code
stringlengths
1
13.8M
utils::globalVariables(c(".", "moduleName")) setGeneric("ganttStatus", function(eventType) { standardGeneric("ganttStatus") }) setMethod("ganttStatus", signature(eventType = "character"), definition = function(eventType) { status <- lapply(eventType, function(x) { if (x == "init") { "done" } else if (x == "plot") { "crit" } else { "active" } }) return(unlist(status)) }) setGeneric(".sim2gantt", function(sim, n, startDate, width) { standardGeneric(".sim2gantt") }) setMethod( ".sim2gantt", signature(sim = "simList", n = "numeric", startDate = "character", width = "numeric"), definition = function(sim, n, startDate, width) { DT <- tail(completed(sim), n) modules <- unique(DT$moduleName) width <- 4500 / as.numeric(width) ts <- sim@simtimes[["timeunit"]] %>% inSeconds(envir = [email protected]) %>% convertTimeunit("day", envir = [email protected]) %>% as.numeric() out <- lapply(modules, function(x) { data.frame( task = DT[moduleName == x]$eventType, status = ganttStatus(DT[moduleName == x]$eventType), pos = paste0(x, 1:nrow(DT[moduleName == x])), start = as.Date( DT[moduleName == x]$eventTime * ts, origin = startDate ), end = as.Date( DT[moduleName == x]$eventTime * ts + width, origin = startDate ) ) }) names(out) <- modules return(out) }) setGeneric("eventDiagram", function(sim, n, startDate, ...) { standardGeneric("eventDiagram") }) setMethod( "eventDiagram", signature(sim = "simList", n = "numeric", startDate = "character"), definition = function(sim, n, startDate, ...) { needInstall("DiagrammeR", minVersion = "0.8.2", messageStart = "Please install DiagrammeR: ") dots <- list(...) dots$width <- if (any(grepl(pattern = "width", names(dots)))) { as.numeric(dots$width) } else { 1000 } ll <- .sim2gantt(sim, n, startDate, dots$width) ll <- ll[names(ll) != "progress"] if (length(ll)) { dots$height <- if (any(grepl(pattern = "height", names(dots)))) { as.numeric(dots$height) } else { sapply(ll, NROW) %>% sum() %>% `*`(., 26L) } diagram <- paste0( "gantt", "\n", "dateFormat YYYY-MM-DD", "\n", "title SpaDES event diagram", "\n", paste("section ", names(ll), "\n", lapply(ll, function(df) { paste0(df$task, ":", df$status, ",", df$pos, ",", df$start, ",", df$end, collapse = "\n") }), collapse = "\n"), "\n" ) do.call(DiagrammeR::mermaid, args = append(diagram, dots)) } else { stop("Unable to create eventDiagram for a simulation that hasn't been run.\n", "Run your simulation using `mySim <- spades(mySim)` and try again.") } }) setMethod( "eventDiagram", signature(sim = "simList", n = "missing", startDate = "character"), definition = function(sim, startDate, ...) { eventDiagram(sim = sim, n = NROW(completed(sim)), startDate = startDate, ...) }) setMethod( "eventDiagram", signature(sim = "simList", n = "missing", startDate = "missing"), definition = function(sim, startDate, ...) { d <- as.Date(start(sim), format(Sys.time(), "%Y-%m-%d")) %>% as.character() eventDiagram(sim = sim, n = NROW(completed(sim)), startDate = d, ...) }) setGeneric("objectDiagram", function(sim, ...) { standardGeneric("objectDiagram") }) setMethod( "objectDiagram", signature(sim = "simList"), definition = function(sim, ...) { dt <- depsEdgeList(sim, FALSE) needInstall("DiagrammeR", minVersion = "0.8.2", messageStart = "Please install DiagrammeR: ") DiagrammeR::mermaid(..., paste0( "sequenceDiagram", "\n", paste(dt$from, "->>", dt$to, ":", dt$objName, collapse = "\n"), "\n" ) ) }) setGeneric("moduleDiagram", function(sim, type, showParents, ...) { standardGeneric("moduleDiagram") }) setMethod( "moduleDiagram", signature = c(sim = "simList", type = "character", showParents = "logical"), definition = function(sim, type, showParents, ...) { if (type == "rgl") { rglplot(depsGraph(sim, TRUE), ...) } else if (type == "tk") { tkplot(depsGraph(sim, TRUE), ...) } else { moduleDiagram(sim) } }) setMethod( "moduleDiagram", signature = c(sim = "simList", type = "missing"), definition = function(sim, ...) { modDia <- depsGraph(sim, TRUE) dots <- list(...) nDots <- names(dots) if (missing(showParents)) showParents <- FALSE if (showParents) { moduleGraph(sim = sim, ...) } else { PlotRemovingDots <- function(modDia, plotFn, axes, ..., vertex.color, vertex.size, vertex.size2, vertex.shape, vertex.label.cex, vertex.label.family, layout, rescale, xlim, ylim, asp) { namesModDia <- names(V(modDia)) vcol <- if (!("vertex.color" %in% nDots)) { sapply(namesModDia, function(v) { ifelse(v == "_INPUT_", "orange", "lightblue") }) } else { "lightblue" } vertexSize <- if (!("vertex.size" %in% nDots)) { c(nchar(namesModDia)^0.8 * 10) } else { dots$vertex.size } vertexSize2 <- if (!("vertex.size2" %in% nDots)) { 25 } else { dots$vertex.size2 } vertexLabelCex <- if (!("vertex.label.cex" %in% nDots)) { 1.7 } else { dots$vertex.label.cex } vertexLabelFamily <- if (!("vertex.label.family" %in% nDots)) { "sans" } else { dots$vertex.label.family } vertexShape <- if (!("vertex.shape" %in% nDots)) { "rectangle" } else { dots$vertex.shape } layout2 <- if (!("layout" %in% nDots)) { if ("_INPUT_" %in% V(modDia)) { igraph::layout_as_star(modDia, center = "_INPUT_") } else { igraph::layout_in_circle(modDia) } } else { dots$layout } rescale2 <- if (!("rescale" %in% nDots)) FALSE else dots$rescale xlim2 <- if (!("xlim" %in% nDots)) c(-1.7, 1.7) else dots$xlim ylim2 <- if (!("ylim" %in% nDots)) c(-1.1, 1.1) else dots$ylim asp2 <- if (!("asp" %in% nDots)) 0 else dots$asp Plot(modDia, plotFn = "plot", axes = FALSE, vertex.color = vcol, vertex.size = vertexSize, vertex.size2 = vertexSize2, vertex.shape = vertexShape, vertex.label.cex = vertexLabelCex, vertex.label.family = vertexLabelFamily, layout = layout2, rescale = rescale2, xlim = xlim2, ylim = ylim2, asp = asp2, ...) } if ("title" %in% nDots) { PlotRemovingDots(modDia = modDia, plotFn = "plot", axes = FALSE, ...) } else { PlotRemovingDots(modDia = modDia, plotFn = "plot", axes = FALSE, title = "Module Diagram", ...) } } }) setGeneric("moduleGraph", function(sim, plot, ...) { standardGeneric("moduleGraph") }) setMethod( "moduleGraph", signature(sim = "simList", plot = "logical"), definition = function(sim, plot, ...) { msgMissingGLPK <- paste("GLPK not found on this system.\n", "igraph is used internally and requires a GLPK installation.\n") msgInstallDarwin <- paste("It can be installed using, e.g., `brew install glpk`.\n") msgInstallLinux <- paste("It can be installed using, e.g., `apt install libglpk-dev`.\n") msgReinstallIgraph <- paste("If GLPK is installed you should reinstall igraph from source using:\n", "`install.packages('igraph', type = 'source')`\n", "For more info see https://github.com/igraph/rigraph/issues/273.") if (Sys.which("glpsol") == "") { if (Sys.info()[['sysname']] == "Darwin") { message(msgMissingGLPK, msgInstallDarwin, msgReinstallIgraph) } else if (Sys.info()[['sysname']] == "Linux") { message(msgMissingGLPK, msgInstallLinux, msgReinstallIgraph) } return(invisible(NULL)) } else { mg <- attr(sim@modules, "modulesGraph") mg[["from"]] <- basename(mg[["from"]]) mg[["to"]] <- basename(mg[["to"]]) parents <- unique(mg[, "from"]) %>% basename() deps <- depsEdgeList(sim)[, list(from, to)] el <- rbind(mg, deps) if (NROW(deps) == 0) deps <- mg grph <- graph_from_data_frame(el, directed = TRUE) grps <- try(cluster_optimal(grph)) if (is(grps, "try-error")) { msgIgraphNoGLPK <- paste("Unable to create moduleGraph.", "Likely reason: igraph not compiled with GLPK support.\n") message(msgIgraphNoGLPK, msgReinstallIgraph) return(invisible(NULL)) } else { membership <- as.numeric(as.factor(mg[match(names(V(grph)), mg[, 2]), 1])) membership[is.na(membership)] <- 1 membership[which(names(V(grph)) == "_INPUT_")] <- max(membership, na.rm = TRUE) + 1 grps$membership <- membership el1 <- lapply(parents, function(par) data.frame(el["from" == par])) el1 <- rbindlist(el1) e <- apply(el1, 1, paste, collapse = "|") e <- edges(e) if (plot) { vs <- c(15, 0)[(names(V(grph)) %in% parents) + 1] dots <- list(...) if ("title" %in% names(dots)) { Plot(grps, grph - e, vertex.size = vs, plotFn = "plot", axes = FALSE, ...) } else { Plot(grps, grph - e, vertex.size = vs, plotFn = "plot", axes = FALSE, title = "Module Graph", ...) } } return(invisible(list(graph = grph, communities = grps))) } } }) setMethod("moduleGraph", signature(sim = "simList", plot = "missing"), definition = function(sim, ...) { return(moduleGraph(sim, TRUE, ...)) })
get_coauthors <- function(id, n_coauthors = 5, n_deep = 1) { stopifnot(is.numeric(n_coauthors), length(n_coauthors) >= 1, n_coauthors != 0) all_coauthors <- list_coauthors(id, n_coauthors) all_coauthors <- all_coauthors[setdiff(1:nrow(all_coauthors), grep("Sort by ", all_coauthors$coauthors)),] empty_network <- replicate(n_deep, list()) if(n_deep == 0){ empty_network[[1]] <- clean_network(grab_id(all_coauthors$coauthors_url), 25) }else{ for (i in seq_len(n_deep)) { if (i == 1) { empty_network[[i]] <- clean_network(grab_id(all_coauthors$coauthors_url), n_coauthors) } else { empty_network[[i]] <- clean_network(grab_id(empty_network[[i - 1]]$coauthors_url), n_coauthors) } } } final_network <- rbind(all_coauthors, Reduce(rbind, empty_network)) final_network <- final_network[setdiff(1:nrow(final_network), grep("Sort by ", final_network$coauthors)),] final_network$author <- stringr::str_to_title(final_network$author) final_network$coauthors <- stringr::str_to_title(final_network$coauthors) if(n_deep == 0) { final_network <- final_network[final_network$coauthors %in% final_network$author,] } res <- final_network[c("author", "coauthors")] res <- res[!res$coauthors %in% c("Sort By Year", "Sort By Title", "Sort By Citations"), ] return(res) } plot_coauthors <- function(network, size_labels = 5) { graph <- tidygraph::as_tbl_graph(network) %>% mutate(closeness = suppressWarnings(tidygraph::centrality_closeness())) %>% filter(name != "") ggraph::ggraph(graph, layout = 'kk') + ggraph::geom_edge_link(ggplot2::aes_string(alpha = 1/2, color = as.character('from')), alpha = 1/3, show.legend = FALSE) + ggraph::geom_node_point(ggplot2::aes_string(size = 'closeness'), alpha = 1/2, show.legend = FALSE) + ggraph::geom_node_text(ggplot2::aes_string(label = 'name'), size = size_labels, repel = TRUE, check_overlap = TRUE) + ggplot2::labs(title = paste0("Network of coauthorship of ", network$author[1])) + ggraph::theme_graph(title_size = 16, base_family = "sans") } list_coauthors <- function(id, n_coauthors) { site <- getOption("scholar_site") url_template <- paste0(site, "/citations?hl=en&user=%s") url <- compose_url(id, url_template) if (id == "" | is.na(id)) { return( data.frame(author = character(), author_href = character(), coauthors = character(), coauthors_url = character() ) ) } resp <- get_scholar_resp(url, 5) google_scholar <- httr::content(resp) author_name <- xml2::xml_text( xml2::xml_find_all(google_scholar, xpath = "//div[@id = 'gsc_prf_in']") ) coauthors <- xml2::xml_find_all(google_scholar, xpath = "//a[@tabindex = '-1']") subset_coauthors <- if (n_coauthors > length(coauthors)) TRUE else seq_len(n_coauthors) coauthor_href <- xml2::xml_attr(coauthors[subset_coauthors], "href") coauthors <- xml2::xml_text(coauthors)[subset_coauthors] if (length(coauthor_href) == 0) { coauthors <- "" coauthor_href <- "" } coauthor_urls <- vapply( grab_id(coauthor_href), compose_url, url_template, FUN.VALUE = character(1) ) data.frame( author = author_name, author_url = url, coauthors = coauthors, coauthors_url = coauthor_urls, stringsAsFactors = FALSE, row.names = NULL ) } clean_network <- function(network, n_coauthors) { Reduce(rbind, lapply(network, list_coauthors, n_coauth = n_coauthors)) }
"summary.psgc" <- function(object,...){ qC<-qM.sM(object$C.psamp) qR<-qM.sM(sR.sC(object$C.psamp)) p<-dim(qC)[1] nsamp<-dim(object$C.psamp)[3] vn<-colnames(qC[,,1]) ACF<-QC<-QR<-NULL rnamesC<-rnamesR<-NULL for(l1 in 1:p) { for(l2 in (1:p)[-l1]) { QR<-rbind(QR, c(qR[l1,l2,1:3]) ) rnamesR<-c(rnamesR,paste(vn[l1],vn[l2],sep="~") ) if(l1<l2) { QC<-rbind(QC, c(qC[l1,l2,1:3]) ) ACF<-rbind(ACF,acf(object$C.psamp[l1,l2,],lag.max=round(nsamp/20),plot=FALSE)[[1]][-1] ) rnamesC<-c(rnamesC, paste(vn[l1],vn[l2],sep="*") ) } }} rownames(QC)<-rownames(ACF)<-rnamesC rownames(QR)<-rnamesR Kappa<-1+2*apply(ACF,1,sum) ESS<-nsamp/Kappa ACR.lag1<-matrix(0,p,p) ACR.lag1[upper.tri(ACR.lag1)]<-ACF[1:choose(p,2),1] ACR.lag1<-ACR.lag1+t(ACR.lag1) diag(ACR.lag1)<-NA nsamp<-dim(object$C.psamp)[3] SUM<-list(QC=QC,QR=QR,nsamp=nsamp,ACR.lag1=ACR.lag1,ESS=ESS) structure(SUM,class="sum.psgc") }
cleanUp <- function() { existZWMat <- dir(tempdir(), pattern = "^\\d+(z|w)mat\\d{10}\\.RData$") unlink(paste0(tempdir(), "/", existZWMat)) } loadActual <- function() { existWMat <- dir(tempdir(), pattern = "^\\d+wmat\\d{10}\\.RData$") get(load(paste0(tempdir(), "/", existWMat))) } testCase1 <- function() { cleanUp() phasePortrait("(2-z)^2*(-1i+z)^3*(4-3i-z)/((2+2i+z)^4)", xlim = c(-4, 4), ylim = c(-4, 4), invertFlip = FALSE, blockSizePx = 2250000, res = 150, tempDir = NULL, deleteTempFiles = FALSE, noScreenDevice = TRUE, nCores = 2, verbose = FALSE) referenceWmat <- get(load("1wmatCase001.RData")) actualWmat <- loadActual() cleanUp() rslt <- all.equal(referenceWmat, actualWmat) rm(referenceWmat, actualWmat) return(rslt) } testCase2 <- function() { cleanUp() phasePortrait("(2-z)^2*(-1i+z)^3*(4-3i-z)/((2+2i+z)^4)", xlim = c(-4, 4), ylim = c(-4, 4), invertFlip = TRUE, blockSizePx = 2250000, res = 150, tempDir = NULL, deleteTempFiles = FALSE, noScreenDevice = TRUE, nCores = 2, verbose = FALSE) referenceWmat <- get(load("1wmatCase002.RData")) actualWmat <- loadActual() cleanUp() rslt <- all.equal(referenceWmat, actualWmat) rm(referenceWmat, actualWmat) return(rslt) } testCase3 <- function() { jacobiTheta_1 <- function(z, tau = 1i, nIter = 30) { k <- c(1:nIter) q <- exp(pi*1i*tau) g <- exp(2*pi*1i*z) return(1 + sum(q^(k^2)*g^k + q^(k^2)*(1/g)^k)) } cleanUp() phasePortrait(jacobiTheta_1, xlim = c(-2, 2), ylim = c(-2, 2), invertFlip = FALSE, blockSizePx = 2250000, res = 150, tempDir = NULL, deleteTempFiles = FALSE, noScreenDevice = TRUE, nCores = 2, verbose = FALSE) referenceWmat <- get(load("1wmatCase003.RData")) actualWmat <- loadActual() cleanUp() rslt <- all.equal(referenceWmat, actualWmat) rm(referenceWmat, actualWmat) return(rslt) } testCase4 <- function() { jacobiTheta_1 <- function(z, tau = 1i, nIter = 30) { k <- c(1:nIter) q <- exp(pi*1i*tau) g <- exp(2*pi*1i*z) return(1 + sum(q^(k^2)*g^k + q^(k^2)*(1/g)^k)) } cleanUp() phasePortrait(jacobiTheta_1, moreArgs = list(tau = 1i/2 - 1/4, nIter = 30), xlim = c(-2, 2), ylim = c(-2, 2), invertFlip = FALSE, blockSizePx = 2250000, res = 150, tempDir = NULL, deleteTempFiles = FALSE, noScreenDevice = TRUE, nCores = 2, verbose = FALSE, autoDereg = TRUE) referenceWmat <- get(load("1wmatCase004.RData")) actualWmat <- loadActual() cleanUp() rslt <- all.equal(referenceWmat, actualWmat) rm(referenceWmat, actualWmat) return(rslt) } testCase5 <- function() { cleanUp() phasePortraitBw("(2-z)^2*(-1i+z)^3*(4-3i-z)/((2+2i+z)^4)", xlim = c(-4, 4), ylim = c(-4, 4), invertFlip = FALSE, blockSizePx = 2250000, res = 150, tempDir = NULL, deleteTempFiles = FALSE, noScreenDevice = TRUE, nCores = 2, verbose = FALSE) referenceWmat <- get(load("1wmatCase005.RData")) actualWmat <- loadActual() cleanUp() rslt <- all.equal(referenceWmat, actualWmat) rm(referenceWmat, actualWmat) return(rslt) } testCase6 <- function() { cleanUp() phasePortraitBw("(2-z)^2*(-1i+z)^3*(4-3i-z)/((2+2i+z)^4)", xlim = c(-4, 4), ylim = c(-4, 4), invertFlip = TRUE, blockSizePx = 2250000, res = 150, tempDir = NULL, deleteTempFiles = FALSE, noScreenDevice = TRUE, nCores = 2, verbose = FALSE) referenceWmat <- get(load("1wmatCase006.RData")) actualWmat <- loadActual() cleanUp() rslt <- all.equal(referenceWmat, actualWmat) rm(referenceWmat, actualWmat) return(rslt) } testCase7 <- function() { jacobiTheta_1 <- function(z, tau = 1i, nIter = 30) { k <- c(1:nIter) q <- exp(pi*1i*tau) g <- exp(2*pi*1i*z) return(1 + sum(q^(k^2)*g^k + q^(k^2)*(1/g)^k)) } cleanUp() phasePortraitBw(jacobiTheta_1, xlim = c(-2, 2), ylim = c(-2, 2), invertFlip = FALSE, blockSizePx = 2250000, res = 150, tempDir = NULL, deleteTempFiles = FALSE, noScreenDevice = TRUE, nCores = 2, verbose = FALSE) referenceWmat <- get(load("1wmatCase007.RData")) actualWmat <- loadActual() cleanUp() rslt <- all.equal(referenceWmat, actualWmat) rm(referenceWmat, actualWmat) return(rslt) } testCase8 <- function() { jacobiTheta_1 <- function(z, tau = 1i, nIter = 30) { k <- c(1:nIter) q <- exp(pi*1i*tau) g <- exp(2*pi*1i*z) return(1 + sum(q^(k^2)*g^k + q^(k^2)*(1/g)^k)) } cleanUp() phasePortrait(jacobiTheta_1, moreArgs = list(tau = 1i/2 - 1/4, nIter = 30), xlim = c(-2, 2), ylim = c(-2, 2), invertFlip = FALSE, blockSizePx = 2250000, res = 150, tempDir = NULL, deleteTempFiles = FALSE, noScreenDevice = TRUE, nCores = 2, verbose = FALSE, autoDereg = TRUE) referenceWmat <- get(load("1wmatCase008.RData")) actualWmat <- loadActual() cleanUp() rslt <- all.equal(referenceWmat, actualWmat) rm(referenceWmat, actualWmat) return(rslt) } test_that("phasePortrait produces correct numerical output", { expect_true(testCase1()) expect_true(testCase2()) expect_true(testCase3()) expect_true(testCase4()) }) test_that("phasePortraitBw produces correct numerical output", { expect_true(testCase5()) expect_true(testCase6()) expect_true(testCase7()) expect_true(testCase8()) })
pool_propdiff_ac <- function(object, conf.level=0.95, dfcom=NULL) { if(all(class(object)!="mistats")) stop("object must be of class 'mistats'") if(!is.list(object$statistics)) stop("object must be a list") ra <- data.frame(do.call("rbind", object$statistics)) colnames(ra) <- c("est", "se", "dfcom") if(is_empty(dfcom)){ dfcom <- ra$dfcom[1] } else { dfcom <- dfcom } pool_est <- pool_scalar_RR(est=ra$est, se=ra$se, logit_trans=FALSE, conf.level = conf.level, dfcom=dfcom) low <- pool_est$pool_est - pool_est$t * pool_est$pool_se high <- pool_est$pool_est + pool_est$t * pool_est$pool_se output <- matrix(c(pool_est$pool_est, low, high), 1, 3) colnames(output) <- c("Prop diff AC", c(paste(conf.level*100, "CI low"), paste(conf.level*100, "CI high"))) class(output) <- 'mipool' return(output) }
geo_amenity <- function(bbox, amenity, lat = "lat", long = "lon", limit = 1, full_results = FALSE, return_addresses = TRUE, verbose = FALSE, custom_query = list(), strict = FALSE) { if (limit > 50) { message(paste( "Nominatim provides 50 results as a maximum. ", "Your query may be incomplete" )) limit <- min(50, limit) } all_res <- NULL for (i in seq_len(length(amenity))) { if (amenity[i] %in% all_res$query) { if (verbose) { message( amenity[i], " already cached.\n", "Skipping download." ) } res_single <- dplyr::filter( all_res, .data$query == amenity[i], .data$nmlite_first == 1 ) res_single$nmlite_first <- 0 } else { res_single <- geo_amenity_single( bbox = bbox, amenity = amenity[i], lat, long, limit, full_results, return_addresses, verbose, custom_query ) res_single <- dplyr::bind_cols(res_single, nmlite_first = 1) } all_res <- dplyr::bind_rows(all_res, res_single) } all_res <- dplyr::select(all_res, -.data$nmlite_first) if (strict) { strict <- all_res[lat] >= bbox[2] & all_res[lat] <= bbox[4] & all_res[long] >= bbox[1] & all_res[long] <= bbox[3] strict <- as.logical(strict) all_res <- all_res[strict, ] } return(all_res) } geo_amenity_single <- function(bbox, amenity, lat = "lat", long = "lon", limit = 1, full_results = TRUE, return_addresses = TRUE, verbose = FALSE, custom_query = list()) { bbox_txt <- paste0(bbox, collapse = ",") api <- "https://nominatim.openstreetmap.org/search?" url <- paste0( api, "viewbox=", bbox_txt, "&q=[", amenity, "]&format=json&limit=", limit ) if (full_results) { url <- paste0(url, "&addressdetails=1") } if (length(custom_query) > 0) { opts <- NULL for (i in seq_len(length(custom_query))) { nlist <- names(custom_query)[i] val <- paste0(custom_query[[i]], collapse = ",") opts <- paste0(opts, "&", nlist, "=", val) } url <- paste0(url, opts) } if (!"bounded" %in% names(custom_query)) { url <- paste0(url, "&bounded=1") } json <- tempfile(fileext = ".json") res <- api_call(url, json, isFALSE(verbose)) if (isFALSE(res)) { message(url, " not reachable.") result_out <- tibble::tibble(query = amenity, a = NA, b = NA) names(result_out) <- c("query", lat, long) return(invisible(result_out)) } result <- tibble::as_tibble(jsonlite::fromJSON(json, flatten = TRUE)) if (nrow(result) > 0) { result$lat <- as.double(result$lat) result$lon <- as.double(result$lon) } nmes <- names(result) nmes[nmes == "lat"] <- lat nmes[nmes == "lon"] <- long names(result) <- nmes if (nrow(result) == 0) { message("No results for query ", amenity) result_out <- tibble::tibble(query = amenity, a = NA, b = NA) names(result_out) <- c("query", lat, long) return(invisible(result_out)) } names(result) <- gsub("address.", "", names(result)) names(result) <- gsub("namedetails.", "", names(result)) names(result) <- gsub("display_name", "address", names(result)) result_out <- tibble::tibble(query = amenity) result_out <- cbind(result_out, result[lat], result[long]) if (return_addresses || full_results) { disp_name <- result["address"] result_out <- cbind(result_out, disp_name) } if (full_results) { rest_cols <- result[, !names(result) %in% c(long, lat, "address")] result_out <- cbind(result_out, rest_cols) } result_out <- tibble::as_tibble(result_out) return(result_out) }
seqeformat <- function(data,from="TSE",to="seqe", id=NULL,timestamp=NULL,event=NULL, var=NULL,start=1,alphabet=NULL,states=NULL, labels=NULL,weighted=TRUE, weights=NULL,tevent="transition", obs.intervals=NULL) { if (!is.null(obs.intervals)) { if (id!="id"&is.character(id)) { id <- which(colnames(obs.intervals)==id) colnames(obs.intervals)[id] <- "id" } if (sum(c("id","time.start","time.end")%in% colnames(obs.intervals))!=3) { warning(" [!] Invalid observation interval declaration. Ignore.") obs.intervals <- NULL } } if (from=="TSE") { if (id!="id"&is.character(id)) { id <- which(colnames(data)==id) colnames(data)[id] <- "id" } data$id <- factor(data$id) if (timestamp!="timestamp"&is.character(timestamp)) { timestamp <- which(colnames(data)==timestamp) colnames(data)[timestamp] <- "timestamp" } if (event!="event"&is.character(event)) { event <- which(colnames(data)==event) colnames(data)[event] <- "event" } data$event <- factor(data$event) } if ((from=="TSE")&(to=="TSE")) { if (!is.factor(data$id)) { data$id <- factor(data$id) } if (!is.factor(data$event)) { data$event <- factor(data$event) } data <- data[order(data$id,data$timestamp,data$event),] rownames(data) <- 1:nrow(data) ret <- data } if ((from=="TSE")&(to=="seqe")) { ret <- seqecreate(data=data,id=id,timestamp=timestamp, event=event,weighted=weighted) } if ((from=="TSE")&(to=="both")) { if (!is.factor(data$id)) { data$id <- factor(data$id) } if (!is.factor(data$event)) { data$event <- factor(data$event) } data <- data[order(data$id,data$timestamp,data$event),] rownames(data) <- 1:nrow(data) ret <- list() ret$TSE <- data ret$eseq <- seqecreate(data=data,id=id,timestamp=timestamp, event=event,weighted=weighted) } if (from=="STS") { if (is.null(id)) {seqid <- 1:nrow(data)} else {seqid <- data[,id]} data <- data[order(seqid),] seqid <- sort(seqid) if (!inherits(data,"stslist")) { if (is.null(states)&!is.null(labels)) { states <- LETTERS[1:length(labels)] seq <- seqdef(data=data,var=var,informat="STS", alphabet=alphabet,states=states, id=seqid,labels=labels,weights=weights, start=start) } if (is.null(states)) { seq <- seqdef(data=data,var=var,informat="STS", alphabet=alphabet, id=seqid,labels=labels,weights=weights, start=start) } if (!exists("seq")) { seq <- seqdef(data=data,var=var,informat="STS", alphabet=alphabet,states=states, id=seqid,labels=labels,weights=weights, start=start) } } else { seq <- data } } if ((from=="STS")&(to=="seqe")) { ret <- seqecreate(data=seq,weighted=weighted, tevent=tevent) } if ((from=="STS")&(to=="TSE")) { m <- seqetm(seq=seq,method=tevent) ret <- seqformat(seq, from = "STS", to = "TSE", tevent = m) names(ret)[2] <- "timestamp" ret$timestamp <- ret$timestamp+start ret$id <- factor(rownames(seq)[ret$id],levels=rownames(seq)) if (tevent=="period") { which.end <- grep(pattern="end",x=levels(ret$event)) which.start <- which(!1:nlevels(ret$event)%in%which.end) ind <- rep(c(1,1+length(which.start)), length(which.start))+ rep(seq(0,length(which.start)-1),each=2) order <- c(which.start,which.end)[ind] ret$event <- factor(ret$event,levels=levels(ret$event)[order]) } if (!inherits(data,"stslist")) { lockedvars <- which(colnames(data)%in%c("id","event","timestamp")) cov <- seq(1,ncol(data))[-var] if (length(cov)>1) { ret[,colnames(data)[cov]] <- data[ret$id,cov] } } } if ((from=="STS")&(to=="both")) { ret <- list() m <- seqetm(seq=seq,method=tevent) ret$TSE <- seqformat(seq, from = "STS", to = "TSE", tevent = m) names(ret$TSE)[2] <- "timestamp" ret$TSE$timestamp <- ret$TSE$timestamp+start ret$TSE$id <- factor(rownames(seq)[ret$TSE$id],levels=rownames(seq)) ret$eseq <- seqecreate(data=seq,weighted=weighted,tevent=tevent) if (tevent=="period") { which.end <- grep(pattern="end",x=levels(ret$TSE$event)) which.start <- which(!1:nlevels(ret$TSE$event)%in%which.end) ind <- rep(c(1,1+length(which.start)), length(which.start))+ rep(seq(0,length(which.start)-1),each=2) order <- c(which.start,which.end)[ind] ret$TSE$event <- factor(ret$TSE$event, levels=levels(ret$TSE$event)[order]) } if (!inherits(data,"stslist")) { lockedvars <- which(colnames(data)%in%c("id","event","timestamp")) cov <- seq(1,ncol(data))[-c(var,lockedvars)] if (length(cov)>1) { ret$TSE[,colnames(data)[cov]] <- data[ret$TSE$id,cov] } } } if ((from=="seqe")&(to=="TSE")| (from=="seqe")&(to=="both")) { seqe.string <- as.character(data) split.seqe.string <- function(x){unlist(strsplit(x=x,split="-"))} seqe.decomp <- lapply(X=seqe.string,FUN=split.seqe.string) event <- vector("list",length(seqe.decomp)) gaps <- vector("list",length(seqe.decomp)) time <- vector("list",length(seqe.decomp)) timerange <- vector("list",length(seqe.decomp)) for (i in 1:length(seqe.decomp)) { if (substr(x=seqe.string[i],start=1,stop=1)=="(") { seqe.decomp[[i]] <- c("0",seqe.decomp[[i]]) } event[[i]] <- seqe.decomp[[i]][seq(from=2,to=length(seqe.decomp[[i]]),by=2)] event[[i]] <- sub(pattern="(",replacement="", x=event[[i]],fixed=TRUE) event[[i]] <- sub(pattern=")",replacement="", x=event[[i]],fixed=TRUE) gaps[[i]] <- as.numeric(seqe.decomp[[i]][seq(from=1, to=length(seqe.decomp[[i]]), by=2)]) timerange[[i]] <- c(gaps[[i]][1],sum(gaps[[i]])) if (length(gaps[[i]])>length(event[[i]])) { gaps[[i]] <- gaps[[i]][-length(gaps[[i]])] } time[[i]] <- cumsum(gaps[[i]]) extract.simultanevents <- function(x){strsplit(x=x,split=",")} event[[i]] <- sapply(X=event[[i]],FUN=extract.simultanevents, USE.NAMES=FALSE) } f.id <- function(x){length(unlist(x))} f.time <- function(x){unlist(lapply(X=x,FUN=length))} ret <- data.frame(id=factor(rep(1:length(event), unlist(lapply(X=event,FUN=f.id)))), timestamp=rep(unlist(time), unlist(lapply(X=event,FUN=f.time))), event=factor(unlist(event))) } if ((from=="seqe")&(to=="both")) { ret <- list(TSE=ret, seqe=data) } if ((!is.null(obs.intervals))&(to=="both")) { obs.intervals <- obs.intervals[obs.intervals$id%in% levels(ret$TSE$id),] obs.intervals$id <- factor(obs.intervals$id, levels=levels(ret$TSE$id)) ret$obs.intervals <- obs.intervals[order(obs.intervals$id),] } if (to=="both") { class(ret) <- c("seqelist","list") } return(ret) }
fit_BBMV_multiple_clades_different_V_different_sig2 <- function(trees,traits,bounds,a=NULL,b=NULL,c=NULL,Npts=50,method='Nelder-Mead',init.optim=NULL){ if (length(trees)!=length(traits)){stop('The list of trees and the list of traits differ in length.')} if (length(trees)==1){stop('There is only one tree and trait vector: use the function lnl_BBMV instead')} lnls=ks=rep(NA,length(trees)) fits=list() for (i in 1:length(trees)){ lnl_temp=lnL_BBMV(trees[[i]],traits[[i]],bounds=bounds,a=a,b=b,c=c,Npts=Npts) fit_temp=find.mle_FPK(model=lnl_temp,method=method,init.optim=init.optim) fits[[i]]=fit_temp ; names(fits)[i]=paste('fit_clade_',i,sep='') lnls[i]=fit_temp$lnL ; ks[i]=fit_temp$k } return(list(lnL=sum(lnls),aic=2*(sum(ks)-sum(lnls)),k=sum(ks),fits=fits)) }
source("ESEUR_config.r") library("survival") pal_col=rainbow(2) API=read.csv(paste0(ESEUR_dir, "survival/ETP/Survival-ETP-API.csv.xz"), header=FALSE, as.is=TRUE) nonAPI=read.csv(paste0(ESEUR_dir, "survival/ETP/Survival-ETP-nonAPI.csv.xz"), header=FALSE, as.is=TRUE) gen_dead_list=function(cohort, API_status, start_year, end_year) { dead_list=NULL for (y in 1:7) { new_row=data.frame(start_year, end_year[y], API_status, 0) names(new_row)=c("year_start", "year_end", "API", "survived") dead_list=rbind(dead_list, new_row[rep(1, cohort[y]), ]) } new_row=data.frame(start_year, 2010, API_status, 1) names(new_row)=c("year_start", "year_end", "API", "survived") dead_list=rbind(dead_list, new_row[rep(1, cohort[8]), ]) return(dead_list) } gen_surv_list=function(app_info, API_status) { end_year=app_info[1, ] app_status=NULL for (y in 2:nrow(app_info)) app_status=rbind(app_status, gen_dead_list(app_info[y, ], API_status, app_info[1, y-1]-1, end_year)) return(app_status) } app_API=gen_surv_list(API, 1) app_nonAPI=gen_surv_list(nonAPI, 0) all_api=rbind(app_API, app_nonAPI) write.csv(all_api, paste0(ESEUR_dir, "survival/ETP/ETP-all-rel.csv.xz"), row.names=FALSE) write.csv(all_api, paste0(ESEUR_dir, "survival/ETP/ETP-all-bld.csv.xz"), row.names=FALSE) api_surv=Surv(app_API$year_end-app_API$year_start, event=app_API$survived == 0, type="right") api_mod=survfit(api_surv ~ 1) nonapi_surv=Surv(app_nonAPI$year_end-app_nonAPI$year_start, event=app_nonAPI$survived == 0, type="right") nonapi_mod=survfit(nonapi_surv ~ 1) plot(api_mod, xlim=c(0,7), xlab="Years", col=pal_col[1]) lines(nonapi_mod, col=pal_col[2]) api_diff=survdiff(Surv(year_end-year_start, event=survived == 0, type="right") ~ API, data=all_api)
if(FALSE) invisible( "~/R/D/r-devel/R/src/nmath/qpois.c" ) doSearch_poi <- function(y, z, p, lambda, incr, lower.tail=TRUE, log.p=FALSE, trace = 0) { formatI <- function(x) format(x, scientific = 16) if(y < 0) y <- 0 iStr <- if(incr != 1) sprintf(" incr = %s", formatI(incr)) else "" left <- if(lower.tail) (z >= p) else (z < p) it <- 0L if(left) { if(trace) cat(sprintf("doSearch() to the left (ppois(y=%g, *) = z = %g %s p=%g):%s\n", y,z, if(lower.tail) ">=" else "<", p, iStr)) repeat { it <- it + 1L if(y > 0) newz <- ppois(y - incr, lambda, lower.tail=lower.tail, log.p=log.p) else if(y < 0) y <- 0 if(y == 0 || is.na(newz) || if(lower.tail) (newz < p) else (newz >= p)) { if(trace >= 2) cat(sprintf( " new y=%.15g, ppois(y-incr,*) %s p; ==> doSearch() returns prev z=%g after %d iter.\n", y, if(lower.tail) "<" else ">=", z, it)) return(list(y=y, poi.y = z, iter = it)) } y <- max(0, y - incr) z <- newz } } else { if(trace) cat(sprintf("doSearch() to the right (ppois(y=%g, *) = z = %g %s p=%g):%s\n", y,z, if(lower.tail) "<" else ">=", p, iStr)) repeat { it <- it + 1L y <- y + incr z <- ppois(y, lambda, lower.tail=lower.tail, log.p=log.p) if(is.na(z) || if(lower.tail) z >= p else z < p) { if(trace >= 2) cat(sprintf( " new y=%.15g, z=%g = ppois(y,*) %s p ==> doSearch() returns after %d iter.\n", y, z, if(lower.tail) ">=" else "<", it)) return(list(y=y, poi.y = z, iter = it)) } } } } qpoisR1 <- function(p, lambda, lower.tail=TRUE, log.p=FALSE, yLarge = 4096, incF = 1/64, iShrink = 8, relTol = 1e-15, pfEps.n = 8, pfEps.L = 2, fpf = 4, trace = 0) { stopifnot(length(p) == 1, length(lambda) == 1) if (is.na(p) || is.na(lambda)) return(p + lambda) if (lambda == 0) return(0) if (lambda < 0) { warning("returning NaN because of lambda < 0 is out of range") return(NaN) } if(log.p) { if(p == -Inf) return(if(lower.tail) Inf else 0) if(p == 0 ) return(if(lower.tail) 0 else Inf) if(p > 0) { warning("p > 0 -> returning NaN"); return(NaN) } } else { if (p == 0 || p == 1) return(if(lower.tail) p else 1-p) if(p < 0 || p > 1) { warning("p out of [0,1] -> returning NaN"); return(NaN) } } mu <- lambda sigma <- sqrt(lambda); gamma <- 1.0/sigma; if(trace) { cat(sprintf("qpois(p=%.12g, lambda=%.15g, l.t.=%d, log=%d):\n mu=%g, sigma=%g, gamma=%g;\n", p, lambda, lower.tail, log.p, mu, sigma, gamma)) } if(!lower.tail || log.p) { p_n <- .DT_qIv(p, lower.tail, log.p) if (p_n == 0) message("p_n=0: NO LONGER return(0)\n") if (p_n == 1) message("p_n=1: NO LONGER return(Inf)\n") } else p_n <- p if (p_n + 1.01*.Machine$double.eps >= 1.) { if(trace) cat("p__n + 1.01 * c_eps >= 1 ; (1-p = ",format(1-p), ") ==> NOW LONGER returning Inf (Hack -- FIXME ?)\n", sep="") } z <- qnorm(p, lower.tail=lower.tail, log.p=log.p) y <- round(mu + sigma * (z + gamma * (z*z - 1) / 6)) if(trace) cat(sprintf("Cornish-Fisher: initial z=%g, y=%g; ", z,y)) if(y < 0) y <- 0.; z <- ppois(y, lambda, lower.tail=lower.tail, log.p=log.p) if(trace) cat(sprintf(" then: y=%g, z= ppois(y,*) = %g\n", y,z)) c.eps <- .Machine$double.eps if(log.p) { e <- pfEps.L * c.eps if(lower.tail && p > -.Machine$x.max) p <- p * (1 + e) else if(p < - .Machine$x.min) p <- p * (1 - e) } else { e <- pfEps.n * c.eps if(lower.tail) p <- p * (1 - e) else if(1 - p > fpf*e) p <- p * (1 + e) } if(y < yLarge) { doSearch_poi(y=y, z=z, p=p, lambda=lambda, incr = 1, lower.tail=lower.tail, log.p=log.p, trace=trace)$ y } else { incr <- floor(y * incF) if(trace) cat(sprintf("large y: --> use larger increments than 1: incr=%s\n", format(incr, scientific=16))) qIt <- totIt <- 0L repeat { oldincr <- incr yz <- doSearch_poi(y=y, z=z, p=p, lambda=lambda, incr = incr, lower.tail=lower.tail, log.p=log.p, trace=trace) y <- yz$y z <- yz$poi.y totIt <- totIt + yz$iter qIt <- qIt + 1L incr <- max(1, floor(incr/iShrink)); if(oldincr <= 1 || incr <= y * relTol) break } if(trace) cat(sprintf(" \\--> %s; needed %d doSearch() calls, total %d iterations\n", if(oldincr == 1) "oldincr=1" else sprintf("oldincr = %s, incr = %s < %.11g = y * relTol", format(oldincr, scientific = 9), format(incr, scientific = 9), y*relTol), qIt, totIt)) y } } qpoisR <- Vectorize(qpoisR1, c("p", "lambda"))
numericindex <- function (x, i, n = names (x)){ if (is.character (i)) match (i, n) else if (is.logical (i)) seq_along (x) [i] else if (is.numeric (i)) i else stop ("i must be numeric, logical, or character") } .test (numericindex) <- function (){ checkEquals (numericindex (v, c("b", "a", "x")), c (2L, 1L, NA)) checkEquals (numericindex (v, c(TRUE, FALSE, TRUE)), c(1L, 3L)) checkEquals (numericindex (v, TRUE), 1 : 3) checkEquals (numericindex (v, FALSE), integer (0L)) checkEquals (numericindex (v, c(TRUE, FALSE)), c(1L, 3L)) checkEquals (numericindex (v, 1L), 1L) }
combine.date.and.time <- function(date, time){ if (is.list(time)) datetime <- strptime(paste(as.character(date), " ", time$hrs, ":", time$mins, ":", time$secs, sep=""), format="%Y-%m-%d %H:%M:%S", tz="GMT") else datetime <- strptime(paste(as.character(date), " ", time, sep=""), format="%Y-%m-%d %H:%M:%S", tz="GMT") return(datetime) }
ccmean <- function(x, L = max(x$surv), addInterPol = 0) { if( !("id" %in% names(x)) | !("cost" %in% names(x)) | !("delta" %in% names(x)) | !("surv" %in% names(x)) ) stop('Rename colums to: "id", "cost", "delta" and "surv"') maxsurv <- max(x$surv) if( ("start" %in% names(x)) & ("stop" %in% names(x)) ) { x$delta[x$surv >= L] <- 1 x$surv <- pmin(x$surv, L) x <- subset(x, x$start <= L) x <- x %>% mutate(cost = ifelse(.data$stop > .data$surv, .data$cost * ((.data$surv - .data$start + addInterPol)/(.data$stop - .data$start + addInterPol)), .data$cost), stop = pmin(.data$stop, L)) %>% arrange(.data$surv, .data$delta) xf <- x %>% group_by(.data$id) %>% summarize(cost = sum(.data$cost, na.rm = TRUE), delta = last(.data$delta), surv = first(.data$surv)) } else if (length(x$id) > length(unique(x$id))) { stop('No cost history but non-unique id tags') } else { message('No cost history found, can be set by: "start" and "stop"') xf <- x %>% mutate(cost = ifelse(.data$surv > L, .data$cost * ((L + addInterPol)/(.data$surv + addInterPol)), .data$cost), delta = as.numeric(.data$surv >= L | .data$delta == 1), surv = pmin(.data$surv, L)) %>% arrange(.data$surv, .data$delta) } AS <- mean(xf$cost) AS_var <- var(xf$cost) / nrow(xf) AS_full <- c(AS, AS_var, sqrt(AS_var), AS - 1.96 * sqrt(AS_var), AS + 1.96 * sqrt(AS_var)) CC <- mean(xf$cost[xf$delta == 1]) CC_var <- var(xf$cost[xf$delta == 1]) / sum(xf$delta) CC_full <- c(CC, CC_var, sqrt(CC_var), CC - 1.96 * sqrt(CC_var), CC + 1.96 * sqrt(CC_var)) sc <- summary(survfit(Surv(xf$surv, xf$delta == 0) ~ 1), times = xf$surv) sct <- data.frame(sc$time, sc$surv) sct$sc.surv[sct$sc.surv == 0] <- min(sct$sc.surv[sct$sc.surv != 0]) sct <- unique(sct) s <- summary(survfit(Surv(xf$surv, xf$delta) ~ 1), times = xf$surv) st <- data.frame(s$time, s$surv) st <- unique(st) t <- merge(xf, sct, by.x = "surv", by.y = "sc.time", all.x = T) t <- merge(t, st, by.x = "surv", by.y = "s.time", all.x = T) BT <- mean((t$cost * t$delta) / t$sc.surv) n <- length(t$cost) t$GA <- rep(0, n) t$GB <- rep(0, n) for(i in 1:n){ if(t$delta[i] == 1) next t2 <- subset(t, surv >= t$surv[i]) t$GA[i] <- (1 / (n*t$s.surv[i])) * sum(t2$delta * t2$cost^2 / t2$sc.surv) t$GB[i] <- (1 / (n*t$s.surv[i])) * sum(t2$delta * t2$cost / t2$sc.surv) } BT_var <- 1 / n * (mean(t$delta * (t$cost-BT)^2 / t$sc.surv) + mean(((1 - t$delta) / t$sc.surv^2 ) * (t$GA - t$GB^2))) BT_full <- c(BT, BT_var, sqrt(BT_var), BT - 1.96 * sqrt(BT_var), BT + 1.96 * sqrt(BT_var)) if( ("start" %in% names(x)) & ("stop" %in% names(x)) ) { runCostMatrix <- matrix(0, nrow = nrow(t), ncol = nrow(t)) t$mcostlsurv <- 0 t$mcostlsurvSq <- 0 setDTthreads(1) surv <- NULL start <- NULL cost <- NULL for(i in 1:nrow(t)){ if(t$delta[i] == 1){ next } else { DT <- data.table::as.data.table(x)[start <= t$surv[i]] DT <- DT[,cost := ifelse(stop > t$surv[i], (cost/(stop - start + addInterPol)) * (t$surv[i] - start + addInterPol), cost)] t_data2 <- DT[, list(cost = sum(cost), surv = first(surv)), by = list(id)] idIndex <- t$id %in% t_data2$id ids <- t$id[idIndex] runCost <- t_data2$cost names(runCost) <- t_data2$id runCostMatrix[idIndex, i] <- runCost[as.character(ids)] t$mcostlsurv[i] <- mean(t_data2$cost[t_data2$surv >= t$surv[i]]) t$mcostlsurvSq[i] <- mean(t_data2$cost[t_data2$surv >= t$surv[i]]^2) } } ZT <- BT + mean(((1 - t$delta) * ((t$cost - t$mcostlsurv) / t$sc.surv)), na.rm = TRUE) n <- nrow(t) t$gm <- rep(0,n) t$gmm <- rep(0,n) for(i in 1:n){ if(t$delta[i] == 1) next t$gm[i] <- (1 / (n * t$s.surv[i])) * sum(as.numeric(t$surv >= t$surv[i]) * t$delta * runCostMatrix[,i] / t$sc.surv) t$gmm[i] <- (1 / (n * t$s.surv[i])) * sum(as.numeric(t$surv >= t$surv[i]) * t$delta * t$cost * runCostMatrix[,i] / t$sc.surv) } ZT_var <- BT_var - (2 / n^2) * sum(((1 - t$delta) / t$sc.surv^2) * (t$gmm - t$GB * t$gm)) + (1 / n^2) * sum(((1 - t$delta) / t$sc.surv^2) * (t$mcostlsurvSq - t$mcostlsurv^2)) ZT_full <- c(ZT, ZT_var, sqrt(ZT_var), ZT - 1.96 * sqrt(ZT_var), ZT + 1.96 * sqrt(ZT_var)) } else { ZT <- NA ZT_full <- rep(NA,5) } svl1 <- survival::survfit(Surv(xf$surv, xf$delta == 1) ~ 1) svl2 <- summary(svl1)[["table"]] results <- list(Text = c("ccostr - Estimates of mean cost with censored data"), Data = data.frame("Observations" = nrow(x), "Individuals" = nrow(xf), "FullyObserved" = sum(xf$delta == 1), "Limits" = L, "TotalTime" = sum(xf$surv), "MaxSurvival" = maxsurv, row.names = "N"), First = data.frame(AS, CC, BT, ZT), Estimates = data.frame("AS" = AS_full, "CC" = CC_full, "BT" = BT_full, "ZT" = ZT_full, row.names = c("Estimate", "Variance", "SE", "0.95LCL", "0.95UCL")), Survival = svl2 ) class(results) <- "ccobject" results }
context("Test outbreaker config") test_that("test: settings are processed fine", { data(toy_outbreak_short) x <- toy_outbreak_short dt_cases <- x$cases dt_cases <- dt_cases[order(dt_cases$Date), ] dt_regions <- x$dt_regions all_dist <- geosphere::distGeo(matrix(c(rep(dt_regions$long, nrow(dt_regions)), rep(dt_regions$lat, nrow(dt_regions))), ncol = 2), matrix(c(rep(dt_regions$long, each = nrow(dt_regions)), rep(dt_regions$lat, each = nrow(dt_regions))), ncol = 2)) dist_mat <- matrix(all_dist/1000, nrow = nrow(dt_regions)) pop_vect <- dt_regions$population names(pop_vect) <- rownames(dist_mat) <- colnames(dist_mat) <- dt_regions$region w <- dnorm(x = 1:100, mean = 11.7, sd = 2.0) f <- dgamma(x = 1:100, scale = 0.43, shape = 27) data <- outbreaker_data(dates = dt_cases$Date, age_group = dt_cases$age_group, region = dt_cases$Cens_tract, population = pop_vect, distance = dist_mat, a_dens = x$age_contact, f_dens = f, w_dens = w) expect_is(create_config(), "list") expect_is(create_config(data = data), "list") expect_equal(create_config(data = data, init_tree = c(NA, rep(1, data$N - 1)))$init_alpha, create_config(data = data, init_tree = c(NA, rep(1, data$N - 1)))$init_tree) expect_error(create_config(data = data, init_tree = rep(1, data$N)), "There should be an ancestor in the initial tree") expect_equal(create_config(data = data, init_kappa = c(NA, rep(1, data$N - 1)))$init_kappa, c(NA, rep(1, data$N - 1))) expect_error(create_config(fakearg = 2), "Additional invalid options: fakearg") expect_error(create_config(spatial_method = "invalid"), "invalid value for spatial_method, spatial_method is either exponential, or power-law.") expect_error(create_config(gamma = "1"), "gamma is not numeric") expect_error(create_config(gamma = NA), "gamma is NA") expect_error(create_config(gamma = -1), "gamma is below 0") expect_error(create_config(delta = -1), "delta is below 0") expect_error(create_config(delta = "1"), "delta is not numeric") expect_error(create_config(delta = NA), "delta is NA") expect_error(create_config(init_kappa = 0), "init_kappa has values smaller than 1") expect_error(create_config(init_kappa = "1"), "init_kappa is not a numeric value") expect_error(create_config(init_pi = -1), "init_pi is negative") expect_error(create_config(init_pi = 2), "init_pi is greater than 1") expect_error(create_config(init_pi = "1"), "init_pi is not a numeric value") expect_error(create_config(init_pi = Inf), "init_pi is infinite or NA") expect_error(create_config(init_a = -1), "init_a is negative") expect_error(create_config(init_a = Inf), "init_a is infinite or NA") expect_error(create_config(init_a = "1"), "init_a is not a numeric value") expect_error(create_config(init_b = -1), "init_b is negative") expect_error(create_config(init_b = Inf), "init_b is infinite or NA") expect_error(create_config(init_b = "1"), "init_b is not a numeric value") expect_error(create_config(move_alpha = "TRUE"), "move_alpha is not a logical") expect_error(create_config(move_alpha = NA), "move_alpha is NA") expect_error(create_config(move_swap_cases = "TRUE"), "move_swap_cases is not a logical") expect_error(create_config(move_swap_cases = NA), "move_swap_cases is NA") expect_error(create_config(move_t_inf = "TRUE"), "move_t_inf is not a logical") expect_error(create_config(move_t_inf = NA), "move_t_inf has NA") expect_error(create_config(move_kappa = "TRUE"), "move_kappa is not a logical") expect_error(create_config(move_kappa = NA), "move_kappa has NA") expect_error(create_config(move_pi = "TRUE"), "move_pi is not a logical") expect_error(create_config(move_pi = NA), "move_pi is NA") expect_error(create_config(move_pi = "TRUE"), "move_pi is not a logical") expect_error(create_config(move_pi = NA), "move_pi is NA") expect_error(create_config(move_a = "TRUE"), "move_a is not a logical") expect_error(create_config(move_a = NA), "move_a is NA") expect_error(create_config(move_b = "TRUE"), "move_b is not a logical") expect_error(create_config(move_b = NA), "move_b is NA") expect_warning(create_config(init_kappa = 8), "values of init_kappa greater than max_kappa have been set to max_kappa") expect_error(create_config(data = data, init_tree = c(-NA, 1)), "length of init_alpha or init_tree incorrect") expect_warning(create_config(move_a = TRUE, max_kappa = 10), "If spatial kernel parameters are estimated, max_kappa is set to 2") expect_error(create_config(n_iter = 0), "n_iter is smaller than 2") expect_error(create_config(sample_every = 0), "sample_every is smaller than 1") }) test_that("test: initial tree does not mix genotypes", { data(toy_outbreak_short) x <- toy_outbreak_short dt_cases <- x$cases dt_cases <- dt_cases[order(dt_cases$Date), ] dt_regions <- x$dt_regions all_dist <- geosphere::distGeo(matrix(c(rep(dt_regions$long, nrow(dt_regions)), rep(dt_regions$lat, nrow(dt_regions))), ncol = 2), matrix(c(rep(dt_regions$long, each = nrow(dt_regions)), rep(dt_regions$lat, each = nrow(dt_regions))), ncol = 2)) dist_mat <- matrix(all_dist/1000, nrow = nrow(dt_regions)) pop_vect <- dt_regions$population names(pop_vect) <- rownames(dist_mat) <- colnames(dist_mat) <- dt_regions$region w <- dnorm(x = 1:100, mean = 11.7, sd = 2.0) f <- dgamma(x = 1:100, scale = 0.43, shape = 27) data <- outbreaker_data(dates = dt_cases$Date, age_group = dt_cases$age_group, region = dt_cases$Cens_tract, population = pop_vect, distance = dist_mat, a_dens = x$age_contact, f_dens = f, w_dens = w, genotype = dt_cases$Genotype) config <- create_config(data = data) tree_ances <- config$init_alpha while(any(!is.na(tree_ances[tree_ances]))) tree_ances[!is.na(tree_ances[tree_ances])] <- tree_ances[tree_ances][!is.na(tree_ances[tree_ances])] tree_ances[is.na(tree_ances)] <- which(is.na(tree_ances)) genotype_tree <- numeric(length(unique(tree_ances))) nb_gen_rep_per_tree <- sapply(unique(tree_ances), function(X) { gens <- unique(data$genotype[which(tree_ances == X)]) return(length(gens[gens != "Not attributed"])) }) expect_true(all(nb_gen_rep_per_tree < 2)) expect_error(create_config(data = data, init_tree = c(NA, rep(1, data$N - 1))), "There should be one reported genotype per tree at most.") })
context("rptProportion") suppressWarnings(RNGversion("3.5.0")) set.seed(23) data(BeetlesMale) BeetlesMale$Dark <- BeetlesMale$Colour BeetlesMale$Reddish <- (BeetlesMale$Colour-1)*-1 md <- aggregate(cbind(Dark, Reddish) ~ Population + Container, data=BeetlesMale, FUN=sum) R_est_1 <- rptProportion(cbind(Dark, Reddish) ~ (1|Population), grname=c("Population"), data=md, nboot=0, npermut=0) test_that("rpt estimation works for one random effect, no boot, no permut, no parallelisation, logit link", { expect_that(is.numeric(unlist(R_est_1$R)), is_true()) expect_equal(R_est_1$R["R_org", ],0.1853997, tolerance = 0.001) expect_equal(R_est_1$R["R_link", ], 0.1879315, tolerance = 0.001) }) test_that("LRT works", { expect_that(is.numeric(unlist(R_est_1$R)), is_true()) expect_equal(R_est_1$P$LRT_P, 5.81e-09, tolerance = 0.001) }) R_est_2 <- rptProportion(cbind(Dark, Reddish) ~ (1|Population), grname=c("Population"), data=md, nboot=2, npermut=0) test_that("rpt estimation works for one random effect, boot, no permut, no parallelisation, logit link", { expect_equal(as.numeric(R_est_2$CI_emp$CI_org["2.5%"]), 0.1587981, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_org["97.5%"]), 0.1896277, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_link["2.5%"]), 0.1602279, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_link["97.5%"]), 0.1923845, tolerance = 0.001) }) R_est_3 <- rptProportion(cbind(Dark, Reddish) ~ (1|Population), grname=c("Population"), data=md, nboot=0, npermut=2) test_that("rpt estimation works for one random effect, no boot, permut, no parallelisation, logit link", { expect_equal(R_est_3$P$P_permut_org, 0.5, tolerance = 0.001) expect_equal(R_est_3$P$P_permut_link, 0.5, tolerance = 0.001) }) R_est_1 <- suppressWarnings(rptProportion(cbind(Dark, Reddish) ~ (1|Container) + (1|Population), grname=c("Container", "Population", "Residual"), data = md, nboot=0, npermut=0)) test_that("rpt estimation works for two random effect, no boot, no permut, no parallelisation, logit link", { expect_that(is.numeric(unlist(R_est_1$R)), is_true()) expect_equal(R_est_1$R["R_org", 1], 3.030087e-11, tolerance = 0.001) expect_equal(R_est_1$R["R_link", 1], 4.686765e-11 , tolerance = 0.001) expect_equal(R_est_1$R["R_org", 2], 0.1854017, tolerance = 0.001) expect_equal(R_est_1$R["R_link", 2], 0.1879334, tolerance = 0.001) }) test_that("LRTs works", { expect_that(is.numeric(unlist(R_est_1$R)), is_true()) expect_equal(R_est_1$P[1, "LRT_P"], 1, tolerance = 0.001) expect_equal(R_est_1$P[2, "LRT_P"], 5.81e-09, tolerance = 0.001) }) test_that("random effect components sum to up to one", { expect_equal(sum(R_est_1$R["R_link", ]), 1) }) R_est_2 <- suppressWarnings(rptProportion(cbind(Dark, Reddish) ~ (1|Container) + (1|Population), grname=c("Container", "Population"), data = md, nboot=2, npermut=0)) test_that("rpt estimation works for two random effect, boot, no permut, no parallelisation, logit link", { expect_equal(as.numeric(R_est_2$CI_emp$CI_org[1, "2.5%"]), 0.0001784753, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_org[1, "97.5%"]), 0.006960535, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_org[2, "2.5%"]), 0.1085067 , tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_org[2, "97.5%"]), 0.1204242, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_link[1, "2.5%"]), 0.0001784753, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_link[1, "97.5%"]),0.006960535, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_link[2, "2.5%"]), 0.1085067, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_link[2, "97.5%"]), 0.1204242, tolerance = 0.001) }) R_est_3 <- suppressWarnings(rptProportion(cbind(Dark, Reddish) ~ (1|Container) + (1|Population), grname=c("Container", "Population"), data = md, nboot=0, npermut=5)) test_that("rpt estimation works for two random effect, no boot, permut, no parallelisation, logit link", { expect_equal(R_est_3$P$P_permut_org[1], 1, tolerance = 0.001) expect_equal(R_est_3$P$P_permut_org[2], 0.2, tolerance = 0.001) expect_equal(R_est_3$P$P_permut_link[1], 1, tolerance = 0.001) expect_equal(R_est_3$P$P_permut_link[2], 0.2, tolerance = 0.001) }) R_est_4 <- suppressWarnings(rptProportion(cbind(Dark, Reddish) ~ (1|Container) + (1|Population), grname=c("Container", "Population", "Overdispersion", "Residual"), data = md, nboot=0, npermut=0)) test_that("repeatabilities are equal for grouping factors independent of residual and overdispersion specification", { expect_false(any(R_est_3$R$Container == R_est_4$R$Container) == FALSE) expect_false(any(R_est_3$R$Population == R_est_4$R$Population) == FALSE) }) R_est_5 <- suppressWarnings(rptProportion(cbind(Dark, Reddish) ~ (1|Container) + (1|Population), grname=c("Population", "Container"), data = md, nboot=0, npermut=0)) test_that("repeatabilities are equal for different sequence in grname argument", { expect_false(any(R_est_3$R$Container == R_est_5$R$Container) == FALSE) expect_false(any(R_est_3$R$Population == R_est_5$R$Population) == FALSE) }) test_that("LRTs are equal for different different sequence in grname argument", { expect_equal(R_est_3$P["Container", "LRT_P"], R_est_5$P["Container", "LRT_P"]) expect_equal(R_est_3$P["Population", "LRT_P"], R_est_5$P["Population", "LRT_P"]) }) R_est_6 <- suppressWarnings(rptProportion(cbind(Dark, Reddish) ~ (1|Population) + (1|Container), grname=c("Container", "Population"), data = md, nboot=0, npermut=0)) test_that("repeatabilities are equal for different sequence in formula argument", { expect_false(any(R_est_3$R$Container == R_est_6$R$Container) == FALSE) expect_false(any(R_est_3$R$Population == R_est_6$R$Population) == FALSE) }) test_that("LRTs are equal for different order in formula argument", { expect_equal(R_est_3$P["Container", "LRT_P"], R_est_6$P["Container", "LRT_P"]) expect_equal(R_est_3$P["Population", "LRT_P"], R_est_6$P["Population", "LRT_P"]) })
"_PACKAGE"
expected <- eval(parse(text="structure(c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), .Dim = c(20L, 20L), .Dimnames = list(c(NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_), c(NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_)))")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), .Dim = c(20L, 20L), .Dimnames = list(c(NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_), c(NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_))))")); .Internal(t.default(argv[[1]])); }, o=expected);
expfunction.nl <- function(par=c(0.3,0.4,0.5,0.6), x=10*rep(1,3)) { alpha=par[1] beta=par[-1] U1 = ( x[1]^(-1./(alpha*beta[1]) ) + x[2]^(-1./(alpha*beta[1]) ) )^(beta[1]) U2 = ( x[1]^(-1./(alpha*beta[2]) ) + x[3]^(-1./(alpha*beta[2]) ) )^(beta[2]) U3 = ( x[2]^(-1./(alpha*beta[3]) ) + x[3]^(-1./(alpha*beta[3]) ) )^(beta[3]) return( 2^(-alpha) * ( (U1 + U2 + U3)^(alpha) ) ) } excessProb.condit.nl <- function(par=c(0.3,0.4,0.5,0.6), thres=rep(100,3)) { expfun <- expfunction.nl zeros <- which(thres==0) if(length(zeros)==3) stop(" x must have at least one positive element") if(length(zeros)==2) { x <- thres x[zeros] <- Inf return(expfun(par=par, x=x)) } if(length(zeros)==1) { nonzeros <- c(1,2,3)[-zeros] x <- thres x[zeros] <- Inf T0 <- expfun(par=par,x=x) x1 <- x x1[nonzeros[1]] <- Inf T1 <- expfun(par=par, x=x1) x2 <- x x2[nonzeros[2]] <- Inf T2 <- expfun(par=par, x=x2) return( T1 + T2 - T0 ) } T1 <- expfun(par=par,x=thres) T2 <- expfun(par=par,x=c(thres[1], Inf,Inf)) + expfun(par=par,x=c(Inf, thres[2],Inf)) + expfun(par=par,x=c(Inf, Inf, thres[3])) T3 <- expfun(par=par,x=c(thres[1], thres[2],Inf)) + expfun(par=par,x=c(thres[1], Inf, thres[3])) + expfun(par=par,x=c(Inf, thres[2], thres[3])) return( T1 + T2 - T3 ) } excessProb.nl <- function(post.sample, from=NULL,to=NULL, thin=100, thres=rep(100,3), known.par= FALSE, true.par, displ=FALSE) { reslist <- posteriorMean(post.sample=post.sample, from=from,to=to, thin=thin, FUN=excessProb.condit.nl, displ=FALSE, thres=thres ) res <- as.vector(reslist$values) N <- length(res) cummean <- cumsum(res)/(1:N) estsd <- sqrt(cumsum((res-cummean)^2)/(1:N)) esterr <- estsd/sqrt(1:N) ymax= max(res) ymin=min(res) if(displ){ plot(1:N, cummean, ylim=range(res), type="l", lwd=2) polygon(c(1:N, N:1), c(cummean+qnorm(0.9)*estsd, rev(cummean-qnorm(0.9)*estsd)), col=gray(0.8)) lines(1:N, cummean, lwd=2) } if(known.par) { true <- excessProb.condit.nl ( par=true.par, thres=thres ) if(displ) abline(h=true, col="red", lwd=2 ) } else true <- NULL sorted <- sort(res, decreasing=TRUE) upquant <- sorted[ceiling(10/100*N)] lowquant <- sorted[floor(90/100*N)] if(displ){ abline(h=lowquant, col="blue", lwd=2) abline(h=upquant, col="blue", lwd=2) if(known.par) { legend("topright", legend=c("true", "posterior mean", "posterior 0.1/0.9 quantiles", "posterior 0.1/0.9 Gaussian quantiles" ), lwd=c(2,2,2,3), col=c("red", "black", "blue", gray(0.5)) ) } else { legend("topright", legend=c( "posterior mean", "posterior 0.1/0.9 quantiles", "posterior 0.1/0.9 Gaussian quantiles" ), lwd=c(2,2,4), col=c( "black", "blue", gray(0.5)) ) } } return(list(whole=res, mean=cummean[N], esterr=esterr[N], estsd=estsd[N], lowquant= lowquant, upquant=upquant, true=true)) }
get.taxa <- function (taxa, replace.synonyms = TRUE, suggest.names = TRUE, life.form = FALSE, habitat = FALSE, vegetation.type = FALSE, vernacular = FALSE, states = FALSE, establishment = FALSE, domain = FALSE, endemism = FALSE, drop = c("authorship", "genus", "specific.epiteth", "infra.epiteth", "name.status"), suggestion.distance = 0.9, parse = FALSE) { taxa <- trim(taxa) taxa <- taxa[nzchar(taxa)] if (length(taxa) == 0L) stop("No valid names provided.") original.search <- taxa ncol.taxa <- ncol(all.taxa.accepted) res <- data.frame(matrix(vector(), length(taxa), ncol.taxa + 1, dimnames = list(c(), c(names(all.taxa.accepted), "notes"))), stringsAsFactors = FALSE) minus.notes <- seq_len(ncol.taxa) index <- 0 for (taxon in taxa) { notes <- NULL index <- index + 1 if (parse) { url <- "http://api.gbif.org/v1/parser/name" request <- try(POST(url, body = list(taxon), encode = "json")) if (inherits(request, "try-error")) { warning("Couldn't connect with the GBIF data servers. Check your internet connection or try again later.") } else { warn_for_status(request) taxon <- content(request)[[1]]$canonicalName } } taxon <- fixCase(taxon) uncertain <- regmatches(taxon, regexpr("[a|c]f+\\.", taxon)) if (length(uncertain) != 0L) { taxon <- gsub("\\s[a|c]f+\\.", "", taxon) } ident <- regmatches(taxon, regexpr("\\s+sp\\.+\\w*", taxon)) if (length(ident) != 0L) { split.name <- unlist(strsplit(taxon, " ")) taxon <- split.name[1] infra <- split.name[2] } found <- length(with(all.taxa.accepted, { which(search.str == taxon) })) > 0L if (!found) { found <- length(with(all.taxa.synonyms, { which(search.str == taxon) })) > 0L } if (!found) { if (suggest.names) { taxon <- suggest.names(taxon, max.distance = suggestion.distance) } else { res[index, "notes"] <- "not found" next } if (is.na(taxon)) { res[index, "notes"] <- "not found" next } else { notes <- "was misspelled" } } accepted <- all.taxa.accepted[with(all.taxa.accepted, { which(search.str == taxon) }), ] if (nrow(accepted) > 0) { if (nrow(accepted) == 1L) { res[index, minus.notes] <- accepted } else { notes <- c(notes, "check +1 accepted") } res[index, "notes"] <- paste(notes, collapse = "|") if (length(ident) != 0L) res[index, "search.str"] <- paste(res[index, "search.str"], infra) next } synonym <- all.taxa.synonyms[with(all.taxa.synonyms, { which(search.str == taxon) }), ] nrow.synonym <- nrow(synonym) if (nrow.synonym > 0L) { if (replace.synonyms) { related <- relationships[with(relationships, {which(related.id %in% synonym$id)}), ] accepted <- all.taxa.accepted[with(all.taxa.accepted, { which(id %in% related$id) }), ] nrow.accepted <- nrow(accepted) if (nrow.accepted == 0L) { if (nrow.synonym == 1L) { notes <- c(notes, "check no accepted name") res[index, minus.notes] <- synonym } if (nrow.synonym > 1L) { notes <- c(notes, "check no accepted +1 synonyms") } } if (nrow.accepted == 1L) { notes <- c(notes, "replaced synonym") res[index, minus.notes] <- accepted } if (nrow.accepted > 1L) { notes <- c(notes, "check +1 accepted") if (nrow.synonym == 1L) { res[index, minus.notes] <- synonym } } } else { if (nrow(synonym) == 1L) { res[index, minus.notes] <- synonym } else { notes <- c(notes, "check +1 entries") } } res[index, "notes"] <- paste(notes, collapse = "|") if (length(ident) != 0L) res[index, "search.str"] <- paste(res[index, "search.str"], infra) next } undefined <- all.taxa.undefined[with(all.taxa.undefined, { which(search.str == taxon) }), ] nrow.undefined <- nrow(undefined) if (nrow.undefined == 0L) { notes <- c(notes, "check undefined status") } if (nrow.undefined == 1L) { notes <- c(notes, "check undefined status") res[index, minus.notes] <- undefined } if (nrow.undefined > 1L) { notes <- c(notes, "check undefined status") } res[index, "notes"] <- paste(notes, collapse = "|") if (length(ident) != 0L) res[index, "search.str"] <- paste(taxa, infra) } if (is.null(drop)) { res <- data.frame(res, original.search, stringsAsFactors = FALSE) } else { res <- data.frame(res[, !names(res) %in% drop], original.search, stringsAsFactors = FALSE) } if (life.form) { res <- dplyr::left_join(res, species.profiles[, c("id", "life.form")], by = "id") } if (habitat) { res <- dplyr::left_join(res, species.profiles[, c("id", "habitat")], by = "id") } if (vegetation.type) { res <- dplyr::left_join(res, species.profiles[, c("id", "vegetation.type")], by = "id") } if (vernacular) { res <- dplyr::left_join(res, vernacular.names[, c("id", "vernacular.name")], by = "id") } if (states) { res <- dplyr::left_join(res, distribution[, c("id", "occurrence")], by = "id") } if (establishment) { res <- dplyr::left_join(res, distribution[, c("id", "establishment")], by = "id") } if (domain) { res <- dplyr::left_join(res, distribution[, c("id", "domain")], by = "id") } if (endemism) { res <- dplyr::left_join(res, distribution[, c("id", "endemism")], by = "id") } res }
library(testthat) library(CNAIM) context("Future Probability of Failure for 10-20kV cable, PEX") test_that("pof_future_cables_20_10_04kv", { res <- pof_future_cables_20_10_04kv(hv_lv_cable_type = "10-20kV cable, PEX", sub_division = "Aluminium sheath - Aluminium conductor", utilisation_pct = 100, operating_voltage_pct = 106, sheath_test = "Default", partial_discharge = "Default", fault_hist = "Default", reliability_factor = "Default", age = 30, simulation_end_year = 100) expect_equal(res$PoF[which(res$year == 65)], 0.029754193) })
moead <- function(preset = NULL, problem = NULL, decomp = NULL, aggfun = NULL, neighbors = NULL, variation = NULL, update = NULL, constraint = NULL, scaling = NULL, stopcrit = NULL, showpars = NULL, seed = NULL, ...) { moead.input.pars <- as.list(sys.call())[-1] if ("save.env" %in% names(moead.input.pars)) { if (moead.input.pars$save.env == TRUE) saveRDS(as.list(environment()), "moead_env.rds") } if (!is.null(preset)) { if (is.null(problem)) problem = preset$problem if (is.null(decomp)) decomp = preset$decomp if (is.null(aggfun)) aggfun = preset$aggfun if (is.null(neighbors)) neighbors = preset$neighbors if (is.null(variation)) variation = preset$variation if (is.null(update)) update = preset$update if (is.null(scaling)) scaling = preset$scaling if (is.null(stopcrit)) stopcrit = preset$stopcrit } if (is.null(seed)) { if (!exists(".Random.seed")) stats::runif(1) seed <- .Random.seed } else { assertthat::assert_that(assertthat::is.count(seed)) set.seed(seed) } nfe <- 0 time.start <- Sys.time() iter.times <- numeric(10000) if(is.null(update$UseArchive)){ update$UseArchive <- FALSE } W <- generate_weights(decomp = decomp, m = problem$m) X <- create_population(N = nrow(W), problem = problem) YV <- evaluate_population(X = X, problem = problem, nfe = nfe) Y <- YV$Y V <- YV$V nfe <- YV$nfe keep.running <- TRUE iter <- 0 while(keep.running){ iter <- iter + 1 if ("save.iters" %in% names(moead.input.pars)) { if (moead.input.pars$save.iters == TRUE) saveRDS(as.list(environment()), "moead_env.rds") } BP <- define_neighborhood(neighbors = neighbors, v.matrix = switch(neighbors$name, lambda = W, x = X), iter = iter) B <- BP$B P <- BP$P Xt <- X Yt <- Y Vt <- V Xv <- do.call(perform_variation, args = as.list(environment())) X <- Xv$X ls.args <- Xv$ls.args nfe <- nfe + Xv$var.nfe YV <- evaluate_population(X = X, problem = problem, nfe = nfe) Y <- YV$Y V <- YV$V nfe <- YV$nfe normYs <- scale_objectives(Y = Y, Yt = Yt, scaling = scaling) bigZ <- scalarize_values(normYs = normYs, W = W, B = B, aggfun = aggfun) sel.indx <- order_neighborhood(bigZ = bigZ, B = B, V = V, Vt = Vt, constraint = constraint) XY <- do.call(update_population, args = as.list(environment())) X <- XY$X Y <- XY$Y V <- XY$V Archive <- XY$Archive elapsed.time <- as.numeric(difftime(time1 = Sys.time(), time2 = time.start, units = "secs")) iter.times[iter] <- ifelse(iter == 1, yes = as.numeric(elapsed.time), no = as.numeric(elapsed.time) - sum(iter.times)) keep.running <- check_stop_criteria(stopcrit = stopcrit, call.env = environment()) print_progress(iter.times, showpars) } X <- denormalize_population(X, problem) colnames(Y) <- paste0("f", 1:ncol(Y)) colnames(W) <- paste0("f", 1:ncol(W)) if(!is.null(Archive)) { Archive$X <- denormalize_population(Archive$X, problem) colnames(Archive$Y) <- paste0("f", 1:ncol(Archive$Y)) Archive$W <- W colnames(Archive$W) <- paste0("f", 1:ncol(Archive$W)) } out <- list(X = X, Y = Y, V = V, W = W, Archive = Archive, ideal = apply(Y, 2, min), nadir = apply(Y, 2, max), nfe = nfe, n.iter = iter, time = difftime(Sys.time(), time.start, units = "secs"), seed = seed, inputConfig = moead.input.pars) class(out) <- c("moead", "list") return(out) }
define_signif_tumor_subclusters_via_random_smooothed_trees <- function(infercnv_obj, p_val, hclust_method, cluster_by_groups, window_size=101, max_recursion_depth=3, min_cluster_size_recurse=10) { infercnv_copy = infercnv_obj flog.info(sprintf("define_signif_tumor_subclusters(p_val=%g", p_val)) infercnv_obj <- subtract_ref_expr_from_obs(infercnv_obj, inv_log=TRUE) tumor_groups = list() if (cluster_by_groups) { tumor_groups <- c(infercnv_obj@observation_grouped_cell_indices, infercnv_obj@reference_grouped_cell_indices) } else { tumor_groups <- c(list(all_observations=unlist(infercnv_obj@observation_grouped_cell_indices, use.names=FALSE)), infercnv_obj@reference_grouped_cell_indices) } res = list() for (tumor_group in names(tumor_groups)) { flog.info(sprintf("define_signif_tumor_subclusters(), tumor: %s", tumor_group)) tumor_group_idx <- tumor_groups[[ tumor_group ]] names(tumor_group_idx) = colnames([email protected])[tumor_group_idx] tumor_expr_data <- [email protected][,tumor_group_idx] tumor_subcluster_info <- .single_tumor_subclustering_smoothed_tree(tumor_group, tumor_group_idx, tumor_expr_data, p_val, hclust_method, window_size, max_recursion_depth, min_cluster_size_recurse) res$hc[[tumor_group]] <- tumor_subcluster_info$hc res$subclusters[[tumor_group]] <- tumor_subcluster_info$subclusters } infercnv_copy@tumor_subclusters <- res if (! is.null([email protected])) { flog.info("-mirroring for hspike") [email protected] <- define_signif_tumor_subclusters_via_random_smooothed_trees([email protected], p_val, hclust_method, window_size, max_recursion_depth, min_cluster_size_recurse) } return(infercnv_copy) } .single_tumor_subclustering_smoothed_tree <- function(tumor_name, tumor_group_idx, tumor_expr_data, p_val, hclust_method, window_size, max_recursion_depth, min_cluster_size_recurse) { tumor_subcluster_info = list() sm_tumor_expr_data = apply(tumor_expr_data, 2, caTools::runmean, k=window_size) sm_tumor_expr_data = .center_columns(sm_tumor_expr_data, 'median') hc <- hclust(parallelDist(t(sm_tumor_expr_data), threads=infercnv.env$GLOBAL_NUM_THREADS), method=hclust_method) tumor_subcluster_info$hc = hc heights = hc$height grps <- .partition_by_random_smoothed_trees(tumor_name, tumor_expr_data, hclust_method, p_val, window_size, max_recursion_depth, min_cluster_size_recurse) tumor_subcluster_info$subclusters = list() ordered_idx = tumor_group_idx[hc$order] s = split(grps,grps) flog.info(sprintf("cut tree into: %g groups", length(s))) start_idx = 1 for (split_subcluster in names(s)) { flog.info(sprintf("-processing %s,%s", tumor_name, split_subcluster)) split_subcluster_cell_names = names(s[[split_subcluster]]) if (! all(split_subcluster_cell_names %in% names(tumor_group_idx)) ) { stop("Error: .single_tumor_subclustering_smoothed_tree(), not all subcluster cell names were in the tumor group names") } subcluster_indices = tumor_group_idx[ which(names(tumor_group_idx) %in% split_subcluster_cell_names) ] tumor_subcluster_info$subclusters[[ split_subcluster ]] = subcluster_indices } return(tumor_subcluster_info) } .partition_by_random_smoothed_trees <- function(tumor_name, tumor_expr_data, hclust_method, p_val, window_size, max_recursion_depth, min_cluster_size_recurse) { grps <- rep(sprintf("%s.%d", tumor_name, 1), ncol(tumor_expr_data)) names(grps) <- colnames(tumor_expr_data) grps <- .single_tumor_subclustering_recursive_random_smoothed_trees(tumor_expr_data, hclust_method, p_val, grps, window_size, max_recursion_depth, min_cluster_size_recurse) return(grps) } .single_tumor_subclustering_recursive_random_smoothed_trees <- function(tumor_expr_data, hclust_method, p_val, grps.adj, window_size, max_recursion_depth, min_cluster_size_recurse, recursion_depth=1) { if (recursion_depth > max_recursion_depth) { flog.warn("-not exceeding max recursion depth.") return(grps.adj) } tumor_clade_name = unique(grps.adj[names(grps.adj) %in% colnames(tumor_expr_data)]) message("unique tumor clade name: ", tumor_clade_name) if (length(tumor_clade_name) > 1) { stop("Error, found too many names in current clade") } rand_params_info = .parameterize_random_cluster_heights_smoothed_trees(tumor_expr_data, hclust_method, window_size) h_obs = rand_params_info$h_obs h = h_obs$height max_height = rand_params_info$max_h max_height_pval = 1 if (max_height > 0) { e = rand_params_info$ecdf max_height_pval = 1- e(max_height) } if (max_height_pval <= p_val) { cut_height = mean(c(h[length(h)], h[length(h)-1])) flog.info(sprintf("cutting at height: %g", cut_height)) grps = cutree(h_obs, h=cut_height) print(grps) uniqgrps = unique(grps) message("unique grps: ", paste0(uniqgrps, sep=",", collapse=",")) if (all(sapply(uniqgrps, function(grp) { (sum(grps==grp) < min_cluster_size_recurse) } ))) { flog.warn("none of the split subclusters exceed min cluster size. Not recursing here.") return(grps.adj) } for (grp in uniqgrps) { grp_idx = which(grps==grp) message(sprintf("grp: %s contains idx: %s", grp, paste(grp_idx,sep=",", collapse=","))) df = tumor_expr_data[,grp_idx,drop=FALSE] subset_cell_names = colnames(df) subset_clade_name = sprintf("%s.%d", tumor_clade_name, grp) message(sprintf("subset_clade_name: %s", subset_clade_name)); grps.adj[names(grps.adj) %in% subset_cell_names] <- subset_clade_name if (length(grp_idx) >= min_cluster_size_recurse) { grps.adj <- .single_tumor_subclustering_recursive_random_smoothed_trees(tumor_expr_data=df, hclust_method=hclust_method, p_val=p_val, grps.adj=grps.adj, window_size=window_size, max_recursion_depth=max_recursion_depth, min_cluster_size_recurse=min_cluster_size_recurse, recursion_depth = recursion_depth + 1 ) } else { flog.warn(sprintf("%s size of %d is too small to recurse on", subset_clade_name, length(grp_idx))) } } } else { message("No cluster pruning: ", tumor_clade_name) } return(grps.adj) } .parameterize_random_cluster_heights_smoothed_trees <- function(expr_matrix, hclust_method, window_size, plot=FALSE) { sm_expr_data = apply(expr_matrix, 2, caTools::runmean, k=window_size) sm_expr_data = .center_columns(sm_expr_data, 'median') d = parallelDist(t(sm_expr_data), threads=infercnv.env$GLOBAL_NUM_THREADS) h_obs = hclust(d, method=hclust_method) permute_col_vals <- function(df) { num_cells = nrow(df) for (i in seq(ncol(df) ) ) { df[, i] = df[sample(x=seq_len(num_cells), size=num_cells, replace=FALSE), i] } df } flog.info(sprintf("random trees, using %g parallel threads", infercnv.env$GLOBAL_NUM_THREADS)) if (infercnv.env$GLOBAL_NUM_THREADS > future::availableCores()) { flog.warn(sprintf("not enough cores available, setting to num avail cores: %g", future::availableCores())) infercnv.env$GLOBAL_NUM_THREADS <- future::availableCores() } registerDoParallel(cores=infercnv.env$GLOBAL_NUM_THREADS) num_rand_iters=100 max_rand_heights <- foreach (i=seq_len(num_rand_iters)) %dopar% { rand.tumor.expr.data = t(permute_col_vals( t(expr_matrix) )) sm.rand.tumor.expr.data = apply(rand.tumor.expr.data, 2, caTools::runmean, k=window_size) sm.rand.tumor.expr.data = .center_columns(sm.rand.tumor.expr.data, 'median') rand.dist = parallelDist(t(sm.rand.tumor.expr.data), threads=infercnv.env$GLOBAL_NUM_THREADS) h_rand <- hclust(rand.dist, method=hclust_method) max_rand_height <- max(h_rand$height) max_rand_height } max_rand_heights <- as.numeric(max_rand_heights) h = h_obs$height max_height = max(h) message(sprintf("Lengths for original tree branches (h): %s", paste(h, sep=",", collapse=","))) message(sprintf("Max height: %g", max_height)) message(sprintf("Lengths for max heights: %s", paste(max_rand_heights, sep=",", collapse=","))) e = ecdf(max_rand_heights) pval = 1- e(max_height) message(sprintf("pval: %g", pval)) params_list <- list(h_obs=h_obs, max_h=max_height, rand_max_height_dist=max_rand_heights, ecdf=e ) if (plot) { .plot_tree_height_dist(params_list) } return(params_list) } .plot_tree_height_dist <- function(params_list, plot_title='tree_heights') { mf = par(mfrow=(c(2,1))) rand_height_density = density(params_list$rand_max_height_dist) xlim=range(params_list$max_h, rand_height_density$x) ylim=range(rand_height_density$y) plot(rand_height_density, xlim=xlim, ylim=ylim, main=paste(plot_title, "density")) abline(v=params_list$max_h, col='red') h_obs = params_list$h_obs h_obs$labels <- NULL plot(h_obs) par(mf) } .get_tree_height_via_ecdf <- function(p_val, params_list) { h = quantile(params_list$ecdf, probs=1-p_val) return(h) } find_DE_stat_significance <- function(normal_matrix, tumor_matrix) { run_t_test<- function(idx) { vals1 = unlist(normal_matrix[idx,,drop=TRUE]) vals2 = unlist(tumor_matrix[idx,,drop=TRUE]) res = try(t.test(vals1, vals2), silent=TRUE) if (is(res, "try-error")) return(NA) else return(res$p.value) } pvals = sapply(seq(nrow(normal_matrix)), run_t_test) return(pvals) }
context("Checking syllable_sum") test_that("syllable_count, gives the desired output",{ x1 <- syllable_count("Robots like Dason lie.") x2 <- syllable_count("Robots like Dason lie.", algorithm.report = TRUE) x1_c <- structure(list(words = c("robots", "like", "dason", "lie"), syllables = c(2, 1, 2, 1), in.dictionary = c("-", "-", "NF", "-")), class = "data.frame", row.names = c(NA, -4L)) x2_c <- list(`ALGORITHM REPORT` = structure(list(words = "dason", syllables = 2, in.dictionary = "NF"), row.names = 3L, class = "data.frame"), `SYLLABLE DATAFRAME` = structure(list(words = c("robots", "like", "dason", "lie"), syllables = c(2, 1, 2, 1), in.dictionary = c("-", "-", "NF", "-")), class = "data.frame", row.names = c(NA, -4L))) expect_equivalent(x1, x1_c) expect_equivalent(x2, x2_c) }) test_that("syllable_sum, gives the desired output",{ x3 <- syllable_sum(DATA$state) x3_c <- structure(c(8, 5, 4, 5, 6, 6, 4, 4, 7, 6, 9), class = c("syllable_sum", "syllable_freq", "numeric"), wc = c(6L, 5L, 4L, 4L, 5L, 5L, 4L, 3L, 5L, 6L, 6L), type = "Syllable") expect_true(all(x3 == x3_c)) }) test_that("polysyllable_sum, gives the desired output",{ x4 <- polysyllable_sum(DATA$state) x4_c <- structure(c(1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L), class = c("polysyllable_sum", "syllable_freq", "integer"), wc = c(6L, 5L, 4L, 4L, 5L, 5L, 4L, 3L, 5L, 6L, 6L), type = "Pollysyllable") expect_true(all(x4 == x4_c)) }) test_that("combo_syllable_sum, gives the desired output",{ x5 <- combo_syllable_sum(DATA$state) x5_c <- structure(list(syllable.count = c(8, 5, 4, 5, 6, 6, 4, 4, 7, 6, 9), polysyllable.count = c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 )), .Names = c("syllable.count", "polysyllable.count"), row.names = c(NA, 11L), class = c("combo_syllable_sum", "data.frame"), text.var = c("Computer is fun. Not too fun.", "No it's not, it's dumb.", "What should we do?", "You liar, it stinks!", "I am telling the truth!", "How can we be certain?", "There is no way.", "I distrust you.", "What are you talking about?", "Shall we move on? Good then.", "I'm hungry. Let's eat. You already?"), wc = c(6L, 5L, 4L, 4L, 5L, 5L, 4L, 3L, 5L, 6L, 6L)) expect_equivalent(x5, x5_c) }) test_that("cumulative methods for syllable_freq, gives the desired output",{ x3_cum <- cumulative(syllable_sum(DATA$state)) x4_cum <- cumulative(polysyllable_sum(DATA$state) ) expect_true(is.data.frame(x3_cum)) expect_true(all(colnames(x3_cum) == c("cumave", "Time"))) expect_true(is.data.frame(x4_cum)) expect_true(all(colnames(x4_cum) == c("cumave", "Time"))) })
data_biplot <- function(X,sX=TRUE,axeh=1,axev=2,cex.lab=1) { X<- scale(X, center=T, scale=sX) p <- dim(X)[2] n <- dim(X)[1] A<-max(axeh,axev) if (n<p) { reseig<-eigen(X%*%t(X)/n) valp<-100*reseig$values[1:A]/sum(reseig$values) coordvar<-t(X)%*%reseig$vectors[,1:A]/sqrt(n) coordind<-reseig$vectors[,1:A]%*%diag(sqrt(reseig$values[1:A])) } else { reseig<-eigen(t(X)%*%X/(n)) valp<-100*reseig$values[1:A]/sum(reseig$values) coordvar<-reseig$vectors[,1:A]%*%diag(sqrt(reseig$values[1:A])) coordind<-X%*%reseig$vectors[,1:A]/sqrt(n) } for (a in 1:A) { if (sign(mean(coordvar[,a]))==(-1)) { coordvar[,a]=coordvar[,a]*(-1) coordind[,a]=coordind[,a]*(-1) } } par(pty="s") vp<-(coordind[,axeh]^2+coordind[,axev]^2) lp=max(vp) vv<-(coordvar[,axeh]^2+coordvar[,axev]^2) lv=max(vv) f=sqrt(lp/lv) plot(c(coordvar[,axeh]*f,coordind[,axeh]),c(coordvar[,axev]*f,coordind[,axev]),type="n", xlab=paste("Dim ",axeh,"(",round(valp[axeh],2),"%)"), ylab=paste("Dim ",axev,"(",round(valp[axev],2),"%)"), main="PCA biplot") arrows(0,0,coordvar[,axeh]*f,coordvar[,axev]*f,length=0.1,angle=10,lwd=0.5,col="gray") posi=rep(1,n) posi[which(coordind[,axeh]>max(c(coordvar[,axeh]*f,coordind[,axeh]))*0.8)]=2 posi[which(coordind[,axeh]<min(c(coordvar[,axeh]*f,coordind[,axeh]))*0.8)]=4 posi[which(coordind[,axev]>max(c(coordvar[,axev]*f,coordind[,axev]))*0.8)]=1 posi[which(coordind[,axev]<min(c(coordvar[,axev]*f,coordind[,axev]))*0.8)]=3 text(coordind[,axeh],coordind[,axev],labels=rownames(X),pos=posi,cex=cex.lab) abline(h=0,v=0) par(pty="m") }
require(OpenMx) require(numDeriv) set.seed(1) mat1 <- mxMatrix("Full", rnorm(1), free=TRUE, nrow=1, ncol=1, labels="m1", name="mat1") mu <- 0 sigma <- 2 Scale <- -2 obj <- mxAlgebra(Scale * -.5 * (log(2*pi) + log(sigma) + (mat1[1,1] - mu)^2/sigma), name = "obj") grad <- mxAlgebra(Scale * -(mat1[1,1] - mu)/sigma, name = "grad", dimnames=list("m1", NULL)) hess <- mxAlgebra(Scale * -1/sigma, name = "hess", dimnames=list("m1", "m1")) model2 <- mxModel("model2", mat1, obj, grad, hess, mxFitFunctionAlgebra("obj")) omxCheckError(mxRun(mxModel(model2, mxComputeOnce('fitfunction', 'hessian')), silent=TRUE), "Hessian requested but not available") model1 <- mxModel("model1", mat1, obj, grad, hess, mxFitFunctionAlgebra("obj", gradient="grad", hessian="hess"), mxComputeSequence(list( mxComputeOnce('fitfunction', c('fit', 'gradient', 'hessian', 'ihessian')), mxComputeReportDeriv() ))) got <- omxCheckWarning(mxRun(model1, silent=TRUE, useOptimizer=FALSE), "mxRun(..., useOptimizer=FALSE) ignored due to custom compute plan") omxCheckCloseEnough(got$output$fit, -2 * log(dnorm(got$output$estimate, sd=sqrt(sigma))), 1e-4) omxCheckCloseEnough(got$output$gradient, 2*(mat1$values[1]-mu)/sigma, 1e-4) omxCheckCloseEnough(got$output$hessian, 2/sigma) omxCheckCloseEnough(got$output$ihessian, sigma/2) numer <- mxModel(model1, mxComputeSequence(list( mxComputeNumericDeriv(checkGradient = FALSE), mxComputeReportDeriv()))) got <- mxRun(numer, silent=TRUE) omxCheckCloseEnough(got$output$hessian, 1, 1e-3) model3 <- mxModel(model1, mxComputeNewtonRaphson()) model3 <- mxRun(model3, silent=TRUE) omxCheckCloseEnough(model3$output$estimate, 0, 1e-4) omxCheckCloseEnough(model3$output$status$code, 0) omxCheckCloseEnough(model3$output$iterations, 2L) model3 <- mxModel(model3, mxComputeSequence(list( mxComputeOnce('fitfunction', 'information', 'hessian'), mxComputeReportDeriv()))) model3 <- mxRun(model3) omxCheckCloseEnough(model3$output$hessian, 1, 1e-3) mat1 <- mxMatrix("Full", rnorm(1), free=TRUE, nrow=1, ncol=1, labels="m1", name="mat1") obj <- mxAlgebra(abs(mat1) + mat1^2, name = "obj") grad <- mxAlgebra(mat1/abs(mat1) + 2 * mat1, name = "grad", dimnames=list("m1", NULL)) hess <- mxAlgebra(2, name = "hess", dimnames=list("m1", "m1")) code6 <- mxModel("code6", mat1, obj, grad, hess, mxFitFunctionAlgebra("obj", gradient="grad", hessian="hess")) m1 <- mxRun(mxModel(code6, mxComputeSequence(list( mxComputeNumericDeriv(checkGradient=FALSE), mxComputeReportDeriv() )))) m2 <- mxRun(mxModel(code6, mxComputeSequence(list( mxComputeOnce('fitfunction', c('fit','gradient','hessian')), mxComputeReportDeriv() )))) omxCheckCloseEnough(c(m1$output$gradient), c(m2$output$gradient), 1e-6) omxCheckCloseEnough(c(m1$output$hessian), c(m2$output$hessian), 1e-5) code6 <- mxRun(mxModel(code6, mxComputeSequence(list( mxComputeNewtonRaphson(), mxComputeReportDeriv() ))), suppressWarnings = TRUE) omxCheckEquals(code6$output$status$code, 6) omxCheckCloseEnough(code6$output$estimate, 0, 1e-6) omxCheckCloseEnough(abs(code6$output$gradient), 1, 1e-6) mat2 <- mxMatrix("Full", c(50,50), free=TRUE, nrow=2, ncol=1, labels=paste("x",1:2,sep=""), name="x") obj <- mxAlgebra(x[1,1]^2 + x[2,1]^2 + sin(x[1,1]+x[2,1]) + x[1,1] - x[2,1], name = "obj") grad <- mxAlgebra(rbind(2*cos(2*x[1,1]+x[2,1])+2*x[1,1]+1, cos(2*x[1,1]+x[2,1])+4*x[2,1]-1), dimnames=list(paste("x",1:2,sep=""),c()), name = "grad") hess <- mxAlgebra(rbind(cbind(2-4*sin(2*x[1,1]+x[2,1]), -2*sin(2*x[1,1]+x[2,1])), cbind(-2*sin(2*x[1,1]+x[2,1]), 4-sin(2*x[1,1]+x[2,1]))), name = "hess", dimnames=list(paste("x",1:2,sep=""), paste("x",1:2,sep=""))) mv1 <- mxModel("mv1", mat2, obj, grad, hess, mxFitFunctionAlgebra("obj", gradient="grad", hessian="hess"), mxComputeSequence(list( mxComputeOnce('fitfunction', c('gradient', 'hessian', 'ihessian')), mxComputeReportDeriv()))) mv1.fit <- mxRun(mv1, silent=TRUE) omxCheckCloseEnough(mv1.fit$output$gradient, c(102.4, 199.7), .1) omxCheckCloseEnough(c(mv1.fit$output$hessian), c(4.86, 1.43, 1.43, 4.71), .01) omxCheckCloseEnough(mv1.fit$output$hessian, solve(mv1.fit$output$ihessian), 1e-2) mv2 <- mxModel(mv1, mxComputeNewtonRaphson()) mv2.fit <- mxRun(mv2, silent=TRUE, suppressWarnings = TRUE) omxCheckEquals(mv2.fit$output$status$code, 6) omxCheckCloseEnough(mv2.fit$output$estimate, rep(0, 2), 1)
add_extra_to_libpath <- function() { extra_lib <- file.path(get_wspace_dir(), basename(tempfile())) original_libPaths <- .libPaths() dir.create(extra_lib, recursive = T) .libPaths(c(original_libPaths, extra_lib)) on_test_exit(function() { .libPaths(original_libPaths) unlink(extra_lib, recursive = T, force = T) }) new_libPaths <- .libPaths() stopifnot(extra_lib %in% new_libPaths) return(new_libPaths) }
P5c <- function(a, X) { x <- .GlobalEnv$x y <- .GlobalEnv$y if (missing(X)) { if (length(a) == 1) { list(Pn = 5L, Mod = "P5c") } else { Yest <- a[1] + a[2] * exp(-x / a[3]) + a[4] * (x - a[5]) * H(x, 10, a[5]) sum((y - Yest) ^ 2) } } else { a[1] + a[2] * exp(-X / a[3]) + a[4] * (X - a[5]) * H(X, 10, a[5]) } }
wild.boot <- function(x, design = "fixed", distr = "rademacher", n.ahead = 20, nboot = 500, nc = 1, dd = NULL, signrest = NULL, signcheck = TRUE, itermax = 300, steptol = 200, iter2 = 50, rademacher = "deprecated"){ if(x$method == "Cramer-von Mises distance" & is.null(dd)){ dd <- copula::indepTestSim(x$n, x$K, verbose=F) } sqrt.f <- function(Pstar, Sigma_u_star){ yy <- suppressMessages(sqrtm(Sigma_u_hat_old))%*%solve(suppressMessages(sqrtm(Sigma_u_star)))%*%Pstar return(yy) } if(!inherits(x$y, c("matrix", "ts"))){ y = as.matrix(x$y) }else{ y <- x$y } p <- x$p obs <- x$n k <- x$K B <- x$B restriction_matrix = x$restriction_matrix restriction_matrix <- get_restriction_matrix(restriction_matrix, k) restrictions <- length(restriction_matrix[!is.na(restriction_matrix)]) if(length(signrest) > k){ stop('too many sign restrictions') } A <- x$A_hat Z <- t(YLagCr(y, p)) if(x$type == 'const'){ Z <- rbind(rep(1, ncol(Z)), Z) }else if(x$type == 'trend'){ Z <- rbind(seq(p + 1, ncol(Z)+ p), Z) }else if(x$type == 'both'){ Z <- rbind(rep(1, ncol(Z)), seq(p + 1, ncol(Z) + p), Z) }else{ Z <- Z } u <- t(y[-c(1:p),]) - A %*% Z Sigma_u_hat_old <- tcrossprod(u)/(obs - 1 - k * p) ub <- u errors <- list() if(rademacher != "deprecated"){ if(rademacher == "TRUE"){ warning("The argument 'rademacher' is deprecated and may not be supported in the future. Please use the argument 'distr' to decide upon a distribution.", call. = TRUE, immediate. = FALSE, noBreaks. = FALSE, domain = NULL) } else if(rademacher == "FALSE"){ distr <- "gaussian" warning("The argument 'rademacher' is deprecated and may not be supported in the future. Please use the argument 'distr' to decide upon a distribution.", call. = TRUE, immediate. = FALSE, noBreaks. = FALSE, domain = NULL) } else{ warning("Invalid use of deprecated argument 'rademacher'. Please use the argument 'distr' to decide upon a distribution!", call. = TRUE, immediate. = FALSE, noBreaks. = FALSE, domain = NULL) } } for(i in 1:nboot){ ub <- u if (distr == "rademacher") { my <- rnorm(n = ncol(u)) my <- (my > 0) - (my < 0) } else if (distr == "mammen") { cu <- (sqrt(5)+1)/(2*sqrt(5)) my <- rep(1,ncol(u))*(-(sqrt(5)-1)/2) uni <- runif(n = ncol(u), min = 0, max = 1) my[uni > cu] <- (sqrt(5)+1)/2 } else if (distr == "gaussian") { my <- rnorm(n = ncol(u)) } errors[[i]] <- ub* my } bootf <- function(Ustar1){ if(design == "fixed"){ Ystar <- t(A %*% Z + Ustar1) Bstar <- t(Ystar) %*% t(Z) %*% solve(Z %*% t(Z)) Ustar <- Ystar - t(Bstar %*% Z) Sigma_u_star <- crossprod(Ustar)/(ncol(Ustar1) - 1 - k * p) varb <- list(y = Ystar, coef_x = Bstar, residuals = Ustar, p = p, type = x$type) class(varb) <- 'var.boot' if(x$method == "Non-Gaussian maximum likelihood"){ temp <- id.ngml_boot(varb, stage3 = x$stage3, Z = Z, restriction_matrix = x$restriction_matrix) }else if(x$method == "Changes in Volatility"){ temp <- tryCatch(id.cv_boot(varb, SB = x$SB, SB2 = x$SB2, Z = Z, restriction_matrix = x$restriction_matrix), error = function(e) NULL) }else if(x$method == "Cramer-von Mises distance"){ temp <- id.cvm(varb, itermax = itermax, steptol = steptol, iter2 = iter2, dd) }else if(x$method == "Distance covariances"){ temp <- id.dc(varb, PIT=x$PIT) }else if(x$method == "GARCH"){ temp <- tryCatch(id.garch(varb, restriction_matrix = x$restriction_matrix, max.iter = x$max.iter, crit = x$crit), error = function(e) NULL) }else if(x$method == "Cholesky"){ temp <- id.chol(varb, order_k = x$order_k) }else{ temp <- tryCatch(id.st_boot(varb, c_fix = x$est_c, transition_variable = x$transition_variable, restriction_matrix = x$restriction_matrix, gamma_fix = x$est_g, max.iter = x$iteration, crit = 0.01, Z = Z), error = function(e) NULL) } } else if (design == "recursive") { Ystar <- matrix(0, nrow(y), k) Ystar[1:p,] <- y[1:p,] if (x$type == 'const' | x$type == 'trend') { for (i in (p + 1):nrow(y)) { for (j in 1:k) { Ystar[i, j] <- A[j, 1] + A[j, -1] %*% c(t(Ystar[(i - 1):(i - p), ])) + Ustar1[j, (i - p)] } } } else if (x$type == 'both') { for (i in (p + 1):nrow(y)) { for (j in 1:k) { Ystar[i, j] <- A[j, 1] + A[j, 2] + A[j, -c(1, 2)] %*% c(t(Ystar[(i - 1):(i - p),])) + Ustar1[j, (i - p)] } } }else if (x$type == 'none') { for (i in (p + 1):nrow(y)) { for (j in 1:k) { Ystar[i, j] <- A[j, ] %*% c(t(Ystar[(i - 1):(i - p), ])) + Ustar1[j, (i - p)] } } } Ystar <- Ystar[-c(1:p), ] varb <- suppressWarnings(VAR(Ystar, p = x$p, type = x$type)) Ustar <- residuals(varb) Sigma_u_star <- crossprod(Ustar)/(obs - 1 - k * p) if(x$method == "Non-Gaussian maximum likelihood"){ temp <- id.ngml_boot(varb, stage3 = x$stage3, restriction_matrix = x$restriction_matrix) }else if(x$method == "Changes in Volatility"){ if (length(x$SB) > 3) { SB <- x$SB[-c(1:p)] } else { SB <- x$SB } temp <- tryCatch(id.cv_boot(varb, SB = SB, SB2 = x$SB2, restriction_matrix = x$restriction_matrix), error = function(e) NULL) }else if(x$method == "Cramer-von Mises distance"){ temp <- id.cvm(varb, itermax = itermax, steptol = steptol, iter2 = iter2, dd) }else if(x$method == "Distance covariances"){ temp <- id.dc(varb, PIT=x$PIT) }else if(x$method == "Smooth transition"){ temp <- id.st(varb, c_fix = x$est_c, transition_variable = x$transition_variable, restriction_matrix = x$restriction_matrix, gamma_fix = x$est_g, max.iter = x$iteration, crit = 0.01) }else if(x$method == "GARCH"){ temp <- tryCatch(id.garch(varb, restriction_matrix = x$restriction_matrix, max.iter = x$max.iter, crit = x$crit), error = function(e) NULL) }else if(x$method == "Cholesky"){ temp <- id.chol(varb, order_k = x$order_k) } } if(!is.null(temp)){ Pstar <- temp$B if (x$method != "Cholesky") { if(!is.null(x$restriction_matrix)){ Pstar1 <- Pstar frobP <- frobICA_mod(Pstar1, B, standardize=TRUE) }else{ Pstar1 <- sqrt.f(Pstar, Sigma_u_star) diag_sigma_root <- diag(diag(suppressMessages(sqrtm(Sigma_u_hat_old)))) frobP <- frobICA_mod(t(solve(diag_sigma_root)%*%Pstar1), t(solve(diag_sigma_root)%*%B), standardize=TRUE) } Pstar <- Pstar1%*%frobP$perm temp$B <- Pstar } ip <- irf(temp, n.ahead = n.ahead) return(list(ip, Pstar, temp$A_hat)) }else{ return(NA) } } bootstraps <- pblapply(errors, bootf, cl = nc) delnull <- function(x){ x[unlist(lapply(x, length) != 0)] } bootstraps <- lapply(bootstraps, function (x)x[any(!is.na(x))]) bootstraps <- delnull(bootstraps) Bs <- array(0, c(k,k,length(bootstraps))) ipb <- list() Aboot <- array(0, c(nrow(A), ncol(A),length(bootstraps))) for(i in 1:length(bootstraps)){ Bs[,,i] <- bootstraps[[i]][[2]] ipb[[i]] <- bootstraps[[i]][[1]] Aboot[, , i] <- bootstraps[[i]][[3]] } A_hat_boot <- matrix(Aboot, ncol = nrow(A)*ncol(A), byrow = TRUE) A_hat_boot_mean <- matrix(colMeans(A_hat_boot), nrow(A), ncol(A)) v.b <- matrix(Bs, ncol = k^2, byrow = TRUE) cov.bs <- cov(v.b) SE <- matrix(sqrt(diag(cov.bs)),k,k) rownames(SE) <- rownames(x$B) boot.mean <- matrix(colMeans(v.b),k,k) rownames(boot.mean) <- rownames(x$B) if (signcheck == TRUE) { if(restrictions > 0 | x$method == 'Cholesky'){ if(!is.null(signrest)){ cat('Testing signs only possible for unrestricted model \n') } sign.part <- NULL sign.complete <- NULL }else{ if(is.null(signrest)){ sign.mat <- matrix(FALSE, nrow = k, ncol = k) sign.complete <- 0 sign.part <- rep(0, times = k) for(i in 1:length(bootstraps)){ pBs <- permutation(Bs[,,i]) sign.mat <-lapply(pBs, function(z){sapply(1:k, function(ii){all(z[,ii]/abs(z[,ii]) == x$B[,ii]/abs(x$B[,ii])) | all(z[,ii]/abs(z[,ii]) == x$B[,ii]/abs(x$B[,ii])*(-1))})}) if(any(unlist(lapply(sign.mat, function(sign.mat)all(sign.mat == TRUE))))){ sign.complete <- sign.complete + 1 } for(j in 1:k){ check <- rep(FALSE, k) for(l in 1:k){ check[l] <- any(all(pBs[[1]][,l]/abs(pBs[[1]][,l]) == x$B[,j]/abs(x$B)[,j]) | all(pBs[[1]][,l]/abs(pBs[[1]][,l]) == x$B[,j]/abs(x$B)[,j]*(-1))) } if(sum(check) == 1){ sign.part[[j]] <- sign.part[[j]] + 1 } } } }else{ nrest <- length(signrest) sign.part <- rep(list(0), nrest ) sign.complete <- 0 for(j in 1:length(bootstraps)){ check.full <- 0 for(i in 1:nrest){ check <- rep(FALSE, length(signrest[[i]][!is.na(signrest[[i]])])) for(l in 1:k){ check[l] <- any(all(Bs[!is.na(signrest[[i]]),l,j]/abs(Bs[!is.na(signrest[[i]]),l,j]) == signrest[[i]][!is.na(signrest[[i]])]) | all(Bs[!is.na(signrest[[i]]),l,j]/abs(Bs[!is.na(signrest[[i]]),l,j]) == signrest[[i]][!is.na(signrest[[i]])]*(-1))) } if(sum(check) == 1){ sign.part[[i]] <- sign.part[[i]] + 1 check.full <- check.full + 1 } } if(check.full == nrest){ sign.complete <- sign.complete + 1 } } names(sign.part) <- names(signrest) } } } else { sign.part <- NULL sign.complete <- NULL } ip <- irf(x, n.ahead = n.ahead) result <- list(true = ip, bootstrap = ipb, SE = SE, nboot = nboot, distr = distr, point_estimate = x$B, boot_mean = boot.mean, signrest = signrest, sign_complete = sign.complete, sign_part = sign.part, cov_bs = cov.bs, A_hat = x$A_hat, design = design, A_hat_boot_mean = A_hat_boot_mean, Omodel = x, boot_B = Bs, rest_mat = restriction_matrix, method = 'Wild bootstrap', VAR = x$VAR, signcheck = signcheck) class(result) <- 'sboot' return(result) }
test_that("fredr_category_children()", { skip_if_no_key() ctg <- fredr_category_children(category_id = 0) expect_s3_class(ctg, c("tbl_df", "tbl", "data.frame")) expect_true(ncol(ctg) == 3) expect_true(nrow(ctg) == 8) }) test_that("input is validated", { expect_error(fredr_category_children(category_id = NULL)) expect_error(fredr_category_children(category_id = "a")) expect_error(fredr_category_children(category_id = 1:2)) })
library(circlize) library(ComplexHeatmap) library(GetoptLong) set.seed(123) lt = list(a = sample(letters, 10), b = sample(letters, 15), c = sample(letters, 20)) m = make_comb_mat(lt) t(m) set_name(m) comb_name(m) set_size(m) comb_size(m) lapply(comb_name(m), function(x) extract_comb(m, x)) draw(UpSet(m)) draw(UpSet(m, comb_col = c(rep(2, 3), rep(3, 3), 1))) draw(UpSet(t(m))) set_name(t(m)) comb_name(t(m)) set_size(t(m)) comb_size(t(m)) lapply(comb_name(t(m)), function(x) extract_comb(t(m), x)) m = make_comb_mat(lt, mode = "intersect") lapply(comb_name(m), function(x) extract_comb(m, x)) draw(UpSet(m)) m = make_comb_mat(lt, mode = "union") lapply(comb_name(m), function(x) extract_comb(m, x)) draw(UpSet(m)) f = system.file("extdata", "movies.csv", package = "UpSetR") if(file.exists(f)) { movies <- read.csv(system.file("extdata", "movies.csv", package = "UpSetR"), header = T, sep = ";") m = make_comb_mat(movies, top_n_sets = 6) t(m) set_name(m) comb_name(m) set_size(m) comb_size(m) lapply(comb_name(m), function(x) extract_comb(m, x)) set_name(t(m)) comb_name(t(m)) set_size(t(m)) comb_size(t(m)) lapply(comb_name(t(m)), function(x) extract_comb(t(m), x)) draw(UpSet(m)) draw(UpSet(t(m))) m = make_comb_mat(movies, top_n_sets = 6, mode = "intersect") m = make_comb_mat(movies, top_n_sets = 6, mode = "union") } library(circlize) library(GenomicRanges) lt = lapply(1:4, function(i) generateRandomBed()) lt = lapply(lt, function(df) GRanges(seqnames = df[, 1], ranges = IRanges(df[, 2], df[, 3]))) names(lt) = letters[1:4] m = make_comb_mat(lt) if(file.exists(f)) { movies <- read.csv(f, header = T, sep = ";") genre = c("Action", "Romance", "Horror", "Children", "SciFi", "Documentary") rate = cut(movies$AvgRating, c(0, 1, 2, 3, 4, 5)) m_list = tapply(seq_len(nrow(movies)), rate, function(ind) { make_comb_mat(movies[ind, genre, drop = FALSE]) }) m_list2 = normalize_comb_mat(m_list) lapply(m_list2, set_name) lapply(m_list2, set_size) lapply(m_list2, comb_name) lapply(m_list2, comb_size) lapply(1:length(m_list), function(i) { n1 = comb_name(m_list[[i]]) x1 = comb_size(m_list[[i]]) n2 = comb_name(m_list2[[i]]) x2 = comb_size(m_list2[[i]]) l = n2 %in% n1 x2[!l] }) }
plot.ped = function(x, marker = NULL, sep = "/", missing = "-", showEmpty = FALSE, labs = labels(x), title = NULL, col = 1, aff = NULL, carrier = NULL, hatched = NULL, shaded = NULL, deceased = NULL, starred = NULL, twins = NULL, textInside = NULL, textAbove = NULL, hints = NULL, fouInb = "autosomal", margins = c(0.6, 1, 4.1, 1), keep.par = FALSE, ...) { if(hasSelfing(x)) stop2("Plotting of pedigrees with selfing is not yet supported") nInd = pedsize(x) if(is.function(labs)) labs = labs(x) if(identical(labs, "num")) labs = setNames(labels(x), 1:nInd) text = rep("", nInd) mtch = match(labels(x), labs, nomatch = 0L) showIdx = mtch > 0 showLabs = labs[mtch] if(!is.null(nms <- names(labs))) { newnames = nms[mtch] goodIdx = newnames != "" & !is.na(newnames) showLabs[goodIdx] = newnames[goodIdx] } text[showIdx] = showLabs if(is.function(starred)) starred = starred(x) starred = internalID(x, starred, errorIfUnknown = FALSE) starred = starred[!is.na(starred)] text[starred] = paste0(text[starred], "*") if (length(marker) > 0) { if (is.marker(marker)) mlist = list(marker) else if (is.markerList(marker)) mlist = marker else if (is.numeric(marker) || is.character(marker) || is.logical(marker)) mlist = getMarkers(x, markers = marker) else stop2("Argument `marker` must be either:\n", " * a n object of class `marker`\n", " * a list of `marker` objects\n", " * a character vector (names of attached markers)\n", " * an integer vector (indices of attached markers)", " * a logical vector of length `nMarkers(x)`") checkConsistency(x, mlist) gg = do.call(cbind, lapply(mlist, format, sep = sep, missing = missing)) geno = apply(gg, 1, paste, collapse = "\n") if (!showEmpty) geno[rowSums(do.call(cbind, mlist)) == 0] = "" text = if (!any(nzchar(text))) geno else paste(text, geno, sep = "\n") } opar = par(mar = margins) if(!keep.par) on.exit(par(opar)) if(is.list(col)) { cols = rep(1, nInd) for(cc in names(col)) { thiscol = col[[cc]] if(is.function(thiscol)) idscol = thiscol(x) else idscol = intersect(labels(x), thiscol) cols[internalID(x, idscol)] = cc } } else { cols = rep(col, length = nInd) } if(!is.null(shaded)) { message("The argument `shaded` has been renamed to `hatched`; please use this instead.") hatched = shaded shaded = NULL } if(is.function(aff)) aff = aff(x) if(is.function(hatched)) hatched = hatched(x) if(!is.null(aff) && !is.null(hatched)) stop2("Both `aff` and `hatched` cannot both be used") if(!is.null(aff)) { density = -1 angle = 90 } else if(!is.null(hatched)) { aff = hatched density = 25 angle = 45 } else { density = angle = NULL } if(is.vector(twins)) twins = data.frame(id1 = twins[1], id2 = twins[2], code = as.integer(twins[3])) pedigree = as_kinship2_pedigree(x, deceased = deceased, aff = aff, twins = twins, hints = hints) pdat = kinship2::plot.pedigree(pedigree, id = text, col = cols, mar = margins, density = density, angle = angle, keep.par = keep.par, ...) dotArgs.uneval = match.call(expand.dots = FALSE)$`...` dotArgs = lapply(dotArgs.uneval, eval.parent, n = 2L) cex = dotArgs[['cex']] fam = dotArgs[['family']] if (!is.null(title)) title(title, cex.main = dotArgs$cex.main %||% cex, col.main = dotArgs$col.main, font.main = dotArgs$font.main, fam = fam, xpd = NA) if(is.function(carrier)) carrier = carrier(x) carrier = internalID(x, carrier, errorIfUnknown = FALSE) points(pdat$x[carrier], pdat$y[carrier] + pdat$boxh/2, pch = 16, cex = cex, col = cols[carrier]) if(!is.null(textInside)) { text(pdat$x, pdat$y + pdat$boxh/2, labels = textInside, cex = cex, col = cols, font = dotArgs[['font']], fam = fam) } if(!is.null(textAbove)) { text(pdat$x, pdat$y, labels = textAbove, cex = cex, col = cols, font = dotArgs[['font']], fam = fam, adj = c(0.5, -0.5), xpd = TRUE) } else if(!is.null(fouInb) && hasInbredFounders(x)) { finb = founderInbreeding(x, chromType = fouInb, named = TRUE) finb = finb[finb > 0] idx = internalID(x, names(finb)) finb.txt = sprintf("f = %.4g", finb) text(pdat$x[idx], pdat$y[idx], labels = finb.txt, cex = cex, font = 3, fam = fam, adj = c(0.5, -0.5), xpd = TRUE) } invisible(pdat) } plot.singleton = function(x, marker = NULL, sep = "/", missing = "-", showEmpty = FALSE, labs = labels(x), title = NULL, col = 1, aff = NULL, carrier = NULL, hatched = NULL, shaded = NULL, deceased = NULL, starred = NULL, textInside = NULL, textAbove = NULL, fouInb = "autosomal", margins = c(8, 0, 0, 0), yadj = 0, ...) { if(is.function(labs)) labs = labs(x) if(identical(labs, "num")) labs = c(`1` = labels(x)) if(is.function(aff)) aff = aff(x) if(is.function(carrier)) carrier = carrier(x) if(!is.null(shaded)) { hatched = shaded shaded = NULL } if(is.function(hatched)) hatched = hatched(x) if(is.function(starred)) starred = starred(x) if(!is.null(textInside)) textInside = c("", "", textInside) if(!is.null(textAbove)) textAbove = c("", "", textAbove) if(!is.null(fouInb) && hasInbredFounders(x)) finb = founderInbreeding(x, chromType = fouInb) else finb = NULL if (length(marker) == 0) mlist = NULL else if (is.marker(marker)) mlist = list(marker) else if (is.markerList(marker)) mlist = marker else if (is.numeric(marker) || is.character(marker)) mlist = getMarkers(x, markers = marker) else stop2("Argument `marker` must be either:\n", " * an object of class `marker`\n", " * a list of `marker` objects\n", " * a character vector (names of attached markers)\n", " * an integer vector (indices of attached markers)") x = setMarkers(x, mlist) y = suppressMessages(addParents(x, labels(x)[1], father = "__FA__", mother = "__MO__", verbose = FALSE)) pdat = plot.ped(y, marker = y$MARKERS, sep = sep, missing = missing, showEmpty = showEmpty, labs = labs, title = title, col = col, aff = aff, carrier = carrier, hatched = hatched, shaded = shaded, deceased = deceased, starred = starred, textInside = textInside, textAbove = textAbove, margins = c(margins[1], 0, 0, 0), keep.par = TRUE, ...) usr = par("usr") rect(usr[1] - 0.1, pdat$y[3] - yadj, usr[2] + 0.1, usr[4], border = NA, col = "white") dotArgs.uneval = match.call(expand.dots = FALSE)$`...` dotArgs = lapply(dotArgs.uneval, eval.parent, n = 2L) cex = dotArgs[['cex']] fam = dotArgs$family if (!is.null(title)) title(title, cex.main = dotArgs$cex.main %||% cex, col.main = dotArgs$col.main, line = -2.8, font.main = dotArgs$font.main, family = fam, xpd = NA) if(!is.null(textAbove)) { text(pdat$x, pdat$y, labels = textAbove, cex = cex, col = col, font = dotArgs[['font']], family = fam, adj = c(0.5, -0.5), xpd = TRUE) } else if(!is.null(finb)) { finb.txt = sprintf("f = %.4g", finb) idx = 3 text(pdat$x[idx], pdat$y[idx], labels = finb.txt, family = fam, cex = cex, font = 3, adj = c(0.5, -0.5), xpd = TRUE) } invisible(pdat) } as_kinship2_pedigree = function(x, deceased = NULL, aff = NULL, twins = NULL, hints = NULL) { ped = as.data.frame(x) ped$sex[ped$sex == 0] = 3 affected = ifelse(ped$id %in% aff, 1, 0) status = ifelse(ped$id %in% deceased, 1, 0) arglist = list(id = ped$id, dadid = ped$fid, momid = ped$mid, sex = ped$sex, affected = affected, status = status, missid = 0) if(!is.null(twins)) arglist$relation = twins kinped = suppressWarnings(do.call(kinship2::pedigree, arglist)) kinped$hints = hints kinped } plot.pedList = function(x, ...) { plotPedList(x, frames = FALSE, ...) } plotPedList = function(plots, widths = NULL, groups = NULL, titles = NULL, frames = TRUE, fmar = NULL, frametitles = NULL, source = NULL, dev.height = NULL, dev.width = NULL, newdev = !is.null(dev.height) || !is.null(dev.width), verbose = FALSE, ...) { if(!is.null(frametitles)) { message("Argument `frametitles` is deprecated; use `titles` instead") titles = frametitles } if(!(isTRUE(frames) || isFALSE(frames))) { message("`frames` must be either TRUE or FALSE; use `groups` to specify framing groups") groups = frames frames = TRUE } if(!is.null(source)) { srcPed = plots[[source]] if(is.null(srcPed)) stop2("Unknown source pedigree: ", source) if(nMarkers(srcPed) == 0) stop2("The source pedigree has no attached markers") plots = lapply(plots, transferMarkers, from = srcPed) } deduceGroups = is.null(groups) if (deduceGroups) { groups = list() k = 0 } flatlist = list() for (p in plots) { if (is.ped(p)) newpeds = list(list(p)) else if (is.pedList(p)) newpeds = lapply(p, list) else { if (!is.ped(p[[1]])) stop2("First element must be a `ped` object", p[[1]]) newpeds = list(p) } flatlist = c(flatlist, newpeds) if (deduceGroups) { groups = c(groups, list(k + seq_along(newpeds))) k = k + length(newpeds) } } N = length(flatlist) NG = length(groups) for (v in groups) if (!is.numeric(v) || !isTRUE(all.equal.numeric(v, v[1]:v[length(v)]))) stop2("Each element of `groups` must consist of consecutive integers: ", v) dup = anyDuplicated.default(unlist(groups)) if (dup > 0) stop2("Plot occurring twice in `groups`: ", dup) grouptitles = titles %||% names(plots) if (!is.null(grouptitles) && length(grouptitles) != NG) stop2(sprintf("Length of `titles` (%d) does not equal number of groups (%d)", length(grouptitles), NG)) finalTitles = grouptitles %||% sapply(flatlist, function(p) p$title %||% "") hasTitles = any(nchar(finalTitles) > 0) if (is.null(widths)) widths = vapply(flatlist, function(p) ifelse(is.singleton(p[[1]]), 1, 2.5), 1) else { if(!is.numeric(widths) && !length(widths) %in% c(1,N)) stop2("`widths` must be a numeric of length either 1 or the total number of objects") widths = rep_len(widths, N) } maxGen = max(vapply(flatlist, function(arglist) generations(arglist[[1]]), 1)) extra.args = list(...) defaultmargins = if (N > 2) c(0, 4, 0, 4) else c(0, 2, 0, 2) plotlist = lapply(flatlist, function(arglist) { names(arglist)[1] = "x" for (parname in setdiff(names(extra.args), names(arglist))) arglist[[parname]] = extra.args[[parname]] arglist$title = NULL arglist$margins = arglist$margins %||% { g = generations(arglist$x) addMar = 2 * (maxGen - g + 1) defaultmargins + c(addMar, 0, addMar, 0) } arglist }) if (newdev) { dev.height = dev.height %||% {max(3, 1 * maxGen) + 0.3 * as.numeric(hasTitles)} dev.width = dev.width %||% {3 * N} dev.new(height = dev.height, width = dev.width, noRStudioGD = TRUE) } new.oma = if (hasTitles) c(0, 0, 3, 0) else c(0, 0, 0, 0) opar = par(oma = new.oma, xpd = NA) on.exit(par(opar)) if(verbose) { message("Group structure: ", toString(groups)) message("Relative widths: ", toString(widths)) message("Default margins: ", toString(defaultmargins)) message("Indiv. margins:") for(p in plotlist) message(" ", toString(p$margins)) message("Input width/height: ", toString(c(dev.width, dev.height))) message("Actual dimensions: ", toString(round(dev.size(),3))) } layout(rbind(1:N), widths = widths) for (arglist in plotlist) do.call(plot, arglist) ratios = c(0, cumsum(widths)/sum(widths)) grStartIdx = sapply(groups, function(v) v[1]) grStopIdx = sapply(groups, function(v) v[length(v)]) grStart = ratios[grStartIdx] grStop = ratios[grStopIdx + 1] if(frames) { fmar = fmar %||% min(0.05, 0.25/dev.size()[2]) margPix = grconvertY(0, from = "ndc", to = "device") * fmar margXnorm = grconvertX(margPix, from = "device", to = "ndc") frame_start = grconvertX(grStart + margXnorm, from = "ndc") frame_stop = grconvertX(grStop - margXnorm, from = "ndc") rect(xleft = frame_start, ybottom = grconvertY(1 - fmar, from = "ndc"), xright = frame_stop, ytop = grconvertY(fmar, from = "ndc"), xpd = NA) } if(hasTitles) { midpoints = if(!is.null(grouptitles)) (grStart + grStop)/2 else ratios[1:N] + diff(ratios)/2 cex.title = extra.args$cex.main %||% NA mtext(finalTitles, outer = TRUE, at = midpoints, cex = cex.title) } }
chi2cub1cov <-function(m,ordinal,covar,pai,gama){ covar<-as.matrix(covar) n<-length(ordinal) elle<-as.numeric(sort(unique(covar))) kappa<-length(elle) matfrel<-matrix(NA,nrow=kappa,ncol=m) matprob<-matrix(NA,nrow=kappa,ncol=m) chi2<-0 dev<-0 j<-1 while(j<=kappa){ quali<-which(covar==elle[j]) Wquali<-covar[quali] qualiord<-ordinal[quali] nk<- length(qualiord) matfrel[j,]=tabulate(qualiord,nbins=m)/nk nonzero<-which(matfrel[j,]!=0) paij<-pai csij<-1/(1+ exp(-gama[1]-gama[2]*elle[j])) matprob[j,]<-t(probcub00(m,paij,csij)) chi2<-chi2+nk*sum(((matfrel[j,]-matprob[j,])^2)/matprob[j,]) dev<- dev + 2*nk*sum(matfrel[j,nonzero]*log(matfrel[j,nonzero]/matprob[j,nonzero])) j<-j+1 } df<- kappa*(m-1)-(length(gama)+1) cat("Degrees of freedom ==> df =",df, "\n") cat("Pearson Fitting measure ==> X^2 =",chi2,"(p-val.=",1-pchisq(chi2,df),")","\n") cat("Deviance ==> Dev =",dev,"(p-val.=",1-pchisq(dev,df),")","\n") results<-list('chi2'=chi2,'df'=df,'dev'=dev) }
svc <- paws::route53resolver() test_that("list_resolver_dnssec_configs", { expect_error(svc$list_resolver_dnssec_configs(), NA) }) test_that("list_resolver_dnssec_configs", { expect_error(svc$list_resolver_dnssec_configs(MaxResults = 20), NA) }) test_that("list_resolver_endpoints", { expect_error(svc$list_resolver_endpoints(), NA) }) test_that("list_resolver_endpoints", { expect_error(svc$list_resolver_endpoints(MaxResults = 20), NA) }) test_that("list_resolver_query_log_config_associations", { expect_error(svc$list_resolver_query_log_config_associations(), NA) }) test_that("list_resolver_query_log_config_associations", { expect_error(svc$list_resolver_query_log_config_associations(MaxResults = 20), NA) }) test_that("list_resolver_query_log_configs", { expect_error(svc$list_resolver_query_log_configs(), NA) }) test_that("list_resolver_query_log_configs", { expect_error(svc$list_resolver_query_log_configs(MaxResults = 20), NA) }) test_that("list_resolver_rule_associations", { expect_error(svc$list_resolver_rule_associations(), NA) }) test_that("list_resolver_rule_associations", { expect_error(svc$list_resolver_rule_associations(MaxResults = 20), NA) }) test_that("list_resolver_rules", { expect_error(svc$list_resolver_rules(), NA) }) test_that("list_resolver_rules", { expect_error(svc$list_resolver_rules(MaxResults = 20), NA) })
NULL parse_dataset <- function(dataset, project_id = NULL) { .Deprecated("bq_dataset", package = "bigrquery") assert_that(is.string(dataset), is.null(project_id) || is.string(project_id)) first_split <- rsplit_one(dataset, ":") dataset_id <- first_split$right project_id <- first_split$left %||% project_id list(project_id = project_id, dataset_id = dataset_id) } format_dataset <- function(project_id, dataset) { .Deprecated("bq_dataset", package = "bigrquery") if (!is.null(project_id)) { dataset <- paste0(project_id, ":", dataset) } dataset } parse_table <- function(table, project_id = NULL) { .Deprecated("bq_table", package = "bigrquery") assert_that(is.string(table), is.null(project_id) || is.string(project_id)) dataset_id <- NULL first_split <- rsplit_one(table, ".") table_id <- first_split$right project_and_dataset <- first_split$left if (!is.null(project_and_dataset)) { second_split <- rsplit_one(project_and_dataset, ":") dataset_id <- second_split$right project_id <- second_split$left %||% project_id } list(project_id = project_id, dataset_id = dataset_id, table_id = table_id) } format_table <- function(project_id, dataset, table) { if (!is.null(project_id)) { dataset <- paste0(project_id, ":", dataset) } table <- paste0(dataset, ".", table) table } rsplit_one <- function(str, sep) { assert_that(is.string(str), is.string(sep)) parts <- strsplit(str, sep, fixed = TRUE)[[1]] right <- parts[length(parts)] if (length(parts) > 1) { left <- paste0(parts[-length(parts)], collapse = sep) } else { left <- NULL } list(left = left, right = right) }
asVPC.distanceW<-function(orig.data,sim.data,n.timebin,n.sim,n.hist, q.list=c(0.05,0.5,0.95), conf.level=0.95, X.name="TIME",Y.name="DV", opt.DV.point=FALSE, weight.flag=FALSE, Y.min=NULL, Y.max=NULL, only.med=FALSE, plot.flag=TRUE){ SIM.CIarea.1<-NULL SIM.CIarea.2<-NULL SIM.CIarea.3<-NULL DV.point<-NULL DV.quant<-NULL SIM.quant<-NULL ID<-NULL;G<-NULL bintot.N<-n.timebin*n.hist time.bin<-makeCOVbin(orig.data[,X.name],N.covbin=bintot.N) alpha<-1-conf.level Q.CI<-vector("list",3) orig.Q<-NULL bintot.N<-nrow(time.bin$COV.bin.summary) for(i in 1:bintot.N){ if(i<n.hist){ sel.id<-which(as.numeric(time.bin$COV.bin)<=i+n.hist-1) sel.id1<-which(as.numeric(time.bin$COV.bin)==i) mid.point<-median(orig.data[sel.id1,X.name]) low.point<-time.bin$COV.bin.summary$lower.COV[i] upper.point<-time.bin$COV.bin.summary$upper.COV[i] } else if(i >(bintot.N-n.hist+1)){ sel.id<-which(as.numeric(time.bin$COV.bin)>=i-(n.hist-1)) sel.id1<-which(as.numeric(time.bin$COV.bin)==i) mid.point<-median(orig.data[sel.id1,X.name]) low.point<-time.bin$COV.bin.summary$lower.COV[i] upper.point<-time.bin$COV.bin.summary$upper.COV[i] } else{ sel.id<-which(as.numeric(time.bin$COV.bin)>i-n.hist & as.numeric(time.bin$COV.bin)<i+n.hist) sel.id1<-which(as.numeric(time.bin$COV.bin)==i) mid.point<-median(orig.data[sel.id1,X.name]) low.point<-time.bin$COV.bin.summary$lower.COV[i] upper.point<-time.bin$COV.bin.summary$upper.COV[i] } if(bintot.N<length(table(orig.data$TIME))){ dist.temp<-abs(orig.data$TIME[sel.id]-mid.point) temp.weight<-(max(dist.temp)-dist.temp)/diff(range(dist.temp)) } else{ A<-as.numeric(time.bin$COV.bin[sel.id]) temp<-abs(A-median(range(A))) temp.weight<-(max(temp)+1)-temp temp.weight<-temp.weight/max(temp.weight) } if(weight.flag){ temp.quantile<-t(apply(sim.data[sel.id,],2,function(x) Hmisc::wtd.quantile(x,weight=temp.weight, prob=q.list,na.rm=TRUE))) temp.orig.q<-Hmisc::wtd.quantile(orig.data[,Y.name][sel.id], weight=temp.weight,prob=q.list,na.rm=TRUE) } else{ temp.quantile<-t(apply(sim.data[sel.id,],2,function(x) quantile(x,prob=q.list,na.rm=TRUE))) temp.orig.q<-quantile(orig.data[,Y.name][sel.id], prob=q.list,na.rm=TRUE) } orig.Q<-rbind(orig.Q,c(mid.point,temp.orig.q)) temp<-t(apply(temp.quantile,2,function(x) quantile(x,prob=c(alpha/2,0.5,1-alpha/2),na.rm=TRUE))) for(j in 1:length(q.list)) Q.CI[[j]]<-rbind(Q.CI[[j]],c(mid.point,low.point,upper.point,temp[j,])) } keep.name<-NULL for(j in 1:length(q.list)){ keep.name<-c(keep.name,paste("Q",round(q.list[j]*100),"th",sep="")) colnames(Q.CI[[j]])<-c("mid","Lower","upper",colnames(Q.CI[[j]])[4:6]) } names(Q.CI)<-keep.name colnames(orig.Q)<-c("mid","Y1","Y2","Y3") orig.Q<-data.frame(orig.Q) plot.data<-data.frame(orig.data,X=orig.data[,X.name],Y=orig.data[,Y.name]) if(is.null(Y.min)) Y.min<-min(c(plot.data$Y,Q.CI[[1]][,4]),na.rm=T) if(is.null(Y.max)) Y.max<-max(c(plot.data$Y,Q.CI[[length(Q.CI)]][,6]),na.rm=T) P.temp<-ggplot(plot.data,aes(x=X,y=Y))+ylim(Y.min,Y.max)+ labs(x=X.name,y=Y.name)+theme_bw()+ theme(panel.grid.major=element_line(colour="white"))+ theme(panel.grid.minor=element_line(colour="white")) test.LU<-Q.CI[[1]][,2:3] test.data.tot<-Q.CI X.temp<-c(test.LU[,1],test.LU[nrow(test.LU),2]) n.temp<-nrow(test.LU) X<-c(test.LU[1,1],rep(test.LU[2:n.temp,1],each=2),test.LU[n.temp,2]) X<-c(X,X[length(X):1]) if(!only.med){ test.data<-test.data.tot[[1]] Y<-c(rep(test.data[,4],each=2),rep(test.data[(n.temp:1),6],each=2)) SIM.CIarea.1<-data.frame(X=X,Y=Y,ID=1) P.temp<-P.temp+geom_polygon(data= SIM.CIarea.1, aes(x=X,y=Y,group=ID,fill=ID), fill="gray80",colour="gray80") test.data<-test.data.tot[[3]] Y<-c(rep(test.data[,4],each=2),rep(test.data[(n.temp:1),6],each=2)) SIM.CIarea.3<-data.frame(X=X,Y=Y,ID=1) P.temp<-P.temp+geom_polygon(data= SIM.CIarea.3, aes(x=X,y=Y,group=ID,fill=ID), fill="gray80",colour="gray80") } test.data<-test.data.tot[[2]] Y<-c(rep(test.data[,4],each=2),rep(test.data[(n.temp:1),6],each=2)) SIM.CIarea.2<-data.frame(X=X,Y=Y,ID=1) P.temp<-P.temp+geom_polygon(data= SIM.CIarea.2, aes(x=X,y=Y,group=ID,fill=ID), fill="gray50",colour="gray50") if(opt.DV.point==TRUE){ P.temp<-P.temp+geom_point(,color="grey30",size=2,alpha=0.5) DV.point<-data.frame(X=orig.data[,X.name],Y=orig.data[,Y.name]) } DV.quant<-data.frame(X=rep(orig.Q$mid,length(q.list)), G=factor(rep(paste("Q",round(q.list*100),"th",sep=""), each=nrow(orig.Q))), Y=unlist(orig.Q[,-1])) P.temp<-P.temp+geom_line(data=DV.quant[DV.quant$G!="Q50th",], aes(x=X,y=Y,group=G),linetype=2, size=1,color="black")+ geom_line(data=DV.quant[DV.quant$G=="Q50th",], aes(x=X,y=Y,group=G),linetype=1, size=1,color="black") colnames(orig.Q)<-c("X.mid",paste("Q",round(q.list*100),"th",sep="")) if(plot.flag){ P.temp } else{ return(list(SIM.CIarea.1=SIM.CIarea.1,SIM.CIarea.2=SIM.CIarea.2, SIM.CIarea.3=SIM.CIarea.3,DV.point=DV.point, DV.quant=DV.quant,SIM.quant=SIM.quant)) } }
context("S4Types") test_that("Type with defaults", { Test(x = 1, y = list(z = 1, a = list(1, 3))) %type% { stopifnot(.Object@x > 0) .Object } expect_error(Test(x = 0)) expect_true(Test()@x == 1) expect_true(Test(2)@x == 2) expect_true(identical(Test()@y$z, 1)) expect_true(typeof(Test()) == "S4") removeClass("Test", environment()) }) test_that("Type with ANY", { Test(x = numeric(), y = NULL) %type% .Object expect_true(is.null(Test()@y)) expect_true(is.numeric(Test()@x)) x <- Test() x@y <- Test() expect_true(is(x@y, "Test")) removeClass("Test", environment()) }) test_that("Class without slot", { setClass("Empty", prototype = prototype(), where = environment()) Empty : Test() %type% .Object expect_true(is(Test(), "Test")) removeClass("Test", environment()) }) test_that("Type inheritance", { Test4(x = 1, y = list()) %type% { stopifnot(.Object@x > 0) .Object } Test4:Child(z = " ") %type% { stopifnot(nchar(.Object@z) > 0) .Object } expect_error(Child(x = 0)) expect_true(Child()@x == 1) expect_true(identical(Child()@y, list())) expect_true(typeof(Test4()) == "S4") expect_true(is(Child(), "Child")) expect_true(inherits(Child(), "Test4")) expect_true(identical(Child(z = "char")@z, "char")) expect_error(Child(z = "")) expect_equal(Child(x = 5)@x, 5) removeClass("Child", environment()) Test2(z = "") %type% .Object Test4 : Test2 : Child() %type% .Object expect_true(Child()@x == 1) expect_true(identical(Child()@y, list())) expect_true(inherits(Child(), "Test4")) expect_true(inherits(Child(), "Test2")) expect_true(identical(Child(z = "char")@z, "char")) removeClass("Test2", environment()) removeClass("Test4", environment()) removeClass("Child", environment()) }) test_that("Types can inherit S3 classes", { numeric : Test(x = 1, .Data = 2) %type% { .Object } expect_true(Test() == 2) expect_true(Test(4, 3) == 3) numeric : Test(x = 1) %type% .Object expect_equal(Test()@.Data, numeric()) expect_true(Test(4, 3) == 3) removeClass("Test", environment()) }) test_that("Type with VIRTUAL", { VIRTUAL:Type() %type% .Object names.Type <- function(x) { slotNames(x) } Type:Test(x = 1) %type% .Object expect_true(names(Test(x = 2)) == "x") expect_true(inherits(Test(), "Type")) expect_error(new("Type")) removeClass("Test", environment()) removeClass("Type", environment()) }) test_that("Type with quoted class names", { 'character' : "Test6"(names = character()) %type% .Object expect_true(inherits(Test6(), "character")) expect_is(Test6(), "Test6") removeClass("Test6", environment()) }) test_that("Type with explicit class names", { Test7(x ~ numeric, y = list(), z) %type% .Object expect_error(Test7(x = 0)) expect_true(Test7(1, list(), NULL)@x == 1) expect_true(identical(Test7(1, list(), NULL)@y, list())) expect_true(typeof(Test7(1, list(), NULL)) == "S4") removeClass("Test7", environment()) }) test_that("Types can deal with class unions", { 'numeric | character' : Test5( x ~ 'numeric | character | list' ) %type% .Object expect_is(Test5(1, 2)@x, "numeric") expect_is(Test5("", "")@x, "character") expect_is(Test5(list())@x, "list") })
make_vectorized_smoof <- function(prob.name, ...){ if(!("smoof" %in% rownames(utils::installed.packages()))){ stop("Please install package 'smoof' to continue") } else { my.args <- as.list(sys.call())[-1] my.args$prob.name <- NULL if (length(my.args) == 0) my.args <- list() myfun <- do.call(utils::getFromNamespace(x = paste0("make", toupper(prob.name), "Function"), ns = "smoof"), args = my.args) myfun2 <- function(X, ...){ t(apply(X, MARGIN = 1, FUN = myfun)) } return(myfun2) } }
library(LearnBayes) data(birdextinct) attach(birdextinct) logtime=log(time) plot(nesting,logtime) out = (logtime > 3) text(nesting[out], logtime[out], label=species[out], pos = 2) S=readline(prompt="Type <Return> to continue : ") windows() plot(jitter(size),logtime,xaxp=c(0,1,1)) S=readline(prompt="Type <Return> to continue : ") windows() plot(jitter(status),logtime,xaxp=c(0,1,1)) fit=lm(logtime~nesting+size+status,data=birdextinct,x=TRUE,y=TRUE) summary(fit) theta.sample=blinreg(fit$y,fit$x,5000) S=readline(prompt="Type <Return> to continue : ") windows() par(mfrow=c(2,2)) hist(theta.sample$beta[,2],main="NESTING", xlab=expression(beta[1])) hist(theta.sample$beta[,3],main="SIZE", xlab=expression(beta[2])) hist(theta.sample$beta[,4],main="STATUS", xlab=expression(beta[3])) hist(theta.sample$sigma,main="ERROR SD", xlab=expression(sigma)) apply(theta.sample$beta,2,quantile,c(.05,.5,.95)) quantile(theta.sample$sigma,c(.05,.5,.95)) S=readline(prompt="Type <Return> to continue : ") cov1=c(1,4,0,0) cov2=c(1,4,1,0) cov3=c(1,4,0,1) cov4=c(1,4,1,1) X1=rbind(cov1,cov2,cov3,cov4) mean.draws=blinregexpected(X1,theta.sample) c.labels=c("A","B","C","D") windows() par(mfrow=c(2,2)) for (j in 1:4) hist(mean.draws[,j], main=paste("Covariate set",c.labels[j]),xlab="log TIME") S=readline(prompt="Type <Return> to continue : ") cov1=c(1,4,0,0) cov2=c(1,4,1,0) cov3=c(1,4,0,1) cov4=c(1,4,1,1) X1=rbind(cov1,cov2,cov3,cov4) pred.draws=blinregpred(X1,theta.sample) c.labels=c("A","B","C","D") windows() par(mfrow=c(2,2)) for (j in 1:4) hist(pred.draws[,j], main=paste("Covariate set",c.labels[j]),xlab="log TIME") S=readline(prompt="Type <Return> to continue : ") pred.draws=blinregpred(fit$x,theta.sample) pred.sum=apply(pred.draws,2,quantile,c(.05,.95)) par(mfrow=c(1,1)) ind=1:length(logtime) windows() matplot(rbind(ind,ind),pred.sum,type="l",lty=1,col=1, xlab="INDEX",ylab="log TIME") points(ind,logtime,pch=19) out=(logtime>pred.sum[2,]) text(ind[out], logtime[out], label=species[out], pos = 4) S=readline(prompt="Type <Return> to continue : ") prob.out=bayesresiduals(fit,theta.sample,2) windows() par(mfrow=c(1,1)) plot(nesting,prob.out) out = (prob.out > 0.35) text(nesting[out], prob.out[out], label=species[out], pos = 4)
options(warn=2) library(sensitivityPStrat) data(vaccine.trial) vaccine.trial$followup.yearsPreART <- runif(2000, 0.5, 3) vaccine.trial.withNA <- vaccine.trial set.seed(12345) for(i in seq_len(20)) vaccine.trial.withNA[sample(nrow(vaccine.trial), size=1, replace=TRUE), sample(ncol(vaccine.trial), size=1)] <- NA set.seed(12345) sens.analysis<-with(vaccine.trial, sensitivitySGD(z=treatment, s=hiv.outcome, y=followup.yearsART, d=ARTinitiation, beta0=c(0,-.25,-.5), beta1=c(0, -.25, -.5), phi=c(0.95, 0.90, 1), tau=3, time.points=c(2,3), selection="infected", trigger="initiated ART", groupings=c("placebo","vaccine"), ci=.95, ci.method="bootstrap", N.boot=50) ) stopifnot(is.list(sens.analysis)) stopifnot(inherits(sens.analysis,"sensitivity")) stopifnot(inherits(sens.analysis,"sensitivity.1d")) stopifnot(all(c("Fas0", "Fas1", "beta0", "alphahat0", "beta1", "alphahat1") %in% names(sens.analysis))) stopifnot(is.numeric(sens.analysis$alphahat0)) stopifnot(is.numeric(sens.analysis$beta0)) stopifnot(is.numeric(sens.analysis$alphahat1)) stopifnot(is.numeric(sens.analysis$beta1)) stopifnot(with(sens.analysis, Fas0[1, 1](2) - Fas1[1, 1](2) == SCE[1,1,1,1])) sens.analysis set.seed(12345) sens.analysis<-with(vaccine.trial.withNA, sensitivitySGD(z=treatment, s=hiv.outcome, y=followup.yearsART, d=ARTinitiation, beta0=c(0,-.25,-.5), beta1=c(0, -.25, -.5), phi=c(0.95, 0.90, 1), tau=3, time.points=c(2,3), selection="infected", trigger="initiated ART", groupings=c("placebo","vaccine"), ci=.95, na.rm=TRUE, ci.method="bootstrap", N.boot=50) ) sens.analysis set.seed(12345) sens.analysis<-with(vaccine.trial, sensitivitySGD(z=treatment, s=hiv.outcome, y=followup.yearsART, v=followup.yearsPreART, d=ARTinitiation, beta0=c(0,-.25,-.5), beta1=c(0, -.25, -.5), phi=c(0.95, 0.90, 1), tau=3, followup.time=2.5, time.points=c(2,3), selection="infected", trigger="initiated ART", groupings=c("placebo","vaccine"), ci=.95, ci.method="bootstrap", N.boot=50) ) sens.analysis set.seed(12345) sens.analysis<-with(vaccine.trial.withNA, sensitivitySGD(z=treatment, s=hiv.outcome, y=followup.yearsART, v=followup.yearsPreART, d=ARTinitiation, beta0=c(0,-.25,-.5), beta1=c(0, -.25, -.5), phi=c(0.95, 0.90, 1), tau=3, followup.time=2.5, time.points=c(2,3), selection="infected", trigger="initiated ART", groupings=c("placebo","vaccine"), ci=.95, ci.method="bootstrap", N.boot=50, na.rm=TRUE) ) sens.analysis set.seed(12345) sens.analysis<-with(vaccine.trial, sensitivitySGD(z=treatment, s=hiv.outcome, y=followup.yearsART, d=ARTinitiation, beta0=c(0,-.25,-.5), beta1=c(0, -.25, -.5), phi=c(1), tau=3, time.points=c(2,3), selection="infected", trigger="initiated ART", groupings=c("placebo","vaccine"), ci=.95, ci.method="") ) sens.analysis
implFSSEM = function(data = NULL, method = c("CV", "BIC")) { method = match.arg(method) gamma = cv.multiRegression( data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 50, nfold = 5, data$Vars$n, data$Vars$p, data$Vars$k ) fit = multiRegression( data$Data$X, data$Data$Y, data$Data$Sk, gamma, data$Vars$n, data$Vars$p, data$Vars$k, trans = FALSE ) Xs = data$Data$X Ys = data$Data$Y Sk = data$Data$Sk if (method == "CV") { cvfitc <- cv.multiFSSEMiPALM( Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk, sigma2 = fit$sigma2, nlambda = 10, nrho = 10, nfold = 5, p = data$Vars$p, q = data$Vars$k, wt = T ) fitc <- multiFSSEMiPALM( Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk, sigma2 = fit$sigma2, lambda = cvfitc$lambda, rho = cvfitc$rho, Wl = inverseB(fit$Bs), Wf = flinvB(fit$Bs), p = data$Vars$p, maxit = 100, threshold = 1e-5, sparse = T, verbose = T, trans = T, strict = T ) } else { opt = opt.multiFSSEMiPALM( Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk, sigma2 = fit$sigma2, nlambda = 10, nrho = 10, p = data$Vars$p, q = data$Vars$k, wt = T ) fitc = opt$fit } TPR4GRN = (TPR(fitc$B[[1]], data$Vars$B[[1]], PREC = 1e-3) + TPR(fitc$B[[2]], data$Vars$B[[2]], PREC = 1e-3)) / 2 FDR4GRN = (FDR(fitc$B[[1]], data$Vars$B[[1]], PREC = 1e-3) + FDR(fitc$B[[2]], data$Vars$B[[2]], PREC = 1e-3)) / 2 TPR4DiffGRN = TPR(fitc$B[[1]] - fitc$B[[2]], data$Vars$B[[1]] - data$Vars$B[[2]], PREC = 1e-3) FDR4DiffGRN = FDR(fitc$B[[1]] - fitc$B[[2]], data$Vars$B[[1]] - data$Vars$B[[2]], PREC = 1e-3) data.frame( TPR = TPR4GRN, FDR = FDR4GRN, TPRofDiffGRN = TPR4DiffGRN, FDRofDiffGRN = FDR4DiffGRN ) } transx = function(data) { Sk = data$Data$Sk X = data$Data$X lapply(Sk, function(s) { X[s, ] }) }
library(RobStatTM) options(digits=4) trimean<-function(x,alfa) { n=length(x); m=floor(n*alfa) xs=sort(x); mu=mean(xs[(m+1):(n-m)]) xs=xs-mu; A=m*xs[m]^2 +m*xs[n-m+1]^2 +sum(xs[(m+1):(n-m)]^2) mu.std=A/(n-2*m); mu.std=sqrt(mu.std/n) return(list(mu=mu, mu.std=mu.std)) } n=24; qn=qnorm(0.975) data(flour) x = as.vector(flour[,1]) resu = locScaleM(x,eff = 0.95) muM=resu$mu; muMst=resu$std.mu; h=muMst*qn interM=c(muM-h, muM+h) xbar=mean(x); smed=sd(x)/sqrt(n); h=smed*qn intermean=c(xbar-h,xbar+h) resu=trimean(x,0.25) mu25=resu$mu; ss25=resu$mu.std; h=ss25*qn inter25=c(mu25-h,mu25+h) print("Mean, bisquare M- estimator, and 25% trimmed mean") print(c(xbar,muM,mu25)) print("Their estimated standard deviations") print(c(smed, muMst, ss25)) print("Their 0.95 confidence intervals") print(rbind(intermean, interM, inter25))
cluster_groups <- function(data, cols, group_cols = NULL, scale_min_fn = function(x) { quantile(x, 0.025) }, scale_max_fn = function(x) { quantile(x, 0.975) }, keep_centroids = FALSE, multiplier = 0.05, suffix = "_clustered", keep_original = TRUE, overwrite = FALSE) { assert_collection <- checkmate::makeAssertCollection() checkmate::assert_data_frame(data, add = assert_collection) checkmate::assert_character( cols, min.len = 1, min.chars = 1, unique = TRUE, add = assert_collection ) checkmate::assert_character( group_cols, min.len = 1, min.chars = 1, unique = TRUE, null.ok = TRUE, add = assert_collection ) checkmate::assert_function(scale_min_fn, add = assert_collection) checkmate::assert_function(scale_max_fn, add = assert_collection) checkmate::assert_flag(keep_centroids, add = assert_collection) checkmate::assert_number(multiplier, add = assert_collection) checkmate::assert_flag(keep_original, add = assert_collection) checkmate::assert_string(suffix, add = assert_collection) checkmate::reportAssertions(assert_collection) checkmate::assert_names(colnames(data), must.include = c(cols, group_cols), add = assert_collection ) checkmate::reportAssertions(assert_collection) if (!is.null(group_cols) && length(intersect(group_cols, cols)) > 0) { assert_collection$push("'group_cols' cannot contain a column from 'cols'.") checkmate::reportAssertions(assert_collection) } if (!dplyr::is_grouped_df(data) && is.null(group_cols)) { assert_collection$push("when 'group_cols' is 'NULL', 'data' should be grouped.") checkmate::reportAssertions(assert_collection) } if (dplyr::is_grouped_df(data) && !is.null(group_cols)) { assert_collection$push("'data' is already grouped but 'group_cols' is not 'NULL'") checkmate::reportAssertions(assert_collection) } checkmate::reportAssertions(assert_collection) if (!isTRUE(overwrite)) { purrr::map(.x = cols, .f = ~ { check_overwrite_(data = data, nm = paste0(.x, suffix), overwrite = overwrite) }) } if (!dplyr::is_grouped_df(data)) { data <- dplyr::group_by(data, !!!rlang::syms(group_cols)) } else { group_cols <- colnames(dplyr::group_keys(data)) } expanded <- expand_distances( data = data, cols = cols, multiplier = multiplier, origin_fn = centroid, suffix = "", overwrite = TRUE, keep_original = keep_original, mult_col_name = NULL, origin_col_name = NULL ) scaled <- plyr::llply(cols, function(cl) { min_max_scale( x = expanded[[cl]], new_min = scale_min_fn(data[[cl]]), new_max = scale_max_fn(data[[cl]]) ) }) %>% setNames(cols) %>% dplyr::bind_cols() clustered <- dplyr::bind_cols( scaled, expanded[, colnames(expanded) %ni% cols, drop = FALSE] ) if (isTRUE(keep_centroids)) { clustered <- transfer_centroids( to_data = clustered, from_data = data, cols = cols, group_cols = group_cols ) } if (suffix != "") { colnames(clustered) <- purrr::map_chr(.x = colnames(clustered), .f = ~ { ifelse(.x %in% cols, paste0(.x, suffix), .x) }) if (isTRUE(keep_original)) { clustered <- dplyr::bind_cols( data[, cols, drop = FALSE], clustered ) } } else if (!isTRUE(keep_original)) { exclude <- setdiff(colnames(data), colnames(clustered)) if (length(exclude) > 0) { clustered <- clustered[, colnames(clustered) %ni% exclude, drop = FALSE] } } clustered %>% dplyr::as_tibble() }
library(wikilake) data(milakes) res_df <- milakes library(sp) coordinates(res_df) <- ~ Lon + Lat map("state", region = "michigan", mar = c(0, 0, 0, 0)) points(res_df, col = "red", pch = 19) hist(log(res_df$`Max. depth`), main = "", xlab = "Max depth (log(m))")
req_template <- function(req, template, ..., .env = parent.frame()) { check_request(req) check_string(template, "`template`") pieces <- strsplit(template, " ")[[1]] if (length(pieces) == 1) { template <- pieces[[1]] } else if (length(pieces) == 2) { req <- req_method(req, pieces[[1]]) template <- pieces[[2]] } else { abort(c( "Can't parse template `template`", i = "Should have form like 'GET /a/b/c' or 'a/b/c/'" )) } dots <- list2(...) if (length(dots) > 0 && !is_named(dots)) { abort("All elements of ... must be named") } path <- template_process(template, dots, .env) req_url_path(req, path) } template_process <- function(template, dots = list(), env = parent.frame()) { type <- template_type(template) vars <- template_vars(template, type) vals <- map_chr(vars, template_val, dots = dots, env = env) for (i in seq_along(vars)) { pattern <- switch(type, colon = paste0(":", vars[[i]]), uri = paste0("{", vars[[i]], "}") ) template <- gsub(pattern, vals[[i]], template, fixed = TRUE) } template } template_val <- function(name, dots, env) { if (has_name(dots, name)) { val <- dots[[name]] } else if (env_has(env, name, inherit = TRUE)) { val <- env_get(env, name, inherit = TRUE) } else { abort(glue("Can't find template variable '{name}'")) } if (!is.atomic(val) || length(val) != 1) { abort(glue("Template variable '{name}' is not a simple scalar value")) } as.character(val) } template_vars <- function(x, type) { if (type == "none") return(character()) pattern <- switch(type, colon = ":([a-zA-Z0-9_]+)", uri = "\\{(\\w+?)\\}" ) loc <- gregexpr(pattern, x, perl = TRUE)[[1]] start <- attr(loc, "capture.start") end <- start + attr(loc, "capture.length") - 1 substring(x, start, end) } template_type <- function(x) { if (grepl(":", x)) { "colon" } else if (grepl("\\{\\w+?\\}", x)) { "uri" } else { "none" } }
SRMPInferenceApprox <- function(performanceTable, criteriaMinMax, maxProfilesNumber, preferencePairs, indifferencePairs = NULL, alternativesIDs = NULL, criteriaIDs = NULL, timeLimit = 60, populationSize = 20, mutationProb = 0.1){ if (!(is.matrix(performanceTable) || is.data.frame(performanceTable))) stop("performanceTable should be a matrix or a data frame") if(is.null(colnames(performanceTable))) stop("performanceTable columns should be named") if (!is.matrix(preferencePairs) || is.data.frame(preferencePairs)) stop("preferencePairs should be a matrix or a data frame") if (!(is.null(indifferencePairs) || is.matrix(indifferencePairs) || is.data.frame(indifferencePairs))) stop("indifferencePairs should be a matrix or a data frame") if (!(is.vector(criteriaMinMax))) stop("criteriaMinMax should be a vector") if(!all(sort(colnames(performanceTable)) == sort(names(criteriaMinMax)))) stop("criteriaMinMax should be named as the columns of performanceTable") if (!(is.numeric(maxProfilesNumber))) stop("maxProfilesNumber should be numberic") maxProfilesNumber <- as.integer(maxProfilesNumber) if (!(is.null(timeLimit))) { if(!is.numeric(timeLimit)) stop("timeLimit should be numeric") if(timeLimit <= 0) stop("timeLimit should be strictly positive") } if (!(is.null(populationSize))) { if(!is.numeric(populationSize)) stop("populationSize should be numeric") if(populationSize < 10) stop("populationSize should be at least 10") } if (!(is.null(mutationProb))) { if(!is.numeric(mutationProb)) stop("mutationProb should be numeric") if(mutationProb < 0 || mutationProb > 1) stop("mutationProb should be between 0 and 1") } if (!(is.null(alternativesIDs) || is.vector(alternativesIDs))) stop("alternativesIDs should be a vector") if (!(is.null(criteriaIDs) || is.vector(criteriaIDs))) stop("criteriaIDs should be a vector") if(dim(preferencePairs)[2] != 2) stop("preferencePairs should have two columns") if(!is.null(indifferencePairs)) if(dim(indifferencePairs)[2] != 2) stop("indifferencePairs should have two columns") if (!(maxProfilesNumber > 0)) stop("maxProfilesNumber should be strictly pozitive") if (!is.null(alternativesIDs)){ performanceTable <- performanceTable[alternativesIDs,] preferencePairs <- preferencePairs[(preferencePairs[,1] %in% alternativesIDs) & (preferencePairs[,2] %in% alternativesIDs),] if(dim(preferencePairs)[1] == 0) preferencePairs <- NULL if(!is.null(indifferencePairs)) { indifferencePairs <- indifferencePairs[(indifferencePairs[,1] %in% alternativesIDs) & (indifferencePairs[,2] %in% alternativesIDs),] if(dim(indifferencePairs)[1] == 0) indifferencePairs <- NULL } } if (!is.null(criteriaIDs)){ performanceTable <- performanceTable[,criteriaIDs] criteriaMinMax <- criteriaMinMax[criteriaIDs] } if (is.null(dim(performanceTable))) stop("less than 2 criteria or 2 alternatives") if (is.null(dim(preferencePairs))) stop("preferencePairs is empty or the provided alternativesIDs have filtered out everything from within") numAlt <- dim(performanceTable)[1] numCrit <- dim(performanceTable)[2] minEvaluations <- apply(performanceTable, 2, min) maxEvaluations <- apply(performanceTable, 2, max) outranking <- function(alternativePerformances1, alternativePerformances2, profilePerformances, criteriaWeights, lexicographicOrder, criteriaMinMax){ for (k in lexicographicOrder) { weightedSum1 <- 0 weightedSum2 <- 0 for (i in 1:numCrit) { if (criteriaMinMax[i] == "min") { if (alternativePerformances1[i] %<=% profilePerformances[k,i]) weightedSum1 <- weightedSum1 + criteriaWeights[i] if (alternativePerformances2[i] %<=% profilePerformances[k,i]) weightedSum2 <- weightedSum2 + criteriaWeights[i] } else { if (alternativePerformances1[i] %>=% profilePerformances[k,i]) weightedSum1 <- weightedSum1 + criteriaWeights[i] if (alternativePerformances2[i] %>=% profilePerformances[k,i]) weightedSum2 <- weightedSum2 + criteriaWeights[i] } } if(weightedSum1 > weightedSum2) return(1) else if(weightedSum1 < weightedSum2) return(-1) } return(0) } InitializePopulation <- function() { population <- list() for(i in 1:populationSize) { values <- c(0,sort(runif(numCrit-1,0,1)),1) weights <- sapply(1:numCrit, function(i) return(values[i+1]-values[i])) names(weights) <- colnames(performanceTable) profilesNumber <- sample(1:maxProfilesNumber, 1) profiles <- NULL for(j in 1:numCrit) { if(criteriaMinMax[j] == 'max') profiles <- cbind(profiles,sort(runif(profilesNumber,minEvaluations[j],maxEvaluations[j]))) else profiles <- cbind(profiles,sort(runif(profilesNumber,minEvaluations[j],maxEvaluations[j]), decreasing = TRUE)) } colnames(profiles) <- colnames(performanceTable) lexicographicOrder <- sample(1:profilesNumber, profilesNumber) population[[length(population)+1]] <- list(criteriaWeights = weights, referenceProfilesNumber = profilesNumber, referenceProfiles = profiles, lexicographicOrder = lexicographicOrder) } return(population) } Fitness <- function(individual) { total <- 0 ok <- 0 for (i in 1:dim(preferencePairs)[1]){ comparison <- outranking(performanceTable[preferencePairs[i,1],],performanceTable[preferencePairs[i,2],],individual$referenceProfiles, individual$criteriaWeights, individual$lexicographicOrder, criteriaMinMax) if(comparison == 1) ok <- ok + 1 total <- total + 1 } if(!is.null(indifferencePairs)) for (i in 1:dim(indifferencePairs)[1]){ comparison <- outranking(performanceTable[indifferencePairs[i,1],],performanceTable[indifferencePairs[i,2],],individual$referenceProfiles, individual$criteriaWeights, individual$lexicographicOrder, criteriaMinMax) if(comparison == 0) ok <- ok + 1 total <- total + 1 } return(ok/total) } Reproduce <- function(parents) { children <- list() for(k in 1:maxProfilesNumber) { kParents <- Filter(function(element){if(element$referenceProfilesNumber == k) return(TRUE) else return(FALSE)}, parents) if(!is.null(kParents)) { numPairs <- as.integer(length(kParents)/2) if(numPairs > 0) { pairings <- matrix(sample(1:length(kParents),numPairs*2),numPairs,2) for(i in 1:numPairs) { parent1 <- kParents[[pairings[i,1]]] parent2 <- kParents[[pairings[i,2]]] criteria <- sample(colnames(performanceTable), numCrit) pivot <- runif(1,1,numCrit - 1) profiles1 <- matrix(rep(0,numCrit*k),k,numCrit) profiles2 <- matrix(rep(0,numCrit*k),k,numCrit) colnames(profiles1) <- colnames(performanceTable) colnames(profiles2) <- colnames(performanceTable) for(l in 1:k) for(j in 1:numCrit) { if(j <= pivot) { profiles1[l,criteria[j]] <- parent1$referenceProfiles[l,criteria[j]] profiles2[l,criteria[j]] <- parent2$referenceProfiles[l,criteria[j]] } else { profiles1[l,criteria[j]] <- parent2$referenceProfiles[l,criteria[j]] profiles2[l,criteria[j]] <- parent1$referenceProfiles[l,criteria[j]] } } children[[length(children)+1]] <- list(criteriaWeights = parent1$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = parent1$referenceProfiles, lexicographicOrder = parent1$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent2$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = parent2$referenceProfiles, lexicographicOrder = parent2$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent1$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = parent2$referenceProfiles, lexicographicOrder = parent1$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent1$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = parent2$referenceProfiles, lexicographicOrder = parent1$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent1$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = profiles1, lexicographicOrder = parent1$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent1$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = profiles2, lexicographicOrder = parent1$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent2$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = profiles1, lexicographicOrder = parent1$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent2$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = profiles2, lexicographicOrder = parent1$lexicographicOrder) if(!all(parent1$lexicographicOrder == parent2$lexicographicOrder)) { children[[length(children)+1]] <- list(criteriaWeights = parent1$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = parent2$referenceProfiles, lexicographicOrder = parent2$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent1$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = parent2$referenceProfiles, lexicographicOrder = parent2$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent1$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = profiles1, lexicographicOrder = parent2$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent1$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = profiles2, lexicographicOrder = parent2$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent2$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = profiles1, lexicographicOrder = parent2$lexicographicOrder) children[[length(children)+1]] <- list(criteriaWeights = parent2$criteriaWeights, referenceProfilesNumber = k, referenceProfiles = profiles2, lexicographicOrder = parent2$lexicographicOrder) } } } if(length(kParents)%%2 == 1) children[[length(children)+1]] <- kParents[[length(kParents)]] } } numChildren <- length(children) for(i in 1:numChildren) { if(runif(1,0,1) < mutationProb) { if(sample(c(FALSE,TRUE), 1) && !(children[[i]]$referenceProfilesNumber == maxProfilesNumber)) { children[[i]]$referenceProfilesNumber <- children[[i]]$referenceProfilesNumber + 1 k <- sample(1:children[[i]]$referenceProfilesNumber, 1) minVals <- minEvaluations maxVals <- maxEvaluations if(k < children[[i]]$referenceProfilesNumber) { for(criterion in colnames(performanceTable)) { if(criteriaMinMax[criterion] == 'max') maxVals[criterion] <- children[[i]]$referenceProfiles[k,criterion] else minVals[criterion] <- children[[i]]$referenceProfiles[k,criterion] } } if(k > 1) { for(criterion in colnames(performanceTable)) { if(criteriaMinMax[criterion] == 'max') minVals[criterion] <- children[[i]]$referenceProfiles[k-1,criterion] else maxVals[criterion] <- children[[i]]$referenceProfiles[k-1,criterion] } } newProfile <- matrix(sapply(1:numCrit, function(j){return(runif(1,minVals[j],maxVals[j]))}), nrow = 1, ncol = numCrit) colnames(newProfile) <- colnames(performanceTable) if(k == 1) children[[i]]$referenceProfiles <- rbind(newProfile , children[[i]]$referenceProfiles) else if(k == children[[i]]$referenceProfilesNumber) children[[i]]$referenceProfiles <- rbind(children[[i]]$referenceProfiles, newProfile) else children[[i]]$referenceProfiles <- rbind(children[[i]]$referenceProfiles[1:(k-1),], newProfile , children[[i]]$referenceProfiles[k:(children[[i]]$referenceProfilesNumber-1),]) children[[i]]$lexicographicOrder <- sapply(children[[i]]$lexicographicOrder, function(val){if(val >= k) return(val + 1) else return(val)}) i1 <- sample(1:children[[i]]$referenceProfilesNumber, 1) if(i1 == 1) children[[i]]$lexicographicOrder <- c(k,children[[i]]$lexicographicOrder) else if(i1 == children[[i]]$referenceProfilesNumber) children[[i]]$lexicographicOrder <- c(children[[i]]$lexicographicOrder,k) else children[[i]]$lexicographicOrder <- c(children[[i]]$lexicographicOrder[1:(i1-1)],k,children[[i]]$lexicographicOrder[i1:(children[[i]]$referenceProfilesNumber-1)]) } else if(!(children[[i]]$referenceProfilesNumber == 1)) { children[[i]]$referenceProfilesNumber <- children[[i]]$referenceProfilesNumber - 1 k <- sample(1:(children[[i]]$referenceProfilesNumber + 1), 1) children[[i]]$referenceProfiles <- children[[i]]$referenceProfiles[-k,,drop=FALSE] children[[i]]$lexicographicOrder <- children[[i]]$lexicographicOrder[children[[i]]$lexicographicOrder != k] children[[i]]$lexicographicOrder <- sapply(children[[i]]$lexicographicOrder, function(val){if(val > k) return(val - 1) else return(val)}) } } for(k in 1:children[[i]]$referenceProfilesNumber) { for(criterion in colnames(performanceTable)) { if(runif(1,0,1) < mutationProb) { maxVal <- maxEvaluations[criterion] minVal <- minEvaluations[criterion] if(k < children[[i]]$referenceProfilesNumber) { if(criteriaMinMax[criterion] == 'max') maxVal <- children[[i]]$referenceProfiles[k+1,criterion] else minVal <- children[[i]]$referenceProfiles[k+1,criterion] } if(k > 1) { if(criteriaMinMax[criterion] == 'max') minVal <- children[[i]]$referenceProfiles[k-1,criterion] else maxVal <- children[[i]]$referenceProfiles[k-1,criterion] } children[[i]]$referenceProfiles[k,criterion] <- runif(1,minVal,maxVal) } } } for(j1 in 1:(numCrit-1)) { for(j2 in (j1+1):numCrit) { if(runif(1,0,1) < mutationProb) { criteria <- c(colnames(performanceTable)[j1],colnames(performanceTable)[j2]) minVal <- 0 - children[[i]]$criteriaWeights[criteria[1]] maxVal <- children[[i]]$criteriaWeights[criteria[2]] tradeoff <- runif(1,minVal,maxVal) children[[i]]$criteriaWeights[criteria[1]] <- children[[i]]$criteriaWeights[criteria[1]] + tradeoff children[[i]]$criteriaWeights[criteria[2]] <- children[[i]]$criteriaWeights[criteria[2]] - tradeoff } } } if(runif(1,0,1) < mutationProb && children[[i]]$referenceProfilesNumber > 1) { i1 <- sample(1:children[[i]]$referenceProfilesNumber, 1) adjacent <- NULL if(i1 > 1) adjacent <- c(adjacent, i1 - 1) if(i1 < children[[i]]$referenceProfilesNumber) adjacent <- c(adjacent, i1 + 1) i2 <- sample(adjacent, 1) temp <- children[[i]]$lexicographicOrder[i1] children[[i]]$lexicographicOrder[i1] <- children[[i]]$lexicographicOrder[i2] children[[i]]$lexicographicOrder[i2] <- temp } } return(children) } startTime <- Sys.time() population <- InitializePopulation() bestIndividual <- list(fitness = 0) ct <- 0 while(as.double(difftime(Sys.time(), startTime, units = 'secs')) < timeLimit) { evaluations <- unlist(lapply(population, Fitness)) maxFitness <- max(evaluations) if(maxFitness > bestIndividual$fitness) { bestIndividual <- population[[match(maxFitness,evaluations)]] bestIndividual$fitness <- maxFitness } if(as.double(difftime(Sys.time(), startTime, units = 'secs')) / 5 > ct) { ct <- ct + 1 } if(bestIndividual$fitness == 1) break if(length(population) > populationSize) { evaluations <- evaluations^2 newPopulation <- list() i <- 1 while(length(newPopulation) < populationSize) { if(runif(1,0,1) <= evaluations[i]) { evaluations[i] <- -1 newPopulation[[length(newPopulation)+1]] <- population[[i]] } i <- i + 1 if(i > length(population)) i <- 1 } population <- newPopulation } population <- Reproduce(population) } return(bestIndividual) }
skew.ratio = function(x){ skew(x)/se.skew(x) }
plot_imb_1 <- function(df_plot, df_names, text_labels, label_angle = NULL, label_color, label_size, col_palette){ nudge <- max(df_plot$pcnt) / 50 df_plot <- df_plot %>% mutate(col_name = factor(col_name, levels = as.character(col_name))) %>% mutate(label = paste0(value, " - ", round(pcnt, 1), "%")) %>% mutate(value = case_when(is.na(value) ~ "NA", TRUE ~ value)) plt <- df_plot %>% ggplot(aes(x = col_name, y = pcnt, fill = col_name, label = value)) + geom_bar(stat = "identity") + labs(x = '', y = "% of values", title = paste0("df::", df_names$df1, " most common levels by column")) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values = user_colours(nrow(df_plot), col_palette)) + guides(fill = 'none') if(text_labels){ x = df_plot$col_name y = df_plot$pcnt z = paste0(df_plot$value, ': ', round(df_plot$pcnt, 2)) z[nchar(z) == 0] <- NA big_bar <- 0.2 * max(y, na.rm = T) label_df <- tibble(col_name = x, pcnt = y , label = z) label_df$fill <- NA label_white <- label_df %>% filter(pcnt > big_bar) max_lab <- ifelse(all(is.na(label_white$pcnt)), NA, max(label_white$pcnt, na.rm = T)) label_grey <- label_df %>% filter(pcnt <= big_bar, pcnt > 0) %>% mutate(ymax = pcnt + 0.5 * max_lab) label_zero <- label_df %>% filter(pcnt == 0) if(nrow(label_white) > 0){ plt <- plt + annotate( 'text', x = label_white$col_name, y = label_white$pcnt - nudge, label = label_white$label, color = ifelse(is.null(label_color), "white", label_color), angle = ifelse(is.null(label_angle), 90, label_angle), size = ifelse(is.null(label_size), 3.5, label_size), hjust = 1 ) } if(nrow(label_grey) > 0){ plt <- plt + annotate( 'text', x = label_grey$col_name, y = label_grey$pcnt + nudge, label = label_grey$label, color = ifelse(is.null(label_color), "gray50", label_color), angle = ifelse(is.null(label_angle), 90, label_angle), size = ifelse(is.null(label_size), 3.5, label_size), hjust = 0 ) } if(nrow(label_zero) > 0){ plt <- plt + annotate( 'text', x = label_zero$col_name, y = nudge, label = 0, color = ifelse(is.null(label_color), "gray50", label_color), angle = ifelse(is.null(label_angle), 90, label_angle), size = ifelse(is.null(label_size), 3.5, label_size), hjust = 0 ) } } plt } plot_imb_2 <- function(df_plot, df_names, alpha, text_labels, col_palette){ df_plot <- df_plot %>% mutate(col_name = paste0(col_name, "\n(", value, ")")) na_tab <- df_plot df_plot <- df_plot %>% select(-starts_with("cnt")) %>% gather(key = "data_frame", value = "pcnt", -col_name, -p_value, -value) %>% mutate(data_frame = as.integer(gsub("pcnt_", "", data_frame))) %>% mutate(col_name = factor(col_name, levels = as.character(na_tab$col_name))) %>% mutate(data_frame = unlist(df_names)[data_frame]) df_plot <- df_plot[nrow(df_plot):1, ] p_val_tab <- df_plot %>% mutate(is_sig = as.integer(p_value < alpha) + 2, index = 1:nrow(df_plot)) %>% replace_na(list(is_sig = 1)) %>% select(is_sig, index) yrange <- abs(diff(range(df_plot$pcnt, na.rm = TRUE))) df_plot <- df_plot %>% group_by(col_name) %>% arrange(data_frame) %>% mutate(nudge = as.integer((abs(diff(pcnt)) / yrange) < 0.02)) %>% ungroup df_plot$nudge[(df_plot$data_frame == unique(df_plot$data_frame)[1]) & (df_plot$nudge == 1)] <- -1 nudge_vec <- df_plot$nudge nudge_vec[is.na(nudge_vec)] <- 0 df_plot_col_name <- df_plot$col_name plt <- df_plot %>% ggplot(aes(x = factor(col_name, levels = unique(df_plot_col_name)), y = pcnt, colour = data_frame)) + geom_blank() + theme_bw() + theme(panel.border = element_blank(), panel.grid.major = element_blank()) + geom_rect( fill = c(NA, "gray50", user_colours(9, col_palette)[9])[p_val_tab$is_sig], alpha = 0.2, xmin = p_val_tab$index - 0.4, xmax = p_val_tab$index + 0.4, ymin = -100, ymax = 200, linetype = "blank") + geom_hline(yintercept = 0, linetype = "dashed", color = "lightsteelblue4") + geom_point(size = 3.7, color = "black", na.rm = TRUE, position = position_nudge(x = -0.15 * nudge_vec)) + geom_point(size = 3, na.rm = TRUE, position = position_nudge(x = -0.15 * nudge_vec)) + coord_flip() + scale_colour_manual(values = get_best_pair(col_palette), name = "Data frame") ttl <- paste0("Comparison of most common levels") sttl <- bquote("Color/gray stripes mean different/equal imbalance") plt <- plt + labs(x = "", title = ttl, subtitle = sttl) + guides(color = guide_legend(override.aes = list(fill = NA))) + labs(y = "% of column", x = "") plt } plot_imb_grouped <- function(df_plot, df_names, text_labels, col_palette, plot_type){ group_name <- colnames(df_plot)[1] if(plot_type == 1){ col_ord <- df_plot %>% ungroup %>% group_by(col_name) %>% summarize(md_pcnt = median(pcnt, na.rm = T)) %>% arrange(md_pcnt) %>% .$col_name out <- df_plot %>% ungroup %>% mutate(col_name = factor(col_name, levels = col_ord)) %>% arrange(col_name) jitter_width <- ifelse(length(unique(out$col_name)) > 10, 0, 0.25) plt <- out %>% ggplot(aes_string(x = 'col_name', y = 'pcnt', col = 'col_name', group = group_name)) + geom_jitter(alpha = 0.5, width = jitter_width, height = 0, size = 1.8) + theme(legend.position='none') + coord_flip() + ylab("Imbalance by group") + xlab("") } else { plt <- plot_grouped( df = df_plot, value = "pcnt", series = "col_name", group = group_name, plot_type = plot_type, col_palette = col_palette, text_labels = text_labels, ylab = "% imbalance" ) } plt }
check_prediction_data.PredictionDataRegr = function(pdata) { pdata$row_ids = assert_row_ids(pdata$row_ids) n = length(pdata$row_ids) if (!is.null(pdata$response)) { pdata$response = assert_numeric(unname(pdata$response)) assert_prediction_count(length(pdata$response), n, "response") } if (!is.null(pdata$se)) { pdata$se = assert_numeric(unname(pdata$se), lower = 0) assert_prediction_count(length(pdata$se), n, "se") } if (!is.null(pdata$distr)) { assert_class(pdata$distr, "VectorDistribution") if (is.null(pdata$response)) { pdata$response = unname(pdata$distr$mean()) } if (is.null(pdata$se)) { pdata$se = unname(pdata$distr$stdev()) } } pdata } is_missing_prediction_data.PredictionDataRegr = function(pdata) { miss = logical(length(pdata$row_ids)) if (!is.null(pdata$response)) { miss = is.na(pdata$response) } if (!is.null(pdata$se)) { miss = miss | is.na(pdata$se) } pdata$row_ids[miss] } c.PredictionDataRegr = function(..., keep_duplicates = TRUE) { dots = list(...) assert_list(dots, "PredictionDataRegr") assert_flag(keep_duplicates) if (length(dots) == 1L) { return(dots[[1L]]) } predict_types = names(mlr_reflections$learner_predict_types$regr) predict_types = map(dots, function(x) intersect(names(x), predict_types)) if (!every(predict_types[-1L], setequal, y = predict_types[[1L]])) { stopf("Cannot combine predictions: Different predict types") } elems = c("row_ids", "truth", intersect(predict_types[[1L]], c("response", "se"))) tab = map_dtr(dots, function(x) x[elems], .fill = FALSE) if (!keep_duplicates) { tab = unique(tab, by = "row_ids", fromLast = TRUE) } result = as.list(tab) if ("distr" %in% predict_types[[1L]]) { require_namespaces("distr6") result$distr = do.call(c, map(dots, "distr")) } new_prediction_data(result, "regr") } filter_prediction_data.PredictionDataRegr = function(pdata, row_ids) { keep = pdata$row_ids %in% row_ids pdata$row_ids = pdata$row_ids[keep] pdata$truth = pdata$truth[keep] if (!is.null(pdata$response)) { pdata$response = pdata$response[keep] } if (!is.null(pdata$se)) { pdata$se = pdata$se[keep] } pdata }
aemet_normal_clim <- function(station = NULL, verbose = FALSE, return_sf = FALSE) { if (is.null(station)) { stop("Station can't be missing") } stopifnot(is.logical(return_sf)) stopifnot(is.logical(verbose)) station <- as.character(station) final_result <- NULL for (i in seq_len(length(station))) { apidest <- paste0( "/api/valores/climatologicos/normales/estacion/", station[i] ) final_result <- dplyr::bind_rows( final_result, get_data_aemet(apidest, verbose) ) } final_result <- dplyr::distinct(final_result) if (verbose) { message("\nGuessing fields...") } final_result <- aemet_hlp_guess(final_result, "indicativo", dec_mark = ".") if (return_sf) { sf_stations <- aemet_stations(verbose, return_sf = FALSE) sf_stations <- sf_stations[c("indicativo", "latitud", "longitud")] final_result <- dplyr::left_join(final_result, sf_stations, by = "indicativo" ) final_result <- aemet_hlp_sf(final_result, "latitud", "longitud", verbose) } return(final_result) } aemet_normal_clim_all <- function(verbose = FALSE, return_sf = FALSE) { stations <- aemet_stations(verbose = verbose) data_all <- aemet_normal_clim( stations$indicativo, verbose = verbose, return_sf = return_sf ) return(data_all) }
diffinv <- function (x, ...) { UseMethod("diffinv") } diffinv.vector <- function (x, lag = 1L, differences = 1L, xi, ...) { if (!is.vector(x)) stop ("'x' is not a vector") lag <- as.integer(lag); differences <- as.integer(differences) if (lag < 1L || differences < 1L) stop ("bad value for 'lag' or 'differences'") if(missing(xi)) xi <- rep(0., lag*differences) if (length(xi) != lag*differences) stop("'xi' does not have the right length") if (differences == 1L) { x <- as.double(x) xi <- as.double(xi) n <- as.integer(length(x)) if(is.na(n)) stop(gettextf("invalid value of %s", "length(x)"), domain = NA) .Call(C_intgrt_vec, x, xi, lag) } else diffinv.vector(diffinv.vector(x, lag, differences-1L, diff(xi, lag=lag, differences=1L)), lag, 1L, xi[1L:lag]) } diffinv.default <- function (x, lag = 1, differences = 1, xi, ...) { if (is.matrix(x)) { n <- nrow(x) m <- ncol(x) y <- matrix(0, nrow = n+lag*differences, ncol = m) if(m >= 1) { if(missing(xi)) xi <- matrix(0.0, lag*differences, m) if(NROW(xi) != lag*differences || NCOL(xi) != m) stop("incorrect dimensions for 'xi'") for (i in 1L:m) y[,i] <- diffinv.vector(as.vector(x[,i]), lag, differences, as.vector(xi[,i])) } } else if (is.vector(x)) y <- diffinv.vector(x, lag, differences, xi) else stop ("'x' is not a vector or matrix") y } diffinv.ts <- function (x, lag = 1, differences = 1, xi, ...) { y <- diffinv.default(if(is.ts(x) && is.null(dim(x))) as.vector(x) else as.matrix(x), lag, differences, xi) ts(y, frequency = frequency(x), end = end(x)) } toeplitz <- function (x) { if(!is.vector(x)) stop("'x' is not a vector") n <- length(x) A <- matrix(raw(), n, n) matrix(x[abs(col(A) - row(A)) + 1L], n, n) }
intraCMM <- function(d,n,l=0, B=0, DB=c(0,0), JC=FALSE,CI_Boot,type="bca", plot=FALSE){ if(is.numeric(d)){d=d}else{stop("d is not numeric")} if(is.numeric(n)){n=n}else{stop("n is not numeric")} if(B==0&& plot==TRUE){stop("please select a number of bootstrap repititions for the plot")} if(B%%1==0){B=B}else{stop("B is not an integer")} if(DB[1]%%1==0 && DB[2]%%1==0 ){DB=DB}else{stop("At least one entry in DB is not an integer")} if(length(d)==length(n)){}else{stop("Input vectors do not have the same length")} d1=d/n CI=0 estimate=function(X,CI){ if(CI==0){ pd_mean=1/length(X)*sum(X) var_dat= 1/length(X)*sum((X^2-X/n)) foo=function(rho){ corr=matrix(c(1,rho,rho,1),2) prob=pmvnorm(lower=c(-Inf,-Inf),upper=c(qnorm(pd_mean),qnorm(pd_mean)),mean=c(0,0),corr=corr) return(prob-var_dat) } Res<-uniroot(foo,c(0,1))$root s=qnorm(pd_mean) ABL1<- 1/(2*pi*sqrt(1-Res^2))*exp(-(s^2/(1+Res))) ABL2<- ((s^2+ Res*(1-2*s^2) + s^2*Res^2 -Res^3)/(2*pi*(1-Res^2)^(5/2)))*exp(-(s^2/(1+Res))) Time<-length(X) if(l>0){ tryCatch(AC<-(acf(X^2, plot = FALSE, type = "covariance")$acf)[(1:l),1,1], error = function(e) 0) Sum=NULL for (z in 1:l){ Sum[z]<-(1-z/Time)*AC[z] } AB=sum(Sum)} else{AB=0} nX=X^2 nM=1/length(X)*sum(nX) var2=var(nX) Res2=(Res +(ABL2/(Time*ABL1^3))*(var2/2 + AB)) Est<-list(Original =(Res +(ABL2/(Time*ABL1^3))*(var2/2 + AB))) }else{ pd_mean=1/length(X)*sum(X) var_dat= 1/length(X)*sum((X^2-X/n)) foo=function(rho){ corr=matrix(c(1,rho,rho,1),2) prob=pmvnorm(lower=c(-Inf,-Inf),upper=c(qnorm(pd_mean),qnorm(pd_mean)),mean=c(0,0),corr=corr) return(prob-var_dat) } Res<-uniroot(foo,c(0,1))$root s=qnorm(pd_mean) ABL1<- 1/(2*pi*sqrt(1-Res^2))*exp(-(s^2/(1+Res))) ABL2<- ((s^2+ Res*(1-2*s^2) + s^2*Res^2 -Res^3)/(2*pi*(1-Res^2)^(5/2)))*exp(-(s^2/(1+Res))) Time<-length(X) if(l>0){ tryCatch(AC<-(acf(X^2, plot = FALSE, type = "covariance")$acf)[(1:l),1,1], error = function(e) 0) Sum=NULL for (z in 1:l){ Sum[z]<-(1-z/Time)*AC[z] } AB=sum(Sum)} else{AB=0} nX=X^2 nM=1/length(X)*sum(nX) var2=var(nX) Res2=(Res +(ABL2/(Time*ABL1^3))*(var2/2 + AB)) Est<-list(Original =Res2, CI=c(Res2-(qt(1-(1-CI)/2,Time-1)*abs(1/ABL1))/sqrt(Time)*sqrt(var2+2*(AB)),Res2+(qt(1-(1-CI)/2,Time-1)*abs(1/ABL1))/sqrt(Time)*sqrt(var2+2*(AB)))) } } Estimate_Standard<- estimate(d1,CI) if(DB[1]!=0){ IN=DB[1] OUT=DB[2] theta1=NULL theta2=matrix(ncol = OUT, nrow=IN) for(i in 1:OUT){ N<-length(d1) Ib<-sample(N,N,replace=TRUE) Db<-d1[Ib] try(theta1[i]<-estimate(Db,CI)$Original, silent = TRUE) for(c in 1:IN){ Ic<-sample(N,N,replace=TRUE) Dc<-Db[Ic] try( theta2[c,i]<-estimate(Dc,CI)$Original, silent = TRUE) } } Boot1<- mean(theta1, na.rm = TRUE) Boot2<- mean(theta2, na.rm = TRUE) BC<- 2*Estimate_Standard$Original -Boot1 DBC<- (3*Estimate_Standard$Original-3*Boot1+Boot2) Estimate_DoubleBootstrap<-list(Original = Estimate_Standard$Original, Bootstrap=BC, Double_Bootstrap=DBC, oValues=theta1, iValues=theta2) } if(B>0){ N<-length(n) D<- matrix(ncol=1, nrow=N,d1) BCA=function(data, indices){ d <- data[indices,] tryCatch(estimate(d,CI)$Original,error=function(e)NA) } boot1<- boot(data = D, statistic = BCA, R=B) Estimate_Bootstrap<-list(Original = boot1$t0, Bootstrap=2*boot1$t0 - mean(boot1$t,na.rm = TRUE),bValues=boot1$t ) if(missing(CI_Boot)){Estimate_Bootstrap=Estimate_Bootstrap}else{ if(type=="norm"){Conf=(boot.ci(boot1,conf=CI_Boot,type = type)$normal[2:3])} if(type=="basic"){Conf=(boot.ci(boot1,conf=CI_Boot,type = type)$basic[4:5])} if(type=="perc"){Conf=(boot.ci(boot1,conf=CI_Boot,type = type))$percent[4:5]} if(type=="bca"){Conf=(boot.ci(boot1,conf=CI_Boot,type = type))$bca[4:5]} if(type=="all"){Conf=(boot.ci(boot1,conf=CI_Boot,type = type))} CI=CI_Boot pd_mean=mean(d1) var_dat= 1/length(d1)*sum((d1^2-d1/n)) foo=function(rho){ corr=matrix(c(1,rho,rho,1),2) prob=pmvnorm(lower=c(-Inf,-Inf),upper=c(qnorm(pd_mean),qnorm(pd_mean)),mean=c(0,0),corr=corr) return(prob-var_dat) } Res<-uniroot(foo,c(0,1))$root s=qnorm(pd_mean) ABL1<- 1/(2*pi*sqrt(1-Res^2))*exp(-(s^2/(1+Res))) ABL2<- ((s^2+ Res*(1-2*s^2) + s^2*Res^2 -Res^3)/(2*pi*(1-Res^2)^(5/2)))*exp(-(s^2/(1+Res))) nX=d1^2 nM=1/length(d1^2)*sum(d1^2) var2=1/length(d1)*sum(nX^2-nM^2) if(l>0){ tryCatch(AC<-(acf(d1^2, plot = FALSE, type = "covariance")$acf)[(1:l),1,1], error = function(e) 0) Sum=NULL for (z in 1:l){ Sum[z]<-(1-z/N)*AC[z] } AB=sum(Sum)} else{AB=0} Res2=(Res +(ABL2/(N*ABL1^3))*(var2/2 + AB)) CI=c(Res2-(qt(1-(1-CI)/2,N-1)/abs(ABL1))/sqrt(N)*sqrt(var2+2*(AB)),Res2+(qt(1-(1-CI)/2,N-1)/abs(ABL1))/sqrt(N)*sqrt(var2+2*(AB))) Estimate_Bootstrap<-list(Original = boot1$t0, Bootstrap=2*boot1$t0 - mean(boot1$t,na.rm = TRUE),CI=CI,CI_Boot=Conf,bValues=boot1$t ) } if(plot==TRUE){ Dens<-density(boot1$t, na.rm = TRUE) XY<-cbind(Dens$x,Dens$y) label<-data.frame(rep("Bootstrap density",times=length(Dens$x))) Plot<-cbind(XY,label) colnames(Plot)<-c("Estimate","Density","Label") SD<-cbind(rep(boot1$t0,times=length(Dens$x)), Dens$y,rep("Standard estimate",times=length(Dens$x))) colnames(SD)<-c("Estimate","Density","Label") BC<-cbind(rep(Estimate_Bootstrap$Bootstrap,times=length(Dens$x)), Dens$y,rep("Bootstrap corrected estimate",times=length(Dens$x))) colnames(BC)<-c("Estimate","Density","Label") Plot<-rbind(Plot,SD, BC) Plot$Estimate<-as.numeric(Plot$Estimate) Plot$Density<- as.numeric(Plot$Density) Estimate<-Plot$Estimate Density<-Plot$Density Label<-Plot$Label P<-ggplot() P<-P+with(Plot, aes(x=Estimate, y=Density, colour=Label)) + geom_line()+ scale_colour_manual(values = c("black", "red", "orange"))+ theme_minimal(base_size = 15) + ggtitle("Bootstrap Density" )+ theme(plot.title = element_text(hjust = 0.5),legend.position="bottom",legend.text = element_text(size = 12),legend.title = element_text( size = 12), legend.justification = "center",axis.text.x= element_text(face = "bold", size = 12)) print(P) } } if(JC==TRUE){ N=length(d1) Test=NULL for(v in 1:N){ d2<-d1[-v] try(Test[v]<-estimate(d2,CI)$Original) } Estimate_Jackknife<-list(Original = Estimate_Standard$Original, Jackknife=(N*Estimate_Standard$Original-(N-1)*mean(Test))) } if(B>0){return(Estimate_Bootstrap)} if(JC==TRUE){return(Estimate_Jackknife)} if(DB[1]!=0){return(Estimate_DoubleBootstrap)} if(B==0 && JC==FALSE && DB[1]==0){return(Estimate_Standard)} }
msc.pca <- function(clustmatrix, samples, groups, n = 20, labels = TRUE, title = NULL) { if (!is.factor(groups)) stop("ERROR: groups should be a factor") if (length(samples) != length(groups)) stop("ERROR: samples and groups are not of equal length") if (length(samples) != ncol(clustmatrix)) { answer <- utils::menu(c("Yes", "No"), title="WARNING: You entered a subset of your samples.\nDo you wish to procede?") if (answer!=1) stop("Function stopped") } pca <- FactoMineR::PCA(t(clustmatrix[,samples]),scale.unit=F, ncp=3, graph = F) if (labels == F) { plt <- factoextra::fviz_pca_ind(pca, geom.ind='point', col.ind = groups, addEllipses = F, legend.title="", alpha.ind = 0.8, pointsize = 4, invisible = "quali", title = title) } else { plt <- factoextra::fviz_pca_ind(pca, col.ind = groups, labelsize=3, addEllipses = F, legend.title="", alpha.ind = 0.8, pointsize = 4, invisible = "quali", repel = TRUE, title = title) } contr <- factoextra::get_pca_var(pca)$contrib cl_index <- unique(order(contr[,1], decreasing = T)[1:n], order(contr[,2], decreasing = T)[1:n], order(contr[,3], decreasing = T)[1:n]) cl_names <- rownames(clustmatrix[cl_index,samples]) results <- list("plot" = plt, "eigenvalues" = factoextra::fviz_eig(pca, addlabels = TRUE), "clustnames" = cl_names) return(results) }
`fun.RMFMKL.ml` <- function (data, fmkl.init = c(-0.25, 1.5), leap = 3, FUN = "runif.sobol",no=10000) { RMFMKL <- fun.fit.gl.v3(a=fmkl.init[1], b=fmkl.init[2], data=data, fun=fun.auto.mm.fmkl, no=no, leap = leap, FUN = FUN)$unique.optim.result RMFMKL <- fun.fit.gl.v3a(RMFMKL[1], RMFMKL[2], RMFMKL[3], RMFMKL[4], data, "fmkl") return(RMFMKL) }
print.reduced <- function (x, ...) { x = x["reduc"] NextMethod() }
word_ref <- function(idx) paste(idx$index, idx$src) copy_src <- function(x, y) { attr(x, "row") <- attr(y, "row") attr(x, "col") <- attr(y, "col") attr(x, "subrow") <- attr(y, "subrow") attr(x, "subcol") <- attr(y, "subcol") x } key <- function(x, id) { if(is.null(attr(x, "row")) || is.null(attr(x, "col"))) return(NULL) row <- attr(x, "row") col <- attr(x, "col") subrow <- attr(x, "subrow") subcol <- attr(x, "subcol") rv <- if(is.null(subrow)) row else paste0(row, '[',subrow,']') cv <- if(is.null(subcol)) col else paste0(col, '[',subcol,']') paste0(id, ":", rv,":",cv) } index <- function(object, ...) { UseMethod("index", object) } index.tangram <- function(object, id="tangram", key.len=4, ...) { nrows <- rows(object) ncols <- cols(object) result<- unlist(sapply(1:nrows, simplify=FALSE, FUN=function(row) { unlist(sapply(1:ncols, simplify=FALSE, FUN=function(col) { c(index(object[[row]][[col]], id, key.len=key.len)) })) })) names(result) <- NULL result <- matrix(result, ncol=3, byrow=TRUE) colnames(result) <- c("key", "src", "value") result } index.default <- function(object, id="tangram", name=NULL, key.len=4, ...) { src <- key(object, id) if(is.null(src)) return(NULL) nms <- if(is.null(name)) names(object) else nms nms <- if(is.null(nms)) paste0(class(object)[1], 1:length(object)) else nms value <- as.character(object[!is.na(nms) & nchar(nms) > 0]) nms <- nms[!is.na(nms) & nchar(nms) > 0] srcs <- paste0(src, ":", nms) idx <- vapply(srcs, function(x) substr(base64encode(charToRaw(digest(x))),1,key.len), "character") lapply(1:length(idx), function(i){ list(index=idx[i], src=srcs[i], value=value[i]) }) } index.list <- function(object, id="tangram", key.len=4, ...) { x <- lapply(object, function(i) { i <- copy_src(i, object) index(i,id=id,key.len=key.len, ...) }) do.call(c, x) } index.cell_label <- function(object, id="tangram", key.len=4, ...) { if("cell_value" %in% class(object)) { cls <- class(object) pos <- match("cell_label",cls) + 1 class(object) <- cls[pos:length(cls)] index(object) } else { NULL } }
context("geometry") test_that("geometry helpers work as expected", { xy <- rotate_xy(c(0, 1), c(0, 1), 90) expect_equal(xy$x, c(1, 0)) expect_equal(xy$y, c(0, 1)) }) test_that("geometry patterns work as expected", { png_file <- tempfile(fileext = ".png") png(png_file) expect_error(grid.pattern_crosshatch(x, y, density = 1.1)) expect_error(grid.pattern_stripe(x, y, density = 1.1)) dev.off() unlink(png_file) skip_if_not_installed("vdiffr") skip_on_ci() library("vdiffr") expect_doppelganger("default", grid.pattern) expect_doppelganger("none", function() grid.pattern("none")) x <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6)) y <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6)) expect_doppelganger("circle", function() grid.pattern_circle(x, y, color="blue", fill="yellow", size = 2, density = 0.5)) expect_doppelganger("crosshatch", function() grid.pattern_crosshatch(x, y, color="black", fill="blue", fill2="yellow", density = 0.5)) expect_error(assert_rp_shape(1), "Unknown shape 1") expect_null(assert_rp_shape(c("square", "convex4"))) expect_null(assert_rp_shape(c("star5", "circle", "null"))) expect_doppelganger("regular_polygon", function() grid.pattern_regular_polygon(x, y, color = "black", fill = "blue", density = 0.5)) expect_doppelganger("hexagon", function() grid.pattern_regular_polygon(x, y, color = "transparent", fill = c("white", "grey", "black"), density = 1.0, shape = "convex6", grid = "hex")) expect_doppelganger("square", function() grid.pattern_regular_polygon(x, y, color = "black", fill = c("white", "grey"), density = 1.0, shape = "square")) expect_doppelganger("eight_sided_star", function() grid.pattern_regular_polygon(x, y, colour = "black", fill = c("blue", "yellow"), density = 1.0, spacing = 0.1, shape = "star8")) expect_doppelganger("stripe", function() grid.pattern_stripe(x, y, color="black", fill=c("yellow", "blue"), density = 0.5)) expect_doppelganger("stripe_gpar", function() { x <- c(0.1, 0.6, 0.8, 0.3) y <- c(0.2, 0.3, 0.8, 0.5) grid.pattern("stripe", x, y, gp = gpar(col="blue", fill="red", lwd=2)) }) expect_doppelganger("wave_sine", function() grid.pattern_wave(x, y, colour = "black", type = "sine", fill = c("red", "blue"), density = 0.4, spacing = 0.15, angle = 0, amplitude = 0.05, frequency = 1 / 0.20)) expect_doppelganger("wave_triangle", function() grid.pattern_wave(x, y, color="black", fill="yellow", type = "triangle", density = 0.5, spacing = 0.15)) expect_doppelganger("weave", function() grid.pattern_weave(x, y, color="black", fill="yellow", fill2="blue", type = "twill", density = 0.5)) centroid_dot_pattern <- function(params, boundary_df, aspect_ratio, legend) { boundary_sf <- convert_polygon_df_to_polygon_sf(boundary_df) centroid <- sf::st_centroid(boundary_sf) grid::pointsGrob(x = centroid[1], y = centroid[2], pch = params$pattern_shape, size = unit(params$pattern_size, 'char'), default.units = "npc", gp = grid::gpar(col = alpha(params$pattern_fill, params$pattern_alpha)) ) } options(ggpattern_geometry_funcs = list(centroid = centroid_dot_pattern)) x <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6)) y <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6)) expect_doppelganger("centroid", function() grid.pattern("centroid", x, y, fill="blue", size = 5)) x <- c(0, 0, 0.5, 0.5, 0.5, 0.5, 1, 1) y <- c(0, 0.5, 0.5, 0, 0.5, 1, 1, 0.5) id <- rep(1:2, each = 4L) expect_doppelganger("two_id", function() grid.pattern(x = x, y = y, id = id)) })
localdar<- function (mippp, mippp.sp=NULL, nx=NULL, ny=NULL, mimark=NULL, idar = "isar", buffer=0, bfw=NULL, r, cross.idar = FALSE, tree = NULL, traits = NULL, namesmark=NULL, correct.trait.na=TRUE, correct.trait = "mean", correct.phylo="mean") { gridok <- FALSE bufferex<-FALSE bufferect<- FALSE if(!is.marked(mippp)) stop ("mapIDAR requires a marked point pattern") if (!is.null(namesmark)) mippp$marks <- factor((mippp$marks[namesmark][[1]])) dmark<-dim(marks(mippp)) if(is.null(namesmark) & !is.null(dmark)){ if(dmark[2]==1) marks(mippp)<-mippp$marks[,1] else stop( "you should indicate which column of the dataframe of marks stores species names (argument 'namesmark')\n\n") } if(!is.null(mippp.sp)) gridok <- FALSE if (!is.null(mimark)){ if (mimark %in% levels(mippp$marks) == FALSE) { stop(paste(mimark, " can't be recognized as a mark\n\n\n have you indicated in which column of thedataframe are the species\n marks? (argument 'namesmark'\n\n")) } mippp.sp<- unmark(mippp[mippp$marks==mimark]) gridok<- FALSE } if(is.null(mippp.sp)){ if(is.null(nx)& is.null(ny)) nx<-ny<-30 if(is.null(nx)& !is.null(ny)) nx<-ny if(is.null(nx)& !is.null(ny)) ny<-nx gridxy <-gridcentres(mippp$window, nx, ny) okbig<-inside.owin(gridxy, w=mippp$window) mippp.sp <- ppp(x=gridxy$x[okbig], y=gridxy$y[okbig], window=mippp$window) gridok<- TRUE } if(!is.null(bfw)){ bufferex<- TRUE ok<- inside.owin(mippp.sp, w = bfw) mippp.sp0 <- mippp.sp mippp.sp <- mippp.sp[ok] } if(buffer!=0 & buffer !="adapt" & is.null(bfw)){ if (is.numeric(buffer) & is.null(bfw)){ if(mippp$window$type!="rectangle") stop("numeric buffer only available for rectangular windows") bfw <- owin(mippp$window$xrange + c(buffer, -buffer), mippp$window$yrange + c(buffer, -buffer)) bufferect<- TRUE } if (!gridok){ ok<- inside.owin(mippp.sp, w = bfw) mippp.sp0 <- mippp.sp mippp.sp <- mippp.sp[ok] } if (gridok){ okbig<-inside.owin(gridxy, w=bfw) mippp.sp <- ppp(x=gridxy$x[okbig], y=gridxy$y[okbig], window=mippp$window) } } if (cross.idar == TRUE & gridok ==FALSE) { if(is.null(mimark)) stop("for crossed maps you should indicate a focal species (argument 'mimark')") mippp<- mippp[mippp$marks!=mimark] } if (!is.null(tree)) tree <- checktree(tree = tree, mippp = mippp, idar = idar, correct.phylo = correct.phylo) if (!is.null(traits)) traits <- checktraits(traits = traits, mippp = mippp, idar = idar, correct.trait.na = correct.trait.na, correct.trait = correct.trait) cosamt <- mitable(mippp.sp, mippp, r) if (idar %in% c("iraodar.O", "icwmar.O")) { cosamt.O <- cosamt for (i in 2:length(cosamt.O)) cosamt.O[[i]] <- cosamt[[i]] - cosamt[[i - 1]] if (buffer == "adapt") { ok<- NULL bdp <- bdist.points(mippp.sp) for (i in 1:length(r)){ ok<- cbind(ok, bdp >= r[i]) cosamt.O[[i]] <- cosamt.O[[i]][bdp >= r[i], ] } } } if (!idar %in% c("iraodar.O", "icwmar.O")) { if (buffer == "adapt") { ok<-NULL bdp <- bdist.points(mippp.sp) for (i in 1:length(r)){ ok<- cbind(ok, bdp >= r[i]) cosamt[[i]] <- cosamt[[i]][bdp >= r[i], ] } } } isar.r <- function(x) { Ptj <- function(x) sum(x == 0)/length(x) result <- sum(apply(x, 2, function(x) 1 - Ptj(x))) return(result) } cwm.r <- function(x, traits) { if (!is.null(dim(traits))) stop("to compute icwmar, 'traits' mut be a vector with the values of juts one trait") return(sum(x * traits, na.rm = TRUE)/sum(x)) } if (idar == "icwmar") { micwmar <- sapply(cosamt, function(tr) { if (is.null(dim(tr))) tr <- rbind(tr, tr) cwm.ind <- apply(tr, 1, function(x) cwm.r(x, traits = traits[match( dimnames(tr)[[2]], names(traits))])) cwm.ind[is.na(cwm.ind)] <- 0 return(cwm.ind) }) result <- micwmar } if (idar == "icwmar.O") { micwmar <- sapply(cosamt.O, function(tr) { if (is.null(dim(tr))) tr <- rbind(tr, tr) cwm.ind <- apply(tr, 1, function(x) cwm.r(x, traits = traits[match( dimnames(tr)[[2]], names(traits))])) cwm.ind[is.na(cwm.ind)] <- 0 return(cwm.ind) }) result <- micwmar } if (idar == "iraodar") { miraodar <- sapply(cosamt, function(x) { if (is.null(dim(x))) x <- rbind(x, x) if (dim(x)[1] < 1) return(NA) res <- raoDmap(comm = x, phy = tree) return(res) }) result <- miraodar } if (idar == "iraodar.O") { miraodar <- sapply(cosamt.O, function(x) { if (is.null(dim(x))) x <- rbind(x, x) if (dim(x)[1] < 1) return(NA) res <- raoDmap(comm = x, phy = tree) return(res) }) result <- miraodar } if (idar == "ifdar") { mifdar <- sapply(cosamt, function(x) { if (is.null(dim(x))) x <- rbind(x, x) res <- fdismap(x, traits = traits) return(res) }) result <- mifdar } if (idar == "isar") { misar <- sapply(cosamt, function(x) { if (is.null(dim(x))) x <- rbind(x, x) res<-apply(x,1,function(y) sum(y>0)) return(res) }) result <- misar } if (idar == "ipsear") { mipsear <- lapply(cosamt, function(x) { if (is.null(dim(x))) x <- rbind(x, x) if (sum(colSums(x) > 0) > 1) res <- pse(x, tree = tree)$PSE if (sum(colSums(x) > 0) <= 1) res <- rep(NA, dim(x)[1]) return(res) }) result <- mipsear } if (idar == "ipsvar") { mipsvar <- lapply(cosamt, function(x) { if (is.null(dim(x))) x <- rbind(x, x) if (sum(colSums(x) > 0) > 1) res <- psv(x, tree = tree, compute.var = F)$PSVs if (sum(colSums(x) > 0) <= 1) res <- rep(NA, dim(x)[1]) return(res) }) result <-mipsvar } if (idar == "ipsrar") { mipsrar <- lapply(cosamt, function(x) { if (is.null(dim(x))) x <- rbind(x, x) if (sum(colSums(x) > 0) > 1) res <- psr(x, tree = tree, compute.var = F)$PSR if (sum(colSums(x) > 0) <= 1) res <- rep(NA, dim(x)[1]) return(res) }) result <-mipsrar } if (idar == "ipscar") { mipscar <- lapply(cosamt, function(x) { if (is.null(dim(x))) x <- rbind(x, x) if (sum(colSums(x) > 0) > 1) res <- psc(x, tree = tree)$PSCs if (sum(colSums(x) > 0) <= 1) res <- rep(NA, dim(x)[1]) return(res) }) result <-mipscar } if (idar == "imntdar") { mimntdar <- lapply(cosamt, function(x) { if (is.null(dim(x))) x <- rbind(x, x) if (sum(colSums(x) > 0) > 1) res <- mntd(x, dis = tree, abundance.weighted = FALSE) if (sum(colSums(x) > 0) <= 1) res <- rep(NA, dim(x)[1]) return(res) }) result <-mimntdar } if(is.matrix(result)) result<- as.data.frame(result) if(gridok) { result.im=list() for (i in 1: length(cosamt)){ resultgrid=rep(NA,nx*ny) if(buffer=="adapt") resultgrid[okbig][ok[,i]] <-result[[i]] if(buffer!="adapt" & buffer!=0 & !bufferect) resultgrid[okbig][ok] <-result[[i]] if(bufferect) resultgrid[okbig] <-result[[i]] if(bufferex) resultgrid[okbig][ok] <-result[[i]] if(buffer==0 & !bufferex) resultgrid[okbig]<-result[[i]] result.im[[i]]<- as.im(list(x=unique(gridxy$x),y=unique(gridxy$y),z=matrix(resultgrid,nx,ny))) } } if(!gridok) { if(bufferex | bufferect) mippp.sp<- mippp.sp0 result.im=list() for (i in 1: length(cosamt)){ marks(mippp.sp)<-NA if(buffer=="adapt") marks(mippp.sp)[ok[,i]] <-result[[i]] if(buffer!="adapt" & buffer!=0 ) marks(mippp.sp) [ok]<- result[[i]] if(buffer==0 & !bufferex) marks(mippp.sp) <- result[[i]] if(bufferex) marks(mippp.sp)[ok]<- result[[i]] result.im[[i]] <- mippp.sp } } names(result.im)<- paste(idar, "_",r* mippp$window$units$multiplier,"_", mippp$window$units$plural, sep="") return(result.im) } raoDmap<- function (comm, phy = NULL) { res <- list() if (is.null(phy)) { tij <- 1 - diag(x = rep(1, length(comm[1, ]))) } else { if (!inherits (phy, what= "phylo")) { if (!is.matrix(phy) & !inherits (phy, what= "dist") ) stop("Phy must be a distance matrix") if (is.matrix(phy)) phy <- as.dist(phy) dat <- match.comm.dist(comm, phy) comm <- dat$comm phy <- dat$dist tij <- as.matrix(phy/2) } if (inherits (phy, what= "phylo")) { if (!is.ultrametric(phy)) stop("Phylogeny must be ultrametric") dat <- match.phylo.comm(phy, comm) comm <- dat$comm phy <- dat$phy tij <- cophenetic(phy)/2 } } x <- as.matrix(comm) S <- length(x[1, ]) N <- length(x[, 1]) total <- apply(x, 1, sum) samp.relabund <- total/sum(x) x.combined <- matrix(apply(x, 2, sum), nrow = 1)/sum(x) x <- sweep(x, 1, total, "/") D <- vector(length = N) names(D) <- rownames(x) for (k in 1:N) D[k] <- sum(tij * outer(as.vector(t(x[k, ])), as.vector(t(x[k, ])))) res$Dkk <- D res$alpha <- sum(res$Dkk * samp.relabund) return(res$Dkk) } fdismap<- function (comm, traits) { sp.a <- colSums(comm) > 0 filas <- dim(comm)[1] if (sum(sp.a) < 1) return(NA) if (sum(sp.a) == 1) return(0) if (sum(sp.a) > 1) { m.ok <- comm[, sp.a] sp.trait.ok <- !is.na(match(rownames(traits), colnames(m.ok))) if (!is.null(dim(m.ok))) { com.G.0 <- rowSums(m.ok) > 0 cosad <- as.dist(traits[sp.trait.ok, sp.trait.ok, drop = FALSE]) if (sum(cosad, na.rm = TRUE) == 0) return(0) if (sum(sp.trait.ok) >= 2) { com.G.02 <- rowSums(m.ok[, labels(cosad)]) > 0 cosaf <- fdisp(d = cosad, a = m.ok[com.G.02, labels(cosad), drop = FALSE], tol = 1e-07)$FDis result<-rep(NA, filas) result[com.G.02]<- cosaf } if (sum(sp.trait.ok) < 2) { cosaf <- fdisp(d = cosad, a = t(as.matrix(m.ok[com.G.0, labels(cosad)])), tol = 1e-07)$FDis result<-rep(NA, filas) result[com.G.0]<- cosaf } } if (is.null(dim(m.ok))) result <- NA return(result) } }
library(DRomics) visualize <- FALSE niterboot <- 25 if (visualize) { datafilename <- system.file("extdata", "insitu_RNAseq_sample.txt", package="DRomics") (o <- RNAseqdata(datafilename, backgrounddose = 2e-2, transfo.method = "vst")) (s <- itemselect(o)) (f <- drcfit(s)) (fbis <- drcfit(s, enablesfequal0inGP = FALSE, enablesfequal0inLGP = FALSE, preventsfitsoutofrange = FALSE)) (idnotinf <- fbis$fitres$id[!(fbis$fitres$id %in% f$fitres$id)]) plot(fbis, items = idnotinf, dose_log_transfo = TRUE) plot(fbis, items = idnotinf, dose_log_transfo = FALSE) (id2explore <- f$fitres$id[f$fitres$model %in% c("Gauss-probit", "log-Gauss-probit") & f$fitres$f == 0]) f$fitres[f$fitres$id %in% id2explore, ] plot(f, items = id2explore, dose_log_transfo = TRUE) plot(fbis, items = id2explore, dose_log_transfo = TRUE) plot(f, items = id2explore, dose_log_transfo = FALSE) plot(fbis, items = id2explore, dose_log_transfo = FALSE) (r <- bmdcalc(f)) (rbis <- bmdcalc(fbis)) b <- bmdboot(r, niter = niterboot) bbis <- bmdboot(rbis, niter = niterboot) plot(f , items = id2explore, BMDoutput = b, dose_log_transfo = TRUE) plot(fbis , items = id2explore, BMDoutput = bbis, dose_log_transfo = TRUE) }
xpstQ = function (A, Tmat = diag(ncol(A)), normalize = FALSE, eps = 1e-05, maxit = 1000, method = "quartimin", methodArgs = NULL, PhiWeight = NULL, PhiTarget = NULL, wxt2 = 1e0) { vgQ.pst <- function(L, W=NULL, Target=NULL){ if(is.null(W)) stop("argument W must be specified.") if(is.null(Target)) stop("argument Target must be specified.") Btilde <- W * Target list(Gq= 2*(W*L-Btilde), f = sum((W*L-Btilde)^2), Method="Partially specified target") } vgQ.pstPhi <- function(Transform, PhiW=NULL, PhiTarget=NULL, wxt2 = 1e0){ if(is.null(PhiW)) stop("argument W must be specified.") if(is.null(PhiTarget)) stop("argument Target must be specified.") if (max(abs(PhiTarget - t(PhiTarget)))>1.0e-10) stop(" PhiTarget must be symmetric.") if (max(abs(PhiW - t(PhiW)))>1.0e-10) stop(" PhiW must be symmetric.") Phi = t(Transform) %*% Transform Btilde <- PhiW * PhiTarget Gq2phi = 2*(PhiW * Phi - Btilde) f.Phi = sum((PhiW * Phi - Btilde)^2) / 2 Method="Partially specified target: Phi" m = dim(Transform)[1] dQ2T = matrix(0,m,m) for (j in 2:m) { for (i in 1:j) { if (PhiW[i,j]==1) { dQ2T[1:m,i] = dQ2T[1:m,i] + Transform[1:m,j] * Gq2phi[i,j] dQ2T[1:m,j] = dQ2T[1:m,j] + Transform[1:m,i] * Gq2phi[i,j] } } } list(dQ2T = dQ2T * wxt2, f.Phi = f.Phi * wxt2, Method=Method) } if (1 >= ncol(A)) stop("rotation does not make sense for single factor models.") if ((!is.logical(normalize)) || normalize) { A2 = A * A Com = rowSums(A2) W = sqrt(Com) %*% matrix(1,1,ncol(A)) normalize <- TRUE A <- A/W } al <- 1 L <- A %*% t(solve(Tmat)) Method <- paste("vgQ", method, sep = ".") VgQ <- do.call(Method, append(list(L), methodArgs)) G1 <- -t(t(L) %*% VgQ$Gq %*% solve(Tmat)) f1 <- VgQ$f VgQ.2 = vgQ.pstPhi(Tmat, PhiWeight, PhiTarget,wxt2) f = f1 + VgQ.2$f.Phi G = G1 + VgQ.2$dQ2T Table <- NULL VgQt <- do.call(Method, append(list(L), methodArgs)) VgQ.2 = vgQ.pstPhi(Tmat, PhiWeight, PhiTarget,wxt2) for (iter in 0:maxit) { Gp <- G - Tmat %*% diag(c(rep(1, nrow(G)) %*% (Tmat * G))) s <- sqrt(sum(diag(crossprod(Gp)))) Table <- rbind(Table, c(iter, f, log10(s), al)) if (s < eps) break al <- 2 * al for (i in 0:10) { X <- Tmat - al * Gp v <- 1/sqrt(c(rep(1, nrow(X)) %*% X^2)) Tmatt <- X %*% diag(v) L <- A %*% t(solve(Tmatt)) VgQt <- do.call(Method, append(list(L), methodArgs)) VgQ.2 = vgQ.pstPhi(Tmatt, PhiWeight, PhiTarget,wxt2) improvement <- f - ( VgQt$f + VgQ.2$f.Phi ) if (improvement > 0.5 * s^2 * al) break al <- al/2 } Tmat <- Tmatt f1 <- VgQt$f G1 <- -t(t(L) %*% VgQt$Gq %*% solve(Tmatt)) VgQ.2 = vgQ.pstPhi(Tmatt, PhiWeight, PhiTarget,wxt2) f = f1 + VgQ.2$f.Phi G = G1 + VgQ.2$dQ2T } convergence <- (s < eps) if ((iter == maxit) & !convergence) warning("convergence not obtained in GPFoblq. ", maxit, " iterations used.") if (normalize) L <- L * W dimnames(L) <- dimnames(A) r <- list(loadings = L, Phi = t(Tmat) %*% Tmat, Th = Tmat, Table = Table, method = VgQ$Method, orthogonal = FALSE, convergence = convergence, Gq = VgQt$Gq) class(r) <- "GPArotation" r }
context("vis_miss") test_that("Valid ggplot object is produced",{ skip_on_cran() skip_on_ci() monitors <- c("ASN00003003", "ASM00094299") weather_df <- suppressMessages(meteo_pull_monitors(monitors)) out <- vis_miss(weather_df) expect_is(out, "ggplot") })
write.bayescan<-function(dat=dat,diploid=TRUE,fn="dat.bsc"){ nloc<-dim(dat)[2]-1 npop<-length(table(dat[,1])) alc.dat<-allele.count(dat,diploid) nal<-unlist(lapply(alc.dat,function(x) dim(x)[1])) nindx<-sapply(alc.dat,function(x) apply(x,2,sum)) write(paste("[loci]=",nloc,sep=""),fn) write("",fn,append=TRUE) write(paste("[populations]=",npop,sep=""),fn,append=TRUE) write("",fn,append=TRUE) for (ip in 1:npop){ write("",fn,append=TRUE) write(paste("[pop]=",ip,sep=""),fn,append=TRUE) for (il in 1:nloc){ tow<-c(il,nindx[ip,il],nal[il],alc.dat[[il]][,ip]) write(tow,fn, append=TRUE,ncolumns=length(tow)) } } }
context("Checking grab") test_that("grab gets strings",{ expect_equivalent(grab("@split_keep_delim"), "(?<=[^%s])(?=[%s])") expect_equivalent(grab("@rm_percent"), "\\(?[0-9.]+\\)?%") expect_equivalent(grab("rm_percent"), "\\(?[0-9.]+\\)?%") expect_error(grab("@foo")) })
test_that("silently extracts elements of length 1", { expect_equal(vec_list_cast(list(1, 2), double()), c(1, 2)) }) test_that("elements of length 0 become NA without error", { x <- list(1, double()) out <- vec_list_cast(x, double()) expect_equal(out, c(1, NA)) }) test_that("elements of length >1 are truncated with error", { x <- list(1, c(2, 1), c(3, 2, 1)) expect_lossy(vec_list_cast(x, dbl()), dbl(1, 2, 3), x = list(), to = dbl()) x <- list(c(2, 1), c(3, 2, 1)) expect_lossy(vec_list_cast(x, dbl()), dbl(2, 3), x = list(), to = dbl()) })
library('PerformanceAnalytics') data(managers) data(edhec) managers.length = dim(managers)[1] manager.col = 1 peers.cols = c(2,3,4,5,6) indexes.cols = c(7,8) Rf.col = 10 trailing12.rows = ((managers.length - 11):managers.length) trailing36.rows = ((managers.length - 35):managers.length) trailing60.rows = ((managers.length - 59):managers.length) frInception.rows = (length(managers[,1]) - length(managers[,1][!is.na(managers[,1])]) + 1):length(managers[,1]) charts.PerformanceSummary(managers[,c(manager.col,indexes.cols)], colorset=rich6equal, lwd=2, ylog=TRUE) t(table.CalendarReturns( managers[,c(manager.col,indexes.cols)]) ) table.Stats(managers[,c(manager.col,peers.cols)]) chart.Boxplot(managers[ trailing36.rows, c(manager.col, peers.cols, indexes.cols)], main = "Trailing 36-Month Returns") layout(rbind(c(1,2),c(3,4))) chart.Histogram(managers[,1,drop=F], main = "Plain", methods = NULL) chart.Histogram(managers[,1,drop=F], main = "Density", breaks=40, methods = c("add.density", "add.normal")) chart.Histogram(managers[,1,drop=F], main = "Skew and Kurt", methods = c ("add.centered", "add.rug")) chart.Histogram(managers[,1,drop=F], main = "Risk Measures", methods = c ("add.risk")) chart.RiskReturnScatter(managers[trailing36.rows,1:8], Rf=.03/12, main = "Trailing 36-Month Performance", colorset=c("red", rep("black",5), "orange", "green")) charts.RollingPerformance(managers[, c(manager.col, peers.cols, indexes.cols)], Rf=.03/12, colorset = c("red", rep("darkgray",5), "orange", "green"), lwd = 2) chart.RelativePerformance(managers[ , manager.col, drop = FALSE], managers[ , c(peers.cols, 7)], colorset = tim8equal[-1], lwd = 2, legend.loc = "topleft") chart.RelativePerformance(managers[ , c(manager.col, peers.cols) ], managers[, 8, drop=F], colorset = rainbow8equal, lwd = 2, legend.loc = "topleft") table.CAPM(managers[trailing36.rows, c(manager.col, peers.cols)], managers[ trailing36.rows, 8, drop=FALSE], Rf = managers[ trailing36.rows, Rf.col, drop=F ]) charts.RollingRegression(managers[, c(manager.col, peers.cols), drop = FALSE], managers[, 8, drop = FALSE], Rf = .03/12, colorset = redfocus, lwd = 2) table.DownsideRisk(managers[,1:6],Rf=.03/12) data(managers) head(managers) dim(managers) managers.length = dim(managers)[1] colnames(managers) manager.col = 1 peers.cols = c(2,3,4,5,6) indexes.cols = c(7,8) Rf.col = 10 trailing12.rows = ((managers.length - 11):managers.length) trailing12.rows trailing36.rows = ((managers.length - 35):managers.length) trailing60.rows = ((managers.length - 59):managers.length) frInception.rows = (length(managers[,1]) - length(managers[,1][!is.na(managers[,1])]) + 1):length(managers[,1]) charts.PerformanceSummary(managers[,c(manager.col,indexes.cols)], colorset=rich6equal, lwd=2, ylog=TRUE)
library(urca) data(UKpppuip) names(UKpppuip) attach(UKpppuip) dat1 <- cbind(p1, p2, e12, i1, i2) dat2 <- cbind(doilp0, doilp1) args('ca.jo') H1 <- ca.jo(dat1, type = 'trace', K = 2, season = 4, dumvar = dat2) H1.trace <- summary(ca.jo(dat1, type = 'trace', K = 2, season = 4, dumvar = dat2)) H1.eigen <- summary(ca.jo(dat1, type = 'eigen', K = 2, season = 4, dumvar = dat2))
expected <- TRUE test(id=235, code={ argv <- structure(list(x = expression(exp(-0.5 * u^2)), y = expression( exp(-0.5 * u^2))), .Names = c("x", "y")) do.call('identical', argv); }, o = expected);
perror <- function(q, xs) {stop("perror is not exported as a standalone function. You must first run the quantForestError function to define perror. See documentation.")}
sync.plot <- function(syncList){ stopifnot(is.list(syncList)) if (class(syncList) != "sync") { stop("'syncList' is no a list output of function sync") } if(is.data.frame(syncList[1]) != FALSE) { stop("'syncList' is no a list output of function sync") } if(is.data.frame(syncList[2]) != FALSE) { stop("'syncList' is no a list output of function sync") } pd <- position_dodge(.2) aza1 <- do.call(rbind, lapply(syncList[1], data.frame, stringsAsFactors = FALSE)) aza2 <- do.call(rbind, lapply(syncList[2], data.frame, stringsAsFactors = FALSE)) if(dim(aza1)[1] == 1){stop("Broad evaluation plot has not sense (mBE)")} aexp <- expression(paste(bold("Within-group "),bolditalic(hat(a)["c"]))) mdn <- aza1[2,1] bexp <- paste(mdn) aa1 <- aza1[[3]]-aza1[[4]] aa2 <- aza1[[3]]+aza1[[4]] am2 <- max(aa2) p1 <- ggplot(aza1, aes(x=aza1$GroupName,y=aza1$a_Group))+ geom_errorbar(aes(ymin = aa1, ymax = aa2), width = 0.2, size = 0.7, position = pd, col = 4) + geom_point(shape = 16, size = 4, position = pd, col = 4) + labs(x = "Grouping variable", y = aexp)+ expand_limits(y = 0)+ scale_y_continuous()+ ggtitle(bexp)+ theme_bw()+ theme(axis.title.y = element_text(vjust = 1.8), axis.title.x = element_text(vjust = -0.5), axis.title = element_text(face = "bold"), plot.title = element_text(hjust = 0.5), axis.text=element_text(size=11), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.line = element_line(colour = "black") ) aexp1 <- expression(paste(bold("Between-group "),bolditalic(hat(a)["c"]))) ab1 <- aza2[[3]]-aza2[[4]] ab2 <- aza2[[3]]+aza2[[4]] cexp <- paste(mdn) p2 <- ggplot(aza2, aes(x = aza2$GroupName, y = aza2$a_betw_Grp))+ geom_errorbar(aes(ymin = ab1, ymax = ab2), width = 0.2, size = 0.7, position = pd, col = "royalblue") + geom_point(shape = 16, size = 4, position = pd, col = "royalblue") + labs(x = "Grouping variable",y = aexp1)+ expand_limits(y = c(0, am2))+ scale_y_continuous()+ ggtitle(cexp)+ theme_bw()+ theme(axis.title.y = element_text(vjust = 1.8), axis.title.x = element_text(vjust = -0.5), axis.title = element_text(face = "bold"), plot.title = element_text(hjust = 0.5), axis.text=element_text(size=11), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.line = element_line(colour = "black") ) grid.arrange(p1, p2, ncol = 2) }
"boa.plot.close" <- function(which = dev.cur()) { shutdown <- NULL current <- boa.par("dev.list") idx <- is.element(current, which) for(i in intersect(current[idx], dev.list())) { shutdown <- dev.off(i) } boa.par(dev.list = current[!idx]) return(shutdown) }
NULL getLocusAttributes = function(x, markers = NULL, attribs = c("alleles", "afreq", "name", "chrom", "posMb", "mutmod")) { if(is.pedList(x)) x = x[[1]] if(!is.ped(x)) stop2("Input must be a `ped` object or a list of such") markers = markers %||% seq_markers(x) attribs = match.arg(attribs, several.ok = TRUE) mlist = getMarkers(x, markers) lapply(mlist, function(m) { a = attributes(m)[attribs] a = a[!is.na(names(a))] a }) } setLocusAttributes = function(x, markers = NULL, locusAttributes, matchNames = NA, erase = FALSE) { if(is.pedList(x)) { y = lapply(x, setLocusAttributes, markers = markers, locusAttributes = locusAttributes, matchNames = matchNames, erase = erase) return(y) } if(!is.ped(x)) stop2("Input must be a `ped` object or a list of such") N = nMarkers(x) if(N == 0) stop2("This function can only modify already attached markers.\nUse `setMarkers() to attach new markers.") recyclingNeeded = is.list(locusAttributes) && !is.list(locusAttributes[[1]]) if(recyclingNeeded) { if(is.null(markers)) stop2("When `locusAttributes` is a single list, then `markers` cannot be NULL") locusAttributes = rep(list(locusAttributes), length(markers)) } if(is.null(markers)) { if(is.na(matchNames) || isTRUE(matchNames)) { hasNames = all(vapply(locusAttributes, function(a) 'name' %in% names(a), FUN.VALUE = FALSE)) if(hasNames) nms = vapply(locusAttributes, function(a) a[['name']], FUN.VALUE = "") else nms = names(locusAttributes) if(dup <- anyDuplicated(nms)) stop2("Duplicated marker name in attribute list: ", nms[dup]) if(is.na(matchNames)) { matchNames = !is.null(nms) && all(nms %in% name(x, 1:N)) } } if(matchNames) markers = nms else markers = 1:N } if(anyDuplicated(markers)) stop2("Duplicated markers: ", markers[duplicated(markers)]) midx = whichMarkers(x, markers) M = length(midx) L = length(locusAttributes) if(L != M) stop2("List of locus attributes does not match the number of markers") als = getAlleles(x, markers = midx) oldAttrs = getLocusAttributes(x, markers = midx) for(i in seq_along(midx)) { ali = als[, c(2*i - 1, 2*i), drop = FALSE] newattri = locusAttributes[[i]] if(!erase) { updatedattri = modifyList(oldAttrs[[i]], newattri) if("alleles" %in% names(newattri) && !"afreq" %in% names(newattri)) updatedattri$afreq = NULL newattri = updatedattri } arglist = c(list(x = x, allelematrix = ali), newattri) newM = do.call(marker, arglist) x$MARKERS[[midx[i]]] = newM } x }
tam_mml_3pl_inits_group <- function(group, ndim, G, variance.inits, groups) { var.indices <- NULL if ( ! is.null(group) ){ var.indices <- rep(1,G) for (gg in 1:G){ var.indices[gg] <- which( group==gg )[1] } if ( is.null( variance.inits ) ){ variance <- array( 0, dim=c(G,ndim,ndim) ) for (gg in 1:G){ variance[gg,,] <- diag(ndim) } } } res <- list(G=G, groups=groups, group=group, var.indices=var.indices) return(res) }
context("PERMISSIONS") tmp <- tempfile() X <- FBM(10, 10, backingfile = tmp, init = NA)$save() expect_output(print(X), "A Filebacked Big Matrix of type 'double'") expect_identical(file.access(X$bk, 4), setNames(0L, X$bk)) expect_identical(file.access(X$bk, 2), setNames(0L, X$bk)) X <- big_attach(paste0(tmp, ".rds")) expect_true(all(is.na(X[]))) X[] <- 1 expect_true(all(X[] == 1)) X$is_read_only <- TRUE expect_output(print(X), "A read-only Filebacked Big Matrix of type 'double'") expect_error(X[] <- 2, "This FBM is read-only.") expect_true(all(X[] == 1)) Sys.chmod(paste0(tmp, ".bk"), "0444") if (file.access(X$bk, 2) != 0) { X <- big_attach(paste0(tmp, ".rds")) expect_true(all(X[] == 1)) expect_error(X[] <- 3, "You don't have write permissions for this FBM.") Sys.chmod(paste0(tmp, ".bk"), "0666") X[] <- 4 expect_true(all(X[] == 4)) }
pathsep <- .Platform$path.sep
amBarplot <- function(x, y, data, xlab = "", ylab = "", ylim = NULL, groups_color = NULL, horiz = FALSE, stack_type = c("none", "regular", "100"), layered = FALSE, show_values = FALSE, depth = 0, dataDateFormat = NULL, minPeriod = ifelse(!is.null(dataDateFormat), "DD", ""), ...) { data <- .testFormatData(data) stack_type <- match.arg(stack_type) .testCharacterLength1(char = xlab) .testCharacterLength1(char = ylab) .testLogicalLength1(logi = layered) .testLogicalLength1(logi = horiz) .testLogicalLength1(logi = show_values) .testInterval(num = depth, binf = 0, bsup = 100) if (missing(x) && !length(rownames(data))) { stop("Argument x is not provided and the data.frame does not have row names") } else if (missing(x) && length(rownames(data))){ x <- "xcat_" data$xcat_ <- rownames(data) } else if (is.character(x) && !(x %in% colnames(data))) { stop("Argument x does not correspond to a column name") } else if (is.numeric(x) && x > ncol(data)) { stop("Error in argument x") } else {} if (is.numeric(x)) x <- colnames(data)[x] if (is.factor(data[,x])) data[,x] <- as.character(data[,x]) .testCharacter(char = data[,x]) y <- match.arg(arg = y, choices = colnames(data), several.ok = TRUE) sapply(1:length(y), FUN = function(i) { if (is.numeric(y[i])) { if (y[i] > ncol(data)) stop("Error in argument x") y[i] <<- colnames(data)[y[i]] } else if(is.character(y) && !all(y %in% colnames(data))) { stop(paste("Cannot extract column(s)", y, "from data")) } else {} if (!is.numeric(data[,y[i]])) stop(paste("The column ", y[i], "of the dataframe must be numeric.")) }) if (layered && stack_type != "none") stop("You have to choose : layered or stacked. If layered is set to TRUE, stack_type must be equal to 'none'") if (!is.null(stack_type)) { .testCharacter(char = stack_type) .testIn(vect = stack_type, control = c("regular", "100", "none")) } stack_type <- switch(stack_type, "100" = "100%", stack_type) color_palette = c(" " if (!"color" %in% colnames(data)) { if (length(y) == 1) { if (!is.null(groups_color)) { data$color <- groups_color[1] } else { data$color <- rep(x = color_palette, length.out = nrow(data)) } } } else { if (!is.null(groups_color)) { vec_col <- rep(groups_color, nrow(data)) data$color <- vec_col[1:nrow(data)] } } if ((depth3D <- depth) > 0) { angle <- 30 } else { angle <- 0 } if (show_values) { label_text <- "[[value]]" } else { label_text <- "" } if (!is.null(ylim)) { ymin <- ylim[1] ymax <- ylim[2] } else { ymin <- NULL ymax <- NULL } pipeR::pipeline( amSerialChart(dataProvider = data, categoryField = x, rotate = horiz, depth3D = depth3D, angle = angle, dataDateFormat = dataDateFormat), addValueAxis(title = ylab, position = 'left', stackType = stack_type, minimum = ymin, maximum = ymax, strictMinMax = !is.null(ylim)), setCategoryAxis(title = xlab, gridPosition = 'start', axisAlpha = 0, gridAlpha = 0, parseDates = !is.null(dataDateFormat), minPeriod = minPeriod), (~ chart) ) if (length(y) == 1) { if ("description" %in% colnames(data)) { tooltip <- '<b>[[description]]</b>' } else { tooltip <- '<b>[[value]]</b>' } chart <- addGraph(chart, balloonText = tooltip, fillColorsField = 'color', fillAlphas = 0.85, lineAlpha = 0.1, type = 'column', valueField = y, labelText = label_text) } else { if (!is.null(groups_color)) { v_col <- rep(x = groups_color, length.out = length(y)) } else { v_col <- rep(x = color_palette, length.out = length(y)) } graphs_list <- lapply(X = seq(length(y)), FUN = function (i) { if ("description" %in% colnames(data)) { tooltip2 <- '<b>[[description]]</b>' } else { tooltip2 <- paste0(as.character(y[i]),": [[value]]") } graph_obj <- graph(chart, id = paste0("AmGraph-",i), balloonText = tooltip2, fillColors = v_col[i], legendColor = v_col[i], fillAlphas = 0.85, lineAlpha = 0.1, type = 'column', valueField = y[i], title = y[i], labelText = label_text) if (layered) { return(setProperties(graph_obj, clustered = FALSE, columnWidth = 0.9/(1.8^(i-1)))) } else { return(graph_obj) } }) chart <- setGraphs(chart, graphs = graphs_list) } chart <- setProperties(.Object = chart, RType_ = "barplot") amOptions(chart, ...) }
context("parseFilename") test_that("multiplication works", { expect_equal(2 * 2, 4) })
tar_cue <- function( mode = c("thorough", "always", "never"), command = TRUE, depend = TRUE, format = TRUE, iteration = TRUE, file = TRUE ) { tar_assert_lgl(command) tar_assert_lgl(depend) tar_assert_lgl(format) tar_assert_lgl(iteration) tar_assert_lgl(file) tar_assert_scalar(command) tar_assert_scalar(depend) tar_assert_scalar(format) tar_assert_scalar(iteration) tar_assert_scalar(file) cue_init( mode = match.arg(mode), command = command, depend = depend, format = format, iteration = iteration, file = file ) }
.rex <- new.env(parent = emptyenv()) .rex$env <- new.env(parent = emptyenv()) .rex$mode <- FALSE register <- function(...) { names <- gsub("`", "", as.character(eval(substitute(alist(...)))), fixed = TRUE) list2env(structure(list(...), .Names = names), envir = .rex$env) } register_object <- function(object) { list2env(as.list(object), envir = .rex$env) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(RandomForestsGLS) rmvn <- function(n, mu = 0, V = matrix(1)){ p <- length(mu) if(any(is.na(match(dim(V),p)))) stop("Dimension not right!") D <- chol(V) t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p))) } set.seed(5) n <- 200 coords <- cbind(runif(n,0,1), runif(n,0,1)) set.seed(2) x <- as.matrix(runif(n),n,1) sigma.sq = 10 phi = 1 tau.sq = 0.1 D <- as.matrix(dist(coords)) R <- exp(-phi*D) w <- rmvn(1, rep(0,n), sigma.sq*R) y <- rnorm(n, 10*sin(pi * x) + w, sqrt(tau.sq)) set.seed(1) est_known <- RFGLS_estimate_spatial(coords, y, x, ntree = 50, cov.model = "exponential", nthsize = 20, sigma.sq = sigma.sq, tau.sq = tau.sq, phi = phi) set.seed(1) est_unknown <- RFGLS_estimate_spatial(coords, y, x, ntree = 50, cov.model = "exponential", nthsize = 20, param_estimate = TRUE) Xtest <- matrix(seq(0,1, by = 1/10000), 10001, 1) RFGLS_predict_known <- RFGLS_predict(est_known, Xtest) library(randomForest) set.seed(1) RF_est <- randomForest(x, y, nodesize = 20) RF_predict <- predict(RF_est, Xtest) mean((RF_predict - 10*sin(pi * Xtest))^2) mean((RFGLS_predict_known$predicted - 10*sin(pi * Xtest))^2) RFGLS_predict_unknown <- RFGLS_predict(est_unknown, Xtest) mean((RFGLS_predict_unknown$predicted - 10*sin(pi * Xtest))^2) rfgls_loess_10 <- loess(RFGLS_predict_known$predicted ~ c(1:length(Xtest)), span=0.1) rfgls_smoothed10 <- predict(rfgls_loess_10) rf_loess_10 <- loess(RF_predict ~ c(1:length(RF_predict)), span=0.1) rf_smoothed10 <- predict(rf_loess_10) xval <- c(10*sin(pi * Xtest), rf_smoothed10, rfgls_smoothed10) xval_tag <- c(rep("Truth", length(10*sin(pi * Xtest))), rep("RF", length(rf_smoothed10)), rep("RF-GLS",length(rfgls_smoothed10))) plot_data <- as.data.frame(xval) plot_data$Methods <- xval_tag coval <- c(rep(seq(0,1, by = 1/10000), 3)) plot_data$Covariate <- coval library(ggplot2) ggplot(plot_data, aes(x=Covariate, y=xval, color=Methods)) + geom_point() + labs( x = "x") + labs( y = "f(x)") est_known_short <- RFGLS_estimate_spatial(coords[1:160,], y[1:160], matrix(x[1:160,],160,1), ntree = 50, cov.model = "exponential", nthsize = 20, param_estimate = TRUE) RFGLS_predict_spatial <- RFGLS_predict_spatial(est_known_short, coords[161:200,], matrix(x[161:200,],40,1)) pred_mat <- as.data.frame(cbind(RFGLS_predict_spatial$prediction, y[161:200])) colnames(pred_mat) <- c("Predicted", "Observed") ggplot(pred_mat, aes(x=Observed, y=Predicted)) + geom_point() + geom_abline(intercept = 0, slope = 1, color = "blue") + ylim(0, 16) + xlim(0, 16) nu = 3/2 R1 <- (D*phi)^nu/(2^(nu-1)*gamma(nu))*besselK(x=D*phi, nu=nu) diag(R1) <- 1 set.seed(2) w <- rmvn(1, rep(0,n), sigma.sq*R1) y <- rnorm(n, 10*sin(pi * x) + w, sqrt(tau.sq)) set.seed(3) est_misspec <- RFGLS_estimate_spatial(coords, y, x, ntree = 50, cov.model = "exponential", nthsize = 20, param_estimate = TRUE) RFGLS_predict_misspec <- RFGLS_predict(est_misspec, Xtest) set.seed(4) RF_est <- randomForest(x, y, nodesize = 20) RF_predict <- predict(RF_est, Xtest) mean((RFGLS_predict_misspec$predicted - 10*sin(pi * Xtest))^2) mean((RF_predict - 10*sin(pi * Xtest))^2) rho <- 0.9 set.seed(1) b <- rho s <- sqrt(sigma.sq) eps = arima.sim(list(order = c(1,0,0), ar = b), n = n, rand.gen = rnorm, sd = s) y <- c(eps + 10*sin(pi * x)) set.seed(1) est_temp_known <- RFGLS_estimate_timeseries(y, x, ntree = 50, lag_params = rho, nthsize = 20) set.seed(1) est_temp_unknown <- RFGLS_estimate_timeseries(y, x, ntree = 50, lag_params = rho, nthsize = 20, param_estimate = TRUE) Xtest <- matrix(seq(0,1, by = 1/10000), 10001, 1) RFGLS_predict_temp_known <- RFGLS_predict(est_temp_known, Xtest) library(randomForest) set.seed(1) RF_est_temp <- randomForest(x, y, nodesize = 20) RF_predict_temp <- predict(RF_est_temp, Xtest) mean((RF_predict_temp - 10*sin(pi * Xtest))^2) mean((RFGLS_predict_temp_known$predicted - 10*sin(pi * Xtest))^2) RFGLS_predict_temp_unknown <- RFGLS_predict(est_temp_unknown, Xtest) mean((RFGLS_predict_temp_unknown$predicted - 10*sin(pi * Xtest))^2) rho1 <- 0.7 rho2 <- 0.2 set.seed(2) b <- c(rho1, rho2) s <- sqrt(sigma.sq) eps = arima.sim(list(order = c(2,0,0), ar = b), n = n, rand.gen = rnorm, sd = s) y <- c(eps + 10*sin(pi * x)) set.seed(3) est_misspec_temp <- RFGLS_estimate_timeseries(y, x, ntree = 50, lag_params = 0, nthsize = 20, param_estimate = TRUE) RFGLS_predict_misspec_temp <- RFGLS_predict(est_misspec_temp, Xtest) set.seed(4) RF_est_temp <- randomForest(x, y, nodesize = 20) RF_predict_temp <- predict(RF_est_temp, Xtest) mean((RFGLS_predict_misspec_temp$predicted - 10*sin(pi * Xtest))^2) mean((RF_predict_temp - 10*sin(pi * Xtest))^2) set.seed(5) n <- 200 coords <- cbind(runif(n,0,1), runif(n,0,1)) set.seed(2) x <- as.matrix(runif(n),n,1) sigma.sq = 10 phi = 1 tau.sq = 0.1 nu = 0.5 D <- as.matrix(dist(coords)) R <- exp(-phi*D) w <- rmvn(1, rep(0,n), sigma.sq*R) y <- rnorm(n, 10*sin(pi * x) + w, sqrt(tau.sq)) set.seed(1) est_known_pl <- RFGLS_estimate_spatial(coords, y, x, ntree = 50, cov.model = "exponential", nthsize = 20, sigma.sq = sigma.sq, tau.sq = tau.sq, phi = phi, h = 2) RFGLS_predict_known_pl <- RFGLS_predict(est_known_pl, Xtest, h = 2) mean((RFGLS_predict_known$predicted - 10*sin(pi * Xtest))^2) mean((RFGLS_predict_known_pl$predicted - 10*sin(pi * Xtest))^2)
context("Isotonic regression") testthat::test_that("Pooled Adjacent Violator Algorithm", { onerun <- function() { n <- 10 x <- runif(n,-4,4) y <- rbinom(n,1,lava::expit(-1+x)) ord <- order(x) pv <- targeted::pava(y[ord]) xx <- x[ord[pv$index]] yy <- pv$value af <- stepfun(c(xx), c(yy,max(yy)), f=0, right=TRUE) af2 <- as.stepfun(stats::isoreg(x,y)) plot(af); lines(af2, col=lava::Col("red",0.2),lwd=5) testthat::expect_true(sum((af(x)-af2(x))^2)<1e-12) } replicate(10,onerun()) })
library(hamcrest) library(methods) setClass("AA", representation(a="numeric")) setClass("BB", contains="AA") setMethod("Arith", signature("AA","AA"), function(e1, e2) environment()) setMethod("^", signature("AA","AA"), function(e1, e2) environment()) setMethod("*", signature("BB","BB"), function(e1, e2) environment()) a <- new("AA") b <- new("BB") m = a + a n = a ^ a o = b + b p = b ^ b q = b * b assertThat( ls(all.names=TRUE) %in% c(".Random.seed", "a", "b", ".__C__AA", ".__C__BB", "m", "n", "o", "p", "q", ".__T__Arith:base", ".__T__^:base", ".__T__*:base"), identicalTo( c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) ) ) test.s4.dispatch.metadata.01b = function() { assertThat( ls(m, all.names=TRUE) %in% c(".defined", "e1", "e2", ".Generic", ".Method", ".Methods", ".target") , identicalTo( c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) )) } test.s4.dispatch.metadata.01d = function() { assertThat( ls(o, all.names=TRUE) %in% c(".defined", "e1", "e2", ".Generic", ".Method", ".Methods", ".target"), identicalTo( c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) )) } test.s4.dispatch.metadata.01e = function() { assertThat( ls(p, all.names=TRUE) %in% c(".defined", "e1", "e2", ".Generic", ".Method", ".Methods", ".target") , identicalTo( c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) )) } test.s4.dispatch.metadata.02 = function() { assertThat( typeof(m$e1) , identicalTo( "S4" )) assertThat( typeof(m$.Generic) , identicalTo( "character" )) assertThat( typeof(m$.Method) , identicalTo( "closure" )) assertThat( typeof(m$.target) , identicalTo( "character" )) assertThat( typeof(a) , identicalTo( "S4" )) assertThat( typeof(`.__C__AA`) , identicalTo( "S4" )) assertThat( typeof(m) , identicalTo( "environment" )) assertThat( typeof(`.__T__Arith:base`) , identicalTo( "environment" )) assertThat( typeof(m$.defined) , identicalTo( "character" )) assertThat( typeof(attr(m$.defined, "class") ) , identicalTo( "character" )) assertThat( typeof(attr(m$.defined, "names") ) , identicalTo( "character" )) assertThat( typeof(attr(m$.defined, "package") ) , identicalTo( "character" )) assertThat( typeof(attr(attr(m$.defined, "class"), "package") ) , identicalTo( "character" )) assertThat( typeof(attr(m$.Method, "defined")) , identicalTo( "character" )) assertThat( typeof(attr(attr(m$.Method, "defined"), "class")), identicalTo( "character")) assertThat( typeof(attr(attr(m$.Method, "defined"), "names")) , identicalTo( "character" )) assertThat( typeof(attr(attr(m$.Method, "defined"), "class")) , identicalTo( "character" )) } test.s4.dispatch.metadata.03 = function() { assertThat( attr(m$.defined, "names") , identicalTo( c("e1", "e2") )) assertThat( attr(m$.defined, "package") , identicalTo( c(".GlobalEnv", ".GlobalEnv") )) assertThat( attr(attr(m$.defined, "class"), "package") , identicalTo( "methods" )) assertThat( attr(m$.defined, "class")[1] , identicalTo( "signature" )) assertThat( attr(attr(m$.Method, "defined"), "names") , identicalTo( c("e1", "e2") )) assertThat( attr(attr(m$.Method, "defined"), "package") , identicalTo( c(".GlobalEnv", ".GlobalEnv") )) assertThat( attr(attr(m$.Method, "defined"), "class")[1], identicalTo( "signature")) } test.extend.primitive.5 = function() { setClass("Foo", contains="numeric") x <- new("Foo", .Data = 42) assertThat(typeof(x), identicalTo("double")) assertThat(is.double(x), identicalTo(TRUE)) assertThat(x[1], identicalTo(42)) }
test_that("entire icon list prints correctly", { expect_equal( object = length(find_icons()), expected = length(rheroicons), label = "Returned array does not match the length of the icon set" ) }) test_that("query returns expected icons", { expect_equal( object = find_icons(query = "chevron_double"), expected = c( "chevron_double_down", "chevron_double_left", "chevron_double_right", "chevron_double_up" ) ) })
make_perclab <- function(x, d = 2) { return(paste0(round((x * 100), d), "%")) }
.wtss_coverage_description <- function(URL, cov){ name <- cov$name timeline <- lubridate::as_date(cov$timeline) band_info <- cov$attributes attr <- tibble::as_tibble(band_info) bands <- attr$name t <- dplyr::select(dplyr::filter(attr, name %in% bands), name, missing_value, scale_factor, valid_range) missing_values <- t$missing_value names(missing_values) <- t$name scale_factors <- t$scale_factor names(scale_factors) <- t$name minimum_values <- t$valid_range$min names(minimum_values) <- t$name maximum_values <- t$valid_range$max names(maximum_values) <- t$name if (all(scale_factors == 1)) scale_factors <- 1/maximum_values xmin <- cov$spatial_extent$xmin ymin <- cov$spatial_extent$ymin xmax <- cov$spatial_extent$xmax ymax <- cov$spatial_extent$ymax xres <- cov$spatial_resolution$x yres <- cov$spatial_resolution$y nrows <- cov$dimension$y$max_idx - cov$dimensions$y$min_idx + 1 ncols <- cov$dimension$x$max_idx - cov$dimensions$x$min_idx + 1 crs <- cov$crs$proj4 sat_sensor <- .wtss_guess_satellite(xres) satellite <- sat_sensor["satellite"] sensor <- sat_sensor["sensor"] cov.tb <- tibble::tibble(URL = URL, satellite = satellite, sensor = sensor, name = name, bands = list(bands), scale_factors = list(scale_factors), missing_values = list(missing_values), minimum_values = list(minimum_values), maximum_values = list(maximum_values), timeline = list(timeline), nrows = nrows, ncols = ncols, xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, xres = xres, yres = yres, crs = crs) class(cov.tb) <- append(class(cov.tb), c("sits_cube"), after = 0) return(cov.tb) } .wtss_print_coverage <- function(cov.tb){ cat("---------------------------------------------------------------------") cat(paste0("\nWTSS server URL = ", cov.tb$URL, "\n")) cat(paste0("Cube (coverage) = ", cov.tb$name)) print(knitr::kable(dplyr::select(cov.tb, satellite, sensor, bands), padding = 0)) print(knitr::kable(dplyr::select(cov.tb, scale_factors), padding = 0)) print(knitr::kable(dplyr::select(cov.tb, minimum_values), padding = 0)) print(knitr::kable(dplyr::select(cov.tb, maximum_values), padding = 0)) print(knitr::kable(dplyr::select(cov.tb, nrows, ncols, xmin, xmax, ymin, ymax, xres, yres, crs), padding = 0)) timeline <- lubridate::as_date(cov.tb$timeline[[1]]) n_time_steps <- length(timeline) cat(paste0("\nTimeline - ",n_time_steps," time steps\n")) cat(paste0("start_date: ", timeline[1], " end_date: ", timeline[n_time_steps],"\n")) cat("-------------------------------------------------------------------\n") } .wtss_list_coverages <- function(URL) { items <- NULL ce <- 0 response <- NULL request <- paste(URL,"/list_coverages",sep = "") items <- .wtss_process_request(request) if (purrr::is_null(items)) return(NULL) else return(items$coverages) } .wtss_guess_satellite <- function(xres) { if (xres < 1.0 ) { res_m <- geosphere::distGeo(p1 = c(0.0, 0.0), p2 = c(xres, 0.00)) } else res_m <- xres if (res_m > 200.0 && res_m < 2000.0) { sat_sensor <- c("TERRA", "MODIS") } else if (res_m > 60.00 && res_m < 80.0) sat_sensor <- c("CBERS", "AWFI") else if (res_m > 25.00 && res_m < 35.0) sat_sensor <- c("LANDSAT", "OLI") else if (res_m < 25.00 && res_m > 5.0) sat_sensor <- c("SENTINEL-2", "MSI") else sat_sensor <- c("UNKNOWN", "UNKNOWN") names(sat_sensor) <- c("satellite", "sensor") return(sat_sensor) } .wtss_remove_trailing_dash <- function(URL) { url_length <- stringr::str_length(URL) url_loc_dash <- stringr::str_locate_all(URL, "/")[[1]] nrow_ld <- nrow(url_loc_dash) lg <- as.numeric(url_loc_dash[nrow_ld, "start"]) url_new <- URL if (lg == url_length) url_new <- stringr::str_sub(URL, end = (url_length - 1)) return(url_new) }
pBrIII <- function(x , para = c(1, 2, 0.5)) { scale <- para[1]; shape1 <- para[2]; shape2 <- para[3] u <- (1 + (1/shape1)*((x/scale)^(-1/shape2)))^(-shape1*shape2) return(u) }
wendland <- function(crd, knots, w = NULL, ..., longlat = TRUE) { if (!is.matrix(x = crd)) stop("crd must be a matrix") if (ncol(x = crd) != 2L) stop("crd must be a matrix with 2 columns") if (!is.matrix(x = knots)) stop("knots must be a matrix") if (ncol(x = knots) != 2L) stop("knots must be a matrix with 2 columns") if (is.null(x = w)) { dis <- sp::spDists(x = knots, y = knots, longlat = longlat) w <- 1.5 * min(dis[upper.tri(x = dis, diag = FALSE)]) message("basis function scale set to ", round(w,4)) } if (w < 1e-8) stop("w must be positive") return( .wendland(crd = crd, knots = knots, w = w, longlat = longlat) ) } .wendland <- function(..., crd, knots, w, longlat = TRUE) { if (longlat) { dis <- fields::rdist.earth(x1 = crd, x2 = knots, miles = FALSE) / w } else { dis <- sp::spDists(x = crd, y = knots, longlat = longlat) / w } nzero <- dis <= 1.0 dis2 <- dis[nzero] tt <- {1.0 - dis2}^6 * {35.0*dis2^2 + 18.0*dis2 + 3.0} / 3.0 dis[] <- 0.0 dis[nzero] <- tt return( dis ) }
context("Checking word_length") test_that("word_length gives the desired output",{ wls <- with(DATA, word_length(state, person)) expect_true(class(wls) == "word_length") m <- counts(wls) expect_true(is.data.frame(m)) expect_true(all(dim(m) == c(5, 10))) })
normal.freq <- function (histogram,frequency=1, ...) { xx <- histogram$mids if(frequency==1)yy<-histogram$counts if(frequency==2)yy<-histogram$counts/sum(histogram$counts) if(frequency==3)yy<-histogram$density media <- sum(yy * xx)/sum(yy) variancia <- sum(yy * (xx - media)^2)/sum(yy) zz <- histogram$breaks x1 <- xx[1] - 4 * (zz[2] - zz[1]) z <- length(zz) x2 <- xx[z - 1] + 4 * (zz[z] - zz[z - 1]) x <- seq(x1, x2, length = 200) y <- rep(0, 200) area <- 0 for (k in 1:(z - 1)) area = area + yy[k] * (zz[k + 1] - zz[k]) for (i in 1:200) { y[i] <- area * exp(-((x[i] - media)^2)/(2 * variancia))/sqrt(2 * pi * variancia) } lines(x, y, ...) abline(h = 0) }
check.data <- function(data,type="fit"){ if(type=="fit") { if(!is.data.frame(data)|is.null(data$y)|is.null(data$subj)|is.null(data$argvals)) stop("'data' should be a data frame with three variables:argvals,subj and y") if(sum(is.na(data))>0) stop("No NA values are allowed in the data") } if(type=="predict"){ if(!is.data.frame(data)|is.null(data$y)|is.null(data$subj)|is.null(data$argvals)) stop("'newdata' should be a data frame with three variables:argvals,subj and y") } return(0) }
transparentColorBase = function(color, alphaTrans=alphaTrans) { if(alphaTrans>1 || alphaTrans<0) stop(paste('alphaTrans (',alphaTrans,') must be in [0,1]!', sep='')) if( any(is.na(match(color, colors()))) ) stop(paste('color (',color,') must be legal R colors()!',sep='')) ac = t(col2rgb(color))/255 return(rgb(ac[,1], ac[,2], ac[,3], alpha=alphaTrans)) }
BP_DetectBackground <- function(bone, analysis=1, show.plot=TRUE) { red <- bone[c(2:5, dim(bone)[1]-2:5), c(2:5, dim(bone)[2]-2:5), 1, 1] green <- bone[c(2:5, dim(bone)[1]-2:5), c(2:5, dim(bone)[2]-2:5), 1, 2] blue <- bone[c(2:5, dim(bone)[1]-2:5), c(2:5, dim(bone)[2]-2:5), 1, 3] bg <- rgb(red=median(red), green=median(green), blue=median(blue)) bone <- RM_add(x=bone, RMname=analysis, valuename = "bg", value=bg) bone <- RM_delete(x=bone, RMname = analysis, valuename="threshold") bone <- RM_delete(x=bone, RMname = analysis, valuename="contour") bone <- RM_delete(x=bone, RMname = analysis, valuename="centers") bone <- RM_delete(x=bone, RMname = analysis, valuename="compactness") bone <- RM_delete(x=bone, RMname = analysis, valuename="array.compactness") bone <- RM_delete(x=bone, RMname = analysis, valuename="cut.distance.center") bone <- RM_delete(x=bone, RMname = analysis, valuename="cut.angle") bone <- RM_delete(x=bone, RMname = analysis, valuename="compactness.synthesis") bone <- RM_delete(x=bone, RMname = analysis, valuename="optim") bone <- RM_delete(x=bone, RMname = analysis, valuename="used.centers") bone <- RM_delete(x=bone, RMname = analysis, valuename="optimRadial") if (show.plot) plot(bone) return(bone) }
PSEkNUCTri_DNA<-function(seqs,selectedIdx=c("Dnase I", "Bendability (DNAse)"),lambda=3,w = 0.05,l=3,ORF=FALSE,reverseORF=TRUE,threshold=1,label=c()){ path.pack=system.file("extdata",package="ftrCOOL") if(length(seqs)==1&&file.exists(seqs)){ seqs<-fa.read(seqs,alphabet="dna") seqs_Lab<-alphabetCheck(seqs,alphabet = "dna",label) seqs<-seqs_Lab[[1]] label<-seqs_Lab[[2]] } else if(is.vector(seqs)){ seqs<-sapply(seqs,toupper) seqs_Lab<-alphabetCheck(seqs,alphabet = "dna",label) seqs<-seqs_Lab[[1]] label<-seqs_Lab[[2]] } else { stop("ERROR: Input sequence is not in the correct format. It should be a FASTA file or a string vector.") } flag=0 if(ORF==TRUE){ if(length(label)==length(seqs)){ names(label)=names(seqs) flag=1 } seqs=maxORF(seqs,reverse=reverseORF) if(flag==1) label=label[names(seqs)] } numSeqs<-length(seqs) aaIdxAD<-paste0(path.pack,"/TRI_DNA.csv") aaIdx<-read.csv(aaIdxAD) row.names(aaIdx)<-aaIdx[,1] aaIdx<-aaIdx[selectedIdx,-1] aaIdx<-as.matrix(aaIdx) aaIdx<-type.convert(aaIdx) if(threshold!=1){ aaIdx<-t(aaIdx) corr<-cor(aaIdx) corr2<-corr^2 tmp<-corr2 tmp[upper.tri(tmp)]<-0 for(i in 1:ncol(tmp)){ tmp[i,i]=0 } aaIdx<- aaIdx[,!apply(tmp,2,function(x) any(x > threshold))] aaIdx<- t(aaIdx) } minFea<-apply(aaIdx, 1, min) maxFea<-apply(aaIdx, 1, max) aaIdx<-(aaIdx-minFea)/(maxFea-minFea) numFea<-nrow(aaIdx) start<-4^l+1 end<-4^l+lambda featureMatrix<-matrix(0,nrow = numSeqs,ncol = ((4^l)+lambda)) sum_small_th<-vector(mode = "numeric",length = numSeqs) small_theta<-matrix(0, ncol = lambda,nrow = numSeqs) N<-sapply(seqs,nchar) dict<-list("A"=1,"C"=2,"G"=3,"T"=4) for(n in 1:numSeqs){ seq<-seqs[n] if (lambda>N[n] || lambda<=0){ stop("Error: lambda should be between [1,N]. N is the minimum of sequence lengths") } chars<-unlist(strsplit(seq,NULL)) temp1<-chars[1:(N[n]-2)] temp2<-chars[2:(N[n]-1)] temp3<-chars[3:N[n]] Trimers<-paste0(temp1,temp2,temp3) lenTrimer=N[n]-2 for(k in 1:lambda){ vecti=1:(lenTrimer-k) vectj=vecti+k tempMat<-matrix(0,nrow = numFea,ncol = (lenTrimer-k)) for(m in 1:numFea){ tempMat[m,]=(aaIdx[m,Trimers[vecti]]-aaIdx[m,Trimers[vectj]])^2 } bigThetaVect<-apply(tempMat, 2, sum) sumbigThetas<-sum(bigThetaVect) small_theta[n,k]<-(1/(N[n]-k))*sumbigThetas } } sum_small_th<-apply(small_theta, 1, sum) NUCmat<-kNUComposition_DNA(seqs,rng=l,normalized = FALSE,upto = FALSE) index=1 for(index in 1:numSeqs){ featureMatrix[index,1:(4^l)]<-NUCmat[index,]/(N[index]+(w*sum_small_th[index])) featureMatrix[index,start:end]<- w*small_theta[index,]/(N[index]+w*(sum_small_th[index])) } namNUC<-nameKmer(k=l,type = "dna") temp=1:lambda colnam=c(namNUC,paste("lambda",temp,sep="")) colnames(featureMatrix)=colnam if(length(label)==numSeqs){ featureMatrix<-as.data.frame(featureMatrix) featureMatrix<-cbind(featureMatrix,label) } row.names(featureMatrix)<-names(seqs) return(featureMatrix) }
knit_print.dml <- function(x, ...) { if (pandoc_version() < 2.4) { stop("pandoc version >= 2.4 required for DrawingML output in pptx") } if (is.null(opts_knit$get("rmarkdown.pandoc.to")) || opts_knit$get("rmarkdown.pandoc.to") != "pptx") { stop("DrawingML currently only supported for pptx output") } layout <- knitr::opts_current$get("layout") master <- knitr::opts_current$get("master") doc <- get_reference_pptx() if(is.null( ph <- knitr::opts_current$get("ph") )){ ph <- officer::ph_location_type(type = "body") } if(!inherits(ph, "location_str")){ stop("ph should be a placeholder location; ", "see officer::placeholder location for an example.", call. = FALSE) } id_xfrm <- get_content_ph(ph, layout, master, doc) dml_file <- tempfile(fileext = ".dml") img_directory = get_img_dir() dml_pptx(file = dml_file, width = id_xfrm$width, height = id_xfrm$height, offx = id_xfrm$left, offy = id_xfrm$top, pointsize = x$pointsize, last_rel_id = 1L, editable = x$editable, standalone = FALSE, raster_prefix = img_directory) tryCatch({ if (!is.null(x$ggobj) ) { stopifnot(inherits(x$ggobj, "ggplot")) print(x$ggobj) } else { rlang::eval_tidy(x$code) } }, finally = dev.off() ) dml_xml <- read_xml(dml_file) raster_files <- list_raster_files(img_dir = img_directory ) if (length(raster_files)) { rast_element <- xml_find_all(dml_xml, "//p:pic/p:blipFill/a:blip") raster_files <- list_raster_files(img_dir = img_directory ) raster_id <- xml_attr(rast_element, "embed") for (i in seq_along(raster_files)) { xml_attr(rast_element[i], "r:embed") <- raster_files[i] } } dml_str <- paste( as.character(xml_find_first(dml_xml, "//p:grpSp")), collapse = "\n" ) knit_print(asis_output( x = paste("```{=openxml}", dml_str, "```", sep = "\n") )) } get_ph_uncached <- function(ph, layout, master, doc) { ls <- layout_summary(doc) if(!master %in% ls$master){ stop("could not find master ", master, call. = FALSE) } slide_index <- which(ls$layout %in% layout & ls$master %in% master) if(length(slide_index)<1){ stop("could not find layout ", layout, " and master ", master, call. = FALSE) } doc <- on_slide(doc, index = slide_index) fortify_location(ph, doc) } get_content_ph <- memoise(get_ph_uncached) get_img_dir <- function(){ uid <- basename(tempfile(pattern = "")) img_directory = file.path(tempdir(), uid ) img_directory } list_raster_files <- function(img_dir){ path_ <- dirname(img_dir) uid <- basename(img_dir) list.files(path = path_, pattern = paste0("^", uid, "(.*)\\.png$"), full.names = TRUE ) }
markov1<-new("markovchain", states=c("a","b","c"), transitionMatrix= matrix(c(0.2,0.5,0.3, 0,1,0, 0.1,0.8,0.1),nrow=3, byrow=TRUE, dimnames=list(c("a","b","c"), c("a","b","c")) )) require(matlab) mathematicaMatr <- zeros(5) mathematicaMatr[1,] <- c(0, 1/3, 0, 2/3, 0) mathematicaMatr[2,] <- c(1/2, 0, 0, 0, 1/2) mathematicaMatr[3,] <- c(0, 0, 1/2, 1/2, 0) mathematicaMatr[4,] <- c(0, 0, 1/2, 1/2, 0) mathematicaMatr[5,] <- c(0, 0, 0, 0, 1) statesNames <- letters[1:5] mathematicaMc <- new("markovchain", transitionMatrix = mathematicaMatr, name = "Mathematica MC", states = statesNames) context("Basic DTMC proprieties") test_that("States are those that should be", { expect_equal(absorbingStates(markov1), "b") expect_equal(transientStates(markov1), c("a","c")) expect_equal(is.irreducible(mathematicaMc), FALSE) expect_equal(transientStates(mathematicaMc), c("a","b")) expect_equal(is.accessible(mathematicaMc, "a", "c"), TRUE) expect_equal(.recurrentClassesRcpp(mathematicaMc), list(c("c", "d"), c("e"))) }) context("Conversion of objects") provaMatr2Mc<-as(mathematicaMatr,"markovchain") test_that("Conversion of objects", { expect_equal(class(provaMatr2Mc)=="markovchain",TRUE) }) sequence1 <- c("a", "b", "a", "a", NA, "a", "a", NA) sequence2 <- c(NA, "a", "b", NA, "a", "a", "a", NA, "a", "b", "a", "b", "a", "b", "a", "a", "b", "b", "b", "a", NA) mcFit <- markovchainFit(data = sequence1, byrow = FALSE, sanitize = TRUE) mcFit2 <- markovchainFit(c("a","b","a","b"), sanitize = TRUE) test_that("Fit should satisfy", { expect_equal((mcFit["logLikelihood"])[[1]], log(1/3) + 2*log(2/3)) expect_equal(markovchainFit(data = sequence2, method = "bootstrap")["confidenceInterval"] [[1]]["confidenceLevel"][[1]], 0.95) expect_equal(mcFit2$upperEndpointMatrix, matrix(c(0,1,1,0), nrow = 2, byrow = TRUE, dimnames = list(c("a", "b"), c("a", "b")))) }) bigseq <- rep(c("a", "b", "c"), 500000) bigmcFit <- markovchainFit(bigseq) test_that("MC Fit for large sequence 1", { expect_equal(bigmcFit$logLikelihood, 0) expect_equal(bigmcFit$confidenceLevel, 0.95) expect_equal(bigmcFit$estimate@transitionMatrix, bigmcFit$upperEndpointMatrix) }) bigmcFit <- markovchainFit(bigseq, sanitize = TRUE) test_that("MC Fit for large sequence 2", { expect_equal(bigmcFit$logLikelihood, 0) expect_equal(bigmcFit$confidenceLevel, 0.95) expect_equal(bigmcFit$estimate@transitionMatrix, bigmcFit$upperEndpointMatrix) }) matseq <- matrix(c("a", "b", "c", NA ,"b", "c"), nrow = 2, byrow = T) test_that("Markovchain Fit for matrix as input", { expect_equal(markovchainFit(matseq)$estimate@transitionMatrix, matrix(c(0, 1, 0, 0, 0, 1, 0, 0, 0), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_equal(markovchainFit(matseq, sanitize = TRUE)$estimate@transitionMatrix, matrix(c(0, 1, 0, 0, 0, 1, 1/3, 1/3, 1/3), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_equal(markovchainFit(as.data.frame(matseq))$estimate@transitionMatrix, matrix(c(0, 1, 0, 0, 0, 1, 0, 0, 0), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_equal(markovchainFit(as.data.frame(matseq), sanitize = TRUE)$estimate@transitionMatrix, matrix(c(0, 1, 0, 0, 0, 1, 1/3, 1/3, 1/3), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) }) mle_sequence <- c("a", "b", NA, "b", "b", "a", "a", "a", "b", "b", NA, "b", "b", "a", "a", "b", "a", "a", "b", "c") mle_fit1 <- markovchainFit(mle_sequence) mle_fit2 <- markovchainFit(mle_sequence, sanitize = TRUE) test_that("MarkovchainFit MLE", { expect_equal(mle_fit1$estimate@transitionMatrix, matrix(c(0.5, 0.5, 0, 3/7, 3/7, 1/7, 0, 0, 0), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_equal(mle_fit2$estimate@transitionMatrix, matrix(c(0.5, 0.5, 0, 3/7, 3/7, 1/7, 1/3, 1/3, 1/3), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_equal(mle_fit1$logLikelihood, mle_fit2$logLikelihood) expect_equal(mle_fit1$confidenceInterval, mle_fit2$confidenceInterval) expect_equal(mle_fit2$standardError, mle_fit2$standardError) }) lap_sequence <- c("a", "b", NA, "b", "b", "a", "a", "a", "b", "b", NA, "b", "b", "a", "a", "b", "a", "a", "b", "c") lap_fit1 <- markovchainFit(lap_sequence, "laplace") lap_fit2 <- markovchainFit(lap_sequence, "laplace", sanitize = TRUE) test_that("Markovchain Laplace", { expect_equal(lap_fit1$estimate@transitionMatrix, matrix(c(0.5, 0.5, 0, 3/7, 3/7, 1/7, 0, 0, 0), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_equal(lap_fit2$estimate@transitionMatrix, matrix(c(0.5, 0.5, 0, 3/7, 3/7, 1/7, 1/3, 1/3, 1/3), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_equal(lap_fit1$logLikelihood, lap_fit2$logLikelihood) }) mix_seq <- c("a", "b", NA, "b", "b", "a", "a", "a", "b", "b", NA, "b", "b", "a", "a", "b", "a", "a", "b", "c") mix_fit1 <- markovchainFit(mix_seq, "mle", sanitize = TRUE, possibleStates = c("d")) mix_fit2 <- markovchainFit(mix_seq, "laplace", sanitize = TRUE, possibleStates = c("d")) mix_fit3 <- markovchainFit(mix_seq, "map", sanitize = TRUE, possibleStates = c("d")) test_that("Mixture of Markovchain Fitting", { expect_equal(mix_fit2$estimate@transitionMatrix, matrix(c(.5, .5, 0, 0, 3/7, 3/7, 1/7, 0, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4), nrow = 4, byrow = TRUE, dimnames = list(c("a", "b", "c", "d"), c("a", "b", "c", "d")) ) ) expect_equal(mix_fit1$estimate@transitionMatrix, matrix(c(.5, .5, 0, 0, 3/7, 3/7, 1/7, 0, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4), nrow = 4, byrow = TRUE, dimnames = list(c("a", "b", "c", "d"), c("a", "b", "c", "d")) ) ) expect_equal(mix_fit3$estimate@transitionMatrix, matrix(c(.5, .5, 0, 0, 3/7, 3/7, 1/7, 0, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4), nrow = 4, byrow = TRUE, dimnames = list(c("a", "b", "c", "d"), c("a", "b", "c", "d")) ) ) }) rsequence <- c("a", "b", NA, "b", "b", "a", "a", "a", "b", "b", NA, "b", "b", "a", "a", "b", "a", "a", "b", "c") test_that("createSequenceMatrix : Permutation of parameters",{ expect_equal(createSequenceMatrix(rsequence, FALSE, FALSE), matrix(c(4, 4, 0, 3, 3, 1, 0, 0, 0), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_equal(createSequenceMatrix(rsequence, FALSE, TRUE), matrix(c(4, 4, 0, 3, 3, 1, 1, 1, 1), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_equal(createSequenceMatrix(rsequence, TRUE, FALSE), matrix(c(4/8, 4/8, 0, 3/7, 3/7, 1/7, 0, 0, 0), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_equal(createSequenceMatrix(rsequence, TRUE, TRUE), matrix(c(4/8, 4/8, 0, 3/7, 3/7, 1/7, 1/3, 1/3, 1/3), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) }) data <- matrix(c("a", "a", "b", "a", "b", "a", "b", "a", NA, "a", "a", "a", "a", "b", NA, "b"), ncol = 2, byrow = TRUE) test_that("createSequenceMatrix : input as matrix",{ expect_equal(createSequenceMatrix(data), matrix(c(2, 1, 3, 0), nrow = 2, byrow = TRUE, dimnames = list(c("a", "b"), c("a", "b")))) expect_equal(createSequenceMatrix(data, toRowProbs = TRUE), matrix(c(2/3, 1/3, 3/3, 0), nrow = 2, byrow = TRUE, dimnames = list(c("a", "b"), c("a", "b")))) expect_equal(createSequenceMatrix(data, toRowProbs = TRUE, possibleStates = "d", sanitize = TRUE), matrix(c(2/3, 1/3, 0, 1, 0, 0, 1/3, 1/3, 1/3), nrow = 3, byrow = TRUE, dimnames = list(c("a", "b", "d"), c("a", "b", "d")))) }) statesNames <- c("a", "b", "c") mcB <- new("markovchain", states = statesNames, transitionMatrix = matrix(c(0.2, 0.5, 0.3, 0, 0.2, 0.8, 0.1, 0.8, 0.1), nrow = 3, byrow = TRUE, dimnames = list(statesNames, statesNames))) s1 <- markovchainSequence(10, mcB) s2 <- markovchainSequence(10, mcB, include.t0 = TRUE) s3 <- markovchainSequence(10, mcB, t0 = "b", include.t0 = TRUE) s4 <- markovchainSequence(10, mcB, useRCpp = FALSE) s5 <- markovchainSequence(10, mcB, include.t0 = TRUE, useRCpp = FALSE) s6 <- markovchainSequence(10, mcB, t0 = "b", include.t0 = TRUE, useRCpp = FALSE) test_that("Output format of markovchainSequence", { expect_equal(length(s1), 10) expect_equal(length(s2), 11) expect_equal(length(s3), 11) expect_equal(s3[1], "b") expect_equal(length(s4), 10) expect_equal(length(s5), 11) expect_equal(length(s6), 11) expect_equal(s6[1], "b") }) statesNames <- c("a", "b", "c") mcA <- new("markovchain", states = statesNames, transitionMatrix = matrix(c(0.2, 0.5, 0.3, 0, 0.2, 0.8, 0.1, 0.8, 0.1), nrow = 3, byrow = TRUE, dimnames = list(statesNames, statesNames))) mcB <- new("markovchain", states = statesNames, transitionMatrix = matrix(c(0.2, 0.5, 0.3, 0, 0.2, 0.8, 0.1, 0.8, 0.1), nrow = 3, byrow = TRUE, dimnames = list(statesNames, statesNames))) mcC <- new("markovchain", states = statesNames, transitionMatrix = matrix(c(0.2, 0.5, 0.3, 0, 0.2, 0.8, 0.1, 0.8, 0.1), nrow = 3, byrow = TRUE, dimnames = list(statesNames, statesNames))) mclist <- new("markovchainList", markovchains = list(mcA, mcB, mcC)) o1 <- rmarkovchain(15, mclist, "list") o2 <- rmarkovchain(15, mclist, "matrix") o3 <- rmarkovchain(15, mclist, "data.frame") o4 <- rmarkovchain(15, mclist, "list", t0 = "a", include.t0 = TRUE) o5 <- rmarkovchain(15, mclist, "matrix", t0 = "a", include.t0 = TRUE) o6 <- rmarkovchain(15, mclist, "data.frame", t0 = "a", include.t0 = TRUE) test_that("Output format of rmarkovchain", { expect_equal(length(o1), 15) expect_equal(length(o1[[1]]), 3) expect_equal(all(dim(o2) == c(15, 3)), TRUE) expect_equal(all(dim(o3) == c(45, 2)), TRUE) expect_equal(length(o4), 15) expect_equal(length(o4[[1]]), 4) expect_equal(o4[[1]][1], "a") expect_equal(all(dim(o5) == c(15, 4)), TRUE) expect_equal(all(o5[, 1] == "a"), TRUE) expect_equal(all(dim(o6) == c(60, 2)), TRUE) }) data1 <- c("a", "b", "a", "c", "a", "b", "a", "b", "c", "b", "b", "a", "b") data2 <- c("c", "a", "b") test_that("MAP fits must satisfy", { expect_identical(markovchainFit(data1, method = "map")$estimate@transitionMatrix, markovchainFit(data1, method = "mle")$estimate@transitionMatrix) expect_identical(markovchainFit(data1, method = "map")$estimate@transitionMatrix, matrix(c(0.0, 0.6, 0.5, 0.8, 0.2, 0.5, 0.2, 0.2, 0.0), nrow = 3, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_identical(markovchainFit(data1, method = "map", hyperparam = matrix(c(2, 1, 3, 4, 5, 2, 2, 2, 1), nrow = 3, dimnames = list(c("a", "b", "c"), c("a", "b", "c"))))$estimate@transitionMatrix, matrix(c(1/10, 3/10, 3/5, 7/10, 5/10, 2/5, 2/10, 2/10, 0), nrow = 3, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) }) test_that("predictiveDistribution must satisfy", { expect_equal(predictiveDistribution(data1, character()), 0) expect_equal(predictiveDistribution(data1, data2, hyperparam = matrix(c(2, 1, 3, 4, 5, 2, 2, 2, 1), nrow = 3, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))), log(4 / 13)) }) test_that("inferHyperparam must satisfy", { expect_identical(inferHyperparam(data = data1)$dataInference, matrix(c(1, 4, 2, 5, 2, 2, 2, 2, 1), nrow = 3, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) expect_identical(inferHyperparam(transMatr = matrix(c(0.0, 0.6, 0.5, 0.8, 0.2, 0.5, 0.2, 0.2, 0.0), nrow = 3, dimnames = list(c("a", "b", "c"), c("a", "b", "c"))), scale = c(10, 10, 10))$scaledInference, matrix(c(0, 6, 5, 8, 2, 5, 2, 2, 0), nrow = 3, dimnames = list(c("a", "b", "c"), c("a", "b", "c")))) }) pDRes <- c(log(3/2), log(3/2)) names(pDRes) <- c("a", "b") test_that("priorDistribution must sastisfy", { expect_equal(priorDistribution(matrix(c(0.5, 0.5, 0.5, 0.5), nrow = 2, dimnames = list(c("a", "b"), c("a", "b"))), matrix(c(2, 2, 2, 2), nrow = 2, dimnames = list(c("a", "b"), c("a", "b")))), pDRes) }) energyStates <- c("sigma", "sigma_star") byRow <- TRUE gen <- matrix(data = c(-3, 3, 1, -1), nrow = 2, byrow = byRow, dimnames = list(energyStates, energyStates)) molecularCTMC <- new("ctmc", states = energyStates, byrow = byRow, generator = gen, name = "Molecular Transition Model") test_that("steadyStates must satisfy", { expect_identical(steadyStates(molecularCTMC), matrix(c(1/4, 3/4), nrow = 1, dimnames = list(c(), energyStates))) }) transMatr<-matrix(c(0.99,0.01,0.01,0.99),nrow=2,byrow=TRUE) simpleMc<-new("markovchain", states=c("a","b"), transitionMatrix=transMatr) test_that("expectedRewards must satisfy", { expect_equal(expectedRewards(simpleMc,1,c(0,1)),c(0.01,1.99)) expect_equal(expectedRewards(simpleMc,2,c(0,1)),c(0.0298,2.9702)) }) transMatr <- matrix(c(0,0,0,1,0.5, 0.5,0,0,0,0, 0.5,0,0,0,0, 0,0.2,0.4,0,0, 0,0.8,0.6,0,0.5),nrow = 5) object <- new("markovchain", states=c("a","b","c","d","e"),transitionMatrix=transMatr, name="simpleMc") answer <- c(0.444,0.889,0.000,0.444,1.000) names <- c("a","b","c","d","e") names(answer) <- names test_that("committorAB must satisfy", { expect_equal(round(committorAB(object,c(5),c(3)),3),answer) }) statesNames <- c("a", "b", "c") testmarkov <- new("markovchain", states = statesNames, transitionMatrix = matrix(c(0.2, 0.5, 0.3, 0.5, 0.1, 0.4, 0.1, 0.8, 0.1), nrow = 3, byrow = TRUE, dimnames = list(statesNames, statesNames) )) answer <- matrix(c(.8000, 0.6000, 0.2540 ),nrow = 3,dimnames = list(c("1","2","3"),"set")) test_that("firstPassageMultiple function satisfies", { expect_equal(firstPassageMultiple(testmarkov,"a",c("b","c"),3),answer) }) M <- matrix(0,nrow=10,ncol=10,byrow=TRUE) M[1,2]<- 0.7 M[1,3]<- 0.3 M[2,3]<- 1 M[3,4]<- 1 M[4,1]<- 1 M[5,6]<- 1 M[6,7]<- 1 M[7,8]<- 1 M[8,9]<- 1 M[9,10]<- 1 M[10,1]<- 1 markovChain <- new("markovchain",transitionMatrix=M) context("Checking is.accesible") test_that("is accesible is equivalent to reachability matrix", { for (mc in subsetAllMCs) { expect_true(.testthatIsAccesibleRcpp(mc$object)) } })
forecast.tbats <- function(object, h, level = c(80, 95), fan = FALSE, biasadj = NULL, ...) { if (identical(class(object), "bats")) { return(forecast.bats(object, h, level, fan, biasadj, ...)) } if (any(class(object$y) == "ts")) { ts.frequency <- frequency(object$y) } else { ts.frequency <- ifelse(!is.null(object$seasonal.periods), max(object$seasonal.periods), 1) } if (missing(h)) { if (is.null(object$seasonal.periods)) { h <- ifelse(ts.frequency == 1, 10, 2 * ts.frequency) } else { h <- 2 * max(object$seasonal.periods) } } else if (h <= 0) { stop("Forecast horizon out of bounds") } if (fan) { level <- seq(51, 99, by = 3) } else { if (min(level) > 0 && max(level) < 1) { level <- 100 * level } else if (min(level) < 0 || max(level) > 99.99) { stop("Confidence limit out of range") } } if (!is.null(object$k.vector)) { tau <- 2 * sum(object$k.vector) } else { tau <- 0 } x <- matrix(0, nrow = nrow(object$x), ncol = h) y.forecast <- numeric(h) if (!is.null(object$beta)) { adj.beta <- 1 } else { adj.beta <- 0 } w <- .Call("makeTBATSWMatrix", smallPhi_s = object$damping.parameter, kVector_s = as.integer(object$k.vector), arCoefs_s = object$ar.coefficients, maCoefs_s = object$ma.coefficients, tau_s = as.integer(tau), PACKAGE = "forecast") if (!is.null(object$seasonal.periods)) { gamma.bold <- matrix(0, nrow = 1, ncol = tau) .Call("updateTBATSGammaBold", gammaBold_s = gamma.bold, kVector_s = as.integer(object$k.vector), gammaOne_s = object$gamma.one.values, gammaTwo_s = object$gamma.two.values, PACKAGE = "forecast") } else { gamma.bold <- NULL } g <- matrix(0, nrow = (tau + 1 + adj.beta + object$p + object$q), ncol = 1) if (object$p != 0) { g[(1 + adj.beta + tau + 1), 1] <- 1 } if (object$q != 0) { g[(1 + adj.beta + tau + object$p + 1), 1] <- 1 } .Call("updateTBATSGMatrix", g_s = g, gammaBold_s = gamma.bold, alpha_s = object$alpha, beta_s = object$beta.v, PACKAGE = "forecast") F <- makeTBATSFMatrix(alpha = object$alpha, beta = object$beta, small.phi = object$damping.parameter, seasonal.periods = object$seasonal.periods, k.vector = as.integer(object$k.vector), gamma.bold.matrix = gamma.bold, ar.coefs = object$ar.coefficients, ma.coefs = object$ma.coefficients) y.forecast[1] <- w$w.transpose %*% object$x[, ncol(object$x)] x[, 1] <- F %*% object$x[, ncol(object$x)] if (h > 1) { for (t in 2:h) { x[, t] <- F %*% x[, (t - 1)] y.forecast[t] <- w$w.transpose %*% x[, (t - 1)] } } lower.bounds <- upper.bounds <- matrix(NA, ncol = length(level), nrow = h) variance.multiplier <- numeric(h) variance.multiplier[1] <- 1 if (h > 1) { for (j in 1:(h - 1)) { if (j == 1) { f.running <- diag(ncol(F)) } else { f.running <- f.running %*% F } c.j <- w$w.transpose %*% f.running %*% g variance.multiplier[(j + 1)] <- variance.multiplier[j] + c.j^2 } } variance <- object$variance * variance.multiplier st.dev <- sqrt(variance) for (i in 1:length(level)) { marg.error <- st.dev * abs(qnorm((100 - level[i]) / 200)) lower.bounds[, i] <- y.forecast - marg.error upper.bounds[, i] <- y.forecast + marg.error } if (!is.null(object$lambda)) { y.forecast <- InvBoxCox(y.forecast, object$lambda, biasadj, list(level = level, upper = upper.bounds, lower = lower.bounds)) lower.bounds <- InvBoxCox(lower.bounds, object$lambda) if (object$lambda < 1) { lower.bounds <- pmax(lower.bounds, 0) } upper.bounds <- InvBoxCox(upper.bounds, object$lambda) } colnames(upper.bounds) <- colnames(lower.bounds) <- paste0(level, "%") forecast.object <- list( model = object, mean = future_msts(object$y, y.forecast), level = level, x = object$y, series = object$series, upper = future_msts(object$y, upper.bounds), lower = future_msts(object$y, lower.bounds), fitted = copy_msts(object$y, object$fitted.values), method = as.character(object), residuals = copy_msts(object$y, object$errors) ) if (is.null(object$series)) { forecast.object$series <- deparse(object$call$y) } class(forecast.object) <- "forecast" return(forecast.object) } as.character.tbats <- function(x, ...) { name <- "TBATS(" if (!is.null(x$lambda)) { name <- paste(name, round(x$lambda, digits = 3), sep = "") } else { name <- paste(name, "1", sep = "") } name <- paste(name, ", {", sep = "") if (!is.null(x$ar.coefficients)) { name <- paste(name, length(x$ar.coefficients), sep = "") } else { name <- paste(name, "0", sep = "") } name <- paste(name, ",", sep = "") if (!is.null(x$ma.coefficients)) { name <- paste(name, length(x$ma.coefficients), sep = "") } else { name <- paste(name, "0", sep = "") } name <- paste(name, "}, ", sep = "") if (!is.null(x$damping.parameter)) { name <- paste(name, round(x$damping.parameter, digits = 3), ",", sep = "") } else { name <- paste(name, "-,", sep = "") } if (!is.null(x$seasonal.periods)) { name <- paste(name, " {", sep = "") M <- length(x$seasonal.periods) for (i in 1:M) { name <- paste(name, "<", round(x$seasonal.periods[i], 2), ",", x$k.vector[i], ">", sep = "") if (i < M) { name <- paste(name, ", ", sep = "") } else { name <- paste(name, "})", sep = "") } } } else { name <- paste(name, "{-})", sep = "") } return(name) }
warp.sample <- function(samp, w, mode) { if (mode == "backward") { apply(samp, 1, function(x) approx(x, NULL, w)$y) } else { apply(samp, 1, function(x) { approx(w, x, xout = 1:length(x))$y }) } }
require(atom4R, quietly = TRUE) require(testthat) require(XML) context("DCElement") test_that("encoding/decoding DCEntry",{ testthat::skip_on_cran() dcentry <- DCEntry$new() dcentry$setId("my-dc-entry") dcentry$addDCDate(Sys.time()) dcentry$addDCTitle("atom4R - Tools to read/write and publish metadata as Atom XML format") dcentry$addDCType("Software") creator <- DCCreator$new(value = "Blondel, Emmanuel") creator$attrs[["affiliation"]] <- "Independent" dcentry$addDCCreator(creator) dcentry$addDCSubject("R") dcentry$addDCSubject("FAIR") dcentry$addDCSubject("Interoperability") dcentry$addDCSubject("Open Science") dcentry$addDCDescription("Atom4R offers tools to read/write and publish metadata as Atom XML syndication format, including Dublin Core entries. Publication can be done using the Sword API which implements AtomPub API specifications") dcentry$addDCPublisher("GitHub") funder <- DCContributor$new(value = "CNRS") funder$attrs[["type"]] <- "Funder" dcentry$addDCContributor(funder) dcentry$addDCRelation("Github repository: https://github.com/eblondel/atom4R") dcentry$addDCSource("Atom Syndication format - https://www.ietf.org/rfc/rfc4287") dcentry$addDCSource("AtomPub, The Atom publishing protocol - https://tools.ietf.org/html/rfc5023") dcentry$addDCSource("Sword API - http://swordapp.org/") dcentry$addDCSource("Dublin Core Metadata Initiative - https://www.dublincore.org/") dcentry$addDCSource("Guidelines for implementing Dublin Core in XML - https://www.dublincore.org/specifications/dublin-core/dc-xml-guidelines/") dcentry$addDCLicense("NONE") dcentry$addDCRights("MIT License") xml <- dcentry$encode() expect_is(dcentry, "DCEntry") dcentry2 <- DCEntry$new(xml = xml) xml2 <- dcentry2$encode() expect_true(AtomAbstractObject$compare(dcentry, dcentry2)) })
selftest.ttest.tck <- function(){ options(guiToolkit="tcltk") w <- gwindow(title = "t-tests") size(w) <- c(700, 900) g <- ggroup(container=w, horizontal=FALSE, use.scrollwindow = TRUE) gp1 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp1.1 <- ggroup(container = gp1, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("1) ", container = gp1.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("We sample from a normal distribution with unknown mean, \u03bc, and known variance, \u03c3\u00b2. \nWe want to conduct a null hypothesis test concerning the value of \u03bc. We would use a...", container = gp1.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans1 <- c("(a) pooled variance t-test.", "(b) Welch t-test.", "(c) paired t-test.", "(d) one sample z-test.", "(e) one sample t-test." ) f1 <- function(h,....){ if(tail(svalue(r1),1) == ans1[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r1),1)== ans1[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r1),1)== ans1[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r1),1)== ans1[4]){ gmessage(msg="Correct") } if(tail(svalue(r1),1)== ans1[5]){ gmessage(msg="Incorrect", icon = "error") } svalue(r1) <- character(0) } r1 <- gcheckboxgroup(ans1, container = gp1, checked = FALSE, where = "beginning", handler = f1) gp2 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp2.1 <- ggroup(container = gp2, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("2) ", container = gp2.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("We sample from a normal distribution with unknown mean, \u03bc, and unknown variance, \u03c3\u00b2. \nWe want to conduct a null hypothesis test concerning the value of \u03bc. We would use a...", container = gp2.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans2 <- c("(a) pooled variance t-test.", "(b) Welch t-test.", "(c) paired t-test.", "(d) one sample z-test.", "(e) one sample t-test." ) f2 <- function(h,....){ if(tail(svalue(r2),1) == ans2[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r2),1)== ans2[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r2),1)== ans2[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r2),1)== ans2[4]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r2),1)== ans2[5]){ gmessage(msg="Correct") } svalue(r2) <- character(0) } r2 <- gcheckboxgroup(ans2, container = gp2, checked = FALSE, where = "beginning", handler = f2) gp3 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp3.1 <- ggroup(container = gp3, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("3) ", container = gp3.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("We sample from two normal distributions with unknown means, \u03bc\u2081, \u03bc\u2082, and common variance, \u03c3\u00b2 \n(i.e., we assume \u03c3\u00b2\u2081 = \u03c3\u00b2\u2082 = \u03c3\u00b2). We want to conduct a null hypothesis test concerning \nthe value of \u03bc\u2081 - \u03bc\u2082. We would use a...", container = gp3.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans3 <- c("(a) pooled variance t-test.", "(b) Welch t-test.", "(c) paired t-test.", "(d) one sample z-test.", "(e) one sample t-test." ) f3 <- function(h,....){ if(tail(svalue(r3),1) == ans3[1]){ gmessage(msg="Correct") } if(tail(svalue(r3),1)== ans3[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r3),1)== ans3[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r3),1)== ans3[4]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r3),1)== ans3[5]){ gmessage(msg="Incorrect", icon = "error") } svalue(r3) <- character(0) } r3 <- gcheckboxgroup(ans3, container = gp3, checked = FALSE, where = "beginning", handler = f3) gp4 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp4.1 <- ggroup(container = gp4, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("4) ", container = gp4.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("We have a blocked experimental design and in each block we have two treatments. \nWe measure the differences of treatments in blocks and assume that these differences come from \na normal distribution with an unknown mean and an unknown variance. We want to conduct a null \nhypothesis test concerning the value of the unknown true mean of differences. We would use a...", container = gp4.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans4 <- c("(a) pooled variance t-test.", "(b) Welch t-test.", "(c) paired t-test.", "(d) one sample z-test.", "(e) one sample t-test." ) f4 <- function(h,....){ if(tail(svalue(r4),1) == ans4[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r4),1)== ans4[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r4),1) == ans4[3]){ gmessage(msg="Correct") } if(tail(svalue(r4),1)== ans4[4]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r4),1)== ans4[5]){ gmessage(msg="Incorrect", icon = "error") } svalue(r4) <- character(0) } r4 <- gcheckboxgroup(ans4, container = gp4, checked = FALSE, where = "beginning", handler = f4) gp5 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp5.1 <- ggroup(container = gp5, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("5) ", container = gp5.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("We sample from two normal distributions with unknown means, \u03bc\u2081, \u03bc\u2082, and unknown variances, \u03c3\u00b2\u2081 \nand \u03c3\u00b2\u2082. We want to conduct a null hypothesis test concerning the value of \u03bc\u2081 - \u03bc\u2082. We would use a...", container = gp5.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans5 <- c("(a) pooled variance t-test.", "(b) Welch t-test.", "(c) paired t-test.", "(d) one sample z-test.", "(e) one sample t-test." ) f5 <- function(h,....){ if(tail(svalue(r5),1) == ans5[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r5),1)== ans5[2]){ gmessage(msg="Correct") } if(tail(svalue(r5),1) == ans5[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r5),1)== ans5[4]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r5),1)== ans5[5]){ gmessage(msg="Incorrect", icon = "error") } svalue(r5) <- character(0) } r5 <- gcheckboxgroup(ans5, container = gp5, checked = FALSE, where = "beginning", handler = f5) gp6 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp6.1 <- ggroup(container = gp6, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("6) ", container = gp6.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("To calculate the pooled variance t-test test statistic we must calculate...", container = gp6.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans6 <- c("(a) MSE.", "(b) the Satterthwaite degrees of freedom.", "(c) the standard deviation of differences within blocks.", "(d) the mean of differences within blocks.", "(e) (c) and (d)." ) f6 <- function(h,....){ if(tail(svalue(r6),1)== ans6[1]){ gmessage(msg="Correct") } if(tail(svalue(r6),1)== ans6[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r6),1) == ans6[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r6),1)== ans6[4]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r6),1)== ans6[5]){ gmessage(msg="Incorrect", icon = "error") } svalue(r6) <- character(0) } r6 <- gcheckboxgroup(ans6, container = gp6, checked = FALSE, where = "beginning", handler = f6) gp7 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp7.1 <- ggroup(container = gp7, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("7) ", container = gp7.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("To calculate the paired t-test test statistic we must calculate...", container = gp7.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans7 <- c("(a) MSE.", "(b) the Satterthwaite degrees of freedom.", "(c) the standard deviation of differences within blocks.", "(d) the mean of differences within blocks.", "(e) (c) and (d)." ) f7 <- function(h,....){ if(tail(svalue(r7),1) == ans7[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r7),1)== ans7[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r7),1) == ans7[3]){ gmessage(msg="Partially correct", icon = "error") } if(tail(svalue(r7),1)== ans7[4]){ gmessage(msg="Partially correct", icon = "error") } if(tail(svalue(r7),1) == ans7[5]){ gmessage(msg="Correct") } svalue(r7) <- character(0) } r7 <- gcheckboxgroup(ans7, container = gp7, checked = FALSE, where = "beginning", handler = f7) gp8 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp8.1 <- ggroup(container = gp8, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("8) ", container = gp8.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("To calculate the Welch t-test p-value we must calculate...", container = gp8.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans8 <- c("(a) MSE.", "(b) the Satterthwaite degrees of freedom.", "(c) the standard deviation of differences within blocks.", "(d) the mean of differences within blocks.", "(e) (c) and (d)." ) f8 <- function(h,....){ if(tail(svalue(r8),1) == ans8[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r8),1)== ans8[2]){ gmessage(msg="Correct") } if(tail(svalue(r8),1) == ans8[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r8),1)== ans8[4]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r8),1) == ans8[5]){ gmessage(msg="Incorrect", icon = "error") } svalue(r8) <- character(0) } r8 <- gcheckboxgroup(ans8, container = gp8, checked = FALSE, where = "beginning", handler = f8) gp9 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp9.1 <- ggroup(container = gp9, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("9) ", container = gp9.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("The null distribution for a one sample z-test is...", container = gp9.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans9 <- c("(a) t(n-1).", "(b) t(n\u2081 + n\u2082 - 2).", "(c) t(\u03bd), where \u03bd = the Satterthwaite degrees of freedom.", "(d) N(0,1).") f9 <- function(h,....){ if(tail(svalue(r9),1) == ans9[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r9),1)== ans9[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r9),1) == ans9[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r9),1)== ans9[4]){ gmessage(msg="Correct") } svalue(r9) <- character(0) } r9 <- gcheckboxgroup(ans9, container = gp9, checked = FALSE, where = "beginning", handler = f9) gp10 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp10.1 <- ggroup(container = gp10, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("10) ", container = gp10.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("The null distribution for a pooled variance t-test is...", container = gp10.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans10 <- c("(a) t(n-1).", "(b) t(n\u2081 + n\u2082 - 2).", "(c) t(\u03bd), where \u03bd = the Satterthwaite degrees of freedom.", "(d) N(0,1).") f10 <- function(h,....){ if(tail(svalue(r10),1) == ans10[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r10),1)== ans10[2]){ gmessage(msg="Correct") } if(tail(svalue(r10),1) == ans10[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r10),1)== ans10[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r10) <- character(0) } r10 <- gcheckboxgroup(ans10, container = gp10, checked = FALSE, where = "beginning", handler = f10) gp11 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp11.1 <- ggroup(container = gp11, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("11) ", container = gp11.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("The null distribution for a paired t-test is...", container = gp11.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans11 <- c("(a) t(n-1).", "(b) t(n\u2081 + n\u2082 - 2).", "(c) t(\u03bd), where \u03bd = the Satterthwaite degrees of freedom.", "(d) N(0,1).") f11 <- function(h,....){ if(tail(svalue(r11),1) == ans11[1]){ gmessage(msg="Correct") } if(tail(svalue(r11),1)== ans11[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r11),1) == ans11[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r11),1)== ans11[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r11) <- character(0) } r11 <- gcheckboxgroup(ans11, container = gp11, checked = FALSE, where = "beginning", handler = f11) gp12 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp12.1 <- ggroup(container = gp12, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("12) ", container = gp12.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("The null distribution for a Welch t-test is...", container = gp12.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans12 <- c("(a) t(n-1).", "(b) t(n\u2081 + n\u2082 - 2)", "(c) t(\u03bd), where \u03bd = the Satterthwaite degrees of freedom", "(d) N(0,1).") f12 <- function(h,....){ if(tail(svalue(r12),1) == ans12[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r12),1)== ans12[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r12),1) == ans12[3]){ gmessage(msg="Correct") } if(tail(svalue(r12),1)== ans12[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r12) <- character(0) } r12 <- gcheckboxgroup(ans12, container = gp12, checked = FALSE, where = "beginning", handler = f12) gp13 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp13.1 <- ggroup(container = gp13, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("13) ", container = gp13.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("The null hypothesis for the Fligner-Killeen test is...", container = gp13.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans13 <- c("(a) H\u2080: \u03bc = \u03bc\u2080.", "(b) H\u2080: \u03bc\u2081 = \u03bc\u2082.", "(c) H\u2080: The underlying population is normal.", "(d) H\u2080: \u03c3\u00b2\u2081 = \u03c3\u00b2\u2082.") f13 <- function(h,....){ if(tail(svalue(r13),1) == ans13[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r13),1)== ans13[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r13),1) == ans13[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r13),1)== ans13[4]){ gmessage(msg="Correct") } svalue(r13) <- character(0) } r13 <- gcheckboxgroup(ans13, container = gp13, checked = FALSE, where = "beginning", handler = f13) gp14 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp14.1 <- ggroup(container = gp14, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("14) ", container = gp14.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("The null hypothesis for the Shapiro-Wilk test is...", container = gp14.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans14 <- c("(a) H\u2080: \u03bc = \u03bc\u2080.", "(b) H\u2080: \u03bc\u2081 = \u03bc\u2082.", "(c) H\u2080: The underlying population is normal.", "(d) H\u2080: \u03c3\u00b2\u2081 = \u03c3\u00b2\u2082.") f14 <- function(h,....){ if(tail(svalue(r14),1) == ans14[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r14),1)== ans14[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r14),1) == ans14[3]){ gmessage(msg="Correct") } if(tail(svalue(r14),1)== ans14[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r14) <- character(0) } r14 <- gcheckboxgroup(ans14, container = gp14, checked = FALSE, where = "beginning") gp15 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp15.1 <- ggroup(container = gp15, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("15) ", container = gp15.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("The plot below is a...", container = gp15.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) x <- rnorm(20) gp15.1a <- getWidget(gp15) img <- tkrplot::tkrplot(gp15.1a, function(){ par(bg = "white", mar = c(4.5,4.1,1,1)) qqnorm(x, cex.lab =.9, main = "") qqline(x, col = 2, lty = 2) } ) add(gp15, img) ans15 <- c("(a) regression plot.", "(b) heteroscedasticy plot.", "(c) normal probability plot.", "(d) homoscedasticity plot.") f15 <- function(h,....){ if(tail(svalue(r15),1) == ans15[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r15),1)== ans15[2]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r15),1)== ans15[3]){ gmessage(msg="Correct") } if(tail(svalue(r15),1)== ans15[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r15) <- character(0) } r15 <- gcheckboxgroup(ans15, container = gp15, checked = FALSE, where = "beginning", handler = f15) gp16 <- gframe(container = g, spacing = 2, pos = 0, horizontal = FALSE) gp16.1 <- ggroup(container = gp16, spacing = 2, pos = 0, horizontal = TRUE) q <- glabel("16) ", container = gp16.1, horizontal = TRUE) font(q) <- list(weight = "bold") qq <- glabel("The plot from the previous question is generally used to...", container = gp16.1, anchor = c(-1,1)) font(qq) <- list(family = "cambria", size = 11) ans16 <- c("(a) Check for the validity of the equal variances assumption.", "(b) Check for the validity of the assumption of normality.", "(c) Check for the validity of the assumption of independence.", "(d) Check for outliers.") f16 <- function(h,....){ if(tail(svalue(r16),1) == ans16[1]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r16),1)== ans16[2]){ gmessage(msg="Correct") } if(tail(svalue(r16),1) == ans16[3]){ gmessage(msg="Incorrect", icon = "error") } if(tail(svalue(r16),1)== ans16[4]){ gmessage(msg="Incorrect", icon = "error") } svalue(r16) <- character(0) } r16 <- gcheckboxgroup(ans16, container = gp16, checked = FALSE, where = "beginning", handler = f16) }
gpdpwmb <- function(data, threshold, a=0.35, b=0, hybrid = FALSE){ if ( length(unique(threshold)) != 1){ warning("Threshold must be a single numeric value for est = 'pwmb'. Taking only the first value !!!") threshold <- threshold[1] } exceed <- data[data>threshold] nat <- length( exceed ) pat <- nat / length( data ) if ( nat == 0 ) stop("None observation above the specified threshold !!!") exceed <- sort(exceed) loc <- threshold excess <- exceed - loc m <- mean(excess) n <- length(excess) p <- (1:n - a) / (n + b) t <- sum((1-p)*excess)/n shape <- - m / (m- 2*t ) + 2 scale <- 2 * m * t / (m - 2*t ) est <- 'PWMB' if (hybrid) if ( (max(excess) >= (-scale / shape)) & (shape < 0) ){ shape <- -scale / max(excess) est <- 'PWMB Hybrid' } estim <- c(scale = scale, shape = shape) param <- c(scale = scale, shape = shape) convergence <- NA counts <- NA a11 <- scale^2 * (7-18*shape+11*shape^2-2*shape^3) a12 <- - scale * (2-shape) * (2-6*shape+7*shape^2-2*shape^3) a21 <- a12 a22 <- (1-shape) * (2 -shape)^2 * (1-shape+2*shape^2) var.cov <- 1 / ( (1-2*shape) * (3-2*shape)*nat ) * matrix(c(a11,a21,a12,a22),2) colnames(var.cov) <- c('scale','shape') rownames(var.cov) <- c('scale','shape') std.err <- sqrt( diag(var.cov) ) .mat <- diag(1/std.err, nrow = length(std.err)) corr <- structure(.mat %*% var.cov %*% .mat) diag(corr) <- rep(1, length(std.err)) colnames(corr) <- c('scale','shape') rownames(corr) <- c('scale','shape') if ( shape > 0.5 ) message <- "Assymptotic theory assumptions for standard error may not be fullfilled !" else message <- NULL var.thresh <- FALSE return(list(fitted.values = estim, std.err = std.err, var.cov = var.cov, param = param, message = message, threshold = threshold, corr = corr, convergence = convergence, counts = counts, nat = nat, pat = pat, exceed = exceed, scale=scale, var.thresh = var.thresh, est = est)) }
"stationary.taper.cov" <- function(x1, x2=NULL, Covariance = "Exponential", Taper = "Wendland", Dist.args = NULL, Taper.args = NULL, aRange = 1, V = NULL, C = NA, marginal = FALSE, spam.format = TRUE, verbose = FALSE, theta=NULL, ...) { if( !is.null( theta)){ aRange<- theta } Cov.args <- list(...) if (is.data.frame(x1)) x1 <- as.matrix(x1) if (!is.matrix(x1)) x1 <- matrix(c(x1), ncol = 1) if (is.null(x2)) x2 <- x1 if (is.data.frame(x2)) x2 <- as.matrix(x1) if (!is.matrix(x2)) x2 <- matrix(c(x2), ncol = 1) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) if (Taper == "Wendland") { if (is.null(Taper.args)) { Taper.args <- list(aRange = 1, k = 2, dimension = ncol(x1)) } if (is.null(Taper.args$dimension)) { Taper.args$dimension <- ncol(x1) } } if (is.null(Taper.args)) { Taper.args <- list(aRange = 1) } great.circle <- ifelse(is.null(Dist.args$method), FALSE, Dist.args$method == "greatcircle") if (length(aRange) > 1) { stop("aRange as a matrix has been depreciated, use the V argument") } if (!is.null(V)) { if (aRange != 1) { stop("can't specify both aRange and V!") } if (great.circle) { stop("Can not mix great circle distance\nwith general scaling (V argument or vecotr of aRange's)") } x1 <- x1 %*% t(solve(V)) x2 <- x2 %*% t(solve(V)) } if (great.circle) { miles <- ifelse(is.null(Dist.args$miles), TRUE, Dist.args$miles) delta <- (180/pi) * Taper.args$aRange/ifelse(miles, 3963.34, 6378.388) } else { delta <- Taper.args$aRange } if (length(delta) > 1) { stop("taper range must be a scalar") } if (!marginal) { sM <- do.call("nearest.dist", c(list(x1, x2, delta = delta, upper = NULL), Dist.args)) sM@entries <- do.call(Covariance, c(list(d = sM@entries/aRange), Cov.args)) * do.call(Taper, c(list(d = sM@entries), Taper.args)) if (verbose) { print(sM@entries/aRange) print(do.call(Covariance, c(list(d = sM@entries/aRange), Cov.args))) print(do.call(Taper, c(list(d = sM@entries), Taper.args))) } if (is.na(C[1])) { if (spam.format) { return(sM) } else { return(as.matrix(sM)) } } else { return(sM %*% C) } } else { tau2 <- do.call(Covariance, c(list(d = 0), Cov.args)) * do.call(Taper, c(list(d = 0), Taper.args)) return(rep(tau2, nrow(x1))) } }
check.lik.proc.data.coefs = function(lik=NULL,proc=NULL,data=NULL,times=NULL,coefs=NULL) { if(!is.null(data)){ if(!is.null(times)){ if( length(times)!= dim(data)[1]){ stop('Vector of observation times does not matich dimension of data') } } else{ times = 1:dim(data[1]) } } if(!is.null(lik) & !is.null(times)){ if(dim(lik$bvals)[1] != length(times)){ stop('Size of lik$bvals does not match number of observations') } if(ncol(lik$bvals) != nrow(coefs) ){ stop('Number of basis functions does not match number of coefficients.') } } if(!is.null(proc)){ if(is.list(proc$bvals)){ if( !all( dim(proc$bvals$bvals) == dim(proc$vals$dbvals)) ){ stop('proc bvals and dbvals dimensions do not match.') } if( !is.null(proc$more$qpts) ){ if( nrow(proc$bvals$bvals) != length(proc$more$qpts)){ stop('proc bvals object dimensions do not correspond to number of quadrature points') } } } else{ if( nrow(proc$bvals) != length(proc$more$qpts)+1){ stop('proc bvals object dimensions do not correspond to number of quadrature points') } } if(!is.null(coefs)){ if(is.list(proc$bvals)){ if( ncol(proc$bvals$bvals) != nrow(coefs) ){ stop('Number of basis functions does not match number of coefficients.') } } else{ if( ncol(proc$bvals) != nrow(coefs) ){ stop('Number of basis functions does not match number of coefficients.') } } if(!is.null(proc$more$names)){ if( length(proc$more$names) != ncol(coefs) ){ stop('dimension of coefficients does not match length of state variable names') } } } } }