code
stringlengths 1
13.8M
|
---|
`MaxZoom` <-structure(function
(
latrange,
lonrange,
size = c(640,640)
){
SinPhi = sin(latrange * pi /180);
normX = lonrange / 180;
normY = (0.5 * log(abs((1 + SinPhi) / (1 -SinPhi) )) ) / pi;
MaxZoom.lon <- floor(1 + log2(abs(size[1]/256/diff(normX))));
MaxZoom.lat <- floor(1 + log2(abs(size[2]/256/diff(normY))));
return(min(c(MaxZoom.lat=MaxZoom.lat,MaxZoom.lon=MaxZoom.lon)))
}) |
library("containerit")
context("Install packages from Bioconductor")
test_that("installation instruction for Bioconductor package is created", {
skip_if(Sys.getenv("R_VERSION") == "devel")
output <- capture_output({
capture_warnings({
if (!require("BiocGenerics", character.only = TRUE)) BiocManager::install(c("BiocGenerics"))
})
info <- containerit::clean_session(expr = quote(library("BiocGenerics")))
the_dockerfile <- dockerfile(info, maintainer = "o2r", image = getImageForVersion("3.3.2"))
})
expected_file <- readLines("./bioconductor/Dockerfile")
generated_file <- unlist(stringr::str_split(toString(the_dockerfile),"\n"))
expect_equal(generated_file, expected_file)
}) |
dloglognorm <- function(x, mean=0, sd=1)
.Call("dloglognorm", x, mean, sd, PACKAGE="loglognorm")
ploglognorm <- function(q, mean=0, sd=1)
.Call("ploglognorm", q, mean, sd, PACKAGE="loglognorm")
qloglognorm <- function(p, mean=0, sd=1)
.Call("qloglognorm", p, mean, sd, PACKAGE="loglognorm")
rloglognorm <- function(n, mean=0, sd=1)
.Call("qloglognorm", runif(n), mean=mean, sd=sd, PACKAGE="loglognorm")
mloglognorm <- function(moment, mean, sd)
.Call("mloglognorm", moment, mean, sd, PACKAGE="loglognorm")
eloglognorm <- function(mean, sd)
.Call("mloglognorm", 1, mean, sd, PACKAGE="loglognorm")
vloglognorm <- function(mean, sd) {
m1 <- mloglognorm(1, mean, sd)
m2 <- mloglognorm(2, mean, sd)
return (m2 - m1^2)
} |
contPFarrivals <- function(PF, stas, proj=NULL, cont=TRUE, POINTS=TRUE, image=FALSE ,
col=RSEIS::tomo.colors(50), gcol="black", phase="P", add=TRUE)
{
if(missing(proj)) proj = NULL
if(missing(cont)) cont=TRUE
if(missing(POINTS)) POINTS=TRUE
if(missing(image)) image=FALSE
if(missing(col)) col=RSEIS::tomo.colors(50)
NEX = 50
if(length(PF$STAS$sec)<1)
{
print("ERROR: not enough station observations, no contouring")
return(NULL)
}
pstas = PF$STAS
if(missing( phase))
{
if(any(pstas$phase=="P")) { phase = "P" }
if(!any(pstas$phase=="P"))
{
if(any(pstas$phase=="S")) { phase = "S" }
}
if(!any(pstas$phase=="P") & !any(pstas$phase=="S" ) )
{
phase = "G"
}
}
w1 = which.min(pstas$sec)
if(length(w1)<1) { return(NULL) }
wp = which(pstas$phase==phase & !is.na(pstas$lat) & !is.na(pstas$lon) )
if(length(wp)<2) { return(NULL) }
stan = pstas$name[wp]
arr = pstas$sec[wp] - pstas$sec[w1]
if(is.null(proj)) proj = GEOmap::setPROJ(type=2, LAT0 =median(stas$lat) , LON0 = median(stas$lon) )
XY = GEOmap::GLOB.XY(stas$lat, stas$lon, proj)
if(!add)
{
plot(XY, pch=6, xlab="km", ylab="km" , cex=.6 )
}
msta = match(stan, stas$name)
msta = msta[!is.na(msta)]
if(length(msta)<3)
{
print("ERROR: not enough matching stations, no contouring")
return(NULL)
}
xy = GEOmap::GLOB.XY( pstas$lat[wp] , pstas$lon[wp], proj)
ex = seq(from=min(xy$x), to=max(xy$x), length=NEX)
why = seq(from=min(xy$y), to=max(xy$y), length=NEX)
DF = cbind(x=xy$x , y=xy$y , z=arr)
zed = MBA::mba.surf(DF, NEX, NEX, n = 1, m = 1, h = 8, extend=FALSE)$xyz.est
if(image) image(zed, col=col , add=TRUE)
if(POINTS)
{
text(XY, labels=stas$name, pos=3, cex=.6)
points(XY$x[msta] , XY$y[msta], col='red', cex=1.1)
}
if(cont)
{
contour(zed, add=TRUE, col='blue' )
}
return(proj)
} |
chartype_frame <- function() {
chars <- character()
desc <- character()
chars[1] <- "\u0001\u001f"
desc[1] <- "C0 control code"
chars[2] <- "\a\b\f\n\r\t"
desc[2] <- "Named control code"
chars[3] <- "abcdefuvwxyz"
desc[3] <- "ASCII"
chars[4] <- "\u0080\u009f"
desc[4] <- "C1 control code"
chars[5] <- paste0(
"\u00a0\u00a1\u00a2\u00a3\u00a4\u00a5",
"\u00fa\u00fb\u00fc\u00fd\u00fe\u00ff"
)
desc[5] <- "Latin-1"
chars[6] <- paste0(
"\u0100\u0101\u0102\u0103\u0104\u0105",
"\u0106\u0107\u0108\u0109\u010a\u010b"
)
desc[6] <- "Unicode"
chars[7] <- "\uff01\uff02\uff03\uff04\uff05\uff06"
desc[7] <- "Unicode wide"
chars[8] <- "\ue00\u2029"
desc[8] <- "Unicode control"
chars[9] <- paste0(
"x\u00adx\u200bx\u200cx\u200dx\u200ex\u200f",
"x\u034fx\ufeffx", intToUtf8(0xE0001), "x",
intToUtf8(0xE0020), "x", intToUtf8(0xE01EF), "x"
)
desc[9] <- "Unicode ignorable"
chars[10] <- paste0(
"a\u0300a\u0301a\u0302a\u0303a\u0304a\u0305",
"a\u0306a\u0307a\u0308a\u0309a\u030aa\u030b"
)
desc[10] <- "Unicode mark"
chars[11] <- paste0(
intToUtf8(0x1F600), intToUtf8(0x1F601),
intToUtf8(0x1F602), intToUtf8(0x1F603),
intToUtf8(0x1F604), intToUtf8(0x1F483)
)
desc[11] <- "Emoji"
chars[12] <- paste0("x", intToUtf8(0x10ffff), "x")
desc[12] <- "Unassigned"
chars[13] <- "\xfd\xfe\xff"
desc[13] <- "Invalid"
chars[14] <- "\\"
desc[14] <- "Backslash"
chars[15] <- '"'
desc[15] <- "Quote"
Encoding(chars) <- "UTF-8"
data.frame(chars, desc, stringsAsFactors = FALSE)
}
test_that("output test (not on Windows)", {
skip_if(getRversion() < "4.0")
skip_on_os("windows")
skip_if_not_installed("testthat", "1.3.3")
suppressWarnings(
expect_snapshot({
colonnade(chartype_frame(), width = 50)
})
)
}) |
coef.basad <- function(object, ...) {
verboseList <- object$verbose
print(round(object$all.var, 4))
} |
library(countrycode)
library(readr)
library(anytime)
library(ggplot2)
library(lubridate)
library(tidyverse)
library(data.table)
lmort <- data.frame(read_csv("source-data/local_mortality.csv"))
lmort$iso3c <- countrycode(lmort$country_name, "country.name", "iso3c")
lmort$years_of_observations <- ave(lmort$year, lmort$local_unit_name, FUN = function(x) length(unique(x)))
lmort <- lmort[lmort$years_of_observations >= 4, ]
lmort <- lmort[!lmort$local_unit_name %in% c("Aden Governorate", "Damascus City", "Istanbul City", "Ankara City", "Hyderabad"), ]
lmort <- lmort[lmort$local_unit_name != "Chennai City", ]
lmort$expected_deaths <- NA
lmort$expected_deaths[!lmort$local_unit_name %in% c("Jakarta Province", "Mumbai City", "Kolkata City")] <- predict(newdata = lmort[!lmort$local_unit_name %in% c("Jakarta Province", "Mumbai City", "Kolkata City"), ],
lm(deaths ~ as.factor(local_unit_name)*as.factor(time)+as.factor(local_unit_name), data = lmort[lmort$year <= 2019 & !lmort$local_unit_name %in% c("Jakarta Province", "Mumbai City", "Kolkata City"), ]))
lmort$expected_deaths[lmort$local_unit_name %in% c("Jakarta Province", "Mumbai City", "Kolkata City")] <- predict(newdata = lmort[lmort$local_unit_name %in% c("Jakarta Province", "Mumbai City", "Kolkata City"), ],
lm(deaths ~ as.factor(local_unit_name)*year+as.factor(local_unit_name)*as.factor(time)+as.factor(local_unit_name), data = lmort[lmort$year <= 2019 & lmort$local_unit_name %in% c("Jakarta Province", "Mumbai City", "Kolkata City"), ]))
dates <- data.frame(date = as.Date("2010-01-01"):as.Date("2025-01-01"), week = NA, month = NA)
dates$date <- as.Date(dates$date, origin ="1970-01-01")
dates$week <- week(dates$date)
dates$month <- month(dates$date)
dates$year <- year(dates$date)
lmort$ID <- 1:nrow(lmort)
monthly <- merge(lmort[lmort$time_unit == "monthly", ], dates,
by.x = c("year", "time"),
by.y = c("year", "month"))
weekly <- merge(lmort[lmort$time_unit == "weekly", ], dates,
by.x = c("year", "time"),
by.y = c("year", "week"))
lmort <- rbind(monthly[, intersect(colnames(monthly), colnames(weekly))],
weekly[, intersect(colnames(monthly), colnames(weekly))])
lmort$n_obs <- ave(lmort$ID, lmort$ID, FUN = length)
lmort$n_obs[lmort$time_unit == "weekly"] <- 7
lmort$expected_deaths <- lmort$expected_deaths / lmort$n_obs
lmort$deaths <- lmort$deaths / lmort$n_obs
lmort$excess_deaths <- lmort$deaths - lmort$expected_deaths
inspect = T
if(inspect){
ggplot(lmort[lmort$year %in% 2015:2021,], aes(x=date, y=deaths/1000))+geom_line()+facet_wrap(.~local_unit_name)+geom_line(aes(y=expected_deaths/1000, col = "expected deaths"), alpha = 0.5)+scale_y_continuous(trans = "log10")
ggplot(lmort[lmort$year %in% 2015:2021,],
aes(x=date, y=excess_deaths))+geom_line()+facet_wrap(.~local_unit_name)
}
lmort$name <- lmort$local_unit_name
for(i in unique(lmort$name)){
temp <- cbind(dates, lmort[lmort$name == i, ][1,
setdiff(colnames(lmort), colnames(dates))])
for(v in c("deaths", "expected_deaths",
"excess_deaths", "ID", "n_obs")){
temp[, v] <- NA
}
lmort <- rbind(lmort, temp[!temp$date %in% lmort$date[lmort$name ==i], colnames(lmort)])
}
lmort$population <- NA
lmort$population[lmort$local_unit_name == "Tamil Nadu State"] <- 82722262
lmort$population[lmort$local_unit_name == "Madhya Pradesh State"] <- 86044251
lmort$population[lmort$local_unit_name == "Andhra Pradesh State"] <- 53206421
lmort$population[lmort$local_unit_name == "Mumbai City"] <- 13047654
lmort$population[lmort$local_unit_name == "Kolkata City"] <- 15634592
lmort$population[lmort$local_unit_name == "Jakarta Province"] <- 10800000
coordinates <- rbind.data.frame(
c("Tamil Nadu State", 13.0836939, 80.270186, "10°45'N", "78°34'E"),
c("Mumbai City", 19.0759899, 72.8773928, 19.0759899, 72.8773928),
c("Jakarta Province", "-6°12′N", "106°49′E", "-6°12′N", "106°49′E"),
c("Kolkata City", "22°34′N", "88°22′E", "22°34′N", "88°22′E"),
c("Madhya Pradesh State", "22°43′N", "75°50′E", "23°48′N", "78°28′E"),
c("Andhra Pradesh State", "17°42′N", "83°17′E", 16.50, 80.64))
library(measurements)
colnames(coordinates) <- c("name",
"lat_largest_city",
"lng_largest_city",
"centroid_lat",
"centroid_long")
for(i in 2:ncol(coordinates)){coordinates[, i] <- as.character(coordinates[, i])}
for(i in 1:nrow(coordinates)){
for(j in 2:ncol(coordinates)){
if(is.na(as.numeric(coordinates[i, j]))){
coordinates[i, j] <- gsub("°", " ",
coordinates[i, j])
coordinates[i, j] <- gsub("′N", "",
coordinates[i, j])
coordinates[i, j] <- gsub("′E", "",
coordinates[i, j])
coordinates[i, j] <- measurements::conv_unit(coordinates[i, j], from = 'deg_dec_min', to = 'dec_deg')
}
}
}
for(i in 2:ncol(coordinates)){coordinates[, i] <- as.numeric(coordinates[, i])}
inspect = F
if(inspect){
library(tidyverse)
world <- map_data("world")
ggplot() +
geom_map(
data = world, map = world,
aes(map_id = region),
color = "black", size = 0.1)+
geom_point(data = coordinates,
aes(x= lng_largest_city,
y= lat_largest_city, col = name))+
geom_point(data = coordinates,
aes(x= centroid_long,
y= centroid_lat, col = name),
alpha = 0.3)+theme_minimal()
}
mob_raw <- fread("https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv")
mob <- mob_raw
mob$name <- NA
mob$name[mob$sub_region_1 == "Jakarta"] <- "Jakarta Province"
mob$name[mob$sub_region_1 == "Andhra Pradesh" & mob$sub_region_2 == ""] <- "Andhra Pradesh State"
mob$name[mob$sub_region_1 == "Madhya Pradesh" & mob$sub_region_2 == ""] <- "Madhya Pradesh State"
mob$name[mob$sub_region_1 == "Tamil Nadu" & mob$sub_region_2 == ""] <- "Tamil Nadu State"
mob$name[mob$sub_region_2 == "Kolkata"] <- "Kolkata City"
mob$name[mob$sub_region_2 == "Mumbai"] <- "Mumbai City"
mob <- mob[!is.na(mob$name), ]
inspect = F
if(inspect){
library(ggplot2)
ggplot(mob, aes(x=date, y=residential_percent_change_from_baseline, col = name))+geom_line()
}
mob <- mob %>%
mutate(
iso3c = paste0(countrycode(country_region_code, "iso2c", "iso3c"), "_", name),
) %>%
rename(
mobility_retail_rec_pct_of_baseline = retail_and_recreation_percent_change_from_baseline,
mobility_grocery_and_pharma_pct_of_baseline = grocery_and_pharmacy_percent_change_from_baseline,
mobility_parks_pct_of_baseline = parks_percent_change_from_baseline,
mobility_transit_rec_pct_of_baseline = transit_stations_percent_change_from_baseline,
mobility_workplaces_rec_pct_of_baseline = workplaces_percent_change_from_baseline,
) %>%
select(name,
date,
mobility_retail_rec_pct_of_baseline,
mobility_grocery_and_pharma_pct_of_baseline,
mobility_parks_pct_of_baseline,
mobility_transit_rec_pct_of_baseline,
mobility_workplaces_rec_pct_of_baseline)
ind_states <- read_csv("source-data/ind_states_ts.csv")
ind_states$name <- NA
ind_states$name[ind_states$State == "Tamil Nadu"] <- "Tamil Nadu State"
ind_states$name[ind_states$State == "Madhya Pradesh"] <- "Madhya Pradesh State"
ind_states$name[ind_states$State == "Andhra Pradesh"] <- "Andhra Pradesh State"
ind_states <- ind_states[!is.na(ind_states$name), ]
ind_states$date <- ind_states$Date
ind_states <- ind_states[order(ind_states$Date), ]
ind_states$total_cases <- ind_states$Confirmed
ind_states$total_deaths <- ind_states$Deceased
ind_states$total_tests <- ind_states$Tested
ind_states$new_cases <- ave(ind_states$total_cases, ind_states$name, FUN = function(x){
x <- x - c(0, x)[1:length(x)]
})
ind_states$new_deaths <- ave(ind_states$total_deaths, ind_states$name, FUN = function(x){
x <- x - c(0, x)[1:length(x)]
})
ind_states$new_tests <- ave(ind_states$total_tests, ind_states$name, FUN = function(x){
x <- x - c(0, x)[1:length(x)]
})
ind_states <- ind_states[, c("name", "date",
"total_cases",
"total_deaths",
"total_tests",
"new_cases",
"new_deaths",
"new_tests")]
ggplot(ind_states, aes(x=date))+geom_line(aes(y=total_tests))+facet_grid(.~name)
ind_districts <- read_csv("source-data/ind_districts_ts.csv")
ind_districts$name <- NA
ind_districts$name[ind_districts$District == "Mumbai"] <- "Mumbai City"
ind_districts$name[ind_districts$District == "Kolkata"] <- "Kolkata City"
ind_districts <- ind_districts[!is.na(ind_districts$name), ]
ind_districts$date <- ind_districts$Date
ind_districts <- ind_districts[order(ind_districts$Date), ]
ind_districts$total_cases <- ind_districts$Confirmed
ind_districts$total_deaths <- ind_districts$Deceased
ind_districts$total_tests <- ind_districts$Tested
ind_districts$new_cases <- ave(ind_districts$total_cases, ind_districts$name, FUN = function(x){
x <- x - c(0, x)[1:length(x)]
})
ind_districts$new_deaths <- ave(ind_districts$total_deaths, ind_districts$name, FUN = function(x){
x <- x - c(0, x)[1:length(x)]
})
ind_districts$new_tests <- ave(ind_districts$total_tests, ind_districts$name, FUN = function(x){
x <- x - c(0, x)[1:length(x)]
})
ind_districts <- ind_districts[, c("name", "date",
"total_cases",
"total_deaths",
"total_tests",
"new_cases",
"new_deaths",
"new_tests")]
ggplot(ind_districts, aes(x=date))+geom_line(aes(y=total_cases))+facet_grid(.~name)
jakarta <- read_csv("source-data/jakarta_ts.csv")[, 1:3]
jakarta$date <- as.Date(jakarta$date, format = "%d/%m/%Y")
jakarta <- jakarta[order(jakarta$date), ]
jakarta$new_cases <- jakarta$total_cases - c(0, jakarta$total_cases)[1:nrow(jakarta)]
jakarta$new_deaths <- jakarta$total_deaths - c(0, jakarta$total_deaths)[1:nrow(jakarta)]
jakarta$total_tests <- NA
jakarta$new_tests <- NA
jakarta$name <- "Jakarta Province"
jakarta <- jakarta[, c("name", "date",
"total_cases",
"total_deaths",
"total_tests",
"new_cases",
"new_deaths",
"new_tests")]
sub_covid <- rbind(ind_states,
ind_districts, jakarta)
sub_covid$new_cases[sub_covid$new_cases < 0] <- NA
sub_covid$new_deaths[sub_covid$new_deaths < 0] <- NA
sub_covid$new_tests[sub_covid$new_tests < 0] <- NA
dat <- merge(lmort, mob, by = c("date", "name"), all.x = T)
dat <- merge(dat, coordinates, by = c("name"), all.x = T)
dat <- merge(dat, sub_covid, by = c("date", "name"),
all.x = T)
dat <- dat[!is.na(dat$name), ]
dat$total_cases[dat$date <= as.Date("2020-02-04") & dat$iso3c == "IND"] <- 0
dat$total_deaths[dat$date <= as.Date("2020-03-11") & dat$iso3c == "IND"] <- 0
dat$total_cases[dat$date <= as.Date("2020-03-07") & dat$iso3c == "IDN"] <- 0
dat$total_deaths[dat$date <= as.Date("2020-03-11") & dat$iso3c == "IDN"] <- 0
dat$new_cases[dat$date <= as.Date("2020-02-04") & dat$iso3c == "IND"] <- 0
dat$new_deaths[dat$date <= as.Date("2020-03-11") & dat$iso3c == "IND"] <- 0
dat$new_cases[dat$date <= as.Date("2020-03-07") & dat$iso3c == "IDN"] <- 0
dat$new_deaths[dat$date <= as.Date("2020-03-11") & dat$iso3c == "IDN"] <- 0
smooth <- function(x){
temp <- x
for(i in 1:length(x)){
temp[i] <- mean(x[max(c(1,i-3)):min(c(length(x), i+3))], na.rm = T)
}
temp
}
dat <- dat[order(dat$date), ]
dat$new_cases_smoothed <- ave(dat$new_cases, dat$name, FUN = smooth)
dat$new_deaths_smoothed <- ave(dat$new_deaths, dat$name, FUN = smooth)
dat$new_tests_smoothed <- ave(dat$new_tests, dat$name, FUN = smooth)
dat <- dat %>%
mutate(
daily_total_deaths = deaths,
daily_total_deaths_per_100k = deaths*100000/population,
daily_expected_deaths = expected_deaths,
daily_expected_deaths_per_100k = expected_deaths*100000/population,
daily_excess_deaths = excess_deaths,
daily_excess_deaths_per_100k = excess_deaths*100000/population,
cumulative_daily_tests_per_100k = total_tests*1e5/population,
cumulative_daily_covid_cases_per_100k = total_cases*1e5/population,
cumulative_daily_covid_deaths_per_100k = total_deaths*1e5/population,
daily_covid_deaths = new_deaths_smoothed,
daily_covid_deaths_per_100k = (daily_covid_deaths / population) * 100000,
daily_covid_cases = new_cases_smoothed,
daily_covid_cases_per_100k = (daily_covid_cases / population) * 100000,
daily_tests = new_tests_smoothed,
daily_tests_per_100k = (daily_tests / population) * 100000,
daily_positive_rate = (daily_covid_cases / daily_tests) * 100) %>%
rename(centroid_latitude = centroid_lat,
centroid_longitude = centroid_long,
lat_capital = lat_largest_city,
lng_capital = lng_largest_city)
dat$population_density <- NA
dat$population_density[dat$local_unit_name == "Jakarta Province" ] <- 15906.5
dat$population_density[dat$local_unit_name == "Kolkata City"] <- 22000
dat$population_density[dat$local_unit_name == "Tamil Nadu State"] <- 550
dat$population_density[dat$local_unit_name == "Mumbai City"] <- 21000
dat$population_density[dat$local_unit_name == "Andhra Pradesh State"] <- 308
dat$population_density[dat$local_unit_name == "Madhya Pradesh State"] <- 240
setdiff(colnames(country_daily_excess_deaths)[1:93], colnames(dat))
dat$daily_positive_rate[dat$daily_positive_rate > 100] <- NA
dat <- dat[dat$date >= as.Date("2020-01-01"), ]
dat <- dat[order(dat$date), ]
leading_zeros <- function(x){
if(is.na(x[1]) & sum(is.na(x)) != length(x)){
x[1:min(which(!is.na(x))-1)] <- 0
}
x
}
dat <- dat[order(dat$date), ]
for(i in c("daily_covid_deaths", "daily_covid_deaths_per_100k",
"daily_covid_cases", "daily_covid_cases_per_100k",
"daily_total_deaths",
"daily_total_deaths_per_100k")){
dat[, i] <-
ave(dat[, i],
dat$name,
FUN = function(x) leading_zeros(x))
}
saveRDS(dat, "output-data/model-objects/auxilliary_subnational_data.RDS") |
gapCreation <- function(X, rate, begin=NULL){
Xgap <- X
if(rate == 0){
warning("rate = 0, no gap created")
return(X)
}
if(rate == 1){
stop("rate must be < 1")
}
gap_size <- round(rate*length(X))
if(is.null(begin)){
gap_id <- sample(1:(length(X)-gap_size), 1)
} else {gap_id <- begin}
Xgap[gap_id:(gap_id+gap_size-1)] <- NA
gap_final <- list("output_vector" = Xgap,
"input_vector" = X,
"begin_gap" = gap_id,
"rate" = rate,
"gap_size" = gap_size)
return(gap_final)
} |
flowplaces <- function(tab,origin=NULL,destination=NULL,fij=NULL,format, x) {
if (format == "L") {
tab <- tab %>% select(origin,destination,fij)
names(tab) <- c("i", "j", "Fij")
tab_intra <-tab %>%
mutate(intra = ifelse(.data$i == .data$j, .data$Fij,0)) %>%
filter(.data$intra !=0) %>%
select(.data$i,.data$intra)
tabOi<-tab %>%
group_by(.data$i) %>%
summarise(outi = n(),Oi = sum(.data$Fij))
tabDj<-tab %>%
group_by(.data$j)%>%
summarise(ini = n(),Dj = sum(.data$Fij))
colnames(tabDj)<-c("i","ini","Dj")
as.data.frame(tabOi)
as.data.frame(tabDj)
tabOiDj<-left_join(tabOi,tabDj, by="i")
tabOiDj <- tabOiDj %>%
mutate (voli=.data$Oi+.data$Dj, bali=.data$Oi-.data$Dj, asyi=.data$bali/.data$voli) %>%
mutate (intra=tab_intra$intra)
tabOiDj$i<-as.character(tabOiDj$i)
tabOiDj$ini<-as.numeric(tabOiDj$ini)
tabOiDj$outi<-as.numeric(tabOiDj$outi)
tabOiDj$Oi<-as.numeric(tabOiDj$Oi)
tabOiDj$Dj<-as.numeric(tabOiDj$Dj)
tabOiDj$Vol<-as.numeric(tabOiDj$voli)
tabOiDj$Bal<-as.numeric(tabOiDj$bali)
tabOiDj$Asy<-as.numeric(tabOiDj$asyi)
tabOiDj$intra<-as.numeric(tabOiDj$intra)
if (missing(x)) {
message("You must specify a choice of flow places indicator computation : alltypes, ini, degi, outi, Oi,Dj, intra,...")
}
if (x == "allflowplaces") {
return(tabOiDj)
}
if (x == "intra") {
tabOiDj <- tabOiDj %>% select(.data$i,.data$intra)
return(tabOiDj)
}
if (x == "ini") {
tabOiDj <- tabOiDj %>% select(.data$i,.data$ini)
return(tabOiDj)
}
if (x == "outi") {
tabOiDj <- tabOiDj %>% select(.data$i,.data$outi)
return(tabOiDj)
}
if (x == "degi") {
tabOiDj <- tabOiDj %>% select(.data$i,.data$degi)
return(tabOiDj)
}
if (x == "voli") {
tabOiDj <- tabOiDj %>% select(.data$i,.data$voli)
return(tabOiDj)
}
if (x == "bali") {
tabOiDj <- tabOiDj %>% select(.data$i,.data$bali)
return(tabOiDj)
}
if (x == "asyi") {
tabOiDj <- tabOiDj %>% select(.data$i,.data$asyi)
return(tabOiDj)
}
}
} |
wm_record_by_external <- function(id, type = "tsn", ...) {
assert(id, c("numeric", "integer"))
assert(type, "character")
assert_len(id, 1)
wm_GET(file.path(wm_base(), "AphiaRecordByExternalID", id),
query = cc(list(type = type)), ...)
}
wm_record_by_external_ <- function(id = NULL, name = NULL, type = "tsn", ...) {
id <- id_name(id, name)
run_c(id, wm_record_by_external, type = type, on_error = warning, ...)
} |
context("boxes")
test_that("boxes created",{
df <- data.frame(
id1 = c(1,1,1,1,1,1,1,1,2,2,2,2)
, id2 = c(1,1,1,1,2,2,2,2,1,1,1,1)
, x = c(0,0,1,1,1,1,2,2,3,4,4,3)
, y = c(0,1,1,0,1,2,2,1,3,3,4,4)
)
sf_line <- sfheaders::sf_linestring(
obj = df
, x = "x"
, y = "y"
, linestring_id = "id1"
)
sf <- sf_boxes( sf_line )
sfc <- sf_boxes( sf_line$geometry )
bbox <- sf_bbox( df, x = "x", y = "y" )
expect_equal(
sf$geometry
, sfc
)
expect_equal(
attr( sfc, "bbox" )
, bbox
)
expect_equal(
sf_bbox( sfc[1] )
, sf_bbox( df[ df$id1 == 1, ], x = "x", y = "y" )
)
expect_equal(
sf_bbox( sfc[2] )
, sf_bbox( df[ df$id1 == 2, ], x = "x", y = "y" )
)
}) |
QC_MAF <- function(mk.mat, cross.ind = NULL, parallel = FALSE,
cluster = NULL) {
stopifnot(is.matrix(mk.mat), is.character(mk.mat))
MAF.vect <- function(x) {
x <- x[!is.na(x)]
if (length(x) == 0){
return(NA)
} else {
alleles <- c(vapply(X = x, FUN = function(x) unlist(strsplit(x, split = "")),
FUN.VALUE = character(2)))
if(length(table(alleles)) == 1){
return(0)
} else {
return(min(table(alleles) / length(alleles)))
}
}
}
if(is.null(cross.ind)){
if(parallel) {
MAF.pop <- parApply(cl = cluster, X = mk.mat, MARGIN = 2, FUN = MAF.vect)
} else {
MAF.pop <- apply(X = mk.mat, MARGIN = 2, FUN = MAF.vect)
}
MAF <- MAF.pop
class(MAF) <- c("mafRes")
return(MAF)
} else {
if(length(cross.ind) != dim(mk.mat)[1]){
stop("'cross.ind' length is not the same as the number of genotype in 'mk.mat'")
}
if(parallel) {
MAF.pop <- parApply(cl = cluster, X = mk.mat, MARGIN = 2, FUN = MAF.vect)
} else {
MAF.pop <- apply(X = mk.mat, MARGIN = 2, FUN = MAF.vect)
}
cross.ind <- factor(cross.ind, levels = unique(cross.ind))
MAF.vect.cr <- function(x) tapply(X = x, INDEX = cross.ind, FUN = MAF.vect)
if(parallel) {
MAF.cr <- parApply(cl = cluster, X = mk.mat, MARGIN = 2, FUN = MAF.vect.cr)
} else {
MAF.cr <- apply(X = mk.mat, MARGIN = 2, FUN = MAF.vect.cr)
}
MAF <- list(MAF.pop = MAF.pop, MAF.cr = MAF.cr)
class(MAF) <- c("list", "mafRes")
return(MAF)
}
} |
ISNUMBER <-
function(value){
is.numeric(value)
} |
setConstructorS3("NonPairedPSCBS", function(fit=list(), ...) {
if (!is.list(fit)) {
stop("Argument 'fit' is not a list: ", class(fit)[1])
}
extend(PSCBS(fit=fit, ...), "NonPairedPSCBS")
})
setMethodS3("getLocusData", "NonPairedPSCBS", function(fit, ..., fields=c("asis", "full")) {
fields <- match.arg(fields)
data <- NextMethod("getLocusData", fields="asis")
if (fields == "full") {
names <- colnames(data)
data$isHet <- (data$muN == 1/2)
if (is.null(data$rho)) {
data$rho <- 2*abs(data$betaT-1/2)
data$rho[!data$isHet] <- NA_real_
warning("Locus-level DH signals ('rho') did not exist and were calculated from tumor BAFs ('betaT')")
}
data$c1 <- 1/2*(1-data$rho)*data$CT
data$c2 <- data$CT - data$c1
data$isSNP <- (!is.na(data$betaT) | !is.na(data$muN))
data$type <- ifelse(data$isSNP, "SNP", "non-polymorphic locus")
data$muNx <- c("AA", "AB", "BB")[2*data$muN + 1L]
data$isHetx <- c("AA|BB", "AB")[data$isHet + 1L]
}
data
}, protected=TRUE)
setMethodS3("callROH", "NonPairedPSCBS", function(fit, ...) {
stop(sprintf("Cannot call ROH from '%s' data.", class(fit)[1L]))
}, private=TRUE)
setMethodS3("updateMeans", "NonPairedPSCBS", function(fit, from=c("loci", "segments"), adjustFor=NULL, ..., avgTCN=c("asis", "mean", "median"), avgDH=c("asis", "mean", "median"), verbose=FALSE) {
from <- match.arg(from)
if (!is.null(adjustFor)) {
adjustFor <- Arguments$getCharacters(adjustFor)
adjustFor <- tolower(adjustFor)
knownValues <- c("ab", "loh", "roh")
adjustFor <- match.arg(adjustFor, choices=knownValues, several.ok=TRUE)
}
avgTCN <- match.arg(avgTCN)
avgDH <- match.arg(avgDH)
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Updating mean level estimates")
verbose && cat(verbose, "Adjusting for:")
verbose && print(verbose, adjustFor)
if (avgTCN == "asis" || avgDH == "asis") {
est <- fit$params$meanEstimators
if (avgTCN == "asis") {
avgTCN <- est$tcn
if (is.null(avgTCN)) avgTCN <- "mean"
avgTCN <- match.arg(avgTCN)
}
if (avgDH == "asis") {
avgDH <- est$dh
if (is.null(avgDH)) avgDH <- "mean"
avgDH <- match.arg(avgDH)
}
}
avgList <- list(
tcn = get(avgTCN, mode="function"),
dh = get(avgDH, mode="function")
)
segs <- getSegments(fit, splitters=TRUE)
segRows <- list(tcn=fit$tcnSegRows, dh=fit$dhSegRows)
nbrOfSegments <- nrow(segs)
verbose && cat(verbose, "Number of segments: ", nbrOfSegments)
if (is.element("ab", adjustFor)) {
if (!is.element("abCall", names(segs))) {
adjustFor <- setdiff(adjustFor, "ab")
stop("Cannot adjust for AB, because they haven't been called.")
}
}
if (is.element("loh", adjustFor)) {
if (!is.element("lohCall", names(segs))) {
adjustFor <- setdiff(adjustFor, "loh")
stop("Cannot adjust for LOH, because they haven't been called.")
}
}
if (is.element("roh", adjustFor)) {
if (!is.element("rohCall", names(segs))) {
adjustFor <- setdiff(adjustFor, "roh")
stop("Cannot adjust for ROH, because they haven't been called.")
}
}
if (from == "loci") {
data <- getLocusData(fit)
chromosome <- data$chromosome
x <- data$x
CT <- data$CT
rho <- data$rho
isSplitter <- isSegmentSplitter(fit)
for (ss in seq_len(nbrOfSegments)[!isSplitter]) {
verbose && enter(verbose, sprintf("Segment %d of %d", ss, nbrOfSegments))
seg <- segs[ss,]
verbose && print(verbose, seg)
chr <- seg[["chromosome"]]
chrTag <- sprintf("chr%02d", chr)
for (what in c("tcn", "dh")) {
segRow <- segRows[[what]][ss,]
if (!is.finite(segRow[[1]]) || !is.finite(segRow[[2]])) {
next
}
units <- segRow[[1]]:segRow[[2]]
if (what == "tcn") {
value <- CT
} else if (what == "dh") {
value <- rho
}
keep <- which(!is.na(value[units]))
units <- units[keep]
avgFUN <- avgList[[what]]
gamma <- avgFUN(value[units])
.stop_if_not(length(units) == 0 || !is.na(gamma))
key <- paste(what, "Mean", sep="")
seg[[key]] <- gamma
}
verbose && print(verbose, seg)
segs[ss,] <- seg
verbose && exit(verbose)
}
}
if (length(adjustFor) > 0) {
verbose && enter(verbose, "Adjusting segment means")
verbose && cat(verbose, "Adjusting for:")
verbose && print(verbose, adjustFor)
if (is.element("ab", adjustFor)) {
verbose && enter(verbose, "Adjusting for AB")
calls <- segs$abCall
segs$dhMean[calls] <- 1/2
verbose && exit(verbose)
}
if (is.element("loh", adjustFor)) {
verbose && enter(verbose, "Adjusting for LOH")
calls <- segs$lohCall
segs$dhMean[calls] <- 0
verbose && exit(verbose)
}
if (is.element("roh", adjustFor)) {
verbose && enter(verbose, "Adjusting for ROH")
calls <- segs$rohCall
segs$dhMean[calls] <- NA_real_
verbose && exit(verbose)
}
verbose && exit(verbose)
}
verbose && enter(verbose, "Update (C1,C2) per segment")
tcn <- segs$tcnMean
dh <- segs$dhMean
C1 <- 1/2*(1-dh)*tcn
C2 <- tcn - C1
segs$c1Mean <- C1
segs$c2Mean <- C2
verbose && exit(verbose)
res <- fit
res$output <- segs
res <- setMeanEstimators(res, tcn=avgTCN, dh=avgDH)
verbose && exit(verbose)
res
}, private=TRUE)
setMethodS3("resegment", "NonPairedPSCBS", function(fit, ..., verbose=FALSE) {
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Resegmenting a ", class(fit)[1], " object")
data <- getLocusData(fit)
class(data) <- "data.frame"
drop <- c("rho", "betaTN", "index")
keep <- !is.element(colnames(data), drop)
data <- data[,keep]
verbose && str(verbose, data)
verbose && cat(verbose, "Number of loci: ", nrow(data))
verbose && enter(verbose, "Overriding default arguments")
segFcnName <- "segmentByPairedNonPSCBS"
segFcn <- getMethodS3(segFcnName, "default")
formals <- formals(segFcn)
formals <- formals[!sapply(formals, FUN=is.language)]
formals <- formals[!sapply(formals, FUN=is.name)]
drop <- c("chromosome", "x", "w", "CT", "betaT", "betaN", "muN", "...")
keep <- !is.element(names(formals), drop)
formals <- formals[keep]
params <- fit$params
keep <- is.element(names(params), names(formals))
params <- params[keep]
params$tbn <- NULL
userArgs <- list(..., verbose=verbose)
args <- formals
args2 <- c(params, userArgs)
for (kk in seq_along(args2)) {
value <- args2[[kk]]
if (!is.null(value)) {
key <- names(args2)[kk]
if (!is.null(key)) {
args[[key]] <- value
} else {
args <- c(args, list(value))
}
}
}
verbose && str(verbose, args[names(args) != "verbose"])
verbose && enter(verbose, sprintf("Calling %s()", segFcnName))
args <- c(list(data), args)
verbose && cat(verbose, "Arguments:")
verbose && str(verbose, args[names(args) != "verbose"])
verbose && exit(verbose)
fit <- do.call(segFcnName, args)
verbose && exit(verbose)
verbose && exit(verbose)
fit
}, protected=TRUE) |
library(gamlss.nl)
data(la)
plot(PET60~bflow,data=la)
modLOGNO<- nlgamlss(y=PET60, mu.fo=~log(bflow)+log(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~1, mu.start = c(-.99, 110), sigma.start= -2,
family=LOGNO, data=la)
if(abs(deviance(modLOGNO)-2293.9) > 0.1) stop("error in nl gamlss log-NO")
modNO<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-p1*exp(-p2/bflow)), sigma.formula=~1,
mu.start = c(.6, 90), sigma.start= 3, data=la)
if(abs(deviance(modNO)-2278.7) > 0.1) stop("error in nl gamlss NO")
modNO1<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~1, mu.start = c(-.9, 90), sigma.start= 3, data=la)
if(abs(deviance(modNO1)-2278.68) > 0.1) stop("error in nl gamlss NO")
funnl<- function(p) bflow*(1-p[1]*exp(-p[2]/bflow))
modNO2<- nlgamlss(y=PET60, mu.fo= funnl, sigma.formula=~1,
mu.start = c(.6, 90), sigma.start= 3, data=la)
if(abs(deviance(modNO2)-2278.68) > 0.1) stop("error in nl gamlss NO")
modGU<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-p1*exp(-p2/bflow)), sigma.formula=~1,
mu.start = c(.6, 110), sigma.start= 3, family=GU, data=la)
if(abs(deviance(modGU)-2382.9) > 0.1) stop("error in nl gamlss GU")
modGU1<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~1, mu.start = c(-.6, 90), sigma.start= 3, family=GU, data=la)
if(abs(deviance(modGU1)-2382.9) > 0.1) stop("error in nl gamlss GU")
modRG<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-p1*exp(-p2/bflow)), sigma.formula=~1,
mu.start = c(.6, 110), sigma.start= 3, family=RG, data=la)
if(abs(deviance(modRG)-2249.82) > 0.1) stop("error in nl gamlss RG")
modGA<- nlgamlss(y=PET60, mu.fo= ~log(bflow)+log(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~1, mu.start = c(-.99, 90),, sigma.start= -.5, family=GA, data=la)
if(abs(deviance(modGA)-2299.87) > 0.1) stop("error in nl gamlss GA")
modIG<- nlgamlss(y=PET60, mu.fo= ~log(bflow)+log(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~1, mu.start = c(-.99, 90),, sigma.start= -.5, family=IG, data=la)
if(abs(deviance(modIG)-2408.33) > 0.1) stop("error in nl gamlss IG")
AIC(modLOGNO,modNO, modGU, modRG, modGA, modIG, k=0)
modTF<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-p1*exp(-p2/bflow)), sigma.formula=~1, nu.fo=~1,
mu.start = c(.6, 110), sigma.start= 3, nu.start=2.5 ,family=TF, data=la)
if(abs(deviance(modTF)-2273.5) > 0.1) stop("error in nl gamlss TF")
modPE<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-p1*exp(-p2/bflow)), sigma.formula=~1,
nu.fo=~1, mu.start = c(.6, 110), sigma.start= 3, nu.start=0.6 ,family=PE, data=la)
if(abs(deviance(modPE)-2275.89) > 0.1) stop("error in nl gamlss PE")
modBCCG<- nlgamlss(y=PET60, mu.fo=~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),sigma.formula=~1,
nu.fo=~1, mu.start = c(-.9, 90), sigma.start= -2.3, nu.start=0, family=BCCG, data=la)
if(abs(deviance(modBCCG)- 2293.74) > 0.1) stop("error in nl gamlss BCCG")
AIC(modTF,modPE, modBCCG,k=0)
modSEP<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-p1*exp(-p2/bflow)), sigma.formula=~1,
nu.fo=~1, mu.start = c(.6, 110), sigma.start= 3, nu.start=1, tau.start=0.6,
family=SEP, data=la)
if(abs(deviance(modSEP)-2273.75) > 0.1) stop("error in nl gamlss SEP")
modBCT<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-(1-exp(p1))*exp(-p2/bflow)), sigma.formula=~1,
nu.fo=~1, mu.start=c(-.9, 90), sigma.start= -2.3, nu.start=0, tau.start=log(2.5),
family=BCT, data=la, control=NL.control(hessian=FALSE))
if((deviance(modBCT)-2293.74) > 0.1) stop("error in nl gamlss BCT")
modBCPE<- nlgamlss(y=PET60, mu.fo=~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),sigma.formula=~1,
mu.start = c(-.9, 90), sigma.start= -2.3, nu.start=0, tau.start=log(2.5),
family=BCPE, data=la)
if((deviance(modBCPE)- 2292.81) > 0.1) stop("error in nl gamlss BCPE")
modJSU<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-p1*exp(-p2/bflow)), sigma.formula=~1,
nu.fo=~1, mu.start = c(.6, 110), sigma.start= 3, nu.start=1, tau.start=0.6,
family=JSU, data=la)
if(abs(deviance(modJSU)-2253.45) > 0.1) stop("error in nl gamlss JSU")
AIC(modSEP,modBCPE,modJSU, k=0)
pp<-poly(la$bflow,2)
modRGSc<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~p3+p4*pp[,1]+p5*pp[,2],
mu.start = c(-.9, 90), sigma.start= c(3,-1,-2), family=RG, data=la)
if(abs(deviance(modRGSc) - 2244.87) > 0.1) stop("error in nl gamlss RG")
modLOGNOSc<- nlgamlss(y=PET60, mu.fo=~log(bflow)+log(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~p3+p4*pp[,1]+p5*pp[,2], mu.start = c(-.99, 90),
sigma.start= c(3,-1,-2),
family=LOGNO, data=la)
if(abs(deviance(modLOGNOSc) - 2221.56) > 0.1) stop("error in nl gamlss LOGNO")
modNOSc<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~p3+p4*pp[,1]+p5*pp[,2], mu.start = c(-.9, 90),
sigma.start= c(3,-1,-2), data=la)
if(abs(deviance(modNOSc)-2269.99) > 0.1) stop("error in nl gamlss NO")
AIC(modRGSc,modLOGNOSc,modNOSc, k=0 )
modTFSc<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-p1*exp(-p2/bflow)),
sigma.formula=~ p3+p4*pp[,1]+p5*pp[,2], nu.fo=~1,
mu.start = c(.6, 110), sigma.start= c(3,-1,-2),
nu.start=2.5 ,family=TF, data=la)
if(abs(deviance(modTFSc)- 2267.42) > 0.1) stop("error in nl gamlss TF")
modPESc<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-p1*exp(-p2/bflow)),
sigma.formula=~ p3+p4*pp[,1]+p5*pp[,2], nu.fo=~1,
mu.start = c(.6, 110), sigma.start= c(3,-1,-2),
nu.start=log(2) ,family=PE, data=la)
if(abs(deviance(modPESc)- 2269.11) > 0.1) stop("error in nl gamlss TF")
modBCCGSc<- nlgamlss(y=PET60, mu.fo=~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~ p3+p4*pp[,1]+p5*pp[,2], nu.fo=~1,
mu.start = c(-.9, 90), sigma.start= c(3,-1,-2), nu.start=0,
family=BCCG, data=la)
if((deviance(modBCCGSc)- 2221.56) > 0.1) stop("error in nl gamlss BCCGSc")
AIC(modTFSc,modPESc,modBCCGSc, k=0)
modBCTSc<- nlgamlss(y=PET60, mu.fo= ~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~ p3+p4*pp[,1]+p5*pp[,2],
nu.fo=~1, mu.start=c(-.9, 90), sigma.start= c(3,-1,-2), nu.start=0,
tau.start=log(2.5), family=BCT, data=la, control=NL.control(hessian=FALSE))
if((deviance(modBCTSc)-2221.6) > 0.1) stop("error in nl gamlss BCT")
modBCPESc<- nlgamlss(y=PET60, mu.fo=~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~ p3+p4*pp[,1]+p5*pp[,2],
mu.start = c(-.9, 90), sigma.start= c(3,-1,-2), nu.start=0,
tau.start=log(2.5), family=BCPE, data=la)
if((deviance(modBCPESc)- 2212.9) > 0.1) stop("error in nl gamlss BCPE")
modFinal<- nlgamlss(y=PET60, mu.fo=~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~ p3+p4*pp[,1]+p5*pp[,2],
mu.start = c(-.9, 90), sigma.start= c(3,-1,-2), nu.start=0,
tau.start=log(2.5), nu.fix=TRUE, family=BCPE, data=la)
if((deviance(modBCPESc)- 2212.9) > 0.1) stop("error in nl gamlss BCPE")
mylogy<-log(la$PET60)
modFinal1<- nlgamlss(y=mylogy, mu.fo=~log(bflow)+log(1-p1*exp(-p2/bflow)),
sigma.formula=~p3+p4*pp[,1]+p5*pp[,2], mu.start = c(.6, 40),
sigma.start= c(3,-1,-2),nu.start=log(2.5), family=PE, data=la) |
print.AmerPut <-
function(x, ...){
cat("American Put Option\nPrice: ")
cat(x$price)
} |
.gibbs_OMFA <- function(Q, data, iters, N, P, G, mu.zero, sigma.mu, mu, sigma.l, burnin,
thinning, uni.type, uni.prior, sw, psi.alpha, psi.beta, verbose,
cluster, learn.alpha, a.hyper, zeta, tune.zeta, ...) {
start.time <- proc.time()
sq_mat <- if(P > 50) function(x) diag(sqrt(diag(x))) else sqrt
matrix <- base::matrix
total <- max(iters)
if(verbose) pb <- utils::txtProgressBar(min=0, max=total, style=3)
n.store <- length(iters)
Gseq <- seq_len(G)
Pseq <- seq_len(P)
Nseq <- seq_len(N)
obsnames <- rownames(data)
varnames <- colnames(data)
colnames(data) <- NULL
Q0 <- Q > 0
Q1 <- Q == 1
uni <- P == 1
sw["s.sw"] <- sw["s.sw"] && Q0
sw["l.sw"] <- sw["l.sw"] && Q0
if(sw["mu.sw"]) {
mu.store <- array(0L, dim=c(P, G, n.store))
}
if(sw["s.sw"]) {
eta.store <- array(0L, dim=c(N, Q, n.store))
}
if(sw["l.sw"]) {
load.store <- array(0L, dim=c(P, Q, G, n.store))
}
if(sw["psi.sw"]) {
psi.store <- array(0L, dim=c(P, G, n.store))
}
if(sw["pi.sw"]) {
pi.store <- matrix(0L, nrow=G, ncol=n.store)
}
z.store <- matrix(0L, nrow=n.store, ncol=N)
ll.store <- vector("integer", n.store)
err.z <- zerr <- FALSE
G.store <- vector("integer", n.store)
mu.sigma <- 1/sigma.mu
mu.prior <- mu.sigma * mu.zero
sig.mu.sqrt <- sqrt(sigma.mu)
l.sigma <- diag(1/sigma.l, Q)
sig.l.sqrt <- sqrt(sigma.l)
z <- cluster$z
nn <- tabulate(z, nbins=G)
nn0 <- nn > 0
nn.ind <- which(nn0)
pi.alpha <- cluster$pi.alpha
if(learn.alpha) {
alpha.store <- ll.store
alpha.shape <- a.hyper[1L]
alpha.rate <- a.hyper[2L]
a.rates <- vector("integer", total)
} else a.rates <- 1L
avgzeta <- zeta
heat <- tune.zeta$heat
lambda <- tune.zeta$lambda
target <- tune.zeta$target
zeta.tune <- tune.zeta$do
startz <- tune.zeta$start.zeta
stopz <- tune.zeta$stop.zeta
one.uni <- is.element(uni.type, c("constrained", "single"))
.sim_psi_inv <- switch(EXPR=uni.type, unconstrained=.sim_psi_uu, isotropic=.sim_psi_uc,
constrained=.sim_psi_cu, single=.sim_psi_cc)
.sim_psi_ip <- switch(EXPR=uni.prior, unconstrained=.sim_psi_ipu, isotropic=.sim_psi_ipc)
if(isTRUE(one.uni)) {
uni.shape <- switch(EXPR=uni.type, constrained=N/2 + psi.alpha, single=(N * P)/2 + psi.alpha)
V <- switch(EXPR=uni.type, constrained=P, single=1L)
}
psi.beta <- switch(EXPR=uni.prior, isotropic=psi.beta[which.max(.ndeci(psi.beta))], psi.beta)
pi.prop <- c(cluster$pi.prop, vector("integer", G - length(cluster$pi.prop)))
mu <- cbind(mu, vapply(seq_len(G - length(cluster$pi.prop)), function(g) .sim_mu_p(P=P, sig.mu.sqrt=sig.mu.sqrt, mu.zero=mu.zero), numeric(P)))
eta <- .sim_eta_p(N=N, Q=Q)
lmat <- if(Q0) array(vapply(Gseq, function(g) .sim_load_p(Q=Q, P=P, sig.l.sqrt=sig.l.sqrt), numeric(P * Q)), dim=c(P, Q, G)) else array(0, dim=c(P, 0, G))
if(isTRUE(one.uni)) {
psi.inv <- matrix(.sim_psi_ip(P=P, psi.alpha=psi.alpha, psi.beta=psi.beta), nrow=P, ncol=G)
} else psi.inv <- replicate(G, .sim_psi_ip(P=P, psi.alpha=psi.alpha, psi.beta=psi.beta), simplify="array")
psi.inv <- if(uni) t(psi.inv) else psi.inv
if(isTRUE(one.uni)) {
psi.inv[] <- 1/switch(EXPR=uni.type, constrained=colVars(data), max(colVars(data)))
} else {
tmp.psi <- (nn[nn0] - 1L)/pmax(rowsum(data^2, z) - rowsum(data, z)^2/nn[nn0], 0L)
tmp.psi <- switch(EXPR=uni.type, unconstrained=t(tmp.psi), matrix(Rfast::rowMaxs(tmp.psi, value=TRUE), nrow=P, ncol=G, byrow=TRUE))
psi.inv[,nn > 1] <- tmp.psi[!is.nan(tmp.psi)]
rm(tmp.psi)
}
max.p <- (psi.alpha - 1)/psi.beta
inf.ind <- psi.inv > max(max.p)
psi.inv[inf.ind] <- matrix(max.p, nrow=P, ncol=G)[inf.ind]
rm(max.p, inf.ind)
init.time <- proc.time() - start.time
for(iter in seq_len(total)) {
if(verbose && iter < burnin) utils::setTxtProgressBar(pb, iter)
storage <- is.element(iter, iters)
pi.prop <- rDirichlet(G=G, alpha=pi.alpha, nn=nn)
index <- order(nn, decreasing=TRUE)
pi.prop <- pi.prop[index]
mu <- mu[,index, drop=FALSE]
lmat <- lmat[,,index, drop=FALSE]
psi.inv <- psi.inv[,index, drop=FALSE]
z <- factor(z, labels=match(nn.ind, index))
z <- as.integer(levels(z))[z]
nn <- nn[index]
nn0 <- nn0[index]
dat.g <- lapply(Gseq, function(g) data[z == g,, drop=FALSE])
c.data <- lapply(Gseq, function(g) sweep(dat.g[[g]], 2L, mu[,g], FUN="-", check.margin=FALSE))
if(Q0) {
eta.tmp <- lapply(Gseq, function(g) if(nn0[g]) .sim_score(N=nn[g], lmat=lmat[,,g], Q=Q, c.data=c.data[[g]], psi.inv=psi.inv[,g], Q1=Q1) else .empty_mat(nc=Q))
EtE <- lapply(Gseq, function(g) if(nn0[g]) crossprod(eta.tmp[[g]]))
lmat <- array(unlist(lapply(Gseq, function(g) matrix(if(nn0[g]) vapply(Pseq, function(j) .sim_load(l.sigma=l.sigma, Q=Q, c.data=c.data[[g]][,j], eta=eta.tmp[[g]], Q1=Q1,
EtE=EtE[[g]], psi.inv=psi.inv[,g][j]), numeric(Q)) else .sim_load_p(Q=Q, P=P, sig.l.sqrt=sig.l.sqrt), nrow=P, byrow=TRUE)), use.names=FALSE), dim=c(P, Q, G))
eta <- do.call(rbind, eta.tmp)[obsnames,, drop=FALSE]
} else {
eta.tmp <- lapply(Gseq, function(g) eta[z == g,, drop=FALSE])
}
if(isTRUE(one.uni)) {
S.mat <- lapply(Gseq, function(g) { S <- c.data[[g]] - if(Q0) tcrossprod(eta.tmp[[g]], if(Q1) as.matrix(lmat[,,g]) else lmat[,,g]) else 0L; S^2 } )
psi.inv[,] <- .sim_psi_inv(uni.shape, psi.beta, S.mat, V)
} else {
psi.inv[,] <- vapply(Gseq, function(g) if(nn0[g]) .sim_psi_inv(N=nn[g], psi.alpha=psi.alpha, c.data=c.data[[g]], eta=eta.tmp[[g]], psi.beta=psi.beta,
P=P, Q0=Q0, lmat=if(Q1) as.matrix(lmat[,,g]) else lmat[,,g]) else .sim_psi_ip(P=P, psi.alpha=psi.alpha, psi.beta=psi.beta), numeric(P))
}
sum.data <- vapply(dat.g, colSums2, numeric(P))
sum.data <- if(uni) t(sum.data) else sum.data
sum.eta <- lapply(eta.tmp, colSums2)
mu[,] <- vapply(Gseq, function(g) if(nn0[g]) .sim_mu(mu.sigma=mu.sigma, psi.inv=psi.inv[,g], mu.prior=mu.prior, sum.data=sum.data[,g], sum.eta=sum.eta[[g]],
lmat=if(Q1) as.matrix(lmat[,,g]) else lmat[,,g], N=nn[g], P=P) else .sim_mu_p(P=P, sig.mu.sqrt=sig.mu.sqrt, mu.zero=mu.zero), numeric(P))
if(learn.alpha) {
MH.alpha <- .sim_alpha_o(alpha=pi.alpha, zeta=zeta, G=G, N=N, nn=nn[nn0], shape=alpha.shape, rate=alpha.rate)
pi.alpha <- MH.alpha$alpha
a.rates[iter] <- MH.alpha$rate
if(isTRUE(zeta.tune)) {
if(iter >= startz &&
iter < stopz) {
zeta <- .tune_zeta(zeta=zeta, time=iter, l.rate=MH.alpha$l.prob, heat=heat, target=target, lambda=lambda)
}
avgzeta <- c(avgzeta, zeta)
}
}
psi <- 1/psi.inv
sigma <- if(uni) lapply(Gseq, function(g) as.matrix(psi[,g] + if(Q0) tcrossprod(as.matrix(lmat[,,g])) else 0L)) else lapply(Gseq, function(g) tcrossprod(lmat[,,g]) + diag(psi[,g]))
log.pis <- log(pi.prop)
if(uni) {
log.probs <- vapply(Gseq, function(g) stats::dnorm(data, mu[,g], sq_mat(sigma[[g]]), log=TRUE) + log.pis[g], numeric(N))
} else {
log.probs <- try(vapply(Gseq, function(g) dmvn(data, mu[,g], if(Q0) sigma[[g]] else sq_mat(sigma[[g]]), log=TRUE, isChol=!Q0) + log.pis[g], numeric(N)), silent=TRUE)
if(zerr <- inherits(log.probs, "try-error")) {
log.probs <- vapply(Gseq, function(g) { sigma <- if(Q0) is.posi_def(sigma[[g]], make=TRUE)$X.new else sq_mat(sigma[[g]]); dmvn(data, mu[,g], sigma, log=TRUE, isChol=!Q0) + log.pis[g] }, numeric(N))
}
}
z <- gumbel_max(probs=log.probs)
nn <- tabulate(z, nbins=G)
nn0 <- nn > 0
nn.ind <- which(nn0)
G.non <- length(nn.ind)
if(zerr && !err.z) { cat("\n"); warning("\nAlgorithm may slow due to corrections for Choleski decompositions of non-positive-definite covariance matrices\n", call.=FALSE)
err.z <- TRUE
}
if(storage) {
if(verbose) utils::setTxtProgressBar(pb, iter)
new.it <- which(iters == iter)
if(sw["mu.sw"]) mu.store[,,new.it] <- mu
if(all(sw["s.sw"], Q0)) eta.store[,,new.it] <- eta
if(all(sw["l.sw"], Q0)) load.store[,,,new.it] <- lmat
if(sw["psi.sw"]) psi.store[,,new.it] <- psi
if(sw["pi.sw"]) pi.store[,new.it] <- pi.prop
if(learn.alpha) alpha.store[new.it] <- pi.alpha
z.store[new.it,] <- as.integer(z)
ll.store[new.it] <- sum(rowLogSumExps(log.probs))
G.store[new.it] <- as.integer(G.non)
}
}
if(verbose) close(pb)
Gmax <- seq_len(max(as.integer(z.store)))
mu.store <- if(sw["mu.sw"]) tryCatch(mu.store[,Gmax,, drop=FALSE], error=function(e) mu.store)
load.store <- if(sw["l.sw"]) tryCatch(load.store[,,Gmax,, drop=FALSE], error=function(e) load.store)
psi.store <- if(sw["psi.sw"]) tryCatch(psi.store[,Gmax,, drop=FALSE], error=function(e) psi.store)
pi.store <- if(sw["pi.sw"]) tryCatch(pi.store[Gmax,, drop=FALSE], error=function(e) pi.store)
returns <- list(mu = if(sw["mu.sw"]) tryCatch(provideDimnames(mu.store, base=list(varnames, "", ""), unique=FALSE), error=function(e) mu.store),
eta = if(all(sw["s.sw"], Q0)) tryCatch(provideDimnames(eta.store, base=list(obsnames, "", ""), unique=FALSE), error=function(e) eta.store),
load = if(all(sw["l.sw"], Q0)) tryCatch(provideDimnames(load.store, base=list(varnames, "", "", ""), unique=FALSE), error=function(e) load.store),
psi = if(sw["psi.sw"]) tryCatch(provideDimnames(psi.store, base=list(varnames, "", ""), unique=FALSE), error=function(e) psi.store),
pi.prop = if(sw["pi.sw"]) pi.store,
alpha = if(learn.alpha) alpha.store,
a.rate = ifelse(learn.alpha, mean(a.rates), a.rates),
z.store = z.store,
ll.store = ll.store,
G.store = G.store,
avg.zeta = if(learn.alpha) ifelse(zeta.tune, mean(avgzeta), zeta),
time = init.time)
return(returns)
} |
expected <- eval(parse(text="-1.46941282670977e-16"));
test(id=0, code={
argv <- eval(parse(text="list(-1.46941282670977e-16)"));
do.call(`atan`, argv);
}, o=expected); |
mice_mudfold_noboot <- function(out){
out_list <- out
nmice <- out_list$CALL$nmice
data <- out_list$CALL$data
I <- colnames(data)
nrdat <- nrow(data)
for_mice_dat <- data.frame(sapply(data,as.factor))
new.pred <- quickpred(for_mice_dat, method = 'kendall', mincor = out_list$CALL$mincor)
imp_dati <- mice(for_mice_dat, m = nmice,predictorMatrix = new.pred, printFlag = FALSE, method = 'myfunc')
dims_imp_dati <- lapply(imp_dati$imp,dim)
index_which_imputed <- unlist(lapply(dims_imp_dati, function(x) ifelse(x[1] > 0, TRUE, FALSE)))
mode_imputed <- lapply(imp_dati$imp[index_which_imputed], function(x) apply(x, 1, getmode))
dat_imputed <- data[,index_which_imputed]
dat_imputed <- data.frame(do.call(cbind,lapply(1:sum(index_which_imputed), function(i){
y <- dat_imputed[,i]
y[is.na(y)] <- mode_imputed[[i]]
y
})))
dt <- data
dt[,index_which_imputed] <- dat_imputed
out_list$CALL$mode_mice_data <- dt
dati <- complete(imp_dati, "all")
dati <- lapply(dati, function(x){
if (any(is.na(x))){
x <- apply(x, 2, function(y){
if(any(is.na(y))) y[is.na(y)] <- getmode(y)
})
}
x
})
dati <- lapply(dati, function(x) data.frame(sapply(x, function(y) as.numeric(levels(y))[y])))
check_results <- lapply(dati, function(x){
out_new <- out_list
out_new$CALL$data <- x
data_check(out_new)})
nullvec <- sapply(check_results, is.null)
if (any(nullvec)) return()
list_res <- list()
list_res <- out_list
list_res$MUDFOLD_INFO <- list()
list_res$MUDFOLD_INFO$triple_stats <- list()
list_res$MUDFOLD_INFO$triple_stats$Expected_errors <- Reduce("+", lapply(check_results, function(x) x$out$MUDFOLD_INFO$triple_stats$Expected_errors )) / nmice
list_res$MUDFOLD_INFO$triple_stats$Observed_errors <- Reduce("+", lapply(check_results, function(x) x$out$MUDFOLD_INFO$triple_stats$Observed_errors )) / nmice
list_res$MUDFOLD_INFO$triple_stats$H_coefficients <- Reduce("+", lapply(check_results, function(x) x$out$MUDFOLD_INFO$triple_stats$H_coefficients )) / nmice
out_lists <- lapply(check_results, function(x) x$out)
out_lists <- lapply(1:length(dati), function(x){
out_lists[[x]]$CALL$data <-check_results[[x]]$data
out_lists[[x]]
})
fits <- lapply(1:nmice, function(i){
if (is.null(out_list$CALL$start.scale)){
res_first <- mudfold_fs(out_lists[[i]])
res_second <- mudfold_se(res_first)
}else{
res_first <- out_lists[[i]]
res_first$MUDFOLD_INFO$first_step <- NULL
res_second <- mudfold_se(res_first)
}
return(res_second)
})
non_conv <- unlist(lapply(fits, is.null))
conv <- !non_conv
nconvergence <- sum(conv)
convergence_rate <- (nconvergence )/ nmice
list_res$MUDFOLD_INFO$mice_info <- list()
list_res$MUDFOLD_INFO$mice_info$mice_out <- imp_dati
list_res$MUDFOLD_INFO$mice_info$convergence <- nconvergence
list_res$MUDFOLD_INFO$mice_info$convergence_rate <- convergence_rate
list_res$MUDFOLD_INFO$mice_info$which_non_convergence <- which(non_conv)
list_res$MUDFOLD_INFO$first_step <- list()
list_res$MUDFOLD_INFO$second_step <- list()
if (nconvergence > 0){
list_res$MUDFOLD_INFO$first_step$Converged <- TRUE
list_res$MUDFOLD_INFO$second_step$Converged <- TRUE
}else{
print(paste("NO MUDFOLD SCALE OBTAINED IN ",nmice," MICE DATASETS",sep=""))
return()
}
nmice_effective <- c(1:nmice)[conv]
summ_fits <- lapply(fits[nmice_effective], summary)
Uniq_trip <- lapply(fits[nmice_effective], function(x) as.vector(x$MUDFOLD_INFO$first_step$BU))
for( i in 1:nconvergence){
ut1 <- paste(Uniq_trip[[i]],collapse = "")
ut2 <- paste(rev(Uniq_trip[[i]]),collapse = "")
equal_trips <- which(sapply(Uniq_trip, function(x) paste(x,collapse = "") == ut1 | paste(x,collapse = "") == ut2))
for (j in equal_trips){
Uniq_trip[[j]] <- Uniq_trip[[i]]
}
}
Uniq_trip <- sapply(Uniq_trip, function(x) paste(x,collapse = ""))
ttrips <- table(Uniq_trip)
best_mice_utrip <- names(ttrips)[which.max(ttrips)]
ref_fit <- which(Uniq_trip == best_mice_utrip)[1]
best_mice_utrip <- fits[[ref_fit]]$MUDFOLD_INFO$first_step$BU
Htrips <- sapply(names(ttrips), function(u){
z<-fits[nmice_effective]
zstar <- z[which(Uniq_trip == u)]
utrip_H <- mean(sapply(zstar, function(x) x$MUDFOLD_INFO$first_step$HBU))
utrip_H
})
fits_all <- fits[nmice_effective]
which_fits <- which(sapply(fits_all, function(x){
sum(c(x$MUDFOLD_INFO$first_step$BU)==best_mice_utrip) == 3 | sum(c(x$MUDFOLD_INFO$first_step$BU) == rev(best_mice_utrip))==3
}))
fits1 <- fits_all[which_fits]
utrip_H <- mean(sapply(fits1, function(x) x$MUDFOLD_INFO$first_step$HBU))
list_res$MUDFOLD_INFO$first_step$unique_triples <- sort(ttrips,decreasing = TRUE)
list_res$MUDFOLD_INFO$first_step$H_unique_triples <- Htrips
list_res$MUDFOLD_INFO$first_step$BU <- best_mice_utrip
list_res$MUDFOLD_INFO$first_step$HBU <- utrip_H
scales <- lapply(summ_fits, function(x) x$ITEM_STATS$items)
for( i in 1:nconvergence){
sc1 <- paste(scales[[i]],collapse = "")
sc2 <- paste(rev(scales[[i]]),collapse = "")
equal_scales <- which(sapply(scales, function(x) paste(x,collapse = "") ==sc1 | paste(x,collapse = "")==sc2))
for (j in equal_scales){
scales[[j]] <- scales[[i]]
}
}
scalescol <- sapply(scales, function(x) paste(x,collapse = ""))
tscales <- table(scalescol)
index_scales <- as.numeric(which(tscales== max(tscales)))
names_ind_scales <- names(tscales)[index_scales]
list_res$MUDFOLD_INFO$second_step$mice_scales <- tscales
best_scale <- NA
if (length(index_scales)==1){
best_scale <- names_ind_scales
}
if (length(index_scales) > 1){
name_vec_new <- names_ind_scales
meanISO <- sapply(name_vec_new, function(x){
z <- fits_all[which(scalescol == x)]
mean(sapply(z, function(y) y$MUDFOLD_INFO$second_step$ISOscale))
})
indexes2 <- as.numeric(which(meanISO == min(meanISO)))
if (length(indexes2) == 1){
best_scale <- names(meanISO)[indexes2]
}
if (length(indexes2) > 1){
name_vec_new <- name_vec_new[indexes2]
meanMAX <- sapply(name_vec_new, function(x){
z <- fits_all[which(scalescol == x)]
mean(sapply(z, function(y) y$MUDFOLD_INFO$second_step$MAXscale))
})
indexes3 <- which(meanMAX == min(meanMAX))
if (length(indexes3) == 1){
best_scale <- names(meanMAX)[indexes3]
}
if (length(indexes3) > 1){
name_vec_new <- name_vec_new[indexes3]
meanH <- sapply(names_ind_scales[indexes3], function(x){
z <- fits_all[which(scalescol == x)]
mean(sapply(z, function(y) y$MUDFOLD_INFO$second_step$Hscale))
})
indexes4 <- which(meanH == max(meanH))
best_scale <- names(meanH)[1]
}
}
}
refscale2 <- which(scalescol == best_scale)[1]
best_mice_scale <- fits_all[[refscale2]]$MUDFOLD_INFO$second_step$scale
length_best_mice_scale <- length(best_mice_scale)
which_summary_to_use <- which(sapply(summ_fits, function(x){
if (length(x$ITEM_STATS$items) == length_best_mice_scale){
sum(x$ITEM_STATS$items==best_mice_scale)==length_best_mice_scale | sum(x$ITEM_STATS$items==rev(best_mice_scale))==length_best_mice_scale
}else{
FALSE
}
}))
summ_fits <- summ_fits[which_summary_to_use]
scale_stats <- apply(do.call(rbind,lapply(summ_fits, function(x) c(x$SCALE_STATS)$value)),2,mean)
item_stats <- Reduce("+",lapply(summ_fits, function(x){
sc1c <- sum(x$ITEM_STATS$items == rev(best_mice_scale)) == length_best_mice_scale
sc2c <- sum(x$ITEM_STATS$items == best_mice_scale) == length_best_mice_scale
nrx <- nrow(x$ITEM_STATS)
if (sc1c) x$ITEM_STATS <- x$ITEM_STATS[rev(1:nrx),]
unlist(x$ITEM_STATS[,-c(1,2)])
})) / length(which_summary_to_use)
av_CAM <- Reduce("+",lapply(fits_all[which_summary_to_use], function(x) x$MUDFOLD_INFO$second_step$CAM[best_mice_scale,best_mice_scale])) /length(which_summary_to_use)
av_COR <- Reduce("+",lapply(fits_all[which_summary_to_use], function(x) x$MUDFOLD_INFO$second_step$CORR[best_mice_scale,best_mice_scale])) /length(which_summary_to_use)
av_ADJ <- Reduce("+",lapply(fits_all[which_summary_to_use], function(x) x$MUDFOLD_INFO$second_step$ADJ[best_mice_scale,best_mice_scale])) /length(which_summary_to_use)
av_DOM <- Reduce("+",lapply(fits_all[which_summary_to_use], function(x) x$MUDFOLD_INFO$second_step$DOM[best_mice_scale,best_mice_scale])) /length(which_summary_to_use)
av_STAR <- CAM_STAR(av_CAM)
item_stats <- matrix(item_stats, nrow = length_best_mice_scale, ncol = 8 )
ncolssumm <- ncol(summ_fits[[1]]$ITEM_STATS)-2
indx1 <- seq(1,ncol(item_stats), by=length_best_mice_scale)
indx2 <- indx1 + (length_best_mice_scale-1)
samples_mice <- out_list$CHECK$SAMPLE$n_persons - out_list$CHECK$SAMPLE$missing_values$missing_cols[match(best_mice_scale,colnames(data))]
list_res$MUDFOLD_INFO$second_step$scale <- best_mice_scale
list_res$MUDFOLD_INFO$second_step$excluded_items <- I[which(!I %in% best_mice_scale)]
list_res$MUDFOLD_INFO$second_step$Lscale <- length_best_mice_scale
list_res$MUDFOLD_INFO$second_step$CAM <- av_CAM
list_res$MUDFOLD_INFO$second_step$CORR <- av_COR
list_res$MUDFOLD_INFO$second_step$ADJ <- av_ADJ
list_res$MUDFOLD_INFO$second_step$DOM <- av_DOM
list_res$MUDFOLD_INFO$second_step$STAR <- av_STAR
list_res$MUDFOLD_INFO$second_step$Hscale <- scale_stats[1]
list_res$MUDFOLD_INFO$second_step$Hitem <- item_stats[,8]
list_res$MUDFOLD_INFO$second_step$ISOitem <- item_stats[,7]
list_res$MUDFOLD_INFO$second_step$MAXitem <- item_stats[,6]
list_res$MUDFOLD_INFO$second_step$ISOscale <- scale_stats[2]
list_res$MUDFOLD_INFO$second_step$MAXscale <- scale_stats[3]
list_res$MUDFOLD_INFO$second_step$ISOitem <- item_stats[,6]
list_res$MUDFOLD_INFO$second_step$OBSitem <- item_stats[,4]
list_res$MUDFOLD_INFO$second_step$OBSscale<- scale_stats[4]
list_res$MUDFOLD_INFO$second_step$EXPitem <- item_stats[,5]
list_res$MUDFOLD_INFO$second_step$EXPscale<- scale_stats[5]
index_inverse <- which(unlist(lapply(fits_all[which_summary_to_use], function(x){
ests <- x$MUDFOLD_INFO$second_step$estimates$betas[best_mice_scale]
ests[1] != 1})))
thetas <- lapply(fits_all[which_summary_to_use], function(x) x$MUDFOLD_INFO$second_step$estimates$thetas)
if (length(index_inverse) != 0) thetas[index_inverse] <- lapply(index_inverse, function(y) rev(thetas[[y]]))
thetas <- Reduce("+", thetas) / length(which_summary_to_use)
betas <- lapply(fits_all[which_summary_to_use], function(x){
ests <- x$MUDFOLD_INFO$second_step$estimates$betas[best_mice_scale]
if (ests[1] != 1) ests <- abs((length_best_mice_scale+1)-ests )
ests})
betas <- Reduce("+", betas) / length(which_summary_to_use)
list_res$MUDFOLD_INFO$second_step$estimates <- list(betas=betas, thetas=thetas)
class(list_res) <- "mdf"
return(list_res)
} |
siarmenu <-
function() {
siarversion <-"4.1"
cat("------------------------------- \n")
cat(paste("Welcome to Stable Isotope Analysis in R version", siarversion, "\n"))
cat("Author: Andrew Parnell, University College Dublin\n")
cat("Please report bugs to: [email protected]\n")
cat("------------------------------- \n")
cat("\n")
cat("Useful: Press 0 at a prompt to return to the main menu or Esc to exit. \n \n")
siardata <- list()
siardata$SHOULDRUN <- FALSE
siardata$EXIT <- FALSE
siardata$GRAPHSONLY <- FALSE
while(siardata$EXIT==FALSE)
{
choices <- c("Load in some data (run this first)",
"Run SIAR for a single group",
"Run SIAR for multiple groups",
"Plot single group proportions",
"Matrix plot of proportions",
"Plot of proportions by source",
"Save parameter output to a file",
"Summary information and convergence diagnostics",
"Demo (for first time users)",
"Exit")
title <- "The available options are:"
choose <- menu(choices,title = title)
if(choose == 1) {
siardata <- siarloaddata(siarversion)
if(siardata$SHOULDRUN==TRUE) {
cat("Do you with to plot the data? (y/n) \n")
plotans <- scan(what="",nlines=1,quiet=TRUE)
if(plotans=="yes" || plotans=="y") {
siarplotdata(siardata)
}
}
cat("Press <Enter> to continue")
readline()
invisible()
}
if(choose == 2) {
siardata <- siarsinglegrouprun(siardata)
cat("Press <Enter> to continue")
readline()
invisible()
}
if(choose == 3) {
siardata <- siarmultigrouprun(siardata)
cat("Press <Enter> to continue")
readline()
invisible()
}
if(choose == 4) {
choices2 <- c("Traditional (isosource) plot","SIAR proportions plot")
title2 <- "Isosource or SIAR style plot?"
choose2 <- menu(choices2,title = title2)
if(choose2==1) siarhistograms(siardata,siarversion)
if(choose2==2) siarproportionbygroupplot(siardata,siarversion)
cat("Press <Enter> to continue")
readline()
invisible()
}
if(choose == 5) {
siarmatrixplot(siardata,siarversion)
cat("Press <Enter> to continue")
readline()
invisible()
}
if(choose == 6) {
siarproportionbysourceplot(siardata,siarversion)
}
if(choose == 7) {
siarsaveoutput(siardata)
}
if(choose == 8)
{
siarhdrs(siardata)
cat("Press <Enter> to continue...")
readline()
invisible()
}
if(choose == 9) {
siardemo(siarversion)
cat("Press <Enter> to continue")
readline()
invisible()
}
if(choose == 10)
{
cat("Thank you. Exiting... \n")
siardata$EXIT=TRUE
}
}
} |
xformimage<-function(reg, image, ...) {
UseMethod('xformimage')
}
xformimage.character<-function(reg, image, ...){
if (is.cmtkreg(reg[1], filecheck='magic')) xformimage(as.cmtkreg(reg), image, ...)
else stop("Cannot identify registration class")
}
xformimage.cmtkreg<-function(reg, image, transformtype=c('warp','affine'),
direction=NULL, ...){
if(is.list(reg)){
regfile=as.cmtkreg(tempfile(fileext=".list"))
on.exit(unlink(regfile,recursive=TRUE))
write.cmtkreg(reg, regfile)
reg=regfile
}
transformtype=match.arg(transformtype)
if(is.null(direction) && !is.null(swap<-attr(reg,'swap'))) {
direction=ifelse(swap, 'inverse', 'forward')
} else {
direction=match.arg(direction,c('forward', "inverse"),several.ok=TRUE)
}
if(transformtype=='affine') {
stop("Not yet implemented")
}
cmtk.reformatx(floating = image, registrations = rev(reg), direction=direction, ...)
}
xformimage.reglist<-function(reg, image, ...){
reg=simplify_reglist(reg, as.cmtk = TRUE)
on.exit(unlinktempfiles_reglist(reg))
xformimage(reg, image=image, ...)
}
xformimage.default<-function(reg, image, ...){
if(is.matrix(reg)) {
xformimage(cmtkreglist(reg), image, ...)
} else {
stop("Unrecognised/implemented registration type")
}
} |
library("data.table")
library("wyz.code.offensiveProgramming")
library("wyz.code.rdoc")
gc <- GenerationContext('inst/man-generated', overwrite_b_1 = TRUE,
verbosity_b_1 = FALSE, useMarkers_b_1 = FALSE)
target_package_name <- 'wyz.code.rdoc'
beautifier <- beautify()
pc <- ProcessingContext(
extraneous_l = list(
seealso = sentensize(paste('class', beautifier$codelink('ProcessingContext'),
'and class', beautifier$codelink('InputContext'))),
keyword = 'documentation',
concept = 'documentation generation'
)
)
ic <- InputContext(pc, packageName_s_1 = 'wyz.code.rdoc')
r1 <- produceManualPage(ic, pc, gc)
m <- ManualPageBuilder(InputContext(NULL))
pc <- ProcessingContext(
extraneous_l = list(
seealso = sentensize(paste('class', beautifier$codelink('InputContext'),
'class', beautifier$codelink('ProcessingContext'),
'and class', beautifier$codelink('GenerationContext'))),
keyword = 'documentation',
concept = 'documentation generation'
)
)
ic <- InputContext(m, packageName_s_1 = 'wyz.code.rdoc')
r2 <- produceManualPage(ic, pc, gc)
interpretResults(r2) |
context("Testing calibration plot")
test_that("Error thrown if neither the knots or df specified - both NULL", {
kyph_dat <- data.frame(Kyphosis=sample(as.factor(c("absent", "present")), 100, replace=TRUE),
Age = sample(seq_len(175), 100, replace=TRUE), ncol=2)
y <- as.numeric(kyph_dat$Kyphosis)-1
x <- kyph_dat$Age
glm1 <- glm(y~poly(x,2),family=binomial)
p <- predict(glm1, type="response")
expect_error(calibrate_plot(y, p, df=NULL, knots=NULL, xlim=c(0,0.6), ylim=c(0,0.6)))
})
test_that("Error thrown if df is not a positive integer (if vector first element must be a positive integer)", {
kyph_dat <- data.frame(Kyphosis=sample(as.factor(c("absent", "present")), 100, replace=TRUE),
Age = sample(seq_len(175), 100, replace=TRUE), ncol=2)
y <- as.numeric(kyph_dat$Kyphosis)-1
x <- kyph_dat$Age
glm1 <- glm(y~poly(x,2),family=binomial)
p <- predict(glm1, type="response")
expect_error(calibrate_plot(y, p, df=0, knots=NULL, xlim=c(0,0.6), ylim=c(0,0.6)))
expect_error(calibrate_plot(y, p, df=1.4, knots=NULL, xlim=c(0,0.6), ylim=c(0,0.6)))
expect_error(calibrate_plot(y, p, df="Wrong", knots=NULL, xlim=c(0,0.6), ylim=c(0,0.6)))
expect_error(calibrate_plot(y, p, df=c(1, 2), knots=NULL, xlim=c(0,0.6), ylim=c(0,0.6)), NA)
expect_error(calibrate_plot(y, p, df=c(1.4, 2), knots=NULL, xlim=c(0,0.6), ylim=c(0,0.6)))
expect_error(calibrate_plot(y, p, df=NaN, knots=NULL, xlim=c(0,0.6), ylim=c(0,0.6)))
expect_error(calibrate_plot(y, p, df=NA, knots=NULL, xlim=c(0,0.6), ylim=c(0,0.6)))
expect_error(calibrate_plot(y, p, df=Inf, knots=NULL, xlim=c(0,0.6), ylim=c(0,0.6)))
})
test_that("Error thrown if y and p not same length", {
kyph_dat <- data.frame(Kyphosis=sample(as.factor(c("absent", "present")), 100, replace=TRUE),
Age = sample(seq_len(175), 100, replace=TRUE), ncol=2)
y <- as.numeric(kyph_dat$Kyphosis)-1
x <- kyph_dat$Age
glm1 <- glm(y~poly(x,2),family=binomial)
p <- predict(glm1, type="response")
p <- p[seq(length(p)-1)]
expect_error(calibrate_plot(y, p))
})
test_that("Can run with defaults", {
kyph_dat <- data.frame(Kyphosis=sample(as.factor(c("absent", "present")), 100, replace=TRUE),
Age = sample(seq_len(175), 100, replace=TRUE), ncol=2)
y <- as.numeric(kyph_dat$Kyphosis)-1
x <- kyph_dat$Age
glm1 <- glm(y~poly(x,2),family=binomial)
p <- predict(glm1, type="response")
expect_error(calibrate_plot(y, p), NA)
})
test_that("Can run with shade_col not NA", {
kyph_dat <- data.frame(Kyphosis=sample(as.factor(c("absent", "present")), 100, replace=TRUE),
Age = sample(seq_len(175), 100, replace=TRUE), ncol=2)
y <- as.numeric(kyph_dat$Kyphosis)-1
x <- kyph_dat$Age
glm1 <- glm(y~poly(x,2),family=binomial)
p <- predict(glm1, type="response")
expect_error(calibrate_plot(y, p, shade_col=1), NA)
})
test_that("Can run with replace = FALSE", {
kyph_dat <- data.frame(Kyphosis=sample(as.factor(c("absent", "present")), 100, replace=TRUE),
Age = sample(seq_len(175), 100, replace=TRUE), ncol=2)
y <- as.numeric(kyph_dat$Kyphosis)-1
x <- kyph_dat$Age
glm1 <- glm(y~poly(x,2),family=binomial)
p <- predict(glm1, type="response")
expect_error(calibrate_plot(y, p, replace=FALSE), NA)
})
test_that("Can run with shade_density != NULL", {
kyph_dat <- data.frame(Kyphosis=sample(as.factor(c("absent", "present")), 100, replace=TRUE),
Age = sample(seq_len(175), 100, replace=TRUE), ncol=2)
y <- as.numeric(kyph_dat$Kyphosis)-1
x <- kyph_dat$Age
glm1 <- glm(y~poly(x,2),family=binomial)
p <- predict(glm1, type="response")
expect_error(calibrate_plot(y, p, shade_density=2.0), NA)
})
test_that("Can run all distributions", {
kyph_dat <- data.frame(Kyphosis=sample(as.factor(c("absent", "present")), 100, replace=TRUE),
Age = sample(seq_len(175), 100, replace=TRUE), ncol=2)
y <- as.numeric(kyph_dat$Kyphosis)-1
x <- kyph_dat$Age
glm1 <- glm(y~poly(x,2),family=binomial)
p <- predict(glm1, type="response")
expect_error(calibrate_plot(y, p, distribution = "AdaBoost"), NA)
expect_error(calibrate_plot(y, p, distribution = "Bernoulli"), NA)
expect_error(calibrate_plot(y, p, distribution = "CoxPH"), NA)
expect_error(calibrate_plot(y, p, distribution = "Gamma"), NA)
expect_error(calibrate_plot(y, p, distribution = "Gaussian"), NA)
expect_error(calibrate_plot(y, p, distribution = "Laplace"), NA)
expect_error(calibrate_plot(y, p, distribution = "Huberized"), NA)
expect_error(calibrate_plot(y, p, distribution = "Pairwise"), NA)
expect_error(calibrate_plot(y, p, distribution = "Poisson"), NA)
expect_error(calibrate_plot(y, p, distribution = "Quantile"), NA)
expect_error(calibrate_plot(y, p, distribution = "TDist"), NA)
expect_error(calibrate_plot(y, p, distribution = "Tweedie"), NA)
}) |
.tl_configure_columns <- function(tbl, nms) {
.Tcl(sprintf("%s configure -columns {%s}",
tbl$ID,
paste(sprintf("0 {%s} left", nms), collapse="\n")
))
sapply(seq_along(nms), function(j) .tl_set_column_editable(tbl, j))
}
.tl_insert_row <- function(tbl, row) {
if(length(row) == 1 && grepl(" ", row))
row <- paste("{", row, "}", sep="")
tcl(tbl, "insert", "end", unlist(lapply(row, as.character)))
}
.tl_clear_data <- function(tbl) {
tcl(tbl, "delete", "0", "end")
}
.tl_load_data <- function(tbl, items) {
.tl_clear_data(tbl)
sapply(seq_len(nrow(items)), function(i)
.tl_insert_row(tbl, items[i,,drop=TRUE]))
}
.tl_get_cellindex <- function(tbl, i, j) {
tcl(tbl, "cellindex", sprintf("%s, %s", i-1, j-1))
}
.tl_get_cell_raw <- function(tbl, i, j) {
raw <- tcl(tbl, "cellcget", .tl_get_cellindex(tbl, i, j), "-text")
tclvalue(raw)
}
.tl_get_column_raw1 <- function(tbl, j) {
m <- .tl_no_rows(tbl)
sapply(seq_len(m), function(i) .tl_get_cell_raw(tbl, i, j))
}
.tl_get_column_raw <- function(tbl, j) {
tcl(tbl, "getcolumns", j-1)
}
.tl_get_raw <- function(tbl) {
do.call(cbind, lapply(seq_len(.tl_no_cols(tbl)), function(j) .tl_get_column_raw(tbl, j)))
}
.coerce_raw <- function(x, values) UseMethod(".coerce_raw")
.coerce_raw.default <- function(x, values) as.character(values)
.coerce_raw.integer <- function(x, values) as.integer(values)
.coerce_raw.numeric <- function(x, values) as.numeric(values)
.coerce_raw.logical <- function(x, values) as.logical(values)
.coerce_raw.factor <- function(x, values) factor(as.character(values))
.tl_set_column_name <- function(tbl, j, nm) {
tcl(tbl, "columnconfigure", j-1, title=nm)
}
..tl_set_column_names <- function(tbl, nms) {
for(j in seq_along(nms)) .tl_set_column_name(tbl, j, nms[j])
}
.tl_get_column_name <- function(tbl, j) {
tail(as.character(tcl(tbl, "columnconfigure", j-1, title=NULL)), n=1)
}
..tl_get_column_names <- function(tbl) {
sapply(seq_len(.tl_no_cols(tbl)), function(j) .tl_get_column_name(tbl, j))
}
.tl_remove_column <- function(tbl, j) {
tcl(tbl, "deletecolumns", j-1, j-1)
}
.tl_sort_bycolumn <- function(tbl, j, decreasing=FALSE) {
dir <- if(decreasing) "decreasing" else "increasing"
tcl(tbl, "sortbycolumn", j-1, sprintf("-%s", dir))
}
.tl_no_rows <- function(tbl) as.numeric(tcl(tbl, "childcount", "root"))
.tl_no_cols <- function(tbl) as.numeric(tcl(tbl, "columncount"))
.tl_set_focus_on_cell <- function(tbl, i, j) {
tcl(tbl, "see", sprintf("%s, %s", i-1, j-1))
}
.tl_hide_row <- function(tbl, i, hide=TRUE) {
hide <- if(hide) 1 else 0
tcl(tbl, "rowconfigure", i-1, hide=hide)
}
.tl_hide_column <- function(tbl, j, hide=TRUE) {
hide <- if(hide) 1 else 0
tcl(tbl, "columnconfigure", j-1, hide=hide)
}
.tl_set_column_editable <- function(tbl, j, editable=TRUE) {
editable <- if(editable) "yes" else "no"
tcl(tbl, "columnconfigure", j-1, editable=editable)
}
.tl_set_column_name <- function(tbl, j, nm) {
tcl(tbl, "columnconfigure", j-1, title=nm)
}
..tl_set_column_names <- function(tbl, nms) {
for(j in seq_along(nms)) .tl_set_column_name(tbl, j, nms[j])
}
.tl_get_column_name <- function(tbl, j) {
tail(as.character(tcl(tbl, "columnconfigure", j-1, title=NULL)), n=1)
}
..tl_get_column_names <- function(tbl) {
sapply(seq_len(.tl_no_cols(tbl)), function(j) .tl_get_column_name(tbl, j))
}
.tl_remove_column <- function(tbl, j) {
tcl(tbl, "deletecolumns", j-1, j-1)
}
.tl_sort_bycolumn <- function(tbl, j, decreasing=FALSE) {
dir <- if(decreasing) "decreasing" else "increasing"
tcl(tbl, "sortbycolumn", j-1, sprintf("-%s", dir))
}
.tl_no_rows <- function(tbl) as.numeric(tcl(tbl, "childcount", "root"))
.tl_no_cols <- function(tbl) as.numeric(tcl(tbl, "columncount"))
.tl_set_focus_on_cell <- function(tbl, i, j) {
tcl(tbl, "see", sprintf("%s, %s", i-1, j-1))
}
.tl_hide_row <- function(tbl, i, hide=TRUE) {
hide <- if(hide) 1 else 0
tcl(tbl, "rowconfigure", i-1, hide=hide)
}
.tl_hide_column <- function(tbl, j, hide=TRUE) {
hide <- if(hide) 1 else 0
tcl(tbl, "columnconfigure", j-1, hide=hide)
}
.tl_set_column_editable <- function(tbl, j, editable=TRUE) {
editable <- if(editable) "yes" else "no"
tcl(tbl, "columnconfigure", j-1, editable=editable)
}
.tl_new <- function(parent) {
if(!inherits(tclRequire("tablelist", warn = FALSE), "tclObj"))
stop(.gettext("Tk widget 'tablelist' could not be loaded"))
block <- ttkframe(parent)
xscr <- ttkscrollbar(block, orient="horizontal",
command=function(...) tkxview(widget,...))
yscr <- ttkscrollbar(block, orient="vertical",
command=function(...) tkyview(widget,...))
widget <- tkwidget(block, "tablelist::tablelist",
resizablecolumns=1,
xscrollcommand=function(...) tkset(xscr,...),
yscrollcommand=function(...) tkset(yscr,...))
tcl(widget, "configure", selecttype="cell")
tkgrid(widget, row=0, column=0, sticky="news")
tkgrid(yscr, row=0, column=1, sticky="ns")
tkgrid(xscr, row=1, column=0, sticky="ew")
tkgrid.columnconfigure(block, 0, weight=1)
tkgrid.rowconfigure(block, 0, weight=1)
tcl("autoscroll::autoscroll", xscr)
tcl("autoscroll::autoscroll", yscr)
tkgrid(block, sticky="news")
tkgrid.columnconfigure(top, 0, weight=1)
tkgrid.rowconfigure(top, 0, weight=1)
tkgrid.propagate(block, FALSE)
widget
}
.tl_set_items <- function(widget, value, i,j,...) {
if(!missing(i) || !missing(j)) {
tmp <- .get_items(widget)
tmp[i,j] <- value
value <- tmp
}
.tl_load_data(widget, value)
}
.tl_save_data <- function(widget, nm, where) {
assign(make.names(nm), .get_items(widget), where)
}
.get_dim <- function(widget) c(.tl_no_rows(widget), .tl_no_cols(widget))
.get_items <- function(widget, i, j, ...) {
opar <- options("warn"); on.exit(options(opar))
options(list(warn=-1))
d <- .get_dim(widget)
l <- lapply(seq_len(d[2]), function(j) {
.coerce_raw(head[[j]], .tl_get_column_raw(widget, j))
})
m <- structure(l,
.Names=..tl_get_column_names(widget),
row.names=seq_len(d[1]),
class="data.frame")
m[i,j, ...]
}
.GDf <- setRefClass("GDf",
fields=list(
widget="ANY",
block="ANY",
head="ANY"
),
methods=list(
initialize=function(parent, items, ...) {
if(!inherits(tclRequire("tablelist", warn = FALSE), "tclObj"))
stop(.gettext("Tk widget 'tablelist' could not be loaded"))
if(!inherits(tclRequire("autoscroll", warn = FALSE), "tclObj"))
stop(.gettext("Tk widget 'autoscroll' could not be loaded"))
init_widget(parent)
items <- as.data.frame(items)
.tl_configure_columns(widget, names(items))
set_items(value=items)
head <<- head(items, n=1)
},
init_widget=function(parent) {
block <<- ttkframe(parent)
xscr <- ttkscrollbar(block, orient="horizontal",
command=function(...) tkxview(widget,...))
yscr <- ttkscrollbar(block, orient="vertical",
command=function(...) tkyview(widget,...))
widget <<- tkwidget(block, "tablelist::tablelist",
resizablecolumns=1,
xscrollcommand=function(...) tkset(xscr,...),
yscrollcommand=function(...) tkset(yscr,...))
tcl(widget, "configure", selecttype="cell")
tkgrid(widget, row=0, column=0, sticky="news")
tkgrid(yscr, row=0, column=1, sticky="ns")
tkgrid(xscr, row=1, column=0, sticky="ew")
tkgrid.columnconfigure(block, 0, weight=1)
tkgrid.rowconfigure(block, 0, weight=1)
tcl("autoscroll::autoscroll", xscr)
tcl("autoscroll::autoscroll", yscr)
tkgrid.propagate(block, FALSE)
},
set_items=function(value, i,j,...) {
if(!missing(i) || !missing(j)) {
tmp <- .get_items()
tmp[i,j] <- value
value <- tmp
}
.tl_load_data(widget, value)
},
save_data=function(nm, where) {
"Save data set"
tcl(widget, "finishediting")
assign(make.names(nm), .get_items(), where)
},
.get_items=function(i, j, ...) {
opar <- options("warn"); on.exit(options(opar))
options(list(warn=-1))
d <- .get_dim()
l <- lapply(seq_len(d[2]), function(j) {
.coerce_raw(head[[j]], .tl_get_column_raw(widget, j))
})
m <- structure(l,
.Names=..tl_get_column_names(widget),
row.names=seq_len(d[1]),
class="data.frame")
m[i,j, ...]
},
get_names=function() ..tl_get_column_names(widget),
set_names=function(values, ...) ..tl_set_column_names(widget,values),
.get_dim=function() c(.tl_no_rows(widget), .tl_no_cols(widget)),
get_length=function() .get_dim()[2],
hide_row=function(i, hide=TRUE) .tl_hide_row(widget, i, hide),
hide_column=function(j, hide=TRUE) .tl_hide_column(widget, j, hide),
set_editable=function(j, value=TRUE) .tl_set_column_editable(widget, j, value),
focus_cell=function(i,j) tl_set_focus_on_cel(widget, i, j),
sort_bycolumn=function(j, decreasing=FALSE) {
.tl_sort_bycolumn(widget, j, decreasing)
}
))
editDictionary <- function(df) {
top <- tktoplevel()
tkwm.geometry(top, tkwm.geometry(CommanderWindow()))
df <- cbind(rownames(df), df)
names(df)[[1]] <- .gettext("Original.Word")
tl <- .GDf(top, df)
tkgrid(tl$block, sticky="news")
tkgrid.columnconfigure(top, 0, weight=1)
tkgrid.rowconfigure(top, 0, weight=1)
tl$set_editable(1, FALSE)
tl$set_editable(2, FALSE)
tl$set_editable(4, FALSE)
.env <- environment()
onImport <- function() {
file <- tclvalue(tkgetOpenFile(filetypes=sprintf('{"%s" {".csv" ".CSV"}}',
.gettext("Comma-separated values (CSV) file")),
parent=top))
if (file == "") {
tkfocus(CommanderWindow())
return()
}
excerpt <- readLines(file, 50)
n1 <- sum(sapply(gregexpr(",", excerpt), length))
n2 <- sum(sapply(gregexpr(";", excerpt), length))
if(n1 > n2)
df2 <- read.csv(file, stringsAsFactors=FALSE)
else
df2 <- read.csv2(file, stringsAsFactors=FALSE)
if(!.gettext("Original.Word") %in% names(df2) ||
!.gettext("Stemmed.Term") %in% names(df2)) {
.Message(sprintf(.gettext("Data set must contain columns named \"%s\" and \"%s\"."),
.gettext("Original.Word"), .gettext("Stemmed.Term")),
type="error", parent=top)
return()
}
tkgrab.release(top)
tkdestroy(top)
df2 <- merge(df[make.names(c(.gettext("Original.Word"), .gettext("Occurrences"), .gettext("Stopword")))],
df2[make.names(c(.gettext("Original.Word"), .gettext("Stemmed.Term")))],
by=.gettext("Original.Word"),
all.x=TRUE, all.y=FALSE)
df2[[.gettext("Stemmed.Term")]] <- as.character(df2[[.gettext("Stemmed.Term")]])
df2[is.na(df2[[.gettext("Stemmed.Term")]]), .gettext("Stemmed.Term")] <- ""
rownames(df2) <- df2[[.gettext("Original.Word")]]
df2 <- df2[make.names(c(.gettext("Stemmed.Term"), .gettext("Occurrences"), .gettext("Stopword")))]
df <<- editDictionary(df2)
}
onExport <- function() {
tl$save_data("df", .env)
rownames(.env$df) <- .env$df[[1]]
.env$df <- .env$df[-1]
file <- tclvalue(tkgetSaveFile(filetypes=sprintf('{"%s" {".csv" ".CSV"}}',
.gettext("Comma-separated values (CSV) file")),
defaultextension="csv",
initialfile="dictionary.csv",
parent=top))
if (file == "") {
tkfocus(CommanderWindow())
return()
}
.env$df <- cbind(rownames(.env$df), .env$df)
names(.env$df)[[1]] <- .gettext("Original.Word")
write.csv(.env$df, file=file, row.names=FALSE)
.Message(.gettext(sprintf("Stemming dictionary saved to \"%s\".", file)))
}
onOK <- function() {
tl$save_data("df", .env)
rownames(.env$df) <- .env$df[[1]]
.env$df <- .env$df[-1]
tkgrab.release(top)
tkdestroy(top)
}
buttonsFrame <- tkframe(top)
leftButtonsBox <- tkframe(buttonsFrame)
rightButtonsBox <- tkframe(buttonsFrame)
importButton <- buttonRcmdr(leftButtonsBox, text=.gettext("Import stemming dictionary"), command=onImport)
exportButton <- buttonRcmdr(leftButtonsBox, text=.gettext("Export stemming dictionary"), command=onExport)
OKbutton <- buttonRcmdr(rightButtonsBox, text=gettextRcmdr("OK"), width=12, command=onOK, default="active",
image="::image::okIcon", compound="left")
tkgrid(importButton, exportButton, sticky="ew", padx=6)
tkgrid(OKbutton, sticky="e", padx=6)
tkgrid.configure(leftButtonsBox, rightButtonsBox, pady=6, sticky="ew")
tkgrid.configure(buttonsFrame, sticky="ew")
tkgrid.columnconfigure(buttonsFrame, 0, weight=1)
tkgrid.columnconfigure(buttonsFrame, 1, weight=1)
tkgrid.configure(leftButtonsBox, sticky="w")
tkgrid.configure(rightButtonsBox, sticky="e")
tkgrab.set(top)
tkwait.window(top)
.env$df
} |
.plotbaselinerisk <- function(x,event=1,legend.loc="topleft",legend,add=FALSE,...)
{
if(missing(x)) stop("The argument x should be specified")
nbevt <- length(x$N)-9
if(length(event)!=1) stop("Please specify only one event")
if(!(event %in% c(1:nbevt))) stop("Argument event is not correct")
if(is.na(as.logical(add))) stop("add should be TRUE or FALSE")
if((x$conv==1|x$conv==2|x$conv==3)& (sum(is.na(x$predSurv)==0)))
{
ng <- x$ng
dots <- list(...)
if(length(list(...)$main))
{
title1 <- as.character(eval(dots$main))
dots <- dots[setdiff(names(dots),"main")]
}
else title1 <- "Class-specific baseline risk functions"
if(length(list(...)$col))
{
color <- as.vector(eval(dots$col))
dots <- dots[-which(names(dots)=="col")]
}
else color <- 1:ng
if(length(list(...)$type))
{
type1 <- eval(dots$type)
dots <- dots[-which(names(dots)=="type")]
}
else type1 <- "l"
if(length(list(...)$xlab))
{
xlab1 <- as.character(eval(dots$xlab))
dots <- dots[setdiff(names(dots),"xlab")]
}
else xlab1 <- "Time"
if(length(list(...)$ylab))
{
ylab1 <- as.character(eval(dots$ylab))
dots <- dots[setdiff(names(dots),"ylab")]
}
else ylab1 <- "Baseline risk function"
if(length(list(...)$lty))
{
lty1 <- eval(dots$lty)
dots <- dots[-which(names(dots)=="lty")]
}
else lty1 <- 1:ng
if(missing(legend)) legend <- paste("class",1:ng,sep="")
if(length(list(...)$box.lty))
{
box.lty1 <- as.integer(eval(dots$box.lty))
dots <- dots[setdiff(names(dots),"box.lty")]
}
else box.lty1 <- 0
if(length(list(...)$inset))
{
inset1 <- eval(dots$inset)
dots <- dots[setdiff(names(dots),"inset")]
}
else inset1 <- c(0.05,0.05)
names.plot <- c("adj","ann","asp","axes","bg","bty","cex","cex.axis","cex.lab","cex.main","cex.sub","col","col.axis",
"col.lab","col.main","col.sub","crt","err","family","fig","fin","font","font.axis","font.lab","font.main","font.sub",
"frame.plot","lab","las","lend","lheight","ljoin","lmitre","lty","lwd","mai","main","mar","mex","mgp","mkh","oma",
"omd","omi","pch","pin","plt","ps","pty","smo","srt","sub","tck","tcl","type","usr","xaxp","xaxs","xaxt","xlab",
"xlim","xpd","yaxp","yaxs","yaxt","ylab","ylbias","ylim")
dots.plot <- dots[intersect(names(dots),names.plot)]
if(!isTRUE(add))
{
do.call("matplot",c(dots.plot,list(x=x$predSurv[,1],y=x$predSurv[,(1+(event-1)*ng+1:ng)],xlab=xlab1,ylab=ylab1,main=title1,type=type1,col=color,lty=lty1)))
}
else
{
do.call("matlines",c(dots.plot,list(x=x$predSurv[,1],y=x$predSurv[,(1+(event-1)*ng+1:ng)],type=type1,col=color,lty=lty1)))
}
names.legend <- c("fill","border","lty","lwd","pch","angle","density","bg","box.lwd",
"box.lty","box.col","pt.bg","cex","pt.cex","pt.lwd","xjust","yjust","x.intersp","y.intersp","adj","text.width",
"text.col","text.font","merge","trace","plot","ncol","horiz","title","xpd","title.col","title.adj","seg.len")
dots.leg <- dots[intersect(names(dots),names.legend)]
if(!is.null(legend))
{
do.call("legend",c(dots.leg,list(x=legend.loc,legend=legend,col=color,box.lty=box.lty1,inset=inset1,lty=lty1)))
}
}
else
{
cat("Output can not be produced. The program stopped abnormally or there was an error in the computation of the estimated baseline risk functions and survival functions.\n")
}
} |
`dominant` <-
function (o) UseMethod("dominant") |
recordPlot <- function(load=NULL, attach=NULL)
{
if(dev.cur() == 1L)
stop("no current device to record from")
res <- .External2(C_getSnapshot)
attr(res, "pid") <- Sys.getpid()
attr(res, "Rversion") <- getRversion()
attr(res, "load") <- as.character(load)
attr(res, "attach") <- as.character(attach)
class(res) <- "recordedplot"
res
}
replayPlot <- function(x, reloadPkgs=FALSE)
{
if(!inherits(x, "recordedplot"))
stop(gettextf("argument is not of class %s", dQuote("recordedplot")),
domain = NA)
pid <- attr(x, "pid")
if (doRestore <- (is.null(pid) || pid != Sys.getpid())) {
x <- restoreRecordedPlot(x, reloadPkgs)
}
restore <- function(e) {
if(doRestore)
stop("invalid \"recordedplot\": ", conditionMessage(e))
.External2(C_playSnapshot,
restoreRecordedPlot(x, reloadPkgs))
}
r <- tryCatch(.External2(C_playSnapshot, x), error = restore)
invisible(r)
}
print.recordedplot <- function(x, ...)
{
replayPlot(x)
invisible(x)
}
restoreRecordedPlot <- function(plot, reloadPkgs) {
snapshotRversion <- attr(plot, "Rversion")
if (is.null(snapshotRversion)) {
warning("snapshot recorded in different R version (pre 3.3.0)")
} else if (snapshotRversion != getRversion()) {
warning(gettextf("snapshot recorded in different R version (%s)",
snapshotRversion))
}
if (!is.null(snapshotRversion) &&
snapshotRversion >= R_system_version("3.3.0")) {
for (i in seq_along(plot)[-1]) {
library(attr(plot[[i]], "pkgName"), character.only=TRUE)
}
if (reloadPkgs) {
load <- attr(plot, "load")
for (i in load) {
loadNamespace(i)
}
attach <- attr(plot, "attach")
for (i in attach) {
library(i, character.only=TRUE)
}
}
}
for (i in seq_along(plot[[1]])) {
symbol <- plot[[c(1L, i, 2L, 1L)]]
if (inherits(symbol, "NativeSymbolInfo")) {
name <- (if(!is.null(symbol$package))
symbol$package else symbol$dll)[["name"]]
pkgDLL <- getLoadedDLLs()[[name]]
nativeSymbol <- getNativeSymbolInfo(name = symbol$name,
PACKAGE = pkgDLL,
withRegistrationInfo = TRUE)
if (nativeSymbol$numParameters != symbol$numParameters) {
stop("snapshot contains invalid graphics call")
}
plot[[c(1L, i, 2L, 1L)]] <- nativeSymbol
}
}
plot
} |
model <-
function(...)
Model(...) |
library(VLMC)
set.seed(21001)
c0 <- proc.time()
f1 <- c(1,0,0,0)
f2 <- rep(1:0,2)
(dt2 <- rep(c(f1,f1,f2,f1,f2,f2,f1),2))
dt3 <- c(unlist(sapply(1:5, function(k) c(rep(0,k),1))),
rep(1,6))
(vlmc.dt2c15 <- vlmc(dt2, cutoff = 1.5))
draw(vlmc.dt2c15)
noquote(cbind(fit = predict(vlmc.dt2c15, type = "response"),
probs = pr <- predict(vlmc.dt2c15),
lev = predict(vlmc.dt2c15, type = "depth"),
ID = (pid <- predict(vlmc.dt2c15, type = "id")),
flags = {ff <- attr(pr,"flags"); ff[ff == "0"] <- ""; ff},
context= id2ctxt(pid, m=2, alpha=TRUE)
))
(vlmc.dt2c.1 <- vlmc(dt2, cutoff = .1))
(vlmc.dt2c0 <- vlmc(dt2, cutoff = 0, thresh = 1))
draw(vlmc.dt2c.1)
pp.1 <- predict(vlmc.dt2c.1)
p.1 <- predict(vlmc.dt2c.1, type="response")
pid.1 <- predict(vlmc.dt2c.1, type="id.node")
(pl.1 <- predict(vlmc.dt2c.1, type="depth"))
noquote(cbind(pp.1,fit=p.1, "="=c("<>","")[1+(dt2==p.1)], lev= pl.1,
id= pid.1, flags = attr(p.1,"flags"),
context = id2ctxt(pid.1, m=2, alpha=TRUE)
))
predict(vlmc.dt2c.1, type = "ALL")
draw(vlmc.dt2c0)
draw(vlmc.dt2c0, cumulative = FALSE)
(p0 <- predict(vlmc.dt2c0, type="response"))
all(dt2[-1] == abs(p0[-1]))
pp <- predict(vlmc.dt2c0)
!any(is.na(match(pp[-1,],0:1)))
p.id <- predict(vlmc.dt2c0, type="id.node")
p.lev <- predict(vlmc.dt2c0, type="depth")
noquote(cbind(pp, flags = attr(p.id,"flags"),
ID= p.id, lev = p.lev, ctxt = id2ctxt(p.id,m=2, a=TRUE)))
predict(vlmc.dt2c0, type="ALL")
p.dt2c0dt3 <- predict(vlmc.dt2c0, dt3)
which(is.na(unname(p.dt2c0dt3[-1,1])))
predict(vlmc.dt2c0, dt3, type = "ALL")
prm <- cbind(fit = predict(vlmc.dt2c0, dt3, type = "response"),
probs = (pr <- predict(vlmc.dt2c0, dt3)),
lev = predict(vlmc.dt2c0, dt3, type = "depth"),
ID = (pid <- predict(vlmc.dt2c0, dt3, type = "id")),
flags = attr(pr,"flags"))
noquote(cbind(prm, context = id2ctxt(pid, m=2, alpha=TRUE)))
mod <- vlmc(rep(1, 99))
pr <- predict(mod, c(1, 0, 1))
stopifnot(pr[-1] == 1)
cat("Time elapsed:", format(proc.time() - c0),"\n") |
dmcSim <- function(amp = 20,
tau = 30,
drc = 0.5,
bnds = 75,
resDist = 1,
resMean = 300,
resSD = 30,
aaShape = 2,
spShape = 3,
sigm = 4,
nTrl = 100000,
tmax = 1000,
spDist = 0,
spLim = c(-75, 75),
spBias = 0,
drDist = 0,
drShape = 3,
drLim = c(0.1, 0.7),
rtMax = 5000,
fullData = FALSE,
nTrlData = 5,
nDelta = 9,
pDelta = vector(),
tDelta = 1,
nCAF = 5,
printInputArgs = TRUE,
printResults = TRUE,
setSeed = FALSE,
seedValue = 1) {
if (length(pDelta) != 0) {
nDelta <- length(pDelta)
if (tDelta == 2) {
nDelta <- nDelta + 1
}
}
dmc <- dmcCppR(
r_in = list(amp = amp, tau = tau, drc = drc, bnds = bnds, resDist = resDist, resMean = resMean,
resSD = resSD, aaShape = aaShape, spShape = spShape, spBias = spBias, sigm = sigm,
nTrl = nTrl, tmax = tmax, rtMax = rtMax, fullData = fullData, nTrlData = nTrlData,
nDelta = nDelta, pDelta = pDelta, tDelta = tDelta, nCAF = nCAF,
spDist = spDist, spLimLow = spLim[1], spLimHigh = spLim[2],
drDist = drDist, drShape = drShape, drLimLow = drLim[1], drLimHigh = drLim[2],
printInputArgs = printInputArgs, printResults = printResults, setSeed = setSeed, seedValue = seedValue)
)
summary <- dmc$summary
dmc$summary <- NULL
dmc$summary <- as.data.frame(rbind(summary$comp, summary$incomp))
names(dmc$summary) <- c("rtCor", "sdRtCor", "perErr", "rtErr", "sdRtErr", "perSlow")
dmc$summary <- cbind(Comp = c("comp", "incomp"), dmc$summary)
dmc$caf <- as.data.frame(cbind(Bin = 1:nCAF,
accPerComp = summary$caf_comp,
accPerIncomp = summary$caf_incomp,
meanEffect = ((100 - summary$caf_incomp) - (100 - summary$caf_comp)) * 100))
dmc$delta <- as.data.frame(cbind(Bin = 1:nDelta,
meanComp = summary$delta_correct_comp,
meanIncomp = summary$delta_correct_incomp,
meanBin = summary$delta_correct_mean,
meanEffect = summary$delta_correct_delta))
dmc$delta_errs <- as.data.frame(cbind(Bin = 1:nDelta,
meanComp = summary$delta_errors_comp,
meanIncomp = summary$delta_errors_incomp,
meanBin = summary$delta_errors_mean,
meanEffect = summary$delta_errors_delta))
dmc$prms <- data.frame(
amp = amp, tau = tau, drc = drc, bnds = bnds, resMean = resMean, resSD = resSD,
aaShape = aaShape, spShape = spShape, spBias = spBias, sigm = sigm,
nTrl = nTrl, nTrlData = nTrlData, tmax = tmax, resDist = resDist,
spDist = spDist, spLim1 = spLim[1], spLim2 = spLim[2],
drDist = drDist, drShape = drShape, drLim1 = drLim[1], drLim2 = drLim[2]
)
class(dmc) <- "dmcsim"
return(dmc)
}
dmcSims <- function(params, printInputArgs = FALSE, printResults = FALSE) {
params <- expand.grid(params)
if (ncol(params) > 1) {
uparams <- params[, lengths(lapply(params, unique)) != 1, drop = FALSE]
} else {
uparams <- params
}
params <- setNames(split(params, seq(nrow(params))), rownames(params))
dmc <- vector("list", length(params))
for (i in seq_along(params)) {
dmcInputs <- params[[i]]
message("DMC ", i, " of ", length(params), ": ", paste0(names(dmcInputs), "=", dmcInputs, sep = "", collapse = ", "))
dmcInputs$printInputArgs <- printInputArgs
dmcInputs$printResults <- printResults
dmc[[i]] <- do.call(dmcSim, dmcInputs)
dmc[[i]]$params <- uparams
}
class(dmc) <- "dmclist"
return(dmc)
}
dmcSimApp <- function() {
shiny::runApp(system.file('dmcSimApp', package = "DMCfun"))
} |
recTensor <- function(S = NULL, A = NULL, idx = 1:3, reverse = FALSE){
if (is(S)[1] == "Tensor") {
X_bar <- S
if(length(dim(S)) > 3){
idx <- seq_along(A)
}
}
else if ("numeric" %in% is(S) && length(S) == 1) {
X_bar <- rand_tensor(rep(1, length=length(idx)))
X_bar@data[] <- S
}
else if ("numeric" %in% is(S) && length(S) != 1) {
X_bar <- rand_tensor(sapply(A, nrow))
X_bar@data[] <- 0
for (n in seq_along(S)) {
cmd = paste0("X_bar@data[",
paste(rep("n", length=length(A)), collapse=","),
"] <- S[n]")
eval(parse(text=cmd))
}
}
if (!reverse) {
for (n in idx) {
X_bar <- ttm(X_bar, t(A[[n]]), m = n)
}
}
else {
for (n in idx) {
X_bar <- ttm(X_bar, A[[n]], m = n)
}
}
return(X_bar)
} |
library("mclust")
library("cluster")
p <- 4
K <- 6
n <- 200
n.files <- 100
omega <- c(0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.01, 0.005, 0.001)
set.seed(1234)
AR.Mclust <- rep(NA, n.files)
AR.Kmeans <- rep(NA, n.files)
AR.PAM <- rep(NA, n.files)
AR.Ward <- rep(NA, n.files)
P.Mclust <- rep(NA, n.files)
P.Kmeans <- rep(NA, n.files)
P.PAM <- rep(NA, n.files)
P.Ward <- rep(NA, n.files)
VI.Mclust <- rep(NA, n.files)
VI.Kmeans <- rep(NA, n.files)
VI.PAM <- rep(NA, n.files)
VI.Ward <- rep(NA, n.files)
for (bo in omega){
for (i in 1:n.files){
Q <- MixSim(BarOmega = bo, K = K, p = p)
A <- simdataset(n = n, Pi = Q$Pi, Mu = Q$Mu, S = Q$S)
id.Mclust <- try(Mclust(A$X, G = K, model = "VVV")$class)
if (inherits(id.Mclust, what = "try-error") || (is.null(id.Mclust)))
id.Mclust <- rep(1, n)
id.Kmeans <- kmeans(A$X, K, iter.max = 1000, nstart = 10)$cluster
id.PAM <- pam(A$X, K)$clustering
d <- dist(A$X, method = "euclidean")
id.Ward <- cutree(hclust(d = d, method = "ward"), k = K)
AR.Mclust[i] <- RandIndex(A$id, id.Mclust)$AR
AR.Kmeans[i] <- RandIndex(A$id, id.Kmeans)$AR
AR.PAM[i] <- RandIndex(A$id, id.PAM)$AR
AR.Ward[i] <- RandIndex(A$id, id.Ward)$AR
P.Mclust[i] <- ClassProp(A$id, id.Mclust)
P.Kmeans[i] <- ClassProp(A$id, id.Kmeans)
P.PAM[i] <- ClassProp(A$id, id.PAM)
P.Ward[i] <- ClassProp(A$id, id.Ward)
VI.Mclust[i] <- VarInf(A$id, id.Mclust)
VI.Kmeans[i] <- VarInf(A$id, id.Kmeans)
VI.PAM[i] <- VarInf(A$id, id.PAM)
VI.Ward[i] <- VarInf(A$id, id.Ward)
}
cat("Omega =", bo, "\n\n")
cat("Mclust: AR mean =", mean(AR.Mclust), " sd =", sd(AR.Mclust), "\n")
cat("Mclust: P mean =", mean(P.Mclust), " sd =", sd(P.Mclust), "\n")
cat("Mclust: VI mean =", mean(VI.Mclust), " sd =", sd(VI.Mclust), "\n\n")
cat("Kmeans: AR mean =", mean(AR.Kmeans), " sd =", sd(AR.Kmeans), "\n")
cat("Kmeans: P mean =", mean(P.Kmeans), " sd =", sd(P.Kmeans), "\n")
cat("Kmeans: VI mean =", mean(VI.Kmeans), " sd =", sd(VI.Kmeans), "\n\n")
cat("PAM: AR mean =", mean(AR.PAM), " sd =", sd(AR.PAM), "\n")
cat("PAM: P mean =", mean(P.PAM), " sd =", sd(P.PAM), "\n")
cat("PAM: VI mean =", mean(VI.PAM), " sd =", sd(VI.PAM), "\n\n")
cat("Ward: AR mean =", mean(AR.Ward), " sd =", sd(AR.Ward), "\n")
cat("Ward: P mean =", mean(P.Ward), " sd =", sd(P.Ward), "\n")
cat("Ward: VI mean =", mean(VI.Ward), " sd =", sd(VI.Ward), "\n\n")
} |
all_named <- function(x) {
if (length(x) == 0) return(TRUE)
!is.null(names(x)) && all(names(x) != "")
}
"%||%" <- function(x, y) if (is.null(x)) y else x
compact <- function(x) Filter(Negate(is.null), x)
to_env <- function(x, quiet = FALSE) {
if (is.environment(x)) {
x
} else if (is.list(x)) {
list2env(x)
} else if (is.function(x)) {
environment(x)
} else if (length(x) == 1 && is.character(x)) {
if (!quiet) message("Using environment ", x)
as.environment(x)
} else if (length(x) == 1 && is.numeric(x) && x > 0) {
if (!quiet) message("Using environment ", search()[x])
as.environment(x)
} else {
stop("Input can not be coerced to an environment", call. = FALSE)
}
} |
test_that("check_if_date returns appropriate values", {
date_plot <- ggplot(ggplot2::economics, aes(x = date, y = unemploy)) +
geom_line()
date_plot_built <- ggplot2::ggplot_build(date_plot)
date_plot_checked <- check_if_date(date_plot_built)
expect_true(date_plot_checked$x_date)
expect_false(date_plot_checked$y_date)
expect_length(date_plot_checked, 2)
expect_is(date_plot_checked, "list")
non_date_plot <- ggplot(mtcars, aes(x = wt, y = mpg)) +
geom_point()
non_date_plot_built <- ggplot2::ggplot_build(non_date_plot)
non_date_plot_checked <- check_if_date(non_date_plot_built)
expect_false(non_date_plot_checked$x_date)
expect_false(non_date_plot_checked$y_date)
expect_length(date_plot_checked, 2)
expect_is(date_plot_checked, "list")
})
test_that("num_to_date() returns expected values", {
expect_identical(num_to_date(12025), as.Date("2002-12-04"))
expect_null(num_to_date(NULL))
expect_error(num_to_date("12025"))
})
test_that("correct_scales() corrects scales", {
p <- ggplot(ggplot2::economics, aes(x = date, y = unemploy)) +
geom_line() +
coord_flip()
built_plot <- ggplot2::ggplot_build(p)
plot_click <- list(
x = 9492.364,
y = 11950.13,
coords_css = list(
x = 487,
y = 108
)
)
corrected_scales <- correct_scales(
plot_click,
check_if_date(built_plot),
ggplot2::summarise_coord(built_plot)$flip
)
expect_null(corrected_scales$xmin)
expect_identical(corrected_scales$x, as.Date(plot_click$y, origin = "1970-01-01"))
expect_identical(corrected_scales$y, plot_click$x)
}) |
tau2.m.solver <- function(w, Qm){
f <- function(tau2){
out <- sum(sqrt(1 + w*tau2)) - Qm*sqrt(3.14159/2)
return(out)
}
f <- Vectorize(f)
n <- length(w)
tau2.upp <- sum(1/w)*(Qm^2/n*2/3.14159 - 1)
tau2.upp <- max(c(tau2.upp, 0.01))
f.low <- f(0)
f.upp <- f(tau2.upp)
if(f.low*f.upp > 0){
tau2.m <- 0
}else{
tau2.m <- uniroot(f, interval = c(0, tau2.upp))
tau2.m <- tau2.m$root
}
return(tau2.m)
} |
QCcorrectionMultiPoly3<-function(LCdata) {
pos=1;
envir=as.environment(pos);
LCdata<-LCdata
LCdataframe<-as.data.frame(LCdata)
LCdataQC<-subset(LCdata,LCdata$QC==1)
variables<-c("QC","Day")
nDAY<-ddply(LCdataframe,variables,summarise,nSamples=sum(!is.na(LCdataframe$QC)))
nDAYQC<-nDAY[nDAY$QC==1,]
nDAYQC<-na.omit(nDAYQC)
Day1<-list(nDAYQC$Day)
Day2<-as.data.frame(Day1)
Day<-dim(Day2)[1]
a=1;
while (a<(Day+1)){
assign(paste0('Day_',Day2[a,]),subset(LCdata,(LCdata$Day==(Day2[a,]))),envir=envir);
assign(paste0('QCsDay_',Day2[a,]),subset(LCdataQC,(LCdataQC$Day==(Day2[a,]))),envir=envir);
a<-a+1
}
matrix.names<-paste0('Day_',Day2[1,]:Day2[Day,])
list<-lapply(matrix.names,get, envir=envir)
matrixQC.names<-paste0('QCsDay_',Day2[1,]:Day2[Day,])
listQC<-lapply(matrixQC.names,get)
PreCompoundsList<-colnames(LCdata)
InfoColumns<-c("Sample","Order","QC","Day")
CompoundsList<-setdiff(PreCompoundsList,InfoColumns)
n=1;
while(n<(Day+1)){
bb<-as.data.frame(listQC[n],envir=envir)
cc<-as.data.frame(list[n],envir=envir)
m=1;
while(m<(length(CompoundsList)+1)){
lm<-lm(bb[,CompoundsList[m]]~poly(bb[,"Order"],3,raw=TRUE));
cc[,paste0(CompoundsList[m],'QC')]<-QCregression(coefficients(lm)[1],coefficients(lm)[2],coefficients(lm)[3],coefficients(lm)[4],cc[,"Order"]);
m<-m+1
}
if(exists("PreNormLCdata")){PreNormLCdata<-rbind(PreNormLCdata,cc)
} else {PreNormLCdata<-cc}
n<-n+1
}
p=1;
while(p<(length(CompoundsList)+1)){
PreNormLCdata[,paste0(CompoundsList[p],'_Norm')]<-PreNormLCdata[,(CompoundsList[p])]/PreNormLCdata[,paste0(CompoundsList[p],'QC')]
p<-p+1
}
NormLCdata1<-PreNormLCdata[,grepl("Norm",names(PreNormLCdata))]
NormLCdata2<-PreNormLCdata[,InfoColumns]
NormLCdata<-cbind(NormLCdata2,NormLCdata1)
return(NormLCdata)
} |
context('Test convertPrevalence.')
test_that('convertPrevalence works for all reasonable inputs', {
pr <- seq(0, 1, 0.2)
min_in <- c(1, 5, 10)
max_in <- c(6, 15, 20)
min_out <- c(2, 6, 9)
max_out <- c(5, 13, 16)
all_combs <- expand.grid(pr, min_in, max_in, min_out, max_out)
names(all_combs) <- c('pr', 'min_in', 'max_in', 'min_out', 'max_out')
all_combs <- all_combs[all_combs$min_in < all_combs$max_in &
all_combs$min_out < all_combs$max_out, ]
pr_standardised <- convertPrevalence(all_combs$pr,
all_combs$min_in,
all_combs$max_in,
all_combs$min_out,
all_combs$max_out)
expect_true(all(pr_standardised <= 1))
expect_true(all(pr_standardised >= 0))
})
test_that('convertPrevalence works with gething parameters', {
pr <- seq(0, 1, 0.2)
min_in <- c(1, 5, 10)
max_in <- c(6, 15, 20)
min_out <- c(2, 6, 9)
max_out <- c(5, 13, 16)
all_combs <- expand.grid(pr, min_in, max_in, min_out, max_out)
names(all_combs) <- c('pr', 'min_in', 'max_in', 'min_out', 'max_out')
all_combs <- all_combs[all_combs$min_in < all_combs$max_in &
all_combs$min_out < all_combs$max_out, ]
pr_standardised <- convertPrevalence(all_combs$pr,
all_combs$min_in,
all_combs$max_in,
all_combs$min_out,
all_combs$max_out,
parameters = 'Pv_Gething2012')
expect_true(all(pr_standardised <= 1))
expect_true(all(pr_standardised >= 0))
})
test_that('NAs get handled right', {
set.seed(1)
pr <- runif(20, 0.1, 0.15)
min_in <- sample(1:5, 20, replace = TRUE)
max_in <- rep(8, 20)
min_out <- rep(2, 20)
max_out <- rep(10, 20)
pr[2] <- NA
min_in[3] <- NA
max_in[4] <- NA
pr_standardised <- convertPrevalence(pr, min_in, max_in,
min_out, max_out)
expect_true(all(is.na(pr_standardised[2:4])))
expect_true(all(!is.na(pr_standardised[c(1, 5:20)])))
expect_error(convertPrevalence(0.1, 2, 5, NA, 10))
expect_error(convertPrevalence(0.1, 2, 5, 2, NA))
}) |
basepredict.polr = function(model, values, sim.count = 1000, conf.int = 0.95, sigma=NULL, set.seed=NULL,
type = c("any", "simulation", "bootstrap"), summary = TRUE){
if(sum("polr" %in% class(model)) == 0){
stop("model has to be of type polr()")
}
if(length(values) != length(coef(model))){
stop("the length of values is not identical to the number of coefficient of the model")
}
if(!is.numeric(sim.count) | round(sim.count) != sim.count){
stop("sim.count has to be whole number")
}
if(!is.numeric(conf.int)){
stop("conf.int has to be numeric")
}
if(!is.null(set.seed) & !is.numeric(set.seed)){
stop("set.seed must be numeric")
}
type = match.arg(type)
if(type == "any"){
if(nrow(model.frame(model)) < 500){
type = "bootstrap"
message("Type not specified: Using bootstrap as n < 500")
}else{
type = "simulation"
message("Type not specified: Using simulation as n >= 500")
}
}
l = length(values)
if(is.null(sigma)){
sigma = stats::vcov(model)
}
if(nrow(sigma) != length(model$coefficients) + length(model$zeta)){
warning("sigma and coef/zeta do not match, ignoring the specified sigma")
sigma = stats::vcov(model)
}
level.count = length(model$lev)
kappa.count = level.count - 1
x = values
estim = c(model$coefficients, model$zeta)
kappa = list()
for(i in 1:kappa.count){
kappa[[length(kappa)+1]] = matrix(NA, nrow=sim.count, ncol=1, byrow=TRUE)
}
pred = matrix(NA,nrow = sim.count, ncol = level.count,byrow=TRUE)
if(!is.null(set.seed)){
set.seed(set.seed)
}
if(type == "simulation"){
estim_draw = MASS::mvrnorm(sim.count, estim, sigma)
}else{
boot = function(x, model){
data = model.frame(model)
sample_data = data[sample(seq_len(nrow(data)), replace = TRUE), ]
model_updated = update(model, data = sample_data)
c(model_updated$coefficients, model_updated$zeta)
}
estim_draw = do.call('rbind', lapply(seq_len(sim.count), boot, model))
}
beta_draw = estim_draw[,1:l]
for(i in 1:kappa.count){
kappa[[i]][,] = estim_draw[,l+i]
}
if(is.null(dim(beta_draw))){
beta_draw = as.matrix(beta_draw)
}
for(j in 1:level.count){
if(j == 1){
pred[,j] = exp(kappa[[j]] - beta_draw %*% x) / (1 + exp(kappa[[j]] - beta_draw %*% x))
}else if(j == level.count){
pred[,j] = 1 / (1 + exp(kappa[[j-1]] - beta_draw %*% x))
}else{
pred[,j] = exp(kappa[[j]] - beta_draw %*% x) / (1 + exp(kappa[[j]] - beta_draw %*% x)) -
exp(kappa[[j-1]] - beta_draw %*% x) / (1 + exp(kappa[[j-1]] - beta_draw %*% x))
}
}
if(!summary){
return(pred)
}
confint_lower = (1 - conf.int) / 2
result = matrix(NA, nrow = level.count, ncol=3)
for(i in 1:level.count){
result[i,] = c(mean(pred[,i]), quantile(pred[,i], prob = c(confint_lower, 1 - confint_lower)))
}
colnames(result) = c("mean",paste0(100 * confint_lower,"%"),paste0(100 * (1 - confint_lower),"%"))
rownames(result) = model$lpred
return(result)
} |
test_that("Test my ggplot.lmfit function: ",
{
expect_true(is.ggplot(ggplot.lmfit(1:10, 2:11)))
}) |
fetch_chebi <- function(relation = FALSE) {
if (!requireNamespace("httr", quietly = TRUE)) {
stop("Package \"httr\" is needed for this function to work. Please install it.", call. = FALSE)
}
if (relation == TRUE) {
chebi_relation_result <- httr::GET("ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/relation.tsv",
config = httr::config(connecttimeout = 60)
)
chebi_relation <- suppressMessages(httr::content(chebi_relation_result,
type = "text/tab-separated-values",
progress = FALSE,
show_col_types = FALSE
))
chebi_relation_clean <- chebi_relation %>%
dplyr::filter(.data$STATUS == "C") %>%
dplyr::select(-c(.data$ID, .data$STATUS)) %>%
dplyr::rename(incoming = .data$FINAL_ID) %>%
dplyr::rename(ID = .data$INIT_ID) %>%
janitor::clean_names()
return(chebi_relation_clean)
}
chebi_chemical_data_result <- httr::GET("ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/chemical_data.tsv",
config = httr::config(connecttimeout = 60)
)
chebi_chemical_data <- suppressMessages(httr::content(chebi_chemical_data_result,
type = "text/tab-separated-values",
progress = FALSE,
show_col_types = FALSE
))
chebi_compounds_download <- readLines(gzcon(url("ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/compounds.tsv.gz")))
chebi_compounds <- utils::read.delim(textConnection(chebi_compounds_download),
quote = "", stringsAsFactors = FALSE
)
chebi_names_download <- readLines(gzcon(url("ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/names.tsv.gz")))
chebi_names <- utils::read.delim(textConnection(chebi_names_download),
quote = "", stringsAsFactors = FALSE
)
chebi_accession_result <- httr::GET("ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/database_accession.tsv",
config = httr::config(connecttimeout = 60)
)
chebi_accession <- suppressMessages(httr::content(chebi_accession_result,
type = "text/tab-separated-values",
progress = FALSE,
show_col_types = FALSE
))
chebi_compounds_clean <- chebi_compounds %>%
dplyr::filter(.data$STAR == 3) %>%
dplyr::select(-c(
.data$SOURCE,
.data$NAME,
.data$STATUS,
.data$MODIFIED_ON,
.data$CREATED_BY
)) %>%
dplyr::na_if("null") %>%
dplyr::mutate(PARENT_ID = as.numeric(.data$PARENT_ID))
chebi_accession_clean <- chebi_accession %>%
dplyr::distinct(.data$COMPOUND_ID, .data$TYPE, .data$ACCESSION_NUMBER) %>%
dplyr::rename(ID = .data$COMPOUND_ID) %>%
dplyr::rename(TYPE_ACCESSION = .data$TYPE)
chebi_chemical_data_clean <- chebi_chemical_data %>%
dplyr::distinct(.data$COMPOUND_ID, .data$TYPE, .data$CHEMICAL_DATA) %>%
dplyr::rename(ID = .data$COMPOUND_ID) %>%
tidyr::pivot_wider(
names_from = .data$TYPE,
values_from = .data$CHEMICAL_DATA,
values_fn = list
) %>%
tidyr::unnest(cols = c(
.data$FORMULA,
.data$MASS,
.data$CHARGE,
.data$`MONOISOTOPIC MASS`
))
chebi_compounds_names_clean <- chebi_compounds %>%
dplyr::filter(.data$STAR == 3) %>%
dplyr::distinct(.data$ID, .data$NAME) %>%
dplyr::na_if("null") %>%
dplyr::filter(!is.na(.data$NAME)) %>%
dplyr::mutate(TYPE_NAME = "STANDARD") %>%
dplyr::select(.data$ID, .data$TYPE_NAME, .data$NAME)
chebi_names_clean <- chebi_names %>%
dplyr::distinct(.data$COMPOUND_ID, .data$NAME, .data$TYPE) %>%
dplyr::rename(ID = .data$COMPOUND_ID, TYPE_NAME = .data$TYPE) %>%
dplyr::bind_rows(chebi_compounds_names_clean)
chebi <- chebi_compounds_clean %>%
dplyr::left_join(chebi_names_clean, by = "ID") %>%
dplyr::left_join(chebi_accession_clean, by = "ID") %>%
dplyr::left_join(chebi_chemical_data_clean, by = "ID")
parent_ids <- chebi %>%
dplyr::filter(!is.na(.data$PARENT_ID)) %>%
dplyr::pull(var = .data$PARENT_ID) %>%
unique()
parent_info <- chebi %>%
dplyr::filter(.data$ID %in% parent_ids) %>%
dplyr::select(c(
.data$ID,
.data$NAME,
.data$TYPE_NAME,
.data$DEFINITION,
.data$TYPE_ACCESSION,
.data$ACCESSION_NUMBER,
.data$FORMULA,
.data$MASS,
.data$CHARGE,
.data$`MONOISOTOPIC MASS`
))
parent_complete <- chebi %>%
dplyr::filter(!is.na(.data$PARENT_ID)) %>%
dplyr::select(-c(
.data$NAME,
.data$TYPE_NAME,
.data$DEFINITION,
.data$TYPE_ACCESSION,
.data$ACCESSION_NUMBER,
.data$FORMULA,
.data$MASS,
.data$CHARGE,
.data$`MONOISOTOPIC MASS`
)) %>%
dplyr::left_join(parent_info, by = c("PARENT_ID" = "ID"))
chebi <- chebi %>%
dplyr::filter(is.na(.data$PARENT_ID)) %>%
dplyr::bind_rows(parent_complete) %>%
dplyr::arrange(.data$ID) %>%
janitor::clean_names()
chebi
} |
VectorDistribution <- R6Class("VectorDistribution",
inherit = DistributionWrapper,
lock_objects = FALSE,
lock_class = FALSE,
public = list(
initialize = function(distlist = NULL, distribution = NULL, params = NULL,
shared_params = NULL, name = NULL, short_name = NULL,
decorators = NULL, vecdist = NULL, ids = NULL, ...) {
if (!is.null(ids)) {
ids <- as.character(assert_alphanum(ids))
}
if (!is.null(decorators)) {
suppressMessages(decorate(self, decorators))
}
if (!is.null(vecdist)) {
if (checkmate::testList(vecdist)) {
dist <- as.character(unlist(vecdist[[1]]$modelTable$Distribution[[1]]))
if (is.null(ids)) {
ids <- paste0(get(dist)$public_fields$short_name,
seq.int(sum(sapply(vecdist, function(.x) nrow(.x$modelTable)))))
} else {
checkmate::assertCharacter(ids, unique = TRUE)
}
private$.modelTable <- as.data.table(data.frame(Distribution = dist, shortname = ids))
private$.distlist <- FALSE
private$.univariate <- vecdist[[1]]$.__enclos_env__$private$.univariate
private$.pdf <- vecdist[[1]]$.__enclos_env__$private$.pdf
private$.cdf <- vecdist[[1]]$.__enclos_env__$private$.cdf
private$.quantile <- vecdist[[1]]$.__enclos_env__$private$.quantile
private$.rand <- vecdist[[1]]$.__enclos_env__$private$.rand
params <- unlist(lapply(vecdist, function(.x) {
vals <- .x$parameters()$values
pf <- unique(get_prefix(names(vals)))
lapply(pf, function(i) {
v <- vals[grepl(i, names(vals))]
names(v) <- unprefix(names(v))
v
})
}), FALSE)
parameters <- do.call(get(paste0("getParameterSet.", dist)),
c(params[[1]], shared_params))
parameters$rep(length(params), prefix = ids)
names(params) <- ids
params <- unlist(params, recursive = FALSE)
names(params) <- gsub(".", "__", names(params), fixed = TRUE)
parameters$values <- params
super$initialize(
distlist = if (vecdist[[1]]$distlist)
unlist(lapply(vecdist, function(.x) .x$wrappedModels()), recursive = FALSE) else NULL,
name = paste0("Vector: ", length(ids), " ", dist, "s"),
short_name = paste0("Vec", length(ids), get(dist)$public_fields$short_name),
description = paste0("Vector of ", length(ids), " ", dist, "s"),
support = do.call(setproduct, lapply(vecdist, function(.x) .x$properties$support)),
type = do.call(setproduct, lapply(vecdist, function(.x) .x$traits$type)),
valueSupport = vecdist[[1]]$traits$valueSupport,
variateForm = "multivariate",
parameters = parameters
)
invisible(self)
} else {
private$.modelTable <- vecdist$modelTable
private$.distlist <- vecdist$distlist
private$.univariate <- vecdist$.__enclos_env__$private$.univariate
private$.pdf <- vecdist$.__enclos_env__$private$.pdf
private$.cdf <- vecdist$.__enclos_env__$private$.cdf
private$.quantile <- vecdist$.__enclos_env__$private$.quantile
private$.rand <- vecdist$.__enclos_env__$private$.rand
parameters <- vecdist$parameters()
if (checkmate::testClass(vecdist, "MixtureDistribution")) {
parameters$remove(prefix = "mix")
}
super$initialize(
distlist = distlist,
name = vecdist$name,
short_name = vecdist$short_name,
description = vecdist$description,
support = vecdist$properties$support,
type = vecdist$traits$type,
valueSupport = vecdist$traits$valueSupport,
variateForm = "multivariate",
parameters = parameters
)
if (is.null(name)) self$name <- gsub("Product|Mixture", "Vector", self$name)
if (is.null(short_name)) self$short_name <- gsub("Prod|Mix", "Vec", self$short_name)
self$description <- gsub("Product|Mixture", "Vector", self$description)
invisible(self)
}
} else {
if (is.null(distlist)) {
if (is.null(distribution) | (is.null(params))) {
stop("Either distlist or distribution and params must be provided.")
}
distribution <- match.arg(distribution, c(listDistributions(simplify = TRUE),
listKernels(simplify = TRUE)))
if (grepl("Empirical", distribution)) {
stop("Empirical and EmpiricalMV not currently available for `distribution/params`
constructor, use `distlist` instead.")
}
if (!checkmate::testList(params)) {
params <- apply(params, 1, as.list)
}
if (distribution == "Geometric" & "trials" %in% names(unlist(params))) {
stop("For Geometric distributions either `trials` must be passed to `shared_params`
or `distlist` should be used.")
}
if (distribution == "NegativeBinomial" & "form" %in% names(unlist(params))) {
stop("For NegativeBinomial distributions either `form` must be passed to
`shared_params` or `distlist` should be used.")
}
if (is.null(shared_params)) {
shared_params <- list()
} else {
if (!checkmate::testList(shared_params)) {
shared_params <- as.list(shared_params)
}
}
private$.sharedparams <- shared_params
pdist <- get(distribution)
if (is.null(ids)) {
shortname <- pdist$public_fields$short_name
shortnames <- NULL
} else {
shortname <- shortnames <- ids
}
if (!is.null(names(params)) && all(grepl("__", names(params)))) {
pf <- unique(get_prefix(names(params)))
shortnames <- pf
} else {
if (is.null(shortnames)) {
shortnames <- sprintf("%s%d", shortname, seq(length(params)))
}
if (length(drop_null(params))) {
names(params) <- shortnames
params <- unlist(params, recursive = FALSE)
names(params) <- gsub(".", "__", names(params), fixed = TRUE)
}
}
lng <- length(shortnames)
parameters <- tryCatch(get(paste0("getParameterSet.", distribution)),
error = function(e) NULL)
if (!is.null(parameters)) {
parameters <- do.call(parameters, c(params[[1]], shared_params))
parameters$rep(lng, prefix = shortname)
parameters$values <- params
}
private$.modelTable <- as.data.table(
data.frame(
Distribution = distribution,
shortname = shortnames
)
)
private$.univariate <- pdist$private_fields$.traits$variateForm == "univariate"
if (!length(private$.univariate)) {
private$.univariate <-
pdist$get_inherit()$private_fields$.trait$variateForm == "univariate"
}
valueSupport <- pdist$private_fields$.traits$valueSupport
if (!length(valueSupport)) {
valueSupport <- pdist$get_inherit()$private_fields$.trait$valueSupport
}
pdist_pri <- pdist[["private_methods"]]
if (!is.null(pdist_pri[[".pdf"]])) {
private$.pdf <- function(x1, log) {}
body(private$.pdf) <- substitute(
{
fun <- function(x, log) {}
body(fun) <- substitute(FUN)
dpqr <- data.table()
if (private$.univariate) {
if (ncol(x1) == 1) {
dpqr <- fun(unlist(x1), log = log)
} else if (nrow(x1) == 1) {
dpqr <- fun(x1, log = log)
if (nrow(dpqr) > 1) {
dpqr <- diag(as.matrix(dpqr))
}
} else {
for (i in seq_len(ncol(x1))) {
a_dpqr <- fun(unlist(x1[, i]), log = log)
a_dpqr <- if (class(a_dpqr)[1] == "numeric") a_dpqr[i] else a_dpqr[, i]
dpqr <- cbind(dpqr, a_dpqr)
}
}
} else {
if (length(dim(x1)) == 2) {
dpqr <- data.table(matrix(fun(x1, log = log), nrow = nrow(x1)))
} else {
for (i in seq_len(dim(x1)[3])) {
mx <- x1[, , i]
if (class(mx)[1] == "numeric") {
mx <- matrix(mx, nrow = 1)
}
a_dpqr <- fun(mx, log = log)
a_dpqr <- if (class(a_dpqr)[1] == "numeric") a_dpqr[i] else a_dpqr[, i]
dpqr <- cbind(dpqr, a_dpqr)
}
}
}
return(dpqr)
},
list(FUN = body(pdist_pri[[".pdf"]]))
)
}
if (!is.null(pdist_pri[[".cdf"]])) {
private$.cdf <- function(x1, lower.tail, log.p) {}
body(private$.cdf) <- substitute(
{
fun <- function(x, lower.tail, log.p) {}
body(fun) <- substitute(FUN)
dpqr <- data.table()
if (private$.univariate) {
if (ncol(x1) == 1) {
dpqr <- fun(unlist(x1), lower.tail = lower.tail, log.p = log.p)
} else if (nrow(x1) == 1) {
dpqr <- fun(x1, lower.tail = lower.tail, log.p = log.p)
if (nrow(dpqr) > 1) {
dpqr <- diag(as.matrix(dpqr))
}
} else {
for (i in seq(ncol(x1))) {
a_dpqr <- fun(unlist(x1[, i]), lower.tail = lower.tail, log.p = log.p)
a_dpqr <- if (class(a_dpqr)[1] == "numeric") a_dpqr[i] else a_dpqr[, i]
dpqr <- cbind(dpqr, a_dpqr)
}
}
}
return(dpqr)
},
list(FUN = body(pdist_pri[[".cdf"]]))
)
}
if (!is.null(pdist_pri[[".quantile"]])) {
private$.quantile <- function(x1, lower.tail, log.p) {}
body(private$.quantile) <- substitute(
{
fun <- function(p, lower.tail, log.p) {}
body(fun) <- substitute(FUN)
dpqr <- data.table()
if (ncol(x1) == 1) {
dpqr <- fun(unlist(x1), lower.tail = lower.tail, log.p = log.p)
} else if (nrow(x1) == 1) {
dpqr <- fun(x1, lower.tail = lower.tail, log.p = log.p)
if (nrow(dpqr) > 1) {
dpqr <- diag(as.matrix(dpqr))
}
} else {
for (i in seq_len(ncol(x1))) {
a_dpqr <- fun(unlist(x1[, i]), lower.tail = lower.tail, log.p = log.p)
a_dpqr <- if (class(a_dpqr)[1] == "numeric") a_dpqr[i] else a_dpqr[, i]
dpqr <- cbind(dpqr, a_dpqr)
}
}
return(dpqr)
},
list(FUN = body(pdist_pri[[".quantile"]]))
)
}
if (!is.null(pdist_pri[[".rand"]])) {
private$.rand <- function(x1) {}
body(private$.rand) <- substitute(
{
fun <- function(n) {}
body(fun) <- substitute(FUN)
return(fun(x1))
},
list(FUN = body(pdist_pri[[".rand"]]))
)
}
} else {
private$.distlist <- TRUE
distribution <- c()
if (is.null(ids)) {
shortname <- character(0)
} else {
shortname <- checkmate::assertCharacter(ids, unique = TRUE)
}
vf <- distlist[[1]]$traits$variateForm
paramlst <- vector("list", length(distlist))
vs <- distlist[[1]]$traits$valueSupport
for (i in seq_along(distlist)) {
stopifnot(distlist[[i]]$traits$variateForm == vf)
if (is.null(ids)) {
shortname <- c(shortname, distlist[[i]]$short_name)
}
distribution <- c(distribution, distlist[[i]]$name)
if (!is.null(distlist[[i]]$parameters())) {
paramlst[[i]] <- distlist[[i]]$parameters()
}
vs <- c(vs, distlist[[i]]$traits$valueSupport)
}
valueSupport <- if (length(unique(vs)) == 1) vs[[1]] else "mixture"
if (is.null(ids)) {
shortname <- makeUniqueNames(shortname)
}
parameters <- NULL
names(distlist) <- shortname
private$.univariate <- vf == "univariate"
private$.modelTable <- as.data.table(
data.frame(Distribution = distribution, shortname = shortname)
)
private$.pdf <- function(x, log = FALSE) {
dpqr <- data.table()
if (private$.univariate) {
for (i in seq_len(ncol(x))) {
a_dpqr <- self[i]$pdf(x[, i], log = log)
dpqr <- cbind(dpqr, a_dpqr)
}
} else {
for (i in seq_len(dim(x)[[3]])) {
a_dpqr <- self[i]$pdf(data = matrix(x[, , i], nrow = nrow(x), ncol = ncol(x)),
log = log)
dpqr <- cbind(dpqr, a_dpqr)
}
}
return(dpqr)
}
private$.cdf <- function(x, lower.tail = TRUE, log.p = FALSE) {
dpqr <- data.table()
if (private$.univariate) {
for (i in seq(ncol(x))) {
a_dpqr <- self[i]$cdf(x[, i], lower.tail = lower.tail, log.p = log.p)
dpqr <- cbind(dpqr, a_dpqr)
}
} else {
for (i in seq(dim(x)[3])) {
a_dpqr <- self[i]$cdf(data = matrix(x[, , i], nrow = nrow(x), ncol = ncol(x)),
lower.tail = lower.tail, log.p = log.p)
dpqr <- cbind(dpqr, a_dpqr)
}
}
return(dpqr)
}
private$.quantile <- function(x, lower.tail = TRUE, log.p = FALSE) {
dpqr <- data.table()
for (i in seq(ncol(x))) {
a_dpqr <- self[i]$quantile(x[, i], lower.tail = lower.tail, log.p = log.p)
dpqr <- cbind(dpqr, a_dpqr)
}
return(dpqr)
}
private$.rand <- function(n) {
if (private$.univariate) {
if (n == 1) {
return(matrix(sapply(self$wrappedModels(), function(x) x$rand(n)), nrow = 1))
} else {
return(sapply(self$wrappedModels(), function(x) x$rand(n)))
}
} else {
return(lapply(self$wrappedModels(), function(x) x$rand(n)))
}
}
}
ndist <- nrow(private$.modelTable)
dst <- unique(self$modelTable$Distribution)
if (length(dst) == 1 & dst[[1]] %in% c(listDistributions(simplify = TRUE),
listKernels(simplify = TRUE))) {
distribution <- get(as.character(unlist(self$modelTable[1, 1])))
if (is.null(name)) {
name <- paste0(
"Vector: ", ndist, " ",
distribution$public_fields$name, "s"
)
}
if (is.null(short_name)) {
short_name <- paste0(
"Vec", ndist,
distribution$public_fields$short_name
)
}
description <- paste0("Vector of ", ndist, " ", distribution$public_fields$name, "s")
type <- distribution$new()$traits$type^ndist
support <- type
} else {
type <- do.call(setproduct, lapply(distlist, function(x) x$traits$type))
support <- type
if (ndist > 3) {
if (is.null(name)) name <- paste("Vector:", ndist, "Distributions")
if (is.null(short_name)) short_name <- paste0("Vec", ndist, "Dists")
description <- paste0("Vector of ", ndist, " distributions.")
} else {
if (is.null(name)) name <- paste("Vector:", paste0(distribution, collapse = ", "))
if (is.null(short_name)) short_name <- paste0(shortname, collapse = "Vec")
description <- paste0("Vector of: ", paste0(shortname, collapse = ", "))
}
}
super$initialize(
distlist = distlist,
name = name,
short_name = short_name,
description = description,
support = support,
type = type,
valueSupport = valueSupport,
variateForm = "multivariate",
parameters = parameters,
...
)
}
},
getParameterValue = function(id, ...) {
vals <- private$.parameters$get_values(id)
if (!is.null(names(vals))) {
names(vals) <- get_n_prefix(names(vals))
}
vals
},
wrappedModels = function(model = NULL) {
if (is.null(model)) {
if (private$.distlist) {
distlist <- private$.wrappedModels
} else {
distlist <- lapply(private$.modelTable$shortname, function(x) {
pars <- self$parameters()[prefix = x]$values
dist <- do.call(get(as.character(unlist(private$.modelTable$Distribution[[1]])))$new,
c(pars, list(decorators = self$decorators)))
return(dist)
})
}
} else {
models <- subset(private$.modelTable, shortname == model)$shortname
if (length(models) == 0) {
stop(sprintf("No distribution called %s.", model))
}
if (private$.distlist) {
distlist <- private$.wrappedModels[models]
} else {
distlist <- lapply(models, function(x) {
dist <- do.call(get(as.character(unlist(private$.modelTable$Distribution[[1]])))$new,
list(decorators = self$decorators))
dist$setParameterValue(lst = self$parameters()[prefix = x]$values)
return(dist)
})
}
}
if (length(distlist) == 1) {
return(distlist[[1]])
} else {
names(distlist) <- as.character(unlist(private$.modelTable$shortname))
return(distlist)
}
},
strprint = function(n = 10) {
names <- as.character(unlist(self$modelTable$shortname))
lng <- length(names)
if (lng > (2 * n)) {
names <- c(names[1:n], "...", names[(lng - n + 1):lng])
}
return(names)
},
mean = function(...) {
if (self$distlist) {
ret <- sapply(seq(nrow(private$.modelTable)), function(i) {
ifnerror(self[i]$mean(...), error = NaN)
})
} else {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$public_methods$mean
if (is.null(f)) {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$get_inherit()$
public_methods$mean
}
if (is.null(f)) {
stop("Not implemented for this distribution.")
}
formals(f) <- c(list(self = self), alist(... = ))
ret <- f()
if (length(ret) == 1) {
ret <- rep(ret, nrow(self$modelTable))
}
}
if (is.null(dim(ret))) {
names(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
} else {
ret <- data.table(t(ret))
colnames(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
}
return(ret)
},
mode = function(which = "all") {
if (self$distlist) {
ret <- sapply(seq(nrow(private$.modelTable)), function(i) {
ifnerror(self[i]$mode(which), error = NaN)
})
} else {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$public_methods$mode
if (is.null(f)) {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$get_inherit()$
public_methods$mode
}
if (is.null(f)) {
stop("Not implemented for this distribution.")
}
formals(f) <- list(self = self, which = which)
ret <- f()
if (length(ret) == 1) {
ret <- rep(ret, nrow(self$modelTable))
}
}
if (is.null(dim(ret))) {
names(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
} else {
if (as.character(unlist(self$modelTable$Distribution[[1]])) != "MultivariateNormal") {
ret <- t(ret)
}
ret <- data.table(ret)
colnames(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
}
return(ret)
},
median = function() {
self$quantile(0.5)
},
variance = function(...) {
if (self$distlist) {
ret <- sapply(seq(nrow(private$.modelTable)), function(i) {
ifnerror(self[i]$variance(...), error = NaN)
})
} else {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$public_methods$variance
if (is.null(f)) {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$get_inherit()$
public_methods$variance
}
if (is.null(f)) {
stop("Not implemented for this distribution.")
}
formals(f) <- c(list(self = self), alist(... = ))
ret <- f()
if (length(ret) == 1) {
ret <- rep(ret, nrow(self$modelTable))
}
}
if (is.null(dim(ret))) {
names(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
} else {
dimnames(ret)[3] <- as.list(private$.modelTable[, "shortname"])
}
return(ret)
},
skewness = function(...) {
if (self$distlist) {
ret <- sapply(seq(nrow(private$.modelTable)), function(i) {
ifnerror(self[i]$skewness(...), error = NaN)
})
} else {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$public_methods$skewness
if (is.null(f)) {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$get_inherit()$
public_methods$skewness
}
if (is.null(f)) {
stop("Not implemented for this distribution.")
}
formals(f) <- c(list(self = self), alist(... = ))
ret <- f()
if (length(ret) == 1) {
ret <- rep(ret, nrow(self$modelTable))
}
}
names(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
return(ret)
},
kurtosis = function(excess = TRUE, ...) {
if (self$distlist) {
ret <- sapply(seq(nrow(private$.modelTable)), function(i) {
ifnerror(self[i]$kurtosis(excess, ...), error = NaN)
})
} else {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$public_methods$kurtosis
if (is.null(f)) {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$get_inherit()$
public_methods$kurtosis
}
if (is.null(f)) {
stop("Not implemented for this distribution.")
}
formals(f) <- c(list(self = self, excess = excess), alist(... = ))
ret <- f()
if (length(ret) == 1) {
ret <- rep(ret, nrow(self$modelTable))
}
}
names(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
return(ret)
},
entropy = function(base = 2, ...) {
if (self$distlist) {
ret <- sapply(seq(nrow(private$.modelTable)), function(i) {
ifnerror(self[i]$entropy(base, ...), error = NaN)
})
} else {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$public_methods$entropy
if (is.null(f)) {
f <- get(as.character(unlist(self$modelTable$Distribution[[1]])))$get_inherit()$
public_methods$entropy
}
formals(f) <- c(list(self = self, base = base), alist(... = ))
ret <- f()
if (length(ret) == 1) {
ret <- rep(ret, nrow(self$modelTable))
}
}
names(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
return(ret)
},
mgf = function(t, ...) {
if (!self$distlist) {
warning("mgf not currently efficiently vectorised, may be slow.")
}
ret <- sapply(seq(nrow(private$.modelTable)), function(i) {
ifnerror(self[i]$mgf(t, ...), error = NaN)
})
if (is.null(dim(ret))) {
names(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
} else {
ret <- data.table(ret)
colnames(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
}
return(ret)
},
cf = function(t, ...) {
if (!self$distlist) {
warning("cf not currently efficiently vectorised, may be slow.")
}
ret <- sapply(seq(nrow(private$.modelTable)), function(i) {
ifnerror(self[i]$cf(t, ...), error = NaN)
})
if (is.null(dim(ret))) {
names(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
} else {
ret <- data.table(ret)
colnames(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
}
return(ret)
},
pgf = function(z, ...) {
if (!self$distlist) {
warning("pgf not currently efficiently vectorised, may be slow.")
}
ret <- sapply(seq(nrow(private$.modelTable)), function(i) {
ifnerror(self[i]$pgf(z, ...), error = NaN)
})
if (is.null(dim(ret))) {
names(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
} else {
ret <- data.table(ret)
colnames(ret) <- as.character(unlist(private$.modelTable[, "shortname"]))
}
return(ret)
},
pdf = function(..., log = FALSE, simplify = TRUE, data = NULL) {
if (is.null(data)) {
data <- as.matrix(data.table(...))
} else if (length(dim(data)) == 2) {
data <- as.matrix(data)
}
if (ncol(data) != nrow(self$modelTable) & ncol(data) > 1 & private$.univariate) {
stopf("Expected data with %s or 1 columns, received %s.", nrow(self$modelTable), ncol(data))
}
if (private$.univariate) {
if (private$.distlist & ncol(data) == 1) {
data <- matrix(rep(data, nrow(private$.modelTable)), nrow = nrow(data),
ncol = nrow(private$.modelTable))
}
dpqr <- private$.pdf(data, log = log)
if (class(dpqr)[1] == "numeric") {
dpqr <- matrix(dpqr, ncol = nrow(private$.modelTable))
}
dpqr <- as.data.table(dpqr)
colnames(dpqr) <- as.character(unlist(private$.modelTable[, 2]))
return(dpqr)
} else {
if (ncol(data) == 1) {
stop("Distribution is multivariate but values have only been passed to one argument.")
}
if ((inherits(data, "array") | inherits(data, "matrix")) & private$.distlist) {
if (is.na(dim(data)[3])) {
data <- array(rep(data, nrow(private$.modelTable)),
dim = c(nrow(data), ncol(data), nrow(private$.modelTable))
)
}
}
dpqr <- private$.pdf(data, log = log)
colnames(dpqr) <- as.character(unlist(private$.modelTable[, 2]))
return(dpqr)
}
},
cdf = function(..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE, data = NULL) {
if (is.null(data)) {
data <- as.matrix(data.table(...))
}
if (ncol(data) != nrow(self$modelTable) & ncol(data) > 1 & private$.univariate) {
stopf("Expected data with %s or 1 columns, received %s.", nrow(self$modelTable), ncol(data))
}
if (private$.univariate) {
if (ncol(data) == 1 & private$.distlist) {
data <- matrix(rep(data, nrow(private$.modelTable)), nrow = nrow(data))
}
} else {
if (ncol(data) == 1) {
stop("Distribution is multivariate but values have only been passed to one argument.")
} else if (inherits(data, "array") | inherits(data, "matrix")) {
if (is.na(dim(data)[3]) & private$.distlist) {
data <- array(rep(data, nrow(private$.modelTable)),
dim = c(nrow(data), ncol(data), nrow(private$.modelTable))
)
}
}
}
dpqr <- private$.cdf(data, lower.tail = lower.tail, log.p = log.p)
if (class(dpqr)[1] == "numeric") {
dpqr <- matrix(dpqr, ncol = nrow(private$.modelTable))
}
dpqr <- as.data.table(dpqr)
colnames(dpqr) <- as.character(unlist(private$.modelTable[, 2]))
return(dpqr)
},
quantile = function(..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE, data = NULL) {
if (is.null(data)) {
data <- as.matrix(data.table(...))
}
if (ncol(data) != nrow(self$modelTable) & ncol(data) > 1 & private$.univariate) {
stopf("Expected data with %s or 1 columns, received %s.", nrow(self$modelTable), ncol(data))
}
if (private$.univariate) {
if (ncol(data) == 1 & private$.distlist) {
data <- matrix(rep(data, nrow(private$.modelTable)), nrow = nrow(data))
}
} else {
stop("Quantile not possible for non-univariate distributions.")
}
dpqr <- private$.quantile(data, lower.tail = lower.tail, log.p = log.p)
if (class(dpqr)[1] == "numeric") {
dpqr <- matrix(dpqr, ncol = nrow(private$.modelTable))
}
dpqr <- as.data.table(dpqr)
colnames(dpqr) <- as.character(unlist(private$.modelTable[, 2]))
return(dpqr)
},
rand = function(n, simplify = TRUE) {
if (length(n) > 1) {
n <- length(n)
}
data <- n
if (private$.univariate) {
dpqr <- as.data.table(private$.rand(data))
colnames(dpqr) <- as.character(unlist(private$.modelTable[, 2]))
return(dpqr)
} else {
dpqr <- private$.rand(data)
dpqr <- array(unlist(dpqr), c(nrow(dpqr[[1]]), ncol(dpqr[[1]]), length(dpqr)))
dimnames(dpqr) <- list(NULL, paste0("V", seq(ncol(dpqr))),
as.character(unlist(private$.modelTable$shortname)))
return(dpqr)
}
}
),
active = list(
modelTable = function() {
private$.modelTable
},
distlist = function() {
return(private$.distlist)
},
ids = function() {
as.character(unlist(private$.modelTable$shortname))
}
),
private = list(
.univariate = logical(0),
.distlist = FALSE,
.sharedparams = list(),
.properties = list(),
.traits = list(type = NA, valueSupport = "mixture", variateForm = "multivariate"),
.trials = logical(0)
)
)
.distr6$wrappers <- append(.distr6$wrappers, list(VectorDistribution = VectorDistribution))
"[.VectorDistribution" <- function(vecdist, i) {
if (checkmate::testCharacter(i)) {
checkmate::assertSubset(i, as.character(unlist(vecdist$modelTable$shortname)))
i <- match(i, as.character(unlist(vecdist$modelTable$shortname)), 0)
}
i <- i[i %in% (seq_len(nrow(vecdist$modelTable)))]
if (length(i) == 0) {
stop("Index i too large, should be less than or equal to ", nrow(vecdist$modelTable))
}
decorators <- vecdist$decorators
if (!vecdist$distlist) {
distribution <- as.character(unlist(vecdist$modelTable[1, 1]))
if (length(i) == 1) {
id <- as.character(unlist(vecdist$modelTable[i, 2]))
dist <- get(distribution)$new(decorators = decorators)
pri <- get_private(dist)
pri$.parameters <- vecdist$parameters()[prefix = id]
return(dist)
} else {
id <- as.character(unlist(vecdist$modelTable[i, 2]))
pars <- vecdist$parameters()$values
pars <- pars[grepl(paste0(id, collapse = "|"), names(pars))]
return(VectorDistribution$new(
distribution = distribution, params = pars,
decorators = decorators,
shared_params = vecdist$.__enclos_env__$private$.sharedparams,
ids = vecdist$modelTable$shortname[i]
))
}
} else {
if (length(i) == 1) {
dist <- vecdist$wrappedModels()[[i]]
if (!is.null(decorators)) {
suppressMessages(decorate(dist, decorators))
}
return(dist)
} else {
return(VectorDistribution$new(
distlist = vecdist$wrappedModels()[i],
decorators = decorators,
ids = vecdist$modelTable$shortname[i]
))
}
}
}
as.VectorDistribution <- function(object) {
if (checkmate::testClass(object, "VectorDistribution")) {
return(VectorDistribution$new(vecdist = object))
} else {
stop("Object must inherit from VectorDistribution.")
}
}
length.VectorDistribution <- function(x) {
nrow(x$modelTable)
} |
context("inspect_imb pair of dataframes")
data("starwars", package = "dplyr")
data("band_instruments", package = "dplyr")
data("storms", package = "dplyr")
data(mtcars, airquality)
test_that("Output with two identical df inputs data frame", {
expect_is(inspect_imb(mtcars, mtcars), "data.frame")
expect_is(inspect_imb(band_instruments, band_instruments), "data.frame")
expect_is(inspect_imb(starwars, starwars), "data.frame")
expect_is(inspect_imb(storms, storms), "data.frame")
expect_is(inspect_imb(airquality, airquality), "data.frame")
})
test_that("Output with two different inputs data frame", {
set.seed(10)
expect_is(inspect_imb(mtcars, mtcars %>% dplyr::sample_n(100, replace = T)), "data.frame")
expect_is(inspect_imb(band_instruments, band_instruments %>% dplyr::sample_n(100, replace = T)) , "data.frame")
expect_is(inspect_imb(starwars, starwars %>% dplyr::sample_n(100, replace = T)), "data.frame")
expect_is(inspect_imb(storms, storms %>% dplyr::sample_n(100, replace = T)), "data.frame")
expect_is(inspect_imb(airquality, airquality%>% dplyr::sample_n(100, replace = T)), "data.frame")
}) |
topic_name <- "test_topic"
sub_name <- "test_subscription"
snap_name <- "test_snapshot"
schema_name <- "test_schema"
schema_def <- list(
type = "record",
name = "myRecord",
fields = list(
list(
name = "cost",
type = "int",
default = 200
),
list(
name = "object",
type = "string",
default = "blender"
)
)
)
msg <- list(cost = 12, object = "fork") %>%
jsonlite::toJSON(auto_unbox = TRUE) %>%
charToRaw() %>%
base64enc::base64encode() %>%
PubsubMessage()
labels = list(a = "1", b = "2")
retention_duration= 1800
skip_if_no_token <- function() {
skip_on_cran()
skip_on_travis()
}
if(file.exists("../../.gcp_creds.json")) {
pubsub_auth(json_file = "../../.gcp_creds.json")
} else {
message("No authentication file found for testing")
} |
if (requiet("testthat") &&
requiet("insight") &&
requiet("lfe")) {
x <- rnorm(1000)
x2 <- rnorm(length(x))
id <- factor(sample(20, length(x), replace = TRUE))
firm <- factor(sample(13, length(x), replace = TRUE))
id.eff <- rnorm(nlevels(id))
firm.eff <- rnorm(nlevels(firm))
u <- rnorm(length(x))
y <- x + 0.5 * x2 + id.eff[id] + firm.eff[firm] + u
x3 <- rnorm(length(x))
x4 <- sample(12, length(x), replace = TRUE)
Q <- 0.3 * x3 + x + 0.2 * x2 + id.eff[id] + 0.3 * log(x4) - 0.3 * y + rnorm(length(x), sd = 0.3)
W <- 0.7 * x3 - 2 * x + 0.1 * x2 - 0.7 * id.eff[id] + 0.8 * cos(x4) - 0.2 * y + rnorm(length(x), sd = 0.6)
y <- y + Q + W
dat <- data.frame(y, x, x2, x3, x4, id, firm, Q, W)
m1 <- felm(y ~ x + x2 | id + firm | (Q | W ~ x3 + factor(x4)), data = dat)
test_that("model_info", {
expect_true(model_info(m1)$is_linear)
})
test_that("find_predictors", {
expect_identical(
find_predictors(m1),
list(
conditional = c("x", "x2"),
instruments = c("Q", "W", "x3", "x4")
)
)
expect_identical(find_predictors(m1, effects = "random"), list(random = c("id", "firm")))
expect_identical(
find_predictors(m1, effects = "all", flatten = TRUE),
c("x", "x2", "id", "firm", "Q", "W", "x3", "x4")
)
})
test_that("find_random", {
expect_identical(find_random(m1), list(random = c("id", "firm")))
})
test_that("get_random", {
expect_identical(colnames(get_random(m1)), c("id", "firm"))
})
test_that("find_response", {
expect_identical(find_response(m1), "y")
})
test_that("get_response", {
expect_equal(get_response(m1), dat$y)
})
test_that("get_predictors", {
expect_equal(
colnames(get_predictors(m1)),
c("x", "x2", "Q", "W", "x3", "x4")
)
})
test_that("link_inverse", {
expect_equal(link_inverse(m1)(.2), .2, tolerance = 1e-5)
})
test_that("get_data", {
expect_equal(nrow(get_data(m1)), 1000)
expect_equal(
colnames(get_data(m1)),
c("y", "x", "x2", "id", "firm", "Q", "W", "x3", "x4")
)
})
test_that("find_formula", {
expect_length(find_formula(m1), 3)
expect_equal(
find_formula(m1),
list(
conditional = as.formula("y ~ x + x2"),
random = as.formula("~id + firm"),
instruments = as.formula("~(Q | W ~ x3 + factor(x4))")
),
ignore_attr = TRUE
)
})
test_that("find_terms", {
expect_equal(
find_terms(m1),
list(
response = "y",
conditional = c("x", "x2"),
random = c("id", "firm"),
instruments = c("(Q", "W x3", "factor(x4))")
)
)
expect_equal(
find_terms(m1, flatten = TRUE),
c("y", "x", "x2", "id", "firm", "(Q", "W x3", "factor(x4))")
)
})
test_that("find_variables", {
expect_equal(
find_variables(m1),
list(
response = "y",
conditional = c("x", "x2"),
random = c("id", "firm"),
instruments = c("Q", "W", "x3", "x4")
)
)
expect_equal(
find_variables(m1, flatten = TRUE),
c("y", "x", "x2", "id", "firm", "Q", "W", "x3", "x4")
)
})
test_that("n_obs", {
expect_equal(n_obs(m1), 1000)
})
test_that("linkfun", {
expect_false(is.null(link_function(m1)))
})
test_that("find_parameters", {
expect_equal(
find_parameters(m1),
list(conditional = c("x", "x2", "Q(fit)", "W(fit)"))
)
expect_equal(nrow(get_parameters(m1)), 4)
expect_equal(
get_parameters(m1)$Parameter,
c("x", "x2", "Q(fit)", "W(fit)")
)
})
test_that("is_multivariate", {
expect_false(is_multivariate(m1))
})
test_that("find_statistic", {
expect_identical(find_statistic(m1), "t-statistic")
})
} |
source("helper/helper.R")
wb = function(...) backports:::...length()
if (exists("...length", envir = baseenv())) {
f = get("...length", envir = baseenv())
wf = function(...) f()
expect_same = makeCompareFun(wf, wb)
expect_same(1)
expect_same(1, 2)
expect_same()
}
expect_identical(wb(1, "a", "b", "c"), 4L)
expect_identical(wb(2, "a", "b"), 3L)
expect_identical(wb(1), 1L)
expect_identical(wb(), 0L)
f = function(n) backports:::...length()
expect_error(f(), "current call")
expect_error(f(1), "current call") |
context("methods")
expect_ellipsis <- function(name, method) {
sym <- as.name(name)
eval(bquote({
.(sym) <- method
expect_true("..." %in% names(formals(.(sym))))
}))
}
test_that("all methods have ellipsis", {
symbols <- ls(env = asNamespace("DBI"))
objects <- mget(symbols, env = asNamespace("DBI"), mode = "function", ifnotfound = rep(list(NULL), length(symbols)))
is_method <- vapply(objects, inherits, "standardGeneric", FUN.VALUE = logical(1L))
methods <- objects[is_method]
Map(expect_ellipsis, names(methods), methods)
}) |
lav_model_nvcov_bootstrap <- function(lavmodel = NULL,
lavsamplestats = NULL,
lavoptions = NULL,
lavimplied = NULL,
lavh1 = NULL,
lavdata = NULL,
lavcache = NULL,
lavpartable = NULL) {
if(!is.null(lavoptions$bootstrap)) {
R <- lavoptions$bootstrap
} else {
R <- 1000L
}
boot.type <- "ordinary"
if("bollen.stine" %in% lavoptions$test) {
boot.type <- "bollen.stine"
}
TEST <- NULL
COEF <- lav_bootstrap_internal(object = NULL,
lavmodel. = lavmodel,
lavsamplestats. = lavsamplestats,
lavpartable. = lavpartable,
lavoptions. = lavoptions,
lavdata. = lavdata,
R = R,
verbose = lavoptions$verbose,
type = boot.type,
FUN = ifelse(boot.type == "bollen.stine",
"coeftest", "coef"),
warn = -1L)
if(boot.type == "bollen.stine") {
nc <- ncol(COEF)
TEST <- COEF[,nc]
COEF <- COEF[,-nc]
}
nboot <- nrow(COEF)
NVarCov <- lavsamplestats@ntotal * (cov(COEF) * (nboot-1)/nboot )
attr(NVarCov, "BOOT.COEF") <- COEF
attr(NVarCov, "BOOT.TEST") <- TEST
NVarCov
}
lav_model_nvcov_robust_sem <- function(lavmodel = NULL,
lavsamplestats = NULL,
lavdata = NULL,
lavcache = NULL,
lavimplied = NULL,
lavh1 = NULL,
lavoptions = NULL,
use.ginv = FALSE) {
if(lavmodel@estimator == "ML" && lavoptions$mimic == "Mplus") {
E.inv <- lav_model_information_expected_MLM(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
extra = TRUE,
augmented = TRUE,
inverted = TRUE,
use.ginv = use.ginv)
} else {
E.inv <- lav_model_information(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
lavdata = lavdata,
lavimplied = lavimplied,
lavh1 = lavh1,
lavoptions = lavoptions,
extra = TRUE,
augmented = TRUE,
inverted = TRUE,
use.ginv = use.ginv)
}
if(inherits(E.inv, "try-error")) {
return(E.inv)
}
Delta <- attr(E.inv, "Delta")
WLS.V <- attr(E.inv, "WLS.V")
Gamma <- lavsamplestats@NACOV
if(lavmodel@estimator == "ML" &&
lavoptions$mimic == "Mplus" && [email protected]) {
for(g in 1:lavsamplestats@ngroups) {
gg1 <- (lavsamplestats@nobs[[g]]-1)/lavsamplestats@nobs[[g]]
if([email protected]) {
nvar <- NCOL([email protected][[g]])
} else {
nvar <- NCOL(lavsamplestats@cov[[g]])
}
G11 <- Gamma[[g]][1:nvar, 1:nvar, drop = FALSE]
Gamma[[g]][1:nvar, 1:nvar] <- G11 * gg1
}
}
tDVGVD <- matrix(0, ncol=ncol(E.inv), nrow=nrow(E.inv))
for(g in 1:lavsamplestats@ngroups) {
fg <- lavsamplestats@nobs[[g]] /lavsamplestats@ntotal
if(lavoptions$mimic == "Mplus") {
fg1 <- (lavsamplestats@nobs[[g]]-1)/lavsamplestats@ntotal
} else {
fg1 <- fg
}
if(lavmodel@estimator == "DWLS" || lavmodel@estimator == "ULS") {
WD <- WLS.V[[g]] * Delta[[g]]
} else {
WD <- WLS.V[[g]] %*% Delta[[g]]
}
tDVGVD <- tDVGVD + fg*fg/fg1 * crossprod(WD, Gamma[[g]] %*% WD)
}
NVarCov <- (E.inv %*% tDVGVD %*% E.inv)
attr(NVarCov, "Delta") <- Delta
if( (lavoptions$information[1] == lavoptions$information[2]) &&
(lavoptions$h1.information[1] == lavoptions$h1.information[2]) &&
(lavoptions$observed.information[1] ==
lavoptions$observed.information[2]) ) {
attr(NVarCov, "E.inv") <- E.inv
attr(NVarCov, "WLS.V") <- WLS.V
}
NVarCov
}
lav_model_nvcov_robust_sandwich <- function(lavmodel = NULL,
lavsamplestats = NULL,
lavdata = NULL,
lavoptions = NULL,
lavimplied = NULL,
lavh1 = NULL,
lavcache = NULL,
use.ginv = FALSE) {
E.inv <- lav_model_information(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
lavdata = lavdata,
lavcache = lavcache,
lavimplied = lavimplied,
lavh1 = lavh1,
lavoptions = lavoptions,
extra = FALSE,
augmented = TRUE,
inverted = TRUE,
use.ginv = use.ginv)
if(inherits(E.inv, "try-error")) {
return(E.inv)
}
lavoptions2 <- lavoptions
if(!is.null(lavoptions$h1.information.meat)) {
lavoptions2$information <- lavoptions$information.meat
}
if(!is.null(lavoptions$h1.information.meat)) {
lavoptions2$h1.information <- lavoptions$h1.information.meat
}
B0 <-
lav_model_information_firstorder(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
lavdata = lavdata,
lavcache = lavcache,
lavimplied = lavimplied,
lavh1 = lavh1,
lavoptions = lavoptions2,
extra = TRUE,
check.pd = FALSE,
augmented = FALSE,
inverted = FALSE,
use.ginv = use.ginv)
NVarCov <- E.inv %*% B0 %*% E.inv
attr(NVarCov, "B0.group") <- attr(B0, "B0.group")
if( (lavoptions$information[1] == lavoptions$information[2]) &&
(lavoptions$h1.information[1] == lavoptions$h1.information[2]) &&
(lavoptions$observed.information[1] ==
lavoptions$observed.information[2]) ) {
attr(NVarCov, "E.inv") <- E.inv
}
NVarCov
}
lav_model_nvcov_two_stage <- function(lavmodel = NULL,
lavsamplestats = NULL,
lavoptions = NULL,
lavimplied = NULL,
lavh1 = NULL,
lavdata = NULL,
use.ginv = FALSE) {
if(is.null(lavoptions) && is.null(lavoptions$information[1])) {
lavoptions <- list(information = "observed",
observed.information = "h1",
h1.information = "structured")
}
if(lavoptions$information[1] == "observed" &&
lavoptions$observed.information[1] != "h1") {
stop("lavaan ERROR: two.stage + observed information currently only works with observed.information = ", dQuote("h1"))
}
if(!is.null(lavdata@weights[[1]])) {
stop("lavaan ERROR: two.stage + sampling.weights is not supported yet")
}
if(!is.null([email protected]) &&
length([email protected][[1]]) > 0L) {
stop("lavaan ERROR: two.stage + fixed.x = TRUE is not supported yet")
}
E.inv <- lav_model_information(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
lavdata = lavdata,
lavoptions = lavoptions,
lavimplied = lavimplied,
lavh1 = lavh1,
extra = TRUE,
augmented = TRUE,
inverted = TRUE,
use.ginv = use.ginv)
Delta <- attr(E.inv, "Delta")
WLS.V <- attr(E.inv, "WLS.V")
attr(E.inv, "Delta") <- NULL
attr(E.inv, "WLS.V") <- NULL
if(inherits(E.inv, "try-error")) {
return(E.inv)
}
if(is.null(WLS.V)) {
stop("lavaan ERROR: WLS.V/H/A1 is NULL, observed.information = hessian?")
}
Gamma <- vector("list", length = lavsamplestats@ngroups)
tDVGVD <- matrix(0, ncol=ncol(E.inv), nrow=nrow(E.inv))
for(g in 1:lavsamplestats@ngroups) {
fg <- lavsamplestats@nobs[[g]] /lavsamplestats@ntotal
fg1 <- fg
WD <- WLS.V[[g]] %*% Delta[[g]]
if(lavoptions$h1.information[1] == "unstructured") {
MU <- [email protected][[g]]$mu
SIGMA <- [email protected][[g]]$sigma
} else {
MU <- lavimplied$mean[[g]]
SIGMA <- lavimplied$cov[[g]]
}
if(lavoptions$se == "two.stage") {
if(lavoptions$information[1] == "expected") {
Info <- lav_mvnorm_missing_information_expected(
Y = lavdata@X[[g]], Mp = lavdata@Mp[[g]],
wt = lavdata@weights[[g]],
Mu = MU, Sigma = SIGMA,
x.idx = [email protected][[g]])
} else {
Info <- lav_mvnorm_missing_information_observed_samplestats(
Yp = lavsamplestats@missing[[g]],
Mu = MU, Sigma = SIGMA,
x.idx = [email protected][[g]])
}
Gamma[[g]] <- lav_matrix_symmetric_inverse(Info)
} else {
if(length(lavdata@cluster) > 0L) {
cluster.idx <- lavdata@Lp[[g]]$cluster.idx[[2]]
} else {
cluster.idx <- NULL
}
Gamma[[g]] <- lav_mvnorm_missing_h1_omega_sw(Y =
lavdata@X[[g]], Mp = lavdata@Mp[[g]],
Yp = lavsamplestats@missing[[g]],
wt = lavdata@weights[[g]],
cluster.idx = cluster.idx,
Mu = MU, Sigma = SIGMA,
x.idx = [email protected][[g]],
information = lavoptions$information[1])
}
tDVGVD <- tDVGVD + fg*fg/fg1 * crossprod(WD, Gamma[[g]] %*% WD)
}
NVarCov <- (E.inv %*% tDVGVD %*% E.inv)
attr(NVarCov, "Delta") <- Delta
attr(NVarCov, "Gamma") <- Gamma
if( (lavoptions$information[1] == lavoptions$information[2]) &&
(lavoptions$h1.information[1] == lavoptions$h1.information[2]) &&
(lavoptions$observed.information[1] ==
lavoptions$observed.information[2]) ) {
attr(NVarCov, "E.inv") <- E.inv
attr(NVarCov, "WLS.V") <- WLS.V
}
NVarCov
}
lav_model_vcov <- function(lavmodel = NULL,
lavsamplestats = NULL,
lavoptions = NULL,
lavdata = NULL,
lavpartable = NULL,
lavcache = NULL,
lavimplied = NULL,
lavh1 = NULL,
use.ginv = FALSE) {
likelihood <- lavoptions$likelihood
information <- lavoptions$information[1]
se <- lavoptions$se
verbose <- lavoptions$verbose
mimic <- lavoptions$mimic
if(se == "none" || se == "external" || se == "twostep") {
return( matrix(0, 0, 0) )
}
if(se == "standard") {
NVarCov <- lav_model_information(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
lavdata = lavdata,
lavcache = lavcache,
lavimplied = lavimplied,
lavh1 = lavh1,
lavoptions = lavoptions,
extra = FALSE,
augmented = TRUE,
inverted = TRUE,
use.ginv = use.ginv)
} else if(se == "first.order") {
NVarCov <-
lav_model_information_firstorder(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
lavdata = lavdata,
lavcache = lavcache,
lavimplied = lavimplied,
lavh1 = lavh1,
lavoptions = lavoptions,
extra = TRUE,
check.pd = FALSE,
augmented = TRUE,
inverted = TRUE,
use.ginv = use.ginv)
} else if(se == "robust.sem" || se == "robust.cluster.sem") {
NVarCov <-
lav_model_nvcov_robust_sem(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
lavcache = lavcache,
lavdata = lavdata,
lavimplied = lavimplied,
lavh1 = lavh1,
lavoptions = lavoptions,
use.ginv = use.ginv)
} else if(se == "robust.huber.white" || se == "robust.cluster") {
NVarCov <-
lav_model_nvcov_robust_sandwich(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
lavdata = lavdata,
lavcache = lavcache,
lavimplied = lavimplied,
lavh1 = lavh1,
lavoptions = lavoptions,
use.ginv = use.ginv)
} else if(se %in% c("two.stage", "robust.two.stage")) {
NVarCov <-
lav_model_nvcov_two_stage(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
lavoptions = lavoptions,
lavdata = lavdata,
lavimplied = lavimplied,
lavh1 = lavh1,
use.ginv = use.ginv)
} else if(se == "bootstrap") {
NVarCov <- try( lav_model_nvcov_bootstrap(lavmodel = lavmodel,
lavsamplestats = lavsamplestats,
lavoptions = lavoptions,
lavdata = lavdata,
lavimplied = lavimplied,
lavh1 = lavh1,
lavcache = lavcache,
lavpartable = lavpartable),
silent=TRUE )
} else {
warning("lavaan WARNING: unknown se type: ", se)
}
if(! inherits(NVarCov, "try-error") ) {
if(lavmodel@estimator %in% c("ML","PML","FML") &&
likelihood == "normal") {
if(lavdata@nlevels == 1L) {
N <- lavsamplestats@ntotal
if(lavoptions$mimic == "lm" &&
.hasSlot(lavmodel, "modprop") &&
all(lavmodel@modprop$uvreg)) {
N <- sum( unlist(lavsamplestats@nobs) -
(unlist(lavmodel@modprop$nexo) + 1L) )
}
} else {
N <- 0
for(g in 1:lavsamplestats@ngroups) {
N <- N + lavdata@Lp[[g]]$nclusters[[2]]
}
}
} else {
N <- lavsamplestats@ntotal - lavsamplestats@ngroups
}
VarCov <- 1/N * NVarCov
if(!is.null(lavoptions$check.vcov) && lavoptions$check.vcov) {
eigvals <- eigen(VarCov, symmetric = TRUE,
only.values = TRUE)$values
neq <- 0L
niq <- 0L
if(nrow([email protected]) > 0L) {
ceq.idx <- attr([email protected], "ceq.idx")
cin.idx <- attr([email protected], "cin.idx")
ina.idx <- attr([email protected], "inactive.idx")
if(length(ceq.idx) > 0L) {
neq <- qr([email protected][ceq.idx,,drop=FALSE])$rank
}
if(length(cin.idx) > 0L) {
niq <- length(cin.idx) - length(ina.idx)
}
neiq <- neq + niq
if(neiq > 0L) {
eigvals <- rev(eigvals)[- seq_len(neiq)]
}
}
min.val <- min(eigvals)
if(min.val < .Machine$double.eps^(3/4) && lavoptions$warn) {
if(min.val > 0) {
txt <- c("The variance-covariance matrix of the estimated
parameters (vcov) does not appear to be positive
definite! The smallest eigenvalue (= ",
sprintf("%e", min(min.val)), ") is close to zero.
This may be a symptom that the model is not
identified.")
warning(lav_txt2message(txt))
} else {
txt <- c("The variance-covariance matrix of the estimated
parameters (vcov) does not appear to be positive
definite! The smallest eigenvalue (= ",
sprintf("%e", min(min.val)), ") is smaller than zero.
This may be a symptom that the model is not
identified.")
warning(lav_txt2message(txt))
}
}
}
} else {
if(lavoptions$warn) {
txt <- "Could not compute standard errors! The information matrix
could not be inverted. This may be a symptom that the model
is not identified."
warning(lav_txt2message(txt))
}
VarCov <- NULL
}
VarCov
}
lav_model_vcov_se <- function(lavmodel, lavpartable, VCOV = NULL,
BOOT = NULL) {
if(is.null(VCOV)) {
se <- rep(as.numeric(NA), [email protected])
se[ lavpartable$free == 0L ] <- 0.0
return(se)
}
x.var <- diag(VCOV)
x.var[x.var < 0] <- as.numeric(NA)
x.se <- sqrt( x.var )
GLIST <- lav_model_x2GLIST(lavmodel = lavmodel, x = x.se, type = "free")
se <- lav_model_get_parameters(lavmodel = lavmodel, GLIST = GLIST,
type = "user", extra = FALSE)
se[ which(lavpartable$free == 0L) ] <- 0.0
def.idx <- which(lavpartable$op == ":=")
if(length(def.idx) > 0L) {
if(!is.null(BOOT)) {
BOOT.def <- apply(BOOT, 1L, [email protected])
if(length(def.idx) == 1L) {
BOOT.def <- as.matrix(BOOT.def)
} else {
BOOT.def <- t(BOOT.def)
}
def.cov <- cov(BOOT.def )
} else {
x <- lav_model_get_parameters(lavmodel = lavmodel, type = "free")
JAC <- try(lav_func_jacobian_complex(func = [email protected], x = x),
silent=TRUE)
if(inherits(JAC, "try-error")) {
JAC <- lav_func_jacobian_simple(func = [email protected], x = x)
}
def.cov <- JAC %*% VCOV %*% t(JAC)
}
diag.def.cov <- diag(def.cov)
diag.def.cov[ diag.def.cov < 0 ] <- as.numeric(NA)
se[def.idx] <- sqrt(diag.def.cov)
}
se
} |
mtcars
by(data, INDICES, FUN, ..., simplify = TRUE)
split(mtcars, mtcars$am)
mtcars$am; mtcars$mpg
by(mtcars$mpg,mtcars$am, FUN=mean )
by(warpbreaks[, 1:2], warpbreaks[,"tension"], summary)
by(warpbreaks[, 1:2], warpbreaks[,"tension"], mean)
by(iris$Sepal.Width , iris$Species , summary )
by(iris, iris$Species, length)
by(x=mtcars, mtcars$am, function(x) mean(x))
by(iris, iris$Species, mean)
by(iris$Sepal.Width, iris$Species, mean)
df=data.frame(a=c(1:15),b=c(1,1,2,2,2,2,3,4,4,4,5,5,6,7,7))
by(df,factor(df$b),sum)
df
df2=data.frame(a=c(1:15),k=c(1:15),b=c(1,1,2,2,2,2,3,4,4,4,5,5,6,7,7))
by(df2,factor(df2$b),sum)
df2
?by
bo1 = by(data= mtcars[,'mpg'], INDICES=mtcars[,'cyl'], summary)
str(bo1)
by(data= mtcars[,'mpg'], INDICES=mtcars[,'cyl'], max)
by(data= mtcars[,'disp'], INDICES=mtcars[,c('vs','am')], mean)
by(data= mtcars[,c('disp','wt')], INDICES=mtcars[,c('vs','am')], mean)
aggregate(mtcars[,c('disp','wt')], mtcars[,c('vs','am')], mean)
by(data= mtcars[,c('disp','wt')], INDICES=mtcars[,c('vs','am')], summary) |
SUE.fitted.values <-
function(fit){
mf=model.frame(formula=fit$p$formula, data=fit$p$data)
z=(as.matrix(mf[,-1])%*%as.matrix(fit$coeff[-1])+fit$coeff[1])
z
} |
require_a <- function (traits, value, pcall = NULL) {
" character -> a -> call|string -> boolean
test if the value has the required traits,
if it doesn't throw a helpful error. decorate with
pcall so the error will look like it came from the user's
function of choice."
valid_pcall <-
!is.null(pcall) && (
is.character(pcall) ||
is.call(pcall))
pcall <- if (valid_pcall) {
deparse_to_string(pcall)
} else {
deparse_to_string( sys.call() )
}
force_error_handler <- function (error) {
stop(paste0(pcall, ": ", error$message), call. = FALSE)
}
tryCatch(
{ force(traits) },
error = force_error_handler)
tryCatch(
{ force(value) },
error = force_error_handler)
tryCatch(
{ force(pcall) },
error = force_error_handler)
if (missing(value)) {
report$missing_value(pcall)
}
if (missing(traits)) {
report$missing_traits(pcall)
}
if (!is.character(traits)) {
report$traits_not_character(pcall, traits)
}
(length(traits) == 0) ||
check_traits(
validate_traits(
traits,
pcall
),
value, pcall)
}
validate_traits <- function (trait_string, pcall) {
"character -> call -> [character]
takes the raw traits string, and
transforms it into a list of
trait groups to test"
delimiter <- '[ \t\n\r]+'
lapply(
trait_string,
function (compound_trait) {
traits <- strsplit(compound_trait, split = delimiter)[[1]]
invalid <- setdiff(
traits,
c(trait_tests$valid_traits,
paste0("!", trait_tests$valid_traits)) )
if (length(invalid) == 0) {
traits
} else {
report$invalid_traits(pcall, invalid)
}
})
}
check_traits <- function (trait_vector, value, pcall) {
"does the value have at least one
group of traits?
if yes, return true. otherwise, throw a descriptive error."
error_handler <- function (error) {
report$error_encountered(
pcall, error,
inputs = list(
value = value,
value = trait))
}
warning_handler <- function (warning) {
report$warning_encountered(
pcall, warning,
inputs = list(
value = value,
trait = trait))
}
for (compound_trait in trait_vector) {
compound_trait_matched <- TRUE
for (trait in compound_trait) {
trait_matched <- tryCatch({
has_trait <- if (substring(trait, 1, 1) == "!") {
trait_tests[[ substring(trait, 2) ]]
} else {
trait_tests[[trait]]
}
trait_matched <- has_trait(value)
if (!is_boolean(trait_matched)) {
report$non_boolean(
pcall,
inputs = list(
value = value,
trait = trait),
actual = trait_matched)
}
if (substring(trait, 1, 1) == "!") {
!trait_matched
} else {
trait_matched
}
},
error = error_handler,
warning = warning_handler
)
if (!trait_matched) {
compound_trait_matched <- FALSE
break
}
}
if (compound_trait_matched) {
break
}
}
compound_trait_matched ||report$no_match(
pcall, value, trait_vector)
}
implemented_traits <- function () {
"print all traits available in the current version"
cat('currently implemented traits:\n',
paste0(trait_tests$valid_traits, collapse = ", ")
)
}
add_trait <- function (name, trait_test) {
"string -> (a -> boolean) -> null
side-effectful. add a new trait to the trait tests"
pcall <- sys.call()
require_a("string", name, pcall)
require_a("unary function", trait_test)
if (name %in% trait_tests$valid_traits) {
report$trait_overridden(pcall, name)
}
trait_tests[[name]] <- trait_test
trait_tests$valid_traits <- ls(trait_tests)
} |
library(cif)
qtr2<-iculomb
ssize <-nrow(qtr2)
cal <- seq(from=as.Date("2020-02-24"), by="days",length.out = ssize)
ic = log(qtr2$terapia_intensiva)
hws=log(qtr2$ricoverati_con_sintomi)
y <- cbind(ic,hws)
colnames(y) <- make.names(c("ic","hws"))
ssize <-nrow(qtr2)
cal <- seq(from=as.Date("2020-02-24"), by="days",length.out = ssize)
n<- nrow(y); nlag=4; nhstar=0; booseas <- F;
pntdates <-NA; drop1<-NA; drop2<-NA;
npl<-c(nrow(y), ncol(y), nlag)
breaks <- NA
ndet=c(2,1); begtrim=7; endtrim=7; nforecast=7; npred=0;
befpn<-c(begtrim,endtrim,nforecast,npred,nhstar)
longcal<-seq(from=cal[1], by="days",length.out = n+npred)
det1 <- ec.datadet1(n,befpn,breaks)
det2 <- ec.datadet2(det1,booseas,pntdates)
ymat <- ec.datalag(y,nlag)
oua1<-ec.main(y=y,ndet=ndet,nlag,befpn,breaks,booseas,
pntdates,drop1=NA,drop2=NA,cal=cal)
ix <- t(as.matrix(cbind(oua1$tablefap[c(1,3,4,6,9,10,13,14),3])))
barplot(ix,
main = "Performance of the VEC model relative to the Random Walk",
xlab = "",
col = c("red","green","blue"),
beside = TRUE
)
abline(h=1, col="blue", lty=2, lwd=1)
ix <- t(as.matrix(cbind(oua1$tablefap[c(1,3,4,6,9,10,13,14),3])))
rownames(ix)<-c("Model1")
myylim<-c(min(ix),max(ix)); yvec<-c(0.1,0.3,1,3,10,30)
plot(y=ix,x=seq(1:8),type="p",ylim=myylim,main="VEC model compared to the Random Walk",font.main=1,pch=19,col="blue",ylab="",xlab="",xaxt="n", yaxt="n");
xtick<-seq(1:8)
xticklab<-colnames(ix)
text(x=xtick, par("usr")[3],
labels = xticklab, srt = 0, pos = 1, offset=1, xpd = TRUE)
ytick<- round(seq(min(ix),max(ix),length.out = 5),digits = 2)
yticklab<-round(seq(min(ix),max(ix),length.out = 5),digits = 2)
axis(side=2, at=ytick, labels = FALSE)
text(par("usr")[1], y=ytick,
labels = yticklab, srt = 0, pos = 2, xpd = TRUE)
ytick1<- 1
yticklab1<-1
axis(side=2, at=ytick1, labels = FALSE)
text(par("usr")[1], y=ytick1,
labels = yticklab1, srt = 0, pos = 2, xpd = TRUE)
abline(h=1, col="black", lty=2, lwd=1) |
rfa <- function(pers_obj, na_treat=0, tr=FALSE ,use="complete.obs", res="stdr", method="pearson", cor=TRUE){
obj <- expscore(pers_obj, na_treat=na_treat)
if (tr==TRUE) {obj <- lapply(obj,t)}
Eni <- obj$Eni
Yni <- obj$Yni
Zni <- obj$Zni
Y2ni <- obj$Y2ni
Z2ni <- obj$Z2ni
if( !(any(res==c("sr","stdr","srsq","stdrsq"))) ){stop("wrong type of residuals selected","\n", "check argument 'res'","\n")}
if( class(cor)!="logical" ){stop("argument 'cor' must be of class \"logical\"","\n")}
if(res=="sr"){resi <- Yni}
if(res=="stdr"){resi <- Zni}
if(res=="srsq"){resi <- Y2ni}
if(res=="stdrsq"){resi <- Z2ni}
if(cor==TRUE){matr <- cor(x=resi, use=use, method=method)}
if(cor==FALSE){matr <- cov(x=resi, use=use, method=method)}
eig <- eigen(matr)
rownames(eig$vectors) <- row.names(matr)
Cname<-nchar(paste(dim(matr)[1]))
colnames(eig$vectors) <-paste("Comp",formatC(1:dim(matr)[1], width = Cname, format = "d", flag = "0"),sep=".")
eigen.values <- eig$values
variance.total <- sum(eig$values)
variance.proportion <- eig$values/sum(eig$values)
loadings <- eig$vectors
erg <- list(pers_obj=pers_obj, pca=list(eigen.values=eigen.values, loadings=loadings, variance.proportion=variance.proportion, variance.total=variance.total, transposed=tr))
class(erg) <- c("rfa","list")
return(erg)
} |
harvest <- tsibble(
year = rep(2010:2012, 2),
fruit = rep(c("kiwi", "cherry"), each = 3),
kilo = sample(1:10, size = 6),
key = fruit, index = year
)
test_that("error for existing `.id`", {
expect_error(
slide_tsibble(harvest, .size = 2, .id = "kilo"),
"Can't overwrite existing column `kilo`."
)
})
test_that("slide_tsibble()", {
res <- slide_tsibble(harvest, .size = 2)
expect_equal(NROW(res), NROW(harvest) + 2L)
expect_named(res, c(names(harvest), ".id"))
expect_equal(res$.id, c(rep(1:2, each = 4)))
})
test_that("tile_tsibble()", {
res <- tile_tsibble(harvest, .size = 2, .id = "tile_id")
expect_equal(NROW(res), NROW(harvest))
expect_named(res, c(names(harvest), "tile_id"))
expect_equal(res$tile_id, c(rep(1, 4), rep(2, 2)))
})
test_that("stretch_tsibble()", {
res <- stretch_tsibble(harvest)
expect_equal(NROW(res), NROW(harvest) * 2)
expect_equal(res$.id, c(rep(1, 2), rep(2, 4), rep(3, 6)))
}) |
LASheader <- function(data = list()) {return(new("LASheader", data))}
as.list.LASheader <- function(x, ...)
{
PHB <- x@PHB
VLR <- list(`Variable Length Records` = x@VLR)
EVLR <- list(`Extended Variable Length Records` = x@EVLR)
return(c(PHB, VLR, EVLR))
} |
context("fpkm")
test_that("fpkm works as expected", {
dds <- DESeqDataSetFromMatrix(matrix(c(1:4,2 * 1:4), ncol=2), DataFrame(x=1:2), ~ 1)
rowRanges(dds) <- GRanges("1", IRanges(start=0:3 * 10 + 1, width=10))
expect_equal(fpkm(dds)[1,1], 1e5 * 100, tolerance=.1)
expect_equal(fpm(dds)[1,1], 1e5, tolerance=.1)
expect_equal(fpm(dds, robust=FALSE)[1,1], 1e5)
}) |
hybridSearchAlgorithm <- function(hybridSearcher, params=list()){
if(!is.list(params)){
stop('The hybrid search algorithm parameters are not in a list.')
}
algorithms <- list('LCC')
switch(hybridSearcher,
'LCC'={
do.call(LCC,params)
},
{
stop('The hybrid search algorithm passed as a parameter is not supported by the package.')
}
)
}
attr(hybridSearchAlgorithm,'shortName') <- "hybridSearchAlgorithm"
attr(hybridSearchAlgorithm,'name') <- "Hybrid search algorithm generator"
attr(hybridSearchAlgorithm,'methods') <- c('LCC') |
NULL
print.verbatim <- function(x, ...)
{
for(i in seq_along(x))
{
cat("```\n")
print(x[[i]], ...)
cat("\n```\n\n")
}
invisible(x)
}
verbatim <- function(...)
{
structure(list(...), class = "verbatim")
}
code.chunk <- function(..., chunk.opts = "r")
{
if(!is.character(chunk.opts) || length(chunk.opts) != 1) stop("'chunk.opts' should be a single character string")
Call <- match.call()
Call[[1]] <- NULL
Call$chunk.opts <- NULL
if(length(Call) == 0) Call[[1]] <- ""
set_attr(set_attr(Call, "chunk.opts", chunk.opts), "class", c("code.chunk", class(Call)))
}
print.code.chunk <- function(x, ...)
{
cat("```{", attr(x, "chunk.opts"), "}\n", sep = "")
lapply(x, function(elt) if(is.character(elt)) cat(elt, "\n", sep = "") else print(elt))
cat("```\n\n")
} |
clean_runs <- function(runs = ls_runs(runs_dir = runs_dir),
runs_dir = getOption("tfruns.runs_dir", "runs"),
confirm = interactive()) {
if (!missing(runs))
run_dirs <- as_run_dir(runs)
else
run_dirs <- list_run_dirs(runs_dir = runs_dir)
if (length(run_dirs) == 0) {
message("No runs found to clean.")
return(invisible(NULL))
}
archive_dir <- file.path(runs_dir, "archive")
if (confirm) {
prompt <- readline(sprintf("Move %d run directories to %s? [Y/n]: ",
length(run_dirs), archive_dir))
if (nzchar(prompt) && tolower(prompt) != 'y')
return(invisible(NULL))
}
if (!utils::file_test("-d", archive_dir))
dir.create(archive_dir, recursive = TRUE)
file.rename(run_dirs, file.path(archive_dir, basename(run_dirs)))
message(sprintf('Moved %d runs to %s (purge_runs() to remove permanently)',
length(run_dirs), archive_dir))
invisible(NULL)
}
purge_runs <- function(runs_dir = getOption("tfruns.runs_dir", "runs"),
confirm = interactive()) {
archive_dir <- file.path(runs_dir, "archive")
run_dirs <- list_run_dirs(runs_dir = archive_dir)
if (confirm) {
prompt <- readline(sprintf("Permanently remove %d run directories from %s? [Y/n]: ",
length(run_dirs), archive_dir))
if (nzchar(prompt) && tolower(prompt) != 'y')
return(invisible(NULL))
}
unlink(run_dirs, recursive = TRUE)
message(sprintf("Permanently removed %d runs", length(run_dirs)))
invisible(NULL)
} |
library(checkargs)
context("isPositiveIntegerOrNaOrNanOrInfVectorOrNull")
test_that("isPositiveIntegerOrNaOrNanOrInfVectorOrNull works for all arguments", {
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isPositiveIntegerOrNaOrNanOrInfVectorOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
}) |
tam_calc_exp <- function( rprobs, A, np, est.xsi.index, itemwt,
indexIP.no, indexIP.list2, Avector )
{
CC <- dim(rprobs)[2]
TP <- dim(rprobs)[3]
NXSI <- dim(A)[3]
NI <- dim(A)[1]
rprobsL1 <- as.vector( rprobs )
AL1 <- Avector
rprobsL1 <- tam_rcpp_calc_exp_redefine_vector_na( A=rprobsL1, val=0 )
res <- tam_rcpp_calc_exp( NP=np, rprobs=rprobsL1, A=AL1, INDEXIPNO=indexIP.no,
INDEXIPLIST2=indexIP.list2, ESTXSIINDEX=est.xsi.index, C=CC,
ITEMWT=itemwt, NR=NI*CC, TP=TP )
return(res)
}
calc_exp_TK3 <- tam_calc_exp |
cross_correlation <- function(X = NULL, wl = 512, bp = "pairwise.freq.range", ovlp = 70, dens = NULL,
wn ='hanning', cor.method = "pearson", parallel = 1,
path = NULL, pb = TRUE, na.rm = FALSE, cor.mat = NULL, output = "cor.mat",
compare.matrix = NULL, type = "spectrogram", nbands = 40, method = 1)
{
on.exit(pbapply::pboptions(type = .Options$pboptions$type), add = TRUE)
argms <- methods::formalArgs(cross_correlation)
opt.argms <- if(!is.null(getOption("warbleR"))) getOption("warbleR") else SILLYNAME <- 0
names(opt.argms)[names(opt.argms) == "wav.path"] <- "path"
opt.argms <- opt.argms[!sapply(opt.argms, is.null) & names(opt.argms) %in% argms]
call.argms <- as.list(base::match.call())[-1]
opt.argms <- opt.argms[!names(opt.argms) %in% names(call.argms)]
if (length(opt.argms) > 0)
for (q in 1:length(opt.argms))
assign(names(opt.argms)[q], opt.argms[[q]])
if (is.null(path)) path <- getwd() else
if (!dir.exists(path) & !is_extended_selection_table(X))
stop("'path' provided does not exist") else
path <- normalizePath(path)
if (!any(is.data.frame(X), is_selection_table(X), is_extended_selection_table(X))) stop("X is not of a class 'data.frame', 'selection_table' or 'extended_selection_table'")
if (is_extended_selection_table(X) & length(unique(attr(X, "check.results")$sample.rate)) > 1) stop("all wave objects in the extended selection table must have the same sampling rate (they can be homogenized using resample_est_waves())")
if (any(is.na(c(X$end, X$start)))) stop("NAs found in start and/or end")
if (nrow(X) == 1 & is.null(compare.matrix)) stop("you need more than one selection to do cross-correlation")
if (bp[1] == "pairwise.freq.range" & is.null(X$bottom.freq)) stop("'bp' must be supplied when no frequency range columns are found in 'X' (bottom.freq & top.freq)")
if(is.null(bp[1])) stop("'bp' must be supplied")
if (!is.null(dens)) write(file = "", x = "'dens' has been deprecated and will be ignored")
if (!is.null(cor.mat)) write(file = "", x = "'dens' has been deprecated and will be ignored")
if (!any(output %in% c("cor.mat", "list"))) stop("'output' must be either 'cor.mat' or 'list'")
if (!is.numeric(wl)) stop("'wl' must be a numeric vector of length 1") else {
if (!is.vector(wl)) stop("'wl' must be a numeric vector of length 1") else{
if (!length(wl) == 1) stop("'wl' must be a numeric vector of length 1")}}
if (!is.numeric(ovlp)) stop("'ovlp' must be a numeric vector of length 1") else {
if (!is.vector(ovlp)) stop("'ovlp' must be a numeric vector of length 1") else{
if (!length(ovlp) == 1) stop("'ovlp' must be a numeric vector of length 1")}}
if (!is_extended_selection_table(X)){
fs <- list.files(path = path, pattern = "\\.wav$", ignore.case = TRUE)
if (length(unique(X$sound.files[(X$sound.files %in% fs)])) != length(unique(X$sound.files)))
write(file = "", x = paste(length(unique(X$sound.files))-length(unique(X$sound.files[(X$sound.files %in% fs)])),
".wav file(s) not found"))
d <- which(X$sound.files %in% fs)
if (length(d) == 0){
stop("The .wav files are not in the working directory")
} else {
X <- X[d, ]
}
}
if (!is.numeric(parallel)) stop("'parallel' must be a numeric vector of length 1")
if (any(!(parallel %% 1 == 0),parallel < 1)) stop("'parallel' should be a positive integer")
if (is_extended_selection_table(X) & length(unique(attr(X, "check.results")$sample.rate)) > 1) stop("sampling rate must be the same for all selections")
X$selection.id <- paste(X$sound.files, X$selec, sep = "-")
if (!is.null(compare.matrix))
{ X <- X[X$selection.id %in% unique(c(compare.matrix)), , drop = FALSE]
if (!any(names(call.argms) == "method"))
method <- 2
}
if (pb){
max.stps <- getOption("warbleR.steps")
if (is.null(max.stps))
if (method == 1) max.stps <- 2 else
max.stps <- 1
}
if (is.null(compare.matrix))
spc.cmbs.org <- spc.cmbs <- t(combn(X$selection.id, 2)) else
{
if (all(c(compare.matrix) %in% X$selection.id))
spc.cmbs.org <- spc.cmbs <- compare.matrix else {
complt.sf <- setdiff(c(compare.matrix), X$selection.id)
wvdr <- duration_wavs(files = complt.sf, path = path)
names(wvdr)[2] <- "end"
wvdr$start <- 0
wvdr$selec <- "whole.file"
wvdr$selection.id <- paste(wvdr$sound.files, wvdr$selec, sep = "-")
out <- lapply(1:nrow(wvdr), function(x) {
sls <- setdiff(c(compare.matrix[compare.matrix[, 1] %in% wvdr$sound.files[x] | compare.matrix[, 2] %in% wvdr$sound.files[x], ]), wvdr$sound.files[x])
suppressWarnings(df <- data.frame(
wvdr[x, ],
channel = min(X$channel[X$selection.id %in% sls]),
bottom.freq = min(X$bottom.freq[X$selection.id %in% sls]),
top.freq = max(X$top.freq[X$selection.id %in% sls])
))
return(df)
})
wvdr <- do.call(rbind, out)
int.nms <- intersect(names(X), names(wvdr))
X <- rbind(as.data.frame(X)[, int.nms, drop = FALSE], wvdr[, int.nms])
for (i in complt.sf)
compare.matrix[compare.matrix == i] <- paste(i, "whole.file", sep = "-")
spc.cmbs.org <- spc.cmbs <- compare.matrix
}
}
spc_FUN <- function(j, pth, W, wlg, ovl, w, nbnds) {
clp <- warbleR::read_wave(X = W, index = j, path = pth)
if (type == "spectrogram")
spc <- seewave::spectro(wave = clp, wl = wlg, ovlp = ovl, wn = w, plot = FALSE, fftw = TRUE, norm = TRUE)
if (type == "mfcc")
{
spc <- melfcc(clp, nbands = nbnds, hoptime = (wlg / [email protected]) * (ovl / 100), wintime = wlg / [email protected], dcttype = "t3", fbtype = "htkmel", spec_out = TRUE)
names(spc)[2] <- "amp"
spc$amp <- t(spc$amp)
spc$freq <- seq(0, [email protected] / 2000, length.out = nbnds)
}
spc$amp[is.infinite(spc$amp)] <- NA
return(spc)
}
if (method == 1){
if (pb)
if (type == "spectrogram")
write(file = "", x = paste0("creating spectrogram matrices (step 1 of ", max.stps,"):")) else
write(file = "", x = paste0("creating MFCC matrices (step 1 of ", max.stps,"):"))
pbapply::pboptions(type = ifelse(pb, "timer", "none"))
if (Sys.info()[1] == "Windows" & parallel > 1)
cl <- parallel::makePSOCKcluster(getOption("cl.cores", parallel)) else cl <- parallel
spcs <- pbapply::pblapply(X = 1:nrow(X), cl = cl, function(e) spc_FUN(j = e, pth = path, W = X, wlg = wl, ovl = ovlp, w = wn, nbnds = nbands))
if (!is_extended_selection_table(X) & length(unique(sapply(spcs, function(x) length(x$freq)))) > 1) stop("sampling rate must be the same for all selections")
names(spcs) <- X$selection.id
}
XC_FUN <- function(spc1, spc2, b = bp, cm = cor.method){
spc1$amp <- spc1$amp[spc1$freq >= b[1] & spc1$freq <= b[2], ]
spc2$amp <- spc2$amp[which(spc2$freq >= b[1] & spc2$freq <= b[2]), ]
if(ncol(spc1$amp) > ncol(spc2$amp)) {
lg.spc <- spc1$amp
shrt.spc <- spc2$amp
} else {
lg.spc <- spc2$amp
shrt.spc <- spc1$amp
}
shrt.lgth <- ncol(shrt.spc) - 1
stps <- ncol(lg.spc) - ncol(shrt.spc)
if (stps <= 1) stps <- 1 else stps <- 1:stps
cors <- sapply(stps, function(x, cor.method = cm) {
warbleR::try_na(cor(c(lg.spc[, x:(x + shrt.lgth)]), c(shrt.spc), method = cm, use ='pairwise.complete.obs'))
})
return(cors)
}
ord.shuf <- sample(1:nrow(spc.cmbs))
spc.cmbs <- spc.cmbs[ord.shuf, , drop = FALSE]
if (pb)
write(file = "", x = paste0("running cross-correlation (step ", max.stps," of ", max.stps,"):"))
if (Sys.info()[1] == "Windows" & parallel > 1)
cl <- parallel::makePSOCKcluster(getOption("cl.cores", parallel)) else cl <- parallel
xcrrs <- pbapply::pblapply(X = 1:nrow(spc.cmbs), cl = cl, FUN = function(j, BP = bp, cor.meth = cor.method) {
if (BP[1] %in% c("pairwise.freq.range", "frange"))
BP <- c(min(X$bottom.freq[X$selection.id %in% spc.cmbs[j, ]]), max(X$top.freq[X$selection.id %in% spc.cmbs[j, ]]))
if (method == 1) {
spc1 <- spcs[[spc.cmbs[j, 1]]]
spc2 <- spcs[[spc.cmbs[j, 2]]]
}
if (method == 2) {
spc1 <- spc_FUN(j = which(X$selection.id == spc.cmbs[j, 1]), pth = path, W = X, wlg = wl, ovl = ovlp, w = wn, nbnds = nbands)
spc2 <- spc_FUN(j = which(X$selection.id == spc.cmbs[j, 2]), pth = path, W = X, wlg = wl, ovl = ovlp, w = wn, nbnds = nbands)
}
XC_FUN(spc1 = spc1, spc2 = spc2, b = BP, cm = cor.meth)
})
xcrrs <- xcrrs[order(ord.shuf)]
mx.xcrrs <- sapply(xcrrs, max, na.rm = TRUE)
if (is.null(compare.matrix)){
mat <- matrix(nrow = nrow(X), ncol = nrow(X))
mat[] <- 1
colnames(mat) <- rownames(mat) <- X$selection.id
mat[lower.tri(mat, diag=FALSE)] <- mx.xcrrs
mat <- t(mat)
mat[lower.tri(mat, diag=FALSE)] <- mx.xcrrs
if (na.rm)
{
com.case <- intersect(rownames(mat)[stats::complete.cases(mat)], colnames(mat)[stats::complete.cases(t(mat))])
if (length(which(is.na(mat))) > 0)
warning(paste(length(which(is.na(mat))), "pairwise comparisons failed and were removed"))
mat <- mat[rownames(mat) %in% com.case, colnames(mat) %in% com.case]
if (nrow(mat) == 0) stop("Not selections remained after removing NAs (na.rm = TRUE)")
}
} else {
mat <- data.frame(compare.matrix, score = mx.xcrrs)
if (na.rm) mat <- mat[!is.infinite(mat$scores), ]
}
if (output == "list") {
cor.lst <- lapply(1:nrow(spc.cmbs.org), function(x)
{
durs <- c(
(X$end - X$start)[X$selection.id == spc.cmbs.org[x, 1]],
(X$end - X$start)[X$selection.id == spc.cmbs.org[x, 2]]
)
df <- data.frame(dyad = paste(spc.cmbs.org[x, ], collapse = "/"),
sound.files = spc.cmbs.org[x, which.max(durs)],
template = spc.cmbs.org[x, which.min(durs)],
time = if (!is.null( xcrrs[[x]])) c(X$start[X$selection.id == spc.cmbs.org[x, 1]], X$start[X$selection.id == spc.cmbs.org[x, 2]])[which.max(durs)] + seq(min(durs)/2, max(durs) - min(durs)/2, length.out = length(xcrrs[[x]])) else NA,
score = if (!is.null(xcrrs[[x]])) xcrrs[[x]] else NA)
return(df)
})
cor.table <- do.call(rbind, cor.lst)
if (na.rm)
{
if (exists("com.case"))
cor.table <- cor.table[cor.table$sound.files %in% com.case & cor.table$template %in% com.case, ]
errors <- cor.table[is.na(cor.table$score), ]
errors$score <- NULL
cor.table <- cor.table[!is.infinite(cor.table$score), ]
}
}
if (output == "cor.mat") return(mat) else{
output_list <- list(max.xcorr.matrix = mat, scores = cor.table, selection.table = X, hop.size.ms = read_wave(X, 1, header = TRUE, path = path)$sample.rate / wl, errors = if (na.rm) errors else NA)
class(output_list) <- c("list", "xcorr.output")
return(output_list)
}
}
xcorr <- cross_correlation |
"duane" <- function(t, init = c(1, 1), method = "Nelder-Mead", maxit = 10000, ...)
{
eq1 <- function(rho, theta, t)
{
n <- length(t)
t <- cumsum(t)
i <- seq(along = t)
tn <- t[length(t)]
rho - n / (tn^theta)
}
eq2 <- function(rho, theta, t)
{
i <- seq(along = t[1:length(t) - 1])
n <- length(t)
t <- cumsum(t)
tn <- t[length(t)]
theta - n / (sum(log(tn / t[i])))
}
global <- function(vec, t)
{
rho <- vec[1]
theta <- vec[2]
v1 <- eq1(rho, theta, t)^2
v2 <- eq2(rho, theta, t)^2
v1 + v2
}
res <- optim(init, global, t = t, method = method,
control = list(maxit = maxit, ...))
rho <- res$par[1]
theta <- res$par[2]
return(list(rho = rho, theta = theta))
}
"duane.plot" <- function(rho, theta, t, xlab = "time",
ylab = "Cumulated failures and estimated mean value function",
main = NULL)
{
plot(cumsum(t), 1:length(t), type = "o", pch = 3, cex = 0.8, xlab = xlab,
ylab = ylab)
lines(cumsum(t), mvf.duane(rho, theta, cumsum(t)), lty = 2, type = "o",
pch = 4, cex = 0.8, col = "mediumblue")
legend("bottomright", c("Data", "Duane"), col = c("black", "mediumblue"), pch = c(3, 4),
lty = c(1, 2))
if(!is.null(main))
{
title(main)
}
}
"littlewood.verall" <- function(t, linear = T, init = c(1, 1, 1), method = "Nelder-Mead",
maxit = 10000, ...)
{
if(linear == T)
{
eq1 <- function(theta0, theta1, rho, t)
{
n <- length(t)
i <- seq(along = t)
s1 <- sum(log(theta0 + theta1 * i))
s2 <- sum(log(theta0 + theta1 * i + t[i]))
(n / rho) + s1 - s2
}
eq2 <- function(theta0, theta1, rho, t)
{
i <- seq(along = t)
s1 <- rho * sum(1 / (theta0 + theta1 * i))
s2 <- (rho + 1) * sum(1 / (theta0 + theta1 * i + t[i]))
s1 - s2
}
eq3 <- function(theta0, theta1, rho, t)
{
i <- seq(along = t)
s1 <- rho * sum(i / (theta0 + theta1 * i))
s2 <- (rho + 1) * sum(i / (theta0 + theta1 * i + t[i]))
s1 - s2
}
global.linear <- function(vec, t)
{
theta0 <- vec[1]
theta1 <- vec[2]
rho <- vec[3]
v1 <- eq1(theta0, theta1, rho, t)^2
v2 <- eq2(theta0, theta1, rho, t)^2
v3 <- eq3(theta0, theta1, rho, t)^2
v1 + v2 + v3
}
res <- optim(init, global.linear, t = t, method = method,
control = list(maxit = maxit, ...))
theta0 <- res$par[1]
theta1 <- res$par[2]
rho <- res$par[3]
res <- optim(c(theta0, theta1, rho), global.linear, t = t, method = method,
control = list(maxit = maxit, ...))
}
else
{
eq1 <- function(theta0, theta1, rho, t)
{
n <- length(t)
i <- seq(along = t)
s1 <- sum(log(theta0 + theta1 * i^2))
s2 <- sum(log(theta0 + theta1 * i^2 + t[i]))
(n / rho) + s1 - s2
}
eq2 <- function(theta0, theta1, rho, t)
{
i <- seq(along = t)
s1 <- rho * sum(1 / (theta0 + theta1 * i^2))
s2 <- (rho + 1) * sum(1 / (theta0 + theta1 * i^2 + t[i]))
s1 - s2
}
eq3 <- function(theta0, theta1, rho, t)
{
i <- seq(along = t)
s1 <- rho * sum((i^2) / (theta0 + theta1 * i^2))
s2 <- (rho + 1) * sum((i^2) / (theta0 + theta1 * i^2 + t[i]))
s1 - s2
}
global.quadratic <- function(vec, t)
{
theta0 <- vec[1]
theta1 <- vec[2]
rho <- vec[3]
v1 <- eq1(theta0, theta1, rho, t)^2
v2 <- eq2(theta0, theta1, rho, t)^2
v3 <- eq3(theta0, theta1, rho, t)^2
v1 + v2 + v3
}
res <- optim(init, global.quadratic, t = t, method = method,
control = list(maxit = maxit, ...))
theta0 <- res$par[1]
theta1 <- res$par[2]
rho <- res$par[3]
res <- optim(c(theta0, theta1, rho), global.quadratic, t = t, method = method,
control = list(maxit = maxit, ...))
}
theta0 <- res$par[1]
theta1 <- res$par[2]
rho <- res$par[3]
return(list(theta0 = theta0, theta1 = theta1, rho = rho))
}
"littlewood.verall.plot" <- function(theta0, theta1, rho, t, linear = T, xlab = "time",
ylab = "Cumulated failures and estimated mean value function", main = NULL)
{
if(linear == T)
{
mvf.ver <- mvf.ver.lin(theta0, theta1, rho, cumsum(t))
plot(cumsum(t), 1:length(t), type = "o", pch = 3, cex = 0.8, xlab=xlab,
ylab = ylab)
}
else
{
mvf.ver <- mvf.ver.quad(theta0, theta1, rho, cumsum(t))
plot(cumsum(t), 1:length(t), type = "o", pch = 3, cex = 0.8, xlab = xlab,
ylab = ylab)
}
lines(cumsum(t), mvf.ver, lty=2, type = "o", pch = 4, cex = 0.8, col="mediumblue")
legend("bottomright", c("Data", "Littlewood-Verall"), col=c("black", "mediumblue"),
pch=c(3, 4), lty=c(1, 2))
if(!is.null(main))
{
title(main)
}
}
"moranda.geometric" <- function(t, init = c(0, 1), tol = .Machine$double.eps^0.25)
{
Dhat <- function(phi, t)
{
n <- length(t)
i <- seq(along = t)
return(phi * n / (sum(phi^i * t[i])))
}
phihat <- function(phi, t)
{
i <- seq(along = t)
n <- length(t)
return((sum(i * (phi^i) * t[i]) / sum((phi^i) * t[i]) - (n + 1) / 2)^2)
}
min <- optimize(phihat, init, tol = tol, t = t)
phi <- min$minimum
D <- Dhat(phi, t)
theta<- -log(phi)
return(list(D = D, theta = theta))
}
"moranda.geometric.plot" <- function(D, theta, t, xlab = "time",
ylab = "Cumulated failures and estimated mean value function", main = NULL)
{
plot(cumsum(t), 1:length(t), type = "o", pch = 3, cex = 0.8, xlab = xlab,
ylab = ylab)
lines(cumsum(t), mvf.mor(D, theta, cumsum(t)), lty = 2, type = "o", pch = 4,
cex = 0.8, col = "mediumblue")
legend("bottomright", c("Data", "Moranda-Geometric"), col=c("black", "mediumblue"),
pch=c(3, 4), lty=c(1, 2))
if(!is.null(main))
{
title(main)
}
}
"musa.okumoto" <- function(t, init = c(0, 1), tol = .Machine$double.eps^0.25)
{
theta0hat <- function(theta1, t)
{
n <- length(t)
t <- cumsum(t)
tn <- t[length(t)]
return(n / log(1 + theta1 * tn))
}
theta1hat <- function(theta1, t)
{
i <- seq(along = t)
n <- length(t)
t <- cumsum(t)
tn <- t[length(t)]
return((1 / theta1 * sum(1 / (1 + theta1 * t[i])) - n * tn /
((1 + theta1 * tn) * log(1 + theta1 * tn)))^2)
}
min <- optimize(theta1hat, init, tol = tol, t = t)
theta1 <- min$minimum
theta0 <- theta0hat(theta1, t)
return(list(theta0 = theta0, theta1 = theta1))
}
"musa.okumoto.plot" <- function(theta0, theta1, t, xlab = "time",
ylab = "Cumulated failures and estimated mean value function", main = NULL)
{
plot(cumsum(t), 1:length(t), type = "o", pch = 3, cex = 0.8, xlab = xlab,
ylab = ylab)
lines(cumsum(t), mvf.musa(theta0, theta1, cumsum(t)), lty = 2, type = "o",
pch = 4, cex = 0.8, col = "mediumblue")
legend("bottomright", c("Data", "Musa-Okumoto"), col = c("black", "mediumblue"),
pch = c(3, 4), lty = c(1, 2))
if(!is.null(main))
{
title(main)
}
}
"total.plot" <- function(duane.par1, duane.par2, lit.par1, lit.par2, lit.par3, mor.par1, mor.par2, musa.par1,
musa.par2, t, linear = T, xlab = "time",
ylab = "Cumulated failures and estimated mean value functions", main = NULL)
{
if(linear == T)
{
mvf.ver <- mvf.ver.lin(lit.par1, lit.par2, lit.par3, cumsum(t))
}
else
{
mvf.ver <- mvf.ver.quad(lit.par1, lit.par2, lit.par3, cumsum(t))
}
plot(cumsum(t), 1:length(t), type = "o", pch = 3, cex = 0.8, xlab = xlab,
ylab = ylab)
lines(cumsum(t), mvf.duane(duane.par1, duane.par2, cumsum(t)), lty = 2,
type = "o", pch = 4, cex = 0.8, col = "mediumblue")
lines(cumsum(t), mvf.ver, lty = 3, type = "o", pch = 8, cex = 0.8,
col = "steelblue")
lines(cumsum(t), mvf.mor(mor.par1, mor.par2, cumsum(t)), lty = 4,
type = "o", pch = 0, cex = 0.8, col = "skyblue")
lines(cumsum(t), mvf.musa(musa.par1, musa.par2, cumsum(t)), lty = 5,
type = "o", pch = 15, cex = 0.8, col = "royalblue")
legend("bottomright", c("Data", "Duane", "Littlewood-Verall", "Moranda-Geometric", "Musa-Okumoto"),
col = c("black", "mediumblue", "steelblue", "skyblue", "royalblue"), pch = c(3, 4, 8, 0, 15),
lty = c(1, 2, 3, 4, 5))
if(!is.null(main))
{
title(main)
}
}
"rel.plot" <- function(duane.par1, duane.par2, lit.par1, lit.par2, lit.par3, mor.par1, mor.par2, musa.par1,
musa.par2, t, linear = T, ymin, ymax, xlab = "time",
ylab = "relative error", main = NULL)
{
l <- 1:length(t)
rel.duane <- (mvf.duane(duane.par1, duane.par2, cumsum(t)) - l) / l
if(linear == T)
{
rel.ver <- (mvf.ver.lin(lit.par1, lit.par2, lit.par3, cumsum(t)) - l) / l
}
else
{
rel.ver <- (mvf.ver.quad(lit.par1, lit.par2, lit.par3, cumsum(t)) - l) / l
}
rel.mor <- (mvf.mor(mor.par1, mor.par2, cumsum(t)) - l) / l
rel.musa <- (mvf.musa(musa.par1, musa.par2, cumsum(t)) - l) / l
if(missing(ymin))
{
ymin <- min(c(rel.duane, rel.ver, rel.mor, rel.musa))
}
if(missing(ymax))
{
ymax <- max(c(rel.duane, rel.ver, rel.mor, rel.musa))
}
plot(cumsum(t), rel.duane, type = "o", pch = 4, cex = 0.8, col = "mediumblue",
xlab = xlab, ylim = c(ymin, ymax), lty = 2, ylab = ylab)
lines(cumsum(t), rel.ver, lty = 3, type = "o", pch = 8, cex = 0.8, col = "steelblue")
lines(cumsum(t), rel.mor, lty = 4, type = "o", pch = 0, cex = 0.8, col = "skyblue")
lines(cumsum(t), rel.musa, lty = 5, type = "o", pch = 15, cex = 0.8, col = "royalblue")
segments(-max(cumsum(t)) * 1.05, 0, max(cumsum(t)) * 1.05, 0, lty = 3)
legend("topright", c("Duane", "Littlewood-Verall", "Moranda-Geometric", "Musa-Okumoto"),
col = c("mediumblue", "steelblue", "skyblue", "royalblue"), pch = c(4, 8, 0, 15),
lty = c(2, 3, 4, 5))
if(!is.null(main))
{
title(main)
}
}
"mvf.duane" <- function(rho, theta, t)
{
if(rho <= 0 || theta <= 0)
{
stop("rho and theta should be larger than 0")
}
if(length(rho) != 1 || length(theta) != 1)
{
stop("rho and theta should have length 1")
}
return(rho * t^theta)
}
"mvf.mor" <- function(D, theta, t)
{
if(theta <= 0)
{
stop("theta should be larger than 0")
}
if(length(D) != 1 || length(theta) != 1)
{
stop("D and theta should have length 1")
}
return(1 / theta * log((D * theta * exp(theta)) * t + 1))
}
"mvf.musa" <- function(theta0, theta1, t)
{
if(length(theta0) != 1 || length(theta1) != 1)
{
stop("theta0 and theta1 should have length 1")
}
return(theta0 * log(theta1 * t + 1))
}
"mvf.ver.lin" <- function(theta0, theta1, rho, t)
{
if(theta1 == 0)
{
stop("theta1 should not be equal 0")
}
if(length(theta0) != 1 || length(theta1) != 1 || length(rho) != 1)
{
stop("theta0, theta1 and rho should have length 1")
}
return(1 / theta1 * sqrt(theta0^2 + 2 * theta1 * t * rho))
}
"mvf.ver.quad" <- function(theta0, theta1, rho, t)
{
if(theta1 == 0)
{
stop("theta1 should not be equal 0")
}
if(length(theta0) != 1 || length(theta1) != 1 || length(rho) != 1)
{
stop("theta0, theta1 and rho should have length 1")
}
v1 <- (rho - 1)^(1 / 3) / ((18 * theta1)^(1 / 3))
v2 <- 4 * (theta0^3) / (9 * (rho - 1)^2 * theta1)
Q1 <- (cumsum(t) + (cumsum(t)^2 + v2)^(1 / 2))^(1 / 3)
Q2 <- (cumsum(t) - (cumsum(t)^2 + v2)^(1 / 2))^(1 / 3)
return(3 * v1 * (Q1 + Q2))
} |
library(vcfR)
context("create.chromR functions")
test_that("Create a null chromR",{
data("vcfR_example")
chrom <- methods::new(Class="chromR")
expect_is(chrom, "chromR")
expect_is(chrom@vcf, "vcfR")
expect_is(chrom@seq, "NULL")
expect_is(chrom@ann, "data.frame")
expect_equal(ncol(chrom@vcf@fix), 8)
expect_equal(nrow(chrom@vcf@fix), 0)
expect_equal(length(chrom@seq), 0)
expect_equal(ncol(chrom@ann), 9)
expect_equal(nrow(chrom@ann), 0)
})
test_that("We can create a Chrom, no sequence or annotation",{
data("vcfR_example")
chrom <- create.chromR(name="Supercontig_1.50", vcf=vcf, verbose=FALSE)
expect_is(chrom, "chromR")
expect_is(chrom@vcf, "vcfR")
expect_is(chrom@seq, "NULL")
expect_is(chrom@ann, "data.frame")
expect_is([email protected], "data.frame")
expect_is([email protected][,'POS'], "integer")
expect_equal(ncol(chrom@vcf@fix), 8)
expect_equal(nrow(chrom@vcf@fix) > 0, TRUE)
expect_equal(length(chrom@seq), 0)
expect_equal(ncol(chrom@ann), 9)
expect_equal(nrow(chrom@ann), 0)
expect_equal(ncol([email protected]), 5)
expect_equal(nrow([email protected])>0, TRUE)
})
test_that("We can create a chromR, no annotation",{
data("vcfR_example")
chrom <- create.chromR(name="Supercontig_1.50", vcf=vcf, seq=dna, verbose=FALSE)
expect_is(chrom, "chromR")
expect_is(chrom@vcf, "vcfR")
expect_is(chrom@seq, "DNAbin")
expect_is(chrom@ann, "data.frame")
expect_is([email protected], "data.frame")
expect_equal(ncol(chrom@vcf@fix), 8)
expect_equal(nrow(chrom@vcf@fix) > 0, TRUE)
expect_equal(length(chrom@seq)>0, TRUE)
expect_equal(ncol(chrom@ann), 9)
expect_equal(nrow(chrom@ann), 0)
})
test_that("We can create a chromR, no sequence",{
data("vcfR_example")
chrom <- create.chromR(name="Supercontig_1.50", vcf=vcf, ann=gff, verbose=FALSE)
expect_is(chrom, "chromR")
expect_is(chrom@vcf, "vcfR")
expect_is(chrom@seq, "NULL")
expect_is(chrom@ann, "data.frame")
expect_is([email protected], "data.frame")
expect_equal(ncol(chrom@vcf@fix), 8)
expect_equal(nrow(chrom@vcf@fix) > 0, TRUE)
expect_equal(length(chrom@seq), 0)
expect_equal(ncol(chrom@ann), 9)
expect_equal(nrow(chrom@ann)>0, TRUE)
})
test_that("We can create a chromR, no sequence, annotation greater than vcf POS",{
data("vcfR_example")
gff2 <- gff
gff2[23,5] <- 100000
chrom <- create.chromR(name="Supercontig_1.50", vcf=vcf, ann=gff2, verbose=FALSE)
expect_equal( chrom@len, 100000)
})
test_that("We can create a chromR",{
data("vcfR_example")
chrom <- create.chromR(name="Supercontig_1.50", vcf=vcf, seq=dna, ann=gff, verbose=FALSE)
expect_is(chrom, "chromR")
expect_is(chrom@vcf, "vcfR")
expect_is(chrom@seq, "DNAbin")
expect_is(chrom@ann, "data.frame")
expect_is([email protected], "data.frame")
expect_equal(ncol(chrom@vcf@fix), 8)
expect_equal(nrow(chrom@vcf@fix) > 0, TRUE)
expect_equal(length(chrom@seq)>0, TRUE)
expect_equal(ncol(chrom@ann), 9)
expect_equal(nrow(chrom@ann)>0, TRUE)
})
test_that("We implemented the mask",{
data("vcfR_example")
chrom <- create.chromR(name="Supercontig_1.50", vcf=vcf, seq=dna, ann=gff, verbose=FALSE)
chrom <- masker(chrom, min_DP = 300, max_DP = 700)
expect_true( sum([email protected][,'mask']) < nrow([email protected]) )
})
test_that("preserve = TRUE preserves the original mask ", {
data("chromR_example")
chrom_preserve_mask <- masker(chrom, min_QUAL = 40, preserve = TRUE)
chrom_new_mask <- masker(chrom, min_QUAL = 40, preserve = FALSE)
ori_mask <- [email protected][, 'mask']
add_mask <- [email protected][, 'mask']
expect_true(sum(add_mask) < sum(ori_mask))
expect_equal(sum(ori_mask | add_mask), sum(ori_mask))
})
test_that("proc.chromR works",{
data("chromR_example")
chrom <- proc.chromR(chrom, verbose = FALSE)
expect_true( ncol([email protected]) >= 3 )
chrom <- proc.chromR(chrom, verbose = FALSE)
expect_true( ncol([email protected]) >= 3 )
})
test_that("seq2rects works for test data",{
data("chromR_example")
rects1 <- seq2rects(chrom)
expect_is( rects1, "matrix" )
expect_true( nrow(rects1) > 0 )
})
test_that("seq2rects works with ns",{
data("chromR_example")
rects2 <- seq2rects(chrom, chars="n")
expect_is( rects2, "matrix" )
expect_true( nrow(rects2) > 0 )
})
test_that("seq2rects works when seq has no Ns",{
data("chromR_example")
seq2 <- as.character( chrom@seq )
seq2[ seq2 == 'n' ] <- 'a'
chrom@seq <- ape::as.DNAbin(seq2)
rects2 <- seq2rects(chrom, chars="n")
expect_is( rects2, "matrix" )
expect_true( nrow(rects2) == 0 )
})
test_that("chromR2vcfR works",{
data('vcfR_example')
chrom <- create.chromR(name="Supercontig_1.50", vcf=vcf, seq=dna, ann=gff, verbose=FALSE)
chrom <- masker(chrom, min_DP = 300, max_DP = 700)
test <- chromR2vcfR(chrom, use.mask = TRUE)
expect_equal(sum([email protected]$mask), nrow(test))
}) |
expected <- eval(parse(text="c(-41L, -36L, -12L, -18L, NA, -28L, -23L, -19L, -8L, NA, -7L, -16L, -11L, -14L, -18L, -14L, -34L, -6L, -30L, -11L, -1L, -11L, -4L, -32L, NA, NA, NA, -23L, -45L, -115L, -37L, NA, NA, NA, NA, NA, NA, -29L, NA, -71L, -39L, NA, NA, -23L, NA, NA, -21L, -37L, -20L, -12L, -13L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -135L, -49L, -32L, NA, -64L, -40L, -77L, -97L, -97L, -85L, NA, -10L, -27L, NA, -7L, -48L, -35L, -61L, -79L, -63L, -16L, NA, NA, -80L, -108L, -20L, -52L, -82L, -50L, -64L, -59L, -39L, -9L, -16L, -78L, -35L, -66L, -122L, -89L, -110L, NA, NA, -44L, -28L, -65L, NA, -22L, -59L, -23L, -31L, -44L, -21L, -9L, NA, -45L, -168L, -73L, NA, -76L, -118L, -84L, -85L, -96L, -78L, -73L, -91L, -47L, -32L, -20L, -23L, -21L, -24L, -44L, -21L, -28L, -9L, -13L, -46L, -18L, -13L, -24L, -16L, -13L, -23L, -36L, -7L, -14L, -30L, NA, -14L, -18L, -20L)"));
test(id=0, code={
argv <- eval(parse(text="list(c(41L, 36L, 12L, 18L, NA, 28L, 23L, 19L, 8L, NA, 7L, 16L, 11L, 14L, 18L, 14L, 34L, 6L, 30L, 11L, 1L, 11L, 4L, 32L, NA, NA, NA, 23L, 45L, 115L, 37L, NA, NA, NA, NA, NA, NA, 29L, NA, 71L, 39L, NA, NA, 23L, NA, NA, 21L, 37L, 20L, 12L, 13L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 135L, 49L, 32L, NA, 64L, 40L, 77L, 97L, 97L, 85L, NA, 10L, 27L, NA, 7L, 48L, 35L, 61L, 79L, 63L, 16L, NA, NA, 80L, 108L, 20L, 52L, 82L, 50L, 64L, 59L, 39L, 9L, 16L, 78L, 35L, 66L, 122L, 89L, 110L, NA, NA, 44L, 28L, 65L, NA, 22L, 59L, 23L, 31L, 44L, 21L, 9L, NA, 45L, 168L, 73L, NA, 76L, 118L, 84L, 85L, 96L, 78L, 73L, 91L, 47L, 32L, 20L, 23L, 21L, 24L, 44L, 21L, 28L, 9L, 13L, 46L, 18L, 13L, 24L, 16L, 13L, 23L, 36L, 7L, 14L, 30L, NA, 14L, 18L, 20L))"));
do.call(`-`, argv);
}, o=expected); |
impute <- function(object, type = c("mar", "censored", "both"), lambda.new, rho.new) {
type <- match.arg(type)
if (!inherits(object, c("cggm", "cglasso"))) stop(sQuote("imput"), "function is not available for an object of class ", sQuote(class(object)))
if ( class(object)[1L] == "cggm") {
if (!missing(lambda.new)) stop("Argument ", sQuote("lambda.new"), " is not available for an object of class ", sQuote("cggm"))
if (!missing(rho.new)) stop("Argument ", sQuote("rho.new"), " is not available for an object of class ", sQuote("cggm"))
p <- npred(object$Z)
out <- drop(object$Yipt)
Id <- event(object$Z)
if (type == "mar") {
lo <- lower(object$Z)
up <- upper(object$Z)
for (h in seq_len(p)) {
out[Id[, h] == -1L, h] <- lo[h]
out[Id[, h] == +1L, h] <- up[h]
}
}
if (type == "censored")
out[Id == +9L] <- NA
return(out)
}
if (missing(lambda.new) & missing(rho.new)) return(object$Yipt)
nrho <- object$nrho
rho <- object$rho
nlambda <- object$nlambda
lambda <- object$lambda
n <- nobs(object$Z)
p <- nresp(object$Z)
q <- npred(object$Z)
if (missing(lambda.new)) {
if (q > 0) stop(sQuote("lambda.new"), " is missing")
else lambda.new <- lambda
}
else {
if (!is.vector(lambda.new)) stop(sQuote("lambda.new"), " is not a vector")
if (length(lambda.new) != 1L) stop(sQuote("lambda.new"), " is not an object of length ", sQuote(1))
if (lambda.new < lambda[nlambda]) stop(sQuote("lambda.new"), "is smaller than ", sQuote(lambda[nlambda]))
}
if (missing(rho.new)) stop(sQuote("rho.new"), " is missing")
else {
if (!is.vector(rho.new)) stop(sQuote("rho.new"), " is not a vector")
if (length(rho.new) != 1L) stop(sQuote("rho.new"), " is not an object of length ", sQuote(1))
if (rho.new < rho[nrho]) stop(sQuote("rho.new"), "is smaller than ", sQuote(rho[nrho]))
}
Yin <- object$Yipt
Yout <- matrix(0, nrow = n, ncol = p, dimnames = list(dimnames(Yin)[[1L]], dimnames(Yin)[[2L]]))
Id <- event(object$Z)
storage.mode(rho.new) <- "double"
storage.mode(lambda.new) <- "double"
storage.mode(nrho) <- "integer"
storage.mode(rho) <- "double"
storage.mode(nlambda) <- "integer"
storage.mode(lambda) <- "double"
storage.mode(n) <- "integer"
storage.mode(p) <- "integer"
storage.mode(Yin) <- "double"
storage.mode(Id) <- "integer"
storage.mode(Yout) <- "double"
out <- .Fortran(C_impute, newrho = rho.new, newlambda = lambda.new, nrho = nrho,
rho = rho, nlambda = nlambda, lambda = lambda, n = n, p = p,
Yin = Yin, Id = Id, Yout = Yout)
if (type == "mar") {
lo <- lower(object$Z)
up <- upper(object$Z)
for (h in seq_len(p)) {
out$Yout[Id[, h] == -1L, h] <- lo[h]
out$Yout[Id[, h] == +1L, h] <- up[h]
}
}
if (type == "censored")
out$Yout[Id == +9L] <- NA
out$Yout
}
function2xy <- function(frml) {
x <- match.arg(all.vars(frml)[2L], c("rho", "lambda"))
y <- as.character(terms(frml)[[2L]])
if (length(y) == 2L) {
if(y[1L] != "diag" | y[2L] != "Theta")
stop(sQuote(paste0(y[1L], "(", y[2L], ")")), " is not available as response. Please, use ", sQuote("diag(Theta)"))
y <- "diag(Theta)"
}
given <- as.character(terms(frml)[[3L]])
if (length(given) == 1L) given <- NULL
else {
if (given[3L] == "rho") {
if (x == "rho") stop("You can not condition on ", sQuote(given[3L]), ". Please, use ", sQuote("lambda"))
return(list(x = x, y = y, given = NULL))
}
if (given[3L] == "lambda") {
if (x == "lambda") stop("You can not condition on ", sQuote(given[3L]), ". Please, use ", sQuote("rho"))
return(list(x = x, y = y, given = NULL))
}
given.terms <- gsub("[[:blank:]]", "", given[3L])
given.terms <- unlist(strsplit(given.terms, split = "\n", fixed = TRUE))
if (length(given.terms) == 1L) given <- eval(parse(text = given.terms))
else {
given.terms <- given.terms[2L]
given.name <- unlist(strsplit(given.terms, "=", fixed = TRUE))[1L]
if (!is.element(given.name, c("lambda.id", "rho.id")))
stop("Please, use ", sQuote(ifelse(x == "rho", "lambda.id", "rho.id")), " instead of ", sQuote(given.name))
if ((x == "rho" & given.name == "rho.id") | (x == "lambda" & given.name == "lambda.id"))
stop("You can not condition on ", sQuote(given.name), ". Please, use ", sQuote(ifelse(given.name == "rho.id", "lambda.id", "rho.id")))
given <- eval(parse(text = given.terms))
}
}
out <- list(penalty = x, what = y, given = given)
out
} |
library(frbs)
data(frbsData)
data.train <- frbsData$MackeyGlass1000.dt[1: 500, ]
data.fit <- data.train[, 1 : 4]
data.tst <- frbsData$MackeyGlass1000.dt[501 : 1000, 1 : 4]
real.val <- matrix(frbsData$MackeyGlass1000.dt[501 : 1000, 5], ncol = 1)
range.data <- matrix(c(0.43462, 1.3105, 0.43462, 1.3105, 0.43462, 1.3105, 0.43462, 1.3105, 0.43462, 1.3105), nrow=2)
control <- list(Dthr= 0.1, max.iter = 300, step.size = 0.01, d = 2, name = "MG1000")
method.type <- "DENFIS"
object <- frbs.learn(data.train, range.data, method.type, control)
res.fit <- predict(object, data.fit)
res.test <- predict(object, data.tst)
y.pred <- res.test
y.real <- real.val
bench <- cbind(y.pred, y.real)
colnames(bench) <- c("pred. val.", "real. val.")
print("Comparison DENFIS Vs Real Value on Mackey Glass Data Set")
print(bench)
residuals <- (y.real - y.pred)
MSE <- mean(residuals^2)
RMSE <- sqrt(mean(residuals^2))
SMAPE <- mean(abs(residuals)/(abs(y.real) + abs(y.pred))/2)*100
err <- c(MSE, RMSE, SMAPE)
names(err) <- c("MSE", "RMSE", "SMAPE")
print("DENFIS: Error Measurement: ")
print(err)
op <- par(mfrow = c(2, 1))
x1 <- seq(from = 1, to = nrow(res.fit))
result.fit <- cbind(data.train[, 5], res.fit)
plot(x1, result.fit[, 1], col="red", main = "Mackey Glass: Fitting phase (the training data(red) Vs Sim. result(blue))", type = "l", ylab = "MG")
lines(x1, result.fit[, 2], col="blue")
result.test <- cbind(real.val, res.test)
x2 <- seq(from = 1, to = nrow(result.test))
plot(x2, result.test[, 1], col="red", main = "Mackey Glass: Predicting phase (the Real Data(red) Vs Sim. result(blue))", type = "l", ylab = "MG")
lines(x2, result.test[, 2], col="blue", type = "l")
par(op) |
"table.paint" <- function (df, x = 1:ncol(df), y = nrow(df):1, row.labels = row.names(df),
col.labels = names(df), clabel.row = 1, clabel.col = 1, csize = 1,
clegend = 1)
{
x <- rank(x)
y <- rank(y)
opar <- par(mai = par("mai"), srt = par("srt"))
on.exit(par(opar))
table.prepare(x = x, y = y, row.labels = row.labels, col.labels = col.labels,
clabel.row = clabel.row, clabel.col = clabel.col, grid = FALSE,
pos = "paint")
xtot <- x[col(as.matrix(df))]
ytot <- y[row(as.matrix(df))]
xdelta <- (max(x) - min(x))/(length(x) - 1)/2
ydelta <- (max(y) - min(y))/(length(y) - 1)/2
coeff <- diff(range(xtot))/15
z <- unlist(df)
br0 <- pretty(z, 6)
nborn <- length(br0)
coeff <- diff(range(x))/15
numclass <- cut.default(z, br0, include.lowest = TRUE, labels = FALSE)
valgris <- seq(1, 0, le = (nborn - 1))
h <- csize * coeff
rect(xtot - xdelta, ytot - ydelta, xtot + xdelta, ytot +
ydelta, col = gray(valgris[numclass]))
if (clegend > 0)
scatterutil.legend.square.grey(br0, valgris, h/2, clegend)
} |
find_data_dir <- function(){
datapath <- c("/share/opencv", "/share/opencv4", "/share/OpenCV")
paths <- c(
system.file('share', package = 'opencv'),
paste0(data_prefix(), datapath)
)
for(x in paths){
if(file.exists(x))
return(x)
}
stop("Failed to find opencv 'share' directory")
}
find_data_xml <- function(filename){
normalizePath(file.path(find_data_dir(), filename), mustWork = TRUE)
} |
context("sar_loga")
library(sars)
test_that("sar_loga returns correct results", {
fit <- sar_loga(galap)
expect_equal(round(fit$AICc, 2), 189.19)
expect_equal(as.vector(round(fit$par[2], 2)), 30.28)
expect_is(fit, "sars")
expect_match(fit$normaTest[[1]], "none")
expect_match(fit$homoTest[[1]], "none")
expect_error(sar_linear(5), "data must be a matrix or dataframe")
fit2 <- sar_loga(galap, homoTest = "cor.area", homoCor = "kendall")
expect_equal(round(fit2$homoTest[[2]]$p.value, 2), 0.35)
expect_match(fit2$homoTest[[2]]$method, "Kendall's rank correlation tau")
})
test_that("sar_loga summary returns correct results", {
fit <- sar_loga(galap, normaTest = "lillie")
fs <- summary(fit)
expect_equal(sum(fs$residuals), 6.439294e-15)
expect_output(str(fs), "List of 16")
expect_is(fs, "summary.sars")
expect_equal(round(fs$normaTest[[2]]$p.value, 3), 0.658)
}) |
"kiascv" <-
function(xt,k=np,mdx=nrow(xt),fu=.dFvGet()$fu1,fb=.dFvGet()$fb1) {
if (missing(xt)) messagena("xt")
np <- ncol(xt)
ncov <- np*(np+1)/2
cov <- single(ncov)
f.res <- .Fortran("kiascvz",
xt=to.single(xt),
k=to.integer(k),
np=to.integer(np),
mdx=to.integer(mdx),
ncov=to.integer(ncov),
fu=to.single(fu),
fb=to.single(fb),
cov=to.single(cov))
list(cov=f.res$cov)
} |
context("itis_lsid")
test_that("itis_lsid returns the correct value", {
skip_on_cran()
vcr::use_cassette("itis_lsid", {
one <- itis_lsid("urn:lsid:itis.gov:itis_tsn:180543")
two <- itis_lsid("urn:lsid:itis.gov:itis_tsn:180543", "record")
three <- itis_lsid("urn:lsid:itis.gov:itis_tsn:202385", "fullrecord")
four <- itis_lsid(202385)
})
expect_equal(one, "180543")
expect_match(as.character(two[1, "genuspart"]), "Ursus")
expect_match(three$acceptedNameList$tsn, "202385")
expect_null(four)
expect_is(one, "character")
expect_is(two, "data.frame")
expect_is(three, "list")
}) |
context("device serializer")
test_that("graphics device promise domains must have a device", {
expect_error(
createGraphicsDevicePromiseDomain(which = c(`null device` = 1L)),
"was called without opening a device"
)
})
test_that("you should not call `dev_set()` with a null device", {
expect_warning(
dev_set(c(`null device` = 1L)),
"null device"
)
})
skip_on_cran()
expect_device_output <- function(name, content_type, capability_type = name) {
if (!is.null(capability_type)) {
if (!capabilities(capability_type)) {
testthat::skip("Graphics device type not supported: ", name)
}
}
ep <- NULL
pr <- pr()
evaluateBlock(
srcref = 3,
file = c("
expr = function() {
plot(1:10)
},
envir = new.env(parent=globalenv()),
addEndpoint = function(a, b, ...) { pr$handle(endpoint = a) },
addFilter = as.null,
pr = pr
)
ret <- pr$call(make_req("GET", "/test"))
expect_equal(ret$status, 200)
expect_equal(ret$headers$`Content-Type`, content_type)
expect_true(is.raw(ret$body))
expect_gt(length(ret$body), 1000)
}
test_that("jpeg produces an image", {
expect_device_output("jpeg", "image/jpeg")
})
test_that("png produces an image", {
expect_device_output("png", "image/png")
})
test_that("svg produces an image", {
expect_device_output("svg", "image/svg+xml", "cairo")
})
test_that("bmp produces an image", {
expect_device_output("bmp", "image/bmp", "cairo")
})
test_that("tiff produces an image", {
expect_device_output("tiff", "image/tiff")
})
test_that("pdf produces an image", {
expect_device_output("pdf", "application/pdf", NULL)
})
context("plumb() device serializer")
test_device <- local({
r <- pr(test_path("files/device.R"))
function(name, content_type, capability_type = name, test_little = TRUE) {
if (!capabilities(capability_type)) {
testthat::skip("Graphics type not supported: ", name)
}
resp <- r$serve(make_req("GET", paste0("/", name)), PlumberResponse$new())
expect_equal(resp$status, 200)
expect_equal(resp$headers$`Content-Type`, content_type)
fullsize <- length(resp$body)
expect_gt(fullsize, 1000)
if (!isTRUE(test_little)) {
return()
}
resp <- r$serve(make_req("GET", paste0("/little", name)), PlumberResponse$new())
expect_equal(resp$status, 200)
expect_equal(resp$headers$`Content-Type`, content_type)
expect_gt(length(resp$body), 100)
expect_lt(length(resp$body), fullsize)
}
})
test_that("png are properly rendered", {
test_device("png", "image/png")
})
test_that("jpeg are properly rendered", {
test_device("jpeg", "image/jpeg")
})
test_that("svg are properly rendered", {
test_device("svg", "image/svg+xml", capability_type = "cairo", test_little = FALSE)
}) |
getLplusLmin <- function(sigmaE, alpha)
{
Lplus <- Inf
Lmin <- -Inf
if ( !is.na(alpha[2]) )
Lplus <- sqrt(2)*sigmaE*invErf(1-2*alpha[2])
if ( !is.na(alpha[1]) )
Lmin <- sqrt(2)*sigmaE*invErf(2*alpha[1]-1)
return(list(Lplus=Lplus,Lmin=Lmin));
} |
my_env <- new.env(parent = emptyenv())
matrixplot <- function(data,
dataclass = NULL,
diagram = NULL,
dir = tempdir())
{
if (rmarkdown::pandoc_available("1.12.3") == FALSE) {
print(warning_pandoc)
}
else if (rmarkdown::pandoc_available("1.12.3") == TRUE) {
if (is.data.frame(data) == FALSE) {
stop(
"I am so sorry, but this function only works with a data.frame input!\n",
"You have provided an object of class ",
class(data)
)
}
if (tibble::is_tibble(data) == TRUE) {
stop(warning_tibble)
}
if (is.null(dataclass) == TRUE) {
dataclass <- c("numeric", "numeric")
}
if (length(dataclass) == 1) {
dataclass <- rep(dataclass, 2)
}
if (length(dataclass) != 2) {
stop(paste0("The 'dataclass'", string, "vector of length 1 or 2"))
}
string <- " argument expects a character"
if (length(dataclass) != sum(dataclass %in% dataclass_v, na.rm = TRUE))
{
stop(paste0(
"The 'dataclass'",
string,
" which values can be : '",
paste0(dataclass_v, collapse = "', '"),
"'"
))
}
if (is.null(diagram) == TRUE) {
diagram <- c("scatter plot")
}
if (length(diagram) != sum(diagram %in% c(matrixplot_2num, fac.num_v1, fac.num_v2, fac.fac_v1, fac.fac_v1, ord.ord_v0, ord.ord_v1, ord.ord_v2), na.rm = TRUE))
{
stop(paste0(
"The 'diagram'",
string,
" which values can be : '",
paste0(cbind(matrixplot_2num, fac.num_v1), collapse = "', '"),
"'"
))
}
my_env <- new.env()
dir.create(file.path(dir, "brinton_outcomes", fsep = .Platform$file.sep),
showWarnings = FALSE)
writeLines(output_matrix,
file.path(dir, "brinton_outcomes", "matrixplot.R"))
write(
paste0(
"cat('A matrix of ",
deparse(substitute(diagram)),
" produced from the " ,
deparse(substitute(dataclass)),
" dataclasses of the ",
deparse(substitute(data)),
" dataframe')"
),
file = file.path(dir, "brinton_outcomes", "matrixplot.R"),
append = TRUE
)
if (length(data[sapply(data, is.numeric)])>1 &&
identical(dataclass, c("numeric", "numeric")) &&
(diagram %in% matrixplot_2num) == TRUE)
{
data.num <- data[sapply(data, is.numeric)]
diagram <- rep(diagram, ncol(data.num))
out = NULL
write(paste0("
for (i in seq_along(data.num)[2:ncol(data.num)])
{
for (j in seq_along(data.num)[c(1:i-1)]) {eval(parse(text=paste0("nui", letters[j], " <- paste0('nu', ", i, ", '", letters[j],"')")))}
num.plot <- function(pp)
{
for (j in seq_along(data.num)[c(1:i-1)]) {eval(parse(text=paste0("
if (diagram[", j, "] == 'scatter plot') {
assign(nui", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'black', FALSE), envir=my_env)
} else if (diagram[", j, "] == 'scatter plot with trend line') {
assign(nui", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'black', TRUE), envir=my_env)
} else if (diagram[", j, "] == 'bw scatter plot') {
assign(nui", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'bw', FALSE), envir=my_env)
} else if (diagram[", j, "] == 'color scatter plot') {
assign(nui", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'color', FALSE), envir=my_env)
} else if (diagram[", j, "] == 'binned scatter plot') {
assign(nui", letters[j], ",
pp_binnedpointgraph(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'black'), envir=my_env)
} else if (diagram[", j, "] == 'bw binned scatter plot') {
assign(nui", letters[j], ",
pp_binnedpointgraph(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color binned scatter plot') {
assign(nui", letters[j], ",
pp_binnedpointgraph(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'color'), envir=my_env)
} else if (diagram[", j, "] == 'binned heatmap') {
assign(nui", letters[j], ",
pp_heatmap(data, colnames(pp[j]), colnames(pp[i]), 'black'), envir=my_env)
} else if (diagram[", j, "] == 'bw binned heatmap') {
assign(nui", letters[j], ",
pp_heatmap(data, colnames(pp[j]), colnames(pp[i]), 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color binned heatmap') {
assign(nui", letters[j], ",
pp_heatmap(data, colnames(pp[j]), colnames(pp[i]), 'color'), envir=my_env)
} else if (diagram[", j, "] == 'hexagonal binned heatmap') {
assign(nui", letters[j], ",
pp_heatmap(data, colnames(pp[j]), colnames(pp[i]), 'black', 6), envir=my_env)
} else if (diagram[", j, "] == 'bw hexagonal binned heatmap') {
assign(nui", letters[j], ",
pp_heatmap(data, colnames(pp[j]), colnames(pp[i]), 'bw', 6), envir=my_env)
} else if (diagram[", j, "] == 'color hexagonal binned heatmap') {
assign(nui", letters[j], ",
pp_heatmap(data, colnames(pp[j]), colnames(pp[i]), 'color', 6), envir=my_env)
} else if (diagram[", j, "] == 'bw heatmap') {
assign(nui", letters[j], ",
pp_raster(data, colnames(pp[j]), colnames(pp[i]), 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color heatmap') {
assign(nui", letters[j], ",
pp_raster(data, colnames(pp[j]), colnames(pp[i]), 'color'), envir=my_env)
} else if (diagram[", j, "] == 'contour plot') {
assign(nui", letters[j], ",
pp_contourmap(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'black'), envir=my_env)
} else if (diagram[", j, "] == 'bw contour plot') {
assign(nui", letters[j], ",
pp_contourmap(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color contour plot') {
assign(nui", letters[j], ",
pp_contourmap(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'color'), envir=my_env)
} else if (diagram[", j, "] == 'contour plot with data points') {
assign(nui", letters[j], ",
pp_contourmap(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'black', TRUE), envir=my_env)
} else if (diagram[", j, "] == 'bw contour plot with data points') {
assign(nui", letters[j], ",
pp_contourmap(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'bw', TRUE), envir=my_env)
} else if (diagram[", j, "] == 'color contour plot with data points') {
assign(nui", letters[j], ",
pp_contourmap(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'color', TRUE), envir=my_env)
} else if (diagram[", j, "] == 'scatter plot with confidence ellipse') {
assign(nui", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'black', FALSE, TRUE, FALSE), envir=my_env)
} else if (diagram[", j, "] == 'bw scatter plot with confidence ellipse') {
assign(nui", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'bw', FALSE, TRUE, FALSE), envir=my_env)
} else if (diagram[", j, "] == 'color scatter plot with confidence ellipse') {
assign(nui", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'color', FALSE, TRUE, FALSE), envir=my_env)
} else if (diagram[", j, "] == 'scatter plot with marginal rugs') {
assign(nui", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'black', FALSE, FALSE, TRUE), envir=my_env)
} else if (diagram[", j, "] == 'bw scatter plot with marginal rugs') {
assign(nui", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'bw', FALSE, FALSE, TRUE), envir=my_env)
} else if (diagram[", j, "] == 'color scatter plot with marginal rugs') {
assign(nui", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.num), 'color', FALSE, FALSE, TRUE), envir=my_env)
} else if (diagram[", j, "] == 'path graph') {
assign(nui", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), FALSE, 'black', pp_size = 3/ncol(data.num)), envir=my_env)
} else if (diagram[", j, "] == 'bw path graph') {
assign(nui", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), FALSE, 'bw', pp_size = 3/ncol(data.num)), envir=my_env)
} else if (diagram[", j, "] == 'color path graph') {
assign(nui", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), FALSE, 'color', pp_size = 3/ncol(data.num)), envir=my_env)
} else if (diagram[", j, "] == 'point-to-point graph') {
assign(nui", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), TRUE, 'black', pp_size = 3/ncol(data.num)), envir=my_env)
} else if (diagram[", j, "] == 'bw point-to-point graph') {
assign(nui", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), TRUE, 'bw', pp_size = 3/ncol(data.num)), envir=my_env)
} else if (diagram[", j, "] == 'color point-to-point graph') {
assign(nui", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), TRUE, 'color', pp_size = 3/ncol(data.num)), envir=my_env)
}")))
eval(parse(text=paste0("assign('blank', blank(data, colnames(pp[i])), envir=my_env)
")))
}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,",
paste0(" nui", letters[1:i-1], collapse = ",', ',"), ",', ncol=", (ncol(data.num)-1), ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
}
num.plot(data.num)
}
}
else if (length(data[sapply(data, lubridate::is.instant)])>1 &&
identical(dataclass, c("datetime", "datetime")) &&
(diagram %in% matrixplot_2dt) == TRUE)
{
data.date <- data[sapply(data, lubridate::is.instant)]
diagram <- rep(diagram, ncol(data.date))
out = NULL
write(paste0("
for (i in seq_along(data.date)[2:ncol(data.date)])
{
for (j in seq_along(data.date)[c(1:i-1)]) {eval(parse(text=paste0("dti", letters[j], " <- paste0('dt', ", i, ", '", letters[j],"')")))}
date.plot <- function(pp)
{
for (j in seq_along(data.date)[c(1:i-1)]) {eval(parse(text=paste0("
if (diagram[", j, "] == 'scatter plot') {
assign(dti", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.date), 'black', FALSE), envir=my_env)
} else if (diagram[", j, "] == 'scatter plot with trend line') {
assign(dti", letters[j], ",
pp_scatterplot(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.date), 'black', TRUE), envir=my_env)
} else if (diagram[", j, "] == 'binned scatter plot') {
assign(dti", letters[j], ",
pp_binnedpointgraph(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.date), 'black'), envir=my_env)
} else if (diagram[", j, "] == 'bw binned scatter plot') {
assign(dti", letters[j], ",
pp_binnedpointgraph(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.date), 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color binned scatter plot') {
assign(dti", letters[j], ",
pp_binnedpointgraph(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.date), 'color'), envir=my_env)
} else if (diagram[", j, "] == 'bw heatmap') {
assign(dti", letters[j], ",
pp_raster(data, colnames(pp[j]), colnames(pp[i]), 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color heatmap') {
assign(dti", letters[j], ",
pp_raster(data, colnames(pp[j]), colnames(pp[i]), 'color'), envir=my_env)
} else if (diagram[", j, "] == 'contour plot') {
assign(dti", letters[j], ",
pp_contourmap(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.date), 'black'), envir=my_env)
} else if (diagram[", j, "] == 'bw contour plot') {
assign(dti", letters[j], ",
pp_contourmap(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.date), 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color contour plot') {
assign(dti", letters[j], ",
pp_contourmap(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.date), 'color'), envir=my_env)
} else if (diagram[", j, "] == 'contour plot with data points') {
assign(dti", letters[j], ",
pp_contourmap(data, colnames(pp[j]), colnames(pp[i]), pp_size = 3/ncol(data.date), 'black', TRUE), envir=my_env)
} else if (diagram[", j, "] == 'path graph') {
assign(dti", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), FALSE, 'black', pp_size = 3/ncol(data.date)), envir=my_env)
} else if (diagram[", j, "] == 'bw path graph') {
assign(dti", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), FALSE, 'bw', pp_size = 3/ncol(data.date)), envir=my_env)
} else if (diagram[", j, "] == 'color path graph') {
assign(dti", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), FALSE, 'color', pp_size = 3/ncol(data.date)), envir=my_env)
} else if (diagram[", j, "] == 'point-to-point graph') {
assign(dti", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), TRUE, 'black', pp_size = 3/ncol(data.date)), envir=my_env)
} else if (diagram[", j, "] == 'bw point-to-point graph') {
assign(dti", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), TRUE, 'bw', pp_size = 3/ncol(data.date)), envir=my_env)
} else if (diagram[", j, "] == 'color point-to-point graph') {
assign(dti", letters[j], ",
pp_pathgraph(data, colnames(pp[j]), colnames(pp[i]), TRUE, 'color', pp_size = 3/ncol(data.date)), envir=my_env)
}")))
eval(parse(text=paste0("assign('blank', blank(data, colnames(pp[i])), envir=my_env)
")))
}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" dti", letters[1:i-1], collapse = ",', ',"), ",', ncol=", ncol(data.date)-1, ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
}
date.plot(data.date)
}
}
else if (length(data[sapply(data, is.numeric)])>0 &&
length(data[sapply(data, lubridate::is.instant)])>0 &&
any(dataclass %in% "datetime") &&
any(dataclass %in% "numeric") &&
(diagram %in% datenum_v) == TRUE)
{
data.date <- data[sapply(data, lubridate::is.instant)]
data.num <- data[sapply(data, is.numeric)]
diagram <- rep(diagram, ncol(data.date))
out = NULL
for (i in seq_along(data.num))
{
write(paste0("
for (j in seq_along(data.date)) {eval(parse(text=paste0("dni", letters[j], " <- paste0('dn', ", i, ", '", letters[j],"')")))}
datenum.plot <- function(pp)
{
for (j in seq_along(data.date)) {eval(parse(text=paste0("
if (diagram[", j, "] == 'scatter plot') {
assign(dni", letters[j], ",
pp_scatterplot(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), pp_size = 1/ncol(data.num), 'black', FALSE), envir=my_env)
} else if (diagram[", j, "] == 'scatter plot with trend line') {
assign(dni", letters[j], ",
pp_scatterplot(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), pp_size = 1/ncol(data.num), 'black', TRUE), envir=my_env)
} else if (diagram[", j, "] == 'binned scatter plot') {
assign(dni", letters[j], ",
pp_binnedpointgraph(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), pp_size = 1/ncol(data.num), 'black'), envir=my_env)
} else if (diagram[", j, "] == 'bw binned scatter plot') {
assign(dni", letters[j], ",
pp_binnedpointgraph(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), pp_size = 1/ncol(data.num), 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color binned scatter plot') {
assign(dni", letters[j], ",
pp_binnedpointgraph(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), pp_size = 1/ncol(data.num), 'color'), envir=my_env)
} else if (diagram[", j, "] == 'bw heatmap') {
assign(dni", letters[j], ",
pp_raster(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color heatmap') {
assign(dni", letters[j], ",
pp_raster(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), 'color'), envir=my_env)
} else if (diagram[", j, "] == 'contour plot with data points') {
assign(dni", letters[j], ",
pp_contourmap(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), pp_size = 1/ncol(data.num), 'black', TRUE), envir=my_env)
} else if (diagram[", j, "] == 'path graph') {
assign(dni", letters[j], ",
pp_pathgraph(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), FALSE, 'black', pp_size = 0.5/ncol(data.num)), envir=my_env)
} else if (diagram[", j, "] == 'bw path graph') {
assign(dni", letters[j], ",
pp_pathgraph(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), FALSE, 'bw', pp_size = 0.5/ncol(data.num)), envir=my_env)
} else if (diagram[", j, "] == 'color path graph') {
assign(dni", letters[j], ",
pp_pathgraph(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), FALSE, 'color', pp_size = 0.5/ncol(data.num)), envir=my_env)
} else if (diagram[", j, "] == 'point-to-point graph') {
assign(dni", letters[j], ",
pp_pathgraph(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), TRUE, 'black', pp_size = 1/ncol(data.num)), envir=my_env)
} else if (diagram[", j, "] == 'bw point-to-point graph') {
assign(dni", letters[j], ",
pp_pathgraph(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), TRUE, 'bw', pp_size = 1/ncol(data.num)), envir=my_env)
} else if (diagram[", j, "] == 'color point-to-point graph') {
assign(dni", letters[j], ",
pp_pathgraph(data, colnames(pp[sapply(pp, lubridate::is.instant)][j]), colnames(pp[sapply(pp, is.numeric)][i]), TRUE, 'color', pp_size = 1/ncol(data.num)), envir=my_env)
}")))}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" dni", letters[1:ncol(data.date)], collapse = ",', ',"), ",', ncol=", ncol(data.date), ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
write("
}
datenum.plot(cbind(data.num, data.date))
}
}
else if (length(data[sapply(data, is.numeric)])>0 &&
length(data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)])>0 &&
any(dataclass %in% "numeric") &&
any(dataclass %in% c("factor")) &&
(diagram %in% matrixplot_fac.num) == TRUE)
{
data.num <- data[sapply(data, is.numeric)]
data.fac <- data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)]
rownames(data.fac) <- NULL
diagram <- rep(diagram, ncol(data.num))
out = NULL
for (i in seq_along(data.fac))
{
for (j in seq_along(data.num)) {eval(parse(text=paste0("fni", letters[j], " <- paste0('fn', ", i, ", '", letters[j],"')")))}
facnum.plot <- function(pp)
{
long <- round(length(unique(pp[sapply(pp, is.factor)][[i]]))/6 + 0.6, 1)
for (j in seq_along(data.num)) {eval(parse(text=paste0("
if (diagram[", j, "] == 'path graph') {
assign(fni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'line'), envir=my_env)
} else if (diagram[", j, "] == 'point graph') {
assign(fni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'point'), envir=my_env)
} else if (diagram[", j, "] == 'tile plot') {
assign(fni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'tile'), envir=my_env)
} else if (diagram[", j, "] == 'binned heatmap') {
assign(fni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'bin', 'black'), envir=my_env)
} else if (diagram[", j, "] == 'bw binned heatmap') {
assign(fni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'bin', 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color binned heatmap') {
assign(fni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'bin', 'color'), envir=my_env)
} else if (diagram[", j, "] == 'violin plot') {
assign(fni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.factor)][i]), colnames(pp[sapply(pp, is.numeric)][j]), pp_size = 1/ncol(data.num), 'violin'), envir=my_env)
} else if (diagram[", j, "] == 'filled violin plot') {
assign(fni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.factor)][i]), colnames(pp[sapply(pp, is.numeric)][j]), pp_size = 1/ncol(data.num), 'violin filled'), envir=my_env)
} else if (diagram[", j, "] == 'box plot') {
assign(fni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.factor)][i]), colnames(pp[sapply(pp, is.numeric)][j]), pp_size = 1/ncol(data.num), 'box'), envir=my_env)
}")))}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" fni", letters[1:ncol(data.num)], collapse = ",', ',"), ",', ncol=", ncol(data.num), ")')")))
write(paste0("
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
write("
}
facnum.plot(cbind(data.num, data.fac))
}
}
else if (length(data[sapply(data, is.numeric)])>0 &&
length(data[sapply(data, is.ordered)])>0 &&
any(dataclass %in% "numeric") &&
any(dataclass %in% c("ordered")) &&
(diagram %in% matrixplot_ord.num) == TRUE)
{
data.num <- data[sapply(data, is.numeric)]
data.ord <- data[sapply(data, is.ordered)]
rownames(data.ord) <- NULL
diagram <- rep(diagram, ncol(data.num))
out = NULL
for (i in seq_along(data.ord))
{
for (j in seq_along(data.num)) {eval(parse(text=paste0("oni", letters[j], " <- paste0('on', ", i, ", '", letters[j],"')")))}
ordnum.plot <- function(pp)
{
long <- round(length(unique(pp[sapply(pp, is.ordered)][[i]]))/6 + 0.6, 1)
for (j in seq_along(data.num)) {eval(parse(text=paste0("
if (diagram[", j, "] == 'path graph') {
assign(oni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'line'), envir=my_env)
} else if (diagram[", j, "] == 'point graph') {
assign(oni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'point'), envir=my_env)
} else if (diagram[", j, "] == 'tile plot') {
assign(oni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'tile'), envir=my_env)
} else if (diagram[", j, "] == 'binned heatmap') {
assign(oni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'bin', 'black'), envir=my_env)
} else if (diagram[", j, "] == 'bw binned heatmap') {
assign(oni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'bin', 'bw'), envir=my_env)
} else if (diagram[", j, "] == 'color binned heatmap') {
assign(oni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.numeric)][j]), colnames(pp[sapply(pp, is.factor)][i]), pp_size = 1/ncol(data.num), 'bin', 'color'), envir=my_env)
} else if (diagram[", j, "] == 'violin plot') {
assign(oni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.factor)][i]), colnames(pp[sapply(pp, is.numeric)][j]), pp_size = 1/ncol(data.num), 'violin'), envir=my_env)
} else if (diagram[", j, "] == 'filled violin plot') {
assign(oni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.factor)][i]), colnames(pp[sapply(pp, is.numeric)][j]), pp_size = 1/ncol(data.num), 'violin filled'), envir=my_env)
} else if (diagram[", j, "] == 'box plot') {
assign(oni", letters[j], ",
pp_basicgraph(data, colnames(pp[sapply(pp, is.factor)][i]), colnames(pp[sapply(pp, is.numeric)][j]), pp_size = 1/ncol(data.num), 'box'), envir=my_env)
}")))}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" oni", letters[1:ncol(data.num)], collapse = ",', ',"), ",', ncol=", ncol(data.num), ")')")))
write(paste0("
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
write("
}
ordnum.plot(cbind(data.num, data.ord))
}
}
else if (length(data[sapply(data, is.ordered)])>1 &&
identical(dataclass, c("ordered", "ordered")) &&
(diagram %in% ord.ord_v0) == TRUE)
{
data.ord <- data[sapply(data, is.ordered)]
diagram <- rep(diagram, ncol(data.ord))
out = NULL
for (i in seq_along(data.ord)[2:ncol(data.ord)])
{
GAheight <- length(unique(data.ord[,(i)]))/5+0.5
write(paste0("
for (j in seq_along(data.ord)[c(1:i-1)]) {eval(parse(text=paste0("ooi", letters[j], " <- paste0('oo', ", i, ", '", letters[j],"')")))}
ord.plot <- function(pp)
{
for (j in seq_along(data.ord)[c(1:i-1)]) {eval(parse(text=paste0("
if (diagram[", j, "] == 'bw stacked bar graph') {
assign(ooi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'bw', 'stack', 'ordinal'), envir=my_env)
} else if (diagram[", j, "] == 'color stacked bar graph') {
assign(ooi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'color', 'stack', 'ordinal'), envir=my_env)
} else if (diagram[", j, "] == 'bw 100% stacked bar graph') {
assign(ooi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'bw', 'fill', 'ordinal'), envir=my_env)
} else if (diagram[", j, "] == 'color 100% stacked bar graph') {
assign(ooi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'color', 'fill', 'ordinal'), envir=my_env)
}")))
eval(parse(text=paste0("assign('blank', blank(data, colnames(pp[i])), envir=my_env)
")))
}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" ooi", letters[1:i-1], collapse = ",', ',"), ",', ncol=", ncol(data.ord)-1, ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
}
ord.plot(data.ord)
}
}
else if (length(data[sapply(data, is.ordered)])>1 &&
identical(dataclass, c("ordered", "ordered")) &&
(diagram %in% ord.ord_v1) == TRUE)
{
data.ord <- data[sapply(data, is.ordered)]
data.ord <- data.ord[, c(ncol(data.ord), 1:ncol(data.ord)-1)]
diagram <- rep(diagram, ncol(data.ord))
out = NULL
for (i in seq_along(data.ord)[2:ncol(data.ord)])
{
GAheight <- length(unique(data.ord[,(i)]))/5+0.5
write(paste0("
for (j in seq_along(data.ord)[c(1:i-1)]) {eval(parse(text=paste0("ooi", letters[j], " <- paste0('oo', ", i, ", '", letters[j],"')")))}
ord.plot <- function(pp)
{
for (j in seq_along(data.ord)[c(1:i-1)]) {eval(parse(text=paste0("
if (diagram[", j, "] == 'transposed bw stacked bar graph') {
assign(ooi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'bw', 'stack', 'ordinal'), envir=my_env)
} else if (diagram[", j, "] == 'transposed color stacked bar graph') {
assign(ooi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'color', 'stack', 'ordinal'), envir=my_env)
} else if (diagram[", j, "] == 'transposed bw 100% stacked bar graph') {
assign(ooi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'bw', 'fill', 'ordinal'), envir=my_env)
} else if (diagram[", j, "] == 'transposed color 100% stacked bar graph') {
assign(ooi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'color', 'fill', 'ordinal'), envir=my_env)
}")))
eval(parse(text=paste0("assign('blank', blank(data, colnames(pp[i])), envir=my_env)
")))
}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" ooi", letters[1:i-1], collapse = ",', ',"), ",', ncol=", ncol(data.ord)-1, ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
}
ord.plot(data.ord)
}
}
else if (length(data[sapply(data, is.ordered)])>1 &&
identical(dataclass, c("ordered", "ordered")) &&
(diagram %in% ord.ord_v2) == TRUE)
{
data.ord <- data[sapply(data, is.ordered)]
diagram <- rep(diagram, ncol(data.ord))
out = NULL
for (i in seq_along(data.ord)[2:ncol(data.ord)])
{
GAheight <- length(unique(data.ord[,(i)]))/5+1.5
write(paste0("
for (j in seq_along(data.ord)[c(1:i-1)]) {eval(parse(text=paste0("ooi", letters[j], " <- paste0('oo', ", i, ", '", letters[j],"')")))}
ord.plot <- function(pp)
{
for (j in seq_along(data.ord)[c(1:i-1)]) {eval(parse(text=paste0("
if (diagram[", j, "] == 'bw heatmap') {
assign(ooi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'bw', 'observed'), envir=my_env)
} else if (diagram[", j, "] == 'color heatmap') {
assign(ooi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'observed'), envir=my_env)
} else if (diagram[", j, "] == 'color residuals heatmap') {
assign(ooi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'residuals'), envir=my_env)
} else if (diagram[", j, "] == 'bw contribution to x2 heatmap') {
assign(ooi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'bw', 'contrib'), envir=my_env)
} else if (diagram[", j, "] == 'color contribution to x2 heatmap') {
assign(ooi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'contrib'), envir=my_env)
} else if (diagram[", j, "] == 'bw balloon plot') {
assign(ooi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'bw', 'observed', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'color balloon plot') {
assign(ooi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'observed', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'color residuals balloon plot') {
assign(ooi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'residuals', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'bw contribution to x2 balloon plot') {
assign(ooi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'bw', 'contrib', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'color contribution to x2 balloon plot') {
assign(ooi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'contrib', pp_geom = 'point'), envir=my_env)
}")))
eval(parse(text=paste0("assign('blank', blank(data, colnames(pp[i])), envir=my_env)
")))
}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" ooi", letters[1:i-1], collapse = ",', ',"), ",', ncol=", ncol(data.ord)-1, ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
}
ord.plot(data.ord)
}
}
else if (length(data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)])>1 &&
identical(dataclass, c("factor", "factor")) &&
(diagram %in% fac.fac_v0) == TRUE)
{
data.fac <- data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)]
diagram <- rep(diagram, ncol(data.fac))
out = NULL
for (i in seq_along(data.fac)[2:ncol(data.fac)])
{
GAheight <- length(unique(data.fac[,(i)]))/5+0.5
write(paste0("
for (j in seq_along(data.fac)[c(1:i-1)]) {eval(parse(text=paste0("ffi", letters[j], " <- paste0('ff', ", i, ", '", letters[j],"')")))}
fac.plot <- function(pp)
{
for (j in seq_along(data.fac)[c(1:i-1)]) {eval(parse(text=paste0("
if (diagram[", j, "] == 'color stacked bar graph') {
assign(ffi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'color', 'stack'), envir=my_env)
} else if (diagram[", j, "] == 'color 100% stacked bar graph') {
assign(ffi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'color', 'fill'), envir=my_env)
}")))
eval(parse(text=paste0("assign('blank', blank(data, colnames(pp[i])), envir=my_env)
")))
}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" ffi", letters[1:i-1], collapse = ",', ',"), ",', ncol=", ncol(data.fac)-1, ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
}
fac.plot(data.fac)
}
}
else if (length(data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)])>1 &&
identical(dataclass, c("factor", "factor")) &&
(diagram %in% fac.fac_v1) == TRUE)
{
data.fac <- data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)]
data.fac <- data.fac[, c(ncol(data.fac), 1:ncol(data.fac)-1)]
diagram <- rep(diagram, ncol(data.fac))
out = NULL
for (i in seq_along(data.fac)[2:ncol(data.fac)])
{
GAheight <- length(unique(data.fac[,(i)]))/5+0.5
write(paste0("
for (j in seq_along(data.fac)[c(1:i-1)]) {eval(parse(text=paste0("ffi", letters[j], " <- paste0('ff', ", i, ", '", letters[j],"')")))}
fac.plot <- function(pp)
{
for (j in seq_along(data.fac)[c(1:i-1)]) {eval(parse(text=paste0("
if (diagram[", j, "] == 'transposed color stacked bar graph') {
assign(ffi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'color', 'stack'), envir=my_env)
} else if (diagram[", j, "] == 'transposed color 100% stacked bar graph') {
assign(ffi", letters[j], ",
pp_stackedbar(data, colnames(pp[i]), colnames(pp[j]), 'color', 'fill'), envir=my_env)
}")))
eval(parse(text=paste0("assign('blank', blank(data, colnames(pp[i])), envir=my_env)
")))
}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" ffi", letters[1:i-1], collapse = ",', ',"), ",', ncol=", ncol(data.fac)-1, ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
}
fac.plot(data.fac)
}
}
else if (length(data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)])>1 &&
identical(dataclass, c("factor", "factor")) &&
(diagram %in% fac.fac_v2) == TRUE)
{
data.fac <- data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)]
data.fac <- data.fac[, c(ncol(data.fac), 1:ncol(data.fac)-1)]
diagram <- rep(diagram, ncol(data.fac))
out = NULL
for (i in seq_along(data.fac)[2:ncol(data.fac)])
{
GAheight <- length(unique(data.fac[,(i)]))/5+1.5
write(paste0("
for (j in seq_along(data.fac)[c(1:i-1)]) {eval(parse(text=paste0("ffi", letters[j], " <- paste0('ff', ", i, ", '", letters[j],"')")))}
fac.plot <- function(pp)
{
for (j in seq_along(data.fac)[c(1:i-1)]) {eval(parse(text=paste0("
if (diagram[", j, "] == 'bw heatmap') {
assign(ffi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'bw', 'observed'), envir=my_env)
} else if (diagram[", j, "] == 'color heatmap') {
assign(ffi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'observed'), envir=my_env)
} else if (diagram[", j, "] == 'color residuals heatmap') {
assign(ffi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'residuals'), envir=my_env)
} else if (diagram[", j, "] == 'bw contribution to x2 heatmap') {
assign(ffi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'bw', 'contrib'), envir=my_env)
} else if (diagram[", j, "] == 'color contribution to x2 heatmap') {
assign(ffi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'contrib'), envir=my_env)
} else if (diagram[", j, "] == 'bw balloon plot') {
assign(ffi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'bw', 'observed', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'color balloon plot') {
assign(ffi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'observed', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'color residuals balloon plot') {
assign(ffi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'residuals', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'bw contribution to x2 balloon plot') {
assign(ffi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'bw', 'contrib', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'color contribution to x2 balloon plot') {
assign(ffi", letters[j], ",
pp_contingency(data, colnames(pp[j]), colnames(pp[i]), 'color', 'contrib', pp_geom = 'point'), envir=my_env)
}")))
eval(parse(text=paste0("assign('blank', blank(data, colnames(pp[i])), envir=my_env)
")))
}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" ffi", letters[1:i-1], collapse = ",', ',"), ",', ncol=", ncol(data.fac)-1, ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
}
fac.plot(data.fac)
}
}
else if (length(data[sapply(data, is.ordered)])>0 &&
length(data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)])>0 &&
any(dataclass %in% "ordered") &&
any(dataclass %in% "factor") &&
(diagram %in% fac.ord_v0) == TRUE)
{
data.ord <- data[sapply(data, is.ordered)]
data.fac <- data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)]
rownames(data.fac) <- NULL
diagram <- rep(diagram, ncol(data.ord))
out = NULL
for (i in seq_along(data.fac))
{
GAheight <- length(unique(data.fac[,(i)]))/5+0.5
write(paste0("
for (j in seq_along(data.ord)) {eval(parse(text=paste0("ofi", letters[j], " <- paste0('of', ", i, ", '", letters[j],"')")))}
facnum.plot <- function(pp)
{
long <- round(length(unique(pp[sapply(pp, is.factor)][[i]]))/6 + 0.6, 1)
for (j in seq_along(data.ord)) {eval(parse(text=paste0("
if (diagram[", j, "] == 'bw stacked bar graph') {
assign(ofi", letters[j], ",
pp_stackedbar(data, colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), colnames(pp[sapply(pp, is.ordered)][j]), 'bw', 'stack', 'ordinal'), envir=my_env)
} else if (diagram[", j, "] == 'color stacked bar graph') {
assign(ofi", letters[j], ",
pp_stackedbar(data, colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), colnames(pp[sapply(pp, is.ordered)][j]), 'color', 'stack', 'ordinal'), envir=my_env)
} else if (diagram[", j, "] == 'bw 100% stacked bar graph') {
assign(ofi", letters[j], ",
pp_stackedbar(data, colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), colnames(pp[sapply(pp, is.ordered)][j]), 'bw', 'fill', 'ordinal'), envir=my_env)
} else if (diagram[", j, "] == 'color 100% stacked bar graph') {
assign(ofi", letters[j], ",
pp_stackedbar(data, colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), colnames(pp[sapply(pp, is.ordered)][j]), 'color', 'fill', 'ordinal'), envir=my_env)
}")))}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" ofi", letters[1:ncol(data.ord)], collapse = ",', ',"), ",', ncol=", ncol(data.ord), ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
write("
}
facnum.plot(cbind(data.ord, data.fac))
}
}
else if (length(data[sapply(data, is.ordered)])>0 &&
length(data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)])>0 &&
any(dataclass %in% "ordered") &&
any(dataclass %in% "factor") &&
(diagram %in% fac.ord_v1) == TRUE)
{
data.ord <- data[sapply(data, is.ordered)]
data.fac <- data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)]
rownames(data.ord) <- NULL
diagram <- rep(diagram, ncol(data.fac))
out = NULL
for (i in seq_along(data.ord))
{
GAheight <- length(unique(data.ord[,(i)]))/5+0.5
write(paste0("
for (j in seq_along(data.fac)) {eval(parse(text=paste0("ofi", letters[j], " <- paste0('of', ", i, ", '", letters[j],"')")))}
facnum.plot <- function(pp)
{
long <- round(length(unique(pp[sapply(pp, is.factor)][[i]]))/6 + 0.6, 1)
for (j in seq_along(data.fac)) {eval(parse(text=paste0("
if (diagram[", j, "] == 'transposed color stacked bar graph') {
assign(ofi", letters[j], ",
pp_stackedbar(data, colnames(pp[sapply(pp, is.ordered)][i]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][j]), 'color', 'stack'), envir=my_env)
} else if (diagram[", j, "] == 'transposed color 100% stacked bar graph') {
assign(ofi", letters[j], ",
pp_stackedbar(data, colnames(pp[sapply(pp, is.ordered)][i]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][j]), 'color', 'fill'), envir=my_env)
}")))}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" ofi", letters[1:ncol(data.fac)], collapse = ",', ',"), ",', ncol=", ncol(data.fac), ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
write("
}
facnum.plot(cbind(data.ord, data.fac))
}
}
else if (length(data[sapply(data, is.ordered)])>0 &&
length(data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)])>0 &&
any(dataclass %in% "ordered") &&
any(dataclass %in% "factor") &&
(diagram %in% fac.ord_v2) == TRUE)
{
data.ord <- data[sapply(data, is.ordered)]
data.fac <- data[sapply(data, is.factor)][!sapply(data[sapply(data, is.factor)], is.ordered)]
rownames(data.fac) <- NULL
diagram <- rep(diagram, ncol(data.ord))
out = NULL
for (i in seq_along(data.fac))
{
GAheight <- length(unique(data.fac[,(i)]))/5+1.5
write(paste0("
for (j in seq_along(data.ord)) {eval(parse(text=paste0("ofi", letters[j], " <- paste0('of', ", i, ", '", letters[j],"')")))}
facnum.plot <- function(pp)
{
long <- round(length(unique(pp[sapply(pp, is.factor)][[i]]))/6 + 0.6, 1)
for (j in seq_along(data.ord)) {eval(parse(text=paste0("
if (diagram[", j, "] == 'bw heatmap') {
assign(ofi", letters[j], ",
pp_contingency(data, colnames(pp[sapply(pp, is.ordered)][j]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), 'bw', 'observed'), envir=my_env)
} else if (diagram[", j, "] == 'color heatmap') {
assign(ofi", letters[j], ",
pp_contingency(data, colnames(pp[sapply(pp, is.ordered)][j]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), 'color', 'observed'), envir=my_env)
} else if (diagram[", j, "] == 'color residuals heatmap') {
assign(ofi", letters[j], ",
pp_contingency(data, colnames(pp[sapply(pp, is.ordered)][j]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), 'color', 'residuals'), envir=my_env)
} else if (diagram[", j, "] == 'bw contribution to x2 heatmap') {
assign(ofi", letters[j], ",
pp_contingency(data, colnames(pp[sapply(pp, is.ordered)][j]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), 'bw', 'contrib'), envir=my_env)
} else if (diagram[", j, "] == 'color contribution to x2 heatmap') {
assign(ofi", letters[j], ",
pp_contingency(data, colnames(pp[sapply(pp, is.ordered)][j]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), 'color', 'contrib'), envir=my_env)
} else if (diagram[", j, "] == 'bw balloon plot') {
assign(ofi", letters[j], ",
pp_contingency(data, colnames(pp[sapply(pp, is.ordered)][j]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), 'bw', 'observed', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'color balloon plot') {
assign(ofi", letters[j], ",
pp_contingency(data, colnames(pp[sapply(pp, is.ordered)][j]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), 'color', 'observed', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'color residuals balloon plot') {
assign(ofi", letters[j], ",
pp_contingency(data, colnames(pp[sapply(pp, is.ordered)][j]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), 'color', 'residuals', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'bw contribution to x2 balloon plot') {
assign(ofi", letters[j], ",
pp_contingency(data, colnames(pp[sapply(pp, is.ordered)][j]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), 'bw', 'contrib', pp_geom = 'point'), envir=my_env)
} else if (diagram[", j, "] == 'color contribution to x2 balloon plot') {
assign(ofi", letters[j], ",
pp_contingency(data, colnames(pp[sapply(pp, is.ordered)][j]), colnames(pp[sapply(pp, is.factor)][!sapply(pp[sapply(pp, is.factor)], is.ordered)][i]), 'color', 'contrib', pp_geom = 'point'), envir=my_env)
}")))}
line <- eval(parse(
text=paste0("paste0('gridExtra::grid.arrange(' ,", paste0(" ofi", letters[1:ncol(data.ord)], collapse = ",', ',"), ",', ncol=", ncol(data.ord), ")')")))
write(line, file.path(dir, "brinton_outcomes", "matrixplot.R"), append=TRUE)
write("
}
facnum.plot(cbind(data.ord, data.fac))
}
}
else {stop("The combination of these data and graphic type has not been still considered, or
maybe the data does not include the types of data considered by the 'dataclass' argument, or
maybe the data does not have two columns of the dataclass set.")}
} else {stop(warning_wp_dc)}
rmarkdown::render(file.path(dir, "brinton_outcomes", "matrixplot.R", fsep = .Platform$file.sep), "html_document", envir=my_env)
pander::openFileInOS(file.path(dir, "brinton_outcomes", "matrixplot.html", fsep = .Platform$file.sep))
} |
[
{
"title": "Durban R Users Group Meetup: 24 February 2016 @ The Green Door",
"href": "http://datascience-africa.org/2016/02/260/"
},
{
"title": "Le Monde puzzle [
"href": "https://xianblog.wordpress.com/2013/11/30/le-monde-puzzle-842/"
},
{
"title": "By: Super Nerdy Cool » Build multiarch R (32 bit and 64 bit) on Debian/Ubuntu",
"href": "http://blog.nguyenvq.com/blog/2011/07/11/r-from-source/comment-page-1/"
},
{
"title": "October 24: 4th MilanoR meeting. Agenda",
"href": "http://www.milanor.net/blog/october-24-4th-milanor-meeting-agenda/"
},
{
"title": "Webinar: Big-Data Trees for R",
"href": "http://blog.revolutionanalytics.com/2014/04/webinar-big-data-trees-for-r.html"
},
{
"title": "The Good oL’ Titanic Kaggle Competition pt. 1",
"href": "http://www.numbrcrunch.com/blog/the-good-ol-titanic-kaggle-competition-pt-1"
},
{
"title": "Minimalist Maps",
"href": "http://freakonometrics.hypotheses.org/20241"
},
{
"title": "How many more R-bloggers posts can I expect?",
"href": "http://www.magesblog.com/2014/01/how-many-more-r-bloggers-posts-can-i.html"
},
{
"title": "R/Finance 2009 Overview",
"href": "https://feedproxy.google.com/~r/FossTrading/~3/mdBDXTSE4Eo/rfinance-2009-overview.html"
},
{
"title": "Twitter at conferences",
"href": "http://chem-bla-ics.blogspot.com/2015/11/twitter-at-conferences.html"
},
{
"title": "Kenneth French Gift to the Finance World",
"href": "http://timelyportfolio.blogspot.com/2011/06/kenneth-french-gift-to-finance-world.html"
},
{
"title": "Installing and Starting SparkR Locally on Windows OS and RStudio",
"href": "https://web.archive.org/web/http://blog.sparkiq-labs.com/2015/07/26/installing-and-starting-sparkr-locally-on-windows-os-and-rstudio/"
},
{
"title": "Timezone conversion in R",
"href": "https://web.archive.org/web/http://blog.anomdev.com/2016/07/26/227/"
},
{
"title": "Serious stats companion web site now live: sample chapter, data and R scripts",
"href": "https://seriousstats.wordpress.com/2012/03/23/serious-stats-companion-web-site-now-live/"
},
{
"title": "Ross Ihaka in Sunday Star Times",
"href": "http://blog.revolutionanalytics.com/2010/07/ross-ihaka-in-sunday-star-times.html"
},
{
"title": "Load PostGIS geometries in R without rgdal",
"href": "http://geospatial.commons.gc.cuny.edu/2014/01/14/load-postgis-geometries-in-r-without-rgdal/"
},
{
"title": "Importing Generic Function from Other Package: A Tip on Writing a R Package",
"href": "http://yusung.blogspot.com/2009/01/importing-generic-function-from-other.html"
},
{
"title": "SSH tunnels on Windows for R",
"href": "https://itsalocke.com/ssh-tunnels-windows-r/"
},
{
"title": "Statisticians at JSM consider themselves \"Data Scientists\"",
"href": "http://blog.revolutionanalytics.com/2011/08/statisticians-at-jsm-consider-themselves-data-scientists.html"
},
{
"title": "Common R Programming Errors Faced by Beginners",
"href": "https://www.quantinsti.com/blog/common-errors-r/"
},
{
"title": "First Derivative of the Multivariate Normal Densities with RcppArmadillo",
"href": "http://gallery.rcpp.org/articles/dmvnorm-deriv-arma/"
},
{
"title": "Slides from Rcpp talk in Sydney",
"href": "http://dirk.eddelbuettel.com/blog/2013/07/13/"
},
{
"title": "Free Stanford online course on Statistical Learning (with R) starting on 19 Jan 2015",
"href": "https://rdatamining.wordpress.com/2014/11/21/free-stanford-online-course-on-statistical-learning-with-r-starting-on-19-jan-2015/"
},
{
"title": "Should you teach Python or R for data science?",
"href": "http://www.dataschool.io/python-or-r-for-data-science/"
},
{
"title": "Running RStudio on Digital Ocean, AWS etc Using Tutum and Docker Containers",
"href": "https://blog.ouseful.info/2015/06/24/running-rstudio-on-digital-ocean-aws-etc-using-tutum-and-docker-containers/"
},
{
"title": "Interview with a forced convert from Matlab to R",
"href": "http://www.burns-stat.com/interview-with-a-forced-convert-from-matlab-to-r/?utm_source=rss&utm_medium=rss&utm_campaign=interview-with-a-forced-convert-from-matlab-to-r"
},
{
"title": "Stochastic reserving with R: ChainLadder 0.1.5-1 released",
"href": "http://www.magesblog.com/2011/11/stochastic-reserving-with-r-chainladder.html"
},
{
"title": "Un-Wrapping a Sphere with R",
"href": "https://casoilresource.lawr.ucdavis.edu/"
},
{
"title": "Hofstader’s Chaotic Sequence",
"href": "https://web.archive.org/web/http://playingwithr.blogspot.com/2011/04/hofstaders-chaotic-sequence.html"
},
{
"title": "SAS vs Open Source",
"href": "http://blog.revolutionanalytics.com/2010/10/sas-vs-open-source.html"
},
{
"title": "Installing R/RStudio on Ubuntu 14.04",
"href": "http://www.thertrader.com/2014/09/22/installing-rrstudio-on-ubuntu-14-04/"
},
{
"title": "Not only CRAN downloads and Shiny … but also .. rCharts",
"href": "http://www.premiersoccerstats.com/wordpress/?p=1413"
},
{
"title": "Example 8.11: violin plots",
"href": "https://feedproxy.google.com/~r/SASandR/~3/_1yl_6LFQyw/example-811-violin-plots.html"
},
{
"title": "Now you can start every R tutorial for free @DataCamp",
"href": "https://www.datacamp.com/community/blog/now-can-start-every-r-tutorial-free-datacamp"
},
{
"title": "Time series equivalence of brains and markets",
"href": "https://feedproxy.google.com/~r/PortfolioProbeRLanguage/~3/koL-g5LJFUI/"
},
{
"title": "Re-introducing Radiant: A shiny interface for R",
"href": "http://vnijs.github.io/blog/2016/09/re-introducing-radiant.html"
},
{
"title": "Revolution Newsletter: June 2012",
"href": "http://blog.revolutionanalytics.com/2012/06/revolution-newsletter-june-2012.html"
},
{
"title": "The R Journal (Volume 3/2, December 2011) is out",
"href": "https://www.r-bloggers.com/the-r-journal-volume-32-december-2011-is-out/"
},
{
"title": "Life expectancy and retirement age in USA",
"href": "http://blog.revolutionanalytics.com/2013/01/life-expectancy-and-retirement-age-in-usa.html"
},
{
"title": "Extracting the Epidemic Model: Going Beyond Florence Nightingale Part II",
"href": "http://perfdynamics.blogspot.com/2013/02/extracting-epidemic-model-going-beyond.html"
},
{
"title": "getting ICES 1903-1949 catch statistics into R",
"href": "http://fishvice.blogspot.com/2012/01/getting-ices-1903-1949-catch-statistics.html"
},
{
"title": "Change in temperature in Netherlands over the last century",
"href": "http://wiekvoet.blogspot.com/2014/11/change-in-temperature-in-netherlands.html"
},
{
"title": "Analyzing the 2011-2012 California Health Inteview Survey with R",
"href": "http://blog.ryanwalker.us/2014/06/analyzing-2011-2012-california-health.html"
},
{
"title": "Saving the world with R",
"href": "https://web.archive.org/web/http://blog.revolution-computing.com/2010/04/saving-the-world-with-r.html"
},
{
"title": "OpenCPU release 1.4.6: gzip and systemd",
"href": "https://www.opencpu.org/posts/opencpu-release-1-4-6/"
},
{
"title": "Review: Kölner R Meeting 5 October 2012",
"href": "https://feedproxy.google.com/~r/blogspot/rKuKM/~3/OvOYWBMPido/review-kolner-r-meeting-5-october-2012.html"
},
{
"title": "Outlawing Gay Marriage",
"href": "http://www.johnmyleswhite.com/notebook/2010/01/10/outlawing-gay-marriage/"
},
{
"title": "SAS PROC MCMC example in R: Nonlinear Poisson Regression Multilevel Random-Effects Model",
"href": "http://wiekvoet.blogspot.com/2015/03/sas-proc-mcmc-example-in-r-nonlinear.html"
},
{
"title": "Comparison between 15 different cities…",
"href": "http://using-r-project.blogspot.com/2009/09/comparison-between-15-different-cities.html"
},
{
"title": "Early stopping and penalized likelihood",
"href": "http://andrewgelman.com/2011/07/06/early_stopping/"
}
] |
read.STdata <- function(file, header = FALSE, dec = ".", sep = "", iclx, icly, iclt,
icldate = c(icl.date = 0, iclty = 0, icltm = 0, icltd = 0),
icltime = c(icl.time = 0, icltH = 0, icltM = 0, icltS = 0),
iclvr, iclsp = 0, missing.v = NA,
save.as = "data.frame", date.format = c("code",format = NA),
bytime = NA, tlag, time.zone = ""){
is.scalar <- function (x){length(x) == 1L && is.vector(x, mode = "numeric")}
if(time.zone == ""){
if(is.na(Sys.timezone())){
message("Start error message. The current time zone is not set in your system.")
message("Please set the specific time zone by using the parameter time.zone.")
stop("End error message. Stop running.")
}else{
time.zone <- Sys.timezone()
}
}
if (is.scalar(iclx) == FALSE || is.scalar(icly) == FALSE ||
is.scalar(iclvr) == FALSE || is.scalar(iclsp) == FALSE) {
message("Start error message. Some of the arguments iclsp, iclx, icly, iclt, iclvr are not numeric.")
stop("End error message. Stop running.")}
if(is.vector(icldate) == FALSE || is.vector(icltime) == FALSE){
message("Start error message. The arguments icldate or icltime are not vector.")
stop("End error message. Stop running.")}
if(iclx != as.integer(iclx) || icly != as.integer(icly) || iclt != as.integer(iclt)
|| iclvr != as.integer(iclvr) || icldate[1] != as.integer(icldate[1]) ||
icltime[1] != as.integer(icltime[1]) || iclsp != as.integer(iclsp)
|| icldate[2] != as.integer(icldate[2]) || icltime[2] != as.integer(icltime[2])
|| icldate[3] != as.integer(icldate[3]) || icltime[3] != as.integer(icltime[3])
|| icldate[4] != as.integer(icldate[4]) || icltime[4] != as.integer(icltime[4])){
iclx <- as.integer(iclx)
icly <- as.integer(icly)
iclt <- as.integer(iclt)
icldate <- as.integer(icldate)
icltime <- as.integer(icltime)
iclvr <- as.integer(iclvr)
iclsp <- as.integer(iclsp)
message("Warning message: the arguments iclsp, iclx, icly, iclvr are forced to be integer numbers.")
}
if(iclx == 0 || icly == 0 || iclvr == 0){
message("Start error message. The columns iclx, icly, iclvr have to be defined.")
stop("End error message. Stop running.")
}
if (save.as != "data.frame" && save.as != "STFDF"){
message("Start error message. The class of data has to be data.frame or STFDF. The class entered is not allowed.")
stop("End error message. Stop running.")
}
if(is.vector(date.format) == FALSE){
message("Start error message. The argument date.format is not a vector.")
stop("End error message. Stop running.")
}
iflagt <- 0
if(date.format[1] == "code"){
if(is.na(date.format[2]) == FALSE){
message("Start error message. The argument date.format[2] is not valid: it has to be set equal to NA.")
stop("End error message. Stop running.")
}
date_format <- 0
}else{
if(date.format[1] == "year"){
date_format <- 0
iflagt <- 1
}else{
if(date.format[1] == "yearmon"){
date_format <- date.format[2]
}else{
if(date.format[1] == "yearqtr"){
date_format <- date.format[2]
}else{
if(date.format[1] == "Date"){
date_format <- date.format[2]
}else{
if(date.format[1] == "POSIX"){
date_format <- date.format[2]
}else{
message("Start error message. The argument date.format is not admissible.")
stop("End error message. Stop running.")
}}}}}}
if(bytime != "%Y" && bytime != "%y" && bytime != "%m" && bytime != "%q" &&
bytime != "%d" && bytime != "%H" &&
bytime != "%M" && bytime != "%S" && is.na(bytime) != TRUE){
message("Start error message. The parameter in bytime is not in the required format.")
stop("End error message. Stop running.")}
if(date_format == 0 && iclt == 0 && iflagt == 0){
message("Start error message. The arguments iclt and date.format are not consistent: please set one of them.")
stop("End error message. Stop running.")}
if(date_format != 0 && iclt != 0){
message("Start error message. The arguments iclt and date.format are not consistent: please set only one of them.")
stop("End error message. Stop running.")}
if(date_format != 0 && length(setdiff(icldate, 0)) == 0){
message("Start error message. The arguments icldate and date.format are not consistent: no column has been indicated for dates.")
stop("End error message. Stop running.")}
if(date_format != 0 && icldate[1] != 0 && length(setdiff(icldate[2:4], 0)) > 0){
message("Start error message. The arguments icldate and date.format are not consistent: too many columns have been indicated for dates.")
stop("End error message. Stop running.")}
if(date.format[1] != "year" && date.format[1] != "yearmon" &&
date.format[1] != "yearqtr"){
if(date_format != 0 && icldate[1] == 0 && length(setdiff(icldate[2:4], 0)) < 3){
message("Start error message. The arguments icldate and date.format are not consistent: no information about columns for year or month or day.")
stop("End error message. Stop running.")}}else{
if(date.format[1] == "yearmon" || date.format[1] == "yearqtr"){
if(icldate[1] == 0 && length(setdiff(icldate[2:3], 0)) < 2){
message("Start error message. The arguments icldate and date.format are not consistent: no information about columns for year or month/quarter.")
stop("End error message. Stop running.")}}
if(date.format[1] == "year"){
if(icldate[1] == 0 && icldate[2] == 0){
message("Start error message. The arguments icldate and date.format are not consistent: no information about column for year.")
stop("End error message. Stop running.")}
if(date.format[2] != "%Y" && date.format[2] != "%y"){
message("Start error message. The arguments date.format[1] and date.format[2] are not consistent.")
stop("End error message. Stop running.")}
if(is.na(bytime) == FALSE){
message("Start error message. The arguments bytime is not consistent. Please use the default choice NA.")
stop("End error message. Stop running.")}
date.format[1] <- "code"
if(icldate[1] != 0){
iclt <- icldate[1]
}else{iclt <- icldate[2]
icldate[2] <- 0}
}
}
if(date.format[1] == "yearmon" || date.format[1] == "yearqtr"){
if(icldate[1] == 0 && length(setdiff(icldate[2:4], 0)) == 3){
icldate[4] <- 0
message("Warning message: the argument in icldate[4] is forced to be zero for classes yearmon or yearqtr.")}
if(icltime[1] != 0 || length(setdiff(icltime[2:4], 0)) != 0){
icltime <- 0
message("Warning message: the arguments in icltime are forced to be zero for classes yearmon or yearqtr.")}
}else{
if(date_format != 0 && icltime[1] != 0 && length(setdiff(icltime[2:4], 0)) > 0){
message("Start error message. The arguments icltime and date.format are not consistent: too many columns have been indicated for hours.")
stop("End error message. Stop running.")}
if(regexpr('%H', date_format)[1] > 0 && icltime[1] == 0 && icltime[2] == 0){
message("Start error message. The argument date.format includes hours but no column in icltime provides information about hour.")
stop("End error message. Stop running.")}
if(regexpr('%H', date_format)[1] > 0 && regexpr('%M', date_format)[1] > 0 &&
icltime[1] == 0 && (icltime[2] == 0 || icltime[3] == 0)){
message("Start error message. The argument date.format includes hours and minutes but some information about hours or minutes are missing in icltime.")
stop("End error message. Stop running.")}
if((regexpr('%H', date_format)[1] > 0 && regexpr('%M', date_format)[1] > 0 &&
regexpr('%S', date_format)[1] > 0) &&
icltime[1] == 0 && (icltime[2] == 0 || icltime[3] == 0 || icltime[4] == 0)){
message("Start error message. The argument date.format includes hours, minutes and seconds but some information are missing in icltime.")
stop("End error message. Stop running.")}}
if(is.scalar(tlag) == FALSE || tlag <= 0){
message("Start error message. The argument tlag has to be integer and greater than zero.")
stop("End error message. Stop running.")}
iclw1 <- c(iclx,icly,iclt,iclvr,iclsp)
iclw1 <- iclw1[iclw1 != 0]
iclw2 <- icldate[icldate != 0]
iclw3 <- icltime[icltime != 0]
if(sum(match(duplicated(c(iclw1,iclw2,iclw3)),TRUE,nomatch = 0)) > 0){
message("Start error message. The columns (iclx, icly, ...) indicated have to be different.")
stop("End error message. Stop running.")
}
if(is.scalar(tlag) == FALSE){
tlag <- as.integer(tlag)
message("Warning message: the argument tlag is forced to be integer.")
}
if(is.na(bytime) == FALSE){
if(bytime == "%S"){
if(regexpr('%S', date_format)[1] < 0){
message("Start error message. The arguments bytime = %S and date.format are not consistent.")
stop("End error message. Stop running.")}
}else{
if(bytime == "%M"){
if(regexpr('%M', date_format)[1] < 0){
message("Start error message. The arguments bytime = %M and date.format are not consistent.")
stop("End error message. Stop running.")
}}else{
if(bytime == "%H"){
if(regexpr('%H', date_format)[1] < 0){
message("Start error message. The arguments bytime = %H and date.format are not consistent.")
stop("End error message. Stop running.")
}}else{
if(bytime == "%d"){
if(regexpr('%d', date_format)[1] < 0){
message("Start error message. The arguments bytime = %d and date.format are not consistent.")
stop("End error message. Stop running.")
}}else{
if(bytime == "%m"){
if((regexpr('%m', date_format)[1] < 0)){
message("Start error message. The arguments bytime = %m and date.format are not consistent.")
stop("End error message. Stop running.")
}}else{
if(bytime == "%q"){
if((regexpr('%q', date_format)[1] < 0)){
message("Start error message. The arguments bytime = %q and date.format are not consistent.")
stop("End error message. Stop running.")
}}else{
if(bytime == "%Y" || bytime == "%y"){
if((regexpr('%Y', date_format)[1] < 0) && (regexpr('%y', date_format)[1] < 0)){
message("Start error message. The arguments bytime = %q and date.format are not consistent.")
stop("End error message. Stop running.")
}}else{
message("Start error message. The argument bytime is not admissible.")
stop("End error message. Stop running.")
}}}}}}}}
nskip <- 0
if(header == TRUE){
nskip <- 1
}
importFl <- utils::read.table(file, dec = dec, sep = sep, skip = nskip, na.strings = missing.v)
importFl[importFl == missing.v] <- NA
ndata <- dim(importFl)[1]
if(date_format != 0){
i <- 1
while(i <= ndata){
if(icldate[1] == 0){
if(icldate[2] != 0){
i.date <- importFl[i,icldate[2]]
if(icldate[3] != 0){
i.date <- paste(i.date,importFl[i,icldate[3]], sep=" ")
if(icldate[4] != 0){
i.date <- paste(i.date,importFl[i,icldate[4]], sep=" ")
}
}else{
if(icldate[4] != 0){
message("Start error message. The date cannot be defined: it is specified the column for the day but not the column for the month.")
stop("End error message. Stop running.")}}}else{
message("Start error message. The date cannot be defined: the column for the year is not specified.")
stop("End error message. Stop running.")}
}else{i.date <- importFl[i,icldate[1]]}
if(length(setdiff(icltime, 0)) != 0){
if(icltime[1] == 0){
if(icltime[2] != 0){
i.time <- importFl[i,icltime[2]]
if(icltime[3] != 0){
i.time <- paste(i.time,importFl[i,icltime[3]], sep=" ")
if(icltime[4] != 0){
i.time <- paste(i.time,importFl[i,icltime[4]], sep=" ")
}
}else{
if(icltime[4] != 0){
message("Start error message. The time cannot be defined: it is specified the column for the second but not the column for the minute.")
stop("End error message. Stop running.")}}
}else{
message("Start error message. The time cannot be defined: the column for the hour is not specified.")
stop("End error message. Stop running.")}
}else{i.time <- importFl[i,icltime[1]]}
importFl[i, "icldate"] <- paste(i.date, i.time)
}else{importFl[i, "icldate"] <- i.date}
if(date.format[1] != "yearmon" && date.format[1] != "yearqtr"){
if(is.na(as.POSIXlt((importFl[i,"icldate"]), date_format, tz = time.zone)) == TRUE){
message("Start error message. One of the possible causes is that:")
message("- the dates in the file are not in the format specified in date.format or")
message("- the data format is not valid or")
message("- the dates in the file are not consistent with the given timezone (check for errors in dates involved in daylight saving time).")
stop("End error message. Stop running.")}
}else{
if(date.format[1] == "yearmon"){
if(is.na(as.yearmon(as.character(importFl[i,"icldate"]), date_format)) == TRUE){
message("Start error message. The dates in the file are not in the format specified in date.format or the data format is not valid.")
message("It might be hepful to provide dates with numeric elements.")
stop("End error message. Stop running.")}}
if(date.format[1] == "yearqtr"){
if(is.na(as.yearqtr(as.character(importFl[i,"icldate"]), date_format)) == TRUE){
message("Start error message. The dates in the file are not in the format specified in date.format or the data format is not valid.")
message("It might be hepful to provide dates with numeric elements.")
stop("End error message. Stop running.")}}
}
i <- i+1
}
if(date.format[1] != "yearmon" && date.format[1] != "yearqtr"){
i.date <- as.POSIXlt((importFl[,"icldate"]), format = date_format, tz = time.zone)
if(regexpr('%Y', date_format)[1] < 0){
date_format <- "%y-%m-%d %H:%M:%S"}else{
date_format <- "%Y-%m-%d %H:%M:%S"}
}else{
if(date.format[1] == "yearmon"){
i.date <- as.POSIXlt(as.yearmon(as.character(importFl[,"icldate"]), format = date_format))
}else{i.date <- as.POSIXlt(as.yearqtr(as.character(importFl[,"icldate"]), format = date_format))}
}
if(bytime == "%m"){
i.date <- as.POSIXlt(as.yearmon(i.date))
date.format[1] <- "yearmon"
if(regexpr('%Y', date_format)[1] < 0){
date_format <- "%y-%m-%d"}else{
date_format <- "%Y-%m-%d"}
}
if(bytime == "%q"){
i.date <- as.POSIXlt(as.yearqtr(i.date))
date.format[1] <- "yearqtr"
if(regexpr('%Y', date_format)[1] < 0){
date_format <- "%y-%m-%d"}else{
date_format <- "%Y-%m-%d"}
}
if(bytime == "%d"){
i.date <- as.POSIXlt(as.Date(i.date))
if(regexpr('%Y', date_format)[1] < 0){
date_format <- "%y-%m-%d"}else{
date_format <- "%Y-%m-%d"}
}
if(bytime == "%H"){
minute(i.date) <- 0
second(i.date) <- 0
}
if(bytime == "%M"){
second(i.date) <- 0
}
if(bytime == "%Y" || bytime == "%y"){
i.date <- year(i.date)
date.format[1] <- "code"
date_format <- 0
bytime <- NA
if(regexpr('%Y', date.format)[2] < 0){
date.format[2] <- "%y"}else{
date.format[2] <- "%Y"}
iclt <- ncol(importFl)
iflagt <- 1
}
importFl <- importFl[,-c(ncol(importFl))]
importFl <- cbind(importFl,i.date)
names(importFl)[names(importFl) == "i.date"] <- "iclt"
iclt <- ncol(importFl)
}else{
if(is.numeric(importFl[1,iclt]) == FALSE){
message("Start error message. The temporal codes in the file are not numeric.")
stop("End error message. Stop running.")}
names(importFl)[iclt] <- "iclt"
}
importFl1 <- importFl[order(importFl[, iclx], importFl[, icly], importFl[, iclt]), ]
code.time <- unique(importFl1[, iclt])
tpar1 <- min(code.time)
tpar2 <- max(code.time)
vec.date <- c(tpar1)
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
tpar1 <- as.POSIXlt(as.Date(tpar1))
tpar2 <- as.POSIXlt(as.Date(tpar2))
vec.date.w <- as.POSIXlt(as.Date(tpar1))
vec.date <- as.character(vec.date)
}else{
tpar1 <- as.POSIXlt(tpar1)
tpar2 <- as.POSIXlt(tpar2)
vec.date.w <- as.POSIXlt(tpar1)
vec.date <- format(round(as.POSIXlt(vec.date, format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}
}else{
vec.date <- as.character(vec.date)
if(date.format[1] == "yearmon"){
tpar1 <- as.POSIXlt(as.yearmon(tpar1))
tpar2 <- as.POSIXlt(as.yearmon(tpar2))
vec.date.w <- as.POSIXlt(as.yearmon(tpar1))
}
if(date.format[1] == "yearqtr"){
tpar1 <- as.POSIXlt(as.yearqtr(tpar1))
tpar2 <- as.POSIXlt(as.yearqtr(tpar2))
vec.date.w <- as.POSIXlt(as.yearqtr(tpar1))
}
if(date.format[1] == "code"){
vec.date.w <- tpar1
}
}
if(length(unique(c(tpar1,tpar2))) ==1){
message("Start error message. The initial observed date or temporal point is coincident with the final one, thus the data structure is not spatio-temporal.")
stop("End error message. Stop running.")
}
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){delta.time <- difftime(tpar2, tpar1, units = "days")}
if(bytime == "%H"){delta.time <- difftime(tpar2, tpar1, units = "hours")}
if(bytime == "%M"){delta.time <- difftime(tpar2, tpar1, units = "mins")}
if(bytime == "%S"){delta.time <- difftime(tpar2, tpar1, units = "secs")}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(tpar1), to=as.Date(tpar2), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(tpar1), to=as.Date(tpar2), by='quarter')) - 1
}}}}else{delta.time <- tpar2-tpar1}
if(tlag>(delta.time)){
message("Start error message. The argument tlag is not consistent: it has to be less than the temporal observed interval.")
stop("End error message. Stop running.")}
i <- 1
while(delta.time >= tlag){
i <- i + 1
if(date_format != 0){
if(bytime == "%Y" || bytime == "%y"){
year(vec.date.w) <- year(vec.date.w) + tlag
}
if(bytime == "%d"){
day(vec.date.w) <- day(vec.date.w) + tlag
}
if(bytime == "%m"){
month(vec.date.w) <- month(vec.date.w) + tlag
}
if(bytime == "%q"){
month(vec.date.w) <- month(vec.date.w) + tlag*3
}
if(bytime == "%H"){
delta.w <- vec.date.w
hour(delta.w) <- hour(vec.date.w) + tlag
if(is.na(delta.w) == TRUE){
vec.date.w1 <-vec.date.w
hour(vec.date.w1) <- hour(vec.date.w1) + tlag + 1
if(difftime(vec.date.w1, vec.date.w, units = "hours") < tlag){
hour(vec.date.w1) <- hour(vec.date.w1) + 1
}
hour(vec.date.w) <- hour(vec.date.w1)
}else{
hour(vec.date.w) <- hour(vec.date.w) + tlag}
}
if(bytime == "%M"){
delta.w <- vec.date.w
minute(delta.w) <- minute(vec.date.w) + tlag
if(is.na(delta.w) == TRUE){
vec.date.w1 <-vec.date.w
minute(vec.date.w1) <- minute(vec.date.w1) + tlag + 60
if(difftime(vec.date.w1, vec.date.w, units = "mins") < tlag){
minute(vec.date.w1) <- minute(vec.date.w1) + 60
}
minute(vec.date.w) <- minute(vec.date.w1)
}else{
minute(vec.date.w) <- minute(vec.date.w) + tlag}
}
if(bytime == "%S"){
delta.w <- vec.date.w
second(delta.w) <- second(vec.date.w) + tlag
if(is.na(delta.w) == TRUE){
vec.date.w1 <-vec.date.w
second(vec.date.w1) <- second(vec.date.w1) + tlag + 3600
if(difftime(vec.date.w1, vec.date.w, units = "secs") < tlag){
second(vec.date.w1) <- second(vec.date.w1) + 3600
}
second(vec.date.w) <- second(vec.date.w1)
}else{
second(vec.date.w) <- second(vec.date.w) + tlag}
}
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){delta.time <- difftime(tpar2, vec.date.w, units = "days")}
if(bytime == "%H"){delta.time <- difftime(tpar2, vec.date.w, units = "hours")}
if(bytime == "%M"){delta.time <- difftime(tpar2, vec.date.w, units = "mins")}
if(bytime == "%S"){delta.time <- difftime(tpar2, vec.date.w, units = "secs")}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(vec.date.w), to=as.Date(tpar2), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(vec.date.w), to=as.Date(tpar2), by='quarter')) - 1
}}}
}else{
vec.date.w <- vec.date.w + tlag
delta.time <- tpar2-vec.date.w
}
vec_date <- vec.date.w
if(date.format[1] == "POSIX" && bytime != "%d"){
if(hour(vec_date) == 0 && minute(vec_date) == 0 && second(vec_date) == 0){
vec_date <- format(round(as.POSIXlt(vec.date.w, format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}}
vec.date <- rbind(vec.date,as.character(vec_date))
}
n.time <- length(unique(importFl1[, iclt]))
for(i in 1:n.time){
if(date.format[1] == "POSIX" && bytime != "%d"){
if(hour(importFl1[i, iclt]) == 0 && minute(importFl1[i, iclt]) == 0 && second(importFl1[i, iclt]) == 0){
importFl1[i, iclt] <- format(round(as.POSIXlt(importFl1[i, iclt], format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}}
}
importFl1[[iclt]] <- as.character(importFl1[,iclt])
importFl1 <- subset(importFl1, iclt %in% vec.date)
if(date_format != 0){
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
importFl1[[iclt]] <- as.POSIXlt(as.Date(importFl1[,iclt], format = date_format))
}else{
importFl1[[iclt]] <- (as.POSIXlt(importFl1[,iclt], format = date_format, tz = time.zone))
}
}else{
if(date.format[1] == "yearmon"){
importFl1[[iclt]] <- as.POSIXlt(as.yearmon((importFl1[,iclt]), format = date_format))
}
if(date.format[1] == "yearqtr"){
importFl1[[iclt]] <- as.POSIXlt(as.yearqtr((importFl1[,iclt]), format = date_format))
}
}
}else{importFl1[[iclt]]<-as.numeric(importFl1[,iclt])}
sp <- cbind(importFl1[, iclx], importFl1[, icly])
sp <- unique(sp)
n.stat <- nrow(sp)
n.time <- length(unique(importFl1[, iclt]))
code.time <- unique(importFl1[, iclt])
tpar2 <- max(code.time)
if(date_format != 0){
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
tpar2 <- as.POSIXlt(as.Date(tpar2))
}else{
tpar2 <- (as.POSIXlt(tpar2))}
}else{
if(date.format[1] == "yearmon"){
tpar2 <- as.POSIXlt(as.yearmon(tpar2))
}
if(date.format[1] == "yearqtr"){
tpar2 <- as.POSIXlt(as.yearqtr(tpar2))
}
}}else{tpar2 <- as.numeric(tpar2)}
if(length(unique(c(tpar1,tpar2))) == 1){
message("Start error message. There is no temporal point for the selected tlag increment.")
message("Thus the data structure is not spatio-temporal.")
stop("End error message. Stop running.")
}
for(i in 1:n.stat){
if(date_format != 0){
if(sum(match(duplicated(importFl1[(importFl1[iclx] == sp[i,1] &
importFl1[icly] == sp[i,2]),iclt]), TRUE, nomatch = 0)) >= 1){
message("Start error message. According to the argument 'bytime = '", bytime,", there are more than one observation for a fixed spatial point and a fixed time point.")
stop("End error message. Stop running.")}
}else{
if(sum(match(duplicated(importFl1[(importFl1[iclx] == sp[i,1] &
importFl1[icly] == sp[i,2]),iclt]), TRUE, nomatch = 0)) >= 1){
message("Start error message. There are more than one observation for a fixed spatial point and a fixed time point.")
stop("End error message. Stop running.")}}}
if(iclsp == 0){
importFl1 <- importFl1[,c(iclx,icly,iclt,iclvr)]
colnames(importFl1) <- c("iclx","icly","iclt","iclvr")
importFlw <- data.frame(iclx=NA,icly=NA,iclt=NA,iclvr=NA)
importFlfull <- importFl1[1,]
colnames(importFlfull) <- c("iclx","icly","iclt", "iclvr")
}else{
importFl1 <- importFl1[,c(iclsp,iclx,icly,iclt,iclvr)]
colnames(importFl1) <- c("iclsp","iclx","icly","iclt","iclvr")
importFlw <- data.frame(iclsp=NA,iclx=NA,icly=NA,iclt=NA,iclvr=NA)
importFlfull <- importFl1[1,]
colnames(importFlfull) <- c("iclsp","iclx","icly","iclt", "iclvr")
iclsp <- "iclsp"
}
iclx <- "iclx"
icly <- "icly"
iclvr <- "iclvr"
iclt <- "iclt"
if(date.format[1] == "POSIX" && bytime != "%d"){
if(hour(importFlfull[[iclt]]) == 0 && minute(importFlfull[[iclt]]) == 0 && second(importFlfull[[iclt]]) == 0){
importFlfull[[iclt]] <- format(round(as.POSIXlt(importFlfull[[iclt]], format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}}
importFlfull[[iclt]] <- as.character(importFlfull[[iclt]])
t1 <- importFl1[1,iclt]
if(date_format != 0){
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
t1 <- as.POSIXlt(as.Date(t1))
}else{
t1 <- as.POSIXlt(t1)}
}else{
if(date.format[1] == "yearmon"){
t1 <- as.POSIXlt(as.yearmon(t1))
}
if(date.format[1] == "yearqtr"){
t1 <- as.POSIXlt(as.yearqtr(t1))
}
}
}else{t1 <- as.numeric(t1)}
importFlw <- importFl1[1,]
j <- 1
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){
delta.time <- difftime(t1,tpar1, units = "days")
}
if(bytime == "%H"){
delta.time <- difftime(t1,tpar1, units = "hours")
}
if(bytime == "%M"){
delta.time <- difftime(t1,tpar1, units = "mins")
}
if(bytime == "%S"){
delta.time <- difftime(t1,tpar1, units = "secs")
}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(tpar1), to=as.Date(t1), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(tpar1), to=as.Date(t1), by='quarter')) - 1
}
}
}
}else{
delta.time <- t1-tpar1}
while(delta.time >= tlag){
j <- j + 1
if(as.integer(j/500) == (j/500) ){
message("The first ", j, " values have been included in the data file.")
}
if(date_format != 0){
if(bytime == "%Y" || bytime == "%y"){
year(t1) <- year(t1) - tlag
}
if(bytime == "%d"){
day(t1) <- day(t1) - tlag
}
if(bytime == "%m"){
month(t1) <- month(t1) - tlag
}
if(bytime == "%q"){
month(t1) <- month(t1) - tlag*3
}
if(bytime == "%H"){
delta.w <- t1
hour(delta.w) <- hour(t1) - tlag
if(is.na(delta.w) == TRUE){
t11 <- t1
hour(t11) <- hour(t11) - tlag - 1
if(difftime(t1, t11, units = "hours") < tlag){
hour(t11) <- hour(t11) - 1
}
hour(t1) <- hour(t11)
}else{
hour(t1) <- hour(t1) - tlag}
}
if(bytime == "%M"){
delta.w <- t1
minute(delta.w) <- minute(t1) - tlag
if(is.na(delta.w) == TRUE){
t11 <- t1
minute(t11) <- minute(t11) - tlag - 60
if(difftime(t1, t11, units = "mins") < tlag){
minute(t11) <- minute(t11) - 60
}
minute(t1) <- minute(t11)
}else{
minute(t1) <- minute(t1) - tlag}
}
if(bytime == "%S"){
delta.w <- t1
second(delta.w) <- second(t1) - tlag
if(is.na(delta.w) == TRUE){
t11 <- t1
second(t11) <- second(t11) - tlag - 3600
if(difftime(t1, t11, units = "secs") < tlag){
second(t11) <- second(t11) - 3600
}
second(t1) <- second(t11)
}else{
second(t1) <- second(t1) - tlag}
}
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
importFlw[[iclt]]<- as.POSIXlt(as.Date(t1))
}else{
importFlw[[iclt]]<- (as.POSIXlt(t1))}
}else{
if(date.format[1] == "yearmon"){
importFlw[[iclt]]<- as.POSIXlt(as.yearmon(t1))
}
if(date.format[1] == "yearqtr"){
importFlw[[iclt]]<- as.POSIXlt(as.yearqtr(t1))
}
}
}else{
t1 <- t1 - tlag
importFlw[[iclt]]<- importFlw[1,iclt] - tlag
}
importFlw[[iclvr]]<- NA
if(date.format[1] == "POSIX" && bytime != "%d"){
if(hour(importFlw[[iclt]]) == 0 && minute(importFlw[[iclt]]) == 0 && second(importFlw[[iclt]]) == 0){
importFlw[[iclt]] <- format(round(as.POSIXlt(importFlw[[iclt]], format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}}
importFlw[[iclt]] <- as.character(importFlw[[iclt]])
importFlfull <- rbind(importFlw,importFlfull)
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){delta.time <- difftime(t1,tpar1, units = "days")}
if(bytime == "%H"){delta.time <- difftime(t1,tpar1, units = "hours")}
if(bytime == "%M"){delta.time <- difftime(t1,tpar1, units = "mins")}
if(bytime == "%S"){delta.time <- difftime(t1,tpar1, units = "secs")}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(tpar1), to=as.Date(t1), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(tpar1), to=as.Date(t1), by='quarter')) - 1
}
}
}
}else{delta.time <- t1-tpar1}
}
i <- 2
ndata <- dim(importFl1)[1]
while (i<= ndata) {
if((importFl1[i-1,iclx] == importFl1[i,iclx]) && (importFl1[i-1,icly] == importFl1[i,icly])){
t1 <- importFl1[i-1,iclt]
t2 <- importFl1[i,iclt]
if(date_format != 0){
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
t1 <- as.POSIXlt(as.Date(t1))
t2 <- as.POSIXlt(as.Date(t2))
}else{
t1 <- as.POSIXlt(t1)
t2 <- as.POSIXlt(t2)
}
}else{
if(date.format[1] == "yearmon"){
t1 <- as.POSIXlt(as.yearmon(t1))
t2 <- as.POSIXlt(as.yearmon(t2))
}
if(date.format[1] == "yearqtr"){
t1 <- as.POSIXlt(as.yearqtr(t1))
t2 <- as.POSIXlt(as.yearqtr(t2))
}
}
}else{
t1 <- as.numeric(t1)
t2 <- as.numeric(t2)}
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){
delta.time <- difftime(t2, t1, units = "days")
}
if(bytime == "%H"){
delta.time <- difftime(t2, t1, units = "hours")
}
if(bytime == "%M"){
delta.time <- difftime(t2, t1, units = "mins")
}
if(bytime == "%S"){
delta.time <- difftime(t2, t1, units = "secs")
}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(t1), to=as.Date(t2), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(t1), to=as.Date(t2), by='quarter')) - 1
}
}
}
}else{delta.time <- t2-t1}
while(delta.time > tlag){
j <- j + 1
if(as.integer(j/500) == (j/500) ){
message("The first ", j, " values have been included in the data file.")
}
importFlw<-importFl1[i-1,]
if(date_format != 0){
if(bytime == "%Y" || bytime == "%y"){
year(t1) <- year(t1) + tlag
}
if(bytime == "%d"){
day(t1) <- day(t1) + tlag
}
if(bytime == "%m"){
month(t1) <- month(t1) + tlag
}
if(bytime == "%q"){
month(t1) <- month(t1) + tlag*3
}
if(bytime == "%H"){
delta.w <- t1
hour(delta.w) <- hour(t1) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t1
hour(t11) <- hour(t11) + tlag + 1
if(difftime(t11, t1, units = "hours") < tlag){
hour(t11) <- hour(t11) + 1
}
hour(t1) <- hour(t11)
}else{
hour(t1) <- hour(t1) + tlag}
}
if(bytime == "%M"){
delta.w <- t1
minute(delta.w) <- minute(t1) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t1
minute(t11) <- minute(t11) + tlag + 60
if(difftime(t11, t1, units = "mins") < tlag){
minute(t11) <- minute(t11) + 60
}
minute(t1) <- minute(t11)
}else{
minute(t1) <- minute(t1) + tlag}
}
if(bytime == "%S"){
delta.w <- t1
second(delta.w) <- second(t1) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t1
second(t11) <- second(t11) + tlag + 3600
if(difftime(t11, t1, units = "secs") < tlag){
second(t11) <- second(t11) + 3600
}
second(t1) <- second(t11)
}else{
second(t1) <- second(t1) + tlag}
}
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
importFlw[[iclt]]<- as.POSIXlt(as.Date(t1))
}else{
importFlw[[iclt]]<- as.POSIXlt(t1)}
}else{
if(date.format[1] == "yearmon"){
importFlw[[iclt]]<- as.POSIXlt(as.yearmon(t1))
}
if(date.format[1] == "yearqtr"){
importFlw[[iclt]]<- as.POSIXlt(as.yearqtr(t1))
}
}
}else{
t1 <- t1 + tlag
importFlw[[iclt]]<- t1
}
importFlw[[iclvr]]<- NA
if(date.format[1] == "POSIX" && bytime != "%d"){
if(hour(importFlw[[iclt]]) == 0 && minute(importFlw[[iclt]]) == 0 && second(importFlw[[iclt]]) == 0){
importFlw[[iclt]] <- format(round(as.POSIXlt(importFlw[[iclt]], format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}}
importFlw[[iclt]] <- as.character(importFlw[[iclt]])
importFlfull <- rbind(importFlfull, importFlw)
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){delta.time <- difftime(t2, t1, units = "days")}
if(bytime == "%H"){delta.time <- difftime(t2, t1, units = "hours")}
if(bytime == "%M"){delta.time <- difftime(t2, t1, units = "mins")}
if(bytime == "%S"){delta.time <- difftime(t2, t1, units = "secs")}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(t1), to=as.Date(t2), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(t1), to=as.Date(t2), by='quarter')) - 1
}
}
}
}else{delta.time <- t2 - t1}
}
importFlw <- importFl1[i,]
if(date.format[1] == "POSIX" && bytime != "%d"){
if(hour(importFlw[[iclt]]) == 0 && minute(importFlw[[iclt]]) == 0 && second(importFlw[[iclt]]) == 0){
importFlw[[iclt]] <- format(round(as.POSIXlt(importFlw[[iclt]], format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}}
importFlw[[iclt]] <- as.character(importFlw[1, iclt])
importFlfull <- rbind(importFlfull, importFlw)
i <- i + 1
j <- j +1
}else{
if(importFl1[i-1,iclt] != tpar2){
t2 <- importFl1[i-1,iclt]
if(date_format != 0){
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
t2 <- as.POSIXlt(as.Date(t2))
}else{
t2 <- as.POSIXlt(t2)}
}else{
if(date.format[1] == "yearmon"){
t2 <- as.POSIXlt(as.yearmon(t2))
}
if(date.format[1] == "yearqtr"){
t2 <- as.POSIXlt(as.yearqtr(t2))
}
}
}else{t2 <- as.numeric(t2)}
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){delta.time <- difftime(tpar2, t2, units = "days")}
if(bytime == "%H"){delta.time <- difftime(tpar2, t2, units = "hours")}
if(bytime == "%M"){delta.time <- difftime(tpar2, t2, units = "mins")}
if(bytime == "%S"){delta.time <- difftime(tpar2, t2, units = "secs")}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(t2), to=as.Date(tpar2), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(t2), to=as.Date(tpar2), by='quarter')) - 1
}
}
}
}else{delta.time <- tpar2-t2}
while(delta.time >= tlag){
j <- j +1
if(as.integer(j/500) == (j/500) ){
message("The first ", j, " values have been included in the data file.")
}
importFlw <- importFl1[i - 1,]
if(date_format != 0){
if(bytime == "%Y" || bytime == "%y"){
year(t2) <- year(t2) + tlag
}
if(bytime == "%d"){
day(t2) <- day(t2) + tlag
}
if(bytime == "%m"){
month(t2) <- month(t2) + tlag
}
if(bytime == "%q"){
month(t2) <- month(t2) + tlag*3
}
if(bytime == "%H"){
delta.w <- t2
hour(delta.w) <- hour(t2) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t2
hour(t11) <- hour(t11) + tlag + 1
if(difftime(t11, t2, units = "hours") < tlag){
hour(t11) <- hour(t11) + 1
}
hour(t2) <- hour(t11)
}else{
hour(t2) <- hour(t2) + tlag}
}
if(bytime == "%M"){
delta.w <- t2
minute(delta.w) <- minute(t2) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t2
minute(t11) <- minute(t11) + tlag + 60
if(difftime(t11, t2, units = "mins") < tlag){
minute(t11) <- minute(t11) + 60
}
minute(t2) <- minute(t11)
}else{
minute(t2) <- minute(t2) + tlag}
}
if(bytime == "%S"){
delta.w <- t2
second(delta.w) <- second(t2) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t2
second(t11) <- second(t11) + tlag + 3600
if(difftime(t11, t2, units = "secs") < tlag){
second(t11) <- second(t11) + 3600
}
second(t2) <- second(t11)
}else{
second(t2) <- second(t2) + tlag}
}
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
t2 <- as.POSIXlt(as.Date(t2))
importFlw[[iclt]]<- as.POSIXlt(as.Date(t2))
}else{
importFlw[[iclt]]<- (as.POSIXlt(t2))
}
}else{
if(date.format[1] == "yearmon"){
importFlw[[iclt]]<- as.POSIXlt(as.yearmon(t2))
}
if(date.format[1] == "yearqtr"){
importFlw[[iclt]]<- as.POSIXlt(as.yearqtr(t2))
}
}
}else{
t2 <- t2 + tlag
importFlw[[iclt]] <- t2
}
importFlw[[iclvr]] <- NA
if(date.format[1] == "POSIX" && bytime != "%d"){
if(hour(importFlw[[iclt]]) == 0 && minute(importFlw[[iclt]]) == 0 && second(importFlw[[iclt]]) == 0){
importFlw[[iclt]] <- format(round(as.POSIXlt(importFlw[[iclt]], format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}}
importFlw[[iclt]] <- as.character(importFlw[[iclt]])
importFlfull <- rbind(importFlfull, importFlw)
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){delta.time <- difftime(tpar2, t2, units = "days")}
if(bytime == "%H"){delta.time <- difftime(tpar2, t2, units = "hours")}
if(bytime == "%M"){delta.time <- difftime(tpar2, t2, units = "mins")}
if(bytime == "%S"){delta.time <- difftime(tpar2, t2, units = "secs")}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(t2), to=as.Date(tpar2), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(t2), to=as.Date(tpar2), by='quarter')) - 1
}
}
}}else{delta.time <- tpar2-t2}
}
}
t1 <- importFl1[i,iclt]
t0 <- tpar1
if(date_format != 0){
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
t1 <- as.POSIXlt(as.Date(t1))
t0 <- as.POSIXlt(as.Date(t0))
}else{
t0 <- as.POSIXlt(t0)
t1 <- as.POSIXlt(t1)}
}else{
if(date.format[1] == "yearmon"){
t1 <- as.POSIXlt(as.yearmon(t1))
t0 <- as.POSIXlt(as.yearmon(t0))
}
if(date.format[1] == "yearqtr"){
t1 <- as.POSIXlt(as.yearqtr(t1))
t0 <- as.POSIXlt(as.yearqtr(t0))
}
}
}else{
t0 <- as.numeric(t0)
t1 <- as.numeric(t1)}
importFlw <-importFl1[i,]
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){delta.time <- difftime(t1, t0, units = "days")}
if(bytime == "%H"){delta.time <- difftime(t1, t0, units = "hours")}
if(bytime == "%M"){delta.time <- difftime(t1, t0, units = "mins")}
if(bytime == "%S"){delta.time <- difftime(t1, t0, units = "secs")}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(t0), to=as.Date(t1), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(t0), to=as.Date(t1), by='quarter')) - 1
}
}
}
}else{
delta.time <- t1-t0
}
while(delta.time >= tlag){
j <- j +1
if(as.integer(j/500) == (j/500) ){
message("The first ", j, " values have been included in the data file.")
}
if(date_format != 0){
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
importFlw[[iclt]]<- as.POSIXlt(as.Date(t0))
}else{
importFlw[[iclt]]<- (as.POSIXlt(t0))}
}else{
if(date.format[1] == "yearmon"){
importFlw[[iclt]]<- as.POSIXlt(as.yearmon(t0))
}
if(date.format[1] == "yearqtr"){
importFlw[[iclt]]<- as.POSIXlt(as.yearqtr(t0))
}
}
if(bytime == "%Y" || bytime == "%y"){
year(t0) <- year(t0) + tlag
}
if(bytime == "%d"){
day(t0) <- day(t0) + tlag
}
if(bytime == "%m"){
month(t0) <- month(t0) + tlag
}
if(bytime == "%q"){
month(t0) <- month(t0) + tlag*3
}
if(bytime == "%H"){
delta.w <- t0
hour(delta.w) <- hour(t0) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t0
hour(t11) <- hour(t11) + tlag + 1
if(difftime(t11, t0, units = "hours") < tlag){
hour(t11) <- hour(t11) + 1
}
hour(t0) <- hour(t11)
}else{
hour(t0) <- hour(t0) + tlag}
}
if(bytime == "%M"){
delta.w <- t0
minute(delta.w) <- minute(t0) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t0
minute(t11) <- minute(t11) + tlag + 60
if(difftime(t11, t0, units = "mins") < tlag){
minute(t11) <- minute(t11) + 60
}
minute(t0) <- minute(t11)
}else{
minute(t0) <- minute(t0) + tlag}
}
if(bytime == "%S"){
delta.w <- t0
second(delta.w) <- second(t0) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t0
second(t11) <- second(t11) + tlag + 3600
if(difftime(t11, t0, units = "secs") < tlag){
second(t11) <- second(t11) + 3600
}
second(t0) <- second(t11)
}else{
second(t0) <- second(t0) + tlag}
}
}else{
importFlw[[iclt]] <- t0
t0 <- t0 + tlag
}
importFlw[[iclvr]]<- NA
if(date.format[1] == "POSIX" && bytime != "%d"){
if(hour(importFlw[[iclt]]) == 0 && minute(importFlw[[iclt]]) == 0 && second(importFlw[[iclt]]) == 0){
importFlw[[iclt]] <- format(round(as.POSIXlt(importFlw[[iclt]], format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}}
importFlw[[iclt]] <- as.character(importFlw[[iclt]])
importFlfull <- rbind(importFlfull,importFlw)
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){delta.time <- difftime(t1, t0, units = "days")}
if(bytime == "%H"){delta.time <- difftime(t1, t0, units = "hours")}
if(bytime == "%M"){delta.time <- difftime(t1, t0, units = "mins")}
if(bytime == "%S"){delta.time <- difftime(t1, t0, units = "secs")}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(t0), to=as.Date(t1), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(t0), to=as.Date(t1), by='quarter')) - 1
}
}
}
}else{
delta.time <- t1-t0
}
}
importFlw <- importFl1[i,]
if(date.format[1] == "POSIX" && bytime != "%d"){
if(hour(importFlw[[iclt]]) == 0 && minute(importFlw[[iclt]]) == 0 && second(importFlw[[iclt]]) == 0){
importFlw[[iclt]] <- format(round(as.POSIXlt(importFlw[[iclt]], format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}}
importFlw[[iclt]] <- as.character(importFlw[1, iclt])
importFlfull <- rbind(importFlfull, importFlw)
i <- i +1
j <- j+1
}
}
if(importFl1[ndata,iclt] != tpar2){
t2 <- importFl1[ndata,iclt]
if(date_format != 0){
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
t2 <- as.POSIXlt(as.Date(t2))
}else{t2 <- as.POSIXlt(t2)}
}else{
if(date.format[1] == "yearmon"){
t2 <- as.POSIXlt(as.yearmon(t2))
}
if(date.format[1] == "yearqtr"){t2 <- as.POSIXlt(as.yearqtr(t2))}
}}else{t2 <- as.numeric(t2)}
importFlw <-importFl1[ndata,]
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){delta.time <- difftime(tpar2, t2, units = "days")}
if(bytime == "%H"){delta.time <- difftime(tpar2, t2, units = "hours")}
if(bytime == "%M"){delta.time <- difftime(tpar2, t2, units = "mins")}
if(bytime == "%S"){delta.time <- difftime(tpar2, t2, units = "secs")}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(t2), to=as.Date(tpar2), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(t2), to=as.Date(tpar2), by='quarter')) - 1
}
}
}
}else{
delta.time <- tpar2-t2
}
while(delta.time >= tlag){
j <- j +1
if(as.integer(j/500) == (j/500) ){
message("The first ", j, " values have been included in the data file.")
}
if(date_format != 0){
if(bytime == "%Y" || bytime == "%y"){
year(t2) <- year(t2) + tlag
}
if(bytime == "%d"){
day(t2) <- day(t2) + tlag
}
if(bytime == "%m"){
month(t2) <- month(t2) + tlag
}
if(bytime == "%q"){
month(t2) <- month(t2) + tlag*3
}
if(bytime == "%H"){
delta.w <- t2
hour(delta.w) <- hour(t2) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t2
hour(t11) <- hour(t11) + tlag + 1
if(difftime(t11, t2, units = "hours") < tlag){
hour(t11) <- hour(t11) + 1
}
hour(t2) <- hour(t11)
}else{
hour(t2) <- hour(t2) + tlag}
}
if(bytime == "%M"){
delta.w <- t2
minute(delta.w) <- minute(t2) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t2
minute(t11) <- minute(t11) + tlag + 60
if(difftime(t11, t2, units = "mins") < tlag){
minute(t11) <- minute(t11) + 60
}
minute(t2) <- minute(t11)
}else{
minute(t2) <- minute(t2) + tlag}
}
if(bytime == "%S"){
delta.w <- t2
second(delta.w) <- second(t2) + tlag
if(is.na(delta.w) == TRUE){
t11 <- t2
second(t11) <- second(t11) + tlag + 3600
if(difftime(t11, t2, units = "secs") < tlag){
second(t11) <- second(t11) + 3600
}
second(t2) <- second(t11)
}else{
second(t2) <- second(t2) + tlag}
}
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
importFlw[[iclt]] <- as.POSIXlt(as.Date(t2))
}else{
importFlw[[iclt]] <- as.POSIXlt(t2)}
}else{
if(date.format[1] == "yearmon"){
importFlw[[iclt]] <- as.POSIXlt(as.yearmon(t2))
}
if(date.format[1] == "yearqtr"){
importFlw[[iclt]] <- as.POSIXlt(as.yearqtr(t2))
}
}
}else{
t2 <- t2 + tlag
importFlw[[iclt]] <- t2
}
importFlw[[iclvr]] <- NA
if(date.format[1] == "POSIX" && bytime != "%d"){
if(hour(importFlw[[iclt]]) == 0 && minute(importFlw[[iclt]]) == 0 && second(importFlw[[iclt]]) == 0){
importFlw[[iclt]] <- format(round(as.POSIXlt(importFlw[[iclt]], format="%Y-%m-%d %H:%M:%S")), "%Y-%m-%d %H:%M:%S")
}}
importFlw[[iclt]] <- as.character(importFlw[[iclt]])
importFlfull <- rbind(importFlfull, importFlw)
if(date_format != 0){
if(bytime == "%d" || bytime == "%H" || bytime == "%M" || bytime == "%S"){
if(bytime == "%d"){delta.time <- difftime(tpar2, t2, units = "days")}
if(bytime == "%H"){delta.time <- difftime(tpar2, t2, units = "hours")}
if(bytime == "%M"){delta.time <- difftime(tpar2, t2, units = "mins")}
if(bytime == "%S"){delta.time <- difftime(tpar2, t2, units = "secs")}
}else{
if(bytime == "%m"){
delta.time <- length(seq(from=as.Date(t2), to=as.Date(tpar2), by='month')) - 1
}else{
if(bytime == "%q"){
delta.time <- length(seq(from=as.Date(t2), to=as.Date(tpar2), by='quarter')) - 1
}
}
}
}else{delta.time <- tpar2-t2}
}
}
if(date_format != 0){
if(date.format[1] == "Date" || date.format[1] == "POSIX"){
if(bytime == "%d"){
importFlfull[[iclt]] <- as.Date(as.character(importFlfull[[iclt]]), format = date_format)
}else{
importFlfull[[iclt]] <- as.POSIXlt(importFlfull[[iclt]], format = date_format, tz = time.zone)
}}else{
if(date.format[1] == "yearmon"){
importFlfull[[iclt]] <- as.yearmon(importFlfull[[iclt]], format = date_format)
}
if(date.format[1] == "yearqtr"){
importFlfull[[iclt]] <- as.yearqtr(importFlfull[[iclt]], format = date_format)}
}}else{importFlfull[[iclt]] <- as.numeric(importFlfull[[iclt]])}
n.time <- length(unique(importFlfull[, iclt]))
if (iclsp == 0) {
ID_points <- c(rep(1:n.stat, each = n.time))
ID_points <- paste("id_", ID_points , sep = "")
importFlfull[,"iclsp"] <- ID_points
}
if (save.as == "data.frame") {
if (date_format != 0 || iflagt == 1) {
ID_times <- c(rep(1:n.time, times = n.stat))
importFlfull[,"timeIndex"] <- ID_times
importFlfull <- importFlfull[,c("iclsp", "iclx","icly","timeIndex","iclt","iclvr")]
colnames(importFlfull) <- c("spatialIndex","x","y","timeIndex","date","variable")
}else{
importFlfull <- importFlfull[,c("iclsp", "iclx","icly","iclt","iclvr")]
colnames(importFlfull) <- c("spatialIndex","x","y","timeIndex","variable")}
return(importFlfull)
}
if (save.as == "STFDF") {
if(date_format == 0 && iflagt == 0){
message("Start error message. The data set cannot be saved as STFDF since time information is missing.")
stop("End error message. Stop running.")
}
importFl <- importFlfull
sp <- cbind(importFl[, iclx], importFl[, icly])
sp <- unique(sp)
sp.names <- unique(importFl[, iclsp])
colnames(sp) <- c("x", "y")
sp2 <- sp::SpatialPoints(sp)
row.names(sp2) <- sp.names
n.time <- length(unique(importFl[, iclt]))
if(iflagt == 1){
importFl[[iclt]]<-as.character(importFl[,iclt])
data.time <- (as.Date(unique(importFl[,iclt]), format = date.format[2]))
month(data.time) <- 1
day(data.time) <- 1
}else{data.time <- unique(importFl[,iclt])}
mydata <- importFl[, iclvr]
mydata <- matrix(mydata, ncol = n.time, byrow = TRUE)
stfdf <- STFDF(sp2, data.time, data.frame(variable = as.vector(as.matrix(mydata))))
return(stfdf)
}
} |
styleSingle <-
function(col, lwd, alpha, fill, fill.alpha, rad, marker) {
style <- NULL
if(!missing(marker)) {
if(length(marker)==1) {
style <- append(style, paste0("icon: null, color: \"", getHex(marker), "\", size: \"m\""))
} else if(length(marker)==3) {
if(is.na(marker[1])) marker[1] <- "null"
else marker[1] <- paste0("\"", marker[1], "\"")
if(is.na(marker[2])) marker[2] <- "null"
else marker[2] <- paste0("\"", getHex(marker[2]), "\"")
if(is.na(marker[3])) marker[3] <- "\"m\""
else marker[3] <- paste0("\"", marker[3], "\"")
style <- append(style, paste0("icon: ", marker[1], ", color: ", marker[2], ", size: ", marker[3]))
} else stop("Markers are specified by 'icon', 'color' and 'size' or just by 'color' value")
attr(style, "marker") <- "marker"
} else {
if(!missing(col)) {
if(is.na(col)) style <- append(style, "stroke: false")
else style <- append(style, paste("color: \"", getHex(col), "\"", sep=""))
}
if(!missing(lwd)) {
if(missing(col)) style <- append(style, paste("weight:", lwd))
else if(!is.na(col)) style <- append(style, paste("weight:", lwd))
}
if(!missing(alpha)) {
if(missing(col)) style <- append(style, paste("opacity:", alpha))
else if(!is.na(col)) style <- append(style, paste("opacity:", alpha))
}
if(!missing(fill)) {
if(is.na(fill)) style <- append(style, "fill: false")
else style <- append(style, paste("fillColor: \"", getHex(fill), "\"", sep=""))
}
if(!missing(fill.alpha)) {
if(missing(fill)) style <- append(style, paste("fillOpacity:", fill.alpha))
else if(!is.na(fill)) style <- append(style, paste("fillOpacity:", fill.alpha))
}
if(!missing(rad)) style <- append(style, paste("radius:", rad))
}
if(is.null(style)) stop("No style parameters defined")
attr(style, "style.type") <- "single"
class(style) <- c("leafletr.style", "single.style")
return(style)
} |
get_kcal_vo2_conversion <- function(
RER, kcal_table = c("Lusk", "Peronnet", "both")
) {
kcal_table <- match.arg(
kcal_table, c("Lusk", "Peronnet", "both", "ERROR"), TRUE
)
if ("both" %in% kcal_table) kcal_table <- c("Lusk", "Peronnet")
sapply(
kcal_table,
function(x) {
kcal_table <- switch(
x,
"Lusk" = lusk,
"Peronnet" = peronnet
)
index <- which.min(
abs(kcal_table$Non_Protein_RQ - RER)
)
kcal_table$kCal_per_Liter_O2_Uptake[index]
}
)
} |
digitize2d <- function (filelist, nlandmarks, scale=NULL, tpsfile, MultScale=FALSE,verbose = TRUE)
{
flist <- dir()
if (sum(which(flist == tpsfile)) == 0) {
newdata <- array(0, c(nlandmarks, 2, length(filelist)))
dimnames(newdata)[[3]] <- as.list(filelist)
writeland.tps(newdata, tpsfile)
}
olddat <- readland.tps2(file=tpsfile, specID = "ID")
newdata<-olddat$coords
inscale<-olddat$scale
names <- dimnames(newdata)[[3]]
if (dim(newdata)[3] != length(filelist)) {
stop("Filelist not the same length as input TPS file.")
}
if (length(na.omit(match(names, filelist))) != length(filelist)) {
stop("Filelist does not contain the same specimens as TPS file.")
}
if(length(scale) != length(filelist)){
if(length(scale)==1) { cat("Only 1 scale measure provided. Will use scale =", scale, " for all specimens.\n")
scale = rep(scale, length(filelist))
}
}
digitized <- apply(two.d.array(newdata), 1, sum)
digstart <- min(which(digitized == 0))
if(is.infinite(digstart)){
stop("It appears that all specimens have already been digitized.")
}
scalebar=vector(length=length(filelist))
if(digstart>1){scalebar[1:(digstart-1)]<-inscale[1:(digstart-1)]}
for (i in digstart:length(filelist)) {
cat(paste("Digitizing specimen", i, "in filelist"), "\n")
spec.name <- unlist(strsplit(basename(filelist[i]), "\\."))[1]
specimen <- readJPEG(filelist[i], native = T)
plot(seq(0, dim(specimen)[2], length.out = 10), seq(0,
dim(specimen)[1], length.out = 10), type = "n", xlab = "x",
ylab = "y", asp = 1, tck = 0, xaxt = "n", yaxt = "n")
rasterImage(specimen, 1, 1, dim(specimen)[2], dim(specimen)[1])
if (is.null(scale)) {
cat("Scale not provided! Proceed with caution.\n")
scalebar = NULL
}
if (!is.null(scale)) {
cat("Set scale =", scale[i], "\n")
scalebar[i] <- picscale(scale[i])
}
selected <- matrix(NA, nrow = nlandmarks, ncol = 2)
fix <- NULL
if (verbose == TRUE) {
for (ii in 1:nlandmarks) {
cat("Select landmark ", ii, "\n")
keep <- ans <- NULL
fix <- locator(n = 1, type = "p", col = "black",
cex = 4, pch = 21, bg = "red")
cat(paste("Keep Landmark ", ii, "(y/n/a)?"),
"\n")
ans <- readLines(n = 1)
if (ans == "y") {
selected[ii, 1] <- fix$x
selected[ii, 2] <- fix$y
}
if (ans == "a") {
selected[ii, 1] <- NA
selected[ii, 2] <- NA
points(fix, type = "n", col = "black", cex = 1, pch = 21, bg = "red")
}
if (ans == "n") {
cat(paste("Select Landmark ", ii, " Again"), "\n")
}
while (ans == "n") {
fix <- locator(n = 1, type = "p", col = "black",
cex = 4, pch = 21, bg = "red")
cat(paste("Keep Landmark ", ii, "(y/n)?"), "\n")
ans <- readLines(n = 1)
if (ans == "y") {
selected[ii, 1] <- fix$x
selected[ii, 2] <- fix$y
}
if (ans == "n") {
cat(paste("Select Landmark ", ii, " Again"), "\n")
}
}
}
}
if (verbose == FALSE) {
cat("Select landmarks 1:", nlandmarks, "\n", sep = "")
for (ii in 1:nlandmarks) {
fix <- locator(n = 1, type = "p", col = "black",
cex = 4, pch = 21, bg = "red")
selected[ii, 1] <- fix$x
selected[ii, 2] <- fix$y
}
}
newdata[, , i] <- selected
if(MultScale==TRUE){newdata[,,i]<-selected*scalebar[i]}
if(is.null(scalebar)){writeland.tps(newdata, tpsfile)}
if(!is.null(scalebar) && MultScale==FALSE){
writeland.tps(newdata, tpsfile, scale = scalebar)}
if(!is.null(scalebar) && MultScale==TRUE){
writeland.tps(newdata, tpsfile)}
if (i < length(filelist)) {
cat(paste("Continue to next specimen (y/n)?"), "\n")
ans <- readLines(n = 1)
if (ans == "n") {
break
}
}
}
cat(paste("All specimens from session have been digitized to", tpsfile), "\n")
} |
mvmscjs=function(x,ddl,fullddl,dml,model_data=NULL,parameters,accumulate=TRUE,initial=NULL,method,
hessian=FALSE,debug=FALSE,chunk_size=1e7,refit,itnmax=NULL,control=NULL,scale,
re=FALSE,compile=FALSE,extra.args="",clean=TRUE,sup,...)
{
accumulate=FALSE
nocc=x$nocc
xstart=x$start
if(!is.null(ddl$Phi$time.interval))
time.intervals=matrix(fullddl$Phi$time.interval[fullddl$Phi$stratum==x$strata.labels[1]],nrow(x$data),ncol=nocc-1,byrow=TRUE)
else
if(is.vector(x$time.intervals))
time.intervals=matrix(x$time.intervals,nrow=nrow(x$data),ncol=nocc-1,byrow=TRUE)
else
time.intervals=x$time.intervals
chmat=x$ehmat
strata.labels=x$strata.labels
uS=x$unobserved
x=x$data
freq=NULL
if(!is.null(x$freq))freq=x$freq
ch=x$ch
imat=process.ch(ch,freq,all=FALSE)
if(is.null(initial))
{
par=list(Psi=rep(0,ncol(dml$Psi$fe)),
p=rep(0,ncol(dml$p$fe)),
Phi=rep(0,ncol(dml$Phi$fe)))
if(ncol(dml$pi$fe)>0) par$pi=rep(0,ncol(dml$pi$fe))
if(ncol(dml$delta$fe)>0) par$delta=rep(0,ncol(dml$delta$fe))
}
else
par=set.initial(names(dml),dml,initial)$par
model_data=list(Phi.dm=dml$Phi$fe,p.dm=dml$p$fe,Psi.dm=dml$Psi$fe,delta.dm=dml$delta$fe,pi.dm=dml$pi$fe,imat=imat,Phi.fixed=parameters$Phi$fixed,
p.fixed=parameters$p$fixed,Psi.fixed=parameters$Psi$fixed,delta.fixed=parameters$delta$fixed,
pi.fixed=parameters$pi$fixed,time.intervals=time.intervals)
if(accumulate)
{
cat("Accumulating capture histories based on design. This can take awhile.\n")
flush.console()
model_data.save=model_data
}else
model_data.save=model_data
scale=1
scale=set.scale(names(dml),model_data,scale)
model_data=scale.dm(model_data,scale)
if(!re)
tpl="mvms"
else
stop("random effect portion not completed for this model")
setup_admb(tpl,compile,clean,re=FALSE)
con=file(paste(tpl,".dat",sep=""),open="wt")
n=length(model_data$imat$freq)
write(n,con,append=FALSE)
nocc=model_data$imat$nocc
write(nocc,con,append=TRUE)
nS=length(strata.labels)
write(nS,con,append=TRUE)
nobs=length(sup$obslevels)
write(nobs,con,append=TRUE)
write(sup$np,con,append=TRUE)
write(t(chmat),con,ncolumns=nocc,append=TRUE)
write(model_data$imat$first,con,ncolumns=n,append=TRUE)
if(!re)
{
write(model_data$imat$freq,con,ncolumns=n,append=TRUE)
} else
{
if(any(model_data$imat$freq!=1))stop("\n cannot use random effects with frequency >1")
}
write(t(model_data$time.intervals),con,ncolumns=nocc-1,append=TRUE)
if(!is.null(ddl$Phi$fix))
model_data$Phi.dm[!is.na(ddl$Phi$fix),]=0
if(ncol(model_data$Phi.dm)!=0)
{
select=vector("logical",length=ncol(model_data$Phi.dm))
for (i in 1:ncol(model_data$Phi.dm))
select[i]=any(model_data$Phi.dm[,i]!=0)
model_data$Phi.dm=model_data$Phi.dm[,select,drop=FALSE]
}
phidm=model_data$Phi.dm
phifix=rep(-1,nrow(phidm))
if(!is.null(ddl$Phi$fix))
phifix[!is.na(ddl$Phi$fix)]=ddl$Phi$fix[!is.na(ddl$Phi$fix)]
slist=simplify_indices(cbind(phidm,phifix))
write(ncol(phidm),con,append=TRUE)
write(length(slist$set),con,append=TRUE)
if(ncol(phidm)>0)
write(t(phidm[slist$set,,drop=FALSE]),con,ncolumns=ncol(phidm),append=TRUE)
write(phifix[slist$set],con,append=TRUE)
write(slist$indices[ddl$Phi.indices],con,append=TRUE)
if(!is.null(ddl$p$fix))
model_data$p.dm[!is.na(ddl$p$fix),]=0
if(ncol(model_data$p.dm)!=0)
{
select=vector("logical",length=ncol(model_data$p.dm))
for (i in 1:ncol(model_data$p.dm))
select[i]=any(model_data$p.dm[,i]!=0)
model_data$p.dm=model_data$p.dm[,select,drop=FALSE]
}
pdm=model_data$p.dm
pfix=rep(-1,nrow(pdm))
if(!is.null(ddl$p$fix))
pfix[!is.na(ddl$p$fix)]=ddl$p$fix[!is.na(ddl$p$fix)]
slist=simplify_indices(cbind(pdm,pfix))
write(ncol(pdm),con,append=TRUE)
write(length(slist$set),con,append=TRUE)
if(ncol(pdm)>0)
write(t(pdm[slist$set,,drop=FALSE]),con,ncolumns=ncol(pdm),append=TRUE)
write(pfix[slist$set],con,append=TRUE)
write(slist$indices[ddl$p.indices],con,append=TRUE)
write(nrow(sup$indices_forp),con,append=TRUE)
write(t(sup$indices_forp),con,append=TRUE)
if(!is.null(ddl$Psi$fix))
model_data$Psi.dm[!is.na(ddl$Psi$fix),]=0
if(ncol(model_data$Psi.dm)!=0)
{
select=vector("logical",length=ncol(model_data$Psi.dm))
for (i in 1:ncol(model_data$Psi.dm))
select[i]=any(model_data$Psi.dm[,i]!=0)
model_data$Psi.dm=model_data$Psi.dm[,select,drop=FALSE]
}
psidm=model_data$Psi.dm
psifix=rep(-1,nrow(psidm))
if(!is.null(ddl$Psi$fix))
psifix[!is.na(ddl$Psi$fix)]=ddl$Psi$fix[!is.na(ddl$Psi$fix)]
slist=simplify_indices(cbind(psidm,psifix))
write(ncol(psidm),con,append=TRUE)
write(length(slist$set),con,append=TRUE)
if(ncol(psidm)>0)
write(t(psidm[slist$set,,drop=FALSE]),con,ncolumns=ncol(psidm),append=TRUE)
write(psifix[slist$set],con,append=TRUE)
write(slist$indices[ddl$Psi.indices],con,append=TRUE)
if(!is.null(ddl$delta$fix))
model_data$delta.dm[!is.na(ddl$delta$fix),]=0
if(ncol(model_data$delta.dm)!=0)
{
select=vector("logical",length=ncol(model_data$delta.dm))
for (i in 1:ncol(model_data$delta.dm))
select[i]=any(model_data$delta.dm[,i]!=0)
model_data$delta.dm=model_data$delta.dm[,select,drop=FALSE]
}
deltadm=model_data$delta.dm
deltafix=rep(-1,nrow(deltadm))
if(!is.null(ddl$delta$fix))
deltafix[!is.na(ddl$delta$fix)]=ddl$delta$fix[!is.na(ddl$delta$fix)]
slist=simplify_indices(cbind(deltadm,deltafix))
write(ncol(deltadm),con,append=TRUE)
write(length(slist$set),con,append=TRUE)
if(ncol(deltadm)>0)
write(t(deltadm[slist$set,,drop=FALSE]),con,ncolumns=ncol(deltadm),append=TRUE)
write(deltafix[slist$set],con,append=TRUE)
write(slist$indices[ddl$delta.indices],con,append=TRUE)
if(!is.null(ddl$pi$fix))
model_data$pi.dm[!is.na(ddl$pi$fix),]=0
if(ncol(model_data$pi.dm)!=0)
{
select=vector("logical",length=ncol(model_data$pi.dm))
for (i in 1:ncol(model_data$pi.dm))
select[i]=any(model_data$pi.dm[,i]!=0)
model_data$pi.dm=model_data$pi.dm[,select,drop=FALSE]
}
pidm=model_data$pi.dm
pifix=rep(-1,nrow(pidm))
if(!is.null(ddl$pi$fix))
pifix[!is.na(ddl$pi$fix)]=ddl$pi$fix[!is.na(ddl$pi$fix)]
slist=simplify_indices(cbind(pidm,pifix))
write(ncol(pidm),con,append=TRUE)
write(length(slist$set),con,append=TRUE)
if(ncol(pidm)>0)
write(t(pidm[slist$set,,drop=FALSE]),con,ncolumns=ncol(pidm),append=TRUE)
write(pifix[slist$set],con,append=TRUE)
write(slist$indices[ddl$pi.indices],con,append=TRUE)
unkinit=as.numeric(all(is.na(xstart[,1])) | all(!is.na(xstart[,1])))
write(unkinit,con,append=TRUE)
if(!debug)
write(0,con,append=TRUE)
else
write(1,con,append=TRUE)
close(con)
con=file(paste(tpl,".pin",sep=""),open="wt")
if(ncol(dml$Phi$fe)>0)
write(par$Phi,con,ncolumns=length(par$Phi),append=FALSE)
if(ncol(dml$p$fe)>0)
write(par$p,con,ncolumns=length(par$p),append=TRUE)
if(ncol(dml$delta$fe)>0)
write(par$delta,con,ncolumns=length(par$delta),append=TRUE)
if(ncol(dml$Psi$fe)>0)
write(par$Psi,con,ncolumns=length(par$Psi),append=TRUE)
if(ncol(dml$pi$fe)>0)
write(par$pi,con,ncolumns=length(par$pi),append=TRUE)
close(con)
if(hessian)
xx=run_admb(tpl,extra.args=extra.args)
else
xx=run_admb(tpl,extra.args=paste(extra.args,"-nohess"))
convergence=attr(xx,"status")
if(is.null(convergence))convergence=0
res=read_admb(tpl)
beta=list(unscale.par(c(res$coeflist$phibeta,res$coeflist$pbeta,res$coeflist$dbeta,res$coeflist$psibeta,res$coeflist$pi),scale))
parnames=names(unlist(beta))
fixed.npar=length(unlist(beta))
if(!is.null(res$hes))
{
beta.vcv=solvecov(res$hes)$inv
rownames(res$hes)=parnames
colnames(res$hes)=rownames(res$hes)
if(all(diag(beta.vcv>0)))
res$cor=beta.vcv/outer(sqrt(diag(beta.vcv)),sqrt(diag(beta.vcv)))
} else
beta.vcv=res$vcov
rownames(beta.vcv)=parnames
colnames(beta.vcv)=rownames(beta.vcv)
rownames(res$cor)=rownames(beta.vcv)
colnames(res$cor)=rownames(beta.vcv)
res$vcov=NULL
optim.details=c(fn=res$fn,maxgrad=res$maxgrad,eratio=res$eratio)
options=list(extra.args=extra.args)
res$cor=NULL
res$maxgrad=NULL
results=c(beta=beta,neg2lnl=-2*res$loglik,AIC=-2*res$loglik+2*res$npar,convergence=convergence)
results$hessian=res$hes
results$optim.details=optim.details
results$options=options
results$coeflist=res$coeflist
results$npar=list(npar=res$npar,npar_sdrpt=res$npar_sdrpt,npar_total=res$npar_total)
results$beta.vcv=beta.vcv
res=results
res$model_data=model_data.save
class(res)=c("crm","admb","mle","mvmscjs")
return(res)
} |
IBM_theoretical_contrast <- function(par, theo.par, fixed.p.X = NULL, G = NULL, comp.dist, comp.param, sample1, sample2)
{
stopifnot( (length(comp.dist) == 4) & (length(comp.param) == 4) )
if (any(sapply(comp.dist, is.null)) | any(sapply(comp.param, is.null))) {
stop("All components must be specified in the two admixture models to be able to compute the theoretical contrast.")
}
exp.comp.dist <- paste0("p", comp.dist)
if (any(exp.comp.dist == "pmultinom")) { exp.comp.dist[which(exp.comp.dist == "pmultinom")] <- "stepfun" }
comp_theo <- sapply(X = exp.comp.dist, FUN = get, pos = "package:stats", mode = "function")
for (i in 1:length(comp_theo)) assign(x = names(comp_theo)[i], value = comp_theo[[i]])
make.expr.step <- function(i) paste(names(comp_theo)[i],"(x = 1:", length(comp.param[[i]][[2]]), paste(", y = ", paste("cumsum(c(0,",
paste(comp.param[[i]][[2]], collapse = ","), "))", sep = ""), ")", sep = ""), sep = "")
make.expr <- function(i) paste(names(comp_theo)[i],"(z,", paste(names(comp.param[[i]]), "=", comp.param[[i]], sep = "", collapse = ","), ")", sep="")
expr <- vector(mode = "character", length = length(exp.comp.dist))
expr[which(exp.comp.dist == "stepfun")] <- sapply(which(exp.comp.dist == "stepfun"), make.expr.step)
expr[which(expr == "")] <- sapply(which(expr == ""), make.expr)
expr <- unlist(expr)
if (any(exp.comp.dist == "stepfun")) {
F1.fun <- eval(parse(text = expr[1]))
G1.fun <- eval(parse(text = expr[2]))
F2.fun <- eval(parse(text = expr[3]))
G2.fun <- eval(parse(text = expr[4]))
F1 <- function(z) F1.fun(z)
G1 <- function(z) G1.fun(z)
F2 <- function(z) F2.fun(z)
G2 <- function(z) G2.fun(z)
} else {
F1 <- function(z) { eval(parse(text = expr[1])) }
G1 <- function(z) { eval(parse(text = expr[2])) }
F2 <- function(z) { eval(parse(text = expr[3])) }
G2 <- function(z) { eval(parse(text = expr[4])) }
}
G1equalG2 <- is_equal_knownComp(comp.dist, comp.param)
support <- detect_support_type(sample1, sample2)
if (support == "continuous") {
densite.G <- stats::density(G, bw = "SJ", adjust = 0.5, kernel = "gaussian")
supp.integration <- c(min(G), max(G))
} else {
supp.integration <- G
}
if (is.null(fixed.p.X)) {
integrand <- function(z, par) {
if (support == "continuous") { densite.G.dataPoint <- stats::approx(densite.G$x, densite.G$y, xout = z)$y
} else {
densite.G.dataPoint <- 1 / length(table(c(sample1,sample2)))
}
F.X.dataPoint <- (1/par[1]) * ((theo.par[1]*F1(z) + (1-theo.par[1])*G1(z)) - (1-par[1])*G1(z))
F.Y.dataPoint <- (1/par[2]) * ((theo.par[2]*F2(z) + (1-theo.par[2])*G2(z)) - (1-par[2])*G2(z))
weighted.difference <- (F.X.dataPoint - F.Y.dataPoint)^2 * densite.G.dataPoint
weighted.difference
}
} else {
if (G1equalG2) stopifnot(!is.null(fixed.p.X))
integrand <- function(z, par) {
if (support == "continuous") { densite.G.dataPoint <- stats::approx(densite.G$x, densite.G$y, xout = z)$y
} else {
densite.G.dataPoint <- 1 / length(table(c(sample1,sample2)))
}
F.X.dataPoint <- (1/fixed.p.X) * ((theo.par[1]*F1(z) + (1-theo.par[1])*G1(z)) - (1-fixed.p.X)*G1(z))
F.Y.dataPoint <- (1/par) * ((theo.par[2]*F2(z) + (1-theo.par[2])*G2(z)) - (1-par)*G2(z))
weighted.difference <- (F.X.dataPoint - F.Y.dataPoint)^2 * densite.G.dataPoint
weighted.difference
}
}
if (support == "continuous") {
res <- stats::integrate(integrand, lower = supp.integration[1], upper = supp.integration[2], par, subdivisions = 10000L, rel.tol = 1e-03)$value
} else {
res <- sum( unlist(sapply(supp.integration, integrand, par)) )
}
return(res)
} |
library(knitr)
opts_chunk$set(comment = "", warning = FALSE, message = FALSE, fig.height = 4.94,
fig.width = 8, out.width = "690px", out.height = "426px")
oldOpt <- options(scipen = 10, width = 95)
Hilbert <- function(n) {
structure(outer(1:n, 1:n, function(r, c) 1/(r+c-1)),
dimnames = list(paste0("R",1:n), paste0("C", 1:n)))
}
H5 <- Hilbert(5)
kable(H5, align = "c")
library(dplyr)
library(fractional)
H5 %>% fractional %>% as.character %>% kable(align = "r")
library(dplyr)
(x <- matrix(1:9/12, 3, 3) %>% fractional)
(xr <- 1/x)
x + 10
(x2 <- x^2)
(sx2 <- sqrt(x2))
fractional(sx2)
solve(xr) %>% fractional
numerators(x2)
denominators(x2)
oldWidth <- options(width = 80)
F <- c(1,1,numeric(15))
for(i in 3:17)
F[i] <- F[i-1] + F[i-2]
F
(phi <- (sqrt(5) + 1)/2)
vfractional(phi, eps = 0, maxConv = 1:16)
options(oldWidth)
library(ggplot2)
N <- 500000
set.seed(3210)
rat(rnorm(N), eps = 1.0e-07)[, "n"] %>%
table(x = .) %>%
as.data.frame(responseName = "f") %>%
ggplot(.) + aes(x = x, y = f/N) +
geom_bar(stat = "identity", fill = "steel blue") +
ylab("Relative frequency") + xlab("Convergents") |
library(sievetest)
data(lignite)
fi <- system.file("lignite.csv",package="sievetest",mustWork=T)
my_std <- read.std(file=fi)
plot(lignite)
plot(my_std)
plot(lignite[1])
summary(lignite)
sieve_aperture_size <- c(500, 200, 90, 0)
mass_ppc_retained <- c(1.01, 24, 42.8, 32.190)
md <- desc.std(Title="Coal powder, learning std")
my_std2 <- std(a=sieve_aperture_size, r=mass_ppc_retained, desc=md)
new_gr <- c(my_std2,lignite[2])
plot(new_gr)
summary(lignite[[2]]$lmfit)
newdesc <- desc.std(Title="Lignite (weghted lm)",x=lignite[2])
lignite_twk <- tweak.std(x=lignite[2],lmargs=list(weights=c(0,1,1,1)),desc=newdesc)
new_gr2 <- c(lignite[2],lignite_twk)
plot(new_gr2) |
gg_roc.rfsrc <- function(object, which.outcome, oob=TRUE, ...){
if (sum(inherits(object, c("rfsrc", "grow"), TRUE) == c(1, 2)) != 2 &
sum(inherits(object, c("rfsrc", "predict"), TRUE) == c(1, 2)) != 2 &
!inherits(object, "randomForest")) {
stop("This function only works for objects of class `(rfsrc, grow)', '(rfsrc, predict)' or 'randomForest.")
}
if(!inherits(object, "class")){
stop("gg_roc only works with classification forests")
}
if(missing(which.outcome)) which.outcome <- "all"
if(object$family != "class")
stop("gg_roc is intended for classification forests only.")
gg_dta <- calc_roc.rfsrc(object, object$yvar, which.outcome=which.outcome, oob=oob)
class(gg_dta) <- c("gg_roc", class(gg_dta))
invisible(gg_dta)
}
gg_roc <- function (object, which.outcome, oob, ...) {
UseMethod("gg_roc", object)
}
gg_roc.randomForest <- function(object, ...){
stop("gg_roc is not yet support for randomForest objects")
}
gg_roc.default <- gg_roc.rfsrc |
s0 <- function() {
activities <- data.frame(
id = c( 1, 2, 3),
name = c("A", "B", "C"),
duration = c( 3, 2, 4)
)
relations <- data.frame(
from = c(),
to = c()
)
schedule <- Schedule$new(activities, relations)
schedule$title <- "A project"
schedule$reference <- "From criticalpath"
schedule
}
s1 <- function() {
activities <- data.frame(
id = c( 1, 2, 3),
name = c("A", "B", "C"),
duration = c( 3, 2, 4)
)
relations <- data.frame(
from = c(1),
to = c(2)
)
schedule <- Schedule$new(activities, relations)
schedule$title <- "A project"
schedule$reference <- "From criticalpath"
schedule
}
s2 <- function() {
activities <- data.frame(
id = c( 1, 2, 3),
name = c("A", "B", "C"),
duration = c( 3, 2, 4)
)
relations <- data.frame(
from = c(1),
to = c(3)
)
schedule <- Schedule$new(activities, relations)
schedule$title <- "A project"
schedule$reference <- "From criticalpath"
schedule
}
s3 <- function() {
activities <- data.frame(
id = c( 1, 2, 3),
name = c("A", "B", "C"),
duration = c( 3, 2, 4)
)
relations <- data.frame(
from = c(1, 1),
to = c(2, 3)
)
schedule <- Schedule$new(activities, relations)
schedule$title <- "A project"
schedule$reference <- "From criticalpath"
schedule
}
s4 <- function() {
activities <- data.frame(
id = c( 1, 2, 3),
name = c("A", "B", "C"),
duration = c( 3, 2, 4)
)
relations <- data.frame(
from = c(2),
to = c(3)
)
schedule <- Schedule$new(activities, relations)
schedule$title <- "A project"
schedule$reference <- "From criticalpath"
schedule
}
s5 <- function() {
activities <- data.frame(
id = c( 1, 2, 3),
name = c("A", "B", "C"),
duration = c( 3, 2, 4)
)
relations <- data.frame(
from = c(1, 2),
to = c(2, 3)
)
schedule <- Schedule$new(activities, relations)
schedule$title <- "A project"
schedule$reference <- "From criticalpath"
schedule
}
s6 <- function() {
activities <- data.frame(
id = c( 1, 2, 3),
name = c("A", "B", "C"),
duration = c( 3, 2, 4)
)
relations <- data.frame(
from = c(1, 2),
to = c(3, 3)
)
schedule <- Schedule$new(activities, relations)
schedule$title <- "A project"
schedule$reference <- "From criticalpath"
schedule
}
s7 <- function() {
activities <- data.frame(
id = c( 1, 2, 3),
name = c("A", "B", "C"),
duration = c( 3, 2, 4)
)
relations <- data.frame(
from = c(1, 1, 2),
to = c(2, 3, 3)
)
schedule <- Schedule$new(activities, relations)
schedule$title <- "A project"
schedule$reference <- "From criticalpath"
schedule
}
test_that("There is no Gantt matrix for a schedule with zero duration!", {
schedule <- Schedule$new()
schedule$add_activity(1)
schedule$add_activity(2)
schedule$add_activity(3)
expect_error(schedule$gantt_matrix())
})
test_that("A,B,C", {
schedule <- s0()
expect_equal(schedule$duration, 4)
mtx <- base::matrix(
c(
1,1,1,0,
1,1,0,0,
1,1,1,1
),
byrow = TRUE,
ncol = 4
)
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(gantt[1,]), mtx[1,]))
expect_true(identical(as.numeric(gantt[2,]), mtx[2,]))
expect_true(identical(as.numeric(gantt[3,]), mtx[3,]))
xygantt <- schedule$xy_gantt_matrix(gantt)
expect_equal(nrow(xygantt), sum(gantt))
})
test_that("A->B, C", {
schedule <- s1()
expect_equal(schedule$duration, 5)
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(gantt[1,]), c(1,1,1,0,0)))
expect_true(identical(as.numeric(gantt[2,]), c(0,0,0,1,1)))
expect_true(identical(as.numeric(gantt[3,]), c(1,1,1,1,0)))
xygantt <- schedule$xy_gantt_matrix(gantt)
expect_equal(nrow(xygantt), sum(gantt))
})
test_that("A->C, B", {
schedule <- s2()
expect_equal(schedule$duration, 7)
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(gantt[1,]), c(1,1,1,0,0,0,0)))
expect_true(identical(as.numeric(gantt[2,]), c(1,1,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[3,]), c(0,0,0,1,1,1,1)))
xygantt <- schedule$xy_gantt_matrix(gantt)
expect_equal(nrow(xygantt), sum(gantt))
})
test_that("A->B, A->C", {
schedule <- s3()
expect_equal(schedule$duration, 7)
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(gantt[1,]), c(1,1,1,0,0,0,0)))
expect_true(identical(as.numeric(gantt[2,]), c(0,0,0,1,1,0,0)))
expect_true(identical(as.numeric(gantt[3,]), c(0,0,0,1,1,1,1)))
xygantt <- schedule$xy_gantt_matrix(gantt)
expect_equal(nrow(xygantt), sum(gantt))
})
test_that("B->C, A", {
schedule <- s4()
expect_equal(schedule$duration, 6)
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(gantt[1,]), c(1,1,1,0,0,0)))
expect_true(identical(as.numeric(gantt[2,]), c(1,1,0,0,0,0)))
expect_true(identical(as.numeric(gantt[3,]), c(0,0,1,1,1,1)))
xygantt <- schedule$xy_gantt_matrix(gantt)
expect_equal(nrow(xygantt), sum(gantt))
})
test_that("A->B, B->C", {
schedule <- s5()
expect_equal(schedule$duration, 9)
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(gantt[1,]), c(1,1,1,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[2,]), c(0,0,0,1,1,0,0,0,0)))
expect_true(identical(as.numeric(gantt[3,]), c(0,0,0,0,0,1,1,1,1)))
xygantt <- schedule$xy_gantt_matrix(gantt)
expect_equal(nrow(xygantt), sum(gantt))
})
test_that("A->C, B->C", {
schedule <- s6()
expect_equal(schedule$duration, 7)
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(gantt[1,]), c(1,1,1,0,0,0,0)))
expect_true(identical(as.numeric(gantt[2,]), c(1,1,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[3,]), c(0,0,0,1,1,1,1)))
xygantt <- schedule$xy_gantt_matrix(gantt)
expect_equal(nrow(xygantt), sum(gantt))
})
test_that("A->B, A->C, B->C", {
schedule <- s7()
expect_equal(schedule$duration, 9)
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(gantt[1,]), c(1,1,1,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[2,]), c(0,0,0,1,1,0,0,0,0)))
expect_true(identical(as.numeric(gantt[3,]), c(0,0,0,0,0,1,1,1,1)))
xygantt <- schedule$xy_gantt_matrix(gantt)
expect_equal(nrow(xygantt), sum(gantt))
})
test_that("First and last activity's durations equal zero ", {
schedule <- Schedule$new()
schedule$title <- "Fictitious Project Example"
schedule$reference <- "VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18"
schedule$add_act_rel( 1, "a1" , 0, c(2,3,4))
schedule$add_act_rel( 2, "a2" , 4, c(5))
schedule$add_act_rel( 3, "a3" , 9, c(10))
schedule$add_act_rel( 4, "a4" , 1, c(6))
schedule$add_act_rel( 5, "a5" , 4, c(9))
schedule$add_act_rel( 6, "a6" , 5, c(7))
schedule$add_act_rel( 7, "a7" , 1, c(8,11))
schedule$add_act_rel( 8, "a8" , 7, c(12))
schedule$add_act_rel( 9, "a9" , 8, c(12))
schedule$add_act_rel( 10, "a10", 3, c(12))
schedule$add_act_rel( 11, "a11", 3, c(12))
schedule$add_act_rel( 12, "a12", 0)
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(gantt[ 1,]), c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 2,]), c(1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 3,]), c(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 4,]), c(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 5,]), c(0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 6,]), c(0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 7,]), c(0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 8,]), c(0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0)))
expect_true(identical(as.numeric(gantt[ 9,]), c(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1)))
expect_true(identical(as.numeric(gantt[10,]), c(0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0)))
expect_true(identical(as.numeric(gantt[11,]), c(0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[12,]), c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)))
})
test_that("First and last activity's durations equal zero, and durations chagend.", {
schedule <- Schedule$new()
schedule$title <- "Fictitious Project Example"
schedule$reference <- "VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18"
schedule$add_act_rel( 1, "a1" , 0, c(2,3,4))
schedule$add_act_rel( 2, "a2" , 4, c(5))
schedule$add_act_rel( 3, "a3" , 9, c(10))
schedule$add_act_rel( 4, "a4" , 1, c(6))
schedule$add_act_rel( 5, "a5" , 4, c(9))
schedule$add_act_rel( 6, "a6" , 5, c(7))
schedule$add_act_rel( 7, "a7" , 1, c(8,11))
schedule$add_act_rel( 8, "a8" , 7, c(12))
schedule$add_act_rel( 9, "a9" , 8, c(12))
schedule$add_act_rel( 10, "a10", 3, c(12))
schedule$add_act_rel( 11, "a11", 3, c(12))
schedule$add_act_rel( 12, "a12", 0)
new_durations <- c(0, 6, 11, 1, 4, 3, 2, 8, 8, 5, 4, 0)
schedule$change_durations(new_durations)
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(gantt[ 1,]), c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 2,]), c(1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 3,]), c(1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 4,]), c(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 5,]), c(0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 6,]), c(0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 7,]), c(0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 8,]), c(0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0)))
expect_true(identical(as.numeric(gantt[ 9,]), c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1)))
expect_true(identical(as.numeric(gantt[10,]), c(0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0)))
expect_true(identical(as.numeric(gantt[11,]), c(0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0)))
expect_true(identical(as.numeric(gantt[12,]), c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)))
})
test_that("Período com número negativo deve funcionar.", {
activities <- data.frame(
id = c( 1L, 2L, 3L),
name = c( "A", "B", "C"),
duration = c( 5L, 8L, 10L)
)
relations <- data.frame(
from = c( 1L, 2L),
to = c( 2L, 3L),
type = c("FF", "FF"),
lag = c( 0L, 0L)
)
schedule <- Schedule$new(activities, relations)
schedule$title <- "A project"
schedule$reference <- "From criticalpath"
gantt <- schedule$gantt_matrix()
expect_true(identical(as.numeric(colnames(gantt)), c(-4, -3, -2, -1, 0, 1, 2, 3, 4, 5)))
expect_true(identical(as.numeric(gantt[ 1,]), c(0,0,0,0,0,1,1,1,1,1)))
expect_true(identical(as.numeric(gantt[ 2,]), c(0,0,1,1,1,1,1,1,1,1)))
expect_true(identical(as.numeric(gantt[ 3,]), c(1,1,1,1,1,1,1,1,1,1)))
}) |
sqs <- paws::sqs()
sqs <- sqs$create_queue(
QueueName = "ExampleQueue"
)
sqs$send_message(
QueueUrl = sqs$QueueUrl,
MessageBody = "foo"
)
sqs$get_queue_attributes(
QueueUrl = sqs$QueueUrl,
AttributeNames = "All"
)
msg <- sqs$receive_message(
QueueUrl = sqs$QueueUrl
)
sqs$delete_message(
QueueUrl = sqs$QueueUrl,
ReceiptHandle = msg$Messages[[1]]$ReceiptHandle
)
sqs$delete_queue(
QueueUrl = sqs$QueueUrl
) |
sample_simple_CPT<-function(parent_list,
child_states_n,
child_prior=NULL,
b=2,
obs_states=NULL)
{
parent_names<-names(parent_list)
parent_n_states<-sapply(parent_list,function(x) x[1])
parent_weights<-sapply(parent_list,function(x) x[2])
if(is.null(child_prior)) child_prior<-rep(1/length(child_states_n),length(child_states_n))
ranking_child<-interpolate_gaps(c(-1,rep(NA,child_states_n-2),1))$interp
gamma<-list()
for(a in 1:length(parent_names))
{gamma[[a]]<-matrix(nrow=child_states_n,ncol=parent_n_states[a])
for(c in 1:child_states_n)
gamma[[a]][c,]<-ranking_child[c]*interpolate_gaps(c(-1,rep(NA,parent_n_states[a]-2),1))$interp}
vecs <- mapply(seq, 1, rev(sapply(gamma,ncol)))
if(is.matrix(vecs)) vecs<-lapply(seq_len(ncol(vecs)), function(i) vecs[,i])
tmp <- t(do.call(expand.grid, vecs))
row.names(tmp)<-rev(row.names(tmp))
tmp<-tmp[nrow(tmp):1,]
CPT<-matrix(0,nrow=child_states_n,ncol=prod(parent_n_states))
if(length(gamma)==1)
for(i in 1:length(gamma)) CPT<-CPT+gamma[[i]][,tmp[i]] else
for(i in 1:length(gamma)) CPT<-CPT+gamma[[i]][,tmp[i,]]
CPT<-b^CPT
CPT<-CPT*child_prior
for(i in 1:ncol(CPT))
CPT[,i]<-CPT[,i]/sum(CPT[,i])
assign_states<-function(x)
{if(x==1) out<-"normal"
if(x==2) out<-c("low","high")
if(x==3) out<-c("low","medium","high")
if(x==4) out<-c("low","medium low","medium high","high")
if(x==5) out<-c("very low","low","medium","high","very high")
if(x==6) out<-c("very low", "low","medium low","medium high","high","very high")
if(x==7) out<-c("very low", "low", "medium low","medium","medium high","high","very high")
if(x>7) out<-paste("state",1:x)
return(out)
}
row.names(CPT)<-assign_states(child_states_n)
colnames(CPT)<-paste("col_",1:ncol(CPT),sep="")
parent_states<-sapply(parent_n_states,assign_states)
if(is.matrix(parent_states))
parent_states<-lapply(seq_len(ncol(parent_states)), function(i) parent_states[,i])
leg_tab<-tmp
if(length(gamma)==1)
leg_tab<-data.frame(matrix(parent_states[[1]],nrow=1)) else
{for(i in 1:nrow(leg_tab))
leg_tab[i,]<-parent_states[[i]][tmp[i,]]}
colnames(leg_tab)<-paste("col_",1:ncol(leg_tab),sep="")
row.names(leg_tab)<-parent_names
if(!is.null(obs_states))
{sampled<-sample_CPT(list(CPT,leg_tab),obs_states)
return(list(CPT=CPT,column_legend=leg_tab,sampled=sampled))} else
return(list(CPT=CPT,column_legend=leg_tab))
} |
"DHpop_map" |
raster_pdf <- function(filename = "Rplots.pdf",
width = NULL,
height = NULL,
units = NULL,
res = NULL,
png_function = NULL,
pdf_function = NULL,
...) {
width <- get_value_or_default("width", width)
height <- get_value_or_default("height", height)
units <- get_value_or_default("units", units)
res <- get_value_or_default("res", res)
units <- match.arg(units, choices = c("in", "cm", "mm", "px"))
width <- convert_to_inches(width, units = units, res = res)
height <- convert_to_inches(height, units = units, res = res)
pngs <- tempfile(pattern = "raster_pdf-", fileext = "-%05i.png")
if (is.null(png_function)) {
png_function <- grDevices::png
}
png_function <- match.fun(png_function)
png_function(
filename = pngs,
width = width,
height = height,
units = "in",
res = res,
...
)
device <-
list(
filename = filename,
pngs = pngs,
width = width,
height = height,
pdf_function = pdf_function
)
raster_pdf_device(device = device)
}
agg_pdf <- function(...) {
if (requireNamespace("ragg", quietly = TRUE)) {
raster_pdf(..., png_function = ragg::agg_png)
} else {
warning(
"Package \"ragg\" not available; falling back to grDevices::png().",
call. = FALSE
)
raster_pdf(...)
}
} |
SampleMat2 <- function(
ref,
ratio,
as.logi = FALSE
){
set.seed(as.double(Sys.time()) + as.numeric(format(Sys.time(), "%OS6"))*1000000)
ntot <- length(ref)
npres<- sum(ref)
ncal <- ceiling(ntot*ratio)
pres <- sample(which(ref==1), ceiling(npres*ratio))
absc <- sample(which(ref==0), ncal-length(pres))
if(as.logi){
calib <- rep(FALSE, ntot)
calib[c(pres,absc)] <- TRUE
eval <- !calib
} else{
calib <- c(pres,absc)
eval <- (1:ntot)[-c(pres,absc)]
}
return(list("calibration"=calib, "evaluation"=eval))
} |
if (Sys.getenv("POSTGRES_USER") != "" & Sys.getenv("POSTGRES_HOST") != "" & Sys.getenv("POSTGRES_DATABASE") != "") {
stopifnot(require(RPostgreSQL))
stopifnot(require(datasets))
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv,
user=Sys.getenv("POSTGRES_USER"),
password=Sys.getenv("POSTGRES_PASSWD"),
host=Sys.getenv("POSTGRES_HOST"),
dbname=Sys.getenv("POSTGRES_DATABASE"),
port=ifelse((p<-Sys.getenv("POSTGRES_PORT"))!="", p, 5432))
if (dbExistsTable(con, "rockdata")) {
print("Removing rockdata\n")
dbRemoveTable(con, "rockdata")
}
dbWriteTable(con, "rockdata", rock)
cat("Does rockdata exist? ")
print(res <- dbExistsTable(con, "rockdata"))
cat("Does public.rockdata exist? ")
print(res <- dbExistsTable(con, "public.rockdata"))
if (dbExistsTable(con, "rockdata")) {
print("Removing rockdata\n")
dbRemoveTable(con, "rockdata")
}
dbDisconnect(con)
} |
emStMoE <- function(X, Y, K, p = 3, q = 1, n_tries = 1, max_iter = 1500, threshold = 1e-6, verbose = FALSE, verbose_IRLS = FALSE) {
top <- 0
try_EM <- 0
best_loglik <- -Inf
while (try_EM < n_tries) {
try_EM <- try_EM + 1
if (n_tries > 1 && verbose) {
message("EM try number: ", try_EM, "\n")
}
param <- ParamStMoE(X = X, Y = Y, K = K, p = p, q = q)
param$initParam(segmental = TRUE)
iter <- 0
converge <- FALSE
prev_loglik <- -Inf
stat <- StatStMoE(paramStMoE = param)
while (!converge && (iter <= max_iter)) {
stat$EStep(param, calcTau = TRUE, calcE1 = TRUE, calcE2 = TRUE, calcE3 = FALSE)
reg_irls <- param$MStep(stat, calcAlpha = TRUE, calcBeta = TRUE, verbose_IRLS = verbose_IRLS)
stat$EStep(param, calcTau = FALSE, calcE1 = TRUE, calcE2 = TRUE, calcE3 = FALSE)
param$MStep(stat , calcSigma2 = TRUE, verbose_IRLS = verbose_IRLS)
stat$EStep(param, calcTau = FALSE, calcE1 = TRUE, calcE2 = TRUE, calcE3 = FALSE)
param$MStep(stat , calcLambda = TRUE, verbose_IRLS = verbose_IRLS)
stat$EStep(param, calcTau = FALSE, calcE1 = TRUE, calcE2 = TRUE, calcE3 = TRUE)
param$MStep(stat , calcNu = TRUE, verbose_IRLS = verbose_IRLS)
stat$computeLikelihood(reg_irls)
iter <- iter + 1
if (verbose) {
message("EM - StMoE: Iteration: ", iter, " | log-likelihood: " , stat$loglik)
}
converge <- abs((stat$loglik - prev_loglik) / prev_loglik) <= threshold
if (is.na(converge)) {
converge <- FALSE
}
prev_loglik <- stat$loglik
stat$stored_loglik <- c(stat$stored_loglik, stat$loglik)
}
if (stat$loglik > best_loglik) {
statSolution <- stat$copy()
paramSolution <- param$copy()
best_loglik <- stat$loglik
}
if (n_tries > 1 && verbose) {
message("Max value of the log-likelihood: ", stat$loglik, "\n\n")
}
}
statSolution$MAP()
if (n_tries > 1 && verbose) {
message("Max value of the log-likelihood: ", statSolution$loglik, "\n")
}
statSolution$computeStats(paramSolution)
return(ModelStMoE(param = paramSolution, stat = statSolution))
} |
NULL
.onUnload <- function (libpath) {
library.dynam.unload("opentimsr", libpath)
}
all_columns = c('frame','scan','tof','intensity','mz','inv_ion_mobility','retention_time')
setClass('OpenTIMS',
slots = c(path.d='character',
handle='externalptr',
min_frame='integer',
max_frame='integer',
min_scan='integer',
max_scan='integer',
min_intensity='integer',
max_intensity='integer',
min_retention_time='numeric',
max_retention_time='numeric',
min_inv_ion_mobility='numeric',
max_inv_ion_mobility='numeric',
min_mz='numeric',
max_mz='numeric',
frames='data.frame',
all_columns='character')
)
setMethod('show',
'OpenTIMS',
function(object)
cat(paste0(class(object),
"(",
tdf_no_peaks_total(object@handle),
")",
"\n",
separator='')))
setMethod('length',
'OpenTIMS',
function(x) tdf_no_peaks_total(x@handle))
setMethod("[",
signature(x = "OpenTIMS", i = "ANY"),
function(x, i){
i = as.integer(i)
stopifnot(all(x@min_frame <= i, i <= x@max_frame))
return(tdf_get_indexes(x@handle, i))
})
setMethod("range",
"OpenTIMS",
function(x, from, to, by=1L){
from = as.integer(from)
to = as.integer(to)
by = as.integer(by)
stopifnot(from >= x@min_frame,
to <= x@max_frame + 1,
by >= 0)
tdf_get_range(x@handle, from, to, by)
})
table2df = function(opentims, names){
analysis.tdf = file.path([email protected], 'analysis.tdf')
sql_conn = DBI::dbConnect(RSQLite::SQLite(), analysis.tdf)
on.exit(DBI::dbDisconnect(sql_conn))
tables = lapply(names, function(name) DBI::dbReadTable(sql_conn, name))
names(tables) = names
return(tables)
}
tables_names = function(opentims){
analysis.tdf = file.path([email protected], 'analysis.tdf')
sql_conn = DBI::dbConnect(RSQLite::SQLite(), analysis.tdf)
on.exit(DBI::dbDisconnect(sql_conn))
tables_names = DBI::dbListTables(sql_conn)
return(tables_names)
}
OpenTIMS = function(path.d){
analysis.tdf = file.path(path.d, 'analysis.tdf')
sql_conn = DBI::dbConnect(RSQLite::SQLite(), analysis.tdf)
on.exit(DBI::dbDisconnect(sql_conn))
frames = DBI::dbReadTable(sql_conn, 'Frames')
GlobalMetadata = DBI::dbReadTable(sql_conn, 'GlobalMetadata')
GlobalMetadata = array(GlobalMetadata$Value, dimnames=list(GlobalMetadata$Key))
handle = tdf_open(path.d, frames)
min_frame = as.integer(min(frames$Id))
max_frame = as.integer(max(frames$Id))
min_scan = 1L
max_scan = as.integer(max(frames$NumScans))
min_intensity = 0L
max_intensity = max(frames$MaxIntensity)
min_retention_time = min(frames$Time)
max_retention_time = max(frames$Time)
min_inv_ion_mobility = as.numeric(GlobalMetadata['OneOverK0AcqRangeLower'])
max_inv_ion_mobility = as.numeric(GlobalMetadata['OneOverK0AcqRangeUpper'])
min_mz = as.numeric(GlobalMetadata['MzAcqRangeLower'])
max_mz = as.numeric(GlobalMetadata['MzAcqRangeUpper'])
new("OpenTIMS",
path.d=path.d,
handle=handle,
min_frame=min_frame,
max_frame=max_frame,
min_scan=min_scan,
max_scan=max_scan,
min_intensity=min_intensity,
max_intensity=max_intensity,
min_retention_time=min_retention_time,
max_retention_time=max_retention_time,
min_inv_ion_mobility=min_inv_ion_mobility,
max_inv_ion_mobility=max_inv_ion_mobility,
min_mz=min_mz,
max_mz=max_mz,
frames=frames,
all_columns=all_columns)
}
min_max_measurements = function(opentims){
data.frame(stat=c('min','max'),
frame=c(opentims@min_frame,opentims@max_frame),
scan=c(opentims@min_scan, opentims@max_scan),
intensity=c(opentims@min_intensity, opentims@max_intensity),
retention.time=c(opentims@min_retention_time,
opentims@max_retention_time),
inv_ion_mobility=c(opentims@min_inv_ion_mobility,
opentims@max_inv_ion_mobility),
mz=c(opentims@min_mz, opentims@max_mz))
}
MS1 = function(opentims) opentims@frames$Id[opentims@frames$MsMsType == 0]
explore.tdf.tables = function(opentims, ...){
for(table_name in tables_names(opentims)){
print(table_name)
df = table2df(opentims, table_name)
print(head(df,...))
print(tail(df,...))
readline("PRESS ENTER")
}
print('Get full tables using "table2df".')
}
peaks_per_frame_cnts = function(opentims){
opentims@frames$NumPeaks
}
retention_times = function(opentims){
opentims@frames$Time
}
query = function(opentims,
frames,
columns=all_columns){
col = opentims@all_columns %in% columns
if(!all(columns %in% all_columns)) stop(paste0("Wrong column names. Choose among:\n", paste0(all_columns, sep=" ", collapse="")))
df = tdf_extract_frames( opentims@handle,
frames,
get_frames = col[1],
get_scans = col[2],
get_tofs = col[3],
get_intensities = col[4],
get_mzs = col[5],
get_inv_ion_mobilities = col[6],
get_retention_times = col[7] )
as.data.frame(df)[,columns, drop=F]
}
query_slice = function(opentims,
from=NULL,
to=NULL,
by=1,
columns=all_columns){
col = opentims@all_columns %in% columns
if(is.null(from)) from = opentims@min_frame
if(is.null(to)) to = opentims@max_frame
df = tdf_extract_frames_slice( opentims@handle,
from,
to + 1,
by,
get_frames = col[1],
get_scans = col[2],
get_tofs = col[3],
get_intensities = col[4],
get_mzs = col[5],
get_inv_ion_mobilities = col[6],
get_retention_times = col[7] )
as.data.frame(df)[,columns, drop=F]
}
get_left_frame = function(x,y) ifelse(x > y[length(y)], NA, findInterval(x, y, left.open=T) + 1)
get_right_frame = function(x,y) ifelse(x < y[1], NA, findInterval(x, y, left.open=F))
rt_query = function(opentims,
min_retention_time,
max_retention_time,
columns=all_columns){
RTS = retention_times(opentims)
min_frame = get_left_frame(min_retention_time, RTS)
max_frame = get_right_frame(max_retention_time, RTS)
if(is.na(min_frame) | is.na(max_frame))
stop("The [min_retention_time,max_retention_time] interval does not hold any data.")
query_slice(opentims,
from=min_frame,
to=max_frame,
columns=columns)
}
download_bruker_proprietary_code = function(
target.folder,
net_url=paste0("https://github.com/MatteoLacki/opentims_bruker_bridge/",
"raw/main/opentims_bruker_bridge/"),
mode="wb",
...){
sys_info = Sys.info()
if(sys_info['sysname'] == "Linux"){
print("Welcome to a real OS.")
url_ending = file="libtimsdata.so"
}
if(sys_info['sysname'] == "Windows"){
print("Detected Windows. Like seriously?")
file = "timsdata.dll"
if(sys_info['machine'] == "x86-64"){
url_ending="win64/timsdata.dll"
} else {
print("Assuming 32 bits")
url_ending="win32/timsdata.dll"
}
}
url = paste0(net_url, url_ending)
target.file = file.path(target.folder, file)
print(paste0("Downloading from: ", url))
download.file(url, target.file, mode="wb", ...)
target.file
}
CloseTIMS = function(opentims){
tdf_close(opentims@handle)
}
setup_bruker_so = function(path) .setup_bruker_so(path) |
ltrcrfsrc <- function(formula, data, ntree = 1000,
mtry = NULL, ytry = NULL,
nodesize = NULL, nodedepth = NULL,
splitrule = NULL, nsplit = 10,
importance = c(FALSE, TRUE, "none", "permute", "random", "anti"),
block.size = if (any(is.element(as.character(importance), c("none", "FALSE")))) NULL else 10,
ensemble = c("all", "oob", "inbag"),
bootstrap = c("by.root", "by.node", "none", "by.user"),
samptype = c("swor", "swr"), samp = NULL, membership = FALSE,
sampsize = if (samptype == "swor") function(x){x * .632} else function(x){x},
na.action = c("na.omit", "na.impute"), nimpute = 1,
ntime, cause,
proximity = FALSE, distance = FALSE, forest.wt = FALSE,
xvar.wt = NULL, yvar.wt = NULL, split.wt = NULL, case.wt = NULL,
forest = TRUE,
var.used = c(FALSE, "all.trees", "by.tree"),
split.depth = c(FALSE, "all.trees", "by.tree"),
seed = NULL,
do.trace = FALSE,
statistics = FALSE,
...)
{
univariate.nomenclature = TRUE
user.option <- list(...)
impute.only <- is.hidden.impute.only(user.option)
terminal.qualts <- is.hidden.terminal.qualts(user.option)
terminal.quants <- is.hidden.terminal.quants(user.option)
perf.type <- is.hidden.perf.type(user.option)
rfq <- is.hidden.rfq(user.option)
gk.quantile <- is.hidden.gk.quantile(user.option)
quantile.regr <- is.hidden.quantile.regr(user.option)
prob <- is.hidden.prob(user.option)
prob.epsilon <- is.hidden.prob.epsilon(user.option)
lot <- is.hidden.lot(user.option)
hdim <- lot$hdim
base.learner <- is.hidden.base.learner(user.option)
vtry <- is.hidden.vtry(user.option)
holdout.array <- is.hidden.holdout.array(user.option)
holdout.specs <- is.hidden.holdout.specs(user.option)
empirical.risk <- is.hidden.empirical.risk(user.option)
ensemble <- match.arg(ensemble, c("all", "oob", "inbag"))
bootstrap <- match.arg(bootstrap, c("by.root", "by.node", "none", "by.user"))
if (bootstrap == "by.node" || bootstrap == "none") {
ensemble <- "inbag"
}
importance <- match.arg(as.character(importance), c(FALSE, TRUE, "none", "permute", "random", "anti"))
na.action <- match.arg(na.action, c("na.omit", "na.impute"))
proximity <- match.arg(as.character(proximity), c(FALSE, TRUE, "inbag", "oob", "all"))
distance <- match.arg(as.character(distance), c(FALSE, TRUE, "inbag", "oob", "all"))
var.used <- match.arg(as.character(var.used), c("FALSE", "all.trees", "by.tree"))
split.depth <- match.arg(as.character(split.depth), c("FALSE", "all.trees", "by.tree"))
if (var.used == "FALSE") var.used <- FALSE
if (split.depth == "FALSE") split.depth <- FALSE
if (missing(data)) stop("data is missing")
if (missing(formula) | (!missing(formula) && is.null(formula))) {
if (is.null(ytry)) {
formula <- as.formula("Unsupervised() ~ .")
}
else {
formula <- as.formula(paste("Unsupervised(", ytry, ")~."))
}
}
formulaPrelim <- parseFormula(formula, data, ytry)
my.call <- match.call()
my.call$formula <- eval(formula)
if (any(is.na(data))) {
data <- parseMissingData(formulaPrelim, data)
miss.flag <- TRUE
}
else {
miss.flag <- FALSE
}
formulaDetail <- finalizeFormula(formulaPrelim, data)
ntree <- round(ntree)
if (ntree < 1) stop("Invalid choice of 'ntree'. Cannot be less than 1.")
if (!is.null(nodesize) && nodesize < 1) stop("Invalid choice of 'nodesize'. Cannot be less than 1.")
if (!is.null(nodedepth)) nodedepth = round(nodedepth) else nodedepth = -1
nimpute <- round(nimpute)
if (nimpute < 1) stop("Invalid choice of 'nimpute'. Cannot be less than 1.")
seed <- get.seed(seed)
family <- formulaDetail$family
xvar.names <- formulaDetail$xvar.names
yvar.names <- formulaDetail$yvar.names
if (length(xvar.names) == 0) {
stop("something seems wrong: your formula did not define any x-variables")
}
if (family != "unsupv" && length(yvar.names) == 0) {
stop("something seems wrong: your formula did not define any y-variables")
}
if (family == "class") {
if (length(setdiff(levels(data[, yvar.names]), unique(data[, yvar.names]))) > 0) {
warning("empty classes found when implementing classification\n")
}
}
data <- rm.na.levels(data, xvar.names)
data <- rm.na.levels(data, yvar.names)
yfactor <- extract.factor(data, yvar.names)
xfactor <- extract.factor(data, xvar.names)
yvar.types <- get.yvar.type(family, yfactor$generic.types, yvar.names)
yvar.nlevels <- get.yvar.nlevels(family, yfactor$nlevels, yvar.names, data)
xvar.types <- get.xvar.type(xfactor$generic.types, xvar.names)
xvar.nlevels <- get.xvar.nlevels(xfactor$nlevels, xvar.names, data)
data <- finalizeData(c(yvar.names, xvar.names), data, na.action, miss.flag)
data.row.names <- rownames(data)
data.col.names <- colnames(data)
xvar <- as.matrix(data[, xvar.names, drop = FALSE])
rownames(xvar) <- colnames(xvar) <- NULL
n <- nrow(xvar)
n.xvar <- ncol(xvar)
mtry <- get.grow.mtry(mtry, n.xvar, family)
samptype <- match.arg(samptype, c("swor", "swr"))
if (bootstrap == "by.root") {
if (!is.function(sampsize) && !is.numeric(sampsize)) {
stop("sampsize must be a function or number specifying size of subsampled data")
}
if (is.function(sampsize)) {
sampsize.function <- sampsize
}
else {
sampsize.function <- make.samplesize.function(sampsize / nrow(xvar))
}
sampsize <- round(sampsize.function(nrow(xvar)))
if (sampsize < 1) {
stop("sampsize must be greater than zero")
}
if (samptype == "swor" && (sampsize > nrow(xvar))) {
sampsize.function <- function(x){x}
sampsize <- nrow(xvar)
}
samp <- NULL
}
else if (bootstrap == "by.user") {
if (is.null(samp)) {
stop("samp must not be NULL when bootstrapping by user")
}
ntree <- ncol(samp)
sampsize <- colSums(samp)
if (sum(sampsize == sampsize[1]) != ntree) {
stop("sampsize must be identical for each tree")
}
sampsize <- sampsize[1]
sampsize.function <- make.samplesize.function(sampsize[1] / nrow(xvar))
}
else {
sampsize <- nrow(xvar)
samptype <- "swr"
sampsize.function <- function(x){x}
}
case.wt <- get.weight(case.wt, n)
split.wt <- get.weight(split.wt, n.xvar)
forest.wt <- match.arg(as.character(forest.wt), c(FALSE, TRUE, "inbag", "oob", "all"))
if (family == "unspv") {
yvar.wt <- NULL
}
else {
yvar.wt <- get.weight(yvar.wt, length(yvar.types))
}
xvar.wt <- get.weight(xvar.wt, n.xvar)
yvar <- as.matrix(data[, yvar.names, drop = FALSE])
if(dim(yvar)[2] == 0) {
yvar <- NULL
}
if (miss.flag) {
n.miss <- get.nmiss(xvar, yvar)
}
else {
n.miss <- 0
}
if (impute.only && n.miss == 0) {
return(data)
}
remove(data)
big.data <- FALSE
event.info <- get.grow.event.info(yvar, family, ntime = ntime)
splitinfo <- get.grow.splitinfo(formulaDetail, splitrule, hdim, nsplit, event.info$event.type)
if (family == "surv" || family == "surv-CR") {
if (length(event.info$event.type) > 1) {
if (missing(cause) || is.null(cause)) {
cause <- NULL
cause.wt <- rep(1, length(event.info$event.type))
}
else {
if (length(cause) == 1) {
if (cause >= 1 && cause <= length(event.info$event.type)) {
cause.wt <- rep(0, length(event.info$event.type))
cause.wt[cause] <- 1
}
else {
cause.wt <- rep(1, length(event.info$event.type))
}
}
else {
if (length(cause) == length(event.info$event.type) && all(cause >= 0) && !all(cause == 0)) {
cause.wt <- cause / sum(cause)
}
else {
cause.wt <- rep(1, length(event.info$event.type))
}
}
}
}
else {
cause <- NULL
cause.wt = 1
}
family <- get.coerced.survival.fmly(family, event.info$event.type, splitinfo$name)
} else {
cause <- cause.wt <- NULL
}
nodesize <- get.grow.nodesize(family, nodesize)
if ((bootstrap != "by.root") && (bootstrap != "by.user")) {
importance <- "none"
perf.type <- "none"
}
if (family == "unsupv") {
importance <- "none"
perf.type <- "none"
}
if (impute.only) {
forest <- FALSE
proximity <- FALSE
distance <- FALSE
var.used <- FALSE
split.depth <- FALSE
membership <- FALSE
perf.type <- "none"
importance <- "none"
terminal.qualts <- FALSE
terminal.quants <- FALSE
}
if (!is.null(holdout.array)) {
if (nrow(holdout.array) != n.xvar | ncol(holdout.array) != ntree) {
stop("dimension of holdout.array does not conform to p x ntree")
}
vtry <- 1
}
gk.quantile <- get.gk.quantile(gk.quantile)
prob.assign <- global.prob.assign(prob, prob.epsilon, gk.quantile, quantile.regr, splitinfo$name, n)
prob <- prob.assign$prob
prob.epsilon <- prob.assign$prob.epsilon
if (terminal.qualts | terminal.quants) {
forest <- TRUE
}
ensemble.bits <- get.ensemble(ensemble)
impute.only.bits <- get.impute.only(impute.only, n.miss)
var.used.bits <- get.var.used(var.used)
split.depth.bits <- get.split.depth(split.depth)
importance.bits <- get.importance(importance)
bootstrap.bits <- get.bootstrap(bootstrap)
forest.bits <- get.forest(forest)
proximity.bits <- get.proximity(TRUE, proximity)
distance.bits <- get.distance(TRUE, distance)
membership.bits <- get.membership(membership)
statistics.bits <- get.statistics(statistics)
split.cust.bits <- get.split.cust(splitinfo$cust)
perf.type <- get.perf(perf.type, impute.only, family)
perf.bits <- get.perf.bits(perf.type)
rfq <- get.rfq(rfq)
rfq.bits <- get.rfq.bits(rfq, family)
gk.quantile.bits <- get.gk.quantile.bits(gk.quantile)
empirical.risk.bits <- get.empirical.risk.bits(empirical.risk)
samptype.bits <- get.samptype(samptype)
forest.wt.bits <- get.forest.wt(TRUE, bootstrap, forest.wt)
na.action.bits <- get.na.action(na.action)
block.size <- get.block.size(block.size, ntree)
terminal.qualts.bits <- get.terminal.qualts(terminal.qualts, FALSE)
terminal.quants.bits <- get.terminal.quants(terminal.quants, FALSE)
do.trace <- get.trace(do.trace)
nativeOutput <- tryCatch({.Call("rfsrcGrow",
as.integer(do.trace),
as.integer(seed),
as.integer(ensemble.bits +
impute.only.bits +
var.used.bits +
split.depth.bits +
importance.bits +
bootstrap.bits +
forest.bits +
proximity.bits +
perf.bits +
rfq.bits +
gk.quantile.bits +
statistics.bits +
empirical.risk.bits),
as.integer(samptype.bits +
forest.wt.bits +
distance.bits +
na.action.bits +
split.cust.bits +
membership.bits +
terminal.qualts.bits +
terminal.quants.bits),
as.integer(splitinfo$index),
as.integer(splitinfo$nsplit),
as.integer(mtry),
lot,
base.learner,
as.integer(vtry),
as.integer(holdout.array),
holdout.specs,
as.integer(formulaDetail$ytry),
as.integer(nodesize),
as.integer(nodedepth),
as.integer(length(cause.wt)),
as.double(cause.wt),
as.integer(ntree),
as.integer(n),
as.integer(length(yvar.types)),
as.character(yvar.types),
as.integer(yvar.nlevels),
as.double(as.vector(yvar)),
as.integer(n.xvar),
as.character(xvar.types),
as.integer(xvar.nlevels),
as.integer(sampsize),
as.integer(samp),
as.double(case.wt),
as.double(split.wt),
as.double(yvar.wt),
as.double(xvar.wt),
as.double(xvar),
as.integer(length(event.info$time.interest)),
as.double(event.info$time.interest),
as.integer(nimpute),
as.integer(block.size),
as.integer(length(prob)),
as.double(prob),
as.double(prob.epsilon),
as.double(NULL),
as.integer(get.rf.cores()))}, error = function(e) {
print(e)
NULL})
if (is.null(nativeOutput)) {
if (impute.only) {
return(NULL)
}
else {
stop("An error has occurred in the grow algorithm. Please turn trace on for further analysis.")
}
}
if (n.miss > 0) {
imputed.data <- matrix(nativeOutput$imputation, nrow = n.miss, byrow = FALSE)
imputed.indv <- imputed.data[, 1]
imputed.data <- as.matrix(imputed.data[, -1, drop = FALSE])
nativeOutput$imputation <- NULL
if (nimpute > 1) {
if (grepl("surv", family)) {
yvar[imputed.indv, 1] <- imputed.data[, 1]
yvar[imputed.indv, 2] <- imputed.data[, 2]
xvar[imputed.indv, ] <- imputed.data[, -c(1:2), drop = FALSE]
}
else {
if (!is.null(yvar.types)) {
yvar[imputed.indv, ] <- imputed.data[, 1:length(yvar.types), drop = FALSE]
xvar[imputed.indv, ] <- imputed.data[, -c(1:length(yvar.types)), drop = FALSE]
}
else {
xvar[imputed.indv, ] <- imputed.data
}
}
imputed.indv <- NULL
imputed.data <- NULL
imputedOOBData <- NULL
na.action = "na.omit"
}
else {
colnames(imputed.data) <- c(yvar.names, xvar.names)
imputed.data <- as.data.frame(imputed.data)
}
}
xvar <- as.data.frame(xvar)
rownames(xvar) <- data.row.names
colnames(xvar) <- xvar.names
xvar <- map.factor(xvar, xfactor)
if (family != "unsupv") {
yvar <- as.data.frame(yvar)
colnames(yvar) <- yvar.names
}
else {
yvar <- NULL
}
if (family != "unsupv") {
if (family == "regr+" | family == "class+" | family == "mix+") {
yvar <- map.factor(yvar, yfactor)
}
else {
yvar <- amatrix.remove.names(map.factor(yvar, yfactor))
}
}
pi.hat <- NULL
if (family == "class" && rfq) {
pi.hat <- table(yvar) / length(yvar)
}
if ((n.miss > 0) & (nimpute < 2)) {
imputed.data <- map.factor(imputed.data, xfactor)
if (family != "unsupv") {
imputed.data <- map.factor(imputed.data, yfactor)
}
}
if (forest) {
nativeArraySize = 0
if (hdim == 0) {
mwcpCountSummary = rep (0, 1)
nativeFactorArray <- vector("list", 1)
}
else {
mwcpCountSummary = rep (0, hdim)
nativeFactorArray <- vector("list", hdim)
}
pivot <- which(names(nativeOutput) == "treeID")
if (hdim == 0) {
offset = 0
} else {
offset = 7
if (!is.null(base.learner)) {
if (base.learner$trial.depth > 1) {
offset = 9
}
}
}
nullO <- lapply(1:ntree, function(b) {
if (nativeOutput$leafCount[b] > 0) {
nativeArraySize <<- nativeArraySize + (2 * nativeOutput$leafCount[b]) - 1
mwcpCountSummary[1] <<- mwcpCountSummary[1] + nativeOutput$mwcpCT[b]
if (hdim > 1) {
offset = offset + 2
for (i in 0:(hdim-2)) {
mwcpCountSummary[i+2] <<- mwcpCountSummary[i+2] + nativeOutput[[pivot + offset + (5 * (hdim-1)) + i]][b]
}
offset = offset - 2
}
}
else {
nativeArraySize <<- nativeArraySize + 1
}
NULL
})
rm(nullO)
nativeArray <- as.data.frame(cbind(nativeOutput$treeID[1:nativeArraySize],
nativeOutput$nodeID[1:nativeArraySize]))
nativeArrayHeader <- c("treeID", "nodeID")
nativeArray <- as.data.frame(cbind(nativeArray,
nativeOutput$parmID[1:nativeArraySize],
nativeOutput$contPT[1:nativeArraySize],
nativeOutput$mwcpSZ[1:nativeArraySize]))
nativeArrayHeader <- c(nativeArrayHeader, "parmID", "contPT", "mwcpSZ")
if (mwcpCountSummary[1] > 0) {
nativeFactorArray[[1]] <- nativeOutput$mwcpPT[1:mwcpCountSummary[1]]
}
nativeFactorArrayHeader <- "mwcpPT"
if (!is.null(base.learner)) {
if (base.learner$trial.depth > 1) {
nativeArray <- as.data.frame(cbind(nativeArray,
nativeOutput$augmXone[1:nativeArraySize],
nativeOutput$augmXtwo[1:nativeArraySize]))
nativeArrayHeader <- c(nativeArrayHeader, "augmXone", "augmXtwo")
}
}
if (hdim > 0) {
nativeArray <- as.data.frame(cbind(nativeArray,
nativeOutput[[pivot + offset]][1:nativeArraySize]))
nativeArrayHeader <- c(nativeArrayHeader, "hcDim")
nativeArray <- as.data.frame(cbind(nativeArray,
nativeOutput[[pivot + offset + 1]][1:nativeArraySize]))
nativeArrayHeader <- c(nativeArrayHeader, "contPTR")
}
if (hdim > 1) {
offset = offset + 2
for (i in 0:(hdim-2)) {
nativeArray <- as.data.frame(cbind(nativeArray,
nativeOutput[[pivot + offset + (0 * (hdim-1)) + i]][1:nativeArraySize]))
nativeArrayHeader <- c(nativeArrayHeader, paste("parmID", i+2, sep=""))
nativeArray <- as.data.frame(cbind(nativeArray,
nativeOutput[[pivot + offset + (1 * (hdim-1)) + i]][1:nativeArraySize]))
nativeArrayHeader <- c(nativeArrayHeader, paste("contPT", i+2, sep=""))
nativeArray <- as.data.frame(cbind(nativeArray,
nativeOutput[[pivot + offset + (2 * (hdim-1)) + i]][1:nativeArraySize]))
nativeArrayHeader <- c(nativeArrayHeader, paste("contPTR", i+2, sep=""))
nativeArray <- as.data.frame(cbind(nativeArray,
nativeOutput[[pivot + offset + (3 * (hdim-1)) + i]][1:nativeArraySize]))
nativeArrayHeader <- c(nativeArrayHeader, paste("mwcpSZ", i+2, sep=""))
if (mwcpCountSummary[i+2] > 0) {
nativeFactorArray[[i+2]] <- nativeOutput[[pivot + offset + (4 * (hdim-1)) + i]][1:mwcpCountSummary[i+2]]
}
nativeFactorArrayHeader <- c(nativeFactorArrayHeader, paste("mwcpPT", i+2, sep=""))
if (!is.null(base.learner)) {
if (base.learner$trial.depth > 1) {
nativeArray <- as.data.frame(cbind(nativeArray,
nativeOutput[[pivot + offset + (6 * (hdim-1)) + i]][1:nativeArraySize]))
nativeArrayHeader <- c(nativeArrayHeader, paste("augmXone", i+2, sep=""))
nativeArray <- as.data.frame(cbind(nativeArray,
nativeOutput[[pivot + offset + (7 * (hdim-1)) + i]][1:nativeArraySize]))
nativeArrayHeader <- c(nativeArrayHeader, paste("augmXtwo", i+2, sep=""))
}
}
}
}
names(nativeArray) <- nativeArrayHeader
names(nativeFactorArray) <- nativeFactorArrayHeader
if (terminal.qualts | terminal.quants) {
temp <- 2 * (nodesize - 1)
if (sampsize > temp) {
treeTheoreticalMaximum <- sampsize - temp;
}
else {
treeTheoreticalMaximum <- 1;
}
forestTheoreticalMaximum <- treeTheoreticalMaximum * ntree
offset <- 0
valid.mcnt.indices <- rep(list(0), ntree)
for (b in 1:ntree){
if (b > 1) {
offset <- offset + treeTheoreticalMaximum
}
valid.mcnt.indices[[b]] <- (offset + 1):(offset + nativeOutput$leafCount[b])
}
valid.mcnt.indices <- unlist(valid.mcnt.indices)
if (terminal.quants) {
if (grepl("surv", family)) {
offset <- 0
valid.2D.surv.indices <- unlist(lapply(1:ntree, function(b) {
if (b > 1) {
offset <<- offset + (treeTheoreticalMaximum * length(event.info$event.type) * length(event.info$time.interest))
}
(offset + 1):(offset + nativeOutput$leafCount[b] * length(event.info$event.type) * length(event.info$time.interest))
}))
offset <- 0
valid.1D.surv.indices <- unlist(lapply(1:ntree, function(b) {
if (b > 1) {
offset <<- offset + (treeTheoreticalMaximum * length(event.info$time.interest))
}
(offset + 1):(offset + nativeOutput$leafCount[b] * length(event.info$time.interest))
}))
offset <- 0
valid.mort.indices <- unlist(lapply(1:ntree, function(b) {
if (b > 1) {
offset <<- offset + (treeTheoreticalMaximum * length(event.info$event.type))
}
(offset + 1):(offset + nativeOutput$leafCount[b] * length(event.info$event.type))
}))
}
else {
class.index <- which(yvar.types != "R")
class.count <- length(class.index)
regr.index <- which(yvar.types == "R")
regr.count <- length(regr.index)
if (class.count > 0) {
levels.count <- array(0, class.count)
counter <- 0
for (i in class.index) {
counter <- counter + 1
levels.count[counter] <- yvar.nlevels[i]
}
offset <- 0
valid.clas.indices <- unlist(lapply(1:ntree, function(b) {
if (b > 1) {
offset <<- offset + (treeTheoreticalMaximum * sum(levels.count))
}
(offset + 1):(offset + nativeOutput$leafCount[b] * sum(levels.count))
}))
}
if (regr.count > 0) {
offset <- 0
valid.regr.indices <- unlist(lapply(1:ntree, function(b) {
if (b > 1) {
offset <<- offset + (treeTheoreticalMaximum * regr.count)
}
(offset + 1):(offset + nativeOutput$leafCount[b] * regr.count)
}))
}
}
}
nativeArrayTNDS <- list(if(!is.null(nativeOutput$tnSURV)) nativeOutput$tnSURV[valid.1D.surv.indices] else NULL,
if(!is.null(nativeOutput$tnMORT)) nativeOutput$tnMORT[valid.mort.indices] else NULL,
if(!is.null(nativeOutput$tnNLSN)) nativeOutput$tnNLSN[valid.1D.surv.indices] else NULL,
if(!is.null(nativeOutput$tnCSHZ)) nativeOutput$tnCSHZ[valid.2D.surv.indices] else NULL,
if(!is.null(nativeOutput$tnCIFN)) nativeOutput$tnCIFN[valid.2D.surv.indices] else NULL,
if(!is.null(nativeOutput$tnREGR)) nativeOutput$tnREGR[valid.regr.indices] else NULL,
if(!is.null(nativeOutput$tnCLAS)) nativeOutput$tnCLAS[valid.clas.indices] else NULL,
nativeOutput$rmbrMembership,
nativeOutput$ambrMembership,
nativeOutput$tnRCNT[valid.mcnt.indices],
nativeOutput$tnACNT[valid.mcnt.indices]);
names(nativeArrayTNDS) <- c("tnSURV","tnMORT","tnNLSN","tnCSHZ","tnCIFN","tnREGR","tnCLAS", "tnRMBR", "tnAMBR", "tnRCNT", "tnACNT")
}
else {
nativeArrayTNDS <- NULL
}
forest.out <- list(forest = TRUE,
hdim = hdim,
base.learner = base.learner,
nativeArray = nativeArray,
nativeFactorArray = nativeFactorArray,
totalNodeCount = dim(nativeArray)[1],
nodesize = nodesize,
nodedepth = nodedepth,
ntree = ntree,
family = family,
splitrule = splitinfo$name,
yvar = yvar,
yvar.names = yvar.names,
xvar = xvar,
xvar.names = xvar.names,
seed = nativeOutput$seed,
bootstrap = bootstrap,
sampsize = sampsize.function,
samptype = samptype,
samp = samp,
case.wt = case.wt,
terminal.qualts = terminal.qualts,
terminal.quants = terminal.quants,
nativeArrayTNDS = nativeArrayTNDS,
version = "2.9.3",
na.action = na.action,
perf.type = perf.type,
rfq = rfq,
gk.quantile = gk.quantile,
quantile.regr = quantile.regr,
prob = prob,
prob.epsilon = prob.epsilon,
block.size = block.size)
if (grepl("surv", family)) {
forest.out$time.interest <- event.info$time.interest
}
class(forest.out) <- c("ltrcrrf", "forest", family)
if (big.data) {
class(forest.out) <- c(class(forest.out), "bigdata")
}
}
else {
forest.out <- list(forest = FALSE,
hdim = hdim,
base.learner = base.learner,
nodesize = nodesize,
nodedepth = nodedepth,
ntree = ntree,
family = family,
splitrule = splitinfo$name,
yvar = yvar,
yvar.names = yvar.names,
xvar = xvar,
xvar.names = xvar.names,
seed = nativeOutput$seed,
bootstrap = bootstrap,
sampsize = sampsize.function,
samptype = samptype,
samp = samp,
case.wt = case.wt,
version = "2.9.3",
na.action = na.action,
perf.type = perf.type,
rfq = rfq,
gk.quantile = gk.quantile,
quantile.regr = quantile.regr,
prob = prob,
prob.epsilon = prob.epsilon,
block.size = block.size)
}
if (proximity != FALSE) {
proximity.out <- matrix(0, n, n)
count <- 0
for (k in 1:n) {
proximity.out[k,1:k] <- nativeOutput$proximity[(count+1):(count+k)]
proximity.out[1:k,k] <- proximity.out[k,1:k]
count <- count + k
}
nativeOutput$proximity <- NULL
}
else {
proximity.out <- NULL
}
if (distance != FALSE) {
distance.out <- matrix(0, n, n)
count <- 0
for (k in 1:n) {
distance.out[k,1:k] <- nativeOutput$distance[(count+1):(count+k)]
distance.out[1:k,k] <- distance.out[k,1:k]
count <- count + k
}
nativeOutput$distance <- NULL
}
else {
distance.out <- NULL
}
if (forest.wt != FALSE) {
forest.wt.out <- matrix(nativeOutput$weight, c(n, n), byrow = TRUE)
nativeOutput$weight <- NULL
}
else {
forest.wt.out <- NULL
}
if (membership) {
membership.out <- matrix(nativeOutput$nodeMembership, c(n, ntree))
inbag.out <- matrix(nativeOutput$bootMembership, c(n, ntree))
nativeOutput$nodeMembership <- NULL
nativeOutput$bootMembership <- NULL
}
else {
membership.out <- NULL
inbag.out <- NULL
}
if (var.used != FALSE) {
if (var.used == "all.trees") {
var.used.out <- nativeOutput$varUsed
names(var.used.out) <- xvar.names
}
else {
var.used.out <- matrix(nativeOutput$varUsed, nrow = ntree, byrow = TRUE)
colnames(var.used.out) <- xvar.names
}
nativeOutput$varUsed <- NULL
}
else {
var.used.out <- NULL
}
if (split.depth != FALSE) {
if (split.depth == "all.trees") {
split.depth.out <- array(nativeOutput$splitDepth, c(n, n.xvar))
}
else {
split.depth.out <- array(nativeOutput$splitDepth, c(n, n.xvar, ntree))
}
nativeOutput$splitDepth <- NULL
}
else {
split.depth.out <- NULL
}
if (statistics) {
node.stats <- as.data.frame(cbind(nativeOutput$spltST[1:nativeArraySize]))
colnames(node.stats) <- "spltST"
node.mtry.stats <- t(array(nativeOutput$mtryST[1:nativeArraySize], c(mtry, forest.out$totalNodeCount)))
node.mtry.index <- t(array(nativeOutput$mtryID[1:nativeArraySize], c(mtry, forest.out$totalNodeCount)))
if (family == "unsupv") {
node.ytry.index <- t(array(nativeOutput$uspvST[1:nativeArraySize], c(formulaDetail$ytry, forest.out$totalNodeCount)))
}
else {
node.ytry.index <- NULL
}
} else {
node.stats <- NULL
node.mtry.stats <- NULL
node.mtry.index <- NULL
node.ytry.index <- NULL
}
empr.risk <- NULL
oob.empr.risk <- NULL
if (empirical.risk) {
if (!is.null(nativeOutput$emprRisk)) {
empr.risk <- array(nativeOutput$emprRisk, c(lot$treesize, ntree))
nativeOutput$emprRisk <- NULL
}
if (!is.null(nativeOutput$oobEmprRisk)) {
oob.empr.risk <- array(nativeOutput$oobEmprRisk, c(lot$treesize, ntree))
nativeOutput$oobEmprRisk <- NULL
}
}
if (!is.null(holdout.specs)) {
holdout.blk <- nativeOutput$holdoutBlk
nativeOutput$holdoutBlk <- NULL
}
else {
holdout.blk = NULL
}
rfsrcOutput <- list(
call = my.call,
family = family,
n = n,
ntree = ntree,
nimpute = nimpute,
mtry = mtry,
nodesize = nodesize,
nodedepth = nodedepth,
nsplit = splitinfo$nsplit,
yvar = yvar,
yvar.names = yvar.names,
xvar = xvar,
xvar.names = xvar.names,
xvar.wt = xvar.wt,
split.wt = split.wt,
cause.wt = cause.wt,
leaf.count = nativeOutput$leafCount,
proximity = proximity.out,
forest = forest.out,
forest.wt = forest.wt.out,
distance = distance.out,
membership = membership.out,
splitrule = splitinfo$name,
inbag = inbag.out,
var.used = var.used.out,
imputed.indv = (if (n.miss > 0) imputed.indv else NULL),
imputed.data = (if (n.miss > 0) imputed.data else NULL),
split.depth = split.depth.out,
node.stats = node.stats,
node.mtry.stats = node.mtry.stats,
node.mtry.index = node.mtry.index,
node.ytry.index = node.ytry.index,
ensemble = ensemble,
holdout.array = holdout.array,
block.size = block.size,
holdout.blk = holdout.blk,
empr.risk = empr.risk,
oob.empr.risk = oob.empr.risk
)
remove(yvar)
remove(xvar)
nativeOutput$leafCount <- NULL
remove(proximity.out)
remove(forest.out)
remove(forest.wt.out)
remove(distance.out)
remove(membership.out)
remove(inbag.out)
remove(var.used.out)
if (n.miss > 0) remove(imputed.indv)
if (n.miss > 0) remove(imputed.data)
remove(split.depth.out)
remove(holdout.array)
remove(empr.risk)
remove(oob.empr.risk)
survOutput <- NULL
classOutput <- NULL
regrOutput <- NULL
if (!impute.only) {
if (grepl("surv", family)) {
if ((length(event.info$event.type) > 1) &&
(splitinfo$name != "l2.impute") &&
(splitinfo$name != "logrankscore")) {
coerced.event.count <- length(event.info$event.type)
}
else {
coerced.event.count <- 1
}
if (family == "surv") {
ens.names <- list(NULL, NULL)
mortality.names <- list(NULL, NULL)
err.names <- list(NULL, NULL)
vimp.names <- list(NULL, xvar.names)
}
else {
ens.names <- list(NULL, NULL, c(paste("condCHF.", 1:length(event.info$event.type), sep = "")))
mortality.names <- list(NULL, paste("event.", 1:length(event.info$event.type), sep = ""))
cif.names <- list(NULL, NULL, c(paste("CIF.", 1:length(event.info$event.type), sep = "")))
err.names <- list(c(paste("event.", 1:length(event.info$event.type), sep = "")), NULL)
vimp.names <- list(paste("event.", 1:length(event.info$event.type), sep = ""), xvar.names)
}
chf <- (if (!is.null(nativeOutput$allEnsbCHF))
adrop3d.last(array(nativeOutput$allEnsbCHF,
c(n, length(event.info$time.interest), length(event.info$event.type)),
dimnames=ens.names), coerced.event.count) else NULL)
nativeOutput$allEnsbCHF <- NULL
survOutput <- list(chf = chf)
remove(chf)
chf.oob <- (if (!is.null(nativeOutput$oobEnsbCHF))
adrop3d.last(array(nativeOutput$oobEnsbCHF,
c(n, length(event.info$time.interest), length(event.info$event.type)),
dimnames=ens.names), coerced.event.count) else NULL)
nativeOutput$oobEnsbCHF <- NULL
survOutput = c(survOutput, chf.oob = list(chf.oob))
remove(chf.oob)
predicted <- (if (!is.null(nativeOutput$allEnsbMRT))
adrop2d.last(array(nativeOutput$allEnsbMRT,
c(n, length(event.info$event.type)), dimnames=mortality.names), coerced.event.count) else NULL)
nativeOutput$allEnsbMRT <- NULL
survOutput = c(survOutput, predicted = list(predicted))
remove(predicted)
predicted.oob <- (if (!is.null(nativeOutput$oobEnsbMRT))
adrop2d.last(array(nativeOutput$oobEnsbMRT,
c(n, length(event.info$event.type)), dimnames=mortality.names), coerced.event.count) else NULL)
nativeOutput$oobEnsbMRT <- NULL
survOutput <- c(survOutput, predicted.oob = list(predicted.oob))
remove(predicted.oob)
survival <- (if (!is.null(nativeOutput$allEnsbSRV))
matrix(nativeOutput$allEnsbSRV,
c(n, length(event.info$time.interest))) else NULL)
nativeOutput$allEnsbSRV <- NULL
survOutput <- c(survOutput, survival = list(survival))
remove(survival)
survival.oob <- (if (!is.null(nativeOutput$oobEnsbSRV))
matrix(nativeOutput$oobEnsbSRV,
c(n, length(event.info$time.interest))) else NULL)
nativeOutput$oobEnsbSRV <- NULL
survOutput <- c(survOutput, survival.oob = list(survival.oob))
remove(survival.oob)
cif <- (if (!is.null(nativeOutput$allEnsbCIF))
array(nativeOutput$allEnsbCIF,
c(n, length(event.info$time.interest), length(event.info$event.type)),
dimnames=cif.names) else NULL)
nativeOutput$allEnsbCIF <- NULL
survOutput <- c(survOutput, cif = list(cif))
remove(cif)
cif.oob <- (if (!is.null(nativeOutput$oobEnsbCIF))
array(nativeOutput$oobEnsbCIF,
c(n, length(event.info$time.interest), length(event.info$event.type)),
dimnames=cif.names) else NULL)
nativeOutput$oobEnsbCIF <- NULL
survOutput = c(survOutput, cif.oob = list(cif.oob))
remove(cif.oob)
if (!is.null(nativeOutput$perfSurv)) {
err.rate <- adrop2d.first(array(nativeOutput$perfSurv,
c(length(event.info$event.type), ntree),
dimnames=err.names),
coerced.event.count)
nativeOutput$perfSurv <- NULL
if (family == "surv-CR") {
survOutput = c(survOutput, err.rate = list(t(err.rate)))
}
else {
survOutput = c(survOutput, err.rate = list(err.rate))
}
remove(err.rate)
}
if (!is.null(nativeOutput$blockSurv)) {
err.block.rate <- adrop2d.first(array(nativeOutput$blockSurv,
c(length(event.info$event.type), floor(ntree/block.size)),
dimnames=err.names),
coerced.event.count)
nativeOutput$blockSurv <- NULL
if (family == "surv-CR") {
survOutput = c(survOutput, err.block.rate = list(t(err.block.rate)))
}
else {
survOutput = c(survOutput, err.block.rate = list(err.block.rate))
}
remove(err.block.rate)
}
if (!is.null(nativeOutput$vimpSurv)) {
importance <- adrop2d.first(array(nativeOutput$vimpSurv,
c(length(event.info$event.type), n.xvar),
dimnames = vimp.names),
coerced.event.count)
nativeOutput$vimpSurv <- NULL
if (family == "surv-CR") {
survOutput = c(survOutput, importance = list(t(importance)))
}
else {
survOutput = c(survOutput, importance = list(importance))
}
remove(importance)
}
survOutput = c(
survOutput, list(
time.interest = event.info$time.interest,
ndead = sum(na.omit(event.info$cens) != 0))
)
if (!is.null(nativeOutput$holdoutSurv)) {
holdout.vimp <- vector("list", length(rfsrcOutput$holdout.blk))
names(holdout.vimp) <- xvar.names
holdout.offset <- rfsrcOutput$holdout.blk * length(event.info$event.type)
holdout.offset.sum <- c(0, cumsum(holdout.offset))
for (i in 1:length(holdout.vimp)) {
if (rfsrcOutput$holdout.blk[i] > 0) {
if (length(event.info$event.type) > 1) {
holdout.vimp[[i]] <- array(nativeOutput$holdoutSurv[(holdout.offset.sum[i] + 1) : holdout.offset.sum[i+1]], c(length(event.info$event.type), rfsrcOutput$holdout.blk[i]))
}
else {
holdout.vimp[[i]] <- nativeOutput$holdoutSurv[(holdout.offset.sum[i] + 1) : holdout.offset.sum[i+1]]
}
}
else {
holdout.vimp[[i]] = NA
}
}
survOutput = c(survOutput, holdout.vimp = list(holdout.vimp))
remove(holdout.vimp)
}
if(univariate.nomenclature) {
rfsrcOutput <- c(rfsrcOutput, survOutput)
}
else {
rfsrcOutput <- c(rfsrcOutput, survOutput = list(survOutput))
}
}
else {
class.index <- which(yvar.types != "R")
resp.clas.count <- length(class.index)
regr.index <- which(yvar.types == "R")
resp.regr.count <- length(regr.index)
if (resp.clas.count > 0) {
classOutput <- vector("list", resp.clas.count)
names(classOutput) <- yvar.names[class.index]
levels.count <- array(0, resp.clas.count)
levels.names <- vector("list", resp.clas.count)
counter <- 0
for (i in class.index) {
counter <- counter + 1
levels.count[counter] <- yvar.nlevels[i]
if (yvar.types[i] == "C") {
levels.names[[counter]] <- yfactor$levels[[which(yfactor$factor == yvar.names[i])]]
}
else {
levels.names[[counter]] <- yfactor$order.levels[[which(yfactor$order == yvar.names[i])]]
}
}
tree.offset <- array(1, ntree)
if (ntree > 1) {
tree.offset[2:ntree] <- sum(1 + levels.count)
}
tree.offset <- cumsum(tree.offset)
block.offset <- array(1, floor(ntree/block.size))
if (floor(ntree/block.size) > 1) {
block.offset[2:floor(ntree/block.size)] <- sum(1 + levels.count)
}
block.offset <- cumsum(block.offset)
vimp.offset <- array(1, n.xvar)
if (n.xvar > 1) {
vimp.offset[2:n.xvar] <- sum(1 + levels.count)
}
vimp.offset <- cumsum(vimp.offset)
iter.ensb.start <- 0
iter.ensb.end <- 0
if (!is.null(nativeOutput$holdoutClas)) {
holdout.offset.x <- rfsrcOutput$holdout.blk * (sum(1 + levels.count))
holdout.offset.sum.x <- c(0, cumsum(holdout.offset.x))
holdout.offset.r <- 0
}
for (i in 1:resp.clas.count) {
iter.ensb.start <- iter.ensb.end
iter.ensb.end <- iter.ensb.end + (levels.count[i] * n)
ens.names <- list(NULL, levels.names[[i]])
err.names <- c("all", levels.names[[i]])
vimp.names <- list(c("all", levels.names[[i]]), xvar.names)
predicted <- (if (!is.null(nativeOutput$allEnsbCLS))
array(nativeOutput$allEnsbCLS[(iter.ensb.start + 1):iter.ensb.end],
c(n, levels.count[i]), dimnames=ens.names) else NULL)
classOutput[[i]] <- list(predicted = predicted)
response <- (if (!is.null(predicted)) getltrc.bayes.rule(predicted, pi.hat) else NULL)
classOutput[[i]] <- c(classOutput[[i]], class = list(response))
remove(predicted)
remove(response)
predicted.oob <- (if (!is.null(nativeOutput$oobEnsbCLS))
array(nativeOutput$oobEnsbCLS[(iter.ensb.start + 1):iter.ensb.end],
c(n, levels.count[i]), dimnames=ens.names) else NULL)
classOutput[[i]] <- c(classOutput[[i]], predicted.oob = list(predicted.oob))
response.oob <- (if (!is.null(predicted.oob)) getltrc.bayes.rule(predicted.oob, pi.hat) else NULL)
classOutput[[i]] <- c(classOutput[[i]], class.oob = list(response.oob))
remove(predicted.oob)
remove(response.oob)
if (!is.null(nativeOutput$perfClas)) {
err.rate <- array(0, c(1 + levels.count[i], ntree))
for (j in 1: (1 + levels.count[i])) {
err.rate[j, ] <- nativeOutput$perfClas[tree.offset]
tree.offset <- tree.offset + 1
}
row.names(err.rate) <- err.names
classOutput[[i]] <- c(classOutput[[i]], err.rate = list(t(err.rate)))
remove(err.rate)
}
if (!is.null(nativeOutput$blockClas)) {
err.block.rate <- array(0, c(1 + levels.count[i], floor(ntree/block.size)))
for (j in 1: (1 + levels.count[i])) {
err.block.rate[j, ] <- nativeOutput$blockClas[block.offset]
block.offset <- block.offset + 1
}
row.names(err.block.rate) <- err.names
classOutput[[i]] <- c(classOutput[[i]], err.block.rate = list(t(err.block.rate)))
remove(err.block.rate)
}
if (!is.null(nativeOutput$vimpClas)) {
importance <- array(0, c(1 + levels.count[i], n.xvar), dimnames=vimp.names)
for (j in 1: (1 + levels.count[i])) {
importance[j, ] <- nativeOutput$vimpClas[vimp.offset]
vimp.offset <- vimp.offset + 1
}
classOutput[[i]] <- c(classOutput[[i]], importance = list(t(importance)))
remove(importance)
}
if (!is.null(nativeOutput$holdoutClas)) {
holdout.vimp <- vector("list", length(rfsrcOutput$holdout.blk))
names(holdout.vimp) <- xvar.names
if (i > 1) {
holdout.offset.r <- holdout.offset.r + (1 + levels.count[i-1])
}
for (k in 1:length(holdout.vimp)) {
if (rfsrcOutput$holdout.blk[k] > 0) {
offset.x <- holdout.offset.sum.x[k]
offset.b <- 0
index.m <- NULL
for (m in 1:rfsrcOutput$holdout.blk[k]) {
if (m > 1) {
offset.b <- offset.b + (sum(1 + levels.count))
}
index.m <- c(index.m, seq(from = offset.x + offset.b + holdout.offset.r + 1, by = 1, length.out = levels.count[i] + 1))
}
holdout.vimp[[k]] = array(nativeOutput$holdoutClas[index.m], c(levels.count[i] + 1, rfsrcOutput$holdout.blk[k]))
}
else {
holdout.vimp[[k]] = NA
}
}
classOutput[[i]] = c(classOutput[[i]], holdout.vimp = list(holdout.vimp))
remove(holdout.vimp)
}
}
nativeOutput$allEnsbCLS <- NULL
nativeOutput$oobEnsbCLS <- NULL
nativeOutput$perfClas <- NULL
nativeOutput$blockClas <- NULL
nativeOutput$vimpClas <- NULL
nativeOutput$holdoutClas <- NULL
if(univariate.nomenclature) {
if ((resp.clas.count == 1) & (resp.regr.count == 0)) {
names(classOutput) <- NULL
rfsrcOutput <- c(rfsrcOutput, unlist(classOutput, recursive=FALSE))
}
else {
rfsrcOutput <- c(rfsrcOutput, classOutput = list(classOutput))
}
}
else {
rfsrcOutput <- c(rfsrcOutput, classOutput = list(classOutput))
}
}
if (resp.regr.count > 0) {
regrOutput <- vector("list", resp.regr.count)
names(regrOutput) <- yvar.names[regr.index]
tree.offset <- array(1, ntree)
if (ntree > 1) {
tree.offset[2:ntree] <- length(regr.index)
}
tree.offset <- cumsum(tree.offset)
block.offset <- array(1, floor(ntree/block.size))
if (floor(ntree/block.size) > 1) {
block.offset[2:floor(ntree/block.size)] <- length(regr.index)
}
block.offset <- cumsum(block.offset)
vimp.offset <- array(1, n.xvar)
if (n.xvar > 1) {
vimp.offset[2:n.xvar] <- length(regr.index)
}
vimp.offset <- cumsum(vimp.offset)
iter.ensb.start <- 0
iter.ensb.end <- 0
iter.qntl.start <- 0
iter.qntl.end <- 0
if (!is.null(nativeOutput$holdoutRegr)) {
holdout.offset.x <- rfsrcOutput$holdout.blk * resp.regr.count
holdout.offset.sum.x <- c(0, cumsum(holdout.offset.x))
holdout.offset.r <- 0
}
for (i in 1:resp.regr.count) {
iter.ensb.start <- iter.ensb.end
iter.ensb.end <- iter.ensb.end + n
iter.qntl.start <- iter.qntl.end
iter.qntl.end <- iter.qntl.end + (length(prob) * n)
vimp.names <- xvar.names
predicted <- (if (!is.null(nativeOutput$allEnsbRGR))
array(nativeOutput$allEnsbRGR[(iter.ensb.start + 1):iter.ensb.end], n) else NULL)
regrOutput[[i]] <- list(predicted = predicted)
remove(predicted)
predicted.oob <- (if (!is.null(nativeOutput$oobEnsbRGR))
array(nativeOutput$oobEnsbRGR[(iter.ensb.start + 1):iter.ensb.end], n) else NULL)
regrOutput[[i]] <- c(regrOutput[[i]], predicted.oob = list(predicted.oob))
remove(predicted.oob)
quantile <- (if (!is.null(nativeOutput$allEnsbQNT))
array(nativeOutput$allEnsbQNT[(iter.qntl.start + 1):iter.qntl.end],
c(n, length(prob))) else NULL)
regrOutput[[i]] <- c(regrOutput[[i]], quantile = list(quantile))
remove(quantile)
quantile.oob <- (if (!is.null(nativeOutput$oobEnsbQNT))
array(nativeOutput$oobEnsbQNT[(iter.qntl.start + 1):iter.qntl.end],
c(n, length(prob))) else NULL)
regrOutput[[i]] <- c(regrOutput[[i]], quantile.oob = list(quantile.oob))
remove(quantile.oob)
if (!is.null(nativeOutput$perfRegr)) {
err.rate <- nativeOutput$perfRegr[tree.offset]
tree.offset <- tree.offset + 1
regrOutput[[i]] <- c(regrOutput[[i]], err.rate = list(err.rate))
remove(err.rate)
}
if (!is.null(nativeOutput$blockRegr)) {
err.block.rate <- nativeOutput$blockRegr[block.offset]
block.offset <- block.offset + 1
regrOutput[[i]] <- c(regrOutput[[i]], err.block.rate = list(err.block.rate))
remove(err.block.rate)
}
if (!is.null(nativeOutput$vimpRegr)) {
importance <- nativeOutput$vimpRegr[vimp.offset]
names(importance) <- xvar.names
vimp.offset <- vimp.offset + 1
regrOutput[[i]] <- c(regrOutput[[i]], importance = list(importance))
remove(importance)
}
if (!is.null(nativeOutput$holdoutRegr)) {
holdout.vimp <- vector("list", length(rfsrcOutput$holdout.blk))
names(holdout.vimp) <- xvar.names
if (i > 1) {
holdout.offset.r <- holdout.offset.r + 1
}
for (k in 1:length(holdout.vimp)) {
if (rfsrcOutput$holdout.blk[k] > 0) {
offset.x <- holdout.offset.sum.x[k]
offset.b <- 0
index.m <- NULL
for (m in 1:rfsrcOutput$holdout.blk[k]) {
if (m > 1) {
offset.b <- offset.b + resp.regr.count
}
index.m <- c(index.m, offset.x + offset.b + holdout.offset.r + 1)
}
holdout.vimp[[k]] <- nativeOutput$holdoutRegr[index.m]
}
else {
holdout.vimp[[k]] <- NA
}
}
regrOutput[[i]] <- c(regrOutput[[i]], holdout.vimp = list(holdout.vimp))
}
}
nativeOutput$allEnsbRGR <- NULL
nativeOutput$oobEnsbRGR <- NULL
nativeOutput$allEnsbQNT <- NULL
nativeOutput$oobEnsbQNT <- NULL
nativeOutput$perfRegr <- NULL
nativeOutput$blockRegr <- NULL
nativeOutput$vimpRegr <- NULL
nativeOutput$holdoutRegr <- NULL
if(univariate.nomenclature) {
if ((resp.clas.count == 0) & (resp.regr.count == 1)) {
names(regrOutput) <- NULL
rfsrcOutput <- c(rfsrcOutput, unlist(regrOutput, recursive=FALSE))
}
else {
rfsrcOutput <- c(rfsrcOutput, regrOutput = list(regrOutput))
}
}
else {
rfsrcOutput <- c(rfsrcOutput, regrOutput = list(regrOutput))
}
}
}
}
class(rfsrcOutput) <- c("ltrcrfsrc", "grow", family)
if (big.data) {
class(rfsrcOutput) <- c(class(rfsrcOutput), "bigdata")
}
return(rfsrcOutput)
} |
monthmean<-function(data,resp,offsetpop=NULL,adjmonth=FALSE){
if (is.null(data)==TRUE){stop("must have an input data set (data)")}
if (is.null(resp)==TRUE){stop("must have an input variable (resp)")}
nnn<-names(data)
if (any(nnn=='year')==FALSE){stop("data set must contain a variable with the 4 digit year called 'year'")}
if (any(nnn=='month')==FALSE){stop("data set must contain a variable with the numeric month called 'month'")}
days<-flagleap(data)
mean<-vector(length=12,mode='numeric')
if (adjmonth=='thirty') adjf=30
if (adjmonth=='average') adjf=365.25/12
if (is.null(offsetpop)==TRUE) adjp=1 else adjp=with(data,eval(offsetpop))
xxxx=subset(data,select=resp)[,1]
for (i in 1:12){
if (adjmonth!=FALSE) mean[i]<-mean(xxxx[data$month==i]*(adjf/days$ndaysmonth[i])/adjp)
else mean[i]<-mean(xxxx[data$month==i]/adjp)
}
toret<-list()
toret$mean<-as.vector(mean)
class(toret)<-'Monthmean'
return(toret)
} |
originize_file <-
function(
file,
pkgs = getOption("origin.pkgs", .packages()),
overwrite = getOption("origin.overwrite", TRUE),
ask_before_applying_changes =
getOption("origin.ask_before_applying_changes", TRUE),
ignore_comments = getOption("origin.ignore_comments", TRUE),
check_conflicts = getOption("origin.check_conflicts", TRUE),
check_base_conflicts = getOption("origin.check_base_conflicts", TRUE),
add_base_packages = getOption("origin.add_base_packages", FALSE),
excluded_functions = getOption("origin.excluded_functions", list()),
verbose = getOption("origin.verbose", FALSE),
use_markers = getOption("origin.use_markers_for_logging", TRUE),
path_to_local_functions = getOption("origin.path_to_local_functions", NULL),
check_local_conflicts = getOption("origin.check_local_conflicts", TRUE)
) {
if (!file.exists(file)) {
stop("No file in this path\n", file)
}
script <- suppressWarnings(readLines(file))
originize_wrap(scripts = list(script),
files = file,
type = "writeLines",
pkgs = pkgs,
overwrite = overwrite,
ask_before_applying_changes = ask_before_applying_changes,
ignore_comments = ignore_comments,
check_conflicts = check_conflicts,
check_base_conflicts = check_base_conflicts,
add_base_packages = add_base_packages,
excluded_functions = excluded_functions,
verbose = verbose,
use_markers = use_markers,
path_to_local_functions = path_to_local_functions,
check_local_conflicts = check_local_conflicts)
return(invisible(NULL))
} |
EBPRS <- function(train,test,N1,N0,robust=T){
if(missing(test)==T){
temp0 <- extractInfo(train)
train <- temp0$train
}
else{
temp0 <- extractInfo(train,test)
train <- temp0$train
bim <- temp0$bim
cat("Coordinating the ref alleles...","\n")
colnames(train)[which(colnames(train)=="a1")] <- "A1"
colnames(train)[which(colnames(train)=="a2")] <- "A2"
colnames(train)[which(colnames(train)=="or")] <- "OR"
colnames(train)[which(colnames(train)=="p")] <- "P"
sig=agtc(train$A1,train$A2,bim[,5],bim[,6])
train$OR=(train$OR)^sig
train <- train[train$OR>0,]
}
z <- -qnorm(train$P/2)*sign(log(train$OR))
se <- log(train$OR)/z
z[which(is.na(z))] <- 0
se[which(is.na(se))] <- 1
cat("Utilizing EM algorithm to derive pi0 and sigma02","\n")
if(robust==F){
temp <- snpEM(z,empNull=F,beta0=(length(z)/20), K=3)
}else{
temp <- snpEMrobust(z, K=3, maxIter=1000, tol=1e-3, empNull=F, boot=1, info=TRUE)
}
res <- findpara_ltdr(n0=N0,n1=N1,SE=se,beta=log(train$OR),z=z,pi0Hat=temp$pi0,sigma02=temp$sigma2,ltdr=temp$ltdr,lfdr=temp$lfdr)
cat("Estimating the parameters.","\n")
muHatnew <- res$muHat/sqrt(res$sigmaHat2)
muHatnew[which(is.na(muHatnew))] <- 0
result <- data.frame(train,effectsize=muHatnew)
write.table(result,"res_para.txt")
cat("Completed.","\n")
if(missing(test)==F){
cat("Now calculating scores \n")
S <- generateScore(muHatnew, temp0$bed)
tt <- validate(S, test$fam[,6])
return(list(result=result,S=S,r2=tt$r2,AUC=tt$AUC,muHat=res$muHat,sigmaHat2=res$sigmaHat2,pi0=temp$pi0,sigma02=temp$sigma02,eff=muHatnew))
}
else{
return(list(result=result,muHat=res$muHat,sigmaHat2=res$sigmaHat2,pi0=temp$pi0,sigma02=temp$sigma02,eff=muHatnew))
}
} |
movies <- function(fixed_range = TRUE, hscale = NA, vscale = hscale) {
panel.launch <- function(menu.panel) {
if (menu.panel$demo == "binomial") {
discrete(distn = "binomial", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "geometric") {
if (fixed_range) {
discrete(distn = "geometric", var_support = 0:30, hscale = hscale,
vscale = vscale)
} else {
discrete(distn = "geometric", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "hypergeometric") {
discrete(distn = "hypergeometric", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "negative binomial") {
if (fixed_range) {
discrete(distn = "negative binomial", var_support = 0:100,
hscale = hscale, vscale = vscale)
} else {
discrete(distn = "negative binomial", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "Poisson") {
if (fixed_range) {
discrete(distn = "poisson", var_support = 0:20, hscale = hscale,
vscale = vscale)
} else {
discrete(distn = "poisson", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "beta") {
continuous(distn = "beta", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Cauchy") {
if (fixed_range) {
continuous(distn = "cauchy", var_range = c(-20, 20), hscale = hscale,
vscale = vscale)
} else {
continuous(distn = "cauchy", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "chi-squared") {
if (fixed_range) {
continuous(distn = "chi-squared", var_range = c(0, 15),
hscale = hscale, vscale = vscale)
} else {
continuous(distn = "chi-squared", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "exponential") {
if (fixed_range) {
continuous(distn = "exponential", var_range = c(0, 10),
hscale = hscale, vscale = vscale)
} else {
continuous(distn = "exponential", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "F") {
if (fixed_range) {
continuous(distn = "f", var_range = c(0, 10), hscale = hscale,
vscale = vscale)
} else {
continuous(distn = "f", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "gamma") {
if (fixed_range) {
continuous(distn = "gamma", var_range = c(0, 20), hscale = hscale,
vscale = vscale)
} else {
continuous(distn = "gamma", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "GEV") {
if (fixed_range) {
continuous(distn = "gev", var_range = c(-5, 15), hscale = hscale,
vscale = vscale)
} else {
continuous(distn = "gev", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "GP") {
if (fixed_range) {
continuous(distn = "gp", var_range = c(-3, 15), hscale = hscale,
vscale = vscale)
} else {
continuous(distn = "gp", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "lognormal") {
if (fixed_range) {
continuous(distn = "lognormal", var_range = c(0, 15), hscale = hscale,
vscale = vscale)
} else {
continuous(distn = "lognormal", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "normal") {
if (fixed_range) {
continuous(distn = "normal", var_range = c(-8, 8), hscale = hscale,
vscale = vscale)
} else {
continuous(distn = "normal", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "Student t") {
if (fixed_range) {
continuous(distn = "t", var_range = c(-10, 10), hscale = hscale,
vscale = vscale)
} else {
continuous(distn = "t", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "uniform") {
if (fixed_range) {
continuous(distn = "uniform", var_range = c(-2, 3), hscale = hscale,
vscale = vscale)
} else {
continuous(distn = "uniform", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "Weibull") {
if (fixed_range) {
continuous(distn = "weibull", var_range = c(0, 10), hscale = hscale,
vscale = vscale)
} else {
continuous(distn = "weibull", hscale = hscale, vscale = vscale)
}
}
else if (menu.panel$demo == "correlation coefficient") {
correlation(n = 10, hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Mean") {
clt(distn = "exponential", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Maximum") {
ett(distn = "exponential", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Median") {
cltq(distn = "exponential", p = 0.5, hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Mean vs median, normal") {
mean_vs_median()
}
else if (menu.panel$demo == "Mean vs median, Student t(2)") {
mean_vs_median(t_df = 2)
}
else if (menu.panel$demo == "Lower quartile") {
cltq(distn = "exponential", p = 0.25, hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Upper quartile") {
cltq(distn = "exponential", p = 0.75, hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Leverage and influence") {
lev_inf(hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Wald, Wilks and Score tests") {
wws(model = "binom", theta0 = 0.5, hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Testing simple hypotheses") {
shypo(mu0 = 0, eff = 5, n = 1, hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "beta ") {
ett(distn = "beta", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Cauchy ") {
ett(distn = "cauchy", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "chi-squared ") {
ett(distn = "chi-squared", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "exponential ") {
ett(distn = "exponential", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "F ") {
ett(distn = "f", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "gamma ") {
ett(distn = "gamma", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "generalized Pareto ") {
ett(distn = "gp", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "log-normal ") {
ett(distn = "log-normal", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "negated GEV ") {
ett(distn = "ngev", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "normal ") {
ett(distn = "normal", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Student t ") {
ett(distn = "t", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "uniform ") {
ett(distn = "uniform", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == "Weibull ") {
ett(distn = "weibull", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " beta") {
clt(distn = "beta", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " binomial") {
clt(distn = "binomial", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " chi-squared") {
clt(distn = "chi-squared", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " exponential") {
clt(distn = "exponential", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " F") {
clt(distn = "f", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " gamma") {
clt(distn = "gamma", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " generalized Pareto") {
clt(distn = "gp", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " geometric") {
clt(distn = "geometric", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " hypergeometric") {
clt(distn = "hypergeometric", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " GEV") {
clt(distn = "gev", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " log-normal") {
clt(distn = "log-normal", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " negative binomial") {
clt(distn = "binomial", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " normal") {
clt(distn = "normal", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " Poisson") {
clt(distn = "poisson", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " Student t") {
clt(distn = "t", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " uniform") {
clt(distn = "uniform", hscale = hscale, vscale = vscale)
}
else if (menu.panel$demo == " Weibull") {
clt(distn = "weibull", hscale = hscale, vscale = vscale)
}
return(menu.panel)
}
menu.panel <- rpanel::rp.control("Movies", homer = FALSE,
number.list = list(),
ss = list(), trans = list(), theta = list())
menu.list <- list(list("Discrete",
"binomial",
"geometric",
"hypergeometric",
"negative binomial",
"Poisson"
),
list("Continuous",
"beta",
"Cauchy",
"chi-squared",
"exponential",
"F",
"gamma",
"GEV",
"GP",
"lognormal",
"normal",
"Student t",
"uniform",
"Weibull"
),
list("Sampling distributions",
"Correlation coefficient",
"Mean",
"Maximum",
"Median",
"Mean vs median, normal",
"Mean vs median, Student t(2)",
"Lower quartile",
"Upper quartile"
),
list("CLT",
" beta",
" binomial",
" Cauchy",
" chi-squared",
" exponential",
" F",
" gamma",
" generalized Pareto",
" geometric",
" hypergeometric",
" log-normal",
" GEV",
" negative binomial",
" normal",
" Poisson",
" Student t",
" uniform",
" Weibull"
),
list("Regression",
"Leverage and influence"
),
list("Hypothesis testing",
"Wald, Wilks and Score tests",
"Testing simple hypotheses"
),
list("Extremal types",
"beta ",
"Cauchy ",
"chi-squared ",
"exponential ",
"F ",
"gamma ",
"generalized Pareto ",
"log-normal ",
"negated GEV ",
"normal ",
"Student t ",
"uniform ",
"Weibull "
)
)
demo <- NULL
rpanel::rp.menu(menu.panel, variable = demo, labels = menu.list,
action = panel.launch)
image.file <- file.path(system.file(package = "rpanel"), "images",
"cartoons.gif")
rpanel::rp.image(menu.panel, image.file)
return(invisible())
} |
require(properties)
props <- list(key1 = "value1", key2 = "value2", key3 = "value3")
propFilePath <- tempfile(tmpdir = ".")
write.properties(propFilePath, props)
expectedLines = c("key1=value1", "key2=value2", "key3=value3")
stopifnot(all.equal(readLines(propFilePath), expectedLines))
file.remove(propFilePath)
expectedProps <- read.properties(system.file("testFiles", "test2.properties", package = "properties"))
propFilePath <- tempfile(tmpdir = ".")
write.properties(propFilePath, expectedProps)
props <- read.properties(propFilePath)
stopifnot(all.equal(props, expectedProps))
file.remove(propFilePath)
props <- read.properties(system.file("testFiles", "test3.properties", package = "properties"))
propFilePath <- tempfile(tmpdir = ".")
write.properties(propFilePath, props, fields = c("key2", "key7"))
expectedLines <- c("key2=value2", "key7=value7")
stopifnot(all.equal(readLines(propFilePath), expectedLines))
file.remove(propFilePath)
expectedProps <- read.properties(system.file("testFiles", "test4.properties", package = "properties"))
propFilePath <- tempfile(tmpdir = ".")
write.properties(propFilePath, expectedProps)
props <- read.properties(propFilePath)
stopifnot(all.equal(props, expectedProps))
file.remove(propFilePath) |
od_REX <- function(Fx, crit="D", h=NULL, w1=NULL, alg.AA="REX",
eff=0.999999, it.max=Inf, t.max=60, echo=TRUE, track=TRUE) {
cl <- match.call()
verify(cl, Fx = Fx, crit = crit, h = h, w1 = w1, alg.AA = alg.AA,
eff = eff, it.max = it.max, t.max = t.max, echo = echo, track = track)
n <- nrow(Fx); m <- ncol(Fx)
if (crit %in% c("C", "c") && is.null(h)) h <- c(rep(0, m - 1), 1)
if (!is.null(w1) && sum(w1) != 1) {
message("w1 not perfectly normalized; normalizing.")
w1 <- w1 / sum(w1)
}
if (crit == "D") {
if (alg.AA == "REX")
res <- od_D_REX(Fx = Fx, w1 = w1, ver = 1, gamma = 4, eff = eff,
it.max = it.max, t.max = t.max, track = track)
if (alg.AA == "MUL")
res <- od_D_MUL(Fx = Fx, w1 = w1, eff = eff, it.max = it.max,
t.max = t.max, track = track)
if (alg.AA == "VDM")
res <- od_D_VDM(Fx = Fx, w1 = w1, eff = eff, it.max = it.max,
t.max = t.max, track = track)
}
if (crit == "A") {
if (alg.AA == "REX")
res <- od_A_REX(Fx = Fx, w1 = w1, ver = 1, gamma = 1, eff = eff,
it.max = it.max, t.max = t.max, track = track)
if (alg.AA == "MUL")
res <- od_A_MUL(Fx = Fx, w1 = w1, lambda = 0.5, eff = eff,
it.max = it.max, t.max = t.max, track = track)
if (alg.AA == "VDM")
res <- od_A_VDM(Fx = Fx, w1 = w1, eff = eff, it.max = it.max,
t.max = t.max, track = track)
}
if (crit == "I") {
if (alg.AA == "REX")
res <- od_A_REX(Fx = Fx_ItoA(Fx, echo = FALSE), w1 = w1, ver = 1,
gamma = 1, eff = eff, it.max = it.max, t.max = t.max, track = track)
if (alg.AA == "MUL")
res <- od_A_MUL(Fx = Fx_ItoA(Fx, echo = FALSE), w1 = w1, lambda = 0.5,
eff = eff, it.max = it.max, t.max = t.max, track = track)
if (alg.AA == "VDM")
res <- od_A_VDM(Fx = Fx_ItoA(Fx, echo = FALSE), w1 = w1, eff = eff,
it.max = it.max, t.max = t.max, track = track)
}
if (crit == "C") {
if (alg.AA == "REX")
res <- od_A_REX(Fx = Fx_CtoA(Fx, h, echo = FALSE), w1 = w1, ver = 1,
gamma = 1, eff = eff, it.max = it.max, t.max = t.max, track = track)
if (alg.AA == "MUL")
res <- od_A_MUL(Fx = Fx_CtoA(Fx, h, echo = FALSE), w1 = w1, lambda = 0.5,
eff = eff, it.max = it.max, t.max = t.max, track = track)
if (alg.AA == "VDM")
res <- od_A_VDM(Fx = Fx_CtoA(Fx, h, echo = FALSE), w1 = w1, eff = eff,
it.max = it.max, t.max = t.max, track = track)
}
if (crit == "c") {
message("Linear programming reformulation will be used for c-optimality.")
res <- od_c_LP(Fx, h, track)
}
supp <- (1:n)[res$w.best > 0]
res <- list(call = cl, w.best = res$w.best, supp = supp, w.supp = res$w.best[supp],
M.best = infmat(Fx, res$w.best, echo = FALSE),
Phi.best = optcrit(Fx, res$w.best, crit, h, echo = FALSE),
eff.best = res$eff.best, n.iter = res$n.iter, t.act = res$t.act)
return(res)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.