code
stringlengths 1
13.8M
|
---|
unpipe <- function(expr) {
if (length(expr) == 1) {
return(expr)
} else {
if (expr[[1]] == quote(`%>%`)) {
return(as.call(append(as.list(unpipe(expr[[3]])), unpipe(expr[[2]]), after = 1)))
} else {
return(as.call(lapply(expr, unpipe)))
}
}
} |
test_that("new solution-class", {
x <- pproto(NULL, Solution, data = list())
expect_s3_class(x, "Solution")
})
test_that("data.frame inputs", {
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)
sim_features_data$target_recovery <- c(40, 20, 50, 30)
x <- suppressWarnings(inputData(pu = sim_pu_data,
features = sim_features_data,
dist_features = sim_dist_features_data,
threats = sim_threats_data,
dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data,
boundary = sim_boundary_data))
p <- suppressWarnings(problem(x))
s <- solve(p, output_file = FALSE)
expect_s3_class(s, "Solution")
expect_equal(s$data$sol[1:10], c(0, 0, 0, 0, 0, 0, 0, 1, 1, 1))
})
test_that("verify gurobi and rphymphony", {
skip_on_ci()
skip_on_cran()
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)
sim_features_data$target_recovery <- c(40, 20, 50, 30)
x <- suppressWarnings(inputData(pu = sim_pu_data,
features = sim_features_data,
dist_features = sim_dist_features_data,
threats = sim_threats_data,
dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data,
boundary = sim_boundary_data))
p <- suppressWarnings(problem(x))
s1 <- solve(p, output_file = FALSE, solver = "gurobi")
s2 <- solve(p, output_file = FALSE, solver = "symphony")
expect_s3_class(s1, "Solution")
expect_s3_class(s2, "Solution")
expect_equal(s1$data$sol[1:10], s2$data$sol[1:10])
}) |
options(warn = 1)
rm(list = ls(all = TRUE))
library(pls)
library(RUnit)
source("RUnit/common/utils.R")
opts <- getOption("RUnit")
opts$silent <- TRUE
options(RUnit = opts)
testdirs <- c("RUnit/common", "RUnit/library")
plsTestSuite <- defineTestSuite("pls", testdirs)
isValidTestSuite(plsTestSuite)
printTextProtocol(res <- runTestSuite(plsTestSuite))
if (res$pls$nFail > 0 || res$pls$nErr > 0) stop("One or more tests failed") |
miive <- function(model = model,
data = NULL,
instruments = NULL,
sample.cov = NULL,
sample.mean = NULL,
sample.nobs = NULL,
sample.cov.rescale = TRUE,
estimator = "2SLS",
se = "standard",
bootstrap = 1000L,
boot.ci = "norm",
missing = "listwise",
est.only = FALSE,
var.cov = FALSE,
miiv.check = TRUE,
ordered = NULL,
sarg.adjust = "none",
overid.degree = NULL,
overid.method = "stepwise.R2"
){
if(is.null(data)){
if (!is.null(ordered)){
stop(paste(
"miive: raw data required when declaring factor variables.")
)
}
if(!is.null(sample.mean)){
if (!is.null(sample.mean) & !is.vector(sample.mean)){
stop(paste(
"miive: sample.mean must be a vector.")
)
}
if (!all.equal( names(sample.mean), colnames(sample.cov),
check.attributes = FALSE )){
stop(paste(
"miive: names of sample.mean vector",
"and sample.cov matrix must match.")
)
}
}
if(sample.cov.rescale & !is.null(sample.cov)){
sample.cov <- sample.cov * (sample.nobs-1)/sample.nobs
}
}
if ( "miivs" == class(model) ){
d <- model$eqns
pt <- model$pt
} else {
res <- miivs(model)
d <- res$eqns
pt <- res$pt
}
d <- parseInstrumentSyntax(d, instruments, miiv.check)
underid <- unlist(lapply(d, function(eq) {
length(eq$MIIVs) < length(eq$IVobs)
}))
d.un <- d[underid]; d <- d[!underid]
if(!is.null(data)){
obs.vars <- unique(unlist(lapply(d,"[", c("DVobs", "IVobs", "MIIVs"))))
if (any(!obs.vars %in% colnames(data))){
stop(paste(
"miive: model syntax contains variables not in data.")
)
}
data <- data[,colnames(data) %in% obs.vars]
data <- as.data.frame(data)
data[,ordered] <- lapply(
data[,ordered, drop = FALSE], ordered
)
}
if (!is.null(data) & missing == "listwise"){
data <- data[stats::complete.cases(data),]
}
g <- processData(data,
sample.cov,
sample.mean,
sample.nobs,
ordered,
missing,
se,
pt )
if (!is.null(overid.degree)){
d <- pruneExcessMIIVs(d,
overid.degree,
overid.method,
data = data,
sample.cov = g$sample.cov,
sample.polychoric = g$sample.polychoric,
sample.mean = g$sample.mean,
sample.nobs = g$sample.nobs,
cat.vars = g$var.categorical)
}
d <- lapply(d, function (eq) {
eq$missing <- ifelse(
any(g$var.nobs[c(eq$DVobs, eq$IVobs, eq$MIIVs)] < g$sample.nobs),
TRUE,
FALSE
)
eq$categorical <- ifelse(
any(g$var.categorical[c(eq$DVobs, eq$IVobs, eq$MIIVs)]),
TRUE,
FALSE
)
eq$exogenous <- ifelse(
any(g$var.exogenous[c(eq$DVobs, eq$IVobs, eq$MIIVs)]),
TRUE,
FALSE
)
if (eq$categorical & eq$exogenous){
stop(paste("miive: exogenous variables in",
"equations containing categorical",
"variables (including MIIVs)",
"are not currently supported."))
}
eq
})
r <- buildRestrictMat(d)
d <- lapply(d, function (eq) {
eq$restricted <- ifelse(
r$eq.restricted[eq$DVobs],
TRUE,
FALSE
)
if ((eq$categorical & eq$restricted) & se == "standard"){
stop(paste("miive: When SE = 'standard', restrictions",
"on coefficients in equations containing",
"categorical variables (including MIIVs)",
"are not allowed. Remove restrictions or",
"use se = 'bootstrap'."))
}
eq
})
results <- switch(
estimator,
"2SLS" = miive.2sls(d, g, r, est.only, se, missing, var.cov, sarg.adjust),
stop(
paste(
"Invalid estimator:",
estimator,
"Valid estimators are: 2SLS"
)
)
)
if (var.cov){
if(length(d.un) > 0){
stop(paste("MIIVsem: variance covariance esimtation not",
"allowed in the presence of underidentified",
"equations."))
}
v <- estVarCovarCoef(data = data,
g = g,
eqns = results$eqn,
pt = pt,
ordered = ordered)
} else {
v <- NULL
}
results$boot <- NULL
if(se == "boot" | se == "bootstrap"){
if(is.null(data)){
stop(paste("miive: raw data required for bootstrap SEs."))
}
boot.results <- boot::boot(data, function(origData, indices){
bsample <- origData[indices,]
g.b <- processData(
data = bsample,
sample.cov = NULL,
sample.mean = NULL,
sample.nobs = NULL,
ordered = ordered,
missing = missing,
se = se,
pt = pt
)
brep <- switch(
estimator,
"2SLS" = miive.2sls(d, g.b, r, est.only = TRUE, se, missing, var.cov),
stop(paste(
"Invalid estimator:",
estimator,
"Valid estimators are: 2SLS")
)
)
if (var.cov){
v.b <- estVarCovarCoef(bsample, g.b, brep$eqn, pt, ordered)
c(brep$coefficients, v.b$coefficients)
} else {
brep$coefficients
}
}, bootstrap)
boot.mat <- boot.results$t[
stats::complete.cases(boot.results$t),
]
results$bootstrap.true <- nrow(boot.mat)
if (results$bootstrap.true > 0){
nearZero <- apply(boot.mat , 2, stats::var, na.rm=TRUE) < 1e-16
} else {
nearZero <- FALSE
}
coefCov <- stats::cov(boot.mat)
if(any(nearZero)) {
coefCov[nearZero,nearZero] <- round(
coefCov[nearZero,nearZero], 1e-10
)
}
rownames(coefCov) <- colnames(coefCov) <- c(
names(results$coefficients),
if (var.cov) { paste0(names(v$coefficients))} else { NULL }
)
results$eqn <- lapply(results$eqn, function(eq) {
eq$coefCov <- coefCov[
names(eq$coefficients),
names(eq$coefficients),
drop = FALSE
]
eq
})
results$coefCov <- coefCov[
names(results$coefficients),
names(results$coefficients),
drop = FALSE
]
if (var.cov){
v$coefCov <- coefCov[
names(v$coefficients),
names(v$coefficients),
drop = FALSE
]
}
results$boot <- boot.results
}
if (missing == "twostage" & se == "standard" & var.cov == TRUE){
}
results$model <- model
results$estimator <- estimator
results$se <- se
results$var.cov <- var.cov
results$missing <- missing
results$boot.ci <- boot.ci
results$bootstrap <- bootstrap
results$call <- match.call()
results$ordered <- ordered
results$pt <- unclass(pt)
results$eqn.unid <- d.un
results$r <- r
results$v <- v
class(results) <- "miive"
results
} |
Distmat <- methods::setRefClass("Distmat",
fields = list(
distmat = "ANY",
series = "list",
distfun = "function",
dist_args = "list",
id_cent = "integer"
),
methods = list(
initialize = function(..., distmat, series, distance, control, error.check = TRUE) {
"Initialization based on needed parameters"
if (missing(distmat)) {
if (tolower(distance) == "dtw_lb") distance <- "dtw_basic"
if (error.check) {
check_consistency(series, "vltslist")
check_consistency(distance,
"dist",
trace = FALSE,
diff_lengths = different_lengths(series),
silent = FALSE)
if (class(control) != "PtCtrl")
stop("Invalid control provided.")
}
control$distmat <- NULL
initFields(...,
series = series,
distfun = ddist2(distance, control))
}
else
initFields(..., distmat = distmat)
invisible(NULL)
}
)
)
NULL
setMethod(`[`, "Distmat", function(x, i, j, ..., drop = TRUE) {
if (inherits(x$distmat, "uninitializedField")) {
if (inherits(x$distfun, "uninitializedField"))
stop("Invalid internal Distmat instance.")
centroids <- if (identical(i,j)) NULL else x$series[j]
dm <- quoted_call(x$distfun, x = x$series[i], centroids = centroids, dots = x$dist_args)
}
else {
dm <- x$distmat[i, j, drop = drop]
if (identical(dim(dm), dim(x$distmat))) attributes(dm) <- attributes(x$distmat)
}
dm
})
dim.Distmat <- function(x) { dim(x$distmat) } |
docklet_create <- function(name = random_name(),
size = getOption("do_size", "s-1vcpu-2gb"),
region = getOption("do_region", "sfo3"),
ssh_keys = getOption("do_ssh_keys", NULL),
backups = getOption("do_backups", NULL),
ipv6 = getOption("do_ipv6", NULL),
private_networking =
getOption("do_private_networking", NULL),
tags = list(),
wait = TRUE,
image = "docker-18-04",
...) {
droplet_create(
name = name,
size = size,
image = image,
region = region,
ssh_keys = ssh_keys,
backups = backups,
ipv6 = ipv6,
private_networking = private_networking,
tags = tags,
wait = wait,
...
)
}
docklet_ps <- function(droplet, all = TRUE, ssh_user = "root") {
docklet_docker(droplet, "ps", if (all) "-a", ssh_user = ssh_user)
}
docklet_images <- function(droplet, all = TRUE, ssh_user = "root") {
docklet_docker(droplet, "images", if (all) "-a", ssh_user = ssh_user)
}
docklet_pull <- function(droplet, repo, ssh_user = "root", keyfile = NULL,
ssh_passwd = NULL, verbose = FALSE) {
docklet_docker(droplet, "pull", repo, ssh_user = ssh_user,
keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose)
}
docklet_run <- function(droplet, ..., rm = FALSE, name = NULL,
ssh_user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE) {
docklet_docker(droplet,
"run", c(
if (rm) " --rm",
if (!is.null(name)) paste0(" --name=", name),
...
),
ssh_user = ssh_user, keyfile = keyfile, ssh_passwd = ssh_passwd,
verbose = verbose
)
}
docklet_stop <- function(droplet, container, ssh_user = "root") {
docklet_docker(droplet, "stop", container, ssh_user = ssh_user)
}
docklet_rm <- function(droplet, container, ssh_user = "root") {
docklet_docker(droplet, "rm", container, ssh_user = ssh_user)
}
docklet_docker <- function(droplet, cmd, args = NULL, docker_args = NULL,
ssh_user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE) {
check_for_a_pkg("ssh")
args <- paste(args, collapse = " ")
droplet_ssh(
droplet,
user = ssh_user, keyfile = keyfile, ssh_passwd = ssh_passwd,
paste(c("docker", docker_args, cmd, args), collapse = " "),
verbose = verbose)
}
docklet_rstudio <- function(droplet, user, password,
email = '[email protected]', img = 'rocker/rstudio', port = '8787',
volume = '', dir = '', browse = TRUE, add_users = FALSE,
ssh_user = "root", keyfile = NULL, ssh_passwd = NULL, verbose = FALSE) {
if (missing(user)) stop("'user' is required")
if (missing(password)) stop("'password' is required")
if (password == "rstudio") stop("supply a 'password' other than 'rstudio'")
droplet <- as.droplet(droplet)
docklet_pull(droplet, img, ssh_user, keyfile = keyfile,
ssh_passwd = ssh_passwd, verbose = verbose)
docklet_run(droplet,
" -d",
" -p ", paste0(port, ":8787"),
cn(" -v ", volume),
cn(" -w", dir),
paste0(" -e USER=", user),
paste0(" -e PASSWORD=", password),
paste0(" -e EMAIL=", email), " ",
img,
ifelse(add_users, ' bash -c "add-students && supervisord" ', ' '),
ssh_user = ssh_user,
keyfile = keyfile,
ssh_passwd = ssh_passwd
)
url <- sprintf("http://%s:%s/", droplet_ip(droplet), port)
if (browse) {
Sys.sleep(4)
browseURL(url)
}
invisible(droplet)
}
docklet_rstudio_addusers <- function(droplet, user, password,
img = 'rocker/rstudio', port = '8787', ssh_user = "root", keyfile = NULL,
ssh_passwd = NULL, verbose = FALSE) {
check_for_a_pkg("ssh")
if (missing(user)) stop("'user' is required")
if (missing(password)) stop("'password' is required")
if (password == "rstudio") stop("supply a 'password' other than 'rstudio'")
droplet <- as.droplet(droplet)
cons <- docklet_ps_data(droplet, ssh_user = ssh_user,
keyfile = keyfile, ssh_passwd = ssh_passwd, verbose = verbose)
id <- cons[ grep("rocker/rstudio:latest", cons$image), "container.id" ]
if (length(id) > 0) {
docklet_stop(droplet, container = id)
docklet_rm(droplet, container = id)
}
docklet_run(
droplet,
" -d",
" -p ", paste0(port, ":8787"),
paste0(" -e USER=", user),
paste0(" -e PASSWORD=", password),
" ", img,
' bash -c "add-students && supervisord"',
verbose = verbose
)
}
docklet_shinyserver <- function(droplet,
img = 'rocker/shiny',
port = '3838',
volume = '',
dir = '',
browse = TRUE,
ssh_user = "root") {
droplet <- as.droplet(droplet)
docklet_pull(droplet, img, ssh_user)
docklet_run(droplet,
" -d",
" -p ", paste0(port, ":3838"),
cn(" -v ", volume),
cn(" -w", dir),
" ",
img,
ssh_user = ssh_user
)
url <- sprintf("http://%s:%s/", droplet_ip(droplet), port)
if (browse) {
Sys.sleep(4)
browseURL(url)
}
invisible(droplet)
}
docklet_shinyapp <- function(droplet,
path,
img = 'rocker/shiny',
port = '80',
dir = '',
browse = TRUE,
ssh_user = "root") {
check_for_a_pkg("ssh")
droplet <- as.droplet(droplet)
droplet_ssh(droplet, "mkdir -p /srv/shinyapps")
droplet_upload(droplet, path, "/srv/shinyapps/")
docklet_shinyserver(
droplet, img, port, volume = '/srv/shinyapps/:/srv/shiny-server/',
dir, browse, ssh_user)
} |
test_that("Model Workflow Regression KL", {
set.seed(1234)
dist.meas = 1
data(FAset)
fa.set = as.vector(unlist(FAset))
data(predatorFAs)
tombstone.info = predatorFAs[,1:4]
predator.matrix = predatorFAs[,5:(ncol(predatorFAs))]
npredators = nrow(predator.matrix)
data(preyFAs)
prey.sub=(preyFAs[,4:(ncol(preyFAs))])[fa.set]
prey.sub=prey.sub/apply(prey.sub,1,sum)
group=as.vector(preyFAs$Species)
prey.matrix=cbind(group,prey.sub)
prey.matrix=MEANmeth(prey.matrix)
FC = preyFAs[,c(2,3)]
FC = as.vector(tapply(FC$lipid,FC$Species,mean,na.rm=TRUE))
data(CC)
cal.vec = CC[,2]
cal.mat = replicate(npredators, cal.vec)
Q = p.QFASA(predator.matrix,
prey.matrix,
cal.mat,
dist.meas,
gamma=1,
FC,
start.val = rep(1,nrow(prey.matrix)),
fa.set)
DietEst = Q$'Diet Estimates'
DietEst = round(DietEst*100,digits=2)
colnames(DietEst) = (as.vector(rownames(prey.matrix)))
DietEst = cbind(tombstone.info,DietEst)
DietEstCheck = read.csv(file=system.file("exdata", "DietEstKL.csv", package="QFASA"),
as.is=TRUE)
expect_equal(DietEst, DietEstCheck, tolerance=1e-6)
AdditionalMeasures = plyr::ldply(Q$'Additional Measures', data.frame)
AdditionalMeasuresCheck = read.csv(file=system.file("exdata", "AdditionalMeasuresKL.csv", package="QFASA"), as.is=TRUE)
expect_equal(AdditionalMeasures, AdditionalMeasuresCheck, tolerance=1e-4)
}) |
cover2incidence <-
function(g) UseMethod("cover2incidence") |
require(geometa, quietly = TRUE)
require(testthat)
context("ISOBoundFeatureAttribute")
test_that("encoding",{
testthat::skip_on_cran()
md <- ISOBoundFeatureAttribute$new()
md$setDescription("description")
fat <- ISOFeatureAttribute$new()
fat$setMemberName("name 1")
fat$setDefinition("definition 1")
fat$setCardinality(lower=1,upper=1)
fat$setCode("code 1")
gml <- GMLBaseUnit$new(id = "ID1")
gml$setDescriptionReference("someref")
gml$setIdentifier("identifier", "codespace")
gml$addName("name1", "codespace")
gml$addName("name2", "codespace")
gml$setQuantityTypeReference("someref")
gml$setCatalogSymbol("symbol")
gml$setUnitsSystem("somelink")
fat$setValueMeasurementUnit(gml)
val1 <- ISOListedValue$new()
val1$setCode("code1")
val1$setLabel("label1")
val1$setDefinition("definition1")
fat$addListedValue(val1)
val2 <- ISOListedValue$new()
val2$setCode("code2")
val2$setLabel("label2")
val2$setDefinition("definition2")
fat$addListedValue(val2)
fat$setValueType("typeName")
md$setPropertyType(fat)
md$setTypeName("name")
expect_is(md, "ISOBoundFeatureAttribute")
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- ISOBoundFeatureAttribute$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
})
test_that("encoding - i18n",{
testthat::skip_on_cran()
md <- ISOBoundFeatureAttribute$new()
md$setDescription(
"description",
locales = list(
EN = "the description",
FR = "la description",
ES = "la descripción",
AR = "الوصف",
RU = "описание",
ZH = "描述"
)
)
fat <- ISOFeatureAttribute$new()
fat$setMemberName("name1")
fat$setDefinition(
"description 1",
locales = list(
EN = "the description 1",
FR = "la description 1",
ES = "la descripción 1",
AR = "1 الوصف",
RU = "описание 1",
ZH = "描述 1"
)
)
fat$setCardinality(lower=1,upper=1)
fat$setCode("code 1")
gml <- GMLBaseUnit$new(id = "ID1")
gml$setDescriptionReference("someref")
gml$setIdentifier("identifier", "codespace")
gml$addName("name1", "codespace")
gml$addName("name2", "codespace")
gml$setQuantityTypeReference("someref")
gml$setCatalogSymbol("symbol")
gml$setUnitsSystem("somelink")
fat$setValueMeasurementUnit(gml)
val1 <- ISOListedValue$new()
val1$setCode("code1")
val1$setLabel(
"name in english 1",
locales = list(
EN = "name in english 1",
FR = "nom en français 1",
ES = "Nombre en español 1",
AR = "1 الاسم باللغة العربية",
RU = "имя на русском 1",
ZH = "中文名 1"
))
val1$setDefinition(
"definition in english 1",
locales = list(
EN = "definition in english 1",
FR = "définition en français 1",
ES = "definición en español 1",
AR = "1 التعريف باللغة العربية ",
RU = "Русское определение 1",
ZH = "中文定义1"
))
fat$addListedValue(val1)
val2 <- ISOListedValue$new()
val2$setCode("code2")
val2$setLabel(
"name in english 2",
locales = list(
EN = "name in english 2",
FR = "nom en français 2",
ES = "Nombre en español 2",
AR = "2 الاسم باللغة العربية",
RU = "имя на русском 2",
ZH = "中文名 2"
))
val2$setDefinition(
"definition in english 2",
locales = list(
EN = "definition in english 2",
FR = "définition en français 2",
ES = "definición en español 2",
AR = "2 التعريف باللغة العربية ",
RU = "Русское определение 2",
ZH = "中文定义2"
))
fat$addListedValue(val2)
fat$setValueType("typeName")
md$setPropertyType(fat)
md$setTypeName("name")
expect_is(md, "ISOBoundFeatureAttribute")
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- ISOBoundFeatureAttribute$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
}) |
test_that("cross_join", {
tab = cross_join(list(a = 1:3, b = 1:2))
expect_equal(tab, CJ(a = 1:3, b = 1:2))
tab = cross_join(list(sorted = 1:3, b = 1:2))
expect_equal(tab, setnames(CJ(a = 1:3, b = 1:2), "a", "sorted"))
tab = cross_join(list(unique = 1:3, b = 1:2))
expect_equal(tab, setnames(CJ(a = 1:3, b = 1:2), "a", "unique"))
}) |
knitr::opts_chunk$set(echo = TRUE)
library(hydroGOF)
require(zoo)
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts
sim <- obs
gof(sim=sim, obs=obs)
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)
ggof(sim=sim, obs=obs, ftype="dm", FUN=mean)
ggof(sim=sim, obs=obs, ftype="dm", FUN=mean, cal.ini="1963-01-01")
sim <- window(sim, start=as.Date("1963-01-01"))
obs <- window(obs, start=as.Date("1963-01-01"))
gof(sim, obs)
r <- sim-obs
library(hydroTSM)
smry(r)
hydroplot(r, FUN=mean)
hydroplot(r, FUN=mean, pfreq="seasonal")
sessionInfo()$platform
sessionInfo()$R.version$version.string
paste("hydroGOF", sessionInfo()$otherPkgs$hydroGOF$Version) |
vpow <-
function(x,sill,range)
{
if( range==0) return(rep(sill,length(x)))
sill * x^range
} |
setGeneric("passage", function(x, origin, goal, theta, ...) {
standardGeneric("passage")
}
)
setMethod("passage",
signature(x = "TransitionLayer",
origin = "Coords",
goal = "Coords",
theta="missing"),
def = function(x, origin, goal,
totalNet="net",
output="RasterLayer")
{
.checkInputsPassage(totalNet, output)
origin <- .coordsToMatrix(origin)
goal <- .coordsToMatrix(goal)
if(totalNet=="net" & output=="RasterLayer")
{
x <- .transitionSolidify(x)
tc <- transitionCells(x)
cellnri <- cellFromXY(x, origin)
cellnrj <- cellFromXY(x, goal)
ci <- match(cellnri,tc)
cj <- match(cellnrj,tc)
result <- .flowMap(x, ci, cj, tc)
}
else{
stop("no method available -- try a low value of theta instead")
}
return(result)
}
)
setMethod("passage", signature(x = "TransitionLayer",
origin = "RasterLayer",
goal = "RasterLayer",
theta="missing"),
def = function(x, origin, goal,
totalNet="net",
output="RasterLayer")
{
.checkInputsPassage(totalNet, output)
if(totalNet=="net" & output=="RasterLayer")
{
x <- .transitionSolidify(x)
tc <- transitionCells(x)
ci <- which(getValues(origin))
cj <- which(getValues(goal))
result <- .flowMap(x, ci, cj, tc)
}
else{
stop("no method available -- try a low value of theta instead")
}
return(result)
}
)
.checkInputsPassage <- function(totalNet, output)
{
if(!(totalNet %in% c("total","net"))){
stop("totalNet should be either total or net")
}
if(!(output %in% c("RasterLayer","TransitionLayer"))){
stop("output should be either RasterLayer or TransitionLayer")
}
}
.flowMap <- function(x, indexOrigin, indexGoal, tc)
{
L <- .Laplacian(x)
Lr <- L[-dim(L)[1],-dim(L)[1]]
A <- as(L,"lMatrix")
A <- as(A,"dMatrix")
n <- max(dim(Lr))
Current <- .currentR(L, Lr, A, n, indexOrigin, indexGoal)
result <- as(x,"RasterLayer")
dataVector <- rep(0,times=ncell(result))
dataVector[tc] <- Current
result <- setValues(result, dataVector)
return(result)
}
setMethod("passage", signature(x = "TransitionLayer",
origin = "Coords",
goal = "Coords",
theta="numeric"),
def = function(x, origin, goal, theta,
totalNet="net",
output="RasterLayer")
{
cellnri <- cellFromXY(x, origin)
cellnrj <- cellFromXY(x, goal)
x <- .transitionSolidify(x)
tc <- transitionCells(x)
ci <- match(cellnri,tc)
cj <- match(cellnrj,tc)
result <- .randomShPaths(x, ci, cj, theta,
tc, totalNet, output)
return(result)
}
)
setMethod("passage", signature(x = "TransitionLayer",
origin = "RasterLayer",
goal = "RasterLayer",
theta="numeric"),
def = function(x, origin, goal, theta,
totalNet="net", output="RasterLayer")
{
ci <- which(getValues(origin))
cj <- which(getValues(goal))
x <- .transitionSolidify(x)
tc <- transitionCells(x)
result <- .randomShPaths(x, ci, cj, theta, tc, totalNet, output)
return(result)
}
)
.randomShPaths <- function(x, ci, cj, theta, tc, totalNet, output)
{
if(theta < 0 | theta > 20 ) {
stop("theta value out of range (between 0 and 20)")
}
tr <- transitionMatrix(x,inflate=FALSE)
trR <- tr
trR@x <- 1 / trR@x
nr <- dim(tr)[1]
Id <- Diagonal(nr)
rs <- rowSums(tr)
rs[rs>0] <- 1/rs[rs>0]
P <- tr * rs
W <- trR
W@x <- exp(-theta * trR@x)
W <- W * P
return(.probPass(x, Id, W, nr, ci, cj, tc, totalNet, output))
}
.probPass <- function(x, Id, W, nr, ci, cj, tc, totalNet, output)
{
nc <- ncell(x)
Ij <- Diagonal(nr)
Ij[cbind(cj,cj)] <- 1 - 1 / length(cj)
Wj <- Ij %*% W
ei <- rep(0,times=nr)
ei[ci] <- 1 / length(ci)
ej <- rep(0,times=nr)
ej[cj] <- 1 / length(cj)
IdMinusWj <- as((Id - Wj), "dgCMatrix")
zci <- solve(t(IdMinusWj),ei)
zcj <- solve(IdMinusWj, ej)
zcij <- sum(ei*zcj)
if(zcij < 1e-300)
{
if(output == "RasterLayer")
{
result <- as(x,"RasterLayer")
result[] <- rep(0,times=nc)
}
if(output == "TransitionLayer")
{
result <- x
transitionMatrix(result) <- Matrix(0, nc, nc)
result@transitionCells <- 1:nc
}
}
else
{
N <- (Diagonal(nr, as.vector(zci)) %*% Wj %*% Diagonal(nr, as.vector(zcj))) / zcij
if(output == "RasterLayer")
{
if(totalNet == "total")
{
n <- pmax(rowSums(N),colSums(N))
}
if(totalNet == "net")
{
nNet <- abs(skewpart(N))
n <- pmax(rowSums(nNet),colSums(nNet))
n[c(ci,cj)] <- 2 * n[c(ci,cj)]
}
result <- as(x,"RasterLayer")
dataVector <- rep(NA,times=nc)
dataVector[tc] <- n
result <- setValues(result, dataVector)
}
if(output == "TransitionLayer")
{
result <- x
if(totalNet == "total")
{
tr <- Matrix(0, nc, nc)
tr[tc,tc] <- N
}
if(totalNet == "net")
{
nNet <- skewpart(N) * 2
nNet@x[nNet@x<0] <- 0
tr <- Matrix(0, nc, nc)
tr[tc,tc] <- nNet
}
transitionMatrix(result) <- tr
result@transitionCells <- 1:nc
}
}
return(result)
} |
emma.MLE <- function (y, X, K, Z = NULL, ngrids = 100, llim = -10, ulim = 10,
esp = 1e-10, eig.L = NULL, eig.R = NULL )
{
n <- length(y)
t <- nrow(K)
q <- ncol(X)
stopifnot(ncol(K) == t)
stopifnot(nrow(X) == n)
if (det(crossprod(X, X)) == 0) {
warning("X is singular")
return(list(ML = 0, delta = 0, ve = 0, vg = 0))
}
if (is.null(Z)) {
if (is.null(eig.L)) {
eig.L <- emma.eigen.L.wo.Z(K )
}
if (is.null(eig.R)) {
eig.R <- emma.eigen.R.wo.Z(K, X )
}
etas <- crossprod(eig.R$vectors, y)
logdelta <- (0:ngrids)/ngrids * (ulim - llim) + llim
m <- length(logdelta)
delta <- exp(logdelta)
Lambdas <- matrix(eig.R$values, n - q, m) + matrix(delta,
n - q, m, byrow = TRUE)
Xis <- matrix(eig.L$values, n, m) + matrix(delta, n,
m, byrow = TRUE)
Etasq <- matrix(etas * etas, n - q, m)
LL <- 0.5 * (n * (log(n/(2 * pi)) - 1 - log(colSums(Etasq/Lambdas))) -
colSums(log(Xis)))
dLL <- 0.5 * delta * (n * colSums(Etasq/(Lambdas * Lambdas))/colSums(Etasq/Lambdas) -
colSums(1/Xis))
optlogdelta <- vector(length = 0)
optLL <- vector(length = 0)
if (dLL[1] < esp) {
optlogdelta <- append(optlogdelta, llim)
optLL <- append(optLL, emma.delta.ML.LL.wo.Z(llim,
eig.R$values, etas, eig.L$values))
}
if (dLL[m - 1] > 0 - esp) {
optlogdelta <- append(optlogdelta, ulim)
optLL <- append(optLL, emma.delta.ML.LL.wo.Z(ulim,
eig.R$values, etas, eig.L$values))
}
for (i in 1:(m - 1)) {
if ((dLL[i] * dLL[i + 1] < 0 - esp * esp) && (dLL[i] >
0) && (dLL[i + 1] < 0)) {
r <- uniroot(emma.delta.ML.dLL.wo.Z, lower = logdelta[i],
upper = logdelta[i + 1], lambda = eig.R$values,
etas = etas, xi = eig.L$values)
optlogdelta <- append(optlogdelta, r$root)
optLL <- append(optLL, emma.delta.ML.LL.wo.Z(r$root,
eig.R$values, etas, eig.L$values))
}
}
}
else {
if (is.null(eig.L)) {
eig.L <- emma.eigen.L.w.Z(Z, K )
}
if (is.null(eig.R)) {
eig.R <- emma.eigen.R.w.Z(Z, K, X)
}
etas <- crossprod(eig.R$vectors, y)
etas.1 <- etas[1:(t - q)]
etas.2 <- etas[(t - q + 1):(n - q)]
etas.2.sq <- sum(etas.2 * etas.2)
logdelta <- (0:ngrids)/ngrids * (ulim - llim) + llim
m <- length(logdelta)
delta <- exp(logdelta)
Lambdas <- matrix(eig.R$values, t - q, m) + matrix(delta,
t - q, m, byrow = TRUE)
Xis <- matrix(eig.L$values, t, m) + matrix(delta, t,
m, byrow = TRUE)
Etasq <- matrix(etas.1 * etas.1, t - q, m)
dLL <- 0.5 * delta * (n * (colSums(Etasq/(Lambdas * Lambdas)) +
etas.2.sq/(delta * delta))/(colSums(Etasq/Lambdas) +
etas.2.sq/delta) - (colSums(1/Xis) + (n - t)/delta))
optlogdelta <- vector(length = 0)
optLL <- vector(length = 0)
if (dLL[1] < esp) {
optlogdelta <- append(optlogdelta, llim)
optLL <- append(optLL, emma.delta.ML.LL.w.Z(llim,
eig.R$values, etas.1, eig.L$values, n, etas.2.sq))
}
if (dLL[m - 1] > 0 - esp) {
optlogdelta <- append(optlogdelta, ulim)
optLL <- append(optLL, emma.delta.ML.LL.w.Z(ulim,
eig.R$values, etas.1, eig.L$values, n, etas.2.sq))
}
for (i in 1:(m - 1)) {
if ((dLL[i] * dLL[i + 1] < 0 - esp * esp) && (dLL[i] >
0) && (dLL[i + 1] < 0)) {
r <- uniroot(emma.delta.ML.dLL.w.Z, lower = logdelta[i],
upper = logdelta[i + 1], lambda = eig.R$values,
etas.1 = etas.1, xi.1 = eig.L$values, n = n,
etas.2.sq = etas.2.sq)
optlogdelta <- append(optlogdelta, r$root)
optLL <- append(optLL, emma.delta.ML.LL.w.Z(r$root,
eig.R$values, etas.1, eig.L$values, n, etas.2.sq))
}
}
}
maxdelta <- exp(optlogdelta[which.max(optLL)])
maxLL <- max(optLL)
if (is.null(Z)) {
maxva <- sum(etas * etas/(eig.R$values + maxdelta))/n
}
else {
maxva <- (sum(etas.1 * etas.1/(eig.R$values + maxdelta)) +
etas.2.sq/maxdelta)/n
}
maxve <- maxva * maxdelta
return(list(ML = maxLL, delta = maxdelta, ve = maxve, vg = maxva))
} |
`JGET.seis` <-
function(fnames, kind=1, Iendian=1, BIGLONG=FALSE, HEADONLY=FALSE , PLOT=-1, RAW=FALSE)
{
if(missing(PLOT)) { PLOT=-1 }
if(missing(kind)) { kind=1 }
if(missing(HEADONLY)) {HEADONLY=FALSE }
if(missing(Iendian)) { Iendian=1 }
if(missing(BIGLONG)) { BIGLONG=FALSE}
if(missing(RAW)) { RAW=FALSE }
tmpGIVE = as.list(1:length(fnames))
ii = 1
DATIM = rep(0,length=4)
n=1
dt=0.025000
sec = 0
thesta="XXXXX"
thecomp="XXXXX"
for(i in 1:length(fnames))
{
fn = fnames[i]
infile = fn
if(file.exists(infile)==FALSE)
{
print(paste(sep=' ', "file does not exist", fn) );
next;
}
else
{
}
if(kind== -1)
{
DAT = readRDS(fn)
if(is.null(names(DAT)) & length(DAT)>=1)
{
DAT = DAT[[1]]
}
if(HEADONLY) DAT$amp = NULL
DAT$oldname = DAT$fn
DAT$fn = fn
tmpGIVE[[i]] = DAT
next
}
if(kind==0)
{
DAT = list()
GED = load(fn)
assign("DAT", get(GED))
if(is.null(names(DAT)) & length(DAT)>=1)
{
DAT = DAT[[1]]
}
if(HEADONLY) DAT$amp = NULL
DAT$oldname = DAT$fn
DAT$fn = fn
tmpGIVE[[i]] = DAT
next
}
if(kind==1)
{
DAT = JSEGY.seis(fn, Iendian=Iendian, HEADONLY=HEADONLY , BIGLONG=BIGLONG, PLOT=PLOT, RAW=RAW)
tmpGIVE[[i]] = DAT[[1]]
next
}
if(kind==2)
{
DAT = JSAC.seis(fn, Iendian=Iendian, HEADONLY=HEADONLY , BIGLONG=BIGLONG, PLOT=PLOT, RAW=RAW)
tmpGIVE[[i]] = DAT[[1]]
next
}
if(kind==3)
{
print("AH format currently not available")
tmpGIVE[[i]] = NA
next
}
tmpGIVE[[i]] = NA
}
invisible(tmpGIVE)
} |
glue_safe <- function(..., .envir = parent.frame()) {
glue(..., .envir = .envir, .transformer = get_transformer)
}
glue_data_safe <- function(.x, ..., .envir = parent.frame()) {
glue_data(.x, ..., .envir = .envir, .transformer = get_transformer)
}
get_transformer <- function(text, envir) {
if (!exists(text, envir = envir)) {
stop("object '", text, "' not found", call. = FALSE)
} else {
get(text, envir = envir)
}
} |
`[.EEM` <- function(x, i, ...) {
r <- NextMethod("[")
class(r) <- "EEM"
r
} |
feature_hits <- function(x) {
if(!check_geoserver()) {
return(0)
}
x$query$resultType <- "hits"
x$query$outputFormat <- "text/xml"
x$query$version <- "2.0.0"
request <- httr::build_url(x)
response <- httr::GET(request)
httr::stop_for_status(response)
parsed <- httr::content(response, encoding = "UTF-8")
n_hits <- as.numeric(xml2::xml_attrs(parsed)["numberMatched"])
return(n_hits)
}
geom_col_name <- function(x) {
if(!check_geoserver(timeout = 10, quiet = TRUE)) {
return(NULL)
}
geom_col <- get_col_df(x) %>%
dplyr::filter(grepl(x = type, pattern = "gml:")) %>%
dplyr::pull(name)
return(geom_col)
}
feature_cols <- function(x) {
return(get_col_df(x)$name)
}
specify_geom_name <- function(x, CQL_statement){
geom_col <- geom_col_name(x)
dbplyr::sql(glue::glue(CQL_statement, geom_name = geom_col))
}
get_col_df <- function(x) {
if(!check_geoserver(timeout = 10, quiet = TRUE)) {
return(NULL)
}
layer <- x$query$version
base_url_n_wfs <- substr(getOption("vicmap.base_url", default = base_wfs_url), start = 0, stop = nchar(getOption("vicmap.base_url", default = base_wfs_url)) - 3)
r <- httr::GET(paste0(base_url_n_wfs, x$query$typeNames, "/wfs?service=wfs&version=", x$query$version, "&request=DescribeFeatureType"))
httr::stop_for_status(r)
c <- httr::content(r, encoding = "UTF-8", type="text/xml")
list <- xml2::xml_child(xml2::xml_child(xml2::xml_child(xml2::xml_child(c, "xsd:complexType"),
"xsd:complexContent"),
"xsd:extension"),
"xsd:sequence") %>%
xml2::as_list()
data <- data.frame(name = sapply(list, function(x) attr(x, "name")),
type = sapply(list, function(x) attr(x, "type")), stringsAsFactors = F)
return(data)
} |
NULL
kinesisvideo <- function(config = list()) {
svc <- .kinesisvideo$operations
svc <- set_config(svc, config)
return(svc)
}
.kinesisvideo <- list()
.kinesisvideo$operations <- list()
.kinesisvideo$metadata <- list(
service_name = "kinesisvideo",
endpoints = list("*" = list(endpoint = "kinesisvideo.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "kinesisvideo.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "kinesisvideo.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "kinesisvideo.{region}.sc2s.sgov.gov", global = FALSE)),
service_id = "Kinesis Video",
api_version = "2017-09-30",
signing_name = "kinesisvideo",
json_version = "",
target_prefix = ""
)
.kinesisvideo$service <- function(config = list()) {
handlers <- new_handlers("restjson", "v4")
new_service(.kinesisvideo$metadata, handlers, config)
} |
FM.chi.pvalue <-
function(x){
y=log(x)
y=-2*sum(y)
p.value=pchisq(y,df=2*length(x),lower.tail=FALSE)
list("FMstatistic"=y, "FMpvalue"=p.value)
} |
"aanma" <- function(...) {
UseMethod("aanma")
} |
panel.psyfun <- function(x, y, n, lnk = "logit", ...) {
xy.glm <- glm(cbind(n * y, n * (1 - y)) ~ x,
binomial(lnk))
rr <- lattice::current.panel.limits()$xlim
xx <- seq(rr[1], rr[2], len = 100)
yy <- predict(xy.glm, data.frame(x = xx),
type = "response")
lattice::panel.lines(xx, yy, ...)
} |
library(OpenMx)
library(testthat)
diagno <- toupper(c('alc', 'gad', 'mdd', 'pan', 'pho'))
parent <- c('wife', 'husband')
c1 <- apply(expand.grid(diagno, parent)[,c(2,1)], 1, paste, collapse='')
wife <- c1[1:5]
husband <- c1[6:10]
c2 <- matrix(0, length(c1), length(c1),
dimnames=list(c1,c1))
c2['wifeALC', 'wifeGAD'] <- .399
c2['wifeALC', 'wifeMDD'] <- .341
c2['wifeALC', 'wifePAN'] <- .276
c2['wifeALC', 'wifePHO'] <- .284
c2['wifeGAD', 'wifeMDD'] <- .582
c2['wifeGAD', 'wifePAN'] <- .372
c2['wifeGAD', 'wifePHO'] <- .394
c2['wifeMDD', 'wifePAN'] <- .31
c2['wifeMDD', 'wifePHO'] <- .304
c2['wifePAN', 'wifePHO'] <- .371
c2['husbandGAD', 'husbandALC'] <- .295
c2['husbandMDD', 'husbandALC'] <- .341
c2['husbandMDD', 'husbandGAD'] <- .576
c2['husbandPAN', 'husbandALC'] <- .283
c2['husbandPAN', 'husbandGAD'] <- .314
c2['husbandPAN', 'husbandMDD'] <- .576
c2['husbandPHO', 'husbandALC'] <- .249
c2['husbandPHO', 'husbandGAD'] <- .220
c2['husbandPHO', 'husbandMDD'] <- .181
c2['husbandPHO', 'husbandPAN'] <- .276
c2[wife,wife] + c2[husband, husband]
c2['wifeALC', husband] <- c(.119, .064, .19, .029, .005)
c2['wifeGAD', husband] <- c(.209, .208, .207, .119, .133)
c2['wifeMDD', husband] <- c(.132, .088, .162, .112, .105)
c2['wifePAN', husband] <- c(.064, .092, .151, .219, .102)
c2['wifePHO', husband] <- c(-.079, .13, .221, -.016, .064)
c2[husband,wife] <- t(c2[wife, husband])
c2[wife, wife][lower.tri(diag(length(diagno)))] <-
t(c2[wife, wife])[lower.tri(diag(length(diagno)))]
c2[husband, husband][upper.tri(diag(length(diagno)))] <-
t(c2[husband, husband])[upper.tri(diag(length(diagno)))]
diag(c2) <- 1
c3 <- matrix(0, length(c1), length(c1),
dimnames=list(c1,c1))
c3['wifeALC', 'wifeGAD'] <- .378
c3['wifeALC', 'wifeMDD'] <- .313
c3['wifeALC', 'wifePAN'] <- .076
c3['wifeALC', 'wifePHO'] <- .095
c3['wifeGAD', 'wifeMDD'] <- .709
c3['wifeGAD', 'wifePAN'] <- .471
c3['wifeGAD', 'wifePHO'] <- .228
c3['wifeMDD', 'wifePAN'] <- .367
c3['wifeMDD', 'wifePHO'] <- .227
c3['wifePAN', 'wifePHO'] <- .371
c3['husbandGAD', 'husbandALC'] <- .125
c3['husbandMDD', 'husbandALC'] <- .185
c3['husbandMDD', 'husbandGAD'] <- .64
c3['husbandPAN', 'husbandALC'] <- .267
c3['husbandPAN', 'husbandGAD'] <- .483
c3['husbandPAN', 'husbandMDD'] <- .467
c3['husbandPHO', 'husbandALC'] <- .194
c3['husbandPHO', 'husbandGAD'] <- .312
c3['husbandPHO', 'husbandMDD'] <- .149
c3['husbandPHO', 'husbandPAN'] <- .344
c3[wife,wife] + c3[husband, husband]
c3['wifeALC', husband] <- c(.068, .213, .267, -.047, -.078)
c3['wifeGAD', husband] <- c(.107, -.014, .169, .116, -.006)
c3['wifeMDD', husband] <- c(.251, .014, .121, -.196, .074)
c3['wifePAN', husband] <- c(.002, .114, .015, .138, .062)
c3['wifePHO', husband] <- c(.003, .14, .033, .028, .071)
c3[husband,wife] <- t(c3[wife, husband])
c3[wife, wife][lower.tri(diag(length(diagno)))] <-
t(c3[wife, wife])[lower.tri(diag(length(diagno)))]
c3[husband, husband][upper.tri(diag(length(diagno)))] <-
t(c3[husband, husband])[upper.tri(diag(length(diagno)))]
diag(c3) <- 1
diag2d <- matrix(apply(expand.grid(diagno, diagno)[,c(2,1)],
1, paste, collapse=""),
length(diagno), length(diagno))
paths <- c(
mxPath(wife, arrows=2, connect="unique.bivariate",
lbound=-.99, ubound=.99,
labels=paste0('w', diag2d[lower.tri(diag2d)])),
mxPath(husband, arrows=2, connect="unique.bivariate",
lbound=-.99, ubound=.99,
labels=paste0('h', diag2d[lower.tri(diag2d)])),
mxPath(wife, husband, arrows=0, connect="unique.pairs",
lbound=-.99, ubound=.99,
labels=paste0('d', c(diag2d))))
abd <- mxModel(
'abd', type="RAM",
manifestVars = c1,
mxData(c2, type = "cov", numObs = 854),
mxPath(c1, arrows=2, values=1, free=FALSE), paths)
aft <- mxModel(
'aft', type="RAM",
manifestVars = c1,
mxData(c3, type = "cov", numObs = 568),
mxPath(c1, arrows=2, values=1, free=FALSE), paths)
fig6 <- mxModel("fig6", abd, aft,
mxFitFunctionMultigroup(c("abd", "aft")))
if (0) {
fig6 <- mxOption(fig6,"Always Checkpoint","Yes")
fig6 <- mxOption(fig6,"Checkpoint Units","evaluations")
fig6 <- mxOption(fig6,"Checkpoint Count",1)
fig6 <- mxOption(fig6, "Checkpoint Fullpath", "/dev/fd/2")
}
fig6 <- mxRun(fig6)
fig6r <- mxRefModels(fig6, run=TRUE)
fig6s <- summary(fig6, refModels=fig6r)
expect_equal(fig6s$ChiDoF, 65)
expect_equal(fig6s$Chi, 544.0544, 1e-3)
expect_equal(fig6s$CFI, .8756, 1e-4)
expect_equal(length(mxGetExpected(fig6, "covariance")), 2) |
NULL
ml_validate_params <- function(expanded_params, stage_jobjs, current_param_list) {
stage_uids <- names(stage_jobjs)
stage_indices <- integer(0)
expanded_params %>%
purrr::imap(function(param_sets, user_input_name) {
matched <- paste0("^", user_input_name) %>%
grepl(stage_uids) %>%
which()
if (length(matched) > 1) {
stop("The name ", user_input_name, " matches more than one stage in the pipeline.",
call. = FALSE
)
}
if (length(matched) == 0) {
stop("The name ", user_input_name, " matches no stages in the pipeline.",
call. = FALSE
)
}
stage_indices[[user_input_name]] <<- matched
stage_jobj <- stage_jobjs[[matched]]
purrr::map(param_sets, function(params) {
current_params <- current_param_list[[matched]] %>%
ml_map_param_list_names()
default_params <- stage_jobj %>%
ml_get_stage_constructor() %>%
formals() %>%
as.list() %>%
purrr::discard(~ is.symbol(.x) || is.language(.x)) %>%
purrr::compact()
input_param_names <- names(params)
current_param_names <- names(current_params)
default_param_names <- names(default_params)
current_params_keep <- setdiff(current_param_names, input_param_names)
default_params_keep <- setdiff(default_param_names, current_params_keep)
args_to_validate <- c(
params, current_params[current_params_keep], default_params[default_params_keep]
)
do.call(ml_get_stage_validator(stage_jobj), list(args_to_validate)) %>%
`[`(input_param_names)
})
}) %>%
rlang::set_names(stage_uids[stage_indices])
}
ml_spark_param_map <- function(param_map, sc, stage_jobjs) {
purrr::imap(param_map, function(param_set, stage_uid) {
purrr::imap(param_set, function(value, param_name) {
list(
param_jobj = stage_jobjs[[stage_uid]] %>%
invoke(ml_map_param_names(param_name, "rs")),
value = value
)
}) %>%
purrr::discard(~ is.null(.x[["value"]]))
}) %>%
unname() %>%
rlang::flatten() %>%
purrr::reduce(
function(x, pair) invoke(x, "put", pair$param_jobj, pair$value),
.init = invoke_new(sc, "org.apache.spark.ml.param.ParamMap")
)
}
ml_get_estimator_param_maps <- function(jobj) {
sc <- spark_connection(jobj)
jobj %>%
invoke("getEstimatorParamMaps") %>%
purrr::map(~ invoke_static(sc, "sparklyr.MLUtils", "paramMapToNestedList", .x)) %>%
purrr::map(~ lapply(.x, ml_map_param_list_names))
}
ml_new_validator <- function(sc, class, uid, estimator, evaluator,
estimator_param_maps, seed) {
uid <- cast_string(uid)
possibly_spark_jobj <- possibly_null(spark_jobj)
param_maps <- if (!is.null(estimator) && !is.null(estimator_param_maps)) {
stage_jobjs <- if (inherits(estimator, "ml_pipeline")) {
invoke_static(sc, "sparklyr.MLUtils", "uidStagesMapping", spark_jobj(estimator))
} else {
rlang::set_names(list(spark_jobj(estimator)), ml_uid(estimator))
}
current_param_list <- stage_jobjs %>%
purrr::map(invoke, "extractParamMap") %>%
purrr::map(~ invoke_static(sc, "sparklyr.MLUtils", "paramMapToList", .x))
estimator_param_maps %>%
purrr::map(purrr::cross) %>%
ml_validate_params(stage_jobjs, current_param_list) %>%
purrr::cross() %>%
purrr::map(ml_spark_param_map, sc, stage_jobjs)
}
jobj <- invoke_new(sc, class, uid) %>%
jobj_set_param("setEstimator", possibly_spark_jobj(estimator)) %>%
jobj_set_param("setEvaluator", possibly_spark_jobj(evaluator)) %>%
jobj_set_param("setSeed", seed)
if (!is.null(param_maps)) {
invoke_static(
sc, "sparklyr.MLUtils", "setParamMaps",
jobj, param_maps
)
} else {
jobj
}
}
new_ml_tuning <- function(jobj, ..., class = character()) {
new_ml_estimator(
jobj,
estimator = possibly_null(
~ invoke(jobj, "getEstimator") %>% ml_call_constructor()
)(),
evaluator = possibly_null(
~ invoke(jobj, "getEvaluator") %>% ml_call_constructor()
)(),
estimator_param_maps = possibly_null(ml_get_estimator_param_maps)(jobj),
...,
class = c(class, "ml_tuning")
)
}
new_ml_tuning_model <- function(jobj, ..., class = character()) {
new_ml_transformer(
jobj,
estimator = invoke(jobj, "getEstimator") %>%
ml_call_constructor(),
evaluator = invoke(jobj, "getEvaluator") %>%
ml_call_constructor(),
estimator_param_maps = ml_get_estimator_param_maps(jobj),
best_model = ml_call_constructor(invoke(jobj, "bestModel")),
...,
class = c(class, "ml_tuning_model")
)
}
print_tuning_info <- function(x, type = c("cv", "tvs")) {
type <- match.arg(type)
num_sets <- length(x$estimator_param_maps)
ml_print_class(x)
ml_print_uid(x)
if (!num_sets) {
return(invisible(NULL))
}
cat(" (Parameters -- Tuning)\n")
if (!is.null(x$estimator)) {
cat(paste0(" estimator: ", ml_short_type(x$estimator), "\n"))
cat(paste0(" "))
ml_print_uid(x$estimator)
}
if (!is.null(x$evaluator)) {
cat(paste0(" evaluator: ", ml_short_type(x$evaluator), "\n"))
cat(paste0(" "))
ml_print_uid(x$evaluator)
cat(" with metric", ml_param(x$evaluator, "metric_name"), "\n")
}
if (identical(type, "cv")) {
cat(" num_folds:", x$num_folds, "\n")
} else {
cat(" train_ratio:", x$train_ratio, "\n")
}
cat(
" [Tuned over", num_sets, "hyperparameter",
if (num_sets == 1) "set]" else "sets]"
)
}
print_best_model <- function(x) {
cat("\n (Best Model)\n")
best_model_output <- capture.output(print(x$best_model))
cat(paste0(" ", best_model_output), sep = "\n")
}
print_tuning_summary <- function(x, type = c("cv", "tvs")) {
type <- match.arg(type)
num_sets <- length(x$estimator_param_maps)
cat(paste0("Summary for ", ml_short_type(x)), "\n")
cat(paste0(" "))
ml_print_uid(x)
cat("\n")
cat(paste0("Tuned ", ml_short_type(x$estimator), "\n"))
cat(paste0(" with metric ", ml_param(x$evaluator, "metric_name"), "\n"))
cat(paste0(
" over ", num_sets, " hyperparameter ",
if (num_sets == 1) "set" else "sets"
), "\n")
if (identical(type, "cv")) {
cat(" via", paste0(x$num_folds, "-fold cross validation"))
} else {
cat(" via", paste0(x$train_ratio, "/", 1 - x$train_ratio, " train-validation split"))
}
cat("\n\n")
cat(paste0("Estimator: ", ml_short_type(x$estimator), "\n"))
cat(paste0(" "))
ml_print_uid(x$estimator)
cat(paste0("Evaluator: ", ml_short_type(x$evaluator), "\n"))
cat(paste0(" "))
ml_print_uid(x$evaluator)
cat("\n")
cat(paste0("Results Summary:"), "\n")
if (identical(type, "cv")) {
print(x$avg_metrics_df)
} else {
print(x$validation_metrics_df)
}
}
ml_sub_models <- function(model) {
fn <- model$sub_models %||% stop(
"Cannot extract sub models. `collect_sub_models` must be set to TRUE in ",
"ml_cross_validator() or ml_train_split_validation()."
)
fn()
}
ml_validation_metrics <- function(model) {
if (inherits(model, "ml_cross_validator_model")) {
model$avg_metrics_df
} else if (inherits(model, "ml_train_validation_split_model")) {
model$validation_metrics_df
} else {
stop("ml_validation_metrics() must be called on `ml_cross_validator_model` ",
"or `ml_train_validation_split_model`.",
call. = FALSE
)
}
}
param_maps_to_df <- function(param_maps) {
param_maps %>%
lapply(function(param_map) {
param_map %>%
lapply(data.frame, stringsAsFactors = FALSE) %>%
(function(x) {
lapply(seq_along(x), function(n) {
fn <- function(x) paste(x, n, sep = "_")
dplyr::rename_all(x[[n]], fn)
})
}) %>%
dplyr::bind_cols()
}) %>%
dplyr::bind_rows()
}
validate_args_tuning <- function(.args) {
.args[["collect_sub_models"]] <- cast_scalar_logical(.args[["collect_sub_models"]])
.args[["parallelism"]] <- cast_scalar_integer(.args[["parallelism"]])
.args[["seed"]] <- cast_nullable_scalar_integer(.args[["seed"]])
if (!is.null(.args[["estimator"]]) && !inherits(.args[["estimator"]], "ml_estimator")) {
stop("`estimator` must be an `ml_estimator`.")
}
if (!is.null(.args[["estimator_param_maps"]]) && !rlang::is_bare_list(.args[["estimator_param_maps"]])) {
stop("`estimator_param_maps` must be a list.")
}
if (!is.null(.args[["evaluator"]]) && !inherits(.args[["evaluator"]], "ml_evaluator")) {
stop("`evaluator` must be an `ml_evaluator`.")
}
.args
} |
allDijkstra = function(fromNode, relType, toNode, cost_property = character(), direction = "out") UseMethod("allDijkstra")
allDijkstra.node = function(fromNode, relType, toNode, cost_property, direction = "out") {
return(shortest_path_algo(all=T,
algo="dijkstra",
fromNode=fromNode,
relType=relType,
toNode=toNode,
direction=direction,
cost_property=cost_property))
} |
tcplMthdAssign <- function(lvl, id, mthd_id, ordr = NULL, type) {
exec_ordr <- modified_by <- NULL
if (length(lvl) > 1) stop("'lvl' must be an integer of length 1.")
if (!type %in% c("mc", "sc")) stop("Invalid 'type' value.")
if (type == "mc" & !lvl %in% c(2, 3,4, 5, 6)) stop("Invalid 'lvl' value.")
if (type == "sc" & !lvl %in% 1:2) stop("Invalid 'lvl' value.")
id_name <- if (type == "mc" & lvl == 2) "acid" else "aeid"
flds <- c(id_name, sprintf("%s%s_mthd_id", type, lvl))
dat <- expand.grid(id = id,
mthd = mthd_id,
stringsAsFactors = FALSE)
dat <- as.data.table(dat)
if ((lvl < 4 & type == "mc") | (lvl == 1 & type == "sc")) {
if (is.null(ordr) | length(mthd_id) != length(ordr)) {
stop("'ordr' must be specified and the same length as 'mthd_id'")
}
dat[ , "exec_ordr" := ordr[match(get("mthd"), mthd_id)]]
}
setnames(dat, old = c("id", "mthd"), flds)
mb <- paste(Sys.info()[c("login", "user", "effective_user")], collapse = ".")
dat[ , "modified_by" := mb]
tcplAppend(dat = dat,
tbl = paste0(type, lvl, "_", flds[1]),
db = getOption("TCPL_DB"))
tcplCascade(lvl = lvl, type = type, id = id)
} |
"fun4Kin" <- function(obj, ageClass, phen, N){
if(obj$breed=="across breeds"){
obj$d <- 0
obj$a <- 0*obj$a
return(obj)
}
if(is.na(N)){stop("Parameter N is NA.\n")}
ageClass <- ageClass[ageClass$Breed==obj$breed,]
classes <- ageClass$Class
r0 <- ageClass$rcont0
r1 <- ageClass$rcont1
diffF <- obj$mkin$diffF
NIndiv0 <- pmax(N*r0,1)
NIndiv1 <- pmax(N*r1,1)
nIndiv <- pmax(ageClass$n,1)
ra <- 1 - sum(r1)
Delta00 <- ra^2*(1-sum((phen$c0*diag(obj$Q))[phen$Breed==obj$breed]))/(2*ra*N)
if(ra>0.9999){
obj$a <- setNames(rep(0,nrow(phen)), phen$Indiv)
obj$d <- Delta00
}else{
NPO <- pPOpop(ageClass, Breed=obj$breed, N0=ra*N)
nPO <- NPOdata(phen, Classes=classes, symmetric=TRUE, quiet=TRUE)
NPO <- NPO[classes,classes, drop=FALSE]
diag(NPO) <- 1/NIndiv0
diag(nPO) <- 1/nIndiv
u <- ageClass[phen$Class,"rcont1"]
u <- u*(1/pmax(ageClass[phen$Class,"n"],1) - 1/pmax(N*ageClass[phen$Class,"rcont0"],1))
u <- u*(obj$mkin$selfkin[phen$Indiv]-obj$mkin$kinwac[phen$Indiv])
u[is.na(u)|phen$Breed!=obj$breed] <- 0
Delta01 <- 2*sum(phen$c1*u)
Delta11 <- c(r1%*%(diag(1/NIndiv1-1/NIndiv0, nrow=length(NIndiv1))*diffF - (nPO-NPO)*diffF)%*%r1)
obj$a <- setNames(-2*c(u), phen$Indiv)
obj$d <- Delta00 + Delta01 + Delta11
}
return(obj)
} |
library(tidymodels)
library(doMC)
library(tidyposterior)
library(workflowsets)
library(rstanarm)
theme_set(theme_bw())
data(ames, package = "modeldata")
ames <- mutate(ames, Sale_Price = log10(Sale_Price))
set.seed(123)
ames_split <- initial_split(ames, prop = 0.80, strata = Sale_Price)
ames_train <- training(ames_split)
ames_test <- testing(ames_split)
crs <- parallel::detectCores()
registerDoMC(cores = crs)
set.seed(55)
ames_folds <- vfold_cv(ames_train, v = 10, repeats = 10)
lm_model <- linear_reg() %>% set_engine("lm")
rf_model <-
rand_forest(trees = 1000) %>%
set_engine("ranger") %>%
set_mode("regression")
basic_rec <-
recipe(Sale_Price ~ Neighborhood + Gr_Liv_Area + Year_Built + Bldg_Type +
Latitude + Longitude, data = ames_train) %>%
step_log(Gr_Liv_Area, base = 10) %>%
step_other(Neighborhood, threshold = 0.01) %>%
step_dummy(all_nominal_predictors())
interaction_rec <-
basic_rec %>%
step_interact( ~ Gr_Liv_Area:starts_with("Bldg_Type_") )
spline_rec <-
interaction_rec %>%
step_ns(Latitude, Longitude, deg_free = 50)
preproc <-
list(basic = basic_rec,
interact = interaction_rec,
splines = spline_rec,
formula = Sale_Price ~ Neighborhood + Gr_Liv_Area + Year_Built +
Bldg_Type + Latitude + Longitude
)
models <- list(lm = lm_model, lm = lm_model, lm = lm_model, rf = rf_model)
four_models <-
workflow_set(preproc, models, cross = FALSE)
four_models
posteriors <- NULL
for(i in 11:100) {
if (i %% 10 == 0) cat(i, "... ")
tmp_rset <- rsample:::df_reconstruct(ames_folds %>% slice(1:i), ames_folds)
four_resamples <-
four_models %>%
workflow_map("fit_resamples", seed = 1, resamples = tmp_rset)
rsq_anova <-
perf_mod(
four_resamples,
prior_intercept = student_t(df = 1),
chains = crs - 2,
iter = 5000,
seed = 2,
cores = crs - 2,
refresh = 0
)
rqs_diff <-
contrast_models(rsq_anova,
list_1 = "splines_lm",
list_2 = "basic_lm",
seed = 3) %>%
as_tibble() %>%
mutate(label = paste(format(1:100)[i], "resamples"), resamples = i)
posteriors <- bind_rows(posteriors, rqs_diff)
rm(rqs_diff)
}
intervals <-
posteriors %>%
group_by(resamples) %>%
summarize(
mean = mean(difference),
lower = quantile(difference, prob = 0.05),
upper = quantile(difference, prob = 0.95),
.groups = "drop"
) %>%
ungroup() %>%
mutate(
mean = predict(loess(mean ~ resamples, span = .15)),
lower = predict(loess(lower ~ resamples, span = .15)),
upper = predict(loess(upper ~ resamples, span = .15))
)
save(intervals, file = "RData/post_intervals.RData") |
forward.prepaid=function(S,t,r,position,div.structure="none",dividend=NA,df=1,D=NA,k=NA,plot=FALSE){
all=list(S,t,r,position,div.structure,dividend,df,D,k,plot)
if(any(lapply(all,is.null)==T)) stop("Cannot input any variables as NULL.")
if(any(lapply(all,length) != 1)==T) stop("All inputs must be of length 1.")
num2=list(S,t,r,dividend,df,D,k)
na.num2=num2[which(lapply(num2,is.na)==F)]
if(any(lapply(na.num2,is.numeric)==F))stop("S, t, r, dividend, df, D, and k must be numeric.")
nalist=list(S,t,r,position,div.structure,df,plot)
if(any(lapply(nalist,is.na)==T)) stop("S, t, r, position, div.structure, df, and plot cannot be NA.")
NA.Neg=array(c(S,t,r,dividend,D,k,df))
NA.Neg.Str=c("S","t","r","dividend","D","k","df")
app=apply(NA.Neg,1,is.na)
na.s=which(app==F & NA.Neg<=0)
if(length(na.s)>0) {errs=paste(NA.Neg.Str[na.s],collapse=" & ")
stop(cat("Error: '",errs, "' must be positive real number(s).\n"))}
na.s2=which(app==F & NA.Neg==Inf)
if(length(na.s2)>0) {errs=paste(NA.Neg.Str[na.s2],collapse=" & ")
stop(cat("Error: '",errs, "' cannot be infinite.\n"))}
stopifnot(is.logical(plot))
if(df != round(df)) stop("df must be an integer.")
if(position != "short" & position != "long") stop("Invalid position.")
if(div.structure != "none" & div.structure != "continuous" & div.structure != "discrete") stop("Invalid dividend structure.")
if(div.structure=="continuous" & is.na(D)) stop("Missing D.")
if(div.structure=="continuous" & is.na(D)==FALSE & D <=0) stop("D <=0")
if((div.structure=="none" | div.structure=="continuous") & is.na(dividend)==FALSE ) warning("Dividend value will be ignored.")
if((div.structure=="none" | div.structure=="discrete") & is.na(D)==FALSE ) warning("D value will be ignored.")
if((div.structure=="none" | div.structure=="continuous") & is.na(k)==FALSE ) warning("k value will be ignored.")
if(div.structure=="discrete"){
if(is.na(dividend)) stop("Dividend not specified.")
if(is.na(dividend)==F & dividend<0) stop("Dividend < 0")
if(is.na(dividend)==F & dividend==0) stop("Set div.structure = none")
eff.i=exp(r)-1
int=(1+eff.i)^(1/df)-1
t1=t*df
if(!is.na(k)){
if(int==k){
price=S*exp(r*t)-dividend*t1/(1+int)*exp(r*t)
}
if(int != k){
price=S*exp(r*t)-dividend*(1-((1+k)/(1+int))^t1)/(int-k)*exp(r*t)
}
}
if(is.na(k)){
price=S*exp(r*t)-dividend*((1+int)^t1-1)/int
}
}
if(div.structure=="none") price=S*exp(r*t)
if(div.structure=="continuous") price=S*exp((r-D)*t)
price=price*exp(-r*t)
stock=seq(0,price,length.out=6)
stock=c(stock,round(seq(price,price*2,length.out=6)))
stock=sort(unique(round(stock)))
if(position=="long") payoff=stock-price else payoff=price-stock
if(plot==T){
if(position=="long") m="Long Prepaid Forward\nPayoff" else m="Short Prepaid Forward\nPayoff"
plot(stock,payoff,type="l",xlab="Stock Price",main=m,ylab="Payoff",
ylim=c(min(payoff),max(payoff)),xaxt='n',yaxt='n',col="steelblue",lwd=2)
abline(h=0,lty=2,col="gray")
x=round(seq(min(payoff),max(payoff),length.out=8))
axis(2,at=x,labels=x,las=2)
axis(1,at=stock) }
out1=data.frame(stock,payoff)
names(out1)=c("Stock Price","Payoff")
out=list(Payoff=out1,Price=price)
return(out)
} |
skip_if_no_auth()
test_that("measure_get_measures_by_year_state", {
do_all <- sample(c(TRUE, FALSE), 1)
res <-
measure_get_measures_by_year_state(
years = sample(2015:2020),
state_ids = c(NA, sample(state.abb, 5)),
all = do_all
)
expect_length(
names(res),
5
)
}) |
Mplus_eeal <-function(target, konstrukt = c("R","I","A","S","E","C"),... )
{
temp2 <- readModels(target = target, what="parameters", ...)$parameters
PI<-(temp2$unstandardized[(temp2$unstandardized$paramHeader=="Variances" & temp2$unstandardized$param=="PI"),3])
PA<-(temp2$unstandardized[(temp2$unstandardized$paramHeader=="Variances" & temp2$unstandardized$param=="PA"),3])
PS<-(temp2$unstandardized[(temp2$unstandardized$paramHeader=="Variances" & temp2$unstandardized$param=="PS"),3])
PE<-(temp2$unstandardized[(temp2$unstandardized$paramHeader=="Variances" & temp2$unstandardized$param=="PE"),3])
PC<-(temp2$unstandardized[(temp2$unstandardized$paramHeader=="Variances" & temp2$unstandardized$param=="PC"),3])
temperg2 <- c(0, PI,PA,PS,PE,PC)
names(temperg2) <- konstrukt
temperg1 <- (temperg2 * 180)/pi
names(temperg1) <- konstrukt
perf.circ.rad <- c(0, 1.047198, 2.094395, 3.141593, 4.18879, 5.235988)
names(perf.circ.rad) <- konstrukt
perf.circ.deg <- (perf.circ.rad * 180)/pi
mat<-as.matrix(rbind(temperg2, perf.circ.rad))
dimnames(mat) <- list(c("empiric.circumplex","perfect.circumplex"),konstrukt)
ergebnis<-list(Mplus.datei = target, emp.winkel.grad = temperg1, emp.winkel.rad = temperg2, perf.circ.deg = perf.circ.deg, perf.circ.rad = perf.circ.rad, mat = mat)
class(ergebnis) <- c("empCirc","list")
return (ergebnis)
}
|
theme_latex = function(value = TRUE){ theme(tern.plot.latex = value) }
theme_showlatex = function(){ theme_latex(TRUE) }
theme_nolatex = function(){ theme_latex(FALSE) }
theme_hidelatex = function(){ theme_latex(FALSE) } |
.create_aemet_path <- function(api_options) {
resolution <- api_options$resolution
aemet_stamp <- lubridate::stamp("2020-12-25T00:00:00UTC", orders = "YOmdHMS", quiet = TRUE)
if (resolution == 'current_day') {
return(c('opendata', 'api', 'observacion', 'convencional', 'todas'))
}
if (resolution == 'daily') {
return(
c(
'opendata', 'api', 'valores', 'climatologicos', 'diarios', 'datos',
'fechaini', aemet_stamp(api_options$start_date),
'fechafin', aemet_stamp(api_options$end_date),
'todasestaciones'
)
)
}
stop(
api_options$resolution,
" is not a valid temporal resolution for AEMET. Please see aemet_options help for more information"
)
}
.check_status_aemet <- function(...) {
api_response <- httr::GET(...)
response_status <- httr::status_code(api_response)
if (response_status == 404) {
res <- list(
status = 'Error',
code = response_status,
message = glue::glue(
"Unable to connect to AEMET API at {api_response$url}: {httr::http_status(api_response)$message}"
)
)
return(res)
}
if (response_status == 401) {
res <- list(
status = 'Error',
code = response_status,
message = glue::glue("Invalid API Key: {httr::http_status(api_response)$message}")
)
return(res)
}
if (response_status == 429) {
res <- list(
status = 'Error',
code = response_status,
message = glue::glue(
"API request limit reached: {httr::http_status(api_response)$message}"
)
)
return(res)
}
if (stringr::str_detect(httr::http_type(api_response), "html")) {
html_text <- httr::content(api_response, 'text')
if (stringr::str_detect(html_text, "429 Too Many Requests")) {
res <- list(
status = 'Error',
code = 429,
message = "API request limit reached, taking a cooldown of 60 seconds to reset."
)
} else {
res <- list(
status = 'Error',
code = response_status,
message = glue::glue("AEMET API returned an error: {html_text}")
)
}
return(res)
}
response_content <- jsonlite::fromJSON(httr::content(api_response, as = 'text', encoding = 'ISO-8859-15'))
if (!rlang::is_null(response_content$estado) && response_content$estado != 200) {
res <- list(
status = 'Error',
code = response_content$estado,
message = glue::glue("AEMET API returned no data: {response_content$descripcion}")
)
return(res)
}
res <- list(
status = 'OK',
code = response_status,
message = "Data received",
content = response_content
)
return(res)
}
.get_info_aemet <- function(api_options) {
path_resolution <- c(
'opendata', 'api', 'valores', 'climatologicos', 'inventarioestaciones', 'todasestaciones'
)
config_httr_aemet <- switch(
Sys.info()["sysname"],
'Linux' = httr::config(ssl_cipher_list = 'DEFAULT@SECLEVEL=1'),
httr::config()
)
api_status_check <- .check_status_aemet(
"https://opendata.aemet.es",
httr::add_headers(api_key = api_options$api_key),
path = path_resolution,
httr::user_agent('https://github.com/emf-creaf/meteospain'),
config = config_httr_aemet
)
if (api_status_check$status != 'OK') {
if (api_status_check$code == 429) {
return(.manage_429_errors(api_status_check, api_options, .get_info_aemet))
} else {
stop(api_status_check$code, ':\n', api_status_check$message)
}
}
response_content <- api_status_check$content
stations_info_check <- .check_status_aemet(
response_content$datos,
httr::user_agent('https://github.com/emf-creaf/meteospain'),
config = config_httr_aemet
)
if (stations_info_check$status != 'OK') {
if (stations_info_check$code == 429) {
return(.manage_429_errors(api_status_check, api_options, .get_info_aemet))
} else {
stop(stations_info_check$code, ':\n', stations_info_check$message)
}
}
stations_info_check$content %>%
dplyr::as_tibble() %>%
dplyr::mutate(service = 'aemet') %>%
dplyr::select(
.data$service, station_id = .data$indicativo, station_name = .data$nombre, altitude = .data$altitud,
latitude = .data$latitud, longitude = .data$longitud
) %>%
dplyr::mutate(
altitude = as.numeric(stringr::str_replace_all(.data$altitude, ',', '.')),
altitude = units::set_units(.data$altitude, "m"),
latitude = dplyr::if_else(
stringr::str_detect(.data$latitude, 'S'),
-as.numeric(stringr::str_remove_all(.data$latitude, '[A-Za-z]'))/10000,
as.numeric(stringr::str_remove_all(.data$latitude, '[A-Za-z]'))/10000
),
longitude = dplyr::if_else(
stringr::str_detect(.data$longitude, 'W'),
-as.numeric(stringr::str_remove_all(.data$longitude, '[A-Za-z]'))/10000,
as.numeric(stringr::str_remove_all(.data$longitude, '[A-Za-z]'))/10000
)
) %>%
sf::st_as_sf(coords = c('longitude', 'latitude'), crs = 4326)
}
.get_data_aemet <- function(api_options) {
path_resolution <- .create_aemet_path(api_options)
config_httr_aemet <- switch(
Sys.info()["sysname"],
'Linux' = httr::config(ssl_cipher_list = 'DEFAULT@SECLEVEL=1'),
httr::config()
)
api_status_check <- .check_status_aemet(
"https://opendata.aemet.es",
httr::add_headers(api_key = api_options$api_key),
path = path_resolution,
httr::user_agent('https://github.com/emf-creaf/meteospain'),
config = config_httr_aemet
)
if (api_status_check$status != 'OK') {
if (api_status_check$code == 429) {
return(.manage_429_errors(api_status_check, api_options, .get_data_aemet))
} else {
stop(api_status_check$code, ':\n', api_status_check$message)
}
}
response_content <- api_status_check$content
stations_data_check <- .check_status_aemet(
response_content$datos,
httr::user_agent('https://github.com/emf-creaf/meteospain'),
config = config_httr_aemet
)
if (stations_data_check$status != 'OK') {
if (stations_data_check$code == 429) {
return(.manage_429_errors(api_status_check, api_options, .get_data_aemet))
} else {
stop(stations_data_check$code, ':\n', stations_data_check$message)
}
}
stations_metadata_check <- .check_status_aemet(
response_content$metadatos,
httr::user_agent('https://github.com/emf-creaf/meteospain'),
config = config_httr_aemet
)
if (stations_metadata_check$status != 'OK') {
if (stations_metadata_check$code == 429) {
return(.manage_429_errors(api_status_check, api_options, .get_data_aemet))
} else {
stop(stations_metadata_check$code, ':\n', stations_metadata_check$message)
}
}
stations_info <- .get_info_aemet(api_options)
filter_expression <- TRUE
if (!rlang::is_null(api_options$stations)) {
filter_expression <- switch(
api_options$resolution,
'current_day' = rlang::expr(.data$idema %in% api_options$stations),
'daily' = rlang::expr(.data$indicativo %in% api_options$stations)
)
}
resolution_specific_carpentry <- switch(
api_options$resolution,
'current_day' = .aemet_current_day_carpentry,
'daily' = .aemet_daily_carpentry
)
res <- stations_data_check$content %>%
dplyr::as_tibble() %>%
dplyr::filter(!! filter_expression) %>%
resolution_specific_carpentry(stations_info) %>%
dplyr::arrange(.data$timestamp, .data$station_id) %>%
relocate_vars() %>%
sf::st_as_sf()
if ((!is.null(api_options$stations)) & nrow(res) < 1) {
stop(
"Station(s) provided have no data for the dates selected.\n",
"Available stations with data for the actual query are:\n",
glue::glue_collapse(
c(unique(stations_data_check$content$indicativo), unique(stations_data_check$content$idema)),
sep = ', ', last = ' and '
)
)
}
message(
copyright_style(stations_metadata_check$content$copyright),
'\n',
legal_note_style(stations_metadata_check$content$notaLegal)
)
return(res)
}
.aemet_current_day_carpentry <- function(data, stations_info) {
data %>%
dplyr::select(
timestamp = .data$fint, station_id = .data$idema, station_name = .data$ubi,
altitude = .data$alt,
temperature = .data$ta,
min_temperature = .data$tamin,
max_temperature = .data$tamax,
relative_humidity = .data$hr,
precipitation = .data$prec,
wind_speed = .data$vv,
wind_direction = .data$dv,
longitude = .data$lon, latitude = .data$lat,
) %>%
dplyr::mutate(
service = 'aemet',
timestamp = lubridate::as_datetime(.data$timestamp),
altitude = units::set_units(.data$altitude, "m"),
temperature = units::set_units(.data$temperature, "degree_C"),
min_temperature = units::set_units(.data$min_temperature, "degree_C"),
max_temperature = units::set_units(.data$max_temperature, "degree_C"),
relative_humidity = units::set_units(.data$relative_humidity, "%"),
precipitation = units::set_units(.data$precipitation, "L/m^2"),
wind_speed = units::set_units(.data$wind_speed, "m/s"),
wind_direction = units::set_units(.data$wind_direction, "degree")
) %>%
sf::st_as_sf(coords = c('longitude', 'latitude'), crs = 4326)
}
.aemet_daily_carpentry <- function(data, stations_info) {
data %>%
dplyr::select(
timestamp = .data$fecha,
station_id = .data$indicativo, station_name = .data$nombre, station_province = .data$provincia,
mean_temperature = .data$tmed,
min_temperature = .data$tmin,
max_temperature = .data$tmax,
precipitation = .data$prec,
mean_wind_speed = .data$velmedia,
insolation = .data$sol
) %>%
dplyr::mutate(
service = 'aemet',
timestamp = lubridate::as_datetime(.data$timestamp),
mean_temperature = as.numeric(stringr::str_replace_all(.data$mean_temperature, ',', '.')),
min_temperature = as.numeric(stringr::str_replace_all(.data$min_temperature, ',', '.')),
max_temperature = as.numeric(stringr::str_replace_all(.data$max_temperature, ',', '.')),
precipitation = suppressWarnings(as.numeric(stringr::str_replace_all(.data$precipitation, ',', '.'))),
mean_wind_speed = as.numeric(stringr::str_replace_all(.data$mean_wind_speed, ',', '.')),
insolation = as.numeric(stringr::str_replace_all(.data$insolation, ',', '.')),
mean_temperature = units::set_units(.data$mean_temperature, "degree_C"),
min_temperature = units::set_units(.data$min_temperature, "degree_C"),
max_temperature = units::set_units(.data$max_temperature, "degree_C"),
precipitation = units::set_units(.data$precipitation, "L/m^2"),
mean_wind_speed = units::set_units(.data$mean_wind_speed, "m/s"),
insolation = units::set_units(.data$insolation, "h")
) %>%
dplyr::left_join(stations_info, by = c('service', 'station_id', 'station_name'))
} |
context("species")
test_that("We can extract generic information from the species table", {
needs_api()
df <- species(c("Oreochromis niloticus", "Bolbometopon muricatum"))
expect_is(df, "data.frame")
})
test_that("Check some classes and values of species table", {
needs_api()
df <- species(c("Oreochromis niloticus", "Bolbometopon muricatum"))
expect_is(df, "data.frame")
})
test_that("We can pass a species_list based on taxanomic group", {
needs_api()
fish <- species_list(Genus = "Labroides")
df <- species(fish)
expect_is(df, "data.frame")
expect_gt(dim(df)[1], 0)
})
test_that("We can pass a species_list based on taxanomic group", {
needs_api()
fish <- species_list(Genus = "Labroides")
df <- species(fish)
expect_is(df, "data.frame")
expect_gt(dim(df)[1], 0)
})
test_that("We can filter on certain fields",{
needs_api()
df <- species(c("Oreochromis niloticus", "Bolbometopon muricatum"),
fields=c('SpecCode', 'Species'))
expect_is(df, "data.frame")
expect_gt(dim(df)[1], 0)
df <- load_species_meta()
}) |
gge <- function(.data,
env,
gen,
resp,
centering = "environment",
scaling = "none",
svp = "environment",
by = NULL,
...) {
if (!missing(by)){
if(length(as.list(substitute(by))[-1L]) != 0){
stop("Only one grouping variable can be used in the argument 'by'.\nUse 'group_by()' to pass '.data' grouped by more than one variable.", call. = FALSE)
}
.data <- group_by(.data, {{by}})
}
if(is_grouped_df(.data)){
results <-
.data %>%
doo(gge,
env = {{env}},
gen = {{gen}},
resp = {{resp}},
centering = centering,
scaling = scaling,
svp = svp,
...)
return(set_class(results, c("tbl_df", "gge_group", "tbl", "data.frame")))
} else{
factors <-
.data %>%
select({{env}}, {{gen}}) %>%
mutate(across(everything(), as.factor))
vars <- .data %>% select({{resp}}, -names(factors))
vars %<>% select_numeric_cols()
factors %<>% set_names("ENV", "GEN")
listres <- list()
nvar <- ncol(vars)
for (var in 1:nvar) {
ge_mat <-
factors %>%
mutate(Y = vars[[var]]) %>%
make_mat(GEN, ENV, Y) %>%
as.matrix()
if(has_na(ge_mat)){
ge_mat <- impute_missing_val(ge_mat, verbose = FALSE, ...)$.data
warning("Data imputation used to fill the GxE matrix", call. = FALSE)
}
grand_mean <- mean(ge_mat)
mean_env <- colMeans(ge_mat)
mean_gen <- rowMeans(ge_mat)
scale_val <- apply(ge_mat, 2, sd)
labelgen <- rownames(ge_mat)
labelenv <- colnames(ge_mat)
if (any(is.na(ge_mat))) {
stop("missing data in input data frame")
}
if (any(apply(ge_mat, 2, is.numeric) == FALSE)) {
stop("not all columns are of class 'numeric'")
}
if (!(centering %in% c("none", "environment", "global", "double") |
centering %in% 0:3)) {
warning(paste("Centering method", centering, "not found; defaulting to environment centered"))
centering <- "environment"
}
if (!(svp %in% c("genotype", "environment", "symmetrical") |
svp %in% 1:3)) {
warning(paste("svp method", svp, "not found; defaulting to column metric preserving"))
svp <- "environment"
}
if (!(scaling %in% c("none", "sd") | scaling %in% 0:1)) {
warning(paste("scaling method", scaling, "not found; defaulting to no scaling"))
sd <- "none"
}
labelaxes <- paste("PC", 1:ncol(diag(svd(ge_mat)$d)), sep = "")
if (centering == 1 | centering == "global") {
ge_mat <- ge_mat - mean(ge_mat)
}
if (centering == 2 | centering == "environment") {
ge_mat <- sweep(ge_mat, 2, colMeans(ge_mat))
}
if (centering == 3 | centering == "double") {
grand_mean <- mean(ge_mat)
mean_env <- colMeans(ge_mat)
mean_gen <- rowMeans(ge_mat)
for (i in 1:nrow(ge_mat)) {
for (j in 1:ncol(ge_mat)) {
ge_mat[i, j] <- ge_mat[i, j] + grand_mean - mean_env[j] -
mean_gen[i]
}
}
}
if (scaling == 1 | scaling == "sd") {
ge_mat <- sweep(ge_mat, 2, apply(ge_mat, 2, sd), FUN = "/")
}
if (svp == 1 | svp == "genotype") {
coordgen <- svd(ge_mat)$u %*% diag(svd(ge_mat)$d)
coordenv <- svd(ge_mat)$v
d1 <- (max(coordenv[, 1]) - min(coordenv[, 1]))/(max(coordgen[,
1]) - min(coordgen[, 1]))
d2 <- (max(coordenv[, 2]) - min(coordenv[, 2]))/(max(coordgen[,
2]) - min(coordgen[, 2]))
coordenv <- coordenv/max(d1, d2)
}
if (svp == 2 | svp == "environment") {
coordgen <- svd(ge_mat)$u
coordenv <- svd(ge_mat)$v %*% diag(svd(ge_mat)$d)
d1 <- (max(coordgen[, 1]) - min(coordgen[, 1]))/(max(coordenv[,
1]) - min(coordenv[, 1]))
d2 <- (max(coordgen[, 2]) - min(coordgen[, 2]))/(max(coordenv[,
2]) - min(coordenv[, 2]))
coordgen <- coordgen/max(d1, d2)
}
if (svp == 3 | svp == "symmetrical") {
coordgen <- svd(ge_mat)$u %*% diag(sqrt(svd(ge_mat)$d))
coordenv <- svd(ge_mat)$v %*% diag(sqrt(svd(ge_mat)$d))
}
eigenvalues <- svd(ge_mat)$d
totalvar <- round(as.numeric(sum(eigenvalues^2)), 2)
varexpl <- round(as.numeric((eigenvalues^2/totalvar) * 100),
2)
if (svp == "genotype" | svp == "environment") {
d <- max(d1, d2)
} else {
d <- NULL
}
tmp <- structure(
list(coordgen = coordgen, coordenv = coordenv, eigenvalues = eigenvalues,
totalvar = totalvar, varexpl = varexpl, labelgen = labelgen,
labelenv = labelenv, labelaxes = labelaxes, ge_mat = ge_mat,
centering = centering, scaling = scaling, svp = svp,
d = d, grand_mean = grand_mean, mean_gen = mean_gen,
mean_env = mean_env, scale_val = scale_val),
class = "gge")
if (nvar > 1) {
listres[[paste(names(vars[var]))]] <- tmp
} else {
listres[[paste(names(vars[var]))]] <- tmp
}
}
return(structure(listres, class = "gge"))
}
}
plot.gge <- function(x,
var = 1,
type = 1,
sel_env = NA,
sel_gen = NA,
sel_gen1 = NA,
sel_gen2 = NA,
shape.gen = 21,
shape.env = 23,
line.type.gen = "dotted",
size.shape = 2.2,
size.shape.win = 3.2,
size.stroke = 0.3,
col.stroke = "black",
col.gen = "blue",
col.env = "forestgreen",
col.line = "forestgreen",
col.alpha = 1,
col.circle = "gray",
col.alpha.circle = 0.5,
leg.lab = NULL,
size.text.gen = 3.5,
size.text.env = 3.5,
size.text.lab = 12,
size.text.win = 4.5,
size.line = 0.5,
axis_expand = 1.2,
title = TRUE,
plot_theme = theme_metan(),
...) {
if(is.null(leg.lab)){
leg.lab <- case_when(
has_class(x, "gytb") ~ c("Y-Trait", "Gen"),
has_class(x, "gtb") ~ c("Trait", "Gen"),
TRUE ~ c("Env", "Gen")
)
} else{
leg.lab <- leg.lab
}
model <- x[[var]]
if (!has_class(model, c("gge", "gtb", "gytb"))) {
stop("The model must be of class 'gge'")
}
coord_gen <- model$coordgen[, c(1, 2)]
coord_env <- model$coordenv[, c(1, 2)]
varexpl <- model$varexpl[c(1, 2)]
labelgen <- model$labelgen
labelenv <- model$labelenv
labelaxes <- model$labelaxes[c(1, 2)]
Data <- model$ge_mat
centering <- model$centering
svp <- model$svp
scaling <- model$scaling
ngen <- nrow(coord_gen)
nenv <- nrow(coord_env)
if (centering == "none") {
stop("It is not possible to create a GGE biplot with a model produced without centering")
}
plotdata <- data.frame(rbind(data.frame(coord_gen,
type = "genotype",
label = labelgen),
data.frame(coord_env,
type = "environment",
label = labelenv)))
colnames(plotdata)[1:2] <- c("d1", "d2")
xlim <- c(min(plotdata$d1 * axis_expand),
max(plotdata$d1 * axis_expand))
ylim <- c(min(plotdata$d2 * axis_expand),
max(plotdata$d2 * axis_expand))
if (which(c(diff(xlim), diff(ylim)) == max(c(diff(xlim), diff(ylim)))) == 1) {
xlim1 <- xlim
ylim1 <- c(ylim[1] - (diff(xlim) - diff(ylim))/2,
ylim[2] + (diff(xlim) - diff(ylim))/2)
}
if (which(c(diff(xlim), diff(ylim)) == max(c(diff(xlim), diff(ylim)))) == 2) {
ylim1 <- ylim
xlim1 <- c(xlim[1] - (diff(ylim) - diff(xlim))/2,
xlim[2] + (diff(ylim) - diff(xlim))/2)
}
P1 <-
ggplot(data = plotdata, aes(x = d1, y = d2, group = "type")) +
scale_color_manual(values = c(col.env, col.gen)) +
scale_size_manual(values = c(size.text.env, size.text.gen)) +
xlab(paste(labelaxes[1], " (", round(varexpl[1], 2), "%)", sep = "")) +
ylab(paste(labelaxes[2]," (", round(varexpl[2], 2), "%)", sep = "")) +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
scale_x_continuous(limits = xlim1, expand = c(0, 0)) +
scale_y_continuous(limits = ylim1, expand = c(0, 0)) +
coord_fixed() +
plot_theme %+replace%
theme(axis.text = element_text(size = size.text.lab, colour = "black"),
axis.title = element_text(size = size.text.lab, colour = "black"))
if (type == 1) {
if(has_class(model, c("gtb", "gytb"))){
P2 <- P1 +
geom_segment(xend = 0,
yend = 0,
size = size.line,
aes(col = type),
data = plotdata,
show.legend = FALSE)
} else{
P2 <- P1 +
geom_segment(xend = 0,
yend = 0,
size = size.line,
col = alpha(col.line, col.alpha),
data = subset(plotdata, type == "environment"))
}
P2 <- P2 +
geom_segment(xend = 0,
yend = 0,
size = size.line,
col = alpha(col.line, col.alpha),
data = subset(plotdata, type == "environment")) +
geom_point(aes(d1, d2, fill = type, shape = type),
size = size.shape,
stroke = size.stroke,
color = col.stroke,
alpha = col.alpha) +
scale_shape_manual(labels = leg.lab,
values = c(shape.env, shape.gen)) +
scale_fill_manual(labels = leg.lab,
values = c(col.env, col.gen)) +
geom_text_repel(aes(col = type,
label = label,
size = type),
show.legend = FALSE,
col = c(rep(col.gen, ngen), rep(col.env, nenv))) +
plot_theme %+replace%
theme(axis.text = element_text(size = size.text.lab, colour = "black"),
axis.title = element_text(size = size.text.lab, colour = "black"))
if (title == TRUE) {
ggt <- case_when(
has_class(model, "gytb") ~ "GYT Biplot",
has_class(model, "gtb") ~ "GT Biplot",
TRUE ~ "GGE biplot"
) %>%
ggtitle()
}
}
if (type == 2) {
med1 <- mean(coord_env[, 1])
med2 <- mean(coord_env[, 2])
x1 <- NULL
for (i in 1:nrow(Data)) {
x <- solve(matrix(c(-med2, med1, med1, med2), nrow = 2),
matrix(c(0, med2 * coord_gen[i, 2] + med1 * coord_gen[i, 1]), ncol = 1))
x1 <- rbind(x1, t(x))
}
plotdata$x1_x <- NA
plotdata$x1_x[plotdata$type == "genotype"] <- x1[, 1]
plotdata$x1_y <- NA
plotdata$x1_y[plotdata$type == "genotype"] <- x1[, 2]
P2 <- P1 +
geom_segment(aes(xend = x1_x, yend = x1_y),
color = col.gen,
linetype = line.type.gen,
size = size.line,
data = subset(plotdata, type == "genotype")) +
geom_abline(intercept = 0,
slope = med2/med1,
color = col.line,
size = size.line) +
geom_abline(intercept = 0,
slope = -med1/med2,
color = col.line,
size = size.line) +
geom_segment(x = 0,
y = 0,
xend = med1,
yend = med2,
arrow = arrow(length = unit(0.3, "cm")),
size = size.line,
color = col.line) +
geom_text(aes(color = type,
label = label,
size = type),
show.legend = FALSE)
if (title == TRUE) {
ggt <- case_when(
has_class(model, "gytb") ~ "Average tester coordination view of the GYT biplot",
has_class(model, "gtb") ~ "Average tester coordination form of the GT biplot",
TRUE ~ "Mean vs. Stability"
) %>%
ggtitle()
}
}
if (type == 3) {
indice <- c(grDevices::chull(coord_gen[, 1], coord_gen[, 2]))
polign <- data.frame(coord_gen[indice, ])
indice <- c(indice, indice[1])
segs <- NULL
limx <- layer_scales(P1)$x$limits
limy <- layer_scales(P1)$y$limits
i <- 1
while (is.na(indice[i + 1]) == FALSE) {
m <- (coord_gen[indice[i], 2] - coord_gen[indice[i + 1], 2])/(coord_gen[indice[i], 1] - coord_gen[indice[i + 1], 1])
mperp <- -1/m
c2 <- coord_gen[indice[i + 1], 2] - m * coord_gen[indice[i + 1], 1]
xint <- -c2/(m - mperp)
xint <- ifelse(xint < 0, min(coord_env[, 1], coord_gen[, 1]), max(coord_env[, 1], coord_gen[, 1]))
yint <- mperp * xint
xprop <- ifelse(xint < 0, xint/limx[1], xint/limx[2])
yprop <- ifelse(yint < 0, yint/limy[1], yint/limy[2])
m3 <- which(c(xprop, yprop) == max(c(xprop, yprop)))
m2 <- abs(c(xint, yint)[m3])
if (m3 == 1 & xint < 0)
sl1 <- (c(xint, yint)/m2) * abs(limx[1])
if (m3 == 1 & xint > 0)
sl1 <- (c(xint, yint)/m2) * limx[2]
if (m3 == 2 & yint < 0)
sl1 <- (c(xint, yint)/m2) * abs(limy[1])
if (m3 == 2 & yint > 0)
sl1 <- (c(xint, yint)/m2) * limy[2]
segs <- rbind(segs, sl1)
i <- i + 1
}
rownames(segs) <- NULL
colnames(segs) <- NULL
segs <- data.frame(segs)
colnames(polign) <- c("X1", "X2")
winners <- plotdata[plotdata$type == "genotype", ][indice[-1], ] %>% add_cols(win = "yes")
others <- anti_join(plotdata, winners, by = "label") %>% add_cols(win = "no")
df_winners <- rbind(winners, others)
P2 <- P1 +
geom_polygon(data = polign,
aes(x = X1, y = X2),
fill = NA,
col = col.gen,
size = size.line) +
geom_segment(data = segs,
aes(x = X1, y = X2),
xend = 0,
yend = 0,
linetype = line.type.gen,
color = col.gen,
size = size.line) +
geom_point(data = subset(df_winners, win == "no"),
aes(d1, d2, fill = type, shape = type),
size = size.shape,
stroke = size.stroke,
alpha = col.alpha,
color = col.stroke,
show.legend = FALSE) +
geom_text_repel(data = subset(df_winners, win == "no"),
aes(col = type, label = label, size = type),
show.legend = FALSE) +
geom_point(data = subset(df_winners, win == "yes"),
aes(d1, d2, fill = type, shape = type),
size = size.shape.win,
stroke = size.stroke,
color = col.stroke,
alpha = col.alpha) +
geom_text_repel(data = subset(df_winners, win == "yes"),
aes(col = type, label = label),
show.legend = FALSE,
fontface = "bold",
size = size.text.win)
if("genotype" %in% others$type){
P2 <-
P2 +
scale_shape_manual(labels = leg.lab, values = c(shape.env, shape.gen)) +
scale_fill_manual(labels = leg.lab, values = c(col.env, col.gen))
} else{
P2 <-
suppressMessages(
P2 +
scale_shape_manual(labels = leg.lab[c(2,1)], values = c(shape.env, shape.gen)) +
scale_fill_manual(labels = leg.lab[c(2,1)], values = c(col.env, col.gen)) +
scale_color_manual(labels = leg.lab[c(2,1)], values = c(col.env, col.gen)) +
scale_size_manual(labels = leg.lab[c(2,1)], values = c(size.text.env, size.text.gen))
)
}
if (title == TRUE) {
ggt <- ggtitle("Which-won-where pattern")
ggt <- case_when(
has_class(x, "gytb") ~ "The which-won-where view of the GYT biplot",
has_class(x, "gtb") ~ "The which-won-where view of the GT biplot",
TRUE ~ "Which-won-where view of the GGE biplot"
) %>%
ggtitle()
}
}
if (type == 4) {
circles <- data.frame(x0 = 0,
y0 = 0,
start = 0,
end = pi * 2,
radio = 1:5 * max((max(coord_env[1, ]) - min(coord_env[1, ])),
(max(coord_env[2, ]) - min(coord_env[2, ])))/10)
P2 <- P1 +
geom_arc(data = circles,
aes(r = radio,
x0 = x0,
y0 = y0,
start = start,
end = end),
color = col.circle,
alpha = col.alpha.circle,
size = size.line,
inherit.aes = F,
na.rm = TRUE) +
geom_segment(xend = 0,
yend = 0,
x = mean(coord_env[, 1]),
y = mean(coord_env[, 2]),
arrow = arrow(ends = "first", length = unit(0.1, "inches")),
size = size.line,
color = col.line) +
geom_abline(intercept = 0,
slope = mean(coord_env[, 2])/mean(coord_env[, 1]),
color = col.line,
size = size.line) +
geom_point(aes(d1, d2, fill = type, shape = type),
size = size.shape,
stroke = size.stroke,
color = col.stroke,
alpha = col.alpha) +
scale_shape_manual(labels = leg.lab, values = c(shape.env, shape.gen)) +
scale_fill_manual(labels = leg.lab, values = c(col.env, col.gen)) +
geom_segment(data = subset(plotdata, type == "environment"),
xend = 0,
yend = 0,
color = alpha(col.line, col.alpha),
size = size.line) +
geom_text_repel(aes(col = type, label = label, size = type),
show.legend = FALSE,
color = c(rep(col.gen, ngen), rep(col.env, nenv)))
if (title == TRUE) {
ggt <- ggtitle("Discriminativeness vs. representativeness")
}
}
if (type == 5) {
if (!sel_env %in% labelenv) {
stop(paste("The environment", sel_env, "is not in the list of environment labels"))
}
venvironment <- labelenv == sel_env
x1 <- NULL
for (i in 1:nrow(Data)) {
x <- solve(matrix(c(-coord_env[venvironment, 2],
coord_env[venvironment, 1],
coord_env[venvironment, 1],
coord_env[venvironment, 2]),
nrow = 2),
matrix(c(0, coord_env[venvironment, 1] * coord_gen[i, 1] +
coord_env[venvironment, 2] * coord_gen[i, 2]), ncol = 1))
x1 <- rbind(x1, t(x))
}
plotdata$x1_x <- NA
plotdata$x1_x[plotdata$type == "genotype"] <- x1[, 1]
plotdata$x1_y <- NA
plotdata$x1_y[plotdata$type == "genotype"] <- x1[, 2]
P2 <- P1 + geom_segment(data = subset(plotdata, type == "genotype"),
aes(xend = x1_x, yend = x1_y),
col = col.gen,
linetype = line.type.gen) +
geom_abline(slope = coord_env[venvironment, 2]/coord_env[venvironment, 1],
intercept = 0,
color = alpha(col.line, col.alpha),
size = size.line) +
geom_abline(slope = -coord_env[venvironment, 1]/coord_env[venvironment, 2],
intercept = 0,
col = alpha(col.line, col.alpha),
size = size.line) +
geom_segment(data = subset(plotdata, type == "environment" & label == sel_env),xend = 0,
yend = 0,
col = alpha(col.line, col.alpha),
size = size.line,
arrow = arrow(ends = "first", length = unit(0.5, "cm"))) +
geom_text(data = subset(plotdata, type == "genotype"),
aes(label = label),
show.legend = FALSE,
color = col.gen,
size = size.text.gen) +
geom_text(data = subset(plotdata, type == "environment" & label %in% sel_env),
aes(label = label),
show.legend = FALSE,
col = col.env,
size = size.text.env,
fontface = "bold",
hjust = "outward",
vjust = "outward") +
geom_point(data = subset(plotdata, type == "environment" & label == sel_env),
aes(d1, d2),
shape = 1,
color = col.stroke,
size = 4)
if (title == TRUE) {
ggt <- ggtitle(paste("Environment:", sel_env))
}
}
if (type == 6) {
med1 <- mean(coord_env[, 1])
med2 <- mean(coord_env[, 2])
mod <- max((coord_env[, 1]^2 + coord_env[, 2]^2)^0.5)
xcoord <- sign(med1) * (mod^2/(1 + med2^2/med1^2))^0.5
ycoord <- (med2/med1) * xcoord
circles <- data.frame(x0 = xcoord,
y0 = ycoord,
start = 0,
end = pi * 2,
radio = 1:8 * ((xcoord - med1)^2 + (ycoord - med2)^2)^0.5/3)
P2 <- P1 + geom_abline(intercept = 0,
slope = med2/med1,
col = col.line,
size = size.line) +
geom_abline(intercept = 0,
slope = -med1/med2,
color = col.line,
size = size.line) +
geom_arc(data = circles,
aes(r = radio,
x0 = x0,
y0 = y0,
start = start,
end = end),
col = col.circle,
alpha = col.alpha.circle,
inherit.aes = F,
na.rm = TRUE) +
geom_segment(x = 0,
y = 0,
xend = xcoord,
yend = ycoord,
arrow = arrow(length = unit(0.15, "inches")),
size = size.line,
color = col.line) +
geom_point(fill = col.env,
shape = shape.env,
size = size.shape,
stroke = size.stroke,
color = col.stroke,
alpha = col.alpha,
data = subset(plotdata, type == "environment")) +
geom_text_repel(data = subset(plotdata, type == "environment"),
aes(label = label),
size = size.text.env,
show.legend = FALSE,
col = col.env) +
geom_point(aes(xcoord, ycoord),
shape = 1,
size = 4,
color = col.stroke)
if (title == TRUE) {
ggt <- ggtitle("Ranking Environments")
}
}
if (type == 7) {
if (!sel_gen %in% labelgen) {
stop(paste("The genotype", sel_gen, "is not in the list of genotype labels"))
}
vgenotype <- labelgen == sel_gen
x1 <- NULL
for (i in 1:ncol(Data)) {
x <- solve(matrix(c(-coord_gen[vgenotype, 2],
coord_gen[vgenotype, 1],
coord_gen[vgenotype, 1],
coord_gen[vgenotype, 2]),
nrow = 2),
matrix(c(0, coord_gen[vgenotype, 1] * coord_env[i, 1] +
coord_gen[vgenotype, 2] * coord_env[i, 2]),
ncol = 1))
x1 <- rbind(x1, t(x))
}
plotdata$x1_x <- NA
plotdata$x1_x[plotdata$type == "environment"] <- x1[, 1]
plotdata$x1_y <- NA
plotdata$x1_y[plotdata$type == "environment"] <- x1[, 2]
P2 <- P1 + geom_segment(data = subset(plotdata, type == "environment"),
aes(xend = x1_x, yend = x1_y),
col = col.line,
linetype = line.type.gen) +
geom_abline(slope = coord_gen[vgenotype, 2]/coord_gen[vgenotype, 1],
intercept = 0,
color = alpha(col.gen, col.alpha),
size = size.line) +
geom_abline(slope = -coord_gen[vgenotype, 1]/coord_gen[vgenotype, 2],
intercept = 0,
col = alpha(col.gen, col.alpha),
size = size.line) +
geom_segment(data = subset(plotdata, type == "genotype" & label == sel_gen),
xend = 0,
yend = 0,
col = alpha(col.gen, col.alpha),
arrow = arrow(ends = "first", length = unit(0.5, "cm")),
size = size.line) +
geom_text(data = subset(plotdata, type == "environment"),
aes(label = label),
show.legend = FALSE,
color = col.env,
size = size.text.gen) +
geom_text(data = subset(plotdata, type == "genotype" & label %in% sel_gen),
aes(label = label),
show.legend = FALSE,
color = col.gen,
size = size.text.gen,
fontface = "bold",
hjust = "outward",
vjust = "outward") +
geom_point(data = subset(plotdata, type == "genotype" & label == sel_gen),
aes(d1, d2),
shape = 1,
color = col.stroke,
size = 4)
if (title == TRUE) {
ggt <- ggtitle(paste("Genotype:", sel_gen))
}
}
if (type == 8) {
med1 <- mean(coord_env[, 1])
med2 <- mean(coord_env[, 2])
coordx <- 0
coordy <- 0
for (i in 1:nrow(Data)) {
x <- solve(matrix(c(-med2, med1, med1, med2), nrow = 2),
matrix(c(0, med2 * coord_gen[i, 2] + med1 * coord_gen[i, 1]), ncol = 1))
if (sign(x[1]) == sign(med1)) {
if (abs(x[1]) > abs(coordx)) {
coordx <- x[1]
coordy <- x[2]
}
}
}
circles <- data.frame(x0 = coordx,
y0 = coordy,
radio = 1:10 * ((coordx - med1)^2 + (coordy - med2)^2)^0.5/3)
P2 <- P1 +
geom_abline(intercept = 0,
slope = med2/med1,
col = col.gen,
size = size.line) +
geom_abline(intercept = 0,
slope = -med1/med2,
color = col.gen,
size = size.line) +
geom_arc(data = circles,
aes(r = radio,
x0 = x0,
y0 = y0,
start = 0,
end = pi * 2),
color = col.circle,
alpha = col.alpha.circle,
size = size.line,
inherit.aes = F) +
geom_segment(x = 0,
y = 0,
xend = coordx,
yend = coordy,
arrow = arrow(length = unit(0.15, "inches")),
size = size.line,
color = col.gen) +
geom_point(aes(d1, d2, fill = type, shape = type),
size = size.shape,
stroke = size.stroke,
color = col.stroke,
alpha = col.alpha) +
scale_shape_manual(labels = leg.lab, values = c(shape.env, shape.gen)) +
scale_fill_manual(labels = leg.lab, values = c(col.env, col.gen)) +
geom_text_repel(aes(col = type, label = label, size = type),
show.legend = FALSE,
color = c(rep(col.gen, ngen), rep(col.env, nenv))) +
geom_point(aes(coordx, coordy),
shape = 1,
color = col.stroke,
size = 3)
if (title == TRUE) {
ggt <- ggtitle("Ranking Genotypes")
}
}
if (type == 9) {
if (!sel_gen1 %in% labelgen) {
stop(paste("The genotype", sel_gen1, "is not in the list of genotype labels"))
}
if (!sel_gen2 %in% labelgen) {
stop(paste("The genotype", sel_gen2, "is not in the list of genotype labels"))
}
if (sel_gen1 == sel_gen2) {
stop(paste("It is not possible to compare a genotype to itself"))
}
vgenotype1 <- labelgen == sel_gen1
vgenotype2 <- labelgen == sel_gen2
P2 <- P1 +
geom_segment(x = plotdata$d1[plotdata$label == sel_gen1 & plotdata$type == "genotype"],
xend = plotdata$d1[plotdata$label == sel_gen2 & plotdata$type == "genotype"],
y = plotdata$d2[plotdata$label == sel_gen1 & plotdata$type == "genotype"],
yend = plotdata$d2[plotdata$label == sel_gen2 & plotdata$type == "genotype"],
col = col.gen,
size = size.line) +
geom_abline(intercept = 0,
slope = -(coord_gen[vgenotype1, 1] - coord_gen[vgenotype2, 1])/
(coord_gen[vgenotype1, 2] - coord_gen[vgenotype2, 2]),
color = col.gen,
size = size.line) +
geom_text(aes(label = label),
show.legend = FALSE,
data = subset(plotdata, type == "environment"),
col = col.env,
size = size.text.env) +
geom_text(data = subset(plotdata, type == "genotype" & !label %in% c(sel_gen1, sel_gen2)),
aes(label = label),
show.legend = FALSE,
col = alpha(col.gen, alpha = col.alpha),
size = size.text.gen) +
geom_text(data = subset(plotdata, type == "genotype" & label %in% c(sel_gen1, sel_gen2)),
aes(label = label),
show.legend = FALSE,
col = col.gen,
size = size.text.win,
hjust = "outward",
vjust = "outward") +
geom_point(data = subset(plotdata, type == "genotype" & label %in% c(sel_gen1, sel_gen2)),
shape = shape.gen,
fill = col.gen,
color = col.stroke,
size = size.shape) +
plot_theme
if (title == TRUE) {
ggt <- ggtitle(paste("Comparison of Genotype", sel_gen1, "with Genotype", sel_gen2))
}
}
if (type == 10) {
P2 <- P1 +
geom_segment(data = subset(plotdata, type == "environment"),
xend = 0,
yend = 0,
col = alpha(col.line, col.alpha),
size = size.line) +
geom_point(data = subset(plotdata, type == "environment"),
shape = shape.env,
fill = col.env,
size = size.shape,
stroke = size.stroke,
color = col.stroke,
alpha = col.alpha) +
geom_text_repel(data = subset(plotdata, type == "environment"),
aes(label = label),
show.legend = FALSE,
col = col.env,
size = size.text.env)
if (title == TRUE) {
if(any(class(x) == "gtb")){
ggt <- ggtitle("Relationship Among Traits")
} else{
ggt <- ggtitle("Relationship Among Environments")
}
}
}
if (title == T) {
scal_text <- ifelse(scaling == 1 | scaling == "sd", "Scaling = 1", "Scaling = 0")
cent_text <-
case_when(
centering == 1 | centering == "global" ~ "Centering = 1",
centering == 2 | centering == "environment" | centering == "trait" ~ "Centering = 2",
centering == 3 | centering == "double" ~ "Centering = 3",
FALSE ~ "No Centering"
)
svp_text <-
case_when(
svp == 1 | svp == "genotype" ~ "SVP = 1",
svp == 2 | svp == "environment" | svp == "trait" ~ "SVP = 2",
svp == 3 | svp == "symmetrical" ~ "SVP = 3"
)
annotationtxt <- paste(scal_text, ", ", cent_text, ", ", svp_text, sep = "")
P2 <- P2 + ggtitle(label = ggt, subtitle = annotationtxt)
}
return(P2)
}
predict.gge <- function(object, naxis = 2, output = "wide", ...) {
if (has_class(object, "gtb")) {
stop("The object must be of class 'gge'.")
}
listres <- list()
varin <- 1
for (var in 1:length(object)) {
objectin <- object[[var]]
if (naxis > min(dim(objectin$coordenv))) {
stop("The number of principal components cannot be greater than min(g, e), in this case ",
min(dim(objectin$coordenv)))
}
if (objectin$svp == "environment" | objectin$svp == 2) {
pred <- (objectin$coordgen[, 1:naxis] * (objectin$d)) %*%
t(objectin$coordenv[, 1:naxis])
}
if (objectin$svp == "genotype" | objectin$svp == 1) {
pred <- (objectin$coordgen[, 1:naxis] %*% t(objectin$coordenv[,
1:naxis] * (objectin$d)))
}
if (objectin$svp == "symmetrical" | objectin$svp == 3) {
pred <- (objectin$coordgen[, 1:naxis] %*% t(objectin$coordenv[,
1:naxis]))
}
if (objectin$scaling == "sd" | objectin$scaling == 1) {
pred <- sweep(pred, 2, objectin$scale_val, FUN = "*")
}
if (objectin$centering == "global" | objectin$centering == 1) {
pred <- pred + objectin$grand_mean
}
if (objectin$centering == "environment" | objectin$centering ==
2) {
pred <- sweep(pred, 2, objectin$mean_env, FUN = "+")
}
if (objectin$centering == "double" | objectin$centering == 3) {
for (i in 1:nrow(pred)) {
for (j in 1:ncol(pred)) {
pred[i, j] <- pred[i, j] - objectin$grand_mean +
objectin$mean_env[j] + objectin$mean_gen[i]
}
}
}
rownames(pred) <- objectin$labelgen
colnames(pred) <- objectin$labelenv
if (output == "wide") {
temp <- as_tibble(pred, rownames = NA)
}
if (output == "long") {
temp <-
pred %>%
make_long() %>%
as_tibble()
}
listres[[paste(names(object[var]))]] <- temp
}
return(listres)
} |
setCovf_under<-function(process,parameter,...){
if(missing(process)){
cat("Error from setCovf.R: parameter process is missing\n")
return(NULL)
}
if(!isS4(process)){
cat("Error from setCovf.R: parameter process is not of type process\n")
return(NULL)
}else if(!class(process)[1]=="process"){
cat("Error from setCovf.R: parameter process is not of type process\n")
return(NULL)
}
manifold<-process@manifold
names=c("fBm","mBm", "2pfBm","stdfBm","fBs","afBf","bridge")
typeproc<-process@name
if(all(typeproc!=names)){
cat("Error from setCovf.R: parameter typeproc does not exist\n")
return(NULL)
}
if (typeproc == "fBm"){
if (is.null(parameter)){
cat("Warning from setCovf.R: parameter has been set to 0.5\n")
parameter<-0.5
}
if (!is.numeric(parameter)){
cat("Error from constructcovf.R: parameter must be numeric\n")
return(NULL)
}
if (parameter>=1|parameter<=0){
cat("Error from constructcovf.R: parameter must belong to (0,1)\n")
return(NULL)
}
Origine<-manifold@origin
d<-manifold@distance
if (manifold@name=="sphere"¶meter>0.5){
cat("There is no fBm on the sphere for H>0.5")
return(NULL)
}
R<-function(xi,xj){
return(1/2*(d(Origine,xi)^{2*parameter}+d(Origine,xj)^{2*parameter}-d(xi,xj)^{2*parameter}))
}
nameProcess<-deparse(substitute(process))
process@covf<-R
process@parameter<-parameter
assign (nameProcess,process,envir = parent.frame())
return(NULL)
}
if (typeproc=="mBm"){
if (is.null(parameter)){
cat("Warning from constructcovf.R: parameter has been set to constant function equal to 0.5\n")
parameter<-function(x){return(0.5)}
}
if (!is.function(parameter)){
cat("Error from constructcovf.R: parameter must be a function\n")
return(NULL)
}
Origine<-manifold@origin
d<-manifold@distance
R<-function(xi,xj){
H1<-parameter(xi)
H2<-parameter(xj)
alpha<-1/2*(H1+H2)
return(C2D(alpha)^2/(2*C2D(H1)*C2D(H2))*(d(Origine,xi)^(2*alpha)+d(Origine,xj)^(2*alpha)-d(xi,xj)^(2*alpha)))
}
nameProcess<-deparse(substitute(process))
process@covf<-R
process@parameter<-parameter
assign (nameProcess,process,envir = parent.frame())
return(NULL)
}
if (typeproc=="2pfBm"){
if (missing(parameter)){
cat("Warning from constructcovf.R: parameter H and K has been set to constant equal to 0.5 and 1 respectively\n")
parameter<-list(H<-0.5,K=1)
}
Origine<-manifold@origin
d<-manifold@distance
H<-parameter$H
K<-parameter$K
R<-function(xi,xj){
return(1/2*((d(Origine,xi)^(2*H)+d(Origine,xj)^(2*H))^K-d(xi,xj)^(2*H*K)))
}
nameProcess<-deparse(substitute(process))
process@covf<-R
process@parameter<-parameter
assign (nameProcess,process,envir = parent.frame())
return(NULL)
}
if (typeproc=="stdfBm"){
if (is.null(parameter)){
cat("Warning from constructcovf.R: parameter H, tau and sigma has been set to constant equal to 0.5, function equal to identity and function equal to 1 respectively\n")
parameter<-list(H=0.5,tau=function(x){return(x)},sigma=function(x){return(1)})
}
Origine<-manifold@origin
d<-manifold@distance
tau<-parameter$tau
sigma<-parameter$sigma
H<-parameter$H
R<-function(xi,xj){
return(sigma(xi)*sigma(xj)/2*(d(Origine,tau(xi))^(2*H)+d(Origine,tau(xj))^(2*H)-d(tau(xi),tau(xj))^(2*H)))
}
nameProcess<-deparse(substitute(process))
process@covf<-R
process@parameter<-parameter
assign (nameProcess,process,envir = parent.frame())
return(NULL)
}
if (typeproc=="fBs"){
if (any(manifold@name==c("line","plane"))){
dimension<-dim(manifold@atlas)[1]
if (is.null(parameter)){
cat("Warning from constructcovf.R: parameter H has been set to constant equal to (0.5,0.5)\n")
parameter<-rep(0.5,dimension)
}
Origine<-manifold@origin
d<-manifold@distance
H<-parameter
R<-function(xi,xj){
p<-1
for (i in 1:dimension){
p<-p*1/2*(abs(Origine[i]-xi[i])^{2*H[i]}+abs(Origine[i]-xj[i])^{2*H[i]}-abs(xi[i]-xj[i])^{2*H[i]})
}
return(p)
}
nameProcess<-deparse(substitute(process))
process@covf<-R
process@parameter<-parameter
assign (nameProcess,process,envir = parent.frame())
}else{
cat("There is no fBs on this manifold")
return(NULL)
}
}
if (typeproc=="afBf"){
if (manifold@name=="plane"){
dimension<-2
if (missing(parameter)){
cat("Warning from constructcovf.R: parameters H, theta1 and theta2 have been set to 0.5, 0 and pi/2 respectively\n")
parameter<-list(H=0.5, theta1=0, theta2=pi/2)
}
Origine<-manifold@origin
d<-manifold@distance
H<-parameter$H
theta1<-parameter$theta1
theta2<-parameter$theta2
Ibeta <- function(x,a,b){ pbeta(x,a,b)*beta(a,b) }
R<-function(xi,xj){
if ((xi[1]==0 & xi[2]==0)|(xj[1]==0 & xj[2]==0)){
return(0)
}
y <- atan(xi[2]/xi[1])
Ib<-0
if ((y+pi/2 >= theta1) & (y+pi/2 <= theta2)) {
Ib<-Ibeta((1-sin(theta2-y))/2,H+1/2,H+1/2)+Ibeta((1-sin(theta1-y))/2,H+1/2,H+1/2)
}else if (y-pi/2 >= theta1 & y-pi/2 <= theta2) {
Ib<-Ibeta((1+sin(theta2-y))/2,H+1/2,H+1/2)+Ibeta((1+sin(theta1-y))/2,H+1/2,H+1/2)
}else{
Ib<-abs(Ibeta((1-sin(theta2-y))/2,H+1/2,H+1/2)-Ibeta((1-sin(theta1-y))/2,H+1/2,H+1/2))
}
A<-2^(2*H-1)*pi/H/gamma(2*H)/sin(pi*H)*Ib*(xi[1]^2+xi[2]^2)^H
if (all(xi==xj)){
return(2*A)
}else{
y <- atan(xj[2]/xj[1])
Ib<-0
if ((y+pi/2 >= theta1) & (y+pi/2 <= theta2)) {
Ib<-Ibeta((1-sin(theta2-y))/2,H+1/2,H+1/2)+Ibeta((1-sin(theta1-y))/2,H+1/2,H+1/2)
}else if (y-pi/2 >= theta1 & y-pi/2 <= theta2) {
Ib<-Ibeta((1+sin(theta2-y))/2,H+1/2,H+1/2)+Ibeta((1+sin(theta1-y))/2,H+1/2,H+1/2)
}else{
Ib<-abs(Ibeta((1-sin(theta2-y))/2,H+1/2,H+1/2)-Ibeta((1-sin(theta1-y))/2,H+1/2,H+1/2))
}
B<-2^(2*H-1)*pi/H/gamma(2*H)/sin(pi*H)*Ib*(xj[1]^2+xj[2]^2)^H
yd<-(xj[2]-xi[2])
xd<-(xj[1]-xi[1])
y <- atan(yd/xd)
Ib<-0
if ((y+pi/2 >= theta1) & (y+pi/2 <= theta2)) {
Ib<-Ibeta((1-sin(theta2-y))/2,H+1/2,H+1/2)+Ibeta((1-sin(theta1-y))/2,H+1/2,H+1/2)
}else if (y-pi/2 >= theta1 & y-pi/2 <= theta2) {
Ib<-Ibeta((1+sin(theta2-y))/2,H+1/2,H+1/2)+Ibeta((1+sin(theta1-y))/2,H+1/2,H+1/2)
}else{
Ib<-abs(Ibeta((1-sin(theta2-y))/2,H+1/2,H+1/2)-Ibeta((1-sin(theta1-y))/2,H+1/2,H+1/2))
}
C<-2^(2*H-1)*pi/H/gamma(2*H)/sin(pi*H)*Ib*(xd^2+yd^2)^H
return(A+B-C)
}
}
nameProcess<-deparse(substitute(process))
process@covf<-R
process@parameter<-parameter
assign (nameProcess,process,envir = parent.frame())
}else{
cat("There is no afBf on this manifold")
return(NULL)
}
}
if (typeproc=="bridge"){
Gamma<-parameter$Gamma
R<-parameter$R
M<-dim(Gamma)[2]
taille<-dim(Gamma)[1]-1
CovaGam<-matrix(0,M,M)
Tp<-CovaGam
for (i in 1:M){
for (j in 1:M){
CovaGam[i,j]<-R(Gamma[1:taille,i],Gamma[1:taille,j])
}
}
DC<-det(CovaGam)
if (DC==0){
cat("Warning from constructcovf.R: GammaT%*%Gamma is not invertible \n")
return(NULL)
}else{
Tp<-solve(CovaGam)
}
parameter$Tp=Tp
Rgamma<-function(xi,xj){
Rtmp<-parameter$R
S2<-matrix(0,M,1)
S1<-t(S2)
for (i in 1:M){
S1[1,i]<-Rtmp(xi,Gamma[1:taille,i])
S2[i,1]<-Rtmp(xj,Gamma[1:taille,i])
}
return(Rtmp(xi,xj)-S1%*%parameter$Tp%*%S2)
}
nameProcess<-deparse(substitute(process))
process@parameter<-parameter
process@covf<-Rgamma
assign (nameProcess,process,envir = parent.frame())
return(Rgamma)
}
} |
GMLTimeInstant <- R6Class("GMLTimeInstant",
inherit = GMLAbstractTimeGeometricPrimitive,
private = list(
xmlElement = "TimeInstant",
xmlNamespacePrefix = "GML"
),
public = list(
timePosition = NULL,
initialize = function(xml = NULL, timePosition){
super$initialize(xml = xml)
if(is.null(xml)){
self$setTimePosition(timePosition)
}
},
setTimePosition = function(timePosition){
timePos <- timePosition
if(is(timePos, "numeric")) timePos <- as(timePos, "character")
if(!(is(timePos, "character") & nchar(timePos)%in%c(4,7))){
if(!is(timePos,"POSIXt") && !is(timePos, "Date")){
stop("Value should be of class ('POSIXct','POSIXt') or 'Date'")
}
}
self$timePosition <- GMLElement$create("timePosition", value = timePos)
}
)
) |
pmtest_internal <-
function(X, alpha = 0.05, GrpID, VarID, rtf){
outS <- data.frame(
k = integer(),
MESOR = numeric(),
CI.M = numeric(),
Amplitude = numeric(),
CI.A = numeric(),
PHI = numeric(),
CI.PHI = character(),
P = numeric(),
errMsg = numeric()
)
as.list(outS)
pmc <- data.frame(
k = integer(),
MESOR = numeric(),
Amplitude = numeric(),
PHI = numeric(),
P = numeric()
)
as.list(pmc)
K <- nrow(X)
m <- length(unique(X[,GrpID]))
k <- table(X[,GrpID])
vecLen<-length(k)
phi1=vector(mode="logical",length=vecLen)
phi2=vector(mode="logical",length=vecLen)
den=vector(mode="logical",length=vecLen)
an1=vector(mode="logical",length=vecLen)
an2=vector(mode="logical",length=vecLen)
rownames<-X[,GrpID]
X_list <- split(X, rownames)
beta_star <- X$amp*cos(X$phi * pi/180)
gamma_star <- -X$amp*sin(X$phi * pi/180)
beta <- sapply(X_list, function(x) x$amp*cos(x$phi * pi/180), simplify = FALSE)
beta_hat <- sapply(beta, mean)
gamma <- sapply(X_list, function(x) -x$amp*sin(x$phi * pi/180), simplify = FALSE)
gamma_hat <- sapply(gamma, mean)
M <- sapply(X_list, function(x) mean(x$mesor))
phi <- mapply(function(b, g) -phsrd(b, g), beta, gamma)
phi_star <- -phsrd(beta_star, gamma_star)
A <- mapply(function(b, g) module(b, g), beta, gamma)
A_star <- module(beta_star, gamma_star)
sigma_matrices <- sapply(names(X_list), function(i) {generate_sigma_matrix(X_list[[i]], beta[[i]], gamma[[i]])},simplify=FALSE, USE.NAMES=TRUE)
df<-k-1
if (all(df>1)){
tval <- qt(1-alpha/2, df)
cim <- sapply(names(X_list), function(i) {cimf(tval[i], sigma_matrices[[i]], k[i])}, USE.NAMES=TRUE)
c22 <- sapply(names(X_list), function(i) {c22f(sigma_matrices[[i]], beta_hat[[i]], gamma_hat[[i]], k[i], A[[i]])}, USE.NAMES=TRUE)
cia <- tval*sqrt(c22)
cia[c22<=0]<--.1
c23 <- sapply(names(X_list), function(i) {c23f(sigma_matrices[[i]], beta_hat[[i]], gamma_hat[[i]], k[i], A[[i]])}, USE.NAMES=TRUE)
c33 <- sapply(names(X_list), function(i) {c33f(sigma_matrices[[i]], beta_hat[[i]], gamma_hat[[i]], k[i], A[[i]])}, USE.NAMES=TRUE)
names(c23)<-names(tval)
names(c33)<-names(tval)
an2 <- A^2 - (c22*c33 - c23^2) * (tval^2)/c33
an2LT0<-which(an2<0)
an2GTE0<-which(an2>=0)
if (length(an2LT0)!=length(an2)){
den<-(A^2)-c22*(tval^2)
an2<-tval*sqrt(c33)*sqrt(an2)
an1<-c23*(tval^2)
names(an1)<-names(tval)
names(den)<-names(tval)
phi1[an2GTE0]=sapply(names(X_list)[an2GTE0], function(i) {phase(phix=(an1[i]+an2[i])/den[i],c33[i],c23[i],phi[i])}, USE.NAMES=TRUE)
phi2[an2GTE0]=sapply(names(X_list)[an2GTE0], function(i) {phase(phix=(an1[i]-an2[i])/den[i],c33[i],c23[i],phi[i])}, USE.NAMES=TRUE)
}
phi1[an2LT0]<-NA
phi2[an2LT0]<-NA
r <- sapply(names(X_list), function(i) {r_f(sigma_matrices[[i]])}, USE.NAMES=TRUE)
fval <- sapply(names(X_list), function(i) {fvalf(sigma_matrices[[i]],beta_hat[[i]],gamma_hat[[i]],k[i],r[i])},USE.NAMES=TRUE)
names(fval)<-names(r)
p <- sapply(names(X_list), function(i) pf(fval[i], df1 = 2, df2 = k[i] - 2, lower.tail = FALSE))
sigma_matrix_hat <- Reduce(`+`, lapply(1:m, function(j) (k[j] - 1) * sigma_matrices[[j]]/(K - m)))
M_bar <- sum(k * M)/K
beta_bar <- sum(k * beta_hat)/K
gamma_bar <- sum(k * gamma_hat)/K
print("meanM, A*, phi*")
print(mean(X$mesor))
print(A_star)
print(phi_star)
t_mat <- matrix(0, nrow = 3, ncol = 3)
t_mat[1,1] <- sum(k * (M - M_bar)^2)
t_mat[1,2] <- sum(k * (M - M_bar) * (beta_hat - beta_bar))
t_mat[1,3] <- sum(k * (M - M_bar) * (gamma_hat - gamma_bar))
t_mat[2,2] <- sum(k * (beta_hat - beta_bar)^2)
t_mat[2,3] <- sum(k * (beta_hat - beta_bar) * (gamma_hat - gamma_bar))
t_mat[3,3] <- sum(k * (gamma_hat - gamma_bar)^2)
t_mat[lower.tri(t_mat)] <- t_mat[upper.tri(t_mat)]
t1 <- t_mat[2:3, 2:3]
m_fval <- t_mat[1,1]/((m - 1) * sigma_matrix_hat[1,1])
m_p <- pf(m_fval, df1 = m-1, df2 = K-m, lower.tail = FALSE)
J <- solve(sigma_matrix_hat[2:3, 2:3]) %*% t1
print(J)
D <- det(diag(2) + J/(K-m))
print(D)
rhythm_fval <- (K-m-1)/(m-1) * (sqrt(D) - 1)
rhythm_p <- pf(rhythm_fval, df1 = 2*m - 2, df2=2*K - 2*m - 2, lower.tail = FALSE)
rhythm_df1<-2*m-2
rhythm_df2<-2*K - 2*m - 2
num <- sum(k * A^2 * sin(2*phi * pi/180))
den <- sum(k * A^2 * cos(2*phi * pi/180))
if (den==0){
populations<-paste(names(X_list),collapse=" ")
paste("F and P cannot be calculated for PHI. The denominator for phi_tilda=0 for populations: ",populations)
stop("This is a very rare case. Amplitudes and PHIs for all listed populations, together, result in 0 for sum(k * A^2 * cos(2*phi * pi/180))")
}
phi_tilda <- atan(num/den)/2
if(den < 0){
phi_tilda <- phi_tilda + pi/2
}
phi_delta<-beta_hat*cos(phi_tilda)-gamma_hat*sin(phi_tilda)
if (all(phi_delta>=0) || all(phi_delta<0)){
num <- sum(k * A^2 * sin((phi * pi/180) - phi_tilda)^2)/(m - 1)
den <- (sigma_matrix_hat[2,2] * sin(phi_tilda)^2) + (2 * sigma_matrix_hat[2,3] * cos(phi_tilda) * sin(phi_tilda)) + (sigma_matrix_hat[3,3] * cos(phi_tilda)^2)
phi_fval <- num/den
phi_p <- pf(phi_fval, df1 = m-1, df2 = K-m, lower.tail = FALSE)
} else {
phi_tilda<-NA
phi_fval<-NA
phi_p<-NA
}
phi_same<-FALSE
if ((abs(max(phi) - min(phi))) < .001 || (abs(max(phi) - min(phi)) > 359.99)){
phi_fval<-NA
phi_p<-NA
phi_same<-TRUE
}
if (abs(max(A) - min(A)) >= .0001){
num <- sum(k * (A - A_star)^2)/(m-1)
den <- (sigma_matrix_hat[2,2] * (cos(phi_star * pi/180)^2)) - (2 * sigma_matrix_hat[2,3] * cos(phi_star * pi/180)*sin(phi_star * pi/180)) + (sigma_matrix_hat[3,3]*(sin(phi_star * pi/180)^2))
amp_fval <- num/den
amp_p <- pf(amp_fval, df1 = m-1, df2 = K-m, lower.tail = FALSE)
} else {
amp_fval<-NA
amp_p<-NA
}
print("Combined: meanM, A*, phi*")
print(M_bar)
print(A_star)
print(phi_star)
printp <- round(p, 4)
printp[printp<.0005]<-c("<.001")
if (A_star < .000000000001){
phi_star<-"--"
}
outS<-rbind.data.frame(outS, cbind(k,MESOR=formatC(M,digits=3,format="f"),CI.M=formatC(cim,digits=3,format="f"),Amplitude=formatC(A,digits=3,format="f"),CI.A=formatC(cia,digits=3,format="f"),PHI=formatC(phi,digits=1,format="f"),CI.PHI=paste("(",round(phi1,1),",",round(phi2,1),")"),P=printp))
pmc<-rbind.data.frame(pmc, cbind(k=NA,MESOR=formatC(M_bar,digits=3,format="f"),CI.M="",Amplitude=formatC(A_star,digits=3,format="f"),CI.A="",PHI=formatC(phi_star,digits=1,format="f"),CI.PHI="",P=""))
rownames(pmc)[1]<-"Combined parameters:"
outS[which(A-cia<0 & p<=alpha),"errMsg"]<-paste(outS[which(A-cia<0 & p<=alpha),"errMsg"],"Warn1")
if (A_star < .000000000001){
pmc[1,"errMsg"]<- "Warn7"
} else {
pmc[1,"errMsg"]<-NA
}
outS<-rbind.data.frame(outS, pmc)
if (exists("rtf")){
addParagraph(rtf,paste("\nPopulation Mean Cosinor (PMC)"))
addTable(rtf,outS, col.justify='C',header.col.justify='C' ,font.size=11,row.names=TRUE,NA.string="--")
}
addParagraph(rtf,"\nTests of Equality of Parameters (PMC Test): ")
P <- c(m_p, amp_p, phi_p, rhythm_p)
printP <- formatC(P,digits=4,format="f")
printP[P<.0005]<-c("<.001")
out <- data.frame(df1 = c(m-1, m-1, m-1,rhythm_df1),
df2 = c(K-m, K-m, K-m,rhythm_df2),
F = formatC(c(m_fval, amp_fval, phi_fval, rhythm_fval),digits=4,format="f"),
P=printP)
row.names(out) <- c("MESOR", "Amplitude", "Acrophase", "(A, phi)")
if (is.na(phi_tilda)){
out[3,"errMsg"]<-"Warn4"
} else {
out[1,"errMsg"]<-NA
}
if (is.na(amp_fval) && is.na(amp_p)){
out[2,"errMsg"]<-"Warn5"
}
if (phi_same){
if (is.na(out[3,"errMsg"])){
out[3,"errMsg"]<-"Warn6"
} else {
out[3,"errMsg"]<-paste(out[3,"errMsg"],"; Warn6",sep="")
}
}
}
else {
outS<-rbind.data.frame(outS, cbind(k,MESOR=NA,CI.M=NA,Amplitude=NA,CI.A="",PHI=NA,CI.PHI=NA,P=NA,errMsg=""))
pmc<-rbind.data.frame(pmc, cbind(k=NA,MESOR="--",CI.M="",Amplitude="--",CI.A="",PHI="--",CI.PHI="",P="",errMsg="Warn2"))
rownames(pmc)[1]<-"Combined parameters:"
outS<-rbind.data.frame(outS, pmc)
if (exists("rtf")){
addParagraph(rtf,paste("\nPopulation Mean Cosinor (PMC)"))
addTable(rtf,outS, col.justify='C',header.col.justify='C' ,font.size=11,row.names=TRUE,NA.string="--")
}
addParagraph(rtf,"\nTests of Equality of Parameters (PMC Test): ")
out <- data.frame(df1 = NA,
df2 = NA,
F = NA,
P=NA)
out[1,"errMsg"]<-paste("Warn3")
}
return(out)
} |
roc_scores <- function(preds, actuals){
ROCPosition <- NULL
Pred <- NULL
Err <- NULL
Actual <- NULL
Count <- NULL
Value <- NULL
overall <- mean(actuals)
dt <- data.table(Pred=preds, Actual=actuals)
dt[, ROCPosition := (frank(Pred) - 1) / (.N - 1)]
dt[, Err := abs(ROCPosition - overall)]
dt[(Actual==0 & ROCPosition <= overall) | (Actual==1 & ROCPosition >= overall), Err := 0]
return(dt$Err)
} |
anovatol.int <- function (lm.out, data, alpha = 0.05, P = 0.99, side = 1, method = c("HE", "HE2",
"WBE", "ELL", "KM", "EXACT", "OCT"), m = 50)
{
method <- match.arg(method)
out <- anova(lm.out)
dims <- dim(out)
s <- sqrt(out[dims[1], 3])
df <- out[, 1]
xlev <- lm.out$xlevels
resp <- names(attr(lm.out$terms, "dataClasses"))[1]
resp.ind <- which(colnames(data) == resp)
pred.ind <- c(1:ncol(data))[c(colnames(data) %in% names(xlev))]
factors <- names(xlev)
out.list <- list()
bal <- NULL
for (i in 1:length(xlev)) {
ttt <- by(data[, resp.ind], data[, pred.ind[i]], mean)
temp.means <- as.numeric(ttt)
temp.eff <- as.numeric(by(data[, resp.ind], data[, pred.ind[i]],
length))
K <- NULL
for (j in 1:length(temp.eff)) {
K <- c(K, K.factor(n = temp.eff[j], f=tail(df,1), alpha = alpha,
P = P, side = side, method = method, m = m))
}
temp.low <- temp.means - K * s
temp.up <- temp.means + K * s
temp.mat <- data.frame(cbind(temp.means, temp.eff, K,
temp.low, temp.up))
rownames(temp.mat) <- names(ttt)
if (side == 1) {
colnames(temp.mat) <- c("mean", "n", "k", "1-sided.lower",
"1-sided.upper")
}
else colnames(temp.mat) <- c("mean", "n", "k", "2-sided.lower",
"2-sided.upper")
out.list[[i]] <- temp.mat
bal = c(bal, sum(abs(temp.eff - mean(temp.eff)) > 3))
}
bal <- sum(bal)
if (bal > 0)
warning("This procedure should only be used for balanced (or nearly-balanced) designs.",
call. = FALSE)
names(out.list) <- names(xlev)
if (side == 1) {
message("These are ", (1 - alpha) * 100, "%/", P * 100, "% ",
side, "-sided tolerance limits.")
}
else message("These are ", (1 - alpha) * 100, "%/", P * 100,
"% ", side, "-sided tolerance intervals.")
attr(out.list, "comment") <- c(resp, alpha, P)
out.list
} |
llsearch.LE3.CDS <- function(x, y, n, jlo, jhi,start_1,start_2,start_3)
{
fj <- matrix(0, n)
fxy <- matrix(0, jhi - jlo + 1)
jgrid <- expand.grid(jlo:jhi)
k.ll <- apply(jgrid, 1, p.estFUN.CDS.LE3, x = x, y = y, n = n,start_1=start_1,start_2=start_2,start_3=start_3)
fxy <- matrix(k.ll, nrow = jhi-jlo+1)
rownames(fxy) <- jlo:jhi
z <- findmax(fxy)
jcrit <- z$imax + jlo - 1
list(jhat = jcrit, value = max(fxy))
}
p.estFUN.CDS.LE3 <- function(j, x, y, n,start_1,start_2,start_3){
a <- p.est.LE3.CDS(x,y,n,j,start_1,start_2,start_3)
s2 <- a$sigma2
t2 <- a$tau2
return(p.ll.CDS(n, j, s2, t2))
}
p.est.LE3.CDS <- function(x,y,n,j,start_1,start_2,start_3){
xa <- x[1:j]
ya <- y[1:j]
jp1 <- j+1
xb <- x[jp1:n]
yb <- y[jp1:n]
fun <- nls(y ~ I(x <= x[j])*(a0 + a1*x) +
I(x > x[j])*(a0 + a1*x[j] - a1/b2 + a1/b2*exp(b2*(x-x[j]))),
start = list(a0 = 10, a1 = -0.8, b2 = 0.5))
a0 <- summary(fun)$coe[1]
a1 <- summary(fun)$coe[2]
b2 <- summary(fun)$coe[3]
b1 <- a1/b2
b0 <- a0 + a1 * x[j] - b1
beta <-c(a0,a1,b0,b1,b2)
s2<- sum((ya-a0-a1*xa)^2)/j
t2 <-sum(yb-b0-b1*exp(b2*(xb-x[j]))^2)/(n-j)
list(a0=beta[1],a1=beta[2],b0=beta[3],b1=beta[4],b2=beta[5],sigma2=s2,tau2=t2,xj=x[j])
}
p.ll.CDS <- function(n, j, s2, t2){
q1 <- n * log(sqrt(2 * pi))
q2 <- 0.5 * j * (1 + log(s2))
q3 <- 0.5 * (n - j) * (1 + log(t2))
- (q1 + q2 + q3)
}
findmax <-function(a)
{
maxa<-max(a)
imax<- which(a==max(a),arr.ind=TRUE)[1]
jmax<-which(a==max(a),arr.ind=TRUE)[2]
list(imax = imax, jmax = jmax, value = maxa)
} |
preds <- function(model, newdata = NULL, what = "mean", vary_by = NULL) {
if (is(newdata, "data.frame"))
newdata <- as.data.frame(newdata)
if (!is.null(newdata) && !is(newdata, "data.frame"))
stop("Newdata has to be in a data.frame format")
if (is.null(newdata))
newdata <- set_mean(
model_data(model),
vary_by = vary_by
)
newdata <- na.omit(newdata)
rnames <- row.names(newdata)
if (is(model, "gamlss")) {
if (what != "mean")
stop("In gamlss models there are no samples")
pred_par <-
as.data.frame(predictAll(model, newdata = newdata, type = "response",
data = model_data(model, incl_dep = TRUE)),
row.names = rnames)
pred_par <- pred_par[, !colnames(pred_par) %in% "y", drop = FALSE]
} else if (is(model, "bamlss")) {
if (what == "mean") {
pred_par <-
as.data.frame(predict(model, newdata = newdata, drop = FALSE,
type = "parameter", intercept = TRUE),
row.names = rnames)
}
if (what == "samples") {
samples_raw <-
predict(model, newdata = newdata, drop = FALSE,
type = "parameter", intercept = TRUE,
FUN = function(x) return(x))
pred_par <- preds_transformer(samples_raw, newdata = newdata)
}
} else if (is(model, "betareg") | is(model, "betatree")) {
if (what == "mean") {
pred_par <- data.frame(
mu = stats::predict(model, newdata = newdata, type = "response"),
phi = stats::predict(model, newdata = newdata, type = "precision"))
} else if (what != "mean") {
stop("betareg uses ML, so no samples available.")
}
} else {
stop("Model class is not supported, so can't make predictions. \n
See ?distreg_checker for supported models")
}
return(pred_par)
}
preds_transformer <- function(samp_list, newdata) {
params <- names(samp_list)
samp_list <- lapply(samp_list, FUN = t)
samp_list <- lapply(samp_list, function(x) {
colnames(x) <- row.names(newdata)
x <- as.data.frame(x)
return(x)
})
resh <- lapply(seq_len(nrow(newdata)), FUN = function(num) {
sapply(samp_list, function(df) {
return(df[, num])
})
})
names(resh) <- row.names(newdata)
return(resh)
} |
spmd.sendrecv.replace.default <- function(x,
rank.dest = (comm.rank(.pbd_env$SPMD.CT$comm) + 1) %%
comm.size(.pbd_env$SPMD.CT$comm),
send.tag = .pbd_env$SPMD.CT$tag,
rank.source = (comm.rank(.pbd_env$SPMD.CT$comm) - 1) %%
comm.size(.pbd_env$SPMD.CT$comm),
recv.tag = .pbd_env$SPMD.CT$tag,
comm = .pbd_env$SPMD.CT$comm, status = .pbd_env$SPMD.CT$status){
x.raw <- serialize(x, NULL)
total.org <- length(x.raw)
total.new <- spmd.sendrecv.replace.integer(as.integer(total.org),
rank.dest = rank.source,
send.tag = send.tag,
rank.source = rank.dest,
recv.tag = recv.tag,
comm = comm, status = status)
if(total.org == total.new){
unserialize(spmd.sendrecv.replace.raw(x.raw,
rank.dest = rank.dest,
send.tag = send.tag,
rank.source = rank.source,
recv.tag = recv.tag,
comm = comm, status = status))
} else{
stop("Objects are not consistent.")
}
}
spmd.sendrecv.replace.integer <- function(x,
rank.dest = (comm.rank(.pbd_env$SPMD.CT$comm) + 1) %%
comm.size(.pbd_env$SPMD.CT$comm),
send.tag = .pbd_env$SPMD.CT$tag,
rank.source = (comm.rank(.pbd_env$SPMD.CT$comm) - 1) %%
comm.size(.pbd_env$SPMD.CT$comm),
recv.tag = .pbd_env$SPMD.CT$tag,
comm = .pbd_env$SPMD.CT$comm, status = .pbd_env$SPMD.CT$status){
.Call("spmd_sendrecv_replace_integer", x,
as.integer(rank.dest), as.integer(send.tag), as.integer(rank.source),
as.integer(recv.tag),
as.integer(comm), as.integer(status), PACKAGE = "pbdMPI")
}
spmd.sendrecv.replace.double <- function(x,
rank.dest = (comm.rank(.pbd_env$SPMD.CT$comm) + 1) %%
comm.size(.pbd_env$SPMD.CT$comm),
send.tag = .pbd_env$SPMD.CT$tag,
rank.source = (comm.rank(.pbd_env$SPMD.CT$comm) - 1) %%
comm.size(.pbd_env$SPMD.CT$comm),
recv.tag = .pbd_env$SPMD.CT$tag,
comm = .pbd_env$SPMD.CT$comm, status = .pbd_env$SPMD.CT$status){
.Call("spmd_sendrecv_replace_double", x,
as.integer(rank.dest), as.integer(send.tag), as.integer(rank.source),
as.integer(recv.tag),
as.integer(comm), as.integer(status), PACKAGE = "pbdMPI")
}
spmd.sendrecv.replace.raw <- function(x,
rank.dest = (comm.rank(.pbd_env$SPMD.CT$comm) + 1) %%
comm.size(.pbd_env$SPMD.CT$comm),
send.tag = .pbd_env$SPMD.CT$tag,
rank.source = (comm.rank(.pbd_env$SPMD.CT$comm) - 1) %%
comm.size(.pbd_env$SPMD.CT$comm),
recv.tag = .pbd_env$SPMD.CT$tag,
comm = .pbd_env$SPMD.CT$comm, status = .pbd_env$SPMD.CT$status){
.Call("spmd_sendrecv_replace_raw", x,
as.integer(rank.dest), as.integer(send.tag), as.integer(rank.source),
as.integer(recv.tag),
as.integer(comm), as.integer(status), PACKAGE = "pbdMPI")
}
setGeneric(
name = "sendrecv.replace",
useAsDefault = spmd.sendrecv.replace.default
)
setMethod(
f = "sendrecv.replace",
signature = signature(x = "ANY"),
definition = spmd.sendrecv.replace.default
)
setMethod(
f = "sendrecv.replace",
signature = signature(x = "integer"),
definition = spmd.sendrecv.replace.integer
)
setMethod(
f = "sendrecv.replace",
signature = signature(x = "numeric"),
definition = spmd.sendrecv.replace.double
)
setMethod(
f = "sendrecv.replace",
signature = signature(x = "raw"),
definition = spmd.sendrecv.replace.raw
) |
par.init <- function(degree,segments,monotone,monotone.lb) {
dim.p <- degree+segments
par.ub <- - sqrt(.Machine$double.eps)
par.lb <- monotone.lb
par.init <- c(runif(1,-10,par.ub),rnorm(dim.p-2),runif(1,-10,par.ub))
par.upper <- c(par.ub,rep(Inf,dim.p-2),par.ub)
par.lower <- if(monotone){rep(-Inf,dim.p)}else{c(par.lb,rep(-Inf,dim.p-2),par.lb)}
return(list(par.init=par.init,
par.upper=par.upper,
par.lower=par.lower))
}
gen.xnorm <- function(x=NULL,
xeval=NULL,
lbound=NULL,
ubound=NULL,
er=NULL,
n.integrate=NULL) {
er <- extendrange(x,f=er)
if(!is.null(lbound)) er[1] <- lbound
if(!is.null(ubound)) er[2] <- ubound
if(min(x) < er[1] | max(x) > er[2]) warning(" data extends beyond the range of `er'")
xint <- sort(as.numeric(c(seq(er[1],er[2],length=round(n.integrate/2)),
quantile(x,seq(sqrt(.Machine$double.eps),1-sqrt(.Machine$double.eps),length=round(n.integrate/2))))))
if(is.null(xeval)) {
xnorm <- c(x,xint)
} else {
xnorm <- c(xeval,x,xint)
if(min(xeval) < er[1] | max(xeval) > er[2]) warning(" evaluation data extends beyond the range of `er'")
}
return(list(xnorm=xnorm[order(xnorm)],rank.xnorm=rank(xnorm)))
}
density.basis <- function(x=NULL,
xeval=NULL,
xnorm=xnorm,
degree=NULL,
segments=NULL,
basis="tensor",
knots="quantiles",
monotone=TRUE) {
suppressWarnings(Pnorm <- prod.spline(x=x,
xeval=xnorm,
K=cbind(degree,segments+if(monotone){2}else{0}),
knots=knots,
basis=basis))
if(monotone) Pnorm <- Pnorm[,-c(2,degree+segments+1)]
suppressWarnings(P.lin <- prod.spline(x=x,
xeval=xnorm,
K=cbind(1,1),
knots=knots,
basis=basis))
Pnorm[xnorm<min(x),] <- 0
Pnorm[xnorm>max(x),] <- 0
Pnorm[xnorm==max(x),-ncol(Pnorm)] <- 0
P.left <- as.matrix(P.lin[,1])
P.right <- as.matrix(P.lin[,2])
index <- which(xnorm==min(x))
index.l <- index+1
index.u <- index+5
x.l <- xnorm[index.l]
x.u <- xnorm[index.u]
slope.poly.left <- as.numeric((Pnorm[index.u,1]-Pnorm[index.l,1])/(x.u-x.l))
index.l <- index+1
index.u <- index+5
x.l <- xnorm[index.l]
x.u <- xnorm[index.u]
slope.linear.left <- as.numeric((P.left[index.u]-P.left[index.l])/(x.u-x.l))
index <- which(xnorm==max(x))
index.l <- index-1
index.u <- index-5
x.l <- xnorm[index.l]
x.u <- xnorm[index.u]
slope.poly.right <- as.numeric((Pnorm[index.u,ncol(Pnorm)]-Pnorm[index.l,ncol(Pnorm)])/(x.u-x.l))
index.l <- index-1
index.u <- index-5
x.l <- xnorm[index.l]
x.u <- xnorm[index.u]
slope.linear.right <- as.numeric((P.right[index.u]-P.right[index.l])/(x.u-x.l))
P.left <- as.matrix(P.left-1)*slope.poly.left/slope.linear.left+1
P.right <- as.matrix(P.right-1)*slope.poly.right/slope.linear.right+1
P.left[xnorm>=min(x),1] <- 0
P.right[xnorm<=max(x),1] <- 0
Pnorm[,1] <- Pnorm[,1]+P.left
Pnorm[,ncol(Pnorm)] <- Pnorm[,ncol(Pnorm)]+P.right
return(Pnorm)
}
density.deriv.basis <- function(x=NULL,
xeval=NULL,
xnorm=xnorm,
degree=NULL,
segments=NULL,
basis="tensor",
knots="quantiles",
monotone=TRUE,
deriv.index=1,
deriv=1) {
suppressWarnings(Pnorm.deriv <- prod.spline(x=x,
xeval=xnorm,
K=cbind(degree,segments+if(monotone){2}else{0}),
knots=knots,
basis=basis,
deriv.index=deriv.index,
deriv=deriv))
if(monotone) Pnorm.deriv <- Pnorm.deriv[,-c(2,degree+segments+1)]
suppressWarnings(P.lin <- prod.spline(x=x,
xeval=xnorm,
K=cbind(1,1),
knots=knots,
basis=basis,
deriv.index=deriv.index,
deriv=deriv))
Pnorm.deriv[xnorm<min(x),] <- 0
Pnorm.deriv[xnorm>max(x),] <- 0
P.left <- as.matrix(P.lin[,1])
P.left[xnorm>=min(x),1] <- 0
P.right <- as.matrix(P.lin[,2])
P.right[xnorm<=max(x),1] <- 0
Pnorm.deriv[,1] <- Pnorm.deriv[,1]+P.left
Pnorm.deriv[,ncol(Pnorm.deriv)] <- Pnorm.deriv[,ncol(Pnorm.deriv)]+P.right
return(Pnorm.deriv)
}
clsd <- function(x=NULL,
beta=NULL,
xeval=NULL,
degree=NULL,
segments=NULL,
degree.min=2,
degree.max=25,
segments.min=1,
segments.max=100,
lbound=NULL,
ubound=NULL,
basis="tensor",
knots="quantiles",
penalty=NULL,
deriv.index=1,
deriv=1,
elastic.max=TRUE,
elastic.diff=3,
do.gradient=TRUE,
er=NULL,
monotone=TRUE,
monotone.lb=-250,
n.integrate=500,
nmulti=1,
method = c("L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN"),
verbose=FALSE,
quantile.seq=seq(.01,.99,by=.01),
random.seed=42,
maxit=10^5,
max.attempts=25,
NOMAD=FALSE) {
if(elastic.max && !NOMAD) {
degree.max <- 3
segments.max <- 3
}
ptm <- system.time("")
if(is.null(x)) stop(" You must provide data")
if(!is.null(er) && er < 0) stop(" er must be non-negative")
if(is.null(er)) er <- 1/log(length(x))
if(is.null(penalty)) penalty <- log(length(x))/2
method <- match.arg(method)
fv <- NULL
gen.xnorm.out <- gen.xnorm(x=x,
lbound=lbound,
ubound=ubound,
er=er,
n.integrate=n.integrate)
xnorm <- gen.xnorm.out$xnorm
rank.xnorm <- gen.xnorm.out$rank.xnorm
if(is.null(beta)) {
ptm <- ptm + system.time(ls.ml.out <- ls.ml(x=x,
xnorm=xnorm,
rank.xnorm=rank.xnorm,
degree.min=degree.min,
segments.min=segments.min,
degree.max=degree.max,
segments.max=segments.max,
lbound=lbound,
ubound=ubound,
elastic.max=elastic.max,
elastic.diff=elastic.diff,
do.gradient=do.gradient,
maxit=maxit,
nmulti=nmulti,
er=er,
method=method,
n.integrate=n.integrate,
basis=basis,
knots=knots,
penalty=penalty,
monotone=monotone,
monotone.lb=monotone.lb,
verbose=verbose,
max.attempts=max.attempts,
random.seed=random.seed,
NOMAD=NOMAD))
beta <- ls.ml.out$beta
degree <- ls.ml.out$degree
segments <- ls.ml.out$segments
fv <- ls.ml.out$fv
}
if(!is.null(xeval)) {
gen.xnorm.out <- gen.xnorm(x=x,
xeval=xeval,
lbound=lbound,
ubound=ubound,
er=er,
n.integrate=n.integrate)
xnorm <- gen.xnorm.out$xnorm
rank.xnorm <- gen.xnorm.out$rank.xnorm
}
if(is.null(degree)) stop(" You must provide spline degree")
if(is.null(segments)) stop(" You must provide number of segments")
ptm <- ptm + system.time(Pnorm <- density.basis(x=x,
xeval=xeval,
xnorm=xnorm,
degree=degree,
segments=segments,
basis=basis,
knots=knots,
monotone=monotone))
if(ncol(Pnorm)!=length(beta)) stop(paste(" Incompatible arguments: beta must be of dimension ",ncol(Pnorm),sep=""))
Pnorm.beta <- as.numeric(Pnorm%*%as.matrix(beta))
norm.constant <- integrate.trapezoidal.sum(xnorm,exp(Pnorm.beta))
log.norm.constant <- log(norm.constant)
if(!is.finite(log.norm.constant))
stop(paste(" integration not finite - perhaps try reducing `er' (current value = ",round(er,3),")",sep=""))
f.norm <- exp(Pnorm.beta-log.norm.constant)
F.norm <- integrate.trapezoidal(xnorm,f.norm)
if(deriv > 0) {
ptm <- ptm + system.time(Pnorm.deriv <- density.deriv.basis(x=x,
xeval=xeval,
xnorm=xnorm,
degree=degree,
segments=segments,
basis=basis,
knots=knots,
monotone=monotone,
deriv.index=deriv.index,
deriv=deriv))
f.norm.deriv <- as.numeric(f.norm*Pnorm.deriv%*%beta)
} else {
f.deriv <- NULL
f.norm.deriv <- NULL
}
quantile.vec <- numeric(length(quantile.seq))
for(i in 1:length(quantile.seq)) {
if(quantile.seq[i]>=0.5) {
quantile.vec[i] <- max(xnorm[F.norm<=quantile.seq[i]])
} else {
quantile.vec[i] <- min(xnorm[F.norm>=quantile.seq[i]])
}
}
if(is.null(xeval)) {
f <- f.norm[rank.xnorm][1:length(x)]
F <- F.norm[rank.xnorm][1:length(x)]
f.norm <- f.norm[rank.xnorm][(length(x)+1):length(f.norm)]
F.norm <- F.norm[rank.xnorm][(length(x)+1):length(F.norm)]
xnorm <- xnorm[rank.xnorm][(length(x)+1):length(xnorm)]
if(deriv>0) {
f.deriv <- f.norm.deriv[rank.xnorm][1:length(x)]
f.norm.deriv <- f.norm.deriv[rank.xnorm][(length(x)+1):length(f.norm.deriv)]
}
P <- Pnorm[rank.xnorm,][1:length(x),]
P.beta <- Pnorm.beta[rank.xnorm][1:length(x)]
} else {
f <- f.norm[rank.xnorm][1:length(xeval)]
F <- F.norm[rank.xnorm][1:length(xeval)]
f.norm <- f.norm[rank.xnorm][(length(x)+length(xeval)+1):length(f.norm)]
F.norm <- F.norm[rank.xnorm][(length(x)+length(xeval)+1):length(F.norm)]
xnorm <- xnorm[rank.xnorm][(length(x)+length(xeval)+1):length(xnorm)]
if(deriv>0) {
f.deriv <- f.norm.deriv[rank.xnorm][1:length(xeval)]
f.norm.deriv <- f.norm.deriv[rank.xnorm][(length(x)+length(xeval)+1):length(f.norm.deriv)]
}
P <- Pnorm[rank.xnorm,][1:length(xeval),]
P.beta <- Pnorm.beta[rank.xnorm][1:length(xeval)]
}
clsd.return <- list(density=f,
density.deriv=f.deriv,
distribution=F,
density.er=f.norm,
density.deriv.er=f.norm.deriv,
distribution.er=F.norm,
xer=xnorm,
Basis.beta=P.beta,
Basis.beta.er=Pnorm.beta,
P=P,
Per=Pnorm,
logl=sum(P.beta-log.norm.constant),
constant=norm.constant,
degree=degree,
segments=segments,
knots=knots,
basis=basis,
nobs=length(x),
beta=beta,
fv=fv,
er=er,
penalty=penalty,
nmulti=nmulti,
x=x,
xq=quantile.vec,
tau=quantile.seq,
ptm=ptm)
class(clsd.return) <- "clsd"
return(clsd.return)
}
sum.log.density <- function(beta=NULL,
P=NULL,
Pint=NULL,
xint=NULL,
length.x=NULL,
penalty=NULL,
complexity=NULL,
...) {
return(2*sum(P%*%beta)-2*length.x*log(integrate.trapezoidal.sum(xint,exp(Pint%*%beta)))-penalty*complexity)
}
sum.log.density.gradient <- function(beta=NULL,
colSumsP=NULL,
Pint=NULL,
xint=NULL,
length.x=NULL,
penalty=NULL,
complexity=NULL,
...) {
exp.Pint.beta <- as.numeric(exp(Pint%*%beta))
exp.Pint.beta.Pint <- exp.Pint.beta*Pint
int.exp.Pint.beta.Pint <- numeric()
for(i in 1:complexity) int.exp.Pint.beta.Pint[i] <- integrate.trapezoidal.sum(xint,exp.Pint.beta.Pint[,i])
return(2*(colSumsP-length.x*int.exp.Pint.beta.Pint/integrate.trapezoidal.sum(xint,exp.Pint.beta)))
}
ls.ml <- function(x=NULL,
xnorm=NULL,
rank.xnorm=NULL,
degree.min=NULL,
segments.min=NULL,
degree.max=NULL,
segments.max=NULL,
lbound=NULL,
ubound=NULL,
elastic.max=FALSE,
elastic.diff=NULL,
do.gradient=TRUE,
maxit=NULL,
nmulti=NULL,
er=NULL,
method=NULL,
n.integrate=NULL,
basis=NULL,
knots=NULL,
penalty=NULL,
monotone=TRUE,
monotone.lb=NULL,
verbose=NULL,
max.attempts=NULL,
random.seed=NULL,
NOMAD=FALSE) {
if(exists(".Random.seed", .GlobalEnv)) {
save.seed <- get(".Random.seed", .GlobalEnv)
exists.seed = TRUE
} else {
exists.seed = FALSE
}
set.seed(random.seed)
if(missing(x)) stop(" You must provide data")
if(!NOMAD) {
d.opt <- Inf
s.opt <- Inf
par.opt <- Inf
value.opt <- -Inf
length.x <- length(x)
length.xnorm <- length(xnorm)
d <- degree.min
while(d <= degree.max) {
s <- segments.min
while(s <= segments.max) {
if(options('crs.messages')$crs.messages) {
if(verbose) cat("\n")
cat("\r ")
cat("\rOptimizing, degree = ",d,", segments = ",s,", degree.opt = ",d.opt, ", segments.opt = ",s.opt," ",sep="")
}
Pnorm <- density.basis(x=x,
xnorm=xnorm,
degree=d,
segments=s,
basis=basis,
knots=knots,
monotone=monotone)
P <- Pnorm[rank.xnorm,][1:length.x,]
colSumsP <- colSums(P)
Pint <- Pnorm[rank.xnorm,][(length.x+1):nrow(Pnorm),]
xint <- xnorm[rank.xnorm][(length.x+1):nrow(Pnorm)]
complexity <- d+s
for(n in 1:nmulti) {
par.init.out <- par.init(d,s,monotone,monotone.lb)
par.init <- par.init.out$par.init
par.upper <- par.init.out$par.upper
par.lower <- par.init.out$par.lower
optim.out <- list()
optim.out[[4]] <- 9999
optim.out$value <- -Inf
m.attempts <- 0
while(tryCatch(suppressWarnings(optim.out <- optim(par=par.init,
fn=sum.log.density,
gr=if(do.gradient){sum.log.density.gradient}else{NULL},
upper=par.upper,
lower=par.lower,
method=method,
penalty=penalty,
P=P,
colSumsP=colSumsP,
Pint=Pint,
length.x=length.x,
xint=xint,
complexity=complexity,
control=list(fnscale=-1,maxit=maxit,if(verbose){trace=1}else{trace=0}))),
error = function(e){return(optim.out)})[[4]]!=0 && m.attempts < max.attempts){
if(options('crs.messages')$crs.messages) {
if(verbose && optim.out[[4]]!=0) {
if(!is.null(optim.out$message)) cat("\n optim message = ",optim.out$message,sep="")
cat("\n optim failed (degree = ",d,", segments = ",s,", convergence = ", optim.out[[4]],") re-running with new initial values",sep="")
}
}
par.init.out <- par.init(d,s,monotone,monotone.lb)
par.init <- par.init.out$par.init
par.upper <- par.init.out$par.upper
par.lower <- par.init.out$par.lower
m.attempts <- m.attempts+1
}
if(optim.out$value > value.opt) {
if(options('crs.messages')$crs.messages) {
if(verbose && n==1) cat("\n optim improved: d = ",d,", s = ",s,", old = ",formatC(value.opt,format="g",digits=6),", new = ",formatC(optim.out$value,format="g",digits=6),", diff = ",formatC(optim.out$value-value.opt,format="g",digits=6),sep="")
if(verbose && n>1) cat("\n optim improved (ms ",n,"/",nmulti,"): d = ",d,", s = ",s,", old = ",formatC(value.opt,format="g",digits=6),", new = ",formatC(optim.out$value,format="g",digits=6),", diff = ",formatC(optim.out$value-value.opt,format="g",digits=6),sep="")
}
par.opt <- optim.out$par
d.opt <- d
s.opt <- s
value.opt <- optim.out$value
}
}
if(!(segments.min==segments.max) && elastic.max && s.opt == segments.max) segments.max <- segments.max+elastic.diff
if(!(segments.min==segments.max) && elastic.max && s.opt < segments.max+elastic.diff) segments.max <- s.opt+elastic.diff
s <- s+1
}
d <- d+1
if(!(degree.min==degree.max) && elastic.max && d.opt == degree.max) degree.max <- degree.max+elastic.diff
if(!(degree.min==degree.max) && elastic.max && d.opt < degree.max+elastic.diff) degree.max <- d.opt+elastic.diff
}
} else {
eval.f <- function(input, params) {
sum.log.density <- params$sum.log.density
sum.log.density.gradient <- params$sum.log.density.gradient
method <- params$method
penalty <- params$penalty
x <- params$x
xnorm <- params$xnorm
knots <- params$knots
basis <- params$basis
monotone <- params$monotone
monotone.lb <- params$monotone.lb
rank.xnorm <- params$rank.xnorm
do.gradient <- params$do.gradient
maxit <- params$maxit
max.attempts <- params$max.attempts
verbose <- params$verbose
length.x <- length(x)
length.xnorm <- length(xnorm)
d <- input[1]
s <- input[2]
complexity <- d+s
Pnorm <- density.basis(x=x,
xnorm=xnorm,
degree=d,
segments=s,
basis=basis,
knots=knots,
monotone=monotone)
P <- Pnorm[rank.xnorm,][1:length.x,]
colSumsP <- colSums(P)
Pint <- Pnorm[rank.xnorm,][(length.x+1):nrow(Pnorm),]
xint <- xnorm[rank.xnorm][(length.x+1):nrow(Pnorm)]
optim.out <- list()
optim.out[[4]] <- 9999
optim.out$value <- -Inf
m.attempts <- 0
while(tryCatch(suppressWarnings(optim.out <- optim(par=par.init,
fn=sum.log.density,
gr=if(do.gradient){sum.log.density.gradient}else{NULL},
upper=par.upper,
lower=par.lower,
method=method,
penalty=penalty,
P=P,
colSumsP=colSumsP,
Pint=Pint,
length.x=length.x,
xint=xint,
complexity=complexity,
control=list(fnscale=-1,maxit=maxit,if(verbose){trace=1}else{trace=0}))),
error = function(e){return(optim.out)})[[4]]!=0 && m.attempts < max.attempts){
if(verbose && optim.out[[4]]!=0) {
if(options('crs.messages')$crs.messages) {
if(!is.null(optim.out$message)) cat("\n optim message = ",optim.out$message,sep="")
cat("\n optim failed (degree = ",d,", segments = ",s,", convergence = ", optim.out[[4]],") re-running with new initial values",sep="")
}
}
par.init.out <- par.init(d,s,monotone,monotone.lb)
par.init <- par.init.out$par.init
par.upper <- par.init.out$par.upper
par.lower <- par.init.out$par.lower
m.attempts <- m.attempts+1
}
if(options('crs.messages')$crs.messages) {
if(verbose) cat("\n")
cat("\r ")
cat("\rOptimizing, degree = ",d,", segments = ",s,", log likelihood = ",optim.out$value,sep="")
}
fv <- -optim.out$value
}
x0 <- c(degree.min,segments.min)
bbin <-c(1, 1)
lb <- c(degree.min,segments.min)
ub <- c(degree.max,segments.max)
bbout <- c(0, 2, 1)
opts <-list("MAX_BB_EVAL"=10000)
params <- list()
params$sum.log.density <- sum.log.density
params$sum.log.density.gradient <- sum.log.density.gradient
params$method <- method
params$penalty <- penalty
params$x <- x
params$xnorm <- xnorm
params$knots <- knots
params$basis <- basis
params$monotone <- monotone
params$monotone.lb <- monotone.lb
params$rank.xnorm <- rank.xnorm
params$do.gradient <- do.gradient
params$maxit <- maxit
params$max.attempts <- max.attempts
params$verbose <- verbose
solution <- snomadr(eval.f=eval.f,
n=2,
x0=x0,
bbin=bbin,
bbout=bbout,
lb=lb,
ub=ub,
nmulti=nmulti,
print.output=FALSE,
opts=opts,
params=params)
value.opt <- solution$objective
d <- solution$solution[1]
s <- solution$solution[2]
length.x <- length(x)
length.xnorm <- length(xnorm)
complexity <- d+s
par.init.out <- par.init(d,s,monotone,monotone.lb)
par.init <- par.init.out$par.init
par.upper <- par.init.out$par.upper
par.lower <- par.init.out$par.lower
Pnorm <- density.basis(x=x,
xnorm=xnorm,
degree=d,
segments=s,
basis=basis,
knots=knots,
monotone=monotone)
P <- Pnorm[rank.xnorm,][1:length.x,]
colSumsP <- colSums(P)
Pint <- Pnorm[rank.xnorm,][(length.x+1):nrow(Pnorm),]
xint <- xnorm[rank.xnorm][(length.x+1):nrow(Pnorm)]
optim.out <- list()
optim.out[[4]] <- 9999
optim.out$value <- -Inf
m.attempts <- 0
while(tryCatch(suppressWarnings(optim.out <- optim(par=par.init,
fn=sum.log.density,
gr=if(do.gradient){sum.log.density.gradient}else{NULL},
upper=par.upper,
lower=par.lower,
method=method,
penalty=penalty,
P=P,
colSumsP=colSumsP,
Pint=Pint,
length.x=length.x,
xint=xint,
complexity=complexity,
control=list(fnscale=-1,maxit=maxit,if(verbose){trace=1}else{trace=0}))),
error = function(e){return(optim.out)})[[4]]!=0 && m.attempts < max.attempts){
if(verbose && optim.out[[4]]!=0) {
if(options('crs.messages')$crs.messages) {
if(!is.null(optim.out$message)) cat("\n optim message = ",optim.out$message,sep="")
cat("\n optim failed (degree = ",d,", segments = ",s,", convergence = ", optim.out[[4]],") re-running with new initial values",sep="")
}
}
par.init.out <- par.init(d,s,monotone,monotone.lb)
par.init <- par.init.out$par.init
par.upper <- par.init.out$par.upper
par.lower <- par.init.out$par.lower
m.attempts <- m.attempts+1
}
d.opt <- d
s.opt <- s
par.opt <- optim.out$par
value.opt <- optim.out$value
}
if(options('crs.messages')$crs.messages) {
cat("\r ")
if(!(degree.min==degree.max) && (d.opt==degree.max)) warning(paste(" optimal degree equals search maximum (", d.opt,"): rerun with larger degree.max",sep=""))
if(!(segments.min==segments.max) && (s.opt==segments.max)) warning(paste(" optimal segment equals search maximum (", s.opt,"): rerun with larger segments.max",sep=""))
if(par.opt[1]>0|par.opt[length(par.opt)]>0) warning(" optim() delivered a positive weight for linear segment (supposed to be negative)")
if(!monotone&&par.opt[1]<=monotone.lb) warning(paste(" optimal weight for left nonmonotone basis equals search minimum (",par.opt[1],"): rerun with smaller monotone.lb",sep=""))
if(!monotone&&par.opt[length(par.opt)]<=monotone.lb) warning(paste(" optimal weight for right nonmonotone basis equals search minimum (",par.opt[length(par.opt)],"): rerun with smaller monotone.lb",sep=""))
}
if(exists.seed) assign(".Random.seed", save.seed, .GlobalEnv)
return(list(degree=d.opt,segments=s.opt,beta=par.opt,fv=value.opt))
}
summary.clsd <- function(object,
...) {
cat("\nCategorical Logspline Density\n",sep="")
cat(paste("\nModel penalty: ", format(object$penalty), sep=""))
cat(paste("\nModel degree/segments: ", format(object$degree),"/",format(object$segments), sep=""))
cat(paste("\nKnot type: ", format(object$knots), sep=""))
cat(paste("\nBasis type: ",format(object$basis),sep=""))
cat(paste("\nTraining observations: ", format(object$nobs), sep=""))
cat(paste("\nLog-likelihood: ", format(object$logl), sep=""))
cat(paste("\nNumber of multistarts: ", format(object$nmulti), sep=""))
cat(paste("\nEstimation time: ", formatC(object$ptm[1],digits=1,format="f"), " seconds",sep=""))
cat("\n\n")
}
print.clsd <- function(x,...)
{
summary.clsd(x)
}
plot.clsd <- function(x,
er=TRUE,
distribution=FALSE,
derivative=FALSE,
ylim,
ylab,
xlab,
type,
...) {
if(missing(xlab)) xlab <- "Data"
if(missing(type)) type <- "l"
if(!er) {
order.x <- order(x$x)
if(distribution){
y <- x$distribution[order.x]
if(missing(ylab)) ylab <- "Distribution"
if(missing(ylim)) ylim <- c(0,1)
}
if(!distribution&&!derivative) {
y <- x$density[order.x]
if(missing(ylab)) ylab <- "Density"
if(missing(ylim)) ylim <- c(0,max(y))
}
if(derivative) {
y <- x$density.deriv[order.x]
if(missing(ylab)) ylab <- "Density Derivative"
if(missing(ylim)) ylim <- c(min(y),max(y))
}
x <- x$x[order.x]
} else {
order.xer <- order(x$xer)
if(distribution){
y <- x$distribution.er[order.xer]
if(missing(ylab)) ylab <- "Distribution"
if(missing(ylim)) ylim <- c(0,1)
}
if(!distribution&&!derivative) {
y <- x$density.er[order.xer]
if(missing(ylab)) ylab <- "Density"
if(missing(ylim)) ylim <- c(0,max(y))
}
if(derivative){
y <- x$density.deriv.er[order.xer]
if(missing(ylab)) ylab <- "Density Derivative"
if(missing(ylim)) ylim <- c(min(y),max(y))
}
x <- x$xer[order.xer]
}
x <- plot(x,
y,
ylim=ylim,
ylab=ylab,
xlab=xlab,
type=type,
...)
}
coef.clsd <- function(object, ...) {
tc <- object$beta
return(tc)
}
fitted.clsd <- function(object, ...){
object$density
} |
files_move <- function( path1, path2, file_sep="__", pattern=NULL,
path2_name="__ARCH")
{
if ( missing(path2) ){
f1 <- list.files(path1, path2_name)
path2 <- file.path(path1, f1)
}
files <- list.files( path1, "\\." )
if ( ! is.null( pattern) ){
files <- grep( pattern=pattern, x=files, value=TRUE)
}
NF <- length(files)
if (NF > 1){
matr <- matrix( NA, nrow=NF, ncol=5)
for (ff in 1:NF){
file_ff <- files[ff]
res_ff <- filename_split( file_name=file_ff, file_sep=file_sep )
matr[ff,] <- unlist(res_ff)
}
matr <- as.data.frame(matr)
colnames(matr) <- names(res_ff)
matr$main_id <- match( matr$main, unique( matr$main) )
matr <- matr[ order( matr$main ), ]
matr$eq <- c(0,matr$main[ - NF ] !=matr$main[-1])
t1 <- table( matr$main_id )
ind1 <- match( matr$main_id, names(t1))
matr$freq <- t1[ind1]
for (ff in 2:NF){
if ( matr[ff,"main"]==matr[ ff -1, "main"] ){
file.rename( from=file.path( path1, matr[ff-1,"file_name"] ),
to=file.path( path2, matr[ff-1,"file_name"] ) )
cat("*** Move ", paste0(matr[ff-1,"file_name"]), "\n" )
utils::flush.console()
}
}
}
} |
LearnerRegrGlmnet = R6Class("LearnerRegrGlmnet",
inherit = LearnerRegr,
public = list(
initialize = function() {
ps = ps(
alignment = p_fct(c("lambda", "fraction"), default = "lambda", tags = "train"),
alpha = p_dbl(0, 1, default = 1, tags = "train"),
big = p_dbl(default = 9.9e35, tags = "train"),
devmax = p_dbl(0, 1, default = 0.999, tags = "train"),
dfmax = p_int(0L, tags = "train"),
eps = p_dbl(0, 1, default = 1.0e-6, tags = "train"),
epsnr = p_dbl(0, 1, default = 1.0e-8, tags = "train"),
exact = p_lgl(default = FALSE, tags = "predict"),
exclude = p_int(1L, tags = "train"),
exmx = p_dbl(default = 250.0, tags = "train"),
family = p_fct(c("gaussian", "poisson"), default = "gaussian", tags = "train"),
fdev = p_dbl(0, 1, default = 1.0e-5, tags = "train"),
gamma = p_dbl(default = 1, tags = "train"),
grouped = p_lgl(default = TRUE, tags = "train"),
intercept = p_lgl(default = TRUE, tags = "train"),
keep = p_lgl(default = FALSE, tags = "train"),
lambda = p_uty(tags = "train"),
lambda.min.ratio = p_dbl(0, 1, tags = "train"),
lower.limits = p_uty(tags = "train"),
maxit = p_int(1L, default = 100000L, tags = "train"),
mnlam = p_int(1L, default = 5L, tags = "train"),
mxit = p_int(1L, default = 100L, tags = "train"),
mxitnr = p_int(1L, default = 25L, tags = "train"),
newoffset = p_uty(tags = "predict"),
nlambda = p_int(1L, default = 100L, tags = "train"),
offset = p_uty(default = NULL, tags = "train"),
parallel = p_lgl(default = FALSE, tags = "train"),
penalty.factor = p_uty(tags = "train"),
pmax = p_int(0L, tags = "train"),
pmin = p_dbl(0, 1, default = 1.0e-9, tags = "train"),
prec = p_dbl(default = 1e-10, tags = "train"),
relax = p_lgl(default = FALSE, tags = "train"),
s = p_dbl(0, default = 0.01, tags = "predict"),
standardize = p_lgl(default = TRUE, tags = "train"),
standardize.response = p_lgl(default = FALSE, tags = "train"),
thresh = p_dbl(0, default = 1e-07, tags = "train"),
trace.it = p_int(0, 1, default = 0, tags = "train"),
type.gaussian = p_fct(c("covariance", "naive"), tags = "train"),
type.logistic = p_fct(c("Newton", "modified.Newton"), tags = "train"),
type.multinomial = p_fct(c("ungrouped", "grouped"), tags = "train"),
upper.limits = p_uty(tags = "train")
)
ps$add_dep("gamma", "relax", CondEqual$new(TRUE))
ps$add_dep("type.gaussian", "family", CondEqual$new("gaussian"))
ps$values = list(family = "gaussian")
super$initialize(
id = "regr.glmnet",
param_set = ps,
feature_types = c("logical", "integer", "numeric"),
properties = "weights",
packages = c("mlr3learners", "glmnet"),
man = "mlr3learners::mlr_learners_regr.glmnet"
)
},
selected_features = function(lambda = NULL) {
glmnet_selected_features(self, lambda)
}
),
private = list(
.train = function(task) {
data = as_numeric_matrix(task$data(cols = task$feature_names))
target = as_numeric_matrix(task$data(cols = task$target_names))
pv = self$param_set$get_values(tags = "train")
if ("weights" %in% task$properties) {
pv$weights = task$weights$weight
}
glmnet_invoke(data, target, pv)
},
.predict = function(task) {
newdata = as_numeric_matrix(ordered_features(task, self))
pv = self$param_set$get_values(tags = "predict")
pv = rename(pv, "predict.gamma", "gamma")
pv$s = glmnet_get_lambda(self, pv)
response = invoke(predict, self$model,
newx = newdata,
type = "response", .args = pv)
list(response = drop(response))
}
)
) |
"flood" |
comm.sampling<-function(x,type=c("full","random"),size)
{
type <- match.arg(type)
x2<-as.matrix(table(x[,"site"],x[,"species"]))
if (type=="random")
{
if (size>=min(rowSums(x2))) warning("Sample size should be smaller than actual community size! Full sampling will be applied.")
else x2<-vegan::rrarefy(x2,size)
}
return(x2)
} |
neptune_fetch <-
function(x) {
check_handler_or_run(x)
x$fetch()
} |
fof_pc_real_time <- function(mfdobj_y_list,
mfdobj_x_list,
tot_variance_explained_x = 0.95,
tot_variance_explained_y = 0.95,
tot_variance_explained_res = 0.95,
components_x = NULL,
components_y = NULL,
type_residuals = "standard",
ncores = 1) {
if (length(mfdobj_y_list) != length(mfdobj_x_list)) {
stop("x and y lists must have the same length")
}
single_k <- function(ii) {
fof_pc(
mfdobj_y = mfdobj_y_list[[ii]],
mfdobj_x = mfdobj_x_list[[ii]],
tot_variance_explained_x = tot_variance_explained_x,
tot_variance_explained_y = tot_variance_explained_y,
tot_variance_explained_res = tot_variance_explained_res,
components_x = components_x,
components_y = components_y,
type_residuals = type_residuals
)
}
if (ncores == 1) {
mod_list <- lapply(seq_along(mfdobj_y_list), single_k)
} else {
if (.Platform$OS.type == "unix") {
mod_list <- mclapply(seq_along(mfdobj_y_list),
single_k,
mc.cores = ncores)
} else {
cl <- makeCluster(ncores)
clusterExport(cl,
c("mfdobj_y_list",
"mfdobj_x_list",
"tot_variance_explained_x",
"tot_variance_explained_y",
"tot_variance_explained_res",
"components_x",
"components_y",
"type_residuals",
envir = environment()))
mod_list <- parLapply(cl, seq_along(mfdobj_y_list), single_k)
stopCluster(cl)
}
}
names(mod_list) <- names(mfdobj_y_list)
mod_list
} |
getPoly <- function(xdata = NULL, deg = 1, maxInteractDeg = deg,
Xy = NULL,
standardize = FALSE,
noisy = TRUE, intercept = FALSE,
returnDF = TRUE,
modelFormula = NULL, retainedNames = NULL,
...)
{
if(sum(is.null(xdata) + is.null(Xy)) != 1)
stop("please provide getPoly() xdata or Xy (but not both).")
if (!is.null(xdata) && is.vector(xdata))
stop('xdata must be a matrix or data frame')
W <- if(is.null(xdata)) Xy else xdata
nX <- if(is.null(xdata)) ncol(Xy)-1 else ncol(xdata)
if(noisy && !(is.matrix(W) || is.data.frame(W))){
cat('getPoly() expects a matrix or a data.frame.\n')
cat('The input will be coerced to a data.frame \n')
}
W <- as.data.frame(W, stringsAsFactors=TRUE)
namesW <- names(W)
W <- complete(W, noisy=noisy)
colnames(W) <- namesW
if(standardize){
to_z <- which(unlist(lapply(W, is_continuous)))
W[,to_z] <- scale(W[,to_z])
}
RHS <- NULL
if(is.null(modelFormula)){
x_cols <- 1:(ncol(W) - is.null(xdata))
y_name <- if(is.null(xdata)) colnames(Xy)[ncol(Xy)] else NULL
remove(xdata)
remove(Xy)
W_distincts <- N_distinct(W)
to_factor <- which((W_distincts == 2) | unlist(lapply(W, is.character)))
for(i in to_factor)
W[,i] <- as.factor(W[,i])
x_factors <- if(ncol(W) > 1) unlist(lapply(W[,x_cols], is.factor)) else is.factor(W[[1]])
P_factor <- sum(x_factors)
factor_features <- c()
for(i in which(x_factors)){
tmp <- paste(colnames(W)[i], "==",
paste0("\'", levels(W[,i])[-1], "\'"))
tmp <- paste0("(", tmp, ")")
factor_features <- c(factor_features, tmp)
}
features <- factor_features
P <- P_factor
if(sum(x_factors) != ncol(W)){
cf <- colnames(W)[x_cols][!x_factors]
P_continuous <- length(cf)
P <- P_continuous + P_factor
continuous_features <- c()
for(i in 1:deg)
continuous_features <-
c(continuous_features, paste0("I(", cf, "^", i, ")"))
features <- c(continuous_features, factor_features)
} else cf <- NULL
features <- get_interactions(features, maxInteractDeg,
c(cf, names(x_factors[x_factors])),
maxDeg = deg)
if(noisy && (length(features) > nrow(W)))
message("P > N. With polynomial terms and interactions, P is ",
length(features), ".\n\n", sep="")
RHS <- paste0("~", paste(features, collapse=" + "))
modelFormula <- as.formula(paste0(y_name, RHS))
}
X <- model_matrix(modelFormula, W, intercept, noisy, ...)
if (is.vector(X)) {
nms <- names(X)
X <- matrix(X,nrow=nrow(W))
colnames(X) <- nms
}
if(is.null(retainedNames))
retainedNames <- colnames(X)
polyMat <- polyMatrix(xdata = X,
modelFormula = modelFormula,
XtestFormula = if(is.null(RHS)) modelFormula else as.formula(RHS),
retainedNames = retainedNames)
if(returnDF) return(polyDF(polyMat)) else return(polyMat)
}
gtPoly <- getPoly
polyMatrix <- function(xdata, modelFormula, XtestFormula, retainedNames)
{
if(!is.matrix(xdata)){
xdata <- matrix(t(xdata), nrow=1)
colnames(xdata) <- retainedNames
}
out <- list(xdata = xdata,
modelFormula = modelFormula,
XtestFormula = XtestFormula,
retainedNames = retainedNames)
class(out) <- "polyMatrix"
return(out)
}
polyDF <- function(polyMat)
{
stopifnot(class(polyMat) == "polyMatrix")
polyMat$xdata <- as.data.frame(polyMat$xdata, stringsAsFactors=polyMat$stringsAsFactors)
if(length(polyMat$retainedNames) != length(colnames(polyMat$xdata))){
warning("xdata contains", length(colnames(polyMat$xdata)),
"columns but retainedNames has", length(polyMat$retainedNames), "items")
}
class(polyMat) <- c("polyMatrix", "polyDataFrame")
return(polyMat)
}
polyAllVsAll <- function(plm.xy, classes, stringsAsFactors=TRUE)
{
plm.xy <- as.data.frame(plm.xy, stringsAsFactors=TRUE)
len <- length(classes)
ft <- list()
for (i in 1:len) {
ft[[i]] <- list()
for (j in 1:len) {
if (i == j)
next
newxy <- plm.xy[plm.xy$y == classes[i] | plm.xy$y == classes[j],]
newxy$y <- ifelse(newxy$y == classes[i], 1, 0)
ft[[i]][[j]] <- glm(y~., family = binomial(link = "logit"), data = newxy)
}
}
return(ft)
}
polyOneVsAll <- function(plm.xy, classes, cls=NULL)
{
plm.xy <- as.data.frame(plm.xy, stringsAsFactors=TRUE)
ft <- list()
predClassi <- function(i)
{
oneclass <- plm.xy[plm.xy$y == classes[i],]
oneclass$y <- 1
allclass <- plm.xy[plm.xy$y != classes[i],]
allclass$y <- 0
new_xy <- rbind(oneclass, allclass)
glm(y~., family = binomial(link = "logit"), data = new_xy)
}
if (is.null(cls)) {
for (i in 1:length(classes)) {
ft[[i]] <- predClassi(i)
}
} else {
clusterExport(cls,c('plm.xy','predClassi'),envir=environment())
ft <- clusterApply(cls,1:length(classes),predClassi)
}
return(ft)
} |
"permutation.test.discrete" <-
function (x, y = NULL, scores, alternative = "greater", trials = 1000)
{
if (length(y)) {
n <- length(y)
if (length(x) != n)
stop("x and y have different lengths")
}
else {
if (ncol(x) != 2)
stop("x does not have 2 columns and y is missing")
y <- x[, 2]
x <- x[, 1]
n <- length(y)
}
x <- as.character(x)
y <- as.character(y)
if (length(alternative) != 1 || !is.character(alternative))
stop("alternative must be a single character string")
altnum <- pmatch(alternative, c("greater", "less"), nomatch = NA)
if (is.na(altnum))
stop("alternative must partially match 'greater' or 'less'")
alternative <- c("greater", "less")[altnum]
orig.tab <- table(x, y)
otd <- dim(orig.tab)
odnam <- dimnames(orig.tab)
scnam <- dimnames(scores)
if (!is.matrix(scores) || length(scnam) != 2 || !is.numeric(scores))
stop("scores must be a numeric matrix with dimnames")
scd <- dim(scores)
if (any(scd != otd) && any(rev(scd) != otd)) {
stop(paste("scores is not the proper size, should be",
otd[1], "by", otd[2]))
}
if (any(scd != otd)) {
scores <- t(scores)
scd <- dim(scores)
scnam <- dimnames(scores)
reverse <- TRUE
}
else {
reverse <- FALSE
}
rownum <- match(scnam[[1]], odnam[[1]], nomatch = NA)
if (any(is.na(rownum))) {
if (reverse || otd[1] != otd[2])
stop("bad dimnames for scores")
scores <- t(scores)
scd <- dim(scores)
scnam <- dimnames(scores)
rownum <- match(scnam[[1]], odnam[[1]], nomatch = NA)
if (any(is.na(rownum)))
stop("bad dimnames for scores")
}
colnum <- match(scnam[[2]], odnam[[2]], nomatch = NA)
if (any(is.na(colnum)))
stop("bad dimnames for scores")
scores <- scores[rownum, colnum]
if(!exists(".Random.seed")) runif(1)
ranseed <- .Random.seed
orig.score <- sum(orig.tab * scores)
perm.scores <- numeric(trials)
for (i in 1:trials) {
perm.scores[i] <- sum(table(x, sample(y)) * scores)
}
if (alternative == "greater") {
extreme <- sum(perm.scores >= orig.score)
}
else {
extreme <- sum(perm.scores <= orig.score)
}
ans <- list(original.score = orig.score, perm.scores = perm.scores,
stats = c(nobs = n, trials = trials, extreme = extreme),
alternative = alternative, random.seed = ranseed, call = match.call())
class(ans) <- "permtstBurSt"
ans
} |
showGen <- function( data.in, design = "triad", n = 5, from, to, sex, markers = 1:5 ){
if( !is( data.in, "haplin.data" ) ||
!all( names( data.in ) == .haplinEnv$.haplin.data.names ) ){
stop( "The input data is not in the correct format!", call. = FALSE )
}
cov.data <- data.in$cov.data
gen.data <- data.in$gen.data
n.given <- FALSE
from.given <- FALSE
which.rows.show <- TRUE
if( !missing( sex ) ){
if( is.null( cov.data ) ){
stop( "There is no phenotypic/covariate information in your data!", call. = FALSE )
}
if( !( "sex" %in% colnames( cov.data ) ) ){
stop( "There is no 'sex' column in the dataset!" )
}
if( !( sex %in% as.numeric( unique( cov.data[ ,"sex" ] ) ) ) ){
stop( paste( "Wrong sex chosen - 'sex' column has the following categories:", paste( sort( unique( cov.data[ ,"sex" ] ) ), collapse = "," ) ), call. = FALSE )
}
which.rows.show <- as.numeric( cov.data[ ,"sex" ] ) == sex
} else {
if( !missing( n ) ){
n.given <- TRUE
if( is.numeric( n ) ){
if( n < 1 | n > nrow( gen.data[[ 1 ]] ) ){
stop( "Your specification of 'n' (number of rows to display) was wrong!", call. = FALSE )
}
} else if( n != "all" ){
stop( "Could not understand the choice of 'n'", call. = FALSE )
} else {
n <- nrow( gen.data[[ 1 ]] )
}
}
if( !missing( from ) ){
from.given <- TRUE
if( !is.numeric( from ) ){
stop( "'From' should be numeric!", call. = FALSE )
}
}
if( !missing( to ) ){
if( !is.numeric( to ) ){
stop( "'To' should be numeric!", call. = FALSE )
}
if( n.given & from.given ){
warning( "You specified too many parameters! Chosing only 'from' and 'to'." )
} else if( n.given ) {
from <- to - n + 1
} else if( !from.given ) {
from <- 1
}
} else if( n.given & from.given ) {
to <- from + n - 1
} else if( from.given ) {
to <- nrow( gen.data[[ 1 ]] )
} else if( n.given ) {
from <- 1
to <- from + n - 1
} else {
from <- 1
to <- min( n, nrow( gen.data[[ 1 ]] ) )
}
if( from < 1 | to > nrow( gen.data[[ 1 ]] ) | from > to ){
stop( paste0( "Wrong specification of 'from' (", from ,") and 'to' (", to, ")!" ), call. = FALSE )
}
which.rows.show <- from:to
}
format <- data.in$aux$info$filespecs$format
family <- "c"
ncols.per.marker <- 2
if( design %in% c( "triad", "cc.triad" ) & format == "haplin" ){
family <- "mfc"
ncols.per.marker <- 6
}
max.markers <- nsnps( data.in )
all.markers <- max.markers*ncols.per.marker
if( is.numeric( markers ) ){
markers.by.name <- FALSE
if( max( markers ) > max.markers ){
warning( "It appears that your data has less markers (", max.markers,") than requested (", max( markers ), "), adjusting accordingly." )
orig.markers <- markers
which.markers.higher.max <- orig.markers > max.markers
markers <- orig.markers[ !which.markers.higher.max ]
}
markers <- f.sel.markers( n.vars = 0, markers = markers, family = family, split = TRUE, ncols = all.markers )
} else if( length( markers ) == 1 & markers == "all" ){
markers.by.name <- FALSE
if( length( gen.data ) > 1 ){
answer <- readline( paste( "You are requesting a lot of data. Are you sure? (y/n)" ) )
if( tolower( answer ) != "y" ){
stop( "Stopped as per request.", call. = FALSE )
}
}
markers <- 1:all.markers
} else {
markers.by.name <- TRUE
stop( "Not implemented yet!" )
}
data.out <- f.get.gen.data.cols( gen.data, cols = markers, by.colname = markers.by.name )
data.out <- as.ff( data.out[ which.rows.show, ], vmode = .haplinEnv$.vmode.gen.data )
return( data.out )
} |
print.ntestRes <-
function(x, ...){
cat("Pearson's Chi-squared test for normality of residuals\n")
t <- as.data.frame(cbind(x$p.value.res1,x$p.value.res2))
rownames(t) <- "p.value"
colnames(t) <- c("time = 1", "time = 2")
print(t)
} |
imganiso2D <- function(x,satexp=.25,g=3,rho=0){
if(class(x)=="adimpro") x <- tensor2D(x,g=g,rho=rho)
x[c(1,3),,] <- x[c(1,3),,]*(1+1.e-8)+rho
p <- x[1,,]+x[3,,]
q <- x[1,,]*x[3,,]-x[2,,]^2
z <- p^2/4-q
z[z<0] <- 0
ew <- p/2 + sqrt(z)
ew2 <- p/2 - sqrt(z)
theta <- acos(x[2,,]/sqrt((ew-x[1,,])^2+x[2,,]^2))/pi
theta[is.na(theta)] <- 0
img <- array(0,c(dim(x)[2:3],3))
img[,,1] <- theta
img[,,2] <- (ew/max(ew))^satexp
img[,,3] <- log(ew/ew2)
invisible(make.image(img,xmode="hsi"))
}
tensor2D <- function(x,g=0,rho=0){
if(class(x)=="adimpro") {
x <- extract.image(x)
}
storage.mode(x) <- "numeric"
ddim <- dim(x)
n1 <- ddim[1]
n2 <- ddim[2]
if(length(ddim)==2){
dx <- rbind(x,x[n1,])-rbind(x[1,],x)
dy <- cbind(x,x[,n2])-cbind(x[,1],x)
dxx <- (dx[-1,]^2+dx[-n1-1,]^2)/2
dyy <- (dy[,-1]^2+dy[,-n2-1]^2)/2
dxy <- (dx[-1,]*dy[,-1]+dx[-n1-1,]*dy[,-1]+dx[-1,]*dy[,-n2-1]+dx[-n1,]*dy[,-n2-1])/4
z<-aperm(array(c(dxx,dxy,dyy),c(ddim,3)),c(3,1,2))
} else {
z <- array(0,c(n1,n2,3))
for(i in 1:3) {
dx <- rbind(x[,,i],x[n1,,i])-rbind(x[1,,i],x[,,i])
dy <- cbind(x[,,i],x[,n2,i])-cbind(x[,1,i],x[,,i])
dxx <- (dx[-1,]^2+dx[-n1-1,]^2)/2
dyy <- (dy[,-1]^2+dy[,-n2-1]^2)/2
dxy <- (dx[-1,]*dy[,-1]+dx[-n1-1,]*dy[,-1]+dx[-1,]*dy[,-n2-1]+dx[-n1,]*dy[,-n2-1])/4
z <- z+c(dxx,dxy,dyy)
}
z <- aperm(z/3,c(3,1,2))
}
if(g>0){
z <- array(.Fortran(C_sm2dtens,
as.double(z),
as.integer(n1),
as.integer(n2),
as.double(g),
as.double(rho),
zhat=double(3*n1*n2),
PACKAGE="adimpro")$zhat,dim(z))
z[is.na(z)] <- 0
}
z
}
awsaniso <- function (object, hmax=4, g=3, rho=0, aws=TRUE, varmodel=NULL,
ladjust=1.0, xind = NULL,
yind = NULL, wghts=c(1,1,1,1), scorr=TRUE, lkern="Triangle",
demo=FALSE, graph=FALSE, satexp=0.25, max.pixel=4.e2,clip=FALSE,compress=TRUE) {
IQRdiff <- function(data) IQR(diff(data))/1.908
if(!check.adimpro(object)) {
cat(" Consistency check for argument object failed (see warnings). object is returned.\"n")
return(invisible(object))
}
object <- switch(object$type,
"hsi" = hsi2rgb(object),
"yuv" = yuv2rgb(object),
"yiq" = yiq2rgb(object),
"xyz" = xyz2rgb(object),
object)
if(object$type=="RAW") stop("RAW-image, will be implemented in function awsraw later ")
if(!is.null(object$call)) {
warning("argument object is result of awsimage or awspimage. You should know what you do.")
}
args <- match.call()
if(clip) {
object <- clip.image(object,xind,yind,compress=FALSE)
xind <- NULL
yind <- NULL
}
if(object$compressed) object <- decompress.image(object)
if(is.null(varmodel)) {
varmodel <- if(object$gamma) "Constant" else "Linear"
}
bcf <- c(-.4724,1.1969,.22167,.48691,.13731,-1.0648)
estvar <- toupper(varmodel) %in% c("CONSTANT","LINEAR")
hpre <- 2.
if(estvar) {
dlw<-(2*trunc(hpre)+1)
nvarpar <- switch(varmodel,Constant=1,Linear=2,1)
}
dimg <- dimg0 <- dim(object$img)
imgtype <- object$type
dv <- switch(imgtype,rgb=dimg[3],greyscale=1)
if(length(wghts)<dv) wghts <- c(wghts,rep(1,dv-length(wghts))) else wghts <- pmin(.1,wghts)
wghts <- switch(imgtype, greyscale=1, rgb = wghts[1:dv])
spcorr <- matrix(0,2,dv)
h0 <- c(0,0)
if(is.null(xind)) xind <- 1:dimg[1]
if(is.null(yind)) yind <- 1:dimg[2]
n1 <- length(xind)
n2 <- length(yind)
n <- n1*n2
dimg <- switch(imgtype,greyscale=c(n1,n2),rgb=c(n1,n2,dv))
ladjust <- max(1,ladjust)
lkern <- switch(lkern,
Triangle=1,
Quadratic=2,
Cubic=3,
Plateau=4,
1)
if (is.null(hmax)) hmax <- 4
wghts <- wghts/sum(wghts)
dgf <- sum(wghts)^2/sum(wghts^2)
if (aws) lambda <- ladjust*switch(imgtype, "greyscale" = 8.1, "rgb" = 4.4, 4.4) else lambda <- 1e50
sigma2 <- pmax(0.01,switch(imgtype,
"greyscale" = IQRdiff(object$img)^2,
"rgb" = apply(object$img,3,IQRdiff)^2,
IQRdiff(object$img)^2))
cat("Estimated variance (assuming independence): ", signif(sigma2/65635^2,4),"\n")
if (!estvar) {
if (length(sigma2)==1) {
if(dv>1) sigma2 <- rep(sigma2,1)
lambda <- lambda*sigma2
} else if (length(sigma2)==dv) {
wghts <- wghts[1:dv]/sigma2
}
}
lambda <- 2*lambda
spmin <- 0
spmax <- 1
maxvol <- getvofh2(hmax,lkern)
kstar <- as.integer(log(maxvol)/log(1.25))
if(aws){
k <- if(estvar) 6 else 1
}
else {
cat("No adaptation method specified. Calculate kernel estimate with bandwidth hmax.\n")
k <- kstar
}
if (demo && !graph) graph <- TRUE
if(graph){
oldpar <- par(mfrow=c(2,2),mar=c(1,1,3,.25),mgp=c(2,1,0))
on.exit(par(oldpar))
graphobj0 <- object[-(1:length(object))[names(object)=="img"]]
graphobj0$dim <- c(n1,n2)
if(!is.null(.Options$adimpro.xsize)) max.x <- trunc(.Options$adimpro.xsize/3.2) else max.x <- 600
if(!is.null(.Options$adimpro.ysize)) max.y <- trunc(.Options$adimpro.ysize/1.2) else max.y <- 900
}
bi <- rep(1,n)
theta <- switch(imgtype,greyscale=object$img[xind,yind],rgb=object$img[xind,yind,])
if(estvar){
coef <- matrix(0,nvarpar,dv)
coef[1,] <- sigma2
vobj <- list(coef=coef,meanvar=sigma2)
imgq995 <- switch(imgtype,greyscale=quantile(object$img[xind,yind],.995),
rgb=apply(object$img[xind,yind,],3,quantile,.995))
}
if(scorr){
twohp1 <- 2*trunc(hpre)+1
pretheta <- .Fortran(C_awsimg,
as.integer(switch(imgtype,
greyscale=object$img[xind,yind],
rgb=object$img[xind,yind,])),
as.integer(n1),
as.integer(n2),
as.integer(dv),
as.double(hpre),
theta=integer(prod(dimg)),
double(n1*n2),
as.integer(lkern),
double(twohp1*twohp1),
double(dv),
PACKAGE="adimpro")$theta
dim(pretheta) <- dimg
spchcorr <- .Fortran(C_estcorr,
as.double(switch(imgtype,
greyscale=object$img[xind,yind],
rgb=object$img[xind,yind,])-pretheta),
as.integer(n1),
as.integer(n2),
as.integer(dv),
scorr=double(2*dv),
chcorr=double(max(1,dv*(dv-1)/2)),
PACKAGE="adimpro")[c("scorr","chcorr")]
spcorr <- spchcorr$scorr
srh <- sqrt(hpre)
spcorr <- matrix(pmin(.9,spcorr+
bcf[1]/srh+bcf[2]/hpre+
bcf[3]*spcorr/srh+bcf[4]*spcorr/hpre+
bcf[5]*spcorr^2/srh+bcf[6]*spcorr^2/hpre),2,dv)
chcorr <- spchcorr$chcorr
for(i in 1:dv) cat("Estimated spatial correlation in channel ",i,":",signif(spcorr[,i],2),"\n")
if(dv>1) cat("Estimated correlation between channels (1,2):",signif(chcorr[1],2),
" (1,3):",signif(chcorr[2],2),
" (2,3):",signif(chcorr[3],2),"\n")
} else {
spcorr <- matrix(0,2,dv)
chcorr <- numeric(max(1,dv*(dv-1)/2))
}
lambda0 <- 1e50
total <- cumsum(1.25^(1:kstar))/sum(1.25^(1:kstar))
while (k<=kstar) {
hakt0 <- geth2(1,10,lkern,1.25^(k-1),1e-4)
hakt <- geth2(1,10,lkern,1.25^k,1e-4)
twohp1 <- 2*trunc(hakt)+1
spcorr <- pmax(apply(spcorr,1,mean),0)
if(any(spcorr>0)) {
h0<-numeric(length(spcorr))
for(i in 1:length(h0))
h0[i]<-geth.gauss(spcorr[i])
if(length(h0)<2) h0<-rep(h0[1],2)
}
if (any(spcorr>0)) {
lcorr <- Spatialvar.gauss(hakt0,h0)/
Spatialvar.gauss(h0,1e-5)/Spatialvar.gauss(hakt0,1e-5)
lambda0 <-lambda0*lcorr
if(varmodel=="None")
lambda0 <- lambda0*Varcor.gauss(h0)
}
if(dv==1) dim(theta) <- c(n1,n2) else dim(theta) <- c(n1,n2,dv)
anisoimg <- tensor2D(theta,g=g,rho=max(rho,1e-6)*mean(vobj$meanvar)/bi)
anisoimg[1,,] <- anisoimg[1,,]+max(rho,1e-6)*mean(vobj$meanvar)/bi
anisoimg[3,,] <- anisoimg[3,,]+max(rho,1e-6)*mean(vobj$meanvar)/bi
hakt0 <- hakt
if(estvar){
varcase <- 1
zobj <- .Fortran(C_aniawsv,
as.integer(switch(imgtype,
greyscale=object$img[xind,yind],
rgb=object$img[xind,yind,])),
as.integer(n1),
as.integer(n2),
as.integer(dv),
as.double(anisoimg),
as.double(vobj$coef),
as.integer(nvarpar),
as.double(vobj$meanvar),
as.double(chcorr),
hakt=as.double(hakt),
as.double(lambda0),
as.integer(theta),
bi=as.double(bi),
theta=integer(prod(dimg)),
as.integer(lkern),
as.integer(1),
as.double(spmin),
as.double(spmax),
as.double(sqrt(wghts)),
double(dv),
PACKAGE="adimpro")[c("bi","theta","hakt")]
} else {
varcase <- 3
zobj <- .Fortran(C_aniawsim,
as.integer(switch(imgtype,
greyscale=object$img[xind,yind],
rgb=object$img[xind,yind,])),
as.integer(n1),
as.integer(n2),
as.integer(dv),
as.double(anisoimg),
hakt=as.double(hakt),
as.double(lambda0),
as.integer(theta),
bi=as.double(bi),
theta=integer(prod(dimg)),
as.integer(lkern),
as.integer(1),
as.double(spmin),
as.double(spmax),
as.double(wghts),
double(dv),
PACKAGE="adimpro")[c("bi","theta","hakt")]
}
theta <- zobj$theta
bi <- zobj$bi
rm(zobj)
gc()
dim(bi) <- dimg[1:2]
if (graph) {
graphobj <- graphobj0
class(graphobj) <- "adimpro"
graphobj$img <- switch(imgtype,
greyscale=object$img[xind,yind],
rgb=object$img[xind,yind,])
show.image(graphobj,max.x=max.x,max.y=max.y,xaxt="n",yaxt="n")
title("Observed Image")
graphobj$img <- array(as.integer(theta),dimg)
show.image(graphobj,max.x=max.x,max.y=max.y,xaxt="n",yaxt="n")
title(paste("Reconstruction h=",signif(hakt,3)))
show.image(imganiso2D(anisoimg,satexp=satexp),max.x=max.x,max.y=max.y,xaxt="n",yaxt="n")
title(paste("Estimated anisotropy g=",signif(g,3)))
graphobj$img <- matrix(as.integer(65534*bi/max(bi)),n1,n2)
graphobj$type <- "greyscale"
graphobj$gamma <- FALSE
show.image(graphobj,max.x=max.x,max.y=max.y,xaxt="n",yaxt="n")
title(paste("Adaptation (rel. weights):",signif(mean(bi)/max(bi),3)))
rm(graphobj)
gc()
}
cat("Bandwidth",signif(hakt,3)," Progress",signif(total[k],2)*100,"% \n")
if (scorr) {
if(hakt > hpre){
spchcorr <- .Fortran(C_estcorr,
as.double(switch(imgtype,
greyscale=object$img[xind,yind],
rgb=object$img[xind,yind,]) - theta),
as.integer(n1),
as.integer(n2),
as.integer(dv),
scorr=double(2*dv),
chcorr=double(max(1,dv*(dv-1)/2)),
PACKAGE="adimpro")[c("scorr","chcorr")]
spcorr <- spchcorr$scorr
srh <- sqrt(hakt)
spcorr <- matrix(pmin(.9,spcorr+
bcf[1]/srh+bcf[2]/hakt+
bcf[3]*spcorr/srh+bcf[4]*spcorr/hakt+
bcf[5]*spcorr^2/srh+bcf[6]*spcorr^2/hakt),2,dv)
chcorr <- spchcorr$chcorr
for(i in 1:dv) cat("Estimated spatial correlation in channel ",i,":",signif(spcorr[,i],2),"\n")
if(dv>1) cat("Estimated correlation between channels (1,2):",signif(chcorr[1],2),
" (1,3):",signif(chcorr[2],2),
" (2,3):",signif(chcorr[3],2),"\n")
} else {
spcorr <- matrix(pmin(.9,spchcorr$scorr+
bcf[1]/srh+bcf[2]/hpre+
bcf[3]*spchcorr$scorr/srh+bcf[4]*spchcorr$scorr/hpre+
bcf[5]*spchcorr$scorr^2/srh+bcf[6]*spchcorr$scorr^2/hpre),2,dv)
chcorr <- spchcorr$chcorr
}
} else {
spcorr <- matrix(0,2,dv)
chcorr <- numeric(max(1,dv*(dv-1)/2))
}
if (estvar) {
vobj <- switch(toupper(varmodel),
CONSTANT=.Fortran(C_esigmac,
as.integer(switch(imgtype,
greyscale=object$img[xind,yind],
rgb=object$img[xind,yind,])),
as.integer(n1*n2),
as.integer(dv),
as.integer(theta),
as.double(bi),
as.integer(imgq995),
coef=double(nvarpar*dv),
meanvar=double(dv),
PACKAGE="adimpro")[c("coef","meanvar")],
LINEAR=.Fortran(C_esigmac,
as.integer(switch(imgtype,
greyscale=object$img[xind,yind],
rgb=object$img[xind,yind,])),
as.integer(n1*n2),
as.integer(dv),
as.integer(theta),
as.double(bi),
as.integer(imgq995),
coef=double(nvarpar*dv),
meanvar=double(dv),
PACKAGE="adimpro")[c("coef","meanvar")]
)
dim(vobj$coef) <- c(nvarpar,dv)
for(i in 1:dv){
if(any(spcorr[,i]>.1) & vobj$meanvar[i]<sigma2[i]) {
vobj$coef[,i] <- vobj$coef[,i]*sigma2[i]/vobj$meanvar[i]
vobj$meanvar[i] <- sigma2[i]
}
}
cat("Estimated mean variance",signif(vobj$meanvar/65635^2,3),"\n")
}
k <- k + 1
if (demo) readline("Press return")
lambda0 <- lambda*ladjust
}
if(graph) par(oldpar)
if(imgtype=="rgb") {
object$img[xind,yind,] <- theta
} else if(imgtype=="greyscale") {
object$img[xind,yind] <- theta
}
ni <- array(1,dimg0[1:2])
ni[xind,yind] <- bi
object$ni <- ni
object$ni0 <- max(ni)
object$hmax <- hakt
object$call <- args
if(estvar) {
if(varmodel=="Linear") {
vobj$coef[1,] <- vobj$coef[1,]/65535^2
vobj$coef[2,] <- vobj$coef[2,]/65535
} else vobj$coef <- vobj$coef/65535^2
object$varcoef <- vobj$coef
object$wghts <- vobj$wghts
}
if(scorr) {
object$scorr <- spcorr
object$chcorr <- chcorr
}
invisible(if(compress) compress.image(object) else object)
} |
'dse06d' |
coxDT = function(formula,L,R,data,subset,time.var=FALSE,subject=NULL,B.SE.np=200,CI.boot=FALSE,B.CI.boot=2000,pvalue.boot=FALSE,
B.pvalue.boot=500,B.pvalue.se.boot=100,trunc.weight=100,print.weights=FALSE,error=10^-6,n.iter=1000)
{
if(missing(data)==TRUE) stop("Must specify data fame in 'data =' statement");
set.seed(1312018)
data=data[subset,]
nrows.data=dim(data)[1];
data=na.omit(data);
nrows.data.omit=dim(data)[1];
mf = model.frame(formula=formula,data=data)
X=model.matrix(attr(mf,"terms"),data=mf)[,-1]
p=1; n=length(X);
if(length(dim(X))>0) {p=dim(X)[2]; n=dim(X)[1]}
Y=as.numeric(model.response(mf))[1:n];
L=deparse(substitute(L)); R=deparse(substitute(R));
formula.temp=paste(L,R,sep="~")
mf.temp=model.frame(formula=formula.temp,data=data)
obs.data=sapply(rownames(mf),rownames(mf.temp),FUN=function(x,y) which(x==y))
L=mf.temp[obs.data,1]; R=mf.temp[obs.data,2];
P.obs.y.np=cdfDT(Y,L,R,error,n.iter,display=FALSE)$P.K
weights.np=1/P.obs.y.np
weights.np[which(weights.np>trunc.weight)]=trunc.weight
P.obs.NP=n*(sum(1/P.obs.y.np))^(-1)
data.new=data.frame(data,weights.np)
beta.np=coxph(formula,data=data.new,weights=weights.np)$coefficients
if(time.var==TRUE)
{
subject=deparse(substitute(subject))
formula.temp2=paste(subject,subject,sep="~");
subjects=model.response(model.frame(formula.temp2,data=data));
n.subject=length(unique(subjects));
}
B=B.SE.np
if(CI.boot==TRUE) B=max(B.SE.np,B.CI.boot)
beta.boot.np=matrix(0,nrow=B,ncol=p)
for(b in 1:B) {
repeat{
if(time.var==FALSE) {temp.sample=sort(sample(n,replace=TRUE))};
if(time.var==TRUE) {
temp.obs=sort(sample(n.subject,replace=TRUE))
temp.sample=unlist(sapply(temp.obs,subjects,FUN=function(x,y) which(x==y)))
}
Y.temp=Y[temp.sample]; L.temp=L[temp.sample]; R.temp=R[temp.sample];
if(p==1) X.temp=X[temp.sample];
if(p>=2) X.temp=X[temp.sample,];
out.temp=cdfDT(Y.temp,L.temp,R.temp,error,n.iter,display=FALSE)
if(out.temp$max.iter_reached==0) {break}
}
P.obs.NP.temp=out.temp$P.K
weights.np.temp=1/P.obs.NP.temp
weights.np.temp[which(weights.np.temp>trunc.weight)]=trunc.weight
data.temp=data.frame(data[temp.sample,],weights.np.temp)
beta.boot.np[b,]=coxph(formula,data=data.temp,weights=weights.np.temp)$coefficients
}
se.beta.np=apply(beta.boot.np,2,sd);
if(CI.boot==FALSE) {
CI.lower=beta.np-1.96*se.beta.np; CI.upper=beta.np+1.96*se.beta.np;
CI.beta.np=round(cbind(CI.lower,CI.upper),3)
}
if(pvalue.boot==FALSE) {
Test.statistic=(beta.np/se.beta.np)^2;
p.value=round(2*(1-pnorm(abs(beta.np/se.beta.np))),4)
}
if(CI.boot==TRUE)
{
CI.beta.np=matrix(0,nrow=p,ncol=2)
for(k in 1:p) CI.beta.np[k,]=round(c(quantile(beta.boot.np[,k],seq(0,1,0.025))[2],quantile(beta.boot.np[,k],seq(0,1,0.025))[40]),3)
}
if(pvalue.boot==TRUE)
{
B1=B.pvalue.boot;
B2=B.pvalue.se.boot;
beta.boot.np1=matrix(0,nrow=B1,ncol=p); beta.boot.np2=matrix(0,nrow=B2,ncol=p); beta.boot.np.sd1=matrix(0,nrow=B1,ncol=p)
for(b1 in 1:B1) {
repeat{
if(time.var==FALSE) {temp.sample1=sort(sample(n,replace=TRUE))};
if(time.var==TRUE) {
temp.obs1=sort(sample(n.subject,replace=TRUE))
temp.sample1=unlist(sapply(temp.obs1,subjects,FUN=function(x,y) which(x==y)))
}
Y.temp1=Y[temp.sample1]; L.temp1=L[temp.sample1]; R.temp1=R[temp.sample1];
if(p==1) X.temp1=X[temp.sample1];
if(p>=2) X.temp1=X[temp.sample1,];
out.temp1=cdfDT(Y.temp1,L.temp1,R.temp1,error,n.iter,display=FALSE)
if(out.temp1$max.iter_reached==0) {break}
}
P.obs.NP.temp1=out.temp1$P.K
weights.np.temp1=1/P.obs.NP.temp1
weights.np.temp1[which(weights.np.temp1>trunc.weight)]=trunc.weight
data.temp1=data.frame(data[temp.sample1,],weights.np.temp1)
beta.boot.np1[b1,]=coxph(formula,data=data.temp1,weights=weights.np.temp1)$coefficients
for(b2 in 1:B2) {
repeat{
if(time.var==FALSE) {temp.sample2=sort(sample(temp.sample1,replace=TRUE))};
if(time.var==TRUE) {
temp.obs2=sort(sample(temp.obs1,replace=TRUE))
temp.sample2=unlist(sapply(temp.obs2,subjects,FUN=function(x,y) which(x==y)))
}
Y.temp2=Y[temp.sample2]; L.temp2=L[temp.sample2]; R.temp2=R[temp.sample2];
if(p==1) X.temp2=X[temp.sample2];
if(p>=2) X.temp2=X[temp.sample2,];
out.temp2=cdfDT(Y.temp2,L.temp2,R.temp2,error,n.iter,display=FALSE)
if(out.temp2$max.iter_reached==0) {break}
}
P.obs.NP.temp2=out.temp2$P.K
weights.np.temp2=1/P.obs.NP.temp2
weights.np.temp2[which(weights.np.temp2>trunc.weight)]=trunc.weight
data.temp2=data.frame(data[temp.sample2,],weights.np.temp2)
beta.boot.np2[b2,]=coxph(formula,data=data.temp2,weights=weights.np.temp2)$coefficients
}
beta.boot.np.sd1[b1,]=apply(beta.boot.np2,2,"sd")
}
test_statistic.beta.np=numeric(p)
test_statistic.beta.np.boot=matrix(0,nrow=B1,ncol=p)
p.value=numeric(p)
for(k in 1:p) {
test_statistic.beta.np[k]=(beta.np[k]/se.beta.np[k])^2
test_statistic.beta.np.boot[,k]=((beta.boot.np1[,k]-beta.np[k])/beta.boot.np.sd1[,k])^2
p.value[k]=round(length(which(test_statistic.beta.np.boot[,k]>test_statistic.beta.np[k]))/B1,4)
}
Test.statistic=test_statistic.beta.np
}
beta.np=round(beta.np,4);
se.beta.np=round(se.beta.np,4);
Test.statistic=round(Test.statistic,2)
p.value[which(p.value==0)]="<.0005"
results.beta=noquote(cbind(beta.np,se.beta.np,CI.beta.np,Test.statistic,p.value))
rownames(results.beta)=colnames(X); colnames(results.beta)=c("Estimate","SE","CI.lower","CI.upper","Wald statistic","p-value")
weights="print option not requested";
if(print.weights==TRUE) weights=weights.np;
cat("number of observations read:", nrows.data, "\n")
cat("number of observations used:", nrows.data.omit, "\n\n")
if((CI.boot==TRUE)&(pvalue.boot==FALSE)) return(list(results.beta=results.beta,CI="Bootstrap",p.value="Normal approximation",weights=weights));
if((CI.boot==FALSE)&(pvalue.boot==TRUE)) return(list(results.beta=results.beta,CI="Normal approximation",p.value="Bootstrap",weights=weights));
if((CI.boot==TRUE)&(pvalue.boot==TRUE)) return(list(results.beta=results.beta,CI="Bootstrap",p.value="Bootstrap",weights=weights));
if((CI.boot==FALSE)&(pvalue.boot==FALSE)) return(list(results.beta=results.beta,CI="Normal approximation",p.value="Normal approximation",weights=weights));
} |
identifyTheEquivalent.glmm = function(queues, target, reps, group, dataset, cvar, z, test, wei, threshold, univariateModels, pvalues, hash, stat_hash, pvalue_hash, slopes)
{
z = t(z);
for(i in 1:ncol(z)) {
w = z[, i];
w = t(t(w));
zPrime = c(setdiff(z, w), cvar);
cur_results = test(target, reps, group, dataset, w, zPrime, wei = wei, univariateModels, hash = hash, stat_hash, pvalue_hash, slopes = slopes);
if ( cur_results$pvalue > threshold ) {
queues[[w]] = as.matrix( c(queues[[w]], queues[[cvar]]) );
break;
}
}
return(queues);
} |
lmt.I <- function(fcobj.0, fcobj.a, X.gbd, PV.gbd, tau = 0.5,
n.mc.E.delta = 1000, n.mc.E.chi2 = 1000, verbose = FALSE){
if(class(fcobj.0) != "fclust" || class(fcobj.a) != "fclust"){
stop("fcobj.0 and fcobj.a should be both in \"fclust\" class.")
}
if(fcobj.0$param$K == fcobj.a$param$K){
stop("fcobj.0 and fcobj.a should have different numbers of clusters.")
}
set.global(X.gbd, PV.gbd)
x <- list(X.gbd = X.gbd, PV.gbd = PV.gbd)
k.0 <- fcobj.0$param$K
k.a <- fcobj.a$param$K
ll.0 <- fcobj.0$param$logL
ll.a <- fcobj.a$param$logL
delta.hat <- fcobj.a$param$logL - fcobj.0$param$logL
E.delta <- get.E.delta.I(x, fcobj.0, fcobj.a, tau = tau, n.mc = n.mc.E.delta)
E.chi2.0 <- get.E.chi2.I(x, fcobj.0, fcobj.a, "0", tau = tau,
n.mc = n.mc.E.chi2, verbose = verbose)
E.chi2.a <- get.E.chi2.I(x, fcobj.0, fcobj.a, "a", tau = tau,
n.mc = n.mc.E.chi2, verbose = verbose)
T <- 2 * (delta.hat - E.delta)
pv.0 <- pchisq.my(T, E.chi2.0[1], E.chi2.0[2], lower.tail = FALSE)
pv.a <- pchisq.my(T, E.chi2.a[1], E.chi2.a[2], lower.tail = FALSE)
pv <- pv.0 * tau + pv.a * (1 - tau)
ret <- list(K.0 = k.0, K.a = k.a, ll.0 = ll.0, ll.a = ll.a,
delta.hat = delta.hat,
E.delta = E.delta, E.chi2.0 = E.chi2.0, E.chi2.a = E.chi2.a,
T = T, pv.0 = pv.0, pv.a = pv.a, pv = pv)
class(ret) <- "lmt.I"
ret
}
print.lmt.I <- function(x, digits = max(4, getOption("digits") - 3), ...){
K.0 <- x$K.0
K.a <- x$K.a
ll.0 <- x$ll.0
ll.a <- x$ll.a
delta.hat <- x$delta.hat
E.delta <- x$E.delta
E.chi2.0 <- x$E.chi2.0
E.chi2.a <- x$E.chi2.a
T <- x$T
pv.0 <- x$pv.0
pv.a <- x$pv.a
pv <- x$pv
cat("- H.0: K = ", K.0, " vs H.a: K = ", K.a, "\n",
" ll.0 = ", ll.0, ", ll.a = ", ll.a, "\n",
" df.0 = ", E.chi2.0[1], ", nc.0 = ", E.chi2.0[2],
", df.a = ", E.chi2.a[1], ", nc.a = ", E.chi2.a[2], "\n",
" delta.hat = ", delta.hat, ", E.delta = ", E.delta,
", T = ", T, "\n",
" pv.0 = ", pv.0, ", pv.a = ", pv.a, " pv = ", pv,
"\n", sep = "")
invisible()
} |
par(xaxt = "n", yaxt = "n", mar = c(2, 0.1, 3, 0.1))
y = seq(2 * pi, 0, length = 150)
x = sin(y)
plot(x, y,
type = "n", xlim = c(-1.3, 1.3), ylim = c(-0.93, 7.21),
xlab = "", ylab = "", main = "IN THE ORBIT OF STATISTICS", asp = 1
)
rx = seq(-2, 2, length = 300)
ry = dnorm(rx, 0, 0.2) + y[75]
rty = ry - y[75]
agl = pi / 4 + ifelse(rty / rx > 0, atan(rty / rx), atan(rty / rx) + pi)
r = sqrt(rx^2 + rty^2)
rtx = r * cos(agl)
rty = r * sin(agl) + y[75]
lines(rtx, rty)
segments(-0.45, y[75] - 0.45, 0.45, y[75] + 0.45, col = "white", lwd = 2)
q95 = qnorm(0.025, 0, 0.2)
d95 = dnorm(q95, 0, 0.2)
rg = rx > q95 & rx < -q95
polygon(c(rtx[rg][1], rtx[rg], rtx[rg][length(rg)]),
c(rty[rg][1], rty[rg], rty[rg][length(rg)]),
col = "lavender"
)
radius = ifelse(0.5 * abs(cos(y)) + 0.1 < 0.15, 0.15,
0.5 * abs(cos(y)) + 0.1
)
symbols(x, y,
circles = radius, inches = FALSE, fg = heat.colors(150),
add = TRUE
)
idx = rep(c(TRUE, FALSE), 75)
segments(x[idx], y[idx], x[!idx], y[!idx], col = heat.colors(200)[1:150][idx])
arrows(x[1], y[1], x[1] + 0.75, y[1] + 0.75,
col = "red", lwd = 2, angle = 75
)
arrows(x[150] - 0.75, y[150] - 0.75, x[150], y[150],
col = "yellow", lwd = 2, angle = 75
)
mtext("``STAT'' made by Yihui XIE using R, School of Statistics, RUC, 2007",
side = 1, cex = 0.8
) |
hgroups <-
function(hmerge) {
cc<-hmerge
n1<-nrow(cc)
clases= paste( -cc[1,1], -cc[1,2],sep="-")
clases <-as.matrix(clases)
for(i in 2:n1) {
if ((cc[i,1] < 0) & (cc[i,2] < 0) ) {
clases <-rbind(clases,paste( -cc[i,1], -cc[i,2],sep="-") )
}
if ((cc[i,1]) < 0 & (cc[i,2] > 0)) {
clave<- cc[i,2]
parte<-clases[clave,]
clases <-rbind(clases,paste( -cc[i,1], parte,sep="-") )
}
if ((cc[i,1]) > 0 & (cc[i,2] < 0)) {
clave<- cc[i,1]
parte<-clases[clave,]
clases <-rbind(clases,paste( parte,-cc[i,2],sep="-") )
}
if ((cc[i,1]) > 0 & (cc[i,2] > 0)) {
clave1<- cc[i,1]
clave2<- cc[i,2]
parte1<-clases[clave1,]
parte2<-clases[clave2,]
clases <-rbind(clases,paste( parte1,parte2,sep="-") )
}
}
for(i in 1:n1) {
x<-strsplit(clases[i,1],split="-")[[1]]
x
unique(x)
y<-as.numeric(unique(x))
y<-sort(y)
y<-as.character(y)
ny<- length(y)
s<-y[1]
for(j in 2:ny) s<-paste(s,y[j],sep="-")
clases[i,1]<- s
}
return(clases)
} |
renv_description_read <- function(path = NULL, package = NULL, subdir = NULL, ...) {
path <- path %||% find.package(package)
if (!file.exists(path)) {
fmt <- "%s does not exist"
stopf(fmt, renv_path_pretty(path))
}
if (!renv_path_absolute(path))
path <- renv_path_normalize(path)
info <- renv_file_info(path)
if (identical(info$isdir, TRUE)) {
components <- c(path, if (nzchar(subdir %||% "")) subdir, "DESCRIPTION")
path <- paste(components, collapse = "/")
}
filebacked(
scope = "DESCRIPTION",
path = path,
callback = renv_description_read_impl,
subdir = subdir,
...
)
}
renv_description_read_impl <- function(path = NULL, subdir = NULL, ...) {
type <- renv_archive_type(path)
if (type != "unknown") {
files <- renv_archive_list(path)
subdir <- subdir %||% ""
parts <- c("^[^/]+", if (nzchar(subdir)) subdir, "DESCRIPTION$")
pattern <- paste(parts, collapse = "/")
descs <- grep(pattern, files, value = TRUE)
if (empty(descs)) {
fmt <- "archive '%s' does not appear to contain a DESCRIPTION file"
stopf(fmt, aliased_path(path))
}
file <- descs[[1]]
exdir <- renv_scope_tempfile("renv-description-")
renv_archive_decompress(path, files = file, exdir = exdir)
path <- file.path(exdir, file)
}
dcf <- renv_dcf_read(path, ...)
if (empty(dcf))
stopf("DESCRIPTION file at '%s' is empty", path)
dcf
}
renv_description_path <- function(path) {
childpath <- file.path(path, "DESCRIPTION")
indirect <- file.exists(childpath)
path[indirect] <- childpath[indirect]
path
}
renv_description_type <- function(path = NULL, desc = NULL) {
if (is.null(desc)) {
desc <- catch(renv_description_read(path))
if (inherits(desc, "error")) {
warning(desc)
return("unknown")
}
}
type <- desc$Type
if (!is.null(type))
return(tolower(type))
package <- desc$Package
if (!is.null(package))
return("package")
"unknown"
}
renv_description_parse_field <- function(field) {
if (is.na(field) || !nzchar(field))
return(data.frame())
pattern <- paste0(
"([a-zA-Z0-9._]+)",
"(?:\\s*\\(([><=]+)\\s*([0-9.-]+)\\))?"
)
parts <- strsplit(field, "\\s*,\\s*")[[1]]
x <- parts[nzchar(parts)]
m <- regexec(pattern, x)
matches <- regmatches(x, m)
if (empty(matches))
return(data.frame())
data.frame(
Package = extract_chr(matches, 2L),
Require = extract_chr(matches, 3L),
Version = extract_chr(matches, 4L),
stringsAsFactors = FALSE
)
}
renv_description_remotes <- function(descpath) {
desc <- renv_description_read(path = descpath)
remotes <- desc[["Remotes"]]
if (is.null(remotes))
return(NULL)
entries <- strsplit(remotes, "\\s*,\\s*", perl = TRUE)[[1L]]
parsed <- map(entries, renv_description_remotes_parse)
names(parsed) <- map_chr(parsed, `[[`, "Package")
parsed
}
renv_description_remotes_parse <- function(entry) {
status <- catch(renv_remotes_resolve(entry))
if (inherits(status, "error")) {
fmt <- "failed to resolve remote '%s' from project DESCRIPTION file; skipping"
warningf(fmt, entry)
return(NULL)
}
status
}
renv_description_resolve <- function(path) {
case(
is.list(path) ~ path,
is.character(path) ~ renv_description_read(path = path)
)
}
renv_description_built_version <- function(desc = NULL) {
desc <- renv_description_resolve(desc)
built <- desc[["Built"]]
if (is.null(built))
return(NA)
substring(built, 3L, regexpr(";", built, fixed = TRUE) - 1L)
} |
sim.points <- function(object, n.points = 1000, seed = NA, sample.type = "ppp", replace = FALSE, threshold = NA, ...) {
if(!is.na(seed)){
set.seed(seed)
}
suit <- object$suitability
if(sample.type == "ppp"){
total.dens <- sum(na.omit(values(suit)))
suit <- suit * (n.points / total.dens) * (1 / prod(res(suit)))
suit.im <- raster.as.im(suit)
pnts <- rpoispp(suit.im)
pres.points <- data.frame(x = pnts$x, y = pnts$y)
}
if(sample.type == "thresh.pa"){
if(is.na(threshold) | !is.numeric(threshold)){
stop("Sample type is thresh.pa but thresdhold was not supplied or is not numeric!")
}
suit <- suit >= threshold
}
if(sample.type == "thresh.con"){
if(is.na(threshold) | !is.numeric(threshold)){
stop("Sample type is thresh.con but thresdhold was not supplied or is not numeric!")
}
suit <- suit * (suit > threshold)
}
if(sample.type %in% c("binomial", "thresh.pa", "thresh.con")){
suit <- suit/max(getValues(suit), na.rm = TRUE)
sample.df <- rasterToPoints(suit)
sample.df <- sample.df[sample(1:nrow(sample.df)),]
pres.points <- data.frame(x = numeric(0),
y = numeric(0))
npres <- 0
while(npres < n.points){
for(i in 1:nrow(sample.df)){
if(i >= nrow(sample.df)){
next
}
this.suit <- sample.df[i,"layer"]
if(rbinom(1, 1, prob = this.suit) == 1){
this.row <- sample.df[i, 1:2]
npres <- npres + 1
pres.points[npres,] <- this.row
if(replace == FALSE){
sample.df <- sample.df[-i,]
}
}
if(npres >= n.points){
break
}
}
}
}
return(pres.points)
}
raster.as.im <- function(im) {
r <- raster::res(im)
orig <- sp::bbox(im)[, 1] + 0.5 * r
dm <- dim(im)[2:1]
xx <- unname(orig[1] + cumsum(c(0, rep(r[1], dm[1] - 1))))
yy <- unname(orig[2] + cumsum(c(0, rep(r[2], dm[2] - 1))))
return(spatstat.geom::im(matrix(raster::values(im), ncol = dm[1],
nrow = dm[2], byrow = TRUE)[dm[2]:1, ],
xcol = xx, yrow = yy))
} |
context("dplyr-sample-n")
sc <- testthat_spark_connection()
iris_tbl <- testthat_tbl("iris")
test_requires("dplyr")
test_that("'sample_n' works as expected", {
test_requires_version("2.0.0")
skip_livy()
test_requires("dplyr")
for (weight in list(NULL, rlang::sym("Petal_Length"))) {
for (replace in list(FALSE, TRUE)) {
sample_sdf <- iris_tbl %>%
sample_n(10, weight = !!weight, replace = replace)
expect_equal(colnames(sample_sdf), colnames(iris_tbl))
expect_equal(sample_sdf %>% collect() %>% nrow(), 10)
sample_sdf <- iris_tbl %>%
select(Petal_Length) %>%
sample_n(10, weight = !!weight, replace = replace)
expect_equal(colnames(sample_sdf), "Petal_Length")
expect_equal(sample_sdf %>% collect() %>% nrow(), 10)
}
}
})
test_that("weighted sampling works as expected with integer weight columns", {
test_requires_version("2.0.0")
skip_livy()
test_requires("dplyr")
sdf <- copy_to(sc, tibble::tibble(id = seq(100), weight = seq(100)))
for (replace in list(FALSE, TRUE)) {
sample_sdf <- sdf %>%
sample_n(20, weight = weight, replace = replace)
expect_equal(colnames(sample_sdf), colnames(sdf))
expect_equal(sample_sdf %>% collect() %>% nrow(), 20)
sample_sdf <- sdf %>%
sample_frac(0.2, weight = weight, replace = replace)
expect_equal(colnames(sample_sdf), colnames(sdf))
expect_equal(sample_sdf %>% collect() %>% nrow(), 20)
}
}) |
bootstrap_model <- function(seminr_model, nboot = 500, cores = NULL, seed = NULL, ...) {
out <- tryCatch(
{
message("Bootstrapping model using seminr...")
d <- seminr_model$rawdata
measurement_model <- seminr_model$measurement_model
structural_model <- seminr_model$smMatrix
inner_weights <- seminr_model$inner_weights
missing_value <- seminr_model$settings$missing_value
maxIt <- seminr_model$settings$maxIt
stopCriterion <- seminr_model$settings$stopCriterion
missing <- seminr_model$settings$missing
if (nboot > 0) {
suppressWarnings(ifelse(is.null(cores), cl <- parallel::makeCluster(parallel::detectCores(), setup_strategy = "sequential"), cl <- parallel::makeCluster(cores, setup_strategy = "sequential")))
getRandomIndex <- function(d) {return(sample.int(nrow(d), replace = TRUE))}
if (is.null(seed)) {seed <- sample.int(100000, size = 1)}
parallel::clusterExport(cl=cl, varlist=c("measurement_model",
"structural_model",
"inner_weights",
"getRandomIndex",
"d",
"HTMT",
"seed",
"total_effects",
"missing_value",
"maxIt",
"stopCriterion",
"missing"), envir=environment())
length <- 3*nrow(seminr_model$path_coef)^2 + 2*nrow(seminr_model$outer_loadings)*ncol(seminr_model$outer_loadings)
getEstimateResults <- function(i, d = d, length) {
set.seed(seed + i)
tryCatch({
boot_model <- seminr::estimate_pls(data = d[getRandomIndex(d),],
measurement_model,
structural_model,
inner_weights = inner_weights)
boot_htmt <- HTMT(boot_model)
boot_total <- total_effects(boot_model$path_coef)
return(as.matrix(c(c(boot_model$path_coef),
c(boot_model$outer_loadings),
c(boot_model$outer_weights),
c(boot_htmt),
c(boot_total))))
},
error = function(cond) {
message("Bootstrapping encountered an ERROR: ")
message(cond)
return(rep(NA, length))
},
warning = function(cond) {
message("Bootstrapping encountered an ERROR: ")
message(cond)
return(rep(NA, length))
}
)
}
utils::capture.output(bootmatrix <- parallel::parSapply(cl, 1:nboot, getEstimateResults, d, length))
bootmatrix <- bootmatrix[,!is.na(bootmatrix[1,])]
fails <- nboot - ncol(bootmatrix)
nboot <- nboot - fails
if (fails > 0) {
message(paste("Bootstrapping encountered a WARNING: ", fails, "models failed to converge in PLSc. \nThese models are excluded from the reported bootstrap statistics."))
}
means <- apply(bootmatrix,1,mean)
sds <- apply(bootmatrix,1,stats::sd)
path_cols <- ncol(seminr_model$path_coef)
path_rows <- nrow(seminr_model$path_coef)
start <- 1
end <- (path_cols*path_rows)
boot_paths <- array(bootmatrix[start:end,1:nboot], dim = c(path_rows, path_cols, nboot), dimnames = list(rownames(seminr_model$path_coef), colnames(seminr_model$path_coef),1:nboot))
paths_means <- matrix(means[start:end], nrow = path_rows, ncol = path_cols)
paths_sds <- matrix(sds[start:end], nrow = path_rows, ncol = path_cols)
paths_descriptives <- cbind(seminr_model$path_coef, paths_means, paths_sds)
filled_cols <- apply(paths_descriptives != 0, 2, any, na.rm=TRUE)
filled_rows <- apply(paths_descriptives != 0, 1, any, na.rm=TRUE)
paths_descriptives <- subset(paths_descriptives, filled_rows, filled_cols)
if (length(unique(structural_model[,"target"])) == 1) {
dependant <- unique(structural_model[,"target"])
} else {
dependant <- colnames(paths_descriptives[, 1:length(unique(structural_model[,"target"]))])
}
col_names <- c()
for (parameter in c("PLS Est.", "Boot Mean", "Boot SD")) {
for (i in 1:length(dependant)) {
col_names <- c(col_names, paste(dependant[i], parameter, sep = " "))
}
}
colnames(paths_descriptives) <- col_names
mm_cols <- ncol(seminr_model$outer_loadings)
mm_rows <- nrow(seminr_model$outer_loadings)
start <- end+1
end <- start+(mm_cols*mm_rows)-1
boot_loadings <- array(bootmatrix[start:end,1:nboot], dim = c(mm_rows, mm_cols, nboot), dimnames = list(rownames(seminr_model$outer_loadings), colnames(seminr_model$outer_loadings),1:nboot))
loadings_means <- matrix(means[start:end], nrow = mm_rows, ncol = mm_cols)
loadings_sds <- matrix(sds[start:end], nrow = mm_rows, ncol = mm_cols)
loadings_descriptives <- cbind(seminr_model$outer_loadings, loadings_means, loadings_sds)
col_names2 <- c()
for (parameter in c("PLS Est.", "Boot Mean", "Boot SD")) {
for(i in colnames(seminr_model$outer_loadings)) {
col_names2 <- c(col_names2, paste(i, parameter, sep = " "))
}
}
colnames(loadings_descriptives) <- col_names2
start <- end+1
end <- start+(mm_cols*mm_rows)-1
boot_weights <- array(bootmatrix[start:end,1:nboot], dim = c(mm_rows, mm_cols, nboot), dimnames = list(rownames(seminr_model$outer_loadings), colnames(seminr_model$outer_loadings),1:nboot))
weights_means <- matrix(means[start:end], nrow = mm_rows, ncol = mm_cols)
weights_sds <- matrix(sds[start:end], nrow = mm_rows, ncol = mm_cols)
weights_descriptives <- cbind(seminr_model$outer_weights, weights_means, weights_sds)
colnames(weights_descriptives) <- col_names2
HTMT_matrix <- HTMT(seminr_model)
start <- end+1
end <- start+(path_cols*path_rows)-1
boot_HTMT <- array(bootmatrix[start:end,1:nboot], dim = c(path_rows, path_cols, nboot), dimnames = list(rownames(HTMT_matrix), colnames(HTMT_matrix),1:nboot))
htmt_means <- matrix(means[start:end], nrow = path_rows, ncol = path_cols)
htmt_sds <- matrix(sds[start:end], nrow = path_rows, ncol = path_cols)
HTMT_descriptives <- cbind(HTMT_matrix, htmt_means, htmt_sds)
col_names3 <- c()
for (parameter in c("PLS Est.", "Boot Mean", "Boot SD")) {
for(i in colnames(HTMT_matrix)) {
col_names3 <- c(col_names3, paste(i, parameter, sep = " "))
}
}
colnames(HTMT_descriptives) <- col_names3
total_matrix <- total_effects(seminr_model$path_coef)
start <- end+1
end <- start+(path_cols*path_rows)-1
boot_total_paths <- array(bootmatrix[start:end,1:nboot], dim = c(path_rows, path_cols, nboot), dimnames = list(rownames(total_matrix), colnames(total_matrix),1:nboot))
total_means <- matrix(means[start:end], nrow = path_rows, ncol = path_cols)
total_sds <- matrix(sds[start:end], nrow = path_rows, ncol = path_cols)
total_paths_descriptives <- cbind(total_matrix, total_means, total_sds)
filled_cols <- apply(total_paths_descriptives != 0, 2, any, na.rm=TRUE)
filled_rows <- apply(total_paths_descriptives != 0, 1, any, na.rm=TRUE)
total_paths_descriptives <- subset(total_paths_descriptives, filled_rows, filled_cols)
colnames(total_paths_descriptives) <- col_names
class(paths_descriptives) <- append(class(paths_descriptives), "table_output")
class(loadings_descriptives) <- append(class(loadings_descriptives), "table_output")
class(weights_descriptives) <- append(class(weights_descriptives), "table_output")
class(HTMT_descriptives) <- append(class(HTMT_descriptives), "table_output")
class(total_paths_descriptives) <- append(class(total_paths_descriptives), "table_output")
parallel::stopCluster(cl)
}
seminr_model$boot_paths <- boot_paths
seminr_model$boot_loadings <- boot_loadings
seminr_model$boot_weights <- boot_weights
seminr_model$boot_HTMT <- boot_HTMT
seminr_model$boot_total_paths <- boot_total_paths
seminr_model$paths_descriptives <- paths_descriptives
seminr_model$loadings_descriptives <- loadings_descriptives
seminr_model$weights_descriptives <- weights_descriptives
seminr_model$HTMT_descriptives <- HTMT_descriptives
seminr_model$total_paths_descriptives <- total_paths_descriptives
seminr_model$boots <- nboot
seminr_model$seed <- seed
class(seminr_model) <- c("boot_seminr_model", "seminr_model")
message("SEMinR Model successfully bootstrapped")
return(seminr_model)
},
error = function(cond) {
message("Bootstrapping encountered this ERROR: ")
message(cond)
parallel::stopCluster(cl)
return(NULL)
},
warning = function(cond) {
message("Bootstrapping encountered this WARNING:")
message(cond)
parallel::stopCluster(cl)
return(NULL)
},
finally = {
}
)
} |
print.VEwaningVariant <- function(x, ...) {
attr(x = x, which = "gFunc") <- NULL
attr(x = x, which = "maxTau") <- NULL
attr(x = x, which = "lag") <- NULL
attr(x = x, which = "v") <- NULL
attr(x = x, which = "phaseType") <- NULL
attr(x = x, which = "wgtType") <- NULL
x <- unclass(x = x)
print(x)
return( NULL )
} |
report_table <- function(x, ...) {
UseMethod("report_table")
}
as.report_table <- function(x, ...) {
UseMethod("as.report_table")
}
as.report_table.default <- function(x, summary = NULL, as_is = FALSE, ...) {
if (as_is) {
class(x) <- unique(c(class(x)[1], "report_table", utils::tail(class(x), -1)))
} else {
class(x) <- unique(c("report_table", class(x)))
}
attributes(x) <- c(attributes(x), list(...))
if (!is.null(summary)) {
if (as_is) {
class(summary) <- unique(c(class(summary)[1], "report_table", utils::tail(class(summary), -1)))
} else {
class(summary) <- unique(c("report_table", class(summary)))
}
attr(x, "summary") <- summary
}
x
}
as.report_table.report <- function(x, summary = NULL, ...) {
if (is.null(summary) || isFALSE(summary)) {
attributes(x)$table
} else if (isTRUE(summary)) {
summary(attributes(x)$table)
}
}
summary.report_table <- function(object, ...) {
if (is.null(attributes(object)$summary)) {
object
} else {
attributes(object)$summary
}
}
format.report_table <- function(x, ...) {
insight::format_table(x, ...)
}
print.report_table <- function(x, ...) {
cat(insight::export_table(format(x, ...), ...))
} |
computePolicy <- function(x) {
UseMethod("computePolicy", x)
}
computePolicy.matrix <- function(x) {
policy <- colnames(x)[apply(x, 1, which.max)]
names(policy) <- rownames(x)
return(policy)
}
computePolicy.data.frame <- function(x) {
return(computePolicy(as.matrix(x)))
}
computePolicy.rl <- function(x) {
return(computePolicy(x$Q))
}
computePolicy.default <- function(x) {
stop("Argument invalid.")
}
policy <- function(x) {
.Deprecated("computePolicy")
computePolicy(x)
} |
ExpData <- function(data, type = 1, fun=NULL){
if (!is.data.frame(data)) stop("data must be a numeric vector or data.frame")
xx <- as.data.frame(data)
dd <- sapply( sapply(xx, function(x){
if(is.character(x)) {
round((length(x[is.na(x)]) + length(x[x == '']))/ length(x), 5)
} else {
round((length(x[is.na(x)]))/ length(x), 5)
}
}),
function(y) {
if (y == 0.0) xx <- 1
else if (y > 0.9) xx <- 2
else if (y >= 0.5) xx <- 3
else if (y < 0.5) xx <- 4
}
)
p1 <- paste0(round(length(dd[dd == 4]) / length(dd) * 100, 2), "%", " (", length(dd[dd == 4]), ")")
p2 <- paste0(round(length(dd[dd == 3]) / length(dd) * 100, 2), "%", " (", length(dd[dd == 3]), ")")
p3 <- paste0(round(length(dd[dd == 2]) / length(dd) * 100, 2), "%", " (", length(dd[dd == 2]), ")")
p4 <- paste0(round(length(dd[dd == 1]) / length(dd) * 100, 2), "%", " (", length(dd[dd == 1]), ")")
Date_cnt <- length(names(xx)[unlist(sapply(xx, function(x) {
clsv <- class(x)[1]
clsv %in% c("Date", "POSIXct", "POSIXt")
}))])
Unif_cnt <- length(names(xx)[unlist(sapply(xx, function(x) length(unique(x[!is.na(x)])) == 1))])
Unvar_cnt <- length(names(xx)[unlist(sapply(xx, function(x) length(unique(x)) == length(x)))])
if (type == 1){
Out_put <- data.frame (rbind(
c("Sample size (nrow)", nrow(xx)),
c("No. of variables (ncol)", ncol(xx)),
c("No. of numeric/interger variables", length(names(xx)[sapply(xx, is.numeric)])),
c("No. of factor variables", length(names(xx)[sapply(xx, is.factor)])),
c("No. of text variables", length(names(xx)[sapply(xx, is.character)])),
c("No. of logical variables", length(names(xx)[sapply(xx, is.logical)])),
c("No. of identifier variables", Unvar_cnt),
c("No. of date variables", Date_cnt),
c("No. of zero variance variables (uniform)", Unif_cnt),
c("%. of variables having complete cases", p4),
c("%. of variables having >0% and <50% missing cases", p1),
c("%. of variables having >=50% and <90% missing cases", p2),
c("%. of variables having >=90% missing cases", p3)
)
)
names(Out_put) <- c("Descriptions", "Value")
return(Out_put)
}
if (type == 2){
name_var <- names(xx)
tt <- sapply(name_var, function(x){
expdatatype2(xx, x, myfun=fun)
}
)
op <- data.frame(t(tt))
op$Index <- seq(1, length(name_var), 1)
rownames(op) <- NULL
op[, 2] <- as.character(paste0(op[, 2]))
op[, 3] <- as.character(paste0(op[, 3]))
op[, 4] <- as.integer(paste0(op[, 4]))
op[, 5] <- as.integer(paste0(op[, 5]))
op[, 6] <- as.numeric(paste0(op[, 6]))
op[, 7] <- as.integer(paste0(op[, 7]))
if(!is.null(fun)) {
for(j in 1:length(fun)) op[, 7+j] <- as.numeric(paste0(op[, 7+j]))
}
names(op) <- c("Index", "Variable_Name", "Variable_Type","Sample_n","Missing_Count", "Per_of_Missing", "No_of_distinct_values", fun)
if(!is.null(fun)) op[!op$Variable_Type %in% c("integer", "numeric"), fun] <- NA
return(op)
}
} |
PlotFDRs <- function(lpcfdr.out, frac=.25){
CheckPlotFDRsFormat(lpcfdr.out,frac)
lpcfdr <- lpcfdr.out$fdrlpc
tfdr <- lpcfdr.out$fdrt
tfdrs <- tfdr[tfdr<quantile(tfdr,frac)]
lpcfdrs <- lpcfdr[lpcfdr<quantile(lpcfdr,frac)]
plot(tfdrs[order(tfdrs, decreasing=FALSE)], type="l", ylim=range(c(tfdrs,lpcfdrs)), main="Estimated FDRs for T and LPC", xlab="Num Genes Called Significant", ylab="Estimated FDR")
points(lpcfdrs[order(lpcfdrs,decreasing=FALSE)], type="l", col="red")
legend("topleft", pch=15, col=c("black", "red"), c("T", "LPC"))
}
|
"fun.theo.bi.mv.gld"<-
function(L1,L2,L3,L4,param1,M1,M2,M3,M4,param2,p1,normalise="N"){
if(length(L1)>1){
p1<-L1[9]
M4<-L1[8]
M3<-L1[7]
M2<-L1[6]
M1<-L1[5]
L4<-L1[4]
L3<-L1[3]
L2<-L1[2]
L1<-L1[1]
}
raw.moment1<-fun.rawmoments(L1,L2,L3,L4,param1)
raw.moment2<-fun.rawmoments(M1,M2,M3,M4,param2)
p2<-1-p1
ex1<-p1*raw.moment1[1]+p2*raw.moment2[1]
ex2<-p1*raw.moment1[2]+p2*raw.moment2[2]
ex3<-p1*raw.moment1[3]+p2*raw.moment2[3]
ex4<-p1*raw.moment1[4]+p2*raw.moment2[4]
result <- rep(NA, 4)
result[1]<-ex1
result[2]<-ex2-ex1^2
result[3]<-(ex3-3*ex2*ex1+2*ex1^3)/(result[2]^1.5)
result[4]<-(ex4-4*ex3*ex1+6*ex2*ex1^2-3*ex1^4)/(result[2]^2)
if(param1=="rs"){
check1<-!as.logical((L3 > -1/1:4) * (L4 > -1/1:4))
}
else if(param1=="fmkl"){
check1<-as.logical(min(L3, L4) < (-1/1:4))
}
if(param2=="rs"){
check2<-!as.logical((M3 > -1/1:4) * (M4 > -1/1:4))
}
else if(param2=="fmkl"){
check2<-as.logical(min(M3, M4) < (-1/1:4))
}
result[check1+check2!=0]<-NA
if(normalise=="Y"){
result[4] <- result[4] - 3
}
names(result) <- c("mean", "variance", "skewness", "kurtosis")
return(result)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
wasoil <- system.file("exdat/wasoil.zip", package = "rassta")
o <- tempdir()
file.copy(from = wasoil, to = o)
d <- paste(o, "/rassta", sep = "")
unzip(paste(o, "/wasoil.zip", sep = ""), exdir = d)
library(rassta)
library(terra)
cu <- c("climate.tif", "material.tif", "terrain.tif")
cudir <- paste(d, cu, sep = "/")
all.cu <- rast(cudir)
par(mfrow = c(3, 1))
plot(all.cu[[1]], type = "classes", main = "Climatic Classification Units",
col = hcl.colors(4, "spectral"), mar = c(1.5, 1.5, 1.5, 16),
levels = c("1. Highest Rainfall and Lowest Temperature",
"2. High Rainfall and Low Temperature",
"3. Low Rainfall and High Temperature",
"4. Lowest Rainfall and Highest Temperature"
)
)
plot(all.cu[[2]], type = "classes", main = "Soil Parent Material Units",
col = hcl.colors(6, "spectral"), mar = c(1.5, 1.5, 1.5, 16),
levels = c("1. Igneous", "2. Sedimentary",
"3. Alluvium - Moderately weathered ",
"4. Alluvium - Somewhat weathered",
"5. Alluvium - Rich in organic matter",
"6. Alluvium - Rich in clay and organic matter"
)
)
plot(all.cu[[3]], type = "classes", main = "Terrain Classification Units",
col = hcl.colors(8, "spectral"), mar = c(1.5, 1.5, 1.5, 16),
levels = c("1. Summit", "2. Shoulder", "3. Backslope",
"4. Backslope - Steep", "5. Footslope",
"6. Footslope - Steep", "7. Toeslope", "8. Floodplain"
)
)
su <- strata(cu.rast = all.cu)
plot(su$su.rast, type = "classes", main = "Stratification Units",
col = hcl.colors(length(unique(su$su.rast)[, 1]), "spectral"),
plg = list(ncol = 4), mar = c(1.5, 1.5, 1.5, 12)
)
su$code.mult
unlink(c(paste(o, "/wasoil.zip", sep = ""), d), recursive = TRUE) |
timmean <- function(var, infile, outfile, nc34 = 4, overwrite = FALSE, verbose = FALSE, nc = NULL) {
timx_wrapper("mean", var, infile, outfile, nc34, overwrite, verbose = verbose, nc = nc)
} |
library(testthat)
library(CVXR)
test_check("CVXR", filter="^g03") |
smspline <- function(formula, data){
if(is.vector(formula)){
x <- formula
}else{
if(missing(data)){
mf <- model.frame(formula)
}else{
mf <- model.frame(formula,data)
}
if(ncol(mf) != 1)stop("formula can have only one variable")
x <- mf[,1]
}
x.u <- sort(unique(x))
Zx <- smspline.v(x.u)$Zs
Zx[match(x,x.u),]
}
smspline.v <-
function(time)
{
t1 <- sort(unique(time))
p <- length(t1)
h <- diff(t1)
h1 <- h[1:(p - 2)]
h2 <- h[2:(p - 1)]
Q <- matrix(0, nrow = p, ncol = p - 2)
Q[cbind(1:(p - 2), 1:(p - 2))] <- 1/h1
Q[cbind(1 + 1:(p - 2), 1:(p - 2))] <- -1/h1 - 1/h2
Q[cbind(2 + 1:(p - 2), 1:(p - 2))] <- 1/h2
Gs <- matrix(0, nrow = p - 2, ncol = p - 2)
Gs[cbind(1:(p - 2), 1:(p - 2))] <- 1/3 * (h1 + h2)
Gs[cbind(1 + 1:(p - 3), 1:(p - 3))] <- 1/6 * h2[1:(p - 3)]
Gs[cbind(1:(p - 3), 1 + 1:(p - 3))] <- 1/6 * h2[1:(p - 3)]
Gs
Zus <- t(solve(t(Q) %*% Q, t(Q)))
R <- chol(Gs, pivot = FALSE)
tol <- max(1e-12,1e-8*mean(diag(R)))
if(sum(abs(diag(R))) < tol)
stop("singular G matrix")
Zvs <- Zus %*% t(R)
list(Xs = cbind(rep(1, p), t1), Zs = Zvs, Q = Q, Gs = Gs, R = R)
}
approx.Z <- function(Z,oldtimes,newtimes){
oldt.u <- sort(unique(oldtimes))
if(length(oldt.u) !=length(oldtimes) ||
any(oldt.u != oldtimes)){
Z <- Z[match(oldt.u,oldtimes),]
oldtimes <- oldt.u
}
apply(Z,2,function(u,oldt,newt){
approx(oldt,u,xout=newt)$y},
oldt=oldtimes, newt=newtimes)
} |
res_sk_map <- function(nerr_site_id
, stations
, sk_result = NULL
, bbox
, shp
, station_labs = TRUE
, lab_loc = NULL
, bg_map = NULL
, zoom = NULL
, maptype = "toner-lite") {
abbrev <- lab_long <- lab_lat <- NULL
if(class(shp) != 'SpatialPolygons') {
if(class(shp) != 'sf') {
stop('shapefile (shp) must be sf (preferred) or SpatialPolygons object')
}
} else {
shp <- as(shp, "sf")
}
if(length(stations) != length(sk_result))
stop('Incorrect number of seasonal kendall results specified.')
if(is.null(bbox))
stop('Specify a bounding box (bbox) in the form of c(X1, Y1, X2, Y2)')
if(length(bbox) != 4)
stop('Incorrect number of elements specified for bbox. Specify a bounding box (bbox) in the form of c(X1, Y1, X2, Y2)')
xmin <- min(bbox[c(1,3)])
xmax <- max(bbox[c(1,3)])
ymin <- min(bbox[c(2,4)])
ymax <- max(bbox[c(2,4)])
bbox <- c(xmin, ymin, xmax, ymax)
loc <- get('sampling_stations')
loc <- loc[(loc$Station.Code %in% stations), ]
loc$abbrev <- toupper(substr(loc$Station.Code, start = 4, stop = 5))
loc$sk_result <- sk_result
loc$align <- -1.25
if(!is.null(lab_loc))
loc$align[lab_loc == 'R'] <- 1.25
loc <- loc[order(loc$Station.Code), ]
loc$Longitude <- -loc$Longitude
loc_sf <- sf::st_as_sf(loc, coords = c("Longitude","Latitude"))
sf::st_crs(loc_sf) <- 4326
break_vals <- c("inc", "dec", "insig", "insuff")
fill_colors <- c('
res_point_size <- c(6, 6, 6, 9)
res_point_shape <- c(24, 25, 21, 13)
master_key <- as.data.frame(cbind(break_vals, fill_colors, res_point_size, res_point_shape))
needed_keys <- left_join(loc, master_key, by = c("sk_result" = "break_vals"))
use_shape <- unique(as.integer(needed_keys$res_point_shape))
use_color <- unique(needed_keys$fill_color)
print(paste("maptype is ",maptype))
if(is.null(bg_map)) {
bg_map <- base_map(bbox, crs = st_crs(shp),
maptype = maptype,
zoom = zoom)
}
m <- bg_map +
geom_sf(data = shp, aes(), inherit.aes = FALSE,
fill = "yellow", col = '
ggthemes::theme_map() +
geom_sf(data = loc_sf, inherit.aes = FALSE,
aes(color = .data$sk_result,
fill = .data$sk_result,
shape = .data$sk_result,
size = .data$sk_result),
stroke = 2,
show.legend = FALSE) +
scale_color_manual(values = fill_colors, breaks = break_vals) +
scale_fill_manual(values = fill_colors, breaks = break_vals) +
scale_size_manual(values = res_point_size, breaks = break_vals) +
scale_shape_manual(values = res_point_shape, breaks = break_vals)
if(station_labs) {
loc$lab_long <- loc$Longitude + 0.045* loc$align * (bbox[3] - bbox[1])
loc$lab_lat <- loc$Latitude + 0.015 * (bbox[4] - bbox[2])
labels_sf <- loc %>%
select(abbrev, lab_long, lab_lat) %>%
sf::st_as_sf(coords = c("lab_long","lab_lat"))
sf::st_crs(labels_sf) <- 4326
m <- m +
geom_sf_label(data = labels_sf, inherit.aes = FALSE,
aes(label = abbrev))
}
m <- m +
coord_sf(
xlim = c(bbox[1], bbox[3]),
ylim = c(bbox[2], bbox[4]),
expand = FALSE,
crs = st_crs(shp),
default_crs = NULL,
datum = sf::st_crs(4326),
lims_method = c("cross", "box", "orthogonal", "geometry_bbox"),
ndiscr = 100,
default = FALSE,
clip = "on"
)
return(m)
} |
test_that("we can use ouch-based functions", {
library("ouch")
data(anoles)
tree <- with(anoles, ouchtree(node, ancestor, time / max(time), species))
A <- pmc_fit(tree, log(anoles["size"]), "hansen", regimes = anoles["OU.LP"], sqrt.alpha = 1, sigma = 1)
sims <- simulate(A)
s <- format_sims(sims)
ou3v4 <- pmc(tree, log(anoles["size"]), modelA = "hansen", modelB = "hansen",
optionsA = list(regimes = anoles["OU.LP"]),
optionsB = list(regimes = anoles["OU.4"]),
nboot = 100, sqrt.alpha = 1, sigma = 1, mc.cores = 1)
expect_is(ou3v4, "pmc")
}) |
plot_optimization <- function(
model,
point.color = viridis::viridis(
100,
option = "F",
direction = -1
),
verbose = TRUE
){
moran.i <- NULL
optimization <- NULL
r.squared <- NULL
spatial.predictor.index <- NULL
if(inherits(model, "rf_spatial")){
x <- model$spatial$optimization
} else {
x <- model
}
p <- ggplot2::ggplot(data = x) +
ggplot2::aes(
y = moran.i,
x = r.squared,
color = optimization,
size = spatial.predictor.index
) +
ggplot2::geom_point() +
ggplot2::scale_color_gradientn(colors = point.color) +
ggplot2::geom_point(
data = x[x$selected, ],
aes(
y = moran.i,
x = r.squared),
colour="black",
size = 5,
shape = 1,
alpha = 0.3
) +
ggplot2::scale_x_reverse() +
ggplot2::geom_path(data = x[x$selected, ],
aes(
y = moran.i,
x = r.squared
),
size = 0.5,
color = "black",
alpha = 0.3
) +
ggplot2::geom_hline(
yintercept = 0,
col = "gray10",
size = 0.7,
linetype = "dashed") +
ggplot2::labs(
size = "Number of \nspatial predictors",
color = "Weighted \noptimization index"
) +
ggplot2::ylab("Maximum Moran's I of the residuals") +
ggplot2::xlab("Model's R squared (out-of-bag)") +
ggplot2::ggtitle("Selection of spatial predictors (selection path shown in gray)") +
ggplot2::theme_bw() +
ggplot2::theme(plot.title = element_text(hjust = 0.5))
if(verbose == TRUE){
suppressMessages(print(p))
}
} |
get_processing_time_string <- function(time_start, time_end) {
stopifnot(length(time_start) == 1)
stopifnot(length(time_start) == 1)
stopifnot("POSIXct" %in% class(time_start))
stopifnot("POSIXct" %in% class(time_start))
paste0("processing time: ",
round(as.numeric(time_end - time_start,
units = "secs"),
digits = 2),
" s")
} |
pivot_wider <- function(data,
id_cols = NULL,
id_expand = FALSE,
names_from = name,
names_prefix = "",
names_sep = "_",
names_glue = NULL,
names_sort = FALSE,
names_vary = "fastest",
names_expand = FALSE,
names_repair = "check_unique",
values_from = value,
values_fill = NULL,
values_fn = NULL,
unused_fn = NULL,
...) {
check_dots_used()
UseMethod("pivot_wider")
}
pivot_wider.data.frame <- function(data,
id_cols = NULL,
id_expand = FALSE,
names_from = name,
names_prefix = "",
names_sep = "_",
names_glue = NULL,
names_sort = FALSE,
names_vary = "fastest",
names_expand = FALSE,
names_repair = "check_unique",
values_from = value,
values_fill = NULL,
values_fn = NULL,
unused_fn = NULL,
...) {
names_from <- enquo(names_from)
values_from <- enquo(values_from)
spec <- build_wider_spec(
data = data,
names_from = !!names_from,
values_from = !!values_from,
names_prefix = names_prefix,
names_sep = names_sep,
names_glue = names_glue,
names_sort = names_sort,
names_vary = names_vary,
names_expand = names_expand
)
id_cols <- build_wider_id_cols_expr(
data = data,
id_cols = {{id_cols}},
names_from = !!names_from,
values_from = !!values_from
)
pivot_wider_spec(
data = data,
spec = spec,
id_cols = !!id_cols,
id_expand = id_expand,
names_repair = names_repair,
values_fill = values_fill,
values_fn = values_fn,
unused_fn = unused_fn
)
}
pivot_wider_spec <- function(data,
spec,
names_repair = "check_unique",
id_cols = NULL,
id_expand = FALSE,
values_fill = NULL,
values_fn = NULL,
unused_fn = NULL) {
input <- data
spec <- check_pivot_spec(spec)
names_from_cols <- names(spec)[-(1:2)]
values_from_cols <- vec_unique(spec$.value)
id_cols <- select_wider_id_cols(
data = data,
id_cols = {{id_cols}},
names_from_cols = names_from_cols,
values_from_cols = values_from_cols
)
values_fn <- check_list_of_functions(values_fn, values_from_cols, "values_fn")
unused_cols <- setdiff(names(data), c(id_cols, names_from_cols, values_from_cols))
unused_fn <- check_list_of_functions(unused_fn, unused_cols, "unused_fn")
unused_cols <- names(unused_fn)
if (is.null(values_fill)) {
values_fill <- list()
}
if (is_scalar(values_fill)) {
values_fill <- rep_named(values_from_cols, list(values_fill))
}
if (!vec_is_list(values_fill)) {
abort("`values_fill` must be NULL, a scalar, or a named list")
}
values_fill <- values_fill[intersect(names(values_fill), values_from_cols)]
if (!is_bool(id_expand)) {
abort("`id_expand` must be a single `TRUE` or `FALSE`.")
}
data <- as_tibble(data)
data <- data[vec_unique(c(id_cols, names_from_cols, values_from_cols, unused_cols))]
if (id_expand) {
data <- complete(data, !!!syms(id_cols), fill = values_fill, explicit = FALSE)
}
rows <- data[id_cols]
row_id <- vec_group_id(rows)
nrow <- attr(row_id, "n")
rows <- vec_slice(rows, vec_unique_loc(row_id))
n_unused_fn <- length(unused_fn)
unused <- vector("list", length = n_unused_fn)
names(unused) <- unused_cols
if (n_unused_fn > 0L) {
unused_locs <- vec_group_loc(row_id)$loc
}
for (i in seq_len(n_unused_fn)) {
unused_col <- unused_cols[[i]]
unused_fn_i <- unused_fn[[i]]
unused_value <- data[[unused_col]]
unused[[i]] <- value_summarize(
value = unused_value,
value_locs = unused_locs,
value_name = unused_col,
fn = unused_fn_i,
fn_name = "unused_fn"
)
}
unused <- tibble::new_tibble(unused, nrow = nrow)
duplicate_names <- character(0L)
value_specs <- unname(split(spec, spec$.value))
value_out <- vec_init(list(), length(value_specs))
for (i in seq_along(value_out)) {
value_spec <- value_specs[[i]]
value_name <- value_spec$.value[[1]]
value <- data[[value_name]]
cols <- data[names(value_spec)[-(1:2)]]
col_id <- vec_match(as_tibble(cols), value_spec[-(1:2)])
value_id <- data.frame(row = row_id, col = col_id)
value_fn <- values_fn[[value_name]]
if (is.null(value_fn) && vec_duplicate_any(value_id)) {
value_fn <- list
duplicate_names <- c(duplicate_names, value_name)
}
if (!is.null(value_fn)) {
result <- vec_group_loc(value_id)
value_id <- result$key
value_locs <- result$loc
value <- value_summarize(
value = value,
value_locs = value_locs,
value_name = value_name,
fn = value_fn,
fn_name = "values_fn"
)
}
ncol <- nrow(value_spec)
fill <- values_fill[[value_name]]
if (is.null(fill)) {
out <- vec_init(value, nrow * ncol)
} else {
stopifnot(vec_size(fill) == 1)
fill <- vec_cast(fill, value)
out <- vec_rep_each(fill, nrow * ncol)
}
vec_slice(out, value_id$row + nrow * (value_id$col - 1L)) <- value
value_out[[i]] <- chop_rectangular_df(out, value_spec$.name)
}
if (length(duplicate_names) > 0L) {
duplicate_names <- glue::backtick(duplicate_names)
duplicate_names <- glue::glue_collapse(duplicate_names, sep = ", ", last = " and ")
group_cols <- c(id_cols, names_from_cols)
group_cols <- backtick_if_not_syntactic(group_cols)
group_cols <- glue::glue_collapse(group_cols, sep = ", ")
warn(glue::glue(
"Values from {duplicate_names} are not uniquely identified; output will contain list-cols.\n",
"* Use `values_fn = list` to suppress this warning.\n",
"* Use `values_fn = {{summary_fun}}` to summarise duplicates.\n",
"* Use the following dplyr code to identify duplicates.\n",
" {{data}} %>%\n",
" dplyr::group_by({group_cols}) %>%\n",
" dplyr::summarise(n = dplyr::n(), .groups = \"drop\") %>%\n",
" dplyr::filter(n > 1L)"
))
}
values <- vec_cbind(!!!value_out, .name_repair = "minimal")
values <- values[spec$.name]
out <- wrap_error_names(vec_cbind(
rows,
values,
unused,
.name_repair = names_repair
))
reconstruct_tibble(input, out)
}
build_wider_spec <- function(data,
names_from = name,
values_from = value,
names_prefix = "",
names_sep = "_",
names_glue = NULL,
names_sort = FALSE,
names_vary = "fastest",
names_expand = FALSE) {
names_from <- tidyselect::eval_select(enquo(names_from), data)
values_from <- tidyselect::eval_select(enquo(values_from), data)
if (is_empty(names_from)) {
abort("`names_from` must select at least one column.")
}
if (is_empty(values_from)) {
abort("`values_from` must select at least one column.")
}
names_vary <- arg_match0(names_vary, c("fastest", "slowest"), arg_nm = "names_vary")
if (!is_bool(names_expand)) {
abort("`names_expand` must be a single `TRUE` or `FALSE`.")
}
data <- as_tibble(data)
data <- data[names_from]
if (names_expand) {
row_ids <- expand(data, !!!syms(names(data)))
} else {
row_ids <- vec_unique(data)
if (names_sort) {
row_ids <- vec_sort(row_ids)
}
}
row_names <- exec(paste, !!!row_ids, sep = names_sep)
out <- tibble(
.name = vec_paste0(names_prefix, row_names)
)
if (length(values_from) == 1) {
out$.value <- names(values_from)
} else {
if (names_vary == "fastest") {
out <- vec_rep(out, vec_size(values_from))
out$.value <- vec_rep_each(names(values_from), vec_size(row_ids))
row_ids <- vec_rep(row_ids, vec_size(values_from))
} else {
out <- vec_rep_each(out, vec_size(values_from))
out$.value <- vec_rep(names(values_from), vec_size(row_ids))
row_ids <- vec_rep_each(row_ids, vec_size(values_from))
}
out$.name <- vec_paste0(out$.value, names_sep, out$.name)
}
out <- vec_cbind(out, as_tibble(row_ids), .name_repair = "minimal")
if (!is.null(names_glue)) {
out$.name <- as.character(glue::glue_data(out, names_glue))
}
out
}
build_wider_id_cols_expr <- function(data,
id_cols = NULL,
names_from = name,
values_from = value) {
names_from_cols <- names(tidyselect::eval_select(enquo(names_from), data))
values_from_cols <- names(tidyselect::eval_select(enquo(values_from), data))
out <- select_wider_id_cols(
data = data,
id_cols = {{id_cols}},
names_from_cols = names_from_cols,
values_from_cols = values_from_cols
)
expr(c(!!!out))
}
select_wider_id_cols <- function(data,
id_cols = NULL,
names_from_cols = character(),
values_from_cols = character()) {
id_cols <- enquo(id_cols)
data <- data[setdiff(names(data), c(names_from_cols, values_from_cols))]
if (quo_is_null(id_cols)) {
return(names(data))
}
try_fetch(
id_cols <- tidyselect::eval_select(enquo(id_cols), data),
vctrs_error_subscript_oob = function(cnd) {
rethrow_id_cols_oob(cnd, names_from_cols, values_from_cols)
}
)
names(id_cols)
}
rethrow_id_cols_oob <- function(cnd, names_from_cols, values_from_cols) {
i <- cnd[["i"]]
if (!is_string(i)) {
abort("`i` is expected to be a string.", .internal = TRUE)
}
if (i %in% names_from_cols) {
stop_id_cols_oob(i, "names_from")
} else if (i %in% values_from_cols) {
stop_id_cols_oob(i, "values_from")
} else {
zap()
}
}
stop_id_cols_oob <- function(i, arg) {
message <- c(
glue("`id_cols` can't select a column already selected by `{arg}`."),
i = glue("Column `{i}` has already been selected.")
)
abort(message, parent = NA)
}
value_summarize <- function(value, value_locs, value_name, fn, fn_name) {
value <- vec_chop(value, value_locs)
if (identical(fn, list)) {
return(value)
}
value <- map(value, fn)
sizes <- list_sizes(value)
invalid_sizes <- sizes != 1L
if (any(invalid_sizes)) {
size <- sizes[invalid_sizes][[1]]
header <- glue(
"Applying `{fn_name}` to `{value_name}` must result in ",
"a single summary value per key."
)
bullet <- c(
x = glue("Applying `{fn_name}` resulted in a value with length {size}.")
)
abort(c(header, bullet))
}
value <- vec_c(!!!value)
value
}
chop_rectangular_df <- function(x, names) {
n_col <- vec_size(names)
n_row <- vec_size(x) / n_col
indices <- vector("list", n_col)
start <- 1L
stop <- n_row
for (i in seq_len(n_col)) {
indices[[i]] <- seq2(start, stop)
start <- start + n_row
stop <- stop + n_row
}
out <- vec_chop(x, indices)
names(out) <- names
tibble::new_tibble(out, nrow = n_row)
}
is_scalar <- function(x) {
if (is.null(x)) {
return(FALSE)
}
if (vec_is_list(x)) {
(vec_size(x) == 1) && !have_name(x)
} else {
vec_size(x) == 1
}
}
backtick_if_not_syntactic <- function(x) {
ok <- make.names(x) == x
ok[is.na(x)] <- FALSE
x[!ok] <- glue::backtick(x[!ok])
x
} |
zb_doughnut = function(x = NULL,
area = NULL,
n_circles = NA,
distance = 1,
distance_growth = 1) {
zb_zone(x = x, area = area, n_circles = n_circles, distance = distance, distance_growth = distance_growth, n_segments = 1)
}
create_rings = function(point, n_circles, distance) {
csdistance = cumsum(distance)
circles = lapply(csdistance * 1000, function(d) {
doughnut_i = sf::st_buffer(point, d)
})
doughnuts_non_center = mapply(function(x, y) sf::st_sf(geometry = sf::st_difference(x, y)),
circles[-1],
circles[-n_circles],
SIMPLIFY = FALSE)
doughnuts = do.call(rbind,
c(list(sf::st_sf(geometry = circles[[1]])),
doughnuts_non_center))
doughnuts
} |
targets::tar_test("tar_group_count_run()", {
skip_if_not_installed("dplyr")
data <- expand.grid(
var1 = c("a", "b"),
var2 = c("c", "d"),
rep = c(1, 2, 3),
stringsAsFactors = FALSE
)
out <- tar_group_count_run(data, 12)
expect_equal(out$tar_group, seq_len(12))
out <- tar_group_count_run(data, 1)
expect_equal(out$tar_group, rep(1, 12))
out <- tar_group_count_run(data, 4)
expect_equal(out$tar_group, rep(seq_len(4), each = 3))
out <- tar_group_count_run(data, 3)
expect_equal(out$tar_group, rep(seq_len(3), each = 4))
for (count in seq_len(20)) {
out <- tar_group_count_run(data, count)
expect_true(is.data.frame(out))
}
})
targets::tar_test("tar_group_count()", {
skip_if_not_installed("dplyr")
targets::tar_script({
produce_data <- function() {
expand.grid(
var1 = c("a", "b"),
var2 = c("c", "d"),
rep = c(1, 2, 3),
stringsAsFactors = FALSE
)
}
list(
tarchetypes::tar_group_count(data, produce_data(), 3),
tar_target(group, data, pattern = map(data))
)
})
targets::tar_make(callr_function = NULL)
expect_equal(length(tar_meta(group)$children[[1]]), 3L)
for (branch in seq_len(3L)) {
out <- targets::tar_read(group, branches = branch)
expect_equal(nrow(out), 4L)
}
out <- targets::tar_read(group)
expect_equal(nrow(out), 12L)
expect_equal(nrow(dplyr::distinct(out, var1, var2, rep)), 12L)
}) |
bugsModel <- function(formula, fd, sd, random = NULL, modelname = "bugmodel",
wd = getwd()) {
fd <- tolower(fd)
sd <- tolower(sd)
modelpart01 <- "\n model {\n pi <- 3.14159265358979\n for (i in 1:N) { \n dummy[i] <- 0\n dummy[i] ~ dloglik(logLike[i]) \n "
likelihood <- bugsLikelihood(fd, sd)
nodes_sample <- c("b_0", "d_0")
init1 <- list(0.1, 0.1)
formula <- as.Formula(formula)
lxterm <- labels(terms(formula, rhs = 1L))
if (length(attr(formula, "rhs")) > 1) {
dxterm <- labels(terms(formula, rhs = 2L))
} else {
dxterm <- list()
}
lm <- "mu[i] <- b_0"
lp_prior <- "b_0 ~dnorm(0.0, 1.0E-6)"
if (length(lxterm) != 0) {
for (i in 1:length(lxterm)) {
lm <- paste(lm, " + b_", gsub(":", "_", x = lxterm[i]), "*", gsub(":",
"[i]*", x = lxterm[i]), "[i]", sep = "")
lp_prior <- paste(lp_prior, "\nb_", gsub(":", "_", x = lxterm[i]), "~dnorm(0.0, 1.0E-6)",
sep = "")
init1 <- c(init1, 0.1)
nodes_sample <- c(nodes_sample, paste("b_", gsub(":", "_", x = lxterm[i]),
sep = ""))
}
}
dm <- "log(sigma[i]) <- d_0"
dp_prior <- "d_0 ~ dnorm(0.0, 1.0E-6)"
if (length(dxterm) != 0) {
for (i in 1:length(dxterm)) {
dm <- paste(dm, " + d_", gsub(":", "_", x = dxterm[i]), "*", gsub(":",
"[i]*", x = dxterm[i]), "[i]", sep = "")
dp_prior <- paste(dp_prior, "\nd_", gsub(":", "_", x = dxterm[i]), "~dnorm(0.0, 1.0E-6)",
sep = "")
init1 <- c(init1, 0.1)
nodes_sample <- c(nodes_sample, paste("d_", gsub(":", "_", x = dxterm[i]),
sep = ""))
}
}
if (!is.null(random)) {
formulas_random <- NULL
for (i in 1:length(random)) {
lm <- paste(lm, " + u_", random[i], "[", random[i], "[i]]", sep = "")
formulas_random <- paste(formulas_random, "\n for (j in 1:J_", random[i],
")\n {\n u_", random[i], "[j] ~ dnorm(0,tau_", random[i], ") \n",
sep = "")
lp_prior <- paste(lp_prior, "\ntau_", random[i], " <- exp(2*lsu_",
random[i], ")\n lsu_", random[i], "~ dnorm(0.5, 1.0E-6)\n", sep = "")
init1 <- c(init1, 0.5)
nodes_sample <- c(nodes_sample, paste("lsu_", random[i], sep = ""))
}
formulas <- paste(lm, "\n", dm, "\n", "}\n", formulas_random, sep = "")
}
if (is.null(random))
formulas <- paste(lm, "\n", dm, "\n", sep = "")
Priors <- paste("}\n", lp_prior, "\n", dp_prior, "\n", sep = "")
model <- paste(modelpart01, likelihood, "\n", formulas, Priors, "\n}", sep = "")
cat(model, file = paste(wd, "/", modelname, ".txt", sep = ""))
names(init1) <- nodes_sample
init2 <- init1
list(init1 = init1, init2 = init2, nodes_sample = nodes_sample,
vars = attr(terms(formula),
"variables"))
} |
looic <- function(model, verbose = TRUE) {
insight::check_if_installed("loo")
algorithm <- insight::find_algorithm(model)
if (algorithm$algorithm != "sampling") {
if (verbose) {
warning(insight::format_message("`looic()` only available for models fit using the 'sampling' algorithm."), call. = FALSE)
}
return(NA)
}
res_loo <- tryCatch(
{
loo::loo(model)
},
error = function(e) {
if (inherits(e, c("simpleError", "error"))) {
insight::print_color(e$message, "red")
cat("\n")
}
NULL
}
)
loo_df <- res_loo$estimates
if (is.null(loo_df)) {
return(NULL)
}
out <- list(
ELPD = loo_df["elpd_loo", "Estimate"],
ELPD_SE = loo_df["elpd_loo", "SE"],
LOOIC = loo_df["looic", "Estimate"],
LOOIC_SE = loo_df["looic", "SE"]
)
attr(out, "loo") <- res_loo[c("pointwise", "diagnostics")]
structure(class = "looic", out)
}
as.data.frame.looic <- function(x, row.names = NULL, ...) {
data.frame(
ELPD = x$ELPD,
ELPD_SE = x$ELPD_SE,
LOOIC = x$LOOIC,
LOOIC_SE = x$LOOIC_SE,
stringsAsFactors = FALSE,
row.names = row.names,
...
)
} |
heplot.cancor <- function (
mod,
which=1:2,
scale,
asp=1,
var.vectors = "Y",
var.col=c("blue", "darkgreen"),
var.lwd=par("lwd"),
var.cex=par("cex"),
var.xpd=TRUE,
prefix = "Ycan",
suffix = TRUE,
terms=TRUE,
...
) {
if (!inherits(mod, "cancor")) stop("Not a cancor object")
if (mod$ndim < 2 || length(which)==1) {
message("Can't do a 1 dimensional canonical HE plot")
return()
}
Yvars <- mod$names$Y
scores <- data.frame(mod$scores$X, mod$scores$Y)
scores <- data.frame(scores, mod$X)
Xcoef <- mod$coef$X
Ycoef <- mod$coef$Y
Ycan <- colnames(Ycoef)
canr <- mod$cancor
lambda <- canr^2 / (1-canr^2)
pct = 100*lambda / sum(lambda)
if ((is.logical(terms) && terms) || terms=="X") {
terms <- mod$names$X
}
else if (length(terms)==1 && terms=="Xcan") terms=colnames(Xcoef)
if (!all(terms %in% colnames(scores))) {
stop(paste(setdiff(terms, colnames(scores) ), "are not among the available variables"))
}
txt <- paste( "lm( cbind(",
paste(Ycan, collapse = ","),
") ~ ",
paste( terms, collapse = "+"), ", data=scores)" )
can.mod <- eval(parse(text=txt))
canvar <- Ycan[which]
if (is.logical(suffix) & suffix)
suffix <- paste( " (", round(pct[which],1), "%)", sep="" ) else suffix <- NULL
canlab <- paste(prefix, which, suffix, sep="")
ellipses <- heplot(can.mod, terms=terms,
xlab=canlab[1], ylab=canlab[2], asp=asp, ...)
struc <- mod$structure
Xstructure <- struc$X.yscores[,which]
Ystructure <- struc$Y.yscores[,which]
vec <- rbind(
if ("Y" %in% var.vectors) Ystructure else NULL,
if ("X" %in% var.vectors) Xstructure else NULL)
maxrms <- function(x) { max(sqrt(apply(x^2, 1, sum))) }
if (missing(scale)) {
vecrange <- range(vec)
ellrange <- lapply(ellipses, range)
vecmax <- maxrms(vec)
ellmax <- max( maxrms(ellipses$E), unlist(lapply(ellipses$H, maxrms)) )
scale <- floor( 0.9 * ellmax / vecmax )
cat("Vector scale factor set to ", scale, "\n")
}
if ("Y" %in% var.vectors) vectors(Ystructure, scale=scale, col=var.col[1], lwd=var.lwd, cex=var.cex, xpd=var.xpd)
if ("X" %in% var.vectors) vectors(Xstructure, scale=scale, col=var.col[2], lwd=var.lwd, cex=var.cex, xpd=var.xpd)
invisible(ellipses)
} |
test_that("getDailyMaxResults for OBK Data", {
para <- babsimHospitalPara()
conf <- babsimToolsConf()
ICU <- FALSE
set.seed(conf$seed)
data <- dataCovidBeds20200624
conf$simulationDates$StartDate <- min(data$Day)
arrivalTimes <- getArrivalTimes(data$Infected)
envs <- babsimHospital(
arrivalTimes = arrivalTimes,
conf = conf,
para = para
)
fieldData <- getRealBeds(
data = data,
resource = c("bed", "intensiveBed", "intensiveBedVentilation")
)
res <- getDailyMaxResults(
envs = envs,
fieldEvents = fieldData,
conf = conf
)
resources <- get_mon_resources(envs)
resources$time <- round(resources$time)
min(resources$time)
max(resources$time)
min(fieldData$time)
max(fieldData$time)
StartDate <- as.Date(min(fieldData$date))
EndDate <- as.Date(max(fieldData$date))
data <- babsim.hospital::dataCovidBeds20200624
conf$simulationDates$StartDate <- min(data$Day)
amntDaysLateStart <- as.numeric(StartDate - conf$simulationDates$StartDate)
resources <- resources %>% dplyr::filter(time >= amntDaysLateStart)
observedPeriod <- as.numeric(EndDate - StartDate)
finalTimeICU <- amntDaysLateStart + observedPeriod
resources <- resources %>% dplyr::filter(time <= finalTimeICU)
resourcesMaxSystem <- resources %>%
dplyr::group_by(resource, time) %>%
dplyr::mutate(upper = max(system)) %>%
dplyr::mutate(lower = min(system)) %>%
dplyr::mutate(med = median(system))
unique(resources$time == resourcesMaxSystem$time)
expect_true(unique(resources$time == resourcesMaxSystem$time))
resourcesMaxSystem$date <- as.Date(as.POSIXct((resourcesMaxSystem$time) * 24 * 60 * 60, origin = conf$simulationDates$StartDate))
expect_true(StartDate <= min(resourcesMaxSystem$date))
expect_true(EndDate >= max(resourcesMaxSystem$date))
n <- dim(fieldData)[1]
fieldData$server <- fieldData$med
fieldData$queue <- rep(0, n)
fieldData$capacity <- rep(Inf, n)
fieldData$queue_size <- rep(Inf, n)
fieldData$system <- fieldData$med
fieldData$limit <- rep(Inf, n)
fieldData$replication <- rep(1, n)
fieldData$upper <- fieldData$med
fieldData$lower <- fieldData$med
resourcesMaxSystem$source <- "babsim"
resourcesMaxSystem <- dplyr::bind_rows(resourcesMaxSystem, fieldData)
expect_true(StartDate <= min(resourcesMaxSystem$date))
expect_true(EndDate >= max(resourcesMaxSystem$date))
}) |
date2winter<-function(x,first=10,last=4){
if(!first%in%1:12) stop("'first' must be a month number")
if(!last%in%1:12) stop("'last' must be a month number")
if (inherits(x,"POSIXct")) x<-as.POSIXlt(x)
if (!inherits(x,"POSIXlt")) stop("x must be of class POSIXct or POSIXlt")
res<-ifelse((x$mon+1)>last & (x$mon+1)<first,"Excluded",ifelse((x$mon+1)>=first,paste(x$year+1900,"-",x$year+1900+1,sep=""),paste(x$year+1900-1,"-",x$year+1900,sep="")))
attributes(res)$span<-c(first=first,last=last)
res
} |
clme_em_fixed <- function( Y, X1, X2 = NULL, U = NULL, Nks = dim(X1)[1],
Qs = dim(U)[2], constraints, mq.phi = NULL, tsf = lrt.stat,
tsf.ind = w.stat.ind, mySolver="LS", em.iter = 500,
em.eps = 0.0001, all_pair = FALSE, dvar = NULL, verbose = FALSE, ... ){
if( verbose==TRUE ){
message("Starting EM algorithm")
}
N <- sum(Nks)
N1 <- 1 + cumsum(Nks) - Nks
N2 <- cumsum(Nks)
X <- as.matrix(cbind(X1, X2))
theta.names <- NULL
if( is.null(colnames(X))==FALSE ){
theta.names <- colnames(X)
}
K <- length(Nks)
P1 <- dim(X1)[2]
P2 <- dim(X2)[2]
if( is.null(constraints$A) ){
const <- create.constraints( P1, constraints)
A <- const$A
Anull <- const$Anull
B <- const$B
} else{
A <- constraints$A
Anull <- constraints$Anull
B <- constraints$B
if( is.null(Anull) ){
Anull <- create.constraints( P1, list(order="simple", node=1, decreasing=TRUE) )$Anull
}
}
theta <- ginv( t(X)%*%X) %*% ( t(X)%*%Y )
R <- Y-X%*%theta
ssq <- apply( as.matrix(1:K, nrow=1), 1 ,
FUN=function(k, N1, N2, R ){ sum( R[N1[k]:N2[k]]^2 ) / Nks[k] } ,
N1, N2, R)
var_fix <- (ssq <= .Machine$double.eps )
if( any(var_fix) ){
ssq[ var_fix==1 ] <- dvar[var_fix==1]
}
ssqvec <- rep( ssq, Nks )
tsq <- NULL
theta1 <- theta
ssq1 <- ssq
tsq1 <- tsq
CONVERGE <- 0
iteration <- 0
while( CONVERGE==0 ){
iteration <- iteration+1
R <- Y-X%*%theta
if( verbose==TRUE ){
message( "EM iteration " , iteration)
}
trace.vec <- (R/ssqvec)^2 - 1/ssqvec
ssq <- apply( as.matrix(1:K, nrow=1), 1 ,
FUN=function(k, ssq, Nks, N1, N2 , trv){
idx <- N1[k]:N2[k]
ssq[k] + ( (ssq[k]^2)/(Nks[k]) )*sum( trv[idx] )
} ,
ssq , Nks , N1 , N2 , trace.vec )
if( any(var_fix) ){
ssq[ var_fix==1 ] <- dvar[ var_fix==1 ]
}
ssqvec <- rep( ssq, Nks)
SiR <- R / ssqvec
theta[1:P1] <- theta1[1:P1] + ginv( t(X1)%*%(X1/ssqvec) ) %*% (t(X1) %*% SiR)
if( is.null(X2)==FALSE ){
X2SiR <- t(X2) %*% SiR
theta[(P1+1):(P1+P2)] <- ( theta1[(P1+1):(P1+P2)] +
ginv(t(X2)%*%(X2/ssqvec)) %*% (X2SiR) )
}
cov.theta <- solve( t(X) %*% (X/ssqvec) )
if( all_pair==FALSE ){
if( mySolver=="GLS"){
wts <- solve( cov.theta )[1:P1, 1:P1, drop=FALSE]
} else{
wts <- diag( solve(cov.theta) )[1:P1]
}
theta[1:P1] <- activeSet(A, y = theta[1:P1], weights = wts, mySolver=mySolver )$x
}
rel.change <- abs(theta - theta1)/theta1
if( mean(rel.change) < em.eps || iteration >= em.iter ){
CONVERGE <- 1
} else{
theta1 <- theta
ssq1 <- ssq
}
}
if( verbose==TRUE ){
message("EM Algorithm ran for " , iteration , " iterations." )
}
wts <- diag( solve(cov.theta) )[1:P1]
theta <- c(theta)
names(theta) <- theta.names
theta.null <- theta
theta.null[1:P1] <- activeSet( Anull, y = theta[1:P1], weights = wts , mysolver=mySolver )$x
ts.glb <- tsf( theta=theta, theta.null=theta.null, cov.theta=cov.theta, B=B, A=A, Y=Y, X1=X1,
X2=X2, U=U, tsq=tsq, ssq=ssq, Nks=Nks, Qs=Qs )
ts.ind <- tsf.ind(theta=theta, theta.null=theta.null, cov.theta=cov.theta, B=B, A=A, Y=Y, X1=X1,
X2=X2, U=U, tsq=tsq, ssq=ssq, Nks=Nks, Qs=Qs )
em.results <- list(theta=theta, theta.null=theta.null, ssq=ssq, tsq=tsq,
cov.theta=cov.theta, ts.glb=ts.glb, ts.ind=ts.ind, mySolver=mySolver )
return( em.results )
} |
opt_fill <- function(
x
, opts = commandArgs()
, style = getOption('optigrab')$style
) {
if( ! is.recursive(x) )
stop( "'opt_fill' only works for recursive structures: list, environment, etc.")
for( nm in names(x) ) {
default = x[[nm]]
val = opt_get( name=nm, opts=opts, style=style, default=default )
x[[nm]] = ifelse( ! is.na(val), val, x[[nm]] )
}
if( is.environment(x) ) return( invisible(x) ) else return(x)
} |
position_identity_ <- function() {
PositionIdentity_
}
PositionIdentity_ <- ggproto("PositionIdentity_", ggplot2::PositionIdentity,
setup_params = function(self, data) {
list(positive = has_positive(data),
flipped_aes = ggplot2::has_flipped_aes(data))
},
compute_layer = function(data, params, scales) {
data <- ggplot2::flip_data(data, flip = params$flipped_aes)
positive <- data$positive %||% params$positive
data %>%
dplyr::mutate(
positive = positive,
y = ifelse(positive, y + location, -y + location),
ymin = ifelse(positive, ymin + location, -ymin + location),
ymax = ifelse(positive, ymax + location, -ymax + location)
) %>%
ggplot2::flip_data(flip = params$flipped_aes)
}
) |
NMixPlugDensJoint2.default <- function(x, scale, w, mu, Sigma, ...)
{
if (!is.list(x)) stop("x must be a list")
p <- length(x)
if (p < 2) stop("length of x must be 2 or more")
LTp <- p * (p + 1)/2
if (is.null(names(x))) names(x) <- paste("x", (1:p), sep="")
if (missing(scale)) scale <- list(shift=rep(0, p), scale=rep(1, p))
if (!is.list(scale)) stop("scale must be a list")
if (length(scale) != 2) stop("scale must have 2 components")
inscale <- names(scale)
iscale.shift <- match("shift", inscale, nomatch=NA)
iscale.scale <- match("scale", inscale, nomatch=NA)
if (is.na(iscale.shift)) stop("scale$shift is missing")
if (length(scale$shift) == 1) scale$shift <- rep(scale$shift, p)
if (length(scale$shift) != p) stop(paste("scale$shift must be a vector of length ", p, sep=""))
if (is.na(iscale.scale)) stop("scale$scale is missing")
if (length(scale$scale) == 1) scale$scale <- rep(scale$scale, p)
if (length(scale$scale) != p) stop(paste("scale$scale must be a vector of length ", p, sep=""))
if (any(scale$scale <= 0)) stop("all elements of scale$scale must be positive")
K <- length(w)
if (any(w < 0) | any(w > 1)) stop("weights must lie between zero and 1")
if (abs(sum(w) - 1) > 1e-5) warning("sum of weights differs from 1")
if (K == 1){
if (length(mu) != p) stop("incorrect mu")
mu <- matrix(mu, nrow=K, ncol=p)
if (!is.list(Sigma)) Sigma <- list(Sigma)
}
if (nrow(mu) != K) stop(paste("mu must have ", K, " rows", sep=""))
if (ncol(mu) != p) stop(paste("mu must have ", p, " columns", sep=""))
if (any(!sapply(Sigma, is.matrix))) stop("all Sigma's must be matrices")
if (any(sapply(Sigma, nrow) != p)) stop(paste("all Sigma's must have ", p, " rows", sep=""))
if (any(sapply(Sigma, ncol) != p)) stop(paste("all Sigma's must have ", p, " columns", sep=""))
mu <- mu * matrix(rep(scale$scale, K), nrow=K, ncol=p, byrow=TRUE) + matrix(rep(scale$shift, K), nrow=K, ncol=p, byrow=TRUE)
for (k in 1:K) Sigma[[k]] <- diag(scale$scale) %*% Sigma[[k]] %*% diag(scale$scale)
n <- sapply(x, length)
if (any(n <= 0)) stop("incorrect x supplied")
RET <- list(x=x, dens=list())
if (p == 2){
GRID <- cbind(rep(x[[1]], n[2]), rep(x[[2]], each=n[1]))
RET$dens[[1]] <- matrix(dMVNmixture2(x=GRID, weight=w, mean=mu, Sigma=Sigma), nrow=n[1], ncol=n[2])
names(RET$dens) <- "1-2"
}else{
pp <- 1
NAMEN <- character(0)
for (m0 in 1:(p-1)){
for (m1 in (m0+1):p){
GRID <- cbind(rep(x[[m0]], n[m1]), rep(x[[m1]], each=n[m0]))
MEAN <- mu[, c(m0, m1)]
SIGMA <- list()
for (k in 1:K) SIGMA[[k]] <- Sigma[[k]][c(m0, m1), c(m0, m1)]
RET$dens[[pp]] <- matrix(dMVNmixture2(x=GRID, weight=w, mean=MEAN, Sigma=SIGMA), nrow=n[m0], ncol=n[m1])
NAMEN <- c(NAMEN, paste(m0, "-", m1, sep=""))
pp <- pp + 1
}
}
names(RET$dens) <- NAMEN
}
class(RET) <- "NMixPlugDensJoint2"
return(RET)
} |
rm(list=ls())
d<-read.csv("~/data/abomb/lsshempy.csv",header=T)
head(d,2)
d=d[d$mar_an>=0,]
sum(d$cml)
d=within(d,{rm(distcat,agxcat, agecat, dcat, time,upyr,subjects,year,
nhl,hl,mye,all,oll,alltot,cll,hcl,clltot,atl,aml,oml,amol,amltot,
othleuk,noncll,leuktot,hldtot,mar_ag,mar_an)})
head(d,2)
d=within(d, {nic = as.numeric(gdist > 12000)
over4gy = 1 - un4gy
rm(gdist,un4gy)
tsx = (age -agex)
lt25 = log(tsx/25)
a = log(age/70)
a55 = log(age/55) ;
age55=age-55
agex30=agex-30
ax30 = log(agex/30) ;
py10k = pyr/10000 ;
py = pyr;
s=sex-1
c=city-1
sv=mar_ad10/1000;
hiro = as.numeric(city == 1)
naga = as.numeric(city ==2)
rm(sex,city,pyr,mar_ad10)
})
head(d)
bk=d[d$sv<0.05,]
library(bbmle)
summary(pow1<-mle2(cml~dpois(lambda=py10k*A*exp(cs*s+(ca+csa*s)*a)),
start=list(A=.22,cs=-0.06,ca=1.38,csa=1.75),data=bk) )
summary(exp1k<-mle2(cml~dpois(lambda=py10k*A*exp(cs*s+k*age55)),
start=list(A=.22,cs=-0.6,k=0.04),data=bk) )
summary(exp2k<-mle2(cml~dpois(lambda=py10k*A*exp(cs*s+(k+ks*s)*age55)),
start=list(A=.22,cs=-0.6,k=0.03,ks=.02),data=bk) )
AIC(pow1,exp1k,exp2k)
ICtab(pow1,exp1k,exp2k)
BIC(pow1,exp1k,exp2k)
summary(err<-mle2(cml~dpois(lambda=py10k*(A1*exp(c1s*s+c1a*a+c1sa*a*s+c1nic0*hiro*nic+c1nic1*naga*nic)*
(1+sv*A2*exp(c2c*c + c2t*lt25 + c2a*a55+c2o4g*over4gy) ) ) ),
start=list(A1=.22,c1s=-0.06,c1a=1.38,c1sa=1.75,c1nic0=-0.2,c1nic1=-0.86,
A2=5.24,c2c=-1.50,c2t=-1.59,c2a=-1.42,c2o4g=-0.3),data=d) )
AIC(err)
logLik(err)
deviance(err)
prd=predict(err)
-2*sum(d$cml*log(prd))
-2*sum(d$cml*log(prd))+2*length(coef(err))
-2*sum(d$cml*log(prd)-prd-log(factorial(d$cml)))
-2*sum(d$cml*log(prd)-prd)
sum(prd)
summary(ear<-mle2(cml~dpois(lambda=py10k*(A1*exp(c1s*s+c1a*a+c1sa*a*s+c1nic0*hiro*nic+c1nic1*naga*nic)
+sv*A2*exp(c2c*c + c2s*s+c2t*lt25 + c2a*a55+c2sa*s*a55+c2o4g*over4gy) ) ) ,
start=list(A1=.22,c1s=-0.06,c1a=1.38,c1sa=1.75,c1nic0=-0.2,c1nic1=-0.86,
A2=5.24,c2c=-1.50,c2s=-0.18,c2t=-1.59,c2a=-1.42,c2sa=2.3,c2o4g=-0.3),data=d) )
prd=predict(ear)
-2*sum(d$cml*log(prd))
-2*sum(d$cml*log(prd))+2*length(coef(ear))
AIC(err,ear)
ICtab(err,ear)
anova(err,ear)
summary(s1<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+k*age+ks*s*age)
+sv*exp(c20+c2c*c + c2s*s+c2t*tsx+c2ts*s*tsx) ) ),
start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50,c2s=-0.18,c2t=-0.4,c2ts=0.3),data=d) )
prd=predict(s1)
-2*sum(d$cml*log(prd))
-2*sum(d$cml*log(prd))+2*length(coef(s1))
ICtab(err,s1)
anova(err,s1)
summary(s1a55<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+k*age+ks*s*age)
+sv*exp(c20+c2c*c + c2s*s+c2t*tsx+c2ts*s*tsx + c2a*a55+c2sa*s*a55 ) ) ),
start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50,
c2s=-0.18,c2t=-0.4,c2ts=0.3,c2a=-1.42,c2sa=2.3),data=d) )
prd=predict(s1a55)
-2*sum(d$cml*log(prd))
-2*sum(d$cml*log(prd))+2*length(coef(s1a55))
ICtab(err,s1a55)
anova(err,s1a55)
summary(s1a55f<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+(k+ks*s)*age)
+sv*exp(c20+c2c*c + c2s*s+c2t*tsx+c2ts*s*tsx +c2sa*s*a55 ) ) ),
start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50,
c2s=-0.18,c2t=-0.4,c2ts=0.3,c2sa=2.3),data=d) )
prd=predict(s1a55f)
-2*sum(d$cml*log(prd))
-2*sum(d$cml*log(prd))+2*length(coef(s1a55f))
ICtab(err,s1a55f)
anova(err,s1a55f)
summary(s1tsx<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+(k+ks*s)*age)
+sv*tsx*exp(c20+c2c*c + c2s*s+c2t*tsx+c2ts*s*tsx +c2sa*s*a55 ) ) ),
start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50,
c2s=-0.18,c2t=-0.4,c2ts=0.3,c2sa=2.3),data=d) )
prd=predict(s1tsx)
-2*sum(d$cml*log(prd))
-2*sum(d$cml*log(prd))+2*length(coef(s1tsx))
ICtab(s1tsx,s1a55f)
a55HMb<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+k*age+ks*s*age) +
sv*tsx*exp(c20+c2c*c + c2s*s+c2t*tsx+c2ts*s*tsx +c2sa*s*a55+ c2x*(1-c)*(1-s)*abs(agex-30)) ) ),
start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50,
c2s=-0.18,c2t=-0.4,c2ts=0.3,c2x=.1,c2sa=2.3),data=d)
prd=predict(a55HMb)
-2*sum(d$cml*log(prd))
-2*sum(d$cml*log(prd))+2*length(coef(a55HMb))
summary(a55HMb)
AIC(a55HMb,s1tsx)
ICtab(a55HMb,s1tsx)
anova(a55HMb,s1tsx)
summary(best<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+k*age+ks*s*age)
+sv*tsx*exp(c20+c2c*c + c2s*s-tsx/(c2t+c2ts*s) +c2sa*s*a55 ) ) ),
start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50,
c2s=-0.18,c2t=5,c2ts=10,c2sa=2.3),data=d) )
prd=predict(best)
-2*sum(d$cml*log(prd))
-2*sum(d$cml*log(prd))+2*length(coef(best))
AIC(s1tsx,best)
ICtab(err,best)
anova(err,best)
summary(best)
summary(bestT<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+k*age)
+sv*tsx*exp(c20+c2c*c + c2s*s-tsx/(c2t+c2ts*s) +c2sa*s*a55 ) ) ),
start=list(c10=-12.4,k=0.025,c20=-10.5,c2c=-1.50,
c2s=-0.18,c2t=5,c2ts=10,c2sa=2.3),data=d) )
prd=predict(bestT)
-2*sum(d$cml*log(prd))
anova(best,bestT)
BICtab(best,bestT)
ICtab(best,bestT)
(sb=summary(best))
(outs=round(coef(sb),4))
rownames(outs)[c(1,4:8)]<-c("c1hm","c2hm","cn","cs","tau","taus")
outs
library(hwriter)
sd=coef(sb)["c2ts",2]
mn=coef(best)["c2ts"]
(tauDiff=round(2*c(mn,mn-1.96*sd,mn+1.96*sd),2))
sprintf("%s (%s, %s)",tauDiff[1],tauDiff[2],tauDiff[3])
(Taum=coef(best)["c2t"])
(Tauf=Taum + mn)
sdA=coef(sb)["c2s",2]
mnA=coef(best)["c2s"]
(MovF=round((Taum/Tauf)^2*exp(-c(mnA,mnA+1.96*sdA,mnA-1.96*sdA)),2))
sprintf("%s (%s, %s)",MovF[1],MovF[2],MovF[3])
d=transform(d,tsxf=cut(tsx,6),sex=as.factor(s))
head(d)
summary(s3<-mle2(cml~dpois(lambda=py*(exp(c10 + c2c*c + c2s*s + k*age + ks*s*age)
+sv*exp(c2c*c + f + c2sa*s*a55 ) ) ),
parameters=list(f~-1 + tsxf:sex),
start=list(c10=-12.4,k=0.025,ks=0,c2c=-1.50,
c2s=-0.18,f=-5,c2sa=2),data=d) )
prd=predict(s3)
-2*sum(d$cml*log(prd))
-2*sum(d$cml*log(prd))+2*length(coef(s3))
AIC(s3,best)
ICtab(s3,best)
anova(s3,best)
ss3=summary(s3)
wait=exp(coef(ss3)[6:17,1])*1e4
waitL=exp(coef(ss3)[6:17,1]-1.96*coef(ss3)[6:17,2])*1e4
waitU=exp(coef(ss3)[6:17,1]+1.96*coef(ss3)[6:17,2])*1e4
(lvls=levels(d$tsxf))
(Lvls=strsplit(lvls,","))
substring("(4.23",2)
(lows=sapply(Lvls,function(x) as.numeric(substring(x[1],2))))
(ups=sapply(Lvls,function(x) as.numeric(substring(x[2],1,4))))
(mids=round(apply(rbind(lows,ups),2,mean),2))
(dfc=data.frame(mids,wait,waitL,waitU,Sex=gl(2,6,labels=c("Male","Female") ) ) )
graphics.off()
if(length(grep("linux",R.Version()$os))) windows <- function( ... ) X11( ... )
if(length(grep("darwin",R.Version()$os))) windows <- function( ... ) quartz( ... )
windows(width=7,height=6)
library(ggplot2)
pd <- position_dodge(1)
(p=ggplot(dfc, aes(x=mids, y=wait, shape=Sex, col=Sex, ymax=10)) +
geom_point(size=6,position=pd) )
(p=p+labs(title="IR-to-CML Latency",x="Years since exposure",
y=expression(paste("Cases per ",10^4," Person-Year-Sv") ) ) )
(p=p+geom_errorbar(aes(ymin=waitL, ymax=waitU),width=.01,position=pd))
(p=p+theme(plot.title = element_text(size = rel(2.3)),
axis.title = element_text(size = rel(2.3)),
axis.text = element_text(size = rel(2.3))) )
(p=p+theme(legend.position = c(0.8, .5),
legend.title = element_text(size = rel(2)) ,
legend.text = element_text(size = rel(2)) ) )
waitm=exp(coef(ss3)[6:11,1])
waitf=exp(coef(ss3)[12:17,1])
(MovF<-format(sum(waitm)/sum(waitf),digits=3))
mns=coef(ss3)[6:17,1]
sds=coef(ss3)[6:17,2]
X=exp(matrix(rnorm(12*100000,mns,sds),byrow=T, ncol=12))
M=X[,1:6]; F=X[,7:12]
Ms=apply(M,1,sum)
Fs=apply(F,1,sum)
MovF=Ms/Fs
MF=round(quantile(MovF,c(0.5,0.025,0.975)),2)
(MF=sprintf("%s (%s, %s)",MF[1],MF[2],MF[3]))
pm=waitm/sum(waitm)
pf=waitf/sum(waitf)
(taum<-round(mids%*%pm,2))
(tauf<-round(mids%*%pf,2))
(p=p+annotate("text",x=15,y=10, hjust=0, label = paste("M/F =",MF),size=9) )
(lb1=paste0("tau[m] == ",taum,"*~Yrs"))
(p=p+annotate("text",x=15,y=9, hjust=0, label = lb1,size=9,parse=T) )
(lb1=paste0("tau[f] == ",tauf,"*~Yrs"))
(p=p+annotate("text",x=15,y=8, hjust=0, label = lb1,size=9,parse=T) )
rdiscrete <- function(n, probs,values) {
cumprobs <- cumsum(probs)
singlenumber <- function() {
x <- runif(1)
N <- sum(x > cumprobs)
N
}
values[replicate(n, singlenumber())+1]
}
x=rdiscrete(1e5,pf,mids)
summary(as.factor(x))
y=rdiscrete(1e5,pm,mids)
summary(as.factor(y))
(delT=quantile(x-y,c(0.025,0.975)))
(lb1=paste0("Delta*tau == ",tauf-taum,"(",delT[1],", ",delT[2],")"))
(p=p+annotate("text",x=15,y=7, hjust=0, label = lb1,size=7,parse=T) )
sprintf("%s (%s, %s)",tauf-taum,delT[1],delT[2])
k=0.025
Tp=22.1
Rp=1.73
Tf=-15:23
fR=function(Tf) exp(-k*(Tf-Tp))
R=fR(Tf)
par(mar=c(4.5,4.5,0,.5))
plot(Tf,R,type="l",lwd=2.5,cex.lab=1.6,cex.axis=1.5,
ylab="(male risk)/(female risk) M/F",
xlab="extra female latency time T in years",axes=F,font=2)
mtext(side=3,line=-4,"Continuum of SEER CML\n Sex Difference Interpretations",cex=1.5,font=1)
points(x=c(0,Tp),y=c(Rp,1),pch=1,cex=3,lwd=3)
abline(h=1,v=0,lty=3)
fT=function(R) Tp-log(R)/k
x=seq(tauDiff[2],tauDiff[3],0.1)
y=fR(x)
points(x,y,type="l",lwd=7)
rect(-1,1.13*Rp,23,1.26*Rp,lwd=2)
text(12,1.2*Rp,"interpretations by\n a single cause",cex=1.4,font=1,bty="o")
arrows(x0=0,y0=1.13*Rp,x1=0,y1=Rp+0.05,lwd=2,angle=20)
arrows(x0=Tp,y0=1.13*Rp,x1=Tp,y1=1.05,lwd=2,angle=20)
text(4,1.04*Rp,"higher\nmale\nrisk",cex=1.4,font=1)
text(10,0.96*Rp,"or",cex=1.4,font=2)
text(18,0.9*Rp,"shorter\nmale\nlatency",cex=1.4,font=1)
text(-9,1.38,
"interpretations\nconsistent with\ntime-since-\nexposure data\n(heavy line)",
cex=1.4,font=1)
arrows(x0=-2,y0=1.4,fT(1.4),y1=1.4,lwd=2,angle=20)
graphics.off()
if(length(grep("linux",R.Version()$os))) windows <- function( ... ) X11( ... )
if(length(grep("darwin",R.Version()$os))) windows <- function( ... ) quartz( ... )
windows(width=8,height=7)
head(d)
d$Dose<-cut(d$sv,c(-1,.02,1,100),labels=c("Low","Moderate","High"))
d$Dose=factor(d$Dose,levels=c("High","Moderate","Low"))
d$agexc<-cut(d$agex,c(0,20,40,180),labels=c("10","30","50"))
d$Sex<-factor(d$s,labels=c("Male","Female"))
head(d)
library(plyr)
(d2<-ddply(subset(d,c==0), .(Dose,Sex,agexc), summarise,
PY=sum(py),cases=sum(cml),agex=weighted.mean(agex,py) ))
(d2=within(d2,{incid=1e5*cases/PY}))
library(ggplot2)
(p <- ggplot(d2,aes(x=agex,y=incid,shape=Dose,col=Dose,group=Dose))+geom_point(size=5) +geom_line()
+ labs(title="Hiroshima A-bomb Survivors",x="Age-at-exposure (PY-weighted)",
y=expression(paste("CML Cases per ",10^5," Person-Years")))
+ scale_y_log10(limits=c(.1,130)) +xlim(8,52) )
(p=p + facet_grid(. ~ Sex))
(p=p+theme(
legend.position = c(0.67, .85),
legend.title = element_text(size = rel(2)) ,
legend.text = element_text(size = rel(1.3)) ) )
(p=p+theme(plot.title = element_text(size = rel(2)),
strip.text = element_text(size = rel(2)),
axis.title.y = element_text(size = rel(1.7)),
axis.title.x = element_text(size = rel(1.7)),
axis.text = element_text(size = rel(2))) )
if(length(grep("linux",R.Version()$os))) windows <- function( ... ) X11( ... )
if(length(grep("darwin",R.Version()$os))) windows <- function( ... ) quartz( ... )
windows(width=8,height=7)
head(d)
d$agec<-cut(d$age,c(0,30,60,180),labels=c("15","45","75"))
d$Dose<-cut(d$sv,c(-1,.02,1,100),labels=c("Low","Moderate","High"))
d$Sex<-factor(d$s,labels=c("Male","Female"))
head(d)
library(plyr)
(d3<-ddply(subset(d,c==0), .(Dose,Sex,agec), summarise,
PY=sum(py),cases=sum(cml),age=weighted.mean(age,py) ))
(d3=within(d3,{incid=1e5*cases/PY}))
library(ggplot2)
(p <- ggplot(d3,aes(x=age,y=incid,shape=Dose,group=Dose))+geom_point(size=5) +geom_line()
+ labs(title="Hiroshima A-bomb Survivors",x="Attained-age (PY-weighted)",
y=expression(paste("CML Cases per ",10^5," Person-Years")))
+ scale_y_log10(limits=c(.1,130)) +xlim(8,90) )
(p=p + facet_grid(. ~ Sex))
(p=p+theme(legend.position = c(0.67, .85),
legend.title = element_text(size = rel(2)) ,
legend.text = element_text(size = rel(1.7)) ) )
(p=p+theme(plot.title = element_text(size = rel(2.5)),
strip.text = element_text(size = rel(2)),
axis.title.y = element_text(size = rel(2.5)),
axis.title.x = element_text(size = rel(2.3)),
axis.text = element_text(size = rel(2.3))) ) |
httpget_session_zip <- function(sessionpath, requri){
setwd(sessionpath);
allfiles <- list.files(all.files = TRUE, recursive = TRUE);
tmpzip <- tempfile(fileext=".zip");
zip::zip(tmpzip, files = allfiles, recurse = FALSE);
stoponwarn(utils::unzip(tmpzip));
res$setbody(file=tmpzip);
res$setheader("Content-Type", "application/zip")
res$setheader("Content-Disposition", paste('attachment; filename="', basename(sessionpath), '.zip"', sep=""));
res$finish();
}
stoponwarn <- function(...){
tryCatch(eval(...), warning=function(w){
stop("warning! ", w$message)
})
} |
NPMLE.Plackett <-
function(x.trunc,y.trunc,x.fix = median(x.trunc), y.fix = median(y.trunc),plotX = TRUE){
m=length(x.trunc)
x.ox=sort(unique(x.trunc))
y.oy=sort(unique(y.trunc))
nx=length(x.ox);ny=length(y.oy)
dHx1=1;Hxn=0;Ay_1=0;dAyn=1
dHx_lyn=numeric(nx);dAy_lyn=numeric(ny)
for(i in 1:nx){
tx=x.ox[nx-i+1]
Rx=sum( (x.trunc<=tx)&(y.trunc>=tx) )
dHx_lyn[nx-i+1]=sum(tx==x.trunc)/Rx
}
for(i in 1:ny){
ty=y.oy[i]
Ry=sum( (x.trunc<=ty)&(y.trunc>=ty) )
dAy_lyn[i]=sum(ty==y.trunc)/Ry
}
dL_lyn=log(c(dHx_lyn[-1],dAy_lyn[-ny]))
l.plackett=function(dL){
dHx=c(dHx1,exp(dL[1:(nx-1)]));dAy=c(exp(dL[nx:(nx+ny-2)]),dAyn)
Hx=c(rev(cumsum(rev(dHx)))[-1],Hxn);Ay_=c(Ay_1,cumsum(dAy)[-ny])
alpha=exp(dL[nx+ny-1])
prop=0
for(i in 1:nx){
temp_y=(y.oy>=x.ox[i])
dHxi=dHx[i];dAyi=dAy[temp_y]
Fxi=exp(-Hx[i]);Sy_i=exp(-Ay_[temp_y])
B=1+(alpha-1)*(Fxi+Sy_i)
C=(alpha-1)*Fxi*Sy_i
c11=alpha*(B-2*C)/(B^2-4*alpha*C)^(3/2)
prop=prop+sum(c11*Sy_i*dAyi*Fxi*dHxi)
}
l=-m*log(prop)
for(i in 1:m){
x_num=sum(x.ox<=x.trunc[i]);y_num=sum(y.oy<=y.trunc[i])
Hxi=Hx[x_num];Ay_i=Ay_[y_num]
dHxi=dHx[x_num];dAyi=dAy[y_num]
Fxi=exp(-Hxi);Sy_i=exp(-Ay_i)
B=1+(alpha-1)*(Fxi+Sy_i)
C=(alpha-1)*Fxi*Sy_i
l=l+log(alpha)+log(B-2*C)-3/2*log(B^2-4*alpha*C)-Hxi-Ay_i+log(dHxi)+log(dAyi)
}
-l
}
res=nlm(l.plackett,p=c(dL_lyn,log(0.9999)),hessian=TRUE)
dL=res$estimate;conv=res$code
alpha=exp(dL[nx+ny-1])
dHx=c(dHx1,exp(dL[1:(nx-1)]))
dAy=c(exp(dL[nx:(nx+ny-2)]),dAyn)
Hx_=rev(cumsum(rev(dHx)));Ay=cumsum(dAy)
Fx=exp(-Hx_);Sy=exp(-Ay)
Hx=c(Hx_[-1],Hxn)
Ay_=c(Ay_1,Ay[-ny])
V_dL=solve(res$hessian)
V=diag(exp(dL))%*%V_dL%*%diag(exp(dL))
SE_alpha=sqrt( V[nx+ny-1,nx+ny-1] )
Low=alpha*exp(-1.96*SE_alpha/alpha)
Up=alpha*exp(1.96*SE_alpha/alpha)
ML=-res$minimum
iter=res$iterations
Grad=res$gradient
Min_eigen=min(eigen(res$hessian)$value)
Hx_fix = Ay_fix = numeric(length(x.fix))
SE_Hx = SE_Ay = numeric(length(x.fix))
for (i in 1:length(x.fix)) {
temp.x = c(x.ox >= x.fix[i])
Hx_fix[i] = Hx_[max(sum(x.ox <= x.fix[i]), 1)]
SE_Hx[i] = sqrt((temp.x[-1]) %*% V[1:(nx - 1), 1:(nx - 1)] %*% (temp.x[-1]))
}
for (i in 1:length(y.fix)) {
temp.y = c(y.oy <= y.fix[i])
Ay_fix[i] = Ay[max(sum(y.oy <= y.fix[i]), 1)]
SE_Ay[i] = sqrt((temp.y[-ny]) %*% V[nx:(nx+ny-2),nx:(nx+ny-2)] %*% (temp.y[-ny]))
}
Fx_fix = exp(-Hx_fix)
Sy_fix = exp(-Ay_fix)
SE_Fx = Fx_fix * SE_Hx
SE_Sy = Sy_fix * SE_Ay
if (plotX == TRUE) {
plot(x.ox, Fx, type = "s", xlab = "x", ylab = "Fx(x): Distribution function of X")
}
list(
alpha = c(estimate=alpha, alpha_se = SE_alpha, Low95_alpha=Low, Up95_alpha=Up),
Hx = c(estimate=Hx_fix, Hx_se = SE_Hx),
Ay = c(estimate=Ay_fix, Ay_se = SE_Ay),
Fx = c(estimate=Fx_fix, Fx_se = SE_Fx),
Sy = c(estimate=Sy_fix, Sy_se = SE_Sy),
ML=ML, convergence = conv,iteration=iter,Grad=sum(Grad^2),MinEigen=Min_eigen
)
} |
CNOT5_24 <- function(a){
cnot5_24=TensorProd(diag(2), CNOT4_13(diag(16)))
result = cnot5_24 %*% a
result
} |
seg2list <- function(data, segment="BATCH") {
if (segment %in% names(data) != TRUE) {
stop("Cannot find segment variable in data.frame.")
}
seg.ncol <- which(names(data) == segment)
seg.col <- data[, seg.ncol]
if (length(unique(seg.col)) == 1) {
if (unique(seg.col) != 0) {
return(list(data))
} else {
return(NA)
}
}
uni.seg <- unique(seg.col)
uni.seg <- uni.seg[uni.seg != 0]
n.seg <- length(uni.seg)
result <- vector("list", n.seg)
for (i in seq_len(n.seg)) {
result[[i]] <- data[seg.col == uni.seg[i], ]
}
res_len <- sapply(result, nrow)
result[which(res_len > 2)]
}
prepareSeasonalFit <- function(data, segment) {
seg.col <- which(names(data[[1]]) == segment)
data <- lapply(data, function(x) x[, -seg.col])
data <- lapply(data, as.matrix)
lapply(data, function(x) apply(x, 2, diff))
}
nllk_bmme_seasonal <- function(param, data) {
n.year <- length(data)
result <- lapply(data, nllk.bmme, param = param)
sum(unlist(result))
}
ncllk_m1_inc_seasonal <- function(theta, data,
integrControl, logtr) {
n.year <- length(data)
result <- lapply(data, ncllk_m1_inc,
theta = theta, integrControl = integrControl,
logtr = logtr)
sum(unlist(result))
}
nllk_inc_seasonal <- function(theta, data,
integrControl, logtr) {
n.year <- length(data)
result <- lapply(data, nllk_inc,
theta = theta, integrControl = integrControl,
logtr = logtr)
sum(unlist(result))
}
nllk_mrme_seasonal <- function(theta, data, integrControl) {
n.year <- length(data)
result <- lapply(data, nllk_mrme,
theta = theta, integrControl = integrControl)
sum(unlist(result))
}
nllk_mrme_naive_cmp_seasonal <- function(theta, data, integrControl) {
n.year <- length(data)
result <- lapply(data, nllk_mrme_naive_cmp,
theta = theta, integrControl = integrControl)
sum(unlist(result))
}
nllk_mrme_approx_seasonal <- function(theta, data, integrControl,
approx_norm_even, approx_norm_odd) {
n.year <- length(data)
result <- lapply(data, nllk_mrme_approx,
theta = theta, integrControl = integrControl,
approx_norm_even = approx_norm_even, approx_norm_odd = approx_norm_odd)
sum(unlist(result))
}
bmme.start.seasonal <- function(dat, segment) {
dif <- prepareSeasonalFit(dat, segment)
dim <- ncol(dif[[1]]) - 1
numerator <- sum(unlist(lapply(dif, function(x) {sum(x[,-1]^2)})))
denominator <- sum(unlist(lapply(dif, function(x) {sum(2 + x[,1])}))) * dim
st <- sqrt(numerator / denominator)
c(st, st)
}
fitBMME_seasonal <- function(data, segment, start, method, optim.control) {
data <- seg2list(data, segment)
if (is.null(start)) start <- bmme.start.seasonal(data, segment)
dinc <- prepareSeasonalFit(data, segment)
fit <- optim(start, nllk_bmme_seasonal, data = dinc, method=method, control = optim.control)
varest <- matrix(NA_real_, 2, 2)
estimate <- fit$par
hess <- tryCatch(numDeriv::hessian(nllk_bmme_seasonal, estimate, data = dinc),
error = function(e) e)
if (!is(hess, "error")) varest <- solve(hess)
list(estimate = estimate,
varest = varest,
loglik = -fit$value,
convergence = fit$convergence)
}
glue_list <- function(x) {
n <- length(x)
m <- sapply(x, nrow)
result <- matrix(NA_real_, sum(m), 3)
m <- c(0, cumsum(m))
for(i in 1:n) {
result[(m[i]+1):m[i+1],] <- x[[i]]
}
result
}
movres.start.seasonal <- function(dat, segment) {
dat <- prepareSeasonalFit(dat, segment)
dinc <- glue_list(dinc)
s1 <- coef(lm(dinc[, 2]^2 ~ dinc[, 1] - 1))
s2 <- coef(lm(dinc[, 3]^2 ~ dinc[, 1] - 1))
ss <- sqrt(mean(c(s1, s2)))
c(0.5, 0.5, ss)
}
fitMR_seasonal <- function(data, segment, start, likelihood,
logtr, method, optim.control, integrControl) {
data <- seg2list(data, segment)
if (is.null(start)) start <- movres.start.seasonal(data, segment)
dinc <- prepareSeasonalFit(data, segment)
objfun <- switch(likelihood,
composite = ncllk_m1_inc_seasonal,
full = nllk_inc_seasonal,
stop("Not valid likelihood type.")
)
integrControl <- unlist(integrControl)
fit <- optim(start, objfun, data = dinc, method = method,
control = optim.control,
integrControl = integrControl,
logtr = logtr)
varest <- matrix(NA_real_, 3, 3)
estimate <- if (logtr) exp(fit$par) else fit$par
if (likelihood == "full") {
hess <- tryCatch(numDeriv::hessian(
objfun, estimate, data = dinc,
integrControl = integrControl, logtr = FALSE),
error = function(e) e)
if (!is(hess, "error")) varest <- solve(hess)
}
list(estimate = estimate,
varest = varest,
loglik = -fit$value,
convergence = fit$convergence,
likelihood = likelihood)
}
fitMRME_seasonal <- function(data, segment, start,
lower, upper,
integrControl) {
data <- seg2list(data, segment)
if (is.null(start)) start <- movres.start.seasonal(data, segment)
dinc <- prepareSeasonalFit(data, segment)
integrControl <- unlist(integrControl)
fit <- nloptr::nloptr(x0 = start, eval_f = nllk_mrme_seasonal,
data = dinc,
integrControl = integrControl,
lb = lower,
ub = upper,
opts = list("algorithm" = "NLOPT_LN_COBYLA",
"print_level" = 3,
"maxeval" = -5))
result <- list(estimate = fit[[18]],
loglik = -fit[[17]],
convergence = fit[[14]])
return(result)
}
fitMRME_naive_seasonal <- function(data, segment, start,
lower, upper,
integrControl) {
data <- seg2list(data, segment)
if (is.null(start)) start <- movres.start.seasonal(data, segment)
dinc <- prepareSeasonalFit(data, segment)
integrControl <- unlist(integrControl)
fit <- nloptr::nloptr(x0 = start, eval_f = nllk_mrme_naive_cmp_seasonal,
data = dinc,
integrControl = integrControl,
lb = lower,
ub = upper,
opts = list("algorithm" = "NLOPT_LN_COBYLA",
"print_level" = 3,
"maxeval" = -5))
result <- list(estimate = fit[[18]],
loglik = -fit[[17]],
convergence = fit[[14]])
return(result)
}
fitMRMEapprox_seasonal <- function(data, segment, start,
approx_norm_even, approx_norm_odd,
method, optim.control, integrControl) {
data <- seg2list(data, segment)
if (is.null(start)) start <- movres.start.seasonal(data, segment)
dinc <- prepareSeasonalFit(data, segment)
integrControl <- unlist(integrControl)
fit <- optim(start, nllk_mrme_approx_seasonal, data = dinc, method = method,
control = optim.control, integrControl = integrControl,
approx_norm_even = approx_norm_even, approx_norm_odd = approx_norm_odd)
list(estimate = fit$par,
loglik = -fit$value,
convergence = fit$convergence)
}
nllk_seasonal_parallel <- function(theta, data,
integrControl, numThreads) {
n.year <- length(data)
cl = parallel::makeCluster(numThreads); on.exit(parallel::stopCluster(cl))
doParallel::registerDoParallel(cl)
i = 1
result <- foreach(i = 1:n.year) %dopar% {
nllk_fwd_ths(theta, data[[i]], integrControl)
}
sum(unlist(result))
}
fitMRH_seasonal <- function(data, segment, start,
lower, upper,
numThreads, integrControl) {
data <- seg2list(data, segment)
dinc <- prepareSeasonalFit(data, segment)
integrControl <- unlist(integrControl)
fit <- nloptr::nloptr(x0 = start, eval_f = nllk_seasonal_parallel,
data = dinc,
integrControl = integrControl,
numThreads = numThreads,
lb = lower,
ub = upper,
opts = list("algorithm" = "NLOPT_LN_COBYLA",
"print_level" = 3,
"maxeval" = -5))
result <- list(estimate = fit[[18]],
loglik = -fit[[17]],
convergence = fit[[14]])
result
} |
starts_uni_estimate_prepare_fitting_prior_model <- function( pars_est,
prior_var_trait, prior_var_ar, prior_var_state, prior_a, sd0, estimator)
{
prior_model <- NULL
if ( estimator !="ML"){
prior_model <- list()
prior_model[[ "var_trait" ]] <- starts_uni_estimate_prepare_fitting_prior_variance(
prior_var=prior_var_trait, sd0=sd0)
prior_model[[ "var_ar" ]] <- starts_uni_estimate_prepare_fitting_prior_variance(
prior_var=prior_var_ar, sd0=sd0)
prior_model[[ "var_state" ]] <- starts_uni_estimate_prepare_fitting_prior_variance(
prior_var=prior_var_state, sd0=sd0)
vec <- round( c(NA, (prior_a[1]+1)*prior_a[2], (prior_a[1]+1)*(1-prior_a[2] ) ), 4 )
prior_model[[ "a" ]] <- list( "dbeta", as.list(vec) )
pars_remove <- names(pars_est)[ ! pars_est ]
if ( length(pars_remove) > 0 ){
for (pp in pars_remove){
prior_model[[pp]] <- NULL
}
}
}
return(prior_model)
} |
bark2hz <- function(z){
if(!is.numeric(z) || z < 0)
stop("frequencies have to be non-negative")
600 * sinh(z/6)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(ONEST)
library(ONEST)
data("sp142_bin")
data('empirical')
ONEST_vignettes(sp142_bin,empirical)
data("sp142_bin")
ONEST_inflation_test(sp142_bin) |
clusterdist <- function(fit, ...) {
if (!is(fit, "disclapmixfit")) {
stop("fit must be a disclapmixfit")
}
if (nrow(fit$y) < 2L) {
stop("Fit must have at least two clusters")
}
symDist <- function(p1, z1, p2, z2) {
KL <- function(p1, p2, m) {
a <- (2*p1*log(p1)) / (1 - p1^2)
b <- log( ((1-p1)*(1+p2)) / ((1+p1)*(1-p2)) )
c <- (2*p1^(m+1) - m*(p1^2 - 1) ) / (1 - p1^2)
return(a + b - c*log(p2))
}
m <- abs(z1 - z2)
return(KL(p1, p2, m) + KL(p2, p1, m))
}
clusters <- nrow(fit$disclap_parameters)
distmat <- matrix(NA, nrow = clusters, ncol = clusters)
for (j1 in 1:(clusters-1)) {
for (j2 in (j1+1):clusters) {
kldist <- 0
for (k in 1:ncol(fit$disclap_parameters)) {
pj1k <- fit$disclap_parameters[j1, k]
pj2k <- fit$disclap_parameters[j2, k]
kldist <- kldist + symDist(p1 = pj1k, z1 = fit$y[j1, k], p2 = pj2k, z2 = fit$y[j2, k])
}
distmat[j2, j1] <- kldist
}
}
distmat <- as.dist(distmat)
return(distmat)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.