cycle=FALSE){ if(any(sapply(x, class) == "list")==FALSE) x <- list(x) nl <- length(x) if(plane == 'Pv'){ xlab=~"Specific volume "*italic('v')*"("*m^3*"/kg)" ylab=~"Pressure "*italic('P')*"(bar)" } if(plane == 'Ts'){ xlab=~"Specific entropy "*italic('s')*"((kJ/K)/kg)" ylab=~"Temperature "*italic('T')*"("*degree*"C)" } y <- list(); leg <- array(); linetype<- array() pr <- array(); nv <- array();nT <- array(); nP <- array() ns <- array();nxx <- array(); nyy <- array() vl <- matrix(nrow=2,ncol=nl) pl <- vl; lab <- vl for(i in 1:nl){ y[[i]] <- path.calc(x[[i]]) if(plane == 'Ts'){ y[[i]]$xx <- y[[i]]$s y[[i]]$yy <- y[[i]]$T } if(plane == 'Pv'){ y[[i]]$xx <- y[[i]]$v y[[i]]$yy <- y[[i]]$P } nv[i] <- length(y[[i]]$v) nP[i] <- length(y[[i]]$P) ns[i] <- length(y[[i]]$s) nT[i] <- length(y[[i]]$T) nxx[i] <- length(y[[i]]$xx) nyy[i] <- length(y[[i]]$yy) lab[,i] <- x[[i]]$lab dirpr <- sign(y[[i]]$v[1]- y[[i]]$v[nv[i]]) if(dirpr==1)pr[i] <- " compr " if(dirpr==0)pr[i] <- " " if(dirpr==-1)pr[i] <- " expan " leg[i] <- as.expression(bquote(.(lab[1,i])*"-"*.(lab[2,i])*":"*.(x[[i]]$path)~.(pr[i])~ .(round(y[[i]]$T[1],1))*degree*"C->"*.(round(y[[i]]$T[nT[i]],1))* degree*"C, W="*.(round(y[[i]]$WQtot[1],1))*"kJ/kg, Q="* .(round(y[[i]]$WQtot[2],1))*"kJ/kg")) vl[,i] <- c(min(y[[i]]$xx),max(y[[i]]$xx)) pl[,i] <- c(min(y[[i]]$yy),max(y[[i]]$yy)) linetype[i]=1 if(nl>1){ if(x[[i]]$path=='isotherm') linetype[i]=1 if(x[[i]]$path=='adiabat' ) linetype[i]=2 } else linetype[i]=1 } xlim<- c(0.8*min(vl[1,]), 1.2*max(vl[2,])) ylim<- c(0.8*0, 1.2*max(pl[2,])) plot(y[[1]]$xx,y[[1]]$yy, xlab=xlab, ylab=ylab, xlim=xlim,ylim=ylim,lwd=2,cex.axis=0.8,cex.lab=0.9,type="n") for(i in 1:nl){ lines(y[[i]]$xx,y[[i]]$yy,lwd=2,lty=linetype[i]) x0 <- y[[i]]$xx[0.5*nxx[i]];y0=y[[i]]$yy[0.5*nyy[i]] x1 <- y[[i]]$xx[0.6*nxx[i]];y1=y[[i]]$yy[0.6*nyy[i]] arrows(x0,y0,x1,y1,length=0.15,lwd=2) if(is.null(x[[i]]$shade.under)==FALSE){ if(x[[i]]$shade.under==TRUE) polygon(c(y[[i]]$xx,rev(y[[i]]$xx)), c(y[[i]]$yy,rep(ylim[1],nyy[i])), density=10) } pv <- matrix(nrow=2,ncol=2) pv[1,] <- c(y[[i]]$xx[1],y[[i]]$yy[1]) pv[2,] <- c(y[[i]]$xx[nxx[i]],y[[i]]$yy[nyy[i]]) if(pr[i]=='compr'){ pv[c(2,1),] <- pv[c(1,2),] lab[,i] <- rev(lab[,i]) } if(lab.cycle == FALSE){ dirlab <- sign(pv[2,1]-pv[1,1]);if (dirlab==0) dirlab<-1 xs <- 0.02*dirlab*(1+ 0.5*rnorm(1)) ys <- 0.02*dirlab*(1+ 0.5*rnorm(1)) text(pv[1,1]-xs*xlim[2],pv[1,2]+ys*ylim[2],lab[1,i],cex=0.7) text(pv[2,1]+xs*xlim[2],pv[2,2]+ys*ylim[2],lab[2,i],cex=0.7) } else{ dirlab <- c(-1,-1,1,1) xs <- 0.02*dirlab[i]; ys <- 0.02*dirlab[i] text(pv[1,1]+xs*xlim[2],pv[1,2]+ys*ylim[2],lab[1,i],cex=0.7) } } if(shade.cycle==TRUE){ xbox <- y[[1]]$xx; for(i in 2:nl) xbox <- c(xbox,y[[i]]$xx) ybox <- y[[1]]$yy; for(i in 2:nl) ybox <- c(ybox,y[[i]]$yy) polygon(c(xbox),c(ybox),density=10) } if(shade.between==TRUE){ npts <- length(y[[1]]$xx) xleft <- c(y[[1]]$xx[1],y[[2]]$xx[1]) yleft <- c(y[[1]]$yy[1],y[[2]]$yy[1]) xright <- c(y[[1]]$xx[npts],y[[2]]$xx[npts]) yright <- c(y[[1]]$yy[npts],y[[2]]$yy[npts]) xbox <- c(xleft, y[[1]]$xx, xright, rev(y[[2]]$xx)) ybox <- c(yleft, y[[1]]$yy, yright, rev(y[[2]]$yy)) polygon(c(xbox),c(ybox),density=10) } legend("top", leg, cex=0.8) }
env_add_stylerignore <- function(pd_flat) { if (!env_current$any_stylerignore) { env_current$stylerignore <- pd_flat[0, ] return() } pd_flat_temp <- pd_flat[pd_flat$terminal | pd_flat$is_cached, ] %>% default_style_guide_attributes() is_stylerignore_switchpoint <- pd_flat_temp$stylerignore != lag( pd_flat_temp$stylerignore, default = pd_flat_temp$stylerignore[1] ) pd_flat_temp$first_pos_id_in_segment <- split( pd_flat_temp$pos_id, cumsum(is_stylerignore_switchpoint) ) %>% map(~ rep(.x[1], length(.x))) %>% unlist() pd_flat_temp$lag_newlines <- pd_flat_temp$lag_newlines pd_flat_temp$lag_spaces <- lag(pd_flat_temp$spaces, default = 0) is_terminal_to_ignore <- pd_flat_temp$terminal & pd_flat_temp$stylerignore env_current$stylerignore <- pd_flat_temp[is_terminal_to_ignore, ] } add_stylerignore <- function(pd_flat) { parse_text <- trimws(pd_flat$text) start_candidate <- parse_text == option_read("styler.ignore_start") pd_flat$stylerignore <- rep(FALSE, length(start_candidate)) env_current$any_stylerignore <- any(start_candidate) if (!env_current$any_stylerignore) { return(pd_flat) } pd_flat_terminals <- pd_flat[pd_flat$terminal, ] pd_flat_lat_line1 <- lag(pd_flat$line2, default = 0) on_same_line <- pd_flat$line1 == pd_flat_lat_line1 cumsum_start <- cumsum(start_candidate & !on_same_line) cumsum_stop <- cumsum(parse_text == option_read("styler.ignore_stop")) pd_flat$indicator_off <- cumsum_start + cumsum_stop is_invalid <- cumsum_start - cumsum_stop < 0 | cumsum_start - cumsum_stop > 1 if (any(is_invalid)) { warn(paste0( "Invalid stylerignore sequences found, potentially ignoring some of the ", "markers set.\nSee `help(\"stylerignore\", \"styler\")`." )) } to_ignore <- as.logical(pd_flat$indicator_off %% 2) to_ignore[is_invalid] <- FALSE single_lines_to_ignore <- pd_flat$line1[start_candidate & on_same_line] to_ignore[pd_flat$line1 %in% single_lines_to_ignore] <- TRUE pd_flat$indicator_off <- NULL pd_flat[to_ignore, "stylerignore"] <- TRUE pd_flat } apply_stylerignore <- function(flattened_pd) { if (!env_current$any_stylerignore) { return(flattened_pd) } env_current$stylerignore$pos_id_ <- env_current$stylerignore$pos_id colnames_required_apply_stylerignore <- c( "pos_id_", "lag_newlines", "lag_spaces", "text", "first_pos_id_in_segment" ) to_ignore <- flattened_pd$stylerignore == TRUE not_first <- flattened_pd$stylerignore == lag( flattened_pd$stylerignore, default = FALSE ) flattened_pd <- merge( flattened_pd[!(to_ignore & not_first), ], env_current$stylerignore[, colnames_required_apply_stylerignore], by.x = "pos_id", by.y = "first_pos_id_in_segment", all.x = TRUE, sort = FALSE ) %>% as_tibble() flattened_pd %>% stylerignore_consolidate_col("lag_newlines") %>% stylerignore_consolidate_col("lag_spaces") %>% stylerignore_consolidate_col("text") %>% stylerignore_consolidate_col("pos_id", "pos_id", "pos_id_") %>% arrange_pos_id() } stylerignore_consolidate_col <- function(flattened_pd, col, col_x = paste0(col, ".x"), col_y = paste0(col, ".y")) { flattened_pd[[col]] <- ifelse(is.na(flattened_pd[[col_y]]), flattened_pd[[col_x]], flattened_pd[[col_y]] ) if (col != col_x) { flattened_pd[[col_x]] <- NULL } if (col != col_y) { flattened_pd[[col_y]] <- NULL } flattened_pd }
if(keras_available()) { X_train <- matrix(sample(0:19, 100 * 100, TRUE), ncol = 100) Y_train <- rnorm(100) mod <- Sequential() mod$add(Embedding(input_dim = 20, output_dim = 10, input_length = 100)) mod$add(Dropout(0.5)) mod$add(GRU(16)) mod$add(Dense(1)) mod$add(Activation("sigmoid")) keras_compile(mod, loss = "mse", optimizer = RMSprop()) keras_fit(mod, X_train, Y_train, epochs = 3, verbose = 0) }
library("calmate"); verbose <- Arguments$getVerbose(-10, timestamp=TRUE); dataSet <- "GSE8605"; chipType <- "Mapping10K_Xba142"; tags <- "ACC,-XY,BPN,-XY,RMA,FLN,-XY"; dsT <- AromaUnitTotalCnBinarySet$byName(dataSet, tags=tags, chipType=chipType); dsB <- AromaUnitFracBCnBinarySet$byName(dataSet, tags=tags, chipType=chipType); dsList <- list(total=dsT, fracB=dsB); print(dsList); asn <- CalMaTeCalibration(dsList, fB1=0.33, fB2=0.66); print(asn); dsNList <- process(asn, verbose=verbose); print(dsNList); stop(); ugp <- getAromaUgpFile(dsT); chr <- 17; units <- getUnitsOnChromosome(ugp, chr); ii <- 1; df <- getFile(dsList$total, ii); dfR <- getAverageFile(dsList$total, verbose=verbose); gamma <- extractRawCopyNumbers(df, logBase=NULL, chromosome=chr); gammaR <- extractRawCopyNumbers(dfR, logBase=NULL, chromosome=chr); gamma <- 2*divideBy(gamma, gammaR); df <- getFile(dsList$fracB, ii); beta <- extractRawAlleleBFractions(df, chromosome=chr); dfN <- getFile(dsNList$fracB, ii); betaN <- extractRawAlleleBFractions(dfN, chromosome=chr); dfN <- getFile(dsNList$total, ii); gammaN <- extractRawCopyNumbers(dfN, logBase=NULL, chromosome=chr); subplots(4, ncol=2, byrow=FALSE); plot(beta); title(sprintf("%s", getName(beta))); plot(gamma); plot(betaN); title(sprintf("%s (CalMaTe)", getName(betaN))); plot(gammaN);
fun.N_1 <- function(x, y) { nombres <- colnames(x) resultado <- vector(mode = "list", length = 2) names(resultado) <- c("coef", "CV") tol <- sqrt(.Machine$double.eps) x <- cbind(1, x[, 1], x[, 2], I(x[, 1]^2), I(x[, 2]^2), x[, 1] * x[, 2]) Xsvd <- svd(x) D <- 1 / Xsvd$d D[D <= tol] <- 0 C <- Xsvd$v %*% (crossprod(Xsvd$u, y) * D) rownames(C) <- c("Ind", nombres, paste0(nombres, "^2", sep = ""), "interac") err <- (x %*% C) - y CV <- sqrt(mean((err / (1 - rowSums(Xsvd$u * Xsvd$u)))^2)) CV <- round(CV, digits = 6) resultado$coef <- C resultado$CV <- CV class(resultado) <- "neurona" return(resultado) }
st_sample = function(x, size, ...) UseMethod("st_sample") st_sample.sf = function(x, size, ...) st_sample(st_geometry(x), size, ...) st_sample.sfc = function(x, size, ..., type = "random", exact = TRUE, warn_if_not_integer = TRUE, by_polygon = FALSE) { if (!missing(size) && warn_if_not_integer && any(size %% 1 != 0)) warning("size is not an integer") if (!missing(size) && length(size) > 1) { size = rep(size, length.out = length(x)) ret = lapply(1:length(x), function(i) st_sample(x[i], size[i], type = type, exact = exact, ...)) st_set_crs(do.call(c, ret), st_crs(x)) } else { res = switch(max(st_dimension(x)) + 1, st_multipoints_sample(do.call(c, x), size = size, ..., type = type), st_ll_sample(st_cast(x, "LINESTRING"), size = size, ..., type = type), st_poly_sample(x, size = size, ..., type = type, by_polygon = by_polygon)) if (exact & type == "random" & all(st_geometry_type(res) == "POINT")) { diff = size - length(res) if (diff > 0) { res_additional = st_sample_exact(x = x, size = diff, ..., type = type, by_polygon = by_polygon) res = c(res, res_additional) } else if (diff < 0) { res = res[1:size] } } res } } st_sample.sfg = function(x, size, ...) { st_sample(st_geometry(x), size, ...) } st_poly_sample = function(x, size, ..., type = "random", offset = st_sample(st_as_sfc(st_bbox(x)), 1)[[1]], by_polygon = FALSE) { if (by_polygon && inherits(x, "sfc_MULTIPOLYGON")) { sum_a = units::drop_units(sum(st_area(x))) x = lapply(suppressWarnings(st_cast(st_geometry(x), "POLYGON")), st_sfc, crs = st_crs(x)) a = sapply(x, st_area) ret = mapply(st_poly_sample, x, size = size * a / sum_a, type = type, ...) do.call(c, ret) } else if (type %in% c("hexagonal", "regular", "random")) { if (isTRUE(st_is_longlat(x))) { if (type == "regular") { message_longlat("st_sample") x = st_set_crs(x, NA) } if (type == "hexagonal") stop("hexagonal sampling on geographic coordinates not supported; consider projecting first") } a0 = as.numeric(st_area(st_make_grid(x, n = c(1,1)))) a1 = as.numeric(sum(st_area(x))) if (is.finite(a0) && is.finite(a1) && a0 > a0 * 0.0 && a1 > a1 * 0.0) { r = round(size * a0 / a1) size = if (r == 0) rbinom(1, 1, size * a0 / a1) else r } bb = st_bbox(x) pts = if (type == "hexagonal") { dx = sqrt(a0 / size / (sqrt(3)/2)) hex_grid_points(x, pt = offset, dx = dx) } else if (type == "regular") { dx = as.numeric(sqrt(a0 / size)) offset = c((offset[1] - bb["xmin"]) %% dx, (offset[2] - bb["ymin"]) %% dx) + bb[c("xmin", "ymin")] n = c(round((bb["xmax"] - offset[1])/dx), round((bb["ymax"] - offset[2])/dx)) st_make_grid(x, cellsize = c(dx, dx), offset = offset, n = n, what = "corners") } else if (type == "random") { lon = runif(size, bb[1], bb[3]) lat = if (isTRUE(st_is_longlat(x))) { toRad = pi/180 lat0 = (sin(bb[2] * toRad) + 1)/2 lat1 = (sin(bb[4] * toRad) + 1)/2 y = runif(size, lat0, lat1) asin(2 * y - 1) / toRad } else runif(size, bb[2], bb[4]) m = cbind(lon, lat) st_sfc(lapply(seq_len(nrow(m)), function(i) st_point(m[i,])), crs = st_crs(x)) } pts[x] } else { if (!requireNamespace("spatstat.random", quietly = TRUE)) stop("package spatstat.random required, please install it (or the full spatstat package) first") spatstat_fun = try(get(paste0("r", type), asNamespace("spatstat.random")), silent = TRUE) if (inherits(spatstat_fun, "try-error")) stop(paste0("r", type), " is not an exported function from spatstat.random.") pts = try(spatstat_fun(..., win = spatstat.geom::as.owin(x)), silent = TRUE) if (inherits(pts, "try-error")) stop("The spatstat function ", paste0("r", type), " did not return a valid result. Consult the help file.\n", "Error message from spatstat:\n", pts) st_as_sf(pts)[-1,] } } st_multipoints_sample = function(x, size, ..., type = "random") { if (!inherits(x, "MULTIPOINT")) stop("points sampling only implemented for MULTIPOINT; use sample to sample individual features", call.=FALSE) m = unclass(x) st_sfc(st_multipoint(m[sample(nrow(m), size, ...),]), crs = st_crs(x)) } st_ll_sample = function (x, size, ..., type = "random", offset = runif(1)) { crs = st_crs(x) if (isTRUE(st_is_longlat(x))) { message_longlat("st_sample") st_crs(x) = NA_crs_ } l = st_length(x) if (inherits(l, "units")) l = drop_units(l) if (type == "random") { d = runif(size, 0, sum(l)) } else if (type == "regular") { d = ((1:size) - (1. - (offset %% 1)))/size * sum(l) } else { stop(paste("sampling type", type, "not available for LINESTRING")) } lcs = c(0, cumsum(l)) if (sum(l) == 0) { grp = list(0) message("line is of length zero, only one point is sampled") } else { grp = split(d, cut(d, lcs, include.lowest = TRUE)) grp = lapply(seq_along(x), function(i) grp[[i]] - lcs[i]) } st_sfc(CPL_gdal_linestring_sample(x, grp), crs = crs) } hex_grid_points = function(obj, pt, dx) { bb = st_bbox(obj) dy = sqrt(3) * dx / 2 xlim = bb[c("xmin", "xmax")] ylim = bb[c("ymin", "ymax")] offset = c(x = (pt[1] - xlim[1]) %% dx, y = (pt[2] - ylim[1]) %% (2 * dy)) x = seq(xlim[1] - dx, xlim[2] + dx, dx) + offset[1] y = seq(ylim[1] - 2 * dy, ylim[2] + 2 * dy, dy) + offset[2] y <- rep(y, each = length(x)) x <- rep(c(x, x + dx / 2), length.out = length(y)) xy = cbind(x, y)[x >= xlim[1] & x <= xlim[2] & y >= ylim[1] & y <= ylim[2], ] st_sfc(lapply(seq_len(nrow(xy)), function(i) st_point(xy[i,])), crs = st_crs(bb)) } st_sample_exact = function(x, size, ..., type, by_polygon) { random_pt = st_sample(x = x, size = size, ..., type = type, exact = FALSE) while (length(random_pt) < size) { diff = size - length(random_pt) random_pt_new = st_sample(x, size = diff, ..., type, exact = FALSE, by_polygon = by_polygon) random_pt = c(random_pt, random_pt_new) } if(length(random_pt) > size) { random_pt = random_pt[1:size] } random_pt }
qsiniw<-function(p,alpha,theta,lower = TRUE,log.p = FALSE){ if (log.p == TRUE) { if (lower == TRUE){ log((-log((2/pi)*asin(p))/alpha)^(-1/theta)) }else{ log((-log((2/pi)*asin(1-p))/alpha)^(-1/theta)) } } else { if (lower == TRUE){ (-log((2/pi)*asin(p))/alpha)^(-1/theta) }else{ (-log((2/pi)*asin(1-p))/alpha)^(-1/theta) } } }
AdditionTCFIP <- function() { self <- environment() class(self) <- append('AdditionTCFIP', class(self)) addNumeric <- function(x_n, y_n) x_n + y_n addDouble <- function(x_d, y_d = 0.0, ...) x_d + y_d + ... addInteger <- function(x_i, y_i) x_i + y_i divideByZero <- function(x_n) x_n / 0 generateWarning <- function(x_ = 8L) 1:3 + 1:7 + x_ generateError <- function() stop('generated error') function_return_types <- data.table( function_name = c('addNumeric', 'addDouble', 'addInteger', 'divideByZero', 'generateWarning', 'generateError'), return_value = c('x_n', 'x_d', 'x_i','x_d', 'x_w', 'x_er') ) test_case_definitions <- data.table( function_name = c('addInteger', 'divideByZero', "divideByZero", 'generateWarning', 'generateError'), standard_evaluation = c('correct', 'correct', 'correct', 'correct', 'failure'), type_checking_enforcement = c('erroneous', 'correct', 'correct', 'correct', 'correct'), test_case = list( TestCaseDefinition(list(34L, 44.5), 78L, 'sum 1 integer and 1 double'), TestCaseDefinition(list(1), Inf, '1 / 0'), TestCaseDefinition(list(0), NaN, '0 / 0'), TestCaseDefinition(list(0), 1:3 + 1:7, 'generate warning'), TestCaseDefinition(list(), NA, 'generate error') ) ) self }
structure( list( url = "https://quickstats.nass.usda.gov/api/api_GET?key=API_KEY&commodity_desc=CORN&year=2012&agg_level_desc=STATE&statisticcat_desc=AREA%20HARVESTED&domaincat_desc=NOT%20SPECIFIED&state_alpha=VA&format=JSON", status_code = 413 ), class = "response" )
library(R2MLwiN) mlwin <- getOption("MLwiN_path") while (!file.access(mlwin, mode = 1) == 0) { cat("Please specify the root MLwiN folder or the full path to the MLwiN executable:\n") mlwin <- scan(what = character(0), sep = "\n") mlwin <- gsub("\\", "/", mlwin, fixed = TRUE) } options(MLwiN_path = mlwin) data(gcsemv1, package = "R2MLwiN") summary(gcsemv1) (mymodel1 <- runMLwiN(c(written, csework) ~ 1 + (1 | student), D = "Multivariate Normal", estoptions = list(sort.ignore = TRUE), data = gcsemv1)) (mymodel2 <- runMLwiN(c(written, csework) ~ 1 + female + (1 | school) + (1 | student), D = "Multivariate Normal", data = gcsemv1)) mymodel2@RP["RP2_cov_Intercept_written_Intercept_csework"]/sqrt(mymodel2@RP["RP2_var_Intercept_written"] * mymodel2@RP["RP2_var_Intercept_csework"]) mymodel2@RP["RP1_cov_Intercept_written_Intercept_csework"]/sqrt(mymodel2@RP["RP1_var_Intercept_written"] * mymodel2@RP["RP1_var_Intercept_csework"]) (mymodel3 <- runMLwiN(c(written, csework) ~ 1 + female + (1 + female | school) + (1 | student), D = "Multivariate Normal", data = gcsemv1)) (mymodel4 <- runMLwiN(c(written, csework) ~ 1 + female + (1 + female[1] | school) + (1 | student), D = "Multivariate Normal", estoptions = list(resi.store = TRUE), data = gcsemv1)) mymodel4@RP["RP2_cov_Intercept_written_Intercept_csework"]/sqrt(mymodel4@RP["RP2_var_Intercept_written"] * mymodel4@RP["RP2_var_Intercept_csework"]) mymodel4@RP["RP2_cov_Intercept_written_femaleFemale_1"]/sqrt(mymodel4@RP["RP2_var_Intercept_written"] * mymodel4@RP["RP2_var_femaleFemale_1"]) mymodel4@RP["RP2_cov_Intercept_csework_femaleFemale_1"]/sqrt(mymodel4@RP["RP2_var_Intercept_csework"] * mymodel4@RP["RP2_var_femaleFemale_1"]) u0 <- mymodel4@residual$lev_2_resi_est_Intercept.written u1 <- mymodel4@residual$lev_2_resi_est_Intercept.csework u2 <- mymodel4@residual$lev_2_resi_est_femaleFemale.1 plot(u0, u0, asp = 1) plot(u0, u1, asp = 1) plot(u0, u2, asp = 1) plot(u1, u1, asp = 1) plot(u1, u2, asp = 1) plot(u2, u2, asp = 1) data(tutorial, package = "R2MLwiN") tutorial$binexam <- as.integer(tutorial$normexam > 0) tutorial$binlrt <- as.integer(tutorial$standlrt > 0) (mymodel5 <- runMLwiN(c(logit(binexam), logit(binlrt)) ~ 1, D = c("Mixed", "Binomial", "Binomial"), estoptions = list(sort.ignore = TRUE), data = tutorial))
replace_NAs_with_next_or_previous_non_NA <- function(x, direction = c("previous", "next"), remove_na = FALSE) { if (direction == "next") { x <- rev(x) } v <- !is.na(x) x <- c(NA, x[v])[cumsum(v) + 1] if (direction == "next") { x <- rev(x) } if (remove_na == TRUE) { x <- x[!is.na(x)] } return(x) }
compute_counts <- function(dat, by = NULL, demo = NULL, date = "date", age = "age", agegroup = "agegroup", breaks = NULL){ if(!is.character(by) & !is.null(by)) stop("by needs to be a character verctor or NULL.") if(!is.null(demo) & (agegroup %in% by)){ names(demo)[names(demo) == agegroup] <- "agegroup" if(is.null(breaks)){ start <-grep("\\d+", demo$agegroup, value = TRUE) %>% unique() %>% as.numeric() %>% sort() breaks <- c(start, Inf) } else{ demo <- collapse_age_dist(demo, breaks) } } if(agegroup %in% by){ if(is.null(breaks)){ stop("Need to provide age breaks or a demographics table") } else{ if(age %in% names(dat)){ dat$agegroup <-group_age(dat[[age]], breaks) } else stop(age, "not a column in dat") } } if(!is.null(by)) if(!all(by %in% names(dat))) stop("by needs to be a subset of", setdiff(names(dat), date)) names(dat)[names(dat) == date] <- "date" by <- c("date", by) dat <- drop_na(dat, by) counts <- dat %>% filter(!(lubridate::month(date) == 2 & lubridate::day(date) == 29)) %>% group_by_at(by) %>% summarise(outcome = n()) %>% ungroup() %>% complete(!!!syms(by), fill = list(outcome = 0)) %>% arrange(date) if(!is.null(demo)){ by <- intersect(names(demo), names(counts)) demo <- demo %>% group_by_at(by) %>% summarize(population = sum(population)) %>% ungroup() counts <- left_join(counts, demo, by = by) } return(counts) }
PrepareGeneList <- function(path, fileNm="datalist1"){ data <- readRDS(file=paste0(path, fileNm)); data <- as.data.frame(data$prot.mat); data <- cbind(rownames(data), data) colnames(data) <- c(" dest.file <- paste0(path, fileNm, ".txt") write.table(data, dest.file, append = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE, quote = FALSE); return(dest.file); }
rm(list = ls()) library(tidyverse) library(forcats) library(grid) library(ggtext) source("theme/theme_swd.R") theme_set(theme_swd() + theme( axis.title = element_blank(), axis.title.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), axis.title.x = element_blank(), axis.text = element_blank(), axis.line.x = element_blank(), plot.title = element_text(margin = margin(b = 1, unit = "cm")), plot.subtitle = element_text(color = GRAY3, size = 12, hjust = 0), plot.caption = element_text(margin = margin(t = 1, unit = "cm")), plot.margin = unit(c(1, 1, 1, 6), "cm") )) df <- read_csv(file.path("data", "FIG0605.csv")) %>% pivot_longer(cols = -Category, names_to = "importance", values_to = "value") %>% mutate(value = as.numeric(str_remove(value, "%"))/100) %>% mutate(Category = fct_rev(fct_relevel(factor(Category), "Education", "Agriculture & rural development","Poverty reduction","Reconstruction", "Economic growth","Health","Job creation","Governanace", "Anti-corruption","Transport","Energy","Law & Justice", "Basic infrastructure","Public sector reform","Public financial management"))) %>% mutate(importance = fct_rev(fct_relevel(factor(importance), "Most important", "2nd Most Important", "3rd Most Important"))) %>% mutate(fill = case_when( (Category == "Education" | Category == "Agriculture & rural development" | Category == "Poverty reduction") & (importance == "Most important") ~ BLUE1, (Category == "Education" | Category == "Agriculture & rural development" | Category == "Poverty reduction") & (importance == "2nd Most Important") ~ BLUE2, (Category == "Education" | Category == "Agriculture & rural development" | Category == "Poverty reduction") & (importance == "3rd Most Important") ~ BLUE3, importance == "Most important" ~ GRAY3, importance == "2nd Most Important" ~ GRAY6, T ~ GRAY9 )) df_text_labels <- df %>% filter(importance == "Overall") %>% select(Category, value) %>% mutate(color = case_when(Category == "Education" | Category == "Agriculture & rural development" | Category == "Poverty reduction" ~ BLUE1, T ~ GRAY6)) %>% mutate(label = case_when(Category == "Education" | Category == "Agriculture & rural development" | Category == "Poverty reduction" ~ paste0("<b>",Category,"</b>"), T ~ as.character(Category))) %>% mutate(value_label = case_when(Category == "Education" | Category == "Agriculture & rural development" | Category == "Poverty reduction" ~ paste0("<b>",scales::percent(accuracy = 1, x = value),"</b>"), T ~ as.character(scales::percent(accuracy = 1, x = value)))) pt <- df %>% filter(importance != "Overall") %>% ggplot(aes(x = Category, y = value, group = importance, fill = fill)) + geom_col(position = "stack", width = .69) + scale_fill_identity(guide = F) + geom_text(aes(label = scales::percent(accuracy = 1, x = value)), position = position_stack(vjust = 0), color = "white") + geom_richtext(data = df_text_labels, aes(label = label, x = Category, y = 0, color = color, group = NA, fill = NA), fill = NA, label.color = NA, hjust = 1, vjust = .5, nudge_y = -.05) + geom_richtext(data = df_text_labels, aes(label = value_label, x = Category, y = 0, color = color, group = NA, fill = NA), fill = NA, label.color = NA, hjust = 1, vjust = .5, nudge_y = -.005) + scale_color_identity() + coord_flip(clip = "off") + labs(title = "Top 15 development priorities, according to survey", caption = "N = 4,392. Based on response to item, When considering the development priorities, which one development priority is the most important? Which one is\nthe second most important priority? Which one is the third most important priority? Respondents chose from a list. Top 15 shown.") width <- 8 height <- 6 dev.new(width = width, height = height, noRStudioGD = T) pt ggsave(file.path("plot output", "FIG0605.png"), pt, width = width, height = height)
summary.rsm <- function(object,...){ Y = object if(class(Y) != "rsm") stop("Entry must be from class rsm") vec <- rep(-Inf, max(Y$Klist)) for(K in Y$Klist) vec[K] <- Y$output[[K]]$lower vec <- vec[-c(1:(Y$Klist[1]-1))] cat(paste("Initial settings:\n", Y$N, "vertices \n", Y$R, "subgraphs\n", Y$C, "relations types\n")) cat("\n The optimal number of cluster is K = ", Y$K_star, "; \n with the lower bound equal: ", max(vec), "\n") }
kludgeConvertAwfulR <- function( csv.infilename, csv.outfilename ) { warning( "Kludge pbat input level 2 reached (output is unfixable, padded)." ); .C( "kludgeConvertAwful", as.character(csv.infilename), as.character(csv.outfilename) ); } kludgeConvertR <- function( csv.infilename, csv.outfilename ) { warning( "Kludge pbat input level 1 reached (tries to fix output, should be okay?)." ); status = as.integer(0); status <- .C( "kludgeConvert", as.character(csv.infilename), as.character(csv.outfilename), status )[[3]]; print( status ) } vectorIntersection <- function( a, b ) { remList <- c(); for( i in 1:length(a) ) { if( sum(a[i]==b) < 1 ) remList <- c(remList, i); } if( length(remList) > 0 ) a <- a[-remList]; return(a); } vectorSubtraction <- function( a, b ) { remList <- c(); for( i in 1:length(a) ) { if( sum(a[i]==b) > 0 ) remList <- c(remList, i); } if( length(remList) > 0 ) a <- a[-remList]; return(a); } getPbatlogs <- function() { strs <- dir(pattern="pbatlog.*"); datStrs <- dir(pattern="pbatlog.*dat"); headerStrs <- dir(pattern="pbatlog.*header"); return( vectorSubtraction( vectorSubtraction( strs, datStrs ), headerStrs ) ); } getPbatlog <- function( beforeLogs, afterLogs ) { log <- vectorSubtraction( afterLogs, beforeLogs ); if( length(log)!=1 ) { if( length(log)<1 ) stop( "Pbat terminated before a log-file could be written." ); stop( "Two possible logs were found - if you are running pbat twice simulataneously in the same directory, bad things happen." ); } return(log); } strsplitFix2 <- function( x, split ) { if( length(x) > 1 ) stop( "strSplitFix(...) only works on a single string." ); if( length(x)==0 || x=="" ) return(""); res=unlist( strsplit( x, split, fixed=TRUE ) ); for( i in 1:length(res) ){ if( substring(res[i],1,1)==" " ) res[i] <- substring(res[i],2); if( substring(res[i],strlen(res[i]))==" " ) res[i] <- substring(res[i],1,strlen(res[i])-1); } return( res[res!=""] ); } loadPbatlog <- function( log ){ callfile <- paste( log, ".call", sep="" ); resultfile <- paste( log, ".csv", sep="" ); .C( "launchPbatlog", log, callfile, resultfile, as.integer(0) ); pbatCall <- NULL; pbatData <- NULL; try( pbatCall <- readLines( callfile ) ); if( file.info(resultfile)$size == 0 ) { warning( "Empty output. Generally this indicates the number of informative families in the markers specified is below your current 'min.info' threshhold (or pbat crashed)." ); return( list( call=pbatCall, data=NA ) ); } read <- FALSE; try( { pbatData <- read.csv( resultfile, strip.white=TRUE ); read <- TRUE; } ); if( !read ) { kludgeLog <- paste( resultfile, ".kludge.csv", sep="" ); kludgeConvertR( resultfile, kludgeLog ); try( { pbatData <- read.csv( kludgeLog, strip.white=TRUE ); read <- TRUE } ); if( !read ) { kludgeConvertAwfulR( resultfile, kludgeLog ); try( { pbatData <- read.csv( kludgeLog, strip.white=TRUE ); read <- TRUE } ); } if( !read ) warning( "Data could not be read in, despite kludges." ); } return( list( call=pbatCall, data=pbatData ) ); } loadPbatlog.slow.but.good <- function( log ){ pbatCall <- NULL; pbatData <- NULL; if( !file.exists(log) ) { print( "Nonexistant pbat output file; potentially safe to ignore if running a smaller analysis with multiple processes (the output changes in every PBAT release). Ensure that the output is proper length." ); return( NULL ); } lines <- readLines( log ); NUMLINES <- length(lines); if( NUMLINES < 1 ) { print( "Empty pbat output file; safe to ignore if running a smaller analysis with multiple processes. Ensure that the output is proper length." ); return( NULL ); } and.symbol <- -1; for( i in 1:NUMLINES ){ if( !is.null(lines[i]) && lines[i]!="" ) { if( strfindf(lines[i], "&") != -1 ){ if( and.symbol == -1 ) and.symbol <- i; break; } } } if( and.symbol == -1 ) { if( pbat.getNumProcesses() < 2 ) { print( "ERROR: No data could be found in the file. The pbat output is as follows:" ); print( lines ); } print( "No output in the logfile - just batch commands. (1) Pbat may have crashed. (2) You may be doing a relatively small analysis, so that some processes had nothing to do (so completely safe to ignore in that circumstance). Ensure output is proper length." ); return(NULL); } if( and.symbol > 1 ) pbatCall <- lines[1:(and.symbol-1)]; dataNames <- NULL; firstLine <- strsplitFix2( lines[and.symbol], "&" ); if( firstLine[1] == "Group" ){ dataNames <- firstLine; and.symbol <- and.symbol + 1; } if( and.symbol>NUMLINES && length(dataNames)>0 ) { pbatData <- data.frame( matrix( NA, 1, length(dataNames) ) ); names(pbatData) <- dataNames; return( list( call=pbatCall, data=pbatData ) ); } for( i in and.symbol:NUMLINES ){ nextLine <- strsplitFix2( lines[i], "&" ); pbatData <- rbind( pbatData, nextLine ); } row.names(pbatData) <- 1:nrow(pbatData); pbatData <- data.frame( pbatData ); if( !is.null(dataNames) ){ if( length(dataNames) == ncol(pbatData) ) { names(pbatData) <- dataNames; }else{ print( dataNames ); warning( "Data Names do not match the data!" ); } } if( !is.null(pbatData) ){ for( i in 1:ncol(pbatData) ){ suppressWarnings( curcol <- as.numeric(as.character(pbatData[,i])) ); if( !is.na(sum(curcol)) ) pbatData[,i] <- curcol; } } return( list( call=pbatCall, data=pbatData ) ); } loadPbatlog.bad <- function( log ) { pbatCall <- NULL; pbatData <- NULL; if( !file.exists(log) ) stop( paste("Cannot load the pbat logfile '",log,"'; file does not exist",sep="") ); if( file.exists(paste(log,".dat",sep="")) && file.exists(paste(log,".header",sep="")) ) { header <- read.table( paste(log,".header",sep=""), sep="&", comment.char="", header=TRUE ); pbatData <- read.table( log, sep="&", header=FALSE ); print(length(pbatData)) print(length(header)) warning( "header and data do not match!!!" ); logfile <- file( paste(log,".dat",sep=""), open="r", blocking=FALSE ); pbatCall <- readLines(logfile); NUMLINES <- length(pbatCall); close(logfile); }else { logfile <- file(log, open="r", blocking=FALSE); tmp <- readLines(logfile); NUMLINES <- length(tmp); close(logfile); header <- TRUE; addiLine <- NULL; if( NUMLINES>0 ) { logfile <- file(log, open="r", blocking=FALSE); on.exit(close(logfile)); MARKERSTR <- "Group&"; ; line <- readLines( logfile, n=1 ); namesVector <- NULL; lastLine=-1; for( i in 1:NUMLINES ){ if( substring(line,1,strlen(MARKERSTR))==MARKERSTR ) { namesVector <- make.names( unlist(strsplit(line,"&",fixed=TRUE)) ); break; }else if( strfindf(line,"&")!=-1 ){ addiLine <- unlist(strsplit(line,"&",fixed=TRUE)); namesVector <- "BAD"; header <- FALSE; break; }else{ pbatCall <- c(pbatCall, line); line <- readLines( logfile, n=1 ); } lastLine=i; } if( !is.null(namesVector) && lastLine<NUMLINES ) { pbatData <- read.table( logfile, header=FALSE, sep="&" ); if( length(namesVector)!=length(pbatData) && header==TRUE ) { warning( "Names vector is of improper length! I do not know what to do!" ); }else{ if( header ) { names(pbatData) <- namesVector; }else{ warning( paste("Could not load in header for '",log,"' (bug workaround for multiple processes; safe to ignore).") ); pbatData <- rbind( addiLine, pbatData ); if( pbatData[2,1]==999 ) pbatData[2,1] <- -999; } } ; } else if( lastLine>=NUMLINES ) { pbatData <- read.table( log, header=FALSE, sep="&" ); } } else{ warning( "No logfile exists." ); pbatCall=""; pbatData=""; } } return( list( call=pbatCall, data=pbatData ) ); } loadCurrentPbatLog <- function( beforeLogs ) { afterLogs <- getPbatlogs(); strLog <- getPbatlog( beforeLogs, afterLogs ); return( loadPbatlog( strLog ) ); } loadPbatlogExtended <- function( log ) { callfile <- paste( log, ".call", sep="" ); resultfile <- paste( log, ".csv", sep="" ); numProcesses <- pbat.getNumProcesses(); if( numProcesses==1 ) return( loadPbatlog( log ) ); .C( "launchPbatlogExtended", log, callfile, resultfile, as.integer(numProcesses) ); pbatCall <- NULL; pbatData <- NULL; try( pbatCall <- readLines( callfile ) ); if( file.info(resultfile)$size == 0 ) { warning( "Empty output. Generally this indicates the number of informative families in the markers specified is below your current 'min.info' threshhold (or pbat crashed)." ); return( list( call=pbatCall, data=NA ) ); } read <- FALSE; try( { pbatData <- read.csv( resultfile, strip.white=TRUE ); read <- TRUE; } ); if( !read ) { kludgeLog <- paste( resultfile, ".kludge.csv", sep="" ); kludgeConvertR( resultfile, kludgeLog ); try( { pbatData <- read.csv( kludgeLog, strip.white=TRUE ); read <- TRUE } ); if( !read ) { kludgeConvertAwfulR( resultfile, kludgeLog ); try( { pbatData <- read.csv( kludgeLog, strip.white=TRUE ); read <- TRUE } ); } if( !read ) warning( "Data could not be read in, despite kludges." ); } return( list( call=pbatCall, data=pbatData ) ); } loadPbatlogExtended.slower <- function( log ) { numProcesses <- pbat.getNumProcesses(); if( numProcesses == 1 ) return( loadPbatlog(log) ); res <- loadPbatlog(paste(log,"_1_",numProcesses,sep="")); for( i in 2:numProcesses ){ res2 <- loadPbatlog(paste(log,"_",i,"_",numProcesses,sep="")); if( !is.null(res2) ) { if( is.null( res$data ) ) { res$data <- res2$data; }else if( !is.null(res2$data) ) { names( res2$data ) <- names( res$data ); res$data <- rbind( res$data, res2$data ); } } } res$data <- res$data[!is.na(res$data[,1]),]; rownames(res$data) <- 1:nrow(res$data); return(res); } loadPbatlogConcatenate <- function( log, filename, clean=FALSE ) { numProcesses <- pbat.getNumProcesses(); if( numProcesses == 1 ) { if( !clean ){ file.copy( from=log, to=filename ); }else{ file.rename( from=log, to=filename ); } } firstlog <- paste(log,"_1_",numProcesses,sep=""); if( !clean ){ file.copy( from=firstlog, to=filename ); }else{ file.rename( from=firstlog, to=filename ); } for( i in 2:numProcesses ){ nextlog <- paste(log,"_",i,"_",numProcesses,sep=""); if( file.exists( nextlog ) ){ file.append( filename, nextlog ); if( clean ) file.remove( nextlog ); }else{ cat( "Warning, not all output files exist; PBAT may have crashed or not finished running. See also 'is.finished()'\n" ); } } cat( "Output has been concatenated and left in '", filename, "'.\n", sep="" ); return(invisible()); }
xexp <- function(x) { return(x * exp(x)) } deriv_xexp <- function(x, degree = 1) { stopifnot(is.numeric(degree), degree >= 0) return(exp(x) *(x + degree)) }
library(OpenMx) library(testthat) context("omp") skip_if_not(imxHasOpenMP()) oldONT <- Sys.getenv("OMP_NUM_THREADS") Sys.setenv(OMP_NUM_THREADS = '1') mxOption(key='Number of Threads', value=2) mData = matrix (1) dimnames(mData) = list(c("X"), c("X")) m1 = mxModel("one_is_the_loneliest_number", type="RAM", manifestVars = "X", mxPath(from="X", to = "X", arrows=2, lbound=0, labels= "X"), mxData(mData, type="cov", numObs = 10) ) expect_error(mxRun(m1), "2 threads requested.") if (nchar(oldONT) == 0) { Sys.unsetenv('OMP_NUM_THREADS') } else { Sys.setenv(OMP_NUM_THREADS = oldONT) }
arpv.plot <- function(alpha, phi, df = TRUE, verticals = TRUE) { if (! is.numeric(alpha)) stop("alpha not numeric") if (! is.numeric(phi)) stop("phi not numeric") if (! is.logical(df)) stop("df not logical") if (length(alpha) != length(phi)) stop("alpha and phi not same length") if (! all(0 <= alpha & alpha <= 1)) stop("alpha not in [0, 1]") if (! all(0 <= phi & phi <= 1)) stop("phi not in [0, 1]") if (df) { plot(alpha, phi, xlab = "significance level", ylab = "fuzzy P-value", type = "l") u <- par("usr") lines(c(u[1], alpha[1]), c(0, 0)) lines(c(alpha[length(alpha)], u[2]), c(1, 1)) } else { dens <- diff(phi) / diff(alpha) plot(range(alpha), range(0, dens), type = "n", xlab = "significance level", ylab = "density of randomized P-value") nalpha <- length(alpha) ndens <- length(dens) segments(alpha[-nalpha], dens, alpha[-1], dens) if (verticals) { jalpha <- c(1, nalpha) jdens <- c(1, ndens) segments(alpha[jalpha], rep(0, 2), alpha[jalpha], dens[jdens], lty = 2) if (nalpha > 2) segments(alpha[-jalpha], pmin(dens[-1], dens[-ndens]), alpha[-jalpha], pmax(dens[-1], dens[-ndens]), lty = 2) } } }
Y.matrix.gen <- function(k, kd, nobs, y.train) { XI <- XI.gen(k = k, kd = kd) Y.matrix <- matrix(data = 0.0, nrow = nobs, ncol = k-1L) for( ii in 1L:nobs ) Y.matrix[ii,] <- XI[,y.train[ii]] return( Y.matrix ) }
Hypergeometric2F1 <- function(a,b,c,x) { ret <- NA if(is.nan(x)) { ret <- 0 } else if(x==0) ret <- 1 if(is.na(ret)) { if(b==1 && c==5/2) { integrand1 <- function(u) u^(-2*a+1)*sqrt(u^2-(1-x)) result <- integrate(integrand1, lower=sqrt(1-x),upper=1,rel.tol=1e-12)$value result <- result*3/(x*sqrt(x)) ret <- result } else if(b==1/2 && c==3/2) { if(x==1) { ret <- sqrt(pi)*gamma(1-a)/(2*gamma(3/2-a)) } else { integrand2 <- function(u) u^(2*a-2)*asin(sqrt(1-x)/u) result <- integrate(integrand2, lower=sqrt(1-x),upper=1,rel.tol=1e-12)$value result <- result*(2*a-1)/sqrt(1-x)^(2*a-1)+pi/2-1/sqrt(1-x)^(2*a-1)*asin(sqrt(1-x)) result <- result/sqrt(x) ret <- result } } } if(is.nan(ret)) ret <- 0 ret }
removeByID_UI <- function(id) { ns <- NS(id) tagList( numericInput(ns("removeID"), label="Enter the record ID to be removed", value = 0) ) } removeByID_MOD <- function(input, output, session, rvs) { reactive({ if (is.null(rvs$occs)) { rvs %>% writeLog(type = 'error', "Before processing occurrences, obtain the data in component 1.") return() } if (!(input$removeID %in% rvs$occs$occID)) { rvs %>% writeLog(type = 'error','Entered ID not found.') return() } i <- which(input$removeID == rvs$occs$occID) occs.remID <- rvs$occs[-i,] rvs$removedIDs <- c(rvs$removedIDs, input$removeID) rvs %>% writeLog("Removed occurrence with ID = ", input$removeID, ". Updated data has n = ", nrow(rvs$occs), " records.") return(occs.remID) }) }
transformdata <- function(i.data, i.range.x = NA, i.name = "rates", i.max.na.per = 100, i.function = NULL) { if (is.null(i.range.x)) i.range.x <- NA if (any(is.na(i.range.x)) | !is.numeric(i.range.x) | length(i.range.x) != 2) i.range.x <- c(min(as.numeric(i.data$week)), max(as.numeric(i.data$week))) if (i.range.x[1] < 1) i.range.x[1] <- 1 if (i.range.x[1] >= 52) i.range.x[1] <- 52 if (i.range.x[2] < 1) i.range.x[2] <- 1 if (i.range.x[2] >= 52) i.range.x[2] <- 52 if (i.range.x[1] == i.range.x[2]) i.range.x[2] <- i.range.x[2] - 1 if (i.range.x[2] == 0) i.range.x[2] <- 52 if (!all(c("year", "week") %in% tolower(names(i.data)))) stop("Input data must have a year, week, rate format\n") if (!(i.name %in% names(i.data))) stop(paste0(i.name, " variable not found in input data\n")) data <- i.data[tolower(names(i.data)) %in% c("year", "week") | names(i.data) %in% i.name] names(data)[names(data) == i.name] <- "rates" names(data) <- tolower(names(data)) year <- week <- NULL data <- data %>% filter(!is.na(year) & !is.na(week)) week.f <- i.range.x[1] week.l <- i.range.x[2] data$season <- "" if (week.f > week.l) { i.range.x.length <- 52 - week.f + 1 + week.l i.range.x.values.52 <- data.frame(week = c(week.f:52, 1:week.l), week.no = 1:i.range.x.length) i.range.x.values.53 <- data.frame(week = c(week.f:53, 1:(week.l - 1)), week.no = 1:i.range.x.length) data$season[data$week < week.f] <- paste(data$year[data$week < week.f] - 1, data$year[data$week < week.f], sep = "/") data$season[data$week >= week.f] <- paste(data$year[data$week >= week.f], data$year[data$week >= week.f] + 1, sep = "/") seasons.all <- unique(data$season) seasons.53 <- unique(subset(data, data$week == 53)$season) seasons.52 <- seasons.all[!(seasons.all %in% seasons.53)] data.out <- rbind( merge(data.frame(season = seasons.52, stringsAsFactors = F), i.range.x.values.52, stringsAsFactors = F), merge(data.frame(season = seasons.53, stringsAsFactors = F), i.range.x.values.53, stringsAsFactors = F) ) data.out <- merge(data.out, data, by = c("season", "week"), all.x = T) data.out$year[data.out$week >= week.f] <- as.numeric(substr(data.out$season[data.out$week >= week.f], 1, 4)) data.out$year[data.out$week < week.f] <- as.numeric(substr(data.out$season[data.out$week < week.f], 6, 9)) } else { i.range.x.length <- week.l - week.f + 1 if (week.l == 53) { i.range.x.values.52 <- data.frame(week = week.f:52, week.no = 1:(i.range.x.length - 1)) i.range.x.values.53 <- data.frame(week = (week.f + 1):53, week.no = 1:(i.range.x.length - 1)) } else { i.range.x.values.52 <- data.frame(week = week.f:week.l, week.no = 1:i.range.x.length) i.range.x.values.53 <- data.frame(week = week.f:week.l, week.no = 1:i.range.x.length) } data$season <- paste(data$year, data$year, sep = "/") seasons.all <- unique(data$season) seasons.53 <- unique(subset(data, data$week == 53)$season) seasons.52 <- seasons.all[!(seasons.all %in% seasons.53)] data.out <- rbind( merge(data.frame(season = seasons.52, stringsAsFactors = F), i.range.x.values.52, stringsAsFactors = F), merge(data.frame(season = seasons.53, stringsAsFactors = F), i.range.x.values.53, stringsAsFactors = F) ) data.out <- merge(data.out, data, by = c("season", "week"), all.x = T) data.out$year <- as.numeric(substr(data.out$season, 1, 4)) } data.out$yrweek <- data.out$year * 100 + data.out$week data.out <- subset(data.out, !is.na(data.out$week.no)) data.out$week <- NULL week.no <- season <- rates <- NULL if (!is.null(i.function)) data.out <- aggregate(rates ~ season + week.no, data = data.out, FUN = i.function) data.out <- data.out %>% select(week.no, season, rates) %>% spread(season, rates) data.out <- merge(i.range.x.values.52, data.out, by = "week.no", all.x = T) data.out <- data.out[apply(data.out, 2, function(x) sum(is.na(x)) / length(x) < i.max.na.per / 100)] data.out <- data.out[order(data.out$week.no), ] rownames(data.out) <- data.out$week data.out$week <- NULL data.out$week.no <- NULL transformdata.output <- list(data = data.out) transformdata.output$call <- match.call() return(transformdata.output) }
generate.rho <- function( wtsum, pa.vec, p, rhodefault = -1, maxgapf = 0.9 ) { if( rhodefault < 0 ) { trialrho <- max( 0.001, 1.0 / wtsum ) } else { trialrho <- rhodefault } if( trialrho <= 0 | trialrho >= 1 ) { stop( 'Sorry - failed to find suitable value for rho (0 < rho < 1)!' ) } rho <- numeric( length = p * 21 * p* 21 ) rho.raw <- .C( 'guess_rho_matrix', as.double( rho ), as.double( pa.vec ), as.double( p ), as.double( maxgapf ), as.double( trialrho ) ) rho.vec <- unlist( rho.raw[ 1 ] ) rho.mat <- matrix( rho.vec, p * 21, p * 21, byrow = TRUE ) sum( rho.mat ) return( rho.mat ) } precision <- function( S.shrinked, rho ) { p <- nrow( S.shrinked ) X <- matrix( 0, p, p ) W <- matrix( 0, p, p ) Wd <- rep(0,p) Wdj <- rep(0,p) info <- 0 P <- matrix( .Fortran( 'glassofast', as.integer( nrow( S.shrinked ) ), as.double( S.shrinked ), as.double( rho ), as.double( 1e-4 ), as.integer( 1000 ), as.integer( 0 ), as.integer( 0 ), as.double( X ), as.double( W ), as.double( Wd ), as.double( Wdj ), as.integer( info ) )[[ 8 ]], p, p ) return( P ) }
listFilesInZip <- function(zippath){ utils::unzip(zipfile = zippath, list = T) }
as_survey_design <- function(.data, ...) { UseMethod("as_survey_design") } as_survey_design.data.frame <- function(.data, ids = NULL, probs = NULL, strata = NULL, variables = NULL, fpc = NULL, nest = FALSE, check_strata = !nest, weights = NULL, pps = FALSE, variance = c("HT", "YG"), ...) { ids <- srvyr_select_vars(rlang::enquo(ids), .data, check_ids = TRUE) probs <- srvyr_select_vars(rlang::enquo(probs), .data) strata <- srvyr_select_vars(rlang::enquo(strata), .data) fpc <- srvyr_select_vars(rlang::enquo(fpc), .data) weights <- srvyr_select_vars(rlang::enquo(weights), .data) variables <- srvyr_select_vars(rlang::enquo(variables), .data) if (is.null(ids)) ids <- ~1 out <- survey::svydesign( ids, probs, strata, variables, fpc, .data, nest, check_strata, weights, pps ) as_tbl_svy( out, list(ids = ids, probs = probs, strata = strata, fpc = fpc, weights = weights) ) } as_survey_design.survey.design2 <- function(.data, ...) { as_tbl_svy(.data) } as_survey_design.tbl_lazy <- function(.data, ids = NULL, probs = NULL, strata = NULL, variables = NULL, fpc = NULL, nest = FALSE, check_strata = !nest, weights = NULL, pps = FALSE, variance = c("HT", "YG"), ...) { ids <- rlang::enquo(ids) probs <- rlang::enquo(probs) strata <- rlang::enquo(strata) fpc <- rlang::enquo(fpc) weights <- rlang::enquo(weights) variables <- rlang::enquo(variables) survey_vars_local <- get_lazy_vars( data = .data, id = !!ids, !!probs, !!strata, !!fpc, !!weights, !!variables ) ids <- srvyr_select_vars(ids, survey_vars_local, check_ids = TRUE) probs <- srvyr_select_vars(probs, survey_vars_local) strata <- srvyr_select_vars(strata, survey_vars_local) fpc <- srvyr_select_vars(fpc, survey_vars_local) weights <- srvyr_select_vars(weights, survey_vars_local) variables <- srvyr_select_vars(variables, survey_vars_local) if (is.null(ids)) ids <- ~1 out <- survey::svydesign( ids, probs, strata, variables, fpc, survey_vars_local, nest, check_strata, weights, pps ) out$variables <- .data as_tbl_svy( out, list(ids = ids, probs = probs, strata = strata, fpc = fpc, weights = weights) ) } as_survey_design_ <- function(.data, ids = NULL, probs = NULL, strata = NULL, variables = NULL, fpc = NULL, nest = FALSE, check_strata = !nest, weights = NULL, pps = FALSE, variance = c("HT", "YG")) { as_survey_design( .data, ids = !!n_compat_lazy(ids), probs = !!n_compat_lazy(probs), strata = !!n_compat_lazy(strata), variables = !!n_compat_lazy(variables), fpc = !!n_compat_lazy(fpc), nest = nest, check_strata = check_strata, weights = !!n_compat_lazy(weights), pps = pps, variance = variance ) }
penalty_goric <- function(Amat, meq, LP, correction = FALSE, sample.nobs = NULL, ...) { if (correction) { N <- sample.nobs if (all(c(Amat) == 0)) { lPT <- ncol(Amat) PT <- ( (N * (lPT + 1) / (N - lPT - 2)) ) } else { if (attr(LP, "method") == "boot") { lPT <- 0 : ncol(Amat) PT <- sum( ( (N * (lPT + 1) / (N - lPT - 2) ) ) * LP) } else if (attr(LP, "method") == "pmvnorm") { min.col <- ncol(Amat) - nrow(Amat) max.col <- ncol(Amat) - meq lPT <- min.col : max.col PT <- sum( ( (N * (lPT + 1) / (N - lPT - 2) ) ) * LP) } } } else { if (all(c(Amat) == 0)) { PT <- 1 + ncol(Amat) } else { if (attr(LP, "method") == "boot") { PT <- 1 + sum(0 : ncol(Amat) * LP) } else if (attr(LP, "method") == "pmvnorm") { min.col <- ncol(Amat) - nrow(Amat) max.col <- ncol(Amat) - meq PT <- 1 + sum(min.col : max.col * LP) } } } return(PT) }
rgt <- function (n, mu = 0, sigma = 1, df = stop("no df arg")) { mu + sigma * rt(n, df = df) }
mc <- as.factor(c("Ger", "other", "other", "Aus")) mt <- data.frame(ID = 1:4, mc = mc, text = c(NA, "Eng", "Aus", "Aus2"), stringsAsFactors = FALSE) mt_gads <- import_DF(mt) test_that("Errors collapse mc text",{ expect_error(collapseMC_Text(mt_gads, mc_var = "some_var", text_var = "text", mc_code4text = "other"), "'mc_var' is not a variable in the GADSdat.") expect_error(collapseMC_Text(mt_gads, mc_var = "mc", text_var = "some_var", mc_code4text = "other"), "'text_var' is not a variable in the GADSdat.") mtcars_g <- import_DF(mtcars) expect_error(collapseMC_Text(mtcars_g, mc_var = "cyl", text_var = "gear", mc_code4text = "other"), "'mc_var' must be a labeled integer.") }) test_that("Errors mc_value4text collapse mc text",{ expect_error(collapseMC_Text(mt_gads, mc_var = "mc", text_var = "text", mc_code4text = 3), "'mc_code4text' must be a character of length 1.") expect_error(collapseMC_Text(mt_gads, mc_var = "mc", text_var = "text", mc_code4text = c("1", "2")), "'mc_code4text' must be a character of length 1.") expect_error(collapseMC_Text(mt_gads, mc_var = "mc", text_var = "text", mc_code4text = "other_"), "'mc_code4text' must be a 'valLabel' entry for 'mc_var'.") }) test_that("Append variable label",{ mt_gads2 <- changeVarLabels(mt_gads, varName = "ID", varLabel = "id") mt_gads2t <- append_varLabel(mt_gads2, varName = "ID", label_suffix = "(recoded)") expect_equal(mt_gads2t$label$varLabel[1], "id (recoded)") mt_gads2u <- append_varLabel(mt_gads2, varName = "mc", label_suffix = "(recoded)") expect_equal(mt_gads2u$label$varLabel[2], "(recoded)") mt_gads2v <- append_varLabel(mt_gads2, varName = "mc", label_suffix = "") expect_equal(mt_gads2v$label$varLabel[2], NA_character_) }) test_that("Combine mc and text",{ test <- collapseMC_Text(mt_gads, mc_var = "mc", text_var = "text", mc_code4text = "other") expect_true("mc_r" %in% names(test$dat)) expect_equal(test$labels[6, "varLabel"], "(recoded)") expect_equal(test$dat$mc_r, c(2, 4, 1, 1)) test_dat <- extractData(test) expect_equal(test_dat$mc_r, c("Ger", "Eng", "Aus", "Aus")) }) test_that("Combine mc and text into old variables",{ test <- collapseMC_Text(mt_gads, mc_var = "mc", text_var = "text", mc_code4text = "other", var_suffix = NULL, label_suffix = NULL) expect_false("mc_r" %in% names(test$dat)) expect_equal(test$dat$mc, c(2, 4, 1, 1)) test_dat <- extractData(test) expect_equal(test_dat$mc, c("Ger", "Eng", "Aus", "Aus")) }) test_that("Combine mc and text into old variables via empty string",{ test <- collapseMC_Text(mt_gads, mc_var = "mc", text_var = "text", mc_code4text = "other", var_suffix = "", label_suffix = NULL) expect_false("mc_r" %in% names(test$dat)) expect_equal(test$dat$mc, c(2, 4, 1, 1)) test_dat <- extractData(test) expect_equal(test_dat$mc, c("Ger", "Eng", "Aus", "Aus")) }) test_that("Combine mc and text with Missings on mcs",{ mt_gads2 <- recodeGADS(mt_gads, varName = "mc", oldValues = c(1, 2, 3), newValues = c(-9, -8, 1), existingMeta = "value") mt_gads2 <- changeValLabels(mt_gads2, "mc", value = c(1, -8, -9), c("Aus", "missing other", "missing")) mt_gads2 <- checkMissings(mt_gads2) test <- collapseMC_Text(mt_gads2, mc_var = "mc", text_var = "text", mc_code4text = "Aus") expect_equal(test$dat$mc_r, c(-8, 3, 1, 2)) test_dat <- extractData(test) expect_equal(test_dat$mc_r, c(NA, "Eng", "Aus", "Aus2")) }) test_that("Combinations of mc_code4text and missing in text variable",{ mt_gads2 <- recodeGADS(mt_gads, varName = "mc", oldValues = c(1, 2, 3), newValues = c(-9, 3, 1), existingMeta = "value") mt_gads2 <- changeValLabels(mt_gads2, "mc", value = c(1, 3, -9), c("Aus", "other", "missing")) mt_gads2 <- checkMissings(mt_gads2) test <- collapseMC_Text(mt_gads2, mc_var = "mc", text_var = "text", mc_code4text = "other") expect_equal(test$dat$mc_r, c(3, 1, 1, 4)) test_dat <- extractData(test) expect_equal(test_dat$mc_r, c("other", "Aus", "Aus", "Aus2")) }) suppressWarnings(testMC <- import_spss("helper_spss_recodeMC.sav")) test_that("Combination of mc_code4text and labeled missing in text variable",{ test <- collapseMC_Text(testMC, mc_var = "mc", text_var = "text", mc_code4text = "other") expect_equal(test$dat$mc_r, c(-9, 1, 2, -9, 4, 3, -9)) test_dat <- extractData(test) expect_equal(test_dat$mc_r, c(NA, "Ger", "Eng", NA, "Aus", "other", NA)) })
parseIndex <- function (file) { empty <- data.frame(index = character(), description = character(), stringsAsFactors = FALSE) if (!file.exists(file)) return(empty) rl <- readLines(file) if (!length(rl)) return(empty) lines <- (regexpr("^", rl) > 0) index <- gsub(" +.*$", "", rl[!lines]) description <- gsub("^.*? +", "", rl[!lines]) return(data.frame(index = index, description = description, stringsAsFactors = FALSE)) }
test_that("TWIT_paginte_max_id respects max_id and since_id", { simple_timeline <- function(...) { r <- TWIT_paginate_max_id(NULL, "/1.1/statuses/user_timeline", list(screen_name = "JustinBieber"), n = 100, ... ) tweets_with_users(r)[1:10] } base <- simple_timeline() older <- simple_timeline(max_id = base) expect_true(min(format_date(older$created_at)) < min(format_date(base$created_at))) base2 <- simple_timeline(since_id = older) expect_length(intersect(base$id, base2$id), nrow(base)) }) test_that("TWIT_paginte_cursor respects cursor", { page1 <- get_followers("JustinBieber") page2 <- get_followers("JustinBieber", cursor = page1) expect_length(intersect(page1$from_id, page2$from_id), 0) })
L_1way_RM_ANOVA <- function(dat, group, ID, contrast1=NULL, contrast2=NULL, verb=TRUE) { m1=anova(lm(dat~ID + group)) within_ss <- sum(m1$`Sum Sq`[2:3]) eta_sq <- m1$`Sum Sq`[2]/within_ss N <- m1$Df[1]+1 S_12 <- -0.5 * N * (log(m1$`Sum Sq`[3]) - log(within_ss)) k <- m1$Df[2]+1 nulfg <- 0 if (k > 2) { if (is.null(contrast1)) { conta <- contr.poly(k, scores = 1:k) contrast1 <- conta[,1] contrast2 <- conta[,2] nulfg <- NULL }} gp_means <- tapply(dat, group, mean) SS_1 <- N * sum(contrast1*gp_means)^2/(sum(contrast1^2)) SS_2 <- N * sum(contrast2*gp_means)^2/(sum(contrast2^2)) r_SS_1 <- within_ss - SS_1 r_SS_2 <- within_ss - SS_2 S_cont_12 <- -0.5*N*(log(r_SS_1) - log(r_SS_2)) S_cont1_means <- -0.5*N*(log(r_SS_1) - log(m1$`Sum Sq`[3])) datf <- data.frame(dat,group) mean_out <- aggregate(datf[1],datf[2],mean) plot(mean_out) Fval <- m1$`F value`[2] dfv <- m1$Df Pval <- m1$`Pr(>F)`[2] Fval_c1 <- SS_1/m1$`Mean Sq`[3] Pval_c1 <- pf(Fval_c1, 1, m1$Df[3], lower.tail = FALSE) if(verb) cat("\nSupport for group means versus null = ", round(S_12,3), sep= "", "\n Support for contrast 1 ", if (is.null(nulfg)) "(linear) ", "versus group means model = ", round(S_cont1_means,3), "\n Support for contrast 1 versus contrast 2 ", if (is.null(nulfg)) "(quadratic) ", "= ", round(S_cont_12,3), "\n\nOverall analysis F(",dfv[2],",",dfv[3],") = ", round(Fval,3), ", p = ", round(Pval,5), ", partial eta-squared = ", round(eta_sq,3), "\nContrast 1 F(1,",dfv[3],") = ", round(Fval_c1,3), ", p = ", round(Pval_c1,5), "\n ") df1 <- c(1, m1$Df[3]) invisible(list(S.12 = S_12, S.1m = S_cont1_means, S.cont.12 = S_cont_12, contrast1 = contrast1, contrast2 = contrast2, gp.means = mean_out, df = m1$Df, F.val = Fval, P.val = Pval, eta.sq = eta_sq, Fval.c1 = Fval_c1, df.1 = df1, P.val1 = Pval_c1)) }
require(SkewHyperbolic) options(digits=20) param <- c(0,1,0,10) q <- c(-Inf,-1,0,1,Inf) pskewhyp(q, param = param) pskewhyp(q, param = param, lower.tail = FALSE) pskewhyp(q, param = param, valueOnly = FALSE) pskewhyp(q, param = param, valueOnly = FALSE, intTol = 10^(-12)) x <- rskewhyp(1, param = param) x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param) - x qskewhyp(pskewhyp(x, param = param), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-8)), param = param, uniTol = 10^(-8)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, method = "integrate") - x qskewhyp(pskewhyp(x, param = param), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-8)), param = param, uniTol = 10^(-8), method = "integrate") - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, uniTol = 10^(-10), method = "integrate") - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") - x qskewhyp(pskewhyp(10, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") - 10 qskewhyp(pskewhyp(-10, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") + 10 param <- c(0,1,10,20) q <- c(-Inf,-1,0,1,Inf) pskewhyp(q, param = param) pskewhyp(q, param = param, lower.tail = FALSE) pskewhyp(q, param = param, valueOnly = FALSE) pskewhyp(q, param = param, valueOnly = FALSE, intTol = 10^(-12)) x <- rskewhyp(1, param = param) x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param) - x qskewhyp(pskewhyp(x, param = param), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-8)), param = param, uniTol = 10^(-8)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, method = "integrate") - x qskewhyp(pskewhyp(x, param = param), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-8)), param = param, uniTol = 10^(-8), method = "integrate") - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, uniTol = 10^(-10), method = "integrate") - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") - x qskewhyp(pskewhyp(10, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") - 10 qskewhyp(pskewhyp(-10, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") + 10 param <- c(0,1,1,1) q <- c(-Inf,-1,0,1,Inf) pskewhyp(q, param = param) pskewhyp(q, param = param, lower.tail = FALSE) pskewhyp(q, param = param, valueOnly = FALSE) pskewhyp(q, param = param, valueOnly = FALSE, intTol = 10^(-12)) param <- c(0,1,-10,5) q <- c(-Inf,-1,0,1,Inf) pskewhyp(q, param = param) pskewhyp(q, param = param, lower.tail = FALSE) pskewhyp(q, param = param, valueOnly = FALSE) pskewhyp(q, param = param, valueOnly = FALSE, intTol = 10^(-12)) param <- c(0,1,5,5) q <- c(-Inf,-1,0,1,Inf) pskewhyp(q, param = param) pskewhyp(q, param = param, lower.tail = FALSE) pskewhyp(q, param = param, valueOnly = FALSE) pskewhyp(q, param = param, valueOnly = FALSE, intTol = 10^(-12)) x <- rskewhyp(1, param = param) x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param) - x qskewhyp(pskewhyp(x, param = param), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-8)), param = param, uniTol = 10^(-8)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, method = "integrate") - x qskewhyp(pskewhyp(x, param = param), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-8)), param = param, uniTol = 10^(-8), method = "integrate") - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, uniTol = 10^(-10), method = "integrate") - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") - x qskewhyp(pskewhyp(10, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") - 10 qskewhyp(pskewhyp(-10, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") + 10 param <- c(1,2,20,10) q <- c(-Inf,-1,0,1,Inf) pskewhyp(q, param = param) pskewhyp(q, param = param, lower.tail = FALSE) pskewhyp(q, param = param, valueOnly = FALSE) pskewhyp(q, param = param, valueOnly = FALSE, intTol = 10^(-12)) x <- rskewhyp(1, param = param) x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param) - x qskewhyp(pskewhyp(x, param = param), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-8)), param = param, uniTol = 10^(-8)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, method = "integrate") - x qskewhyp(pskewhyp(x, param = param), param = param, uniTol = 10^(-10)) - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-8)), param = param, uniTol = 10^(-8), method = "integrate") - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-10)), param = param, uniTol = 10^(-10), method = "integrate") - x qskewhyp(pskewhyp(x, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") - x qskewhyp(pskewhyp(10, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") - 10 qskewhyp(pskewhyp(-10, param = param, intTol = 10^(-12)), param = param, uniTol = 10^(-12), method = "integrate") + 10
partition_ranges <- function(df, start_var, end_var, fmt = "%Y-%m-%d", vars_to_keep = NULL, partition_by = "year") { partitioned <- copy(df) if (!any(class(partitioned) %in% "data.table")) setDT(partitioned) if (class(partitioned[[start_var]]) != 'Date' | class(partitioned[[end_var]]) != 'Date') { for (j in c(start_var, end_var)) set(partitioned, j = j, value = as.Date(as.character(partitioned[[j]]), format = fmt)) } if (partition_by == "year") { grpRnD <- c("rl", vars_to_keep) partitioned <- partitioned[partitioned[, rep(.I, 1 + year(get(end_var)) - year(get(start_var)))]][ , `:=`(rl, rleid(get(start_var)))][ , `:=`((start_var), pmax(get(start_var)[1], as.Date(paste0(year(get(start_var)[1]) + 0:(.N - 1), "-01-01")))), by = mget(grpRnD)][ , `:=`((end_var), pmin(get(end_var)[.N], as.Date(paste0(year(get(end_var)[.N]) - (.N - 1):0, "-12-31")))), by = mget(grpRnD)][ , `:=`("rl", NULL)] } else if (partition_by == "month") { grpRnD <- c("nrow", vars_to_keep, start_var, end_var) grp2ndlev <- c(vars_to_keep, start_var) partitionedIn <- partitioned[(format(get(start_var), "%Y-%m") == format(get(end_var), "%Y-%m")), ] partitionedOut <- partitioned[!(format(get(start_var), "%Y-%m") == format(get(end_var), "%Y-%m")), ] partitionedOut <- partitionedOut[, st_seq := as.Date(paste0(format(get(start_var), "%Y-%m"), "-01"))][ , end_seq := { end_seq <- as.POSIXlt(as.Date(paste0(format(get(end_var), "%Y-%m"), "-01"))) end_seq$mon <- end_seq$mon + 1 return(as.Date(as.character(as.POSIXct(end_seq))) - 1) } ] partitionedOut <- partitionedOut[, `:=`(nrow, 1:.N)][ , .(seqs = seq.Date(st_seq, end_seq, by = "month")), by = mget(grpRnD)][ , `:=`(seqs, c(get(start_var)[1], seqs[-1])), by = nrow][ , `:=`(seqsEnd, { tmp <- as.POSIXlt(as.Date(paste0(format(seqs, "%Y-%m"), "-01"))) tmp$mon <- tmp$mon + 1 return(as.Date(as.character(as.POSIXct(tmp))) - 1) })][, `:=`((start_var), seqs)][, lapply(.SD, function(x) pmin(x, seqsEnd)), by = mget(grp2ndlev), .SDcols = substitute(end_var)] nms <- names(partitionedOut) if (nrow(partitionedIn) > 0) { partitionedIn <- partitionedIn[, names(partitionedIn) %in% nms, with = FALSE] partitioned <- rbind(partitionedIn, partitionedOut) } else { partitioned <- partitionedOut } partitioned <- setorderv(partitioned, nms) } else { stop("partition_by argument has to be either 'year' or 'month'.") } if (!any(class(df) %in% "data.table")) { return(setDF(partitioned)) } else { return(partitioned) } }
NULL setGeneric("getLineup", function(obj) standardGeneric("getLineup"))
setGeneric( name="query", def=function(self, resource, ...){standardGeneric("query")} )
reconcile_v_fmt <- function(v_fmt){ v_fmt_tbl <- tibble(v_fmt=v_fmt) %>% mutate(leading_chars = {str_extract(v_fmt,'^.*(?=%)') %>% replace_na('')}, width = {str_extract(v_fmt,'(?<!\\.)[0-9]+') %>% replace_na('')}, digits = {str_extract(v_fmt,'(?<=\\.)[0-9]+') %>% as.numeric() %>% {ifelse(is.na(.),-1,.)}}, justification = {str_extract(v_fmt,'-') %>% replace_na('')}, type = str_extract(v_fmt,'[a-z]')) %>% summarize(leading_chars = {table(.data$leading_chars) %>% sort(decreasing = TRUE) %>% head(1) %>% names()}, width = {table(.data$width) %>% sort(decreasing = TRUE) %>% head(1) %>% names()}, justification = {table(.data$justification) %>% sort(decreasing = TRUE) %>% head(1) %>% names()}, type = {table(.data$type) %>% sort(decreasing = TRUE) %>% head(1) %>% names()}, digits = {max(.data$digits,na.rm=TRUE) %>% {ifelse(. < 0,'',str_c('.',.))}} ) %>% glue_data('{leading_chars}%{justification}{width}{digits}{type}') return(v_fmt_tbl) }
ParLin_expectreg_hetero<-function(X,Y,Z,omega=0.3,kernel=gaussK,heteroscedastic=c("X", "Z", "Z and X") ) { Values=cbind(X,Y,Z) Values=Values[order(Values[,ncol(Values)-1]),] m_X_plug<-NULL if(NCOL(X)==1) { for(i in 1:NCOL(X)) { data<-data.frame(x=Values[,i]) data$z<-Values[,ncol(Values)] m_X_plug=cbind(m_X_plug,locpol::locLinSmootherC(data$z, data$x, xeval=data$z, bw=locpol::pluginBw(data$z, data$x, deg=1,kernel=kernel),kernel=kernel)[,2]) } data<-data.frame(y=Values[,ncol(Values)-1]) data$z<-Values[,ncol(Values)] m_Y_plug=locpol::locLinSmootherC(data$z, data$y, xeval=data$z, bw=locpol::pluginBw(data$z, data$y, deg=1,kernel=kernel),kernel=kernel)[,2] Xtilde_plug=Values[,1:(ncol(Values)-2)]-as.numeric(m_X_plug) Ytilde_plug=Values[,ncol(Values)-1]-m_Y_plug fmla <- as.formula(paste("Ytilde_plug ~Xtilde_plug ")) expect_linear_plug=expectreg::expectreg.ls(fmla,estimate="laws",smooth="schall",expectiles=omega) delta<-data.frame(expect_linear_plug$intercepts,expect_linear_plug$coefficients) dfnam <- paste("delta", 0:(ncol(Values)-2), sep = "") colnames(delta) <- dfnam if(heteroscedastic=="Z") { grid=Values[,ncol(Values)] Y_last=Values[,ncol(Values)-1]-(as.matrix(delta[,2:ncol(delta)]))%*%t(Values[,1:(ncol(Values)-2)])-delta[,1] Estimates<-expectreg_locpol(X=Values[,ncol(Values)],Y=as.numeric(Y_last),j=0,p=1,omega=omega,h=h_GenROT(X=Values[,ncol(Values)],Y=as.numeric(Y_last),j=0,p=1,kernel=kernel,omega),kernel=kernel,starting_value = "mean",grid=grid)[,1] l1 = list(Linear=delta,Nonlinear=Estimates) } if(heteroscedastic=="X") { grid=Values[,ncol(Values)] Y_last=Values[,ncol(Values)-1]-(as.matrix(delta[,2:ncol(delta)]))%*%t(Values[,1:(ncol(Values)-2)])-delta[,1] Estimates_g<-expectreg_locpol(X=Values[,ncol(Values)],Y=as.numeric(Y_last),j=0,p=1,omega=omega,h=h_GenROT(X=Values[,ncol(Values)],Y=as.numeric(Y_last),j=0,p=1,kernel=kernel,omega),kernel=kernel,starting_value = "mean",grid=grid)[,1] Y_g_omega=Y_last-Estimates_g Estimates_g_omega<-expectreg_locpol(X=Values[,1],Y=as.numeric(Y_g_omega),omega=omega ,kernel=kernel,h=h_GenROT(X=Values[,1],Y=as.numeric(Y_g_omega),omega=omega,kernel=kernel),starting_value="mean",grid=cbind(Values[,1:(ncol(Values)-2)]))[,1] l1 = list(Linear=delta,Nonlinear_g=Estimates_g,Nonlinear_g_omega=Estimates_g_omega) } if(heteroscedastic=="Z and X") { grid=Values[,ncol(Values)] Y_last=Values[,ncol(Values)-1]-(as.matrix(delta[,2:ncol(delta)]))%*%t(Values[,1:(ncol(Values)-2)])-delta[,1] Estimates<-expectreg_loclin_bivariate(Z1=Values[,ncol(Values)],Z2=Values[,1],Y=as.numeric(Y_last),omega=omega ,kernel=kernel,h=h_GenROT_bivariate(Z1=Values[,ncol(Values)],Z2=Values[,1],Y=as.numeric(Y_last),omega=omega,kernel=kernel),grid=cbind(Values[,ncol(Values)],Values[,1])) l1 = list(Linear=delta,Nonlinear=Estimates) } } for(i in 1:ncol(X)) { data<-data.frame(x=Values[,i]) data$z<-Values[,ncol(Values)] m_X_plug=cbind(m_X_plug,locpol::locLinSmootherC(data$z, data$x, xeval=data$z, bw=locpol::pluginBw(data$z, data$x, deg=1,kernel=kernel),kernel=kernel)[,2]) } data<-data.frame(y=Values[,ncol(Values)-1]) data$z<-Values[,ncol(Values)] m_Y_plug=locpol::locLinSmootherC(data$z, data$y, xeval=data$z, bw=pluginBw(data$z, data$y, deg=1,kernel=kernel),kernel=kernel)[,2] Xtilde_plug=Values[,1:(ncol(Values)-2)]-m_X_plug Ytilde_plug=Values[,ncol(Values)-1]-m_Y_plug xnam <- paste("Xtilde_plug[,", 1:(ncol(Values)-2), sep = "") xnam <- paste("rb(", xnam,"],type='parametric')") fmla <- as.formula(paste("Ytilde_plug ~ ", paste(xnam, collapse = "+"))) expect_linear_plug=expectreg::expectreg.ls(fmla,estimate="laws",smooth="schall",expectiles=omega) delta<-data.frame(expect_linear_plug$intercepts,expect_linear_plug$coefficients) dfnam <- paste("delta", 0:(ncol(Values)-2), sep = "") colnames(delta) <- dfnam if(heteroscedastic=="Z") { grid=Values[,ncol(Values)] Y_last=Values[,ncol(Values)-1]-(as.matrix(delta[,2:ncol(delta)]))%*%t(Values[,1:(ncol(Values)-2)])-delta[,1] Estimates<-expectreg_locpol(X=Values[,ncol(Values)],Y=as.numeric(Y_last),j=0,p=1,omega=omega,h=h_GenROT(X=Values[,ncol(Values)],Y=as.numeric(Y_last),j=0,p=1,kernel=kernel,omega),kernel=kernel,starting_value = "mean",grid=grid)[,1] l1 = list(Linear=delta,Nonlinear=Estimates) } if(heteroscedastic=="X") { grid=Values[,ncol(Values)] Y_last=Values[,ncol(Values)-1]-(as.matrix(delta[,2:ncol(delta)]))%*%t(Values[,1:(ncol(Values)-2)])-delta[,1] Estimates_g<-expectreg_locpol(X=Values[,ncol(Values)],Y=as.numeric(Y_last),j=0,p=1,omega=omega,h=h_GenROT(X=Values[,ncol(Values)],Y=as.numeric(Y_last),j=0,p=1,kernel=kernel,omega),kernel=kernel,starting_value = "mean",grid=grid)[,1] Y_g_omega=Y_last-Estimates_g Estimates_g_omega<-expectreg_loclin_bivariate(Z1=Values[,1],Z2=Values[,2],Y=as.numeric(Y_g_omega),omega=omega ,kernel=kernel,h=h_GenROT_bivariate(Z1=Values[,1],Z2=Values[,2],Y=as.numeric(Y_g_omega),omega=omega,kernel=kernel),grid=cbind(Values[,1:(ncol(Values)-2)])) l1 = list(Linear=delta,Nonlinear_g=Estimates_g,Nonlinear_g_omega=Estimates_g_omega) } if(heteroscedastic=="Z and X") { grid=Values[,ncol(Values)] Y_last=Values[,ncol(Values)-1]-(as.matrix(delta[,2:ncol(delta)]))%*%t(Values[,1:(ncol(Values)-2)])-delta[,1] Estimates<-expectreg_loclin_trivariate(Z=Values[,ncol(Values)],X1=Values[,ncol(Values)-3],X2=Values[,ncol(Values)-2],Y=as.numeric(Y_last),omega=omega,h=1,kernel=kernel) l1 = list(Linear=delta,Nonlinear=Estimates) } return(l1) }
ecospat.CCV.createDataSplitTable <- function(NbRunEval, DataSplit, validation.method, NbSites, sp.data=NULL, minNbPresences=NULL, minNbAbsences=NULL, maxNbTry=1000){ stopifnot(DataSplit >= 50 & DataSplit <=100) stopifnot(NbRunEval>=0) stopifnot(validation.method %in% c("cross-validation", "split-sample")) if(is.null(sp.data)){ stopifnot(NbSites>0) }else{ stopifnot(!is.null(minNbPresences) & !is.null(minNbAbsences) & minNbPresences >= 0 & minNbAbsences >= 0 & maxNbTry>0 & maxNbTry < 1000000000) stopifnot(is.data.frame(sp.data)) } if(is.null(sp.data)){ DataSplitTable <- matrix(data=FALSE, nrow=NbSites, ncol=NbRunEval) if(validation.method=="split-sample"){ for(i in 1:NbRunEval){ DataSplitTable[sample(1:NbSites,round(DataSplit/100*NbSites), replace=FALSE),i] <- TRUE } } if(validation.method=="cross-validation"){ grouper <- sample(rep(1:NbRunEval,each=ceiling(NbSites/NbRunEval)),NbSites, replace = FALSE) iner <- round(DataSplit*NbRunEval/100) for(i in 1:NbRunEval){ DataSplitTable[which(grouper %in% ((i:(i+iner-1)%%NbRunEval)+1)),i] <- TRUE } } return(DataSplitTable) } if(!is.null(sp.data)){ create.SpRunMatrix <- function(sp.data, DataSplitTable){ SpRunMatrix <- apply(DataSplitTable,2, function(x){colSums(x*sp.data)}) } Nb.sp.dropped <- dim(sp.data)[2] trys <- 1 while(trys <= maxNbTry & Nb.sp.dropped > 0){ DataSplitTable <- matrix(data=FALSE, nrow=dim(sp.data)[1], ncol=NbRunEval) if(validation.method=="split-sample"){ for(i in 1:NbRunEval){ DataSplitTable[sample(1:dim(sp.data)[1],round(DataSplit/100*dim(sp.data)[1]), replace=FALSE),i] <- TRUE } } if(validation.method=="cross-validation"){ grouper <- sample(rep(1:NbRunEval,each=ceiling(dim(sp.data)[1]/NbRunEval)),dim(sp.data)[1], replace = FALSE) iner <- round(DataSplit*NbRunEval/100) for(i in 1:NbRunEval){ DataSplitTable[which(grouper %in% ((i:(i+iner-1)%%NbRunEval)+1)),i] <- TRUE } } SpRunMatrix <- create.SpRunMatrix(sp.data = sp.data, DataSplitTable = DataSplitTable) sp.names.all <- rownames(SpRunMatrix) sp.names.ok <- intersect(names(which(apply(SpRunMatrix,1,min) >= minNbPresences)), names(which(apply(min(colSums(DataSplitTable))-SpRunMatrix,1,min) >= minNbAbsences))) sp.names.droped <- setdiff(sp.names.all, sp.names.ok) if(length(sp.names.droped) < Nb.sp.dropped){ DataSplitTable.final <- DataSplitTable Nb.sp.dropped <- length(sp.names.droped) sp.names.droped.best <- sp.names.droped } trys <- trys+1 } message(paste("The following species will not have the desired minimum number of presence/absence data in each run: ", paste(sp.names.droped.best, sep="", collapse=", "),"\n\n",sep="")) return(DataSplitTable.final) } } ecospat.CCV.modeling <- function(sp.data, env.data, xy, DataSplitTable=NULL, DataSplit = 70, NbRunEval = 25, minNbPredictors =5, validation.method = "cross-validation", models.sdm = c("GLM","RF"), models.esm = "CTA", modeling.options.sdm = NULL, modeling.options.esm = NULL, ensemble.metric = "AUC", ESM = "YES", parallel = FALSE, cpus = 4, VarImport = 10, modeling.id = as.character(format(Sys.time(), '%s'))){ stopifnot(dim(sp.data)[1]==dim(xy)[1]) stopifnot(dim(env.data)[1]==dim(xy)[1] | data.class(env.data)=="RasterStack") stopifnot(dim(DataSplitTable)[1]==dim(xy)[1] | is.null(DataSplitTable)) stopifnot(DataSplit >= 50 & DataSplit <=100) stopifnot(NbRunEval>=0) stopifnot(minNbPredictors>1) stopifnot(validation.method %in% c("cross-validation", "split-sample")) stopifnot(models.sdm %in% c('GLM','GBM','GAM','CTA','ANN','SRE','FDA','MARS','RF','MAXENT.Phillips','MAXENT.Tsuruoka')) stopifnot(models.esm %in% c('GLM','GBM','GAM','CTA','ANN','SRE','FDA','MARS','RF','MAXENT.Phillips','MAXENT.Tsuruoka')) stopifnot(ensemble.metric %in% c("AUC","TSS","KAPPA") & length(ensemble.metric)==1) stopifnot(ESM %in% c("YES","NO","ALL")) stopifnot(is.logical(parallel)) stopifnot(cpus>=1) stopifnot(is.numeric(VarImport)) eval.metrics.sdm=c('KAPPA', 'TSS', 'ROC') eval.metrics.esm=c('KAPPA', 'TSS', 'AUC') eval.metrics.names= c('KAPPA', 'TSS', 'AUC') ensemble.metric.esm <- ensemble.metric if(ensemble.metric=="AUC"){ ensemble.metric.sdm <- "ROC" }else{ ensemble.metric.sdm <- ensemble.metric } if(data.class(env.data)=="RasterStack"){ NbPredictors <- dim(env.data)[3] NamesPredictors <- names(env.data) }else{ NbPredictors <- dim(env.data)[2] NamesPredictors <- colnames(env.data) } if(length(models.esm)==1){ ef.counter <- 1 }else{ ef.counter <- length(models.esm)+1 } colnames(sp.data) <- gsub("_",".", colnames(sp.data)) dir.create(modeling.id) oldwd <- getwd() on.exit(setwd(oldwd)) setwd(modeling.id) create.SpRunMatrix <- function(sp.data, DataSplitTable){ SpRunMatrix <- apply(DataSplitTable,2, function(x){colSums(x*sp.data)}) } BiomodSF <- function(sp.name, DataSplitTable, sp.data, env.data, xy, models, models.options, eval.metrics, ensemble.metric, VarImport){ MyBiomodData <- BIOMOD_FormatingData(resp.var = as.numeric(sp.data[,sp.name]), expl.var = env.data, resp.xy = xy, resp.name = sp.name, na.rm=FALSE) if(is.null(models.options)){ MyBiomodOptions <- BIOMOD_ModelingOptions() }else{ MyBiomodOptions <- BIOMOD_ModelingOptions(models.options) } MyBiomodModelOut <- BIOMOD_Modeling(data = MyBiomodData, models = models, models.options = MyBiomodOptions, models.eval.meth = eval.metrics, DataSplitTable = DataSplitTable, Prevalence=NULL, modeling.id = "ccv") MyBiomodEnsemble <- BIOMOD_EnsembleModeling(modeling.output = MyBiomodModelOut, chosen.models = "all", em.by = "PA_dataset+repet", eval.metric = ensemble.metric, eval.metric.quality.threshold = NULL, models.eval.meth =eval.metrics, prob.mean = FALSE, prob.cv = FALSE, prob.ci = FALSE, prob.ci.alpha = 0.05, prob.median = FALSE, committee.averaging = FALSE, prob.mean.weight = TRUE, prob.mean.weight.decay = 'proportional', VarImport = VarImport) } ESMSF <- function(sp.name, DataSplitTable, sp.data, env.data, xy, models, models.options, ensemble.metric){ MyESMData <- BIOMOD_FormatingData(resp.var = as.numeric(sp.data[,sp.name]), expl.var = env.data, resp.xy = xy, resp.name = sp.name, na.rm = FALSE) if(is.null(models.options)){ MyBiomodOptions <- BIOMOD_ModelingOptions() }else{ MyBiomodOptions <- BIOMOD_ModelingOptions(models.options) } MyESMModelOut <- ecospat.ESM.Modeling(data=MyESMData, DataSplitTable = DataSplitTable, weighting.score = ensemble.metric, models=models, Prevalence=NULL, modeling.id="ccv", models.options=MyBiomodOptions, parallel=FALSE) MyESMEnsemble <- ecospat.ESM.EnsembleModeling(ESM.modeling.output = MyESMModelOut, weighting.score = ensemble.metric, models=models) } get.ESMvariableContribution <- function(output_EF, output, NamesPredictors){ Variable.Contribution <- rep(NA, times=length(NamesPredictors)) names(Variable.Contribution)<- NamesPredictors for(v in NamesPredictors){ cb1<-rep(combn(NamesPredictors,2)[1,],each=length(output$models)) cb2<-rep(combn(NamesPredictors,2)[2,],each=length(output$models)) pos<-c(which(cb1==v),which(cb2==v)) Variable.Contribution[which(NamesPredictors==v)]<-mean(output_EF$weights[pos])-mean(output_EF$weights) } Variable.Contribution[which(is.na(Variable.Contribution))]<-0 return((Variable.Contribution-min(Variable.Contribution))/(max(Variable.Contribution)-min(Variable.Contribution))) } if(is.null(DataSplitTable)){ DataSplitTable <- ecospat.CCV.createDataSplitTable(NbSites = dim(xy)[1], NbRunEval = NbRunEval, DataSplit = DataSplit, validation.method = validation.method) }else{ NbRunEval <- dim(DataSplitTable)[2] } SpRunMatrix <- create.SpRunMatrix(sp.data = sp.data, DataSplitTable = DataSplitTable) if(ESM=="NO"){ sp.names.all <- rownames(SpRunMatrix) sp.names.ok <- intersect(names(which(apply(SpRunMatrix,1,min) >= minNbPredictors*NbPredictors)), names(which(apply(min(colSums(DataSplitTable))-SpRunMatrix,1,min) >= minNbPredictors*NbPredictors))) sp.names.droped <- setdiff(sp.names.all, sp.names.ok) message(paste("The following species will not be modelled due to limited presence data: ", paste(sp.names.droped, sep="", collapse=", "),"\n\n",sep="")) speciesData.calibration <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("c",1:max(colSums(DataSplitTable)),sep="_"), 1:NbRunEval)) speciesData.evaluation <- singleSpecies.evaluationSites.ensemblePredictions <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(!DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("e",1:max(colSums(!DataSplitTable)),sep="_"), 1:NbRunEval)) for(i in 1:NbRunEval){ speciesData.calibration[,1:sum(DataSplitTable[,i]),i] <- t(sp.data[which(DataSplitTable[,i]), sp.names.ok]) speciesData.evaluation[,1:sum(!DataSplitTable[,i]),i] <- t(sp.data[which(!DataSplitTable[,i]), sp.names.ok]) } singleSpecies.ensembleEvaluationScore <- array(data=NA, dim=c(length(eval.metrics.names), length(sp.names.ok), NbRunEval), dimnames = list(eval.metrics.names,sp.names.ok,1:NbRunEval)) singleSpecies.ensembleVariableImportance <- array(data=NA, dim=c(NbPredictors, length(sp.names.ok), NbRunEval), dimnames = list(NamesPredictors,sp.names.ok,1:NbRunEval)) singleSpecies.calibrationSites.ensemblePredictions <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("c",1:max(colSums(DataSplitTable)),sep="_"), 1:NbRunEval)) singleSpecies.evaluationSites.ensemblePredictions <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(!DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("e",1:max(colSums(!DataSplitTable)),sep="_"), 1:NbRunEval)) if(parallel){ sfInit(parallel=TRUE, cpus=cpus) sfLibrary('biomod2', character.only=TRUE) sfLapply(sp.names.ok, BiomodSF, DataSplitTable=DataSplitTable, sp.data=sp.data, env.data=env.data, xy=xy, models=models.sdm, models.options=modeling.options.sdm, eval.metrics=eval.metrics.sdm, ensemble.metric=ensemble.metric.sdm, VarImport = VarImport) sfStop( nostop=FALSE ) }else{ lapply(sp.names.ok, BiomodSF, DataSplitTable=DataSplitTable, sp.data=sp.data, env.data=env.data, xy=xy, models=models.sdm, models.options=modeling.options.sdm, eval.metrics=eval.metrics.sdm, ensemble.metric=ensemble.metric.sdm, VarImport = VarImport) } for(i in sp.names.ok){ load(paste(i,"/",i,".ccvensemble.models.out", sep="")) temp.evaluations <- get_evaluations(eval(parse(text=paste(i,".ccvensemble.models.out",sep="")))) for(l in 1:length(temp.evaluations)){ singleSpecies.ensembleEvaluationScore[,i,l] <- temp.evaluations[[l]][,1] } temp.variableimprtance <- get_variables_importance(eval(parse(text=paste(i,".ccvensemble.models.out",sep="")))) singleSpecies.ensembleVariableImportance[,i,] <- round(apply(temp.variableimprtance,c(1,3), mean, na.rm = TRUE),2) temp.predictions <- get_predictions(eval(parse(text=paste(i,".ccvensemble.models.out",sep="")))) for(l in 1:dim(temp.predictions)[2]){ singleSpecies.calibrationSites.ensemblePredictions[i,1:sum(DataSplitTable[,l]),l] <- temp.predictions[which(DataSplitTable[,l]),l] singleSpecies.evaluationSites.ensemblePredictions[i,1:sum(!DataSplitTable[,l]),l] <- temp.predictions[which(!DataSplitTable[,l]),l] } } } if(ESM=="ALL"){ sp.names.all <- rownames(SpRunMatrix) sp.names.ok <- intersect(names(which(apply(SpRunMatrix,1,min) >= minNbPredictors*2)), names(which(apply(min(colSums(DataSplitTable))-SpRunMatrix,1,min) >= minNbPredictors*2))) sp.names.droped <- setdiff(sp.names.all, sp.names.ok) message(paste("The following species will not be modelled due to limited presence data: ", paste(sp.names.droped, sep="", collapse=", "),"\n\n",sep="")) speciesData.calibration <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("c",1:max(colSums(DataSplitTable)),sep="_"), 1:NbRunEval)) speciesData.evaluation <- singleSpecies.evaluationSites.ensemblePredictions <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(!DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("e",1:max(colSums(!DataSplitTable)),sep="_"), 1:NbRunEval)) for(i in 1:NbRunEval){ speciesData.calibration[,1:sum(DataSplitTable[,i]),i] <- t(sp.data[which(DataSplitTable[,i]), sp.names.ok]) speciesData.evaluation[,1:sum(!DataSplitTable[,i]),i] <- t(sp.data[which(!DataSplitTable[,i]), sp.names.ok]) } singleSpecies.ensembleEvaluationScore <- array(data=NA, dim=c(length(eval.metrics.names), length(sp.names.ok), NbRunEval), dimnames = list(eval.metrics.names,sp.names.ok,1:NbRunEval)) singleSpecies.ensembleVariableImportance <- array(data=NA, dim=c(NbPredictors, length(sp.names.ok), NbRunEval), dimnames = list(NamesPredictors,sp.names.ok,1:NbRunEval)) singleSpecies.calibrationSites.ensemblePredictions <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("c",1:max(colSums(DataSplitTable)),sep="_"), 1:NbRunEval)) singleSpecies.evaluationSites.ensemblePredictions <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(!DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("e",1:max(colSums(!DataSplitTable)),sep="_"), 1:NbRunEval)) if(parallel){ sfInit(parallel=TRUE, cpus=cpus) sfLibrary('biomod2', character.only=TRUE) sfLibrary('ecospat', character.only=TRUE) sfLibrary('gtools', character.only=TRUE) sfLapply(sp.names.ok, ESMSF, DataSplitTable=DataSplitTable, sp.data=sp.data, env.data=env.data, xy=xy, models=models.esm, models.options=modeling.options.esm, ensemble.metric=ensemble.metric.esm) sfStop( nostop=FALSE) }else{ lapply(sp.names.ok, ESMSF, DataSplitTable=DataSplitTable, sp.data=sp.data, env.data=env.data, xy=xy, models=models.esm, models.options=modeling.options.esm, ensemble.metric=ensemble.metric.esm) } for(i in sp.names.ok){ load(list.files(path=paste("ESM.BIOMOD.output_",i,sep=""), pattern="ESM_EnsembleModeling", full.names = TRUE)) output_EF <- eval(parse(text="output")) load(list.files(path=paste("ESM.BIOMOD.output_",i,sep=""), pattern="ESM_Modeling", full.names = TRUE)) singleSpecies.ensembleEvaluationScore[,i,] <- t(output_EF$ESM.evaluations[seq(ef.counter,dim(output_EF$ESM.evaluations)[1], ef.counter),c(5,11,6)]) singleSpecies.ensembleVariableImportance[,i,] <- round(get.ESMvariableContribution(output_EF = output_EF, output = eval(parse(text="output")), NamesPredictors = NamesPredictors),2) for(l in 1:NbRunEval){ singleSpecies.calibrationSites.ensemblePredictions[i,1:sum(DataSplitTable[,l]),l] <- output_EF$ESM.fit[which(DataSplitTable[,l]),ef.counter*l+1] singleSpecies.evaluationSites.ensemblePredictions[i,1:sum(!DataSplitTable[,l]),l] <- output_EF$ESM.fit[which(!DataSplitTable[,l]),ef.counter*l+1] } } } if(ESM=="YES"){ sp.names.all <- rownames(SpRunMatrix) sp.names.bm.ok <- intersect(names(which(apply(SpRunMatrix,1, min) >= minNbPredictors*NbPredictors)), names(which(apply(min(colSums(DataSplitTable))-SpRunMatrix,1,min) >= minNbPredictors*NbPredictors))) message(paste("The following species will be run with standard biomod2 models: ", paste(sp.names.bm.ok, sep="", collapse=", "),"\n\n",sep="")) sp.names.bm.droped <- setdiff(sp.names.all, sp.names.bm.ok) if(length(sp.names.bm.droped)>1){ sp.names.esm.ok <- intersect(names(which(apply(SpRunMatrix[sp.names.bm.droped,],1,min) >= minNbPredictors*2)), names(which(apply(min(colSums(DataSplitTable))-SpRunMatrix[sp.names.bm.droped,],1,min) >= minNbPredictors*2))) message(paste("The following species will be run with ESM models: ", paste(sp.names.esm.ok, sep="", collapse=", "),"\n\n",sep="")) sp.names.droped <- setdiff(sp.names.all, c(sp.names.bm.ok, sp.names.esm.ok)) message(paste("The following species will not be modelled due to limited presence data: ", paste(sp.names.droped, sep="", collapse=", "),"\n\n",sep="")) sp.names.ok <- sort(c(sp.names.bm.ok, sp.names.esm.ok)) }else{ if(length(sp.names.bm.droped==1)){ if(min(SpRunMatrix[sp.names.bm.droped,]) >= minNbPredictors*2 & min(colSums(DataSplitTable))-min(SpRunMatrix[sp.names.bm.droped,])>= minNbPredictors*2) sp.names.esm.ok <- sp.names.bm.droped message(paste("The following species will be run with ESM models: ", paste(sp.names.esm.ok, sep="", collapse=", "),"\n\n",sep="")) message(paste("The following species will not be modelled due to limited presence data:","\n\n", sep="")) sp.names.ok <- sort(c(sp.names.bm.ok, sp.names.esm.ok)) }else{ sp.names.esm.ok <- NULL message(paste("The following species will be run with ESM models:","\n\n", sep="")) message(paste("The following species will not be modelled due to limited presence data:","\n\n", sep="")) sp.names.ok <- sort(sp.names.bm.ok) } } speciesData.calibration <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("c",1:max(colSums(DataSplitTable)),sep="_"), 1:NbRunEval)) speciesData.evaluation <- singleSpecies.evaluationSites.ensemblePredictions <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(!DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("e",1:max(colSums(!DataSplitTable)),sep="_"), 1:NbRunEval)) for(i in 1:NbRunEval){ speciesData.calibration[,1:sum(DataSplitTable[,i]),i] <- t(sp.data[which(DataSplitTable[,i]), sp.names.ok]) speciesData.evaluation[,1:sum(!DataSplitTable[,i]),i] <- t(sp.data[which(!DataSplitTable[,i]), sp.names.ok]) } singleSpecies.ensembleEvaluationScore <- array(data=NA, dim=c(length(eval.metrics.names), length(sp.names.ok), NbRunEval), dimnames = list(eval.metrics.names,sp.names.ok,1:NbRunEval)) singleSpecies.ensembleVariableImportance <- array(data=NA, dim=c(NbPredictors, length(sp.names.ok), NbRunEval), dimnames = list(NamesPredictors,sp.names.ok,1:NbRunEval)) singleSpecies.calibrationSites.ensemblePredictions <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("c",1:max(colSums(DataSplitTable)),sep="_"), 1:NbRunEval)) singleSpecies.evaluationSites.ensemblePredictions <- array(data=NA, dim=c(length(sp.names.ok), max(colSums(!DataSplitTable)), NbRunEval), dimnames=list(sp.names.ok, paste("e",1:max(colSums(!DataSplitTable)),sep="_"), 1:NbRunEval)) if(parallel){ sfInit(parallel=TRUE, cpus=cpus) sfLibrary('biomod2', character.only=TRUE) sfLibrary('ecospat', character.only=TRUE) sfLibrary('gtools', character.only=TRUE) sfLapply(sp.names.bm.ok, BiomodSF, DataSplitTable=DataSplitTable, sp.data=sp.data, env.data=env.data, xy=xy, models=models.sdm, models.options=modeling.options.sdm, eval.metrics=eval.metrics.sdm, ensemble.metric=ensemble.metric.sdm, VarImport = VarImport) sfLapply(sp.names.esm.ok, ESMSF, DataSplitTable=DataSplitTable, sp.data=sp.data, env.data=env.data, xy=xy, models=models.esm, models.options=modeling.options.esm, ensemble.metric=ensemble.metric.esm) sfStop( nostop=FALSE ) }else{ lapply(sp.names.bm.ok, BiomodSF, DataSplitTable=DataSplitTable, sp.data=sp.data, env.data=env.data, xy=xy, models=models.sdm, models.options=modeling.options.sdm, eval.metrics=eval.metrics.sdm, ensemble.metric=ensemble.metric.sdm, VarImport = VarImport) lapply(sp.names.esm.ok, ESMSF, DataSplitTable=DataSplitTable, sp.data=sp.data, env.data=env.data, xy=xy, models=models.esm, models.options=modeling.options.esm, ensemble.metric=ensemble.metric.esm) } for(i in sp.names.bm.ok){ load(paste(i,"/",i,".ccvensemble.models.out", sep="")) temp.evaluations <- get_evaluations(eval(parse(text=paste(i,".ccvensemble.models.out",sep="")))) for(l in 1:length(temp.evaluations)){ singleSpecies.ensembleEvaluationScore[,i,l] <- temp.evaluations[[l]][,1] } temp.variableimprtance <- get_variables_importance(eval(parse(text=paste(i,".ccvensemble.models.out",sep="")))) singleSpecies.ensembleVariableImportance[,i,] <- round(apply(temp.variableimprtance,c(1,3), mean, na.rm = TRUE),2) temp.predictions <- get_predictions(eval(parse(text=paste(i,".ccvensemble.models.out",sep="")))) for(l in 1:dim(temp.predictions)[2]){ singleSpecies.calibrationSites.ensemblePredictions[i,1:sum(DataSplitTable[,l]),l] <- temp.predictions[which(DataSplitTable[,l]),l] singleSpecies.evaluationSites.ensemblePredictions[i,1:sum(!DataSplitTable[,l]),l] <- temp.predictions[which(!DataSplitTable[,l]),l] } } if(!is.null(sp.names.esm.ok)){ for(i in sp.names.esm.ok){ load(list.files(path=paste("ESM.BIOMOD.output_",i,sep=""), pattern="ESM_EnsembleModeling", full.names = TRUE)) output_EF <- eval(parse(text="output")) load(list.files(path=paste("ESM.BIOMOD.output_",i,sep=""), pattern="ESM_Modeling", full.names = TRUE)) singleSpecies.ensembleEvaluationScore[,i,] <- t(output_EF$ESM.evaluations[seq(ef.counter,dim(output_EF$ESM.evaluations)[1], ef.counter),c(5,11,6)]) singleSpecies.ensembleVariableImportance[,i,] <- round(get.ESMvariableContribution(output_EF = output_EF, output = eval(parse(text="output")), NamesPredictors = NamesPredictors),2) for(l in 1:NbRunEval){ singleSpecies.calibrationSites.ensemblePredictions[i,1:sum(DataSplitTable[,l]),l] <- output_EF$ESM.fit[which(DataSplitTable[,l]),ef.counter*l+1] singleSpecies.evaluationSites.ensemblePredictions[i,1:sum(!DataSplitTable[,l]),l] <- output_EF$ESM.fit[which(!DataSplitTable[,l]),ef.counter*l+1] } } } } all.predictions.caliSites <- array(data=NA, dim=c(dim(sp.data),dim(DataSplitTable)[2]), dimnames=list(unlist(dimnames(sp.data)[1]), unlist(dimnames(sp.data)[2]), 1:dim(DataSplitTable)[2])) all.predictions.evalSites <- array(data=NA, dim=c(dim(sp.data),dim(DataSplitTable)[2]), dimnames=list(unlist(dimnames(sp.data)[1]), unlist(dimnames(sp.data)[2]), 1:dim(DataSplitTable)[2])) for(i in 1:dim(DataSplitTable)[2]){ all.predictions.caliSites[DataSplitTable[,i],,i] <- t(singleSpecies.calibrationSites.ensemblePredictions[,,i])[1:dim(all.predictions.caliSites[DataSplitTable[,i],,i])[1]] all.predictions.evalSites[!DataSplitTable[,i],,i] <- t(singleSpecies.evaluationSites.ensemblePredictions[,,i])[1:dim(all.predictions.evalSites[!DataSplitTable[,i],,i])[1]] } allSites.averagePredictions.cali <- apply(all.predictions.caliSites, 1:2, mean, na.rm = TRUE) allSites.averagePredictions.eval <- apply(all.predictions.evalSites, 1:2, mean, na.rm = TRUE) save(singleSpecies.ensembleEvaluationScore, file="singleSpecies.ensembleEvaluationScore.RData") save(singleSpecies.calibrationSites.ensemblePredictions, file="singleSpecies.calibrationSites.ensemblePredictions.RData") save(singleSpecies.evaluationSites.ensemblePredictions, file="singleSpecies.evaluationSites.ensemblePredictions.RData") save(singleSpecies.ensembleVariableImportance, file="singleSpecies.ensembleVariableImportance.RData") save(DataSplitTable, file="DataSplitTable.RData") save(speciesData.calibration, file="speciesData.calibration.RData") save(speciesData.evaluation, file="speciesData.evaluation.RData") save(allSites.averagePredictions.cali, file="allSites.averagePredictions.cali.RData") save(allSites.averagePredictions.eval, file="allSites.averagePredictions.eval.RData") ccv.modeling.data <- list(modeling.id = modeling.id, output.files = c("singleSpecies.ensembleEvaluationScore.RData", "singleSpecies.calibrationSites.ensemblePredictions.RData", "singleSpecies.evaluationSites.ensemblePredictions.RData", "singleSpecies.ensembleVariableImportance.RData", "DataSplitTable.RData", "speciesData.calibration.RData", "speciesData.evaluation.RData", "allSites.averagePredictions.cali.RData", "allSites.averagePredictions.eval.RData"), speciesData.calibration = speciesData.calibration, speciesData.evaluation = speciesData.evaluation, speciesData.full = sp.data, DataSplitTable = DataSplitTable, singleSpecies.ensembleEvaluationScore = singleSpecies.ensembleEvaluationScore, singleSpecies.ensembleVariableImportance = singleSpecies.ensembleVariableImportance, singleSpecies.calibrationSites.ensemblePredictions=singleSpecies.calibrationSites.ensemblePredictions, singleSpecies.evaluationSites.ensemblePredictions=singleSpecies.evaluationSites.ensemblePredictions, allSites.averagePredictions.cali=allSites.averagePredictions.cali, allSites.averagePredictions.eval=allSites.averagePredictions.eval) save(ccv.modeling.data, file=paste("../",modeling.id,".ccv.modeling.RData", sep="")) setwd("../") return(ccv.modeling.data) } ecospat.CCV.communityEvaluation.bin <- function(ccv.modeling.data, thresholds= c("MAX.KAPPA", "MAX.ROC","PS_SDM"), community.metrics=c("SR.deviation","Sorensen"), parallel=FALSE, cpus=4, fix.threshold=0.5, MCE=5, MEM=NULL){ stopifnot(names(ccv.modeling.data)==c("modeling.id", "output.files", "speciesData.calibration", "speciesData.evaluation", "speciesData.full", "DataSplitTable", "singleSpecies.ensembleEvaluationScore", "singleSpecies.ensembleVariableImportance", "singleSpecies.calibrationSites.ensemblePredictions", "singleSpecies.evaluationSites.ensemblePredictions", "allSites.averagePredictions.cali", "allSites.averagePredictions.eval")) possible.thresholds <- c("FIXED", "MAX.KAPPA", "MAX.ACCURACY", "MAX.TSS", "SENS_SPEC", "MAX.ROC", "OBS.PREVALENCE", "AVG.PROBABILITY", "MCE", "PS_SDM", "MEM") stopifnot(thresholds %in% possible.thresholds) stopifnot(community.metrics %in% c("SR.deviation", "community.overprediction", "community.underprediction", "community.accuracy", "community.sensitivity", "community.specificity", "community.kappa", "community.tss", "Sorensen", "Jaccard", "Simpson")) stopifnot(is.logical(parallel)) stopifnot(cpus>=1) stopifnot(!("FIXED" %in% thresholds & (fix.threshold<=0 | fix.threshold>=1))) stopifnot(!("MCE" %in% thresholds & (MCE<=0 | MCE>=100))) stopifnot(!("MEM" %in% thresholds & length(MEM)!=dim(ccv.modeling.data$speciesData.full)[1])) community.metrics.calculation <- function(errors, potential.community.metrics){ temp.matrix <- matrix(data=NA, nrow=1, ncol=length(potential.community.metrics)) a <- length(which(errors == 3)) b <- length(which(errors == 2)) c <- length(which(errors == 1)) d <- length(which(errors == 0)) n <- a+b+c+d temp.matrix[1] <- b-c if(b==0 & d==0){ temp.matrix[2] <- 0 }else{ temp.matrix[2] <- round(b/(b + d), digits=3) } if(a==0 & c==0){ temp.matrix[3] <- 0 }else{ temp.matrix[3] <- round(c/(a + c), digits=3) } if(n==0){ temp.matrix[4] <- 1 }else{ temp.matrix[4] <- round((a + d)/n, digits=3) } if(a==0 & c==0){ temp.matrix[5] <- 1 }else{ temp.matrix[5] <- round(a/(a + c), digits=3) } if(b==0 & d==0){ temp.matrix[6] <- 1 }else{ temp.matrix[6] <- round(d/(b + d), digits=3) } if(n==0){ temp.matrix[7] <- 1 }else{ temp.matrix[7] <- round((((a + d)/n) - (((a + c) * (a + b) + (b + d) * (d + c))/(n^2)))/(1 - (((a + c) * (a + b) + (b + d) * (d + c))/(n^2))), digits=3) } temp.matrix[8] <- round(temp.matrix[5] + temp.matrix[6] - 1, digits=3) if(a==0 & b==0 & c==0){ temp.matrix[9] <- 1 }else{ temp.matrix[9] <- round((2 * a)/(2 * a + b + c), digits=3) } if(a==0 & b==0 & c==0){ temp.matrix[10] <- 1 }else{ temp.matrix[10] <- round(a/(a+b+c), digits=3) } if((a==0 & b==0) | (a==0 & c==0)){ temp.matrix[11] <- 1 }else{ temp.matrix[11] <- round(a/min(c(a+b,a+c)), digits=3) } return(temp.matrix) } community.compairison <- function(sp.data.cali, sp.data.eval, PA.cali, PA.eval, community.metrics, save.dir, run){ potential.community.metrics <- c("SR.deviation", "community.overprediction", "community.underprediction", "community.accuracy", "community.sensitivity", "community.specificity", "community.kappa", "community.tss", "Sorensen", "Jaccard", "Simpson") community.metrics.cali <- array(data=NA, dim=c(dim(sp.data.cali)[1],length(potential.community.metrics)), dimnames=list(unlist(dimnames(sp.data.cali)[1]),potential.community.metrics)) community.metrics.eval <- array(data=NA, dim=c(dim(sp.data.eval)[1],length(potential.community.metrics)), dimnames=list(unlist(dimnames(sp.data.eval)[1]),potential.community.metrics)) error.matrix.cali <- 2 * PA.cali + sp.data.cali error.matrix.eval <- 2 * PA.eval + sp.data.eval community.metrics.cali[,] <- t(apply(error.matrix.cali, 1, community.metrics.calculation, potential.community.metrics=potential.community.metrics)) community.metrics.cali.selected <- community.metrics.cali[,community.metrics] community.metrics.eval[,] <- t(apply(error.matrix.eval, 1, community.metrics.calculation, potential.community.metrics=potential.community.metrics)) community.metrics.eval.selected <- community.metrics.eval[,community.metrics] save(community.metrics.cali.selected, file=paste(save.dir,"community.metrics.cali_",run,".RData", sep="")) save(community.metrics.eval.selected, file=paste(save.dir,"community.metrics.eval_",run,".RData", sep="")) } community.thresholding <- function(run, ccv.modeling.data, thresholds, community.metrics, fix.threshold, MCE, MEM){ if("FIXED" %in% thresholds){ PA.FIXED.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.FIXED.cali[PA.FIXED.cali >= fix.threshold] <- 1 PA.FIXED.cali[PA.FIXED.cali < fix.threshold] <- 0 PA.FIXED.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 PA.FIXED.eval[PA.FIXED.eval >= fix.threshold] <- 1 PA.FIXED.eval[PA.FIXED.eval < fix.threshold] <- 0 dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/FIXED", sep=""), recursive=TRUE) save(PA.FIXED.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/FIXED/PA.FIXED.cali_",run,".RData", sep="")) save(PA.FIXED.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/FIXED/PA.FIXED.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.FIXED.cali, PA.eval = PA.FIXED.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/FIXED/FIXED_", sep=""), run=run) } if("MAX.KAPPA" %in% thresholds){ PA.MAX.KAPPA.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.MAX.KAPPA.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 for(s in 1:dim(PA.MAX.KAPPA.cali)[2]){ if(sum(!is.na(PA.MAX.KAPPA.cali[,s]))==0){ PA.MAX.KAPPA.cali[,s] <- NA PA.MAX.KAPPA.eval[,s] <- NA }else{ MAX.KAPPA.threshold <- optimal.thresholds(DATA=na.omit(data.frame(unlist(dimnames(PA.MAX.KAPPA.cali)[1]), t(ccv.modeling.data$speciesData.calibration[,,run])[,s], t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])[,s]/1000)), threshold=101, opt.methods=4)[,2] PA.MAX.KAPPA.cali[PA.MAX.KAPPA.cali[,s] >= MAX.KAPPA.threshold,s] <- 1 PA.MAX.KAPPA.cali[PA.MAX.KAPPA.cali[,s] <= MAX.KAPPA.threshold,s] <- 0 PA.MAX.KAPPA.eval[PA.MAX.KAPPA.eval[,s] >= MAX.KAPPA.threshold,s] <- 1 PA.MAX.KAPPA.eval[PA.MAX.KAPPA.eval[,s] <= MAX.KAPPA.threshold,s] <- 0 } } dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.KAPPA", sep=""), recursive=TRUE) save(PA.MAX.KAPPA.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.KAPPA/PA.MAX.KAPPA.cali_",run,".RData", sep="")) save(PA.MAX.KAPPA.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.KAPPA/PA.MAX.KAPPA.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.MAX.KAPPA.cali, PA.eval = PA.MAX.KAPPA.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.KAPPA/MAX.KAPPA_", sep=""), run=run) } if("MAX.ACCURACY" %in% thresholds){ PA.MAX.ACCURACY.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.MAX.ACCURACY.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 for(s in 1:dim(PA.MAX.ACCURACY.cali)[2]){ if(sum(!is.na(PA.MAX.ACCURACY.cali[,s]))==0){ PA.MAX.ACCURACY.cali[,s] <- NA PA.MAX.ACCURACY.eval[,s] <- NA }else{ MAX.ACCURACY.threshold <- optimal.thresholds(DATA=na.omit(data.frame(unlist(dimnames(PA.MAX.ACCURACY.cali)[1]), t(ccv.modeling.data$speciesData.calibration[,,run])[,s], t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])[,s]/1000)), threshold=101, opt.methods=5)[,2] PA.MAX.ACCURACY.cali[PA.MAX.ACCURACY.cali[,s] >= MAX.ACCURACY.threshold,s] <- 1 PA.MAX.ACCURACY.cali[PA.MAX.ACCURACY.cali[,s] <= MAX.ACCURACY.threshold,s] <- 0 PA.MAX.ACCURACY.eval[PA.MAX.ACCURACY.eval[,s] >= MAX.ACCURACY.threshold,s] <- 1 PA.MAX.ACCURACY.eval[PA.MAX.ACCURACY.eval[,s] <= MAX.ACCURACY.threshold,s] <- 0 } } dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.ACCURACY", sep=""), recursive=TRUE) save(PA.MAX.ACCURACY.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.ACCURACY/PA.MAX.ACCURACY.cali_",run,".RData", sep="")) save(PA.MAX.ACCURACY.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.ACCURACY/PA.MAX.ACCURACY.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.MAX.ACCURACY.cali, PA.eval = PA.MAX.ACCURACY.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.ACCURACY/MAX.ACCURACY_", sep=""), run=run) } if("MAX.TSS" %in% thresholds){ PA.MAX.TSS.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.MAX.TSS.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 for(s in 1:dim(PA.MAX.TSS.cali)[2]){ if(sum(!is.na(PA.MAX.TSS.cali[,s]))==0){ PA.MAX.TSS.cali[,s] <- NA PA.MAX.TSS.eval[,s] <- NA }else{ MAX.TSS.threshold <- optimal.thresholds(DATA=na.omit(data.frame(unlist(dimnames(PA.MAX.TSS.cali)[1]), t(ccv.modeling.data$speciesData.calibration[,,run])[,s], t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])[,s]/1000)), threshold=101, opt.methods=3)[,2] PA.MAX.TSS.cali[PA.MAX.TSS.cali[,s] >= MAX.TSS.threshold,s] <- 1 PA.MAX.TSS.cali[PA.MAX.TSS.cali[,s] <= MAX.TSS.threshold,s] <- 0 PA.MAX.TSS.eval[PA.MAX.TSS.eval[,s] >= MAX.TSS.threshold,s] <- 1 PA.MAX.TSS.eval[PA.MAX.TSS.eval[,s] <= MAX.TSS.threshold,s] <- 0 } } dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.TSS", sep=""), recursive=TRUE) save(PA.MAX.TSS.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.TSS/PA.MAX.TSS.cali_",run,".RData", sep="")) save(PA.MAX.TSS.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.TSS/PA.MAX.TSS.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.MAX.TSS.cali, PA.eval = PA.MAX.TSS.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.TSS/MAX.TSS_", sep=""), run=run) } if("SENS_SPEC" %in% thresholds){ PA.SENS_SPEC.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.SENS_SPEC.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 for(s in 1:dim(PA.SENS_SPEC.cali)[2]){ if(sum(!is.na(PA.SENS_SPEC.cali[,s]))==0){ PA.SENS_SPEC.cali[,s] <- NA PA.SENS_SPEC.eval[,s] <- NA }else{ SENS_SPEC.threshold <- optimal.thresholds(DATA=na.omit(data.frame(unlist(dimnames(PA.SENS_SPEC.cali)[1]), t(ccv.modeling.data$speciesData.calibration[,,run])[,s], t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])[,s]/1000)), threshold=101, opt.methods=2)[,2] PA.SENS_SPEC.cali[PA.SENS_SPEC.cali[,s] >= SENS_SPEC.threshold,s] <- 1 PA.SENS_SPEC.cali[PA.SENS_SPEC.cali[,s] <= SENS_SPEC.threshold,s] <- 0 PA.SENS_SPEC.eval[PA.SENS_SPEC.eval[,s] >= SENS_SPEC.threshold,s] <- 1 PA.SENS_SPEC.eval[PA.SENS_SPEC.eval[,s] <= SENS_SPEC.threshold,s] <- 0 } } dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/SENS_SPEC", sep=""), recursive=TRUE) save(PA.SENS_SPEC.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/SENS_SPEC/PA.SENS_SPEC.cali_",run,".RData", sep="")) save(PA.SENS_SPEC.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/SENS_SPEC/PA.SENS_SPEC.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.SENS_SPEC.cali, PA.eval = PA.SENS_SPEC.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/SENS_SPEC/SENS_SPEC_", sep=""), run=run) } if("MAX.ROC" %in% thresholds){ PA.MAX.ROC.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.MAX.ROC.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 for(s in 1:dim(PA.MAX.ROC.cali)[2]){ if(sum(!is.na(PA.MAX.ROC.cali[,s]))==0){ PA.MAX.ROC.cali[,s] <- NA PA.MAX.ROC.eval[,s] <- NA }else{ MAX.ROC.threshold <- optimal.thresholds(DATA=na.omit(data.frame(unlist(dimnames(PA.MAX.ROC.cali)[1]), t(ccv.modeling.data$speciesData.calibration[,,run])[,s], t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])[,s]/1000)), threshold=101, opt.methods=9)[,2] PA.MAX.ROC.cali[PA.MAX.ROC.cali[,s] >= MAX.ROC.threshold,s] <- 1 PA.MAX.ROC.cali[PA.MAX.ROC.cali[,s] <= MAX.ROC.threshold,s] <- 0 PA.MAX.ROC.eval[PA.MAX.ROC.eval[,s] >= MAX.ROC.threshold,s] <- 1 PA.MAX.ROC.eval[PA.MAX.ROC.eval[,s] <= MAX.ROC.threshold,s] <- 0 } } dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.ROC", sep=""), recursive=TRUE) save(PA.MAX.ROC.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.ROC/PA.MAX.ROC.cali_",run,".RData", sep="")) save(PA.MAX.ROC.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.ROC/PA.MAX.ROC.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.MAX.ROC.cali, PA.eval = PA.MAX.ROC.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/MAX.ROC/MAX.ROC_", sep=""), run=run) } if("OBS.PREVALENCE" %in% thresholds){ PA.OBS.PREVALENCE.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.OBS.PREVALENCE.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 for(s in 1:dim(PA.OBS.PREVALENCE.cali)[2]){ if(sum(!is.na(PA.OBS.PREVALENCE.cali[,s]))==0){ PA.OBS.PREVALENCE.cali[,s] <- NA PA.OBS.PREVALENCE.eval[,s] <- NA }else{ OBS.PREVALENCE.threshold <- optimal.thresholds(DATA=na.omit(data.frame(unlist(dimnames(PA.OBS.PREVALENCE.cali)[1]), t(ccv.modeling.data$speciesData.calibration[,,run])[,s], t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])[,s]/1000)), threshold=101, opt.methods=6)[,2] PA.OBS.PREVALENCE.cali[PA.OBS.PREVALENCE.cali[,s] >= OBS.PREVALENCE.threshold,s] <- 1 PA.OBS.PREVALENCE.cali[PA.OBS.PREVALENCE.cali[,s] <= OBS.PREVALENCE.threshold,s] <- 0 PA.OBS.PREVALENCE.eval[PA.OBS.PREVALENCE.eval[,s] >= OBS.PREVALENCE.threshold,s] <- 1 PA.OBS.PREVALENCE.eval[PA.OBS.PREVALENCE.eval[,s] <= OBS.PREVALENCE.threshold,s] <- 0 } } dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/OBS.PREVALENCE", sep=""), recursive=TRUE) save(PA.OBS.PREVALENCE.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/OBS.PREVALENCE/PA.OBS.PREVALENCE.cali_",run,".RData", sep="")) save(PA.OBS.PREVALENCE.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/OBS.PREVALENCE/PA.OBS.PREVALENCE.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.OBS.PREVALENCE.cali, PA.eval = PA.OBS.PREVALENCE.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/OBS.PREVALENCE/OBS.PREVALENCE_", sep=""), run=run) } if("AVG.PROBABILITY" %in% thresholds){ PA.AVG.PROBABILITY.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.AVG.PROBABILITY.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 for(s in 1:dim(PA.AVG.PROBABILITY.cali)[2]){ if(sum(!is.na(PA.AVG.PROBABILITY.cali[,s]))==0){ PA.AVG.PROBABILITY.cali[,s] <- NA PA.AVG.PROBABILITY.eval[,s] <- NA }else{ AVG.PROBABILITY.threshold <- optimal.thresholds(DATA=na.omit(data.frame(unlist(dimnames(PA.AVG.PROBABILITY.cali)[1]), t(ccv.modeling.data$speciesData.calibration[,,run])[,s], t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])[,s]/1000)), threshold=101, opt.methods=8)[,2] PA.AVG.PROBABILITY.cali[PA.AVG.PROBABILITY.cali[,s] >= AVG.PROBABILITY.threshold,s] <- 1 PA.AVG.PROBABILITY.cali[PA.AVG.PROBABILITY.cali[,s] <= AVG.PROBABILITY.threshold,s] <- 0 PA.AVG.PROBABILITY.eval[PA.AVG.PROBABILITY.eval[,s] >= AVG.PROBABILITY.threshold,s] <- 1 PA.AVG.PROBABILITY.eval[PA.AVG.PROBABILITY.eval[,s] <= AVG.PROBABILITY.threshold,s] <- 0 } } dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/AVG.PROBABILITY", sep=""), recursive=TRUE) save(PA.AVG.PROBABILITY.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/AVG.PROBABILITY/PA.AVG.PROBABILITY.cali_",run,".RData", sep="")) save(PA.AVG.PROBABILITY.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/AVG.PROBABILITY/PA.AVG.PROBABILITY.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.AVG.PROBABILITY.cali, PA.eval = PA.AVG.PROBABILITY.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/AVG.PROBABILITY/AVG.PROBABILITY_", sep=""), run=run) } if("MCE" %in% thresholds){ PA.MCE.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.MCE.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 for(s in 1:dim(PA.MCE.cali)[2]){ if(sum(!is.na(PA.MCE.cali[,s]))==0){ PA.MCE.cali[,s] <- NA PA.MCE.eval[,s] <- NA }else{ MCE.threshold <- optimal.thresholds(DATA=na.omit(data.frame(unlist(dimnames(PA.MCE.cali)[1]), t(ccv.modeling.data$speciesData.calibration[,,run])[,s], t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])[,s]/1000)), threshold=101, opt.methods=10, req.sens=(100-MCE)/100)[,2] PA.MCE.cali[PA.MCE.cali[,s] >= MCE.threshold,s] <- 1 PA.MCE.cali[PA.MCE.cali[,s] <= MCE.threshold,s] <- 0 PA.MCE.eval[PA.MCE.eval[,s] >= MCE.threshold,s] <- 1 PA.MCE.eval[PA.MCE.eval[,s] <= MCE.threshold,s] <- 0 } } dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/MCE", sep=""), recursive=TRUE) save(PA.MCE.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MCE/PA.MCE.cali_",run,".RData", sep="")) save(PA.MCE.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MCE/PA.MCE.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.MCE.cali, PA.eval = PA.MCE.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/MCE/MCE_", sep=""), run=run) } if("PS_SDM" %in% thresholds){ PA.PS_SDM.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.PS_SDM.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 SR.cali <- rowSums(PA.PS_SDM.cali, na.rm = TRUE) SR.eval <- rowSums(PA.PS_SDM.eval, na.rm = TRUE) for(p in 1:dim(PA.PS_SDM.cali)[1]){ if(round(SR.cali[p])==0){ PA.PS_SDM.cali[p,] <- 0 }else{ pS_SDM.threshold <- sort(PA.PS_SDM.cali[p,], decreasing = TRUE)[round(SR.cali[p])] PA.PS_SDM.cali[p,PA.PS_SDM.cali[p,]>=as.numeric(pS_SDM.threshold)] <- 1 PA.PS_SDM.cali[p,PA.PS_SDM.cali[p,]<as.numeric(pS_SDM.threshold)] <- 0 } } for(p in 1:dim(PA.PS_SDM.eval)[1]){ if(round(SR.eval[p])==0){ PA.PS_SDM.eval[p,] <- 0 }else{ pS_SDM.threshold <- sort(PA.PS_SDM.eval[p,], decreasing = TRUE)[round(SR.eval[p])] PA.PS_SDM.eval[p,PA.PS_SDM.eval[p,]>=as.numeric(pS_SDM.threshold)] <- 1 PA.PS_SDM.eval[p,PA.PS_SDM.eval[p,]<as.numeric(pS_SDM.threshold)] <- 0 } } dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/PS_SDM", sep=""), recursive = TRUE) save(PA.PS_SDM.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/PS_SDM/PA.PS_SDM.cali_",run,".RData", sep="")) save(PA.PS_SDM.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/PS_SDM/PA.PS_SDM.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.PS_SDM.cali, PA.eval = PA.PS_SDM.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/PS_SDM/PS_SDM_", sep=""), run=run) } if("MEM" %in% thresholds){ PA.MEM.cali <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,run])/1000 PA.MEM.eval <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,run])/1000 SR.cali <- MEM[which(ccv.modeling.data$DataSplitTable[,run])] SR.eval <- MEM[which(!ccv.modeling.data$DataSplitTable[,run])] for(p in 1:length(SR.cali)){ if(round(SR.cali[p])==0){ PA.MEM.cali[p,] <- 0 }else{ MEM.threshold <- sort(PA.MEM.cali[p,], decreasing = TRUE)[round(SR.cali[p])] PA.MEM.cali[p,PA.MEM.cali[p,]>=as.numeric(MEM.threshold)] <- 1 PA.MEM.cali[p,PA.MEM.cali[p,]<=as.numeric(MEM.threshold)] <- 0 } } for(p in 1:length(SR.eval)){ if(round(SR.eval[p])==0){ PA.MEM.eval[p,] <- 0 }else{ MEM.threshold <- sort(PA.MEM.eval[p,], decreasing = TRUE)[round(SR.eval[p])] PA.MEM.eval[p,PA.MEM.eval[p,]>=as.numeric(MEM.threshold)] <- 1 PA.MEM.eval[p,PA.MEM.eval[p,]<=as.numeric(MEM.threshold)] <- 0 } } dir.create(paste(ccv.modeling.data$modeling.id, "/Thresholding/MEM", sep=""), recursive = TRUE) save(PA.MEM.cali, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MEM/PA.MEM.cali_",run,".RData", sep="")) save(PA.MEM.eval, file=paste(ccv.modeling.data$modeling.id, "/Thresholding/MEM/PA.MEM.eval_",run,".RData", sep="")) community.compairison(sp.data.cali=t(ccv.modeling.data$speciesData.calibration[,,run]), sp.data.eval= t(ccv.modeling.data$speciesData.evaluation[,,run]), PA.cali= PA.MEM.cali, PA.eval = PA.MEM.eval, community.metrics = community.metrics, save.dir=paste(ccv.modeling.data$modeling.id, "/Thresholding/MEM/MEM_", sep=""), run=run) } } if(parallel){ sfInit(parallel=TRUE, cpus=cpus) sfLibrary('PresenceAbsence', character.only=TRUE) sfExport('community.metrics.calculation') sfExport('community.compairison') sfLapply(1:dim(ccv.modeling.data$DataSplitTable)[2], community.thresholding, ccv.modeling.data=ccv.modeling.data, thresholds=thresholds, community.metrics=community.metrics, fix.threshold=fix.threshold, MCE=MCE, MEM=MEM) sfStop( nostop=FALSE ) }else{ lapply(1:dim(ccv.modeling.data$DataSplitTable)[2], community.thresholding, ccv.modeling.data=ccv.modeling.data, thresholds=thresholds, community.metrics=community.metrics, fix.threshold=fix.threshold, MCE=MCE, MEM=MEM) } ccv.metrics.allsites.cali <- array(data=NA, dim=c(dim(ccv.modeling.data$speciesData.full)[1], length(thresholds), length(community.metrics), dim(ccv.modeling.data$speciesData.calibration)[3]), dimnames=list(unlist(dimnames(ccv.modeling.data$speciesData.full)[1]), thresholds, community.metrics, unlist(dimnames(ccv.modeling.data$speciesData.calibration)[3]))) ccv.metrics.allsites.eval <- array(data=NA, dim=c(dim(ccv.modeling.data$speciesData.full)[1], length(thresholds), length(community.metrics), dim(ccv.modeling.data$speciesData.evaluation)[3]), dimnames=list(unlist(dimnames(ccv.modeling.data$speciesData.full)[1]), thresholds, community.metrics, unlist(dimnames(ccv.modeling.data$speciesData.evaluation)[3]))) ccv.PA.allSites <- array(data=NA, dim=c(dim(ccv.modeling.data$speciesData.full)[2], dim(ccv.modeling.data$speciesData.full)[1], length(thresholds), dim(ccv.modeling.data$speciesData.evaluation)[3]), dimnames=list(unlist(dimnames(ccv.modeling.data$speciesData.full)[2]), unlist(dimnames(ccv.modeling.data$speciesData.full)[1]), thresholds, unlist(dimnames(ccv.modeling.data$speciesData.evaluation)[3]))) for(th in thresholds){ for(r in 1:dim(ccv.modeling.data$DataSplitTable)[2]){ load(paste(ccv.modeling.data$modeling.id,"/Thresholding/",th,"/",th,"_community.metrics.cali_",r,".RData", sep="")) load(paste(ccv.modeling.data$modeling.id,"/Thresholding/",th,"/",th,"_community.metrics.eval_",r,".RData", sep="")) load(paste(ccv.modeling.data$modeling.id,"/Thresholding/",th,"/",th,"_community.metrics.cali_",r,".RData", sep="")) load(paste(ccv.modeling.data$modeling.id,"/Thresholding/",th,"/PA.",th,".cali_",r,".RData", sep="")) load(paste(ccv.modeling.data$modeling.id,"/Thresholding/",th,"/PA.",th,".eval_",r,".RData", sep="")) ccv.metrics.allsites.cali[which(ccv.modeling.data$DataSplitTable[,r]),th,,r] <- eval(parse(text="community.metrics.cali.selected"))[1:length(which(ccv.modeling.data$DataSplitTable[,r])),] ccv.metrics.allsites.eval[which(!ccv.modeling.data$DataSplitTable[,r]),th,,r] <- eval(parse(text="community.metrics.eval.selected"))[1:length(which(!ccv.modeling.data$DataSplitTable[,r])),] ccv.PA.allSites[,which(ccv.modeling.data$DataSplitTable[,r]),th,r] <- eval(parse(text=paste("PA.",th,".cali", sep="")))[1:length(which(ccv.modeling.data$DataSplitTable[,r]))] ccv.PA.allSites[,which(!ccv.modeling.data$DataSplitTable[,r]),th,r] <- eval(parse(text=paste("PA.",th,".eval", sep="")))[1:length(which(!ccv.modeling.data$DataSplitTable[,r]))] } } ccv.evaluationMetrics.bin <- list(DataSplitTable = ccv.modeling.data$DataSplitTable, CommunityEvaluationMetrics.CalibrationSites = ccv.metrics.allsites.cali, CommunityEvaluationMetrics.EvaluationSites = ccv.metrics.allsites.eval, PA.allSites = ccv.PA.allSites) save(ccv.evaluationMetrics.bin, file=paste(ccv.modeling.data$modeling.id,".ccv.evaluationMetrics.bin.RData", sep="")) return(ccv.evaluationMetrics.bin) } ecospat.CCV.communityEvaluation.prob <- function(ccv.modeling.data, community.metrics=c('SR.deviation','community.AUC','Max.Sorensen','Max.Jaccard','probabilistic.Sorensen','probabilistic.Jaccard'), parallel = FALSE, cpus = 4){ stopifnot(names(ccv.modeling.data)==c("modeling.id", "output.files", "speciesData.calibration", "speciesData.evaluation", "speciesData.full", "DataSplitTable", "singleSpecies.ensembleEvaluationScore", "singleSpecies.ensembleVariableImportance", "singleSpecies.calibrationSites.ensemblePredictions", "singleSpecies.evaluationSites.ensemblePredictions", "allSites.averagePredictions.cali", "allSites.averagePredictions.eval")) stopifnot(community.metrics %in% c("SR.deviation","community.AUC","Max.Sorensen","Max.Jaccard","probabilistic.Sorensen","probabilistic.Jaccard")) SR.prob <- function(data){ Sj <- as.numeric(data[1]) pjk <- as.numeric(data[-1][!is.na(data[-1])]) return(dpoibin(kk=Sj, pp=pjk)) } SR.mean.sd <- function(data){ data <- data[!is.na(data)] SR.mean <- sum(data[-1]) SR.dev <- SR.mean - data[[1]] SR.sd <- sqrt(sum((1-data[-1])*data[-1])) if(SR.dev >= 0){ SR.prob <- ppoibin(data[[1]], data[-1]) }else{ SR.prob <- 1-ppoibin(data[[1]]-1, data[-1]) } return(unlist(c(SR.mean=SR.mean,SR.dev=SR.dev,SR.sd=SR.sd, SR.prob=SR.prob))) } Community.AUC <- function(data){ obs.data <- as.numeric(data[1:(length(data)/2)]) pred.data <- as.numeric(data[((length(data)/2)+1):length(data)]) obs.data <- obs.data[!is.na(pred.data)] pred.data <- pred.data[!is.na(pred.data)] if(sum(is.na(obs.data))==length(obs.data) & sum(is.na(pred.data)==length(pred.data))){ return(NA) }else{ if(sum(obs.data)==0 | sum(obs.data)==length(obs.data)){ return(1) }else{ auc.return <- unlist(auc(DATA=data.frame(id=1:length(obs.data), obs=obs.data, pred=pred.data), na.rm = TRUE))[1] return(auc.return) } } } composition.prob <- function(data){ obs.data <- data[1:(length(data)/2)] pred.data <- data[((length(data)/2)+1):length(data)] obs.data <- obs.data[!is.na(pred.data)] pred.data <- pred.data[!is.na(pred.data)] if(sum(obs.data==1)>0 & sum(obs.data==0)>0){ prob.list <- c(pred.data[which(obs.data==1)],1-pred.data[which(obs.data==0)]) } if(sum(obs.data==1)>0 & sum(obs.data==0)==0){ prob.list <- pred.data[which(obs.data==1)] } if(sum(obs.data==1)==0 & sum(obs.data==0)>0){ prob.list <- 1-pred.data[which(obs.data==0)] } return(prod(prob.list)) } MaxSorensen <- function(data){ obs.data <- as.numeric(data[1:(length(data)/2)]) pred.data <- as.numeric(data[((length(data)/2)+1):length(data)]) temp.Sorensen <- rep(NA,101) th <- seq(0,1,0.01) for(i in 1:101){ pred.temp <- pred.data pred.temp[pred.temp>=th[i]] <- 1 pred.temp[pred.temp<th[i]] <- 0 errors <- 2*pred.temp+obs.data a <- length(which(errors == 3)) b <- length(which(errors == 2)) c <- length(which(errors == 1)) if(a==0 & b==0 & c==0){ Sorensen <- 1 }else{ Sorensen <- round((2 * a)/(2 * a + b + c), digits=3) } temp.Sorensen[i] <- Sorensen } return(max(temp.Sorensen)) } MaxJaccard <- function(data){ obs.data <- as.numeric(data[1:(length(data)/2)]) pred.data <- as.numeric(data[((length(data)/2)+1):length(data)]) temp.Jaccard <- rep(NA,101) th <- seq(0,1,0.01) for(i in 1:101){ pred.temp <- pred.data pred.temp[pred.temp>=th[i]] <- 1 pred.temp[pred.temp<th[i]] <- 0 errors <- 2*pred.temp+obs.data a <- length(which(errors == 3)) b <- length(which(errors == 2)) c <- length(which(errors == 1)) if(a==0 & b==0 & c==0){ Jaccard <- 1 }else{ Jaccard <- round((a)/(a + b + c), digits=3) } temp.Jaccard[i] <- Jaccard } return(max(temp.Jaccard)) } probabilisticSorensen <- function(data){ temp.df <- data.frame(obs=as.numeric(data[1:(length(data)/2)]),pred=as.numeric(data[((length(data)/2)+1):length(data)])) temp.df <- temp.df[order(-temp.df$pred),] AnB <- 2* sum(temp.df$pred[temp.df$obs==1]) AuB <- sum(temp.df$pred[temp.df$pred>=min(temp.df$pred[temp.df$obs==1])]) + sum(temp.df$pred[temp.df$obs==1]) return(AnB/AuB) } probabilisticJaccard <- function(data){ temp.df <- data.frame(obs=as.numeric(data[1:(length(data)/2)]),pred=as.numeric(data[((length(data)/2)+1):length(data)])) temp.df <- temp.df[order(-temp.df$pred),] AnB <- sum(temp.df$pred[temp.df$obs==1]) AuB <- sum(temp.df$pred[temp.df$pred>=min(temp.df$pred[temp.df$obs==1])]) return(AnB/AuB) } prob.community.metics <- function(obs, pred, metrics){ obs <- obs[,order(colnames(obs))] pred <- pred[,order(colnames(pred))] try(if(!identical(dim(obs),dim(pred))){stop("Dimensions of obs and pred differ")}) try(if(!identical(colnames(obs), colnames(pred))){stop("Columnames of obs and pred differ, make sure the species are matching")}) Null.pred.05 <- pred Null.pred.05[,] <- 0.5 Null.pred.average.SR <- pred Null.pred.average.SR[,] <- mean(rowSums(obs))/dim(obs)[2] Null.pred.prevalence <- pred Null.pred.prevalence[,] <- rep(colSums(obs)/dim(obs)[1], each=dim(obs)[1]) if("SR.deviation" %in% metrics){ SR.obs <- rowSums(obs) SR.Null.pred.05 <- apply(data.frame(SR.obs=SR.obs, Null.pred.05),1, SR.prob) SR.Null.pred.average.SR <- apply(data.frame(SR.obs=SR.obs, Null.pred.average.SR),1, SR.prob) SR.Null.pred.prevalence <- apply(data.frame(SR.obs=SR.obs, Null.pred.prevalence),1, SR.prob) SR.pred <- apply(data.frame(SR.obs=SR.obs, pred),1,SR.prob) SR.stat <- data.frame(t(apply(data.frame(SR.obs=SR.obs, pred),1,SR.mean.sd))) SR.results <- signif(data.frame(SR.obs, SR.stat, SR.imp.05=SR.pred/SR.Null.pred.05, SR.imp.average.SR=SR.pred/SR.Null.pred.average.SR, SR.imp.prevalence=SR.pred/SR.Null.pred.prevalence),3) } if(length(intersect(metrics,c("community.AUC","Max.Sorensen","Max.Jaccard","probabilistic.Sorensen","probabilistic.Jaccard")))>0){ composition.Null.pred.05 <- rep(0.5^dim(Null.pred.05)[2], dim(Null.pred.05)[1]) composition.Null.pred.average.SR <- apply(data.frame(obs, Null.pred.average.SR),1, composition.prob) composition.Null.pred.prevalence <- apply(data.frame(obs, Null.pred.prevalence),1, composition.prob) composition.pred <- apply(data.frame(obs, pred),1, composition.prob) composition.results <- signif(data.frame(composition.imp.05 = composition.pred/composition.Null.pred.05, composition.imp.average.SR = composition.pred/composition.Null.pred.average.SR, composition.imp.prevalence = composition.pred/composition.Null.pred.prevalence),3) if("probabilistic.Sorensen" %in% metrics){ Sorensen.stat <- data.frame(t(apply(data.frame(obs, pred),1, probabilisticSorensen))) composition.results <- signif(data.frame(probabilistic.Sorensen=unlist(Sorensen.stat), composition.results),3) } if("probabilistic.Jaccard" %in% metrics){ Jaccard.stat <- data.frame(t(apply(data.frame(obs, pred),1, probabilisticJaccard))) composition.results <- signif(data.frame(probabilistic.Jaccard=unlist(Jaccard.stat), composition.results),3) } if("Max.Sorensen" %in% metrics){ Sorensen.stat <- data.frame(t(apply(data.frame(obs, pred),1, MaxSorensen))) composition.results <- signif(data.frame(Max.Sorensen=unlist(Sorensen.stat), composition.results),3) } if("Max.Jaccard" %in% metrics){ Jaccard.stat <- data.frame(t(apply(data.frame(obs, pred),1, MaxJaccard))) composition.results <- signif(data.frame(Max.Jaccard=unlist(Jaccard.stat), composition.results),3) } if("community.AUC" %in% metrics){ AUC.stat <- apply(data.frame(obs, pred),1, Community.AUC) composition.results <- signif(data.frame(Community.AUC=AUC.stat, composition.results),3) } } if("SR.deviation" %in% metrics & length(intersect(metrics,c("community.AUC","Max.Sorensen","Max.Jaccard","probabilistic.Sorensen","probabilistic.Jaccard")))==0){ return(SR.results) } if(!("SR.deviation" %in% metrics) & length(intersect(metrics,c("community.AUC","Max.Sorensen","Max.Jaccard","probabilistic.Sorensen","probabilistic.Jaccard")))>0){ return(composition.results) } if("SR.deviation" %in% metrics & length(intersect(metrics,c("community.AUC","Max.Sorensen","Max.Jaccard","probabilistic.Sorensen","probabilistic.Jaccard")))>0){ return(data.frame(SR.results,composition.results)) } } nb.mes <- 0 if("SR.deviation" %in% community.metrics){ nb.mes <- nb.mes+8 } if(length(intersect(community.metrics,c("community.AUC","Max.Sorensen","Max.Jaccard","probabilistic.Sorensen","probabilistic.Jaccard")))>0){ nb.mes <- nb.mes+3 } if("community.AUC" %in% community.metrics){ nb.mes <- nb.mes+1 } if("Max.Sorensen" %in% community.metrics){ nb.mes <- nb.mes+1 } if("Max.Jaccard" %in% community.metrics){ nb.mes <- nb.mes+1 } if("probabilistic.Sorensen" %in% community.metrics){ nb.mes <- nb.mes+1 } if("probabilistic.Jaccard" %in% community.metrics){ nb.mes <- nb.mes+1 } ccv.cali <- array(data=NA, dim=c(dim(ccv.modeling.data$speciesData.calibration)[2],nb.mes, dim(ccv.modeling.data$speciesData.calibration)[3])) ccv.eval <- array(data=NA, dim=c(dim(ccv.modeling.data$speciesData.evaluation)[2],nb.mes, dim(ccv.modeling.data$speciesData.evaluation)[3])) if(parallel){ sfInit(parallel=TRUE, cpus=cpus) sfExport("SR.mean.sd", "SR.prob","prob.community.metics", "composition.prob","Community.AUC", "MaxJaccard", "MaxSorensen", "probabilisticJaccard", "probabilisticSorensen") sfExport("ccv.modeling.data", "community.metrics") sfLibrary("poibin", character.only=TRUE ) sfLibrary("PresenceAbsence", character.only=TRUE ) temp <- sfLapply(1:dim(ccv.modeling.data$speciesData.calibration)[3], function(x){ obs.temp <- t(ccv.modeling.data$speciesData.calibration[,,x])[rowSums(is.na(t(ccv.modeling.data$speciesData.calibration[,,x])))!=ncol(t(ccv.modeling.data$speciesData.calibration[,,x])),] pred.temp <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,x])[rowSums(is.na(t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,x])))!=ncol(t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,x])),]/1000 stopifnot(dim(obs.temp)==dim(pred.temp)) prob.community.metics(obs=obs.temp, pred=pred.temp, metrics=community.metrics) }) for(i in 1:dim(ccv.modeling.data$speciesData.calibration)[3]){ ccv.cali[1:dim(temp[[i]])[1],,i] <- unlist(temp[[i]]) } dimnames(ccv.cali) <- list(dimnames(ccv.modeling.data$speciesData.calibration)[[2]], unlist(dimnames(temp[[1]])[2]), dimnames(ccv.modeling.data$speciesData.calibration)[[3]]) temp <- sfLapply(1:dim(ccv.modeling.data$speciesData.evaluation)[3], function(x){ obs.temp <- t(ccv.modeling.data$speciesData.evaluation[,,x])[rowSums(is.na(t(ccv.modeling.data$speciesData.evaluation[,,x])))!=ncol(t(ccv.modeling.data$speciesData.evaluation[,,x])),] pred.temp <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,x])[rowSums(is.na(t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,x])))!=ncol(t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,x])),]/1000 stopifnot(dim(obs.temp)==dim(pred.temp)) prob.community.metics(obs=obs.temp, pred=pred.temp, metrics=community.metrics) }) for(i in 1:dim(ccv.modeling.data$speciesData.evaluation)[3]){ ccv.eval[1:dim(temp[[i]])[1],,i] <- unlist(temp[[i]]) } dimnames(ccv.eval) <- list(dimnames(ccv.modeling.data$speciesData.evaluation)[[2]], unlist(dimnames(temp[[1]])[2]), dimnames(ccv.modeling.data$speciesData.evaluation)[[3]]) sfStop( nostop=FALSE ) }else{ temp <- lapply(1:dim(ccv.modeling.data$speciesData.calibration)[3], function(x){ obs.temp <- t(ccv.modeling.data$speciesData.calibration[,,x])[rowSums(is.na(t(ccv.modeling.data$speciesData.calibration[,,x])))!=ncol(t(ccv.modeling.data$speciesData.calibration[,,x])),] pred.temp <- t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,x])[rowSums(is.na(t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,x])))!=ncol(t(ccv.modeling.data$singleSpecies.calibrationSites.ensemblePredictions[,,x])),]/1000 stopifnot(dim(obs.temp)==dim(pred.temp)) prob.community.metics(obs=obs.temp, pred=pred.temp, metrics=community.metrics) }) for(i in 1:dim(ccv.modeling.data$speciesData.calibration)[3]){ ccv.cali[1:dim(temp[[i]])[1],,i] <- unlist(temp[[i]]) } dimnames(ccv.cali) <- list(dimnames(ccv.modeling.data$speciesData.calibration)[[2]], unlist(dimnames(temp[[1]])[2]), dimnames(ccv.modeling.data$speciesData.calibration)[[3]]) temp <- lapply(1:dim(ccv.modeling.data$speciesData.evaluation)[3], function(x){ obs.temp <- t(ccv.modeling.data$speciesData.evaluation[,,x])[rowSums(is.na(t(ccv.modeling.data$speciesData.evaluation[,,x])))!=ncol(t(ccv.modeling.data$speciesData.evaluation[,,x])),] pred.temp <- t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,x])[rowSums(is.na(t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,x])))!=ncol(t(ccv.modeling.data$singleSpecies.evaluationSites.ensemblePredictions[,,x])),]/1000 stopifnot(dim(obs.temp)==dim(pred.temp)) prob.community.metics(obs=obs.temp, pred=pred.temp, metrics=community.metrics) }) for(i in 1:dim(ccv.modeling.data$speciesData.evaluation)[3]){ ccv.eval[1:dim(temp[[i]])[1],,i] <- unlist(temp[[i]]) } dimnames(ccv.eval) <- list(dimnames(ccv.modeling.data$speciesData.evaluation)[[2]], unlist(dimnames(temp[[1]])[2]), dimnames(ccv.modeling.data$speciesData.evaluation)[[3]]) } CommunityEvaluationMetrics.CalibrationSites <- array(data=NA, dim=c(dim(ccv.modeling.data$speciesData.full)[1],nb.mes, dim(ccv.modeling.data$speciesData.calibration)[3]), dimnames=list(unlist(dimnames(ccv.modeling.data$speciesData.full)[1]), unlist(dimnames(ccv.cali)[2]), unlist(dimnames(ccv.cali)[3]))) CommunityEvaluationMetrics.EvaluationSites <- array(data=NA, dim=c(dim(ccv.modeling.data$speciesData.full)[1],nb.mes, dim(ccv.modeling.data$speciesData.calibration)[3]), dimnames=list(unlist(dimnames(ccv.modeling.data$speciesData.full)[1]), unlist(dimnames(ccv.cali)[2]), unlist(dimnames(ccv.cali)[3]))) for(r in 1:dim(ccv.modeling.data$speciesData.calibration)[3]){ CommunityEvaluationMetrics.CalibrationSites[which(ccv.modeling.data$DataSplitTable[,r]),,r] <- ccv.cali[1:sum(ccv.modeling.data$DataSplitTable[,r]),,r] CommunityEvaluationMetrics.EvaluationSites[which(!ccv.modeling.data$DataSplitTable[,r]),,r] <- ccv.eval[1:sum(!ccv.modeling.data$DataSplitTable[,r]),,r] } ccv.evaluationMetrics.prob <- list(DataSplitTable = ccv.modeling.data$DataSplitTable, CommunityEvaluationMetrics.CalibrationSites=CommunityEvaluationMetrics.CalibrationSites, CommunityEvaluationMetrics.EvaluationSites=CommunityEvaluationMetrics.EvaluationSites) save(ccv.evaluationMetrics.prob, file=paste(ccv.modeling.data$modeling.id,".ccv.evaluationMetrics.prob.RData", sep="")) return(ccv.evaluationMetrics.prob) }
arr2dl <- function(x, ...){ if (class(x) != "array"){ stop("x must be a array.", call. = FALSE) } x <- as.vector(x) result <- chrvec2dl(x, ...) return(result) } arr2vbt <- function(x, ...){ if (class(x) != "array"){ stop("x must be a array.", call. = FALSE) } x <- as.vector(x) x <- chrvec2dl(x, ...) result <- dl2vbt(x) return(result) }
bumpVersion <- function(element = "patch", pkg.repo = ".", news = file.path(pkg.repo, "NEWS.md"), plain_news = TRUE) { desc <- readLines(paste(pkg.repo, "DESCRIPTION", sep = "/")) old.ver <- substr(desc[grep("Version*", desc)], 10, nchar(desc[grep("Version*", desc)])) old <- as.numeric(unlist(strsplit(old.ver, "\\."))) new.v <- switch(element, major = c(old[1] + 1, 0, 0), minor = c(old[1], old[2] + 1, 0), patch = c(old[1], old[2], old[3] + 1)) new.ver <- paste(new.v[1], new.v[2], new.v[3], sep = ".") new.v <- new.v[1] * 100 + new.v[2] * 10 + new.v[3] old <- old[1] * 100 + old[2] * 10 + old[3] desc[grep("^Version", desc)] <- paste0("Version: ", new.ver) desc[grep("^Date", desc)] <- paste0("Date: ", Sys.Date()) writeLines(desc, paste(pkg.repo, "DESCRIPTION", sep = "/")) pkg.name <- substr(desc[grep("^Package:", desc)], 10, nchar(desc[grep("^Package:", desc)])) pkg_fl = paste(pkg.repo, "man", paste(pkg.name, "-package.Rd", sep = ""), sep = "/") if (file.exists(pkg_fl)) { pkg.doc <- readLines(pkg_fl) pkg.doc[grep("^Version", pkg.doc)] <- paste("Version: \\tab ", new.ver, "\\cr", sep = "") pkg.doc[grep("^Date", pkg.doc)] <- paste("Date: \\tab ", Sys.Date(), "\\cr", sep = "") writeLines(pkg.doc, paste(pkg.repo, "man", paste(pkg.name, "-package.Rd", sep = ""), sep = "/")) } if (file.exists(news)) { newsfile <- readLines(news) newsfile[1] <- paste(" writeLines(newsfile, con = news) if (basename(news) == "NEWS.md") { nfl = gsub(" writeLines(nfl, con = gsub(".md", "", news)) } } }
readTreeMask =function (rwl, stc = c(5, 2, 1)) { if (sum(stc) != 8) stop("Site-Tree-Core mask does not sum to 8") ids = colnames(rwl) test = function (x, site.chars=stc) { out=c(NA,NA,NA) out[1] = substring(x, 1, stc[1]) out[2] = substring(x, stc[1]+1, sum(stc[1:2])) out[3] = substring(x, sum(stc[1:2])+1, sum(stc[1:2])+stc[3]) return(out) } out = t(sapply(ids, test,site.chars=stc)) out = data.frame(out) tree.series = ids tree.vec = as.numeric(out[, 2]) tree.ids = unique(out[, 2]) core.vec = rep(NA, length(tree.vec)) n.trees = length(tree.ids) for (i in 1:n.trees) { n.cores = length(core.vec[tree.vec == i]) core.vec[tree.vec == i] = seq(1, n.cores) } out =data.frame(out,tree = tree.vec, core = core.vec) out<-out[order(out[,4]),] colnames(out) = c("Site", "Tree", "Core","tree", "core") return(out) }
context("rbind and cbind sim_geno") test_that("rbind.sim_geno works for grav", { grav2 <- read_cross2(system.file("extdata", "grav2.zip", package="qtl2")) grav2 <- grav2[1:30,1:2] map <- insert_pseudomarkers(grav2$gmap, step=5) draws <- sim_geno(grav2, map, error_prob=0.002, n_draws=8) drawsA <- draws[1:5,] drawsB <- draws[6:12,] drawsC <- draws[13:20,] drawsAB <- draws[1:12,] drawsABC <- draws[1:20,] drawsBACA <- draws[c(6:12, 1:5, 13:20, 1:5),] expect_equal(rbind(drawsA, drawsB), drawsAB) expect_equal(rbind(drawsA, drawsB, drawsC), drawsABC) expect_equal(rbind(drawsB, drawsA, drawsC, drawsA), drawsBACA) }) test_that("rbind.sim_geno works for iron", { skip_on_cran() iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2")) map <- insert_pseudomarkers(iron$gmap, step=1) draws <- sim_geno(iron, map, error_prob=0.002, n_draws=5) drawsA <- draws[2:20,] drawsB <- draws[41:60,] drawsC <- draws[102:201,] drawsAB <- draws[c(2:20,41:60),] drawsABC <- draws[c(2:20,41:60,102:201),] drawsBACA <- draws[c(41:60,2:20,102:201,2:20),] expect_equal(rbind(drawsA, drawsB), drawsAB) expect_equal(rbind(drawsA, drawsB, drawsC), drawsABC) expect_equal(rbind(drawsB, drawsA, drawsC, drawsA), drawsBACA) }) test_that("cbind.simgeno for grav", { grav2 <- read_cross2(system.file("extdata", "grav2.zip", package="qtl2")) grav2 <- grav2[1:30,] map <- insert_pseudomarkers(grav2$gmap, step=5) draws <- sim_geno(grav2[1:10,], map, error_prob=0.002, n_draws=8) drawsA <- draws[,1:2] drawsB <- draws[,5] drawsC <- draws[,3:4] drawsAB <- draws[,c(1:2,5)] drawsABC <- draws[,c(1,2,5,3,4)] drawsBACA <- draws[,c(5,1:2,3:4,1:2)] expect_equal(cbind(drawsA, drawsB), drawsAB) expect_equal(cbind(drawsA, drawsB, drawsC), drawsABC) expect_equal(cbind(drawsB, drawsA, drawsC, drawsA), drawsBACA) }) test_that("cbind.sim_geno works for iron", { skip_on_cran() iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2")) map <- insert_pseudomarkers(iron$gmap, step=1) draws <- sim_geno(iron[6:21,], map, error_prob=0.002, n_draws=6) drawsA <- draws[,2:3] drawsB <- draws[,c(4,5,8)] drawsC <- draws[,c(19,"X")] drawsAB <- draws[,c(2:3,4,5,8)] drawsABC <- draws[,c(2:3,4,5,8,19,"X")] drawsBACA <- draws[,c(4,5,8,2,3,19,"X",2,3)] expect_equal(cbind(drawsA, drawsB), drawsAB) expect_equal(cbind(drawsA, drawsB, drawsC), drawsABC) expect_equal(cbind(drawsB, drawsA, drawsC, drawsA), drawsBACA) })
dMetselaar_model<- function(t, x, parms, temp_profile) { temp <- temp_profile(t) with(as.list(c(x, parms)),{ D_T <- D_R * 10^( -(temp-temp_ref)/z) dN <- - N * p * (1/D_T)^p * (t/Delta)^(p-1) * log(10) res <- c(dN) return(list(res)) }) }
common.prefix <- function(cnames) { n.char <- nchar(cnames) n <- length(cnames) y <- ""; for (i in dec(min(n.char), 1)) { first.prefix <- substr(cnames[1], 1, i) prefix.match <- TRUE for (j in inc(2, n)) { if (first.prefix != substr(cnames[j], 1, i)) { prefix.match <- FALSE break } } if (prefix.match) { y <- first.prefix break } } y } consistent.ids.titles <- function(ids, titles) { unique.trees.1 <- unique(ids$tree) unique.trees.2 <- unique(titles$tree) if (length(unique.trees.1) != length(unique.trees.2)) { return(FALSE) } for (tree in unique.trees.1) { idx.t <- which(ids$tree %in% tree) if (length(idx.t) > 1) { if (any(titles$tree[idx.t] != titles$tree[idx.t[1]])) { return(FALSE) } unique.cores.1 <- unique(ids$core[idx.t]) unique.cores.2 <- unique(titles$core[idx.t]) if (length(unique.cores.1) != length(unique.cores.2)) { return(FALSE) } for (core in unique.cores.1) { idx.c <- idx.t[ids$core[idx.t] %in% core] if (length(idx.c) > 1) { if (any(titles$core[idx.c] != titles$core[idx.c[1]])) { return(FALSE) } unique.radii.1 <- unique(ids$radius[idx.c]) unique.radii.2 <- unique(titles$radius[idx.c]) if (length(unique.radii.1) != length(unique.radii.2)) { return(FALSE) } for (radius in unique.radii.1) { idx.r <- idx.c[ids$radius[idx.c] %in% radius] length.idx <- length(idx.r) if (length.idx > 1) { if (any(titles$radius[idx.r] != titles$radius[idx.r[1]])) { return(FALSE) } unique.mments.1 <- unique(ids$measurement[idx.r]) unique.mments.2 <- unique(titles$measurement[idx.r]) if (length(unique.mments.1) != length.idx || length(unique.mments.2) != length.idx) { return(FALSE) } } } } } } } return(TRUE) } create.title.hierarchy <- function(cnames, ids) { n <- length(cnames) max.nchar <- max(nchar(cnames)) out.t <- character(length = n) out.c <- character(length = n) out.r <- character(length = n) out.m <- character(length = n) unique.trees <- unique(ids$tree) t.names <- character(length = length(unique.trees)) names(t.names) <- unique.trees t.map <- list() for (tree in unique.trees) { idx.t <- which(ids$tree %in% tree) t.map[[tree]] <- idx.t if (length(idx.t) > 1) { cp <- common.prefix(cnames[idx.t]) t.names[tree] <- cp chars.used <- length(cp) unique.cores <- unique(ids$core[idx.t]) n.uc <- length(unique.cores) c.names <- character(length = n.uc) names(c.names) <- unique.cores c.map <- list() for (core in unique.cores) { idx.c <- idx.t[ids$core[idx.t] %in% core] c.map[[core]] <- idx.c if (length(idx.c) > 1) { if (n.uc == 1) { c.names[core] <- "1" chars.used.2 <- chars.used } else { cp <- common.prefix(substr(cnames[idx.c], chars.used+1, max.nchar)) c.names[core] <- cp chars.used.2 <- chars.used + length(cp) } unique.radii <- unique(ids$radius[idx.c]) n.ur <- length(unique.radii) r.names <- character(length = n.ur) names(r.names) <- unique.radii r.map <- list() for (radius in unique.radii) { idx.r <- idx.c[ids$radius[idx.c] %in% radius] r.map[[radius]] <- idx.r if (length(idx.r) > 1) { if (n.ur == 1) { r.names[radius] <- "1" chars.used.3 <- chars.used.2 } else { cp <- common.prefix(substr(cnames[idx.r], chars.used.2+1, max.nchar)) r.names[radius] <- cp chars.used.3 <- chars.used.2 + length(cp) } for (idx.m in idx.r) { out.m[idx.m] <- substr(cnames[idx.m], chars.used.3+1, max.nchar) } suppressWarnings(out.m[idx.r] <- fix.names(out.m[idx.r], basic.charset = FALSE)) } else { if (n.ur == 1) { r.names[radius] <- "1" } else { r.names[radius] <- substr(cnames[idx.r], chars.used.2+1, max.nchar) } out.m[idx.r] <- "1" } } suppressWarnings(r.names <- fix.names(r.names, basic.charset = FALSE)) for (radius in unique.radii) { out.r[r.map[[radius]]] <- r.names[radius] } } else { if (n.uc == 1) { c.names[core] <- "1" } else { c.names[core] <- substr(cnames[idx.c], chars.used+1, max.nchar) } out.r[idx.c] <- out.m[idx.c] <- "1" } } suppressWarnings(c.names <- fix.names(c.names, basic.charset = FALSE)) for (core in unique.cores) { out.c[c.map[[core]]] <- c.names[core] } } else { t.names[tree] <- cnames[idx.t] out.c[idx.t] <- out.r[idx.t] <- out.m[idx.t] <- "1" } } suppressWarnings(t.names <- fix.names(t.names, basic.charset = FALSE)) for (tree in unique.trees) { out.t[t.map[[tree]]] <- t.names[tree] } data.frame(tree = out.t, core = out.c, radius = out.r, measurement = out.m) } po.to.wc <- function(po) { data.frame(n.missing.heartwood = as.integer(po[[2]] - 1), row.names = po[[1]]) } expand.metadata <- function(md.in, crn, default.value="") { if (is.null(md.in)) { md.out <- lapply(crn, function(x) rep(default.value, length(x))) } else if (is.character(md.in)) { if (length(md.in) == 0) { md.out <- lapply(crn, function(x) rep(default.value, length(x))) } else { md.in2 <- rep(md.in, length.out=length(crn)) md.out <- list() for (k in seq_along(crn)) { md.out[[k]] <- rep(md.in2[k], length(crn[[k]])) } } } md.out } write.tridas <- function(rwl.df = NULL, fname, crn = NULL, prec = NULL, ids = NULL, titles = NULL, crn.types = NULL, crn.titles = NULL, crn.units = NULL, tridas.measuring.method = NA, other.measuring.method = "unknown", sample.type = "core", wood.completeness = NULL, taxon = "", tridas.variable = "ring width", other.variable = NA, project.info = list( type = c("unknown"), description = NULL, title = "", category = "", investigator = "", period = "" ), lab.info = data.frame( name = "", acronym = NA, identifier = NA, domain = "", addressLine1 = NA, addressLine2 = NA, cityOrTown = NA, stateProvinceRegion = NA, postalCode = NA, country = NA ), research.info = data.frame( identifier = NULL, domain = NULL, description = NULL ), site.info = list( type = "unknown", description = NULL, title = "" ), random.identifiers = FALSE, identifier.domain = lab.info$name[1], ...) { if (!is.data.frame(lab.info) || nrow(lab.info) < 1) { stop("'lab.info' must be a data.frame with at least one row") } lab.names <- names(lab.info) if (!("name" %in% lab.names)) { stop("\"name\" is a required variable in 'lab.info'") } identifier.present <- "identifier" %in% lab.names if (identifier.present && !("domain" %in% lab.names)) { stop("\"domain\" is required together with \"identifier\" in 'lab.info'") } if (!is.data.frame(research.info) || nrow(research.info) < 1) { research.present <- FALSE } else { research.names <- names(research.info) if (!("identifier" %in% research.names)) { stop("\"identifier\" is a required variable in 'research.info'") } if (!("domain" %in% research.names)) { stop("\"domain\" is a required variable in 'research.info'") } if (!("description" %in% research.names)) { stop("\"description\" is a required variable in 'research.info'") } research.present <- TRUE } check.char.vars <- function(must.exist) { for (var.specs in must.exist) { base.name <- var.specs[1] this.var <- get(base.name) specs.length <- length(var.specs) if (specs.length < 3) { if (!is.character(this.var)) { if (specs.length == 1) { default.value <- "" } else { default.value <- var.specs[2] } warning(gettextf("'%s' must be of type character - inserting \"%s\"", base.name, default.value)) assign(base.name, default.value, inherits = TRUE) } } else { default.value <- var.specs[2] if (!is.list(this.var)) { warning(gettextf("'%s' must be a list. Creating one.", base.name)) this.var <- list() } for (component.name in var.specs[3:specs.length]) { if (!is.character(this.var[[component.name]])) { warning(gettextf("'%s$%s' must be of type character - inserting \"%s\"", base.name, component.name, default.value)) this.var[[component.name]] <- default.value } } assign(base.name, this.var, inherits = TRUE) } } } check.char.vars(list(c("project.info", "", "title", "category", "investigator", "period"), c("project.info", "unknown", "type"))) if (random.identifiers) { check.char.vars(list("identifier.domain")) } if (!is.na(tridas.variable)) { tridas.variable2 <- tridas.vocabulary("variable", term=tridas.variable) } else { tridas.variable2 <- NA } address.order <- c("addressLine1", "addressLine2", "cityOrTown", "stateProvinceRegion", "postalCode", "country") if (random.identifiers) { ugen <- uuid.gen(paste0("dplR", packageDescription("dplR", fields = "Version"), fname)) } doc <- simpleXML(fname, root="tridas", xml.ns="http://www.tridas.org/1.2.2") on.exit(doc$close()) doc.addTag <- doc$addTag doc.addTag.nc <- doc$addTag.noCheck doc.closeTag <- doc$closeTag doc.addTag.nc("project", close = FALSE) doc.addTag("title", project.info$title[1]) if (random.identifiers) { doc.addTag("identifier", ugen(), attrs = c(domain = identifier.domain)) } for (t in project.info$type) { doc.addTag("type", t) } doc.addTag("description", project.info$description[1]) acronym.present <- "acronym" %in% lab.names address.order <- address.order[address.order %in% lab.names] for (i in seq_len(nrow(lab.info))) { doc.addTag.nc("laboratory", close = FALSE) if (identifier.present) { this.identifier <- lab.info$identifier[i] if (!is.na(this.identifier) && nzchar(this.identifier)) { doc.addTag("identifier", this.identifier, attrs = c(domain = lab.info$domain[i])) } } if (acronym.present) { this.acronym <- lab.info$acronym[i] if (!is.na(this.acronym) && nzchar(this.acronym)) { doc.addTag("name", lab.info$name[i], attrs = c(acronym = this.acronym)) } else { doc.addTag("name", lab.info$name[i]) } } else { doc.addTag("name", lab.info$name[i]) } doc.addTag.nc("address", close = FALSE) for (address.line in address.order) { address.text <- lab.info[[address.line]][i] if (!is.na(address.text) && nzchar(address.text)) { doc.addTag(address.line, address.text) } } doc.closeTag() doc.closeTag() } doc.addTag("category", project.info$category[1]) doc.addTag("investigator", project.info$investigator[1]) doc.addTag("period", project.info$period[1]) if (research.present) { for (i in seq_len(nrow(research.info))) { doc.addTag.nc("research", close = FALSE) doc.addTag("identifier", research.info$identifier[i], attrs = c(domain = research.info$domain[i])) doc.addTag("description", research.info$description[i]) doc.closeTag() } } if (!is.null(rwl.df)) { if (!is.data.frame(rwl.df)) { stop("'rwl.df' must be a data.frame") } check.char.vars(list(c("site.info", "unknown", "type"), c("site.info", "", "title"))) n.col <- ncol(rwl.df) cnames <- names(rwl.df) stopifnot(is.character(cnames), !is.na(cnames), Encoding(cnames) != "bytes") ids2 <- ids titles2 <- titles if (is.null(ids2)) { ones <- rep(1, n.col) ids2 <- data.frame(tree = seq_len(n.col), core = ones, radius = ones, measurement = ones) } else if (is.data.frame(ids2) && nrow(ids2) == n.col) { ncol.ids <- ncol(ids2) if (ncol.ids == 2) { ones <- rep(1, n.col) if (!all(c("tree","core") %in% names(ids2))) { stop("2-col 'ids' needs \"tree\" and \"core\" columns") } ids2 <- data.frame(ids2, radius = ones, measurement = ones) } else if(ncol.ids == 3) { if (!all(c("tree","core","radius") %in% names(ids2))) { stop("3-col 'ids' needs \"tree\", \"core\", and \"radius\" columns") } ids2 <- data.frame(ids2, measurement = rep(1, n.col)) } else if (ncol.ids == 4) { if (!all(c("tree","core","radius","measurement") %in% names(ids2))) { stop("4-col 'ids' needs \"tree\", \"core\", \"radius\", and \"measurement\" columns") } } else { stop("argument 'ids' is in wrong format (2, 3, or 4 columns required)") } } else { stop("argument 'ids' is not data.frame or has wrong number of rows") } if (!all(vapply(ids2, is.numeric, TRUE))) { stop("'ids' must have numeric columns") } if (is.null(titles2)) { titles2 <- create.title.hierarchy(cnames, ids2) } else if (is.data.frame(titles2) && nrow(titles2) == n.col) { if (ncol(titles2) != 4 || !all(c("tree", "core", "radius", "measurement") %in% names(ids2))) { stop("columns needed in 'titles': \"tree\", \"core\", \"radius\", and \"measurement\"") } } else { stop("argument 'titles' is not data.frame or has wrong number of rows") } if (!consistent.ids.titles(ids2, titles2)) { stop("'ids' and 'titles' not consistent or duplicates present") } if (!is.null(prec)) { if (prec == 0.001) { data.unit <- "micrometres" rwl.df2 <- round(rwl.df * 1000) } else if (prec == 0.01) { data.unit <- "1/100th millimetres" rwl.df2 <- round(rwl.df * 100) } else if (prec == 0.05) { data.unit <- "1/20th millimetres" rwl.df2 <- round(rwl.df * 20) } else if (prec == 0.1) { data.unit <- "1/10th millimetres" rwl.df2 <- round(rwl.df * 10) } else if (prec == 1) { data.unit <- "millimetres" rwl.df2 <- round(rwl.df) } else if (prec == 10) { data.unit <- "centimetres" rwl.df2 <- round(rwl.df / 10) } else if (prec == 100) { data.unit <- "centimetres" rwl.df2 <- round(rwl.df / 100) * 10 } else if (prec == 1000) { data.unit <- "metres" rwl.df2 <- round(rwl.df / 1000) } else { warning("unknown 'prec' specified: no unit conversion or rounding done") data.unit <- "millimetres" rwl.df2 <- rwl.df } } else { data.unit <- "millimetres" rwl.df2 <- rwl.df } tridas.measuring.method2 <- tridas.measuring.method if (!all(is.na(tridas.measuring.method2))) { for (k in seq_along(tridas.measuring.method2)) { if (!is.na(this.mm <- tridas.measuring.method2[k])) { tridas.measuring.method2[k] <- tridas.vocabulary("measuring method", term=this.mm) } } } if (length(tridas.measuring.method2) != n.col) { tridas.measuring.method2 <- rep(tridas.measuring.method2, length.out = n.col) } check.char.vars(list(c("other.measuring.method", "unknown"))) other.measuring.method2 <- other.measuring.method if (length(other.measuring.method2) != n.col) { other.measuring.method2 <- rep(other.measuring.method2, length.out = n.col) } check.char.vars(list(c("sample.type", "core"))) if (length(sample.type) != n.col) { sample.type2 <- rep(sample.type, length.out = n.col) } else { sample.type2 <- sample.type } wood.completeness2 <- wood.completeness if (!is.null(wood.completeness2)) { if (nrow(wood.completeness2) != n.col) { stop("'nrow(wood.completeness)' must be equal to 'ncol(rwl.df)'") } if (any(row.names(wood.completeness2) != cnames)) { stop("row names of 'wood.completeness' must match column names of 'rwl.df'") } names.wc <- names(wood.completeness2) wc <- TRUE names.complex <- c("pith.presence", "heartwood.presence", "sapwood.presence") names.nonnegative <- c("n.unmeasured.inner", "n.missing.sapwood", "n.sapwood", "n.missing.heartwood", "n.unmeasured.outer") for (nam in names.complex[!(names.complex %in% names.wc)]) { wood.completeness2[[nam]] <- rep("unknown", n.col) } for (nam in names.nonnegative[names.nonnegative %in% names.wc]) { temp <- na.omit(wood.completeness2[[nam]]) if (any(!is.int(temp) | temp < 0)) { stop(gettextf("some values in 'wood.completeness$%s' are invalid, i.e. not integer or < 0", nam)) } } for (nam in names.complex) { wood.completeness2[[nam]][is.na(wood.completeness2[[nam]])] <- "unknown" wood.completeness2[[nam]] <- tridas.vocabulary("complex presence / absence", term = wood.completeness2[[nam]]) } if (!("bark.presence" %in% names.wc)) { wood.completeness2$bark.presence <- rep("unknown", n.col) } idx.bark.na <- which(is.na(wood.completeness2$bark.presence)) if (length(idx.bark.na) > 0) { wood.completeness2$bark.presence[idx.bark.na] <- "unknown" } wood.completeness2$bark.presence <- tridas.vocabulary("presence / absence", term = wood.completeness2$bark.presence) if ("last.ring.presence" %in% names.wc) { idx.notna <- which(!is.na(wood.completeness2$last.ring.presence)) wood.completeness2$last.ring.presence[idx.notna] <- tridas.vocabulary("presence / absence", term = wood.completeness2$last.ring.presence[idx.notna]) wc.lrp <- TRUE if ("last.ring.details" %in% names.wc) { wc.lrd <- TRUE } else { wc.lrd <- FALSE } } else { wc.lrp <- FALSE } if ("n.missing.sapwood" %in% names.wc) { wc.nms <- TRUE if ("missing.sapwood.foundation" %in% names.wc) { wc.msf <- TRUE } else { wc.msf <- FALSE } } else { wc.nms <- FALSE } if ("n.sapwood" %in% names.wc) { wc.ns <- TRUE } else { wc.ns <- FALSE } if ("n.missing.heartwood" %in% names.wc) { wc.nmh <- TRUE if ("missing.heartwood.foundation" %in% names.wc) { wc.mhf <- TRUE } else { wc.mhf <- FALSE } } else { wc.nmh <- FALSE } if ("n.unmeasured.inner" %in% names.wc) { wc.nui <- TRUE } else { wc.nui <- FALSE } if ("n.unmeasured.outer" %in% names.wc) { wc.nuo <- TRUE } else { wc.nuo <- FALSE } } else { wc <- FALSE } } crn2 <- crn crn.types2 <- crn.types crn.units2 <- crn.units crn.titles2 <- crn.titles if (!is.null(crn2)) { if (is.data.frame(crn2)) { crn2 <- list(crn2) } if (!is.list(crn.types2)) { crn.types2 <- expand.metadata(crn.types2, crn2, "") } else { crn.types2 <- rep(crn.types2, length.out=length(crn2)) } if (!is.list(crn.units2)) { crn.units2 <- expand.metadata(crn.units2, crn2, NA) } else { crn.units2 <- rep(crn.units2, length.out=length(crn2)) } if (!is.null(crn.titles2)) { titles.present <- TRUE if (!is.list(crn.titles2)) { crn.titles2 <- list(crn.titles2) } crn.titles2 <- rep(crn.titles2, length.out=length(crn2)) } else { titles.present <- FALSE } if (titles.present && length(crn2) != length(crn.titles2)) { titles.present <- FALSE } } if (!is.null(rwl.df)) { doc.addTag.nc("object", close = FALSE) doc.addTag("title", site.info$title[1]) if (random.identifiers) { doc.addTag("identifier", ugen(), attrs = c(domain = identifier.domain)) } doc.addTag("type", site.info$type[1]) if (is.character(site.info$description)) { doc.addTag("description", site.info$description) } unique.trees <- unique(ids2$tree) yrs.all <- as.numeric(row.names(rwl.df2)) for (tree in unique.trees) { idx.t <- which(ids2$tree %in% tree) doc.addTag.nc("element", close = FALSE) doc.addTag("title", titles2$tree[idx.t[1]]) if (random.identifiers) { doc.addTag("identifier", ugen(), attrs = c(domain = identifier.domain)) } doc.addTag("taxon", taxon); unique.cores <- unique(ids2$core[idx.t]) for (core in unique.cores) { idx.c <- idx.t[ids2$core[idx.t] %in% core] doc.addTag.nc("sample", close = FALSE) doc.addTag("title", titles2$core[idx.c[1]]) if (random.identifiers) { doc.addTag("identifier", ugen(), attrs = c(domain = identifier.domain)) } doc.addTag("type", sample.type2[idx.c[1]]) unique.radii <- unique(ids2$radius[idx.c]) for (radius in unique.radii) { idx.r <- idx.c[ids2$radius[idx.c] %in% radius] doc.addTag.nc("radius", close = FALSE) doc.addTag("title", titles2$radius[idx.r[1]]) if (random.identifiers) { doc.addTag("identifier", ugen(), attrs = c(domain = identifier.domain)) } for (idx.m in idx.r) { doc.addTag.nc("measurementSeries", close = FALSE) doc.addTag("title", titles2$measurement[idx.r]) if (random.identifiers) { doc.addTag("identifier", ugen(), attrs = c(domain = identifier.domain)) } doc.addTag("comments", cnames[idx.m]) if (wc) { doc.addTag.nc("woodCompleteness", close = FALSE) if (wc.nui && !is.na(this.val <- wood.completeness2$n.unmeasured.inner[idx.m])) { doc.addTag.nc("nrOfUnmeasuredInnerRings", this.val) } if (wc.nuo && !is.na(this.val <- wood.completeness2$n.unmeasured.outer[idx.m])) { doc.addTag.nc("nrOfUnmeasuredOuterRings", this.val) } doc.addTag.nc("pith", attrs = c(presence = wood.completeness2$pith.presence[idx.m])) doc.addTag.nc("heartwood", attrs = c(presence = wood.completeness2$heartwood.presence[idx.m]), close = FALSE) if (wc.nmh && !is.na(this.val <- wood.completeness2$n.missing.heartwood[idx.m])) { doc.addTag.nc("missingHeartwoodRingsToPith", this.val) if (wc.mhf && !is.na(this.val <- wood.completeness2$missing.heartwood.foundation[idx.m])) { doc.addTag("missingHeartwoodRingsToPithFoundation", this.val) } } doc.closeTag() doc.addTag.nc("sapwood", attrs = c(presence = wood.completeness2$sapwood.presence[idx.m]), close = FALSE) if (wc.ns && !is.na(this.val <- wood.completeness2$n.sapwood[idx.m])) { doc.addTag.nc("nrOfSapwoodRings", this.val) } if (wc.lrp && !is.na(this.val <- wood.completeness2$last.ring.presence[idx.m])) { if (wc.lrd && !is.na(this.detail <- wood.completeness2$last.ring.details[idx.m])) { doc.addTag("lastRingUnderBark", this.detail, attrs = c(presence = this.val)) } else { doc.addTag("lastRingUnderBark", attrs = c(presence = this.val)) } } if (wc.nms && !is.na(this.val <- wood.completeness2$n.missing.sapwood[idx.m])) { doc.addTag.nc("missingSapwoodRingsToBark", this.val) if (wc.msf && !is.na(this.val <- wood.completeness2$missing.sapwood.foundation[idx.m])) { doc.addTag("missingSapwoodRingsToBarkFoundation", this.val) } } doc.closeTag() doc.addTag.nc("bark", attrs = c(presence = wood.completeness2$bark.presence[idx.m])) doc.closeTag() } if (!is.na(this.mm <- tridas.measuring.method2[idx.m])) { doc.addTag.nc("measuringMethod", NULL, attrs = c(normalTridas=this.mm)) } else { doc.addTag("measuringMethod", other.measuring.method2[idx.m]) } doc.addTag.nc("interpretation", close = FALSE) series <- as.numeric(rwl.df2[[idx.m]]) idx <- !is.na(series) series <- series[idx] yrs <- yrs.all[idx] min.year <- min(yrs) max.year <- max(yrs) if (min.year < 1) { doc.addTag.nc("firstYear", 1 - min.year, attrs = c(suffix = "BC")) } else { doc.addTag.nc("firstYear", min.year, attrs = c(suffix = "AD")) } if (max.year < 1) { doc.addTag.nc("lastYear", 1 - max.year, attrs = c(suffix = "BC")) } else { doc.addTag.nc("lastYear", max.year, attrs = c(suffix = "AD")) } doc.closeTag() doc.addTag.nc("values", close = FALSE) if (!is.na(tridas.variable2)) { doc.addTag.nc("variable", NULL, attrs = c(normalTridas = tridas.variable2)) } else { doc.addTag("variable", other.variable) } doc.addTag.nc("unit", NULL, attrs = c(normalTridas = data.unit)) for (i in seq_along(series)) { doc.addTag.nc("value", NULL, attrs = c(value = series[i])) } doc.closeTag() doc.closeTag() } doc.closeTag() } doc.closeTag() } doc.closeTag() } doc.closeTag() } if (!is.null(crn2)) { for (i in seq_along(crn2)) { this.frame <- crn2[[i]] yrs.all <- as.numeric(row.names(this.frame)) crn.names <- names(this.frame) depth.idx <- grep("^samp[.]depth", crn.names) n.depth <- length(depth.idx) if (n.depth > 0) { depth.present <- TRUE series.idx <- setdiff(seq_along(crn.names), depth.idx) n.series <- length(series.idx) depth.idx <- rep(depth.idx, length.out = n.series) } else { depth.present <- FALSE n.series <- length(crn.names) series.idx <- seq_len(n.series) } this.typevec <- as.character(crn.types2[[i]]) n.type <- length(this.typevec) if (n.type == 0) { this.typevec <- rep("", n.series) } else { this.typevec <- rep(this.typevec, length.out = n.series) } this.unitvec <- as.character(crn.units2[[i]]) n.unit <- length(this.unitvec) if (n.unit == 0) { this.unitvec <- rep(NA, n.series) } else { this.unitvec <- rep(this.unitvec, length.out = n.series) } if (titles.present) { this.titlevec <- as.character(crn.titles2[[i]]) n.title <- length(this.titlevec) if (n.title == 0) { this.titlevec <- rep(NA, n.series) } else { this.titlevec <- rep(this.titlevec, length.out = n.series) } } if (depth.present) { n.depth <- length(depth.idx) } for (j in seq_len(n.series)) { this.idx <- series.idx[j] series <- as.numeric(this.frame[[this.idx]]) if (depth.present) { samp.depth <- as.numeric(this.frame[[depth.idx[j]]]) } doc.addTag.nc("derivedSeries", close = FALSE) this.crn.name <- crn.names[this.idx] if (titles.present) { this.title <- this.titlevec[j] if (is.na(this.title)) { this.title <- this.crn.name this.title.present <- FALSE } else { this.title.present <- TRUE } } else { this.title <- this.crn.name this.title.present <- FALSE } doc.addTag("title", this.title) if (random.identifiers) { doc.addTag("identifier", ugen(), attrs = c(domain = identifier.domain)) } if (this.title.present && this.title != this.crn.name) { doc.addTag("comments", this.crn.name) } doc.addTag("type", this.typevec[j]) doc.addTag.nc("linkSeries") doc.addTag.nc("interpretation", close = FALSE) idx <- !is.na(series) series <- series[idx] yrs <- yrs.all[idx] min.year <- min(yrs) max.year <- max(yrs) if (min.year < 1) { doc.addTag.nc("firstYear", 1 - min.year, attrs = c(suffix = "BC")) } else { doc.addTag.nc("firstYear", min.year, attrs = c(suffix = "AD")) } if (max.year < 1) { doc.addTag.nc("lastYear", 1 - max.year, attrs = c(suffix = "BC")) } else { doc.addTag.nc("lastYear", max.year, attrs = c(suffix = "AD")) } doc.closeTag() doc.addTag.nc("values", close = FALSE) if (!is.na(tridas.variable2)) { doc.addTag.nc("variable", NULL, attrs = c(normalTridas=tridas.variable2)) } else { doc.addTag("variable", other.variable) } this.unit <- this.unitvec[j] if (is.na(this.unit)) { doc.addTag.nc("unitless", NULL) } else { doc.addTag("unit", this.unit) } if (depth.present) { for (i in seq_along(series)) { doc.addTag.nc("value", NULL, attrs = c(count = samp.depth[i], value = series[i])) } } else { for (i in seq_along(series)) { doc.addTag.nc("value", NULL, attrs = c(value = series[i])) } } doc.closeTag() doc.closeTag() } } } doc.closeTag() fname }
RUS <- function(level){ x <- NULL if(level==1){ x1 <- github.cssegisanddata.covid19(country = "Russia") x2 <- ourworldindata.org(id = "RUS") x <- full_join(x1, x2, by = "date") } if(level==2){ x <- github.cssegisanddata.covid19unified(iso = "RUS", level = level) x$id <- id(x$id, iso = "RUS", ds = "github.cssegisanddata.covid19unified", level = level) } return(x) }
kronecker <- function (X, Y, FUN = "*", make.dimnames = FALSE, ...) { if (.isMethodsDispatchOn() && (isS4(X) || isS4(Y))) { return(methods::kronecker(X, Y, FUN = FUN, make.dimnames = make.dimnames, ...)) } .kronecker(X, Y, FUN = FUN, make.dimnames = make.dimnames, ...) } .kronecker <- function (X, Y, FUN = "*", make.dimnames = FALSE, ...) { X <- as.array(X) Y <- as.array(Y) if (make.dimnames) { dnx <- dimnames(X) dny <- dimnames(Y) } dX <- dim(X) dY <- dim(Y) ld <- length(dX) - length(dY) if (ld < 0L) dX <- dim(X) <- c(dX, rep.int(1, -ld)) else if (ld > 0L) dY <- dim(Y) <- c(dY, rep.int(1, ld)) opobj <- outer(X, Y, FUN, ...) dp <- as.vector(t(matrix(1L:(2*length(dX)), ncol = 2)[, 2:1])) opobj <- aperm(opobj, dp) dim(opobj) <- dX * dY if (make.dimnames && !(is.null(dnx) && is.null(dny))) { if (is.null(dnx)) dnx <- vector("list", length(dX)) else if (ld < 0L) dnx <- c(dnx, vector("list", -ld)) tmp <- which(sapply(dnx, is.null)) dnx[tmp] <- lapply(tmp, function(i) rep.int("", dX[i])) if (is.null(dny)) dny <- vector("list", length(dY)) else if (ld > 0) dny <- c(dny, vector("list", ld)) tmp <- which(sapply(dny, is.null)) dny[tmp] <- lapply(tmp, function(i) rep.int("", dY[i])) k <- length(dim(opobj)) dno <- vector("list", k) for (i in 1L:k) { tmp <- outer(dnx[[i]], dny[[i]], FUN=paste, sep=":") dno[[i]] <- as.vector(t(tmp)) } dimnames(opobj) <- dno } opobj } `%x%` <- function(X, Y) kronecker(X, Y)
design.strip <- function (trt1, trt2,r, serie = 2, seed = 0, kinds = "Super-Duper",randomization=TRUE) { number<-10 if(serie>0) number<-10^serie n1<-length(trt1) n2<-length(trt2) if (seed == 0) { genera<-runif(1) seed <-.Random.seed[3] } set.seed(seed, kinds) a<-trt1[1:n1] b<-trt2[1:n2] if(randomization){ a<-sample(trt1,n1) b<-sample(trt2,n2) } fila<-rep(b,n1) columna <- a[gl(n1,n2)] block <- rep(1,n1*n2) if (r > 1) { for (i in 2:r) { a<-trt1[1:n1] b<-trt2[1:n2] if(randomization){ a<-sample(trt1,n1) b<-sample(trt2,n2) } fila<-c(fila,rep(b,n1)) columna <- c(columna,a[gl(n1,n2)]) block <- c(block,rep(i,n1*n2)) }} parameters<-list(design="strip",trt1=trt1,trt2=trt2,r=r,serie=serie,seed=seed,kinds=kinds) plots <- block*number+1:(n1*n2) book <- data.frame(plots, block = as.factor(block), column=as.factor(columna),row = as.factor(fila)) names(book)[3] <- c(paste(deparse(substitute(trt1)))) names(book)[4] <- c(paste(deparse(substitute(trt2)))) outdesign<-list(parameters=parameters,book=book) return(outdesign) }
saveOutput <- function(peakdet, filename){ outmat <- cbind(peakdet$peakgenes, peakdet$peakloc, peakdet$peakheight) colnames(outmat) <- c('Gene Name', 'Peak Location', 'Peak Height') write.table(outmat, filename, sep = '\t', quote = F, row.names = F, col.names = T) }
\donttest{ library(ggPMX) report_dir <- tempdir() ctr <- theophylline() ctr %>% pmx_report( name = "my_report", save_dir = report_dir, format="report") ctr <- theophylline() ctr %>% pmx_report( name = "my_report", save_dir = report_dir, format="plots") ctr <- theophylline() ctr %>% pmx_report( name = "my_report", save_dir = report_dir, format="both") ctr <- theophylline() ctr %>% pmx_report( name = "my_report", save_dir = report_dir, footnote=TRUE, format="plots") ctr <- theophylline() custom_template <- file.path( system.file(package = "ggPMX"),"examples","templates","custom_report.Rmd") ctr %>% pmx_report( name="report2", save_dir = report_dir, template=custom_template, format="both" ) ctr <- theophylline() misc_template <- file.path( system.file(package = "ggPMX"),"examples","templates","misc.Rmd") ctr %>% pmx_report( name="misc", save_dir = report_dir, template=misc_template, format="both" ) }
get_budget <- function(year, period, cod, simple = FALSE, annex = NULL, verbose = FALSE) { get( type = "rreo", an_exercicio = year, nr_periodo = period, id_ente = cod, co_tipo_demonstrativo = if (simple) "RREO Simplificado" else "RREO", no_anexo = if (!is.null(annex)) paste0("RREO-Anexo ", annex) else annex, verbose = verbose ) }
"gamList" "sds" "crv" "countMatrix" "celltype"
library("MVA") set.seed(280875) library("lattice") lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) if (file.exists("deparse.R")) { if (!file.exists("figs")) dir.create("figs") source("deparse.R") options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, figtwo = function() {par(mfrow = c(2,1))}, threefig = function() {par(mfrow = c(1,3))}, figthree = function() {par(mfrow = c(3,1))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))}, nomar = function() par("mai" = c(0, 0, 0, 0)))) } bc <- c( 0.290, 0.202, 0.415, -0.055, 0.285, 0.419, -0.105, -0.376, -0.521, -0.877, -0.252, -0.349, -0.441, -0.076, 0.206, -0.229, -0.164, -0.145, 0.023, 0.034, 0.192, 0.058, -0.129, -0.076, -0.131, 0.151, 0.077, 0.423) blood_sd <- c(rblood = 0.371, plate = 41.253, wblood = 1.935, neut = 0.077, lymph = 0.071, bilir = 4.037, sodium = 2.732, potass = 0.297) blood_corr <- diag(length(blood_sd)) / 2 blood_corr[upper.tri(blood_corr)] <- bc blood_corr <- blood_corr + t(blood_corr) blood_cov <- blood_corr * outer(blood_sd, blood_sd, "*") blood_corr blood_sd blood_pcacov <- princomp(covmat = blood_cov) summary(blood_pcacov, loadings = TRUE) blood_pcacor <- princomp(covmat = blood_corr) summary(blood_pcacor, loadings = TRUE) plot(blood_pcacor$sdev^2, xlab = "Component number", ylab = "Component variance", type = "l", main = "Scree diagram") plot(log(blood_pcacor$sdev^2), xlab = "Component number", ylab = "log(Component variance)", type="l", main = "Log(eigenvalue) diagram") "headsize" <- matrix(c(191, 195, 181, 183, 176, 208, 189, 197, 188, 192, 179, 183, 174, 190, 188, 163, 195, 186, 181, 175, 192, 174, 176, 197, 190, 155, 149, 148, 153, 144, 157, 150, 159, 152, 150, 158, 147, 150, 159, 151, 137, 155, 153, 145, 140, 154, 143, 139, 167, 163, 179, 201, 185, 188, 171, 192, 190, 189, 197, 187, 186, 174, 185, 195, 187, 161, 183, 173, 182, 165, 185, 178, 176, 200, 187, 145, 152, 149, 149, 142, 152, 149, 152, 159, 151, 148, 147, 152, 157, 158, 130, 158, 148, 146, 137, 152, 147, 143, 158, 150) , nrow = 25, ncol = 4 , dimnames = list(character(0) , c("head1", "breadth1", "head2", "breadth2"))) x <- headsize headsize <- as.data.frame(headsize) toLatex(HSAURtable(headsize), pcol = 2, caption = "Head Size Data.", label = "ch:PCA:headsize:tab", rownames = FALSE) headsize <- x head_dat <- headsize[, c("head1", "head2")] colMeans(head_dat) cov(head_dat) head_pca <- princomp(x = head_dat) head_pca print(summary(head_pca), loadings = TRUE) s1 <- round(diag(cov(head_pca$scores))[1], 3) s2 <- round(diag(cov(head_pca$scores))[2], 3) s <- summary(head_pca) l1 <- round(s$loadings[,1], 2) l2 <- round(s$loadings[,2], 2) diag(cov(head_pca$scores)) a1<-183.84-0.721*185.72/0.693 b1<-0.721/0.693 a2<-183.84-(-0.693*185.72/0.721) b2<--0.693/0.721 plot(head_dat, xlab = "First son's head length (mm)", ylab = "Second son's head length") abline(a1, b1) abline(a2, b2, lty = 2) xlim <- range(head_pca$scores[,1]) plot(head_pca$scores, xlim = xlim, ylim = xlim) data("heptathlon",package="HSAUR2") toLatex(HSAURtable(heptathlon), pcol = 1, caption = "Results of Olympic heptathlon, Seoul, 1988.", label = "ch:PCA:heptathlon:tab", rownames = TRUE) heptathlon$hurdles <- with(heptathlon, max(hurdles)-hurdles) heptathlon$run200m <- with(heptathlon, max(run200m)-run200m) heptathlon$run800m <- with(heptathlon, max(run800m)-run800m) score <- which(colnames(heptathlon) == "score") round(cor(heptathlon[,-score]), 2) plot(heptathlon[,-score]) plot(heptathlon[,-score], pch = ".", cex = 1.5) heptathlon <- heptathlon[-grep("PNG", rownames(heptathlon)),] score <- which(colnames(heptathlon) == "score") round(cor(heptathlon[,-score]), 2) plot(heptathlon[,-score], pch = ".", cex = 1.5) op <- options(digits = 2) heptathlon_pca <- prcomp(heptathlon[, -score], scale = TRUE) print(heptathlon_pca) summary(heptathlon_pca) a1 <- heptathlon_pca$rotation[,1] a1 center <- heptathlon_pca$center scale <- heptathlon_pca$scale hm <- as.matrix(heptathlon[,-score]) drop(scale(hm, center = center, scale = scale) %*% heptathlon_pca$rotation[,1]) predict(heptathlon_pca)[,1] sdev <- heptathlon_pca$sdev prop12 <- round(sum(sdev[1:2]^2)/sum(sdev^2)*100, 0) plot(heptathlon_pca, main = "") cor(heptathlon$score, heptathlon_pca$x[,1]) plot(heptathlon$score, heptathlon_pca$x[,1]) data("USairpollution", package = "HSAUR2") panel.hist <- function(x, ...) { usr <- par("usr"); on.exit(par(usr)) par(usr = c(usr[1:2], 0, 1.5) ) h <- hist(x, plot = FALSE) breaks <- h$breaks; nB <- length(breaks) y <- h$counts; y <- y/max(y) rect(breaks[-nB], 0, breaks[-1], y, col="grey", ...) } USairpollution$negtemp <- USairpollution$temp * (-1) USairpollution$temp <- NULL pairs(USairpollution[,-1], diag.panel = panel.hist, pch = ".", cex = 1.5) cor(USairpollution[,-1]) usair_pca <- princomp(USairpollution[,-1], cor = TRUE) summary(usair_pca, loadings = TRUE) pairs(usair_pca$scores[,1:3], ylim = c(-6, 4), xlim = c(-6, 4), panel = function(x,y, ...) { text(x, y, abbreviate(row.names(USairpollution)), cex = 0.6) bvbox(cbind(x,y), add = TRUE) }) out <- sapply(1:6, function(i) { plot(USairpollution$SO2,usair_pca$scores[,i], xlab = paste("PC", i, sep = ""), ylab = "Sulphur dioxide concentration") }) usair_reg <- lm(SO2 ~ usair_pca$scores, data = USairpollution) summary(usair_reg) tmp <- heptathlon[, -score] rownames(tmp) <- abbreviate(gsub(" \\(.*", "", rownames(tmp))) biplot(prcomp(tmp, scale = TRUE), col = c("black", "darkgray"), xlim = c(-0.5, 0.7), cex = 0.7) headsize.std <- sweep(headsize, 2, apply(headsize, 2, sd), FUN = "/") R <- cor(headsize.std) r11 <- R[1:2, 1:2] r22 <- R[-(1:2), -(1:2)] r12 <- R[1:2, -(1:2)] r21 <- R[-(1:2), 1:2] (E1 <- solve(r11) %*% r12 %*% solve(r22) %*%r21) (E2 <- solve(r22) %*% r21 %*% solve(r11) %*%r12) (e1 <- eigen(E1)) (e2 <- eigen(E2)) p <- function(x) formatC(x, format = "f", digits = 2) f <- function(x, add = 0) paste(ifelse(x < 0, "-", "+"), p(abs(x)), "x_", 1:length(x) + add, collapse = "") ff <- function(x, xname) paste(ifelse(x < 0, "-", "+"), p(abs(x)), "\\\\text{", xname, "}", collapse = "") girth1 <- headsize.std[,1:2] %*% e1$vectors[,1] girth2 <- headsize.std[,3:4] %*% e2$vectors[,1] shape1 <- headsize.std[,1:2] %*% e1$vectors[,2] shape2 <- headsize.std[,3:4] %*% e2$vectors[,2] (g <- cor(girth1, girth2)) (s <- cor(shape1, shape2)) plot(girth1, girth2) plot(shape1, shape2) depr <- c( 0.212, 0.124, 0.098, -0.164, 0.308, 0.044, -0.101, -0.207, -0.106, -0.208, -0.158, -0.183, -0.180, -0.192, 0.492) LAdepr <- diag(6) / 2 LAdepr[upper.tri(LAdepr)] <- depr LAdepr <- LAdepr + t(LAdepr) rownames(LAdepr) <- colnames(LAdepr) <- c("CESD", "Health", "Gender", "Age", "Edu", "Income") x <- LAdepr LAdepr <- as.data.frame(LAdepr) toLatex(HSAURtable(LAdepr), caption = "Los Angeles Depression Data.", label = "ch:PCA:LAdepr:tab", rownames = FALSE) LAdepr <- x r11 <- LAdepr[1:2, 1:2] r22 <- LAdepr[-(1:2), -(1:2)] r12 <- LAdepr[1:2, -(1:2)] r21 <- LAdepr[-(1:2), 1:2] (E1 <- solve(r11) %*% r12 %*% solve(r22) %*%r21) (E2 <- solve(r22) %*% r21 %*% solve(r11) %*%r12) (e1 <- eigen(E1)) (e2 <- eigen(E2))
fredr_category_children <- function(category_id, ..., realtime_start = NULL, realtime_end = NULL) { check_dots_empty(...) check_not_null(category_id, "category_id") user_args <- capture_args( category_id = category_id, realtime_start = realtime_start, realtime_end = realtime_end ) fredr_args <- list( endpoint = "category/children" ) do.call(fredr_request, c(fredr_args, user_args)) }
updateCompareObject.matches <- function(x, compObj){ compObj$matches <- x return(compObj) }
NULL add_duration_to_duration <- function(dur2, dur1) new("Duration", [email protected] + [email protected]) add_duration_to_date <- function(dur, date) { if (is.Date(date)) { date <- as.POSIXct(date) ans <- with_tz(date + [email protected], "UTC") if (all(is.na(ans))) return(as.Date(ans)) if (all(hour(na.omit(ans)) == 0 & minute(na.omit(ans)) == 0 & second(na.omit(ans)) == 0)) { return(as.Date(ans)) } return(ans) } new <- date + [email protected] attr(new, "tzone") <- tz(date) reclass_date(new, date) } add_period_to_period <- function(per2, per1) { new("Period", [email protected] + [email protected], year = per1@year + per2@year, month = per1@month + per2@month, day = per1@day + per2@day, hour = per1@hour + per2@hour, minute = per1@minute + per2@minute) } add_period_to_date <- function(per, date) { lt <- as.POSIXlt(date) ms <- month(per) + year(per) * 12 lt <- add_months(lt, ms) if (is.Date(date)) { new <- update(as.Date(lt), days = mday(lt) + per@day, hours = per@hour, minutes = per@minute, seconds = [email protected]) return(new) } new <- update(lt, days = mday(lt) + per@day, hours = hour(lt) + per@hour, minutes = minute(lt) + per@minute, seconds = second(lt) + [email protected]) reclass_date(new, date) } add_months <- function(mt, mos) { nnas <- !is.na(mos) if (all(mos[nnas] == 0L)) { return(mt) } mt$mon <- mt$mon + mos ndays <- as.numeric(format.POSIXlt(mt, "%d", usetz = FALSE)) mt$mon[mt$mday != ndays] <- NA mt } add_number_to_duration <- function(num, dur) { new("Duration", [email protected] + num) } add_number_to_period <- function(num, per) { slot(per, ".Data") <- [email protected] + num per } setMethod("+", signature(e1 = "Duration", e2 = "Duration"), function(e1, e2) add_duration_to_duration(e2, e1)) setMethod("+", signature(e1 = "Duration", e2 = "Date"), function(e1, e2) add_duration_to_date(e1, e2)) setMethod("+", signature(e1 = "Duration", e2 = "difftime"), function(e1, e2) add_duration_to_duration(as.duration(e2), e1)) setMethod("+", signature(e1 = "Duration", e2 = "numeric"), function(e1, e2) add_number_to_duration(e2, e1)) setMethod("+", signature(e1 = "Duration", e2 = "POSIXct"), function(e1, e2) add_duration_to_date(e1, e2)) setMethod("+", signature(e1 = "Duration", e2 = "POSIXlt"), function(e1, e2) add_duration_to_date(e1, e2)) setMethod("+", signature(e1 = "Period", e2 = "Period"), function(e1, e2) add_period_to_period(e2, e1)) setMethod("+", signature(e1 = "Period", e2 = "Date"), function(e1, e2) add_period_to_date(e1, e2)) setMethod("+", signature(e1 = "Period", e2 = "numeric"), function(e1, e2) add_number_to_period(e2, e1)) setMethod("+", signature(e1 = "Period", e2 = "POSIXct"), function(e1, e2) add_period_to_date(e1, e2)) setMethod("+", signature(e1 = "Period", e2 = "POSIXlt"), function(e1, e2) add_period_to_date(e1, e2)) setMethod("+", signature(e1 = "Date", e2 = "Duration"), function(e1, e2) add_duration_to_date(e2, e1)) setMethod("+", signature(e1 = "Date", e2 = "Period"), function(e1, e2) add_period_to_date(e2, e1)) setMethod("+", signature(e1 = "difftime", e2 = "Duration"), function(e1, e2) as.difftime(e2, units = "secs") + e1) setMethod("+", signature(e1 = "numeric", e2 = "Duration"), function(e1, e2) add_number_to_duration(e1, e2)) setMethod("+", signature(e1 = "numeric", e2 = "Period"), function(e1, e2) add_number_to_period(e1, e2)) setMethod("+", signature(e1 = "POSIXct", e2 = "Duration"), function(e1, e2) add_duration_to_date(e2, e1)) setMethod("+", signature(e1 = "POSIXct", e2 = "Period"), function(e1, e2) add_period_to_date(e2, e1)) setMethod("+", signature(e1 = "POSIXlt", e2 = "Duration"), function(e1, e2) add_duration_to_date(e2, e1)) setMethod("+", signature(e1 = "POSIXlt", e2 = "Period"), function(e1, e2) add_period_to_date(e2, e1))
CDpre <- function(DATA, Jk, R, Posit, GroupStructure, LASSO, MaxIter){ DATA <- data.matrix(DATA) DistPosition <- setdiff(1:R, Posit) I_Data <- dim(DATA)[1] sumJk <- dim(DATA)[2] eps <- 10^(-12) if(missing(MaxIter)){ MaxIter <- 400 } P <- matrix(stats::rnorm(sumJk * R), nrow = sumJk, ncol = R) P[GroupStructure == 0]<-0 Pt <- t(P) PIndexforLasso <- Pt PIndexforLasso[Posit, ] <- 1 PIndexforLasso[DistPosition, ] <- 0 PIndexforGLasso <- Pt PIndexforGLasso[Posit, ] <- 0 PIndexforGLasso[DistPosition, ] <- 1 pen1 <- LASSO*sum(abs(P[, Posit])) sqP <- P^2 residual <- sum(DATA^2) Lossc <- residual + pen1 conv <- 0 iter <- 1 Lossvec <- array() while (conv == 0){ if (LASSO == 0){ SVD_DATA <- svd(DATA, R, R) Tmat <- SVD_DATA$u } else { A <- Pt %*% t(DATA) SVD_DATA <- svd(A, R, R) Tmat <- SVD_DATA$v %*% t(SVD_DATA$u) } residual <- sum((DATA - Tmat %*% Pt)^2) Lossu <- residual + pen1 if (LASSO == 0){ P <- t(DATA) %*% Tmat P[GroupStructure == 0] <- 0 Pt <- t(P) } else{ for (r in 1:R){ if (r %in% Posit) { for (j in 1:sumJk){ ols <- t(DATA[, j]) %*% Tmat[, r] Lambda <- 0.5 * LASSO if (ols < 0 & abs(ols) > Lambda) { P[j, r] <- ols + Lambda } else if (ols > 0 & abs(ols) > Lambda) { P[j, r] <- ols - Lambda } else { P[j, r] <- 0 } } } else { for (j in 1:sumJk){ P[j, r] <- t(DATA[, j]) %*% Tmat[, r] } } } P[GroupStructure == 0] <- 0 Pt <- t(P) } pen1 <- LASSO*sum(abs(P[, Posit])) sqP <- P^2 residual <- sum((DATA - Tmat %*% Pt)^2) Lossu2 <- residual + pen1 if (abs(Lossc-Lossu)< 10^(-9)) { Loss <- Lossu residual <- residual lassopen <- pen1 P[abs(P) <= 2 * eps] <- 0 conv <- 1 } else if (iter > MaxIter | LASSO == 0){ Loss <- Lossu residual <- residual lassopen <- pen1 P[abs(P) <= 2 * eps] <- 0 conv <- 1 } Lossvec[iter] <- Lossu iter <- iter + 1 Lossc <- Lossu2 } return_varselect <- list() return_varselect$Pmatrix <- P return_varselect$Tmatrix <- Tmat return_varselect$Loss <- Loss return_varselect$Lossvec <- Lossvec return(return_varselect) }
recombination_wright <- function(X, M, ...) { env <- parent.frame() assertthat::assert_that(is.matrix(X), is.numeric(X), is.matrix(M), is.numeric(M), assertthat::are_equal(dim(X), dim(M)), all(assertthat::has_name(env, c("J", "probpars", "nfe")))) f.X <- env$J f.M <- evaluate_population(probpars = env$probpars, Pop = M) env$nfe <- env$nfe + nrow(M) X.is.best <- matrix(rep(f.X <= f.M, times = ncol(X)), ncol = ncol(X), byrow = FALSE) C1 <- X * X.is.best + M * !X.is.best C2 <- M * X.is.best + X * !X.is.best return (randM(X) * (C1 - C2) + C1) }
HollBivSym<-function(x,y=NULL){ check<-0 if((is.null(ncol(x))||ncol(x)==1)&&!is.null(y)){ check=1 } if(max(dim(x)[2],1)==2){ y<-x[!is.na(x[,2]),2] x<-x[!is.na(x[,1]),1] check=1 } if(!check){ return('Error: invalid form for entered data') } obs.data<-cbind(x,y) a.vec<-apply(obs.data,1,min) b.vec<-apply(obs.data,1,max) n<-length(a.vec) test<-function(r,c) {as.numeric((a.vec[c]<b.vec[r])&&(b.vec[r]<=b.vec[c])&&(a.vec[r]<=a.vec[c]))} myVecFun <- Vectorize(test,vectorize.args = c('r','c')) d.mat<-outer(1:n, 1:n, FUN=myVecFun) A.calc<-function(r.vec){ s.vec<-2*r.vec-1 T.vec<-s.vec%*%d.mat A.obs<-sum(T.vec*T.vec)/n^2 return(A.obs) } A.obs<-A.calc(apply(obs.data,1,function(x){x[1]<x[2]})) return(A.obs) }
ic_find <- function(x, pattern) { pattern <- paste0(pattern, ":") locations <- grepl(x, pattern = pattern) locations }
"print.jointPenal" <- function (x, digits = max(options()$digits - 4, 6), ...) { if(is.null(x$family)){ if (x$istop == 1){ if (any(x$nvartimedep != 0)) par(mfrow=c(1,2)) if ((x$nvartimedep[1] != 0) & (x$istop == 1)){ for (i in 0:(x$nvartimedep[1]-1)){ matplot(x$BetaTpsMat[,1],x$BetaTpsMat[,(2:4)+4*i],col="blue",type="l",lty=c(1,2,2),xlab="t",ylab="beta(t)",main=paste("Recurrent : ",x$Names.vardep[i+1]),ylim=c(min(x$BetaTpsMat[,-1]),max(x$BetaTpsMat[,-1]))) } } if ((x$nvartimedep[2] != 0) & (x$istop == 1)){ for (i in 0:(x$nvartimedep[2]-1)){ matplot(x$BetaTpsMatDc[,1],x$BetaTpsMatDc[,(2:4)+4*i],col="blue",type="l",lty=c(1,2,2),xlab="t",ylab="beta(t)",main=paste("Death : ",x$Names.vardepdc[i+1]),ylim=c(min(x$BetaTpsMatDc[,-1]),max(x$BetaTpsMatDc[,-1]))) } } } if (!is.null(cl <- x$call)){ cat("Call:\n") dput(cl) if (x$AG == TRUE){ cat("\n Calendar timescale") } if (x$intcens == TRUE){ cat("\n interval censored data used") } cat("\n") } if (!is.null(x$fail)) { cat(" frailtyPenal failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) coef <- x$coef nvar <- length(x$coef) if (is.null(coef)){ x$varH<-matrix(x$varH) x$varHIH<-matrix(x$varHIH) } if (x$typeof == 0){ if (x$n.knots.temp < 4){ cat("\n") cat(" The minimum number of knots is 4","\n") cat("\n") } if (x$n.knots.temp > 20){ cat("\n") cat(" The maximum number of knots is 20","\n") } }else{ if ((x$typeof == 1) & (x$indic.nb.intR == 1)) cat(" The maximum number of time intervals is 20","\n") if ((x$typeof == 1) & (x$indic.nb.intD == 1)) cat(" The maximum number of time intervals is 20","\n") } if (x$logNormal == 0) frail <- x$theta else frail <- x$sigma2 indic_alpha <- x$indic_alpha if (x$istop == 1){ if (!is.null(coef)){ if (indic_alpha == 1 || x$joint.clust==2) { seH <- sqrt(diag(x$varH))[-c(1,2)] seHIH <- sqrt(diag(x$varHIH))[-c(1,2)] }else{ seH <- sqrt(diag(x$varH))[-1] seHIH <- sqrt(diag(x$varHIH))[-1] } if (x$typeof == 0){ tmp <- cbind(coef, exp(coef), seH, seHIH, coef/seH, ifelse(signif(1 - pchisq((coef/seH)^2, 1), digits - 1) == 0, "< 1e-16", signif(1 - pchisq((coef/seH)^2, 1), digits - 1))) if(x$global_chisq.test==1) tmpwald <- cbind(x$global_chisq, x$dof_chisq, ifelse(x$p.global_chisq == 0, "< 1e-16", x$p.global_chisq)) if(x$global_chisq.test_d==1) tmpwalddc <- cbind(x$global_chisq_d, x$dof_chisq_d, ifelse(x$p.global_chisq_d == 0, "< 1e-16", x$p.global_chisq_d)) }else{ tmp <- cbind(coef, exp(coef), seH, coef/seH, ifelse(signif(1 - pchisq((coef/seH)^2, 1), digits - 1) == 0, "< 1e-16", signif(1 - pchisq((coef/seH)^2, 1), digits - 1))) if(x$global_chisq.test==1) tmpwald <- cbind(x$global_chisq, x$dof_chisq, ifelse(x$p.global_chisq == 0, "< 1e-16", x$p.global_chisq)) if(x$global_chisq.test_d==1) tmpwalddc <- cbind(x$global_chisq_d, x$dof_chisq_d, ifelse(x$p.global_chisq_d == 0, "< 1e-16", x$p.global_chisq_d)) } cat("\n") if (x$joint.clust == 0) cat(" For clustered data","\n") if (x$joint.clust == 0){ if (x$logNormal == 0){ cat(" Joint gamma frailty model for a survival and a terminal event processes","\n") }else{ cat(" Joint Log-Normal frailty model for a survival and a terminal event processes","\n") } }else{ if ((x$logNormal == 0)&(x$joint.clust==1)){ cat(" Joint gamma frailty model for recurrent and a terminal event processes","\n") } else if ((x$logNormal == 0)&(x$joint.clust==2)){ cat(" General Joint gamma frailty model for recurrent and a terminal event processes","\n") } else{ cat(" Joint Log-Normal frailty model for recurrent and a terminal event processes","\n") } } if (x$typeof == 0){ cat(" using a Penalized Likelihood on the hazard function","\n") }else{ cat(" using a Parametrical approach for the hazard function","\n") } if (any(x$nvartimedep != 0)) cat(" and some time-dependant covariates","\n") if (x$n.strat>1) cat(" (Stratification structure used for recurrences) :",x$n.strat,"strata \n") if(x$ncc==TRUE)cat(" and considering weights for the nested case-control design \n") if (x$typeof == 0){ if(x$global_chisq.test==1){ dimnames(tmpwald) <- list(x$names.factor,c("chisq", "df", "global p")) } if(x$global_chisq.test_d==1){ dimnames(tmpwalddc) <- list(x$names.factordc,c("chisq", "df", "global p")) } dimnames(tmp) <- list(names(coef), c("coef", "exp(coef)", "SE coef (H)", "SE coef (HIH)", "z", "p")) }else{ if(x$global_chisq.test==1){ dimnames(tmpwald) <- list(x$names.factor,c("chisq", "df", "global p")) } if(x$global_chisq.test_d==1){ dimnames(tmpwalddc) <- list(x$names.factordc,c("chisq", "df", "global p")) } dimnames(tmp) <- list(names(coef), c("coef", "exp(coef)", "SE coef (H)", "z", "p")) } cat("\n") if (x$nvarnotdep[1] == 0){ if (x$joint.clust == 0) cat("Survival event:\n") if ((x$joint.clust == 1) | (x$joint.clust == 2)) cat("Recurrences:\n") cat("------------- \n") cat("No constant coefficients, only time-varying effects of the covariates \n") }else{ if (x$noVar1 == 0){ if (x$joint.clust == 0) cat("Survival event:\n") if (x$joint.clust >= 1) cat("Recurrences:\n") cat("------------- \n") prmatrix(tmp[1:x$nvarnotdep[1], ,drop=FALSE]) if(x$global_chisq.test==1){ cat("\n") prmatrix(tmpwald) } } } cat("\n") if (x$nvarnotdep[2] == 0){ cat("Terminal event:\n") cat("---------------- \n") cat("No constant coefficients, only time-varying effects of the covariates \n") }else{ if (x$noVar2 == 0){ cat("Terminal event:\n") cat("---------------- \n") prmatrix(tmp[-c(1:x$nvarnotdep[1]), ,drop=FALSE]) if(x$global_chisq.test_d==1){ cat("\n") prmatrix(tmpwalddc) } } } cat("\n") } temp <- diag(x$varH)[1] seH.frail <- sqrt(((2 * (frail^0.5))^2) * temp) temp <- diag(x$varHIH)[1] seHIH.frail <- sqrt(((2 * (frail^0.5))^2) * temp) if (x$noVar1 == 1){ cat("\n") if (x$joint.clust == 0) cat(" Survival event: No covariates \n") if (x$joint.clust >= 1) cat(" Recurrences: No covariates \n") cat(" ----------- \n") } if (x$noVar2 == 1){ cat("\n") cat(" Terminal event: No covariates \n") cat(" -------------- \n") cat("\n") } cat(" Frailty parameters: \n") if (x$logNormal == 0){ if (indic_alpha == 1 & x$joint.clust<=1){ cat(" theta (variance of Frailties, w):", frail, "(SE (H):",seH.frail, ")", "p =", ifelse(signif(1 - pnorm(frail/seH.frail), digits - 1) == 0, "< 1e-16", signif(1 - pnorm(frail/seH.frail), digits - 1)), "\n") cat(" alpha (w^alpha for terminal event):", x$alpha, "(SE (H):",sqrt(diag(x$varH))[2], ")", "p =", ifelse(signif(1 - pchisq((x$alpha/sqrt(diag(x$varH))[2])^2,1), digits - 1) == 0, "< 1e-16", signif(1 - pchisq((x$alpha/sqrt(diag(x$varH))[2])^2,1), digits - 1)), "\n") }else if (x$joint.clust ==2) { cat(" theta (variance of u, association between recurrences and terminal event):", frail, "(SE (H):",seH.frail, ")", "p =", ifelse(signif(1 - pnorm(frail/seH.frail), digits - 1) == 0, "< 1e-16", signif(1 - pnorm(frail/seH.frail), digits - 1)), "\n") cat(" eta (variance of v, intra-subject correlation):", x$eta, "(SE (H):",sqrt(((2 * (x$eta^0.5))^2) * diag(x$varH)[2]), ")", "p =", ifelse(signif(1 - pnorm (x$eta/sqrt(((2 * (x$eta^0.5))^2) * diag(x$varH)[2]),1), digits - 1) == 0, "< 1e-16", signif(1 - pnorm (x$eta/sqrt(((2 * (x$eta^0.5))^2) * diag(x$varH)[2]),1), digits - 1)), "\n") } else { cat(" theta (variance of Frailties, w):", frail, "(SE (H):",seH.frail, ")", "p =", ifelse(signif(1 - pnorm(frail/seH.frail), digits - 1) == 0, "< 1e-16", signif(1 - pnorm(frail/seH.frail), digits - 1)), "\n") cat(" alpha is fixed (=1) \n") } }else{ cat(" sigma square (variance of Frailties, eta):", frail, "(SE (H):",seH.frail, ")", "p =", ifelse(signif(1 - pnorm(frail/seH.frail), digits - 1) == 0, "< 1e-16", signif(1 - pnorm(frail/seH.frail), digits - 1)), "\n") if (indic_alpha == 1) cat(" alpha (exp(alpha.eta) for terminal event):", x$alpha, "(SE (H):",sqrt(diag(x$varH))[2], ")", "p =", ifelse(signif(1 - pchisq((x$alpha/sqrt(diag(x$varH))[2])^2,1), digits - 1) == 0, "< 1e-16", signif(1 - pchisq((x$alpha/sqrt(diag(x$varH))[2])^2,1), digits - 1)), "\n") else cat(" alpha is fixed (=1) \n") } cat(" \n") if (x$typeof == 0){ cat(paste("Penalized marginal log-likelihood =", round(x$logLikPenal,2))) cat("\n") cat(" Convergence criteria: \n") cat(" parameters =",signif(x$EPS[1],3),"likelihood =",signif(x$EPS[2],3),"gradient =",signif(x$EPS[3],3),"\n") cat("\n") cat("Likelihood Cross-Validation (LCV) criterion in the semi parametrical case:\n") cat(" approximate LCV =",x$LCV,"\n") }else{ cat(paste(" marginal log-likelihood =", round(x$logLik,2))) cat("\n") cat(" Convergence criteria: \n") cat(" parameters =",signif(x$EPS[1],3),"likelihood =",signif(x$EPS[2],3),"gradient =",signif(x$EPS[3],3),"\n") cat("\n") cat(" AIC = Aikaike information Criterion =",x$AIC,"\n") cat("\n") cat("The expression of the Aikaike Criterion is:","\n") cat(" 'AIC = (1/n)[np - l(.)]'","\n") if (x$typeof == 2){ cat("\n") cat(" Scale for the weibull hazard function is :",round(x$scale.weib[1],2),round(x$scale.weib[2],2),"\n") cat(" Shape for the weibull hazard function is :",round(x$shape.weib[1],2),round(x$shape.weib[2],2),"\n") cat("\n") cat("The expression of the Weibull hazard function is:","\n") cat(" 'lambda(t) = (shape.(t^(shape-1)))/(scale^shape)'","\n") cat("The expression of the Weibull survival function is:","\n") cat(" 'S(t) = exp[- (t/scale)^shape]'") cat("\n") } } cat("\n") if (x$joint.clust == 0){ cat(" n observations=", x$n, " n subjects=", x$ind, " n groups=", x$groups) }else{ cat(" n observations=", x$n, " n subjects=", x$groups) } if (length(x$na.action)){ cat(" (", length(x$na.action), " observation deleted due to missing) \n") }else{ cat("\n") } if (x$joint.clust == 0){ cat(" n events=", x$n.events) }else{ cat(" n recurrent events=", x$n.events) } cat("\n") cat(" n terminal events=", x$n.deaths) cat("\n") cat(" n censored events=" ,x$n.censored) cat("\n") cat(" number of iterations: ", x$n.iter,"\n") if (x$logNormal == 0) { cat(" Number of nodes for the Gauss-Laguerre quadrature: ", x$nb.gl,"\n") } else {cat(" Number of nodes for the Gauss-Hermite quadrature: ", x$nb.gh,"\n")} if ((x$typeof == 1) & (x$indic.nb.intR == 1)){ cat(" Exact number of time intervals used: 20","\n") }else{ if (x$typeof == 1) cat(" Exact number of time intervals used: ",x$nbintervR,"\n") } if ((x$typeof == 1) & (x$indic.nb.intD == 1)){ cat(" Exact number of time intervals used: 20","\n") }else{ if (x$typeof == 1) cat(" Exact number of time intervals used: ",x$nbintervDC,"\n") } if (x$typeof == 0){ cat("\n") cat(" Exact number of knots used: ", x$n.knots, "\n") cat(" Value of the smoothing parameters: ", x$kappa, sep=" ") cat("\n") } }else{ if (!is.null(coef)){ cat("\n") if (x$joint.clust == 0) cat(" For clustered data","\n") if (x$joint.clust == 0){ if (x$logNormal == 0){ cat(" Joint gamma frailty model for a survival and a terminal event processes","\n") }else{ cat(" Joint Log-Normal frailty model for a survival and a terminal event processes","\n") } }else{ if ((x$logNormal == 0)&(x$joint.clust==1)){ cat(" Joint gamma frailty model for recurrent and a terminal event processes","\n") } else if ((x$logNormal == 0)&(x$joint.clust==2)){ cat(" General Joint gamma frailty model for recurrent and a terminal event processes","\n") } else{ cat(" Joint Log-Normal frailty model for recurrent and a terminal event processes","\n") } } if (x$typeof == 0){ cat(" using a Penalized Likelihood on the hazard function","\n") }else{ cat(" using a Parametrical approach for the hazard function","\n") } if (any(x$nvartimedep != 0)) cat(" and some time-dependant covariates","\n") if (x$noVar1 == 1){ cat("\n") if (x$joint.clust == 0) cat(" Survival event: No covariates \n") if (x$joint.clust >= 1) cat(" Recurrences: No covariates \n") cat(" ----------- \n") } if (x$noVar2 == 1){ cat("\n") cat(" Terminal event: No covariates \n") cat(" -------------- \n") cat("\n") } cat("\n") cat(" Convergence criteria: \n") cat(" parameters =",signif(x$EPS[1],3),"likelihood =",signif(x$EPS[2],3),"gradient =",signif(x$EPS[3],3),"\n") cat("\n") cat(" n=", x$n) if (length(x$na.action)){ cat(" (", length(x$na.action), " observation deleted due to missing) \n") }else{ cat("\n") } if (x$joint.clust == 0){ cat(" n events=", x$n.events) }else{ cat(" n recurrent events=", x$n.events) } cat("\n") cat(" n terminal events=", x$n.deaths) cat("\n") if (x$logNormal == 0) { cat(" Number of nodes for the Gauss-Laguerre quadrature: ", x$nb.gl,"\n") } else {cat(" Number of nodes for the Gauss-Hermite quadrature: ", x$nb.gh,"\n")} } } invisible() } else{ if (x$istop == 1){ if(x$family[2] != 3){ if ((x$nvartimedep[1] != 0) & (x$istop == 1)){ for (i in 0:(x$nvartimedep[1]-1)){ matplot(x$BetaTpsMat[,1],x$BetaTpsMat[,(2:4)+4*i],col="blue",type="l",lty=c(1,2,2),xlab="t",ylab="beta(t)",main=paste("Recurrent : ",x$Names.vardep[i+1]),ylim=c(min(x$BetaTpsMat[,-1]),max(x$BetaTpsMat[,-1]))) } } }else{ if ((x$nvartimedep[1] != 0) & (x$istop == 1)){ par(mfrow=c(1,2)) trapz <- function(x,y){ idx = 2:length(x) return (as.double( (x[idx] - x[idx-1]) %*% (y[idx] + y[idx-1])) / 2) } for (i in 0:(x$nvartimedep[1]-1)){ matplot(x$BetaTpsMat[,1],x$BetaTpsMat[,(2:4)+4*i],col="blue",type="l",lty=c(1,2,2),xlab="t",ylab="beta(t)",main=paste("Recurrent : ",x$Names.vardep[i+1]),ylim=c(min(x$BetaTpsMat[,-1]),max(x$BetaTpsMat[,-1]))) nblignes = nrow(x$BetaTpsMat)-1 matcumul = matrix(NA, nrow = nblignes, ncol = 3) abs = x$BetaTpsMat[, 1] ord = x$BetaTpsMat[,(2:4)+4*i] for(j in 1:nblignes){ matcumul[j, ] = c( trapz(abs[1:(j+1)], ord[1:(j+1), 1]), trapz(abs[1:(j+1)], ord[1:(j+1), 2]), trapz(abs[1:(j+1)], ord[1:(j+1), 3]) ) } matplot(x=abs[-1], y=matcumul[,(1:3)], col="blue", type="l", lty=c(1,2,2), xlab="t", ylab="Cumulative effect", main=paste("Recurrent : ",x$Names.vardep[i+1]) ) } } } if(x$family[1] != 3){ if ((x$nvartimedep[2] != 0) & (x$istop == 1)){ for (i in 0:(x$nvartimedep[2]-1)){ matplot(x$BetaTpsMatDc[,1],x$BetaTpsMatDc[,(2:4)+4*i],col="blue",type="l",lty=c(1,2,2),xlab="t",ylab="beta(t)",main=paste("Death : ",x$Names.vardepdc[i+1]),ylim=c(min(x$BetaTpsMatDc[,-1]),max(x$BetaTpsMatDc[,-1]))) } } }else{ if ((x$nvartimedep[2] != 0) & (x$istop == 1)){ par(mfrow=c(1,2)) trapz <- function(x,y){ idx = 2:length(x) return (as.double( (x[idx] - x[idx-1]) %*% (y[idx] + y[idx-1])) / 2) } for (i in 0:(x$nvartimedep[2]-1)){ matplot(x$BetaTpsMatDc[,1],x$BetaTpsMatDc[,(2:4)+4*i],col="blue",type="l",lty=c(1,2,2),xlab="t",ylab="beta(t)",main=paste("Death : ",x$Names.vardepdc[i+1]),ylim=c(min(x$BetaTpsMatDc[,-1]),max(x$BetaTpsMatDc[,-1]))) nblignes = nrow(x$BetaTpsMatDc)-1 matcumul = matrix(NA, nrow = nblignes, ncol = 3) abs = x$BetaTpsMatDc[, 1] ord = x$BetaTpsMatDc[,(2:4)+4*i] for(j in 1:nblignes){ matcumul[j, ] = c( trapz(abs[1:(j+1)], ord[1:(j+1), 1]), trapz(abs[1:(j+1)], ord[1:(j+1), 2]), trapz(abs[1:(j+1)], ord[1:(j+1), 3]) ) } matplot(x=abs[-1], y=matcumul[,(1:3)], col="blue", type="l", lty=c(1,2,2), main=paste("Death : ",x$Names.vardepdc[i+1]), xlab="t", ylab="Cumulative effect" ) } } } } if (!is.null(cl <- x$call)){ cat("Call:\n") dput(cl) if (x$AG == TRUE){ cat("\n Calendar timescale") } if (x$intcens == TRUE){ cat("\n interval censored data used") } cat("\n") } if (!is.null(x$fail)) { cat(" frailtyPenal failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) coef <- x$coef nvar <- length(x$coef) if (is.null(coef)){ x$varH<-matrix(x$varH) x$varHIH<-matrix(x$varHIH) } if (x$typeof == 0){ if (x$n.knots.temp < 4){ cat("\n") cat(" The minimum number of knots is 4","\n") cat("\n") } if (x$n.knots.temp > 20){ cat("\n") cat(" The maximum number of knots is 20","\n") } }else{ if ((x$typeof == 1) & (x$indic.nb.intR == 1)) cat(" The maximum number of time intervals is 20","\n") if ((x$typeof == 1) & (x$indic.nb.intD == 1)) cat(" The maximum number of time intervals is 20","\n") } if (x$logNormal == 0) frail <- x$theta else frail <- x$sigma2 indic_alpha <- x$indic_alpha if (x$istop == 1){ if (!is.null(coef)){ if (indic_alpha == 1 || x$joint.clust==2) { seH <- sqrt(diag(x$varH))[-c(1,2)] seHIH <- sqrt(diag(x$varHIH))[-c(1,2)] }else{ seH <- sqrt(diag(x$varH))[-1] seHIH <- sqrt(diag(x$varHIH))[-1] } if (x$typeof == 0){ tmp <- cbind(coef, exp(coef), seH, seHIH, coef/seH, ifelse(signif(1 - pchisq((coef/seH)^2, 1), digits - 1) == 0, "< 1e-16", signif(1 - pchisq((coef/seH)^2, 1), digits - 1))) if(x$global_chisq.test==1) tmpwald <- cbind(x$global_chisq, x$dof_chisq, ifelse(x$p.global_chisq == 0, "< 1e-16", x$p.global_chisq)) if(x$global_chisq.test_d==1) tmpwalddc <- cbind(x$global_chisq_d, x$dof_chisq_d, ifelse(x$p.global_chisq_d == 0, "< 1e-16", x$p.global_chisq_d)) }else{ tmp <- cbind(coef, exp(coef), seH, coef/seH, ifelse(signif(1 - pchisq((coef/seH)^2, 1), digits - 1) == 0, "< 1e-16", signif(1 - pchisq((coef/seH)^2, 1), digits - 1))) if(x$global_chisq.test==1) tmpwald <- cbind(x$global_chisq, x$dof_chisq, ifelse(x$p.global_chisq == 0, "< 1e-16", x$p.global_chisq)) if(x$global_chisq.test_d==1) tmpwalddc <- cbind(x$global_chisq_d, x$dof_chisq_d, ifelse(x$p.global_chisq_d == 0, "< 1e-16", x$p.global_chisq_d)) } if (x$joint.clust == 0) cat(" For clustered data","\n") if (x$joint.clust == 0){ if (x$logNormal == 0){ cat(" Generalized Joint Survival Model with Shared Gamma Frailty","\n") cat(" for a survival and a terminal event processes") }else{ cat(" Generalized Joint Survival Model with Shared Log-Normal Frailty","\n") cat(" a survival and a terminal event processes") } }else{ if ((x$logNormal == 0)&(x$joint.clust==1)){ cat(" Generalized Joint Survival Model with Shared Gamma Frailty","\n") cat(" for recurrent events and a terminal event") } else if ((x$logNormal == 0)&(x$joint.clust==2)){ cat(" General Joint gamma frailty model for recurrent and a terminal event processes","\n") } else{ cat(" Generalized Joint Survival Model with Shared Log-Normal Frailty","\n") cat(" for recurrent events and a terminal event") } } if (x$typeof == 0){ cat(" using a Penalized Likelihood on the hazard function","\n") }else{ cat(" using parametrical approaches","\n") } if (any(x$nvartimedep != 0)) cat(" and some time-dependent covariates","\n") if (x$n.strat>1) cat(" (Stratification structure used for recurrences) :",x$n.strat,"strata \n") if(x$ncc==TRUE)cat(" and considering weights for the nested case-control design \n") if (x$typeof == 0){ if(x$global_chisq.test==1){ dimnames(tmpwald) <- list(x$names.factor,c("chisq", "df", "global p")) } if(x$global_chisq.test_d==1){ dimnames(tmpwalddc) <- list(x$names.factordc,c("chisq", "df", "global p")) } dimnames(tmp) <- list(names(coef), c("coef", "exp(coef)", "SE coef (H)", "SE coef (HIH)", "z", "p")) }else{ if(x$global_chisq.test==1){ dimnames(tmpwald) <- list(x$names.factor,c("chisq", "df", "global p")) } if(x$global_chisq.test_d==1){ dimnames(tmpwalddc) <- list(x$names.factordc,c("chisq", "df", "global p")) } dimnames(tmp) <- list(names(coef), c("coef", "exp(coef)", "SE coef (H)", "z", "p")) } cat("\n") if (x$nvarnotdep[1] == 0){ if (x$joint.clust == 0) cat("Survival event:\n") if ((x$joint.clust == 1) | (x$joint.clust == 2)) cat("Recurrences:\n") cat("------------- \n") cat("No constant coefficients, only time-varying effects of the covariates \n") }else{ if (x$noVar1 == 0){ if (x$joint.clust == 0) cat("Survival event:\n") if (x$joint.clust >= 1) cat("\n Recurrences:\n") cat("------------- \n") if (x$family[2]==0){ if(!(x$typeof==0)){ cat(" Parametrical approach with link g() = log(-log()) ", "\n") cat(" S(t) = [ g^-1(eta) ]^frailty ", "\n") cat(" eta = shape.log(t) - shape.log(scale) + beta'X", "\n") cat(" (Proportional Hazards Frailty Model with a Weibull distribution) ", "\n") cat(" Expression of the Weibull hazard function: 'lambda(t) = (shape.(t^(shape-1)))/(scale^shape)'", "\n") cat(" Expression of the Weibull survival function: 'S(t) = exp[- (t/scale)^shape]'") cat("\n\n") }else{ cat(" Semi-Parametrical approach ", "\n") cat(" Expression of the hazard function: 'lambda(t) = lambda_0(t) * exp(beta(t)'X)'", "\n") cat(" (Baseline hazard function lambda_0(.) estimated using M-splines)") cat("\n\n") } } else if (x$family[2]==1){ cat(" Parametrical approach with link g() = -logit() ", "\n") cat(" S(t) = [ g^-1(eta) ]^frailty ", "\n") cat(" eta = shape.log(t) - shape.log(scale) + beta'X ", "\n") cat(" (Proportional Odds Frailty Model with a log-logistic distribution) ", "\n") cat(" Expression of the log-logistic hazard function: 'lambda(t) = 1 / [ 1+exp(-eta) ] * d.eta/d.t'", "\n") cat(" Expression of the log-logistic survival function: 'S(t) = 1 / [ 1 + (t/scale)^shape ]'") cat("\n\n") } else if (x$family[2]==2){ cat(" Parametrical approach with link g() = -PHI^-1() ", "\n") cat(" S(t) = [ g^-1(eta) ]^frailty ", "\n") cat(" eta = shape.log(t) - shape.log(scale) + beta'X ", "\n") cat(" (Probit Frailty Model with a log-normal distribution) ", "\n") cat(" Expression of the log-normal hazard function: 'lambda(t) = phi(-eta)/PHI(-eta) * d.eta/d.t'", "\n") cat(" Expression of the log-normal survival function: 'S(t) = PHI(-eta)'") cat("\n\n") } else if (x$family[2]==3){ if(!(x$typeof==0)){ cat(" Parametrical approach with link g() = -log() ", "\n") cat(" S(t) = [ g^-1(eta) ]^frailty ", "\n") cat(" eta = (t/scale)^shape + t*beta'X", "\n") cat(" (Additive Hazards Frailty Model with a Weibull distribution) ", "\n") cat(" Expression of the Weibull hazard function: 'lambda(t) = (shape.(t^(shape-1)))/(scale^shape)'", "\n") cat(" Expression of the Weibull survival function: 'S(t) = exp[- (t/scale)^shape]'") cat("\n\n") }else{ cat(" Semi-Parametrical approach ", "\n") cat(" Expression of the hazard function: 'lambda(t) = lambda_0(t) + beta(t)'X'", "\n") cat(" (Baseline hazard function lambda_0(.) estimated using M-splines)") cat("\n\n") } } tmp.mieux = data.frame(tmp) tmp.mieux[] = lapply(tmp.mieux, type.convert) tmp.mieux.rec = tmp.mieux[1:x$nvarnotdep[1], -2] if(x$typeof == 0){ names(tmp.mieux.rec) = c("coef", "SE coef (H)", "SE coef (HIH)", "z", "p") } if(x$typeof == 2){ names(tmp.mieux.rec) = c("coef", "SE coef (H)", "z", "p") } prmatrix(tmp.mieux.rec, quote=FALSE) if(x$global_chisq.test==1){ cat("\n") tmpwald.mieux = data.frame(tmpwald) tmpwald.mieux[] = lapply(tmpwald.mieux, type.convert) prmatrix(tmpwald.mieux, quote=FALSE) } cat("\n") if ( (x$family[2]==0)&(!(x$typeof==0)) ){ cat("Scale for the Weibull hazard function:", round(x$scale.param[1],2), "\n") cat("Shape for the Weibull hazard function:", round(x$shape.param[1],2), "\n") } else if ( (x$family[2]==1)&(!(x$typeof==0)) ){ cat("Scale for the log-logistic hazard function:", round(x$scale.param[1],2), "\n") cat("Shape for the log-logistic hazard function:", round(x$shape.param[1],2), "\n") } else if ( (x$family[2]==2)&(!(x$typeof==0)) ){ cat("Scale for the log-normal hazard function:", round(x$scale.param[1],2), "\n") cat("Shape for the log-normal hazard function:", round(x$shape.param[1],2), "\n") } else if ( (x$family[2]==3)&(!(x$typeof==0)) ){ cat("Scale for the Weibull hazard function:", round(x$scale.param[1],2), "\n") cat("Shape for the Weibull hazard function:", round(x$shape.param[1],2), "\n") } } } cat("\n") if (x$nvarnotdep[2] == 0){ cat("\n Terminal event:\n") cat("---------------- \n") cat("No constant coefficients, only time-varying effects of the covariates \n") }else{ if (x$noVar2 == 0){ cat("\n Terminal event:\n") cat("---------------- \n") if (x$family[1]==0){ if(!(x$typeof==0)){ cat(" Parametrical approach with link g() = log(-log()) ", "\n") cat(" S(t) = [ g^-1(eta) ] ^ (frailty^gamma) ", "\n") cat(" eta = shape.log(t) - shape.log(scale) + beta'X", "\n") cat(" (Proportional Hazards Frailty Model with a Weibull distribution) ", "\n") cat(" Expression of the Weibull hazard function: 'lambda(t) = (shape.(t^(shape-1)))/(scale^shape)'", "\n") cat(" Expression of the Weibull survival function: 'S(t) = exp[- (t/scale)^shape]'") cat("\n\n") }else{ cat(" Semi-Parametrical approach ", "\n") cat(" Expression of the hazard function: 'lambda(t) = lambda_0(t) * exp(beta(t)'X)'", "\n") cat(" (Baseline hazard function lambda_0(.) estimated using M-splines)") cat("\n\n") } } else if (x$family[1]==1){ cat(" Parametrical approach with link g() = -logit() ", "\n") cat(" S(t) = [ g^-1(eta) ] ^ (frailty^gamma) ", "\n") cat(" eta = shape.log(t) - shape.log(scale) + beta'X ", "\n") cat(" (Proportional Odds Frailty Model with a log-logistic distribution) ", "\n") cat(" Expression of the log-logistic hazard function: 'lambda(t) = 1 / [ 1+exp(-eta) ] * d.eta/d.t'", "\n") cat(" Expression of the log-logistic survival function: 'S(t) = 1 / [ 1 + (t/scale)^shape ]'") cat("\n\n") } else if (x$family[1]==2){ cat(" Parametrical approach with link g() = -PHI^-1() ", "\n") cat(" S(t) = [ g^-1(eta) ] ^ (frailty^gamma) ", "\n") cat(" eta = shape.log(t) - shape.log(scale) + beta'X ", "\n") cat(" (Probit Frailty Model with a log-normal distribution) ", "\n") cat(" Expression of the log-normal hazard function: 'lambda(t) = phi(-eta)/PHI(-eta) * d.eta/d.t'", "\n") cat(" Expression of the log-normal survival function: 'S(t) = PHI(-eta)'") cat("\n\n") } else if (x$family[1]==3){ if(!(x$typeof==0)){ cat(" Parametrical approach with link g() = -log() ", "\n") cat(" S(t) = [ g^-1(eta) ]^frailty ", "\n") cat(" eta = (t/scale)^shape + t*beta'X", "\n") cat(" (Additive Hazards Frailty Model with a Weibull distribution) ", "\n") cat(" Expression of the Weibull hazard function: 'lambda(t) = (shape.(t^(shape-1)))/(scale^shape)'", "\n") cat(" Expression of the Weibull survival function: 'S(t) = exp[- (t/scale)^shape]'") cat("\n\n") }else{ cat(" Semi-Parametrical approach ", "\n") cat(" Expression of the hazard function: 'lambda(t) = lambda_0(t) + beta(t)'X'", "\n") cat(" (Baseline hazard function lambda_0(.) estimated using M-splines)") cat("\n\n") } } tmp.mieux.dc = tmp.mieux[-c(1:x$nvarnotdep[1]), -2] if(x$typeof==0){ names(tmp.mieux.dc) = c("coef", "SE coef (H)", "SE coef (HIH)", "z", "p") } if(x$typeof==2){ names(tmp.mieux.dc) = c("coef", "SE coef (H)", "z", "p") } row.names(tmp.mieux.dc) = names(coef)[-c(1:x$nvarnotdep[1])] prmatrix(tmp.mieux.dc, quote=FALSE) if(x$global_chisq.test_d==1){ cat("\n") tmpwalddc.mieux = data.frame(tmpwalddc) tmpwalddc.mieux[] = lapply(tmpwalddc.mieux, type.convert) prmatrix(tmpwalddc.mieux, quote=FALSE) } cat("\n") if ( (x$family[1]==0)&(!(x$typeof==0)) ){ cat("Scale for the Weibull hazard function:", round(x$scale.param[2],2), "\n") cat("Shape for the Weibull hazard function:", round(x$shape.param[2],2), "\n") } else if ( (x$family[1]==1)&(!(x$typeof==0)) ){ cat("Scale for the log-logistic hazard function:", round(x$scale.param[2],2), "\n") cat("Shape for the log-logistic hazard function:", round(x$shape.param[2],2), "\n") } else if ( (x$family[1]==2)&(!(x$typeof==0)) ){ cat("Scale for the log-normal hazard function:", round(x$scale.param[2],2), "\n") cat("Shape for the log-normal hazard function:", round(x$shape.param[2],2), "\n") } else if ( (x$family[1]==3)&(!(x$typeof==0)) ){ cat("Scale for the Weibull hazard function:", round(x$scale.param[2],2), "\n") cat("Shape for the Weibull hazard function:", round(x$shape.param[2],2), "\n") } } } cat("\n") } temp <- diag(x$varH)[1] seH.frail <- sqrt(((2 * (frail^0.5))^2) * temp) temp <- diag(x$varHIH)[1] seHIH.frail <- sqrt(((2 * (frail^0.5))^2) * temp) if (x$noVar1 == 1){ cat("\n") if (x$joint.clust == 0) cat(" Survival event: No covariates \n") if (x$joint.clust >= 1) cat(" Recurrences: No covariates \n") cat(" ----------- \n") } if (x$noVar2 == 1){ cat("\n") cat(" Terminal event: No covariates \n") cat(" -------------- \n") cat("\n") } cat("\nFrailty parameters: \n") if (x$logNormal == 0){ if (indic_alpha == 1 & x$joint.clust<=1){ cat(" theta (variance of frailties, u_i): ", frail, " (SE(H): ",seH.frail, "), ", "p = ", ifelse(signif(1 - pnorm(frail/seH.frail), digits - 1) == 0, "< 1e-16", signif(1 - pnorm(frail/seH.frail), digits - 1)), sep="", "\n") cat(" alpha ((u_i)^alpha for terminal event): ", x$alpha, " (SE(H): ",sqrt(diag(x$varH))[2], "), ", "p = ", ifelse(signif(1 - pchisq((x$alpha/sqrt(diag(x$varH))[2])^2,1), digits - 1) == 0, "< 1e-16", signif(1 - pchisq((x$alpha/sqrt(diag(x$varH))[2])^2,1), digits - 1)), sep="", "\n") }else if (x$joint.clust ==2) { cat(" theta (variance of u, association between recurrences and terminal event):", frail, "(SE (H):",seH.frail, ")", "p =", ifelse(signif(1 - pnorm(frail/seH.frail), digits - 1) == 0, "< 1e-16", signif(1 - pnorm(frail/seH.frail), digits - 1)), "\n") cat(" eta (variance of v, intra-subject correlation):", x$eta, "(SE (H):",sqrt(((2 * (x$eta^0.5))^2) * diag(x$varH)[2]), ")", "p =", ifelse(signif(1 - pnorm (x$eta/sqrt(((2 * (x$eta^0.5))^2) * diag(x$varH)[2]),1), digits - 1) == 0, "< 1e-16", signif(1 - pnorm (x$eta/sqrt(((2 * (x$eta^0.5))^2) * diag(x$varH)[2]),1), digits - 1)), "\n") } else { cat(" theta (variance of Frailties, w):", frail, "(SE (H):",seH.frail, ")", "p =", ifelse(signif(1 - pnorm(frail/seH.frail), digits - 1) == 0, "< 1e-16", signif(1 - pnorm(frail/seH.frail), digits - 1)), "\n") cat(" gamma is fixed (=1) \n") } }else{ cat(" sigma square (variance of Frailties, eta):", frail, "(SE (H):",seH.frail, ")", "p =", ifelse(signif(1 - pnorm(frail/seH.frail), digits - 1) == 0, "< 1e-16", signif(1 - pnorm(frail/seH.frail), digits - 1)), "\n") if (indic_alpha == 1) cat(" alpha (exp(alpha.eta) for terminal event):", x$alpha, "(SE (H):",sqrt(diag(x$varH))[2], ")", "p =", ifelse(signif(1 - pchisq((x$alpha/sqrt(diag(x$varH))[2])^2,1), digits - 1) == 0, "< 1e-16", signif(1 - pchisq((x$alpha/sqrt(diag(x$varH))[2])^2,1), digits - 1)), "\n") else cat(" alpha is fixed (=1) \n") } cat(" \n") if (x$typeof == 0){ cat(paste("Penalized marginal log-likelihood =", round(x$logLikPenal,2))) cat("\n") cat(" Convergence criteria: \n") cat(" parameters =",signif(x$EPS[1],3),"; likelihood =",signif(x$EPS[2],3),"; gradient =",signif(x$EPS[3],3),"\n") cat("\n") cat("Likelihood Cross-Validation (LCV) criterion in the semi parametrical case:\n") cat(" approximate LCV =",x$LCV,"\n") }else{ cat(paste("Marginal log-likelihood =", round(x$logLik,2))) cat("\n") cat(" Convergence criteria: \n") cat(" parameters =",signif(x$EPS[1],3),"; likelihood =",signif(x$EPS[2],3),"; gradient =",signif(x$EPS[3],3),"\n") cat("\n") cat("AIC (Aikaike Information Criterion) =",x$AIC,"\n") cat("The expression of the Aikaike Information Criterion is:","\n") cat(" 'AIC = (1/n)[np - l(.)]'","\n") } cat("\n") if (x$joint.clust == 0){ cat(" n.observations =", x$n, " n.subjects =", x$ind, " n.groups =", x$groups) }else{ cat(" n.observations = ", x$n, ", n.subjects = ", x$groups, sep="") } if (length(x$na.action)){ cat(" (", length(x$na.action), " observation deleted due to missing) \n") }else{ cat("\n") } if (x$joint.clust == 0){ cat(" n.events =", x$n.events) }else{ cat(" n.recurrent events =", x$n.events) } cat("\n") cat(" n.terminal events =", x$n.deaths) cat("\n") cat(" n.censored events =" ,x$n.censored) cat("\n") cat(" number of iterations:", x$n.iter,"\n") if (x$logNormal == 0) { cat(" Number of nodes for the Gauss-Laguerre quadrature:", x$nb.gl,"\n") } else {cat(" Number of nodes for the Gauss-Hermite quadrature:", x$nb.gh,"\n")} if ((x$typeof == 1) & (x$indic.nb.intR == 1)){ cat(" Exact number of time intervals used: 20","\n") }else{ if (x$typeof == 1) cat(" Exact number of time intervals used: ",x$nbintervR,"\n") } if ((x$typeof == 1) & (x$indic.nb.intD == 1)){ cat(" Exact number of time intervals used: 20","\n") }else{ if (x$typeof == 1) cat(" Exact number of time intervals used:",x$nbintervDC,"\n") } if (x$typeof == 0){ cat("\n") cat(" Exact number of knots used:", x$n.knots, "\n") cat(" Value of the smoothing parameters:", x$kappa, sep=" ") cat("\n") } }else{ if (!is.null(coef)){ cat("\n") if (x$joint.clust == 0) cat(" For clustered data","\n") if (x$joint.clust == 0){ if (x$logNormal == 0){ cat(" Joint gamma frailty model for a survival and a terminal event processes","\n") }else{ cat(" Joint Log-Normal frailty model for a survival and a terminal event processes","\n") } }else{ if ((x$logNormal == 0)&(x$joint.clust==1)){ cat(" Joint gamma frailty model for recurrent and a terminal event processes","\n") } else if ((x$logNormal == 0)&(x$joint.clust==2)){ cat(" General Joint gamma frailty model for recurrent and a terminal event processes","\n") } else{ cat(" Joint Log-Normal frailty model for recurrent and a terminal event processes","\n") } } if (x$typeof == 0){ cat(" using a Penalized Likelihood on the hazard function","\n") }else{ cat(" using a Parametrical approach for the hazard function","\n") } if (any(x$nvartimedep != 0)) cat(" and some time-dependant covariates","\n") if (x$noVar1 == 1){ cat("\n") if (x$joint.clust == 0) cat(" Survival event: No covariates \n") if (x$joint.clust >= 1) cat(" Recurrences: No covariates \n") cat(" ----------- \n") } if (x$noVar2 == 1){ cat("\n") cat(" Terminal event: No covariates \n") cat(" -------------- \n") cat("\n") } cat("\n") cat(" Convergence criteria: \n") cat(" parameters =",signif(x$EPS[1],3),"likelihood =",signif(x$EPS[2],3),"gradient =",signif(x$EPS[3],3),"\n") cat("\n") cat(" n=", x$n) if (length(x$na.action)){ cat(" (", length(x$na.action), " observation deleted due to missing) \n") }else{ cat("\n") } if (x$joint.clust == 0){ cat(" n events=", x$n.events) }else{ cat(" n recurrent events=", x$n.events) } cat("\n") cat(" n terminal events=", x$n.deaths) cat("\n") if (x$logNormal == 0) { cat(" Number of nodes for the Gauss-Laguerre quadrature: ", x$nb.gl,"\n") } else {cat(" Number of nodes for the Gauss-Hermite quadrature: ", x$nb.gh,"\n")} } } invisible() } }
Initialize.corRStruct <- function(object, data, ...) { form <- formula(object) if (!is.null(getGroupsFormula(form))) { attr(object, "groups") <- getGroups(object, form, data = data) attr(object, "Dim") <- Dim(object, attr(object, "groups")) } else { attr(object, "Dim") <- Dim(object, as.factor(rep(1, nrow(data)))) } attr(object, "covariate") <- getCovariate(object, data = data) object } Dim.corRStruct <- function(object, groups, ...) { if (missing(groups)) return(attr(object, "Dim")) ugrp <- unique(groups) groups <- factor(groups, levels = ugrp) len <- table(groups) list(N = length(groups), M = length(len), maxLen = max(len), sumLenSq = sum(len^2), len = len, start = match(ugrp, groups) - 1) } print.corRStruct <- function(x, ...) { aux <- coef(x) if (length(aux) > 0) { cat("Correlation structure of class", class(x)[1], "representing\n") print(invisible(aux), ...) } else { cat("Uninitialized correlation structure of class", class(x)[1], "\n") } } Initialize.corRSpatial <- function(object, data, ...) { if (!is.null(attr(object, "covariate"))) { return(object) } object <- Initialize.corRStruct(object, data) val <- as.vector(object) if (length(val) == 0) { val <- attr(getCovariate(object), "minD") * 0.9 } else if (!all(inbounds(val, attr(object, "bounds")))) { stop() } attributes(val) <- attributes(object) val } Dim.corRSpatial <- function(object, groups, ...) { if (missing(groups)) return(attr(object, "Dim")) val <- Dim.corRStruct(object, groups) val[["start"]] <- c(0, cumsum(val[["len"]] * (val[["len"]] - 1)/2)[-val[["M"]]]) names(val)[3] <- "spClass" val[[3]] <- match(class(object)[1], c("corRExp", "corRExpwr", "corRGaus", "corRGneit", "corRLin", "corRMatern", "corRCauchy", "corRSpher"), 0) val } getCovariate.corRSpatial <- function(object, form = formula(object), data) { covar <- attr(object, "covariate") if (is.null(covar)) { if (missing(data)) { stop("Need data to calculate covariate") } covForm <- terms(getCovariateFormula(form)) attr(covForm, "intercept") <- 0 if (length(all.vars(covForm)) > 0) { covar <- model.matrix(covForm, model.frame(covForm, data, drop.unused.levels = TRUE)) } else { covar <- as.matrix(1:nrow(data)) } if (is.null(getGroupsFormula(form))) { attr(covar, "assign") <- NULL attr(covar, "contrasts") <- NULL attr(covar, "dist") <- as.vector(dist2(covar, method = attr(object, "metric"), r = attr(object, "radius"))) attr(covar, "minD") <- min(attr(covar, "dist")) } else { grps <- getGroups(object, data = data) covar <- lapply(split(as.data.frame(covar), grps), function(el, metric, radius) { el <- as.matrix(el) attr(el, "dist") <- as.vector(dist2(el, metric, r = radius)) el }, metric = attr(object, "metric"), radius = attr(object, "radius")) attr(covar, "minD") <- min(unlist(lapply(covar, attr, which = "dist"))) } if (attr(covar, "minD") == 0) { stop("Cannot have zero distances in \"corRSpatial\"") } } covar } corMatrix.corRSpatial <- function(object, covariate = getCovariate(object), corr = TRUE, ...) { if (data.class(covariate) == "list") { dist <- unlist(lapply(covariate, attr, which = "dist")) len <- unlist(lapply(covariate, nrow)) } else { dist <- attr(covariate, "dist") len <- nrow(covariate) names(len) <- 1 } par <- coef(object) val <- switch(class(object)[1], corRExp = cor.exp(dist, par[1]), corRExpwr = cor.exp(dist, par[1], par[2]), corRGaus = cor.exp(dist, par[1], 2), corRGneit = cor.gneiting(dist, par[1]), corRLin = cor.lin(dist, par[1]), corRMatern = cor.matern(dist, par[1], par[2]), corRCauchy = cor.cauchy(dist, par[1]), corRSpher = cor.spher(dist, par[1]), corRWave = cor.wave(dist, par[1]) ) val <- split(val, rep(names(len), len * (len - 1) / 2)) lD <- NULL for(i in names(val)) { x <- matrix(0, len[i], len[i]) x[lower.tri(x)] <- val[[i]] if (corr) { val[[i]] <- x + t(x) diag(val[[i]]) <- 1 } else { diag(x) <- 1 l <- chol(t(x)) val[[i]] <- t(backsolve(l, diag(len[i]))) lD <- c(lD, diag(l)) } } if (length(len) == 1) val <- val[[1]] if (!is.null(lD)) attr(val, "logDet") <- -1 * sum(log(lD)) val } corFactor.corRSpatial <- function(object, ...) { val <- corMatrix(object, corr = FALSE, ...) lD <- attr(val, "logDet") if (is.list(val)) val <- unlist(val) else val <- as.vector(val) names(val) <- NULL attr(val, "logDet") <- lD val } coef.corRSpatial <- function(object, ...) { val <- as.vector(object) if (length(val) == 0) { return(val) } names(val) <- rownames(attr(object, "bounds")) val } "coef<-.corRSpatial" <- function(object, ..., value) { if (!all(inbounds(value, attr(object, "bounds")))) stop() object[] <- value object } corRExp <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, Inf, 1), ncol=3, dimnames = list("range", c("lower", "upper", "type"))) class(value) <- c("corRExp", "corRSpatial", "corRStruct") value } corRExpwr <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, 0, Inf, 2, 1, 3), ncol=3, dimnames = list(c("range", "shape"), c("lower", "upper", "type"))) class(value) <- c("corRExpwr", "corRSpatial", "corRStruct") value } Initialize.corRExpwr <- function(object, data, ...) { if (!is.null(attr(object, "covariate"))) { return(object) } object <- Initialize.corRStruct(object, data) val <- as.vector(object) if (length(val) == 0) { val <- c(attr(getCovariate(object), "minD") * 0.9, 1) } else if (!all(inbounds(val, attr(object, "bounds")))) { stop() } attributes(val) <- attributes(object) val } corRGaus <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, Inf, 1), ncol=3, dimnames = list("range", c("lower", "upper", "type"))) class(value) <- c("corRGaus", "corRSpatial", "corRStruct") value } corRGneit <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, Inf, 1), ncol=3, dimnames = list("range", c("lower", "upper", "type"))) class(value) <- c("corRGneit", "corRSpatial", "corRStruct") value } corRLin <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, Inf, 1), ncol=3, dimnames = list("range", c("lower", "upper", "type"))) class(value) <- c("corRLin", "corRSpatial", "corRStruct") value } corRMatern <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, 0, Inf, 2, 1, 3), ncol=3, dimnames = list(c("range", "scale"), c("lower", "upper", "type"))) class(value) <- c("corRMatern", "corRSpatial", "corRStruct") value } Initialize.corRMatern <- function(object, data, ...) { if (!is.null(attr(object, "covariate"))) { return(object) } object <- Initialize.corRStruct(object, data) val <- as.vector(object) if (length(val) == 0) { val <- c(attr(getCovariate(object), "minD") * 0.9, 0.5) } else if (!all(inbounds(val, attr(object, "bounds")))) { stop() } attributes(val) <- attributes(object) val } corRCauchy <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, Inf, 1), ncol=3, dimnames = list("range", c("lower", "upper", "type"))) class(value) <- c("corRCauchy", "corRSpatial", "corRStruct") value } corRSpher <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, Inf, 1), ncol=3, dimnames = list("range", c("lower", "upper", "type"))) class(value) <- c("corRSpher", "corRSpatial", "corRStruct") value } corRWave <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, Inf, 1), ncol=3, dimnames = list("range", c("lower", "upper", "type"))) class(value) <- c("corRWave", "corRSpatial", "corRStruct") value } Initialize.corRSpatioTemporal <- function(object, data, ...) { if (!is.null(attr(object, "covariate"))) { return(object) } object <- Initialize.corRStruct(object, data) val <- as.vector(object) if (length(val) == 0) { val <- attr(getCovariate(object), "minD") * 0.9 val[val == 0] <- 1 } else if (!all(inbounds(val, attr(object, "bounds")))) { stop() } attributes(val) <- attributes(object) val } Dim.corRSpatioTemporal <- function(object, groups, ...) { if (missing(groups)) return(attr(object, "Dim")) val <- Dim.corRStruct(object, groups) val[["start"]] <- c(0, cumsum(val[["len"]] * (val[["len"]] - 1)/2)[-val[["M"]]]) names(val)[3] <- "spClass" val[[3]] <- match(class(object)[1], c("corRExp2", "corRExpwr2"), 0) val } getCovariate.corRSpatioTemporal <- function(object, form = formula(object), data) { covar <- attr(object, "covariate") if (is.null(covar)) { if (missing(data)) { stop("Need data to calculate covariate") } covForm <- terms(getCovariateFormula(form)) attr(covForm, "intercept") <- 0 tcovar <- length(all.vars(covForm)) if (tcovar >= 2) { covar <- model.matrix(covForm, model.frame(covForm, data, drop.unused.levels = TRUE)) } else if (tcovar == 1) { covar <- model.matrix(covForm, model.frame(covForm, data, drop.unused.levels = TRUE)) covar <- cbind(covar, 1:nrow(data)) tcovar <- 2 } else { covar <- cbind(1:nrow(data), 1:nrow(data)) tcovar <- 2 } if (nrow(covar) > nrow(unique(covar))) { stop("Cannot have zero distances in \"corRSpatioTemporal\"") } if (is.null(getGroupsFormula(form))) { attr(covar, "assign") <- NULL attr(covar, "contrasts") <- NULL x <- as.vector(dist2(covar[, -tcovar], method = attr(object, "metric"), r = attr(object, "radius"))) attr(covar, "dist") <- x minD <- ifelse(any(x > 0), min(x[x > 0]), 0) idx <- lower.tri(matrix(0, nrow(covar), nrow(covar))) x <- abs(covar[col(idx)[idx], tcovar] - covar[row(idx)[idx], tcovar]) attr(covar, "period") <- x minD <- c(minD, ifelse(any(x > 0), min(x[x > 0]), 0)) } else { grps <- getGroups(object, data = data) covar <- lapply(split(as.data.frame(covar), grps), function(el, metric, radius) { el <- as.matrix(el) attr(el, "dist") <- as.vector(dist2(el[, -tcovar], metric, r = radius)) idx <- lower.tri(matrix(0, nrow(el), nrow(el))) attr(el, "period") <- abs(el[col(idx)[idx], tcovar] - el[row(idx)[idx], tcovar]) el }, metric = attr(object, "metric"), radius = attr(object, "radius")) x <- unlist(lapply(covar, attr, which = "dist")) minD <- ifelse(any(x > 0), min(x[x > 0]), 0) x <- unlist(lapply(covar, attr, which = "period")) minD <- c(minD, ifelse(any(x > 0), min(x[x > 0]), 0)) } attr(covar, "minD") <- minD } covar } corMatrix.corRSpatioTemporal <- function(object, covariate = getCovariate(object), corr = TRUE, ...) { if (data.class(covariate) == "list") { dist <- unlist(lapply(covariate, attr, which = "dist")) period <- unlist(lapply(covariate, attr, which = "period")) len <- unlist(lapply(covariate, nrow)) } else { dist <- attr(covariate, "dist") period <- attr(covariate, "period") len <- nrow(covariate) names(len) <- 1 } par <- coef(object) val <- switch(class(object)[1], corRExp2 = cor.exp2(dist, period, par[1], 1, par[2], 1, par[3]), corRExpwr2 = cor.exp2(dist, period, par[1], par[2], par[3], par[4], par[5]) ) val <- split(val, rep(names(len), len * (len - 1) / 2)) lD <- NULL for(i in names(val)) { x <- matrix(0, len[i], len[i]) x[lower.tri(x)] <- val[[i]] if (corr) { val[[i]] <- x + t(x) diag(val[[i]]) <- 1 } else { diag(x) <- 1 l <- chol(t(x)) val[[i]] <- t(backsolve(l, diag(len[i]))) lD <- c(lD, diag(l)) } } if (length(len) == 1) val <- val[[1]] if (!is.null(lD)) attr(val, "logDet") <- -1 * sum(log(lD)) val } corFactor.corRSpatioTemporal <- function(object, ...) { val <- corMatrix(object, corr = FALSE, ...) lD <- attr(val, "logDet") if (is.list(val)) val <- unlist(val) else val <- as.vector(val) names(val) <- NULL attr(val, "logDet") <- lD val } coef.corRSpatioTemporal <- function(object, ...) { val <- as.vector(object) if (length(val) == 0) { return(val) } names(val) <- rownames(attr(object, "bounds")) val } "coef<-.corRSpatioTemporal" <- function(object, ..., value) { if (!all(inbounds(value, attr(object, "bounds")))) stop() object[] <- value object } corRExp2 <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, 0, 0, Inf, Inf, Inf, 1, 1, 2), ncol=3, dimnames = list(c("spatial range", "temporal range", "interaction"), c("lower", "upper", "type"))) class(value) <- c("corRExp2", "corRSpatioTemporal", "corRStruct") value } Initialize.corRExp2 <- function(object, data, ...) { if (!is.null(attr(object, "covariate"))) { return(object) } object <- Initialize.corRStruct(object, data) val <- as.vector(object) if (length(val) == 0) { val <- attr(getCovariate(object), "minD") * 0.9 val[val == 0] <- 1 val <- c(val, 0) } else if (!all(inbounds(val, attr(object, "bounds")))) { stop() } attributes(val) <- attributes(object) val } corRExpwr2 <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, 0, 0, 0, 0, Inf, 2, Inf, 2, Inf, 1, 3, 1, 3, 2), ncol=3, dimnames = list(c("spatial range", "spatial shape", "temporal range", "temporal shape", "interaction"), c("lower", "upper", "type"))) class(value) <- c("corRExpwr2", "corRSpatioTemporal", "corRStruct") value } Initialize.corRExpwr2 <- function(object, data, ...) { if (!is.null(attr(object, "covariate"))) { return(object) } object <- Initialize.corRStruct(object, data) val <- as.vector(object) if (length(val) == 0) { val <- attr(getCovariate(object), "minD") * 0.9 val[val == 0] <- 1 val <- c(val[1], 1, val[2], 1, 0) } else if (!all(inbounds(val, attr(object, "bounds")))) { stop() } attributes(val) <- attributes(object) val } corRExpwr2Dt <- function(value = numeric(0), form = ~ 1, metric = c("euclidean", "maximum", "manhattan", "haversine"), radius = 3956) { attr(value, "formula") <- form attr(value, "metric") <- match.arg(metric) attr(value, "radius") <- radius attr(value, "bounds") <- matrix(c(0, 0, 0, 0, Inf, 2, Inf, Inf, 1, 3, 1, 2), ncol=3, dimnames = list(c("spatial range", "spatial shape", "temporal range", "interaction"), c("lower", "upper", "type"))) class(value) <- c("corRExpwr2Dt", "corRSpatioTemporal", "corRStruct") value } Initialize.corRExpwr2Dt <- function(object, data, ...) { if (!is.null(attr(object, "covariate"))) { return(object) } object <- Initialize.corRStruct(object, data) val <- as.vector(object) if (length(val) == 0) { val <- attr(getCovariate(object), "minD") * 0.9 val[val == 0] <- 1 val <- c(val[1], 1, val[2], 0) } else if (!all(inbounds(val, attr(object, "bounds")))) { stop() } attributes(val) <- attributes(object) val } Dim.corRExpwr2Dt <- function(object, groups, ...) { if (missing(groups)) return(attr(object, "Dim")) val <- Dim.corRStruct(object, groups) val[["start"]] <- c(0, cumsum(val[["len"]] * (val[["len"]] - 1)/2)[-val[["M"]]]) names(val)[3] <- "spClass" val[[3]] <- match(class(object)[1], c("corRExpwr2Dt"), 0) val } getCovariate.corRExpwr2Dt <- function(object, form = formula(object), data) { covar <- attr(object, "covariate") if (is.null(covar)) { if (missing(data)) { stop("Need data to calculate covariate") } covForm <- terms(getCovariateFormula(form)) attr(covForm, "intercept") <- 0 tcovar <- length(all.vars(covForm)) + c(-1, 0) if (tcovar[1] >= 2) { covar <- model.matrix(covForm, model.frame(covForm, data, drop.unused.levels = TRUE)) } else if (tcovar[1] == 1) { covar <- model.matrix(covForm, model.frame(covForm, data, drop.unused.levels = TRUE)) covar <- cbind(1:nrow(data), covar) tcovar <- tcovar + 1 } else { covar <- matrix(1:nrow(data), nrow(data), 3) tcovar <- c(2, 3) } if (nrow(covar) > nrow(unique(covar))) { stop("Cannot have duplicate sites in \"corRExpwr2Dt\"") } else if (any(covar[,tcovar[1]] > covar[,tcovar[2]])) { stop("Temporal limits must be ascending in \"corRExpwr2Dt\"") } if (is.null(getGroupsFormula(form))) { attr(covar, "assign") <- NULL attr(covar, "contrasts") <- NULL x <- as.vector(dist2(covar[, -tcovar], method = attr(object, "metric"), r = attr(object, "radius"))) attr(covar, "dist") <- x minD <- ifelse(any(x > 0), min(x[x > 0]), 0) idx <- lower.tri(matrix(0, nrow(covar), nrow(covar))) t1 <- covar[col(idx)[idx], tcovar] t2 <- covar[row(idx)[idx], tcovar] attr(covar, "t1") <- t1 attr(covar, "t2") <- t2 x <- abs((t2 - t1) %*% c(0.5, 0.5)) minD <- c(minD, ifelse(any(x > 0), min(x[x > 0]), 0)) } else { grps <- getGroups(object, data = data) covar <- lapply(split(as.data.frame(covar), grps), function(el, metric, radius) { el <- as.matrix(el) attr(el, "dist") <- as.vector(dist2(el[, -tcovar], metric, r = radius)) idx <- lower.tri(matrix(0, nrow(el), nrow(el))) attr(el, "t1") <- el[col(idx)[idx], tcovar] attr(el, "t2") <- el[row(idx)[idx], tcovar] el }, metric = attr(object, "metric"), radius = attr(object, "radius")) x <- unlist(lapply(covar, attr, which = "dist")) minD <- ifelse(any(x > 0), min(x[x > 0]), 0) x <- rapply(covar, function(x) abs((attr(x, "t2") - attr(x, "t1")) %*% c(0.5, 0.5))) minD <- c(minD, ifelse(any(x > 0), min(x[x > 0]), 0)) } attr(covar, "minD") <- minD } covar } corMatrix.corRExpwr2Dt <- function(object, covariate = getCovariate(object), corr = TRUE, ...) { if (data.class(covariate) == "list") covar <- covariate else covar <- list(covariate) par <- coef(object) val <- list() lD <- NULL for(i in seq(covar)) { r <- cor.exp2dt(attr(covar[[i]], "dist"), attr(covar[[i]], "t1"), attr(covar[[i]], "t2"), par[1], par[2], par[3], par[4]) x <- matrix(0, nrow(covar[[i]]), nrow(covar[[i]])) x[lower.tri(x)] <- r idx <- ncol(covar[[i]]) + c(-1, 0) if (corr) { val[[i]] <- x + t(x) diag(val[[i]]) <- cor.exp2dt(0, covar[[i]][,idx], covar[[i]][,idx], par[1], par[2], par[3], par[4]) } else { diag(x) <- cor.exp2dt(0, covar[[i]][,idx], covar[[i]][,idx], par[1], par[2], par[3], par[4]) l <- chol(t(x)) val[[i]] <- t(backsolve(l, diag(length(covar[[i]])))) lD <- c(lD, diag(l)) } } if (length(val) == 1) val <- val[[1]] if (!is.null(lD)) attr(val, "logDet") <- -1 * sum(log(lD)) val } corFactor.corRExpwr2Dt <- function(object, ...) { val <- corMatrix(object, corr = FALSE, ...) lD <- attr(val, "logDet") if (is.list(val)) val <- unlist(val) else val <- as.vector(val) names(val) <- NULL attr(val, "logDet") <- lD val } dist2 <- function(x, method = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "haversine"), diag = FALSE, upper = FALSE, p = 2, r = 3956) { METHOD <- match.arg(method) switch(METHOD, haversine = { m <- matrix(NA, nrow(x), nrow(x)) idx <- lower.tri(m) m[idx] <- haversine(x[col(m)[idx],1:2], x[row(m)[idx],1:2], r) d <- as.dist(m, diag = diag, upper = upper) }, { f <- get("dist", envir = as.environment("package:stats")) d <- f(x, method = METHOD, diag = diag, upper = upper, p = p) } ) d } anisotropic <- function(x, par, system = c("cartesian", "polar", "spherical")) { X <- as.matrix(x) system <- match.arg(system) d <- ncol(x) if (d == 2) { if (length(par) != 2) stop("parameter vector must consist of two elements", " - an anisotropy angle and ratio") if ((r <- par[2]) < 1) stop("anisotropy ratios must be >= 1") S <- diag(c(1, 1 / r)) alpha <- par[1] R <- matrix(c(cos(alpha), -sin(alpha), sin(alpha), cos(alpha)), 2, 2) switch(system, cartesian = { Y <- X %*% S %*% R }, polar = { theta <- X[,2] Z <- X[,1] * cbind(cos(theta), sin(theta)) %*% S %*% R x <- Z[,1] y <- Z[,2] theta <- if (x >= 0 && y >= 0) atan(abs(y / x)) else if (x < 0 && y >= 0) pi - atan(abs(y / x)) else if (x < 0 && y < 0) pi + atan(abs(y / x)) else 2 * pi - atan(abs(y / x)) Y <- cbind(sqrt(x^2 + y^2), theta) }, spherical = { } ) } else if (d == 3) { if (length(par) != 5) stop("parameter vector must consist of five elements", " - three anisotropy angles and two ratios") if (any((r <- par[4:5]) < 1)) stop("anisotropy ratios must be >= 1") S <- diag(c(1, 1 / r)) alpha <- par[1] beta <- par[2] theta <- par[3] R1 <- matrix(c(cos(alpha), -sin(alpha), 0, sin(alpha), cos(alpha), 0, 0, 0, 1), 3, 3) R2 <- matrix(c( cos(beta), 0, sin(beta), 0, 1, 0, -sin(beta), 0, cos(beta)), 3, 3) R3 <- matrix(c(1, 0, 0, 0, cos(theta), -sin(theta), 0, sin(theta), cos(theta)), 3, 3) R <- R1 %*% R2 %*% R3 switch(system, cartesian = { Y <- X %*% S %*% R }, polar = { stop("polar coordinates must be of two dimensions") }, spherical = { phi <- X[,2] theta <- X[,3] Z <- X[,1] * cbind(sin(phi) * cos(theta), sin(phi) * sin(theta), cos(theta)) %*% S %*% R x <- Z[,1] y <- Z[,2] z <- Z[,3] Y <- cbind(sqrt(x^2 + y^2 + z^2), atan(y / x), atan(sqrt(x^2 + y^2) / z)) } ) } else { stop("anisotropy supported only for 2-D and 3-D coordinate systems") } Y } haversine <- function(x, y, r = 3956) { if(is.vector(x)) x <- matrix(x, 1, 2) if(is.vector(y)) y <- matrix(y, 1, 2) rad <- pi / 180 z <- sin((y - x) * (rad / 2))^2 a <- z[,2] + cos(rad * x[,2]) * cos(rad * y[,2]) * z[,1] (2 * r) * atan2(sqrt(a), sqrt(1 - a)) } cor.exp <- function(x, range = 1, p = 1) { if (range <= 0 || p <= 0) stop("Exponential correlation parameter must be > 0") if (p == 1) exp(x / (-1 * range)) else exp(-1 * (x / range)^p) } cor.gneiting <- function(x, range = 1) { if (range <= 0) stop("Gneiting correlation parameter must be > 0") range <- range / 0.3008965026325734 r <- (x < range) x0 <- x[r] / range r[r] <- (1 + 8 * x0 + 25 * x0^2 + 32 * x0^3) * (1 - x0)^8 r } cor.lin <- function(x, range = 1) { if (range <= 0) stop("Linear correlation parameter must be > 0") r <- (x < range) r[r] <- 1 - x[r] / range r } cor.matern <- function(x, range = 1, scale = 1) { if(range <= 0 || scale <= 0) stop("Matern correlation parameters must be > 0") idx <- (x > 0) r <- as.double(!idx) x0 <- x[idx] / range r[idx] <- x0^scale * besselK(x0, scale) / (2^(scale - 1) * gamma(scale)) r } cor.cauchy <- function(x, range = 1) { if (range <= 0) stop("Cauchy correlation parameter must be > 0") 1 / (1 + (x / range)^2) } cor.spher <- function(x, range = 1) { if (range <= 0) stop("Spherical correlation parameter must be > 0") r <- (x < range) x0 <- x[r] / range r[r] <- 1 - 1.5 * x0 + 0.5 * x0^3 r } cor.wave <- function(x, range = 1) { if (range <= 0) stop("Sine wave correlation parameter must be > 0") x0 <- (x / range) sin(x0) / x0 } cor.exp2 <- function(x, t, x.range = 1, x.p = 1, t.range = 1, t.p = 1, lambda = 0) { if (t.range <= 0 || x.range <= 0 || x.p <= 0 || lambda < 0) stop("Exponential correlation parameters must be > 0") x0 <- if (x.p == 1) x / (-1 * x.range) else -1 * (x / x.range)^x.p t0 <- if (t.p == 1) t / (-1 * t.range) else -1 * (t / t.range)^t.p exp(x0 - lambda * x0 * t0 + t0) } cor.exp2dt <- function(x, t1, t2, x.range = 1, x.p = 1, t.range = 1, lambda = 0) { if (t.range <= 0 || x.range <= 0 || x.p <= 0 || lambda < 0) stop("Exponential correlation parameters must be > 0") if (is.vector(t1)) t1 <- matrix(t1, 1, 2) if (is.vector(t2)) t2 <- matrix(t2, 1, 2) x0 <- if (x.p == 1) x / (-1 * x.range) else -1 * (x / x.range)^x.p overlap <- pmin(t1[,2], t2[,2]) - pmax(t1[,1], t2[,1]) overlap[overlap < 0] <- 0 norm <- (t1 %*% c(-1, 1)) * (t2 %*% c(-1, 1)) if (lambda == 0) theta <- t.range else theta <- t.range / (1 - lambda * x0) val <- (theta^2 * exp(abs(t1[, c(1,1,2,2)] - t2[, c(2,1,2,1)]) / (-1 * theta)) %*% c(1, -1, -1, 1) + 2 * theta * overlap) / norm exp(x0) * as.vector(val) }
context("count") s1 <- system.file('examples/SAScode/MainAnalysis.SAS', package='sasMap') s2 <- system.file('examples/SAScode/Macros/Util1.SAS', package='sasMap') sasCode1 <- loadSAS(s1) sasCode2 <- loadSAS(s2) test_that("Counts data steps", { expect_equal(countDataSteps(sasCode1), 2) expect_equal(countDataSteps(sasCode2), 0) }) test_that("Counts proc steps", { expect_equal(countProcSteps(sasCode1), 0) expect_equal(countProcSteps(sasCode2), 2) }) test_that("Counts lines", { expect_equal(countLines(sasCode1), 15) expect_equal(countLines(sasCode2), 20) }) test_that("Counts statements", { expect_equal(countStatements(sasCode1), 10) expect_equal(countStatements(sasCode2), 14) })
annu.fv <- function(pmt,i,n,type = 0){ if(type == 1){ fv <- pmt*((((1+i)^n)-1)/i)*(1+i) }else{ fv <- pmt*((((1+i)^n)-1)/i) } return(fv) }
IRT.predict <- function( object, dat, group=1 ) { resp <- as.matrix(dat) irf1 <- IRT.irfprob( object ) irf1[ is.na(irf1) ] <- 0 N <- nrow(resp) I <- ncol(resp) TP <- dim(irf1)[3] K <- dim(irf1)[2] if ( length( dim(irf1) )==4 ){ irf1 <- irf1[,,,group] } irf1_ <- as.numeric(irf1) res0 <- cdm_rcpp_irt_predict( resp=resp, irf1=irf1_, K=K, TP=TP ) probs.categ <- array( res0$probs_categ, dim=c(N,K,TP,I) ) pred <- res0$pred var1 <- res0$var1 resid1 <- res0$resid1 sresid1 <- res0$sresid1 res <- list( "expected"=pred, "probs.categ"=probs.categ, "variance"=var1, "residuals"=resid1, "stand.resid"=sresid1 ) return(res) }
"ch3a"
dmsen <- function(x, mu = rep(0, d), Sigma, theta = Inf, formula = "direct") { if (missing(Sigma)) { stop("Sigma is missing") } if (theta < 0) { stop("theta must be greater than, or equal to, 0") } if (is.matrix(Sigma)) { d <- ncol(Sigma) } if (!is.matrix(Sigma)) { d <- 1 } if (is.vector(x)) { x <- matrix(x, length(x), 1) Sigma <- matrix(Sigma, nrow = d, ncol = d) } if (formula == "direct") { delta <- sapply(1:nrow(x), function(i) t(as.vector(t(x[i, ]) - mu)) %*% solve(Sigma) %*% as.vector(t(x[i, ]) - mu)) delta <- replace(delta, delta == 0, 1 / (theta * (2 * pi)^(d / 2) * (d / 2 + 1)) * (1 - (1 - theta)^(d / 2 + 1))) pdfgamma <- expint::gammainc(a = (d / 2 + 1), x = 1 / 2 * delta + theta) * (1 / 2 * delta + theta)^(-(d / 2 + 1)) pdfconst <- (2 * pi)^(-d / 2) * theta * exp(theta) * det(Sigma)^(-1 / 2) PDF <- pdfconst * pdfgamma } if (formula == "indirect") { delta <- sapply(1:nrow(x), function(i) t(as.vector(t(x[i, ]) - mu)) %*% solve(Sigma) %*% as.vector(t(x[i, ]) - mu)) intf <- function(w, gamm) { w^(d / 2) * exp(-w * gamm) } pdfinteg <- sapply(1:nrow(x), function(i) { stats::integrate(intf, lower = 1, upper = Inf, gamm = delta[i] / 2 + theta )$value }) pdfconst <- (2 * pi)^(-d / 2) * theta * exp(theta) * det(Sigma)^(-1 / 2) PDF <- pdfconst * pdfinteg } if (formula == "series") { delta <- sapply(1:nrow(x), function(i) t(as.vector(t(x[i, ]) - mu)) %*% solve(Sigma) %*% as.vector(t(x[i, ]) - mu)) delta <- replace(delta, delta == 0, 1 / (theta * (2 * pi)^(d / 2) * (d / 2 + 1)) * (1 - (1 - theta)^(d / 2 + 1))) n <- d / 2 term <- sapply(1:length(delta), function(j) { exp(-delta[j] / 2 - theta) * (delta[j] / 2 + theta)^(-1) * (1 + sum(sapply( 1:floor(n), function(i) { prod(seq(from = n, to = n - i + 1, by = -1)) * (delta[j] / 2 + theta)^(-i) } ))) }) if (d %% 2 == 1) { term <- term + sapply(1:length(delta), function(j) { prod(seq( from = n, to = 0.5, by = -1 )) * sqrt(pi) * 2 * 1 / (delta[j] / 2 + theta)^(floor(n) + 1 + 1 / 2) * (1 - stats::pnorm(sqrt(2) * sqrt(delta[j] / 2 + theta))) }) } PDF <- (2 * pi)^(-d / 2) * det(Sigma)^(-1 / 2) * theta * exp(theta) * term } return(PDF) }
test_logistic_cost <- function() { x <- c(1, 2, 3, 4, 5, 6, 7) y <- c(0, 0, 1, 0, 1, 1, 0) w <- c(1, 1, 1, 1, 1, 1, 1) il <- numeric(length(x)) sm3 <- summarize_input(x,y,w,0,3,-1) expect3 <- list(max_x = 4, min_x = 1, saw_y_pos = TRUE, max_x_pos = 3, min_x_pos = 3, saw_y_neg = TRUE, max_x_neg = 4, min_x_neg = 1, total_w = 4, total_wy = 1, k_points = 4, saw_data = TRUE, x_varies = TRUE, y_varies = TRUE, seperable = FALSE) msg <- wrapr::map_to_char(sm3) expect_equal(sm3, expect3, info = msg) for(k in wrapr::seqi(0, 4)) { m1 <- logistic_solve1(x, y, w, il, 0, k, -1) msg <- paste("k", k, wrapr::map_to_char(m1)) expect_true(is.numeric(m1), info = msg) expect_equal(2, length(m1), info = msg) expect_true(!any(is.na(m1)), info = msg) expect_true(!any(is.nan(m1)), info = msg) expect_true(!any(is.infinite(m1)), info = msg) lf <- logistic_fits(x, y, w, 0, k) msg <- paste("k", k, wrapr::map_to_char(m1), wrapr::map_to_char(lf)) expect_true(is.numeric(lf), info = msg) expect_equal(k+1, length(lf), info = msg) expect_true(!any(is.na(lf)), info = msg) expect_true(!any(is.nan(lf)), info = msg) expect_true(!any(is.infinite(lf)), info = msg) if(k>=3) { d <- data.frame(x = x[1:(k+1)], y = y[1:(k+1)]) m <- glm(y~x, data=d, family = binomial) cm <- as.numeric(coef(m)) diff1 <- max(abs(m1-cm)) msg1 <- paste("coef problem", k, diff1, "RccpDynProg", wrapr::map_to_char(m1), "glm", wrapr::map_to_char(cm)) expect_true(diff1<=1e-3, info = msg1) p <- as.numeric(predict(m, newdata = d, type = "link")) diff2 <- max(abs(lf-p)) msg2 <- paste("link problem", k, diff2, "RccpDynProg", wrapr::map_to_char(lf), "glm", wrapr::map_to_char(p)) expect_true(diff2<=1e-3, info = msg2) } } invisible(NULL) } test_logistic_cost()
context("XLSX Lines") library(xml2) test_that("segments don't have fill", { file <- tempfile() dml_xlsx( file = file, bg = "transparent" ) plot.new() segments(0.5, 0.5, 1, 1) dev.off() doc <- read_xml(file) fill_node <- xml_find_first(doc, ".//xdr:sp/xdr:spPr/a:solidFill", ns = xml_ns( doc ) ) expect_is( fill_node, "xml_missing") }) test_that("lines don't have fill", { file <- tempfile() dml_xlsx( file = file, bg = "transparent" ) plot.new() lines(c(0.5, 1, 0.5), c(0.5, 1, 1)) dev.off() doc <- read_xml(file) fill_node <- xml_find_first(doc, ".//xdr:sp/xdr:spPr/a:solidFill", ns = xml_ns( doc ) ) expect_is( fill_node, "xml_missing") }) test_that("polygons do have fill", { file <- tempfile() dml_xlsx( file = file, bg = "transparent" ) plot.new() polygon(c(0.5, 1, 0.5), c(0.5, 1, 1), col = "red", border = "blue") dev.off() doc <- read_xml(file) fill_node <- xml_find_first(doc, ".//xdr:sp/xdr:spPr/a:solidFill", ns = xml_ns( doc ) ) expect_is( fill_node, "xml_node") }) test_that("polygons without border", { file <- tempfile() dml_xlsx( file = file, bg = "transparent" ) plot.new() polygon(c(0.5, 1, 0.5), c(0.5, 1, 1), col = "red", border = NA) dev.off() doc <- read_xml(file) fill_color <- xml_find_first(doc, ".//xdr:sp/xdr:spPr/a:solidFill/a:srgbClr", ns = xml_ns( doc ) ) expect_equal(xml_attr(fill_color, "val"), "FF0000") line_color <- xml_find_first(doc, ".//xdr:sp/xdr:spPr/a:ln", ns = xml_ns( doc )) expect_is( line_color, "xml_missing") }) dash_array <- function(...) { file <- tempfile() dml_xlsx( file = file, bg = "transparent" ) plot(1:3, ..., axes = FALSE, xlab = "", ylab = "", type = "l") dev.off() doc <- read_xml(file) dash <- xml_find_first(doc, ".//xdr:sp/xdr:spPr/a:ln/a:prstDash", ns = xml_ns( doc )) dash } custom_dash_array <- function(...) { file <- tempfile() dml_xlsx( file = file, bg = "transparent" ) plot(1:3, ..., axes = FALSE, xlab = "", ylab = "", type = "l") dev.off() doc <- read_xml(file) dash <- xml_find_all(doc, ".//xdr:sp/xdr:spPr/a:ln/a:custDash/a:ds", ns = xml_ns( doc )) as.character( unlist(lapply( dash, xml_attrs)) ) } test_that("lty are ok", { expect_equal(xml_attr(dash_array(lty = 1), "val"), "solid") expect_equal(xml_attr(dash_array(lty = 2), "val"), "dash") expect_equal(xml_attr(dash_array(lty = 3), "val"), "dot") expect_equal(custom_dash_array(lty = 4), c("100000", "300000", "400000", "300000")) expect_equal(xml_attr(dash_array(lty = 5), "val"), "lgDash") expect_equal(custom_dash_array(lty = 6), c("200000", "200000", "600000", "200000")) expect_equal(custom_dash_array(lty = "1F"), c("100000", "1500000")) expect_equal(custom_dash_array(lty = "1234"), c("100000", "200000", "300000", "400000")) }) test_that("lty scales with lwd", { expect_equal(custom_dash_array(lty = 4), c("100000", "300000", "400000", "300000")) expect_equal(custom_dash_array(lty = 4, lwd = 2), c("200000", "600000", "800000", "600000")) }) test_that("line join shapes", { file <- tempfile() dml_xlsx( file = file, bg = "transparent" ) plot.new() lines(c(0.3, 0.5, 0.7), c(0.1, 0.9, 0.1), lwd = 15, ljoin = "round") dev.off() doc <- read_xml(file) join_shape <- xml_find_first(doc, ".//xdr:sp/xdr:spPr/a:ln/a:round", ns = xml_ns( doc ) ) expect_is(join_shape, "xml_node") file <- tempfile() dml_xlsx( file = file, bg = "transparent" ) plot.new() lines(c(0.3, 0.5, 0.7), c(0.1, 0.9, 0.1), lwd = 15, ljoin = "mitre") dev.off() doc <- read_xml(file) join_shape <- xml_find_first(doc, ".//xdr:sp/xdr:spPr/a:ln/a:miter", ns = xml_ns( doc ) ) expect_is(join_shape, "xml_node") file <- tempfile() dml_xlsx( file = file, bg = "transparent" ) plot.new() lines(c(0.3, 0.5, 0.7), c(0.1, 0.9, 0.1), lwd = 15, ljoin = "bevel") dev.off() doc <- read_xml(file) join_shape <- xml_find_first(doc, ".//xdr:sp/xdr:spPr/a:ln/a:bevel", ns = xml_ns( doc ) ) expect_is(join_shape, "xml_node") })
.dccspec = function(uspec, VAR = FALSE, robust = FALSE, lag = 1, lag.max = NULL, lag.criterion = c("AIC", "HQ", "SC", "FPE"), external.regressors = NULL, robust.control = list("gamma" = 0.25, "delta" = 0.01, "nc" = 10, "ns" = 500), dccOrder = c(1,1), asymmetric = FALSE, distribution = c("mvnorm", "mvt", "mvlaplace"), start.pars = list(), fixed.pars = list()) { VAR.opt = list() if(is.null(VAR)) VAR.opt$VAR = FALSE else VAR.opt$VAR = as.logical(VAR) if(is.null(robust)) VAR.opt$robust = FALSE else VAR.opt$robust = as.logical(robust) if(is.null(lag)) VAR.opt$lag = 1 else VAR.opt$lag = as.integer(lag) if(is.null(lag.max)) VAR.opt$lag.max = NULL else VAR.opt$lag.max = as.integer(max(1, lag.max)) if(is.null(lag.criterion)) VAR.opt$lag.criterion = "AIC" else VAR.opt$lag.criterion = lag.criterion[1] if(is.null(external.regressors)) VAR.opt$external.regressors = NULL else VAR.opt$external.regressors = external.regressors rc = list("gamma" = 0.25, "delta" = 0.01, "nc" = 10, "ns" = 500) rcmatch = match(names(robust.control), c("gamma", "delta", "nc", "ns")) if(length(rcmatch[!is.na(rcmatch)]) > 0){ rx = which(!is.na(rcmatch)) rc[rcmatch[!is.na(rcmatch)]] = robust.control[rx] } VAR.opt$robust.control = rc .eps = .Machine$double.eps modeldata = list() modeldesc = list() m = length(uspec@spec) if(is.null(distribution)) distribution = "mvnorm" distribution = distribution[1] valid.distributions = c("mvnorm", "mvt", "mvlaplace") if(!any(distribution == valid.distributions)) stop("\nInvalid Distribution Choice\n", call. = FALSE) modelinc = rep(0, 10) names(modelinc) = c("var", "mvmxreg", "dcca", "dccb", "dccg", "mshape", "mskew", "aux", "aux", "aux") if(distribution == "mvt") modelinc[6] = 1 if(is.null(dccOrder)){ modelinc[3] = 1 modelinc[4] = 1 } else{ modelinc[3] = as.integer( dccOrder[1] ) modelinc[4] = as.integer( dccOrder[2] ) } if( asymmetric ) modelinc[5] = modelinc[3] if( VAR ){ if(is.null(VAR.opt$lag)) modelinc[1] = 1 else modelinc[1] = as.integer( VAR.opt$lag ) if(!is.null(VAR.opt$external.regressors)){ if(!is.matrix(VAR.opt$external.regressors)) stop("\nexternal.regressors must be a matrix.") modelinc[2] = dim(VAR.opt$external.regressors)[2] modeldata$mexdata = VAR.opt$external.regressors } else{ modeldata$mexdata = NULL } } modelinc[10] = which(c("mvnorm", "mvt", "mvlaplace") == distribution) maxdccOrder = max(dccOrder) modeldesc$distribution = distribution modeldesc$dccmodel = ifelse(asymmetric, "ADCC", "DCC") if( !is(uspec, "uGARCHmultispec") ) stop("\ndccspec-->error: uspec must be a uGARCHmultispec object") varmodel = list() umodel = vector(mode ="list") if( modelinc[1]>0 ){ varmodel$robust = VAR.opt$robust varmodel$lag.max = VAR.opt$lag.max varmodel$lag.criterion = VAR.opt$lag.criterion varmodel$robust.control = VAR.opt$robust.control umodel$modelinc = matrix(0, ncol = m, nrow = 21) rownames(umodel$modelinc) = names(uspec@spec[[1]]@model$modelinc[1:21]) umodel$modeldesc = list() umodel$vt = sapply(uspec@spec, FUN = function(x) x@model$modelinc[22]) umodel$modeldesc$vmodel = vector(mode = "character", length = m) umodel$modeldesc$vsubmodel = vector(mode = "character", length = m) umodel$start.pars = umodel$fixed.pars = vector(mode = "list", length = m) umodel$modeldesc$distribution = vector(mode = "character", length = m) umodel$modeldata = list() umodel$modeldata$vexdata = vector(mode = "list", length = m) for(i in 1:m){ umodel$modeldesc$vmodel[i] = uspec@spec[[i]]@model$modeldesc$vmodel umodel$modeldesc$vsubmodel[i] = ifelse(is.null(uspec@spec[[i]]@model$modeldesc$vsubmodel),"GARCH",uspec@spec[[i]]@model$modeldesc$vsubmodel) umodel$modeldesc$distribution[i] = uspec@spec[[i]]@model$modeldesc$distribution umodel$modelinc[,i] = uspec@spec[[i]]@model$modelinc[1:21] umodel$modelinc[1:6,i] = 0 umodel$modeldata$vexdata[[i]] = if(is.null(uspec@spec[[i]]@model$modeldata$vexdata)) NA else uspec@spec[[i]]@model$modeldata$vexdata umodel$start.pars[[i]] = if(is.null(uspec@spec[[i]]@model$start.pars)) NA else uspec@spec[[i]]@model$start.pars umodel$fixed.pars[[i]] = if(is.null(uspec@spec[[i]]@model$fixed.pars)) NA else uspec@spec[[i]]@model$fixed.pars umodel$modeldata$mexdata[[i]] = NA } } else{ varmodel$lag.max = 1 varmodel$lag.criterion = "HQ" umodel$modelinc = matrix(0, ncol = m, nrow = 21) rownames(umodel$modelinc) = names(uspec@spec[[1]]@model$modelinc[1:21]) umodel$modeldesc = list() umodel$vt = sapply(uspec@spec, FUN = function(x) x@model$modelinc[22]) umodel$modeldesc$vmodel = vector(mode = "character", length = m) umodel$modeldesc$vsubmodel = vector(mode = "character", length = m) umodel$start.pars = umodel$fixed.pars = vector(mode = "list", length = m) umodel$modeldesc$distribution = vector(mode = "character", length = m) umodel$modeldata = list() umodel$modeldata$mexdata = vector(mode = "list", length = m) umodel$modeldata$vexdata = vector(mode = "list", length = m) for(i in 1:m){ umodel$modeldesc$vmodel[i] = uspec@spec[[i]]@model$modeldesc$vmodel umodel$modeldesc$vsubmodel[i] = ifelse(is.null(uspec@spec[[i]]@model$modeldesc$vsubmodel),"GARCH",uspec@spec[[i]]@model$modeldesc$vsubmodel) umodel$modeldesc$distribution[i] = uspec@spec[[i]]@model$modeldesc$distribution umodel$modelinc[,i] = uspec@spec[[i]]@model$modelinc[1:21] umodel$modeldata$mexdata[[i]] = if(is.null(uspec@spec[[i]]@model$modeldata$mexdata)) NA else uspec@spec[[i]]@model$modeldata$mexdata umodel$modeldata$vexdata[[i]] = if(is.null(uspec@spec[[i]]@model$modeldata$vexdata)) NA else uspec@spec[[i]]@model$modeldata$vexdata umodel$start.pars[[i]] = if(is.null(uspec@spec[[i]]@model$start.pars)) NA else uspec@spec[[i]]@model$start.pars umodel$fixed.pars[[i]] = if(is.null(uspec@spec[[i]]@model$fixed.pars)) NA else uspec@spec[[i]]@model$fixed.pars } } maxgarchOrder = max( sapply(uspec@spec, FUN = function(x) x@model$maxOrder) ) if(modelinc[1]>0){ maxgarchOrder = max(c(maxgarchOrder, modelinc[1])) } pars = matrix(0, ncol = 6, nrow = 5) colnames(pars) = c("Level", "Fixed", "Include", "Estimate", "LB", "UB") pidx = matrix(NA, nrow = 5, ncol = 2) colnames(pidx) = c("begin", "end") rownames(pidx) = c("dcca", "dccb", "dccg", "mshape", "mskew") pos = 1 pos.matrix = matrix(0, ncol = 3, nrow = 5) colnames(pos.matrix) = c("start", "stop", "include") rownames(pos.matrix) = c("dcca", "dccb", "dccg", "mshape", "mskew") for(i in 1:5){ if( modelinc[2+i] > 0 ){ pos.matrix[i,1:3] = c(pos, pos+modelinc[2+i]-1, 1) pos = max(pos.matrix[1:i,2]+1) } } mm = sum(modelinc[3:7]) mm = mm - length( which(modelinc[c(3:7)]>0) ) pars = matrix(0, ncol = 6, nrow = 5 + mm) colnames(pars) = c("Level", "Fixed", "Include", "Estimate", "LB", "UB") pidx = matrix(NA, nrow = 5, ncol = 2) colnames(pidx) = c("begin", "end") rownames(pidx) = c("dcca", "dccb", "dccg", "mshape", "mskew") fixed.names = names(fixed.pars) start.names = names(start.pars) fixed.pars = unlist(fixed.pars) start.pars = unlist(start.pars) pn = 1 pnames = NULL nx = 0 if(pos.matrix[1,3] == 1){ pn = length( seq(pos.matrix[1,1], pos.matrix[1,2], by = 1) ) for(i in 1:pn){ nnx = paste("dcca", i, sep="") pars[(nx+i), 1] = 0.05/pn if(any(substr(start.names, 1, nchar(nnx))==nnx)){ nix = which(start.names == nnx) pars[(nx+i), 1] = start.pars[nix] } pars[(nx+i), 3] = 1 pars[(nx+i), 5] = .eps pars[(nx+i), 6] = 1 if(any(substr(fixed.names, 1, nchar(nnx))==nnx)){ nix = which(fixed.names == nnx) pars[(nx+i), 1] = fixed.pars[nix] pars[(nx+i), 2] = 1 } else{ pars[(nx+i), 4] = 1 } pnames = c(pnames, nnx) } } else{ pnames = c(pnames, "dcca") } pidx[1,1] = 1 pidx[1,2] = pn nx = pn pn = 1 pidx[2,1] = nx+1 if(pos.matrix[2,3] == 1){ pn = length( seq(pos.matrix[2,1], pos.matrix[2,2], by = 1) ) for(i in 1:pn){ nnx = paste("dccb", i, sep="") pars[(nx+i), 1] = 0.9/pn if(any(substr(start.names, 1, nchar(nnx))==nnx)){ nix = which(start.names == nnx) pars[(nx+i), 1] = start.pars[nix] } pars[(nx+i), 3] = 1 pars[(nx+i), 5] = .eps pars[(nx+i), 6] = 1 if(any(substr(fixed.names, 1, nchar(nnx))==nnx)){ nix = which(fixed.names == nnx) pars[(nx+i), 1] = fixed.pars[nix] pars[(nx+i), 2] = 1 } else{ pars[(nx+i), 4] = 1 } pnames = c(pnames, nnx) } } else{ pnames = c(pnames, "dccb") } pidx[2,2] = nx+pn nx = nx + pn pn = 1 pidx[3,1] = nx+1 if(pos.matrix[3,3] == 1){ pn = length( seq(pos.matrix[3,1], pos.matrix[3,2], by = 1) ) for(i in 1:pn){ nnx = paste("dccg", i, sep="") pars[(nx+i), 1] = 0.05/pn if(any(substr(start.names, 1, nchar(nnx))==nnx)){ nix = which(start.names == nnx) pars[(nx+i), 1] = start.pars[nix] } pars[(nx+i), 3] = 1 pars[(nx+i), 5] = .eps pars[(nx+i), 6] = 1 if(any(substr(fixed.names, 1, nchar(nnx))==nnx)){ nix = which(fixed.names == nnx) pars[(nx+i), 1] = fixed.pars[nix] pars[(nx+i), 2] = 1 } else{ pars[(nx+i), 4] = 1 } pnames = c(pnames, nnx) } } else{ pnames = c(pnames, "dccg") } pidx[3,2] = nx+pn nx = nx + pn pn = 1 pidx[4,1] = nx+1 if(modelinc[6]<=1){ if(pos.matrix[4,3]==1){ pars[nx+pn, 3] = 1 pars[nx+pn, 1] = 5 pars[(nx+pn), 5] = 4 pars[(nx+pn), 6] = 50 if(any(substr(start.names, 1, 6) == "mshape")) pars[nx+pn, 1] = start.pars["mshape"] if(any(substr(fixed.names, 1, 6) == "mshape")){ pars[nx+pn,2] = 1 pars[nx+pn, 1] = fixed.pars["mshape"] } else{ pars[nx+pn,4] = 1 } } pnames = c(pnames, "mshape") } else{ if(pos.matrix[4,3] == 1){ pn = length( seq(pos.matrix[4,1], pos.matrix[4,2], by = 1) ) for(i in 1:pn){ nnx = paste("mshape", i, sep="") pars[(nx+i), 1] = 5 if(any(substr(start.names, 1, nchar(nnx))==nnx)){ nix = which(start.names == nnx) pars[(nx+i), 1] = start.pars[nix] } pars[(nx+i), 3] = 1 pars[(nx+i), 5] = 4 pars[(nx+i), 6] = 50 if(any(substr(fixed.names, 1, nchar(nnx))==nnx)){ nix = which(fixed.names == nnx) pars[(nx+i), 1] = fixed.pars[nix] pars[(nx+i), 2] = 1 } else{ pars[(nx+i), 4] = 1 } pnames = c(pnames, nnx) } } else{ pnames = c(pnames, "mshape") } } pidx[4,2] = nx+pn nx = nx + pn pn = 1 pidx[5,1] = nx+1 if(modelinc[7]<=1){ if(pos.matrix[5,3]==1){ pars[nx+pn, 3] = 1 pars[nx+pn, 1] = 0.5 pars[(nx+pn), 5] = -1 pars[(nx+pn), 6] = 1 if(any(substr(start.names, 1, 5) == "mskew")) pars[nx+pn, 1] = start.pars["mskew"] if(any(substr(fixed.names, 1, 5) == "mskew")){ pars[nx+pn,2] = 1 pars[nx+pn, 1] = fixed.pars["mskew"] } else{ pars[nx+pn,4] = 1 } } pnames = c(pnames, "mskew") } else{ if(pos.matrix[5,3] == 1){ pn = length( seq(pos.matrix[5,1], pos.matrix[5,2], by = 1) ) for(i in 1:pn){ nnx = paste("mskew", i, sep="") pars[(nx+i), 1] = 3 pars[(nx+i), 5] = -1 pars[(nx+i), 6] = 1 if(any(substr(start.names, 1, nchar(nnx))==nnx)){ nix = which(start.names == nnx) pars[(nx+i), 1] = start.pars[nix] } if(any(substr(fixed.names, 1, nchar(nnx))==nnx)){ nix = which(fixed.names == nnx) pars[(nx+i), 1] = fixed.pars[nix] pars[(nx+i), 2] = 1 } else{ pars[(nx+i), 4] = 1 } pnames = c(pnames, nnx) } } else{ pnames = c(pnames, "mskew") } } pidx[5,2] = nx+pn rownames(pars) = pnames modeldesc$type = "2-step" model = list(modelinc = modelinc, modeldesc = modeldesc, modeldata = modeldata, varmodel = varmodel, pars = pars, start.pars = start.pars, fixed.pars = fixed.pars, maxgarchOrder = maxgarchOrder, maxdccOrder = maxdccOrder, pos.matrix = pos.matrix, pidx = pidx) model$DCC = ifelse(asymmetric, "aDCC", "DCC") ans = new("DCCspec", model = model, umodel = umodel) return(ans) } .dccfit = function(spec, data, out.sample = 0, solver = "solnp", solver.control = list(), fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE), cluster = NULL, fit = NULL, VAR.fit = NULL, verbose = FALSE, realizedVol = NULL, ...) { tic = Sys.time() .eps = .Machine$double.eps model = spec@model umodel = spec@umodel ufit.control = list() if(is.null(fit.control$stationarity)){ ufit.control$stationarity = TRUE } else { ufit.control$stationarity = fit.control$stationarity fit.control$stationarity = NULL } if(is.null(fit.control$scale)){ ufit.control$scale = TRUE } else{ ufit.control$scale = fit.control$scale fit.control$scale = NULL } if(is.null(fit.control$eval.se)) fit.control$eval.se = TRUE if(length(solver)==2){ garch.solver = solver[1] solver = solver[2] } else{ garch.solver = solver[1] } solver = match.arg(tolower(solver)[1], c("solnp", "nlminb", "lbfgs","gosolnp")) m = dim(data)[2] if( is.null( colnames(data) ) ) cnames = paste("Asset_", 1:m, sep = "") else cnames = colnames(data) colnames(umodel$modelinc) = cnames xdata = .extractmdata(data) if(!is.numeric(out.sample)) stop("\ndccfit-->error: out.sample must be numeric\n") if(as.numeric(out.sample) < 0) stop("\ndccfit-->error: out.sample must be positive\n") n.start = round(out.sample, 0) n = dim(xdata$data)[1] if( (n-n.start) < 100) stop("\ndccfit-->error: function requires at least 100 data\n points to run\n") data = xdata$data index = xdata$index period = xdata$period model$modeldata$data = data model$modeldata$index = index model$modeldata$period = period T = model$modeldata$T = n - n.start model$modeldata$n.start = n.start model$modeldata$asset.names = cnames if( model$modelinc[1]>0 ){ tmp = mvmean.varfit(model = model, data = data, VAR.fit = VAR.fit, T = T, out.sample = out.sample, cluster = cluster) model = tmp$model zdata = tmp$zdata mu = tmp$mu varcoef = tmp$varcoef p = tmp$p N = tmp$N } else{ zdata = data ex = NULL } T = dim(zdata)[1] - out.sample mspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, umodel$modeldesc$vsubmodel, umodel$modeldata$mexdata, umodel$modeldata$vexdata, umodel$start.pars, umodel$fixed.pars, umodel$vt) if( !is.null(fit) && is(fit, "uGARCHmultifit") ){ if(model$modelinc[1]>0){ for(i in 1:m){ if(sum(fit@fit[[i]]@model$modelinc[1:6])>0) stop("\nThe user supplied fit object has a non-null mean specification but VAR already chosen for mean filtration!!!") } } fitlist = fit if(spec@model$modelinc[1]>0) model$mu = mu else model$mu = fitted(fitlist) model$residuals = res = residuals(fitlist) model$sigma = sig = sigma(fitlist) if(umodel$modeldesc$vmodel[1]=="realGARCH") plik = sapply(fitlist@fit, function(x) sum(-x@fit$partial.log.likelihoods)) else plik = sapply(fitlist@fit, function(x) sum(-x@fit$log.likelihoods)) } else{ fitlist = multifit(multispec = mspec, data = xts(zdata, index), out.sample = n.start, solver = garch.solver, solver.control = solver.control, fit.control = ufit.control, cluster = cluster, realizedVol = realizedVol) converge = sapply(fitlist@fit, FUN = function(x) x@fit$convergence) if( any( converge == 1 ) ){ pr = which(converge != 1) cat("\nNon-Converged:\n") print(pr) cat("\ndccfit-->error: convergence problem in univariate fit...") cat("\n...returning uGARCHmultifit object instead...check and resubmit...") return( fitlist ) } if(umodel$modeldesc$vmodel[1]=="realGARCH") plik = sapply(fitlist@fit, function(x) sum(-x@fit$partial.log.likelihoods)) else plik = sapply(fitlist@fit, function(x) sum(-x@fit$log.likelihoods)) if(spec@model$modelinc[1]>0) model$mu = mu else model$mu = fitted(fitlist) model$residuals = res = residuals(fitlist) model$sigma = sig = sigma(fitlist) } stdresid = res/sig modelinc = model$modelinc midx = .fullinc(modelinc, umodel) midx["omega",1:m]=1 mpars = midx*0 eidx = .estindfn(midx, mspec, model$pars) unipars = lapply(fitlist@fit, FUN = function(x) x@fit$ipars[x@fit$ipars[,3]==1,1]) if(is.list(unipars)){ for(i in 1:length(unipars)){ uninames = names(unipars[[i]]) mpars[uninames, i] = unipars[[i]] } } else{ uninames = rownames(unipars) mpars[uninames, 1:NCOL(unipars)] = unipars } mpars[which(midx[,m+1]==1), m+1] = as.numeric( model$pars[model$pars[,3]==1,1] ) ipars = model$pars LB = ipars[,5] UB = ipars[,6] estidx = as.logical( ipars[,4] ) npars = sum(estidx) Qbar = cov(stdresid) if(modelinc[5]>0){ Ibar = .asymI(stdresid) astdresid = Ibar*stdresid Nbar = cov(astdresid) } else{ Ibar = .asymI(stdresid) astdresid = Ibar*stdresid*0 Nbar = matrix(0, m, m) } H = sig^2 mgarchenv = new.env(hash = TRUE) arglist = list() arglist$mgarchenv = mgarchenv arglist$verbose = verbose arglist$cluster = cluster arglist$eval.se = fit.control$eval.se arglist$solver = solver arglist$fit.control = fit.control arglist$cnames = cnames arglist$m = m arglist$T = T arglist$data = zdata arglist$index = index arglist$realizedVol = realizedVol arglist$model = model arglist$fitlist = fitlist arglist$umodel = umodel arglist$midx = midx arglist$eidx = eidx arglist$mpars = mpars arglist$ipars = ipars arglist$estidx = estidx arglist$dccN = npars arglist$stdresid = stdresid arglist$astdresid = astdresid arglist$Ibar = Ibar arglist$Qbar = Qbar arglist$Nbar = Nbar arglist$H = H if(any(ipars[,2]==1)){ if(npars == 0){ if(fit.control$eval.se==0) { warning("\ndccfit-->warning: all parameters fixed...returning dccfilter object instead\n") xspex = spec for(i in 1:m) xspex@umodel$fixed.pars[[i]] = as.list(fitlist@fit[[i]]@model$pars[fitlist@fit[[i]]@model$pars[,3]==1,1]) return(dccfilter(spec = xspex, data = xts(data, index), out.sample = out.sample, cluster = cluster, VAR.fit = VAR.fit, , realizedVol = realizedVol, ...)) } else{ use.solver = 0 ipars[ipars[,2]==1, 4] = 1 ipars[ipars[,2]==1, 2] = 0 arglist$pars = ipars estidx = as.logical( ipars[,4] ) arglist$estidx = estidx } } else{ use.solver = 1 } } else{ use.solver = 1 } assign("rmgarch_llh", 1, envir = mgarchenv) ILB = 0 IUB = 1 if(model$modelinc[5]> 0) Ifn = .adcccon else Ifn = .dcccon if( solver == "solnp" | solver == "gosolnp") fit.control$stationarity = FALSE else fit.control$stationarity = TRUE arglist$fit.control = fit.control if( use.solver ) { arglist$returnType = "llh" solution = switch(model$modeldesc$distribution, mvnorm = .dccsolver(solver, pars = ipars[estidx, 1], fun = normal.dccLLH1, Ifn, ILB, IUB, gr = NULL, hessian = NULL, control = solver.control, LB = ipars[estidx, 5], UB = ipars[estidx, 6], arglist = arglist), mvlaplace = .dccsolver(solver, pars = ipars[estidx, 1], fun = laplace.dccLLH1, Ifn, ILB, IUB, gr = NULL, hessian = NULL, control = solver.control, LB = ipars[estidx, 5], UB = ipars[estidx, 6], arglist = arglist), mvt = .dccsolver(solver, pars = ipars[estidx, 1], fun = student.dccLLH1, Ifn, ILB, IUB, gr = NULL, hessian = NULL, control = solver.control, LB = ipars[estidx, 5], UB = ipars[estidx, 6], arglist = arglist)) sol = solution$sol hess = solution$hess timer = Sys.time()-tic convergence = sol$convergence mpars[which(eidx[,(m+1)]==1, arr.ind = TRUE),m+1] = sol$pars ipars[estidx, 1] = sol$pars arglist$mpars = mpars arglist$ipars = ipars } else{ hess = NULL timer = Sys.time()-tic convergence = 0 sol = list() sol$message = "all parameters fixed" } fit = list() if( convergence == 0 ){ fit = switch(model$modeldesc$distribution, mvnorm = .dccmakefitmodel(garchmodel = "dccnorm", f = normal.dccLLH2, arglist = arglist, timer = 0, message = sol$message, fname = "normal.dccLLH2"), mvlaplace = .dccmakefitmodel(garchmodel = "dcclaplace", f = laplace.dccLLH2, arglist = arglist, timer = 0, message = sol$message, fname = "laplace.dccLLH2"), mvt =.dccmakefitmodel(garchmodel = "dccstudent", f = student.dccLLH2, arglist = arglist, timer = 0, message = sol$message, fname = "student.dccLLH2")) fit$timer = Sys.time() - tic } else{ fit$message = sol$message fit$convergence = 1 } fit$Nbar = Nbar fit$Qbar = Qbar fit$realizedVol = realizedVol fit$plik = plik model$mpars = mpars model$ipars = ipars model$pars[,1] = ipars[,1] model$midx = midx model$eidx = eidx model$umodel = umodel ans = new("DCCfit", mfit = fit, model = model) return(ans) } .dccfilter = function(spec, data, out.sample = 0, filter.control = list(n.old = NULL), cluster = NULL, varcoef = NULL, realizedVol = NULL, ...) { tic = Sys.time() model = spec@model umodel = spec@umodel n.old = filter.control$n.old m = dim(data)[2] if( is.null( colnames(data) ) ) cnames = paste("Asset_", 1:m, sep = "") else cnames = colnames(data) colnames(umodel$modelinc) = cnames xdata = .extractmdata(data) if(!is.numeric(out.sample)) stop("\ndccfilter-->error: out.sample must be numeric\n") if(as.numeric(out.sample) < 0) stop("\ndccfilter-->error: out.sample must be positive\n") n.start = round(out.sample, 0) n = dim(xdata$data)[1] if( (n-n.start) < 100) stop("\ndccfilter-->error: function requires at least 100 data\n points to run\n") data = xdata$data index = xdata$index period = xdata$period model$modeldata$data = data model$modeldata$index = index model$modeldata$period = period T = model$modeldata$T = n - n.start model$modeldata$n.start = n.start model$modeldata$asset.names = cnames if( spec@model$modelinc[1]>0 ){ tmp = mvmean.varfilter(model = model, data = data, varcoef = varcoef, T = T, out.sample = out.sample) model = tmp$model zdata = tmp$zdata mu = tmp$mu p = tmp$p N = tmp$N } else{ zdata = data ex = NULL } T = dim(zdata)[1] - out.sample if(is.null(filter.control$n.old)) n.old = T if(model$modelinc[1]>0){ for(i in 1:m){ if(sum(umodel$modelinc[1:6,i])>0) stop("\nThe user supplied univariate spec object has a non-null mean specification but VAR already chosen for mean filtration!!!") } } mspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, umodel$modeldesc$vsubmodel, umodel$modeldata$mexdata, umodel$modeldata$vexdata, umodel$start.pars, umodel$fixed.pars, NULL) filterlist = multifilter(multifitORspec = mspec, data = xts(zdata, index[1:nrow(zdata)]), out.sample = out.sample, cluster = cluster, n.old = n.old, , realizedVol = realizedVol, ...) if(spec@model$modelinc[1]>0) model$mu = mu else model$mu = fitted(filterlist) model$residuals = res = residuals(filterlist) model$sigma = sig = sigma(filterlist) stdresid = res/sig if(is.null(filter.control$n.old)) dcc.old = dim(stdresid)[1] else dcc.old = n.old modelinc = model$modelinc midx = .fullinc(modelinc, umodel) mpars = midx*0 eidx = midx unipars = sapply(filterlist@filter, FUN = function(x) x@filter$ipars[x@filter$ipars[,3]==1,1]) if(is.list(unipars)){ for(i in 1:length(unipars)){ uninames = names(unipars[[i]]) mpars[uninames, i] = unipars[[i]] } } else{ uninames = rownames(unipars) mpars[uninames, 1:NCOL(unipars)] = unipars } mpars[which(midx[,m+1]==1, arr.ind = TRUE), m+1] = as.numeric( model$pars[model$pars[,3]==1,1] ) ipars = model$pars estidx = as.logical( ipars[,3] ) npars = sum(estidx) Qbar = cov(stdresid[1:dcc.old, ]) if(modelinc[5]>0){ Ibar = .asymI(stdresid) astdresid = Ibar*stdresid Nbar = cov(astdresid[1:dcc.old, ]) } else{ Ibar = .asymI(stdresid) astdresid = Ibar*stdresid*0 Nbar = matrix(0, m, m) } H = sig^2 mgarchenv = new.env(hash = TRUE) arglist = list() arglist$mgarchenv = mgarchenv arglist$verbose = FALSE arglist$cluster = cluster arglist$filter.control = filter.control arglist$cnames = cnames arglist$m = m arglist$T = T arglist$n.old = n.old arglist$dcc.old = dcc.old arglist$data = zdata arglist$index = index arglist$model = model arglist$filterlist = filterlist arglist$realizedVol = realizedVol arglist$umodel = umodel arglist$midx = midx arglist$eidx = eidx arglist$mpars = mpars arglist$ipars = ipars arglist$estidx = estidx arglist$dccN = npars arglist$stdresid = stdresid arglist$astdresid = astdresid arglist$Ibar = Ibar arglist$Qbar = Qbar arglist$Nbar = Nbar arglist$H = H assign("rmgarch_llh", 1, envir = mgarchenv) filt = switch(model$modeldesc$distribution, mvnorm = .dccmakefiltermodel(garchmodel = "dccnorm", f = normalfilter.dccLLH2, arglist = arglist, timer = 0, message = 0, fname = "normalfilter.dccLLH2"), mvlaplace = .dccmakefiltermodel(garchmodel = "dcclaplace", f = laplacefilter.dccLLH2, arglist = arglist, timer = 0, message = 0, fname = "laplacefilter.dccLLH2"), mvt = .dccmakefiltermodel(garchmodel = "dccstudent", f = studentfilter.dccLLH2, arglist = arglist, timer = 0, message = 0, fname = "studentfilter.dccLLH2")) model$mpars = mpars model$ipars = ipars model$pars[,1] = ipars[,1] model$midx = midx model$eidx = eidx model$umodel = umodel filt$Nbar = Nbar filt$Qbar = Qbar filt$realizedVol = realizedVol ans = new("DCCfilter", mfilter = filt, model = model) return(ans) } .dccforecast = function(fit, n.ahead = 1, n.roll = 0, external.forecasts = list(mregfor = NULL, vregfor = NULL), cluster = NULL, ...) { model = fit@model modelinc = model$modelinc ns = model$modeldata$n.start if( n.roll > ns ) stop("n.roll must not be greater than out.sample!") if(n.roll>1 && n.ahead>1) stop("\ngogarchforecast-->error: n.ahead must be equal to 1 when using n.roll\n") if( fit@model$modelinc[5] > 0 && n.ahead > 1) stop("\ngogarchforecast-->error: asymmetric DCC specification only support n.ahead = 1 currently.\n") tf = n.ahead + n.roll if( !is.null( external.forecasts$mregfor ) ){ mregfor = external.forecasts$mregfor if( !is.matrix(mregfor) ) stop("\nmregfor must be a matrix.") if( dim(mregfor)[1] < tf ) stop("\nmregfor must have at least n.ahead + n.roll observations to be used") mregfor = mregfor[1:tf, , drop = FALSE] } else{ mregfor = NULL } if( !is.null( external.forecasts$vregfor ) ){ if( !is.matrix(vregfor) ) stop("\nvregfor must be a matrix.") if( dim(vregfor)[1] < tf ) stop("\nvregfor must have at least n.ahead + n.roll observations to be used") vregfor = vregfor[1:tf, , drop = FALSE] } if( modelinc[1]>0 ){ if( modelinc[2] > 0 ){ if( is.null(external.forecasts$mregfor ) ){ warning("\nExternal Regressor Forecasts Matrix NULL...setting to zero...\n") mregfor = matrix(0, ncol = modelinc[2], nrow = (n.roll + n.ahead) ) } else{ if( dim(mregfor)[2] != modelinc[2] ) stop("\ndccforecast-->error: wrong number of external regressors!...", call. = FALSE) if( dim(mregfor)[1] < (n.roll + n.ahead) ) stop("\ndccforecast-->error: external regressor matrix has less points than requested forecast length (1+n.roll) x n.ahead!...", call. = FALSE) } } else{ mregfor = NULL } if(n.roll>1 && n.ahead>1) stop("\ndccforecast-->error: n.ahead must be equal to 1 when using n.roll\n") if( n.ahead == 1 && (n.roll > ns) ) stop("\ndccforecast-->error: n.roll greater than out.sample!", call. = FALSE) mu = varxforecast(X = fit@model$modeldata$data, Bcoef = model$varcoef, p = modelinc[1], out.sample = ns, n.ahead = n.ahead, n.roll = n.roll, mregfor = mregfor) } else{ mu = NULL } exf = external.forecasts if( modelinc[1] > 0 ){ exf$mregfor = NULL } ans = .dccforecastm(fit, n.ahead = n.ahead, n.roll = n.roll, external.forecasts = exf, cluster = cluster, realizedVol = fit@mfit$realizedVol, ...) if(modelinc[1]==0) mu = ans$mu model$n.roll = n.roll model$n.ahead = n.ahead model$H = rcov(fit) mforecast = list( H = ans$H, R = ans$R, Q = ans$Q, Rbar = ans$Rbar, mu = mu ) ans = new("DCCforecast", mforecast = mforecast, model = model) return( ans ) } .dccforecastm = function(fit, n.ahead = 1, n.roll = 10, external.forecasts = list(mregfor = NULL, vregfor = NULL), cluster = NULL, realizedVol = NULL, ...) { model = fit@model modelinc = model$modelinc umodel = model$umodel m = dim(umodel$modelinc)[2] ns = fit@model$modeldata$n.start Data = fit@model$modeldata$data if(modelinc[1]>0){ zdata = varxfilter(Data, p = model$modelinc[1], Bcoef = model$varcoef, exogen = fit@model$modeldata$mexdata, postpad = c("constant"))$xresiduals } else{ zdata = Data } fpars = lapply(1:m, FUN = function(i) fit@model$mpars[fit@model$midx[,i]==1,i]) mspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, umodel$modeldesc$vsubmodel, umodel$modeldata$mexdata, umodel$modeldata$vexdata, umodel$start.pars, fpars, NULL) filterlist = multifilter(multifitORspec = mspec, data = xts(zdata, fit@model$modeldata$index[1:nrow(zdata)]), out.sample = 0, n.old = fit@model$modeldata$T, cluster = cluster, realizedVol = realizedVol) n.roll = n.roll + 1 m = length(mspec@spec) out.sample = fit@model$modeldata$n.start mo = max(fit@model$maxdccOrder) forclist = multiforecast(multifitORspec = mspec, data = xts(zdata, fit@model$modeldata$index[1:nrow(zdata)]), n.ahead = n.ahead, out.sample = ns, n.roll = n.roll - 1, external.forecasts = external.forecasts, cluster = cluster, realizedVol = realizedVol, ...) if(modelinc[1] == 0){ mu = array(NA, dim=c(n.ahead, m, n.roll)) f = lapply(forclist@forecast, function(x) fitted(x)) for(i in 1:n.roll) mu[,,i] = matrix( sapply( f, function(x) x[,i] ), ncol = m) } else{ mu = NULL } sig = sigma(filterlist) resid = residuals(filterlist) stdresid = resid/sig if(modelinc[5]>0){ Ibar = .asymI(stdresid) astdresid = Ibar*stdresid } else{ Ibar = .asymI(stdresid) astdresid = Ibar*stdresid*0 } T = dim(fit@mfit$H)[3] Rbar = Rtfor = Htfor = Qtfor = vector(mode = "list", length = n.roll) Qstart = last( rcor(fit, type = "Q"), mo ) Rstart = last( rcor(fit, type = "R"), mo ) Hstart = last( rcov(fit), mo) f = lapply(forclist@forecast, function(x) sigma(x)) for(i in 1:n.roll){ xQbar = cov(stdresid[1:(T + i - 1), ]) if(modelinc[5]>0) xNbar = cov(astdresid[1:(T + i - 1), ]) else xNbar = matrix(0, m, m) xstdresids = stdresid[(T - mo + i ):(T + i - 1), , drop = FALSE] xastdresids = astdresid[(T - mo + i ):(T + i - 1), , drop = FALSE] xfsig = matrix( sapply( f, function(x) x[,i] ), ncol = m) ans = .dccforecastn(model, Qstart, Rstart, Hstart, xQbar, xNbar, xstdresids, xastdresids, xfsig, n.ahead, mo) Rtfor[[i]] = ans$Rtfor Qtfor[[i]] = ans$Qtfor Htfor[[i]] = ans$Htfor Rbar[[i]] = ans$Rbar Qstart = last( rugarch:::.abind(Qstart, ans$Qtfor[, , 1]), mo ) Rstart = last( rugarch:::.abind(Rstart, ans$Rtfor[, , 1]), mo ) Hstart = last( rugarch:::.abind(Hstart, ans$Htfor[, , 1]), mo ) } forc = list( H = Htfor, R = Rtfor, Q = Qtfor, Rbar = Rbar, mu = mu ) return(forc) } .dccforecastn = function(model, Qstart, Rstart, Hstart, Qbar, Nbar, stdresids, astdresids, fsig, n.ahead, mo) { m = dim(Qbar)[1] modelinc = model$modelinc Qtfor = Rtfor = Htfor = array(NA, dim = c(m, m, n.ahead + mo)) Qtfor[ , , 1:mo] = Qstart[, , 1:mo] Rtfor[ , , 1:mo] = Rstart[, , 1:mo] Htfor[ , , 1:mo] = Hstart[, , 1:mo] pars = model$ipars[,1] idx = model$pidx dccsum = sum(pars[idx["dcca",1]:idx["dcca",2]]) + sum(pars[idx["dccb",1]:idx["dccb",2]]) Qt_1 = (1 - dccsum) * Qbar - sum(pars[idx["dccg",1]:idx["dccg",2]])*Nbar for(i in 1:n.ahead){ Qtfor[, , mo + i] = Qt_1 if( i == 1 ){ if(modelinc[3]>0){ for(j in 1:modelinc[3]){ Qtfor[ , , mo + 1] = Qtfor[ , , mo + 1] + pars[idx["dcca",1]+j-1] * (stdresids[(mo + 1 - j), ] %*% t(stdresids[(mo + 1 - j), ])) } } if(modelinc[5]>0){ for(j in 1:modelinc[5]){ Qtfor[ , , mo + 1] = Qtfor[ , , mo + 1] + pars[idx["dccg",1]+j-1] * (astdresids[(mo + 1 - j), ] %*% t(astdresids[(mo + 1 - j), ])) } } if(modelinc[4]>0){ for(j in 1:modelinc[4]){ Qtfor[ , , mo + 1] = Qtfor[ , , mo + 1] + pars[idx["dccb",1]+j-1] * Qtfor[ , , mo + 1 - j] } } Qtmp = diag( 1/sqrt( diag(Qtfor[ , , mo + 1]) ) , m, m) Rtfor[ , , mo + 1] = Qtmp %*% Qtfor[ , , mo + 1] %*% t(Qtmp) Dtmp = diag(fsig[1, ], m, m) Htfor[ , , mo + 1] = Dtmp %*% Rtfor[ , , mo + 1] %*% Dtmp Qt_1star = diag( 1/sqrt( diag(Qtfor[, , mo + 1]) ) , m, m) ER_1 = Qt_1star %*% Qtfor[, , mo + 1] %*% t(Qt_1star) Qbarstar = diag( 1/sqrt( diag(Qbar) ) , m, m) Rbar = Qbarstar %*% Qbar %*% t(Qbarstar) } else{ Rtfor[, , mo + i] = (1 - dccsum^(i - 1) ) * Rbar + dccsum^(i - 1) * ER_1 Dtmp = diag(fsig[i, ], m, m) Htfor[, , mo + i] = Dtmp %*% Rtfor[, , mo + i] %*% Dtmp Qtfor[, , mo + i] = Qtfor[, , mo + 1] } } return( list( Rtfor = Rtfor[, , -(1:mo), drop = FALSE], Htfor = Htfor[, , -(1:mo), drop = FALSE], Qtfor = Qtfor[, , -(1:mo), drop = FALSE], Rbar = Rbar, ER_1 = ER_1) ) } .dccsim.fit = function(fitORspec, n.sim = 1000, n.start = 0, m.sim = 1, startMethod = c("unconditional", "sample"), presigma = NULL, preresiduals = NULL, prereturns = NULL, preQ = NULL, preZ = NULL, Qbar = NULL, Nbar = NULL, rseed = NULL, mexsimdata = NULL, vexsimdata = NULL, cluster = NULL, VAR.fit = NULL, prerealized = NULL, ...) { fit = fitORspec T = fit@model$modeldata$T Data = fit@model$modeldata$data[1:T,] m = dim(Data)[2] mo = fit@model$maxdccOrder mg = fit@model$maxgarchOrder startMethod = startMethod[1] if( is.null(rseed) ){ rseed = as.integer(runif(1, 1, Sys.time())) } else { if(length(rseed) == 1) rseed = as.integer(rseed[1]) else rseed = as.integer( rseed[1:m.sim] ) } model = fit@model umodel = model$umodel modelinc = model$modelinc fpars = lapply(1:m, FUN = function(i) fit@model$mpars[fit@model$midx[,i]==1,i]) mspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, umodel$modeldesc$vsubmodel, umodel$modeldata$mexdata, umodel$modeldata$vexdata, umodel$start.pars, fpars, NULL) if(startMethod == "sample"){ if(is.null(preZ)){ preZ = matrix(tail(residuals(fit)/sigma(fit), mo), ncol = m) } else{ preZ = matrix(tail(preZ, 1), ncol = m, nrow = mo, byrow = TRUE) } if(is.null(preQ)){ preQ = fit@mfit$Q[[length(fit@mfit$Q)]] } else{ dcc.symcheck(preQ, m, d = NULL) } Rbar = preQ/(sqrt(diag(preQ)) %*% t(sqrt(diag(preQ))) ) } else{ if(is.null(preZ)){ preZ = matrix(0, ncol = m, nrow = mo) } else{ preZ = matrix(tail(preZ, 1), ncol = m, nrow = mo, byrow = TRUE) } Rbar = cor(Data) if(is.null(preQ)){ preQ = Rbar } else{ dcc.symcheck(preQ, m, d = NULL) Rbar = preQ/(sqrt(diag(preQ)) %*% t(sqrt(diag(preQ))) ) } } if(is.null(Qbar)){ Qbar = fit@mfit$Qbar } else{ dcc.symcheck(Qbar, m, d = NULL) } if(model$modelinc[5]>0){ if(is.null(Nbar)){ Nbar = fit@mfit$Nbar } else{ dcc.symcheck(Nbar, m, d = NULL) } } else{ Nbar = matrix(0, m, m) } uncv = sapply(mspec@spec, FUN = function(x) uncvariance(x)) if( !is.null(presigma) ){ if( !is.matrix(presigma) ) stop("\ndccsim-->error: presigma must be a matrix.") if( dim(presigma)[2] != m ) stop("\ndccsim-->error: wrong column dimension for presigma.") if( dim(presigma)[1] != mg ) stop(paste("\ndccsim-->error: wrong row dimension for presigma (need ", mg, " rows.", sep = "")) } else{ if(startMethod == "sample"){ mx = max(sapply(mspec@spec, FUN = function(x) x@model$maxOrder)) presigma = matrix(NA, ncol = m, nrow = mx) tmp = last(fit@mfit$H, mx) for(i in 1:mx) presigma[i,] = sqrt(diag(tmp[,,i])) } } if( !is.null(preresiduals) ){ if( !is.matrix(preresiduals) ) stop("\ndccsim-->error: preresiduals must be a matrix.") if( dim(preresiduals)[2] != m ) stop("\ndccsim-->error: wrong column dimension for preresiduals.") if( dim(preresiduals)[1] != mg ) stop(paste("\ndccsim-->error: wrong row dimension for preresiduals (need ", mg, " rows.", sep = "")) } else{ if(startMethod == "sample"){ mx = max(sapply(mspec@spec, FUN = function(x) x@model$maxOrder)) preresiduals = matrix(NA, ncol = m, nrow = mx) tmp = tail(fit@model$residuals, mx) for(i in 1:mx) preresiduals[i,] = tmp[i,] } } if( !is.null(prereturns) ){ if( !is.matrix(prereturns) ) stop("\ndccsim-->error: prereturns must be a matrix.") if( dim(prereturns)[2] != m ) stop("\ndccsim-->error: wrong column dimension for prereturns.") if( dim(prereturns)[1] != mg ) stop(paste("\ndccsim-->error: wrong row dimension for prereturns (need ", mg, " rows.", sep = "")) } else{ if(startMethod == "sample"){ mx = max(sapply(mspec@spec, FUN = function(x) x@model$maxOrder)) prereturns = matrix(NA, ncol = m, nrow = mx) tmp = tail(Data, mx) for(i in 1:mx) prereturns[i,] = tmp[i,] } } if(fit@model$umodel$modeldesc$vmodel[1]=="realGARCH"){ if( !is.null(prerealized) ){ if( !is.matrix(prerealized) ) stop("\ndccsim-->error: prerealized must be a matrix.") if( dim(prerealized)[2] != m ) stop("\ndccsim-->error: wrong column dimension for prerealized.") if( dim(prerealized)[1] != mg ) stop(paste("\ndccsim-->error: wrong row dimension for prerealized (need ", mg, " rows.", sep = "")) } else{ if(startMethod == "sample"){ mx = max(sapply(mspec@spec, FUN = function(x) x@model$maxOrder)) prerealized = matrix(NA, ncol = m, nrow = mx) tmp = tail(fit@mfit$realizedVol[1:T,], mx) for(i in 1:mx) prerealized[i,] = tmp[i,] } } } else{ mx = max(sapply(mspec@spec, FUN = function(x) x@model$maxOrder)) prerealized = matrix(NA, ncol = m, nrow = mx) } if(fit@model$modeldesc$distribution == "mvnorm"){ if(length(rseed) == 1){ set.seed( rseed ) tmp = matrix(rnorm(m * (n.sim + n.start) * m.sim, 0, 1), ncol = m, nrow = n.sim+n.start) z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim) z[,,i] = rbind(preZ, tmp) } else{ z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim){ set.seed( rseed[i] ) z[,,i] = rbind(preZ, matrix(rnorm(m * (n.sim + n.start), 0, 1), nrow = n.sim + n.start, ncol = m)) } } } else if(fit@model$modeldesc$distribution == "mvlaplace"){ if(length(rseed) == 1){ set.seed( rseed ) tmp = matrix(rugarch:::rged(m * (n.sim + n.start) * m.sim, 0, 1, shape = 1), ncol = m, nrow = n.sim+n.start) z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim) z[,,i] = rbind(preZ, tmp) } else{ z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim){ set.seed( rseed[i] ) z[,,i] = rbind(preZ, matrix(rugarch:::rged(m * (n.sim + n.start), 0, 1, shape = 1), nrow = n.sim + n.start, ncol = m)) } } } else{ if(length(rseed) == 1){ set.seed( rseed ) tmp = matrix(rugarch:::rstd(m * (n.sim + n.start) * m.sim, 0, 1, shape = rshape(fit)), ncol = m, nrow = n.sim+n.start) z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim) z[,,i] = rbind(preZ, tmp) } else{ z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim){ set.seed( rseed[i] ) z[,,i] = rbind(preZ, matrix(rugarch:::rstd(m * (n.sim + n.start), 0, 1, shape = rshape(fit)), nrow = n.sim + n.start, ncol = m)) } } } if(length(rseed) == 1){ rseed = c(rseed, (1:m.sim)*(rseed+1)) } simRes = simX = simR = simQ = simH = simSeries = vector(mode = "list", length = m.sim) if( !is.null(cluster) ){ simH = vector(mode = "list", length = m.sim) simX = vector(mode = "list", length = m.sim) clusterEvalQ(cluster, require(rmgarch)) clusterExport(cluster, c("model", "z", "preQ", "Rbar", "Qbar", "Nbar", "mo", "n.sim", "n.start", "m", "rseed",".dccsimf"), envir = environment()) mtmp = parLapply(cluster, as.list(1:m.sim), fun = function(j){ .dccsimf(model, Z = z[,,j], Qbar = Qbar, preQ = preQ, Nbar = Nbar, Rbar = Rbar, mo = mo, n.sim, n.start, m, rseed[j]) }) simR = lapply(mtmp, FUN = function(x) if(is.matrix(x$R)) array(x$R, dim = c(m, m, n.sim)) else last(x$R, n.sim)) simQ = lapply(mtmp, FUN = function(x) if(is.matrix(x$Q)) array(x$Q, dim = c(m, m, n.sim)) else last(x$Q, n.sim)) simZ = vector(mode = "list", length = m) for(i in 1:m) simZ[[i]] = sapply(mtmp, FUN = function(x) x$Z[,i]) clusterExport(cluster, c("fit", "n.sim", "n.start", "m.sim", "startMethod", "simZ", "presigma", "preresiduals", "prereturns", "mexsimdata", "vexsimdata", "prerealized"), envir = environment()) xtmp = parLapply(cluster, as.list(1:m), fun = function(j){ maxx = mspec@spec[[j]]@model$maxOrder; htmp = ugarchpath(mspec@spec[[j]], n.sim = n.sim + n.start, n.start = 0, m.sim = m.sim, custom.dist = list(name = "sample", distfit = matrix(simZ[[j]][-(1:mo), ], ncol = m.sim)), presigma = if( is.null(presigma) ) NA else tail(presigma[,j], maxx), preresiduals = if( is.null(preresiduals) ) NA else tail(preresiduals[,j], maxx), prereturns = if( is.null(prereturns) | model$modelinc[1]>0 ) NA else tail(prereturns[,j], maxx), mexsimdata = if( model$modelinc[1]==0 ) mexsimdata[[j]] else NULL, vexsimdata = vexsimdata[[j]], prerealized = tail(prerealized[,j], maxx)); h = matrix(tail(htmp@path$sigmaSim^2, n.sim), nrow = n.sim); x = matrix(htmp@path$seriesSim, nrow = n.sim + n.start); return(list(h = h, x = x)) }) } else{ simH = vector(mode = "list", length = m.sim) simX = vector(mode = "list", length = m.sim) mtmp = lapply(as.list(1:m.sim), FUN = function(j){ .dccsimf(model, Z = z[,,j], Qbar = Qbar, preQ = preQ, Nbar = Nbar, Rbar = Rbar, mo = mo, n.sim, n.start, m, rseed[j]) }) simR = lapply(mtmp, FUN = function(x) if(is.matrix(x$R)) array(x$R, dim = c(m, m, n.sim)) else last(x$R, n.sim)) simQ = lapply(mtmp, FUN = function(x) if(is.matrix(x$Q)) array(x$Q, dim = c(m, m, n.sim)) else last(x$Q, n.sim)) simZ = vector(mode = "list", length = m) for(i in 1:m) simZ[[i]] = sapply(mtmp, FUN = function(x) x$Z[,i]) xtmp = lapply(as.list(1:m), FUN = function(j){ maxx = mspec@spec[[j]]@model$maxOrder; htmp = ugarchpath(mspec@spec[[j]], n.sim = n.sim + n.start, n.start = 0, m.sim = m.sim, custom.dist = list(name = "sample", distfit = matrix(simZ[[j]][-(1:mo), ], ncol = m.sim)), presigma = if( is.null(presigma) ) NA else tail(presigma[,j], maxx), preresiduals = if( is.null(preresiduals) ) NA else tail(preresiduals[,j], maxx), prereturns = if( is.null(prereturns) | model$modelinc[1]>0 ) NA else tail(prereturns[,j], maxx), mexsimdata = if( model$modelinc[1]==0 ) mexsimdata[[j]] else NULL, vexsimdata = vexsimdata[[j]], prerealized = tail(prerealized[,j], maxx)); h = matrix(tail(htmp@path$sigmaSim^2, n.sim), nrow = n.sim); x = matrix(htmp@path$seriesSim, nrow = n.sim + n.start); return(list(h = h, x = x))}) } H = array(NA, dim = c(n.sim, m, m.sim)) tmpH = array(NA, dim = c(m, m, n.sim)) for(i in 1:n.sim) H[i,,] = t(sapply(xtmp, FUN = function(x) as.numeric(x$h[i,]))) for(i in 1:m.sim){ for(j in 1:n.sim){ tmpH[ , , j] = diag(sqrt( H[j, , i]) ) %*% simR[[i]][ , , j] %*% diag(sqrt( H[j, , i] ) ) } simH[[i]] = tmpH } if(model$modelinc[1]>0){ simxX = array(NA, dim = c(n.sim+n.start, m, m.sim)) for(i in 1:m.sim) simxX[,,i] = sapply(xtmp, FUN = function(x) as.numeric(x$x[,i])) simX = vector(mode = "list", length = m.sim) for(i in 1:m.sim) simX[[i]] = matrix(simxX[,,i], nrow = n.sim+n.start) } else{ simxX = array(NA, dim = c(n.sim+n.start, m, m.sim)) for(i in 1:m.sim) simxX[,,i] = sapply(xtmp, FUN = function(x) as.numeric(x$x[,i])) simX = vector(mode = "list", length = m.sim) for(i in 1:m.sim) simX[[i]] = matrix(tail(matrix(simxX[,,i], ncol = m), n.sim), nrow = n.sim) } if( model$modelinc[1]>0 ){ simRes = simX simX = mvmean.varsim(model = model, Data = Data, res = simX, mexsimdata = mexsimdata, prereturns = prereturns, m.sim = m.sim, n.sim = n.sim, n.start = n.start, startMethod = startMethod, cluster = cluster) } else{ for(j in 1:m.sim) simX[[j]] = tail(simX[[j]], n.sim) } msim = list() msim$simH = simH msim$simR = simR msim$simQ = simQ msim$simX = simX msim$simZ = simZ msim$simRes = simRes msim$rseed = rseed model$n.sim = n.sim model$m.sim = m.sim model$n.start = n.start model$startMethod = startMethod[1] ans = new("DCCsim", msim = msim, model = model) return( ans ) } .dccsim.spec = function(fitORspec, n.sim = 1000, n.start = 0, m.sim = 1, startMethod = c("unconditional", "sample"), presigma = NULL, preresiduals = NULL, prereturns = NULL, preQ = NULL, preZ = NULL, Qbar = NULL, Nbar = NULL, rseed = NULL, mexsimdata = NULL, vexsimdata = NULL, cluster = NULL, VAR.fit = NULL, prerealized = NULL, ...) { spec = fitORspec startMethod = startMethod[1] if( spec@model$modelinc[1]>0 ){ if( is.null(VAR.fit) ) stop("\ndccsim-->error: VAR.fit must not be NULL for VAR method when calling dccsim using spec!", call. = FALSE) } model = spec@model model$umodel = spec@umodel m = dim(spec@umodel$modelinc)[2] mo = spec@model$maxdccOrder mg = spec@model$maxgarchOrder model$modeldata$asset.names = paste("Asset", 1:m, sep = "") if( is.null(rseed) ){ rseed = as.integer(runif(1, 1, Sys.time())) } else { if(length(rseed) == 1) rseed = as.integer(rseed[1]) else rseed = as.integer( rseed[1:m.sim] ) } if(is.null(preZ)){ preZ = matrix(0, ncol = m, nrow = mo) } else{ preZ = matrix(tail(preZ, 1), ncol = m, nrow = mo, byrow = TRUE) } if(is.null(preQ)){ stop("\ndccsim-->error: preQ cannot be NULL when method uses spec!") } else{ dcc.symcheck(preQ, m, d = NULL) Rbar = preQ/(sqrt(diag(preQ)) %*% t(sqrt(diag(preQ))) ) } if(is.null(Qbar)){ stop("\ndccsim-->error: Qbar cannot be NULL when method uses spec!") } else{ dcc.symcheck(Qbar, m, d = NULL) } if(model$modelinc[5]>0){ if(is.null(Nbar)){ stop("\ndccsim-->error: Nbar cannot be NULL for aDCC when method uses spec!") } else{ dcc.symcheck(Nbar, m, d = NULL) } } else{ Nbar = matrix(0, m, m) } model = spec@model umodel = spec@umodel modelinc = model$modelinc midx = .fullinc(modelinc, umodel) mspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, umodel$modeldesc$vsubmodel, umodel$modeldata$mexdata, umodel$modeldata$vexdata, umodel$start.pars, umodel$fixed.pars, NULL) uncv = sapply(mspec@spec, FUN = function(x) uncvariance(x)) if( !is.null(presigma) ){ if( !is.matrix(presigma) ) stop("\ndccsim-->error: presigma must be a matrix.") if( dim(presigma)[2] != m ) stop("\ndccsim-->error: wrong column dimension for presigma.") if( dim(presigma)[1] != mg ) stop(paste("\ndccsim-->error: wrong row dimension for presigma (need ", mg, " rows.", sep = "")) } if( !is.null(preresiduals) ){ if( !is.matrix(preresiduals) ) stop("\ndccsim-->error: preresiduals must be a matrix.") if( dim(preresiduals)[2] != m ) stop("\ndccsim-->error: wrong column dimension for preresiduals.") if( dim(preresiduals)[1] != mg ) stop(paste("\ndccsim-->error: wrong row dimension for preresiduals (need ", mg, " rows.", sep = "")) } if( !is.null(prereturns) ){ if( !is.matrix(prereturns) ) stop("\ndccsim-->error: prereturns must be a matrix.") if( dim(prereturns)[2] != m ) stop("\ndccsim-->error: wrong column dimension for prereturns.") if( dim(prereturns)[1] != mg ) stop(paste("\ndccsim-->error: wrong row dimension for prereturns (need ", mg, " rows.", sep = "")) } if(spec@umodel$modeldesc$vmodel[1]=="realGARCH"){ if( !is.null(prerealized) ){ if( !is.matrix(prerealized) ) stop("\ndccsim-->error: prerealized must be a matrix.") if( dim(prerealized)[2] != m ) stop("\ndccsim-->error: wrong column dimension for prerealized.") if( dim(prerealized)[1] != mg ) stop(paste("\ndccsim-->error: wrong row dimension for prerealized (need ", mg, " rows.", sep = "")) } } else{ prerealized = matrix(NA, ncol = m, nrow = mg) } if(model$modeldesc$distribution == "mvnorm"){ if(length(rseed) == 1){ set.seed( rseed ) tmp = matrix(rnorm(m * (n.sim + n.start) * m.sim, 0, 1), ncol = m, nrow = n.sim+n.start) z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim) z[,,i] = rbind(preZ, tmp) } else{ z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim){ set.seed( rseed[i] ) z[,,i] = rbind(preZ, matrix(rnorm(m * (n.sim + n.start), 0, 1), nrow = n.sim + n.start, ncol = m)) } } } else if(model$modeldesc$distribution == "mvlaplace"){ if(length(rseed) == 1){ set.seed( rseed ) tmp = matrix(rugarch:::rged(m * (n.sim + n.start) * m.sim, 0, 1, shape = 1), , ncol = m, nrow = n.sim+n.start) z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim) z[,,i] = rbind(preZ, tmp) } else{ z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim){ set.seed( rseed[i] ) z[,,i] = rbind(preZ, matrix(rugarch:::rged(m * (n.sim + n.start), 0, 1, shape = 1), nrow = n.sim + n.start, ncol = m)) } } } else{ if(length(rseed) == 1){ set.seed( rseed ) tmp = matrix(rugarch:::rstd(m * (n.sim + n.start) * m.sim, 0, 1, shape = model$pars["mshape",1]), ncol = m, nrow = n.sim+n.start) z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim) z[,,i] = rbind(preZ, tmp) } else{ z = array(NA, dim = c(n.sim + n.start + mo, m, m.sim)) for(i in 1:m.sim){ set.seed( rseed[i] ) z[,,i] = rbind(preZ, matrix(rugarch:::rstd(m * (n.sim + n.start), 0, 1, shape = model$pars["mshape",1]), nrow = n.sim + n.start, ncol = m)) } } } if(length(rseed) == 1){ rseed = c(rseed, as.integer(runif(m.sim, 1, Sys.time()))) } simRes = simX = simR = simQ = simH = simSeries = vector(mode = "list", length = m.sim) if( !is.null(cluster) ){ simH = vector(mode = "list", length = m.sim) simX = vector(mode = "list", length = m.sim) clusterEvalQ(cluster, require(rmgarch)) clusterExport(cluster, c("model", "z", "preQ", "Rbar", "Qbar", "Nbar", "mo", "n.sim", "n.start", "m", "rseed",".dccsimf"), envir = environment()) mtmp = parLapply(cluster, as.list(1:m.sim), fun = function(j){ .dccsimf(model, Z = z[,,j], Qbar = Qbar, preQ = preQ, Nbar = Nbar, Rbar = Rbar, mo = mo, n.sim, n.start, m, rseed[j]) }) simR = lapply(mtmp, FUN = function(x) if(is.matrix(x$R)) array(x$R, dim = c(m, m, n.sim)) else last(x$R, n.sim)) simQ = lapply(mtmp, FUN = function(x) if(is.matrix(x$Q)) array(x$Q, dim = c(m, m, n.sim)) else last(x$Q, n.sim)) simZ = vector(mode = "list", length = m) for(i in 1:m) simZ[[i]] = sapply(mtmp, FUN = function(x) x$Z[,i]) clusterExport(cluster, c("mspec", "n.sim", "n.start", "m.sim", "startMethod", "simZ", "presigma", "preresiduals", "prereturns", "mexsimdata", "vexsimdata", "prerealized"), envir = environment()) xtmp = parLapply(cluster, as.list(1:m), fun = function(j){ maxx = mspec@spec[[j]]@model$maxOrder; htmp = ugarchpath(mspec@spec[[j]], n.sim = n.sim + n.start, n.start = 0, m.sim = m.sim, custom.dist = list(name = "sample", distfit = matrix(simZ[[j]][-(1:mo), ], ncol = m.sim)), presigma = if( is.null(presigma) ) NA else tail(presigma[,j], maxx), preresiduals = if( is.null(preresiduals) ) NA else tail(preresiduals[,j], maxx), prereturns = if( is.null(prereturns) | model$modelinc[1]>0 ) NA else tail(prereturns[,j], maxx), mexsimdata = if( model$modelinc[1]==0 ) mexsimdata[[j]] else NULL, vexsimdata = vexsimdata[[j]], prerealized = tail(prerealized[,j], maxx)) h = matrix(tail(htmp@path$sigmaSim^2, n.sim), nrow = n.sim) x = matrix(htmp@path$seriesSim, nrow = n.sim + n.start) xres = matrix(htmp@path$residSim, nrow = n.sim + n.start) return(list(h = h, x = x, xres = xres)) }) } else{ simH = vector(mode = "list", length = m.sim) simX = vector(mode = "list", length = m.sim) mtmp = lapply(as.list(1:m.sim), FUN = function(j) .dccsimf(model, Z = z[,,j], Qbar = Qbar, preQ = preQ, Nbar = Nbar, Rbar = Rbar, mo = mo, n.sim, n.start, m, rseed[j])) simR = lapply(mtmp, FUN = function(x) if(is.matrix(x$R)) array(x$R, dim = c(m, m, n.sim)) else last(x$R, n.sim)) simQ = lapply(mtmp, FUN = function(x) if(is.matrix(x$Q)) array(x$Q, dim = c(m, m, n.sim)) else last(x$Q, n.sim)) simZ = vector(mode = "list", length = m) for(i in 1:m) simZ[[i]] = sapply(mtmp, FUN = function(x) x$Z[,i]) xtmp = lapply(as.list(1:m), FUN = function(j){ maxx = mspec@spec[[j]]@model$maxOrder; htmp = ugarchpath(mspec@spec[[j]], n.sim = n.sim + n.start, n.start = 0, m.sim = m.sim, custom.dist = list(name = "sample", distfit = matrix(simZ[[j]][-(1:mo), ], ncol = m.sim)), presigma = if( is.null(presigma) ) NA else tail(presigma[,j], maxx), preresiduals = if( is.null(preresiduals) ) NA else tail(preresiduals[,j], maxx), prereturns = if( is.null(prereturns) | model$modelinc[1]>0 ) NA else tail(prereturns[,j], maxx), mexsimdata = if( model$modelinc[1]==0 ) mexsimdata[[j]] else NULL, vexsimdata = vexsimdata[[j]], prerealized = tail(prerealized[,j], maxx)); h = matrix(tail(htmp@path$sigmaSim^2, n.sim), nrow = n.sim); x = matrix(htmp@path$seriesSim, nrow = n.sim + n.start); xres = matrix(htmp@path$residSim, nrow = n.sim + n.start); return(list(h = h, x = x, xres = xres)) }) } H = array(NA, dim = c(n.sim, m, m.sim)) tmpH = array(NA, dim = c(m, m, n.sim)) for(i in 1:n.sim) H[i,,] = t(sapply(xtmp, FUN = function(x) as.numeric(x$h[i,]))) for(i in 1:m.sim){ for(j in 1:n.sim){ tmpH[ , , j] = diag(sqrt( H[j, , i]) ) %*% simR[[i]][ , , j] %*% diag(sqrt( H[j, , i] ) ) } simH[[i]] = tmpH } if(model$modelinc[1]>0){ simxX = array(NA, dim = c(n.sim+n.start, m, m.sim)) for(i in 1:m.sim) simxX[,,i] = sapply(xtmp, FUN = function(x) as.numeric(x$x[,i])) simX = vector(mode = "list", length = m.sim) for(i in 1:m.sim) simX[[i]] = matrix(simxX[,,i], nrow = n.sim+n.start) } else{ simxX = array(NA, dim = c(n.sim+n.start, m, m.sim)) for(i in 1:m.sim) simxX[,,i] = sapply(xtmp, FUN = function(x) as.numeric(x$x[,i])) simX = vector(mode = "list", length = m.sim) for(i in 1:m.sim) simX[[i]] = matrix(tail(matrix(simxX[,,i], ncol = m), n.sim), nrow = n.sim) } simxRes = array(NA, dim = c(n.sim, m, m.sim)) for(i in 1:n.sim) simxRes[i,,] = t(sapply(xtmp, FUN = function(x) as.numeric(x$xres[i,]))) simRes = vector(mode = "list", length = m.sim) for(i in 1:m.sim) simRes[[i]] = matrix(simxRes[,,i], nrow = n.sim) if( model$modelinc[1]>0 ){ model$varcoef = VAR.fit$Bcoef Data = VAR.fit$xfitted simRes = simX simX = mvmean.varsim(model = model, Data = Data, res = simX, mexsimdata = mexsimdata, prereturns = prereturns, m.sim = m.sim, n.sim = n.sim, n.start = n.start, startMethod = startMethod, cluster = cluster) } else{ for(j in 1:m.sim) simX[[j]] = tail(simX[[j]], n.sim) } msim = list() msim$simH = simH msim$simR = simR msim$simQ = simQ msim$simX = simX msim$simZ = simZ msim$simRes = simRes msim$rseed = rseed msim$model$Data = NULL model$n.sim = n.sim model$m.sim = m.sim model$n.start = n.start model$startMethod = "unconditional" ans = new("DCCsim", msim = msim, model = model) return( ans ) } .rolldcc.assets = function(spec, data, n.ahead = 1, forecast.length = 50, refit.every = 25, n.start = NULL, refit.window = c("recursive", "moving"), window.size = NULL, solver = "solnp", solver.control = list(), fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE), cluster = NULL, save.fit = FALSE, save.wdir = NULL, realizedVol = NULL,...) { if(spec@model$DCC=="FDCC") stop("\nFDCC model rolling estimation not yet implemented.") model = spec@model verbose = FALSE model$umodel = spec@umodel if(is.null(solver.control$trace)) solver.control$trace = 0 if(is.null(fit.control$stationarity)) fit.control$stationarity = TRUE if(is.null(fit.control$eval.se)) fit.control$eval.se = FALSE if(is.null(fit.control$scale)) fit.control$scale = FALSE mm = match(names(fit.control), c("stationarity", "eval.se", "scale")) if(any(is.na(mm))){ idx = which(is.na(mm)) enx = NULL for(i in 1:length(idx)) enx = c(enx, names(fit.control)[idx[i]]) warning(paste(c("unidentified option(s) in fit.control:\n", enx), sep="", collapse=" "), call. = FALSE, domain = NULL) } asset.names = colnames(data) xdata = .extractmdata(data) data = xts(xdata$data, xdata$index) index = xdata$index period = xdata$period if(is.null(fit.control$stationarity)) fit.control$stationarity = 1 if(is.null(fit.control$fixed.se)) fit.control$fixed.se = 0 T = dim(data)[1] if(n.ahead>1) stop("\ndccroll:--> n.ahead>1 not supported...try again.") if(is.null(n.start)){ if(is.null(forecast.length)) stop("\ndccroll:--> forecast.length amd n.start are both NULL....try again.") n.start = T - forecast.length } else{ forecast.length = T - n.start } if(T<=n.start) stop("\ndccroll:--> start cannot be greater than length of data") s = seq(n.start+refit.every, T, by = refit.every) m = length(s) out.sample = rep(refit.every, m) if(s[m]<T){ s = c(s,T) m = length(s) out.sample = c(out.sample, s[m]-s[m-1]) } if(refit.window == "recursive"){ rollind = lapply(1:m, FUN = function(i) 1:s[i]) } else{ if(!is.null(window.size)){ if(window.size<100) stop("\ndccroll:--> window size must be greater than 100.") rollind = lapply(1:m, FUN = function(i) max(1, (s[i]-window.size-out.sample[i])):s[i]) } else{ rollind = lapply(1:m, FUN = function(i) (1+(i-1)*refit.every):s[i]) } } cf = lik = forc = vector(mode = "list", length = m) plik = vector(mode = "list", length = m) mspec = .makemultispec(model$umodel$modelinc, model$umodel$modeldesc$vmodel, model$umodel$modeldesc$vsubmodel, model$umodel$modeldata$mexdata, model$umodel$modeldata$vexdata, model$umodel$start.pars, model$umodel$fixed.pars, model$umodel$vt) for(i in 1:m){ if(!is.null(realizedVol)){ mfit = multifit(mspec, data[rollind[[i]],], out.sample = out.sample[i], solver = solver[1], fit.control = fit.control, cluster = cluster, realizedVol = realizedVol[rollind[[i]],], solver.control = solver.control) k=1 while(k==1){ conv = sapply(mfit@fit, function(x) convergence(x)) if(any(conv==1)){ idx = which(conv==1) for(j in idx){ mfit@fit[[j]] = ugarchfit(mspec@spec[[j]], data[rollind[[i]],j], out.sample = out.sample[i], solver = "gosolnp", fit.control = fit.control, realizedVol = realizedVol[rollind[[i]],j]) } } else{ k=0 } } k=1 while(k==1){ tmp = sapply(mfit@fit, function(x){ L = try(likelihood(x), silent=TRUE) if(inherits(L, 'try-error') | !is.numeric(L)) L = 1e10 L}) conv=diff(log(abs(tmp))) if(any(conv>1)){ idx = which(conv>1)+1 for(j in idx){ mfit@fit[[j]] = ugarchfit(mspec@spec[[j]], data[rollind[[i]],j], out.sample = out.sample[i], solver = "gosolnp", fit.control = fit.control, realizedVol = realizedVol[rollind[[i]],j]) } } else{ k=0 } } mcfit = dccfit(spec, data[rollind[[i]],], out.sample = out.sample[i], solver = solver, fit.control = fit.control, solver.control=solver.control, cluster = NULL, realizedVol = realizedVol[rollind[[i]],], fit = mfit) plik[[i]] = mcfit@mfit$plik } else{ mfit = multifit(mspec, data[rollind[[i]],], out.sample = out.sample[i], solver = solver[1], fit.control = fit.control, solver.control = solver.control, cluster = cluster) k=1 while(k==1){ conv = sapply(mfit@fit, function(x) convergence(x)) if(any(conv==1)){ idx = which(conv==1) for(j in idx){ mfit@fit[[j]] = ugarchfit(mspec@spec[[j]], data[rollind[[i]],j], out.sample = out.sample[i], solver = "gosolnp", fit.control = fit.control) } } else{ k=0 } } mcfit = dccfit(spec, data[rollind[[i]],], out.sample = out.sample[i], solver = solver, fit.control = fit.control, solver.control = solver.control, cluster = cluster, fit = mfit) plik[[i]] = mcfit@mfit$plik } cf[[i]] = mcfit@model$mpars lik[[i]] = likelihood(mcfit) forc[[i]] = dccforecast(mcfit, n.ahead = 1, n.roll = out.sample[i]-1, cluster = cluster) if(save.fit){ saveRDS(mcfit,file=paste0(save.wdir,"/dccroll_",i,".rds")) } } model$n.start = n.start model$n.refits = m model$refit.every = refit.every model$refit.window = refit.window model$window.size = window.size model$forecast.length = forecast.length model$n.start = n.start model$rollind = rollind model$out.sample = out.sample model$modeldata$asset.names = asset.names model$rollcoef = cf model$rolllik = lik model$index = index model$period = period model$data = xdata$data model$plik = plik ans = new("DCCroll", mforecast = forc, model = model) return(ans) } .rolldcc.windows = function(spec, data, n.ahead = 1, forecast.length = 50, refit.every = 25, n.start = NULL, refit.window = c("recursive", "moving"), window.size = NULL, solver = "solnp", solver.control = list(), fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE), cluster = NULL, save.fit = FALSE, save.wdir = NULL, realizedVol = NULL,...) { if(spec@model$DCC=="FDCC") stop("\nFDCC model rolling estimation not yet implemented.") model = spec@model verbose = FALSE model$umodel = spec@umodel if(is.null(solver.control$trace)) solver.control$trace = 0 if(is.null(fit.control$stationarity)) fit.control$stationarity = TRUE if(is.null(fit.control$eval.se)) fit.control$eval.se = FALSE if(is.null(fit.control$scale)) fit.control$scale = FALSE mm = match(names(fit.control), c("stationarity", "eval.se", "scale")) if(any(is.na(mm))){ idx = which(is.na(mm)) enx = NULL for(i in 1:length(idx)) enx = c(enx, names(fit.control)[idx[i]]) warning(paste(c("unidentified option(s) in fit.control:\n", enx), sep="", collapse=" "), call. = FALSE, domain = NULL) } asset.names = colnames(data) xdata = .extractmdata(data) data = xts(xdata$data, xdata$index) index = xdata$index period = xdata$period if(is.null(fit.control$stationarity)) fit.control$stationarity = 1 if(is.null(fit.control$fixed.se)) fit.control$fixed.se = 0 T = dim(data)[1] if(n.ahead>1) stop("\ndccroll:--> n.ahead>1 not supported...try again.") if(is.null(n.start)){ if(is.null(forecast.length)) stop("\ndccroll:--> forecast.length amd n.start are both NULL....try again.") n.start = T - forecast.length } else{ forecast.length = T - n.start } if(T<=n.start) stop("\ndccroll:--> start cannot be greater than length of data") s = seq(n.start+refit.every, T, by = refit.every) m = length(s) out.sample = rep(refit.every, m) if(s[m]<T){ s = c(s,T) m = length(s) out.sample = c(out.sample, s[m]-s[m-1]) } if(refit.window == "recursive"){ rollind = lapply(1:m, FUN = function(i) 1:s[i]) } else{ if(!is.null(window.size)){ if(window.size<100) stop("\ndccroll:--> window size must be greater than 100.") rollind = lapply(1:m, FUN = function(i) max(1, (s[i]-window.size-out.sample[i])):s[i]) } else{ rollind = lapply(1:m, FUN = function(i) (1+(i-1)*refit.every):s[i]) } } cf = lik = forc = vector(mode = "list", length = m) plik = vector(mode = "list", length = m) mspec = .makemultispec(model$umodel$modelinc, model$umodel$modeldesc$vmodel, model$umodel$modeldesc$vsubmodel, model$umodel$modeldata$mexdata, model$umodel$modeldata$vexdata, model$umodel$start.pars, model$umodel$fixed.pars, model$umodel$vt) res = parLapply(cluster, as.list(1:m), function(i){ if(!is.null(realizedVol)){ mfit = multifit(mspec, data[rollind[[i]],], out.sample = out.sample[i], solver = solver[1], fit.control = fit.control, cluster = NULL, realizedVol = realizedVol[rollind[[i]],], solver.control = solver.control) k=1 while(k==1){ conv = sapply(mfit@fit, function(x) convergence(x)) if(any(conv==1)){ idx = which(conv==1) for(j in idx){ mfit@fit[[j]] = ugarchfit(mspec@spec[[j]], data[rollind[[i]],j], out.sample = out.sample[i], solver = "gosolnp", fit.control = fit.control, realizedVol = realizedVol[rollind[[i]],j]) } } else{ k=0 } } k=1 while(k==1){ tmp = sapply(mfit@fit, function(x){ L = try(likelihood(x), silent=TRUE) if(inherits(L, 'try-error') | !is.numeric(L)) L = 1e10 L}) conv=diff(log(abs(tmp))) if(any(conv>1)){ idx = which(conv>1)+1 for(j in idx){ mfit@fit[[j]] = ugarchfit(mspec@spec[[j]], data[rollind[[i]],j], out.sample = out.sample[i], solver = "gosolnp", fit.control = fit.control, realizedVol = realizedVol[rollind[[i]],j]) } } else{ k=0 } } mcfit = dccfit(spec, data[rollind[[i]],], out.sample = out.sample[i], solver = solver, fit.control = fit.control, solver.control=solver.control, cluster = NULL, realizedVol = realizedVol[rollind[[i]],], fit = mfit) plik = mcfit@mfit$plik } else{ mfit = multifit(mspec, data[rollind[[i]],], out.sample = out.sample[i], solver = solver[1], fit.control = fit.control, solver.control = solver.control, cluster = NULL) k=1 while(k==1){ conv = sapply(mfit@fit, function(x) convergence(x)) if(any(conv==1)){ idx = which(conv==1) for(j in idx){ mfit@fit[[j]] = ugarchfit(mspec@spec[[j]], data[rollind[[i]],j], out.sample = out.sample[i], solver = "gosolnp", fit.control = fit.control) } } else{ k=0 } } mcfit = dccfit(spec, data[rollind[[i]],], out.sample = out.sample[i], solver = solver, fit.control = fit.control, solver.control = solver.control, cluster = NULL, fit = mfit) plik = mcfit@mfit$plik } cf = mcfit@model$mpars lik = likelihood(mcfit) forc = dccforecast(mcfit, n.ahead = 1, n.roll = out.sample[i]-1, cluster = NULL) if(save.fit){ saveRDS(mcfit,file=paste0(save.wdir,"/dccroll_",i,".rds")) } return(list(cf=cf, lik=lik, forc=forc, plik=plik)) }) model$n.start = n.start model$n.refits = m model$refit.every = refit.every model$refit.window = refit.window model$window.size = window.size model$forecast.length = forecast.length model$n.start = n.start model$rollind = rollind model$out.sample = out.sample model$modeldata$asset.names = asset.names model$rollcoef = lapply(res, function(x) x$cf) model$rolllik = lapply(res, function(x) x$lik) model$index = index model$period = period model$data = xdata$data model$plik = lapply(res, function(x) x$plik) forc = lapply(res, function(x) x$forc) ans = new("DCCroll", mforecast = forc, model = model) return(ans) } .dccsimf = function(model, Z, Qbar, preQ, Nbar, Rbar, mo, n.sim, n.start, m, rseed) { modelinc = model$modelinc ipars = model$pars idx = model$pidx n = n.sim + n.start + mo set.seed(rseed[1]+1) NZ = matrix(rnorm(m * (n.sim+n.start+mo)), nrow = n.sim + n.start + mo, ncol = m) sumdcca = sum(ipars[idx["dcca",1]:idx["dcca",2],1]) sumdccb = sum(ipars[idx["dccb",1]:idx["dccb",2],1]) sumdcc = sumdcca + sumdccb sumdccg = sum(ipars[idx["dccg",1]:idx["dccg",2],1]) res = switch(model$modeldesc$distribution, mvnorm = .Call( "dccsimmvn", model = as.integer(modelinc), pars = as.numeric(ipars[,1]), idx = as.integer(idx[,1]-1), Qbar = as.matrix(Qbar), preQ = as.matrix(preQ), Rbar = as.matrix(Rbar), Nbar = as.matrix(Nbar), Z = as.matrix(Z), NZ = as.matrix(NZ), epars = c(sumdcc, sumdccg, mo), PACKAGE = "rmgarch"), mvlaplace = .Call( "dccsimmvl", model = as.integer(modelinc), pars = as.numeric(ipars[,1]), idx = as.integer(idx[,1]-1), Qbar = as.matrix(Qbar), preQ = as.matrix(preQ), Rbar = as.matrix(Rbar), Nbar = as.matrix(Nbar), Z = as.matrix(Z), NZ = as.matrix(NZ), epars = c(sumdcc, sumdccg, mo), PACKAGE = "rmgarch"), mvt = .Call( "dccsimmvt", model = as.integer(modelinc), pars = as.numeric(ipars[,1]), idx = as.integer(idx[,1]-1), Qbar = as.matrix(Qbar), preQ = as.matrix(preQ), Rbar = as.matrix(Rbar), Nbar = as.matrix(Nbar), Z = as.matrix(Z), NZ = as.matrix(NZ), epars = c(sumdcc, sumdccg, mo), PACKAGE = "rmgarch")) Q = array(NA, dim = c(m, m, n.sim + n.start + mo)) R = array(NA, dim = c(m, m, n.sim + n.start + mo)) for(i in 1:(n.sim + n.start + mo)){ R[,,i] = res[[2]][[i]] Q[,,i] = res[[1]][[i]] } ans = list( Q = Q, R = R, Z = res[[3]]) return( ans ) } .asymI = function(x){ ans = (-sign(x)+1)/2 ans[ans==0.5] = 0 ans } .makemultispec = function(modelinc, vmodel, vsubmodel, mexdata, vexdata, spars, fpars, vt){ m = dim(modelinc)[2] mspec = vector(mode = "list", length = m) dist = c("norm", "snorm", "std", "sstd","ged", "sged", "nig", "ghyp", "jsu", "ghst") for(i in 1:m){ if(is.null(vt)){ vtarget = FALSE } else{ if(!is.na(vt[i])) vtarget = vt[i] else vtarget = ifelse(modelinc[7,i]==0, TRUE, FALSE) } mspec[[i]] = ugarchspec(variance.model = list(model = vmodel[i], garchOrder = modelinc[8:9,i], submodel = vsubmodel[i], external.regressors = if(is.na(vexdata[[i]][1])) NULL else vexdata[[i]], variance.targeting = vtarget), mean.model = list(armaOrder = modelinc[2:3,i], include.mean = as.logical(modelinc[1,i]), archm = ifelse(modelinc[5,i]>0, TRUE, FALSE), archpow = modelinc[5,i], arfima = modelinc[4,i], external.regressors = if(is.na(mexdata[[i]][1])) NULL else mexdata[[i]]), distribution.model = dist[modelinc[21,i]], start.pars = if(is.na(spars[[i]][1])) NULL else spars[[i]], fixed.pars = if(is.na(fpars[[i]][1])) NULL else fpars[[i]]) } ans = multispec( mspec ) return(ans) } .fullinc = function(modelinc, umodel){ m = dim(umodel$modelinc)[2] vecmax = rep(0, 19) names(vecmax) = rownames(umodel$modelinc[1:19,]) vecmax = apply(umodel$modelinc, 1, FUN = function(x) max(x) ) maxOrder = apply(umodel$modelinc, 2, FUN = function(x) max(c(x[2], x[3], x[8], x[9]))) sumv = 19 + sum(pmax(1, vecmax[c(2,3,6,8,9,10,11,12,13,15,16)])) - 11 tmpmat = matrix(0, ncol = m+1, nrow = sumv) nx = 0 pnames = NULL if(vecmax[1]>0){ tmpmat[1, 1:m] = umodel$modelinc[1,] } nx = nx + max(1, vecmax[1]) pnames = c(pnames, "mu") if(vecmax[2]>0){ for(i in 1:vecmax[2]){ tmpmat[nx+i, 1:m] = as.integer( umodel$modelinc[2,] >= i) pnames = c(pnames, paste("ar", i, sep = "")) } } else{ pnames = c(pnames, "ar") } nx = nx + max(1, vecmax[2]) if(vecmax[3]>0){ for(i in 1:vecmax[3]){ tmpmat[nx+i, 1:m] = as.integer( umodel$modelinc[3,] >= i) pnames = c(pnames, paste("ma", i, sep = "")) } } else{ pnames = c(pnames, "ma") } nx = nx + max(1, vecmax[3]) if(vecmax[4]>0){ tmpmat[nx+1, 1:m] = umodel$modelinc[4, ] } nx = nx + max(1, vecmax[4]) pnames = c(pnames, "arfima") nx = nx + max(1, vecmax[5]) pnames = c(pnames, "archm") if(vecmax[6]>0){ for(i in 1:vecmax[6]){ tmpmat[nx+i, 1:m] = as.integer(umodel$modelinc[6, ] >= i) pnames = c(pnames, paste("mxreg", i, sep = "")) } } else{ pnames = c(pnames, "mxreg") } nx = nx + max(1, vecmax[6]) if(vecmax[7]>0){ tmpmat[nx+1, 1:m] = umodel$modelinc[7, ] } nx = nx + max(1, vecmax[7]) pnames = c(pnames, "omega") if(vecmax[8]>0){ for(i in 1:vecmax[8]){ tmpmat[nx+i, 1:m] = as.integer( umodel$modelinc[8, ] >= i) pnames = c(pnames, paste("alpha", i, sep = "")) } } else{ pnames = c(pnames, "alpha") } nx = nx + max(1, vecmax[8]) if(vecmax[9]>0){ for(i in 1:vecmax[9]){ tmpmat[nx+i, 1:m] = as.integer( umodel$modelinc[9, ] >= i) pnames = c(pnames, paste("beta", i, sep = "")) } } else{ pnames = c(pnames, "beta") } nx = nx + max(1, vecmax[9]) if(vecmax[10]>0){ for(i in 1:vecmax[10]){ tmpmat[nx+i, 1:m] = as.integer( umodel$modelinc[10, ] >= i) pnames = c(pnames, paste("gamma", i, sep = "")) } } else{ pnames = c(pnames, "gamma") } nx = nx + max(1, vecmax[10]) if(vecmax[11]>0){ for(i in 1:vecmax[11]){ tmpmat[nx+i, 1:m] = as.integer( umodel$modelinc[11, ] >= i) pnames = c(pnames, paste("eta1", i, sep = "")) } } else{ pnames = c(pnames, "eta1") } nx = nx + max(1, vecmax[11]) if(vecmax[12]>0){ for(i in 1:vecmax[12]){ tmpmat[nx+i, 1:m] = as.integer( umodel$modelinc[12, ] >= i) pnames = c(pnames, paste("eta2", i, sep = "")) } } else{ pnames = c(pnames, "eta2") } nx = nx + max(1, vecmax[12]) if(vecmax[13]>0){ tmpmat[nx+1, 1:m] = umodel$modelinc[13, ] } nx = nx + max(1, vecmax[13]) pnames = c(pnames, "delta") if(vecmax[14]>0){ tmpmat[nx+1, 1:m] = umodel$modelinc[14, ] } nx = nx + max(1, vecmax[14]) pnames = c(pnames, "lambda") if(vecmax[15]>0){ for(i in 1:vecmax[15]){ tmpmat[nx+i, 1:m] = as.integer( umodel$modelinc[15, ] >= i) pnames = c(pnames, paste("vxreg", i, sep = "")) } } else{ pnames = c(pnames, "vxreg") } nx = nx + max(1, vecmax[15]) if(vecmax[16]>0){ tmpmat[nx+1, 1:m] = umodel$modelinc[16, ] } nx = nx + max(1, vecmax[16]) pnames = c(pnames, "skew") if(vecmax[17]>0){ tmpmat[nx+1, 1:m] = umodel$modelinc[17, ] } nx = nx + max(1, vecmax[17]) pnames = c(pnames, "shape") if(vecmax[18]>0){ tmpmat[nx+1, 1:m] = umodel$modelinc[18, ] } nx = nx + max(1, vecmax[18]) pnames = c(pnames, "ghlambda") if(vecmax[19]>0){ tmpmat[nx+1, 1:m] = umodel$modelinc[19, ] } nx = nx + max(1, vecmax[19]) pnames = c(pnames, "xi") sumdcc = 5 + sum(pmax(1, modelinc[c(3,4,5,6,7)])) - 5 tmpmat = rbind(tmpmat, matrix(0, ncol = m+1, nrow = sumdcc)) if(modelinc[3]>0){ for(i in 1:modelinc[3]){ tmpmat[nx+i, m+1] = 1 pnames = c(pnames, paste("dcca", i, sep = "")) } } else{ pnames = c(pnames, "dcca") } nx = nx + max(1, modelinc[3]) if(modelinc[4]>0){ for(i in 1:modelinc[4]){ tmpmat[nx+i, m+1] = 1 pnames = c(pnames, paste("dccb", i, sep = "")) } } else{ pnames = c(pnames, "dccb") } nx = nx + max(1, modelinc[4]) if(modelinc[5]>0){ for(i in 1:modelinc[5]){ tmpmat[nx+i, m+1] = 1 pnames = c(pnames, paste("dccg", i, sep = "")) } } else{ pnames = c(pnames, "dccg") } nx = nx + max(1, modelinc[5]) if(modelinc[6]>0){ for(i in 1:modelinc[6]){ tmpmat[nx+i, m+1] = 1 if(modelinc[6]>1) pnames = c(pnames, paste("mshape", i, sep = "")) else pnames = c(pnames, "mshape") } } else{ pnames = c(pnames, "mshape") } nx = nx + max(1, modelinc[6]) if(modelinc[7]>0){ for(i in 1:modelinc[7]){ tmpmat[nx+i, m+1] = 1 if(modelinc[7]>1) pnames = c(pnames, paste("mskew", i, sep = "")) else pnames = c(pnames, "mskew") } } else{ pnames = c(pnames, "mskew") } colnames(tmpmat) = c(paste("Asset", 1:m, sep = ""), "Joint") rownames(tmpmat) = pnames return(tmpmat) } .estindfn = function(midx, mspec, dccpars){ m = dim(midx)[2]-1 eidx = midx*0 rnx = rownames(midx) for(i in 1:m){ um = mspec@spec[[i]]@model$pars zi = match(rownames(um), rnx) zi = zi[!is.na(zi)] zx = match(rnx, rownames(um)) zx = zx[!is.na(zx)] eidx[zi,i] = um[zx,4] } zi = match(rownames(dccpars), rnx) eidx[zi,m+1] = dccpars[,4] return(eidx) }
cat("\014") rm(list = ls()) setwd("~/git/of_dollars_and_data") source(file.path(paste0(getwd(),"/header.R"))) library(scales) library(readxl) library(lubridate) library(zoo) library(ggrepel) library(tidyverse) folder_name <- "_jkb/0002_lifestyle_creep" out_path <- paste0(exportdir, folder_name) dir.create(file.path(paste0(out_path)), showWarnings = FALSE) inc <- 100000 raise <- 100000 withdrawal_pct <- 0.04 annual_ret <- 0.04 initial_savings <- 0.1 savings_rates <- c(0.1) for(initial_savings_rate in savings_rates){ annual_savings <- inc*initial_savings_rate annual_expenditure <- inc*(1-initial_savings_rate) retirement_target <- annual_expenditure/withdrawal_pct n_periods_baseline <- log(1 + (retirement_target/annual_savings)*annual_ret)/log(1 + annual_ret) print(n_periods_baseline) raise_saved_pcts <- c(0.1) tmp <- data.frame( annual_ret = rep(annual_ret, length(raise_saved_pcts)), raise_saved_pct = raise_saved_pcts ) counter_f <- 1 for(r in raise_saved_pcts){ df <- data.frame(year = c(), saving_amount = c(), total_saved = c(), retirement_target = c(), income = c(), pct_total_retirement = c()) counter <- 1 retire_pct <- 0 while(retire_pct < 1){ if(counter == 1){ df[counter, "year"] <- counter df[counter, "saving_amount"] <- annual_savings df[counter, "total_saved"] <- annual_savings df[counter, "retirement_target"] <- retirement_target df[counter, "income"] <- inc } else{ if(counter <= 10){ df[counter, "income"] <- inc df[counter, "saving_amount"] <- annual_savings } else{ df[counter, "income"] <- inc + raise df[counter, "saving_amount"] <- (inc*initial_savings_rate) + (raise*r) } df[counter, "year"] <- counter df[counter, "total_saved"] <- (df[(counter-1), "total_saved"] * (1 + annual_ret)) + df[counter, "saving_amount"] df[counter, "retirement_target"] <- (df[counter, "income"] - df[counter, "saving_amount"])/withdrawal_pct } df[counter, "pct_total_retirement"] <- df[counter, "total_saved"]/df[counter, "retirement_target"] retire_pct <- df[counter, "pct_total_retirement"] counter <- counter + 1 } tmp[counter_f, "n_periods"] <- counter - 1 tmp[counter_f, "better_than_baseline"] <- ifelse(tmp[counter_f, "n_periods"] < n_periods_baseline, 1, 0) if(r == initial_savings_rate & initial_savings_rate == 0.6){ assign("investigate", df, envir = .GlobalEnv) } counter_f <- counter_f + 1 } tmp2 <- tmp %>% filter(better_than_baseline == 1) %>% head(1) %>% select(-better_than_baseline) %>% mutate(savings_rate = initial_savings_rate) if(initial_savings_rate == savings_rates[1]){ final_results <- tmp2 } else{ final_results <- final_results %>% bind_rows(tmp2) %>% select(savings_rate, raise_saved_pct, n_periods) } }
crossref <- function(...) { .Defunct("rcrossref", msg = "Crossref functionality moved to package rcrossref") }
.interpolateGridDay<-function(object, grid, latitude, d) { i = which(object@dates == d) if(length(i)==0) stop("Date not found. Date 'd' has to be comprised within the dates specified in 'object'.") sp = spTransform(SpatialPoints(coordinates(grid), grid@proj4string), object@proj4string) cc = sp@coords z = grid@data$elevation mPar = object@params if(!("debug" %in% names(mPar))) mPar$debug = FALSE tmin = .interpolateTemperatureSeriesPoints(Xp= cc[,1], Yp =cc[,2], Zp = z, X = object@coords[,1], Y = object@coords[,2], Z = object@elevation, T = as.matrix(object@MinTemperature)[,i,drop=FALSE], iniRp = mPar$initial_Rp, alpha = mPar$alpha_MinTemperature, N = mPar$N_MinTemperature, iterations = mPar$iterations, debug = mPar$debug) tmax = .interpolateTemperatureSeriesPoints(Xp= cc[,1], Yp =cc[,2], Zp = z, X = object@coords[,1], Y = object@coords[,2], Z = object@elevation, T = as.matrix(object@MaxTemperature)[,i,drop=FALSE], iniRp = mPar$initial_Rp, alpha = mPar$alpha_MaxTemperature, N = mPar$N_MaxTemperature, iterations = mPar$iterations, debug = mPar$debug) tmean = 0.606*tmax+0.394*tmin prec = .interpolatePrecipitationSeriesPoints(Xp= cc[,1], Yp =cc[,2], Zp = z, X = object@coords[,1], Y = object@coords[,2], Z = object@elevation, P = as.matrix(object@Precipitation)[,i,drop=FALSE], Psmooth = object@SmoothedPrecipitation[,i,drop=FALSE], iniRp = mPar$initial_Rp, alpha_event = mPar$alpha_PrecipitationEvent, alpha_amount = mPar$alpha_PrecipitationAmount, N_event = mPar$N_PrecipitationEvent, N_amount = mPar$N_PrecipitationAmount, iterations = mPar$iterations, popcrit = mPar$pop_crit, fmax = mPar$f_max, debug = mPar$debug) if(is.null(object@RelativeHumidity)) { rhmean = .relativeHumidityFromMinMaxTemp(tmin, tmax) VP = .temp2SVP(tmin) rhmax = rep(100, length(rhmean)) rhmin = pmax(0,.relativeHumidityFromDewpointTemp(tmax, tmin)) } else { TdewM = .dewpointTemperatureFromRH(0.606*as.matrix(object@MaxTemperature[,i,drop=FALSE])+0.394*as.matrix(object@MinTemperature[,i,drop=FALSE]), as.matrix(object@RelativeHumidity)) tdew = .interpolateTdewSeriesPoints(Xp= cc[,1], Yp =cc[,2], Zp = z, X = object@coords[,1], Y = object@coords[,2], Z = object@elevation, T = TdewM, iniRp = mPar$initial_Rp, alpha = mPar$alpha_DewTemperature, N = mPar$N_DewTemperature, iterations = mPar$iterations, debug = mPar$debug) rhmean = .relativeHumidityFromDewpointTemp(tmean, tdew) VP = .temp2SVP(tdew) rhmin = pmax(0,.relativeHumidityFromDewpointTemp(tmax, tdew)) rhmax = pmin(100,.relativeHumidityFromDewpointTemp(tmin, tdew)) } doy = as.numeric(format(object@dates[i],"%j")) J = radiation_dateStringToJulianDays(d) diffTemp = tmax-tmin diffTempMonth = .interpolateTemperatureSeriesPoints(Xp= cc[,1], Yp =cc[,2], Zp = z, X = object@coords[,1], Y = object@coords[,2], Z = object@elevation, T = as.matrix(object@SmoothedTemperatureRange)[,i,drop=FALSE], iniRp = mPar$initial_Rp, alpha = mPar$alpha_MinTemperature, N = mPar$N_MinTemperature, iterations = mPar$iterations, debug = mPar$debug) latrad = latitude * (pi/180) asprad = grid$aspect * (pi/180) slorad = grid$slope * (pi/180) rad = .radiationPoints(latrad, grid$elevation, slorad, asprad, J, diffTemp, diffTempMonth, VP, prec) if((!is.null(object@WFIndex)) && (!is.null(object@WFFactor))) { wstopo = getGridTopology(object@WindFields$windSpeed) wdtopo = getGridTopology(object@WindFields$windDirection) indws = getGridIndex(cc, wstopo) indwd = getGridIndex(cc, wdtopo) WS = as.matrix(object@WindFields$windSpeed@data[indws,]) WD = as.matrix(object@WindFields$windDirection@data[indwd,]) Wp = .interpolateWindFieldSeriesPoints(Xp= cc[,1], Yp =cc[,2], WS[,i,drop=FALSE], WD[,i,drop=FALSE], X = object@coords[,1], Y = object@coords[,2], I = object@WFIndex[,i,drop=FALSE], F = object@WFFactor[,i,drop=FALSE], iniRp = mPar$initial_Rp, alpha = mPar$alpha_Wind, N = mPar$N_Wind, iterations = mPar$iterations) Ws = as.vector(Wp$WS) Wd = as.vector(Wp$WD) } else if((!is.null(object@WindSpeed)) && (!is.null(object@WindDirection))) { Wp = .interpolateWindStationSeriesPoints(Xp= cc[,1], Yp =cc[,2], WS = object@WindSpeed[,i,drop=FALSE], WD = object@WindDirection[,i,drop=FALSE], X = object@coords[,1], Y = object@coords[,2], iniRp = mPar$initial_Rp, alpha = mPar$alpha_Wind, N = mPar$N_Wind, iterations = mPar$iterations) Ws = as.vector(Wp$WS) Wd = as.vector(Wp$WD) } else { Ws = rep(NA,nrow(cc)) Wd = rep(NA,nrow(cc)) } pet = .PenmanPETPointsDay(latrad, grid$elevation, slorad, asprad, J, tmin, tmax, rhmin, rhmax, rad, Ws, mPar$wind_height, 0.001, 0.25); df = data.frame(MeanTemperature = as.vector(tmean), MinTemperature = as.vector(tmin), MaxTemperature = as.vector(tmax), Precipitation = as.vector(prec), MeanRelativeHumidity = rhmean, MinRelativeHumidity = rhmin, MaxRelativeHumidity = rhmax, Radiation = rad, WindSpeed = Ws, WindDirection = Wd, PET = pet) return(SpatialGridDataFrame(grid@grid, df, grid@proj4string)) } interpolationgrid<-function(object, grid, dates = NULL, exportFile = NULL, exportFormat = "netCDF", add = FALSE, overwrite = FALSE, verbose = TRUE) { if(!inherits(object,"MeteorologyInterpolationData")) stop("'object' has to be of class 'MeteorologyInterpolationData'.") if(!inherits(grid,"SpatialGridTopography")) stop("'grid' has to be of class 'SpatialGridTopography'.") if(!is.null(dates)) { if(class(dates)!="Date") stop("'dates' has to be of class 'Date'.") if(sum(as.character(dates) %in% as.character(object@dates))<length(dates)) stop("At least one of the dates is outside the time period for which interpolation is possible.") } else dates = object@dates bbox = object@bbox if(proj4string(grid)!=proj4string(object)) { warning("CRS projection in 'grid' adapted to that of 'object'.") sp = spTransform(SpatialPoints(coordinates(grid), grid@proj4string), object@proj4string) gbbox = sp@bbox } else { gbbox = grid@bbox } insidebox = (gbbox[1,1]>=bbox[1,1]) && (gbbox[1,2]<=bbox[1,2]) && (gbbox[2,1]>=bbox[2,1]) && (gbbox[2,2]<=bbox[2,2]) if(!insidebox) warning("Boundary box of target grid is not within boundary box of interpolation data object.") longlat = spTransform(as(grid,"SpatialPoints"),CRS(SRS_string = "EPSG:4326")) latitude = longlat@coords[,2] ndates = length(dates) export = !is.null(exportFile) if((ndates==1) && !export) return(.interpolateGridDay(object, grid, latitude, dates)) l = vector("list", ndates) if(export) nc = .openwritegridNetCDF(grid@grid, proj4string(grid), vars = NULL, dates = dates, file = exportFile, add = add, overwrite = overwrite, verbose = verbose) for(i in 1:ndates) { if(verbose) cat(paste("Interpolating day '", dates[i], "' (",i,"/",ndates,") - ",sep="")) m = .interpolateGridDay(object, grid, latitude, dates[i]) if(export) { dl = list(m@data) names(dl) = as.character(dates[i]) .writemeteorologygridNetCDF(dl,m@grid, proj4string(m), nc, byPixel = F, verbose = verbose) } else { l[[i]] = m@data if(verbose) cat("done.\n") } } if(!export) { names(l) = dates return(SpatialGridMeteorology(grid@grid, grid@proj4string, l, dates)) } else { .closeNetCDF(exportFile,nc, verbose = verbose) } }
context("Geoms") library("ggplot2") test_that("geom_linerangeh() flips", { v <- range_p_orig + geom_linerange(aes(ymin = lower, ymax = upper)) h <- range_p + geom_linerangeh(aes(xmin = lower, xmax = upper)) check_horizontal(v, h, "geom_linerangeh()") }) test_that("geom_pointangeh() flips", { v <- range_p_orig + geom_pointrange(aes(ymin = lower, ymax = upper)) h <- range_p + geom_pointrangeh(aes(xmin = lower, xmax = upper)) check_horizontal(v, h, "geom_pointrangeh()") v_facet <- ggplot(range_df, aes(trt, resp)) + facet_wrap(~group) + geom_pointrange(aes(ymin = lower, ymax = upper)) h_facet <- ggplot(range_df, aes(resp, trt)) + facet_wrap(~group) + geom_pointrangeh(aes(xmin = lower, xmax = upper)) check_horizontal(v_facet, h_facet, "geom_pointrangeh() + facet_wrap()") v_dodge <- range_p_orig + geom_pointrange(aes(ymin = lower, ymax = upper), position = position_dodge(0.3)) h_dodge <- range_p + geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodgev(0.3)) check_horizontal(v_dodge, h_dodge, "geom_pointrangeh() + position_dodgev()") }) test_that("geom_crossbarh() flips", { v <- range_p_orig + geom_crossbar(aes(ymin = lower, ymax = upper)) h <- range_p + geom_crossbarh(aes(xmin = lower, xmax = upper)) check_horizontal(v, h, "geom_crossbarh()") }) test_that("geom_errorbarh() flips", { v <- range_p_orig + geom_errorbar(aes(ymin = lower, ymax = upper)) h <- range_p + geom_errorbarh(aes(xmin = lower, xmax = upper)) check_horizontal(v, h, "geom_errorbarh()") }) test_that("geom_barh() flips", { v <- range_p_orig + geom_bar(aes(fill = group), stat = "identity", position = "dodge") h <- range_p + geom_barh(aes(fill = group), stat = "identity", position = "dodgev") check_horizontal(v, h, "geom_barh()") v_facet <- ggplot(range_df, aes(trt, resp)) + facet_wrap(~group) + geom_bar(position = "dodge", stat = "identity") h_facet <- ggplot(range_df, aes(resp, trt)) + facet_wrap(~group) + geom_barh(position = "dodgev", stat = "identity") check_horizontal(v_facet, h_facet, "geom_barh() + facet_wrap()") v <- ggplot(mpg, aes(x = class)) + geom_bar() h <- ggplot(mpg, aes(y = class)) + geom_barh() check_horizontal(v, h, "geom_barh() with count stat") }) test_that("geom_colh() flips", { df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2)) v <- ggplot(df, aes(trt, outcome)) + geom_col() h <- ggplot(df, aes(outcome, trt)) + geom_colh() check_horizontal(v, h, "geom_colh()") }) test_that("geom_histogramh() flips", { v <- ggplot(mtcars, aes(drat)) + geom_histogram(bins = 10) h <- ggplot(mtcars, aes(y = drat)) + geom_histogramh(bins = 10) check_horizontal(v, h, "geom_histogramh()", TRUE) v_fill_stack <- ggplot(mtcars, aes(drat, fill = factor(cyl))) + geom_histogram(bins = 10, position = position_stack()) h_fill_stack <- ggplot(mtcars, aes(y = drat, fill = factor(cyl))) + geom_histogramh(bins = 10, position = position_stackv()) check_horizontal(v_fill_stack, h_fill_stack, "geom_histogramh() + position_stack() with fill", TRUE) v_fill_facet_nudge <- ggplot(mtcars, aes(drat, fill = factor(cyl))) + facet_wrap(~am) + geom_histogram(bins = 10, position = position_nudge()) h_fill_facet_nudge <- ggplot(mtcars, aes(y = drat, fill = factor(cyl))) + facet_wrap(~am) + geom_histogramh(bins = 10, position = position_nudge()) check_horizontal(v_fill_facet_nudge, h_fill_facet_nudge, "geom_histogramh() + position_nudge() with fill") }) test_that("geom_violinh() flips", { v <- ggplot(mtcars, aes(factor(cyl), mpg, fill = factor(am))) + geom_violin() h <- ggplot(mtcars, aes(mpg, factor(cyl), fill = factor(am))) + geom_violinh() check_horizontal(v, h, "geom_violinh()") v_facet <- ggplot(mtcars, aes(factor(cyl), mpg, fill = factor(am))) + facet_wrap(~vs) + geom_violin() h_facet <- ggplot(mtcars, aes(mpg, factor(cyl), fill = factor(am))) + facet_wrap(~vs) + geom_violinh() check_horizontal(v_facet, h_facet, "geom_violinh() + facet_wrap()") set.seed(111) dat <- data.frame(x = LETTERS[1:3], y = rnorm(90)) dat <- dat[dat$x != "C" | c(TRUE, FALSE), ] v <- ggplot(dat, aes(x = x, y = y)) + geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) h <- ggplot(dat, aes(x = y, y = x)) + geom_violinh(draw_quantiles = c(0.25, 0.5, 0.75)) check_horizontal(v, h, "geom_violinh() + draw_quantiles") }) test_that("geom_boxploth() flips", { v <- ggplot(mpg, aes(class, hwy)) + geom_boxplot() h <- ggplot(mpg, aes(hwy, class)) + geom_boxploth() check_horizontal(v, h, "geom_boxploth()") v_fill <- ggplot(mpg, aes(class, hwy, fill = factor(cyl))) + geom_boxplot() h_fill <- ggplot(mpg, aes(hwy, class, fill = factor(cyl))) + geom_boxploth() check_horizontal(v_fill, h_fill, "geom_boxploth() with fill") v_facet_fill <- ggplot(mpg, aes(class, hwy, fill = factor(cyl))) + facet_wrap(~model) + geom_boxplot() h_facet_fill <- ggplot(mpg, aes(hwy, class, fill = factor(cyl))) + facet_wrap(~model) + geom_boxploth() check_horizontal(v_facet_fill, h_facet_fill, "geom_boxploth() + facet_wrap() with fill") df <- data.frame(x = 1:10, y = rep(1:2, 5)) h_continuous <- ggplot(df) + geom_boxploth(aes(x = x, y = y, group = 1)) v_continuous <- ggplot(df) + geom_boxplot(aes(x = y, y = x, group = 1)) check_horizontal(v_continuous, h_continuous, "geom_boxploth() and continuous y scale") }) test_that("facet_grid() with free scales flips", { v <- ggplot(mtcars, aes(factor(cyl), disp)) + geom_boxplot() + facet_grid(am ~ ., scales = "free") h <- ggplot(mtcars, aes(disp, factor(cyl))) + geom_boxploth() + facet_grid(. ~ am, scales = "free") check_horizontal(v, h, "facet_grid() with free scales") }) test_that("scale information is preserved", { v <- range_p_orig + geom_pointrange(aes(ymin = lower, ymax = upper))+ scale_y_continuous(breaks = c(1, 2, 3, 4, 5), labels = c("1/1", "2/1", "3/1", "4/1", "5/1")) h <- range_p + geom_pointrangeh(aes(xmin = lower, xmax = upper)) + scale_x_continuous(breaks = c(1, 2, 3, 4, 5), labels = c("1/1", "2/1", "3/1", "4/1", "5/1")) check_horizontal(v, h, "scales") })
pat_filter <- function( pat, ... ) { result <- try({ if ( !pat_isPat(pat) ) stop("First argument is not of class 'pat'.") }, silent = TRUE) if ( class(result) %in% "try-error" ) { err_msg <- geterrmessage() if ( stringr::str_detect(err_msg, "object .* not found") ) { stop(paste0(err_msg, "\n(Did you forget to pass in the 'pat' object?)")) } } if ( pat_isEmpty(pat) ) stop("Parameter 'pat' has no data.") pat <- pat_distinct(pat) pat$data <- dplyr::filter(pat$data,...) pat <- pat_distinct(pat) return(pat) }
heat_ppoints <- function(x, y, z, legend = "horizontal", proj = "none", parameters, orientation, lratio = 0.2, map = "none", n = 5, ...) { if (missing(parameters)) parameters <- NULL if (missing(orientation)) orientation <- NULL arglist <- list(...) xyz <- heat_ppoints_xyz_setup(x = x, y = y, z = z, tx = deparse(substitute(x)), ty = deparse(substitute(y)), arglist = arglist) object <- heat_ppoints_setup(xyz, legend, proj, parameters, orientation, lratio, map, n = n) if (legend != "none") { .legend.mar(object$legend.mar) } .legend.scale.args(object$legend.scale.args) if (legend == "none") { do.call(object$plotf, object$arglist) } else { autolayout(size = c(1, 1), legend = legend, lratio = lratio, show = FALSE, reverse = TRUE) autolegend() do.call(object$plotf, object$arglist) } if (!is.null(arglist$pch) & !is.null(arglist$border_col)) { if (arglist$pch >= 19) { arglist$bg = arglist$col arglist$col = arglist$border_col } } if (object$axes) { do.call("paxes", object$paxes.args) } if (!is.null(object$lines.args$x)) { do.call("plines", object$lines.args) } if (!is.null(object$points.args$x)) { f <- autoimage::ppoints do.call(f, object$points.args) } if (!is.null(object$text.args$x)) { do.call("ptext", object$text.args) } return(invisible(structure(object, class = "heat_ppoints"))) } heat_ppoints_setup <- function(xyz, legend = "none", proj = "none", parameters = NULL, orientation = NULL, lratio = 0.2, map = "none", n) { x <- xyz$x y <- xyz$y z <- xyz$z arglist <- xyz$arglist if (length(proj) != 1) { stop("proj should be a single character string") } if (!is.character(proj)) { stop("proj should be a single character string") } legend <- try(match.arg(legend, c("none", "horizontal", "vertical")), silent = TRUE) if (length(legend) != 1) { stop("legend should be a single character string") } if (class(legend) == "try-error") { stop("invalid legend argument. legend should be \"none\", \"horizontal\", or \"vertical\".") } if (length(lratio) != 1) { stop("lratio should be a positive number") } if (!is.numeric(lratio)) { stop("lratio should be a positive number") } if (lratio <= 0) { stop("lratio should be a positive number") } if (is.null(arglist$pch)) { arglist$pch <- 16 } if (!is.null(arglist$col)) { n <- length(arglist$col) } if (length(n) != 1 | !is.numeric(n) | n <= 1) { stop("n should be a positive integer") } zlim_breaks <- zlim_breaks_setup(arglist$zlim, arglist$breaks, n, range(z, na.rm = TRUE), arglist$col) arglist$zlim <- zlim_breaks$zlim arglist$breaks <- zlim_breaks$breaks if (is.null(arglist$col)) { arglist$col <- colorspace::sequential_hcl(n = length(arglist$breaks) - 1, palette = "Viridis") } legend.scale.args <- list() legend.scale.args$zlim <- arglist$zlim legend.scale.args$breaks <- arglist$breaks legend.scale.args$col <- arglist$col legend.scale.args$axis.args <- arglist$legend.axis.args hpcol = as.character(cut(z, breaks = arglist$breaks, labels = arglist$col)) arglist$col = hpcol if (!is.null(arglist$pch) & !is.null(arglist$border_col)) { if (arglist$pch >= 19) { arglist$bg = arglist$col arglist$col = arglist$border_col } } legend.mar <- arglist$legend.mar if (is.null(legend.mar)) { legend.mar <- automar(legend) } if (map != "none") arglist$lines <- map_setup(map) lines.args <- lines_args_setup(arglist, proj) points.args <- points_args_setup(arglist, proj) text.args = text_args_setup(arglist, proj) paxes.args <- paxes_args_setup(arglist, proj) axes <- axes_setup(arglist) if (proj != "none") { arglist$asp <- 1 which.in <- which(x >= arglist$xlim[1] & x <= arglist$xlim[2] & y >= arglist$ylim[1] & y <= arglist$ylim[2]) projectxy <- mapproj::mapproject(x, y, projection = proj, parameters = parameters, orientation = orientation) x <- projectxy$x y <- projectxy$y sx = seq(arglist$xlim[1], arglist$xlim[2], len = 100) sy = seq(arglist$ylim[1], arglist$ylim[2], len = 100) sg = expand.grid(sx, sy) project_lim <- mapproj::mapproject(sg[,1], sg[,2], projection = proj, parameters = parameters, orientation = orientation) arglist$xlim <- range(project_lim$x, na.rm = TRUE) arglist$ylim <- range(project_lim$y, na.rm = TRUE) } arglist$x <- x arglist$y <- y plotf <- graphics::plot arglist <- arglist_clean(arglist, image = FALSE) object <- list(plotf = plotf, arglist = arglist, legend = legend, legend.scale.args = legend.scale.args, legend.mar = legend.mar, proj = proj, points.args = points.args, lines.args = lines.args, text.args = text.args, paxes.args = paxes.args, axes = axes) return(object) } heat_ppoints_xyz_setup <- function(x, y, z, tx, ty, arglist) { if (is.null(arglist$xlab)) arglist$xlab <- tx if (is.null(arglist$ylab)) arglist$ylab <- ty if (!is.vector(x) | !is.numeric(x)) { stop("x must be a numeric vector") } if (!is.vector(y) | !is.numeric(y)) { stop("y must be a numeric vector") } if (!is.vector(z) | !is.numeric(z)) { stop("z must be a numeric vector") } if (length(x) != length(y)) stop("length(x) != length(y)") if (length(x) != length(z)) stop("length(x) != length(z)") if (is.null(arglist$xlim)) { arglist$xlim <- range(x, na.rm = TRUE) } if (is.null(arglist$ylim)) { arglist$ylim <- range(y, na.rm = TRUE) } return(list(x = x, y = y, z = z, arglist = arglist)) }
EkNNval <- function(xtrain,ytrain,xtst,K,ytst=NULL,param=NULL){ xtst<-as.matrix(xtst) xtrain<-as.matrix(xtrain) ytrain<-y<-as.integer(as.factor(ytrain)) if(!is.null(ytst)) ytst<-y<-as.integer(as.factor(ytst)) if(is.null(param)) param<-EkNNinit(xtrain,ytrain) Napp<-nrow(xtrain) M<-max(ytrain) N<-nrow(xtst) knn<-get.knnx(xtrain, xtst, k=K) knn$nn.dist<-knn$nn.dist^2 is<-t(knn$nn.index) ds<-t(knn$nn.dist) m = rbind(matrix(0,M,N),rep(1,N)) for(i in 1:N){ for(j in 1:K){ m1 <- rep(0,M+1) m1[ytrain[is[j,i]]] <- param$alpha*exp(-param$gamma[ytrain[is[j,i]]]^2*ds[j,i]) m1[M+1] <- 1 - m1[ytrain[is[j,i]]] m[1:M,i] <- m1[1:M]*m[1:M,i] + m1[1:M]*m[M+1,i] + m[1:M,i]*m1[M+1] m[M+1,i] <- m1[M+1] * m[M+1,i] m<-m/matrix(colSums(m),M+1,N,byrow=TRUE) } } m<-t(m) ypred<-max.col(m[,1:M]) if(!is.null(ytst)) err<-length(which(ypred != ytst))/N else err<-NULL return(list(m=m,ypred=ypred,err=err)) }
gexp.default <- function(x = NULL, mu = 26, err = NULL, errp = NULL, r = 5L, fl = NULL, blkl = NULL, rowl = NULL, coll = NULL, fe = NULL, inte = NULL, blke = NULL, rowe = NULL, cole = NULL, contrasts = NULL, type = c('SIMPLE', 'FE', 'SPE'), design = c('CRD', 'RCBD', 'LSD'), round = 2L, ...) { toe <- match.arg(type) des <- match.arg(design) option <- paste(toe, des, sep = '_') qualiquanti <- checkQualiQuanti(fl) obj <- list(mu = mu, err = err, errp = errp, r = r, fl = fl, blkl = blkl, rowl = rowl, coll = coll, fe = fe, inte = inte, blke = blke, rowe = rowe, cole = cole, contrasts = contrasts, round = round, qualiquanti = qualiquanti) class(obj) <- tolower(option) res <- gexp(obj, ...) } checkQualiQuanti <- function(fl){ if(is.null(fl)){ quali <- TRUE quanti <- FALSE posquanti <- NULL }else{ quanti <- all(lapply(fl, function(x) is.numeric(x)) == TRUE) quali <- all(lapply(fl, function(x) is.numeric(x)) != TRUE) posquanti <- which(unlist(lapply(fl, is.numeric)) == TRUE) } res <- list(quali = quali, quanti = quanti, posquanti = posquanti) return(res) }
library(ggplot2) this_base <- "fig04-08_judith-leyster-exhibition-strip-plot" my_data <- data.frame( minutes <- c(4, 7, 7, 9, 10, 10, 11, 11, 13, 14, 15, 15, 20, 21, 22, 22, 23, 27, 27, 28, 28, 29, 31, 32, 33, 33, 35, 38, 38, 39, 40, 40, 40, 40, 42, 42, 42, 43, 45, 47, 48, 48, 49, 49, 55, 58, 66, 72, 73) ) summ_stats <- with(my_data, data.frame(stat = c("Mean", "Median", "Quartile", "Quartile"), val = c(mean(minutes), median(minutes), quantile(minutes, probs = c(0.25, 0.75))))) p <- ggplot(my_data, aes(x = minutes, y = factor(1))) + geom_point(shape = 1) + scale_x_continuous(breaks = c(20, 40, 60), limits = c(0, 80), expand = c(0, 0)) + labs(x = "Minutes", y = NULL) + ggtitle("Fig 4.8 Judith Leyster Exhibition: Strip Plot") + theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(size = rel(1.5), face = "bold"), axis.ticks.y = element_blank(), axis.text.y = element_blank(), legend.position = "top", legend.title = element_blank()) p <- p + geom_vline(data = summ_stats, aes(xintercept = val, linetype = stat), show_guide = TRUE) p ggsave(paste0(this_base, ".png"), p, width = 6, height = 3)
searchFacebook <- function(string, token, n=200, since=NULL, until=NULL) { tkversion <- getTokenVersion(token) if (tkversion=="v2"){ stop("Searching for posts was deprecated with version 2.0 of", " the Facebook Graph API.\nFor more details see ?searchFacebook") } if (length(string)>1){ string <- paste(string, collapse=" ") } url <- paste("https://graph.facebook.com/search?q=", string, "&type=post&limit=", sep="") if (n<=200){ url <- paste(url, n, sep="") } if (n>200){ url <- paste(url, "200", sep="") } url <- paste(url, "&fields=from.fields(name,id),message,created_time,type,link,likes.summary(true),comments.summary(true),shares", sep="") if (!is.null(since)){ url <- paste(url, "&since=", since, sep="") } if (!is.null(until)){ url <- paste(url, "&until=", until, sep="") } url <- utils::URLencode(url) content <- callAPI(url=url, token=token) l <- length(content$data); cat(l, "posts ") error <- 0 while (length(content$error_code)>0){ cat("Error!\n") Sys.sleep(0.5) error <- error + 1 content <- callAPI(url=url, token=token) if (error==3){ stop(content$error_msg) } } if (length(content$data)==0){ message("No public posts mentioning the string were found") return(data.frame()) } df <- searchDataToDF(content$data) if (n>200){ df.list <- list(df) while (l<n & length(content$data)>0 & !is.null(content$paging$`next`)){ url <- content$paging$`next` if (!is.null(since)){ url <- paste(url, "&since=", since, sep="") } content <- callAPI(url=url, token=token) l <- l + length(content$data) if (length(content$data)>0){ cat(l, " ") } error <- 0 while (length(content$error_code)>0){ cat("Error!\n") Sys.sleep(0.5) error <- error + 1 content <- callAPI(url=url, token=token) if (error==3){ stop(content$error_msg) } } df.list <- c(df.list, list(searchDataToDF(content$data))) } df <- do.call(rbind, df.list) } return(df) }
pls2B <- function(x, y, tol=1e-12, same.config=FALSE, rounds=0,useCor=FALSE,cv=FALSE,cvlv=NULL, mc.cores=parallel::detectCores()) { landmarks <- landmarksx <- landmarksy <- FALSE xorig <- x yorig <- y win <- FALSE if(.Platform$OS.type == "windows") win <- TRUE else registerDoParallel(cores=mc.cores) if (length(dim(x)) == 3) { landmarks <- TRUE landmarksx <- TRUE x <- vecx(x) } if (length(dim(y)) == 3) { landmarksy <- TRUE y <- vecx(y) } else landmarks <- FALSE xdim <- dim(x) ydim <- dim(y) if (same.config && !landmarks) warning("the option same.config requires landmark array as input") xs <- x <- scale(x,scale = F) ys <- y <- scale(y,scale = F) if (useCor) { xs <- scale(x,scale = TRUE) ys <- scale(y,scale = TRUE) } svd.cova <- svd2B(xs,ys,scale = useCor) svs <- svd.cova$d svs <- svs[which(svs > tol)] svs <- svs^2 covas <- (svs/sum(svs))*100 l.covas <- length(covas) svd.cova$d <- svd.cova$d[1:l.covas,drop=FALSE] svd.cova$u <- svd.cova$u[,1:l.covas,drop=FALSE] svd.cova$v <- svd.cova$v[,1:l.covas,drop=FALSE] Xscores <- x%*%svd.cova$u Yscores <- y%*%svd.cova$v cors <- 0 for(i in 1:length(covas)) cors[i] <- cor(Xscores[,i],Yscores[,i]) permupls <- function(i) { x.sample <- sample(1:xdim[1]) y.sample <- sample(x.sample) if (same.config && landmarks) { tmparr <- .bindArr2(xorig[,,x.sample],yorig[,,y.sample],along=1) tmpproc <- ProcGPA(tmparr,silent=TRUE) x1 <- vecx(tmpproc$rotated[1:dim(xorig)[1],,]) y1 <- vecx(tmpproc$rotated[1:dim(yorig)[1],,]) } else { x1 <- x y1 <- y } svd.cova.tmp <- svd2B(x1[x.sample,],y1[y.sample,],u=F,v=F,scale = useCor) svs.tmp <- svd.cova.tmp$d return(svs.tmp[1:l.covas]) } p.values <- rep(NA,l.covas) if (rounds > 0) { if (win) permuscores <- foreach(i = 1:rounds, .combine = cbind) %do% permupls(i) else permuscores <- foreach(i = 1:rounds, .combine = cbind) %dopar% permupls(i) p.val <- function(x,rand.x) { p.value <- length(which(rand.x >= x)) if (p.value > 0) p.value <- p.value/rounds else p.value <- 1/rounds return(p.value) } for (i in 1:l.covas) p.values[i] <- p.val(svd.cova$d[i],permuscores[i,]) } xlm <- lm(Xscores ~ Yscores -1) ylm <- lm(Yscores ~ Xscores -1) Cova <- data.frame(svd.cova$d[1:l.covas],covas,cors,p.values) colnames(Cova) <- c("singular value","% total covar.","Corr. coefficient", "p-value") out <- list(svd=svd.cova,Xscores=Xscores,Yscores=Yscores,CoVar=Cova) out$x <- xorig out$y <- yorig out$xcenter <- attributes(x)$"scaled:center" out$ycenter <- attributes(y)$"scaled:center" out$xlm <- xlm out$ylm <- ylm class(out) <- "pls2B" if (cv) { if (is.null(cvlv)) cvlv <- nrow(Cova)-1 else cvlv <- min(nrow(Cova),cvlv,(nrow(x)-2)) cvarrayX <- array(NA,dim=c(dim(x),cvlv)) cvarrayY <- array(NA,dim=c(dim(y),cvlv)) dimnames(cvarrayX)[1:2] <- dimnames(x) dimnames(cvarrayY)[1:2] <- dimnames(y) dimnames(cvarrayX)[[3]] <- dimnames(cvarrayY)[[3]] <- paste("LV",1:cvlv) if (landmarksx) x <- vecx(xorig) if (landmarksy) y <- vecx(yorig) for (i in 1:xdim[1]) { tmppls <- pls2B(x[-i,],y[-i,],useCor = useCor,tol=tol) for (j in 1:cvlv) { cvarrayY[i,,j] <- predictPLSfromData(tmppls,x=x[i,],ncomp=j) cvarrayX[i,,j] <- predictPLSfromData(tmppls,y=y[i,],ncomp=j) } } out$predicted.x <- cvarrayX out$predicted.y <- cvarrayY } return(out) } print.pls2B <- function(x,...) { cat(" Covariance explained by the singular values\n\n") df <- x$CoVar df <- df[,colSums(is.na(df)) != nrow(df)] print( df,row.names=FALSE) } getPLSfromScores <- function(pls,x,y) { if (!missing(x) && !missing(y)) stop("either x or y must be missing") svdpls <- pls$svd if (missing(y)) { if (is.vector(x) || length(x) == 1) { xl <- length(x) x <- t(x) } else if (is.matrix(x)) xl <- ncol(x) out <- t(svdpls$u[,1:xl,drop=FALSE]%*%t(x)) out <- sweep(out,2,-pls$xcenter) if (length(dim(pls$x)) == 3) { if (is.matrix(x) && nrow(x) > 1) { out <- vecx(out,revert = T,lmdim = dim(pls$x)[2]) } else { out <- matrix(out,dim(pls$x)[1],dim(pls$x)[2]) } } return(out) } if (missing(x)) { if (is.vector(y) || length(y) == 1) { xl <- length(y) y <- t(y) } else if (is.matrix(y)) xl <- ncol(y) out <- t(svdpls$v[,1:xl]%*%t(y)) out <- sweep(out,2,-pls$ycenter) if (length(dim(pls$y)) == 3) { if (is.matrix(y) && nrow(y) > 1) { out <- vecx(out,revert = T,lmdim = dim(pls$y)[2]) } else { out <- matrix(out,dim(pls$y)[1],dim(pls$y)[2]) } } return(out) } } predictPLSfromScores <- function(pls,x,y) { if (!missing(x) && !missing(y)) stop("either x or y must be missing") svdpls <- pls$svd if (missing(y)) { pls$ylm$coefficients <- as.matrix(pls$ylm$coefficients) if (is.vector(x) || length(x) == 1) { xl <- length(x) x <- t(x) } else if (is.matrix(x)) xl <- ncol(x) yest <- t(t(pls$ylm$coefficients[1:xl,,drop=FALSE])%*%t(x)) out <- t(svdpls$v%*%t(yest)) out <- sweep(out,2,-pls$ycenter) if (length(dim(pls$y)) == 3) { if (is.matrix(x) && nrow(x) > 1) { out <- vecx(out,revert = T,lmdim = dim(pls$x)[2]) } else { out <- matrix(out,dim(pls$y)[1],dim(pls$y)[2]) } } } if (missing(x)) { pls$xlm$coefficients <- as.matrix(pls$xlm$coefficients) if (is.vector(y) || length(y) == 1) { xl <- length(y) y <- t(y) } else if (is.matrix(y)) xl <- ncol(y) xest <- t(t(pls$xlm$coefficients[c(1:xl),,drop=FALSE])%*%t(y)) out <- t(svdpls$u%*%t(xest)) out <- sweep(out,2,-pls$xcenter) if (length(dim(pls$x)) == 3) { if (is.matrix(y) && nrow(y) > 1) { out <- vecx(out,revert = T,lmdim = dim(pls$x)[2]) } else { out <- matrix(out,dim(pls$x)[1],dim(pls$x)[2]) } } } return(out) } getPLSscores <- function(pls,x,y) { if (!missing(x) && !missing(y)) stop("either x or y must be missing") if (missing(y)) { if (length(dim(x)) == 3 || (is.matrix(x) && is.matrix(pls$x))) { if (length(dim(x)) == 3) x <- vecx(x) out <- NULL for(i in 1:nrow(x)) out <- rbind(out,getPLSscores(pls,x=x[i,])) } else { if (is.matrix(x)) x <- as.vector(x) x <- x-pls$xcenter out <- t(t(pls$svd$u)%*%x) } } if (missing(x)) { if (length(dim(y)) == 3 || (is.matrix(y) && is.matrix(pls$y))) { if (length(dim(y)) == 3) y <- vecx(y) out <- NULL for(i in 1:nrow(y)) out <- rbind(out,getPLSscores(pls,y=y[i,])) } else { if (is.matrix(y)) y <- as.vector(y) y <- y-pls$ycenter out <- t(t(pls$svd$v)%*%y) } } return(out) } predictPLSfromData <- function(pls,x,y,ncomp=NULL) { if (!missing(x) && !missing(y)) stop("either x or y must be missing") if (is.null(ncomp)) ncomp <- ncol(pls$Xscores) if (missing(y)) { scores <- getPLSscores(pls,x=x)[,1:ncomp,drop=F] out <- predictPLSfromScores(pls,x=scores) } if (missing(x)) { scores <- getPLSscores(pls,y=y)[,1:ncomp,drop=F] out <- predictPLSfromScores(pls,y=scores) } return(out) } plsCoVar <- function(pls,i,sdx=3,sdy=3) { x <- t(t(c(-1,1)*sdx*sd(pls$Xscores[,i]))) y <- t(t(c(-1,1)*sdy*sd(pls$Yscores[,i]))) x0 <- matrix(0,2,i); x0[,i] <- x y0 <- matrix(0,2,i); y0[,i] <- y xnames <- paste(c("neg","pos"),"x_sd",sdx,sep="_") ynames <- paste(c("neg","pos"),"y_sd",sdy,sep="_") pls1x <- getPLSfromScores(pls,x=x0) if (is.matrix(pls1x)) rownames(pls1x) <- xnames else dimnames(pls1x)[[3]] <- xnames pls1y <- getPLSfromScores(pls,y=y0) if (is.matrix(pls1y)) rownames(pls1y) <- ynames else dimnames(pls1y)[[3]] <- ynames pls1out <- list(x=pls1x,y=pls1y) return(pls1out) } svd2B <- function(x,y,scale=F,u=T,v=T) { xs <- scale(x,scale = scale) ys <- scale(y,scale = scale) svdx <- svd(xs) svdy <- svd(ys) u1 <- t(t(svdx$u)*svdx$d) u2 <- t(t(svdy$u)*svdy$d) utu <- crossprod(u1,u2) svdutu <- svd(utu) svdutu$d <- svdutu$d/(nrow(x) -1 ) if (u) svdutu$u <- as.matrix((svdx$v)%*%svdutu$u) else svdutu$u <- NULL if (v) svdutu$v <- as.matrix((svdy$v)%*%svdutu$v) else svdutu$v <- NULL return(svdutu) } getPLSCommonShape <- function(pls) { out <- NULL xdim <- dim(pls$x) ydim <- dim(pls$y) lmdim <- xdim[2] nlmx <- xdim[1] nlmy <- ydim[1] if (xdim[2] != ydim[2]) stop("landmarks need to be of same dimensionality") if (length(xdim) != 3 || length(ydim) != 3) stop("this function only works on landmark data") XscoresScaled <- pls$Xscores YscoresScaled <- pls$Yscores for (i in 1:ncol(pls$Xscores)) { tmp <- cbind(pls$Xscores[,i],pls$Yscores[,i]) tmppca <- prcompfast(tmp,retx = FALSE)$rotation[,1] if (prod(tmppca) > 0) tmppca <- abs(tmppca) xtmp <- matrix(pls$svd$u[,i]*tmppca[1],nlmx,lmdim) ytmp <- matrix(pls$svd$v[,i]*tmppca[2],nlmy,lmdim) tmpvec <- c(rbind(xtmp,ytmp)) XscoresScaled[,i] <- XscoresScaled[,i]/tmppca[1] YscoresScaled[,i] <- YscoresScaled[,i]/tmppca[2] out <- cbind(out,tmpvec) } commoncenter <- c(rbind(matrix(pls$xcenter,nlmx,lmdim),matrix(pls$ycenter,nlmy,lmdim))) return(list(shapevectors=out,XscoresScaled=XscoresScaled,YscoresScaled=YscoresScaled,commoncenter=commoncenter,lmdim=lmdim)) } plsCoVarCommonShape <- function(pls,i,sdcommon=1) { commonshape <- getPLSCommonShape(pls) sdi <- sd(c(commonshape$XscoresScaled[,i],commonshape$YscoresScaled[,i])) sdvec <- t(commonshape$shapevectors[,i]%*%t(c(-1,1)*sdcommon*sdi)) sdvec <- sweep(sdvec,2,-commonshape$commoncenter) out <- vecx(sdvec,revert = TRUE,lmdim = commonshape$lmdim) return(out) }
context("graph generators") test_that("graph generation: simple 2o graph", { g = mcGP(lower = 0, upper = 100) g = addCoordinates(g, n = 50L, generator = coordUniform) g = addWeights(g, method = "euclidean", symmetric = TRUE) g = addWeights(g, method = "random", weight.fun = runif, symmetric = TRUE) expect_class(g, "mcGP") expect_true(g$n.nodes == 50L) expect_true(g$n.clusters == 0L) expect_true(g$n.weights == 2L) expect_set_equal(g$weight.types, c("distance", "random")) expect_true(isSymmetricMatrix(g$weights[[1L]])) expect_true(isSymmetricMatrix(g$weights[[2L]])) expect_output(print(g), regexp = "MULTI") pls = plot(g) expect_list(pls, types = "ggplot", len = 2L, any.missing = FALSE, all.missing = FALSE) }) test_that("graph generation: complex clustered graph", { g = mcGP(lower = 0, upper = 100) g = addCenters(g, n.centers = 3L, generator = coordLHS) g = addCoordinates(g, n = c(5L, 10L, 15), by.centers = TRUE, generator = coordUniform, lower = c(0, 0), upper = c(1, 1)) g = addCoordinates(g, n = 22, by.centers = TRUE, generator = coordUniform, lower = c(0, 0), upper = c(1, 1)) g = addCoordinates(g, n = 100L, generator = coordGrid) g = addWeights(g, method = "random", weight.fun = rnorm, mean = 5, sd = 1.3) g = addWeights(g, method = "minkowski", p = 2.5, symmetric = FALSE) pls = plot(g, show.cluster.centers = TRUE) expect_list(pls, types = "ggplot", len = 2L, any.missing = FALSE, all.missing = FALSE) g = addWeights(g, method = "random", weight.fun = function(n) { sample(c(1, -10), n, replace = TRUE) * rexp(n, rate = 0.1) * 1:n }) expect_class(g, "mcGP") expect_true(g$n.nodes == 152L) expect_true(g$n.clusters == 3L) expect_true(g$n.weights == 3L) expect_list(g$weights, types = "matrix", any.missing = FALSE, all.missing = FALSE, len = g$n.weights) expect_true(isSymmetricMatrix(g$weights[[1L]])) expect_true(isSymmetricMatrix(g$weights[[2L]])) expect_true(isSymmetricMatrix(g$weights[[3L]])) expect_error(plot(g), regexpr = "not supported") }) test_that("graph generation: manual passing of coordinates weights works", { g = mcGP(lower = 0, upper = 10) center.coordinates = matrix(c(1, 2, 2, 5, 8, 3), byrow = TRUE, ncol = 2L) g = addCenters(g, center.coordinates = center.coordinates) expect_equal(center.coordinates, g$center.coordinates) expect_true(g$n.clusters == nrow(center.coordinates)) weights = diag(10) g = addWeights(g, weights = weights) g = addWeights(g, method = "random", weight.fun = rnorm, mean = 5, sd = 1.3) weights[1, 4] = 4 g = addWeights(g, weights = weights) expect_class(g, "mcGP") expect_true(g$n.nodes == 10L) expect_true(g$n.clusters == 3L) expect_true(g$n.weights == 3L) expect_list(g$weights, types = "matrix", any.missing = FALSE, all.missing = FALSE, len = g$n.weights) expect_true(isSymmetricMatrix(g$weights[[1L]])) expect_true(isSymmetricMatrix(g$weights[[2L]])) expect_false(isSymmetricMatrix(g$weights[[3L]])) }) test_that("graph generation: check correct error messages", { expect_error(mcGP(lower = 10, upper = 5)) g = mcGP(lower = 0, upper = 100) expect_error(addWeights(g, method = "euclidean"), regexp = "number of nodes") })
context("test-power_oneway_within") test_that("error messages", { expect_error(power_oneway_within(), "argument \"design_result\" is missing, with no default" ) }) test_that("2w and 3w", { K <- 2 n <- 34 sd <- 1 r <- 0.5 alpha = 0.05 f <- 0.25 f2 <- f^2 ES <- f2/(f2+1) mu <- mu_from_ES(K = K, ES = ES) design = paste(K,"w",sep="") design_result1 <- ANOVA_design(design = design, n = n, mu = mu, sd = sd, r = r, plot = FALSE) expect_equal(power_oneway_within(design_result1, alpha_level = 0.05)$power, pwr::pwr.t.test(d = 0.5, n = 34, sig.level = 0.05, type = "paired", alternative = "two.sided")$power*100, tolerance = .001) K <- 3 n <- 20 sd <- 1 r <- 0.8 f <- 0.25 f2 <- f^2 ES <- f2 / (f2 + 1) mu <- mu_from_ES(K = K, ES = ES) design = paste(K,"w",sep = "") design_result2 <- ANOVA_design(design = design, n = n, mu = mu, sd = sd, r = r, plot = FALSE) f <- 0.25 k <- 1 m <- 3 n <- 20 e <- 1 r <- 0.8 alpha <- 0.05 df1 <- (m - 1) * e df2 <- (n - k) * (m - 1) * e lambda <- (n * m * f^2) / (1 - r) F_critical <- qf(alpha, df1, df2, lower.tail = FALSE) pow <- pf(qf(alpha, df1, df2, lower.tail = FALSE), df1, df2, lambda, lower.tail = FALSE) expect_equal(power_oneway_within(design_result2, alpha_level = 0.05)$power, pow*100, tolerance = .01) })
ee = expect_equal co = container(a = 1, b = 2, f = mean, 3) co2 = clone(co) ee(discard_at(co), co2) ee(discard_at(co, "a"), container(b = 2, f = mean, 3)) original_was_not_touched = ee(co, co2) expect_true(original_was_not_touched) ee(discard_at(co, "a"), discard_at(co, 1)) ee(discard_at(co, "b"), discard_at(co, 2)) ee(discard_at(co, 1:4), container()) ee(discard_at(co, "b", "a", 4:3, 1), container()) ee(discard_at(co, "a", 1), discard_at(co, 1)) ee(discard_at(co, "a", "x"), discard_at(co, "a")) ee(discard_at(co, "x", "a"), discard_at(co, "a")) ee(discard_at(co, "a", 5), discard_at(co, "a")) ee(discard_at(co, 6, "a", 5), discard_at(co, "a")) ee(ref_discard_at(co, 1:4), container()) ee(co, container()) d = dict(a = 1, b = 2, f = mean) d2 = clone(d) ee(discard_at(d, "a", "f", "b"), dict()) original_was_not_touched = ee(d, d2) expect_true(original_was_not_touched) expect_true(is_empty(discard_at(d, names(d)))) ee(ref_discard_at(d, "a", "f", "b"), dict()) discard_was_done_on_original = ee(d, dict()) expect_true(discard_was_done_on_original) d = dict.table(a = 1, b = 2, f = mean) d2 = clone(d) expect_true(is_empty(discard_at(d, 1, "b", 3))) expect_true(is_empty(discard_at(d, 1:3))) expect_true(is_empty(discard_at(d, 3:1))) ee(d, d2) expect_true(is_empty(discard_at(d, colnames(d)))) expect_true(is_empty(discard_at(d, rev(colnames(d))))) ee(d, d2) expect_silent(ref_discard_at(d, "x", 4, 11)) d_was_not_altered = ee(d, d2) expect_true(d_was_not_altered) ee(ref_discard_at(d, "b"), d2[, c(1, 3)]) expect_silent(ref_discard_at(d, "a")) expect_false(ncol(d) == ncol(d2))
doPareto <- function(df_final, objective, nr.fronts){ checkInputParam <- function(df_final, objective, nr.fronts) { if(missing(df_final) || is.null(df_final) || missing(objective) || is.null(objective) || missing(nr.fronts) || is.null(nr.fronts)) { stop("arguments df_final, objective, nr.fronts must be specified") } if(class(df_final)!="data.frame"){ stop("df_final must be a data.frame") } if(class(objective)!="data.frame"){ stop("objective must be a data.frame") } if(!c("mark")%in%colnames(objective)){ stop('objective has to contain "mark" column to indicate z scores you want to operate') } if(!c("obj")%in%colnames(objective)){ stop('objective has to contain "obj" column to indicate the objective of max or min') } if(!all(objective$obj %in% c("min","max"))){ stop('the value of "obj" column of objective has to be "max" or "min"') } if(length(unique(objective$obj)) > 2) { stop('the value of "obj" column of objective has to be "max" or "min"') } if(!all(objective$mark %in% colnames(df_final))){ stop('the value of "mark" column of objective has to be one of the column of the df_final') } } checkInputParam(df_final = df_final, objective = objective, nr.fronts = nr.fronts) p <- rPref::empty() for (i in 1:nrow(objective)) { if(objective[i,]$obj=="max"){ m <- as.character(objective[i,]$mark) a <- rPref::high_(m) }else { m <- as.character(objective[i,]$mark) a <- rPref::low_(m) } p <- p*a } res <- rPref::psel(df = df_final, pref = p, top_level = nr.fronts) names(res)[names(res) == '.level'] <- 'front' return(res) }
jamoviBAplotHistogramClass <- if (requireNamespace('jmvcore')) R6::R6Class( "jamoviBAplotHistogramClass", inherit = jamoviBAplotHistogramBase, private = list( .run = function() { if ( !is.null(self$options$method1) && !is.null(self$options$method2) ) { method1 <- self$options$method1 method2 <- self$options$method2 data <- self$data data[[method1]] <- jmvcore::toNumeric(data[[method1]]) data[[method2]] <- jmvcore::toNumeric(data[[method2]]) results <- blandr.statistics( data[[method1]] , data[[method2]] ) image <- self$results$plot image$setState(results) } }, .plot=function(image, ggtheme, ...) { if ( !is.null(self$options$method1) && !is.null(self$options$method2) ) { plotData <- image$state plot <- blandr.plot.normality( plotData ) plot <- plot + ggtheme print(plot) TRUE } }) )
prepare_autoplot_cstf = function(task, resampling) { data = task$data() data$row_id = task$row_ids data$indicator = "" coords = task$coordinates() coords$row_id = task$row_ids if (grepl("Repeated", class(resampling)[1])) { n_iters = resampling$iters / resampling$repeats(resampling$iters) } else { n_iters = resampling$iters } for (i in seq_len(n_iters)) { row_id_test = resampling$instance$test[[i]] row_id_train = resampling$instance$train[[i]] data$test[data$row_id %in% row_id_test] = i data$train[data$row_id %in% row_id_train] = i } data$Date = as.Date(data$Date) data_coords = merge(data, coords, by = "row_id") return(data_coords) } assert_autoplot = function(object, fold_id, task) { if (!object$is_instantiated) { object = object$instantiate(task) } if (!is.null(fold_id)) { if (length(fold_id) > object$iters) { stopf("More folds specified than stored in resampling.") } if (length(fold_id) == 1 && fold_id > object$iters) { stopf("Specified a fold id which exceeds the total number of folds.") } if (any(fold_id > object$iters)) { stopf("Specified a fold id which exceeds the total number of folds.") } } return(object) } reorder_levels = function(object) { object$indicator = as.factor(as.character(object$indicator)) if ("Omitted" %in% levels(object$indicator)) { object$indicator = ordered(object$indicator, levels = c("Train", "Test", "Omitted")) } else { object$indicator = ordered(object$indicator, levels = c("Train", "Test")) } return(object) }
rating.period <- function(db, ncomp, period){ if (period=="month"){ notNA<-na.omit(db) db.i<-notNA[!rowSums(notNA[,-(1)] == 0) >= 1,] index.u<-(which(db[,-which(names(db) %in% c("datetime"))]==0)) if (length(index.u)==0) { db.u<-db} if(length(index.u)!=0) { db.u<-db[-index.u,]} new<-db.i new$newdate<-format(as.POSIXct(new$datetime), format="%Y-%m") maximum<-length(unique(new$newdate)) index<-vector(length=maximum) for (i in 1:(maximum)){ index[i]<-length(which(new$newdate==(unique(new$newdate)[i])))} result <- vector("list",maximum) for (i in 1:(maximum)){ seldata<-subset(new, new$newdate==unique(new$newdate)[i]) result[[i]]<-log10(seldata[,-which(names(seldata) %in% c("datetime", "newdate"))]) } ols.model<-vector("list", maximum) mat<-matrix(nrow=2, ncol=ncomp) for (j in 1:maximum){ mat.conc<-(result[j]) sel<-do.call(rbind, mat.conc) for (i in 1:ncomp){ ols<-(lm(sel[,i+1]~sel[,1]))$coefficients mat[,i]<-ols} ols.model[[j]]<-mat} db.u$newdate<-format(as.POSIXct(db.u$datetime), format="%Y-%m") maximum2<-length(unique(db.u$newdate)) index2<-vector(length=maximum2) for (i in 1:(maximum2)){ index2[i]<-length(which(db.u$newdate==(unique(db.u$newdate)[i])))} result2 <- vector("list",maximum2) for (i in 1:(maximum2)){ seldata2<-subset(db.u, db.u$newdate==unique(db.u$newdate)[i]) result2[[i]]<-log10(seldata2[,-which(names(seldata2) %in% c("datetime", "newdate"))]) } logconc<-vector("list", maximum2) for (j in 1:maximum2){ coefficic<-ols.model[j] coeffsel<-do.call(rbind, coefficic) flowsel<-result2[j] sel<-do.call(rbind, flowsel) matload<-matrix(nrow=nrow(sel), ncol=ncomp) for(i in 1:ncomp){ matload[,i]<-10^(as.matrix(((coeffsel[1,i]))+coeffsel[2,i]*((sel$flow))))} logconc[[j]]<-matload} concfinal<-do.call(rbind, logconc) colnames(concfinal)<-c(names(db.u[3:(ncomp+2)])) concdate<-cbind.data.frame(db.u$datetime, concfinal) colnames(concdate)[1]<-c("datetime") n<-nrow(db.u) concdate$newdate<-format(as.POSIXct(concdate$datetime), format="%Y-%m-%d") dateday<-aggregate(concdate[,2]~newdate, concdate, mean) colnames(dateday)[1]<-c("datetime") agg.dataC<-matrix(nrow=nrow(dateday), ncol=(ncomp)) for (i in 1:ncomp) { agg.data<-aggregate(concdate[,i+1]~newdate, concdate, mean) agg.dataC[,i]<-as.matrix(agg.data[,2]) concent<-cbind.data.frame(dateday$datetime, agg.dataC) colnames(concent)[1]<-"datetime" colnames(concent)[2:(ncomp+1)]<-c(names(db)[3:(ncomp+2)])} db.u$newdate<-format(as.POSIXct(db.u$datetime), format="%Y-%m-%d") agg.dataQ<-aggregate(flow~newdate, db.u, mean) agg.dataQ$newdate<-as.POSIXct(agg.dataQ$newdate, format = c("%Y-%m-%d")) prodCQ<-as.matrix(concent[,-which(names(concent) %in% c("datetime"))]*(agg.dataQ[,"flow"]*86400)) prodCQdate<-cbind.data.frame(agg.dataQ[,1], prodCQ) colnames(prodCQdate)[1]<-"newdate" prodCQdate$newdate<-format(as.POSIXct(prodCQdate$newdate), format="%Y-%m") aggrg.data<-matrix(nrow=length(unique(prodCQdate$newdate)), ncol=(ncomp)) for(i in 1:(ncomp)){ agg.init<-aggregate(prodCQdate[,i+1]~newdate, prodCQdate, sum) aggrg.data[,i]<-agg.init[,2] colnames(aggrg.data)<-c(names(db.u)[3:(ncomp+2)]) rownames(aggrg.data)<-agg.init[,1]} return(aggrg.data)} if (period=="year"){ notNA<-na.omit(db) db.i<-notNA[!rowSums(notNA[,-(1)] == 0) >= 1,] index.u<-(which(db[,-which(names(db) %in% c("datetime"))]==0)) if (length(index.u)==0) { db.u<-db} if(length(index.u)!=0) { db.u<-db[-index.u,]} new<-db.i new$newdate<-format(as.POSIXct(new$datetime), format="%Y") maximum<-length(unique(new$newdate)) index<-vector(length=maximum) for (i in 1:(maximum)){ index[i]<-length(which(new$newdate==(unique(new$newdate)[i])))} result <- vector("list",maximum) for (i in 1:(maximum)){ seldata<-subset(new, new$newdate==unique(new$newdate)[i]) result[[i]]<-log10(seldata[,-which(names(seldata) %in% c("datetime", "newdate"))]) } ols.model<-vector("list", maximum) mat<-matrix(nrow=2, ncol=ncomp) for (j in 1:maximum){ mat.conc<-(result[j]) sel<-do.call(rbind, mat.conc) for (i in 1:ncomp){ ols<-(lm(sel[,i+1]~sel[,1]))$coefficients mat[,i]<-ols} ols.model[[j]]<-mat} db.u$newdate<-format(as.POSIXct(db.u$datetime), format="%Y") maximum2<-length(unique(db.u$newdate)) index2<-vector(length=maximum2) for (i in 1:(maximum2)){ index2[i]<-length(which(db.u$newdate==(unique(db.u$newdate)[i])))} result2 <- vector("list",maximum2) for (i in 1:(maximum2)){ seldata2<-subset(db.u, db.u$newdate==unique(db.u$newdate)[i]) result2[[i]]<-log10(seldata2[,-which(names(seldata2) %in% c("datetime", "newdate"))]) } logconc<-vector("list", maximum2) for (j in 1:maximum2){ coefficic<-ols.model[j] coeffsel<-do.call(rbind, coefficic) flowsel<-result2[j] sel<-do.call(rbind, flowsel) matload<-matrix(nrow=nrow(sel), ncol=ncomp) for(i in 1:ncomp){ matload[,i]<-10^(as.matrix(((coeffsel[1,i]))+coeffsel[2,i]*((sel$flow))))} logconc[[j]]<-matload} concfinal<-do.call(rbind, logconc) colnames(concfinal)<-c(names(db.u[3:(ncomp+2)])) concdate<-cbind.data.frame(db.u$datetime, concfinal) colnames(concdate)[1]<-c("datetime") n<-nrow(db.u) concdate$newdate<-format(as.POSIXct(concdate$datetime), format="%Y-%m-%d") dateday<-aggregate(concdate[,2]~newdate, concdate, mean) colnames(dateday)[1]<-c("datetime") agg.dataC<-matrix(nrow=nrow(dateday), ncol=(ncomp)) for (i in 1:ncomp) { agg.data<-aggregate(concdate[,i+1]~newdate, concdate, mean) agg.dataC[,i]<-as.matrix(agg.data[,2]) concent<-cbind.data.frame(dateday$datetime, agg.dataC) colnames(concent)[1]<-"datetime" colnames(concent)[2:(ncomp+1)]<-c(names(db)[3:(ncomp+2)])} db.u$newdate<-format(as.POSIXct(db.u$datetime), format="%Y-%m-%d") agg.dataQ<-aggregate(flow~newdate, db.u, mean) agg.dataQ$newdate<-as.POSIXct(agg.dataQ$newdate, format = c("%Y-%m-%d")) prodCQ<-as.matrix(concent[,-which(names(concent) %in% c("datetime"))]*(agg.dataQ[,"flow"]*86400)) prodCQdate<-cbind.data.frame(agg.dataQ[,1], prodCQ) colnames(prodCQdate)[1]<-"newdate" prodCQdate$newdate<-format(as.POSIXct(prodCQdate$newdate), format="%Y") aggrg.data<-matrix(nrow=length(unique(prodCQdate$newdate)), ncol=(ncomp)) for(i in 1:(ncomp)){ agg.init<-aggregate(prodCQdate[,i+1]~newdate, prodCQdate, sum) aggrg.data[,i]<-agg.init[,2] colnames(aggrg.data)<-c(names(db.u)[3:(ncomp+2)]) rownames(aggrg.data)<-agg.init[,1]} return(aggrg.data)}}
senWilcox<-function(d,gamma=1,conf.int=FALSE,alpha=0.05,alternative="greater"){ stopifnot(is.vector(d)&(length(d)>1)) stopifnot(is.vector(gamma)&(length(gamma)==1)&(gamma>=1)) stopifnot((alternative=="greater")|(alternative=="less")|(alternative=="twosided")) stopifnot(is.vector(alpha)&(length(alpha)==1)&(alpha>0)&(alpha<1)) pr<-gamma/(1+gamma) if (alternative=="twosided") crit<-stats::qnorm(1-(alpha/2)) else crit<-stats::qnorm(1-(alpha)) int<-c(min(d),max(d)) devu<-function(taus){ ntaus<-length(taus) res<-rep(NA,ntaus) for (i in 1:ntaus){ dt<-d-taus[i] adt<-abs(dt) rk<-rank(adt)*(adt>0) sg<-1*(dt>0) ts<-sum(sg*rk) ex<-sum(pr*rk) va<-sum(rk*rk)*pr*(1-pr) res[i]<-(ts-ex)/sqrt(va) } res } devl<-function(taus){ ntaus<-length(taus) res<-rep(NA,ntaus) for (i in 1:ntaus){ dt<-taus[i]-d adt<-abs(dt) rk<-rank(adt)*(adt>0) sg<-1*(dt>0) ts<-sum(sg*rk) ex<-sum(pr*rk) va<-sum(rk*rk)*pr*(1-pr) res[i]<-(ts-ex)/sqrt(va) } res } if (alternative=="greater") pval <- 1-stats::pnorm(devu(0)) else if (alternative=="less") pval <- 1-stats::pnorm(devl(0)) else { pvall <- 1-stats::pnorm(devl(0)) pvalu <- 1-stats::pnorm(devu(0)) pval <- min(1,2*min(pvall,pvalu)) } estimate<-c(-Inf,Inf) names(estimate)<-c("low","high") ci<-estimate if ((alternative!="less")&(conf.int==TRUE)) { estimate[1]<-stats::uniroot(devu,int)$root devuCI<-function(taus){devu(taus)-crit} ci[1]<-stats::uniroot(devuCI,int)$root } if ((alternative!="greater")&(conf.int==TRUE)) { estimate[2]<-stats::uniroot(devl,int)$root devuCI<-function(taus){devl(taus)-crit} ci[2]<-stats::uniroot(devuCI,int)$root } if (conf.int==TRUE) list(pval=pval,estimate=estimate,ci=ci) else list(pval=pval) }
get_parameters <- function(x, ...) { UseMethod("get_parameters") } get_parameters.default <- function(x, verbose = TRUE, ...) { if (inherits(x, "list") && .obj_has_name(x, "gam")) { x <- x$gam class(x) <- c(class(x), c("glm", "lm")) return(get_parameters.gam(x, ...)) } tryCatch( { cf <- stats::coef(x) params <- names(cf) if (is.null(params)) { params <- paste(1:length(cf)) } params <- data.frame( Parameter = params, Estimate = unname(cf), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) }, error = function(x) { if (isTRUE(verbose)) { warning(sprintf("Parameters can't be retrieved for objects of class '%s'.", class(x)[1]), call. = FALSE) } return(NULL) } ) } get_parameters.summary.lm <- function(x, ...) { cf <- stats::coef(x) params <- data.frame( Parameter = names(cf[, 1]), Estimate = unname(cf[, 1]), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.data.frame <- function(x, ...) { stop("A data frame is no valid object for this function") } get_parameters.rms <- get_parameters.default get_parameters.tobit <- get_parameters.default get_parameters.model_fit <- function(x, ...) { get_parameters(x$fit, ...) } get_parameters.bfsl <- function(x, ...) { cf <- stats::coef(x) params <- data.frame( Parameter = rownames(cf), Estimate = unname(cf[, "Estimate"]), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.selection <- function(x, component = c("all", "selection", "outcome", "auxiliary"), ...) { component <- match.arg(component) s <- summary(x) rn <- row.names(s$estimate) estimates <- as.data.frame(s$estimate, row.names = FALSE) params <- data.frame( Parameter = rn, Estimate = estimates[[1]], Component = "auxiliary", stringsAsFactors = FALSE, row.names = NULL ) params$Component[s$param$index$betaS] <- "selection" params$Component[s$param$index$betaO] <- "outcome" if (component != "all") { params <- params[params$Component == component, , drop = FALSE] } text_remove_backticks(params) } get_parameters.epi.2by2 <- function(x, ...) { coef_names <- grepl("^([^NNT]*)(\\.strata\\.wald)", names(x$massoc.detail), perl = TRUE) cf <- x$massoc.detail[coef_names] names(cf) <- gsub(".strata.wald", "", names(cf), fixed = TRUE) params <- data.frame( Parameter = names(cf), Estimate = unname(unlist(lapply(cf, function(i) i["est"]))), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.Rchoice <- function(x, ...) { cf <- stats::coef(x) params <- data.frame( Parameter = find_parameters(x, flatten = TRUE), Estimate = as.vector(cf), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.btergm <- function(x, ...) { cf <- x@coef params <- data.frame( Parameter = names(cf), Estimate = as.vector(cf), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.mediate <- function(x, ...) { info <- model_info(x$model.y, verbose = FALSE) if (info$is_linear && !x$INT) { out <- data.frame( Parameter = c("ACME", "ADE", "Total Effect", "Prop. Mediated"), Estimate = c(x$d1, x$z0, x$tau.coef, x$n0), stringsAsFactors = FALSE ) } else { out <- data.frame( Parameter = c( "ACME (control)", "ACME (treated)", "ADE (control)", "ADE (treated)", "Total Effect", "Prop. Mediated (control)", "Prop. Mediated (treated)", "ACME (average)", "ADE (average)", "Prop. Mediated (average)" ), Estimate = c(x$d0, x$d1, x$z0, x$z1, x$tau.coef, x$n0, x$n1, x$d.avg, x$z.avg, x$n.avg), stringsAsFactors = FALSE ) } text_remove_backticks(out) } get_parameters.ridgelm <- function(x, ...) { out <- data.frame( Parameter = names(x$coef), Estimate = as.vector(x$coef), stringsAsFactors = FALSE ) text_remove_backticks(out) } get_parameters.ivFixed <- function(x, ...) { out <- data.frame( Parameter = rownames(x$coefficients), Estimate = as.vector(x$coefficients), stringsAsFactors = FALSE ) text_remove_backticks(out) } get_parameters.ivprobit <- function(x, ...) { out <- data.frame( Parameter = x$names, Estimate = as.vector(x$coefficients), stringsAsFactors = FALSE ) text_remove_backticks(out) } get_parameters.survreg <- function(x, ...) { s <- summary(x) out <- data.frame( Parameter = rownames(s$table), Estimate = as.vector(s$table[, 1]), stringsAsFactors = FALSE ) text_remove_backticks(out) } get_parameters.riskRegression <- function(x, ...) { junk <- utils::capture.output(cs <- stats::coef(x)) out <- data.frame( Parameter = as.vector(cs[, 1]), Estimate = as.numeric(cs[, 2]), stringsAsFactors = FALSE ) text_remove_backticks(out) } get_parameters.mipo <- function(x, ...) { out <- data.frame( Parameter = as.vector(summary(x)$term), Estimate = as.vector(summary(x)$estimate), stringsAsFactors = FALSE ) text_remove_backticks(out) } get_parameters.mira <- function(x, ...) { check_if_installed("mice") get_parameters(mice::pool(x), ...) } get_parameters.margins <- function(x, ...) { s <- summary(x) param <- as.vector(s$factor) estimate_pos <- which(colnames(s) == "AME") if (estimate_pos > 2) { out <- s[1:(estimate_pos - 1)] r <- apply(out, 1, function(i) paste0(colnames(out), " [", i, "]")) param <- unname(sapply(as.data.frame(r), paste, collapse = ", ")) } out <- data.frame( Parameter = param, Estimate = as.vector(summary(x)$AME), stringsAsFactors = FALSE ) text_remove_backticks(out) } get_parameters.glht <- function(x, ...) { s <- summary(x) alt <- switch(x$alternative, two.sided = "==", less = ">=", greater = "<=" ) out <- data.frame( Parameter = paste(names(s$test$coefficients), alt, x$rhs), Estimate = unname(s$test$coefficients), stringsAsFactors = FALSE ) text_remove_backticks(out) } get_parameters.mle2 <- function(x, ...) { check_if_installed("bbmle") s <- bbmle::summary(x) params <- data.frame( Parameter = names(s@coef[, 1]), Estimate = unname(s@coef[, 1]), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.mle <- get_parameters.mle2 get_parameters.lrm <- function(x, ...) { tryCatch( { cf <- stats::coef(x) params <- data.frame( Parameter = names(cf), Estimate = unname(cf), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) }, error = function(x) { NULL } ) } get_parameters.orm <- get_parameters.lrm get_parameters.multinom <- function(x, ...) { params <- stats::coef(x) if (is.matrix(params)) { out <- data.frame() for (i in 1:nrow(params)) { out <- rbind(out, data.frame( Parameter = colnames(params), Estimate = unname(params[i, ]), Response = rownames(params)[i], stringsAsFactors = FALSE, row.names = NULL )) } } else { out <- data.frame( Parameter = names(params), Estimate = unname(params), stringsAsFactors = FALSE, row.names = NULL ) } text_remove_backticks(out) } get_parameters.brmultinom <- get_parameters.multinom get_parameters.mlm <- function(x, ...) { cs <- stats::coef(summary(x)) out <- lapply(names(cs), function(i) { params <- data.frame( Parameter = rownames(cs[[i]]), Estimate = cs[[i]][, 1], Response = gsub("^Response (.*)", "\\1", i), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) }) do.call(rbind, out) } get_parameters.gbm <- function(x, ...) { s <- summary(x, plotit = FALSE) params <- data.frame( Parameter = as.character(s$var), Estimate = s$rel.inf, stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.BBreg <- function(x, ...) { pars <- summary(x)$coefficients params <- data.frame( Parameter = rownames(pars), Estimate = pars[, "Estimate"], stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.rma <- function(x, ...) { tryCatch( { cf <- stats::coef(x) params <- data.frame( Parameter = names(cf), Estimate = unname(cf), stringsAsFactors = FALSE, row.names = NULL ) params$Parameter[grepl("intrcpt", params$Parameter)] <- "(Intercept)" text_remove_backticks(params) }, error = function(x) { NULL } ) } get_parameters.meta_random <- function(x, ...) { tryCatch( { cf <- x$estimates params <- data.frame( Parameter = rownames(cf), Estimate = unname(cf[, 1]), stringsAsFactors = FALSE, row.names = NULL ) params$Parameter[grepl("d", params$Parameter)] <- "(Intercept)" text_remove_backticks(params) }, error = function(x) { NULL } ) } get_parameters.meta_fixed <- get_parameters.meta_random get_parameters.meta_bma <- get_parameters.meta_random get_parameters.metaplus <- function(x, ...) { params <- data.frame( Parameter = rownames(x$results), Estimate = unname(x$results[, 1]), stringsAsFactors = FALSE, row.names = NULL ) params$Parameter[grepl("muhat", params$Parameter)] <- "(Intercept)" text_remove_backticks(params) } get_parameters.blavaan <- function(x, summary = FALSE, centrality = "mean", ...) { check_if_installed("lavaan") check_if_installed("blavaan") draws <- blavaan::blavInspect(x, "draws") posteriors <- as.data.frame(as.matrix(draws)) param_tab <- lavaan::parameterEstimates(x) params <- paste0(param_tab$lhs, param_tab$op, param_tab$rhs) coef_labels <- names(lavaan::coef(x)) if ("group" %in% colnames(param_tab) && .n_unique(param_tab$group) > 1) { params <- paste0(params, " (group ", param_tab$group, ")") groups <- grepl("(.*)\\.g(.*)", coef_labels) coef_labels[!groups] <- paste0(coef_labels[!groups], " (group 1)") coef_labels[groups] <- gsub("(.*)\\.g(.*)", "\\1 \\(group \\2\\)", coef_labels[groups]) } are_labels <- !coef_labels %in% params if (any(are_labels)) { unique_labels <- unique(coef_labels[are_labels]) for (ll in seq_along(unique_labels)) { coef_labels[coef_labels == unique_labels[ll]] <- params[param_tab$label == unique_labels[ll]] } } colnames(posteriors) <- coef_labels if (isTRUE(summary)) { posteriors <- .summary_of_posteriors(posteriors, centrality = centrality) posteriors$Component <- NA posteriors$Component[grepl("=~", posteriors$Parameter, fixed = TRUE)] <- "latent" posteriors$Component[grepl("~~", posteriors$Parameter, fixed = TRUE)] <- "residual" posteriors$Component[grepl("~1", posteriors$Parameter, fixed = TRUE)] <- "intercept" posteriors$Component[is.na(posteriors$Component)] <- "regression" } posteriors } get_parameters.lavaan <- function(x, ...) { check_if_installed("lavaan") params <- lavaan::parameterEstimates(x) params$parameter <- paste0(params$lhs, params$op, params$rhs) params$comp <- NA params$comp[params$op == "~"] <- "regression" params$comp[params$op == "=~"] <- "latent" params$comp[params$op == "~~"] <- "residual" params$comp[params$op == "~1"] <- "intercept" params <- data.frame( Parameter = params$parameter, Estimate = params$est, Component = params$comp, stringsAsFactors = FALSE ) text_remove_backticks(params) } get_parameters.polr <- function(x, ...) { pars <- c(sprintf("Intercept: %s", names(x$zeta)), names(x$coefficients)) params <- data.frame( Parameter = pars, Estimate = c(unname(x$zeta), unname(x$coefficients)), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.bracl <- function(x, ...) { pars <- stats::coef(x) params <- data.frame( Parameter = names(pars), Estimate = unname(pars), Response = gsub("(.*):(.*)", "\\1", names(pars)), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.aov <- function(x, ...) { cf <- stats::coef(x) params <- data.frame( Parameter = names(cf), Estimate = unname(cf), stringsAsFactors = FALSE, row.names = NULL ) text_remove_backticks(params) } get_parameters.aovlist <- function(x, ...) { cs <- stats::coef(x) out <- do.call(rbind, lapply(names(cs), function(i) { params <- data.frame( Parameter = names(cs[[i]]), Estimate = unname(cs[[i]]), Group = i, stringsAsFactors = FALSE ) text_remove_backticks(params) })) rownames(out) <- NULL out } get_parameters.manova <- function(x, ...) { params <- stats::na.omit(stats::coef(x)) out <- .gather(as.data.frame(params), names_to = "Response", values_to = "Estimate") out$Parameter <- rownames(out) out <- out[c("Parameter", "Estimate", "Response")] rownames(out) <- NULL pattern <- paste0("(", paste0(paste0(".", unique(out$Response)), collapse = "|"), ")$") out$Parameter <- gsub(pattern, "", out$Parameter) text_remove_backticks(out) } get_parameters.maov <- get_parameters.manova get_parameters.afex_aov <- function(x, ...) { if (!is.null(x$aov)) { get_parameters(x$aov, ...) } else { get_parameters(x$lm, ...) } } get_parameters.pgmm <- function(x, component = c("conditional", "all"), ...) { component <- match.arg(component) cs <- stats::coef(summary(x, time.dummies = TRUE, robust = FALSE)) params <- data.frame( Parameter = rownames(cs), Estimate = unname(cs[, 1]), Component = "conditional", stringsAsFactors = FALSE, row.names = NULL ) params$Component[params$Parameter %in% x$args$namest] <- "time_dummies" if (component == "conditional") { params <- params[params$Component == "conditional", ] params <- .remove_column(params, "Component") } text_remove_backticks(params) } .get_armsim_fixef_parms <- function(x) { sn <- methods::slotNames(x) as.data.frame(methods::slot(x, sn[1])) } .get_armsim_ranef_parms <- function(x) { dat <- NULL if (methods::.hasSlot(x, "ranef")) { re <- x@ranef dat <- data.frame() for (i in 1:length(re)) { dn <- dimnames(re[[i]])[[2]] cn <- dimnames(re[[i]])[[3]] l <- lapply(1:length(dn), function(j) { d <- as.data.frame(re[[i]][, j, ]) colnames(d) <- sprintf("%s.%s", cn, dn[j]) d }) if (ncol(dat) == 0) { dat <- do.call(cbind, l) } else { dat <- cbind(dat, do.call(cbind, l)) } } } dat }
cmat.star <- function(plist, CorrMat, no.ord, no.norm){ if (no.norm==0 & no.ord>1) { Sigma = IntermediateOO(plist, CorrMat) } if (no.norm>1 & no.ord==0) { Sigma = CorrMat } if (no.norm==1 & no.ord==1) { if ( validate.target.cormat(plist, CorrMat, no.ord, no.norm)) { ON = IntermediateON(plist, CorrMat[(no.ord+1):nrow(CorrMat), 1:no.ord] ) Sigma = diag(2) Sigma[lower.tri((Sigma))] = ON Sigma = Sigma + t(Sigma) diag(Sigma) = 1} } if (no.norm>1 & no.ord==1) { if ( validate.target.cormat(plist, CorrMat, no.ord, no.norm)) { ON = IntermediateON(plist, CorrMat[(no.ord+1):nrow(CorrMat), 1:no.ord] ) NN = CorrMat[(no.ord+1):ncol(CorrMat), (no.ord+1):ncol(CorrMat) ] Sigma = cbind(c(1,ON), rbind(ON,NN) ) if(!is.positive.definite(Sigma)){ warning( "Intermediate correlation matrix is not positive definite. A nearPD function is applied.") Sigma=as.matrix(nearPD(Sigma, corr = TRUE, keepDiag = TRUE)$mat) } Sigma = ( Sigma+t(Sigma) )/2 } } if (no.norm==1 & no.ord>1) { if ( validate.target.cormat(plist, CorrMat, no.ord, no.norm)) { OO = IntermediateOO(plist, CorrMat[1:no.ord,1:no.ord]) ON = IntermediateON(plist, CorrMat[(no.ord+1):nrow(CorrMat), 1:no.ord] ) Sigma = cbind(rbind(OO,ON), c(ON,1) ) if(!is.positive.definite(Sigma)){ warning( "Intermediate correlation matrix is not positive definite. A nearPD function is applied.") Sigma=as.matrix(nearPD(Sigma, corr = TRUE, keepDiag = TRUE)$mat) } Sigma = ( Sigma+t(Sigma) )/2 } } if (no.norm>1 & no.ord>1) { if ( validate.target.cormat(plist, CorrMat, no.ord, no.norm)) { OO = IntermediateOO(plist, CorrMat[1:no.ord,1:no.ord]) ON = IntermediateON(plist, CorrMat[(no.ord+1):nrow(CorrMat), 1:no.ord] ) NN = CorrMat[(no.ord+1):ncol(CorrMat), (no.ord+1):ncol(CorrMat) ] Sigma = cbind(rbind(OO,ON), rbind(t(ON),NN) ) if(!is.positive.definite(Sigma)){ warning( "Intermediate correlation matrix is not positive definite. A nearPD function is applied.") Sigma=as.matrix(nearPD(Sigma, corr = TRUE, keepDiag = TRUE)$mat) } Sigma = ( Sigma+t(Sigma) )/2 } } rownames(Sigma)<-NULL return(Sigma) }
plot.reco <- function(x, ...){ x <- x[[1]] plot(R ~ Temp, data=x$model, ...) nd <- seq(min(x$model$Temp), max(x$model$Temp), length.out=100) lines(predict(x, newdata=data.frame(Temp=nd)) ~ nd) }
info_sidra <- function(x, wb = FALSE) { if (!is.logical(wb)) { stop("'wb' argument must be TRUE or FALSE") } else if (wb == FALSE || wb == F) { a <- xml2::read_html(paste0("http://api.sidra.ibge.gov.br/desctabapi.aspx?c=", x)) tab1 = a %>% rvest::html_nodes(" rvest::html_text() tab2 = a %>% rvest::html_nodes(" rvest::html_text() table <- list("table" = paste0("Tabela ", tab1, ": ", tab2)) p1 = a %>% rvest::html_nodes(" rvest::html_text() period <- list("period" = p1) v1 <- a %>% rvest::html_nodes(" rvest::html_text() v2 <- a %>% rvest::html_table(fill = TRUE, trim = TRUE) v2 <- v2[[2]] v3 <- data.frame(cod = apply(v2, 1, stringr::str_extract,"[[:digit:]]+"), desc = apply(v2, 1, stringr::str_replace_all, "([[:digit:]])", "")) v3$cod <- stringr::str_trim(v3$cod) v3$desc <- stringr::str_trim(v3$desc) v3$desc <- stringr::str_replace(v3$desc, " - casas decimais: padr\uE3o = , m\uE1ximo =", "") variables <- list("variable" = v3) c1 <- rvest::html_nodes(a, "table") %>% rvest::html_table(fill = TRUE, trim = TRUE) %>% unlist() %>% stringr::str_extract("\\C[0-9]+") %>% stringr::str_subset("\\C[0-9]+") %>% base::tolower() if (length(c1) >= 1) { lc1 <- length(c1) c2 <- a %>% rvest::html_nodes(".tituloLinha:nth-child(4)") %>% rvest::html_text() c3 <- a %>% rvest::html_nodes(".tituloLinha:nth-child(5)") %>% rvest::html_text() c4 <- paste(c1, "=", c2, c3) c5 <- list() for (i in 0:(lc1-1)) { c5[[i+1]] <- a %>% rvest::html_nodes(paste0(" rvest::html_text() %>% stringr::str_replace("\\[[^]]*]", "NA") c5[[i+1]] <- c5[[i+1]][c5[[i+1]] != "NA"] c5[[i+1]] <- data.frame(cod = c5[[i+1]][seq(1, length(c5[[i+1]]), 2)], desc = c5[[i+1]][seq(2, length(c5[[i+1]]), 2)]) } names(c5) <- c4 classific_category <- list("classific_category" = c5) } else { classific_category <- list("classific_category" = NULL) } trad.geo <- data.frame(cod = as.character(c("n1","n2","n3","n8","n9","n7","n13","n14","n15","n23","n6","n10", "n11","n102")), cod2 = as.character(c("Brazil","Region","State","MesoRegion","MicroRegion", "MetroRegion","MetroRegionDiv","IRD","UrbAglo","PopArrang", "City", "District","subdistrict","Neighborhood")), level = c(1:14), order = c(1:5, 10:14, 6:9)) n1 <- rvest::html_nodes(a, "table") %>% rvest::html_table(fill = TRUE, trim = TRUE) %>% unlist() %>% stringr::str_extract("N[0-9]+") %>% stringr::str_subset("N[0-9]+") %>% tolower() %>% as.data.frame() n2 <- a %>% rvest::html_nodes("p+ n3 <- a %>% rvest::html_nodes("p+ n4 <- data.frame(desc = paste(n2, n3)) n5 <- cbind(n1, n4) ngeo <- merge(trad.geo, n5, by.x = "cod", by.y = ".") ngeo <- ngeo[c("cod2","desc")] names(ngeo) <- c("cod","desc") ngeo <- list(geo = ngeo) info <- c(table, period, variables, classific_category, ngeo) return(info) } else if (wb == TRUE || wb == T) { p <- readline(prompt = "Can the web browser be open? (y/n): ") if (p == "y" | p == "Y") { shell.exec(paste0("http://api.sidra.ibge.gov.br/desctabapi.aspx?c=", x)) } else { stop(paste("Sorry, I need your permission to show the parameters of the table", x)) } } }
renewDis <- function(ttf, ttr, time, n, printSummary=TRUE){ ttf <- as.numeric(ttf) ttr <- as.numeric(ttr) time <- as.numeric(time) n <- as.integer(n) if(length(time) != 1 || length(n) != 1) stop("time and n should be of lenght 1") res <- as.matrix(rep(as.numeric(NA), n), ncol=1) for(i in 1:n){ tt <- 0 it <- 1 while(tt < time){ tt <- sum(c(tt, sample(ttf, 1))) tt <- sum(c(tt, sample(ttr, 1))) it <- it + 1 } res[i,1] <- it } if(printSummary){ cat(paste(" The estimated MEAN NUMBER Of RENEWALS is", round(mean(res[,1]), 2))) cat("\n") cat("number of renewals EBD\n") print(summary(c(res))) } invisible(as.numeric(res)) }
WilliamsDesign.Equivalence <- function(alpha,beta,sigma,sequence,delta,margin){ n<-(qnorm(1-alpha)+qnorm(1-beta/2))^2*sigma/(sequence*(margin-abs(delta))^2) n }
add_timings <- function( trajectory, timings ) { assert_that(is_data_wrapper(trajectory)) if (is.data.frame(timings)) { timings <- tibble::deframe(timings) } if (is.numeric(timings) && !is.null(timings)) { timings <- as.list(timings) } assert_that(is.list(timings)) trajectory %>% extend_with( "dynwrap::with_timings", timings = timings ) } is_wrapper_with_timings <- function(trajectory) { is_data_wrapper(trajectory) && "dynwrap::with_timings" %in% class(trajectory) } add_timing_checkpoint <- function(timings, name) { if (is.null(timings)) { timings <- list() } timings[[name]] <- as.numeric(Sys.time()) timings }
source("RSquared.R") library(LiblineaR) set.seed(1) N=10 df=data.frame(x1 = (1:N)/N*10 + 2*rnorm(N), x2 = (1:N)/N*10 + 2*rnorm(N), x3 = (1:N)/N*10 + 2*rnorm(N)) df$y.regr = apply(as.matrix(df),1,mean) + 2*rnorm(N) df$y.logical = df$y.regr > 5.5 df$y.int = ifelse(df$y.logical, 1L, -1L) df$y.double = as.double(df$y.int) df$y.char = as.character(df$y.int) df$y.factor = factor(df$y.int) df$y.factorRev = factor(df$y.int, levels=rev(levels(df$y.factor))) df$y.factorExtra = factor(df$y.int, levels=c(-1,1,99), labels=c("no","yes","maybe")) df$y.multiclass = cut(df$y.regr, breaks=c(-99,4,7,99)) regrTargets = "y.regr" classifTargets = setdiff(grep("^y",colnames(df), value=TRUE), regrTargets) binTargets = setdiff(classifTargets,"y.multiclass") testClassif = function(rev,yy,weighted,tt) { cat("Testing",rev,yy,weighted,tt,"\n") if(rev) is=1:nrow(df) else is=nrow(df):1 nis = which(!df[is,"y.logical"]) if(weighted) wi=c("1"=2,"TRUE"=2,"yes"=2, "(7,99]"=1, "(4,7]"=50, "-1"=100,"FALSE"=100,"no"=100,"(-99,4]"=150) else wi=NULL y = df[is,yy] x = df[is,1:3] m = LiblineaR(x, y, type = tt, wi=wi) p = predict(m, newx = x) res=c( type=tt, target=yy, weighted=weighted, y1 = as.character(y[1]), perf=(mean(as.character(y)==as.character(p$predictions))), perfNeg=(mean(as.character(y[nis])==as.character(p$predictions[nis]))), dimW=paste(dim(m$W), collapse = " "), sumW=sum(m$W[,1:3]), biasW=m$W[1,][["Bias"]], classNames=paste(m$ClassNames, collapse = " "), yLev=paste(levels(y), collapse=" "), predLev=paste(levels(p$predictions), collapse=" "), yClass=class(y), predClass=class(p$predictions), weights=paste(colnames(m$W),"=",round(m$W[1,],3),collapse = " ; ") ) return(res) } testRegr = function(rev,yy,tt) { cat("Testing",rev,yy,tt,"\n") if(rev) is=1:nrow(df) else is=nrow(df):1 y = df[is,yy] x = df[is,1:3] m = LiblineaR(x, y, type = tt, svr_eps=.1) p = predict(m, newx = x) res=c( type=tt, target=yy, weighted=FALSE, y1 = as.character(y[1]), perf=RSquared(p$predictions, y), perfNeg=0, dimW=paste(dim(m$W), collapse = " "), sumW=sum(m$W[,1:3]), biasW=m$W[1,][["Bias"]], classNames=paste(m$ClassNames, collapse = " "), yLev=paste(levels(y), collapse=" "), predLev=paste(levels(p$predictions), collapse=" "), yClass=class(y), predClass=class(p$predictions), weights=paste(colnames(m$W),"=",round(m$W[1,],3),collapse = " ; ") ) return(res) } allRes=NULL for(tt in 0:7) { for(weighted in c(FALSE,TRUE)) { for(rev in c(FALSE,TRUE)) { for (yy in classifTargets) { res = testClassif(rev,yy,weighted,tt) allRes=rbind(allRes,res) browser() } } } } for(tt in 11:13) { for(rev in c(FALSE,TRUE)) { for (yy in regrTargets) { res = testRegr(rev,yy,tt) allRes=rbind(allRes,res) } } } allRes = as.data.frame(allRes,stringsAsFactors = F) allRes$dimOK=(allRes$type=="4" | allRes$target=="y.multiclass" | allRes$dimW=="1 4") allRes$perfOK=(allRes$target=="y.multiclass" & allRes$perf>=.6 | ifelse(allRes$weighted, allRes$perfNeg>=.9, allRes$perf>=.75)) allRes$sumOK=(!allRes$target%in%c("y.int","y.double") | allRes$type=="4" | as.numeric(allRes$sumW)>0) allRes$biasOK=(!allRes$target%in%c("y.int","y.double") | allRes$type=="4" | as.numeric(allRes$biasW)<0) allRes$levelsOK=(allRes$target%in%c("y.char","y.double") | (allRes$yLev==allRes$predLev & allRes$yClass==allRes$predClass))
mdes.bcrd4r2 <- function(score = NULL, dists = "normal", k1 = -6, k2 = 6, order = 1, interaction = FALSE, treat.lower = TRUE, cutoff = 0, p = NULL, power = .80, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1, rho2, rho3, rho4, omega3, omega4, r21 = 0, r22 = 0, r2t3 = 0, r2t4 = 0, g4 = 0, rate.tp = 1, rate.cc = 0, n1, n2, n3, n4) { user.parms <- as.list(match.call()) .error.handler(user.parms) if(df < 1) stop("Insufficient degrees of freedom", call. = FALSE) if(!is.null(score) & order == 0) warning("Ignoring information from the 'score' object \n", call. = FALSE) if(order == 0) { d <- 1 if(is.null(p)) stop("'p' cannot be NULL in random assignment designs", call. = FALSE) idx.score <- intersect(c("dists", "k1", "k2", "interaction", "treat.lower", "cutoff"), names(user.parms)) if(length(idx.score) > 0) cat("\nCAUTION: Ignoring argument(s):", sQuote(names(user.parms[idx.score])), "\n") ifelse(treat.lower, cutoff <- p, cutoff <- 1 - p) interaction <- FALSE dists <- "uniform" k1 <- 0 k2 <- 1 } else if(order %in% 1:8) { if(is.null(score)) { score <- inspect.score(order = order, interaction = interaction, treat.lower = treat.lower, cutoff = cutoff, p = p, k1 = k1, k2 = k2, dists = dists) } else { if("p" %in% names(user.parms)) warning("Using 'p' from the 'score' object, ignoring 'p' in the function call", call. = FALSE) if(!inherits(score, "score")) { score <- inspect.score(score = score, order = order, interaction = interaction, treat.lower = treat.lower, cutoff = cutoff, p = p, k1 = k1, k2 = k2, dists = dists) } else { idx.score <- intersect(c("dists", "k1", "k2", "order", "interaction", "treat.lower", "p", "cutoff"), names(user.parms)) if(length(idx.score) > 0) cat("\nCAUTION: 'score' object overwrites argument(s):", sQuote(names(user.parms[idx.score])), "\n") } } d <- score$rdde p <- score$p cutoff <- score$cutoff treat.lower <- score$treat.lower order <- score$order interaction <- score$interaction dists <- score$parms$dists k1 <- score$parms$k1 k2 <- score$parms$k2 } else if(order > 8) { stop("'order' > 8 is not allowed", call. = FALSE) } sse <- (1/(rate.tp - rate.cc)) * sqrt(rho4 * omega4 * (1 - r2t4) / n4 + rho3 * omega3 * (1 - r2t3) / (n4 * n3) + d * (rho2 * (1 - r22) / (p * (1 - p) * n4 * n3 * n2) + (1 - rho4 - rho3 - rho2) * (1 - r21) / (p * (1 - p) * n4 * n3 * n2 * n1))) mdes <- .mdes(power, alpha, sse, df, two.tailed) colnames(mdes) <- c("mdes", paste0(100 * (1 - round(alpha, 2)), "%lcl"), paste0(100 * (1 - round(alpha, 2)), "%ucl")) mdes.out <- list(parms = list(dists = dists, k1 = k1, k2 = k2, order = order, interaction = interaction, treat.lower = treat.lower, p = p, cutoff = cutoff, power = power, alpha = alpha, two.tailed = two.tailed, rho2 = rho2, rho3 = rho3, rho4 = rho4, omega3 = omega3, omega4 = omega4, r21 = r21, r22 = r22, r2t3 = r2t3, r2t4 = r2t4, g4 = g4, rate.tp = rate.tp, rate.cc = rate.cc, n1 = n1, n2 = n2, n3 = n3, n4 = n4), df = df, sse = sse, mdes = mdes) class(mdes.out) <- c("mdes", "bcrd4r2") .summary.mdes(mdes.out) return(invisible(mdes.out)) } power.bcrd4r2 <- function(score = NULL, dists = "normal", k1 = -6, k2 = 6, order = 1, interaction = FALSE, treat.lower = TRUE, cutoff = 0, p = NULL, es = .25, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1, rho2, rho3, rho4, omega3, omega4, r21 = 0, r22 = 0, r2t3 = 0, r2t4 = 0, g4 = 0, rate.tp = 1, rate.cc = 0, n1, n2, n3, n4) { user.parms <- as.list(match.call()) .error.handler(user.parms) if(df < 1) stop("Insufficient degrees of freedom", call. = FALSE) if(!is.null(score) & order == 0) warning("Ignoring information from the 'score' object \n", call. = FALSE) if(order == 0) { d <- 1 if(is.null(p)) stop("'p' cannot be NULL in random assignment designs", call. = FALSE) idx.score <- intersect(c("dists", "k1", "k2", "interaction", "treat.lower", "cutoff"), names(user.parms)) if(length(idx.score) > 0) cat("\nCAUTION: Ignoring argument(s):", sQuote(names(user.parms[idx.score])), "\n") ifelse(treat.lower, cutoff <- p, cutoff <- 1 - p) interaction <- FALSE dists <- "uniform" k1 <- 0 k2 <- 1 } else if(order %in% 1:8) { if(is.null(score)) { score <- inspect.score(order = order, interaction = interaction, treat.lower = treat.lower, cutoff = cutoff, p = p, k1 = k1, k2 = k2, dists = dists) } else { if("p" %in% names(user.parms)) warning("Using 'p' from the 'score' object, ignoring 'p' in the function call", call. = FALSE) if(!inherits(score, "score")) { score <- inspect.score(score = score, order = order, interaction = interaction, treat.lower = treat.lower, cutoff = cutoff, p = p, k1 = k1, k2 = k2, dists = dists) } else { idx.score <- intersect(c("dists", "k1", "k2", "order", "interaction", "treat.lower", "p", "cutoff"), names(user.parms)) if(length(idx.score) > 0) cat("\nCAUTION: 'score' object overwrites argument(s):", sQuote(names(user.parms[idx.score])), "\n") } } d <- score$rdde p <- score$p cutoff <- score$cutoff treat.lower <- score$treat.lower order <- score$order interaction <- score$interaction dists <- score$parms$dists k1 <- score$parms$k1 k2 <- score$parms$k2 } else if(order > 8) { stop("'order' > 8 is not allowed", call. = FALSE) } sse <- (1/(rate.tp - rate.cc)) * sqrt(rho4 * omega4 * (1 - r2t4) / n4 + rho3 * omega3 * (1 - r2t3) / (n4 * n3) + d * (rho2 * (1 - r22) / (p * (1 - p) * n4 * n3 * n2) + (1 - rho4 - rho3 - rho2) * (1 - r21) / (p * (1 - p) * n4 * n3 * n2 * n1))) power <- .power(es, alpha, sse, df, two.tailed) power.out <- list(parms = list(dists = dists, k1 = k1, k2 = k2, order = order, interaction = interaction, treat.lower = treat.lower, p = p, cutoff = cutoff, es = es, alpha = alpha, two.tailed = two.tailed, rho2 = rho2, rho3 = rho3, rho4 = rho4, omega3 = omega3, omega4 = omega4, r21 = r21, r22 = r22, r2t3 = r2t3, r2t4 = r2t4, g4 = g4, rate.tp = rate.tp, rate.cc = rate.cc, n1 = n1, n2 = n2, n3 = n3, n4 = n4), df = df, sse = sse, power = power) class(power.out) <- c("power", "bcrd4r2") .summary.power(power.out) return(invisible(power.out)) } cosa.bcrd4r2 <- function(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL, order = 1, interaction = FALSE, treat.lower = TRUE, cutoff = 0, p = NULL, cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL, n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL, n0 = c(10, 3, 100, 5 + g4), p0 = .499, constrain = "power", round = TRUE, max.power = FALSE, local.solver = c("LBFGS", "SLSQP"), power = .80, es = .25, alpha = .05, two.tailed = TRUE, rho2, rho3, rho4, omega3, omega4, g4 = 0, r21 = 0, r22 = 0, r2t3 = 0, r2t4 = 0) { user.parms <- as.list(match.call()) .error.handler(user.parms, fun = "cosa") if(!is.null(rhots)) { if(rhots == 0) { if(order != 0) { order <- 0 warning("'order' argument is ignored, forcing 'order = 0' because 'rhots = 0'", call. = FALSE) } } else { stop("'rhots' argument will be removed in the future, arbitrary correlations are not allowed, use inspect.score() function instead", call. = FALSE) } } if(!is.null(score) & order == 0) warning("Ignoring information from the 'score' object \n", call. = FALSE) if(order == 0) { d <- 1 idx.score <- intersect(c("dists", "k1", "k2", "interaction", "treat.lower", "cutoff"), names(user.parms)) if(length(idx.score) > 0) cat("\nCAUTION: Ignoring argument(s):", sQuote(names(user.parms[idx.score])), "\n") cutoff <- NA interaction <- FALSE dists <- "uniform" k1 <- 0 k2 <- 1 } else if(order %in% 1:8) { if(is.null(score)) { score <- inspect.score(order = order, interaction = interaction, treat.lower = treat.lower, cutoff = cutoff, p = p, k1 = k1, k2 = k2, dists = dists) } else { if("p" %in% names(user.parms)) warning("Using 'p' from the 'score' object, ignoring 'p' in the function call", call. = FALSE) if(!inherits(score, "score")) { score <- inspect.score(score = score, order = order, interaction = interaction, treat.lower = treat.lower, cutoff = cutoff, p = p, k1 = k1, k2 = k2, dists = dists) } else { idx.score <- intersect(c("dists", "k1", "k2", "order", "interaction", "treat.lower", "p", "cutoff"), names(user.parms)) if(length(idx.score) > 0) cat("\nCAUTION: 'score' object overwrites argument(s):", sQuote(names(user.parms[idx.score])), "\n") } } d <- score$rdde p <- score$p cutoff <- score$cutoff treat.lower <- score$treat.lower order <- score$order interaction <- score$interaction dists <- score$parms$dists k1 <- score$parms$k1 k2 <- score$parms$k2 } else if(order > 8) { stop("'order' > 8 is not allowed", call. = FALSE) } fun <- "cosa.bcrd4r2" lb <- c(1, 1, 1, g4 + 2) if(!is.null(n4)) { if(n4[1] < lb[4]) stop("Lower bound for 'n4' violate minimum degrees of freedom requirement", call. = FALSE) } .df <- quote(n4 - g4 - 1) .sse <- quote(sqrt(rho4 * omega4 * (1 - r2t4) / n4 + rho3 * omega3 * (1 - r2t3) / (n4 * n3) + d * (rho2 * (1 - r22) / (p * (1 - p) * n4 * n3 * n2) + (1 - rho4 - rho3 - rho2) * (1 - r21) / (p * (1 - p) * n4 * n3 * n2 * n1)))) .cost <- quote(n4 * cn4 + n4 * n3 * cn3 + n4 * n3 * n2 * (cn2[2] + p * (cn2[1] - cn2[2])) + n4 * n3 * n2 * n1 * (cn1[2] + p * (cn1[1] - cn1[2]))) .var.jacob <- expression( c( -d * (1 - rho4 - rho3 - rho2) * (1 - r21) / (p * (1 - p) * n2 * n3 * n4 * n1^2), -d * rho2 * (1 - r22) / (p * (1 - p) * n2^2 * n3 * n4) - d * (1 - rho4 - rho3 - rho2) * (1 - r21) / (p * (1 - p) * n2^2 * n3 * n4 * n1), -rho3 * omega3 * (1 - r2t3) / (n3^2 * n4) - d * rho2 * (1 - r22) / (p * (1 - p) * n2 * n3^2 * n4) - d * (1 - rho4 - rho3 - rho2) * (1 - r21) / (p * (1 - p) * n2 * n3^2 * n4 * n1), -rho4 * omega4 * (1 - r2t4) / n4^2 - rho3 * omega3 * (1 - r2t3) / (n3 * n4^2) - d * rho2 * (1 - r22) / (p * (1 - p) * n2 * n3 * n4^2) - d * (1 - rho4 - rho3 - rho2) * (1 - r21) / (p * (1 - p) * n2 * n3 * n4^2 * n1), -(1 - 2 * p) * d * rho2 * (1 - r22) / ((1 - p)^2 * p^2 * n2 * n3 * n4) - (1 - 2 * p) * d * (1 - rho4 - rho3 - rho2) * (1 - r21) / ((1 - p)^2 * p^2 * n2 * n3 * n4 * n1) ) ) .cost.jacob <- expression( c( n4 * n3 * n2 * (p * cn1[1] + (1 - p) * cn1[2]), n4 * n3 * (p * cn2[1] + (1 - p) * cn2[2]) + n4 * n3 * n1 * (p * cn1[1] + (1 - p) * cn1[2]), n4 * cn3 + n4 * n2 * (p * cn2[1] + (1 - p) * cn2[2]) + n4 * n2 * n1 * (p * cn1[1] + (1 - p) * cn1[2]), cn4 + n3 * cn3 + n3 * n2 * (p * cn2[1] + (1 - p) * cn2[2]) + n3 * n2 * n1 * (p * cn1[1] + (1 - p) * cn1[2]), n4 * n3 * n2 * (cn2[1] - cn2[2]) + n4 * n3 * n2 * n1 * (cn1[1] - cn1[2]) ) ) if(all(cn1 == 0) & all(cn2 == 0) & is.null(p)) p <- .50 cosa <- .cosa(order = order, interaction = interaction, cn1 = cn1, cn2 = cn2, cn3 = cn3, cn4 = cn4, cost = cost, constrain = constrain, round = round, max.power = max.power, local.solver = local.solver, power = power, es = es, alpha = alpha, two.tailed = two.tailed, rho2 = rho2, rho3 = rho3, rho4 = rho4, omega3 = omega3, omega4 = omega4, r21 = r21, r22 = r22, r2t3 = r2t3, r2t4 = r2t4, g4 = g4, p0 = p0, p = p, n0 = n0, n1 = n1, n2 = n2, n3 = n3, n4 = n4) cosa.out <- list(parms = list(dists = dists, k1 = k1, k2 = k2, order = order, interaction = interaction, treat.lower = treat.lower, cutoff = cutoff, cn1 = cn1, cn2 = cn2, cn3 = cn3, cn4 = cn4, cost = cost, constrain = constrain, round = round, max.power = max.power, local.solver = local.solver, power = power, es = es, alpha = alpha, two.tailed = two.tailed, rho2 = rho2, rho3 = rho3, rho4 = rho4, omega3 = omega3, omega4 = omega4, r21 = r21, r22 = r22, r2t3 = r2t3, r2t4 = r2t4, g4 = g4, p0 = p0, p = p, n0 = n0, n1 = n1, n2 = n2, n3 = n3, n4 = n4), cosa = cosa) class(cosa.out) <- c("cosa", "bcrd4r2") .summary.cosa(cosa.out) return(invisible(cosa.out)) }
print.summary.ldbglm <-function(x,digits = 2,...){ if (!inherits(x,"summary.ldbglm")) stop("use only with \"summary.ldbglm\" objects") x$call[[1]]<-as.name("ldbglm") cat("\nCall: ", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n", sep = "") if (!is.character(x$family)) cat(gettextf("\nfamily: %s",x$family$family),"\n") else cat("\nfamily: gaussian\n") cat("\nDeviance Residuals:\n") print(summary(as.numeric(format(round(x$deviance.resid,digits=4))))) if (x$family$family %in% c("poisson","binomial")) cat(gettextf("\n(Dispersion parameter for %s family taken to be %i)", x$family$family,x$dispersion),"\n") else cat(gettextf("\n(Dispersion parameter for %s family taken to be %f)", x$family$family,x$dispersion),"\n") cat(gettextf("\n Null deviance: %s on %i degrees of freedom", format(round(x$null.deviance,digits)),x$df.null)) cat(gettextf("\nResidual deviance: %s on %s equivalent number of degrees of freedom", format(round(x$residual.deviance,digits=digits)),format(round(x$df.residual,digits=digits))),"\n") cat(gettextf("\nNumber of Observations: %i",x$nobs)) cat(gettextf("\nTrace of smoothing matrix: %s",format(round(x$trace.hat,2))),"\n") cat("\nSummary of distances between data:\n") print(x$summary.dist1) if (x$method.h!="user.h") cat(gettextf("\nOptimal bandwidth h : %f",x$h.opt),"\n") else cat(gettextf("\nUser bandwidth h : %f",x$h.opt),"\n") cat(paste(gettextf("Percentile of bandwidth in the distance matrix= %s", format(round(x$percentile.h.opt,2))),"%",sep=""),"\n\n") if(!is.null(x$crit.value)){ cat("Bandwidth choice based on ",x$method.h,"\n") cat(paste(x$method.h, "value criterion :", format(round(x$crit.value,digits)),"\n")) } cat(gettextf("\nKind of kernel= %s",x$kind.kernel),"\n") cat("\n") }