code
stringlengths 1
13.8M
|
---|
more_colors <- function(n = 24){
c(
RColorBrewer::brewer.pal(12,'Paired'),
RColorBrewer::brewer.pal(12,'Set3')
) %>%
head(n)
} |
NULL
count_self_fn <- function(th) {
node_types <- get_node_types(th)
fn_defs <- dplyr::filter(node_types, .data$name == "function",
.data$call_status == TRUE)
if(nrow(fn_defs) == 0)
return(0L)
fn_def_ids <- fn_defs$id
parent_ids <- sapply(fn_def_ids, get_parent_id, x=th)
sum(node_types$name[parent_ids] %in% c("=", "<-"))
}
count_lam_fn <- function(th) {
node_types <- get_node_types(th)
fn_defs <- dplyr::filter(node_types, .data$name == "function",
.data$call_status == TRUE)
if(nrow(fn_defs) == 0)
return(0L)
fn_def_ids <- fn_defs$id
parent_ids <- sapply(fn_def_ids, get_parent_id, x = th)
sum(!node_types$name[parent_ids] %in% c("=", "<-"))
}
count_fn_call <- function(th, pattern, pkg_name) {
node_types <- get_node_types(th)
if(!missing(pattern) && !missing(pkg_name)){
stop("Only one of pattern or pkg_name should be supplied.")
}
if(!missing(pattern)) {
fn_calls <- dplyr::filter(node_types, stringr::str_detect(.data$name, pattern),
.data$call_status == TRUE)
return(nrow(fn_calls))
}
if(!missing(pkg_name)){
fn_list <- ls(getNamespace(pkg_name))
fn_calls <- dplyr::filter(node_types, .data$call_status == TRUE)
return(sum(fn_calls$name %in% fn_list))
}
}
extract_fn_call <- function(th, pattern, pkg_name) {
node_types <- get_node_types(th)
if(!missing(pattern) && !missing(pkg_name)){
stop("Only one of pattern or pkg_name should be supplied.")
}
if(!missing(pattern)) {
fn_calls <- dplyr::filter(node_types, stringr::str_detect(.data$name, pattern),
.data$call_status == TRUE)
return(fn_calls$name)
}
if(!missing(pkg_name)){
fn_list <- ls(getNamespace(pkg_name))
fn_calls <- dplyr::filter(node_types, .data$call_status == TRUE)
return(fn_calls$name[fn_calls$name %in% fn_list])
}
}
extract_formal_args <- function(th, fn_name) {
node_types <- get_node_types(th)
fn_calls <- dplyr::filter(node_types, .data$name == fn_name,
.data$call_status == TRUE)
fn_call_ids <- fn_calls$id
child_ids <- lapply(fn_call_ids, get_child_ids, x=th)
if(length(child_ids) == 0L) {
return(NULL)
} else {
child_ids <- unlist(child_ids)
}
fn_args <- dplyr::filter(node_types, .data$id %in% child_ids,
.data$formal_arg == TRUE)
if(nrow(fn_args) == 0)
return(NULL)
return(fn_args$name)
}
extract_assigned_objects <- function(th) {
node_types <- get_node_types(th)
all_assign_rows <- dplyr::filter(node_types, .data$name %in% c("<-", "="))
if(nrow(all_assign_rows) == 0)
return(character(0))
child_id_list <- lapply(all_assign_rows$id, get_child_ids, x=th)
first_child_id <- sapply(child_id_list, function(x) x[1])
sub_tree_list <- lapply(first_child_id, function(x) {
if(node_types$call_status[x]){
subtree_at(th, x, TRUE)
} else {
subtree_at(th, x, FALSE)
}
})
sapply(sub_tree_list, function(x) x@repr, USE.NAMES = FALSE)
}
extract_actual_args <- function(th) {
node_types <- get_node_types(th)
actual_arg_rows <- dplyr::filter(node_types, !.data$call_status,
!.data$formal_arg)
if(nrow(actual_arg_rows) == 0)
return(0L)
actual_arg_rows$name
}
detect_growing <- function(th, count=FALSE, within_for=FALSE) {
nt <- get_node_types(th)
c_rows <- dplyr::filter(nt, .data$name %in% c("c", "append"))
if(nrow(c_rows) == 0) {
if(count) return(0) else return(FALSE)
}
if(within_for) {
paths_to_root <- lapply(c_rows$id, function(x) path_to_root(th, x))
keep_ids <- sapply(paths_to_root,
function(x) {
"for" %in% nt$name[x==1]
})
c_rows <- c_rows[keep_ids,]
if(nrow(c_rows) == 0) {
if(count) return(0) else return(FALSE)
}
}
c_parents <- sapply(c_rows$id, get_parent_id, x=th)
c_parents <- Filter(function(x) nt$name[x] %in% c("=", "<-"), c_parents)
if(length(c_parents) == 0)
return(FALSE)
c_assigned_name <- sapply(c_parents,
function(y){
child_ids <- get_child_ids(th, y)
nt$name[child_ids[1]]
})
c_children_names <- lapply(c_rows$id,
function(y) {
child_ids <- get_child_ids(th, y)
nt$name[child_ids]
})
detect_out <- mapply(function(x, y) x %in% y,
x=c_assigned_name, y=c_children_names)
if(count){
return(sum(unname(detect_out)))
}
any(detect_out)
}
detect_for_in_fn_def <- function(th, fn_name) {
nt <- get_node_types(th)
nt_names <- nt$name
if((nt_names[1] != "<-") || (nt_names[2] != fn_name) || (nt_names[3] != "function"))
return(FALSE)
for_id <- which(nt_names == "for")
if(length(for_id) > 0 && nt$depth[for_id] > 2)
return(TRUE) else return(FALSE)
}
count_fn_in_fn <- function(th, fn_name, sub_fn) {
nt <- get_node_types(th)
nt_names <- nt$name
if((nt_names[1] != "<-") || (nt_names[2] != fn_name) || (nt_names[3] != "function"))
return(0)
sub_fn_count <- count_fn_call(th, pattern=sub_fn)
sub_fn_count
}
detect_fn_call_in_for <- function(th, fn_name) {
for_loop_indicator <- count_fn_call(th, pattern="for")
send_ltr_indicator <- count_fn_call(th, pattern=fn_name)
if((for_loop_indicator == 0) || (send_ltr_indicator == 0)){
return(FALSE)
}
nt <- get_node_types(th)
send_ids <- which(nt$name == fn_name)
paths_to_parent <- lapply(send_ids, path_to_root, th=th)
parent_names <- lapply(paths_to_parent, function(x) nt$name[which(x == 1)])
for_in_parent <- lapply(parent_names, function(x) "for" %in% x)
return(any(unlist(for_in_parent)))
}
extract_self_fn <- function(th) {
fn_def <- count_self_fn(th)
if(fn_def==0){
return(NULL)
}
node_types <- get_node_types(th)
out_tree <- subtree_at(th, 2, node_types$call_status[2])
out_tree@repr
}
detect_fn_arg <- function(th, fn_name, arg) {
nt <- get_node_types(th)
nt_names <- nt$name
fn_ids <- which(nt_names == fn_name)
if(length(fn_ids) == 0){
return(FALSE)
}
arg_ids <- lapply(fn_ids, get_child_ids, x=th)
check_args <- sapply(arg_ids, function(x) arg %in% nt_names[x])
any(check_args)
}
detect_nested_for <- function(th) {
node_types <- get_node_types(th)
for_ids <- which(node_types$name == "for")
if(length(for_ids) == 0){
return(FALSE)
} else {
for_count_along_branch <- vapply(for_ids,
function(x) sum(node_types$name[which(path_to_root(th, x) == 1)] == "for"),
FUN.VALUE=1L)
}
any(for_count_along_branch > 1)
} |
qpvt <- function(dataFrame, rows=NULL, columns=NULL, calculations=NULL,
theme=NULL, replaceExistingStyles=FALSE,
tableStyle=NULL, headingStyle=NULL, cellStyle=NULL, totalStyle=NULL, ...) {
arguments <- list(...)
checkArgument(3, TRUE, "", "qpvt", dataFrame, missing(dataFrame), allowMissing=FALSE, allowNull=FALSE, allowedClasses="data.frame")
checkArgument(3, TRUE, "", "qpvt", rows, missing(rows), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
checkArgument(3, TRUE, "", "qpvt", columns, missing(columns), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
checkArgument(3, TRUE, "", "qpvt", calculations, missing(calculations), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
checkArgument(3, TRUE, "", "qpvt", theme, missing(theme), allowMissing=TRUE, allowNull=TRUE, allowedClasses=c("character", "list", "PivotStyles"), allowedListElementClasses="character")
checkArgument(3, TRUE, "", "qpvt", replaceExistingStyles, missing(replaceExistingStyles), allowMissing=TRUE, allowNull=FALSE, allowedClasses="logical")
checkArgument(3, TRUE, "", "qpvt", tableStyle, missing(tableStyle), allowMissing=TRUE, allowNull=TRUE, allowedClasses=c("character", "list", "PivotStyle"))
checkArgument(3, TRUE, "", "qpvt", headingStyle, missing(headingStyle), allowMissing=TRUE, allowNull=TRUE, allowedClasses=c("character", "list", "PivotStyle"))
checkArgument(3, TRUE, "", "qpvt", cellStyle, missing(cellStyle), allowMissing=TRUE, allowNull=TRUE, allowedClasses=c("character", "list", "PivotStyle"))
checkArgument(3, TRUE, "", "qpvt", totalStyle, missing(totalStyle), allowMissing=TRUE, allowNull=TRUE, allowedClasses=c("character", "list", "PivotStyle"))
argumentCheckMode <- arguments$argumentCheckMode
if(is.null(argumentCheckMode)) argumentCheckMode <- "auto"
compatibility <- arguments$compatibility
dataName <- deparse(substitute(dataFrame))
pt <- buildPivot(functionName="qpvt", argumentCheckMode=argumentCheckMode,
dataFrame=dataFrame, dataName=dataName,
rows=rows, columns=columns, calculations=calculations,
format=arguments[["format"]], formats=arguments[["formats"]],
totalsSpecified=("totals" %in% names(arguments)),
totals=arguments[["totals"]],
theme=theme, replaceExistingStyles=replaceExistingStyles,
tableStyle=tableStyle, headingStyle=headingStyle, cellStyle=cellStyle, totalStyle=totalStyle,
compatibility=compatibility)
pt$evaluatePivot()
return(pt)
}
qhpvt <- function(dataFrame, rows=NULL, columns=NULL, calculations=NULL,
theme=NULL, replaceExistingStyles=FALSE,
tableStyle=NULL, headingStyle=NULL, cellStyle=NULL, totalStyle=NULL, ...) {
arguments <- list(...)
checkArgument(3, TRUE, "", "qhpvt", dataFrame, missing(dataFrame), allowMissing=FALSE, allowNull=FALSE, allowedClasses="data.frame")
checkArgument(3, TRUE, "", "qhpvt", rows, missing(rows), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
checkArgument(3, TRUE, "", "qhpvt", columns, missing(columns), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
checkArgument(3, TRUE, "", "qhpvt", calculations, missing(calculations), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
checkArgument(3, TRUE, "", "qhpvt", theme, missing(theme), allowMissing=TRUE, allowNull=TRUE, allowedClasses=c("character", "list", "PivotStyles"), allowedListElementClasses="character")
checkArgument(3, TRUE, "", "qhpvt", replaceExistingStyles, missing(replaceExistingStyles), allowMissing=TRUE, allowNull=FALSE, allowedClasses="logical")
checkArgument(3, TRUE, "", "qhpvt", tableStyle, missing(tableStyle), allowMissing=TRUE, allowNull=TRUE, allowedClasses=c("character", "list", "PivotStyle"))
checkArgument(3, TRUE, "", "qhpvt", headingStyle, missing(headingStyle), allowMissing=TRUE, allowNull=TRUE, allowedClasses=c("character", "list", "PivotStyle"))
checkArgument(3, TRUE, "", "qhpvt", cellStyle, missing(cellStyle), allowMissing=TRUE, allowNull=TRUE, allowedClasses=c("character", "list", "PivotStyle"))
checkArgument(3, TRUE, "", "qhpvt", totalStyle, missing(totalStyle), allowMissing=TRUE, allowNull=TRUE, allowedClasses=c("character", "list", "PivotStyle"))
argumentCheckMode <- arguments$argumentCheckMode
if(is.null(argumentCheckMode)) argumentCheckMode <- "auto"
compatibility <- arguments$compatibility
styleNamePrefix <- arguments$styleNamePrefix
dataName <- deparse(substitute(dataFrame))
pt <- buildPivot(functionName="qhpvt", argumentCheckMode=argumentCheckMode,
dataFrame=dataFrame, dataName=dataName,
rows=rows, columns=columns, calculations=calculations,
format=arguments[["format"]], formats=arguments[["formats"]],
totalsSpecified=("totals" %in% names(arguments)),
totals=arguments[["totals"]],
theme=theme, replaceExistingStyles=replaceExistingStyles,
tableStyle=tableStyle, headingStyle=headingStyle, cellStyle=cellStyle, totalStyle=totalStyle,
compatibility=compatibility)
w <- pt$renderPivot(styleNamePrefix=styleNamePrefix)
return(w)
}
qlpvt <- function(dataFrame, rows=NULL, columns=NULL, calculations=NULL, ...) {
arguments <- list(...)
checkArgument(3, TRUE, "", "qlpvt", dataFrame, missing(dataFrame), allowMissing=FALSE, allowNull=FALSE, allowedClasses="data.frame")
checkArgument(3, TRUE, "", "qlpvt", rows, missing(rows), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
checkArgument(3, TRUE, "", "qlpvt", columns, missing(columns), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
checkArgument(3, TRUE, "", "qlpvt", calculations, missing(calculations), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
argumentCheckMode <- arguments$argumentCheckMode
if(is.null(argumentCheckMode)) argumentCheckMode <- "auto"
compatibility <- arguments$compatibility
dataName <- deparse(substitute(dataFrame))
pt <- buildPivot(functionName="qlpvt", argumentCheckMode=argumentCheckMode,
dataFrame=dataFrame, dataName=dataName,
rows=rows, columns=columns, calculations=calculations,
format=arguments[["format"]], formats=arguments[["formats"]],
totalsSpecified=("totals" %in% names(arguments)),
totals=arguments[["totals"]],
compatibility=compatibility)
return(pt$getLatex(caption=arguments$caption, label=arguments$label))
}
addCalculations <- function(pt, calculations, format=NULL, formats=NULL) {
nms <- names(calculations)
for(i in 1:length(calculations)) {
calc <- calculations[i]
nme <- nms[i]
if(is.null(nme)) nme <- paste0("calc", sprintf("%06d", i))
cf <- NULL
if(is.null(format)==FALSE) cf <- format
else {
if(is.null(formats)==FALSE) {
if(length(formats)>=i) cf <-formats[[i]]
}
}
pt$defineCalculation(calculationName=make.names(nme), caption=nme, summariseExpression=calc, format=cf)
}
}
buildPivot <- function(functionName=NULL, argumentCheckMode=NULL,
dataFrame=NULL, dataName=NULL,
rows=NULL, columns=NULL, calculations=NULL,
format=NULL, formats=NULL,
totalsSpecified=FALSE, totals=NULL,
theme=NULL, replaceExistingStyles=FALSE,
tableStyle=NULL, headingStyle=NULL, cellStyle=NULL, totalStyle=NULL,
compatibility=compatibility) {
if(is.null(dataFrame)) stop(paste0(functionName, "(): dataFrame argument must not be NULL."), call. = FALSE)
if(!is.data.frame(dataFrame)) stop(paste0(functionName, "(): dataFrame argument must be a data frame."), call. = FALSE)
if((!is.null(rows))&&(!anyNA(rows))) {
if(!is.character(rows)) stop(paste0(functionName, "(): rows must be a character vector."), call. = FALSE)
}
if((!is.null(columns))&&(!anyNA(columns))) {
if(!is.character(columns)) stop(paste0(functionName, "(): columns must be a character vector."), call. = FALSE)
}
if((length(rows[rows=="="])+length(columns[columns=="="]))>1) {
stop(paste0(functionName, "(): Calculations cannot be added more than once."), call. = FALSE)
}
totalNames <- NULL
totalCaptions <- NULL
if((totalsSpecified==TRUE)&&(!is.null(totals))&&(length(totals)>0)) {
if(is.character(totals)) {
totalNames <- totals
}
else if(is.list(totals)) {
for(i in 1:length(totals)) {
if(!is.character(totals[[i]])) {
stop(paste0(functionName, "(): elements of the totals list must be character values."), call. = FALSE)
}
}
totalNames <- names(totals)
totalCaptions <- totals
}
else {
stop(paste0(functionName, "(): totals must be a character vector."), call. = FALSE)
}
}
pt <- PivotTable$new(argumentCheckMode=argumentCheckMode, theme=theme, replaceExistingStyles=replaceExistingStyles,
tableStyle=tableStyle, headingStyle=headingStyle, cellStyle=cellStyle, totalStyle=totalStyle,
compatibility=compatibility)
pt$addData(dataFrame, dataName=dataName)
bCalculationsAdded <- FALSE
if((!is.null(rows))&&(!anyNA(rows))) {
for(i in 1:length(rows)) {
if(rows[i]=="=") {
if(bCalculationsAdded==TRUE) stop(paste0(functionName, "(): Calculations cannot be added more than once."), call. = FALSE)
addCalculations(pt, calculations, format=format, formats=formats)
pt$addRowCalculationGroups()
bCalculationsAdded <- TRUE
}
else {
includeTotal <- FALSE
totalCaption <- NULL
if(totalsSpecified==FALSE) includeTotal <- TRUE
else if(rows[i] %in% totalNames) {
includeTotal <- TRUE
totalCaption <- totalCaptions[[rows[i]]]
}
if(is.null(totalCaption)) totalCaption <- "Total"
pt$addRowDataGroups(rows[i], addTotal=includeTotal, totalCaption=totalCaption)
}
}
}
if((!is.null(columns))&&(!anyNA(columns))) {
for(i in 1:length(columns)) {
if(columns[i]=="=") {
if(bCalculationsAdded==TRUE) stop(paste0(functionName, "(): Calculations cannot be added more than once."), call. = FALSE)
addCalculations(pt, calculations, format=format, formats=formats)
pt$addColumnCalculationGroups()
bCalculationsAdded <- TRUE
}
else {
includeTotal <- FALSE
totalCaption <- NULL
if(totalsSpecified==FALSE) includeTotal <- TRUE
else if(columns[i] %in% totalNames) {
includeTotal <- TRUE
totalCaption <- totalCaptions[[columns[i]]]
}
if(is.null(totalCaption)) totalCaption <- "Total"
pt$addColumnDataGroups(columns[i], addTotal=includeTotal, totalCaption=totalCaption)
}
}
}
if(bCalculationsAdded==FALSE) {
addCalculations(pt, calculations, format=format, formats=formats)
pt$addColumnCalculationGroups()
}
return(pt)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(leanpubr)
slug = "biostatmethods"
res = lp_summary(slug, error = FALSE, verbose = TRUE)
res$content |
context("prop_miss")
test_that("prop_miss handles 0 cases as I expect",{
expect_equal(prop_miss(0), 0)
expect_equal(prop_miss(TRUE), 0)
expect_equal(prop_miss(numeric(0)),NaN)
expect_equal(prop_miss(iris[0]),NaN)
})
test_that("prop_miss correctly counts the proportion of missings",{
expect_equal(prop_miss(c(0,NA,120,NA)),0.5)
expect_equal(prop_miss(c(NA,NA,120,NA)),0.75)
expect_equal(prop_miss(c(NA,NA,NA,NA)),1)
expect_equal(prop_miss(c(1,2,3,4,5)),0)
})
test_that("prop_miss works for dataframes",{
expect_true(dplyr::near(round(prop_miss(airquality),5), 0.047930))
}) |
FrF2 <- function(nruns=NULL, nfactors=NULL,
factor.names = if(!is.null(nfactors)) {if(nfactors<=50) Letters[1:nfactors]
else paste("F",1:nfactors,sep="")} else NULL,
default.levels = c(-1,1), ncenter=0, center.distribute=NULL,
generators=NULL, design=NULL, resolution=NULL, select.catlg=catlg,
estimable=NULL, clear=TRUE, method="VF2", sort="natural",
ignore.dom=!isTRUE(all.equal(blocks,1)),
useV = TRUE, firsthit = FALSE, res3=FALSE, max.time=60,
perm.start=NULL, perms=NULL, MaxC2=FALSE,
replications=1, repeat.only=FALSE,
randomize=TRUE, seed=NULL, alias.info=2,
blocks=1, block.name="Blocks", block.old=FALSE, force.godolphin=FALSE,
bbreps=replications, wbreps=1, alias.block.2fis = FALSE,
hard=NULL, check.hard=10, WPs=1, nfac.WP=0, WPfacs=NULL, check.WPs=10, ...){
creator <- sys.call()
if (!is.logical(block.old)) stop("block.old must be logical")
if (block.old && ! identical(blocks, 1)){
cc <- as.list(creator)
cc$block.old <- NULL
cc[[1]] <- FrF2old
cc <- as.call(cc)
erg <- eval(cc)
di <- design.info(erg)
di$creator <- creator
di$block.old <- block.old
design.info(erg) <- di
return(erg)
}
catlg.name <- deparse(substitute(select.catlg))
nichtda <- "try-error" %in% class(try(eval(parse(text=paste(catlg.name,"[1]",sep=""))),silent=TRUE))
if (nichtda){
catlgs128 <- c("catlg128.8to15","catlg128.26to33",paste("catlg128",16:25,sep="."))
if (catlg.name %in% catlgs128){
if (!requireNamespace("FrF2.catlg128", quietly=TRUE, character.only=TRUE))
stop("Package FrF2.catlg128 is not available")
if (packageVersion("FrF2.catlg128") < numeric_version(1.2)){
if (catlg.name %in% catlgs128[c(1,3:11)])
stop("For this version of package FrF2.catlg128,\n",
"load ", catlg.name, " with the command data(", catlg.name,")\n",
"and then rerun the FrF2 command.\n",
"Alternatively, install the latest version of package FrF2.catlg128.")
else stop("You need to get the latest version of package FrF2.catlg128 for using ", catlg.name)
}
}
else stop(catlg.name, " not available")
}
if (!"catlg" %in% class(select.catlg)) stop("invalid choice for select.catlg")
if (!is.numeric(ncenter)) stop("ncenter must be a number")
if (!length(ncenter)==1) stop("ncenter must be a number")
if (!ncenter==floor(ncenter)) stop("ncenter must be an integer number")
if (is.null(center.distribute)){
if (!randomize) center.distribute <- min(ncenter, 1)
else center.distribute <- min(ncenter, 3)}
if (!is.numeric(center.distribute)) stop("center.distribute must be a number")
if (!center.distribute==floor(center.distribute)) stop("center.distribute must be an integer number")
if (center.distribute > ncenter)
stop("center.distribute can be at most ncenter")
if (randomize & center.distribute==1) warning("running all center point runs together is usually not a good idea.")
block.name <- make.names(block.name)
if (ncenter>0 && !identical(WPs,1)) stop("center points for split plot designs are not supported")
if (!(is.null(generators) || (identical(WPs,1) || !is.null(WPfacs))))
stop("generators can only be used with split-plot designs, if WPfacs are specified.")
if (!is.null(nruns)) if (ncenter>0) if (center.distribute > nruns + 1)
stop("center.distribute must not be larger than nruns+1")
if (!(is.null(generators) || is.null(design)))
stop("generators and design must not be specified together.")
if (is.null(nruns) & !(is.null(generators)))
stop("If generators is specified, nruns must be given.")
if (!(is.null(generators) || is.null(estimable)))
stop("generators and estimable must not be specified together.")
if (!(identical(blocks,1) || is.null(estimable))){
if (!(is.numeric(blocks) && length(blocks)==1))
stop("estimable can only be combined with automatic blocking.")
if (!clear) message("clear=FALSE will be ignored, ",
"as estimability for blocked designs is only implemented for clear 2fis.")
}
igdom <- ignore.dom
if (!(is.null(design) || is.null(estimable))){
message("estimability is only attempted for the specified design")
igdom <- TRUE
}
if (!is.null(useV)) {
if (!is.logical(useV)) stop("useV must be logical")
}
if (!is.logical(firsthit)) stop("firsthit must be logical")
if (!(identical(WPs,1) || is.null(estimable))) stop("WPs and estimable must not be specified together.")
if (!(is.null(hard) | is.null(estimable))) stop("hard and estimable must not be specified together.")
if (!(identical(blocks,1) || identical(WPs,1))) stop("blocks and WPs must not be specified together.")
if (!(identical(blocks,1) || is.null(hard))) stop("blocks and hard must not be specified together.")
if (!(identical(WPs,1) || is.null(hard))) stop("WPs and hard must not be specified together.")
if (identical(blocks,1) & !identical(wbreps,1)) stop("wbreps must not differ from 1, if blocks = 1.")
if (!(is.null(WPfacs) || identical(WPs,1)) && is.null(design) && is.null(generators))
stop("WPfacs requires explicit definition of a design via design or generators.")
if (identical(nfac.WP,0) && is.null(WPfacs) && !identical(WPs,1))
stop("WPs whole plots require specification of whole plot factors",
"through nfac.WP or WPfacs!")
if ((nfac.WP > 0 || !is.null(WPfacs)) && identical(WPs, 1)) stop("WPs must be specified for creating a split-plot design")
if (!(is.null(resolution) || is.null(estimable))) stop("You can only specify resolution OR estimable.")
if (!(is.null(resolution) || is.null(nruns))) warning("resolution is ignored, if nruns is given.")
if (default.levels[1]==default.levels[2]) stop("Both default levels are identical.")
if (!(is.logical(clear) & is.logical(res3) & is.logical(MaxC2) & is.logical(repeat.only)
& is.logical(randomize) & is.logical(alias.block.2fis) & is.logical(force.godolphin)))
stop("clear, res3, MaxC2, repeat.only, randomize, alias.block.2fis and force.godolphin must be logicals (TRUE or FALSE).")
if (!is.numeric(max.time))
stop("max.time must be a positive maximum run time for searching a design with estimable given and clear=FALSE.")
if (!is.numeric(check.hard)) stop("check.hard must be an integer number.")
if (!is.numeric(check.WPs)) stop("check.WPs must be an integer number.")
check.hard <- floor(check.hard)
check.WPs <- floor(check.WPs)
if (!is.numeric(bbreps)) stop("bbreps must be an integer number.")
if (!is.numeric(wbreps)) stop("wbreps must be an integer number.")
if (!is.numeric(replications)) stop("replications must be an integer number.")
if (bbreps > 1 & identical(blocks,1) & !replications > 1)
stop("Use replications, not bbreps, for specifying replications for unblocked designs.")
if (!alias.info %in% c(2,3))
stop("alias.info can be 2 or 3 only.")
if (!(is.numeric(default.levels) | is.character(default.levels)))
stop("default.levels must be a numeric or character vector of length 2")
if (!length(default.levels) ==2)
stop("default.levels must be a numeric or character vector of length 2")
if (!(is.null(hard) | is.numeric(hard)))
stop("hard must be numeric.")
if (!(is.null(resolution) | is.numeric(resolution)))
stop("resolution must be numeric.")
if (is.numeric(resolution)) if(!(resolution == floor(resolution) & resolution>=3))
stop("resolution must be an integer number (at least 3), if specified.")
res.WP <- NULL
if (!is.null(design)){
if (!is.character(design)) stop("design must be a character string.")
if (!length(design)==1) stop("design must be one character string.")
if (design %in% names(select.catlg)){
cand <- select.catlg[design]
if (!is.null(nruns)) {if (!nruns==cand[[1]]$nruns)
stop("selected design does not have the desired number of runs.")}
else nruns <- cand[[1]]$nruns
if (!is.null(factor.names)) {if (!length(factor.names)==cand[[1]]$nfac)
stop("selected design does not have the number of factors specified in factor.names.")}
if (!is.null(nfactors)) {if (!nfactors==cand[[1]]$nfac)
stop("selected design does not have the number of factors specified in nfactors.")}
else nfactors <- cand[[1]]$nfac
}
else stop("invalid entry for design")
}
if (!is.null(nruns)){
k <- round(log2(nruns))
if (!2^k==nruns) stop("nruns must be a power of 2.")
if (nruns < 4 | nruns > 4096) stop("less than 4 or more than 4096 runs are not covered by function FrF2.")
}
if (is.null(factor.names) && is.null(nfactors) && (is.null(nruns) || is.null(generators)) && is.null(estimable))
stop("The number of factors must be specified via nfactors, via factor.names, via estimable, through selecting
one specific catalogued design or via nruns together with generators.")
if (!is.null(factor.names) && !(is.character(factor.names) || is.list(factor.names)) )
stop("factor.names must be a character vector or a list.")
if (is.null(nfactors)) {if (!is.null(factor.names)) nfactors <- length(factor.names)
else if (!is.null(generators)) nfactors <- length(generators)+k
}
if (!is.null(estimable)) {
if (!is.character(sort)) stop("option sort must be a character string")
if (!is.character(method)) stop("option method must be a character string")
if (!sort %in% c("natural","high","low")) stop("invalid choice for option sort")
if (clear && !method %in% c("LAD","VF2")) stop("invalid choice for option method")
estimable <- estimable.check(estimable, nfactors, factor.names)
if (is.null(nfactors)) nfactors <- estimable$nfac
estimable <- estimable$estimable
if (is.null(nruns)) {
nruns <- nfactors+ncol(estimable)+1 + (nfactors+ncol(estimable)+1)%%2
if (!isTRUE(all.equal(log2(nruns) %% 1,0))) nruns <- 2^(floor(log2(nruns))+1)
k <- round(log2(nruns))
if (k<3) stop("Please specify nruns and/or nfactors. Calculated values are unreasonable.")
}
if (is.null(perm.start)) perm.start <- 1:nfactors
else if (!is.numeric(perm.start))
stop ("perm.start must be NULL or a numeric permutation vector of length nfactors.")
if (!all(sort(perm.start)==1:nfactors))
stop ("perm.start must be NULL or a numeric permutation vector of length nfactors.")
if (!is.null(perms)) {
if (!is.matrix(perms) | !is.numeric(perms)) stop("perms must be a numeric matrix.")
if (!ncol(perms)==nfactors) stop ("matrix perms must have nfactors columns.")
if (any(apply(perms,1,function(obj) any(!sort(obj)==1:nfactors))))
stop("Each row of perms must be a permutation of 1:nfactors.")
}
if (is.null(design)) cand <- select.catlg
}
if (!nfactors==floor(nfactors))
stop("nfactors must be an integer number.")
if (!is.null(factor.names) && !length(factor.names)==nfactors)
stop("There must be nfactors factor names, if any.")
if (is.null(factor.names))
if(nfactors<=50) factor.names <- Letters[1:nfactors] else factor.names <- paste("F",1:nfactors,sep="")
if (!((is.character(default.levels) | is.numeric(default.levels)) & length(default.levels)==2) )
stop("default.levels must be a vector of 2 levels.")
if (is.list(factor.names)){
if (is.null(names(factor.names))){
if (nfactors<=50) names(factor.names) <- Letters[1:nfactors]
else names(factor.names) <- paste("F", 1:nfactors, sep="")
}
if (any(factor.names=="")) factor.names[which(factor.names=="")] <- list(default.levels)}
else {hilf <- vector("list",nfactors)
names(hilf) <- factor.names
hilf[1:nfactors]<-list(default.levels)
factor.names <- hilf}
names(factor.names) <- make.names(names(factor.names), unique=TRUE)
if (ncenter > 0) if(any(is.na(sapply(factor.names,"is.numeric"))))
stop("Center points are implemented for experiments with all factors quantitative only.")
genspec <- FALSE
if (!is.null(generators)){
genspec <- TRUE
generators <- gen.check(k, generators)
g <- nfactors - k
if (!length(generators)== g)
stop("This design in ", nruns, " runs with ", nfactors," factors requires ", g, " generators.")
res <- NA; nclear.2fis<-NA; clear.2fis<-NULL;all.2fis.clear<-NA
if (g<10) wl <- words.all(k, generators,max.length=6)
else if (g<15) wl <- words.all(k, generators,max.length=5)
else if (g<20) wl <- words.all(k, generators,max.length=4)
else if (g>=20) wl <- alias3fi(k, generators, order=2)
WLP <- NULL
clear.2fis <- combn(nfactors, 2)
hilf <- rep(TRUE, choose(nfactors, 2))
wl4 <- wl[[2]]
wl4 <- wl4[lengths(wl4)==4]
if (length(wl4) > 0)
for (i in 1:choose(nfactors, 2))
if (any(sapply(wl4, function(obj) all(clear.2fis[,i] %in% obj)))) hilf[i] <- FALSE
clear.2fis <- clear.2fis[,hilf]
nclear.2fis <- ncol(clear.2fis)
all.2fis.clear <- (nclear.2fis==choose(nfactors, 2))
if (g < 20){
WLP <- wl$WLP
if (all(WLP==0)) res <- Inf else
res <- min(as.numeric(names(WLP)[which(WLP>0)]))
if (res==Inf) {if (g<10) res="7+"
else if (g<15) res="6+"
else if (g<20) res="5+" }
}
else{
if (!is.list(wl)) res="5+"
else{
if (length(wl$"main")>0) res="3"
else if (length(wl$"fi2")>0) res="4"
else res="5+"}
}
gen <- sapply(generators,function(obj) which(sapply(Yates[1:(nruns-1)],
function(obj2) isTRUE(all.equal(sort(abs(obj)),obj2)))))
gen <- gen*sapply(generators, function(obj) sign(obj[1]))
cand <- list(custom=list(res=res, nfac=nfactors, nruns=nruns,
gen=unlist(gen),
WLP=WLP, nclear.2fis=nclear.2fis, clear.2fis=clear.2fis, all.2fis.clear=all.2fis.clear))
class(cand) <- c("catlg","list")
}
if (!identical(blocks,1)) {
blocks <- block.check(k, blocks, nfactors, factor.names)
if (is.list(blocks)) k.block <- length(blocks)
block.auto=FALSE
map <- NULL
}
if (!is.list(blocks)){
if (blocks>1){
block.auto=TRUE
if (is.null(nruns))
stop("blocks>1 only works if nruns is specified.")
k.block <- round(log2(blocks))
if (blocks > nruns/2)
stop("There cannot be more blocks than half the run size.")
if (nfactors+blocks-1>=nruns)
stop(paste(nfactors, "factors cannot be accomodated in", nruns, "runs with", blocks, "blocks."))
ntreat <- nfactors
}
}
if (!is.null(hard)){
if (is.null(generators)){
if (is.null(nruns)){
cand <- select.catlg[which(res.catlg(select.catlg)>=resolution & nfac.catlg(select.catlg)==nfactors)]
if (length(cand)==0) {
message("full factorial design needed for achieving requested resolution")
k <- nfactors
nruns <- 2^k
cand <- list(list(gen=numeric(0)))
}
else {
nruns <- min(nruns.catlg(cand))
k <- round(log2(nruns))
cand <- cand[which(nruns.catlg(cand)==nruns)]
}
}
else {
if (nfactors > k)
cand <- select.catlg[which(nfac.catlg(select.catlg)==nfactors &
nruns.catlg(select.catlg)==nruns)]
else cand <- list(list(gen=numeric(0)))
}
}
if (hard == nfactors) stop("It does not make sense to choose hard equal to nfactors.")
if (hard >= nruns/2)
warning ("Do you really need to declare so many factors as hard-to-change ?")
nfac.WP <- hard
if (hard < nruns/2){
WPs <- NA
if (length(cand[[1]]$gen) > 0)
for (i in 1:min(length(cand),check.hard)){
leftadjust.out <- leftadjust(k,cand[[i]]$gen, early=hard, show=1)
if (is.na(WPs) | WPs > 2^leftadjust.out$k.early)
WPs <- 2^leftadjust.out$k.early
}
else WPs <- 2^hard
}
if (hard>=nruns/2 | WPs==nruns) {
warning("There are so many hard-to-change factors that no good special design could be found.
Randomization has been switched off.")
randomize <- FALSE
WPs <- 1
leftadjust.out <- leftadjust(k,cand[[1]]$gen,early=hard,show=1)
generators <- leftadjust.out$gen
}
}
if (!identical(WPs,1)) {
if (is.null(nruns)) stop("WPs>1 only works if nruns is specified.")
if (WPs > nruns/2) stop("There cannot be more whole plots (WPs) than half the run size.")
k.WP <- round(log2(WPs))
if (!WPs == 2^k.WP) stop("WPs must be a power of 2.")
if (!is.null(WPfacs) & nfac.WP==0){
nfac.WP <- length(WPfacs)
if (nfac.WP < k.WP) stop("WPfacs must specify at least log2(WPs) whole plot factors.")
}
if (nfac.WP==0) stop("If WPs > 1, a positive nfac.WP or WPfacs must also be given.")
if (nfac.WP < k.WP) {
add <- k.WP - nfac.WP
names.add <- rep(list(default.levels),add)
names(names.add) <- paste("WP",(nfac.WP+1):(nfac.WP+add),sep="")
nfactors <- nfactors + add
factor.names <- c(factor.names[1:nfac.WP],names.add,factor.names[-(1:nfac.WP)])
nfac.WP <- k.WP
warning("There are fewer factors than needed for a full factorial whole plot design. ", add,
" dummy splitting factor(s) have been introduced.")
}
if (!is.null(WPfacs)) {
WPfacs <- WP.check(k, WPfacs, nfac.WP, nfactors, factor.names)
WPsnum <- as.numeric(chartr("F", " ", WPfacs))
WPsorig <- WPsnum
}
else {WPsorig <- WPsnum <- 1:nfac.WP }
}
if (!is.null(nruns)){
if (nfactors<=k && identical(blocks,1) && identical(WPs,1)) {
if (nfactors==k) aus <- fac.design(2, k, factor.names=factor.names,
replications=replications, repeat.only=repeat.only,
randomize=randomize, seed=seed)
else aus <- fac.design(2, nfactors, factor.names=factor.names,
replications=replications*2^(k-nfactors), repeat.only=repeat.only,
randomize=randomize, seed=seed)
aus <- qua.design(aus, quantitative="none", contrasts=rep("contr.FrF2",nfactors))
if (ncenter>0) aus <- add.center(aus, ncenter, distribute=center.distribute)
di <- design.info(aus)
di$creator <- creator
di <- c(di, list(FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version))
design.info(aus) <- di
return(aus)
}
else {
if (nfactors < k) stop("A full factorial for nfactors factors requires fewer than nruns runs.
Please reduce the number of runs and introduce replications instead.")
full <- FALSE
if (nfactors == k) {
full <- TRUE
genspec <- TRUE
generators <- as.list(numeric(0))
cand <- list(custom=list(res=Inf, nfac=nfactors, nruns=nruns,
gen=numeric(0),
WLP=c(0,0,0,0), nclear.2fis=choose(k,2),
clear.2fis=combn(k,2), all.2fis.clear="all"))
class(cand) <- c("catlg","list")
}
if (nfactors > nruns - 1)
stop("You can accomodate at most ", nruns-1,
" factors in a FrF2 design with ", nruns, " runs." )
g <- nfactors - k
if (!is.null(estimable)) {
desmat <- estimable(estimable, nfactors, nruns,
clear=clear, res3=res3, max.time=max.time, select.catlg=cand,
method=method,sort=sort,
perm.start=perm.start, perms=perms, order=alias.info,
ignore.dom=igdom)
map <- desmat$map
cand <- cand[names(map)]
design.info <- list(type="FrF2.estimable",
nruns=nruns, nfactors=nfactors, factor.names=factor.names,
catlg.name = catlg.name,
map=desmat$map, aliased=desmat$aliased, clear=clear, res3=res3,
FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version)
desmat <- desmat$design
desmat <- as.matrix(sapply(desmat,function(obj) as.numeric(as.character(obj))))
rownames(desmat) <- 1:nrow(desmat)
}
else if (is.null(generators) && is.null(design))
cand <- select.catlg[nruns.catlg(select.catlg)==nruns &
nfac.catlg(select.catlg)==nfactors]
block.gen <- NULL
if (!is.list(blocks)){
if (blocks > 1) {
if ((g==0 || choose(nruns - 1 - nfactors, k.block) < 100000) &&
is.null(estimable) && !force.godolphin ){
for (i in 1:length(cand)){
if (g==0) {blockpick.out <- try(blockpick(k, gen=0,
k.block=k.block, show=1, alias.block.2fis = alias.block.2fis),TRUE)
}
else {
if (is.null(generators))
blockpick.out <- try(blockpick(k, design=names(cand[i]),
k.block=k.block, show=1, alias.block.2fis = alias.block.2fis),TRUE)
else blockpick.out <- try(blockpick(k, gen=cand[[i]]$gen,
k.block=k.block, show=1, alias.block.2fis = alias.block.2fis),TRUE)
}
if (!"try-error" %in% class(blockpick.out)) {
blocks <- blockpick.out$blockcols
block.gen <- unlist(c(blocks))
cand <- cand[i]
cand[[1]]$gen <- c(cand[[1]]$gen, block.gen)
blocks <- nfactors + (1:k.block)
nfactors <- nfactors + k.block
g <- g + k.block
hilf <- factor.names
factor.names <- vector("list", nfactors)
factor.names[-blocks] <- hilf
factor.names[blocks] <- list(default.levels)
names(factor.names) <- c(names(hilf),paste("b",1:k.block,sep=""))
blocks <- as.list(blocks)
break
}
}
}
else{
for (i in 1:length(cand)){
if (is.null(useV)) useV <- cand[[1]]$res > 4 && !is.null(estimable)
if (useV)
X <- colpick(cand[i], k - k.block, estimable=estimable, quiet=TRUE,
method=method, sort=sort,
select.catlg = cand[i], res3=res3, firsthit=firsthit)
else
X <- colpickIV(cand[i], k - k.block, estimable=estimable, quiet=TRUE,
method=method, sort=sort,
select.catlg = cand[i], res3=res3, firsthit=firsthit)
if (!is.null(X)) {
cand <- cand[i]
block.gen <- blockgencreate(X$X, p=g)
block.gen <- sapply(block.gen, function(obj)
which(names(Yates) %in% obj))
if (any(block.gen %in% cand[[1]]$gen))
warning("block generator coincides with main effect")
cand[[1]]$gen <- c(cand[[1]]$gen, block.gen)
blocks <- nfactors + 1:k.block
nfactors <- nfactors + k.block
cand[[1]]$nfactors <- nfactors
g <- g + k.block
if (!is.null(estimable)) map <- X$map
hilf <- factor.names
factor.names <- vector("list", nfactors)
factor.names[-blocks] <- hilf
factor.names[blocks] <- list(default.levels)
names(factor.names) <- c(names(hilf),
paste("b",1:k.block, sep=""))
blocks <- as.list(blocks)
break
}
}
}
if (!is.list(blocks)) {
stopmsg <- "no adequate blocked design found"
if (nruns >= 128 && !full) stopmsg <- c(stopmsg,
" in catalogue ", deparse(substitute(select.catlg)))
if (!alias.block.2fis)
stopmsg <- c(stopmsg, " with 2fis unconfounded with blocks")
if (!is.null(design))
stopmsg <- c(stopmsg, paste(" in design", design))
else {
if (!is.null(estimable) && !full){
stopmsg <- c(stopmsg, paste(" in design", names(cand)))
}
if (!is.null(estimable) && !full){
if (ignore.dom)
stopmsg <- c(stopmsg, " which is the first suitable element of select.catlg")
else
stopmsg <- c(stopmsg, " which is the first suitable dominating element of select.catlg")
if (!useV && !nfactors==log2(nruns))
stopmsg <- c(stopmsg,
" without trying to reshuffle map from unblocked fraction",
" (useV=TRUE might be worth a try)")
}
}
stop(stopmsg)
}
}
}
if (is.list(blocks)) {
hilf.gen <- c(2^(0:(k-1)), cand[[1]]$gen)
hilf.block.gen <- sapply(blocks, function(obj)
as.intBase(paste(rowSums(do.call(cbind,
lapply(obj, function(obj2)
digitsBase(hilf.gen[obj2],2,k))))%%2, collapse=""))
)
k.block.add <- length(intersect(hilf.block.gen, hilf.gen))
if (is.null(block.gen)) {
ntreat <- nfactors - k.block.add
block.gen <- hilf.block.gen
}
bf <- blockfull(blocks, k, hilf.gen)
if (k.block > 1) {if (length(unique(bf)) < 2^k.block - 1)
stop("specified blocks is invalid (dependencies)")}
if (length(intersect(bf, hilf.gen)) > k.block.add){
if (alias.block.2fis && length(bf) > 4)
warning(paste("Main effects of factors",
paste(names(factor.names)[hilf.gen %in% bf], collapse=", "),
"are confounded with blocks.",
"The design is a split-plot design",
"and has to be analyzed as such",
"(only recommended in case of many blocks).",
"Preferrably, construct it with arguments WPs and WPfacs.",
"You may also want to try using function FF_from_X",
"for obtaining a better block structure."))
else stop("main effects confounded with blocks")
}
hilf.gen <- setdiff(hilf.gen, block.gen)
sel <- combn(ntreat, 2)
nam2fis <- sapply(1:ncol(sel),
function(obj) ifelse(ntreat<=50, paste0(Letters[sel[,obj]], collapse=":"),
paste0("F",sel[,obj], collapse=":")))
twoficols <- sapply(1:ncol(sel),
function(obj)
as.intBase(paste(rowSums(do.call(cbind,
lapply(sel[,obj], function(obj2)
digitsBase(hilf.gen[obj2],2,k))))%%2, collapse=""))
)
names(twoficols) <- nam2fis
if (!alias.block.2fis)
if (length(intersect(bf, twoficols)) > 0){
if (force.godolphin) stop("blocks aliased with 2-factor interactions, ",
"although alias.block.2fis=FALSE; ",
"force.godolphin=TRUE does not attempt ",
"to avoid confounding of non-clear 2fis")
else
stop("blocks aliased with 2-factor interactions, ", "although alias.block.2fis=FALSE")
}
if (alias.info == 3){
sel <- combn(ntreat, 3)
nam3fis <- sapply(1:ncol(sel),
function(obj) ifelse(ntreat<=50, paste0(Letters[sel[,obj]], collapse=":"),
paste0("F",sel[,obj], collapse=":")))
threeficols <- sapply(1:ncol(sel),
function(obj)
as.intBase(paste(rowSums(do.call(cbind,
lapply(sel[,obj], function(obj2)
digitsBase(hilf.gen[obj2],2,k))))%%2, collapse=""))
)
names(threeficols) <- nam3fis
}
if (is.null(generators)) generators <- gen.check(k, hilf.gen[-(1:k)])
}
if (WPs > 1){
WP.auto <- FALSE
map <- 1:k
orignew <- WPsorig
if (is.null(WPfacs)){
WP.auto <- TRUE
max.res.5 <- c(1,2,3, 5, 6, 8, 11, 17)
for (i in 1:length(cand)){
if (is.null(generators)){
if (cand[[i]]$res>=5 & nfac.WP > max.res.5[k.WP]) next
if (cand[[i]]$res>=4 & nfac.WP > WPs/2) next
}
if (nfac.WP > WPs/2 || nfac.WP <= k.WP)
splitpick.out <- try(splitpick(k, cand[[i]]$gen, k.WP=k.WP, nfac.WP=nfac.WP, show=1),TRUE)
else splitpick.out <- try(splitpick(k, cand[[i]]$gen, k.WP=k.WP, nfac.WP=nfac.WP,
show=check.WPs),TRUE)
if (!"try-error" %in% class(splitpick.out)) {
WPfacs <- 1:k.WP
if (nfac.WP > k.WP) WPfacs <- c(WPfacs, (k + 1):(k+nfac.WP-k.WP))
cand <- cand[i]
cand[[1]]$gen <- splitpick.out$gen[1,]
res.WP <- splitpick.out$res.WP[1]
map <- splitpick.out$perms[1,]
break
}
}
if (is.null(res.WP)){
if (nruns >= 2^nfactors) {
res.WP <- Inf
WP.auto <- TRUE
WPfacs <- 1:k.WP
if (!k.WP == nfac.WP) stop(nfac.WP, " whole plot factors cannot be accomodated in ", (2^k.WP),
" whole plots for a full factorial. Please request smaller design with replication instead.")
cand <- list(list(gen=numeric(0)))
}
else stop("no adequate splitplot design found")
}
orignew <- WPsnum <- WPfacs
WPfacs <- paste("F",WPfacs,sep="")
}
}
}
}
else {
if (is.null(resolution) && is.null(estimable))
stop("At least one of nruns or resolution or estimable must be given.")
if (!is.null(resolution)){
cand <- select.catlg[which(res.catlg(select.catlg)>=resolution &
nfac.catlg(select.catlg)==nfactors)]
if (length(cand)==0) {
message("full factorial design needed")
aus <- fac.design(2, nfactors, factor.names=factor.names,
replications=replications, repeat.only=repeat.only,
randomize=randomize, seed=seed)
for (i in 1:nfactors)
if (is.factor(aus[[i]])) contrasts(aus[[i]]) <- contr.FrF2(2)
if (ncenter>0) aus <- add.center(aus, ncenter, distribute=center.distribute)
return(aus)
}
}
else{ cand <- select.catlg[which(nfac.catlg(select.catlg)==nfactors)]
if (length(cand)==0)
stop("No design listed in catalogue ", deparse(substitute(select.catlg)),
" fulfills all requirements.")
}
}
if (MaxC2 && is.null(estimable) && is.null(generators) ) {
if (!res3)
cand <- cand[which.max(sapply(cand[which(sapply(cand,
function(obj) obj$res)==max(sapply(cand, function(obj) obj$res)))],
function(obj) obj$nclear.2fis))]
else
cand <- cand[which.max(sapply(cand,
function(obj) obj$nclear.2fis))]
}
if (is.null(nruns)) {nruns <- cand[[1]]$nruns
k <- round(log2(nruns))
g <- nfactors - k}
if (is.null(estimable) || is.list(blocks)){
destxt <- "expand.grid(c(-1,1)"
for (i in 2:k) destxt <- paste(destxt,",c(-1,1)",sep="")
destxt <- paste("as.matrix(",destxt,"))",sep="")
desmat <- eval(parse(text=destxt))
if (is.character(WPfacs) | is.list(blocks)) {
desmat <- desmat[,k:1]
}
if (!is.null(hard)) {
desmat <- rep(c(-1,1),each=nruns/2)
for (i in 2:k) desmat <- cbind(desmat,rep(c(1,-1,-1,1),times=(2^i)/4,each=nruns/(2^i)))
}
if (g>0)
for (i in 1:g)
desmat <- cbind(desmat, sign(cand[[1]]$gen[i][1])*apply(desmat[,unlist(Yates[abs(cand[[1]]$gen[i])])],1,prod))
if (WPs > 1) {
if (!WP.auto) {
hilf <- apply(desmat[,WPsorig,drop=FALSE],1,paste,collapse="")
if (!length(table(hilf))==WPs)
stop("The specified design creates ",
length(table(hilf)), " and not ", WPs, " whole plots.")
for (j in setdiff(1:nfactors,WPsorig))
if (!length(table(paste(hilf,desmat[,j],sep="")))>WPs)
stop("Factor ", names(factor.names)[j], " is also a whole plot factor.")
if (nfac.WP<3) res.WP <- Inf
else res.WP <- GR((3-desmat[,WPsorig,drop=FALSE])%/%2)$GR%/%1
}
}
if (is.null(rownames(desmat))) rownames(desmat) <- 1:nruns
if (is.list(blocks)) {
if (is.null(block.gen)) block.gen <- blocks
hilf <- blocks
for (i in 1:k.block) hilf[[i]] <- apply(desmat[,hilf[[i]],drop=FALSE],1,prod)
Blocks <- factor(as.numeric(factor(apply(matrix(as.character(unlist(hilf)),
ncol=k.block), 1, paste, collapse=""))))
hilf <- order(Blocks, as.numeric(rownames(desmat)))
desmat <- desmat[hilf,]
Blocks <- Blocks[hilf]
contrasts(Blocks) <- contr.FrF2(levels(Blocks))
nblocks <- 2^length(blocks)
blocksize <- nruns / nblocks
block.no <- paste(Blocks,rep(1:blocksize,nblocks),sep=".")
}
if (is.character(WPfacs)) {
desmat <- desmat[,c(WPsnum,setdiff(1:nfactors,WPsnum))]
factor.names <- factor.names[c(WPsorig,setdiff(1:nfactors,WPsorig))]
plotsize <- round(nruns/WPs)
if (is.null(hard)){
hilf <- ord(cbind(desmat[,1:nfac.WP],as.numeric(rownames(desmat))))
desmat <- desmat[hilf,]
}
wp.no <- paste(rep(1:WPs,each=plotsize),rep(1:plotsize,WPs),sep=".")
}
}
if (randomize & !is.null(seed)) set.seed(seed)
if (!(is.list(blocks) || WPs > 1)){
rand.ord <- rep(1:nruns,replications)
if (replications > 1 & repeat.only) rand.ord <- rep(1:nruns,each=replications)
if (randomize & !repeat.only) for (i in 1:replications)
rand.ord[((i-1)*nruns+1):(i*nruns)] <- sample(nruns)
if (randomize & repeat.only) rand.ord <- rep(sample(1:nruns), each=replications)
}
else {
if (is.list(blocks)){
rand.ord <- rep(1:nruns, bbreps * wbreps)
if ((!repeat.only) & !randomize)
for (i in 0:(nblocks-1))
for (j in 1:wbreps)
rand.ord[(i*blocksize*wbreps+(j-1)*blocksize+1):((i+1)*blocksize*wbreps+j*blocksize)] <-
(i*blocksize+1):((i+1)*blocksize)
rand.ord <- rep(rand.ord[1:(nruns*wbreps)],bbreps)
if (repeat.only & !randomize)
for (j in 1:wbreps)
rand.ord[(i*blocksize*wbreps + (j-1)*blocksize + 1) :
(i*blocksize*wbreps + j*blocksize)] <-
sample((i%%nblocks*blocksize+1):(i%%nblocks*blocksize+blocksize))
if (wbreps > 1 & repeat.only) rand.ord <- rep(1:nruns,bbreps, each=wbreps)
if ((!repeat.only) & randomize)
for (i in 0:(nblocks*bbreps-1))
for (j in 1:wbreps)
rand.ord[(i*blocksize*wbreps + (j-1)*blocksize + 1) :
(i*blocksize*wbreps + j*blocksize)] <-
sample((i%%nblocks*blocksize+1):(i%%nblocks*blocksize+blocksize))
if (repeat.only & randomize)
for (i in 0:(nblocks*bbreps-1))
rand.ord[(i*blocksize*wbreps + 1) :
((i+1)*blocksize*wbreps)] <- rep(sample((((i%%nblocks)*blocksize)+1):
((i%%nblocks+1)*blocksize)),each=wbreps)
}
else {
rand.ord <- rep(1:nruns,replications)
if (replications > 1 & repeat.only)
rand.ord <- rep(1:nruns,each=replications)
if ((!repeat.only) & randomize){
for (i in 1:(WPs*replications))
rand.ord[((i-1)*plotsize+1):(i*plotsize)] <-
sample(rand.ord[((i-1)*plotsize+1):(i*plotsize)])
for (i in 1:replications){
if (is.null(hard)){
WPsamp <- sample(WPs)
WPsamp <- (rep(WPsamp,each=plotsize)-1)*plotsize + rep(1:plotsize,WPs)
rand.ord[((i-1)*plotsize*WPs+1):(i*plotsize*WPs)] <-
rand.ord[(i-1)*plotsize*WPs + WPsamp]
}
}
}
if (repeat.only & randomize){
for (i in 1:WPs)
rand.ord[((i-1)*plotsize*replications+1):(i*plotsize*replications)] <-
rand.ord[(i-1)*plotsize*replications +
rep(replications*(sample(plotsize)-1),each=replications) +
rep(1:2,each=plotsize)]
if (is.null(hard)){
WPsamp <- sample(WPs)
WPsamp <- (rep(WPsamp,each=plotsize*replications)-1)*plotsize*replications +
rep(1:(plotsize*replications),WPs)
rand.ord <- rand.ord[WPsamp]
}
}
}
}
orig.no <- rownames(desmat)
orig.no <- orig.no[rand.ord]
orig.no.levord <- sort(as.numeric(orig.no),index=TRUE)$ix
rownames(desmat) <- NULL
desmat <- desmat[rand.ord,]
if (is.list(blocks)) {
Blocks <- Blocks[rand.ord]
block.no <- block.no[rand.ord]
}
if (WPs > 1) wp.no <- wp.no[rand.ord]
colnames(desmat) <- names(factor.names)
if (is.list(blocks)) orig.no <- paste(orig.no,block.no,sep=".")
if (WPs > 1) orig.no <- paste(orig.no,wp.no,sep=".")
orig.no.rp <- orig.no
if (bbreps * wbreps > 1){
if (bbreps > 1) {
if (repeat.only & !is.list(blocks))
orig.no.rp <- paste(orig.no.rp, rep(1:bbreps,nruns),sep=".")
else
orig.no.rp <- paste(orig.no.rp, rep(1:bbreps,each=nruns*wbreps),sep=".")
}
if (wbreps > 1){
if (repeat.only)
orig.no.rp <- paste(orig.no.rp, rep(1:wbreps,nruns*bbreps),sep=".")
else orig.no.rp <- paste(orig.no.rp, rep(1:wbreps,each=blocksize,nblocks*bbreps),sep=".")
}
}
desdf <- data.frame(desmat)
quant <- rep(FALSE,nfactors)
for (i in 1:nfactors) {
desdf[,i] <- des.recode(desdf[,i],"-1=factor.names[[i]][1];1=factor.names[[i]][2]")
quant[i] <- is.numeric(desdf[,i])
desdf[,i] <- factor(desdf[,i],levels=factor.names[[i]])
contrasts(desdf[,i]) <- contr.FrF2(2)
}
if (is.list(blocks)) {
desdf <- cbind(Blocks, desdf, stringsAsFactors=TRUE)
hilf <- blocks
if (all(sapply(hilf,length)==1) && !block.auto) {
hilf <- as.numeric(hilf) + 1
levels(desdf$Blocks) <- unique(apply(desdf[,hilf,drop=FALSE],1,paste,collapse=""))
}
colnames(desdf)[1] <- block.name
hilf <- blocks
hilf <- as.numeric(hilf[which(sapply(hilf,length)==1)])
if (length(hilf)>0) {
desdf <- desdf[,-(hilf+1)]
desmat <- desmat[,-hilf]
factor.names <- factor.names[-hilf]
}
if (!is.null(estimable)) {
factor.names <- factor.names[invperm(map)]
names(desdf) <- c(block.name, names(factor.names))
}
desmat <- cbind(model.matrix(~desdf[,1])[,-1],desmat)
colnames(desmat)[1:(2^k.block-1)] <- paste(block.name,1:(2^k.block-1),sep="")
MEcols <- hilf.gen
if (ntreat<=50) names(MEcols) <- Letters[1:ntreat] else names(MEcols) <- paste0("F",1:ntreat)
effs <- c(MEcols, twoficols)
if (alias.info==3) effs <- c(effs, threeficols)
aliased.with.blocks <- names(effs[effs %in% bf])
effs <- effs[!effs %in% bf]
aliased <- split(names(effs), effs)
aliased <- aliased[lengths(aliased) > 1]
if (nfactors<=50) leg <- paste(Letters[1:ntreat],names(factor.names),sep="=")
else leg <- paste(paste("F",1:ntreat,sep=""),names(factor.names),sep="=")
if (length(aliased.with.blocks)==0) aliased.with.blocks <- "none"
else {
aliased.with.blocks <- recalc.alias.block.new(aliased.with.blocks, leg)
aliased.with.blocks <- aliased.with.blocks[ord(data.frame(nchar(aliased.with.blocks),aliased.with.blocks))]
if (nfactors <= 50) aliased.with.blocks <- gsub(":","",aliased.with.blocks)
}
if (length(aliased) > 0) aliased <- struc.aliased.new(struc=recalc.alias.block.new(aliased, leg),
nk=nfactors, order=alias.info)
ntreat <- ncol(desdf) - 1
if (block.auto) factor.names <- factor.names[1:ntreat]
design.info <- list(type="FrF2.blocked", block.name=block.name,
nruns=nruns, nfactors=ntreat, nblocks=nblocks, block.gen=block.gen, blocksize=blocksize,
ntreat=ntreat,factor.names=factor.names,
aliased.with.blocks=aliased.with.blocks, aliased=aliased,
bbreps=bbreps, wbreps=wbreps,
FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version)
if (!is.null(generators) && genspec) {
if (g>0)
design.info <- c(design.info,
list(base.design=paste("generator columns:", paste(setdiff(cand[[1]]$gen, block.gen), collapse=", "))))
else
design.info <- c(design.info,
list(base.design="full factorial"))
}
else design.info <- c(design.info, list(catlg.name = catlg.name, base.design=names(cand[1])))
if (!is.null(estimable)) design.info <- c(design.info, list(map=map))
if (bbreps>1) {
hilflev <- paste(rep(levels(desdf[,1]), each=bbreps), rep(1:bbreps, nblocks), sep=".")
desdf[,1] <- factor(paste(desdf[,1], rep(1:bbreps, each=nruns*wbreps),sep="."), levels=hilflev)
}
}
if (WPs > 1){
if (alias.info==3)
aliased <- aliases(lm((1:nrow(desmat))~(.)^3,data=data.frame(desmat)))$aliases
else
aliased <- aliases(lm((1:nrow(desmat))~(.)^2,data=data.frame(desmat)))$aliases
aliased <- aliased[which(sapply(aliased,length)>1)]
if (length(aliased) > 0){
if (nfactors<=50) leg <- paste(Letters[1:nfactors],names(factor.names),sep="=")
else leg <- paste(paste("F",1:nfactors,sep=""),names(factor.names),sep="=")
aliased <- struc.aliased(recalc.alias.block(aliased, leg), nfactors, alias.info)
}
design.info <- list(type="FrF2.splitplot",
nruns=nruns, nfactors=nfactors, nfac.WP=nfac.WP, nfac.SP=nfactors-nfac.WP,
factor.names=factor.names,
nWPs=WPs, plotsize=nruns/WPs,
res.WP=res.WP, aliased=aliased, FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version)
if (!is.null(generators) && genspec){
gennam <- names(generators)
if (is.null(gennam))
if (is.list(generators))
gennam <- sapply(generators, function(obj) paste0(Letters[sort(obj)], collapse=""))
else if(is.character(generators)) gennam <- generators
gencols <- sapply(gennam, function(obj) which(names(Yates)[1:(nruns-1)] == obj))
design.info <- c(design.info,
list(base.design=paste("generator columns:", paste(gencols, collapse=", ")),
map=map,
orig.fac.order = c(orignew, setdiff(1:nfactors,orignew))))
}
else design.info <- c(design.info, list(catlg.name = catlg.name,
base.design=names(cand[1]),
map=map,
orig.fac.order = c(orignew, setdiff(1:nfactors,orignew))))
}
if (is.null(estimable) && is.null(generators) && !(is.list(blocks) || WPs > 1))
design.info <- list(type="FrF2", nruns=nruns, nfactors=nfactors, factor.names=factor.names,
catlg.name = catlg.name,
catlg.entry=cand[1], aliased = alias3fi(k,cand[1][[1]]$gen,order=alias.info),
FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version)
if ((!is.null(generators)) && !is.list(blocks) && !WPs > 1) {
if (nfactors <= 50)
names(generators) <- Letters[(k+1):nfactors]
else names(generators) <- paste("F",(k+1):nfactors, sep="")
gen.display <- paste(names(generators),sapply(generators,function(obj){
if (nfactors <= 50)
paste(if (obj[1]<0) "-" else "", paste(Letters[abs(obj)],collapse=""),sep="")
else
paste(if (obj[1]<0) "-" else "", paste(paste("F",abs(obj),sep=""),collapse=":"),sep="")}), sep="=")
design.info <- list(type="FrF2.generators", nruns=nruns, nfactors=nfactors, factor.names=factor.names, generators=gen.display,
aliased = alias3fi(k,generators,order=alias.info),
FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version)
}
aus <- desdf
rownames(aus) <- rownames(desmat) <- 1:nrow(aus)
class(aus) <- c("design","data.frame")
attr(aus,"desnum") <- desmat
orig.no <- factor(orig.no, levels=unique(orig.no[orig.no.levord]))
orig.no.rp <- factor(orig.no.rp, levels=unique(orig.no.rp[orig.no.levord]))
if (!(is.list(blocks) || WPs > 1))
attr(aus,"run.order") <- data.frame("run.no.in.std.order"=orig.no,"run.no"=1:nrow(desmat),
"run.no.std.rp"=orig.no.rp, stringsAsFactors=TRUE)
else attr(aus,"run.order") <- data.frame("run.no.in.std.order"=orig.no,"run.no"=1:nrow(desmat),
"run.no.std.rp"=orig.no.rp, stringsAsFactors=TRUE)
if (design.info$type=="FrF2.blocked") {
if (design.info$wbreps==1) repeat.only <- FALSE
design.info$block.old <- block.old
nfactors <- ntreat
}
if (nfactors<=50) design.info$aliased <- c(list(legend=paste(Letters[1:nfactors],names(factor.names),sep="=")),
design.info$aliased)
else design.info$aliased <- c(list(legend=paste(paste("F",1:nfactors,sep=""),names(factor.names),sep="=")),
design.info$aliased)
attr(aus,"design.info") <- c(design.info, list(replications=replications, repeat.only=repeat.only,
randomize=randomize, seed=seed, creator=creator))
if (ncenter>0) aus <- add.center(aus, ncenter, distribute=center.distribute)
aus
} |
dtdz = function(z, lambda0, q0) {
term1 = (1.0 + z)
term2 = 2.0 * (q0 + lambda0) * z + 1.0 - lambda0
term3 = (1.0 + z) * (1.0 +z)
return(1.0 / (term1 * sqrt(term2 * term3 + lambda0)))
} |
mesh.hunif <- function (p, ...) {
if (!is.matrix(p))
stop("Input `p' should be matrix.")
return(rep(1, nrow(p)))
} |
NULL
lookoutforvision_create_dataset <- function(ProjectName, DatasetType, DatasetSource = NULL, ClientToken = NULL) {
op <- new_operation(
name = "CreateDataset",
http_method = "POST",
http_path = "/2020-11-20/projects/{projectName}/datasets",
paginator = list()
)
input <- .lookoutforvision$create_dataset_input(ProjectName = ProjectName, DatasetType = DatasetType, DatasetSource = DatasetSource, ClientToken = ClientToken)
output <- .lookoutforvision$create_dataset_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$create_dataset <- lookoutforvision_create_dataset
lookoutforvision_create_model <- function(ProjectName, Description = NULL, ClientToken = NULL, OutputConfig, KmsKeyId = NULL) {
op <- new_operation(
name = "CreateModel",
http_method = "POST",
http_path = "/2020-11-20/projects/{projectName}/models",
paginator = list()
)
input <- .lookoutforvision$create_model_input(ProjectName = ProjectName, Description = Description, ClientToken = ClientToken, OutputConfig = OutputConfig, KmsKeyId = KmsKeyId)
output <- .lookoutforvision$create_model_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$create_model <- lookoutforvision_create_model
lookoutforvision_create_project <- function(ProjectName, ClientToken = NULL) {
op <- new_operation(
name = "CreateProject",
http_method = "POST",
http_path = "/2020-11-20/projects",
paginator = list()
)
input <- .lookoutforvision$create_project_input(ProjectName = ProjectName, ClientToken = ClientToken)
output <- .lookoutforvision$create_project_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$create_project <- lookoutforvision_create_project
lookoutforvision_delete_dataset <- function(ProjectName, DatasetType, ClientToken = NULL) {
op <- new_operation(
name = "DeleteDataset",
http_method = "DELETE",
http_path = "/2020-11-20/projects/{projectName}/datasets/{datasetType}",
paginator = list()
)
input <- .lookoutforvision$delete_dataset_input(ProjectName = ProjectName, DatasetType = DatasetType, ClientToken = ClientToken)
output <- .lookoutforvision$delete_dataset_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$delete_dataset <- lookoutforvision_delete_dataset
lookoutforvision_delete_model <- function(ProjectName, ModelVersion, ClientToken = NULL) {
op <- new_operation(
name = "DeleteModel",
http_method = "DELETE",
http_path = "/2020-11-20/projects/{projectName}/models/{modelVersion}",
paginator = list()
)
input <- .lookoutforvision$delete_model_input(ProjectName = ProjectName, ModelVersion = ModelVersion, ClientToken = ClientToken)
output <- .lookoutforvision$delete_model_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$delete_model <- lookoutforvision_delete_model
lookoutforvision_delete_project <- function(ProjectName, ClientToken = NULL) {
op <- new_operation(
name = "DeleteProject",
http_method = "DELETE",
http_path = "/2020-11-20/projects/{projectName}",
paginator = list()
)
input <- .lookoutforvision$delete_project_input(ProjectName = ProjectName, ClientToken = ClientToken)
output <- .lookoutforvision$delete_project_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$delete_project <- lookoutforvision_delete_project
lookoutforvision_describe_dataset <- function(ProjectName, DatasetType) {
op <- new_operation(
name = "DescribeDataset",
http_method = "GET",
http_path = "/2020-11-20/projects/{projectName}/datasets/{datasetType}",
paginator = list()
)
input <- .lookoutforvision$describe_dataset_input(ProjectName = ProjectName, DatasetType = DatasetType)
output <- .lookoutforvision$describe_dataset_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$describe_dataset <- lookoutforvision_describe_dataset
lookoutforvision_describe_model <- function(ProjectName, ModelVersion) {
op <- new_operation(
name = "DescribeModel",
http_method = "GET",
http_path = "/2020-11-20/projects/{projectName}/models/{modelVersion}",
paginator = list()
)
input <- .lookoutforvision$describe_model_input(ProjectName = ProjectName, ModelVersion = ModelVersion)
output <- .lookoutforvision$describe_model_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$describe_model <- lookoutforvision_describe_model
lookoutforvision_describe_project <- function(ProjectName) {
op <- new_operation(
name = "DescribeProject",
http_method = "GET",
http_path = "/2020-11-20/projects/{projectName}",
paginator = list()
)
input <- .lookoutforvision$describe_project_input(ProjectName = ProjectName)
output <- .lookoutforvision$describe_project_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$describe_project <- lookoutforvision_describe_project
lookoutforvision_detect_anomalies <- function(ProjectName, ModelVersion, Body, ContentType) {
op <- new_operation(
name = "DetectAnomalies",
http_method = "POST",
http_path = "/2020-11-20/projects/{projectName}/models/{modelVersion}/detect",
paginator = list()
)
input <- .lookoutforvision$detect_anomalies_input(ProjectName = ProjectName, ModelVersion = ModelVersion, Body = Body, ContentType = ContentType)
output <- .lookoutforvision$detect_anomalies_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$detect_anomalies <- lookoutforvision_detect_anomalies
lookoutforvision_list_dataset_entries <- function(ProjectName, DatasetType, Labeled = NULL, AnomalyClass = NULL, BeforeCreationDate = NULL, AfterCreationDate = NULL, NextToken = NULL, MaxResults = NULL, SourceRefContains = NULL) {
op <- new_operation(
name = "ListDatasetEntries",
http_method = "GET",
http_path = "/2020-11-20/projects/{projectName}/datasets/{datasetType}/entries",
paginator = list()
)
input <- .lookoutforvision$list_dataset_entries_input(ProjectName = ProjectName, DatasetType = DatasetType, Labeled = Labeled, AnomalyClass = AnomalyClass, BeforeCreationDate = BeforeCreationDate, AfterCreationDate = AfterCreationDate, NextToken = NextToken, MaxResults = MaxResults, SourceRefContains = SourceRefContains)
output <- .lookoutforvision$list_dataset_entries_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$list_dataset_entries <- lookoutforvision_list_dataset_entries
lookoutforvision_list_models <- function(ProjectName, NextToken = NULL, MaxResults = NULL) {
op <- new_operation(
name = "ListModels",
http_method = "GET",
http_path = "/2020-11-20/projects/{projectName}/models",
paginator = list()
)
input <- .lookoutforvision$list_models_input(ProjectName = ProjectName, NextToken = NextToken, MaxResults = MaxResults)
output <- .lookoutforvision$list_models_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$list_models <- lookoutforvision_list_models
lookoutforvision_list_projects <- function(NextToken = NULL, MaxResults = NULL) {
op <- new_operation(
name = "ListProjects",
http_method = "GET",
http_path = "/2020-11-20/projects",
paginator = list()
)
input <- .lookoutforvision$list_projects_input(NextToken = NextToken, MaxResults = MaxResults)
output <- .lookoutforvision$list_projects_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$list_projects <- lookoutforvision_list_projects
lookoutforvision_start_model <- function(ProjectName, ModelVersion, MinInferenceUnits, ClientToken = NULL) {
op <- new_operation(
name = "StartModel",
http_method = "POST",
http_path = "/2020-11-20/projects/{projectName}/models/{modelVersion}/start",
paginator = list()
)
input <- .lookoutforvision$start_model_input(ProjectName = ProjectName, ModelVersion = ModelVersion, MinInferenceUnits = MinInferenceUnits, ClientToken = ClientToken)
output <- .lookoutforvision$start_model_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$start_model <- lookoutforvision_start_model
lookoutforvision_stop_model <- function(ProjectName, ModelVersion, ClientToken = NULL) {
op <- new_operation(
name = "StopModel",
http_method = "POST",
http_path = "/2020-11-20/projects/{projectName}/models/{modelVersion}/stop",
paginator = list()
)
input <- .lookoutforvision$stop_model_input(ProjectName = ProjectName, ModelVersion = ModelVersion, ClientToken = ClientToken)
output <- .lookoutforvision$stop_model_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$stop_model <- lookoutforvision_stop_model
lookoutforvision_update_dataset_entries <- function(ProjectName, DatasetType, Changes, ClientToken = NULL) {
op <- new_operation(
name = "UpdateDatasetEntries",
http_method = "PATCH",
http_path = "/2020-11-20/projects/{projectName}/datasets/{datasetType}/entries",
paginator = list()
)
input <- .lookoutforvision$update_dataset_entries_input(ProjectName = ProjectName, DatasetType = DatasetType, Changes = Changes, ClientToken = ClientToken)
output <- .lookoutforvision$update_dataset_entries_output()
config <- get_config()
svc <- .lookoutforvision$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.lookoutforvision$operations$update_dataset_entries <- lookoutforvision_update_dataset_entries |
transformFitness = function(fitness, task, selector) {
task.dir = task$minimize
sup.dir = rep(attr(selector, "supported.opt.direction"), task$n.objectives)
sup.dir = (sup.dir == "minimize")
fn.scale = ifelse(xor(task.dir, sup.dir), -1, 1)
fn.scale = if (task$n.objectives == 1L) {
as.matrix(fn.scale)
} else {
diag(fn.scale)
}
return(fn.scale %*% fitness)
} |
utils::globalVariables(c("id", "year", "cites"))
compare_scholars <- function(ids, pagesize=100) {
data <- lapply(ids, function(x) cbind(id=x, get_publications(x, pagesize=pagesize)))
data <- do.call("rbind", data)
data <- data %>% group_by(id, year) %>%
summarize(cites=sum(cites, na.rm=TRUE)) %>%
mutate(total=cumsum(cites))
names <- lapply(ids, function(i) {
p <- get_profile(i)
data.frame(id=p$id, name=p$name)
})
names <- do.call("rbind", names)
final <- merge(data, names)
return(final)
}
compare_scholar_careers <- function(ids, career=TRUE) {
data <- lapply(ids, function(x) return(cbind(id=x, get_citation_history(x))))
data <- do.call("rbind", data)
if (career) {
data <- data %>% group_by(id) %>%
mutate(career_year=year-min(year))
}
names <- lapply(ids, function(i) {
p <- get_profile(i)
data.frame(id=p$id, name=p$name)
})
names <- do.call("rbind", names)
data <- merge(data, names)
return(data)
} |
compute_uniCondProb_based_on_bivProb <- function(bivProb, nvar,
idx.pairs,
idx.Y1,
idx.Gy2,
idx.cat.y1.split,
idx.cat.y2.split) {
bivProb.split <- split(bivProb, idx.pairs)
lngth <- 2*length(bivProb)
idx.vec.el <- 1:lngth
ProbY1Gy2 <- rep(NA, lngth)
no.pairs <- nvar*(nvar-1)/2
idx2.pairs <- combn(nvar,2)
for(k in 1:no.pairs){
y2Sums <- tapply(bivProb.split[[k]], idx.cat.y2.split[[k]], sum)
y2Sums.mult <- y2Sums[idx.cat.y2.split[[k]] ]
Y1Gy2 <- bivProb.split[[k]]/ y2Sums.mult
tmp.idx.vec.el <- idx.vec.el[(idx.Y1 == idx2.pairs[1,k]) &
(idx.Gy2 == idx2.pairs[2,k])]
ProbY1Gy2[tmp.idx.vec.el] <- Y1Gy2
}
for(k in 1:no.pairs){
y1Sums <- tapply(bivProb.split[[k]], idx.cat.y1.split[[k]], sum)
y1Sums.mult <- y1Sums[idx.cat.y1.split[[k]] ]
Y2Gy1 <- bivProb.split[[k]]/ y1Sums.mult
reordered_Y2Gy1 <- Y2Gy1[order(idx.cat.y1.split[[k]])]
tmp.idx.vec.el <- idx.vec.el[(idx.Y1 == idx2.pairs[2,k]) &
(idx.Gy2 == idx2.pairs[1,k])]
ProbY1Gy2[tmp.idx.vec.el] <- reordered_Y2Gy1
}
ProbY1Gy2
}
pairwiseExpProbVec_GivenObs <- function(lavobject) {
yhat <- lavPredict(object=lavobject, type = "yhat" )
ngroups <- lavobject@Data@ngroups
univariateProb <- vector("list", length=ngroups)
pairwiseProb <- vector("list", length=ngroups)
idx.ThetaMat <- which(names(lavobject@Model@GLIST)=="theta")
for(g in seq_len(ngroups)) {
if(ngroups>1L){
yhat_group <- yhat[[g]]
} else {
yhat_group <- yhat
}
nsize <- lavobject@Data@nobs[[g]]
nvar <- lavobject@Model@nvar[[g]]
Data <- lavobject@Data@X[[g]]
TH <- lavobject@Fit@TH[[g]]
th.idx <- lavobject@[email protected][[g]]
Theta <- lavobject@Model@GLIST[ idx.ThetaMat[g] ]$theta
error.stddev <- diag(Theta)^0.5
nlev <- lavobject@Data@ov$nlev
idx.uniy <- rep(1:nvar, times=nlev)
idx.pairs.yiyj <- combn(1:nvar,2)
no_biv_resp_cat_yiyj <- sapply(1:ncol(idx.pairs.yiyj), function(x){
prod( nlev[idx.pairs.yiyj[,x]] ) })
idx.y1 <- unlist(
mapply(rep, idx.pairs.yiyj[1,], each= no_biv_resp_cat_yiyj) )
idx.y2 <- unlist(
mapply(rep, idx.pairs.yiyj[2,], each= no_biv_resp_cat_yiyj) )
univariateProb[[g]] <- matrix(0, nrow = nsize, ncol = sum(nlev) )
pairwiseProb[[g]] <- matrix(0, nrow = nsize,
ncol = length(lavobject@Cache[[g]]$bifreq))
idx.MissVar.casewise <- apply(Data, 1, function(x) { which(is.na(x)) } )
for(i in 1:nsize){
idx.MissVar <- idx.MissVar.casewise[[i]]
noMissVar <- length(idx.MissVar)
if( noMissVar>0L ) {
TH.list <- split(TH,th.idx)
tmp.TH <- TH.list[idx.MissVar]
tmp.lowerTH <- unlist(lapply(tmp.TH, function(x){c(-Inf,x)}))
tmp.upperTH <- unlist(lapply(tmp.TH, function(x){c(x,Inf) }))
idx.items <- rep(c(1:noMissVar), times=nlev[idx.MissVar])
tmp.mean <- yhat_group[i,idx.MissVar]
tmp.mean.extended <- tmp.mean[idx.items]
tmp.stddev <- error.stddev[idx.MissVar]
tmp.stddev.extended <- tmp.stddev[idx.items]
tmp.uniProb <- pnorm( (tmp.upperTH - tmp.mean.extended )/
tmp.stddev.extended ) -
pnorm( (tmp.lowerTH - tmp.mean.extended )/
tmp.stddev.extended )
idx.columnsUni <- which(idx.uniy %in% idx.MissVar)
univariateProb[[g]][i, idx.columnsUni] <- tmp.uniProb
if( noMissVar>1L ) {
idx.pairsMiss <- combn(idx.MissVar ,2)
no.pairs <- ncol(idx.pairsMiss)
idx.pairsV2 <- combn(noMissVar, 2)
idx.columns <- unlist(lapply(1:no.pairs, function(x){
which( (idx.y1 == idx.pairsMiss[1,x]) &
(idx.y2 == idx.pairsMiss[2,x]) ) } ) )
if( all( Theta[t(idx.pairsMiss)]==0 ) ){
tmp.uniProb.list <- split(tmp.uniProb, idx.items)
pairwiseProb[[g]][i, idx.columns] <-
unlist( lapply(1:no.pairs, function(x){
c( outer(tmp.uniProb.list[[ idx.pairsV2[1,x] ]] ,
tmp.uniProb.list[[ idx.pairsV2[2,x] ]] ) ) }) )
} else {
tmp.th.idx <- th.idx[th.idx %in% idx.MissVar]
tmp.th.idx.recoded <- rep(c(1:noMissVar), times=table(tmp.th.idx))
tmp.TH <- TH[th.idx %in% idx.MissVar]
tmp.ind.vec <- LongVecInd(no.x = noMissVar,
all.thres = tmp.TH,
index.var.of.thres = tmp.th.idx.recoded)
tmp.th.rho.vec <- LongVecTH.Rho.Generalised(
no.x = noMissVar,
TH = tmp.TH,
th.idx = tmp.th.idx.recoded,
cov.xixj = Theta[t(idx.pairsMiss)] ,
mean.x = yhat_group[i,idx.MissVar],
stddev.x = error.stddev[idx.MissVar] )
tmp.bivProb <- pairwiseExpProbVec(ind.vec = tmp.ind.vec ,
th.rho.vec = tmp.th.rho.vec)
pairwiseProb[[g]][i, idx.columns] <- tmp.bivProb
}
}
}
}
}
list(univariateProbGivObs = univariateProb,
pairwiseProbGivObs = pairwiseProb)
}
LongVecTH.Rho.Generalised <- function(no.x, TH, th.idx,
cov.xixj, mean.x, stddev.x ) {
all.std.thres <- (TH - mean.x[th.idx]) / stddev.x[th.idx]
id.pairs <- utils::combn(no.x,2)
cor.xixj <- cov.xixj /( stddev.x[id.pairs[1,]] * stddev.x[id.pairs[2,]])
LongVecTH.Rho(no.x = no.x,
all.thres = all.std.thres,
index.var.of.thres = th.idx,
rho.xixj = cor.xixj)
}
pairwiseExpProbVec_GivenObs_UncMod <- function(lavobject) {
ngroups <- lavobject@Data@ngroups
TH <- lavobject@implied$th
TH.IDX <- lavobject@[email protected]
Sigma.hat <- lavobject@implied$cov
univariateProb <- vector("list", length=ngroups)
pairwiseProb <- vector("list", length=ngroups)
for(g in 1:ngroups) {
Sigma.hat.g <- Sigma.hat[[g]]
Cor.hat.g <- cov2cor(Sigma.hat.g)
cors <- Cor.hat.g[lower.tri(Cor.hat.g)]
if(any(abs(cors) > 1)) {
warning("lavaan WARNING: some model-implied correlations
are larger than 1.0")
}
nvar <- nrow(Sigma.hat.g)
MEAN <- rep(0, nvar)
TH.g <- TH[[g]]
th.idx.g <- TH.IDX[[g]]
nlev <- lavobject@Data@ov$nlev
idx.uniy <- rep(1:nvar, times=nlev)
idx.pairs.yiyj <- combn(1:nvar,2)
no_biv_resp_cat_yiyj <- sapply(1:ncol(idx.pairs.yiyj), function(x){
prod( nlev[idx.pairs.yiyj[,x]] ) })
idx.y1 <- unlist(
mapply(rep, idx.pairs.yiyj[1,], each= no_biv_resp_cat_yiyj) )
idx.y2 <- unlist(
mapply(rep, idx.pairs.yiyj[2,], each= no_biv_resp_cat_yiyj) )
Data <- lavobject@Data@X[[g]]
nsize <- nrow(Data)
univariateProb[[g]] <- matrix(0, nrow = nsize, ncol = sum(nlev) )
pairwiseProb[[g]] <- matrix(0, nrow = nsize,
ncol = length(lavobject@Cache[[g]]$bifreq))
idx.MissVar.casewise <- apply(Data, 1, function(x) {
which(is.na(x)) } )
for(i in 1:nsize){
idx.MissVar <- idx.MissVar.casewise[[i]]
noMissVar <- length(idx.MissVar)
if( noMissVar>0L ) {
TH.VAR <- lapply(1:nvar, function(x) c(-Inf, TH.g[th.idx.g==x], +Inf))
lower <- sapply(1:nvar, function(x) TH.VAR[[x]][ Data[i,x] ])
upper <- sapply(1:nvar, function(x) TH.VAR[[x]][ Data[i,x] + 1L ])
lower.denom <- lower[-idx.MissVar]
upper.denom <- upper[-idx.MissVar]
MEAN.i <- MEAN[-idx.MissVar]
Corhat.i <- Cor.hat.g[-idx.MissVar, -idx.MissVar, drop=FALSE]
denom <- sadmvn(lower.denom, upper.denom, mean=MEAN.i, varcov=Corhat.i)[1]
}
if( noMissVar==1L ) {
TH.MissVar <- c(-Inf, TH.g[th.idx.g==idx.MissVar], +Inf)
no.cat <- nlev[idx.MissVar]
numer <- sapply(1:no.cat, function(x){
lower[idx.MissVar] <- TH.MissVar[x]
upper[idx.MissVar] <- TH.MissVar[x+ 1L]
sadmvn(lower, upper, mean=MEAN, varcov=Cor.hat.g)[1] })
idx.columnsUni <- which(idx.uniy %in% idx.MissVar)
univariateProb[[g]][i, idx.columnsUni] <- numer / denom
}
if( noMissVar>1L ) {
idx.pairsMiss <- combn(idx.MissVar ,2)
no.pairs <- ncol(idx.pairsMiss)
for(j in 1:no.pairs ) {
idx.Missy1y2 <- idx.pairsMiss[,j]
idx.Missy1 <- idx.Missy1y2[1]
idx.Missy2 <- idx.Missy1y2[2]
idx.MissRestItems <- idx.MissVar[ !(idx.MissVar %in% idx.Missy1y2)]
TH.Missy1 <- c(-Inf, TH.g[th.idx.g==idx.Missy1], +Inf)
TH.Missy2 <- c(-Inf, TH.g[th.idx.g==idx.Missy2], +Inf)
no.cat.Missy1 <- nlev[ idx.Missy1 ]
no.cat.Missy2 <- nlev[ idx.Missy2 ]
no.bivRespCat <- no.cat.Missy1 * no.cat.Missy2
mat_bivRespCat <- matrix(1:no.bivRespCat, nrow= no.cat.Missy1,
ncol=no.cat.Missy2)
numer <- sapply(1:no.bivRespCat, function(x){
idx_y1_cat <- which(mat_bivRespCat==x, arr.ind=TRUE)[1]
idx_y2_cat <- which(mat_bivRespCat==x, arr.ind=TRUE)[2]
lower[idx.Missy1y2] <-
c( TH.Missy1[idx_y1_cat], TH.Missy2[idx_y2_cat] )
upper[idx.Missy1y2] <-
c( TH.Missy1[idx_y1_cat+1L], TH.Missy2[idx_y2_cat+1L] )
lower.tmp <- lower
upper.tmp <- upper
MEAN.tmp <- MEAN
Cor.hat.g.tmp <- Cor.hat.g
if( length(idx.MissRestItems)>0 ){
lower.tmp <- lower[-idx.MissRestItems]
upper.tmp <- upper[-idx.MissRestItems]
MEAN.tmp <- MEAN[-idx.MissRestItems]
Cor.hat.g.tmp <- Cor.hat.g[-idx.MissRestItems, -idx.MissRestItems]
}
sadmvn(lower.tmp, upper.tmp,
mean=MEAN.tmp, varcov=Cor.hat.g.tmp)[1]
})
idx.columns <- which( (idx.y1 == idx.Missy1) &
(idx.y2 == idx.Missy2) )
tmp_biv <- numer/denom
pairwiseProb[[g]][i, idx.columns] <- tmp_biv
if(j==1L){
univariateProb[[g]][i, which(idx.uniy %in% idx.Missy1) ] <-
apply(mat_bivRespCat, 1, function(x){ sum( tmp_biv[x])} )
univariateProb[[g]][i, which(idx.uniy %in% idx.Missy2) ] <-
apply(mat_bivRespCat, 2, function(x){ sum( tmp_biv[x])} )
}
if(j>1L & j<noMissVar){
univariateProb[[g]][i, which(idx.uniy %in% idx.Missy2) ] <-
apply(mat_bivRespCat, 2, function(x){ sum( tmp_biv[x])} )
}
}
}
}
}
list(univariateProbGivObs = univariateProb,
pairwiseProbGivObs = pairwiseProb)
} |
test_that("Check capacity algorithm - testing procedures",{
n_sample <- c(100)
dist_sd <- 1
input_num <- 4
xx <- signif(c(0, exp( seq( from = log(0.01), to = log(100),
length.out = input_num-1))), digits = 2)
example_means <- 10*(xx/(1+xx))
example_sds <- rep(dist_sd, input_num)
tempdata <- data.frame(signal = c(t(replicate(n_sample, xx))),
output = c(matrix(rnorm(n = input_num*n_sample, mean = example_means,sd = example_sds),
ncol = input_num,byrow = TRUE)))
tempdata$signal <- factor(x = tempdata$signal,levels = sort(unique(tempdata$signal)))
signal_name <- "signal"
response_name <- "output"
seed_to_use <- 12345
bootstrap_num <- 10
bootstrap_frac <- 0.8
overfitting_num <- 10
training_frac <- 0.6
cores_num=1
tempoutput <- SLEMI::capacity_logreg_main(
dataRaw = tempdata,
signal = signal_name,
response = response_name,
output_path = NULL,
testing = TRUE,
plot_width = 10 ,
plot_height = 8,
TestingSeed = seed_to_use,
testing_cores = cores_num,
boot_num = bootstrap_num,
boot_prob = bootstrap_frac,
traintest_num = overfitting_num,
partition_trainfrac = training_frac
)
expect_equal(names(tempoutput), c("regression","model","p_opt","cc","testing","testing_pv","time","params" ))
expect_true(tempoutput$cc>=0)
expect_equal(round(sum(tempoutput$p_opt),digits=8),1)
expect_true(all(sapply(tempoutput$testing$bootstrap,function(x) x$cc)>0))
expect_true(all(sapply(tempoutput$testing$traintest,function(x) x$cc)>0))
}) |
nodeHeight <- function(tree) {
if (is.null(attr(tree, "order")) || attr(tree, "order") == "cladewise") {
tree <- reorder(tree, "postorder")
}
node_height_cpp(as.integer(tree$edge[, 1]), as.integer(tree$edge[, 2]),
as.double(tree$edge.length))
}
ancstat <- function(phy, x) {
contrast <- attr(x, "contrast")
storage.mode(contrast) <- "integer"
phy <- reorder(phy, "postorder")
res <- matrix(0L, max(phy$edge), ncol(contrast))
colnames(res) <- attr(x, "levels")
nTips <- length(phy$tip.label)
pa <- phy$edge[, 1]
ch <- phy$edge[, 2]
res[1:nTips, ] <- contrast[as.numeric(x)[match(phy$tip.label, names(x))], ,
drop = FALSE
]
for (i in seq_along(pa)) {
res[pa[i], ] <- res[pa[i], ] | res[ch[i], ]
}
res
}
comp <- function(x, y) {
tmp1 <- matrix(rowSums(x), nrow(x), nrow(y))
res <- matrix(rowSums(y), nrow(x), nrow(y), byrow = TRUE)
tmp3 <- tcrossprod(x, 1 - y)
tmp0 <- tcrossprod(x, y)
tmp0[tmp3 > 0] <- 0L
res[!(tmp0 > (tmp1 - 1e-8))] <- 10000000L
apply(res, 1, which.min)
}
comp2 <- function(x, y) {
res <- matrix(rowSums(x), nrow(x), nrow(y))
tmp1 <- matrix(rowSums(y), nrow(x), nrow(y), byrow = TRUE)
tmp3 <- tcrossprod(1 - x, y)
tmp0 <- tcrossprod(x, y)
tmp0[tmp3 > 0] <- 0L
res[tmp0 < 2] <- Inf
apply(res, 2, which.min)
}
coalSpeciesTree <- function(tree, X = NULL, sTree = NULL) {
if (is.null(X)) return(speciesTree(tree))
trees <- unclass(tree)
States <- lapply(tree, ancstat, X)
NH <- lapply(tree, nodeHeight)
if (is.null(sTree)) {
l <- attr(X, "nc")
m <- choose(l, 2)
SST <- matrix(0L, m, l)
k <- 1
for (i in 1:(l - 1)) {
for (j in (i + 1):l) {
SST[k, i] <- SST[k, j] <- 1L
k <- k + 1
}
}
Y <- matrix(Inf, length(NH), nrow(SST))
dm <- rep(Inf, m)
for (i in seq_along(NH)) {
ind <- comp2(States[[i]], SST)
dm <- pmin(dm, NH[[i]][ind])
}
dm <- structure(2 * dm,
Labels = attr(X, "levels"), Size = l, class = "dist",
Diag = FALSE, Upper = FALSE
)
sTree <- upgma(dm, "single")
}
else {
SST <- ancstat(sTree, X)
Y <- matrix(Inf, length(NH), nrow(SST))
for (i in seq_along(NH)) {
ind <- comp(States[[i]], SST)
for (j in seq_along(ind)) Y[i, ind[j]] <- min(Y[i, ind[j]], NH[[i]][j])
}
STH <- apply(Y, 2, min)
sTree$edge.length <- STH[sTree$edge[, 1]] - STH[sTree$edge[, 2]]
}
sTree
} |
mjoint <- function(formLongFixed, formLongRandom, formSurv, data, survData = NULL,
timeVar, inits = NULL, verbose = FALSE, pfs = TRUE,
control = list(), ...) {
time.start <- Sys.time()
Call <- match.call()
balanced <- FALSE
if (!is.list(formLongFixed)) {
balanced <- TRUE
formLongFixed <- list(formLongFixed)
formLongRandom <- list(formLongRandom)
K <- 1
} else {
K <- length(formLongFixed)
}
if (!("list" %in% class(data))) {
balanced <- TRUE
data <- list(data)
if (K > 1) {
for (k in 2:K) {
data[[k]] <- data[[1]]
}
}
} else {
balanced <- (length(unique(data)) == 1)
}
if (length(data) != K) {
stop(paste("The number of datasets expected is K =", K))
}
data <- lapply(data, function(d) {
if (any(c("tbl_df", "tbl") %in% class(d))) {
return(as.data.frame(d))
} else {
return(d)
}
})
id <- as.character(nlme::splitFormula(formLongRandom[[1]], "|")[[2]])[2]
n <- length(unique(data[[1]][, id]))
if (length(timeVar) == 1 & (K > 1)) {
timeVar <- rep(timeVar, K)
}
if (length(timeVar) != K) {
stop(paste("The length of timeVar must equal", K))
}
for (k in 1:K) {
data[[k]] <- data[[k]][order(xtfrm(data[[k]][, id]), data[[k]][, timeVar[k]]), ]
data[[k]][, id] <- as.factor(data[[k]][, id])
data[[k]] <- droplevels(data[[k]])
}
if (K > 1) {
uniq.ids <- list(sort(unique(data[[1]][, id])))
for (k in 2:K) {
uniq.ids[[k]] <- sort(unique(data[[k]][, id]))
if (!identical(uniq.ids[[k - 1]], uniq.ids[[k]])) {
stop("Every subject must have at least one measurement per each outcome")
}
}
}
con <- list(nMC = 100*K, nMCscale = 5, nMCmax = 20000, burnin = 100*K,
mcmaxIter = 100*K + 200, convCrit = "sas", gammaOpt = "NR",
tol0 = 1e-03, tol1 = 1e-03, tol2 = 5e-03, tol.em = 1e-04,
rav = 0.1, type = "antithetic")
nc <- names(con)
control <- c(control, list(...))
con[(conArgs <- names(control))] <- control
if (("tol.em" %in% names(control)) || ("tol2" %in% names(control))) {
con$tol.em <- min(con$tol.em, con$tol2)
}
if (("burnin" %in% names(control)) && !("mcmaxIter" %in% names(control))) {
con$mcmaxIter <- con$burnin + 200
}
if (con$type %in% c("sobol", "halton")) {
if (!("burnin" %in% names(control))) {
con$burnin <- 5
}
if (!("tol2" %in% names(control))) {
con$tol2 <- 1e-03
}
}
if (length(unmatched <- conArgs[!(conArgs %in% nc)]) > 0) {
warning("Unknown arguments passed to 'control': ", paste(unmatched, collapse = ", "))
}
lfit <- list()
mf.fixed <- list()
yik <- list()
Xik <- list()
nk <- vector(length = K)
Xik.list <- list()
nik.list <- list()
Zik <- list()
Zik.list <- list()
for (k in 1:K) {
lfit[[k]] <- nlme::lme(fixed = formLongFixed[[k]], random = formLongRandom[[k]],
data = data[[k]], method = "ML",
control = nlme::lmeControl(opt = "optim"))
lfit[[k]]$call$fixed <- eval(lfit[[k]]$call$fixed)
mf.fixed[[k]] <- model.frame(lfit[[k]]$terms,
data[[k]][, all.vars(formLongFixed[[k]])])
yik[[k]] <- by(model.response(mf.fixed[[k]], "numeric"), data[[k]][, id], as.vector)
Xik[[k]] <- data.frame("id" = data[[k]][, id],
model.matrix(formLongFixed[[k]], data[[k]]))
nk[k] <- nrow(Xik[[k]])
Xik.list[[k]] <- by(Xik[[k]], Xik[[k]]$id, function(u) {
as.matrix(u[, -1])
})
nik.list[[k]] <- by(Xik[[k]], Xik[[k]]$id, nrow)
ffk <- nlme::splitFormula(formLongRandom[[k]], "|")[[1]]
Zik[[k]] <- data.frame("id" = data[[k]][, id], model.matrix(ffk, data[[k]]))
Zik.list[[k]] <- by(Zik[[k]], Zik[[k]]$id, function(u) {
as.matrix(u[, -1])
})
}
yi <- sapply(names(yik[[1]]), function(i) {
unlist(lapply(yik, "[[", i))
},
USE.NAMES = TRUE, simplify = FALSE)
Xi <- sapply(names(Xik.list[[1]]), function(i) {
as.matrix(Matrix::bdiag(lapply(Xik.list, "[[", i)))
},
USE.NAMES = TRUE, simplify = FALSE)
Zi <- sapply(names(Zik.list[[1]]), function(i) {
as.matrix(Matrix::bdiag(lapply(Zik.list, "[[", i)))
},
USE.NAMES = TRUE, simplify = FALSE)
Zit <- lapply(Zi, t)
XtXi <- lapply(Xi, crossprod)
XtX.inv <- solve(Reduce("+", XtXi))
Xtyi <- mapply(function(x, y) {
crossprod(x, y)
},
x = Xi, y = yi,
SIMPLIFY = FALSE)
XtZi <- mapply(function(x, z) {
crossprod(x, z)
},
x = Xi, z = Zi,
SIMPLIFY = FALSE)
nik <- sapply(names(nik.list[[1]]), function(i) {
unlist(lapply(nik.list, "[[", i))
},
USE.NAMES = TRUE, simplify = FALSE)
p <- sapply(1:K, function(i) {
ncol(Xik[[i]]) - 1
})
r <- sapply(1:K, function(i) {
ncol(Zik[[i]]) - 1
})
l <- list(yi = yi, Xi = Xi, Zi = Zi, Zit = Zit, nik = nik, yik = yik,
Xik.list = Xik.list, Zik.list = Zik.list, XtX.inv = XtX.inv,
Xtyi = Xtyi, XtZi = XtZi, p = p, r = r, K = K, n = n, nk = nk)
if (is.null(survData)) {
survData <- data[[1]][!duplicated(data[[1]][, id]), ]
}
survdat <- survData
sfit <- survival::coxph(formSurv, data = survdat, x = TRUE)
q <- ncol(sfit$x)
sfit.start <- survival::survfit(sfit)
tj <- sfit.start$time[sfit.start$n.event > 0]
nev <- sfit.start$n.event[sfit.start$n.event > 0]
nev.uniq <- length(tj)
survdat2 <- data.frame(survdat[, id], sfit$x, sfit$y[, 1], sfit$y[, 2])
xcenter <- NULL
if (q > 0) {
xcenter <- apply(survdat2[2:(q + 1)], 2, mean)
survdat2[2:(q + 1)] <- scale(survdat2[2:(q + 1)],
center = xcenter, scale = FALSE)
}
colnames(survdat2)[c(1, (q + 2):(q + 3))] <- c("id", "T", "delta")
survdat2$tj.ind <- sapply(1:n, function(i) {
sum(tj <= survdat2$T[i])
})
survdat2.list <- by(survdat2, survdat2$id, list)
if (q > 0) {
V <- by(survdat2, survdat2$id, function(u) {
unlist(u[, 2:(q + 1)])
})
} else {
V <- by(survdat2, survdat2$id, function(u) {
0
})
}
t <- list(V = V, survdat2 = survdat2, survdat2.list = survdat2.list,
q = q, nev = nev, nev.uniq = nev.uniq, xcenter = xcenter,
tj = tj)
for (k in 1:K) {
for (i in survdat2$id) {
if (max(data[[k]][data[[k]][, id] == i, timeVar[k]]) > survdat2[survdat2$id == i, "T"]) {
stop("Longitudinal measurements should not be recorded after the event time")
}
}
}
log.lik0 <- sum(sapply(lfit, logLik)) + sfit$loglik[ifelse(q > 0, 2, 1)] - sfit$nevent
log.lik <- log.lik0
Zdat.fail <- data.frame(
"id" = rep(unique(survdat2$id), pmax(survdat2$tj.ind, 1)),
"time" = unlist(sapply(1:n, function(i) {
tj[1:max(survdat2$tj.ind[i], 1)]
},
simplify = FALSE))
)
names(Zdat.fail)[1] <- id
Zik.fail <- list()
Zik.fail.list <- list()
for(k in 1:K) {
if (ncol(Zdat.fail) == 2) {
names(Zdat.fail)[2] <- timeVar[k]
}
ffk <- nlme::splitFormula(formLongRandom[[k]], "|")[[1]]
Zik.fail[[k]] <- data.frame("id" = Zdat.fail[, id], model.matrix(ffk, Zdat.fail))
Zik.fail.list[[k]] <- by(Zik.fail[[k]], Zik.fail[[k]]$id, function(u) {
as.matrix(u[, -1])
})
}
Zi.fail <- sapply(names(Zik.fail.list[[1]]), function(i) {
as.matrix(Matrix::bdiag(lapply(Zik.fail.list, "[[", i)))
},
USE.NAMES = TRUE, simplify = FALSE)
Zit.fail <- lapply(Zi.fail, t)
IW.fail <- by(survdat2, survdat2$id, function(u) {
do.call("cbind", lapply(1:K, function(i) diag(max(u$tj.ind, 1))))
})
z <- list(Zi.fail = Zi.fail, Zit.fail = Zit.fail, IW.fail = IW.fail)
if (!is.null(inits)) {
if (!is.list(inits)) {
stop("inits must be a list.\n")
}
theta.names <- c("D", "beta", "sigma2", "gamma", "haz")
if (length(unmatched <- names(inits)[!(names(inits) %in% theta.names)]) > 0) {
warning("Unknown initial parameters passed to 'inits': ", paste(unmatched, collapse = ", "))
}
}
inits.long <- initsLong(lfit = lfit, inits = inits, l = l, z = z, K = K, p = p, r = r,
tol.em = con$tol.em, verbose = verbose)
inits.surv <- initsSurv(data = data, lfit = lfit, sfit = sfit, survdat2 = survdat2,
formSurv = formSurv, id = id, timeVar = timeVar,
K = K, q = q, balanced = balanced, inits = inits)
D <- inits.long$D
beta <- inits.long$beta
sigma2 <- inits.long$sigma2
gamma <- inits.surv$gamma
haz <- inits.surv$haz
theta <- list("D" = D, "beta" = beta, "sigma2" = sigma2,
"gamma" = gamma, "haz" = haz)
rm(yi, Xi, Zi, Zit, yik, Xik.list, Zik.list, XtX.inv, Xtyi, XtZi,
V, survdat2, survdat2.list, nev, nev.uniq, xcenter, tj,
Zdat.fail, Zi.fail, Zit.fail, IW.fail)
all.iters <- list()
conv.track <- rep(FALSE, con$mcmaxIter)
Delta.vec <- rep(NA, con$mcmaxIter)
ll.hx <- rep(NA, con$mcmaxIter)
cv.old <- 0
time.em.start <- Sys.time()
nMC <- con$nMC
nmc.iters <- c()
for (it in 1:(con$mcmaxIter)) {
if (verbose) {
cat("-------------------------------------------------------------\n\n")
cat(paste0("Iteration: ", it, "\n\n"))
}
nmc.iters <- c(nmc.iters, nMC)
stepUpdate <- stepEM(theta = theta, l = l, t = t, z = z,
nMC = nMC, verbose = verbose, gammaOpt = con$gammaOpt,
pfs = FALSE, type = con$type)
theta.new <- stepUpdate$theta.new
log.lik.new <- stepUpdate$ll
ll.hx[it] <- log.lik.new
all.iters[[it]] <- theta.new
if (verbose) {
print(theta.new[-which(names(theta.new) == "haz")])
}
conv.status <- convMonitor(theta = theta, theta.new = theta.new,
log.lik = log.lik, log.lik.new = log.lik.new,
con = con, verbose = verbose)
conv.track[it] <- conv.status$conv
Delta.vec[it] <- conv.status$max.reldelta.pars
log.lik <- log.lik.new
if (it >= con$burnin + 3) {
conv <- all(conv.track[(it - 2):it])
} else {
conv <- FALSE
}
if (!conv && (it >= con$burnin)) {
cv <- ifelse(it >= 3, sd(Delta.vec[(it - 2):it]) / mean(Delta.vec[(it - 2):it]), 0)
if (verbose) {
cat(paste("CV statistic (old) =", round(cv.old, 6), "\n"))
cat(paste("CV statistic (new) =", round(cv, 6), "\n\n"))
}
ripatti <- (cv > cv.old)
cv.old <- cv
lldrift <- (con$type %in% c("sobol", "halton")) && (conv.status$rel.ll < 0)
if (ripatti || lldrift) {
nMC.old <- nMC
nMC <- min(nMC + floor(nMC / con$nMCscale), con$nMCmax)
}
if (verbose) {
cat(paste("Using number of MC nodes:", nMC, "\n\n"))
}
}
if (conv) {
message("EM algorithm has converged!\n")
theta <- theta.new
if (pfs) {
message("Calculating post model fit statistics...\n")
postFitCalcs <- stepEM(theta = theta, l = l, t = t, z = z,
nMC = nMC, verbose = FALSE, gammaOpt = "NR",
pfs = TRUE, type = con$type)
}
break
} else {
theta <- theta.new
}
if ((it == con$mcmaxIter) & !conv) {
message("Failed to converge!")
}
utils::flush.console()
}
hx.beta <- sapply(all.iters, function(x) x$beta)
rownames(hx.beta) <- paste0("long_", rownames(hx.beta))
hx.gamma <- sapply(all.iters, function(x) x$gamma)
if ((q + K) == 1) {
hx.gamma <- matrix(hx.gamma, nrow = 1)
}
rownames(hx.gamma) <- paste0("surv_", rownames(hx.gamma))
hx.D <- sapply(all.iters, function(x) x$D[lower.tri(x$D, diag = TRUE)])
if (sum(r) == 1) {
hx.D <- matrix(hx.D, nrow = 1)
}
ltri <- lower.tri(theta$D, diag = TRUE)
rownames(hx.D) <- paste0("D_", row = row(theta$D)[ltri], ",",
col = col(theta$D)[ltri])
hx.haz <- sapply(all.iters, function(x) x$haz)
rownames(hx.haz) <- paste0("haz_", 1:nrow(hx.haz))
hx.sigma2 <- sapply(all.iters, function(x) x$sigma2)
if (K == 1) {
hx.sigma2 <- matrix(hx.sigma2, nrow = 1)
}
if (K > 1) {
rownames(hx.sigma2) <- paste0("sigma2_", 1:K)
} else {
rownames(hx.sigma2) <- "sigma2"
}
out <- list("coefficients" = theta.new)
out$history <- rbind(hx.beta, hx.gamma, hx.sigma2, hx.D, hx.haz)
out$nMC.hx <- nmc.iters
out$formLongFixed <- formLongFixed
out$formLongRandom <- formLongRandom
out$formSurv <- formSurv
out$data <- data
out$survData <- survData
out$timeVar <- timeVar
out$id <- id
out$dims <- list("p" = p, "r" = r, "K" = K, "q" = q,
"n" = n, "nk" = nk)
out$sfit <- sfit
out$lfit <- lfit
out$log.lik0 <- log.lik0
out$log.lik <- log.lik
out$ll.hx <- ll.hx
out$control <- con
out$finalnMC <- nMC
if (conv && pfs) {
out$Hessian <- postFitCalcs$H
out$Eb <- postFitCalcs$Eb
out$Vb <- postFitCalcs$Vb
out$dmats <- list(l = l, t = t, z = z)
}
out$call <- Call
out$conv <- conv
time.end <- Sys.time()
time.diff <- c("Total" = time.end - time.start,
"EM" = time.end - time.em.start)
out$comp.time <- time.diff
if (verbose) {
cat(paste("Total time taken:", round(as.numeric(time.diff[1]), 1),
attr(time.diff[1], "units"), "\n"))
cat(paste("EM algorithm took", round(as.numeric(time.diff[2]), 1),
attr(time.diff[2], "units"), "\n\n"))
}
class(out) <- "mjoint"
invisible(out)
} |
getAccess <- function (ClassDef) .Defunct()
getClassName <- function (ClassDef) .Defunct()
getClassPackage <- function (ClassDef) .Defunct()
getExtends <- function (ClassDef) .Defunct()
getProperties <- function (ClassDef) .Defunct()
getPrototype <- function (ClassDef) .Defunct()
getSubclasses <- function (ClassDef) .Defunct()
getVirtual <- function (ClassDef) .Defunct()
getAllMethods <- function(f, fdef, where = topenv(parent.frame())) .Defunct()
mlistMetaName <- function(name = "", package = "") .Defunct()
removeMethodsObject <- function(f, where = topenv(parent.frame())) .Defunct()
seemsS4Object <- function(object) .Defunct("isS4")
allGenerics <- function(...)
.Defunct("getGenerics")
bind_activation <- function(on = TRUE)
{
stop("methods:::bind_activation() is defunct;\n rather provide methods for cbind2() / rbind2()")
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
knitr::opts_knit$set(global.par = TRUE)
oldpar = par(no.readonly = TRUE)
par(mar = c(1, 1, 1, 1))
oldoptions = options()
options(crayon.enabled = TRUE)
old_hooks = fansi::set_knit_hooks(
knitr::knit_hooks,
which = c("output", "message", "error")
)
library(sfnetworks)
library(sf)
library(tidygraph)
library(tidyverse)
library(TSP)
net = as_sfnetwork(roxel, directed = FALSE) %>%
st_transform(3035) %>%
activate("edges") %>%
mutate(weight = edge_length())
net
paths = st_network_paths(net, from = 495, to = c(458, 121))
paths
paths %>%
slice(1) %>%
pull(node_paths) %>%
unlist()
paths %>%
slice(1) %>%
pull(edge_paths) %>%
unlist()
plot_path = function(node_path) {
net %>%
activate("nodes") %>%
slice(node_path) %>%
plot(cex = 1.5, lwd = 1.5, add = TRUE)
}
colors = sf.colors(3, categorical = TRUE)
plot(net, col = "grey")
paths %>%
pull(node_paths) %>%
walk(plot_path)
net %>%
activate("nodes") %>%
st_as_sf() %>%
slice(c(495, 121, 458)) %>%
plot(col = colors, pch = 8, cex = 2, lwd = 2, add = TRUE)
p1 = st_geometry(net, "nodes")[495] + st_sfc(st_point(c(50, -50)))
st_crs(p1) = st_crs(net)
p2 = st_geometry(net, "nodes")[458]
p3 = st_geometry(net, "nodes")[121] + st_sfc(st_point(c(-10, 100)))
st_crs(p3) = st_crs(net)
paths = st_network_paths(net, from = p1, to = c(p2, p3))
plot(net, col = "grey")
paths %>%
pull(node_paths) %>%
walk(plot_path)
plot(c(p1, p2, p3), col = colors, pch = 8, cex = 2, lwd = 2, add = TRUE)
with_graph(net, graph_component_count())
connected_net = net %>%
activate("nodes") %>%
filter(group_components() == 1)
plot(net, col = colors[2])
plot(connected_net, cex = 1.1, lwd = 1.1, add = TRUE)
st_network_cost(net, from = c(p1, p2, p3), to = c(p1, p2, p3))
with_graph(net, graph_order())
cost_matrix = st_network_cost(net)
dim(cost_matrix)
set.seed(128)
hull = net %>%
activate("nodes") %>%
st_geometry() %>%
st_combine() %>%
st_convex_hull()
sites = st_sample(hull, 50, type = "random")
facilities = st_sample(hull, 5, type = "random")
new_net = net %>%
activate("nodes") %>%
filter(group_components() == 1) %>%
st_network_blend(c(sites, facilities))
cost_matrix = st_network_cost(new_net, from = sites, to = facilities)
closest = facilities[apply(cost_matrix, 1, function(x) which(x == min(x))[1])]
draw_lines = function(sources, targets) {
lines = mapply(
function(a, b) st_sfc(st_cast(c(a, b), "LINESTRING"), crs = st_crs(net)),
sources,
targets,
SIMPLIFY = FALSE
)
do.call("c", lines)
}
connections = draw_lines(sites, closest)
plot(new_net, col = "grey")
plot(connections, col = colors[2], lwd = 2, add = TRUE)
plot(facilities, pch = 8, cex = 2, lwd = 2, col = colors[3], add = TRUE)
plot(sites, pch = 20, cex = 2, col = colors[2], add = TRUE)
set.seed(403)
rdm = net %>%
st_bbox() %>%
st_as_sfc() %>%
st_sample(10, type = "random")
net = activate(net, "nodes")
cost_matrix = st_network_cost(net, from = rdm, to = rdm)
rdm_idxs = st_nearest_feature(rdm, net)
row.names(cost_matrix) = rdm_idxs
colnames(cost_matrix) = rdm_idxs
round(cost_matrix, 0)
tour = solve_TSP(TSP(cost_matrix))
tour_idxs = as.numeric(names(tour))
tour_idxs
round(tour_length(tour), 0)
from_idxs = tour_idxs
to_idxs = c(tour_idxs[2:length(tour_idxs)], tour_idxs[1])
tsp_paths = mapply(st_network_paths,
from = from_idxs,
to = to_idxs,
MoreArgs = list(x = net)
)["node_paths", ] %>%
unlist(recursive = FALSE)
plot(net, col = "grey")
plot(rdm, pch = 20, col = colors[2], add = TRUE)
walk(tsp_paths, plot_path)
plot(
st_as_sf(slice(net, rdm_idxs)),
pch = 20, col = colors[3], add = TRUE
)
plot(
st_as_sf(slice(net, tour_idxs[1])),
pch = 8, cex = 2, lwd = 2, col = colors[3], add = TRUE
)
text(
st_coordinates(st_as_sf(slice(net, tour_idxs[1]))) - c(200, 90),
labels = "start/end\npoint"
)
types = net %>%
activate("edges") %>%
pull(type) %>%
unique()
types
set.seed(1)
speeds = runif(length(types), 3 * 1000 / 60 / 60, 7 * 1000 / 60 / 60)
net = net %>%
activate("edges") %>%
group_by(type) %>%
mutate(speed = units::set_units(speeds[cur_group_id()], "m/s")) %>%
mutate(time = weight / speed) %>%
ungroup()
net
net = activate(net, "nodes")
p = net %>%
st_geometry() %>%
st_combine() %>%
st_centroid()
iso = net %>%
filter(node_distance_from(st_nearest_feature(p, net), weights = time) <= 600)
iso_poly = iso %>%
st_geometry() %>%
st_combine() %>%
st_convex_hull()
plot(net, col = "grey")
plot(iso_poly, col = NA, border = "black", lwd = 3, add = TRUE)
plot(iso, col = colors[2], add = TRUE)
plot(p, col = colors[1], pch = 8, cex = 2, lwd = 2, add = TRUE)
table(roxel$type)
paths_sf = net %>%
activate("edges") %>%
slice(unlist(paths$edge_paths)) %>%
st_as_sf()
table(paths_sf$type)
plot(paths_sf["type"], lwd = 4, key.pos = 4, key.width = lcm(4))
weighting_profile = c(
cycleway = Inf,
footway = Inf,
path = Inf,
pedestrian = Inf,
residential = 3,
secondary = 1,
service = 1,
track = 10,
unclassified = 1
)
weighted_net = net %>%
activate("edges") %>%
mutate(multiplier = weighting_profile[type]) %>%
mutate(weight = edge_length() * multiplier)
weighted_paths = st_network_paths(weighted_net, from = 495, to = c(458, 121))
weighted_paths_sf = weighted_net %>%
activate("edges") %>%
slice(unlist(weighted_paths$edge_paths)) %>%
st_as_sf()
table(weighted_paths_sf$type)
plot(st_as_sf(net, "edges")["type"], lwd = 4,
key.pos = NULL, reset = FALSE, main = "Distance weights")
plot(st_geometry(paths_sf), add = TRUE)
plot(st_as_sf(net, "edges")["type"], lwd = 4,
key.pos = NULL, reset = FALSE, main = "Custom weights")
plot(st_geometry(weighted_paths_sf), add = TRUE)
par(oldpar)
options(oldoptions) |
parse_api_results <- function(res, type, include_stats, meta, format) {
api_content <- content(res)
if (length(api_content$errors) > 0) {
return(list(
error_code = api_content$errors[[1]]$code,
error_message = api_content$errors[[1]]$message
))
}
results <- api_content$results[[1]]
results <- modify_depth(
results, vec_depth(results) - 1, function(x){
if (is.null(x)){
NA
} else {
x
}
}, .ragged = TRUE
)
if (!is.null(results$stats)) {
stats <- tibble(
type = names(results$stats),
value = as.numeric(results$stats)
)
} else {
stats <- NULL
}
if (length(results$data) == 0) {
message("No data returned.")
if (include_stats) {
return(stats)
}
}
res_names <- results$columns
res_data <- results$data
if (meta) {
res_meta <- map(res_data, "meta") %>%
map(flatten_dfr) %>%
setNames(paste(res_names, "meta", sep = "_"))
}
res_data <- map(res_data, function(x) {
x$meta <- NULL
x
})
if (type == "row") {
res <- attempt::attempt({
purrr::map_depth(res_data, 3, tibble::as_tibble) %>%
purrr::map(purrr::flatten) %>%
purrr::transpose() %>%
purrr::map(rbindlist_to_tibble)
}, silent = TRUE)
if (class(res)[1] == "try-error") {
res <- flatten(res_data) %>%
purrr::map_dfr(purrr::flatten_dfc) %>%
list()
}
if (length(res_data) != 0){
res <- res %>%
setNames(res_names)
}
if (include_stats) {
res <- c(res, list(stats = stats))
} else {
class(res) <- c("neo", class(res))
}
if (meta) {
res <- c(res, res_meta)
}
class(res) <- c("neo", class(res))
return(res)
} else if (type == "graph") {
graph <- map(res_data, "graph")
nodes <- compact(map(graph, "nodes"))
relations <- compact(map(graph, "relationships"))
nodes_tbl <- NULL
relations_tbl <- NULL
if (length(nodes) == 0 & length(relations) == 0) {
message("No graph data found.")
message("Either your call can't be converted to a graph \nor there is no data at all matching your call.")
message("Verify your call or try type = \"row\".")
}
if (length(nodes) != 0) {
nodes <- purrr::flatten(nodes)
nodes_tbl <- unique(tibble(
id = map_chr(nodes, ~.x$id),
label = map(nodes, ~as.character(.x$labels)),
properties = map(nodes, ~.x$properties)
))
}
if (length(relations) != 0) {
relations <- flatten(relations)
relations_tbl <- unique(tibble(
id = as.character(map(relations, ~.x$id)),
type = as.character(map(relations, ~.x$type)),
startNode = as.character(map(relations, ~.x$startNode)),
endNode = as.character(map(relations, ~.x$endNode)),
properties = map(relations, ~.x$properties)
))
}
if (include_stats) {
res <- compact(list(nodes = nodes_tbl, relationships = relations_tbl, stats = stats))
class(res) <- c("neo", class(res))
} else {
res <- compact(list(nodes = nodes_tbl, relationships = relations_tbl))
if (length(res) != 0) {
class(res) <- c("neo", class(res))
}
}
res
}
}
rbindlist_to_tibble <- function(l){
tibble::as_tibble(data.table::rbindlist(l))
} |
context("YahooFinanceSource")
test_that("YahooFinanceSource",{
lengthcorp <- 20
testcorp <- WebCorpus(YahooFinanceSource("MSFT"))
expect_that(length(testcorp), equals(lengthcorp))
expect_that(class(testcorp), equals(c("WebCorpus","VCorpus","Corpus")))
contentlength <- sapply(testcorp, function(x)
if( length(content(x)) < 1) 0 else nchar(content(x)))
contentratio <- length(which(contentlength > 0)) / length(testcorp)
expect_that(contentratio > 0.5, is_true())
datetimestamp <- lapply(testcorp, function(x) meta(x, "datetimestamp"))
expect_that(all(sapply(datetimestamp, function(x) class(x)[1] == "POSIXlt")), is_true())
description <- lapply(testcorp, function(x) meta(x, "description"))
expect_that(all(sapply(description, function(x) class(x)[1] == "character")), is_true())
heading <- lapply(testcorp, function(x) meta(x, "heading"))
expect_that(all(sapply(heading, function(x) class(x)[1] == "character")), is_true())
expect_that(all(sapply(heading, nchar) > 0), is_true())
id <- lapply(testcorp, function(x) meta(x, "id"))
expect_that(all(sapply(id, function(x) class(x)[1] == "character")), is_true())
expect_that(all(sapply(id, nchar) > 0), is_true())
origin <- lapply(testcorp, function(x) meta(x, "origin"))
expect_that(all(sapply(origin, function(x) class(x)[1] == "character")), is_true())
expect_that(all(sapply(origin, nchar) > 0), is_true())
testcorp <- testcorp[1:10]
testcorp <- corpus.update(testcorp)
expect_that(length(testcorp) >= lengthcorp, is_true())
cat(" | Contentratio: ", sprintf("%.0f%%", contentratio * 100))
}) |
device.data <- data.frame(
DeviceName = c("Cypher Sirolimus DES", "Taxus Express 2", "Cypher Select Sirolimus DES",
"Cypher Select Plus Sirolimus DES", "Taxus Liberte", "Endeavor ABT578",
"Endeavor Sprint Zotarolimus DES", "Xience V", "Taxus Element Monrail ION",
"Xience Nano", "Promus Element Plus", "Xience Prime",
"Endeavor Resolute DES","Endeavor Resolute Integrity DES", "Promus Premier", "Xience Xpedition LL and SV"),
DeviceManufacturer = c("Cordis Cashel","Boston Scientific","Cordis Cashel",
"Cordis Cashel","Boston Scientific","Medtronic Inc",
"Medtronic Inc", "Abbott Vascular", "Boston Scientific",
"Abbott Vascular","Boston Scientific", "Abbott Vascular",
"Medtronic Inc", "Medtronic Inc","Boston Scientific", "Abbott Vascular"),
start_date = as.Date(c("2002-11-15", "2003-09-09", "2005-10-21",
"2006-10-25","2008-02-05", "2008-02-27",
"2009-06-10", "2009-08-21", "2011-08-19",
"2011-10-24", "2012-01-30", "2012-04-10",
"2012-04-14", "2013-03-07", "2013-09-30", "2014-02-19")),
end_date = as.Date(c("2007-07-18", "2010-11-10", "2007-07-18",
"2013-04-05", "2013-11-01", "2016-03-31",
"2016-03-31", "2016-03-31", "2011-09-16",
"2016-03-31", "2016-03-31", "2016-03-31",
"2016-03-31", "2016-03-31", "2016-03-31", "2016-03-31")),
stringsAsFactors = FALSE
)
vistime(device.data, col.event="DeviceName", col.group ="DeviceManufacturer", col.start="start_date", col.end ="end_date", linewidth = 20)
hc_vistime(device.data, col.event="DeviceName", col.group ="DeviceManufacturer", col.start="start_date", col.end ="end_date") |
slpm_gen <- function(M, N, K, hyper_pars = NULL)
{
delta <- a <- b <- rep(1,K)
if (!is.null(hyper_pars))
{
delta = hyper_pars$delta
a = hyper_pars$a_gamma
b = hyper_pars$b_gamma
}
gamma <- rep(NA,K)
for (k in 1:K) gamma[k] = rgamma(n = 1, shape = a[k], rate = b[k])
U <- matrix(NA, M, K)
V <- matrix(NA, N, K)
for (k in 1:K)
{
U[,k] = rnorm(n = M, mean = 0, sd = sqrt(1/gamma[k]))
V[,k] = rnorm(n = N, mean = 0, sd = sqrt(1/gamma[k]))
}
lambda <- as.numeric(rdirichlet(n = 1, alpha = delta))
adj <- matrix(0,M,N)
for (i in 1:M) for (j in 1:N) for (k in 1:K)
{
d <- (U[i,k] - V[j,k])^2
adj[i,j] = adj[i,j] + lambda[k] / d
}
list(adj = adj, U = U, V = V, lambda = lambda, gamma = gamma)
} |
summaryRMD <- function(fit, fit2, pathout, numTrials=1, thisTrial){
dir.create(paste(pathout, "/", thisTrial, sep=""));
cmPat <- fit$data$n.subj
parms <- mcmc(cbind(fit$beta.dose, fit$beta.other, fit$s2.gamma, fit$s2.epsilon))
if (ncol(fit$beta.other) == 2) {
varnames(parms) <- c("beta.dose", "beta.intercept", "beta.cycle", "s2.gamma", "s2.epsilon")
}else{
varnames(parms) <- c("beta.dose", "beta.intercept", "s2.gamma", "s2.epsilon")
}
parms2 <- mcmc(cbind(fit2$beta.dose, fit2$beta.other, fit2$s2.gamma, fit2$s2.epsilon))
if (ncol(fit2$beta.other) == 2) {
varnames(parms2) <- c("beta.dose", "beta.intercept", "beta.cycle", "s2.gamma", "s2.epsilon")
}else{
varnames(parms2) <- c("beta.dose", "beta.intercept", "s2.gamma", "s2.epsilon")
}
combined=mcmc.list(mcmc(parms),mcmc(parms2));
res = summary(parms)
write.table(res$statistics, file=paste(pathout, "/", thisTrial, "/statsParms", cmPat, ".txt", sep=""))
write.table(res$quantile, file=paste(pathout, "/", thisTrial, "/quanParms", cmPat, ".txt", sep=""))
write.table(effectiveSize(parms), file=paste(pathout, "/", thisTrial, "/sizeParms", cmPat, ".txt", sep=""))
gamma.mc <- mcmc(fit$gamma)
colnames.gamma <- NULL
for (i in 1:cmPat)
colnames.gamma <- c(colnames.gamma, paste("gamma", i, sep=''))
varnames(gamma.mc) <- colnames.gamma
res = summary(gamma.mc)
write.table(res$statistics, file=paste(pathout, "/", thisTrial, "/statsGamma", cmPat, ".txt", sep=""))
write.table(res$quantile, file=paste(pathout, "/", thisTrial, "/quanGamma", cmPat, ".txt", sep=""))
write.table(effectiveSize(gamma.mc), file=paste(pathout, "/", thisTrial, "/sizeGamma", cmPat, ".txt", sep=""))
if (thisTrial ==1 ){
}
} |
library(BART)
k = 50
C = 8
thin = 10
ndpost = 1000
nskip = 100
par(mfrow=c(2, 2))
for(n in c(100, 1000, 10000)) {
set.seed(12)
x.train=matrix(runif(n*k, min=-1, max=1), n, k)
Ey.train = pnorm(x.train[ , 1]^3)
y.train=rbinom(n, 1, Ey.train)
table(y.train)
mc.train = mc.pbart(x.train, y.train, mc.cores=C, keepevery=thin,
seed=99, ndpost=ndpost, nskip=nskip)
x <- seq(-1, 1, length.out=200)
plot(x, x^3, ylab='f(x)', type='l',
sub=paste0('N:', n, ', k:', k, ', thin:', thin))
points(x.train[ , 1], mc.train$yhat.train.mean, pch='.', cex=2)
i <- floor(seq(1, n, length.out=10))
auto.corr <- acf(mc.train$yhat.train[ , i], plot=FALSE)
max.lag <- max(auto.corr$lag[ , 1, 1])
j <- seq(-0.5, 0.4, length.out=10)
for(h in 1:10) {
if(h==1)
plot(1:max.lag+j[h], auto.corr$acf[1+(1:max.lag), h, h],
type='h', xlim=c(0, max.lag+1), ylim=c(-1, 1),
ylab='acf', xlab='lag')
else
lines(1:max.lag+j[h], auto.corr$acf[1+(1:max.lag), h, h],
type='h', col=h)
}
for(j in 1:10) {
if(j==1)
plot(pnorm(mc.train$yhat.train[ , i[j]]),
type='l', ylim=c(0, 1),
sub=paste0('N:', n, ', k:', k, ', thin:', thin),
ylab=expression(Phi(f(x))), xlab='m')
else
lines(pnorm(mc.train$yhat.train[ , i[j]]),
type='l', col=j)
}
geweke <- gewekediag(mc.train$yhat.train)
j <- -10^(log10(n)-1)
plot(geweke$z, pch='.', cex=2, ylab='z', xlab='i',
sub=paste0('N:', n, ', k:', k, ', thin:', thin),
xlim=c(j, n), ylim=c(-5, 5))
lines(1:n, rep(-1.96, n), type='l', col=6)
lines(1:n, rep(+1.96, n), type='l', col=6)
lines(1:n, rep(-2.576, n), type='l', col=5)
lines(1:n, rep(+2.576, n), type='l', col=5)
lines(1:n, rep(-3.291, n), type='l', col=4)
lines(1:n, rep(+3.291, n), type='l', col=4)
lines(1:n, rep(-3.891, n), type='l', col=3)
lines(1:n, rep(+3.891, n), type='l', col=3)
lines(1:n, rep(-4.417, n), type='l', col=2)
lines(1:n, rep(+4.417, n), type='l', col=2)
text(c(1, 1), c(-1.96, 1.96), pos=2, cex=0.6, labels='0.95')
text(c(1, 1), c(-2.576, 2.576), pos=2, cex=0.6, labels='0.99')
text(c(1, 1), c(-3.291, 3.291), pos=2, cex=0.6, labels='0.999')
text(c(1, 1), c(-3.891, 3.891), pos=2, cex=0.6, labels='0.9999')
text(c(1, 1), c(-4.417, 4.417), pos=2, cex=0.6, labels='0.99999')
}
par(mfrow=c(1, 1)) |
confus <- function (clustering, model, diss=NULL)
{
clustering <- clustify(clustering)
if (inherits(model,'tree')) {
fitted <- predict(model)
} else if (inherits(model,'randomForestest')) {
fitted <- predict(model,type='prob')
} else if (inherits(model,'matrix')) {
fitted <- model
}
numplt <- length(clustering)
numclu <- length(levels(clustering))
pred <- apply(fitted,1,which.max)
res <- matrix(0,nrow=numclu,ncol=numclu)
for (i in 1:numplt) {
res[clustering[i],pred[i]] <- res[clustering[i],pred[i]] + 1
}
if(!is.null(diss)) {
part <- partana(clustering,diss)
shunt <- diag(part$ctc)
shunt[shunt==0] <- 1
tmp <- part$ctc/shunt
fuzerr <- 1- matrix(pmin(1,tmp),ncol=ncol(tmp))
diag(fuzerr) <- 1
fuzres <- res
for (i in 1:ncol(res)) {
for (j in 1:ncol(res)) {
if (i != j) {
fuzres[i,j] <- res[i,j] * fuzerr[i,j]
fuzres[i,i] <- fuzres[i,i] + res[i,j] * (1-fuzerr[i,j])
}
}
}
res <- fuzres
}
correct <- sum(diag(res))
percent <- correct/numplt
rowsum <- apply(res,1,sum)
colsum <- apply(res,2,sum)
summar <- sum(rowsum*colsum)
kappa <- ((numplt*correct) - summar) / (numplt^2 - summar)
out <- list(confus=res,correct=correct,percent=percent,kappa=kappa)
out
} |
getAttXY <- function(attPerturb, attX, attY) {
if (length(attPerturb) < 2) stop(paste0("sim should contain two or more perturbed attributes to plot a performance space."))
if (is.null(attX) & is.null(attY)) {
attX <- attPerturb[1]
attY <- attPerturb[2]
message(paste0("Using attX = ", attX, ", and attY = ", attY, ". Specify attX and attY in the function call to choose alternate attributes."))
} else {
attInd <- which(attPerturb %in% c(attX, attY))
if (!identical(attInd, integer(0))) {
attPerturb <- attPerturb[-attInd]
}
if (is.null(attX)) {
attX <- attPerturb[1]
message(paste0("Using attX = ", attX, ". Specify attX in the function call to choose an alternate attribute."))
} else {
attY <- attPerturb[1]
message(paste0("Using attY = ", attY, ". Specify attY in the function call to choose an alternate attribute."))
}
}
return(list(attX = attX,
attY = attY))
}
getSimFitness <- function(sim) {
repNames <- names(sim[grep("Rep", names(sim))])
if (is.null(repNames)) stop("There are no replicates in sim.")
tarNames <- names(sim[[repNames[1]]])
nRep <- length(repNames)
nTar <- length(tarNames)
fitName <- "score"
simFitness <- matrix(NA, nrow = length(tarNames), ncol = length(repNames))
for (r in 1:nRep) {
simFitness[ ,r] <- sapply(sim[[repNames[r]]], function(x){sum(x[["score"]])})
}
return(simFitness)
}
getPerfStat <- function(performance,
simFitness,
topReps,
nRep,
statFUN = mean
) {
nTar <- nrow(performance)
if (!is.null(topReps)) {
if (topReps < nRep) {
sortedPerf <- matrix(0, nrow = dim(performance)[1], ncol = dim(performance)[2])
for(i in 1:nTar){
ind <- order(simFitness[i, ], decreasing = TRUE)
sortedPerf[i, ] <- performance[i, ind]
}
performanceStat <- as.data.frame(apply(sortedPerf[ , 1:topReps], 1, FUN = statFUN))
} else {
performanceStat <- as.data.frame(apply(performance, 1, FUN = statFUN))
}
} else {
performanceStat <- as.data.frame(apply(performance, 1, FUN = statFUN))
}
return(performanceStat)
}
checkAttPert <- function(targetMat, attX, attY) {
if (attX == attY) {
stop("attY should be different from attX.")
}
attNames <- colnames(targetMat)
colAttX <- which(attNames == attX)
colAttY <- which(attNames == attY)
if (length(colAttX) == 0 | colAttY == 0) {
stop("attX or attY is not available in sim.")
}
return(invisible())
}
getSliceIndices <- function(expSpace, attSlices) {
if (!(is.list(attSlices))) stop("attSlices should be a list.")
attIn <- names(attSlices)
if (is.null(attIn)) stop("attSlices should be named using the attribute tags to be sliced.")
if (sum(attIn %in% c(expSpace[["attPerturb"]], expSpace[["attHold"]])) != length(attIn)) stop("attSlices should contain only attributes present in the expSpace of sim.")
attPInd <- which(attIn %in% expSpace[["attPerturb"]])
attHInd <- which(attIn %in% expSpace[["attHold"]])
if (!identical(attHInd, integer(0))) {
for (i in 1:length(attHInd)) {
iAtt <- attIn[attHInd[i]]
iAttVar <- strsplit(iAtt, "_")[[1]][1]
if (iAttVar == "Temp") {
if (attSlices[[iAtt]] != 0) stop(paste0(iAtt, " is a held attribute. attSlices[[\"", iAtt, "\"]] should be 0 or NULL."))
} else {
if (attSlices[[iAtt]] != 1) stop(paste0(iAtt, " is a held attribute. attSlices[[\"", iAtt, "\"]] should be 1 or NULL."))
}
}
}
targetMat <- expSpace[["targetMat"]]
if (!identical(attPInd, integer(0))) {
sliceIndicesList <- list()
for (i in 1:length(attPInd)) {
iAtt <- attIn[attPInd[i]]
iSlice <- attSlices[[iAtt]]
if (length(iSlice) == 1) {
iSliceInd <- which(targetMat[[iAtt]] == iSlice)
} else if (length(iSlice == 2)) {
sMin <- min(iSlice)
sMax <- max(iSlice)
iSliceInd <- which(targetMat[[iAtt]]>=sMin & targetMat[[iAtt]]<=sMax)
}
if (identical(iSliceInd, integer(0))) stop(paste0("attSlices[[\"", iAtt, "\"]] is not valid for this expSpace."))
sliceIndicesList[[i]] <- iSliceInd
}
sliceIndices <- Reduce(intersect, sliceIndicesList)
} else {
sliceIndices <- c(1:nrow(targetMat))
}
return(sliceIndices)
}
plotPerformanceSpace <- function(performance,
sim,
metric = NULL,
attX = NULL,
attY = NULL,
topReps = NULL,
perfThresh = NULL,
perfThreshLabel = "Threshold",
attSlices = NULL,
climData = NULL,
colMap = NULL,
colLim = NULL
) {
if (is.list(performance)) {
if (!is.null(metric)) {
if (!is.character(metric)) stop("`metric` should be specified as a string.")
if (length(metric) > 1) stop("A single `metric` should be specified.")
performance <- performance[metric]
if (is.null(performance[[1]])) stop(paste0("Cannot find metric `", metric, "` in performance."))
perfName <- metric
} else {
if (is.null(names(performance))) {
perfName <- rep("Performance", length(performance))
} else {
perfName <- names(performance)
}
}
} else if (is.matrix(performance)) {
perfName <- "Performance"
perfMat <- performance
performance <- list()
performance[[1]] <- perfMat
rm(perfMat)
}
repNames <- names(sim[grep("Rep", names(sim))])
if (is.null(repNames)) stop("There are no replicates in sim.")
tarNames <- names(sim[[repNames[1]]])
nRep <- length(repNames)
nTar <- length(tarNames)
targetMat <- sim[["expSpace"]][["targetMat"]]
if (is.list(sim[["controlFile"]])) {
simFitness <- getSimFitness(sim)
if (!identical(dim(simFitness), dim(performance[[1]]))) {
stop("The number of targets and replicates in sim and performance should match. Is the performance calculated using sim?")
}
if (!is.null(topReps)) {
if (topReps > nRep) {
message(paste0("sim does not contain ", topReps, " replicates. Using all replicates available in sim.\n"))
}
}
} else {
if (!(sim[["controlFile"]] == "scaling")) stop("sim$controlFile is unrecognized.")
simFitness <- NULL
topReps <- NULL
}
if (!is.null(attSlices)) {
tarInd <- getSliceIndices(sim[["expSpace"]], attSlices)
targetMat <- targetMat[tarInd, ]
} else {
tarInd <- NULL
}
if (is.null(attX) | is.null(attY)) {
attPerturb <- sim[["expSpace"]][["attPerturb"]]
attList <- getAttXY(attPerturb, attX, attY)
attX <- attList[["attX"]]
attY <- attList[["attY"]]
}
checkAttPert(targetMat, attX, attY)
attNames <- colnames(targetMat)
colAttX <- which(attNames == attX)
colAttY <- which(attNames == attY)
nPerf <- length(performance)
perfPlots <- list()
if (nPerf > 1) message("performance contains more than one performance metric, the first metric is plotted.")
if (!is.null(tarInd)) {
perfMatrix <- performance[[1]][tarInd, ]
} else {
perfMatrix <- performance[[1]]
}
performanceAv <- getPerfStat(perfMatrix, simFitness, topReps, nRep)
names(performanceAv) <- perfName[1]
perfPlotData <- cbind(targetMat[colAttX], targetMat[colAttY], performanceAv)
perfPlots <- heatPlot(perfPlotData, colLim = colLim, colMap = colMap,
perfThresh = perfThresh, perfThreshLabel = perfThreshLabel, climData = climData)
print(perfPlots)
return(invisible(perfPlots))
}
plotPerfQuiltPlot <- function(plotData, nx, ny, colLim = NULL, colBar = TRUE, perfThresh = NULL, climData = NULL){
xyAtts <- colnames(plotData)[1:2]
xyAttDefs <- mapply(tagBlender_noUnits, xyAtts, USE.NAMES = FALSE)
if (is.null(colLim)) {
tempMat <- plotData
names(tempMat) <- c("x", "y", "z")
tempMatAvg <- aggregate(.~x+y, tempMat, mean)
colLim = c(min(tempMatAvg[ ,3]), max(tempMatAvg[ ,3]))
rm(tempMat, tempMatAvg)
}
varNames <- sapply(strsplit(xyAtts, "_"), `[[`, 1)
varUnits <- getVarUnits(varNames)
xyLabels <- paste0(xyAttDefs, " (", varUnits, ")")
par(mar=c(3.8,3.8,1,1),oma=c(5,0.3,0.3,0.3), mgp = c(0,0.5,0))
fields::quilt.plot(x = plotData[ ,1], y = plotData[ ,2], z = plotData[ ,3], nx = nx ,ny = ny,
add.legend = FALSE, nlevel = perfSpace_nlevel, col = foreSIGHT.colmap(perfSpace_nlevel),
xlim = c(min(plotData[ ,1]), max(plotData[ ,1])), ylim = c(min(plotData[ ,2]), max(plotData[ ,2])),
zlim = colLim, xlab = "", ylab =)
box(col = "black")
mtext(side=1,text=xyLabels[1],line=1.8)
mtext(side=2,text=xyLabels[2],line=1.8)
if (perfSpace_contours) {
look <- fields::as.image(plotData[ ,3], ind = cbind(plotData[ ,1], plotData[ ,2]), nx = nx, ny = ny)
contour(add = TRUE, x = look$x, y = look$y, z = look$z, method="edge", labcex = 1, nlevels = perfSpace_nContour)
}
if (!is.null(perfThresh)) {
contour(add = TRUE, x = look$x, y = look$y, z = look$z, lty=threshLty, lwd = threshLwd, col = perfSpace_threshCol, drawlabels = FALSE, levels = perfThresh)
legend("topright", inset = c(0.005, 0.005), legend=paste0("Performance\nThreshold (", perfThresh, ")"),
col=perfSpace_threshCol, lwd=threshLwd, lty=threshLty, cex=1, bty="n")
}
if (!is.null(climData)) {
if (sum(colnames(climData) %in% xyAtts) == 2) {
points(x = climData[[xyAtts[1]]], y = climData[[xyAtts[2]]], pch = perfSpace_climDataPch, col = perfSpace_climDataCol, bg = perfSpace_climDataBg)
} else {
warning(paste0("climData is not plotted since it does not contain ", paste(xyAtts[(colnames(climData) %in% xyAtts)], sep = ","), "."))
}
}
if(colBar){
fields::image.plot(legend.only = TRUE, zlim = colLim, col = foreSIGHT.colmap(perfSpace_nlevel),
horizontal = TRUE, smallplot=c(0.2,0.9,0.0001,0.02))
}
mtext(tag_text, side=1, line=1.5, adj=1.0, cex=0.8, col=tag_textCol, outer=TRUE)
}
heatPlot <- function(plotData, colLim = NULL, colMap = NULL, perfThresh = NULL, perfThreshLabel = "Threshold", climData = NULL) {
level <- NULL
xyAtts <- colnames(plotData)[1:2]
perfName <- colnames(plotData)[3]
xyAttDefs <- mapply(tagBlender_noUnits, xyAtts, USE.NAMES = FALSE)
tempMat <- plotData
names(tempMat) <- c("x", "y", "z")
plotDataMean <- aggregate(.~x+y, tempMat, mean)
names(plotDataMean) <- names(plotData)
if (is.null(colLim)) {
colLimIn = c(min(plotDataMean[ ,3]), max(plotDataMean[ ,3]))
} else {
colLimIn <- colLim
}
if (!is.null(perfThresh)) {
tempData <- plotDataMean[ ,3]
threshName <- paste0("Thresh", names(plotDataMean)[3])
names(tempData) <- threshName
plotDataMean <- cbind(plotDataMean, tempData)
names(plotDataMean) <- c(names(plotData), threshName)
}
varNames <- sapply(strsplit(xyAtts, "_"), `[[`, 1)
varUnits <- getVarUnits(varNames)
xyLabels <- paste0(xyAttDefs, " (", varUnits, ")")
xlimits <- c(min(plotDataMean[ ,1]), max(plotDataMean[ ,1]))
ylimits <- c(min(plotDataMean[ ,2]), max(plotDataMean[ ,2]))
p1 <- ggplot() +
geom_tile(data = plotDataMean, aes(x = .data[[xyAtts[1]]], y = .data[[xyAtts[2]]], fill = .data[[perfName]])) +
labs(x = xyLabels[1], y = xyLabels[2]) +
scale_x_continuous(expand=c(0, 0)) +
scale_y_continuous(expand=c(0, 0)) +
coord_cartesian(xlim=xlimits, ylim=ylimits) +
theme_heatPlot()
if(perfSpace_contours) {
contourBreaks <- pretty(colLimIn, perfSpace_nContour)
p1 <- p1 + geom_contour(data = plotDataMean, aes(x = .data[[xyAtts[1]]], y = .data[[xyAtts[2]]], z = .data[[perfName]]), colour = "black", breaks = contourBreaks) +
directlabels::geom_dl(data = plotDataMean, aes(x = .data[[xyAtts[1]]], y = .data[[xyAtts[2]]], z = .data[[perfName]], label = stat(level)),
method = list("first.points", "calc.boxes", "enlarge.box", box.color = NA, fill = "transparent", vjust=-0.5,hjust=-0.5, "draw.rects"),stat="contour", breaks = contourBreaks)
}
if (!is.null(perfThresh)) {
p1 <- addContourThreshold(p1, plotDataMean, perfThresh, perfThreshLabel, xyAtts, perfName)
}
p2List <- addClimData(p1, climData, perfName, xyAtts, xlimits, ylimits, colLim, colLimIn)
p2 <- p2List[[1]]
colLimIn <- p2List[[2]]
if (is.null(colMap)) {
coloursIn <- foreSIGHT.colmap(perfSpace_nlevel)
} else {
coloursIn <- colMap
}
p2 <- p2 + scale_fill_gradientn(colours = coloursIn, limits = colLimIn,
guide = guide_colorbar(title = perfName, title.position = "right", order = 1, barwidth = 12, barheight = 0.6)) + labs(tag = tag_text)
return(p2)
}
addContourThreshold <- function(p1, plotDataMean, perfThresh, perfThreshLabel, xyAtts, perfName){
p1 <- p1 + geom_contour(data = plotDataMean, aes(x = .data[[xyAtts[1]]], y = .data[[xyAtts[2]]], z = .data[[perfName]]),
breaks = perfThresh, colour = perfSpace_threshCol, size = threshLineSize)
nx <- length(unique(plotDataMean[, 1]))
ny <- length(unique(plotDataMean[, 2]))
look <- fields::as.image(plotDataMean[ ,3], ind = cbind(plotDataMean[ ,1], plotDataMean[ ,2]), nx = nx, ny = ny)
lineThresh <- contourLines(x = look$x, y = look$y, z = look$z, levels = perfThresh)
if (!(length(lineThresh) == 0)) {
lineNo <- 1
perfThreshData <- data.frame(x = lineThresh[[lineNo]]$x, y = lineThresh[[lineNo]]$y)
perfThreshData$Tname <- perfThreshLabel
nLines <- nrow(perfThreshData)
p1 <- p1 +
geom_label(data = perfThreshData[nLines, ], mapping = aes(x = .data$x, y = .data$y, label = .data$Tname), size = threshLabelSize, vjust = "inward", hjust = "inward")
} else {
message("perfThresh is not plotted becasue it is outside the performance space.")
}
return(p1)
}
addThresholdLines <- function(p1, plotDataMean, perfThresh, perfThreshLabel, xyAtts, perfName, lineCol, lineSize, lineAlpha, label = "beginning"){
p1 <- p1 + geom_contour(data = plotDataMean, aes(x = .data[[xyAtts[1]]], y = .data[[xyAtts[2]]], z = .data[[perfName]]),
breaks = perfThresh, colour = lineCol, size = lineSize, alpha = lineAlpha)
p2 <- ggplot()+geom_contour(data = plotDataMean, aes(x = .data[[xyAtts[1]]], y = .data[[xyAtts[2]]], z = .data[[perfName]]),
breaks = perfThresh, colour = lineCol, size = lineSize, alpha = lineAlpha)
p2Build <- ggplot_build(p2)
threshContour <- data.frame(x = p2Build[["data"]][[1]]$x, y = p2Build[["data"]][[1]]$y)
if (nrow(threshContour) > 0) {
if (label == "beginning") {
nLine <- 1
} else {
nLine <- nrow(threshContour)-1
if (nLine == 0) nLine = 1
}
threshContour$Tname <- perfThreshLabel
p1 <- p1 +
geom_label(data = threshContour[nLine, ], mapping = aes(x = .data$x, y = .data$y, label = .data$Tname), size = threshLabelSize, vjust = "inward", hjust = "inward")
} else {
message("perfThresh is not plotted becasue it is outside the performance space.")
}
return(p1)
} |
rainfarm <- function(r, slope, nf, weights = 1.,
fglob = FALSE, fsmooth = TRUE, verbose = FALSE) {
drop <- FALSE
nax <- dim(r)[1]
nay <- dim(r)[2]
nt <- dim(r)[3]
if ( is.na(nt) ) {
drop <- TRUE
nt <- 1
}
dim(r) <- c(nax, nay, nt)
if ( nax == nay ) {
nas <- nax
} else {
stop("The spatial dimensions of input array must be square")
}
ns <- nas * nf
f <- initmetagauss(slope, ns)
rd <- array(0., c(ns, ns, nt))
for (k in 1:nt) {
if (verbose) {
print(paste0("Frame ", k))
}
r1 <- r[ , , k]
if (mean(r1) == 0.) {
rd[ , , k] <- matrix(0., ns, ns)
} else {
fm <- downscale(r1, f, weights, fglob = fglob, fsmooth = fsmooth)
rd[ , , k] <- fm
}
}
if (drop) {
rd <- drop(rd)
}
return(rd)
} |
beta_cor=function(K=K,nk=nk,alpha=alpha,X=X,y=y){
n=nrow(X);p=ncol(X)
M=N=W=c(rep(1,K))
R=matrix(rep(0,n*nk), ncol=n); Io=matrix(rep(0,nk*K), ncol=nk);
mr=matrix(rep(0,K*nk),ncol=nk)
for (i in 1:K){
mr[i,]=sample(1:n,nk,replace=T);
r=matrix(c(1:nk,mr[i,]),ncol=nk,byrow=T);
R[t(r)]=1
Io[i,]=r[2,]
X1=R%*%X;y1=R%*%y;
ux=solve(crossprod(X1))
W[i]= sum(diag(t(ux)%*% ux))
M[i]= det(X1%*%t(X1))
N[i]=t(y1)%*% y1
}
int=intersect(intersect(Io[which.min(W),],Io[which.min(M),]),Io[which.min(N),])
lWMN=length(intersect(intersect(Io[which.min(W),],Io[which.max(M),]),Io[which.min(N),]))
Xcor= X[intersect(intersect(Io[which.min(W),],Io[which.max(M),]),Io[which.min(N),]),];
ycor= y[intersect(intersect(Io[which.min(W),],Io[which.max(M),]),Io[which.min(N),])]
betaC=solve(crossprod(Xcor))%*%t(Xcor)%*% ycor
return(list(betaC=betaC))
} |
AFglm <- function(object, data, exposure, clusterid, case.control = FALSE){
call <- match.call()
if(!(as.character(object$call[1]) == "glm"))
stop("The object is not a glm object", call. = FALSE)
if(!(object$family[1] == "binomial" & object$family[2] == "logit"))
stop("The object is not a logistic regression", call. = FALSE)
formula <- object$formula
npar <- length(object$coef)
rownames(data) <- 1:nrow(data)
m <- model.matrix(object = formula, data = data)
complete <- as.numeric(rownames(m))
data <- data[complete, ]
outcome <- as.character(terms(formula)[[2]])
n <- nrow(data)
n.cases <- sum(data[, outcome])
clusters <- data[, clusterid]
if(missing(clusterid)) n.cluster <- 0
else {
n.cluster <- length(unique(data[, clusterid]))
}
if(!class(exposure) == "character")
stop("Exposure must be a string.", call. = FALSE)
if(!is.binary(data[, exposure]))
stop("Only binary exposure (0/1) is accepted.", call. = FALSE)
if(max(all.vars(formula[[3]]) == exposure) == 0)
stop("The exposure variable is not included in the formula.", call. = FALSE)
data0 <- data
data0[, exposure] <- 0
design <- model.matrix(object = delete.response(terms(object)), data = data)
design0 <- model.matrix(object = delete.response(terms(object)), data = data0)
if (case.control == TRUE){
diff.design <- design0 - design
linearpredictor <- design %*% coef(object)
linearpredictor0 <- design0 %*% coef(object)
log.or <- linearpredictor - linearpredictor0
AF.est <- 1 - sum(data[, outcome] * exp( - log.or)) / sum(data[, outcome])
score.AF <- data[, outcome] * (exp( - log.or) - AF.est)
pred.diff <- data[, outcome] - predict(object, newdata = data, type = "response")
score.beta <- design * pred.diff
score.equations <- cbind(score.AF, score.beta)
if (!missing(clusterid)){
score.equations <- score.equations
score.equations <- aggr(score.equations, clusters = clusters)
}
meat <- var(score.equations, na.rm=TRUE)
hessian.AF1 <- - data[, outcome]
hessian.AF2 <- (design0 - design) * as.vector(data[, outcome] * exp( - log.or))
hessian.AF <- cbind(mean(hessian.AF1), t(colMeans(hessian.AF2, na.rm = TRUE)))
hessian.beta <- cbind(matrix(rep(0, npar), nrow = npar, ncol = 1), - solve(vcov(object = object)) / n)
bread <- rbind(hessian.AF, hessian.beta)
if (!missing(clusterid))
sandwich <- (solve (bread) %*% meat %*% t(solve (bread)) * n.cluster / n^2 ) [1:2, 1:2]
else
sandwich <- (solve (bread) %*% meat %*% t(solve (bread)) / n) [1:2, 1:2]
AF.var <- sandwich[1, 1]
out <- c(list(AF.est = AF.est, AF.var = AF.var, log.or = log.or,
objectcall = object$call, call = call, exposure = exposure, outcome = outcome, object = object,
sandwich = sandwich, formula = formula,
n = n, n.cases = n.cases, n.cluster = n.cluster))
}
else {
score.P <- data[, outcome]
pred.Y <- predict(object, newdata = data, type = "response")
score.P0 <- predict(object, newdata = data0, type = "response")
score.beta <- design * (score.P - pred.Y)
score.equations <- cbind(score.P, score.P0, score.beta)
if (!missing(clusterid)){
score.equations <- score.equations
score.equations <- aggr(score.equations, clusters = clusters)
}
meat <- var(score.equations, na.rm = TRUE)
hessian.P <- matrix(c(- 1, 0, rep(0,npar)), nrow = 1, ncol = 2 + npar)
g <- family(object)$mu.eta
dmu.deta <- g(predict(object = object, newdata = data0))
deta.dbeta <- design0
dmu.dbeta <- dmu.deta * deta.dbeta
hessian.P0 <- matrix(c(0, - 1, colMeans(dmu.dbeta)), nrow = 1, ncol = 2 + npar)
hessian.beta <- cbind(matrix(rep(0, npar * 2), nrow = npar, ncol = 2)
, - solve(vcov(object = object)) / n)
bread <- rbind(hessian.P, hessian.P0, hessian.beta)
if (!missing(clusterid))
sandwich <- (solve (bread) %*% meat %*% t(solve (bread)) * n.cluster / n^2 ) [1:2, 1:2]
else
sandwich <- (solve (bread) %*% meat %*% t(solve (bread)) / n) [1:2, 1:2]
P.est <- mean(score.P, na.rm = TRUE)
P0.est <- mean(score.P0, na.rm = TRUE)
AF.est <- 1 - P0.est / P.est
gradient <- as.matrix(c(P0.est / P.est ^ 2, - 1 / P.est), nrow = 2, ncol = 1)
AF.var <- t(gradient) %*% sandwich %*% gradient
P.var <- sandwich[1, 1]
P0.var <- sandwich[2, 2]
objectcall <- object$call
out <- c(list(AF.est = AF.est, AF.var = AF.var, P.est = P.est, P0.est = P0.est, P.var = P.var,
P0.var = P0.var, objectcall = objectcall, call = call, exposure = exposure, outcome = outcome,
object = object, sandwich = sandwich, gradient = gradient, formula = formula,
n = n, n.cases = n.cases, n.cluster = n.cluster))
}
class(out) <- "AF"
return(out)
} |
zero_range <- function(x, tol = .Machine$double.eps ^ 0.5) {
if (length(x) == 1) return(TRUE)
x <- range(x) / mean(x)
isTRUE(all.equal(x[1], x[2], tolerance = tol))
}
s2Data <- function(xL, yL, xU = NULL, preprocess = T){
n_l = nrow(xL)
p = ncol(xL)
if(any(is.na(xL)) | any(is.na(xU)) | any(is.na(yL))){
stop("NA's not supported :( yet :)")
}
if(!is.null(xU)){
if(ncol(xU)!=p){
stop("xL and xU have different number of columns")
}
}
if(is.data.frame(xL)){
if (!isFALSE(preprocess)) {
X = rbind(xL, xU)
X = stats::model.matrix(~., X)[,-1]
xL = X[1:n_l, ]
if(!is.null(xU)) xU = X[-(1:n_l), ]
}
}
type = "regression"
base = 0
if(is.factor(yL)){
if(length(levels(yL))!=2){
stop("If yL is a factor, it should have exactly two levels")
}
y = as.numeric(yL) - 1
type = "classification"
base = levels(yL)[1]
yL = y
}
if(!is.numeric(yL)) stop("yL is not numeric or factor")
xL = as.matrix(xL)
yL = as.matrix(yL)
if(!is.null(xU)) xU = as.matrix(xU)
if(ncol(yL)!=1){
stop("yL has more than one column. Multivariate response not supported :( yet :)")
}
if(nrow(yL)!=n_l){
stop("xL and yL have different number of rows")
}
if(isTRUE(preprocess)){
rm_cols = apply(xL, 2, zero_range)
xL = xL[, !rm_cols]
if(!is.null(xU)) xU = xU[, !rm_cols]
xL = scale(xL)
s_scale = attr(xL, "scaled:scale")
s_center = attr(xL, "scaled:center")
if(!is.null(xU)) xU = scale(xU, center = s_center, scale = s_scale)
if(type == "regression"){
yL = scale(yL, center = T, scale = F)
y_center = attr(yL, "scaled:center")
}else{
y_center = 0
}
}else{
if(class(preprocess) == "s2Data"){
rm_cols = attr(preprocess, "pr:rm_cols")
xL = xL[, !rm_cols]
if(!is.null(xU)) xU = xU[, !rm_cols]
s_scale = attr(preprocess, "pr:scale")
s_center = attr(preprocess, "pr:center")
xL = scale(xL, center = s_center, scale = s_scale)
if(!is.null(xU)) xU = scale(xU, center = s_center, scale = s_scale)
y_center = attr(preprocess, "pr:ycenter")
if(type == "regression"){yL = scale(yL, center = y_center, scale = F)}
}else{
rm_cols = rep(FALSE, ncol(xL))
s_scale = rep(1, ncol(xL))
s_center = rep(0, ncol(xL))
y_center = 0
}
}
s2D = list(
xL = xL,
yL = yL,
xU = xU,
type = type,
base = base
)
class(s2D) = "s2Data"
attr(s2D, "pr:rm_cols") = unname(rm_cols)
attr(s2D, "pr:center") = unname(s_center)
attr(s2D, "pr:scale") = unname(s_scale)
attr(s2D, "pr:ycenter") = unname(y_center)
return(s2D)
}
print.s2Data <- function(x, ...){
plog("s2Data frame:")
plog("Labeled data: ", nrow(x$xL), " ", ncol(x$xL))
plog("Unlabeled data: ", nrow(x$xU), " ", ncol(x$xU))
plog("Task ", x$type)
}
plog <- function(text,...){
cat(paste0(text,..., "\n"))
} |
context("inspect_na single dataframe")
data("starwars", package = "dplyr")
starwars$mass_lg <- starwars$mass > 70
test_that("Proportion test is correct", {
d1 <- starwars %>% select(birth_year)
d2 <- starwars[1:20, ] %>% select(birth_year)
p1 <- inspect_na(d1, d2) %>% select(6) %>% as.numeric
p2 <- prop.test(c(sum(is.na(d1)), sum(is.na(d2))), c(nrow(d1), nrow(d2)))$p.value
expect_equal(p1, p2)
}) |
context("bigquery")
test_that("bigquery exists", {
exists('TokenBigQueryKernel')
exists('query_exec')
}) |
context("select_n_to_m")
test_that("n_to_m large = TRUE", {
data("linkexample1", "linkexample2")
by <- c("lastname", "firstname", "address", "sex", "postcode")
p <- pair_blocking(linkexample1, linkexample2) %>%
compare_pairs(by = by, default_comparator = jaro_winkler()) %>%
score_simsum() %>%
select_n_to_m(threshold = 2)
expect_equal(names(p), c("x", "y", by, "simsum", "select"))
expect_gt(min(p$simsum[p$select]), 2)
expect_true(all(!duplicated(p$x[p$select])))
expect_true(all(!duplicated(p$y[p$select])))
expect_equal(attr(p, "x"), linkexample1)
expect_equal(attr(p, "y"), linkexample2)
expect_null(attr(p, "blocking_var"))
expect_equal(attr(p, "by"), c("lastname", "firstname", "address", "sex",
"postcode"))
expect_equal(attr(p, "score"), "simsum")
expect_equal(attr(p, "select"), "select")
expect_s3_class(p, "compare")
expect_s3_class(p, "pairs")
expect_s3_class(p, "pairs_blocking")
expect_s3_class(p, "ldat")
})
gc()
test_that("n_to_m large = FALSE", {
data("linkexample1", "linkexample2")
by <- c("lastname", "firstname", "address", "sex", "postcode")
p <- pair_blocking(linkexample1, linkexample2, large = FALSE) %>%
compare_pairs(by = by, default_comparator = jaro_winkler()) %>%
score_simsum() %>%
select_n_to_m(threshold = 2)
expect_equal(names(p), c("x", "y", by, "simsum", "select"))
expect_gt(min(p$simsum[p$select]), 2)
expect_true(all(!duplicated(p$x[p$select])))
expect_true(all(!duplicated(p$y[p$select])))
expect_equal(attr(p, "x"), linkexample1)
expect_equal(attr(p, "y"), linkexample2)
expect_null(attr(p, "blocking_var"))
expect_equal(attr(p, "by"), c("lastname", "firstname", "address", "sex",
"postcode"))
expect_equal(attr(p, "score"), "simsum")
expect_equal(attr(p, "select"), "select")
expect_s3_class(p, "compare")
expect_s3_class(p, "pairs")
expect_s3_class(p, "pairs_blocking")
expect_s3_class(p, "data.frame")
})
gc() |
generate_compass_overlay = function(x=0.85, y=0.15,
size=0.075, text_size=1, bearing=0,
heightmap = NULL, width=NA, height=NA,
color1 = "white", color2 = "black", text_color = "black",
border_color = "black", border_width = 1,
halo_color = NA, halo_expand = 1,
halo_alpha = 1, halo_offset = c(0,0), halo_blur = 1) {
loc = rep(0,2)
loc[1] = x
loc[2] = y
if(is.na(height)) {
height = ncol(heightmap)
}
if(is.na(width)) {
width = nrow(heightmap)
}
cols <- rep(c(color1,color2),8)
bearing = bearing*pi/180
radii <- rep(size/c(1,4,2,4),4)
x <- radii[(0:15)+1]*cos((0:15)*pi/8+bearing)+loc[1]
y <- radii[(0:15)+1]*sin((0:15)*pi/8+bearing)+loc[2]
tempoverlay = tempfile(fileext = ".png")
grDevices::png(filename = tempoverlay, width = width, height = height, units="px",bg = "transparent")
graphics::par(mar = c(0,0,0,0))
graphics::plot(x=c(0,1),y=c(0,1), xlim = c(0,1),
ylim = c(0,1), asp=1, pch = 0,bty="n",axes=FALSE,
xaxs = "i", yaxs = "i", cex = 0, col = NA)
for (i in 1:15) {
x1 <- c(x[i],x[i+1],loc[1])
y1 <- c(y[i],y[i+1],loc[2])
graphics::polygon(x1,y1,col=cols[i],
border = border_color, lwd = border_width)
}
graphics::polygon(c(x[16],x[1],loc[1]),c(y[16],y[1],loc[2]),col=cols[16],
border = border_color, lwd = border_width)
b <- c("E","N","W","S")
for (i in 0:3) {
graphics::text((size+graphics::par("cxy")[1])*cos(bearing+i*pi/2)+loc[1],
(size+graphics::par("cxy")[2])*sin(bearing+i*pi/2)+loc[2],b[i+1],
cex=text_size,col=text_color)
}
grDevices::dev.off()
overlay_temp = png::readPNG(tempoverlay)
if(!is.na(halo_color)) {
if(!("rayimage" %in% rownames(utils::installed.packages()))) {
stop("{rayimage} package required for `halo_color`")
}
tempoverlay = tempfile(fileext = ".png")
grDevices::png(filename = tempoverlay, width = width, height = height, units="px",bg = "transparent")
graphics::par(mar = c(0,0,0,0))
graphics::plot(x=c(0,1),y=c(0,1), xlim = c(0,1),
ylim = c(0,1), asp=1, pch = 0,bty="n",axes=FALSE,
xaxs = "i", yaxs = "i", cex = 0, col = NA)
for (i in 1:15) {
x1 <- c(x[i],x[i+1],loc[1])
y1 <- c(y[i],y[i+1],loc[2])
graphics::polygon(x1+halo_offset[1],y1+halo_offset[2],col=cols[i],
border = border_color, lwd = border_width)
}
graphics::polygon(c(x[16],x[1],loc[1])+halo_offset[1],
c(y[16],y[1],loc[2])+halo_offset[2],col=cols[16],
border = border_color, lwd = border_width)
b <- c("E","N","W","S")
for (i in 0:3) {
graphics::text((size+graphics::par("cxy")[1])*cos(bearing+i*pi/2)+loc[1]+halo_offset[1],
(size+graphics::par("cxy")[2])*sin(bearing+i*pi/2)+loc[2]+halo_offset[2],b[i+1],
cex=text_size,col=text_color)
}
grDevices::dev.off()
overlay_temp_under = png::readPNG(tempoverlay)
if(halo_expand != 0 || any(halo_offset != 0)) {
temp_alpha = overlay_temp_under[,,4]
temp_alpha[temp_alpha > 0] = 1
booldistance = rayimage::render_boolean_distance(temp_alpha)
booldistance = booldistance - halo_expand
temp_alpha[booldistance <= 0] = 1
temp_alpha[booldistance < 1 & booldistance > 0] = 1 - booldistance[booldistance < 1 & booldistance > 0]
temp_alpha[booldistance > 1] = 0
col_below = convert_color(halo_color)
temp_array = array(0, dim = dim(overlay_temp_under))
temp_array[,,1] = col_below[1]
temp_array[,,2] = col_below[2]
temp_array[,,3] = col_below[3]
temp_array[,,4] = temp_alpha * halo_alpha
overlay_temp_under = temp_array
}
if(halo_blur > 0) {
overlay_temp_under = rayimage::render_convolution(overlay_temp_under,
kernel = rayimage::generate_2d_gaussian(sd = halo_blur, dim = 31,
width = 30),
progress = FALSE)
}
return(add_overlay(overlay_temp_under, overlay_temp))
}
return(overlay_temp)
} |
1++1 - 3 / 23 * 3 ^4 |
myffitYP412 <- function(x2, myY, myd, myZ, beta1) {
tempT <- fitYP41(Y=myY, d=myd, Z=myZ, beta1=beta1, beta2=x2)
return( - tempT$EmpLik)
}
|
library("shiny")
library("shinyWidgets")
ui <- fluidPage(
tags$h2("Dropdown Button"),
br(),
dropdown(
tags$h3("List of Input"),
pickerInput(inputId = 'xcol2',
label = 'X Variable',
choices = names(iris),
options = list(`style` = "btn-info")),
pickerInput(inputId = 'ycol2',
label = 'Y Variable',
choices = names(iris),
selected = names(iris)[[2]],
options = list(`style` = "btn-warning")),
sliderInput(inputId = 'clusters2',
label = 'Cluster count',
value = 3,
min = 1, max = 9),
style = "unite", icon = icon("cog"),
status = "danger", width = "300px",
animate = animateOptions(
enter = animations$fading_entrances$fadeInLeftBig,
exit = animations$fading_exits$fadeOutRightBig
)
),
plotOutput(outputId = 'plot2')
)
server <- function(input, output, session) {
selectedData2 <- reactive({
iris[, c(input$xcol2, input$ycol2)]
})
clusters2 <- reactive({
kmeans(selectedData2(), input$clusters2)
})
output$plot2 <- renderPlot({
palette(c("
"
"
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData2(),
col = clusters2()$cluster,
pch = 20, cex = 3)
points(clusters2()$centers, pch = 4, cex = 4, lwd = 4)
})
}
shinyApp(ui = ui, server = server) |
library(gbutils)
pdf1 <- function(x) dnorm(x, mean = 100, sd = 5)
qdf1 <- function(x) qnorm(x, mean = 100, sd = 5)
cdf1 <- function(x) pnorm(x, mean = 100, sd = 5)
plotpdf(pdf1, qdf1)
plotpdf(pdf1, cdf = cdf1)
plotpdf(pdf1, cdf = cdf1, lq = 0.001, uq = 0.999)
plotpdf(cdf1, cdf = cdf1, lq = 0.001, uq = 0.999)
pf1 <- function(x){
0.25 * pnorm(x, mean = 3, sd = 0.2) + 0.75 * pnorm(x, mean = -1, sd = 0.5)
}
df1 <- function(x){
0.25 * dnorm(x, mean = 3, sd = 0.2) + 0.75 * dnorm(x, mean = -1, sd = 0.5)
}
plotpdf(df1, cdf = pf1)
plotpdf(pf1, cdf = pf1)
plotpdf(pf1, cdf = pf1)
plotpdf(df1, cdf = pf1, add = TRUE, col = "blue")
c(q5pc = cdf2quantile(0.05, pf1), q95pc = cdf2quantile(0.95, pf1)) |
setClassUnion("nullOrDatatable", c("NULL", "data.table")) |
from_integer_flux_lists_with_defaults=function(
internal_flux_rates=list()
,out_flux_rates=list()
,numberOfPools
){
np=PoolIndex(numberOfPools)
N=matrix(nrow=np,ncol=np,0)
for (ofr in out_flux_rates){
src=ofr@sourceIndex
if (src> np){stop("The index of the source pool must be smaller than the number of pools")}
N[src,src]=ofr@rate_constant
}
for (ifr in internal_flux_rates){
dest<-ifr@destinationIndex
if (dest> np){stop("The index of the destination pool of all internal fluxes must be smaller than the number of pools")}
src<-ifr@sourceIndex
if (src> np){stop("The index of the source pool of all internal fluxes must be smaller than the number of pools")}
N[src,src]=N[src,src]+ifr@rate_constant
}
To=diag(nrow=np,-1)
for (ifr in internal_flux_rates){
To[dest,src]=ifr@rate_constant/N[src,src]
}
B<-To%*%N
return(new('ConstLinDecompOp',mat=B))
}
setMethod(
f="initialize",
signature="ConstLinDecompOp",
definition=function (.Object,mat=matrix())
{
.Object@mat=mat
return(.Object)
}
)
setMethod(
"ConstLinDecompOp"
,signature=signature(
mat='matrix'
,internal_flux_rates='missing'
,out_flux_rates='missing'
,numberOfPools='missing'
,poolNames='missing'
)
,definition=function( mat){
r <- nrow(mat)
c <- ncol(mat)
assertthat::are_equal(
r
,c
,msg=sprintf('The matrix has to be quadratic!. Your matrix has %s rows and %s columns',r,c)
)
return(new("ConstLinDecompOp",mat=mat))
}
)
setMethod(
"ConstLinDecompOp"
,signature=signature(
mat='missing'
,internal_flux_rates='ConstantInternalFluxRateList_by_PoolIndex'
,out_flux_rates='ConstantOutFluxRateList_by_PoolIndex'
,numberOfPools='numeric'
,poolNames='missing'
)
,definition=function(
internal_flux_rates
,out_flux_rates
,numberOfPools
){
from_integer_flux_lists_with_defaults(
internal_flux_rates=internal_flux_rates
,out_flux_rates = out_flux_rates
,numberOfPools = numberOfPools
)
}
)
setMethod(
"ConstLinDecompOp"
,signature=signature(
mat='missing'
,internal_flux_rates='missing'
,out_flux_rates='ConstantOutFluxRateList_by_PoolIndex'
,numberOfPools='numeric'
,poolNames='missing'
)
,definition=function(
out_flux_rates
,numberOfPools
){
from_integer_flux_lists_with_defaults(
out_flux_rates = out_flux_rates
,numberOfPools = numberOfPools
)
}
)
setMethod(
"ConstLinDecompOp"
,signature=signature(
mat='missing'
,internal_flux_rates='ConstantInternalFluxRateList_by_PoolIndex'
,out_flux_rates='missing'
,numberOfPools='numeric'
,poolNames='missing'
)
,definition=function(
internal_flux_rates
,numberOfPools
){
from_integer_flux_lists_with_defaults(
internal_flux_rates=internal_flux_rates
,numberOfPools = numberOfPools
)
}
)
setMethod(
'ConstLinDecompOp'
,signature=signature(
mat='missing'
,internal_flux_rates='ConstantInternalFluxRateList_by_PoolName'
,out_flux_rates='ConstantOutFluxRateList_by_PoolName'
,poolNames='character'
,numberOfPools='missing'
)
,definition=function(
internal_flux_rates
,out_flux_rates
,poolNames
){
ConstLinDecompOp(
internal_flux_rates=by_PoolIndex(internal_flux_rates,poolNames)
, out_flux_rates=by_PoolIndex(out_flux_rates,poolNames)
,numberOfPools=length(poolNames)
)
}
)
no_outflux_warning=function(){
warning('Compartmental system without out fluxes. For non zero inputs the
material will accumulate in the system.')
}
setMethod(
f="getFunctionDefinition",
signature="ConstLinDecompOp",
definition=function
(object){
return(function(t){object@mat})
}
)
setMethod(
f="getTimeRange",
signature="ConstLinDecompOp",
definition=function
(object)
{
return( c("t_min"=-Inf,"t_max"=Inf))
}
)
setMethod(
f= "getMeanTransitTime",
signature= "ConstLinDecompOp",
definition=function
(object,
inputDistribution
){
f=getFunctionDefinition(object)
g=function(t){spectralNorm(f(t))}
t_max=function(t_end){
t_step=t_end/10
t=seq(0,t_end,t_step)
norms=sapply(t,g)
tm=100*max(norms)
return(tm)
}
t_end=20
t_end_new=t_max(t_end)
while(t_end_new>t_end){
t_end=t_end_new
t_end_new=t_max(t_end)
}
longTailEstimate=t_end
subd=10000
t_step=t_end/subd
t=seq(0,t_end,t_step)
shortTailEstimate=min(sapply(t,g))
ttdd=getTransitTimeDistributionDensity(object,inputDistribution,t)
int2=splinefun(t,ttdd*t)
meanTimeIntegrate=integrate(int2,0,t_end,subdivisions=subd)[["value"]]
return(meanTimeIntegrate)
}
)
setMethod(
f= "getTransitTimeDistributionDensity",
signature= "ConstLinDecompOp",
definition=function
(object,
inputDistribution,
times
){
sVmat=inputDistribution
n=length(inputDistribution)
inputFluxes=BoundInFluxes(
map=function(t0){matrix(nrow=n,ncol=1,0)},
starttime= -Inf,
endtime=+Inf
)
mod=GeneralModel(times,object,sVmat,inputFluxes)
R=getReleaseFlux(mod)
TTD=rowSums(R)
return(TTD)
}
)
setMethod(
f= "getCompartmentalMatrixFunc",
signature(object="ConstLinDecompOp"),
definition=function(object){
getFunctionDefinition(object)
}
)
setMethod(
f= "getConstantCompartmentalMatrix",
signature(object="ConstLinDecompOp"),
definition=function(object){
object@mat
}
)
non_zero_rates=function(all_rates){
all_rates[
as.logical(
lapply(
all_rates
,function(cofr){cofr@rate_constant!=0}
)
)
]
}
setMethod(
f= "getConstantOutFluxRateList_by_PoolIndex",
signature(object="ConstLinDecompOp"),
definition=function(object){
B=object@mat
np=nrow(B)
all_rates=lapply(
1:np
,function(pool){
ConstantOutFluxRate_by_PoolIndex(
sourceIndex=pool
,rate_constant= -sum(B[, pool])
)
}
)
ConstantOutFluxRateList_by_PoolIndex(
non_zero_rates(
all_rates
)
)
}
)
setMethod(
f= "getConstantInternalFluxRateList_by_PoolIndex",
signature(object="ConstLinDecompOp"),
definition=function(object){
B=object@mat
np=nrow(B)
pipes=sets::cset_cartesian(1:np,1:np) - as.set(lapply((1:np),function(i){tuple(i,i)}))
all_rates=lapply(
pipes
,function(tup){
pool_to <-tup[[1]]
pool_from<-tup[[2]]
flux_rate = ConstantInternalFluxRate_by_PoolIndex(
sourceIndex =pool_from
,destinationIndex =pool_to
,rate_constant= B[pool_to, pool_from]
)
}
)
ConstantInternalFluxRateList_by_PoolIndex(
non_zero_rates(
all_rates
)
)
}
) |
"[<-.XMLNode" <-
function(x, i, value)
{
x$children[i] <- value
if(!is.character(i)) {
names(x$children)[i] =
if(inherits(value, "XMLNode"))
xmlName(value)
else
sapply(value, xmlName)
}
x
}
"[[<-.XMLNode" <-
function(x, i, value)
{
x$children[[i]] <- value
if(!is.character(i)) {
names(x$children)[i] =
if(inherits(value, "XMLNode"))
xmlName(value)
else
sapply(value, xmlName)
}
x
}
append <-
append.xmlNode <-
function(to, ...)
{
UseMethod("append")
}
append.XMLNode <-
function(to, ...)
{
args <- list(...)
if(!inherits(args[[1]], "XMLNode") && is.list(args[[1]]))
args <- args[[1]]
idx <- seq(length(to$children) + 1, length=length(args))
args = addNames(args)
if(is.null(to$children))
to$children <- args
else {
to$children[idx] <- args
names(to$children)[idx] <- names(args)
}
to
}
append.default <-
function(to, ...)
base::append(to, ...)
if(FALSE) {
xmlAddChild <-
function(node, child) {
node$children <- append(node$children, list(child))
names(node$children) <- sapply(node$children,xmlName)
node
}
} |
ch_job <- function(n = 1, locale = NULL) {
assert(n, c('integer', 'numeric'))
if (n == 1) {
JobProvider$new(locale = locale)$render()
} else {
x <- JobProvider$new(locale = locale)
replicate(n, x$render())
}
} |
context("EAT")
simulated <- eat:::X2Y2.sim(N = 50, border = 0.1)
model <- EAT(data = simulated, x = c(1,2), y = c(3, 4))
test_that("Return an object EAT of length 5", {
expect_s3_class(model, "EAT")
expect_equal(length(model), 5)
})
test_that("Tree is a list", {
expect_type(model[["tree"]], "list")
})
test_that("Acceptable data: dataframe matrix or list", {
data1 <- data.frame(simulated)
data2 <- as.matrix(simulated)
data3 <- list(x1 = data1$x1,
x2 = data1$x2,
y1 = data1$y1,
y2 = data1$y2)
set.seed(10)
EAT1 <- EAT(data = data1, x = c(1, 2), y = c(3, 4))
set.seed(10)
EAT2 <- EAT(data = data2, x = c(1, 2), y = c(3, 4))
set.seed(10)
EAT3 <- EAT(data = data3, x = c(1, 2), y = c(3, 4))
expect_identical(EAT1, EAT2)
expect_identical(EAT1, EAT3)
})
test_that("Indexes bad defined", {
expect_error(EAT(data = simulated, x = c(1, 8), y = c(3, 4)))
})
test_that("Pareto-dominance property", {
expect_true(checkEAT(model[["tree"]]))
}) |
setMethodS3("findAnnotationDataByChipType", "default", function(chipType, pattern=chipType, ...) {
findAnnotationData(name=chipType, pattern=pattern, set="chipTypes", ...)
}, protected=TRUE) |
knitr::opts_chunk$set(eval = TRUE, message = FALSE, warning = FALSE)
library(economiccomplexity)
head(world_trade_avg_1998_to_2000)
head(world_gdp_avg_1998_to_2000)
bi <- balassa_index(world_trade_avg_1998_to_2000)
head(bi)
bi_dec <- balassa_index(world_trade_avg_1998_to_2000, discrete = F)
head(bi_dec)
com_fit <- complexity_measures(bi)
com_fit$complexity_index_country[1:5]
com_fit$complexity_index_product[1:5]
com_ref <- complexity_measures(bi, method = "reflections")
com_ref$complexity_index_country[1:5]
com_ref$complexity_index_product[1:5]
com_eig <- complexity_measures(bi, method = "eigenvalues")
com_eig$complexity_index_country[1:5]
com_eig$complexity_index_product[1:5]
pro <- proximity(bi)
pro$proximity_country[1:5,1:5]
pro$proximity_product[1:5,1:5]
library(igraph)
net <- projections(pro$proximity_country, pro$proximity_product)
E(net$network_country)[1:5]
E(net$network_product)[1:5]
set.seed(200100)
library(Matrix)
library(ggraph)
aggregated_countries <- aggregate(
world_trade_avg_1998_to_2000$value,
by = list(country = world_trade_avg_1998_to_2000$country),
FUN = sum
)
aggregated_countries <- setNames(aggregated_countries$x, aggregated_countries$country)
V(net$network_country)$size <- aggregated_countries[match(V(net$network_country)$name, names(aggregated_countries))]
ggraph(net$network_country, layout = "kk") +
geom_edge_link(edge_colour = "
geom_node_point(aes(size = size), color = "
geom_node_text(aes(label = name), size = 2, vjust = 2.2) +
ggtitle("Proximity Based Network Projection for Countries") +
theme_void()
set.seed(200100)
aggregated_products <- aggregate(
world_trade_avg_1998_to_2000$value,
by = list(country = world_trade_avg_1998_to_2000$product),
FUN = sum
)
aggregated_products <- setNames(aggregated_products$x, aggregated_products$country)
V(net$network_product)$size <- aggregated_products[match(V(net$network_product)$name, names(aggregated_products))]
ggraph(net$network_product, layout = "kk") +
geom_edge_link(edge_colour = "
geom_node_point(aes(size = size), color = "
geom_node_text(aes(label = name), size = 2, vjust = 2.2) +
ggtitle("Proximity Based Network Projection for Products") +
theme_void()
co <- complexity_outlook(
economiccomplexity_output$balassa_index,
economiccomplexity_output$proximity$proximity_product,
economiccomplexity_output$complexity_measures$complexity_index_product
)
co$complexity_outlook_index[1:5]
co$complexity_outlook_gain[1:5,1:5]
pl <- productivity_levels(world_trade_avg_1998_to_2000, world_gdp_avg_1998_to_2000)
pl$productivity_level_country[1:5]
pl$productivity_level_product[1:5] |
.intervalSystem <- function(intervalSystem, lengths = NULL, data) {
if (is.null(intervalSystem)) {
intervalSystem <- data$defaultIntervalSystem
}
intervalSystem <- match.arg(intervalSystem, c("all", "dyaLen", "dyaPar"))
ret <- list(intervalSystem = intervalSystem)
possibleLengthsIntervalSystem <- switch(intervalSystem,
all = 1:data$n,
dyaLen = 2^(0:as.integer(floor(log2(data$n)) + 1e-6)),
dyaPar = 2^(0:as.integer(floor(log2(data$n)) + 1e-6))
)
ret$possibleLengths <- data$possibleLengths[.inOrdered(data$possibleLengths, possibleLengthsIntervalSystem)]
if (is.null(lengths)) {
lengths <- data$defaultLengths[.inOrdered(data$defaultLengths, ret$possibleLengths)]
} else {
if (!is.numeric(lengths) || any(!is.finite(lengths))) {
stop("lengths must be an integer vector containing finite values")
}
if (any(!is.integer(lengths))) {
lengths <- as.integer(lengths + 1e-6)
}
if (is.unsorted(lengths, strictly = TRUE)) {
lengths <- sort(lengths)
if (is.unsorted(lengths, strictly = TRUE)) {
warning("lengths contains duplicated values, they will be removed")
lengths <- unique(lengths)
}
}
if (any(!(.inOrdered(lengths, ret$possibleLengths)))) {
wrongIntervalSystem <- !(.inOrdered(lengths, possibleLengthsIntervalSystem))
wrongData <- !(.inOrdered(lengths, data$possibleLengths))
if (any(wrongIntervalSystem) && any(wrongData)) {
stop("argument 'lengths' contains inappropriate values.",
" The following lengths are not possible for ", data$n, " observations and ",
"interval system '", intervalSystem, "': ", paste(lengths[wrongIntervalSystem], collapse = ', '),
". ", "And the following lengths are not possible for parametric family '", data$family, "': ",
paste(lengths[wrongData], collapse = ', '), ". ",
"Please see also the documentation for possible choices.")
} else if (any(wrongIntervalSystem)) {
stop("argument 'lengths' contains inappropriate values.",
" The following lengths are not possible for ", data$n, " observations and ",
"interval system '", intervalSystem, "': ", paste(lengths[wrongIntervalSystem], collapse = ', '),
". ", "Please see also the documentation for possible choices.")
} else if (any(wrongData)) {
stop("argument 'lengths' contains inappropriate values.",
" The following lengths are not possible for ", data$n, " observations and ",
"parametric family '", data$family, "': ", paste(lengths[wrongData], collapse = ', '), ". ",
"Please see also the documentation for possible choices.")
}
}
}
ret$lengths <- lengths
if (intervalSystem == "all") {
lengths <- logical(data$n)
lengths[ret$lengths] <- TRUE
if (all(lengths)) {
ret$type = 0L
} else {
ret$type = 1L
ret$argumentsList = list(lengths = lengths)
}
} else if (intervalSystem == "dyaLen") {
if (length(lengths) == as.integer(floor(log2(data$n)) + 1e-6) + 1) {
ret$type = 10L
} else {
ret$type = 11L
ret$argumentsList = list(lengths = as.integer(ret$lengths))
}
} else if (intervalSystem == "dyaPar") {
if (length(lengths) == as.integer(floor(log2(data$n)) + 1e-6) + 1) {
ret$type = 20L
} else {
ret$type = 21L
ret$argumentsList = list(lengths = as.integer(ret$lengths))
}
}
ret
} |
output$parametric_changepoint_table_select <- DT::renderDataTable(options=list(scrollY = 150, scrollCollapse = FALSE, deferRender = FALSE, dom = 'frtS'), extensions = 'Scroller', selection = "multiple", rownames = FALSE,{
if (length(yuimaGUItable$series)==0){
NoData <- data.frame("Symb"=NA,"Please load some data first"=NA, check.names = FALSE)
return(NoData[-1,])
}
return (yuimaGUItable$series)
})
parametric_seriesToChangePoint <- reactiveValues(table=data.frame())
observeEvent(input$parametric_changepoint_button_select, priority = 1, {
parametric_seriesToChangePoint$table <<- rbind(parametric_seriesToChangePoint$table, yuimaGUItable$series[(rownames(yuimaGUItable$series) %in% rownames(yuimaGUItable$series)[input$parametric_changepoint_table_select_rows_selected]) & !(rownames(yuimaGUItable$series) %in% rownames(parametric_seriesToChangePoint$table)),])
})
observeEvent(input$parametric_changepoint_button_selectAll, priority = 1, {
parametric_seriesToChangePoint$table <<- rbind(parametric_seriesToChangePoint$table, yuimaGUItable$series[(rownames(yuimaGUItable$series) %in% rownames(yuimaGUItable$series)[input$parametric_changepoint_table_select_rows_all]) & !(rownames(yuimaGUItable$series) %in% rownames(parametric_seriesToChangePoint$table)),])
})
output$parametric_changepoint_table_selected <- DT::renderDataTable(options=list(order = list(1, 'desc'), scrollY = 150, scrollCollapse = FALSE, deferRender = FALSE, dom = 'frtS'), extensions = 'Scroller', rownames = FALSE, selection = "multiple",{
if (length(rownames(parametric_seriesToChangePoint$table))==0){
NoData <- data.frame("Symb"=NA,"Select from table beside"=NA, check.names = FALSE)
return(NoData[-1,])
}
return (parametric_seriesToChangePoint$table)
})
observe({
if(length(parametric_seriesToChangePoint$table)!=0){
if (length(yuimaGUItable$series)==0)
parametric_seriesToChangePoint$table <<- data.frame()
else
parametric_seriesToChangePoint$table <<- parametric_seriesToChangePoint$table[which(as.character(parametric_seriesToChangePoint$table[,"Symb"]) %in% as.character(yuimaGUItable$series[,"Symb"])),]
}
})
observeEvent(input$parametric_changepoint_button_delete, priority = 1,{
if (!is.null(input$parametric_changepoint_table_selected_rows_selected))
parametric_seriesToChangePoint$table <<- parametric_seriesToChangePoint$table[-input$parametric_changepoint_table_selected_rows_selected,]
})
observeEvent(input$parametric_changepoint_button_deleteAll, priority = 1,{
if (!is.null(input$parametric_changepoint_table_selected_rows_all))
parametric_seriesToChangePoint$table <<- parametric_seriesToChangePoint$table[-input$parametric_changepoint_table_selected_rows_all,]
})
output$parametric_changepoint_model <- renderUI({
choices <- as.vector(defaultModels[names(defaultModels)=="Diffusion process"])
sel <- choices[1]
for(i in names(yuimaGUIdata$usr_model))
if (yuimaGUIdata$usr_model[[i]]$class=="Diffusion process") choices <- c(i, choices)
selectInput("parametric_changepoint_model", label = "Model", choices = choices, multiple = FALSE, selected = sel)
})
parametric_range_selectRange <- reactiveValues(x=NULL, y=NULL)
observe({
if (!is.null(input$parametric_selectRange_brush) & !is.null(input$parametric_plotsRangeSeries)){
data <- getData(input$parametric_plotsRangeSeries)
test <- (length(index(window(data, start = input$parametric_selectRange_brush$xmin, end = input$parametric_selectRange_brush$xmax))) > 3)
if (test==TRUE){
parametric_range_selectRange$x <- c(as.Date(input$parametric_selectRange_brush$xmin), as.Date(input$parametric_selectRange_brush$xmax))
parametric_range_selectRange$y <- c(input$parametric_selectRange_brush$ymin, input$parametric_selectRange_brush$ymax)
}
}
})
observe({
shinyjs::toggle(id="parametric_plotsRangeErrorMessage", condition = nrow(parametric_seriesToChangePoint$table)==0)
shinyjs::toggle(id="parametric_plotsRangeAll", condition = nrow(parametric_seriesToChangePoint$table)!=0)
})
observe({
symb <- input$parametric_plotsRangeSeries
if(!is.null(symb))
if (symb %in% rownames(yuimaGUItable$series)){
data <- getData(symb)
incr <- na.omit(Delt(data, type = "arithmetic"))
condition <- all(is.finite(incr))
shinyjs::toggle("parametric_selectRangeReturns", condition = condition)
parametric_range_selectRange$x <- NULL
parametric_range_selectRange$y <- NULL
start <- as.character(parametric_seriesToChangePoint$table[input$parametric_plotsRangeSeries,"From"])
end <- as.character(parametric_seriesToChangePoint$table[input$parametric_plotsRangeSeries,"To"])
if(class(index(data))=="numeric"){
start <- as.numeric(start)
end <- as.numeric(end)
}
output$parametric_selectRange <- renderPlot({
if ((symb %in% rownames(yuimaGUItable$series) & (symb %in% rownames(parametric_seriesToChangePoint$table)))){
par(bg="black")
plot.zoo(window(data, start = parametric_range_selectRange$x[1], end = parametric_range_selectRange$x[2]), main=symb, xlab="Index", ylab=NA, log=switch(input$parametric_scale_selectRange,"Linear"="","Logarithmic (Y)"="y", "Logarithmic (X)"="x", "Logarithmic (XY)"="xy"), col="grey", col.axis="grey", col.lab="grey", col.main="grey", fg="black")
lines(window(data, start = start, end = end), col = "green")
grid(col="grey")
}
})
output$parametric_selectRangeReturns <- renderPlot({
if (symb %in% rownames(yuimaGUItable$series) & (symb %in% rownames(parametric_seriesToChangePoint$table)) & condition){
par(bg="black")
plot.zoo( window(incr, start = parametric_range_selectRange$x[1], end = parametric_range_selectRange$x[2]), main=paste(symb, " - Percentage Increments"), xlab="Index", ylab=NA, log=switch(input$parametric_scale_selectRange,"Linear"="","Logarithmic (Y)"="", "Logarithmic (X)"="x", "Logarithmic (XY)"="x"), col="grey", col.axis="grey", col.lab="grey", col.main="grey", fg="black")
lines(window(incr, start = start, end = end), col = "green")
grid(col="grey")
}
})
}
})
output$parametric_plotsRangeSeries <- renderUI({
selectInput("parametric_plotsRangeSeries", label = "Series", choices = rownames(parametric_seriesToChangePoint$table), selected = input$parametric_plotsRangeSeries)
})
output$parametric_chooseRange <- renderUI({
sel <- "full"
if (!is.null(parametric_range_selectRange$x)) sel <- "selected"
selectInput("parametric_chooseRange", label = "Range", choices = c("Full Range" = "full", "Select Range from Charts" = "selected", "Specify Range" = "specify"), selected = sel)
})
output$parametric_chooseRange_specify <- renderUI({
if(!is.null(input$parametric_plotsRangeSeries)) {
data <- getData(input$parametric_plotsRangeSeries)
if(class(index(data))=="numeric")
return(div(
column(6,numericInput("parametric_chooseRange_specify_t0", label = "From", min = start(data), max = end(data), value = start(data))),
column(6,numericInput("parametric_chooseRange_specify_t1", label = "To", min = start(data), max = end(data), value = end(data)))
))
if(class(index(data))=="Date")
return(dateRangeInput("parametric_chooseRange_specify_date", start = start(data), end = end(data), label = "Specify Range"))
}
})
observe({
shinyjs::toggle(id = "parametric_chooseRange_specify", condition = (input$parametric_chooseRange)=="specify")
})
updateRange_parametric_seriesToChangePoint <- function(symb, range = c("full","selected","specify"), type = c("Date", "numeric")){
for (i in symb){
data <- getData(i)
if (range == "full"){
levels(parametric_seriesToChangePoint$table[,"From"]) <- c(levels(parametric_seriesToChangePoint$table[,"From"]), as.character(start(data)))
levels(parametric_seriesToChangePoint$table[,"To"]) <- c(levels(parametric_seriesToChangePoint$table[,"To"]), as.character(end(data)))
parametric_seriesToChangePoint$table[i,"From"] <<- as.character(start(data))
parametric_seriesToChangePoint$table[i,"To"] <<- as.character(end(data))
}
if (range == "selected"){
if(!is.null(parametric_range_selectRange$x) & class(index(data))==type){
start <- parametric_range_selectRange$x[1]
end <- parametric_range_selectRange$x[2]
if(class(index(data))=="numeric"){
start <- as.numeric(start)
end <- as.numeric(end)
}
start <- max(start(data),start)
end <- min(end(data), end)
levels(parametric_seriesToChangePoint$table[,"From"]) <- c(levels(parametric_seriesToChangePoint$table[,"From"]), as.character(start))
levels(parametric_seriesToChangePoint$table[,"To"]) <- c(levels(parametric_seriesToChangePoint$table[,"To"]), as.character(end))
parametric_seriesToChangePoint$table[i,"From"] <<- as.character(start)
parametric_seriesToChangePoint$table[i,"To"] <<- as.character(end)
}
}
if (range == "specify"){
if(class(index(data))==type){
if(class(index(data))=="Date"){
start <- input$parametric_chooseRange_specify_date[1]
end <- input$parametric_chooseRange_specify_date[2]
}
if(class(index(data))=="numeric"){
start <- input$parametric_chooseRange_specify_t0
end <- input$parametric_chooseRange_specify_t1
}
start <- max(start(data),start)
end <- min(end(data), end)
levels(parametric_seriesToChangePoint$table[,"From"]) <- c(levels(parametric_seriesToChangePoint$table[,"From"]), as.character(start))
levels(parametric_seriesToChangePoint$table[,"To"]) <- c(levels(parametric_seriesToChangePoint$table[,"To"]), as.character(end))
parametric_seriesToChangePoint$table[i,"From"] <<- as.character(start)
parametric_seriesToChangePoint$table[i,"To"] <<- as.character(end)
}
}
}
}
observeEvent(input$parametric_selectRange_dbclick, priority = 1, {
updateRange_parametric_seriesToChangePoint(input$parametric_plotsRangeSeries, range = "selected", type = class(index(getData(input$parametric_plotsRangeSeries))))
})
observeEvent(input$parametric_buttonApplyRange, priority = 1, {
updateRange_parametric_seriesToChangePoint(input$parametric_plotsRangeSeries, range = input$parametric_chooseRange, type = class(index(getData(input$parametric_plotsRangeSeries))))
})
observeEvent(input$parametric_buttonApplyAllRange, priority = 1, {
updateRange_parametric_seriesToChangePoint(rownames(parametric_seriesToChangePoint$table), range = input$parametric_chooseRange, type = class(index(getData(input$parametric_plotsRangeSeries))))
})
parametric_modal_prev_buttonDelta <- 0
parametric_modal_prev_buttonAllDelta <- 0
observe({
for (symb in rownames(parametric_seriesToChangePoint$table)){
if (is.null(yuimaGUIsettings$delta[[symb]])) yuimaGUIsettings$delta[[symb]] <<- 0.01
if (is.null(yuimaGUIsettings$toLog[[symb]])) yuimaGUIsettings$toLog[[symb]] <<- FALSE
data <- getData(symb)
if (yuimaGUIsettings$toLog[[symb]]==TRUE) data <- log(data)
for (modName in input$parametric_changepoint_model){
if (class(try(setModelByName(modName, jumps = NA, AR_C = NA, MA_C = NA)))!="try-error"){
if (is.null(yuimaGUIsettings$estimation[[modName]]))
yuimaGUIsettings$estimation[[modName]] <<- list()
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]]))
yuimaGUIsettings$estimation[[modName]][[symb]] <<- list()
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["fixed"]]) | parametric_modal_prev_buttonDelta!=input$parametric_modal_button_applyDelta | parametric_modal_prev_buttonAllDelta!=input$parametric_modal_button_applyAllDelta)
yuimaGUIsettings$estimation[[modName]][[symb]][["fixed"]] <<- list()
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["start"]]) | parametric_modal_prev_buttonDelta!=input$parametric_modal_button_applyDelta | parametric_modal_prev_buttonAllDelta!=input$parametric_modal_button_applyAllDelta)
yuimaGUIsettings$estimation[[modName]][[symb]][["start"]] <<- list()
startMinMax <- defaultBounds(name = modName,
jumps = NA,
AR_C = NA,
MA_C = NA,
strict = FALSE,
data = data,
delta = yuimaGUIsettings$delta[[symb]])
upperLower <- defaultBounds(name = modName,
jumps = NA,
AR_C = NA,
MA_C = NA,
strict = TRUE,
data = data,
delta = yuimaGUIsettings$delta[[symb]])
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["startMin"]]) | parametric_modal_prev_buttonDelta!=input$parametric_modal_button_applyDelta | parametric_modal_prev_buttonAllDelta!=input$parametric_modal_button_applyAllDelta)
yuimaGUIsettings$estimation[[modName]][[symb]][["startMin"]] <<- startMinMax$lower
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["startMax"]]) | parametric_modal_prev_buttonDelta!=input$parametric_modal_button_applyDelta | parametric_modal_prev_buttonAllDelta!=input$parametric_modal_button_applyAllDelta)
yuimaGUIsettings$estimation[[modName]][[symb]][["startMax"]] <<- startMinMax$upper
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["upper"]]) | parametric_modal_prev_buttonDelta!=input$parametric_modal_button_applyDelta | parametric_modal_prev_buttonAllDelta!=input$parametric_modal_button_applyAllDelta)
yuimaGUIsettings$estimation[[modName]][[symb]][["upper"]] <<- upperLower$upper
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["lower"]]) | parametric_modal_prev_buttonDelta!=input$parametric_modal_button_applyDelta | parametric_modal_prev_buttonAllDelta!=input$parametric_modal_button_applyAllDelta)
yuimaGUIsettings$estimation[[modName]][[symb]][["lower"]] <<- upperLower$lower
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["method"]])){
yuimaGUIsettings$estimation[[modName]][[symb]][["method"]] <<- "L-BFGS-B"
}
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["trials"]]))
yuimaGUIsettings$estimation[[modName]][[symb]][["trials"]] <<- 1
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["seed"]]))
yuimaGUIsettings$estimation[[modName]][[symb]][["seed"]] <<- NA
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["joint"]]))
yuimaGUIsettings$estimation[[modName]][[symb]][["joint"]] <<- FALSE
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["aggregation"]]))
yuimaGUIsettings$estimation[[modName]][[symb]][["aggregation"]] <<- TRUE
if (is.null(yuimaGUIsettings$estimation[[modName]][[symb]][["threshold"]]))
yuimaGUIsettings$estimation[[modName]][[symb]][["threshold"]] <<- NA
}
}
}
parametric_modal_prev_buttonDelta <<- input$advancedSettingsButtonApplyDelta
parametric_modal_prev_buttonAllDelta <<- input$advancedSettingsButtonApplyAllDelta
})
observe({
shinyjs::toggle(id="parametric_modal_body", condition = nrow(parametric_seriesToChangePoint$table)!=0)
shinyjs::toggle(id="parametric_modal_errorMessage", condition = nrow(parametric_seriesToChangePoint$table)==0)
})
output$parametric_modal_series <- renderUI({
if (nrow(parametric_seriesToChangePoint$table)!=0)
selectInput(inputId = "parametric_modal_series", label = "Series", choices = rownames(parametric_seriesToChangePoint$table))
})
output$parametric_modal_delta <- renderUI({
if (!is.null(input$parametric_modal_series))
return (numericInput("parametric_modal_delta", label = paste("delta", input$parametric_modal_series), value = yuimaGUIsettings$delta[[input$parametric_modal_series]]))
})
output$parametric_modal_toLog <- renderUI({
if (!is.null(input$parametric_modal_model) & !is.null(input$parametric_modal_series)){
choices <- FALSE
if (all(getData(input$parametric_modal_series)>0)) choices <- c(FALSE, TRUE)
return (selectInput("parametric_modal_toLog", label = "Convert to log", choices = choices, selected = yuimaGUIsettings$toLog[[input$parametric_modal_series]]))
}
})
output$parametric_modal_model <- renderUI({
if(!is.null(input$parametric_changepoint_model))
selectInput(inputId = "parametric_modal_model", label = "Model", choices = input$parametric_changepoint_model)
})
output$parametric_modal_parameter <- renderUI({
if (!is.null(input$parametric_modal_model)){
mod <- setModelByName(input$parametric_modal_model, jumps = NA, AR_C = NA, MA_C = NA)
par <- getAllParams(mod, 'Diffusion process')
selectInput(inputId = "parametric_modal_parameter", label = "Parameter", choices = par)
}
})
output$parametric_modal_start <- renderUI({
if (!is.null(input$parametric_modal_model) & !is.null(input$parametric_modal_series) & !is.null(input$parametric_modal_parameter))
numericInput(inputId = "parametric_modal_start", label = "start", value = yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["start"]][[input$parametric_modal_parameter]])
})
output$parametric_modal_startMin <- renderUI({
input$parametric_modal_button_applyDelta
input$parametric_modal_button_applyAllDelta
if (!is.null(input$parametric_modal_start) & !is.null(input$parametric_modal_model) & !is.null(input$parametric_modal_series) & !is.null(input$parametric_modal_parameter))
if (is.na(input$parametric_modal_start))
numericInput(inputId = "parametric_modal_startMin", label = "start: Min", value = yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["startMin"]][[input$parametric_modal_parameter]])
})
output$parametric_modal_startMax <- renderUI({
input$parametric_modal_button_applyDelta
input$parametric_modal_button_applyAllDelta
if (!is.null(input$parametric_modal_start) & !is.null(input$parametric_modal_model) & !is.null(input$parametric_modal_series) & !is.null(input$parametric_modal_parameter))
if (is.na(input$parametric_modal_start))
numericInput(inputId = "parametric_modal_startMax", label = "start: Max", value = yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["startMax"]][[input$parametric_modal_parameter]])
})
output$parametric_modal_lower <- renderUI({
if (!is.null(input$parametric_modal_model) & !is.null(input$parametric_modal_series) & !is.null(input$parametric_modal_parameter))
if (input$parametric_modal_method=="L-BFGS-B" | input$parametric_modal_method=="Brent")
numericInput("parametric_modal_lower", label = "lower", value = yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["lower"]][[input$parametric_modal_parameter]])
})
output$parametric_modal_upper <- renderUI({
if (!is.null(input$parametric_modal_model) & !is.null(input$parametric_modal_series) & !is.null(input$parametric_modal_parameter))
if (input$parametric_modal_method=="L-BFGS-B" | input$parametric_modal_method=="Brent")
numericInput("parametric_modal_upper", label = "upper", value = yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["upper"]][[input$parametric_modal_parameter]])
})
output$parametric_modal_method <- renderUI({
if (!is.null(input$parametric_modal_model) & !is.null(input$parametric_modal_series))
selectInput("parametric_modal_method", label = "method", choices = c("L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN", "Brent"), selected = yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["method"]])
})
output$parametric_modal_trials <- renderUI({
if (!is.null(input$parametric_modal_model) & !is.null(input$parametric_modal_series) & !is.null(input$parametric_modal_method))
numericInput("parametric_modal_trials", label = "trials", min = 1, value = ifelse(input$parametric_modal_method=="SANN" & yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["method"]]!="SANN",1,yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["trials"]]))
})
output$parametric_modal_seed <- renderUI({
if (!is.null(input$parametric_modal_model) & !is.null(input$parametric_modal_series))
numericInput("parametric_modal_seed", label = "seed", min = 1, value = yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["seed"]])
})
observeEvent(input$parametric_modal_button_applyDelta, {
yuimaGUIsettings$delta[[input$parametric_modal_series]] <<- input$parametric_modal_delta
yuimaGUIsettings$toLog[[input$parametric_modal_series]] <<- input$parametric_modal_toLog
})
observeEvent(input$parametric_modal_button_applyAllDelta, {
for (symb in rownames(parametric_seriesToChangePoint$table)){
yuimaGUIsettings$delta[[symb]] <<- input$parametric_modal_delta
if (input$parametric_modal_toLog==FALSE) yuimaGUIsettings$toLog[[symb]] <<- input$parametric_modal_toLog
else if (all(getData(symb)>0)) yuimaGUIsettings$toLog[[symb]] <<- input$parametric_modal_toLog
}
})
observeEvent(input$parametric_modal_button_applyModel,{
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["start"]][[input$parametric_modal_parameter]] <<- input$parametric_modal_start
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["startMin"]][[input$parametric_modal_parameter]] <<- input$parametric_modal_startMin
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["startMax"]][[input$parametric_modal_parameter]] <<- input$parametric_modal_startMax
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["lower"]][[input$parametric_modal_parameter]] <<- input$parametric_modal_lower
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["upper"]][[input$parametric_modal_parameter]] <<- input$parametric_modal_upper
})
observeEvent(input$parametric_modal_button_applyAllModel,{
for (symb in rownames(parametric_seriesToChangePoint$table)){
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[symb]][["start"]][[input$parametric_modal_parameter]] <<- input$parametric_modal_start
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[symb]][["startMin"]][[input$parametric_modal_parameter]] <<- input$parametric_modal_startMin
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[symb]][["startMax"]][[input$parametric_modal_parameter]] <<- input$parametric_modal_startMax
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[symb]][["lower"]][[input$parametric_modal_parameter]] <<- input$parametric_modal_lower
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[symb]][["upper"]][[input$parametric_modal_parameter]] <<- input$parametric_modal_upper
}
})
observeEvent(input$parametric_modal_button_applyGeneral,{
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["method"]] <<- input$parametric_modal_method
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["trials"]] <<- input$parametric_modal_trials
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[input$parametric_modal_series]][["seed"]] <<- input$parametric_modal_seed
})
observeEvent(input$parametric_modal_button_applyAllModelGeneral,{
for (symb in rownames(parametric_seriesToChangePoint$table)){
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[symb]][["method"]] <<- input$parametric_modal_method
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[symb]][["trials"]] <<- input$parametric_modal_trials
yuimaGUIsettings$estimation[[input$parametric_modal_model]][[symb]][["seed"]] <<- input$parametric_modal_seed
}
})
output$parametric_changepoint_symb <- renderUI({
n <- names(yuimaGUIdata$cpYuima)
if(length(n)!=0)
selectInput("parametric_changepoint_symb", "Symbol", choices = sort(n), selected = last(n))
})
observeEvent(input$parametric_changepoint_button_startEstimation, {
if (length(rownames(parametric_seriesToChangePoint$table))!=0)
closeAlert(session = session, alertId = "parametric_changepoint_alert_err")
withProgress(message = 'Analyzing: ', value = 0, {
errors <- c()
for (symb in rownames(parametric_seriesToChangePoint$table)){
incProgress(1/length(rownames(parametric_seriesToChangePoint$table)), detail = symb)
test <- try(addCPoint(modelName = input$parametric_changepoint_model,
symb = symb,
fracL = input$parametric_modal_rangeFraction[1]/100,
fracR = input$parametric_modal_rangeFraction[2]/100,
from = as.character(parametric_seriesToChangePoint$table[symb, "From"]),
to = as.character(parametric_seriesToChangePoint$table[symb, "To"]),
delta = yuimaGUIsettings$delta[[symb]],
toLog = yuimaGUIsettings$toLog[[symb]],
start = yuimaGUIsettings$estimation[[input$parametric_changepoint_model]][[symb]][["start"]],
startMin = yuimaGUIsettings$estimation[[input$parametric_changepoint_model]][[symb]][["startMin"]],
startMax = yuimaGUIsettings$estimation[[input$parametric_changepoint_model]][[symb]][["startMax"]],
method = yuimaGUIsettings$estimation[[input$parametric_changepoint_model]][[symb]][["method"]],
trials = yuimaGUIsettings$estimation[[input$parametric_changepoint_model]][[symb]][["trials"]],
seed = yuimaGUIsettings$estimation[[input$parametric_changepoint_model]][[symb]][["seed"]],
lower = yuimaGUIsettings$estimation[[input$parametric_changepoint_model]][[symb]][["lower"]],
upper = yuimaGUIsettings$estimation[[input$parametric_changepoint_model]][[symb]][["upper"]]))
if(class(test)=="try-error")
errors <- c(errors, symb)
}
if (!is.null(errors))
createAlert(session = session, anchorId = "parametric_changepoint_alert", alertId = "parametric_changepoint_alert_err", style = "error", dismiss = TRUE, content = paste("Unable to estimate Change Point of:", paste(errors, collapse = " ")))
})
})
parametric_range_changePoint <- reactiveValues(x=NULL, y=NULL)
observe({
if (!is.null(input$parametric_changePoint_brush) & !is.null(input$parametric_changepoint_symb)){
data <- yuimaGUIdata$cpYuima[[input$parametric_changepoint_symb]]$series
test <- (length(index(window(data, start = input$parametric_changePoint_brush$xmin, end = input$parametric_changePoint_brush$xmax))) > 3)
if (test==TRUE){
parametric_range_changePoint$x <- c(as.Date(input$parametric_changePoint_brush$xmin), as.Date(input$parametric_changePoint_brush$xmax))
parametric_range_changePoint$y <- c(input$parametric_changePoint_brush$ymin, input$parametric_changePoint_brush$ymax)
}
}
})
observeEvent(input$parametric_changePoint_dbclick,{
parametric_range_changePoint$x <- c(NULL, NULL)
})
observeEvent(input$parametric_changepoint_symb, {
parametric_range_changePoint$x <- c(NULL, NULL)
output$parametric_changepoint_plot_series <- renderPlot({
if(!is.null(input$parametric_changepoint_symb)) {
cp <- isolate({yuimaGUIdata$cpYuima[[input$parametric_changepoint_symb]]})
data <- cp$series
toLog <- cp$info$toLog
symb <- cp$info$symb
par(bg="black")
plot(window(data, start = parametric_range_changePoint$x[1], end = parametric_range_changePoint$x[2]), main=ifelse(toLog==TRUE, paste("log(",symb,")", sep = ""), symb), xlab="Index", ylab=NA, log=switch(input$parametric_changepoint_scale,"Linear"="","Logarithmic (Y)"="y", "Logarithmic (X)"="x", "Logarithmic (XY)"="xy"), col="green", col.axis="grey", col.lab="grey", col.main="grey", fg="black")
abline(v=cp$tau, col = "red")
grid(col="grey")
}
})
})
output$parametric_changepoint_info <- renderUI({
if(!is.null(input$parametric_changepoint_symb)){
info <- isolate({yuimaGUIdata$cpYuima[[input$parametric_changepoint_symb]]$info})
div(
h3(info$model),
withMathJax(printModelLatex(names = info$model, process = "Diffusion process")), br(),
h4(
em(paste("Change Point:", as.character(isolate({yuimaGUIdata$cpYuima[[input$parametric_changepoint_symb]]$tau}))))
),
align="center"
)
}
})
output$parametric_changepoint_modal_info_text <- renderUI({
info <- yuimaGUIdata$cpYuima[[input$parametric_changepoint_symb]]$info
div(
h3(input$parametric_changepoint_symb, " - " , info$model, class = "hModal"),
h4(
em("series to log:"), info$toLog, br(),
em("method:"), info$method, br(),
em("trials:"), info$trials, br(),
em("seed:"), info$seed, br(), class = "hModal"
),
align="center")
})
output$parametric_changepoint_modal_info_tableL <- renderTable(rownames = T, {
cp <- yuimaGUIdata$cpYuima[[input$parametric_changepoint_symb]]
tL <- summary(cp$qmleL)@coef
for (i in 1:nrow(tL)){
tL[i,"Estimate"] <- signifDigits(value = tL[i,"Estimate"], sd = tL[i,"Std. Error"])
tL[i,"Std. Error"] <- signifDigits(value = tL[i,"Std. Error"], sd = tL[i,"Std. Error"])
}
return(tL)
})
output$parametric_changepoint_modal_info_tableR <- renderTable(rownames = T, {
cp <- yuimaGUIdata$cpYuima[[input$parametric_changepoint_symb]]
tR <- summary(cp$qmleR)@coef
for (i in 1:nrow(tR)){
tR[i,"Estimate"] <- signifDigits(value = tR[i,"Estimate"], sd = tR[i,"Std. Error"])
tR[i,"Std. Error"] <- signifDigits(value = tR[i,"Std. Error"], sd = tR[i,"Std. Error"])
}
return(tR)
})
observeEvent(input$parametric_changepoint_button_delete_estimated, {
yuimaGUIdata$cpYuima[[input$parametric_changepoint_symb]] <<- NULL
})
observeEvent(input$parametric_changepoint_button_deleteAll_estimated, {
yuimaGUIdata$cpYuima <<- list()
}) |
library(tinytest)
library(ggiraph)
library(ggplot2)
library(xml2)
source("setup.R")
{
eval(test_scale, envir = list(name = "scale_size_interactive"))
eval(test_scale, envir = list(name = "scale_size_area_interactive"))
eval(test_scale, envir = list(name = "scale_size_continuous_interactive"))
eval(test_scale, envir = list(name = "scale_size_discrete_interactive"))
eval(test_scale, envir = list(name = "scale_size_binned_interactive"))
eval(test_scale, envir = list(name = "scale_size_binned_area_interactive"))
eval(test_scale, envir = list(name = "scale_size_date_interactive"))
eval(test_scale, envir = list(name = "scale_size_datetime_interactive"))
eval(test_scale, envir = list(name = "scale_size_ordinal_interactive"))
eval(test_scale, envir = list(name = "scale_radius_interactive"))
} |
.nomValues<-function(indivN,i,k){
indivN_t1<-indivN[indivN[,"indiv"]==i ,]
indivN1<-indivN_t1[indivN_t1[,"variable"]==k ,]
as.matrix(indivN1)
}
.p<-function(list,l){
resul<-0
if(sum(list[,"value"]==l)!=0){
if(any(dimnames(list)[[2]]=="frequency")){
resul<-list[list[,"value"]==l,]["frequency"]
}
else{
resul<-1/nrow(list)
}
}
resul
}
.pp<-function(list,indivN,k,l){
resul<-0
if(sum(list[,"value"]==l)!=0){
indivN1<-indivN[indivN[,"variable"]==k ,]
resul<-1/sum(indivN1[,"value"]==l)
}
resul
}
.gsum<-function(table.Symbolic,i,j,k){
indivIC<-table.Symbolic$indivIC
indivN<-table.Symbolic$indivN
variables<-table.Symbolic$variables
gsum=0
if(is.null(k))stop("wrong k null")
if(length(k)!=1)stop(paste("wrong k",k))
if(variables[k,"type"]=="IC"){
gsum<-max(indivIC[i,k,2],indivIC[j,k,2])-min(indivIC[i,k,1],indivIC[j,k,1])
}
if (variables[k,"type"]=="N" || variables[k,"type"]=="MN"){
indivN_t1<-indivN[indivN[,"indiv"]==i ,]
indivN_t2<-indivN[indivN[,"indiv"]==j ,]
indivN1<-indivN_t1[indivN_t1[,"variable"]==k ,]
indivN2<-indivN_t2[indivN_t2[,"variable"]==k ,]
gsum<-nrow(indivN1)+nrow(indivN2)-.gprod(table.Symbolic,i,j,k)
}
gsum
}
.gprod<-function(table.Symbolic,i,j,k){
indivIC<-table.Symbolic$indivIC
indivN<-table.Symbolic$indivN
variables<-table.Symbolic$variables
gprod=0
if(is.null(k))stop("wrong k null")
if(length(k)!=1)stop(paste("wrong k",k))
if(variables[k,"type"]=="IC"){
if(indivIC[i,k,1]>=indivIC[j,k,2] || indivIC[i,k,2]<=indivIC[j,k,1]){
gprod<-0
}
else{
if (indivIC[i, k, 1] <= indivIC[j, k, 1]) {
if (indivIC[i, k, 2] <= indivIC[j, k, 2])
gprod <- abs(indivIC[i, k, 2] - indivIC[j, k,
1])
else gprod <- abs(indivIC[j, k, 2] - indivIC[j, k,
1])
}
else {
if (indivIC[j, k, 2] <= indivIC[i, k, 2])
gprod <- abs(indivIC[j, k, 2] - indivIC[i, k,
1])
else gprod <- abs(indivIC[i, k, 2] - indivIC[i, k,
1])
}
}
}
if (variables[k,"type"]=="N" || variables[k,"type"]=="MN"){
gprod<-0
indivN_t1<-indivN[indivN[,"indiv"]==i ,]
indivN_t2<-indivN[indivN[,"indiv"]==j ,]
indivN1<-indivN_t1[indivN_t1[,"variable"]==k ,]
indivN2<-indivN_t2[indivN_t2[,"variable"]==k ,]
if (!is.null(indivN1[,"value"]) && !is.null(indivN1[,"value"]))
{
for (z in 1:(nrow(indivN1)))
{
if ( sum(indivN2[,"value"]==indivN1[z,"value"])!=0)
{
gprod<-gprod+1
}
}
}
}
gprod
}
.gabs<-function(table.Symbolic,i,k){
indivIC<-table.Symbolic$indivIC
indivN<-table.Symbolic$indivN
variables<-table.Symbolic$variables
gabs<-0
if(is.null(k))stop("wrong k null")
if(length(k)!=1)stop(paste("wrong k",k))
if(variables[k,"type"]=="IC"){
gabs<-abs(indivIC[i,k,2]-indivIC[i,k,1])
}
if (variables[k,"type"]=="N" || variables[k,"type"]=="MN"){
indivN_t1<-indivN[indivN[,"indiv"]==i ,]
indivN1<-indivN_t1[indivN_t1[,"variable"]==k ,]
gabs<-nrow(indivN1)
}
gabs
}
.gdomainLength<-function(table.Symbolic,k){
indivIC<-table.Symbolic$indivIC
indivN<-table.Symbolic$indivN
variables<-table.Symbolic$variables
if(is.null(k))stop("wrong k null")
if(length(k)!=1)stop(paste("wrong k",k))
if(variables[k,"type"]=="IC"){
gdomainLength<-abs(max(indivIC[,k,1])-min(indivIC[,k,1]))
}
if (variables[k,"type"]=="N"){
gdomainLength<-length(unique(indivN[indivN[,"variable"]==k,]))
}
if (variables[k,"type"]=="MN"){
gdomainLength<-length(unique(indivN[indivN[,"variable"]==k,]))
}
gdomainLength
}
.dpobject<-function(table.Symbolic,i,variableSelection){
dp<-1
for(k in variableSelection){
dp<-dp*.gabs(table.Symbolic,i,k)
}
dp
}
.dpsum<-function(table.Symbolic,i,j,variableSelection){
dp<-1
for(k in variableSelection){
dp<-dp*.gsum(table.Symbolic,i,j,k)
}
dp
}
.dpprod<-function(table.Symbolic,i,j,variableSelection){
dp<-1
for(k in variableSelection){
dp<-dp*.gprod(table.Symbolic,i,j,k)
}
dp
}
.dpmax<-function(table.Symbolic,variableSelection){
dpobjects<-NULL
for(i in 1:length(table.Symbolic$individuals)){
dpobjects<-c(dpobjects,.dpobject(table.Symbolic,i,variableSelection))
}
max(dpobjects)
}
.C1alpha<-function(table.Symbolic,i,j,k){
.gprod(table.Symbolic,i,j,k)
}
.C1beta<-function(table.Symbolic,i,j,k){
indivIC<-table.Symbolic$indivIC
indivN<-table.Symbolic$indivN
variables<-table.Symbolic$variables
if(table.Symbolic$variables[k,"type"]=="N" || table.Symbolic$variables[k,"type"]=="MN"){
beta<-.gsum(table.Symbolic,i,j,k)-.gabs(table.Symbolic,j,k)
}
if(table.Symbolic$variables[k,"type"]=="IC"){
if (indivIC[i,k,1]<=indivIC[j,k,1])
{
if (indivIC[i,k,2]<=indivIC[j,k,2])
beta<-abs(indivIC[i,k,1]-indivIC[j,k,1])
else
beta<-abs(indivIC[j,k,2]-indivIC[j,k,2])+abs(indivIC[i,k,2]-indivIC[i,k,2])
}
else
{
if (indivIC[j,k,2]<=indivIC[i,k,2])
beta<-abs(indivIC[i,k,2]-indivIC[j,k,2])
else
beta<-0
}
}
beta
}
.C1gamma<-function(table.Symbolic,i,j,k){
indivIC<-table.Symbolic$indivIC
indivN<-table.Symbolic$indivN
variables<-table.Symbolic$variables
if(table.Symbolic$variables[k,"type"]=="N" || table.Symbolic$variables[k,"type"]=="MN"){
gamma<-.gsum(table.Symbolic,i,j,k)-.gabs(table.Symbolic,j,k)
}
if(table.Symbolic$variables[k,"type"]=="IC"){
if (indivIC[j,k,1]<=indivIC[j,k,1])
{
if (indivIC[j,k,2]<=indivIC[i,k,2])
gamma<-abs(indivIC[i,k,1]-indivIC[j,k,1])
else
gamma<-abs(indivIC[j,k,2]-indivIC[j,k,2])+abs(indivIC[i,k,2]-indivIC[i,k,2])
}
else
{
if (indivIC[i,k,2]<=indivIC[j,k,2])
gamma<-abs(indivIC[i,k,2]-indivIC[j,k,2])
else
gamma<-0
}
}
gamma
}
.probDist<-function(indivNM,i,j,k,probType,s,p){
resul<-0
list1<-.nomValues(indivNM,i,k)
list2<-.nomValues(indivNM,j,k)
if(probType=="J"){
for(l in 1:max(c(list1[,"value"],list2[,"value"]))){
if(.p(list1,l)!=0 && .p(list2,l)!=0){
resul<-resul+(.p(list2,l)*log(.p(list2,l)/.p(list1,l))+.p(list1,l)*log(.p(list1,l)/.p(list2,l)))/2
}
}
}
if(probType=="CHI"){
for(l in 1:max(c(list1[,"value"],list2[,"value"]))){
if(.p(list1,l)!=0){
resul<-resul+(.p(list1,l)-.p(list2,l))^2/.p(list1,l)
}
}
}
if(probType=="CHER"){
for(l in 1:max(c(list1[,"value"],list2[,"value"]))){
resul<-resul+(.p(list1,l)^(1-s)*.p(list2,l)^s)
}
resul<--log(resul)
}
if(probType=="REN"){
for(l in 1:max(c(list1[,"value"],list2[,"value"]))){
resul<-resul+(.p(list1,l)^(1-s)*.p(list2,l)^s)
}
resul<--log(resul)/(s-1)
}
if(probType=="LP"){
for(l in 1:max(c(list1[,"value"],list2[,"value"]))){
resul<-resul+abs(.p(list1,l)-.p(list2,l))^p
}
resul<-resul^(1/p)
}
resul
}
dist_SDA<-function(table.Symbolic,type="U_2",subType=NULL,gamma=0.5,power=2,probType="J",probAggregation="P_1",s=0.5,p=2,variableSelection=NULL,weights=NULL){
if(type=="H"){
return (dist.Symbolic(SO2Simple(table.Symbolic),type="H",power=power));
}
types<-c(paste("U",2:4,sep="_"),"C_1",paste("SO",1:5,sep="_"),"H","L_1","L_2")
subTypes<-c(paste("D",1:5,sep="_"))
probTypes=c("J","CHI2","REN","CHER","LP")
if(sum(types==type)==0){
stop(paste("Dissimilarity type should be one of the following:",paste(types,collapse=",")))
}
if(!is.null(subType) && sum(subTypes==subType)==0){
stop(paste("Dissimilarity subType for(C_1) and (SO_1) distance should be one of the following:",paste(subTypes,collapse=",")))
}
if(is.null(subType) && (type=="C_1" || type=="SO_1")){
stop(paste("Dissimilarity subType for(C_1) and (SO_1) distance should be one of the following:",paste(subTypes,collapse=",")," but not null"))
}
if(sum(types==type)==0){
stop(paste("Dissimilarity type should be one of the following:",paste(types,collapse=",")))
}
if (!.is.symbolic(table.Symbolic))
stop ("Cannot count dissimilarity measures on non-symbolic data")
indivIC<-table.Symbolic$indivIC
indivN<-table.Symbolic$indivN
indivNM<-table.Symbolic$indivNM
variables<-table.Symbolic$variables
individuals<-table.Symbolic$individuals
individualsNo<-nrow(individuals)
variablesNo<-nrow(variables)
if(is.null(weights)) weights<-rep(1,nrow(variables))
if(length(weights)==1) weights<-rep(weights,nrow(variables))
if(length(weights)!=nrow(variables)){
stop ("Weights vector should have the same length as the number of variables")
}
if (is.null(variableSelection))
variableSelection=(1:variablesNo)
distS<-array(0,c(individualsNo,individualsNo))
for (i in 1:(individualsNo-1))
for (j in (i+1):individualsNo){
if(type=="U_2"){
D<-0
for(k in variableSelection){
d<-.gsum(table.Symbolic,i,j,k)-.gprod(table.Symbolic,i,j,k)+gamma*(2*.gprod(table.Symbolic,i,j,k)-.gabs(table.Symbolic,i,k)-.gabs(table.Symbolic,j,k))
D<-D+d^power
if(variables[k,"type"]=="NM"){
D<-D+.probDist(indivNM,i,j,k,probType,s,p)^power
}
}
distS[i,j]<-D^(1/power)
distS[j,i]<-distS[i,j]
}
if(type=="U_3"){
D<-0
for(k in variableSelection){
d<-.gsum(table.Symbolic,i,j,k)-.gprod(table.Symbolic,i,j,k)+gamma*(2*.gprod(table.Symbolic,i,j,k)-.gabs(table.Symbolic,i,k)-.gabs(table.Symbolic,j,k))
d<-d/.gdomainLength(table.Symbolic,k)
D<-D+d^power
if(variables[k,"type"]=="NM"){
D<-D+.probDist(indivNM,i,j,k,probType,s,p)^power
}
}
distS[i,j]<-D^(1/power)
distS[j,i]<-distS[i,j]
}
if(type=="U_4"){
D<-0
for(k in variableSelection){
print(paste("k=",k))
d<-.gsum(table.Symbolic,i,j,k)-.gprod(table.Symbolic,i,j,k)+gamma*(2*.gprod(table.Symbolic,i,j,k)-.gabs(table.Symbolic,i,k)-.gabs(table.Symbolic,j,k))
d<-d/.gdomainLength(table.Symbolic,i)
D<-D+weights[k]*d^power
if(variables[k,"type"]=="NM"){
D<-D+weights[k]*.probDist(indivNM,i,j,k,probType,s,p)^power
}
}
distS[i,j]<-D^(1/power)
distS[j,i]<-distS[i,j]
}
if(type=="C_1"){
D<-0
for(k in variableSelection){
alpha=.C1alpha(table.Symbolic,i,j,k)
beta=.C1gamma(table.Symbolic,i,j,k)
gamma=.C1gamma(table.Symbolic,i,j,k)
if(subType=="D_1"){
d<-alpha/(alpha+beta+gamma)
}
if(subType=="D_2"){
d<-2*alpha/(2*alpha+beta+gamma)
}
if(subType=="D_3"){
d<-alpha/(alpha+2*beta+2*gamma)
}
if(subType=="D_4"){
d<-alpha/(2*alpha+2*beta)+alpha(2*alpha+2*gamma)
}
if(subType=="D_5"){
d<-alpha/(sqrt(alpha+beta)*sqrt(alpha+gamma))
}
if(!is.nan(d))
D<-D+(d^power)/length(variables)
}
distS[i,j]<-D^(1/power)
distS[j,i]<-distS[i,j]
}
if(type=="SO_1"){
D<-0
for(k in variableSelection){
alpha=as.numeric(.C1alpha(table.Symbolic,i,j,k))
bbeta=as.numeric(.C1beta(table.Symbolic,i,j,k))
gamma=as.numeric(.C1gamma(table.Symbolic,i,j,k))
if(subType=="D_1"){
d<-alpha/(alpha+bbeta+gamma)
}
if(subType=="D_2"){
d<-2*alpha/(2*alpha+bbeta+gamma)
}
if(subType=="D_3"){
d<-alpha/(alpha+2*bbeta+2*gamma)
}
if(subType=="D_4"){
d<-alpha/(2*alpha+2*bbeta)+alpha(2*alpha+2*gamma)
}
if(subType=="D_5"){
d<-alpha/(sqrt(alpha+bbeta)*sqrt(alpha+gamma))
}
if(!is.nan(d))
D<-D+weights[k]*(d^power)
}
distS[i,j]<-D^(1/power)
distS[j,i]<-distS[i,j]
}
if(type=="SO_2"){
D<-0
for(k in variableSelection){
d<-.gsum(table.Symbolic,i,j,k)-.gprod(table.Symbolic,i,j,k)+gamma*(2*.gprod(table.Symbolic,i,j,k)-.gabs(table.Symbolic,i,k)-.gabs(table.Symbolic,j,k))
d<-d/.gsum(table.Symbolic,i,j,k)
D<-D+(d^power)/length(variables)
}
distS[i,j]<-D^(1/power)
distS[j,i]<-distS[i,j]
}
if(type=="SO_3"){
D<-0
for(k in variableSelection){
d<-.dpsum(table.Symbolic,i,j,variableSelection)-.dpprod(table.Symbolic,i,j,variableSelection)+gamma*(2*.dpprod(table.Symbolic,i,j,variableSelection)-.dpobject(table.Symbolic,i,variableSelection)-.dpobject(table.Symbolic,j,variableSelection))
D<-d
}
distS[i,j]<-D
distS[j,i]<-distS[i,j]
}
if(type=="SO_4"){
D<-0
for(k in variableSelection){
d<-.dpsum(table.Symbolic,i,j,variableSelection)-.dpprod(table.Symbolic,i,j,variableSelection)+gamma*(2*.dpprod(table.Symbolic,i,j,variableSelection)-.dpobject(table.Symbolic,i,variableSelection)-.dpobject(table.Symbolic,j,variableSelection))
D<-d/.dpmax(table.Symbolic,k)
}
distS[i,j]<-D/.dpmax(table.Symbolic,variableSelection)
distS[j,i]<-distS[i,j]
}
if(type=="SO_5"){
D<-0
for(k in variableSelection){
d<-.dpsum(table.Symbolic,i,j,variableSelection)-.dpprod(table.Symbolic,i,j,variableSelection)+gamma*(2*.dpprod(table.Symbolic,i,j,variableSelection)-.dpobject(table.Symbolic,i,variableSelection)-.dpobject(table.Symbolic,j,variableSelection))
D<-d/.dpsum(table.Symbolic,i,j,variableSelection)
}
distS[i,j]<-D
distS[j,i]<-distS[i,j]
}
if(type=="L_1" || type=="L_2"){
if(type=="L_1"){
L_i<-1
}
else{
L_i<-2
}
D<-0
for(k in variableSelection){
if(variables[k,"type"]=="IC"){
D<-D+abs(indivIC[i,k,1]-indivIC[j,k,1])^2++(indivIC[i,k,2]-indivIC[j,k,2])^L_i
}
if(variables[k,"type"]=="MN" || variables[k,"type"]=="N" || variables[k,"type"]=="NM"){
if(variables[k,"type"]=="NM"){
list1<-.nomValues(indivNM,i,k)
list2<-.nomValues(indivNM,j,k)
}
else{
list1<-.nomValues(indivN,i,k)
list2<-.nomValues(indivN,j,k)
}
for(l in 1:max(c(list1[,"value"],list2[,"value"]))){
if(variables[k,"type"]=="NM"){
D<-D+abs(.p(list1,l)-.p(list2,l))^L_i
}
else{
D<-D+abs(.pp(list1,indivN,k,l)-.pp(list2,indivN,k,l))^L_i
}
}
}
}
distS[i,j]<-D^(1/power)
distS[j,i]<-distS[i,j]
}
}
as.dist(distS)
} |
dapimask<-function(img, size=NULL, voxelsize=NULL, thresh="auto", silent=TRUE, cores=1)
{
if (is.null(size)&is.null(voxelsize)){stop("Either size or voxelsize is required")}
if (length(dim(img))==3)
{
mb<-apply(img,3,mean)
mbr<-0.8*quantile(mb,0.01)+0.2*quantile(mb,0.99)
mbr<-which(mbr<mb)
small<-min(mbr):max(mbr)
dims0<-dim(img)
blau<-img[,,small]
dims<-dim(blau)
}
else
{
blau=img
dims<-dim(blau)
}
blau<-blau-median(blau)
blau[blau<0]<-0
blau<-array(blau,dims)
blau<-blau/max(blau)
blau<-bioimagetools::filterImage3d(blau,"var",4,1/3,silent=silent)
if(is.null(voxelsize))voxelsize<-size/dim(img)
xymic<-mean(voxelsize[1:2])
brush<-EBImage::makeBrush(25,shape="gaussian",sigma=.1/xymic)
blau2<-EBImage::filter2(blau,brush)
xx<-apply(blau2,1,mean)
yy<-apply(blau2,2,mean)
temp<-list("a"=xx,"b"=rev(xx),"c"=yy,"d"=rev(yy))
if(thresh=="auto"){
if(cores>1){thresh<-unlist(parallel::mclapply(temp,find.first.mode,mc.cores=4))}else{thresh<-unlist(lapply(temp,find.first.mode))}
thresh=median(thresh, na.rm=TRUE)
}
b<-blau>median(thresh/2)
if (length(dim(img))==3)
{
b2<-array(0,dims0)
b2[,,small]<-array(as.integer(b),dim(b))
}
else
{
b2=b
}
n<-5
mask<-1-bioimagetools::outside(b2,0,n)
brush<-makeBrush(2*n-1,shape='box')
mask<-erode(mask,brush)
if (length(dim(img))==3)
{
mask0<-bioimagetools::bwlabel3d(mask)
mask1<-bioimagetools::cmoments3d(mask0,mask)
which<-rev(order(mask1[,5]))[1]
}
else
{
mask0<-EBImage::bwlabel(mask)
mask1<-EBImage::computeFeatures(mask0[,,1,1],mask[,,1,1],methods.ref="computeFeatures.basic")
which<-rev(order(mask1[,6]))[1]
}
mask<-ifelse(mask0==which,1,0)
mask<-EBImage::fillHull(mask)
return(mask)
}
find.first.mode<-function(x)
{
s<-stats::sd(diff(x))
i<-1
go<-TRUE
try({
while(go)
{
i<-i+1
if(x[i]-x[i-1]<(-1.96*s))go<-FALSE
}
},silent=TRUE)
return(x[i-1])
} |
densityHeatmap = function(data,
density_param = list(na.rm = TRUE),
col = rev(brewer.pal(11, "Spectral")),
color_space = "LAB",
ylab = deparse(substitute(data)),
column_title = paste0("Density heatmap of ", deparse(substitute(data))),
title = column_title,
ylim = NULL,
range = ylim,
title_gp = gpar(fontsize = 14),
ylab_gp = gpar(fontsize = 12),
tick_label_gp = gpar(fontsize = 10),
quantile_gp = gpar(fontsize = 10),
show_quantiles = TRUE,
column_order = NULL,
column_names_side = "bottom",
show_column_names = TRUE,
column_names_max_height = unit(6, "cm"),
column_names_gp = gpar(fontsize = 12),
column_names_rot = 90,
cluster_columns = FALSE,
clustering_distance_columns = "ks",
clustering_method_columns = "complete",
mc.cores = 1, cores = mc.cores,
...) {
arg_list = list(...)
if(length(arg_list)) {
if(any(c("row_km", "row_split", "split", "km") %in% names(arg_list))) {
stop_wrap("density heatmaps do not allow row splitting.")
}
if(any(grepl("row", names(arg_list)))) {
stop_wrap("density heatmaps do not allow to set rows.")
}
if("anno" %in% names(arg_list)) {
stop_wrap("`anno` is removed from the argument. Please directly construct a `HeatmapAnnotation` object and set to `top_annotation` or `bottom_annotation`.")
}
}
ylab = ylab
column_title = column_title
density_param$na.rm = TRUE
if(!is.matrix(data) && !is.data.frame(data) && !is.list(data)) {
stop_wrap("only matrix and list are allowed.")
}
if(is.matrix(data)) {
data2 = as.list(as.data.frame(data))
names(data2) = colnames(data)
data = data2
}
density_list = lapply(data, function(x) do.call(density, c(list(x = x), density_param)))
quantile_list = sapply(data, quantile, na.rm = TRUE)
mean_value = sapply(data, mean, na.rm = TRUE)
n = length(density_list)
nm = names(density_list)
max_x = quantile(unlist(lapply(density_list, function(x) x$x)), 0.99)
min_x = quantile(unlist(lapply(density_list, function(x) x$x)), 0.01)
if(!is.null(range)) {
max_x = range[2]
min_x = range[1]
}
x = seq(min_x, max_x, length.out = 500)
mat = lapply(density_list, function(r) {
f = approxfun(r$x, r$y)
res = f(x)
res[is.na(res)] = 0
rev(res)
})
mat = as.matrix(as.data.frame(mat))
colnames(mat) = nm
if(cluster_columns) {
if(clustering_distance_columns == "ks") {
d = ks_dist(mat, cores = cores)
dend = as.dendrogram(hclust(d, clustering_method_columns))
dend = reorder(dend, colMeans(mat))
cluster_columns = dend
}
}
if(inherits(col, "function")) {
col = col(mat)
} else {
col = colorRamp2(seq(0, quantile(mat, 0.99, na.rm = TRUE), length.out = length(col)), col, space = color_space)
}
bb = grid.pretty(c(min_x, max_x))
ht = Heatmap(mat, col = col, name = "density",
column_title = title,
column_title_gp = title_gp,
cluster_rows = FALSE,
cluster_columns = cluster_columns,
clustering_distance_columns = clustering_distance_columns,
clustering_method_columns = clustering_method_columns,
column_dend_reorder = mean_value,
column_names_side = column_names_side,
show_column_names = show_column_names,
column_names_max_height = column_names_max_height,
column_names_gp = column_names_gp,
column_names_rot = column_names_rot,
column_order = column_order,
left_annotation = rowAnnotation(axis = anno_empty(border = FALSE,
width = grobHeight(textGrob(ylab, gp = ylab_gp))*2 + max_text_width(bb, gp = tick_label_gp) + unit(4, "mm")),
show_annotation_name = FALSE),
right_annotation = {if(show_quantiles) {rowAnnotation(quantile = anno_empty(border = FALSE,
width = grobWidth(textGrob("100%", gp = quantile_gp)) + unit(6, "mm")),
show_annotation_name = FALSE)} else NULL},
...
)
random_str = paste(sample(c(letters, LETTERS, 0:9), 8), collapse = "")
ht@name = paste0(ht@name, "_", random_str)
names(ht@left_annotation) = paste0(names(ht@left_annotation), "_", random_str)
if(show_quantiles) {
names(ht@right_annotation) = paste0(names(ht@right_annotation), "_", random_str)
}
post_fun = function(ht) {
column_order = column_order(ht)
if(!is.list(column_order)) {
column_order = list(column_order)
}
n_slice = length(column_order)
decorate_annotation(paste0("axis_", random_str), {
grid.text(ylab, x = grobHeight(textGrob(ylab, gp = ylab_gp)), rot = 90)
}, slice = 1)
if(!is.null(ht@right_annotation)) {
for(i_slice in 1:n_slice) {
decorate_heatmap_body(paste0("density_", random_str), {
n = length(column_order[[i_slice]])
pushViewport(viewport(xscale = c(0.5, n + 0.5), yscale = c(min_x, max_x), clip = TRUE))
for(i in seq_len(5)) {
grid.lines(1:n, quantile_list[i, column_order[[i_slice]] ], default.units = "native", gp = gpar(lty = 2))
}
grid.lines(1:n, mean_value[ column_order[[i_slice]] ], default.units = "native", gp = gpar(lty = 2, col = "darkred"))
upViewport()
}, column_slice = i_slice)
}
}
decorate_heatmap_body(paste0("density_", random_str), {
pushViewport(viewport(yscale = c(min_x, max_x), clip = FALSE))
grid.rect(gp = gpar(fill = NA))
grid.yaxis(gp = tick_label_gp)
upViewport()
}, column_slice = 1)
if(!is.null(ht@right_annotation)) {
decorate_heatmap_body(paste0("density_", random_str), {
n = length(column_order[[n_slice]])
lq = !apply(quantile_list, 1, function(x) all(x > max_x) || all(x < min_x))
lq = c(lq, !(all(mean_value > max_x) || all(mean_value < min_x)))
if(sum(lq) == 0) {
return(NULL)
}
labels = c(rownames(quantile_list), "mean")
y = c(quantile_list[, column_order[[n_slice]][n] ], mean_value[ column_order[[n_slice]][n] ])
labels = labels[lq]
y = y[lq]
od = order(y)
y = y[od]
labels = labels[od]
pushViewport(viewport(xscale = c(0.5, n + 0.5), yscale = c(min_x, max_x), clip = FALSE))
text_height = convertHeight(grobHeight(textGrob(labels[1])) * 2, "native", valueOnly = TRUE)
h1 = y - text_height*0.5
h2 = y + text_height*0.5
pos = rev(smartAlign(h1, h2, c(min_x, max_x)))
h = (pos[, 1] + pos[, 2])/2
link_width = unit(6, "mm")
n2 = length(labels)
grid.text(labels, unit(1, "npc") + rep(link_width, n2), h, default.units = "native", just = "left", gp = quantile_gp)
link_width = link_width - unit(1, "mm")
ly = y <= max_x & y >= min_x
if(sum(ly)) {
grid.segments(unit(rep(1, n2), "npc")[ly], y[ly], unit(1, "npc") + rep(link_width * (1/3), n2)[ly], y[ly], default.units = "native")
grid.segments(unit(1, "npc") + rep(link_width * (1/3), n2)[ly], y[ly], unit(1, "npc") + rep(link_width * (2/3), n2)[ly], h[ly], default.units = "native")
grid.segments(unit(1, "npc") + rep(link_width * (2/3), n2)[ly], h[ly], unit(1, "npc") + rep(link_width, n2)[ly], h[ly], default.units = "native")
}
upViewport()
}, column_slice = n_slice)
}
}
ht@heatmap_param$post_fun = post_fun
ht_list = ht
return(ht_list)
}
ks_dist_pair = function(x, y) {
n <- length(x)
n.x <- as.double(n)
n.y <- length(y)
n <- n.x * n.y/(n.x + n.y)
w <- c(x, y)
z <- cumsum(ifelse(order(w) <= n.x, 1/n.x, -1/n.y))
max(abs(z))
}
ks_dist = function(data, cores = 1) {
has_names = TRUE
if(is.matrix(data)) {
has_names = !is.null(colnames(data))
data = as.data.frame(data)
}
nc = length(data)
ind_mat = expand.grid(seq_len(nc), seq_len(nc))
ind_mat = ind_mat[ ind_mat[, 1] > ind_mat[, 2], , drop = FALSE]
registerDoParallel(cores)
v <- foreach (ind = seq_len(nrow(ind_mat))) %dopar% {
i = ind_mat[ind, 1]
j = ind_mat[ind, 2]
suppressWarnings(d <- ks_dist_pair(data[[i]], data[[j]]))
return(d)
}
stopImplicitCluster()
v = unlist(v)
i = ind_mat[, 1]
j = ind_mat[, 2]
ind = (j - 1) * nc + i
d = matrix(0, nrow = nc, ncol = nc)
if(has_names) rownames(d) = colnames(d) = names(data)
d[ind] = v
as.dist(d)
}
ks_dist_1 = function(data) {
has_names = TRUE
if(is.matrix(data)) {
has_names = !is.null(colnames(data))
data = as.data.frame(data)
}
nc = length(data)
d = matrix(NA, nrow = nc, ncol = nc)
if(has_names) rownames(d) = colnames(d) = names(data)
for(i in 2:nc) {
for(j in 1:(nc-1)) {
suppressWarnings(d[i, j] <- ks_dist_pair(data[[i]], data[[j]]))
}
}
as.dist(d)
}
frequencyHeatmap = function(data,
breaks = "Sturges",
stat = c("count", "density", "proportion"),
col = brewer.pal(9, "Blues"),
color_space = "LAB",
ylab = deparse(substitute(data)),
column_title = paste0("Frequency heatmap of ", deparse(substitute(data))),
title = column_title,
ylim = NULL,
range = ylim,
title_gp = gpar(fontsize = 14),
ylab_gp = gpar(fontsize = 12),
tick_label_gp = gpar(fontsize = 10),
column_order = NULL,
column_names_side = "bottom",
show_column_names = TRUE,
column_names_max_height = unit(6, "cm"),
column_names_gp = gpar(fontsize = 12),
column_names_rot = 90,
cluster_columns = FALSE,
use_3d = FALSE,
...) {
arg_list = list(...)
if(length(arg_list)) {
if(any(c("row_km", "row_split", "split", "km") %in% names(arg_list))) {
stop_wrap("frequency heatmaps do not allow row splitting.")
}
if(any(grepl("row", names(arg_list)))) {
stop_wrap("frequency heatmaps do not allow to set rows.")
}
if("anno" %in% names(arg_list)) {
stop_wrap("`anno` is removed from the argument. Please directly construct a `HeatmapAnnotation` object and set to `top_annotation` or `bottom_annotation`.")
}
}
ylab = ylab
column_title = column_title
if(!is.matrix(data) && !is.data.frame(data) && !is.list(data)) {
stop_wrap("only matrix and list are allowed.")
}
if(is.matrix(data)) {
data2 = as.list(as.data.frame(data))
names(data2) = colnames(data)
data = data2
}
h = hist(unlist(data), breaks = breaks, plot = FALSE)
breaks = h$breaks
min_x = min(breaks)
max_x = max(breaks)
freq_list = lapply(data, function(x) hist(x, plot = FALSE, breaks = breaks))
n = length(freq_list)
nm = names(freq_list)
stat = match.arg(stat)[1]
if(stat == "count") {
mat = lapply(freq_list, function(x) {
rev(x$count)
})
} else if(stat == "proportion") {
mat = lapply(freq_list, function(x) {
rev(x$count)/sum(x$count)
})
} else if(stat == "density") {
mat = lapply(freq_list, function(x) {
rev(x$density)
})
}
mat = as.matrix(as.data.frame(mat))
colnames(mat) = nm
if(inherits(col, "function")) {
col = col(mat)
} else {
col = colorRamp2(seq(0, quantile(mat, 0.99, na.rm = TRUE), length.out = length(col)), col, space = color_space)
}
bb = grid.pretty(c(min_x, max_x))
if(use_3d) {
ht = Heatmap3D(mat, col = col, name = stat,
column_title = title,
column_title_gp = title_gp,
cluster_rows = FALSE,
cluster_columns = cluster_columns,
column_names_side = column_names_side,
show_column_names = show_column_names,
column_names_max_height = column_names_max_height,
column_names_gp = column_names_gp,
column_names_rot = column_names_rot,
column_order = column_order,
left_annotation = rowAnnotation(axis = anno_empty(border = FALSE,
width = grobHeight(textGrob(ylab, gp = ylab_gp))*2 + max_text_width(bb, gp = tick_label_gp) + unit(4, "mm")),
show_annotation_name = FALSE),
...
)
} else {
ht = Heatmap(mat, col = col, name = stat,
column_title = title,
column_title_gp = title_gp,
cluster_rows = FALSE,
cluster_columns = cluster_columns,
column_names_side = column_names_side,
show_column_names = show_column_names,
column_names_max_height = column_names_max_height,
column_names_gp = column_names_gp,
column_names_rot = column_names_rot,
column_order = column_order,
left_annotation = rowAnnotation(axis = anno_empty(border = FALSE,
width = grobHeight(textGrob(ylab, gp = ylab_gp))*2 + max_text_width(bb, gp = tick_label_gp) + unit(4, "mm")),
show_annotation_name = FALSE),
...
)
}
random_str = paste(sample(c(letters, LETTERS, 0:9), 8), collapse = "")
ht@name = paste0(ht@name, "_", random_str)
names(ht@left_annotation) = paste0(names(ht@left_annotation), "_", random_str)
post_fun = function(ht) {
column_order = column_order(ht)
if(!is.list(column_order)) {
column_order = list(column_order)
}
n_slice = length(column_order)
decorate_annotation(paste0("axis_", random_str), {
grid.text(ylab, x = grobHeight(textGrob(ylab, gp = ylab_gp)), rot = 90)
}, slice = 1)
decorate_heatmap_body(paste0(stat, "_", random_str), {
pushViewport(viewport(yscale = c(min_x, max_x), clip = FALSE))
grid.segments(0, 0, 0, 1)
grid.yaxis(gp = tick_label_gp)
upViewport()
}, column_slice = 1)
}
ht@heatmap_param$post_fun = post_fun
ht_list = ht
return(ht_list)
} |
library(tidyverse)
library(ggthemr)
ggthemr("earth", type = "outer")
theme_update(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5))
big_epa_cars <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-10-15/big_epa_cars.csv")
big_epa_cars %>%
select(co2, co2TailpipeGpm) %>%
ggplot(aes(co2, co2TailpipeGpm)) +
geom_point() +
coord_fixed(ratio = 1) +
labs(title = "co2TailpipeGpm vs co2",
subtitle = "Can we use co2TailpipeGpm instead of co2?",
x = "co2 in grams / mile",
y = "co2TailpipeGpm in grams / mile")
summary(big_epa_cars$co2)
summary(big_epa_cars$co2TailpipeGpm)
big_epa_cars %>%
select(make, model, co2, co2TailpipeGpm) %>%
filter(co2 != floor(co2TailpipeGpm)) %>%
distinct(co2)
big_co2 <- big_epa_cars %>%
filter(co2TailpipeGpm == max(co2TailpipeGpm)) %>%
select(make, model, co2TailpipeGpm, year) %>%
filter(year == max(year)) %>%
distinct() %>%
mutate(car = paste(make, model))
first_0_co2 <- big_epa_cars %>%
filter(co2TailpipeGpm == 0) %>%
select(make, model, year) %>%
distinct() %>%
arrange(year) %>%
filter(year == min(year)) %>%
mutate(car = paste(make, model))
big_epa_cars %>%
mutate(co2ana = co2TailpipeGpm) %>%
select(make, model, year, co2ana) %>%
mutate(year = as.factor(year)) %>%
ggplot(aes(year, co2ana, color = co2ana)) +
geom_point(alpha = 0.5, position = "jitter")+
stat_summary(fun.y=max, colour="red", geom="line", aes(group = 1), size = 2, alpha = 0.5) +
stat_summary(fun.y=min, colour="green", geom="line", aes(group = 1), size = 2, alpha = 0.5) +
stat_summary(fun.y=mean, colour="orange", geom="line", aes(group = 1), size = 2, alpha = 0.8) +
scale_x_discrete(breaks = c(1985,1990,1995,2000,2005,2010,2015,2020)) +
scale_color_gradient2(name = "CO2 Emission", low="green", mid = "grey", high = "red", midpoint = 500) +
annotate("label", x =2, y = 540, size = 3, color = "orange", label = "Mean", fill = "
annotate("text", x =2, y = 1320, size = 3, color = "red", label = "Max", alpha = 0.7, fontface = "bold") +
annotate("text", x =2, y = 160, size = 3, color = "green", label = "Min", alpha = 0.7, fontface = "bold") +
annotate("text", x = (big_co2$year - min(big_epa_cars$year)+6), y = big_co2$co2TailpipeGpm, size = 3,
color = "white", label = big_co2$car) +
annotate("text", x = (first_0_co2$year - min(big_epa_cars$year)-5), y = 0, size = 3,
color = "white", label = first_0_co2$car[1]) +
annotate("text", x = (first_0_co2$year - min(big_epa_cars$year)-5), y = 40, size = 3,
color = "white", label = first_0_co2$car[2]) +
annotate("text", x = (2011 - min(big_epa_cars$year)+5), y = 40, size = 3,
color = "white", label = "1st Tesla") +
geom_curve(aes(x = (big_co2$year - min(big_epa_cars$year)+3), y = big_co2$co2TailpipeGpm+10, xend = (big_co2$year - min(big_epa_cars$year)+1), yend = big_co2$co2TailpipeGpm + 10),
arrow = arrow(length = unit(0.1, "inch")), size = 0.3, color = "grey85", curvature = 0.5) +
geom_curve(aes(x = (unique(first_0_co2$year) - min(big_epa_cars$year) - 3), y = 0, xend = (unique(first_0_co2$year) - min(big_epa_cars$year)+1), yend = 0),
arrow = arrow(length = unit(0.1, "inch")), size = 0.3, color = "grey85", curvature = 0.3) +
geom_curve(aes(x = (2011 - min(big_epa_cars$year) + 3), y = 40, xend = (2011 - min(big_epa_cars$year)+1), yend = 0),
arrow = arrow(length = unit(0.1, "inch")), size = 0.3, color = "grey85", curvature = 0.3) +
labs(title = "Evolution in co2 emission over year",
x = "Years",
y = "Co2 in grams / mile",
caption = "Visualisation: Christophe Nicault | Data: www.fueleconomy.gov") |
addCIM <- function(R,carm=2)
{
K <- R$K
alphas <- R$alphas
im1r <- R$Main1RL
im1se <- R$Main1SE
is1r <- R$Samp1RL
is1se <- R$Sub1SE
nmvec <- c(paste0("Main",carm,"RL"),paste0("Main",carm,"SE"),paste0("Samp",carm,"RL"),paste0("Sub",carm,"SE"))
im2r <- R[[ nmvec[1] ]]
im2se <- R[[ nmvec[2] ]]
is2r <- R[[ nmvec[3] ]]
is2se <- R[[ nmvec[4] ]]
times <- 1:K
alpha1 <- alphas
alpha2 <- alphas
WantM <- expand.grid(alpha1,alpha2,times)
colnames(WantM) <- c("alpha1","alpha2","t")
WantList <- apply(WantM,1,as.list)
ECI <- lapply( WantList, CI, type=1, im1r = im1r, im1se = im1se, is1r = is1r, is1se = is1se,
im2r = im2r, im2se = im2se, is2r = is2r, is2se = is2se )
ECI <- do.call(rbind,ECI)
SCI <- lapply( WantList, CI, type=2, im1r = im1r, im1se = im1se, is1r = is1r, is1se = is1se,
im2r = im2r, im2se = im2se, is2r = is2r, is2se = is2se )
SCI <- do.call(rbind,SCI)
R$ECI <- ECI
R$SCI <- SCI
return(R)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(bpbounds)
library(dplyr)
library(tidyr)
tab1dat <- data.frame(
z = c(0, 0, 1, 1, 1, 1, 0, 0),
x = c(0, 0, 0, 0, 1, 1, 1, 1),
y = c(0, 1, 0, 1, 0, 1, 0, 1),
freq = c(74, 11514, 34, 2385, 12, 9663, 0, 0)
)
tab1inddat <- uncount(tab1dat, freq)
xt <- xtabs(~ x + y + z, data = tab1inddat)
xt
p <- prop.table(xt, margin = 3)
p
bpres <- bpbounds(p)
sbp = summary(bpres)
print(sbp)
covyz = cov(tab1inddat$y, tab1inddat$z)
covxz = cov(tab1inddat$x, tab1inddat$z)
ace = covyz / covxz
ace
condprob = c(.0064, 0, .9936, 0, .0028, .001, .1972, .799)
tabp = array(condprob,
dim = c(2, 2, 2),
dimnames = list(
x = c(0, 1),
y = c(0, 1),
z = c(0, 1)
)) %>%
as.table()
bpbounds(tabp)
gtab = xtabs( ~ y + z, data = tab1inddat)
gp = prop.table(gtab, margin = 2)
gp
ttab = xtabs( ~ x + z, data = tab1inddat)
tp = prop.table(ttab, margin = 2)
tp
bpres2 = bpbounds(p = gp, t = tp, fmt = "bivariate")
sbp2 = summary(bpres2)
print(sbp2)
mt3 <- c(.83, .05, .11, .01, .88, .06, .05, .01, .72, .05, .20, .03)
p3 = array(mt3,
dim = c(2, 2, 3),
dimnames = list(
x = c(0, 1),
y = c(0, 1),
z = c(0, 1, 2)
))
p3 = as.table(p3)
bpres3 = bpbounds(p3)
sbp3 = summary(bpres3)
print(sbp3)
set.seed(2232011)
n = 10000
z = rbinom(n, 1, .5)
u = rbinom(n, 1, .5)
px = .05 + .1 * z + .1 * u
x = rbinom(n, 1, px)
p1 = .1 + .2 * z + .05 * x + .1 * u
y1 = rbinom(n, 1, p1)
p2 = .1 + .05 * z + .05 * x + .1 * u
y2 = rbinom(n, 1, p2)
tab1 = xtabs(~ x + y1 + z)
p1 <- prop.table(tab1, margin = 3)
bpres1 = bpbounds(p1)
sbp1 = summary(bpres1)
print(sbp1)
tab2 = xtabs(~ x + y2 + z)
p2 <- prop.table(tab2, margin = 3)
bpres2 = bpbounds(p2)
sbp2 = summary(bpres2)
print(sbp2) |
"pCMin" <-
function(theta,delta,s,t)
{if(missing(theta) | missing(delta)){theta<-1;delta<-1};
pc<-pmax(0,(s+t-1));
resu<-pc
} |
mat2df <- function(cormat, pmat) {
ut <- upper.tri(cormat)
data.frame(
Pos1 = rownames(cormat)[row(cormat)[ut]],
Pos2 = rownames(cormat)[col(cormat)[ut]],
cor =(cormat)[ut],
p = pmat[ut]
)
} |
source("JTK_CYCLEv3.1.R")
project <- "Example2"
options(stringsAsFactors=FALSE)
annot <- read.delim("Example2_annot.txt")
data <- read.delim("Example2_data.txt")
rownames(data) <- data[,1]
data <- data[,-1]
jtkdist(13, 2)
periods <- 5:7
jtk.init(periods,4)
cat("JTK analysis started on",date(),"\n")
flush.console()
st <- system.time({
res <- apply(data,1,function(z) {
jtkx(z)
c(JTK.ADJP,JTK.PERIOD,JTK.LAG,JTK.AMP)
})
res <- as.data.frame(t(res))
bhq <- p.adjust(unlist(res[,1]),"BH")
res <- cbind(bhq,res)
colnames(res) <- c("BH.Q","ADJ.P","PER","LAG","AMP")
results <- cbind(annot,res,data)
results <- results[order(res$ADJ.P,-res$AMP),]
})
print(st)
save(results,file=paste("JTK",project,"rda",sep="."))
write.table(results,file=paste("JTK",project,"txt",sep="."),row.names=F,col.names=T,quote=F,sep="\t") |
myft=function(x,vanilla=TRUE,fontsize=10,digits,showid=FALSE,...){
if("imputedReg" %in% class(x)){
if(missing(digits)) digits=c(1,4,4,4,2,4,4,4,4,4,4,1)
} else if("autoReg" %in% class(x)) {
if(showid==FALSE) x$id=NULL
if(names(x)[1]=="name"){
names(x)[1]=paste0("Dependent: \n",attr(x,"yvars"))
}
names(x)[2]=" "
if(attr(x,"model")=="coxph") names(x)[3]="all"
if(missing(digits)) digits=2
} else if(("gaze" %in% class(x))&(showid==FALSE)) {
x$id=NULL
names(x)[2]="levels"
if(missing(digits)) digits=2
}
yvars=attr(x,"yvars")
yvars
if(length(yvars)>0){
if(!is.null(attr(x,"missing"))) {
yname=str_remove(attr(x,"yvars"),"Missing")
names(x)[1]=paste0("Dependent:",yname)
}
}
vanilla=TRUE
ft<-x %>% df2flextable(vanilla=vanilla,fontsize=fontsize,digits=digits,...)
if(length(yvars)>1){
small_border = fp_border(color="gray", width = 1)
df=attr(x,"groups")
if(length(yvars)==2) {
collapse=" "
} else {
collapse="\n"
}
groupvar=paste0(c(yvars[-length(yvars)],"(N)"),collapse=collapse)
header=c(groupvar,map_chr(1:nrow(df),function(i){paste0(df[i,],collapse=collapse)}))
length=nrow(df)
no=(ncol(x)-2)%/%length
widths=c(2,rep(no,length))
ft<-ft %>%
flextable::add_header_row(values=header,colwidths=widths) %>%
hline(i=1,border=fp_border(color="gray", width = 0),part="header") %>%
hline(i=1,border=fp_border(color="gray", width = 1),part="header") %>%
hline_top(border=fp_border(color="black", width = 2),part="header")
}
if(("autoReg" %in% class(x))&(!is.null(attr(x,"add")))) {
ft=footnote(ft,i=1,j=1,value=as_paragraph(paste0(attr(x,"add"),collapse=",")),ref_symbols="",part="body")
}
ft %>%
flextable::align(align="center",part="header") %>%
flextable::align(j=1:2,align="left",part="body") %>%
flextable::autofit()
} |
ClusterRenameDescendingSize <- function(Cls) {
if(!is.vector(Cls)){
warning('ClusterRenameDescendingSize: Cls is not a vector. Calling as.numeric(as.character(Cls))')
Cls=as.numeric(as.character(Cls))
}
ListeV <- ClusterCount(Cls)
countPerClass <- ListeV[[2]]
UniqueClasses=ListeV[[1]]
sortedClasses <- sort(na.last=TRUE,countPerClass, decreasing = TRUE, index.return=TRUE)
numberOfClasses <- length(countPerClass)
renamedCls <- Cls
for (i in 1: numberOfClasses) {
renamedCls[which(Cls == UniqueClasses[sortedClasses$ix[i]],arr.ind = T)] <- i
}
return(renamedCls)
} |
source("incl/start.R")
if (requireNamespace("furrr", quietly = TRUE)) {
for (strategy in c("sequential", "multisession", "multicore")) {
future::plan(strategy)
print(future::plan())
message("* with_progress()")
with_progress({
p <- progressor(4)
y <- furrr::future_map(3:6, function(n) {
p()
slow_sum(1:n, stdout=TRUE, message=TRUE)
})
})
message("* global progression handler")
handlers(global = TRUE)
local({
p <- progressor(4)
y <- furrr::future_map(3:6, function(n) {
p()
slow_sum(1:n, stdout=TRUE, message=TRUE)
})
})
handlers(global = FALSE)
}
}
source("incl/end.R") |
pastestar <- function(...) paste(..., sep = "*")
expand_cond <- function(cond, obsnames) {
chk1 <- sapply(cond, function(x) substr(x, nchar(x), nchar(x))) %in% obsnames
if(!any(chk1)) {
return(paste(cond, collapse = "; "))
}
retcond <- cond[!chk1]
for(j in (1:length(cond))[chk1]) {
newcond <- paste0(substr(cond[j], 1, nchar(cond[j]) - 1), c("0", "1"))
retcond <- paste(retcond, newcond, sep = "; ")
}
retcond
}
const.to.sets <- function(constr, objterms) {
sets <- lapply(strsplit(constr, " = "), function(x) {
tmp1 <- grep("q", x, value = TRUE)
trimws(unlist(strsplit(tmp1, "( \\+ | - )")))
})
pnames <- lapply(strsplit(constr, " = "), function(x) {
tmp1 <- grep("(q)", x, value = TRUE, invert = TRUE)
trimws(tmp1)
})
K <- length(sets)
sets[(K+1):(K + length(objterms))]<- objterms
reduced.sets <- reduce.sets(sets)
constr.new <- reduced.sets[1:K]
obj.new <- reduced.sets[(K+1):(K+length(objterms))]
var.new <- reduced.sets[[1]]
list(constr = paste(unlist(lapply(constr.new, paste, collapse = " + ")), " = ", pnames),
objective.terms = obj.new,
variables = var.new,
raw.sets = constr.new,
pnames = pnames)
}
reduce.sets <- function(sets){
K <- length(sets)
fullset <- sets[[1]]
common <- list()
left <- fullset
r <- 1
while(length(left)>1){
tmp <- left[1]
for(i in 2:length(left)){
together <- vector(length=K)
for(k in 1:K){
if((left[1]%in%sets[[k]] & left[i]%in%sets[[k]]) |
(!left[1]%in%sets[[k]] & !left[i]%in%sets[[k]]))
together[k] <- TRUE
}
if(sum(together)==K)
tmp <- c(tmp, left[i])
}
left <- setdiff(left, tmp)
if(length(tmp)>1){
common[[r]] <- tmp
r <- r+1
}
}
if(length(common) == 0) return(sets)
R <- length(common)
for(r in 1:R){
tmp <- common[[r]][-1]
for(k in 1:K){
ind <- match(tmp, sets[[k]])
if(sum(is.na(ind))==0)
sets[[k]] <- sets[[k]][-ind]
}
}
fullset <- sets[[1]]
for(i in 1:length(sets)){
tmp <- sets[[i]]
for(j in 1:length(tmp)){
tmp[j] <- paste0("q", match(tmp[j], fullset))
}
sets[[i]] <- tmp
}
return(sets)
}
symb.subtract <- function(x1, x2) {
res1 <- x1
res2 <- NULL
for(j in x2) {
if(!j %in% res1){
res2 <- c(res2, j)
} else {
res1 <- res1[-which(res1 == j)[1]]
}
}
list(res1, res2)
}
parse_effect <- function(text) {
text <- gsub("(\\n|\\t| )", "", text)
terms0 <- strsplit(text, split = "-|\\+")[[1]]
opers <- as.list(grep("-|\\+", strsplit(text, "")[[1]], value = TRUE))
terms0 <- gsub("(p\\{)|(\\})", "", terms0)
termssplit <- lapply(terms0, function(x) {
strsplit(x, ";")[[1]]
})
res.effs <- res.vals <- res.pcheck <- vector(mode = "list", length= length(termssplit))
for(j in 1:length(termssplit)) {
terms0 <- termssplit[[j]]
parse1 <- lapply(terms0, function(x) {
rmain <- unlist(strsplit(x, "=\\d+$"))
val0 <- substr(x = x, start = nchar(rmain) + 2, stop = nchar(x))
list(as.numeric(val0), rmain)
})
terms <- lapply(parse1, "[[", 2)
vals <- lapply(parse1, "[[", 1)
pcheck <- grepl("(", terms, fixed = TRUE)
pterms <- gsub("(", " = list(", terms, fixed = TRUE)
parsedEffect <- vector(mode = "list", length = length(pterms))
for(k in 1:length(parsedEffect)) {
if(pcheck[k] == TRUE) {
parsedEffect[[k]] <-
eval(parse(text = pterms[k], keep.source = FALSE))
names(parsedEffect)[[k]] <- strsplit(pterms[k], " = ")[[1]][1]
} else {
parsedEffect[[k]] <- pterms[k]
names(parsedEffect)[[k]] <- pterms[k]
}
}
names(vals) <- names(parsedEffect)
res.effs[[j]] <- parsedEffect
res.vals[[j]] <- vals
res.pcheck[[j]] <- pcheck
}
list(vars = res.effs, oper = opers, values = res.vals, pcheck = res.pcheck)
}
parse_constraints <- function(constraints, obsnames) {
parsed.constraints <- NULL
for(j in 1:length(constraints)) {
constin <- gsub("\\s", "", constraints[[j]])
p0 <- strsplit(constin, "\\)")[[1]]
pl1 <- strsplit(p0[1], "\\(")[[1]]
leftout <- pl1[1]
leftcond <- strsplit(pl1[-1], ",")[[1]]
opdex <- ifelse(substr(p0[-1], 2, 2) == "=", 2, 1)
operator <- substr(p0[-1], 1, opdex)
if(operator == "=") operator <- "=="
pr1 <- strsplit(substr(p0[-1], opdex + 1, nchar(p0[-1])), "\\(")[[1]]
rightout <- pr1[1]
if(!is.na(suppressWarnings(as.numeric(rightout)))) {
rightcond2 <- rightout
} else {
rightcond <- strsplit(gsub("\\)", "", pr1[-1]), ",")[[1]]
rightcond2 <- expand_cond(rightcond, obsnames)
}
leftcond2 <- expand_cond(leftcond, obsnames)
conds <- expand.grid(leftcond = leftcond2, rightcond = rightcond2, stringsAsFactors = FALSE)
parsed.constraints <- rbind(parsed.constraints,
data.frame(leftout = leftout, rightout = rightout, operator, conds, stringsAsFactors = FALSE))
}
parsed.constraints
}
latex_bounds <- function(bounds, parameters, prob.sym = "P", brackets = c("(", ")")) {
lkeyup <- do.call(expand.grid, c(lapply(1:length(attr(parameters, "rightvars")), function(x) c("0", "1")), stringsAsFactors = FALSE))
if(length(attr(parameters, "condvars")) == 0) {
probstate <- lapply(1:nrow(lkeyup), function(i) {
lkey <- lkeyup[i, ]
paste0(prob.sym, brackets[1],
paste(paste0(attr(parameters, "rightvars"), " = ", lkey),
collapse = ", "), brackets[2])
})
namelook <- sapply(1:nrow(lkeyup), function(i) {
paste0("p", paste(lkeyup[i, ], collapse = ""), "_")
})
names(probstate) <- namelook
} else {
nr <- length(attr(parameters, "rightvars"))
nc <- length(attr(parameters, "condvars"))
lrkeyup <- do.call(expand.grid, c(lapply(1:(nr + nc), function(x) c("0", "1")), stringsAsFactors = FALSE))
probstate <- lapply(1:nrow(lrkeyup), function(i) {
lkey <- lrkeyup[i, 1:nr]
rkey <- lrkeyup[i, (nr + 1):(nr + nc)]
paste0(prob.sym, brackets[1], paste(paste0(attr(parameters, "rightvars"), " = ", lkey), collapse = ", "), " | ",
paste0(attr(parameters, "condvars"), " = ", rkey, collapse = ", "), brackets[2])
})
namelook <- sapply(1:nrow(lrkeyup), function(i) {
paste0("p", paste(lrkeyup[i, 1:nr], collapse = ""), "_", paste(lrkeyup[i, (nr+1):(nr+nc)], collapse = ""))
})
names(probstate) <- namelook
}
bnd2 <- gsub("\\n}\\n", "", substr(bounds, 8, nchar(bounds)))
bnd3 <- strsplit(bnd2, "\\n")
for(i in 1:length(probstate)) {
bnd3$lower <- gsub(names(probstate)[i], probstate[[i]], bnd3$lower, fixed = TRUE)
bnd3$upper <- gsub(names(probstate)[i], probstate[[i]], bnd3$upper, fixed = TRUE)
}
if(length(bnd3$lower) == 1) {
lwr <- bnd3$lower
} else {
l0 <- paste(bnd3$lower, collapse = "\\\\ \n ")
lwr <- sprintf("\\mbox{max} \\left. \\begin{cases} %s \\end{cases} \\right\\}", l0)
}
if(length(bnd3$upper) == 1) {
upr <- bnd3$upper
} else {
r0 <- paste(bnd3$upper, collapse = "\\\\ \n ")
upr <- sprintf("\\mbox{min} \\left. \\begin{cases} %s \\end{cases} \\right\\}", r0)
}
return(sprintf("\\[ \n \\mbox{Lower bound} = %s \n \\] \n \\[ \n \\mbox{Upper bound} = %s \n \\] \n", lwr, upr))
} |
fast_anticlustering <- function(x, K, k_neighbours = Inf, categories = NULL) {
input_validation_anticlustering(x, K, "variance",
"exchange", FALSE, categories, NULL)
categories <- merge_into_one_variable(categories)
if (!isTRUE(k_neighbours == Inf)) {
validate_input(k_neighbours, "k_neighbours", objmode = "numeric", len = 1,
must_be_integer = TRUE, greater_than = 0, not_na = TRUE)
}
x <- as.matrix(x)
exchange_partners <- all_exchange_partners(x, k_neighbours, categories)
init <- initialize_clusters(nrow(x), K, categories)
fast_exchange_(x, init, exchange_partners)
}
fast_exchange_ <- function(data, clusters, all_exchange_partners) {
N <- nrow(data)
best_total <- variance_objective_(clusters, data)
centers <- cluster_centers(data, clusters)
distances <- dist_from_centers(data, centers, squared = TRUE)
tab <- c(table(clusters))
for (i in 1:N) {
cluster_i <- clusters[i]
exchange_partners <- all_exchange_partners[[i]]
exchange_partners <- exchange_partners[clusters[exchange_partners] != clusters[i]]
if (length(exchange_partners) == 0) {
next
}
comparison_objectives <- rep(NA, length(exchange_partners))
for (j in seq_along(exchange_partners)) {
tmp_clusters <- clusters
tmp_swap <- exchange_partners[j]
cluster_j <- tmp_clusters[tmp_swap]
tmp_clusters[i] <- cluster_j
tmp_clusters[tmp_swap] <- cluster_i
tmp_centers <- update_centers(centers, data, i, tmp_swap, cluster_i, cluster_j, tab)
tmp_distances <- update_distances(data, tmp_centers, distances, cluster_i, cluster_j)
comparison_objectives[j] <- sum(tmp_distances[cbind(1:nrow(tmp_distances), tmp_clusters)])
}
best_this_round <- max(comparison_objectives)
if (best_this_round > best_total) {
swap <- exchange_partners[comparison_objectives == best_this_round][1]
centers <- update_centers(centers, data, i, swap, clusters[i], clusters[swap], tab)
distances <- update_distances(data, centers, distances, cluster_i, clusters[swap])
clusters[i] <- clusters[swap]
clusters[swap] <- cluster_i
best_total <- best_this_round
}
}
clusters
}
update_distances <- function(features, centers, distances, cluster_i, cluster_j) {
for (k in c(cluster_i, cluster_j)) {
distances[, k] <- colSums((t(features) - centers[k,])^2)
}
distances
}
update_centers <- function(centers, features, i, j, cluster_i, cluster_j, tab) {
centers[cluster_i, ] <- centers[cluster_i, ] - (features[i, ] / tab[cluster_i]) + (features[j, ] / tab[cluster_i])
centers[cluster_j, ] <- centers[cluster_j, ] + (features[i, ] / tab[cluster_j]) - (features[j, ] / tab[cluster_j])
centers
}
all_exchange_partners <- function(features, k_neighbours, categories) {
if (is.infinite(k_neighbours)) {
return(all_exchange_partners_(nrow(features), categories))
}
return(nearest_neighbours(features, k_neighbours, categories))
}
all_exchange_partners_ <- function(N, categories) {
if (argument_exists(categories)) {
category_ids <- lapply(1:max(categories), function(i) which(categories == i))
return(category_ids[categories])
}
rep(list(1:N), N)
}
nearest_neighbours <- function(features, k_neighbours, categories) {
if (!argument_exists(categories)) {
idx <- matrix_to_list(RANN::nn2(features, k = min(k_neighbours + 1, nrow(features)))$nn.idx)
} else {
nns <- list()
new_order <- list()
for (i in 1:max(categories)) {
tmp_indices <- which(categories == i)
new_order[[i]] <- tmp_indices
tmp_features <- features[tmp_indices, , drop = FALSE]
tmp_nn <- RANN::nn2(tmp_features, k = min(k_neighbours + 1, nrow(tmp_features)))$nn.idx
nns[[i]] <- which(categories == i)[tmp_nn]
dim(nns[[i]]) <- dim(tmp_nn)
}
idx_list <- lapply(nns, matrix_to_list)
idx <- merge_lists(idx_list)
original_order <- order(unlist(new_order))
idx <- idx[original_order]
}
idx
}
matrix_to_list <- function(x) {
as.list(as.data.frame(t(x)))
}
merge_lists <- function(list_of_lists) {
do.call(c, list_of_lists)
} |
FileListFromDates <- function(start_date, end_date=start_date){
start_date <- as.Date(start_date)
end_date <- as.Date(end_date)
if(end_date < start_date) stop("end_date cannot be before start_date")
if(start_date < as.Date("1979-01-01")) stop("start_date cannot be before 1979")
if(end_date > Sys.Date()) stop("end_date cannot be in the future")
out <- character(0)
if(start_date < "2006-01-01"){
start_year <- as.numeric(format(start_date, "%Y"))
end_year <- min(c(2005,as.numeric(format(end_date, "%Y"))))
out <- c(out, paste(start_year:end_year, ".zip", sep=""))
}
if(start_date < as.Date("2013-04-01") & end_date >= as.Date("2006-01-01")) {
if( start_date < as.Date("2006-01-01") ) {
b_start_date <- as.Date("2006-01-01")
} else {
b_start_date <- as.Date(paste(format(start_date, "%Y-%m-"), "01", sep=""))
}
if( end_date < as.Date("2013-04-01") ) {
b_end_date <- end_date
} else {
b_end_date <- as.Date("2013-03-31")
}
out <- c(out, paste(format(seq(from=b_start_date, to=b_end_date, by="month"), "%Y%m"),
".zip", sep=""))
}
if( end_date >= as.Date("2013-04-01") ){
if( start_date < as.Date("2013-04-01") ) {
c_start_date <- as.Date("2013-04-01")
} else {
c_start_date <- start_date
}
out <- c(out, paste(format(seq(from=c_start_date, to=end_date, by="day"), "%Y%m%d"),
".export.CSV.zip", sep=""))
}
out <- setdiff(out, c("20140123.export.CSV.zip","20140124.export.CSV.zip","20140125.export.CSV.zip"))
return( out )
} |
context("create")
test_that("create_env()", {
env <- create_env(lapply(letters, as.name), toupper)
expect_equal(env$a, "A")
expect_equal(env$x, "X")
expect_null(env$X)
expect_equal(length(ls(env)), length(letters))
expect_error(env$a <- "a", "read-only")
})
test_that("create_env() with character", {
env <- create_env(letters, toupper)
expect_equal(env$a, "A")
expect_equal(env$x, "X")
expect_null(env$X)
expect_equal(length(ls(env)), length(letters))
expect_error(env$a <- "a", "read-only")
})
test_that("create_env() with inheritance", {
env <- create_env(lapply(letters, as.name), toupper)
env2 <- create_env(lapply(LETTERS, as.name), tolower, .enclos = env)
expect_equal(get("a", env2), "A")
expect_equal(get("x", env2), "X")
expect_null(env2$a)
expect_null(env2$x)
expect_equal(env2$B, "b")
expect_equal(env2$Y, "y")
expect_equal(length(ls(env2)), length(letters))
expect_error(env2$B <- "B", "read-only")
expect_error(env2$a <- "a", NA)
expect_equal(get("a", env2), "a")
})
test_that("create_env() with local function", {
a <- function(x) b(x)
b <- function(x) c(x)
c <- function(x) toupper(x)
env <- create_env(lapply(letters, as.name), a)
expect_equal(env$a, "A")
expect_equal(env$x, "X")
expect_null(env$X)
expect_equal(length(ls(env)), length(letters))
expect_error(env$a <- "a", "read-only")
}) |
test_that('mtpi_selector matches published example.', {
num_doses <- 5
target <- 0.3
model <- get_mtpi(num_doses = num_doses, target = target,
epsilon1 = 0.05, epsilon2 = 0.05,
exclusion_certainty = 0.95)
fit <- model %>% fit('1NNN')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NTT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1TTT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNT 1TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NTT 1TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1TTT 1TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNT 1TTT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NTT 1TTT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1TTT 1TTT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NNT 1TTT 1TTT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1NTT 1TTT 1TTT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNN 1TTT 1TTT 1TTT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NNT 1TTT 1TTT 1TTT 1TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1NTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNN 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NNT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1NTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNN 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NNT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1NTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNN 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NNT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1NTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNN 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NNT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1NTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNN 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NNT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1NTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT 1TTT')
expect_true(is.na(recommended_dose(fit)))
expect_false(continue(fit))
expect_equal(dose_admissible(fit), rep(FALSE, num_doses(fit)))
fit <- model %>% fit('2NNN')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNT')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNN')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNT')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNT 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNT')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NTT')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNT 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NTT 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNT')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NTT')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2TTT')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNT 2TTT')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NTT 2TTT')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2TTT 2TTT')
expect_equal(recommended_dose(fit), 3)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NNT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2NTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNN 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NNT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 2)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2NTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNN 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NNT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2NTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNN 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NNT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNN 2NTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNN 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NNT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2NTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNN 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NNT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2NTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNN 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NNT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2NTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT 2TTT')
expect_equal(recommended_dose(fit), 1)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, FALSE, FALSE, FALSE, FALSE))
fit <- model %>% fit('5NNN')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNN')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NTT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NTT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5TTT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NNT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5NTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNN 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NNT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 5)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5NTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNN 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NNT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5NTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNN 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NNT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNN 5NTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNN 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NNT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5NTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNN 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NNT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5NTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNN 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NNT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5NTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
fit <- model %>% fit('5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT 5TTT')
expect_equal(recommended_dose(fit), 4)
expect_true(continue(fit))
expect_equal(dose_admissible(fit), c(TRUE, TRUE, TRUE, TRUE, FALSE))
})
test_that('mtpi_selector supports correct interface.', {
num_doses <- 5
target <- 0.3
model_fitter <- get_mtpi(num_doses = num_doses, target = target,
epsilon1 = 0.05, epsilon2 = 0.05,
exclusion_certainty = 0.9)
x <- fit(model_fitter, '1NNN 2NTT')
expect_equal(tox_target(x), 0.3)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 6)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), c(1,1,1, 2,2,2))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), c(1,1,1, 2,2,2))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), c(0,0,0, 0,1,1))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_true(all((model_frame(x) - data.frame(patient = c(1,2,3,4,5,6),
cohort = c(1,1,1,2,2,2),
dose = c(1,1,1,2,2,2),
tox = c(0,0,0,0,1,1))) == 0))
expect_equal(nrow(model_frame(x)), num_patients(x))
expect_equal(num_doses(x), 5)
expect_true(is.integer(num_doses(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 1)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(3,3,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 3)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 3)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 3)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(unname(prob_administer(x)), c(0.5,0.5,0,0,0))
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_equal(tox_at_dose(x), c(0,2,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_error(prob_tox_samples(x))
expect_error(prob_tox_samples(x, tall = TRUE))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
x <- fit(model_fitter, '')
expect_equal(tox_target(x), 0.3)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 0)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), integer(0))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), integer(0))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), integer(0))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_equal(num_tox(x), 0)
expect_true(is.integer(num_tox(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
mf <- model_frame(x)
expect_equal(nrow(mf), 0)
expect_equal(ncol(mf), 4)
expect_equal(num_doses(x), 5)
expect_true(is.integer(num_doses(x)))
expect_equal(recommended_dose(x), 1)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(0,0,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 0)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 0)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 0)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,0,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_error(prob_tox_samples(x))
expect_error(prob_tox_samples(x, tall = TRUE))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
outcomes <- tibble(
cohort = c(1,1,1, 2,2,2),
dose = c(1,1,1, 2,2,2),
tox = c(0,0, 0,0, 1,1)
)
x <- fit(model_fitter, outcomes)
expect_equal(tox_target(x), 0.3)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 6)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), c(1,1,1, 2,2,2))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), c(1,1,1, 2,2,2))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), c(0,0,0, 0,1,1))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_true(all((model_frame(x) - data.frame(patient = c(1,2,3,4,5,6),
cohort = c(1,1,1,2,2,2),
dose = c(1,1,1,2,2,2),
tox = c(0,0,0,0,1,1))) == 0))
expect_equal(nrow(model_frame(x)), num_patients(x))
expect_equal(num_doses(x), 5)
expect_true(is.integer(num_doses(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 1)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(3,3,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 3)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 3)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 3)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_equal(unname(prob_administer(x)), c(0.5,0.5,0,0,0))
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,2,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_error(prob_tox_samples(x))
expect_error(prob_tox_samples(x, tall = TRUE))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
})
test_that('mtpi_selector respects suspended doses', {
model <- get_mtpi(num_doses = 5, target = 0.3,
epsilon1 = 0.05, epsilon2 = 0.05,
exclusion_certainty = 0.7)
fit <- model %>% fit('2N')
expect_equal(fit %>% recommended_dose(), 3)
expect_true(fit %>% continue())
expect_equal(fit %>% dose_admissible(), rep(TRUE, num_doses(fit)))
fit <- model %>% fit('3TTT')
expect_equal(fit %>% recommended_dose(), 2)
expect_true(fit %>% continue())
expect_equal(fit %>% dose_admissible(), c(TRUE, TRUE, FALSE, FALSE, FALSE))
fit <- model %>% fit('3TTT 2N')
expect_equal(fit %>% recommended_dose(), 2)
expect_true(fit %>% continue())
expect_equal(fit %>% dose_admissible(), c(TRUE, TRUE, FALSE, FALSE, FALSE))
fit <- model %>% fit('3TTT 2N 1N')
expect_equal(fit %>% recommended_dose(), 2)
expect_true(fit %>% continue())
expect_equal(fit %>% dose_admissible(), c(TRUE, TRUE, FALSE, FALSE, FALSE))
fit <- model %>% fit('3TTT 2N 1N 2NNNNNNNNNNNNNNNNNNN')
expect_equal(fit %>% recommended_dose(), 2)
expect_true(fit %>% continue())
expect_equal(fit %>% dose_admissible(), c(TRUE, TRUE, FALSE, FALSE, FALSE))
}) |
Errmax<-function(x,i){
sampleData2<-x
i=i
sampleData3<-sampleData2[,c(1,i)]
sampleData3$FZZH<- NA
sampleData4<-sampleData3[,c(1,3)]
transDatacol<-sampleData4
names(transDatacol)[1] <- names(sampleData2[1])
names(transDatacol)[2] <- names(sampleData2[i])
return(transDatacol)
} |
.lmacfPlot <-
function(x, lag.max = max(2, floor(10*log10(length(x)))),
ci = 0.95, type = c("both", "acf", "hurst"), labels = TRUE,
trace = TRUE, ...)
{
if (!is.timeSeries(x)) x = as.timeSeries(x)
Units = colnames(x)
X = x
type = match.arg(type)
if (labels) {
main1 = ""
xlab1 = "lag"
ylab1 = "ACF"
main2 = ""
xlab2 = "log lag"
ylab2 = "log ACF"
} else {
main1 = xlab1 = ylab1 = ""
main2 = xlab2 = ylab2 = ""
}
Fitted = list()
Hurst = NULL
DIM = dim(X)[2]
for (i in 1:DIM) {
x.ret = as.matrix(X)[, i]
x = abs(x.ret)
if (labels) main1 = main2 = Units[i]
z = acf(x, lag.max = lag.max, type = "correlation", plot = FALSE)
z$acf[1] = 0
cl = qnorm(0.5 + ci/2)/sqrt(z$n.used)
z.min = min(z$acf, -cl)
x = seq(0, lag.max, by = 1)
y = z$acf
if (type == "both" | type == "acf") {
plot(x = x[-1], y = y[-1], type = "l", main = main1,
col = "steelblue", xlab = xlab1, ylab = ylab1,
xlim = c(0, lag.max), ylim = c(-2*cl, max(y[-1])), ...)
if (trace) {
cat ("\nLong Memory Autocorrelation Function:")
paste (cat ("\n Maximum Lag "), cat(lag.max))
paste (cat ("\n Cut-Off ConfLevel "), cat(cl))
}
ACF = acf(x.ret, lag.max = lag.max, plot = FALSE)$acf[,,1]
lines(x = 1:lag.max, y = ACF[-1], type = "l", col = "steelblue")
lines(x = c(-0.1, 1.1)*lag.max, y = c(+cl, +cl), lty = 3,
col = "darkgrey")
lines(x = c(-0.1, 1.1)*lag.max, y = c(-cl, -cl), lty = 3,
col = "darkgrey")
}
x = x[y > cl]
y = y[y > cl]
if (length(x) < 10) {
Fit = c(NA, NA)
hurst = NA
cat("\n The time series exhibits no long memory! \n")
} else {
Fit = lsfit(log(x), log(y))
fit = unlist(Fit)[1:2]
hurst = 1 + fit[2]/2
if (type == "both" | type == "hurst") {
plot(x = log(x), y = log(y), type = "l", xlab = xlab2,
ylab = ylab2, main = main2, col = "steelblue", ...)
Text = paste("Hurst Exponent:", signif(hurst, 3))
mtext(Text, side = 4, adj = 0, col = "darkgrey", cex = 0.7)
if (labels) grid()
}
abline(fit[1], fit[2], col = 1)
if (trace) {
paste (cat ('\n Plot-Intercept '), cat(fit[1]))
paste (cat ('\n Plot-Slope '), cat(fit[2]))
paste (cat ('\n Hurst Exponent '), cat(hurst), cat("\n"))
}
}
if (DIM == 1) Fitted = Fit else Fitted[[i]] = Fit
Hurst = c(Hurst, hurst)
}
invisible(list(fit = Fitted, hurst = Hurst))
}
.logpdfPlot =
function(x, breaks = "FD", type = c("lin-log", "log-log"),
doplot = TRUE, labels = TRUE, ...)
{
if (!is.timeSeries(x)) x = as.timeSeries(x)
Units = colnames(x)
type = match.arg(type)
if (labels) {
if (type == "lin-log") {
main = "log PDF"
xlab = "x"
ylab = "log PDF"
} else if (type == "log-log") {
main = "log PDF"
xlab = "log x"
ylab = "log PDF"
}
} else {
main = xlab = ylab = ""
}
X = x
DIM = ncol(X)
for (i in 1:DIM) {
x = as.vector(X[, i])
if (labels) main = Units[i]
if (type == "lin-log") {
result = hist(x, breaks = breaks, plot = FALSE)
prob.counts = result$counts/sum(result$counts) /
diff(result$breaks)[1]
histogram = list(breaks = result$breaks, counts = prob.counts)
yh = histogram$counts
xh = histogram$breaks
xh = xh[1:(length(xh)-1)] + diff(xh)/2
xh = xh[yh > 0]
yh = log(yh[yh > 0])
if (doplot) {
par(err = -1)
plot(xh, yh, type = "p", pch = 19, col = "steelblue",
main = main, xlab = xlab, ylab = ylab, ...)
Text = "Scales: log-log"
mtext(Text, side = 4, adj =0, col = "darkgrey", cex = 0.7)
}
xg = seq(from = xh[1], to = xh[length(xh)], length = 301)
yg = log(dnorm(xg, mean(x), sqrt(var(x))))
if (doplot) {
par(err = -1)
lines(xg, yg, col = "brown")
}
result = list(breaks = xh, counts = yh, fbreaks = xg,
fcounts = yg)
}
if (type == "log-log") {
result = hist(x, breaks = breaks, plot = FALSE)
prob.counts = result$counts/sum(result$counts) / diff(result$breaks)[1]
histogram = list(breaks = result$breaks, counts = prob.counts)
yh = histogram$counts
xh = histogram$breaks
xh = xh[1:(length(xh)-1)] + diff(xh)/2
xh = xh[yh > 0]
yh = yh[yh > 0]
yh1 = yh[xh < 0]
xh1 = abs(xh[xh < 0])
yh2 = yh[xh > 0]
xh2 = xh[xh > 0]
if (doplot) {
plot(log(xh1), log(yh1), type = "p", pch = 19,
col = "darkgreen",
main = main, xlab = xlab, ylab = ylab, ...)
Text = "Scales: log-log"
mtext(Text, side = 4, adj =0, col = "darkgrey", cex = 0.7)
par(err = -1)
points(log(xh2), log(yh2), col = 2, ...)
}
xg = seq(from = min(xh1[1], xh[2]),
to = max(xh1[length(xh1)], xh2[length(xh2)]), length = 301)
xg = xg[xg > 0]
yg = log(dnorm(xg, mean(x), sqrt(var(x))))
if (doplot) {
par(err = -1)
lines(log(xg), yg, col = "brown")
}
result = list(breaks = c(xh1, xh2), counts = c(yh1, yh2),
fbreaks = c(-rev(xg), xg), fcounts = c(-rev(yg), yg))
}
if (labels) grid()
}
invisible(result)
}
.qqgaussPlot <-
function(x, span = 5, col = "steelblue", labels = TRUE, ...)
{
if (!is.timeSeries(x)) x = as.timeSeries(x)
Units = colnames(x)
if (labels) {
main = "Normal QQ Plot"
xlab = "Theoretical Quantiles"
ylab = "Sample Quantiles"
} else {
main = xlab = ylab = ""
}
X = x
DIM = dim(X)[2]
for (i in 1:DIM) {
x = as.vector(as.matrix(X)[, i])
if (labels) main = Units[i]
y = (x-mean(x)) / sqrt(var(x))
y[abs(y) < span]
lim = c(-span, span)
qqnorm(y, main = main, xlab = xlab, ylab = ylab,
xlim = lim, ylim = lim, col = col, ...)
qqline(y, ...)
if (labels) grid()
}
invisible(x)
}
.ccfPlot <-
function(x, y, lag.max = max(2, floor(10*log10(length(x)))),
type = c("correlation", "covariance", "partial"), labels = TRUE, ...)
{
if (class(x) == "timeSeries") stopifnot(isUnivariate(x))
if (class(y) == "timeSeries") stopifnot(isUnivariate(y))
x = as.vector(x)
y = as.vector(y)
if (labels) {
main = "Crosscorrelation Function"
xlab = "lag"
ylab = "CCF"
} else {
main = xlab = ylab = ""
}
X = cbind(x = x, y = y)
acf.out = acf(X, lag.max = lag.max, plot = FALSE, type = type[1])
lag = c(rev(acf.out$lag[-1, 2, 1]), acf.out$lag[, 1, 2])
y = c(rev(acf.out$acf[-1, 2, 1]), acf.out$acf[, 1, 2])
acf.out$acf = array(y, dim = c(length(y), 1, 1))
acf.out$lag = array(lag, dim = c(length(y), 1, 1))
acf.out$snames = paste(acf.out$snames, collapse = " & ")
plot(acf.out, main = main, xlab = xlab, ylab = ylab, ...)
invisible(acf.out)
}
.stylizedFactsGUI <-
function(x, mfrow = c(3, 3))
{
stylizedFactsRefreshCode <-
function(...)
{
selectedAsset = .tdSliderMenu(no = 1)
type = as.integer(.tdSliderMenu(obj.name = "stylizedFactsType"))
Unit = colnames(x)
if (type == 1) {
if (selectedAsset == 0) {
par(mfrow = mfrow)
acfPlot(x)
} else {
par(mfrow = c(1, 1))
acfPlot(x[, selectedAsset])
}
}
if (type == 2) {
if (selectedAsset == 0) {
par(mfrow = mfrow)
pacfPlot(x)
} else {
par(mfrow = c(1, 1))
pacfPlot(x[, selectedAsset])
}
}
if (type == 3) {
if (selectedAsset == 0) {
par(mfrow = mfrow)
acfPlot(abs(x))
} else {
par(mfrow = c(1, 1))
acfPlot(abs(x[, selectedAsset]))
}
}
if (type == 4) {
if (selectedAsset == 0) {
par(mfrow = mfrow)
teffectPlot(x)
} else {
par(mfrow = c(1, 1))
teffectPlot(x[, selectedAsset])
}
}
if (type == 5) {
if (selectedAsset == 0) {
par(mfrow = mfrow)
.lmacfPlot(abs(x))
} else {
par(mfrow = c(1, 1))
.lmacfPlot(abs(x[, selectedAsset]))
}
}
if (type == 6) {
if (selectedAsset == 0) {
par(mfrow = mfrow)
lacfPlot(x)
} else {
par(mfrow = c(1, 1))
lacfPlot(x[, selectedAsset])
}
}
if (type == 7) {
if (selectedAsset == 0) {
par(mfrow = mfrow)
.logpdfPlot(x)
} else {
par(mfrow = c(1, 1))
.logpdfPlot(x[, selectedAsset])
}
}
if (type == 8) {
if (selectedAsset == 0) {
par(mfrow = mfrow)
.logpdfPlot(x, type = "log-log")
} else {
par(mfrow = c(1, 1))
.logpdfPlot(x[, selectedAsset], type = "log-log")
}
}
if (type == 9) {
if (selectedAsset == 0) {
par(mfrow = mfrow)
.qqgaussPlot(x, pch = 19)
} else {
par(mfrow = c(1, 1))
.qqgaussPlot(x[, selectedAsset], pch = 19)
}
}
if (type == 10) {
if (selectedAsset == 0) {
par(mfrow = mfrow)
scalinglawPlot(x, pch = 19)
} else {
par(mfrow = c(1, 1))
scalinglawPlot(x[, selectedAsset], pch = 19)
}
}
}
nAssets = dim(x)[2]
.tdSliderMenu(
stylizedFactsRefreshCode,
names = c("Selected Asset"),
minima = c( 0),
maxima = c( nAssets),
resolutions = c( 1),
starts = c( 0),
but.functions = list(
function(...){
.tdSliderMenu(obj.name = "stylizedFactsType", obj.value = "1")
stylizedFactsRefreshCode()},
function(...){
.tdSliderMenu(obj.name = "stylizedFactsType", obj.value = "2")
stylizedFactsRefreshCode()},
function(...){
.tdSliderMenu(obj.name = "stylizedFactsType", obj.value = "3")
stylizedFactsRefreshCode()},
function(...){
.tdSliderMenu(obj.name = "stylizedFactsType", obj.value = "4")
stylizedFactsRefreshCode()},
function(...){
.tdSliderMenu(obj.name = "stylizedFactsType", obj.value = "5")
stylizedFactsRefreshCode()},
function(...){
.tdSliderMenu(obj.name = "stylizedFactsType", obj.value = "6")
stylizedFactsRefreshCode()},
function(...){
.tdSliderMenu(obj.name = "stylizedFactsType", obj.value = "7")
stylizedFactsRefreshCode()},
function(...){
.tdSliderMenu(obj.name = "stylizedFactsType", obj.value = "8")
stylizedFactsRefreshCode()},
function(...){
.tdSliderMenu(obj.name = "stylizedFactsType", obj.value = "9")
stylizedFactsRefreshCode()},
function(...){
.tdSliderMenu(obj.name = "stylizedFactsType", obj.value = "10")
stylizedFactsRefreshCode()}
),
but.names = c(
"1 ACF Function of Returns",
"2 Partial ACF of Returns",
"3 ACF of absolute Returns",
"4 Taylor Effect",
"5 Long Memory ACF of abs Returns",
"6 Lagged Autocorrelations",
"7 Lin-Log Tail Density Plot",
"8 Log-Log Lower Tail Density",
"9 Simple Normal QQ Plot",
"10 Scaling Law Plot"),
title = "Stylized Facts GUI"
)
.tdSliderMenu(obj.name = "type", obj.value = "1", no = 1)
invisible()
} |
library(potts)
library(pooh)
set.seed(42)
ncolor <- as.integer(4)
alpha <- rnorm(ncolor) * 0.01
beta <- log(1 + sqrt(ncolor))
theta <- c(alpha, beta)
nrow <- 25
ncol <- 20
x <- matrix(1, nrow = nrow, ncol = ncol)
foo <- packPotts(x, ncolor)
out <- potts(foo, theta, nbatch = 5, blen = 3, nspac = 2, debug = TRUE,
boundary = "condition")
names(out)
identical(out$initial, foo)
before <- out$pstate
dim(before)
niter <- dim(before)[1]
niter == out$nbatch * out$blen * out$nspac
after <- before
after[- niter, , ] <- before[- 1, ,]
after[niter, , ] <- unpackPotts(out$final)
sort(unique(as.vector(before)))
sort(unique(as.vector(after)))
all.equal(x, before[1, , ])
before.foo <- before
before.foo[ , seq(2, nrow - 1), seq(2, ncol - 1)] <- 0
after.foo <- after
after.foo[ , seq(2, nrow - 1), seq(2, ncol - 1)] <- 0
identical(apply(before.foo, c(2, 3), max), before.foo[1, , ])
identical(apply(before.foo, c(2, 3), min), before.foo[1, , ])
identical(apply(after.foo, c(2, 3), max), before.foo[1, , ])
identical(apply(after.foo, c(2, 3), min), before.foo[1, , ])
ttt <- matrix(NA, niter, ncolor + 1)
for (icolor in 1:ncolor)
ttt[ , icolor] <- apply(after - after.foo == icolor, 1, sum)
colin <- seq(2, ncol - 1)
rowin <- seq(2, nrow - 1)
tstar <- rep(0, niter)
for (i in 2:nrow)
tstar <- tstar +
apply(after[ , i, colin] == after[ , i - 1, colin], 1, sum)
for (i in 2:ncol)
tstar <- tstar +
apply(after[ , rowin, i] == after[ , rowin, i - 1], 1, sum)
ttt[ , ncolor + 1] <- tstar
foo <- ttt[seq(1, niter) %% out$nspac == 0, ]
foo <- array(as.vector(foo), c(out$blen, out$nbatch, ncolor + 1))
foo <- apply(foo, c(2, 3), mean)
identical(foo, out$batch)
bprob <- (- expm1(- beta))
all.equal(bprob, 1 - exp(- beta))
my.hstate.possible <- array(FALSE, c(niter, nrow, ncol))
for (i in seq(1, nrow - 1))
my.hstate.possible[ , i, colin] <-
before[ , i, colin] == before[ , i + 1, colin]
storage.mode(my.hstate.possible) <- "integer"
identical(my.hstate.possible == 1, out$hunif != -1)
my.hstate <- out$hunif < bprob
storage.mode(my.hstate) <- "integer"
my.hstate <- my.hstate * my.hstate.possible
identical(my.hstate, out$hstate)
my.vstate.possible <- array(FALSE, c(niter, nrow, ncol))
for (i in seq(1, ncol - 1))
my.vstate.possible[ , rowin, i] <-
before[ , rowin, i] == before[ , rowin, i + 1]
storage.mode(my.vstate.possible) <- "integer"
identical(my.vstate.possible == 1, out$vunif != -1)
my.vstate <- out$vunif < bprob
storage.mode(my.vstate) <- "integer"
my.vstate <- my.vstate * my.vstate.possible
identical(my.vstate, out$vstate)
my.row <- row(my.hstate[1, , ])
my.col <- col(my.hstate[1, , ])
my.other.row <- my.row + 1
my.other.row[my.other.row > nrow] <- 1
my.other.col <- my.col + 1
my.other.col[my.other.col > ncol] <- 1
vertices <- paste(my.row, my.col, sep = ":")
patch.equals <- NULL
for (iiter in 1:niter) {
isbond <- my.hstate[iiter, , ] == 1
my.row.bond <- as.vector(my.row[isbond])
my.col.bond <- as.vector(my.col[isbond])
my.other.row.bond <- as.vector(my.other.row[isbond])
my.from.h <- paste(my.row.bond, my.col.bond, sep = ":")
my.to.h <- paste(my.other.row.bond, my.col.bond, sep = ":")
isbond <- my.vstate[iiter, , ] == 1
my.row.bond <- as.vector(my.row[isbond])
my.col.bond <- as.vector(my.col[isbond])
my.other.col.bond <- as.vector(my.other.col[isbond])
my.from.v <- paste(my.row.bond, my.col.bond, sep = ":")
my.to.v <- paste(my.row.bond, my.other.col.bond, sep = ":")
wout <- weak(from = c(my.from.h, my.from.v), to = c(my.to.h, my.to.v),
domain = vertices, markers = TRUE)
blab <- as.vector(out$patch[iiter, , ])
widx <- sort(unique(wout))
bidx <- blab[match(widx, wout)]
patch.equals <- c(patch.equals, identical(bidx[wout], blab))
}
all(patch.equals)
unif.equals <- NULL
my.after <- after
for (iiter in 1:niter) {
fred <- out$patch[iiter, , ]
blab <- as.vector(fred)
blab.count <- tabulate(blab, nbins = nrow * ncol)
blab.fixed <- c(fred[c(1, nrow), ], fred[ , c(1, ncol)])
blab.fixed <- sort(unique(blab.fixed))
punif <- out$punif[iiter, ]
unif.equals <- c(unif.equals, identical(punif != -1, blab.count != 0))
alpha.prod <- outer(blab.count, alpha)
p.prod <- exp(alpha.prod)
p.sum <- apply(p.prod, 1, sum)
p <- sweep(p.prod, 1, p.sum, "/")
p.cum <- apply(p, 1, cumsum)
p.cum <- t(p.cum)
p.foo <- sweep(p.cum, 1, out$punif[iiter, ])
newcolor <- apply(p.foo < 0, 1, sum) + 1
newcolor[blab.count == 0] <- NA
is.fixed <- blab %in% blab.fixed
color.old <- as.vector(before[iiter, , ])
color.new <- newcolor[blab]
color.new[is.fixed] <- color.old[is.fixed]
my.after[iiter, , ] <- matrix(color.new, nrow, ncol)
}
all(unif.equals)
all.equal(after, my.after)
u <- c(as.vector(out$hunif), as.vector(out$vunif), as.vector(out$punif))
u <- u[u != -1]
ks.test(x = u, y = "punif")
alpha <- rep(0, ncolor)
theta <- c(alpha, beta)
out.too <- potts(out, param = theta, debug = FALSE)
alpha <- rep(0.1, ncolor)
theta <- c(alpha, beta)
out.too.too <- potts(out, param = theta, debug = FALSE)
all.equal(out.too$batch, out.too.too$batch) |
expected <- TRUE
test(id=939, code={
argv <- list(function (e1, e2)
{
ok <- switch(.Generic, "<" = , ">" = , "<=" = , ">=" = ,
"==" = , "!=" = TRUE, FALSE)
if (!ok) {
warning(sprintf("'%s' is not meaningful for ordered factors",
.Generic))
return(rep.int(NA, max(length(e1), if (!missing(e2)) length(e2))))
}
if (.Generic %in% c("==", "!="))
return(NextMethod(.Generic))
nas <- is.na(e1) | is.na(e2)
ord1 <- FALSE
ord2 <- FALSE
if (nzchar(.Method[1L])) {
l1 <- levels(e1)
ord1 <- TRUE
}
if (nzchar(.Method[2L])) {
l2 <- levels(e2)
ord2 <- TRUE
}
if (all(nzchar(.Method)) && (length(l1) != length(l2) ||
!all(l2 == l1)))
stop("level sets of factors are different")
if (ord1 && ord2) {
e1 <- as.integer(e1)
e2 <- as.integer(e2)
}
else if (!ord1) {
e1 <- match(e1, l2)
e2 <- as.integer(e2)
}
else if (!ord2) {
e2 <- match(e2, l1)
e1 <- as.integer(e1)
}
value <- get(.Generic, mode = "function")(e1, e2)
value[nas] <- NA
value
})
do.call('is.function', argv);
}, o = expected);
|
generate_report_data_signatures_mp <-
function(vcf_fname,
pcgr_data,
sample_name,
pcgr_config,
type_specific = T) {
pcgrr:::log4r_info("------")
pcgrr:::log4r_info(paste0("Identifying weighted contributions of reference ",
"mutational signatures (COSMIC v3.2) using ",
"MutationalPatterns"))
assay <- tolower(pcgr_config$assay_props$type)
pcg_report_signatures <-
pcgrr::init_report(config = pcgr_config,
class = "m_signature_mp")
prevalent_site_signatures <- NULL
if(type_specific == T){
prevalent_site_signatures <-
pcgrr::get_prevalent_site_signatures(
site = pcgr_config[["t_props"]][["tumor_type"]],
pcgr_data = pcgr_data,
incl_poss_artifacts =
pcgr_config[["msigs"]][["include_artefact_signatures"]])
}
if(type_specific == F){
prevalent_site_signatures <-
pcgrr::get_prevalent_site_signatures(
site = "Any",
pcgr_data = pcgr_data,
incl_poss_artifacts =
pcgr_config[["msigs"]][["include_artefact_signatures"]])
}
if(file.exists(vcf_fname)){
vcfs <- suppressWarnings(
MutationalPatterns::read_vcfs_as_granges(
vcf_files = vcf_fname,
sample_names = sample_name,
genome = pcgr_data[["assembly"]][["ref_genome"]],
predefined_dbs_mbs = T),
)
pcgrr:::log4r_info(paste0("Number of SNVs for signature analysis: ",
length(vcfs[[1]])))
pcg_report_signatures[["eval"]] <- TRUE
if (length(vcfs[[1]]) >= pcgr_config[["msigs"]][["mutation_limit"]]) {
pcg_report_signatures[["variant_set"]][["all"]] <-
data.frame('VAR_ID' = rownames(mcols(vcfs[[1]])),
stringsAsFactors = F) %>%
tidyr::separate(VAR_ID, c('CHROM', 'pos_ref_alt'),
sep=":", remove = T) %>%
tidyr::separate(pos_ref_alt, c("POS","ref_alt"),
sep="_", remove = T) %>%
tidyr::separate(ref_alt, c("REF","ALT"),
sep = "/", remove = T) %>%
dplyr::mutate(POS = as.integer(POS))
mut_mat <-
MutationalPatterns::mut_matrix(
vcf_list = vcfs,
ref_genome = pcgr_data[["assembly"]][["ref_genome"]],
extension = 1)
mut_mat <- mut_mat + 0.0001
all_reference_signatures <-
MutationalPatterns::get_known_signatures(
muttype = "snv",
genome = stringr::str_replace(
pcgr_data[["assembly"]][["grch_name"]], "grc", "GRC"
),
incl_poss_artifacts =
pcgr_config[["msigs"]][["include_artefact_signatures"]]
)
selected_sigs <- intersect(
colnames(all_reference_signatures),
unique(prevalent_site_signatures$aetiology$signature_id)
)
selected_reference_signatures <-
all_reference_signatures[, selected_sigs]
fit_ref <-
MutationalPatterns::fit_to_signatures(mut_mat, selected_reference_signatures)
sim_original_reconstructed <-
as.data.frame(
MutationalPatterns::cos_sim_matrix(
mut_mat, fit_ref[["reconstructed"]])) %>%
magrittr::set_colnames("cosine_sim") %>%
magrittr::set_rownames(NULL)
tot <- as.data.frame(
setNames(reshape2::melt(colSums(fit_ref[["contribution"]])),
c("tot"))) %>%
dplyr::mutate(sample_id = as.character(rownames(.))) %>%
magrittr::set_rownames(NULL)
contributions_per_signature <-
as.data.frame(setNames(reshape2::melt(fit_ref[["contribution"]]),
c("signature_id", "sample_id",
"contribution_raw"))) %>%
dplyr::mutate(signature_id = as.character(signature_id)) %>%
dplyr::mutate(sample_id = as.character(sample_id)) %>%
dplyr::left_join(tot, by = "sample_id") %>%
dplyr::mutate(prop_signature = round(as.numeric(contribution_raw) / tot,
digits = 3)) %>%
dplyr::select(signature_id, sample_id, prop_signature) %>%
dplyr::filter(prop_signature > 0) %>%
dplyr::arrange(desc(prop_signature)) %>%
dplyr::left_join(
dplyr::select(pcgr_data[["mutational_signatures"]][["aetiologies"]],
signature_id,
aetiology, comments, aetiology_keyword),
by = c("signature_id")) %>%
dplyr::rename(group = aetiology_keyword) %>%
dplyr::mutate(
contribution =
paste0(round(prop_signature * 100, digits = 2), "%")) %>%
dplyr::distinct()
contributions_per_group <- as.data.frame(
contributions_per_signature %>%
dplyr::group_by(group) %>%
dplyr::summarise(prop_group = sum(prop_signature),
signature_id_group = paste(signature_id, collapse=", "),
.groups = "drop")
)
cols <- contributions_per_group %>%
dplyr::arrange(desc(prop_group)) %>%
dplyr::select(group) %>%
dplyr::distinct()
color_vec <- head(pcgrr::color_palette[["tier"]][["values"]], nrow(cols))
names(color_vec) <- cols$group
color_vec2 <- color_vec
names(color_vec2) <- NULL
cols <- cols %>% dplyr::mutate(col = color_vec2)
contributions_per_signature <- contributions_per_signature %>%
dplyr::left_join(cols, by = "group")
contributions <- list()
contributions[["per_group"]] <- contributions_per_group
contributions[["per_signature"]] <- contributions_per_signature
if(!is.null(prevalent_site_signatures$aetiology) &
NROW(contributions[["per_signature"]]) > 0){
if("signature_id" %in% colnames(prevalent_site_signatures$aetiology)){
reference_sigs <- paste(sort(prevalent_site_signatures$aetiology$signature_id),
collapse=",")
tsv_data <- contributions[["per_signature"]] %>%
pcgrr::remove_cols_from_df(
cnames = c("contribution","col","aetiology","comments")) %>%
dplyr::mutate(
all_reference_signatures = !type_specific,
tumor_type = pcgr_config[["t_props"]][["tumor_type"]],
reference_collection = "COSMIC_v32",
reference_signatures = reference_sigs,
fitting_accuracy =
round(sim_original_reconstructed$cosine_sim * 100, digits = 1))
}
}
vr <- vcfs[[sample_name]]
GenomeInfoDb::seqlengths(vr) <-
GenomeInfoDb::seqlengths(pcgr_data[["assembly"]][["bsg"]])[GenomeInfoDb::seqlevels(pcgr_data[["assembly"]][["bsg"]]) %in% unique(GenomeInfoDb::seqlevels(vr))]
chromosomes <- head(GenomeInfoDb::seqnames(pcgr_data[["assembly"]][["bsg"]]), 24)
pcg_report_signatures[["result"]][["vr"]] <- vr
pcg_report_signatures[["result"]][["mut_mat"]] <- mut_mat
pcg_report_signatures[["result"]][["chromosomes"]] <- chromosomes
pcg_report_signatures[["result"]][["contributions"]] <- contributions
pcg_report_signatures[["result"]][["tsv"]] <- tsv_data
pcg_report_signatures[["result"]][["reference_data"]] <- prevalent_site_signatures$aetiology
pcg_report_signatures[["result"]][["scale_fill_values"]] <- color_vec
pcg_report_signatures[["result"]][["scale_fill_names"]] <-
names(color_vec)
pcg_report_signatures[["result"]][["goodness_of_fit"]] <-
round(sim_original_reconstructed$cosine_sim * 100, digits = 1)
}else{
pcg_report_signatures[["missing_data"]] <- TRUE
if (length(vcfs[[1]]) > 0) {
pcg_report_signatures[["variant_set"]][["all"]] <-
as.data.frame(vcfs[[1]]) %>%
dplyr::rename(POS = start, CHROM = seqnames) %>%
dplyr::select(CHROM, POS, REF, ALT) %>%
magrittr::set_rownames(NULL)
pcgrr:::log4r_info(
paste0("Too few SNVs (n = ",
nrow(pcg_report_signatures[["variant_set"]][["all"]]),
") for reconstruction of mutational signatures by ",
"MutationalPatterns, limit set to ",
pcgr_config[["msigs"]][["mutation_limit"]]))
}
}
}
return(pcg_report_signatures)
}
get_prevalent_site_signatures <-
function(site = "Any",
custom_collection = NULL,
pcgr_data = NULL,
prevalence_pct = 5,
incl_poss_artifacts = T) {
if(is.null(custom_collection)){
pcgrr:::log4r_info(paste0(
"Retrieving prevalent (prevalence >= ",
prevalence_pct, " percent) reference signatures for ",
site, ", using COSMIC v3.2 collection"))
}
pcgrr:::log4r_info(paste0(
"Inclusion of mutational signature artefacts (e.g. sequencing artefacts): ",
incl_poss_artifacts))
invisible(
assertthat::assert_that(
!is.null(pcgr_data[["mutational_signatures"]][["aetiologies"]]),
msg =
"Cannot load ref. aetiologies (COSMIC v3.2) of mutational signatures"))
invisible(
assertthat::assert_that(
is.data.frame(pcgr_data[["mutational_signatures"]][["aetiologies"]]),
msg = "Reference aetiologies must be of type data.frame()"))
invisible(
assertthat::assert_that(
prevalence_pct == 0 |
prevalence_pct == 2 | prevalence_pct == 5 |
prevalence_pct == 10 | prevalence_pct == 15 |
prevalence_pct == 20,
msg = "Argument 'prevalence_pct' must be any of '0, 2, 5, 10, 15 or 20'"))
valid_signature_ids <-
unique(pcgr_data[["mutational_signatures"]][["aetiologies"]]$signature_id)
signatures_prevalence <- data.frame()
if(!is.null(custom_collection)){
invisible(
assertthat::assert_that(
is.character(custom_collection),
msg = "Argument 'custom_collection' must be a character vector"))
pcgrr:::log4r_info(paste0(
"Retrieving reference signatures from COSMIC v3.2 collection based on user-defined collection (",
paste(unique(custom_collection), collapse=", "), ")")
)
i <- 1
while(i <= length(custom_collection)){
if(!(custom_collection[i] %in% valid_signature_ids)){
pcgrr:::log4r_warn(paste0("Could not find specified custom signature id '",
custom_collection[i], "' in COSMIC v3.2 reference collection",
" - ignoring"))
}
i <- i + 1
}
signatures_prevalence <-
pcgr_data[["mutational_signatures"]][["aetiologies"]] %>%
dplyr::select(signature_id,
aetiology_keyword,
aetiology,
associated_signatures,
comments) %>%
dplyr::filter(signature_id %in% custom_collection) %>%
dplyr::distinct()
}else{
unique_sites_with_signature_prevalence <-
unique(pcgr_data[["mutational_signatures"]][["aetiologies"]][["primary_site"]])
if (!(site %in% unique_sites_with_signature_prevalence)) {
pcgrr:::log4r_info(
paste0("Primary tumor site '", site, "' ",
"does not have any signatures with significant ",
"prevalence - considering all"))
signatures_prevalence <-
pcgr_data[["mutational_signatures"]][["aetiologies"]] %>%
dplyr::select(signature_id, aetiology_keyword, aetiology,
associated_signatures, comments) %>%
dplyr::distinct()
}else{
signatures_prevalence <-
pcgr_data[["mutational_signatures"]][["aetiologies"]] %>%
dplyr::filter(primary_site == site) %>%
dplyr::select(signature_id,
primary_site,
prevalence_pct,
prevalence_above_5pct,
prevalence_above_10pct,
prevalence_above_15pct,
prevalence_above_20pct,
aetiology_keyword, aetiology,
associated_signatures, comments) %>%
dplyr::distinct()
if (prevalence_pct > 0) {
if (prevalence_pct == 5) {
signatures_prevalence <- signatures_prevalence %>%
dplyr::filter(prevalence_above_5pct == T |
is.na(prevalence_above_5pct))
}else if (prevalence_pct == 10) {
signatures_prevalence <- signatures_prevalence %>%
dplyr::filter(prevalence_above_10pct == T |
is.na(prevalence_above_10pct))
}
else if (prevalence_pct == 15) {
signatures_prevalence <- signatures_prevalence %>%
dplyr::filter(prevalence_above_15pct == T |
is.na(prevalence_above_15pct))
}else if (prevalence_pct == 20) {
signatures_prevalence <- signatures_prevalence %>%
dplyr::filter(prevalence_above_20pct == T |
is.na(prevalence_above_20pct))
}
}
signatures_prevalence <- signatures_prevalence %>%
dplyr::select(-c(primary_site, prevalence_above_5pct,
prevalence_above_10pct, prevalence_above_15pct,
prevalence_above_20pct)) %>%
dplyr::distinct() %>%
dplyr::arrange(desc(prevalence_pct)) %>%
dplyr::select(-prevalence_pct)
}
}
if(incl_poss_artifacts == F){
signatures_prevalence <- signatures_prevalence %>%
dplyr::filter(!stringr::str_detect(aetiology_keyword,"artefact"))
}
signatures_prevalence <- signatures_prevalence %>%
dplyr::distinct()
sigs <- unique(signatures_prevalence$signature_id)
pcgrr:::log4r_info(paste0("Limiting reference collection to signatures: ",
paste(sigs, collapse = ", ")))
result <- list("aetiology" = signatures_prevalence)
return(result)
}
generate_report_data_rainfall <- function(variant_set, colors = NULL,
autosomes = F, build = "grch37") {
pcg_report_rainfall <- pcgrr::init_report(class = "rainfall")
if(NROW(variant_set) == 0){
return(pcg_report_rainfall)
}
invisible(assertthat::assert_that
(assertthat::is.flag(autosomes),
msg = "Argument 'autosomes' should be TRUE/FALSE"))
invisible(assertthat::assert_that(
is.data.frame(variant_set),
msg = paste0("Argument variant_set needs be of type data.frame")))
assertable::assert_colnames(
variant_set, c("CHROM", "REF", "ALT",
"POS", "VARIANT_CLASS"), only_colnames = F, quiet = T)
invisible(
assertthat::assert_that(
build == "grch37" | build == "grch38",
msg = paste0("Value for argument build ('", build,
"') not allowed, available reference build values are:",
"'grch37' or 'grch38'")))
pcgrr:::log4r_info("------")
pcgrr:::log4r_info(paste0("Calculating data for rainfall plot"))
sbs_types <- c("C>A", "C>G", "C>T", "T>A", "T>C", "T>G")
if (is.null(colors)) {
colors <- RColorBrewer::brewer.pal(6, "Dark2")
}else{
invisible(
assertthat::assert_that(
length(colors) == 6,
msg = "'colors' should be a character vector of six color codes"))
}
chr_prefix <- FALSE
chromosome_names <- unique(variant_set[, "CHROM"])
for (m in chromosome_names) {
if (startsWith(m, "chr")) {
chr_prefix <- TRUE
}
}
if (chr_prefix == F) {
variant_set <- variant_set %>%
dplyr::mutate(CHROM = paste0("chr", CHROM))
}
dat <- dplyr::select(variant_set, CHROM, POS,
REF, ALT, VARIANT_CLASS) %>%
dplyr::filter(VARIANT_CLASS == "SNV")
if (nrow(dat) < 10 | length(chromosome_names) < 2) {
pcgrr:::log4r_info(
paste0("Too few variants (< 10) and chromosomes ",
" represented (< 2) - skipping rainfall plot"))
pcg_report_rainfall[["eval"]] <- F
}else{
dat <- dat %>%
pcgrr::assign_mutation_type() %>%
dplyr::mutate(
MUTATION_TYPE =
dplyr::if_else(stringr::str_detect(MUTATION_TYPE, "^C>"),
stringr::str_replace(MUTATION_TYPE,
":[A-Z]>[A-Z]$", ""),
as.character(MUTATION_TYPE))) %>%
dplyr::mutate(
MUTATION_TYPE =
dplyr::if_else(stringr::str_detect(MUTATION_TYPE, "^A>"),
stringr::str_replace(MUTATION_TYPE,
"^[A-Z]>[A-Z]:", ""),
as.character(MUTATION_TYPE))) %>%
pcgrr::sort_chromosomal_segments()
bsg <- BSgenome.Hsapiens.UCSC.hg19
chr_length <- head(GenomeInfoDb::seqlengths(bsg), 24)
chromosomes <- head(GenomeInfoDb::seqnames(bsg), 24)
if (build == "grch38") {
bsg <- BSgenome.Hsapiens.UCSC.hg38
chr_length <- head(GenomeInfoDb::seqlengths(bsg), 24)
}
if (autosomes == T) {
chr_length <- head(chr_length, 22)
}
chr_cum <- c(0, cumsum(as.numeric(chr_length)))
names(chr_cum) <- names(chr_length)
labels <- gsub("chr", "", names(chr_length))
m <- c()
for (i in 2:length(chr_cum))
m <- c(m, (chr_cum[i - 1] + chr_cum[i]) / 2)
type <- c()
loc <- c()
dist <- c()
chrom <- c()
for (i in 1:length(chromosomes)) {
chr_subset <- dplyr::filter(dat, CHROM == chromosomes[i])
n <- nrow(chr_subset)
if (n <= 1) {
next
}
type <- c(type, chr_subset$MUTATION_TYPE[-1])
loc <- c(loc, (chr_subset$POS + chr_cum[i])[-1])
dist <- c(dist, diff(chr_subset$POS))
chrom <- c(chrom, rep(chromosomes[i], n - 1))
}
invisible(assertthat::assert_that(length(type) == length(loc) &
length(loc) == length(dist) &
length(chrom) == length(dist),
msg = "Length of type/loc/dist not identical"))
data <- data.frame(type = type,
location = loc,
distance = dist,
chromosome = chrom,
stringsAsFactors = F)
typesin <- sbs_types %in% sort(unique(data$type))
colors_selected <- colors[typesin]
ylim <- 1e+09
pcg_report_rainfall[["eval"]] <- T
pcg_report_rainfall[["rfdata"]] <-
list("data" = data, "intercept" = m, "ylim" = ylim,
"chr_cum" = chr_cum, "colors" = colors_selected,
"labels" = labels, "cex" = 0.8, "cex_text" = 3)
}
return(pcg_report_rainfall)
} |
test_that("GraphqlClient client initialization works", {
expect_is(GraphqlClient, "R6ClassGenerator")
aa <- GraphqlClient$new()
expect_is(aa, "GraphqlClient")
expect_is(aa, "R6")
expect_is(aa$.__enclos_env__, "environment")
expect_is(aa$print, "function")
expect_is(aa$ping, "function")
expect_is(aa$load_schema, "function")
expect_is(aa$dump_schema, "function")
expect_is(aa$schema2json, "function")
expect_is(aa$fragment, "function")
expect_is(aa$exec, "function")
expect_is(aa$prep_query, "function")
expect_null(aa$url)
expect_null(aa$headers)
expect_null(aa$schema)
expect_null(aa$result)
expect_is(aa$fragments, "list")
expect_equal(length(aa$fragments), 0)
})
test_that("GraphqlClient construction works", {
skip_on_cran()
token <- Sys.getenv("GITHUB_TOKEN")
aa <- GraphqlClient$new(
url = "https://api.github.com/graphql",
headers = list(Authorization = paste0("Bearer ", token))
)
expect_true(aa$ping())
qry <- Query$new()
qry$query('repos', '{
viewer {
repositories(last: 10, isFork: false, privacy: PUBLIC) {
edges {
node {
isPrivate
id
name
}
}
}
}
}')
out <- aa$exec(qry$queries$repos)
expect_is(out, "character")
expect_match(out, "repositories")
expect_match(out, "isPrivate")
parsed <- jsonlite::fromJSON(out)
expect_is(parsed, "list")
expect_named(parsed, "data")
expect_is(parsed$data$viewer$repositories$edges, "data.frame")
})
test_that("GraphqlClient construction works with comments inside the query and inside fragment", {
skip_on_cran()
token <- Sys.getenv("GITHUB_TOKEN")
aa <- GraphqlClient$new(
url = "https://api.github.com/graphql",
headers = list(Authorization = paste0("Bearer ", token))
)
expect_true(aa$ping())
frag <- Fragment$new()
frag$fragment('ownerInfo', '
fragment on RepositoryOwner {
id
avatarUrl
resourcePath
url
}')
qry <- Query$new()
qry$query('repos', '{
ghql: repository(owner: "ropensci", name: "ghql") {
name
owner {
...ownerInfo
}
}
jsonlite: repository(owner: "jeroen", name: "jsonlite") {
name
owner {
...ownerInfo
}
}
}')
qry$add_fragment('repos', frag$fragments$ownerInfo)
out <- aa$exec(qry$queries$repos)
expect_is(out, "character")
expect_match(out, "ghql")
expect_match(out, "jsonlite")
expect_match(out, "avatarUrl")
parsed <- jsonlite::fromJSON(out)
expect_is(parsed, "list")
expect_named(parsed, "data")
expect_is(parsed$data$ghql, "list")
expect_is(parsed$data$jsonlite, "list")
})
test_that("GraphqlClient class fails well", {
expect_error(GraphqlClient$new(a = 5), "unused argument")
rr <- GraphqlClient$new()
expect_error(rr$fragment(), "argument \"name\" is missing")
expect_error(rr$exec(), "argument \"query\" is missing")
}) |
GCBellPol <-
function(nv=c(),m=1,b=FALSE) {
v<-MFB(nv,m);
v<-MFB2Set( v );
for (j in 1:length(v)) {
c <- as.character(v[[j]][2]);
x <- v[[j]][3] ;
i <- v[[j]][4] ;
k <- strtoi(v[[j]][5]);
if (x=="f") {
vi<-unlist(strsplit(i,",",fixed=TRUE));
if (length(vi)==1) {x<-paste0("(y",ifelse(i==1,")", paste0("^",i,")")) );}
else {x<-"";
for (lvi in 1:length(vi))
if (vi[lvi]!="0") x<-paste0(x,"(y",lvi,ifelse(vi[lvi]=="1","",paste0("^",vi[lvi])),")");
}
i<-"";
}
else if ( (m>1) && (b) )
{x<-"g";
}
v[[j]][2] <- c;
v[[j]][3] <- x;
v[[j]][4] <- i;
v[[j]][5] <- k;
}
Set2expr(v);
} |
textNormal = function(...) {textProperties( ... )}
textBold = function(...) {textProperties( font.weight = "bold", ... )}
textItalic = function( ... ) {textProperties( font.style = "italic", ... )}
textBoldItalic = function( ... ) {textProperties( font.weight = "bold", font.style = "italic", ... )}
parRight = function( ... ) {parProperties( text.align = "right", ... )}
parLeft = function( ... ) {parProperties( text.align = "left", ... )}
parCenter = function( ... ) {parProperties( text.align = "center", ... )}
parJustify = function( ... ) {parProperties( text.align = "justify", ... )}
borderDotted = function( ... ) {borderProperties( style="dotted", ... )}
borderDashed = function( ... ) {borderProperties( style="dashed", ... )}
borderNone = function( ... ) {borderProperties( style="none", ... )}
borderSolid = function( ... ) {borderProperties( style = "solid", ... )}
cellBorderNone = function( ... ) {
cellProperties( border.left = borderNone(),
border.top = borderNone(),
border.bottom = borderNone(),
border.right = borderNone(),
... )
}
cellBorderBottom = function( ... ) {
cellProperties( border.left = borderNone(),
border.top = borderNone(),
border.bottom = borderSolid(),
border.right = borderNone(),
... )
}
cellBorderTop = function( ... ) {
cellProperties( border.left = borderNone(),
border.top = borderSolid(),
border.bottom = borderNone(),
border.right = borderNone(),
... )
}
cellBorderTB = function( ... ) {
cellProperties( border.left = borderNone(),
border.top = borderSolid(),
border.bottom = borderSolid(),
border.right = borderNone(),
... )
} |
knitr::opts_chunk$set(echo = TRUE, fig.align = "center")
load("../data/cjs.rda")
load("../data/cjs_no_rho.rda")
postpack::post_dim(cjs)
postpack::get_params(cjs, type = "base_index") |
prior_terminal_node_coef <- function(range = c(0, 1), trans = NULL) {
new_quant_param(
type = "double",
range = range,
inclusive = c(FALSE, TRUE),
trans = trans,
default = 0.95,
label = c(prior_terminal_node_coef = "Terminal Node Prior Coefficient"),
finalize = NULL
)
}
prior_terminal_node_expo <- function(range = c(0, 3), trans = NULL) {
new_quant_param(
type = "double",
range = range,
inclusive = c(TRUE, TRUE),
trans = trans,
default = 2.0,
label = c(prior_terminal_node_expo = "Terminal Node Prior Exponent"),
finalize = NULL
)
}
prior_outcome_range <- function(range = c(0, 5), trans = NULL) {
new_quant_param(
type = "double",
range = range,
inclusive = c(FALSE, TRUE),
trans = trans,
default = 2.0,
label = c(prior_outcome_range = "Prior for Outcome Range"),
finalize = NULL
)
} |
set.varitas.options <- function(...) {
updated.options <- get.varitas.options();
options.to.add <- list(...);
if( any( grepl('^filters.default', names(options.to.add) )) ) {
error.message <- paste(
'Currently cannot set default filters with set.varitas.options.',
'Please use overwrite.varitas.options instead'
);
stop( error.message );
}
if( 'mode' %in% names(options.to.add) ) {
option.value <- tolower( options.to.add[[ 'mode' ]] );
if( !( option.value %in% c('ctdna', 'tumour') ) ) {
stop('mode must be either ctDNA or tumour');
}
warning.message <- paste(
'Setting mode to',
option.value,
'- overwriting any previous filters'
);
warning( warning.message );
mode.default.file <- system.file(
paste0(option.value, '_defaults.yaml'),
package = get.varitas.options('pkgname')
);
mode.defaults <- yaml::yaml.load_file( mode.default.file );
for(setting.name in names(mode.defaults) ) {
updated.options <- add.option(
name = setting.name,
value = mode.defaults[[ setting.name ]],
old.options = updated.options
);
}
options.to.add <- options.to.add[ 'mode' != names(options.to.add) ];
}
for( i in seq_along(options.to.add) ) {
option.name <- names(options.to.add)[i];
option.value <- options.to.add[[i]];
updated.options <- add.option(
name = option.name,
value = option.value,
old.options = updated.options
);
}
options(varitas = updated.options);
} |
influence.sglg <- function(model, ...) {
epsil <- model$rord
if (model$censored == FALSE) {
if (model$Knot == 0)
Xbar <- model$X
if (model$Knot > 0)
Xbar <- model$N
n <- dim(Xbar)[1]
q <- dim(Xbar)[2]
plot1 <- ggplot()
plot2 <- ggplot()
plot3 <- ggplot()
plot4 <- ggplot()
cweight <- function(model) {
Delt_gammas <- matrix(0, q, n)
for (i in 1:q) {
Delt_gammas[i, ] <- Xbar[, i] * (-(1/(model$sigma * model$lambda)) *
(1 - exp(model$lambda * epsil)))
}
Delt_sw <- -(1/model$sigma) - (1/model$sigma * model$lambda) *
epsil + (1/model$sigma * model$lambda) * epsil * exp(model$lambda *
epsil)
Delt_lw <- (1/model$lambda) + (2/model$lambda^3) * digamma(1/model$lambda^2) -
(2/model$lambda^3) + 2 * log(model$lambda^2)/model$lambda^3 -
(1/model$lambda^2) * epsil + (2/model$lambda^3) * exp(model$lambda *
epsil) - (1/model$lambda^2) * epsil * exp(model$lambda *
epsil)
Delta <- Delt_gammas
Delta <- rbind(Delta, t(Delt_sw))
Delta <- rbind(Delta, t(Delt_lw))
NC = t(Delta) %*% model$Itheta %*% Delta
norm = sqrt(sum(diag(t(NC) %*% NC)))
CNC = NC/norm
Eigen = eigen(CNC)
Cmax <- Eigen$vectors[, 1]
dCNC = diag(CNC)
vls1 <- abs(Cmax)
df1 <- as.data.frame(vls1)
plot1 <- ggplot(data=df1,aes(1:n,vls1)) +
geom_point(colour="orange",alpha=0.5) +
ggtitle("Case-weight perturbation") +
xlab("Index") +
ylab("Local Influence")
vls2 <- dCNC
df2 <- as.data.frame(vls2)
plot2 <- ggplot(data=df2,aes(1:n,vls2)) +
geom_point(colour="orange",alpha=0.5) +
ggtitle("Case-weight perturbation") +
xlab("Index") +
ylab("Total Local Influence")
return(list(plot1=plot1,plot2=plot2))
}
respert <- function(model) {
D = function(epsilon, lambd) {
w <- as.vector(exp(lambd * epsilon))
D_eps <- diag(w, n, n)
return(D_eps)
}
Ds <- D(epsil, model$lambda)
Delt_gammas <- (1/model$sigma^2) * t(Xbar) %*% Ds
Delt_sw <- (1/model$sigma * model$lambda^2) * (Ds %*% (model$lambda *
epsil + 1) - 1)
Delt_lw <- (1/model$sigma * (model$lambda^2)) * (-1 + Ds %*%
(1 - model$lambda * epsil))
Delta <- Delt_gammas
Delta <- rbind(Delta, t(Delt_sw))
Delta <- rbind(Delta, t(Delt_lw))
NC = t(Delta) %*% model$Itheta %*% Delta
norm = sqrt(sum(diag(t(NC) %*% NC)))
CNC = NC/norm
Eigen = eigen(CNC)
Cmax = Eigen$vectors[, 1]
dCNC = diag(CNC)
vls3 <- abs(Cmax)
df3 <- as.data.frame(vls3)
plot3 <- ggplot(data=df3,aes(1:n,vls3)) +
geom_point(colour="orange",alpha=0.5) +
ggtitle("Response Perturbation") +
xlab("Index") +
ylab("Local Influence")
vls4 <- dCNC
df4 <- as.data.frame(vls4)
plot4 <- ggplot(data=df4,aes(1:n,vls4)) +
geom_point(colour="orange",alpha=0.5) +
ggtitle("Response Perturbation") +
xlab("Index") +
ylab("Total Local Influence")
return(list(plot3=plot3,plot4=plot4))
}
plots_cw <- cweight(model)
plots_r <- respert(model)
grid.arrange(plots_cw$plot1, plots_cw$plot2, plots_r$plot3, plots_r$plot4, ncol=2)
}
if (model$censored == TRUE) {
delta <- model$delta
cweight <- function(model) {
X_bar <- model$X_bar
n <- model$size
qs <- dim(X_bar)[2]
aaa <- (1/model$lambda^2) * exp(model$lambda * epsil)
S <- pgamma((1/model$lambda^2) * exp(model$lambda * epsil), 1/model$lambda^2,
lower.tail = FALSE)
bb <- (aaa^(1/model$lambda^2) * exp(-aaa))/(gamma(1/model$lambda^2) *
S)
Delt_gsw <- matrix(0, qs, n)
for (j in 1:qs) {
Delt_gsw[j, ] = X_bar[, j] * ((1 - delta) * (1/(model$lambda *
model$sigma)) * (exp(model$lambda * epsil) - 1) + delta *
(model$lambda/model$sigma) * bb)
}
part1 <- (1/model$sigma) * (-1 - (1/model$lambda) * (epsil -
epsil * exp(model$lambda * epsil)))
part2 <- (model$lambda/model$sigma) * epsil * bb
Delt_sw <- (1 - delta) * part1 + delta * part2
Delt_sw <- t(as.matrix(Delt_sw))
Delta <- Delt_gsw
Delta <- rbind(Delta, Delt_sw)
NC = t(Delta) %*% model$Itheta %*% Delta
norm = sqrt(sum(diag(t(NC) %*% NC)))
CNC = NC/norm
Eigen = eigen(CNC)
Cmax <- Eigen$vectors[, 1]
lci <- abs(Cmax)
plot(1:n, lci, xlab = "Index", ylab = "e_max_i", main = "Case-weight perturbation",
pch = 20)
pinfp <- order(lci)[(n - 1):n]
text(pinfp, lci[pinfp], label = as.character(pinfp), cex = 0.7,
pos = 4)
dCNC = diag(CNC)
plot(1:n, dCNC, xlab = "Index", ylab = "B_i", main = "Case-weight perturbation",
pch = 20)
pinfp <- order(dCNC)[(n - 1):n]
text(pinfp, dCNC[pinfp], label = as.character(pinfp), cex = 0.7,
pos = 4)
}
respert <- function(model) {
X <- model$X
n <- dim(X)[1]
p <- dim(X)[2]
sigma <- model$sigma
lambda <- model$lambda
w <- as.vector(exp(lambda * epsil))
Ds <- diag(w, n)
aaa = (1/lambda^2) * exp(lambda * epsil)
S = pgamma((1/lambda^2) * exp(lambda * epsil), 1/lambda^2, lower.tail = FALSE)
bb = (aaa^(1/lambda^2) * exp(-aaa))/(gamma(1/lambda^2) * S)
Delt_bw <- matrix(0, p, n)
for (j in 1:p) {
Delt_bw[j, ] = X[, j] * ((1 - delta) * (1/sigma^2) * exp(lambda *
epsil) + delta * (-(lambda/sigma)^2) * bb * (aaa - 1/lambda^2 -
bb))
}
Delt_sw <- (1/sigma * lambda^2) * (Ds %*% (lambda * epsil + 1) -
1)
expep <- exp(lambda * epsil)
Delt_sw <- (1 - delta) * (1/(lambda * (sigma^2))) * (-1 + expep +
lambda * epsil * expep) + delta * ((((lambda/sigma)^2) *
bb) * (-1/lambda + epsil * (aaa - 1/lambda^2 - bb)))
Delt_sw <- t(as.matrix(Delt_sw))
Delta <- Delt_bw
Delta <- rbind(Delta, Delt_sw)
NC = t(Delta) %*% model$Itheta %*% Delta
norm = sqrt(sum(diag(t(NC) %*% NC)))
CNC = NC/norm
Eigen = eigen(CNC)
Cmax = Eigen$vectors[, 1]
plot(1:n, abs(Cmax), xlab = "Index", ylab = "Local influence",
main = "Response perturbation", pch = 20)
dCNC = diag(CNC)
plot(1:n, dCNC, xlab = "Index", ylab = "Total local influence",
main = "Response perturbation", pch = 20)
}
}
} |
util_set_sQuoteString <- function(string) {
old <- options(useFancyQuotes = FALSE)
on.exit(options(old))
sQuote(string)
} |
if(1==99 && .Machine$sizeof.pointer != 4){
library(ctsem)
library(testthat)
set.seed(1)
context("nonlinearcheck")
test_that("simplenonlinearcheck", {
sunspots<-sunspot.year
sunspots<-sunspots[50: (length(sunspots) - (1988-1924))]
id <- 1
time <- 1749:1924
datalong <- cbind(id, time, sunspots)
ssmodel <- ctModel(type='stanct', n.latent=2, n.manifest=1,
manifestNames='sunspots',
latentNames=c('ss_level', 'ss_velocity'),
LAMBDA=matrix(c( 1, 'ma1|log1p(exp(param))'), nrow=1, ncol=2),
DRIFT=matrix(c(0, 'a21|-log1p(exp(param))', 1, 'a22'), nrow=2, ncol=2),
TDPREDEFFECT=matrix(c('tdeffect',0),2),
MANIFESTMEANS=matrix(c('mm|param*10+44'), nrow=1, ncol=1),
MANIFESTVAR=diag(0,1),
T0VAR=matrix(c(1,0,0,1), nrow=2, ncol=2),
DIFFUSION=matrix(c(0, 0, 0, 'diff'), ncol=2, nrow=2))
TD1 <- 0
datalong <- cbind(datalong,TD1)
datalong[seq(10,150,10),'TD1'] = 1
ssfitnl <- ctStanFit(datalong, ssmodel, iter=300, cores=1,optimize=T,verbose=0,maxtimestep = .3, nopriors=F,deoptim=FALSE)
ssfitl <- ctStanFit(datalong, ssmodel, iter=300, chains=1,optimize=T,verbose=0,nopriors=F)
ssfitnlm <- ctStanFit(datalong, ssmodel, iter=300, chains=1,optimize=T,verbose=0,maxtimestep = 2,fit=T,nopriors=F)
expect_equal(ssfitnl$stanfit$rawest,ssfitl$stanfit$rawest,tol=1e-2)
expect_equal(ssfitnl$stanfit$rawest,ssfitnlm$stanfit$rawest,tol=1e-2)
expect_equal(ssfitnl$stanfit$optimfit$value,ssfitnlm$stanfit$optimfit$value,tol=1e-2)
expect_equal(ssfitnl$stanfit$optimfit$value,ssfitl$stanfit$optimfit$value,tol=1e-2)
cbind(ssfitnl$stanfit$rawest,ssfitl$stanfit$rawest,ssfitnlm$stanfit$rawest)
c(ssfitnl$stanfit$optimfit$value,ssfitl$stanfit$optimfit$value,ssfitnlm$stanfit$optimfit$value)
})
} |
spatialIC <-
function(
L,
R,
y,
xcov,
IC,
scale.designX,
scaled,
area,
binary,
I,
C,
nn,
order,
knots,
grids,
a_eta,
b_eta,
a_ga,
b_ga,
a_lamb,
b_lamb,
beta_iter,
phi_iter,
beta_cand,
beta_sig0,
x_user,
total,
burnin,
thin,
conf.int,
seed){
Ispline<-function(x,order,knots){
k=order+1
m=length(knots)
n=m-2+k
t=c(rep(1,k)*knots[1], knots[2:(m-1)], rep(1,k)*knots[m])
yy1=array(rep(0,(n+k-1)*length(x)),dim=c(n+k-1, length(x)))
for (l in k:n){
yy1[l,]=(x>=t[l] & x<t[l+1])/(t[l+1]-t[l])
}
yytem1=yy1
for (ii in 1:order){
yytem2=array(rep(0,(n+k-1-ii)*length(x)),dim=c(n+k-1-ii, length(x)))
for (i in (k-ii):n){
yytem2[i,]=(ii+1)*((x-t[i])*yytem1[i,]+(t[i+ii+1]-x)*yytem1[i+1,])/(t[i+ii+1]-t[i])/ii
}
yytem1=yytem2
}
index=rep(0,length(x))
for (i in 1:length(x)){
index[i]=sum(t<=x[i])
}
yy=array(rep(0,(n-1)*length(x)),dim=c(n-1,length(x)))
if (order==1){
for (i in 2:n){
yy[i-1,]=(i<index-order+1)+(i==index)*(t[i+order+1]-t[i])*yytem2[i,]/(order+1)
}
}else{
for (j in 1:length(x)){
for (i in 2:n){
if (i<(index[j]-order+1)){
yy[i-1,j]=1
}else if ((i<=index[j]) && (i>=(index[j]-order+1))){
yy[i-1,j]=(t[(i+order+1):(index[j]+order+1)]-t[i:index[j]])%*%yytem2[i:index[j],j]/(order+1)
}else{
yy[i-1,j]=0
}
}
}
}
return(yy)
}
Mspline<-function(x,order,knots){
k1=order
m=length(knots)
n1=m-2+k1
t1=c(rep(1,k1)*knots[1], knots[2:(m-1)], rep(1,k1)*knots[m])
tem1=array(rep(0,(n1+k1-1)*length(x)),dim=c(n1+k1-1, length(x)))
for (l in k1:n1){
tem1[l,]=(x>=t1[l] & x<t1[l+1])/(t1[l+1]-t1[l])
}
if (order==1){
mbases=tem1
}else{
mbases=tem1
for (ii in 1:(order-1)){
tem=array(rep(0,(n1+k1-1-ii)*length(x)),dim=c(n1+k1-1-ii, length(x)))
for (i in (k1-ii):n1){
tem[i,]=(ii+1)*((x-t1[i])*mbases[i,]+(t1[i+ii+1]-x)*mbases[i+1,])/(t1[i+ii+1]-t1[i])/ii
}
mbases=tem
}
}
return(mbases)
}
poissrndpositive<-function(lambda){
q=200
t=seq(0,q,1)
p=dpois(t,lambda)
pp=cumsum(p[2:(q+1)])/(1-p[1])
u=runif(1)
while(u>pp[q]){
q=q+1
pp[q]=pp[q-1]+dpois(q,lambda)/(1-p[1])
}
ll=sum(u>pp)+1
}
set.seed(seed)
L=matrix(L,ncol=1)
R=matrix(R,ncol=1)
y=matrix(y,ncol=1)
xcov=as.matrix(xcov)
IC=matrix(IC,ncol=1)
p=ncol(xcov)
N=nrow(L)
if (scale.designX==TRUE){
mean_X<-apply(xcov,2,mean)
sd_X<-apply(xcov,2,sd)
for (r in 1:p){
if (scaled[r]==1) xcov[,r]<-(xcov[,r]-mean_X[r])/sd_X[r]
}
}
K=length(knots)-2+order
kgrids=length(grids)
bisL=Ispline(L,order,knots)
bisR=Ispline(R,order,knots)
bisg=Ispline(grids,order,knots)
eta=rgamma(1,a_eta,rate=b_eta)
lamb=rgamma(1,a_lamb,rate=b_lamb)
gamcoef=matrix(rgamma(K, 1, rate=1),ncol=K)
phicoef<-matrix(rep(0,I),ncol=1)
phicoef2<-matrix(rep(0,N),ncol=1)
for (j in 1:N){
phicoef2[j]<-phicoef[area[j]]
}
beta=matrix(rep(0,p),p,1)
beta_original=matrix(rep(0,p),ncol=1)
LambdatL=t(gamcoef%*%bisL)
LambdatR=t(gamcoef%*%bisR)
Lambdatg=t(gamcoef%*%bisg)
parbeta=array(rep(0,total*p),dim=c(total,p))
parbeta_original=array(rep(0,total*p),dim=c(total,p))
pareta=array(rep(0,total),dim=c(total,1))
parlamb=array(rep(0,total),dim=c(total,1))
parphi=array(rep(0,total*I),dim=c(total,I))
pargam=array(rep(0,total*K),dim=c(total,K))
parsurv0=array(rep(0,total*kgrids),dim=c(total,kgrids))
parLambdatL=array(rep(0,total*N),dim=c(total,N))
parLambdatR=array(rep(0,total*N),dim=c(total,N))
pardev=array(rep(0,total),dim=c(total,1))
parfinv=array(rep(0,total*N),dim=c(total,N))
if (is.null(x_user)){parsurv=parsurv0} else {
G<-length(x_user)/p
parsurv=array(rep(0,total*kgrids*G),dim=c(total,kgrids*G))}
iter=1
while (iter<total+1)
{
z=array(rep(0,N),dim=c(N,1)); w=z
zz=array(rep(0,N*K),dim=c(N,K)); ww=zz
for (j in 1:N){
if (y[j]==0){
templam1=LambdatR[j]*exp(xcov[j,]%*%beta+phicoef[area[j]])
z[j]=poissrndpositive(templam1)
zz[j,]=rmultinom(1,z[j],gamcoef*t(bisR[,j]))
} else if (y[j]==1){
templam1=(LambdatR[j]-LambdatL[j])*exp(xcov[j,]%*%beta+phicoef[area[j]])
w[j]=poissrndpositive(templam1)
ww[j,]=rmultinom(1,w[j],gamcoef*t(bisR[,j]-bisL[,j]))
}
}
te1=z*(y==0)+w*(y==1)
te2=(LambdatR*(y==0)+LambdatR*(y==1)+LambdatL*(y==2))
for (r in 1:p){
if (binary[r]==0){
beta1<-beta2<-beta
if (iter<beta_iter) sd_cand<-beta_cand[r] else sd_cand<-sd(parbeta[1:(iter-1),r])
xt<-beta[r]
yt<-rnorm(1,xt,sd_cand)
beta1[r]<-yt
beta2[r]<-xt
log_f1<-sum(yt*xcov[,r]*te1)-sum(exp(xcov%*%beta1+phicoef2)*te2)-0.5*(yt^2)/(beta_sig0^2)
log_f2<-sum(xt*xcov[,r]*te1)-sum(exp(xcov%*%beta2+phicoef2)*te2)-0.5*(xt^2)/(beta_sig0^2)
num<-log_f1
den<-log_f2
if (log(runif(1))<(num-den)) beta[r]<-yt else beta[r]<-xt
}
if (binary[r]==1 & p>1){
te4=sum(xcov[,r]*te1)
te5=sum(te2*exp(as.matrix(xcov[,-r])%*%as.matrix(beta[-r])+phicoef2)*xcov[,r])
beta[r]<-log(rgamma(1,a_ga+te4,rate=b_ga+te5))
}
if (binary[r]==1 & p==1){
te4=sum(xcov[,r]*te1)
te5=sum(te2*exp(phicoef2)*xcov[,r])
beta[r]<-log(rgamma(1,a_ga+te4,rate=b_ga+te5))
}
}
if (scale.designX==TRUE){
for (r in 1:p) beta_original[r]<-ifelse(scaled[r]==1,beta[r]/sd_X[r],beta[r])
}
if (scale.designX==FALSE) beta_original<-beta
for (l in 1:K){
tempa=1+sum(zz[,l]*(y==0)+ww[,l]*(y==1))
tempb=eta+sum(((bisR[l,])*(y==0)+(bisR[l,])*(y==1)
+(bisL[l,])*(y==2))*exp(xcov%*%beta+phicoef2))
gamcoef[l]=rgamma(1,tempa,rate=tempb)
}
LambdatL=t(gamcoef%*%bisL)
LambdatR=t(gamcoef%*%bisR)
eta=rgamma(1,a_eta+K, rate=b_eta+sum(gamcoef))
phi1<-array(rep(0,N),dim=c(N,1))
phi2<-array(rep(0,N),dim=c(N,1))
for (i in 1:I){
phi1<-phi2<-phicoef2
if (iter<phi_iter) sd_cand<-sqrt(1/nn[i]) else sd_cand<-sd(parphi[1:(iter-1),i])
xt<-phicoef[i]
yt<-rnorm(1,xt,sd_cand)
phi1[area==i]<-yt
phi2[area==i]<-xt
log_f1<-sum(phi1*te1)-sum((exp(xcov%*%beta+phi1))*te2)-0.5*nn[i]*lamb*(yt-C[i,]%*%phicoef/nn[i])^2
log_f2<-sum(phi2*te1)-sum((exp(xcov%*%beta+phi2))*te2)-0.5*nn[i]*lamb*(xt-C[i,]%*%phicoef/nn[i])^2
num<-log_f1
den<-log_f2
if (log(runif(1))<(num-den)) phicoef[i]<-yt else phicoef[i]<-xt
phicoef<-phicoef-mean(phicoef)
phicoef2[area==i]<-phicoef[i]
}
A<-matrix(rep(0,I*I),nrow=I,byrow=TRUE)
for (i in 1:I){
for (j in 1:I){
A[i,j]<-(phicoef[i]-phicoef[j])^2*C[i,j]*as.numeric(i < j)
}
}
lamb<-rgamma(1,0.5*(I-1)+a_lamb,rate=0.5*sum(A)+b_lamb)
FL<-1-exp(-LambdatL*exp(xcov%*%beta+phicoef2))
FR<-1-exp(-LambdatR*exp(xcov%*%beta+phicoef2))
f_iter<-(FR^(y==0))*((FR-FL)^(y==1))*((1-FL)^(y==2))
finv_iter<-1/f_iter
loglike<-sum(log(FR^(y==0))+log((FR-FL)^(y==1))+log((1-FL)^(y==2)))
dev<--2*loglike
parbeta[iter,]=beta
parbeta_original[iter,]=beta_original
pareta[iter]=eta
parlamb[iter]=lamb
parphi[iter,]=phicoef
pargam[iter,]=gamcoef
ttt=gamcoef%*%bisg
parsurv0[iter,]=exp(-ttt)
if (scale.designX==FALSE) {parsurv0[iter,]<-exp(-ttt)}
if (scale.designX==TRUE) {parsurv0[iter,]<-exp(-ttt*exp(-sum((beta*mean_X/sd_X)[scaled==1])))}
parLambdatL[iter,]=LambdatL
parLambdatR[iter,]=LambdatR
pardev[iter]=dev
parfinv[iter,]=finv_iter
if (is.null(x_user)){parsurv[iter,]=parsurv0[iter,]} else {
A<-matrix(x_user,byrow=TRUE,ncol=p)
if (scale.designX==TRUE){
for (r in 1:p){
if (scaled[r]==1) A[,r]<-(A[,r]-mean_X[r])/sd_X[r]}
}
B<-exp(A%*%beta)
for (g in 1:G){
parsurv[iter,((g-1)*kgrids+1):(g*kgrids)]=exp(-ttt*B[g,1])}
}
iter=iter+1
if (iter%%100==0) print(iter)
}
wbeta=as.matrix(parbeta_original[seq((burnin+thin),total,by=thin),],ncol=p)
wparsurv0=as.matrix(parsurv0[seq((burnin+thin),total,by=thin),],ncol=kgrids)
wparsurv=as.matrix(parsurv[seq((burnin+thin),total,by=thin),],ncol=kgrids*G)
coef<-apply(wbeta,2,mean)
coef_ssd<-apply(wbeta,2,sd)
coef_ci<-array(rep(0,p*2),dim=c(p,2))
S0_m<-apply(wparsurv0,2,mean)
S_m<- apply(wparsurv,2,mean)
colnames(coef_ci)<-c(paste(100*(1-conf.int)/2,"%CI"),paste(100*(0.5+conf.int/2),"%CI"))
for (r in 1:p) coef_ci[r,]<-quantile(wbeta[,r],c((1-conf.int)/2,0.5+conf.int/2))
CPO=1/apply(parfinv[seq((burnin+thin),total,by=thin),],2,mean)
NLLK=-sum(log(CPO))
LambdatL_m<-apply(parLambdatL[seq((burnin+thin),total,by=thin),],2,mean)
LambdatR_m<-apply(parLambdatR[seq((burnin+thin),total,by=thin),],2,mean)
beta_m<-apply(as.matrix(parbeta[seq((burnin+thin),total,by=thin),]),2,mean)
phicoef_m<-apply(parphi[seq((burnin+thin),total,by=thin),],2,mean)
phicoef2_m<-array(rep(0,N),dim=c(N,1))
for (j in 1:N){
phicoef2_m[j]<-phicoef_m[area[j]]
}
FL_m<-1-exp(-LambdatL_m*exp(as.matrix(xcov)%*%as.matrix(beta_m)+phicoef2_m))
FR_m<-1-exp(-LambdatR_m*exp(as.matrix(xcov)%*%as.matrix(beta_m)+phicoef2_m))
loglike_m<-sum(log(FR_m^(y==0))+log((FR_m-FL_m)^(y==1))+log((1-FL_m)^(y==2)))
D_thetabar<--2*loglike_m
D_bar=mean(pardev[seq((burnin+thin),total,by=thin)])
DIC=2*D_bar-D_thetabar
est<-list(
N=nrow(xcov),
nameX=colnames(xcov),
parbeta=parbeta_original,
parsurv0=parsurv0,
parsurv=parsurv,
parphi=parphi,
parlamb=parlamb,
coef = coef,
coef_ssd = coef_ssd,
coef_ci = coef_ci,
S0_m = S0_m,
S_m = S_m,
grids=grids,
DIC = DIC,
NLLK = NLLK
)
est
} |
test_that("mpm_standardize works correctly", {
repro_stages <- apply(mat_f_inter, 2, function(x) any(x > 0))
matrix_stages <- c('prop', 'active', 'active', 'active', 'active')
x1 <- mpm_standardize(mat_u_inter, mat_f_inter, repro_stages = repro_stages,
matrix_stages = matrix_stages)
expect_type(x1, "list")
expect_length(x1, 4)
expect_equal(ncol(x1$matA), 4)
x2 <- mpm_standardise(mat_u_inter, mat_f_inter, repro_stages = repro_stages,
matrix_stages = matrix_stages)
expect_identical(x1, x2)
}) |
solveMinBoundsCalib <- function(Xs, d, total, q=NULL,
maxIter=500, calibTolerance=1e-06, description=TRUE) {
if (!requireNamespace("Rglpk", quietly = TRUE) || !requireNamespace("slam", quietly = TRUE)) {
stop("Package Rglpk needed for this function to work. Please install it.",
call. = FALSE)
}
n <- length(d)
oneN <- rep(1,n)
zeroN <- rep(0,n)
IdentityN <- diag(1,n)
B <- t(diag(d) %*% Xs)
a <- c(0,1,rep(0,n))
A1 <- rbind( cbind(-oneN,-oneN,IdentityN) , cbind(-oneN,oneN,IdentityN) )
b1 <- rep(0,2*n)
A3 <- matrix(cbind(rep(0,nrow(B)+1),rep(0,nrow(B)+1),rbind(B,zeroN)), ncol= n+2, nrow= nrow(B)+1)
b3 <- c(total,0)
Amat <- rbind(A1,A3)
bvec <- c(b1,b3)
const <- c(rep("<=",n), rep(">=",n), rep("==", length(b3)))
Amat_sparse <- slam::as.simple_triplet_matrix(Amat)
simplexSolution <- Rglpk::Rglpk_solve_LP(obj=a, mat=Amat_sparse, dir=const, rhs=bvec)
xSol <- simplexSolution$solution
center <- xSol[1]
minBounds <- xSol[2]
gSol <- xSol[3:(n+2)]
wSol <- gSol * d
if(description) {
writeLines("Solution found for calibration on minimal bounds:")
writeLines(paste("L =",min(gSol)))
writeLines(paste("U =",max(gSol)))
}
return(gSol)
}
minBoundsCalib <- function(Xs, d, total, q=NULL,
maxIter=500, calibTolerance=1e-06, description=TRUE,
precisionBounds=1e-4, forceSimplex=FALSE, forceBisection=FALSE) {
usedSimplex <- FALSE
if( ( forceSimplex || (nrow(Xs)*ncol(Xs)) <= 1e8 ) && !forceBisection) {
gSol <- solveMinBoundsCalib(Xs, d, total, q,
maxIter, calibTolerance, description)
usedSimplex <- TRUE
Lmax <- min(gSol)
Umin <- max(gSol)
maxIter <- 5000
} else {
Lmax <- 1.0
Umin <- 1.0
}
digitsPrec <- abs(log(precisionBounds,10))
Ltest1 <- round(Lmax - 5*10**(-digitsPrec-1),digitsPrec)
Utest1 <- round(Umin + 5*10**(-digitsPrec-1),digitsPrec)
Ltest <- Ltest1
Utest <- Utest1
gFinal <- calib(Xs=Xs, d=d, total=total, method="logit", bounds = c(Ltest,Utest),
maxIter=maxIter, calibTolerance=calibTolerance)
if(is.null(gFinal)) {
gTestMin <- calib(Xs=Xs, d=d, total=total, method="linear", maxIter=maxIter, calibTolerance=calibTolerance)
Llinear <- min(gTestMin)
Ulinear <- max(gTestMin)
if(!usedSimplex) {
distTo1 <- pmax((1-Llinear), (Ulinear-1))
LtestMin <- 1-distTo1
LtestMax <- 1+distTo1
} else {
LtestMin <- Llinear
LtestMax <- Ulinear
}
method <- "logit"
return(bisectMinBounds(c(LtestMin,LtestMax),c(Ltest1,Utest1),gTestMin,
Xs,d,total, method,maxIter, calibTolerance, precisionBounds, description))
Ltest <- Ltest1
Utest <- Utest1
}
return(gFinal)
}
bisectMinBounds <- function(convergentBounds,minBounds,gFinalSauv,
Xs,d,total, method,maxIter, calibTolerance, precisionBounds,
description=TRUE) {
newBounds <- (minBounds + convergentBounds) / 2
Ltest <- newBounds[1]
Utest <- newBounds[2]
if(description) {
writeLines(paste("------ Bisection search : ",newBounds[1],";",newBounds[2]))
}
gFinal <- calib(Xs=Xs, d=d, total=total, method="logit", bounds = c(Ltest,Utest),
maxIter=maxIter, calibTolerance=calibTolerance)
if(is.null(gFinal)) {
return( bisectMinBounds(convergentBounds,c(Ltest,Utest),gFinalSauv,
Xs,d,total, method,maxIter, calibTolerance, precisionBounds, description) )
} else {
if( all(abs(c( (max(gFinal) - max(gFinalSauv)) , (min(gFinal) - min(gFinalSauv)))) <= c(precisionBounds,precisionBounds)) ) {
return(gFinal)
} else {
return( bisectMinBounds(c(Ltest,Utest),minBounds,gFinal,
Xs,d,total, method,maxIter, calibTolerance, precisionBounds, description) )
}
}
} |
contributionByLevel<-function(da.object, fit.functions=NULL) {
checkDominanceAnalysis(da.object)
if(is.null(fit.functions)) {
fit.functions=da.object$fit.functions
}
out<-da.object$contribution.by.level[fit.functions]
out<-lapply(out,function(xx) {
names(xx)<-replaceTermsInString(names(xx),da.object$terms)
xx
})
class(out)<-c("daContributionByLevel","list")
out
}
print.daContributionByLevel<-function(x,...) {
cat("\nContribution by level\n")
for(fit in names(x)) {
cat("* Fit index: ", fit,"\n")
print(round(x[[fit]],3),na.print = "",row.names=F)
}
invisible(x)
} |
if(interactive()){
data(mstData)
data(crtData)
outputSRTBoot <- srtFREQ(Posttest~ Intervention + Prettest,
intervention = "Intervention",nBoot=1000, data = mstData)
plot(outputSRTBoot,group=1)
outputSRTPerm <- srtFREQ(Posttest~ Intervention + Prettest,
intervention = "Intervention",nPerm=1000, data = mstData)
plot(outputSRTPerm,group=1)
outputMST <- mstFREQ(Posttest~ Intervention + Prettest,
random = "School", intervention = "Intervention", data = mstData)
plot(outputMST)
outputMSTBoot <- mstFREQ(Posttest~ Intervention + Prettest,
random = "School", intervention = "Intervention",
nBoot = 1000, data = mstData)
plot(outputMSTBoot)
plot(outputMSTBoot,group=1)
outputMSTPerm <- mstFREQ(Posttest~ Intervention + Prettest,
random = "School", intervention = "Intervention",
nPerm = 1000, data = mstData)
plot(outputMSTPerm)
plot(outputMSTPerm,group=1)
outputCRT <- crtFREQ(Posttest~ Intervention + Prettest, random = "School",
intervention = "Intervention", data = crtData)
plot(outputCRT)
outputCRTBoot <- crtFREQ(Posttest~ Intervention + Prettest, random = "School",
intervention = "Intervention", nBoot = 1000, data = crtData)
plot(outputCRTBoot,group=1)
outputCRTPerm <- crtFREQ(Posttest~ Intervention + Prettest, random = "School",
intervention = "Intervention", nPerm = 1000, data = crtData)
plot(outputCRTPerm,group=1)
} |
"possum" |
ComposPare_X <- function(AS,Ex,trans=TRUE)
{
Obs_AS<-data.frame(rowSums(AS))
colnames(Obs_AS)<-c("X_io")
Exp_AS <- data.frame(sample(Ex$X,nrow(Obs_AS),replace = T,prob = Ex$Density))
colnames(Exp_AS)<-c("X_ie")
df<-as.data.frame(c(Obs_AS,Exp_AS))
df_t <- data.frame(OvE=factor(rep(c("Obs", "Exp"), each=nrow(Obs_AS))),freq=(c(df$X_io,df$X_ie)))
if(trans){
return(df)
}else{
return(df_t)
}
} |
"ivphiBB1" <-
function(theta,delta,t)
{
ivphiBB1<-(exp(theta*(-log(t))^(1/delta))-1)^delta
resultivphiBB1<-matrix(c(theta,delta,t,ivphiBB1),nrow=1)
} |
ds.box <- function(x, c = 1.5, c.width = 0.15 , out = TRUE, tojson = FALSE) {
b <- grDevices::boxplot.stats(x, coef = c, do.out = out)
lo.whisker <- unname(unlist(b)[1])
lo.hinge <- unname(unlist(b)[2])
median <- unname(unlist(b)[3])
up.hinge <- unname(unlist(b)[4])
up.whisker <- unname(unlist(b)[5])
n <- unname(unlist(b)[6])
box.width <- round(c.width * sqrt(n), 2)
if (out == TRUE & c != 0) {
lo.out <- x[x < lo.hinge - c * diff(c(lo.hinge,up.hinge))]
up.out <- x[x > up.hinge + c * diff(c(lo.hinge,up.hinge))]
} else {
lo.out <- NULL
up.out <- NULL
}
box <- list(
lo.whisker = lo.whisker,
lo.hinge = lo.hinge,
median = median,
up.hinge = up.hinge,
up.whisker = up.whisker,
box.width = box.width,
lo.out = lo.out,
up.out = up.out,
n = n)
if (tojson == TRUE) {
box <- jsonlite::toJSON(box)
}
return(box)
} |
TOSTmeta<-function(ES,var,se,low_eqbound_d, high_eqbound_d, alpha, plot = TRUE, verbose = TRUE){
if(missing(alpha)) {
alpha<-0.05
}
if(missing(se)) {
if(missing(var)) {
stop("Need to specify variance (var) or standard error (se).")
}
se<-sqrt(var)
}
if(missing(var)) {
if(missing(se)) {
stop("Need to specify variance (var) or standard error (se).")
}
}
if(low_eqbound_d >= high_eqbound_d) warning("The lower bound is equal to or larger than the upper bound. Check the plot and output to see if the bounds are specified as you intended.")
if(1 <= alpha | alpha <= 0) stop("The alpha level should be a positive value between 0 and 1.")
Z1<-(ES-low_eqbound_d)/se
p1<-pnorm(Z1, lower.tail=FALSE)
Z2<-(ES-high_eqbound_d)/se
p2<-pnorm(Z2, lower.tail=TRUE)
Z<-(ES/se)
pttest<-2*pnorm(-abs(Z))
LL90<-ES-qnorm(1-alpha)*(se)
UL90<-ES+qnorm(1-alpha)*(se)
LL95<-ES-qnorm(1-alpha/2)*(se)
UL95<-ES+qnorm(1-alpha/2)*(se)
ptost<-max(p1,p2)
Ztost<-ifelse(abs(Z1) < abs(Z2), Z1, Z2)
results<-data.frame(Z1,p1,Z2,p2,LL90,UL90)
colnames(results) <- c("Z-value 1","p-value 1","Z-value 2","p-value 2", paste("Lower Limit ",100*(1-alpha*2),"% CI",sep=""),paste("Upper Limit ",100*(1-alpha*2),"% CI",sep=""))
testoutcome<-ifelse(pttest<alpha,"significant","non-significant")
TOSToutcome<-ifelse(ptost<alpha,"significant","non-significant")
if (plot == TRUE) {
plot(NA, ylim=c(0,1), xlim=c(min(LL95,low_eqbound_d,ES)-max(UL95-LL95, high_eqbound_d-low_eqbound_d,ES)/10, max(UL95,high_eqbound_d,ES)+max(UL95-LL95, high_eqbound_d-low_eqbound_d, ES)/10), bty="l", yaxt="n", ylab="",xlab="Effect size")
points(x=ES, y=0.5, pch=15, cex=2)
abline(v=high_eqbound_d, lty=2)
abline(v=low_eqbound_d, lty=2)
abline(v=0, lty=2, col="grey")
segments(LL90,0.5,UL90,0.5, lwd=3)
segments(LL95,0.5,UL95,0.5, lwd=1)
title(main=paste("Equivalence bounds ",round(low_eqbound_d,digits=3)," and ",round(high_eqbound_d,digits=3),"\nEffect size = ",round(ES,digits=3)," \n TOST: ", 100*(1-alpha*2),"% CI [",round(LL90,digits=3),";",round(UL90,digits=3),"] ", TOSToutcome," \n NHST: ", 100*(1-alpha),"% CI [",round(LL95,digits=3),";",round(UL95,digits=3),"] ", testoutcome,sep=""), cex.main=1)
}
if(missing(verbose)) {
verbose <- TRUE
}
if(verbose == TRUE){
cat("TOST results:\n")
cat("Z-value lower bound:",format(Z1, digits = 3, nsmall = 2, scientific = FALSE),"\tp-value lower bound:",format(p1, digits = 1, nsmall = 3, scientific = FALSE))
cat("\n")
cat("Z-value upper bound:",format(Z2, digits = 3, nsmall = 2, scientific = FALSE),"\tp-value upper bound:",format(p2, digits = 1, nsmall = 3, scientific = FALSE))
cat("\n\n")
cat("Equivalence bounds (Cohen's d):")
cat("\n")
cat("low eqbound:", paste0(round(low_eqbound_d, digits = 4)),"\nhigh eqbound:",paste0(round(high_eqbound_d, digits = 4)))
cat("\n\n")
cat("TOST confidence interval:")
cat("\n")
cat("lower bound ",100*(1-alpha*2),"% CI: ", paste0(round(LL90, digits = 3)),"\nupper bound ",100*(1-alpha*2),"% CI: ",paste0(round(UL90,digits = 3)), sep = "")
cat("\n\n")
cat("NHST confidence interval:")
cat("\n")
cat("lower bound ",100*(1-alpha),"% CI: ", paste0(round(LL95, digits = 3)),"\nupper bound ",100*(1-alpha),"% CI: ",paste0(round(UL95,digits = 3)), sep = "")
cat("\n\n")
cat("Equivalence Test Result:\n")
message(cat("The equivalence test was ",TOSToutcome,", Z = ",format(Ztost, digits = 3, nsmall = 3, scientific = FALSE),", p = ",format(ptost, digits = 3, nsmall = 3, scientific = FALSE),", given equivalence bounds of ",format(low_eqbound_d, digits = 3, nsmall = 3, scientific = FALSE)," and ",format(high_eqbound_d, digits = 3, nsmall = 3, scientific = FALSE)," and an alpha of ",alpha,".",sep=""))
cat("\n")
cat("Null Hypothesis Test Result:\n")
message(cat("The null hypothesis test was ",testoutcome,", Z = ",format(Z, digits = 3, nsmall = 3, scientific = FALSE),", p = ",format(pttest, digits = 3, nsmall = 3, scientific = FALSE),", given an alpha of ",alpha,".",sep=""))
if(pttest <= alpha && ptost <= alpha){
combined_outcome <- "statistically different from zero and statistically equivalent to zero"
}
if(pttest < alpha && ptost > alpha){
combined_outcome <- "statistically different from zero and statistically not equivalent to zero"
}
if(pttest > alpha && ptost <= alpha){
combined_outcome <- "statistically not different from zero and statistically equivalent to zero"
}
if(pttest > alpha && ptost > alpha){
combined_outcome <- "statistically not different from zero and statistically not equivalent to zero"
}
cat("\n")
message(cat("Based on the equivalence test and the null-hypothesis test combined, we can conclude that the observed effect is ",combined_outcome,".",sep=""))
}
invisible(list(ES=ES,TOST_Z1=Z1,TOST_p1=p1,TOST_Z2=Z2,TOST_p2=p2,alpha=alpha,low_eqbound_d=low_eqbound_d,high_eqbound_d=high_eqbound_d, LL_CI_TOST=LL90,UL_CI_TOST=UL90,LL_CI_ZTEST=LL95,UL_CI_ZTEST=UL95))
} |
kntoms=function(wvkn){(0.5144444*wvkn)} |
squareBinning <-
function(x, y = NULL, bins = 30)
{
if (is.null(y)) {
x = as.matrix(x)
y = x[, 2]
x = x[, 1]
} else {
x = as.vector(x)
y = as.vector(y)
}
data = cbind(x, y)
n = bins
if (length(n) == 1) {
nbins = c(n, n)
} else {
nbins = n
}
xo = seq(min(x), max(x), length = nbins[1])
yo = seq(min(y), max(y), length = nbins[2])
xvals = xo[-1] - diff(xo)/2
yvals = yo[-1] - diff(yo)/2
ix = findInterval(x, xo)
iy = findInterval(y, yo)
xcm = ycm = zvals = matrix(0, nrow = nbins[1], ncol = nbins[2])
for (i in 1:length(x)) {
zvals[ix[i], iy[i]] = zvals[ix[i], iy[i]] + 1
xcm[ix[i], iy[i]] = xcm[ix[i], iy[i]] + x[i]
ycm[ix[i], iy[i]] = ycm[ix[i], iy[i]] + y[i]
}
u = v = w = ucm = vcm = rep(0, times = nbins[1]*nbins[2])
L = 0
for (i in 1:(nbins[1]-1)) {
for (j in 1:(nbins[2]-1)) {
if (zvals[i, j] > 0) {
L = L + 1
u[L] = xvals[i]
v[L] = yvals[j]
w[L] = zvals[i, j]
ucm[L] = xcm[i, j]/w[L]
vcm[L] = ycm[i, j]/w[L]
}
}
}
length(u) = length(v) = length(w) = L
length(ucm) = length(vcm) = L
ans = list(x = u, y = v, z = w, xcm = ucm, ycm = vcm, bins = bins,
data = data)
class(ans) = "squareBinning"
ans
}
plot.squareBinning <-
function(x, col = heat.colors(12), addPoints = TRUE, addRug = TRUE, ...)
{
X = x$x
Y = x$y
plot(X, Y, type = "n", ...)
rx = min(diff(unique(sort(X))))/2
ry = min(diff(unique(sort(Y))))/2
u = c(-rx, rx, rx, -rx)
v = c( ry, ry, -ry, -ry)
N = length(col)
Z = x$z
zMin = min(Z)
zMax = max(Z)
Z = (Z - zMin)/(zMax - zMin)
Z = trunc(Z*(N-1)+1)
for (i in 1:length(X)) {
polygon(u+X[i], v+Y[i], col = col[Z[i]], border = "white")
}
if (addPoints) {
points(x$xcm, x$ycm, pch = 19, cex = 1/3, col = "black")
}
if (addRug) {
rug(x$data[, 1], ticksize = 0.01, side = 3)
rug(x$data[, 2], ticksize = 0.01, side = 4)
}
invisible(NULL)
}
hexBinning <-
function(x, y = NULL, bins = 30)
{
if (is.null(y)) {
x = as.matrix(x)
y = x[, 2]
x = x[, 1]
} else {
x = as.vector(x)
y = as.vector(y)
}
data = cbind(x, y)
shape = 1
n = length(x)
xbnds = range(x)
ybnds = range(y)
jmax = floor(bins + 1.5001)
c1 = 2 * floor((bins *shape)/sqrt(3) + 1.5001)
imax = trunc((jmax*c1 -1)/jmax + 1)
lmax = jmax * imax
cell = cnt = xcm = ycm = rep(0, times = max(n, lmax))
xmin = xbnds[1]
ymin = ybnds[1]
xr = xbnds[2] - xmin
yr = ybnds[2] - ymin
c1 = bins/xr
c2 = bins*shape/(yr*sqrt(3.0))
jinc = jmax
lat = jinc + 1
iinc = 2*jinc
con1 = 0.25
con2 = 1.0/3.0
for ( i in 1:n ) {
sx = c1 * (x[i] - xmin)
sy = c2 * (y[i] - ymin)
j1 = floor(sx + 0.5)
i1 = floor(sy + 0.5)
dist1 = (sx-j1)^2 + 3.0*(sy-i1)^2
if( dist1 < con1) {
L = i1*iinc + j1 + 1
} else if (dist1 > con2) {
L = floor(sy)*iinc + floor(sx) + lat
} else {
j2 = floor(sx)
i2 = floor(sy)
test = (sx-j2 -0.5)^2 + 3.0*(sy-i2-0.5)^2
if ( dist1 <= test ) {
L = i1*iinc + j1 + 1
} else {
L = i2*iinc + j2 + lat
}
}
cnt[L] = cnt[L]+1
xcm[L] = xcm[L] + (x[i] - xcm[L])/cnt[L]
ycm[L] = ycm[L] + (y[i] - ycm[L])/cnt[L]
}
nc = 0
for ( L in 1:lmax ) {
if(cnt[L] > 0) {
nc = nc + 1
cell[nc] = L
cnt[nc] = cnt[L]
xcm[nc] = xcm[L]
ycm[nc] = ycm[L]
}
}
bnd = c(imax, jmax)
bnd[1] = (cell[nc]-1)/bnd[2] + 1
length(cell) = nc
length(cnt) = nc
length(xcm) = nc
length(ycm) = nc
if(sum(cnt) != n) warning("Lost counts in binning")
c3 = diff(xbnds)/bins
ybnds = ybnds
c4 = (diff(ybnds) * sqrt(3))/(2 * shape * bins)
cell = cell - 1
i = cell %/% jmax
j = cell %% jmax
y = c4 * i + ybnds[1]
x = c3 * ifelse(i %% 2 == 0, j, j + 0.5) + xbnds[1]
ans = list(x = x, y = y, z = cnt, xcm = xcm, ycm = ycm, bins = bins,
data = data)
class(ans) = "hexBinning"
ans
}
plot.hexBinning <-
function(x, col = heat.colors(12), addPoints = TRUE, addRug = TRUE, ...)
{
X = x$x
Y = x$y
plot(X, Y, type = "n", ...)
rx = min(diff(unique(sort(X))))
ry = min(diff(unique(sort(Y))))
rt = 2*ry
u = c(rx, 0, -rx, -rx, 0, rx)
v = c(ry, rt, ry, -ry, -rt, -ry) / 3
N = length(col)
z = x$z
zMin = min(z)
zMax = max(z)
Z = (z - zMin)/(zMax - zMin)
Z = trunc(Z*(N-1)+1)
for (i in 1:length(X)) {
polygon(u+X[i], v+Y[i], col = col[Z[i]], border = "white")
}
if (addPoints) {
points(x$xcm, x$ycm, pch = 19, cex = 1/3, col = "black")
}
if (addRug) {
rug(x$data[, 1], ticksize = 0.01, side = 3)
rug(x$data[, 2], ticksize = 0.01, side = 4)
}
invisible(NULL)
} |
skip_on_cran()
m <- SDMtune:::bm_maxent
m1 <- SDMtune:::bm_maxnet
train <- SDMtune:::t
train@data <- train@data[train@pa == 1, ]
train@coords <- train@coords[train@pa == 1, ]
train@pa <- train@pa[train@pa == 1]
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd", full.names = TRUE)
predictors <- raster::stack(files)
test_that("The method works with data frames", {
p <- predict(m, train@data, "raw", clamp = FALSE)
expect_length(p, nrow(train@data))
expect_vector(p)
})
test_that("The method works with SWD objects", {
p <- predict(m1, train, "logistic")
expect_length(p, nrow(train@data))
expect_vector(p)
})
test_that("The method works with raster stack objects", {
p <- predict(m, predictors, "raw")
expect_length(p, predictors$bio1@ncols * predictors$bio1@nrows)
expect_s4_class(p, "RasterLayer")
}) |
setGeneric("raster2contour", function(x, ...) {standardGeneric("raster2contour")})
setMethod(f = "raster2contour",
signature = c(x = ".UD"),
definition = function(x, ...) {
vol<-getVolumeUD(x)
rasterToContour(vol, ...)
})
setMethod(f = "raster2contour",
signature = c(x = ".UDStack"),
definition = function(x, ...) {
xx<-split(x)
tmp<-lapply(xx, raster2contour, ...=...)
x<-mapply(spChFIDs, tmp, mapply(paste,lapply(tmp,row.names), names(tmp), SIMPLIFY=F))
tmp<-do.call('rbind',mapply('[[<-',MoreArgs=list(i='individual.local.identifier'),x=x, value=names(tmp)))
return(tmp)
}) |
VAFmethod <- function(initialSample, b = n, increases = FALSE)
{
if(is.vector(initialSample))
{
initialSample <- matrix(initialSample,nrow=1)
}
n <- nrow(initialSample)
parameterCheckForResampling(initialSample,b)
if(increases)
{
initialSample <- transformFromIncreases(initialSample)
}
if(!all(apply(initialSample, 1, is.Fuzzy)))
{
stop("Some values in initial sample are not correct fuzzy numbers")
}
initialValues <- calculateValue(initialSample)
initialAmbiguites <- calculateAmbiguity(initialSample)
initialFuzziness <- calculateFuzziness(initialSample)
numbers <- sample(n,b, replace = TRUE)
outputSample <- matrix(0, nrow = b, ncol = 4)
for (i in 1:b)
{
if (is.Triangular(initialSample[numbers[i],]))
{
outputSample[i,] <- initialSample[numbers[i],]
}
else
{
selectedValue <- initialValues[numbers[i]]
selectedAmbiguity <- initialAmbiguites[numbers[i]]
selectedFuzziness <- initialFuzziness[numbers[i]]
s <- selectedAmbiguity - 2/3 * selectedFuzziness
c <- runif(1,selectedValue-2/3 * selectedFuzziness,selectedValue+2/3 * selectedFuzziness)
l <- 3*(selectedAmbiguity-selectedValue+c-s)
r <- 3*(selectedAmbiguity+selectedValue-c-s)
outputSample[i,] <- c(c-l-s,c-s,c+s,c+r+s)
}
}
if(increases)
{
outputSample <- transformToIncreases(outputSample)
}
return(outputSample)
} |
library(rstan)
d <- read.csv('input/data-mvn.txt')
data <- list(N=nrow(d), D=2, Y=d)
fit <- stan(file='model/model9-2.stan', data=data, seed=1234)
fit_b <- stan(file='model/model9-2b.stan', data=data, seed=1234) |
context("single_example")
test_that("single example", {
set.seed(4321)
is_personal <- !is.na(file.info(file.path("..", "..", ".lintr"))$size)
cores_vals <- 1
n <- 5000
if (is_personal) {
cores_vals <- c(cores_vals, 2, 4)
n <- 10000
}
m <- 4
N <- n * m
p <- 20
q <- 2
beta <- rbind(1, matrix(mnormt::rmnorm(p, 10, 1), p, 1))
R <- diag(m)
D <- matrix(c(16, 0, 0, 0.025), nrow = q)
sigma <- 1
beta_start <- beta
R_start <- R
D_start <- D
sigma_start <- sigma
subject <- rep(1:n, each = m)
repeats <- rep(1:m, n)
myresult_x <- lapply(1:n, function(i) cbind(1, matrix(rnorm(m * p), nrow = m)))
X <- do.call(rbind, myresult_x)
Z <- X[, 1:q]
myresult_b <- lapply(1:n, function(i) mnormt::rmnorm(1, rep(0, q), D))
myresult_e <- lapply(1:n, function(i) mnormt::rmnorm(1, rep(0, m), sigma * R))
myresulty <- lapply(
seq_len(n),
function(i) {
(myresult_x[[i]] %*% beta) +
(myresult_x[[i]][, 1:q] %*% myresult_b[[i]]) +
myresult_e[[i]]
}
)
y <- do.call(rbind, myresulty)
if (is_personal) cat("\nstarting timings...\n\n")
timings <- list()
pars <- list()
for (i in seq_along(cores_vals)) {
timing <- system.time({
ans.gauss <- lmmpar(
y,
X,
Z,
subject,
beta = beta,
R = R,
D = D,
cores = cores_vals[i],
sigma = sigma,
verbose = is_personal
)
})
if (is_personal) print(ans.gauss)
expect_true(abs(ans.gauss$beta[1, 1] - 1) < 2)
expect_true(all(ans.gauss$beta[-1, 1] > 5))
if (is_personal) print(timing)
timing <- as.list(timing)
timing$cores <- cores_vals[i]
timing$n <- n
timing$repeats <- m
timing$p <- p
timings[[i]] <- timing
pars$Beta_start <- beta_start
pars$R_start <- R_start
pars$D_start <- D_start
pars$sigma_start <- sigma_start
expect_true(TRUE)
}
if (is_personal) {
cat("\n")
print(as.data.frame(do.call(rbind, timings)))
print(pars)
}
})
if (FALSE) {
} |
data(sesamesim)
sesameCFA <- sesamesim
names(sesameCFA)[6] <- "pea"
model2 <- '
A =~ Ab + Al + Af + An + Ar + Ac
B =~ Bb + Bl + Bf + Bn + Br + Bc
A ~ B + age + pea
'
fit2 <- lavaan::sem(model2, data = sesameCFA, std.lv = TRUE)
hypotheses2 <- "A~B > A~pea = A~age = 0;
A~B > A~pea > A~age = 0;
A~B > A~pea > A~age > 0"
set.seed(100)
y1 <- bain(fit2, hypotheses2, fraction = 1, standardize = TRUE)
sy1 <- summary(y1, ci = 0.99)
set.seed(100)
y2 <- bain(fit2, hypotheses2, fraction = 2, standardize = TRUE)
set.seed(100)
y3 <- bain(fit2, hypotheses2, fraction = 3, standardize = TRUE)
ngroup2 <- lavaan::nobs(fit2)
PE2 <- lavaan::parameterEstimates(fit2, standardize = TRUE)
estimate2 <- PE2[ PE2$op == "~", "std.all"]
names(estimate2) <- c("before", "age", "pea")
PT2 <- parTable(fit2)
par.idx2 <- PT2$free[ PT2$op == "~" ]
covariance2 <- list(lavInspect(fit2, "vcov.std.all")[par.idx2, par.idx2])
hypotheses2 <- "before > pea = age = 0;
before > pea > age = 0;
before > pea > age > 0"
set.seed(100)
z1 <- bain(estimate2, hypotheses2, n = ngroup2, Sigma = covariance2,
group_parameters = 3,joint_parameters = 0)
sz1<-summary(z1, ci = 0.99)
set.seed(100)
z2 <- bain(estimate2, hypotheses2, n = ngroup2/2, Sigma = covariance2,
group_parameters = 3,joint_parameters = 0)
set.seed(100)
z3 <- bain(estimate2, hypotheses2, n = ngroup2/3, Sigma = covariance2,
group_parameters = 3, joint_parameters = 0)
test_that("Bain mutual", {expect_equal(y1$fit$Fit , z1$fit$Fit)})
test_that("Bain mutual", {expect_equal(y1$fit$Com , z1$fit$Com)})
test_that("Bain mutual", {expect_equal(y1$independent_restrictions, z1$independent_restrictions)})
test_that("Bain mutual", {expect_equal(y1$b, z1$b)})
test_that("Bain mutual", {expect_equal(as.vector(y1$posterior[13:15, 13:15]), as.vector(z1$posterior))})
test_that("Bain mutual", {expect_equal(as.vector(y1$prior[13:15, 13:15]), as.vector(z1$prior))})
test_that("Bain mutual", {expect_equal(y1$fit$BF,z1$fit$BF)})
test_that("Bain mutual", {expect_equal(y1$fit$PMPb , z1$fit$PMPb)})
test_that("Bain mutual", {expect_equal(as.vector(t(y1$BFmatrix)), as.vector(t(z1$BFmatrix)))})
test_that("summary", {expect_equal(sy1$Estimate[13:15] , sz1$Estimate)})
test_that("summary", {expect_equal(sy1$n[1] , sz1$n[1])})
test_that("summary", {expect_equal(sy1$lb[13:15] , sz1$lb)})
test_that("summary", {expect_equal(sy1$ub[13:15] , sz1$ub)})
test_that("Bain mutual", {expect_equal(y2$fit$Fit , z2$fit$Fit)})
test_that("Bain mutual", {expect_equal(y2$fit$Com , z2$fit$Com)})
test_that("Bain mutual", {expect_equal(y2$independent_restrictions, z2$independent_restrictions)})
test_that("Bain mutual", {expect_equal(y2$b, z2$b)})
test_that("Bain mutual", {expect_equal(as.vector(y2$posterior[13:15, 13:15]), as.vector(z2$posterior))})
test_that("Bain mutual", {expect_equal(as.vector(y2$prior[13:15, 13:15]), as.vector(z2$prior))})
test_that("Bain mutual", {expect_equal(y2$fit$BF,z2$fit$BF)})
test_that("Bain mutual", {expect_equal(y2$fit$PMPb , z2$fit$PMPb)})
test_that("Bain mutual", {expect_equal(as.vector(t(y2$BFmatrix)), as.vector(t(z2$BFmatrix)))})
test_that("Bain mutual", {expect_equal(y3$fit$Fit , z3$fit$Fit)})
test_that("Bain mutual", {expect_equal(y3$fit$Com , z3$fit$Com)})
test_that("Bain mutual", {expect_equal(y3$independent_restrictions, z3$independent_restrictions)})
test_that("Bain mutual", {expect_equal(y3$b, z3$b)})
test_that("Bain mutual", {expect_equal(as.vector(y3$posterior[13:15, 13:15]), as.vector(z3$posterior))})
test_that("Bain mutual", {expect_equal(as.vector(y3$prior[13:15, 13:15]), as.vector(z3$prior))})
test_that("Bain mutual", {expect_equal(y3$fit$BF,z3$fit$BF)})
test_that("Bain mutual", {expect_equal(y3$fit$PMPb , z3$fit$PMPb)})
test_that("Bain mutual", {expect_equal(as.vector(t(y3$BFmatrix)), as.vector(t(z3$BFmatrix)))}) |
asymmetrise <- function(df, .x, .y) {
.x <- enquo(.x)
.y <- enquo(.y)
.x_data <- eval_tidy(.x, df)
.y_data <- eval_tidy(.y, df)
if (inherits(.x_data, "factor") | inherits(.y_data, "factor")) {
data_levels <- organize_levels(.x_data, .y_data)
df <- df %>%
dplyr::mutate(
!!.x := as.character(!!.x),
!!.y := as.character(!!.y)
)
} else {
data_levels <- NULL
}
new_df <- dplyr::bind_rows(df, swap_cols(df, !!.x, !!.y)) %>%
add_missing_combinations(!!.x, !!.y)
if (!is.null(data_levels)) {
new_df <- new_df %>%
dplyr::mutate(
!!.x := factor(!!.x, levels = data_levels),
!!.y := factor(!!.y, levels = data_levels)
)
}
return(new_df)
}
asymmetrize <- asymmetrise
swap_cols <- function(df, .x, .y) {
groups <- dplyr::groups(df)
df <- dplyr::ungroup(df)
.x <- enquo(.x)
.y <- enquo(.y)
.x_data <- eval_tidy(.x, df)
.y_data <- eval_tidy(.y, df)
new_df <- df %>%
dplyr::mutate(
!!.x := .y_data,
!!.y := .x_data
)
return(dplyr::group_by(new_df, !!!groups))
}
add_missing_combinations <- function(df, .x, .y) {
.x <- enquo(.x)
.y <- enquo(.y)
.x_data <- eval_tidy(.x, df)
.y_data <- eval_tidy(.y, df)
if (inherits(.x_data, "factor") | inherits(.y_data, "factor")) {
data_levels <- organize_levels(.x_data, .y_data)
df <- df %>%
dplyr::mutate(
!!.x := as.character(!!.x),
!!.y := as.character(!!.y)
)
.x_data <- as.character(.x_data)
.y_data <- as.character(.y_data)
} else {
data_levels <- NULL
}
if (is_grouped(df)) {
original_groups <- dplyr::groups(df)
new_df <- df %>%
tidyr::nest() %>%
dplyr::mutate(data = purrr::map(
data,
function(a) {
b <- bind_missing_combs(a, !!.x, !!.y)
}
)) %>%
tidyr::unnest(data) %>%
dplyr::group_by(!!!original_groups)
} else {
new_df <- bind_missing_combs(df, !!.x, !!.y)
}
if (!is.null(data_levels)) {
new_df <- new_df %>%
dplyr::mutate(
!!.x := factor(!!.x, levels = data_levels),
!!.y := factor(!!.y, levels = data_levels)
)
}
return(new_df)
}
bind_missing_combs <- function(df, .x, .y) {
.x <- enquo(.x)
.y <- enquo(.y)
others_combs <- get_other_combs(
eval_tidy(.x, df),
eval_tidy(.y, df)
)
if (nrow(others_combs) > 0) {
df_cp <- make_fill_df(df, n_rows = nrow(others_combs)) %>%
dplyr::mutate(
!!.x := others_combs$Var1,
!!.y := others_combs$Var2
)
new_df <- dplyr::bind_rows(df, df_cp)
} else {
new_df <- df
}
return(new_df)
}
get_other_combs <- function(x, y) {
current_combs <- paste(x, y, sep = "_")
all_vals <- unique(c(x, y))
all_combs <- expand.grid(all_vals, all_vals, stringsAsFactors = FALSE, KEEP.OUT.ATTRS = FALSE) %>%
unique() %>%
dplyr::mutate(comb = paste(Var1, Var2, sep = "_")) %>%
dplyr::filter(!(comb %in% current_combs)) %>%
dplyr::select(-comb)
return(all_combs)
}
make_fill_df <- function(df, n_rows = 1, fill_val = NA) {
if (ncol(df) < 1) stop("df must have at least 1 column")
if (n_rows < 1) stop("must request at least one row")
na_df <- df %>%
dplyr::slice(1) %>%
dplyr::mutate_all(function(i) fill_val)
na_df <- dplyr::bind_rows(purrr::map(seq_len(n_rows), ~na_df))
return(na_df)
}
organize_levels <- function(x, y, ...) {
x_levels <- levels(x)
y_levels <- levels(y)
if (is.null(x_levels) | is.null(y_levels)) {
message("x and/or y have no levels, both coerced to char")
return(NULL)
} else if (identical(x_levels, y_levels)) {
return(x_levels)
} else if (identical(intersect(x_levels, y_levels), character(0))) {
message("completely different levels for x and y, coerced to char")
return(NULL)
} else if (length(intersect(x_levels, y_levels)) >= 1) {
message("partial overlap of levels, merging levels of x and y")
return(sort(unique(c(x_levels, y_levels)), ...))
} else {
stop("Unforeseen condition in organizing levels --> open an Issue")
}
}
is_grouped <- function(data) {
dplyr::n_groups(data) > 1
}
utils::globalVariables(c("Var1", "Var2", "comb", ".grp_nest", "data"),
add = TRUE
) |
if_else_block <- function(testexpr,
...,
thenexprs = NULL,
elseexprs = NULL) {
wrapr::stop_if_dot_args(substitute(list(...)),
"rquery::if_else_block")
if((length(thenexprs) + length(elseexprs))<=0) {
return(NULL)
}
knownsyms <- c(names(thenexprs), names(elseexprs))
testsym <- setdiff(
paste0('ifebtest_', seq_len(length(knownsyms)+1)),
knownsyms)[[1]]
program <- c(testsym %:=% testexpr)
prepStmts <- function(stmts, condition) {
ret <- NULL
n <- length(stmts)
if(n<=0) {
return(ret)
}
isSpecial <- startsWith(names(stmts), 'ifebtest_')
if(any(isSpecial)) {
spc <- stmts[isSpecial]
stmts <- stmts[!isSpecial]
ret <- c(ret, spc)
}
n <- length(stmts)
if(n<=0) {
return(ret)
}
nexprs <- vapply(1:n,
function(i) {
paste0('ifelse( ', condition,
', ', stmts[[i]],
', ', names(stmts)[[i]],
')')
}, character(1))
names(nexprs) <- names(stmts)
ret <- c(ret,nexprs)
ret
}
program <- c(program,
prepStmts(thenexprs, testsym))
program <- c(program,
prepStmts(elseexprs, paste('! ', testsym)))
program
}
if_else_op <- function(source,
testexpr,
...,
thenexprs = NULL,
elseexprs = NULL,
env = parent.frame()) {
force(env)
wrapr::stop_if_dot_args(substitute(list(...)),
"rquery::if_else_op")
steps <- if_else_block(testexpr = testexpr,
thenexprs = thenexprs,
elseexprs = elseexprs)
source %.>%
extend_se(., steps, env = env) %.>%
drop_columns(., "ifebtest_1", env = env)
} |
`circtics` <-
function(r=1, dr=.02, dang=10,... )
{
if(missing(r)) { r=1 }
if(missing(dr)) { dr=0.02 }
if(missing(dang)) { dang=10 }
points(0,0, pch=3)
DR = r+dr
ang =pi*seq(0, 360, by=dang)/180
segments(r*cos(ang), r*sin(ang), DR*cos(ang), DR*sin(ang), ...)
} |
isVector = function(par) {
UseMethod("isVector")
}
isVector.Param = function(par) {
isVectorTypeString(par$type)
}
isVector.ParamSet = function(par) {
all(vlapply(par$pars, isVector))
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.