code
stringlengths
1
13.8M
library("arulesSequences") data(zaki) zaki.txt <- read_baskets(con = system.file("misc", "zaki.txt", package = "arulesSequences"), info = c("sequenceID","eventID","SIZE")) all.equal(zaki, zaki.txt) s1 <- cspade(zaki, parameter = list(support = 0.4), control = list(verbose =TRUE)) s1 s2 <- cspade(zaki, parameter = list(support = 0.4, maxsize = 2, maxlen = 2)) s2 nitems(s1) nitems(s1, itemsets = TRUE) nitems(s2) nitems(s2, itemsets = TRUE) labels(s1, setSep = "->", seqStart = "", seqEnd = "") summary(s1) inspect(s1) data.frame(items = itemLabels(s1), counts = itemFrequency(s1)) data.frame(items = itemLabels(s2), counts = itemFrequency(s2)) data.frame(itemsets = itemLabels(s2, itemsets = TRUE), counts = itemFrequency(s2, itemsets = TRUE)) as(s2, "data.frame") sequenceInfo(s2) <- sequenceInfo(s2) sequenceInfo(s2) itemInfo(s2) <- itemInfo(s2) itemInfo(s2) t <- itemTable(s2) rownames(t) <- itemLabels(s2)[as.integer(rownames(t))] t t <- itemTable(s2, itemsets = TRUE) rownames(t) <- itemLabels(s2, itemsets = TRUE)[as.integer(rownames(t))] t d1 <- as(s1, "data.frame") d1$size <- size(s1) d1$length <- size(s1, type = "length") d1$ritems <- ritems(s1, "max") d1$maximal <- is.maximal(s1) d1 as(s1@elements, "data.frame") d1[s1 %in% c("D", "F"), 1:2] d1[s1 %ain% c("D", "F"), 1:2] d1[s1 %pin% "D", 1:2] as(subset(s1, x %ain% c("D", "F")), "data.frame") as(subset(s1, support == 1), "data.frame") match(s2,s1) match(s1,s2) s <- unique(c(s1,s2)) match(s1, s) all.equal(s1, s) all.equal(s1, c(s[1], s1[-1])) all.equal(quality(s1)$support, support(s1, zaki)) r1 <- ruleInduction(s1, confidence = 0.5) r1 r2 <- ruleInduction(s2, confidence = 0.5) r2 labels(r1, itemSep = "->", setStart = "", setEnd = "") summary(r1) inspect(r1) as(r2, "data.frame") as(subset(r2, lhs(x) %in% c("B", "F")), "data.frame") as(subset(r2, lhs(x) %ain% c("B", "F")), "data.frame") as(subset(r2, confidence == 1), "data.frame") match(r2, r1) match(r1, r2) r <- unique(c(r1, r2)) match(r1, r) all.equal(r1, r) s <- as(r2, "sequences") match(s, s2) all.equal(r1, c(r1[1], r1[-1])) z <- as(zaki, "timedsequences") all.equal(z, c(z[1], z[-1])) z <- cspade(zaki, parameter = list(support = 0.4, maxwin = 5), control = list(verbose =TRUE)) identical(s1, z) s1 <- cspade(zaki, parameter = list(support = 0.4), control = list(verbose =TRUE, tidLists = TRUE)) summary(tidLists(s1)) transactionInfo(tidLists(s1)) z <- supportingTransactions(s1, zaki) all.equal(tidLists(s1[1:4, ]), z[1:4, ]) z <- support(s1, zaki, control = list(parameter = list())) all.equal(z, quality(s1)$support) z <- as(as(zaki, "timedsequences"), "sequences") z <- support(s1, z, control = list(parameter = list())) all.equal(z, quality(s1)$support) z <- quality(s1)$support z <- z > apply(is.subset(s1, proper = TRUE), 1L, function(x) suppressWarnings(max(z[x]))) all.equal(z, is.closed(s1)) r <- ruleInduction(s2[size(s2) > 1L], zaki, confidence = 0.5) all.equal(as(r2, "data.frame"), as(r, "data.frame")) k <- rhs(r1) %ain% "A" z <- quality(r1)$confidence[k] z <- z <= apply(is.superset(lhs(r1)[k], proper = TRUE), 1L, function(x) suppressWarnings(max(z[x]))) all.equal(z, is.redundant(r1)[k])
test_that("Inference for Multiplex networks", { if (Sys.info()['sysname'] != "Windows") { set.seed(2) npc <- 30 Q <- 3 n <- npc * Q Z<-diag(Q)%x%matrix(1,npc,1) P<-matrix(runif(Q*Q),Q,Q) A<-1*(matrix(runif(n*n),n,n)<Z%*%P%*%t(Z)) type <- "simple" netA <- defineSBM(A,"bernoulli",type = "simple",directed=TRUE,dimLabels=c("Actor")) B <- 1*(matrix(runif(n*n),n,n)<Z%*%P%*%t(Z)) netB <- defineSBM(B,"bernoulli",type = "simple",dimLabels=c("Actor")) myMultiplex <- MultiplexSBM_fit$new(list(netA,netB)) netC <- defineSBM(B,"poisson",type = "simple",dimLabels=c("Actor")) expect_equal(myMultiplex$directed, c(TRUE,TRUE)) expect_equal(myMultiplex$nbNetworks,2) expect_equal(myMultiplex$dependentNetwork,FALSE) expect_equal(MultiplexSBM_fit$new(list(netA,netB), TRUE)$dependentNetwork,TRUE) expect_error(MultiplexSBM_fit$new(list(netA,netC), TRUE)) expect_error(MultiplexSBM_fit$new(list(netA,netB,netB), TRUE)) currentOptions <- list( verbosity = 1, nbBlocksRange = list(c(1,10)), nbCores = 2, maxiterVE = 100, maxiterVEM = 100, initBM = TRUE ) myMultiplexFitindep <- MultiplexSBM_fit$new(list(netA,netB,netC)) myMultiplexFitindep$optimize(estimOptions = currentOptions) expect_equal(length(myMultiplexFitindep$connectParam),3) myMultiplexFitdep <- MultiplexSBM_fit$new(list(netA,netB),dependentNet = TRUE) currentOptions <- list( verbosity = 3, plot = TRUE, explorFactor = 1.5, nbBlocksRange = c(4,Inf), nbCores = 2, fast = TRUE ) myMultiplexFitdep$optimize(estimOptions = currentOptions) myMultiplexFitdep$probMemberships expect_equal(class(myMultiplexFitdep$memberships),"list") expect_equal(length(myMultiplexFitdep$connectParam),4) expect_equal(myMultiplexFitdep$dependentNetwork,TRUE) set.seed(2) npc1 <- 30 npc2 <- 20 Q1 <- 2 Q2 <- 3 n1 <- npc1 * Q1 n2 <- npc2 * Q2 Z1 <-diag(Q1)%x%matrix(1,npc1,1) Z2 <-diag(Q2)%x%matrix(1,npc2,1) P<-matrix(runif(Q1*Q2),Q1,Q2) A<-1*(matrix(runif(n1*n2),n1,n2)<Z1%*%P%*%t(Z2)) netA <- defineSBM(A,"bernoulli",type = "bipartite",directed=TRUE,dimLabels=c("Actor","Object")) B <- 1*(matrix(runif(n1*n2),n1,n2)<Z1%*%P%*%t(Z2)) netB <- defineSBM(B,"bernoulli",type = "bipartite",dimLabels=c("Actor","Object")) myMultiplexFitindep <- MultiplexSBM_fit$new(list(netA,netB)) currentOptions <- list( verbosity = 1, nbBlocksRange = list(c(1,10),c(1,10)), nbCores = 2, maxiterVE = 100, maxiterVEM = 100, initBM = FALSE ) names(currentOptions$nbBlocksRange) = c("Actor","Object") myMultiplexFitindep$optimize(currentOptions) expect_equal(length(myMultiplexFitindep$connectParam),2) } })
context("taskscheduler-examples") test_that("taskscheduleR examples can be scheduled as expected", { skip_on_cran() myscript <- system.file("extdata", "helloworld.R", package = "taskscheduleR") expect_warning(taskscheduler_create(taskname = "myfancyscript", rscript = myscript, schedule = "ONCE", starttime = format(Sys.time() + 62, "%H:%M")), NA) expect_warning(tasks <- taskscheduler_ls(), NA) expect_warning(taskscheduler_delete(taskname = "myfancyscript"), NA) }) test_that("taskscheduler_ls returns a data.frame", { skip_on_cran() expect_is(taskscheduler_ls(), "data.frame") })
.applyAR2seg <- function(varargin) { seg = varargin$seg out = varargin$out rules = varargin$rules PSTR = varargin$PSTR sI = grep(seg, rules@rhs@itemInfo[, 1]) cn_status = rep(NA, length(rules)) for (cn_ in unique(out[!is.na(out)])) { eqI = intersect(grep(paste0(" ", cn_), rules@rhs@itemInfo[, 1]), sI) if (!isempty(eqI)) { cn_status[rules@rhs@data[eqI, ]] = cn_ } } cmap = matrix(F, length(rules), ncol(out)) colnames(cmap) = colnames(out) for (i in 1:length(rules)) { seg1_EQ = rules@lhs@itemInfo[rules@lhs@data[, i], ] cI = sapply(seg1_EQ, .testARstatement, out) cI = apply(cI, 1, all) cI[is.na(cI)] = F cmap[i, names(cI)] = cI } cellsWithRules = c() for (cell in colnames(out)) { for (cn_ in unique(cn_status)) { eq_ii = which(cmap[, cell] & cn_status == cn_) if (!isempty(eq_ii)) { cellsWithRules = c(cellsWithRules, cell) } PSTR[as.character(cn_), cell] = sum(quality(rules[eq_ii])$confidence) } } cellsWithRules = unique(cellsWithRules) return(PSTR) }
`re.timeSeries` <- function(x,...) { if(!requireNamespace('timeSeries', quietly=TRUE)) { timeSeries <- function(...) message("package 'timeSeries' is required") } else { timeSeries <- timeSeries::timeSeries } x.attr <- attributes(x) xx <- structure(x,dimnames=x.attr$dimnames,index=x.attr$index) original.attr <- attributes(x)[!names(attributes(x)) %in% c("dim","dimnames","index","class")] for(i in names(original.attr)) { attr(xx,i) <- NULL } timeSeries(coredata(xx),charvec=as.POSIXct(format(index(x)),tz="GMT"),format=x.attr$format, zone=x.attr$FinCenter,FinCenter=x.attr$FinCenter, recordIDs=x.attr$recordIDs,title=x.attr$title, documentation=x.attr$documentation,...) } `as.xts.timeSeries` <- function(x,dateFormat="POSIXct",FinCenter,recordIDs,title,documentation,..., .RECLASS=FALSE) { if(missing(FinCenter)) FinCenter <- x@FinCenter if(missing(recordIDs)) recordIDs <- x@recordIDs if(missing(title)) title <- x@title if(missing(documentation)) documentation <- x@documentation indexBy <- structure(x@positions, class=c("POSIXct","POSIXt"), tzone=FinCenter) order.by <- do.call(paste('as',dateFormat,sep='.'),list(as.character(indexBy))) if(.RECLASS) { xts(as.matrix([email protected]), order.by=order.by, format=x@format, FinCenter=FinCenter, recordIDs=recordIDs, title=title, documentation=documentation, .CLASS='timeSeries', .CLASSnames=c('FinCenter','recordIDs','title','documentation','format'), .RECLASS=TRUE, ...) } else { xts(as.matrix([email protected]), order.by=order.by, ...) } } as.timeSeries.xts <- function(x, ...) { if(!requireNamespace('timeSeries', quietly=TRUE)) { timeSeries <- function(...) message("package 'timeSeries' is required") } else { timeSeries <- timeSeries::timeSeries } timeSeries(data=coredata(x), charvec=as.character(index(x)), ...) } `xts.as.timeSeries` <- function(x,...) {}
library("aroma.affymetrix") verbose <- Arguments$getVerbose(-50, timestamp=TRUE) dataSet <- "Affymetrix-CytoSampleData" chipType <- "Cytogenetics_Array" cdf <- AffymetrixCdfFile$byChipType(chipType) print(cdf) csR <- AffymetrixCelSet$byName(dataSet, cdf=cdf) print(csR) acc <- AllelicCrosstalkCalibration(csR) print(acc) csC <- process(acc, verbose=verbose) print(csC) for (what in c("input", "output")) { toPNG(getFullName(acc), tags=c("allelePairs", what), aspectRatio=0.7, { plotAllelePairs(acc, array=1, what=what, verbose=verbose) }) } plm <- AvgSnpPlm(csC, mergeStrands=TRUE) print(plm) if (length(findUnitsTodo(plm)) > 0) { units <- fitCnProbes(plm, verbose=verbose) str(units) units <- fit(plm, verbose=verbose) str(units) } ces <- getChipEffectSet(plm) print(ces) dsList <- exportTotalAndFracB(ces, verbose=verbose) print(dsList) cns <- CbsModel(dsList$total) print(cns) ce <- ChromosomeExplorer(cns, zooms=2^(0:5)) print(ce) process(ce, chromosomes=c(19, 22, 23), verbose=verbose)
hyperbFit <- function(x, freq = NULL, paramStart = NULL, startMethod = c("Nelder-Mead","BFGS"), startValues = c("BN","US","FN","SL","MoM"), criterion = "MLE", method = c("Nelder-Mead","BFGS","nlm", "L-BFGS-B","nlminb","constrOptim"), plots = FALSE, printOut = FALSE, controlBFGS = list(maxit = 200), controlNM = list(maxit = 1000), maxitNLM = 1500, controlLBFGSB = list(maxit = 200), controlNLMINB = list(), controlCO = list(), ...) { startValues <- match.arg(startValues) startMethod <- match.arg(startMethod) method <- match.arg(method) xName <- paste(deparse(substitute(x), 500), collapse = "\n") if (!is.null(freq)) { if (length(freq) != length(x)) stop("vectors x and freq are not of the same length") x <- rep(x, freq) } x <- as.numeric(na.omit(x)) startInfo <- hyperbFitStart(x, startValues = startValues, paramStart = paramStart, startMethodSL = startMethod, startMethodMoM = startMethod, ...) paramStart <- startInfo$paramStart paramStart <- as.numeric(hyperbChangePars(2, 1, param = paramStart)) if (!(method %in% c("L-BFGS-B","nlminb","constrOptim"))){ paramStart <- c(paramStart[1], log(paramStart[2]), paramStart[3], log(paramStart[4])) } svName <- startInfo$svName breaks <- startInfo$breaks empDens <- startInfo$empDens midpoints <- startInfo$midpoints eps <- 1e-10 if (criterion == "MLE") { if (!(method %in% c("L-BFGS-B","nlminb","constrOptim"))){ llfunc <- function(param) { KNu <- besselK(exp(param[4]), nu = 1) hyperbDens <- (2*exp(param[2])* sqrt(1 + param[3]^2)*KNu)^(-1)* exp(-exp(param[4])* (sqrt(1 + param[3]^2)* sqrt(1 + ((x - param[1])/exp(param[2]))^2) - param[3]*(x - param[1])/exp(param[2]))) return(-sum(log(hyperbDens))) } } else { llfunc <- function(param) { if (param[1] <= eps | param[4] <= eps) return(1e99) KNu <- besselK(param[4], nu = 1) hyperbDens <- (2*param[2]* sqrt(1 + param[3]^2)*KNu)^(-1)* exp(-param[4]* (sqrt(1 + param[3]^2)* sqrt(1 + ((x - param[1])/param[2])^2) - param[3]*(x - param[1])/param[2])) return(-sum(log(hyperbDens))) } } output <- numeric(7) ind <- 1:4 if (method == "BFGS") { cat("paramStart =", paramStart[1],paramStart[2],paramStart[3], paramStart[4],"\n") opOut <- optim(paramStart, llfunc, NULL, method = "BFGS", control = controlBFGS, ...) } if (method == "Nelder-Mead") { opOut <- optim(paramStart, llfunc, NULL, method = "Nelder-Mead", control = controlNM, ...) } if (method == "nlm") { ind <- c(2, 1, 5, 4) opOut <- nlm(llfunc, paramStart, iterlim = maxitNLM, ...) } if (method == "L-BFGS-B") { cat("paramStart =", paramStart[1],paramStart[2],paramStart[3], paramStart[4],"\n") cat("Starting loglikelihood = ", llfunc(paramStart), " \n") opOut <- optim(par = paramStart, llfunc, NULL, method = "L-BFGS-B", lower = c(-Inf,eps,-Inf,eps), control = controlLBFGSB, ...) } if (method == "nlminb") { ind <- c(1, 2, 3) cat("paramStart =", paramStart[1],paramStart[2],paramStart[3], paramStart[4],"\n") cat("Starting loglikelihood = ", llfunc(paramStart), " \n") opOut <- nlminb(start = paramStart, llfunc, NULL, lower = c(-Inf,eps,-Inf,eps), control = controlNLMINB, ...) } if (method == "constrOptim") { cat("paramStart =", paramStart[1],paramStart[2],paramStart[3], paramStart[4],"\n") cat("Starting loglikelihood = ", llfunc(paramStart), " \n") cat("Feasible?\n") print((paramStart%*%diag(c(0,1,0,1))- c(0,0,0,0)) >= 0) opOut <- constrOptim(theta = paramStart, llfunc, NULL, ui = diag(c(0,1,0,1)), ci = c(-1e+99,0,-1e+99,0), control = controlCO, ...) } param <- as.numeric(opOut[[ind[1]]])[1:4] if (!(method %in% c("L-BFGS-B","nlminb","constrOptim"))){ param <- hyperbChangePars(1, 2, param = c(param[1], exp(param[2]), param[3], exp(param[4]))) } else { param <- hyperbChangePars(1, 2, param = param) } names(param) <- c("mu", "delta", "alpha", "beta") maxLik <- -(as.numeric(opOut[[ind[2]]])) conv <- as.numeric(opOut[[ind[4]]]) iter <- as.numeric(opOut[[ind[3]]])[1] } if (!(method %in% c("L-BFGS-B","nlminb","constrOptim"))){ paramStart <- hyperbChangePars(1, 2, param = c(paramStart[1], exp(paramStart[2]), paramStart[3], exp(paramStart[4]))) } else { paramStart <- hyperbChangePars(1, 2, param = paramStart) } fitResults <- list(param = param, maxLik = maxLik, criterion = criterion, method = method, conv = conv, iter = iter, obs = x, obsName = xName, paramStart = paramStart, svName = svName, startValues = startValues, breaks = breaks, midpoints = midpoints, empDens = empDens) class(fitResults) <- c("hyperbFit", "distFit") if (printOut) print(fitResults, ...) if (plots) plot.hyperbFit(fitResults, ...) return(fitResults) } print.hyperbFit <- function(x, digits = max(3, getOption("digits") - 3), ...) { if (! "hyperbFit" %in% class(x)) stop("Object must belong to class hyperbFit") cat("\nData: ", x$obsName, "\n") cat("Parameter estimates:\n") print.default(format(x$param, digits = digits), print.gap = 2, quote = FALSE) cat("Likelihood: ", x$maxLik, "\n") cat("criterion : ", x$criterion , "\n") cat("Method: ", x$method, "\n") cat("Convergence code: ", x$conv, "\n") cat("Iterations: ", x$iter, "\n") invisible(x) } plot.hyperbFit <- function(x, which = 1:4, plotTitles = paste(c("Histogram of ", "Log-Histogram of ", "Q-Q Plot of ", "P-P Plot of "), x$obsName, sep = ""), ask = prod(par("mfcol")) < length(which) & dev.interactive(), ...) { if (! "hyperbFit" %in% class(x)) stop("Object must belong to class hyperbFit") if (ask) { op <- par(ask = TRUE) on.exit(par(op)) } par(mar = c(6, 4, 4, 2) + 0.1) show <- rep(FALSE, 4) show[which] <- TRUE param <- x$param breaks <- x$breaks empDens <- x$empDens mipoints <- x$midpoints obs <- x$obs obsName <- x$obsName hypDens <- function(x) dhyperb(x, param = param) logHypDens <- function(x) log(dhyperb(x, param = param)) ymax <- 1.06 * max(hypDens(seq(min(breaks), max(breaks), 0.1)), empDens, na.rm = TRUE) if (show[1]) { hist.default(obs, breaks, right = FALSE, freq = FALSE, ylim = c(0, ymax), main = plotTitles[1], ...) curve(hypDens, min(breaks) - 1, max(breaks) + 1, add = TRUE, ylab = NULL) title(sub = paste("param = (", round(param[1], 3), ", ", round(param[2], 3), ", ", round(param[3], 3), ", ", round(param[4], 3), ")", sep = "")) } if (show[2]) { logHist(obs, breaks, include.lowest = TRUE, right = FALSE, main = plotTitles[2], ...) curve(logHypDens, min(breaks) - 1, max(breaks) + 1, add = TRUE, ylab = NULL, xlab = NULL) title(sub = paste("param = (", round(param[1], 3), ", ", round(param[2], 3), ", ", round(param[3], 3), ", ", round(param[4], 3), ")", sep = "")) } if (show[3]) qqhyperb(obs, param = param, main = plotTitles[3], ...) if (show[4]) pphyperb(obs, param = param, main = plotTitles[4], ...) invisible() } coef.hyperbFit <- function(object, ...) { object$param } vcov.hyperbFit <- function(object, ...) { obs <- object$obs param <- object$param hessian <- hyperbHessian(obs, param, hessianMethod= "exact", whichParam = 2) varcov <- solve(hessian) varcov }
test_that("getLastChildTaxon works", { expect_equal(as.numeric(prop.table(table(grepl("^Hap", getLastChildTaxon("suborder")$taxon)))), c(0.25,0.75)) })
context("Testing suberbPlot") test_that("PRELIMINARY TESTS (1/4)", { options(superb.feedback = 'none') library(grid) library(gridExtra) plt <- superbPlot(ToothGrowth, BSFactor = c("dose","supp"), variables = "len", statistic = "mean", plotStyle="bar" ) expect_equal( "ggplot" %in% class(plt), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("PRELIMINARY TESTS (2/4)", { options(superb.feedback = 'none') library(grid) g0 <- superbPlot(ToothGrowth, BSFactor = c("dose","supp"), variables = "len", statistic = "mean", adjustments = list(purpose = "difference"), plotStyle="bar" ) g1 <- g0 + xlab("Dose") + ylab("Tooth Growth") + labs(title="adsf") + theme_light(base_size=20) + annotation_custom(grid.text("allo",x=.5,y=.5,gp=gpar(fontsize=20, col="grey"))) g2 <- g1 + theme(axis.text.x = element_text(size=30, colour="red") ) + coord_cartesian(ylim=c(5,45)) expect_equal( "ggplot" %in% class(g2), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("PRELIMINARY TESTS (3/4)", { options(superb.feedback = 'none') res <- superbPlot(ToothGrowth, BSFactor = c("dose","supp"), variables = "len", showPlot=FALSE ) expect_output( str(res), "data.frame") options(superb.feedback = c('design','warnings','summary')) }) test_that("PRELIMINARY TESTS (4/4)", { options(superb.feedback = 'none') p <- superbPlot(ToothGrowth, BSFactor = c("dose","supp"), variables = "len", statistic = "mean", plotStyle="line" ) expect_equal( "ggplot" %in% class(p), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 1a: 3 groupes inpependants", { options(superb.feedback = c('none')) dta1a <- GRD( BSFactors = "Group(3)", Population = list( mean=10, stddev = 5) ) p <- superbPlot(dta1a, BSFactor = "Group", variables = "DV", statistic = "mean", errorbar = "SE", plotStyle="line") expect_equal( "ggplot" %in% class(p), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 1b: factorielle a grps independants; 3 x 2", { options(superb.feedback = c('none')) dta1b <- GRD( BSFactors = "Group(3): Sex(2)", Population = list( mean=10, stddev = 5)) p <- superbPlot(dta1b, BSFactor = c("Group","Sex"), variables = "DV", statistic = "mean", errorbar = "SE" ) expect_equal( "ggplot" %in% class(p), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 2a: 1 facteur a 3 mesures repetees; (3)", { options(superb.feedback = c('warnings')) dta2a <- GRD( WSFactors = "Moment(3)", SubjectsPerGroup = 5, Population = list( mean=10, stddev = 5)) expect_message( p <- superbPlot(dta2a, WSFactor = "moment(3)", adjustments=list(decorrelation="CA"), errorbar = "CI", plotStyle="line", variables = c("DV.1","DV.2","DV.3") )) expect_equal( "ggplot" %in% class(p), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 2b: 2 facteurs a mesures repetees; (3 x 2)", { options(superb.feedback = "none") dta2b <- GRD( WSFactors = "Moment(3): Dose(2)", SubjectsPerGroup = 5, Population = list( mean=10, stddev = 5, rho = .80)) p <- superbPlot(dta2b, WSFactor = c("moment(3)","Dose(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), statistic="mean", errorbar = "CI", gamma = 0.90, plotStyle = "line", adjustments = list(purpose="difference", decorrelation="CM"), errorbarParams = list(position = position_dodge(width = .15)), pointParams = list(position = position_dodge(width = .15)), ) expect_equal( "ggplot" %in% class(p), TRUE) options(superb.feedback = c("design","warnings") ) }) test_that("test 3: scheme mixte; 3 x (3)", { options(superb.feedback = c('warnings')) dta3 <- GRD( BSFactors = "Group(3)", WSFactors = "Moment(3)", SubjectsPerGroup = 5, Population = list( mean=10, stddev = 5), Effects = list("Moment" = slope(5)) ) expect_message( p <- superbPlot(dta3, WSFactor = "Moment(3)", BSFactor = "Group", variables = c("DV.1","DV.2","DV.3"), statistic = "mean", errorbar = "SE", plotStyle="line", adjustments = list(purpose="single", decorrelation="CM") )) expect_equal( "ggplot" %in% class(p), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 4a: scheme a trois facteurs, 2 etant between 3 x 3 x (3)", { options(superb.feedback = c('design','warnings')) dta4a <- GRD( BSFactors = "Group(3) : Dose(3)", WSFactors = "Moment(3)", SubjectsPerGroup = 4, Population = list( mean=10, stddev = 5), Effects = list("Moment" = slope(5)) ) p <- superbPlot(dta4a, BSFactor = c("Group","Dose"), WSFactor = "Moment(3)", variables = c("DV.1","DV.2","DV.3"), plotStyle = "line", statistic = "mean", errorbar = "SE", adjustments = list(purpose="difference", decorrelation="none"), factorOrder = c("Dose","Group","Moment"), showPlot = T) expect_equal( "ggplot" %in% class(p), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 5a: scheme a quatre facteurs; 5 x 4 (3 x 2)", { options(superb.feedback = "none") dta5a <- GRD( BSFactors = "Group(5) : Dose(4)", WSFactors = "Moment(3):Hand(2)", Population = list( mean=10, stddev = 5, rho = .90), Effects = list("Moment" = slope(5), "Hand" = slope(10)) ) p <- superbPlot(dta5a, plotStyle="line", WSFactor = c("Moment(3)","Hand(2)"), BSFactor= c("Group","Dose"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), statistic = "mean", errorbar = "CI", gamma = .9999, adjustments = list(purpose="difference", decorrelation="CM") ) expect_equal( "ggplot" %in% class(p), TRUE) options(superb.feedback = c("design","warnings") ) }) test_that("test 6: Some data", { options(superb.feedback = c('none')) dta6 <- GRD( WSFactors = "Moment(3):Hand(2)", Effects = list("Moment" = slope(5), "Hand" = slope(3)), SubjectsPerGroup = 6, Population = list (mean = 20, stddev = 5, rho = 0.8) ) expect_output( str(dta6), "data.frame") options(superb.feedback = c('design','warnings','summary')) }) test_that("test 6a: factorOrder", { options(superb.feedback = "none") library(gridExtra) dta6 <- GRD( WSFactors = "Moment(3):Hand(2)", Effects = list("Moment" = slope(5), "Hand" = slope(3)), SubjectsPerGroup = 6, Population = list (mean = 20, stddev = 5, rho = 0.8) ) p1 <- superbPlot(dta6, WSFactor = c("Moment(3)","Hand(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), statistic = "mean", errorbar = "SE", factorOrder = c("Moment", "Hand") ) p2 <- superbPlot(dta6, WSFactor = c("Moment(3)","Hand(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), statistic = "mean", errorbar = "SE", factorOrder = c("Hand","Moment") ) p <- grid.arrange(p1,p2,ncol=2) expect_equal( "ggplot" %in% class(p1), TRUE) expect_equal( "ggplot" %in% class(p2), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 6b: adjustments CA vs CM vs LM", { options(superb.feedback = "none") library(gridExtra) dta6 <- GRD( WSFactors = "Moment(3):Hand(2)", Effects = list("Moment" = slope(5), "Hand" = slope(3)), SubjectsPerGroup = 6, Population = list (mean = 20, stddev = 5, rho = 0.8) ) p1 <- superbPlot(dta6, WSFactor = c("Moment(3)","Hand(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), adjustments = list(purpose="difference", decorrelation="CA") )+ coord_cartesian( ylim = c(8,30) ) + labs(title="CA") p2 <- superbPlot(dta6, WSFactor = c("Moment(3)","Hand(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), adjustments = list(purpose="difference", decorrelation="CM") )+ coord_cartesian( ylim = c(8,30) ) + labs(title="CM") p3 <- superbPlot(dta6, WSFactor = c("Moment(3)","Hand(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), adjustments = list(purpose="difference", decorrelation="LM") )+ coord_cartesian( ylim = c(8,30) ) + labs(title="LM") p <- grid.arrange(p1,p2,p3,ncol=3) expect_equal( "ggplot" %in% class(p1), TRUE) expect_equal( "ggplot" %in% class(p2), TRUE) expect_equal( "ggplot" %in% class(p3), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 6c: statistics of central tendency mean, median and gmean", { options(superb.feedback = "none") library(gridExtra) dta6 <- GRD( WSFactors = "Moment(3):Hand(2)", Effects = list("Moment" = slope(5), "Hand" = slope(3)), SubjectsPerGroup = 6, Population = list (mean = 20, stddev = 5, rho = 0.8) ) p1 <- superbPlot(dta6, WSFactor = c("Moment(3)","Hand(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), statistic = "mean", errorbar = "CI" ) + coord_cartesian( ylim = c(8,30) ) + labs(title="mean") p2 <- superbPlot(dta6, WSFactor = c("Moment(3)","Hand(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), statistic = "median", errorbar = "CI" ) + coord_cartesian( ylim = c(8,30) ) + labs(title="median") p3 <- superbPlot(dta6, WSFactor = c("Moment(3)","Hand(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), statistic = "gmean", errorbar = "CI" ) + coord_cartesian( ylim = c(8,30) ) + labs(title="geometric mean") p <- grid.arrange(p1,p2,p3,ncol=3) expect_equal( "ggplot" %in% class(p1), TRUE) expect_equal( "ggplot" %in% class(p2), TRUE) expect_equal( "ggplot" %in% class(p3), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 6d: statistics of dispersion sd and MAD", { options(superb.feedback = "none") library(gridExtra) dta6 <- GRD( WSFactors = "Moment(3):Hand(2)", Effects = list("Moment" = slope(5), "Hand" = slope(3)), SubjectsPerGroup = 6, Population = list (mean = 20, stddev = 5, rho = 0.8) ) p1 <- superbPlot(dta6, WSFactor = c("Moment(3)","Hand(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), statistic = "sd", errorbar = "CI" ) p2 <- superbPlot(dta6, WSFactor = c("Moment(3)","Hand(2)"), variables = c("DV.1.1","DV.2.1","DV.3.1","DV.1.2","DV.2.2","DV.3.2"), statistic = "MAD", errorbar = "CI" ) p <- grid.arrange(p1,p2,ncol=2) expect_equal( "ggplot" %in% class(p1), TRUE) expect_equal( "ggplot" %in% class(p2), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 6e: adding ggplot options", { options(superb.feedback = 'none') p1 <- superbPlot(ToothGrowth, BSFactor = c("dose","supp"), variables = "len", statistic = "mean", errorbar = "CI", gamma = .999, adjustments = list(purpose = "difference") ) p2 <- p1 + xlab("Dose per day") + ylab("Tooth Growth after study") + theme_light(base_size=14 ) expect_equal( "ggplot" %in% class(p2), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 6f: adding ggplot options to the error bars, to the points", { options(superb.feedback = 'none') p <- superbPlot(ToothGrowth, BSFactor = c("dose","supp"), variables = "len", statistic = "mean", errorbar = "CI", gamma = .999, adjustments = list(purpose = "difference"), errorbarParams = list(width = .2, size = 3, colour = "gray"), barParams = list(linetype = 3, colour = "black", size = .5) ) expect_equal( "ggplot" %in% class(p), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("test 6g: adding ggplot options to the error bars, to the points (bis)", { options(superb.feedback = 'none') p <- superbPlot(ToothGrowth, BSFactor = c("dose","supp"), variables = "len", statistic = "mean", errorbar = "CI", gamma = .999, adjustments = list(purpose = "difference"), plotStyle = "line", errorbarParams = list(width = .02, size = 0.1, colour = "gray"), pointParams = list(colour = "gray", size = 10.5) ) expect_equal( "ggplot" %in% class(p), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("Explorations for ICC", { options(superb.feedback = c('warnings')) library(gridExtra) dta99 <- GRD( WSFactors = "Moment(3)", SubjectsPerGroup = 15, Population = list( mean=20, stddev = 5), Effects = list("Moment" = slope(3) ) ) dta99$myclus <- sort(rep(1:5, 3)) dta99$DV.1 <- dta99$DV.1 + 10 * dta99$myclus dta99$DV.2 <- dta99$DV.2 + 10 * dta99$myclus dta99$DV.3 <- dta99$DV.3 + 10 * dta99$myclus expect_message( noncluster <- superbPlot(dta99, WSFactor = "moment(3)", adjustments = list(decorrelation="CM"), errorbar = "CI", showPlot=T, variables = c("DV.1","DV.2","DV.3") )+ labs(title="Without cluster information") + coord_cartesian( ylim = c(40,60) ) ) expect_message( yescluster <- superbPlot(dta99, WSFactor = "moment(3)", adjustments = list(decorrelation="CM", samplingDesign = "CRS"), clusterColumn = "myclus", errorbar = "CI", showPlot=T, variables = c("DV.1","DV.2","DV.3") )+ labs(title="with cluster information") + coord_cartesian( ylim = c(40,60) ) ) p <- grid.arrange(noncluster, yescluster, ncol=2) expect_equal( "ggplot" %in% class(noncluster), TRUE) expect_equal( "ggplot" %in% class(yescluster), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("Verifying CA and popSize ", { options(superb.feedback = c('warnings')) library(gridExtra) dta3 <- GRD( BSFactors = "Group(2)", WSFactors = "Moment(3)", SubjectsPerGroup = 5, Population = list (mean = 20, stddev = 5, rho = 0.8), Effects = list("Moment" = slope(5)) ) expect_message( p1 <- superbPlot(dta3, WSFactor = "Moment(3)", BSFactor = "Group", variables = c("DV.1","DV.2","DV.3"), statistic = "mean", errorbar = "SE", adjustments = list(purpose="single", decorrelation="CM", popSize = Inf ) ) + labs(title="Infinite populations") ) expect_message( p2 <- superbPlot(dta3, WSFactor = "Moment(3)", BSFactor = "Group", variables = c("DV.1","DV.2","DV.3"), statistic = "mean", errorbar = "SE", adjustments = list(purpose="single", decorrelation="CM", popSize = c(Inf,6) ) ) + labs(title="population of 6 in grp 2") ) p <- grid.arrange(p1,p2,ncol=2) expect_equal( "ggplot" %in% class(p1), TRUE) expect_equal( "ggplot" %in% class(p2), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("Testing pre and post processing", { options(superb.feedback = c('warnings')) library(ggplot2) library(gridExtra) dta9 <- GRD( WSFactors = "Moment(3)", SubjectsPerGroup = 5, Population = list( mean=20, stddev = 5), Effects = list("Moment" = slope(3) ) ) expect_message( truecm <- superbPlot(dta9, WSFactor = "moment(3)", adjustments=list(decorrelation="CM"), errorbar = "CI", showPlot=T, variables = c("DV.1","DV.2","DV.3") )+ labs(title="With decorrelation = CM") ) altcm <- superbPlot(dta9, WSFactor = "moment(3)", adjustments=list(decorrelation="none"), preprocessfct = "subjectCenteringTransform", postprocessfct = c("biasCorrectionTransform"), errorbar = "CI", showPlot=T, variables = c("DV.1","DV.2","DV.3") )+ labs(title="with pre and post processing") pcm <- grid.arrange(truecm,altcm,ncol=2) expect_message( truelm <- superbPlot(dta9, WSFactor = "moment(3)", adjustments=list(decorrelation="LM"), errorbar = "CI", showPlot=T, variables = c("DV.1","DV.2","DV.3") )+ labs(title="with decorrelation = LM") ) altlm <- superbPlot(dta9, WSFactor = "moment(3)", adjustments=list(decorrelation="none"), preprocessfct = "subjectCenteringTransform", postprocessfct = c("biasCorrectionTransform","poolSDTransform"), errorbar = "CI", showPlot=T, variables = c("DV.1","DV.2","DV.3") )+ labs(title="with pre and post processing") plm <- grid.arrange(truelm,altlm,ncol=2) expect_message( truecmvslm <- superbPlot(dta9, WSFactor = "moment(3)", adjustments=list(decorrelation="LM"), errorbar = "CI", showPlot=T, variables = c("DV.1","DV.2","DV.3") )+ labs(title="with decorrelation = LM") ) expect_message( altcmvslm <- superbPlot(dta9, WSFactor = "moment(3)", adjustments=list(decorrelation="CM"), postprocessfct = c("poolSDTransform"), errorbar = "CI", showPlot=T, variables = c("DV.1","DV.2","DV.3") )+ labs(title="with decorrelation = CM and pooling") ) pcmvslm <- grid.arrange(truecmvslm,altcmvslm,ncol=2) expect_equal( "ggplot" %in% class(truecm), TRUE) expect_equal( "ggplot" %in% class(altcm), TRUE) expect_equal( "ggplot" %in% class(truelm), TRUE) expect_equal( "ggplot" %in% class(altlm), TRUE) expect_equal( "ggplot" %in% class(truecmvslm), TRUE) expect_equal( "ggplot" %in% class(altcmvslm), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("Many tests with TMB1964r", { options(superb.feedback = c('none')) library(ggplot2) mee = TMB1964r[TMB1964r$Language == "English"|TMB1964r$Language == "French",] mp <- function(style, ...) { superbPlot(mee, WSFactor = "T(7)", BSFactor = c("Condition","Sex"), variables = c("T1","T2","T3","T4","T5","T6","T7"), adjustments = list(purpose="difference", decorrelation="CM"), plotStyle = style, ... ) } plt1 <- mp("bar", errorbarParams = list(size=0.75, position = position_dodge(.95) ), barParams = list(size=0.5) ) + scale_colour_manual( name = "asdf", labels = c("Context 0", "Context 2", "Context 4", "Context 8"), values = c("blue", "black", "purple", "red")) + scale_fill_manual( name = "asdf", labels = c("Context 0", "Context 2", "Context 4", "Context 8"), values = c("blue", "black", "purple", "red")) + theme_bw(base_size = 16) + labs(x = "Exposure duration (ms)", y = "Mean of correct responses" )+ scale_x_discrete(labels=c("1" = "16.67", "2" = "33.33", "3"="50.00", "4" = "66.67", "5"="83.33", "6"="100.00", "7"="116.67")) plt2 <- mp("line", errorbarParams = list(size=0.75, width = 0.2, position = position_dodge(.5) ), pointParams = list(size=2.5, position = position_dodge(.5)), lineParams = list(size=0.25) ) plt3 <- mp("point", errorbarParams = list(position = position_dodge(.5) ), pointParams = list(size=2.5, position = position_dodge(.5)) ) plt4 <- mp("pointjitter", errorbarParams = list(position = position_dodge(.5) ), pointParams = list(size=3.5, position = position_dodge(.5)), jitterParams = list(size = 0.5) ) plt5 <- mp("pointjitterviolin", errorbarParams = list(position = position_dodge(.5) ), pointParams = list(size=3.5, position = position_dodge(.5)), jitterParams = list(size = 0.5), violinParams = list(alpha =0.7) ) expect_equal( "ggplot" %in% class(plt1), TRUE) expect_equal( "ggplot" %in% class(plt2), TRUE) expect_equal( "ggplot" %in% class(plt3), TRUE) expect_equal( "ggplot" %in% class(plt4), TRUE) expect_equal( "ggplot" %in% class(plt5), TRUE) options(superb.feedback = c('design','warnings','summary')) }) test_that("Heterogeneous variances", { options(superb.feedback = c('none')) dta <- GRD( BSFactors = "dif(3) : grp (2)", WSFactors="day(1,2)", SubjectsPerGroup = 3, Population=list( mean = 100, scores = "rnorm(1, mean = GM, sd = 100 * (grp-1) +0.1)" ) ) options(superb.feedback = c('warnings')) expect_message( superbPlot(dta, BSFactor = c("dif","grp"), WSFactor = "day(2)", variables = c("DV.1","DV.2"), adjustment = list( purpose = "difference") ) ) plt <- superbPlot(dta, BSFactor = c("dif","grp"), WSFactor = "day(2)", variables = c("DV.1","DV.2"), adjustment = list( purpose = "tryon") ) expect_equal( "ggplot" %in% class(plt), TRUE ) options(superb.feedback = c('design','warnings','summary')) }) test_that("Tryon vs. difference", { options(superb.feedback = c('warnings')) dta <-GRD( BSFactors="grp(3)", RenameDV = "score", Population=list( mean = 100, scores = "rnorm(1, mean = GM, sd = 10 * grp)" ), SubjectsPerGroup = 50, Effects = list("grp" = slope(15) ) ) expect_message(plt1 <- superbPlot(dta, BSFactor = "grp", plotStyle="line", variables = "score", errorbarParams = list(color="blue",position = position_nudge(-0.1) ), adjustments = list( purpose = "difference") ) + labs(title="(blue) Difference-adjusted 95% confidence intervals\n(red) Tryon 95% confidence intervals") + coord_cartesian( ylim = c(65,135) ) + theme(panel.background = element_rect(fill = "transparent"), plot.background = element_rect(fill = "transparent", color = "white")) ) plt2 <- superbPlot(dta, BSFactor = c("grp"), plotStyle="line", variables = "score", errorbarParams = list(color="red",position = position_nudge(+0.1) ), adjustments = list( purpose = "tryon") ) + labs(title="(blue) Difference-adjusted 95% confidence intervals\n(red) Tryon 95% confidence intervals") + coord_cartesian( ylim = c(65,135) ) + theme(panel.background = element_rect(fill = "transparent"), plot.background = element_rect(fill = "transparent", color = "white")) plt1g <- ggplotGrob(plt1) plt2g <- ggplotGrob(plt2) plt <- ggplot() + annotation_custom(grob=plt1g) + annotation_custom(grob=plt2g) expect_equal( "ggplot" %in% class(plt), TRUE) options(superb.feedback = c('design','warnings','summary')) })
semana.absoluta <- function(i.semana, i.semana.inicio) { return((i.semana <= 53 - i.semana.inicio) * (i.semana + i.semana.inicio - 1) + (i.semana > 53 - i.semana.inicio) * (i.semana + i.semana.inicio - 53)) }
effecube <- function(paravec,dati,m){ tauno<-dati[,1] freq<-dati[,2] return(-sum(freq*tauno*log(betar(m,paravec[1],paravec[2])))) }
fix_factor_levels = function(data, levels, ...) { UseMethod("fix_factor_levels") } fix_factor_levels.data.table = function(data, levels, ...) { levels = levels[intersect(names(levels), names(data))] iwalk(levels, function(lvls, id, data) { x = data[[id]] if (!identical(levels(x), lvls)) { set(data, j = id, value = factor(x, levels = lvls, ordered = is.ordered(x))) } }, data = data) data[] } fix_factor_levels.Matrix = function(data, levels, ...) { levels = levels[intersect(names(levels), names(data))] if (length(levels)) { stop("Factor handling in Matrix data is not supported") } data }
seriesAccel <- function(x) { diff(x, diff=2L, na.pad=TRUE) > 0 } seriesDecel <- function(x) { diff(x, diff=2L, na.pad=TRUE) < 0 } seriesIncr <- function(x, thresh=0, diff.=1L) { diff(x, diff=diff., na.pad=TRUE) > thresh } seriesDecr <- function(x, thresh=0, diff.=1L) { diff(x, diff=diff., na.pad=TRUE) < thresh } `seriesHi` <- function(x) { UseMethod("seriesHi") } `seriesHi.default` <- function(x) { if(!is.null(dim(x)[2])) { if(dim(x)[2]==1) { return(x[which(max(x)==as.numeric(x))]) } else { return(x[which(max(Hi(x))==as.numeric(Hi(x)))]) } } max(x,na.rm=TRUE) } `seriesHi.timeSeries` <- function(x) { x.Data <- x@Data if(!is.null(dim(x)[2])) { if(dim(x)[2]==1) { return(x[which(max(as.numeric(x.Data))==as.numeric(x.Data))]) } else { return(x[which(max(as.numeric(Hi(x)@Data))==as.numeric(Hi(x)@Data))]) } } } `seriesHi.ts` <- function(x) { if(!is.null(dim(x)[2])) { return(x[which(max(Hi(x),na.rm=TRUE)==Hi(x)),]) } max(x,na.rm=TRUE) } `seriesLo` <- function(x) { UseMethod("seriesLo") } `seriesLo.default` <- function(x) { if(!is.null(dim(x)[2])) { if(dim(x)[2]==1) { return(x[which(min(x)==as.numeric(x))]) } else { return(x[which(min(Lo(x))==as.numeric(Lo(x)))]) } } min(x,na.rm=TRUE) } `seriesLo.timeSeries` <- function(x) { x.Data <- x@Data if(!is.null(dim(x)[2])) { if(dim(x)[2]==1) { return(x[which(min(as.numeric(x.Data))==as.numeric(x.Data))]) } else { return(x[which(min(as.numeric(Lo(x)@Data))==as.numeric(Lo(x)@Data))]) } } } `seriesLo.ts` <- function(x) { if(!is.null(dim(x)[2])) { return(x[which(min(Lo(x),na.rm=TRUE)==Lo(x)),]) } min(x,na.rm=TRUE) } `is.OHLC` <- function (x) { if(all(has.Op(x), has.Hi(x), has.Lo(x), has.Cl(x))) { TRUE } else FALSE } `is.HLC` <- function(x) { all(has.Hi(x),has.Lo(x),has.Cl(x)) } is.OHLCV <- function(x) { all(has.Op(x),has.Hi(x),has.Lo(x),has.Cl(x),has.Vo(x)) } `has.OHLC` <- function(x,which=FALSE) { if(which) { c(has.Op(x,1),has.Hi(x,1),has.Lo(x,1),has.Cl(x,1)) } else { c(has.Op(x),has.Hi(x),has.Lo(x),has.Cl(x)) } } has.OHLCV <- function(x,which=FALSE) { if(which) { c(has.Op(x,1),has.Hi(x,1),has.Lo(x,1),has.Cl(x,1),has.Vo(x,1)) } else { c(has.Op(x),has.Hi(x),has.Lo(x),has.Cl(x),has.Vo(x)) } } `has.HLC` <- function(x,which=FALSE) { if(which) { c(has.Hi(x,1),has.Lo(x,1),has.Cl(x,1)) } else { c(has.Hi(x),has.Lo(x),has.Cl(x)) } } `HLC` <- function(x) { if(is.HLC(x)) return(x[,has.HLC(x,1)]) NULL } `OHLC` <- function(x) { if(is.OHLC(x)) return(x[,has.OHLC(x,1)]) NULL } OHLCV <- function(x) { if(is.OHLCV(x)) return(x[,has.OHLCV(x,1)]) NULL } `Op` <- function(x) { if(has.Op(x)) return(x[,grep('Open',colnames(x),ignore.case=TRUE)]) stop('subscript out of bounds: no column name containing "Open"') } `has.Op` <- function(x,which=FALSE) { colAttr <- attr(x, "Op") if(!is.null(colAttr)) return(if(which) colAttr else TRUE) loc <- grep('Open',colnames(x),ignore.case=TRUE) if(!identical(loc,integer(0))) { return(if(which) loc else TRUE) } else FALSE } `Hi` <- function(x) { if(has.Hi(x)) return(x[,grep('High',colnames(x),ignore.case=TRUE)]) stop('subscript out of bounds: no column name containing "High"') } `has.Hi` <- function(x,which=FALSE) { colAttr <- attr(x, "Hi") if(!is.null(colAttr)) return(if(which) colAttr else TRUE) loc <- grep('High',colnames(x),ignore.case=TRUE) if(!identical(loc,integer(0))) { return(if(which) loc else TRUE) } else FALSE } `Lo` <- function(x) { if(has.Lo(x)) return(x[,grep('Low',colnames(x),ignore.case=TRUE)]) stop('subscript out of bounds: no column name containing "Low"') } `has.Lo` <- function(x,which=FALSE) { colAttr <- attr(x, "Lo") if(!is.null(colAttr)) return(if(which) colAttr else TRUE) loc <- grep('Low',colnames(x),ignore.case=TRUE) if(!identical(loc,integer(0))) { return(if(which) loc else TRUE) } else FALSE } `Cl` <- function(x) { if(has.Cl(x)) return(x[,grep('Close',colnames(x),ignore.case=TRUE)]) stop('subscript out of bounds: no column name containing "Close"') } `has.Cl` <- function(x,which=FALSE) { colAttr <- attr(x, "Cl") if(!is.null(colAttr)) return(if(which) colAttr else TRUE) loc <- grep('Close',colnames(x),ignore.case=TRUE) if(!identical(loc,integer(0))) { return(if(which) loc else TRUE) } else FALSE } `Vo` <- function(x) { if(has.Vo(x)) return(x[,grep('Volume',colnames(x),ignore.case=TRUE)]) stop('subscript out of bounds: no column name containing "Volume"') } `has.Vo` <- function(x,which=FALSE) { colAttr <- attr(x, "Vo") if(!is.null(colAttr)) return(if(which) colAttr else TRUE) loc <- grep('Volume',colnames(x),ignore.case=TRUE) if(!identical(loc,integer(0))) { return(if(which) loc else TRUE) } else FALSE } `Ad` <- function(x) { if(has.Ad(x)) return(x[,grep('Adjusted',colnames(x),ignore.case=TRUE)]) stop('subscript out of bounds: no column name containing "Adjusted"') } `has.Ad` <- function(x,which=FALSE) { colAttr <- attr(x, "Ad") if(!is.null(colAttr)) return(if(which) colAttr else TRUE) loc <- grep('Adjusted',colnames(x),ignore.case=TRUE) if(!identical(loc,integer(0))) { return(if(which) loc else TRUE) } else FALSE } `OpCl` <- function(x) { xx <- Delt(Op(x),Cl(x)) colnames(xx) <- paste("OpCl",deparse(substitute(x)),sep='.') xx } `OpOp` <- function(x) { xx <- Delt(Op(x)) colnames(xx) <- paste("OpOp",deparse(substitute(x)),sep='.') xx } `ClCl` <- function(x) { xx <- Delt(Cl(x)) colnames(xx) <- paste("ClCl",deparse(substitute(x)),sep='.') xx } `OpLo` <- function(x) { xx <- Delt(Op(x),Lo(x)) colnames(xx) <- paste("OpLo",deparse(substitute(x)),sep='.') xx } `OpHi` <- function(x) { xx <- Delt(Op(x),Hi(x)) colnames(xx) <- paste("OpHi",deparse(substitute(x)),sep='.') xx } `LoHi` <- function(x) { xx <- Delt(Lo(x),Hi(x)) colnames(xx) <- paste("LoHi",deparse(substitute(x)),sep='.') xx } `LoCl` <- function(x) { xx <- Delt(Lo(x),Cl(x)) colnames(xx) <- paste("LoCl",deparse(substitute(x)),sep='.') xx } `HiCl` <- function(x) { xx <- Delt(Hi(x),Cl(x)) colnames(xx) <- paste("HiCl",deparse(substitute(x)),sep='.') xx } `Next` <- function(x,k=1) { UseMethod("Next") } `Next.data.frame` <- function(x,k=1) { if(k<0||k!=as.integer(k)||length(k)>1) stop("k must be a non-negative integer") if(k==0) return(x); new.x <- as.data.frame(c(x[-(0:k),],rep(NA,k))) rownames(new.x) <- rownames(x) colnames(new.x) <- "Next" return(new.x) } `Next.quantmod.OHLC` <- function(x,k=1) { if(k<0||k!=as.integer(k)||length(k)>1) stop("k must be a non-negative integer") if(k==0) return(x); new.x <- as.matrix(c(as.numeric(x[-(0:k),]),rep(NA,k))) x.index <- index(x) new.x <- zoo(new.x,x.index) colnames(new.x) <- "Next" return(new.x) } `Next.zoo` <- Next.quantmod.OHLC `Next.numeric` <- function(x,k=1) { if(k<0||k!=as.integer(k)||length(k)>1) stop("k must be a non-negative integer") if(k==0) return(x); new.x <- as.matrix(c(as.numeric(x[-(0:k)]),rep(NA,k))) colnames(new.x) <- "Next" return(new.x) } `Lag` <- function(x,k=1) { UseMethod("Lag") } `Lag.data.frame`<- function(x,k=1) { new.x <- sapply(as.list(k), function(k.e) { if(k.e<0||k.e!=as.integer(k.e)) stop("k must be a non-negative integer") if(k.e==0) return(x); c(rep(NA,k.e),x[-((nrow(x)-k.e+1):nrow(x)),]) } ) rownames(new.x) <- rownames(x) colnames(new.x) <- paste("Lag.",k,sep="") return(new.x) } `Lag.quantmod.OHLC` <- function(x,k=1) { new.x <- sapply(as.list(k), function(k.e) { if(k.e<0||k.e!=as.integer(k.e)) stop("k must be a non-negative integer") if(k.e==0) return(coredata(x)); c(rep(NA,k.e),x[-((length(x)-k.e+1):length(x))]) } ) x.index <- index(x) if(inherits(x,'xts')) { new.x <- xts(new.x,x.index) } else { new.x <- zoo(new.x,x.index) } dim(new.x) <- c(NROW(new.x),length(k)) colnames(new.x) <- paste("Lag.",k,sep="") return(new.x) } `Lag.zoo` <- `Lag.xts` <- Lag.quantmod.OHLC `Lag.numeric` <- function(x,k=1) { new.x <- sapply(as.list(k), function(k.e) { if(k.e<0||k.e!=as.integer(k.e)) stop("k must be a non-negative integer") if(k.e==0) return(x); c(rep(NA,k.e),x[-((length(x)-k.e+1):length(x))]) } ) dim(new.x) <- c(NROW(new.x),length(k)) colnames(new.x) <- paste("Lag.",k,sep="") return(new.x) } `Lag.default`<- function(x,k=1) { if(is.character(x)) stop("x must be a time series or numeric vector") lag(x,k) } Delt_ <- function(x1,x2=NULL,k=0,type=c('arithmetic','log')) { x1 <- try.xts(x1, error=FALSE) type <- match.arg(type[1],c('log','arithmetic')) if(length(x2)!=length(x1) && !is.null(x2)) stop('x1 and x2 must be of same length'); if(is.null(x2)){ x2 <- x1 if(length(k) < 2) { k <- max(1,k) } } dim(x2) <- NULL if(type=='log') { xx <- lapply(k, function(K.) { log(unclass(x2)/lag(x1,K.)) }) } else { xx <- lapply(k, function(K.) { unclass(x2)/lag(x1,K.)-1 }) } xx <- do.call("cbind", xx) colnames(xx) <- paste("Delt",k,type,sep=".") reclass(xx,x1) } `Delt` <- function(x1,x2=NULL,k=0,type=c('arithmetic','log')) { x1 <- try.xts(x1, error=FALSE) type <- match.arg(type[1],c('log','arithmetic')) if(length(x2)!=length(x1) && !is.null(x2)) stop('x1 and x2 must be of same length'); if(is.null(x2)){ x2 <- x1 if(length(k) < 2) { k <- max(1,k) } } dim(x2) <- NULL if(type=='log') { xx <- lapply(k, function(K.) { log(unclass(x2)/Lag(x1,K.)) }) } else { xx <- lapply(k, function(K.) { unclass(x2)/Lag(x1,K.)-1 }) } xx <- do.call("cbind", xx) colnames(xx) <- paste("Delt",k,type,sep=".") reclass(xx,x1) } .Delt <- function(x1, x2 = NULL, k = 0, type=c("arithmetic","log")) { x1 <- try.xts(x1, error=FALSE) type <- match.arg(type[1], c("arithmetic","log")) if(length(x2) != length(x1) && !is.null(x2)) stop("x1 and x2 must be of the same length") if(is.null(x2)) { x2 <- x1 if(length(k) < 2) { k <- max(1,k) } } if(type=="log") { xx <- lapply(k, function(K) log(x2/lag(x1, K))) } else { xx <- lapply(k, function(K) (x2 - lag(x1,K)) / lag(x1,K)) } xx <- do.call(cbind,xx) colnames(xx) <- paste("Delt",k,type,sep=".") reclass(xx,x1) }
get_contrasts <- function(model, variable, newdata = insight::get_data(model), type = "response", step_size = 1, normalize_dydx = FALSE, numDeriv_method = NULL, ...) { scall <- substitute(newdata) if (is.call(scall) && as.character(scall)[1] %in% c("datagrid", "typical", "counterfactual")) { lcall <- as.list(scall) if (!any(c("model", "data") %in% names(lcall))) { lcall <- c(lcall, list("model" = model)) newdata <- eval.parent(as.call(lcall)) } } newdata <- sanity_newdata(model, newdata) if (!"rowid" %in% colnames(newdata)) { newdata$rowid <- seq_len(nrow(newdata)) } if (is.factor(newdata[[variable]]) || isTRUE(attr(newdata[[variable]], "factor"))) { get_contrasts_fun <- get_contrasts_factor } else if (is.logical(newdata[[variable]])) { get_contrasts_fun <- get_contrasts_logical } else if (is.character(newdata[[variable]])) { get_contrasts_fun <- get_contrasts_character } else if (is.numeric(newdata[[variable]])) { get_contrasts_fun <- get_contrasts_numeric } else { stop(sprintf("Cannot compute contrasts for variable %s of class %s", variable, class(newdata[[variable]]))) } out <- get_contrasts_fun(model = model, variable = variable, newdata = newdata, type = type, step_size = step_size, normalize_dydx = normalize_dydx, ...) if (!"group" %in% colnames(out)) { out$group <- "main_marginaleffect" } return(out) } get_contrasts_logical <- function(model, newdata, variable, type = "response", ...) { baseline <- newdata baseline[[variable]] <- FALSE pred_false <- get_predict(model, newdata = baseline, type = type, ...) baseline[[variable]] <- TRUE pred_true <- get_predict(model = model, newdata = baseline, type = type, ...) baseline$estimate <- pred_true$predicted - pred_false$predicted baseline$term <- variable baseline$contrast <- "TRUE - FALSE" pred <- baseline[, c("rowid", "term", "contrast", "estimate")] row.names(pred) <- NULL if ("posterior_draws" %in% names(attributes(pred_false))) { attr(pred, "posterior_draws") <- attr(pred_true, "posterior_draws") - attr(pred_false, "posterior_draws") } return(pred) } get_contrasts_factor <- function(model, newdata, variable, type = "response", ...) { baseline <- newdata pred_list <- list() if (is.factor(baseline[[variable]])) { levs <- levels(baseline[[variable]]) } else { original_data <- insight::get_data(model) if (is.factor(original_data[[variable]])) { levs <- levels(original_data[[variable]]) } else { levs <- sort(unique(original_data[[variable]])) } } baseline[[variable]] <- factor(levs[1], levels = levs) baseline_prediction <- get_predict(model, newdata = baseline, type = type, ...) draws_list <- list() for (i in 2:length(levs)) { baseline[[variable]] <- factor(levs[i], levels = levs) incremented_prediction <- get_predict(model = model, newdata = baseline, type = type, ...) incremented_prediction$term <- variable incremented_prediction$contrast <- sprintf("%s - %s", levs[i], levs[1]) incremented_prediction$estimate <- incremented_prediction$predicted - baseline_prediction$predicted incremented_prediction$predicted <- NULL pred_list[[i]] <- incremented_prediction if ("posterior_draws" %in% names(attributes(baseline_prediction))) { draws_list[[i]] <- attr(incremented_prediction, "posterior_draws") - attr(baseline_prediction, "posterior_draws") } } pred <- do.call("rbind", pred_list) draws <- do.call("rbind", draws_list) cols <- intersect(colnames(pred), c("rowid", "group", "term", "contrast", "estimate")) row.names(pred) <- NULL attr(pred, "posterior_draws") <- draws return(pred) } get_contrasts_character <- function(model, newdata, variable, type = "response", ...) { tmp <- insight::get_data(model) levs <- sort(unique(tmp[[variable]])) baseline <- newdata pred_list <- list() baseline_prediction <- get_predict(model, newdata = baseline, type = type, ...) draws_list <- list() for (i in 2:length(levs)) { pred <- baseline pred[[variable]] <- levs[i] incremented_prediction <- get_predict(model = model, newdata = pred, type = type, ...) contr <- as.vector(incremented_prediction$predicted) - as.vector(baseline_prediction$predicted) if ("posterior_draws" %in% names(attributes(baseline_prediction))) { draws_list[[i]] <- attr(incremented_prediction, "posterior_draws") - attr(baseline_prediction, "posterior_draws") } pred$term <- variable pred$contrast <- sprintf("%s - %s", levs[i], levs[1]) pred$estimate <- contr pred_list[[i - 1]] <- pred[, c("rowid", "term", "contrast", "estimate")] } pred <- do.call("rbind", pred_list) draws <- do.call("rbind", draws_list) pred <- pred[, c("rowid", "term", "contrast", "estimate")] row.names(pred) <- NULL attr(pred, "posterior_draws") <- draws return(pred) } get_contrasts_numeric <- function(model, newdata, variable, type = "response", step_size = 1, normalize_dydx = FALSE, return_data = FALSE, ...) { baseline <- newdata pred_baseline <- get_predict(model, newdata = baseline, type = type, ...) baseline[[variable]] <- baseline[[variable]] + step_size pred_increment <- get_predict(model, newdata = baseline, type = type, ...) contr <- as.vector(pred_increment$predicted) - as.vector(pred_baseline$predicted) pred_increment$term <- variable if (isTRUE(normalize_dydx)) { contr <- contr / step_size pred_increment$contrast <- "dydx" pred_increment$estimate <- contr } else { pred_increment$contrast <- sprintf("+%s", step_size) pred_increment$estimate <- contr } pred_increment$predicted <- NULL out <- pred_increment if (!isTRUE(return_data)) { cols <- intersect(colnames(out), c("rowid", "term", "group", "variable", "term", "contrast", "estimate", "conf.low", "conf.high")) out <- out[, cols] } else { out <- merge(out, newdata, all.x = TRUE) } if ("posterior_draws" %in% names(attributes(pred_increment))) { draws <- attr(pred_increment, "posterior_draws") - attr(pred_baseline, "posterior_draws") if (isTRUE(normalize_dydx)) { attr(out, "posterior_draws") <- draws / step_size } else { attr(out, "posterior_draws") <- draws } } return(out) }
MCEstimator <- function(x, ParamFamily, criterion, crit.name, startPar = NULL, Infos, trafo = NULL, penalty = 1e20, validity.check = TRUE, asvar.fct, na.rm = TRUE, ..., .withEvalAsVar = TRUE, nmsffx = "", .with.checkEstClassForParamFamily = TRUE){ es.call <- match.call() dots <- match.call(expand.dots = FALSE)$"..." completecases <- complete.cases(x) if(na.rm) x <- na.omit(x) if(!is.numeric(x)) stop(gettext("'x' has to be a numeric vector")) if(!is(ParamFamily, "ParamFamily")) stop(gettext("'ParamFamily' has to be of class 'ParamFamily'")) if(!is.function(criterion)) stop(gettext("'criterion' has to be a function")) argList <- c(list(x = x, PFam = ParamFamily, criterion = criterion, startPar = startPar, penalty = penalty)) if(missing(validity.check)) validity.check <- TRUE argList$validity.check <- validity.check if(missing(Infos)) Infos <- NULL argList <- c(argList, Infos = Infos) argList <- c(argList, check.validity = validity.check ) if(missing(crit.name)) crit.name <- "" argList <- c(argList, crit.name = crit.name) if(!is.null(dots)) argList <- c(argList, dots) res0 <- do.call(mceCalc, argList) asv <- if("FisherInfo" %in% slotNames(ParamFamily)){ function(ParamFamily, param) distr::solve(FisherInfo(ParamFamily, param = param)) }else NULL argList <- c(list(res0, PFam = ParamFamily, trafo = trafo, res.name = paste("Minimum", crit.name, "estimate", sep=" ", collapse=""), call = quote(es.call), .withEvalAsVar=.withEvalAsVar, check.validity = validity.check)) if(!is.null(asv)) argList <- c(argList, asvar.fct = asv) if(!is.null(dots)) argList <- c(argList, dots) argList <- c(argList, x = x) if(any(nmsffx!="")) argList <- c(argList, nmsffx = nmsffx) res <- do.call(.process.meCalcRes, argList) res@completecases <- completecases if(.with.checkEstClassForParamFamily) res <- .checkEstClassForParamFamily(ParamFamily,res) return(res) }
tendril_cx <- function(data, Treatments) { data <- data[order(data$StartDay, decreasing = FALSE),] StartDay <- NULL old.day <- NULL mod <- NULL angsum <- NULL data$old.day <- c(0, data$StartDay[1:(length(data$StartDay)-1)]) data <- transform(data, mod = StartDay - old.day, dir = ifelse( data$Treat == Treatments[1], -1 * data$rot.factor, 1 * data$rot.factor ) ) data <- transform(data, k = as.numeric(mod != 0)) temp <- stats::aggregate(dir ~ StartDay, data = data, sum) data <- merge(data, temp, by = "StartDay") data$angsum <- cumsum(data$dir.y * data$k) data <- transform(data, cx = complex(modulus = mod, argument = (pi/2 + angsum * pi/180))) data$cx <- cumsum(data$cx) return(data) }
`ensemble.bioclim.object` <- function( x=NULL, p=NULL, fraction=0.9, quantiles=TRUE, species.name="Species001", factors=NULL ) { if(is.null(x) == T) {stop("value for parameter x is missing (data.frame or RasterStack object)")} if(inherits(x, "RasterStack")==F && inherits(x, "data.frame")==F) {stop("x should be a data.frame or RasterStack object")} if(fraction < 0 || fraction > 1) {stop("fraction should be in range 0-1")} factors <- as.character(factors) cutoff <- qnorm(0.5+fraction/2) probs <- c(0.5-fraction/2, 0.5+fraction/2) if(inherits(x, "RasterStack")==T && is.null(p)==F) { clim.values <- data.frame(raster::extract(x, y=p)) if (length(names(x)) == 1) { xdouble <- raster::stack(x, x) clim.values <- raster::extract(x=xdouble, y=p) clim.values <- data.frame(clim.values) clim.values <- clim.values[, 1, drop=F] } names(clim.values) <- names(x) x <- clim.values } if(inherits(x, "data.frame") == F) { vars <- names(x) if (length(factors) > 0) {for (i in 1:length(factors)) {vars <- vars[which(names(x) != factors[i])]}} nv <- length(vars) lower.limitsq <- upper.limitsq <- lower.limits <- upper.limits <- minima <- maxima <- clim.sd <- clim.median <- clim.mean <- numeric(length=nv) names(lower.limitsq) <- names(upper.limitsq) <- names(lower.limits) <- names(upper.limits) <- names(minima) <- names(maxima) <- names(clim.sd) <- names(clim.median) <- names(clim.mean) <- vars for (i in 1:nv) { vari <- vars[which(vars == names(x)[i])] raster.focus <- x[[which(vars == names(x)[i])]] raster::setMinMax(raster.focus) meanV <- raster::cellStats(raster.focus, 'mean') sdV <- raster::cellStats(raster.focus, 'sd') minV <- raster::minValue(raster.focus) maxV <- raster::maxValue(raster.focus) lowerV <- as.numeric(raster::quantile(raster.focus, probs=probs[1], na.rm=T)) upperV <- as.numeric(raster::quantile(raster.focus, probs=probs[2], na.rm=T)) medianV <- as.numeric(raster::quantile(raster.focus, probs=0.5, na.rm=T)) lower.limitsq[which(names(lower.limitsq) == vari)] <- lowerV upper.limitsq[which(names(upper.limitsq) == vari)] <- upperV clim.mean[which(names(clim.mean) == vari)] <- meanV clim.sd[which(names(clim.sd) == vari)] <- sdV minima[which(names(minima) == vari)] <- minV maxima[which(names(maxima) == vari)] <- maxV clim.median[which(names(clim.median) == vari)] <- medianV } }else{ clim.values <- x for (i in 1:length(names(clim.values))) {if (is.factor(clim.values[, i]) == T) {factors <- c(factors, names(clim.values)[i])} } factors <- unique(factors) if (length(factors) > 0) {for (i in 1:length(factors)) {clim.values <- clim.values[, which(names(clim.values) != factors[i]), drop=F]}} clim.mean <- apply(clim.values, 2, "mean", na.rm=T) clim.sd <- apply(clim.values, 2, "sd", na.rm=T) lower.limitsq <- upper.limitsq <- lower.limits <- upper.limits <- minima <- maxima <- clim.median <- numeric(length=length(clim.mean)) names(lower.limitsq) <- names(upper.limitsq) <- names(lower.limits) <- names(upper.limits) <- names(minima) <- names(maxima) <- names(clim.median) <- names(clim.values) minima <- apply(clim.values, 2, "min", na.rm=T) maxima <- apply(clim.values, 2, "max", na.rm=T) lower.limitsq <- apply(clim.values, 2, "quantile", probs[1], na.rm=T) upper.limitsq <- apply(clim.values, 2, "quantile", probs[2], na.rm=T) clim.median <- apply(clim.values, 2, "quantile", 0.5, na.rm=T) } if (quantiles == F){ lower.limits <- clim.mean - cutoff*clim.sd upper.limits <- clim.mean + cutoff*clim.sd }else{ lower.limits <- lower.limitsq upper.limits <- upper.limitsq } for (i in 1:length(lower.limits)) { if (lower.limits[i] < minima[i]) { cat(paste("\n", "WARNING: lower limit of ", lower.limits[i], " for ", names(lower.limits)[i], " was smaller than minimum of ", minima[i], sep = "")) cat(paste("\n", "lower limit therefore replaced by quantile value of ", lower.limitsq[i], "\n", sep = "")) lower.limits[i] <- lower.limitsq[i] } if (upper.limits[i] > maxima[i]) { cat(paste("\n", "WARNING: upper limit of ", upper.limits[i], " for ", names(upper.limits)[i], " was larger than maximum of ", maxima[i], sep = "")) cat(paste("\n", "upper limit therefore replaced by quantile value of ", upper.limitsq[i], "\n", sep = "")) upper.limits[i] <- upper.limitsq[i] } } return(list(lower.limits=lower.limits, upper.limits=upper.limits, minima=minima, maxima=maxima, means=clim.mean, medians=clim.median, sds=clim.sd, cutoff=cutoff, fraction=fraction, species.name=species.name)) } `ensemble.bioclim` <- function( x=NULL, bioclim.object=NULL, RASTER.object.name=bioclim.object$species.name, RASTER.stack.name = x@title, RASTER.format="raster", KML.out=TRUE, KML.blur=10, KML.maxpixels=100000, CATCH.OFF=FALSE ) { .BiodiversityR <- new.env() if(is.null(x) == T) {stop("value for parameter x is missing (RasterStack object)")} if(inherits(x, "RasterStack") == F) {stop("x is not a RasterStack object")} if (is.null(bioclim.object) == T) {stop("value for parameter bioclim.object is missing (hint: use the ensemble.bioclim.object function)")} if (KML.out==T && raster::isLonLat(x)==F) { cat(paste("\n", "NOTE: not possible to generate KML files as Coordinate Reference System (CRS) of stack ", x@title , " is not longitude and latitude", "\n", sep = "")) KML.out <- FALSE } predict.bioclim <- function(object=bioclim.object, newdata=newdata) { lower.limits <- object$lower.limits upper.limits <- object$upper.limits minima <- object$minima maxima <- object$maxima newdata <- newdata[, which(names(newdata) %in% names(lower.limits)), drop=F] result <- as.numeric(rep(NA, nrow(newdata))) varnames <- names(newdata) nvars <- ncol(newdata) for (i in 1:nrow(newdata)) { datai <- newdata[i,,drop=F] resulti <- 1 j <- 0 while (resulti > 0 && j <= (nvars-1)) { j <- j+1 focal.var <- varnames[j] if (resulti == 1) { lowerj <- lower.limits[which(names(lower.limits) == focal.var)] if (datai[, j] < lowerj) {resulti <- 0.5} upperj <- upper.limits[which(names(upper.limits) == focal.var)] if (datai[, j] > upperj) {resulti <- 0.5} } minj <- minima[which(names(minima) == focal.var)] if (datai[, j] < minj) {resulti <- 0} maxj <- maxima[which(names(maxima) == focal.var)] if (datai[, j] > maxj) {resulti <- 0} } result[i] <- resulti } p <- as.numeric(result) return(p) } dir.create("ensembles", showWarnings = F) if (KML.out == T) {dir.create("kml", showWarnings = F)} if(length(x@title) == 0) {x@title <- "stack1"} stack.title <- RASTER.stack.name rasterfull <- paste("ensembles//", RASTER.object.name, "_", stack.title , "_BIOCLIM_orig", sep="") kmlfull <- paste("kml//", RASTER.object.name, "_", stack.title , "_BIOCLIM_orig", sep="") if (CATCH.OFF == F) { tryCatch(bioclim.raster <- raster::predict(object=x, model=bioclim.object, fun=predict.bioclim, na.rm=TRUE, filename=rasterfull, progress='text', overwrite=TRUE, format=RASTER.format), error= function(err) {print(paste("prediction of bioclim failed"))}, silent=F) }else{ bioclim.raster <- raster::predict(object=x, model=bioclim.object, fun=predict.bioclim, na.rm=TRUE, filename=rasterfull, progress='text', overwrite=TRUE, format=RASTER.format) } raster::setMinMax(bioclim.raster) print(bioclim.raster) raster::writeRaster(bioclim.raster, filename="working.grd", overwrite=T) working.raster <- raster::raster("working.grd") names(working.raster) <- paste(RASTER.object.name, "_", stack.title , "_BIOCLIM_orig", sep="") raster::writeRaster(working.raster, filename=rasterfull, progress='text', overwrite=TRUE, format=RASTER.format) if (KML.out == T) { raster::KML(working.raster, filename=kmlfull, col = c("grey", "blue", "green"), colNA = 0, blur=KML.blur, maxpixels=KML.maxpixels, overwrite=T, breaks = c(-0.1, 0, 0.5, 1.0)) } cat(paste("\n", "bioclim raster provided in folder: ", getwd(), "//ensembles", "\n", sep="")) return(bioclim.raster) }
getImplementedConstraints <- function() { list( "nonneg" = list( name = "nonneg", method = constraintNonNegativity, params = list(), params.info = list(), info = "Non-negativity (sets negative values to zero)" ), "unimod" = list( name = "unimod", method = constraintUnimod, params = list(tol = 0), params.info = list(tol = "tolerance (between 0 and 1)"), info = "Unimodality (forces contribution or spectral profile to have a single maximum)" ), "closure" = list( name = "closure", method = constraintClosure, params = list(sum = 1), params.info = list(sum = "value, the data rows should sum up to"), info = "Closure (forces contributions or spectral profiles sum up to constant value)" ), "norm" = list( name = "norm", method = constraintNorm, params = list(type = "length"), params.info = list(type = "type of normalization: 'length', 'area' or 'sum'"), info = "Normalization (normalize spectra or contributions)" ), "angle" = list( name = "angle", method = constraintAngle, params = list(weight = 0.05), params.info = list(weight = "how much of mean will be added: between 0 and 1"), info = "Angle (increases contrast among resolved spectra or contributions)" ) ) } constraints.list <- function() { constraints <- getImplementedConstraints() cat("\nList of constraints available for mcrals():\n") lapply(constraints, function(c) { cat("\n\n") fprintf(" %s\n", c$info) cat(" ---------------\n") fprintf(" name: '%s'\n", c$name) if (length(c$params.info) == 0) { cat(" no parameters required\n") } else { cat(" parameters:\n") for (i in seq_along(c$params.info)) { fprintf(" '%s': %s\n", names(c$params.info)[i], c$params.info[[i]]) } } }) invisible() } constraintClosure <- function(x, d, sum = 1) { stopifnot("Parameter 'sum' should be positive number." = sum > 0 ) rsums <- rowSums(x) rsums[rsums == 0] <- 1 s <- diag(sum / rsums, nrow(x), nrow(x)) return(s %*% x) } constraintUnimod <- function(x, d, tol = 0) { f <- function(y, max, indseq, step) { for (i in indseq) { if (y[i] <= max) { max <- y[i] } else if (y[i] > max * (1 + tol)) { y[i] <- y[i + step] max <- y[i] } } return(y) } peak.ind <- apply(x, 2, which.max) nvar <- nrow(x) for (a in seq_len(ncol(x))) { left_part <- (peak.ind[a] - 1):1 x[, a] <- f(x[, a], max = x[peak.ind[a], a], indseq = left_part, step = +1) right_part <- (peak.ind[a] + 1):nvar x[, a] <- f(x[, a], max = x[peak.ind[a], a], indseq = right_part, step = -1) } return(x) } constraintNonNegativity <- function(x, d) { x[x < 0] <- 0 return(x) } constraintNorm <- function(x, d, type = "length") { types <- c("area", "length", "sum") stopifnot("Parameter 'type' should be either 'area', 'length' or 'sum'." = type %in% types ) return(t(prep.norm(t(x), type))) } constraintAngle <- function(x, d, weight = 0.05) { stopifnot("Parameter 'weight' should be between 0 and 1." = weight >= 0 && weight <= 1 ) m <- apply(d, ifelse(nrow(x) == ncol(d), 2, 1), mean) m <- m / sqrt(sum(m^2)) x <- t(prep.norm(t(x), "length")) return((1 - weight) * x + matrix(m * weight, nrow(x), ncol(x))) } constraint <- function(name, params = NULL, method = NULL) { if (is.null(method)) { item <- getImplementedConstraints()[[name]] stopifnot("Either name of constraint is wrong or you need to provide a method if the constraint is user defined." = !is.null(item)) if (is.null(params)) params <- item$params if (length(params) > 0 && !(names(params) %in% names(item$params))) { stop("Provided constraint parameters have wrong name.") } method <- item$method } else { res <- tryCatch( do.call(method, c(matrix(runif(25, 5, 10)), params)), error = function(m) stop("The method you provided raises an error: \n", m), warning = function(m) stop("The method you provided raises a warning: \n", m) ) stopifnot("The method you provided does not return matrix with correct dimension." = dim(res) == c(5, 10)) } obj <- list( name = name, method = method, params = params ) class(obj) <- c("constraint") return(obj) } employ.constraint <- function(obj, x, d, ...) { return(do.call(obj$method, c(list(x = x, d = d), obj$params))) }
spCentroid <- function(x) { if (class(x)[1] %in% c('SpatialPolygons', 'SpatialPolygonsDataFrame')) { centroids <- do.call(rbind, lapply(1:length(x), function(j) { mc <- apply(x[j,]@polygons[[1]]@Polygons[[1]]@coords, 2, mean) return(data.frame(x=mc[1], y=mc[2], id=j))})) centroids <- SpatialPointsDataFrame(centroids[,1:2], centroids, proj4string=crs(x)) return(centroids) } else { stop('"x" is not of a valid class') } }
library(datapackage.r) library(testthat) testthat::context("infer") test_that('it infers local data package', { descriptor <- infer(pattern = 'csv', basePath = 'inst/extdata/dp1') expect_equal(descriptor$profile, 'tabular-data-package') expect_equal(length(descriptor$resources), 1) expect_equal(descriptor$resources[[1]]$path, 'data.csv') expect_equal(descriptor$resources[[1]]$format, 'csv') expect_equal(descriptor$resources[[1]]$encoding, 'utf-8') expect_equal(descriptor$resources[[1]]$profile, 'tabular-data-resource') expect_equal(descriptor$resources[[1]]$schema$fields[[1]]$name, 'name') expect_equal(descriptor$resources[[1]]$schema$fields[[2]]$name, 'size') })
distinctiveness_alt = function(pres_matrix, dist_matrix, given_range) { full_matrix_checks(pres_matrix, dist_matrix) if (!is.numeric(given_range) | is.na(given_range)) { stop("'given_range' argument should be non-null and numeric") } common = species_in_common(pres_matrix, dist_matrix) pres_matrix = pres_matrix[, common, drop = FALSE] dist_matrix = dist_matrix[common, common] if (!is_relative(pres_matrix)) { warning("Provided object may not contain relative abundances nor ", "presence-absence\n", "Have a look at the make_relative() function if it is the case") } corr_matrix = dist_matrix corr_matrix[dist_matrix >= given_range] = 1 corr_matrix[dist_matrix < given_range] = 0 diag(corr_matrix) = 0 index_matrix = pres_matrix %*% (dist_matrix / given_range + (corr_matrix * (1 - dist_matrix / given_range))) if (requireNamespace("Matrix", quietly = TRUE) & is(pres_matrix, "sparseMatrix")) { index_matrix[Matrix::which(pres_matrix == 0)] = NA total_sites = Matrix::rowSums(pres_matrix) } else { index_matrix[which(pres_matrix == 0)] = NA total_sites = rowSums(pres_matrix) } denom_matrix = apply(pres_matrix, 2, function(x) total_sites - x) index_matrix = index_matrix / denom_matrix index_matrix[denom_matrix == 0 & pres_matrix != 0] = 1 dimnames(index_matrix) = dimnames(pres_matrix) return(index_matrix) }
K1select = c(1:30, 401:430) K1 = as.matrix(kdata.1[K1select,1:2]) km2 = kmeans(K1, 2) library(cluster) kp2 = pam(K1, 2) selfmade = list(cluster = setNames(rep(c(1,2), each=30), rownames(K1))) test_that("should give error on non-kmeans data", { expect_error(ksharp(K1), "must have component") expect_error(ksharp(1:10), "must have component") }) test_that("should give error when data has no item names", { dd = K1 rownames(dd) = NULL expect_error(ksharp(km2, data=dd), "names") }) test_that("should give error when running first time without data", { expect_error(ksharp(km2), "null") }) test_that("should give error when running on wrong data", { small = K1[1:4,] expect_error(ksharp(km2, data=small), "rownames") }) test_that("should give error when running on wrong data", { temp = km2 names(temp$cluster) = NULL expect_error(ksharp(temp, data=K1), "names") }) test_that("should give error when threshold not in [0,1]", { expect_error(ksharp(km2, data=K1, threshold=-0.1), "threshold") expect_error(ksharp(km2, data=K1, threshold=1.5), "threshold") expect_error(ksharp(km2, data=K1, threshold=NULL), "threshold") expect_error(ksharp(km2, data=K1, threshold=NA), "threshold") }) test_that("should accept a numeric data frame", { i4 = iris[1:100, 1:4] rownames(i4) = paste0("I", 1:100) ik = kmeans(i4, 2) iks = ksharp(ik, data=i4) expect_is(iks, "ksharp") expect_is(iks, "kmeans") }) test_that("should change class and add fields", { sharp2 = ksharp(km2, data=K1) expect_is(sharp2, "ksharp") expect_is(sharp2, "kmeans") }) test_that("should add medinfo values based on distance to centers", { sharp2 = ksharp(km2, data=K1) expect_false("medinfo" %in% names(km2)) expect_true("medinfo" %in% names(sharp2)) expect_equal(length(sharp2$medinfo), 1) expect_equal(nrow(sharp2$medinfo$widths), nrow(K1)) }) test_that("change cluster values", { sharp2 = ksharp(km2, threshold=0.4, data=K1) expect_equal(sort(unique(km2$cluster)), c(1,2)) expect_equal(sort(unique(sharp2$cluster)), c(0,1,2)) }) test_that("can reset threshold based on ksharp objects", { sharp2a = ksharp(km2, threshold=0, data=K1) expect_equal(sort(unique(km2$cluster)), c(1,2)) expect_equal(sort(unique(sharp2a$cluster)), c(1,2)) sharp2b = ksharp(sharp2a, threshold=0.5) expect_equal(sort(unique(sharp2b$cluster)), c(0,1,2)) sharp2c = ksharp(sharp2b, threshold=0) expect_equal(sort(unique(sharp2c$cluster)), c(1,2)) }) test_that("recompute silhouettes if needed", { sharp2 = ksharp(km2, threshold=0.3, data=K1, method="sil") silB = sharp2$silinfo rownames(silB$widths) = NULL km2B = km2 km2B$silinfo = silB sharp2B = ksharp(km2B, threshold=0.3, data=K1, method="sil") expect_equal(sharp2$silinfo$widths, sharp2B$silinfo$widths) }) test_that("change clustering, method=silhouette", { sharp2 = ksharp(km2, threshold=0.3, data=K1, method="silhouette") expect_equal(sort(unique(km2$cluster)), c(1,2)) expect_equal(sort(unique(sharp2$cluster)), c(0,1,2)) numzeros = as.integer(table(sharp2$cluster)["0"]) expect_equal(numzeros, 0.3*nrow(K1)) }) test_that("change clustering, method=medoid", { sharp2 = ksharp(km2, threshold=0.3, data=K1, method="medoid") expect_equal(sort(unique(km2$cluster)), c(1,2)) expect_equal(sort(unique(sharp2$cluster)), c(0,1,2)) numzeros = as.integer(table(sharp2$cluster)["0"]) expect_equal(numzeros, 0.3*nrow(K1)) }) test_that("change clustering, method=neighbor", { sharp2 = ksharp(km2, threshold=0.3, data=K1, method="neighbor") expect_equal(sort(unique(km2$cluster)), c(1,2)) expect_equal(sort(unique(sharp2$cluster)), c(0,1,2)) numzeros = as.integer(table(sharp2$cluster)["0"]) expect_equal(numzeros, 0.3*nrow(K1)) }) test_that("absolute value thresholding", { sharp2rel = ksharp(kp2, threshold=0.3, data=K1, method="neighbor") sharp2abs = ksharp(kp2, threshold=0.3, data=K1, method="silhouette", threshold.abs=0.6) noise.rel = sum(sharp2rel$cluster==0) noise.abs = sum(sharp2abs$cluster==0) expect_gt(noise.abs, noise.rel) }) test_that("absolute value thresholding ignores relative threshold", { abs1 = ksharp(kp2, threshold=0.1, data=K1, method="neighbor", threshold.abs=0.4) abs2 = ksharp(kp2, threshold=0.5, data=K1, method="neighbor", threshold.abs=0.4) abs3 = ksharp(kp2, threshold=0.9, data=K1, method="neighbor", threshold.abs=0.4) expect_equal(abs1$cluster, abs2$cluster) expect_equal(abs1$cluster, abs3$cluster) }) test_that("change pam cluster values", { sharp2 = ksharp(kp2, threshold=0.4, data=K1) expect_equal(sort(unique(kp2$cluster)), c(1,2)) expect_equal(sort(unique(sharp2$cluster)), c(0,1,2)) }) test_that("sharpening on pam input requires no data", { sharp2 = ksharp(kp2, threshold=0.4) expect_equal(sort(unique(kp2$cluster)), c(1,2)) expect_equal(sort(unique(sharp2$cluster)), c(0,1,2)) }) test_that("change self-made cluster values", { expect_error(ksharp(selfmade, threshold=0.4)) sharp2 = ksharp(selfmade, threshold=0.4, data=K1) expect_equal(sort(unique(selfmade$cluster)), c(1,2)) expect_equal(sort(unique(sharp2$cluster)), c(0,1,2)) }) test_that("change self-made cluster values (omitting data)", { selfmade2 = selfmade selfmade2$data = K1 sharp2 = ksharp(selfmade2, threshold=0.4) expect_equal(sort(unique(selfmade2$cluster)), c(1,2)) expect_equal(sort(unique(sharp2$cluster)), c(0,1,2)) })
collaboration_dist <- function(data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(15, 20, 25)) { data <- qui_stan_c(data) create_dist(data = data, metric = "Collaboration_hours", hrvar = hrvar, mingroup = mingroup, return = return, cut = cut) } collab_dist <- collaboration_dist
skip_if_not_available("dataset") library(dplyr, warn.conflicts = FALSE) library(stringr) tbl <- example_data tbl$verses <- verses[[1]] tbl$padded_strings <- stringr::str_pad(letters[1:10], width = 2 * (1:10) + 1, side = "both") test_that("mutate() is lazy", { expect_s3_class( tbl %>% record_batch() %>% mutate(int = int + 6L), "arrow_dplyr_query" ) }) test_that("basic mutate", { compare_dplyr_binding( .input %>% select(int, chr) %>% filter(int > 5) %>% mutate(int = int + 6L) %>% collect(), tbl ) }) test_that("mutate() with NULL inputs", { compare_dplyr_binding( .input %>% mutate(int = NULL) %>% collect(), tbl ) }) test_that("empty mutate()", { compare_dplyr_binding( .input %>% mutate() %>% collect(), tbl ) }) test_that("transmute", { compare_dplyr_binding( .input %>% select(int, chr) %>% filter(int > 5) %>% transmute(int = int + 6L) %>% collect(), tbl ) }) test_that("transmute() with NULL inputs", { compare_dplyr_binding( .input %>% transmute(int = NULL) %>% collect(), tbl ) }) test_that("empty transmute()", { compare_dplyr_binding( .input %>% transmute() %>% collect(), tbl ) }) test_that("transmute() with unsupported arguments", { expect_error( tbl %>% Table$create() %>% transmute(int = int + 42L, .keep = "all"), "`transmute()` does not support the `.keep` argument", fixed = TRUE ) expect_error( tbl %>% Table$create() %>% transmute(int = int + 42L, .before = lgl), "`transmute()` does not support the `.before` argument", fixed = TRUE ) expect_error( tbl %>% Table$create() %>% transmute(int = int + 42L, .after = chr), "`transmute()` does not support the `.after` argument", fixed = TRUE ) }) test_that("transmute() defuses dots arguments (ARROW-13262)", { expect_warning( tbl %>% Table$create() %>% transmute(stringr::str_c(chr, chr)) %>% collect(), "Expression stringr::str_c(chr, chr) not supported in Arrow; pulling data into R", fixed = TRUE ) }) test_that("mutate and refer to previous mutants", { compare_dplyr_binding( .input %>% select(int, verses) %>% mutate( line_lengths = nchar(verses), longer = line_lengths * 10 ) %>% filter(line_lengths > 15) %>% collect(), tbl ) }) test_that("nchar() arguments", { compare_dplyr_binding( .input %>% select(int, verses) %>% mutate( line_lengths = nchar(verses, type = "bytes"), longer = line_lengths * 10 ) %>% filter(line_lengths > 15) %>% collect(), tbl ) compare_dplyr_binding( .input %>% select(int, verses) %>% mutate( line_lengths = nchar(verses, type = "bytes", allowNA = TRUE), longer = line_lengths * 10 ) %>% filter(line_lengths > 15) %>% collect(), tbl, warning = paste0( "In nchar\\(verses, type = \"bytes\", allowNA = TRUE\\), ", "allowNA = TRUE not supported by Arrow; pulling data into R" ) ) }) test_that("mutate with .data pronoun", { compare_dplyr_binding( .input %>% select(int, verses) %>% mutate( line_lengths = str_length(verses), longer = .data$line_lengths * 10 ) %>% filter(line_lengths > 15) %>% collect(), tbl ) }) test_that("mutate with unnamed expressions", { compare_dplyr_binding( .input %>% select(int, padded_strings) %>% mutate( int, nchar(padded_strings) ) %>% filter(int > 5) %>% collect(), tbl ) }) test_that("mutate with reassigning same name", { compare_dplyr_binding( .input %>% transmute( new = lgl, new = chr ) %>% collect(), tbl ) }) test_that("mutate with single value for recycling", { compare_dplyr_binding( .input %>% select(int, padded_strings) %>% mutate( dr_bronner = 1 ) %>% collect(), tbl ) }) test_that("dplyr::mutate's examples", { compare_dplyr_binding( .input %>% select(name, mass) %>% mutate( mass2 = mass * 2, mass2_squared = mass2 * mass2 ) %>% collect(), starwars ) compare_dplyr_binding( .input %>% select(name, height, mass, homeworld) %>% mutate( mass = NULL, height = height * 0.0328084 ) %>% collect(), starwars ) compare_dplyr_binding( .input %>% select(name, homeworld, species) %>% mutate(across(!name, as.factor)) %>% collect(), starwars, warning = "Expression across.*not supported in Arrow" ) compare_dplyr_binding( .input %>% select(name, mass, homeworld) %>% group_by(homeworld) %>% mutate(rank = min_rank(desc(mass))) %>% collect(), starwars, warning = TRUE ) df <- tibble(x = 1, y = 2) compare_dplyr_binding( .input %>% mutate(z = x + y) %>% collect(), df ) compare_dplyr_binding( .input %>% mutate(z = x + y, .before = 1) %>% collect(), df ) compare_dplyr_binding( .input %>% mutate(z = x + y, .after = x) %>% collect(), df ) df <- tibble(x = 1, y = 2, a = "a", b = "b") compare_dplyr_binding( .input %>% mutate(z = x + y, .keep = "all") %>% collect(), df ) compare_dplyr_binding( .input %>% mutate(z = x + y, .keep = "used") %>% collect(), df ) compare_dplyr_binding( .input %>% mutate(z = x + y, .keep = "unused") %>% collect(), df ) compare_dplyr_binding( .input %>% mutate(z = x + y, .keep = "none") %>% collect(), df ) compare_dplyr_binding( .input %>% select(name, mass, species) %>% mutate(mass_norm = mass / mean(mass, na.rm = TRUE)) %>% collect(), starwars, warning = "window function" ) }) test_that("Can mutate after group_by as long as there are no aggregations", { compare_dplyr_binding( .input %>% select(int, chr) %>% group_by(chr) %>% mutate(int = int + 6L) %>% collect(), tbl ) compare_dplyr_binding( .input %>% select(mean = int, chr) %>% group_by(chr) %>% mutate(mean = mean + 6L) %>% collect(), tbl ) expect_warning( tbl %>% Table$create() %>% select(int, chr) %>% group_by(chr) %>% mutate(avg_int = mean(int)) %>% collect(), "window functions not currently supported in Arrow; pulling data into R", fixed = TRUE ) expect_warning( tbl %>% Table$create() %>% select(mean = int, chr) %>% group_by(chr) %>% mutate(avg_int = mean(mean)) %>% collect(), "window functions not currently supported in Arrow; pulling data into R", fixed = TRUE ) }) test_that("handle bad expressions", { with_language("fr", { expect_warning( expect_error( Table$create(tbl) %>% mutate(newvar = NOTAVAR + 2), "objet 'NOTAVAR' introuvable" ), NA ) }) }) test_that("Can't just add a vector column with mutate()", { expect_warning( expect_equal( Table$create(tbl) %>% select(int) %>% mutate(again = 1:10), tibble::tibble(int = tbl$int, again = 1:10) ), "In again = 1:10, only values of size one are recycled; pulling data into R" ) }) test_that("print a mutated table", { expect_output( Table$create(tbl) %>% select(int) %>% mutate(twice = int * 2) %>% print(), "InMemoryDataset (query) int: int32 twice: double (multiply_checked(int, 2)) See $.data for the source Arrow object", fixed = TRUE ) }) test_that("mutate and write_dataset", { skip_if_not_available("dataset") first_date <- lubridate::ymd_hms("2015-04-29 03:12:39") df1 <- tibble( int = 1:10, dbl = as.numeric(1:10), lgl = rep(c(TRUE, FALSE, NA, TRUE, FALSE), 2), chr = letters[1:10], fct = factor(LETTERS[1:10]), ts = first_date + lubridate::days(1:10) ) second_date <- lubridate::ymd_hms("2017-03-09 07:01:02") df2 <- tibble( int = 101:110, dbl = c(as.numeric(51:59), NaN), lgl = rep(c(TRUE, FALSE, NA, TRUE, FALSE), 2), chr = letters[10:1], fct = factor(LETTERS[10:1]), ts = second_date + lubridate::days(10:1) ) dst_dir <- tempfile() stacked <- record_batch(rbind(df1, df2)) stacked %>% mutate(twice = int * 2) %>% group_by(int) %>% write_dataset(dst_dir, format = "feather") expect_true(dir.exists(dst_dir)) expect_identical(dir(dst_dir), sort(paste("int", c(1:10, 101:110), sep = "="))) new_ds <- open_dataset(dst_dir, format = "feather") expect_equal( new_ds %>% select(string = chr, integer = int, twice) %>% filter(integer > 6 & integer < 11) %>% collect() %>% summarize(mean = mean(integer)), df1 %>% select(string = chr, integer = int) %>% mutate(twice = integer * 2) %>% filter(integer > 6) %>% summarize(mean = mean(integer)) ) }) test_that("mutate and pmin/pmax", { df <- tibble( city = c("Chillan", "Valdivia", "Osorno"), val1 = c(200, 300, NA), val2 = c(100, NA, NA), val3 = c(0, NA, NA) ) compare_dplyr_binding( .input %>% mutate( max_val_1 = pmax(val1, val2, val3), max_val_2 = pmax(val1, val2, val3, na.rm = TRUE), min_val_1 = pmin(val1, val2, val3), min_val_2 = pmin(val1, val2, val3, na.rm = TRUE) ) %>% collect(), df ) compare_dplyr_binding( .input %>% mutate( max_val_1 = pmax(val1 - 100, 200, val1 * 100, na.rm = TRUE), min_val_1 = pmin(val1 - 100, 100, val1 * 100, na.rm = TRUE), ) %>% collect(), df ) })
[ { "title": "The New Edition of the Portfolio Optimization", "href": "https://www.rmetrics.org/node/187" }, { "title": "R/Finance 2013 slides", "href": "https://systematicinvestor.wordpress.com/2013/05/20/rfinance-2013-slides/" }, { "title": "Tufte style visualizations in R using Plotly", "href": "http://moderndata.plot.ly/tufte-style-visualizations-in-r-using-plotly/" }, { "title": "Matching clustering solutions using the ‘Hungarian method’", "href": "http://things-about-r.tumblr.com/post/36087795708/matching-clustering-solutions-using-the-hungarian" }, { "title": "Does mindfulness aid insight problem solving? New study suggest so", "href": "http://rpsychologist.com/does-mindfulness-aid-insight-problem-solving-skills" }, { "title": "India Australia test cricket matches over the years", "href": "http://www.rcasts.com/2010/10/india-australia-test-cricket-matches.html" }, { "title": "Respecting Real-World Decision Making and Rejecting Models That Do Not: No MaxDiff or Best-Worst Scaling", "href": "http://joelcadwell.blogspot.com/2015/05/respecting-real-world-decision-making.html" }, { "title": "Relation of Word Order and Compression Ratio and Degree of Structure", "href": "http://www.joyofdata.de/blog/relation-of-word-order-and-compression-ratio/" }, { "title": "Dual axes time series plots may be ok sometimes after all", "href": "http://ellisp.github.io/blog/2016/08/18/dualaxes" }, { "title": "A budget of classifier evaluation measures", "href": "http://www.win-vector.com/blog/2016/07/a-budget-of-classifier-evaluation-measures/" }, { "title": "13 graphs on Outer Space, Satellites, and Astrophysics made in Python or R", "href": "http://moderndata.plot.ly/13-graphs-on-outer-space-satellites-and-astrophysics-made-in-python-or-r/" }, { "title": "Interpolation and smoothing functions in base R", "href": "http://blog.revolutionanalytics.com/2015/09/interpolation-and-smoothing-functions-in-base-r.html" }, { "title": "R for Publication by Page Piccinini: Lesson 3 – Logistic Regression", "href": "http://datascienceplus.com/r-for-publication-by-page-piccinini-lesson-3-logistic-regression/" }, { "title": "Geocode your data using, R, JSON and Google Maps’ Geocoding APIs", "href": "http://allthingsr.blogspot.com/2012/01/geocode-your-data-using-r-json-and.html" }, { "title": "Cointegration, R, Irish Mortgage Debt and Property Prices", "href": "https://web.archive.org/web/https://timeseriesireland.wordpress.com/2011/05/15/cointegration-r-irish-mortgage-debt-and-property-prices/" }, { "title": "Kaleidoscope IIIb (useR! 2011)", "href": "https://csgillespie.wordpress.com/2011/08/18/kaleidoscope-iiib-user-2011/" }, { "title": "Unit root tests and ARIMA models", "href": "http://robjhyndman.com/hyndsight/unit-root-tests/" }, { "title": "R Reshape Package", "href": "http://www.mathfinance.cn/R-reshape-package/" }, { "title": "Two free online courses starting soon: Data Analysis (with R) and Social Network Analysis", "href": "https://rdatamining.wordpress.com/2013/01/17/two-free-online-courses-starting-soon-data-analysis-with-r-and-social-network-analysis/" }, { "title": "Longitudinal analysis: autocorrelation makes a difference", "href": "http://www.quantumforest.com/2011/10/longitudinal-analysis-autocorrelation-makes-a-difference/" }, { "title": "Creating a Business Dashboard in R", "href": "https://web.archive.org/web/http://fishyoperations.com/r/creating-a-business-dashboards-in-r/" }, { "title": "Méthodes de Monte-Carlo avec R", "href": "https://xianblog.wordpress.com/2010/12/03/methodes-de-monte-carlo-avec-r/" }, { "title": "Tips for Making R User Group Videos", "href": "http://blog.revolutionanalytics.com/2012/09/making-rug-videos.html" }, { "title": "The R Backpages 2", "href": "http://blog.revolutionanalytics.com/2013/11/the-r-backpages-2.html" }, { "title": "Listing of Statistics and Machine Learning Conferences", "href": "https://web.archive.org/web/http://ramhiser.com/blog/2011/06/12/listing-of-statistics-and-machine-learning-conferences/" }, { "title": "analyze the censo demografico no brasil (censo) with r and monetdb", "href": "http://www.asdfree.com/2014/05/analyze-censo-demografico-no-brasil.html" }, { "title": "Another view of ordinary regression", "href": "https://web.archive.org/web/http://pirategrunt.com/2013/07/08/another-view-of-ordinary-regression/" }, { "title": "R and the Next Big Thing", "href": "https://web.archive.org/web/http://blog.revolution-computing.com/2010/04/r-and-the-next-big-thing.html" }, { "title": "MCMSki IV, Jan. 6-8, 2014, Chamonix (news "href": "https://xianblog.wordpress.com/2013/11/26/mcmski-iv-jan-6-8-2014-chamonix-news-12/" }, { "title": "Visualize Color Palettes in Interactive 3D Grid (Shiny + RGL)", "href": "http://www.trestletech.com/2013/01/visualize-color-palettes-in-interactive-3d-grid-shiny-rgl/" }, { "title": "Yeah Sure, Maybe, Well … Okay", "href": "http://www.milktrader.net/2011/03/yeah-sure-maybe-well-okay.html" }, { "title": "More Airline Crashes via the Hadleyverse", "href": "http://rud.is/b/2015/03/31/more-airline-crashes-via-the-hadleyverse/" }, { "title": "Because it’s Friday: Religion and reading level", "href": "http://blog.revolutionanalytics.com/2010/09/religion-and-reading-level.html" }, { "title": "Presentations of the seventh Torino R net meeting – 27 Mar 2014", "href": "http://torinor.net/2014/06/30/presentations-of-the-seventh-torino-r-net-meeting-27-mar-2014/" }, { "title": "R Tips: lots of tips for R programming", "href": "https://rdatamining.wordpress.com/2012/04/26/r-tips-lots-of-tips-for-r-programming/" }, { "title": "Happy Thanksgiving from is.R()!", "href": "http://is-r.tumblr.com/post/36277968787/happy-thanksgiving-from-isr" }, { "title": "Data types part 2: Using classes to your advantage", "href": "http://rforpublichealth.blogspot.com/2012/11/data-types-part-2-using-classes-to-your.html" }, { "title": "Working with Bipartite/Affiliation Network Data in R", "href": "https://solomonmessing.wordpress.com/2012/09/30/working-with-bipartiteaffiliation-network-data-in-r/" }, { "title": "Introduce your friends to R", "href": "http://learningrbasic.blogspot.com/2010/02/introduce-your-friends-to-r.html" }, { "title": "UPDATE Multiple postgreSQL Table Records in Parellel", "href": "https://nerdsrule.co/2013/02/27/update-multiple-postgresql-table-records-in-parellel/" }, { "title": "An R debugging example", "href": "http://www.burns-stat.com/an-r-debugging-example/?utm_source=rss&utm_medium=rss&utm_campaign=an-r-debugging-example" }, { "title": "A predictive maintenance solution template with SQL Server R Services", "href": "http://blog.revolutionanalytics.com/2016/09/r-services-maintenance.html" }, { "title": "A majority victory is not that impossible", "href": "http://ww1.danielmarcelino.com/a-majority-victory-is-not-that-impossible/" }, { "title": "Working with themes in Lattice Graphics", "href": "http://www.wekaleamstudios.co.uk/posts/working-with-themes-in-lattice-graphics/" }, { "title": "More operators or more syntax?", "href": "https://renkun.me/blog/2014/08/23/more-operators-or-more-syntax.html" }, { "title": "More fun with boxplots", "href": "http://www.nomad.priv.at/researchblog/?p=917" }, { "title": "How I Learned to Stop Worrying and Love R CMD Check", "href": "http://juliasilge.com/blog/How-I-Stopped/" }, { "title": "RSPerl : Using R from within Perl", "href": "http://www.compbiome.com/2009/10/rsperl-using-r-from-within-perl.html" }, { "title": "Free edX course for R beginners", "href": "http://blog.revolutionanalytics.com/2015/08/free-edx-course-for-r-beginners.html" }, { "title": "R 2.13.1 scheduled for July 8", "href": "http://blog.revolutionanalytics.com/2011/06/r-2131-scheduled-for-july-8.html" } ]
download_csv <- function(tablename, startyear="", endyear="", ..., genesis_db="de", save=TRUE){ argg <- eval(substitute(alist(...))) baseurl <- set_db2(db=genesis_db) param <- list( sequenz='tabelleDownload', selectionname=tablename, startjahr = startyear, endjahr = endyear, format = 'csv') param <- c(param,argg) httrdata <- GET(baseurl, query = param) str <- content(httrdata, encoding="windows-1252", as = "text") if( save ){ writeLines(str, file(paste0(tablename,".csv"))) } else{ return(str) } }
causality_sh <- function(x, cause = NULL, vcov. = NULL, boot = FALSE, boot.runs = 100) { if (inherits(x, "varest")) { class(x) <- "varest" } else { stop("\nPlease provide an object inheriting class 'varest'.\n") } x$datamat <- as.data.frame(x$datamat) result <- vars::causality(x, cause = cause, vcov. = vcov., boot = boot, boot.runs = boot.runs) return(result) }
sqldf <- function(x, stringsAsFactors = FALSE, row.names = FALSE, envir = parent.frame(), method = getOption("sqldf.method"), file.format = list(), dbname, drv = getOption("sqldf.driver"), user, password = "", host = "localhost", port, dll = getOption("sqldf.dll"), connection = getOption("sqldf.connection"), verbose = isTRUE(getOption("sqldf.verbose"))) { as.POSIXct.numeric <- function(x, ...) structure(x, class = c("POSIXct", "POSIXt")) as.POSIXct.character <- function(x) structure(as.numeric(x), class = c("POSIXct", "POSIXt")) as.Date.character <- function(x) structure(as.numeric(x), class = "Date") as.Date2 <- function(x) UseMethod("as.Date2") as.Date2.character <- function(x) as.Date.character(x) as.Date.numeric <- function(x, origin = "1970-01-01", ...) base::as.Date.numeric(x, origin = origin, ...) as.dates.character <- function(x) structure(as.numeric(x), class = c("dates", "times")) as.times.character <- function(x) structure(as.numeric(x), class = "times") name__class <- function(data, ...) { if (is.null(data)) return(data) cls <- sub(".*__([^_]+)|.*", "\\1", names(data)) f <- function(i) { if (cls[i] == "") { data[[i]] } else { fun_name <- paste("as", cls[i], sep = ".") fun <- mget(fun_name, envir = environment(), mode = "function", ifnotfound = NA, inherits = TRUE)[[1]] if (identical(fun, NA)) data[[i]] else { names(data)[i] <<- sub("__[^_]+$", "", names(data)[i]) fun(data[[i]]) } } } data[] <- lapply(1:NCOL(data), f) data } colClass <- function(data, cls) { if (is.null(data)) return(data) if (is.list(cls)) cls <- unlist(cls) cls <- rep(cls, length = length(data)) f <- function(i) { if (cls[i] == "") { data[[i]] } else { fun_name <- paste("as", cls[i], sep = ".") fun <- mget(fun_name, envir = environment(), mode = "function", ifnotfound = NA, inherits = TRUE)[[1]] if (identical(fun, NA)) data[[i]] else { names(data)[i] <<- sub("__[^_]+$", "", names(data)[i]) fun(data[[i]]) } } } data[] <- lapply(1:NCOL(data), f) data } overwrite <- FALSE request.open <- missing(x) && is.null(connection) request.close <- missing(x) && !is.null(connection) request.con <- !missing(x) && !is.null(connection) request.nocon <- !missing(x) && is.null(connection) dfnames <- fileobjs <- character(0) if (!is.list(method)) method <- list(method, NULL) to.df <- method[[1]] to.db <- method[[2]] if (request.close || request.nocon) { on.exit({ dbPreExists <- attr(connection, "dbPreExists") dbname <- attr(connection, "dbname") if (!missing(dbname) && !is.null(dbname) && dbname == ":memory:") { if (verbose) { cat("sqldf: dbDisconnect(connection)\n") } dbDisconnect(connection) } else if (!dbPreExists && drv == "sqlite") { if (verbose) { cat("sqldf: dbDisconnect(connection)\n") cat("sqldf: file.remove(dbname)\n") } dbDisconnect(connection) file.remove(dbname) } else { for (nam in dfnames) { if (verbose) { cat("sqldf: dbRemoveTable(connection, ", nam, ")\n") } dbRemoveTable(connection, nam) } for (fo in fileobjs) { if (verbose) { cat("sqldf: dbRemoveTable(connection, ", fo, ")\n") } dbRemoveTable(connection, fo) } if (verbose) { cat("sqldf: dbDisconnect(connection)\n") } dbDisconnect(connection) } }, add = TRUE) if (request.close) { if (identical(connection, getOption("sqldf.connection"))) options(sqldf.connection = NULL) return() } } if (request.open || request.nocon) { if (is.null(drv) || drv == "") { drv <- if ("package:RPostgreSQL" %in% search()) { "PostgreSQL" } else if ("package:RpgSQL" %in% search()) { "pgSQL" } else if ("package:RMySQL" %in% search()) { "MySQL" } else if ("package:RH2" %in% search()) { "H2" } else "SQLite" } drv <- sub("^[Rr]", "", drv) pkg <- paste("R", drv, sep = "") if (verbose) { if (!is.loaded(pkg)) cat("sqldf: library(", pkg, ")\n", sep = "") library(pkg, character.only = TRUE) } else library(pkg, character.only = TRUE) drv <- tolower(drv) if (drv == "mysql") { if (verbose) cat("sqldf: m <- dbDriver(\"MySQL\")\n") m <- dbDriver("MySQL") if (missing(dbname) || is.null(dbname)) { dbname <- getOption("RMySQL.dbname") if (is.null(dbname)) dbname <- "test" } connection <- if (missing(dbname) || dbname == ":memory:") { dbConnect(m) } else dbConnect(m, dbname = dbname) dbPreExists <- TRUE } else if (drv == "postgresql") { if (verbose) cat("sqldf: m <- dbDriver(\"PostgreSQL\")\n") m <- dbDriver("PostgreSQL") if (missing(user) || is.null(user)) { user <- getOption("sqldf.RPostgreSQL.user") if (is.null(user)) user <- "postgres" } if (missing(password) || is.null(password)) { password <- getOption("sqldf.RPostgreSQL.password") if (is.null(password)) password <- "postgres" } if (missing(dbname) || is.null(dbname)) { dbname <- getOption("sqldf.RPostgreSQL.dbname") if (is.null(dbname)) dbname <- "test" } if (missing(host) || is.null(host)) { host <- getOption("sqldf.RPostgreSQL.host") if (is.null(host)) host <- "localhost" } if (missing(port) || is.null(port)) { port <- getOption("sqldf.RPostgreSQL.port") if (is.null(port)) port <- 5432 } connection.args <- list(m, user = user, password, dbname = dbname, host = host, port = port) connection.args.other <- getOption("sqldf.RPostgreSQL.other") if (!is.null(connection.args.other)) connection.args <- modifyList(connection.args, connection.args.other) connection <- do.call("dbConnect", connection.args) if (verbose) { cat(sprintf("sqldf: connection <- dbConnect(m, user='%s', password=<...>, dbname = '%s', host = '%s', port = '%s', ...)\n", user, dbname, host, port)) if (!is.null(connection.args.other)) { cat("other connection arguments:\n") print(connection.args.other) } } dbPreExists <- TRUE } else if (drv == "pgsql") { if (verbose) cat("sqldf: m <- dbDriver(\"pgSQL\")\n") m <- dbDriver("pgSQL") if (missing(dbname) || is.null(dbname)) { dbname <- getOption("RpgSQL.dbname") if (is.null(dbname)) dbname <- "test" } connection <- dbConnect(m, dbname = dbname) dbPreExists <- TRUE } else if (drv == "h2") { if (verbose) cat("sqldf: m <- dbDriver(\"H2\")\n") m <- dbDriver("H2") if (missing(dbname) || is.null(dbname)) dbname <- ":memory:" dbPreExists <- dbname != ":memory:" && file.exists(dbname) connection <- if (missing(dbname) || is.null(dbname) || dbname == ":memory:") { dbConnect(m, "jdbc:h2:mem:", "sa", "") } else { jdbc.string <- paste("jdbc:h2", dbname, sep = ":") dbConnect(m, jdbc.string) } } else { if (verbose) cat("sqldf: m <- dbDriver(\"SQLite\")\n") m <- dbDriver("SQLite") if (missing(dbname) || is.null(dbname)) dbname <- ":memory:" dbPreExists <- dbname != ":memory:" && file.exists(dbname) dll <- getOption("sqldf.dll") if (length(dll) != 1 || identical(dll, FALSE) || nchar(dll) == 0) { dll <- FALSE } else { if (dll == basename(dll)) dll <- Sys.which(dll) } options(sqldf.dll = dll) if (!identical(dll, FALSE)) { if (verbose) { cat("sqldf: connection <- dbConnect(m, dbname = \"", dbname, "\", loadable.extensions = TRUE\n", sep = "") cat("sqldf: select load_extension('", dll, "')\n", sep = "") } connection <- dbConnect(m, dbname = dbname, loadable.extensions = TRUE) s <- sprintf("select load_extension('%s')", dll) dbGetQuery(connection, s) } else { if (verbose) { cat("sqldf: connection <- dbConnect(m, dbname = \"", dbname, "\")\n", sep = "") } connection <- dbConnect(m, dbname = dbname) } if (verbose) cat("sqldf: initExtension(connection)\n") initExtension(connection) } attr(connection, "dbPreExists") <- dbPreExists if (missing(dbname) && drv == "sqlite") dbname <- ":memory:" attr(connection, "dbname") <- dbname if (request.open) { options(sqldf.connection = connection) return(connection) } } if (request.con) { drv <- if (inherits(connection, "PostgreSQLConnection")) "PostgreSQL" else if (inherits(connection, "pgSQLConnection")) "pgSQL" else if (inherits(connection, "MySQLConnection")) "MySQL" else if (inherits(connection, "H2Connection")) "H2" else "SQLite" drv <- tolower(drv) dbPreExists <- attr(connection, "dbPreExists") } engine <- getOption("gsubfn.engine") if (is.null(engine) || is.na(engine) || engine == "") { engine <- if (requireNamespace("tcltk", quietly = TRUE)) "tcl" else "R" } else if (engine == "tcl") requireNamespace("tcltk", quietly = TRUE) words. <- words <- if (engine == "tcl") { strapplyc(x, "[[:alnum:]._]+") } else strapply(x, "[[:alnum:]._]+", engine = "R") if (length(words) > 0) words <- unique(unlist(words)) is.special <- sapply( mget(words, envir, "any", NA, inherits = TRUE), function(x) is.data.frame(x) + 2 * inherits(x, "file")) dfnames <- words[is.special == 1] for(i in seq_along(dfnames)) { nam <- dfnames[i] if (dbPreExists && !overwrite && dbExistsTable(connection, nam)) { dfnames <- head(dfnames, i-1) stop(paste("sqldf:", "table", nam, "already in", dbname, "\n")) } DF <- as.data.frame(get(nam, envir)) if (!is.null(to.db) && is.function(to.db)) DF <- to.db(DF) if (verbose) cat("sqldf: dbWriteTable(connection, '", nam, "', ", nam, ", row.names = ", row.names, ")\n", sep = "") dbWriteTable(connection, nam, DF, row.names = row.names) } fileobjs <- if (is.null(file.format)) { character(0) } else { eol <- if (.Platform$OS.type == "windows") "\r\n" else "\n" words[is.special == 2] } for(i in seq_along(fileobjs)) { fo <- fileobjs[i] Filename <- summary(get(fo, envir))$description if (dbPreExists && !overwrite && dbExistsTable(connection, Filename)) { fileobjs <- head(fileobjs, i-1) stop(paste("sqldf:", "table", fo, "from file", Filename, "already in", dbname, "\n")) } args <- c(list(conn = connection, name = fo, value = Filename), modifyList(list(eol = eol), file.format)) args <- modifyList(args, as.list(attr(get(fo, envir), "file.format"))) filter <- args$filter if (!is.null(filter)) { args$filter <- NULL Filename.tmp <- tempfile() args$value <- Filename.tmp filter.subs <- filter[-1] if (length(filter.subs) > 0) { filter.subs <- filter.subs[sapply(names(filter.subs), nzchar)] } filter.nms <- names(filter.subs) filter.tempfiles <- sapply(filter.nms, tempfile) cmd <- filter[[1]] for(nm in filter.nms) { cat(filter.subs[[nm]], file = filter.tempfiles[[nm]]) cmd <- gsub(nm, filter.tempfiles[[nm]], cmd, fixed = TRUE) } cmd <- if (nchar(Filename) > 0) sprintf('%s < "%s" > "%s"', cmd, Filename, Filename.tmp) else sprintf('%s > "%s"', cmd, Filename.tmp) if (.Platform$OS.type == "windows") { cmd <- paste("cmd /c", cmd) if (FALSE) { key <- "SOFTWARE\\R-core" show.error.messages <- getOption("show.error.message") options(show.error.messages = FALSE) reg <- try(readRegistry(key, maxdepth = 3)$Rtools$InstallPath) reg <- NULL options(show.error.messages = show.error.messages) if (!is.null(reg) && !inherits(reg, "try-error")) { Rtools.path <- file.path(reg, "bin", fsep = "\\") path <- Sys.getenv("PATH") on.exit(Sys.setenv(PATH = path), add = TRUE) path.new <- paste(path, Rtools.path, sep = ";") Sys.setenv(PATH = path.new) } } } if (verbose) cat("sqldf: system(\"", cmd, "\")\n", sep = "") system(cmd) for(fn in filter.tempfiles) file.remove(fn) } if (verbose) cat("sqldf: dbWriteTable(", toString(args), ")\n") do.call("dbWriteTable", args) } if (drv == "sqlite" || drv == "mysql" || drv == "postgresql") { for(xi in x) { if (verbose) { cat("sqldf: dbGetQuery(connection, '", xi, "')\n", sep = "") } rs <- dbGetQuery(connection, xi) } } else { for(i in seq_along(x)) { if (length(words.[[i]]) > 0) { dbGetQueryWords <- c("select", "show", "call", "explain", "with") if (tolower(words.[[i]][1]) %in% dbGetQueryWords || drv != "h2") { if (verbose) { cat("sqldf: dbGetQuery(connection, '", x[i], "')\n", sep = "") } rs <- dbGetQuery(connection, x[i]) } else { if (verbose) { cat("sqldf: dbSendUpdate:", x[i], "\n") } rs <- get("dbSendUpdate")(connection, x[i]) } } } } if (is.null(to.df)) to.df <- "auto" if (is.function(to.df)) return(to.df(rs)) if (identical(to.df, "raw")) return(rs) if (identical(to.df, "name__class")) return(do.call("name__class", list(rs))) if (!identical(to.df, "nofactor") && !identical(to.df, "auto")) { return(do.call("colClass", list(rs, to.df))) } row_names_name <- grep("row[_.]names", names(rs), value = TRUE) if (length(row_names_name) > 1) warning(paste("ambiguity regarding row names:", row_names_name)) row_names_name <- row_names_name[1] rs <- if (!is.na(row_names_name)) { if (identical(row.names, FALSE)) { rs[names(rs) != row_names_name] } else { rn <- rs[[row_names_name]] rs <- rs[names(rs) != row_names_name] if (all(regexpr("^[[:digit:]]*$", rn) > 0)) rn <- as.integer(rn) rownames(rs) <- rn rs } } else rs tab <- do.call("rbind", lapply(dfnames, function(dfname) { df <- get(dfname, envir) nms <- names(df) do.call("rbind", lapply(seq_along(df), function(j) { column <- df[[j]] cbind(dfname, nms[j], toString(class(column)), toString(levels(column))) } ) ) } ) ) tabu <- unique(tab[,-1,drop=FALSE]) dup <- unname(tabu[duplicated(tabu[,1]), 1]) auto <- function(i) { cn <- colnames(rs)[[i]] if (! cn %in% dup && (ix <- match(cn, tab[, 2], nomatch = 0)) > 0) { df <- get(tab[ix, 1], envir) if (inherits(df[[cn]], "ordered")) { if (identical(to.df, "auto")) { u <- unique(rs[[i]]) levs <- levels(df[[cn]]) if (all(u %in% levs)) return(factor(rs[[i]], levels = levels(df[[cn]]), ordered = TRUE)) else return(rs[[i]]) } else return(rs[[i]]) } else if (inherits(df[[cn]], "factor")) { if (identical(to.df, "auto")) { u <- unique(rs[[i]]) levs <- levels(df[[cn]]) if (all(u %in% levs)) return(factor(rs[[i]], levels = levels(df[[cn]]))) else return(rs[[i]]) } else return(rs[[i]]) } else if (inherits(df[[cn]], "POSIXct")) return(as.POSIXct(rs[[i]])) else if (inherits(df[[cn]], "times")) return(as.times.character(rs[[i]])) else { asfn <- paste("as", class(df[[cn]]), sep = ".") asfn <- match.fun(asfn) return(asfn(rs[[i]])) } } if (stringsAsFactors && is.character(rs[[i]])) factor(rs[[i]]) else rs[[i]] } rs2 <- lapply(seq_along(rs), auto) rs[] <- rs2 rs } read.csv.sql <- function(file, sql = "select * from file", header = TRUE, sep = ",", row.names, eol, skip, filter, nrows, field.types, colClasses, dbname = tempfile(), drv = "SQLite", ...) { file.format <- list(header = header, sep = sep) if (!missing(eol)) file.format <- append(file.format, list(eol = eol)) if (!missing(row.names)) file.format <- append(file.format, list(row.names = row.names)) if (!missing(skip)) file.format <- append(file.format, list(skip = skip)) if (!missing(filter)) file.format <- append(file.format, list(filter = filter)) if (!missing(nrows)) file.format <- append(file.format, list(nrows = nrows)) if (!missing(field.types)) file.format <- append(file.format, list(field.types = field.types)) if (!missing(colClasses)) file.format <- append(file.format, list(colClasses = colClasses)) pf <- parent.frame() if (missing(file) || is.null(file) || is.na(file)) file <- "" tf <- NULL if ( substring(file, 1, 7) == "http://" || substring(file, 1, 8) == "https://" || substring(file, 1, 6) == "ftp://" || substring(file, 1, 7) == "ftps://" ) { tf <- tempfile() on.exit(unlink(tf), add = TRUE) download.file(file, tf, mode = "wb") file <- tf } p <- proto(pf, file = file(file)) p <- do.call(proto, list(pf, file = file(file))) sqldf(sql, envir = p, file.format = file.format, dbname = dbname, drv = drv, ...) } read.csv2.sql <- function(file, sql = "select * from file", header = TRUE, sep = ";", row.names, eol, skip, filter, nrows, field.types, colClasses, dbname = tempfile(), drv = "SQLite", ...) { if (missing(filter)) { filter <- if (.Platform$OS.type == "windows") paste("cscript /nologo", normalizePath(system.file("trcomma2dot.vbs", package = "sqldf"))) else "tr , ." } read.csv.sql(file = file, sql = sql, header = header, sep = sep, row.names = row.names, eol = eol, skip = skip, filter = filter, nrows = nrows, field.types = field.types, colClasses = colClasses, dbname = dbname, drv = drv) }
make_bag_tree <- function() { parsnip::set_new_model("bag_tree") parsnip::set_model_mode("bag_tree", "classification") parsnip::set_model_mode("bag_tree", "regression") parsnip::set_model_engine("bag_tree", "classification", "rpart") parsnip::set_model_engine("bag_tree", "regression", "rpart") parsnip::set_dependency("bag_tree", "rpart", "rpart") parsnip::set_dependency("bag_tree", "rpart", "baguette") parsnip::set_model_arg( model = "bag_tree", eng = "rpart", parsnip = "class_cost", original = "cost", func = list(pkg = "baguette", fun = "class_cost"), has_submodel = FALSE ) parsnip::set_model_arg( model = "bag_tree", eng = "rpart", parsnip = "tree_depth", original = "maxdepth", func = list(pkg = "dials", fun = "tree_depth"), has_submodel = FALSE ) parsnip::set_model_arg( model = "bag_tree", eng = "rpart", parsnip = "min_n", original = "minsplit", func = list(pkg = "dials", fun = "min_n"), has_submodel = FALSE ) parsnip::set_model_arg( model = "bag_tree", eng = "rpart", parsnip = "cost_complexity", original = "cp", func = list(pkg = "dials", fun = "cost_complexity"), has_submodel = FALSE ) parsnip::set_fit( model = "bag_tree", eng = "rpart", mode = "regression", value = list( interface = "formula", protect = c("formula", "data", "weights"), func = c(pkg = "baguette", fun = "bagger"), defaults = list(base_model = "CART") ) ) parsnip::set_encoding( model = "bag_tree", eng = "rpart", mode = "regression", options = list( predictor_indicators = "none", compute_intercept = FALSE, remove_intercept = FALSE, allow_sparse_x = FALSE ) ) parsnip::set_fit( model = "bag_tree", eng = "rpart", mode = "classification", value = list( interface = "formula", protect = c("formula", "data", "weights"), func = c(pkg = "baguette", fun = "bagger"), defaults = list(base_model = "CART") ) ) parsnip::set_encoding( model = "bag_tree", eng = "rpart", mode = "classification", options = list( predictor_indicators = "none", compute_intercept = FALSE, remove_intercept = FALSE, allow_sparse_x = FALSE ) ) parsnip::set_pred( model = "bag_tree", eng = "rpart", mode = "regression", type = "numeric", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list(object = quote(object$fit), new_data = quote(new_data)) ) ) parsnip::set_pred( model = "bag_tree", eng = "rpart", mode = "classification", type = "class", value = list( pre = NULL, post = fix_column_names, func = c(pkg = NULL, fun = "predict"), args = list( object = quote(object$fit), new_data = quote(new_data), type = "class" ) ) ) parsnip::set_pred( model = "bag_tree", eng = "rpart", mode = "classification", type = "prob", value = list( pre = NULL, post = fix_column_names, func = c(pkg = NULL, fun = "predict"), args = list(object = quote(object$fit), new_data = quote(new_data), type = "prob") ) ) parsnip::set_model_engine("bag_tree", "classification", "C5.0") parsnip::set_dependency("bag_tree", "C5.0", "C50") parsnip::set_dependency("bag_tree", "C5.0", "baguette") parsnip::set_fit( model = "bag_tree", eng = "C5.0", mode = "classification", value = list( interface = "data.frame", protect = c("x", "y", "weights"), func = c(pkg = "baguette", fun = "bagger"), defaults = list(base_model = "C5.0") ) ) parsnip::set_encoding( model = "bag_tree", eng = "C5.0", mode = "classification", options = list( predictor_indicators = "none", compute_intercept = FALSE, remove_intercept = FALSE, allow_sparse_x = FALSE ) ) parsnip::set_model_arg( model = "bag_tree", eng = "C5.0", parsnip = "class_cost", original = "cost", func = list(pkg = "baguette", fun = "class_cost"), has_submodel = FALSE ) parsnip::set_model_arg( model = "bag_tree", eng = "C5.0", parsnip = "min_n", original = "minCases", func = list(pkg = "dials", fun = "min_n"), has_submodel = FALSE ) parsnip::set_pred( model = "bag_tree", eng = "C5.0", mode = "classification", type = "class", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list( object = quote(object$fit), new_data = quote(new_data), type = "class" ) ) ) parsnip::set_pred( model = "bag_tree", eng = "C5.0", mode = "classification", type = "prob", value = list( pre = NULL, post = fix_column_names, func = c(fun = "predict"), args = list( object = quote(object$fit), new_data = quote(new_data), type = "prob" ) ) ) }
mgrcoatt_dist <- function(data, hrvar = "Organization", mingroup = 5, return = "plot") { myPeriod <- data %>% mutate(Date=as.Date(Date, "%m/%d/%Y")) %>% arrange(Date) %>% mutate(Start=first(Date), End=last(Date)) %>% filter(row_number()==1) %>% select(Start, End) plot_data <- data %>% rename(group = !!sym(hrvar)) %>% group_by(PersonId) %>% filter(Meeting_hours>0) %>% mutate(coattendman_rate = Meeting_hours_with_manager / Meeting_hours) %>% summarise(periods = n(), group = first(group), coattendman_rate=mean(coattendman_rate)) %>% group_by(group) %>% mutate(Employee_Count = n_distinct(PersonId)) %>% filter(Employee_Count >= mingroup) plot_data <- plot_data %>% mutate(bucket_coattendman_rate = case_when(coattendman_rate>=0 & coattendman_rate<.25 ~ "0 - 25%", coattendman_rate>=.25 & coattendman_rate<.5 ~ "25 - 50%", coattendman_rate>=.50 & coattendman_rate<.75 ~ "50 - 75%", coattendman_rate>=.75 ~ "75% +")) plot_legend <- plot_data %>% group_by(group) %>% summarize(Employee_Count=first(Employee_Count)) %>% mutate(Employee_Count = paste("n=",Employee_Count)) plot_table <- plot_data %>% group_by(group, bucket_coattendman_rate) %>% summarize(Employees=n(), Employee_Count=first(Employee_Count), percent= Employees / Employee_Count) %>% arrange(group, bucket_coattendman_rate) annot_table <- plot_legend %>% dplyr::left_join(plot_table, by = "group") max_blank <- function(x){ as.character( c( scales::percent( x[1:length(x) - 1] ), "") ) } plot_object <- plot_table %>% ggplot(aes(x = group, y=Employees, fill = bucket_coattendman_rate)) + geom_bar(stat = "identity", position = position_fill(reverse = TRUE)) + coord_flip() + scale_y_continuous(expand = c(.01, 0), labels = max_blank, position = "right") + annotate("text", x = plot_legend$group, y = 1.15, label = plot_legend$Employee_Count, size = 3) + annotate("rect", xmin = 0.5, xmax = length(plot_legend$group) + 0.5, ymin = 1.05, ymax = 1.25, alpha = .2) + annotate(x = length(plot_legend$group) + 0.8, xend = length(plot_legend$group) + 0.8, y = 0, yend = 1, colour = "black", lwd = 0.75, geom = "segment") + scale_fill_manual(name="", values = c(" theme_wpa_basic() + theme(axis.line = element_blank(), axis.ticks = element_blank(), axis.title = element_blank()) + labs(title = "Meetings coattended by line manager", subtitle = paste("Percentage of meetings per person"), caption = extract_date_range(data, return = "text")) return_table <- plot_table %>% select(group, bucket_coattendman_rate, percent) %>% spread(bucket_coattendman_rate, percent) if(return == "table"){ return_table %>% as_tibble() %>% return() } else if(return == "plot"){ return(plot_object) } else { stop("Please enter a valid input for `return`.") } }
p_install_version_single_gh <- function(package, version, dependencies = TRUE, ...){ if (!basename(package) %in% p_lib()){ out <- p_install_gh(package, ...) if (isTRUE(out)) { message(sprintf( "\n%s not found in user's library; Version %s was installed", basename(package), utils::packageVersion(basename(package))) ) } return(invisible(out)) } else { if (p_ver(basename(package)) < version) { out <- p_install_gh(package, dependencies = dependencies, ...) if (isTRUE(out)) { message(sprintf("\n%s was updated to v. %s", basename(package), utils::packageVersion(basename(package)))) } return(invisible(out)) } else { message(sprintf("\nVersion of %s (v. %s) is suitable", basename(package), utils::packageVersion(basename(package)))) return(invisible(TRUE)) } } }
context("filterPairs") library(testthat) data("lacy1989Ped") ped <- lacy1989Ped ped$gen <- findGeneration(ped$id, ped$sire, ped$dam) kmat <- kinship(ped$id, ped$sire, ped$dam, ped$gen) kin <- kinMatrix2LongForm(kmat, rm.dups = FALSE) threshold <- 0.1 kin <- filterThreshold(kin, threshold = threshold) ped$sex <- c("M", "F", "M", "M", "F", "F", "M") kinNull <- filterPairs(kin, ped, ignore = NULL) kinFF <- filterPairs(kin, ped, ignore = list(c("F", "F"))) kinMM <- filterPairs(kin, ped, ignore = list(c("M", "M"))) test_that("filterPairs removes the correct pairs", { expect_equal(nrow(kinNull), 39) expect_equal(nrow(kinFF), 32) expect_equal(nrow(kinMM), 23) expect_equal(nrow(kinFF[kinFF$id1 == "B" & kinFF$id2 == "E", ]), 0) expect_equal(nrow(kinFF[kinFF$id1 == "B" & kinFF$id2 == "F", ]), 0) expect_equal(nrow(kinMM[kinMM$id1 == "A" & kinMM$id2 == "D", ]), 0) })
lgcpSim <- function(owin=NULL, tlim=as.integer(c(0,10)), spatial.intensity=NULL, temporal.intensity=NULL, cellwidth = 0.05, model.parameters=lgcppars(sigma=2,phi=0.2,theta=1), spatial.covmodel="exponential", covpars=c(), returnintensities=FALSE, progressbar=TRUE, ext=2, plot=FALSE, ratepow=0.25, sleeptime=0, inclusion="touching"){ if (!inherits(tlim,"integer")){ warning("Converting tlim into integer values, see ?as.integer") tlim <- as.integer(tlim) } tlim <- sort(tlim) if (tlim[1]==tlim[2]){ stop("Length of time interval given by as.integer(tlim) must be >= 1") } toffset <- tlim[1] maxt <- tlim[2] - toffset sigma <- model.parameters$sigma phi <- model.parameters$phi mu <- model.parameters$mu theta <- model.parameters$theta if(is.null(owin)){ owin <- owin() } if (is.null(temporal.intensity)){ temporal.intensity <- constantInTime(100,tlim) } else{ if (!inherits(temporal.intensity,"temporalAtRisk")){ temporal.intensity <- temporalAtRisk(temporal.intensity,tlim) } if(!all(tlim==attr(temporal.intensity,"tlim"))){ stop("Incompatible temporal.intensity, integer time limits (tlim and temporal.intensity$tlim) do not match") } } ndivs <- diff(tlim) tdiff = maxt/ndivs times <- tdiff/2 + tdiff*(0:(ndivs-1)) mut <- sapply(times+toffset,temporal.intensity) if (progressbar){ pb <- txtProgressBar(min=1,max=ndivs,style=3) } const0 <- 0.05 c2 <- -phi*log(const0) if (cellwidth>c2/2){ warning(paste("cellwidth should be at least",c2/2,"to get accurate results.")) } xyt <- ppp(window=owin) ow <- selectObsWindow(xyt,cellwidth) xyt <- ow$xyt M <- ow$M N <- ow$N cat(paste("FFT Grid size: [",ext*M," , ",ext*N,"]\n",sep="")) if(is.null(spatial.intensity)){ spatial <- spatialAtRisk(list(X=seq(xyt$window$xrange[1],xyt$window$xrange[2],length.out=M),Y=seq(xyt$window$yrange[1],xyt$window$yrange[2],length.out=N),Zm=matrix(1/(M*N),M,N))) } else{ if(!any(class(spatial.intensity)=="spatialAtRisk")){ spatial <- spatialAtRisk(spatial.intensity) } else{ spatial <- spatial.intensity } } study.region <- xyt$window del1 <- (study.region$xrange[2]-study.region$xrange[1])/M del2 <- (study.region$yrange[2]-study.region$yrange[1])/N Mext <- ext*M Next <- ext*N mcens <- study.region$xrange[1]+.5*del1+(0:(Mext-1))*del1 ncens <- study.region$yrange[1]+.5*del2+(0:(Next-1))*del2 xg <- mcens[1:M] yg <- ncens[1:N] cellarea <- del1*del2 if(inclusion=="centroid"){ cellInside <- inside.owin(x=rep(mcens,Next),y=rep(ncens,each=Mext),w=study.region) } else if(inclusion=="touching"){ cellInside <- touchingowin(x=mcens,y=ncens,w=study.region) } else{ stop("Invlaid choice for argument 'inclusion'.") } cellInside <- as.numeric(matrix(as.logical(cellInside),Mext,Next)[1:M,1:N]) spatialvals <- fftinterpolate(spatial,mcens,ncens,ext=ext) spatialvals <- spatialvals[1:M,1:N] spatialvals <- spatialvals*cellInside spatialvals <- spatialvals / (cellarea*sum(spatialvals)) bcb <- blockcircbase(x=mcens,y=ncens,sigma=sigma,phi=phi,model=spatial.covmodel,additionalparameters=covpars) Qeigs <- eigenfrombase(inversebase(bcb)) rqe <- sqrt(Qeigs) irqe <- 1/rqe if(returnintensities){ intensities <- array(NA,c(M,N,ndivs)) truefield <- array(NA,c(M,N,ndivs)) } else{ intensities <- NULL truefield <- NULL } cases <- NULL t <- NULL Y <- YfromGamma(matrix(rnorm(Mext*Next),Mext,Next),invrootQeigs=irqe,mu=mu)[1:M,1:N] rate <- as.vector(mut[1]*spatialvals*cellarea*exp(Y)) if(returnintensities){ intensities[,,1] <- rate truefield[,,1] <- Y } cmat <- matrix(rpois(M*N,rate),M,N) ncases <- sum(cmat) if(ncases>0){ caseidx <- which(cmat>0) caseidx <- unlist(sapply(caseidx,function(x){rep(x,cmat[x])})) cases <- cbind(rep(xg,length(yg)),rep(yg,each=length(xg)))[caseidx,] + cbind(runif(ncases,-del1/2,del1/2),runif(ncases,-del2/2,del2/2)) t <- sort(runif(ncases,times[1]-tdiff/2,times[1]+tdiff/2)) } if(plot){ rate[rate==0] <- NA image.plot(xg,yg,matrix(rate,M,N)^ratepow) points(cases,pch="+",cex=0.5) Sys.sleep(sleeptime) } for(i in 2:ndivs){ Y <- mu*(1-exp(-theta)) + exp(-theta)*Y + sqrt(1-exp(-2*theta))*YfromGamma(matrix(rnorm(Mext*Next),Mext,Next),invrootQeigs=irqe,mu=0)[1:M,1:N] rate <- as.vector(mut[i]*spatialvals*cellarea*exp(Y)) cmat <- matrix(rpois(M*N,rate),M,N) ncases <- sum(cmat) if(ncases>0){ caseidx <- which(cmat>0) caseidx <- unlist(sapply(caseidx,function(x){rep(x,cmat[x])})) newcases <- cbind(rep(xg,length(yg)),rep(yg,each=length(xg)))[caseidx,] + cbind(runif(ncases,-del1/2,del1/2),runif(ncases,-del2/2,del2/2)) cases <- rbind(cases,newcases) t <- c(t,sort(runif(ncases,times[i]-tdiff/2,times[i]+tdiff/2))) if(plot){ rate[rate==0] <- NA image.plot(xg,yg,matrix(rate,M,N)^ratepow) points(newcases,pch="+",cex=0.5) Sys.sleep(sleeptime) } } if(returnintensities){ intensities[,,i] <- rate truefield[,,i] <- Y } if (progressbar){ setTxtProgressBar(pb,i) } } if (progressbar){ close(pb) } if(is.null(t)){ stop("No data generated for chosen parameters") } if(!all(inside.owin(cases[,1],cases[,2],owin))){ remidx <- which(!inside.owin(cases[,1],cases[,2],owin)) cases <- cases[-remidx,] t <- t[-remidx] } xyt <- stppp(ppp(x=cases[,1],y=cases[,2],window=owin),t=(t+toffset),tlim=tlim) attr(xyt,"rejects") <- NULL attr(xyt,"spatialatrisk") <- spatial attr(xyt,"temporalfitted") <- mut attr(xyt,"cellwidth") <- cellwidth attr(xyt,"sigma") <- sigma attr(xyt,"phi") <- phi attr(xyt,"theta") <- theta attr(xyt,"temporalintensity") <- temporal.intensity attr(xyt,"temporalfitted") <- mut attr(xyt,"spatialcovmodel") <- spatial.covmodel attr(xyt,"covpars") <- covpars attr(xyt,"ext") <- ext attr(xyt,"xvals") <- xg attr(xyt,"yvals") <- yg attr(xyt,"intensities") <- intensities attr(xyt,"truefield") <- truefield attr(xyt,"inclusion") <- inclusion return(xyt) }
hiredis <- function(..., version = NULL) { config <- redis_config(...) con <- redis_connection(config) redis_api(con, version) } redis_available <- function(...) { !inherits(try(hiredis(...), silent = TRUE), "try-error") }
addParents <- function(ped) { sires <- ped$sire dams <- ped$dam a1 <- sires[!(sires %in% ped$id) & !is.na(sires)] a1 <- a1[!duplicated(a1)] a2 <- dams[!(dams %in% ped$id) & !is.na(dams)] a2 <- a2[!duplicated(a2)] a1 <- data.frame(id = a1, stringsAsFactors = FALSE) a2 <- data.frame(id = a2, stringsAsFactors = FALSE) ped <- ped[ , !names(ped) %in% "recordStatus"] ped <- cbind(ped, recordStatus = "original", stringsAsFactors = FALSE) if (nrow(a1) > 0) { a1$sire <- NA a1$dam <- NA a1$sex <- "M" a1$recordStatus <- "added" ped <- rbindFill(ped, a1) } if (nrow(a2) > 0) { a2$sire <- NA a2$dam <- NA a2$sex <- "F" a2$recordStatus <- "added" ped <- rbindFill(ped, a2) } return(ped) }
ug_bayes <- hBayesDM_model( task_name = "ug", model_name = "bayes", model_type = "", data_columns = c("subjID", "offer", "accept"), parameters = list( "alpha" = c(0, 1, 20), "beta" = c(0, 0.5, 10), "tau" = c(0, 1, 10) ), regressors = NULL, postpreds = c("y_pred"), preprocess_func = ug_preprocess_func)
spark_read_bigquery <- function(sc, name, billingProjectId = default_billing_project_id(), projectId = billingProjectId, datasetId = NULL, tableId = NULL, sqlQuery = NULL, type = default_bigquery_type(), gcsBucket = default_gcs_bucket(), serviceAccountKeyFile = default_service_account_key_file(), additionalParameters = NULL, memory = FALSE, ...) { if(!(type %in% c("direct", "avro", "json", "csv"))) stop(sprintf("The import type '%s' is not supported by spark_read_bigquery", type)) parameters <- c(list( "bq.project" = billingProjectId, "bq.staging_dataset.gcs_bucket" = gcsBucket, "bq.location" = default_dataset_location(), "bq.service_account_key_file" = serviceAccountKeyFile, "type" = type ), additionalParameters) if(!is.null(datasetId) && !is.null(tableId)) { parameters[["table"]] <- sprintf("%s.%s.%s", projectId, datasetId, tableId) } else if(!is.null(sqlQuery)) { parameters[["sqlQuery"]] <- sqlQuery } else { stop("Either both of 'datasetId' and 'tableId' or 'sqlQuery' must be specified.") } spark_read_source( sc, name = name, source = "bigquery", options = parameters, memory = memory, ... ) }
summary.POUMM <- function(object, ..., startMCMC = NA, endMCMC = NA, thinMCMC = 1000, stats = statistics(object), mode = c('short', 'long', 'expert')) { N <- MLE <- samplePriorMCMC <- HPD <- HPD50 <- ESS <- HPDUpperFiltered <- HPDLowerFiltered <- value <- HPDUpper <- HPDLower <- it <- PostMean <- mcs <- ESS <- nChains <- chain <- G.R. <- stat <- Mean <- NULL mode <- tolower(mode) tipTimes <- nodeTimes(object$pruneInfo$tree, tipsOnly = TRUE) tMax <- max(tipTimes) tMean <- mean(tipTimes) parLower <- matrix(object$spec$parLower, nrow = 1) parUpper <- matrix(object$spec$parUpper, nrow = 1) parML <- matrix(object$fitML$par, nrow = 1) anlist <- lapply(seq_along(stats), function(i) { data.table(stat = names(stats)[i], MLE = stats[[i]](parML)) }) anlist <- c(anlist, list( data.table(stat = "logpost", MLE = NA), data.table(stat = "loglik", MLE = object$fitML$value), data.table(stat = "AIC", MLE = AIC(object)), data.table(stat = "AICc", MLE = AIC(object) + 2*object$dof*(object$dof+1)/(object$N-object$dof-1)) )) an.ML <- rbindlist(anlist) an.ML[, N:=object$N] setcolorder(an.ML, c('stat', 'N', 'MLE')) if(!is.null(object$fitMCMC)) { if(is.na(startMCMC)) { startMCMC <- object$spec$nSamplesMCMC / 10 } if(is.na(endMCMC)) { endMCMC <- object$spec$nSamplesMCMC } anlist <- lapply(seq_along(stats), function(i) { analyseMCMCs(object$fitMCMC$chains, stat = stats[[i]], statName = names(stats)[i], start = startMCMC, end = endMCMC, thinMCMC = thinMCMC, as.dt = TRUE) }) anlist <- c(anlist, list( analyseMCMCs(object$fitMCMC$chains, stat=NULL, statName='logpost', start = startMCMC, end=endMCMC, thinMCMC = thinMCMC, as.dt = TRUE), analyseMCMCs(object$fitMCMC$chains, stat = NULL, statName='loglik', start = startMCMC, end = endMCMC, thinMCMC = thinMCMC, as.dt = TRUE), analyseMCMCs(object$fitMCMC$chains, stat = NULL, statName='AIC', start = startMCMC, end = endMCMC, thinMCMC = thinMCMC, as.dt = TRUE, k = object$dof, N = object$N), analyseMCMCs(object$fitMCMC$chains, stat = NULL, statName='AICc', start = startMCMC, end = endMCMC, thinMCMC = thinMCMC, as.dt = TRUE, k = object$dof, N = object$N) )) an.MCMC <- rbindlist(anlist) an.MCMC[, samplePriorMCMC:=rep( c(object$spec$samplePriorMCMC, rep(FALSE, object$spec$nChainsMCMC - 1)), length.out=.N) ] if(mode[1] != 'expert') { an.MCMC <- an.MCMC[, list( PostMean = mean(unlist(Mean)), HPD = list(colMeans(do.call(rbind, HPD))), HPD50 = list(colMeans(do.call(rbind, HPD50))), start = start(mcs), end = end(mcs), thin = thin(mcs), ESS = sum(unlist(ESS)), G.R. = if(length(mcs)>1) { gelman.diag(mcs, autoburnin=FALSE)$psrf[1] } else { as.double(NA) }, nChains = length(mcs), mcmc = mcmc.list(mcmc(do.call(rbind, mcs)))), by=list(stat, samplePriorMCMC)] } if(mode[1] == 'short') { an.MCMC <- an.MCMC[ samplePriorMCMC == FALSE, list(stat, PostMean, HPD, ESS, G.R.)] } else if(mode[1] == 'long') { an.MCMC <- an.MCMC[ samplePriorMCMC == FALSE, list(stat, PostMean, HPD, HPD50, start, end, thin = thinMCMC, ESS, G.R., nChains, mcmc)] } else if(mode[1] == 'expert') { an.MCMC <- an.MCMC[, list(stat, samplePriorMCMC, PostMean = Mean, HPD, HPD50, start, end, thin = thinMCMC, ESS, mcmc = mcs, chain)] } else { warning(paste('mode should be one of "short", "long" or "expert", but was', mode[1], '.')) } } else { an.MCMC <- NULL } if(mode[1] %in% c('short', 'long')) { if(!is.null(an.ML) & !is.null(an.MCMC)) { res <- merge(an.ML, an.MCMC, by = 'stat', all = TRUE, sort = FALSE) res[sapply(HPD, is.null), HPD:=list(list(as.double(c(NA, NA))))] if(mode[1] == 'long') res[sapply(HPD50, is.null), HPD50:=list(list(as.double(c(NA, NA))))] } else if(!is.null(an.ML)) { res <- an.ML } else if(!is.null(an.MCMC)) { res <- an.MCMC } } else { res <- list(spec = object$spec, startMCMC = startMCMC, endMCMC = endMCMC, thinMCMC = thinMCMC, ML = an.ML, MCMC = an.MCMC, MCMCBetterLik = object$MCMCBetterLik) } class(res) <- c('summary.POUMM', class(res)) res } generateStatisticFunG0 <- function(object) { function(par) { if( 'g0' %in% names(object$spec$parMapping(par)) ) { object$spec$parMapping(par)[, 'g0'] } else { g0s <- try( apply(par, 1, function(par) { ll <- object$loglik(par, pruneInfo = object$pruneInfo) attr(ll, "g0") }), silent = TRUE) if(inherits(g0s, "try-error")) { rep(NA_real_, nrow(par)) } else { g0s } } } } plot.summary.POUMM <- function( x, type = c("MCMC"), doPlot = TRUE, stat = c("alpha", "theta", "sigma", "sigmae", "g0", "H2tMean"), chain = NULL, doZoomIn = FALSE, zoomInFilter = paste0("(stat %in% c('H2e','H2tMean','H2tInf','H2tMax') & ", "(value >= 0 & value <= 1) ) |", "( !stat %in% c('H2e','H2tMean','H2tInf','H2tMax') & ", "(value <= median(HPDUpper) + 4 * (median(HPDUpper) - median(HPDLower)) &", "value >= median(HPDLower) - 4 * (median(HPDUpper) - median(HPDLower))))"), palette = c(" prettyNames = TRUE, ...) { N <- MLE <- samplePriorMCMC <- HPD <- HPD50 <- ESS <- HPDUpperFiltered <- HPDLowerFiltered <- value <- HPDUpper <- HPDLower <- it <- PostMean <- mcs <- ESS <- nChains <- chain <- G.R. <- stat2 <- statFactor <- NULL if(inherits(x, "summary.POUMM") && !is.null(x$MCMC)) { .stat <- stat .chain <- chain data <- merge(x$ML, x$MCMC, by = "stat") data <- data[ { if(!is.null(.stat)) {stat %in% .stat} else rep(TRUE, .N) } & { if(!is.null(.chain)) {chain %in% .chain} else rep(TRUE, .N) }] setkey(data, stat) data <- data[list(.stat)] data <- data[{ if(!is.null(.stat)) {stat %in% .stat} else rep(TRUE, .N) } & { if(!is.null(.chain)) {chain %in% .chain} else rep(TRUE, .N) }, list( N, MLE, samplePriorMCMC, HPDLower = sapply(HPD, function(.) .[1]), HPDUpper = sapply(HPD, function(.) .[2]), HPD50Lower = sapply(HPD50, function(.) .[1]), HPD50Upper = sapply(HPD50, function(.) .[2]), ESS, value = unlist(mcmc), it = seq(x$startMCMC, by = x$thinMCMC, along.with = mcmc[[1]])), by = list(stat = factor(stat), chain = factor(chain))] if(doZoomIn) { data[, stat2:=stat] data <- data[, { .SD[eval(parse(text = zoomInFilter))] }, by = stat2] data[, stat2:=NULL] } data[, HPDUpperFiltered:=min(max(value), unique(HPDUpper)), list(stat = factor(stat), chain = factor(chain))] data[, HPDLowerFiltered:=max(min(value), unique(HPDLower)), list(stat = factor(stat), chain = factor(chain))] .availStats <- data[, as.character(unique(stat))] statFactorLabels <- if(prettyNames) { prettifyNames(.availStats) } else { .availStats } data[, statFactor:=factor(stat, levels = .availStats, labels = statFactorLabels)] .stat <- .availStats[1] dtm <- data[stat == .stat, list(stat, it, chain, value)] dtm[, (.stat) := value] dtm[, c("stat", "value") := NULL] for(.stat in .availStats[-1]) { dtm2 <- data[stat == .stat, eval(parse(text=paste0("list(it, chain, ", .stat, ' = value)')))] dtm <- merge(dtm, dtm2, by=c("it", "chain"), all=TRUE) } names(palette) <- as.character(seq_along(palette)) my_ggplot <- function(...) ggplot(...) + scale_color_manual(values = palette) + scale_fill_manual(values = palette) if(type == "MCMC") { traceplot <- my_ggplot(data) + geom_line(aes(x=it, y=value, col = chain)) + facet_wrap(~statFactor, scales = "free", labeller = if(prettyNames) "label_parsed" else "label_value") densplot <- my_ggplot(data) + geom_density(aes(x=value, fill = chain, col = chain), alpha=0.5) + geom_segment(aes(x=HPDLowerFiltered, xend=HPDUpperFiltered, y=0, yend=0, col = chain)) + geom_point(aes(x=MLE, y=0)) + facet_wrap(~statFactor, scales = "free", labeller= if(prettyNames) "label_parsed" else "label_value") if(doPlot) { print(traceplot) if(interactive()) { print("Press Enter to see a univariate posterior density plot") scan("", what = "character", nlines = 1) } print(densplot) } else { list(traceplot = traceplot, densplot = densplot) } } } else { stop("plot.summary.POUMM called on a non summary.POUMM-object or a missing MCMC element. Verify that summary.POUMM has been called with mode = 'expert'") } } prettifyNames <- function(names) { prettyNames <- c(alpha = "alpha", theta = "theta", g0 = "g[0]", sigma = "sigma", sigmae = "sigma[e]", H2tMean = "H[bar(t)]^2", H2e = "H[e]^2", H2tInf = "H[infinity]^2") sapply(names, function(n) {pn <- prettyNames[n]; if(!is.na(pn)) pn else n}, USE.NAMES = FALSE) } statistics <- function(object) { UseMethod('statistics') } statistics.POUMM <- function(object) { listPar <- sapply(seq_along(object$spec$parLower), function(i) { name <- names(object$spec$parLower)[i] stat <- eval( parse(text=paste0("list(", name, " = function(par) par[, ", i , "])")) ) }) listOtherStats <- list( H2e = function(par) H2e(z = object$pruneInfo$z, sigmae = object$spec$parMapping(par)[, 'sigmae']), H2tInf = function(par) H2(alpha = object$spec$parMapping(par)[, 'alpha'], sigma = object$spec$parMapping(par)[, 'sigma'], sigmae = object$spec$parMapping(par)[, 'sigmae'], t = Inf), H2tMax = function(par) H2(alpha = object$spec$parMapping(par)[, 'alpha'], sigma = object$spec$parMapping(par)[, 'sigma'], sigmae = object$spec$parMapping(par)[, 'sigmae'], t = object$tMax), H2tMean = function(par) H2(alpha = object$spec$parMapping(par)[, 'alpha'], sigma = object$spec$parMapping(par)[, 'sigma'], sigmae = object$spec$parMapping(par)[, 'sigmae'], t = object$tMean), alpha = function(par) object$spec$parMapping(par)[, 'alpha'], theta = function(par) object$spec$parMapping(par)[, 'theta'], sigma = function(par) object$spec$parMapping(par)[, 'sigma'], sigmae = function(par) object$spec$parMapping(par)[, 'sigmae'], g0 = generateStatisticFunG0(object), sigmaG2tMean = function(par) varOU(alpha = object$spec$parMapping(par)[, 'alpha'], sigma = object$spec$parMapping(par)[, 'sigma'], t = object$tMean), sigmaG2tMax = function(par) varOU(alpha = object$spec$parMapping(par)[, 'alpha'], sigma = object$spec$parMapping(par)[, 'sigma'], t = object$tMax), sigmaG2tInf = function(par) varOU(alpha = object$spec$parMapping(par)[, 'alpha'], sigma = object$spec$parMapping(par)[, 'sigma'], t = Inf)) c(listPar, listOtherStats[setdiff(names(listOtherStats), names(listPar))]) }
empSE <- function(estimates, get=c("empSE", "empSE_mcse"), na.rm=FALSE, ...){ assertthat::assert_that(length(!is.na(estimates)) > 0) x <- c() if(na.rm){ estimates <- estimates[!is.na(estimates)] } deviations <- estimates - mean(estimates) if(any(is.na(deviations))){ x["empSE"] <- NA x["empSE_mcse"] <- NA return(x[get]) } n <- length(deviations) x["empSE"] <- sqrt(sum(deviations^2) / (n-1)) x["empSE_mcse"] <- x["empSE"]/sqrt(2*(n-1)) return(x[get]) }
getAttributes <- function(mart, dataset){ if ((!is.character(mart)) || (!is.character(dataset))) stop("Please use a character string as mart or dataset.", call. = FALSE) if (!is.element(mart, getMarts()$mart)) stop("Please select a valid mart with getMarts().", call. = FALSE) message("Starting retrieval of attribute information from mart ", mart, " and dataset ", dataset, " ...") if (stringr::str_detect(mart, "ENSEMBL")) url <- paste0( "http://ensembl.org/biomart/martservice?type=attributes&dataset=", dataset, "&requestid=biomart&mart=", mart ) if (stringr::str_detect(mart, "plants")) url <- paste0( "http://plants.ensembl.org/biomart/martservice?type=attributes&dataset=", dataset, "&requestid=biomart&mart=", mart ) if (stringr::str_detect(mart, "fung")) url <- paste0( "http://fungi.ensembl.org/biomart/martservice?type=attributes&dataset=", dataset, "&requestid=biomart&mart=", mart ) if (stringr::str_detect(mart, "protist")) url <- paste0( "http://protist.ensembl.org/biomart/martservice?type=attributes&dataset=", dataset, "&requestid=biomart&mart=", mart ) if (stringr::str_detect(mart, "metazoa")) url <- paste0( "http://metazoa.ensembl.org/biomart/martservice?type=attributes&dataset=", dataset, "&requestid=biomart&mart=", mart ) testContent <- httr::content(httr::GET(url), as = "text", encoding = "UTF-8") if (testContent == "Attribute 'mains' does not exist\n") { warning("No attributes were available for mart = ", mart, " and dataset = ", dataset, ".", call. = FALSE) attrBioMart <- data.frame(name = "NA", description = "NA") return(attrBioMart) } attributesPage <- httr::handle(url) xmlContentAttributes <- httr::GET(handle = attributesPage) httr::stop_for_status(xmlContentAttributes) suppressWarnings(rawDF <- do.call("rbind", apply(as.data.frame(strsplit( httr::content(xmlContentAttributes, as = "text", encoding = "UTF-8"), "\n" )), 1, function(x) unlist(strsplit(x, "\t"))))) colnames(rawDF) <- paste0("V", seq_len(ncol(rawDF))) attrBioMart <- as.data.frame(rawDF[, c("V1", "V2")], stringsAsFactors = FALSE, colClasses = rep("character", 2)) colnames(attrBioMart) <- c("name", "description") return(attrBioMart) }
plot_def <- function(result, cluster = "all", hotspot = TRUE, noise = FALSE, ignition = TRUE, from = NULL, to = NULL, bg = NULL) { if (!"spotoroo" %in% class(result)) { stop('Needs a "spotoroo" object as input.') } aes <- ggplot2::aes geom_point <- ggplot2::geom_point labs <- ggplot2::labs theme <- ggplot2::theme theme_bw <- ggplot2::theme_bw ggplot <- ggplot2::ggplot element_blank <- ggplot2::element_blank unit <- ggplot2::unit scale_color_brewer <- ggplot2::scale_color_brewer filter <- dplyr::filter lon <- lat <- membership <- NULL check_type_bundle("logical", hotspot, ignition, noise) is_length_one_bundle(hotspot, ignition, noise) if (!identical("all", cluster)){ check_type("numeric", cluster) if (length(cluster) == 0) stop("Please provide valid membership labels.") indexes <- result$ignition$membership %in% cluster result$ignition <- result$ignition[indexes, ] indexes <- result$hotspots$membership %in% c(cluster, -1) result$hotspots <- result$hotspots[indexes, ] } if (!is.null(from)) { is_length_one(from) indexes <- result$ignition$obsTime >= from result$ignition <- result$ignition[indexes, ] indexes <- result$hotspots$obsTime >= from result$hotspots <- result$hotspots[indexes, ] if (nrow(result$hotspots) == 0) { stop(paste("No hot spots/noise observed later than", from)) } } if (!is.null(to)) { is_length_one(to) indexes <- result$ignition$obsTime <= to result$ignition <- result$ignition[indexes, ] indexes <- result$hotspots$obsTime <= to result$hotspots <- result$hotspots[indexes, ] if (nrow(result$hotspots) == 0) { stop(paste("No hot spots/noise observed ealier than", from)) } } if (ggplot2::is.ggplot(bg)) { p <- bg } else { p <- ggplot() + theme_bw(base_size = 9) + theme(axis.line = element_blank(), axis.text = element_blank(), axis.ticks = element_blank(), axis.title = element_blank(), panel.background = element_blank(), panel.border = element_blank(), panel.grid = element_blank(), panel.spacing = unit(0, "lines"), plot.background = element_blank(), legend.justification = c(0, 0), legend.position = c(0, 0)) } if (length(unique(result$hotspots$membership)) <= 9) { if (hotspot) { p <- p + geom_point(data = filter(result$hotspots, !noise), aes(lon, lat, col = as.character(membership)), alpha = 0.4, size = 1.5) } if (noise) { p <- p + geom_point(data = filter(result$hotspots, noise), aes(lon, lat), col = "black", alpha = 0.2, size = 1.5) } if (ignition & length(unique(result$hotspots$membership)) > 1) { p <- p + geom_point(data = result$ignition, aes(lon, lat), col = "black", size = 1.5) } p <- p + scale_color_brewer(palette = "Set1") + theme(legend.position = "none") + labs(col = "") } else { if (hotspot) { p <- p + geom_point(data = filter(result$hotspots, !noise), aes(lon, lat), col = "black", alpha = 0.4, size = 1.5) } if (noise) { p <- p + geom_point(data = filter(result$hotspots, noise), aes(lon, lat), col = "blue", alpha = 0.2, size = 1.5) } if (ignition) { p <- p + geom_point(data = result$ignition, aes(lon, lat), col = "red", size = 1.5) } p <- p + theme(legend.position = "none") + labs(col = "") } title <- paste("Fires Selected:", nrow(result$ignition), "\n") left <- min(result$hotspots$obsTime) right <- max(result$hotspots$obsTime) if (!is.null(from)) left <- from title <- paste0(title, "From: ", left, "\n") if (!is.null(to)) right <- to title <- paste0(title, "To: ", right) title2 <- "Overview of Fires" if (ignition) title2 <- paste0(title2, " and Ignition Locations") p <- p + labs(title = title2, subtitle = title) return(p) }
previous_quarter <- function(x = Sys.Date(), n = 1, part = getOption("timeperiodsR.parts")) { if ( ! "Date" %in% class(x) ) { x <- as.Date(x) } start <- floor_date( x, unit = "quarter" ) - months(3 * n) stop <- start + months(3) - days(1) out <- custom_period(start, stop) part <- match.arg(part, getOption("timeperiodsR.parts")) if ( part == "all" ) { return(out) } else { return(out[[part]]) } }
geom_smooth <- function(mapping = NULL, data = NULL, stat = "smooth", position = "identity", ..., method = NULL, formula = NULL, se = TRUE, na.rm = FALSE, orientation = NA, show.legend = NA, inherit.aes = TRUE) { params <- list( na.rm = na.rm, orientation = orientation, se = se, ... ) if (identical(stat, "smooth")) { params$method <- method params$formula <- formula } layer( data = data, mapping = mapping, stat = stat, geom = GeomSmooth, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = params ) } GeomSmooth <- ggproto("GeomSmooth", Geom, setup_params = function(data, params) { params$flipped_aes <- has_flipped_aes(data, params, range_is_orthogonal = TRUE, ambiguous = TRUE) params }, extra_params = c("na.rm", "orientation"), setup_data = function(data, params) { GeomLine$setup_data(data, params) }, draw_group = function(data, panel_params, coord, lineend = "butt", linejoin = "round", linemitre = 10, se = FALSE, flipped_aes = FALSE) { ribbon <- transform(data, colour = NA) path <- transform(data, alpha = NA) ymin = flipped_names(flipped_aes)$ymin ymax = flipped_names(flipped_aes)$ymax has_ribbon <- se && !is.null(data[[ymax]]) && !is.null(data[[ymin]]) gList( if (has_ribbon) GeomRibbon$draw_group(ribbon, panel_params, coord, flipped_aes = flipped_aes), GeomLine$draw_panel(path, panel_params, coord, lineend = lineend, linejoin = linejoin, linemitre = linemitre) ) }, draw_key = draw_key_smooth, required_aes = c("x", "y"), optional_aes = c("ymin", "ymax"), default_aes = aes(colour = " linetype = 1, weight = 1, alpha = 0.4) )
library(ggplot2) load('output/result-model5-3.RData') ms <- rstan::extract(fit) qua <- apply(ms$y_pred, 2, quantile, prob=c(0.1, 0.5, 0.9)) d_est <- data.frame(d, t(qua), check.names=FALSE) d_est$A <- as.factor(d_est$A) p <- ggplot(data=d_est, aes(x=Y, y=`50%`, ymin=`10%`, ymax=`90%`, shape=A, fill=A)) + theme_bw(base_size=18) + theme(legend.key.height=grid::unit(2.5,'line')) + coord_fixed(ratio=1, xlim=c(0, 0.5), ylim=c(0, 0.5)) + geom_pointrange(size=0.5, color='grey5') + geom_abline(aes(slope=1, intercept=0), color='black', alpha=3/5, linetype='31') + scale_shape_manual(values=c(21, 24)) + scale_fill_manual(values=c('white', 'grey70')) + labs(x='Observed', y='Predicted') + scale_x_continuous(breaks=seq(from=0, to=0.5, by=0.1)) + scale_y_continuous(breaks=seq(from=0, to=0.5, by=0.1)) ggsave(file='output/fig5-3.png', plot=p, dpi=300, w=5, h=4)
baseline.peakDetection <- function(spectra, left, right, lwin, rwin, snminimum, mono=0, multiplier=5, left.right, lwin.rwin){ np <- dim(spectra) Midspec <- corrected <- matrix(0,np[1],np[2]) Sn <- Peaks <- Y1 <- Y2 <- Y3 <- list() if(!missing(left.right)){ left <- left.right right <- left.right } if(!missing(lwin.rwin)){ lwin <- lwin.rwin rwin <- lwin.rwin } for(a in 1:np[1]){ spectrum <- spectra[a,] mixr <- .mixedup(spectrum, left, right) y <- mixr$topper; yleft <- mixr$lotter; yright <- mixr$rotter slip <- .peakRemoval(spectrum, y, yleft, yright, mono) mini1 <- .localMinPet(slip, lwin, rwin, mono) midspec <- spectrum - mini1 mixr <- .mixedup(midspec, left, right) y2 <- mixr$topper; yleft2 <- mixr$lotter; yright2 <- mixr$rotter slip2 <- .peakRemoval(midspec, y2, yleft2, yright2, mono) mini <- .localMinPet(slip2, lwin, rwin, mono) newspec <- midspec - mini corrected[a,] <- newspec if(!missing(snminimum)){ mixr <- .mixedup(newspec, left, right) y3 <- mixr$topper; yleft3 <- mixr$lotter; yright3 <- mixr$rotter width <- multiplier*pmax(yright3-y3, y3-yleft3) noise <- 0*y3 middle <- 0*y3 for(i in 1:length(y3)){ lend <- max(1, (y3[i]-width[i])) rend <- min(length(newspec), (y3[i]+width[i])) slice <- c(newspec[lend:yleft3[i]], newspec[yright3[i]:rend]) middle[i] <- median(slice) noise[i] <- median(abs(slice-middle[i])) noise[i] <- median(abs(diff(newspec[lend:rend]))) } signal <- newspec[y3]-middle sn <- pmax(0, signal/noise) peaks <- y3[sn > snminimum] Peaks[[a]] <- peaks Sn[[a]] <- sn Y1[[a]] <- y Y2[[a]] <- y2 Y3[[a]] <- y3 Midspec[a,] <- midspec } } if(missing(snminimum)){ list(baseline=spectra-corrected, corrected=corrected) } else { list(baseline=spectra-corrected, corrected=corrected, peaks=Peaks, sn=Sn, y3=Y3, midspec=Midspec, y=Y1, y2=Y2) } } .peakRemoval <- function(w, y, yleft, yright, mono){ if(missing(mono)) mono <- 0 magic <- 3 slopes <- (w[yright]-w[yleft])/(yright-yleft) m <- magic*median(abs(slopes)) counters <- 1:length(slopes) if(mono > 0){ startup <- min(counters[abs(slopes)<m]) } else { temp <- 1:length(w) screwy <- max(temp[w==max(w)]) startup <- min(counters[y > screwy]) } m <- magic*median(abs(slopes[counters>startup])) selector <- !(counters>startup & abs(slopes) > m) z <- y zr <- yright zl <- yleft for(i in 2:(length(y)-1)){ if(selector[i] == 0){ if(w[yright[i-1]] > w[yright[i]]) zr[i-1] <- zr[i] if(w[yleft[i+1]] > w[yleft[i]]) zl[i+1] <- zl[i] } } z <- z[selector] zl <- zl[selector] zr <- zr[selector] newspec <- w for(i in 1:length(z)){ yr <- zr[i] yl <- zl[i] slope <- (w[yr] - w[yl])/(yr-yl) newspec[yl:yr] <- slope*((yl:yr) - yl) + w[yl] } pmin(newspec, w) } .mixedup <- function(w, left, right){ n <- length(w)-1 if (missing(right)) right <- 30 if (missing(left)) left <- 5 if(left <= 0) left <- 5 if(right < left){ temp <- right right <- left left <- temp } x <- diff(w) xl <- x[1:(n-1)] xr <- x[2:n] neartop <- (xl > 0 & xr <= 0) | (xl == 0 & xr < 0) nearbot <- (xl < 0 & xr >= 0) | (xl == 0 & xr > 0) xx <- 1:length(x) nb <- c(1,(xx[nearbot]+1)) nt <- xx[neartop]+1 curt <- 1 curb <- 1 tops <- 0 bots <- 1 numtop <- 1 numbot <- 1 while(curt < length(nt) && curb < length(nb)){ while(nb[curb]<nt[curt] && curb < length(nb)){ curb <- curb+1 } bots[numbot] <- nb[curb] numbot <- numbot+1 while(nt[curt] < nb[curb] && curt < length(nt)){ curt <- curt + 1 } tops[numtop] <- nt[curt]; numtop <- numtop + 1 } fuzz <- median(abs(x)) flux <- w[tops] - w[bots] tops <- tops[flux > 2*fuzz] dt <- diff(tops) a <- (right-left)/length(x)^2 resolve <- left + (a*tops)*tops temtops <- tops topper <- 1 i <- 1 while(i < length(temtops)-1){ if(dt[i] < resolve[i]){ if(w[temtops[i]] < w[temtops[i+1]]) temtops[i] <- temtops[i+1] else temtops[i+1] <- temtops[i] dt[i+1] <- temtops[i+2]-temtops[i] } else topper[length(topper)+1] <- temtops[i] i <- i + 1 } lotter <- rep(1,length(topper)-1) rotter <- rep(1,length(topper)-1) for(i in 2:length(topper)){ temp <- topper[i-1]:topper[i] lotter[i] <- max(temp[w[temp]==min(w[temp])]) rotter[i] <- min(temp[w[temp]==min(w[temp])]) } rotter <- c(rotter[2:length(rotter)], length(x)) uptick <- topper-lotter upper <- median(uptick)-median(abs(uptick-median(uptick))) dntick <- rotter-topper downer <- median(dntick)-median(abs(dntick-median(dntick))) magic <- min(upper, downer) + 1 keeper <- !(uptick < magic | dntick < magic) topper <- topper[keeper] lotter <- lotter[keeper] bottle <- c(lotter, length(x)); for(i in 1:length(topper)){ temp <- bottle[i]:bottle[i+1]; topper[i] <- max(temp[w[temp]==max(w[temp])]) } lotter <- rep(1,length(topper)-1) rotter <- rep(1,length(topper)-1) for(i in 2:length(topper)){ temp <- topper[i-1]:topper[i] lotter[i] <- max(temp[w[temp]==min(w[temp])]) rotter[i] <- min(temp[w[temp]==min(w[temp])]) } maxright <- min(topper[length(topper)]+100, length(w)) rotter <- c(rotter[2:length(rotter)], maxright) list(topper=topper, lotter=lotter, rotter=rotter) } .localMinPet <- function(spectrum, window, rightWindow, mono){ if(missing(window)) window <- 100 if(missing(rightWindow)) rightWindow <- window if(missing(mono)) mono <- 0 len <- length(spectrum) tops <- 1:len a <- (rightWindow-window)/len^2 resolve <- floor(window + (a*tops)*tops) mini <- numeric(len) lend <- pmax(1,(tops-resolve)) rend <- pmin(len, (tops+resolve)) for(i in 1:len){ s <- spectrum[lend[i]:rend[i]] mini[i] <- min(s) } if(mono > 0){ mono <- numeric(len) mono[1] <- mini[1] for(i in 2:len){ mono[i] <- mono[i-1] if(mini[i] < mono[i]) mono[i] <- mini[i] } mini <- mono } mini }
print.geomerge <- function(x, ...){ inputs <- names(x$inputData) datsets <- length(inputs) if (!('period' %in% names(x$data))){ time.lag <- FALSE } num <- c() non.num <- c() for (inpt in 1:datsets){ if (class(x$inputData[[inpt]])=='SpatialPointsDataFrame'){ if (is.numeric(x$data@data[,paste0(inputs[inpt],'.',x$parameters$point.agg)])){ num <- c(num,inputs[inpt]) }else{ non.num <- c(non.num,inputs[inpt]) } }else if (class(x$inputData[[inpt]])=='SpatialPolygonsDataFrame'){ if (is.numeric(x$data@data[,inputs[inpt]])){ num <- c(num,inputs[inpt]) }else{ non.num <- c(non.num,inputs[inpt]) } }else if (class(x$inputData[[inpt]])=='RasterLayer'){ num <- c(num,inputs[inpt]) } } main = paste0("geomerge completed: ",datsets," datasets successfully integrated -") if (length(x$parameters$time)>1){ main <- paste0(main,' run in dynamic mode, spatial panel was generated.\n\n') }else{ main <- paste0(main,' run in static mode.\n\n') } num.message = paste0('The following ',length(num),' numerical variable(s) are available:','\n ',paste(num,collapse=", "),'\n\n') non.num.message = paste0('The following ',length(non.num),' non numerical variable(s) are available:','\n ',paste(non.num,collapse=", "),'\n\n') if (length(num)>0 & length(non.num)>0){ message <- paste0(main,num.message,non.num.message) }else if (length(num)>0 & length(non.num)==0){ message <- paste0(main,num.message) }else if (length(num)==0 & length(non.num)>0){ message <- paste0(main,non.num.message) } if (x$parameters$spat.lag){ message <- paste0(message,'First and second order spatial lag values available.\n') } if (length(x$parameters$time)>1 & x$parameters$time.lag){ message <- paste0(message,'First and second order temporal lag values available.\n') } cat(message) }
bs.g2 <- function(target, dataset, threshold = 0.05) { runtime <- proc.time() dataset <- as.matrix(dataset) target <- as.numeric(target) z <- cbind(dataset, target) all.dc <- Rfast::colrange(z, cont = FALSE) p <- dim(z)[2] - 1 ind <- 1:p stat <- rep( Inf, p ) pval <- rep( -100, p ) dof <- rep( 100, p ) sig <- log(threshold) for ( i in 1:p ) { mod <- Rfast::g2Test(z, x = p + 1, y = i, cs = ind[ ind != i ], dc = all.dc) dof[i] <- mod$df stat[i] <- mod$statistic } pval <- pchisq(stat, dof, lower.tail = FALSE, log.p = TRUE) no <- which(pval == 0) if ( length(no) > 1 ) { sel <- which.min( stat[no]/dof[no] ) } else sel <- which.max(pval) mat <- cbind(1:p, pval, stat) colnames(mat) <- c("variable", "log.p-values", "statistic" ) info <- matrix( c(0, -10, -10), ncol = 3 ) colnames(info) <- c("Variables", "log.p-values", "statistic") if ( pval[sel] < sig ) { res <- list(info = matrix(0, 0, 3), runtime = proc.time() - runtime, mat = mat, ci_test = "gSquare") } else { info[1, ] <- mat[sel, ] mat <- mat[-sel, , drop = FALSE] dat <- z[, -sel, drop = FALSE] dc2 <- all.dc[-sel] p <- p - 1 ind <- 1:p stat <- rep( Inf, p ) pval <- rep( -100, p ) dof <- rep( 100, p ) for ( i in 1:p ) { mod <- Rfast::g2Test(dat, x = p + 1, y = i, cs = ind[ ind != i ], dc = dc2) stat[i] <- mod$statistic dof[i] <- mod$df } pval <- pchisq(stat, dof, lower.tail = FALSE, log.p = TRUE) mat[, 2:3] <- cbind(pval, stat) no <- which(pval == 0) if ( length(no) < 1 ) { sel <- which.max( pval ) } else sel <- which.min(stat[no]/dof[no]) while ( pval[sel] > sig & p > 1 ) { info <- rbind(info, mat[sel, ]) mat <- mat[-sel, , drop = FALSE] dat <- z[, -info[, 1], drop = FALSE] dc2 <- all.dc[ -info[, 1] ] p <- p - 1 if ( p == 1 ) { mod <- Rfast::gchi2Test(target, dat[, -(p + 1)], logged = TRUE) stat <- mod[2, 1] pval <- mod[2, 2] sel <- 1 if ( pval > sig ) { info <- rbind(info, mat[sel, ]) mat <- NULL } } else { ind <- 1:p stat <- rep( Inf, p ) pval <- rep( -100, p ) dof <- rep( 100, p ) for ( i in 1:p ) { mod <- Rfast::g2Test(dat, x = p + 1, y = i, cs = ind[ ind != i ], dc = dc2) stat[i] <- mod$statistic dof[i] <- mod$df } pval <- pchisq(stat, dof, lower.tail = FALSE, log.p = TRUE) mat[, 2:3] <- cbind(pval, stat) no <- which(pval == 0) if ( length(no) < 1 ) { sel <- which.max( pval ) } else sel <- which.min(stat[no]/dof[no]) } } runtime <- proc.time() - runtime info <- info[ info[, 1] > 0, , drop = FALSE] res <- list(runtime = runtime, info = info, mat = mat, ci_test = "gSquare" ) } res }
cli_progress_num <- function() { length(clienv$progress) } cli_progress_cleanup <- function() { while ((n <- cli_progress_num()) > 0) { cli_progress_done(clienv$progress[[n]]$id) } ansi_show_cursor() invisible() } should_run_progress_examples <- function() { if (is_rcmd_check()) return(FALSE) tolower(Sys.getenv("R_PROGRESS_NO_EXAMPLES")) != "true" } is_rcmd_check <- function() { if (identical(Sys.getenv("NOT_CRAN"), "true")) { FALSE } else { Sys.getenv("_R_CHECK_PACKAGE_NAME_", "") != "" } }
summary.funnelplot <- function(object, ...){ k <- object$conflev outp <- list("call" = object$call) for(i in k){ temp <- sort(object$data[which(object$data[, as.character(i)] == "worse"), "instance"]) outp[[as.character(i)]] = droplevels(as.factor(temp)) } return(outp) }
conf.int = function(level = 0.95, size = 50, cl = c('red', 'gray'), ...) { n = ani.options('nmax') d = replicate(n, rnorm(size)) m = colMeans(d) z = qnorm(1 - (1 - level)/2) y0 = m - z/sqrt(size) y1 = m + z/sqrt(size) rg = range(c(y0, y1)) cvr = y0 < 0 & y1 > 0 xax = pretty(1:n) for (i in 1:n) { dev.hold() plot( 1:n, ylim = rg, type = 'n', xlab = 'Samples', ylab = expression('CI: [' ~ bar(x) - z[alpha/2] * sigma/sqrt(n) ~ ', ' ~ bar(x) + z[alpha/2] * sigma/sqrt(n) ~ ']'), xaxt = 'n', ...) abline(h = 0, lty = 2) axis(1, xax[xax <= i]) arrows( 1:i, y0[1:i], 1:i, y1[1:i], length = par('din')[1]/n * 0.5, angle = 90, code = 3, col = cl[cvr[1:i] + 1]) points(1:i, m[1:i], col = cl[cvr[1:i] + 1]) legend( 'topright', legend = format(c(i - sum(cvr[1:i]), sum(cvr[1:i])), width = nchar(n)), fill = cl, bty = 'n', ncol = 2) legend( 'topleft', legend = paste('coverage rate:', format(round(mean(cvr[1:i]), 3), nsmall = 3)), bty = 'n') ani.pause() } CI = cbind(y0, y1) colnames(CI) = paste(round(c((1 - level)/2, 1 - (1 - level)/2), 2) * 100, '%') rownames(CI) = 1:n invisible(list(level = level, size = size, CI = CI, CR = mean(cvr))) }
tidy.lmrob <- function(x, conf.int = FALSE, conf.level = 0.95, ...) { ret <- coef(summary(x)) %>% as_tibble(rownames = "term") names(ret) <- c("term", "estimate", "std.error", "statistic", "p.value") if (conf.int) { ci <- stats::confint.default(x, level = conf.level) %>% as_tibble() names(ci) <- c("conf.low", "conf.high") ret <- ret %>% cbind(ci) } ret } augment.lmrob <- function(x, data = model.frame(x), newdata = NULL, se_fit = FALSE, ...) { augment_newdata( x, data, newdata, .se_fit = se_fit ) } glance.lmrob <- function(x, ...) { s <- summary(x) as_glance_tibble( r.squared = s$r.squared, sigma = s$sigma, df.residual = x$df.residual, na_types = "rri" ) }
parse.ls.error <- function(lsp, func.locations, err.file) { error.str <- readLines(err.file, warn=FALSE)[[1]] m <- regmatches(error.str, regexec("^Error: At line ([[:digit:]]+): (.+)$", error.str))[[1]] if (length(m) != 0) { line.no <- as.integer(m[[2]]) err.text <- m[[3]] return(sprintf("%s\n%s", err.text, find.ls.context(lsp, func.locations, line.no))) } m <- regmatches(error.str, regexec("^^Error \\[[^]]+ line: ([[:digit:]]+) ]: (.+)$", error.str))[[1]] if (length(m) != 0) { line.no <- as.integer(m[[2]]) err.text <- m[[3]] return(sprintf("%s\n%s", err.text, find.ls.context(lsp, func.locations, line.no))) } return(error.str) } find.ls.context <- function(lsp, func.locations, line.no) { for(funcName in names(func.locations)) { loc <- func.locations[[funcName]] if (loc$start.line <= line.no && line.no < loc$end.line) { inFuncLine <- line.no - loc$start.line + 1 funcDesc <- lsp$functions[[funcName]] lines <- paste(".", strsplit(funcDesc$body, '\n')[[1]]) lines[[inFuncLine]] <- sprintf('>%s', substring(lines[[inFuncLine]], 2)) ctx <- lines[max(1, inFuncLine-1):min(inFuncLine+1, length(lines))] if (inFuncLine <= 2) { ctx[[1]] <- sprintf('%s {%s', funcDesc$decl, ctx[[1]]) } return(sprintf("in '%s' function, arround\n%s", funcName, paste(ctx, collapse='\n'))) } } return("At unexpected position (line: %d)", line.no) }
ETref <- function(x, Tmax = NULL, Tmin = NULL, Rhmax = NULL, Rhmin = NULL, Tmean = NULL, Rhmean = NULL, u = NULL, Rs = NULL, n = NULL, P = NULL, elev, lat.rad = NULL, lat.deg = NULL, long.deg = NULL, tl, G = NULL, actVP = NULL, control = list()) { control <- modifyList(controlDefaults, control) if(all(is.numeric(x))){ tl <- 24 } if(all(is.timepoint(x))) { if(length(x) > 1) { tl <- as.numeric(difftime(x[2:length(x)], x[1:(length(x)-1)] , units = 'hour')) tl <- unique(tl) if(length(tl) > 1) stop('Difference betwenn time steps must be consistent in x!') } if(length(x) == 1) { stopifnot(exists('tl')) } } doy <- prep.date(x) if (is.null(lat.rad) & is.null(lat.deg)) stop('no latitude') if (is.null(lat.rad)) lat.rad <- (pi/180)*lat.deg if (is.null(P)) { P <- estP(elev = elev, control) } if(control$uz == 2) { u2 <- u } if(control$uz != 2) { u2 <- adj_u2(u = u, uz = control$uz) } if (all(tl > 1)){ if(!is.null(actVP)) { Vpres <- actVP }else{ Vpres <- VP(Tmax, Tmin, Rhmax = Rhmax, Rhmin = Rhmin, Rhmean = Rhmean, interval = 'day') } if (is.null(Rs) & is.null(n)) { stop('For daily or longer periods solar radiation (Rs) or sunshine duration (n) must be provided!') } if (is.null(Rs)) { Rs <- estRs(x, n, lat.rad = lat.rad, control = control)} if (is.null(G)) { G <- 0 } Tmean <- ((Tmax + Tmin)/2) obj <- ((0.408* deltaVP(Tmax = Tmax, Tmin = Tmin)* (Rn(x = doy, Tmax = Tmax, Tmin = Tmin, Rhmax = Rhmax, Rhmin = Rhmin, Rs = Rs, control = control, lat.rad = lat.rad, elev = elev, Rhmean = Rhmean, actVP = actVP, Tmean = Tmean) - G))+ (psyc_cons(elev = elev, P = P)*900/(Tmean + 273))*(u2)* (satVP(Tmax, Tmin, interval = 'day') - Vpres))/ (deltaVP(Tmax = Tmax, Tmin = Tmin) + (psyc_cons(elev = elev, P)*(1+(0.34*u2)))) } if (all(tl <= 1)) { if(is.null(long.deg)) { stop('For hourly or shorter periods longitude (long.deg) must be provided!') } if(is.null(Rs)) { stop('For hourly or shorter periods solar radiation (Rs) must be provided!') } if (is.null(G)) {G <- estG(x = x, Tmean = Tmean, Rhmean = Rhmean, Rs = Rs, lat.rad = lat.rad, long.deg = long.deg, tl = tl, elev = elev, control = control) } obj <- ((0.408* deltaVP(Tmean = Tmean)* (Rn(x = x, Rs = Rs, Tmean = Tmean, Rhmean = Rhmean, lat.rad = lat.rad, long.deg = long.deg, elev = elev, control = control, tl = tl) - G)) + (psyc_cons(elev, P, control = control)*(37/(Tmean + 273))* u2* (e0(Tmean) - VP(Tmean = Tmean, Rhmean = Rhmean, interval = 'hour')) ))/ (deltaVP(Tmean = Tmean) + (psyc_cons(elev, P, control = control)*(1 + 0.34 * u2))) } obj }
library(tinytest) library(tiledb) isOldWindows <- Sys.info()[["sysname"]] == "Windows" && grepl('Windows Server 2008', osVersion) ctx <- tiledb_ctx(limitTileDBCores()) if (get_return_as_preference() != "asis") set_return_as_preference("asis") d1 <- tiledb_dim("d1", domain=c(1L, 100L)) dom <- tiledb_domain(c(d1)) a1 <- tiledb_attr(type = "FLOAT64") sch <- tiledb_array_schema(dom, c(a1)) expect_true(is(sch, "tiledb_array_schema")) d1 <- tiledb_dim("d1", domain = c(1L, 100L)) d2 <- tiledb_dim("d2", domain = c(1L, 100L)) dom <- tiledb_domain(c(d1, d2)) a1 <- tiledb_attr(type = "FLOAT64") sch <- tiledb_array_schema(dom, c(a1)) expect_true(is(domain(sch), "tiledb_domain")) ds <- tiledb::dimensions(sch) expect_equal(length(ds), 2) expect_true(is(ds[[1]], "tiledb_dim")) expect_true(is(ds[[2]], "tiledb_dim")) as <- tiledb::attrs(sch) expect_equal(length(as), 1) expect_true(is(as[[1]], "tiledb_attr")) expect_equal(tiledb::cell_order(sch), "COL_MAJOR") expect_equal(tiledb::tile_order(sch), "COL_MAJOR") expect_false(is.sparse(sch)) d1 <- tiledb_dim("d1", domain = c(1L, 100L)) d2 <- tiledb_dim("d2", domain = c(1L, 100L)) d3 <- tiledb_dim("d3", domain = c(1L, 100L)) dom <- tiledb_domain(c(d1, d2, d3)) a1 <- tiledb_attr("attribute1", type = "FLOAT64") a2 <- tiledb_attr("attribute2", type = "INT32") sch <- tiledb_array_schema(dom, c(a1, a2), cell_order = "ROW_MAJOR", tile_order = "ROW_MAJOR", coords_filter_list = tiledb_filter_list(c(tiledb_filter("GZIP"))), offsets_filter_list = tiledb_filter_list(c(tiledb_filter("ZSTD"))), sparse = TRUE) expect_true(is(domain(sch), "tiledb_domain")) ds <- tiledb::dimensions(sch) expect_equal(length(ds), 3) expect_true(is(ds[[1]], "tiledb_dim")) expect_true(is(ds[[2]], "tiledb_dim")) expect_true(is(ds[[3]], "tiledb_dim")) as <- tiledb::attrs(sch) expect_equal(length(as), 2) expect_equal(names(as), c("attribute1", "attribute2")) expect_true(is(as[[1]], "tiledb_attr")) expect_true(is(as[[2]], "tiledb_attr")) expect_equal(tiledb::cell_order(sch), "ROW_MAJOR") expect_equal(tiledb::tile_order(sch), "ROW_MAJOR") filter_list <- tiledb::filter_list(sch) expect_equal(tiledb_filter_type(filter_list[["coords"]][0]), "GZIP") expect_equal(tiledb_filter_get_option(filter_list[["coords"]][0], "COMPRESSION_LEVEL"), -1) expect_equal(tiledb_filter_type(filter_list[["offsets"]][0]), "ZSTD") expect_equal(tiledb_filter_get_option(filter_list[["offsets"]][0], "COMPRESSION_LEVEL"), -1) expect_true(is.sparse(sch)) tiledb:::libtiledb_array_schema_set_capacity(sch@ptr, 100000) expect_equal(tiledb:::libtiledb_array_schema_get_capacity(sch@ptr), 100000) expect_error(tiledb:::libtiledb_array_schema_set_capacity(sch@ptr, -10)) if (!(isOldWindows)) { dir.create(uri <- tempfile()) key <- "0123456789abcdeF0123456789abcdeF" dom <- tiledb_domain(dims = c(tiledb_dim("rows", c(1L, 4L), 4L, "INT32"), tiledb_dim("cols", c(1L, 4L), 4L, "INT32"))) schema <- tiledb_array_schema(dom, attrs = c(tiledb_attr("a", type = "INT32"))) tiledb:::libtiledb_array_create_with_key(uri, schema@ptr, key) ctx <- tiledb_ctx() arrptr <- tiledb:::libtiledb_array_open_with_key(ctx@ptr, uri, "WRITE", key) A <- new("tiledb_dense", ctx=ctx, uri=uri, as.data.frame=FALSE, ptr=arrptr) expect_true(is(A, "tiledb_dense")) unlink(uri, recursive=TRUE) } dom <- tiledb_domain(dims = c(tiledb_dim("rows", c(1L, 4L), 4L, "INT32"), tiledb_dim("cols", c(1L, 4L), 4L, "INT32"))) sch <- tiledb_array_schema(dom, attrs = c(tiledb_attr("a", type = "INT32")), sparse = TRUE) expect_false(allows_dups(sch)) allows_dups(sch) <- TRUE expect_true(allows_dups(sch))
hyperparam.alpha <- function(icp.torus, alphavec = NULL, alpha.lim = 0.15){ if(is.null(icp.torus)) {stop("icp.torus object must be input.")} if(icp.torus$model == "mixture") {model <- "mixture"} else if(icp.torus$model == "kmeans") {model <- "kmeans"} else {stop("model kde is not supported.")} n2 <- icp.torus$n2 if (is.null(alphavec) && alpha.lim > 1) {stop("alpha.lim must be less than 1.")} output <- list() out <- data.frame() if (is.null(alphavec)) {alphavec <- 1:floor(min(n2, 1000) * alpha.lim) / n2} n.alphavec <- length(alphavec) if (model == "kmeans"){ for (ii in 1:n.alphavec){ alpha <- alphavec[ii] ialpha <- ifelse((n2 + 1) * alpha < 1, 1, floor((n2 + 1) * alpha)) t <- icp.torus$score_ellipse[ialpha] ncluster <- conn.comp.ellipse(icp.torus$ellipsefit, t)$ncluster out <- rbind(out, data.frame(alpha = alpha, ncluster = ncluster)) if(ii%%10 == 0) cat(".") } cat("\n") nclusters.length <- rle(out$ncluster)$lengths length <- max(nclusters.length) length.index <- which.max(nclusters.length) length.sum <- ifelse(length.index == 1, 0, sum(nclusters.length[1:(length.index - 1)])) term.alpha <- out$alpha[(length.sum + 1):(length.sum + length)] alphahat <- stats::median(term.alpha) output$alpha.results <- out output$alphahat <- alphahat } else if (model == "mixture"){ for (ii in 1:n.alphavec){ alpha <- alphavec[ii] ialpha <- ifelse((n2 + 1) * alpha < 1, 1, floor((n2 + 1) * alpha)) t <- icp.torus$score_ellipse[ialpha] ncluster <- conn.comp.ellipse(icp.torus$ellipsefit, t)$ncluster out <- rbind(out, data.frame(alpha = alpha, ncluster = ncluster)) if(ii%%10 == 0) cat(".") } cat("\n") nclusters.length <- rle(out$ncluster)$lengths length <- max(nclusters.length) length.index <- which.max(nclusters.length) length.sum <- ifelse(length.index == 1, 0, sum(nclusters.length[1:(length.index - 1)])) term.alpha <- out$alpha[(length.sum + 1):(length.sum + length)] alphahat <- stats::median(term.alpha) output$alpha.results <- out output$alphahat <- alphahat } return(structure(output, class = "hyperparam.alpha")) }
.Random.seed <- c(403L, 10L, 1897936630L, -1719655904L, 881993699L, -1426011007L, -545453328L, 1718534542L, -512610567L, 806804619L, 1551647930L, 1053810620L, 1911463167L, -1908805547L, 1750049644L, 2123865026L, -142685155L, -1759859561L, -1014494722L, -1217082952L, 1255720347L, 2006477817L, -886901944L, -309207434L, -460957775L, 745187811L, 331939506L, 1853436676L, -2002112441L, 533583645L, 889597332L, 642175290L, 1125657989L, 604317279L, 400494822L, 178410352L, -82086765L, 1122496817L, -2036508704L, -1899635586L, -1732489463L, 1004474683L, 331183370L, 1501129964L, 135584111L, 553475749L, 1369354332L, 4532274L, -876093651L, 1237888487L, -689442546L, -1154345240L, -522045205L, 315701641L, 1326041368L, -903521210L, 679208097L, 478710579L, -1902939486L, 913820052L, -885991401L, 766689293L, 1430324516L, 1340555530L, -2125858699L, -1786883121L, -253631274L, -1929153408L, -1662547261L, -166800287L, 1767019728L, 339002926L, 1357395929L, 242964459L, 739249754L, 2142111772L, 873600287L, -1285188235L, 1939907596L, 1875764706L, -1895803203L, 1101754679L, 2056639966L, -491255016L, -762183045L, 317141017L, -1126897496L, 588696150L, 769111761L, -1558038909L, -1884820206L, -996247388L, 318617703L, -500631107L, -1152445644L, 1834481818L, 744742629L, 1909700735L, 1331229190L, -842179184L, 1398014003L, -11243567L, -1610422912L, -1080301474L, 1667155881L, -20775333L, 1891000938L, -162574580L, -621156017L, -480783867L, 2044100796L, -1994020462L, -360136051L, -1822199609L, -1733360210L, 741478408L, -1374419957L, 469090537L, 1340784568L, -1498539930L, -145405695L, -667746413L, 298291266L, -160737292L, 1008992759L, 646776301L, 1482966660L, -2073347926L, -754481643L, -1261741393L, -265678666L, -722563360L, -2146725341L, -1214038719L, -1085439952L, -66938290L, -580264263L, -408507701L, -2041156742L, -396322180L, -1975112001L, -1247111275L, 649809836L, 716475778L, 413700957L, 1484275287L, 63397182L, 1189424504L, 2144091739L, 1594251705L, -123671544L, -705005898L, 13796849L, -810116061L, 47248498L, 1563797188L, 1056604295L, 2101675101L, -2003195308L, -2060451718L, 624264133L, 878130463L, 1143837862L, 1336550960L, 101940435L, -1417497871L, 189612576L, -2088655682L, 142430409L, -461516165L, -1500874678L, -860059476L, -107614289L, 1220885349L, 1778667804L, 246208882L, 1748781549L, 2065243687L, -1784066482L, 1987801768L, 1644318891L, -1741915703L, 1497126360L, 359048326L, 896649569L, -1930998541L, -1583516830L, -1234928172L, -847497001L, 995543757L, -1258546588L, -1743007670L, -103279179L, -2136114929L, 1909679638L, -2092556096L, -645581181L, -1269108063L, -1472605040L, 993591150L, -1727801063L, -2075838037L, 1775802266L, 112658268L, 1742345823L, -681433547L, -1125923380L, -580319966L, -1233211523L, 333218935L, -1102366306L, 1673211992L, -1803375173L, -633584807L, 334377192L, -2146692842L, 835498641L, 1192542019L, -31352238L, 576433380L, -1146865881L, -605998211L, -2042247564L, 1718532186L, -1210171227L, -736632129L, 1835678022L, 1496747984L, -1934177805L, -1679943776L, -354409284L, -414342704L, -133320350L, 1767960552L, 961975244L, 385066748L, 1152828402L, -532697984L, 2003863796L, -1274437496L, -1399242438L, -1537692848L, 20545644L, 536116372L, -1469086382L, 2000079584L, -439759668L, -204983136L, 1194440066L, 1692673256L, -1416100628L, 1293498428L, 321727602L, -648078224L, 1906635300L, 421578296L, 725934618L, -1835447088L, 9825852L, -898475884L, 217531522L, -181615680L, 989751612L, 1091522192L, 1495471138L, 1056276488L, -2006834036L, 346840092L, 1930027154L, -1162093440L, 311446548L, -1873832152L, 842285114L, -1465083696L, 549359724L, 948045492L, 2119486482L, 1422369760L, -833014836L, 624499168L, 930687010L, -1809339096L, -855805684L, -1816112580L, 979855602L, 1475407088L, 63520580L, 561798232L, 1433087546L, -1986381584L, 981092028L, 932717076L, -751110974L, 1097546336L, -1284230788L, 1608772816L, -269340638L, -1157163864L, 1368076684L, -1743912516L, 837323826L, -227365056L, 1530055348L, -418853560L, -604981574L, -593085680L, 1581336812L, 695643220L, 230146834L, -1179193952L, -774498356L, 1760389984L, 1143729346L, 599958056L, 284302764L, -236084420L, -1039765646L, 707862320L, -742491100L, -492105160L, -1608726822L, 1211212688L, 307745020L, -1460082284L, 1164294978L, -512232960L, -1840221124L, -480688L, -1680534366L, 862840648L, -189290996L, -91187492L, -459268014L, -305819520L, -318147756L, 1733792744L, -16313606L, -408400048L, -1263972308L, 533778804L, -1419679086L, 251515488L, 629406860L, 1310567776L, 1443987682L, -504309592L, -1066024244L, 1284457980L, -901638222L, -526667792L, -804799036L, -1838724776L, 1030303098L, -717759056L, -1639736900L, 1774332500L, -2036781630L, 1520798496L, -1621660740L, 551384144L, -1883400222L, 1335810920L, -1483053236L, 524081916L, -949398798L, 1359180032L, -986639244L, 1875098120L, -1175625286L, -855868976L, 228332524L, -1952426092L, 1679860946L, -140603296L, 1841805644L, -2035294432L, 1706844802L, 1458975208L, -627883028L, -1114276292L, -1428745614L, -1435347088L, 556007716L, -2139357640L, 1248898458L, 1221465552L, -244158020L, -687924588L, 2003908226L, -367396416L, 1058234172L, -139704688L, -1675443422L, -246403576L, -768366836L, -400875620L, -2078607342L, 1706001280L, -1030340844L, 1541155112L, 1946417210L, -176576560L, 673661548L, -1090698188L, 456469650L, 2014131552L, 920084812L, -508010016L, -348735582L, -680960088L, 643714188L, -1138938948L, -966459278L, 1815024624L, -1877065660L, 384242776L, 270665786L, 279511152L, -933082564L, 410913556L, -1315840318L, -2126569760L, -238959492L, 1118187728L, -544726110L, 1816191528L, 1696308492L, 280865724L, -386839246L, -606731072L, 1636482612L, -152213816L, -1887760710L, 1579731088L, -1802966292L, 2107531860L, 592733842L, 1397480224L, 176249804L, 727233760L, -1460815166L, -1618329560L, -302324820L, -1559637316L, 1061920242L, 1015803440L, 1212745636L, 1816782264L, -301185190L, 1837074576L, 563389308L, 521689876L, -659193534L, -176659712L, 841459644L, 1367909200L, -664805485L, 497185716L, -1596671806L, 1442184407L, 908278049L, -228978458L, 17118692L, -1799720683L, -827029185L, -1838230312L, -2124530442L, 856246019L, -467533755L, -1875828638L, 1716381648L, 815856889L, 748516907L, 1629880732L, -1031314998L, -947993921L, 257963017L, 1827489054L, 207603916L, -1696678755L, -525033177L, -1088992432L, 1355757038L, -367889765L, -101026563L, -1712972822L, -533521272L, -13958607L, -430599005L, -1157048156L, 1806723410L, -1745742681L, 1767166193L, 1059711030L, 1634539732L, -888443803L, -1932302737L, -1781389144L, -1286130170L, -685074637L, -2120150123L, -1568266254L, 93824064L, -1043227223L, 1639167003L, 477655532L, 567740922L, -1207980497L, -1302676935L, 379425870L, -1891410788L, -398520819L, 390820471L, -519028096L, 2063300830L, -1057320021L, -1609491283L, -623697638L, 27006424L, 2049986113L, 1475233011L, 614093588L, 631399074L, 2144754615L, -2141194367L, -1537442426L, -1811427388L, -651275531L, -108050593L, -1526658632L, -1000853354L, 543528611L, -705972123L, -1585590910L, 491532016L, -627080551L, -1807620469L, 760121212L, 1855080874L, -696368673L, 1377081193L, -1215864962L, -1814124692L, 1701600189L, 1402472583L, 1357218928L, -1254047986L, 1974404155L, 1628932893L, -2022325814L, -1564546328L, -673767983L, -1945776189L, 607754436L, -2127239310L, 1954273863L, 110848529L, 1699390358L, -1498634508L, 1734609029L, -1672266289L, 2110064840L, 2071667046L, 1634046867L, -504439563L, 34176210L, 163900192L, 1561666313L, 402474043L, -537048692L, 666050586L, -999732081L, -1108626471L, 1218950254L, 575510524L, 1004965229L, -1701083369L, 1410627296L, -1573993282L, -1855925621L, -2022205171L, 586845498L, 1899007352L, 1818789665L, 1169039315L, 1100367604L, 2010519426L, 2058862103L, 1989711073L, 1966240294L, 49853220L, 1742822357L, 1585216383L, 989560344L, 1712588086L, 1969068995L, -2013740539L, -658663006L, -2077319792L, -1028264647L, -2017318421L, -570905892L, -1098412278L, -1473216001L, 1865320521L, 234955230L, -385152628L, 1970693469L, -679574169L, -466954608L, -1414055762L, -320947877L, 1512795453L, 1772625834L, -1626785720L, -1295871887L, -1308328477L, -178226972L, -1073310702L, 1473732583L, -1924921423L, 13097462L, -703241196L, 880057125L, 296582191L, -1174002577L)
formulaMultilinear <- function (nloc = 2, max.level = 2, max.dom = 2, e.unique = FALSE) { a <- noia::effectsNames[2] d <- noia::effectsNames[3] f <- paste("phen ~ X[[\"", effNames(nloc = nloc), "\"]]*R", sep = "") for (l1 in 1:nloc) { add <- effNames(c(a), c(l1), nloc) dom <- effNames(c(d), c(l1), nloc) f <- paste(f, " + ", "X[[\"", add, "\"]]*a", l1, sep = "") if (max.dom > 0) { f <- paste(f, " + ", "X[[\"", dom, "\"]]*d", l1, sep = "") } } if ((max.level > 1) && (nloc > 1)) { for (l1 in 1:(nloc - 1)) { for (l2 in (l1 + 1):nloc) { aXa <- effNames(c(a, a), c(l1, l2), nloc) aXd <- effNames(c(a, d), c(l1, l2), nloc) dXa <- effNames(c(d, a), c(l1, l2), nloc) dXd <- effNames(c(d, d), c(l1, l2), nloc) if (e.unique) { f <- paste(f, " + ", "X[[\"", aXa, "\"]]*a", l1, "*a", l2, "*ee", sep = "") if (max.dom > 1) { f <- paste(f, " + ", "X[[\"", aXd, "\"]]*a", l1, "*d", l2, "*ee", sep = "") f <- paste(f, " + ", "X[[\"", dXa, "\"]]*d", l1, "*a", l2, "*ee", sep = "") f <- paste(f, " + ", "X[[\"", dXd, "\"]]*d", l1, "*d", l2, "*ee", sep = "") } } else { f <- paste(f, " + ", "X[[\"", aXa, "\"]]*a", l1, "*a", l2, "*e", l1, l2, sep = "") if (max.dom > 1) { f <- paste(f, " + ", "X[[\"", aXd, "\"]]*a", l1, "*d", l2, "*e", l1, l2, sep = "") f <- paste(f, " + ", "X[[\"", dXa, "\"]]*d", l1, "*a", l2, "*e", l1, l2, sep = "") f <- paste(f, " + ", "X[[\"", dXd, "\"]]*d", l1, "*d", l2, "*e", l1, l2, sep = "") } } } } } return(f) }
library(testthat) context("checkrcompObjItemLength") test_that("rcompObjItemLength works",{ expect_equal(rcompObjItemLength(iris), 150) expect_equal(rcompObjItemLength(c(1,2,3)), 3) expect_equal(rcompObjItemLength(NA), 1) expect_equal(rcompObjItemLength(NULL), 0) })
args(vars:::predict.varest) predictions <- predict(varsimest, n.ahead = 25, ci = 0.95) class(predictions) args(vars:::plot.varprd) plot(predictions, names = "y1") args(fanchart) fanchart(predictions, names = "y2")
test_that("todos() works", { path <- test_path("scripts") file <- test_path("scripts/todos.R") res <- todos(path = path) exp <- struct( list( line = c(3L, 7L), file = rep(file, 2), todo = c("make x longer", "add another example") ), c("todos_df", "data.frame"), todos_type = "todo", row.names = 1:2, .keep_attr = TRUE ) expect_identical(res, exp) res <- todos(pattern = "example", path = path) exp <- struct( list( line = 7L, file = file, todo = "add another example" ), c("todos_df", "data.frame"), todos_type = "todo", row.names = 1L, .keep_attr = TRUE ) expect_identical(res, exp) res <- fixmes(path = path) exp <- struct( list( line = 9L, file = file, fixme = "This is a fixme" ), c("todos_df", "data.frame"), todos_type = "fixme", row.names = 1L, .keep_attr = TRUE ) expect_identical(res, exp) }) test_that("todo() errors and messages", { path <- test_path("scripts") err <- "path must be a character vector of length 1L" expect_error(todos(path = 1), err) expect_error(todos(path = c("a", "b")), err) expect_error(todos(path = "zzz"), "path not found: zzz") expect_error(do_todo(c("todo", "fixme"), path = "."), "Length of text must be 1") expect_message(res <- todos("zzzzzz", path = path), "No todos found") expect_null(res) skip("not currently testing snaps") expect_snapshot(todos(path = path)) })
library(tidyverse) library(here) library(janitor) library(likert) library(jkmisc) library(nord) star_wars <- dir(here("week7", "data"), pattern = "StarWars", full.names = TRUE) %>% read_csv() clean_names <- stringi::stri_trans_general(names(star_wars), "latin-ascii") %>% gsub("[^\\x{00}-\\x{7f}]", "", ., perl = TRUE) %>% clean_names() star_wars <- set_names(star_wars, clean_names) headers <- slice(star_wars, 1) %>% flatten_chr() clean_names <- gsub("X\\d+", NA_character_, clean_names) %>% enframe() %>% fill(value) %>% pull(value) shiny_clean_names <- paste(clean_names, headers, sep = "|") long_star_wars <- set_names(star_wars, c("RespondentID", shiny_clean_names[-1])) %>% slice(-1) %>% gather(item, value, -1) %>% separate(item, c("question", "category"), sep = "\\|") %>% mutate(category = if_else(category == "Response", NA_character_, category)) %>% mutate(index = group_indices(., question)) plot_data <- long_star_wars %>% filter(index == 12) %>% replace_na(list(value = "Unfamiliar (N/A)")) %>% filter(value != "Unfamiliar (N/A)") %>% spread(category, value) %>% mutate_at(vars(-RespondentID, -question, -index), function(x) factor(x, levels = c("Very unfavorably", "Somewhat unfavorably","Neither favorably nor unfavorably (neutral)", "Somewhat favorably", "Very favorably"), labels = 1:5 )) likert_data <- plot_data %>% select(-RespondentID, -question, -index) %>% as.data.frame() %>% likert() ggplot2::update_geom_defaults("text", list(family = "Scope One", size = 4)) plot <- likert.bar.plot(likert_data) + scale_fill_nord("mountain_forms", labels = c("Very unfavorably", "Somewhat unfavorably","Neither favorably nor unfavorably (neutral)", "Somewhat favorably", "Very favorably"), name = "Response") + labs(title = "The Favorability Rankings of Star Wars Characters", subtitle = "People look favourably upon the scruffy nerf herder, and would give a ride to the EVIL RAISIN THAT SHOOTS LIGHTNING FROM HIS HANDS before the goofy gungan.") + theme_jk(grid = "XY") + theme(plot.title = element_text(family = "Oswald")) ggsave(here("week7", "tw7_likert.png"), width = 16, height = 10)
compute_ratio_minus1 <- function(lambda, rho, alpha, gams, d, n.ints, n.nodes, natural){ c.alpha <- stats::qnorm(1 - alpha/2) new.par <- optimize_knots(lambda, rho, alpha, gams, d, n.ints, n.nodes, natural) s.spl <- spline_s(new.par, d, n.ints, c.alpha, natural) sel.max <- stats::optimize(compute_sel, c(0, d), maximum = TRUE, y = new.par, d = d, n.ints = n.ints, n.nodes = n.nodes, alpha = alpha, s.spl = s.spl)$objective sel.min <- compute_sel(gam = 0, new.par, d, n.ints, n.nodes, alpha, s.spl = s.spl) expected.gain <- 1 - sel.min^2 max.potential.loss <- sel.max^2 - 1 out <- expected.gain / max.potential.loss - 1 }
SASiformat <- function(x, default) UseMethod("SASiformat") SASiformat.default <- function(x, default=NULL) { lab <- attr(x,"SASiformat") if(is.null(lab)) default else lab } SASiformat.data.frame <- function(x, default=NULL) { sapply( x, SASiformat) } "SASiformat<-" <- function(x, value) UseMethod("SASiformat<-") "SASiformat<-.default" <- function(x, value) { attr(x,'SASiformat') <- value x } "SASiformat<-.data.frame" <- function(x, value) { if( ncol(x) != length(value) ) stop("vector of iformats must match number of data frame columns") for(i in 1:ncol(x)) attr(x[[i]],'SASiformat') <- value[i] x }
expect_silent(mf_get_pal(n = 5, palette = 'Dynamic')) expect_silent(mf_get_pal(n = c(6, 5), palette = c("Mint", 'Reds 2'))) expect_silent(mf_get_pal(n = c(6, 5), palette = c("Mint", 'Reds 2'), neutral = "grey"))
nonpar.rules <- function(Z,S,phi){ if(length(Z)!=length(S)) message("***** Warning: Disease status and risk score vector lengths do not match. \n") data <- cbind(Z,S) Z <- data[complete.cases(data),1] S <- data[complete.cases(data),2] Z <- 1*Z if(phi>1 || phi<0) message("***** Warning: Invalid phi. \n") if(cor(Z,S)<0) message("***** Warning: Disease status is negatively associated with risk score. Suggest using (-) value for risk score. \n") total.sam.sz <- length(Z) S.srt <- sort(unique(S)) n.unique.S <- length(S.srt) cum.F <- 0 for(i in 1:n.unique.S){ cum.F <- c(cum.F, mean(S<=S.srt[i],na.rm=TRUE)) } flg <- T; i <- 1;j1 <- 0; bounds <- NULL while(flg){ j <- sum((cum.F-cum.F[i]) <=phi)-1 if(j>=i){ if(i == 1){ bounds <- c(i, j) j1 <- j } if(i>1){ if(j>j1){ bounds <- rbind(bounds, c(i,j)) } j1 <- j } } i <- i+1 if(i>n.unique.S || j1==n.unique.S) flg=F } if(phi==0){ bounds <- cbind(1:n.unique.S, 1:n.unique.S) message("***** Warning: 0 patient taking viral load test. \n") } l <- S.srt[bounds[,1]] u <- S.srt[bounds[,2]] return(cbind(l,u)) } nonpar.fnr.fpr <- function(Z,S,l,u){ if(length(l)!=length(u)) message("***** Warning: Wrong rules set. \n") n.bounds <- length(l) mean.Z <- mean(Z,na.rm=TRUE) fnr.fpr <- NULL for(i in 1:n.bounds){ fnr.fpr <- rbind(fnr.fpr, c(mean((S<l[i])*Z,na.rm=TRUE)/mean(Z,na.rm=TRUE), mean((S>u[i])*(1-Z),na.rm=TRUE)/mean(1-Z,na.rm=TRUE))) } return(fnr.fpr) } semipar.fnr.fpr <- function(Z,S,l,u){ if(length(l)!=length(u)) message("***** Warning: Wrong rules set. \n") p <- mean(Z) temp <- density(S) fit <- glm(Z~ S, family=binomial) beta0star <- fit$coef[1]-log(p/(1-p)) t <- exp(beta0star+temp$x*fit$coef[2]) g1 <- temp$y/(p+(1-p)/t) g0 <- temp$y/(p*t+1-p) x <- temp$x len <- length(x) dif <- x[2:len]-x[1:(len-1)] cal.fnr <- function(dens,a){ if( a>max(x) ){ area <- 1 } else if( a<min(x) ){ area <- 0 } else { diff <- a-x diff1 <- diff[diff<=0][1] indx <- which(diff==diff1) area <- sum(dens[1:(indx-2)]*dif[1:(indx-2)])+dens[indx-1]*(a-x[indx-1]) } return(area) } fnr.fpr <- NULL K <- length(l) for( i in 1:K){ fnr <- cal.fnr(g1,l[i]) fpr <- 1-cal.fnr(g0,u[i]) fnr.fpr <- rbind(fnr.fpr,c(fnr,fpr)) } return(fnr.fpr) } cal.AUC <- function(Z,S,l,u){ n = length(Z) p <- mean(Z) Hphi <- function(Sj,bounds=cbind(l,u)){ diff <- Sj-bounds[,2] diff1 <- diff[diff<=0][1] indx <- which(diff==diff1) return(bounds[indx,1]) } auc <- 0 for(j in 1:n){ auc <- auc+sum(Z*(1-Z[j])*((S>Hphi(S[j]))+(S==Hphi(S[j]))/2)) } auc <- auc/(n^2*p*(1-p)) }
floopCauchyLoss <- function (par,x,y) { t <- par[1:length(x)] cx <- par[length(x)+1] cy <- par[length(x)+2] b.x <- par[length(x)+3] b.y <- par[length(x)+4] logm <- par[length(x)+5] logn <- par[length(x)+6] retention <- par[length(x)+7] times <- cumsum(t) costp <- cos(times) sintp <- sin(times) direc <- sign(costp) direcsin <- sign(sintp) pred.x <- cx+b.x*costp pred.y <- cy+direcsin*retention*abs(sintp)^exp(logm)+direc*b.y*abs(costp)^exp(logn) logloss <- crossprod(y-pred.y[1:length(y)])+crossprod(x-pred.x) logloss }
simPPe <- function(lscape.size = 150, buffer.width = 25, variance.X = 1, theta.X = 10, M = 250, beta = 1, quads.along.side = 6, show.plots = TRUE) { buffer.width <- round(buffer.width[1]) stopifNegative(buffer.width) quads.along.side <- round(quads.along.side[1]) stopifNegative(quads.along.side, allowZero=FALSE) lscape.size <- round(lscape.size[1]) stopifnotGreaterthan(lscape.size, 2 * buffer.width + quads.along.side - 1) variance.X <- variance.X[1] stopifNegative(variance.X) theta.X <- theta.X[1] stopifNegative(theta.X) M <- round(M[1]) stopifNegative(M) size.core <- lscape.size - 2 * buffer.width prop.core <- size.core^2/lscape.size^2 pixel.size <- 1 x <- seq(1, lscape.size, pixel.size)-0.5 y <- seq(1, lscape.size, pixel.size)-0.5 grid <- as.matrix(expand.grid(x,y)) lambda_pp <- M / size.core^2 quad.size <- size.core / quads.along.side breaks <- seq(buffer.width, size.core+buffer.width, by = quad.size) mid.pt <- breaks[-length(breaks)] + 0.5 * quad.size core <- range(breaks) nsite <- length(mid.pt)^2 RFoptions(seed=NA) field <- matrix(RFsimulate(RMexp(var = variance.X, scale = theta.X), x=x, y=y, grid=TRUE)@data$variable1, ncol = lscape.size) M2 <- round(M/prop.core) probtemp <- exp(beta[1]*c(field)) probs <- probtemp / sum(probtemp) pixel.id <- sort(sample(1:lscape.size^2, M2 , replace=TRUE, prob=probs)) u1 <- grid[pixel.id,1] + runif(M2, -pixel.size/2, pixel.size /2) u2 <- grid[pixel.id,2] + runif(M2, -pixel.size/2, pixel.size /2) u <- cbind(u1, u2) Nac <- as.matrix(table(cut(u[,1], breaks=breaks), cut(u[,2], breaks= breaks))) E_N <- round(mean(Nac),2) zac <- Nac ; zac[zac>1] <- 1 E_z <- round(mean(zac), 2) if(show.plots) { oldpar <- par(mfrow = c(1, 3), mar = c(4,2,5,2), cex.main = 1.8, cex.axis = 1.2) ; on.exit(par(oldpar)) tryPlot <- try( { image(rasterFromXYZ(cbind(grid, c(field))), col=topo.colors(10), main = "Point pattern with\ncore and buffer area", xlab = "", ylab = "", axes = FALSE, asp = 1) mtext(paste("Mean intensity (lambda) =", round(lambda_pp, 5)), side=1) polygon(c(buffer.width, size.core+buffer.width, size.core+buffer.width, buffer.width), c(buffer.width, buffer.width, size.core+buffer.width, size.core+buffer.width), lwd = 2, lty = 1) points(u[,1], u[,2], pch=20, col='black', cex = 1.2) image(rasterFromXYZ(cbind(grid, c(field))), col=topo.colors(10), main = "Abundance, N", xlab = "", ylab = "", axes = FALSE, asp = 1) mtext(paste0("Mean(N) = ", E_N, ", var(N) = ", round(var(c(Nac)), 2)), side=1) polygon(c(buffer.width, size.core+buffer.width, size.core+buffer.width, buffer.width), c(buffer.width, buffer.width, size.core+buffer.width, size.core+buffer.width), lwd = 2, lty = 1) points(u[,1], u[,2], pch=20, col='black', cex = 1.2) for(i in 1:length(breaks)){ for(k in 1:length(breaks)){ segments(breaks[i], breaks[k], rev(breaks)[i], breaks[k]) segments(breaks[i], breaks[k], breaks[i], rev(breaks)[k]) } } for(i in 1:length(mid.pt)){ for(k in 1:length(mid.pt)){ text(mid.pt[i], mid.pt[k], Nac[i,k], cex =4^(0.8-0.5*log10(quads.along.side)), col='red') } } image(rasterFromXYZ(cbind(grid, c(field))), col=topo.colors(10), main = "Occurrence, z", xlab = "", ylab = "", axes = FALSE, asp = 1) mtext(paste("Mean(z) =", E_z), side=1) polygon(c(buffer.width, size.core+buffer.width, size.core+buffer.width, buffer.width), c(buffer.width, buffer.width, size.core+buffer.width, size.core+buffer.width), lwd = 2, lty = 1) points(u[,1], u[,2], pch=20, col='black', cex = 1.2) for(i in 1:length(breaks)){ for(k in 1:length(breaks)){ segments(breaks[i], breaks[k], rev(breaks)[i], breaks[k]) segments(breaks[i], breaks[k], breaks[i], rev(breaks)[k]) } } for(i in 1:length(mid.pt)){ for(k in 1:length(mid.pt)){ text(mid.pt[i], mid.pt[k], zac[i,k], cex =4^(0.8-0.5*log10(quads.along.side)), col='red') } } for(i in 1:(length(breaks)-1)){ for(k in 1:(length(breaks)-1)){ if(zac[i,k] == 1) next polygon(c(breaks[i], breaks[i+1], breaks[i+1], breaks[i]), c(breaks[k], breaks[k], breaks[k+1], breaks[k+1]), col = adjustcolor("black", 0.6)) } } }, silent = TRUE) if(inherits(tryPlot, "try-error")) tryPlotError(tryPlot) } return(list( grid.size = lscape.size, buffer.width = buffer.width, variance.X = variance.X, theta.X = theta.X, M = M, beta = beta, quads.along.side = quads.along.side, core = core, M2 = M2, grid = grid, pixel.size = pixel.size, size.core = size.core, prop.core = prop.core, X = field, probs = probs, pixel.id = pixel.id, u = u, nsite = nsite, quad.size = quad.size, breaks = breaks, mid.pt = mid.pt, lambda_pp = lambda_pp, Nac = Nac, zac = zac, E_N = E_N, E_z = E_z)) }
wide_path_matrix <- function(ncells) { if (!inherits(ncells, "numeric")) { stop("ncells argument is invalid. Expecting numeric value") } if (ncells%%2 == 0) { stop("ncells argument is invalid. Expecting odd numeric value") } if (ncells < 3) { stop("ncells argument is invalid. Expecting numeric value 3 or greater") } wpMatrix = matrix(1, nrow = ceiling(ncells), ncol = ceiling(ncells)) indents <- ceiling((nrow(wpMatrix)/3) - 1) if (indents > 0) { for (i in 1:indents) { row_idx = c(i, ncol(wpMatrix) - i + 1) col_idx = c(1:(indents - i + 1)) wpMatrix[row_idx, c(col_idx, nrow(wpMatrix) - col_idx + 1)] <- NA } } start_row = (nrow(wpMatrix))/2 + 1 start_col = (ncol(wpMatrix))/2 + 1 wpMatrix[start_row, start_col] <- 0 return(wpMatrix) }
test_that("classif_penalized", { suppressMessages(requirePackages("!penalized", default.method = "load")) suppressMessages(requirePackages("survival")) parset.list = list( list(maxiter = 100), list(lambda1 = 2), list(lambda1 = 2, lambda2 = 1), list(lambda2 = 2), list(fusedl = TRUE, lambda1 = 2, maxiter = 20L), list(fusedl = TRUE, lambda1 = 2, lambda2 = 1, maxiter = 5L), list(fusedl = TRUE, lambda2 = 2, maxiter = 20L) ) old.probs.list = list() for (i in seq_along(parset.list)) { parset = parset.list[[i]] pars = list(binaryclass.formula, data = binaryclass.train) pars = c(pars, parset) capture.output({ m = do.call(penalized::penalized, pars) }) m@formula$unpenalized[[2L]] = as.symbol(binaryclass.target) old.probs.list[[i]] = 1 - penalized::predict(m, data = binaryclass.test) } testProbParsets("classif.penalized", binaryclass.df, binaryclass.target, binaryclass.train.inds, old.probs.list, parset.list) parset.list = list( list(maxiter = 100), list(lambda1 = 2, lambda2 = 1), list(lambda1 = 1, lambda2 = 2), list(lambda1 = 2, lambda2 = 1, maxiter = 2L, fusedl = TRUE), list(lambda1 = 1, lambda2 = 2, maxiter = 4L, fusedl = TRUE) ) tt = function(formula, data, subset = seq_len(nrow(data)), ...) { penalized::penalized(formula, data = data[subset, ], ...) } tp = function(model, newdata, ...) { pred = penalized::predict(model, data = newdata, ...) ifelse(pred > 0.5, binaryclass.class.levs[2L], binaryclass.class.levs[1L]) } testCVParsets("classif.penalized", binaryclass.df, binaryclass.target, tune.train = tt, tune.predict = tp, parset.list = parset.list) })
context("cwt_perio") test_that("wct_perio periodogram works", { data(dams_sample) dd <- dams_sample[id %in% dams_sample[meta=TRUE, ,id[1:5]]] per <- dd[, cwt_periodogram(activity, sampling_rate = 1/300, n_sim = 1, resolution=1/32), by = id] })
apc.data.sums <- function(apc.data.list,data.type="r",average=FALSE,keep.incomplete=TRUE,apc.index=NULL) { if(is.null(apc.index)==TRUE) apc.index <- apc.get.index(apc.data.list) if(data.type %in% c("d","m") & is.null(apc.data.list$dose)==TRUE) return(cat("apc.error: Doses are not available \n")) if(data.type == "r") data.matrix <- apc.data.list$response if(data.type == "d") data.matrix <- apc.data.list$dose if(data.type == "m") data.matrix <- apc.data.list$response / apc.data.list$dose trap <- matrix(data=NA,nrow=apc.index$age.max,ncol=apc.index$coh.max) trap[apc.index$index.trap] <- data.matrix[apc.index$index.data] trap.ap <- matrix(data=NA,nrow=apc.index$age.max,ncol=apc.index$per.max) for(row in 1:apc.index$age.max) { col.lower <- max(1,apc.index$per.zero+2-row) col.upper <- min(apc.index$coh.max,apc.index$per.zero+1-row+apc.index$per.max) per.lower <- max(1,row-apc.index$per.zero) per.upper <- col.upper-col.lower+per.lower trap.ap[row,per.lower:per.upper] <- trap[row,col.lower:col.upper] } if(average==TRUE) { sums.age <- rowMeans(trap.ap,na.rm=keep.incomplete) sums.coh <- colMeans(trap, na.rm=keep.incomplete) sums.per <- colMeans(trap.ap,na.rm=keep.incomplete) } if(average==FALSE) { sums.age <- rowSums(trap.ap,na.rm=keep.incomplete) sums.coh <- colSums(trap ,na.rm=keep.incomplete) sums.per <- colSums(trap.ap,na.rm=keep.incomplete) } return(list(sums.age=sums.age, sums.per=sums.per, sums.coh=sums.coh)) } apc.plot.data.sums <- function(apc.data.list,data.type="a",average=FALSE,keep.incomplete=TRUE,apc.index=NULL,type="o",log="",main.outer=NULL,main.sub=NULL) { if(is.null(apc.index)==TRUE) apc.index <- apc.get.index(apc.data.list) if(is.null(main.outer)==TRUE) main.outer <- "Data sums by age/period/cohort index" if(data.type %in% c("r","d","m") | is.null(apc.data.list$dose)==TRUE) par(mfrow=c(1,3)) if(data.type == "a" & is.null(apc.data.list$dose)==FALSE) par(mfrow=c(3,3)) if(data.type %in% c("d","m") & is.null(apc.data.list$dose)==TRUE) return(cat("apc.plot.data.sums error: Doses are not available \n")) par(mar=c(5,5,2,0),oma=c(0,0,1,1)) if(average==TRUE) s.ylab="averages of data" if(average==FALSE) s.ylab="sums of data" if(data.type %in% c("r","a")) { sums.response <- apc.data.sums(apc.data.list,data.type="r",average,keep.incomplete,apc.index) if(is.null(main.sub)==TRUE) main <- "response" plot(seq(from=apc.index$age1,by=apc.index$unit,length=apc.index$age.max),sums.response$sums.age,main=main,xlab="age" ,ylab=s.ylab,type=type,log=log) plot(seq(from=apc.index$per1,by=apc.index$unit,length=apc.index$per.max),sums.response$sums.per,main=main,xlab="period",ylab=s.ylab,type=type,log=log) plot(seq(from=apc.index$coh1,by=apc.index$unit,length=apc.index$coh.max),sums.response$sums.coh,main=main,xlab="cohort",ylab=s.ylab,type=type,log=log) } if(data.type %in% c("d","a") & is.null(apc.data.list$dose)==FALSE) { sums.dose <- apc.data.sums(apc.data.list,data.type="d",average,keep.incomplete,apc.index) if(is.null(main.sub)==TRUE) main <- "dose" plot(seq(from=apc.index$age1,by=apc.index$unit,length=apc.index$age.max),sums.dose$sums.age,main=main,xlab="age" ,ylab=s.ylab,type=type,log=log) plot(seq(from=apc.index$per1,by=apc.index$unit,length=apc.index$per.max),sums.dose$sums.per,main=main,xlab="period",ylab=s.ylab,type=type,log=log) plot(seq(from=apc.index$coh1,by=apc.index$unit,length=apc.index$coh.max),sums.dose$sums.coh,main=main,xlab="cohort",ylab=s.ylab,type=type,log=log) } if(data.type %in% c("m","a") & is.null(apc.data.list$dose)==FALSE) { sums.dose <- apc.data.sums(apc.data.list,data.type="m",average,keep.incomplete,apc.index) if(is.null(main.sub)==TRUE) main <- "rates" plot(seq(from=apc.index$age1,by=apc.index$unit,length=apc.index$age.max),sums.dose$sums.age,main=main,xlab="age" ,ylab=s.ylab,type=type,log=log) plot(seq(from=apc.index$per1,by=apc.index$unit,length=apc.index$per.max),sums.dose$sums.per,main=main,xlab="period",ylab=s.ylab,type=type,log=log) plot(seq(from=apc.index$coh1,by=apc.index$unit,length=apc.index$coh.max),sums.dose$sums.coh,main=main,xlab="cohort",ylab=s.ylab,type=type,log=log) } title(main.outer,outer=TRUE) } apc.plot.data.sparsity <- function(apc.data.list,data.type="a",swap.axes=FALSE,apc.index=NULL,sparsity.limits=c(1,2),cex=NULL,pch=15,main.outer=NULL) { if(is.null(apc.index)==TRUE) apc.index <- apc.get.index(apc.data.list) if(is.null(main.outer)==TRUE) main.outer <- paste("Sparsity plots \n","(black <",as.character(sparsity.limits[1]),",grey <",as.character(sparsity.limits[2]),")") data.format <- apc.index$data.format xlab <- apc.index$data.xlab ylab <- apc.index$data.ylab x1 <- apc.index$data.x1 y1 <- apc.index$data.y1 xmax <- apc.index$data.xmax ymax <- apc.index$data.ymax unit <- apc.index$unit if(data.format=="CL") swap.axes=1-swap.axes xlim <- c(x1,x1 +(xmax-1)*unit) ylim <- c(y1,y1 +(ymax-1)*unit) if(data.format=="CL") if(swap.axes) xlim <- c(x1 +(xmax-1)*unit,x1) else ylim <- c(y1 +(ymax-1)*unit,y1) if(data.type %in% c("r","d") | is.null(apc.data.list$dose)==TRUE) par(mfrow=c(1,1)) if(data.type == "a" & is.null(apc.data.list$dose)==FALSE) par(mfrow=c(1,2)) if(data.type == "d" & is.null(apc.data.list$dose)==TRUE) return(cat("apc.error: Doses are not available \n")) par(mar=c(5,5,2,0),oma=c(0,0,2,1)) function.sparsity.plot <- function(data.matrix,main,swap.axes) { if(is.null(cex)==TRUE) { nmax <- max(xmax,ymax) cex <- 0.5 if(nmax<20) cex <- 1 if(nmax<10) cex <- 2 if(nmax<5 ) cex <- 5 } if(swap.axes){ l.x1 <- y1; l.y1 <- x1; l.xmax <- ymax; l.ymax <- xmax } else { l.x1 <- x1; l.y1 <- y1; l.xmax <- xmax; l.ymax <- ymax } if(swap.axes){ data.matrix <- t(data.matrix) plot(1,1,pch=NA,xlim=ylim,ylim=xlim,xlab=ylab,ylab=xlab,main=main) } else plot(1,1,pch=NA,xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,main=main) for(row in 1:l.xmax) for(col in 1:l.ymax) { x <- l.x1+(row-1)*unit y <- l.y1+(col-1)*unit z <- data.matrix[row,col] if(is.na(z)==TRUE) points(x,y,cex=cex,pch="x") else { if(z<sparsity.limits[2]) points(x,y,cex=cex,pch=pch,col=gray(0.66)) if(z<sparsity.limits[1]) points(x,y,cex=cex,pch=pch,col=gray(0.0)) } } } if(data.type %in% c("r","a")) function.sparsity.plot(apc.data.list$response,"responses",swap.axes) if(data.type %in% c("d","a") & is.null(apc.data.list$dose)==FALSE) function.sparsity.plot(apc.data.list$dose,"doses",swap.axes) title(main.outer,outer=TRUE) } apc.plot.data.within <- function(apc.data.list,data.type="r",plot.type="awc",average=FALSE,thin=NULL,apc.index=NULL,ylab=NULL,type="o",log="",legend=TRUE,lty=1:5,col=1:6,bty="n",main=NULL,x="topleft",return=FALSE) { if((plot.type %in% c("awp","awc","cwp","pwa","cwa","pwc"))==FALSE) return(cat("apc.plot.data.within error: plot.type not recognised \n")) l.data.type <- data.type if(data.type == "response") l.data.type <- "r" if(data.type == "dose") l.data.type <- "d" if(data.type == "rates") l.data.type <- "m" if(data.type == "mortality") l.data.type <- "m" if(l.data.type %in% c("d","m") & is.null(apc.data.list$dose)==TRUE) return(cat("apc.plot.data.within error: Doses are not available \n")) if(is.null(apc.index)==TRUE) apc.index <- apc.get.index(apc.data.list) if(l.data.type == "r") { title.add.to <- "response"; m <- apc.data.list$response; } if(l.data.type == "d") { title.add.to <- "dose"; m <- apc.data.list$dose; } if(l.data.type == "m") { title.add.to <- "rates"; m <- apc.data.list$response/apc.data.list$dose; } trap.m <- matrix(data=NA,nrow=apc.index$age.max,ncol=apc.index$coh.max) trap.m[apc.index$index.trap] <- m[apc.index$index.data] if(is.null(ylab)) { if(log=="y") ylab <- "log " if(l.data.type=="r") ylab <- paste(ylab,"response",sep="") if(l.data.type=="d") ylab <- paste(ylab,"dose",sep="") if(l.data.type=="m") ylab <- paste(ylab,"rate",sep="") } function.trapezoid.to.ap <- function(trapezoid,transpose=FALSE) { age.max <- apc.index$age.max per.max <- apc.index$per.max coh.max <- apc.index$coh.max per.zero <- apc.index$per.zero nrow <- age.max ncol <- coh.max if(transpose==TRUE) { trapezoid <- t(trapezoid) nrow <- coh.max ncol <- age.max } m <- matrix(data=NA,nrow=nrow,ncol=per.max) for(row in 1:nrow) { col.lower <- max(1,per.zero+2-row) col.upper <- min(ncol,per.zero+1-row+per.max) per.lower <- max(1,row-per.zero) per.upper <- col.upper-col.lower+per.lower m[row,per.lower:per.upper] <- trapezoid[row,col.lower:col.upper] } return(m) } if(plot.type=="awp") { m.to.plot <- function.trapezoid.to.ap(trap.m); x1 <- apc.index$age1; x.max <- apc.index$age.max; xlab <- "age"; w1 <- apc.index$per1; w.max <- apc.index$per.max; title.sub <- "within period" } if(plot.type=="awc") { m.to.plot <- trap.m; x1 <- apc.index$age1; x.max <- apc.index$age.max; xlab <- "age"; w1 <- apc.index$coh1; w.max <- apc.index$coh.max; title.sub <- "within cohort" } if(plot.type=="cwp") { m.to.plot <- function.trapezoid.to.ap(trap.m,transpose=TRUE); x1 <- apc.index$coh1; x.max <- apc.index$coh.max; xlab <- "cohort"; w1 <- apc.index$per1; w.max <- apc.index$per.max; title.sub <- "within period" } if(plot.type=="pwa") { m.to.plot <- t(function.trapezoid.to.ap(trap.m)); x1 <- apc.index$per1; x.max <- apc.index$per.max; xlab <- "period"; w1 <- apc.index$age1; w.max <- apc.index$age.max; title.sub <- "within age" } if(plot.type=="cwa") { m.to.plot <- t(trap.m); x1 <- apc.index$coh1; x.max <- apc.index$coh.max; xlab <- "cohort"; w1 <- apc.index$age1; w.max <- apc.index$age.max; title.sub <- "within age" } if(plot.type=="pwc") { m.to.plot <- t(function.trapezoid.to.ap(trap.m,transpose=TRUE)); x1 <- apc.index$per1; x.max <- apc.index$per.max; xlab <- "period"; w1 <- apc.index$coh1; w.max <- apc.index$coh.max; title.sub <- "within cohort" } function.thin.value <- function(m,thin=NULL) { l.thin <- thin if(is.null(l.thin)==TRUE) { ncol <- ncol(m) l.thin <- 1 if(ncol>10) l.thin <- 2 if(ncol>20) l.thin <- 4 if(ncol>40) l.thin <- 8 if(ncol>80) l.thin <- 16 } return(l.thin) } function.thin.matrix <- function(m,l.thin) { if(l.thin==1) mm <- m else { nrow <- nrow(m) ncol <- ncol(m) ngroup <- ceiling(ncol/l.thin) mm <- matrix(data=NA,nrow=nrow,ncol=ngroup) if(average==TRUE) { for(group in 1:(ngroup-1)) { mmm <- as.matrix(m[,((group-1)*l.thin+1):(group*l.thin)]) mm[,group] <- as.matrix( rowMeans(mmm,na.rm=TRUE)) } mmm <- as.matrix(m[,((ngroup-1)*l.thin+1):ncol]) mm[,ngroup] <- as.matrix( rowMeans(mmm,na.rm=TRUE)) } if(average==FALSE) { for(group in 1:(ngroup-1)) { mmm <- as.matrix(m[,((group-1)*l.thin+1):(group*l.thin)]) mm[,group] <- as.matrix( rowSums(mmm,na.rm=TRUE)) } mmm <- as.matrix(m[,((ngroup-1)*l.thin+1):ncol]) mm[,ngroup] <- as.matrix( rowSums(mmm,na.rm=TRUE)) } if(ngroup != ncol/l.thin) print("apc.plot.data.within warning: maximal index not divisible by thin, so last group smaller than other groups") } return(mm) } l.thin <- function.thin.value(m.to.plot,thin) m.to.plot <- function.thin.matrix(m.to.plot,l.thin=l.thin) old.par <- par() par(mar=c(5,5,3,1)+0.1) v.x <- seq(from=x1,length=x.max,by=apc.index$unit) if(is.null(main)) main <- title.sub matplot(v.x,m.to.plot,type=type,pch=20,log=log,lty=lty,col=col,xlab=xlab,ylab=ylab,main=main) within <- seq(from=w1,length=ceiling(w.max/l.thin),by=apc.index$unit*l.thin) if(legend==TRUE) legend(x=x,legend=as.character(within),lty=lty,col=col,bty=bty) par <- old.par if(return==TRUE) { dimnames(m.to.plot) <- list(as.character(v.x),as.character(within)) return(m.to.plot) } } apc.plot.data.within.all.six <- function(apc.data.list,data.type="r",average=FALSE,thin=NULL,apc.index=NULL,ylab=NULL,type="o",log="",legend=TRUE,lty=1:5,col=1:6,bty="n",main.outer=NULL,x="topleft") { if(is.null(apc.index)==TRUE) apc.index <- apc.get.index(apc.data.list) if(is.null(main.outer)) main.outer <- "plots of data using two indices" old.par <- par() par(mfrow=c(2,3)) par(oma=c(0,0,2,0)) l.data.type = c("awp","awc","cwp","pwa","cwa","pwc") for(i in 1:6) apc.plot.data.within(apc.data.list,data.type=data.type,plot.type=l.data.type[i],average=average,thin=thin,apc.index=apc.index,ylab=ylab,type=type,log=log,legend=legend,lty=lty,col=col,bty=bty,x=x) title(main.outer,outer=TRUE) par <- old.par } apc.plot.data.level <- function(apc.data.list,data.type="r",rotate=FALSE,apc.index=NULL,main=NULL,lab=NULL,contour=FALSE,colorkey=TRUE) { if(is.null(apc.index)==TRUE) apc.index <- apc.get.index(apc.data.list) l.data.type <- data.type if(data.type == "response") l.data.type <- "r" if(data.type == "dose") l.data.type <- "d" if(data.type == "rates") l.data.type <- "m" if(data.type == "mortality") l.data.type <- "m" if(l.data.type %in% c("d","m") & is.null(apc.data.list$dose)==TRUE) return(cat("apc.plot.data.within error: Doses are not available \n")) if(l.data.type == "r") { l.main <- "response"; m <- apc.data.list$response; } if(l.data.type == "d") { l.main <- "dose"; m <- apc.data.list$dose; } if(l.data.type == "m") { l.main <- "rates"; m <- apc.data.list$response/apc.data.list$dose; } if(l.data.type == "residual") { l.main <- "residual"; m <- apc.data.list$m.residual; } if(l.data.type == "fitted.values") { l.main <- "fitted values"; m <- apc.data.list$m.fitted.values; } if(l.data.type == "linear.predictors") { l.main <- "linear predictors"; m <- apc.data.list$m.linear.predictors; } if(is.null(main)) main <- l.main l.rotate <- rotate if(apc.data.list$data.format=="CL") l.rotate <- 1-l.rotate x1 <- apc.index$data.x1; xmax <- apc.index$data.xmax; xlab <- apc.index$data.xlab; y1 <- apc.index$data.y1; ymax <- apc.index$data.ymax; ylab <- apc.index$data.ylab; unit<- apc.index$unit if(is.null(lab)) lab[1:2] <- c(min(5,xmax),min(5,ymax)) x.at <- seq(from=1,to=xmax,length=lab[1]) x.lab<- as.character(x1+(x.at-1)*unit) if(l.rotate) x.lab <- x.lab[length(x.lab):1] x <- list(at=x.at,labels=x.lab) y.at <- seq(from=1,to=ymax,length=lab[2]) y.lab<- as.character(y1+(y.at-1)*unit) y <- list(at=y.at,labels=y.lab) if(l.rotate) print(levelplot(t(m[nrow(m):1,]),xlab=ylab,ylab=xlab,scales=list(x=y,y=x),main=main,contour=contour,colorkey=colorkey)) else print(levelplot(m,xlab=xlab,ylab=ylab,scales=list(x=x,y=y),main=main,contour=contour,colorkey=colorkey)) } apc.plot.data.all <- function(apc.data.list,log="",rotate=FALSE) { apc.index <- apc.get.index(apc.data.list) apc.plot.data.sums(apc.data.list,log=log,apc.index=apc.index) dev.new(); apc.plot.data.sparsity(apc.data.list,apc.index=apc.index) dev.new(); apc.plot.data.within.all.six(apc.data.list,"r",log=log,apc.index=apc.index) if(is.null(apc.data.list$dose)==FALSE) { dev.new(); apc.plot.data.within.all.six(apc.data.list,"d",log=log,apc.index=apc.index) dev.new(); apc.plot.data.within.all.six(apc.data.list,"m",log=log,apc.index=apc.index) } dev.new(); apc.plot.data.level(apc.data.list,"r",rotate=rotate,apc.index=apc.index) if(is.null(apc.data.list$dose)==FALSE) { dev.new(); apc.plot.data.level(apc.data.list,"d",rotate=rotate,apc.index=apc.index) dev.new(); apc.plot.data.level(apc.data.list,"m",rotate=rotate,apc.index=apc.index) } }
ao_get_learners_quiz_statistic <- function( email, content_id ) { cli_alert_info('Compose request body') rbody <- oa_make_body( action = 'getLearnersQuizStatistic', options = 'records', values = content_id ) rbody <- set_names(rbody, c('action', str_glue("options[records][{email}][]"))) cli_alert_info('Send request') resp <- oa_request(body = rbody, token = suppressMessages(ao_auth())) cli_alert_info('Parse result') res <- oa_parser(resp[[1]][[1]]) %>% oa_set_class('oa_quize_stat') cli_alert_success('Loaded {nrow(res)} learners') return(res) }
library(otsad) context("Clasic Processing Tssd-Ewma") test_that("CpTsSdEwma gives the correct result", { n <- 500 x <- c(31,26,56,6,47,49,82,38,55,18,63,89,29,40,77,67,21,36,36,70,54,72,54,75,200,18,78,89,55,28, 49,93,35,96,70,89,19,63,99,14,34,87,78,83,61,50,79,89,21,31,34,20,24,28,60,26,13,23,60,22, 47,65,97,68,45,36,46,45,25,111,114,111,112,112,112,114,111,114,113,111,112,110,112,115,110, 110,112,111,115,113,91,21,36,45,91,39,52,13,4,78,33,39,5,37,58,69,98,71,2,54,84,81,9,24, 97,4,92,73,21,85,40,40,48,59,36,3,100,96,56,11,24,87,74,50,58,2,48,5,47,63,68,9,15,91,13, 73,96,5,2,20,51,93,14,17,61,82,85,79,2,70,82,57,49,17,9,17,3,71,77,86,44,42,59,83,80,33,96, 66,46,61,29,72,93,68,19,35,13,11,30,84,100,44,21,97,67,30,12,60,13,79,37,96,92,83,32,88,81, 62,8,43,35,76,22,30,36,64,90,75,46,4,57,44,61,96,27,66,8,8,38,30,56,37,85,63,40,30,39,71, 95,78,22,72,67,71,28,72,67,5,7,28,31,96,39,38,85,85,32,14,62,80,34,91,20,80,76,92,33,9,92, 96,68,75,45,12,68,74,49,18,68,27,35,22,2,38,57,68,75,96,17,33,14,64,34,65,31,8,67,76,56, 54,85,66,96,62,50,98,50,66,60,95,37,88,46,50,47,62,61,79,56,170,41,52,53,100,43,100,79,52, 51,92,27,18,41,54,25,38,59,21,81,64,74,44,58,26,47,17,62,96,48,76,3,18,64,17,36,19,90,24, 99,3,11,25,73,4,55,69,31,39,74,97,77,59,47,36,39,21,14,39,27,71,41,27,41,20,83,53,40,58,98, 66,34,34,95,39,57,52,14,24,72,30,52,28,37,44,81,53,70,85,85,40,16,64,29,93,16,97,1,71,64, 78,90,52,75,93,10,50,20,100,4,22,90,12,37,17,17,98,82,96,40,86,7,31,50,65,52,80,57,36,66, 24,27,52,74,78,12,62,92,64,28,36,68,91,74,92,39,86,6,26,37,37,29,39,35,28,81,100,76,61,60, 59,24,46,100,9,6,50,6,96,64,27,100,36,38,34,11,58,34,1,100,37) df <- data.frame(timestamp=1:n,value=x) result <- CpTsSdEwma( data = df$value, n.train = 5, threshold = 0.01, l = 3, m = 20 ) correct.results <- rep(0, 500) correct.results[92] <- 1 expect_equal(as.numeric(result$is.anomaly), correct.results) })
download_municipality_inventory <- function(url = get_current_url(), path = getwd(), verbose = TRUE) { destfile <- file.path(tempdir(), "municipality_inventory.zip") curl::curl_download(url = url, destfile = destfile) file_list_zip <- unzip(zipfile = destfile, list = TRUE) file_list_zip <- as_tibble(file_list_zip) file_list_zip <- add_column(file_list_zip, is_xml = grepl(".xml", file_list_zip$Name)) file_list_zip <- mutate(file_list_zip, is_draft = grepl("DRAFT", Name)) file_list_zip <- filter(file_list_zip, is_draft != TRUE) file_list_zip_relevant <- filter(file_list_zip, is_xml == TRUE) unzip(zipfile = destfile, files = file_list_zip_relevant$Name, exdir = tempdir(), overwrite = FALSE) copy_success <- file.copy(file.path(tempdir(), file_list_zip_relevant$Name), to = path, overwrite = FALSE) if (!copy_success) stop(paste0("XML File already exists at target (", path, ") location")) xml_file_path <- file.path(path, basename(file_list_zip_relevant$Name)) if (verbose) { mutations_object <- import_CH_municipality_inventory(file_path = xml_file_path) mutations <- mutations_object$mutations change_date_max <- max(mutations$change_date) message <- paste0("Municipal inventory successfully obtained. Most recent mutations enregistered: ", format(change_date_max, "%d.%m.%Y"), ".") message(message) } return(xml_file_path) }
rm(list = ls()) source("helper.R") context("test-rowcolstats.R") n <- 10 m <- 15 set.seed(14) tt <- matrix(rnorm(m*n),n,m) tt[tt<0] <- 0 ss <- as.spam(tt) test_that("rowcolstats", { spamtest_eq(rowSums.spam(ss),rowSums(tt)) spamtest_eq(colSums.spam(ss),colSums(tt)) spamtest_eq(rowSums(ss),rowSums(tt)) spamtest_eq(colSums(ss),colSums(tt)) options(spam.structurebased=FALSE) spamtest_eq(rowMeans.spam(ss),rowMeans(tt)) spamtest_eq(colMeans.spam(ss),colMeans(tt)) spamtest_eq(rowMeans(ss),rowMeans(tt)) spamtest_eq(colMeans(ss),colMeans(tt)) options(spam.structurebased=TRUE) spamtest_eq(rowMeans.spam(ss),rowSums(tt)/apply(tt>0,1,sum)) spamtest_eq(colMeans.spam(ss),colSums(tt)/apply(tt>0,2,sum)) spamtest_eq(rowMeans(ss),rowSums(tt)/apply(tt>0,1,sum)) spamtest_eq(colMeans(ss),colSums(tt)/apply(tt>0,2,sum)) spamtest_eq(rowMeans.spam(ss),apply.spam(ss,1,mean)) spamtest_eq(colMeans.spam(ss),apply.spam(ss,2,mean)) spamtest_eq(rowMeans(ss),apply.spam(ss,1,mean)) spamtest_eq(colMeans(ss),apply.spam(ss,2,mean)) spamtest_eq(rowMeans.spam(spam(0,n,m)),rowMeans(tt*0), relative = FALSE) spamtest_eq(colMeans.spam(spam(0,n,m)),colMeans(tt*0), relative = FALSE) spamtest_eq(rowMeans.spam(as.spam(diag(0,n))),rowMeans(diag(0,n)), relative = FALSE) spamtest_eq(colMeans.spam(as.spam(diag(0,n))),colMeans(diag(0,n)), relative = FALSE) spamtest_eq(rowMeans(spam(0,n,m)),rowMeans(tt*0), relative = FALSE) spamtest_eq(colMeans(spam(0,n,m)),colMeans(tt*0), relative = FALSE) spamtest_eq(rowMeans(as.spam(diag(0,n))),rowMeans(diag(0,n)), relative = FALSE) spamtest_eq(colMeans(as.spam(diag(0,n))),colMeans(diag(0,n)), relative = FALSE) options(spam.structurebased=TRUE) })
calcAcq <- function(par, scoreGP, timeGP, acq, y_max, kappa, eps) { p <- matrix(par,ncol=length(par),dimnames = list(NULL,names(par))) GP_Pred <- predict(scoreGP,p,type="SK") if (acq == "ucb") { return((GP_Pred$mean + kappa * (GP_Pred$sd))) } else if (acq == "ei") { z <- (GP_Pred$mean - y_max - eps) / (GP_Pred$sd) return(((GP_Pred$mean - y_max - eps) * pnorm(z) + (GP_Pred$sd) * dnorm(z))) } else if (acq == "eips") { GPe_Pred <- predict(timeGP,p,type="SK") z <- (GP_Pred$mean - y_max - eps) / (GP_Pred$sd) return(((GP_Pred$mean - y_max - eps) * pnorm(z) + (GP_Pred$sd) * dnorm(z))/GPe_Pred$mean) } else if (acq == "poi") { z <- (GP_Pred$mean - y_max - eps) / (GP_Pred$sd) return((pnorm(z))) } }
getClinDT <- function(data, nonVisibleVar = NULL, nonVisible = NULL, percVar = NULL, barVar = NULL, barColorThr = NULL, barRange = NULL, filter = "top", searchBox = FALSE, pageLength, fixedColumns = NULL, columnsWidth = NULL, options = list(), expandVar = NULL, expandIdx = NULL, escape = TRUE, rowGroup = NULL, rowGroupVar = NULL, vAlign = "top", callback = NULL, buttons = getClinDTButtons(), scrollX = TRUE, file = NULL, verbose = TRUE, ...){ extraArgs <- list(...) isSharedData <- inherits(x = data, what = "SharedData") dataContent <- if(isSharedData){ data$origData() }else data if(inherits(dataContent, "tbl_df")){ dataContent <- as.data.frame(dataContent) } if(!inherits(dataContent, c("data.frame", "matrix"))) stop("'data' should be a data.frame, a matrix, a tibble or a SharedData object.") colnames <- extraArgs$colnames if(!is.null(colnames)){ colnames <- colnames[colnames %in% colnames(dataContent)] if(length(colnames) == 0){ colnames <- NULL warning("'colnames' doesn't contain labels for columns in data. ", "Are you sure you have specified it correctly (c([newName] = [oldName], ...)?") } extraArgs$colnames <- colnames } if(!is.null(nonVisible)) warning("'nonVisible' is deprecated, please use: 'nonVisibleVar' instead.") nonVisibleVar <- checkVarInData(var = nonVisibleVar, data = dataContent, label = "non-visible") if(!is.null(nonVisibleVar)){ if(!is.null(nonVisible)) warning("'nonVisible' or 'nonVisibleVar' should be specified, 'nonVisibleVar' is used") nonVisible <- match(nonVisibleVar, colnames(dataContent))-1 } if(missing(pageLength)){ pageLength <- ifelse(nrow(dataContent) <= 10, Inf, 10) } if(!is.null(rowGroup)){ warning("'rowGroup' is deprecated, please use: 'rowGroupVar' instead.") rowGroupVar <- rowGroup } rowGroupVar <- checkVarInData(var = rowGroupVar, data = dataContent, label = "row group") if(!is.null(rowGroupVar)){ rowGroup <- match(rowGroupVar, colnames(dataContent))-1 if(length(rowGroup) == 0) rowGroup <- NULL }else rowGroup <- NULL if(is.logical(escape)){ if(length(escape) != 1){ stop("If escape is logical, it should be of length 1.") }else{ if(escape){ escape <- seq(from = 1, to = ncol(dataContent)) }else{ escape <- numeric() } } }else if(is.numeric(escape)){ idxEscNotInData <- escape[!abs(escape) %in% seq_len(ncol(dataContent))] if(length(idxEscNotInData) > 0){ stop("'Escape' contains columns not in data: ", toString(idxEscNotInData), ".") } if(any(escape < 0)){ if(!all(escape < 0)) stop("If 'escape' contains negative elements, they should all be negative.") escape <- setdiff(seq(from = 1, to = ncol(dataContent)), -escape) } } if(!is.null(rowGroup)) nonVisible <- union(nonVisible, rowGroup) idxControl <- NULL expandVar <- checkVarInData(var = expandVar, data = dataContent, label = "expandable") isExpandIdxWrong <- !is.null(expandIdx) && ( (!is.matrix(expandIdx)) || !all(c("row", "col") %in% colnames(expandIdx)) ) if(isExpandIdxWrong){ stop("'expandIdx' should be a matrix with columns: ", "'row' and 'col'.") } if(!is.null(expandVar) | !is.null(expandIdx)){ if(!is.null(expandIdx)){ idxExpandVar <- unique(expandIdx[, "col"]) for(iCol in seq_along(idxExpandVar)){ idxCol <- idxExpandVar[iCol] idxColNew <- idxCol + iCol - 1 expandIdxCol <- expandIdx[which(expandIdx[, "col"] %in% idxCol), , drop = FALSE] expandIdxCol[, "col"] <- idxColNew expandRow <- rep(NA_character_, nrow(dataContent)) expandRow[expandIdxCol[, "row"]] <- dataContent[expandIdxCol] dataContent[expandIdxCol] <- '&oplus;' idxBefore <- seq_len(idxColNew) idxAfter <- setdiff(seq_len(ncol(dataContent)), idxBefore) dataContent <- cbind( dataContent[, idxBefore, drop = FALSE], expandRow = expandRow, dataContent[, idxAfter, drop = FALSE] ) } newIdxForExpandVar <- idxExpandVar + seq_along(idxExpandVar)-1 getCol <- function(x){x} body(getCol) <- bquote({ xNew <- sapply(x, function(xI){ idxDiff <- xI-.(idxExpandVar) idxDiff <- idxDiff[idxDiff > 0] ifelse(length(idxDiff) > 0, xI + which.min(idxDiff), xI) }) return(xNew) }) getColFormatStyle <- function(x){x} body(getColFormatStyle) <- bquote(.(getCol)(x)-1) idxControl <- getCol(idxExpandVar)-1 escapeExpand <- getCol(idxExpandVar) nonVisibleExpand <- getCol(idxExpandVar) expandJS <- paste0("' + d[iCol + 1]+ '") callback <- JS( paste0(" table.column(1).nodes().to$().css({cursor: 'pointer'}); var format = function(d, iCol) { return '<div>", expandJS, "</div>'; }; table.on('click', 'td.details-control', function() { var td = $(this), row = table.row(td.closest('tr')), iCol = td[0]._DT_CellIndex['column']; if (row.child.isShown()) { row.child.hide(); td.html('&oplus;'); } else { oldVal = format(row.data(), iCol-1); if(oldVal === '<div>&oplus;</div>'){ row.child(format(row.data(), iCol)).show(); td.html('&CircleMinus;'); } } });" ), callback ) }else if(!is.null(expandVar)){ idxExpandVar <- which(colnames(dataContent) %in% expandVar) getCol <- function(x) return(x+1) getColFormatStyle <- function(x) return(x) dataContent <- cbind(' ' = '&oplus;', dataContent) idxControl <- 0 escapeExpand <- 1 nonVisibleExpand <- idxExpandVar expandJS <- paste(sapply(idxExpandVar, function(i){ labelI <- colnames(dataContent)[getCol(i)] if(!is.null(colnames)){ labelCNI <- names(colnames)[match(labelI, colnames)] if(!is.na(labelCNI)) labelI <- labelCNI } paste0(labelI, ": ' + d[", i, "] + '") }), collapse = "<br>") callback <- JS( paste0(" table.column(1).nodes().to$().css({cursor: 'pointer'}); var format = function(d) { return '<div>", expandJS, "</div>'; }; table.on('click', 'td.details-control', function() { var td = $(this), row = table.row(td.closest('tr')); if (row.child.isShown()) { row.child.hide(); td.html('&oplus;'); } else { row.child(format(row.data())).show(); td.html('&CircleMinus;'); } });" ), callback ) } escape <- setdiff(getCol(escape), escapeExpand) nonVisible <- union(getCol(nonVisible), nonVisibleExpand) }else{ getColFormatStyle <- getCol <- function(x) return(x) callback <- callback } if(any(nonVisible >= ncol(dataContent))) stop(paste( "'nonVisible' should contain indices of columns within data (< ncol(data)).", "Are you sure you are using Javascript indexing", "(0 for first column, 1 for second column and so on)?" )) if(!is.null(options$columnDefs)){ options$columnDefs <- sapply(options$columnDefs, function(x){ if(is.list(x) && "targets" %in% names(x)){ x[["targets"]] <- getCol(x[["targets"]]) } x }, simplify = FALSE) } columnDefs <- c( options$columnDefs, if(!is.null(columnsWidth)){ list({ columnsWidths <- rep(columnsWidth, length.out = ncol(dataContent)) lapply(seq_along(columnsWidths), function(i) list(targets = getCol(i), columnsWidth = columnsWidths[i]) ) }) }, if(!is.null(nonVisible)) list(list(targets = nonVisible, visible = FALSE, className = 'noVis')), if(!is.null(idxControl)) columnDefs <- list(list(orderable = FALSE, className = 'details-control', targets = idxControl)) ) isOptionAvailable <- function(options, label){ isOptionAvailable <- !label %in% names(options) if(!isOptionAvailable & verbose){ message("The", sQuote(label), " specified in 'options' overwrites the default.") } return(isOptionAvailable) } if(isOptionAvailable(options, "dom")){ domDefault <- paste0( if(length(buttons) > 0) 'B', if(pageLength < Inf) "l", if(searchBox) 'f', 'rt', if(pageLength < Inf) "ip" ) options[["dom"]] <- domDefault } if(!is.null(fixedColumns)){ idx <- which(names(fixedColumns) %in% c("leftColumns", "rightColumns")) if(length(idx) > 0) fixedColumns[idx] <- sapply(fixedColumns[idx], getCol, simplify = FALSE) if(isOptionAvailable(options, "fixedColumns")){ options[["fixedColumns"]] <- fixedColumns } } if(isOptionAvailable(options, "fixedHeader")){ options[["fixedHeader"]] <- if(is.null(fixedColumns)) TRUE else FALSE } if(isOptionAvailable(options, "buttons")){ options[["buttons"]] <- buttons } if(isOptionAvailable(options, "searching")){ options[["searching"]] <- TRUE } if(isOptionAvailable(options, "scrollX")){ options[["scrollX"]] <- scrollX } if(isOptionAvailable(options, "autoWidth")){ options[["autoWidth"]] <- (!is.null(columnsWidth)) } if(isOptionAvailable(options, "pageLength")){ options[["pageLength"]] <- ifelse(pageLength == Inf, nrow(dataContent), pageLength) } if(length(rowGroup) > 0 && isOptionAvailable(options, "rowGroup")){ rowGroup <- getCol(rowGroup) options[["rowGroup"]] <- list(dataSrc = rowGroup) columnDefs <- c(columnDefs, list(list(targets = rowGroup, className = "rowGroup")) ) } if(length(columnDefs) > 0){ options[["columnDefs"]] <- columnDefs } if(length(options) == 0) options <- NULL extensions <- c( if(!is.null(rowGroup)) "RowGroup", if(length(buttons) > 0) "Buttons", if(!is.null(fixedColumns)) c("FixedColumns", "Scroller"), if(is.null(fixedColumns)) "FixedHeader" ) dataDT <- if(isSharedData){ if(nrow(dataContent) != length(data$key())) stop("Key vector is of different length than the number of records in the data.") keySD <- data$.__enclos_env__$private$.key SharedData$new(data = dataContent, key = keySD, group = data$groupName()) }else dataContent argsDT <- list( data = dataDT, rownames = FALSE, filter = filter, extensions = extensions, options = options, escape = escape ) if(!is.null(callback)) argsDT <- c(argsDT, list(callback = callback)) extraArgsSpec <- intersect(names(extraArgs), names(argsDT)) if(length(extraArgsSpec) > 0){ warning(paste("Extra parameter(s)", toString(sQuote(extraArgsSpec)), "are ignored because some internal defaults are set for these parameters." )) extraArgs <- extraArgs[setdiff(names(extraArgs), extraArgsSpec)] } argsDT <- c(argsDT, extraArgs) tableDT <- do.call(datatable, argsDT) if(!is.null(percVar)) tableDT <- DT::formatPercentage(tableDT, columns = percVar, digits = 2) tableDT <- formatDTBarVar( tableDT = tableDT, data = dataContent, barVar = barVar, barColorThr = barColorThr, barRange = barRange, getCol = getColFormatStyle ) if(!is.null(vAlign)){ tableDT <- tableDT %>% formatStyle( columns = seq_len(ncol(dataContent)), 'vertical-align' = vAlign ) } if(!is.null(file)){ if(file_ext(file) != "html") stop("'file' should be of extension 'html'.") wdInit <- getwd();on.exit(setwd(wdInit)) setwd(dirname(file)) htmlwidgets::saveWidget(widget = tableDT, file = basename(file)) } return(tableDT) } formatDTBarVar <- function( tableDT, data, barVar = NULL, barColorThr = NULL, barRange = NULL, getCol = function(x) x){ barVar <- checkVarInData(var = barVar, data = data, label = "bar") if(!is.null(barVar)){ barVarNotNum <- barVar[!sapply(data[, barVar, drop = FALSE], is.numeric)] if(length(barVarNotNum) > 0){ warning(paste(toString(barVarNotNum), "variable(s)", "not represented as bar because they are not numeric.") ) barVar <- setdiff(barVar, barVarNotNum) } getElFromList <- function(param, var){ if(!is.null(param)){ if(!is.null(names(param))){ if(var %in% names(param)){ param[[var]] } }else param } } for(var in barVar){ idxVar <- getCol(match(var, colnames(data))) barColorThrVar <- getElFromList(param = barColorThr, var = var) barRangeVar <- getElFromList(param = barRange, var = var) if(is.null(barRangeVar)) barRangeVar <- range(as.numeric(data[, var]), na.rm = TRUE) barRangeVar[1] <- barRangeVar[1] - diff(barRangeVar)*0.01 barColor <- if(!is.null(barColorThrVar)){ styleInterval( cuts = barColorThrVar, values = viridis(length(barColorThrVar)+1) ) }else "black" barBg <- styleColorBar( data = barRangeVar, color = "green" ) tableDT <- tableDT %>% formatStyle( columns = idxVar, color = barColor, background = barBg ) } } return(tableDT) } checkVarInData <- function(var, data, label){ varNotInData <- setdiff(var, colnames(data)) if(length(varNotInData) > 0) warning(paste(label, "variable(s):", sQuote(toString(varNotInData)), "not used because not available in the data."), call. = FALSE) var <- intersect(var, colnames(data)) if(length(var) == 0) var <- NULL return(var) } getClinDTButtons <- function( type = c("copy", "csv", "excel", "pdf", "print"), typeExtra = NULL, opts = NULL){ type <- unique(c(type, typeExtra)) type <- match.arg( type, choices = c("copy", "csv", "excel", "pdf", "print", "colvis"), several.ok = TRUE ) getExportButton <- function(typeBtn, ...){ if(typeBtn %in% type){ c( list( extend = typeBtn, ..., exportOptions = list(columns = list(".rowGroup", ":visible")) ), opts[[typeBtn]], ... ) } } buttons <- list( getExportButton(typeBtn = "copy"), getExportButton(typeBtn = "csv"), getExportButton(typeBtn = "excel"), getExportButton(typeBtn = "pdf"), getExportButton(typeBtn = "print"), if("colvis" %in% type) c( list( extend = "colvis", columns = ":not(.noVis)", text = "Show/hide columns" ), opts[["colvis"]] ) ) buttons <- buttons[!sapply(buttons, is.null)] return(buttons) }
library(hamcrest) a <- structure(1L, class = c("A")) b <- structure(1L, class = c("B")) ab <- structure(1L, class = c("A", "B")) abc <- structure(1L, class = c("A", "B", "C")) c <- structure(1L, class = c("C")) assertThat(inherits(a, "A"), identicalTo(TRUE)) assertThat(inherits(c, "A"), identicalTo(FALSE)) assertThat(inherits(1L, character(0)), identicalTo(FALSE)) assertThat(inherits(a, c("A", "B")), identicalTo(TRUE)) assertThat(inherits(ab, c("A", "B")), identicalTo(TRUE)) assertThat(inherits(c, c("A", "B")), identicalTo(FALSE)) assertThat(inherits(a, c("A", "B"), which = TRUE), identicalTo(c(1L, 0L))) assertThat(inherits(ab, c("A", "B"), which = TRUE), identicalTo(c(1L, 2L)))
ggwithinstats <- function(data, x, y, type = "parametric", pairwise.comparisons = TRUE, pairwise.display = "significant", p.adjust.method = "holm", effsize.type = "unbiased", bf.prior = 0.707, bf.message = TRUE, results.subtitle = TRUE, xlab = NULL, ylab = NULL, caption = NULL, title = NULL, subtitle = NULL, k = 2L, conf.level = 0.95, nboot = 100L, tr = 0.2, centrality.plotting = TRUE, centrality.type = type, centrality.point.args = list( size = 5, color = "darkred" ), centrality.label.args = list( size = 3, nudge_x = 0.4, segment.linetype = 4 ), centrality.path = TRUE, centrality.path.args = list( size = 1, color = "red", alpha = 0.5 ), point.args = list( size = 3, alpha = 0.5 ), point.path = TRUE, point.path.args = list( alpha = 0.5, linetype = "dashed" ), outlier.tagging = FALSE, outlier.label = NULL, outlier.coef = 1.5, outlier.label.args = list(size = 3), boxplot.args = list( width = 0.2, alpha = 0.5 ), violin.args = list( width = 0.5, alpha = 0.2 ), ggsignif.args = list( textsize = 3, tip_length = 0.01 ), ggtheme = ggstatsplot::theme_ggstatsplot(), package = "RColorBrewer", palette = "Dark2", ggplot.component = NULL, output = "plot", ...) { c(x, y) %<-% c(ensym(x), ensym(y)) if (!quo_is_null(enquo(outlier.label))) ensym(outlier.label) type <- stats_type_switch(type) data %<>% select({{ x }}, {{ y }}, outlier.label = {{ outlier.label }}) %>% mutate({{ x }} := droplevels(as.factor({{ x }}))) %>% group_by({{ x }}) %>% mutate(.rowid = row_number()) %>% ungroup(.) %>% anti_join(x = ., y = filter(., is.na({{ y }})), by = ".rowid") if (!"outlier.label" %in% names(data)) data %<>% mutate(outlier.label = {{ y }}) data %<>% outlier_df( x = {{ x }}, y = {{ y }}, outlier.coef = outlier.coef, outlier.label = outlier.label ) test <- ifelse(nlevels(data %>% pull({{ x }})) < 3, "t", "anova") if (results.subtitle && check_if_installed("afex")) { .f.args <- list( data = data, x = as_string(x), y = as_string(y), effsize.type = effsize.type, conf.level = conf.level, k = k, tr = tr, paired = TRUE, bf.prior = bf.prior, nboot = nboot, top.text = caption ) .f <- function_switch(test) subtitle_df <- eval_f(.f, !!!.f.args, type = type) subtitle <- if (!is.null(subtitle_df)) subtitle_df$expression[[1]] if (type == "parametric" && bf.message) { caption_df <- eval_f(.f, !!!.f.args, type = "bayes") caption <- if (!is.null(caption_df)) caption_df$expression[[1]] } } if (output != "plot") { return(switch(output, "caption" = caption, subtitle )) } plot <- ggplot(data, aes({{ x }}, {{ y }}, group = .rowid)) + exec(geom_point, aes(color = {{ x }}), !!!point.args) + exec(geom_boxplot, aes({{ x }}, {{ y }}), inherit.aes = FALSE, !!!boxplot.args) + exec(geom_violin, aes({{ x }}, {{ y }}), inherit.aes = FALSE, !!!violin.args) if (test == "t" && point.path) plot <- plot + exec(geom_path, !!!point.path.args) if (isTRUE(outlier.tagging)) { plot <- plot + exec( .fn = ggrepel::geom_label_repel, data = ~ filter(.x, isanoutlier), mapping = aes(x = {{ x }}, y = {{ y }}, label = outlier.label), min.segment.length = 0, inherit.aes = FALSE, !!!outlier.label.args ) } if (isTRUE(centrality.plotting)) { plot <- centrality_ggrepel( plot = plot, data = data, x = {{ x }}, y = {{ y }}, k = k, type = stats_type_switch(centrality.type), tr = tr, centrality.path = centrality.path, centrality.path.args = centrality.path.args, centrality.point.args = centrality.point.args, centrality.label.args = centrality.label.args ) } if (isTRUE(pairwise.comparisons) && test == "anova") { mpc_df <- pairwise_comparisons( data = data, x = {{ x }}, y = {{ y }}, type = type, tr = tr, paired = TRUE, p.adjust.method = p.adjust.method, k = k ) plot <- ggsignif_adder( plot = plot, mpc_df = mpc_df, data = data, x = {{ x }}, y = {{ y }}, pairwise.display = pairwise.display, ggsignif.args = ggsignif.args ) caption <- pairwise_caption( caption, bf.message = ifelse(type == "parametric", bf.message, FALSE), unique(mpc_df$test.details), ifelse(type == "bayes", "all", pairwise.display) ) } aesthetic_addon( plot = plot, x = data %>% pull({{ x }}), xlab = xlab %||% as_name(x), ylab = ylab %||% as_name(y), title = title, subtitle = subtitle, caption = caption, ggtheme = ggtheme, package = package, palette = palette, ggplot.component = ggplot.component ) } grouped_ggwithinstats <- function(data, ..., grouping.var, output = "plot", plotgrid.args = list(), annotation.args = list()) { data %<>% grouped_list(grouping.var = {{ grouping.var }}) p_ls <- purrr::pmap( .l = list(data = data, title = names(data), output = output), .f = ggstatsplot::ggwithinstats, ... ) if (output == "plot") p_ls <- combine_plots(p_ls, plotgrid.args, annotation.args) p_ls }
`draw.subgraph` <- function(mesa) { code <- "" nitem <- ncol(mesa) - 1 npatt <- nrow(mesa) edges <- matrix("n", nrow = npatt, ncol = npatt) rownames(edges) <- rownames(mesa) if (npatt > 1) { for (i in 1:(npatt - 1)) { for (j in (i+1):npatt) { differs <- which(mesa[i,1:nitem] != mesa[j,1:nitem]) if(length(differs) == 2) { if ((differs[2] - differs[1]) == 1) { edges[i,j] <- "p" edges[j,i] <- "a" } } } } } orphan <- logical(npatt) orphan <- FALSE if (npatt > 1) orphan <- apply(edges, 1, function(x) sum(x != "n") == 0) for (i in 1:npatt) { if(any(edges[i,] == "p")) { path <- paste("node", rownames(mesa)[i], sep = "", collapse = "") j <- i while(any(edges[j,] == "p")) { k <- which(edges[j,] == "p")[1] path <- paste(path, "->", "node", rownames(mesa)[k], sep = "", collapse = "") edges[j, k] <- "y" j <- k } code <- c(code, path, "\n") } } for (i in 1:npatt) { node <- paste("node", rownames(mesa)[i], ' [label = "', rownames(mesa)[i], "\\n", mesa[i, nitem + 1], '"]', sep = "", collapse = "") code <- c(code, node, "\n") } if(any(orphan)) { which.orphan <- which(orphan) if(length(which.orphan) > 1) { path <- paste("node", rownames(mesa)[which.orphan[1]], sep = "", collapse = "") for (i in 2:length(which.orphan)) { path <- paste(path, "->", "node", rownames(mesa)[which.orphan[i]], sep = "", collapse = "") } code <- c(code, "edge [style = invis]\n", path, "\n") } } code }
lm.mp <- function(Y,formula, store.fitted=FALSE) { X = model.matrix(formula) n = dim(X)[1] p = dim(X)[2] XtX.inv = solve(crossprod(X)) I.H = diag(n) - X %*% tcrossprod(XtX.inv, X) coef = XtX.inv %*% crossprod(X, Y) sigma2 = apply(I.H %*% Y, 2, crossprod) / (n-p) se.coef = sqrt(diag(XtX.inv) %o% sigma2) fitted=if (store.fitted) X %*% coef else NULL otpt = list(coef=coef, sigma2=sigma2, se.coef=se.coef, X=X, fitted=fitted) class(otpt) = "lm.mp" otpt }
getLMs <- function(Gridnam,Famnam,xi=0.7, baseDir="C:/rtest/robast", withPrint=FALSE, withLoc = FALSE){ file <- file.path(baseDir, "branches/robast-0.9/pkg/RobAStRDA/R/sysdata.rda") if(!file.exists(file)) stop("Fehler mit Checkout") nE <- new.env() load(file, envir=nE) Gnams <- c("Sn","OMSE","RMXE","MBRE") Fnams <- c("Generalized Pareto Family", "GEVU Family", "GEV Family", "Gamma family", "Weibull Family") Gridnam <- Gnams[pmatch(Gridnam, Gnams)] Famnam <- Fnams[pmatch(Famnam, Fnams)] if(! Gridnam %in% Gnams) stop("Falscher Gittername") if(! Famnam %in% Fnams) stop("Falscher Familienname") Famnam0 <- gsub(" ","",Famnam) isSn <- (Gridnam == "Sn") GN0 <- Gridnam; if(isSn) GN0 <- "SnGrids" GN <- paste(".",GN0, sep="") funN <- paste("fun",".",if(getRversion()<"2.16") "O" else "N",sep="") if(withPrint) print(c(GN, Famnam0, funN)) fct <- get(GN,envir=nE)[[Famnam0]][[funN]] if(!isSn){ len <- length(fct) LM <- sapply(1:len, function(i) fct[[i]](xi)) if(length(xi)==1) LM <- matrix(LM,ncol=len) if(withLoc){ colnames(LM) <- c("b","a1.a", "a2.a", "a3.a", "a1.i", "a2.i", "a3.i", "A11.a", "A12.a", "A13.a", "A21.a", "A22.a", "A23.a", "A31.a", "A32.a", "A33.a", "A11.i", "A12.i", "A13.i", "A21.i", "A22.i", "A23.i", "A31.i", "A32.i", "A33.i") }else{ colnames(LM) <- c("b","a1.a", "a2.a", "a1.i", "a2.i", "A11.a", "A12.a", "A21.a", "A22.a", "A11.i", "A12.i", "A21.i", "A22.i") } return(cbind(xi,LM)) }else{ Sn <- fct(xi) return(cbind(xi,Sn)) } }
library(ggplot2) library(testassay) d <- gia tab<-table(d$sample,d$assay) rowNames<-dimnames(tab)[[1]] n.ones<-function(x){ length(x[x==1]) } nOnes<-apply(tab,1,n.ones) sample4<-names(nOnes[nOnes==4]) td7samp<- sample4[grep("3D7",sample4)] fvosamp<- sample4[grep("FVO",sample4)] J<- d$sample %in% td7samp tab3d7<-table(d$sample[J],d$assay[J]) J<- d$sample %in% fvosamp tabfvo<-table(d$sample[J],d$assay[J]) summary(gia) ggplot(d, aes(x = gia, y = meanAAgia, color = parasite)) + geom_abline(slope = 1, intercept = 0, color = "gray", size = 1.5) + geom_point() + scale_x_continuous("GIA", limits = c(-5, 100), breaks = seq(0, 100, by = 20)) + scale_y_continuous("mean GIA (per sample)", limits = c(-5, 100), breaks = seq(0, 100, by = 20)) + theme_bw() + theme(legend.position = c(.85, .2)) treD7.test <- testassay(x = gia, m = sample, n = assay, q = .9, model = "normal", constant = "variance", data = subset(gia, parasite == "3D7" & meanAAgia < 80)) treD7.test obsD7 <- rnorm(5, mean = 50, sd = 18) predict(treD7.test, newdata = obsD7) FVO.test <- testassay(x = gia, m = sample, n = assay, q = .9, model = "normal", constant = "variance", data = subset(gia, parasite == "FVO" & meanAAgia < 80)) FVO.test predict(FVO.test) predat <- cbind(subset(gia, parasite == "FVO" & meanAAgia < 80), predict(FVO.test)) ggplot(predat, aes(x = assay, y = obs, ymin = lower, ymax = upper)) + geom_pointrange() + facet_wrap(~ sample) + ylab("GIA") newobs <- c(25, 40, 65) predict(treD7.test, newobs) cvn <- testassay(x = gia, m = sample, n = assay, q = .9, model = "normal", constant = "cv", data = subset(gia, parasite == "3D7" & meanAAgia < 80)) predict(cvn, newobs) cvln <- testassay(x = gia, m = sample, n = assay, q = .9, model = "lognormal", constant = "cv", data = subset(gia, parasite == "3D7" & meanAAgia < 80)) predict(cvln, newobs)
{ dat <- readr::read_csv(' "email", "first_name", "thing" "[email protected]", "friend", "something good" "[email protected]", "foe", "something bad" ', col_types = "ccc") msg <- ' --- subject: Your subject line --- Hi, {first_name} I am writing to tell you about {thing}. HTH Me ' } test_that("send mail from pre-imported dat", { withr::local_envvar(list(mailmerge_test = TRUE)) mockery::stub(mail_merge, "gmailr::gm_has_token", TRUE) to <- "[email protected]" body <- "hello world" subject <- "subject" mm_send_mail(to = to, body = body, subject = subject) %>% expect_type("list") mm_read_message(msg) %>% expect_type("list") z <- dat %>% mail_merge(msg, send = "preview") expect_s3_class(z, "mailmerge_preview") expect_true(grepl(dat$email[1], z[[1]], fixed = TRUE)) expect_true(grepl(dat$email[2], z[[2]], fixed = TRUE)) expect_equal(nrow(dat), length(z)) tf <- tempfile(fileext = ".txt") writeLines(msg[-(1:3)], con = tf) mm_read_message(tf) %>% expect_type("list") z <- mail_merge(dat, tf, send = "preview") expect_s3_class(z, "mailmerge_preview") expect_true(grepl(dat$email[1], z[[1]], fixed = TRUE)) expect_true(grepl(dat$email[2], z[[2]], fixed = TRUE)) expect_equal(nrow(dat), length(z)) }) test_that("error message if not authed", { mockery::stub(mail_merge, "gmailr::gm_has_token", FALSE) to <- "[email protected]" body <- "hello world" subject <- "subject" tf <- tempfile(fileext = ".txt") writeLines(msg[-(1:3)], con = tf) mail_merge(dat, tf, send = "draft") %>% expect_error( "You must authenticate with gmailr first. Use `gmailr::gm_auth()" ) }) test_that("yesno() messages are meaningful", { mockery::stub(mail_merge, "gmailr::gm_has_token", TRUE) mockery::stub(mail_merge, "yesno", TRUE) to <- "[email protected]" body <- "hello world" subject <- "subject" tf <- tempfile(fileext = ".txt") writeLines(msg[-(1:3)], con = tf) mail_merge(dat, tf, send = "draft") %>% expect_output( "Send 2 emails (draft)?" ) %>% expect_null() mail_merge(dat, tf, send = "immediately") %>% expect_output( "Send 2 emails (immediately)?" ) %>% expect_null() }) test_that("mail_merge returns correct list output", { mockery::stub(mm_send_mail, "gmailr::gm_create_draft", function(...)stop("mock error")) mockery::stub(mm_send_mail, "gmailr::gm_send_message", function(...)list(id = "mock", labelIDs = list("mock"))) to <- "[email protected]" body <- "{first_name}" subject <- "subject" tf <- tempfile(fileext = ".txt") writeLines("{first_name}", con = tf) expect_warning( mm_send_mail(to = to, body = body, subject = subject, draft = TRUE), "mock error" ) suppressWarnings( z <- mm_send_mail(to = to, body = body, subject = subject, draft = TRUE) ) expect_false(z$success) z <- mm_send_mail(to = to, body = body, subject = subject, draft = FALSE) expect_true(z$success) }) test_that("mail_merge() correctly counts number of messages", { mockery::stub(mail_merge, "gmailr::gm_has_token", TRUE) tf <- tempfile(fileext = ".txt") writeLines("{first_name}", con = tf) mockery::stub(mm_send_mail, "gmailr::gm_send_message", function(...)stop("mock error")) suppressWarnings( mail_merge(dat, tf, send = "draft", confirm = TRUE) ) %>% expect_message("Sent 0 messages to your draft folder") }) test_that("mail_merge() correctly counts number of messages", { to <- "[email protected]" body <- "hello world" subject <- "subject" tf <- tempfile(fileext = ".txt") writeLines(msg[-(1:3)], con = tf) mockery::stub(mail_merge, "gmailr::gm_has_token", TRUE, depth = 1) mockery::stub(mail_merge, "gmailr::gm_send_message", function(...)list(id = "mock", labelIDs = list("mock")), depth = 2) expect_message( suppressWarnings( z <- mail_merge(dat, tf, send = "immediately", confirm = TRUE) ), "Sent 0 messages to email" ) })
wflow_publish <- function( files = NULL, message = NULL, all = FALSE, force = FALSE, update = FALSE, republish = FALSE, combine = "or", view = getOption("workflowr.view"), delete_cache = FALSE, seed = 12345, verbose = FALSE, dry_run = FALSE, project = "." ) { files <- process_input_files(files, allow_null = TRUE, files_only = FALSE, convert_to_relative_paths = TRUE) if (is.null(message)) { message <- deparse(sys.call()) message <- paste(message, collapse = "\n") } else if (is.character(message)) { message <-create_newlines(message) } else { stop("message must be NULL or a character vector") } assert_is_flag(all) assert_is_flag(force) assert_is_flag(update) assert_is_flag(republish) combine <- match.arg(combine, choices = c("or", "and")) assert_is_flag(view) assert_is_flag(delete_cache) if (!(is.numeric(seed) && length(seed) == 1)) stop("seed must be a one element numeric vector") assert_is_flag(verbose) assert_is_flag(dry_run) check_wd_exists() assert_is_single_directory(project) project <- absolute(project) if (isTRUE(getOption("workflowr.autosave"))) autosave() s0 <- wflow_status(project = project) r <- git2r::repository(path = s0$git) commit_current <- git2r::commits(r, n = 1)[[1]] if (!dry_run) check_git_config(project, "`wflow_publish`") if (is.null(files) && !all && !update && !republish && !dry_run) stop("You did not tell wflow_publish() what to publish.\n", "Unlike wflow_build(), it requires that you name the Rmd files you want to publish.\n") scenario1 <- !is.null(files) && any(unlist(s0$status[files, c("mod_unstaged", "mod_staged", "scratch")]), na.rm = TRUE) scenario2 <- all && any(unlist(s0$status[s0$status$tracked, c("mod_unstaged", "mod_staged")]), na.rm = TRUE) scenario3 <- !is.null(files) && any(!(files %in% rownames(s0$status))) if (scenario1 || scenario2 || scenario3) { step1 <- wflow_git_commit_(files = files, message = message, all = all, force = force, dry_run = dry_run, project = project) on.exit(git2r::reset(commit_current, reset_type = "mixed"), add = TRUE) s1 <- wflow_status(project = project) } else { step1 <- NULL s1 <- s0 } files_to_build <- character() files_to_build <- union(files_to_build, files[files %in% rownames(s1$status)]) files_to_build <- union(files_to_build, step1$commit_files[ step1$commit_files %in% rownames(s1$status)]) if (combine == "and" && length(files_to_build) == 0) { stop("combine = \"and\" can only be used when explicitly specifying Rmd files to build with the argument `files`") } if (combine == "and") { combine_files_function <- intersect } else if (combine == "or") { combine_files_function <- union } if (republish) { files_to_build <- combine_files_function(files_to_build, rownames(s1$status)[s1$status$published]) } if (update) { files_to_build <- combine_files_function(files_to_build, rownames(s1$status)[s1$status$mod_committed]) } files_to_build <- files_to_build[!s1$status[files_to_build, "mod_unstaged"]] files_to_build <- files_to_build[!s1$status[files_to_build, "mod_staged"]] if (length(files_to_build) > 0) { if (fs::dir_exists(s1$docs) && !dry_run) { docs_backup <- tempfile(pattern = sprintf("docs-backup-%s-", format(Sys.time(), "%Y-%m-%d-%Hh-%Mm-%Ss"))) fs::dir_create(docs_backup) docs_backup <- absolute(docs_backup) file.copy(from = file.path(s1$docs, "."), to = docs_backup, recursive = TRUE, copy.date = TRUE) on.exit(unlink(s1$docs, recursive = TRUE), add = TRUE) on.exit(fs::dir_create(s1$docs), add = TRUE) on.exit(file.copy(from = file.path(docs_backup, "."), to = s1$docs, recursive = TRUE, copy.date = TRUE), add = TRUE) } step2 <- wflow_build_(files = files_to_build, make = FALSE, update = update, republish = republish, combine = combine, view = view, clean_fig_files = TRUE, delete_cache = delete_cache, seed = seed, local = FALSE, verbose = verbose, log_dir = use_default_log_dir(), dry_run = dry_run, project = project) } else { step2 <- NULL } if (length(step2$built) > 0) { figs_path <- vapply(step2$built, create_figure_path, character(1)) dir_figure <- file.path(s0$docs, figs_path) site_libs <- file.path(s0$docs, "site_libs") docs_nojekyll <- file.path(s0$docs, ".nojekyll") docs_css <- list.files(path = s0$docs, pattern = "css$", full.names = TRUE) docs_js <- list.files(path = s0$docs, pattern = "js$", full.names = TRUE) files_to_commit <- c(step2$html, dir_figure, site_libs, docs_nojekyll, docs_css, docs_js) step3 <- wflow_git_commit_(files = files_to_commit, message = "Build site.", all = FALSE, force = force, dry_run = dry_run, project = project) } else { step3 <- NULL } o <- list(step1 = step1, step2 = step2, step3 = step3) class(o) <- "wflow_publish" on.exit() return(o) } print.wflow_publish <- function(x, ...) { cat("Summary from wflow_publish\n\n") cat("**Step 1: Commit analysis files**\n\n") if (is.null(x$step1)) { cat("No files to commit\n\n") } else { print(x$step1) } cat("\n**Step 2: Build HTML files**\n\n") if (is.null(x$step2)) { cat("No files to build\n\n") } else { print(x$step2) } cat("\n**Step 3: Commit HTML files**\n\n") if (is.null(x$step3)) { cat("No HTML files to commit\n\n") } else { print(x$step3) } return(invisible(x)) }
explore_space_pca <- function(dt, details = FALSE, pca = TRUE, group = NULL, color = NULL, ..., animate = FALSE) { if (rlang::quo_is_null(dplyr::enquo(color))) color <- dplyr::enexpr(group) if (pca) dt <- compute_pca(dt, group = {{ group }}, ...) %>% purrr::pluck("aug") p <- ggplot2::ggplot() + add_space(dt = get_space_param(dt, ...), ...) + add_start(dt = get_start(dt), start_color = {{ color }}, ...) + add_end(dt = get_best(dt, group = {{ group }}), end_color = {{ color }}, ...) + add_interp( dt = get_interp(dt, group = {{ group }}), interp_alpha = .data[["id"]], interp_color = {{ color }}, interp_group = {{ group }}, ... ) + ggplot2::scale_alpha_continuous(range = c(0.3, 1), guide = "none") + ggplot2::theme_void() + ggplot2::theme(aspect.ratio = 1, legend.position = "bottom", legend.title = ggplot2::element_blank()) if (details) { p <- p + add_anchor(dt = get_anchor(dt), anchor_color = {{ color }}, ...) + add_interp_last(dt = get_interp_last(dt, group = {{ group }}), interp_last_color = {{ color }}, ...) + add_interrupt( dt = get_interrupt(dt, group = {{ group }}), interrupt_color = {{ color }}, interrupt_group = interaction(.data[["tries"]], {{ group }}), ... ) p <- p + add_search(dt = get_search(dt), search_color = {{ color }}, ...) if (!is.null(get_dir_search(dt, ...))){ p <- p + add_dir_search(dt = get_dir_search(dt, ...), dir_color = {{ color }}, ...) } if (nrow(get_start(dt)) > 1) p <- p + add_anno(dt = get_start(dt), ...) } if (animate) { p <- ggplot2::ggplot() + add_space(dt = get_space_param(dt), ...) + add_start(dt = get_start(dt) %>% dplyr::select(-.data[["id"]]), start_color = {{ color }}, ...) + add_interp( dt = get_interp(dt, group = {{ group }}), interp_alpha = .data[["id"]], interp_color = {{ color }}, interp_group = {{ group }}, ... ) + ggplot2::scale_alpha_continuous(range = c(0.3, 1), guide = "none") + ggplot2::theme_void() + ggplot2::theme(aspect.ratio = 1, legend.position = "bottom", legend.title = ggplot2::element_blank()) + gganimate::transition_reveal(along = .data[["id"]]) } if ("theoretical" %in% dt$info) p <- p + add_theo(dt = get_theo(dt), ...) p } flip_sign <- function(dt, group = NULL, ...) { if (!rlang::quo_is_null(dplyr::enquo(group))) { group_name <- dt %>% get_best(group = {{ group }}) %>% dplyr::pull({{ group }}) num_method <- group_name %>% length() max_bases <- dt %>% get_best(group = {{ group }}) %>% dplyr::pull(basis) max_id <- max_bases %>% vapply(function(x) abs(x) %>% which.max(), numeric(1)) extract <- function(matrix, pos) matrix[(pos - 1) %% nrow(matrix) + 1, ((pos - 1) %/% nrow(matrix)) + 1] max_sign <- mapply(extract, max_bases, max_id) %>% sign() group_to_flip <- group_name[max_sign < 0] group_to_flip <- group_to_flip[group_to_flip != "theoretical"] if (length(group_to_flip) == 0) { message("there's no flip of the sign") basis <- dt %>% get_basis_matrix() dt_obj <- dt } else { message(paste("signs in all the bases will be flipped in group", group_to_flip, "\n")) basis <- dt %>% dplyr::mutate(basis = ifelse({{ group }} %in% group_to_flip & {{ group }} != "theoretical", purrr::map(basis, ~ -.x), basis )) %>% get_basis_matrix() dt_obj <- dt } } else { basis <- dt %>% get_basis_matrix() dt_obj <- dt } return(list( basis = basis, flip = !rlang::quo_is_null(dplyr::enquo(group)), dt = dt_obj )) } compute_pca <- function(dt, group = NULL, random = TRUE, flip = TRUE, ...) { if (!"basis" %in% colnames(dt)) { stop("You need to have a basis column that contains the projection basis!") } num_col <- ncol(dt$basis[[1]]) num_row <- nrow(dt$basis[[1]]) group <- dplyr::enexpr(group) dt <- dt %>% dplyr::mutate(row_num = dplyr::row_number()) if (flip) { flip <- flip_sign(dt, group = {{ group }}) basis <- flip$basis } else { flip <- list( basis = dt %>% get_basis_matrix(), flip = FALSE ) basis <- flip$basis } if (num_col == 1) { pca <- basis %>% bind_random_matrix() %>% stats::prcomp(scale. = TRUE) v <- suppressMessages(pca$x %>% tibble::as_tibble(.name_repair = "minimal")) if (flip$flip) dt_flip <- flip$dt else dt_flip <- dt aug <- dt_flip %>% bind_random() %>% dplyr::bind_cols(v) aug <- aug %>% clean_method() } else if (num_col == 2) { message("Ferrn will perform PCA separately on each dimension") basis_2d <- basis %>% bind_random_matrix() pca1 <- stats::prcomp(basis_2d[, 1:num_row], scale. = TRUE) pca2 <- stats::prcomp(basis_2d[, (num_row + 1):(2 * num_row)], scale. = TRUE) pca <- list(pca1, pca2) v1 <- suppressMessages(-pca1$x %>% tibble::as_tibble(.name_repair = "minimal")) v2 <- suppressMessages(-pca2$x %>% tibble::as_tibble(.name_repair = "minimal")) colnames(v2)[1:num_row] <- c(paste0("PC", seq(num_row + 1, 2 * num_row))) if (flip$flip) dt_flip <- flip$dt else dt_flip <- dt aug <- dt_flip %>% bind_random() %>% dplyr::bind_cols(v1) %>% dplyr::bind_cols(v2) aug <- aug %>% clean_method() } else { stop("ferrn can only handle 1d or 2d bases!") } return(list(pca_summary = pca, aug = aug)) } explore_space_tour <- function(...) { prep <- prep_space_tour(...) tourr::animate_xy(prep$basis, col = prep$col, cex = prep$cex, pch = prep$pch, edges = prep$edges, edges.col = prep$edges_col, axes = "bottomleft" ) } prep_space_tour <- function(dt, group = NULL, flip = FALSE, color = NULL, rand_size = 1, point_size = 1.5, end_size = 5, theo_size = 3, theo_shape = 17, theo_color = "black", palette = botanical_palettes$fern, ...) { if (rlang::quo_is_null(dplyr::enquo(color))) { message("map method to color") color <- dplyr::sym("method") } dt <- dt %>% dplyr::mutate(row_num = dplyr::row_number()) %>% clean_method() if (flip){ flip <- dt %>% flip_sign(group = {{ group }}) basis <- flip$basis %>% bind_random_matrix(front = TRUE) } else{ flip = list(dt = dt) basis <- dt %>% get_basis_matrix() %>% bind_random_matrix(front = TRUE) } n_rand <- nrow(basis) - nrow(dt) n_end <- get_best(flip$dt, group = {{ group }}) %>% dplyr::pull(.data$row_num) + n_rand edges_dt <- flip$dt %>% dplyr::mutate(id = dplyr::row_number()) %>% dplyr::filter(.data$info == "interpolation") %>% dplyr::group_by(.data$method) %>% dplyr::mutate(id2 = dplyr::lead(.data$id, defualt = NA)) %>% dplyr::ungroup() %>% dplyr::filter(!is.na(.data$id2)) edges <- edges_dt %>% dplyr::select(.data$id, .data$id2) %>% dplyr::mutate(id = .data$id + n_rand, id2 = .data$id2 + n_rand) %>% as.matrix() edges_col <- palette[as.factor(edges_dt %>% dplyr::pull({{ color }}))] col <- c( rep(" palette[as.factor(dt %>% dplyr::pull({{ color }}))] ) cex <- c( rep(rand_size, n_rand), rep(point_size, nrow(dt)) ) cex[n_end] <- end_size pch <- rep(20, nrow(basis)) if ("theoretical" %in% dt$info) { theo_row_num <- dt %>% dplyr::filter(.data$info == "theoretical") %>% dplyr::pull(.data$row_num) col[theo_row_num + n_rand] <- theo_color cex[theo_row_num + n_rand] <- theo_size pch[theo_row_num + n_rand] <- theo_shape } return(list( basis = basis, col = col, cex = cex, pch = pch, edges = edges, edges_col = edges_col )) }
add_header_above <- function(kable_input, header = NULL, bold = FALSE, italic = FALSE, monospace = FALSE, underline = FALSE, strikeout = FALSE, align = "c", color = NULL, background = NULL, font_size = NULL, angle = NULL, escape = TRUE, line = TRUE, line_sep = 3, extra_css = NULL, include_empty = FALSE, border_left = FALSE, border_right = FALSE) { if (is.null(header)) return(kable_input) kable_format <- attr(kable_input, "format") if (!kable_format %in% c("html", "latex")) { warning("Please specify format in kable. kableExtra can customize either ", "HTML or LaTeX outputs. See https://haozhu233.github.io/kableExtra/ ", "for details.") return(kable_input) } if ((length(align) != 1L) & (length(align) != length(header))) { warning("Length of align vector supplied to add_header_above must either be 1 ", "or the same length as the header supplied. The length of the align ", sprintf("vector supplied is %i and the header length is %i.", length(align), length(header)), "Using default of centering each element of row.") align <- 'c' } if (is.null(header)) return(kable_input) if (is.data.frame(header)){ if(ncol(header) == 2 & is.character(header[[1]]) & is.numeric(header[[2]])){ header <- data.frame(header = header[[1]], colspan = header[[2]], stringsAsFactors = FALSE) } else { stop("If header input is provided as a data frame instead of a named", "vector it must consist of only two columns: ", "The first should be a character vector with ", "header names and the second should be a numeric vector with ", "the number of columns the header should span.") } } else { header <- standardize_header_input(header) } if (kable_format == "html") { return(htmlTable_add_header_above( kable_input, header, bold, italic, monospace, underline, strikeout, align, color, background, font_size, angle, escape, line, line_sep, extra_css, include_empty )) } if (kable_format == "latex") { return(pdfTable_add_header_above( kable_input, header, bold, italic, monospace, underline, strikeout, align, color, background, font_size, angle, escape, line, line_sep, border_left, border_right)) } } htmlTable_add_header_above <- function(kable_input, header, bold, italic, monospace, underline, strikeout, align, color, background, font_size, angle, escape, line, line_sep, extra_css, include_empty) { kable_attrs <- attributes(kable_input) kable_xml <- read_kable_as_xml(kable_input) kable_xml_thead <- xml_tpart(kable_xml, "thead") if (escape) { header$header <- escape_html(header$header) } if (is.null(kable_xml_thead)) { xml_add_child(kable_xml, 'thead', .where = 0) kable_xml_thead <- xml_tpart(kable_xml, 'thead') kable_xml_tbody <- xml_tpart(kable_xml, 'tbody') body_rows <- xml_children(kable_xml_tbody) kable_ncol <- max(xml_length(body_rows)) } else { header_rows <- xml_children(kable_xml_thead) bottom_header_row <- header_rows[[length(header_rows)]] kable_ncol <- length(xml_children(bottom_header_row)) } if (sum(header$colspan) != kable_ncol) { stop("The new header row you provided has a total of ", sum(header$colspan), " columns but the original kable_input has ", kable_ncol, ".") } new_header_row <- htmlTable_new_header_generator( header, bold, italic, monospace, underline, strikeout, align, color, background, font_size, angle, line, line_sep, extra_css, include_empty, attr(kable_input, 'lightable_class') ) xml_add_child(kable_xml_thead, new_header_row, .where = 0) out <- as_kable_xml(kable_xml) if (is.null(kable_attrs$header_above)) { kable_attrs$header_above <- 1 } else { kable_attrs$header_above <- kable_attrs$header_above + 1 } attributes(out) <- kable_attrs if (!"kableExtra" %in% class(out)) class(out) <- c("kableExtra", class(out)) return(out) } standardize_header_input <- function(header) { header_names <- names(header) if (is.null(header_names)) { return(data.frame(header = header, colspan = 1, row.names = NULL)) } names(header)[header_names == ""] <- header[header_names == ""] header[header_names == ""] <- 1 header_names <- names(header) header <- as.numeric(header) names(header) <- header_names return(data.frame(header = names(header), colspan = header, row.names = NULL, stringsAsFactors = F)) } htmlTable_new_header_generator <- function(header_df, bold, italic, monospace, underline, strikeout, align, color, background, font_size, angle, line, line_sep, extra_css, include_empty, lightable_class) { align <- vapply(align, switch_align, 'x', USE.NAMES = FALSE) row_style <- paste0( "text-align: %s; ", ifelse(bold, "font-weight: bold; ", ""), ifelse(italic, "font-style: italic; ", ""), ifelse(monospace, "font-family: monospace; ", ""), ifelse(underline, "text-decoration: underline; ", ""), ifelse(strikeout, "text-decoration: line-through; ", "") ) if (!is.null(color)) { row_style <- paste0(row_style, "color: ", html_color(color), " !important;") } if (!is.null(background)) { row_style <- paste0( row_style, "padding-right: 4px; padding-left: 4px; ", "background-color: ", html_color(background), " !important;" ) } if (!is.null(font_size)) { if (is.numeric(font_size)) font_size <- paste0(font_size, "px") row_style <- paste0(row_style, "font-size: ", font_size, ";") } if (!is.null(extra_css)) { row_style <- paste0(row_style, extra_css) } if (!is.null(angle)) { angle <- paste0("-webkit-transform: rotate(", angle, "deg); -moz-transform: rotate(", angle, "deg); -ms-transform: rotate(", angle, "deg); -o-transform: rotate(", angle, "deg); transform: rotate(", angle, "deg); display: inline-block; ") header_df$header <- ifelse( trimws(header_df$header) == "" | include_empty, header_df$header, paste0('<span style="', angle, '">', header_df$header, '</span>') ) } if (is.null(lightable_class)) { border_hidden <- 'border-bottom:hidden;' line <- ifelse(ez_rep(line, nrow(header_df)), "border-bottom: 1px solid } else { border_hidden <- '' if (lightable_class %in% c("lightable-classic", "lightable-classic-2")) { line <- ifelse(ez_rep(line, nrow(header_df)), "border-bottom: 1px solid } if (lightable_class %in% c("lightable-minimal")) { line <- ifelse(ez_rep(line, nrow(header_df)), "border-bottom: 2px solid } if (lightable_class %in% c("lightable-paper")) { line <- ifelse(ez_rep(line, nrow(header_df)), "border-bottom: 1px solid } if (lightable_class %in% c("lightable-material")) { line <- ifelse(ez_rep(line, nrow(header_df)), "border-bottom: 1px solid } if (lightable_class %in% c("lightable-material-dark")) { line <- ifelse(ez_rep(line, nrow(header_df)), "border-bottom: 1px solid } } line_sep <- ez_rep(line_sep, nrow(header_df)) line_sep <- glue::glue('padding-left:{line_sep}px;padding-right:{line_sep}px;') row_style <- sprintf(row_style, align) header_items <- ifelse( trimws(header_df$header) == "" | include_empty, paste0('<th style="empty-cells: hide;', border_hidden, '" colspan="', header_df$colspan, '"></th>'), paste0( '<th style="', border_hidden, 'padding-bottom:0; ', line_sep, row_style, '" colspan="', header_df$colspan, '"><div style="', line, '">', header_df$header, '</div></th>') ) header_text <- paste(c("<tr>", header_items, "</tr>"), collapse = "") header_xml <- read_xml(header_text, options = c("COMPACT")) return(header_xml) } pdfTable_add_header_above <- function(kable_input, header, bold, italic, monospace, underline, strikeout, align, color, background, font_size, angle, escape, line, line_sep, border_left, border_right) { table_info <- magic_mirror(kable_input) if (is.data.frame(header)){ if(ncol(header) == 2 & is.character(header[[1]]) & is.numeric(header[[2]])){ header <- data.frame(header = header[[1]], colspan = header[[2]], stringsAsFactors = FALSE) } else { stop("If header input is provided as a data frame instead of a named vector ", "it must consist of only two columns: ", "The first should be a character vector with ", "header names and the second should be a numeric vector with ", "the number of columns the header should span.") } } else { header <- standardize_header_input(header) } if (escape) { header$header <- input_escape(header$header, align) } align <- vapply(align, match.arg, 'a', choices = c("l", "c", "r")) hline_type <- switch(table_info$booktabs + 1, "\\\\hline", "\\\\toprule") new_header_split <- pdfTable_new_header_generator( header, table_info$booktabs, bold, italic, monospace, underline, strikeout, align, color, background, font_size, angle, line_sep, border_left, border_right) if (line) { new_header <- paste0(new_header_split[1], "\n", new_header_split[2]) } else { new_header <- new_header_split[1] } out <- str_replace(solve_enc(kable_input), hline_type, paste0(hline_type, "\n", new_header)) out <- structure(out, format = "latex", class = "knitr_kable") if (is.null(table_info$new_header_row)) { table_info$new_header_row <- new_header_split[1] table_info$header_df <- list(header) } else { table_info$new_header_row <- c(table_info$new_header_row, new_header_split[1]) table_info$header_df[[length(table_info$header_df) + 1]] <- header } attr(out, "kable_meta") <- table_info return(out) } ez_rep <- function(x, n) { if (is.null(x)) return(NULL) if (length(x) == 1) return(rep(x, n)) return(x) } pdfTable_new_header_generator <- function(header_df, booktabs = FALSE, bold, italic, monospace, underline, strikeout, align, color, background, font_size, angle, line_sep, border_left, border_right) { n <- nrow(header_df) bold <- ez_rep(bold, n) italic <- ez_rep(italic, n) monospace <- ez_rep(monospace, n) underline <- ez_rep(underline, n) strikeout <- ez_rep(strikeout, n) align <- ez_rep(align, n) color <- ez_rep(color, n) background <- ez_rep(background, n) font_size <- ez_rep(font_size, n) angle <- ez_rep(angle, n) if (!booktabs & n != 1) { align[1:(n - 1)] <- paste0(align[1:(n - 1)], "|") } if (border_left) { align[1] <- paste0("|", align[1]) } if (border_right) { align[n] <- paste0(align[n], "|") } header <- header_df$header colspan <- header_df$colspan header <- ifelse(bold, paste0('\\\\textbf\\{', header, '\\}'), header) header <- ifelse(italic, paste0('\\\\em\\{', header, '\\}'), header) header <- ifelse(monospace, paste0('\\\\ttfamily\\{', header, '\\}'), header) header <- ifelse(underline, paste0('\\\\underline\\{', header, '\\}'), header) header <- ifelse(strikeout, paste0('\\\\sout\\{', header, '\\}'), header) if (!is.null(color)) { color <- latex_color(color) header <- paste0("\\\\textcolor", color, "\\{", header, "\\}") } if (!is.null(background)) { background <- latex_color(background) header <- paste0("\\\\cellcolor", background, "\\{", header, "\\}") } if (!is.null(font_size)) { header <- paste0("\\\\bgroup\\\\fontsize\\{", font_size, "\\}\\{", as.numeric(font_size) + 2, "\\}\\\\selectfont ", header, "\\\\egroup\\{\\}") } if (!is.null(angle)) { header <- paste0("\\\\rotatebox\\{", angle, "\\}\\{", header, "\\}") } header_items <- paste0( '\\\\multicolumn\\{', colspan, '\\}\\{', align, '\\}\\{', header, '\\}' ) header_text <- paste(paste(header_items, collapse = " & "), "\\\\\\\\") cline <- cline_gen(header_df, booktabs, line_sep) return(c(header_text, cline)) } cline_gen <- function(header_df, booktabs, line_sep) { cline_end <- cumsum(header_df$colspan) cline_start <- c(0, cline_end) + 1 cline_start <- cline_start[-length(cline_start)] cline_type <- switch( booktabs + 1, "\\\\cline{", glue::glue("\\\\cmidrule(l{[line_sep]pt}r{[line_sep]pt}){", .open = "[", .close = "]")) cline <- paste0(cline_type, cline_start, "-", cline_end, "}") cline <- cline[trimws(header_df$header) != ""] cline <- paste(cline, collapse = " ") return(cline) } switch_align <- function(x) { if (x %in% c('l', 'c', 'r')) { return(switch(x, l = 'left', c = 'center', r = 'right')) } return(x) }
get_fields <- function(endpoint, groups = NULL) { validate_endpoint(endpoint) if (is.null(groups)) { fieldsdf[fieldsdf$endpoint == endpoint, "field"] } else { validate_groups(groups = groups) fieldsdf[fieldsdf$endpoint == endpoint & fieldsdf$group %in% groups, "field"] } } get_endpoints <- function() { c( "assignees", "cpc_subsections", "inventors", "locations", "nber_subcategories", "patents", "uspc_mainclasses" ) }
output$processSankey <- renderEcharts4r({ processDataSpecific() %>% e_charts() %>% e_sankey(source, target, value, focusNodeAdjacency = T) %>% e_theme("essos") %>% e_color(background = " e_grid(left = "1%") %>% e_tooltip() }) processDataSpecific <- reactive({ processData[date == input$selectProcessDay] })
braun <- function(U, simpletest, m) { n <- length(U) if(n < 2 * m) stop("Unsufficient data for Braun's method") group <- factor(sample(seq_len(n) %% m)) zz <- by(data=U, INDICES=group, FUN=simpletest, simplify=FALSE) statistics <- sapply(zz, getElement, "statistic") pvalues <- sapply(zz, getElement, "pvalue") statname <- zz[[1]]$statname statistic <- max(statistics) pvalue <- 1 - (1 - min(pvalues))^m statname <- paste0(statname, "max") return(list(statistic=statistic, pvalue=pvalue, statname=statname)) }
AQSysPlot <- function (dataSET, Order = "xy", xlbl = "", ylbl = "", seriesNames = NULL, save = FALSE, filename = NULL, HR = FALSE, wdir = NULL, silent = FALSE) { nSys <- (ncol(dataSET) / 2) SysNames <- FALSE if ((ncol(dataSET) %% 2) == 0) { if (is.null(seriesNames) || !(length(seriesNames) == nSys)) { print(paste("The array seriesNames must have", nSys, "elements. Default names will be used instead.")) seriesNames <- sapply(seq(1, nSys), function(x) paste("Series", x)) } else { SysNames <- TRUE } SysList <- list() for (i in seq(1, nSys)) { SysList[[i]] <- unname(na.exclude(dataSET[, (i * 2 - 1):(i * 2)])) names(SysList[[i]]) <- c("X", "Y") SysList[[i]]["System"] <- seriesNames[i] } output <- bind_rows(SysList) output_plot <- bndOrthPlot(output, Order, xlbl, ylbl) saveConfig(output_plot, save, HR, filename, wdir, silent) if (silent == FALSE) { print(output_plot) invisible(list("data" = SysList, "plot" = output_plot)) } else { invisible(list("data" = SysList, "plot" = output_plot)) } } else{ AQSys.err(9) } } bndOrthPlot <- function(dataSET, Order, xlbl = "", ylbl = "") { xmax <- ceiling(round(max(dataSET[, 1]) / 0.92, 1) / 5) * 5 ymax <- ceiling(round(max(dataSET[, 2]) / 0.92, 1) / 5) * 5 outputPLOT <- ggplot() + scale_colour_grey() + geom_line(data = dataSET, size = 1, aes_string(color = "System", x = "X", y = "Y")) + geom_point(data = dataSET, size = 2, aes_string(color = "System", x = "X", y = "Y")) + xlab(paste(xlbl, "(%, m/m)")) + ylab(paste(ylbl, "(%, m/m)")) + theme_light() + theme( validate = FALSE, plot.margin = unit(c(1, 1, 1, 1), "cm"), text = element_text(size = 16), legend.position = "top", axis.title.y = element_text(vjust = 5), axis.title.x = element_text(vjust = -2), panel.grid.major = element_line(size = .70, colour = "black"), panel.grid.minor = element_line(size = .70), panel.border = element_rect(size = .5, colour = "white"), axis.text.x = element_text(size = 15), axis.text.y = element_text(size = 15), axis.line = element_line(colour = 'black', size = 1.25), legend.title = element_blank(), legend.text = element_text( colour = "black", size = 12, face = "plain" ) ) + scale_y_continuous( expand = c(0, 0), limits = c(0, ymax), breaks = seq(0, ymax, by = 5), labels = seq(0, ymax, by = 5) ) + scale_x_continuous( expand = c(0, 0), limits = c(0, xmax), breaks = seq(0, xmax, by = xmax / 10), labels = seq(0, xmax, by = xmax / 10) ) return(outputPLOT) }
lgRR.vcov <- function(r, nt, nc, st, sc, n_rt = NA, n_rc = NA) { ft <- nt - st fc <- nc - sc if (length(as.vector(ft)) == length(as.matrix(ft)[, 1])) { colum.number <- 1} else {colum.number <- ncol(ft)} if (length(as.vector(ft)) == length(as.matrix(ft)[, 1])) { K <- length(ft)} else { K <- nrow(ft)} col.vac.number <- (colum.number + 1)*colum.number/2 if (is.na(n_rt)&(length(n_rt) == 1)){ n_rt <- rep(list(matrix(NA, colum.number, colum.number)), K) } for (k in 1:K) { for (i in 1:colum.number){ for (j in 1:colum.number){ if (is.na(n_rt[[k]][i, j])) n_rt[[k]][i, j] <- min(nt[k, i], nt[k, j]) } } } if (is.na(n_rc)&(length(n_rc) == 1)){ n_rc <- rep(list(matrix(NA, colum.number, colum.number)), K) } for (k in 1:K) { for (i in 1:colum.number){ for (j in 1:colum.number){ if (is.na(n_rc[[k]][i, j])) n_rc[[k]][i, j] <- min(nc[k, i], nc[k, j]) } } } list.corr.st.varcovar <- list() for (k in 1:K){ list.corr.st.varcovar[[k]] <- matrix(NA, colum.number, colum.number) for (i in 1:colum.number){ for (j in 1:colum.number) { tmp <- r[[k]][i, j]*n_rc[[k]][i, j]*sqrt(fc[k, i]*fc[k, j]/sc[k, i]/sc[k, j])/sqrt(nc[k, i]*nc[k, j]) + r[[k]][i, j]*n_rt[[k]][i, j]*sqrt(ft[k, i]*ft[k, j]/st[k, i]/st[k, j])/sqrt(nt[k, i]*nt[k, j]) list.corr.st.varcovar[[k]][i, j]<- unlist(tmp) } } } lgRR <- matrix(NA, K, colum.number) for (k in 1:K) { for (i in 1:colum.number){ lgRR[k, i] <- unlist(log((st[k, i]/nt[k, i])/(sc[k, i]/nc[k, i]))) }} corr.st.varcovar <- matrix(unlist(lapply(1:K, function(k){ smTovec(list.corr.st.varcovar[[k]])})), K, col.vac.number, byrow = TRUE) list(list.vcov = list.corr.st.varcovar, matrix.vcov = corr.st.varcovar, ef = as.data.frame(lgRR)) }
cProb <- function(data, censored, gamma1, q, plot = FALSE, add = FALSE, main = "Estimates of small exceedance probability", ...) { .checkInput(data, gamma1) censored <- .checkCensored(censored, length(data)) if (length(q) > 1) { stop("q should be a numeric of length 1.") } s <- sort(data, index.return = TRUE) X <- s$x sortix <- s$ix n <- length(X) prob <- numeric(n) K <- 1:(n-1) km <- KaplanMeier(X[n-K], data = X, censored = censored[sortix])$surv prob[K] <- km * (q/X[n-K])^(-1/gamma1[K]) prob[prob < 0 | prob > 1] <- NA .plotfun(K, prob[K], type="l", xlab="k", ylab="1-F(x)", main=main, plot=plot, add=add, ...) .output(list(k=K, P=prob[K], q=q), plot=plot, add=add) } cReturn <- function(data, censored, gamma1, q, plot = FALSE, add = FALSE, main = "Estimates of large return period", ...) { .checkInput(data, gamma1) censored <- .checkCensored(censored, length(data)) if (length(q) > 1) { stop("q should be a numeric of length 1.") } s <- sort(data, index.return = TRUE) X <- s$x sortix <- s$ix n <- length(X) R <- numeric(n) K <- 1:(n-1) km <- KaplanMeier(X[n-K], data = X, censored = censored[sortix])$surv R[K] <- 1 / ( km * (q/X[n-K])^(-1/gamma1[K]) ) R[R < 1] <- NA .plotfun(K, R[K], type="l", xlab="k", ylab="1/(1-F(x))", main=main, plot=plot, add=add, ...) .output(list(k=K, R=R[K], q=q), plot=plot, add=add) } cQuant <- function(data, censored, gamma1, p, plot = FALSE, add = FALSE, main = "Estimates of extreme quantile", ...) { .checkInput(data, gamma1) censored <- .checkCensored(censored, length(data)) .checkProb(p) s <- sort(data, index.return = TRUE) X <- s$x sortix <- s$ix n <- length(X) quant <- numeric(n) K <- 1:(n-1) km <- KaplanMeier(X[n-K], data = X, censored = censored[sortix])$surv quant[K] <- X[n-K] * (km/p)^(gamma1[K]) .plotfun(K, quant[K], type="l", xlab="k", ylab="Q(1-p)", main=main, plot=plot, add=add, ...) .output(list(k=K, Q=quant[K], p=p), plot=plot, add=add) } cQuantGH <- function(data, censored, gamma1, p, plot = FALSE, add = FALSE, main = "Estimates of extreme quantile", ...) { .checkInput(data, gamma1, gammapos=FALSE) censored <- .checkCensored(censored, length(data)) .checkProb(p) s <- sort(data, index.return = TRUE) X <- s$x sortix <- s$ix delta <- !(censored[sortix]*1) n <- length(X) quant <- numeric(n) K <- 1:length(gamma1) pk <- cumsum(delta[n-K+1])/K H <- Hill(X)$gamma S <- Moment(X)$gamma - Hill(X)$gamma a <- X[n-K] * H[K] * (1-S[K]) / pk[K] km <- KaplanMeier(X[n-K], data = X, censored = censored[sortix])$surv quant[K] <- X[n-K] + a/gamma1[K] * ( (km/p)^gamma1[K] - 1 ) .plotfun(K, quant[K], type="l", xlab="k", ylab="Q(1-p)", main=main, plot=plot, add=add, ...) .output(list(k=K, Q=quant[K], p=p), plot=plot, add=add) } cProbGH <- function(data, censored, gamma1, q, plot = FALSE, add = FALSE, main = "Estimates of small exceedance probability", ...) { .checkInput(data, gamma1, gammapos=FALSE) censored <- .checkCensored(censored, length(data)) if (length(q) > 1) { stop("q should be a numeric of length 1.") } s <- sort(data, index.return = TRUE) X <- s$x sortix <- s$ix delta <- !(censored[sortix]*1) n <- length(X) prob <- numeric(n) K <- 1:length(gamma1) pk <- cumsum(delta[n-K+1])/K H <- Hill(X)$gamma a <- X[n-K] * H[K] * (1-pmin(gamma1[K], 0)) / pk[K] km <- KaplanMeier(X[n-K], data = X, censored = censored[sortix])$surv prob[K] <- km * (1 + gamma1[K]/a[K]*(q-X[n-K]))^(-1/gamma1[K]) prob[prob < 0 | prob > 1] <- NA .plotfun(K, prob[K], type="l", xlab="k", ylab="1-F(x)", main=main, plot=plot, add=add, ...) .output(list(k=K, P=prob[K], q=q), plot=plot, add=add) } cReturnGH <- function(data, censored, gamma1, q, plot = FALSE, add = FALSE, main = "Estimates of large return period", ...) { .checkInput(data, gamma1, gammapos=FALSE) censored <- .checkCensored(censored, length(data)) if (length(q) > 1) { stop("q should be a numeric of length 1.") } s <- sort(data, index.return = TRUE) X <- s$x sortix <- s$ix delta <- !(censored[sortix]*1) n <- length(X) R <- numeric(n) K <- 1:length(gamma1) pk <- cumsum(delta[n-K+1])/K H <- Hill(X)$gamma a <- X[n-K] * H[K] * (1-pmin(gamma1[K], 0)) / pk[K] km <- KaplanMeier(X[n-K], data = X, censored = censored[sortix])$surv R[K] <- 1 / ( km * (1 + gamma1[K]/a[K]*(q-X[n-K]))^(-1/gamma1[K]) ) R[R < 1] <- NA .plotfun(K, R[K], type="l", xlab="k", ylab="1/(1-F(x))", main=main, plot=plot, add=add, ...) .output(list(k=K, R=R[K], q=q), plot=plot, add=add) } cQuantMOM <- cQuantGH cProbMOM <- cProbGH cReturnMOM <- cReturnGH cQuantGPD <- function(data, censored, gamma1, sigma1, p, plot = FALSE, add = FALSE, main = "Estimates of extreme quantile", ...) { .checkInput(data, gamma1, scale=sigma1, gammapos=FALSE) censored <- .checkCensored(censored, length(data)) .checkProb(p) s <- sort(data, index.return = TRUE) X <- s$x sortix <- s$ix delta <- !(censored[sortix]*1) n <- length(X) quant <- numeric(n) K <- 1:(n-1) pk <- cumsum(delta[n-K+1])/K a <- sigma1[K]/pk km <- KaplanMeier(X[n-K], data = X, censored = censored[sortix])$surv quant[K] <- X[n-K] + a/gamma1[K] * ( (km/p)^gamma1[K] - 1 ) .plotfun(K, quant[K], type="l", xlab="k", ylab="Q(1-p)", main=main, plot=plot, add=add, ...) .output(list(k=K, Q=quant[K], p=p), plot=plot, add=add) } cProbGPD <- function(data, censored, gamma1, sigma1, q, plot = FALSE, add = FALSE, main = "Estimates of small exceedance probability", ...) { .checkInput(data, gamma1, scale=sigma1, gammapos=FALSE) censored <- .checkCensored(censored, length(data)) if (length(q) > 1) { stop("q should be a numeric of length 1.") } s <- sort(data, index.return = TRUE) X <- s$x sortix <- s$ix delta <- !(censored[sortix]*1) n <- length(X) prob <- numeric(n) K <- 1:(n-1) pk <- cumsum(delta[n-K+1])/K a <- sigma1[K]/pk km <- KaplanMeier(X[n-K], data = X, censored = censored[sortix])$surv prob[K] <- km * (1 + gamma1[K]/a[K]*(q-X[n-K]))^(-1/gamma1[K]) prob[prob < 0 | prob > 1] <- NA .plotfun(K, prob[K], type="l", xlab="k", ylab="1-F(x)", main=main, plot=plot, add=add, ...) .output(list(k=K, P=prob[K], q=q), plot=plot, add=add) } cReturnGPD <- function(data, censored, gamma1, sigma1, q, plot = FALSE, add = FALSE, main = "Estimates of large return period", ...) { .checkInput(data, gamma1, scale=sigma1, gammapos=FALSE) censored <- .checkCensored(censored, length(data)) if (length(q) > 1) { stop("q should be a numeric of length 1.") } s <- sort(data, index.return = TRUE) X <- s$x sortix <- s$ix delta <- !(censored[sortix]*1) n <- length(X) R <- numeric(n) K <- 1:(n-1) pk <- cumsum(delta[n-K+1])/K a <- sigma1[K]/pk km <- KaplanMeier(X[n-K], data = X, censored = censored[sortix])$surv R[K] <- 1 / ( km * (1 + gamma1[K]/a[K]*(q-X[n-K]))^(-1/gamma1[K]) ) R[R < 1] <- NA .plotfun(K, R[K], type="l", xlab="k", ylab="1/(1-F(x))", main=main, plot=plot, add=add, ...) .output(list(k=K, R=R[K], q=q), plot=plot, add=add) }
isoweek <- function(x, type="both_num", sep="-", inv=FALSE, colnames=c("isoyear","isoweek")) { alts=c("week","year","both_text","both_num","matrix") if(!(type %in% alts)) stop("Unknown isoweek type requested!") x.date<-as.Date(x) x.weekday<-as.integer(format(x.date,"%w")) x.weekday[x.weekday==0]=7 x.nearest.thu<-x.date-x.weekday+4 x.isoyear<-as.integer(substring(x.nearest.thu,1,4)) x.isoweek<-(as.integer(x.nearest.thu-as.Date(paste(x.isoyear,"-1-1",sep="")))%/%7)+1 switch(type, week = x.isoweek, year = x.isoyear, both_text = if (inv) { ifelse((is.na(x.isoyear) | is.na(x.isoweek)),NA,paste(x.isoweek,x.isoyear,sep=sep)) } else { ifelse((is.na(x.isoyear) | is.na(x.isoweek)),NA,paste(x.isoyear,x.isoweek,sep=sep)) }, both_num = ifelse((is.na(x.isoyear) | is.na(x.isoweek)),NA,x.isoyear*100+x.isoweek), matrix = if (inv) { `colnames<-`(cbind(x.isoweek, x.isoyear), rev(colnames)) } else { `colnames<-`(cbind(x.isoyear, x.isoweek), colnames) } ) }
umxACEv <- function(name = "ACEv", selDVs, selCovs = NULL, sep = NULL, dzData, mzData, dzAr = .5, dzCr = 1, type = c("Auto", "FIML", "cov", "cor", "WLS", "DWLS", "ULS"), allContinuousMethod = c("cumulants", "marginals"), data = NULL, zyg = "zygosity", weightVar = NULL, numObsDZ = NULL, numObsMZ = NULL, addStd = TRUE, addCI = TRUE, boundDiag = NULL, equateMeans = TRUE, bVector = FALSE, autoRun = getOption("umx_auto_run"), tryHard = c("no", "yes", "ordinal", "search"), optimizer = NULL, nSib = 2) { type = match.arg(type) allContinuousMethod = match.arg(allContinuousMethod) if(dzCr == .25 & name == "ACEv"){ name = "ADEv" } if(nSib != 2){umx_msg(paste0("I can only handle 2 sibs, you gave me ", nSib)) } if(!is.null(data)){ if(is.null(sep)){ sep = "_T" } if("tbl" %in% class(data)){ data = as.data.frame(data) } if(is.null(dzData)){ dzData = "DZ"; mzData = "MZ" } mzData = data[data[,zyg] %in% mzData, ] dzData = data[data[,zyg] %in% dzData, ] }else{ if("tbl" %in% class(mzData)){ mzData = as.data.frame(mzData) dzData = as.data.frame(dzData) } } xmu_twin_check(selDVs= selDVs, sep = sep, dzData = dzData, mzData = mzData, enforceSep = TRUE, nSib = nSib, optimizer = optimizer) selVars = tvars(selDVs, sep = sep, suffixes= 1:nSib) nVar = length(selVars)/nSib; model = xmu_make_TwinSuperModel(name=name, mzData = mzData, dzData = dzData, selDVs = selDVs, selCovs= selCovs, sep = sep, type = type, allContinuousMethod = allContinuousMethod, numObsMZ = numObsMZ, numObsDZ = numObsDZ, nSib= nSib, equateMeans = equateMeans, weightVar = weightVar) tmp = xmu_starts(mzData, dzData, selVars = selDVs, sep = sep, nSib = nSib, varForm = "Cholesky", equateMeans= equateMeans, SD= TRUE, divideBy = 3) if(nSib==2){ expCovMZ = mxAlgebra(rbind (cbind(ACE, AC), cbind( AC, ACE)), dimnames = list(selVars, selVars), name = "expCovMZ") expCovDZ = mxAlgebra(rbind (cbind(ACE, hAC), cbind(hAC, ACE)), dimnames = list(selVars, selVars), name = "expCovDZ") } else if (nSib==3) { expCovMZ = mxAlgebra(name="expCovMZ", dimnames = list(selVars, selVars), rbind( cbind(ACE, AC, hAC), cbind(AC , ACE, hAC), cbind(hAC, hAC, ACE)) ) expCovDZ = mxAlgebra(name= "expCovDZ", dimnames = list(selVars, selVars), rbind( cbind(ACE, hAC, hAC), cbind(hAC, ACE, hAC), cbind(hAC, hAC, ACE)) ) }else{ stop("3 sibs is experimental, but ", nSib, "? ... Maybe come back in 2022, best tim :-)") } top = mxModel(model$top, umxMatrix("A", type = "Symm", nrow = nVar, ncol = nVar, free = TRUE, values = tmp$varStarts, byrow = TRUE), umxMatrix("C", type = "Symm", nrow = nVar, ncol = nVar, free = TRUE, values = tmp$varStarts, byrow = TRUE), umxMatrix("E", type = "Symm", nrow = nVar, ncol = nVar, free = TRUE, values = tmp$varStarts, byrow = TRUE), umxMatrix("dzAr", "Full", 1, 1, free = FALSE, values = dzAr), umxMatrix("dzCr", "Full", 1, 1, free = FALSE, values = dzCr), mxAlgebra(name = "ACE", A+C+E), mxAlgebra(name = "AC" , A+C ), mxAlgebra(name = "hAC", (dzAr %x% A) + (dzCr %x% C)), expCovMZ, expCovDZ ) model = mxModel(model, top) if(!is.null(boundDiag)){ if(!is.numeric(boundDiag)){ stop("boundDiag must be a digit or vector of numbers. You gave me a ", class(boundDiag)) } else { newLbound = model$top$matrices$A@lbound if(length(boundDiag) > 1 ){ if(length(boundDiag) != length(diag(newLbound)) ){ stop("Typically boundDiag is 1 digit: if more, must be size of diag(A)") } } diag(newLbound) = boundDiag; model$top$A$lbound = newLbound model$top$C$lbound = newLbound model$top$E$lbound = newLbound } } if(addStd){ newTop = mxModel(model$top, mxMatrix(name = "I", "Iden", nVar, nVar), mxAlgebra(name = "Vtot", A + C+ E), mxAlgebra(name = "InvSD", sqrt(solve(I * Vtot))), mxAlgebra(name = "A_std", InvSD %&% A), mxAlgebra(name = "C_std", InvSD %&% C), mxAlgebra(name = "E_std", InvSD %&% E) ) model = mxModel(model, newTop) if(addCI){ model = mxModel(model, mxCI(c('top.A_std', 'top.C_std', 'top.E_std'))) } } model = omxAssignFirstParameters(model) model = as(model, "MxModelACEv") model = xmu_safe_run_summary(model, autoRun = autoRun, tryHard = tryHard, summary = TRUE, comparison = FALSE) return(model) } umxSummaryACEv <- function(model, digits = 2, file = getOption("umx_auto_plot"), comparison = NULL, std = TRUE, showRg = FALSE, CIs = TRUE, report = c("markdown", "html"), returnStd = FALSE, extended = FALSE, zero.print = ".", show = c("std", "raw"), ...) { show = match.arg(show, c("std", "raw")) if(show != "std"){ std = FALSE } report = match.arg(report) commaSep = paste0(umx_set_separator(silent = TRUE), " ") if(typeof(model) == "list"){ for(thisFit in model) { message("Output for Model: ", thisFit$name) umxSummaryACE(thisFit, digits = digits, file = file, showRg = showRg, std = std, comparison = comparison, CIs = CIs, returnStd = returnStd, extended = extended, zero.print = zero.print, report = report) } } else { umx_has_been_run(model, stop = TRUE) xmu_show_fit_or_comparison(model, comparison = comparison, digits = digits) selDVs = dimnames(model$top.expCovMZ)[[1]] nVar = length(selDVs)/2; A = mxEval(top.A, model) C = mxEval(top.C, model) E = mxEval(top.E, model) if(std){ caption = paste0("Standardized parameter estimates from a ", dim(A)[2], "-factor Direct variance ACE model. ") Vtot = A + C + E; I = diag(nVar); InvSD = sqrt(solve(I * Vtot)); A_std = InvSD %&% A C_std = InvSD %&% C E_std = InvSD %&% E AClean = A_std CClean = C_std EClean = E_std } else { caption = paste0("Raw parameter estimates from a ", dim(A)[2], "-factor direct-variance ACE model. ") AClean = A CClean = C EClean = E } AClean[upper.tri(AClean)] = NA CClean[upper.tri(CClean)] = NA EClean[upper.tri(EClean)] = NA rowNames = sub("(_T)?1$", "", selDVs[1:nVar]) Estimates = data.frame(cbind(AClean, CClean, EClean), row.names = rowNames, stringsAsFactors = FALSE); if(model$top$dzCr$values == .25){ colNames = c("A", "D", "E") caption = paste0(caption, "A: additive genetic; D: dominance effects; E: unique environment.") } else { colNames = c("A", "C", "E") caption = paste0(caption, "A: additive genetic; C: common environment; E: unique environment.") } names(Estimates) = paste0(rep(colNames, each = nVar), rep(1:nVar)) umx_print(Estimates, digits = digits, caption = caption, append=FALSE, sortableDF=TRUE, both=TRUE, na.print="NA", file=report, zero.print = zero.print) xmu_twin_print_means(model, digits = digits, report = report) if(extended == TRUE) { AClean = A CClean = C EClean = E AClean[upper.tri(AClean)] = NA CClean[upper.tri(CClean)] = NA EClean[upper.tri(EClean)] = NA unStandardizedEstimates = data.frame(cbind(AClean, CClean, EClean), row.names = rowNames); names(unStandardizedEstimates) = paste0(rep(colNames, each = nVar), rep(1:nVar)); umx_print(unStandardizedEstimates, caption = "Unstandardised path coefficients", digits = digits, zero.print = zero.print) } if(showRg) { NAmatrix <- matrix(NA, nVar, nVar); rA = tryCatch(solve(sqrt(I*A)) %*% A %*% solve(sqrt(I*A)), error = function(err) return(NAmatrix)); rC = tryCatch(solve(sqrt(I*C)) %*% C %*% solve(sqrt(I*C)), error = function(err) return(NAmatrix)); rE = tryCatch(solve(sqrt(I*E)) %*% E %*% solve(sqrt(I*E)), error = function(err) return(NAmatrix)); rAClean = rA rCClean = rC rEClean = rE rAClean[upper.tri(rAClean)] = NA rCClean[upper.tri(rCClean)] = NA rEClean[upper.tri(rEClean)] = NA genetic_correlations = data.frame(cbind(rAClean, rCClean, rEClean), row.names = rowNames); names(genetic_correlations) = rowNames names(genetic_correlations) = paste0(rep(c("rA", "rC", "rE"), each = nVar), rep(1:nVar)); umx_print(genetic_correlations, caption = "Genetic correlations", digits = digits, zero.print = zero.print) } hasCIs = umx_has_CIs(model) if(hasCIs & CIs) { message("Creating CI-based report!") CIlist = data.frame(model$output$confidenceIntervals) CIlist = CIlist[(CIlist$lbound != 0 & CIlist$ubound != 0), ] CIlist = CIlist[!grepl("^NA", row.names(CIlist)), ] CIlist <- CIlist[, c("lbound", "estimate", "ubound")] CIlist$fullName = row.names(CIlist) rows = dim(model$top$matrices$A$labels)[1] cols = dim(model$top$matrices$A$labels)[2] A_CI = C_CI = E_CI = matrix(NA, rows, cols) labelList = imxGenerateLabels(model) rowCount = dim(CIlist)[1] for(n in 1:rowCount) { thisName = row.names(CIlist)[n] if(!umx_has_square_brackets(thisName)) { nameParts = labelList[which(row.names(labelList) == thisName),] CIlist$fullName[n] = paste(nameParts$model, ".", nameParts$matrix, "[", nameParts$row, ",", nameParts$col, "]", sep = "") } fullName = CIlist$fullName[n] thisMatrixName = sub(".*\\.([^\\.]*)\\[.*", replacement = "\\1", x = fullName) thisMatrixRow = as.numeric(sub(".*\\[(.*),(.*)\\]", replacement = "\\1", x = fullName)) thisMatrixCol = as.numeric(sub(".*\\[(.*),(.*)\\]", replacement = "\\2", x = fullName)) CIparts = round(CIlist[n, c("estimate", "lbound", "ubound")], digits) thisString = paste0(CIparts[1], " [",CIparts[2], commaSep, CIparts[3], "]") if(grepl("^A", thisMatrixName)) { A_CI[thisMatrixRow, thisMatrixCol] = thisString } else if(grepl("^C", thisMatrixName)){ C_CI[thisMatrixRow, thisMatrixCol] = thisString } else if(grepl("^E", thisMatrixName)){ E_CI[thisMatrixRow, thisMatrixCol] = thisString } else{ stop(paste("Illegal matrix name: must begin with A, C, or E. You sent: ", thisMatrixName)) } } Estimates = data.frame(cbind(A_CI, C_CI, E_CI), row.names = rowNames, stringsAsFactors = FALSE) names(Estimates) = paste0(rep(colNames, each = nVar), rep(1:nVar)); Estimates = umx_print(Estimates, digits = digits, zero.print = zero.print) if(report == "html"){ R2HTML::HTML(Estimates, file = "tmpCI.html", Border = 0, append = F, sortableDF = T); umx_open("tmpCI.html") } CI_Fit = model CI_Fit$top$A$values = A_CI CI_Fit$top$C$values = C_CI CI_Fit$top$E$values = E_CI } } if(!is.na(file)) { if(hasCIs & CIs){ umxPlotACEv(CI_Fit, file = file, std = FALSE) } else { umxPlotACEv(model, file = file, std = std) } } if(returnStd) { if(CIs){ message("If you asked for CIs, returned model is not runnable (contains CIs not parameter values)") } umx_standardize(model) } } umxSummary.MxModelACEv <- umxSummaryACEv umxPlotACEv <- function(x = NA, file = "name", digits = 2, means = FALSE, std = TRUE, strip_zero = TRUE, ...) { model = x if(std){ model = umx_standardize(model) } selDVs = xmu_twin_get_var_names(model) nVar = length(selDVs) selDVs = selDVs[1:(nVar)] parameterKeyList = omxGetParameters(model) out = "" latents = c() for(thisParam in names(parameterKeyList) ) { value = parameterKeyList[thisParam] if(class(value) == "numeric") { value = round(value, digits) } if (grepl("^[ACE]_r[0-9]+c[0-9]+", thisParam)) { from = sub('([ACE])_r([0-9]+)c([0-9]+)', '\\1\\3', thisParam, perl = TRUE); target = sub('([ACE])_r([0-9]+)c([0-9]+)', '\\1\\2', thisParam, perl = TRUE); latents = append(latents, c(from, target)) out = paste0(out, "\t", from, " -> ", target, " [dir=both, label = \"", value, "\"]", ";\n") } else { from = thisParam; target = sub('r([0-9])c([0-9])', 'var\\2', thisParam, perl=TRUE) if(means){ out = paste0(out, "\t", from, " -> ", target, " [label = \"", value, "\"]", ";\n") } } } preOut = "\t latents = unique(latents) for(var in latents) { preOut = paste0(preOut, "\t", var, " [shape = circle];\n") } preOut = paste0(preOut, "\n\t for(var in selDVs[1:nVar]) { preOut = paste0(preOut, "\t", var, " [shape = square];\n") } selDVs[1:nVar] l_to_v_at_1 = "" for(l in latents) { var = as.numeric(sub('([ACE])([0-9]+)', '\\2', l, perl = TRUE)); l_to_v_at_1 = paste0(l_to_v_at_1, "\t ", l, "-> ", selDVs[var], " [label = \"@1\"];\n") } rankVariables = paste("\t{rank = same; ", paste(selDVs[1:nVar], collapse = "; "), "};\n") rankA = paste("\t{rank = min; ", paste(grep('A' , latents, value = TRUE), collapse = "; "), "};\n") rankCE = paste("\t{rank = max; ", paste(grep('[CE]', latents, value = TRUE), collapse = "; "), "};\n") label = model$name splines = "FALSE" digraph = paste0( "digraph G {\n\t", 'label="', label, '";\n\t', "splines = \"", splines, "\";\n", preOut, out, l_to_v_at_1, rankVariables, rankA, rankCE, "\n}" ) message("\n?umxPlotACEv options: std=, means=, digits=, strip_zero=, file=, min=, max =") xmu_dot_maker(model, file, digraph, strip_zero = strip_zero) } plot.MxModelACEv <- umxPlotACEv xmu_standardize_ACEv <- function(model, ...) { message("Standardized variance-based models may yield negative variances...") if(typeof(model) == "list"){ for(thisFit in model) { message("Output for Model: ", thisFit$name) umx_standardize(thisFit) } } else { if(!umx_has_been_run(model)){ stop("I can only standardize ACEv models that have been run. Just do\n", "yourModel = mxRun(yourModel)") } selDVs = dimnames(model$top.expCovMZ)[[1]] nVar <- length(selDVs)/2; A <- mxEval(top.A, model); C <- mxEval(top.C, model); E <- mxEval(top.E, model); Vtot = A + C + E; I = diag(nVar); InvSD <- sqrt(solve(I * Vtot)); model$top$A$values = InvSD %&% A; model$top$C$values = InvSD %&% C; model$top$E$values = InvSD %&% E; return(model) } } umx_standardize.MxModelACEv <- xmu_standardize_ACEv
getMVptr <- function(rPtr, dll) eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getModelValuesPtrFromModel, rPtr)) getMVName <- function(modelValuePtr, dll) eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getMVBuildName, modelValuePtr)) CmodelBaseClass <- setRefClass('CmodelBaseClass', contains = 'modelBaseClass', fields = list( .basePtr = 'ANY', .namedObjectsPtr = 'ANY', .ModelBasePtr = 'ANY', dll = 'ANY', Rmodel = 'ANY', cppNames = 'ANY', cppCopyTypes = 'ANY', compiledModel = 'ANY', .nodeFxnPointers_byDeclID = 'ANY', nodeFunctions = 'ANY' ), methods = list( show = function() { cat('CmodelBaseClass object\n') }, finalizeInternal = function() { for(vn in cppNames) { vPtrName <- paste(".", vn, "_Ptr", sep = "") assign(vPtrName, NULL, inherits = TRUE) } finalize() .basePtr <<- NULL .namedObjectsPtr <<- NULL .ModelBasePtr <<- NULL .nodeFxnPointers_byDeclID <<- NULL nimbleProject <<- NULL }, finalize = function() { for(i in ls(Rmodel$nodes)) { if(is.null(nodes[[i]])) next if(is.list(nodes[[i]])) nodes[[i]][[1]]$finalizeInstance(nodes[[i]][[2]]) else nodes[[i]]$finalize() nodes[[i]] <<- NULL } if(!is.null(.nodeFxnPointers_byDeclID)) .nodeFxnPointers_byDeclID$finalize() if(!is.null(.namedObjectsPtr)) nimbleInternalFunctions$nimbleFinalize(.namedObjectsPtr) }, setModel = function(model) { Rmodel <<- model model$CobjectInterface <- .self }, copyFromModel = function(model) { if(missing(model)) model <- Rmodel for(v in cppNames) { if(cppCopyTypes[[v]] == 'numeric') { .self[[v]] <<- model[[v]] next } } }, setupNodes = function(where = classEnvironment, dll = NULL) { nodesEnv <- new.env() asTopLevel <- getNimbleOption('buildInterfacesForCompiledNestedNimbleFunctions') nodeFunctions <<- vector('list', length(Rmodel$nodeFunctions)) for(i in seq_along(Rmodel$nodeFunctions)) { thisNodeFunName <- names(Rmodel$nodeFunctions)[i] nodesEnv[[thisNodeFunName]] <- nimbleProject$instantiateNimbleFunction(Rmodel$nodes[[thisNodeFunName]], dll = dll, asTopLevel = asTopLevel) nodeFunctions[[i]] <<- nodesEnv[[thisNodeFunName]] } nodes <<- nodesEnv names(nodeFunctions) <<- names(Rmodel$nodeFunctions) .nodeFxnPointers_byDeclID <<- new('numberedObjects', dll = dll) maxID = length(modelDef$declInfo) .nodeFxnPointers_byDeclID$resize(maxID) for(declID in seq_along(nodes)) { thisNodeFunctionName <- names(Rmodel$nodeFunctions)[declID] basePtr <- if(is.list(nodes[[thisNodeFunctionName]])) nodes[[thisNodeFunctionName]][[1]]$basePtrList[[ nodes[[thisNodeFunctionName]][[2]] ]] else nodes[[thisNodeFunctionName]]$.basePtr .self$.nodeFxnPointers_byDeclID[declID] <- basePtr } } ) ) makeModelCppCopyTypes <- function(symTab) { ans <- list() for(s in symTab$symbols) { ans[[s$name]] <- 'numeric' } ans } makeModelBindingFields <- function(symTab) { fieldList = list(.modelValues_Ptr = "ANY", .DUMMY = "ANY") vNames = names(symTab$symbols) for(vn in vNames){ ptrName = paste(".", vn, "_Ptr", sep = "") fieldList[[ptrName]] <- "ANY" eval(substitute( fieldList$VARNAME <- function(x){ if(missing(x) ) nimbleInternalFunctions$getNimValues(VPTR, 2, dll = dll) else nimbleInternalFunctions$setNimValues(VPTR, x, 2, allowResize = FALSE, dll = dll) }, list(VPTR = as.name(ptrName), VARNAME = vn) ) ) } return(fieldList) } buildModelInterface <- function(refName, compiledModel, basePtrCall, project = NULL, dll = NULL, where = globalenv()){ defaults <- list() if(inherits(compiledModel, 'symbolTable')) { symTab <- compiledModel defaults$cm <- NULL warning('No compiled model provided, so interface will be incomplete') } else { symTab <- compiledModel$model$modelDef$symTab defaults$cm <- compiledModel } defaults$cppCT <- makeModelCppCopyTypes(symTab) defaults$project <- project defaults$extPtrTypeIndex <- compiledModel$getExtPtrTypeIndex() if(!is.null(dll) && is.character(basePtrCall)) basePtrCall = getNativeSymbolInfo(basePtrCall, dll) else warning("creating an initialization method that calls a C routine without any DLL information") eval(substitute( newClass <- setRefClass(refName, fields = FIELDS, contains = "CmodelBaseClass", methods = list(initialize = function(model, defaults, basePtrCall, ..., dll = NULL) { nodes <<- list() isDataEnv <<- new.env() classEnvironment <<- new.env() callSuper(dll = dll, ...) newPtrPair <- eval(parse(text = ".Call(basePtrCall)")) .basePtr <<- newPtrPair[[1]] .ModelBasePtr <<- newPtrPair[[ defaults$extPtrTypeIndex['ModelBase'] ]] .namedObjectsPtr <<- newPtrPair[[ defaults$extPtrTypeIndex['NamedObjects'] ]] eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$register_namedObjects_Finalizer, .namedObjectsPtr, dll[['handle']], model$name)) .modelValues_Ptr <<- nimbleInternalFunctions$getMVptr(.ModelBasePtr, dll = dll) defaultModelValues <<- nimbleInternalFunctions$CmodelValues$new(existingPtr = .modelValues_Ptr, buildCall = nimbleInternalFunctions$getMVName(.modelValues_Ptr, dll), initialized = TRUE, dll = dll ) modelDef <<- model$modelDef graph <<- model$graph vars <<- model$vars isDataVars <<- model$isDataVars nimbleProject <<- defaults$project for(v in ls(model$isDataEnv)) isDataEnv[[v]] <<- model$isDataEnv[[v]] setData(modelDef$constantsList, warnAboutMissingNames = FALSE) cppNames <<- eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getAvailableNames, .namedObjectsPtr)) cppCopyTypes <<- defaults$cppCT compiledModel <<- defaults$cm for(vn in cppNames) { vPtrName <- paste(".", vn, "_Ptr", sep = "") .self[[vPtrName]] <<- nimbleInternalFunctions$newObjElementPtr(.namedObjectsPtr, vn, dll = dll) } if(!missing(model)) { setModel(model) copyFromModel() setupNodes(dll = dll) } }, show = function() { writeLines(paste0("Derived CmodelBaseClass created by buildModelInterface for model ", modelDef$name)) }), where = where ), list(FIELDS = makeModelBindingFields(symTab), where = where ) ) ) ans <- function(model, where = globalenv(), dll = NULL, ...) { newClass$new(model, defaults, basePtrCall, classEnvironment = where, dll = dll, ...) } formals(ans)$where = where formals(ans)$dll = dll ans }
library(phylotate) test.eq.phylo <- function (test.data, test.data2) { for (e in c("edge", "edge.length", "Nnode", "tip.label", "node.comment", "node.distance.comment")) { e1 <- test.data[[e]] e2 <- test.data2[[e]] r <- test.data[[e]] != test.data2[[e]] r[is.na(e1)] <- TRUE r[is.na(e2)] <- TRUE r[is.na(e1) & is.na(e2)] <- FALSE if (sum(r) > 0) { print("") print(e1) print(e2) stop(sprintf("%s doesn't match", e)) } } } test.newick.named <- function () { test.str <- paste0( "(1[Z]:100[Q],((ABC,((8,(7,(Xyz,(5,(4,(2:200,3:300)))))),(9,10))),", "((22,((18,(17,(16,", "(15,(14,(12,13)))))),(21:2100,(Foo,20)))),(23,24))),(53,(52,(((27,", "(25,26)),(30,(28,29))),(((41[X]:4100[D],(40,(39,(((31,(34,(32,33))),", "(35,36)),(37[Y],38))))),((44,(42,43[A])),(45,46))),(51,(50,(49,(47,", "48)))))))))[XYZ]") print(test.str) test.data <- parse_annotated(test.str, format="newick") str(test.data) test.str2 <- print_annotated(test.data, format="newick.named") print(test.str2) if (test.str != test.str2) { stop("Strings don't match!") } test.data2 <- parse_annotated(test.str2, format="newick") str(test.data2) test.eq.phylo(test.data, test.data2) print("All ok") } test.newick <- function () { test.str <- paste0( "(1[Z]:100[Q],((11,((8,(7,(6,(5,(4,(2:200,3:300)))))),(9,10))),", "((22,((18,(17,(16,", "(15,(14,(12,13)))))),(21:2100,(19,20)))),(23,24))),(53,(52,(((27,", "(25,26)),(30,(28,29))),(((41[X]:4100[D],(40,(39,(((31,(34,(32,33))),", "(35,36)),(37[Y],38))))),((44,(42,43[A])),(45,46))),(51,(50,(49,(47,", "48)))))))))[XYZ]") print(test.str) test.data <- parse_annotated(test.str, format="newick") str(test.data) test.str2 <- print_annotated(test.data, format="newick") print(test.str2) if (test.str != test.str2) { stop("Strings don't match!") } test.data2 <- parse_annotated(test.str2, format="newick") str(test.data2) test.eq.phylo(test.data, test.data2) print("All ok") } test.nexus <- function () { data(finches) test <- parse_annotated(finches, format="nexus") str(test) test$edge.length <- round(test$edge.length * 100) if (length(test$tip.label) < 1) { stop("missing tips") } n1 <- print_annotated(test, format="nexus") print(n1) p1 <- parse_annotated(n1, format="nexus") str(p1) n2 <- print_annotated(p1, format="nexus") if (n1 != n2) { stop("Strings don't match!") } p2 <- parse_annotated(n2, format="nexus") test.eq.phylo(p1, p2) print("All ok") } test.newick() test.nexus() test.newick.named()
noiseOut <- function(noise, mu, varsigma) { fhandle = get(paste(noise$type, "NoiseOut", sep=""), mode="function") y = fhandle(noise, mu, varsigma) return (y) }
inlib <- function(lib, expr, add = TRUE){ oldlib <- .libPaths(); on.exit(setlib(oldlib), add = TRUE) if(isTRUE(add)){ lib <- c(lib, .libPaths()) } lib <- unique(normalizePath(lib, mustWork = FALSE)) lib <- Filter(function(x){ isTRUE(file.info(x)$isdir) }, lib) setlib(lib) force(expr) } setlib <- function(lib){ assign(".lib.loc", lib, envir = environment(.libPaths)) }
lsHu2.chi <- function(x, c0){ beta.c0 <- 2*pnorm(c0) - 1 - 2*c0*dnorm(c0) + 2*c0^2*pnorm(-c0) return(pmin(x^2, c0^2) - beta.c0) } .Hu2rlsGetbias <- function(x, k, c0){ beta.c0 <- 2*pnorm(c0) - 1 - 2*c0*dnorm(c0) + 2*c0^2*pnorm(-c0) sqrt(pmin(k^2, x^2)/(2*pnorm(k)-1)^2 + (pmin(c0^2, x^2) - beta.c0)^2/ (2*(2*pnorm(c0) - 1) - 4*c0*dnorm(c0))^2) } .Hu2rlsGetvar <- function(k, c0){ beta.c0 <- 2*pnorm(c0) - 1 - 2*c0*dnorm(c0) + 2*c0^2*pnorm(-c0) Var.loc <- (2*pnorm(k) - 1 - 2*k*dnorm(k) + 2*k^2*(1-pnorm(k)))/(2*pnorm(k)-1)^2 hilf <- 3*(2*pnorm(c0)-1) - 2*c0^3*dnorm(c0) - 6*c0*dnorm(c0) + 2*c0^4*pnorm(-c0) Var.sc <- (hilf - beta.c0^2)/(2*(2*pnorm(c0) - 1) - 4*c0*dnorm(c0))^2 return(Var.loc + Var.sc) } .Hu2rlsGetmse <- function(kc0, r, MAX){ k <- kc0[1]; c0 <- kc0[2] if(k < 0 || c0 < 0) return(MAX) beta.c0 <- 2*pnorm(c0) - 1 - 2*c0*dnorm(c0) + 2*c0^2*pnorm(-c0) A.loc <- 1/(2*pnorm(k)-1) A.sc <- 1/(2*(2*pnorm(c0) - 1) - 4*c0*dnorm(c0)) bias <- max(.Hu2rlsGetbias(x = 0, k = k, c0 = c0), .Hu2rlsGetbias(x = k, k = k, c0 = c0), .Hu2rlsGetbias(x = c0, k = k, c0 = c0), .Hu2rlsGetbias(x = sqrt(beta.c0), k = k, c0 = c0), .Hu2rlsGetbias(x = sqrt(max(0, beta.c0-0.5*A.loc^2/A.sc^2)), k = k, c0 = c0)) Var <- .Hu2rlsGetvar(k = k, c0 = c0) return(Var + r^2*bias^2) } rlsOptIC.Hu2 <- function(r, k.start = 1.5, c.start = 1.5, delta = 1e-6, MAX = 100){ res <- optim(c(k.start, c.start), .Hu2rlsGetmse, method = "Nelder-Mead", control = list(reltol=delta), r = r, MAX = MAX) k <- res$par[1]; c0 <- res$par[2] beta.c0 <- 2*pnorm(c0) - 1 - 2*c0*dnorm(c0) + 2*c0^2*pnorm(-c0) A.loc <- 1/(2*pnorm(k)-1) A.sc <- 1/(2*(2*pnorm(c0) - 1) - 4*c0*dnorm(c0)) bias <- max(.Hu2rlsGetbias(x = 0, k = k, c0 = c0), .Hu2rlsGetbias(x = k, k = k, c0 = c0), .Hu2rlsGetbias(x = c0, k = k, c0 = c0), .Hu2rlsGetbias(x = sqrt(beta.c0), k = k, c0 = c0), .Hu2rlsGetbias(x = sqrt(max(0, beta.c0-0.5*A.loc^2/A.sc^2)), k = k, c0 = c0)) fct1 <- function(x){ A.loc*sign(x)*pmin(abs(x), k) } body(fct1) <- substitute({ A.loc*sign(x)*pmin(abs(x), k) }, list(k = k, A.loc = A.loc)) fct2 <- function(x){ A.sc*(pmin(x^2, c0^2) - beta.c0) } body(fct2) <- substitute({ A.sc*(pmin(x^2, c0^2) - beta.c0) }, list(c0 = c0, beta.c0 = beta.c0, A = A.sc)) return(IC(name = "IC of Hu2 type", Curve = EuclRandVarList(RealRandVariable(Map = list(fct1, fct2), Domain = Reals())), Risks = list(asMSE = res$value, asBias = bias, asCov = res$value - r^2*bias^2), Infos = matrix(c("rlsOptIC.Hu2", "optimally robust IC for Hu2 estimators and 'asMSE'", "rlsOptIC.Hu2", paste("where k =", round(k, 3), "and c =", round(c0, 3))), ncol=2, byrow = TRUE, dimnames=list(character(0), c("method", "message"))), CallL2Fam = call("NormLocationScaleFamily"))) }