code
stringlengths
1
13.8M
publish.MIresult <- function(object, confint.method, pvalue.method, digits=c(2,4), print=TRUE, factor.reference="extraline", intercept, units=NULL, fit, data, ...){ pvalMIresult <- function(object){ se <- sqrt(diag(stats::vcov(object))) p <- 2*stats::pnorm(-abs(object$coef/se)) p } if (missing(fit)) stop("Need the model fitted in the complete cases.") object$xlevels <- fit$xlevels object$formula <- fit$formula if (missing(data)){ if (is.null(fit$data)) stop("Need original data set via argument 'data' because argument 'fit' does not provide them.") else{ object$data <- fit$data } }else object$data <- data object$terms <- fit$terms class(object) <- c(class(object),class(fit)) if ('glm' %in% class(fit)) object$family <- fit$family if (!missing(confint.method) && confint.method!="default") stop("Can only do simple Wald confidence intervals based on MIresults.") if (!missing(pvalue.method)) stop("Can only do simple Wald test p-values based on MIresults.") if (missing(intercept)){ intercept <- 1*(class(fit)[1] == "lm" || (class(fit)[1]=="glm" && stats::family(fit)!="binomial")) } rt <- regressionTable(object, confint.method="default", pvalue.method=pvalMIresult, factor.reference=factor.reference, intercept=intercept, units=units) srt <- summary.regressionTable(rt, digits=digits, print=FALSE,...) XXsrt <- do.call(labelUnits,c(list(x=srt),list(...),srt$Variable)) if (print==TRUE) publish(srt$regressionTable,...) invisible(srt) }
test_that("Mmethods() messages",{ expect_error(Mmethods("Ogle"), "should be one of") }) test_that("metaM() messages",{ expect_error(metaM("Ogle"), "should be one of") expect_error(metaM("tmax"), "must be given to") expect_error(metaM("PaulyL",Linf=200,K=0.3), "must be given to") expect_error(metaM("PaulyL",Linf=200,T=10), "must be given to") expect_error(metaM("PaulyL",K=0.3,T=10), "must be given to") expect_error(metaM("PaulyL",K=0.3,a=3), "unused argument") expect_error(metaM("HoenigO"), "must be given to") expect_error(metaM("HoenigO",Linf=200), "must be given to") expect_warning(metaM("PaulyL",Linf=200,K=0.3,T=-3), "seems unreasonable") expect_warning(metaM("PaulyL",Linf=200,K=0.3,T=33), "seems unreasonable") expect_error(metaM("PaulyL",Linf=200,K=-0.3,T=13), "'K' must be positive") expect_error(metaM("PaulyL",Linf=0,K=0.3,T=13), "'Linf' must be positive") expect_warning(metaM("PaulyL",Linf=2000,K=0.3,T=13), "'Linf' value seems unreasonable") expect_error(metaM("HoenigO",tmax=0), "'tmax' must be positive") expect_warning(metaM("HoenigO",tmax=110), "'tmax' value seems unreasonable") expect_error(metaM("K1",K=0), "'K' must be positive") expect_warning(metaM("K1",K=5), "'K' value seems unreasonable") }) test_that("metaM() output",{ meths <- c("PaulyL","PaulyW","HoenigO","HoenigOF","HoenigO2","HoenigO2F", "JensenK1","Gislason","AlversonCarney","Charnov","ZhangMegreyD", "RikhterEfanov1","RikhterEfanov2") for (i in meths) { expect_is(metaM(i,tmax=3,Linf=12.93,Winf=20.79,K=0.23,t0=-1.23, b=3.22,t50=0.83,T=17,L=3),"numeric") } for (i in meths) { tmp <- metaM(i,justM=FALSE,tmax=3,Linf=12.93,Winf=20.79,K=0.23,t0=-1.23, b=3.22,t50=0.83,T=17,L=3) expect_is(tmp,"metaM") expect_equal(mode(tmp),"list") expect_equal(tmp[["method"]],i) expect_message(print(tmp)) } tmp <- metaM(meths[1:2],tmax=3,Linf=12.93,Winf=20.79,K=0.23,t0=-1.23, b=3.22,t50=0.83,T=17,L=3) expect_is(tmp,"data.frame") expect_equal(nrow(tmp),2) expect_equal(names(tmp),c("method","M")) expect_equal(tmp$method,meths[1:2]) expect_equal(ncol(tmp),2) tmp <- metaM(meths,tmax=3,Linf=12.93,Winf=20.79, K=0.23,t0=-1.23,b=3.22,t50=0.83,T=17,L=3) expect_is(tmp,"data.frame") expect_equal(nrow(tmp),length(meths)) expect_equal(names(tmp),c("method","M")) expect_equal(tmp$method,meths) expect_equal(ncol(tmp),2) expect_message(tmp <- metaM(meths,justM=FALSE,tmax=3,Linf=12.93,Winf=20.79, K=0.23,t0=-1.23,b=3.22,t50=0.83,T=17,L=3)) tmp <- metaM(Mmethods("tmax"),tmax=3,Linf=12.93,Winf=20.79, K=0.23,t0=-1.23,b=3.22,t50=0.83,T=17,L=3) expect_is(tmp,"data.frame") expect_equal(nrow(tmp),length(Mmethods("tmax"))) expect_equal(names(tmp),c("method","M")) expect_equal(tmp$method,Mmethods("tmax")) expect_equal(ncol(tmp),2) tmp <- metaM(Mmethods("K"),tmax=3,Linf=12.93,Winf=20.79, K=0.23,t0=-1.23,b=3.22,t50=0.83,T=17,L=3) expect_is(tmp,"data.frame") expect_equal(nrow(tmp),length(Mmethods("K"))) expect_equal(names(tmp),c("method","M")) expect_equal(tmp$method,Mmethods("K")) expect_equal(ncol(tmp),2) tmp <- metaM(Mmethods("Pauly"),tmax=3,Linf=12.93,Winf=20.79, K=0.23,t0=-1.23,b=3.22,t50=0.83,T=17,L=3) expect_is(tmp,"data.frame") expect_equal(nrow(tmp),length(Mmethods("Pauly"))) expect_equal(names(tmp),c("method","M")) expect_equal(tmp$method,Mmethods("Pauly")) expect_equal(ncol(tmp),2) tmp <- metaM(Mmethods("Hoenig"),tmax=3,Linf=12.93,Winf=20.79, K=0.23,t0=-1.23,b=3.22,t50=0.83,T=17,L=3) expect_is(tmp,"data.frame") expect_equal(nrow(tmp),length(Mmethods("Hoenig"))) expect_equal(names(tmp),c("method","M")) expect_equal(tmp$method,Mmethods("Hoenig")) expect_equal(ncol(tmp),2) }) test_that("metaM() matches results from Kenchington (2014)",{ meths <- c("PaulyL","PaulyW","HoenigO","HoenigOF","HoenigO2","HoenigO2F", "JensenK1","Gislason","AlversonCarney","Charnov","ZhangMegreyD", "RikhterEfanov1","RikhterEfanov2") tmp <- metaM(meths,tmax=3,Linf=12.93,Winf=20.79,K=0.23,t0=-1.23, b=3.22,t50=0.83,T=17,L=3) tmp <- data.frame(tmp,expM=c(0.69,0.66,1.43,1.42,1.69,1.83,0.35,2.71, 2.30,2.06,1.17,1.58,1.22)) expect_equivalent(round(tmp$M,2)[-7],tmp$expM[-7]) tmp <- metaM(meths,tmax=8,Linf=8.306,Winf=8.68,K=0.204,t0=-0.64, b=3.26,t50=2,T=8,L=2) tmp <- data.frame(tmp,expM=c(0.51,0.46,0.55,0.61,0.58,0.64,0.31, 2.44,0.71,1.73,0.77,0.77,0.93)) expect_equivalent(round(tmp$M,2)[-c(4,6)],tmp$expM[-c(4,6)]) meths <- c("PaulyL","PaulyW","HoenigO","HoenigOF","HoenigO2","HoenigO2F", "JensenK1","Gislason","AlversonCarney","Charnov","ZhangMegreyP", "RikhterEfanov1","RikhterEfanov2") tmp <- metaM(meths,tmax=5.5,Linf=19.76,Winf=17.3,K=0.571,t0=-0.91 ,b=3.276,t50=0.49,T=19,L=10) tmp <- data.frame(tmp,expM=c(1.16,1.30,0.79,0.77,0.88,0.87,0.86, 1.78,0.75,1.59,0.33,2.39,1.53)) expect_equivalent(round(tmp$M,2),tmp$expM) }) test_that("metaM() matches M.empirical() from fishmethods for Rio Formosa Seahorse",{ if (require(fishmethods)) { meths <- c("PaulyL","PaulyW","HoenigO","HoenigOF","AlversonCarney","Gislason") tmp <- metaM(meths,tmax=5.5,Linf=19.76,Winf=17.3,K=0.571,t0=-0.91, b=3.276,t50=0.49,T=19,L=10) tmp2 <- M.empirical(Linf=19.76,Winf=17.3,Kl=0.571,Kw=0.571,TC=19, Bl=10,tmax=5.5,method=c(1:4,9)) tmp <- data.frame(tmp,tmp2) expect_equivalent(round(tmp$M,3),tmp$M.1) } })
load_fasta <- function(msa, keep.singletons=FALSE) { if(class(msa)=="character"){ if (!file.exists(msa)) stop("Invalid msa or the file does not exist!") seqs <- ape::read.FASTA(msa) } else if(class(msa)=="matrix"){ seqs <- ape::as.DNAbin(msa) } else if(class(msa)=="DNAbin"){ seqs <- msa } else{ stop("incorrect input for msa!") } if (!is.logical(keep.singletons)) stop("Invalid keep.singletons! Must be on of TRUE/FALSE.") seq_names <- labels(seqs) seqs <- as.character(as.matrix(seqs)) rownames(seqs) <- seq_names seqs[is.na(seqs)] <- "-" if (nrow(seqs)<3) stop("Less than 3 sequences!") warning("Characters not in acgtnACGTN- will be treated as missing (-)...") conserved <- colSums(t(t(seqs)==seqs[1,]))==nrow(seqs) seqs <- seqs[, !conserved] if(!keep.singletons){ is_singleton <- apply(seqs, 2, function(x){ tab <- table(x) return(x %in% names(tab)[tab==1]) }) seqs[is_singleton] <- "-" } seqs[seqs=="n"] <- "-" return(seqs) }
mwin <- function (dat,win,conv=1,verbose=T) { if(verbose) cat("\n----- DETERMINING PARAMETERS OF DYNAMIC MOVING WINDOW -----\n") dat=data.frame(dat) ipts <- length(dat[,1]) if(verbose) cat(" * Number of data points=", ipts,"\n") if(conv != 1 && conv != 2 && conv != 3) { cat("\n**** ERROR: conv must be set to 1, 2, or 3\n") stop("**** TERMINATING NOW!") } if(conv == 1 || conv == 2) { if(verbose) cat(" * Sorting\n") dat <- dat[order(dat[,1],na.last=NA,decreasing=F),] } if(conv == 3) { if(verbose) cat(" * Sorting\n") dat <- dat[order(dat[,1],na.last=NA,decreasing=T),] dat[1]=-1*dat[1] } if(length(dat[,1]) != ipts) { cat("\n**** ERROR: empty entires found\n") stop("**** TERMINATING NOW!") } dtest <- dat[2:ipts,1]-dat[1:(ipts-1),1] if(any(dtest == 0)) { cat("\n**** ERROR: duplicate stratigraphic levels found.\n") stop("**** TERMINATING NOW!") } x <- dat[,1] getwin1 <- function (ipts,win,x) { F_dat = .Fortran( 'mwincenter_r', ipts=as.integer(ipts),winsize=as.double(win),x=as.double(x), npts=integer(1),n1=integer(ipts),n2=integer(ipts),avex=double(ipts), midx1=double(ipts),midx2=double(ipts) ) return(F_dat) } getwin2 <- function (ipts,win,x) { F_dat = .Fortran( 'mwin_r', ipts=as.integer(ipts),winsize=as.double(win),x=as.double(x), npts=integer(1),n1=integer(ipts),n2=integer(ipts),avex=double(ipts), midx1=double(ipts),midx2=double(ipts) ) return(F_dat) } if(conv == 1) out <- getwin1(ipts,win,x) if(conv == 2 || conv == 3) out <- getwin2(ipts,win,x) npts=out$npts out2=data.frame(cbind(out$n1[1:npts],out$n2[1:npts],out$avex[1:npts],out$midx1[1:npts],out$midx2[1:npts])) colnames(out2) = c("n1","n2","avex","center","midpoint") if(conv == 3) { out2[3] = -1*out2[3] out2[4] = -1*out2[4] out2[5] = -1*out2[5] out2[,1] = ipts - out$n2[1:npts] + 1 out2[,2] = ipts - out$n1[1:npts] + 1 out2 <- out2[order(out2[,4],na.last=NA,decreasing=F),] } if(verbose) { if(any(out2[,1]==out2[,2])) cat("\n**** WARNING: some windows contain only one data point!\n") } return(out2) }
setGeneric( name = "getCellSize", def = function(object, ...) { standardGeneric("getCellSize") } )
test_that("`predict_coding_impact` works", { path2annovar_csv <- system.file("extdata/example.hg19_multianno.csv", package = "driveR") expect_is(metapred_df <- predict_coding_impact(path2annovar_csv), "data.frame") expect_equal(ncol(metapred_df), 2) tmp <- read.csv(path2annovar_csv) tmp <- tmp[tmp$CADD_phred == ".", ] path2corner <- tempfile() write.csv(tmp, path2corner, row.names = FALSE) expect_is(metapred_df <- predict_coding_impact(path2corner), "data.frame") expect_equal(nrow(metapred_df), 0) expect_equal(ncol(metapred_df), 2) }) test_that("`predict_coding_impact` argument checks work", { expect_error(predict_coding_impact("invalid/path/to/csv"), "The file used for `annovar_csv_path` does not exist") path2annovar_csv <- system.file("extdata/example.hg19_multianno.csv", package = "driveR") annovar_df <- read.csv(path2annovar_csv) annovar_df$Gene.refGene <- NULL path2annovar_csv <- tempfile() write.csv(annovar_df, path2annovar_csv, row.names = FALSE) nec_cols <- c("Gene.refGene", "SIFT_score", "Polyphen2_HDIV_score", "LRT_score", "MutationTaster_score", "MutationAssessor_score", "FATHMM_score", "GERP.._RS", "phyloP7way_vertebrate", "CADD_phred", "VEST3_score", "SiPhy_29way_logOdds", "DANN_score") expect_error(predict_coding_impact(path2annovar_csv), paste0("The table in `annovar_csv_path` should contain all of the following columns: ", paste(dQuote(nec_cols), collapse = ", "))) path2annovar_csv <- system.file("extdata/example.hg19_multianno.csv", package = "driveR") expect_error(predict_coding_impact(path2annovar_csv, keep_highest_score = "INVALID"), "`keep_highest_score` should be logical") expect_error(predict_coding_impact(path2annovar_csv, keep_single_symbol = "INVALID"), "`keep_single_symbol` should be logical") }) test_that("`create_features_df` works", { path2annovar_csv <- system.file("extdata/example.hg19_multianno.csv", package = "driveR") path2phenolyzer_out <- system.file("extdata/example.annotated_gene_list", package = "driveR") expect_is(features_df <- create_features_df(annovar_csv_path = path2annovar_csv, scna_df = example_scna_table, phenolyzer_annotated_gene_list_path = path2phenolyzer_out), "data.frame") expect_equal(ncol(features_df), 27) expect_is(create_features_df(annovar_csv_path = path2annovar_csv, scna_df = example_scna_table, prep_phenolyzer_input = TRUE), "character") path2annovar_csv <- system.file("extdata/example_cohort.hg19_multianno.csv", package = "driveR") path2phenolyzer_out <- system.file("extdata/example_cohort.annotated_gene_list", package = "driveR") expect_is(features_df <- create_features_df(annovar_csv_path = path2annovar_csv, scna_df = example_cohort_scna_table, phenolyzer_annotated_gene_list_path = path2phenolyzer_out, batch_analysis = TRUE), "data.frame") expect_equal(ncol(features_df), 27) tmp <- read.csv(path2annovar_csv) tmp <- tmp[tmp$CADD_phred == ".", ] path2corner <- tempfile() write.csv(tmp, path2corner, row.names = FALSE) expect_is(features_df <- create_features_df(annovar_csv_path = path2corner, scna_df = example_scna_table, phenolyzer_annotated_gene_list_path = path2phenolyzer_out), "data.frame") expect_equal(ncol(features_df), 27) tmp <- tmp[1:2, ] tmp$cosmic91_coding <- tmp$cosmic91_noncoding <- "." path2corner <- tempfile() write.csv(tmp, path2corner, row.names = FALSE) tmp_scna_table <- example_scna_table[1:2, ] tmp_scna_table$log2ratio <- .1 expect_warning(features_df <- create_features_df(annovar_csv_path = path2corner, scna_df = tmp_scna_table, phenolyzer_annotated_gene_list_path = path2phenolyzer_out)) }) test_that("`create_features_df` argument check works", { expect_error(create_features_df(prep_phenolyzer_input = "INVALID"), "`prep_phenolyzer_input` should be logical") }) test_that("`prioritize_driver_genes` works", { expect_is(drivers_df <- prioritize_driver_genes(example_features_table, "LUAD"), "data.frame") }) test_that("`prioritize_driver_genes` argument check works", { expect_error(prioritize_driver_genes(example_features_table, "INVALID"), "`cancer_type` should be one of the short names in `MTL_submodel_descriptions`") expect_error(prioritize_driver_genes(matrix()), "`features_df` should be a data frame") expect_error(prioritize_driver_genes(example_features_table[, -1], "LUAD"), "`features_df` should contain exactly 27 columns") req_names <- c("gene_symbol", "metaprediction_score", "noncoding_score", "scna_score", "hotspot_double_hit", "phenolyzer_score", "hsa03320", "hsa04010", "hsa04020", "hsa04024", "hsa04060", "hsa04066", "hsa04110", "hsa04115", "hsa04150", "hsa04151", "hsa04210", "hsa04310", "hsa04330", "hsa04340", "hsa04350", "hsa04370", "hsa04510", "hsa04512", "hsa04520", "hsa04630", "hsa04915") tmp <- example_features_table colnames(tmp)[1] <- "INVALID" expect_error(prioritize_driver_genes(tmp, "LUAD"), paste0("`features_df` should contain the following columns: ", paste(dQuote(req_names), collapse = ", "))) })
library("rentrez") library("httr") library("XML") library("ape") library("BoSSA") set_config(config(http_version = 0)) tree <- read.tree(paste(find.package("BoSSA"),"/extdata/polerovirus_from_genbank_MAFFT.tre",sep="")) plot(tree,cex=0.4,no.margin=TRUE) nodelabels(cex=0.8) root_tree <- root(tree,node=231,resolve=TRUE) plot(root_tree,cex=0.4,no.margin=TRUE) write.tree(root_tree,"polerovirus_ROOTED.tre") refpkg_path <- paste(find.package("BoSSA"),"/extdata/polerovirus.refpkg",sep="") refpkg(refpkg_path) refpkg(refpkg_path,type="tree",cex.text=0.3,rank_tree="species") refpkg(refpkg_path,type="pie",rank_pie="species",cex.text=0.6) refpkg(refpkg_path,type="krona") citation("BoSSA")
beta_bda_prior <- function(x) { return(-2.5 * log(x[1] + x[2])) } beta_gamma_prior <- function(x, hpars) { return(stats::dgamma(x[1], shape = hpars[1], rate = hpars[2], log = TRUE) + stats::dgamma(x[2], shape = hpars[3], rate = hpars[4], log = TRUE)) } beta_gamma_hpars <- function() { return(c(1, 0.01, 1, 0.01)) } beta_phi_to_theta <- function(phi) { apb <- exp(phi[2]) beta <- apb / (1 + exp(phi[1])) return(c(apb - beta, beta)) } beta_log_j <- function(theta) { return(-log(theta[1]) - log(theta[2])) } beta_init_ests <- function(data, param) { prob <- data[, 1] / data[, 2] mp <- mean(prob) vp <- stats::var(prob) if (vp < mp * (1 - mp)) { mult <- (mp * (1 - mp) / vp - 1) alpha <- mp * mult beta <- (1 - mp) * mult } else { alpha <- 0.1 beta <- alpha * mp / (1 - mp) } if (param == "trans") { init <- c(log(alpha / beta), log(alpha + beta)) } else { init <- c(alpha, beta) } return(init) } beta_create_ru_list <- function(param) { d <- 2L var_names <- c("alpha", "beta") if (param == "trans") { lower <- c(-Inf, -Inf) upper <- c(Inf, Inf) } else { lower <- c(0, 0) upper <- c(Inf, Inf) } return(list(d = d, lower = lower, upper = upper, var_names = var_names)) }
ki_station_list <- function(hub, search_term, bounding_box, group_id, return_fields) { garbage <- c( "^ "^Template\\s", "\\sTEST$", "\\sTEMP$", "\\stest\\s" ) if (missing(return_fields)) { return_fields <- "station_name,station_no,station_id,station_latitude,station_longitude" } else { if (!inherits(return_fields, "character")) { stop( "User supplied return_fields must be comma separated string or vector of strings" ) } } api_url <- check_hub(hub) api_query <- list( service = "kisters", type = "queryServices", request = "getStationList", format = "json", kvp = "true", returnfields = paste( return_fields, collapse = "," ) ) if (!missing(search_term)) { search_term <- paste(search_term, toupper(search_term), tolower(search_term), sep = "," ) api_query[["station_name"]] <- search_term } if (!missing(bounding_box)) { bounding_box <- paste(bounding_box, collapse = ",") api_query[["bbox"]] <- bounding_box } if (!missing(group_id)) { api_query[["stationgroup_id"]] <- group_id } raw <- tryCatch( { httr::GET( url = api_url, query = api_query, httr::timeout(15) ) }, error = function(e) { return(e) } ) check_ki_response(raw) raw_content <- httr::content(raw, "text") json_content <- jsonlite::fromJSON(raw_content) if (inherits(json_content, "character")) { return("No matches for search term.") } content_dat <- tibble::as_tibble( x = json_content, .name_repair = "minimal" )[-1, ] names(content_dat) <- json_content[1, ] if ("station_name" %in% names(content_dat)) { content_dat <- content_dat[!grepl( paste(garbage, collapse = "|"), content_dat$station_name ), ] } content_dat <- suppressWarnings( dplyr::mutate_at( content_dat, dplyr::vars( dplyr::one_of(c("station_latitude", "station_longitude")) ), as.double ) ) return(content_dat) }
hct_method_single <- function(dummy, mu0, p, m, n, hct, alpha0, p1, ss, sampling.p) { n1=ceiling(n*sampling.p) n2=n-n1 tau=2*mu0/(sqrt(1/n1+1/n2)) zscore_alt=rt(m, df=n-2, ncp=tau) pvalue_alt=2*pt(abs(zscore_alt),df=n-2, lower.tail=F) pvalue_null=gen_sim_pvalue_null(p, m, alpha0) pvalue=c(pvalue_alt, pvalue_null) pvalue=sort(pvalue, method='quick')[1:ceiling(p*alpha0)] pvalue_threshold=hct(pvalue, p, n) u=(sum(zscore_alt>=0 & pvalue_alt<=pvalue_threshold)-sum(zscore_alt < 0 & pvalue_alt<=pvalue_threshold))*mu0 v=sum(pvalue<=pvalue_threshold) get_pcc_ss(u, v, p1, ss) }
eval_compactness_loc <- function(gene_sigs_list,names_sigs, mRNA_expr_matrix, names_datasets, out_dir = '~',file=NULL,showResults = FALSE,radar_plot_values,logged=T,origin=NULL){ grDevices::dev.new() max_title_length <- -999 for(i in 1:length(names_sigs)){ for(j in 1:length(names_datasets)){ if(nchar(paste0(names_datasets[[j]] ,' ',names_sigs[[i]])) > max_title_length){ max_title_length <- nchar(paste0(names_datasets[[j]] ,' ',names_sigs[[i]])) } } } graphics::par(cex.main=min(0.8,(3*6/max_title_length)),cex.lab = 0.6,oma=c(2,0,0,0),mar=c(0,0,0,0)) hmaps <- lapply(1:(length(names_sigs) *length(names_datasets)),function(i) { dataset_ind <- i %% length(names_datasets) if (dataset_ind == 0 ){ dataset_ind <- length(names_datasets) } sig_ind <- ceiling(i/length(names_datasets)) gene_sig <- gene_sigs_list[[names_sigs[sig_ind]]] if(is.matrix(gene_sig)){gene_sig = as.vector(gene_sig);} data.matrix = mRNA_expr_matrix[[names_datasets[dataset_ind]]] inter <- intersect(gene_sig, row.names(data.matrix)) autocors <- stats::cor(t(stats::na.omit(data.matrix[inter,])),method='spearman') if(!dir.exists(file.path(out_dir,'autocorrelation_matrices'))){ dir.create(file.path(out_dir,'autocorrelation_matrices')) } utils::write.table(autocors,file=file.path(out_dir,'autocorrelation_matrices', paste0('autocorrelation_matrix_',names_sigs[sig_ind],'_',names_datasets[dataset_ind],'.txt')),quote=F,sep='\t') tryCatch({ gplots::heatmap.2( stats::na.omit(autocors), col = gplots::colorpanel(100,"blue","white","red"), trace = "none", na.color="grey", labRow=rownames(autocors), labCol=colnames(autocors), main = paste0("\n\nIntra-sig. Corr.\n", names_datasets[[dataset_ind]] ,' ',names_sigs[[sig_ind]]), dendrogram = "col", symbreaks = T, Rowv = T,Colv=T ,key.xlab='Rho',key.ylab=NA, key.title=NA,cexRow=max(min(0.5,(4*4/length(rownames(autocors)))),0.06),cexCol=max(min(0.5,(4*4/length(rownames(autocors)))),0.06),margins=c(1+(max(nchar(rownames(autocors)))/2),1+ (max(nchar(rownames(autocors)))/2))) }, error=function(err){ graphics::plot.new() graphics::title(paste0('\n\nToo many NA values in \n',names_datasets[dataset_ind],' ',names_sigs[sig_ind])) cat(paste0("There was an error, ",names_datasets[dataset_ind]," ", names_sigs[sig_ind]," ", err,'\n'), file=file) }) grab_grob() }) draw.heatmaps(hmaps,names_datasets,names_sigs) grDevices::dev.copy(grDevices::pdf,file.path(out_dir,'sig_autocor_hmps.pdf'),width=4*(length(names_datasets)),height=4*(length(names_sigs))) if(grDevices::dev.cur()!=1){ g <- grDevices::dev.off() } if(grDevices::dev.cur()!=1){ g <- grDevices::dev.off() } graphics::par(mar=c(0,0,0,0),cex=0.6) graphics::plot.new() legend_names <- c() legend_cols <- c() legend_lty <- c() for(k in 1:length(names_sigs)){ for (i in 1:length(names_datasets) ){ legend_names <- c(legend_names,paste0(names_datasets[i],' ',names_sigs[k])) legend_cols <- c(legend_cols,i) legend_lty <- c(legend_lty,k) } } l <- graphics::legend(0, 0,legend_names,col=legend_cols,lty=legend_lty,lwd=rep(1,times=(length(names_datasets) * length(names_sigs))),pt.cex=1,cex=min(0.5,(4*10/max_title_length)), plot=FALSE) w <- graphics::grconvertX(l$rect$w, to='ndc')- graphics::grconvertX(0, to='ndc') w <- graphics::grconvertX(w,from="ndc",to="inches") + graphics::grconvertX(10,from="device",to="inches") if (showResults){ grDevices::dev.new() }else{ grDevices::pdf(file.path(out_dir,'sig_autocor_dens.pdf'),width=5,height=5) } graphics::par(cex.main=0.8,cex.lab = 0.6,mar=c(3,3,4,1),mfrow=c(1,1),xpd=TRUE,omi=(c(0,0,0,w))) max_dens <- -9999 max_x_coord <- -9999 for(k in 1:length(names_sigs)){ gene_sig <- gene_sigs_list[[names_sigs[k]]] if(is.matrix(gene_sig)){gene_sig = as.vector(gene_sig);} for (i in 1:length(names_datasets) ){ data.matrix = mRNA_expr_matrix[[names_datasets[i]]] inter <- intersect(gene_sig, row.names(data.matrix)) autocors <- stats::cor(t(stats::na.omit(data.matrix[inter,])),method='spearman') if(dim(autocors)[1] > 1){ cur_max <- max(stats::density(unlist(stats::na.omit(autocors)))$y) if (max_dens < cur_max){ max_dens <- cur_max } cur_max <- max(stats::density(unlist(stats::na.omit(autocors)))$x) if (max_x_coord < cur_max){ max_x_coord <- cur_max } } } } plots_count <- 0 for(k in 1:length(names_sigs)){ gene_sig <- gene_sigs_list[[names_sigs[k]]] if(is.matrix(gene_sig)){gene_sig = as.vector(gene_sig);} for (i in 1:length(names_datasets) ){ data.matrix = mRNA_expr_matrix[[names_datasets[i]]] inter <- intersect(gene_sig, row.names(data.matrix)) autocors <- stats::cor(t(stats::na.omit(data.matrix[inter,])),method='spearman') if(dim(autocors)[1] > 1){ if (plots_count==0){ graphics::plot(stats::density(unlist(stats::na.omit(autocors))),ylim=c(0,ceiling(max_dens)),xlim=c(-1,1),col=i,main=NA,lwd=2,lty=k) plots_count <- 1 }else{ graphics::lines(stats::density(unlist(stats::na.omit(autocors))),ylim=c(0,ceiling(max_dens)),xlim=c(-1,1),col=i,main=NA,lwd=2,lty=k) } radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['autocor_median'] <- stats::median(autocors,na.rm=T) }else{ radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['autocor_median'] <- 0 } } } graphics::mtext(side = 2, line = 2, 'Density',cex=0.8) graphics::mtext(side = 1, line = 2, 'Rho',cex=0.8) graphics::mtext(side = 3, line = 2,'Intra-sig. Corr. Density') op <- graphics::par(cex=0.6) graphics::legend(graphics::par('usr')[2]+0.05, graphics::par('usr')[4],xpd=NA,legend_names,col=legend_cols,lty=legend_lty,lwd=rep(1,times=(length(names_datasets) * length(names_sigs))),pt.cex=1,cex=min(0.5,(4*10/max_title_length))) if(showResults){ grDevices::dev.copy(grDevices::pdf,file.path(out_dir,'sig_autocor_dens.pdf'),width=5,height=5) } if(grDevices::dev.cur()!=1){ g <- grDevices::dev.off() } if (length(names_datasets) > 1){ for(k in 1:length(names_sigs)){ gene_sig <- gene_sigs_list[[names_sigs[k]]] if(is.matrix(gene_sig)){gene_sig = as.vector(gene_sig);} if (showResults){ grDevices::dev.new() }else{ grDevices::pdf(file.path(out_dir,paste0('sig_autocor_rankProd_',names_sigs[k],'.pdf')),width=10,height=10) } graphics::par(cex.main=0.8,cex.lab = 0.6,oma=c(2,2,2,2),mar=c(4,4,4,4)) overall_rank_mat <- matrix(NA,nrow=length(unique(gene_sig)),ncol=length(names_datasets)) row.names(overall_rank_mat) <- unique(gene_sig) colnames(overall_rank_mat) <- names_datasets for (i in 1:length(names_datasets)){ data.matrix = mRNA_expr_matrix[[names_datasets[i]]] inter = intersect(unique(gene_sig),rownames(data.matrix)) autocors <- stats::cor(t(stats::na.omit(data.matrix[inter,])),method='spearman') median_scores <- as.matrix(apply(autocors,2,function(x) {stats::median(stats::na.omit(x))})) overall_rank_mat[rownames(median_scores),i] <- median_scores[,1] } if(is.null(origin)){ origin <- rep(1,length(names_datasets)) } RP.out <-RankProd::RPadvance(data = overall_rank_mat,cl = rep(1,times=length(names_datasets)),origin = origin ,logged = T,gene.names=rownames(overall_rank_mat)) RankProd::plotRP(RP.out ,cutoff=0.05) table_rank_prod <- cbind(RP.out$pfp,RP.out$pval,RP.out$RPs) colnames(table_rank_prod) <- c(paste0("pfp_",colnames(RP.out$pfp)),paste0('p_val',colnames(RP.out$pval)),paste0("Rank_Product_",colnames(RP.out$RPs))) if(!dir.exists(file.path(out_dir,'rank_prod'))){ dir.create(file.path(out_dir,'rank_prod')) } utils::write.csv(table_rank_prod[order(table_rank_prod[,1]),],file=file.path(out_dir, 'rank_prod',paste0('rank_product_table1_',names_sigs[k],'.txt')),quote=F) utils::write.csv(table_rank_prod[order(table_rank_prod[,2]),],file=file.path(out_dir, 'rank_prod',paste0('rank_product_table2_',names_sigs[k],'.txt')),quote=F) cat("Intra-sig. corr. rank product successfully computed.\n", file=file) if(showResults){ grDevices::dev.copy(grDevices::pdf,file.path(out_dir,paste0('sig_autocor_rankProd_',names_sigs[k],'.pdf')),width=10,height=10) } if(grDevices::dev.cur()!=1){ g <- grDevices::dev.off() } } cat("Intra-sig. corr. metrics successfully computed.\n", file=file) }else{ cat("Rank product not computed as there is only one dataset.\n", file=file) } radar_plot_values }
.row_names_info <- function(x, type = 1L) .Internal(shortRowNames(x, type)) row.names <- function(x) UseMethod("row.names") row.names.data.frame <- function(x) as.character(attr(x, "row.names")) row.names.default <- function(x) if(!is.null(dim(x))) rownames(x) .set_row_names <- function(n) if(n > 0) c(NA_integer_, -n) else integer() `row.names<-` <- function(x, value) UseMethod("row.names<-") `.rowNamesDF<-` <- function(x, make.names = FALSE, value) { if (!is.data.frame(x)) x <- as.data.frame(x) n <- .row_names_info(x, 2L) if(is.null(value)) { attr(x, "row.names") <- .set_row_names(n) return(x) } if( is.object(value) || !is.integer(value) ) value <- as.character(value) if(n == 0L) { if(!is.null(attr(x, "row.names")) && length(value) > 0L) stop("invalid 'row.names' length") } else if (length(value) != n) { if(isFALSE(make.names)) stop("invalid 'row.names' length") else if(is.na(make.names)) { attr(x, "row.names") <- .set_row_names(n) return(x) } else if(!isTRUE(make.names)) stop("invalid 'make.names'") else if((nv <- length(value)) < n) value <- c(value, rep_len(value[nv], n-nv)) else value <- value[seq_len(n)] } if (anyDuplicated(value)) { if(isFALSE(make.names)) { nonuniq <- sort(unique(value[duplicated(value)])) warning(ngettext(length(nonuniq), sprintf("non-unique value when setting 'row.names': %s", sQuote(nonuniq[1L])), sprintf("non-unique values when setting 'row.names': %s", paste(sQuote(nonuniq), collapse = ", "))), domain = NA, call. = FALSE) stop("duplicate 'row.names' are not allowed") } else if(is.na(make.names)) { value <- .set_row_names( if(n == 0L && is.null(.row_names_info(x, 0L)) && length(x) > 0L) length(x[[1L]]) else n) } else if(!isTRUE(make.names)) stop("invalid 'make.names'") else value <- make.names(value, unique=TRUE) } else if (anyNA(value)) { if(isFALSE(make.names)) stop("missing values in 'row.names' are not allowed") if(is.na(make.names)) value <- .set_row_names(n) else if(!isTRUE(make.names)) stop("invalid 'make.names'") else value <- make.names(value, unique=TRUE) } attr(x, "row.names") <- value x } `row.names<-.data.frame` <- function(x, value) `.rowNamesDF<-`(x, value=value) `row.names<-.default` <- function(x, value) `rownames<-`(x, value) is.na.data.frame <- function (x) { y <- if (length(x)) { do.call(cbind, lapply(x, is.na)) } else matrix(FALSE, length(row.names(x)), 0) if(.row_names_info(x) > 0L) rownames(y) <- row.names(x) y } anyNA.data.frame <- function(x, recursive = FALSE) any(vapply(x, anyNA, NA, USE.NAMES = FALSE)) is.data.frame <- function(x) inherits(x, "data.frame") I <- function(x) { class(x) <- unique.default(c("AsIs", oldClass(x))); x } print.AsIs <- function (x, ...) { cl <- oldClass(x) oldClass(x) <- cl[cl != "AsIs"] NextMethod("print") invisible(x) } t.data.frame <- function(x) { x <- as.matrix(x) NextMethod("t") } dim.data.frame <- function(x) c(.row_names_info(x, 2L), length(x)) dimnames.data.frame <- function(x) list(row.names(x), names(x)) `dimnames<-.data.frame` <- function(x, value) { d <- dim(x) if(!is.list(value) || length(value) != 2L) stop("invalid 'dimnames' given for data frame") value[[1L]] <- as.character(value[[1L]]) value[[2L]] <- as.character(value[[2L]]) if(d[[1L]] != length(value[[1L]]) || d[[2L]] != length(value[[2L]])) stop("invalid 'dimnames' given for data frame") row.names(x) <- value[[1L]] names(x) <- value[[2L]] x } as.data.frame <- function(x, row.names = NULL, optional = FALSE, ...) { if(is.null(x)) return(as.data.frame(list())) UseMethod("as.data.frame") } as.data.frame.default <- function(x, ...) stop(gettextf("cannot coerce class %s to a data.frame", sQuote(deparse(class(x))[1L])), domain = NA) as.data.frame.data.frame <- function(x, row.names = NULL, ...) { cl <- oldClass(x) i <- match("data.frame", cl) if(i > 1L) class(x) <- cl[ - (1L:(i-1L))] if(!is.null(row.names)){ nr <- .row_names_info(x, 2L) if(length(row.names) == nr) attr(x, "row.names") <- row.names else stop(sprintf(ngettext(nr, "invalid 'row.names', length %d for a data frame with %d row", "invalid 'row.names', length %d for a data frame with %d rows"), length(row.names), nr), domain = NA) } x } as.data.frame.list <- function(x, row.names = NULL, optional = FALSE, ..., cut.names = FALSE, col.names = names(x), fix.empty.names = TRUE, check.names = !optional, stringsAsFactors = FALSE) { new.nms <- !missing(col.names) if(cut.names) { maxL <- if(is.logical(cut.names)) 256L else as.integer(cut.names) if(any(long <- nchar(col.names, "bytes", keepNA = FALSE) > maxL)) col.names[long] <- paste(substr(col.names[long], 1L, maxL - 6L), "...") else cut.names <- FALSE } m <- match(names(formals(data.frame))[-1L], col.names, 0L) if(any.m <- any(m)) col.names[m] <- paste0("..adfl.", col.names[m]) if(new.nms || any.m || cut.names) names(x) <- col.names alis <- c(list(check.names = check.names, fix.empty.names = fix.empty.names, stringsAsFactors = stringsAsFactors), if(!missing(row.names)) list(row.names = row.names)) x <- do.call(data.frame, c(x, alis)) if(any.m) names(x) <- sub("^\\.\\.adfl\\.", "", names(x)) x } as.data.frame.vector <- function(x, row.names = NULL, optional = FALSE, ..., nm = deparse1(substitute(x))) { force(nm) nrows <- length(x) if(!(is.null(row.names) || (is.character(row.names) && length(row.names) == nrows))) { warning(gettextf( "'row.names' is not a character vector of length %d -- omitting it. Will be an error!", nrows), domain = NA) row.names <- NULL } if(is.null(row.names)) { if (nrows == 0L) row.names <- character() else if(length(row.names <- names(x)) != nrows || anyDuplicated(row.names)) row.names <- .set_row_names(nrows) } if(!is.null(names(x))) names(x) <- NULL value <- list(x) if(!optional) names(value) <- nm structure(value, row.names = row.names, class = "data.frame") } as.data.frame.ts <- function(x, ...) { if(is.matrix(x)) as.data.frame.matrix(x, ...) else as.data.frame.vector(x, ...) } as.data.frame.raw <- as.data.frame.vector as.data.frame.factor <- as.data.frame.vector as.data.frame.ordered <- as.data.frame.vector as.data.frame.integer <- as.data.frame.vector as.data.frame.logical <- as.data.frame.vector as.data.frame.numeric <- as.data.frame.vector as.data.frame.complex <- as.data.frame.vector as.data.frame.character <- function(x, ..., stringsAsFactors = FALSE) { nm <- deparse1(substitute(x)) if(stringsAsFactors) x <- factor(x) if(!"nm" %in% ...names()) as.data.frame.vector(x, ..., nm = nm) else as.data.frame.vector(x, ...) } as.data.frame.matrix <- function(x, row.names = NULL, optional = FALSE, make.names = TRUE, ..., stringsAsFactors = FALSE) { d <- dim(x) nrows <- d[[1L]] ncols <- d[[2L]] ic <- seq_len(ncols) dn <- dimnames(x) if(is.null(row.names)) row.names <- dn[[1L]] collabs <- dn[[2L]] if(any(empty <- !nzchar(collabs))) collabs[empty] <- paste0("V", ic)[empty] value <- vector("list", ncols) if(mode(x) == "character" && stringsAsFactors) { for(i in ic) value[[i]] <- as.factor(x[,i]) } else { for(i in ic) value[[i]] <- as.vector(x[,i]) } autoRN <- (is.null(row.names) || length(row.names) != nrows) if(length(collabs) == ncols) names(value) <- collabs else if(!optional) names(value) <- paste0("V", ic) class(value) <- "data.frame" if(autoRN) attr(value, "row.names") <- .set_row_names(nrows) else .rowNamesDF(value, make.names=make.names) <- row.names value } as.data.frame.model.matrix <- function(x, row.names = NULL, optional = FALSE, make.names = TRUE, ...) { d <- dim(x) nrows <- d[[1L]] dn <- dimnames(x) row.names <- dn[[1L]] value <- list(x) if(!optional) names(value) <- deparse(substitute(x))[[1L]] class(value) <- "data.frame" if(!is.null(row.names)) { row.names <- as.character(row.names) if(length(row.names) != nrows) stop(sprintf(ngettext(length(row.names), "supplied %d row name for %d rows", "supplied %d row names for %d rows"), length(row.names), nrows), domain = NA) .rowNamesDF(value, make.names=make.names) <- row.names } else attr(value, "row.names") <- .set_row_names(nrows) value } as.data.frame.array <- function(x, row.names = NULL, optional = FALSE, ...) { d <- dim(x) if(length(d) == 1L) { value <- as.data.frame.vector( c(x), row.names, optional, ...) if(!optional) names(value) <- deparse(substitute(x))[[1L]] value } else if (length(d) == 2L) { as.data.frame.matrix(x, row.names, optional, ...) } else { dn <- dimnames(x) dim(x) <- c(d[1L], prod(d[-1L])) if(!is.null(dn)) { if(length(dn[[1L]])) rownames(x) <- dn[[1L]] for(i in 2L:length(d)) if(is.null(dn[[i]])) dn[[i]] <- seq_len(d[i]) colnames(x) <- interaction(expand.grid(dn[-1L])) } as.data.frame.matrix(x, row.names, optional, ...) } } `[.AsIs` <- function(x, i, ...) I(NextMethod("[")) as.data.frame.AsIs <- function(x, row.names = NULL, optional = FALSE, ...) { if(length(dim(x)) == 2L) as.data.frame.model.matrix(x, row.names, optional) else { nrows <- length(x) nm <- deparse1(substitute(x)) if(is.null(row.names)) { autoRN <- FALSE if (nrows == 0L) row.names <- character() else if(length(row.names <- names(x)) == nrows && !anyDuplicated(row.names)) { } else { autoRN <- TRUE row.names <- .set_row_names(nrows) } } else autoRN <- is.integer(row.names) && length(row.names) == 2L && is.na(rn1 <- row.names[[1L]]) && rn1 < 0 value <- list(x) if(!optional) names(value) <- nm class(value) <- "data.frame" attr(value, "row.names") <- row.names value } } data.frame <- function(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, fix.empty.names = TRUE, stringsAsFactors = FALSE) { data.row.names <- if(check.rows && is.null(row.names)) function(current, new, i) { if(is.character(current)) new <- as.character(new) if(is.character(new)) current <- as.character(current) if(anyDuplicated(new)) return(current) if(is.null(current)) return(new) if(all(current == new) || all(current == "")) return(new) stop(gettextf( "mismatch of row names in arguments of 'data.frame\', item %d", i), domain = NA) } else function(current, new, i) { if(is.null(current)) { if(anyDuplicated(new)) { warning(gettextf( "some row.names duplicated: %s --> row.names NOT used", paste(which(duplicated(new)), collapse=",")), domain = NA) current } else new } else current } object <- as.list(substitute(list(...)))[-1L] mirn <- missing(row.names) mrn <- is.null(row.names) x <- list(...) n <- length(x) if(n < 1L) { if(!mrn) { if(is.object(row.names) || !is.integer(row.names)) row.names <- as.character(row.names) if(anyNA(row.names)) stop("row names contain missing values") if(anyDuplicated(row.names)) stop(gettextf("duplicate row.names: %s", paste(unique(row.names[duplicated(row.names)]), collapse = ", ")), domain = NA) } else row.names <- integer() return(structure(list(), names = character(), row.names = row.names, class = "data.frame")) } vnames <- names(x) if(length(vnames) != n) vnames <- character(n) no.vn <- !nzchar(vnames) vlist <- vnames <- as.list(vnames) nrows <- ncols <- integer(n) for(i in seq_len(n)) { xi <- if(is.character(x[[i]]) || is.list(x[[i]])) as.data.frame(x[[i]], optional = TRUE, stringsAsFactors = stringsAsFactors) else as.data.frame(x[[i]], optional = TRUE) nrows[i] <- .row_names_info(xi) ncols[i] <- length(xi) namesi <- names(xi) if(ncols[i] > 1L) { if(length(namesi) == 0L) namesi <- seq_len(ncols[i]) vnames[[i]] <- if(no.vn[i]) namesi else paste(vnames[[i]], namesi, sep=".") } else if(length(namesi)) { vnames[[i]] <- namesi } else if (fix.empty.names && no.vn[[i]]) { tmpname <- deparse(object[[i]], nlines = 1L)[1L] if(startsWith(tmpname, "I(") && endsWith(tmpname, ")")) { ntmpn <- nchar(tmpname, "c") tmpname <- substr(tmpname, 3L, ntmpn - 1L) } vnames[[i]] <- tmpname } if(mirn && nrows[i] > 0L) { rowsi <- attr(xi, "row.names") if(any(nzchar(rowsi))) row.names <- data.row.names(row.names, rowsi, i) } nrows[i] <- abs(nrows[i]) vlist[[i]] <- xi } nr <- max(nrows) for(i in seq_len(n)[nrows < nr]) { xi <- vlist[[i]] if(nrows[i] > 0L && (nr %% nrows[i] == 0L)) { xi <- unclass(xi) fixed <- TRUE for(j in seq_along(xi)) { xi1 <- xi[[j]] if(is.vector(xi1) || is.factor(xi1)) xi[[j]] <- rep(xi1, length.out = nr) else if(is.character(xi1) && inherits(xi1, "AsIs")) xi[[j]] <- structure(rep(xi1, length.out = nr), class = class(xi1)) else if(inherits(xi1, "Date") || inherits(xi1, "POSIXct")) xi[[j]] <- rep(xi1, length.out = nr) else { fixed <- FALSE break } } if (fixed) { vlist[[i]] <- xi next } } stop(gettextf("arguments imply differing number of rows: %s", paste(unique(nrows), collapse = ", ")), domain = NA) } value <- unlist(vlist, recursive=FALSE, use.names=FALSE) vnames <- as.character(unlist(vnames[ncols > 0L])) if(fix.empty.names && any(noname <- !nzchar(vnames))) vnames[noname] <- paste0("Var.", seq_along(vnames))[noname] if(check.names) { if(fix.empty.names) vnames <- make.names(vnames, unique=TRUE) else { nz <- nzchar(vnames) vnames[nz] <- make.names(vnames[nz], unique=TRUE) } } names(value) <- vnames if(!mrn) { if(length(row.names) == 1L && nr != 1L) { if(is.character(row.names)) row.names <- match(row.names, vnames, 0L) if(length(row.names) != 1L || row.names < 1L || row.names > length(vnames)) stop("'row.names' should specify one of the variables") i <- row.names row.names <- value[[i]] value <- value[ - i] } else if ( !is.null(row.names) && length(row.names) != nr ) stop("row names supplied are of the wrong length") } else if( !is.null(row.names) && length(row.names) != nr ) { warning("row names were found from a short variable and have been discarded") row.names <- NULL } class(value) <- "data.frame" if(is.null(row.names)) attr(value, "row.names") <- .set_row_names(nr) else { if(is.object(row.names) || !is.integer(row.names)) row.names <- as.character(row.names) if(anyNA(row.names)) stop("row names contain missing values") if(anyDuplicated(row.names)) stop(gettextf("duplicate row.names: %s", paste(unique(row.names[duplicated(row.names)]), collapse = ", ")), domain = NA) row.names(value) <- row.names } value } `[.data.frame` <- function(x, i, j, drop = if(missing(i)) TRUE else length(cols) == 1) { mdrop <- missing(drop) Narg <- nargs() - !mdrop has.j <- !missing(j) if(!all(names(sys.call()) %in% c("", "drop")) && !isS4(x)) warning("named arguments other than 'drop' are discouraged") if(Narg < 3L) { if(!mdrop) warning("'drop' argument will be ignored") if(missing(i)) return(x) if(is.matrix(i)) return(as.matrix(x)[i]) nm <- names(x); if(is.null(nm)) nm <- character() if(!is.character(i) && anyNA(nm)) { names(nm) <- names(x) <- seq_along(x) y <- NextMethod("[") cols <- names(y) if(anyNA(cols)) stop("undefined columns selected") cols <- names(y) <- nm[cols] } else { y <- NextMethod("[") cols <- names(y) if(!is.null(cols) && anyNA(cols)) stop("undefined columns selected") } if(anyDuplicated(cols)) names(y) <- make.unique(cols) attr(y, "row.names") <- .row_names_info(x, 0L) attr(y, "class") <- oldClass(x) return(y) } if(missing(i)) { if(drop && !has.j && length(x) == 1L) return(.subset2(x, 1L)) nm <- names(x); if(is.null(nm)) nm <- character() if(has.j && !is.character(j) && anyNA(nm)) { names(nm) <- names(x) <- seq_along(x) y <- .subset(x, j) cols <- names(y) if(anyNA(cols)) stop("undefined columns selected") cols <- names(y) <- nm[cols] } else { y <- if(has.j) .subset(x, j) else x cols <- names(y) if(anyNA(cols)) stop("undefined columns selected") } if(drop && length(y) == 1L) return(.subset2(y, 1L)) if(anyDuplicated(cols)) names(y) <- make.unique(cols) nrow <- .row_names_info(x, 2L) if(drop && !mdrop && nrow == 1L) return(structure(y, class = NULL, row.names = NULL)) else { attr(y, "class") <- oldClass(x) attr(y, "row.names") <- .row_names_info(x, 0L) return(y) } } xx <- x cols <- names(xx) x <- vector("list", length(x)) x <- .Internal(copyDFattr(xx, x)) oldClass(x) <- attr(x, "row.names") <- NULL if(has.j) { nm <- names(x); if(is.null(nm)) nm <- character() if(!is.character(j) && anyNA(nm)) names(nm) <- names(x) <- seq_along(x) x <- x[j] cols <- names(x) if(drop && length(x) == 1L) { if(is.character(i)) { rows <- attr(xx, "row.names") i <- pmatch(i, rows, duplicates.ok = TRUE) } xj <- .subset2(.subset(xx, j), 1L) return(if(length(dim(xj)) != 2L) xj[i] else xj[i, , drop = FALSE]) } if(anyNA(cols)) stop("undefined columns selected") if(!is.null(names(nm))) cols <- names(x) <- nm[cols] nxx <- structure(seq_along(xx), names=names(xx)) sxx <- match(nxx[j], seq_along(xx)) } else sxx <- seq_along(x) rows <- NULL if(is.character(i)) { rows <- attr(xx, "row.names") i <- pmatch(i, rows, duplicates.ok = TRUE) } for(j in seq_along(x)) { xj <- xx[[ sxx[j] ]] x[[j]] <- if(length(dim(xj)) != 2L) xj[i] else xj[i, , drop = FALSE] } if(drop) { n <- length(x) if(n == 1L) return(x[[1L]]) if(n > 1L) { xj <- x[[1L]] nrow <- if(length(dim(xj)) == 2L) dim(xj)[1L] else length(xj) drop <- !mdrop && nrow == 1L } else drop <- FALSE } if(!drop) { if(is.null(rows)) rows <- attr(xx, "row.names") rows <- rows[i] if((ina <- anyNA(rows)) | (dup <- anyDuplicated(rows))) { if (!dup && is.character(rows)) dup <- "NA" %in% rows if(ina) rows[is.na(rows)] <- "NA" if(dup) rows <- make.unique(as.character(rows)) } if(has.j && anyDuplicated(nm <- names(x))) names(x) <- make.unique(nm) if(is.null(rows)) rows <- attr(xx, "row.names")[i] attr(x, "row.names") <- rows oldClass(x) <- oldClass(xx) } x } `[[.data.frame` <- function(x, ..., exact=TRUE) { na <- nargs() - !missing(exact) if(!all(names(sys.call()) %in% c("", "exact"))) warning("named arguments other than 'exact' are discouraged") if(na < 3L) (function(x, i, exact) if(is.matrix(i)) as.matrix(x)[[i]] else .subset2(x, i, exact=exact))(x, ..., exact=exact) else { col <- .subset2(x, ..2, exact=exact) i <- if(is.character(..1)) pmatch(..1, row.names(x), duplicates.ok = TRUE) else ..1 col[[i, exact = exact]] } } `[<-.data.frame` <- function(x, i, j, value) { if(!all(names(sys.call()) %in% c("", "value"))) warning("named arguments are discouraged") nA <- nargs() if(nA == 4L) { has.i <- !missing(i) has.j <- !missing(j) } else if(nA == 3L) { if (is.atomic(value) && !is.null(names(value))) names(value) <- NULL if(missing(i) && missing(j)) { i <- j <- NULL has.i <- has.j <- FALSE if(is.null(value)) return(x[logical()]) } else { if(is.numeric(i) && is.matrix(i) && ncol(i) == 2) { index <- rep.int(FALSE, prod(dim(x))) dim(index) <- dim(x) tryCatch(index[i] <- TRUE, error = function(e) stop(conditionMessage(e), call.=FALSE)) o <- order(i[,2], i[,1]) N <- length(value) if (length(o) %% N != 0L) warning("number of items to replace is not a multiple of replacement length") if (N < length(o)) value <- rep(value, length.out=length(o)) value <- value[o] i <- index } if(is.logical(i) && is.matrix(i) && all(dim(i) == dim(x))) { nreplace <- sum(i, na.rm=TRUE) if(!nreplace) return(x) N <- length(value) if(N > 1L && N < nreplace && (nreplace %% N) == 0L) value <- rep(value, length.out = nreplace) if(N > 1L && (length(value) != nreplace)) stop("'value' is the wrong length") n <- 0L nv <- nrow(x) for(v in seq_len(dim(i)[2L])) { thisvar <- i[, v, drop = TRUE] nv <- sum(thisvar, na.rm = TRUE) if(nv) { if(is.matrix(x[[v]])) x[[v]][thisvar, ] <- if(N > 1L) value[n+seq_len(nv)] else value else x[[v]][thisvar] <- if(N > 1L) value[n+seq_len(nv)] else value } n <- n+nv } return(x) } if(is.matrix(i)) stop("unsupported matrix index in replacement") j <- i i <- NULL has.i <- FALSE has.j <- TRUE } } else stop("need 0, 1, or 2 subscripts") if ((has.j && !length(j)) || (has.i && !length(i) && !has.j)) return(x) cl <- oldClass(x) class(x) <- NULL new.cols <- NULL nvars <- length(x) nrows <- .row_names_info(x, 2L) if(has.i && length(i)) { rows <- NULL if(anyNA(i)) stop("missing values are not allowed in subscripted assignments of data frames") if(char.i <- is.character(i)) { rows <- attr(x, "row.names") ii <- match(i, rows) nextra <- sum(new.rows <- is.na(ii)) if(nextra > 0L) { ii[new.rows] <- seq.int(from = nrows + 1L, length.out = nextra) new.rows <- i[new.rows] } i <- ii } if(!is.logical(i) && (char.i && nextra || all(i >= 0L) && (nn <- max(i)) > nrows)) { if(is.null(rows)) rows <- attr(x, "row.names") if(!char.i) { nrr <- (nrows + 1L):nn if(inherits(value, "data.frame") && (dim(value)[1L]) >= length(nrr)) { new.rows <- attr(value, "row.names")[seq_along(nrr)] repl <- duplicated(new.rows) | match(new.rows, rows, 0L) if(any(repl)) new.rows[repl] <- nrr[repl] } else new.rows <- nrr } x <- xpdrows.data.frame(x, rows, new.rows) rows <- attr(x, "row.names") nrows <- length(rows) } iseq <- seq_len(nrows)[i] if(anyNA(iseq)) stop("non-existent rows not allowed") } else iseq <- NULL if(has.j) { if(anyNA(j)) stop("missing values are not allowed in subscripted assignments of data frames") if(is.character(j)) { if("" %in% j) stop("column name \"\" cannot match any column") jseq <- match(j, names(x)) if(anyNA(jseq)) { n <- is.na(jseq) jseq[n] <- nvars + seq_len(sum(n)) new.cols <- j[n] } } else if(is.logical(j) || min(j) < 0L) jseq <- seq_along(x)[j] else { jseq <- j if(max(jseq) > nvars) { new.cols <- paste0("V", seq.int(from = nvars + 1L, to = max(jseq))) if(length(new.cols) != sum(jseq > nvars)) stop("new columns would leave holes after existing columns") if(is.list(value) && !is.null(vnm <- names(value))) { p <- length(jseq) if(length(vnm) < p) vnm <- rep_len(vnm, p) new.cols <- vnm[jseq > nvars] } } } } else jseq <- seq_along(x) if(has.i && !length(iseq) && all(1L <= jseq & jseq <= nvars)) return(`class<-`(x, cl)) if(anyDuplicated(jseq)) stop("duplicate subscripts for columns") n <- length(iseq) if(n == 0L) n <- nrows p <- length(jseq) if (is.null(value)) { value <- list(NULL) } m <- length(value) if(!is.list(value)) { if(p == 1L) { N <- NROW(value) if(N > n) stop(sprintf(ngettext(N, "replacement has %d row, data has %d", "replacement has %d rows, data has %d"), N, n), domain = NA) if(N < n && N > 0L) if(n %% N == 0L && length(dim(value)) <= 1L) value <- rep(value, length.out = n) else stop(sprintf(ngettext(N, "replacement has %d row, data has %d", "replacement has %d rows, data has %d"), N, nrows), domain = NA) if (!is.null(names(value))) names(value) <- NULL value <- list(value) } else { if(m < n*p && (m == 0L || (n*p) %% m)) stop(sprintf(ngettext(m, "replacement has %d item, need %d", "replacement has %d items, need %d"), m, n*p), domain = NA) value <- matrix(value, n, p) value <- split(c(value), col(value)) } dimv <- c(n, p) } else { value <- unclass(value) lens <- vapply(value, NROW, 1L) for(k in seq_along(lens)) { N <- lens[k] if(n != N && length(dim(value[[k]])) == 2L) stop(sprintf(ngettext(N, "replacement element %d is a matrix/data frame of %d row, need %d", "replacement element %d is a matrix/data frame of %d rows, need %d"), k, N, n), domain = NA) if(N > 0L && N < n && n %% N) stop(sprintf(ngettext(N, "replacement element %d has %d row, need %d", "replacement element %d has %d rows, need %d"), k, N, n), domain = NA) if(N > 0L && N < n) value[[k]] <- rep(value[[k]], length.out = n) if(N > n) { warning(sprintf(ngettext(N, "replacement element %d has %d row to replace %d rows", "replacement element %d has %d rows to replace %d rows"), k, N, n), domain = NA) value[[k]] <- value[[k]][seq_len(n)] } } dimv <- c(n, length(value)) } nrowv <- dimv[1L] if(nrowv < n && nrowv > 0L) { if(n %% nrowv == 0L) value <- value[rep_len(seq_len(nrowv), n),,drop = FALSE] else stop(sprintf(ngettext(nrowv, "%d row in value to replace %d rows", "%d rows in value to replace %d rows"), nrowv, n), domain = NA) } else if(nrowv > n) warning(sprintf(ngettext(nrowv, "replacement data has %d row to replace %d rows", "replacement data has %d rows to replace %d rows"), nrowv, n), domain = NA) ncolv <- dimv[2L] jvseq <- seq_len(p) if(ncolv < p) jvseq <- rep_len(seq_len(ncolv), p) else if(p != 0L && ncolv > p) { warning(sprintf(ngettext(ncolv, "provided %d variable to replace %d variables", "provided %d variables to replace %d variables"), ncolv, p), domain = NA) new.cols <- new.cols[seq_len(p)] } if(length(new.cols)) { nm <- names(x) rows <- .row_names_info(x, 0L) a <- attributes(x); a["names"] <- NULL x <- c(x, vector("list", length(new.cols))) attributes(x) <- a names(x) <- c(nm, new.cols) attr(x, "row.names") <- rows } if(has.i) for(jjj in seq_len(p)) { jj <- jseq[jjj] vjj <- value[[ jvseq[[jjj]] ]] if(jj <= nvars) { if(length(dim(x[[jj]])) != 2L) x[[jj]][iseq ] <- vjj else x[[jj]][iseq, ] <- vjj } else { x[[jj]] <- vjj[FALSE] if(length(dim(vjj)) == 2L) { length(x[[jj]]) <- nrows * ncol(vjj) dim(x[[jj]]) <- c(nrows, ncol(vjj)) x[[jj]][iseq, ] <- vjj } else { length(x[[jj]]) <- nrows x[[jj]][iseq] <- vjj } } } else if(p > 0L) for(jjj in p:1L) { o <- order(jseq) jseq <- jseq[o] jvseq <- jvseq[o] jj <- jseq[jjj] v <- value[[ jvseq[[jjj]] ]] if (!is.null(v) && nrows > 0L && !length(v)) length(v) <- nrows x[[jj]] <- v if (!is.null(v) && is.atomic(x[[jj]]) && !is.null(names(x[[jj]]))) names(x[[jj]]) <- NULL } if(length(new.cols) > 0L) { new.cols <- names(x) if(anyDuplicated(new.cols)) names(x) <- make.unique(new.cols) } class(x) <- cl x } `[[<-.data.frame` <- function(x, i, j, value) { if(!all(names(sys.call()) %in% c("", "value"))) warning("named arguments are discouraged") cl <- oldClass(x) class(x) <- NULL nrows <- .row_names_info(x, 2L) if(is.atomic(value) && !is.null(names(value))) names(value) <- NULL if(nargs() < 4L) { nc <- length(x) if(!is.null(value)) { N <- NROW(value) if(N > nrows) stop(sprintf(ngettext(N, "replacement has %d row, data has %d", "replacement has %d rows, data has %d"), N, nrows), domain = NA) if(N < nrows) if(N > 0L && (nrows %% N == 0L) && length(dim(value)) <= 1L) value <- rep(value, length.out = nrows) else stop(sprintf(ngettext(N, "replacement has %d row, data has %d", "replacement has %d rows, data has %d"), N, nrows), domain = NA) } x[[i]] <- value if(length(x) > nc) { nc <- length(x) if(names(x)[nc] == "") names(x)[nc] <- paste0("V", nc) names(x) <- make.unique(names(x)) } class(x) <- cl return(x) } if(missing(i) || missing(j)) stop("only valid calls are x[[j]] <- value or x[[i,j]] <- value") rows <- attr(x, "row.names") nvars <- length(x) if(n <- is.character(i)) { ii <- match(i, rows) n <- sum(new.rows <- is.na(ii)) if(n > 0L) { ii[new.rows] <- seq.int(from = nrows + 1L, length.out = n) new.rows <- i[new.rows] } i <- ii } if(all(i >= 0L) && (nn <- max(i)) > nrows) { if(n == 0L) { nrr <- (nrows + 1L):nn if(inherits(value, "data.frame") && (dim(value)[1L]) >= length(nrr)) { new.rows <- attr(value, "row.names")[seq_len(nrr)] repl <- duplicated(new.rows) | match(new.rows, rows, 0L) if(any(repl)) new.rows[repl] <- nrr[repl] } else new.rows <- nrr } x <- xpdrows.data.frame(x, rows, new.rows) rows <- attr(x, "row.names") nrows <- length(rows) } iseq <- seq_len(nrows)[i] if(anyNA(iseq)) stop("non-existent rows not allowed") if(is.character(j)) { if("" %in% j) stop("column name \"\" cannot match any column") jseq <- match(j, names(x)) if(anyNA(jseq)) stop(gettextf("replacing element in non-existent column: %s", j[is.na(jseq)]), domain = NA) } else if(is.logical(j) || min(j) < 0L) jseq <- seq_along(x)[j] else { jseq <- j if(max(jseq) > nvars) stop(gettextf("replacing element in non-existent column: %s", jseq[jseq > nvars]), domain = NA) } if(length(iseq) > 1L || length(jseq) > 1L) stop("only a single element should be replaced") x[[jseq]][[iseq]] <- value class(x) <- cl x } `$<-.data.frame` <- function(x, name, value) { cl <- oldClass(x) class(x) <- NULL nrows <- .row_names_info(x, 2L) if(!is.null(value)) { N <- NROW(value) if(N > nrows) stop(sprintf(ngettext(N, "replacement has %d row, data has %d", "replacement has %d rows, data has %d"), N, nrows), domain = NA) if (N < nrows) if (N > 0L && (nrows %% N == 0L) && length(dim(value)) <= 1L) value <- rep(value, length.out = nrows) else stop(sprintf(ngettext(N, "replacement has %d row, data has %d", "replacement has %d rows, data has %d"), N, nrows), domain = NA) if(is.atomic(value) && !is.null(names(value))) names(value) <- NULL } x[[name]] <- value class(x) <- cl return(x) } xpdrows.data.frame <- function(x, old.rows, new.rows) { nc <- length(x) nro <- length(old.rows) nrn <- length(new.rows) nr <- nro + nrn for (i in seq_len(nc)) { y <- x[[i]] dy <- dim(y) cy <- oldClass(y) class(y) <- NULL if (length(dy) == 2L) { dny <- dimnames(y) if (length(dny[[1L]]) > 0L) dny[[1L]] <- c(dny[[1L]], new.rows) z <- array(y[1L], dim = c(nr, nc), dimnames = dny) z[seq_len(nro), ] <- y class(z) <- cy x[[i]] <- z } else { ay <- attributes(y) if (length(names(y)) > 0L) ay$names <- c(ay$names, new.rows) length(y) <- nr attributes(y) <- ay class(y) <- cy x[[i]] <- y } } nm <- c(old.rows, new.rows) if (any(duplicated(nm))) nm <- make.unique(as.character(nm)) attr(x, "row.names") <- nm x } cbind.data.frame <- function(..., deparse.level = 1) data.frame(..., check.names = FALSE) rbind.data.frame <- function(..., deparse.level = 1, make.row.names = TRUE, stringsAsFactors = FALSE, factor.exclude = TRUE) { match.names <- function(clabs, nmi) { if(identical(clabs, nmi)) NULL else if(length(nmi) == length(clabs) && all(nmi %in% clabs)) { m <- pmatch(nmi, clabs, 0L) if(any(m == 0L)) stop("names do not match previous names") m } else stop("names do not match previous names") } allargs <- list(...) allargs <- allargs[lengths(allargs) > 0L] if(length(allargs)) { nr <- vapply(allargs, function(x) if(is.data.frame(x)) .row_names_info(x, 2L) else if(is.list(x)) length(x[[1L]]) else length(x), 1L) if(any(n0 <- nr == 0L)) { if(all(n0)) return(allargs[[1L]]) allargs <- allargs[!n0] } } n <- length(allargs) if(n == 0L) return(list2DF()) nms <- names(allargs) if(is.null(nms)) nms <- character(n) cl <- NULL perm <- rows <- vector("list", n) if(make.row.names) { rlabs <- rows autoRnms <- TRUE Make.row.names <- function(nmi, ri, ni, nrow) { if(nzchar(nmi)) { if(autoRnms) autoRnms <<- FALSE if(ni == 0L) character() else if(ni > 1L) paste(nmi, ri, sep = ".") else nmi } else if(autoRnms && nrow > 0L && identical(ri, seq_len(ni))) as.integer(seq.int(from = nrow + 1L, length.out = ni)) else { if(autoRnms && (nrow > 0L || !identical(ri, seq_len(ni)))) autoRnms <<- FALSE ri } } } smartX <- isTRUE(factor.exclude) nrow <- 0L value <- clabs <- NULL all.levs <- list() for(i in seq_len(n)) { xi <- allargs[[i]] nmi <- nms[i] if(is.matrix(xi)) allargs[[i]] <- xi <- as.data.frame(xi, stringsAsFactors = stringsAsFactors) if(inherits(xi, "data.frame")) { if(is.null(cl)) cl <- oldClass(xi) ri <- attr(xi, "row.names") ni <- length(ri) if(is.null(clabs)) clabs <- names(xi) else { if(length(xi) != length(clabs)) stop("numbers of columns of arguments do not match") pi <- match.names(clabs, names(xi)) if( !is.null(pi) ) perm[[i]] <- pi } rows[[i]] <- seq.int(from = nrow + 1L, length.out = ni) if(make.row.names) rlabs[[i]] <- Make.row.names(nmi, ri, ni, nrow) nrow <- nrow + ni if(is.null(value)) { value <- unclass(xi) nvar <- length(value) all.levs <- vector("list", nvar) has.dim <- facCol <- ordCol <- logical(nvar) if(smartX) NA.lev <- ordCol for(j in seq_len(nvar)) { xj <- value[[j]] facCol[j] <- fac <- if(!is.null(lj <- levels(xj))) { all.levs[[j]] <- lj TRUE } else is.factor(xj) if(fac) { ordCol[j] <- is.ordered(xj) if(smartX && !NA.lev[j]) NA.lev[j] <- anyNA(lj) } has.dim[j] <- length(dim(xj)) == 2L } } else for(j in seq_len(nvar)) { xij <- xi[[j]] if(is.null(pi) || is.na(jj <- pi[[j]])) jj <- j if(facCol[jj]) { if(length(lij <- levels(xij))) { all.levs[[jj]] <- unique(c(all.levs[[jj]], lij)) if(ordCol[jj]) ordCol[jj] <- is.ordered(xij) if(smartX && !NA.lev[jj]) NA.lev[jj] <- anyNA(lij) } else if(is.character(xij)) all.levs[[jj]] <- unique(c(all.levs[[jj]], xij)) } } } else if(is.list(xi)) { ni <- range(lengths(xi)) if(ni[1L] == ni[2L]) ni <- ni[1L] else stop("invalid list argument: all variables should have the same length") ri <- seq_len(ni) rows[[i]] <- seq.int(from = nrow + 1L, length.out = ni) if(make.row.names) rlabs[[i]] <- Make.row.names(nmi, ri, ni, nrow) nrow <- nrow + ni if(length(nmi <- names(xi)) > 0L) { if(is.null(clabs)) clabs <- nmi else { if(length(xi) != length(clabs)) stop("numbers of columns of arguments do not match") pi <- match.names(clabs, nmi) if( !is.null(pi) ) perm[[i]] <- pi } } } else if(length(xi)) { rows[[i]] <- nrow <- nrow + 1L if(make.row.names) rlabs[[i]] <- if(nzchar(nmi)) nmi else as.integer(nrow) } } nvar <- length(clabs) if(nvar == 0L) nvar <- max(lengths(allargs)) if(nvar == 0L) return(list2DF()) pseq <- seq_len(nvar) if(is.null(value)) { value <- list() value[pseq] <- list(logical(nrow)) all.levs <- vector("list", nvar) has.dim <- facCol <- ordCol <- logical(nvar) if(smartX) NA.lev <- ordCol } names(value) <- clabs for(j in pseq) if(length(lij <- all.levs[[j]])) value[[j]] <- factor(as.vector(value[[j]]), levels = lij, exclude = if(smartX) { if(!NA.lev[j]) NA } else factor.exclude, ordered = ordCol[j]) if(any(has.dim)) { jdim <- pseq[has.dim] if(!all(df <- vapply(jdim, function(j) inherits(value[[j]],"data.frame"), NA))) { rmax <- max(unlist(rows)) for(j in jdim[!df]) { dn <- dimnames(vj <- value[[j]]) rn <- dn[[1L]] if(length(rn) > 0L) length(rn) <- rmax pj <- dim(vj)[2L] length(vj) <- rmax * pj value[[j]] <- array(vj, c(rmax, pj), list(rn, dn[[2L]])) } } } for(i in seq_len(n)) { xi <- unclass(allargs[[i]]) if(!is.list(xi)) if((ni <- length(xi)) != nvar) { if(ni && nvar %% ni != 0) warning(gettextf( "number of columns of result, %d, is not a multiple of vector length %d of arg %d", nvar, ni, i), domain = NA) xi <- rep_len(xi, nvar) } ri <- rows[[i]] pi <- perm[[i]] if(is.null(pi)) pi <- pseq for(j in pseq) { jj <- pi[j] xij <- xi[[j]] if(has.dim[jj]) { value[[jj]][ri, ] <- xij if(!is.null(r <- rownames(xij)) && !(inherits(xij, "data.frame") && .row_names_info(xij) <= 0)) rownames(value[[jj]])[ri] <- r } else { value[[jj]][ri] <- if(is.factor(xij)) as.vector(xij) else xij if(!is.null(nm <- names(xij))) names(value[[jj]])[ri] <- nm } } } rlabs <- if(make.row.names && !autoRnms) { rlabs <- unlist(rlabs) if(anyDuplicated(rlabs)) make.unique(as.character(rlabs), sep = "") else rlabs } if(is.null(cl)) { as.data.frame(value, row.names = rlabs, fix.empty.names = TRUE, stringsAsFactors = stringsAsFactors) } else { structure(value, class = cl, row.names = if(is.null(rlabs)) .set_row_names(nrow) else rlabs) } } print.data.frame <- function(x, ..., digits = NULL, quote = FALSE, right = TRUE, row.names = TRUE, max = NULL) { n <- length(row.names(x)) if(length(x) == 0L) { cat(sprintf(ngettext(n, "data frame with 0 columns and %d row", "data frame with 0 columns and %d rows"), n), "\n", sep = "") } else if(n == 0L) { print.default(names(x), quote = FALSE) cat(gettext("<0 rows> (or 0-length row.names)\n")) } else { if(is.null(max)) max <- getOption("max.print", 99999L) if(!is.finite(max)) stop("invalid 'max' / getOption(\"max.print\"): ", max) omit <- (n0 <- max %/% length(x)) < n m <- as.matrix( format.data.frame(if(omit) x[seq_len(n0), , drop=FALSE] else x, digits = digits, na.encode = FALSE)) if(!isTRUE(row.names)) dimnames(m)[[1L]] <- if(isFALSE(row.names)) rep.int("", if(omit) n0 else n) else row.names print(m, ..., quote = quote, right = right, max = max) if(omit) cat(" [ reached 'max' / getOption(\"max.print\") -- omitted", n - n0, "rows ]\n") } invisible(x) } as.matrix.data.frame <- function (x, rownames.force = NA, ...) { dm <- dim(x) rn <- if(rownames.force %in% FALSE) NULL else if(rownames.force %in% TRUE || .row_names_info(x) > 0L) row.names(x) dn <- list(rn, names(x)) if(any(dm == 0L)) return(array(NA, dim = dm, dimnames = dn)) p <- dm[2L] pseq <- seq_len(p) n <- dm[1L] X <- unclass(x) non.numeric <- non.atomic <- FALSE all.logical <- TRUE for (j in pseq) { xj <- X[[j]] if(inherits(xj, "data.frame")) X[[j]] <- xj <- as.matrix(xj) j.logic <- is.logical(xj) if(all.logical && !j.logic) all.logical <- FALSE if(length(levels(xj)) > 0L || !(j.logic || is.numeric(xj) || is.complex(xj)) || (!is.null(cl <- attr(xj, "class")) && any(cl %in% c("Date", "POSIXct", "POSIXlt")))) non.numeric <- TRUE if(!is.atomic(xj) && !inherits(xj, "POSIXlt")) non.atomic <- TRUE } if(non.atomic) { for (j in pseq) { xj <- X[[j]] if(!is.recursive(xj)) X[[j]] <- as.list(as.vector(xj)) } } else if(all.logical) { } else if(non.numeric) { for (j in pseq) { if (is.character(X[[j]])) next else if(is.logical(xj <- X[[j]])) xj <- as.character(xj) else { miss <- is.na(xj) xj <- if(length(levels(xj))) as.vector(xj) else format(xj) is.na(xj) <- miss } X[[j]] <- xj } } collabs <- as.list(dn[[2L]]) for (j in pseq) { xj <- X[[j]] dj <- dim(xj) if(length(dj) == 2L && dj[2L] > 0L) { if(!length(dnj <- colnames(xj))) dnj <- seq_len(dj[2L]) collabs[[j]] <- if(length(collabs)) { if(dj[2L] > 1L) paste(collabs[[j]], dnj, sep = ".") else if(is.character(collabs[[j]])) collabs[[j]] else dnj } else dnj } } nc <- vapply(X, NCOL, numeric(1), USE.NAMES=FALSE) X <- unlist(X, recursive = FALSE, use.names = FALSE) dim(X) <- c(n, length(X)/n) dimnames(X) <- list(dn[[1L]], unlist(collabs[nc > 0], use.names = FALSE)) X } Math.data.frame <- function (x, ...) { mode.ok <- vapply(x, function(x) is.numeric(x) || is.logical(x) || is.complex(x), NA) if (all(mode.ok)) { x[] <- lapply(X = x, FUN = .Generic, ...) return(x) } else { vnames <- names(x) if (is.null(vnames)) vnames <- seq_along(x) stop("non-numeric-alike variable(s) in data frame: ", paste(vnames[!mode.ok], collapse = ", ")) } } Ops.data.frame <- function(e1, e2 = NULL) { unary <- nargs() == 1L lclass <- nzchar(.Method[1L]) rclass <- !unary && (nzchar(.Method[2L])) value <- list() rn <- NULL FUN <- get(.Generic, envir = parent.frame(), mode = "function") f <- if (unary) quote(FUN(left)) else quote(FUN(left, right)) lscalar <- rscalar <- FALSE if(lclass && rclass) { nr <- .row_names_info(e1, 2L) if(.row_names_info(e1) > 0L) rn <- attr(e1, "row.names") cn <- names(e1) if(any(dim(e2) != dim(e1))) stop(gettextf("%s only defined for equally-sized data frames", sQuote(.Generic)), domain = NA) } else if(lclass) { nr <- .row_names_info(e1, 2L) if(.row_names_info(e1) > 0L) rn <- attr(e1, "row.names") cn <- names(e1) rscalar <- length(e2) <= 1L if(is.list(e2)) { if(rscalar) e2 <- e2[[1L]] else if(length(e2) != ncol(e1)) stop(gettextf("list of length %d not meaningful", length(e2)), domain = NA) } else { if(!rscalar) e2 <- split(rep_len(as.vector(e2), prod(dim(e1))), rep.int(seq_len(ncol(e1)), rep.int(nrow(e1), ncol(e1)))) } } else { nr <- .row_names_info(e2, 2L) if(.row_names_info(e2) > 0L) rn <- attr(e2, "row.names") cn <- names(e2) lscalar <- length(e1) <= 1L if(is.list(e1)) { if(lscalar) e1 <- e1[[1L]] else if(length(e1) != ncol(e2)) stop(gettextf("list of length %d not meaningful", length(e1)), domain = NA) } else { if(!lscalar) e1 <- split(rep_len(as.vector(e1), prod(dim(e2))), rep.int(seq_len(ncol(e2)), rep.int(nrow(e2), ncol(e2)))) } } for(j in seq_along(cn)) { left <- if(!lscalar) e1[[j]] else e1 right <- if(!rscalar) e2[[j]] else e2 value[[j]] <- eval(f) } if(.Generic %in% c("+","-","*","^","%%","%/%","/")) { if(length(value)) { names(value) <- cn data.frame(value, row.names = rn, check.names = FALSE) } else data.frame( row.names = rn, check.names = FALSE) } else { value <- unlist(value, recursive = FALSE, use.names = FALSE) if(!length(value)) matrix(logical(), nrow = nr, ncol = length(cn), dimnames = list(rn,cn)) else matrix(value, nrow = nr, dimnames = list(rn,cn)) } } Summary.data.frame <- function(..., na.rm) { args <- list(...) args <- lapply(args, function(x) { x <- as.matrix(x) if(!is.numeric(x) && !is.logical(x) && !is.complex(x)) stop("only defined on a data frame with all numeric-alike variables") x }) do.call(.Generic, c(args, na.rm=na.rm)) } xtfrm.data.frame <- function(x) { if(tolower(Sys.getenv("_R_STOP_ON_XTFRM_DATA_FRAME_")) %in% c("1", "yes", "true")) stop("cannot xtfrm data frames") else { warning("cannot xtfrm data frames") NextMethod("xtfrm") } } list2DF <- function(x = list(), nrow = 0L) { stopifnot(is.list(x), is.null(nrow) || nrow >= 0L) if(n <- length(x)) { if(length(nrow <- unique(lengths(x))) > 1L) stop("all variables should have the same length") } else { if(is.null(nrow)) nrow <- 0L } if(is.null(names(x))) names(x) <- character(n) class(x) <- "data.frame" attr(x, "row.names") <- .set_row_names(nrow) x }
`vol.m3` <- function(dbh.cm, height.m, multiplier=0.5) { vol.m3 <- pi * (dbh.cm/200)^2 * height.m * multiplier }
map_gist <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { UseMethod("map_gist") } map_gist.SpatialPoints <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...){ check4gistr() dat <- SpatialPointsDataFrame(input, data.frame(dat = 1:NROW(input@coords))) gistc(dat, file, description, public, browse, ...) } map_gist.SpatialPointsDataFrame <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.SpatialPolygons <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.SpatialPolygonsDataFrame <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.SpatialLines <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...){ check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.SpatialLinesDataFrame <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.SpatialGrid <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.SpatialGridDataFrame <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.SpatialPixels <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.SpatialPixelsDataFrame <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.SpatialRings <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.SpatialRingsDataFrame <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.numeric <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() input <- as.geo_list(num_to_geo_list(input, geometry), "numeric") gistc(input, file, description, public, browse, ...) } map_gist.data.frame <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() input <- as.geo_list(df_to_geo_list(input, lat, lon, geometry, type, group), "data.frame") gistc(input, file, description, public, browse, ...) } map_gist.list <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() input <- as.geo_list(list_to_geo_list(input, lat, lon, geometry, type, group = group), "list") gistc(input, file, description, public, browse, ...) } map_gist.location_ <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistr::gist_create(files = file[[1]], description = description, public = public, browse = browse, ...) } map_gist.json <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } map_gist.geo_list <- function(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...) { check4gistr() gistc(input, file, description, public, browse, ...) } gistc <- function(input, file, description, public, browse, ...){ gistr::gist_create(files = geojson_write(input, file = file)$path, description = description, public = public, browse = browse, ...) } check4gistr <- function() { if (!requireNamespace("gistr", quietly = TRUE)) { stop("Please install gistr", call. = FALSE) } }
dsscden <- function (object,y,x) { if (!("sscden"%in%class(object))) stop("gss error in dsscden: not a sscden object") if (!all(sort(object$xnames)==sort(colnames(x)))) stop("gss error in dsscden: mismatched x variable names") if (length(object$ynames)==1&is.vector(y)) { y <- data.frame(y,stringsAsFactors=TRUE) colnames(y) <- object$ynames } if (!all(sort(object$ynames)==sort(colnames(y)))) stop("gss error in dsscden: mismatched y variable names") if ("sscden1"%in%class(object)) { qd.pt <- object$rho$env$qd.pt qd.wt <- object$rho$env$qd.wt d.qd <- d.sscden1(object,x,qd.pt,scale=FALSE) int <- apply(d.qd*qd.wt,2,sum) return(t(t(d.sscden1(object,x,y,scale=FALSE))/int)) } else { qd.pt <- object$yquad$pt qd.wt <- object$yquad$wt d.qd <- d.sscden(object,x,qd.pt) int <- apply(d.qd*qd.wt,2,sum) return(t(t(d.sscden(object,x,y))/int)) } } psscden <- function(object,q,x) { if (!("sscden"%in%class(object))) stop("gss error in psscden: not a sscden object") if (length(object$ynames)!=1) stop("gss error in psscden: y is not 1-D") if (("sscden1"%in%class(object))&!is.numeric(object$mf[,object$ynames])) stop("gss error in qssden: y is not continuous") if ("sscden1"%in%class(object)) ydomain <- object$rho$env$ydomain else ydomain <- object$ydomain mn <- min(ydomain[[object$ynames]]) mx <- max(ydomain[[object$ynames]]) order.q <- rank(q) p <- q <- sort(q) q.dup <- duplicated(q) p[q<=mn] <- 0 p[q>=mx] <- 1 qd.hize <- 200 qd <- gauss.quad(2*qd.hize,c(mn,mx)) y.wk <- data.frame(qd$pt) colnames(y.wk) <- object$ynames d.qd <- dsscden(object,y.wk,x) gap <- diff(qd$pt) g.wk <- gap[qd.hize]/2 for (i in 1:(qd.hize-2)) g.wk <- c(g.wk,gap[qd.hize+i]-g.wk[i]) g.wk <- 2*g.wk g.wk <- c(g.wk,(mx-mn)/2-sum(g.wk)) gap[qd.hize:1] <- gap[qd.hize+(1:qd.hize)] <- g.wk brk <- cumsum(c(mn,gap)) kk <- (1:length(q))[q>mn&q<mx] z <- NULL for (k in 1:dim(x)[1]) { d.qd.wk <- d.qd[,k]/sum(d.qd[,k]*qd$wt) for (i in kk) { if (q.dup[i]) { p[i] <- p.dup next } ind <- (1:(2*qd.hize))[qd$pt<q[i]] if (!length(ind)) { wk <- d.qd.wk[1]*qd$wt[1]*(q[i]-mn)/gap[1] } else { wk <- sum(d.qd.wk[ind]*qd$wt[ind]) id.mx <- max(ind) if (q[i]<brk[id.mx+1]) wk <- wk-d.qd.wk[id.mx]*qd$wt[id.mx]*(brk[id.mx+1]-q[i])/gap[id.mx] else wk <- wk+d.qd.wk[id.mx+1]*qd$wt[id.mx+1]*(q[i]-brk[id.mx+1])/gap[id.mx+1] } p[i] <- p.dup <- wk } z <- cbind(z,p[order.q]) } z } qsscden <- function(object,p,x) { if (!("sscden"%in%class(object))) stop("gss error in qsscden: not a sscden object") if (length(object$ynames)!=1) stop("gss error in qsscden: y is not 1-D") if (("sscden1"%in%class(object))&!is.numeric(object$mf[,object$ynames])) stop("gss error in qssden: y is not continuous") if ("sscden1"%in%class(object)) ydomain <- object$rho$env$ydomain else ydomain <- object$ydomain mn <- min(ydomain[[object$ynames]]) mx <- max(ydomain[[object$ynames]]) order.p <- rank(p) q <- p <- sort(p) p.dup <- duplicated(p) q[p<=0] <- mn q[p>=1] <- mx qd.hize <- 200 qd <- gauss.quad(2*qd.hize,c(mn,mx)) y.wk <- data.frame(qd$pt) colnames(y.wk) <- object$ynames d.qd <- dsscden(object,y.wk,x) gap <- diff(qd$pt) g.wk <- gap[qd.hize]/2 for (i in 1:(qd.hize-2)) g.wk <- c(g.wk,gap[qd.hize+i]-g.wk[i]) g.wk <- 2*g.wk g.wk <- c(g.wk,(mx-mn)/2-sum(g.wk)) gap[qd.hize:1] <- gap[qd.hize+(1:qd.hize)] <- g.wk brk <- cumsum(c(mn,gap)) kk <- (1:length(p))[p>0&p<1] z <- NULL for (k in 1:dim(x)[1]) { d.qd.wk <- d.qd[,k]/sum(d.qd[,k]*qd$wt) p.wk <- cumsum(d.qd.wk*qd$wt) for (i in kk) { if (p.dup[i]) { q[i] <- q.dup next } ind <- (1:(2*qd.hize))[p.wk<p[i]] if (!length(ind)) { wk <- mn+p[i]/(d.qd.wk[1]*qd$wt[1])*gap[1] } else { id.mx <- max(ind) wk <- brk[id.mx+1]+(p[i]-p.wk[id.mx])/(d.qd.wk[id.mx+1]*qd$wt[id.mx+1])*gap[id.mx+1] } q[i] <- q.dup <- wk } z <- cbind(z,q[order.p]) } z } d.sscden <- function (object,x,y) { if ("sscden"!=class(object)) stop("gss error in d.sscden: not a sscden object") if (!all(sort(object$xnames)==sort(colnames(x)))) stop("gss error in d.sscden: mismatched x variable names") if (!all(sort(object$ynames)==sort(colnames(y)))) stop("gss error in d.sscden: mismatched y variable names") mf <- object$mf z <- NULL for (k in 1:dim(x)[1]) { xy.new <- cbind(x[rep(k,dim(y)[1]),,drop=FALSE],y) s <- NULL r <- 0 nu <- nq <- 0 for (label in object$terms$labels) { vlist <- object$terms[[label]]$vlist xy <- xy.new[,vlist] xy.basis <- mf[object$id.basis,vlist] nphi <- object$terms[[label]]$nphi nrk <- object$terms[[label]]$nrk if (nphi) { phi <- object$terms[[label]]$phi for (i in 1:nphi) { nu <- nu + 1 s.wk <- phi$fun(xy,nu=i,env=phi$env) s <- cbind(s,s.wk) } } if (nrk) { rk <- object$terms[[label]]$rk for (i in 1:nrk) { nq <- nq+1 r.wk <- rk$fun(xy,xy.basis,nu=i,env=rk$env,out=TRUE) r <- r + 10^object$theta[nq]*r.wk } } } eta <- exp(cbind(s,r)%*%c(object$d,object$c)) z <- cbind(z,eta) } z } d.sscden1 <- function (object,x,y,scale=TRUE) { if (!("sscden1"%in%class(object))) stop("gss error in d.sscden1: not a sscden1 object") if (!all(sort(object$xnames)==sort(colnames(x)))) stop("gss error in d.sscden1: mismatched x variable names") if (!all(sort(object$ynames)==sort(colnames(y)))) stop("gss error in d.sscden1: mismatched y variable names") mf <- object$mf rho <- object$rho$fun(x,y,object$rho$env,outer=TRUE) z <- NULL for (k in 1:dim(x)[1]) { xy.new <- cbind(x[rep(k,dim(y)[1]),,drop=FALSE],y) s <- NULL r <- 0 nu <- nq <- 0 for (label in object$terms$labels) { vlist <- object$terms[[label]]$vlist xy <- xy.new[,vlist] xy.basis <- mf[object$id.basis,vlist] nphi <- object$terms[[label]]$nphi nrk <- object$terms[[label]]$nrk if (nphi) { phi <- object$terms[[label]]$phi for (i in 1:nphi) { nu <- nu + 1 if (!scale&!(nu%in%object$id.s)) next s.wk <- phi$fun(xy,nu=i,env=phi$env) s <- cbind(s,s.wk) } } if (nrk) { rk <- object$terms[[label]]$rk for (i in 1:nrk) { nq <- nq+1 if (!scale&!(nq%in%object$id.r)) next r.wk <- rk$fun(xy,xy.basis,nu=i,env=rk$env,out=TRUE) r <- r + 10^object$theta[nq]*r.wk } } } if (!scale) eta <- exp(cbind(s,r)%*%c(object$d[object$id.s],object$c)) else eta <- exp(cbind(s,r)%*%c(object$d,object$c))*object$scal z <- cbind(z,eta*rho[k,]) } z }
rank_mat <- function( x ) { if ( class(x)[1]=="numeric" ) x <- array( x , dim=c(length(x),1) ) matrix( rank(x) , ncol=ncol(x) ) } trankplot <- function( object , bins=30 , pars , chains , col=rethink_palette , alpha=1 , bg=col.alpha("black",0.15) , ask=TRUE , window , n_cols=3 , max_rows=5 , lwd=1.5 , lp=FALSE , axes=FALSE , off=0 , add=FALSE , stacked=FALSE , ... ) { if ( !(class(object)[1] %in% c("map2stan","ulam","stanfit")) ) stop( "requires map2stan, ulam or stanfit object" ) if ( class(object)[1] %in% c("map2stan","ulam") ) { object <- object@stanfit } if ( missing(pars) ) post <- extract(object,permuted=FALSE,inc_warmup=FALSE) else post <- extract(object,pars=pars,permuted=FALSE,inc_warmup=FALSE) dimnames <- attr(post,"dimnames") n_chains <- length(dimnames$chains) if ( n_chains==1 ) stop( "trankplot requires more than one chain." ) if ( missing(chains) ) chains <- 1:n_chains n_chains <- length(chains) pars <- dimnames$parameters chain.cols <- rep_len(col,n_chains) wdev <- which(pars=="dev") if ( length(wdev)>0 ) pars <- pars[-wdev] wlp <- which(pars=="lp__") if ( length(wlp)>0 & lp==FALSE ) pars <- pars[-wlp] wlp <- grep( "log_lik" , pars , fixed=TRUE ) if ( length(wlp)>0 ) pars <- pars[-wlp] n_pars <- length( pars ) ranks <- post n_samples <- dim(post)[1] for ( i in 1:n_pars ) { ranks[,,i] <- rank_mat( post[,, pars[i] ] ) } breaks <- hist( ranks[,,1] , breaks=bins , plot=FALSE )$breaks h <- array( NA , dim=c( length(breaks)-1 , n_chains , n_pars ) ) for ( i in 1:n_pars ) { for ( j in 1:n_chains ) { h[,j,i] <- hist( ranks[,j,i] , breaks=breaks , plot=FALSE )$counts } } n_rows=ceiling(n_pars/n_cols) n_rows_per_page <- n_rows paging <- FALSE n_pages <- 1 if ( n_rows_per_page > max_rows ) { n_rows_per_page <- max_rows n_pages <- ceiling(n_pars/(n_cols*n_rows_per_page)) paging <- TRUE } n_iter <- object@sim$iter n_warm <- object@sim$warmup wstart <- 0 wend <- max(breaks) if ( missing(window) ) window <- c(1,n_samples) if ( !missing(window) ) { wstart <- window[1] wend <- window[2] } plot_make <- function( main , par , neff , ... ) { ylim <- range(h[,,par]) if ( stacked==TRUE ) ylim[2] <- ylim[2] * ( length(chains) - 1 ) if ( axes==TRUE ) plot( NULL , xlab="" , ylab="" , bty="l" , xlim=range(breaks) , ylim=ylim , ... ) else plot( NULL , xlab="" , ylab="" , bty="l" , xlim=range(breaks) , ylim=ylim , xaxt="n" , yaxt="n" , ... ) neff_use <- neff[ names(neff)==main ] mtext( paste("n_eff =",round(neff_use,0)) , 3 , adj=1 , cex=0.9 ) if ( main=="lp__" ) main <- "log-probability" mtext( main , 3 , adj=0 , cex=1 ) } nb <- length(breaks) plot_trank <- function( r , ... ) { if ( stacked==FALSE ) { for ( i in chains ) { x <- c( breaks[1] , rep( breaks[2:(nb-1)] , each=2 ) , breaks[nb] ) y <- rep( r[ 1:(nb-1) ,i] , each=2 ) lines( x + (i-1)*off , y , col=col.alpha(chain.cols[i],alpha) , lwd=lwd ) } } else { ysum <- 0 for ( i in chains ) { x <- c( breaks[1] , rep( breaks[2:(nb-1)] , each=2 ) , breaks[nb] ) y <- rep( r[ 1:(nb-1) ,i] , each=2 ) ysum <- y + ysum print(str(ysum)) lines( x + (i-1)*off , ysum , col=col.alpha(chain.cols[i],alpha) , lwd=lwd ) } } } n_eff <- summary(object)$summary[ , 'n_eff' ] if ( add==FALSE ) { par(mgp = c(0.5, 0.5, 0), mar = c(1.5, 1.5, 1.5, 1) + 0.1, tck = -0.02) par(mfrow=c(n_rows_per_page,n_cols)) } n_ppp <- n_rows_per_page * n_cols for ( k in 1:n_pages ) { if ( k > 1 ) message( paste("Waiting to draw page",k,"of",n_pages) ) for ( i in 1:n_ppp ) { pi <- i + (k-1)*n_ppp if ( pi <= n_pars ) { if ( pi == 2 ) { if ( ask==TRUE & add==FALSE ) { ask_old <- devAskNewPage(ask = TRUE) on.exit(devAskNewPage(ask = ask_old), add = TRUE) } } plot_make( pars[pi] , pi , n_eff , ... ) plot_trank( h[ , , pi ] , ... ) } } } }
path_package <- function(package, ...) { if (!is.character(package) || length(package) != 1L) { stop(fs_error(sprintf("`package` must be a character vector of length 1"))) } pkg_path <- tryCatch( find.package(package, quiet = FALSE), error = function(error) { is_not_found_error <- grepl( gettextf("there is no package called %s", sQuote(package)), conditionMessage(error), fixed = TRUE) if (!is_not_found_error) { stop(error) } msg <- sprintf( "Can't find package `%s` in library locations: %s", package, paste0(" - '", path_tidy(.libPaths()), "'", collapse = "\n")) stop(fs_error(msg, class = "EEXIST")) }) files_inst <- path(pkg_path, "inst", ...) present_inst <- file_exists(files_inst) files_top <- path(pkg_path, ...) present_top <- file_exists(files_top) files <- files_top files[present_inst] <- files_inst[present_inst] files <- files[present_inst | present_top] if (length(files) == 0) { msg <- sprintf( "File(s) %s do not exist", paste0("'", files_top, "'", collapse = ", ") ) stop(fs_error(msg, class = "EEXIST")) } files }
whichlevel <- function (J, filter.number = 10, family = "DaubLeAsymm") { BigJ <- J + 1 KeepGoing <- T while (KeepGoing) { n <- 2^BigJ tmpwd <- wd(rep(0, n), filter.number = filter.number, family = family) ixvec <- cumsum(2^((BigJ - 1):0)) somefull <- F for (i in 1:J) { tmpwd$D <- rep(0, n - 1) tmpwd$D[ixvec[i]] <- 1 vec <- wr(tmpwd) somefull <- somefull | all(vec != 0) if (somefull) break } if (!somefull) KeepGoing <- F else BigJ <- BigJ + 1 } BigJ }
extractCTDTClass <- function(x, aagroup1, aagroup2, aagroup3) { if (protcheck(x) == FALSE) { stop("x has unrecognized amino acid type") } if ((length(aagroup1) != length(aagroup2) | length(aagroup1) != length(aagroup3)) | (length(aagroup2) != length(aagroup3))) { stop("The three groups must have the same property numbers") } xSplitted <- strsplit(x, split = "")[[1]] n <- nchar(x) propnum <- length(aagroup1) G <- vector("list", propnum) for (i in 1L:propnum) G[[i]] <- rep(NA, n) for (i in 1L:propnum) { try(G[[i]][which(xSplitted %in% aagroup1[[i]])] <- "G1") try(G[[i]][which(xSplitted %in% aagroup2[[i]])] <- "G2") try(G[[i]][which(xSplitted %in% aagroup3[[i]])] <- "G3") } for (i in 1L:propnum) G[[i]] <- paste(G[[i]][-n], G[[i]][-1], sep = "") G <- lapply(G, as.factor) GSummary <- lapply(G, summary) CTDT <- vector("list", propnum) for (i in 1L:propnum) { CTDT[[i]][1] <- sum(GSummary[[i]][c("G1G2", "G2G1")]) / (n - 1) CTDT[[i]][2] <- sum(GSummary[[i]][c("G1G3", "G3G1")]) / (n - 1) CTDT[[i]][3] <- sum(GSummary[[i]][c("G2G3", "G3G2")]) / (n - 1) } CTDT <- unlist(CTDT) names(CTDT) <- paste( "prop", rep(1L:propnum, each = 3L), ".", rep(c("Tr1221", "Tr1331", "Tr2332"), times = propnum), sep = "" ) CTDT }
get_loonWidgetsInfo.l_graph <- function(widgets, loon.grobs, ...) { args <- list(...) navbarMenuName <- args$navbarMenuName loon.grob <- loon.grobs nodes_grob <- grid::getGrob(loon.grob, "graph nodes") nodes_children <- nodes_grob$children x <- y <- size <- pch <- index <- c() N <- length(nodes_children) lapply(1:N, function(i){ node_layer <- nodes_children[[i]] if(is(node_layer, "null")) { x[i] <<- NA y[i] <<- NA pch[i] <<- "" size[i] <<- NA } else { x[i] <<- node_layer$x y[i] <<- node_layer$y pch[i] <<- node_layer$pch size[i] <<- node_layer$gp$fontsize } index[i] <<- as.numeric(gsub("\\D", "", node_layer$name)) } ) glyph <- pch_to_glyph(pch) xyOriginal <- list() newGrob <- grid::getGrob(loon.grob, "graph nodes") graph_edges <- grid::getGrob(loon.grob, "graph edges") lapply(1:length(newGrob$children), function(i) { xyOriginal[[i]] <<- list( x = newGrob$children[[i]]$x, y = newGrob$children[[i]]$y ) } ) swapAxes <- widgets['swapAxes'] viewPort <- get_viewPort(loon.grob) dataViewport <- get_vp_from_vpStack(viewPort, "dataViewport") xlim <- dataViewport$xscale ylim <- dataViewport$yscale if(swapAxes) { ylabel <- widgets['xlabel'] xlabel <- widgets['ylabel'] } else { xlabel <- widgets['xlabel'] ylabel <- widgets['ylabel'] } xNoNA <- na.omit(x) plotViewXlim <- if(length(xNoNA) == 0) { c(-0.05, 0.05) } else if(length(xNoNA) == 1) { xNoNA + c(-0.05, 0.05) } else { grDevices::extendrange(xNoNA) } yNoNA <- na.omit(y) plotViewYlim <- if(length(yNoNA) == 0) { c(-0.05, 0.05) } else if(length(yNoNA) == 1) { yNoNA + c(-0.05, 0.05) } else { grDevices::extendrange(yNoNA) } worldView <- get_worldViewPort(loon.grob = loon.grob, parentExcluded = TRUE, recursive = TRUE) worldViewXlim <- range(c(plotViewXlim, worldView$xlim)) worldViewYlim <- range(c(plotViewYlim, worldView$ylim)) layers <- get_layers(loon.grob, recursive = FALSE) names(layers) <- layers list( itemLabel = widgets['itemLabel'], showItemLabels = widgets['showItemLabels'], swapInShiny = swapAxes, swapInLoon = swapAxes, showLabels = widgets['showLabels'], showScales = widgets['showScales'], showGuides = widgets['showGuides'], showOrbit = widgets['showOrbit'], linkingGroup = widgets['linkingGroup'], linkingKey = widgets['linkingKey'], loonDefaultMargins = list( minimumMargins = pixels_2_lines(widgets['minimumMargins']), labelMargins = pixels_2_lines(widgets['labelMargins']), scalesMargins = pixels_2_lines(widgets['scalesMargins']) ), labels = list( xlabel = xlabel, ylabel = ylabel, title = if(is.null(args$title)) widgets['title'] else args$title ), color = loon::hex12tohex6(widgets['color']), active = widgets['active'], selected = widgets['selected'], selectByLoon = widgets['selectBy'], xlabel = xlabel, ylabel = ylabel, title = widgets['title'], N = N, linkingStates = loon::l_getLinkedStates(widgets), x = x, y = y, xlim = xlim, ylim = ylim, stepX = log_ceiling(diff(xlim)), stepY = log_ceiling(diff(ylim)), xOriginal = x, yOriginal = y, pch = pch, glyph = glyph, size = size, index = index, xyOriginal = xyOriginal, graph_edges = graph_edges, plotViewXlim = plotViewXlim, plotViewYlim = plotViewYlim, worldViewXlim = worldViewXlim, worldViewYlim = worldViewYlim, navbarMenuName = navbarMenuName, layers = layers, lastSelection = integer(0), loonColor = list( background_color = loon::hex12tohex6(widgets["background"]), foreground_color = loon::hex12tohex6(widgets["foreground"]), guidesbackground_color = loon::hex12tohex6(widgets["guidesBackground"]), guideslines_color = loon::hex12tohex6(widgets["guidelines"]) ), alpha = rep(1, N) ) }
context("lgb.plot.importance()") test_that("lgb.plot.importance() should run without error for well-formed inputs", { data(agaricus.train, package = "lightgbm") train <- agaricus.train dtrain <- lgb.Dataset(train$data, label = train$label) params <- list( objective = "binary" , learning_rate = 0.01 , num_leaves = 63L , max_depth = -1L , min_data_in_leaf = 1L , min_sum_hessian_in_leaf = 1.0 ) model <- lgb.train(params, dtrain, 3L) tree_imp <- lgb.importance(model, percentage = TRUE) expect_null(dev.list()) args_no_cex <- list( "tree_imp" = tree_imp , top_n = 10L , measure = "Gain" ) args_cex <- args_no_cex args_cex[["cex"]] <- 0.75 for (arg_list in list(args_no_cex, args_cex)) { resDT <- do.call( what = lgb.plot.importance , args = arg_list ) expect_true(data.table::is.data.table(resDT)) expect_named(resDT, c("Feature", "Gain", "Cover", "Frequency")) expect_false(is.null(dev.list())) dev.off() expect_null(dev.list()) } })
NULL brickFromOutputSoil3DTensor <- function(x,when,layers="SoilLayerThicknesses",one.layer=FALSE,suffix="L%04dN%04d.asc",time_formatter="N%04d",suffix_one.layer="N%04d.asc",wpath=NULL,tz="A",start_date_key="InitDateDDMMYYYYhhmm",end_date_key="EndDateDDMMYYYYhhmm",timestep="OutputSoilMaps",use.read.raster.from.url=FALSE,crs=NULL,projfile="geotop.proj",start.from.zero=FALSE,secondary.suffix=NULL,only.map.filename=FALSE,...) { out <- NULL if (is.null(crs)) { cond <- (!is.null(wpath)) | is.null(projfile) | is.na(projfile) if (cond) { projfile <- paste(wpath,projfile,sep="/") cond <- file.exists(projfile) crs <- getProjection(projfile,cond=cond) } } start_s <- geotopbricks::get.geotop.inpts.keyword.value(start_date_key,date=TRUE,wpath=wpath,tz=tz,...) end_s <- geotopbricks::get.geotop.inpts.keyword.value(end_date_key,date=TRUE,wpath=wpath,tz=tz,...) if (!is.numeric(timestep)) timestep <- geotopbricks::get.geotop.inpts.keyword.value(timestep,wpath=wpath,numeric=TRUE,...)*3600 time <- seq(from=start_s,to=end_s,by=timestep) if (is.numeric(layers)) { if ((length(layers)==1) & (layers[1]>1)) layers <- 1:layers if ((length(layers)==1) & (layers[1]=1)) one.layer <- TRUE } else { if (layers=="SoilLayerThicknesses") { layers <- geotopbricks::get.geotop.inpts.keyword.value("SoilLayerThicknesses",numeric=TRUE,wpath=wpath,...) if (is.null(layers)) { layers <- "SoilParFile" } else { } } if (layers[1]=="SoilParFile") { headerDz <- geotopbricks::get.geotop.inpts.keyword.value("HeaderSoilDz",wpath=wpath,...)[1] if (is.null(headerDz)) headerDz <- "Dz" layers <- geotopbricks::get.geotop.inpts.keyword.value("SoilParFile",wpath=wpath,add_wpath=TRUE,data.frame=TRUE,level=1,date_field=NULL,...)[,headerDz] } if (!is.numeric(layers) | (length(layers)==1)) { nl <- geotopbricks::get.geotop.inpts.keyword.value("SoilLayerNumber",numeric=TRUE,wpath=wpath,...)[1] if (!is.null(nl)) layers <- 1:nl } if (!is.numeric(layers)) { warning("Layers Not Numeric 1:2 by Defalut!") layers <- 1:2 } } map.prefix <- geotopbricks::get.geotop.inpts.keyword.value(x,numeric=FALSE,date=FALSE,wpath=wpath,add_wpath=TRUE,...) if (!is.null(secondary.suffix)) { map.prefix <- paste(map.prefix,secondary.suffix,sep="") } print(paste("Maps to import:",length(when),"from",as.character(when[1]),"to",as.character(when[length(when)]),sep=" ")) message("Important bug solved from 1.3.7.3, previous versions (<= 1.3.7.2) could return slightly different results!") time <- time[-1] out <- lapply(X=when,FUN=function(whenx,map.prefix,suffix,crs,layers,start.from.zero,one.layer,time,timestep) { message(paste("Importing",as.character(whenx),sep=" ")) t_index <- abs(as.numeric((whenx-time),units="secs"))<timestep index <- 1 n <- which(t_index)[index] if (length(n)>0) { n <- n[1] } if (!is.na(n)) { time_formatter_n <- sprintf(time_formatter,n) if (one.layer) { suffix <- str_replace(suffix_one.layer,time_formatter,time_formatter_n) } else { suffix <- str_replace(suffix,time_formatter,time_formatter_n) } map.filename <- paste(map.prefix,suffix,sep="") message(paste("As ",as.character(time[n]),sep=" ")) if (only.map.filename==TRUE) { out <- map.filename } else if (one.layer) { if (use.read.raster.from.url) { out <- read.raster.from.url(x=map.filename) } else { out <- raster(map.filename) } if (!is.null(crs)) { projection(out) <- crs } } else { out <- brick.decimal.formatter(map.filename,nlayers=length(layers),use.read.raster.from.url=use.read.raster.from.url,start.from.zero=start.from.zero,crs=crs) if (start.from.zero) { names(out) <- paste("L",0:length(layers),sep="") } else { names(out) <- paste("L",1:length(layers),sep="") } names(out)[1:length(layers)] <- paste(names(out)[1:length(layers)],layers,sep="_") } } else { out <- NULL } return(out) },map.prefix=map.prefix,suffix=suffix,crs=crs,layers=layers,start.from.zero=start.from.zero,one.layer=one.layer,time=time,timestep=timestep) names(out) <- strftime(when,tz=tz,format="DATE-TIME %Y-%m-%d %H:%M") if (length(out)==1) out <- out[[1]] return(out) } NULL rasterFromOutput2DMap <- function(x,when,...) { out <- geotopbricks::brickFromOutputSoil3DTensor(x=x,when=when,layers=1,one.layer=TRUE,...) return(out) }
context("recode, replace") gmtc <- fgroup_by(mtcars, cyl) test_that("replace_NA and replace_Inf work well", { expect_equal(replace_NA(airquality, 0), `[<-`(airquality, is.na(airquality), value = 0)) expect_equal(replace_NA(airquality, 0, cols = 1:2), `[<-`(airquality, is.na(airquality), value = 0)) expect_equal(replace_NA(airquality, 0, cols = is.numeric), `[<-`(airquality, is.na(airquality), value = 0)) expect_equal(replace_NA(flag(EuStockMarkets), 0), `[<-`(flag(EuStockMarkets), is.na(flag(EuStockMarkets)), value = 0)) expect_equal(replace_Inf(dapply(mtcars, log)), `[<-`(dapply(mtcars, log), sapply(dapply(mtcars, log), is.infinite), value = NA)) expect_equal(replace_Inf(log(EuStockMarkets)), `[<-`(log(EuStockMarkets), is.infinite(log(EuStockMarkets)), value = NA)) expect_equal(replace_Inf(dapply(mtcars, log), replace.nan = TRUE), `[<-`(dapply(mtcars, log), sapply(dapply(mtcars, log), is.infinite), value = NA)) expect_equal(replace_Inf(log(EuStockMarkets), replace.nan = TRUE), `[<-`(log(EuStockMarkets), is.infinite(log(EuStockMarkets)), value = NA)) }) test_that("replace_outliers works well.", { expect_equal(replace_outliers(mtcars, 2), replace(mtcars, fscale(mtcars) > 2, NA)) expect_equal(replace_outliers(gmtc, 2, single.limit = "overall_SDs"), replace(gmtc, dapply(mtcars, fscale) > 2, NA)) expect_equal(replace_outliers(mtcars, 2, single.limit = "min"), replace(mtcars, mtcars < 2, NA)) expect_equal(replace_outliers(mtcars, 2, single.limit = "max"), replace(mtcars, mtcars > 2, NA)) expect_equal(replace_outliers(EuStockMarkets, 2), replace(EuStockMarkets, fscale(EuStockMarkets) > 2, NA)) expect_equal(replace_outliers(EuStockMarkets, 2, single.limit = "overall_SDs"), replace(EuStockMarkets, dapply(EuStockMarkets, fscale) > 2, NA)) expect_equal(replace_outliers(EuStockMarkets, 2, single.limit = "min"), replace(EuStockMarkets, EuStockMarkets < 2, NA)) expect_equal(replace_outliers(EuStockMarkets, 2, single.limit = "max"), replace(EuStockMarkets, EuStockMarkets > 2, NA)) }) set.seed(101) lmiss <- na_insert(letters) month.miss <- na_insert(month.name) char_dat <- na_insert(char_vars(GGDC10S)) options(warn = -1) test_that("recode_char works well", { expect_equal(recode_char(lmiss, a = "b"), replace(lmiss, lmiss == "a", "b")) expect_visible(recode_char(lmiss, a = "b", missing = "a")) expect_visible(recode_char(lmiss, a = "b", missing = "c")) expect_visible(recode_char(lmiss, a = "b", default = "n")) expect_visible(recode_char(lmiss, a = "b", default = "n", missing = "c")) expect_visible(recode_char(month.miss, ber = NA, regex = TRUE)) expect_visible(recode_char(month.miss, ber = NA, missing = "c", regex = TRUE)) expect_visible(recode_char(lmiss, ber = NA, default = "n", regex = TRUE)) expect_visible(recode_char(lmiss, ber = NA, default = "n", missing = "c", regex = TRUE)) expect_visible(recode_char(lmiss, a = "b", e = "f")) expect_visible(recode_char(lmiss, a = "b", e = "f", missing = "a")) expect_visible(recode_char(lmiss, a = "b", e = "f", missing = "c")) expect_visible(recode_char(lmiss, a = "b", e = "f", default = "n")) expect_visible(recode_char(lmiss, a = "b", e = "f", default = "n", missing = "c")) expect_visible(recode_char(month.miss, ber = NA, May = "a", regex = TRUE)) expect_visible(recode_char(month.miss, ber = NA, May = "a", missing = "c", regex = TRUE)) expect_visible(recode_char(lmiss, ber = NA, May = "a", default = "n", regex = TRUE)) expect_visible(recode_char(lmiss, ber = NA, May = "a", default = "n", missing = "c", regex = TRUE)) expect_visible(recode_char(char_dat, SGP = "SINGAPORE", VA = "Value Added")) expect_visible(recode_char(char_dat, SGP = "SINGAPORE", VA = "Value Added", missing = "c")) expect_visible(recode_char(char_dat, SGP = "SINGAPORE", VA = "Value Added", default = "n")) expect_visible(recode_char(char_dat, SGP = "SINGAPORE", VA = "Value Added", default = "n", missing = "c")) expect_visible(recode_char(char_dat, saharan = "SSA", regex = TRUE)) expect_visible(recode_char(char_dat, saharan = "SSA", regex = TRUE, missing = "c")) expect_visible(recode_char(char_dat, saharan = "SSA", regex = TRUE, default = "n")) expect_visible(recode_char(char_dat, saharan = "SSA", regex = TRUE, default = "n", missing = "c")) }) set.seed(101) vmiss <- na_insert(mtcars$cyl) mtcNA <- na_insert(mtcars) test_that("recode_num works well", { expect_equal(recode_num(vmiss, `4` = 5), replace(vmiss, vmiss == 4, 5)) expect_visible(recode_num(vmiss, `4` = 5, missing = 4)) expect_visible(recode_num(vmiss, `4` = 5, missing = 7)) expect_visible(recode_num(vmiss, `4` = 5, default = 8)) expect_visible(recode_num(vmiss, `4` = 5, default = 8, missing = 7)) expect_visible(recode_num(vmiss, `4` = 5, `6` = 10)) expect_visible(recode_num(vmiss, `4` = 5, `6` = 10, missing = 6)) expect_visible(recode_num(vmiss, `4` = 5, `6` = 10, missing = 7)) expect_visible(recode_num(vmiss, `4` = 5, `6` = 10, default = 8)) expect_visible(recode_num(vmiss, `4` = 5, `6` = 10, default = 8, missing = 7)) expect_visible(recode_num(mtcNA, `4` = 5, `1` = 2)) expect_visible(recode_num(mtcNA, `4` = 5, `1` = 2, missing = 6)) expect_visible(recode_num(mtcNA, `4` = 5, `1` = 2, default = 8)) expect_visible(recode_num(mtcNA, `4` = 5, `1` = 2, default = 8, missing = 7)) }) options(warn = 1)
GUI_ENV <- new.env() migui <- function(tk = "RGtk2") { options("guiToolkit" = tk) initialize(); nextScreen(); } initialize <- function() { GUI_ENV$window <- gwindow("mi", visible = FALSE); GUI_ENV$state <- "get_data"; GUI_ENV$group <- ggroup(container=GUI_ENV$window); GUI_ENV$n.chains = 4; GUI_ENV$n.iter = 30; GUI_ENV$mdf_args <- list(); GUI_ENV$mdf <- NULL GUI_ENV$user_df <- NULL nextScreen(); addSpring(GUI_ENV$group); visible(GUI_ENV$window) <- TRUE; visible(GUI_ENV$group) <- TRUE; return(invisible(NULL)) } nextScreen <- function() { delete(GUI_ENV$window,GUI_ENV$group); GUI_ENV$group <- ggroup(container=GUI_ENV$window, horizontal=FALSE, expand=TRUE, fill="both"); functionName <- paste("do_", GUI_ENV$state, sep = ""); do.call(functionName, args = list()); return(invisible(NULL)) } do_get_data <- function() { innerGroup <- setupScreen(step = "1", title = "Get Data", nextHandler = function(h,...) { selected = svalue(dataSourceRadio); if (selected == dataSourceOptions["disk"]) { GUI_ENV$state = "get_data_from_disk"; } else if (selected == dataSourceOptions["r"]) { GUI_ENV$state = "get_data_from_r"; } else if (selected == dataSourceOptions["mi"]) { GUI_ENV$state = "get_data_from_mi"; } nextScreen(); }, backHandler = NULL ); choiceLabel("Select location of data", container=innerGroup); dataSourceOptions <- c(disk="disk drive [csv, dta, por, sav, RData]", r="R's workspace", mi="mi package example [built in]"); dataSourceRadio <- gradio(dataSourceOptions, selected=1, container = indent(innerGroup)); } do_get_data_from_mi <- function() { innerGroup <- setupScreen(step = "1.5", title = "Get Data from mi Package", backHandler = navHandler("get_data"), nextHandler = function(h,...) { do.call("data", args = list(svalue(selector), package = "mi")) GUI_ENV$user_df <- get(svalue(selector), envir= .GlobalEnv); GUI_ENV$state <- "describe_data"; nextScreen(); }); choiceLabel("Select an example", container = innerGroup); data.frames <- data(package = "mi")$results[,3]; selector <- gcombobox(data.frames, container=indent(innerGroup), editable = TRUE, expand=FALSE, anchor=c(-1,-1)); } do_get_data_from_disk <- function() { extensions <- paste("*", c("csv", "dta", "por", "sav", "RData", "Rdata"), sep = "."); file_name <- gfile(text="Choosing Data File for mi GUI", type="open", filter = list("All files" = list(patterns = extensions))); if (is.na(file_name)) { GUI_ENV$state = "get_data"; } else { if (grepl("\\.csv$", file_name)) { user_df <- read.csv(file_name); GUI_ENV$user_df <- user_df; GUI_ENV$state = "describe_data"; } else if (grepl("\\.dta$", file_name)) { user_df <- foreign::read.dta(file_name); GUI_ENV$user_df <- user_df; GUI_ENV$state = "describe_data"; } else if (grepl("\\.\\(por,sav\\)$", file_name)) { user_df <- foreign::read.spss(file_name, to.data.frame = TRUE); GUI_ENV$user_df <- user_df; GUI_ENV$state = "describe_data"; } else { dfs <- load(file_name, envir = GUI_ENV); GUI_ENV$user_df <- GUI_ENV[[dfs[1]]] GUI_ENV$state = "describe_data"; } } nextScreen(); return(invisible(NULL)); } do_get_data_from_r <- function() { data.frames <- sapply(ls(envir = .GlobalEnv), FUN = function(x) { is.data.frame(get(x, envir = .GlobalEnv)) }); if(length(data.frames) == 0) { GUI_ENV$state <- "get_data"; gmessage("No data.frames found in R's global environment, starting over", icon = "error", parent = GUI_ENV$group); nextScreen(); return(invisible(NULL)) } data.frames <- data.frames[data.frames]; innerGroup <- setupScreen(step = "1.5", title = "Get Data Frame from R's Environment", nextHandler = function(h,...) { user_df <- get(svalue(selector), envir= .GlobalEnv); if(is(user_df, "missing_data.frame")) { GUI_ENV$user_df <- as.data.frame(user_df); GUI_ENV$mdf <- user_df; GUI_ENV$state <- "var_options"; } else { GUI_ENV$user_df <- user_df GUI_ENV$state <- "describe_data"; } nextScreen(); }, backHandler = navHandler("get_data")); choiceLabel("Select a data frame in R from the list", container = innerGroup); selector <- gcombobox(names(data.frames), container=indent(innerGroup), editable = TRUE); } do_describe_data <- function() { innerGroup <- setupScreen(step = "2", title = "Describe the Structure of Your Data", backHandler = navHandler("get_data"), nextHandler = function(h,...) { subclass <- svalue(data_desc); if(!any(grepl(paste("^", subclass, "_", sep = ""), mi::.prune("missing_data.frame")))) subclass <- NULL GUI_ENV$mdf_args$subclass <- subclass; GUI_ENV$state <- "get_var_classes"; nextScreen(); }); choiceLabel("Select the best description of your data", container = innerGroup); options <- mi::.prune("missing_data.frame") human_options <- sapply(strsplit(options, "_"), FUN = function(x) x[1]); human_options[1] <- "no special structure"; names(human_options) <- options; data_desc <- gradio(human_options, container=indent(innerGroup)); } do_get_var_classes <- function() { innerGroup <- setupScreen(step = "3", title = "Set Class of Variables", backHandler = navHandler("describe_data"), nextHandler = navHandler("var_options")); label_group <- ggroup(horizontal=TRUE, container=innerGroup); glabel("<b>Select default parameters for variable types:</b>", markup=TRUE, container= label_group); addSpring(label_group); defaults <- formals(.guess_type); threshold_group <- ggroup(horizontal=TRUE, container = innerGroup); contLabel <- glabel("Continuity Threshold", container=threshold_group); thresholdButton <- gspinbutton(from=3, to=100, by=1, value=defaults$threshold, container=threshold_group, handler = function(h, ...) { GUI_ENV$mdf <- NULL; types <- sapply(colnames(GUI_ENV$user_df), FUN = function(y) { .guess_type(GUI_ENV$user_df[,y], favor_ordered = svalue(favor_ord), favor_positive = svalue(favor_pos), threshold = svalue(thresholdButton), variable_name = y) }) names(types) <- colnames(GUI_ENV$user_df); GUI_ENV$mdf_args$types <- types; for(i in seq_along(types)) { tmp <- selectionListGroup[i+1,2] svalue(tmp) <- types[i]; } }); addSpace(threshold_group,15); favor_ord <- gcheckbox("favor ordered", checked=defaults$favor_ordered, container=threshold_group, handler = function(h, ...) { GUI_ENV$mdf <- NULL; types <- sapply(colnames(GUI_ENV$user_df), FUN = function(y){ .guess_type(GUI_ENV$user_df[,y], favor_ordered = svalue(favor_ord), favor_positive = svalue(favor_pos), threshold = svalue(thresholdButton), variable_name = y) }) names(types) <- colnames(GUI_ENV$user_df); GUI_ENV$mdf_args$types <- types; categoricals <- c("unordered-categorical", "ordered-categorical") for(i in seq_along(types)) if(types[i] %in% categoricals) { tmp <- selectionListGroup[i+1,2] svalue(tmp) <- types[i]; } }); addSpace(threshold_group,15); favor_pos <- gcheckbox("favor positive", checked=defaults$favor_positive, container=threshold_group, handler = function(h, ...) { GUI_ENV$mdf <- NULL; types <- sapply(colnames(GUI_ENV$user_df), FUN = function(y) { .guess_type(GUI_ENV$user_df[,y], favor_ordered = svalue(favor_ord), favor_positive = svalue(favor_pos), threshold = svalue(thresholdButton), variable_name = y) }) names(types) <- colnames(GUI_ENV$user_df); GUI_ENV$mdf_args$types <- types; cons <- mi::.prune("continuous") for(i in seq_along(types)) if(types[i] %in% cons) { tmp <- selectionListGroup[i+1,2] svalue(tmp) <- types[i]; } }); gseparator(horizontal=TRUE,container=innerGroup); addSpring(innerGroup); glabel("<b>Variable Class Selector:</b>", markup = TRUE, container=innerGroup); selectionGroup <- ggroup(container=innerGroup, use.scrollwindow= TRUE, horizontal=FALSE, expand=TRUE, visible = TRUE, width = 300, height = 300); selectionListGroup <- glayout(container=selectionGroup, expand=TRUE); tt <- mi::.prune("missing_variable"); names(tt) <- tt tt_names <- names(tt) tt[] <- "stub" tt["irrelevant"] <- "EXCLUDE the variable from all models" tt["count"] <- "non-negative integers" tt["continuous"] <- "continuous but NOT special like positive-continuous, etc" tt["fixed"] <- "one unique value" tt["group"] <- "grouping factors for multilevel models" tt["grouped-binary"] <- "binary variable that is grouped into strata" tt["unordered-categorical"] <- "discrete variable with >= 3 values but WITHOUT ordering, sometimes called nominal or factor" tt["ordered-categorical"] <- "discrete variable with >= 3 values WITH ordering by increasing value" tt["interval"] <- "interval-censored from the left and / or right" tt["binary"] <- "discrete variable with exactly 2 values" tt["bounded-continuous"] <- "continuous variable with lower and / or upper bounds (but not a proportion)" tt["positive-continuous"] <- "continuous variable with no values of 0 or negative (but not a proportion)" tt["proportion"] <- "proportion on the (0,1) interval" tt["semi-continuous"] <- "continuous variable with a point mass at the lower and / or upper end of the distribution" tt["nonnegative-continuous"] <- "continuous variable with a point mass at zero and no negative values" tt["SC_proportion"] <- "proportion on the [0,1] interval" if(any(tt == "stub")) print(tt) tt <- paste(names(tt), tt, sep = ": ") names(tt) <- tt_names types <- sapply(colnames(GUI_ENV$user_df), FUN = function(y) { .guess_type(GUI_ENV$user_df[,y], favor_ordered = svalue(favor_ord), favor_positive = svalue(favor_pos), threshold = svalue(thresholdButton), variable_name = y) }) names(types) <- colnames(GUI_ENV$user_df); GUI_ENV$mdf_args$types <- types; selectionListGroup[1,1] = glabel("<b>Variable</b>", container=selectionListGroup, markup=TRUE, anchor = c(1,0)); selectionListGroup[1,2] = glabel("<b>Class</b>", container=selectionListGroup, markup=TRUE); if(!is.null(GUI_ENV$mdf_args$subclass) && GUI_ENV$mdf_args$subclass == "experiment") { concept <- c("covariate", "outcome", "treatment") GUI_ENV$mdf_args$concept <- factor(rep("covariate", length(types)), levels = concept) } for(i in seq_along(types)) { selectionListGroup[i+1,1] = glabel(names(types)[i], container = selectionListGroup, anchor=c(1,0)); likelyTypeTF <- mi::.possible_missing_variable(GUI_ENV$user_df[,i]) likelyTypes <- names(likelyTypeTF[likelyTypeTF]) likelyTypes <- data.frame(likelyTypes, NA, tt[likelyTypes], stringsAsFactors = FALSE) selectedId <- which(likelyTypes == types[i]); selectionListGroup[i+1,2] = gcombobox(items = likelyTypes, anchor=c(-1,0), action=i, editable = TRUE, selected = selectedId, container = selectionListGroup, handler = function(h, ...) { GUI_ENV$mdf <- NULL; GUI_ENV$mdf_args$types[h$action] <- svalue(h$obj) }); if(!is.null(GUI_ENV$mdf_args$subclass) && GUI_ENV$mdf_args$subclass == "experiment") { selectionListGroup[i+1,3] = gcombobox(items = concept, anchor=c(-1,0), editable = TRUE, action = i, selected = 1, container = selectionListGroup, handler = function(h, ...) { GUI_ENV$mdf_args$concept[h$action] <- svalue(h$obj) }) } } } do_var_options <- function() { if (is.null(GUI_ENV$mdf)) { GUI_ENV$mdf_args$y <- GUI_ENV$user_df GUI_ENV$mdf <- do.call("missing_data.frame", args = GUI_ENV$mdf_args) GUI_ENV$imputations <- NULL } innerGroup <- setupScreen(step = "4", title = "Options for Variables", backHandler = navHandler("get_var_classes"), nextHandler = navHandler("pre_mi")); topGroup <- ggroup(horizontal = FALSE, container = innerGroup); glabel("Choose a variable and then its associated options:", container = topGroup); varnames <- colnames(GUI_ENV$mdf) varHandler <- function(h, ...) { mv <- GUI_ENV$mdf@variables[[svalue(h$obj)]]; varHandler2(mv); return(invisible(NULL)); } varHandler2 <- function(mv) { classes <- mi::.possible_missing_variable(GUI_ENV$user_df[,mv@variable_name]) classes <- names(classes[classes]) tmp <- classCombo if(!identical(svalue(tmp), class(mv)[1])) { svalue(tmp) <- class(mv)[1] tmp[] <- classes; svalue(tmp) <- class(mv)[1] } tmp <- miss svalue(tmp) <- paste(" varHandler3(mv); codes <- unique(mv@raw_data); codes <- codes[!is.na(codes)] if(is(mv, "continuous")) codes <- sort(codes) tmp <- table.group[5,2] svalue(tmp) <- ""; tmp[] <- codes table.group[5,4] <- gcombobox(items = c("NA", "unpossible", codes), selected = 0, editable = TRUE, container = table.group, action = "recode", handler = changeHandler); impModel <- .default_model(mv, GUI_ENV$mdf)[1] tmp <- model if(is.na(impModel)) { svalue(tmp) <- "No model needed because no missing values" } else svalue(tmp) <- paste("Model implied by the above options:", impModel) return(invisible(NULL)); } varHandler3 <- function(mv) { if (!mv@all_obs) { for(i in 1:3) { tmp <- table.group[i,2] enabled(tmp) <- TRUE } im <- getClass(class(mv))@prototype@imputation_method im <- im[!is.na(im)] im <- sapply(im, rosettaStone) tmp <- table.group[1,2] tmp[] <- im svalue(tmp) <- rosettaStone(mv@imputation_method) tmp <- table.group[2,2] svalue(tmp) <- mv@family$family tmp[] <- getClass(class(mv))@prototype@known_families svalue(tmp) <- mv@family$family tmp <- table.group[3,2] svalue(tmp) <- mv@family$link tmp[] <- getClass(class(mv))@prototype@known_links svalue(tmp) <- mv@family$link } else for(i in 1:3) { tmp <- table.group[i,2] svalue(tmp) <- "" enabled(tmp) <- FALSE } if (is(mv, "continuous")) { tmp <- table.group[4,2] enabled(tmp) <- TRUE svalue(tmp) <- .parse_trans(mv@transformation) tmp[] <- mv@known_transformations svalue(tmp) <- .parse_trans(mv@transformation) } else { tmp <- table.group[4,2] svalue(tmp) <- "" enabled(tmp) <- FALSE } return(invisible(NULL)) } rosettaStone <- function(im, inverse = FALSE) { if(inverse) switch(im, "posterior predictive distribution" = "ppd", "predictive mean matching" = "pmm", "conditional mean of observed" = "mean", "conditional median of observed" = "median", "conditional mean" = "expectation", "highest conditional probability" = "mode", NA_character_) else switch(im, ppd = "posterior predictive distribution", pmm = "predictive mean matching", mean = "conditional mean of observed", median = "conditional median of observed", expectation = "conditional mean", mode = "highest conditional probability", "not recognized") } changeHandler <- function(h, ...) { to <- svalue(h$obj) if(is.null(to)) return(invisible(NULL)) if(to == "") return(invisible(NULL)) what <- h$action if(what == "imputation_method") to <- rosettaStone(to, inverse = TRUE) mv <- GUI_ENV$mdf@variables[[svalue(selectedVar)]]; if(what == "imputation_method" && mv@imputation_method == to) return(invisible(NULL)) if(what == "family" && mv@family$family == to) return(invisible(NULL)) if(what == "link" && mv@family$link == to) return(invisible(NULL)) if(is(mv, "continuous") && what == "transformation" && .parse_trans(mv@transformation) == to) return(invisible(NULL)) if(what == "class" && class(mv) == to) return(invisible(NULL)) if(what == "recode") { what <- svalue(table.group[5,2]); if(to == "NA") to <- NA; } GUI_ENV$mdf <- change(data = GUI_ENV$mdf, y = svalue(selectedVar), what = what, to = to); GUI_ENV$imputations <- NULL; mv <- GUI_ENV$mdf@variables[[svalue(selectedVar)]]; varHandler3(mv); return(invisible(NULL)); } varGroup <- ggroup(horizontal = TRUE, container = topGroup) selectedVar <- gcombobox(items = varnames, selected = 1, container = varGroup, editable = TRUE, handler = varHandler); mv <- GUI_ENV$mdf@variables[[1]] glabel(" Class: ", container = varGroup); classes <- mi::.prune(class(mv)); classCombo <- gcombobox(classes, selected = which(class(mv) == classes), action = "class", editable = TRUE, container = varGroup, handler = changeHandler); miss <- glabel(paste(" gbutton("histogram ...", container = varGroup, handler = function(h, ...) { mv <- GUI_ENV$mdf@variables[[svalue(selectedVar)]] hist(mv); title(main = paste("Observed", mv@variable_name)); }); addSpring(innerGroup) gseparator(horizontal = TRUE, container = innerGroup); addSpace(innerGroup, value = 30); table.group <- glayout(container = innerGroup, expand = TRUE, fill = "both"); ims <- getClass(class(mv))@prototype@imputation_method; ims <- ims[!is.na(ims)] table.group[1,1] <- glabel("imputation method", container = table.group); table.group[1,2] <- gcombobox(items = sapply(ims, rosettaStone), selected = 1, editable = TRUE, handler = changeHandler, action = "imputation_method", container = table.group); table.group[2,1] <- glabel("family (likelihood)", container = table.group); table.group[2,2] <- gcombobox(items = ifelse(is.na(mv@family), "none", mv@family$family), selected = 1, editable = TRUE, handler = changeHandler, action = "family", container = table.group); table.group[3,1] <- glabel("link function", container = table.group); table.group[3,2] <- gcombobox(items = ifelse(is.na(mv@family), "none", mv@family$link), selected = 1, editable = TRUE, handler = changeHandler, action = "link", container = table.group); table.group[4,1] <- glabel("transformation function", container = table.group); table.group[4,2] <- gcombobox(items = if(is(mv, "continuous")) .parse_trans(mv@transformation) else "none", selected = 1, editable = TRUE, handler = changeHandler, action = "transformation", container = table.group); for(i in 1:4) { tmp <- table.group[i,2] size(tmp) <- c(250,25); } table.group[5,1] <- glabel("Recode", container = table.group); codes <- unique(mv@raw_data); codes <- codes[!is.na(codes)]; if(is(mv, "continuous")) codes <- sort(codes); table.group[5,2] <- gcombobox(items = codes, selected = 0, editable = TRUE, container = table.group); table.group[5,3] <- glabel("as", container = table.group); table.group[5,4] <- gcombobox(items = c("NA", "unpossible", codes), selected = 0, editable = TRUE, container = table.group, action = "recode", handler = changeHandler); gseparator(horizontal = TRUE, container = innerGroup); modelGroup <- ggroup(horizontal = TRUE, container = innerGroup); model <- glabel("", container = modelGroup); varHandler2(mv); } do_pre_mi <- function() { innerGroup <- setupScreen(step = "5", title = "Pre-imputation Diagnostics", backHandler = navHandler("var_options"), nextHandler = navHandler("impute")); choiceLabel("Click one or more", container = innerGroup); button.group <- ggroup(horizontal = TRUE, container = indent(innerGroup)); table.group <- glayout(horizontal = TRUE, container = button.group, visible = TRUE); table.group[1,1] <- gbutton("image plot ...", container = table.group, handler = function(h, ...) { image(GUI_ENV$mdf, ask = FALSE); return(invisible(NULL)); w <- gwindow(visible = FALSE); ggraphics(container = w); visible(w) <- TRUE image(GUI_ENV$mdf, ask = FALSE); }); table.group[2,1] <- gbutton("histograms ...", container = table.group, handler = function(h, ...) hist(GUI_ENV$mdf, ask = FALSE)); table.group[3,1] <- gbutton("numerical summary ...", container = table.group, handler = function(h, ...) print(summary(as.data.frame(GUI_ENV$mdf)))); addSpring(button.group); } do_impute <- function() { innerGroup <- setupScreen(step = "6", title = "Options for Imputation", backHandler = navHandler("pre_mi"), nextHandler = function(h,...) { runImputationInDialog(); }); choiceLabel("Choose options for imputation",container = innerGroup); table.group <- glayout(horizontal = TRUE, container = indent(innerGroup), visible = TRUE); table.group[1,1] <- glabel("Number of chains:", container=table.group); table.group[1,2] <- gspinbutton(from = 1, to=100, by=1, value=GUI_ENV$n.chains, container=table.group, handler= function(h,...) { GUI_ENV$n.chains = svalue(h$obj); }); table.group[2,1] <- glabel("Number of iterations:", container=table.group); table.group[2,2] <- gspinbutton(from = 1, to=1000, by=1, value=GUI_ENV$n.iter, container=table.group, handler = function(h,...) { GUI_ENV$n.iter = svalue(h$obj); }); } runImputationInDialog <- function() { exitImputationDialog <- function() { dispose(dialogWindow); nextScreen(); return(invisible(NULL)) } foo <- function() { on.exit(exitImputationDialog()); if (is.null(GUI_ENV$imputations)) { GUI_ENV$state <- "impute" GUI_ENV$imputations <- mi(GUI_ENV$mdf, n.chains = GUI_ENV$n.chains, n.iter = GUI_ENV$n.iter, parallel = svalue(parallel)); } else { GUI_ENV$state <- "convergence_eval"; GUI_ENV$imputations <- mi(GUI_ENV$imputations, n.iter = GUI_ENV$n.iter); } GUI_ENV$state <- "convergence_eval"; return(invisible(NULL)) } dialogWindow <- gwindow("Running mi"); group <- ggroup(container=dialogWindow, horizontal=FALSE, expand=TRUE); addTitle("Step 7: Running mi", group); addSpring(group); optionsGroup <- ggroup(container=group, horizontal=TRUE, expand=TRUE); parallel <- gcheckbox("Run in parallel", checked=TRUE, container=optionsGroup); txt <- if(.Platform$OS.type == "windows") "ESC" else "<CTRL>+c" exec <- gbutton("Run mi",container=group, handler = function(h, ...) foo()) focus(exec) <- TRUE addSpring(group); } do_convergence_eval <- function() { innerGroup <- setupScreen(step = "8", title = "Evaluate Convergence", backHandler=navHandler("impute"), nextHandler=navHandler("parametric_eval")); choiceLabel("Click to show convergence evaluations", container=innerGroup); BUGS <- NULL; gbutton("R-hat statistics...", container=innerGroup, handler = function(h,...) { if (is.null(BUGS)) BUGS <- mi::Rhats(GUI_ENV$imputations) print(round(BUGS, 2)); }); addSpring(innerGroup); gseparator(horizontal=TRUE, container=innerGroup); addSpring(innerGroup); cont.group <- ggroup(horizontal=TRUE, expand=TRUE, container=innerGroup); gbutton("Continue ...", handler = function(h, ...) { runImputationInDialog(); }, container= cont.group); glabel("mi for", container = cont.group); gspinbutton(from = 1, to = 1000, by = 1, value = GUI_ENV$n.iter, container = cont.group, handler = function(h, ...) { GUI_ENV$n.iter = svalue(h$obj); }); glabel("more iterations", markup = FALSE, container = cont.group); } do_parametric_eval <- function() { innerGroup <- setupScreen(step = "9", title = "Parametric Diagnostics", backHandler = navHandler("convergence_eval"), nextHandler = navHandler("analysis")); choiceLabel("Run one or more of the following diagnostics", container = innerGroup); button.group <- ggroup(horizontal = TRUE, container = indent(innerGroup)); variable_names <- colnames(GUI_ENV$mdf); variable_names <- c("Choose variable", variable_names); table.group <- glayout(horizontal = TRUE, container = button.group, visible = TRUE); table.group[1,1] <- glabel("Plot model fits:", container = table.group); table.group[1,2] <- gcombobox(items = variable_names, selected = 1, editable = TRUE, container = table.group, handler = function(h, ...) { y <- svalue(h$obj) if (y != "Choose variable") plot(x = GUI_ENV$imputations, y = y, ask = FALSE) else dev.off(); }); table.group[2,2] <- gbutton("image plot ...", container = table.group, handler = function(h, ...) image(GUI_ENV$imputations, ask = FALSE)); table.group[3,2] <- gbutton("histograms for chain ...", container = table.group, handler = function(h, ...) { m <- svalue(table.group[3,3]) hist(GUI_ENV$imputations, m = m, ask = FALSE); title(sub = paste("Chain", m), outer = TRUE) }); table.group[3,3] <- gspinbutton(from = 1, to = length(GUI_ENV$imputations), by = 1, value = 1, container = table.group) table.group[4,2] <- gbutton("numerical summary ...", container = table.group, handler = function(h, ...) print(summary(do.call(rbind, complete(GUI_ENV$imputations))))); addSpring(button.group); } do_analysis <- function() { innerGroup <- setupFinalScreen(step = "10", title = "Analyze Completed Datasets", backHandler = navHandler("parametric_eval"), nextHandler = function(h,...) { exit_gui(h); }); gbutton("Estimate pooled model ...", container = innerGroup, handler = function(h, ...) { runPooledAnalysisDialog(); }); gbutton("Create completed data.frames in R's environment", container = innerGroup, handler = function(h, ...) { .GlobalEnv$dfs <- mi::complete(GUI_ENV$imputations); msg <- "data.frames are in R's environment with object name 'dfs'" gmessage(msg, , icon = "info") }); gbutton("Save imputations in R binary format", container = innerGroup, handler = function(h, ...) { file_name <- gfile(text="Choosing File Name to Save As", type="save"); if (is.na(file_name)) return(); if (!grepl("\\.R[dD]ata$", x = file_name, perl = TRUE)) { file_name <- paste(file_name, "RData", sep = "."); } saveMe <- GUI_ENV$imputations save(saveMe, file = file_name) }); gbutton("Export imputations for Stata", container = innerGroup, handler = function(h, ...) { file_name <- gfile(text="Choosing File Name to Save As", type="save"); if (is.na(file_name)) return(); if (!grepl("\\.dta$", x = file_name, perl = TRUE)) { file_name <- paste(file_name, "dta", sep = "."); } mi::mi2stata(GUI_ENV$imputations, m = length(GUI_ENV$imputations), file = file_name) }) addSpring(innerGroup) } runPooledAnalysisDialog <- function() { dialogWindow <- gwindow("Pooled analysis"); dialog.group <- ggroup(horizontal = FALSE, container = dialogWindow, expand = TRUE); addTitle("Step 12: Specify analysis model", dialog.group); addSpring(dialog.group); missing <- colnames(GUI_ENV$mdf@X); missing <- missing[grepl("^missing_", missing)]; var.names <- c(colnames(GUI_ENV$imputations), missing); var.group <- glabel(strwrap(paste("Variables:", paste(var.names, collapse = ", "))), container = dialog.group); addSpring(dialog.group); possibleFunctions <- c("bayesglm", "glm", "lm"); estimatingFunction <- possibleFunctions[1] estimatingFormula <- NA_character_; m <- length(GUI_ENV$imputations) dotdotdot <- "" table.group <- glayout(horizontal = FALSE, container = dialog.group, visible = TRUE); table.group[1,1] <- glabel("estimating function", container = table.group); table.group[1,2] <- gcombobox(possibleFunctions, selected = 1, editable = TRUE, container = table.group); table.group[2,1] <- glabel("formula", container = table.group); table.group[2,2] <- gedit("", container = table.group, initial.msg = "formula like: y ~ x1 + x2 ..."); table.group[3,1] <- glabel("number of chains", container = table.group); table.group[3,2] <- gspinbutton(from = 1, to = 2 * length(GUI_ENV$imputations), value = length(GUI_ENV$imputations), by = 1, container = table.group); table.group[4,1] <- glabel("...", container = table.group); table.group[4,2] <- gedit("", container = table.group, width = 30, initial.msg = "any additional arguments like: foo = bar", handler = function(h, ...) { dotdotdot <- svalue(h$obj); }); gbutton("Estimate", container = dialog.group, handler = function(h, ...) { poolCall <- paste("pool(formula = ", svalue(table.group[2,2]), ", data = GUI_ENV$imputations", ", m = ", svalue(table.group[3,2]), ", FUN = ", svalue(table.group[1,2]), sep = "") if (svalue(table.group[4,2]) != "") poolCall <- paste(poolCall, svalue(table.group[4,2]), sep = ", ") poolCall <- paste(poolCall, ")") model <- eval(parse(text = poolCall)) print(model) }); addSpring(dialog.group) gbutton("Return to previous screen", container = dialog.group, handler = function(h, ...) { dispose(dialogWindow); }); } helpHandler <- function(h,...) { URL <- "http://www.google.com"; browseURL(URL); }; setupScreen <- function(step, title, backHandler, nextHandler) { setupScreenHelper(step,title,backHandler,nextHandler,"NEXT >"); } setupFinalScreen <- function(step, title, backHandler, nextHandler) { setupScreenHelper(step,title,backHandler,nextHandler,"FINISH >"); } setupScreenHelper <- function(step, title, backHandler, nextHandler, nextButtonText) { topGroup <- ggroup(horizontal=FALSE, expand=TRUE, fill="both", container = GUI_ENV$group, visible = FALSE); glabel(paste("<big><b>","Step ", step, ". <i>", title,"</i></b></big>", sep = ""), markup=TRUE, container=topGroup, anchor=c(0,-1)); addSpring(topGroup); innerGroup <- ggroup(horizontal=FALSE, expand=TRUE, fill="both", container = topGroup); addSpring(topGroup); gseparator(horizontal=TRUE, container = topGroup); button.group <- ggroup(container = topGroup, horizontal=TRUE); gbutton(" QUIT! ", container=button.group, handler = function(h,...) { exit_gui(h) }); addSpring(button.group); if (!is.null(backHandler)) { gbutton(" < BACK ", container=button.group, handler=backHandler); addSpace(button.group,10); } gbutton(" HELP... ", container=button.group, handler=helpHandler); addSpace(button.group,10); nextButton <- gbutton(nextButtonText, container=button.group, handler=nextHandler); return(innerGroup); } navHandler <- function(stateName) { return(function(h, ...) { GUI_ENV$state = stateName; nextScreen(); }) } choiceLabel <- function(title, container) { glabel(paste("<b>",title,":</b>"), markup=TRUE, expand=FALSE, fill="x", anchor=c(-1,0), container=container); addSpace(container,3); } indent <- function(container) { group <- ggroup(horizontal=TRUE, container=container, fill=FALSE); addSpace(group,5); return(group); } exit_gui <- function(h) { reallyQuit <- gconfirm(paste("Do you really want to quit?\nCancel means 'no' while 'OK' means 'yes'"), icon = "warning") if(reallyQuit) dispose(GUI_ENV$window); return(invisible(NULL)); } addTitle <- function(title,container) { title_group <- ggroup(horizontal=TRUE, expand=TRUE, fill="both", container=container); glabel(paste("<b>",title,"</b>"), container=title_group, markup=TRUE); } .default_model <- function(y, data) { if(is(data, "allcategorical_missing_data.frame")) return("Gibbs") if(y@all_obs) { if(is(y, "semi-continuous")) return(rep(NA_character_, 2)) else return(NA_character_) } if(is(y, "irrelevant")) return(NA_character_) if(y@imputation_method == "mcar") return(NA_character_) if(!is.method_in_mi("fit_model", y = class(y), data = class(data))) { if(is(y, "semi-continuous")) return(rep("user-defined", 2)) else return("user-defined") } fam <- y@family$family link <- y@family$link if(is(y, "count")) { if(fam == "quasipoisson" && link == "log") return("qpoisson") else if(fam == "poisson" && link == "log") return("poisson") else return("****") } else if(is(y, "binary")) { if(is(y, "grouped-binary")) return("clogit") if(fam == "quasibinomial") return(paste("q", link, sep = "")) else if(fam == "binomial") return(link) else return("****") } else if(is(y, "interval")) return("survreg") else if(is(y, "ordered-categorical")) return(paste("o", link, sep = "")) else if(is(y, "unordered-categorical")) { if(fam == "binomial") out <- "RN" else out <- "m" return(paste(out, link, sep = "")) } else if(is(y, "proportion")) return(if(fam == "gaussian") "linear" else "betareg") else if(is(y, "SC_proportion")) { out <- .default_model(y@indicator, data) return(c("betareg", out)) } else if(is(y, "semi-continuous")) { out <- .default_model(y@indicator, data) if(fam == "gaussian") { if(link == "identity") return(c("linear", out)) else if(link == "log") return(c("loglinear", out)) else if(link == "inverse") return(c("inverselinear", out)) else return(c("****", out)) } else if(fam == "Gamma") return(c("****", out)) else if(fam == "inverse.gaussian") return(c("****", out)) else if(fam == "quasi") return(c("quasi", out)) else return(c("****", out)) } else if(is(y, "continuous")) { if(fam == "gaussian") { if(link == "identity") return("linear") else if(link == "log") return("loglinear") else if(link == "inverse") return("inverselinear") else return("****") } else if(fam == "Gamma") return("****") else if(fam == "inverse.gaussian") return("****") else if(fam == "quasi") return("quasi") else return("****") } else return("user-defined") } .guess_type <- function(y, favor_ordered = TRUE, favor_positive = FALSE, threshold = 5, variable_name = deparse(substitute(y))) { if(!is.null(dim(y))) stop(paste(variable_name, ": must be a vector")) if(is.factor(y)) y <- factor(y) values <- unique(y) values <- sort(values[!is.na(values)]) len <- length(values) if(len == 0) { warning(paste(variable_name, ": cannot infer variable type when all values are NA, guessing 'irrelevant'")) type <- "irrelevant" } else if(len == 1) type <- "fixed" else if(grepl("^[[:punct:]]", variable_name)) type <- "irrelevant" else if(identical("id", tolower(variable_name))) type <- "irrelevant" else if(len == 2) { if(!is.numeric(values)) type <- "binary" else if(all(values == as.integer(values))) type <- "binary" else if(favor_positive) { if(all(values > 0)) type <- "positive-continuous" else if(all(values >= 0)) type <- "nonnegative-continuous" else type <- "continuous" } else type <- "continuous" } else if(is.ts(y)) { if(favor_positive) { if(all(values > 0)) type <- "positive-continuous" else if(all(values >= 0)) type <- "nonnegative-continuous" else type <- "continuous" } else type <- "continuous" } else if(is.ordered(y)) type <- "ordered-categorical" else if(is.factor(y)) type <- "unordered-categorical" else if(is.character(y)) type <- "unordered-categorical" else if(is.numeric(y)) { if(all(values >= 0) && all(values <= 1)) { if(any(values %in% 0:1)) type <- "SC_proportion" else type <- "proportion" } else if(len <= threshold && all(values == as.integer(values))) type <- if(favor_ordered) "ordered-categorical" else "unordered-categorical" else if(favor_positive) { if(all(values > 0)) type <- "positive-continuous" else if(all(values >= 0)) type <- "nonnegative-continuous" else type <- "continuous" } else type <- "continuous" } else stop(paste("cannot infer variable type for", variable_name)) return(type) } .parse_trans <- function(trans) { if(identical(names(formals(trans)), c("y", "mean", "sd", "inverse"))) return("standardize") if(identical(names(formals(trans)), c("y", "a", "inverse"))) return("logshift") if(identical(body(trans), body(.squeeze_transform))) return("squeeze") if(identical(body(trans), body(.identity_transform))) return("identity") if(identical(body(trans), body(log))) return("log") if(identical(body(trans), body(sqrt))) return("sqrt") if(identical(body(trans), body(.cuberoot))) return("cuberoot") if(identical(body(trans), body(qnorm))) return("qnorm") return("user-defined") } .squeeze_transform <- function(y, inverse = FALSE) { n <- length(y) if(inverse) (y * n - .5) / (n - 1) else (y * (n - 1) + .5) / n } .cuberoot <- function(y, inverse = FALSE) { if(inverse) y^3 else y^(1/3) } .identity_transform <- function(y, ...) return(y) is.method_in_mi <- function(generic, ...) { method <- selectMethod(generic, signature(...)) return(environmentName(environment([email protected])) == "mi") }
library(xts) library(qrmdata) library(qrmtools) data(fire) plot.zoo(fire, ylab = "Danish fire insurance claim losses in 1M DKK") mean_excess_plot(fire) u10 <- 10 u20 <- 20 abline(v = c(u10, u20)) GPD_shape_plot(fire) abline(v = c(u10, u20)) abline(h = 0.5, lty = 3) exceed.u10 <- fire[fire > u10] excess.u10 <- exceed.u10 - u10 (fit.u10 <- fit_GPD_MLE(excess.u10)) shape.u10 <- fit.u10$par[["shape"]] scale.u10 <- fit.u10$par[["scale"]] exceed.u20 <- fire[fire > u20] excess.u20 <- exceed.u20 - u20 (fit.u20 <- fit_GPD_MLE(excess.u20)) shape.u20 <- fit.u20$par[["shape"]] scale.u20 <- fit.u20$par[["scale"]] res <- edf_plot(excess.u10) z <- tail(res$t, n = -1) lines(z, pGPD(z, shape = shape.u10, scale = scale.u10)) res <- edf_plot(excess.u20) z <- tail(res$t, n = -1) lines(z, pGPD(z, shape = shape.u20, scale = scale.u20)) res <- edf_plot(exceed.u10) z <- tail(res$t, n = -1) lines(z, pGPD(z-u10, shape = shape.u10, scale = scale.u10)) res <- edf_plot(exceed.u20) z <- tail(res$t, n = -1) lines(z, pGPD(z-u20, shape = shape.u20, scale = scale.u20)) qf.u10 <- function(p) qGPD(p, shape = shape.u10, scale = scale.u10) qq_plot(excess.u10, FUN = qf.u10) qq_plot(exceed.u10, FUN = function(p) u10 + qf.u10(p)) qf.u20 <- function(p) qGPD(p, shape = shape.u20, scale = scale.u20) qq_plot(excess.u20, FUN = qf.u20) qq_plot(exceed.u20, FUN = function(p) u20 + qf.u20(p)) alpha <- c(0.99, 0.995) (VaR.u10 <- VaR_GPDtail(alpha, threshold = u10, p.exceed = mean(fire > u10), shape = shape.u10, scale = scale.u10)) (VaR.u20 <- VaR_GPDtail(alpha, threshold = u20, p.exceed = mean(fire > u20), shape = shape.u20, scale = scale.u20)) (ES.u10 <- ES_GPDtail(alpha, threshold = u10, p.exceed = mean(fire > u10), shape = shape.u10, scale = scale.u10)) (ES.u20 <- ES_GPDtail(alpha, threshold = u20, p.exceed = mean(fire > u20), shape = shape.u20, scale = scale.u20)) tail_plot(fire, threshold = u10, shape = shape.u10, scale = scale.u10) abline(h = 1-alpha[1], v = VaR.u10[1], lty = 2) abline(h = 1-alpha[1], v = ES.u10[1], lty = 2) tail_plot(fire, threshold = u20, shape = shape.u20, scale = scale.u20) abline(h = 1-alpha[1], v = VaR.u20[1], lty = 2) abline(h = 1-alpha[1], v = ES.u20[1], lty = 2) opar <- par(mar = c(5, 4, 4, 2) + c(0, 1, 0, 0)) fit.u10. <- QRM::fit.GPD(fire, u10) QRM::showRM(fit.u10., alpha = 0.99, RM = "VaR", method = "BFGS") QRM::showRM(fit.u10., alpha = 0.99, RM = "ES", method = "BFGS") par(opar) opar <- par(mar = c(5, 4, 4, 2) + c(0, 1, 0, 0)) fit.u20. <- QRM::fit.GPD(fire, u20) QRM::showRM(fit.u20., alpha = 0.99, RM = "VaR", method = "BFGS") QRM::showRM(fit.u20., alpha = 0.99, RM = "ES", method = "BFGS") par(opar)
Srivastava2014 <- function(x, ...){ ls <- list2(...) matrix_ls <- x statistic <- Srivastava2014Stat(matrix_ls) xmin <- names(matrix_ls[1]) xmax <- names(matrix_ls[length(matrix_ls)]) xother <- names(matrix_ls[-c(1, length(matrix_ls))]) data.name <- Reduce(paste0, past(xmin = xmin, xother, xmax = xmax)) names(statistic) <- "Chi-Squared" parameter <- 1 names(parameter) <- "df" null.value <- 0 names(null.value) <- "difference in covariance matrices" p.value <- 1 - pchisq(statistic, parameter) obj <- list(statistic = statistic, parameter = parameter, p.value = p.value, estimate = NULL, null.value = null.value, alternative = "two.sided", method = "Srivastava et al. 2014 Homogeneity of Covariance Matrices Test", data.name = data.name) class(obj) <- "htest" obj }
Dataset <- R6::R6Class( classname = "gpb.Dataset", cloneable = FALSE, public = list( finalize = function() { .Call( LGBM_DatasetFree_R , private$handle ) private$handle <- NULL return(invisible(NULL)) }, initialize = function(data, params = list(), reference = NULL, colnames = NULL, categorical_feature = NULL, predictor = NULL, free_raw_data = FALSE, used_indices = NULL, info = list(), ...) { if (!(is.null(reference) || gpb.check.r6.class(object = reference, name = "gpb.Dataset"))) { stop("gpb.Dataset: If provided, reference must be a ", sQuote("gpb.Dataset")) } if (!(is.null(predictor) || gpb.check.r6.class(object = predictor, name = "gpb.Predictor"))) { stop("gpb.Dataset: If provided, predictor must be a ", sQuote("gpb.Predictor")) } additional_params <- list(...) INFO_KEYS <- c("label", "weight", "init_score", "group") for (key in names(additional_params)) { if (key %in% INFO_KEYS) { info[[key]] <- additional_params[[key]] } else { params[[key]] <- additional_params[[key]] } } if (is.matrix(data)) { if (storage.mode(data) != "double") { storage.mode(data) <- "double" } data <- matrix(as.vector(data), ncol=ncol(data), dimnames=dimnames(data)) } private$raw_data <- data private$params <- params private$reference <- reference private$colnames <- colnames private$categorical_feature <- categorical_feature private$predictor <- predictor private$free_raw_data <- free_raw_data private$used_indices <- sort(used_indices, decreasing = FALSE) private$info <- info private$version <- 0L return(invisible(NULL)) }, create_valid = function(data, info = list(), ...) { ret <- Dataset$new( data = data , params = private$params , reference = self , colnames = private$colnames , categorical_feature = private$categorical_feature , predictor = private$predictor , free_raw_data = private$free_raw_data , used_indices = NULL , info = info , ... ) return(invisible(ret)) }, construct = function() { if (!gpb.is.null.handle(x = private$handle)) { return(invisible(self)) } cnames <- NULL if (is.matrix(private$raw_data) || methods::is(private$raw_data, "dgCMatrix")) { cnames <- colnames(private$raw_data) } if (is.null(private$colnames) && !is.null(cnames)) { private$colnames <- as.character(cnames) } if (!is.null(private$categorical_feature)) { if (is.character(private$categorical_feature)) { cate_indices <- as.list(match(private$categorical_feature, private$colnames) - 1L) if (sum(is.na(cate_indices)) > 0L) { stop( "gpb.self.get.handle: supplied an unknown feature in categorical_feature: " , sQuote(private$categorical_feature[is.na(cate_indices)]) ) } } else { if (max(private$categorical_feature) > length(private$colnames)) { stop( "gpb.self.get.handle: supplied a too large value in categorical_feature: " , max(private$categorical_feature) , " but only " , length(private$colnames) , " features" ) } cate_indices <- as.list(private$categorical_feature - 1L) } private$params$categorical_feature <- cate_indices } has_header <- FALSE if (!is.null(private$params$has_header) || !is.null(private$params$header)) { params_has_header <- tolower(as.character(private$params$has_header)) == "true" params_header <- tolower(as.character(private$params$header)) == "true" if (params_has_header || params_header) { has_header <- TRUE } } params_str <- gpb.params2str(params = private$params) ref_handle <- NULL if (!is.null(private$reference)) { ref_handle <- private$reference$.__enclos_env__$private$get_handle() } handle <- NULL if (is.null(private$used_indices)) { if (is.character(private$raw_data)) { handle <- .Call( LGBM_DatasetCreateFromFile_R , private$raw_data , params_str , ref_handle ) private$free_raw_data <- TRUE } else if (is.matrix(private$raw_data)) { handle <- .Call( LGBM_DatasetCreateFromMat_R , private$raw_data , nrow(private$raw_data) , ncol(private$raw_data) , params_str , ref_handle ) } else if (methods::is(private$raw_data, "dgCMatrix")) { if (length(private$raw_data@p) > 2147483647L) { stop("Cannot support large CSC matrix") } handle <- .Call( LGBM_DatasetCreateFromCSC_R , private$raw_data@p , private$raw_data@i , private$raw_data@x , length(private$raw_data@p) , length(private$raw_data@x) , nrow(private$raw_data) , params_str , ref_handle ) } else { stop( "gpb.Dataset.construct: does not support constructing from " , sQuote(class(private$raw_data)) ) } } else { if (is.null(private$reference)) { stop("gpb.Dataset.construct: reference cannot be NULL for constructing data subset") } handle <- .Call( LGBM_DatasetGetSubset_R , ref_handle , c(private$used_indices) , length(private$used_indices) , params_str ) } if (gpb.is.null.handle(x = handle)) { stop("gpb.Dataset.construct: cannot create Dataset handle") } class(handle) <- "gpb.Dataset.handle" private$handle <- handle if (!is.null(private$colnames)) { self$set_colnames(colnames = private$colnames) } if (!is.null(private$predictor) && is.null(private$used_indices)) { init_score <- private$predictor$predict( data = private$raw_data , rawscore = TRUE , reshape = TRUE ) init_score <- as.vector(init_score) private$info$init_score <- init_score } if (isTRUE(private$free_raw_data)) { private$raw_data <- NULL } if (length(private$info) > 0L) { for (i in seq_along(private$info)) { p <- private$info[i] self$setinfo(name = names(p), info = p[[1L]]) } } if (is.null(self$getinfo(name = "label"))) { stop("gpb.Dataset.construct: label should be set") } return(invisible(self)) }, dim = function() { if (!gpb.is.null.handle(x = private$handle)) { num_row <- 0L num_col <- 0L .Call( LGBM_DatasetGetNumData_R , private$handle , num_row ) .Call( LGBM_DatasetGetNumFeature_R , private$handle , num_col ) return(c(num_row, num_col)) } else if (is.matrix(private$raw_data) || methods::is(private$raw_data, "dgCMatrix")) { return(dim(private$raw_data)) } else { stop( "dim: cannot get dimensions before dataset has been constructed, " , "please call gpb.Dataset.construct explicitly" ) } }, get_colnames = function() { if (!gpb.is.null.handle(x = private$handle)) { private$colnames <- .Call( LGBM_DatasetGetFeatureNames_R , private$handle ) return(private$colnames) } else if (is.matrix(private$raw_data) || methods::is(private$raw_data, "dgCMatrix")) { return(colnames(private$raw_data)) } else { stop( "dim: cannot get colnames before dataset has been constructed, please call " , "gpb.Dataset.construct explicitly" ) } }, set_colnames = function(colnames) { if (is.null(colnames)) { return(invisible(self)) } colnames <- as.character(colnames) if (length(colnames) == 0L) { return(invisible(self)) } private$colnames <- colnames if (!gpb.is.null.handle(x = private$handle)) { merged_name <- paste0(as.list(private$colnames), collapse = "\t") .Call( LGBM_DatasetSetFeatureNames_R , private$handle , merged_name ) } return(invisible(self)) }, getinfo = function(name) { INFONAMES <- c("label", "weight", "init_score", "group") if (!is.character(name) || length(name) != 1L || !name %in% INFONAMES) { stop("getinfo: name must one of the following: ", paste0(sQuote(INFONAMES), collapse = ", ")) } if (is.null(private$info[[name]])) { if (gpb.is.null.handle(x = private$handle)) { stop("Cannot perform getinfo before constructing Dataset.") } info_len <- 0L .Call( LGBM_DatasetGetFieldSize_R , private$handle , name , info_len ) if (info_len > 0L) { ret <- NULL ret <- if (name == "group") { integer(info_len) } else { numeric(info_len) } .Call( LGBM_DatasetGetField_R , private$handle , name , ret ) private$info[[name]] <- ret } } return(private$info[[name]]) }, setinfo = function(name, info) { INFONAMES <- c("label", "weight", "init_score", "group") if (!is.character(name) || length(name) != 1L || !name %in% INFONAMES) { stop("setinfo: name must one of the following: ", paste0(sQuote(INFONAMES), collapse = ", ")) } info <- if (name == "group") { as.integer(info) } else { as.numeric(info) } private$info[[name]] <- info if (!gpb.is.null.handle(x = private$handle) && !is.null(info)) { if (length(info) > 0L) { .Call( LGBM_DatasetSetField_R , private$handle , name , info , length(info) ) private$version <- private$version + 1L } } return(invisible(self)) }, slice = function(idxset, ...) { return( Dataset$new( data = NULL , params = private$params , reference = self , colnames = private$colnames , categorical_feature = private$categorical_feature , predictor = private$predictor , free_raw_data = private$free_raw_data , used_indices = sort(idxset, decreasing = FALSE) , info = NULL , ... ) ) }, update_params = function(params) { if (length(params) == 0L) { return(invisible(self)) } if (gpb.is.null.handle(x = private$handle)) { private$params <- modifyList(private$params, params) } else { tryCatch({ .Call( LGBM_DatasetUpdateParamChecking_R , gpb.params2str(params = private$params) , gpb.params2str(params = params) ) }, error = function(e) { if (is.null(private$raw_data)) { stop(e) } private$params <- modifyList(private$params, params) self$finalize() }) } return(invisible(self)) }, get_params = function() { dataset_params <- unname(unlist(.DATASET_PARAMETERS())) ret <- list() for (param_key in names(private$params)) { if (param_key %in% dataset_params) { ret[[param_key]] <- private$params[[param_key]] } } return(ret) }, set_categorical_feature = function(categorical_feature) { if (identical(private$categorical_feature, categorical_feature)) { return(invisible(self)) } if (is.null(private$raw_data)) { stop("set_categorical_feature: cannot set categorical feature after freeing raw data, please set ", sQuote("free_raw_data = FALSE"), " when you construct gpb.Dataset") } private$categorical_feature <- categorical_feature self$finalize() return(invisible(self)) }, set_reference = function(reference) { self$set_categorical_feature(categorical_feature = reference$.__enclos_env__$private$categorical_feature) self$set_colnames(colnames = reference$get_colnames()) private$set_predictor(predictor = reference$.__enclos_env__$private$predictor) if (identical(private$reference, reference)) { return(invisible(self)) } if (is.null(private$raw_data)) { stop("set_reference: cannot set reference after freeing raw data, please set ", sQuote("free_raw_data = FALSE"), " when you construct gpb.Dataset") } if (!is.null(reference)) { if (!gpb.check.r6.class(object = reference, name = "gpb.Dataset")) { stop("set_reference: Can only use gpb.Dataset as a reference") } } private$reference <- reference self$finalize() return(invisible(self)) }, save_binary = function(fname) { self$construct() .Call( LGBM_DatasetSaveBinary_R , private$handle , fname ) return(invisible(self)) } ), private = list( handle = NULL, raw_data = NULL, params = list(), reference = NULL, colnames = NULL, categorical_feature = NULL, predictor = NULL, free_raw_data = FALSE, used_indices = NULL, info = NULL, version = 0L, get_handle = function() { if (gpb.is.null.handle(x = private$handle)) { self$construct() } return(private$handle) }, set_predictor = function(predictor) { if (identical(private$predictor, predictor)) { return(invisible(self)) } if (is.null(private$raw_data)) { stop("set_predictor: cannot set predictor after free raw data, please set ", sQuote("free_raw_data = FALSE"), " when you construct gpb.Dataset") } if (!is.null(predictor)) { if (!gpb.check.r6.class(object = predictor, name = "gpb.Predictor")) { stop("set_predictor: Can only use gpb.Predictor as predictor") } } private$predictor <- predictor self$finalize() return(invisible(self)) } ) ) gpb.Dataset <- function(data, params = list(), reference = NULL, colnames = NULL, categorical_feature = NULL, free_raw_data = FALSE, info = list(), ...) { return( invisible(Dataset$new( data = data , params = params , reference = reference , colnames = colnames , categorical_feature = categorical_feature , predictor = NULL , free_raw_data = free_raw_data , used_indices = NULL , info = info , ... )) ) } gpb.Dataset.create.valid <- function(dataset, data, info = list(), ...) { if (!gpb.is.Dataset(x = dataset)) { stop("gpb.Dataset.create.valid: input data should be an gpb.Dataset object") } return(invisible(dataset$create_valid(data = data, info = info, ...))) } gpb.Dataset.construct <- function(dataset) { if (!gpb.is.Dataset(x = dataset)) { stop("gpb.Dataset.construct: input data should be an gpb.Dataset object") } return(invisible(dataset$construct())) } dim.gpb.Dataset <- function(x, ...) { if (!gpb.is.Dataset(x = x)) { stop("dim.gpb.Dataset: input data should be an gpb.Dataset object") } return(x$dim()) } dimnames.gpb.Dataset <- function(x) { if (!gpb.is.Dataset(x = x)) { stop("dimnames.gpb.Dataset: input data should be an gpb.Dataset object") } return(list(NULL, x$get_colnames())) } `dimnames<-.gpb.Dataset` <- function(x, value) { if (!identical(class(value), "list") || length(value) != 2L) { stop("invalid ", sQuote("value"), " given: must be a list of two elements") } if (!is.null(value[[1L]])) { stop("gpb.Dataset does not have rownames") } if (is.null(value[[2L]])) { x$set_colnames(colnames = NULL) return(x) } if (ncol(x) != length(value[[2L]])) { stop( "can't assign " , sQuote(length(value[[2L]])) , " colnames to an gpb.Dataset with " , sQuote(ncol(x)) , " columns" ) } x$set_colnames(colnames = value[[2L]]) return(x) } slice <- function(dataset, ...) { UseMethod("slice") } slice.gpb.Dataset <- function(dataset, idxset, ...) { if (!gpb.is.Dataset(x = dataset)) { stop("slice.gpb.Dataset: input dataset should be an gpb.Dataset object") } return(invisible(dataset$slice(idxset = idxset, ...))) } getinfo <- function(dataset, ...) { UseMethod("getinfo") } getinfo.gpb.Dataset <- function(dataset, name, ...) { if (!gpb.is.Dataset(x = dataset)) { stop("getinfo.gpb.Dataset: input dataset should be an gpb.Dataset object") } return(dataset$getinfo(name = name)) } setinfo <- function(dataset, ...) { UseMethod("setinfo") } setinfo.gpb.Dataset <- function(dataset, name, info, ...) { if (!gpb.is.Dataset(x = dataset)) { stop("setinfo.gpb.Dataset: input dataset should be an gpb.Dataset object") } return(invisible(dataset$setinfo(name = name, info = info))) } gpb.Dataset.set.categorical <- function(dataset, categorical_feature) { if (!gpb.is.Dataset(x = dataset)) { stop("gpb.Dataset.set.categorical: input dataset should be an gpb.Dataset object") } return(invisible(dataset$set_categorical_feature(categorical_feature = categorical_feature))) } gpb.Dataset.set.reference <- function(dataset, reference) { if (!gpb.is.Dataset(x = dataset)) { stop("gpb.Dataset.set.reference: input dataset should be an gpb.Dataset object") } return(invisible(dataset$set_reference(reference = reference))) } gpb.Dataset.save <- function(dataset, fname) { if (!gpb.is.Dataset(x = dataset)) { stop("gpb.Dataset.set: input dataset should be an gpb.Dataset object") } if (!is.character(fname)) { stop("gpb.Dataset.set: fname should be a character or a file connection") } return(invisible(dataset$save_binary(fname = fname))) }
expected <- eval(parse(text="c(NA, -3L)")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(x = 1:3, y = structure(1:3, .Label = c(\"A\", \"D\", \"E\"), class = \"factor\"), z = c(6, 9, 10)), .Names = c(\"x\", \"y\", \"z\"), row.names = c(NA, -3L), class = \"data.frame\"), 0L)")); .Internal(`shortRowNames`(argv[[1]], argv[[2]])); }, o=expected);
matrix_column_names <- function( X, X_sigma, intercept_mu = TRUE, intercept_sigma = TRUE){ i_first = 1 if (intercept_mu){ colnames(X)[1] = "(Intercept)" i_first = 2 } l = ncol(X) if (l >= i_first){ if (all(colnames(X)[i_first:l] == "")){ colnames(X)[i_first:l] = sapply(1:(l-i_first+1), function(x){paste('v', as.character(x), sep="")}) } } i_first = 1 if (intercept_sigma){ colnames(X_sigma)[1] = "(Intercept_s)" i_first = 2 } l = ncol(X_sigma) if (l >= i_first){ if (all(colnames(X_sigma)[i_first:l] == "")){ colnames(X_sigma)[i_first:l] = sapply(1:(l-i_first+1), function(x){paste('v', as.character(x), "_s", sep="")}) } } return( list( colnames_X = colnames(X), colnames_X_sigma = colnames(X_sigma))) }
cat("\014") rm(list = ls()) setwd("~/git/of_dollars_and_data") source(file.path(paste0(getwd(),"/header.R"))) library(lodown) in_path <- paste0(importdir, "0003_scf_data") download_data <- 0 if(download_data == 1){ lodown( "scf" , output_dir = file.path(in_path , "SCF" ) ) }
Soddy <- function(A, r1, B, r2, C, r3){ x1=A[1] y1=A[2] x2=B[1] y2=B[2] x3=C[1] y3=C[2] s1=-1 s2=-1 s3=-1 xmax=max(c(A[1]+r1,B[1]+r2,C[1]+r3)) xmin=min(c(A[1]-r1,B[1]-r2,C[1]-r3)) ymax=max(c(A[2]+r1,B[2]+r2,C[2]+r3)) ymin=min(c(A[2]-r1,B[2]-r2,C[2]-r3)) x=runif(1,xmin,xmax) y=runif(1,ymin,ymax) r=runif(1,mean(r1,r2,r3),mean(r1,r2,r3)+1) f1=function(x,y,r) (x-x1)^2+(y-y1)^2-(r-s1*r1)^2 f2=function(x,y,r) (x-x2)^2+(y-y2)^2-(r-s2*r2)^2 f3=function(x,y,r) (x-x3)^2+(y-y3)^2-(r-s3*r3)^2 J11=function(x,y,r) 2*(x-x1) J12=function(x,y,r) 2*(y-y1) J13=function(x,y,r) -2*(r-s1*r1) J21=function(x,y,r) 2*(x-x2) J22=function(x,y,r) 2*(y-y2) J23=function(x,y,r) -2*(r-s2*r2) J31=function(x,y,r) 2*(x-x3) J32=function(x,y,r) 2*(y-y3) J33=function(x,y,r) -2*(r-s3*r3) it=1000 for (i in c(1:it)){ Fx=c(f1(x,y,r),f2(x,y,r),f3(x,y,r)) J=matrix(data = c(J11(x,y,r),J12(x,y,r),J13(x,y,r), J21(x,y,r),J22(x,y,r),J23(x,y,r), J31(x,y,r),J32(x,y,r),J33(x,y,r)), nrow = 3,ncol = 3) J=t(J) Y=solve(J)%*%(-Fx) x=x+Y[1] y=y+Y[2] r=r+Y[3] } inner_ratius=r1*r2*r3/(r1*r2+r1*r3+r2*r3+2*sqrt(r1*r2*r3*(r1+r2+r3))) outer_ratius=-r1*r2*r3/(r1*r2+r1*r3+r2*r3-2*sqrt(r1*r2*r3*(r1+r2+r3))) result=list(c(x,y),inner_ratius,outer_ratius) return(result) }
computeQuickKrigcov <- function(model, integration.points, X.new, precalc.data, F.newdata, c.newdata){ integration.points <- t(as.matrix(integration.points)) colnames(integration.points) <- colnames(model@X) c.xnew.integpoints <- DiceKriging::covMat1Mat2(X1=integration.points,X2=X.new, object=model@covariance, nugget.flag=model@[email protected]) second.member <- t(F.newdata - crossprod(c.newdata,precalc.data$Kinv.F)) cov.F <- precalc.data$first.member%*%second.member kn <- c.xnew.integpoints - crossprod(precalc.data$Kinv.c.olddata,c.newdata) + cov.F return(kn) }
NULL popkin_A <- function( X, n = NA, loci_on_cols = FALSE, mem_factor = 0.7, mem_lim = NA, m_chunk_max = 1000 ) { if ( missing( X ) ) stop( 'Genotype matrix `X` is required!' ) n_ind <- n mem_debugging <- FALSE isFn <- FALSE if (is.function(X)) { isFn <- TRUE if ( is.na( n_ind ) ) stop('missing number of individuals "n", which is required when X is a function.') } else if ('BEDMatrix' %in% class(X)) { loci_on_cols <- TRUE } else if (!is.matrix(X)) { stop('X has unsupported class: ', toString( class(X) ) ) } names_X <- NULL if (isFn) { m_loci <- NA } else { if (loci_on_cols) { if ( !is.na( n_ind ) && n != nrow( X ) ) warning('User set number of samples that does not match X dimensions (will go with latter): ', n_ind, ' != ', nrow(X)) n_ind <- nrow(X) m_loci <- ncol(X) names_X <- rownames(X) } else { if (!is.na(n_ind) && n_ind != ncol(X)) warning('User set number of samples that does not match X dimensions (will go with latter): ', n_ind, ' != ', ncol(X)) n_ind <- ncol(X) m_loci <- nrow(X) names_X <- colnames(X) } } A <- matrix(0, nrow = n_ind, ncol = n_ind) M <- matrix(0, nrow = n_ind, ncol = n_ind) if (!is.null(names_X)) { colnames(A) <- names_X rownames(A) <- names_X } data <- solve_m_mem_lim( n = n_ind, m = m_loci, mat_m_n = 1.5, mat_n_n = 1, mem = mem_lim, mem_factor = mem_factor ) m_chunk <- data$m_chunk if ( m_chunk > m_chunk_max ) m_chunk <- m_chunk_max if (mem_debugging) { message('mem_lim: ', round(data$mem_lim / GB, 1), ' GB') message('mem_chunk: ', round(data$mem_chunk / GB, 1), ' GB') message('m_chunk: ', m_chunk) } i_chunk <- 1 while (TRUE) { if (isFn) { Xi <- X( m_chunk ) if (is.null(Xi)) break } else { if (mem_debugging) message('chunk started!') if (i_chunk > m_loci) break indexes_loci_chunk <- i_chunk : min(i_chunk + m_chunk - 1, m_loci) if (loci_on_cols) { Xi <- t(X[, indexes_loci_chunk, drop = FALSE]) } else { Xi <- X[indexes_loci_chunk, , drop = FALSE] } i_chunk <- i_chunk + m_chunk } if (storage.mode(Xi) != 'integer') storage.mode(Xi) <- 'integer' obj <- getMAInt(Xi) A <- A + obj$SA M <- M + obj$M } A <- A / M - 1 return( list( A = A, M = M ) ) }
golden.section.search <- function(ax, bx, cx, f, niter = 25, f.extra = NA, tol = 1e-05, gridx = NA) { gridx <- sort(gridx) NG <- length(gridx) fgrid <- rep(NA, NG) if (!is.na(gridx[1])) { gridx <- sort(gridx) NG <- length(gridx) fgrid <- rep(NA, NG) for (k in 1:NG) { fgrid[k] <- f(gridx[k], f.extra) } if (any(is.na(fgrid))) { warning("grid search has found some missing values in objective function") return(list(x = NA, fmin = NA, iter = 0, tol = tol, coarse.search = cbind(gridx, fgrid, deparse.level = 1))) } ind.bx <- which.min(fgrid) if ((ind.bx == 1) | ind.bx == NG) { warning("grid search gives minimun at boundary") return(list(x = gridx[ind.bx], fmin = fgrid[ind.bx], iter = 0, tol = tol, coarse.search = cbind(gridx, fgrid, deparse.level = 1))) } ax <- gridx[ind.bx - 1] bx <- gridx[ind.bx] cx <- gridx[ind.bx + 1] } else { f1 <- f(ax, f.extra) f2 <- f(bx, f.extra) f3 <- f(cx, f.extra) if ((f2 > f1) | (f2 > f3)) stop("starting values not convex") } r <- 0.61803399 con <- 1 - r x0 <- ax x3 <- cx if (abs(cx - bx) > abs(bx - ax)) { x1 <- bx x2 <- bx + con * (bx - ax) } else { x2 <- bx x1 <- bx - con * (bx - ax) } f1 <- f(x1, f.extra) f2 <- f(x2, f.extra) iter <- niter for (k in 1:niter) { if (f2 < f1) { x0 <- x1 x1 <- x2 x2 <- r * x1 + con * x3 f0 <- f1 f1 <- f2 f2 <- f(x2, f.extra) } else { x3 <- x2 x2 <- x1 x1 <- r * x2 + con * x0 f3 <- f2 f2 <- f1 f1 <- f(x1, f.extra) } if (abs(f2 - f1) < tol) { iter <- k break } } if (f1 < f2) { golden <- f1 xmin <- x1 } else { golden <- f2 xmin <- x2 } if (iter == niter) { warning("Maximum iterations reached") } list(x = xmin, fmin = golden, iter = iter, tol = tol, coarse.search = cbind(gridx, fgrid, deparse.level = 1)) }
irwls.cov <- function(y, x, var.type, lambda1, lambda2, maxit = 100, alpha0 = NULL, theta0 = NULL, thresh = 1e-5, trace.it = F, max.rank = NULL, nu = 1e-2) { d <- dim(y) n <- d[1] p <- d[2] if (is.null(max.rank)) max.rank <- min(n, p) - 1 else max.rank <- min(max.rank, min(n, p) - 1) y <- as.matrix(y) y <- matrix(as.numeric(y), nrow = n) y0 <- y q <- ncol(x) x <- as.matrix(x) x <- matrix(as.numeric(x), nrow = nrow(x)) omega <- !is.na(y) if (is.null(alpha0)) alpha0 <- rep(0, q) if (is.null(theta0)) theta0 <- matrix(rep(0, n * p), nrow = n) alpha <- alpha0 alpha.mat <- matrix(matrix(as.numeric(x), nrow = n * p) %*% alpha, nrow = n) theta <- theta0 param <- alpha.mat + theta gaus <- (1 / 2) * sum(y0[, var.type == "gaussian"] ^ 2, na.rm = T) pois <- n * p binom <- binom <- -log(2) * n * p objective <- gaus + pois + binom y0 <- y error <- 1 iter <- 0 stepalpha <- 1 steptheta <- 1 while (((error > thresh) && (iter < maxit))) { iter <- iter + 1 alpha.tmp <- alpha theta.tmp <- theta yv <- quad_approx(y0, param, var.type) ytilde <- yv$ytilde vtilde2 <- yv$vtilde2 ytilde[omega == 0] <- 0 alpha <- glmnet::glmnet( x, c((ytilde - omega * theta.tmp) * vtilde2 / (omega * vtilde2 + (1 - omega) * nu)), family = "gaussian", lambda = lambda2, intercept = FALSE, weights = c(omega * vtilde2 + (1 - omega) * nu) ) alpha <- as.numeric(alpha$beta) resalpha <- armijo.alpha( y, x, alpha, theta.tmp, alpha.tmp, theta.tmp, z = ytilde - omega * param, w = vtilde2, lambda2 = lambda2, var.type = var.type, nu = nu, zeta = 0.1, th = 0, step = stepalpha ) alpha <- resalpha$alpha stepalpha <- resalpha$step alpha.mat <- matrix(matrix(as.numeric(x), nrow = n * p) %*% alpha, nrow = n) alpha.tmp <- alpha param <- alpha.mat + theta.tmp yv <- quad_approx(y0, param, var.type) ytilde <- yv$ytilde vtilde2 <- yv$vtilde2 ytilde[omega == 0] <- 0 w <- omega * vtilde2 + (1 - omega) * nu lambda1w <- lambda1 / max(w) w <- w / max(w) svd_theta <- wlra(vtilde2 / (omega * vtilde2 + (1 - omega) * nu) * (ytilde - omega * alpha.mat), w, lambda1w) u <- svd_theta$u d <- svd_theta$d v <- svd_theta$v if (is.null(dim(u))) { theta <- d * u %*% t(v) } else { theta <- u %*% diag(d) %*% t(v) } restheta <- armijo.lr( y0 = y, theta = theta, theta.tmp = theta.tmp, alpha.mat = alpha.mat, w = vtilde2, z = ytilde - omega * param, lambda1 = lambda1, var.type = var.type, b = 0.5, nu = nu, zeta = 0.1, th = 0, step = steptheta ) theta <- restheta$theta steptheta <- restheta$step param <- alpha.mat + theta gaus <- (1 / 2) * sum((y[, var.type == "gaussian"] - param[, var.type == "gaussian"]) ^ 2, na.rm = T) pois <- sum((-(y[, var.type == "poisson"] * param[, var.type == "poisson"]) + exp(param[, var.type == "poisson"])), na.rm = T) binom <- sum((-(y[, var.type == "binomial"] * param[, var.type == "binomial"]) + log(1 + exp(param[, var.type == "binomial"]))), na.rm = T) d <- svd(theta)$d objective <- c(objective, min( .Machine$double.xmax, (pois + gaus + binom + lambda1 * sum(d) + lambda2 * sum(abs(alpha))) )) if (iter == 1) { error <- 1 } else if ((stepalpha <= 1e-30) && (steptheta <= 1e-30)) { error <- 0 } else{ if (objective[iter] == .Machine$double.xmax) { error <- 1 } else error <- abs(objective[iter] - objective[iter - 1]) / abs(objective[iter - 1]) } if (trace.it) { print(paste("iter ", iter, ": error ", error, " - objective: ", objective[iter])) } } if (error < thresh) cvg = T else cvg = F estim <- param estim[, var.type == "poisson"] <- matrix(stats::rpois(n * sum(var.type == "poisson"), lambda = c(exp(estim[, var.type == "poisson"]))), nrow = n) estim[, var.type == "binomial"] <- round(exp(estim[, var.type == "binomial"]) / (1 + exp(estim[, var.type == "binomial"]))) y.imputed <- y0 y.imputed[omega == 0] <- estim[omega == 0] return(list( y.imputed = y.imputed, param = alpha.mat + theta, alpha = alpha, theta = theta )) }
RF_predictor <- function(forest, xn){ m <- length(forest) y_result <- rep(list(list()), m) for(tree in 1:m){ y_result[[tree]] <- predictor(forest[[tree]], xn) } y_result <- as.data.frame(matrix(unlist(y_result), nrow = length(unlist(y_result[1])))) y_result <- apply(y_result, 1, "mean") return(y_result) }
data(worldmap) data(ETOPO5) data(USAmap) data(usacity) data(worldcity) plotworldmap(worldmap, add = FALSE, col = 2) shiftlon = 180 readline("Hit Return>") plotworldmap(worldmap, shiftlon = shiftlon, add = FALSE, col = 2) readline("Hit Return>") shiftlon = 60 plotworldmap(worldmap, shiftlon = shiftlon, add = FALSE, col = 2) A = locworld(shiftlon) A = list(lon=c(281.9203, 291.9571), lat=c(35.58868, 44.55468), LON=c(281.9203, 291.9571), LAT=c(35.58868, 44.55468), utmbox=list(x=17, y="S", lon=-84, lat=32), UTM0 =list(lam=-81 , phi=36 ), shiftlon=60) PROJ = setPROJ(type=2, LAT0=mean(A$LAT) , LON0=mean(A$LON) ) NYLIM = c(A$LON[1], A$LAT[1],A$LON[2], A$LAT[2] ) readline("Hit Return>") plotGEOmapXY(worldmap, PROJ=PROJ, LIM=NYLIM , add=FALSE) readline("Hit Return>") plotGEOmapXY(USAmap, PROJ=PROJ, LIM=NYLIM , add=FALSE) LMAP = SETPOLIMAP() P = list(lat=mean(A$LAT), lon=mean(A$LON)) J = LOCPOLIMAP(P, LMAP) pmap2 = selectPOLImap(which(J==1), 2) pmap2$STROKES$col[pmap2$STROKES$code=="2"]='green' pmap2$STROKES$col[pmap2$STROKES$code=="3"]='purple' pmap2$STROKES$col[pmap2$STROKES$code=="4"]='red' library(maps) zz = map('county', 'new york', plot = FALSE) cntyNY.xy = GLOB.XY(zz$y, zz$x, PROJ) lines(cntyNY.xy$x, cntyNY.xy$y, col='red' ) plotGEOmapXY(pmap2, PROJ=PROJ , LIM=NYLIM, add=TRUE) readline("Hit Return>") DOTOPOMAPI(TOPO=ETOPO5, themap=worldmap, shiftlon=180) readline("Hit Return>") DOTOPOMAPI(TOPO=ETOPO5, themap=worldmap, shiftlon=180, DOCONT=TRUE, DOIMG=TRUE, PNTS=NULL, PCOL='red', PCH=1, PCEX=1, PS=FALSE, MAPPATH=NULL, polybase = NULL, USAmap= USAmap, usacity=usacity, worldcity=worldcity)
"cdens" <- function(distn, H) { if (!is.function(try(get(distn), silent = TRUE))) stop("'distn' must be a character of a distribution function") pdens <- distn ddens <- paste("d", substring(distn, 2), sep = "") nd <- formals(get(ddens)) np <- formals(get(pdens)) mn <- match(names(nd), names(np)) args <- c(np[!is.na(mn)], nd[which("log" == names(nd))]) argd <- paste(names(args), collapse = ", ") argp <- paste(head(names(args),length(args)-1), collapse = ", ") f <- function(){} formals(f) <- c(alist(x=), args, list(H = H)) if(substring(distn, 2)=="gamma"){ body(f) <- parse(text = " {i <- which(x <= H); logarg <- \"log\" %in% names(as.list(match.call())); if(!missing(rate)){ den <- 1 - pgamma(H, shape, rate) if (logarg && log) res <- dgamma(x, shape, rate, log=log) - log(den) else res <- dgamma(x, shape, rate, log=log)/den res[i] <- 0 }else{ den <- 1 - pgamma(H, shape, scale) if (logarg && log) res <- dgamma(x, shape, scale, log=log) - log(den) else res <- dgamma(x, shape, scale, log=log)/den res[i] <- 0 }; return(res)}") }else{ body(f) <- parse(text = paste( "{i <- which(x <= H); logarg <- \"log\" %in% names(as.list(match.call())); den <- 1 -", pdens, "(H, ", argp, "); if (logarg && log) res <-", ddens, "(x, ", argd, ") - log(den) else res <-", ddens, "(x, ", argd, ")/den; res[i] <- 0; return(res)}")) } return(f) }
randomizer <- function( dataset, vars, conditions = c("A", "B"), blocks = NULL, probs = NULL, label = ".conditions", seed = 1234, data_filter = "", na.rm = FALSE, envir = parent.frame() ) { df_name <- if (is_string(dataset)) dataset else deparse(substitute(dataset)) if (!radiant.data::is_empty(blocks)) { vars <- c(vars, blocks) } dataset <- get_data(dataset, vars, filt = data_filter, na.rm = na.rm, envir = envir) seed <- gsub("[^0-9]", "", seed) if (!radiant.data::is_empty(seed)) set.seed(seed) if (radiant.data::is_empty(probs)) { probs <- length(conditions) %>% {rep(1/., .)} } else if (length(probs) == 1) { probs <- rep(probs, length(conditions)) } else if (length(probs) != length(conditions)) { probs <- NULL } if (length(blocks) > 0) { blocks_vct <- do.call(paste, c(select_at(dataset, .vars = blocks), sep = "-")) cond <- randomizr::block_ra(blocks = blocks_vct, conditions = conditions, prob_each = probs) %>% as.data.frame() %>% set_colnames(label) } else { cond <- randomizr::complete_ra(N = nrow(dataset), conditions = conditions, prob_each = probs) %>% as.data.frame() %>% set_colnames(label) } dataset <- bind_cols(cond, dataset) rm(cond, envir) as.list(environment()) %>% add_class("randomizer") } summary.randomizer <- function(object, dec = 3, ...) { if (radiant.data::is_empty(object$blocks)) { cat("Random assignment (simple random)\n") } else { cat("Random assignment (blocking)\n") } cat("Data :", object$df_name, "\n") if (!radiant.data::is_empty(object$data_filter)) { cat("Filter :", gsub("\\n", "", object$data_filter), "\n") } if (!radiant.data::is_empty(object$blocks)) { cat("Variables :", setdiff(object$vars, object$blocks), "\n") cat("Blocks :", object$blocks, "\n") } else { cat("Variables :", object$vars, "\n") } cat("Conditions :", object$conditions, "\n") cat("Probabilities:", round(object$probs, dec), "\n") if (!radiant.data::is_empty(object$seed)) { cat("Random seed :", object$seed, "\n") } is_unique <- object$dataset[, -1, drop = FALSE] %>% {ifelse(nrow(.) > nrow(distinct(.)), "Based on selected variables some duplicate rows exist", "Based on selected variables, no duplicate rows exist")} cat("Duplicates :", is_unique, "\n\n") cat("Assigment frequencies:\n") if (radiant.data::is_empty(object$blocks_vct)) { tab <- table(object$dataset[[object$label]]) } else { tab <- table(object$blocks_vct, object$dataset[[object$label]]) } tab %>% addmargins() %>% print() cat("\nAssigment proportions:\n") tab %>% prop.table() %>% round(dec) %>% print() }
library(shiny.fluent) if (interactive()) { items <- list( list(text = "Files", key = "Files", href = " list(text = "Folder 1", key = "f1", href = " list(text = "Folder 2", key = "f2", href = " list(text = "Folder 3", key = "f3", href = " list(text = "Folder 4 (non-clickable)", key = "f4"), list(text = "Folder 5", key = "f5", href = " ) shinyApp( ui = Breadcrumb( items = items, maxDisplayedItems = 3, ariaLabel = "Breadcrumb with items rendered as links", overflowAriaLabel = "More links" ), server = function(input, output) {} ) }
decimal_date <- function(date) UseMethod("decimal_date") decimal_date.default <- function(date) { if (any(!inherits(date, c("POSIXt", "POSIXct", "POSIXlt", "Date")))) stop("date(s) not in POSIXt or Date format") Y <- year(date) start <- make_datetime(Y, 1L, 1L, tz = tz(date)) end <- make_datetime(Y + 1L, 1L, 1L, tz = tz(date)) sofar <- as.numeric(difftime(date, start, units = "secs")) total <- as.numeric(difftime(end, start, units = "secs")) Y + sofar/total } decimal_date.zoo <- function(date) decimal_date(zoo::index(date)) date_decimal <- function(decimal, tz = "UTC") { Y <- trunc(decimal) start <- make_datetime(Y, 1L, 1L, tz = tz) end <- make_datetime(Y + 1L, 1L, 1L, tz = tz) seconds <- as.numeric(difftime(end, start, units = "secs")) frac <- decimal - Y end <- start + seconds*frac return(end) }
readmulti.tps <- function(filelist, ... ){ tps.list <- filelist readland.args <- list(...) if(is.null(readland.args$specID)) readland.args$specID <- "None" file.ext <- substr(tps.list, nchar(tps.list)-3, nchar(tps.list)) if(!all(file.ext%in%c(".tps", ".TPS"))) stop("File list includes files in a format other than tps, please ammend") dt.dims <- sapply(1:length(tps.list), function(x){ dim(readland.tps(tps.list[x], warnmsg = F, ...)) }, simplify = T) p1 <- dt.dims[1, 1]; k1 <- dt.dims[2, 1]; n1 <- dt.dims[3, 1] if(any(dt.dims[1,]!=p1)) stop("Input tps files include different numbers of landmarks, please correct") if(any(dt.dims[2,]!=k1)) stop("Input tps files include landmarks in different dimensions (2D and 3D), please correct") all.lms <- NULL for(f in 1:length(tps.list)){ lms <- two.d.array(readland.tps(tps.list[f], ...)) all.lms <- rbind(all.lms, lms) } all.lms <- arrayspecs(all.lms, p1, k1) if(any(table(dimnames(all.lms)[3])!=1)) { if(readland.args$specID != "imageID") { dimnames(all.lms)[[3]] <- 1:dim(all.lms)[3] } else { warning("Input files seem to include repeated specimen names") } } return(all.lms) }
pooling_ct <- function(table){ expvaltable = expval_table(table) ind1 = apply(expvaltable,2,min) ind2 = apply(expvaltable,2,which.min) ncol = which.min(ind1) nline = ind2[ncol] vec_direction = c(ncol,nline) while (expvaltable[nline,ncol]<2){ if (sum(table[nline,])/ncol(table) > sum(table[,ncol])/nrow(table)){ pooldim = 1 } else { pooldim = 2 } flag = which(dim(table)==2) if (length(flag)==1){ pooldim = flag } else if (length(flag)==2){ fisheroupas = 1 break } marge = apply(t(table),pooldim,sum) marge[vec_direction[pooldim]] = max(marge) + 1 ind1 = min(marge) ind2 = which.min(marge) if (pooldim==1){ table[,ncol] = table[,ncol] + table[,ind2] table = table[,-ind2] } else { table[nline,] = table[nline,] + table[ind2,] table = table[-ind2,] } expvaltable = expval_table(table) ind1 = apply(expvaltable,2,min) ind2 = apply(expvaltable,2,which.min) ncol = which.min(ind1) nline = ind2[ncol] vec_direction = c(ncol,nline) } table = as.matrix(table) table }
yline <- 2.00 ymin <- -1.0 ymax <- 3.00 yfix <- FALSE title <- "Chromosome 1" ylabel <- "LOD Score" cex.legend <- 0.7000 cex.axis <- 0.9000 tcl <- -0.3000 bw <- FALSE na.rm <- TRUE lgndtxt <- c("Trait1", "Trait2", "Trait3") ltypes <- c(1,2,3) my.colors <- c("black", "black", "black") ptypes <- c(0, 0, 0)
lsm_c_area_mn <- function(landscape, directions = 8) { landscape <- landscape_as_list(landscape) result <- lapply(X = landscape, FUN = lsm_c_area_mn_calc, directions = directions) layer <- rep(seq_along(result), vapply(result, nrow, FUN.VALUE = integer(1))) result <- do.call(rbind, result) tibble::add_column(result, layer, .before = TRUE) } lsm_c_area_mn_calc <- function(landscape, directions, resolution = NULL){ area <- lsm_p_area_calc(landscape, directions = directions, resolution = resolution) if (all(is.na(area$value))) { return(tibble::tibble(level = "class", class = as.integer(NA), id = as.integer(NA), metric = "area_mn", value = as.double(NA))) } area_mean <- stats::aggregate(area[, 5], by = area[, 2], FUN = mean) return(tibble::tibble(level = "class", class = as.integer(area_mean$class), id = as.integer(NA), metric = "area_mn", value = as.double(area_mean$value))) }
cum.residuals<-function(object,data=parent.frame(),modelmatrix=0,cum.resid=1,n.sim=500, weighted.test=0,max.point.func=50,weights=NULL) { start.design<-1; silent <- 1; offsets <- NULL; if (!(class(object)!="aalen" | class(object)!="timecox" | class(object)!="cox.aalen" )) stop ("Must be output from aalen() timecox() or cox.aalen() functions\n") if (class(object)=="timecox") if (object$method!="basic") stop("Residuals available only for method=basic\n") if (class(object)=="timecox") if (is.null(object$gamma)==FALSE) stop("Residuals available only for timecox model with no const terms\n") if (class(object)=="aalen") if (is.null(object$gamma)==FALSE) stop("Residuals available only for Aalen model with no const terms\n") if (is.null(object$residuals$dM)==TRUE) stop("Residuals not computed, add option residuals=1\n"); if (sum(modelmatrix)==0 && cum.resid==0) stop("No modelmatrix or continous covariates given to cumulate residuals\n"); stratum <- attr(object,"stratum"); rate.sim <- 1; weights1 <- NULL if (class(object)=="cox.aalen") { dcum<-apply(as.matrix(object$cum[,-1]),2,diff); beta<-object$gamma; coxaalen<-1; weights1 <- attr(object,"weights") offsets <- attr(object,"offsets"); rate.sim <- attr(object,"rate.sim"); } else { dcum<-0; beta<-0; coxaalen<-0; pg<-0;Z<-0; } id<-attr(object,"id"); cluster<-attr(object,"cluster"); formula<-attr(object,"Formula"); start.time<-attr(object,"start.time"); pers<-unique(id); antpers<-length(pers); clust<-unique(cluster); antclust<-length(clust); if (class(object)=="cox.aalen") ldata<-aalen.des(formula,data,model="cox.aalen") else ldata<-aalen.des(formula,data) X<-ldata$X; covar<-X; px<-ldata$px; time<-attr(object,"start"); time2<-attr(object,"stop"); if (sum(time)==0) type <- "right" else type <- "counting" status<-attr(object,"status"); if (is.null(weights)) weights <- rep(1,nrow(X)); if (is.null(weights1)) weights1 <- rep(1,nrow(X)); if (is.null(offsets)) offsets <- rep(0,nrow(X)); if (length(weights)!=nrow(X)) stop("Lengths of weights and data do not match\n"); if (length(weights1)!=nrow(X)) stop("Lengths of weights from aalen/cox.aalen and data do not match\n"); if (coxaalen==1) { Z<-ldata$Z; covnamesZ<-ldata$covnamesZ; pg<-ncol(Z); } else Z <- 0 Ntimes <- sum(status); if (sum(modelmatrix)==0) {modelmatrix<-0;model<-0;pm<-1;} else {model<-1; modelmatrix<-as.matrix(modelmatrix); pm<-ncol(modelmatrix); test<-matrix(0,n.sim,3*pm); testOBS<-rep(0,2*pm); covnames<-colnames(modelmatrix); } times<-c(start.time,time2[status==1]); times<-sort(times); antpers=length(unique(id)); ntot<-nrow(X); lmgresids<-length(object$residuals$time); ot<-order(-time2,status==1); time2<-time2[ot]; status<-status[ot]; X<-as.matrix(X[ot,]) if (coxaalen==1) Z<-as.matrix(Z[ot,]) if (model==1) modelmatrix<-as.matrix(modelmatrix[ot,]) start <- time[ot] stop<-time2; cluster<-cluster[ot] id<-id[ot]; weightsmg <- weights[ot] weights <- weights1[ot] offsets <- offsets[ot] entry=rep(-1,ntot); ntot <- nrow(X); if (coxaalen==1) { gamma.iid<-object$gamma.iid covar<-cbind(X,Z); cnames<- c(ldata$covnamesX,ldata$covnamesZ) if (ncol(covar)==length(cnames)) colnames(covar)<-cnames ptot<-px+pg; } else { covar<-covar; ptot<-px; gamma.iid<-0; } covnames0<-colnames(covar); if (is.null(covnames0)) covnames0 <- rep("",ptot); antal<-0; maxval<-0; intercept<-0; antal2<-0; maxval2<-0; xvals<-list(); ant<-rep(0,ptot); for (i in 1:ptot) xvals[[i]]<-c(); rani<-round(runif(1)*10000); keepcumz<-c(); k<-0 for (j in 1:ptot) { z<-unique(covar[,j]); z<-sort(z); if (length(z)> max.point.func) z <- quantile(z,probs=seq(0,1,length=max.point.func)) antal<-antal+1; ant[j]<-length(z); if (ant[j]>2) { k<-k+1; keepcumz<-c(keepcumz,j); xvals[[k]]<-z; maxval<-max(maxval,length(z)); } } if (sum(keepcumz)==0 && cum.resid==1) stop(" No continous covariates given to cumulate residuals \n"); pcumz<-length(keepcumz); uni.test<-matrix(0,n.sim,pcumz); univar.proc<-matrix(0,maxval,pcumz); robvarcumz<-matrix(0,maxval,pcumz); sim.univar.proc<-matrix(0,maxval,50*pcumz); time.proc<-matrix(0,lmgresids,2); sim.time.proc<-matrix(0,lmgresids,50); simcumz<-matrix(0,n.sim,pcumz); xval<-matrix(0,maxval,pcumz); k<-1; for (i in keepcumz) {xval[1:ant[i],k]<-xvals[[k]]; k<-k+1;} unitime.test<-time.test<-mult.test<-multtime.test<- matrix(0,n.sim,2*pcumz); unitime.testOBS<-uni.testOBS<-time.testOBS<-mult.testOBS<- multtime.testOBS<-rep(0,pcumz); inXorZ<-rep(0,pcumz); if (pcumz>0) { antX<-(sum(ant[1:px]>2)) if (antX>0) {inX<-(1:px)[(ant[1:px]>2)]; inXorZ[1:antX]<-1} else {inX<-c();} if (coxaalen==1) {inZ<-(1:pg)[(ant[(px+1):(px+pg)]>2)]; } else inZ<-c() inXZ<-c(inX,inZ); inXZ<-inXZ-1 } else {inXZ<-0; inXorZ<-0} ant<-ant[keepcumz]; Ut<- cummgt<- robvarcum <- matrix(0,lmgresids,pm+1); simUt<-matrix(0,lmgresids,pm*50); test<-matrix(0,n.sim,3*pm); testOBS <- rep(0,3*pm); dNit <- 0 if (coxaalen==1) dNit <- object$residuals$dNit mgout<- .C("mgresid", as.double(X),as.integer(ntot),as.integer(px), as.integer(antpers),as.double(start),as.double(stop), as.integer(status),as.integer(id),as.double(object$residuals$time), as.integer(lmgresids),as.double(object$residuals$dM),as.integer(n.sim), as.double(xval), as.integer(ant), as.double(univar.proc), as.double(time.proc),as.double(sim.univar.proc), as.double(sim.time.proc), as.double(uni.test),as.double(uni.testOBS), as.double(time.test), as.double(time.testOBS),as.double(unitime.test), as.double(unitime.testOBS), as.double(modelmatrix),as.integer(model), as.integer(pm), as.double(cummgt),as.double(dNit), as.double(robvarcum), as.double(testOBS),as.double(test), as.double(simUt), as.double(Ut),as.integer(cum.resid), as.integer(maxval), as.integer(start.design),as.integer(coxaalen), as.double(dcum), as.double(beta),as.double(Z), as.integer(pg), as.double(gamma.iid),as.integer(cluster), as.integer(antclust), as.double(robvarcumz), as.double(simcumz), as.integer(inXZ), as.integer(inXorZ),as.integer(pcumz), as.integer(entry), as.integer(stratum),as.integer(silent),as.double(weights1), as.double(offsets),as.integer(rate.sim),as.double(weights), as.integer(weighted.test)) if (model==1) { cum<-matrix(mgout[[28]],lmgresids,pm+1); robvar.cum<-matrix(mgout[[30]],lmgresids,pm+1); var.cum<-robvar.cum; Ut<-matrix(mgout[[34]],lmgresids,pm+1); colnames(Ut)<-colnames(cum)<-colnames(var.cum)<- colnames(robvar.cum)<- c("time",covnames) test.procBeq0<-Ut; simUt<-matrix(mgout[[33]],lmgresids,50*pm); UIt<-list(); for (i in (0:49)*pm) { UIt[[i/pm+1]]<-as.matrix(simUt[,i+(1:pm)]); } testOBS<-mgout[[31]]; test<-matrix(mgout[[32]],n.sim,3*pm); testval<-c(); unifCI<-c(); for (i in 1:(2*pm)) testval<-c(testval,pval(test[,i],testOBS[i])) for (i in 1:pm) unifCI<-as.vector(c(unifCI,percen(test[,2*pm+i],0.95))); obs.testBeq0<-as.vector(testOBS[1:pm]); obs.testBeq0.is<-as.vector(testOBS[(pm+1):(2*pm)]); pval.testBeq0<-as.vector(testval[1:pm]); pval.testBeq0.is<-as.vector(testval[(pm+1):(2*pm)]); sim.testBeq0<-test[,(2*pm+1):(3*pm)]; sim.test.procBeq0<-UIt; names(unifCI)<- names(pval.testBeq0)<- names(obs.testBeq0)<- names(pval.testBeq0.is)<- names(obs.testBeq0.is)<- covnames } else { cum<-robvar.cum<-test<-unifCI<-Ut<-UIt<-pval.testBeq0<- pval.testBeq0.is<-obs.testBeq0<-obs.testBeq0.is<-sim.testBeq0<-NULL; } if (cum.resid>=1) { univar.p<-matrix(mgout[[15]],maxval,pcumz) robvarcumz<-matrix(mgout[[46]],maxval,pcumz) simcumz<-matrix(mgout[[47]],n.sim,pcumz) univar.proc<-list(); for (i in 1:pcumz) { univar.proc[[i]]<-cbind(xvals[[i]],univar.p[1:ant[i],i]); colnames(univar.proc[[i]])<-c(covnames0[keepcumz[i]],"cum. martingale residual"); } Uiz<-matrix(mgout[[17]],maxval,50*pcumz); UIz<-list(); k<-1; for (i in 1:pcumz) { UIz[[i]]<-matrix(Uiz[1:ant[i],i+(0:49)*pcumz],ncol=50); k<-k+1;} uni.test<-matrix(mgout[[19]],n.sim,pcumz) uni.test<-as.matrix(uni.test); uni.testOBS<-mgout[[24]][1:pcumz]; testval<-c(); for (i in 1:pcumz) testval<-c(testval,pval(uni.test[,i],uni.testOBS[i])) unifCIz<-c() for (i in 1:pcumz) unifCIz<-c(unifCIz,percen(simcumz[,i],0.95)) uni.pval<-testval names(uni.testOBS)<-names(uni.pval)<-colnames(uni.test)<-covnames0[keepcumz]; } else { unifCIz<-uni.testOBS<-uni.pval<-proc.cumz<-UIz<- unitime.pval<-unitime.testOBS<-NULL;} ud<-list(cum=cum,robvar.cum=robvar.cum,robvar.cumz=robvarcumz, pval.testBeq0=pval.testBeq0, obs.testBeq0=obs.testBeq0, pval.testBeq0.is=pval.testBeq0.is, obs.testBeq0.is=obs.testBeq0.is, sim.testBeq0=sim.testBeq0, procBeq0=Ut,sim.test.procBeq0=UIt, conf.band=unifCI, conf.band.cumz=unifCIz, obs.test=uni.testOBS,pval.test=uni.pval, sim.test=uni.test, proc.cumz=univar.proc,sim.test.proccumz=UIz) attr(ud,"Call")<-call; class(ud)<-"cum.residuals" return(ud); } "print.cum.residuals"<- function (x,...) { object <- x; rm(x); if (!inherits(object, 'cum.residuals')) stop ("Must be an MG resid object") cat(" Call: \n") dput(attr(object, "Call")) cat("\n") } "plot.cum.residuals" <- function (x,pointwise.ci=1,hw.ci=0,sim.ci=0, robust=1, specific.comps=FALSE,level=0.05, start.time = 0, stop.time = 0, add.to.plot=FALSE, mains=TRUE, main=NULL, xlab=NULL,ylab ="Cumulative MG-residuals",ylim=NULL, score=0,conf.band=FALSE,...) { object <- x; rm(x); if (!inherits(object,'cum.residuals') ) stop ("Must be output from cum.residuals()") if (score <2) { B<-object$cum; if (sum(B)==0) { stop("To compute cumulative residuals provide model matrix \n"); } } if (score==2) { if (sum(object$obs.test)==0) stop("To plot cumulative residuals vs. covariates, cum.resid=1"); } if (score==0) { B<-object$cum; if (robust>=1) V<-object$robvar.cum else V<-object$var.cum p <- ncol(B); if (!is.null(main)) { if (length(main)!=p) main <- rep(main,length(comp)); mains <- FALSE; } if (!is.null(xlab)) { if (length(xlab)!=p) xlab <- rep(xlab,length(comp)); } if (specific.comps==FALSE) comp<-(2:p) else comp<-specific.comps+1 if (stop.time==0) stop.time<-max(B[,1]); med<-B[,1]<=stop.time & B[,1]>=start.time B<-B[med,]; Bs<-B[1,]; B<-t(t(B)-Bs); B[,1]<-B[,1]+Bs[1]; V<-V[med,]; Vs<-V[1,]; V<-t( t(V)-Vs); Vrob<-object$robvar.cum; Vrob<-Vrob[med,]; Vrobs<-Vrob[1,]; Vrob<-t( t(Vrob)-Vrobs); c.alpha<- qnorm(1-level/2) for (v in comp) { c.alpha<- qnorm(1-level/2) est<-B[,v];ul<-B[,v]+c.alpha*V[,v]^.5;nl<-B[,v]-c.alpha*V[,v]^.5; if (add.to.plot==FALSE) { if (is.null(xlab)) xlabl <- "Time" else xlabl <- xlab[v] if (is.null(ylim)) plot(B[,1],est,ylim=1.05*range(ul,nl),type="s",xlab=xlabl,ylab=ylab,...) else plot(B[,1],est,ylim=ylim,type="s",xlab=xlabl,ylab=ylab) if (!is.null(main)) title(main=main[i]); if (mains==TRUE) title(main=colnames(B)[v]); } else lines(B[,1],est,type="s"); if (pointwise.ci>=1) { lines(B[,1],ul,lty=pointwise.ci,type="s"); lines(B[,1],nl,lty=pointwise.ci,type="s"); } if (robust>=1) { lines(B[,1],ul,lty=robust,type="s"); lines(B[,1],nl,lty=robust,type="s"); } if (hw.ci>=1) { if (level!=0.05) cat("Hall-Wellner bands only 95 % \n"); tau<-length(B[,1]) nl<-B[,v]-1.27*V[tau,v]^.5*(1+V[,v]/V[tau,v]) ul<-B[,v]+1.27*V[tau,v]^.5*(1+V[,v]/V[tau,v]) lines(B[,1],ul,lty=hw.ci,type="s"); lines(B[,1],nl,lty=hw.ci,type="s"); } if (sim.ci>=1) { if (level!=0.05) c.alpha<-percen(object$sim.testBeq0[,v-1],1-level) else c.alpha<-object$conf.band[v-1]; nl<-B[,v]-c.alpha*Vrob[,v]^.5; ul<-B[,v]+c.alpha*Vrob[,v]^.5; lines(B[,1],ul,lty=sim.ci,type="s"); lines(B[,1],nl,lty=sim.ci,type="s"); } abline(h=0) } } else if (score==1) { dim1<-ncol(object$procBeq0) if (sum(specific.comps)==FALSE) comp<-2:dim1 else comp<-specific.comps+1 if (!is.null(main)) { if (length(main)==1) main <- rep(main,length(comp)); mains <- FALSE; } if (!is.null(xlab)) { if (length(xlab)==1) xlab <- c("time",rep(xlab,length(comp))); } for (i in comp) { ranyl<-range(object$procBeq0[,i]); for (j in 1:50) ranyl<-range(c(ranyl,(object$sim.test.procBeq0[[j]])[,i-1])); mr<-max(abs(ranyl)); if (add.to.plot==FALSE) { if (is.null(xlab)) xlabl <- "Time" else xlabl <- xlab[i] if (!is.null(ylim)) plot(object$procBeq0[,1],object$procBeq0[,i],type="s", ylim=ylim,lwd=2,xlab=xlabl,ylab=ylab,...) else plot(object$procBeq0[,1],object$procBeq0[,i],type="s", ylim=c(-mr,mr),lwd=2,xlab=xlabl,ylab=ylab,...) if (!is.null(main)) title(main=main[i]); if (mains==TRUE) title(main=colnames(B)[i]); } else lines(object$procBeq0[,1],object$procBeq0[,i],type="s") for (j in 1:50) lines(object$procBeq0[,1],as.matrix(object$sim.test.procBeq0[[j]])[,i-1], col="grey",lwd=1,lty=1,type="s") lines(object$procBeq0[,1],object$procBeq0[,i],lwd=2,type="s") } } else if (score==2) { dim1<-length(object$obs.test) if (sum(specific.comps)==FALSE) comp<-1:dim1 else comp<-specific.comps if (!is.null(xlab)) { if (length(xlab)==1) xlab <- rep(xlab,length(comp)); } if (!is.null(main)) { if (length(main)==1) main <- rep(main,length(comp)); mains <- FALSE; } v <- 0 for (i in comp) { v <- v+1 if (nrow(object$proc.cumz[[i]])==1) TYPE<-"p" else TYPE<-"l"; if (is.null(xlab)) xlabl <- colnames(object$proc.cumz[[v]])[1] else xlabl <- xlab[i] if (TYPE=="l") { ranyl<-range(object$proc.cumz[[i]][,2]); for (j in 1:50) ranyl<-range(c(ranyl,(object$sim.test.proccumz[[i]])[,j])); mr<-max(abs(ranyl)); if (add.to.plot==FALSE) { if (!is.null(ylim)) plot(object$proc.cumz[[i]][,1],object$proc.cumz[[i]][,2],type=TYPE, ylim=ylim,lwd=2,xlab=xlabl,ylab=ylab,...) else plot(object$proc.cumz[[i]][,1],object$proc.cumz[[i]][,2],type=TYPE, ylim=c(-mr,mr),lwd=2,xlab=xlabl,ylab=ylab,...) } else lines(object$proc.cumz[[i]][,1],object$proc.cumz[[i]][,2],type="l") if (!is.null(main)) title(main=main[i]); if (mains==TRUE) title(main=colnames(object$proc.cumz[[i]])[1]); if (TYPE=="l") for (j in 1:50) lines(object$proc.cumz[[i]][,1],object$sim.test.proccumz[[i]][,j], col="grey",lwd=1,lty=1,type="l") if (TYPE=="p") for (j in 1:50) points(object$proc.cumz[[i]][,1],object$sim.test.proccumz[[i]][,j],pch=".") lines(object$proc.cumz[[i]][,1],object$proc.cumz[[i]][,2],lwd=2); } if (conf.band==TRUE) { col.alpha<-0.2 col.ci<-"darkblue" lty.ci<-2 if (col.alpha==0) col.trans <- col.ci else col.trans <- sapply(col.ci, FUN=function(x) do.call(rgb,as.list(c(col2rgb(x)/255,col.alpha)))) if (level!=0.05) c.alpha<-percen(object$sim.test[,i],1-level) else c.alpha<-object$conf.band.cumz[i]; t<-object$proc.cumz[[i]][,1] ci<-c.alpha*object$robvar.cumz[1:length(t),i]^.5 lines(t,ci , lwd=1, col=col.ci, lty=lty.ci) lines(t,-ci , lwd=1, col=col.ci, lty=lty.ci) tt <- c(t, rev(t)) yy <- c(ci, rev(-ci)) polygon(tt,yy, col=col.trans, lty=0) } } } } "summary.cum.residuals" <- function (object,digits=3,...) { if (!inherits(object, 'cum.residuals')) stop ("Must be an cum.residuals object") cat("Test for cumulative MG-residuals \n\n") mtest<-(sum(object$conf.band)>0) if (mtest==FALSE) { cat("Grouped cumulative residuals not computed, you must provide\n") cat("modelmatrix to get these (see help) \n\n") } if (mtest==TRUE) { test0<-cbind(object$obs.testBeq0,object$pval.testBeq0) test0.is<-cbind(object$obs.testBeq0.is,object$pval.testBeq0.is) colnames(test0)<- c("sup| hat B(t) |","p-value H_0: B(t)=0") colnames(test0.is)<- c("int ( B(t) )^2 dt","p-value H_0: B(t)=0") cat("Grouped Residuals consistent with model \n\n") prmatrix(round(test0,digits)) cat("\n") prmatrix(round(test0.is,digits)) cat("\n") } cumtest<-!is.null(object$obs.test) if (cumtest==FALSE) { cat("Cumulative tests versus covariates not computed \n\n") cat("cum.resid=1 to compute these \n\n"); } if (cumtest==TRUE) { test0<-cbind(object$obs.test,object$pval.test) colnames(test0)<- c("sup| hat B(t) |","p-value H_0: B(t)=0") cat("Residual versus covariates consistent with model \n\n") prmatrix(round(test0,digits)) } cat("\n"); }
PlotRsmOperatingCharacteristics <- function(mu, lambda, nu, zeta1, lesDistr, relWeights = 0, OpChType = "ALL", legendPosition = c(1,0), legendDirection = "horizontal", legendJustification = c(0,1), nlfRange = NULL, llfRange = NULL, nlfAlpha = NULL){ if (missing(zeta1)) zeta1 <- array(-3, dim = length(mu)) if (!all(c(length(mu) == length(lambda), length(mu) == length(nu), length(mu) == length(zeta1)))) stop("Parameters mu, lambda, nu and zeta1 have different lengths.") lesWghtDistr <- UtilLesionWeightsDistr(length(lesDistr), relWeights) lesDistr <- UtilLesionDistr(lesDistr) plotStep <- 0.01 plotStep <- 0.1 zeta <- array(list(), dim = length(mu)) for (i in 1:length(mu)) zeta[[i]] <- seq(from = zeta1[i], to = max(mu)+5, by = plotStep) ROCPlot <- NA FROCPlot <- NA AFROCPlot <- NA wAFROCPlot <- NA PDFPlot <- NA ROCPoints <- data.frame(FPF = NULL, TPF = NULL, Treatment = NULL, stringsAsFactors = FALSE) ROCDashes <- data.frame(FPF = NULL, TPF = NULL, Treatment = NULL, stringsAsFactors = FALSE) FROCPoints <- data.frame(NLF = NULL, LLF = NULL, Treatment = NULL, stringsAsFactors = FALSE) AFROCPoints <- data.frame(FPF = NULL, LLF= NULL, Treatment = NULL, stringsAsFactors = FALSE) AFROCDashes <- data.frame(FPF = NULL, LLF= NULL, Treatment = NULL, stringsAsFactors = FALSE) wAFROCPoints <- data.frame(FPF = NULL, wLLF= NULL, Treatment = NULL, stringsAsFactors = FALSE) wAFROCDashes <- data.frame(FPF = NULL, wLLF= NULL, Treatment = NULL, stringsAsFactors = FALSE) abnPDFPoints <- data.frame(pdf = NULL, highestZSample = NULL, Treatment = NULL, stringsAsFactors = FALSE) norPDFPoints <- data.frame(pdf = NULL, highestZSample = NULL, Treatment = NULL, stringsAsFactors = FALSE) aucROC <- rep(NA, length(mu));aucAFROC <- aucROC;aucwAFROC <- aucROC;aucFROC <- aucROC;lambdaP <- lambda nuP <- nu for (i in 1:length(mu)){ if (mu[i] <= 0 ) stop("mu must be greater than zero") if (lambda[i] < 0 ) stop("lambda must be greater than zero") if (nu[i] < 0 ) stop("nu must be greater than zero") lambdaP[i] <- lambda[i] / mu[i] if (abs(nu[i] * mu[i]) <= 1e-6 ) nuP[i] <- 1e-6 else nuP[i] <- (1-exp(-nu[i] * mu[i])) FPF <- sapply(zeta[[i]], xROC, lambdaP = lambdaP[i]) TPF <- sapply(zeta[[i]], yROC, mu = mu[i], lambdaP = lambdaP[i], nuP = nuP[i], lesDistr = lesDistr) NLF <- sapply(zeta[[i]], xFROC, lambdaP = lambdaP[i]) LLF <- sapply(zeta[[i]], yFROC, mu = mu[i], nuP = nuP[i]) maxFPF <- xROC(-20, lambdaP[i]) if( OpChType == "ALL" || OpChType == "ROC"){ ROCPoints <- rbind(ROCPoints, data.frame(FPF = FPF, TPF = TPF, Treatment = as.character(i), stringsAsFactors = FALSE)) ROCDashes <- rbind(ROCDashes, data.frame(FPF = c(FPF[1], 1), TPF = c(TPF[1], 1), Treatment = as.character(i), stringsAsFactors = FALSE)) maxTPF <- yROC(-20, mu[i], lambdaP[i], nuP[i], lesDistr) AUC <- integrate(y_ROC_FPF, 0, maxFPF, mu = mu[i], lambdaP = lambdaP[i], nuP = nuP[i], lesDistr =lesDistr)$value aucROC[i] <- AUC + (1 + maxTPF) * (1 - maxFPF) / 2 } if( OpChType == "ALL" || OpChType == "FROC"){ FROCPoints <- rbind(FROCPoints, data.frame(NLF = NLF, LLF = LLF, Treatment = as.character(i), stringsAsFactors = FALSE)) if (is.null(nlfAlpha)){ maxNLF <- max(NLF) aucFROC[i] <- integrate(intFROC, 0, maxNLF, mu= mu[i], lambdaP = lambdaP[i], nuP = nuP[i])$value }else{ maxNLF <- max(NLF) if (nlfAlpha <= maxNLF){ aucFROC[i] <- integrate(intFROC, 0, nlfAlpha, mu= mu[i], lambdaP = lambdaP[i], nuP = nuP[i])$value }else{ stop("nlfAlpha cannot be greater than the maximum of NLF.") } } } if( OpChType == "ALL" || OpChType == "AFROC"){ AFROCPoints <- rbind(AFROCPoints, data.frame(FPF = FPF, LLF = LLF, Treatment = as.character(i), stringsAsFactors = FALSE)) AFROCDashes <- rbind(AFROCDashes, data.frame(FPF = c(FPF[1], 1), LLF = c(LLF[1], 1), Treatment = as.character(i), stringsAsFactors = FALSE)) maxLLF <- yFROC(-20, mu[i], nuP[i]) AUC <- integrate(y_AFROC_FPF, 0, maxFPF, mu = mu[i], lambdaP = lambdaP[i], nuP = nuP[i])$value aucAFROC[i] <- AUC + (1 + maxLLF) * (1 - maxFPF) / 2 } if( OpChType == "ALL" || OpChType == "wAFROC"){ wLLF <- sapply(zeta[[i]], ywAFROC, mu[i], nuP[i], lesDistr, lesWghtDistr) wAFROCPoints <- rbind(wAFROCPoints, data.frame(FPF = FPF, wLLF = wLLF, Treatment = as.character(i), stringsAsFactors = FALSE)) wAFROCDashes <- rbind(wAFROCDashes, data.frame(FPF = c(FPF[1], 1), wLLF = c(wLLF[1], 1), Treatment = as.character(i), stringsAsFactors = FALSE)) maxWLLF <- ywAFROC(-20, mu[i], nuP[i], lesDistr, lesWghtDistr) AUC <- integrate(y_wAFROC_FPF, 0, maxFPF, mu = mu[i], lambdaP = lambdaP[i], nuP = nuP[i], lesDistr, lesWghtDistr)$value aucwAFROC[i] <- AUC + (1 + maxWLLF) * (1 - maxFPF) / 2 } if( OpChType == "ALL" || OpChType == "pdfs"){ deltaFPF <- FPF[1:(length(FPF) - 1)] - FPF[2:length(FPF)] if( OpChType == "ALL" || OpChType == "pdfs"){ pdfNor <- deltaFPF / plotStep norPDFPoints <- rbind(norPDFPoints, data.frame(pdf = pdfNor[pdfNor > 1e-6], highestZSample = zeta[[i]][-1][pdfNor > 1e-6], Treatment = as.character(i), class = "non-diseased", stringsAsFactors = FALSE)) deltaTPF <- TPF[1:(length(TPF) - 1)] - TPF[2:length(TPF)] pdfAbn <- deltaTPF / plotStep abnPDFPoints <- rbind(abnPDFPoints, data.frame(pdf = pdfAbn[pdfAbn > 1e-6], highestZSample = zeta[[i]][-1][pdfAbn > 1e-6], Treatment = as.character(i), class = "diseased", stringsAsFactors = FALSE)) } } } if( OpChType == "ALL" || OpChType == "ROC") { ROCPlot <- with(ROCPoints, { ggplot(data = ROCPoints) + geom_line(aes(x = FPF, y = TPF, color = Treatment)) + geom_line(data = ROCDashes, aes(x = FPF, y = TPF, color = Treatment), linetype = 2) + theme(legend.position = legendPosition, legend.direction = legendDirection, legend.justification = c(1, 0)) }) } if( OpChType == "ALL" || OpChType == "FROC"){ FROCPlot <- with(FROCPoints, { ggplot(data = FROCPoints) + geom_line(aes(x = NLF, y = LLF, color = Treatment)) + scale_x_continuous(expand = c(0, 0), limits = nlfRange) + scale_y_continuous(expand = c(0, 0), limits = llfRange) + theme(legend.position = legendPosition, legend.direction = legendDirection, legend.justification = c(1, 0)) }) } if( OpChType == "ALL" || OpChType == "AFROC"){ AFROCPlot <- with(AFROCPoints, { ggplot(data = AFROCPoints) + geom_line(aes(x = FPF, y = LLF , color = Treatment)) + geom_line(data = AFROCDashes, aes(x = FPF, y = LLF, color = Treatment), linetype = 2) + theme(legend.position = legendPosition, legend.direction = legendDirection, legend.justification = c(1, 0)) } ) } if( OpChType == "ALL" || OpChType == "wAFROC"){ wAFROCPlot <- with(wAFROCPoints, { ggplot(data = wAFROCPoints) + geom_line(aes(x = FPF, y = wLLF , color = Treatment)) + geom_line(data = wAFROCDashes, aes(x = FPF, y = wLLF, color = Treatment), linetype = 2) + theme(legend.position = legendPosition, legend.direction = legendDirection, legend.justification = c(1, 0)) }) } if( OpChType == "ALL" || OpChType == "pdfs"){ if (legendPosition == "top" || legendPosition == "bottom"){ legendDirection = "horizontal" }else{ legendDirection = "vertical" } PDFPoints <- rbind(norPDFPoints, abnPDFPoints) PDFPlot <- with(PDFPoints, { ggplot(data = PDFPoints, aes(x = highestZSample, y = pdf, color = Treatment, linetype = class)) + geom_line() + theme(legend.position = legendPosition, legend.box = legendDirection) + labs(x = "Highest Z Sample") }) } return(list( ROCPlot = ROCPlot, AFROCPlot = AFROCPlot, wAFROCPlot = wAFROCPlot, FROCPlot = FROCPlot, PDFPlot = PDFPlot, aucROC = aucROC, aucAFROC = aucAFROC, aucwAFROC = aucwAFROC, aucFROC = aucFROC )) } is.wholenumber <- function(x) round(x) == x
BF=function(data,group){ n=tapply(data, group, length) k=length(tapply(data, group, length)) xbar=tapply(data, group, mean) var=tapply(data, group, var) B=sum(n*(xbar-mean(data))^2)/sum((1-(n/sum(n)))*var); df1=sum((1-(n-sum(n)))*var)^2; df2=sum(((1-(n-sum(n)))^2*(var)^2)/(n-1)); df=(df1/df2); pvalue=1-pf(B,k-1,df); result=matrix(c(round(B,digits=4),round(k-1),round(pvalue,digits=4))) rownames(result)=c("Test Statistic","df","p-value") colnames(result)=c("Brown-Forsythe") return(t(result)) }
link_categorical_ch <- function(x, refcat = 1, return_refcat = FALSE) { stopifnot(length(dim(x)) == 3) x_tosweep <- if (return_refcat) { x } else { slice(x, 3, -refcat, drop = FALSE) } ndraws <- dim(x)[1] nobsv <- dim(x)[2] ncat <- dim(x)[3] log(aperm( array( sapply(seq_len(nobsv), function(i) { slice(x_tosweep, 2, i) / slice(slice(x, 2, i), 2, refcat) }, simplify = "array"), dim = c(ndraws, ncat - !return_refcat, nobsv) ), perm = c(1, 3, 2) )) } environment(link_categorical_ch) <- as.environment(asNamespace("brms"))
htt <- function(data, indices){ d <- data[indices,] y <- d[,1] pis <- d[,2] return(pis^{-1} %*% as.vector(y)) }
test_that("quansijac error", { Phi_fn <- function(theta, lambda, alpha) 2 * theta + alpha * lambda Psi_fn <- function(theta, lambda, alpha) 2 * lambda + alpha * theta fake_fn1 <- function(theta) 1 fake_fn2 <- function(x, y) 1 res <- try(semislv(1, 1, Phi_fn, Psi_fn, alpha = 1)) expect_equal(class(res), "savespace") expect_error(semislv(1, 1, fake_fn1, Psi_fn, alpha = 1)) expect_error(semislv(1, 1, fake_fn2, Psi_fn, alpha = 1)) res <- try(semislv(1, 1, Phi_fn, Psi_fn, jac = list( Phi_der_theta_fn = function(theta, lambda, alpha) 2, Phi_der_lambda_fn = function(theta, lambda, alpha) alpha, Psi_der_theta_fn = function(theta, lambda, alpha) alpha, Psi_der_lambda_fn = function(theta, lambda, alpha) 2 ), method = "implicit", alpha = 1)) expect_equal(class(res), "savespace") res <- try(semislv(theta = 1, lambda = 1, Phi_fn = Phi_fn, Psi_fn = Psi_fn, alpha = 1, jac = list( Phi_der_theta_fn = function(theta, lambda, alpha) 2 ), method = "implicit")) expect_equal(class(res), "savespace") expect_error(semislv(1, 1, Phi_fn, Psi_fn, jac = list( Phi_der_theta_fn = function(x, lambda, alpha) 2, ), method = "implicit", alpha = 1)) ip1 <- semislv(1, 1, Phi_fn, Psi_fn, alpha = 1) ip2 <- semislv(1, 1, Phi_fn, Psi_fn, jac = list( Phi_der_theta_fn = function(theta, lambda, alpha) 2, Phi_der_lambda_fn = function(theta, lambda, alpha) alpha, Psi_der_theta_fn = function(theta, lambda, alpha) alpha, Psi_der_lambda_fn = function(theta, lambda, alpha) 2 ), alpha = 1) expect_equal(ip1$theta, ip2$theta) expect_equal(ip1$lambda, ip2$lambda) it1 <- semislv(1, 1, Phi_fn, Psi_fn, method = "iterative", alpha = 1) it2 <- semislv(1, 1, Phi_fn, Psi_fn, method = "iterative", jac = list( Phi_der_theta_fn = function(theta, lambda, alpha) 2, Phi_der_lambda_fn = function(theta, lambda, alpha) alpha, Psi_der_theta_fn = function(theta, lambda, alpha) alpha, Psi_der_lambda_fn = function(theta, lambda, alpha) 2 ), alpha = 1) expect_equal(it1$theta, it2$theta) expect_equal(it1$lambda, it2$lambda) })
library(metafor) dat <- dat.bcg dat <- escalc(measure = "RR", ai = tpos, bi = tneg, ci = cpos, di = cneg, data = dat) dat$ablat[c(2, 4, 8)] <- NA predMatrix <- make.predictorMatrix(dat) predMatrix[, ] <- 0 predMatrix["ablat", c("yi", "year")] <- 1 impMethod <- make.method(dat) impMethod["ablat"] <- "pmm" impMethod imp <- mice(dat, print = FALSE, predictorMatrix = predMatrix, method = impMethod, seed = 1234) test_that("does not break metafor package", { expect_silent(fit <- with(imp, rma(yi, vi, mods = ~ ablat + year))) })
distribution.plot <- function(netfacs.data) { plot.netfacs <- netfacs.data$result plot.random <- netfacs.data$used.data$random.prob plot.random <- plot.random[plot.netfacs$combination.size == 1, ] plot.netfacs <- plot.netfacs[plot.netfacs$combination.size == 1, ] distribution.plots <- lapply(1:nrow(plot.netfacs), function(y) { x.data <- plot.netfacs[y, ] ran.data <- data.frame(ran = plot.random[y, ]) xx.plot <- ggplot( data = ran.data, mapping = aes(x = .data$ran) ) + geom_density(color = "black", fill = "lightblue") + xlim(0, max(c(plot.random, plot.netfacs$observed.prob)) + 0.05) + theme_bw() + geom_vline(xintercept = x.data$observed.prob, size = 1.2) + ggtitle(x.data$combination) return(xx.plot) }) names(distribution.plots) <- plot.netfacs$combination return(distribution.plots) }
selftest.sampd.tck1 <- function(){ options(guiToolkit="tcltk") w <- gwindow(title = "Sampling distributions") size(w) <- c(700, 450) g <- ggroup(container=w, horizontal=FALSE, use.scrollwindow = TRUE) gp1 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp1.1 <- ggroup(container = gp1, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("1) ", container = gp1.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("A sampling distribution can be best described as a...", container = gp1.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans1 <- c("(a) A sample of individuals from a parent population one wishes to make inference to. ", "(b) An idealization, describing an infinite number of independent statistical estimates (e.g., arithmetic means) \ntaken from the same parent distribution, using the same sample size.", "(c) A collection of statistics describing outcomes from a particular experiment. ", "(d) A collection of random samples from a normal distribution. ") f1 <- function(h,....){ if(tail(svalue(r1),1) == ans1[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r1),1)== ans1[2]){ gmessage(msg="Correct") } if(tail(svalue(r1),1)== ans1[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r1),1)== ans1[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r1) <- character(0) } r1 <- gcheckboxgroup(ans1, container = gp1, checked = FALSE, where = "beginning", handler = f1) gp2 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp2.1 <- ggroup(container = gp2, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("2) ", container = gp2.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("If the parent distribution is \u0059 ~ N(\u03bc, \u03c3\u00b2), then the sampling distribution of \u0232 will be: ", container = gp2.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans2 <- c("(a) \u0232 ~ N(\u0232, \u03c3\u00b2).", "(b) \u0232 ~ N(\u03bc, \u03c3/n).", "(c) \u0232 ~ N(\u03bc/n, \u03c3\u00b2).", "(d) \u0232 ~ N(\u03bc, \u03c3\u00b2/n).") f2 <- function(h,....){ if(tail(svalue(r2),1) == ans2[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r2),1)== ans2[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r2),1)== ans2[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r2),1)== ans2[4]){ gmessage(msg="Correct") } svalue(r2) <- character(0) } r2 <- gcheckboxgroup(ans2, container = gp2, checked = FALSE, where = "beginning", handler = f2) gp3 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp3.1 <- ggroup(container = gp3, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("3) ", container = gp3.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("Which of the following describes the Central Limit Theorem?", container = gp3.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans3 <- c("(a) If Y ~ N(\u03bc, \u03c3\u00b2), then \u0232 ~ N(\u03bc/n, \u03c3\u00b2/n).", "(b) If the sample size from Y is large, then the variance for the sampling distribution of \u0232 will be small.", "(c) Even if Y is not normal, if the sample size from Y is large, then \u0232 will be approximately normal.", "(d) None of the above.") f3 <- function(h,....){ if(tail(svalue(r3),1) == ans3[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r3),1)== ans3[2]){ gmessage(msg="This does occur, but it is due to the Law of Large Numbers, not the Central Limit Theorem.", icon = "error") } if(tail(svalue(r3),1)== ans3[3]){ gmessage(msg="Correct") } if(tail(svalue(r3),1)== ans3[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r3) <- character(0) } r3 <- gcheckboxgroup(ans3, container = gp3, checked = FALSE, where = "beginning", handler = f3) gp4 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp4.1 <- ggroup(container = gp4, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("4) ", container = gp4.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("Which of the following statistics have sampling distributions?", container = gp4.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans4 <- c("(a) The sample mean", "(b) The sample median", "(c) The sample standard deviation.", "(d) All of the above.") f4 <- function(h,....){ if(tail(svalue(r4),1) == ans4[1]){ gmessage(msg="Partially correct", icon = "error") } if(tail(svalue(r4),1)== ans4[2]){ gmessage(msg="Partially correct", icon = "error") } if(tail(svalue(r4),1)== ans4[3]){ gmessage(msg="Partially correct", icon = "error") } if(tail(svalue(r4),1)== ans4[4]){ gmessage(msg="Correct. Any statistical estimator can have a sampling distribution.") } svalue(r4) <- character(0) } r4 <- gcheckboxgroup(ans4, container = gp4, checked = FALSE, where = "beginning", handler = f4) gp5 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp5.1 <- ggroup(container = gp5, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("5) ", container = gp5.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("We sample from a normal parent distribution we to make inference to, Y, with sample size n. \nAssume that \u03bc\u2080 is equal to the mean of Y, \u03bc. That is, assume \u03bc = \u03bc\u2080. \nWhat is the sampling distribution of \u221an(\u0232 - \u03bc\u2080)/S, where S is the sample standard deviation. ", container = gp5.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans5 <- c("(a) N(0,1)", "(b) F(n\u2082 - 1, n\u2082 - 1)", "(c) t(n - 1)", "(d) t(n)") f5 <- function(h,....){ if(tail(svalue(r5),1) == ans5[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r5),1)== ans5[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r5),1)== ans5[3]){ gmessage(msg="Correct") } if(tail(svalue(r5),1)== ans5[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r5) <- character(0) } r5 <- gcheckboxgroup(ans5, container = gp5, checked = FALSE, where = "beginning", handler = f5) gp6 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp6.1 <- ggroup(container = gp6, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("6) ", container = gp6.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("Given the assumptions in Question 5, what is the sampling distribution of \u221an(\u0232 - \u03bc\u2080)/\u03c3", container = gp6.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans6 <- c("(a) N(0,1)", "(b) F(n\u2082 - 1, n\u2082 - 1)", "(c) t(n - 1)", "(d) t(n)") f6 <- function(h,....){ if(tail(svalue(r6),1) == ans6[1]){ gmessage(msg="Correct") } if(tail(svalue(r6),1)== ans6[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r6),1)== ans6[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r6),1)== ans6[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r6) <- character(0) } r6 <- gcheckboxgroup(ans6, container = gp6, checked = FALSE, where = "beginning", handler = f6) gp7 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp7.1 <- ggroup(container = gp7, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("7) ", container = gp7.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("We sample from two normal distributions, Y\u2081 and Y\u2082, with sample sizes n\u2081 and n\u2082, respectively. \nWe assume that the variances of Y\u2081 and Y\u2082 are equal. \nWhat is the sampling distribution of the ratio of sample variances: S\u2081\u00b2/S\u2082\u00b2", container = gp7.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans7 <- c("(a) N(0,1)", "(b) F(n\u2081 - 1, n\u2082 - 1)", "(c) t(n - 1)", "(d) t(n)") f7 <- function(h,....){ if(tail(svalue(r7),1) == ans7[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r7),1)== ans7[2]){ gmessage(msg="Correct") } if(tail(svalue(r7),1)== ans7[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r7),1)== ans7[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r7) <- character(0) } r7 <- gcheckboxgroup(ans7, container = gp7, checked = FALSE, where = "beginning", handler = f7) }
install.packages("RTextTools") library(RTextTools)
cpsd <- function(x, window = nextpow2(sqrt(NROW(x))), overlap = 0.5, nfft = ifelse(isScalar(window), window, length(window)), fs = 1, detrend = c("long-mean", "short-mean", "long-linear", "short-linear", "none")) { pw <- pwelch(x, window, overlap, nfft, fs, detrend) rv <- list(freq = pw$freq, cross = pw$cross) rv } csd <- cpsd
fssa20 <- function(n=1000, x=33, p=runif(4, max=0.9), set=(x^2+1)/2, all=TRUE, shape=c(1,1)) { rfq <- array(0, dim=rep(x, times=2)) for (i in seq(n)) rfq <- rfq + (ssa20(x, p, set, all, shape) > 1) return(rfq/n) } fssa30 <- function(n=1000, x=33, p=runif(6, max=0.6), set=(x^3+1)/2, all=TRUE, shape=c(1,1)) { rfq <- array(0, dim=rep(x, times=3)) for (i in seq(n)) rfq <- rfq + (ssa30(x, p, set, all, shape) > 1) return(rfq/n) }
SL.leekasso <- function (Y, X, newX, family, obsWeights, id, ...) { .SL.require("sva") N <- length(Y) mod <- cbind(rep.int(1, N), Y) mod0 <- cbind(rep.int(1, N)) pValues <- sva::f.pvalue(t(X), mod, mod0) index <- which(rank(pValues) <= 10) lm1 <- lm(Y ~ ., data = X[, index]) pred <- predict.lm(lm1, newdata = newX[, index]) fit <- list(object = lm1, index = index) class(fit) <- c("SL.leekasso") out <- list(pred = pred, fit = fit) return(out) } predict.SL.leekasso <- function(object, newdata, ...){ pred <- predict(object = object$object, newdata = newdata[, object$index], type = "response") pred }
options(prompt = "> ", continue = "+ ", width = 70, useFancyQuotes = FALSE, digits = 3) library(rebmix) data(galaxy) galaxyest <- list(normal = NULL, lognormal = NULL, Weibull = NULL, gamma = NULL) pdf <- c("normal", "lognormal", "Weibull", "gamma") for (i in 1:4) { galaxyest[[i]] <- REBMIX(Dataset = list(galaxy = galaxy), Preprocessing = "histogram", cmax = 10, Criterion = "AIC", pdf = pdf[i], K = 7:20) } summary(galaxyest$normal) summary(galaxyest$lognormal) summary(galaxyest$Weibull) summary(galaxyest$gamma) plot(galaxyest$lognormal, pos = 1, what = c("pdf", "marginal pdf"), ncol = 2, npts = 1000) a.theta1.all(galaxyest$lognormal, pos = 1) a.theta2.all(galaxyest$lognormal, pos = 1)
lav_mvreg_loglik_data <- function(Y = NULL, eXo = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, casewise = FALSE, Sinv.method = "eigen") { Y <- unname(Y); Q <- NCOL(Y); N <- NROW(Y) X <- cbind(1, unname(eXo)) if(is.null(Beta)) { Beta <- rbind(matrix(res.int, nrow = 1), t(res.slopes)) } if(casewise) { LOG.2PI <- log(2 * pi) if(Sinv.method == "chol") { cS <- chol(res.cov); icS <- backsolve(cS, diag(Q)) logdet <- -2 * sum(log(diag(icS))) RES <- Y - X %*% Beta DIST <- rowSums((RES %*% icS)^2) } else { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = TRUE, Sinv.method = Sinv.method) logdet <- attr(res.cov.inv, "logdet") RES <- Y - X %*% Beta DIST <- rowSums(RES %*% res.cov.inv * RES) } loglik <- -(Q * LOG.2PI + logdet + DIST)/2 } else { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = TRUE, Sinv.method = Sinv.method) logdet <- attr(res.cov.inv, "logdet") RES <- Y - X %*% Beta TOTAL <- sum( rowSums(RES %*% res.cov.inv * RES) ) loglik <- -(N*Q/2)*log(2*pi) - (N/2)*logdet - (1/2)*TOTAL } loglik } lav_mvreg_loglik_samplestats <- function(sample.res.int = NULL, sample.res.slopes = NULL, sample.res.cov = NULL, sample.mean.x = NULL, sample.cov.x = NULL, sample.nobs = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, Sinv.method = "eigen", res.cov.inv = NULL) { Q <- NCOL(sample.res.cov); N <- sample.nobs LOG.2PI <- log(2 * pi) if(is.null(Beta)) { Beta <- rbind(matrix(res.int, nrow = 1), t(res.slopes)) } sample.B <- rbind(matrix(sample.res.int, nrow = 1), t(sample.res.slopes)) sample.xx <- rbind( cbind(1, matrix(sample.mean.x, nrow = 1,)), cbind(matrix(sample.mean.x, ncol = 1), sample.cov.x + tcrossprod(sample.mean.x)) ) if(is.null(res.cov.inv)) { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = TRUE, Sinv.method = Sinv.method) logdet <- attr(res.cov.inv, "logdet") } else { logdet <- attr(res.cov.inv, "logdet") if(is.null(logdet)) { ev <- eigen(res.cov.inv, symmetric = TRUE, only.values = TRUE) logdet <- -1 * sum(log(ev$values)) } } DIST1 <- sum(res.cov.inv * sample.res.cov) Diff <- sample.B - Beta DIST2 <- sum(res.cov.inv * crossprod(Diff, sample.xx) %*% Diff) loglik <- -(N/2) * (Q*log(2*pi) + logdet + DIST1 + DIST2) loglik } lav_mvreg_dlogl_dbeta <- function(Y = NULL, eXo = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, Sinv.method = "eigen", res.cov.inv = NULL) { Y <- unname(Y); X <- cbind(1, unname(eXo)) if(is.null(Beta)) { Beta <- rbind(matrix(res.int, nrow = 1), t(res.slopes)) } if(is.null(res.cov.inv)) { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = FALSE, Sinv.method = Sinv.method) } RES <- Y - X %*% Beta dbeta <- as.numeric( t(X) %*% RES %*% res.cov.inv ) dbeta } lav_mvreg_dlogl_drescov <- function(Y = NULL, eXo = NULL, Beta = NULL, res.cov = NULL, res.int = NULL, res.slopes = NULL, Sinv.method = "eigen", res.cov.inv = NULL) { Y <- unname(Y); N <- NROW(Y); X <- cbind(1, unname(eXo)) if(is.null(Beta)) { Beta <- rbind(matrix(res.int, nrow = 1), t(res.slopes)) } if(is.null(res.cov.inv)) { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = FALSE, Sinv.method = Sinv.method) } RES <- Y - X %*% Beta W.tilde <- crossprod(RES)/N dres.cov <- -(N/2)* (res.cov.inv - (res.cov.inv %*% W.tilde %*% res.cov.inv)) dres.cov } lav_mvreg_dlogl_dvechrescov <- function(Y = NULL, eXo = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, Sinv.method = "eigen", res.cov.inv = NULL) { Y <- unname(Y); N <- NROW(Y); X <- cbind(1, unname(eXo)) if(is.null(Beta)) { Beta <- rbind(matrix(res.int, nrow = 1), t(res.slopes)) } if(is.null(res.cov.inv)) { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = FALSE, Sinv.method = Sinv.method) } RES <- Y - X %*% Beta W.tilde <- crossprod(RES)/N dres.cov <- -(N/2)* (res.cov.inv - (res.cov.inv %*% W.tilde %*% res.cov.inv)) dvechres.cov <- as.numeric( lav_matrix_duplication_pre( as.matrix(lav_matrix_vec(dres.cov)) ) ) dvechres.cov } lav_mvreg_scores_beta <- function(Y = NULL, eXo = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, Sinv.method = "eigen", res.cov.inv = NULL) { Y <- unname(Y); Q <- NCOL(Y); X <- cbind(1, unname(eXo)); P <- NCOL(X) if(is.null(Beta)) { Beta <- rbind(matrix(res.int, nrow = 1), t(res.slopes)) } if(is.null(res.cov.inv)) { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = FALSE, Sinv.method = Sinv.method) } RES <- Y - X %*% Beta RES <- RES %*% res.cov.inv SC.Beta <- X[, rep(1:P, times = Q), drop = FALSE] * RES[,rep(1:Q, each = P), drop = FALSE] SC.Beta } lav_mvreg_scores_vech_sigma <- function(Y = NULL, eXo = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, Sinv.method = "eigen", res.cov.inv = NULL) { Y <- unname(Y); Q <- NCOL(Y); X <- cbind(1, unname(eXo)) if(is.null(Beta)) { Beta <- rbind(matrix(res.int, nrow = 1), t(res.slopes)) } if(is.null(res.cov.inv)) { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = FALSE, Sinv.method = Sinv.method) } isigma <- lav_matrix_vech(res.cov.inv) RES <- Y - X %*% Beta RES <- RES %*% res.cov.inv idx1 <- lav_matrix_vech_col_idx(Q) idx2 <- lav_matrix_vech_row_idx(Q) Z <- RES[,idx1] * RES[,idx2] SC <- t( t(Z) - isigma ) SC[,lav_matrix_diagh_idx(Q)] <- SC[,lav_matrix_diagh_idx(Q)] / 2 SC } lav_mvreg_scores_beta_vech_sigma <- function(Y = NULL, eXo = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, Sinv.method = "eigen", res.cov.inv = NULL) { Y <- unname(Y); Q <- NCOL(Y); X <- cbind(1, unname(eXo)); P <- NCOL(X) if(is.null(Beta)) { Beta <- rbind(matrix(res.int, nrow = 1), t(res.slopes)) } if(is.null(res.cov.inv)) { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = FALSE, Sinv.method = Sinv.method) } isigma <- lav_matrix_vech(res.cov.inv) RES <- Y - X %*% Beta RES <- RES %*% res.cov.inv SC.Beta <- X[, rep(1:P, times = Q), drop = FALSE] * RES[,rep(1:Q, each = P), drop = FALSE] idx1 <- lav_matrix_vech_col_idx(Q) idx2 <- lav_matrix_vech_row_idx(Q) Z <- RES[,idx1] * RES[,idx2] SC <- t( t(Z) - isigma ) SC[,lav_matrix_diagh_idx(Q)] <- SC[,lav_matrix_diagh_idx(Q)] / 2 cbind(SC.Beta, SC) } lav_mvreg_logl_hessian_data <- function(Y = NULL, eXo = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, res.cov.inv = NULL, Sinv.method = "eigen") { N <- NROW(Y) observed <- lav_mvreg_information_observed_data(Y = Y, eXo = eXo, Beta = Beta, res.int = res.int, res.slopes = res.slopes, res.cov = res.cov, res.cov.inv = res.cov.inv, Sinv.method = Sinv.method) -N*observed } lav_mvreg_logl_hessian_samplestats <- function( sample.res.int = NULL, sample.res.slopes = NULL, sample.res.cov = NULL, sample.mean.x = NULL, sample.cov.x = NULL, sample.nobs = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, Sinv.method = "eigen", res.cov.inv = NULL) { N <- sample.nobs observed <- lav_mvreg_information_observed_samplestats( sample.res.int = sample.res.int, sample.res.slopes = sample.res.slopes, sample.res.cov = sample.res.cov, sample.mean.x = sample.mean.x, sample.cov.x = sample.cov.x, Beta = Beta, res.int = res.int, res.slopes = res.slopes, res.cov = res.cov, Sinv.method = Sinv.method, res.cov.inv = res.cov.inv) -N*observed } lav_mvreg_information_expected <- function(Y = NULL, eXo = NULL, sample.mean.x = NULL, sample.cov.x = NULL, sample.nobs = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, res.cov.inv = NULL, Sinv.method = "eigen") { eXo <- unname(eXo) if(is.null(res.cov.inv)) { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = FALSE, Sinv.method = Sinv.method) } if(is.null(sample.nobs)) { sample.nobs <- nrow(eXo) } else { N <- sample.nobs } if(is.null(sample.mean.x)) { sample.mean.x <- base::.colMeans(eXo, m = NROW(eXo), n = NCOL(eXo)) } if(is.null(sample.cov.x)) { sample.cov.x <- lav_matrix_cov(eXo) } sample.xx <- rbind( cbind(1, matrix(sample.mean.x, nrow = 1,)), cbind(matrix(sample.mean.x, ncol = 1), sample.cov.x + tcrossprod(sample.mean.x)) ) I11 <- res.cov.inv %x% sample.xx I22 <- 0.5 * lav_matrix_duplication_pre_post(res.cov.inv %x% res.cov.inv) lav_matrix_bdiag(I11, I22) } lav_mvreg_information_observed_data <- function(Y = NULL, eXo = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, res.cov.inv = NULL, Sinv.method = "eigen") { Y <- unname(Y); X1 <- cbind(1, unname(eXo)); N <- NROW(Y) QR <- qr(X1) sample.B <- qr.coef(QR, Y) sample.res.int <- as.numeric(sample.B[1,]) sample.res.slopes <- t(sample.B[-1,,drop = FALSE]) sample.res.cov <- cov(qr.resid(QR, Y)) * (N-1)/N sample.mean.x <- base::.colMeans(eXo, m = NROW(eXo), n = NCOL(eXo)) sample.cov.x <- lav_matrix_cov(eXo) lav_mvreg_information_observed_samplestats(sample.res.int = sample.res.int, sample.res.slopes = sample.res.slopes, sample.res.cov = sample.res.cov, sample.mean.x = sample.mean.x, sample.cov.x = sample.cov.x, Beta = Beta, res.int = res.int, res.slopes = res.slopes, res.cov = res.cov, Sinv.method = Sinv.method, res.cov.inv = res.cov.inv) } lav_mvreg_information_observed_samplestats <- function(sample.res.int = NULL, sample.res.slopes = NULL, sample.res.cov = NULL, sample.mean.x = NULL, sample.cov.x = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, Sinv.method = "eigen", res.cov.inv = NULL) { if(is.null(Beta)) { Beta <- rbind(matrix(res.int, nrow = 1), t(res.slopes)) } sample.B <- rbind(matrix(sample.res.int, nrow = 1), t(sample.res.slopes)) sample.xx <- rbind( cbind(1, matrix(sample.mean.x, nrow = 1,)), cbind(matrix(sample.mean.x, ncol = 1), sample.cov.x + tcrossprod(sample.mean.x)) ) W.tilde <- ( sample.res.cov + t(sample.B - Beta) %*% sample.xx %*% (sample.B - Beta) ) if(is.null(res.cov.inv)) { res.cov.inv <- lav_matrix_symmetric_inverse(S = res.cov, logdet = FALSE, Sinv.method = Sinv.method) } H11 <- res.cov.inv %x% sample.xx H21 <- lav_matrix_duplication_pre( res.cov.inv %x% (res.cov.inv %*% (crossprod(sample.B - Beta, sample.xx) )) ) H12 <- t(H21) AAA <- res.cov.inv %*% (2*W.tilde - res.cov) %*% res.cov.inv H22 <- (1/2) * lav_matrix_duplication_pre_post(res.cov.inv %x% AAA) out <- rbind( cbind(H11, H12), cbind(H21, H22) ) out } lav_mvreg_information_firstorder <- function(Y = NULL, eXo = NULL, Beta = NULL, res.int = NULL, res.slopes = NULL, res.cov = NULL, res.cov.inv = NULL, Sinv.method = "eigen") { N <- NROW(Y) SC <- lav_mvreg_scores_beta_vech_sigma(Y = Y, eXo = eXo, Beta = Beta, res.int = res.int, res.slopes = res.slopes, res.cov = res.cov, Sinv.method = Sinv.method, res.cov.inv = res.cov.inv) crossprod(SC)/N }
try(dev.off(),silent=TRUE) par(mfrow = c(1, 3), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0)) plot(airquality$Wind, airquality$Ozone, main = "Ozone and Wind") plot(airquality$Solar.R, airquality$Ozone, main = "Ozone and Solar Radiation") plot(airquality$Temp, airquality$Ozone, main = "Ozone and Temperature") mtext("Ozone and Weather in New York City", outer = TRUE)
extract.hats <- function(slgf.obj, model.index=NULL){ result <- slgf.obj$results if(is.null(model.index)){ model.index <- which(result$Model==model & result$Scheme==scheme & result$Variance==var) } if(result$Variance[model.index]=="Homosk"){ model <- as.character(result$Model[model.index]) scheme <- as.character(result$Scheme[model.index]) mle.index <- result$mle.index[model.index] mle.coef <- unlist(unname(slgf.obj$coefficients[mle.index])) mle.var <- unlist(unname(slgf.obj$variances[mle.index])) return.list <- list(model=model, scheme=scheme, coef=mle.coef, sigsq=mle.var) names(return.list)[1] <- "model" return(return.list) } if(result$Variance[model.index]=="Heterosk"){ model <- as.character(result$Model[model.index]) scheme <- as.character(result$Scheme[model.index]) scheme1 <- paste0(strsplit(scheme, "}")[[1]][1],"}") scheme2 <- paste0(strsplit(scheme, "}")[[1]][2],"}") mle.index <- result$mle.index[model.index] mle.coef <- unlist(unname(slgf.obj$coefficients[mle.index])) mle.var1 <- unlist(unname(slgf.obj$variances[mle.index][[1]][1])) mle.var2 <- unlist(unname(slgf.obj$variances[mle.index][[1]][2])) return.list <- list(model=model, scheme=scheme, coef=mle.coef, sigsq.1=mle.var1, sigsq.2=mle.var2) names(return.list)[4] <- paste0("sigsq",".",scheme1) names(return.list)[5] <- paste0("sigsq",".",scheme2) return(return.list) } }
estfun.systemfit <- function ( obj, residFit = TRUE, ... ) { if( !is.null( obj$restrict.matrix ) || !is.null( obj$restrict.rhs ) || !is.null( obj$restrict.regMat ) ) { stop( "returning the estimation function for models with restrictions", " has not yet been implemented.") } res <- unlist( residuals( obj ) ) if( is.null( obj$eq[[1]]$inst ) ) { mm <- model.matrix( obj ) } else { mm <- model.matrix( obj, which = "xHat" ) if( residFit ) { res[ !is.na( res ) ] <- res[ !is.na( res ) ] + ( model.matrix( obj ) - mm ) %*% coef( obj ) } } if( sum( !is.na( res ) ) != nrow( mm ) ) { stop( "internal error: the number of residuals is not equal to the", " number of rows of the model matrix. Please contact the maintainer." ) } if( is.null( obj$residCovEst ) ) { omegaInvXmat <- mm } else { omegaInvXmat <- t( .calcXtOmegaInv( xMat = mm, sigma = obj$residCovEst, validObsEq = !is.na( residuals( obj ) ), invertSigma = TRUE ) ) } result <- res[ !is.na( res ) ] * omegaInvXmat dimnames( result ) <- dimnames( mm ) if( max( abs( colSums( result ) ) ) > 1e-6 ) { warning( "the columns of the returned estimating function", " do not all sum up to zero,", " which indicates that the wrong estimating function is returned" ) } return( result ) }
library(testthat) library(stubthat) test_that("Required parameters are present", { expect_error(CreateStratifiedPartition()) expect_error(CreateStratifiedPartition(validationType = "CV")) }) test_that("validationType = 'CV' option", { expect_error(CreateStratifiedPartition(validationType = "CV", holdoutPct = 20), "reps must be specified") ValidCase <- CreateStratifiedPartition(validationType = "CV", holdoutPct = 20, reps = 5) expect_equal(length(ValidCase), 4) expect_equal(ValidCase$cvMethod, "stratified") expect_equal(ValidCase$validationType, "CV") expect_equal(ValidCase$holdoutPct, 20) expect_equal(ValidCase$reps, 5) }) test_that("validationType = 'TVH' option", { expect_error(CreateStratifiedPartition(validationType = "TVH", holdoutPct = 20), "validationPct must be specified") ValidCase <- CreateStratifiedPartition(validationType = "TVH", holdoutPct = 20, validationPct = 16) expect_equal(length(ValidCase), 4) expect_equal(ValidCase$cvMethod, "stratified") expect_equal(ValidCase$validationType, "TVH") expect_equal(ValidCase$holdoutPct, 20) expect_equal(ValidCase$validationPct, 16) }) test_that("validationType = 'CV' option can be used to SetTarget", { with_mock("GetProjectStatus" = function(...) { list("stage" = ProjectStage$AIM) }, "datarobot::DataRobotPATCH" = function(...) { list(...) }, "datarobot::WaitForAsyncReturn" = function(...) { "How about not" }, { stratifiedPartition <- CreateStratifiedPartition(validationType = "CV", holdoutPct = 20, reps = 5) SetTarget(project = fakeProject, target = fakeTarget, partition = stratifiedPartition) }) }) test_that("validationType = 'TVH' option can be used to SetTarget", { with_mock("GetProjectStatus" = function(...) { list("stage" = ProjectStage$AIM) }, "datarobot::DataRobotPATCH" = function(...) { list(...) }, "datarobot::WaitForAsyncReturn" = function(...) { "How about not" }, { stratifiedPartition <- CreateStratifiedPartition(validationType = "TVH", holdoutPct = 20, validationPct = 16) SetTarget(project = fakeProject, target = fakeTarget, partition = stratifiedPartition) }) }) test_that("Invalid validationType returns message", { expect_error(CreateStratifiedPartition(validationType = "XYZ", holdoutPct = 20, validationPct = 16)) })
library(hdf5) fname <- "/n/Moorcroft_Lab/Users/mcd/inputs/fluxnet/bartlett/snowcorHDF/ED_OL_2002JUN.h5" met <- hdf5load(fname,load=FALSE) par(mfrow=c(3,4)) for(i in 1:12){ plot(met[[i]],main=names(met)[i],type='l') }
library(RUnit) summarizePos <- try(summarizeFilterResults(tinyMetaObject,"pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0")) checkTrue(!is(summarizePos,"try-error")) summarizeNeg <- try(summarizeFilterResults(tinyMetaObject,"BIGFAKELABEL")) checkTrue(is(summarizeNeg,"try-error"))
test_that("srFunShow() messages",{ expect_error(srFunShow("Derek"),"should be one of") expect_error(srFunShow(type="BevertonHolt",param=0),"must be from") expect_error(srFunShow(type="BevertonHolt",param=5),"must be from") expect_error(srFunShow(type="Ricker",param=0),"must be from") expect_error(srFunShow(type="Ricker",param=4),"must be from") }) test_that("srFuns() messages",{ expect_error(srFuns(type="Derek"),"should be one") expect_error(srFuns(type="BevertonHolt",param=0),"must be in") expect_error(srFuns(type="BevertonHolt",param=5),"must be in") expect_error(srFuns(type="BevertonHolt",param=c(1,3)),"Only one") expect_error(srFuns(type="Ricker",param=0),"must be in") expect_error(srFuns(type="Ricker",param=4),"must be in") expect_error(srFuns(type="Ricker",param=c(1,3)),"Only one") expect_warning(srFuns(type="Shepherd",param=2),"param=1") expect_warning(srFuns(type="Saila",param=2),"param=1") expect_warning(srFuns(type="independence",param=2),"param=1") }) test_that("srStarts() messages",{ CodNorwegian$fyear <- factor(CodNorwegian$year) expect_warning(srStarts(recruits~stock,data=CodNorwegian,dynamicPlot=TRUE), "functionality has been moved to") expect_error(srStarts(type="Derek")) expect_error(srStarts(recruits~stock,data=CodNorwegian, type="BevertonHolt",param=0), "'param' must be in") expect_error(srStarts(recruits~stock,data=CodNorwegian, type="BevertonHolt",param=5), "'param' must be in") expect_error(srStarts(recruits~stock,data=CodNorwegian, type="BevertonHolt",param=c(1,3)), "Only one 'param'") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="Ricker",param=0), "'param' must be in") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="Ricker",param=4), "'param' must be in") expect_error(srStarts(recruits~stock,data=CodNorwegian, type="Ricker",param=c(1,3)), "Only one 'param'") expect_error(srStarts(~stock,data=CodNorwegian),"with both LHS and RHS") expect_error(srStarts(stock~1,data=CodNorwegian),"with both LHS and RHS") expect_error(srStarts(~stock+recruits,data=CodNorwegian), "only one LHS variable") expect_error(srStarts(stock+recruits~1,data=CodNorwegian), "with both LHS and RHS") expect_error(srStarts(stock~fyear,data=CodNorwegian), "RHS variable must be numeric") expect_error(srStarts(fyear~recruits,data=CodNorwegian), "LHS variable must be numeric") expect_error(srStarts(stock~recruits+fyear,data=CodNorwegian), "only one LHS and only one RHS") expect_error(srStarts(recruits~stock,data=CodNorwegian,fixed=list(c=1)), "not named") expect_error(srStarts(recruits~stock,data=CodNorwegian, fixed=list(a=3,c=1)), "not named") expect_error(srStarts(recruits~stock,data=CodNorwegian, fixed=list(a=3,b=0.1,c=1)), "not named") expect_error(srStarts(recruits~stock,data=CodNorwegian,param=2, fixed=list(b=1)), "is not a parameter") expect_error(srStarts(recruits~stock,data=CodNorwegian,param=4, fixed=list(b=1)), "is not a parameter") expect_error(srStarts(recruits~stock,data=CodNorwegian,param=1, fixed=list(Rp=1)), "is not a parameter") expect_error(srStarts(recruits~stock,data=CodNorwegian,param=3, fixed=list(Rp=1)), "is not a parameter") expect_warning(srStarts(recruits~stock,data=CodNorwegian,param=1, fixed=list(a=-1)), "not positive") expect_warning(srStarts(recruits~stock,data=CodNorwegian,param=1, fixed=list(b=-1)), "not positive") expect_warning(srStarts(recruits~stock,data=CodNorwegian,param=2, fixed=list(Rp=-1)), "not positive") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="Ricker", fixed=list(c=1)), "not named") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="Ricker", fixed=list(a=3,c=1)), "not named") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="Ricker", fixed=list(a=3,b=0.1,c=1)), "not named") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="Ricker",param=3, fixed=list(b=1)), "is not a parameter") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="Ricker",param=1, fixed=list(Rp=1)), "is not a parameter") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="Ricker",param=2, fixed=list(Rp=1)), "is not a parameter") expect_warning(srStarts(recruits~stock,data=CodNorwegian,type="Ricker", fixed=list(a=-1)), "not positive") expect_warning(srStarts(recruits~stock,data=CodNorwegian,type="Ricker", fixed=list(b=-1)), "not positive") expect_warning(srStarts(recruits~stock,data=CodNorwegian,type="Ricker",param=3, fixed=list(Rp=-1)), "not positive") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="Shepherd", fixed=list(d=1)), "not named") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="Shepherd", fixed=list(a=3,d=1)), "not named") expect_warning(srStarts(recruits~stock,data=CodNorwegian,type="Shepherd", fixed=list(a=-1)), "not positive") expect_warning(srStarts(recruits~stock,data=CodNorwegian,type="Shepherd", fixed=list(b=-1)), "not positive") expect_warning(srStarts(recruits~stock,data=CodNorwegian,type="Shepherd", fixed=list(c=-1)), "not positive") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="SailaLorda", fixed=list(d=1)), "not named") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="SailaLorda", fixed=list(a=3,d=1)), "not named") expect_warning(srStarts(recruits~stock,data=CodNorwegian,type="SailaLorda", fixed=list(a=-1)), "not positive") expect_warning(srStarts(recruits~stock,data=CodNorwegian,type="SailaLorda", fixed=list(b=-1)), "not positive") expect_warning(srStarts(recruits~stock,data=CodNorwegian,type="SailaLorda", fixed=list(c=-1)), "not positive") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="independence", fixed=list(d=1)), "not named") expect_error(srStarts(recruits~stock,data=CodNorwegian,type="independence", fixed=list(a=3,d=1)), "not named") expect_warning(srStarts(recruits~stock,data=CodNorwegian,type="independence", fixed=list(a=-1)), "not positive") }) test_that("srFuns() output",{ expect_equal(mode(srFunShow(type="BevertonHolt",param=1)),"expression") expect_equal(mode(srFunShow(type="BevertonHolt",param=2)),"expression") expect_equal(mode(srFunShow(type="BevertonHolt",param=3)),"expression") expect_equal(mode(srFunShow(type="BevertonHolt",param=4)),"expression") expect_equal(mode(srFunShow(type="Ricker",param=1)),"expression") expect_equal(mode(srFunShow(type="Ricker",param=2)),"expression") expect_equal(mode(srFunShow(type="Ricker",param=3)),"expression") expect_equal(mode(srFunShow(type="Shepherd")),"expression") expect_equal(mode(srFunShow(type="SailaLorda")),"expression") }) test_that("srFuns() output",{ expect_is(srFuns("BevertonHolt",param=1),"function") expect_is(srFuns("BevertonHolt",param=2),"function") expect_is(srFuns("BevertonHolt",param=3),"function") expect_is(srFuns("BevertonHolt",param=4),"function") expect_is(srFuns("Ricker",param=1),"function") expect_is(srFuns("Ricker",param=2),"function") expect_is(srFuns("Ricker",param=3),"function") expect_is(srFuns("Shepherd"),"function") expect_is(srFuns("Saila"),"function") expect_is(srFuns("independence"),"function") expect_is(srFuns("BevertonHolt",param=1,simple=TRUE),"function") expect_is(srFuns("BevertonHolt",param=2,simple=TRUE),"function") expect_is(srFuns("BevertonHolt",param=3,simple=TRUE),"function") expect_is(srFuns("BevertonHolt",param=4,simple=TRUE),"function") expect_is(srFuns("Ricker",param=1,simple=TRUE),"function") expect_is(srFuns("Ricker",param=2,simple=TRUE),"function") expect_is(srFuns("Ricker",param=3,simple=TRUE),"function") expect_is(srFuns("Shepherd",simple=TRUE),"function") expect_is(srFuns("Saila",simple=TRUE),"function") expect_is(srFuns("independence",simple=TRUE),"function") expect_message(srFuns("BevertonHolt",param=1,msg=TRUE), "first parameterization of the 'Beverton-Holt'") expect_message(srFuns("BevertonHolt",param=2,msg=TRUE), "second parameterization of the 'Beverton-Holt'") expect_message(srFuns("BevertonHolt",param=3,msg=TRUE), "third parameterization of the 'Beverton-Holt'") expect_message(srFuns("BevertonHolt",param=4,msg=TRUE), "fourth parameterization of the 'Beverton-Holt'") expect_message(srFuns("Ricker",param=1,msg=TRUE), "first parameterization of the 'Ricker'") expect_message(srFuns("Ricker",param=2,msg=TRUE), "second parameterization of the 'Ricker'") expect_message(srFuns("Ricker",param=3,msg=TRUE), "third parameterization of the 'Ricker'") expect_message(srFuns("Shepherd",msg=TRUE),"Shepherd") expect_message(srFuns("Saila",msg=TRUE),"Saila") expect_message(srFuns("independence",msg=TRUE),"density-independent") }) test_that("srStarts() output",{ CodNorwegian$fyear <- factor(CodNorwegian$year) tmp <- srStarts(recruits~stock,data=CodNorwegian,type="BevertonHolt",param=1) expect_is(tmp,"list") expect_equal(names(tmp),c("a","b")) tmp <- srStarts(recruits~stock,data=CodNorwegian,type="BevertonHolt",param=2) expect_is(tmp,"list") expect_equal(names(tmp),c("a","Rp")) tmp <- srStarts(recruits~stock,data=CodNorwegian,type="BevertonHolt",param=3) expect_is(tmp,"list") expect_equal(names(tmp),c("a","b")) tmp <- srStarts(recruits~stock,data=CodNorwegian,type="BevertonHolt",param=4) expect_is(tmp,"list") expect_equal(names(tmp),c("a","Rp")) tmp <- srStarts(recruits~stock,data=CodNorwegian,type="Ricker",param=1) expect_is(tmp,"list") expect_equal(names(tmp),c("a","b")) tmp <- srStarts(recruits~stock,data=CodNorwegian,type="Ricker",param=2) expect_is(tmp,"list") expect_equal(names(tmp),c("a","b")) tmp <- srStarts(recruits~stock,data=CodNorwegian,type="Ricker",param=3) expect_is(tmp,"list") expect_equal(names(tmp),c("a","Rp")) tmp <- srStarts(recruits~stock,data=CodNorwegian,type="Shepherd") expect_is(tmp,"list") expect_equal(names(tmp),c("a","b","c")) tmp <- srStarts(recruits~stock,data=CodNorwegian,type="SailaLorda") expect_is(tmp,"list") expect_equal(names(tmp),c("a","b","c")) tmp <- srStarts(recruits~stock,data=CodNorwegian,type="independence") expect_is(tmp,"list") expect_equal(names(tmp),"a") })
pfa <- function(object, name=NULL, version=NULL, doc=NULL, metadata=NULL, randseed=NULL, options=NULL, ...) UseMethod("pfa") extract_params <- function(object, ...) UseMethod("extract_params") build_model <- function(object, ...) UseMethod("build_model")
test_that("FilterImportance", { set.seed(42) task = mlr3::mlr_tasks$get("wine") learner = mlr3::mlr_learners$get("classif.rpart") f = FilterImportance$new(learner = learner) f$calculate(task) expect_filter(f, task = task) })
context("Bootstrap functions") test_that("getSignReference works", { alpha <- list(matrix(1:9, nrow = 3), matrix(-1 * (9:1), nrow = 3), matrix(c(1:5, 4:1), nrow = 3)) expectedOut <- list( position = c(9, 1, 5), isNegative = c(FALSE, TRUE, FALSE), allNegative = list( matrix(1:9, nrow = 3) < 0, matrix(-1 * (9:1), nrow = 3) < 0, matrix(c(1:5, 4:1), nrow = 3) < 0 ) ) out <- getSignReference(alpha) expect_equal(out, expectedOut) }) test_that("unifySign works when all are present", { ref <- list(position = c(9, 1, 5), isNegative = c(FALSE, TRUE, FALSE)) encod <- list( list( alpha = list(matrix(1:9, nrow = 3), matrix(1:9, nrow = 3), matrix(1:9, nrow = 3)), pc = matrix(1:9, nrow = 3) ), list( alpha = list(matrix(-1 * (9:1), nrow = 3), matrix(-1 * (9:1), nrow = 3), matrix(-1 * (9:1), nrow = 3)), pc = matrix(-1 * (9:1), nrow = 3) ) ) expectedOut <- list( list( alpha = list(matrix(1:9, nrow = 3), matrix(-1 * (1:9), nrow = 3), matrix(1:9, nrow = 3)), pc = matrix(c(1:3, -4, -5, -6, 7:9), nrow = 3) ), list( alpha = list(matrix((9:1), nrow = 3), matrix(-1 * (9:1), nrow = 3), matrix((9:1), nrow = 3)), pc = matrix(c(9:7, -6, -5, -4, 3:1), nrow = 3) ) ) out <- unifySign(encod, ref) expect_equal(out, expectedOut) }) test_that("unifySign works when there are some NULL elements", { ref <- list(position = c(9, 1, 5), isNegative = c(FALSE, TRUE, FALSE)) encod <- list( list( alpha = list(matrix(1:9, nrow = 3), matrix(1:9, nrow = 3), matrix(1:9, nrow = 3)), pc = matrix(1:9, nrow = 3) ), NULL, list( alpha = list(matrix(-1 * (9:1), nrow = 3), matrix(-1 * (9:1), nrow = 3), matrix(-1 * (9:1), nrow = 3)), pc = matrix(-1 * (9:1), nrow = 3) ) ) expectedOut <- list( list( alpha = list(matrix(1:9, nrow = 3), matrix(-1 * (1:9), nrow = 3), matrix(1:9, nrow = 3)), pc = matrix(c(1:3, -4, -5, -6, 7:9), nrow = 3) ), NULL, list( alpha = list(matrix((9:1), nrow = 3), matrix(-1 * (9:1), nrow = 3), matrix((9:1), nrow = 3)), pc = matrix(c(9:7, -6, -5, -4, 3:1), nrow = 3) ) ) out <- unifySign(encod, ref) expect_equal(out, expectedOut) }) test_that("compute_optimal_encoding throws error", { set.seed(42) K <- 2 d_JK <- generate_2State(n = 10) d_JK2 <- cut_data(d_JK, 1) m <- 10 b <- create.bspline.basis(c(0, 1), nbasis = m, norder = 4) expect_error(compute_optimal_encoding(d_JK2, b, nCores = 1, computeCI = 2), regexp = "computeCI must be either TRUE or FALSE.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = 0, propBootstrap = 0.5), regexp = "nBootstrap must be an integer > 0.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = 10.5, propBootstrap = 0.5), regexp = "nBootstrap must be an integer > 0.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = NA, propBootstrap = 0.5), regexp = "nBootstrap must be an integer > 0.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = c(), propBootstrap = 0.5), regexp = "nBootstrap must be an integer > 0.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = c(20, 50), propBootstrap = 0.5), regexp = "nBootstrap must be an integer > 0.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = NaN, propBootstrap = 0.5), regexp = "nBootstrap must be an integer > 0.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = 50, propBootstrap = 0), regexp = "propBootstrap must be a real between 0 and 1.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = 50, propBootstrap = 1.5), regexp = "propBootstrap must be a real between 0 and 1.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = 50, propBootstrap = c(0.5, 0.8)), regexp = "propBootstrap must be a real between 0 and 1.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = 50, propBootstrap = NA), regexp = "propBootstrap must be a real between 0 and 1.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = 50, propBootstrap = NaN), regexp = "propBootstrap must be a real between 0 and 1.") expect_error(compute_optimal_encoding(d_JK2, b, computeCI = TRUE, nBootstrap = 50, propBootstrap = c()), regexp = "propBootstrap must be a real between 0 and 1.") }) test_that("compute_optimal_encoding works with computeCI = TRUE", { skip_on_cran() set.seed(42) n <- 200 Tmax <- 1 K <- 2 m <- 10 d <- generate_2State(n) dT <- cut_data(d, Tmax) row.names(dT) <- NULL b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 4) expect_silent(fmca <- compute_optimal_encoding(dT, b, computeCI = TRUE, nBootstrap = 50, propBootstrap = 0.5, nCores = 1, verbose = FALSE)) expect_type(fmca, "list") expect_named(fmca, c("eigenvalues", "alpha", "pc", "F", "G", "V", "basisobj", "label", "pt", "bootstrap", "varAlpha", "runTime")) expect_length(fmca$bootstrap, 50) expect_named(fmca$bootstrap[[1]], c("eigenvalues", "alpha", "pc", "F", "G")) expect_length(fmca$bootstrap[[1]]$eigenvalues, K * m) trueEigVal <- 1 / ((1:m) * (2:(m + 1))) expect_lte(max(abs(fmca$eigenvalues[1:m] - trueEigVal)), 0.01) expect_type(fmca$bootstrap[[1]]$alpha, "list") expect_length(fmca$bootstrap[[1]]$alpha, m * K) expect_equal(dim(fmca$bootstrap[[1]]$alpha[[1]]), c(m, K)) expect_equal(dim(fmca$bootstrap[[1]]$pc), c(100, m * K)) expect_equal(dim(fmca$bootstrap[[1]]$F), c(2 * m, 2 * m)) expect_equal(dim(fmca$bootstrap[[1]]$G), c(2 * m, 2 * m)) expect_equal(fmca$label, data.frame(label = 0:1, code = 1:2)) }) test_that("plot.fmca works with addCI = TRUE", { skip_on_cran() set.seed(42) n <- 25 Tmax <- 1 K <- 2 m <- 6 d <- generate_2State(n) dT <- cut_data(d, Tmax) row.names(dT) <- NULL b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 4) fmca <- compute_optimal_encoding(dT, b, computeCI = TRUE, nBootstrap = 25, propBootstrap = 1, nCores = 1, verbose = FALSE) expect_warning(plot(fmca, addCI = TRUE), regexp = NA) expect_warning(plot(fmca, addCI = TRUE, states = 1), regexp = NA) expect_warning(plot(fmca, addCI = TRUE, states = 1:3), regexp = NA) expect_warning(plot(fmca, addCI = TRUE, coeff = 5), regexp = NA) expect_warning(plot(fmca, addCI = TRUE, col = c("red", "blue")), regexp = NA) expect_error(plot(fmca, addCI = 6), regexp = "addCI must be either TRUE or FALSE.") expect_error(plot(fmca, addCI = TRUE, states = c("a", "b")), regexp = "No correct states given.") expect_error(plot(fmca, addCI = TRUE, coeff = -5), regexp = "coeff must be a positive real.") })
levbox_mergetime <- function(var, level = 1, path, pattern, outfile, lon1 = -180, lon2 = 180, lat1 = -90, lat2 = 90, nc34 = 4, overwrite = FALSE, verbose = FALSE) { box_mergetime(var, path, pattern, outfile, lon1, lon2, lat1, lat2, level, nc34, overwrite, verbose) }
test_that("at returns the correct values", { gen_func <- at(c(0, 10, 15)) expect_equal(gen_func(), c(0, 10, 5, -1)) gen_func <- at(0, 10, 15) expect_equal(gen_func(), c(0, 10, 5, -1)) }) test_that("from returns the correct values", { gen_func <- from(5, function() 1) expect_equal(gen_func(), 5) expect_equal(gen_func(), 1) gen_func <- from(5, function() 1, arrive = FALSE) expect_equal(gen_func(), 6) expect_equal(gen_func(), 1) }) test_that("to returns the correct values", { gen_func <- to(3, function() 1) expect_equal(gen_func(), 1) expect_equal(gen_func(), 1) expect_equal(gen_func(), -1) gen_func <- to(3, function() c(1, 1)) expect_equal(gen_func(), c(1, 1)) expect_equal(gen_func(), -1) gen_func <- to(3, function() c(1, 1, 1)) expect_equal(gen_func(), c(1, 1, -1)) }) test_that("from_to returns the correct values", { gen_func <- from_to(5, 8, function() 1) expect_equal(gen_func(), 5) expect_equal(gen_func(), 1) expect_equal(gen_func(), 1) expect_equal(gen_func(), -1) gen_func <- from_to(5, 8, function() c(1, 1)) expect_equal(gen_func(), 5) expect_equal(gen_func(), c(1, 1)) expect_equal(gen_func(), -1) gen_func <- from_to(5, 8, function() c(1, 1, 1)) expect_equal(gen_func(), 5) expect_equal(gen_func(), c(1, 1, -1)) gen_func <- from_to(5, 8, function() 1, every=10) expect_equal(gen_func(), 5) expect_equal(gen_func(), 1) expect_equal(gen_func(), 1) expect_equal(gen_func(), 8) expect_equal(gen_func(), 1) expect_equal(gen_func(), 1) expect_equal(gen_func(), 8) gen_func <- from_to(5, 8, function() c(1, 1), every=10) expect_equal(gen_func(), 5) expect_equal(gen_func(), c(1, 1)) expect_equal(gen_func(), 8) expect_equal(gen_func(), c(1, 1)) expect_equal(gen_func(), 8) gen_func <- from_to(5, 8, function() c(1, 1, 1), every=10) expect_equal(gen_func(), 5) expect_equal(gen_func(), c(1, 1)) expect_equal(gen_func(), 8) expect_equal(gen_func(), c(1, 1)) expect_equal(gen_func(), 8) gen_func <- from_to(5, 8, function() 1, arrive = FALSE) expect_equal(gen_func(), 6) expect_equal(gen_func(), 1) expect_equal(gen_func(), -1) gen_func <- from_to(5, 8, function() c(1, 1), arrive = FALSE) expect_equal(gen_func(), c(6, 1)) expect_equal(gen_func(), -1) gen_func <- from_to(5, 8, function() c(1, 1, 1), arrive = FALSE) expect_equal(gen_func(), c(6, 1, -1)) gen_func <- from_to(5, 8, function() 1, arrive = FALSE, every=10) expect_equal(gen_func(), 6) expect_equal(gen_func(), 1) expect_equal(gen_func(), 9) expect_equal(gen_func(), 1) expect_equal(gen_func(), 9) gen_func <- from_to(5, 8, function() c(1, 1), arrive = FALSE, every=10) expect_equal(gen_func(), c(6, 1)) expect_equal(gen_func(), c(9, 1)) expect_equal(gen_func(), c(9, 1)) gen_func <- from_to(5, 8, function() c(1, 1, 1), arrive = FALSE, every=10) expect_equal(gen_func(), c(6, 1)) expect_equal(gen_func(), c(9, 1)) expect_equal(gen_func(), c(9, 1)) }) test_that("environments are properly replaced and variables transferred", { start_time <- local({ start <- 1; function() start }) stop_time <- local({ stop <- 2; function() stop }) dist <- local({ x <- 3; function() x }) every <- local({ ev <- 4; function() ev }) gen_func <- from(start_time, dist) expect_equal(environment(gen_func)$start, 1) expect_equal(environment(gen_func)$stop, NULL) expect_equal(environment(gen_func)$x, 3) expect_equal(environment(gen_func)$ev, NULL) gen_func <- to(stop_time, dist) expect_equal(environment(gen_func)$start, NULL) expect_equal(environment(gen_func)$stop, 2) expect_equal(environment(gen_func)$x, 3) expect_equal(environment(gen_func)$ev, NULL) gen_func <- from_to(start_time, stop_time, dist, every=every) expect_equal(environment(gen_func)$start, 1) expect_equal(environment(gen_func)$stop, 2) expect_equal(environment(gen_func)$x, 3) expect_equal(environment(gen_func)$ev, 4) }) test_that("schedule returns the correct values", { expect_error(schedule(1, 1)) expect_error(schedule(c(1, 2), 1)) expect_error(schedule(1, c(1, 2))) expect_error(schedule(c(2, 1), c(1, 2))) expect_error(schedule(c(2, 1), c(1, 2), 1)) expect_error(schedule(c(0, 1), c(1, 2), 1)) sch <- schedule(c(1, 3), c(1, 2), Inf)$schedule expect_equal(sch$init, 0) expect_equal(sch$intervals, c(1, 2)) expect_equal(sch$values, c(1, 2)) expect_equal(sch$period, -1) sch <- schedule(c(1, 3), c(1, 2), 3)$schedule expect_equal(sch$init, 2) expect_equal(sch$intervals, c(1, 2, 1)) expect_equal(sch$values, c(1, 2, 1)) expect_equal(sch$period, 3) sch <- schedule(c(0, 2), c(1, 2), 3)$schedule expect_equal(sch$init, 1) expect_equal(sch$intervals, c(0, 2, 1)) expect_equal(sch$values, c(1, 2, 1)) expect_equal(sch$period, 3) }) test_that("when_activated returns the correct values", { gen_func <- when_activated() expect_equal(gen_func(), -1) expect_equal(gen_func(), c(0, -1)) gen_func <- when_activated(function() 5) expect_equal(gen_func(), -1) expect_equal(gen_func(), c(rep(0, 5), -1)) })
library(testit) library(vpc) nonmem_df <- data.frame(ID = 0, MDV = 0, DV = 0) phx_df <- data.frame(ID = 0, COBS = 0) assert("software type returned properly", vpc:::guess_software("NONmem", nonmem_df) == "nonmem") assert("software type returned properly", vpc:::guess_software("nonmem", phx_df) == "nonmem") assert("software type returned properly", vpc:::guess_software("auto", nonmem_df) == "nonmem") assert("software type returned properly", vpc:::guess_software("auto", phx_df) == "phoenix")
lossfunc <- function(obj = list(Loss = NULL, ES = NULL), beta = 1e-04) { if (!is.list(obj) && !is.data.frame(obj)) { stop("A list or data frame containing two vectors with equal length and without NAs must be passed to", " 'obj'.") } if (class(obj) != "ufRisk" && (length(obj[["Loss"]]) <= 1 || any(is.na(obj[["Loss"]])) || !is.numeric(obj[["Loss"]]))) { stop("A numeric vector of length > 1 and without NAs must be passed to", " 'obj$Loss'.") } if (class(obj) != "ufRisk" && (length(obj[["ES"]]) <= 1 || any(is.na(obj[["ES"]])) || !is.numeric(obj[["ES"]]))) { stop("A numeric vector of length > 1 and without NAs must be passed to", " 'obj$ES'.") } if (length(beta) != 1 || is.na(beta) || !is.numeric(beta)) { stop("A single numeric value must be passed to"," 'beta'") } if(class(obj) == "ufRisk") { Loss <- -obj[["ret.out"]] } else { Loss <- obj[["Loss"]] } ES <- obj[["ES"]] loss.ed <- (Loss - ES)[Loss > ES] loss.ex2 <- (Loss - ES)[Loss <= ES] loss.ex1 <- ES[Loss <= ES] loss.ex23 <- (Loss - ES)[Loss <= ES & Loss >= 0] loss.ex3 <- ES[Loss <= ES & Loss < 0] RLF <- sum(loss.ed^2) FLF2 <- sum(abs(loss.ex2)) * beta FLF23 <- sum(abs(loss.ex23)) * beta FLF3 <- sum(loss.ex3) * beta FLF1 <- sum(loss.ex1) * beta loss.func1 <- RLF * 10000 loss.func2 <- (RLF + FLF1) * 10000 loss.func3 <- (RLF + FLF2) * 10000 loss.func4 <- (RLF + FLF23 + FLF3) * 10000 result <- list(lossfunc1 = loss.func1, lossfunc2 = loss.func2, lossfunc3 = loss.func3, lossfunc4 = loss.func4) message("Please note that the following results are multiplied with 10000.") message("") return(result) }
"mozart"
cat("\014") rm(list = ls()) setwd("~/git/of_dollars_and_data") source(file.path(paste0(getwd(),"/header.R"))) library(scales) library(lubridate) library(stringr) library(ggrepel) library(zoo) library(Hmisc) library(igraph) library(lemon) library(readxl) library(tidyverse) folder_name <- "_jkb/0011_rebalance_stock_bond" out_path <- paste0(exportdir, folder_name) dir.create(file.path(paste0(out_path)), showWarnings = FALSE) make_plots <- 1 n_years <- 30 wt_stock <- 0.6 wt_bond <- 1 - wt_stock bw_colors <- c(" spx <- read.csv(paste0(importdir, "_jkb/0011_rebalance_stock_bond/spx_timeseries_4-27-2021.csv"), skip = 6) %>% rename(symbol = Symbol) %>% select(-Name, -Metric) %>% gather(-symbol, key=key, value = value) %>% mutate(year = gsub("X(\\d+)\\.(\\d+)\\.(\\d+)", "\\1", key, perl = TRUE), month = gsub("X(\\d+)\\.(\\d+)\\.(\\d+)", "\\2", key, perl = TRUE), day = gsub("X(\\d+)\\.(\\d+)\\.(\\d+)", "\\3", key, perl = TRUE), date = as.Date(paste0(year, "-", month, "-", day), format = "%Y-%m-%d")) %>% filter(symbol != "", !is.na(value)) %>% arrange(date) %>% mutate(ret_1yr = lead(value, 12)/value - 1) %>% select(date, value, ret_1yr) %>% drop_na() spx_median_1yr_ret <- quantile(spx$ret_1yr, probs = 0.5) raw <- read.csv(paste0(importdir, "_jkb/0011_rebalance_stock_bond/sp500_5yr_treasury.csv"), skip = 6) %>% filter(Date != "", `S.P.500.Index` != "") %>% mutate(date = as.Date(Date, format = "%m/%d/%Y"), month = month(date), ret_stock = as.numeric(`S.P.500.Index`), ret_bond = as.numeric(`Five.Year.US.Treasury.Notes`)) %>% select(date, contains("ret_"), month) %>% filter(date < "2021-01-31") run_rebal <- function(start_date, end_date, rebal_month, rebal_string, rebal_addition){ df <- raw %>% filter(date >= start_date, date < end_date) for(i in 1:nrow(df)){ mt <- df[i, "month"] if(i == 1){ df[i, "value_stock"] <- wt_stock*100 df[i, "value_bond"] <- wt_bond*100 df[i, "value_port"] <- df[i, "value_stock"] + df[i, "value_bond"] df[i, "rebalance"] <- 0 df[i, "ret_port"] <- 0 } else{ if(mt == rebal_month){ df[i, "rebalance"] <- 1 df[i, "value_stock"] <- (df[(i-1), "value_port"] * wt_stock) * (1 + df[i, "ret_stock"]) + (rebal_addition*wt_stock) df[i, "value_bond"] <- (df[(i-1), "value_port"] * wt_bond) * (1 + df[i, "ret_bond"]) + (rebal_addition*wt_bond) } else{ df[i, "rebalance"] <- 0 if(rebal_addition > 0){ stock_target <- (df[(i-1), "value_port"] + rebal_addition) * wt_stock prior_stock_value <- df[(i-1), "value_stock"] if(prior_stock_value > stock_target){ wt_stock_temp <- 0 wt_bond_temp <- 1 } else if((prior_stock_value + rebal_addition) < stock_target){ wt_stock_temp <- 1 wt_bond_temp <- 0 } else { wt_stock_temp <- (stock_target - prior_stock_value)/rebal_addition wt_bond_temp <- 1 - wt_stock_temp } } else{ wt_stock_temp <- 0 wt_bond_temp <- 0 } stock_addition <- rebal_addition*wt_stock_temp bond_addition <- rebal_addition*wt_bond_temp df[i, "value_stock"] <- (df[(i-1), "value_stock"] + stock_addition) * (1 + df[i, "ret_stock"]) df[i, "value_bond"] <- (df[(i-1), "value_bond"] + bond_addition) * (1 + df[i, "ret_bond"]) } df[i, "value_port"] <- df[i, "value_stock"] + df[i, "value_bond"] df[i, "ret_port"] <- df[i, "value_port"]/df[(i-1), "value_port"] - 1 } } dd <- df %>% select(date, value_port) %>% drawdown_path() file_path <- paste0(out_path, "/rebal_", rebal_month, "_", rebal_addition, "/", date_to_string(start_date), "_area.jpeg") if(make_plots == 1 & start_date == "1930-01-31"){ to_plot <- df %>% select(date, contains("value_")) %>% mutate(`Stock %` = value_stock/value_port, `Bond %` = 1 - `Stock %`) %>% select(date, `Stock %`, `Bond %`) %>% gather(-date, key=key, value=value) plot <- ggplot(to_plot, aes(x=date, y=value, fill=key)) + geom_area(alpha=0.6 , size=1) + scale_fill_manual(values = bw_colors[1:2]) + scale_y_continuous(label = percent_format(accuracy = 1), breaks = seq(0, 1, 0.1), limits = c(0, 1)) + of_dollars_and_data_theme + theme(legend.title = element_blank(), legend.position = "bottom") + ggtitle(paste0(100*wt_stock, "/", 100*wt_bond," Stock/Bond Portfolio Share\n", rebal_string)) + labs(x = "Date" , y = "Percentage in Stocks/Bonds") ggsave(file_path, plot, width = 15, height = 12, units = "cm") } final_value <- df[nrow(df), "value_port"] final_stock_pct <- df[nrow(df), "value_stock"]/final_value final_sd <- sd(df$ret_port) * sqrt(12) max_dd <- min(dd$pct) final_cor <- cor(df$ret_stock, df$ret_bond) tmp_result <- data.frame(start_date = start_date, end_date = end_date, rebal_month = rebal_month, rebal_addition = rebal_addition, final_value = final_value, final_stock_pct = final_stock_pct, max_dd = max_dd, final_sd = final_sd, final_cor = final_cor) return(tmp_result) } result_file <- paste0(localdir, "rebalance_stock_bond_all_sims.Rds") if(!file.exists(result_file)){ final_results <- data.frame() all_dates <- raw %>% filter(month(date) == 1) %>% select(date) %>% distinct() total_months <- nrow(all_dates) period_months <- n_years rebal_sims <- data.frame(rebal_month = c(rep(seq(1, 12, 1), 2), 99, 99), rebal_additions = c(rep(0, 12), rep(100, 12), 0, 100)) for(i in 1:nrow(rebal_sims)){ r <- rebal_sims[i, "rebal_month"] r_addition <- rebal_sims[i, "rebal_additions"] sim <- data.frame(start_date = all_dates[1:(total_months - period_months), "date"], end_date = all_dates[(period_months+1):total_months, "date"], rebal_month = rep(r, total_months - period_months)) if(r <= 12){ rebal_string <- paste0("Rebalanced Each ", month.abb[r]) } else{ rebal_string <- "Never Rebalanced" } dir.create(file.path(paste0(out_path, "/rebal_", r, "_", r_addition)), showWarnings = FALSE) for(s in 1:nrow(sim)){ start <- sim[s, "start_date"] end <- sim[s, "end_date"] rebal_month <- sim[s, "rebal_month"] print(start) print(rebal_month) if(s == 1 & i == 1){ final_results <- run_rebal(start, end, rebal_month, rebal_string, r_addition) } else{ final_results <- final_results %>% bind_rows(run_rebal(start, end, rebal_month, rebal_string, r_addition)) } } } saveRDS(final_results, result_file) } else{ final_results <- readRDS(result_file) } summary <- final_results %>% filter(rebal_month <= 12) %>% group_by(start_date, end_date, rebal_addition) %>% summarise(min_value = min(final_value), max_value = max(final_value), value_pct_diff = max_value/min_value - 1, value_diff_annualized = (1+value_pct_diff)^(1/n_years) - 1, max_dd = mean(max_dd), min_sd = min(final_sd), max_sd = max(final_sd)) %>% ungroup() %>% mutate(rebal_addition_string = ifelse(rebal_addition == 0, "Not Adding Funds", "Adding Funds Monthly")) to_plot <- summary %>% select(start_date, max_dd, rebal_addition_string) file_path <- paste0(out_path, "/_max_dd_add_funds_vs_not.jpeg") text_labels <- data.frame() text_labels[1, "start_date"] <- as.Date("1961-01-01") text_labels[1, "max_dd"] <- -0.05 text_labels[1, "label"] <- "Adding Funds Monthly" text_labels[2, "start_date"] <- as.Date("1961-01-01") text_labels[2, "max_dd"] <- -0.38 text_labels[2, "label"] <- "Not Adding Funds" plot <- ggplot(to_plot, aes(x = start_date, y = max_dd, col = rebal_addition_string)) + geom_line() + geom_text(data = text_labels, aes(x=start_date, y = max_dd, col = label, label = label, family = "my_font")) + scale_color_manual(values = bw_colors, guide = FALSE) + scale_x_date(date_labels ="%Y", breaks = c( as.Date("1930-01-01"), as.Date("1940-01-01"), as.Date("1950-01-01"), as.Date("1960-01-01"), as.Date("1970-01-01"), as.Date("1980-01-01"), as.Date("1990-01-01") )) + scale_y_continuous(label = percent_format(accuracy = 1), limits = c(-0.7, 0), breaks = seq(-0.7, 0, 0.1)) + of_dollars_and_data_theme + ggtitle(paste0("Maximum Drawdown for ",100*wt_stock, "/", 100*wt_bond," Portfolio\nRebalanced Annually Over ", n_years, " Years")) + labs(x = "Start Year" , y = "Maximum Drawdown") ggsave(file_path, plot, width = 15, height = 12, units = "cm") to_plot <- final_results %>% filter(rebal_addition == 0, rebal_month == 1 | rebal_month == 99) %>% mutate(rebalance_string = ifelse(rebal_month <= 12, "Rebalance Annually", "Never Rebalance")) file_path <- paste0(out_path, "/_max_dd_rebalance_vs_not.jpeg") text_labels <- data.frame() text_labels[1, "start_date"] <- as.Date("1961-01-01") text_labels[1, "max_dd"] <- -0.1 text_labels[1, "label"] <- "Rebalance Annually" text_labels[2, "start_date"] <- as.Date("1961-01-01") text_labels[2, "max_dd"] <- -0.45 text_labels[2, "label"] <- "Never Rebalance" plot <- ggplot(to_plot, aes(x = start_date, y = max_dd, col = rebalance_string)) + geom_line() + geom_text(data = text_labels, aes(x=start_date, y = max_dd, col = label, label = label, family = "my_font")) + scale_color_manual(values = bw_colors, guide = FALSE) + scale_x_date(date_labels ="%Y", breaks = c( as.Date("1930-01-01"), as.Date("1940-01-01"), as.Date("1950-01-01"), as.Date("1960-01-01"), as.Date("1970-01-01"), as.Date("1980-01-01"), as.Date("1990-01-01") )) + scale_y_continuous(label = percent_format(accuracy = 1), limits = c(-0.7, 0), breaks = seq(-0.7, 0, 0.1)) + of_dollars_and_data_theme + ggtitle(paste0("Maximum Drawdown for ",100*wt_stock, "/", 100*wt_bond," Portfolio\nOver ", n_years, " Years")) + labs(x = "Start Year" , y = "Maximum Drawdown") ggsave(file_path, plot, width = 15, height = 12, units = "cm") to_plot <- final_results %>% filter(rebal_addition == 0, rebal_month == 1 | rebal_month == 99) %>% mutate(rebalance_string = ifelse(rebal_month <= 12, "Rebalance Annually", "Never Rebalance")) file_path <- paste0(out_path, "/_stock_pct_rebalance_vs_not.jpeg") text_labels <- data.frame() text_labels[1, "start_date"] <- as.Date("1961-01-01") text_labels[1, "final_stock_pct"] <- 1 text_labels[1, "label"] <- "Never Rebalance" text_labels[2, "start_date"] <- as.Date("1961-01-01") text_labels[2, "final_stock_pct"] <- 0.45 text_labels[2, "label"] <- "Rebalance Annually" plot <- ggplot(to_plot, aes(x = start_date, y = final_stock_pct, col = rebalance_string)) + geom_line() + geom_text(data = text_labels, aes(x=start_date, y = final_stock_pct, col = label, label = label, family = "my_font")) + scale_color_manual(values = bw_colors, guide = FALSE) + scale_y_continuous(label = percent_format(accuracy = 1), limits = c(0, 1), breaks = seq(0, 1, 0.1)) + scale_x_date(date_labels ="%Y", breaks = c( as.Date("1930-01-01"), as.Date("1940-01-01"), as.Date("1950-01-01"), as.Date("1960-01-01"), as.Date("1970-01-01"), as.Date("1980-01-01"), as.Date("1990-01-01") )) + of_dollars_and_data_theme + ggtitle(paste0("Final Stock Percentage for ",100*wt_stock, "/", 100*wt_bond," Portfolio\nOver ", n_years, " Years")) + labs(x = "Start Year" , y = "Final Stock Percentage") ggsave(file_path, plot, width = 15, height = 12, units = "cm") file_path <- paste0(out_path, "/_growth_rebalance_vs_not.jpeg") text_labels <- data.frame() text_labels[1, "start_date"] <- as.Date("1940-01-01") text_labels[1, "final_value"] <- 3000 text_labels[1, "label"] <- "Never Rebalance" text_labels[2, "start_date"] <- as.Date("1970-01-01") text_labels[2, "final_value"] <- 1000 text_labels[2, "label"] <- "Rebalance Annually" plot <- ggplot(to_plot, aes(x = start_date, y = final_value, col = rebalance_string)) + geom_line() + geom_text(data = text_labels, aes(x=start_date, y = final_value, col = label, label = label, family = "my_font")) + scale_color_manual(values = bw_colors, guide = FALSE) + scale_y_continuous(label = dollar) + scale_x_date(date_labels ="%Y", breaks = c( as.Date("1930-01-01"), as.Date("1940-01-01"), as.Date("1950-01-01"), as.Date("1960-01-01"), as.Date("1970-01-01"), as.Date("1980-01-01"), as.Date("1990-01-01") )) + of_dollars_and_data_theme + ggtitle(paste0("Final Portfolio Value for ",100*wt_stock, "/", 100*wt_bond," Portfolio\nOver ", n_years, " Years")) + labs(x = "Start Year" , y = "Final Value of $100 Investment") ggsave(file_path, plot, width = 15, height = 12, units = "cm")
get_tiles <- function(x, provider = "OpenStreetMap", zoom, crop = FALSE, verbose = FALSE, apikey, cachedir, forceDownload = FALSE) { if (gdal() < "2.2.3"){ warning(paste0("Your GDAL version is ",gdal(), ". You need GDAL >= 2.2.3 to use maptiles."), call. = FALSE) return(invisible(NULL)) } if(inherits(x, 'bbox')){ x <- st_as_sfc(x) } if(inherits(x, 'SpatRaster')){ x <- terra::as.polygons(x, extent = TRUE) x <- terra::project(x, "epsg:4326") x <- terra::ext(x) } else if(inherits(x, 'SpatVector')){ x <- terra::project(x, "epsg:4326") x <- terra::ext(x) } if(inherits(x, c('sf', 'sfc'))){ origin_proj <- st_crs(x)$wkt if (nrow(x) == 1 && inherits(st_geometry(x), "sfc_POINT")) { xt <- st_transform(x, 3857) st_geometry(xt) <- st_buffer(st_geometry(xt), 1000) crop <- FALSE bbx <- st_bbox(st_transform(st_as_sfc(st_bbox(xt)), 4326)) } else { bbx <- st_bbox(st_transform(st_as_sfc(st_bbox(x)), 4326)) cb <- st_bbox(x) } } else if(inherits(x, "SpatExtent")){ origin_proj <- st_crs("epsg:4326")$wkt bbx <- as.vector(x)[c(1,3,2,4)] cb <- bbx } else { stop(paste0("x should be an sf, sfc, bbox, SpatRaster,", " SpatVector or SpatExtent object"), call. = FALSE) } if (missing(zoom)) { gz <- slippymath::bbox_tile_query(bbx) zoom <- min(gz[gz$total_tiles %in% 4:10, "zoom"]) } tile_grid <- slippymath::bbox_to_tile_grid(bbox = bbx, zoom = zoom) param <- get_param(provider) tile_grid$tiles$s <- sample(param$sub, nrow(tile_grid$tiles), replace = T) tile_grid$src <- param$src if(missing(apikey)){ apikey <- "" } tile_grid$q <- sub("XXXXXX", apikey, param$q) tile_grid$cit <- param$cit if (length(grep("jpg", param$q)) > 0) { ext <- "jpg" } else if (length(grep("png", param$q)) > 0) { ext <- "png" } tile_grid$ext <- ext images <- get_tiles_n(tile_grid, verbose, cachedir, forceDownload) rout <- compose_tile_grid(tile_grid, images) terra::crs(rout) <- "epsg:3857" if(st_crs("epsg:3857")$wkt!=origin_proj){ temprast <- rast(rout) temprast <- project(temprast, origin_proj) terra::res(temprast) <- signif(terra::res(temprast), 3) rout <- terra::project(rout, temprast) rout <- terra::trim(rout) } rout <- terra::clamp(rout, lower = 0, upper = 255, values = TRUE) if (crop == TRUE) { k <- min(c(0.052 * (cb[4] - cb[2]), 0.052 * (cb[3] - cb[1]))) cb <- cb + c(-k, -k, k, k) rout <- terra::crop(rout, cb[c(1, 3, 2, 4)]) } RGB(rout)<- 1:3 rout } get_tiles_n <- function(tile_grid, verbose, cachedir, forceDownload) { images <- apply( X = tile_grid$tiles, MARGIN = 1, FUN = dl_t, z = tile_grid$zoom, ext = tile_grid$ext, src = tile_grid$src, q = tile_grid$q, verbose = verbose, cachedir = cachedir, forceDownload = forceDownload ) if (verbose) { message( "Zoom:", tile_grid$zoom, "\nData and map tiles sources:\n", tile_grid$cit ) } images } dl_t <- function(x, z, ext, src, q, verbose, cachedir, forceDownload) { if (missing(cachedir)) { cachedir <- tempdir() } else { if (!dir.exists(cachedir)) dir.create(cachedir) subdir <- paste0(cachedir, "/", src) if (!dir.exists(subdir)) dir.create(subdir) cachedir <- subdir } outfile <- paste0(cachedir, "/", src, "_", z, "_", x[1], "_", x[2], ".", ext) if (!file.exists(outfile) | isTRUE(forceDownload)) { q <- gsub(pattern = "{s}", replacement = x[3], x = q, fixed = TRUE) q <- gsub(pattern = "{x}", replacement = x[1], x = q, fixed = TRUE) q <- gsub(pattern = "{y}", replacement = x[2], x = q, fixed = TRUE) q <- gsub(pattern = "{z}", replacement = z, x = q, fixed = TRUE) if (verbose) { message(q, " => ", outfile) } curl::curl_download(url = q, destfile = outfile) } outfile } compose_tile_grid <- function(tile_grid, images) { bricks <- vector("list", nrow(tile_grid$tiles)) for (i in seq_along(bricks)) { bbox <- slippymath::tile_bbox( tile_grid$tiles$x[i], tile_grid$tiles$y[i], tile_grid$zoom ) img <- images[i] if (tile_grid$ext == "png") { img <- png::readPNG(img) * 255 if (dim(img)[3] == 4) { nrow <- dim(img)[1] for (j in seq_len(nrow)) { row <- img[j, , ] alpha <- row[, 4] == 0 row[alpha, ] <- NA img[j, , ] <- row } } } r_img <- suppressWarnings(terra::rast(img)) if (is.null(terra::RGB(r_img))) { terra::RGB(r_img) <- c(1,2,3) } terra::ext(r_img) <- terra::ext(bbox[c( "xmin", "xmax", "ymin", "ymax" )]) bricks[[i]] <- r_img } if (length(bricks) == 1) { rout <- bricks[[1]] rout <- terra::merge(rout, rout) }else{ warp_method <- function(){ out_ras <- tryCatch({ save_ras <- function(ras, .img){ name <- paste(file_path_sans_ext(.img), '.tif', sep = "") if (!file.exists(name)){ terra::writeRaster(ras, name) } return(name) } ras_files <- mapply(save_ras, bricks, images) merge_path <- tempfile(fileext = '.tif') sf::gdal_utils(util = "warp", source = as.character(ras_files), destination = merge_path) outras <- terra::rast(merge_path) return(outras) }, error = function(e) { warning( "\nReceived error from gdalwarp.", "Attempting merge using terra::merge") outras <- do.call(terra::merge, bricks) return(outras) } ) } rout <- warp_method() } rout } get_param <- function(provider) { if (length(provider) == 4) { param <- provider } else { param <- maptiles_providers[[provider]] } param }
.t.12.dens <- function(x, u, nu) { if (is.null(dim(u))) { u1 <- u[1] u2 <- u[2] } else { u1 <- u[, 1] u2 <- u[, 2] } res.f <- -((nu * sqrt(1 - (x^2)) * (((nu + (u1^2)) * (nu + (u2^2))) / (nu^2))^((1 + nu) / 2) * gamma(nu / 2) * gamma((2 + nu) / 2)) / ((nu * (-1 + (x^2)) - (u1^2) + 2 * x * u1 * u2 - (u2^2)) * ((nu - nu * (x^2) + (u1^2) - 2 * x * u1 * u2 + (u2^2)) / (nu - nu * (x^2)))^(nu / 2) * (gamma((1 + nu) / 2))^2)) return(res.f) } .V.t <- function(u, rho, nu) { res.f <- (-rho^3 + (2 + nu) * u[1] * u[2] + nu * (rho^2) * u[1] * u[2] - rho * (-1 + (1 + nu) * u[1]^2 + (1 + nu) * u[2]^2)) / ((-1 + rho^2) * (-1 + rho^2 - u[1]^2 + 2 * rho * u[1] * u[2] - u[2]^2)) return(res.f) } .S.t <- function(u, rho, nu) { res.f <- (1 + (rho^6) - (u[1]^4) - 2 * nu * (rho^5) * u[1] * u[2] + 2 * (u[1]^2) * (u[2]^2) - (u[2]^4) - nu * ((u[1]^2) + (u[1]^4) + (u[2]^2) + (u[2]^4)) + 4 * (rho^3) * u[1] * u[2] * (-2 + (u[1]^2) + (u[2]^2) + nu * (-1 + (u[1]^2) + (u[2]^2))) + 2 * rho * u[1] * u[2] * (2 * (2 + (u[1]^2) + (u[2]^2)) + nu * (3 + 2 * (u[1]^2) + 2 * (u[2]^2))) - (rho^2) * (1 + (1 + nu) * (u[1]^4) + 2 * (2 + nu) * (u[2]^2) + (1 + nu) * (u[2]^4) + 2 * (u[1]^2) * (2 + nu + 7 * (u[2]^2) + 5 * nu * (u[2]^2))) + (rho^4) * (-1 + (4 + 3 * nu) * (u[2]^2) + (u[1]^2) * (4 + nu * (3 - 2 * (u[2]^2))))) / ((-1 + (rho^2))^2 * (1 - (rho^2) + (u[1]^2) - 2 * rho * u[1] * u[2] + (u[2]^2))^2) return(res.f) }
az_subscription <- R6::R6Class("az_subscription", public=list( id=NULL, name=NULL, state=NULL, policies=NULL, authorization_source=NULL, token=NULL, initialize=function(token, id=NULL, parms=list()) { if(is_empty(id) && is_empty(parms)) stop("Must supply either subscription ID, or parameter list") self$token <- token if(is_empty(parms)) parms <- call_azure_rm(self$token, subscription=id, operation="") self$id <- parms$subscriptionId self$name <- parms$displayName self$state <- parms$state self$policies <- parms$subscriptionPolicies self$authorization_source <- parms$authorizationSource NULL }, list_locations=function(info=c("partial", "all")) { info <- match.arg(info) res <- self$do_operation("locations", http_status_handler="pass") cont <- httr::content(res, simplifyVector=TRUE) httr::stop_for_status(res, paste0("complete operation. Message:\n", sub("\\.$", "", error_message(cont)))) locs <- cont$value locs$metadata$longitude <- as.numeric(locs$metadata$longitude) locs$metadata$latitude <- as.numeric(locs$metadata$latitude) if(info == "partial") cbind(locs[c("name", "displayName")], locs$metadata[c("longitude", "latitude", "regionType")]) else locs }, get_provider_api_version=function(provider=NULL, type=NULL, which=1, stable_only=TRUE) { select_version <- function(api) { versions <- unlist(api$apiVersions) if(stable_only) versions <- grep("preview", versions, value=TRUE, invert=TRUE) if(length(versions) >= which) versions[which] else "" } if(is_empty(provider)) { apis <- named_list(private$sub_op("providers")$value, "namespace") lapply(apis, function(api) { api <- named_list(api$resourceTypes, "resourceType") sapply(api, select_version) }) } else { op <- construct_path("providers", provider) apis <- named_list(private$sub_op(op)$resourceTypes, "resourceType") if(!is_empty(type)) { names(apis) <- tolower(names(apis)) select_version(apis[[tolower(type)]]) } else sapply(apis, select_version) } }, get_resource_group=function(name) { az_resource_group$new(self$token, self$id, name) }, list_resource_groups=function(filter=NULL, top=NULL) { opts <- list(`$filter`=filter, `$top`=top) cont <- private$sub_op("resourcegroups", options=opts) lst <- lapply( if(is.null(top)) get_paged_list(cont, self$token) else cont$value, function(parms) az_resource_group$new(self$token, self$id, parms=parms) ) named_list(lst) }, create_resource_group=function(name, location, ...) { az_resource_group$new(self$token, self$id, name, location=location, ...) }, delete_resource_group=function(name, confirm=TRUE) { if(name == "") stop("Must supply a resource group name", call.=FALSE) self$get_resource_group(name)$delete(confirm=confirm) }, resource_group_exists=function(name) { res <- private$sub_op(construct_path("resourceGroups", name), http_verb="HEAD", http_status_handler="pass") httr::status_code(res) < 300 }, list_resources=function(filter=NULL, expand=NULL, top=NULL) { opts <- list(`$filter`=filter, `$expand`=expand, `$top`=top) cont <- private$sub_op("resources", options=opts) lst <- lapply( if(is.null(top)) get_paged_list(cont, self$token) else cont$value, function(parms) az_resource$new(self$token, self$id, deployed_properties=parms) ) names(lst) <- sapply(lst, function(x) sub("^.+providers/(.+$)", "\\1", x$id)) lst }, do_operation=function(..., options=list(), http_verb="GET") { private$sub_op(..., options=options, http_verb=http_verb) }, print=function(...) { cat("<Azure subscription ", self$id, ">\n", sep="") cat(format_public_fields(self, exclude="id")) cat(format_public_methods(self)) invisible(self) } ), private=list( sub_op=function(op="", ...) { call_azure_rm(self$token, self$id, op, ...) } ))
filen <- tempfile(pattern = "ggplot") library(ggplot2) library(datasets) x=qplot(Sepal.Length, Petal.Length, data = iris, color = Species, size = Petal.Width, alpha = I(0.7)) plot.fun <- function(){ print(qplot(Sepal.Length, Petal.Length, data = iris, color = Species, size = Petal.Width, alpha = 0.7)) } graph2svg(x=x, file=filen, aspectr=2, font = "Times New Roman", height = 5, bg = "white") graph2pdf(x=x, file=filen, aspectr=2, font = "Arial", height = 5, bg = "transparent") graph2eps(x=x, file=filen, aspectr=2, font = "Arial", height = 5, bg = "transparent") \donttest{ x graph2svg(file=filen, aspectr=2, font = "Arial", height = 5, bg = "transparent") graph2pdf(file=filen, aspectr=2, font = "Times New Roman", height = 5, bg = "white") graph2eps(file=filen, aspectr=2, font = "Times New Roman", height = 5, bg = "white") } \donttest{ graph2svg(file=filen, fun = plot.fun, aspectr=2, font = "Arial", height = 5, bg = "transparent") graph2pdf(file=filen, fun=plot.fun, aspectr=2, font = "Arial", height = 5, bg = "transparent") graph2eps(file=filen, fun=plot.fun, aspectr=2, font = "Arial", height = 5, bg = "transparent") }
library(readabs) wpi_url <- "http://ausstats.abs.gov.au/servlet/TSSearchServlet?catno=6345.0&pg=1&ttitle=1" test_that("WPI XML page is a data.frame with expected column names", { skip_on_cran() skip_if_offline() check_abs_connection() wpi_1_xml <- get_xml_dfs(wpi_url) expect_is(wpi_1_xml, "data.frame") expect_equal(colnames(wpi_1_xml)[1], "ProductNumber") expect_length(wpi_1_xml, 18) expect_gt(nrow(wpi_1_xml), 26) }) test_that("read_abs() downloads, imports, and tidies a data frame", { skip_on_cran() skip_if_offline() check_abs_connection() wpi_1 <- read_abs("6345.0", tables = "1", retain_files = FALSE, check_local = FALSE, path = tempdir() ) expect_is(wpi_1, "tbl") expect_length(wpi_1, 12) expect_gt(nrow(wpi_1), 2400) expect_is(wpi_1$date, "Date") expect_is(wpi_1$series, "character") expect_is(wpi_1$value, "numeric") expect_lt(Sys.Date() - max(wpi_1$date), 180) }) test_that("read_abs() gets a whole catalogue number", { skip_on_cran() skip_if_offline() check_abs_connection() wpi <- read_abs("6345.0", retain_files = FALSE, check_local = FALSE, path = tempdir()) expect_is(wpi, "tbl") expect_length(wpi, 12) expect_gt(nrow(wpi), 34000) }) test_that("read_abs() works when retain_files = FALSE", { skip_on_cran() skip_if_offline() check_abs_connection() wpi_7 <- read_abs("6345.0", tables = "7a", retain_files = FALSE, check_local = F, path = tempdir() ) expect_is(wpi_7, "tbl") }) test_that("read_abs() works with series ID(s)", { skip_on_cran() skip_if_offline() check_abs_connection() cpi_2 <- read_abs(series_id = c("A2325846C", "A2325841T"), retain_files = FALSE, check_local = F, path = tempdir()) expect_is(cpi_2, "tbl") expect_length(unique(cpi_2$series), 2) expect_match(unique(cpi_2$series)[1], "Index Numbers ; All groups CPI ; Canberra ;") expect_match(unique(cpi_2$series)[2], "Index Numbers ; All groups CPI ; Australia ;") expect_length(cpi_2, 12) cpi_wrapper <- read_abs_series(series_id = c("A2325846C", "A2325841T"), retain_files = FALSE, check_local = F, path = tempdir()) expect_identical(cpi_2, cpi_wrapper) }) test_that("read_abs() returns appropriate errors and messages when given invalid input", { skip_on_cran() skip_if_offline() check_abs_connection() expect_error(read_abs(cat_no = NULL)) expect_error(read_abs("6202.0", 1, retain_files = NULL, check_local = FALSE)) expect_error(read_abs(cat_no = "6345.0", metadata = 1, check_local = FALSE)) expect_error(read_abs(cat_no = "6345.0", series_id = "foo", check_local = FALSE), regexp = "either.*cat_no.*series_id" ) }) test_that("read_abs() works with 'table 01' as well as 'table 1' filename structures", { skip_on_cran() skip_if_offline() check_abs_connection() const_df <- read_abs("8755.0", 1, retain_files = FALSE, check_local = FALSE, path = tempdir()) const_df_2 <- read_abs("8755.0", "1", retain_files = FALSE, check_local = FALSE, path = tempdir()) expect_is(const_df, "data.frame") expect_equal(const_df, const_df_2) expect_length(const_df, 12) }) test_that("read_abs() returns an error when requesting non-existing cat_no", { skip_on_cran() skip_if_offline() check_abs_connection() expect_error(read_abs("9999.0")) }) test_that("read_cpi() function downloads CPI index numbers", { skip_on_cran() skip_if_offline() check_abs_connection() cpi <- read_cpi() expect_is(cpi, "tbl") expect_length(cpi, 2) expect_is(cpi$date, "Date") expect_is(cpi$cpi, "numeric") latest_cpi_date <- cpi$date[cpi$date == max(cpi$date)] total_cpi_ratio <- cpi$cpi[cpi$date == latest_cpi_date] / cpi$cpi[cpi$date == min(cpi$date)] expect_gt(total_cpi_ratio, 30) inflation_99_to_19 <- cpi$cpi[cpi$date == as.Date("2019-09-01")] / cpi$cpi[cpi$date == as.Date("1999-09-01")] expect_gt(inflation_99_to_19, 1.675) expect_lt(inflation_99_to_19, 1.685) date_12m_before_latest <- as.POSIXlt(latest_cpi_date) date_12m_before_latest$year <- date_12m_before_latest$year - 1 date_12m_before_latest <- as.Date(date_12m_before_latest) latest_annual_inflation <- (cpi$cpi[cpi$date == latest_cpi_date] / cpi$cpi[cpi$date == date_12m_before_latest]) - 1 expect_gt(latest_annual_inflation, -.005) expect_lt(latest_annual_inflation, 0.05) }) test_that("read_cpi() returns appropriate errors", { skip_on_cran() skip_if_offline() check_abs_connection() expect_error(read_cpi(retain_files = NULL)) expect_error(read_cpi(show_progress_bars = NULL)) expect_error(read_cpi(retain_files = TRUE, path = 1)) })
ProductDistribution <- R6Class("ProductDistribution", inherit = VectorDistribution, lock_objects = FALSE, public = list( initialize = function(distlist = NULL, distribution = NULL, params = NULL, shared_params = NULL, name = NULL, short_name = NULL, decorators = NULL, vecdist = NULL, ids = NULL) { if (!is.null(vecdist)) { checkmate::assertClass(vecdist, "VectorDistribution") if (!is.null(decorators)) { suppressMessages(decorate(self, decorators)) } private$.modelTable <- vecdist$modelTable private$.distlist <- vecdist$distlist private$.univariate <- vecdist$.__enclos_env__$private$.univariate private$.pdf <- vecdist$.__enclos_env__$private$.pdf private$.cdf <- vecdist$.__enclos_env__$private$.cdf private$.quantile <- vecdist$.__enclos_env__$private$.quantile private$.rand <- vecdist$.__enclos_env__$private$.rand parameters <- vecdist$parameters() if (checkmate::testClass(vecdist, "MixtureDistribution")) { parameters$remove(prefix = "mix") } super$.__enclos_env__$super$initialize( distlist = if (vecdist$distlist) vecdist$wrappedModels() else NULL, name = vecdist$name, short_name = vecdist$short_name, description = vecdist$description, support = vecdist$properties$support, type = vecdist$traits$type, valueSupport = vecdist$traits$valueSupport, variateForm = "multivariate", parameters = parameters ) } else { super$initialize( distlist = distlist, distribution = distribution, params = params, shared_params = shared_params, decorators = decorators, name = name, short_name = short_name, ids = ids ) } if (is.null(name)) self$name <- gsub("Vector|Mixture", "Product", self$name) if (is.null(short_name)) self$short_name <- gsub("Vec|Mix", "Prod", self$short_name) self$description <- gsub("Vector|Mixture", "Product", self$description) invisible(self) }, strprint = function(n = 10) { str <- super$strprint(n = n) paste0(str, collapse = " X ") }, pdf = function(..., log = FALSE, simplify = TRUE, data = NULL) { product_dpqr_returner( dpqr = super$pdf(..., log = log, data = data), univariate = private$.univariate ) }, cdf = function(..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE, data = NULL) { product_dpqr_returner( dpqr = super$cdf(..., lower.tail = lower.tail, log.p = log.p, data = data), univariate = private$.univariate ) }, quantile = function(..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE, data = NULL) { stop("Quantile is currently unavailable for product distributions.") } ) ) .distr6$wrappers <- append(.distr6$wrappers, list(ProductDistribution = ProductDistribution)) `*.Distribution` <- function(x, y) { ProductDistribution$new(list(x, y)) } as.ProductDistribution <- function(object) { if (checkmate::testClass(object, "VectorDistribution")) { ProductDistribution$new(vecdist = object) } else { stop("Object must inherit from VectorDistribution.") } }
sar_linear <- function(data, normaTest = "none", homoTest = "none", homoCor = "spearman", verb = TRUE){ if (!(is.matrix(data) | is.data.frame(data))) stop('data must be a matrix or dataframe') if (is.matrix(data)) data <- as.data.frame(data) if (anyNA(data)) stop('NAs present in data') if (!is.logical(verb)) stop('verb should be logical') data <- data[order(data[,1]),] colnames(data) <- c('A','S') mod <- lm(S ~ A, data = data) fit <- list() fit$par <- mod$coefficients names(fit$par) <- c("c", "m") res <- as.vector(mod$residuals) squ_res <- res^2 fit$value <- sum(res^2) fit$verge <- TRUE fit$data <- data fit$model$name <- "Linear model" fit$model$formula <- "S == c + m*A" fit$model$parNames <- c("c", "m") fit$calculated <- as.vector(mod$fitted.values) fit$residuals <- res n <- dim(data)[1] value <- sum(mod$residuals^2) P <- 3 val <- -n * (log(2 * pi) + 1 - log(n) + log(value))/2 fit$AIC <- (2 * P) - (2 * val) fit$AICc <- -2 * val + 2 * P * (n / (n - P - 1)) fit$BIC <- (-2 * val) + (P * log(n)) fit$R2 <- 1 - ( (value) / sum((data$S - mean(data$S))^2) ) fit$R2a <- 1 - ( ((n-1)*(value)) / ((n-P)*sum((data$S - mean(data$S))^2))) fit$sigConf <- cbind(summary(mod)$coefficients, confint(mod)) fit$observed_shape <- "linear" fit$asymptote <- FALSE normaTest <- match.arg(normaTest, c("none", "shapiro", "kolmo", "lillie")) homoTest <- match.arg(homoTest, c("none","cor.area","cor.fitted")) if (homoTest != "none"){ homoCor <- match.arg(homoCor, c("spearman","pearson", "kendall")) } if (normaTest == "shapiro") { normaTest <- list("test" = "shapiro", tryCatch(shapiro.test(res), error = function(e)NA)) } else if (normaTest == "lillie"){ normaTest <- list("test" = "lillie", tryCatch(lillie.test(res), error = function(e)NA)) } else if (normaTest == "kolmo"){ normaTest <- list("test" = "kolmo", tryCatch(ks.test(res, "pnorm"), error = function(e)NA)) } else{ normaTest <- list("test" = "none", "none") } if (homoTest == "cor.area"){ homoTest <- list("test" = "cor.area", tryCatch(suppressWarnings(cor.test(squ_res,data$A, method = homoCor)), error = function(e)list(estimate=NA,p.value=NA))) } else if (homoTest == "cor.fitted"){ homoTest <- list("test" = "cor.fitted", tryCatch(suppressWarnings(cor.test(squ_res, as.vector(mod$fitted.values), method = homoCor)), error = function(e)list(estimate=NA,p.value=NA))) } else { homoTest <- list("test" = "none", "none") } fit$normaTest <- normaTest fit$homoTest <- homoTest fit$model$exp <- expression(c + m*A) fit$model$mod.fun <- function(A = A, par = par, model = model) { eval(model$exp,list(A=A,c=par[1],m=par[2]))} fit$model$rss.fun <- function(par,data, model, opt = TRUE){ S <- data$S A <- data$A res <- sum((S - model$mod.fun(A,par, model = model))^2) res } fit$neg_check <- any(fit$calculated < 0) class(fit) <- 'sars' attr(fit, 'type') <- 'fit' return(fit) }
gs_delete <- function(ss, verbose = TRUE) { if (!inherits(ss, "googlesheet")) { spf("Input must be a 'googlesheet'.\n", "Trying to delete by title? See gs_grepdel() and gs_vecdel().") } key <- gs_get_alt_key(ss) the_url <- file.path(.state$gd_base_url_files_v2, key) req <- httr::DELETE(the_url, google_token()) %>% httr::stop_for_status() status <- httr::status_code(req) if (verbose) { if (status == 204L) { mpf("Success. \"%s\" moved to trash in Google Drive.", ss$sheet_title) } else { mpf("Oops. \"%s\" was NOT deleted.", ss$sheet_title) } } if(status == 204L) invisible(TRUE) else invisible(FALSE) } gs_grepdel <- function(regex, ..., verbose = TRUE) { stopifnot(is.character(regex)) delete_me <- gs_ls(regex, ..., verbose = verbose) if(is.null(delete_me)) { invisible(NULL) } else { lapply(delete_me$sheet_key, function(x) { gs_delete(gs_key(x, verbose = verbose), verbose = verbose) }) %>% unlist() } } gs_vecdel <- function(vec, verbose = TRUE) { stopifnot(is.character(vec)) delete_me <- gs_ls(verbose = FALSE) %>% dplyr::filter_(~ sheet_title %in% vec) if(nrow(delete_me)) { lapply(delete_me$sheet_key, function(x) { gs_delete(gs_key(x, verbose = verbose), verbose = verbose) }) %>% unlist() } else { invisible(NULL) } }
coef.glmnot <- function(object, ...) { coef(object$model, ...) } predict.glmnot <- function(object, newdata, sparse = TRUE, lambda = 'lambda.min', type = 'response') { if (is.data.frame(newdata)) { if (is.null(object$xlev)) { stop('Cannot predict from a dataframe using a glmnot object which was trained on a matrix - train using a data frame, or predict from a matrix of the same form') } design_matrix_method <- if (sparse) sparse.model.matrix else model.matrix no_response_formula <- delete.response(terms(object$formula)) for (column in all.vars(no_response_formula)) { column_data <- newdata[[column]] if(!is.numeric(column_data)) { column_data <- as.character(column_data) reference_level <- object$xlev[[column]][1] newdata[[column]] <- ifelse(column_data %in% object$xlev[[column]], column_data, reference_level) } } newdata <- design_matrix_method(no_response_formula, newdata, xlev = object$xlev) } predict(object$model, newx = newdata, s = lambda, type = type) } glmnot <- function(object, ...) { UseMethod('glmnot', object) } glmnot.default <- function(X, y, family, alpha = 1, formula = NULL, xlev = NULL, glm_control = list() ) { cv.glmnet.args <- list(X, y, family = family, alpha = alpha) cv.glmnet.args <- append(cv.glmnet.args, glm_control) m <- do.call(cv.glmnet, cv.glmnet.args) m$call[["x"]] <- quote(x) m$call[["y"]] <- quote(y) m$call[[1]] <- quote(glmnet) structure(list(model = m, formula = formula, xlev = xlev), class = 'glmnot') } glmnot.formula <- function(formula, data, family, alpha = 1, type.measure = 'auc', sparse = TRUE, glm_control ) { constant_factors <- colnames( data %>% select_if(function(column) { if(!is.numeric(column)) { return(n_distinct(column) < 2) } else { return(FALSE) } }) ) final_formula <- terms(formula, data = data) constant_factors_in_formula <- intersect(constant_factors, all.vars(final_formula)) terms_matrix <- attr(final_formula, "factors") for (column in colnames(terms_matrix)) { if (sum(terms_matrix[constant_factors_in_formula, column]) > 0) { final_formula <- update(final_formula, paste('. ~ . -', column)) } } stopifnot(length(all.vars(final_formula)) > 1) response_variable <- get_response(final_formula) columns <- get_predictors(final_formula) factor_column_indicator <- sapply(columns, function(column) { !is.numeric(data[[column]]) && column != response_variable }) factor_columns <- columns[factor_column_indicator] xlev <- lapply(data %>% select(factor_columns), function(x) { if(is.factor(x)) levels(x) else as.character(unique(x)) }) model_mat_method <- if (sparse) sparse.model.matrix else model.matrix X <- model_mat_method(final_formula, data, xlev = xlev) y <- data[[response_variable]] stopifnot(nrow(X) == length(y)) glmnot(X, y, family, alpha = alpha, formula = final_formula, xlev = xlev, glm_control = glm_control) }
frequencies_to_stop_times <- function(gtfs) { if (class(gtfs)[1] != "gtfs") stop ("selected object does not appear to be a GTFS file") if (!("frequencies" %in% names (gtfs))) stop ("selected gtfs does not contain frequencies") if (nrow (gtfs$frequencies) == 0) stop ("frequencies table is empty") need_these_columns <- c("trip_id", "start_time", "end_time", "headway_secs") checks <- vapply (need_these_columns, function (i) any (grepl (i, names(gtfs$frequencies))), logical (1)) arrival_time <- departure_time <- end_time <- start_time <- stop_sequence <- trip_id <- trip_id_f <- NULL if (!all (checks)) stop ("frequencies must contain all required columns:\n ", paste (need_these_columns, collapse = ", ")) gtfs_cp <- data.table::copy (gtfs) gtfs_cp$frequencies[, start_time := rcpp_time_to_seconds (start_time)] gtfs_cp$frequencies[, end_time := rcpp_time_to_seconds (end_time)] gtfs_cp$stop_times [, trip_id_f := trip_id] stop_times <- gtfs_cp$stop_times [0] trips <- unique (gtfs_cp$frequencies [, trip_id]) for (trip in trips) { n <- 1 frequencies_trip <- gtfs_cp$frequencies [order (trip_id, start_time)] [trip_id == trip] frequencies_trip [end_time == data.table::shift (start_time, 1, type = "lead"), end_time := end_time - 1] stop_times_trip <- gtfs_cp$stop_times [order (stop_sequence)] [trip_id == trip] if (stop_times_trip [1] [["arrival_time"]] > 0) { stop_times_trip [, c ("arrival_time", "departure_time") := list( arrival_time - stop_times_trip [1] [["arrival_time"]], departure_time - stop_times_trip [1] [["arrival_time"]] )] } start_t <- min (frequencies_trip$start_time) headway <- headway_old <- frequencies_trip [1] [["headway_secs"]] for (i in row (frequencies_trip)) { end_t <- frequencies_trip [i] [["end_time"]] headway <- frequencies_trip [i] [["headway_secs"]] ifelse ( headway_old - start_t + frequencies_trip [i] [["start_time"]] < headway, start_t <- start_t - headway_old + headway, start_t <- frequencies_trip [i] [["start_time"]] ) while (start_t < end_t) { stop_times_trip_i <- data.table::copy (stop_times_trip) [, c ("arrival_time", "departure_time", "trip_id_f") := list ((arrival_time + start_t), (departure_time + start_t), paste (trip_id, n, sep = "_"))] n <- n + 1 stop_times <- rbind (stop_times, stop_times_trip_i) start_t <- start_t + headway } headway_old <- headway } } gtfs_cp$stop_times <- rbind (gtfs_cp$stop_times [!(trip_id) %in% gtfs_cp$frequencies$trip_id], stop_times) trip_id_mapping <- unique(gtfs_cp$stop_times [, c("trip_id", "trip_id_f")]) gtfs_cp$trips <- merge (gtfs_cp$trips, trip_id_mapping, by = "trip_id", all.y = T) gtfs_cp$trips$trip_id <- gtfs_cp$trips$trip_id_f gtfs_cp$trips <- subset (gtfs_cp$trips, select = names(gtfs_cp$trips) != "trip_id_f") gtfs_cp$stop_times$trip_id <- gtfs_cp$stop_times$trip_id_f gtfs_cp$stop_times <- subset (gtfs_cp$stop_times, select = names(gtfs_cp$stop_times) != "trip_id_f") return (gtfs_cp) }
univariate_regression = function (X, y, Z = NULL, center = TRUE, scale = FALSE, return_residuals = FALSE) { y_na = which(is.na(y)) if (length(y_na)) { X = X[-y_na,] y = y[-y_na] } if (center) { y = y - mean(y) X = scale(X,center = TRUE,scale = scale) } else X = scale(X,center = FALSE,scale = scale) X[is.nan(X)] = 0 if (!is.null(Z)) { if (center) Z = scale(Z,center = TRUE,scale = scale) y = .lm.fit(Z,y)$residuals } output = try(do.call(rbind, lapply(1:ncol(X), function (i) { g = .lm.fit(cbind(1,X[,i]),y) return(c(coef(g)[2],calc_stderr(cbind(1,X[,i]), g$residuals)[2])) })), silent = TRUE) if (inherits(output,"try-error")) { output = matrix(0,ncol(X),2) for (i in 1:ncol(X)) { fit = summary(lm(y ~ X[,i]))$coef if (nrow(fit) == 2) output[i,] = as.vector(summary(lm(y ~ X[,i]))$coef[2,1:2]) else output[i,] = c(0,0) } } if (return_residuals && !is.null(Z)) return(list(betahat = output[,1],sebetahat = output[,2],residuals = y)) else return(list(betahat = output[,1],sebetahat = output[,2])) } calc_z = function (X, Y, center = FALSE, scale = FALSE) { univariate_z = function(X,Y,center,scale) { out = univariate_regression(X,Y,center = center,scale = scale) return(out$betahat/out$sebetahat) } if (is.null(dim(Y))) return(univariate_z(X,Y,center,scale)) else return(do.call(cbind,lapply(1:ncol(Y), function(i) univariate_z(X,Y[,i], center = center, scale = scale)))) }
QueryBuilder <- function(query.params.list) { kMaxDimensions <- 4 kMaxMetrics <- 10 end.date <- query.params.list$end.date metrics <- query.params.list$metrics start.date <- query.params.list$start.date title <- query.params.list$title dimensions <- query.params.list$dimensions filters <- query.params.list$filters segment <- query.params.list$segment SetQueryParams <- function() { EndDate(end.date) Metrics(metrics) StartDate(start.date) Title(title) Dimensions(dimensions) Filters(filters) Segment(segment) Title(title) Validate() return(invisible()) } StartDate <- function(start.date.param = NA) { if (is.null(start.date.param)) { start.date <<- NULL return(invisible()) } if (is.na(start.date.param)) { return(start.date) } if (is.na(as.Date(start.date.param, "%Y-%m-%d"))) { stop("A start date must be specified of the form YYYY-MM-DD") } start.date <<- start.date.param return(invisible()) } EndDate <- function(end.date.param = NA) { if (is.null(end.date.param)) { end.date <<- NULL return(invisible()) } if (is.na(end.date.param)) { return(end.date) } if (is.na(as.Date(end.date.param, "%Y-%m-%d"))) { stop("An end date must be specified of the form YYYY-MM-DD") } end.date <<- end.date.param return(invisible()) } Dimensions <- function(dimensions.param = NA) { if (is.null(dimensions.param)) { dimensions <<- NULL return(invisible()) } if (is.na(dimensions.param[1])) { return(dimensions) } if (!is.vector(dimensions.param)) { stop(paste("dimensions must be a vector of string variables")) } if (length(dimensions.param) > kMaxDimensions) { stop(paste("Google Analytics can only handle up to", kMaxDimensions, "dimensions parameters")) } if (!is.character(dimensions.param)) { stop(paste("dimensions must be character, please refer to the", "Google Analytics API documentation for more information")) } dimensions <<- paste(dimensions.param, collapse = ",") return(invisible()) } Metrics <- function(metrics.param = NA) { if (is.null(metrics.param)) { metrics <<- NULL return(invisible()) } if (is.na(metrics.param[1])) { return(metrics) } if (!is.vector(metrics.param)) { stop("metrics must be a vector of string variables") } if (length(metrics.param) > kMaxMetrics) { stop(paste("Google Analytics can only handle up to", kMaxMetrics, "metrics parameters")) } if (!is.character(metrics.param)) { stop(paste("metrics must be character string, please refer to the", "Google Analytics API documentation for more information")) } metrics <<- paste(metrics.param, collapse = ",") return(invisible()) } Segment <- function(segment.param = NA) { if (is.null(segment.param)) { segment <<- NULL return(invisible()) } if (is.na(segment.param[1])) { return(segment) } segment <<- segment.param return(invisible()) } Filters <- function(filters.param = NA) { if (is.null(filters.param)) { filters <<- NULL return(invisible()) } if (is.na(filters.param[1])) { return(filters) } filters <<- filters.param return(invisible()) } Validate <- function() { missing.params <- c() if (is.null(start.date)) { missing.params <- append(missing.params, "start.date") } if (is.null(end.date)) { missing.params <- append(missing.params, "end.date") } if (is.null(metrics)) { missing.params <- append(missing.params, "metrics") } if (is.null(title)) { missing.params <- append(missing.params, "title") } if (length(missing.params) == 0) { return(TRUE) } missing.string <- paste(missing.params, collapse = ", ") stop(paste("All GA queries must have", missing.string, "parameters.", sep = " ")) if ((as.numeric(difftime(ymd(start.date),ymd(end.date),units="days"))) < 0) { stop("Start Date must precede End date. Please correct the dates and re-initialize the query") } } ClearData <- function() { start.date <<- NULL end.date <<- NULL dimensions <<- NULL metrics <<- NULL segment <<- NULL filters <<- NULL title <<- NULL return(invisible()) } Title <- function(title.param = NA) { if (is.null(title.param)) { title <<- NULL return(invisible()) } if (is.na(title.param[1])) { return(title) } if (!is.character(title.param)) { stop("title must be a string") } title <<- title.param return(invisible()) } SetStartDate <- function(start.date) { StartDate(start.date) } GetStartDate <- function() { return(start.date) } SetEndDate <- function(end.date) { EndDate(end.date) } GetEndDate <- function() { return(end.date) } return(list("end.date" = EndDate, "metrics" = Metrics, "start.date" = StartDate, "title" = Title, "dimensions" = Dimensions, "filters" = Filters, "segments" = Segment, "clear.data" = ClearData, "Validate" = Validate, "GetStartDate" = GetStartDate, "GetEndDate" = GetEndDate, "SetEndDate" = SetEndDate, "SetStartDate" = SetStartDate, "SetQueryParams" = SetQueryParams)) }
[ { "title": "Introducing passivetotal – R Package To Work With the PassiveTotal API", "href": "http://datadrivensecurity.info/blog/posts/2015/Jun/introducing-passivetotal/" }, { "title": "Deploying Shiny apps with shinyapps.io", "href": "http://brooksandrew.github.io/simpleblog/articles/deploying-apps-with-shinyapps-io/" }, { "title": "drat 0.0.4: Yet more features and documentation", "href": "http://dirk.eddelbuettel.com/blog/2015/05/27/" }, { "title": "Big Data and Chess: What are the Predictive Point Values of Chess Pieces?", "href": "http://www.sumsar.net/blog/2015/06/big-data-and-chess/" }, { "title": "R for Quants, Part I.A", "href": "https://cartesianfaith.com/2012/02/12/r-for-quants-part-i-a/" }, { "title": "An R package for Smith-Wilson yield curves", "href": "http://www.not-normal-consulting.co.uk/2013/06/an-r-package-for-smith-wilson-yield.html" }, { "title": "On the acceptance of R", "href": "http://www.burns-stat.com/on-the-acceptance-of-r/?utm_source=rss&utm_medium=rss&utm_campaign=on-the-acceptance-of-r" }, { "title": "R/Python Web Apps", "href": "https://web.archive.org/web/http://notebookonthewebs.tumblr.com/post/24844687471" }, { "title": "Learning R — Installing Packages", "href": "http://mazamascience.com/WorkingWithData/?p=728" }, { "title": "Floating Point Arithmetic and The Descent into Madness", "href": "http://www.johnmyleswhite.com/notebook/2012/04/13/floating-point-arithmetic-and-the-descent-into-madness/" }, { "title": "OECD Statistics", "href": "https://web.archive.org/web/http://www.cybaea.net/Blogs/Data/OECD-Statistics.html" }, { "title": "Reference semantics in R", "href": "http://ipub.com/reference-semantics/" }, { "title": "Pacific Decadal Oscillation and Brazilian Hydroelectricity generation", "href": "http://random-miner.blogspot.com/2013/01/pacific-decadal-oscillation-and.html" }, { "title": "Overlay of design matrices in genetic analysis", "href": "http://www.quantumforest.com/2012/10/overlay-of-design-matrices-in-genetic-analysis/" }, { "title": "Converting an R object to text, with dput()", "href": "http://is-r.tumblr.com/post/31918894953/converting-an-r-object-to-text-with-dput" }, { "title": "Paired t-test in R Exercises", "href": "http://r-exercises.com/2016/09/21/paired-t-test-in-r/" }, { "title": "New package \"dplyrr\" – Utilities for comfortable use of dplyr with databases", "href": "http://mockquant.blogspot.com/2015/08/new-package-dplyrr-utilities-for.html" }, { "title": "What’s new in futile.matrix 1.1.2", "href": "https://cartesianfaith.com/2012/02/07/whats-new-in-futile-matrix-1-1-2/" }, { "title": "Translating Weird R Errors", "href": "http://rforpublichealth.blogspot.com/2013/01/translating-weird-r-errors.html" }, { "title": "Textual Healing Part II", "href": "http://is-r.tumblr.com/post/35769073499/textual-healing-part-ii" }, { "title": "KEGG enrichment analysis with latest online data using clusterProfiler", "href": "https://web.archive.org/web/http://ygc.name/2015/02/01/kegg-enrichment-analysis-with-latest-online-data-using-clusterprofiler/" }, { "title": "Wickham R short course", "href": "http://andrewgelman.com/2011/11/14/wickham-r-short-course/" }, { "title": "ExCytR Concept", "href": "https://imdevsoftware.wordpress.com/2012/12/01/excytr-concept/" }, { "title": "Age-Period-Cohort models and the decline of violence", "href": "https://blog.diegovalle.net/2012/10/age-period-cohort-models-and-decline-of.html" }, { "title": "Tracking the Frequency of Twitter Hashtags with R", "href": "http://www.michaelbommarito.com/2011/02/21/tracking-the-frequency-of-twitter-hashtags-with-r/" }, { "title": "Visualizing Bikeshare Data", "href": "http://mazamascience.com/WorkingWithData/?p=1670" }, { "title": "Principal Components Regression in R: Part 2", "href": "http://blog.revolutionanalytics.com/2016/05/principal-components-regression-part-2.html" }, { "title": "Rmathlib and kdb+ part 3: Utility Functions", "href": "http://www.theresearchkitchen.com/archives/896" }, { "title": "High Performing Predictive Analytics with R and Hadoop", "href": "http://blog.revolutionanalytics.com/2013/07/high-performing-predictive-analytics-with-r-and-hadoop.html" }, { "title": "New R User Group – Manchester R", "href": "https://web.archive.org/web/http://www.oddbar.co.uk/odder" }, { "title": "Bayesian Modeling of Anscombe’s Quartet", "href": "http://www.sumsar.net/blog/2013/06/bayesian-modeling-of-anscombes-quartet/" }, { "title": "hmm: implementation of viterbi algorithm (Durbin, 1998) Part 1", "href": "https://mintgene.wordpress.com/2012/01/28/hmm-implementation-of-viterbi-algorithm-durbin-1998-part-1/" }, { "title": "Visualizing asylum statistics", "href": "https://web.archive.org/web/http://re-design.dimiter.eu/2014/05/30/visualizing-asylum-statistics/" }, { "title": "Basic R: rows that contain the maximum value of a variable", "href": "https://nsaunders.wordpress.com/2013/02/13/basic-r-rows-that-contain-the-maximum-value-of-a-variable/" }, { "title": "Embedding a time series with time delay in R — Part II", "href": "http://www.fromthebottomoftheheap.net/2011/06/14/embedding-a-time-series-with-time-delay-in-r-part-ii/" }, { "title": "We keep breaking records ? so what ?… Get statistical perspective….", "href": "http://blog.free.fr/" }, { "title": "Oracle R Enterprise 1.3 released", "href": "https://blogs.oracle.com/R/entry/oracle_r_enterprise_1_3" }, { "title": "Another great year together. Have a good vacation!", "href": "http://www.milanor.net/blog/another-great-year-together-have-a-nice-holiday/" }, { "title": "How does Practical Data Science with R stand out?", "href": "http://www.win-vector.com/blog/2014/06/how-does-practical-data-science-with-r-stand-out/?utm_source=rss&utm_medium=rss&utm_campaign=how-does-practical-data-science-with-r-stand-out" }, { "title": "The stupidest R code ever", "href": "https://kbroman.wordpress.com/2011/08/17/the-stupidest-r-code-ever/" }, { "title": "R Tutorial Series: Labeling Data Points on a Plot", "href": "https://feedproxy.google.com/~r/RTutorialSeries/~3/QjNHdDrfhwM/r-tutorial-series-labeling-data-points.html" }, { "title": "Why an inverse-Wishart prior may not be such a good idea", "href": "https://dahtah.wordpress.com/2012/03/07/why-an-inverse-wishart-prior-may-not-be-such-a-good-idea/" }, { "title": "Why you need version control", "href": "http://ellisp.github.io/blog/2016/09/16/version-control" }, { "title": "New book release: Data Mining Applications with R", "href": "https://rdatamining.wordpress.com/2013/12/23/new-book-release-data-mining-applications-with-r/" }, { "title": "Updating to R 2.15, warnings in R and an updated function list for Serious Stats", "href": "https://seriousstats.wordpress.com/2012/05/27/updating-to-r-2-15/" }, { "title": "R/Finance 2014 Call for Papers", "href": "http://blog.fosstrading.com/2013/10/rfinance-2014-call-for-papers.html" }, { "title": "Only Load Data If Not Already Open in R", "href": "http://blog.mollietaylor.com/2013/09/only-load-data-if-not-already-open-in-r.html" }, { "title": "Generate MP3 waveforms with Ruby and R", "href": "https://blog.saush.com/2011/03/24/generate-mp3-waveforms-with-ruby-and-r/" }, { "title": "Inferring the community structure of networks", "href": "https://sieste.wordpress.com/2012/05/21/inferring-the-community-structure-of-networks/" }, { "title": "A surprising(?) prediction about the S&P 500", "href": "http://blog.revolutionanalytics.com/2011/07/a-surprising-prediction-about-the-sp-500.html" } ]
percent.table=function(x,y=NULL){ if (is.null(y)) { 100*table(x)/length(x) } else { 100*table(x,y)/length(x) } }
ARCokrig <- function(formula=list(~1,~1), output, input, cov.model="matern_5_2", nugget.est=FALSE, input.new, prior=list(), opt=list(), NestDesign=TRUE, tuning=list(), info=list()){ .check.arg.ARCokrig(formula=formula, output=output, input=input, input.new=input.new, prior=prior, opt=opt, NestDesign=NestDesign, tuning=tuning) obj = cokm(formula=formula, output=output, input=input, cov.model=cov.model, nugget.est=nugget.est, prior=prior, opt=opt, NestDesign=NestDesign, tuning=tuning, info=info) obj = cokm.fit(obj) pred = cokm.predict(obj=obj, input.new=input.new) return(list(obj=obj, cokrig=pred)) } .check.arg.ARCokrig <- function(formula, output, input, input.new, prior, opt, NestDesign, tuning){ if(!is(formula, "list")){ stop("\n\n formula should be a list contaning the regressors at each code level.\n\n") } if(!is(output, "list")){ stop("\n\noutput should be a list of responses. Each element in a list should contain output from a code level. The first level should contain output from the code with the lowest fidelity.\n\n") } s = length(output) if(!is(input, "list")){ stop("\n\ninput should be a list of inputs in computer models.\n\n") } for(t in 1:s){ if(!is(input[[t]], "matrix")){ message("\n\n coerce input to a matrix format.\n\n") input[[t]] = as.matrix(input[[t]]) } } if(!is(input.new, "matrix")){ stop("\n\ninput.new should be a matrix.\n\n") } if(!is(prior, "list")){ stop("\n\nhyperparam should be a list containing parameters to setup the prior distributions.\n\n") } if(!is(opt, "list")){ stop("\n\nopt should be a list with each element containing optimization arguments at each code level.\n\n") } if(!is(NestDesign, "logical")){ stop("NestDesign should be a logical value indicating whether the design is hierarchically nested.") } if(!is(tuning, "list")){ stop("\n\n tuning should be a list containing tuning parameters to setup the MCEM algorithm in non-nested design.\n") } }
tree_a <- rtree(100) tree_b <- rtree(100) n <- 10 trees <- rmtree(n,100) l <- runif(1) test_that("treeVec calculated at lambda equals treeVec function evaluated at lambda", { expect_equal(treeVec(tree_a,l),treeVec(tree_a,return.lambda.function=TRUE)(l)) }) test_that("treeDist calculated at lambda equals treeDist function evaluated at lambda", { expect_equal(treeDist(tree_a,tree_b,l),treeDist(tree_a,tree_b,return.lambda.function=TRUE)(l)) }) test_that("multiDist calculated at lambda equals multiDist function evaluated at lambda", { expect_equal(multiDist(trees,l),multiDist(trees,return.lambda.function=TRUE)(l)) }) test_that("refTreeDist calculated at lambda equals refTreeDist function evaluated at lambda", { expect_equal(refTreeDist(tree_a,trees,l),refTreeDist(tree_a,trees,return.lambda.function=TRUE)(l)) }) test_that("treeDist equals Euclidean distance between corresponding vectors", { expect_equal(treeDist(tree_a,tree_b), sqrt(sum((treeVec(tree_a) - treeVec(tree_b))^2))) expect_equal(treeDist(tree_a,tree_b,emphasise.tips = c("t1","t2")), sqrt(sum((treeVec(tree_a,emphasise.tips = c("t1","t2")) - treeVec(tree_b,emphasise.tips = c("t1","t2")))^2))) }) test_that("treeDist equals corresponding entry of multiDist", { expect_equal(treeDist(trees[[1]],trees[[2]]), multiDist(trees)[1]) expect_equal(treeDist(trees[[1]],trees[[2]],emphasise.tips = c("t1","t2")), multiDist(trees,emphasise.tips = c("t1","t2"))[1]) }) test_that("treeDist equals corresponding entry of refTreeDist", { expect_equal(treeDist(tree_a,trees[[1]]), refTreeDist(tree_a,trees)[[1]]) expect_equal(treeDist(tree_a,trees[[1]],emphasise.tips = c("t1","t2")), refTreeDist(tree_a,trees,emphasise.tips = c("t1","t2"))[[1]]) }) test_that("multiDist equals the distance matrix from treespace", { treedistMatrix <- treespace(trees,nf=2)$D treedistMatrix0.5 <- treespace(trees,nf=2,lambda=l)$D multidistMatrixFunction <- multiDist(trees,return.lambda.function=TRUE) expect_equal(multidistMatrixFunction(0)[n],treedistMatrix[n]) expect_equal(multidistMatrixFunction(l)[n],treedistMatrix0.5[n]) expect_equal(treespace(trees,nf=2,emphasise.tips=c("t1","t2"))$D[n],multiDist(trees,emphasise.tips=c("t1","t2"))[n]) }) test_that("medTree results are consistent with treeVec", { geom <- medTree(trees) expect_equal(geom$mindist,sqrt(sum((geom$centre - treeVec(geom$trees[[1]]))^2))) expect_equal(geom$mindist,min(geom$distances)) }) test_that("medTree results are consistent whether the trees or their vectors are supplied", { expect_equal(medTree(trees)$mindist,medTree(treespace(trees,nf=2, return.tree.vectors = TRUE)$vectors)$mindist) }) catTree <- rtree(5) indTree1 <- simulateIndTree(catTree, permuteTips = FALSE) indTree2 <- simulateIndTree(catTree, permuteTips = FALSE) df <- cbind(sort(rep(catTree$tip.label,5)),sort(indTree1$tip.label)) test_that("indTrees are fully concordant with catTree", { expect_equal(treeConcordance(catTree,indTree1,df),1) expect_equal(treeConcordance(catTree,indTree2,df),1) }) test_that("indTree and catTree should be identical by relatedTreeDist measure", { expect_equal(relatedTreeDist(list(indTree1,indTree2),df)[1],0) }) test_that("collapsing indTrees gets catTree back", { expect_equal(treeDist(makeCollapsedTree(indTree1,df),catTree),0) expect_equal(treeDist(makeCollapsedTree(indTree2,df),catTree),0) }) test_that("save_memory version of multiDist equals normal multiDist", { expect_equal(multiDist(trees,save.memory=TRUE), multiDist(trees)) expect_equal(multiDist(trees,l,save.memory=TRUE), multiDist(trees,l)) }) test_that("save_memory version of medTree equals normal medTree", { expect_equal(medTree(trees,save.memory=TRUE)$centre, as.numeric(medTree(trees)$centre)) }) test_that("error is given if lambda is outside of [0,1]", { expect_error(treeVec(tree_a,-1)) expect_error(treeVec(tree_a,2)) expect_error(treeDist(tree_a,tree_b,-1)) expect_error(treeDist(tree_a,tree_b,2)) expect_error(multiDist(trees,-1)) expect_error(multiDist(trees,2)) expect_error(medTree(trees,-1)) expect_error(medTree(trees,2)) }) test_that("error is given if input is not of class phylo / multiphylo", { expect_error(treeVec(trees)) expect_error(treeDist(trees)) expect_error(multiDist(tree_a)) expect_error(medTree(tree_a)) expect_error(findGroves(tree_a)) }) test_that("error is given if input tree is unrooted", { unrootedtree <- read.tree(text="(A:1,B:1,C:1);") expect_error(treeVec(unrootedtree)) }) test_that("warning is given if tree edge lengths are not defined and lambda>0 or return.lambda.function=T, then they are set to 1", { newicktree <- read.tree(text="((A,B),C);") expect_warning(treeVec(newicktree, lambda=0.5)) expect_warning(treeVec(newicktree, return.lambda.function = TRUE)) }) test_that("error is given if trees have different tip labels", { tree_c <- rtree(99) tree_d <- tree_a tree_d$tip.label <- 1:100 expect_error(treeDist(tree_a,tree_c)) expect_error(treeDist(tree_a,tree_d)) }) test_that("error is given if weights vector is not of length n", { expect_error(medTree(trees,weights=rep(1,n+1))) expect_error(medTree(trees,weights=rep(1,n+1),return.lambda.function=TRUE)) }) test_that("warning is given for the combination return.lambda.function=TRUE, save.memory=TRUE", { expect_warning(multiDist(trees,return.lambda.function=TRUE, save.memory=TRUE)) expect_warning(medTree(trees,return.lambda.function=TRUE, save.memory=TRUE)) }) tree1 <- cbind(Infector=1:6, Infectee=2:7) tree2 <- tree1[sample(1:6),] matList <- list(findMRCIs(tree1)$mrciDepths, findMRCIs(tree2)$mrciDepths) test_that("transmission tree distances are independent of the node naming order", { expect_equal(0, wiwTreeDist(matList, sampled=1:7)[1]) })
.pseudoCluster <- function(x, size=3L, distance=1.00235, tolerance=1e-4) { if (size < 2L) { stop("The ", sQuote("size"), " of a cluster has to be at least 2!") } mm <- matrix(x, nrow=size, ncol=length(x) * length(distance), byrow=TRUE) ms <- mm + (rep(distance, each=size) * 0L:(size - 1L)) i <- match.closest(ms, x, tolerance=mm * tolerance) dim(i) <- dim(ms) i[, !is.na(colSums(i)), drop=FALSE] } .F <- function(x)0.000594 * x + 0.03091 .P <- function(x, isotopes)dpois(isotopes, .F(x)) .Psum <- function(x, isotopes) { ni <- length(isotopes) nx <- length(x) p <- .P(rep.int(x, rep.int(ni, nx)), isotopes) dim(p) <- c(ni, nx) t(t(p) / colSums(p)) } .monoisotopicPattern <- function(x, y, minCor=0.95, tolerance=1e-4, distance=1.00235, size=3L) { pc <- .pseudoCluster(x, size=size, distance=distance, tolerance=tolerance) y <- y[pc] dim(y) <- dim(pc) y <- t(t(y)/colSums(y)) p <- .Psum(x[pc[1L,]], isotopes=0L:(size-1L)) cr <- .colCors(y, p) pc <- pc[, cr > minCor, drop=FALSE] pc[duplicated(as.vector(pc))] <- NA_real_ pc[, !is.na(colSums(pc)), drop=FALSE] } .monoisotopic <- function(x, y, size=3L:10L, ...) { if (length(x) && length(x) == length(y)) { pattern <- lapply(sort.int(size, decreasing=TRUE), function(s).monoisotopicPattern(x=x, y=y, size=s, ...)) upattern <- .unlist(pattern) upattern[duplicated(upattern)] <- NA_real_ upattern <- relist(upattern, pattern) sort.int(.unlist(lapply(upattern, function(p)p[1L, !is.na(colSums(p))]))) } else { double() } }
designScore <- function ( genotype, array.allocation, condition.allocation, nEnvFactors, nLevels, Level, nConditions, weight=1, optimality="A", bTwoColorArray, envFactorNames ) { genotype.level <- NULL if( bTwoColorArray ) { genotype <- as.matrix(genotype) for( i in 1:nrow(array.allocation) ) { RIL.red <- which(array.allocation[i,] == 1) RIL.green <- which(array.allocation[i,] == -1) genotype.level <- cbind(genotype.level, genotype[,c(RIL.red,RIL.green)]) } }else{ ril.all <- NULL for( i.cond in 1:nrow(condition.allocation) ) { ril <- which(condition.allocation[i.cond,]!=0) ril.all <- c(ril.all,ril) } genotype.level <- genotype[,ril.all] } genotype.level[is.na(genotype.level)] <- 0.5 ril.names1 <- colnames(genotype.level) if( nEnvFactors == 0 ) { genotype.matrix <- pairLevel( t(genotype.level),ril.names1 ) sc <- apply(genotype.matrix, 2, function(x) (length(x)+sum(x^2))/(length(x)*sum(x^2)-sum(x)^2) ) sc.temp <- sum(sc) if(sc.temp==0) sc.temp <- 1e-20 SC <- 1/ sc.temp }else{ condition.combination <- conditionCombination ( nEnvFactors, nLevels, Level,envFactorNames) condition.level <- conditionLevel ( array.allocation, condition.allocation, condition.combination, nEnvFactors) SC <- 0 for( markerIndex in 1:nrow(genotype.level) ) { interact.level <- interactionLevel ( genotype.level, condition.level, markerIndex, nEnvFactors) if( bTwoColorArray ) { ril.names1 <- colnames(condition.allocation) genotype.matrix <- pairLevel(genotype.level[markerIndex ,], ril.names1) env.matrix <- pairLevel( condition.level, ril.names1 ) colnames(env.matrix) <- colnames(condition.level) interact.matrix <- pairLevel( interact.level, ril.names1) colnames(interact.matrix)<- colnames(interact.level) }else{ genotype.matrix <- t(as.matrix( genotype.level[markerIndex,] )) env.matrix <- as.matrix(condition.level) interact.matrix <- as.matrix(interact.level) } design.matrix <- cbind( rep(1,nrow(genotype.matrix)), genotype.matrix, env.matrix, interact.matrix ) colnames(design.matrix)[1:2] <- c("Intercept","Q") rownames(design.matrix) <- paste(rownames(genotype.matrix), "onArray",seq(1,nrow(genotype.matrix)), sep="" ) if( optimality == "A" ) { X <- as.matrix(design.matrix) xtx <- t(X) %*% X singular <- function (x) { return (sum(round(eigen(x, TRUE, TRUE)$values, 5) == 0) > 0) } if( singular(xtx) ) { sc <- 0 }else{ sc.temp <- sum( weight*diag(solve(xtx)) ) if( sc.temp==0 ) { sc.temp <- 1e-20} sc <- 1/sc.temp } } if( optimality == "D" ) { x <- as.matrix(design.matrix) xtx <- t(x) %*% x sc <- det(xtx) } SC <- SC + sc } } return(SC) }
print.ipcwcompetingrisksSeSpPPVNPV <- function(x,No.lines=5,digits=2,...){ if(x$iid==TRUE){ tab_ou_print<-round(cbind(x$Stats[,1:4], x$TP*100,x$inference$vect_se_Se*100, (1-x$FP_1)*100,x$inference$vect_se_Sp1*100, (1-x$FP_2)*100,x$inference$vect_se_Sp2*100, x$PPV*100,x$inference$vect_se_PPV*100, x$NPV_1*100,x$inference$vect_se_NPV1*100, x$NPV_2*100,x$inference$vect_se_NPV2*100 ),digits=digits) colnames(tab_ou_print)<-c("Cases","Survivors","Other events","Censored", "Se","se_Se","Sp_1","se_Sp1","Sp_2","se_Sp_2", "PPV (%)","se_PPV","NPV_1","se_NPV_1","NPV_2","se_NPV_2") } else{ tab_ou_print<-round(cbind(x$Stats[,1:4], x$TP*100, (1-x$FP_1)*100, (1-x$FP_2)*100, x$PPV*100, x$NPV_1*100, x$NPV_2*100 ),digits=digits) colnames(tab_ou_print)<-c("Cases","Survivors","Other events","Censored", "Se","Sp_1","Sp_2", "PPV (%)","NPV_1","NPV_2" ) } cat(paste("Predictive accuracy measures at cutpoint c=",x$cutpoint," estimated using IPCW (n=",x$n, ", with competing risks). \n",sep="")) cat(paste("No. of positive (X>c) =",x$Stats[1,5],", \n",sep="")) cat(paste("No. of negative (X<=c) =",x$Stats[1,6],". \n",sep="")) l<-length(x$times) if(l<=No.lines){ print(tab_ou_print) } else{print(tab_ou_print[unique(round(quantile(1:length(x$times),probs=seq(0,1,length.out=No.lines)),0)),])} cat("\n") cat("Method used for estimating IPCW:") cat(paste(x$weights$method,"\n")) cat("\n") cat("Total computation time :",round(x$computation_time,2)," secs.") cat("\n") }
NULL CDProtocol <- R6::R6Class( "CDProtocol", public = list( initialize = function(host = "localhost", port = 9222, secure = FALSE, local = TRUE) { protocol <- fetch_protocol(host = host, port = port, secure = secure, local = local) protocol <- add_names_to_protocol(protocol) protocol <- rlist2env(protocol) private$.protocol <- protocol }, domain_description = function(domain) { desc <- rlang::env_get(env = private$.protocol$domains, nm = domain)$description if(is.null(desc)) { desc <- "" } desc }, is_domain_experimental = function(domain) { isTRUE(private$.protocol$domains[[domain]]$experimental) }, list_commands = function(domain) { private$.list_objects(domain, "commands") }, get_formals_for_command = function(domain, command) { params_env <- private$.protocol$domains[[domain]]$commands[[command]]$parameters if(is.null(params_env)) { params_names <- character(0) } else { params_names <- purrr::set_names(ls(params_env)) } stopifnot(!("callback" %in% params_names)) params_optional <- purrr::map_lgl(params_names, ~ isTRUE(params_env[[.x]]$optional)) if(length(params_optional) > 0) { params_optional <- sort(params_optional) } params_optional <- c(params_optional, callback = TRUE) text <- paste0( "alist(", paste(names(params_optional), ifelse(params_optional, "NULL", ""), sep = " = ", collapse = ", "), ")" ) eval(parse(text = text)) }, list_events = function(domain) { private$.list_objects(domain, "events") }, get_formals_for_event = function(domain, event) { params_env <- private$.protocol$domains[[domain]]$events[[event]]$parameters if(is.null(params_env)) { params_names <- character(0) } else { params_names <- ls(params_env) } stopifnot(!("callback" %in% params_names)) params_names <- c(params_names, "callback") res <- vector("list", length(params_names)) names(res) <- params_names res }, list_types = function(domain) { private$.list_objects(domain, "types") } ), active = list( domains = function() { ls(private$.protocol$domains) } ), private = list( .protocol = "environment", .list_objects = function(domain, cl) { specs <- rlang::env_get(env = private$.protocol$domains, nm = domain)[[cl]] if(is.null(specs)) return(list()) obj_names <- ls(specs) l <- as.list(paste(domain, obj_names, sep = ".")) names(l) <- obj_names l } ) ) rlist2env <- function(.l) { if (!is.list(.l)) return(.l) list2env(purrr::map(.l, rlist2env), parent = emptyenv()) } add_names_to_protocol <- function(protocol) { protocol$domains <- purrr::map(protocol$domains, add_names_to_domain) names(protocol$domains) <- purrr::map_chr(protocol$domains, "domain") protocol } add_names_to_domain <- function(domain) { if(!is.null(domain$dependencies)) { domain$dependencies <- unlist(domain$dependencies) } if(!is.null(domain$types)) { domain$types <- purrr::map(domain$types, add_names_to_type) names(domain$types) <- purrr::map_chr(domain$types, "id") } if(!is.null(domain$commands)) { domain$commands <- purrr::map(domain$commands, add_names_to_method) names(domain$commands) <- purrr::map_chr(domain$commands, "name") } if(!is.null(domain$events)) { domain$events <- purrr::map(domain$events, add_names_to_method) names(domain$events) <- purrr::map_chr(domain$events, "name") } domain } add_names_to_type <- function(type) { if(!is.null(type$properties)) { names(type$properties) <- purrr::map_chr(type$properties, "name") } type } add_names_to_method <- function(method) { if(!is.null(method$parameters)) { names(method$parameters) <- purrr::map_chr(method$parameters, "name") } if(!is.null(method$returns)) { names(method$returns) <- purrr::map_chr(method$returns, "name") } method } renv2list <- function(e, discard = NULL) { if(!rlang::is_environment(e)) return(e) names <- purrr::discard(ls(e), ~ .x %in% discard) names <- rlang::set_names(names) purrr::map(names, ~ renv2list(e[[.x]], discard)) }
kink_estimator <- function(earnings, zstar, t1, t2, cf_start = NA, cf_end = NA, exclude_before = 2, exclude_after = 2, binw = 10, poly_size = 7, convergence = 0.01, max_iter = 100, correct = TRUE, select = TRUE, draw = TRUE, title = "Bunching Visualization", varname = "Earnings") { if (is.na(cf_start)) { cf_start <- 20 warning("cf_start not specified, using 20 bins as default") } if (is.na(cf_end)) { cf_end <- 20 warning("cf_end not specified, using 20 bins as default") } if (t1 > t2) { stop("This function only analyzes convex kinks. Set t1 < t2.") } if (t1 == t2) { stop("No change in marginal tax rate - can't calculate elasticity!") } useful_calc <- ceiling( (zstar - min(earnings)) / binw ) bunch_hist <- graphics::hist(earnings, breaks=seq(from=floor((zstar - useful_calc * binw)) - binw / 2, to=(ceiling(max(earnings) + binw)), by = binw), plot=FALSE) if(!zstar %in% bunch_hist$mids) { stop("Problem with histogram") } remove(useful_calc) reg_data <- as.data.frame(bunch_hist$mids) reg_data$counts <- bunch_hist$counts reg_data$cf_counts <- bunch_hist$counts colnames(reg_data) <- c("mid","counts","cf_counts") saved_data <- reg_data[reg_data$mid < zstar - cf_start * binw | reg_data$mid > zstar + cf_end * binw,] saved_data$cf_counts <- NA saved_data$excluded <- NA reg_data <- reg_data[reg_data$mid >= zstar - cf_start * binw & reg_data$mid <= zstar + cf_end * binw,] excluded_list <- reg_data$mid[(reg_data$mid >= zstar - exclude_before * binw) & (reg_data$mid <= zstar + exclude_after * binw)] reg_data$excluded <- as.numeric(!reg_data$mid %in% excluded_list) for (i in excluded_list) { reg_data$excluded[reg_data$mid == i] <- 1 + which(excluded_list == i) } reg_data$excluded <- as.factor(reg_data$excluded) cheat_excluded <- data.frame(as.factor(c(rep("1",dim(reg_data)[1])))) colnames(cheat_excluded) <- "excluded" vars <- "~ excluded" for (i in 1:poly_size) { vars <- paste0(vars," + I(mid^",i,")" ) } null <- stats::lm(counts ~ excluded, data=reg_data) full <- stats::lm(stats::as.formula(paste0("counts ",vars)), data=reg_data) if (select == TRUE) { reg_naive <- stats::step(full, scope = list(lower = null, upper = full), direction = "backward",trace = 0) } else {reg_naive <- full} remove(null,full) naive_B <- sum(reg_naive$coefficients[2:(length(excluded_list) + 1)]) reg_data$cf_counts <- stats::predict(reg_naive,cbind(reg_data[,c(1,2)],cheat_excluded)) counter <- 1 if (correct == TRUE) { old_B <- naive_B new_B <- 0 reg_data$extra <- reg_data$counts * as.numeric(reg_data$mid > zstar + exclude_after * binw) * old_B / sum(bunch_hist$counts[bunch_hist$mids > zstar + exclude_after * binw]) while( (abs(new_B - old_B)) / old_B > convergence & counter < max_iter) { if (!counter == 1) { old_B <- new_B reg_data$extra <- reg_data$counts * as.numeric(reg_data$mid > zstar + exclude_after * binw) * old_B / sum(bunch_hist$counts[bunch_hist$mids > zstar + exclude_after * binw]) } null <- stats::lm(counts + extra ~ excluded, data = reg_data) full <- stats::lm(stats::as.formula(paste0("counts + extra ",vars)), data = reg_data) if (select==TRUE) { temp_reg <- stats::step(full, scope=list(lower=null, upper=full), direction="backward",trace=0) } else {temp_reg <- full} new_B <- sum((temp_reg)$coefficients[2:(length(excluded_list) + 1)]) reg_data$cf_counts <- stats::predict(temp_reg,cbind(reg_data[,c(1,2)],cheat_excluded)) counter <- counter + 1 } } if (draw==TRUE) { graphics::plot(bunch_hist, freq=TRUE,ylim=c(0,1.1 * stats::quantile(bunch_hist$counts, probs=c(0.99))), main = paste(title), xlab= paste(varname) ,ylab="Counts (bunch not to scale)") graphics::lines(x=reg_data$mid, y=reg_data$cf_counts,col="purple",lwd=2) graphics::abline(v=c(zstar - binw / 2 - exclude_before * binw, zstar + binw / 2 + exclude_after * binw), col="green4", lty=2, lwd=2) graphics::abline(v=c(zstar - binw / 2 - cf_start * binw, zstar + binw / 2 + cf_end * binw), col="red", lty=2, lwd=2) graphics::legend("topright",col=c("red","green","purple"),lty=c(2,2,1), legend=c("CF calc range","Excluded bins","CF distribution")) } return_data <- saved_data[saved_data$mid < zstar - cf_start * binw, ] return_data <- rbind(return_data, reg_data[,c(1:4)]) return_data <- rbind(return_data, saved_data[saved_data$mid > zstar + cf_start * binw, ]) if (correct == TRUE) { est_b <- new_B/(sum(reg_data$cf_counts[!reg_data$excluded == 1] / (length(excluded_list) * binw))) est_e <- est_b/(zstar * log( (1 - t1) / (1 - t2) )) results <- list("e" = est_e, "Bn" = new_B, "b" = est_b, "data" = return_data ) return(results) } else { est_b <- naive_B/(sum(reg_data$cf_counts[!reg_data$excluded == 1] / (length(excluded_list) * binw))) est_e <- est_b/(zstar * log( (1 - t1)/(1 - t2) )) results <- list("e" = est_e, "Bn" = naive_B, "b" = est_b, "data" = return_data ) return(results) } }
test_that("joining metrics works", { simulations_df <- data.frame( idx=rep(1:10, 100), idx2=sample(c("a", "b"), replace=T, 1000), p_value=runif(1000), est=rnorm(n=1000), conf.ll= rnorm(n=1000, mean=-20), conf.ul= rnorm(n=1000, mean=20) ) expect_silent({ res <- join_metrics( data=simulations_df, id_cols=c("idx", "idx2"), metrics=c("rejection", "coverage", "mse"), true_value=0, ll_col="conf.ll", ul_col="conf.ul", estimates_col="est", p_col="p_value", ) }) expect_equal(nrow(res), 20) }) test_that("warns when given incorrect metrics", { simulations_df <- data.frame( idx=rep(1:10, 100), idx2=sample(c("a", "b"), replace=T, 1000), p_value=runif(1000), est=rnorm(n=1000), conf.ll= rnorm(n=1000, mean=-20), conf.ul= rnorm(n=1000, mean=20) ) expect_warning({ join_metrics( data=simulations_df, id_cols=c("idx", "idx2"), metrics=c("rejection", "coverage", "mse", "bad_metric_name"), true_value=0, ll_col="conf.ll", ul_col="conf.ul", estimates_col="est", p_col="p_value", ) }) })
NULL NULL NULL NULL NULL NULL NULL NULL
fglasso <- function(S, model, tp, p, ...){ this.call <- match.call() if(!is.element(class(model)[1L], c("list", "matrix"))) stop("model must be a list or a matrix") if(is.list(model)){ check <- unlist(lapply(model, function(x) length(x) != 2)) if(any(check)) stop("wrong model specification") check <- unlist(lapply(model, function(x) !is.element(x, c("c", "u", "t", "ut", ".")))) if(any(check)) stop("wrong model specification") model <- matrix(unlist(model), length(model), 2, byrow = TRUE) } if(is.matrix(model)){ if(dim(model)[1] > tp) stop("dim(model)[1] > tp") if(dim(model)[2] != 2) stop("dim(model)[2] != 2") } if(model[1, 1] == ".") stop("model[1, 1] is equal to zero") if(dim(S)[1] != tp * p | dim(S)[2] != tp * p) stop("dim(S) != dim(mask)") mask <- fglasso_model2mask(model, tp, p) out_fglasso <- sglasso(S = S, mask = mask, ...) out_fglasso$call <- this.call out_fglasso$model <- model out_fglasso$p <- p out_fglasso$tp <- tp class(out_fglasso) <- c("fglasso", class(out_fglasso)) out_fglasso }