code
stringlengths 1
13.8M
|
---|
chart.RiskReward <- function(object, ...){
UseMethod("chart.RiskReward")
} |
.discretize.qq.gam <- function(P, discrete, ngr, CI, showReps){
n <- length(P$Dq)
rep <- ncol(P$dm)
if(discrete && ngr >= n){ discrete <- FALSE }
if( CI && is.null(P$conf) ){
message("CI==TRUE but intervals have not been already computed by qq.gamViz. Setting CI to FALSE.")
CI <- FALSE
}
if( discrete ){
DqFull <- P$Dq
tmp <- bin1D(x = P$Dq, y = P$D, ngr = ngr)
P$D <- tmp$ym
P$Dq <- tmp$xm
if( showReps && !is.null(P$dm) ){
tmp <- lapply(1:ncol(P$dm), function(ii) bin1D(DqFull, P$dm[ , ii], ngr))
dmx <- do.call("c", lapply(tmp, function(inp) inp$xm))
dmy <- do.call("c", lapply(tmp, function(inp) inp$ym))
id <- lapply(1:rep, function(ii) rep(ii, length(tmp[[ii]]$xm)))
id <- do.call("c", id)
}
if( CI && !is.null(P$conf) ){
P$conf <- rbind(approx(x=DqFull, y=P$conf[1, , drop=T], xout=P$Dq)$y,
approx(x=DqFull, y=P$conf[2, , drop=T], xout=P$Dq)$y)
}
} else {
if( showReps && !is.null(P$dm) ){
dmx <- rep(P$Dq, rep)
dmy <- c( as.numeric(P$dm) )
id <- rep(1:rep, each=n)
}
}
if( showReps && !is.null(P$dm) ){
P$dm <- data.frame("x"=dmx, "y"=dmy, "id"=id)
}
if( CI && !is.null(P$conf) ){
P$conf <- data.frame("x"= c(P$Dq, rev(P$Dq)),
"y"= c(P$conf[1, , drop=T], rev(P$conf[2, , drop=T])))
}
return( P )
} |
.onLoad <- function(libname, pkgname){
options(rstudio.markdownToHTML = function(inputFile, outputFile){
if (readLines(inputFile)[1] == '---'){
slidify(inputFile, knit_deck = FALSE)
} else {
markdownToHTML(inputFile, outputFile)
}
})
} |
makeStackedLearner = function(base.learners, super.learner = NULL, predict.type = NULL,
method = "stack.nocv",
use.feat = FALSE, resampling = NULL) {
baseType = unique(extractSubList(base.learners, "type"))
if (!is.null(resampling) & method != "stack.cv") {
stop("No resampling needed for this method")
}
if (is.null(resampling)) {
resampling = makeResampleDesc("CV", iters = 5L,
stratify = ifelse(baseType == "classif", TRUE, FALSE))
}
assertChoice(method, c("average", "stack.nocv", "stack.cv", "step.stack.nocv", "step.stack.cv"))
assertClass(resampling, "ResampleDesc")
pts = unique(extractSubList(base.learners, "predict.type"))
if (length(pts) > 1L) {
stop("Base learner must all have the same predict type!")
}
if (method == "average" & (!is.null(super.learner) | is.null(predict.type))) {
stop("No super learner needed for this method or the 'predict.type' is not specified.")
}
if (method != "average" & is.null(super.learner)) {
stop("You have to specify a super learner for this method.")
}
if (method != "average" & !is.null(predict.type)) {
stop("Predict type has to be specified within the super learner.")
}
if (method == "average" & use.feat) {
stop("The original features can not be used for this method")
}
if (!inherits(resampling, "CVDesc")) {
stop("Currently only CV is allowed for resampling!")
}
lrn = makeBaseEnsemble(
id = "stack",
base.learners = base.learners,
cl = "StackedLearner"
)
if (!is.null(super.learner)) {
super.learner = checkLearner(super.learner)
lrn = setPredictType(lrn, predict.type = super.learner$predict.type)
} else {
lrn = setPredictType(lrn, predict.type = predict.type)
}
lrn$fix.factors.prediction = TRUE
lrn$use.feat = use.feat
lrn$method = method
lrn$super.learner = super.learner
lrn$resampling = resampling
return(lrn)
}
trainLearner.StackedLearner = function(.learner, .task, .subset, ...) {
bls = .learner$base.learners
ids = names(bls)
.task = subsetTask(.task, subset = .subset)
probs = makeDataFrame(.task$task.desc$size, ncol = length(bls), col.types = "numeric",
col.names = ids)
switch(.learner$method,
average = averageBaseLearners(.learner, .task, probs),
stack.nocv = stackNoCV(.learner, .task, probs),
stack.cv = stackCV(.learner, .task, probs),
step.stack.nocv = stepStackNoCV(.learner, .task, probs),
step.stack.cv = stepStackCV(.learner, .task, probs)
)
}
predictLearner.StackedLearner = function(.learner, .model, .newdata, ...) {
use.feat = .model$learner$use.feat
sm.pt = .model$learner$predict.type
sm = .model$learner.model$super.model
bms.pt = unique(extractSubList(.model$learner$base.learners, "predict.type"))
levs = .model$task.desc$class.levels
td = .model$task.desc
type = ifelse(td$type == "regr", "regr",
ifelse(length(td$class.levels) == 2L, "classif", "multiclassif"))
probs = exportPredictions(model = .model, newdata = .newdata,
full.matrix = ifelse(.learner$method == "average", TRUE, FALSE),
method = .learner$method)
if (.learner$method == "average") {
if (bms.pt == "prob") {
prob = Reduce("+", probs) / length(probs)
if (sm.pt == "prob") {
return(as.matrix(prob))
} else {
return(factor(colnames(prob)[apply(as.matrix(prob), 1L, which.max)], td$class.levels))
}
} else {
probs = as.data.frame(probs)
if (type == "classif" | type == "multiclassif") {
if (sm.pt == "prob") {
return(as.matrix(t(apply(probs, 1L, function(X) (table(factor(X, td$class.levels)) / length(X))))))
} else {
return(factor(apply(probs, 1L, computeMode), td$class.levels))
}
}
if (type == "regr") {
prob = Reduce("+", probs) / length(probs)
return(prob)
}
}
} else {
probs = as.data.frame(probs)
feat = .newdata[, !colnames(.newdata) %in% .model$task.desc$target, drop = FALSE]
if (use.feat) {
predData = cbind(probs, feat)
} else {
predData = probs
}
pred = predict(sm, newdata = predData)$data
if (sm.pt == "prob") {
predProb = as.matrix(subset(pred, select = -response))
colnames(predProb) = levs
return(predProb)
} else {
return(pred$response)
}
}
}
setPredictType.StackedLearner = function(learner, predict.type) {
lrn = setPredictType.Learner(learner, predict.type)
lrn$predict.type = predict.type
if ("super.learner" %in% names(lrn)) lrn$super.learner$predict.type = predict.type
return(lrn)
}
exportPredictions = function(model, newdata, full.matrix = TRUE, method) {
bms = model$learner.model$base.models
probs = vector("list", length(bms))
if (grepl("step", method)) {
for (i in seq_along(bms)) {
pred = predict(bms[[i]], newdata = newdata)
probs[[i]] = getResponse(pred, full.matrix = full.matrix)
addCol = cbind(probs[[i]])
colnames(addCol) = bms[[i]]$learner$id
newdata = cbind(newdata, addCol)
}
} else {
for (i in seq_along(bms)) {
pred = predict(bms[[i]], newdata = newdata)
probs[[i]] = getResponse(pred, full.matrix = full.matrix)
}
}
names(probs) = sapply(bms, function(X) X$learner$id)
return(probs)
}
averageBaseLearners = function(learner, task, probs) {
bls = learner$base.learners
base.models = vector("list", length(bls))
for (i in seq_along(bls)) {
bl = bls[[i]]
model = train(bl, task)
base.models[[i]] = model
}
list(base.models = base.models, super.model = NULL)
}
stackNoCV = function(learner, task, probs) {
type = ifelse(task$task.desc$type == "regr", "regr",
ifelse(length(task$task.desc$class.levels) == 2L, "classif", "multiclassif"))
bls = learner$base.learners
use.feat = learner$use.feat
base.models = probs = vector("list", length(bls))
for (i in seq_along(bls)) {
bl = bls[[i]]
model = train(bl, task)
base.models[[i]] = model
pred = predict(model, task = task)
probs[[i]] = getResponse(pred, full.matrix = FALSE)
}
names(probs) = names(bls)
if (type == "regr" | type == "classif") {
probs = as.data.frame(probs)
} else {
probs = as.data.frame(lapply(probs, function(X) X))
}
probs[[task$task.desc$target]] = getTaskTargets(task)
if (use.feat) {
feat = getTaskData(task)
feat = feat[, !colnames(feat) %in% task$task.desc$target, drop = FALSE]
probs = cbind(probs, feat)
super.task = makeSuperLearnerTask(learner, data = probs,
target = task$task.desc$target)
} else {
super.task = makeSuperLearnerTask(learner, data = probs, target = task$task.desc$target)
}
super.model = train(learner$super.learner, super.task)
list(base.models = base.models, super.model = super.model)
}
stackCV = function(learner, task, probs) {
type = ifelse(task$task.desc$type == "regr", "regr",
ifelse(length(task$task.desc$class.levels) == 2L, "classif", "multiclassif"))
bls = learner$base.learners
use.feat = learner$use.feat
base.models = probs = vector("list", length(bls))
rin = makeResampleInstance(learner$resampling, task = task)
for (i in seq_along(bls)) {
bl = bls[[i]]
r = resample(bl, task, rin, show.info = FALSE)
probs[[i]] = getResponse(r$pred, full.matrix = FALSE)
base.models[[i]] = train(bl, task)
}
names(probs) = names(bls)
if (type == "regr" | type == "classif") {
probs = as.data.frame(probs)
} else {
probs = as.data.frame(lapply(probs, function(X) X))
}
tn = task$task.desc$target
test.inds = unlist(rin$test.inds)
probs[[tn]] = getTaskTargets(task)[test.inds]
probs = probs[order(test.inds), , drop = FALSE]
if (use.feat) {
feat = getTaskData(task)
feat = feat[, !colnames(feat) %in% tn, drop = FALSE]
probs = cbind(probs, feat)
super.task = makeSuperLearnerTask(learner, data = probs, target = tn)
} else {
super.task = makeSuperLearnerTask(learner, data = probs, target = tn)
}
super.model = train(learner$super.learner, super.task)
list(base.models = base.models, super.model = super.model)
}
stepStackNoCV = function(learner, task, probs) {
type = ifelse(task$task.desc$type == "regr", "regr",
ifelse(length(task$task.desc$class.levels) == 2L, "classif", "multiclassif"))
if (type == "multiclassif") stop("Currently, this method does not support multiclass tasks")
bls = learner$base.learners
use.feat = learner$use.feat
base.models = probs = vector("list", length(bls))
for (i in seq_along(bls)) {
bl = bls[[i]]
model = train(bl, task)
base.models[[i]] = model
pred = predict(model, task = task)
probs[[i]] = getResponse(pred, full.matrix = FALSE)
if (is.null(ncol(probs[[i]]))) {
addCol = cbind(probs[[i]])
colnames(addCol) = names(bls)[[i]]
} else {
addCol = probs[[i]]
colnames(addCol) = paste(names(bls)[[i]], colnames(addCol), sep = ".")
}
task = addFeature(task, add = addCol)
}
names(probs) = names(bls)
if (type == "regr" | type == "classif") {
probs = as.data.frame(probs)
} else {
probs = as.data.frame(lapply(probs, function(X) X))
}
probs[[task$task.desc$target]] = getTaskTargets(task)
if (use.feat) {
feat = getTaskData(task)
super.task = makeSuperLearnerTask(learner, data = probs,
target = task$task.desc$target)
} else {
super.task = makeSuperLearnerTask(learner, data = probs, target = task$task.desc$target)
}
super.model = train(learner$super.learner, super.task)
list(base.models = base.models, super.model = super.model)
}
stepStackCV = function(learner, task, probs) {
type = ifelse(task$task.desc$type == "regr", "regr",
ifelse(length(task$task.desc$class.levels) == 2L, "classif", "multiclassif"))
if (type == "multiclassif") stop("Currently, this method does not support multiclass tasks")
bls = learner$base.learners
use.feat = learner$use.feat
base.models = probs = vector("list", length(bls))
rin = makeResampleInstance(learner$resampling, task = task)
for (i in seq_along(bls)) {
bl = bls[[i]]
r = resample(bl, task, rin, show.info = FALSE)
probs[[i]] = getResponse(r$pred, full.matrix = FALSE)
base.models[[i]] = train(bl, task)
if (is.null(ncol(probs[[i]]))) {
addCol = cbind(probs[[i]][order(unlist(rin$test.inds))])
colnames(addCol) = names(bls)[[i]]
} else {
addCol = probs[[i]][order(unlist(rin$test.inds))]
colnames(addCol) = paste(names(bls)[[i]], colnames(addCol), sep = ".")
}
task = addFeature(task, add = addCol)
}
names(probs) = names(bls)
if (type == "regr" | type == "classif") {
probs = as.data.frame(probs)
} else {
probs = as.data.frame(lapply(probs, function(X) X))
}
tn = task$task.desc$target
test.inds = unlist(rin$test.inds)
probs[[tn]] = getTaskTargets(task)[test.inds]
probs = probs[order(test.inds), , drop = FALSE]
if (use.feat) {
feat = getTaskData(task)
super.task = makeSuperLearnerTask(learner, data = probs,
target = task$task.desc$target)
} else {
super.task = makeSuperLearnerTask(learner, data = probs, target = task$task.desc$target)
}
super.model = train(learner$super.learner, super.task)
list(base.models = base.models, super.model = super.model)
}
addFeature = function(task, subset, features, add) {
task = changeData(task, cbind(getTaskData(task, subset, features), add), getTaskCosts(task, subset))
if (!missing(subset)) {
if (task$task.desc$has.blocking) {
task$blocking = task$blocking[subset]
}
if (task$task.desc$has.weights) {
task$weights = task$weights[subset]
}
}
return(task)
}
getResponse = function(pred, full.matrix = TRUE) {
if (pred$predict.type == "prob") {
if (full.matrix) {
predReturn = pred$data[, paste("prob", pred$task.desc$class.levels, sep = ".")]
colnames(predReturn) = pred$task.desc$class.levels
return(predReturn)
} else {
getPredictionProbabilities(pred)
}
} else {
pred$data$response
}
}
makeSuperLearnerTask = function(learner, data, target) {
if (learner$super.learner$type == "classif") {
makeClassifTask(data = data, target = target)
} else {
makeRegrTask(data = data, target = target)
}
} |
frm_em_ic <- function(ll_new, N, ind0, model_results)
{
res <- list( deviance=-2*ll_new, N=N, loglike=ll_new )
NM <- attr( ind0, "NM")
np_models <- rep(0,NM+1)
for (mm in seq(1,NM+1)){
np_models[mm] <- length( model_results[[mm]]$coefficients)
if ( ind0[[mm]]$model=="linreg"){
np_models[mm] <- np_models[mm] + 1 - ind0[[mm]]$is_sigma_fixed
}
}
res$np <- sum( np_models )
res$np_models <- np_models
return(res)
} |
"predictHPdRF" <- function (object, newdata, trace=FALSE) {
if (!inherits(object, "randomForest"))
stop("object not of class randomForest")
if (object$type != "classification" && object$type != "regression")
stop("only objects of type 'classification' and 'regression' are supported")
if (is.null(object$forest)) stop("No forest component in the object")
if (!is.darray(newdata) && !is.dframe(newdata))
stop("newdata should be of type darray or dframe")
nparts <- npartitions(newdata)
nSamples <- NROW(newdata)
if(nSamples == 0) stop("No sample found in the newdata")
if((object$type == "classification") || is.dframe(newdata)) {
have.dframe = TRUE
if(is.darray(newdata)) {
output <- dframe(npartitions=npartitions(newdata), distribution_policy=newdata@distribution_policy)
} else
output <- clone(newdata,ncol = 1)
} else {
have.dframe = FALSE
output <- clone(newdata,ncol = 1)
}
errorList <- dlist(nparts)
foreach(i, 1:nparts, progress=trace, function(object=object, new=splits(newdata,i), out=splits(output,i),
erri=splits(errorList,i), have.dframe=have.dframe, coln=colnames(newdata)){
library(randomForest)
result <- tryCatch({
colnames(new) <- coln
out <- predict(object,new)
if(have.dframe) out <- data.frame(out)
update(out)
}, error = function(err) {
erri <- list(err)
update(erri)
}
)
})
anyError <- getpartition(errorList)
if(length(anyError) > 0)
stop(anyError[[1]])
output
} |
context("Primary Call")
test_that("basic functionality", {
expect_equal(mgsub("hey, ho", pattern = c("hey", "ho"), replacement = c("ho", "hey")), "ho, hey")
expect_equal(mgsub("Production Workers, All Other", c("s$", "s([[:punct:] ])", ", ? All Other$"),
c("", "\\1", "")), "Production Workers")
})
test_that("non-named mgsub and named sub works", {
expect_equal(mgsub("Dopazamine and dopaloramide are fake chemicals.",
c("dopa", "fake"), c("meta", "real"), ignore.case = TRUE),
"metazamine and metaloramide are real chemicals.")
expect_equal(mgsub("Hey, ho", ignore.case = TRUE, c("hey"), c("tomorrow")), "tomorrow, ho")
})
test_that("partially named mgsub inputs works", {
expect_equal(mgsub("Dopazamine and dopaloramide are fake chemicals.",
pattern = c("dopa", "fake"), c("meta", "real"), ignore.case = TRUE),
"metazamine and metaloramide are real chemicals.")
expect_equal(mgsub("Dopazamine and dopaloramide are fake chemicals.",
c("meta", "real"), pattern = c("dopa", "fake"), ignore.case = TRUE),
"metazamine and metaloramide are real chemicals.")
})
test_that("multiple input strings are processed", {
expect_equal(mgsub(c("string", "test"), c("t"), c("p")), c("spring", "pesp"))
expect_equal(mgsub(c("Dopazamine is not the same as Dopachloride and is still fake.",
"dopazamine is undergoing a review by the fake news arm of the Dopazamine government"),
c("[Dd]opa(.*?mine)", "fake"), c("Meta\\1", "real")),
c("Metazamine is not the same as Dopachloride and is still real.",
"Metazamine is undergoing a review by the real news arm of the Metazamine government"))
})
test_that("NAs are correctly handled", {
expect_equal(mgsub(c("string", NA, "test"), c("t"), c("p")), c("spring", NA, "pesp"))
})
test_that("recylce has to be a boolean", {
expect_error(mgsub("hey, ho", c("hey"), c("ho", "hey"), recycle = "yes"))
expect_error(mgsub("hey, ho", c("hey"), c("ho", "hey"), recycle = 1))
})
test_that("non-recycled non-equal length match and replace input fails", {
expect_error(mgsub("hey, ho", c("hey", "ho"), c("yo")))
expect_error(mgsub("hey, ho", c("hey"), c("ho", "yo")))
})
test_that("recycled longer replace than match warns and truncates", {
expect_warning(mgsub("hey, ho", c("hey"), c("ho", "hey"), recycle = TRUE))
})
test_that("recycled replacements works", {
expect_equal(mgsub("hey, ho", c("hey", "ho"), "yo", recycle = TRUE), "yo, yo")
})
test_that("works even with start/end symbols", {
expect_equal(mgsub(c("hi there", "who said hi to me?", "who said hi"),
c("^hi"), c("bye")), c("bye there", "who said hi to me?", "who said hi"))
expect_equal(mgsub(c("hi there", "who said hi to me?", "who said hi"),
c("hi$"), c("bye")), c("hi there", "who said hi to me?", "who said bye"))
})
test_that("all NA fails quickly", {
expect_equal(mgsub(rep(NA, 4), "A", "b"), rep(NA, 4))
expect_equal(mgsub(NA, "A", "b"), NA)
})
context("Worker")
test_that("Letter substitution works", {
expect_equal(unlist(worker("ho ho hoot", c("h", "o"), c("o", "h"))), "oh oh ohht")
expect_equal(unlist(worker("developer", c("e", "p"), c("p", "e"))), "dpvploepr")
})
test_that("Non-equilength matches replace", {
expect_equal(unlist(worker("hey, ho", c("hey", "ho"), c("ho", "hey"))), "ho, hey")
expect_equal(unlist(worker("hi there, buddy boy!", c("there", "buddy"), c("where", "enemy"))), "hi where, enemy boy!")
})
test_that("Substring matches are superceded by longer matches", {
expect_equal(unlist(worker("they don't understand the value of what they seek.",
c("the", "they"), c("a", "we"))),
"we don't understand a value of what we seek.")
})
test_that("Same length matches are safely converted", {
expect_equal(unlist(worker("hey, how are you?", c("hey", "how", "are", "you"),
c("how", "are", "you", "hey"))), "how, are you hey?")
})
test_that("Regular expression matches work", {
expect_equal(unlist(worker("Dopazamine (of dopazamines family) is not the same as Dopachloride and is still fake.",
c("[Dd]opa", "fake"), c("Meta", "real"))),
"Metazamine (of Metazamines family) is not the same as Metachloride and is still real.")
})
test_that("Regular expression substitions work", {
expect_equal(unlist(worker("Dopazamine is not the same as Dopachloride and is still fake.",
c("[Dd]opa(.*?mine)", "fake"), c("Meta\\1", "real"))),
"Metazamine is not the same as Dopachloride and is still real.")
})
test_that("Options passed to sub family work", {
expect_equal(unlist(worker("Dopazamine and dopaloramide are fake chemicals.",
c("dopa", "fake"), c("meta", "real"), ignore.case = TRUE)),
"metazamine and metaloramide are real chemicals.")
expect_equal(unlist(worker("Where are the \\bspaces\\b - not the spaces I want?",
c("\\bspaces\\b", "[Ww]here"), c("boxes", "There"),
fixed = TRUE)), "Where are the boxes - not the spaces I want?")
})
test_that("Priority is based on matched length", {
expect_equal(worker("Dopazamine is a fake chemical", c("do.*ne", "dopazamin"),
c("metazamine", "freakout"), ignore.case = TRUE),
"metazamine is a fake chemical")
})
test_that("all missing patterns works", {
expect_equal(worker("hi there", c("why", "not", "go"), c("a", "b", "c")), "hi there")
})
test_that("some missing patterns work", {
expect_equal(worker("hi there", c("hi", "bye"), c("bye", "hi")), "bye there")
})
test_that("two patterns, only overlap, fast exit", {
expect_equal(worker("the the the", c("the", "th"), c("a", "b")), "a a a")
}) |
horizontal_aes_lookup = c(
ymin = "xmin", ymax = "xmax", yend = "xend", y = "x",
yintercept = "xintercept",
ymin_final = "xmin_final", ymax_final = "xmax_final",
y_scales = "x_scales",
SCALE_Y = "SCALE_X",
lower = "xlower", middle = "xmiddle", upper = "xupper"
)
vertical_aes_lookup = c(
xmin = "ymin", xmax = "ymax", xend = "yend", x = "y",
xintercept = "yintercept",
xmin_final = "ymin_final", xmax_final = "ymax_final",
x_scales = "y_scales",
SCALE_X = "SCALE_Y",
xlower = "lower", xmiddle = "middle", xupper = "upper"
)
flip_aes_lookup = c(horizontal_aes_lookup, vertical_aes_lookup)
flip_aes = function(x, lookup = flip_aes_lookup) {
UseMethod("flip_aes")
}
flip_aes.character = function(x, lookup = flip_aes_lookup) {
flipped = lookup[x]
x[!is.na(flipped)] = flipped[!is.na(flipped)]
x
}
flip_aes.data.frame = function(x, lookup = flip_aes_lookup) {
names(x) = flip_aes(names(x), lookup = lookup)
x
}
flip_aes.function = function(x, lookup = flip_aes_lookup) {
name = force(deparse(substitute(x)))
function(...) {
.Deprecated(name, package = "tidybayes")
flip_aes(x(...), lookup = lookup)
}
} |
twdtwReduceTime = function(x,
y,
weight.fun = NULL,
dist.method = "Euclidean",
step.matrix = symmetric1,
from = NULL,
to = NULL,
by = NULL,
overlap = .5,
fill = 255){
px <- x[,names(x)!="date",drop=FALSE]
tx <- as.Date(x$date)
aligs <- lapply(seq_along(y), function(l){
py <- y[[l]][,names(y[[l]])!="date",drop=FALSE]
ty <- as.Date(y[[l]]$date)
names(py) <- tolower(names(py))
names(px) <- tolower(names(px))
px <- px[,names(py),drop=FALSE]
py <- py[,names(px),drop=FALSE]
cm <- proxy::dist(py, px, method = dist.method)
if(!is.null(weight.fun)){
doyy <- as.numeric(format(ty, "%j"))
doyx <- as.numeric(format(tx, "%j"))
w <- .g(proxy::dist(doyy, doyx, method = dist.method))
cm <- weight.fun(cm, w)
}
internals <- .computecost(cm = cm, step.matrix = step.matrix)
a <- internals$startingMatrix[internals$N,1:internals$M]
d <- internals$costMatrix[internals$N,1:internals$M]
candidates <- data.frame(a, d)
candidates <- candidates[candidates$d==ave(candidates$d, candidates$a, FUN=min),,drop=FALSE]
candidates$b <- as.numeric(row.names(candidates))
I <- order(candidates$d)
if(length(I)<1) return(NULL)
res <- data.frame(
Alig.N = I,
from = tx[candidates$a[I]],
to = tx[candidates$b[I]],
distance = candidates$d[I],
label = l
)
return(res)
})
aligs <- data.table::rbindlist(aligs)
breaks <- seq(as.Date(from), as.Date(to), by = by)
best_matches <- .bestmatches(
x = list(aligs[order(aligs$from, aligs$from),,drop=FALSE]),
m = length(y),
n = length(breaks) - 1,
levels = seq_along(y),
breaks = breaks,
overlap = overlap,
fill = 99999)$IM
out <- as.data.frame(best_matches[,c(1,3),drop=FALSE])
names(out) <- c("label", "Alig.N")
out$from <- breaks[-length(breaks)]
out$to <- breaks[-1]
out <- merge(out, aligs[, c("label", "Alig.N", "distance"),drop=FALSE], by.x = c("label", "Alig.N"), by.y = c("label", "Alig.N"), all.x = TRUE)
out <- out[order(out$from), names(out)!="Alig.N"]
if(any(out$label==0)) out[out$label==0,]$label <- fill
return(out)
} |
`anova.ccanull` <-
function(object, ...)
{
table <- matrix(0, nrow = 2, ncol = 4)
if (object$CA$rank == 0) {
table[1,] <- c(object$CCA$qrank, object$CCA$tot.chi, NA, NA)
table[2,] <- c(0,0,NA,NA)
}
else {
table[1,] <- c(0,0,0,NA)
table[2,] <- c(nrow(object$CA$u) - 1, object$CA$tot.chi, NA, NA)
}
rownames(table) <- c("Model", "Residual")
if (inherits(object, c("capscale", "dbrda")) && object$adjust == 1)
varname <- "SumOfSqs"
else if (inherits(object, "rda"))
varname <- "Variance"
else
varname <- "ChiSquare"
colnames(table) <- c("Df", varname, "F", "Pr(>F)")
table <- as.data.frame(table)
if (object$CA$rank == 0)
head <- "No residual component\n"
else if (is.null(object$CCA) || object$CCA$rank == 0)
head <- "No constrained component\n"
else
head <- c("!!!!! ERROR !!!!!\n")
head <- c(head, paste("Model:", c(object$call)))
if (exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
seed <- get(".Random.seed", envir = .GlobalEnv, inherits = FALSE)
else
seed <- NULL
structure(table, heading = head, Random.seed = seed,
class = c("anova.cca", "anova", "data.frame"))
} |
source("inst/fannie_mae_10pct/0_setup.r")
library(disk.frame)
library(keras)
acqall_dev = disk.frame(file.path(outpath, "appl_mdl_data_sampled"))
stream_shglm <- function(df) {
i = 0
is = sample(nchunks(df), replace = F)
function(reset = F) {
if(reset) {
print("you've reset")
i <<- 0
} else {
i <<- i + 1
if (i > nchunks(df)) {
return(NULL)
}
print(glue::glue("{i}/{nchunks(df)}"))
return(get_chunk(df, is[i]))
}
}
}
acqall_dev1 = acqall_dev %>% delayed(~{
.x[,oltv_band := cut(oltv, c(-Inf, 60,80, Inf))]
.x[,scr_band := addNA(cut(cscore_b, c(-Inf, 700,716,725,742,748,766,794, Inf)), ifany=F)]
.x
})
if(F) {
aa = acqall_dev1 %>% collect
glm(default_next_12m ~ oltv_band + scr_band - 1, data=aa)
}
head(acqall_dev1)
build_model <- function() {
model <- keras_model_sequential() %>%
layer_dense(units = 2, activation = 'softmax')
model %>% compile(
loss = "categorical_crossentropy",
optimizer = 'sgd'
)
model
}
model = build_model()
ol = levels(get_chunk(acqall_dev1,1)[,oltv_band])
dl = levels(get_chunk(acqall_dev1,1)[,scr_band])
kk <- function() {
j = 0
done = F
ii = 0
while(!done) {
j <- j + 1
si = sample(nchunks(acqall_dev1), nchunks(acqall_dev1)*0.3)
osi = setdiff(1:nchunks(acqall_dev1), si)
system.time(a <- map_dfr(si, ~{
ii <- ii + 1
i = .x
if(ii %% 20 == 0) print(glue::glue("{j}:{ii} {Sys.time()}"))
a = get_chunk(acqall_dev1, i)
a1 =
cbind(
a[,keras::to_categorical(as.integer(oltv_band) - 1)]
)
at = a[,default_next_12m*1]
Y_train = keras::to_categorical(at)
hist = model %>% fit(
a1,
Y_train,
epochs = 1,
validation_split = 0.2,
verbose = 0
)
gw = get_weights(model)
gwdt = as.data.table(gw[1])
setnames(gwdt, names(gwdt), c("non_default", "default"))
gwdt$i =i
gwdt$var = c(
rep("oltv_band", length(ol))
)
gwdt$band = c(ol,dl
)
gwdt
}))
some_chunks <- map(osi, ~{
i = .x
a = get_chunk(acqall_dev1, i)
a1 =
cbind(
a[,keras::to_categorical(as.integer(oltv_band) -1)]
)
a1
}) %>% reduce(rbind)
outcomes <- map(osi, ~{
i = .x
a = get_chunk(acqall_dev, i, keep=c("default_next_12m"))
a[,default_next_12m]
}) %>% unlist
auc = auc(outcomes, predict(model, some_chunks)[,2])
p = predict(model, diag(
length(ol)
))[,2]
a_b = log(p/(1-p))
scalar = 20/log(2)
intercept = 20*log(536870912/15)/log(2)
a = mean(a_b)
b = a_b - a
done <- length(unique(sign(diff(b)))) == 1
scrs = data.table(base_scr = round(a*scalar+intercept,0), scr = round(-b*scalar,0))
scrs$var = c(
rep("oltv_band", length(ol))
)
scrs$band = c(ol
, dl
)
scrs = scrs[band != "bias"]
scrs = scrs[,.(var, band, scr, base_scr)]
print(glue::glue("AUC: {auc}"))
print(scrs)
}
scrs
}
pt = proc.time()
scrs = kk()
timetaken(pt)
View(scrs) |
knitr::opts_chunk$set(
comment = "
collapse = TRUE
)
options(
rlang_trace_top_env = globalenv(),
rlang_backtrace_on_error = "full"
)
options(
digits = 3,
width = 68,
str = strOptions(strict.width = "cut"),
crayon.enabled = TRUE
)
knitr::opts_chunk$set(width = 68)
if (knitr::is_latex_output()) {
options(crayon.enabled = FALSE)
options(cli.unicode = TRUE)
}
registerS3method("wrap", "error", envir = asNamespace("knitr"),
function(x, options) {
msg <- conditionMessage(x)
call <- conditionCall(x)
if (is.null(call)) {
msg <- paste0("Error: ", msg)
} else {
msg <- paste0("Error in ", deparse(call)[[1]], ": ", msg)
}
msg <- error_wrap(msg)
knitr:::msg_wrap(msg, "error", options)
}
)
error_wrap <- function(x, width = getOption("width")) {
lines <- strsplit(x, "\n", fixed = TRUE)[[1]]
paste(strwrap(lines, width = width), collapse = "\n")
}
knitr::knit_hooks$set(chunk_envvar = function(before, options, envir) {
envvar <- options$chunk_envvar
if (before && !is.null(envvar)) {
old_envvar <<- Sys.getenv(names(envvar), names = TRUE, unset = NA)
do.call("Sys.setenv", as.list(envvar))
} else {
do.call("Sys.setenv", as.list(old_envvar))
}
})
check_quietly <- purrr::quietly(devtools::check)
install_quietly <- purrr::quietly(devtools::install)
shhh_check <- function(..., quiet = TRUE) {
out <- check_quietly(..., quiet = quiet)
out$result
}
pretty_install <- function(...) {
withr::local_options(list(crayon.enabled = FALSE))
out <- install_quietly(...)
output <- strsplit(out$output, split = "\n")[[1]]
output <- grep("^(\\s*|[-|])$", output, value = TRUE, invert = TRUE)
c(output, out$messages)
} |
summary.lba.ls <- function(object,
digits=2L,
...){
cat('|-------------------------------------------|\n')
cat('| COMPOSITION DATA MATRIX |\n')
cat('|-------------------------------------------|\n')
print(round(object[[1]],
digits=digits))
cat('\n')
cat('|-------------------------------------------|\n')
cat('| EXPECTED BUDGET |\n')
cat('|-------------------------------------------|\n')
print(round(object[[2]],
digits=digits))
cat('\n')
cat('|-------------------------------------------|\n')
cat('| RESIDUAL MATRIX |\n')
cat('|-------------------------------------------|\n')
print(round(object[[3]],
digits=digits))
cat('\n')
cat('|-------------------------------------------|\n')
cat('| UNIDENTIFIED MIXING PARAMETERS |\n')
cat('|-------------------------------------------|\n')
print(round(object[[4]],
digits=digits))
cat('\n')
cat('|-------------------------------------------|\n')
cat('| UNIDENTIFIED LATENT BUDGETS |\n')
cat('|-------------------------------------------|\n')
print(round(object[[5]],
digits=digits))
cat('\n')
if(object$what == 'outer'){
cat('|-------------------------------------------|\n')
cat('| OUTER EXTREME MIXING PARAMETERS |\n')
cat('|-------------------------------------------|\n')
print(round(object[[6]],
digits=digits))
cat('\n')
cat('|-------------------------------------------|\n')
cat('| OUTER EXTREME LATENT BUDGETS |\n')
cat('|-------------------------------------------|\n')
print(round(object[[7]],
digits=digits))
cat('\n')
} else {
cat('|-------------------------------------------|\n')
cat('| INNER EXTREME MIXING PARAMETERS |\n')
cat('|-------------------------------------------|\n')
print(round(object[[6]],
digits=digits))
cat('\n')
cat('|-------------------------------------------|\n')
cat('| INNER EXTREME LATENT BUDGETS |\n')
cat('|-------------------------------------------|\n')
print(round(object[[7]],
digits=digits))
cat('\n')
}
cat('|-------------------------------------------|\n')
cat('| RESCALED LATENT BUDGET |\n')
cat('|-------------------------------------------|\n')
print(round(object[[8]],
digits=digits))
cat('\n')
cat('|-------------------------------------------|\n')
cat('| BUDGET PROPORTIONS |\n')
cat('|-------------------------------------------|\n')
print(round(object[[9]],
digits=digits))
cat('\n')
func <- formatC(round(object[[10]],
digits=digits),
format='f',
digits=digits)
cat('|-------------------------------------------|\n')
cat('| VALUE OF THE LS FUNCTION:',
func,
paste(rep(' ',(45-(29+3+nchar(func)))),collapse=''), '|\n')
cat('| NUMBER OF UNIDENTIFIED ITERACTIONS:',round(object[[11]],digits=digits),
paste(rep(' ',(45-(41+nchar(object[[11]])))),collapse=''),'|\n')
if(ncol(object[[6]])> 2){
cat('| NUMBER OF IDENTIFIED ITERACTIONS:',round(object[[12]],digits=digits),
paste(rep(' ',(45-(38+nchar(object[[12]])))),collapse=''),'|\n')
}
cat('|-------------------------------------------|\n')
} |
classify_noise = function(las, algorithm)
{
UseMethod("classify_noise", las)
}
classify_noise.LAS = function(las, algorithm)
{
assert_is_algorithm(algorithm)
assert_is_algorithm_out(algorithm)
lidR.context <- "classify_noise"
idx <- algorithm(las)
if ("Classification" %in% names(las@data))
{
nnoise <- fast_countequal(las@data[["Classification"]], LASNOISE)
if (nnoise > 0)
{
message(glue::glue("Original dataset already contains {nnoise} noise points. These points were reclassified as 'unclassified' before performing a new noise classification."))
new_classes <- las@data[["Classification"]]
new_classes[new_classes == LASNOISE] <- LASUNCLASSIFIED
}
else
{
new_classes <- las@data[["Classification"]]
}
}
else
new_classes <- rep(LASUNCLASSIFIED, npoints(las))
new_classes[idx] <- LASNOISE
las@data[["Classification"]] <- new_classes
return(las)
}
classify_noise.LAScluster = function(las, algorithm)
{
buffer <- NULL
x <- readLAS(las)
if (is.empty(x)) return(NULL)
x <- classify_noise(x, algorithm)
x <- filter_poi(x, buffer == LIDRNOBUFFER)
return(x)
}
classify_noise.LAScatalog = function(las, algorithm)
{
opt_select(las) <- "*"
options <- list(need_buffer = TRUE, drop_null = TRUE, need_output_file = TRUE, automerge = TRUE)
output <- catalog_apply(las, classify_noise, algorithm = algorithm, .options = options)
return(output)
} |
e2e_extract_start <- function(model, results,csv.output=TRUE) {
oo <- options()
on.exit(options(oo))
pkg.env$csv.output <- csv.output
setup <- elt(model, "setup")
read.only <- elt(setup, "read.only")
model.path <- elt(setup, "model.path")
resultsdir <- elt(model, "setup", "resultsdir")
model.ident <- elt(model, "setup", "model.ident")
output<-results$output
endstate <- data.frame(rep(0,77))
for(jj in 2:78) {
endstate[jj-1, 1] <- output[nrow(output), jj]
}
rownames(endstate)<-names(output[,2:78])
if (read.only & csv.output==TRUE) {
message("Warning: cannot write model end-state back to the model input folders - model is read-only")
message("Warning: to fix this, make a copy of the model using e2e_copy() into your own workspace.")
message("Warning: writing the model end-state file to the current results folder instead.")
}
if (read.only) {
filename = csvname(resultsdir, "initial_values", model.ident)
} else {
parameterpath <- makepath(model.path, PARAMETERS_DIR)
filename = csvname(parameterpath, "initial_values", model.ident)
}
writecsv(endstate, filename, header=FALSE)
names(endstate)<-""
return(endstate)
} |
qprior <- function(p,
prior_par = list(mu_psi = 0, sigma_psi = 1,
mu_beta = 0, sigma_beta = 1),
what = "logor",
hypothesis = "H1") {
if (any(p < 0) || any(p > 1)) {
stop('p needs to be between 0 and one', call. = FALSE)
}
if ( ! is.list(prior_par) ||
! all(c("mu_psi", "sigma_psi", "mu_beta", "sigma_beta") %in%
names(prior_par))) {
stop('prior_par needs to be a named list with elements
"mu_psi", "sigma_psi", "mu_beta", and "sigma_beta',
call. = FALSE)
}
if (prior_par$sigma_psi <= 0 || prior_par$sigma_beta <= 0) {
stop('sigma_psi and sigma_beta need to be larger than 0',
call. = FALSE)
}
if ( ! (what %in% c("logor", "or", "rrisk", "arisk"))) {
stop('what needs to be either "logor", "or", "rrisk", or "arisk"',
call. = FALSE)
}
if ( ! (hypothesis %in% c("H1", "H+", "H-"))) {
stop('hypothesis needs to be either "H1", "H+", or "H-"',
call. = FALSE)
}
if (what == "logor") {
bounds <- switch(hypothesis,
"H1" = c(-Inf, Inf),
"H+" = c(0, Inf),
"H-" = c(-Inf, 0))
start_value <- switch(hypothesis,
"H1" = 0,
"H+" = .5,
"H-" = -.5)
} else if (what == "or") {
bounds <- switch(hypothesis,
"H1" = c(0, Inf),
"H+" = c(exp(0), Inf),
"H-" = c(0, exp(0)))
start_value <- switch(hypothesis,
"H1" = 1,
"H+" = 1.5,
"H-" = .5)
} else if (what == "rrisk") {
bounds <- switch(hypothesis,
"H1" = c(0, Inf),
"H+" = c(1, Inf),
"H-" = c(0, 1))
start_value <- switch(hypothesis,
"H1" = 1,
"H+" = 1.5,
"H-" = .5)
} else if (what == "arisk") {
bounds <- switch(hypothesis,
"H1" = c(-1, 1),
"H+" = c(0, 1),
"H-" = c(-1, 0))
start_value <- switch(hypothesis,
"H1" = 0,
"H+" = .5,
"H-" = -.5)
}
if (what == "logor") {
out <- qtruncnorm(p, a = bounds[1], b = bounds[2],
mean = prior_par$mu_psi,
sd = prior_par$sigma_psi)
} else {
out <- vapply(p, FUN = function(x,
start_value,
bounds,
prior_par,
what,
hypothesis) {
nlminb(start = start_value, objective = function(q,
p,
prior_par,
what,
hypothesis) {
(pprior(q, prior_par = prior_par, what = what,
hypothesis = hypothesis) - p)^2
}, lower = bounds[1], upper = bounds[2], p = x, prior_par = prior_par,
what = what, hypothesis = hypothesis)$par
}, FUN.VALUE = 0, start_value = start_value, bounds = bounds,
prior_par = prior_par, what = what, hypothesis = hypothesis)
}
return(out)
} |
t.test.cluster <- function(y, cluster, group, conf.int=.95)
{
group <- as.factor(group)
cluster <- as.factor(cluster)
s <- !(is.na(y)|is.na(cluster)|is.na(group))
y <- y[s];
cluster <- cluster[s];
group <- group[s]
n <- length(y)
if(n<2)
stop("n<2")
gr <- levels(group)
if(length(gr)!=2)
stop("must have exactly two treatment groups")
n <- table(group)
nc <- tapply(cluster, group, function(x)length(unique(x)))
bar <- tapply(y, group, mean)
u <- unclass(group)
y1 <- y[u==1];
y2 <- y[u==2]
c1 <- factor(cluster[u==1]);
c2 <- factor(cluster[u==2])
b1 <- tapply(y1, c1, mean);
b2 <- tapply(y2, c2, mean)
m1 <- table(c1);
m2 <- table(c2)
if(any(names(m1)!=names(b1)))
stop("logic error 1")
if(any(names(m2)!=names(b2)))
stop("logic error 2")
if(any(m2 < 2))
stop(paste('The following clusters contain only one observation:',
paste(names(m2[m2 < 2]), collapse=' ')))
M1 <- mean(y1);
M2 <- mean(y2)
ssc1 <- sum(m1*((b1-M1)^2));
ssc2 <- sum(m2*((b2-M2)^2))
if(nc[1]!=length(m1))
stop("logic error 3")
if(nc[2]!=length(m2))
stop("logic error 4")
df.msc <- sum(nc)-2
msc <- (ssc1+ssc2)/df.msc
v1 <- tapply(y1,c1,var);
v2 <- tapply(y2,c2,var)
ssw1 <- sum((m1-1)*v1);
ssw2 <- sum((m2-1)*v2)
df.mse <- sum(n)-sum(nc)
mse <- (ssw1+ssw2)/df.mse
na <- (sum(n)-(sum(m1^2)/n[1]+sum(m2^2)/n[2]))/(sum(nc)-1)
rho <- (msc-mse)/(msc+(na-1)*mse)
r <- max(rho, 0)
C1 <- sum(m1*(1+(m1-1)*r))/n[1]
C2 <- sum(m2*(1+(m2-1)*r))/n[2]
v <- mse*(C1/n[1]+C2/n[2])
v.unadj <- mse*(1/n[1]+1/n[2])
de <- v/v.unadj
dif <- diff(bar)
se <- sqrt(v)
zcrit <- qnorm((1+conf.int)/2)
cl <- c(dif-zcrit*se, dif+zcrit*se)
z <- dif/se
P <- 2*pnorm(-abs(z))
stats <-
matrix(NA, nrow=20, ncol=2,
dimnames=list(c("N","Clusters","Mean",
"SS among clusters within groups",
"SS within clusters within groups",
"MS among clusters within groups","d.f.",
"MS within clusters within groups","d.f.",
"Na","Intracluster correlation",
"Variance Correction Factor","Variance of effect",
"Variance without cluster adjustment","Design Effect",
"Effect (Difference in Means)",
"S.E. of Effect",paste(format(conf.int),"Confidence limits"),
"Z Statistic","2-sided P Value"), gr))
stats[1,] <- n
stats[2,] <- nc
stats[3,] <- bar
stats[4,] <- c(ssc1, ssc2)
stats[5,] <- c(ssw1, ssw2)
stats[6,1] <- msc
stats[7,1] <- df.msc
stats[8,1] <- mse
stats[9,1] <- df.mse
stats[10,1] <- na
stats[11,1] <- rho
stats[12,] <- c(C1, C2)
stats[13,1] <- v
stats[14,1] <- v.unadj
stats[15,1] <- de
stats[16,1] <- dif
stats[17,1] <- se
stats[18,] <- cl
stats[19,1] <- z
stats[20,1] <- P
attr(stats,'class') <- "t.test.cluster"
stats
}
print.t.test.cluster <- function(x, digits, ...)
{
if(!missing(digits)) {
oldopt <- options('digits')
options(digits=digits)
on.exit(options(oldopt))
}
cstats <- t(apply(x,1,format))
attr(cstats,'class') <- NULL
cstats[is.na(x)] <- ""
invisible(print(cstats, quote=FALSE))
} |
context("Wind maps")
test_that("idw360", {
library(sp)
df <- structure(list(date = structure(c(17472, 17472, 17472, 17472, 17472),
class = "Date"),
hour = c(15, 15, 15, 15, 15),
station_code = c("ACO", "AJM", "AJU", "BJU", "CHO"),
value = c(36, 6, 7, 319, 214),
lat = c(19.635501, 19.272161, 19.154286,
19.370464, 19.266948),
lon = c(-98.912003, -99.207744, -99.162611,
-99.159596, -98.886088)),
.Names = c("date", "hour", "station_code",
"value", "lat", "lon"),
row.names = c(NA, -5L),
class = c("data.frame"))
station_loc <- df[, c("lat", "lon", "value")]
coordinates(station_loc) <- ~lon + lat
crs_string <- "+proj=longlat +ellps=WGS84 +no_defs +towgs84=0,0,0"
proj4string(station_loc) <- sp::CRS(crs_string)
pixels <- 10
mxc_grid <- expand.grid(x = seq( (min(coordinates(station_loc)[, 1]) - .1),
(max(coordinates(station_loc)[, 1]) + .1),
length.out = pixels),
y = seq( (min(coordinates(station_loc)[, 2]) - .1),
(max(coordinates(station_loc)[, 2]) + .1),
length.out = pixels))
mxc_grid_pts <- SpatialPixels(SpatialPoints( (mxc_grid)))
mxc_grid_pts <- as(mxc_grid_pts, "SpatialGrid")
proj4string(mxc_grid_pts) <- CRS(crs_string)
idw <- idw360(station_loc$value, station_loc, mxc_grid_pts)
expect_type(idw$pred, "double")
expect_equal(length(idw$pred), 10 * 10)
expect_true(all(idw$pred <= 360))
expect_true(all(idw$pred >= 0))
locations <- data.frame(lon = c(1, 2), lat = c(1, 2))
coordinates(locations) <- ~lon + lat
values <- c(55, 355)
grid <- data.frame(lon = c(1, 2, 1, 2), lat = c(1, 2, 2, 1))
coordinates(grid) <- ~lon + lat
idw <- idw360(values, locations, grid)
expect_equal(idw, data.frame(pred = c(55, 355, 25, 25)))
}) |
esomTrain <- function(Data, Lines=50, Columns=82, Epochs=24, Toroid=TRUE, NeighbourhoodFunction="gauss", StartLearningRate=0.5, EndLearningRate=0.1,
StartRadius=24, EndRadius=1, NeighbourhoodCooling="linear", LearningRateCooling="linear", ShinyProgress = NULL,
ShiftToHighestDensity = TRUE, InitMethod="uni_min_max", Key = NULL, UmatrixForEsom=T){
distance = "euclidC"
grid <- esomInit(Data,Lines,Columns, InitMethod)
x <- esomTrainOnline(grid, Data, StartRadius, EndRadius,
Columns,Lines,
StartLearningRate, EndLearningRate,
NeighbourhoodFunction, Toroid,
Epochs, NeighbourhoodCooling,
LearningRateCooling, ShinyProgress = ShinyProgress)
if(!is.null(ShinyProgress))
ShinyProgress$set(message = "Generating Umatrix", value = 0)
Weights = x
if(ShiftToHighestDensity & Toroid){
print("shift to point of highest density")
Radius = mean(dist(Data))
pmatrix = pmatrixForEsom(Data, Weights=Weights, Lines=Lines, Columns=Columns, Radius = Radius)
pos <- which(pmatrix == max(pmatrix), arr.ind=T)[1,]
Weights = shiftedNeurons(Weights, Lines, Columns, -pos[1], -pos[2])
x <- Weights
}
projection <- bestmatchesC(x, Data, Columns)
if(!is.null(Key)) projection = cbind(Key, projection)
else{
warning("No Keys given. 1:nrow(Data) will be used as keys for Bestmatches.")
projection = cbind(1:nrow(projection), projection)
}
Umatrix = NULL
if(UmatrixForEsom)
Umatrix = umatrixForEsom(x, Lines, Columns, Toroid)
list(BestMatches = projection, Weights = x, Lines = Lines, Columns = Columns,
Toroid = Toroid, Umatrix = Umatrix)
} |
PEMM_fun <-
function(X, phi, lambda=NULL, K=NULL, pos=NULL, tol=0.001, maxIter=100){
get.llik <- function(X, mu, S, phi, phi0){
if (length(which(X<0))==0) pos<- TRUE else pos<- FALSE
llik <- 0
for (j in 1:nrow(X)){
Xi <- X[j,]
idxi <- which(!is.na(Xi))
Xi <- Xi[idxi]
Si <- as.matrix(S[idxi,idxi])
Sii <- my.solve(Si)
oo <- - log(det(Si)) -(Xi-mu[idxi])%*%Sii%*%(Xi-mu[idxi])
oo <- 0.5*oo
nmis <- length(X[j,])-length(idxi)
if (phi==0){
vv <- 0
} else {
if (pos){
vv1=sum(log(1-exp(-phi0-phi*Xi)))
vv2 <- -phi0*nmis
if (nmis==0){
vv3 <- 0
} else {
Smi <- as.matrix(S[-idxi,-idxi])
mu.mis <- mu[-idxi]+matrix(S[-idxi,idxi],nrow=nmis)%*%Sii%*%(Xi-mu[idxi])
S.mis <- Smi - matrix(S[-idxi,idxi],nrow=nmis)%*%Sii%*%matrix(S[idxi,-idxi],ncol=nmis)
vv3<- -sum(mu.mis)*phi+0.5*sum(S.mis)*phi^2
}
vv <- vv1+vv2+vv3
} else {
vv1=sum(log(1-exp(-phi0-phi*Xi^2)))
vv2 <- -phi0*nmis
if (nmis==0){
vv3 <- 0
} else {
Smi <- as.matrix(S[-idxi,-idxi])
mu.mis <- mu[-idxi]+matrix(S[-idxi,idxi],nrow=nmis)%*%Sii%*%(Xi-mu[idxi])
S.mis <- Smi - matrix(S[-idxi,idxi],nrow=nmis)%*%Sii%*%matrix(S[idxi,-idxi],ncol=nmis)
Smis.inv <- my.solve(S.mis)
Smii <- Smis.inv
diag(Smis.inv) <- diag(Smis.inv)+2*phi
A <- my.solve(Smis.inv)
vv3<- 0.5*(log(det(A)) -log(det(S.mis)) + matrix(mu.mis,nrow=1)%*%(Smii%*%A%*%Smii-Smii)%*%matrix(mu.mis,ncol=1) )
}
vv <- vv1+vv2+vv3
}
}
llik <- llik+ oo+vv
}
pllik <- llik
return(llik)
}
my.solve <- function(X){
if (!is.matrix(X)) X <- matrix(X, nrow=sqrt(length(X)))
ss <- svd(X)
Xinv <- ss$u%*%diag(1/ss$d, nrow=nrow(X), ncol=nrow(X))%*%t(ss$v)
return(Xinv)
}
gets1 <- function(sigma, phi){
p <- nrow(sigma)
s1 <- my.solve(sigma)+diag(2*phi, p, p)
return(s1)
}
get.bg <- function(sigma, mu, phi){
p <- length(mu)
s1 <- gets1(sigma, phi)
s1inv <- my.solve(s1)
ccen <- my.solve(sigma)
A <- s1inv%*%ccen
beta <- A%*%mu
gamma <- s1inv
return(list(beta=beta, gamma=gamma))
}
find.lambda <- function(Sigma,N,p,K, delta=delta){
ffL <- function(lambda, Sigma, N, p, K){
Sigma.new <- N/(N+K)*Sigma*(N-1)/N + lambda/(N+K)*diag(1, p, p)
return(abs(min(as.double(eigen(N*Sigma.new)$value))))
}
Sigma2 = Sigma
while (!is.double(eigen(N*Sigma2)$value)){
delta = delta+1
Sigma2 = N/(N+K)*Sigma*(N-1)/N + delta/(N+K)*diag(1, p, p)
}
Sigma=Sigma2
oo <- -min(as.double(eigen(N*Sigma)$value))
if (oo>0){
lambda <- optimize(ffL, lower=0,upper=oo, Sigma=Sigma, N=N, p=p, K=K)$minimum+delta
} else {
lambda <- delta
}
return(lambda)
}
if (is.null(pos)){
if (length(which(X<0))==0) pos<- TRUE else pos<- FALSE
}
if (phi==0) {
phi0 <- -log(mean(is.na(X)))
} else {
phi0 <- 0
}
p <- ncol(X)
N <- nrow(X)
if (is.null(K)){
K=5
}
X.hat <- X
mu.new <- matrix(colMeans(X,na.rm=T),ncol=1)
Sigma.new <- cov(X, use="pairwise.complete")
Sigma.new[is.na(Sigma.new)] <- 0
diff <- 999
iter <- 0
if (is.null(lambda)) {
delta=5
Lambda <- find.lambda(Sigma.new,N=N,p=p,K=K, delta=delta)
} else {
Lambda <- lambda
}
Sigma.new <- N/(N+K)*Sigma.new*(N-1)/N + Lambda/(N+K)*diag(1, p, p)
illik <- 999
while(iter<maxIter & diff>tol){
iter <- iter+1
mu <- mu.new
Sigma <- Sigma.new
cov.add <- matrix(0, p, p)
for (i in 1:nrow(X)){
ii <- which(is.na(X[i,]))
if (length(ii)>=1){
Soo <- as.matrix(Sigma[-ii,-ii])
pi <- nrow(Soo)
mu.mis <- mu[ii]+Sigma[ii,-ii]%*%my.solve(Soo)%*%(X[i,-ii]-mu[-ii])
mu.mis <- matrix(mu.mis,ncol=1)
cov.mis <- Sigma[ii,ii] - Sigma[ii,-ii]%*%my.solve(Soo)%*%Sigma[-ii, ii]
if (phi!=0 & pos==TRUE){
X.hat[i,ii]<- mu.mis - phi*cov.mis%*%matrix(1,nrow=length(mu.mis),ncol=1)
cov.ii <- cov.mis
} else if (phi!=0 & pos==FALSE){
oo <- get.bg(cov.mis, mu.mis, phi)
X.hat[i,ii] <- oo$beta
cov.ii <- oo$gamma
} else if (phi==0) {
X.hat[i,ii] <- mu.mis
cov.ii <- cov.mis
}
cov.add[ii,ii] <- cov.add[ii,ii] + cov.ii
}
}
mu.new <- colMeans(X.hat)
Sig <- cov(X.hat)*(N-1)/N+cov.add/N
if (is.null(lambda)) {
Lambda <- find.lambda(Sig,N=N,p=p,K=K,delta=delta)
} else {
Lambda <- lambda
}
Sigma.new <- N/(N+K)*(Sig) + Lambda/(N+K)*diag(1, p, p)
illik <- c(illik, get.llik(X, mu.new, Sigma.new,phi=phi,phi0=phi0) - sum(diag(Lambda*my.solve(Sigma.new))) -K*log(det(Sigma.new)) )
diff <- abs(illik[iter+1]-illik[iter])/abs(illik[iter])
if (is.na(diff)) {
diff <- 0
warning("The algorithm does not converge!")
}
}
if (iter==maxIter) warning("The algorithm does not converge!")
return(list(mu=mu, Sigma=Sigma, Xhat=X.hat))
} |
cramer.folder <- function(xf) {
x = as.data.frame(xf, stringsAsFactors = TRUE)
group = x[, "group"]
x = x[, -ncol(x)]
return(by(x, INDICES=group, FUN=cramer.data.frame, check = FALSE))
}
tschuprow.folder <- function(xf) {
x = as.data.frame(xf, stringsAsFactors = TRUE)
group = x[, "group"]
x = x[, -ncol(x)]
return(by(x, INDICES=group, FUN=cramer.data.frame, check = FALSE))
}
pearson.folder <- function(xf) {
x = as.data.frame(xf, stringsAsFactors = TRUE)
group = x[, "group"]
x = x[, -ncol(x)]
return(by(x, INDICES=group, FUN=pearson.data.frame, check = FALSE))
}
phi.folder <- function(xf) {
x = as.data.frame(xf, stringsAsFactors = TRUE)
group = x[, "group"]
x = x[, -ncol(x)]
return(by(x, INDICES=group, FUN=pearson.data.frame, check = FALSE))
} |
structure(list(url = "https://api.twitter.com/2/tweets?tweet.fields=attachments%2Cauthor_id%2Cconversation_id%2Ccreated_at%2Centities%2Cgeo%2Cid%2Cin_reply_to_user_id%2Clang%2Cpublic_metrics%2Cpossibly_sensitive%2Creferenced_tweets%2Csource%2Ctext%2Cwithheld&user.fields=created_at%2Cdescription%2Centities%2Cid%2Clocation%2Cname%2Cpinned_tweet_id%2Cprofile_image_url%2Cprotected%2Cpublic_metrics%2Curl%2Cusername%2Cverified%2Cwithheld&expansions=author_id%2Centities.mentions.username%2Cgeo.place_id%2Cin_reply_to_user_id%2Creferenced_tweets.id%2Creferenced_tweets.id.author_id&place.fields=contained_within%2Ccountry%2Ccountry_code%2Cfull_name%2Cgeo%2Cid%2Cname%2Cplace_type&ids=1266813392293150721%2C1266813064185352193%2C1266812742440280064%2C1266812628816535553%2C1266811890258325505%2C1266811649949937670%2C1266811517787348993%2C1266811399071768579%2C1266810962985848833",
status_code = 200L, headers = structure(list(date = "Tue, 21 Dec 2021 13:36:57 UTC",
server = "tsa_o", `api-version` = "2.32", `content-type` = "application/json; charset=utf-8",
`cache-control` = "no-cache, no-store, max-age=0", `content-length` = "7827",
`x-access-level` = "read", `x-frame-options` = "SAMEORIGIN",
`content-encoding` = "gzip", `x-xss-protection` = "0",
`x-rate-limit-limit` = "300", `x-rate-limit-reset` = "1640094716",
`content-disposition` = "attachment; filename=json.json",
`x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "298",
`strict-transport-security` = "max-age=631138519", `x-response-time` = "356",
`x-connection-hash` = "b914cde170481ca75c4b9b9291d6d4593fbb9c37fd3a37f09fefae48ca90f4e7"), class = c("insensitive",
"list")), all_headers = list(list(status = 200L, version = "HTTP/2",
headers = structure(list(date = "Tue, 21 Dec 2021 13:36:57 UTC",
server = "tsa_o", `api-version` = "2.32", `content-type` = "application/json; charset=utf-8",
`cache-control` = "no-cache, no-store, max-age=0",
`content-length` = "7827", `x-access-level` = "read",
`x-frame-options` = "SAMEORIGIN", `content-encoding` = "gzip",
`x-xss-protection` = "0", `x-rate-limit-limit` = "300",
`x-rate-limit-reset` = "1640094716", `content-disposition` = "attachment; filename=json.json",
`x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "298",
`strict-transport-security` = "max-age=631138519",
`x-response-time` = "356", `x-connection-hash` = "b914cde170481ca75c4b9b9291d6d4593fbb9c37fd3a37f09fefae48ca90f4e7"), class = c("insensitive",
"list")))), cookies = structure(list(domain = c(".twitter.com",
".twitter.com", ".twitter.com", ".twitter.com"), flag = c(TRUE,
TRUE, TRUE, TRUE), path = c("/", "/", "/", "/"), secure = c(TRUE,
TRUE, TRUE, TRUE), expiration = structure(c(1702744284, 1702744284,
1702744284, 1702744284), class = c("POSIXct", "POSIXt")),
name = c("guest_id_marketing", "guest_id_ads", "personalization_id",
"guest_id"), value = c("REDACTED", "REDACTED", "REDACTED",
"REDACTED")), row.names = c(NA, -4L), class = "data.frame"),
content = charToRaw("{\"data\":[{\"id\":\"1266813392293150721\",\"referenced_tweets\":[{\"type\":\"retweeted\",\"id\":\"1266627581002072064\"}],\"entities\":{\"hashtags\":[{\"start\":40,\"end\":57,\"tag\":\"fridaysforfuture\"},{\"start\":58,\"end\":69,\"tag\":\"markuslanz\"},{\"start\":127,\"end\":139,\"tag\":\"Mattscheibe\"}],\"mentions\":[{\"start\":3,\"end\":12,\"username\":\"twitkalk\",\"id\":\"395595454\"},{\"start\":70,\"end\":86,\"username\":\"DavidHasselhoff\",\"id\":\"20014300\"},{\"start\":92,\"end\":102,\"username\":\"c_lindner\",\"id\":\"122104353\"}]},\"conversation_id\":\"1266813392293150721\",\"public_metrics\":{\"retweet_count\":8,\"reply_count\":0,\"like_count\":0,\"quote_count\":0},\"created_at\":\"2020-05-30T19:27:03.000Z\",\"source\":\"Twitter for Android\",\"text\":\"RT @twitkalk: Don't hassel the Hoff! \\uD83E\\uDD2C\\n
date = structure(1640093817, class = c("POSIXct", "POSIXt"
), tzone = "GMT"), times = c(redirect = 0, namelookup = 3.1e-05,
connect = 3.2e-05, pretransfer = 0.000122, starttransfer = 0.37172,
total = 0.372436)), class = "response") |
sim.bdtypes.stt.taxa <- function(n, lambdavector,deathvector,sampprobvector,init=-1,EI=FALSE,eliminate=0){
muvector<-deathvector*(1-sampprobvector)
psivector<-deathvector*sampprobvector
extincttree = 1
if ((init == -1) && (length(deathvector)==2)){
init<-2
lamb<-lambdavector[1,1]-lambdavector[2,2]-deathvector[1]+deathvector[2]
c<- sqrt(lamb^2 + 4*lambdavector[1,2]*lambdavector[2,1])
f1 <- (c + lamb)/(c+lamb+2*lambdavector[1,2])
r<-runif(1,0,1)
if (r<f1){init <-1}
}
if ((init==-1) && (length(deathvector)!=2)) {init<-sample(1:length(deathvector),1)}
if (EI==TRUE){init<-1}
while(extincttree==1){
edge <- c(-1,-2)
leaves <- c(-2)
types <- c(init)
sampled <- vector()
typessampled<-vector()
timecreation <-c(0,0)
extinct <- vector()
time <-0
maxspecies <- -2
edge.length <- c(0)
extincttree = 0
stop = 0
while (stop == 0 ){
if (length(leaves) == 0){
phy2=0
extincttree=1
print("extinct tree")
stop = 1
} else {
sumrates<-vector()
for (i in 1:length(lambdavector[,1])){
sumrates<-c(sumrates,(length(which(types==i))*(sum(lambdavector[i,])+muvector[i]+psivector[i])))
}
timestep <- rexp(1,sum(sumrates))
time = time+timestep
r<-runif(1,0,sum(sumrates))
chosentype<-min(which(cumsum(sumrates)>r))
species <- sample(leaves[which(types==chosentype)],1)
lambda<-sum(lambdavector[chosentype,])
gamma <- 0
if (EI==TRUE){
if (chosentype == 1) {gamma<-lambda
lambda <-0
}}
mu<-muvector[chosentype]
psi<-psivector[chosentype]
del <- which(leaves == species)
specevent <- runif(1,0,1)
edgespecevent <- which(edge == species) - length(edge.length)
if ((lambda/(lambda+gamma+mu+psi)) > specevent) {
edge.length[edgespecevent] <- time-timecreation[- species]
edge <- rbind(edge,c(species,maxspecies-1))
edge <- rbind(edge,c(species,maxspecies-2))
edge.length <- c(edge.length,0,0)
r<-runif(1,0,lambda)
newtype<-min(which(cumsum(lambdavector[chosentype,])>r))
leaves <- c(leaves,maxspecies-1,maxspecies-2)
types<- c(types, chosentype, newtype)
maxspecies <- maxspecies-2
leaves <- leaves[- del]
types <- types[- del]
timecreation <- c(timecreation,time,time)}
else if (((lambda+gamma)/(lambda+gamma+mu+psi)) > specevent) {
types[del] <- 2
}
else if (((lambda+gamma+psi)/(lambda+gamma+mu+psi)) > specevent) {
sampled<-c(sampled,leaves[del])
if (EI == TRUE && length(typessampled)<eliminate){
typessampled<-c(typessampled,1)
} else {typessampled<-c(typessampled,chosentype)}
leaves <- leaves[- del]
types <- types[- del]
edge.length[edgespecevent] <- time-timecreation[- species]
if (length(sampled) == n){
stop = 1
}
} else {
extinct <- c(extinct,leaves[del])
leaves <- leaves[- del]
types <- types[- del]
edge.length[edgespecevent] <- time-timecreation[- species]
}
}
}}
while (length(leaves)>0) {
del<-1
extinct <- c(extinct,leaves[del])
k = which( edge == leaves[del] ) - length(edge.length)
edge.length[k] <- time-timecreation[- leaves[del]]
leaves <- leaves[- del]
}
for (j in 1:length(extinct)){
del<-which (edge==extinct[j]) - length(edge.length)
surpress<-edge[del,1]
edge.length<-edge.length[- del]
edge<-edge[- del,]
del2<-which (edge[,1]==surpress)
modify <-which (edge[,2]==surpress)
edge[modify,2]<-edge[del2,2]
edge.length[modify]<-edge.length[modify]+edge.length[del2]
edge.length<-edge.length[- del2]
edge<-edge[- del2,]
}
leaf=1
interior=length(sampled)+1
edgetemp<-edge
typessampledNew<-vector()
temp<-unique(c(edge))
temp<-sort(temp,decreasing=TRUE)
for (j in temp){
if (sum(match(sampled,j,0))==0 || j==-1) {
posvalue <- interior
interior <- interior +1
} else {
typessampledNew<-c(typessampledNew,typessampled[which(sampled==j)])
posvalue <- leaf
leaf <- leaf +1
}
replacel <- which(edge == j)
if (length(replacel)>0) {
for (k in 1:length(replacel)) {
if ((replacel[k]-1) < length(edge.length)) {
edge[replacel[k],1] <- posvalue
} else {
edge[(replacel[k]-length(edge.length)),2] <- posvalue
}
}
}
}
phy <- list(edge = edge)
phy$tip.label <- paste("t", sample(length(sampled)), sep = "")
phy$edge.length <- edge.length
phy$Nnode <- length(sampled)
phy$states<-typessampledNew
class(phy) <- "phylo"
br<-sort(getx(phy,sersampling=1),decreasing=TRUE)
phy$root.edge<-br[1]-br[2]
phy<-collapse.singles(phy)
phy2 <- phy
phy2
} |
spacetime_bisquare = function(dom, knots, w_s, w_t)
{
prep = prepare_bisquare(dom, knots, type = "point")
out = compute_basis_spt(prep$X, prep$knot_mat, w_s, w_t)
sparseMatrix(i = out$ind_row + 1, j = out$ind_col + 1, x = out$values,
dims = out$dim)
} |
quality_control<-function(data,
int.window=2,
perc.miss=20,
ps.method="percentage",
result = "plot",
th.day=100,
perc = 95,
def.season = "natural",
reduction = FALSE,
red.level = 0.90,
derivative = 5,
man = 11,
th.ma = 5,
n.clinical = 5,
window.clinical = 7,
window.grains = 5,
th.pollen = 10,
th.sum = 100,
type = "none",
int.method = "lineal",
...){
data<-data.frame(data)
if (class(data) != "data.frame"& !is.null(data)){
stop ("Please include a data.frame: first column with date, and the rest with pollen types")}
if(class(data[,1])[1]!="Date" & !is.POSIXt(data[,1])) {stop("Please the first column of your data must be the date in 'Date' format")}
data[,1]<-as.Date(data[,1])
if(class(int.window)!="numeric" | int.window %% 1 != 0){stop("int.window: Please, insert only an entire number bigger than 1")}
if(int.window<1){stop("int.window: Please, insert only an entire number bigger or equal to 1")}
if(class(perc.miss)!="numeric"){stop("perc.miss: Please, insert only a number between 0 and 100")}
if(perc.miss<0 | perc.miss > 100){stop("perc.miss: Please, insert only a number between 0 and 100")}
if(result!="plot" & result!="table"){stop("result: Please, insert only 'plot' or 'table'.")}
Pollen<-calculate_ps(data=data, method=ps.method, th.day=th.day, perc=perc, def.season=def.season, reduction=reduction, red.level=red.level, derivative=derivative, man=man, th.ma=th.ma, n.clinical=n.clinical, window.clinical=window.clinical, window.grains=window.grains, th.pollen=th.pollen, th.sum=th.sum, type=type, interpolation=TRUE, int.method=int.method, plot=FALSE, maxdays = 300 )
Interpolated<-interpollen(data=data, method=int.method, maxdays = 300, plot=FALSE, result="long")
Qualitycontrol<-data.frame()
Dataframe<-Pollen[,c(1,2)]
Dataframe$Complete<-TRUE
Dataframe$Start<-TRUE
Dataframe$Peak<-TRUE
Dataframe$End<-TRUE
Dataframe$Comp.MPS<-TRUE
nrow<-nrow(Dataframe)
for(a in 1:nrow){
if(any(is.na(Pollen[a,]))){
Dataframe[a,-c(1,2)]<-FALSE
}else{
Interpolated$Type<-as.character(Interpolated$Type)
Interwindow<-Interpolated[which(Interpolated$Type==as.character(Pollen[a,1]) & Interpolated$Date>=(Pollen[a,3]-int.window) & Interpolated$Date<=(Pollen[a,3]+int.window) ),]
if(sum(Interwindow[,4],na.rm = T)!=0){
Dataframe[a,4]<-FALSE
}
Interwindow2<-Interpolated[which(Interpolated$Type==as.character(Pollen[a,1]) & Interpolated$Date>=(Pollen[a,11]-int.window) & Interpolated$Date<=(Pollen[a,11]+int.window) ),]
if(sum(Interwindow2[,4],na.rm = T)!=0){
Dataframe[a,5]<-FALSE
}
Interwindow3<-Interpolated[which(Interpolated$Type==as.character(Pollen[a,1]) & Interpolated$Date>=(Pollen[a,5]-int.window) & Interpolated$Date<=(Pollen[a,5]+int.window) ),]
if(sum(Interwindow3[,4],na.rm = T)!=0){
Dataframe[a,6]<-FALSE
}
MPS<-Interpolated[which(Interpolated$Type==as.character(Pollen[a,1]) & Interpolated$Date>=Pollen[a,3] & Interpolated$Date<=Pollen[a,5]),]
Day.dif<-as.numeric(Pollen[a,5]-Pollen[a,3])
if(sum(MPS[,4],na.rm=T)>round(Day.dif*(perc.miss/100))){
Dataframe[a,7]<-FALSE
}
}
}
Dataframe$Risk<-apply(Dataframe[,-c(1,2)], 1, function(x) length(x[x==FALSE]) )
graph<-ggplot(Dataframe, aes(seasons, type))+
geom_tile(aes(fill=Risk), colour="grey")+
scale_fill_gradient(low="white", high="
scale_x_discrete(limits = unique(Dataframe$seasons))+
theme_classic()+
labs(title="Quality Control")+
theme(plot.title = element_text(hjust=0.5), title = element_text(size = 16, face="bold"),axis.title=element_blank(), axis.text = element_text(size = 12, face="bold", colour= "black"), axis.text.y = element_text(face="bold.italic"), legend.title = element_text(size = 14), legend.text = element_text(size = 12))
if(result=="plot"){
return(graph)
}
if(result=="table"){
return(Dataframe)
}
} |
SILOThiessenShp<- function(SILOdata,path,shpname){
SiteTable <- SILOSiteSummary(SILOdata)
SILOLocs <- sf::st_as_sf(SiteTable, coords = c("Longitude","Latitude"))
. <- NULL
TPoly <- SILOLocs %>%
sf::st_geometry() %>%
do.call(c, .) %>%
sf::st_voronoi() %>%
sf::st_collection_extract()
SILOLocs$polys <- sf::st_intersects(SILOLocs, TPoly) %>% unlist %>% TPoly[.]
TPoly_id <- sf::st_set_geometry(SILOLocs, "polys")["Station"]
TPolyCRS <- sf::st_set_crs(TPoly_id, "+proj=longlat +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +no_defs")
sf::st_write(TPolyCRS,dsn=path,layer=shpname,driver="ESRI Shapefile",delete_layer = TRUE)
TPoly_annrain <- sf::st_set_geometry(SILOLocs, "polys")["AnnualRainfall"]
return(TPoly_annrain)
} |
qtl2_to_cape <- function(cross, genoprobs = NULL, map = NULL, covar = NULL, verbose = TRUE){
phenotype_matrix = as.matrix(cross$pheno)
if(is.null(map)){
map = cross$pmap
}
if(is.null(map)){
map <- cross$gmap
}
crosstype = cross$crosstype
mpp_types <- c("do", "riself4", "riself8", "riself16", "magic19")
is_mpp <- as.logical(length(which(mpp_types == crosstype)))
if(is.null(genoprobs)){
geno <- cross$geno
geno_ind <- rownames(geno[[1]])
if(is_mpp){
genoprobs<-probs_doqtl_to_qtl2(geno, map = map, pos_column = "pos")
genoprobs<-genoprob_to_alleleprob(genoprobs)
}else{
genoprobs <- calc_genoprob(cross, map = map)
}
}else{
geno_ind <- rownames(genoprobs[[1]])
}
if(is.null(covar)){
if(!is.null(cross$covar)){
covar = as.matrix(cross$covar)
num_covar <- matrix(NA, nrow = nrow(covar), ncol = ncol(covar))
dimnames(num_covar) <- dimnames(covar)
covar_ind <- rownames(covar)
for(i in 1:ncol(covar)){
as_num <- suppressWarnings(as.numeric(covar[,i]))
if(all(is.na(as_num))){
if(verbose){cat("Converting", colnames(covar)[i], "to numeric.\n")}
new_covar <- as.numeric(as.factor(covar[,i])) - 1
num_covar[,i] <- new_covar
}
}
covar <- num_covar
}else{
covar <- NULL
covar_ind <- rownames(phenotype_matrix)
}
}else{
covar_ind <- rownames(covar)
}
chr_to_add <- setdiff(names(genoprobs), c("1", "X", "Y", "M"))
if(verbose){cat("Converting genoprobs to array...\n")}
n_dim_geno <- length(dim(genoprobs[[1]]))
if(n_dim_geno == 2){
geno <- abind(genoprobs[[1]], 1-genoprobs[[1]], along = 3)
for(i in chr_to_add){
a_geno <- abind(genoprobs[[i]], 1-genoprobs[[i]], along = 3)
geno <- abind(geno, a_geno, along = 2)
}
geno <- aperm(geno, c(1,3,2))
}else{
geno <- abind(genoprobs[[1]], along = 3)
for(i in chr_to_add){
geno <- abind(geno, genoprobs[[i]], along = 3)
}
}
if(!is_mpp && dim(geno)[2] == 3){
to_biallelic <- function(marker_mat){
allele1 <- marker_mat[,1]
het <- marker_mat[,2]
allele2 <- marker_mat[,3]
allele1 <- allele1 + het/2
allele2 <- allele2 + het/2
biallele_mat <- cbind(allele1, allele2)
return(biallele_mat)
}
geno_temp <- apply(geno, 3, to_biallelic)
geno <- array(geno_temp, dim = c(nrow(phenotype_matrix), 2, dim(geno)[3]))
rownames(geno) <- geno_ind
}
colnames(geno) <- LETTERS[1:ncol(geno)]
rownames(geno) <- geno_ind
common_ind <- Reduce("intersect", list(rownames(phenotype_matrix), geno_ind, covar_ind))
common_pheno_locale <- match(common_ind, rownames(phenotype_matrix))
common_geno_locale <- match(common_ind, rownames(geno))
if(!is.null(covar)){
common_covar_locale <- match(common_ind, rownames(covar))
}
pheno <- as.matrix(phenotype_matrix[common_pheno_locale,])
rownames(pheno) <- common_ind
geno <- geno[common_geno_locale,,]
chr_used <- setdiff(names(genoprobs), c("X", "Y", "M"))
un_map <- unlist(map[chr_used])
marker_location <- as.numeric(un_map)
split_marker <- strsplit(names(un_map), "\\.")
chr <- as.numeric(sapply(split_marker, function(x) x[1]))
marker_names <- sapply(split_marker, function(x) x[2])
dimnames(geno)[[3]] <- marker_names
geno_names <- dimnames(geno)
names(geno_names) <- c("mouse", "allele" ,"locus")
data_obj <- list()
data_obj$pheno <- pheno
data_obj$geno_names <- geno_names
data_obj$chromosome <- chr
data_obj$marker_num <- 1:length(chr)
data_obj$marker_location <- marker_location
if(!is.null(covar)){
data_obj$pheno <- cbind(data_obj$pheno, covar[common_covar_locale,])
}
result <- list("data_obj" = data_obj, "geno_obj" = geno)
} |
load_dia <- function(file, merge_id = "EMPI", sep = ":", id_length = "standard", perc = 0.6, na = TRUE, identical = TRUE, nThread = 4, mrn_type = FALSE) {
DATA <- load_base(file = file, merge_id = merge_id, sep = sep, id_length = id_length, perc = perc, na = na, identical = identical, nThread = nThread, mrn_type = mrn_type, src = "dia")
raw_id <- which(colnames(DATA) == "EMPI" | colnames(DATA) == "IncomingId")[1]
data_raw <- DATA[, raw_id:dim(DATA)[2]]
DATA <- DATA[, 1:(raw_id-1)]
DATA$time_dia <- as.POSIXct(data_raw$Date, format = "%m/%d/%Y")
DATA$dia_name <- pretty_text(data_raw$Diagnosis_Name, remove_after = FALSE, remove_punc = FALSE, remove_white = FALSE)
DATA$dia_code <- pretty_text(data_raw$Code, remove_after = FALSE, remove_punc = FALSE, remove_white = FALSE)
DATA$dia_code_type <- pretty_text(data_raw$Code_Type, remove_after = FALSE, remove_punc = FALSE, remove_white = FALSE)
DATA$dia_flag <- pretty_text(data_raw$Diagnosis_Flag, remove_after = FALSE, remove_punc = FALSE, remove_white = FALSE)
DATA$dia_provider <- pretty_text(data_raw$Provider, remove_after = FALSE, remove_white = FALSE)
DATA$dia_clinic <- pretty_text(data_raw$Clinic, remove_after = FALSE, remove_punc = FALSE, remove_white = FALSE)
DATA$dia_hosp <- pretty_text(data_raw$Hospital, remove_after = FALSE, remove_punc = FALSE, remove_white = FALSE)
DATA$dia_inpatient <- pretty_text(data_raw$Inpatient_Outpatient, remove_after = FALSE, remove_white = FALSE)
DATA$dia_enc_num <- pretty_text(data_raw$Encounter_number, remove_after = FALSE, remove_punc = FALSE, remove_white = FALSE)
if(dim(DATA)[1] != 1) {DATA <- remove_column(dt = DATA, na = na, identical = identical)}
return(DATA)
} |
library(oompaBase)
suppressWarnings( RNGversion("3.5.3") )
set.seed(372284)
nPairs <- 3
nGenes <- 7
m <- matrix(rnorm(2*nPairs*nGenes), ncol=2*nPairs)
v <- factor(rep(c("A","B"), each=nPairs))
pf <- rep(1:nPairs, 2)
colnames(m) <- paste(as.character(v), pf, sep='')
round(m, 2)
mpt <- matrixPairedT(m, v, pf)
realt <- sapply(1:nGenes, function(i) {
x <- m[i, v=="A"]
y <- m[i, v=="B"]
t1 <- t.test(y, x, paired=TRUE)
t1$statistic
})
all(round(mpt-realt, 15) == 0)
mtt <- matrixT(m, v)
realt <- sapply(1:nGenes, function(i) {
x <- m[i, v=="A"]
y <- m[i, v=="B"]
t1 <- t.test(x, y, paired=FALSE, var.equal=TRUE)
t1$statistic
})
all(round(mtt-realt, 15) == 0)
mut <- matrixUnequalT(m,v)
realt <- sapply(1:nGenes, function(i) {
x <- m[i, v=="A"]
y <- m[i, v=="B"]
t1 <- t.test(x, y, paired=FALSE, var.equal=FALSE)
t1$statistic
})
all(round(mut$tt-realt, 15) == 0) |
plot.reproData <- function(x,
xlab,
ylab = "Cumulated Number of offspring",
main = NULL,
concentration = NULL,
style = "ggplot",
pool.replicate = FALSE,
addlegend = FALSE,
remove.someLabels = FALSE, ...) {
if (!is(x, "reproData"))
stop("plot.reproData: object of class reproData expected")
if (style == "generic" && remove.someLabels)
warning("'remove.someLabels' argument is valid only in 'ggplot' style.",
call. = FALSE)
if (is.null(concentration) && addlegend)
warning("'addlegend' argument is valid only when 'concentration' is not null.",
call. = FALSE)
if (pool.replicate) {
x <- cbind(aggregate(cbind(Nreprocumul, Nsurv, Ninit) ~ time + conc, x, sum),
replicate = 1)
}
if (is.null(concentration)) {
reproDataPlotFull(x, xlab, ylab, style, remove.someLabels)
}
else {
reproDataPlotFixedConc(x, xlab, ylab, main, concentration, style, addlegend,
remove.someLabels)
}
}
reproDataPlotFull <- function(data, xlab, ylab, style = "generic",
remove.someLabels) {
dataPlotFull(data, xlab, ylab, "Nreprocumul", style,
remove.someLabels)
}
reproDataPlotFixedConc <- function(x,
xlab,
ylab,
main,
concentration,
style = "generic",
addlegend = FALSE,
remove.someLabels = FALSE) {
dataPlotFixedConc(x, xlab, ylab, main, "Nreprocumul",
concentration, style, addlegend, remove.someLabels)
} |
util_warn_unordered <- function(x, varname) {
if (missing(varname)) varname <- as.character(substitute(x))
if (sum(dim(x) != 1) > 1) {
util_error(
"util_warn_unordered only works on effectively one-dimensional input")
}
warn <- FALSE
if (is.factor(x)) {
if (!is.ordered(x)) {
warn <- TRUE
}
} else if (!is.numeric(x)) {
if (all(DATA_TYPES_OF_R_TYPE[class(x)] !=
DATA_TYPES$DATETIME)) {
warn <- TRUE
}
}
if (warn) {
util_warning(
c(
"Don't know, how to compare values of %s (%s) -- comparisons",
"may still be possbile, but they could be meaningless."
),
dQuote(varname),
paste0(sQuote(unique(c(class(x), typeof(x)))), collapse = ", "),
applicability_problem = TRUE
)
}
invisible(NULL)
} |
rtrapezoid <- function(n, min = 0, mode1 = 1/3, mode2 = 2/3, max = 1, n1 = 2, n3 = 2, alpha = 1)
{
out <- qtrapezoid(p = runif(n), min = min, mode1 = mode1, mode2 = mode2, max = max, n1 = n1, n3 = n3, alpha = alpha)
return(out)
} |
NULL
setClassUnion("randomBlockSeq", members = c("rRtbdSeq", "rRpbrSeq"))
setMethod("show", "randomBlockSeq", function(object) {
cat("\nObject of class \"", class(object)[1],"\"\n\n", sep = "")
cat("design =", getDesign(object), " \n")
names <- slotNames(object)
names <- names[!(names %in% c("M", "bc"))]
for(name in names) {
cat(name, "=", slot(object, name), "\n")
}
if (dim(object@M)[1] <= 3) {
if (object@N <= 8) {
sequences <- apply(getRandList(object), 1, function(x) paste(x, collapse = " "))
blockConst <- unlist(lapply(blocks(object), function(x) paste(x, collapse = " ")))
} else {
sequences <- apply(getRandList(object), 1, function(x)
paste(c(x[1:8], "..."), collapse=" "))
blockConst <- unlist(lapply(blocks(object), function(x) {
if (length(x) <= 5) {
return(paste(x, collapse = " "))
} else {
return(paste(c(x[1:5], "..."), collapse = " "))
}
}))
}
print.data.frame <- function(m) {
write.table(format(m, justify = "left"),
row.names = F, col.names = T, quote = F)
}
cat("\n")
print(data.frame("RandomizationSeqs" = paste(sequences, "\t"),
BlockConst = blockConst))
} else {
numberSeq <- dim(object@M)[1]
object@M <- object@M[1:4, ]
if (object@N <= 8) {
sequences <- apply(getRandList(object)[1:3 , ], 1, function(x) paste(x, collapse = " "))
blockConst <- unlist(lapply(object@bc[1:3], function(x) paste(x, collapse = " ")))
} else {
sequences <- apply(getRandList(object)[1:3 , ], 1, function(x)
paste(c(x[1:8], "..."), collapse = " "))
blockConst <- unlist(lapply(object@bc[1:3], function(x) {
if (length(x) <= 5) {
return(paste(x, collapse = " "))
} else {
return(paste(c(x[1:5], "..."), collapse = " "))
}
}))
}
sequences <- c(sequences, "...")
blockConst <- c(blockConst, "...")
cat("\nThe first 3 of", numberSeq, "sequences of M:\n")
print.data.frame <- function(m) {
write.table(format(m, justify = "left"),
row.names = F, col.names = T, quote = F)
}
cat("\n")
print(data.frame("RandomizationSeqs" = paste(sequences, "\t"),
BlockConst = blockConst))
}
}) |
context("create_pareto")
data(words)
table <- create_table(words$letter_count)
plot <- create_pareto(table)
test_that("plot has the proper structure", {
expect_that(plot, is_a("gg"))
expect_that(plot$labels$title, equals("Pareto Chart"))
expect_that(plot$labels$subtitle, equals(""))
expect_that(plot$labels$caption, equals(""))
expect_that(plot$labels$x, equals("Groups"))
expect_that(plot$labels$y, equals("Frequency"))
})
test_that("plot uses correct data", {
expect_that(table, equals(plot$data))
})
test_that("function returns an error", {
expect_that(create_pareto(), throws_error())
}) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
out.width = "100%",
tidy.opts = list(width.cutoff = 80),
tidy = TRUE
)
library(LoopRig)
ovary_loops <- system.file("extdata/loops", "ovary_hg19.bedpe", package = "LoopRig", mustWork = TRUE)
pancreas_loops <- system.file("extdata/loops", "pancreas_hg19.bedpe", package = "LoopRig", mustWork = TRUE)
spleen_loops <- system.file("extdata/loops", "spleen_hg19.bedpe", package = "LoopRig", mustWork = TRUE)
loops <- LoopsToRanges(ovary_loops, pancreas_loops, spleen_loops, custom_cols = 0, loop_names = c("ovary", "pancreas", "spleen"))
head(loops, 1)
class(loops)
enhancers <- system.file("extdata/elements", "enhancers.bed", package = "LoopRig", mustWork = TRUE)
promoters <- system.file("extdata/elements", "promoters.bed", package = "LoopRig", mustWork = TRUE)
element_ranges <- ElementsToRanges(enhancers, promoters, element_names = c("enhancers", "promoters"), custom_cols = 1, custom_mcols = 4)
head(element_ranges, 1)
class(element_ranges)
consensus_loops <- ConsensusLoops(loop_ranges = loops, stringency = 2, overlap_threshold = 1)
head(consensus_loops, 1)
length(loops)
length(consensus_loops)
class(consensus_loops)
consensus_loops_dropped <- DropLoops(loop_ranges = consensus_loops, type = "loop_size", size = c(100000, 200000))
length(consensus_loops[[1]][[1]])
length(consensus_loops_dropped[[1]][[1]])
class(consensus_loops_dropped)
linked_elements <- LinkedElements(loop_ranges = consensus_loops, element_ranges_x = element_ranges[[1]], element_ranges_y = element_ranges[[2]])
linked_elements
linked_elements_promoters <- LinkedElements(loop_ranges = consensus_loops, element_ranges_x = element_ranges[[1]], element_ranges_y = element_ranges[[2]], range_out_y = TRUE)
linked_elements_promoters
class(linked_elements_promoters)
stacked_elements <- StackedElements(loop_ranges = consensus_loops, element_ranges_x = element_ranges[[1]], element_ranges_y = element_ranges[[2]])
stacked_elements
stacked_elements_enhancers <- StackedElements(loop_ranges = consensus_loops, element_ranges_x = element_ranges[[1]], element_ranges_y = element_ranges[[2]], range_out_x = TRUE)
stacked_elements_enhancers
class(stacked_elements_enhancers)
scaffold_elements <- ScaffoldElements(loop_ranges = consensus_loops, element_ranges_x = element_ranges[[1]], element_ranges_y = element_ranges[[2]])
scaffold_elements
scaffold_elements_promoters <- ScaffoldElements(loop_ranges = consensus_loops, element_ranges_x = element_ranges[[1]], element_ranges_y = element_ranges[[2]], range_out_y = TRUE)
scaffold_elements_promoters
class(scaffold_elements_promoters) |
kmeans.fd=function(fdataobj,ncl=2,metric=metric.lp
,dfunc=func.trim.FM,max.iter=100
,par.metric=NULL,par.dfunc=list(trim=0.05)
,method="sample", cluster.size=5,draw=TRUE,...) {
if (!is.fdata(fdataobj)) fdataobj=fdata(fdataobj)
nas1<-is.na(fdataobj)
if (any(nas1)) stop("fdataobj contain ",sum(nas1)," curves with some NA value \n")
z<-fdataobj[["data"]]
tt<-fdataobj[["argvals"]]
rtt<-fdataobj[["rangeval"]]
nr=nrow(z)
nc=ncol(z)
if (is.vector(ncl)) {
len.ncl=length(ncl)
if (len.ncl==1) {
par.ini<- list()
par.ini$fdataobj=fdataobj
par.ini$method=method
par.ini$ncl=ncl
par.ini$metric=metric
par.ini$draw=draw
par.ini$max.comb = 1e6
par.ini$max.iter = max.iter
if (!is.null(par.metric))
par.ini$par.metric<-par.metric
par.ini$... <- par.metric
out1=do.call(kmeans.center.ini,par.ini)
lxm<-out1$lcenters
out1$d=rbind(out1$z.dist,out1$z.dist[lxm,])
} else {
ngroups <- length(ncl)
lxm <- ncl
xm <- z[lxm,]
out1 <- list()
out1$fdataobj <- fdataobj
out1$ncl <- len.ncl
if (is.null(par.metric))
par.metric <- list("p"=2,"w"=1)
par.metric$fdata1 <- fdataobj
mdist <- do.call(metric,par.metric)
out1$z.dist <- mdist
out1$d <- rbind(mdist,mdist[lxm,])
out1$centers <- fdataobj[ncl,]
out1$lcenters <- ncl
class(out1) <- "kmeans.fd"
}
} else if (is.fdata(ncl)) {
lxm=NULL
xm=ncl[["data"]]
if (is.null(par.metric)
) par.metric=list("p"=2,"w"=1)
par.metric$fdata1<-fdataobj
mdist=do.call(metric,par.metric)
par.metric2<-par.metric
par.metric2$fdata2<-ncl
mdist2=do.call(metric,par.metric2)
out1 = list()
out1$fdataobj<-fdataobj
out1$centers = ncl
out1$lcenters <- NULL
ngroups=nrow(ncl)
ncl = nrow(ncl)
out1$d = rbind(mdist,t(mdist2))
class(out1) = "kmeans.fd"
}
ngroups=nrow(out1$centers[["data"]])
a=0;aa<-i<-1
same_centers=FALSE
if (is.null(colnames(out1$d)))
cnames<-colnames(out1$d)<-1:NCOL(out1$d)
else cnames<-colnames(out1$d)
while ((i<max.iter) && (!same_centers)) {
iterar<-FALSE
out3=kmeans.assig.groups(out1,draw=draw)
names(out3$cluster) <- cnames
tab <- table(out3$cluster)
imin <- which.min(tab)[1]
if (cluster.size > tab[imin] ) {
warning(paste0(" One of the clusters only has ",tab[imin]
, " curves and the minimum cluster size is ", cluster.size
,".\n The cluster is completed with the closest curves of the other clusters."))
iclust <- out3$cluster == imin
dist.aux <- out1$d[imin,]
icambios <- as.numeric(names(sort( out1$d[imin,])[1:cluster.size]))
out1$d[imin,icambios]<- 0
out1$z.dist<-out1$d
out3$cluster[icambios] <- imin
out2<-out3
out1$cluster <- out3$cluster
par.dfunc$fdataobj<-fdataobj[c(icambios)]
out1$centers[imin]=do.call(dfunc,par.dfunc)
iterar <-TRUE
i=i+1
}
out2=kmeans.centers.update(out1, group=out3$cluster
, dfunc=dfunc, draw=draw
, par.dfunc=par.dfunc
,...)
if (!iterar){
same_centers <- out2$centers$data == out3$centers$data
out1$centers <- out2$centers
i=i+1
}
}
out<-list("cluster"=out2$cluster,"centers"=out2$centers)
return(out)
} |
NULL
clusters.key <- 'monocle3_clusters'
partitions.key <- 'monocle3_partitions'
as.cell_data_set <- function(x, ...) {
CheckPackage(package = 'cole-trapnell-lab/monocle3', repository = 'github')
UseMethod(generic = 'as.cell_data_set', object = x)
}
as.cell_data_set.Seurat <- function(
x,
assay = DefaultAssay(object = x),
reductions = AssociatedDimReducs(object = x, assay = assay),
default.reduction = DefaultDimReduc(object = x, assay = assay),
graph = paste0(assay, '_snn'),
group.by = NULL,
...
) {
cds <- as(
object = as.SingleCellExperiment(x = x, assay = assay),
Class = 'cell_data_set'
)
if (is.null(x = SummarizedExperiment::assays(x = cds)$counts)) {
SummarizedExperiment::assays(x = cds)$counts <- SummarizedExperiment::assays(x = cds)[[1]]
}
if (!"Size_Factor" %in% colnames(x = SummarizedExperiment::colData(x = cds))) {
size.factor <- paste0('nCount_', assay)
if (size.factor %in% colnames(x = x[[]])) {
SummarizedExperiment::colData(x = cds)$Size_Factor <- x[[size.factor, drop = TRUE]]
}
}
SingleCellExperiment::reducedDims(x = cds)[SingleCellExperiment::reducedDimNames(x = cds)] <- NULL
reductions <- intersect(
x = reductions,
y = AssociatedDimReducs(object = x, assay = assay)
)
for (reduc in reductions) {
SingleCellExperiment::reducedDims(x = cds)[[toupper(x = reduc)]] <- Embeddings(object = x[[reduc]])
loadings <- Loadings(object = x[[reduc]])
if (!IsMatrixEmpty(x = loadings)) {
slot(object = cds, name = 'preprocess_aux')[['gene_loadings']] <- loadings
}
stdev <- Stdev(object = x[[reduc]])
if (length(x = stdev)) {
slot(object = cds, name = 'preprocess_aux')[['prop_var_expl']] <- stdev
}
}
if (!is.null(x = group.by)) {
Idents(object = x) <- group.by
}
clusters.list <- if (is.null(x = group.by) && all(c(clusters.key, partitions.key) %in% colnames(x = x[[]]))) {
message("Using existing Monocle 3 cluster membership and partitions")
list(
partitions = factor(x = x[[partitions.key, drop = TRUE]]),
clusters = factor(x = x[[clusters.key, drop = TRUE]])
)
} else if (graph %in% names(x = x)) {
g <- igraph::graph_from_adjacency_matrix(
adjmatrix = x[[graph]],
weighted = TRUE
)
warning(
"Monocle 3 trajectories require cluster partitions, which Seurat does not calculate. Please run 'cluster_cells' on your cell_data_set object",
call. = FALSE,
immediate. = TRUE
)
partitions <- rep_len(x = 1, length.out = ncol(x = x))
list(
cluster_result = list(
g = g,
relations = NULL,
distMatrix = 'matrix',
coord = NULL,
edge_links = NULL,
optim_res = list(
membership = as.integer(x = Idents(object = x)),
modularity = NA_real_
)
),
partitions = factor(x = partitions),
clusters = Idents(object = x)
)
} else {
list()
}
if (length(x = clusters.list)) {
slot(object = cds, name = 'clusters')[[toupper(x = default.reduction)]] <- clusters.list
}
return(cds)
}
as.Seurat.cell_data_set <- function(
x,
counts = 'counts',
data = NULL,
assay = 'RNA',
project = 'cell_data_set',
loadings = NULL,
clusters = NULL,
...
) {
CheckPackage(package = 'cole-trapnell-lab/monocle3', repository = 'github')
object <- suppressWarnings(expr = as.Seurat(
x = as(object = x, Class = 'SingleCellExperiment'),
assay = assay,
counts = counts,
data = data,
project = project
))
lds.reduc <- ifelse(
test = is.null(x = loadings),
yes = grep(
pattern = 'pca',
x = SingleCellExperiment::reducedDimNames(x = x),
ignore.case = TRUE,
value = TRUE
),
no = loadings
)
if (length(x = lds.reduc) && !is.na(x = lds.reduc)) {
loadings <- slot(object = x, name = 'preprocess_aux')[['gene_loadings']]
if (!is.null(x = loadings)) {
Loadings(object = object[[lds.reduc]], projected = FALSE) <- loadings
}
}
if (length(x = slot(object = x, name = 'clusters'))) {
clusters <- clusters %||% DefaultDimReduc(object = object)
object[[clusters.key]] <- Idents(object = object) <- monocle3::clusters(
x = x,
reduction_method = clusters
)
object[[partitions.key]] <- monocle3::partitions(
x = x,
reduction_method = clusters
)
graph <- slot(object = x, name = 'clusters')[[clusters]]$cluster_result$g[]
try(
expr = {
graph <- as.Graph(x = graph)
DefaultAssay(object = graph) <- DefaultAssay(object = object)
object[[paste0(DefaultAssay(object = graph), '_monocle3_graph')]] <- graph
},
silent = TRUE
)
try(
expr = object[['monocle3_pseudotime']] <- monocle3::pseudotime(
x = cds,
reduction_method = clusters
),
silent = TRUE
)
}
return(object)
}
LearnGraph <- function(object, reduction = DefaultDimReduc(object = object), ...) {
CheckPackage(package = 'cole-trapnell-lab/monocle3', repository = 'github')
if (reduction != 'UMAP') {
if ('UMAP' %in% Reductions(object = object)) {
''
}
reduc <- object[[reduction]]
suppressWarnings(expr = object[['UMAP']] <- reduc)
}
cds <- as.cell_data_set(
x = object,
assay = DefaultAssay(object = object[['UMAP']]),
reductions = 'UMAP',
default.reduction = 'UMAP'
)
cds <- monocle3::learn_graph(cds = cds, ...)
return(cds)
} |
LARSModel <- function(
type = c("lasso", "lar", "forward.stagewise", "stepwise"), trace = FALSE,
normalize = TRUE, intercept = TRUE, step = numeric(), use.Gram = TRUE
) {
type <- match.arg(type)
MLModel(
name = "LARSModel",
label = "Least Angle Regression",
packages = "lars",
response_types = "numeric",
predictor_encoding = "model.matrix",
params = new_params(environment()),
gridinfo = new_gridinfo(
param = "step",
get_values = c(
function(n, data, ...) seq_nvars(data, LARSModel, n)
)
),
fit = function(formula, data, weights, step = NULL, ...) {
x <- model.matrix(data, intercept = FALSE)
y <- response(data)
if (is.null(step)) {
model_fit <- lars::lars(x, y, ...)
model_fit$step <- length(model_fit$df)
} else {
model_fit <- lars::lars(x, y, max.steps = ceiling(step), ...)
model_fit$step <- step
}
model_fit
},
predict = function(object, newdata, ...) {
newx <- model.matrix(newdata, intercept = FALSE)
predict(object, newx = newx, s = object$step, type = "fit")$fit
}
)
}
MLModelFunction(LARSModel) <- NULL |
expected <- eval(parse(text="structure(c(0.00100000000111322, 0.0843333333343708, 0.167666666667856, 0.251000000001113, 0.334333333334371, 0.417666666667856, 0.501000000001113, 0.584333333334371, 0.667666666667856, 0.751000000001113, 0.834333333334371, 0.917666666667856, 0.00100000000111322, 0.0843333333343708, 0.167666666667856, 0.251000000001113, 0.334333333334371, 0.417666666667856, 0.501000000001113, 0.584333333334371, 0.667666666667856, 0.751000000001113, 0.834333333334371, 0.917666666667856, 0.00100000000111322), .Tsp = c(1976, 1978, 12), class = \"ts\")"));
test(id=0, code={
argv <- eval(parse(text="list(structure(c(1976.001, 1976.08433333333, 1976.16766666667, 1976.251, 1976.33433333333, 1976.41766666667, 1976.501, 1976.58433333333, 1976.66766666667, 1976.751, 1976.83433333333, 1976.91766666667, 1977.001, 1977.08433333333, 1977.16766666667, 1977.251, 1977.33433333333, 1977.41766666667, 1977.501, 1977.58433333333, 1977.66766666667, 1977.751, 1977.83433333333, 1977.91766666667, 1978.001), .Tsp = c(1976, 1978, 12), class = \"ts\"), 1)"));
do.call(`%%`, argv);
}, o=expected); |
`calibrate.ordisurf` <-
function(object, newdata, ...)
{
if (missing(newdata))
fit <- predict(object, type = "response", ...)
else {
if (is.vector(newdata) && length(newdata) == 2)
newdata = data.frame(x1 = newdata[1], x2 = newdata[2])
else{
if (NCOL(newdata) < 2)
stop("needs a matrix or a data frame with two columns")
newdata <- data.frame(x1 = newdata[,1], x2 = newdata[,2])
}
fit <- predict(object, newdata = newdata, type = "response", ...)
}
fit
} |
getwms <- function(x,
provs,
update_cache,
cache_dir,
verbose,
res,
transparent) {
bbox <- as.double(sf::st_bbox(x))
dimx <- (bbox[3] - bbox[1])
dimy <- (bbox[4] - bbox[2])
maxdist <- max(dimx, dimy)
center <- c(bbox[1] + dimx / 2, bbox[2] + dimy / 2)
bboxsquare <- c(
center[1] - maxdist / 2,
center[2] - maxdist / 2,
center[1] + maxdist / 2,
center[2] + maxdist / 2
)
class(bboxsquare) <- "bbox"
q <- provs[provs$field == "url_static", "value"]
q <-
gsub("{bbox}", paste0(bboxsquare, collapse = ","), q, fixed = TRUE)
q <- gsub("512", as.character(res), q)
src <- unique(provs$provider)
ext <- "jpeg"
if (length(grep("png", q)) > 0) {
ext <- "png"
} else if (length(grep("jpg", q)) > 0) {
ext <- "jpg"
}
filename <-
paste0(
src,
"_bbox3857_res",
res,
"_",
paste0(bboxsquare, collapse = "_"),
".",
ext
)
filename <- file.path(cache_dir, filename)
if (isFALSE(file.exists(filename)) | isTRUE(update_cache)) {
if (verbose) {
message("Downloading from \n", q, "\n to cache dir \n", cache_dir)
}
download.file(
url = q,
destfile = filename,
mode = "wb",
quiet = !verbose
)
} else {
if (verbose) {
message("Requested tile already cached on \n", cache_dir)
}
}
img <- png::readPNG(filename) * 255
if (dim(img)[3] == 4 && transparent) {
nrow <- dim(img)[1]
for (i in seq_len(nrow)) {
row <- img[i, , ]
alpha <- row[, 4] == 0
row[alpha, ] <- NA
img[i, , ] <- row
}
}
r_img <- suppressWarnings(terra::rast(img))
if (is.null(terra::RGB(r_img))) {
terra::RGB(r_img) <- c(1, 2, 3)
}
terra::ext(r_img) <- terra::ext(bboxsquare[c(1, 3, 2, 4)])
terra::crs(r_img) <- "epsg:3857"
return(r_img)
}
getwmts <- function(x,
provs,
update_cache,
cache_dir,
verbose,
res,
zoom,
zoommin,
type,
transparent) {
x <- sf::st_transform(x, 4326)
bbx <- sf::st_bbox(x)
if (is.null(zoom)) {
gz <- slippymath::bbox_tile_query(bbx)
zoom <- min(gz[gz$total_tiles %in% 4:10, "zoom"]) + zoommin
if (verbose) {
message("Auto zoom level: ", zoom)
}
}
if ("minZoom" %in% provs$field) {
minZoom <- as.numeric(provs[provs$field == "minZoom", "value"])
if (zoom < minZoom) {
zoom <- max(zoom, minZoom)
if (verbose) {
message(
"\nSwitching. Minimum zoom for this provider is ",
zoom,
"\n"
)
}
}
}
tile_grid <-
slippymath::bbox_to_tile_grid(bbox = bbx, zoom = zoom)
q <- provs[provs$field == "url_static", "value"]
ext <- "jpeg"
if (length(grep("png", q)) > 0) {
ext <- "png"
} else if (length(grep("jpg", q)) > 0) {
ext <- "jpg"
}
if (verbose) {
message("Caching tiles on ", cache_dir)
}
images <- apply(
X = tile_grid$tiles,
MARGIN = 1,
FUN = dl_t,
z = tile_grid$zoom,
ext = ext,
src = type,
q = q,
verbose = verbose,
cache_dir = cache_dir,
update_cache = update_cache
)
rout <- compose_tile_grid(tile_grid, ext, images, transparent)
return(rout)
}
compose_tile_grid <- function(tile_grid, ext, images, transparent) {
bricks <- vector("list", nrow(tile_grid$tiles))
for (i in seq_along(bricks)) {
bbox <- slippymath::tile_bbox(
tile_grid$tiles$x[i], tile_grid$tiles$y[i],
tile_grid$zoom
)
img <- images[i]
if (ext == "png") {
img <- png::readPNG(img) * 255
if (dim(img)[3] == 4 && transparent) {
nrow <- dim(img)[1]
for (j in seq_len(nrow)) {
row <- img[j, , ]
alpha <- row[, 4] == 0
row[alpha, ] <- NA
img[j, , ] <- row
}
}
}
r_img <- suppressWarnings(terra::rast(img))
r_img <- suppressWarnings(terra::rast(img))
if (is.null(terra::RGB(r_img))) {
terra::RGB(r_img) <- c(1, 2, 3)
}
terra::ext(r_img) <- terra::ext(bbox[c(
"xmin", "xmax",
"ymin", "ymax"
)])
bricks[[i]] <- r_img
}
if (length(bricks) == 1) {
rout <- bricks[[1]]
rout <- terra::merge(rout, rout)
} else {
rout <- do.call(terra::merge, bricks)
}
terra::RGB(rout) <- c(1, 2, 3)
terra::crs(rout) <- "epsg:3857"
return(rout)
}
dl_t <-
function(x,
z,
ext,
src,
q,
verbose,
cache_dir,
update_cache) {
outfile <-
paste0(cache_dir, "/", src, "_", z, "_", x[1], "_", x[2], ".", ext)
if (!file.exists(outfile) |
isTRUE(update_cache)) {
q <-
gsub(
pattern = "{x}",
replacement = x[1],
x = q,
fixed = TRUE
)
q <-
gsub(
pattern = "{y}",
replacement = x[2],
x = q,
fixed = TRUE
)
q <- gsub(
pattern = "{z}",
replacement = z,
x = q,
fixed = TRUE
)
if (verbose) {
message("Downloading ", q, "\n")
}
download.file(
url = q,
destfile = outfile,
quiet = TRUE,
mode = "wb"
)
} else if (verbose) {
message("Tile cached on ", outfile)
}
return(outfile)
} |
"fun.auto.bimodal.ml"<-
function (data, per.of.mix = 0.01, clustering.m = clara, init1.sel = "rprs",
init2.sel = "rprs", init1=c(-1.5, 1.5), init2=c(-1.5, 1.5), leap1=3, leap2=3, fun1 = "runif.sobol",
fun2 = "runif.sobol", no = 10000,max.it=5000,optim.further="Y")
{
data.mod <- fun.class.regime.bi(data, per.of.mix, clustering.m)
data1 <- data.mod$data.a
data2 <- data.mod$data.b
prop <- length(data1)/(length(data1) + length(data2))
if (init1.sel == "rprs") {
selc1 <- "rs"
param1 <- "rs"
first.fit <- fun.RPRS.ml(data = data1, rs.init = init1,
leap = leap1, FUN = fun1, no = no)
}
if (init1.sel == "rmfmkl") {
selc1 <- "fmkl"
param1 <- "fmkl"
first.fit <- fun.RMFMKL.ml(data = data1, fmkl.init = init1,
leap = leap1, FUN = fun1, no = no)
}
if (init1.sel == "star") {
selc1 <- "fmkl"
param1 <- "fmkl"
first.fit <- starship(data1)$lambda
}
if (init2.sel == "rprs") {
selc2 <- "rs"
param2 <- "rs"
second.fit <- fun.RPRS.ml(data = data2, rs.init = init2,
leap = leap2, FUN = fun2, no = no)
}
if (init2.sel == "rmfmkl") {
selc2 <- "fmkl"
param2 <- "fmkl"
second.fit <- fun.RMFMKL.ml(data = data2, fmkl.init = init2,
leap = leap2, FUN = fun2, no = no)
}
if (init2.sel == "star") {
selc2 <- "fmkl"
param2 <- "fmkl"
second.fit <- starship(data2)$lambda
}
result <- optim(c(first.fit, second.fit, prop), optim.fun5,
data = data, param1 = param1, param2 = param2, control = list(maxit = max.it))
result <- optim(c(result$par), optim.fun5, data = data, param1 = param1,
param2 = param2, control = list(maxit = max.it))
if(optim.further=="Y"){
result<-optim(c(result$par), optim.fun.bi.final, data = data, param1 = param1,
param2 = param2, control = list(maxit = max.it))
}
return(result)
} |
`nseconds` <-
function(x) {
length(endpoints(x,on='seconds'))-1
}
`nminutes` <-
function(x) {
length(endpoints(x,on='minutes'))-1
}
`nhours` <-
function(x) {
length(endpoints(x,on='hours'))-1
}
`ndays` <-
function(x) {
length(endpoints(x,on='days'))-1
}
`nweeks` <-
function(x) {
length(endpoints(x,on='weeks'))-1
}
`nmonths` <-
function(x) {
length(endpoints(x,on='months'))-1
}
`nquarters` <-
function(x) {
length(endpoints(x,on='quarters'))-1
}
`nyears` <-
function(x) {
length(endpoints(x,on='years'))-1
} |
NULL
confint.lm_mat <- function(object, parm, level = 0.95, ...){
confint.summary.lm_mat(object = summary(object), parm = parm, level = level)
}
confint.summary.lm_mat <- function(object, parm, level = 0.95, ...){
pnames <- rownames(object$coefficients)
if(missing(parm)){
parm <- pnames
}else if (is.numeric(parm)){
parm <- pnames[parm]
}
lower <- object$coefficients[parm,"Estimate"] - qt((1 - level) / 2, df = object$ftest["n"] - 2, lower.tail = F) * object$coefficients[parm,"Std. Error"]
upper <- object$coefficients[parm,"Estimate"] + qt((1 - level) / 2, df = object$ftest["n"] - 2, lower.tail = F) * object$coefficients[parm,"Std. Error"]
ci <- cbind(lower, upper)
dimnames(ci) <- list(parm, paste(round2char(c((1 - level) / 2, 1 - (1 - level) / 2) * 100, digits = 1), "%"))
ci
} |
summaryP <- function(formula, data=NULL,
subset=NULL, na.action=na.retain,
sort=TRUE,
asna=c('unknown', 'unspecified'), ...) {
formula <- Formula(formula)
Y <- if(length(subset))
model.frame(formula, data=data, subset=subset, na.action=na.action)
else
model.frame(formula, data=data, na.action=na.action)
X <- model.part(formula, data=Y, rhs=1)
Y <- model.part(formula, data=Y, lhs=1)
nY <- NCOL(Y)
nX <- NCOL(X)
namY <- names(Y)
if(nX == 0) X <- data.frame(x=rep(1, NROW(Y)))
else {
i <- apply(is.na(X), 1, any)
if(any(i)) {
X <- X[! i,, drop=FALSE]
Y <- Y[! i,, drop=FALSE]
}
}
ux <- unique(X)
Z <- NULL
n <- nrow(X)
Lev <- character(0)
if(sort) {
mfreq <- list()
for(ny in namY) {
y <- Y[[ny]]
if(!inherits(y, 'ynbind') && !inherits(y, 'pBlock')) {
if(length(asna) && (is.factor(y) || is.character(y)))
y[y %in% asna] <- NA
freq <- table(y)
counts <- as.numeric(freq)
names(counts) <- names(freq)
mfreq[[ny]] <- - sort(- counts)
}
}
}
ylevels.to.exclude1 <- NULL
for(ny in namY) {
y <- Y[[ny]]
la <- label(y)
if(la == '') la <- ny
tab <- table(y)
tab <- structure(as.numeric(tab), names=names(tab))
if(length(tab) == 2)
ylevels.to.exclude1 <-
rbind(ylevels.to.exclude1,
data.frame(var=la, val=names(tab)[which.max(tab)]))
}
for(i in 1 : nrow(ux)) {
j <- rep(TRUE, n)
if(nX > 0) for(k in 1 : nX) j <- j & (X[[k]] == ux[i, k])
for(k in 1 : nY) {
y <- Y[[k]]
y <- if(is.matrix(y)) y[j,, drop=FALSE] else y[j]
if(inherits(y, 'ynbind') || inherits(y, 'pBlock')) {
overlab <- attr(y, 'label')
labs <- attr(y, 'labels')
z <- NULL
for(iy in 1 : ncol(y)) {
tab <- table(y[, iy])
no <- as.numeric(sum(tab))
if(inherits(y, 'ynbind')) {
d <- data.frame(var=overlab,
val=labs[iy],
freq=as.numeric(tab['TRUE']),
denom=no)
Lev <- c(Lev, as.character(labs[iy]))
} else {
d <- data.frame(var=overlab,
val=names(tab),
freq=as.numeric(tab),
denom=no)
Lev <- c(Lev, names(tab))
}
z <- rbind(z, d)
}
}
else {
if(length(asna) && (is.factor(y) || is.character(y)))
y[y %in% asna] <- NA
tab <- table(y)
ny <- namY[k]
la <- label(y)
if(la == '') la <- ny
lev <- names(tab)
no <- as.numeric(sum(tab))
if(sort) lev <- reorder(lev, (mfreq[[ny]])[lev])
Lev <- c(Lev, as.character(lev))
z <- data.frame(var = unname(la),
val = lev,
freq = as.numeric(tab),
denom = no,
stringsAsFactors=TRUE)
}
if(nX > 0)
for(k in 1: nX)
z[[names(ux)[k]]] <- if(is.character(ux[i,k]))
factor(ux[i, k]) else ux[i,k]
Z <- rbind(Z, z)
}
}
Z$val <- factor(Z$val, levels=unique(Lev))
yl <- ylevels.to.exclude1
iex <- integer(0)
if(length(yl)) {
for(i in 1 : nrow(Z)) {
exi <- FALSE
for(j in 1 : nrow(yl))
if(as.character(Z$var[i]) == as.character(yl$var[j]) &&
as.character(Z$val[i]) == as.character(yl$val[j])) exi <- TRUE
if(exi) iex <- c(iex, i)
}
}
structure(Z, class=c('summaryP', 'data.frame'), formula=formula,
nX=nX, nY=nY, rows.to.exclude1=iex)
}
plot.summaryP <-
function(x, formula=NULL, groups=NULL,
marginVal=NULL, marginLabel=marginVal, refgroup=NULL,
exclude1=TRUE, xlim=c(-.05, 1.05), text.at=NULL,
cex.values=0.5,
key=list(columns=length(groupslevels),
x=.75, y=-.04, cex=.9,
col=trellis.par.get('superpose.symbol')$col, corner=c(0,1)),
outerlabels=TRUE, autoarrange=TRUE, col=colorspace::rainbow_hcl,
...)
{
X <- x
at <- attributes(x)
Form <- at$formula
nX <- at$nX
nY <- at$nY
groupslevels <- if(length(groups)) levels(x[[groups]])
condvar <- setdiff(names(X), c('val', 'freq', 'denom', groups))
numu <- function(x) if(is.factor(x)) length(levels(x))
else length(unique(x[! is.na(x)]))
if(exclude1 && length(at$rows.to.exclude1))
X <- X[- at$rows.to.exclude1, , drop=FALSE]
if(autoarrange && length(condvar) > 1) {
nlev <- sapply(X[condvar], numu)
condvar <- condvar[order(nlev)]
}
if(grType() == 'plotly') {
condvar <- setdiff(condvar, 'var')
if(length(condvar) > 1)
stop('with options(grType="plotly") does not handle > 1 stratification variable')
if(length(condvar) == 1 && length(marginVal)) {
X$Big <- X[[condvar]] == marginVal
if(marginLabel != marginVal)
X[[condvar]] <- ifelse(X$Big, marginLabel, as.character(X[[condvar]]))
}
X$.gg. <-
if(length(groups)) {
if(length(condvar) == 1 && length(marginVal))
ifelse(X$Big, as.character(X[[groups]]),
paste0(X[[groups]], ' stratified<br>by ', condvar[1]))
else
X[[groups]]
}
p <-
with(X,
dotchartpl(freq / denom,
major = var,
minor = val,
group = if(length(groups)) .gg.,
mult = if(length(condvar) > 0) X[[condvar]],
big = if(length(condvar) == 1 && length(marginVal)) Big,
num = freq,
denom = denom,
refgroup = refgroup,
xlim = xlim,
col = col,
nonbigtracename=if(length(condvar))
paste0('Stratified by\n', condvar[1])
else
'Stratified Estimates',
...)
)
return(p)
}
form <- if(length(formula)) formula
else as.formula(
paste('val ~ freq',
paste(condvar, collapse=' * '), sep=' | '))
pan <- function(x, y, subscripts, groups=NULL, ...) {
y <- as.numeric(y)
denom <- X$denom[subscripts]
panel.dotplot(x/denom, y, subscripts=subscripts, groups=groups, ...)
if(length(cex.values) && cex.values > 0) {
col <- if(length(groups)) trellis.par.get('superpose.symbol')$col
else trellis.par.get('dot.symbol')$col
longest.string <- paste(max(x), max(denom), sep='/ ')
length.longest <- unit(1, 'strwidth', longest.string)
xpos <- unit(1, 'npc') - unit(1, 'mm')
txt <- if(length(groups)) {
groups <- groups[subscripts]
tx <- ''
ig <- 0
xpos <- xpos - length(levels(groups)) * length.longest
for(g in levels(groups)) {
ig <- ig + 1
i <- groups == g
fr <- paste(x[i], denom[i], sep='/')
xpos <- xpos + length.longest
grid.text(fr, xpos, unit(y, 'native') - unit(1, 'mm'),
just=c('right','top'), gp=gpar(cex=cex.values, col=col[ig]))
}
}
else {
fr <- paste(x, denom, sep='/')
grid.text(fr, xpos, unit(y, 'native') - unit(1, 'mm'),
gp=gpar(cex=cex.values, col=col[1]), just=c('right','top'))
}
}
}
scal <- list(y='free', rot=0)
scal$x <- if(length(text.at)) {
at <- pretty(xlim)
list(limits=range(c(xlim, text.at)), at=at[at >= -0.0001 & at <= 1.0001])
} else list(limits=xlim)
d <- if(!length(groups))
dotplot(form, data=X, scales=scal, panel=pan,
xlab='Proportion', ...)
else eval(parse(text=
sprintf("dotplot(form, groups=%s, data=X, scales=scal, panel=pan, auto.key=key, xlab='Proportion', ...)", groups) ))
if(length(dim(d)) == 2) d <- latticeExtra::useOuterStrips(d)
if(condvar[length(condvar)] == 'var') {
vars <- levels(X$var)
nv <- length(vars)
h <- integer(nv)
for(i in 1 : nv) h[i] <- length(unique((X$val[X$var == vars[i]])))
d <- latticeExtra::resizePanels(d, h = h + 1)
}
d
}
ggplot.summaryP <-
function(data, mapping, groups=NULL, exclude1=TRUE, xlim=c(0, 1),
col=NULL, shape=NULL, size=function(n) n ^ (1/4),
sizerange=NULL, abblen=5,
autoarrange=TRUE, addlayer=NULL, ..., environment)
{
X <- data
class(X) <- setdiff(class(X), 'summaryP')
at <- attributes(X)
Form <- at$formula
nX <- at$nX
nY <- at$nY
groupslevels <- if(length(groups)) levels(X[[groups]])
condvar <- setdiff(names(X), c('val', 'freq', 'denom', groups))
numu <- function(x) if(is.factor(x)) length(levels(x))
else length(unique(x[! is.na(x)]))
if(exclude1 && length(at$rows.to.exclude1))
X <- X[- at$rows.to.exclude1, , drop=FALSE]
if(autoarrange && length(condvar) > 1) {
nlev <- sapply(X[condvar], numu)
condvar <- condvar[order(nlev)]
}
fnvar <- ''
lvar <- levels(X$var)
i <- 0
for(v in lvar) {
maxlen <- nchar(v)
if(maxlen > abblen) {
nlev <- length(unique(X$val[X$var == v]))
if(nlev == 1) {
i <- i + 1
w <- paste('(', i, ')', sep='')
if(i > 1) fnvar <- paste(fnvar, '; ', sep='')
fnvar <- paste(fnvar, w, ' ', v, sep='')
levels(X$var)[levels(X$var) == v] <- w
}
}
}
spl <- function(x) {
u <- levels(x)
n <- length(u)
utrans <- character(n); names(utrans) <- u
for(w in u)
utrans[w] <- paste(strwrap(w, 10), collapse='\n')
factor(x, u, utrans)
}
X$var <- spl(X$var)
if(length(condvar) == 2) {
othvar <- setdiff(condvar, 'var')
X[[othvar]] <- spl(X[[othvar]])
}
N <- X$denom
rN <- range(N)
ratioN <- rN[2] / rN[1]
if(diff(rN) < 10 | (ratioN < 1.2)) size <- NULL
X$hov <- paste0(round(X$freq / X$denom, 3), ' ',
markupSpecs$html$frac(X$freq, X$denom, size=90))
if(length(groups)) X$hov <- paste0(X[[groups]], '<br>', X$hov)
k <- 'ggplot(X, aes(x=freq / denom, y=val, text=hov'
if(length(groups)) k <- paste(k, sprintf(', color=%s, shape=%s',
groups, groups))
k <- paste(k, '))')
if(length(size)) {
k <- paste(k,
if(length(size)) 'geom_point(aes(size = N))' else
'geom_point()',
sep=' + ')
Ns <- X$denom
if(! length(sizerange)) {
fn <- if(is.function(size)) size else sqrt
sizerange <- c(max(0.7, 2.7 / fn(ratioN)), 3.25)
}
if(is.function(size)) {
X$N <- size(Ns)
Ns0 <- Ns[Ns > 0]
uN <- unique(sort(Ns0))
Nbreaks <- if(length(uN) < 8) uN else
unique(round(quantile(Ns0, (0 : 6) / 6, type=1)))
Nbreakst <- size(Nbreaks)
k <- paste(k,
'scale_size_continuous(breaks=Nbreakst, labels=format(Nbreaks), range=sizerange)', sep=' + ')
}
else {
k <- paste(k, 'scale_size_discrete(range = sizerange)', sep=' + ')
X$N <- cut2(Ns, g=size)
}
}
else k <- paste(k, 'geom_point()', sep=' + ')
p <- eval(parse(text=k))
if(length(addlayer)) p <- p + addlayer
if('var' %nin% condvar) stop('program logic error')
if(length(condvar) == 1)
p <- p + facet_grid(var ~ . , scales='free_y', space='free_y')
else {
p <- p + facet_grid(as.formula(sprintf('var ~ %s', othvar)),
scales='free_y', space='free_y')
}
p <- p + xlim(xlim) + xlab('Proportion') + ylab('')
if(length(col)) p <- p + scale_color_manual(values=col)
if(length(shape)) p <- p + scale_shape_manual(values=shape)
if(fnvar != '') attr(p, 'fnvar') <- fnvar
p
}
latex.summaryP <- function(object, groups=NULL, exclude1=TRUE, file='', round=3,
size=NULL, append=TRUE, ...) {
class(object) <- 'data.frame'
rte <- attr(object, 'rows.to.exclude1')
if(exclude1 && length(rte))
object <- object[- rte, , drop=FALSE]
if(! append) cat('', file=file)
p <- ifelse(object$denom == 0, '',
format(round(object$freq / object$denom, round)))
object$y <- paste(p, ' {\\scriptsize$\\frac{',
format(object$freq), '}{', format(object$denom),
'}$}', sep='')
object$freq <- object$denom <- NULL
stratvar <- setdiff(names(object), c('var', 'val', 'y', groups))
svar <- if(! length(stratvar)) as.factor(rep('', nrow(object)))
else {
if(length(stratvar) == 1) object[[stratvar]]
else do.call('interaction', list(object[stratvar], sep=' '))
}
object$stratvar <- svar
object <- object[, c('var', 'val', 'y', groups, 'stratvar')]
nl <- 0
slev <- levels(svar)
nslev <- length(slev)
for(i in 1 : nslev) {
if(nslev > 1) cat('\n\\vspace{1ex}\n\\begin{minipage}{\\linewidth}\n\\textbf{', slev[i],
'}\n\\vspace{1ex}\n\n', sep='', file=file, append=TRUE)
x <- object[svar == slev[i], colnames(object) != 'stratvar']
if(length(groups)) {
ord <- function(v) {
v <- as.character(v)
un <- unique(v)
vn <- 1 : length(un)
names(vn) <- un
vn[v]
}
varn <- ord(x$var)
valn <- ord(x$val)
r <- reshape(x, timevar=groups, direction='wide',
idvar=c('var', 'val'))
ir <- order(varn[as.character(r$var)],
valn[as.character(r$val)])
r <- r[ir, ]
lev <- levels(x[[groups]])
r <- r[c('var', 'val', paste('y', lev, sep='.'))]
nl <- length(lev)
w <- latex(r[colnames(r) != 'var'],
table.env=FALSE, file=file, append=TRUE,
rowlabel='', rowname=rep('', nrow(r)),
rgroup=levels(r$var), n.rgroup=as.vector(table(r$var)),
size=size,
colheads=c(' ', lev),
center='none')
}
else {
w <- latex(x[colnames(x) != 'var'],
table.env=FALSE, file=file, append=TRUE,
rowlabel='', rowname=rep('', nrow(x)),
rgroup=levels(x$var), n.rgroup=as.vector(table(x$var)),
size=size, colheads=c(' ', ' '), center='none')
}
if(nslev > 1) cat('\\end{minipage}\n', file=file, append=TRUE)
}
attr(w, 'ngrouplevels') <- nl
attr(w, 'nstrata') <- nslev
w
} |
find_step <- function(design, step, verb) {
if (is.numeric(step) && step <= length(design) && step > 0) return(step)
if (is.character(step)) {
design <- names(design)
}
w <- vapply(design, identical, FALSE, step)
w <- which(w)
if (length(w) == 0) {
stop("Could not find step to ", verb, " in design")
}
w[1]
}
NULL
insert_step <- function(design, new_step, before, after) {
check_design_class_single(design)
if (missing(before)) before <- NULL
if (missing(after)) after <- NULL
insert_step_(design, new_step, before, after, enexpr(new_step))
}
insert_step_ <- function(design, new_step, before = NULL, after = NULL, new_step_expr) {
check_design_class_single(design)
if (is.null(after)) {
if (is.null(before)) {
stop("Must provide either before or after to add_step()")
}
after <- find_step(design, before, "insert before") - 1
} else {
after <- find_step(design, after, "insert after")
}
new_step <- wrap_step(new_step, new_step_expr)
i <- seq_along(design) <= after
steps <- c(design[i], new_step, design[!i], recursive = FALSE)
construct_design(steps)
}
delete_step <- function(design, step) {
check_design_class_single(design)
i <- find_step(design, step, "delete")
construct_design(design[-i])
}
replace_step <- function(design, step, new_step) {
check_design_class_single(design)
i <- find_step(design, step, "replace")
new_step <- wrap_step(new_step, enexpr(new_step))
design[i] <- new_step
names(design)[i] <- names(new_step)
construct_design(design)
} |
aqs_qa_blanks_by_pqao <- function(parameter, bdate, edate, pqao_code,
cbdate = NA_Date_, cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, pqao_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
pqao_code = pqao_code,
service = "qaBlanks",
cbdate = cbdate,
cedate = cedate
)
blanks <- purrr::pmap(.l = params, .f = aqs_services_by_pqao)
if (!return_header) blanks %<>% aqs_removeheader
return(blanks)
}
aqs_qa_collocated_assessments_by_pqao <- function(parameter, bdate, edate,
pqao_code, cbdate = NA_Date_,
cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, pqao_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
pqao_code = pqao_code,
service = "qaCollocatedAssessments",
cbdate = cbdate,
cedate = cedate
)
colocatedsummary <- purrr::pmap(.l = params, .f = aqs_services_by_pqao)
if (!return_header) colocatedsummary %<>% aqs_removeheader
return(colocatedsummary)
}
aqs_qa_flowrateverification_by_pqao <- function(parameter, bdate, edate,
pqao_code,
cbdate = NA_Date_,
cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, pqao_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
pqao_code = pqao_code,
service = "qaFlowRateVerifications",
cbdate = cbdate,
cedate = cedate
)
frv <- purrr::pmap(.l = params, .f = aqs_services_by_pqao)
if (!return_header) frv %<>% aqs_removeheader
return(frv)
}
aqs_qa_flowrateaudit_by_pqao <- function(parameter, bdate, edate, pqao_code,
cbdate = NA_Date_, cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, pqao_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
pqao_code = pqao_code,
service = "qaFlowRateAudits",
cbdate = cbdate,
cedate = cedate
)
fra <- purrr::pmap(.l = params, .f = aqs_services_by_pqao)
if (!return_header) fra %<>% aqs_removeheader
return(fra)
}
aqs_qa_one_point_qc_by_pqao <- function(parameter, bdate, edate, pqao_code,
cbdate = NA_Date_, cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, pqao_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
pqao_code = pqao_code,
service = "qaOnePointQcRawData",
cbdate = cbdate,
cedate = cedate
)
opqcc <- purrr::pmap(.l = params, .f = aqs_services_by_pqao)
if (!return_header) opqcc %<>% aqs_removeheader
return(opqcc)
}
aqs_qa_pep_audit_by_pqao <- function(parameter, bdate, edate, pqao_code,
cbdate = NA_Date_,
cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, pqao_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
pqao_code = pqao_code,
service = "qaPepAudits",
cbdate = cbdate,
cedate = cedate
)
pepaudit <- purrr::pmap(.l = params, .f = aqs_services_by_pqao)
if (!return_header) pepaudit %<>% aqs_removeheader
return(pepaudit)
}
aqs_qa_annualpeferomanceeval_by_pqao <- function(parameter, bdate, edate,
pqao_code,
return_header = FALSE)
{
checkaqsparams(parameter, bdate, edate, pqao_code, return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
pqao_code = pqao_code,
service = "qaAnnualPerformanceEvaluations"
)
qaape <- purrr::pmap(.l = params, .f = aqs_services_by_pqao)
if (!return_header) qaape %<>% aqs_removeheader
return(qaape)
}
aqs_qa_annualperformanceevaltransaction_by_pqao <- function(parameter,
bdate, edate,
pqao_code,
return_header = FALSE)
{
checkaqsparams(parameter, bdate, edate, pqao_code, return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
pqao_code = pqao_code,
service = "transactionsQaAnnualPerformanceEvaluations"
)
tqaape <- purrr::pmap(.l = params, .f = aqs_services_by_pqao)
if (!return_header) tqaape %<>% aqs_removeheader
return(tqaape)
} |
suppressMessages(library(RcppRedis))
redis <- new(Redis)
key <- "RcppRedis:test:myexists"
redis$set(key, 10)
n <- redis$exists(key)
expect_equal(n, 1)
n <- redis$exists("thisKeyIsNotSet-test")
expect_equal(n, 0)
n <- redis$exec(paste("del", key))
expect_equal(n, 1) |
coef(f1.glm1)
exp(coef(f1.glm1)) |
skip_on_cran()
require(testthat)
context("YAFS")
options(width = 500)
options(useFancyQuotes=FALSE)
source("REF-9-YAFS.R")
if(!exists("edsurveyHome")) {
if (Sys.info()[['sysname']] == "Windows") {
edsurveyHome <- "C:/EdSurveyData/"
} else {
edsurveyHome <- "~/EdSurveyData/"
}
}
if (!dir.exists(edsurveyHome)) {
dir.create(edsurveyHome)
}
test_that("PISA YAFS data reads in correctly", {
expect_silent(pisa <<- readPISA(path = file.path(edsurveyHome, "PISA", "2012"), database = "INT", countries = "usa", verbose = FALSE))
expect_silent(pisa_yafs <<- readPISA_YAFS(datPath = file.path(edsurveyHome, "PISA YAFS", "2016", "PISA_YAFS2016_Data.dat"),
spsPath = file.path(edsurveyHome, "PISA YAFS", "2016", "PISA_YAFS2016_SPSS.sps"),
esdf_PISA2012_USA = pisa))
expect_is(pisa_yafs, "edsurvey.data.frame")
expect_equal(dim(pisa_yafs), c(4978, 1964))
expect_equal(pisa_yafs$country, "USA")
expect_equal(pisa_yafs$year, "2016")
})
context("PISA YAFS edsurveyTable")
test_that("PISA YAFS edsurveyTable",{
lit <- edsurveyTable(formula = lit ~ 1,
data=pisa_yafs,
omittedLevels=TRUE,
jrrIMax = Inf)
withr::with_options(list(digits=7), out <- capture.output(lit))
expect_equal(out, lit.ref)
})
context("PISA YAFS achivementLevel one PV")
test_that("PISA YAFS edsurveyTable one PV",{
achievementLevels_Lit <- achievementLevels(achievementVars=c("lit"),
aggregateBy=NULL, data=pisa_yafs,
weightVar = "w_yfstuwt", jrrIMax = Inf)
withr::with_options(list(digits=7), out <- capture.output(achievementLevels_Lit))
expect_equal(out, achievement.ref)
})
context("PISA YAFS achivementLevel two PVs")
test_that("PISA YAFS edsurveyTable two PVs",{
achievementLevels_tableA10 <- achievementLevels(achievementVars=c("num", "math"), aggregateBy="math",
data=pisa_yafs, returnVarEstInputs=TRUE,
returnCumulative=FALSE, jrrIMax = Inf,
cutpoints = list(
c("Customized ESO 2 and 3" = 226.00,
"Customized ESO 4 and above" = 326.00),
c("Customized PISA 2 and 4" = 420.07,
"Customized PISA 5 and above" = 544.68)))
withr::with_options(list(digits=7), out <- capture.output(achievementLevels_tableA10))
expect_equal(out, achievement2.ref)
})
context("PISA YAFS cor.sdf two PVs")
test_that("PISA YAFS cor.sdf two PVs",{
cor_lit.read <- cor.sdf(x = "lit", y="read", data=pisa_yafs)
withr::with_options(list(digits=7), out <- capture.output(cor_lit.read))
expect_equal(out, cor.ref)
})
context("PISA YAFS logit")
test_that("PISA YAFS logits",{
logit_b_q26a.bq_q2 <- logit.sdf(formula = I(b_q26a %in% "No") ~ bq_q2,
data = pisa_yafs,
jrrIMax = Inf)
withr::with_options(list(digits=7), out <- capture.output(logit_b_q26a.bq_q2))
expect_equal(out, logit.ref)
}) |
indifference <- function(...,
ncurves = 1,
xmax,
ymax,
type = "normal",
x,
pointcol = 1,
curve_names = TRUE,
names,
linecol,
labels,
generic = TRUE,
geom = "text",
geomcol = 1,
geomfill = "white",
main = NULL,
sub = NULL,
xlab = NULL,
ylab = NULL,
bg.col = "white"){
m <- FALSE
match.arg(type, choices = c("normal", "psubs", "pcom"))
if(missing(...)){
ncurve <- ncurves
if(missing(xmax)){
xmax <- 9
}
if(missing(ymax)){
ymax <- 9
}
if(type == "normal") {
curve <- data.frame(Hmisc::bezier(c(0.9, xmax - 6, xmax),
c(ymax, ymax - 6, 0.9)))
m <- TRUE
}
if(type == "psubs") {
curve <- data.frame(x = c(0.9, xmax),
y = c(ymax, 0.9))
m <- TRUE
}
if(type == "pcom") {
curve <- data.frame(x = c(rep(0.9, 10), seq(0.9, 9, length.out = 10)),
y = c(seq(0.9, 9, length.out = 10), rep(0.9, 10)))
m <- TRUE
}
} else{
curve <- list(...)
class <- vector("character", length(curve))
for(i in 1:length(curve)) {
class[i] <- class(curve[[i]])
}
if(any(class != "data.frame")) {
stop("You can only pass data frames to the '...' argument")
}
ncurve <- length(curve)
if(ncurve == 1){
m <- TRUE
}
}
if(missing(names)) {
names <- sapply(1:ncurves, function(i) paste0("I[", i, "]"))
}
if(missing(linecol)){
if(missing(...)){
linecol <- 1
}
if(!missing(...) & ncurve == 1){
linecol <- 1
}
if(!missing(...) & ncurve > 1){
linecol <- rep(1, ncurve)
}
} else {
if(!missing(...) & length(linecol) == 1){
linecol <- rep(linecol, ncurve)
} else {
}
}
if(missing(labels) & !missing(x)){
labels <- LETTERS[1:length(x)]
}
if(!missing(x)){
if(any(x < 0) | any(x > max(data.frame(curve)$y))) {
warning("There are values on the 'x' argument lower than 0 or greater than the maximun value of the curve")
x <- x[x <= max(data.frame(curve)$y)]
}
if(type == "pcom") {
warning("Intersections not available for perfect complements. Please add the points manually")
} else {
intersections <- tibble()
if(missing(...) | length(curve) == 1) {
for(i in 1:length(x)) {
intersections <- intersections %>%
bind_rows(curve_intersect(data.frame(x = c(0, 10000), y = rep(x[i], 2)), data.frame(curve)))
}
} else {
intersections <- vector("list", ncurve)
for(i in 1:ncurve){
for(j in 1:length(x)) {
intersections[[i]][[j]] <- bind_rows(curve_intersect(data.frame(x = 1:1000, y = rep(x[j], nrow(curve[[1]]))), curve[[i]]))
}
}
intersections <- bind_rows(intersections)
}
}
}
p <- ggplot(mapping = aes(x = x, y = y))
if(missing(...) | m){
for(i in 0:(ncurves - 1)) {
p <- p + geom_line(data = data.frame(curve) + i, color = linecol, size = 1, linetype = 1)
}
} else {
for(i in 1:length(curve)) {
p <- p + geom_line(data = data.frame(curve[[i]]), color = linecol[i], size = 1, linetype = 1)
}
}
if(curve_names == TRUE) {
if(ncurves == 1) {
p <- p + annotate(geom = "text", x = max(as.data.frame(curve)$x) + 0.5, y = min(as.data.frame(curve)$y), label = "I",
size = 4, color = geomcol)
} else {
j <- 0
for(i in 1:ncurves){
p <- p + annotate(geom = "text", x = max(as.data.frame(curve)$x) + j + 0.5, y = min(as.data.frame(curve)$y) + j, label = names[i], parse = TRUE,
size = 4, color = geomcol)
j <- j + 1
}
}
}
if(!missing(x) & type != "pcom"){
p <- p + geom_segment(data = intersections,
aes(x = x, y = 0, xend = x, yend = y), lty = "dotted") +
geom_segment(data = intersections,
aes(x = 0, y = y, xend = x, yend = y), lty = "dotted") +
geom_point(data = intersections, size = 3, color = pointcol)
if(geom == "label") {
for(i in 1:length(x)){
p <- p + annotate(geom = "label", x = unlist(intersections[1][i, ]) + 0.25, y = unlist(intersections[2][i, ]) + 0.25, label = rev(labels)[i],
size = 4, fill = "white", color = geomcol)
}
}
if(geom == "text") {
for(i in 1:length(x)){
p <- p + annotate(geom = "text", x = unlist(intersections[1][i, ]) + 0.25, y = unlist(intersections[2][i, ]) + 0.25, label = rev(labels)[i],
size = 4, color = geomcol)
}
}
if(generic == FALSE) {
p <- p + scale_x_continuous(expand = c(0, 0), limits = c(0, max(unlist(curve)) + 1), breaks = intersections$x, labels = round(intersections$x, 2)) +
scale_y_continuous(expand = c(0, 0), limits = c(0, max(unlist(curve)) + 1), breaks = intersections$y, labels = round(intersections$y, 2))
} else {
if(ncurve == 1 | missing(...)){
p <- p + scale_x_continuous(expand = c(0, 0), limits = c(0, max(unlist(curve)) + ncurves),
breaks = intersections$x, labels = sapply(length(x):1, function(i) as.expression(bquote(X[.(LETTERS[i])])))) +
scale_y_continuous(expand = c(0, 0), limits = c(0, max(unlist(curve)) + ncurves),
breaks = intersections$y, labels = sapply(length(x):1, function(i) as.expression(bquote(Y[.(LETTERS[i])]))))
} else {
labels <- sapply(length(intersections$x):1, function(i) as.expression(bquote(X[.(LETTERS[i])])))
p <- p + scale_x_continuous(expand = c(0, 0), limits = c(0, max(unlist(curve)) + ncurves),
breaks = intersections$x, labels = labels) +
scale_y_continuous(expand = c(0, 0), limits = c(0, max(unlist(curve)) + ncurves),
breaks = x, labels = sapply(length(x):1, function(i) as.expression(bquote(Y[.(LETTERS[i])]))))
}
}
} else {
p <- p + scale_x_continuous(expand = c(0, 0), limits = c(0, max(unlist(curve)) + ncurves)) +
scale_y_continuous(expand = c(0, 0), limits = c(0, max(unlist(curve)) + ncurves))
}
p <- p + labs(x = xlab, y = ylab, title = main, subtitle = sub)
p <- p +
theme_classic() +
theme(plot.title = element_text(size = rel(1.3)),
axis.title.y = element_text(margin = margin(t = 0, r = 10, b = 0, l = 0), angle = 0, vjust = 1),
axis.title.x = element_text(margin = margin(t = 0, r = 25, b = 0, l = 0), angle = 0, hjust = 1),
plot.background = element_rect(fill = bg.col),
plot.margin = margin(0.5, 1, 0.5, 0.5, "cm"))
if(!missing(x)){
return(list(p = p, intersections = intersections, curve = curve))
} else {
return(list(p = p, curve = curve))
}
} |
source(system.file("doc/normalization.R", package="psd"), echo=TRUE) |
JohnsonJohnson
library(forecast)
?ets
fit1 = ets(JohnsonJohnson)
fit1
JohnsonJohnson
head(JohnsonJohnson)
tail(JohnsonJohnson)
(f1= forecast(fit1,h=10))
?forecast.ets
plot(f1, main='Johnson Shares', ylab='Quartery Earnings', xlab='Time', flty = 3)
par(mfrow=c(1,1))
f2 = auto.arima(JohnsonJohnson)
summary(f2)
tail(JohnsonJohnson)
forecast(f2,h=5)
library(tseries)
plot(JohnsonJohnson)
ndiffs(JohnsonJohnson)
plot(diff(JohnsonJohnson))
plot(Nile)
plot(diff(Nile))
ndiffs(Nile)
djj = diff(JohnsonJohnson)
plot(djj)
dnile = diff(Nile)
plot(dnile)
adf.test(djj)
Acf(dnile)
?arima
Pacf(dnile)
fit3 = arima(Nile, order=c(0,1,1))
fit3
(fit3b = arima(Nile, order=c(1,1,1)))
qqnorm(fit3$residuals)
qqline(fit3$residuals)
Box.test(fit3$residuals, type='Ljung-Box')
forecast(fit3,4)
Nile
library(forecast)
fit4 = auto.arima(Nile)
fit4
forecast(fit4,5)
plot(forecast(fit4,5)) |
context("gainOffsetRescaleCpp")
suppressPackageStartupMessages(library(raster))
r <- raster(vals = 1, ncol = 2, nrow = 2)
r <- stack(r,r*2)
r[[1]][1:4] <- c(NA, -100, 100, 0)
gain <- c(.1,.2)
offset <- c(.1,.4)
clamp <- list(c(TRUE,FALSE), c(FALSE,TRUE), c(TRUE, TRUE), c(FALSE, FALSE))
expected <-list(c(NA, 0, 10.1, 0.1,rep(.8,4)),
c(NA, -9.9, 1, 0.1, rep(.8,4)),
c(NA, 0, 1, 0.1, rep(.8,4)),
c(NA, -9.9, 10.1, 0.1,rep(.8,4)))
test_that("NA, clamping, general",{
for(i in seq_along(clamp)){
out <- calc(r, function(x) gainOffsetRescale(x, gain, offset, clamp[[i]]), forcefun=T)
expect_equal(as.vector(out[]), expected[[i]])
}
}) |
plot_la <-
function(x,y,z, use.locfdr=FALSE, cols=c("red","green","blue"),cex=0.5)
{
addTrans<-function(color,trans)
{
if (length(color)!=length(trans)&!any(c(length(color),length(trans))==1)) stop("Vector lengths not correct")
if (length(color)==1 & length(trans)>1) color <- rep(color,length(trans))
if (length(trans)==1 & length(color)>1) trans <- rep(trans,length(color))
num2hex <- function(x)
{
hex <- unlist(strsplit("0123456789ABCDEF",split=""))
return(paste(hex[(x-x%%16)/16+1],hex[x%%16+1],sep=""))
}
rgb <- rbind(col2rgb(color),trans)
res <- paste("
return(res)
}
if(use.locfdr)
{
l<-locfdr(z, plot=0)
grp<-rep(2, length(z))
grp[z<=max(z[z<median(z) & l$fdr<=0.5])]<-1
grp[z>=min(z[z>median(z) & l$fdr<=0.5])]<-3
}else{
cuts<-quantile(z, c(0.3333, 0.6666))
grp<-rep(2, length(z))
grp[z<cuts[1]]<-1
grp[z>cuts[2]]<-3
}
plot(x,y, type="n")
all.grp<-unique(grp)
all.grp<-all.grp[order(all.grp)]
r<-NULL
r<-c(r,paste("LA score: ", signif(sum(x*y*z),3)))
for(i in 1:length(all.grp))
{
s<-which(grp == all.grp[i])
points(x[s],y[s],col=addTrans(cols[i],120), pch=19, cex=cex)
r<-c(r, paste("group:", i,"(", signif(median(z[s]),2), ")", cols[i], ", corr=", round(cor(x[s],y[s]), 3)))
}
r
} |
ECSuit=function(value, crop="wheat"){
if(crop=="wheat"){suitclass=ifelse(value>6,4,ifelse(value>4,3,ifelse(value>2,2,1)))}
else if(crop=="maize"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="rice"){suitclass=ifelse(value>10,4,ifelse(value>6,3,ifelse(value>3,2,1)))}
else if(crop=="sorghum"){suitclass=ifelse(value>8,4,ifelse(value>4,3,ifelse(value>2,2,1)))}
else if(crop=="millet"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="barley"){suitclass=ifelse(value>20,4,ifelse(value>12,3,ifelse(value>6,2,1)))}
else if(crop=="oat"){suitclass=ifelse(value>20,4,ifelse(value>12,3,ifelse(value>6,2,1)))}
else if(crop=="groundnut"){suitclass=ifelse(value>8,4,ifelse(value>4,3,ifelse(value>2,2,1)))}
else if(crop=="bean"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="pea"){suitclass=ifelse(value>2,4,ifelse(value>1,3,ifelse(value>0.5,2,1)))}
else if(crop=="gram"){suitclass=ifelse(value>2,4,ifelse(value>1,3,ifelse(value>0.5,2,1)))}
else if(crop=="soybean"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="lentil"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="poplar"){suitclass=ifelse(value>8,4,ifelse(value>4,3,ifelse(value>2,2,1)))}
else if(crop=="grevillea"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="sesbania"){suitclass=ifelse(value>2,4,ifelse(value>1,3,ifelse(value>0.5,2,1)))}
else if(crop=="gram"){suitclass=ifelse(value>2,4,ifelse(value>1,3,ifelse(value>0.5,2,1)))}
else if(crop=="calliandra"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="leucaena"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="acacia"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="eucalyptus"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="teak"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="maple"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="ash"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="sesame"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="sunflower"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="oilpalm"){suitclass=ifelse(value>8,4,ifelse(value>4,3,ifelse(value>2,2,1)))}
else if(crop=="castor"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="safflower"){suitclass=ifelse(value>12,4,ifelse(value>7.6,3,ifelse(value>6.2,2,1)))}
else if(crop=="mustard"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="rapeseed"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="olive"){suitclass=ifelse(value>5,4,ifelse(value>3.8,3,ifelse(value>2.7,2,1)))}
else if(crop=="cashew"){suitclass=ifelse(value>13,4,ifelse(value>10,3,ifelse(value>2,2,1)))}
else if(crop=="coconut"){suitclass=ifelse(value>25,4,ifelse(value>15,3,ifelse(value>3,2,1)))}
else if(crop=="almond"){suitclass=ifelse(value>6,4,ifelse(value>3,3,ifelse(value>1,2,1)))}
else if(crop=="pistachio"){suitclass=ifelse(value>10,4,ifelse(value>5,3,ifelse(value>1,2,1)))}
else if(crop=="cotton"){suitclass=ifelse(value>10,4,ifelse(value>5,3,ifelse(value>3,2,1)))}
else if(crop=="sugarcane"){suitclass=ifelse(value>10,4,ifelse(value>5,3,ifelse(value>3,2,1)))}
else if(crop=="tea"){suitclass=ifelse(value>2,4,ifelse(value>1.5,3,ifelse(value>1,2,1)))}
else if(crop=="coffee"){suitclass=ifelse(value>2,4,ifelse(value>1.5,3,ifelse(value>1,2,1)))}
else if(crop=="rubber"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="jute"){suitclass=ifelse(value>2,4,ifelse(value>1,3,ifelse(value>0.5,2,1)))}
else if(crop=="saffron"){suitclass=ifelse(value>8,4,ifelse(value>4,3,ifelse(value>2,2,1)))}
else if(crop=="pyrethrum"){suitclass=ifelse(value>8,4,ifelse(value>4,3,ifelse(value>2,2,1)))}
else if(crop=="tobacco"){suitclass=ifelse(value>2,4,ifelse(value>1.5,3,ifelse(value>1,2,1)))}
else if(crop=="sweetpotato"){suitclass=ifelse(value>6,4,ifelse(value>3,3,ifelse(value>1,2,1)))}
else if(crop=="cassava"){suitclass=ifelse(value>6,4,ifelse(value>3,3,ifelse(value>1,2,1)))}
else if(crop=="potato"){suitclass=ifelse(value>6,4,ifelse(value>3,3,ifelse(value>1,2,1)))}
else if(crop=="carrot"){suitclass=ifelse(value>7,4,ifelse(value>4.5,3,ifelse(value>1,2,1)))}
else if(crop=="turnip"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="radish"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="mango"){suitclass=ifelse(value>3,4,ifelse(value>2,3,ifelse(value>0.5,2,1)))}
else if(crop=="grape"){suitclass=ifelse(value>3,4,ifelse(value>1.5,3,ifelse(value>0.5,2,1)))}
else if(crop=="citrus"){suitclass=ifelse(value>3,4,ifelse(value>1.5,3,ifelse(value>0.5,2,1)))}
else if(crop=="pomegranate"){suitclass=ifelse(value>9,4,ifelse(value>3,3,ifelse(value>0.5,2,1)))}
else if(crop=="banana"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="watermelon"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="melon"){suitclass=ifelse(value>8,4,ifelse(value>6,3,ifelse(value>4,2,1)))}
else if(crop=="pineaple"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="pawpaw"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="avocado"){suitclass=ifelse(value>5,4,ifelse(value>4,3,ifelse(value>2,2,1)))}
else if(crop=="cabbage"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="tomato"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="vegetable"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="broccoli"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="cauliflower"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="okra"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="chilli"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="pepper"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="ginger"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="tumeric"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="vanilla"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="lemongrass"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="cardamom"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="onion"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="alfalfa"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="rose"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="jasmine"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="yam"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="pumpkin"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="butternut"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
else if(crop=="squash"){suitclass=ifelse(value>4,4,ifelse(value>2,3,ifelse(value>1,2,1)))}
return(suitclass)
} |
getProb<-function(ts){
N=length(ts)
prob1<-mean(ts)
freq11<-sum((ts[-1]+ts[-N])==2)
freq1<-sum(ts[-N]==1)
prob11<-freq11/freq1
prob10<-sum(ts[-1]==1&ts[-N]==0)/sum(ts[-N]==0)
return(list(prob1,prob11,prob10))
} |
context("PipeOpBoxCox")
test_that("PipeOpBoxCox - general functionality", {
task = mlr_tasks$get("iris")
op = PipeOpBoxCox$new()
expect_pipeop(op)
expect_datapreproc_pipeop_class(PipeOpBoxCox, task = task)
result = train_pipeop(op, inputs = list(task))
expect_task(result[[1]])
result = predict_pipeop(op, inputs = list(task))
expect_task(result[[1]])
})
test_that("PipeOpBoxCox - receive expected result", {
task = mlr_tasks$get("iris")
op = PipeOpBoxCox$new(param_vals = list(standardize = FALSE))
result = train_pipeop(op, inputs = list(task))
result.pred = predict_pipeop(op, inputs = list(task))
lambda = op$state$bc$Petal.Length$lambda
lambda.id = lambda != 0
x = task$data()[[2]]
x.trans = if (lambda.id) ((x^lambda) - 1)/lambda else log(x)
expect_equal(x.trans, result[[1]]$data()[[2]])
expect_equal(x.trans, result.pred[[1]]$data()[[2]])
op = PipeOpBoxCox$new(param_vals = list(upper = 0.5, lower = 0))
result = train_pipeop(op, inputs = list(task))
lambda.new = unlist(lapply(op$state$bc[1:4], function(x) x$lambda))
expect_true(all(lambda.new <= 0.5 & lambda.new >= 0))
}) |
handle_triggers <- function(target, meta, config) {
class(target) <- handle_triggers_class(target, config)
handle_triggers_impl(target, meta, config)
}
handle_triggers_class <- function(target, config) {
if (is_subtarget(target, config)) {
return("subtarget")
}
if (is_registered_dynamic(target, config)) {
return("dynamic_registered")
}
if (is_dynamic(target, config)) {
return("dynamic_unregistered")
}
"static"
}
handle_triggers_impl <- function(target, meta, config) {
UseMethod("handle_triggers_impl")
}
handle_triggers_impl.subtarget <- function(target, meta, config) {
FALSE
}
handle_triggers_impl.dynamic_registered <- function(target, meta, config) {
FALSE
}
handle_triggers_impl.dynamic_unregistered <- function(target, meta, config) {
target <- unclass(target)
static_ok <- !any_static_triggers(target, meta, config) ||
recover_target(target, meta, config)
dynamic_ok <- !check_trigger_dynamic(target, meta, config)
register_subtargets(target, static_ok, dynamic_ok, config)
TRUE
}
handle_triggers_impl.static <- function(target, meta, config) {
target <- unclass(target)
any_triggers <- any_static_triggers(target, meta, config) ||
any_subtargetlike_triggers(target, meta, config)
!any_triggers || recover_target(target, meta, config)
}
recover_target <- function(target, meta, config) {
if (!config$settings$recover) {
return(FALSE)
}
key <- recovery_key_impl(target = target, meta = meta, config = config)
if (!config$cache$exists(key, namespace = "recover")) {
return(FALSE)
}
meta_hash <- config$cache$get_hash(
key,
namespace = "recover"
)
recovery_meta <- config$cache$driver$get_object(meta_hash)
value_hash <- recovery_meta$hash
exists_data <- config$cache$exists_object(meta_hash) &&
config$cache$exists_object(value_hash)
if (!exists_data) {
return(FALSE)
}
meta_old <- drake_meta_old(target, config)
on.exit(config$meta_old[[target]] <- meta_old)
config$meta_old[[target]] <- recovery_meta
meta <- subsume_old_meta(target, meta, config)
if (any_subtargetlike_triggers(target, meta, config)) {
return(FALSE)
}
if (!is_dynamic(target, config)) {
config$logger$target(target, "recover")
}
config$logger$disk(
"recovered target originally stored on",
recovery_meta$date,
target = target
)
config$cache$driver$set_hash(
key = target,
namespace = "meta",
hash = meta_hash
)
config$cache$driver$set_hash(
key = target,
namespace = config$cache$default_namespace,
hash = value_hash
)
set_progress(
target = target,
value = "done",
config = config
)
TRUE
}
recover_subtarget <- function(subtarget, parent, config) {
meta <- drake_meta_(subtarget, config)
class(subtarget) <- "subtarget"
recover_target(subtarget, meta, config)
}
recovery_key <- function(target, meta, config) {
if (is_subtarget(target, config)) {
class(target) <- "subtarget"
}
recovery_key_impl(target, meta, config)
}
recovery_key_impl <- function(target, meta, config) {
UseMethod("recovery_key_impl")
}
recovery_key_impl.subtarget <- function(target, meta, config) {
parent <- subtarget_parent(target, config)
parent_meta <- drake_meta_(parent, config)
parent_key <- recovery_key(parent, parent_meta, config)
x <- c(unclass(target), parent_key)
x <- paste(x, collapse = "|")
config$cache$digest(x, serialize = FALSE)
}
recovery_key_impl.default <- function(target, meta, config, ...) {
change_hash <- ifelse(
is.null(meta$trigger$value),
NA_character_,
config$cache$digest(meta$trigger$value)
)
x <- c(
meta$command,
meta$dependency_hash,
meta$input_file_hash,
meta$output_file_hash,
meta$trigger$mode,
meta$format,
as.character(meta$seed),
safe_deparse(meta$trigger$condition, backtick = TRUE),
change_hash
)
x <- paste(x, collapse = "|")
config$cache$digest(x, serialize = FALSE)
}
any_static_triggers <- function(target, meta, config) {
if (check_triggers_stage1(target, meta, config)) {
return(TRUE)
}
condition <- check_trigger_condition(target, meta, config)
if (is_final_trigger(condition)) {
return(condition)
}
if (condition) {
return(TRUE)
}
if (check_triggers_stage2(target, meta, config)) {
return(TRUE)
}
FALSE
}
any_subtargetlike_triggers <- function(target, meta, config) {
if (check_trigger_format_file(target, meta, config)) {
return(TRUE)
}
FALSE
}
any_subtarget_triggers <- function(target, subtargets, config) {
any(check_subtarget_triggers(target, subtargets, config))
}
check_triggers_stage1 <- function(target, meta, config) {
if (check_trigger_imported(target, meta, config)) {
return(TRUE)
}
if (check_trigger_missing(target, meta, config)) {
return(TRUE)
}
FALSE
}
check_triggers_stage2 <- function(target, meta, config) {
if (check_trigger_command(target, meta, config)) {
return(TRUE)
}
if (check_trigger_depend(target, meta, config)) {
return(TRUE)
}
if (check_trigger_file(target, meta, config)) {
return(TRUE)
}
if (check_trigger_seed(target, meta, config)) {
return(TRUE)
}
if (check_trigger_format(target, meta, config)) {
return(TRUE)
}
if (check_trigger_change(target, meta, config)) {
return(TRUE)
}
FALSE
}
check_trigger_imported <- function(target, meta, config) {
if (meta$imported) {
return(TRUE)
}
FALSE
}
check_trigger_missing <- function(target, meta, config) {
if (meta$missing) {
config$logger$disk("trigger missing", target = target)
return(TRUE)
}
FALSE
}
check_trigger_condition <- function(target, meta, config) {
condition <- trigger_condition(target = target, meta = meta, config = config)
stopifnot(is.logical(condition))
if (condition) {
config$logger$disk("trigger condition", target = target)
}
return(condition)
}
check_trigger_command <- function(target, meta, config) {
if (identical(meta$trigger$command, TRUE)) {
if (trigger_command(target, meta, config)) {
config$logger$disk("trigger command", target = target)
return(TRUE)
}
}
FALSE
}
check_trigger_depend <- function(target, meta, config) {
if (identical(meta$trigger$depend, TRUE)) {
if (trigger_depend(target, meta, config)) {
config$logger$disk("trigger depend", target = target)
return(TRUE)
}
}
FALSE
}
check_trigger_file <- function(target, meta, config) {
if (identical(meta$trigger$file, TRUE)) {
if (trigger_file(target, meta, config)) {
config$logger$disk("trigger file", target = target)
return(TRUE)
}
}
FALSE
}
check_trigger_seed <- function(target, meta, config) {
if (identical(meta$trigger$seed, TRUE)) {
if (trigger_seed(target, meta, config)) {
config$logger$disk("trigger seed", target = target)
return(TRUE)
}
}
FALSE
}
check_trigger_change <- function(target, meta, config) {
if (!is.null(meta$trigger$change)) {
if (trigger_change(target = target, meta = meta, config = config)) {
config$logger$disk("trigger change", target = target)
return(TRUE)
}
}
config$logger$disk("skip", target = target)
FALSE
}
check_trigger_format <- function(target, meta, config) {
if (identical(meta$trigger$format, TRUE)) {
if (trigger_format(target, meta, config)) {
config$logger$disk("trigger format", target = target)
return(TRUE)
}
}
FALSE
}
check_trigger_dynamic <- function(target, meta, config) {
if (identical(meta$trigger$depend, TRUE)) {
if (trigger_dynamic(target, meta, config)) {
config$logger$disk("trigger depend (dynamic)", target = target)
return(TRUE)
}
}
FALSE
}
check_trigger_format_file <- function(target, meta, config) {
if (identical(meta$trigger$file, TRUE) && meta$format == "file") {
if (trigger_format_file(target, meta, config)) {
config$logger$disk("trigger file (format file)", target = target)
return(TRUE)
}
}
FALSE
}
check_subtarget_triggers <- function(target, subtargets, config) {
out <- target_missing(subtargets, config)
spec <- config$spec[[target]]
format <- spec$format %||NA% "none"
if (identical(spec$trigger$file, TRUE) && format == "file" && !all(out)) {
i <- !out
out[i] <- out[i] | check_trigger_subtarget_format_file(
subtargets[i],
target,
config
)
}
out[is.na(out)] <- TRUE
if (any(out)) {
config$logger$disk("trigger subtarget (special)", target = target)
}
out
}
check_trigger_subtarget_format_file <- function(
subtargets,
parent,
config
) {
ht_set(config$ht_is_subtarget, subtargets)
out <- lightly_parallelize(
X = subtargets,
FUN = check_trigger_subtarget_format_file_impl,
jobs = config$settings$jobs_preprocess,
parent = parent,
config = config
)
unlist(out)
}
check_trigger_subtarget_format_file_impl <- function(
subtarget,
parent,
config
) {
meta <- drake_meta_(subtarget, config)
trigger_format_file(subtarget, meta, config)
}
trigger_command <- function(target, meta, config) {
if (is.null(meta$command)) {
return(FALSE)
}
meta_old <- drake_meta_old(target, config)
command <- meta_elt(field = "command", meta = meta_old)
!identical(command, meta$command)
}
trigger_depend <- function(target, meta, config) {
if (is.null(meta$dependency_hash)) {
return(FALSE)
}
meta_old <- drake_meta_old(target, config)
dependency_hash <- meta_elt(field = "dependency_hash", meta = meta_old)
!identical(dependency_hash, meta$dependency_hash)
}
trigger_file <- function(target, meta, config) {
if (!length(target) || !length(config) || !length(meta)) {
return(FALSE)
}
if (trigger_file_missing(target, meta, config)) {
return(TRUE)
}
if (trigger_file_hash(target, meta, config)) {
return(TRUE)
}
FALSE
}
trigger_file_missing <- function(target, meta, config) {
file_out <- config$spec[[target]]$deps_build$file_out
for (file in file_out) {
if (!file.exists(config$cache$decode_path(file))) {
return(TRUE)
}
}
FALSE
}
trigger_file_hash <- function(target, meta, config) {
for (hash_name in c("input_file_hash", "output_file_hash")) {
meta_old <- drake_meta_old(target, config)
old_file_hash <- meta_elt(field = hash_name, meta = meta_old)
if (!identical(old_file_hash, meta[[hash_name]])) {
return(TRUE)
}
}
FALSE
}
trigger_seed <- function(target, meta, config) {
meta_old <- drake_meta_old(target, config)
seed <- meta_elt(field = "seed", meta = meta_old)
!identical(as.integer(seed), as.integer(meta$seed))
}
trigger_format <- function(target, meta, config) {
meta_old <- drake_meta_old(target, config)
format_new <- meta$format
format_old <- meta_old$format
if (is.null(format_new) || is.null(format_old)) {
return(FALSE)
}
!identical(format_new, format_old)
}
trigger_condition <- function(target, meta, config) {
if (!length(target) || !length(config) || !length(meta)) {
return(FALSE)
}
if (is.language(meta$trigger$condition)) {
try_load_deps(
config$spec[[target]]$deps_condition$memory,
config = config
)
value <- eval(meta$trigger$condition, envir = config$envir_targets)
} else {
value <- meta$trigger$condition
}
value <- as.logical(value)
if (length(value) != 1 || !is.logical(value)) {
msg <- paste0(
"The `condition` trigger must evaluate to a logical of length 1. ",
"got `", value, "` for target ", target, "."
)
config$logger$disk(paste("Error:", msg))
stop0(msg)
}
condition_decision(value = value, mode = meta$trigger$mode)
}
condition_decision <- function(value, mode) {
if (identical(mode, "whitelist") && identical(value, TRUE)) {
return(TRUE)
}
if (identical(mode, "blacklist") && identical(value, FALSE)) {
return(as_final_trigger(FALSE))
}
if (identical(mode, "condition")) {
return(as_final_trigger(value))
}
FALSE
}
as_final_trigger <- function(x) {
structure(x, class = "final_trigger")
}
is_final_trigger <- function(x) {
inherits(x, "final_trigger")
}
trigger_change <- function(target, meta, config) {
if (!length(target) || !length(config) || !length(meta)) {
return(FALSE)
}
if (!config$cache$exists(key = target, namespace = "change")) {
return(TRUE)
}
old_value <- config$cache$get(
key = target,
namespace = "change",
use_cache = FALSE
)
!identical(old_value, meta$trigger$value)
}
trigger_dynamic <- function(target, meta, config) {
meta_old <- drake_meta_old(target, config)
old_hash <- meta_elt(field = "dynamic_dependency_hash", meta = meta_old)
if (!identical(meta$dynamic_dependency_hash, old_hash)) {
return(TRUE)
}
if (!identical(meta$max_expand, meta_old$max_expand)) {
return(TRUE)
}
FALSE
}
trigger_format_file <- function(target, meta, config) {
meta_old <- drake_meta_old(target, config)
hash_new <- meta$format_file_hash
hash_old <- meta_old$format_file_hash
!identical(hash_new, hash_old)
} |
library(testthat)
escapeString <- function(s) {
t <- gsub("(\\\\)", "\\\\\\\\", s)
t <- gsub("(\n)", "\\\\n", t)
t <- gsub("(\r)", "\\\\r", t)
t <- gsub("(\")", "\\\\\"", t)
return(t)
}
prepStr <- function(s, varName="html") {
t <- escapeString(s)
u <- eval(parse(text=paste0("\"", t, "\"")))
if(s!=u) stop("Unable to escape string!")
if(is.null(varName)) varName <- "html"
t <- paste0("\t", varName, " <- \"", t, "\"")
utils::writeClipboard(t)
return(invisible())
}
context("GET VALUES TESTS")
test_that("retrieving cell value", {
saleIds <- c(5334, 5336, 5338)
items <- c("Apple", "Orange", "Banana")
quantities <- c(5, 8, 6)
prices <- c(0.34452354, 0.4732543, 1.3443243)
library(basictabler)
tbl <- BasicTable$new(compatibility=list(headerCellsAsTD=TRUE))
tbl$addData(data.frame(saleIds, items, quantities, prices, stringsAsFactors=FALSE),
firstColumnAsRowHeaders=TRUE,
explicitColumnHeaders=c("Sale ID", "Item", "Quantity", "Price"),
columnFormats=list(NULL, NULL, NULL, "%.2f"))
v1 <- tbl$cells$getValue(2, 4)
v2 <- tbl$cells$getValue(2, 4, formattedValue=TRUE)
rowValues <- tbl$cells$getRowValues(2, asList=TRUE)
rowValues <- paste0(class(rowValues), ": ", paste(rowValues, collapse=", "))
columnValues <- tbl$cells$getColumnValues(3)
columnValues <- paste0(class(columnValues), ": ", paste(columnValues, collapse=", "))
str <- "Sale ID Item Quantity Price \n 5334 Apple 5 0.34 \n 5336 Orange 8 0.47 \n 5338 Banana 6 1.34 "
html <- "<table class=\"Table\">\n <tr>\n <td class=\"ColumnHeader\">Sale ID</td>\n <td class=\"ColumnHeader\">Item</td>\n <td class=\"ColumnHeader\">Quantity</td>\n <td class=\"ColumnHeader\">Price</td>\n </tr>\n <tr>\n <td class=\"RowHeader\">5334</td>\n <td class=\"Cell\">Apple</td>\n <td class=\"Cell\">5</td>\n <td class=\"Cell\">0.34</td>\n </tr>\n <tr>\n <td class=\"RowHeader\">5336</td>\n <td class=\"Cell\">Orange</td>\n <td class=\"Cell\">8</td>\n <td class=\"Cell\">0.47</td>\n </tr>\n <tr>\n <td class=\"RowHeader\">5338</td>\n <td class=\"Cell\">Banana</td>\n <td class=\"Cell\">6</td>\n <td class=\"Cell\">1.34</td>\n </tr>\n</table>"
expect_identical(tbl$print(asCharacter=TRUE), str)
expect_identical(as.character(tbl$getHtml()), html)
expect_equal(v1, 0.34452354)
expect_identical(v2, "0.34")
expect_identical(rowValues, "list: 5334, Apple, 5, 0.34452354")
expect_identical(columnValues, "numeric: 5, 8, 6")
}) |
NULL
NULL
fvbmstderr <- function(data,covarmat) {
N <- dim(data)[1]
D <- dim(data)[2]
stderr <- sqrt(diag(covarmat))/sqrt(N)
bvec <- stderr[c(1:D)]
Mmat <- matrix(0,D,D)
Mmat[lower.tri(Mmat)] <- stderr[-c(1:D)]
Mmat <- Mmat + t(Mmat)
return(list(bvec_se = bvec, Mmat_se = Mmat))
}
fvbmHess <- function(data, model) {
bvec <- model[[2]]
Mmat <- model[[3]]
N <- dim(data)[1]
D <- length(bvec)
HessComps <- list()
HessComps[[1]] <- matrix(0,D+1,D+1)
for (jj in 1:D) {
HessComps[[jj]] <- matrix(0,D+1,D+1)
for (ii in 1:N) {
x_bar <- as.matrix(c(1,data[ii,]),D+1,1)
HessComps[[jj]] <- HessComps[[jj]] - x_bar%*%t(x_bar)/
cosh(sum(Mmat[jj,]*data[ii,])+bvec[jj])^2
}
}
Index <- matrix(0,D,D)
Index[lower.tri(Index)] <- 1:(D*(D-1)/2)
Index <- Index + t(Index)
BigHess <- matrix(0,D+D*(D-1)/2,D+D*(D-1)/2)
for (jj in 1:D) {
WHICH <- which(Index[lower.tri(Index)]%in%Index[jj,])
NonZero <- HessComps[[jj]][-c(jj+1),]
NonZero <- NonZero[,-c(jj+1)]
BigHess[c(jj,D+WHICH),c(jj,D+WHICH)] <- BigHess[c(jj,D+WHICH),c(jj,D+WHICH)] +
NonZero
}
return(BigHess)
}
fvbmtests <- function(data,model,nullmodel) {
Hess <- fvbmHess(data,model)
covmat <- fvbmcov(data,model,fvbmHess)
stderr <- fvbmstderr(data,covmat)
zb <- (model$bvec-nullmodel$bvec)/stderr$bvec_se
zM <- (model$Mmat-nullmodel$Mmat)/stderr$Mmat_se
diag(zM)<-NA
pvalb <- 2*pnorm(-abs(zb))
pvalM <- 2*pnorm(-abs(zM))
diag(pvalM)<-NA
return(list(bvec_z = zb, bvec_p = pvalb, Mmat_z = zM, Mmat_p = pvalM))
}
marginpfvbm <- function(bvec, Mmat) {
n <- length(bvec)
strings <- expand.grid(rep(list(0:1),n))
allprob <-allpfvbm(bvec,Mmat)
margins <- array(NA,n)
for (i in seq_len(n)){
margins[i] <- sum(allprob[which(strings[,i]==1)])
}
return(margins)
}
NULL |
aa2mass <- function(peptideSequence,
mass=AA$Monoisotopic,
letter1=AA$letter1){
return(.Call("aa2mass_main", peptideSequence, mass, letter1, PACKAGE = "protViz")$output)
} |
implied_ml_lvm <- function(model,all = FALSE){
if (model@cpp){
x <- formModelMatrices_cpp(model)
} else {
x <- formModelMatrices(model)
}
if (model@cpp){
x <- impliedcovstructures_cpp(x, "zeta_within", type = model@types$within_latent, all = all)
x <- impliedcovstructures_cpp(x, "epsilon_within", type = model@types$within_residual, all = all)
x <- impliedcovstructures_cpp(x, "zeta_between", type = model@types$between_latent, all = all)
x <- impliedcovstructures_cpp(x, "epsilon_between", type = model@types$between_residual, all = all)
} else {
x <- impliedcovstructures(x, "zeta_within", type = model@types$within_latent, all = all)
x <- impliedcovstructures(x, "epsilon_within", type = model@types$within_residual, all = all)
x <- impliedcovstructures(x, "zeta_between", type = model@types$between_latent, all = all)
x <- impliedcovstructures(x, "epsilon_between", type = model@types$between_residual, all = all)
}
nGroup <- length(x)
design <- model@extramatrices$design
nVar <- nrow(design)
nMaxInCluster <- ncol(design)
I_eta <- model@extramatrices$I_eta
for (g in 1:nGroup){
BetaStar_within <- as.matrix(solve(Diagonal(nrow(x[[g]]$beta_within)) - x[[g]]$beta_within))
BetaStar_between <- as.matrix(solve(Diagonal(nrow(x[[g]]$beta_between)) - x[[g]]$beta_between))
Betasta_sigmaZeta_within <- BetaStar_within %*% x[[g]]$sigma_zeta_within
Betasta_sigmaZeta_between <- BetaStar_between %*% x[[g]]$sigma_zeta_between
impMu <- x[[g]]$nu + x[[g]]$lambda %*% BetaStar_between %*% x[[g]]$nu_eta
fullMu <- as(do.call(rbind,lapply(seq_len(nMaxInCluster),function(t){
impMu[design[,t]==1,,drop=FALSE]
})), "matrix")
nLatent <- ncol(x[[g]]$lambda)
sigma_eta_within <- Betasta_sigmaZeta_within %*% t(BetaStar_within)
sigma_eta_between <- Betasta_sigmaZeta_between %*% t(BetaStar_between)
fullSigma_within_latent <- as.matrix(Diagonal(nMaxInCluster) %x% sigma_eta_within)
fullSigma_within <- (Diagonal(nMaxInCluster) %x% x[[g]]$lambda) %*% fullSigma_within_latent %*% (Diagonal(nMaxInCluster) %x% t(x[[g]]$lambda)) + (Diagonal(nMaxInCluster) %x% x[[g]]$sigma_epsilon_within)
fullSigma_between <- matrix(1,nMaxInCluster,nMaxInCluster) %x% (
x[[g]]$lambda %*% sigma_eta_between %*% t(x[[g]]$lambda) + x[[g]]$sigma_epsilon_between
)
fullSigma <- fullSigma_within + fullSigma_between
x[[g]]$mu <- fullMu
x[[g]]$sigma <- fullSigma[as.vector(design)==1,as.vector(design)==1]
x[[g]]$sigma <- as.matrix(0.5*(x[[g]]$sigma + t(x[[g]]$sigma)))
x[[g]]$kappa <- solve_symmetric(x[[g]]$sigma, logdet = TRUE)
if (!all){
Lambda_BetaStar_within <- x[[g]]$lambda %*% BetaStar_within
Lambda_BetaStar_between <- x[[g]]$lambda %*% BetaStar_between
tBetakronBeta_within <- t(BetaStar_within) %x% BetaStar_within
tBetakronBeta_between <- t(BetaStar_between) %x% BetaStar_between
x[[g]]$BetaStar_within <- BetaStar_within
x[[g]]$BetaStar_between <- BetaStar_between
x[[g]]$Betasta_sigmaZeta_within <- Betasta_sigmaZeta_within
x[[g]]$Betasta_sigmaZeta_between <- Betasta_sigmaZeta_between
x[[g]]$Lambda_BetaStar_within <- Lambda_BetaStar_within
x[[g]]$Lambda_BetaStar_between <- Lambda_BetaStar_between
x[[g]]$tBetakronBeta_within <- tBetakronBeta_within
x[[g]]$tBetakronBeta_between <- tBetakronBeta_between
x[[g]]$sigma_eta_within <- sigma_eta_within
x[[g]]$sigma_eta_between <- sigma_eta_between
x[[g]]$lamWkronlamW <- x[[g]]$lambda %x% x[[g]]$lambda
} else {
x[[g]]$sigma_within <- x[[g]]$lambda %*% sigma_eta_within %*% t(x[[g]]$lambda) + x[[g]]$sigma_epsilon_within
x[[g]]$sigma_between <- x[[g]]$lambda %*% sigma_eta_between %*% t(x[[g]]$lambda) + x[[g]]$sigma_epsilon_between
x[[g]]$sigma_eta_within <- sigma_eta_within
x[[g]]$sigma_eta_between <- sigma_eta_between
x[[g]]$sigma_eta <- sigma_eta_within + sigma_eta_between
x[[g]]$sigma_crosssection <- x[[g]]$sigma_within + x[[g]]$sigma_between
}
}
x
} |
seqgen <- function(n, length, alphabet, p=NULL) {
m <- matrix(nrow=n, ncol=length)
for (i in 1:n)
m[i,] <- sample(alphabet, length, replace=TRUE, p)
colnames(m) <- paste("[",1:length,"]", sep="")
rownames(m) <- 1:n
return(m)
}
|
cf_region = function(region){
get_stn_html = GET("https://cliflo.niwa.co.nz/pls/niwp/wstn.get_stn_html")
region_xml = html_nodes(read_html(get_stn_html), "td.p_selected select.general option")[-1]
region_names = html_text(region_xml)
if (!missing(region)){
region_names_lower = tolower(region_names)
region = tolower(region)
region.choice = pmatch(region, region_names_lower)
if (is.na(region.choice)){
warning("region not matched - ignoring", immediate. = TRUE)
region.choice = menu(region_names, title = "Regions")
if (region.choice)
return(html_attr(region_xml[region.choice], "value"))
} else {
return(html_attr(region_xml[region.choice], "value"))
}
} else {
region.choice = menu(region_names, title = "Regions")
if (region.choice)
return(html_attr(region_xml[region.choice], "value"))
}
}
save_KML = function(df, file_name, file_path){
df$hoverstate = "
df$hoverstate[df$open] = "
df$name = as.character(df$name)
doc = xml_new_root("kml",
xmlns = "http://www.opengis.net/kml/2.2",
"xmlns:gx" = "http://www.google.com/kml/ext/2.2",
"xmlns:kml" = "http://www.opengis.net/kml/2.2",
"xmlns:atom" = "http://w3.org/2005/Atom") %>%
xml_add_child("Document") %>%
xml_add_child("name", gsub("_", " ", strsplit(file_name, ".kml")[[1]])) %>%
xml_add_sibling("open", 1) %>%
xml_add_sibling("StyleMap", id = "hoverStateOpen") %>%
xml_add_child("Pair") %>%
xml_add_child("key", "normal") %>%
xml_add_sibling("styleUrl", "
xml_parent() %>%
xml_add_sibling("Pair") %>%
xml_add_child("key", "highlight") %>%
xml_add_sibling("styleUrl", "
xml_parent() %>%
xml_parent() %>%
xml_add_sibling("StyleMap", id = "hoverStateClosed") %>%
xml_add_child("Pair") %>%
xml_add_child("key", "normal") %>%
xml_add_sibling("styleUrl", "
xml_parent() %>%
xml_add_sibling("Pair") %>%
xml_add_child("key", "highlight") %>%
xml_add_sibling("styleUrl", "
xml_parent() %>%
xml_parent() %>%
xml_add_sibling("Style", id = "highlightStateOpen") %>%
xml_add_child("IconStyle") %>%
xml_add_child("scale", "1.3") %>%
xml_add_sibling("Icon") %>%
xml_add_child("href", "http://maps.google.com/mapfiles/kml/paddle/grn-circle.png") %>%
xml_parent() %>%
xml_parent() %>%
xml_add_sibling("LabelStyle") %>%
xml_add_child("scale", "1.3") %>%
xml_parent() %>%
xml_parent() %>%
xml_add_sibling("Style", id = "highlightStateClosed") %>%
xml_add_child("IconStyle") %>%
xml_add_child("scale", "1.3") %>%
xml_add_sibling("Icon") %>%
xml_add_child("href", "http://maps.google.com/mapfiles/kml/paddle/red-circle.png") %>%
xml_parent() %>%
xml_parent() %>%
xml_add_sibling("LabelStyle") %>%
xml_add_child("scale", "1.3") %>%
xml_parent() %>%
xml_parent() %>%
xml_add_sibling("Style", id = "normalStateOpen") %>%
xml_add_child("IconStyle") %>%
xml_add_child("scale", "0.9") %>%
xml_add_sibling("Icon") %>%
xml_add_child("href", "http://maps.google.com/mapfiles/kml/paddle/grn-circle.png") %>%
xml_parent() %>%
xml_parent() %>%
xml_add_sibling("LabelStyle") %>%
xml_add_child("scale", "0.7") %>%
xml_parent() %>%
xml_parent() %>%
xml_add_sibling("Style", id = "normalStateClosed") %>%
xml_add_child("IconStyle") %>%
xml_add_child("scale", "0.9") %>%
xml_add_sibling("Icon") %>%
xml_add_child("href", "http://maps.google.com/mapfiles/kml/paddle/red-circle.png") %>%
xml_parent() %>%
xml_parent() %>%
xml_add_sibling("LabelStyle") %>%
xml_add_child("scale", "0.7") %>%
xml_parent() %>%
xml_parent() %>%
xml_add_sibling("Folder") %>%
xml_add_child("name", "Closed")
for (i in which(!df$open)) {
doc = doc %>%
xml_add_sibling("Placemark") %>%
xml_add_child("name", df$name[i]) %>%
xml_add_sibling("description", paste0("Agent: ", df$agent[i], "\n",
"Network: ", df$network[i], "\n",
"Start date: ", df$start[i], "\n",
"End date: ", df$end[i], "\n")) %>%
xml_add_sibling("styleUrl", df$hoverstate[i]) %>%
xml_add_sibling("Point") %>%
xml_add_child("coordinates", paste(df$lon[i], df$lat[i], 0, sep = ",")) %>%
xml_parent() %>%
xml_parent()
}
doc = doc %>%
xml_parent() %>%
xml_add_sibling("Folder") %>%
xml_add_child("name", "Open")
for (i in which(df$open)) {
doc = doc %>%
xml_add_sibling("Placemark") %>%
xml_add_child("name", df$name[i]) %>%
xml_add_sibling("description", paste0("Agent: ", df$agent[i], "\n",
"Network: ", df$network[i], "\n",
"Start date: ", df$start[i], "\n",
"End date: ", df$end[i], "\n")) %>%
xml_add_sibling("styleUrl", df$hoverstate[i]) %>%
xml_add_sibling("Point") %>%
xml_add_child("coordinates", paste(df$lon[i], df$lat[i], 0, sep = ",")) %>%
xml_parent() %>%
xml_parent()
}
doc = doc %>%
xml_root()
if (file_name == "my_stations_"){
xml_file = tempfile(file_name, file_path, ".kml")
write_xml(doc, file = xml_file)
} else {
if (!grepl(".kml$", file_name))
file_name = paste0(file_name, ".kml")
xml_file = file.path(file_path, file_name)
write_xml(doc, file = xml_file)
}
message(paste("output KML file:", xml_file))
}
cf_save_kml = function(station, file_name = "my_stations_",
file_path = "."){
if (!is(station, "cfStation"))
stop("station must be a cfStation object")
if (grepl(".kml$", file_name))
file_name = gsub(".kml$", "", file_name)
save_KML(as(station, "data.frame"), file_name = file_name,
file_path = normalizePath(file_path))
}
cf_find_station = function(...,
search = c("name", "region", "network",
"latlong"),
datatype,
combine = c("all", "any"),
status = c("open", "closed", "all")) {
search = match.arg(arg = search)
status = match.arg(arg = status)
search_string = c(...)
include_distances = FALSE
cert = system.file("CurlSSL/cacert.pem", package = "RCurl")
if (search == "latlong"){
if (length(search_string) != 3)
stop("need exactly one longitude, latitude and radius")
lat_long_rad = c("latitude", "longitude", "radius")
if(is.null(names(search_string))){
names(search_string) = lat_long_rad
message(paste("using", paste(lat_long_rad, search_string,
sep = " = ", collapse = ", ")))
}
partial.match = pmatch(names(search_string), lat_long_rad)
if (any(is.na(partial.match)))
stop("names must be partially matched to latitude, longitude and radius")
if (any(is.na(as.numeric(search_string))))
stop("latitude and longitude (and radius) need to be in decimal formats")
lat = as.character(search_string[partial.match == 1])
long = as.character(search_string[partial.match == 2])
rad = as.character(search_string[partial.match == 3])
if (abs(as.numeric(long)) > 180 || abs(as.numeric(lat)) > 90)
stop("use sensible latitudes and longitudes")
} else {
if (length(search_string) > 1)
stop("only one search can be conducted at a time")
search_string = as.character(c(...))
}
param.list =
switch(search,
name = list(cstype = "name", cstnstr = search_string),
region = {
if (length(search_string) == 0)
search_region = search_string = cf_region()
else
search_region = cf_region(search_string)
search_string = unlist(strsplit(search_region, ","))[3]
list(cstype = "region",
cRegion = search_region)
},
network = list(cstype = "net", cNet = search_string),
latlong = {
include_distances = TRUE
list(cstype = "latlongc",
clat1 = lat,
clong1 = long,
crad = rad)
}
)
param.list = c(param.list,
mimeselection = "htmltable",
Submit = "Get Station List",
status = status)
if (!missing(datatype)){
if (!is(datatype, "cfDatatype"))
stop("datatype has to be a cfDatatype object")
user = cf_user()
cf_login(user)
on.exit(cf_logout(user, msg = FALSE))
combine = switch(match.arg(arg = combine),
all = "and",
any = "or")
cf_update_dt(datatype)
param.list = c(param.list, ccomb_dt = combine)
my_form = GET(modify_url(url = "https://cliflo.niwa.co.nz/pls/niwp/wstn.get_stn",
query = param.list))
} else {
my_form = GET(modify_url(url = "https://cliflo.niwa.co.nz/pls/niwp/wstn.get_stn_nodt",
query = param.list))
}
if (is.raw(my_form))
my_form = rawToChar(my_form)
doc = read_html(my_form)
doc_table = tail(html_table(doc, header = TRUE, fill = TRUE), 1)[[1]]
doc_table$Start = dmy(doc_table$Start, tz = "NZ")
doc_table$End[doc_table$End == "-"] = format(Sys.Date(), "%d-%m-%Y")
doc_table$End = dmy(doc_table$End, tz = "NZ")
span = doc_table$End %--% now(tzone = "NZ")
open_station = (as.numeric(dseconds(span)) / (604800) < 4)
if ((status == "open" && !any(open_station)) || (status == "closed" &&
all(open_station)))
stop("no climate stations were found matching your search criteria",
call. = FALSE)
if (status == "open"){
doc_table = doc_table[open_station, ]
open_station = open_station[open_station]
}
if (status == "closed")
doc_table = doc_table[!open_station, ]
station_df = data.frame(
name = doc_table$Name,
network = doc_table$NetworkNumber,
agent = doc_table$AgentNumber,
start_date = doc_table$Start,
end_date = doc_table$End,
open_station = switch(status,
open = TRUE,
closed = FALSE,
all = open_station),
distances = NA,
latitude = doc_table$`Lat(dec deg)`,
longitude = doc_table$`Long(dec deg)`,
stringsAsFactors = FALSE, check.names = TRUE
)
if (include_distances) {
station_df$distances = doc_table$DistKm
}
new("cfStation",
station_df)
} |
calibrate_external <- function(
object, x, time, event,
x_new, time_new, event_new,
pred.at, ngroup = 5) {
if (!("hdnom.model" %in% class(object))) {
stop('object must be of class "hdnom.model"')
}
model <- object$model
model_type <- object$type
if (!("matrix" %in% class(x_new))) stop("x_new must be a matrix")
if (length(pred.at) != 1L) stop("pred.at should only contain 1 time point")
if (model_type %in% c("lasso", "alasso", "enet", "aenet")) {
pred_list <- glmnet_calibrate_external_surv_prob_pred(
model, x, x_new, Surv(time, event), pred.at
)
}
if (model_type %in% c("mcp", "mnet", "scad", "snet")) {
pred_list <- ncvreg_calibrate_external_surv_prob_pred(
model, x, x_new, Surv(time, event), pred.at
)
}
if (model_type %in% c("flasso")) {
pred_list <- penalized_calibrate_external_surv_prob_pred(
model, x, x_new, Surv(time, event), pred.at
)
}
pred_prob <- rep(NA, nrow(x_new))
for (i in 1L:length(pred_prob)) pred_prob[i] <- pred_list$p[i, pred_list$idx]
grp <- cut(pred_prob, quantile(pred_prob, seq(0, 1, 1 / ngroup)), labels = 1L:ngroup)
pred_prob_median <- tapply(pred_prob, grp, median)
true_prob <- calibrate_external_surv_prob_true(
pred_prob, grp, time_new, event_new, pred.at, ngroup
)
prob <- cbind(pred_prob_median, true_prob)
colnames(prob)[1L] <- "Predicted"
if (model_type %in% c("lasso", "alasso", "enet", "aenet")) {
class(prob) <- c("hdnom.calibrate.external", "glmnet.calibrate.external")
}
if (model_type %in% c("mcp", "mnet", "scad", "snet")) {
class(prob) <- c("hdnom.calibrate.external", "ncvreg.calibrate.external")
}
if (model_type %in% c("flasso")) {
class(prob) <- c("hdnom.calibrate.external", "penalized.calibrate.external")
}
attr(prob, "model.type") <- model_type
attr(prob, "pred.at") <- pred.at
attr(prob, "ngroup") <- ngroup
attr(prob, "risk.group") <- grp
attr(prob, "surv.time") <- time_new
attr(prob, "surv.event") <- event_new
prob
} |
HierarchicalClusterDists <-function(pDist,ClusterNo=0,Type="ward.D2",ColorTreshold=0,Fast=FALSE,...){
if(!inherits(pDist,'dist'))
pDist=as.dist(pDist)
if(isTRUE(Fast)&requireNamespace('fastcluster')){
hc <- fastcluster::hclust(pDist,method=Type)
}else{
hc <- hclust(pDist,method=Type);
}
m=paste(Type,"LinkCluster/ "," N=",nrow(as.matrix(pDist)))
if (ClusterNo>0){
Cls=cutree(hc,ClusterNo)
return(list(Cls=Cls,Dendrogram=as.dendrogram(hc),Object=hc))
}
else{
x=as.dendrogram(hc);plot(x, main=m,xlab="Number of Data Points N", ylab="Distance",sub=" ",leaflab ="none",...)
axis(1,col="black",las=1)
if (ColorTreshold!=0){
rect.hclust(hc, h=ColorTreshold,border="red")}
else{
}
return(list(Cls=NULL,Dendrogram=x,Object=hc))
}
} |
REmrt <- function(formula, data, vi, c = 1, maxL = 5, minsplit = 6, cp = 1e-5, minbucket = 3, xval = 10, lookahead = FALSE, ...){
Call <- match.call()
indx <- match(c("formula", "data", "vi"),
names(Call), nomatch = 0L)
if (indx[1] == 0L)
stop("a 'formula' argument is required")
if (indx[3] == 0L)
stop("The sampling variances need to be specified")
if (!is.logical(lookahead))
stop("The 'lookahead' argument needs to be a logical value")
if (maxL < 2 & (lookahead == TRUE) )
stop("The 'maxL' should be at least 2 when applying look-ahead strategy")
temp <- Call[c(1L, indx)]
temp[[1L]] <- quote(stats::model.frame)
mf <- eval.parent(temp)
cv.res <- Xvalid_all(REmrt_GS_, mf, maxL = maxL, n.fold = xval, minbucket = minbucket, minsplit = minsplit, cp = cp, lookahead = lookahead)
mindex <- which.min(cv.res[, 1])
cp.minse <- cv.res[mindex,1] + c*cv.res[mindex,2]
cp.row <- min(which(cv.res[,1]<= cp.minse))
if (cp.row == 1) {
warning("no moderator effect was detected")
y <- model.response(mf)
vi <- c(t(mf["(vi)"]))
wts <- 1/vi
wy <- wts*y
wy2 <- wts * y^2
n <- length(y)
Q <- sum(wy2) - (sum(wy))^2/sum(wts)
df <- nrow(mf) - 1
C <- sum(wts) - sum(wts^2)/sum(wts)
tau2 <- max(0, (Q-df)/C)
vi.star <- vi + tau2
g <- sum(y/vi.star)/sum(1/vi.star)
pval.Q <- pchisq(Q, df, lower.tail = FALSE)
se <- 1/sqrt(sum(1/vi.star))
zval <- g/se
pval <- pnorm(abs(zval), lower.tail=FALSE)*2
ci.lb <- g - qnorm(0.975)*se
ci.ub <- g + qnorm(0.975)*se
res <- REmrt_GS_(mf, maxL = maxL, minsplit = minsplit, cp = cp, minbucket = minbucket, lookahead = lookahead)
res.f <- list(n = n , Q = Q,
df = df, pval.Q = pval.Q, tau2 = tau2, g = g, se = se, zval = zval,
pval = pval, ci.lb = ci.lb, ci.ub = ci.ub, call = Call, data = mf, cv.res = cv.res, initial.tree = res$tree)
} else{
y <- model.response(mf)
vi <- c(t(mf["(vi)"]))
res <- REmrt_GS_(mf, maxL = maxL, minsplit = minsplit, cp = cp, minbucket = minbucket, lookahead = lookahead)
prunedTree <- res$tree[1:cp.row, ]
tau2 <- res$tree$tau2[cp.row]
vi.star <- vi + tau2
subnodes <- res$node.split[[cp.row]]
wy.star <- y/vi.star
n <- tapply(y, subnodes, length)
g <- tapply(wy.star, subnodes, sum)/tapply(1/vi.star, subnodes, sum)
df <- cp.row - 1
Qb <- res$tree$Qb[cp.row]
pval.Qb <- pchisq(Qb, df, lower.tail = FALSE)
se <- tapply(vi.star, subnodes, function(x) sqrt(1/sum(1/x)))
zval <- g/se
pval <- pnorm(abs(zval),lower.tail=FALSE)*2
ci.lb <- g - qnorm(0.975)*se
ci.ub <- g + qnorm(0.975)*se
mod.names <- unique(prunedTree$mod[!is.na(prunedTree$mod)])
mf$term.node <- subnodes
res.f<- list(tree = prunedTree, n = n, moderators = mod.names, Qb = Qb, tau2 = tau2, df = df, pval.Qb = pval.Qb,
g = g, se = se, zval =zval, pval = pval, ci.lb = ci.lb,
ci.ub = ci.ub, call = Call, cv.res = cv.res, cpt = res$cpt,
data = mf, initial.tree = res$tree)
}
class(res.f) <- "REmrt"
res.f
} |
ord_norm <- function(marginal = list(), rho = NULL, support = list(),
epsilon = 0.001, maxit = 1000, Spearman = FALSE) {
if (!all(unlist(lapply(marginal,
function(x) (sort(x) == x & min(x) > 0 &
max(x) < 1))))) {
stop("Error in given marginal distributions!")
}
if (!isSymmetric(rho) |
!all(diag(rho) == 1)) {
stop("Correlation matrix not valid!")
}
k_cat <- length(marginal)
niter <- matrix(0, k_cat, k_cat)
if (length(support) == 0) {
for (i in 1:k_cat) {
support[[i]] <- 1:(length(marginal[[i]]) + 1)
}
}
rho0 <- rho
rhoord <- norm_ord(marginal, rho, support, Spearman)
rhoold <- rho
for (q in 1:(k_cat - 1)) {
for (r in (q + 1):k_cat) {
if (rho0[q, r] == 0) {
rho[q, r] <- 0
}
else {
it <- 0
while ((abs(rhoord[q, r] - rho0[q, r]) > epsilon) & it < maxit) {
if (rho0[q, r] * (rho0[q, r]/rhoord[q, r]) <= -1) {
rho[q, r] <- rhoold[q, r] * (1 + 0.1 * (1 - rhoold[q, r]) *
-sign(rho0[q, r] - rhoord[q, r]))
}
if (rho0[q, r] * (rho0[q, r]/rhoord[q, r]) >= 1) {
rho[q, r] <- rhoold[q, r] * (1 + 0.1 * (1 - rhoold[q, r]) *
sign(rho0[q, r] - rhoord[q, r]))
}
if ((rho0[q, r] * (rho0[q, r]/rhoord[q, r]) > -1) &
(rho0[q, r] * (rho0[q, r]/rhoord[q, r]) < 1)) {
rho[q, r] <- rhoold[q, r] * (rho0[q, r]/rhoord[q, r])
}
if (rho[q, r] > 1) rho[q, r] <- 1
if (rho[q, r] < -1) rho[q, r] <- -1
rho[r, q] <- rho[q, r]
rhoord[r, q] <- norm_ord(list(marginal[[q]], marginal[[r]]),
matrix(c(1, rho[q, r], rho[q, r], 1), 2, 2),
list(support[[q]], support[[r]]), Spearman)[2]
rhoord[q, r] <- rhoord[r, q]
rhoold[q, r] <- rho[q, r]
rhoold[r, q] <- rhoold[q, r]
it <- it + 1
}
niter[q, r] <- it
niter[r, q] <- it
}
}
}
emax <- max(abs(rhoord - rho0))
list(SigmaC = rho, rhoO = rhoord, rho = rho0, niter = niter, maxerr = emax)
} |
require(bvpSolve)
Gas<-function(x, y, par)
{
dy1 <- y[2]
dy2 <- -2/x*y[2]-(y[1]^n)
if (x < 1e-10) dy2<-0
list(c(dy1, dy2))
}
x <-seq(0, 1, by = 0.01)
n <- 5
print(system.time(
sol <- bvpshoot(func = Gas, yini = c(y = NA, dy = 0),
yend = c(sqrt(3/4), NA), x = x, guess = 0)
))
plot(sol)
curve(1/sqrt(1+(x^2)/3), type = "l", add = TRUE)
print(system.time(
Sol <- bvptwp(func = Gas, yini = c(NA, 0), yend = c(sqrt(3/4), NA),
x = x, parms = NULL)
))
lines(Sol, col = "red") |
mergeSvmat <- function(m1, m2) {
nr1 <- nrow(m1)
nr2 <- nrow(m2)
if ( nr1 > nr2 )
m2 <- rbind(m2, matrix(NA, nrow = nr1 - nr2, ncol = ncol(m2)))
if ( nr2 > nr1 )
m1 <- rbind(m1, matrix(NA, nrow = nr2 - nr1, ncol = ncol(m1)))
m0 <- cbind(m1, m2)
m0
} |
simCapHist <- function(state, cap = c(0.35, 0.4), recap = NULL,
maxAge = NULL, verbose = TRUE){
inputName <- deparse(substitute(state))
stopifnotMatrix(state, allowNA=TRUE, numericOnly=TRUE)
nYears <- ncol(state)
nind <- nrow(state)
nstage <- max(state, na.rm=TRUE) + 1
stopifnotProbability(cap, allowNA=FALSE)
cap <- fixAmatrix(cap, nrow=nstage, ncol=nYears)
if(is.null(recap)) {
recap <- cap[-1, -1, drop=FALSE]
} else {
stopifnotProbability(recap, allowNA=FALSE)
recap <- fixAmatrix(recap, nrow=nstage-1, ncol=nYears-1)
}
if(!is.null(maxAge)) {
maxAge <- round(maxAge[1])
stopifnotBetween(maxAge, min=1, max=nstage, allowNA=FALSE)
}
if(verbose) {
cat(paste0("The input object ", sQuote(inputName), " has ", nind, " individuals x ", nYears,
" Years. Ages range from ", max(0, min(state, na.rm=TRUE)), " to ", max(state, na.rm=TRUE), ".\n"))
cat(paste0("The ", sQuote("cap"), " matrix should be ", nstage, " x ", nYears,
" and the ", sQuote("recap"), " matrix ", nstage-1, " x ", nYears-1, ".\n\n" ))
}
Px <- rbind(NA, cbind(NA, recap))
CP <- abind::abind(cap, Px, along=3)
ch.age <- matrix(NA, nind, nYears)
ctBefore <- rep(1, nind)
for(t in 1:nYears) {
alive <- which(state[, t] >= 0)
index <- cbind(state[alive, t]+1, t, ctBefore[alive])
caped <- rbinom(length(alive), 1, CP[index]) == 1
caught <- alive[caped]
ch.age[caught, t] <- state[caught, t]
ctBefore[caught] <- 2
}
incl <- rowSums(!is.na(ch.age)) >= 1
ch.age <- ch.age[incl,]
ch.age <- ch.age + 1
index <- cbind(1:nrow(ch.age), getFirst(ch.age))
age <- ch.age[index]
if(!is.null(maxAge))
age <- pmin(age, maxAge)
ch <- (ch.age > 0) * 1
ch[is.na(ch)] <- 0
return(list(cap = cap, recap = recap, maxAge = maxAge,
ch = ch, age = age))
} |
get_legend <- function(plot) {
get_plot_component(plot, "guide-box")
} |
context("landscape level lsm_l_cai_sd metric")
landscapemetrics_landscape_landscape_value <- lsm_l_cai_sd(landscape)
test_that("lsm_l_cai_sd is typestable", {
expect_is(lsm_l_cai_sd(landscape), "tbl_df")
expect_is(lsm_l_cai_sd(landscape_stack), "tbl_df")
expect_is(lsm_l_cai_sd(landscape_brick), "tbl_df")
expect_is(lsm_l_cai_sd(landscape_list), "tbl_df")
})
test_that("lsm_l_cai_sd returns the desired number of columns", {
expect_equal(ncol(landscapemetrics_landscape_landscape_value), 6)
})
test_that("lsm_l_cai_sd returns in every column the correct type", {
expect_type(landscapemetrics_landscape_landscape_value$layer, "integer")
expect_type(landscapemetrics_landscape_landscape_value$level, "character")
expect_type(landscapemetrics_landscape_landscape_value$class, "integer")
expect_type(landscapemetrics_landscape_landscape_value$id, "integer")
expect_type(landscapemetrics_landscape_landscape_value$metric, "character")
expect_type(landscapemetrics_landscape_landscape_value$value, "double")
}) |
test_that("can create parameters from list", {
x <- list(a = bq_param(1, "integer"), b = "x", c = 1:3)
p <- as_bq_params(x)
expect_length(p, 3)
expect_equal(p[[1]], bq_param_scalar(1, "integer", name = "a"))
expect_equal(p[[2]], bq_param_scalar("x", name = "b"))
expect_equal(p[[3]], bq_param_array(1:3, name = "c"))
})
test_that("parameter json doesn't change without notice", {
verify_output(test_path("test-bq-param-json.txt"), {
as_bq_params(list(
scalar = "a",
vector = c("a", "b", "c")
))
})
}) |
sectors_segmentation <- function(a, angle_width, return_angle = FALSE) {
stopifnot(class(a) == "RasterLayer")
stopifnot(class(return_angle) == "logical")
stopifnot(length(angle_width) == 1)
if (!.is_whole(360 / angle_width)) {
stop(
paste("angle_width should divide the 0 to 360",
"range into a whole number of segments.")
)
}
intervals <- seq(0, 360, angle_width)
c1 <- intervals[1:(length(intervals) - 1)]
c2 <- intervals[2:length(intervals)]
if (return_angle) {
c3 <- (c1 + c2) / 2
} else {
c3 <- 1:(length(intervals) - 1)
}
rcl <- matrix(c(c1, c2, c3), ncol = 3)
reclassify(a, rcl)
} |
propdiff_ac <- function(y,
x,
formula,
data){
call <- match.call()
names_var <-
all.vars(call, functions = FALSE)
if(length(names_var) > 2)
stop("Include only one independent variable in x or formula")
if(!inherits(y,"formula")){
eval_prop <-
eval(call[[1L]], parent.frame())
X <-
data.frame(y, x)
} else {
call <-
eval(call[[2L]], parent.frame())
X <-
model.frame(call)
colnames(X) <-
c('y', 'x')
}
if(!all(X$x==1 | X$x==0))
stop("x variable should be a 0 - 1 variable")
if(!all(X$y==1 | X$y==0))
stop("y variable should be a 0 - 1 variable")
sub1 <-
subset(X, x==1)
sub0 <-
subset(X, x==0)
n1 <-
nrow(sub1)
n0 <-
nrow(sub0)
x1 <-
nrow(subset(sub1, y==1))
x0 <-
nrow(subset(sub0, y==1))
dfcom <-
(n0+n1)-1
p0hat_ac <-
(x0 + 1)/(n0 + 2)
p1hat_ac <-
(x1 + 1)/(n1 + 2)
phat_diff_ac <-
p1hat_ac - p0hat_ac
se_phat_diff_ac <-
sqrt((p0hat_ac * (1 - p0hat_ac)/(n0 + 2)) + (p1hat_ac * (1 - p1hat_ac)/(n1 + 2)))
output <-
matrix(c(phat_diff_ac, se_phat_diff_ac, dfcom), 1, 3)
colnames(output) <-
c("Prop diff AC", "SE", "dfcom")
return(output)
} |
AM_emp_bayes_uninorm = function(y,scEmu=1,scEsig2=3,CVsig2=3){
n <- length(y)
bary <- mean(y)
s2y <- var(y)
Emu <- bary
Vmu <- s2y*scEmu
Esig2 <- s2y/scEsig2
Vsig2 <- CVsig2^2*Esig2^2
m0 = Emu
nu0 = 2*(Esig2)^2/Vsig2+4
sig02 = Esig2*(nu0-2)/nu0
k0 = sig02/Vmu * nu0/(nu0-2)
return(AM_mix_hyperparams_uninorm(m0=m0,nu0=nu0,sig02=sig02,k0=k0))
} |
`logLik.mlcm` <-
function(object, ...) {
if (object$method == "glm")
val <- logLik(object$obj) else {
val <- object$logLik
attr(val, "df") <- length(object$par)
class(val) <- "logLik"
}
val
} |
asggm <- function(x, ...) UseMethod("asggm")
asggm.default <- function(x, iterations = 100000000, init = NULL, epsilon = 0.001, ...)
{
x <- as.matrix(x)
if (!is.null(init)) {
init <- as.matrix(init)
}
result <- rCSL(x, iterations, init, epsilon, ...)
class(result) <- "asggm"
result
}
asggm.formula <- function(formula, data=list(), ...)
{
mf <- model.frame(formula=formula, data=data)
x <- model.matrix(attr(mf, "terms"), data=mf)
y <- model.response(mf)
result <- asggm.default(x, ...)
result
}
genL = function(kNodes, spP) {
L = matrix(0, kNodes, kNodes)
for (i in 2:kNodes) {
for (j in 1:(i-1)) {
L[i,j] = (runif(1) < spP) * rnorm(1, 0, 1)
}
}
for (k in 1:kNodes) {
L[k,k] = rnorm(1, 1, 0.1)
}
L
}
genData = function(L, nSamples) {
kNodes = nrow(L)
xTemp = matrix(rnorm(kNodes*nSamples, mean = 0, sd = 1), nrow = nSamples, ncol = kNodes)
x = xTemp%*%solve(L)
x
}
rCSL = function(x, iterations = 500, init = NULL, epsilon = 1e-5, ansL = NULL){
LInit = init
nSamples = nrow(x)
kNodes = ncol(x)
S = cov(x) * (nSamples-1)
if (is.null(init)) {
Sinv = ginv(S)
LUSinv = expand(lu(Sinv))
LInit = as.matrix(LUSinv$L)
}
if (is.null(ansL)) {
ansQ = LInit%*%t(LInit)
} else {
ansQ = ansL%*%t(ansL)
}
print(norm(ansQ-LInit%*%t(LInit),'f'))
CSLOut = .Call(C_CSL, iterations, LInit, kNodes, nSamples, epsilon, S, ansQ, PACKAGE = "AdaptiveSparsity")
CSLOut
} |
library(metaggR)
E1 = c(50, 134, 206, 290, 326, 374)
P1 = c(26, 92, 116, 218, 218, 206)
out1 = round(knowledge_weighted_estimate(E1,P1), 4)
E2 = c(50, 134, 206, 290, 326, 374, 200)
P2 = c(26, 92, 116, 218, 218, 206, 200)
out2 = round(knowledge_weighted_estimate(E2,P2), 4)
test_that("Expected output is found",
{
expect_equal(out1, 329.305)
expect_equal(out2, 314.8606)
}) |
expand.sd <- function(x, ensemble, fiv=5)
{
sdx <- if (is.null(ncol(x)))
sd(x) else apply(x, 2, sd)
sdf <- c(sdx, apply(ensemble, 2, sd))
sdfa <- sdf/sdf[1]
sdfd <- sdf[1]/sdf
mx <- 1+(fiv/100)
id <- which(sdfa < 1)
if (length(id) > 0)
sdfa[id] <- runif(n=length(id), min=1, max=mx)
sdfdXsdfa <- sdfd[-1]*sdfa[-1]
id <- which(floor(sdfdXsdfa) > 0)
if (length(id) > 0)
{
if(length(id) > 1){
ensemble[,id] <- ensemble[,id] %*% diag(sdfdXsdfa[id])
} else {
ensemble[,id] <- ensemble[,id] * sdfdXsdfa[id]
}
}
if(is.ts(x)){
ensemble <- ts(ensemble, frequency=frequency(x), start=start(x))
}
ensemble
} |
PrepText <- function(textdata, groupvar, textvar, node_type = c("groups","words"),
tokenizer = c("words", "tweets"), pos = c("all", "nouns"),
language = "english", remove_stop_words = FALSE,
remove_numbers = NULL, compound_nouns = FALSE,
udmodel_lang = NULL,
...) {
textdata[[textvar]] <- iconv(textdata[[textvar]], to="UTF-8", sub='')
if (tokenizer=="tweets") {
textdata[[textvar]] <- gsub("&|<|>|RT", "", textdata[[textvar]])
if (!is.null(remove_numbers) && isTRUE(remove_numbers)) {
textdata[[textvar]]<-gsub("\\b\\d+\\b", "",textdata[[textvar]])
}
}
if(is.null(udmodel_lang)){
lang_mod <- udpipe_download_model(language = language)
udmodel_lang <- udpipe_load_model(file = lang_mod$file_model)
}
if (isFALSE(compound_nouns)){
textdata_tokens <- as_tibble({{textdata}}) %>%
select({{groupvar}}, {{textvar}}) %>%
unnest_tokens(output = "word", input = {{textvar}}, token = {{tokenizer}}, ...)
textdata_pos <- as.data.frame(udpipe_annotate(udmodel_lang, x = textdata_tokens$word,
tagger = "default", parser = "none",
tokenizer = "vertical"))
textdata <- bind_cols(textdata_tokens, textdata_pos[, c("upos", "lemma")])
}
if (isTRUE(compound_nouns)){
textdata_tokens <- as_tibble({{textdata}}) %>%
select({{groupvar}}, {{textvar}}) %>%
unnest_tokens(output = "word", input = {{textvar}}, token = {{tokenizer}}, strip_punct = FALSE, ...)
textdata_tokens <- textdata_tokens %>%
group_by_({{groupvar}}) %>%
summarise(documents = paste(word, collapse = "\n"))
textdata_dep <- as.data.frame(udpipe_annotate(udmodel_lang, x = textdata_tokens$documents,
doc_id = textdata_tokens[[groupvar]],
tagger = "default", parser = "default"))
noun_compound <- which(textdata_dep$dep_rel=="compound")
compound_elements <- split(noun_compound, cumsum(c(1, diff(noun_compound) != 1)))
compound_bases <- mapply(`[[`, compound_elements, lengths(compound_elements))+1
all_compound_elements <- mapply(c, compound_elements, compound_bases, SIMPLIFY = FALSE)
compound_nouns <- sapply(all_compound_elements, function(x) paste0(textdata_dep$lemma[x], collapse = " "))
textdata_dep$lemma[compound_bases] <- compound_nouns
textdata_dep <- textdata_dep %>%
filter(dep_rel!="compound" & upos!="PUNCT")
textdata <- textdata_dep
names(textdata)[1] <- groupvar
}
if (remove_stop_words) {
textdata <- {{textdata}} %>%
anti_join(get_stopwords(language = language), by = c("lemma" = "word"))
}
if (length(pos)>1){
warning(paste0("You did not specify `pos`. Function defaults to all parts of speech."))
pos <- "all"
}
if (pos=="nouns"){
textdata <- {{textdata}} %>%
filter(upos%in%c("NOUN", "PROPN"))
}
if (length(node_type)>1){
warning(paste0("You did not specify a `node_type`. Returned nodes are ", groupvar, "."))
node_type <- "groups"
}
if (node_type=="groups"){
textdata <- {{textdata}} %>%
group_by_({{groupvar}}) %>%
count(lemma) %>%
rename(count = n)
}
if (node_type=="words"){
textdata <- {{textdata}} %>%
group_by(lemma) %>%
count_({{groupvar}}) %>%
rename(count = n)
}
return({{textdata}})
} |
library(hamcrest)
expected <- c(0x1.8dbc5abd8a8e8p+9 + 0x0p+0i, -0x1.b31363d04a5dep+6 + 0x1.e82768bd6d93ep+7i,
-0x1.c994c7f989169p+7 + -0x1.99bdf505a1c5ep+6i, -0x1.c1ac32a1797eep+7 + -0x1.194437464e39ap+5i,
0x1.50c6fb0282d5ap+8 + -0x1.5c1154aed83fdp+3i, -0x1.f622187d5033bp+7 + 0x1.38b80aecc6c9p+5i,
-0x1.51505e24c79ap+7 + -0x1.f19017326ed88p+7i, -0x1.31f51a313f7cbp+5 + -0x1.ffd78676c8bep+6i,
0x1.654e36dbddc5ep+8 + 0x1.616d2c5abe3c8p+7i, -0x1.046a8cc237dbfp+8 + -0x1.7d4986f45c159p+6i,
-0x1.8e03e21e71dep+4 + -0x1.5f085d0271cp+7i, -0x1.203dcf46bfbaep+8 + -0x1.f623966da54fep+6i,
0x1.2fda176346c58p+2 + -0x1.7dfcb89e4d243p+4i, -0x1.7a0a6236cdbf1p+6 + -0x1.524d335558ba6p+7i,
0x1.837c5858be796p+5 + -0x1.3ebd2d04f2c01p+7i, -0x1.ab843afd7ff26p+7 + -0x1.6bad18ba484ffp+7i,
0x1.2550dbbb6f614p+8 + -0x1.41831704cd67ep+5i, -0x1.24c53c1bc9f12p+6 + 0x1.8d764336086c6p+6i,
-0x1.45894745b2279p+5 + 0x1.b6d76adbc7a9p+1i, -0x1.67649d11c942dp+7 + 0x1.1c283c41f808cp+4i,
0x1.b84f1fffd7acep+7 + 0x1.6fa08be606788p+3i, -0x1.09c6fe361031cp+4 + 0x1.ba5972d3d8d94p+5i,
0x1.29d0b347b66ep+3 + -0x1.2de3cd42d78b6p+7i, 0x1.3a74d0231280ep+6 + 0x1.5d4ed829f573ep+6i,
-0x1.7084f45cc2986p+3 + -0x1.04ffc6890e718p+5i, -0x1.0f69539dc45fep+7 + 0x1.741bebcf081d2p+7i,
-0x1.3b75a3ddf8b29p+6 + 0x1.0e6805c52296bp+5i, -0x1.901cb3e40a013p+5 + -0x1.5cf4bbdf7c84ep+6i,
-0x1.0300c887ceda5p+6 + 0x1.d6a41ebed3644p+6i, 0x1.e17814a9a9273p+5 + 0x1.ce9bd5977a65bp+6i,
0x1.55b9ac8079f0cp+3 + 0x1.24527bf64bef2p+5i, -0x1.28dc629e8bb1ep+7 + -0x1.229fe5320750ap+6i,
0x1.172a0e14576cap+5 + -0x1.e67bad298476p+1i, -0x1.9e9d41d7b9a58p+5 + -0x1.e07b51d4e2dp-4i,
-0x1.ba0c5fc38aa22p+5 + -0x1.0205adf87da5cp+7i, 0x1.01ed6ddf7dffcp+5 + -0x1.4c996fe5c80aep+4i,
-0x1.00a003799893ep+5 + 0x1.3af8def9a0926p+4i, -0x1.e9b454a67184cp+5 + 0x1.d5a3f3f64387ap+5i,
0x1.7553763b021ccp+4 + -0x1.304d44f0efb52p+6i, 0x1.7dfb06406ea77p+8 + -0x1.f4b4b04588c22p+4i,
-0x1.148d84bc9a4cbp+6 + -0x1.84751c104e572p+5i, 0x1.7cba6d0b303b7p+5 + -0x1.c38ceb019cf48p+5i,
0x1.3cccd66fb3738p+6 + -0x1.4fb26574a9282p+5i, 0x1.585ff41442d32p+7 + 0x1.697509e1e51fep+6i,
0x1.6ba6479d269dcp+5 + -0x1.5b33a7166f2aap+5i, -0x1.5dba6077f4863p+6 + -0x1.62e070252c273p+6i,
0x1.469dbdee6018p+6 + 0x1.3381b822212aep+4i, 0x1.e5878a72d487p+6 + 0x1.571ded93a50fep+4i,
0x1.b5ac6105f97dcp+4 + -0x1.5bf3c01491ea1p+6i, -0x1.8d7f2d9a8d551p+5 + -0x1.27a612257781cp+5i,
-0x1.02fe6071e0f18p+4 + -0x1.a82af48cd5674p+4i, 0x1.33a01a01f5e3ap+6 + -0x1.9278d6c374454p+4i,
0x1.f855b915cbc1p+2 + -0x1.365d550bc8e77p+4i, 0x1.1bb5c38946d51p+6 + -0x1.205149493e109p+6i,
-0x1.81450ec4b7ee2p+6 + -0x1.2cf2ca3dfaf48p+7i, 0x1.2876d261cd86ap+6 + -0x1.1faf8afae93c5p+4i,
0x1.59c2db0196664p+3 + 0x1.594f7bc9efe4p+4i, 0x1.7ecbb2b760c0ep+2 + -0x1.ebef96ce6cf58p+4i,
0x1.3294bc2a9db26p+3 + -0x1.6e1ba58b656bp+6i, -0x1.aeb53d7decb94p+4 + 0x1.72a3a3730e8dap+4i,
-0x1.5ec691ee6029cp+6 + 0x1.9d44fb25f6f1bp+5i, -0x1.404ddd933a2a2p+5 + 0x1.1bb35824e5728p+3i,
0x1.a0790470ed6e2p+4 + -0x1.1fbbba86e6dd1p+4i, 0x1.164ccf7a19488p+3 + 0x1.254ce4374a8c8p+5i,
-0x1.cfa3f32b92977p+4 + 0x1.97af3da68bbf4p+3i, 0x1.07dbdfc7ceff7p+3 + 0x1.3e8ec4e9af178p+2i,
0x1.49704a43e5c7cp+2 + -0x1.f4b7394ce166p+0i, 0x1.5d5ed177224e5p+5 + -0x1.35afea832f1f7p+4i,
0x1.41f6ce81eef25p+5 + -0x1.42197ae1e9326p+4i, 0x1.a9b2b5e3801fep+5 + -0x1.cae95f04defd4p+4i,
0x1.657cb5060c3d9p+3 + 0x1.4393702ac553ap+4i, 0x1.07f0e9840db2ap+6 + 0x1.2ee1172d5f805p+4i,
0x1.c4411938b78c8p+4 + 0x1.f4ba9fb26f8a8p+3i, 0x1.b739b28f167c8p-2 + -0x1.8a841dc9ee0ap+3i,
0x1.3ef2592411828p+3 + -0x1.88b59ded14f5ap+4i, 0x1.b6c515a68dfffp+5 + 0x1.1edac0d33a1dfp+5i,
0x1.83687c4e65f1cp+5 + 0x1.93c890168a1fp+5i, 0x1.78a3853aa6872p+4 + -0x1.fc30b4110d421p+5i,
0x1.10fbfbc36ac42p+5 + 0x1.3735761dfb61ep+4i, 0x1.fc1beb2795882p+3 + 0x1.a2752827e109bp+3i,
0x1.e9b35e603e6cp+0 + 0x1.36009bc3c7e3bp+5i, 0x1.5791f10c11546p+4 + -0x1.2d7727ca611b7p+5i,
-0x1.38a4d290ee462p+4 + -0x1.54b026baf0015p+4i, 0x1.0c8ff4937e2c9p+4 + -0x1.1cae29aab973bp+5i,
0x1.5524bfaac32fcp+4 + -0x1.53608ecae4e6ap+4i, -0x1.1a72619e47d9cp+1 + -0x1.7f9d5a2af9877p+5i,
0x1.0ae6168df8fa2p+5 + -0x1.cbe8f2c5c4311p+3i, 0x1.3ca16d6a5a7ep+2 + -0x1.bb591490ec7d7p+5i,
0x1.b733eab6425b8p+3 + 0x1.0e2be3c6df8dp+6i, -0x1.6f47e9938329cp+5 + -0x1.10ffc3f413c48p+5i,
0x1.59c8d7fc30c48p+1 + 0x1.c640b44e3e2dbp+2i, 0x1.7566aaddb9eb8p+5 + -0x1.1f2bdb891776dp+6i,
-0x1.3115440e1d14ep+5 + -0x1.a602e0231357cp+4i, 0x1.0d4f68fea2cp-2 + -0x1.8df9fb8983b26p+6i,
0x1.4b2992b713edp+5 + -0x1.958a4f0aaa0dep+4i, 0x1.387606e40c586p+4 + -0x1.9b8ac09c932e8p+2i,
0x1.f2f00e01e6e8ep+3 + 0x1.9df1724cfbfe5p+5i, -0x1.08fa99810fd18p+6 + -0x1.9d02b8992b28dp+6i,
-0x1.bfbd26be65f7cp+3 + -0x1.fc7baa33e2f32p+5i, -0x1.640705a7213b4p+2 + -0x1.40396a88ab993p+4i,
-0x1.40852905a724ep+3 + 0x1.023c56947e13ep+5i, 0x1.ab32d9380b194p+4 + -0x1.f083a5d282414p+4i,
-0x1.0d3cf9f224b6cp+5 + 0x1.c9cbd9299496ap+4i, 0x1.adcdf63bd997p+2 + -0x1.3450abfccf3e8p+1i,
0x1.2a687f0548929p+4 + 0x1.fa845d7adc5eep+5i, -0x1.23e9ea3ba13cbp+5 + -0x1.c68217d548c85p+5i,
-0x1.a65963fd289ap+2 + -0x1.cffeb459474d9p+6i, 0x1.621f3f9dd761p+3 + -0x1.b7a925b25a358p+5i,
0x1.e40955a705ce4p+3 + -0x1.8ea9143a71abcp+4i, 0x1.12736dffe08aap+4 + -0x1.42111f8eb7dbdp+5i,
-0x1.976b2435a4a39p+4 + -0x1.96c9a14c1bb7p+4i, 0x1.630530e3a1a48p+2 + -0x1.aaa90fafb95b7p+4i,
0x1.67e2d31e0e554p+3 + -0x1.b66c04403d05p-1i, 0x1.bfc78b95c9b36p+6 + 0x1.017eebed66bf8p+4i,
0x1.d2a0e536866cp+0 + 0x1.296c0c6cd0a5ep+3i, 0x1.63c1266418642p+4 + -0x1.4acc6434af04cp+4i,
0x1.57950f9defd38p+6 + 0x1.777681b58721p+4i, -0x1.1b8083f18d13ep+5 + 0x1.aaa04e39de134p+5i,
0x1.0a02cc056c472p+3 + -0x1.79d3cd244adffp+5i, 0x1.a9e92a9e135f7p+5 + -0x1.3ecb9bd00b8e8p+6i,
-0x1.91e90d0241dbep+3 + 0x1.9d5c4667a88dp+5i, 0x1.0b51497d76a0cp+5 + -0x1.0a12d94d01d64p+4i,
0x1.dd6df2a3047a8p+3 + -0x1.24f126d28aeb5p+4i, 0x1.d9ff53f2ecd3cp+4 + 0x1.72d8d01ce4a44p+6i,
-0x1.cb7420d0d2306p+5 + -0x1.17736c57bf999p+5i, 0x1.047aebbbc1652p+6 + -0x1.3c5e4eb67212cp+4i,
0x1.b94fdb06a438p+5 + 0x1.b127c3bfe7952p+4i, 0x1.01112b8e41b2cp+6 + -0x1.0f2f216249f7p+3i,
-0x1.13e9c7c24fdd2p+6 + -0x1.4545abb22272cp+3i, 0x1.b53b5b59e6814p+5 + -0x1.1e3147592662cp+5i,
0x1.71c45885333d2p+3 + -0x1.fe031876d0482p+6i, 0x1.1026d3a78cc02p+6 + -0x1.1b31aa74519fcp+5i,
-0x1.0595f2d8e09d3p+7 + -0x1.e3c4e56d06834p+4i, -0x1.560657eaec4a8p+5 + -0x1.bd4c57b1f24ap+5i,
0x1.2a422125b66fdp+6 + -0x1.1f39af9fe97c6p+6i, 0x1.8eab88c58a76p+6 + 0x1.30ed13cb75e1cp+6i,
-0x1.3d7b01eecb795p+7 + -0x1.82587d4bb251fp+6i, 0x1.64b2fa9138a78p+4 + -0x1.ad5a2caac7393p+5i,
0x1.825fd3957cafap+5 + -0x1.903a6f2a0f69ap+5i, 0x1.e7c8b46bd3488p+4 + -0x1.925d2f7e42f14p+4i,
-0x1.ca6856d644e7ap+6 + -0x1.8f03df3d0919p+5i, -0x1.bda5d34bc204p+2 + 0x1.d17ac53d0dc1cp+3i,
-0x1.0a63056264ccap+5 + 0x1.f987b057aa1e4p+4i, 0x1.527ec4a5439d6p+6 + 0x1.f54f1d3a6f1d6p+5i,
-0x1.395d8d58764dap+5 + -0x1.5db6821548a68p+6i, -0x1.c76741b22bc68p+4 + -0x1.200968c144af1p+5i,
-0x1.0c3f0b625926cp+5 + 0x1.360d4c9e3538dp+6i, 0x1.128a67133ec3ep+5 + -0x1.3df198d716d34p+3i,
-0x1.39d70611f2278p+4 + -0x1.5f098926de061p+5i, 0x1.781b2ae131128p+5 + 0x1.464b06bbec0dp+4i,
-0x1.42ca8dc31f901p+5 + 0x1.0d207e9e21d58p+6i, 0x1.451ddf95233b6p+6 + -0x1.a74718bd102ebp+6i,
0x1.4a505db311bffp+6 + 0x1.3a4574f97a8cp+0i, 0x1.4b8d99d2fc90ep+4 + 0x1.40545bea8495cp+4i,
0x1.12cf4ae84dd88p+5 + 0x1.d77c582badb4p+3i, 0x1.e4c29e905fb9ep+7 + 0x1.fc272080a9e2p+4i,
0x1.ed468d3273688p+4 + 0x1.4b0c0f85e7955p+3i, 0x1.30e52fc7068bp+7 + -0x1.8b45aae60b31dp+6i,
0x1.efeb83d706c04p+6 + -0x1.3e8579cd2e047p+6i, 0x1.8942687925a89p+6 + -0x1.ef8547f03744cp+1i,
0x1.b357d608d96b4p+6 + 0x1.ae9672dae1b22p+4i, 0x1.3748b70ea84bbp+7 + -0x1.1cad3f694af73p+7i,
0x1.17dd2b5075bc8p+6 + 0x1.95a6aeda0307p+7i, 0x1.0879a1a40f26cp+2 + -0x1.eca486f656fa2p+2i,
0x1.ccd571f23e146p+6 + 0x1.05e3f8d333aecp+6i, 0x1.322fe3937e14ep+6 + 0x1.52c355077e514p+5i,
0x1.7882e849069p+8 + -0x1.ab8a60c2cb0a9p+5i, -0x1.96c660cac3c7cp+6 + 0x1.b490191665375p+7i,
0x1.5b485b6e4bec6p+3 + -0x1.cac8b45e9d535p+6i, 0x1.2c9276cfc60f2p+6 + -0x1.114e95c5cdbb7p+8i,
0x1.420dc339103aap+7 + -0x1.245ad56568fa2p+7i, -0x1.2691fe26e64e1p+6 + 0x1.1a4a9e1b64851p+7i,
-0x1.059e87a3c4c62p+7 + -0x1.aee62e0bc96c6p+7i, 0x1.dfc63fe6a0736p+7 + -0x1.1d5ca6c13556p+6i,
0x1.42c924fa501b4p+7 + 0x1.0e201fffdfc87p+7i, -0x1.9817bd3c70d98p+8 + -0x1.49c272f618c72p+7i,
0x1.258e7ca26b8eep+7 + -0x1.15e7b3ecc36d2p+8i, 0x1.8698f2eb1eda4p+7 + -0x1.d9966bd97ca6p+7i,
0x1.4a4bdb7ef7495p+8 + 0x1.ae5afc7fb6e52p+3i, -0x1.3f7754fccc95p+8 + -0x1.f761bbb2860fcp+2i,
0x1.6957094c46d33p+6 + -0x1.717c2ad0cc3a2p+7i, 0x1.66200c405032p+3 + 0x1.849bf81b789e9p+7i,
0x1.23bf32f884d5p+5 + -0x1.76b44cb31a4e8p+4i, -0x1.bc1b7abc5953bp+7 + -0x1.89b1c8db8b414p+7i,
0x1.cb279d1656bc2p+4 + -0x1.e7cec97e86034p+4i, -0x1.dbcbcdf97e1p+5 + 0x1.d15e3e010b26cp+6i,
0x1.454661f02807cp+6 + 0x1.27f3df690643bp+5i, -0x1.3f5fbc7255e9ap+7 + -0x1.eceb71e8c547ap+5i,
-0x1.e5af8055380dcp+5 + 0x1.d9a381fccd52ap+3i, -0x1.6f711381ec15p+6 + 0x1.c5baede87af1p+2i,
0x1.6756611f52926p+5 + 0x1.f41106b2aba7cp+5i, -0x1.6ca7a33858a15p+6 + -0x1.506dfd510037cp+6i,
0x1.248f53912ec88p+6 + 0x1.b229a2f5725f4p+5i, -0x1.57f9a860ae2e4p+6 + 0x1.cf141baef1a2cp+4i,
0x1.5b35563624625p+6 + 0x1.aa53a50293c9p+0i, -0x1.3841e98fb57b3p+4 + 0x1.39f7b2b9da232p+7i,
0x1.05876d2635df4p+6 + -0x1.60ea1b7c6a5ap-2i, 0x1.a5c82ea5ee8e4p+5 + 0x1.f8b189ff5c74p+7i,
0x1.cd60123de9b5cp+5 + 0x1.a8d890965e1c1p+2i, -0x1.1893f9ee98ff2p+6 + 0x1.b05efb2049469p+7i,
0x1.b6531f7b399acp+6 + 0x1.5accb1a13f17dp+3i, -0x1.0f6ab362ab8c4p+6 + 0x1.123b59cbbc688p+5i,
0x1.3e8f651e29194p+3 + 0x1.049cab3612e72p+7i, -0x1.05e961c529aa6p+5 + 0x1.9012f7712f796p+4i,
0x1.b7b624e0faab5p+5 + -0x1.788a3962179a6p+5i, -0x1.7d31d0503a2dcp+7 + 0x1.b33662a7fcb3cp+7i,
0x1.1d0feb7ebd867p+7 + -0x1.8391cf4b34f57p+5i, -0x1.e0e1985bf3cb6p+6 + 0x1.1e786d6d68db1p+5i,
-0x1.df7d40f1d1668p+1 + 0x1.58d67d066d268p+6i, -0x1.96fb8058956fap+3 + 0x1.2d8b0d2ec4dfap+6i,
0x1.e815bbc4848dp+5 + -0x1.b1f3cf3b719f6p+3i, -0x1.0209d0cfd35b1p+4 + -0x1.5e44a839bc53ap+5i,
-0x1.86418c65619aep+4 + -0x1.bff727410f4b9p+4i, 0x1.d726026c620a8p+3 + 0x1.2258c5acd2cp+5i,
0x1.2c8230b4c3a24p+3 + 0x1.247f6ef7bb3d3p+6i, -0x1.4037d3270094ep+5 + -0x1.2e1d6a47f9532p+5i,
0x1.84f10a1fe7b75p+7 + -0x1.1d318f0e86094p+3i, -0x1.49207ec732114p+6 + 0x1.036c66a4e48f2p+7i,
0x1.a8c2698bacc88p+5 + -0x1.093f79e816a77p+3i, 0x1.b09ec61422364p+6 + -0x1.610942e331338p+4i,
0x1.3494a7ba1c481p+6 + -0x1.72d89a8b1fa5ap+5i, -0x1.623ff507853fp+6 + 0x1.0131b047d75cdp+5i,
0x1.123889bf14024p+6 + 0x1.5b660ad3eb4fdp+4i, 0x1.9ceee518f032ap+3 + -0x1.c07b7bfac4706p+4i,
0x1.5778fb5d807d7p+2 + 0x1.bfd6aa3623e9dp+5i, 0x1.7a055827b1ca8p+2 + -0x1.d1e3d5a4b576cp+2i,
0x1.aaf4ba5f306d8p+3 + 0x1.38ae218be8f08p+4i, -0x1.8e2e6a9f29046p+6 + 0x1.bbe0bc604346p+2i,
0x1.34db2d5367fdbp+6 + 0x1.f4250d2a942d2p+3i, -0x1.6f0bf470b1ce6p+4 + 0x1.304bf19981723p+5i,
-0x1.1ea4510dcc22cp+5 + 0x1.2e4816cee0321p+5i, -0x1.5f7bf84f306a4p+5 + -0x1.93948a5df28f5p+5i,
-0x1.5e8c6f0661e11p+4 + 0x1.443a35ec0b6p-4i, 0x1.cd57bca32277p+2 + 0x1.afb09516deaa2p+2i,
-0x1.fd7bdcdf33154p+6 + 0x1p-49i, 0x1.cd57bca322784p+2 + -0x1.afb09516deaf8p+2i,
-0x1.5e8c6f0661dfcp+4 + -0x1.443a35ec0dp-4i, -0x1.5f7bf84f3069fp+5 + 0x1.93948a5df28ebp+5i,
-0x1.1ea4510dcc21ep+5 + -0x1.2e4816cee0318p+5i, -0x1.6f0bf470b1cd1p+4 + -0x1.304bf19981722p+5i,
0x1.34db2d5367fdap+6 + -0x1.f4250d2a942b9p+3i, -0x1.8e2e6a9f29042p+6 + -0x1.bbe0bc6043414p+2i,
0x1.aaf4ba5f306f1p+3 + -0x1.38ae218be8ef7p+4i, 0x1.7a055827b1cc4p+2 + 0x1.d1e3d5a4b5764p+2i,
0x1.5778fb5d8086cp+2 + -0x1.bfd6aa3623ea1p+5i, 0x1.9ceee518f030bp+3 + 0x1.c07b7bfac472p+4i,
0x1.123889bf14023p+6 + -0x1.5b660ad3eb507p+4i, -0x1.623ff507853e8p+6 + -0x1.0131b047d75dcp+5i,
0x1.3494a7ba1c48ap+6 + 0x1.72d89a8b1fa4ep+5i, 0x1.b09ec6142235ep+6 + 0x1.610942e33132fp+4i,
0x1.a8c2698bacc7fp+5 + 0x1.093f79e816a49p+3i, -0x1.49207ec73210ep+6 + -0x1.036c66a4e48efp+7i,
0x1.84f10a1fe7b75p+7 + 0x1.1d318f0e860a8p+3i, -0x1.4037d3270096p+5 + 0x1.2e1d6a47f9525p+5i,
0x1.2c8230b4c3a48p+3 + -0x1.247f6ef7bb3dbp+6i, 0x1.d726026c620bap+3 + -0x1.2258c5acd2c01p+5i,
-0x1.86418c656198ep+4 + 0x1.bff727410f4c4p+4i, -0x1.0209d0cfd35c1p+4 + 0x1.5e44a839bc53p+5i,
0x1.e815bbc4848d6p+5 + 0x1.b1f3cf3b719c8p+3i, -0x1.96fb805895734p+3 + -0x1.2d8b0d2ec4dfap+6i,
-0x1.df7d40f1d16d8p+1 + -0x1.58d67d066d26cp+6i, -0x1.e0e1985bf3cb7p+6 + -0x1.1e786d6d68dbep+5i,
0x1.1d0feb7ebd865p+7 + 0x1.8391cf4b34f4fp+5i, -0x1.7d31d0503a2dfp+7 + -0x1.b33662a7fcb36p+7i,
0x1.b7b624e0faab6p+5 + 0x1.788a3962179a7p+5i, -0x1.05e961c529aaep+5 + -0x1.9012f7712f7a8p+4i,
0x1.3e8f651e29194p+3 + -0x1.049cab3612e71p+7i, -0x1.0f6ab362ab8c2p+6 + -0x1.123b59cbbc682p+5i,
0x1.b6531f7b399aep+6 + -0x1.5accb1a13f17ep+3i, -0x1.1893f9ee98ff6p+6 + -0x1.b05efb2049467p+7i,
0x1.cd60123de9b5cp+5 + -0x1.a8d890965e1bcp+2i, 0x1.a5c82ea5ee8dp+5 + -0x1.f8b189ff5c74p+7i,
0x1.05876d2635df6p+6 + 0x1.60ea1b7c69e4p-2i, -0x1.3841e98fb57cp+4 + -0x1.39f7b2b9da22ep+7i,
0x1.5b35563624628p+6 + -0x1.aa53a50293eap+0i, -0x1.57f9a860ae2e2p+6 + -0x1.cf141baef1a22p+4i,
0x1.248f53912ec8ap+6 + -0x1.b229a2f5725f2p+5i, -0x1.6ca7a33858a1ap+6 + 0x1.506dfd5100381p+6i,
0x1.6756611f52922p+5 + -0x1.f41106b2aba84p+5i, -0x1.6f711381ec15p+6 + -0x1.c5baede87af16p+2i,
-0x1.e5af8055380ep+5 + -0x1.d9a381fccd50bp+3i, -0x1.3f5fbc7255e9cp+7 + 0x1.eceb71e8c547fp+5i,
0x1.454661f02807ep+6 + -0x1.27f3df690643dp+5i, -0x1.dbcbcdf97e0fep+5 + -0x1.d15e3e010b26ep+6i,
0x1.cb279d1656bcp+4 + 0x1.e7cec97e86038p+4i, -0x1.bc1b7abc5953cp+7 + 0x1.89b1c8db8b416p+7i,
0x1.23bf32f884d58p+5 + 0x1.76b44cb31a4dfp+4i, 0x1.66200c4050328p+3 + -0x1.849bf81b789e8p+7i,
0x1.6957094c46d3ap+6 + 0x1.717c2ad0cc3a3p+7i, -0x1.3f7754fccc952p+8 + 0x1.f761bbb28613p+2i,
0x1.4a4bdb7ef7498p+8 + -0x1.ae5afc7fb6ebp+3i, 0x1.8698f2eb1eda8p+7 + 0x1.d9966bd97ca62p+7i,
0x1.258e7ca26b8fp+7 + 0x1.15e7b3ecc36d2p+8i, -0x1.9817bd3c70d9ap+8 + 0x1.49c272f618c74p+7i,
0x1.42c924fa501b6p+7 + -0x1.0e201fffdfc89p+7i, 0x1.dfc63fe6a073bp+7 + 0x1.1d5ca6c13555cp+6i,
-0x1.059e87a3c4c6ap+7 + 0x1.aee62e0bc96cep+7i, -0x1.2691fe26e64e8p+6 + -0x1.1a4a9e1b64855p+7i,
0x1.420dc339103b1p+7 + 0x1.245ad56568fa3p+7i, 0x1.2c9276cfc60f8p+6 + 0x1.114e95c5cdbb9p+8i,
0x1.5b485b6e4bed9p+3 + 0x1.cac8b45e9d538p+6i, -0x1.96c660cac3c8p+6 + -0x1.b490191665378p+7i,
0x1.7882e84906904p+8 + 0x1.ab8a60c2cb0b2p+5i, 0x1.322fe3937e151p+6 + -0x1.52c355077e51ep+5i,
0x1.ccd571f23e145p+6 + -0x1.05e3f8d333aeep+6i, 0x1.0879a1a40f328p+2 + 0x1.eca486f656ffp+2i,
0x1.17dd2b5075bc9p+6 + -0x1.95a6aeda03076p+7i, 0x1.3748b70ea84c4p+7 + 0x1.1cad3f694af77p+7i,
0x1.b357d608d96b1p+6 + -0x1.ae9672dae1b2dp+4i, 0x1.8942687925a9p+6 + 0x1.ef8547f0374p+1i,
0x1.efeb83d706c0cp+6 + 0x1.3e8579cd2e04ap+6i, 0x1.30e52fc7068b6p+7 + 0x1.8b45aae60b322p+6i,
0x1.ed468d3273688p+4 + -0x1.4b0c0f85e7955p+3i, 0x1.e4c29e905fb98p+7 + -0x1.fc272080a9e24p+4i,
0x1.12cf4ae84dd81p+5 + -0x1.d77c582badb28p+3i, 0x1.4b8d99d2fc914p+4 + -0x1.40545bea8495p+4i,
0x1.4a505db311bfcp+6 + -0x1.3a4574f97a998p+0i, 0x1.451ddf95233b6p+6 + 0x1.a74718bd102dcp+6i,
-0x1.42ca8dc31f8f4p+5 + -0x1.0d207e9e21d5p+6i, 0x1.781b2ae13111cp+5 + -0x1.464b06bbec0c8p+4i,
-0x1.39d70611f227p+4 + 0x1.5f098926de05ep+5i, 0x1.128a67133ec42p+5 + 0x1.3df198d716d3ep+3i,
-0x1.0c3f0b625925cp+5 + -0x1.360d4c9e35388p+6i, -0x1.c76741b22bc66p+4 + 0x1.200968c144afcp+5i,
-0x1.395d8d58764dp+5 + 0x1.5db6821548a63p+6i, 0x1.527ec4a5439dp+6 + -0x1.f54f1d3a6f1dep+5i,
-0x1.0a63056264cc6p+5 + -0x1.f987b057aa1dap+4i, -0x1.bda5d34bc201p+2 + -0x1.d17ac53d0dc1p+3i,
-0x1.ca6856d644e75p+6 + 0x1.8f03df3d09188p+5i, 0x1.e7c8b46bd348p+4 + 0x1.925d2f7e42fp+4i,
0x1.825fd3957cb07p+5 + 0x1.903a6f2a0f69cp+5i, 0x1.64b2fa9138a8p+4 + 0x1.ad5a2caac738ap+5i,
-0x1.3d7b01eecb794p+7 + 0x1.82587d4bb2516p+6i, 0x1.8eab88c58a75fp+6 + -0x1.30ed13cb75e1dp+6i,
0x1.2a422125b66ffp+6 + 0x1.1f39af9fe97c4p+6i, -0x1.560657eaec4bcp+5 + 0x1.bd4c57b1f249ap+5i,
-0x1.0595f2d8e09dp+7 + 0x1.e3c4e56d06834p+4i, 0x1.1026d3a78cc03p+6 + 0x1.1b31aa74519f4p+5i,
0x1.71c45885333eap+3 + 0x1.fe031876d047ep+6i, 0x1.b53b5b59e680cp+5 + 0x1.1e3147592661ep+5i,
-0x1.13e9c7c24fdcap+6 + 0x1.4545abb22275p+3i, 0x1.01112b8e41b2bp+6 + 0x1.0f2f216249f38p+3i,
0x1.b94fdb06a4381p+5 + -0x1.b127c3bfe7952p+4i, 0x1.047aebbbc165p+6 + 0x1.3c5e4eb67212p+4i,
-0x1.cb7420d0d2308p+5 + 0x1.17736c57bf992p+5i, 0x1.d9ff53f2ecd36p+4 + -0x1.72d8d01ce4a44p+6i,
0x1.dd6df2a3047cap+3 + 0x1.24f126d28aebfp+4i, 0x1.0b51497d769fcp+5 + 0x1.0a12d94d01d4ep+4i,
-0x1.91e90d0241db8p+3 + -0x1.9d5c4667a88dp+5i, 0x1.a9e92a9e135f8p+5 + 0x1.3ecb9bd00b8dep+6i,
0x1.0a02cc056c478p+3 + 0x1.79d3cd244ae04p+5i, -0x1.1b8083f18d152p+5 + -0x1.aaa04e39de13ap+5i,
0x1.57950f9defd38p+6 + -0x1.777681b58721p+4i, 0x1.63c126641864cp+4 + 0x1.4acc6434af07p+4i,
0x1.d2a0e5368671p+0 + -0x1.296c0c6cd0a62p+3i, 0x1.bfc78b95c9b34p+6 + -0x1.017eebed66bf8p+4i,
0x1.67e2d31e0e564p+3 + 0x1.b66c04403cedp-1i, 0x1.630530e3a1a68p+2 + 0x1.aaa90fafb95b8p+4i,
-0x1.976b2435a4a3cp+4 + 0x1.96c9a14c1bb88p+4i, 0x1.12736dffe08bp+4 + 0x1.42111f8eb7db5p+5i,
0x1.e40955a705cecp+3 + 0x1.8ea9143a71acp+4i, 0x1.621f3f9dd7608p+3 + 0x1.b7a925b25a36p+5i,
-0x1.a65963fd2892p+2 + 0x1.cffeb459474dep+6i, -0x1.23e9ea3ba13dp+5 + 0x1.c68217d548c8fp+5i,
0x1.2a687f0548929p+4 + -0x1.fa845d7adc5edp+5i, 0x1.adcdf63bd9994p+2 + 0x1.3450abfccf45p+1i,
-0x1.0d3cf9f224b68p+5 + -0x1.c9cbd92994969p+4i, 0x1.ab32d9380b18dp+4 + 0x1.f083a5d28242bp+4i,
-0x1.40852905a7247p+3 + -0x1.023c56947e146p+5i, -0x1.640705a72139dp+2 + 0x1.40396a88ab9a8p+4i,
-0x1.bfbd26be65f86p+3 + 0x1.fc7baa33e2f3bp+5i, -0x1.08fa99810fd1p+6 + 0x1.9d02b8992b291p+6i,
0x1.f2f00e01e6ebp+3 + -0x1.9df1724cfbfe9p+5i, 0x1.387606e40c59bp+4 + 0x1.9b8ac09c9332p+2i,
0x1.4b2992b713ec8p+5 + 0x1.958a4f0aaa0e4p+4i, 0x1.0d4f68fea338p-2 + 0x1.8df9fb8983b2p+6i,
-0x1.3115440e1d14cp+5 + 0x1.a602e02313563p+4i, 0x1.7566aaddb9eb9p+5 + 0x1.1f2bdb891776ap+6i,
0x1.59c8d7fc30c9p+1 + -0x1.c640b44e3e2f4p+2i, -0x1.6f47e99383298p+5 + 0x1.10ffc3f413c4ep+5i,
0x1.b733eab6425b4p+3 + -0x1.0e2be3c6df8d6p+6i, 0x1.3ca16d6a5a828p+2 + 0x1.bb591490ec7d6p+5i,
0x1.0ae6168df8f8ap+5 + 0x1.cbe8f2c5c433p+3i, -0x1.1a72619e47dbp+1 + 0x1.7f9d5a2af986ap+5i,
0x1.5524bfaac330cp+4 + 0x1.53608ecae4e47p+4i, 0x1.0c8ff4937e2f8p+4 + 0x1.1cae29aab9741p+5i,
-0x1.38a4d290ee494p+4 + 0x1.54b026baf0026p+4i, 0x1.5791f10c11554p+4 + 0x1.2d7727ca611b3p+5i,
0x1.e9b35e603e7bp+0 + -0x1.36009bc3c7e5p+5i, 0x1.fc1beb279589cp+3 + -0x1.a2752827e105dp+3i,
0x1.10fbfbc36ac3fp+5 + -0x1.3735761dfb61ep+4i, 0x1.78a3853aa68a4p+4 + 0x1.fc30b4110d421p+5i,
0x1.83687c4e65f18p+5 + -0x1.93c890168a1eap+5i, 0x1.b6c515a68dff5p+5 + -0x1.1edac0d33a1d9p+5i,
0x1.3ef2592411836p+3 + 0x1.88b59ded14f4ep+4i, 0x1.b739b28f16a4p-2 + 0x1.8a841dc9ee0d2p+3i,
0x1.c4411938b78b5p+4 + -0x1.f4ba9fb26f89fp+3i, 0x1.07f0e9840db26p+6 + -0x1.2ee1172d5f807p+4i,
0x1.657cb5060c3edp+3 + -0x1.4393702ac5537p+4i, 0x1.a9b2b5e3801f4p+5 + 0x1.cae95f04defd7p+4i,
0x1.41f6ce81eef2ap+5 + 0x1.42197ae1e931ap+4i, 0x1.5d5ed177224d9p+5 + 0x1.35afea832f1fcp+4i,
0x1.49704a43e5c7cp+2 + 0x1.f4b7394ce16dp+0i, 0x1.07dbdfc7cf014p+3 + -0x1.3e8ec4e9af15ep+2i,
-0x1.cfa3f32b92968p+4 + -0x1.97af3da68bbe2p+3i, 0x1.164ccf7a1947cp+3 + -0x1.254ce4374a8c4p+5i,
0x1.a0790470ed6e2p+4 + 0x1.1fbbba86e6ddp+4i, -0x1.404ddd933a29dp+5 + -0x1.1bb35824e571cp+3i,
-0x1.5ec691ee60296p+6 + -0x1.9d44fb25f6f1p+5i, -0x1.aeb53d7decb87p+4 + -0x1.72a3a3730e8cap+4i,
0x1.3294bc2a9db1cp+3 + 0x1.6e1ba58b656adp+6i, 0x1.7ecbb2b760c3p+2 + 0x1.ebef96ce6cf46p+4i,
0x1.59c2db0196673p+3 + -0x1.594f7bc9efe2cp+4i, 0x1.2876d261cd864p+6 + 0x1.1faf8afae93b4p+4i,
-0x1.81450ec4b7eddp+6 + 0x1.2cf2ca3dfaf48p+7i, 0x1.1bb5c38946d56p+6 + 0x1.205149493e108p+6i,
0x1.f855b915cbc0cp+2 + 0x1.365d550bc8e7ep+4i, 0x1.33a01a01f5e3bp+6 + 0x1.9278d6c374443p+4i,
-0x1.02fe6071e0f18p+4 + 0x1.a82af48cd5682p+4i, -0x1.8d7f2d9a8d54cp+5 + 0x1.27a612257781ep+5i,
0x1.b5ac6105f97e5p+4 + 0x1.5bf3c01491eap+6i, 0x1.e5878a72d486fp+6 + -0x1.571ded93a5104p+4i,
0x1.469dbdee6017cp+6 + -0x1.3381b822212cp+4i, -0x1.5dba6077f4862p+6 + 0x1.62e070252c271p+6i,
0x1.6ba6479d269e3p+5 + 0x1.5b33a7166f2b4p+5i, 0x1.585ff41442d2fp+7 + -0x1.697509e1e5202p+6i,
0x1.3cccd66fb3738p+6 + 0x1.4fb26574a927ep+5i, 0x1.7cba6d0b303bep+5 + 0x1.c38ceb019cf48p+5i,
-0x1.148d84bc9a4c8p+6 + 0x1.84751c104e57p+5i, 0x1.7dfb06406ea76p+8 + 0x1.f4b4b04588c04p+4i,
0x1.7553763b021dcp+4 + 0x1.304d44f0efb56p+6i, -0x1.e9b454a67185cp+5 + -0x1.d5a3f3f643877p+5i,
-0x1.00a0037998941p+5 + -0x1.3af8def9a0923p+4i, 0x1.01ed6ddf7dff4p+5 + 0x1.4c996fe5c80a4p+4i,
-0x1.ba0c5fc38aa24p+5 + 0x1.0205adf87da5ap+7i, -0x1.9e9d41d7b9a5p+5 + 0x1.e07b51d4e296p-4i,
0x1.172a0e14576c4p+5 + 0x1.e67bad298473cp+1i, -0x1.28dc629e8bb22p+7 + 0x1.229fe5320751p+6i,
0x1.55b9ac8079f08p+3 + -0x1.24527bf64beefp+5i, 0x1.e17814a9a9268p+5 + -0x1.ce9bd5977a664p+6i,
-0x1.0300c887cedabp+6 + -0x1.d6a41ebed3644p+6i, -0x1.901cb3e40a02p+5 + 0x1.5cf4bbdf7c854p+6i,
-0x1.3b75a3ddf8b29p+6 + -0x1.0e6805c52295ep+5i, -0x1.0f69539dc4604p+7 + -0x1.741bebcf081dp+7i,
-0x1.7084f45cc295cp+3 + 0x1.04ffc6890e72p+5i, 0x1.3a74d0231280bp+6 + -0x1.5d4ed829f573bp+6i,
0x1.29d0b347b66fp+3 + 0x1.2de3cd42d78b5p+7i, -0x1.09c6fe361030cp+4 + -0x1.ba5972d3d8d9p+5i,
0x1.b84f1fffd7ad4p+7 + -0x1.6fa08be60679p+3i, -0x1.67649d11c9435p+7 + -0x1.1c283c41f805cp+4i,
-0x1.45894745b2272p+5 + -0x1.b6d76adbc7acp+1i, -0x1.24c53c1bc9f12p+6 + -0x1.8d764336086cep+6i,
0x1.2550dbbb6f615p+8 + 0x1.41831704cd672p+5i, -0x1.ab843afd7ff28p+7 + 0x1.6bad18ba48501p+7i,
0x1.837c5858be7a9p+5 + 0x1.3ebd2d04f2c05p+7i, -0x1.7a0a6236cdbf4p+6 + 0x1.524d335558baap+7i,
0x1.2fda176346c4ep+2 + 0x1.7dfcb89e4d25p+4i, -0x1.203dcf46bfbb3p+8 + 0x1.f623966da550fp+6i,
-0x1.8e03e21e71dd8p+4 + 0x1.5f085d0271c02p+7i, -0x1.046a8cc237dc2p+8 + 0x1.7d4986f45c161p+6i,
0x1.654e36dbddc61p+8 + -0x1.616d2c5abe3cfp+7i, -0x1.31f51a313f7cbp+5 + 0x1.ffd78676c8bedp+6i,
-0x1.51505e24c79a2p+7 + 0x1.f19017326ed8ep+7i, -0x1.f622187d50342p+7 + -0x1.38b80aecc6c88p+5i,
0x1.50c6fb0282d5dp+8 + 0x1.5c1154aed839ap+3i, -0x1.c1ac32a1797f2p+7 + 0x1.194437464e3a2p+5i,
-0x1.c994c7f98916cp+7 + 0x1.99bdf505a1c64p+6i, -0x1.b31363d04a5e5p+6 + -0x1.e82768bd6d943p+7i
)
assertThat(stats:::fft(z=c(10.3769689360695, 3.89045925409435, -3.93155451710684, 0.153573831713806,
-1.04783961013626, -10.1855221959647, 11.8164076174811, -9.13994840621895,
0.409935688496592, 13.2988916104618, -11.7236495512547, 21.9262694854519,
12.6040322122819, -0.0863389609485683, 8.34489120015472, 0.310744867853963,
-2.23658861252138, 0.658485206085705, -0.0626673941677851, 7.15513965208027,
-0.544128893465904, 5.15423501914293, 4.38448175005372, -0.904842472948961,
0.2775805339831, 0.0308803035634717, 1.34107711032436, -0.153497084592585,
2.04816126107792, -2.11526610039823, 0.246943158442734, -1.14124422902151,
-3.11218782007273, -0.0163700627418178, -0.488896649580686, -1.1019570312459,
3.35075365952912, 1.66547490755441, -6.49717335906863, -3.28052359211361,
1.23382310767056, -2.45138055885215, 2.51250126384136, -0.0271116962217204,
-0.184040319437394, 12.7866433215337, -1.89941080707841, 3.05008694702956,
6.87739140997331, 2.89443301018167, 0.271820241238419, 4.37619088250706,
-3.06388151778674, -1.59959606140044, 0.0575989655674461, -6.24610181567183,
1.74556589836128, -3.05199216148515, 0.774706271640412, 5.44992810383449,
0.159833531324632, 2.03351604615711, 7.80690182082059, 3.11758148188629,
1.01854292767765, 3.06313714268799, 0.827574352820896, 2.61821735617707,
-0.152711153261593, 3.755751628488, -1.11473538386617, 0.946614760904571,
4.08138403449373, 4.20025614960369, -1.30585383873611, 2.27036359053031,
-0.926932925805462, -4.54873881923498, -0.50336876143755, -2.56745936136268,
-3.04877242697759, -1.00312586744339, -0.00378416410938027, 0.910936003569616,
-0.631836778269796, 0.510312858996498, -2.92354765268597, 1.10306943710905,
2.29919314724886, -1.87321991824532, 2.4669927172813, 0.358068294514524,
0.00380337099259803, -0.446125627069793, -1.52406424795409, -1.27463878805092,
2.21614137904318, 1.57193247595263, 14.5538884413041, 3.46710714198206,
4.72468305506638, -1.3430860747435, -3.73077013865106, 1.85065852710899,
-5.72157328464128, 8.04692769378591, 3.73767929810661, 3.91410448017768,
20.2083152902785, 10.6098562733865, 0.746637293717183, 21.5974966419513,
3.31389859654455, 3.74620415248632, 3.93945666527088, 1.04854360474392,
11.0991587817478, -0.108113528335645, 9.48006382222252, 4.44585462178544,
0.378751233957525, 7.0190297014427, 3.66002216500259, -1.76539244980976,
3.25318377221019, -0.88865832368273, -1.51609931996814, 0.147678530659628,
-1.16225659547769, 3.71587870050204, 0.722792979291185, 3.50083088449924,
-2.9117023595986, -2.05390228093703, -0.315243770486965, -5.50388497599763,
-0.00114163532909583, -1.86494321520475, -1.02433707269956, 4.54030595396632,
2.00659149496241, 8.65809262650767, -0.914156893940845, 8.89026596299435,
-0.432425692663963, 4.00091211785122, -0.00157543022378994, 0.426724000693651,
-1.5904030942015, -4.00797439268442, 1.47033499195149, -8.55952219222385,
-0.0339456146506701, -7.59604542821247, -2.58322051937268, -4.13512803226304,
1.37229917927048, 0.0274893895715603, 1.58059546423238, 8.14239081294032,
0.64869446178064, 3.75300129619135, 0.174009679849268, -3.03602470744253,
2.36560638519996, -9.83417912223005, 3.04791887457806, 0.241980113098912,
-5.74314033347827, 1.35663812594123, 5.12707802573771, -3.58448178561661,
-2.79800729651505, 4.65676741779916, -8.45736651450507, 8.42669691286806,
-4.89435777341983, 0.222665608472774, 8.30638128802811, -0.536805354217068,
3.83307992433144, 3.13945565388085, 1.26089287254575, -0.338219593845652,
0.360488736792198, 0.734597041451225, 0.0728413663988549, -0.0429550163681092,
-11.2011972251507, 1.56261634397771, -1.76243263631728, 0.652625493305959,
-1.50658004885206, 0.0459572791590621, -0.127876619784889, 0.19304916147501,
0.00218853418649851, -1.65063768818996, -4.88570605637489, -2.41209867567644,
-4.25832397816502, -0.805185114119198, 3.33322274466961, 0.514720128060231,
2.77892141035896, -0.209282184888904, -0.170382349915121, -3.00276694891811,
-5.25727205970852, -1.98951523670804, -6.99835926329422, 3.80964768181405,
-5.90374298388259, 3.69188601654013, 0.0205876925890607, 0.874412719083682,
1.35488109350467, -3.36105879584621, 6.39035798915636, -2.03018244802635,
-4.66941941501268, 7.31365481029368, -6.19318963206328, 4.36120630810118,
0.0338305965829966, 1.12454173124518, 4.75904294590333, 7.20109610507202,
7.47220296925565, 19.1011524554177, 0.512577730274398, 4.09872245077606,
25.0373154555524, -3.29091201528813, 20.9920288970487, -1.93460975629614,
19.2531281930142, 17.6305655467313, 4.7850918303363, 29.4761966407364,
0.871908392280801, 0.67689279778011, 11.9808083722274, 0.161412730539107,
-0.573355058656647, 1.55726832796194, -2.64815750641634, -4.48866255852029,
0.087321273330414, -2.47854417662451, -3.8934047030487, 0.653073718295956,
-3.86438927896759, -0.246959693611369, 0.0153288129725248, -1.3276943870494,
-1.12502173353602, 2.68459698838179, 0.172641247948193, 0.903203794314268,
6.7262930418349, 1.41890458032118, 8.18094875658254, 12.588663602125,
-0.0705008213560822, 12.6968048940513, 7.11120508411365, -8.56630679620647,
7.98432447821734, -7.93641960579158, -6.5222810590097, 6.30353764577881,
-13.9094507206464, 9.50654018575499, 1.84639314861588, 0.975225680148488,
3.21068149621976, 7.27889285339685, -0.724655129113075, 6.48136682671913,
2.37428685168903, -1.77292014815311, 9.27555187597246, -2.13463614063622,
4.5191956838301, -0.417677112657389, -0.430421481648482, 7.83437004292491,
0.00654811630061692, 1.10720677966209, 1.98302898348775, -0.496062225765873,
5.75611244362558, -0.513597650609158, 1.64026304481457, 2.0217179731425,
-0.798783993760926, 5.53457992600542, 0.0272914502036241, 2.12999002351161,
2.41041725954075, -1.37910035055917, 1.2165298492145, -1.64436417884747,
-4.7050584679401, 1.70371436704242, -4.9332687985093, -0.619273213223634,
3.47898519645994, -10.443205862248, 0.936021640733324, 2.4692323300256,
-2.1955901738986, -12.2494573373206, 6.86417665422336, -4.94086593963677,
-6.46982704972001, 0.392024021306113, -4.43626734897662, 3.20488240956549,
-0.958001093044012, -3.3226181264167, 5.70928470845902, 18.0729402759155,
0.230908525305196, 18.595024652723, 5.13294542703369, 3.35180160365077,
6.03420958009988, -1.43147086062516, 7.37262740571157, 6.06271946632758,
0.342894568539505, 18.0866722512402, -0.423076916529202, 12.1393062765802,
19.9934949716361, -11.141339473657, 16.4430390306652, 12.5191721668165,
-9.43482186380282, 13.1896690340484, -1.12271237376982, -0.605348681021117,
15.0372078768461, -5.44382882596991, 20.7525986522452, 19.7052740534224,
-1.36525215271322, 38.3737794032807, 11.0853361159213, 5.02034100011704,
12.1016292474391, 0.745337338431947, 7.32444528196261, 13.665264859792,
-0.251738578321636, 14.0649291718406, 1.51001740974391, 3.32458817448286,
12.1751078878389, -4.61683116707482, -4.31108386069503, 3.80654337409129,
0.363135519231101, -3.18102612052386, -0.0862401933358587, 2.13622253957576,
4.08672655508491, 0.121758917719383, 1.92546012659766, 1.47270264260665,
0.788427817572375, 0.743446486020762, -0.36822547861602, 0.0732044030160237,
-3.13550022030171, -0.947397306382955, 2.38173777491002, -0.644005039073536,
0.705740803875437, 1.9811363516207, 0.265233414626984, 3.34673835342333,
4.94946567227928, -0.119077067070534, 8.88221257501631, 3.38910111935763,
-1.34259542556317, 7.30915933507739, -3.84151696886724, -2.53505068393537,
2.28976851041053, -8.0058582634631, 6.47778324925114, -1.7551706978962,
-8.82366954632182, 6.3045047452422, 1.90201947677604, 2.9724850743811,
7.22307457478924, 0.702356639281829, 10.9472983124947, 7.78229461230583,
2.44879552266434, 7.39135440092572, 2.23636774265743, 8.54625500300522,
11.6222411948503, 2.46056533756523, 7.05066861111783, 2.73739016146123,
2.26982606069236, 8.82341963996966, -1.16259018234679, 1.89034122140649,
0.144739030331505, -2.39998690309872, 4.77109640665146, -0.277711810619188,
-0.107934943159429, -0.196332839172401, -0.300202118442095, -2.2425515102205,
-1.35135349279852, 0.215865686786687, -0.23476020767084, -0.100097031422697,
-3.3360204087269, -0.191712121367934, 0.0305212696108644, 0.151642722513465,
-0.853677272237406, -0.659749705060806, 6.84020336911474, 1.79717777036246,
1.30884624039607, 0.675302239102553, -4.98357726244878, 4.6876288314099,
-3.14055491695949, 1.84338798510326, 10.4621374387921, -0.229477430047214,
14.3790391811734, 4.62115597977753, -0.793972589610387, 11.4135812319289,
1.95468734170381, 0.269942430520268, -4.07233175461121, -1.0195134394264,
-11.7308112056738, -0.147931417869988, -10.3882047247032, -3.57730374528671,
1.53088269017508, -7.17040132012077, -4.09758228750414, 0.190623376789762,
1.05918085649034, -4.43682411456323, -4.27963307557612, -1.43184592061964,
-16.781852832601, 4.52942726860158, -10.8210179935055, -12.8210219881286
))
, identicalTo( expected, tol = 1e-6 ) ) |
library(sensR)
RUN <- FALSE
op <- options()
options("digits" = 7)
options(help_type = "html")
options("width" = 75)
options("SweaveHooks" = list(fig=function()
par(mar=c(4,4,.5,0)+.5)))
options(continue=" ")
G.test <- function(x, ...) {
ct <- eval.parent(chisq.test(x, correct = FALSE))
ct$data.name <- deparse(substitute(x))
o <- ct$observed
e <- ct$expected
ct$statistic <- 2 * sum(ifelse(o == 0, 0, o * log(o/e)))
names(ct$statistic) <- "G-squared"
ct$p.value <- with(ct, pchisq(statistic, parameter, lower = FALSE))
ct$method <- "Likelihood ratio Chi-squared test"
return(ct)
}
pd <- seq(0, 1-1e-5, length = 1e2)
coef.twoAFC <- coef(rescale(pd = pd, method = "twoAFC"))
coef.threeAFC <- coef(rescale(pd = pd, method = "threeAFC"))
pd <- seq(0, 1-1e-2, length = 1e2)
coef.triangle <- coef(rescale(pd = pd, method = "triangle"))
coef.duotrio <- coef(rescale(pd = pd, method = "duotrio"))
tail(coef.duotrio)
tail(coef.twoAFC)
tail(coef.threeAFC)
tail(coef.triangle)
dPrime <- seq(1e-5, 6, len = 1e2)
gd1 <- psyderiv(dPrime, method = "twoAFC")
gd2 <- psyderiv(dPrime, method = "threeAFC")
gd3 <- psyderiv(dPrime, method = "duotrio")
gd4 <- psyderiv(dPrime, method = "triangle")
getOption("SweaveHooks")[["fig"]]()
plot(c(0, 6), c(.3, 1), type = "n", xlab = "d-prime",
ylab = "P(correct answer)", axes = FALSE)
axis(1)
axis(2, las = 1)
with(coef.twoAFC, lines(d.prime, pc, lty = 1))
with(coef.threeAFC, lines(d.prime, pc, lty = 2))
with(coef.duotrio, lines(d.prime, pc, lty = 3))
with(coef.triangle, lines(d.prime, pc, lty = 4))
legend("topleft", legend = c("2-AFC", "3-AFC", "duo-trio",
"triangle"), lty = 1:4, bty = "n")
getOption("SweaveHooks")[["fig"]]()
plot(c(0, 6), c(0, 1), type = "n", xlab = "d-prime",
ylab = "P(discrimination)", axes = FALSE)
axis(1)
axis(2, las = 1)
with(coef.twoAFC, lines(d.prime, pd, lty = 1))
with(coef.threeAFC, lines(d.prime, pd, lty = 2))
with(coef.duotrio, lines(d.prime, pd, lty = 3))
with(coef.triangle, lines(d.prime, pd, lty = 4))
legend("topleft", legend = c("2-AFC", "3-AFC", "duo-trio",
"triangle"), lty = 1:4, bty = "n")
getOption("SweaveHooks")[["fig"]]()
plot(c(0.3, 1), c(0, 1), type = "n",
ylab = "P(correct answer)",
xlab = "P(discrimination)", axes = FALSE)
axis(1); axis(2, las = 1)
segments(c(1/3, .5), 0, 1, 1, lty = 1:2)
legend("topleft", legend = c("3-AFC and triangle", "2-AFC and duo-trio"),
lty = 1:2, bty = "n")
getOption("SweaveHooks")[["fig"]]()
plot(c(0, 6), c(0, .31), type = "n", axes = FALSE,
xlab = "d-prime",
ylab = "Grad(psychometic function)")
axis(1); axis(2, las = 1)
lines(dPrime, gd1, lty = 1)
lines(dPrime, gd2, lty = 2)
lines(dPrime, gd3, lty = 3)
lines(dPrime, gd4, lty = 4)
legend("topright", legend = c("2-AFC", "3-AFC", "duo-trio",
"triangle"), lty = 1:4, bty = "n")
rescale(pc = 0.25, method = "triangle")
rescale(pd = 0.2, std.err = 0.12, method = "triangle")
discrim(10, 15, method = "threeAFC", statistic = "likelihood")
discrim(4, 15, method = "threeAFC", test = "similarity", pd0 = 0.2,
statistic = "exact")
getOption("SweaveHooks")[["fig"]]()
fm1 <- discrim(10, 15, method = "threeAFC", statistic = "exact")
confint(fm1)
plot(profile(fm1))
getOption("SweaveHooks")[["fig"]]()
fm1 <- discrim(10, 15, method = "threeAFC", statistic = "exact")
confint(fm1)
plot(profile(fm1))
1 - pbinom(q = 15 - 1, size = 20, prob = 0.5)
1 - pbinom(q = 14 - 1, size = 20, prob = 0.5)
i <- 0
while (1 - pbinom(q = i, size = 20, prob = 0.5) > 0.05)
{
i <- i + 1
}
i + 1
findcr(sample.size = 20, alpha = 0.05, p0 = 0.5)
1 - pbinom(q = 15 - 1, size = 20, prob = 3/4)
discrimPwr(pdA = 0.5, sample.size = 20, alpha = 0.05,
pGuess = 1/2)
discrimPwr(pdA = 0.5, pd0 = 0.1, sample.size = 20, alpha = 0.05,
pGuess = 1/2)
discrimPwr(pdA = 0, pd0 = 1/3, sample.size = 100, alpha = 0.05,
pGuess = 1/2, test = "similarity")
discrimPwr(pdA = 1/5, pd0 = 1/3, sample.size = 100, alpha = 0.05,
pGuess = 1/2, test = "similarity")
set.seed(12345)
xx <- rbinom(10000, 20, 3/4)
sum(xx == 0)
pp <- 1 - pbinom(xx-1, 20, 1/2)
sum(pp <= 0.05)
(power <- mean(pp <= 0.05))
(se.power <- sqrt(power * (1 - power) / 1e4))
power + c(-1,1) * qnorm(.975) * se.power
ss <- 275:325
(pd <- coef(rescale(d.prime = .9, method = "triangle"))$pd)
pwr <- sapply(ss, function(x)
discrimPwr(pdA = pd, sample.size = x, pGuess = 1/3))
pwrN <- sapply(ss, function(x)
discrimPwr(pdA = pd, sample.size = x, pGuess = 1/3,
statistic = "normal"))
getOption("SweaveHooks")[["fig"]]()
plot(range(ss), c(0.74, max(pwrN)), type = "n", xlab = "sample size",
ylab = "power", axes = FALSE)
lines(ss, pwr, type = "l")
points(ss, pwr, pch = 20, cex = .8)
abline(h = 0.8, lty = 2)
lines(ss, pwrN, col = "blue")
legend("topleft", legend = c("exact binomial", "normal approx.",
"target power"), lty = c(1, 1, 2),
pch = c(20, NA, NA), col = c(1, "blue", 1), pt.cex = .8)
axis(2, las = 1)
axis(1, at = c(275, 297, 297+21, 325))
segments(297, 0.6, 297,
discrimPwr(pd, sample.size = 297, pGuess = 1/3), lty = 3)
segments(297+21, 0.6, 297+21, discrimPwr(pd, sample.size = 297+21,
pGuess = 1/3), lty = 3)
getOption("SweaveHooks")[["fig"]]()
xcr <- sapply(ss, function(ss) findcr(ss, p0 = 1/3))
plot(ss, xcr, type = "l", axes = FALSE,
ylab = "Critical value", xlab = "Sample size")
points(ss, xcr, pch = 20)
axis(1); axis(2)
getOption("SweaveHooks")[["fig"]]()
aa <- sapply(ss, function(n)
1 - pbinom(findcr(n, p0 = 1/3) - 1, n, 1/3))
plot(ss, aa, pch = 20, ylim = c(0.03, .05), axes = FALSE,
ylab = "Actual alpha-level", xlab = "Sample size")
lines(ss, aa, lty = 1)
axis(1); axis(2)
(pd <- coef(rescale(d.prime = .9, method = "triangle"))$pd)
discrimSS(pdA = pd, pd0 = 0, target.power = 0.8, alpha = 0.05, pGuess
= 1/3, test = "difference", statistic = "exact")
discrimSS(pdA = pd, pd0 = 0, target.power = 0.8, alpha = 0.05, pGuess
= 1/3, test = "difference", statistic = "normal") |
caltheta <- function(fixdist, pd=NULL, gender=NULL, eye = c("left", "right")) {
if (is.null(c(pd, gender))) stop("the value of either pd or gender has to be provided")
if (!is.null(pd)) {
stopifnot(length(pd) == 1,
is.numeric(pd))
}
if (!is.null(gender)) {
stopifnot(gender %in% c("male", "female"))
}
if (getOption("warn") > 0) {
stopifnot(is.numeric(fixdist), length(fixdist) == 2,
eye %in% c("left", "right"))
}
if (is.null(pd)){
pd <- ifelse(gender== "female", .ddivfEnv$pd_gender[1], .ddivfEnv$pd_gender[2])
}
if (eye == "left") {
theta <- atan2(-pd/2 - fixdist[2], fixdist[1])
} else {
theta <- atan2(pd/2 - fixdist[2], fixdist[1])
}
return(theta)
} |
xparse_glimmer_formula <- function( formula , data ) {
nobars <- function(term) {
if (!('|' %in% all.names(term))) return(term)
if (is.call(term) && term[[1]] == as.name('|')) return(NULL)
if (length(term) == 2) {
nb <- nobars(term[[2]])
if (is.null(nb)) return(NULL)
term[[2]] <- nb
return(term)
}
nb2 <- nobars(term[[2]])
nb3 <- nobars(term[[3]])
if (is.null(nb2)) return(nb3)
if (is.null(nb3)) return(nb2)
term[[2]] <- nb2
term[[3]] <- nb3
term
}
findbars <- function(term) {
if (is.name(term) || !is.language(term)) return(NULL)
if (term[[1]] == as.name("(")) return(findbars(term[[2]]))
if (!is.call(term)) stop("term must be of class call")
if (term[[1]] == as.name('|')) return(term)
if (length(term) == 2) return(findbars(term[[2]]))
c(findbars(term[[2]]), findbars(term[[3]]))
}
subbars <- function(term)
{
if (is.name(term) || !is.language(term)) return(term)
if (length(term) == 2) {
term[[2]] <- subbars(term[[2]])
return(term)
}
stopifnot(length(term) >= 3)
if (is.call(term) && term[[1]] == as.name('|'))
term[[1]] <- as.name('+')
for (j in 2:length(term)) term[[j]] <- subbars(term[[j]])
term
}
hasintercept <- function(term) {
attr( terms(term) , "intercept" )==1
}
f_nobars <- nobars( formula )
if ( class(f_nobars)=="name" & length(f_nobars)==1 ) {
f_nobars <- nobars( as.formula( paste( deparse(formula) , "+ 1" ) ) )
}
fixef <- colnames( model.matrix( f_nobars , data ) )
mdat <- model.matrix( subbars( formula ) , data )
outcome_name <- deparse( f_nobars[[2]] )
outcome <- model.frame( f_nobars , data )[,1]
if ( class(outcome)=="matrix" ) {
outcome_name <- colnames( outcome )[1]
}
if ( formula == nobars(formula) ) {
ranef <- list()
} else {
var <- findbars( formula )
ranef <- list()
for ( i in 1:length(var) ) {
name <- all.vars( var[[i]][[3]] )
if ( FALSE ) {
if ( TRUE ) {
if ( class( data[[name]] )!="integer" ) {
stop( paste( "Grouping variables must be integer type. '" , name , "' is instead of type: " , class( data[[name]] ) , "." , sep="" ) )
}
if ( min(data[[name]]) != 1 )
stop( paste( "Group variable '" , name , "' doesn't start at index 1." , sep="" ) )
ulist <- unique( data[[name]] )
diffs <- ulist[2:length(ulist)] - ulist[1:(length(ulist)-1)]
if ( any(diffs != 1) )
stop( paste( "Group variable '" , name , "' is not contiguous." , sep="" ) )
} else {
mdat[,name] <- as.integer( as.factor( mdat[,name] ) )
}
}
v <- var[[i]][[2]]
if ( class(v)=="numeric" ) {
ranef[[ name ]] <- "(Intercept)"
} else {
f <- as.formula( paste( "~" , deparse( v ) , sep="" ) )
ranef[[ name ]] <- colnames( model.matrix( f , data ) )
}
}
}
list( y=outcome , yname=outcome_name , fixef=fixef , ranef=ranef , dat=as.data.frame(mdat) )
}
glimmer <- function( formula , data , family=gaussian , prefix=c("b_","v_") , default_prior="dnorm(0,10)" , ... ) {
undot <- function( astring ) {
astring <- gsub( "." , "_" , astring , fixed=TRUE )
astring <- gsub( ":" , "_X_" , astring , fixed=TRUE )
astring <- gsub( "(" , "" , astring , fixed=TRUE )
astring <- gsub( ")" , "" , astring , fixed=TRUE )
astring
}
family.orig <- family
if ( class(family)=="function" ) {
family <- do.call(family,args=list())
}
link <- family$link
family <- family$family
family_liks <- list(
gaussian = "dnorm( mu , sigma )",
binomial = "dbinom( size , p )",
poisson = "dpois( lambda )"
)
lm_names <- list(
gaussian = "mu",
binomial = "p",
poisson = "lambda"
)
link_names <- list(
gaussian = "identity",
binomial = "logit",
poisson = "log"
)
if ( class(formula)!="formula" ) stop( "Input must be a glmer-style formula." )
if ( missing(data) ) stop( "Need data" )
f <- formula
flist <- alist()
prior_list <- alist()
pf <- xparse_glimmer_formula( formula , data )
pf$yname <- undot(pf$yname)
dtext <- family_liks[[family]]
if ( family=="binomial" ) {
if ( class(pf$y)=="matrix" ) {
pf$dat[[pf$yname]] <- pf$y[,1]
pf$dat[[concat(pf$yname,"_size")]] <- apply(pf$y,1,sum)
dtext <- concat("dbinom( ",concat(pf$yname,"_size")," , p )")
} else {
pf$dat[[pf$yname]] <- pf$y
dtext <- concat("dbinom( 1 , p )")
}
} else {
pf$dat[[pf$yname]] <- pf$y
}
flist[[1]] <- concat( as.character(pf$yname) , " ~ " , dtext )
flm <- ""
for ( i in 1:length(pf$fixef) ) {
aterm <- undot(pf$fixef[i])
newterm <- ""
if ( aterm=="Intercept" ) {
newterm <- aterm
prior_list[[newterm]] <- default_prior
} else {
par_name <- concat( prefix[1] , aterm )
newterm <- concat( par_name , "*" , aterm )
prior_list[[par_name]] <- default_prior
}
if ( i > 1 ) flm <- concat( flm , " +\n " )
flm <- concat( flm , newterm )
}
vlm <- ""
num_group_vars <- length(pf$ranef)
if ( num_group_vars > 0 ) {
for ( i in 1:num_group_vars ) {
group_var <- undot(names(pf$ranef)[i])
members <- list()
for ( j in 1:length(pf$ranef[[i]]) ) {
aterm <- undot(pf$ranef[[i]][j])
newterm <- ""
var_prefix <- prefix[2]
if ( num_group_vars>1 ) var_prefix <- concat( var_prefix , group_var , "_" )
if ( aterm=="Intercept" ) {
par_name <- concat( var_prefix , aterm )
newterm <- concat( par_name , "[" , group_var , "]" )
} else {
par_name <- concat( var_prefix , aterm )
newterm <- concat( par_name , "[" , group_var , "]" , "*" , aterm )
}
members[[par_name]] <- par_name
if ( i > 1 | j > 1 ) vlm <- concat( vlm , " +\n " )
vlm <- concat( vlm , newterm )
}
if ( length(members)>1 ) {
gvar_name <- concat( "c(" , paste(members,collapse=",") , ")" , "[" , group_var , "]" )
prior_list[[gvar_name]] <- concat( "dmvnorm2(0,sigma_" , group_var , ",Rho_" , group_var , ")" )
prior_list[[concat("sigma_",group_var)]] <- concat( "dcauchy(0,2)" )
prior_list[[concat("Rho_",group_var)]] <- concat( "dlkjcorr(2)" )
} else {
gvar_name <- concat( members[[1]] , "[" , group_var , "]" )
prior_list[[gvar_name]] <- concat( "dnorm(0,sigma_" , group_var , ")" )
prior_list[[concat("sigma_",group_var)]] <- concat( "dcauchy(0,2)" )
}
pf$dat[[group_var]] <- coerce_index( data[[group_var]] )
}
}
if ( family=="gaussian" ) {
prior_list[["sigma"]] <- "dcauchy(0,2)"
}
lm_name <- lm_names[[family]]
if ( vlm=="" )
lm_txt <- concat( flm )
else
lm_txt <- concat( flm , " +\n " , vlm )
lm_left <- concat( link , "(" , lm_name , ")" )
if ( link=="identity" ) lm_left <- lm_name
flist[[2]] <- concat( lm_left , " <- " , lm_txt )
for ( i in 1:length(prior_list) ) {
pname <- names(prior_list)[i]
p_txt <- prior_list[[i]]
flist[[i+2]] <- concat( pname , " ~ " , p_txt )
}
flist_txt <- "alist(\n"
for ( i in 1:length(flist) ) {
flist_txt <- concat( flist_txt , " " , flist[[i]] )
if ( i < length(flist) ) flist_txt <- concat( flist_txt , ",\n" )
}
flist_txt <- concat( flist_txt , "\n)" )
flist2 <- eval(parse(text=flist_txt))
names(pf$dat) <- sapply( names(pf$dat) , undot )
pf$dat[['Intercept']] <- NULL
cat(flist_txt)
cat("\n")
invisible(list(f=flist2,d=pf$dat))
}
if ( FALSE ) {
library(rethinking)
data(chimpanzees)
f0 <- pulled.left ~ prosoc.left*condition - condition
m0 <- glimmer( f0 , chimpanzees , family=binomial )
f1 <- pulled.left ~ (1|actor) + prosoc.left*condition - condition
m1 <- glimmer( f1 , chimpanzees , family=binomial )
f2 <- pulled.left ~ (1+prosoc.left|actor) + prosoc.left*condition - condition
m2 <- glimmer( f2 , chimpanzees , family=binomial )
data(UCBadmit)
f3 <- cbind(admit,reject) ~ (1|dept) + applicant.gender
m3 <- glimmer( f3 , UCBadmit , binomial )
m3s <- map2stan( m3$f , data=m3$d )
f4 <- cbind(admit,reject) ~ (1+applicant.gender|dept) + applicant.gender
m4 <- glimmer( f4 , UCBadmit , binomial )
m4s <- map2stan( m4$f , data=m4$d )
data(Trolley)
f5 <- response ~ (1|id) + (1|story) + action + intention + contact
m5 <- glimmer( f5 , Trolley )
m5s <- map2stan( m5$f , m5$d , sample=FALSE )
f6 <- response ~ (1+action+intention|id) + (1+action+intention|story) + action + intention + contact
m6 <- glimmer( f6 , Trolley )
m6s <- map2stan( m6$f , m6$d , sample=TRUE )
} |
ginv <- function(x, tol = sqrt(.Machine$double.eps))
{
dnx <- dimnames(x)
if(is.null(dnx)) dnx <- vector("list", 2)
s <- svd(x)
nz <- s$d > tol * s$d[1]
structure(
if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else x,
dimnames = dnx[2:1])
}
threesls<-function(y,reg,iv){
N<-length(y)
df<-nrow(reg)-ncol(reg)
th<-crossprod(iv,iv)
thx<-crossprod(iv,reg)
xhat<-iv%*%ginv(th)%*%thx
beta<-ginv(crossprod(xhat,reg))%*%crossprod(xhat,y)
yhat<-reg%*%beta
res<-y-yhat
resvar<-sum(res^2)/(N)
varcoef<-resvar*ginv(crossprod(xhat,xhat))
sd<-sqrt(diag(varcoef))
st<-beta/sd
rsq<-(cor(yhat,y))^2
sig<-crossprod(res)
sig<-sig/(length(y))
bb<-kronecker(sig,iv)
b<-crossprod(iv,bb)
b<-ginv(b)
a<-crossprod(iv,reg)
c<-crossprod(iv,y)
d<-ginv(t(a)%*%b%*%a)
beta<-d%*%crossprod(a,b)%*%c
pval<- 2*pt(-abs(st),df=df)
list(beta=beta,sd=sd,st=st,pval=pval,rsq=rsq)
}
tsls <- function(x,...){UseMethod("tsls") }
tsls.default <- function(y,x,h,...)
{
x<-as.matrix(x)
h<-as.matrix(h)
y<-as.numeric(y)
est <- threesls(y,x,h)
est$call <- match.call()
class(est) <- "tsls"
est
}
print.tsls <- function(x,...)
{
cat("Call:\n")
print(x$call)
cat("\nCoefficients:\n")
print(x$coefficients)
}
summary.tsls<-function(object,...)
{
result <- cbind(object$beta,object$sd, object$st,object$pval)
colnames(result) <- c("Estimates", "Std.Err", "T-value", "P-Value")
cat("Formula:")
print(object$equa)
cat("\nRsquared :",object$rsq,"\n")
printCoefmat(result,has.Pvalue=TRUE)
}
tsls.formula <-function(formula,data=list(),...)
{
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0)
mf <- mf[c(1, m)]
f <- Formula(formula)
mf[[1]] <- as.name("model.frame")
mf$formula <- f
mf <- eval(mf, parent.frame())
x <- model.matrix(f, data = mf, rhs = 1)
h <- model.matrix(f, data = mf, rhs = 2)
y <- model.response(mf)
est <- tsls.default(y,x,h,...)
est$call <- match.call()
est$equa <- formula
est
} |
sim2dist <- function(x, maxSim = 1){
stopifnot(is.matrix(x))
stopifnot(isSymmetric(x))
stopifnot(maxSim >= max(x))
d <- maxSim - x
return(as.dist(d))
} |
`mlcm` <-
function(x, ...) {
UseMethod("mlcm")
} |
vcov.gamlss <- function (object,
type = c("vcov", "cor", "se", "coef", "all"),
robust = FALSE,
hessian.fun = c("R", "PB"),
...)
{
HessianPB<-function (pars, fun, ..., .relStep = (.Machine$double.eps)^(1/3),
minAbsPar = 0)
{
pars <- as.numeric(pars)
npar <- length(pars)
incr <- ifelse(abs(pars) <= minAbsPar, minAbsPar * .relStep,
abs(pars) * .relStep)
baseInd <- diag(npar)
frac <- c(1, incr, incr^2)
cols <- list(0, baseInd, -baseInd)
for (i in seq_along(pars)[-npar])
{
cols <- c(cols, list(baseInd[, i] + baseInd[, -(1:i)]))
frac <- c(frac, incr[i] * incr[-(1:i)])
}
indMat <- do.call("cbind", cols)
shifted <- pars + incr * indMat
indMat <- t(indMat)
Xcols <- list(1, indMat, indMat^2)
for (i in seq_along(pars)[-npar])
{
Xcols <- c(Xcols, list(indMat[, i] * indMat[, -(1:i)]))
}
coefs <- solve(do.call("cbind", Xcols), apply(shifted, 2,
fun, ...))/frac
Hess <- diag(coefs[1 + npar + seq_along(pars)], ncol = npar)
Hess[row(Hess) > col(Hess)] <- coefs[-(1:(1 + 2 * npar))]
list(mean = coefs[1], gradient = coefs[1 + seq_along(pars)],
Hessian = (Hess + t(Hess)))
}
type <- match.arg(type)
hessian.fun <- match.arg(hessian.fun)
if (!is.gamlss(object))
stop(paste("This is not an gamlss object", "\n", ""))
coefBeta <- list()
for (i in object$par)
{
if (length(eval(parse(text=paste(paste("object$",i, sep=""),".fix==TRUE", sep=""))))!=0)
{
ff <- eval(parse(text=paste(paste(paste(object$family[1],"()$", sep=""), i, sep=""),".linkfun", sep="")))
fixvalue <- ff( fitted(object,i)[1])
names(fixvalue) <- paste("fixed",i, sep=" ")
coefBeta <- c(coefBeta, fixvalue)
} else
{
if (!is.null(unlist(attr(terms(formula(object, i),
specials = .gamlss.sm.list), "specials"))))
warning(paste("Additive terms exists in the ", i, "formula. \n "
,"Standard errors for the linear terms maybe are not appropriate"))
nonNAcoef <- !is.na(coef(object, i))
coefBeta <- c(coefBeta, coef(object, i)[nonNAcoef])
}
}
betaCoef <- unlist(coefBeta)
like.fun <- gen.likelihood(object)
hess <- if (hessian.fun=="R" ) optimHess(betaCoef, like.fun)
else HessianPB(betaCoef, like.fun)$Hessian
varCov <- try(solve(hess), silent = TRUE)
if (any(class(varCov)%in%"try-error")||any(diag(varCov)<0))
{
varCov <- try(solve(HessianPB(betaCoef, like.fun)$Hessian), silent = TRUE)
if (any(class(varCov)%in%"try-error"))
stop("the Hessian matrix is singular probably the model is overparametrised")
}
rownames(varCov) <- colnames(varCov) <- rownames(hess)
se <- sqrt(diag(varCov))
corr <- cov2cor(varCov)
coefBeta <- unlist(coefBeta)
if (robust)
{
K <- get.K(object)
varCov <- varCov%*%K%*%varCov
se <- sqrt(diag(varCov))
corr <- cov2cor(varCov)
}
switch(type, vcov = varCov, cor = corr, se = se, coef = coefBeta,
all = list(coef = coefBeta, se = se, vcov = varCov,
cor = corr))
} |
source("ESEUR_config.r")
brew_col=rainbow_hcl(3)
funcs=read.csv(paste0(ESEUR_dir, "evolution/functions/ev_funcmod.tsv.xz"), as.is=TRUE, sep="\t")
revdate=read.csv(paste0(ESEUR_dir, "evolution/functions/ev_rev_date.csv.xz"), as.is=TRUE)
funcs$date=revdate$date_time[funcs$revid %in% revdate$revid]
merge_move=function(df)
{
deleted=subset(df, typemod == "D")
added=subset(df, typemod == "A")
return (cbind(nrow(deleted), nrow(added)))
}
all_moves=ddply(funcs, .(func_name), merge_move)
table(all_moves[, 2:3])
count_mods=function(df)
{
df=subset(df, typemod != "D")
num_mods=nrow(df)
num_authors=length(unique(df$author))
return(cbind(num_mods, num_authors))
}
mod_count=ddply(funcs, .(filename,func_name), count_mods)
total_mods=ddply(mod_count, .(num_mods, num_authors), nrow)
plot_mods=function(X)
{
par(new=X != 1)
t=subset(total_mods, num_authors == X)
plot(t$num_mods, t$V1, type="l", col=brew_col[X], log="y",
xlab="Modifications", ylab="Functions",
xlim=xbounds, ylim=ybounds)
}
xbounds=c(1, 15)
ybounds=c(1, max(total_mods$V1))
pal_col=rainbow_hcl(5)
dummy=sapply(1:5, plot_mods)
legend(x="topright",legend=c("1 author", "2 authors", "3 authors", "4 authors", "5 authors"), bty="n", fill=brew_col)
plot_layout(1, 2)
all_mods=ddply(total_mods, .(num_mods), function(df) sum(df$V1))
plot(all_mods$num_mods, all_mods$V1, log="y",
xlim=c(0, 50),
xlab="Modifications", ylab="Functions")
a_mod=glm(V1 ~ num_mods, data=all_mods[2:15, ], family=quasipoisson)
lines(1:15, predict(a_mod, newdata=data.frame(num_mods=1:15), type="response"), col=brew_col[2])
s=exp(a_mod$coefficients[2])
M_t=s/(1-s)
author_mods=ddply(total_mods, .(num_authors), function(df) sum(df$V1))
plot(author_mods$num_authors, author_mods$V1, log="y",
xlab="Authors", ylab="Functions")
a_authors=glm(V1 ~ num_authors, data=author_mods[2:20, ], family=quasipoisson)
lines(1:20, predict(a_authors, newdata=data.frame(num_authors=1:20), type="response"), col=brew_col[2])
s=exp(a_authors$coefficients[2])
M_t=s/(1-s) |
print.l1.reg <-
function (x, ...)
{
cat ("\n Call: \n")
print (x$call)
cat ("
cat ("
cat ("\n Lambda used:", x$lambda, "\n")
cat ("\n")
cat ("\n Intercept: \n")
print (x$intercept)
cat ("\n Selected Coefficient Estimates: \n")
print (cbind(Predictor=rownames(x$X)[x$selected+1],Estimate=x$estimate[x$selected]),justify="centre")
cat ("\n Number of Active Variables: \n")
print (x$nonzeros)
} |
discoveries <- function(hommel, ix, incremental=FALSE, alpha=0.05)
{
m <- length(hommel@p)
if (missing(ix) & incremental==FALSE) {
k <- m
ix <- hommel@sorter
}
if (missing(ix) & incremental==TRUE) {
stop('Found incremental=TRUE but missing ix.')
}
if (!missing(ix)) {
k <- length(hommel@p[ix])
}
if (any(is.na(hommel@p[ix])))
stop('NAs produced by selecting with ix.')
if (k == 0) {
warning('empty selection')
return(0)
}
h <- findHalpha(hommel@jumpalpha, alpha, m)
simesfactor <- hommel@simesfactor[h+1]
allsortedp <- hommel@p[hommel@sorter]
ix_sortedp <- integer(m)
names(ix_sortedp) <- names(hommel@p)
ix_sortedp[hommel@sorter] <- 1:m
ix_sortedp <- ix_sortedp[ix]
discoveries <- findDiscoveries(ix_sortedp, allsortedp, simesfactor, h, alpha, k, m)
if(!incremental)
return(discoveries[k+1])
else
return(discoveries[-1])
}
tdp <- function(hommel, ix, incremental=FALSE, alpha=0.05)
{
m <- length(hommel@p)
if (missing(ix)) {
k <- m
d <- discoveries(hommel, incremental=incremental, alpha=alpha)
} else {
k <- length(hommel@p[ix])
d <- discoveries(hommel, ix, incremental=incremental, alpha=alpha)
}
d/k
}
fdp <- function(hommel, ix, incremental = FALSE, alpha=0.05)
{
1-tdp(hommel, ix, incremental=incremental, alpha=alpha)
} |
context("test-basic_yaml_results")
if (!rmarkdown::pandoc_available()) testthat::skip("Pandoc not found")
test_that("Basic YAML is rendered correctly", {
rslt <- yml_empty() %>%
yml_author(
c("Yihui Xie", "Hadley Wickham"),
affiliation = rep("RStudio", 2)
) %>%
yml_date("07/04/2019") %>%
yml_output(
pdf_document(
keep_tex = TRUE,
includes = includes2(after_body = "footer.tex")
)
) %>%
yml_latex_opts(biblio_style = "apalike") %>%
stringify_yaml()
yaml_string <- "---
author:
- name: Yihui Xie
affiliation: RStudio
- name: Hadley Wickham
affiliation: RStudio
date: 07/04/2019
output:
pdf_document:
keep_tex: true
includes:
after_body: footer.tex
biblio-style: apalike
---"
expect_equal(rslt, yaml_string)
})
test_that("output fields render correctly", {
rslts <- yml_empty() %>%
yml_output(html_document()) %>%
stringify_yaml()
yaml_string <- "---
output: html_document
---"
expect_equal(rslts, yaml_string)
})
test_that("LaTeX options render correctly", {
rslt <- yml_empty() %>%
yml_author("Malcolm Barrett") %>%
yml_output(pdf_document()) %>%
yml_latex_opts(
fontfamily = "Fira Sans Thin",
fontsize = "11pt",
links_as_notes = TRUE
) %>%
stringify_yaml()
yaml_string <- "---
author: Malcolm Barrett
output: pdf_document
fontfamily: Fira Sans Thin
fontsize: 11pt
links-as-notes: true
---"
expect_equal(rslt, yaml_string)
})
test_that("Code chunk is rendered correctly", {
rslt <- code_chunk({
yml_empty() %>%
yml_author("Malcolm Barrett") %>%
yml_output(pdf_document())
}, chunk_name = "yml_example")
yaml_string <- '```{r yml_example}
yml_empty() %>% yml_author("Malcolm Barrett") %>% yml_output(pdf_document())
```'
expect_equal(rslt, yaml_string)
}) |
demvn <- function(y, X, log = FALSE, verbose = TRUE, alpha=2, beta=1.25)
{
if( !is.matrix(y) ) y <- matrix(y, 1, length(y))
tmp <- robCov( t(X), alpha = alpha, beta = beta )
if( length(tmp$lowVar) ) stop("The columns of X indexed ", tmp$lowVar, " have zero variance.")
llk <- apply(y,
1,
function(input) .demvn(y = input, L = tmp, log = log) )
return(llk)
}
.demvn <- function(y, L, log)
{
rss <- sum( (L$E%*%as.vector(y-L$mY))^2 )
llk <- -rss/2 - L$half.ldet.V - log(2 * pi) * length(y) / 2
if( !log ) llk <- exp( llk )
return(llk)
} |
library(knitr)
opts_chunk$set(echo = TRUE)
if (requireNamespace("Cairo", quietly = TRUE))
{
opts_chunk$set(dev='CairoPNG')
}
par_hook = function(before, options, envir)
{
if(before)
{
do.call(par, options$par)
}
}
knit_hooks$set(par = par_hook)
library(dexter)
library(dplyr)
library(tidyr)
select = dplyr::select
sim_PV = function(theta, delta) {
nit = length(delta)
sim_func = r_score( tibble(item_id=1:nit, item_score=1, delta=delta))
simulated_data = sim_func(theta)
parms = fit_enorm(simulated_data)
pv = plausible_values(simulated_data, parms, nPV = 10)
plot(x=c(min(theta)-.5, max(theta)+.5), y=0:1,
main=paste(nit, "items"), bty='l', type='n',
xlab=bquote(theta), ylab = bquote(Fn(theta)))
select(pv, starts_with('PV')) %>%
lapply(function(x) lines(ecdf(x-mean(x)), col=rgb(.7,.7,.7,.5)))
lines(ecdf(theta-mean(theta)))
}
theta = rnorm(300)
delta = runif(50, -2, 1)
sim_PV(theta, delta)
grp = sample(2, 300, replace = TRUE, prob = c(.5,.5))
theta = rnorm(300, mean = c(-2,2)[grp], sd = c(1,1)[grp])
plot(density(theta),bty='l',main='')
par(mfrow=c(1,3))
sim_PV(theta, delta[1:10])
sim_PV(theta, delta[1:20])
sim_PV(theta, delta)
sim_PV2 = function(theta, delta) {
nit = length(delta)
sim_func = r_score( tibble(item_id=1:nit, item_score=1, delta=delta))
simulated_data = sim_func(theta)
parms = fit_enorm(simulated_data, method="Bayes", nDraws = 50)
plot(x=c(min(theta)-.5, max(theta)+.5), y=0:1, main=paste(nit, "items"), bty='l', type='n',
xlab=bquote(theta), ylab = bquote(Fn(theta)))
which.draw = 5*(1:10)
for (iter in 1:10) {
pv = plausible_values(simulated_data, parms, use_draw=which.draw[iter])
lines(ecdf(pv$PV1-mean(pv$PV1)), col=rgb(.7,.7,.7,.5))
}
lines(ecdf(theta-mean(theta)))
}
sim_PV2(theta, delta[1:10])
sim_PV2(theta, delta[1:20])
sim_PV2(theta, delta)
sim_PV3 = function(theta, delta, group) {
nit = length(delta)
sim_func = r_score( tibble(item_id=1:nit, item_score=1, delta=delta))
simulated_data = sim_func(theta)
parms = fit_enorm(simulated_data)
simulated_data = simulated_data %>%
as_tibble() %>%
mutate(person_id=row_number(), group=group) %>%
gather(key='item_id', value='item_score', -person_id, -group)
pv = plausible_values(simulated_data, parms, covariates='group',nPV = 10)
plot(x=c(min(theta)-.5, max(theta)+.5), y=0:1, main=paste(nit, "items"), bty='l', type='n',
xlab=bquote(theta), ylab = bquote(Fn(theta)))
select(pv, starts_with('PV')) %>%
lapply(function(x) lines(ecdf(x-mean(x)), col=rgb(.7,.7,.7,.5)))
lines(ecdf(theta-mean(theta)))
}
sim_PV3(theta, delta[1:10],grp)
sim_PV3(theta, delta[1:20],grp)
sim_PV3(theta, delta,grp) |
plot_signal <- function(z, f, size=0.75, limits=range(f)) {
if(is(z$sA, 'sparseMatrix')){
z$sA <- summary(z$sA)
}
x <- z$xy[, 1]
y <- z$xy[, 2]
ind_i <- z$sA[, 1]
ind_j <- z$sA[, 2]
y1 <- x[ind_j]
y2 <- y[ind_j]
df1 <- data.frame(x = x, y = y)
df2 <- data.frame(x = x[ind_i],
y = y[ind_i],
y1 = y1, y2 = y2)
p2 <- ggplot(df1, aes(x, y)) +
geom_segment(aes(x = x, y = y,
xend = y1, yend = y2),
color = "gray", data = df2) +
geom_point(size = size, aes(colour = f)) +
scale_colour_distiller(palette = "Spectral",
limits = limits) +
theme_void() +
theme(
legend.text=element_text(size=8),
legend.key.size = unit(0.8,"line"),
legend.margin = margin(0.0,0.0,0.0,0.0),
plot.margin = unit(c(0.01,0.01,0.01,0.01), "cm"))
print(p2)
} |
cleannames <- function(objnames, no_dots = FALSE){
objnames[objnames == ""] <- NA_character_
is_missing <- is.na(objnames)
objnames[is_missing] <- as.character(seq_len(length(objnames)))[is_missing]
if(isTRUE(no_dots))
objnames <- gsub(".", "_", objnames, fixed = TRUE)
make.unique(objnames)
} |
prl_fictitious_rp_woa <- hBayesDM_model(
task_name = "prl",
model_name = "fictitious_rp_woa",
model_type = "",
data_columns = c("subjID", "choice", "outcome"),
parameters = list(
"eta_pos" = c(0, 0.5, 1),
"eta_neg" = c(0, 0.5, 1),
"beta" = c(0, 1, 10)
),
regressors = list(
"ev_c" = 2,
"ev_nc" = 2,
"pe_c" = 2,
"pe_nc" = 2,
"dv" = 2
),
postpreds = c("y_pred"),
preprocess_func = prl_preprocess_func) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.