code
stringlengths
1
13.8M
teamBowlersVsBatsmenOppnAllMatches <- function(matches,main,opposition,plot=1,top=5){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL ggplotly=NULL team=bowler=ball=wides=noballs=runsConceded=overs=batsman=NULL a <-filter(matches,team != main) b <-summarise(group_by(a,bowler,batsman),sum(runs)) names(b) <- c("bowler","batsman","runsConceded") c <- summarise(group_by(b,bowler),runs=sum(runsConceded)) d <- arrange(c,desc(runs)) d <- head(d,top) bowlers <- as.character(d$bowler) e <- NULL for(i in 1:length(bowlers)){ f <- filter(b,bowler==bowlers[i]) e <- rbind(e,f) } names(e) <- c("bowler","batsman","runsConceded") if(plot == 1){ plot.title = paste("Bowlers vs batsmen -",main," Vs ",opposition,"(all matches)",sep="") ggplot(data=e,aes(x=batsman,y=runsConceded,fill=factor(batsman))) + facet_grid(. ~ bowler) + geom_bar(stat="identity") + xlab("Batsman") + ylab("Runs conceded") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ plot.title = paste("Bowlers vs batsmen -",main," Vs ",opposition,"(all matches)",sep="") g <- ggplot(data=e,aes(x=batsman,y=runsConceded,fill=factor(batsman))) + facet_grid(. ~ bowler) + geom_bar(stat="identity") + xlab("Batsman") + ylab("Runs conceded") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g,height=500) } else{ e } }
lines.predMexhaz <- function(x,which=c("surv","hazard"),conf.int=TRUE,lty.pe="solid",lty.ci="dashed",...){ which <- match.arg(which) if (x$type=="multiobs"){ stop("The 'lines.predMexhaz' function applies only to predictions realised on a single vector of covariates.") } time.pts <- x$results$time.pts if (which=="hazard"){ lines(time.pts,x$results$hazard,lty=lty.pe,...) } else { lines(c(0,time.pts),c(1,x$results$surv),lty=lty.pe,...) } if (conf.int==TRUE & x$ci.method!="none"){ if (which=="hazard"){ lines(time.pts,x$results$hazard.inf,lty=lty.ci,...) lines(time.pts,x$results$hazard.sup,lty=lty.ci,...) } else { lines(c(0,time.pts),c(1,x$results$surv.inf),lty=lty.ci,...) lines(c(0,time.pts),c(1,x$results$surv.sup),lty=lty.ci,...) } } }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(criticalpath) sch <- sch_new() %>% sch_title("Project 1: Cost Information System") %>% sch_reference("VANHOUCKE, Mario. Integrated project management and control: first comes the theory, then the practice. Gent: Springer, 2014, p. 6") %>% sch_add_activities( id = 1:17, name = paste("a", as.character(1:17), sep=""), duration = c(1L,2L,2L,4L,3L,3L,3L,2L,1L,1L,2L,1L,1L,1L,1L,2L,1L) ) %>% sch_add_relations( from = c(1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 11L, 12L, 12L, 13L, 13L, 14L, 14L, 15L, 15L), to = c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 11L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 16L, 17L, 16L, 17L, 16L, 17L, 16L, 17L) ) %>% sch_plan() sch_duration(sch) sch_activities(sch) sch_relations(sch) sch <- sch_new() %>% sch_title("Project 3: Old Carriage House Renovation") %>% sch_reference( "VANHOUCKE, Mario. Integrated project management and control: first comes the theory, then the practice. Gent: Springer, 2014, p. 11") %>% sch_add_activity( 1L, "a1" , 2L) %>% sch_add_activity( 2L, "a2" , 2L) %>% sch_add_activity( 3L, "a3" , 4L) %>% sch_add_activity( 4L, "a4" , 3L) %>% sch_add_activity( 5L, "a5" , 4L) %>% sch_add_activity( 6L, "a6" , 1L) %>% sch_add_activity( 7L, "a7" , 1L) %>% sch_add_activity( 8L, "a8" , 1L) %>% sch_add_activity( 9L, "a9" , 1L) %>% sch_add_activity(10L, "a10", 1L) %>% sch_add_activity(11L, "a11", 3L) %>% sch_add_activity(12L, "a12", 2L) %>% sch_add_activity(13L, "a13", 1L) %>% sch_add_activity(14L, "a14", 1L) %>% sch_add_activity(15L, "a15", 2L) %>% sch_add_activity(16L, "a16", 1L) %>% sch_add_activity(17L, "a17", 1L) %>% sch_add_relation( 1L, 2L) %>% sch_add_relation( 2L, 3L) %>% sch_add_relation( 3L, 4L) %>% sch_add_relation( 4L, 5L) %>% sch_add_relation( 5L, 6L) %>% sch_add_relation( 6L, 7L) %>% sch_add_relation( 6L, 8L) %>% sch_add_relation( 6L, 9L) %>% sch_add_relation( 7L, 10L) %>% sch_add_relation( 8L, 10L) %>% sch_add_relation( 9L, 10L) %>% sch_add_relation(10L, 11L) %>% sch_add_relation(10L, 13L) %>% sch_add_relation(11L, 12L) %>% sch_add_relation(12L, 15L) %>% sch_add_relation(13L, 14L) %>% sch_add_relation(14L, 15L) %>% sch_add_relation(15L, 16L) %>% sch_add_relation(16L, 17L) %>% sch_plan() sch_duration(sch) sch_activities(sch) sch_relations(sch) sch <- sch_new() %>% sch_title("Fictitious Project Example") %>% sch_reference("VANHOUCKE, Mario. Measuring time: improving project performance using earned value management. Gent: Springer, 2009, p. 18") %>% sch_add_activity( 1L, "a1" , 0L, 2L,3L,4L) %>% sch_add_activity( 2L, "a2" , 4L, 5L) %>% sch_add_activity( 3L, "a3" , 9L, 10L) %>% sch_add_activity( 4L, "a4" , 1L, 6L) %>% sch_add_activity( 5L, "a5" , 4L, 9L) %>% sch_add_activity( 6L, "a6" , 5L, 7L) %>% sch_add_activity( 7L, "a7" , 1L, 8L,11L) %>% sch_add_activity( 8L, "a8" , 7L, 12L) %>% sch_add_activity( 9L, "a9" , 8L, 12L) %>% sch_add_activity(10L, "a10", 3L, 12L) %>% sch_add_activity(11L, "a11", 3L, 12L) %>% sch_add_activity(12L, "a12", 0L) %>% sch_plan() sch_duration(sch) sch_activities(sch) sch_relations(sch) sch <- sch_new() %>% sch_add_activity(1L, "Task 1", 5L) %>% sch_add_activity(2L, "Task 2", 6L) %>% sch_add_activity(3L, "Task 3", 8L) %>% sch_add_activity(4L, "Task 4", 6L) %>% sch_add_activity(5L, "Task 5", 9L) %>% sch_add_activity(6L, "Task 6", 3L) %>% sch_add_activity(7L, "Task 7", 4L) %>% sch_plan() sch_duration(sch) sch_activities(sch) sch <- sch_new() %>% sch_title("Fictitious Project Example") %>% sch_reference("VANHOUCKE, Mario. Measuring time: improving project performance using earned value management. Gent: Springer, 2009, p. 18") %>% sch_add_activity( 1L, "a1" , 0L, 2L,3L,4L) %>% sch_add_activity( 2L, "a2" , 4L, 5L) %>% sch_add_activity( 3L, "a3" , 9L, 10L) %>% sch_add_activity( 4L, "a4" , 1L, 6L) %>% sch_add_activity( 5L, "a5" , 4L, 9L) %>% sch_add_activity( 6L, "a6" , 5L, 7L) %>% sch_add_activity( 7L, "a7" , 1L, 8L,11L) %>% sch_add_activity( 8L, "a8" , 7L, 12L) %>% sch_add_activity( 9L, "a9" , 8L, 12L) %>% sch_add_activity( 10L, "a10", 3L, 12L) %>% sch_add_activity( 11L, "a11", 3L, 12L) %>% sch_add_activity( 12L, "a12", 0L) %>% sch_plan() sch_title(sch) sch_reference(sch) %>% cat() sch_duration(sch) sch <- sch_new() %>% sch_title("Fictitious Project Example") %>% sch_reference("VANHOUCKE, Mario. Measuring time: improving project performance using earned value management. Gent: Springer, 2009, p. 18") sch_has_any_activity(sch) sch_nr_activities(sch) sch %<>% sch_add_activity( 1L, "a1" , 0L, 2L,3L,4L) %>% sch_add_activity( 2L, "a2" , 4L, 5L) %>% sch_add_activity( 3L, "a3" , 9L, 10L) %>% sch_add_activity( 4L, "a4" , 1L, 6L) %>% sch_add_activity( 5L, "a5" , 4L, 9L) %>% sch_add_activity( 6L, "a6" , 5L, 7L) %>% sch_add_activity( 7L, "a7" , 1L, 8L,11L) %>% sch_add_activity( 8L, "a8" , 7L, 12L) %>% sch_add_activity( 9L, "a9" , 8L, 12L) %>% sch_add_activity( 10L, "a10", 3L, 12L) %>% sch_add_activity( 11L, "a11", 3L, 12L) %>% sch_add_activity( 12L, "a12", 0L) %>% sch_plan() sch_has_any_activity(sch) sch_nr_activities(sch) sch_get_activity(sch, 10L) sch_activities(sch) sch <- sch_new() %>% sch_title("A project") %>% sch_reference("From criticalpath") %>% sch_add_activities( id = c( 1L, 2L, 3L, 4L ), name = c("A", "B", "C", "D"), duration = c( 2L, 3L, 1L, 2L ) ) %>% sch_add_relations( from = c(1L, 2L, 4L, 4L), to = c(3L, 3L, 1L, 2L) ) %>% sch_plan() gantt <- sch_gantt_matrix(sch) gantt colSums(gantt) rowSums(gantt) cumsum(colSums(gantt)) plot(cumsum(colSums(gantt)), type="l", lwd=3) xyw <- sch_xy_gantt_matrix(sch) xyw plot(xyw[, 1:2]) sch <- sch_new() %>% sch_title("Project 2: Patient Transport System") %>% sch_reference( "VANHOUCKE, Mario. Integrated project management and control: first comes the theory, then the practice. Gent: Springer, 2014, p. 9") %>% sch_add_activities( id = 1:17, name = paste("a", as.character(1:17), sep=""), duration = c(1L,1L,3L,2L, 2L,2L,2L,1L, 4L,5L,3L,3L, 4L,5L,1L,5L,2L) ) %>% sch_add_relations( from = c(1L, 2L, 3L, 3L, 4L, 5L, 6L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 10L, 11L, 12L, 13L, 13L, 14L, 14L, 15L, 15L), to = c(2L, 3L, 4L, 6L, 5L, 8L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 14L, 14L, 14L, 14L, 15L, 16L, 17L, 16L, 17L) ) %>% sch_plan() sch_duration(sch) sch_activities(sch)$duration new_durations <- c(1L,2L,5L, 4L,3L, 2L,1L, 5L, 3L,5L,5L,3L,4L, 2L,1L, 2L,4L) sch %<>% sch_change_activities_duration(new_durations) sch_duration(sch) sch_activities(sch)$duration n <- sch %>% sch_nr_activities() set.seed(45678) i <- sample(n) another_schedule <- sch_new() %>% sch_add_activities( id = sch_activities(sch)$id[i], name = sch_activities(sch)$name[i], duration = sch_activities(sch)$duration[i] ) %>% sch_add_relations( from = c(1L, 2L, 3L, 3L, 4L, 5L, 6L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 10L, 11L, 12L, 13L, 13L, 14L, 14L, 15L, 15L), to = c(2L, 3L, 4L, 6L, 5L, 8L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 14L, 14L, 14L, 14L, 15L, 16L, 17L, 16L, 17L) ) %>% sch_plan() another_schedule %<>% sch_change_activities_duration(new_durations[i]) sch_duration(another_schedule) sch_duration(sch) sch <- sch_new() %>% sch_title("Fictitious Project Example") %>% sch_reference("VANHOUCKE, Mario. Measuring time: improving project performance using earned value management. Gent: Springer, 2009, p. 18") sch_has_any_relation(sch) sch_nr_relations(sch) sch %<>% sch_add_activity( 1L, "a1" , 0L, 2L,3L,4L) %>% sch_add_activity( 2L, "a2" , 4L, 5L) %>% sch_add_activity( 3L, "a3" , 9L, 10L) %>% sch_add_activity( 4L, "a4" , 1L, 6L) %>% sch_add_activity( 5L, "a5" , 4L, 9L) %>% sch_add_activity( 6L, "a6" , 5L, 7L) %>% sch_add_activity( 7L, "a7" , 1L, 8L,11L) %>% sch_add_activity( 8L, "a8" , 7L, 12L) %>% sch_add_activity( 9L, "a9" , 8L, 12L) %>% sch_add_activity(10L, "a10", 3L, 12L) %>% sch_add_activity(11L, "a11", 3L, 12L) %>% sch_add_activity(12L, "a12", 0L) %>% sch_plan() sch_has_any_relation(sch) sch_nr_relations(sch) sch_relations(sch) sch <- sch_new() %>% sch_title("Fictitious Project Example") %>% sch_reference("VANHOUCKE, Mario. Measuring time: improving project performance using earned value management. Gent: Springer, 2009, p. 18") %>% sch_add_activity( 2L, "a2" , 4L, 5L, 12L) %>% sch_add_activity( 3L, "a3" , 9L, 10L) %>% sch_add_activity( 4L, "a4" , 1L, 6L) %>% sch_add_activity( 5L, "a5" , 4L, 9L) %>% sch_add_activity( 6L, "a6" , 5L, 7L) %>% sch_add_activity( 7L, "a7" , 1L, 8L,11L) %>% sch_add_activity( 8L, "a8" , 7L, 12L) %>% sch_add_activity( 9L, "a9" , 8L, 12L) %>% sch_add_activity(10L, "a10", 3L, 12L) %>% sch_add_activity(11L, "a11", 3L, 12L) %>% sch_add_activity(12L, "a12", 0L) %>% sch_plan() sch_all_successors(sch, 2) sch_all_successors(sch, 7) sch_all_successors(sch, 10) sch_successors(sch, 2) sch_successors(sch, 7) sch_successors(sch, 10) sch_all_predecessors(sch, 2) sch_all_predecessors(sch, 7) sch_all_predecessors(sch, 10) sch_predecessors(sch, 2) sch_predecessors(sch, 7) sch_predecessors(sch, 10) sch_is_redundant(sch, 2, 5) sch_is_redundant(sch, 2, 12) sch <- sch_new() %>% sch_title("Fictitious Project Example") %>% sch_reference("VANHOUCKE, Mario. Measuring time: improving project performance using earned value management. Gent: Springer, 2009, p. 18") %>% sch_add_activity( 1L, "a1" , 0L, 2L,3L,4L) %>% sch_add_activity( 2L, "a2" , 4L, 5L) %>% sch_add_activity( 3L, "a3" , 9L, 10L) %>% sch_add_activity( 4L, "a4" , 1L, 6L) %>% sch_add_activity( 5L, "a5" , 4L, 9L) %>% sch_add_activity( 6L, "a6" , 5L, 7L) %>% sch_add_activity( 7L, "a7" , 1L, 8L,11L) %>% sch_add_activity( 8L, "a8" , 7L, 12L) %>% sch_add_activity( 9L, "a9" , 8L, 12L) %>% sch_add_activity(10L, "a10", 3L, 12L) %>% sch_add_activity(11L, "a11", 3L, 12L) %>% sch_add_activity(12L, "a12", 0L) %>% sch_plan() sch_topoi_sp(sch) sch_topoi_ad(sch) sch_topoi_la(sch) sch_topoi_tf(sch)
normalizedEdgeComplexity <- function(g,ita=NULL){ if(class(g)[1]!="graphNEL"){ stop("'g' must be a 'graphNEL' object") } stopifnot(.validateGraph(g)) if(is.null(ita)){ ita <- totalAdjacency(g) } return(ita/(numNodes(g)^2)) }
set_font <- function(p, family="sans", fontface=NULL, size=NULL, color=NULL) { if (!is.null(size)) size <- size * .pt par <- list(fontfamily = family, fontface = fontface, fontsize = size, col = color) par <- par[!sapply(par, is.null)] gp <- do.call(gpar, par) g <- ggplotGrob(p) ng <- grid.ls(grid.force(g), print=FALSE)$name txt <- ng[which(grepl("text", ng))] for (i in seq_along(txt)) { g <- editGrob(grid.force(g), gPath(txt[i]), grep = TRUE, gp = gp) } grid.draw(g) invisible(g) }
print.site <- function(x, ...){ class(x) <- 'data.frame' print(format(data.frame(site.name = x$site.name, long = x$long, lat = x$lat, elev = x$elev), justify='left'), row.names=FALSE) cat(paste0('A site object containing ',nrow(x),' sites and 8 parameters.\n')) }
ks_stat<-function(x,z){ nvar=dim(x)[2] x1=x[z==1,] x0=x[z==0,] ks=numeric(nvar) where=numeric(nvar) for (i in 1:nvar){ ks[i]=stats::ks.test(x1[,i],x0[,i])$statistic } ks }
knitr::opts_chunk$set( collapse = TRUE, comment = " fig.width = 6, fig.height = 4 ) library('adea') data(tokyo_libraries) head(tokyo_libraries) input <- tokyo_libraries[, 1:4] output <- tokyo_libraries[, 5:6] m <- adea(input, output) summary(m) mc <- cadea(input, output, load.min = 0.6, load.max = 4) summary(mc) plot(m$eff, mc$eff, main ='Initial efficiencies vs constrained model efficiencies')
plotProbs <- function (result, traits, colors = c("lightblue", "blue"), xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, zlab = "Probability", distance = 0.3, cex.lab = 1.5, box.col = "transparent", xbase = 0.5, ybase = 0.5,...) { res <- result$prob cols <- function(n) { (grDevices::colorRampPalette(colors = colors))(20) } if (ncol(traits) == "1") { graphics::barplot(t(res), col = colors[2], names = rownames(res), ylab = ifelse(is.null(ylab), "Probability", ylab), xlab = ifelse(is.null(xlab), "Trait X", xlab),...) } if (ncol(traits) == "2") { if (is.null(xlim)) xlim <- c(min(traits[,1]) - 1, max(traits[, 1]) + 1) if (is.null(ylim)) ylim <- c(min(traits[,2]) - 1, max(traits[, 2]) + 1) lattice::cloud(res ~ as.vector(t(traits[, 1])) + as.vector(t(traits[,2])), panel.3d.cloud = latticeExtra::panel.3dbars, xbase = xbase, ybase = ybase, scales = list(arrows = FALSE,col = 1), perspective = TRUE, distance = distance, xlim = xlim, ylim = ylim, par.settings = list(axis.line = list(col = box.col)), xlab = list(ifelse(is.null(xlab), "Trait X", xlab), rot = 50), ylab = list(ifelse(is.null(ylab), "Trait Y", ylab), rot = -30), zlab = list(zlab,rot = 90), screen = list(z = 55, x = -55), col.facet = lattice::level.colors(res, at = lattice::do.breaks(range(res), 20), col.regions = cols, colors = TRUE),...) } }
context("running filtering of matrix") set.seed(42) high_var = data.frame(matrix(rnorm(140, mean = 10, sd = 10), nrow = 7)) low_var = data.frame(matrix(rnorm(140, mean = 10, sd = 1), nrow = 7)) low_mean = data.frame(matrix(rnorm(120, mean = 1, sd = 10), nrow = 6)) total_mat = rbind(high_var, low_var, low_mean) rownames(total_mat) = letters[1:20] groups = c(rep(c("A", "B", "C"), each = 6), "A") design = makeDesign(groups) test_that("filterGenes works", { library(matrixStats) filtered_mean = filterGenes(total_mat, filterTypes = c("central"), keepRows = NULL, filterCentralType = "median", filterCentralPercentile = 0.3) expect_equal(rownames(filtered_mean), letters[1:14]) filtered_mean = filterGenes(total_mat, filterTypes = c("central"), keepRows = NULL, filterCentralType = "mean", filterCentralPercentile = 0.3) expect_equal(rownames(filtered_mean), letters[1:14]) filtered_variance = filterGenes(total_mat, filterTypes = c("dispersion"), keepRows = NULL, filterDispersionType = "cv", filterDispersionPercentile = 0.35) expect_equal(rownames(filtered_variance), c(letters[1:7], letters[15:20])) filtered_variance = filterGenes(total_mat, filterTypes = c("dispersion"), keepRows = NULL, filterDispersionType = "variance", filterDispersionPercentile = 0.35) expect_equal(rownames(filtered_variance), c(letters[1:7], letters[15:20])) filtered_mat = filterGenes(total_mat, filterTypes = c("central", "dispersion"), keepRows = NULL, filterCentralType = "median", filterDispersionType = "cv", filterCentralPercentile = 0.3, filterDispersionPercentile = 0.5, sequential = TRUE) expect_equal(rownames(filtered_mat), c(letters[1:7])) filtered_mat = filterGenes(total_mat, filterTypes = c("central", "dispersion"), keepRows = NULL, filterCentralType = "median", filterDispersionType = "cv", filterCentralPercentile = 0.3, filterDispersionPercentile = 0.35, sequential = FALSE) expect_equal(rownames(filtered_mat), c(letters[1:7])) filtered_mat = filterGenes(total_mat, filterTypes = c("central", "dispersion"), keepRows = c(letters[10], letters[20]), filterCentralType = "median", filterDispersionType = "cv", filterCentralPercentile = 0.3, filterDispersionPercentile = 0.45, sequential = TRUE) expect_equal(rownames(filtered_mat), c(letters[1:7], letters[10], letters[20])) filtered_mat = filterGenes(total_mat, filterTypes = c("central", "dispersion"), keepRows = c(letters[10], letters[20]), filterCentralType = "median", filterDispersionType = "cv", filterCentralPercentile = 0.3, filterDispersionPercentile = 0.35, sequential = FALSE) expect_equal(rownames(filtered_mat), c(letters[1:7], letters[10], letters[20])) filtered_mat = filterGenes(total_mat, filterTypes = c("central"), keepRows = NULL, filterCentralType = "mean", filterCentralPercentile = 0.35, allGroups = TRUE, design = design) expect_equal(rownames(filtered_mat), c("b", "d", "e", "f", "h", "i", "j", "k", "l", "m", "n")) })
examplify_to_r <- function(in_fname, out_fname, verbose=FALSE) { if(!requireNamespace("xml2", quietly=TRUE) || !requireNamespace("rvest", quietly=TRUE) || !requireNamespace("formatR", quietly=TRUE)) { stop("Please install rvest, xml2 and formatR before using this function.") } page1 <- xml2::read_html(in_fname) qns <- rvest::html_nodes(page1, " stringr::str_replace_all("\r\n", "\n ans <- rvest::html_nodes(page1, " as.character if(verbose){ message("HTML parsed.\n") } if(length(qns) != length(ans)){ warning(paste0("Questions and answers do not match up for ", in_fname)) } full_text <- NULL for (ii in 1:length(qns)) { tmp_qn <- formatR::tidy_source(text = qns[ii], output=FALSE)$text.tidy tmp_ans <- stringr::str_split(ans[ii], "\n")[[1]] tmp_ans <- stringr::str_replace_all(ans[ii], "<br>", "\n") %>% xml2::read_xml() %>% rvest::xml_nodes("p") %>% rvest::html_text() full_text <- c(full_text, tmp_qn, "", tmp_ans, "") } writeLines(full_text, con=out_fname) if(verbose){ message(out_fname, "written.\n") } }
context("Babble") p <- sbo_predictor(twitter_predtable) test_that("some text is generated with default input argument",{ set.seed(840) bla <- babble(p) expect_true(is.character(bla)) expect_length(bla, 1) }) test_that("some text is generated for input = ''",{ set.seed(840) bla <- babble(p, input = "") expect_true(is.character(bla)) expect_length(bla, 1) }) test_that("some text is generated for input = 'i love'",{ set.seed(840) bla <- babble(p, input = "") expect_true(is.character(bla)) expect_length(bla, 1) }) test_that("informs with output when reaches maximum length",{ set.seed(840) expect_true(grepl("\\[\\.\\.\\. reached maximum length \\.\\.\\.\\]$", babble(p, n_max = 1L)) ) }) test_that("throws error on non character or NA_character_ input",{ set.seed(840) expect_error(babble(p, input = 1)) expect_error(babble(p, input = TRUE)) }) test_that("throws error on length != 1 input",{ set.seed(840) expect_error(babble(p, input = character())) expect_error(babble(p, input = c("i love", "you love"))) }) test_that("throws error on length != 1 input",{ set.seed(840) expect_error(babble(p, input = character())) expect_error(babble(p, input = c("i love", "you love"))) }) test_that("throws error on non-numeric n_max",{ set.seed(840) expect_warning(expect_error(babble(p, n_max = "ciao"))) }) test_that("throws error on NA n_max",{ set.seed(840) expect_error(babble(p, n_max = NA_integer_)) }) test_that("throws error on length != 1 n_max",{ set.seed(840) expect_error(babble(p, n_max = double())) expect_error(babble(p, n_max = c(1,2))) }) test_that("throws error on n_max < 1",{ set.seed(840) expect_error(babble(p, n_max = 0)) })
cache_file <- file.path(tempdir(), "foghorn-n_cran_flavors.rds") current_cran_flavors <- 14L test_that("caching for CRAN flavors", { skip_on_cran() unlink(cache_file) expect_false(file.exists(cache_file)) expect_identical(n_cran_flavors(), current_cran_flavors) expect_true(file.exists(cache_file)) }) test_that("disabling caching for CRAN flavors", { skip_on_cran() unlink(cache_file) expect_false(file.exists(cache_file)) expect_identical(n_cran_flavors(use_cache = FALSE), current_cran_flavors) expect_false(file.exists(cache_file)) }) test_that("specifying force default for CRAN flavors", { skip_on_cran() unlink(cache_file) expect_false(file.exists(cache_file)) expect_identical(n_cran_flavors(force_default = TRUE, n_flavors = 999L), 999L) expect_false(file.exists(cache_file)) }) test_that("assertions for n_cran_flavors", { expect_error(n_cran_flavors(use_cache = 123)) expect_error(n_cran_flavors(use_cache = "123")) expect_error(n_cran_flavors(use_cache = logical(0))) expect_error(n_cran_flavors(use_cache = c(TRUE, FALSE))) expect_error(n_cran_flavors(use_cache = NA)) expect_error(n_cran_flavors(use_cache = NULL)) expect_error(n_cran_flavors(force_default = 123)) expect_error(n_cran_flavors(force_default = "123")) expect_error(n_cran_flavors(force_default = logical(0))) expect_error(n_cran_flavors(force_default = c(TRUE, FALSE))) expect_error(n_cran_flavors(force_default = NA)) expect_error(n_cran_flavors(force_default = NULL)) expect_error(n_cran_flavors(n_flavors = 123)) expect_error(n_cran_flavors(n_flavors = "123")) expect_error(n_cran_flavors(n_flavors = integer(0))) expect_error(n_cran_flavors(n_flavors = c(1234L, 5678L))) expect_error(n_cran_flavors(use_cache = NA_integer_)) expect_error(n_cran_flavors(use_cache = NULL)) })
interpret_icc <- function(icc, rules = "koo2016", ...) { rules <- .match.rules( rules, list( koo2016 = rules(c(0.5, 0.75, 0.9), c("poor", "moderate", "good", "excellent"), name = "koo2016", right = FALSE ) ) ) interpret(icc, rules) }
div_profile <- function(count,qvalues,tree,hierarchy,level){ if(missing(count)) stop("The countance data is missing") if(missing(qvalues)) {qvalues= seq(from = 0, to = 5, by = (0.1))} if(missing(level)) {level= "NA"} if(is.null(dim(count)) == TRUE){ profile <- c() for (o in qvalues){ if(missing(tree)){ div.value <- hill_div(count,o) }else{ div.value <- hill_div(count,o,tree) } profile <- c(profile,div.value) } names(profile) <- qvalues } if(!missing(tree)){ hill_div_fast <- function(count,qvalue,tree,dist){ if(qvalue==1){qvalue=0.99999} phylogenetic.Hill.fast <- function(vector,qvalue,tree){ Li <- tree$edge.length ai <- unlist(lapply(ltips, function(TipVector) sum(vector[TipVector]))) T <- sum(Li * ai) Li <- Li[ai != 0] ai <- ai[ai != 0] sum(Li/T * ai^qvalue)^(1/(1-qvalue)) } divs <- apply(tss(count), 2, function(x) phylogenetic.Hill.fast(x,qvalue,tree)) return(divs) } alpha_div_fast <- function(otutable,qvalue,tree,weight){ if(missing(otutable)) stop("OTU table is missing") if(is.null(dim(otutable)) == TRUE) stop("The OTU table is not a matrix") if(dim(otutable)[1] < 2) stop("The OTU table only less than 2 OTUs") if(dim(otutable)[2] < 2) stop("The OTU table contains less than 2 samples") if(sum(colSums(otutable)) != ncol(otutable)) {otutable <- tss(otutable)} if(missing(qvalue)) stop("q value is missing") if(qvalue < 0) stop("q value needs to be possitive (equal or higher than zero)") if(identical(sort(rownames(otutable)),sort(tree$tip.label)) == FALSE) stop("OTU names in the OTU table and tree do not match") if(is.ultrametric(tree) == FALSE) stop("Tree needs to be ultrametric") if (qvalue==1) {qvalue=0.99999} if(missing(weight)) { weight= rep(1/ncol(otutable),ncol(otutable))} otutable <- as.data.frame(otutable) wj <- weight N <- ncol(otutable) Li <- tree$edge.length aij <- matrix(unlist(lapply(ltips, function(TipVector) colSums(otutable[TipVector,]))), ncol = N, byrow = TRUE) aij.wj <- sweep(aij, 2, wj, "*") T <- sum(sweep(aij.wj, 1, Li, "*")) L <- matrix(rep(Li, N), ncol = N) wm <- matrix(rep(wj, length(Li)), ncol = N,byrow=TRUE) i <- which(aij > 0) phylodiv <- sum(L[i] * (aij[i]*wm[i]/T)^qvalue)^(1/(1 - qvalue))/(N*T) return(phylodiv) } gamma_div_fast <- function(otutable,qvalue,tree,weight){ if(missing(otutable)) stop("OTU table is missing") if(is.null(dim(otutable)) == TRUE) stop("The OTU table is not a matrix") if(dim(otutable)[1] < 2) stop("The OTU table only less than 2 OTUs") if(dim(otutable)[2] < 2) stop("The OTU table contains less than 2 samples") if(sum(colSums(otutable)) != ncol(otutable)) {otutable <- tss(otutable)} if(missing(qvalue)) stop("q value is missing") if(qvalue < 0) stop("q value needs to be possitive (equal or higher than zero)") if (qvalue==1) {qvalue=0.99999} if(is.ultrametric(tree) == FALSE) stop("Tree needs to be ultrametric") if(identical(sort(rownames(otutable)),sort(tree$tip.label)) == FALSE) stop("OTU names in the OTU table and tree do not match") if(missing(weight)) { weight= rep(1/ncol(otutable),ncol(otutable))} otutable <- as.data.frame(otutable) wj <- weight N <- ncol(otutable) Li <- tree$edge.length aij <- matrix(unlist(lapply(ltips, function(TipVector) colSums(otutable[TipVector,]))), ncol = N, byrow = TRUE) aij.wj <- sweep(aij, 2, wj, "*") ai <- rowSums(aij.wj) T <- sum(sweep(aij.wj, 1, Li, "*")) L <- matrix(rep(Li, N), ncol = N) Li <- Li[ai != 0] ai <- ai[ai != 0] wm <- matrix(rep(wj, length(Li)), ncol = N, byrow=TRUE) phylodiv <- (sum(Li * (ai/T)^qvalue)^(1/(1 - qvalue)))/T return(phylodiv) } } if(is.null(dim(count)) == FALSE){ if(dim(count)[1] < 2) stop("The OTU table only less than 2 OTUs") if(dim(count)[2] < 2) stop("The OTU table contains less than 2 samples") if(missing(hierarchy)){ profile <- c() for (o in qvalues){ if(missing(tree)){ if(level == "NA"){div.values <- hill_div(count,o)} if(level == "gamma"){div.values <- gamma_div(count,o)} if(level == "alpha"){div.values <- alpha_div(count,o)} }else{ ltips <- sapply(tree$edge[, 2], function(node) tips(tree, node)) if(level == "NA"){div.values <- hill_div_fast(count,o,tree)} if(level == "gamma"){div.values <- gamma_div(count,o,tree)} if(level == "alpha"){div.values <- alpha_div(count,o,tree)} } profile <- rbind(profile,div.values) } if(level == "NA"){ rownames(profile) <- qvalues } if(level == "gamma"){ profile <- c(profile) names(profile) <- qvalues } if(level == "alpha"){ profile <- c(profile) names(profile) <- qvalues } } if(!missing(hierarchy)){ if(ncol(hierarchy) != 2) stop("The hierarchy table must contain two columns.") colnames(hierarchy) <- c("Sample","Group") groups <- as.character(sort(unique(hierarchy$Group))) profile <- c() for (g in groups){ samples <- as.character(hierarchy[which(hierarchy$Group == g),1]) count.subset <- count[,samples] count.subset <- as.data.frame(count.subset[apply(count.subset, 1, function(z) !all(z==0)),]) if(!missing(tree)){ missing.otus <- setdiff(tree$tip.label,rownames(count.subset)) tree.subset <- drop.tip(tree,missing.otus) } for (o in qvalues){ if(missing(tree)){ if(level == "NA"){div.value <- gamma_div(count.subset,o)} if(level == "gamma"){div.value <- gamma_div(count.subset,o)} if(level == "alpha"){div.value <- alpha_div(count.subset,o)} }else{ ltips <- sapply(tree.subset$edge[, 2], function(node) tips(tree.subset, node)) if(level == "NA"){div.value <- gamma_div_fast(count.subset,o,tree.subset)} if(level == "gamma"){div.value <- gamma_div_fast(count.subset,o,tree.subset)} if(level == "alpha"){div.value <- alpha_div_fast(count.subset,o,tree.subset)} } profile <- rbind(profile,as.numeric(div.value)) } } profile <- matrix(profile,nrow=length(qvalues)) colnames(profile) <- as.character(groups) rownames(profile) <- as.character(qvalues) } } return(profile) }
knitr::opts_chunk$set(collapse = TRUE, comment = " library(knitr) include_graphics('dem.png') data(landslides) include_graphics("terrain_variables.png") include_graphics("lslpred.png")
data2mat <- function(data = data) { if (!any(colnames(data) == "abundance")) stop("A column named \"abundance\" must be speciefied.") if (!any(is.integer(data$abundance))) stop("Number of individuals must be integer!") col <- which(colnames(data) == "abundance") data1 <- data[,-col] abundance <- as.numeric(data[,col]) result1 <- data.frame(rep(NA, sum(abundance))) colnames(result1) <- "plots" for (i in 1:(ncol(data)-1)){ result1[, i] <- rep(as.character(data[, i]), abundance) } result <- table(result1) return(result) }
revolution <- c(CRAN = getOption("minicran.mran")) revolution pkgs <- c("foreach") pkgTypes <- c("source", "win.binary") pdb <- cranJuly2014 \dontrun{ pdb <- pkgAvail(repos = revolution, type = "source") } pkgList <- pkgDep(pkgs, availPkgs = pdb, repos = revolution, type = "source", suggests = FALSE) pkgList \dontrun{ dir.create(pth <- file.path(tempdir(), "miniCRAN")) makeRepo(pkgList, path = pth, repos = revolution, type = pkgTypes) oldVers <- data.frame(package = c("foreach", "codetools", "iterators"), version = c("1.4.0", "0.2-7", "1.0.5"), stringsAsFactors = FALSE) pkgs <- oldVers$package addOldPackage(pkgs, path = pth, vers = oldVers$version, repos = revolution, type = "source") pkgVersionsSrc <- checkVersions(pkgs, path = pth, type = "source") pkgVersionsBin <- checkVersions(pkgs, path = pth, type = "win.binary") basename(pkgVersionsSrc) basename(pkgVersionsBin) file.remove(c(pkgVersionsSrc[1], pkgVersionsBin[1])) updateRepoIndex(pth, type = pkgTypes, Rversion = R.version) pkgAvail(pth, type = "source") addPackage("Matrix", path = pth, repos = revolution, type = pkgTypes) unlink(pth, recursive = TRUE) }
context("Testing reference based continuous outcome imputation") expit <- function(x) { exp(x)/(1+exp(x)) } test_that("Monotone missingness MAR imputation with M=2 runs", { expect_error({ set.seed(1234) n <- 500 corr <- matrix(1, nrow=4, ncol=4) + diag(0.5, nrow=4) corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y0 <- data[,1] y1 <- data[,2] y2 <- data[,3] y3 <- data[,4] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<expit(1-y0)) r2 <- 1*(runif(n)<expit(2-(y1-y0))) r2[r1==0] <- 0 r3 <- 1*(runif(n)<expit(2-(y2-y0))) r3[r2==0] <- 0 y1[r1==0] <- NA y2[r2==0] <- NA y3[r3==0] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", "y0", baselineVisitInt=FALSE, M=2) }, NA) }) test_that("Monotone missingness MAR imputation with M=2 and 2 baseline covariates runs", { expect_error({ set.seed(1234) n <- 500 corr <- matrix(1, nrow=5, ncol=5) + diag(0.5, nrow=5) corr data <- MASS::mvrnorm(n, mu=c(2,0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) v <- data[,1] y0 <- data[,2] y1 <- data[,3] y2 <- data[,4] y3 <- data[,5] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<expit(1-y0)) r2 <- 1*(runif(n)<expit(2-(y1-y0))) r2[r1==0] <- 0 r3 <- 1*(runif(n)<expit(2-(y2-y0))) r3[r2==0] <- 0 y1[r1==0] <- NA y2[r2==0] <- NA y3[r3==0] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, v=v, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", c("v", "y0"), baselineVisitInt=FALSE, M=2) }, NA) }) test_that("Non-monotone MCAR imputation with no baseline covariates runs", { expect_error({ set.seed(1234) n <- 500 corr <- matrix(1, nrow=3, ncol=3) + diag(0.5, nrow=3) corr data <- MASS::mvrnorm(n, mu=c(0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y1 <- data[,1] y2 <- data[,2] y3 <- data[,3] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 y1[1*(runif(n)<0.25)] <- NA y2[1*(runif(n)<0.25)] <- NA y3[1*(runif(n)<0.25)] <- NA wideData <- data.frame(id=1:n, trt=trt, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", baselineVisitInt=FALSE, M=1) }, NA) }) test_that("Non-monotone MCAR imputation with no baseline covariates is unbiased at final time point", { skip_on_cran() expect_equal({ set.seed(1234) n <- 50000 corr <- matrix(1, nrow=3, ncol=3) + diag(0.5, nrow=3) data <- MASS::mvrnorm(n, mu=c(0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y1 <- data[,1] y2 <- data[,2] y3 <- data[,3] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 y1[1*(runif(n)<0.25)] <- NA y2[1*(runif(n)<0.25)] <- NA y3[1*(runif(n)<0.25)] <- NA wideData <- data.frame(id=1:n, trt=trt, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", baselineVisitInt=FALSE, M=1) (abs(mean(imps$y3[imps$trt==1])-1.5)<0.1) & (abs(mean(imps$y3[imps$trt==0])-0)<0.1) }, TRUE) }) test_that("Monotone missingness MAR imputation is unbiased at final time point", { skip_on_cran() expect_equal({ set.seed(1234) n <- 50000 corr <- matrix(1, nrow=4, ncol=4) + diag(0.5, nrow=4) corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y0 <- data[,1] y1 <- data[,2] y2 <- data[,3] y3 <- data[,4] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<expit(1-y0)) r2 <- 1*(runif(n)<expit(2-(y1-y0))) r2[r1==0] <- 0 r3 <- 1*(runif(n)<expit(2-(y2-y0))) r3[r2==0] <- 0 y1[r1==0] <- NA y2[r2==0] <- NA y3[r3==0] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", "y0", baselineVisitInt=FALSE, M=1) (abs(mean(imps$y3[imps$trt==1])-1.5)<0.1) & (abs(mean(imps$y3[imps$trt==0])-0)<0.1) }, TRUE) }) test_that("Monotone missingness MAR imputation with 2 baseline covariates is unbiased at final time point", { skip_on_cran() expect_equal({ set.seed(1234) n <- 50000 corr <- matrix(1, nrow=5, ncol=5) + diag(0.5, nrow=5) corr data <- MASS::mvrnorm(n, mu=c(2,0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) v <- data[,1] y0 <- data[,2] y1 <- data[,3] y2 <- data[,4] y3 <- data[,5] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<expit(1-y0)) r2 <- 1*(runif(n)<expit(2-(y1-y0))) r2[r1==0] <- 0 r3 <- 1*(runif(n)<expit(2-(y2-y0))) r3[r2==0] <- 0 y1[r1==0] <- NA y2[r2==0] <- NA y3[r3==0] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, v=v, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", c("v", "y0"), baselineVisitInt=FALSE, M=1) (abs(mean(imps$y3[imps$trt==1])-1.5)<0.1) & (abs(mean(imps$y3[imps$trt==0])-0)<0.1) }, TRUE) }) test_that("Imputation with intermediate missingness runs", { expect_error({ set.seed(1234) n <- 500 corr <- matrix(1, nrow=4, ncol=4) + diag(0.5, nrow=4) corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y0 <- data[,1] y1 <- data[,2] y2 <- data[,3] y3 <- data[,4] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<0.25) r2 <- 1*(runif(n)<0.25) r3 <- 1*(runif(n)<0.25) y1[(r1==0)] <- NA y2[(r2==0)] <- NA y3[(r3==0)] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", "y0", baselineVisitInt=FALSE, M=2) }, NA) }) test_that("Imputation with only one intermediate missingness pattern runs", { expect_error({ set.seed(1234) n <- 500 corr <- matrix(1, nrow=4, ncol=4) + diag(0.5, nrow=4) corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y0 <- data[,1] y1 <- data[,2] y2 <- data[,3] y3 <- data[,4] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<0.25) y1[(r1==0)] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", "y0", baselineVisitInt=FALSE, M=2) }, NA) }) test_that("Imputation with intermediate missingness is unbiased", { skip_on_cran() expect_equal({ set.seed(1234) n <- 50000 corr <- matrix(1, nrow=4, ncol=4) + diag(0.5, nrow=4) corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y0 <- data[,1] y1 <- data[,2] y2 <- data[,3] y3 <- data[,4] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<0.25) r2 <- 1*(runif(n)<0.25) r3 <- 1*(runif(n)<0.25) y1[(r1==0)] <- NA y2[(r2==0)] <- NA y3[(r3==0)] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", "y0", baselineVisitInt=FALSE, M=1) (abs(mean(imps$y3[imps$trt==1])-1.5)<0.1) & (abs(mean(imps$y3[imps$trt==0])-0)<0.1) }, TRUE) }) test_that("Monotone missingness J2R imputation with M=2 runs", { expect_error({ set.seed(1234) n <- 500 corr <- matrix(1, nrow=4, ncol=4) + diag(0.5, nrow=4) corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y0 <- data[,1] y1 <- data[,2] y2 <- data[,3] y3 <- data[,4] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<expit(1-y0)) r2 <- 1*(runif(n)<expit(2-(y1-y0))) r2[r1==0] <- 0 r3 <- 1*(runif(n)<expit(2-(y2-y0))) r3[r2==0] <- 0 y1[r1==0] <- NA y2[r2==0] <- NA y3[r3==0] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(obsData=wideData, outcomeVarStem="y", nVisits=3, trtVar="trt", baselineVars="y0", type="J2R", baselineVisitInt=FALSE, M=2) }, NA) }) test_that("J2R imputation Cro et al 2019 simulation study setup", { skip_on_cran() expect_equal({ set.seed(1234) n <- 50000 corr <- matrix(c(0.4, 0.2, 0.2, 0.2, 0.5, 0.2, 0.2, 0.2, 0.6), byrow=TRUE, nrow=3) corr data <- MASS::mvrnorm(n, mu=c(2, 1.95, 1.9), Sigma=corr) trt <- c(rep(0,n/2), rep(1,n/2)) y0 <- data[,1] y1 <- data[,2] y2 <- data[,3] y1 <- y1+trt*(2.21-1.95) y2 <- y2+trt*(2.9-1.9) d <- runif(n) y1[(d<0.25) & (trt==1)] <- NA y2[(d<0.5) & (trt==1)] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, y1=y1, y2=y2) imps <- refBasedCts(obsData=wideData, outcomeVarStem="y", nVisits=2, trtVar="trt", baselineVars="y0", type="J2R", baselineVisitInt=FALSE, M=1) (abs(mean(imps$y2[imps$trt==1])-2.4)<0.05) }, TRUE) }) test_that("If you pass a factor as a baseline variable, you get an error", { expect_error({ set.seed(1234) n <- 500 corr <- matrix(1, nrow=4, ncol=4) + diag(0.5, nrow=4) corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y0 <- data[,1] y1 <- data[,2] y2 <- data[,3] y3 <- data[,4] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<expit(1-y0)) r2 <- 1*(runif(n)<expit(2-(y1-y0))) r2[r1==0] <- 0 r3 <- 1*(runif(n)<expit(2-(y2-y0))) r3[r2==0] <- 0 y1[r1==0] <- NA y2[r2==0] <- NA y3[r3==0] <- NA y0 <- 1*(y0<0) wideData <- data.frame(id=1:n, trt=trt, y0=factor(y0), y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", "y0", baselineVisitInt=FALSE, M=2) }) }) test_that("Monotone missingness MAR imputation with baseline time interactions runs", { expect_error({ set.seed(1234) n <- 500 corr <- matrix(1, nrow=4, ncol=4) + diag(0.5, nrow=4) corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y0 <- data[,1] y1 <- data[,2] y2 <- data[,3] y3 <- data[,4] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<expit(1-y0)) r2 <- 1*(runif(n)<expit(2-(y1-y0))) r2[r1==0] <- 0 r3 <- 1*(runif(n)<expit(2-(y2-y0))) r3[r2==0] <- 0 y1[r1==0] <- NA y2[r2==0] <- NA y3[r3==0] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", "y0", baselineVisitInt=TRUE, M=1) }, NA) }) test_that("Monotone missingness MAR imputation with baseline time interactions is approximately unbiased", { skip_on_cran() expect_equal({ set.seed(1234) n <- 50000 corr <- matrix(1, nrow=4, ncol=4) + diag(0.5, nrow=4) corr[,1] <- c(1.5, 1, 0.75, 0.25) corr[1,] <- corr[,1] corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) y0 <- data[,1] y1 <- data[,2] y2 <- data[,3] y3 <- data[,4] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<expit(1-y0)) r2 <- 1*(runif(n)<expit(2-(y1-y0))) r2[r1==0] <- 0 r3 <- 1*(runif(n)<expit(2-(y2-y0))) r3[r2==0] <- 0 y1[r1==0] <- NA y2[r2==0] <- NA y3[r3==0] <- NA wideData <- data.frame(id=1:n, trt=trt, y0=y0, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", "y0", baselineVisitInt=TRUE, M=1) (abs(mean(imps$y3[imps$trt==1])-1.5)<0.1) & (abs(mean(imps$y3[imps$trt==0])-0)<0.1) }, TRUE) }) test_that("Monotone missingness MAR imputation with baseline time interactions two baselines runs", { expect_error({ set.seed(1234) n <- 500 corr <- matrix(1, nrow=5, ncol=5) + diag(0.5, nrow=5) corr[,1] <- c(1.5, 1, 0.75, 0.5, 0.25) corr[1,] <- corr[,1] corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) v <- data[,1] y0 <- data[,2] y1 <- data[,3] y2 <- data[,4] y3 <- data[,5] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<expit(1-y0)) r2 <- 1*(runif(n)<expit(2-(y1-y0))) r2[r1==0] <- 0 r3 <- 1*(runif(n)<expit(2-(y2-y0))) r3[r2==0] <- 0 y1[r1==0] <- NA y2[r2==0] <- NA y3[r3==0] <- NA wideData <- data.frame(id=1:n, trt=trt, v=v, y0=y0, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", c("v", "y0"), baselineVisitInt=TRUE, M=1) }, NA) }) test_that("Monotone missingness MAR imputation with baseline time interactions two baselines is unbiased", { skip_on_cran() expect_equal({ set.seed(1234) n <- 50000 corr <- matrix(1, nrow=5, ncol=5) + diag(0.5, nrow=5) corr[,1] <- c(1.5, 1, 0.75, 0.5, 0.25) corr[1,] <- corr[,1] corr data <- MASS::mvrnorm(n, mu=c(0,0,0,0,0), Sigma=corr) trt <- 1*(runif(n)<0.5) v <- data[,1] y0 <- data[,2] y1 <- data[,3] y2 <- data[,4] y3 <- data[,5] y1 <- y1+trt*0.5 y2 <- y2+trt*1 y3 <- y3+trt*1.5 r1 <- 1*(runif(n)<expit(1-y0)) r2 <- 1*(runif(n)<expit(2-(y1-y0))) r2[r1==0] <- 0 r3 <- 1*(runif(n)<expit(2-(y2-y0))) r3[r2==0] <- 0 y1[r1==0] <- NA y2[r2==0] <- NA y3[r3==0] <- NA wideData <- data.frame(id=1:n, trt=trt, v=v, y0=y0, y1=y1, y2=y2, y3=y3) imps <- refBasedCts(wideData, "y", 3, "trt", c("v", "y0"), baselineVisitInt=TRUE, M=1) (abs(mean(imps$y3[imps$trt==1])-1.5)<0.1) & (abs(mean(imps$y3[imps$trt==0])-0)<0.1) }, TRUE) })
svb.fit <- function(Y, delta, X, lambda=1, a0=1, b0=ncol(X), mu.init=NULL, s.init=rep(0.05, ncol(X)), g.init=rep(0.5, ncol(X)), maxiter=1e3, tol=1e-3, alpha=1, center=TRUE, verbose=TRUE) { if (!is.matrix(X)) stop("'X' must be a matrix") if (!(lambda > 0)) stop("'lambda' must be greater than 0") p <- ncol(X) if (is.null(mu.init)) { y <- survival::Surv(as.matrix(Y), as.matrix(as.numeric(delta))) g <- glmnet::glmnet(X, y, family="cox", nlambda=10, alpha=alpha, standardize=FALSE) mu.init <- g$beta[ , ncol(g$beta)] } oY <- order(Y) Y <- Y[oY] delta <- delta[oY] X <- X[oY, ] if (center) { X <- scale(X, center=T, scale=F) } res <- fit_partial(Y, delta, X, lambda, a0, b0, mu.init, s.init, g.init, maxiter, tol, verbose) res$lambda <- lambda res$a0 <- a0 res$b0 <- b0 res$beta_hat <- res$m * res$g res$inclusion_prob <- res$g return(res) }
test_that("insert_named.list", { x = named_list(letters[1:3], 1) x = insert_named(x, list(d = 1)) expect_list(x, len = 4L) expect_set_equal(names(x), letters[1:4]) expect_equal(x$d, 1) x = remove_named(x, c("d", "e")) expect_list(x, len = 3L) expect_set_equal(names(x), letters[1:3]) expect_equal(x$d, NULL) x = insert_named(list(), list(a = 1)) expect_list(x, len = 1L) expect_equal(x$a, 1) x = insert_named(c(a = 1), c(b = 2)) expect_numeric(x, len = 2L) expect_equal(x[["a"]], 1) expect_equal(x[["b"]], 2) x = remove_named(x, "a") expect_numeric(x, len = 1L) expect_equal(x[["b"]], 2) }) test_that("insert_named.environment", { x = list2env(named_list(letters[1:3], 1)) x = insert_named(x, list(d = 1)) expect_environment(x, contains = letters[1:4]) expect_equal(x$d, 1) x = remove_named(x, c("d", "e")) expect_environment(x, contains = letters[1:3]) expect_equal(x$d, NULL) x = insert_named(new.env(), list(a = 1)) expect_environment(x, contains = "a") expect_equal(x$a, 1) }) test_that("insert_named.data.frame", { x = as.data.frame(named_list(letters[1:3], 1)) x = insert_named(x, list(d = 1)) expect_data_frame(x, nrows = 1, ncols = 4) expect_set_equal(names(x), letters[1:4]) expect_equal(x$d, 1) x = remove_named(x, c("d", "e")) expect_data_frame(x, nrows = 1, ncols = 3) expect_set_equal(names(x), letters[1:3]) expect_equal(x$d, NULL) x = insert_named(data.frame(), list(a = 1)) expect_data_frame(x, nrows = 1, ncols = 1) expect_equal(x$a, 1) }) test_that("insert_named.data.table", { x = as.data.table(named_list(letters[1:3], 1)) x = insert_named(x, list(d = 1)) expect_data_table(x, nrows = 1, ncols = 4) expect_set_equal(names(x), letters[1:4]) expect_equal(x$d, 1) x = remove_named(x, c("d", "e")) expect_data_table(x, nrows = 1, ncols = 3) expect_set_equal(names(x), letters[1:3]) expect_equal(x$d, NULL) x = insert_named(data.table(), list(a = 1)) expect_data_table(x, nrows = 1, ncols = 1) expect_equal(x$a, 1) })
weights.fixest = function(object, ...){ w = object[["weights"]] if(is.null(w)) return(NULL) w = fill_with_na(w, object) w } sigma.fixest = function(object, ...){ sqrt(deviance(object) / (object$nobs - object$nparams)) } deviance.fixest = function(object, ...){ if(isTRUE(object$lean)){ stop("The method 'deviance.fixest' cannot be applied to 'lean' fixest objects. Please re-estimate with 'lean = FALSE'.") } method = object$method family = object$family r = object$residuals w = object[["weights"]] if(is.null(w)) w = rep(1, length(r)) if(is.null(r) && !method %in% c("fepois", "feglm")){ stop("The method 'deviance.fixest' cannot be applied to a 'lean' summary. Please apply it to the estimation object directly.") } if(method %in% c("feols", "feols.fit") || (method %in% c("femlm", "feNmlm") && family == "gaussian")){ res = sum(w * r**2) } else if(method %in% c("fepois", "feglm")){ res = object$deviance } else { mu = object$fitted.values theta = ifelse(family == "negbin", object$theta, 1) if(family == "poisson"){ dev.resids = poisson()$dev.resids } else if(family == "logit"){ dev.resids = binomial()$dev.resids } else if(family == "negbin"){ dev.resids = function(y, mu, wt) 2 * wt * (y * log(pmax(1, y)/mu) - (y + theta) * log((y + theta)/(mu + theta))) } y = r + mu res = sum(dev.resids(y, mu, w)) } res } hatvalues.fixest = function(model, ...){ if(isTRUE(model$lean)){ stop("The method 'hatvalues.fixest' cannot be applied to 'lean' fixest objects. Please re-estimate with 'lean = FALSE'.") } validate_dots() method = model$method_type family = model$family msg = "hatvalues.fixest: 'hatvalues' is not implemented for estimations with fixed-effects." if(!is.null(model$fixef_id)){ stop(msg) } if(method == "feols"){ X = model.matrix(model) res = cpp_diag_XUtX(X, model$cov.iid / model$sigma2) } else if(method == "feglm"){ XW = model.matrix(model) * sqrt(model$irls_weights) res = cpp_diag_XUtX(XW, model$cov.iid) } else { stop("'hatvalues' is currently not implemented for function ", method, ".") } res } estfun.fixest = function(x, ...){ if(isTRUE(x$lean)){ stop("The method 'estfun.fixest' cannot be applied to 'lean' fixest objects. Please re-estimate with 'lean = FALSE'.") } x$scores } NULL NULL NULL bread.fixest = function(x, ...){ validate_dots() method = x$method_type family = x$family if(method == "feols"){ res = x$cov.iid / x$sigma2 * x$nobs } else if(method == "feglm"){ res = x$cov.iid * x$nobs } else { stop("'bread' is not currently implemented for function ", method, ".") } res }
PredictionOutput <- R6::R6Class( classname = "PredictionOutput", portable = TRUE, public = list( initialize = function(predictions, type, target) { private$predictions <- predictions private$type <- type private$target <- target }, getPredictions = function() { private$predictions }, getType = function() { private$type }, getTarget = function() { private$target } ), private = list( predictions = NULL, type = NULL, target = NULL ) )
forestRK <- function(X = data.frame(), Y.new = c(), min.num.obs.end.node.tree = 5, nbags, samp.size, entropy = TRUE){ if(!(dim(X)[1] > 1) || !(dim(X)[2] >= 1) || is.null(X)){ stop("Invalid dimension for the dataset X") } if(!(length(Y.new) > 1) || is.null(Y.new)){ stop("Invalid length for the vector Y.new") } if(!(dim(X)[1] == length(Y.new))){ stop("The number of observations in the dataset X and the vector Y.new do not match") } if(!(min.num.obs.end.node.tree > 1)){ stop("'min.num.obs.end.node.tree' (minimum number of data points contained in each end node) has to be greater than 1") } if(is.null(nbags) || !(nbags > 1)){ stop("'nbags' (number of bags to be generated) needs to be greater than or equal to 2") } if(is.null(samp.size) || !(samp.size > 1)){ stop("'samp.size' (sample size for each bag) needs to be greater than or equal to 2") } if(!(is.boolean(entropy))){ stop("The parameter 'entropy' has to be either TRUE or FALSE") } ent.status <- entropy n.col.X <- dim(X)[2] dat <- data.frame(X, Y.new) forest.rk.tree.list <- list() bootsamp.list <- bstrap(dat, nbags, samp.size) for (z in 1:(length(bootsamp.list))){ forest.rk.tree.list[[z]] <- construct.treeRK(bootsamp.list[[z]][, 1:n.col.X], as.vector(bootsamp.list[[z]][ , (n.col.X + 1)]), min.num.obs.end.node.tree, ent.status) } results <- list(X, forest.rk.tree.list, bootsamp.list, ent.status) names(results) <- c("X", "forest.rk.tree.list", "bootsamp.list", "ent.status") results }
plotGradeStat2D <- function(variabl1, variabl2, Xaxis = "", Yaxis = "", cex.text=0.8, addLabels=TRUE) { tab <- table(factor(variabl1),factor(variabl2)) tabSum <- addmargins(tab, 2) tabProp<- prop.table(tabSum, 2) tabCS <- apply(tabProp, 2, cumsum) kolor <- c(" " )[1:ncol(tab)] plot(c(0,1),c(0,1),type="n",pch=19,xlab=Xaxis,ylab=Yaxis) abline(0,1,col="grey") abline(h=seq(0,1,0.2),col="grey95",lty=3) abline(v=seq(0,1,0.2),col="grey95",lty=3) for (i in 1:ncol(tab)) { points(c(0,tabCS[,"Sum"]), c(0,tabCS[,i]), type="b", pch=19, col=kolor[i]) } legend("topleft", colnames(tab), col=kolor, pch=10, lwd=3,bty="n") par(xpd=NA) if (addLabels) text(tabCS[,"Sum"], apply(tabCS,1,min),rownames(tabCS), srt=-45, adj=c(0,0),cex=cex.text, col="black") par(xpd=F) } plotGradeStat2D2 <- function(variabl1, variabl2, Xaxis="", Xaxis1=Xaxis, Xaxis2=Xaxis, Yaxis="", Yaxis1=Yaxis, Yaxis2=Yaxis, ...) { par(mfrow=c(1,2)) par(xpd=F) plotGradeStat2D(variabl1, variabl2, Xaxis=Xaxis1, Yaxis=Yaxis1, ...) plotGradeStat2D(variabl2, variabl1, Xaxis=Xaxis2, Yaxis=Yaxis2, ...) } plotGradeStat <- function(variabl1, variabl2, decreasing = TRUE, Xaxis = "", Yaxis = "", skala=c(0.005,0.5), cex.text=0.8, cutoff = 0.01) { zm1r <- variabl1/sum(variabl1) zm2r <- variabl2/sum(variabl2) iloraz <- zm1r/zm2r if (decreasing) { zm1r <- zm1r[order(iloraz, decreasing=FALSE), 1, drop=FALSE] zm2r <- zm2r[order(iloraz, decreasing=FALSE), 1, drop=FALSE] iloraz <- zm1r/zm2r } par(mfrow=c(1,2)) par(xpd=F) plot(c(0,cumsum(zm1r[,1])),c(0,cumsum(zm2r[,1])),type="b",pch=19,xlab=Xaxis,ylab=Yaxis) abline(0,1,col="grey") par(xpd=NA) odleglosci <- sqrt(diff(c(0,cumsum(zm1r[,1])))^2+diff(c(0,cumsum(zm2r[,1])))^2) korekta <- numeric(length(odleglosci)) for (i in seq_along(korekta)) { if (odleglosci[i] < cutoff) korekta[i] <- cutoff + korekta[i-1] } text(cumsum(zm1r[,1])+korekta+2*cutoff,cumsum(zm2r[,1])+korekta-2*cutoff,rownames(zm1r), srt=-45, adj=c(0,0),cex=cex.text) text(cumsum(zm1r[,1])+korekta-2*cutoff,cumsum(zm2r[,1])+korekta+2*cutoff,paste(round((1/iloraz[,1]-1)*1000)/10," %",sep=""), srt=-45, adj=c(1,1),cex=cex.text) par(xpd=F) plot(1,type="n",log="xy",xlim=skala,ylim=skala, las=1, cex.axis=0.8, xlab=Xaxis, ylab=Yaxis) abline(0,1,col="grey") abline(h=c(0.0001*c(1,2,5),0.001*c(1,2,5),0.01*c(1,2,5),0.1*c(1,2,5)),col="grey95") abline(v=c(0.0001*c(1,2,5),0.001*c(1,2,5),0.01*c(1,2,5),0.1*c(1,2,5)),col="grey95") points(zm1r[,1],zm2r[,1],pch=19) par(xpd=NA) text(zm1r[,1],zm2r[,1],rownames(zm1r), srt=-45, adj=c(-0.1,-0.1),cex=cex.text) par(xpd=F) }
"us.twitter.covariates"
library(corncob) library(phyloseq) context("Test differentialTest") set.seed(1) data(soil_phylo) soil <- phyloseq::subset_samples(soil_phylo, DayAmdmt %in% c(11,21)) subsoil <- phyloseq::prune_taxa(x = soil, taxa = rownames(otu_table(soil))[301:325]) subsoil_disc <- phyloseq::prune_taxa(x = soil, taxa = rownames(otu_table(soil))[c(3001:3024, 7027)]) temp <- differentialTest(formula = ~ Plants + DayAmdmt, phi.formula = ~ Plants + DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "LRT", inits = rbind(rep(.01, 6)), inits_null = rbind(rep(0.01, 2))) temp2 <- differentialTest(formula = ~ Plants + DayAmdmt, phi.formula = ~ Plants + DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "LRT", filter_discriminant = FALSE, inits = rbind(rep(.01, 6)), inits_null = rbind(rep(0.01, 2))) temp3 <- differentialTest(formula = ~ Plants + DayAmdmt, phi.formula = ~ Plants + DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil_disc, boot = FALSE, test = "LRT", inits = rbind(rep(.01, 6)), inits_null = rbind(rep(0.01, 2))) temp_badinits1 <- differentialTest(formula = ~ Plants + DayAmdmt, phi.formula = ~ Plants + DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "LRT", inits = rbind(rep(Inf, 6)), inits_null = rbind(rep(0.01, 2))) temp_badinits2 <- differentialTest(formula = ~ Plants + DayAmdmt, phi.formula = ~ Plants + DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "LRT", inits = rbind(rep(.01, 6)), inits_null = rbind(rep(Inf, 2))) temp_noinit_sing <- differentialTest(formula = ~ DayAmdmt, phi.formula = ~ DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, boot = FALSE, test = "LRT", data = subsoil) temp_noinit <- differentialTest(formula = ~ Plants + DayAmdmt, phi.formula = ~ Plants + DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, boot = FALSE, test = "LRT", data = subsoil) temp_sing <- differentialTest(formula = ~ DayAmdmt, phi.formula = ~ DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "LRT", inits = rbind(rep(.01, 4))) temp_badinits3 <- differentialTest(formula = ~ DayAmdmt, phi.formula = ~ DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "LRT", inits = rbind(rep(Inf, 4))) mydat <- phyloseq::get_taxa(subsoil) mysampdat <- phyloseq::get_variable(subsoil) temp_nonphylo <- differentialTest(formula = ~ DayAmdmt, phi.formula = ~ DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = mydat, boot = FALSE, test = "LRT", sample_data = mysampdat, inits = rbind(rep(.01, 4))) temp_wald <- differentialTest(formula = ~ Plants + DayAmdmt, phi.formula = ~ Plants + DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "Wald", inits = rbind(rep(.01, 6)), inits_null = rbind(rep(0.01, 2))) temp_pblrt <- differentialTest(formula = ~ Plants + DayAmdmt, phi.formula = ~ Plants + DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = TRUE, B = 5, test = "LRT", inits = rbind(rep(.01, 6)), inits_null = rbind(rep(0.01, 2))) temp_pbwald <- differentialTest(formula = ~ Plants + DayAmdmt, phi.formula = ~ Plants + DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = TRUE, B = 5, test = "Wald", inits = rbind(rep(.01, 6)), inits_null = rbind(rep(0.01, 2))) test_that("differentialTest works", { expect_is(temp, "differentialTest") expect_is(temp2, "differentialTest") expect_is(temp3, "differentialTest") expect_is(temp_wald, "differentialTest") expect_is(temp_pbwald, "differentialTest") expect_is(temp_pblrt, "differentialTest") expect_is(temp, "differentialTest") expect_is(temp_sing, "differentialTest") expect_is(temp_nonphylo, "differentialTest") expect_is(temp_noinit, "differentialTest") expect_is(temp_noinit_sing, "differentialTest") expect_is(temp_badinits1, "differentialTest") expect_is(temp_badinits2, "differentialTest") expect_is(temp_badinits3, "differentialTest") }) test_that("differentialTest S3 methods", { expect_is(plot(temp), "ggplot") expect_is(plot(temp, level = c("Order", "Class")), "ggplot") expect_is(plot(temp, level = "Kingdom"), "ggplot") expect_output(expect_null(print(temp))) }) test_that("differentialTest works without phyloseq", { expect_true(all.equal(temp_sing$p, temp_nonphylo$p)) }) test_that("otu_to_taxonomy works", { expect_is(otu_to_taxonomy(temp$significant_taxa, soil_phylo), "character") expect_error(otu_to_taxonomy(temp$significant_taxa, mysampdat)) }) test_that("requires data frame, matrix, or phyloseq", { expect_error(differentialTest(formula = ~ DayAmdmt, phi.formula = ~ DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = c(1,2,3), boot = FALSE, test = "LRT", inits = rbind(rep(.01, 4)))) }) test_that("inits require correct length", { expect_error(differentialTest(formula = ~ DayAmdmt, phi.formula = ~ DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "LRT", inits = rbind(rep(.01, 6)))) expect_error(differentialTest(formula = ~ DayAmdmt, phi.formula = ~ DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "LRT", inits_null = rbind(rep(.01, 4)))) }) test_that("try_only works", { expect_is(differentialTest(formula = ~ DayAmdmt, phi.formula = ~ DayAmdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "LRT", try_only = 1:2), "differentialTest") }) test_that("overspecification error message", { expect_error(differentialTest(formula = ~ Plants*Day*Amdmt, phi.formula = ~ Plants*Day*Amdmt, formula_null = ~ 1, phi.formula_null = ~ 1, data = subsoil, boot = FALSE, test = "LRT", try_only = 1:2)) }) test_that("differentialTest does NAs correctly", { expect_equal(length(temp$p), 25) expect_equal(length(temp$p_fdr), 25) expect_equal(length(temp3$p), 25) expect_equal(length(temp3$p_fdr), 25) })
func.med.RPD <- function(functions, deriv = c(0,1)) { depth.RPD(functions, deriv = deriv)$median }
NULL .onLoad <- function(libname, pkgname) { if (is.null(getOption("libbi_args"))) options(libbi_args = list()) }
test_rotate <- function(){ plot(-1:1, -1:1, type = "n", xlab = "Re", ylab = "Im") K <- 16; text(exp(1i * 2 * pi * (1:K) / K), col = 2, srt = 30) } test_circle <- function(){ N <- nrow(trees) with(trees, { symbols(Height, Volume, circles = Girth/24, inches = FALSE, bg = "blue", main = "Trees' Girth") op <- palette(rainbow(N, end = 0.9)) symbols(Height, Volume, circles = Girth/16, inches = FALSE, bg = 1:N, fg = "gray30", main = "symbols(*, circles = Girth/16, bg = 1:N)") palette(op) }) } test_rect <- function(){ op <- par(bg = "thistle") plot(c(100, 250), c(300, 450), type = "n", xlab = "", ylab = "", main = "2 x 11 rectangles; 'rect(100+i,300+i, 150+i,380+i)'") i <- 4*(0:10) rect(100+i, 300+i, 150+i, 380+i, col = rainbow(11, start = 0.7, end = 0.1)) rect(240-i, 320+i, 250-i, 410+i, col = heat.colors(11), lwd = i/5) } test_path <- function(){dev plotPath <- function(x, y, col = "grey", rule = "winding") { plot.new() plot.window(range(x, na.rm = TRUE), range(y, na.rm = TRUE)) polypath(x, y, col = col, rule = rule) if (!is.na(col)) mtext(paste("Rule:", rule), side = 1, line = 0) } plotRules <- function(x, y, title) { plotPath(x, y) plotPath(x, y, rule = "evenodd") mtext(title, side = 3, line = 0) plotPath(x, y, col = NA) } op <- par(mfrow = c(5, 3), mar = c(2, 1, 1, 1)) plotRules(c(.1, .1, .9, .9, NA, .2, .2, .8, .8), c(.1, .9, .9, .1, NA, .2, .8, .8, .2), "Nested rectangles, both clockwise") } test_ggplot <- function(){ print(ggplot2::qplot(cars$speed, cars$dist, geom = c("point", "smooth"))) } test_ggplot2 <- function(){ ggplot(diamonds, aes(cut, price)) + geom_boxplot() + coord_flip() } unlink("*.png") png("cairo_small.png", width = 800, height = 600) par(cex = 96/72) test_ggplot() dev.off() png("cairo_large.png", width = 1600, height = 1200, res = 144) par(cex = 96/72) test_ggplot() dev.off() dev <- magick::image_graph(800, 600, bg = 'white') test_ggplot() dev.off() image_write(dev, "magick_small.png", format = 'png') dev <- magick::image_graph(1600, 1200, bg = 'white', res = 144) test_ggplot() dev.off() image_write(dev, "magick_large.png", format = 'png') img <- image_graph(900, 600, bg = 'white', res = 96) test_ggplot() dev.off() print(img) test_ggplot()
Plot.Data.Events <- function (yy, paciente, inicio, dias, censored, especiales, colevent = "red", colcensor = "blue") { p <- ncol(yy) N <- nrow(yy) nn <- length(paciente) n <- nn dev.new() par(bg = "white") plot(inicio, paciente, xlim = c(-1, (max(dias + inicio) + 1)), ylim = c(-0.5, n), xlab = "Time", ylab = "Unit", pch = 19, cex = 0.4, col = "dark blue", sub = R.version.string) title(main = list("Graphical Representation of Recurrent Event Data", cex = 0.8, font = 2.3, col = "dark blue")) mtext("Research Group: AVANCE USE R!", cex = 0.7, font = 2, col = "dark blue", line = 1) mtext("Software made by: Dr. Carlos Martinez", cex = 0.6, font = 2, col = "dark red", line = 0) x1 <- -0.5 y <- 0.5 x2 <- max(dias + inicio)/5 - 1 x3 <- 2 * max(dias + inicio)/5 - 2 legend(x1, y, c("Start"), bty = "n", cex = 0.6, pch = 19, col = "dark blue") legend(x2, y, c("Event"), bty = "n", cex = 0.6, pch = 4, col = colevent) legend(x3, y, c("Censored"), bty = "n", cex = 0.6, pch = 0, col = colcensor) for (i in 1:n) { temp1 <- censored[i] if (temp1 == 0) temp1 <- 0 else temp1 <- 4 segments(inicio[i], paciente[i], dias[i], paciente[i], col = "black", lty = "dotted") } a <- 1 if (a == 1) { m <- nrow(especiales) for (j in 1:m) { temp2 <- especiales[j, 3] if (temp2 == 1) temp2 <- 4 else { if (temp2 == 0) temp2 <- 0 else temp2 <- 0 } temp3 <- 0 for (i in 1:n) { if (especiales[j, 1] <= n) temp3[especiales[j, 1] == i] <- inicio[i] } if (temp2 == 4) { colorx1 <- colevent us <- "X" } else { colorx1 <- colcensor us <- "O" } if (especiales[j, 1] <= n) points((temp3 + especiales[j, 2]), especiales[j, 1], pch = us, col = colorx1, cex = 0.5) } } }
setMethodS3("getAttributes", "GenericDataFile", function(this, ...) { attrs <- this$.attributes if (length(attrs) == 0) { attrs <- list() } else { names <- names(attrs) if (length(names) > 0) { o <- order(names) attrs <- attrs[o] } } attrs }, protected=TRUE) setMethodS3("setAttributes", "GenericDataFile", function(this, ...) { args <- list(...) names <- names(args) if (is.null(names)) { throw("No named arguments specified.") } attrs <- this$.attributes attrs[names] <- args this$.attributes <- attrs invisible(args) }, protected=TRUE) setMethodS3("getAttribute", "GenericDataFile", function(this, name, defaultValue=NULL, ...) { attrs <- this$.attributes if (name %in% names(attrs)) { value <- attrs[[name]] } else { value <- defaultValue } value }, protected=TRUE) setMethodS3("setAttribute", "GenericDataFile", function(this, name, value, ...) { attrs <- this$.attributes attrs[[name]] <- value this$.attributes <- attrs invisible(attrs[name]) }, protected=TRUE) setMethodS3("testAttributes", "GenericDataFile", function(this, select, ...) { attrs <- getAttributes(this) expr <- substitute(select) res <- eval(expr, envir=attrs, enclos=parent.frame()) res }, protected=TRUE) setMethodS3("setAttributesBy", "GenericDataFile", function(this, object, ...) { if (inherits(object, "character")) { setAttributesByTags(this, object, ...) } else { throw("Unknown type on argument 'object': ", class(object)[1]) } }, protected=TRUE) setMethodS3("setAttributesByTags", "GenericDataFile", function(this, tags=getTags(this), ...) { if (length(tags) > 0) { tags <- unlist(strsplit(tags, split=","), use.names=FALSE) tags <- trim(tags) } newAttrs <- list() pattern <- "^([abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]+)=(.*)$" values <- grep(pattern, tags, value=TRUE) for (kk in seq_along(values)) { tag <- values[[kk]] key <- gsub(pattern, "\\1", tag) value <- gsub(pattern, "\\2", tag) suppressWarnings({ value2 <- as.integer(value) if (!identical(value2 == value, TRUE)) { value2 <- as.double(value) if (!identical(value2 == value, TRUE)) { value2 <- as.character(value) } } value <- value2 }) newAttrs <- c(newAttrs, setAttribute(this, key, value)) } invisible(newAttrs) }, protected=TRUE)
.Rd_get_latex <- function(x) { rval <- NULL file <- textConnection("rval", "w", local = TRUE) save <- options(useFancyQuotes = FALSE) sink(file) tryCatch(Rd2latex(x, fragment=TRUE), finally = {sink(); options(save); close(file)}) if (is.null(rval)) rval <- character() else enc2utf8(rval) } latex_canonical_encoding <- function(encoding) { if (encoding == "") encoding <- utils::localeToCharset()[1L] encoding <- tolower(encoding) encoding <- sub("iso_8859-([0-9]+)", "iso-8859-\\1", encoding) encoding <- sub("iso8859-([0-9]+)", "iso-8859-\\1", encoding) encoding[encoding == "iso-8859-1"] <- "latin1" encoding[encoding == "iso-8859-2"] <- "latin2" encoding[encoding == "iso-8859-3"] <- "latin3" encoding[encoding == "iso-8859-4"] <- "latin4" encoding[encoding == "iso-8859-5"] <- "cyrillic" encoding[encoding == "iso-8859-6"] <- "arabic" encoding[encoding == "iso-8859-7"] <- "greek" encoding[encoding == "iso-8859-8"] <- "hebrew" encoding[encoding == "iso-8859-9"] <- "latin5" encoding[encoding == "iso-8859-10"] <- "latin6" encoding[encoding == "iso-8859-14"] <- "latin8" encoding[encoding %in% c("latin-9", "iso-8859-15")] <- "latin9" encoding[encoding == "iso-8859-16"] <- "latin10" encoding[encoding == "utf-8"] <- "utf8" encoding } Rd2latex <- function(Rd, out="", defines=.Platform$OS.type, stages="render", outputEncoding = "ASCII", fragment = FALSE, ..., writeEncoding = TRUE) { encode_warn <- FALSE WriteLines <- if(outputEncoding == "UTF-8" || (outputEncoding == "" && l10n_info()[["UTF-8"]])) { function(x, con, outputEncoding, ...) writeLines(x, con, useBytes = TRUE, ...) } else { function(x, con, outputEncoding, ...) { x <- iconv(x, "UTF-8", outputEncoding, mark=FALSE) if (anyNA(x)) { x <- iconv(x, "UTF-8", outputEncoding, sub="byte", mark=FALSE) encode_warn <<- TRUE } writeLines(x, con, useBytes = TRUE, ...) } } last_char <- "" of0 <- function(...) of1(paste0(...)) of1 <- function(text) { nc <- nchar(text) last_char <<- substr(text, nc, nc) WriteLines(text, con, outputEncoding, sep = "") } trim <- function(x) { x <- psub1("^\\s*", "", as.character(x)) psub1("\\s*$", "", x) } envTitles <- c("\\description"="Description", "\\usage"="Usage", "\\arguments"="Arguments", "\\format"="Format", "\\details"="Details", "\\note"="Note", "\\section"="", "\\author"="Author", "\\references"="References", "\\source"="Source", "\\seealso"="SeeAlso", "\\examples"="Examples", "\\value"="Value") sectionExtras <- c("\\usage"="verbatim", "\\arguments"="ldescription", "\\examples"="ExampleCode") inCodeBlock <- FALSE inCode <- FALSE inEqn <- FALSE inPre <- FALSE sectionLevel <- 0 hasFigures <- FALSE startByte <- function(x) { srcref <- attr(x, "srcref") if (is.null(srcref)) NA else srcref[2L] } addParaBreaks <- function(x, tag) { start <- startByte(x) if (isBlankLineRd(x)) "\n" else if (identical(start, 1L)) psub("^\\s+", "", x) else x } texify <- function(x, code = inCodeBlock) { if(inEqn) return(x) if (!code) { x <- fsub("\\", "\\bsl", x) x <- psub("([&$%_ x <- fsub("{", "\\{", x) x <- fsub("}", "\\}", x) x <- fsub("^", "\\textasciicircum{}", x) x <- fsub("~", "\\textasciitilde{}", x) x <- fsub("\\bsl", "\\bsl{}", x) } else { x <- psub("\\\\[l]{0,1}dots", "...", as.character(x)) x <- psub("\\\\([$^&~_ if (inCodeBlock) { x <- fsub1('"\\{"', '"{"', x) } else if (inPre) { BSL = '@BSL@'; x <- fsub("\\", BSL, x) x <- psub("(?<!\\\\)\\{", "\\\\{", x) x <- psub("(?<!\\\\)}", "\\\\}", x) x <- fsub(BSL, "\\bsl{}", x) x <- psub("\\\\\\\\var\\\\\\{([^\\\\]*)\\\\}", "\\\\var{\\1}", x) } else { BSL = '@BSL@'; x <- fsub("\\", BSL, x) x <- psub("(?<!\\\\)\\{", "\\\\{", x) x <- psub("(?<!\\\\)}", "\\\\}", x) x <- psub("(?<!\\\\)([&$%_ x <- fsub("^", "\\textasciicircum{}", x) x <- fsub("~", "\\textasciitilde{}", x) x <- fsub(BSL, "\\bsl{}", x) x <- fsub("<<", "<{}<", x) x <- fsub(">>", ">{}>", x) x <- fsub(",,", ",{},", x) } } x } wrappers <- list("\\dQuote" =c("``", "''"), "\\sQuote" =c("`", "'"), "\\cite" =c("\\Cite{", "}")) writeWrapped <- function(block, tag) { wrapper <- wrappers[[tag]] if (is.null(wrapper)) wrapper <- c(paste0(tag, "{"), "}") of1(wrapper[1L]) writeContent(block, tag) of1(wrapper[2L]) } writeURL <- function(block, tag) { if (tag == "\\url") url <- as.character(block) else { url <- as.character(block[[1L]]) tag <- "\\Rhref" } url <- trimws(gsub("\n", "", paste(as.character(url), collapse = ""), fixed = TRUE, useBytes = TRUE)) url <- gsub("%", "\\%", url, fixed = TRUE, useBytes = TRUE) of0(tag, "{", url, "}") if (tag == "\\Rhref") { of1("{") writeContent(block[[2L]], tag) of1("}") } } writeLink <- function(tag, block) { parts <- get_link(block, tag) of0("\\LinkA{", latex_escape_link(parts$topic), "}{", latex_link_trans0(parts$dest), "}") } writeDR <- function(block, tag) { if (length(block) > 1L) { of1(' writeContent(block, tag) of1('\n } else { of1(' writeContent(block, tag) } } ltxstriptitle <- function(x) { x <- fsub("\\R", "\\R{}", x) x <- psub("(?<!\\\\)([&$%_ x <- fsub("^", "\\textasciicircum{}", x) x <- fsub("~", "\\textasciitilde{}", x) x } latex_escape_name <- function(x) { x <- psub("([$ x <- fsub("{", "\\textbraceleft{}", x) x <- fsub("}", "\\textbraceright{}", x) x <- fsub("^", "\\textasciicircum{}", x) x <- fsub("~", "\\textasciitilde{}", x) x <- fsub("%", "\\Rpercent{}", x) x <- fsub("\\\\", "\\textbackslash{}", x) x <- fsub("<<", "<{}<", x) x <- fsub(">>", ">{}>", x) x } latex_escape_link <- function(x) { x <- fsub("\\_", "_", x) latex_escape_name(x) } latex_link_trans0 <- function(x) { x <- fsub("\\Rdash", ".Rdash.", x) x <- fsub("-", ".Rdash.", x) x <- fsub("\\_", ".Rul.", x) x <- fsub("\\$", ".Rdol.", x) x <- fsub("\\^", ".Rcaret.", x) x <- fsub("^", ".Rcaret.", x) x <- fsub("_", ".Rul.", x) x <- fsub("$", ".Rdol.", x) x <- fsub("\\ x <- fsub(" x <- fsub("\\&", ".Ramp.", x) x <- fsub("&", ".Ramp.", x) x <- fsub("\\~", ".Rtilde.", x) x <- fsub("~", ".Rtilde.", x) x <- fsub("\\%", ".Rpcent.", x) x <- fsub("%", ".Rpcent.", x) x <- fsub("\\\\", ".Rbl.", x) x <- fsub("{", ".Rlbrace.", x) x <- fsub("}", ".Rrbrace.", x) x } latex_code_alias <- function(x) { x <- fsub("{", "\\{", x) x <- fsub("}", "\\}", x) x <- psub("(?<!\\\\)([&$%_ x <- fsub("^", "\\textasciicircum{}", x) x <- fsub("~", "\\textasciitilde{}", x) x <- fsub("<-", "<\\Rdash{}", x) x <- psub("([!|])", '"\\1', x) x } currentAlias <- NA_character_ writeAlias <- function(block, tag) { alias <- as.character(block) aa <- "\\aliasA{" if(grepl("[|{(]", alias)) aa <- "\\aliasB{" if(is.na(currentAlias)) currentAlias <<- name if (pmatch(paste0(currentAlias, "."), alias, 0L)) { aa <- "\\methaliasA{" } else currentAlias <<- alias if (alias == name) return() alias2 <- latex_link_trans0(alias) of0(aa, latex_code_alias(alias), "}{", latex_escape_name(name), "}{", alias2, "}\n") } writeBlock <- function(block, tag, blocktag) { switch(tag, UNKNOWN =, VERB = of1(texify(block, TRUE)), RCODE = of1(texify(block, TRUE)), TEXT = of1(addParaBreaks(texify(block), blocktag)), USERMACRO =, "\\newcommand" =, "\\renewcommand" =, COMMENT = {}, LIST = writeContent(block, tag), "\\describe"= { of1("\\begin{description}\n") writeContent(block, tag) of1("\n\\end{description}\n") }, "\\enumerate"={ of1("\\begin{enumerate}\n") writeContent(block, tag) of1("\n\\end{enumerate}\n") }, "\\itemize"= { of1("\\begin{itemize}\n") writeContent(block, tag) of1("\n\\end{itemize}\n") }, "\\command"=, "\\env" =, "\\kbd"=, "\\option" =, "\\samp" = writeWrapped(block, tag), "\\url"=, "\\href"= writeURL(block, tag), "\\code"= { inCode <<- TRUE writeWrapped(block, tag) inCode <<- FALSE }, "\\acronym" =, "\\bold"=, "\\dfn"=, "\\dQuote"=, "\\email"=, "\\emph"=, "\\file" =, "\\pkg" =, "\\sQuote" =, "\\strong"=, "\\var" =, "\\cite" = if (inCodeBlock) writeContent(block, tag) else writeWrapped(block, tag), "\\preformatted"= { inPre <<- TRUE of1("\\begin{alltt}") writeContent(block, tag) of1("\\end{alltt}\n") inPre <<- FALSE }, "\\Sexpr"= { of1("\\begin{verbatim}\n") of0(as.character.Rd(block, deparse=TRUE)) of1("\n\\end{verbatim}\n") }, "\\verb"= { of0("\\AsIs{") writeContent(block, tag) of1("}") }, "\\special"= writeContent(block, tag), "\\linkS4class" =, "\\link" = writeLink(tag, block), "\\cr" = of1("\\\\{}"), "\\dots" =, "\\ldots" = of1(if(inCode || inCodeBlock) "..." else tag), "\\R" = of0(tag, "{}"), "\\donttest" = writeContent(block, tag), "\\dontrun"= writeDR(block, tag), "\\enc" = { if (outputEncoding == "ASCII") writeContent(block[[2L]], tag) else writeContent(block[[1L]], tag) } , "\\eqn" =, "\\deqn" = { of0(tag, "{") inEqn <<- TRUE writeContent(block[[1L]], tag) inEqn <<- FALSE of0('}{}') }, "\\figure" = { of0('\\Figure{') writeContent(block[[1L]], tag) of0('}{') if (length(block) > 1L) { includeoptions <- .Rd_get_latex(block[[2]]) if (length(includeoptions) && startsWith(includeoptions, "options: ")) of0(sub("^options: ", "", includeoptions)) } of0('}') hasFigures <<- TRUE }, "\\dontshow" =, "\\testonly" = {}, "\\method" =, "\\S3method" =, "\\S4method" = { }, "\\tabular" = writeTabular(block), "\\subsection" = writeSection(block, tag), "\\if" =, "\\ifelse" = if (testRdConditional("latex", block, Rdfile)) writeContent(block[[2L]], tag) else if (tag == "\\ifelse") writeContent(block[[3L]], tag), "\\out" = for (i in seq_along(block)) of1(block[[i]]), stopRd(block, Rdfile, "Tag ", tag, " not recognized") ) } writeTabular <- function(table) { format <- table[[1L]] content <- table[[2L]] if (length(format) != 1L || RdTags(format) != "TEXT") stopRd(table, Rdfile, "\\tabular format must be simple text") tags <- RdTags(content) of0('\n\\Tabular{', format, '}{') for (i in seq_along(tags)) { switch(tags[i], "\\tab" = of1("&"), "\\cr" = of1("\\\\{}"), writeBlock(content[[i]], tags[i], "\\tabular")) } of1('}') } writeContent <- function(blocks, blocktag) { inList <- FALSE itemskip <- FALSE tags <- RdTags(blocks) i <- 0 while (i < length(tags)) { i <- i + 1 block <- blocks[[i]] tag <- attr(block, "Rd_tag") if(!is.null(tag)) switch(tag, "\\method" =, "\\S3method" =, "\\S4method" = { blocks <- transformMethod(i, blocks, Rdfile) tags <- RdTags(blocks) i <- i - 1 }, "\\item" = { if (blocktag == "\\value" && !inList) { of1("\\begin{ldescription}\n") inList <- TRUE } switch(blocktag, "\\describe" = { of1('\\item[') writeContent(block[[1L]], tag) of1('] ') writeContent(block[[2L]], tag) }, "\\value"=, "\\arguments"={ of1('\\item[\\code{') inCode <<- TRUE writeContent(block[[1L]], tag) inCode <<- FALSE of1('}] ') writeContent(block[[2L]], tag) }, "\\enumerate" =, "\\itemize"= { of1("\\item ") itemskip <- TRUE }) itemskip <- TRUE }, "\\cr" = of1("\\\\{}"), { if (inList && !(tag == "TEXT" && isBlankRd(block))) { of1("\\end{ldescription}\n") inList <- FALSE } if (itemskip) { itemskip <- FALSE if (tag == "TEXT") { txt <- psub("^ ", "", as.character(block)) of1(texify(txt)) } else writeBlock(block, tag, blocktag) } else writeBlock(block, tag, blocktag) }) } if (inList) of1("\\end{ldescription}\n") } writeSectionInner <- function(section, tag) { if (length(section)) { nxt <- section[[1L]] if (!attr(nxt, "Rd_tag") %in% c("TEXT", "RCODE") || substr(as.character(nxt), 1L, 1L) != "\n") of1("\n") writeContent(section, tag) inCodeBlock <<- FALSE if (last_char != "\n") of1("\n") } } writeSection <- function(section, tag) { if (tag %in% c("\\encoding", "\\concept")) return() save <- sectionLevel sectionLevel <<- sectionLevel + 1 if (tag == "\\alias") writeAlias(section, tag) else if (tag == "\\keyword") { key <- trim(section) of0("\\keyword{", latex_escape_name(key), "}{", ltxname, "}\n") } else if (tag == "\\section" || tag == "\\subsection") { macro <- c("Section", "SubSection", "SubSubSection")[min(sectionLevel, 3)] of0("%\n\\begin{", macro, "}{") writeContent(section[[1L]], tag) of1("}") writeSectionInner(section[[2L]], tag) of0("\\end{", macro, "}\n") } else { title <- envTitles[tag] of0("%\n\\begin{", title, "}") if(tag %in% c("\\author", "\\description", "\\details", "\\note", "\\references", "\\seealso", "\\source")) of1("\\relax") extra <- sectionExtras[tag] if(!is.na(extra)) of0("\n\\begin{", extra, "}") if(tag %in% c("\\usage", "\\examples")) inCodeBlock <<- TRUE writeSectionInner(section, tag) inCodeBlock <<- FALSE if(!is.na(extra)) of0("\\end{", extra, "}\n") of0("\\end{", title, "}\n") } sectionLevel <<- save } Rd <- prepare_Rd(Rd, defines=defines, stages=stages, fragment=fragment, ...) Rdfile <- attr(Rd, "Rdfile") sections <- RdTags(Rd) if (is.character(out)) { if(out == "") { con <- stdout() } else { con <- file(out, "wt") on.exit(close(con)) } } else { con <- out out <- summary(con)$description } if (outputEncoding != "ASCII") { latexEncoding <- latex_canonical_encoding(outputEncoding) if(writeEncoding) of0("\\inputencoding{", latexEncoding, "}\n") } else latexEncoding <- NA if (fragment) { if (sections[1L] %in% names(sectionOrder)) for (i in seq_along(sections)) writeSection(Rd[[i]], sections[i]) else for (i in seq_along(sections)) writeBlock(Rd[[i]], sections[i], "") } else { nm <- character(length(Rd)) isAlias <- sections == "\\alias" sortorder <- if (any(isAlias)) { nm[isAlias] <- sapply(Rd[isAlias], as.character) order(sectionOrder[sections], toupper(nm), nm) } else order(sectionOrder[sections]) Rd <- Rd[sortorder] sections <- sections[sortorder] title <- .Rd_get_latex(.Rd_get_section(Rd, "title")) title <- paste(title[nzchar(title)], collapse = " ") name <- Rd[[2L]] name <- trim(as.character(Rd[[2L]][[1L]])) ltxname <- latex_escape_name(name) of0('\\HeaderA{', ltxname, '}{', ltxstriptitle(title), '}{', latex_link_trans0(name), '}\n') for (i in seq_along(sections)[-(1:2)]) writeSection(Rd[[i]], sections[i]) } if (encode_warn) warnRd(Rd, Rdfile, "Some input could not be re-encoded to ", outputEncoding) invisible(structure(out, latexEncoding = latexEncoding, hasFigures = hasFigures)) }
chart_labels <- function( x, title = NULL, xlab = NULL, ylab = NULL){ if( !is.null(title) ) x$labels[["title"]] <- htmlEscape(title) else x$labels[["title"]] <- NULL if( !is.null(xlab) ) x$labels[["x"]] <- htmlEscape(xlab) else x$labels[["x"]] <- NULL if( !is.null(ylab) ) x$labels[["y"]] <- htmlEscape(ylab) else x$labels[["y"]] <- NULL x }
setMethod("bigglm", c("ANY","DBIConnection"), function(formula, data, family = gaussian(), tablename, ..., chunksize=5000){ terms<-terms(formula) modelvars<-all.vars(formula) dots<-as.list(substitute(list(...)))[-1] dotvars<-unlist(lapply(dots,all.vars)) vars<-unique(c(modelvars,dotvars)) query<-paste("select ",paste(vars,collapse=", ")," from ",tablename) result<-dbSendQuery(data, query) got<-0 on.exit(dbClearResult(result)) chunk<-function(reset=FALSE){ if(reset){ if(got>0){ dbClearResult(result) result<<-dbSendQuery(data,query) got<<-0 } return(TRUE) } rval<-fetch(result,n=chunksize) got<<-got+nrow(rval) if (nrow(rval)==0) return(NULL) return(rval) } rval<-bigglm(formula, data=chunk, family=family, ...) rval$call<-sys.call() rval$call[[1]]<-as.name("bigglm") rval } )
GetLabels <- function(data) { col.names <- names(data) if (sum(c("timestamp", "value", "is.anomaly", "is.real.anomaly") %in% col.names) != 4) { stop("data argument must be a data.frame with timestamp}, value, is.anomaly and is.real.anomaly columns.") } calculate.tp <- function(index) { start <- data[index, "start.limit"] end <- data[index, "end.limit"] anomaly.index <- which(data$is.anomaly == 1) anomaly.pos <- which(anomaly.index >= start & anomaly.index <= end) if (length(anomaly.pos) == 0) { return(-1) } else { return(anomaly.index[anomaly.pos]) } } real.anomaly.index <- which(data$is.real.anomaly == 1 & data$start.limit != 0) tp.index <- lapply(real.anomaly.index, calculate.tp) data$first.tp <- 0 data[real.anomaly.index, "first.tp"] <- sapply(tp.index, function(elem) return(elem[1])) data$label <- "tn" tp.index <- unlist(tp.index) tp.index <- tp.index[tp.index != -1] data[tp.index, "label"] <- "tp" tp.index <- which(data$first.tp != -1 & data$first.tp != 0) data[tp.index, "label"] <- "tp" tp.index <- which(data$first.tp == -1) data[tp.index, "label"] <- "fn" fp.index <- which(data$is.anomaly == 1 & data$label != "tp") data[fp.index, "label"] <- "fp" return(data) }
summary2 <- function(x, na.rm=FALSE) { if(length(x) <= 5) return(x) else return(summary(x, na.rm=na.rm)) } summary3 <- function(x, na.rm=FALSE) { c(quantile(x), mean=mean(x)) }
rlassoIV <- function(x, ...) UseMethod("rlassoIV") rlassoIV.default <- function(x, d, y, z, select.Z = TRUE, select.X = TRUE, post = TRUE, ...) { d <- as.matrix(d) z <- as.matrix(z) if (is.null(colnames(d))) colnames(d) <- paste("d", 1:ncol(d), sep = "") if (is.null(colnames(x)) & !is.null(x)) colnames(x) <- paste("x", 1:ncol(x), sep = "") if (is.null(colnames(z)) & !is.null(z)) colnames(z) <- paste("z", 1:ncol(z), sep = "") n <- length(y) if (select.Z == FALSE && select.X == FALSE) { res <- tsls(x, d, y, z, homoscedastic = FALSE, ...) return(res) } if (select.Z == TRUE && select.X == FALSE) { res <- rlassoIVselectZ(x, d, y, z, post = post, ...) return(res) } if (select.Z == FALSE && select.X == TRUE) { res <- rlassoIVselectX(x, d, y, z, post = post, ...) return(res) } if (select.Z == TRUE && select.X == TRUE) { Z <- cbind(z, x) lasso.d.zx <- rlasso(Z, d, post = post, ...) lasso.y.x <- rlasso(x, y, post = post, ...) lasso.d.x <- rlasso(x, d, post = post, ...) if (sum(lasso.d.zx$index) == 0) { message("No variables in the Lasso regression of d on z and x selected") return(list(alpha = NA, se = NA)) } ind.dzx <- lasso.d.zx$index PZ <- as.matrix(predict(lasso.d.zx)) lasso.PZ.x <- rlasso(x, PZ, post = post, ...) ind.PZx <- lasso.PZ.x$index if (sum(ind.PZx) == 0) { Dr <- d - mean(d) } else { Dr <- d - predict(lasso.PZ.x) } if (sum(lasso.y.x$index) == 0) { Yr <- y - mean(y) } else { Yr <- lasso.y.x$residuals } if (sum(lasso.PZ.x$index) == 0) { Zr <- PZ - mean(x) } else { Zr <- lasso.PZ.x$residuals } result <- tsls(y = Yr, d = Dr, x = NULL, z = Zr, intercept = FALSE, homoscedastic = FALSE) coef <- as.vector(result$coefficient) se <- diag(sqrt(result$vcov)) names(coef) <- names(se) <- colnames(d) res <- list(coefficients = coef, se = se, vcov = vcov, call = match.call(), samplesize = n) class(res) <- "rlassoIV" return(res) } } rlassoIV.formula <- function(formula, data, select.Z = TRUE, select.X = TRUE, post = TRUE, ...) { mat <- f.formula(formula, data, all.categories = FALSE) y <- mat$Y x <- mat$X d <- mat$D z <- mat$Z res <- rlassoIV(x=x, d=d, y=y, z=z, select.Z = select.Z, select.X = select.X, post = post, ...) res$call <- match.call() return(res) } print.rlassoIV <- function(x, digits = max(3L, getOption("digits") - 3L), ...) { cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") if (length(coef(x))) { cat("Coefficients:\n") print.default(format(coef(x), digits = digits), print.gap = 2L, quote = FALSE) } else cat("No coefficients\n") cat("\n") invisible(coef(x)) } summary.rlassoIV <- function(object, digits = max(3L, getOption("digits") - 3L), ...) { if (length(coef(object))) { k <- length(object$coefficient) table <- matrix(NA, ncol = 4, nrow = k) rownames(table) <- names(object$coefficients) colnames(table) <- c("coeff.", "se.", "t-value", "p-value") table[, 1] <- object$coefficients table[, 2] <- object$se table[, 3] <- table[, 1]/table[, 2] table[, 4] <- 2 * pnorm(-abs(table[, 3])) cat("Estimates and Significance Testing of the effect of target variables in the IV regression model", "\n") printCoefmat(table, digits = digits, P.values = TRUE, has.Pvalue = TRUE) cat("\n") } else { cat("No coefficients\n") } cat("\n") invisible(table) } confint.rlassoIV <- function(object, parm, level = 0.95, ...) { n <- object$samplesize k <- length(object$coefficients) cf <- coef(object) pnames <- names(cf) if (missing(parm)) parm <- pnames else if (is.numeric(parm)) parm <- pnames[parm] a <- (1 - level)/2 a <- c(a, 1 - a) fac <- qnorm(a) pct <- format.perc(a, 3) ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(parm, pct)) ses <- object$se[parm] ci[] <- cf[parm] + ses %o% fac print(ci) invisible(ci) } rlassoIVmult <- function(x, d, y, z, select.Z = TRUE, select.X = TRUE, ...) { d <- as.matrix(d) if (is.null(colnames(d))) colnames(d) <- paste("d", 1:ncol(d), sep = "") if (is.null(colnames(x)) & !is.null(x)) colnames(x) <- paste("x", 1:ncol(x), sep = "") if (is.null(colnames(z)) & !is.null(z)) colnames(z) <- paste("z", 1:ncol(z), sep = "") if (select.Z == FALSE & select.X == FALSE) { res <- tsls(x=x, d=d, y=y, z=z, homoscedastic = FALSE, ...) return(res) } if (select.Z == TRUE & select.X == FALSE) { res <- rlassoIVselectZ(x, d, y, z, ...) return(res) } if (select.Z == FALSE & select.X == TRUE) { res <- rlassoIVselectX(x, d, y, z, ...) return(res) } if (select.Z == TRUE & select.X == TRUE) { d <- as.matrix(d) n <- dim(x)[1] d <- as.matrix(d) kd <- dim(d)[2] Z <- cbind(z, x) if (is.null(colnames(d))) colnames(d) <- paste("d", 1:kd, sep = "") lasso.y.x <- rlasso(x, y, ...) Yr <- lasso.y.x$residuals Drhat <- NULL Zrhat <- NULL for (i in 1:kd) { lasso.d.x <- rlasso(d[, i] ~ x, ...) lasso.d.zx <- rlasso(d[, i] ~ Z, ...) if (sum(lasso.d.zx$index) == 0) { Drhat <- cbind(Drhat, d[, i] - mean(d[, i])) Zrhat <- cbind(Zrhat, d[, i] - mean(d[, i])) next } ind.dzx <- lasso.d.zx$index PZ <- Z[, ind.dzx, drop = FALSE] %*% MASS::ginv(t(Z[, ind.dzx, drop = FALSE]) %*% Z[, ind.dzx, drop = FALSE]) %*% t(Z[, ind.dzx, drop = FALSE]) %*% d[, i, drop = FALSE] lasso.PZ.x <- rlasso(PZ ~ x, ...) ind.PZx <- lasso.PZ.x$index Dr <- d[, i] - x[, ind.PZx, drop = FALSE] %*% MASS::ginv(t(x[, ind.PZx, drop = FALSE]) %*% x[, ind.PZx, drop = FALSE]) %*% t(x[, ind.PZx, drop = FALSE]) %*% PZ Zr <- lasso.PZ.x$residuals Drhat <- cbind(Drhat, Dr) Zrhat <- cbind(Zrhat, Zr) } result <- tsls(y = Yr, d = Drhat, x = NULL, z = Zrhat, homoscedastic = FALSE) coef <- as.vector(result$coefficient) se <- sqrt(diag(result$vcov)) names(coef) <- names(se) <- colnames(d) res <- list(coefficients = coef, se = se, vcov = result$vcov, call = match.call(), samplesize = n) class(res) <- "rlassoIV" return(res) } }
context("SVM and Linear SVM") library(kernlab) set.seed(91) testdata <- generateSlicedCookie(50,expected=TRUE) extra_testdata <- generateSlicedCookie(100,expected=TRUE) g1 <- SVM(formula(Class~.), testdata, C=1000,eps=1e-10) g2 <- LinearSVM(formula(Class~.), testdata, C=10000, method="Dual",eps=1e-10) g3 <- LinearSVM(formula(Class~.), testdata, C=10000, method="Primal",eps=1e-10) test_that("Batch Gradient Descent gives a warning", { expect_warning(g4 <- LinearSVM(formula(Class~.), testdata, C=500, method="BGD",reltol=1e-100, maxit=1000,eps=1e-10)) }) test_that("Same result as kernlab implementation", { g_nonscaled <- SVM(formula(Class~.), testdata, C=1000,eps=1e-10,scale=FALSE) g_kernlab <- ksvm(formula(Class~.),data=testdata, C=1000,kernel=vanilladot(),scaled=FALSE) expect_equal(g_nonscaled@alpha[g_kernlab@alphaindex[[1]]],-g_kernlab@coef[[1]],tolerance=1e-2) }) test_that("Same result as svmd implementation", { g_nonscaled <- SVM(formula(Class~.), testdata, C=1,eps=1e-5,scale=FALSE,x_center=FALSE) g_kernlab <- svmd(formula(Class~.), kernel="linear", testdata,cost=1, scale = FALSE) expect_equal(g_nonscaled@alpha[g_kernlab$index], as.numeric(-g_kernlab$coefs),tolerance=10e-4) }) test_that("Same result for SVM and Linear SVM.", { expect_equal(decisionvalues(g2,testdata),decisionvalues(g1,testdata),tolerance=1e-5) }) test_that("Weights equal for Primal and Dual solution", { expect_equal(g2@w, as.numeric(g3@w),tolerance=10e-2,scale=1) }) test_that("Predictions the same for SVM and LinearSVM",{ expect_equal(predict(g2,extra_testdata), predict(g1,extra_testdata)) expect_equal(predict(g3,extra_testdata), predict(g1,extra_testdata)) }) test_that("Loss functions return the same value for SVM and LinearSVM",{ expect_equal(loss(g2,extra_testdata), loss(g1,extra_testdata),tolerance=1e-4,scale=1) l1 <- loss(g1,testdata) expect_equal(l1,loss(g2,testdata),tolerance=1e-3,scale=1) }) test_that("Gradient is superficially correct",{ library("numDeriv") data(testdata) X <- cbind(1,testdata$X) y <- as.numeric(testdata$y)*2-3 w <- rnorm(ncol(X)) C <- 500 expect_equal(as.numeric(numDeriv::grad(RSSL:::svm_opt_func,w,X=X,y=y,C=C, method="simple")),as.numeric(RSSL:::svm_opt_grad(w,X=X,y=y,C=C)),tolerance=1e-2) })
library(testthat) library(parsnip) library(rlang) context("nearest neighbor") source("helpers.R") test_that('primary arguments', { basic <- nearest_neighbor(mode = "regression") basic_kknn <- translate(basic %>% set_engine("kknn")) expect_equal( object = basic_kknn$method$fit$args, expected = list( formula = expr(missing_arg()), data = expr(missing_arg()), ks = expr(min_rows(5, data, 5)) ) ) neighbors <- nearest_neighbor(mode = "classification", neighbors = 2) neighbors_kknn <- translate(neighbors %>% set_engine("kknn")) expect_equal( object = neighbors_kknn$method$fit$args, expected = list( formula = expr(missing_arg()), data = expr(missing_arg()), ks = expr(min_rows(2, data, 5)) ) ) weight_func <- nearest_neighbor(mode = "classification", weight_func = "triangular") weight_func_kknn <- translate(weight_func %>% set_engine("kknn")) expect_equal( object = weight_func_kknn$method$fit$args, expected = list( formula = expr(missing_arg()), data = expr(missing_arg()), kernel = new_empty_quosure("triangular"), ks = expr(min_rows(5, data, 5)) ) ) dist_power <- nearest_neighbor(mode = "classification", dist_power = 2) dist_power_kknn <- translate(dist_power %>% set_engine("kknn")) expect_equal( object = dist_power_kknn$method$fit$args, expected = list( formula = expr(missing_arg()), data = expr(missing_arg()), distance = new_empty_quosure(2), ks = expr(min_rows(5, data, 5)) ) ) }) test_that('engine arguments', { kknn_scale <- nearest_neighbor(mode = "classification") %>% set_engine("kknn", scale = FALSE) expect_equal( object = translate(kknn_scale, "kknn")$method$fit$args, expected = list( formula = expr(missing_arg()), data = expr(missing_arg()), scale = new_empty_quosure(FALSE), ks = expr(min_rows(5, data, 5)) ) ) }) test_that('updating', { expr1 <- nearest_neighbor() %>% set_engine("kknn", scale = FALSE) expr1_exp <- nearest_neighbor(neighbors = 5) %>% set_engine("kknn", scale = FALSE) expr2 <- nearest_neighbor(neighbors = tune()) %>% set_engine("kknn", scale = tune()) expr2_exp <- nearest_neighbor(neighbors = tune(), weight_func = "triangular") %>% set_engine("kknn", scale = FALSE) expr3 <- nearest_neighbor(neighbors = 2, weight_func = tuns()) %>% set_engine("kknn", scale = tune()) expr3_exp <- nearest_neighbor(neighbors = 3) %>% set_engine("kknn", scale = FALSE) expect_equal(update(expr1, neighbors = 5, scale = FALSE), expr1_exp) expect_equal(update(expr2, weight_func = "triangular", scale = FALSE), expr2_exp) expect_equal(update(expr3, neighbors = 3, fresh = TRUE, scale = FALSE), expr3_exp) param_tibb <- tibble::tibble(neighbors = 7, dist_power = 1) param_list <- as.list(param_tibb) expr1_updated <- update(expr1, param_tibb) expect_equal(expr1_updated$args$neighbors, 7) expect_equal(expr1_updated$args$dist_power, 1) expect_equal(expr1_updated$eng_args$scale, rlang::quo(FALSE)) expr1_updated_lst <- update(expr1, param_list) expect_equal(expr1_updated_lst$args$neighbors, 7) expect_equal(expr1_updated_lst$args$dist_power, 1) expect_equal(expr1_updated_lst$eng_args$scale, rlang::quo(FALSE)) expr1_updated_mod <- update(expr1, param_list, neighbors = 3) expect_equal(expr1_updated_mod$args$neighbors, 7) expect_equal(expr1_updated_mod$args$dist_power, 1) expect_equal(expr1_updated_mod$eng_args$scale, rlang::quo(FALSE)) param_tibb$scale <- TRUE expect_error( update(expr1, param_tibb), "At least one argument is not a main argument" ) }) test_that('bad input', { expect_error(nearest_neighbor(mode = "reallyunknown")) expect_error(nearest_neighbor() %>% set_engine( NULL)) })
require(testthat) context("Testing remove_runs().") index <- c(1,2,4,5,6,10,12,13,14,15,18,19,20) y <- seq_along(index) result <- y result[c(1,3,4,7,8,9,11,12)] <- NA test_that(paste0("test remove_runs() with max last, ordered"), { expect_identical(remove_runs(y, index), result) }) result <- y result[c(2,4,5,8,9,10,12,13)] <- NA test_that(paste0("test remove_runs() with min first, ordered"), { expect_identical(remove_runs(y, index, FALSE), result) }) index <- c(1,2,4,5,6,10,12,13,14,15,18,19,20) y <- -seq_along(index) result <- y result[c(2,4,5,8,9,10,12,13)] <- NA test_that(paste0("test remove_runs() with max first, ordered"), { expect_identical(remove_runs(y, index), result) }) index <- -rev(c(1,2,4,5,6,10,12,13,14,15,18,19,20)) y <- seq_along(index) result <- y result[c(1,2,4,5,6,9,10,12)] <- NA test_that(paste0("test remove_runs(), negative indices, ordered"), { expect_identical(remove_runs(y, index), result) }) index <- c(1,4,5,6,2,12,13,14,15,18,20,19,10) y <- seq_along(index) result <- y result[c(1,2,3,6:8,10:11)] <- NA test_that(paste0("test remove_runs(), unordered"), { expect_identical(remove_runs(y, index), result) }) index <- 20 y <- seq_along(index) result <- y test_that(paste0("test remove_runs(), single value"), { expect_identical(remove_runs(y, index), y) }) index <- c(14,20) y <- seq_along(index) result <- y test_that(paste0("test remove_runs(), no removals"), { expect_identical(remove_runs(y, index), y) }) context("Testing screen_within_block().") index <- c(1,10,11,15,19,21,45,51,53) y <- seq_along(index) result <- y result[c(1,3,4,8)] <- NA test_that(paste0("test screen_within_block() with max last, ordered"), { expect_identical(screen_within_block(y, index), result) }) index <- c(1,10,11,15,19,21,45,51,53) y <- -seq_along(index) result <- y result[c(2,4,5,9)] <- NA test_that(paste0("test screen_within_block() with max first, ordered"), { expect_identical(screen_within_block(y, index), result) }) index <- c(1,10,11,15,19,21,45,51,53) y <- c(0, 1, 5, 3, 7, 9, 11, 0, 7) result <- y result[c(1,3,4,8)] <- NA test_that(paste0("test screen_within_block() with max last, unordered"), { expect_identical(screen_within_block(y, index), result) }) index <- 20 y <- seq_along(index) test_that(paste0("test screen_within_block(), single value"), { expect_equal(screen_within_block(y, index), y) }) index <- c(5,20) y <- seq_along(index) test_that(paste0("test screen_within_block(), no removals"), { expect_equal(screen_within_block(y, index), y) })
library(shiny) source("helper/bbox-plot.R") observe({ updateSelectInput(session, 'bbox_select_x', choices = names(filt_data$p)) updateSelectInput(session, 'bbox_select_y', choices = names(filt_data$p)) }) observeEvent(input$finalok, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] f_data <- final_split$train[, sapply(final_split$train, is.factor)] if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, inputId = "bbox_select_x", choices = names(fdata)) } else { updateSelectInput(session, 'bbox_select_x', choices = names(f_data)) } if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'bbox_select_y', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'bbox_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'bbox_select_y', choices = names(num_data)) } }) observeEvent(input$submit_part_train_per, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] f_data <- final_split$train[, sapply(final_split$train, is.factor)] if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, inputId = "bbox_select_x", choices = names(fdata)) } else { updateSelectInput(session, 'bbox_select_x', choices = names(f_data)) } if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'bbox_select_y', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'bbox_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'bbox_select_y', choices = names(num_data)) } }) f_split <- reactiveValues(num_data = NULL) num_data1 <- eventReactive(input$button_split_no, { numdata <- final_split$train[, sapply(final_split$train, is.factor)] if (is.factor(numdata)) { out <- 1 } else { out <- ncol(numdata) } out }) num_data2 <- eventReactive(input$submit_part_train_per, { numdata <- final_split$train[, sapply(final_split$train, is.factor)] if (is.factor(numdata)) { out <- 1 } else { out <- ncol(numdata) } out }) observeEvent(input$button_split_no, { f_split$num_data <- num_data1() }) observeEvent(input$submit_part_train_per, { f_split$num_data <- num_data2() }) bbox_x <- eventReactive(input$box2_create, { if (f_split$num_data > 0) { box_data <- final_split$train[, input$bbox_select_x] } else { box_data <- NULL } box_data }) bbox_y <- eventReactive(input$box2_create, { box_data <- final_split$train[, input$bbox_select_y] }) n_labels <- eventReactive(input$box2_create, { if (!is.null(bbox_x())) { k <- nlevels(bbox_x()) } k }) observeEvent(input$box2_create, { if (!is.null(bbox_x())) { updateNumericInput(session, 'nbox2label', value = n_labels()) } }) output$ui_ncolbox2 <- renderUI({ ncol <- as.integer(input$ncolbox2) lapply(1:ncol, function(i) { textInput(paste("n_box2col_", i), label = paste0("Box Color ", i), value = 'blue') }) }) colours_box2 <- reactive({ ncol <- as.integer(input$ncolbox2) collect <- list(lapply(1:ncol, function(i) { input[[paste("n_box2col_", i)]] })) colors <- unlist(collect) }) output$ui_nborbox2 <- renderUI({ ncol <- as.integer(input$nborbox2) lapply(1:ncol, function(i) { textInput(paste("n_box2bor_", i), label = paste0("Border Color ", i), value = 'black') }) }) borders_box2 <- reactive({ ncol <- as.integer(input$nborbox2) collect <- list(lapply(1:ncol, function(i) { input[[paste("n_box2bor_", i)]] })) colors <- unlist(collect) }) output$ui_nbox2label <- renderUI({ ncol <- as.integer(input$nbox2label) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_box2label_", i), label = paste0("Label ", i)) }) } }) labels_box2 <- reactive({ ncol <- as.integer(input$nbox2label) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_box2label_", i)]] })) colors <- unlist(collect) } colors }) output$ui_box2_legnames <- renderUI({ ncol <- as.integer(input$box2_legnames) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_legnamesbox2_", i), label = paste0("Legend Name ", i)) }) } }) output$ui_box2_legpoint <- renderUI({ ncol <- as.integer(input$box2_leg_point) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { numericInput(paste("n_pointbox2_", i), label = paste0("Legend Point ", i), value = 15) }) } }) name_box2 <- reactive({ ncol <- as.integer(input$box2_legnames) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_legnamesbox2_", i)]] })) colors <- unlist(collect) } colors }) point_box2 <- reactive({ ncol <- as.integer(input$box2_leg_point) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_pointbox2_", i)]] })) colors <- unlist(collect) } colors }) output$bbox_plot_1 <- renderPlot({ if (!is.null(bbox_x())) { box_plotb(bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel) } }) output$bbox_plot_2 <- renderPlot({ box_plotb(bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel, horiz = as.logical(input$bbox_horiz), notches = as.logical(input$bbox_notch), ranges = input$bbox_range, outlines = as.logical(input$bbox_outline), varwidths = as.logical(input$bbox_varwidth)) }) output$bbox_plot_3 <- renderPlot({ box_plotb(bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel, horiz = as.logical(input$bbox_horiz), notches = as.logical(input$bbox_notch), ranges = input$bbox_range, outlines = as.logical(input$bbox_outline), varwidths = as.logical(input$bbox_varwidth), color = colours_box2(), borders = borders_box2(), labels = labels_box2()) }) output$bbox_plot_5 <- renderPlot({ box_plotb( bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel, horiz = as.logical(input$bbox_horiz), notches = as.logical(input$bbox_notch), ranges = input$bbox_range, outlines = as.logical(input$bbox_outline), varwidths = as.logical(input$bbox_varwidth), color = colours_box2(), borders = borders_box2(), text_p = input$bbox_plottext, text_x_loc = input$bbox_text_x_loc, text_y_loc = input$bbox_text_y_loc, text_col = input$bbox_textcolor, text_font = input$bbox_textfont, text_size = input$bbox_textsize, m_text = input$bbox_mtextplot, m_side = input$bbox_mtext_side, m_line = input$bbox_mtext_line, m_adj = input$bbox_mtextadj, m_col = input$bbox_mtextcolor, m_font = input$bbox_mtextfont, m_cex = input$bbox_mtextsize ) }) output$bbox_plot_6 <- renderPlot({ box_plotb( bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel, horiz = as.logical(input$bbox_horiz), notches = as.logical(input$bbox_notch), ranges = input$bbox_range, outlines = as.logical(input$bbox_outline), varwidths = as.logical(input$bbox_varwidth), color = colours_box2(), borders = borders_box2(), labels = labels_box2(), input$bbox_coltitle, input$bbox_colsub, input$bbox_colaxis, input$bbox_collabel, fontmain = input$bbox_fontmain, fontsub = input$bbox_fontsub, fontaxis = input$bbox_fontaxis, fontlab = input$bbox_fontlab, input$bbox_cexmain, input$bbox_cexsub, input$bbox_cexaxis, input$bbox_cexlab, text_p = input$bbox_plottext, text_x_loc = input$bbox_text_x_loc, text_y_loc = input$bbox_text_y_loc, text_col = input$bbox_textcolor, text_font = input$bbox_textfont, text_size = input$bbox_textsize, m_text = input$bbox_mtextplot, m_side = input$bbox_mtext_side, m_line = input$bbox_mtext_line, m_adj = input$bbox_mtextadj, m_col = input$bbox_mtextcolor, m_font = input$bbox_mtextfont, m_cex = input$bbox_mtextsize ) }) output$bbox_plot_final <- renderPlot({ box_plotb( bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel, horiz = as.logical(input$bbox_horiz), notches = as.logical(input$bbox_notch), ranges = input$bbox_range, outlines = as.logical(input$bbox_outline), varwidths = as.logical(input$bbox_varwidth), color = colours_box2(), borders = borders_box2(), labels = labels_box2(), input$bbox_coltitle, input$bbox_colsub, input$bbox_colaxis, input$bbox_collabel, fontmain = input$bbox_fontmain, fontsub = input$bbox_fontsub, fontaxis = input$bbox_fontaxis, fontlab = input$bbox_fontlab, input$bbox_cexmain, input$bbox_cexsub, input$bbox_cexaxis, input$bbox_cexlab, text_p = input$bbox_plottext, text_x_loc = input$bbox_text_x_loc, text_y_loc = input$bbox_text_y_loc, text_col = input$bbox_textcolor, text_font = input$bbox_textfont, text_size = input$bbox_textsize, m_text = input$bbox_mtextplot, m_side = input$bbox_mtext_side, m_line = input$bbox_mtext_line, m_adj = input$bbox_mtextadj, m_col = input$bbox_mtextcolor, m_font = input$bbox_mtextfont, m_cex = input$bbox_mtextsize ) })
phenoEstimate <- function(counts, params = newPhenoParams()) { UseMethod("phenoEstimate") } phenoEstimate.SingleCellExperiment <- function(counts, params = newPhenoParams()) { counts <- getCounts(counts) phenoEstimate(counts, params) } phenoEstimate.matrix <- function(counts, params = newPhenoParams()) { checkmate::assertClass(params, "PhenoParams") nGenes <- nrow(counts) quarter <- floor(nGenes / 4) params <- setParams(params, nCells = ncol(counts), n.de = nGenes - 3 * quarter, n.pst = quarter, n.pst.beta = quarter, n.de.pst.beta = quarter) return(params) }
context("fpca_gauss") test_that("bfpca output is a list with non-null items and class fpca",{ Y = simulate_functional_data()$Y Y$value = Y$latent_mean fpca_object = fpca_gauss(Y, npc = 2, print.iter = TRUE) expect_equal(class(fpca_object), "fpca") expect_equal(fpca_object$family, "gaussian") expect_false(any(is.na(fpca_object$mu))) expect_false(any(is.na(fpca_object$efunctions))) expect_false(any(is.na(fpca_object$evalues))) expect_false(any(is.na(fpca_object$scores))) })
create_beast2_run_cmd_from_options <- function(beast2_options) { cmds <- beastier::create_beast2_continue_cmd_from_options(beast2_options) cmds[cmds != "-resume"] }
MandelPvalue <- function(hfobj) { a <- nlevels(hfobj$tall$rows) b <- nlevels(hfobj$tall$cols) ymtx <- matrix(hfobj$tall$y,nrow=a,ncol=b,byrow=T) coldevs <- apply(ymtx,2,mean)-mean(ymtx) rowdevs <- apply(ymtx,1,mean)-mean(ymtx) SSRow <- b*sum(rowdevs^2) SSCol <- a*sum(coldevs^2) SSTot <- (a*b-1)*var(hfobj$tall$y) slopes <- ymtx %*% coldevs/sum(coldevs^2) SSMandel <- sum((slopes-1)^2) * sum(coldevs^2) SSE <- SSTot-SSMandel-SSRow-SSCol dfE <- ((a-1)*(b-2)) MSE <- SSE/dfE Fratio <- (SSMandel/(a-1))/MSE pvalue <- 1-pf(Fratio,(a-1),dfE) SumSq <- c(SSRow=SSRow,SSCol=SSCol,SSMandel=SSMandel,SSE=SSE,SSTot=SSTot) list(pvalue=pvalue,SumSq=SumSq,Fratio=Fratio,df=c(a-1,dfE)) }
endpoint <- "https://api.beta.ons.gov.uk/v1" EMPTY <- "" set_endpoint <- function(query) { paste(endpoint, query, sep = "/") } build_request <- function(id, edition = NULL, version = NULL) { edition <- edition %||% ons_latest_edition(id) version <- version %||% ons_latest_version(id) build_base_request(datasets = id, editions = edition, versions = version) } build_base_request <- function(...) { query <- build_request_dots(...) set_endpoint(query) } build_request_dots <- function(...) { params <- list(...) plen <- length(params) param_chunks <- vector("character", plen) for (i in 1:plen) { pm <- params[[i]][1] if(is.null(pm)) { param_chunks[i] <- "" }else if(pm == EMPTY){ param_chunks[i] <- names(params)[i] }else{ param_chunks[i] <- paste(names(params)[i], pm, sep = "/") } } is_empty <- param_chunks == EMPTY paste(param_chunks[!is_empty], collapse = "/") } extend_request_dots <- function(pre, ...) { append <- build_request_dots(...) paste(pre, append, sep = "/") } try_VERB <- function(x, limit, offset, VERB = "GET", ...) { tryCatch( RETRY(VERB, url = x, timeout(10), quiet = TRUE, query = list(limit = limit, offset = offset), ...), error = function(err) conditionMessage(err), warning = function(warn) conditionMessage(warn) ) } is_response <- function(x) { class(x) == "response" } make_request <- function(query, limit = NULL, offset = NULL, ...) { if (!curl::has_internet()) { message("No internet connection.") return(invisible(NULL)) } resp <- try_VERB(query, limit = limit, offset = offset, ...) if (!is_response(resp)) { message(resp) return(invisible(NULL)) } if (httr::http_error(resp)) { httr::message_for_status(resp) return(invisible(NULL)) } resp } process_response <- function(res) { ct <- content(res, as = "text", encoding = "UTF-8") fromJSON(ct, simplifyVector = TRUE) }
tcut <- function (x, breaks, labels, scale=1){ x <- as.numeric(x) breaks <- as.numeric(breaks) if(length(breaks) == 1) { if(breaks < 1) stop("Must specify at least one interval") if(missing(labels)) labels <- paste("Range", seq(length = breaks)) else if(length(labels) != breaks) stop("Number of labels must equal number of intervals") r <- range(x[!is.na(x)]) r[is.na(r)] <- 1 if((d <- diff(r)) == 0) { r[2] <- r[1] + 1 d <- 1 } breaks <- seq(r[1] - 0.01 * d, r[2] + 0.01 * d, length = breaks +1) } else { if(is.na(adb <- all(diff(breaks) >= 0)) || !adb) stop("breaks must be given in ascending order and contain no NA's") if(missing(labels)) labels <- paste(format(breaks[ - length(breaks)]), "+ thru ", format(breaks[-1]), sep = "") else if(length(labels) != length(breaks) - 1) stop("Number of labels must be 1 less than number of break points") } temp <- structure(x*scale, cutpoints=breaks*scale, labels=labels) class(temp) <- 'tcut' temp } "[.tcut" <- function(x, ..., drop=FALSE) { atts <- attributes(x) x <- unclass(x)[..1] attributes(x) <- atts class(x) <- 'tcut' x } levels.tcut <- function(x) attr(x, 'labels')
gaussian.trees.e.step <- function(X, S) { v = nrow(S) m = ncol(X) n = nrow(X) latentFirstMoments = S[(m + 1):v, 1:m] %*% solve(S[1:m, 1:m]) %*% t(X) schurComplement = S[(m + 1):v, (m + 1):v] - S[(m + 1):v, 1:m] %*% solve(S[1:m, 1:m], S[1:m, (m + 1):v]) latentFirstMomentCovarianceSum = latentFirstMoments %*% t(latentFirstMoments) latentSecondMomentsSum = schurComplement + 1 / n * latentFirstMomentCovarianceSum return(list(latentFirstMoments, latentSecondMomentsSum)) } gaussian.trees.m.step <- function(latentFirstMoments, latentSecondMomentsSum, X, edges, supp) { if (is.vector(edges)) { edges = t(matrix(edges, 2, length(edges) / 2)) } n = dim(X)[1] m = dim(X)[2] v = 2 * m - 2 Sigma11 = 1 / n * t(X) %*% X Sigma12 = 1 / n * t(latentFirstMoments %*% X) Sigma22 = latentSecondMomentsSum Sigma = rbind(cbind(Sigma11, Sigma12), cbind(t(Sigma12), Sigma22)) edgeCorrelations = rep(0, length(supp)) if (dim(edges)[1] > 0) { for (i in 1:(dim(edges)[1])) { if (supp[i] == 1) { edgeCorrelations[i] = Sigma[edges[i, 1], edges[i, 2]] / sqrt(Sigma[edges[i, 1], edges[i, 1]] * Sigma[edges[i, 2], edges[i, 2]]) } } } return(getCovMat(edgeCorrelations, edges, v)) }
geom_rect_interactive <- function(...) layer_interactive(geom_rect, ...) GeomInteractiveRect <- ggproto( "GeomInteractiveRect", GeomRect, default_aes = add_default_interactive_aes(GeomRect), parameters = interactive_geom_parameters, draw_key = interactive_geom_draw_key, draw_panel = function(self, data, panel_params, coord, linejoin = "mitre", .ipar = IPAR_NAMES) { if (!coord$is_linear()) { aesthetics <- setdiff(names(data), c("x", "y", "xmin", "xmax", "ymin", "ymax")) polys <- lapply(split(data, seq_len(nrow(data))), function(row) { poly <- rect_to_poly(row$xmin, row$xmax, row$ymin, row$ymax) aes <- new_data_frame(row[aesthetics])[rep(1, 5), ] GeomInteractivePolygon$draw_panel(cbind(poly, aes), panel_params, coord, .ipar = .ipar) }) ggname("bar", do.call("grobTree", polys)) } else { coords <- coord$transform(data, panel_params) gr <- ggname( "geom_rect_interactive", rectGrob( coords$xmin, coords$ymax, width = coords$xmax - coords$xmin, height = coords$ymax - coords$ymin, default.units = "native", just = c("left", "top"), gp = gpar( col = coords$colour, fill = alpha(coords$fill, coords$alpha), lwd = coords$size * .pt, lty = coords$linetype, linejoin = linejoin, lineend = if (identical(linejoin, "round")) "round" else "square" ) ) ) add_interactive_attrs(gr, coords, ipar = .ipar) } } ) rect_to_poly <- function(xmin, xmax, ymin, ymax) { new_data_frame(list( y = c(ymax, ymax, ymin, ymin, ymax), x = c(xmin, xmax, xmax, xmin, xmin) )) }
PhenoTrs <- function( x, approach = c("White", "Trs"), trs = 0.5, min.mean = 0.1, formula=NULL, uncert=FALSE, params=NULL, breaks, ... ) { if (all(is.na(x))) return(c(sos=NA, eos=NA, los=NA, pop=NA, mgs=NA, rsp=NA, rau=NA, peak=NA, msp=NA, mau=NA)) n <- index(x)[length(x)] avg <- mean(x, na.rm=TRUE) x2 <- na.omit(x) avg2 <- mean(x2[x2 > min.mean], na.rm=TRUE) peak <- max(x, na.rm=TRUE) mn <- min(x, na.rm=TRUE) ampl <- peak - mn pop <- median(index(x)[which(x == max(x, na.rm=TRUE))]) approach <- approach[1] if (approach == "White") { ratio <- (x - mn) / ampl trs.low <- trs - 0.1 trs.up <- trs + 0.1 } if (approach == "Trs") { ratio <- x a <- diff(range(ratio, na.rm=TRUE)) * 0.1 trs.low <- trs - a trs.up <- trs + a } .Greenup <- function (x, ...) { ratio.deriv <- c(NA, diff(x)) greenup <- rep(NA, length(x)) greenup[ratio.deriv > 0] <- TRUE greenup[ratio.deriv < 0] <- FALSE return(greenup) } greenup <- .Greenup(ratio) bool <- ratio >= trs.low & ratio <= trs.up soseos <- index(x) sos <- round(median(soseos[greenup & bool], na.rm=TRUE)) eos <- round(median(soseos[!greenup & bool], na.rm=TRUE)) los <- eos - sos los[los < 0] <- n + (eos[los < 0] - sos[los < 0]) mgs <- mean(x[ratio > trs], na.rm=TRUE) msp <- mau <- NA if (!is.na(sos)) { id <- (sos-10):(sos+10) id <- id[(id > 0) & (id < n)] msp <- mean(x[which(index(x) %in% id==TRUE)], na.rm=TRUE) } if (!is.na(eos)) { id <- (eos-10):(eos+10) id <- id[(id > 0) & (id < n)] mau <- mean(x[which(index(x) %in% id==TRUE)], na.rm=TRUE) } metrics <- c(sos=sos, eos=eos, los=los, pop=pop, mgs=mgs, rsp=NA, rau=NA, peak=peak, msp=msp, mau=mau) return(metrics) }
qat_call_plot_lim_rule <- function(resultlist_part, measurement_vector=NULL, time=NULL, height= NULL, lat=NULL, lon=NULL, measurement_name="", directoryname="", basename="", plotstyle=NULL) { if (resultlist_part$method == 'lim_static') { filename<-paste(basename,"_",resultlist_part$element,"_",'lim_static',sep="") if (is.null(dim(resultlist_part$result$flagvector))) { qat_plot_lim_rule_static_1d(resultlist_part$result$flagvector, filename, measurement_vector=measurement_vector, min_value=resultlist_part$result$min_value, max_value=resultlist_part$result$max_value, measurement_name=measurement_name, directoryname=directoryname, plotstyle=plotstyle) } if (length(dim(resultlist_part$result$flagvector))==2) { qat_plot_lim_rule_static_2d(resultlist_part$result$flagvector, filename, measurement_vector=measurement_vector, min_value=resultlist_part$result$min_value, max_value=resultlist_part$result$max_value, measurement_name=measurement_name, directoryname=directoryname, plotstyle=plotstyle) } } if (resultlist_part$method == 'lim_sigma') { filename<-paste(basename,"_",resultlist_part$element,"_",'lim_sigma',sep="") if (is.null(dim(resultlist_part$result$flagvector))) { qat_plot_lim_rule_sigma_1d(resultlist_part$result$flagvector, filename, measurement_vector=measurement_vector, sigma_factor=resultlist_part$result$sigma_factor, meanofvector=resultlist_part$result$meanofvector, sdofvector=resultlist_part$result$sdofvector, measurement_name=measurement_name, directoryname=directoryname, plotstyle=plotstyle) } if (length(dim(resultlist_part$result$flagvector))==2) { qat_plot_lim_rule_sigma_2d(resultlist_part$result$flagvector, filename, measurement_vector=measurement_vector, sigma_factor=resultlist_part$result$sigma_factor, meanofvector=resultlist_part$result$meanofvector, sdofvector=resultlist_part$result$sdofvector, measurement_name=measurement_name, directoryname=directoryname, plotstyle=plotstyle) } } if (resultlist_part$method == 'lim_dynamic') { filename<-paste(basename,"_",resultlist_part$element,"_",'lim_dynamic',sep="") if (is.null(dim(resultlist_part$result$flagvector))) { qat_plot_lim_rule_dynamic_1d(resultlist_part$result$flagvector, filename, measurement_vector=measurement_vector, min_vector=resultlist_part$result$min_vector, max_vector=resultlist_part$result$max_vector, min_vector_name=resultlist_part$result$min_vector_name, max_vector_name=resultlist_part$result$max_vector_name, measurement_name=measurement_name, directoryname=directoryname, plotstyle=plotstyle) } if (length(dim(resultlist_part$result$flagvector))==2) { qat_plot_lim_rule_dynamic_1d(resultlist_part$result$flagvector, filename, measurement_vector=measurement_vector, min_vector=resultlist_part$result$min_vector, max_vector=resultlist_part$result$max_vector, min_vector_name=resultlist_part$result$min_vector_name, max_vector_name=resultlist_part$result$max_vector_name, measurement_name=measurement_name, directoryname=directoryname, plotstyle=plotstyle) } } }
tableby.control <- function( test=TRUE,total=TRUE, total.pos = c("after", "before"), test.pname=NULL, numeric.simplify=FALSE, cat.simplify=FALSE, cat.droplevels=FALSE, ordered.simplify=FALSE, date.simplify=FALSE, numeric.test="anova", cat.test="chisq", ordered.test="trend", surv.test="logrank", date.test="kwt", selectall.test="notest", test.always = FALSE, numeric.stats=c("Nmiss","meansd","range"), cat.stats=c("Nmiss","countpct"), ordered.stats=c("Nmiss", "countpct"), surv.stats=c("Nmiss", "Nevents","medSurv"), date.stats=c("Nmiss", "median","range"), selectall.stats=c("Nmiss", "countpct"), stats.labels = list(), digits = 3L, digits.count = 0L, digits.pct = 1L, digits.p = 3L, format.p = TRUE, digits.n = 0L, conf.level = 0.95, wilcox.correct = FALSE, wilcox.exact = NULL, chisq.correct=FALSE, simulate.p.value=FALSE, B=2000, times = 1:5, ...) { nm <- names(list(...)) if("digits.test" %in% nm) .Deprecated(msg = "Using 'digits.test = ' is deprecated. Use 'digits.p = ' instead.") if("nsmall" %in% nm) .Deprecated(msg = "Using 'nsmall = ' is deprecated. Use 'digits = ' instead.") if("nsmall.pct" %in% nm) .Deprecated(msg = "Using 'nsmall.pct = ' is deprecated. Use 'digits.pct = ' instead.") if(!is.null(digits) && digits < 0L) { warning("digits must be >= 0. Set to default.") digits <- 3L } if(!is.null(digits.count) && digits.count < 0L) { warning("digits.count must be >= 0. Set to default.") digits.count <- 0L } if(!is.null(digits.pct) && digits.pct < 0L) { warning("digits.pct must be >= 0. Set to default.") digits.pct <- 1L } if(!is.null(digits.p) && digits.p < 0L) { warning("digits.p must be >= 0. Set to default.") digits.p <- 3L } if(!is.null(digits.n) && !is.na(digits.n) && digits.p < 0L) { warning("digits.n must be >= 0 or NA or NULL. Set to default.") digits.n <- 0L } stats.labels <- if(is.null(stats.labels)) NULL else add_tbc_stats_labels(stats.labels) list(test=test, total=total, total.pos = match.arg(total.pos), test.pname=test.pname, numeric.simplify=numeric.simplify, cat.simplify=cat.simplify, cat.droplevels = cat.droplevels, ordered.simplify=ordered.simplify, date.simplify=date.simplify, numeric.test=numeric.test, cat.test=cat.test, ordered.test=ordered.test, surv.test=surv.test, date.test=date.test, selectall.test=selectall.test, test.always=test.always, numeric.stats=numeric.stats, cat.stats=cat.stats, ordered.stats=ordered.stats, surv.stats=surv.stats, date.stats=date.stats, selectall.stats=selectall.stats, stats.labels=stats.labels, digits=digits, digits.p=digits.p, digits.count = digits.count, digits.pct = digits.pct, format.p = format.p, digits.n = digits.n, conf.level=conf.level, wilcox.correct = wilcox.correct, wilcox.exact = wilcox.exact, chisq.correct=chisq.correct, simulate.p.value=simulate.p.value, B=B, times=times) } add_tbc_stats_labels <- function(x) { start <- list( Nmiss="N-Miss", Nmiss2="N-Miss", Nmisspct="N-Miss (%)", Nmisspct2="N-Miss (%)", meansd="Mean (SD)", meanse = "Mean (SE)", meanpmsd="Mean &pm; SD", meanpmse = "Mean &pm; SE", medianrange="Median (Range)", median="Median", medianq1q3="Median (Q1, Q3)", q1q3="Q1, Q3", iqr = "IQR", mean = "Mean", sd = "SD", var = "Var", max = "Max", min = "Min", meanCI = "Mean (CI)", sum = "Sum", gmean = "Geom Mean", gsd = "Geom SD", gmeansd = "Geom Mean (Geom SD)", gmeanCI = "Geom Mean (CI)", range="Range", Npct="N (%)", Nrowpct="N (%)", Nevents="Events", medSurv="Median Survival", medTime = "Median Follow-Up", medianmad="Median (MAD)", Nsigntest = "N (sign test)", overall = "Overall", total = "Total", difference = "Difference" ) nms <- setdiff(names(x), "") start[nms] <- x[nms] start }
if (require("testthat") && require("sjmisc") && require("dplyr")) { data(efc) data(mtcars) efc$c172code <- as.factor(efc$c172code) efc$e42dep <- as.factor(efc$e42dep) test_that("std, vector", { expect_is(std(efc$c12hour), "numeric") }) test_that("std, data.frame", { expect_is(std(efc, c12hour), "data.frame") }) test_that("std, robust", { expect_is(std(efc, c12hour, c160age, robust = "2sd"), "data.frame") }) test_that("std, robust", { expect_is(std(efc, c12hour, c160age, robust = "gmd", append = FALSE), "data.frame") }) test_that("std, factors", { tmp <- std(efc, append = FALSE) expect_is(tmp$c172code_z, "factor") tmp <- std(efc, append = FALSE, include.fac = TRUE) expect_is(tmp$c172code_z, "numeric") }) test_that("std, factors", { mtcars %>% dplyr::group_by(cyl) %>% std(disp) }) }
prm <- c(one=1, two=2, 3=3, 4=4) prm <- c(one=1, two=2, "3"=3, "4"=4) prm maskidx <- c(1) maskidx <- c("one") lower <- c(0,0,0,1) upper <- c(1,1,1,1) tmask <- which(lower==upper) tmask newmask <- maskidx && tmask newmask <- maskidx & tmask tmask str(tmask) str(maskidx) pnames <- names(prm) pnames masked <- maskidx masked maskidx <- which(pnames %in% masked) maskidx newmask <- maskidx & tmask newmask newmask <- union(tmask, maskidx) newmask union(tmask, tmask) savehistory("tunionmasked.R")
NULL configservice_batch_get_aggregate_resource_config <- function(ConfigurationAggregatorName, ResourceIdentifiers) { op <- new_operation( name = "BatchGetAggregateResourceConfig", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$batch_get_aggregate_resource_config_input(ConfigurationAggregatorName = ConfigurationAggregatorName, ResourceIdentifiers = ResourceIdentifiers) output <- .configservice$batch_get_aggregate_resource_config_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$batch_get_aggregate_resource_config <- configservice_batch_get_aggregate_resource_config configservice_batch_get_resource_config <- function(resourceKeys) { op <- new_operation( name = "BatchGetResourceConfig", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$batch_get_resource_config_input(resourceKeys = resourceKeys) output <- .configservice$batch_get_resource_config_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$batch_get_resource_config <- configservice_batch_get_resource_config configservice_delete_aggregation_authorization <- function(AuthorizedAccountId, AuthorizedAwsRegion) { op <- new_operation( name = "DeleteAggregationAuthorization", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_aggregation_authorization_input(AuthorizedAccountId = AuthorizedAccountId, AuthorizedAwsRegion = AuthorizedAwsRegion) output <- .configservice$delete_aggregation_authorization_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_aggregation_authorization <- configservice_delete_aggregation_authorization configservice_delete_config_rule <- function(ConfigRuleName) { op <- new_operation( name = "DeleteConfigRule", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_config_rule_input(ConfigRuleName = ConfigRuleName) output <- .configservice$delete_config_rule_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_config_rule <- configservice_delete_config_rule configservice_delete_configuration_aggregator <- function(ConfigurationAggregatorName) { op <- new_operation( name = "DeleteConfigurationAggregator", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_configuration_aggregator_input(ConfigurationAggregatorName = ConfigurationAggregatorName) output <- .configservice$delete_configuration_aggregator_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_configuration_aggregator <- configservice_delete_configuration_aggregator configservice_delete_configuration_recorder <- function(ConfigurationRecorderName) { op <- new_operation( name = "DeleteConfigurationRecorder", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_configuration_recorder_input(ConfigurationRecorderName = ConfigurationRecorderName) output <- .configservice$delete_configuration_recorder_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_configuration_recorder <- configservice_delete_configuration_recorder configservice_delete_conformance_pack <- function(ConformancePackName) { op <- new_operation( name = "DeleteConformancePack", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_conformance_pack_input(ConformancePackName = ConformancePackName) output <- .configservice$delete_conformance_pack_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_conformance_pack <- configservice_delete_conformance_pack configservice_delete_delivery_channel <- function(DeliveryChannelName) { op <- new_operation( name = "DeleteDeliveryChannel", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_delivery_channel_input(DeliveryChannelName = DeliveryChannelName) output <- .configservice$delete_delivery_channel_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_delivery_channel <- configservice_delete_delivery_channel configservice_delete_evaluation_results <- function(ConfigRuleName) { op <- new_operation( name = "DeleteEvaluationResults", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_evaluation_results_input(ConfigRuleName = ConfigRuleName) output <- .configservice$delete_evaluation_results_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_evaluation_results <- configservice_delete_evaluation_results configservice_delete_organization_config_rule <- function(OrganizationConfigRuleName) { op <- new_operation( name = "DeleteOrganizationConfigRule", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_organization_config_rule_input(OrganizationConfigRuleName = OrganizationConfigRuleName) output <- .configservice$delete_organization_config_rule_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_organization_config_rule <- configservice_delete_organization_config_rule configservice_delete_organization_conformance_pack <- function(OrganizationConformancePackName) { op <- new_operation( name = "DeleteOrganizationConformancePack", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_organization_conformance_pack_input(OrganizationConformancePackName = OrganizationConformancePackName) output <- .configservice$delete_organization_conformance_pack_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_organization_conformance_pack <- configservice_delete_organization_conformance_pack configservice_delete_pending_aggregation_request <- function(RequesterAccountId, RequesterAwsRegion) { op <- new_operation( name = "DeletePendingAggregationRequest", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_pending_aggregation_request_input(RequesterAccountId = RequesterAccountId, RequesterAwsRegion = RequesterAwsRegion) output <- .configservice$delete_pending_aggregation_request_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_pending_aggregation_request <- configservice_delete_pending_aggregation_request configservice_delete_remediation_configuration <- function(ConfigRuleName, ResourceType = NULL) { op <- new_operation( name = "DeleteRemediationConfiguration", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_remediation_configuration_input(ConfigRuleName = ConfigRuleName, ResourceType = ResourceType) output <- .configservice$delete_remediation_configuration_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_remediation_configuration <- configservice_delete_remediation_configuration configservice_delete_remediation_exceptions <- function(ConfigRuleName, ResourceKeys) { op <- new_operation( name = "DeleteRemediationExceptions", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_remediation_exceptions_input(ConfigRuleName = ConfigRuleName, ResourceKeys = ResourceKeys) output <- .configservice$delete_remediation_exceptions_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_remediation_exceptions <- configservice_delete_remediation_exceptions configservice_delete_resource_config <- function(ResourceType, ResourceId) { op <- new_operation( name = "DeleteResourceConfig", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_resource_config_input(ResourceType = ResourceType, ResourceId = ResourceId) output <- .configservice$delete_resource_config_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_resource_config <- configservice_delete_resource_config configservice_delete_retention_configuration <- function(RetentionConfigurationName) { op <- new_operation( name = "DeleteRetentionConfiguration", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_retention_configuration_input(RetentionConfigurationName = RetentionConfigurationName) output <- .configservice$delete_retention_configuration_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_retention_configuration <- configservice_delete_retention_configuration configservice_delete_stored_query <- function(QueryName) { op <- new_operation( name = "DeleteStoredQuery", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$delete_stored_query_input(QueryName = QueryName) output <- .configservice$delete_stored_query_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$delete_stored_query <- configservice_delete_stored_query configservice_deliver_config_snapshot <- function(deliveryChannelName) { op <- new_operation( name = "DeliverConfigSnapshot", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$deliver_config_snapshot_input(deliveryChannelName = deliveryChannelName) output <- .configservice$deliver_config_snapshot_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$deliver_config_snapshot <- configservice_deliver_config_snapshot configservice_describe_aggregate_compliance_by_config_rules <- function(ConfigurationAggregatorName, Filters = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeAggregateComplianceByConfigRules", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_aggregate_compliance_by_config_rules_input(ConfigurationAggregatorName = ConfigurationAggregatorName, Filters = Filters, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_aggregate_compliance_by_config_rules_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_aggregate_compliance_by_config_rules <- configservice_describe_aggregate_compliance_by_config_rules configservice_describe_aggregation_authorizations <- function(Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeAggregationAuthorizations", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_aggregation_authorizations_input(Limit = Limit, NextToken = NextToken) output <- .configservice$describe_aggregation_authorizations_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_aggregation_authorizations <- configservice_describe_aggregation_authorizations configservice_describe_compliance_by_config_rule <- function(ConfigRuleNames = NULL, ComplianceTypes = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeComplianceByConfigRule", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_compliance_by_config_rule_input(ConfigRuleNames = ConfigRuleNames, ComplianceTypes = ComplianceTypes, NextToken = NextToken) output <- .configservice$describe_compliance_by_config_rule_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_compliance_by_config_rule <- configservice_describe_compliance_by_config_rule configservice_describe_compliance_by_resource <- function(ResourceType = NULL, ResourceId = NULL, ComplianceTypes = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeComplianceByResource", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_compliance_by_resource_input(ResourceType = ResourceType, ResourceId = ResourceId, ComplianceTypes = ComplianceTypes, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_compliance_by_resource_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_compliance_by_resource <- configservice_describe_compliance_by_resource configservice_describe_config_rule_evaluation_status <- function(ConfigRuleNames = NULL, NextToken = NULL, Limit = NULL) { op <- new_operation( name = "DescribeConfigRuleEvaluationStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_config_rule_evaluation_status_input(ConfigRuleNames = ConfigRuleNames, NextToken = NextToken, Limit = Limit) output <- .configservice$describe_config_rule_evaluation_status_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_config_rule_evaluation_status <- configservice_describe_config_rule_evaluation_status configservice_describe_config_rules <- function(ConfigRuleNames = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeConfigRules", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_config_rules_input(ConfigRuleNames = ConfigRuleNames, NextToken = NextToken) output <- .configservice$describe_config_rules_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_config_rules <- configservice_describe_config_rules configservice_describe_configuration_aggregator_sources_status <- function(ConfigurationAggregatorName, UpdateStatus = NULL, NextToken = NULL, Limit = NULL) { op <- new_operation( name = "DescribeConfigurationAggregatorSourcesStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_configuration_aggregator_sources_status_input(ConfigurationAggregatorName = ConfigurationAggregatorName, UpdateStatus = UpdateStatus, NextToken = NextToken, Limit = Limit) output <- .configservice$describe_configuration_aggregator_sources_status_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_configuration_aggregator_sources_status <- configservice_describe_configuration_aggregator_sources_status configservice_describe_configuration_aggregators <- function(ConfigurationAggregatorNames = NULL, NextToken = NULL, Limit = NULL) { op <- new_operation( name = "DescribeConfigurationAggregators", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_configuration_aggregators_input(ConfigurationAggregatorNames = ConfigurationAggregatorNames, NextToken = NextToken, Limit = Limit) output <- .configservice$describe_configuration_aggregators_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_configuration_aggregators <- configservice_describe_configuration_aggregators configservice_describe_configuration_recorder_status <- function(ConfigurationRecorderNames = NULL) { op <- new_operation( name = "DescribeConfigurationRecorderStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_configuration_recorder_status_input(ConfigurationRecorderNames = ConfigurationRecorderNames) output <- .configservice$describe_configuration_recorder_status_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_configuration_recorder_status <- configservice_describe_configuration_recorder_status configservice_describe_configuration_recorders <- function(ConfigurationRecorderNames = NULL) { op <- new_operation( name = "DescribeConfigurationRecorders", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_configuration_recorders_input(ConfigurationRecorderNames = ConfigurationRecorderNames) output <- .configservice$describe_configuration_recorders_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_configuration_recorders <- configservice_describe_configuration_recorders configservice_describe_conformance_pack_compliance <- function(ConformancePackName, Filters = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeConformancePackCompliance", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_conformance_pack_compliance_input(ConformancePackName = ConformancePackName, Filters = Filters, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_conformance_pack_compliance_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_conformance_pack_compliance <- configservice_describe_conformance_pack_compliance configservice_describe_conformance_pack_status <- function(ConformancePackNames = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeConformancePackStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_conformance_pack_status_input(ConformancePackNames = ConformancePackNames, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_conformance_pack_status_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_conformance_pack_status <- configservice_describe_conformance_pack_status configservice_describe_conformance_packs <- function(ConformancePackNames = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeConformancePacks", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_conformance_packs_input(ConformancePackNames = ConformancePackNames, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_conformance_packs_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_conformance_packs <- configservice_describe_conformance_packs configservice_describe_delivery_channel_status <- function(DeliveryChannelNames = NULL) { op <- new_operation( name = "DescribeDeliveryChannelStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_delivery_channel_status_input(DeliveryChannelNames = DeliveryChannelNames) output <- .configservice$describe_delivery_channel_status_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_delivery_channel_status <- configservice_describe_delivery_channel_status configservice_describe_delivery_channels <- function(DeliveryChannelNames = NULL) { op <- new_operation( name = "DescribeDeliveryChannels", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_delivery_channels_input(DeliveryChannelNames = DeliveryChannelNames) output <- .configservice$describe_delivery_channels_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_delivery_channels <- configservice_describe_delivery_channels configservice_describe_organization_config_rule_statuses <- function(OrganizationConfigRuleNames = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeOrganizationConfigRuleStatuses", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_organization_config_rule_statuses_input(OrganizationConfigRuleNames = OrganizationConfigRuleNames, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_organization_config_rule_statuses_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_organization_config_rule_statuses <- configservice_describe_organization_config_rule_statuses configservice_describe_organization_config_rules <- function(OrganizationConfigRuleNames = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeOrganizationConfigRules", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_organization_config_rules_input(OrganizationConfigRuleNames = OrganizationConfigRuleNames, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_organization_config_rules_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_organization_config_rules <- configservice_describe_organization_config_rules configservice_describe_organization_conformance_pack_statuses <- function(OrganizationConformancePackNames = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeOrganizationConformancePackStatuses", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_organization_conformance_pack_statuses_input(OrganizationConformancePackNames = OrganizationConformancePackNames, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_organization_conformance_pack_statuses_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_organization_conformance_pack_statuses <- configservice_describe_organization_conformance_pack_statuses configservice_describe_organization_conformance_packs <- function(OrganizationConformancePackNames = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeOrganizationConformancePacks", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_organization_conformance_packs_input(OrganizationConformancePackNames = OrganizationConformancePackNames, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_organization_conformance_packs_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_organization_conformance_packs <- configservice_describe_organization_conformance_packs configservice_describe_pending_aggregation_requests <- function(Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribePendingAggregationRequests", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_pending_aggregation_requests_input(Limit = Limit, NextToken = NextToken) output <- .configservice$describe_pending_aggregation_requests_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_pending_aggregation_requests <- configservice_describe_pending_aggregation_requests configservice_describe_remediation_configurations <- function(ConfigRuleNames) { op <- new_operation( name = "DescribeRemediationConfigurations", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_remediation_configurations_input(ConfigRuleNames = ConfigRuleNames) output <- .configservice$describe_remediation_configurations_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_remediation_configurations <- configservice_describe_remediation_configurations configservice_describe_remediation_exceptions <- function(ConfigRuleName, ResourceKeys = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeRemediationExceptions", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_remediation_exceptions_input(ConfigRuleName = ConfigRuleName, ResourceKeys = ResourceKeys, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_remediation_exceptions_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_remediation_exceptions <- configservice_describe_remediation_exceptions configservice_describe_remediation_execution_status <- function(ConfigRuleName, ResourceKeys = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeRemediationExecutionStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_remediation_execution_status_input(ConfigRuleName = ConfigRuleName, ResourceKeys = ResourceKeys, Limit = Limit, NextToken = NextToken) output <- .configservice$describe_remediation_execution_status_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_remediation_execution_status <- configservice_describe_remediation_execution_status configservice_describe_retention_configurations <- function(RetentionConfigurationNames = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeRetentionConfigurations", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$describe_retention_configurations_input(RetentionConfigurationNames = RetentionConfigurationNames, NextToken = NextToken) output <- .configservice$describe_retention_configurations_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$describe_retention_configurations <- configservice_describe_retention_configurations configservice_get_aggregate_compliance_details_by_config_rule <- function(ConfigurationAggregatorName, ConfigRuleName, AccountId, AwsRegion, ComplianceType = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "GetAggregateComplianceDetailsByConfigRule", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_aggregate_compliance_details_by_config_rule_input(ConfigurationAggregatorName = ConfigurationAggregatorName, ConfigRuleName = ConfigRuleName, AccountId = AccountId, AwsRegion = AwsRegion, ComplianceType = ComplianceType, Limit = Limit, NextToken = NextToken) output <- .configservice$get_aggregate_compliance_details_by_config_rule_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_aggregate_compliance_details_by_config_rule <- configservice_get_aggregate_compliance_details_by_config_rule configservice_get_aggregate_config_rule_compliance_summary <- function(ConfigurationAggregatorName, Filters = NULL, GroupByKey = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "GetAggregateConfigRuleComplianceSummary", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_aggregate_config_rule_compliance_summary_input(ConfigurationAggregatorName = ConfigurationAggregatorName, Filters = Filters, GroupByKey = GroupByKey, Limit = Limit, NextToken = NextToken) output <- .configservice$get_aggregate_config_rule_compliance_summary_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_aggregate_config_rule_compliance_summary <- configservice_get_aggregate_config_rule_compliance_summary configservice_get_aggregate_discovered_resource_counts <- function(ConfigurationAggregatorName, Filters = NULL, GroupByKey = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "GetAggregateDiscoveredResourceCounts", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_aggregate_discovered_resource_counts_input(ConfigurationAggregatorName = ConfigurationAggregatorName, Filters = Filters, GroupByKey = GroupByKey, Limit = Limit, NextToken = NextToken) output <- .configservice$get_aggregate_discovered_resource_counts_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_aggregate_discovered_resource_counts <- configservice_get_aggregate_discovered_resource_counts configservice_get_aggregate_resource_config <- function(ConfigurationAggregatorName, ResourceIdentifier) { op <- new_operation( name = "GetAggregateResourceConfig", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_aggregate_resource_config_input(ConfigurationAggregatorName = ConfigurationAggregatorName, ResourceIdentifier = ResourceIdentifier) output <- .configservice$get_aggregate_resource_config_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_aggregate_resource_config <- configservice_get_aggregate_resource_config configservice_get_compliance_details_by_config_rule <- function(ConfigRuleName, ComplianceTypes = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "GetComplianceDetailsByConfigRule", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_compliance_details_by_config_rule_input(ConfigRuleName = ConfigRuleName, ComplianceTypes = ComplianceTypes, Limit = Limit, NextToken = NextToken) output <- .configservice$get_compliance_details_by_config_rule_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_compliance_details_by_config_rule <- configservice_get_compliance_details_by_config_rule configservice_get_compliance_details_by_resource <- function(ResourceType, ResourceId, ComplianceTypes = NULL, NextToken = NULL) { op <- new_operation( name = "GetComplianceDetailsByResource", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_compliance_details_by_resource_input(ResourceType = ResourceType, ResourceId = ResourceId, ComplianceTypes = ComplianceTypes, NextToken = NextToken) output <- .configservice$get_compliance_details_by_resource_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_compliance_details_by_resource <- configservice_get_compliance_details_by_resource configservice_get_compliance_summary_by_config_rule <- function() { op <- new_operation( name = "GetComplianceSummaryByConfigRule", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_compliance_summary_by_config_rule_input() output <- .configservice$get_compliance_summary_by_config_rule_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_compliance_summary_by_config_rule <- configservice_get_compliance_summary_by_config_rule configservice_get_compliance_summary_by_resource_type <- function(ResourceTypes = NULL) { op <- new_operation( name = "GetComplianceSummaryByResourceType", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_compliance_summary_by_resource_type_input(ResourceTypes = ResourceTypes) output <- .configservice$get_compliance_summary_by_resource_type_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_compliance_summary_by_resource_type <- configservice_get_compliance_summary_by_resource_type configservice_get_conformance_pack_compliance_details <- function(ConformancePackName, Filters = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "GetConformancePackComplianceDetails", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_conformance_pack_compliance_details_input(ConformancePackName = ConformancePackName, Filters = Filters, Limit = Limit, NextToken = NextToken) output <- .configservice$get_conformance_pack_compliance_details_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_conformance_pack_compliance_details <- configservice_get_conformance_pack_compliance_details configservice_get_conformance_pack_compliance_summary <- function(ConformancePackNames, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "GetConformancePackComplianceSummary", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_conformance_pack_compliance_summary_input(ConformancePackNames = ConformancePackNames, Limit = Limit, NextToken = NextToken) output <- .configservice$get_conformance_pack_compliance_summary_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_conformance_pack_compliance_summary <- configservice_get_conformance_pack_compliance_summary configservice_get_discovered_resource_counts <- function(resourceTypes = NULL, limit = NULL, nextToken = NULL) { op <- new_operation( name = "GetDiscoveredResourceCounts", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_discovered_resource_counts_input(resourceTypes = resourceTypes, limit = limit, nextToken = nextToken) output <- .configservice$get_discovered_resource_counts_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_discovered_resource_counts <- configservice_get_discovered_resource_counts configservice_get_organization_config_rule_detailed_status <- function(OrganizationConfigRuleName, Filters = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "GetOrganizationConfigRuleDetailedStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_organization_config_rule_detailed_status_input(OrganizationConfigRuleName = OrganizationConfigRuleName, Filters = Filters, Limit = Limit, NextToken = NextToken) output <- .configservice$get_organization_config_rule_detailed_status_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_organization_config_rule_detailed_status <- configservice_get_organization_config_rule_detailed_status configservice_get_organization_conformance_pack_detailed_status <- function(OrganizationConformancePackName, Filters = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "GetOrganizationConformancePackDetailedStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_organization_conformance_pack_detailed_status_input(OrganizationConformancePackName = OrganizationConformancePackName, Filters = Filters, Limit = Limit, NextToken = NextToken) output <- .configservice$get_organization_conformance_pack_detailed_status_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_organization_conformance_pack_detailed_status <- configservice_get_organization_conformance_pack_detailed_status configservice_get_resource_config_history <- function(resourceType, resourceId, laterTime = NULL, earlierTime = NULL, chronologicalOrder = NULL, limit = NULL, nextToken = NULL) { op <- new_operation( name = "GetResourceConfigHistory", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_resource_config_history_input(resourceType = resourceType, resourceId = resourceId, laterTime = laterTime, earlierTime = earlierTime, chronologicalOrder = chronologicalOrder, limit = limit, nextToken = nextToken) output <- .configservice$get_resource_config_history_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_resource_config_history <- configservice_get_resource_config_history configservice_get_stored_query <- function(QueryName) { op <- new_operation( name = "GetStoredQuery", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$get_stored_query_input(QueryName = QueryName) output <- .configservice$get_stored_query_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$get_stored_query <- configservice_get_stored_query configservice_list_aggregate_discovered_resources <- function(ConfigurationAggregatorName, ResourceType, Filters = NULL, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "ListAggregateDiscoveredResources", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$list_aggregate_discovered_resources_input(ConfigurationAggregatorName = ConfigurationAggregatorName, ResourceType = ResourceType, Filters = Filters, Limit = Limit, NextToken = NextToken) output <- .configservice$list_aggregate_discovered_resources_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$list_aggregate_discovered_resources <- configservice_list_aggregate_discovered_resources configservice_list_discovered_resources <- function(resourceType, resourceIds = NULL, resourceName = NULL, limit = NULL, includeDeletedResources = NULL, nextToken = NULL) { op <- new_operation( name = "ListDiscoveredResources", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$list_discovered_resources_input(resourceType = resourceType, resourceIds = resourceIds, resourceName = resourceName, limit = limit, includeDeletedResources = includeDeletedResources, nextToken = nextToken) output <- .configservice$list_discovered_resources_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$list_discovered_resources <- configservice_list_discovered_resources configservice_list_stored_queries <- function(NextToken = NULL, MaxResults = NULL) { op <- new_operation( name = "ListStoredQueries", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$list_stored_queries_input(NextToken = NextToken, MaxResults = MaxResults) output <- .configservice$list_stored_queries_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$list_stored_queries <- configservice_list_stored_queries configservice_list_tags_for_resource <- function(ResourceArn, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "ListTagsForResource", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$list_tags_for_resource_input(ResourceArn = ResourceArn, Limit = Limit, NextToken = NextToken) output <- .configservice$list_tags_for_resource_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$list_tags_for_resource <- configservice_list_tags_for_resource configservice_put_aggregation_authorization <- function(AuthorizedAccountId, AuthorizedAwsRegion, Tags = NULL) { op <- new_operation( name = "PutAggregationAuthorization", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_aggregation_authorization_input(AuthorizedAccountId = AuthorizedAccountId, AuthorizedAwsRegion = AuthorizedAwsRegion, Tags = Tags) output <- .configservice$put_aggregation_authorization_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_aggregation_authorization <- configservice_put_aggregation_authorization configservice_put_config_rule <- function(ConfigRule, Tags = NULL) { op <- new_operation( name = "PutConfigRule", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_config_rule_input(ConfigRule = ConfigRule, Tags = Tags) output <- .configservice$put_config_rule_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_config_rule <- configservice_put_config_rule configservice_put_configuration_aggregator <- function(ConfigurationAggregatorName, AccountAggregationSources = NULL, OrganizationAggregationSource = NULL, Tags = NULL) { op <- new_operation( name = "PutConfigurationAggregator", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_configuration_aggregator_input(ConfigurationAggregatorName = ConfigurationAggregatorName, AccountAggregationSources = AccountAggregationSources, OrganizationAggregationSource = OrganizationAggregationSource, Tags = Tags) output <- .configservice$put_configuration_aggregator_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_configuration_aggregator <- configservice_put_configuration_aggregator configservice_put_configuration_recorder <- function(ConfigurationRecorder) { op <- new_operation( name = "PutConfigurationRecorder", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_configuration_recorder_input(ConfigurationRecorder = ConfigurationRecorder) output <- .configservice$put_configuration_recorder_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_configuration_recorder <- configservice_put_configuration_recorder configservice_put_conformance_pack <- function(ConformancePackName, TemplateS3Uri = NULL, TemplateBody = NULL, DeliveryS3Bucket = NULL, DeliveryS3KeyPrefix = NULL, ConformancePackInputParameters = NULL) { op <- new_operation( name = "PutConformancePack", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_conformance_pack_input(ConformancePackName = ConformancePackName, TemplateS3Uri = TemplateS3Uri, TemplateBody = TemplateBody, DeliveryS3Bucket = DeliveryS3Bucket, DeliveryS3KeyPrefix = DeliveryS3KeyPrefix, ConformancePackInputParameters = ConformancePackInputParameters) output <- .configservice$put_conformance_pack_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_conformance_pack <- configservice_put_conformance_pack configservice_put_delivery_channel <- function(DeliveryChannel) { op <- new_operation( name = "PutDeliveryChannel", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_delivery_channel_input(DeliveryChannel = DeliveryChannel) output <- .configservice$put_delivery_channel_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_delivery_channel <- configservice_put_delivery_channel configservice_put_evaluations <- function(Evaluations = NULL, ResultToken, TestMode = NULL) { op <- new_operation( name = "PutEvaluations", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_evaluations_input(Evaluations = Evaluations, ResultToken = ResultToken, TestMode = TestMode) output <- .configservice$put_evaluations_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_evaluations <- configservice_put_evaluations configservice_put_external_evaluation <- function(ConfigRuleName, ExternalEvaluation) { op <- new_operation( name = "PutExternalEvaluation", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_external_evaluation_input(ConfigRuleName = ConfigRuleName, ExternalEvaluation = ExternalEvaluation) output <- .configservice$put_external_evaluation_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_external_evaluation <- configservice_put_external_evaluation configservice_put_organization_config_rule <- function(OrganizationConfigRuleName, OrganizationManagedRuleMetadata = NULL, OrganizationCustomRuleMetadata = NULL, ExcludedAccounts = NULL) { op <- new_operation( name = "PutOrganizationConfigRule", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_organization_config_rule_input(OrganizationConfigRuleName = OrganizationConfigRuleName, OrganizationManagedRuleMetadata = OrganizationManagedRuleMetadata, OrganizationCustomRuleMetadata = OrganizationCustomRuleMetadata, ExcludedAccounts = ExcludedAccounts) output <- .configservice$put_organization_config_rule_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_organization_config_rule <- configservice_put_organization_config_rule configservice_put_organization_conformance_pack <- function(OrganizationConformancePackName, TemplateS3Uri = NULL, TemplateBody = NULL, DeliveryS3Bucket = NULL, DeliveryS3KeyPrefix = NULL, ConformancePackInputParameters = NULL, ExcludedAccounts = NULL) { op <- new_operation( name = "PutOrganizationConformancePack", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_organization_conformance_pack_input(OrganizationConformancePackName = OrganizationConformancePackName, TemplateS3Uri = TemplateS3Uri, TemplateBody = TemplateBody, DeliveryS3Bucket = DeliveryS3Bucket, DeliveryS3KeyPrefix = DeliveryS3KeyPrefix, ConformancePackInputParameters = ConformancePackInputParameters, ExcludedAccounts = ExcludedAccounts) output <- .configservice$put_organization_conformance_pack_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_organization_conformance_pack <- configservice_put_organization_conformance_pack configservice_put_remediation_configurations <- function(RemediationConfigurations) { op <- new_operation( name = "PutRemediationConfigurations", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_remediation_configurations_input(RemediationConfigurations = RemediationConfigurations) output <- .configservice$put_remediation_configurations_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_remediation_configurations <- configservice_put_remediation_configurations configservice_put_remediation_exceptions <- function(ConfigRuleName, ResourceKeys, Message = NULL, ExpirationTime = NULL) { op <- new_operation( name = "PutRemediationExceptions", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_remediation_exceptions_input(ConfigRuleName = ConfigRuleName, ResourceKeys = ResourceKeys, Message = Message, ExpirationTime = ExpirationTime) output <- .configservice$put_remediation_exceptions_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_remediation_exceptions <- configservice_put_remediation_exceptions configservice_put_resource_config <- function(ResourceType, SchemaVersionId, ResourceId, ResourceName = NULL, Configuration, Tags = NULL) { op <- new_operation( name = "PutResourceConfig", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_resource_config_input(ResourceType = ResourceType, SchemaVersionId = SchemaVersionId, ResourceId = ResourceId, ResourceName = ResourceName, Configuration = Configuration, Tags = Tags) output <- .configservice$put_resource_config_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_resource_config <- configservice_put_resource_config configservice_put_retention_configuration <- function(RetentionPeriodInDays) { op <- new_operation( name = "PutRetentionConfiguration", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_retention_configuration_input(RetentionPeriodInDays = RetentionPeriodInDays) output <- .configservice$put_retention_configuration_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_retention_configuration <- configservice_put_retention_configuration configservice_put_stored_query <- function(StoredQuery, Tags = NULL) { op <- new_operation( name = "PutStoredQuery", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$put_stored_query_input(StoredQuery = StoredQuery, Tags = Tags) output <- .configservice$put_stored_query_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$put_stored_query <- configservice_put_stored_query configservice_select_aggregate_resource_config <- function(Expression, ConfigurationAggregatorName, Limit = NULL, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "SelectAggregateResourceConfig", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$select_aggregate_resource_config_input(Expression = Expression, ConfigurationAggregatorName = ConfigurationAggregatorName, Limit = Limit, MaxResults = MaxResults, NextToken = NextToken) output <- .configservice$select_aggregate_resource_config_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$select_aggregate_resource_config <- configservice_select_aggregate_resource_config configservice_select_resource_config <- function(Expression, Limit = NULL, NextToken = NULL) { op <- new_operation( name = "SelectResourceConfig", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$select_resource_config_input(Expression = Expression, Limit = Limit, NextToken = NextToken) output <- .configservice$select_resource_config_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$select_resource_config <- configservice_select_resource_config configservice_start_config_rules_evaluation <- function(ConfigRuleNames = NULL) { op <- new_operation( name = "StartConfigRulesEvaluation", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$start_config_rules_evaluation_input(ConfigRuleNames = ConfigRuleNames) output <- .configservice$start_config_rules_evaluation_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$start_config_rules_evaluation <- configservice_start_config_rules_evaluation configservice_start_configuration_recorder <- function(ConfigurationRecorderName) { op <- new_operation( name = "StartConfigurationRecorder", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$start_configuration_recorder_input(ConfigurationRecorderName = ConfigurationRecorderName) output <- .configservice$start_configuration_recorder_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$start_configuration_recorder <- configservice_start_configuration_recorder configservice_start_remediation_execution <- function(ConfigRuleName, ResourceKeys) { op <- new_operation( name = "StartRemediationExecution", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$start_remediation_execution_input(ConfigRuleName = ConfigRuleName, ResourceKeys = ResourceKeys) output <- .configservice$start_remediation_execution_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$start_remediation_execution <- configservice_start_remediation_execution configservice_stop_configuration_recorder <- function(ConfigurationRecorderName) { op <- new_operation( name = "StopConfigurationRecorder", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$stop_configuration_recorder_input(ConfigurationRecorderName = ConfigurationRecorderName) output <- .configservice$stop_configuration_recorder_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$stop_configuration_recorder <- configservice_stop_configuration_recorder configservice_tag_resource <- function(ResourceArn, Tags) { op <- new_operation( name = "TagResource", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$tag_resource_input(ResourceArn = ResourceArn, Tags = Tags) output <- .configservice$tag_resource_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$tag_resource <- configservice_tag_resource configservice_untag_resource <- function(ResourceArn, TagKeys) { op <- new_operation( name = "UntagResource", http_method = "POST", http_path = "/", paginator = list() ) input <- .configservice$untag_resource_input(ResourceArn = ResourceArn, TagKeys = TagKeys) output <- .configservice$untag_resource_output() config <- get_config() svc <- .configservice$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .configservice$operations$untag_resource <- configservice_untag_resource
require(bigstatsr) require(foreach) require(microbenchmark) source('R/utils.R') fill <- function(n, m, block.size = 1e3) { X <- big.matrix(n, m, type = "double", shared = TRUE) intervals <- CutBySize(m, block.size) for (i in 1:nrow(intervals)) { X[, seq2(intervals[i, ])] <- rnorm(n * intervals[i, "size"]) } X } nl <- c(1e3, 5e3, 20e3) ml <- c(5e3, 20e3, 100e3) grid <- expand.grid(n = nl, m = ml) resSeq <- foreach(i = 1:nrow(grid), .combine = 'rbind') %do% { n <- grid[i, "n"] m <- grid[i, "m"] X <- fill(n, m) tmp <- microbenchmark( RandomProjPCA(X, fun.scaling = colmeans_sds), times = 10 ) rm(X); gc() c(n, m, tmp[, 2] / 1e9) } getMeanSd <- function(x) { tmp <- x[-(1:2)] c(time.mean = mean(tmp), time.sd = sd(tmp)) } test <- apply(resSeq, 1, getMeanSd) res2 <- cbind(grid, t(test)) mylm <- lm(time.mean ~ n*m, data = res2) print(summary(mylm)) mylm2 <- lm(time.mean ~ n:m - 1, data = res2) print(summary(mylm2)) resPar <- foreach(i = 1:nrow(grid), .combine = 'rbind') %do% { n <- grid[i, "n"] m <- grid[i, "m"] X <- fill(n, m) tmp <- microbenchmark( ParallelRandomProjPCA(X, fun.scaling = colmeans_sds, ncores = 6), times = 10 ) rm(X); gc() c(n, m, tmp[, 2] / 1e9) } test2 <- apply(resPar, 1, getMeanSd) res3 <- cbind(grid, t(test2)) mylm3 <- lm(time.mean ~ n*m, data = res3) print(summary(mylm3)) mylm4 <- lm(time.mean ~ n:m, data = res3) print(summary(mylm4))
tunemat.fn <- function(l.forget,l.noforget,d){ tune.mat<-matrix(unlist(unique(combn(rep(c(l.noforget,l.forget),d),d,simplify=FALSE))),(2^d),d,byrow=TRUE) return(tune.mat)}
elaborator_draw_curved_line <- function(x1, y1, x2, y2, ...) { A <- matrix(c(x1, x2, 1, 1), nrow = 2, ncol = 2) b <- c(-5, 5) z <- solve(A, b) x <- seq(x1, x2, 0.05) y <- (y2 - y1) / 2 * tanh(z[1] * x + z[2]) + (y1 + y2) / 2 graphics::points(x, y, type = "l", ...) }
.check_validity_custom <- function(object) { errors = character() if(is.na(object@labels[1])) errors = c(errors, 'type CUSTOM requires labels to be known') if(is.na(object@levels[1])) errors = c(errors, 'type CUSTOM requires levels to be known') if(length(errors) == 0) TRUE else errors } setClass( "variable_custom", representation( levels = "integer", labels = "character"), contains = "variable", validity = .check_validity_custom ) setGeneric("variable_custom", valueClass = 'variable_custom', function(name, labels, levels) standardGeneric("variable_custom") ) setMethod("variable_custom", signature( name = "character", labels = "character", levels = "numeric"), function(name, labels, levels) new( 'variable_custom', name = name, type = "ENUM", width = max(nchar(as.integer(levels))), labels = labels, levels = as.integer(levels) ) ) setMethod("variable_custom", signature( name = "character", labels = "character", levels = "character"), function(name, labels, levels) variable_custom(name, labels = labels, levels = as.integer(levels)) ) setGeneric("variable_from_custom", valueClass = 'variable_enum', function(name, custom_type) standardGeneric("variable_from_custom") ) setMethod("variable_from_custom", signature( name = "character", custom_type = "variable_custom" ), function(name, custom_type) variable_enum( name = name, labels = as.character(variable_levels(custom_type)), levels = variable_levels(custom_type) ) ) setMethod('show', 'variable_custom', function(object){ callNextMethod(object) cat('\n', 'labels : ', paste(sprintf("(%i:'%s')", variable_levels(object), variable_labels(object)), collapse = '|') ) }) setMethod("variable_levels", "variable_custom", function(object) object@levels) setMethod("variable_labels", "variable_custom", function(object) object@labels)
setMethodS3("updateMeansTogether", "PairedPSCBS", function(fit, idxList, ..., avgTCN=c("mean", "median"), avgDH=c("mean", "median"), verbose=FALSE) { nbrOfSegments <- nbrOfSegments(fit, splitters=TRUE) if (!is.list(idxList)) { idxList <- list(idxList) } idxList <- lapply(idxList, FUN=function(idxs) { idxs <- Arguments$getIndices(idxs, max=nbrOfSegments) sort(unique(idxs)) }) avgTCN <- match.arg(avgTCN) avgDH <- match.arg(avgDH) verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } verbose && enter(verbose, "Updating mean level estimates of multiple segments") verbose && cat(verbose, "Segments:") verbose && str(verbose, idxList) avgList <- list( tcn = get(avgTCN, mode="function"), dh = get(avgDH, mode="function") ) data <- getLocusData(fit) segs <- getSegments(fit, splitters=TRUE) nbrOfSegments <- nrow(segs) verbose && cat(verbose, "Total number of segments: ", nbrOfSegments) for (ss in seq_along(idxList)) { idxs <- idxList[[ss]] fitT <- extractSegments(fit, idxs) verbose && cat(verbose, "Number of segments: ", nbrOfSegments(fitT)) dataT <- getLocusData(fitT) segsT <- getSegments(fitT) CT <- dataT$CT rho <- dataT$rho verbose && enter(verbose, "Recalculate (TCN,DH,C1,C2) means") naValue <- NA_real_ mus <- c(tcn=naValue, dh=naValue, c1=naValue, c2=naValue) for (key in c("tcn", "dh")) { avgFUN <- avgList[[key]] if (key == "tcn") { value <- CT } else if (key == "dh") { value <- rho } keep <- which(!is.na(value)) gamma <- avgFUN(value[keep]) .stop_if_not(length(gamma) == 0 || !is.na(gamma)) mus[key] <- gamma } mus["c1"] <- 1/2*(1-mus["dh"])*mus["tcn"] mus["c2"] <- mus["tcn"] - mus["c1"] names(mus) <- sprintf("%sMean", names(mus)) verbose && print(verbose, mus) verbose && exit(verbose) for (key in names(mus)) { segs[idxs,key] <- mus[key] } } res <- fit res$output <- segs res <- setMeanEstimators(res, tcn=avgTCN, dh=avgDH) verbose && exit(verbose) res }, private=TRUE)
set.seed(126) rpr_data = geoR::grf(25, cov.pars = c(1, 1), nugget = 0.1, messages = FALSE) y = rpr_data$data x = matrix(1, nrow = length(y)) coords = rpr_data$coords d = ganiso_d(rpr_data$coords, coords2 = rpr_data$coords, invert = TRUE) geoR_ml = geoR::likfit(rpr_data, ini = c(1, 1), cov.model = "matern", nugget = 0.1, kappa = 1, psiA = pi/8, psiR = 1.5, fix.nug = TRUE, fix.kappa = TRUE, fix.psiA = TRUE, fix.psiR = FALSE, messages = FALSE) geoR_reml = geoR::likfit(rpr_data, ini = c(1, 1), cov.model = "matern", nugget = 0.1, kappa = 1, psiA = pi/8, psiR = 1.5, fix.nug = TRUE, fix.kappa = TRUE, fix.psiA = TRUE, fix.psiR = FALSE, messages = FALSE, lik.method = "REML") aniso_coords = geoR::coords.aniso(coords, aniso.pars = geoR_reml$aniso.pars) rpr_data_noaniso = rpr_data rpr_data_noaniso$coords = aniso_coords geoR_reml_noaniso = geoR::likfit(rpr_data_noaniso, ini = c(1, 1), cov.model = "matern", kappa = 1, nugget = 0.1, fix.nug = TRUE, fix.kappa = TRUE, messages = FALSE, lik.method = "REML") geoR_ml_loglik = geoR::loglik.GRF(rpr_data, obj.model = geoR_ml) geoR_reml_loglik = geoR::loglik.GRF(rpr_data, obj.model = geoR_reml) geoR_reml_noaniso_loglik = geoR::loglik.GRF(rpr_data_noaniso, obj.model = geoR_reml_noaniso) kc_ml = geoR::krige.control(obj.model = geoR_ml) geoR_out = geoR::output.control(messages = FALSE) geoR_ml_beta = geoR::krige.conv(rpr_data, krige = kc_ml, locations = cbind(1, 1), output = geoR_out)$beta.est kc_reml = geoR::krige.control(obj.model = geoR_reml) geoR_reml_beta = geoR::krige.conv(rpr_data, krige = kc_reml, locations = cbind(1, 1), output = geoR_out)$beta.est fpath = system.file("testdata", package = "gear") fname = paste(fpath, "/ploglik_cmodStd_r_psill_ratio.rda", sep = "") save(x, y, d, coords, geoR_ml, geoR_reml, geoR_ml_loglik, geoR_reml_loglik, geoR_reml_noaniso_loglik, geoR_ml_beta, geoR_reml_beta, compress = "bzip2", file = fname, version = 2)
context("test-rbindlist") setup({ as.disk.frame(disk.frame:::gen_datatable_synthetic(1e3+11), file.path(tempdir(), "tmp_rbindlist1.df"), overwrite=TRUE) as.disk.frame(disk.frame:::gen_datatable_synthetic(1e3+11), file.path(tempdir(), "tmp_rbindlist2.df"), overwrite=TRUE) as.disk.frame(disk.frame:::gen_datatable_synthetic(1e3+11), file.path(tempdir(), "tmp_rbindlist4.df"), overwrite=TRUE) }) test_that("test rbindlist", { df1 = disk.frame(file.path(tempdir(), "tmp_rbindlist1.df")) df2 = disk.frame(file.path(tempdir(), "tmp_rbindlist2.df")) df3 = rbindlist.disk.frame(list(df1, df2), outdir = file.path(tempdir(), "tmp_rbindlist3.df"), overwrite=TRUE) expect_equal(nrow(df3), 2*(1e3+11)) }) test_that("test rbindlist accepts only list", { df1 = disk.frame(file.path(tempdir(), "tmp_rbindlist4.df")) expect_error(rbindlist.disk.frame(df1, outdir = file.path(tempdir(), "tmp_rbindlist5.df"))) }) teardown({ fs::dir_delete(file.path(tempdir(), "tmp_rbindlist1.df")) fs::dir_delete(file.path(tempdir(), "tmp_rbindlist2.df")) fs::dir_delete(file.path(tempdir(), "tmp_rbindlist3.df")) fs::dir_delete(file.path(tempdir(), "tmp_rbindlist4.df")) fs::dir_delete(file.path(tempdir(), "tmp_rbindlist5.df")) })
quadFuncCalc <- function( xNames, data, coef, shifterNames = NULL, homWeights = NULL ) { data <- .micEconVectorToDataFrame( data ) checkNames( c( xNames, shifterNames ), names( data ) ) .quadFuncCheckHomWeights( homWeights, xNames ) .quadFuncCheckCoefNames( names( coef ), nExog = length( xNames ), shifterNames = shifterNames, data = data ) if( !is.null( homWeights ) ) { deflator <- 0 for( i in seq( along = homWeights ) ) { deflator <- deflator + homWeights[ i ] * data[[ names( homWeights )[ i ] ]] } } result <- rep( coef[ "a_0" ], nrow( data ) ) for( i in seq( along = xNames ) ) { result <- result + coef[ paste( "a", i, sep = "_" ) ] * .quadFuncVarHom( data, xNames[ i ], homWeights, deflator ) for( j in seq( along = xNames ) ) { result <- result + 0.5 * coef[ paste( "b", min( i, j ), max( i, j ), sep = "_" ) ] * .quadFuncVarHom( data, xNames[ i ], homWeights, deflator ) * .quadFuncVarHom( data, xNames[ j ], homWeights, deflator ) } } for( i in seq( along = shifterNames ) ) { if( is.logical( data[[ shifterNames[ i ] ]] ) ) { result <- result + coef[ paste( "d", i, "TRUE", sep = "_" ) ] * data[[ shifterNames[ i ] ]] } else if( is.factor( data[[ shifterNames[ i ] ]] ) ) { for( j in levels( data[[ shifterNames[ i ] ]] ) ) { thisCoefName <- paste( "d", i, j, sep = "_" ) if( thisCoefName %in% names( coef ) ) { result <- result + coef[ thisCoefName ] * ( data[[ shifterNames[ i ] ]] == j ) } } } else { result <- result + coef[ paste( "d", i, sep = "_" ) ] * data[[ shifterNames[ i ] ]] } } names( result ) <- rownames( data ) return( result ) }
library(hamcrest) expected <- structure(list(x = c(-2.23160583526092, -2.19312987258401, -2.1546539099071, -2.11617794723018, -2.07770198455327, -2.03922602187636, -2.00075005919945, -1.96227409652253, -1.92379813384562, -1.88532217116871, -1.8468462084918, -1.80837024581488, -1.76989428313797, -1.73141832046106, -1.69294235778415, -1.65446639510723, -1.61599043243032, -1.57751446975341, -1.5390385070765, -1.50056254439958, -1.46208658172267, -1.42361061904576, -1.38513465636885, -1.34665869369193, -1.30818273101502, -1.26970676833811, -1.2312308056612, -1.19275484298428, -1.15427888030737, -1.11580291763046, -1.07732695495355, -1.03885099227664, -1.00037502959972, -0.96189906692281, -0.923423104245898, -0.884947141568985, -0.846471178892073, -0.807995216215161, -0.769519253538248, -0.731043290861336, -0.692567328184423, -0.654091365507511, -0.615615402830598, -0.577139440153686, -0.538663477476774, -0.500187514799861, -0.461711552122949, -0.423235589446036, -0.384759626769124, -0.346283664092212, -0.307807701415299, -0.269331738738387, -0.230855776061474, -0.192379813384562, -0.153903850707649, -0.115427888030737, -0.0769519253538249, -0.0384759626769124, 0, 0.0384759626769124, 0.0769519253538249, 0.115427888030737, 0.15390385070765, 0.192379813384562, 0.230855776061475, 0.269331738738387, 0.3078077014153, 0.346283664092212, 0.384759626769124, 0.423235589446037, 0.461711552122949, 0.500187514799862, 0.538663477476774, 0.577139440153686, 0.615615402830599, 0.654091365507511, 0.692567328184424, 0.731043290861336, 0.769519253538248, 0.807995216215161, 0.846471178892073, 0.884947141568986, 0.923423104245898, 0.961899066922811, 1.00037502959972, 1.03885099227664, 1.07732695495355, 1.11580291763046, 1.15427888030737, 1.19275484298428, 1.2312308056612, 1.26970676833811, 1.30818273101502, 1.34665869369193, 1.38513465636885, 1.42361061904576, 1.46208658172267, 1.50056254439958, 1.5390385070765, 1.57751446975341, 1.61599043243032, 1.65446639510723, 1.69294235778415, 1.73141832046106, 1.76989428313797, 1.80837024581488, 1.8468462084918, 1.88532217116871, 1.92379813384562, 1.96227409652253, 2.00075005919945, 2.03922602187636, 2.07770198455327, 2.11617794723018, 2.1546539099071, 2.19312987258401, 2.23160583526092), y = c(0.791926876519226, 0.776913216182625, 0.761861236648169, 0.746778329119246, 0.731671884799247, 0.716549294891563, 0.701417950599583, 0.686285243126698, 0.671158563676298, 0.656045303451773, 0.640952853656513, 0.625888605493909, 0.610859950167351, 0.595874278880229, 0.580938982835932, 0.566061453237852, 0.551249081289378, 0.536509258193901, 0.521849375154811, 0.507276823375497, 0.492798994059351, 0.478423278409762, 0.464157067630121, 0.450007752923818, 0.435982725494244, 0.422089376544788, 0.408335097278841, 0.394727278899793, 0.381273312611033, 0.367980589615953, 0.354856501117942, 0.341908438320391, 0.329143792426691, 0.316569954640231, 0.304194316164402, 0.292024268202593, 0.280067201958195, 0.268330508634598, 0.256821579435192, 0.245547805563368, 0.234516578222515, 0.223735288616025, 0.213211327947287, 0.202952087419691, 0.192964958236629, 0.183257331601488, 0.173836598717661, 0.164710150788537, 0.155885379017507, 0.147369674607961, 0.139170428763288, 0.13129503268688, 0.123750877582125, 0.116545354652416, 0.109685855101141, 0.103179770131692, 0.0970344909474586, 0.0912574087518302, 0.0858559147481973, 0.0808374001399503, 0.0762092561304796, 0.0719788739231754, 0.0681536447214277, 0.0647409597286268, 0.0617482101481629, 0.0591827871834262, 0.0570520820378072, 0.0553634859146958, 0.0541243900174823, 0.053342185549557, 0.05302426371431, 0.0531780157151316, 0.053810832755412, 0.0549301060385414, 0.0565432267679101, 0.0586575861469083, 0.0612805753789261, 0.0644195856673538, 0.0680820082155816, 0.0722752342269998, 0.0770066549049985, 0.0822836614529681, 0.0881136450742987, 0.0945039969723803, 0.101462108350603, 0.108995370412358, 0.117111174361034, 0.125816911400023, 0.135119972732715, 0.145027749562499, 0.155547633092766, 0.166687014526905, 0.178453285068307, 0.190853835920363, 0.203896058286462, 0.217587343369996, 0.231935082374354, 0.246946666502927, 0.262629486959103, 0.278990934946274, 0.29603840166783, 0.31377927832716, 0.332220956127656, 0.351370826272707, 0.371236279965705, 0.391824708410038, 0.413143502809098, 0.435200054366274, 0.458001754284957, 0.481555993768537, 0.505870164020405, 0.53095165624395, 0.556807861642563, 0.583446171419634, 0.610873976778554, 0.639098668922712, 0.6681276390555 )), .Names = c("x", "y")) assertThat(stats:::spline(x=c(-0.327103316347528, -0.194028142423926, -0.128901111149042, 0.0643168351238744, -0.779139683672991, 1.07572272256151, 0.615141104595973, -0.539207639325099, -1.34233568007726, 1.76882503851871, 0.967421566101701, 0.128901111149042, 2.23160583526092, -0.466265261370636, -0.0643168351238744, 0.869423773288886, -1.07572272256151, -0.395725295814487, -0.615141104595974, 0.694801852365364, -1.76882503851871, 0.539207639325099, 1.34233568007726, -2.23160583526092, 1.19837970230692, 0.25998960123107, 0.395725295814487, 0.779139683672991, 1.52121804642593, 0.327103316347528, -1.19837970230692, -0.967421566101701, 0.466265261370636, -0.869423773288886, -0.25998960123107, -1.52121804642593, 0.194028142423926, -0.694801852365364, 0),y=structure(c(0.14324231498137, 0.11684700107643, 0.105417349499038, 0.0776855863727447, 0.259677483053058, 0.116761056334463, 0.0565203054667309, 0.193104274129517, 0.448425619508942, 0.37067448790322, 0.0954676322082211, 0.0705929088404039, 0.6681276390555, 0.174936352005987, 0.0950963958222753, 0.0800884911230014, 0.354313071423935, 0.158369275917781, 0.213083234254889, 0.0614486908032015, 0.610442884419521, 0.053823253810292, 0.189428695910491, 0.791926876519226, 0.146527289603251, 0.0597660033945688, 0.0538545872022444, 0.0690804150504691, 0.255281939100249, 0.0561495290692076, 0.396707200866212, 0.318362682892637, 0.0530177084608072, 0.287174068638674, 0.129432546879759, 0.515088671856927, 0.0646040864336687, 0.235150461233751, 0.0858559147481973 ), .Names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39"))) , identicalTo( expected, tol = 1e-6 ) )
cat_entries <- function(entries, table) { if (entries == 0) cat(crayon::silver("\n\n No entries found.")) if (entries == 1) cat(crayon::green("\n\n 1 entry found\n")) if (entries > 1) cat(crayon::green(paste0("\n\n ", entries), "entries found\n")) if (entries > 0) cat(crayon::silver(paste0(" Fetching data from table '", table, "'\n\n"))) } check_http <- function(res, table, stop, ...) { if (...length() > 0) { args <- ...elt(...length()) if (length(args) > 0) if (!is.list(args[1])) args <- list(...) } else { args <- NULL } code <- httr::status_code(res) if (stop) { if (code >= 400) { if (!table %in% get_tables()) { stop ( "The requested table '", table, "' does not exist.\nUse get_tables() to check for available tables." ) } var_diff <- setdiff(names(args), get_variables(table)) if (length(var_diff) > 0) { if (length(var_diff) == 1) { stop ( "Unknow filter variable '", var_diff, "'. \nUse get_variables(table = \"", table, "\") to check for available filter variables." ) } if (length(var_diff) > 1) { stop ( "Unknow filter variables: '", paste0(var_diff, collapse = "', '"), "'. \nUse get_variables(table = \"", table, "\") to check for available filter variables." ) } } status <- httr::http_status(res) stop(status$message) } else { return(res) } } else { if (code >= 400) { return(invisible("suppressed-error")) } else { return(res) } } } check_url_length <- function(table, package_size, ...) { nchar(get_url_skip(table, package_size, 0, ...)) }
test_that("huc_12 works", { rATTAINS_options(cache_downloads = FALSE) huc12_cache$delete_all() vcr::use_cassette("huc12_works", { x_1 <- huc12_summary(huc = "020700100204") }) testthat::expect_s3_class(x_1$huc_summary, "tbl_df") testthat::expect_s3_class(x_1$au_summary, "tbl_df") testthat::expect_s3_class(x_1$ir_summary, "tbl_df") testthat::expect_s3_class(x_1$use_summary, "tbl_df") testthat::expect_s3_class(x_1$param_summary, "tbl_df") testthat::expect_s3_class(x_1$res_plan_summary, "tbl_df") testthat::expect_s3_class(x_1$vision_plan_summary, "tbl_df") vcr::use_cassette("huc12_chr_works", { x_2 <- huc12_summary(huc = "020700100204", tidy = FALSE) }) testthat::expect_type(x_2, "character") }) test_that("huc_12 retuns errors", { expect_error(huc12_summary(huc = 20700100204)) expect_error(huc12_summary(huc = "020700100204", tidy = "Y")) skip_on_cran() webmockr::enable() stub <- webmockr::stub_request("get", "https://attains.epa.gov/attains-public/api/huc12summary?huc=020700100204") webmockr::to_return(stub, status = 502) testthat::expect_error(huc12_summary(huc = "020700100204")) webmockr::disable() }) test_that("huc12 cache works", { skip_on_cran() skip_if_offline() rATTAINS_options(cache_downloads = TRUE) Sys.sleep(20) x <- huc12_summary(huc = "020700100204", timeout_ms = 20000) testthat::expect_message(huc12_summary(huc = "020700100204"), "reading cached file from: ") y <- huc12_summary(huc = "020700100204") testthat::expect_equal(x, y) })
parse_packet_set.SENSOR_DATA <- function( set, log, tz = "UTC", verbose = FALSE, parameters, schema, ... ) { if (is.null(schema)) stop(paste( "Cannot parse IMU packets without", "a sensor schema.\n Make sure your call to read_gt3x", " has (minimally) the following:", "\n `include = c(\"SENSOR_SCHEMA\",", "\"SENSOR_DATA\", \"PARAMETERS\")`" )) if (is.null(parameters)) { warning(paste( "No `parameters` argument passed to ", "parse_packet_set.SENSOR_DATA.\n Assuming", "temperature offset is 21 degrees. Make sure by", "making a\n read_gt3x call that has (minimally) the following:", "\n `include = c(\"SENSOR_SCHEMA\", \"SENSOR_DATA\",", "\"PARAMETERS\")`" )) temp_offset <- 21 } else { if (!"IMU_TEMP_OFFSET" %in% names(parameters$Payload)) { warning(paste( "PARAMETERS object has no `IMU_TEMP_OFFSET` entry.", "\n Defaulting to 21 degrees." )) temp_offset <- 21 } else { temp_offset <- as.numeric(as.character( parameters$Payload$IMU_TEMP_OFFSET )) } } init <- get_times( set$timestamp[1], set$timestamp[nrow(set)] + 1, schema$samples ) %>% {data.frame( Timestamp = lubridate::with_tz( ., tz ) )} IMU <- parse_IMU_C( set, log, schema$sensorColumns, schema$id, schema$samples, verbose ) %>% {data.frame( data.table::rbindlist(.) )} IMU$Timestamp <- lubridate::with_tz( IMU$Timestamp, tz ) if ("Temperature" %in% names(IMU)) { if (verbose) cat( "\r Calculating temperature", " " ) IMU$Temperature <- IMU$Temperature + temp_offset } IMU <- merge( init, IMU, "Timestamp", all.x = TRUE ) %>% impute_IMU( ., verbose ) %>% {structure( ., class = append(class(.), "IMU", 0) )} if (verbose) packet_print("cleanup", class(set)[1]) IMU }
cross_validate <- function(container,nfold,algorithm=c("SVM","SLDA","BOOSTING","BAGGING","RF","GLMNET","TREE","NNET"),seed=NA, method="C-classification", cross=0, cost=100, kernel="radial", maxitboost=100, maxitglm=10^5, size=1,maxitnnet=1000,MaxNWts=10000,rang=0.1,decay=5e-4, ntree=200, l1_regularizer=0.0,l2_regularizer=0.0,use_sgd=FALSE,set_heldout=0,verbose=FALSE ) { options(warn=-1) if (!is.na(seed)) set.seed(seed) extract_label_from_prob_names <- function(x) return(rownames(as.matrix(which.max(x)))) alldata <- rbind(container@training_matrix,container@classification_matrix) allcodes <- as.factor(c(container@training_codes,container@testing_codes)) rand <- sample(nfold,dim(alldata)[1], replace=T) cv_accuracy <- NULL for (i in sort(unique(rand))) { if (algorithm=="SVM") { model <- svm(x=alldata[rand!=i,], y=allcodes[rand!=i],method=method,cross=cross,cost=cost,kernel=kernel) pred <- predict(model,alldata[rand==i,]) } else if (algorithm=="SLDA") { alldata <- rbind(as.matrix(container@training_matrix),as.matrix(container@classification_matrix)) colnames(alldata) <- container@column_names data_and_codes <- cbind(as.matrix(alldata),allcodes) model <- slda(as.factor(allcodes)~.,data=data.frame(data_and_codes[rand!=i,])) pred <- predict(model,data.frame(alldata[rand==i,])) pred <- as.numeric(pred$class) } else if (algorithm=="RF") { alldata <- rbind(as.matrix(container@training_matrix),as.matrix(container@classification_matrix)) data_and_codes <-cbind(alldata,allcodes) model <- randomForest(as.factor(allcodes)~.,data=data_and_codes[rand!=i,], ntree=ntree) pred <- predict(model,newdata=alldata[rand==i,]) } else if (algorithm=="GLMNET") { sparsedata <- as(as.matrix.csc(alldata[rand!=i,]),"dgCMatrix") model <- glmnet(x=sparsedata, y=as.vector(allcodes[rand!=i]),family="multinomial", maxit=maxitglm) prob <- predict(model,sparsedata,s=0.01,type="response") pred <- apply(prob[,,1],1,extract_label_from_prob_names) pred <- as.numeric(pred) } else if (algorithm=="BOOSTING") { alldata <- rbind(as.matrix(container@training_matrix),as.matrix(container@classification_matrix)) colnames(alldata) <- container@column_names data_and_codes <- cbind(alldata,allcodes) model <- LogitBoost(xlearn=alldata[rand!=i,], ylearn=allcodes[rand!=i],maxitboost) pred <- predict(model,data.frame(alldata[rand==i,])) } else if (algorithm=="BAGGING") { alldata <- rbind(as.matrix(container@training_matrix),as.matrix(container@classification_matrix)) data_and_codes <-cbind(alldata,allcodes) model <- bagging(as.factor(allcodes)~.,data=data.frame(data_and_codes[rand!=i,])) pred <- predict(model,newdata=alldata[rand==i,]) } else if (algorithm=="TREE") { alldata <- rbind(as.matrix(container@training_matrix),as.matrix(container@classification_matrix)) colnames(alldata) <- container@column_names data_and_codes <- cbind(alldata,allcodes) model <- tree(as.factor(allcodes)~ ., data = data.frame(data_and_codes[rand!=i,])) prob <- predict(model,newdata=data.frame(alldata[rand==i,]), type="vector") pred <- apply(prob,1,which.max) } else if(algorithm=="NNET") { alldata <- rbind(as.matrix(container@training_matrix),as.matrix(container@classification_matrix)) colnames(alldata) <- container@column_names data_and_codes <- cbind(alldata,allcodes) model <- nnet(as.factor(allcodes)~ ., data = data.frame(data_and_codes[rand!=i,]),size=size,maxit=maxitnnet,MaxNWts=MaxNWts,rang=rang,decay=decay,trace=FALSE) prob <- predict(model,newdata=data.frame(alldata[rand==i,])) pred <- apply(prob,1,which.max) } cv_accuracy[i] <- recall_accuracy(allcodes[rand==i],pred) cat("Fold ",i," Out of Sample Accuracy"," = ",cv_accuracy[i],"\n",sep="") } return(list(cv_accuracy,meanAccuracy=mean(cv_accuracy))) }
options(digits=12) if(!require("BB"))stop("this test requires package BB.") if(!require("setRNG"))stop("this test requires setRNG.") test.rng <- list(kind="Wichmann-Hill", normal.kind="Box-Muller", seed=c(979,1479,1542)) old.seed <- setRNG(test.rng) cat("BB test poissmix.loglik ...\n") test.rng <- list(kind="Wichmann-Hill", normal.kind="Box-Muller", seed=c(979,1479,1542)) old.seed <- setRNG(test.rng) poissmix.loglik <- function(p,y) { i <- 0:(length(y)-1) loglik <- y*log(p[1]*exp(-p[2])*p[2]^i/exp(lgamma(i+1)) + (1 - p[1])*exp(-p[3])*p[3]^i/exp(lgamma(i+1))) return ( -sum(loglik) ) } poissmix.dat <- data.frame(death=0:9, freq=c(162,267,271,185,111,61,27,8,3,1)) lo <- c(0.001,0,0) hi <- c(0.999, Inf, Inf) y <- poissmix.dat$freq p <- runif(3,c(0.3,1,1),c(0.7,5,8)) system.time(ans.spg <- spg(par=p, fn=poissmix.loglik, y=y, projectArgs=list(lower=lo, upper=hi), control=list(maxit=2500, M=20)))[1] z <- sum(ans.spg$par) good <- 4.55961554279947 print(z, digits=16) if(any(abs(good - z) > 1e-4)) stop("BB test poissmix.loglik a FAILED")
vcov.mpr <- function(object, ...){ object$vcov }
library(plyr) library(dplyr) library(tidyr) library(arules) library(arulesViz) library(plotly) library(googleAnalyticsR) data_f <- function(view_id, date_range = c(Sys.Date() - 2, Sys.Date() - 1), ...){ google_analytics(view_id, date_range = date_range, metrics = c("itemQuantity", "itemRevenue"), dimensions = c("productName", "transactionId"), order = order_type("itemQuantity", "DESCENDING"), max = 9999) } model_f <- function(df, ...){ if(nrow(df) == 0){ stop("No data found in this GA account") } temp <- tempfile(fileext = ".csv") df1 <- df %>% dplyr::mutate( itemCost = itemRevenue / itemQuantity ) %>% tidyr::uncount (weights = itemQuantity) %>% plyr::ddply(c('transactionId'), function(tf1)paste(tf1$productName, collapse = ',')) %>% tidyr::separate('V1', into = paste('item',1:70,sep = "_"), sep = ',') %>% write.csv(temp) a_trans <- arules::read.transactions(temp, format = "basket", sep = ",") rules <- apriori(a_trans, parameter = list(supp=0.01, conf=0.05)) sort(rules, by='confidence', decreasing = TRUE) } output_f <- function(rules, method = c("graph", "scatterplot", "matrix"), max_n = 100, ...){ method <- match.arg(method) if(!require(arulesViz)){ stop("Need library(arulesViz)") } plot(rules, method=method, engine = "default", max = max_n) } inputS <- shiny::tagList( shiny::numericInput("max_n","Maximum number of rules",100,5,300, step = 1), shiny::selectInput("method","Rule plot type", choices = c("graph", "scatterplot", "matrix")) ) model <- ga_model_make( data_f = data_f, required_columns = c("productName","transactionId","itemQuantity","itemRevenue"), model_f = model_f, output_f = output_f, required_packages = c("plyr","dplyr","tidyr","arules","arulesViz"), description = "Market Basket Analysis by Jamarius Taylor", outputShiny = shiny::plotOutput, renderShiny = shiny::renderPlot, inputShiny = inputS ) ga_model_save(model, "inst/models/examples/market-basket.gamr")
modt.stat = function (X, L) { FUN = modt.fun(L=L) score = FUN(X) return( score ) } modt.fun <- function (L) { if (missing(L)) stop("Class labels are missing!") L = factor(L) cl = levels(L) if (length(cl) != 2) stop("Class labels must be specified for two groups, not more or less!") function(X) { L = as.integer(L) d <- cbind(rep(1, length(L)), L) fit <- limma::lmFit(t(X), design=d) eb.out <- limma::eBayes(fit) modt <- -eb.out$t[,2] return(modt) } }
shinydashboard::tabItem( tabName = "funnel", fluidRow( column( width = 12, br(), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("Simple example", align="center"), column( width = 12, rAmCharts::amChartsOutput("funnel1")) )), tabPanel( title = "Code", fluidRow( h2("Simple example", align="center"), column( width = 12, verbatimTextOutput("code_funnel1")) ) ) ), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("3D", align="center"), column( width = 12, rAmCharts::amChartsOutput("funnel2")) )), tabPanel( title = "Code", fluidRow( h2("3D", align="center"), column( width = 12, verbatimTextOutput("code_funnel2")) ) ) ), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("Revert, labels position ...", align="center"), column( width = 12, rAmCharts::amChartsOutput("funnel3")) )), tabPanel( title = "Code", fluidRow( h2("Revert, labels position ...", align="center"), column( width = 12, verbatimTextOutput("code_funnel3")) ) ) ) ) ) )
JRC <- R6::R6Class("JRC", inherit = CountryDataClass, public = list( origin = "European Commission's Joint Research Centre (JRC)", supported_levels = list("1", "2"), supported_region_names = list("1" = "country", "2" = "region"), supported_region_codes = list("1" = "iso_code", "2" = "region_code"), level_data_urls = list( "1" = list( "country" = "https://raw.githubusercontent.com/ec-jrc/COVID-19/master/data-by-country/jrc-covid-19-all-days-by-country.csv" ), "2" = list( "region" = "https://raw.githubusercontent.com/ec-jrc/COVID-19/master/data-by-region/jrc-covid-19-all-days-by-regions.csv" ) ), source_data_cols = c( "CumulativePositive", "CuulativeDeceased", "CumulativeRecovered", "CurrentlyPositive", "Hospitalized", "IntensiveCare" ), source_text = "European Commission Joint Research Centre (JRC)", source_url = "https://github.com/ec-jrc/COVID-19", clean_common = function() { self$data$clean <- self$data$raw[[names(self$data_urls)]] %>% mutate( Date = ymd(.data$Date), CumulativePositive = as.double(.data$CumulativePositive), CumulativeDeceased = as.double(.data$CumulativeDeceased), CumulativeRecovered = as.double(.data$CumulativeRecovered), CurrentlyPositive = as.double(.data$CurrentlyPositive), Hospitalized = as.double(.data$Hospitalized) ) %>% rename( date = Date, cases_total = CumulativePositive, deaths_total = CumulativeDeceased, recovered_total = CumulativeRecovered, hosp_total = Hospitalized, level_1_region = CountryName, level_1_region_code = iso3 ) }, clean_level_1 = function() { self$data$clean <- self$data$clean %>% select( date, level_1_region, level_1_region_code, cases_total, deaths_total, recovered_total, hosp_total, everything() ) }, clean_level_2 = function() { self$data$clean <- self$data$clean %>% rename( level_2_region = Region, level_2_region_code = NUTS ) %>% select( date, level_1_region, level_1_region_code, level_2_region, level_2_region_code, cases_total, deaths_total, recovered_total, hosp_total, everything() ) } ) )
set.seed(129) n <- 100 p <- 2 X <- matrix(rnorm(n * p), n, p) y <- rnorm(n) obj <- .lm.fit (x = cbind(1, X), y = y) info <- summary_lm(obj)
set_coef.crch <- function(model, coefs) { out <- model out$coefficients["location"]$location <- coefs[1:length(out$coefficients["location"]$location)] out$coefficients["scale"]$scale <- coefs[(length(out$coefficients["location"]$location) + 1):length(coefs)] return(out) } get_vcov.crch <- function(model, ...) { cn <- names(get_coef(model)) stats::vcov(model) } get_predict.crch <- function(model, newdata = NULL, type = "location", ...) { pred <- stats::predict(model, newdata = newdata, type = type) sanity_predict_vector(pred = pred, model = model, newdata = newdata, type = type) sanity_predict_numeric(pred = pred, model = model, newdata = newdata, type = type) out <- data.frame( rowid = 1:nrow(newdata), predicted = pred) return(out) } set_coef.hlxr <- function(model, coefs) { out <- model idx_int <- length(model$coefficients$intercept) idx_loc <- length(model$coefficients$location) out$coefficients["intercept"]$intercept <- coefs[1:idx_int] out$coefficients["location"]$location <- coefs[(idx_int + 1):(idx_int + 1 + idx_loc)] out$coefficients["scale"]$scale <- coefs[(idx_int + idx_loc + 1):length(coefs)] return(out) } get_vcov.hlxr <- get_vcov.crch get_predict.hlxr <- get_predict.crch
summary.gSlc <-function(object,colour=TRUE,paletteNumber=1,...) { fitObject <- object if (!any(colour==c(TRUE,FALSE))) stop("colour must be TRUE or FALSE.\n") if (!any(paletteNumber==c(1,2))) stop("paletteNumber must be 1 or 2.\n") modelType <- fitObject$modelType idnumPresent <- FALSE if (any(modelType==c("linOnlyMix","linAddMix","pureAddMix"))) idnumPresent <- TRUE if (is.null(fitObject$XlinPreds)) numLinCompons <- 0 if (!is.null(fitObject$XlinPreds)) numLinCompons <- ncol(fitObject$XlinPreds) if (is.null(fitObject$XsplPreds)) numSplCompons <- 0 if (!is.null(fitObject$XsplPreds)) numSplCompons <- ncol(fitObject$XsplPreds) ncZspl <- fitObject$ncZspl linPredNames <- fitObject$linPredNames splPredNames <- fitObject$splPredNames nuMCMC <- t(fitObject$nu) sigsqMCMC <- t(fitObject$sigmaSquared) if (any(modelType==c("linOnly","linAdd","linOnlyMix","linAddMix"))) betaMCMC <- t(nuMCMC[1:(numLinCompons+1),]) if (idnumPresent) sigsqRanEffMCMC <- sigsqMCMC[nrow(sigsqMCMC),] preTransfData <- fitObject$preTransfData if (preTransfData&any(modelType==c("linOnly","linAdd","linOnlyMix","linAddMix"))) { XlinPreds <- fitObject$XlinPreds minVec <- apply(XlinPreds,2,min) ; maxVec <- apply(XlinPreds,2,max) denVec <- maxVec - minVec betaStarMCMC <- betaMCMC for (jLin in 2:(1+numLinCompons)) betaMCMC[,jLin] <- betaMCMC[,jLin]/denVec[jLin-1] for (jLin in 2:(1+numLinCompons)) betaMCMC[,1] <- betaMCMC[,1] - betaStarMCMC[,jLin]*minVec[jLin-1]/denVec[jLin-1] } if (numSplCompons>0) { XsplPreds <- fitObject$XsplPreds Zspl <- fitObject$Zspl Cspl <- cbind(XsplPreds,Zspl) etaMCMC <- crossprod(t(Cspl),nuMCMC[1:ncol(Cspl),]) if (fitObject$family=="binomial") wMCMC <- 0.5/(1 + cosh(etaMCMC)) if (fitObject$family=="poisson") wMCMC <- exp(etaMCMC) nMCMCfinal <- ncol(nuMCMC) edfMCMC <- rep(NA,nMCMCfinal) Dmat <- diag(c(rep(0,ncol(XsplPreds)),rep(1,ncol(Zspl)))) diagonalEDFMAT <- matrix(NA,ncol(Cspl),nMCMCfinal) for (iMCMC in 1:nMCMCfinal) { CTWCcurr <- crossprod(Cspl*wMCMC[,iMCMC],Cspl) diagonalLambda <- rep(0,numSplCompons) for (jSpl in 1:numSplCompons) diagonalLambda <- c(diagonalLambda,(1/sigsqMCMC[jSpl,iMCMC])*rep(1,ncZspl[jSpl])) diagonalEDFMAT[,iMCMC] <- diag(solve(CTWCcurr + diag(diagonalLambda),CTWCcurr)) } edfMCMC <- vector("list",numSplCompons) indsZstt <- numSplCompons + 1 for (jSpl in 1:numSplCompons) { indsZend <- indsZstt + ncZspl[jSpl] - 1 indsZcurr <- indsZstt:indsZend indsCcurr <- c(jSpl,indsZcurr) edfMCMC[[jSpl]] <- colSums(diagonalEDFMAT[indsCcurr,]) indsZstt <- indsZend + 1 } if (any(modelType==c("pureAdd","pureAddMix"))&(numSplCompons==1)) edfMCMC[[1]] <- edfMCMC[[1]] + 1 } MCMClistLength <- numLinCompons + numSplCompons + as.numeric(idnumPresent) beta0included <- any(modelType==c("linOnly","linOnlyMix")) if (beta0included) MCMClistLength <- MCMClistLength + 1 parNamesVal <- vector("list",MCMClistLength) MCMCmat <- NULL if (any(modelType==c("linOnly","linAdd","linOnlyMix","linAddMix"))) { if (any(modelType==c("linOnly","linOnlyMix"))) { MCMCmat <- cbind(MCMCmat,betaMCMC) parNamesVal[[1]] <- expression(beta[0]) indStt <- 1 } if (!any(modelType==c("linOnly","linOnlyMix"))) { MCMCmat <- cbind(MCMCmat,betaMCMC[,-1]) indStt <- 0 } if (numLinCompons>0) for (jLin in 1:numLinCompons) parNamesVal[[indStt+jLin]] <- eval(bquote(expression(beta[.(linPredNames[jLin])]))) } if (numSplCompons>0) { for (jSpl in 1:numSplCompons) { MCMCmat <- cbind(MCMCmat,edfMCMC[[jSpl]]) parNamesVal[[numLinCompons+jSpl]] <- eval(bquote(expression(edf[.(splPredNames[jSpl])]))) } } if (idnumPresent) { MCMCmat <- cbind(MCMCmat,sigsqRanEffMCMC) parNamesVal[[as.numeric(beta0included)+numLinCompons+numSplCompons+1]] <- expression(sigma^2) } summMCMC(list(MCMCmat),colourVersion=colour,paletteNum=paletteNumber,parNames=parNamesVal) }
task = TaskGeneratorSimdens$new()$generate(20) test_that("mlr_measures", { keys = mlr_measures$keys("^dens") for (key in keys) { m = mlr_measures$get(key) expect_measure(m) perf = mlr_learners$get("dens.hist")$train(task)$predict(task)$score() expect_number(perf, na.ok = "na_score" %in% m$properties) } })
BootAfterBootT.PI <- function(x,p,h,nboot,prob) { n <- nrow(x) B <- OLS.ART(x,p,h,prob) BBC <- BootstrapT(x,p,h,200) BBCB <- BootstrapTB(x,p,h,200) bb <- BBCB$coef eb <- sqrt( (n-p) / ( (n-p)-length(bb)))*BBCB$resid bias <- B$coef - BBC$coef ef <- sqrt( (n-p) / ( (n-p)-length(bb)))*BBC$resid fore <- matrix(NA,nrow=nboot,ncol=h) for(i in 1:nboot) { index <- as.integer(runif(n-p, min=1, max=nrow(eb))) es <- eb[index,1] xs <- ysbT(x, bb, es) bs <- LSMT(xs,p)$coef bsc <- bs-bias bsc <- adjust(bs,bsc,p) if(sum(bsc) != sum(bs)) bsc[(p+1):(p+2),] <- RE.LSMT(xs,p,bsc) fore[i,] <- ART.ForeB(xs,bsc,h,ef,length(bs)-2) } Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob)) for( i in 1:h) Interval[i,] <- quantile(fore[,i],probs=prob) return(list(PI=Interval,forecast=BBC$forecast)) }
pluscode_westneighbour <- function(pluscode) { code<-c("2","3","4","5","6","7","8","9","C","F","G","H","J","M","P","Q","R","V","W","X") pluscode<-toupper(gsub(pattern = "\\+",replacement = "",pluscode)) pluscode_length<-nchar(pluscode) if(pluscode_length %in% c(2,4,8,10)!=TRUE) { stop(paste0("The pluscode is not a valid length, please enter value with length of 2/4/6/8/10, or 9/11 (with + character)")) } for(i in strsplit(pluscode,"")[[1]]){ if(any(grepl(i,code))!=TRUE){ stop(paste0("The character ",i," is not a valid pluscode character")) } } d10<-strsplit(pluscode,"")[[1]][10] d9<-strsplit(pluscode,"")[[1]][9] d8<-strsplit(pluscode,"")[[1]][8] d7<-strsplit(pluscode,"")[[1]][7] d6<-strsplit(pluscode,"")[[1]][6] d5<-strsplit(pluscode,"")[[1]][5] d4<-strsplit(pluscode,"")[[1]][4] d3<-strsplit(pluscode,"")[[1]][3] d2<-strsplit(pluscode,"")[[1]][2] d1<-strsplit(pluscode,"")[[1]][1] if(d1%in% seq(3,9)!=TRUE){ stop(paste0("The character ",d1," is not a valid pluscode character for the first character")) } n10<-if(is.na(d10)==TRUE) { NA } else if (grep(d10,code)==1) { code[20] } else { code[grep(d10,code)-1] } n8<-if(is.na(d8)==TRUE) { NA } else if(any(is.na(d10)==TRUE | grep(d10,code)==1,na.rm = T) & grep(d7,code)==1){ code[20] } else if (any(is.na(d10)==TRUE | grep(d10,code)==1,na.rm = T)) { code[grep(d8,code)-1] } else { code[grep(d8,code)] } n6<-if(is.na(d6)==TRUE) { NA } else if(any(is.na(d10)==TRUE | grep(d10,code)==1,na.rm = T) & any(is.na(d8)==TRUE | grep(d8,code)==1,na.rm = T) & grep(d6,code)==1){ code[20] } else if (any(is.na(d10)==TRUE | grep(d10,code)==1,na.rm = T) & any(is.na(d8)==TRUE | grep(d8,code)==1,na.rm = T)) { code[grep(d6,code)-1] } else { code[grep(d6,code)] } n4<-if(is.na(d4)==TRUE) { NA } else if(any(is.na(d10)==TRUE | grep(d10,code)==1,na.rm = T) & any(is.na(d8)==TRUE | grep(d8,code)==1,na.rm = T) & any(is.na(d6)==TRUE | grep(d6,code)==1,na.rm = T) & grep(d4,code)==1){ code[20] } else if (any(is.na(d10)==TRUE | grep(d10,code)==1,na.rm = T) & any(is.na(d8)==TRUE | grep(d7,code)==1,na.rm = T) & any(is.na(d6)==TRUE | grep(d6,code)==1,na.rm = T)) { code[grep(d4,code)-1] } else { code[grep(d4,code)] } n2<-if(is.na(d2)==TRUE) { NA } else if(any(is.na(d10)==TRUE | grep(d10,code)==1,na.rm = T) & any(is.na(d8)==TRUE | grep(d8,code)==1,na.rm = T) & any(is.na(d6)==TRUE | grep(d6,code)==1,na.rm = T) & any(is.na(d4)==TRUE | grep(d4,code)==1,na.rm = T) & grep(d2,code)==1){ code[20] } else if(any(is.na(d10)==TRUE | grep(d10,code)==1,na.rm = T) & any(is.na(d8)==TRUE | grep(d8,code)==1,na.rm = T) & any(is.na(d6)==TRUE | grep(d6,code)==1,na.rm = T) & any(is.na(d4)==TRUE | grep(d4,code)==1,na.rm = T)) { as.numeric(d2)-1 } else { d2 } pluscode_neighbour<-if(pluscode_length == 10) { paste0(d1,n2,d3,n4,d5,n6,d7,n8,"+",d9,n10) } else if(pluscode_length == 8) { paste0(d1,n2,d3,n4,d5,n6,d7,n8,"+") } else if(pluscode_length == 4) { paste0(d1,n2,d3,n4) } else if(pluscode_length == 2) { paste0(d1,n2) } return(pluscode_neighbour) }
loadFields <- function(fieldnames=c("Liebe","Familie"), baseurl=paste("https://raw.githubusercontent.com/quadrama/metadata/master", ensureSuffix(directory,fileSep), sep=fileSep), directory="fields/", fileSuffix=".txt", fileSep = "/") { r <- list() for (field in fieldnames) { url <- paste(baseurl, field, fileSuffix, sep="") r[[field]] <- as.character((readr::read_csv(url, col_names = FALSE, locale = readr::locale(), col_types = c(readr::col_character())))$X1) } r } dictionaryStatistics <- function(drama, fields=DramaAnalysis::base_dictionary[fieldnames], fieldnames=c("Liebe"), segment=c("Drama","Act","Scene"), normalizeByCharacter = FALSE, normalizeByField = FALSE, byCharacter = TRUE, column="Token.lemma", ci = TRUE) { stopifnot(inherits(drama, "QDDrama")) .N <- NULL . <- NULL corpus <- NULL Speaker.figure_surface <- NULL Speaker.figure_id <- NULL segment <- match.arg(segment) text <- switch(segment, Drama=drama$text, Act=segment(drama$text, drama$segments), Scene=segment(drama$text, drama$segments)) bylist <- list(text$corpus, text$drama, text$Speaker.figure_id) r <- aggregate(text, by=bylist, length)[,1:3] first <- TRUE singles <- lapply(names(fields),function(x) { dss <- as.data.table(dictionaryStatisticsSingle(drama, fields[[x]], ci=ci, segment = segment, byCharacter = byCharacter, normalizeByCharacter = normalizeByCharacter, normalizeByField = normalizeByField, column=column)) colnames(dss)[ncol(dss)] <- x if (x == names(fields)[[1]]) { if (segment=="Scene") { u <- unique(text[,c("begin.Scene","Number.Act", "Number.Scene")]) dss <- merge(dss, u, by.x=c("Number.Act", "Number.Scene"), by.y=c("Number.Act", "Number.Scene")) dss$begin.Scene <- NULL data.table::setcolorder(dss, c("corpus","drama","Number.Act","Number.Scene","character",x)) } dss } else { dss[,x,with=FALSE] } }) r <- Reduce(cbind,singles) class(r) <- c("QDDictionaryStatistics", "QDHasCharacter", switch(segment, Drama = "QDByDrama", Act = "QDByAct", Scene ="QDByScene"), "data.frame") if (byCharacter) class(r) <- append(class(r), "QDByCharacter") r } dictionaryStatisticsSingle <- function(drama, wordfield=c(), segment=c("Drama","Act","Scene"), normalizeByCharacter = FALSE, normalizeByField = FALSE, byCharacter = TRUE, fieldNormalizer = length(wordfield), column="Token.lemma", ci=TRUE, colnames=NULL) { stopifnot(inherits(drama, "QDDrama")) .N <- NULL . <- NULL .SD <- NULL `:=` <- NULL N <- NULL value <- NULL segment <- match.arg(segment) text <- switch(segment, Drama=drama$text, Act=segment(drama$text, drama$segments), Scene=segment(drama$text, drama$segments)) bycolumns <- c("corpus", switch(segment, Drama=c("drama"), Act=c("drama","Number.Act"), Scene=c("drama","Number.Act","Number.Scene")) ) bylist <- paste(bycolumns,collapse=",") if (ci) { wordfield <- tolower(wordfield) casing <- tolower } else { casing <- identity } if (normalizeByField == FALSE) { fieldNormalizer <- 1 } dt <- data.table(text) dt$match <- casing(dt[[column]]) %in% wordfield if (byCharacter == TRUE) { xt <- dt[,melt(xtabs(~ Speaker.figure_id, data=.SD[match])), keyby=bylist] } else { xt <- dt[,.(value=sum(match)), keyby=bylist] } if(normalizeByField || normalizeByCharacter) { xt$value <- as.double(xt$value) } if (byCharacter == TRUE) { xt <- unique(merge(xt, drama$characters, by.x = c("corpus","drama","Speaker.figure_id"), by.y = c("corpus","drama","figure_id"))[,names(xt), with=F]) } if (normalizeByCharacter == TRUE) { if (byCharacter == TRUE) { bycolumns <- append(bycolumns,"Speaker.figure_id") } bylist <- paste(bycolumns, collapse=",") xt <- merge(xt, dt[,.N,keyby=bylist], by.x = bycolumns, by.y = bycolumns) xt[,value:=((value/fieldNormalizer)/N), keyby=bylist] xt <- xt[,-"N"] } else { xt$value <- as.double(xt$value) / fieldNormalizer } r <- xt colnames(r)[ncol(r)] <- "x" if (byCharacter) { colnames(r)[ncol(r)-1] <- "character" } if (! is.null(colnames)) { colnames(r) <- colnames } r[is.nan(r$x)]$x <- 0 class(r) <- c("QDDictionaryStatistics", "QDHasCharacter", switch(segment, Drama = "QDByDrama", Act = "QDByAct", Scene ="QDByScene"), "data.frame", class(r)) if (byCharacter) { class(r) <- append(class(r), "QDByCharacter") r$character <- as.factor(r$character) } r } filterByDictionary <- function(ft, fields=DramaAnalysis::base_dictionary[fieldnames], fieldnames=c("Liebe")) { as.matrix(ft[,which(colnames(ft) %in% unlist(fields))]) } as.matrix.QDDictionaryStatistics <- function (x, ...) { stopifnot(inherits(x, "QDDictionaryStatistics")) if (inherits(x, "QDByCharacter")) { byCharacter <- TRUE } else { byCharacter <- FALSE } if (inherits(x, "QDByDrama")) { segment <- "Drama" metaCols <- 1:(3+byCharacter) } else if (inherits(x, "QDByAct")) { segment <- "Act" metaCols <- 1:(4+byCharacter) } else if (inherits(x, "QDByScene")) { segment <- "Scene" metaCols <- 1:(5+byCharacter) } as.matrix.data.frame(x[,max(metaCols):ncol(x)]) }
ne_download <- function(scale = 110, type = 'countries', category = c('cultural', 'physical', 'raster'), destdir = tempdir(), load = TRUE, returnclass = c('sp','sf') ) { category <- match.arg(category) returnclass <- match.arg(returnclass) file_name <- ne_file_name(scale=scale, type=type, category=category, full_url=FALSE) address <- ne_file_name(scale=scale, type=type, category=category, full_url=TRUE) download_failed <- tryCatch( utils::download.file(file.path(address), zip_file <- tempfile()), error = function(e) { message(paste('download failed')) check_data_exist( scale = scale, category = category, type = type ) return(TRUE) }) if (download_failed) return() utils::unzip(zip_file, exdir=destdir) if ( load & category == 'raster' ) { rst <- raster::raster(file.path(destdir, file_name, paste0(file_name, '.tif'))) return(rst) } else if ( load ) { sp_object <- rgdal::readOGR(destdir, file_name, encoding='UTF-8', stringsAsFactors=FALSE, use_iconv=TRUE) sp_object@data[sp_object@data=='-99' | sp_object@data=='-099'] <- NA return( ne_as_sf(sp_object, returnclass)) } else { return(file_name) } }
hlm_resid <- function(object, ...){ UseMethod("hlm_resid", object) } hlm_resid.default <- function(object, ...){ stop(paste("there is no hlm_resid() method for objects of class", paste(class(object), collapse=", "))) } hlm_resid.lmerMod <- function(object, level = 1, standardize = FALSE, include.ls = TRUE, data = NULL, ...) { if(!isNestedModel(object)){ stop("hlm_resid is not currently implemented for non-nested models.") } if(!level %in% c(1, names(object@flist))) { stop("level can only be 1 or the following grouping factors from the fitted model: \n", stringr::str_c(names(object@flist), collapse = ", ")) } if(!is.null(standardize) && !standardize %in% c(FALSE, TRUE, "semi")) { stop("standardize can only be specified to be logical or 'semi'.") } if(class(attr(object@frame, "na.action")) == "exclude" && is.null(data) && level == 1){ stop("Please provide the data frame used to fit the model. This is necessary when the na.action is set to na.exclude") } if(!is.null(getCall(object)$correlation)){ warning("LS residuals for non-random correlation are not yet implemented") include.ls <- FALSE } if(class(attr(object@frame, "na.action")) == "exclude"){ na.index <- which(!rownames(data) %in% rownames(object@frame)) col.index <- which(colnames(data) %in% colnames(object@frame)) data <- data[col.index] } else { data <- object@frame } if(level == 1) { if(include.ls == TRUE) { ls.resid <- LSresids(object, level = 1, standardize = standardize) ls.resid <- ls.resid[order(as.numeric(rownames(ls.resid))),] } if (standardize == TRUE) { eb.resid <- data.frame(.std.resid = resid(object, scale = TRUE)) } else { eb.resid <- data.frame(.resid = resid(object)) } eb.fitted <- data.frame(.fitted = predict(object)) mr <- object@resp$y - lme4::getME(object, "X") %*% lme4::fixef(object) if (standardize == TRUE) { sig0 <- lme4::getME(object, "sigma") ZDZt <- sig0^2 * crossprod( lme4::getME(object, "A") ) n <- nrow(ZDZt) R <- Diagonal( n = n, x = sig0^2 ) V <- R + ZDZt V.chol <- chol( V ) Lt <- solve(t(V.chol)) mar.resid <- data.frame(.chol.mar.resid = (Lt %*% mr)[,1]) } else { mar.resid <- data.frame(.mar.resid = mr[,1]) } mar.fitted <- data.frame(.mar.fitted = predict(object, re.form = ~0)) if(class(attr(object@frame, "na.action")) == "exclude"){ if(include.ls == TRUE){ problem_dfs <- cbind(ls.resid, mar.resid) na.fix <- data.frame(LSR = rep(NA, length(na.index)), LSF = rep(NA, length(na.index)), MR = rep(NA, length(na.index))) rownames(na.fix) <- na.index names(na.fix) <- c(names(ls.resid), names(mar.resid)) problem_dfs <- rbind(problem_dfs, na.fix) problem_dfs <- problem_dfs[order(as.numeric(rownames(problem_dfs))),] } else { na.fix <- data.frame(MR = rep(NA, length(na.index))) rownames(na.fix) <- na.index names(na.fix) <- names(mar.resid) problem_dfs <- rbind(mar.resid, na.fix) problem_dfs <- data.frame(MR = problem_dfs[order(as.numeric(rownames(problem_dfs))),]) names(problem_dfs) <- names(mar.resid) } } else { if(include.ls == TRUE){ problem_dfs <- cbind(ls.resid, mar.resid) } else { problem_dfs <- mar.resid } } if (include.ls == TRUE) { return.tbl <- tibble::tibble("id" = as.numeric(rownames(data)), data, eb.resid, eb.fitted, problem_dfs, mar.fitted) } else { return.tbl <- tibble::tibble("id" = as.numeric(rownames(data)), data, eb.resid, eb.fitted, problem_dfs, mar.fitted) } return(return.tbl) } if (level %in% names(object@flist)) { eb.resid <- lme4::ranef(object)[[level]] eb.resid <- janitor::clean_names(eb.resid) groups <- rownames(eb.resid) if (standardize == TRUE) { se.re <- se.ranef(object)[[level]] eb.resid <- eb.resid/se.re eb.names <- paste0(".std.ranef.", names(eb.resid)) } else { eb.names <- paste0(".ranef.", names(eb.resid)) } if (include.ls == TRUE) { ls.resid <- LSresids(object, level = level, stand = standardize) ls.resid <- ls.resid[match(groups, ls.resid$group),] ls.resid <- janitor::clean_names(ls.resid) if (standardize == TRUE) { ls.names <- paste0(".std.ls.", names(ls.resid)) } else { ls.names <- paste0(".ls.", names(ls.resid)) } } fixed <- as.character(lme4::nobars( formula(object))) data <- object@frame names(data)[which(names(data) == fixed[2])] <- "y" fixed[2] <- "y" n.ranefs <- length(names(object@flist)) ranef_names <- names( lme4::ranef(object)[[level]] ) if(level == names(object@flist)[n.ranefs]){ form <- paste(fixed[2], fixed[1], fixed[3], "|", level) g.list <- suppressWarnings(lme4::lmList(formula(form), data = data)) g.index <- which(purrr::map_lgl(coef(g.list), ~all(is.na(.x)))) g.names <- names(g.index) interaction.index <- stringr::str_detect(g.names, ":") g.names <- g.names[!interaction.index] g.exp <- stringr::str_c(g.names, collapse = "|") g.index.frame <- which( stringr::str_detect(g.exp, names(object@frame))) g.vars <- object@frame %>% dplyr::select(all_of(level), all_of(g.index.frame)) g.vars <- unique(g.vars) if (include.ls == TRUE) { return.tbl <- suppressMessages(tibble::tibble( groups, eb.resid, ls.resid[,-1], .name_repair = "universal")) names(return.tbl) <- c(level, eb.names, ls.names[-1]) if(sum(class(g.vars[level][[1]]) != class(return.tbl[level][[1]])) != 0){ g.vars[level][[1]] <- as.character(g.vars[level][[1]]) return.tbl[level][[1]] <- as.character(return.tbl[level][[1]]) } return.tbl <- tibble::tibble( unique(suppressMessages(dplyr::left_join(g.vars, return.tbl)))) } else { return.tbl <- tibble::tibble(groups, eb.resid) names(return.tbl) <- c(level, eb.names) if(sum(class(g.vars[level][[1]]) != class(return.tbl[level][[1]])) != 0){ g.vars[level][[1]] <- as.character(g.vars[level][[1]]) return.tbl[level][[1]] <- as.character(return.tbl[level][[1]]) } return.tbl <- tibble::tibble( unique(suppressMessages(dplyr::left_join(g.vars, return.tbl)))) } return(return.tbl) } else { level.var <- stringr::str_split(level, ":")[[1]] level.var <- level.var[which(!level.var %in% names(object@flist))] form <- paste(fixed[2], fixed[1], fixed[3], "|", level.var) g.list <- suppressWarnings(lme4::lmList(formula(form), data = data)) g.index <- which(purrr::map_lgl(coef(g.list), ~all(is.na(.x)))) g.names <- names(g.index) interaction.index <- stringr::str_detect(g.names, ":") g.names <- g.names[!interaction.index] higher.level <- names(object@flist[which(names(object@flist) == level) + 1]) g.exp <- stringr::str_c(g.names, collapse = "|") g.index.frame <- which( stringr::str_detect(g.exp, names(object@frame))) g.vars <- object@frame %>% dplyr::select(all_of(level.var), all_of(higher.level), all_of(g.index.frame)) g.vars <- unique(g.vars) g.vars$group <- rep(NA, nrow(g.vars)) for (i in 1:nrow(g.vars)){ g.vars$group[i] <- stringr::str_c(g.vars[level.var][i,], g.vars[higher.level][i,], sep = ":") } g.vars <- g.vars %>% dplyr::select(ncol(g.vars), 1:(ncol(g.vars)-1)) if (include.ls == TRUE) { return.tbl <- suppressMessages(tibble::tibble( groups, eb.resid, ls.resid[,-1], .name_repair = "universal")) names(return.tbl) <- c("group", eb.names, ls.names[-1]) return.tbl <- tibble::tibble( unique(suppressMessages(dplyr::left_join(g.vars, return.tbl)))) } else { return.tbl <- tibble::tibble(groups, eb.resid) names(return.tbl) <- c("group", eb.names) return.tbl <- tibble::tibble( unique(suppressMessages(dplyr::left_join(g.vars, return.tbl)))) } return(return.tbl) } } } hlm_resid.lme <- function(object, level = 1, standardize = FALSE, include.ls = TRUE, data = NULL, ...) { if(!isNestedModel(object)){ stop("hlm_resid is not currently implemented for non-nested models.") } if(!level %in% c(1, names(object$groups))) { stop("level can only be 1 or the following grouping factors from the fitted model: \n", stringr::str_c(names(object$groups), collapse = ", ")) } if(!is.null(standardize) && !standardize %in% c(FALSE, TRUE, "semi")) { stop("standardize can only be specified to be logical or 'semi'.") } if(level == 1) { if(include.ls == TRUE) { ls.resid <- LSresids(object, level = 1, stand = standardize) ls.resid <- ls.resid[order(as.numeric(rownames(ls.resid))),] } if(standardize == TRUE) { eb.resid <- data.frame(.std.resid = resid(object, type = "normalized")) } else { eb.resid <- data.frame(.resid = resid(object, type = "response")) } eb.fitted <- data.frame(.fitted = fitted(object)) mr <- resid(object, type="response", level=0) if (standardize == TRUE) { V <- Matrix(extract_design(object)$V) V.chol <- chol( V ) Lt <- solve(t(V.chol)) mar.resid <- data.frame(.chol.mar.resid = (Lt %*% mr)[,1]) } else { mar.resid <- data.frame(.mar.resid = mr) } mar.fitted <- data.frame(.mar.fitted = fitted(object, level=0)) fixed <- as.character(formula(object)) dataform <- paste(fixed[2], fixed[1], fixed[3], " + ", paste(names(object$groups), collapse = " + ")) data <- object$data %>% dplyr::mutate(dplyr::across(where(is.character), ~ as.factor(.x))) %>% as.data.frame() model.data <- model.frame(formula(dataform), data) if(class(object$na.action) == "exclude"){ na.index <- which(!rownames(data) %in% rownames(model.data)) na.fix.data <- data[which(rownames(data) %in% na.index),] %>% dplyr::select(all_of(names(model.data))) model.data <- rbind(model.data, na.fix.data) model.data <- model.data[order(as.numeric(rownames(model.data))),] if(include.ls == TRUE){ na.fix.ls <- data.frame(LSR = rep(NA, length(na.index)), LSF = rep(NA, length(na.index))) rownames(na.fix.ls) <- na.index names(na.fix.ls) <- c(names(ls.resid)) ls.resid <- rbind(ls.resid, na.fix.ls) ls.resid <- ls.resid[order(as.numeric(rownames(ls.resid))),] } } if (include.ls == TRUE) { return.tbl <- tibble::tibble("id" = as.numeric(rownames(model.data)), model.data, eb.resid, eb.fitted, ls.resid, mar.resid, mar.fitted) } else { return.tbl <- tibble::tibble("id" = as.numeric(rownames(model.data)), model.data, eb.resid, eb.fitted, mar.resid, mar.fitted) } return(return.tbl) } if (level %in% names(object$groups)) { if(standardize == "semi") standardize <- FALSE if (length(object$groups) != 1) { eb.resid <- nlme::ranef(object, standard = standardize)[[level]] } else { eb.resid <- nlme::ranef(object, standard = standardize) } eb.resid <- janitor::clean_names(eb.resid) groups <- rownames(eb.resid) if (standardize == TRUE) { eb.names <- paste0(".std.ranef.", names(eb.resid)) } else { eb.names <- paste0(".ranef.", names(eb.resid)) } if (include.ls == TRUE) { ls.resid <- LSresids(object, level = level, stand = standardize) ls.resid <- ls.resid[match(groups, ls.resid$group),] ls.resid <- janitor::clean_names(ls.resid) if (standardize == TRUE) { ls.names <- paste0(".std.ls.", names(ls.resid)) } else { ls.names <- paste0(".ls.", names(ls.resid)) } } fixed <- as.character(formula(object)) n.ranefs <- length(names(object$groups)) if (n.ranefs == 1){ ranef_names <- names( nlme::ranef(object) ) } else { ranef_names <- names( nlme::ranef(object)[[level]] ) } data <- object$data %>% dplyr::mutate(dplyr::across(where(is.character), ~ as.factor(.x))) %>% as.data.frame() form <- paste(fixed[2], fixed[1], fixed[3], "|", level) g.list <- suppressWarnings(lme4::lmList(formula(form), data = data)) g.index <- which(purrr::map_lgl(coef(g.list), ~all(is.na(.x)))) g.names <- names(g.index) interaction.index <- stringr::str_detect(g.names, ":") g.names <- g.names[!interaction.index] g.exp <- stringr::str_c(g.names, collapse = "|") g.index.frame <- which( stringr::str_detect(g.exp, names(data))) if(level == names(object$groups)[1]){ g.vars <- data %>% dplyr::select(all_of(level), all_of(g.index.frame)) g.vars <- unique(g.vars) if (include.ls == TRUE) { return.tbl <- suppressMessages(tibble::tibble( groups, eb.resid, ls.resid[,-1], .name_repair = "universal")) names(return.tbl) <- c(level, eb.names, ls.names[-1]) if(sum(class(g.vars[level][[1]]) != class(return.tbl[level][[1]])) != 0){ g.vars[level][[1]] <- as.character(g.vars[level][[1]]) return.tbl[level][[1]] <- as.character(return.tbl[level][[1]]) } return.tbl <- tibble::tibble( unique(suppressMessages(dplyr::left_join(g.vars, return.tbl)))) } else { return.tbl <- tibble::tibble(groups, eb.resid) names(return.tbl) <- c(level, eb.names) if(sum(class(g.vars[level][[1]]) != class(return.tbl[level][[1]])) != 0){ g.vars[level][[1]] <- as.character(g.vars[level][[1]]) return.tbl[level][[1]] <- as.character(return.tbl[level][[1]]) } return.tbl <- tibble::tibble( unique(suppressMessages(dplyr::left_join(g.vars, return.tbl)))) } return(return.tbl) } else { higher.level <- names(object$groups[which(names(object$groups) == level) -1]) g.vars <- data %>% dplyr::select(all_of(higher.level), all_of(level), all_of(g.index.frame)) g.vars <- unique(g.vars) g.vars$group <- rep(NA, nrow(g.vars)) for (i in 1:nrow(g.vars)){ g.vars$group[i] <- stringr::str_c(g.vars[higher.level][i,], g.vars[level][i,], sep = "/") } g.vars <- g.vars %>% dplyr::select(ncol(g.vars), 1:(ncol(g.vars)-1)) if (include.ls == TRUE) { return.tbl <- suppressMessages(tibble::tibble( groups, eb.resid, ls.resid[,-1], .name_repair = "universal")) names(return.tbl) <- c("group", eb.names, ls.names[-1]) return.tbl <- tibble::tibble( unique(suppressMessages(dplyr::left_join(g.vars, return.tbl)))) } else { return.tbl <- tibble::tibble(groups, eb.resid) names(return.tbl) <- c("group", eb.names) return.tbl <- tibble::tibble( unique(suppressMessages(dplyr::left_join(g.vars, return.tbl)))) } return(return.tbl) } } }
"con2df" <- function(con, Traits){ con <- con[setdiff(names(con), c("lb", "ub", "uniform"))] if(length(con)==0){ return(data.frame(dir=character(0), var=character(0), val=numeric(0), isLin=logical(0))) } dir <- str_sub(names(con),1,2) var <- str_sub(names(con),4,-1) if(any(duplicated(var))){ stop("Some variables appear in more than one constraint.\n") } for(i in seq_along(con)){ if((!is.numeric(con[[i]])) || length(con[[i]])>1 || is.na(con[[i]])){ stop(paste0("Constraint ", names(con)[i], " must be a numeric value.\n")) } if((!(var[i] %in% Traits)) && con[[i]]<0){ stop(paste0("Constraint ", names(con)[i], " must be a positive numeric value.\n")) } } condf <- data.frame( dir = setNames(c("<=", ">=", "=="), c("ub", "lb", "eq"))[dir], var = var, val = unlist(con), isLin = var %in% Traits, row.names = var, stringsAsFactors = FALSE) return(condf) }
sugm.tiger.ladm.scr <- function(data, n, d, maxdf, rho, lambda, shrink, prec, max.ite, verbose){ if(verbose==TRUE) cat("Tuning-Insensitive Graph Estimation and Regression.\n") Z = data rm(data) ZZ = crossprod(Z) nlambda = length(lambda) lambda = lambda-shrink*prec d1 = d-1 num.scr = d1 if(d1>=n){ if(n<=3){ num.scr1 = n num.scr2 = n }else{ num.scr1 = ceiling(n/log(n)) num.scr2 = n-1 } }else{ if(d1<=3){ num.scr1 = d1 num.scr2 = d1 }else{ num.scr1 = ceiling(sqrt(d1)) num.scr2 = ceiling(d1/log(d1)) } } ite.int = matrix(0,nrow=d,ncol=nlambda) ite.int1 = matrix(0,nrow=d,ncol=nlambda) ite.int2 = matrix(0,nrow=d,ncol=nlambda) ite.int3 = matrix(0,nrow=d,ncol=nlambda) ite.int4 = matrix(0,nrow=d,ncol=nlambda) ite.int5 = matrix(0,nrow=d,ncol=nlambda) x = rep(0,d*maxdf*nlambda) col.cnz = rep(0,d+1) row.idx = rep(0,d*maxdf*nlambda) icov.list1 = vector("list", nlambda) for(i in 1:nlambda){ icov.list1[[i]] = matrix(0,d,d) } for(j in 1:d){ Z.j = Z[,j] Z.resj = Z[,-j] Zy = ZZ[-j,j] idx.scr0 = order(Zy) idx.scr1 = idx.scr0[1:num.scr1] idx.scr2 = idx.scr0[1:num.scr2] ZZ0 = ZZ[-j,-j] Z.order = ZZ0[idx.scr0,idx.scr0] gamma = max(colSums(abs(Z.order))) icov0 = rep(0,d*nlambda) ite0.int = rep(0,nlambda) ite0.int1 = rep(0,nlambda) ite0.int2 = rep(0,nlambda) ite0.int3 = rep(0,nlambda) ite0.int4 = rep(0,nlambda) ite0.int5 = rep(0,nlambda) x0 = rep(0,maxdf*nlambda) col.cnz0 = 0 row.idx0 = rep(0,maxdf*nlambda) str=.C("sugm_tiger_ladm_scr", as.double(Z.j), as.double(Z.resj), as.double(Zy), as.double(Z.order), as.double(icov0), as.double(x0), as.integer(d), as.integer(n), as.double(gamma), as.double(lambda), as.integer(nlambda), as.double(rho), as.integer(col.cnz0), as.integer(row.idx0), as.integer(ite0.int), as.integer(ite0.int1), as.integer(ite0.int2), as.integer(ite0.int3), as.integer(ite0.int4), as.integer(ite0.int5), as.integer(num.scr1), as.integer(num.scr2), as.integer(idx.scr0), as.integer(idx.scr1), as.integer(idx.scr2), as.integer(max.ite), as.double(prec), as.integer(j), PACKAGE="flare") icov = matrix(unlist(str[5]), byrow = FALSE, ncol = nlambda) for(i in 1:nlambda){ icov.list1[[i]][,j] = icov[,i] } cnt = unlist(str[13]) col.cnz[j+1] = cnt+col.cnz[j] if(cnt>0){ x[(col.cnz[j]+1):col.cnz[j+1]] = unlist(str[6])[1:cnt] row.idx[(col.cnz[j]+1):col.cnz[j+1]] = unlist(str[14])[1:cnt] } ite.int[j,] = unlist(str[15]) ite.int1[j,] = unlist(str[16]) ite.int2[j,] = unlist(str[17]) ite.int3[j,] = unlist(str[18]) ite.int4[j,] = unlist(str[19]) ite.int5[j,] = unlist(str[20]) } icov.list = vector("list", nlambda) for(i in 1:nlambda){ icov.i = icov.list1[[i]] } ite = list() ite[[1]] = ite.int1 ite[[2]] = ite.int2 ite[[3]] = ite.int return(list(icov=icov.list, icov1=icov.list1,ite=ite, x=x[1:col.cnz[d+1]], col.cnz=col.cnz, row.idx=row.idx[1:col.cnz[d+1]])) }
model_evaluation_optimization = function(x, source_names, algorithm, correct_topology, lr_network, sig_network, gr_network, settings, secondary_targets = FALSE, remove_direct_links = "no",damping_factor = NULL,...){ requireNamespace("dplyr") if (!is.null(damping_factor) & is.null(x$damping_factor)){ x$damping_factor = damping_factor } if (!is.list(x)) stop("x should be a list!") if (!is.numeric(x$source_weights)) stop("x$source_weights should be a numeric vector") if (x$lr_sig_hub < 0 | x$lr_sig_hub > 1) stop("x$lr_sig_hub must be a number between 0 and 1 (0 and 1 included)") if (x$gr_hub < 0 | x$gr_hub > 1) stop("x$gr_hub must be a number between 0 and 1 (0 and 1 included)") if(is.null(x$ltf_cutoff)){ if( (algorithm == "PPR" | algorithm == "SPL") & correct_topology == FALSE) warning("Did you not forget to give a value to x$ltf_cutoff?") } else { if (x$ltf_cutoff < 0 | x$ltf_cutoff > 1) stop("x$ltf_cutoff must be a number between 0 and 1 (0 and 1 included)") } if(algorithm == "PPR"){ if (x$damping_factor < 0 | x$damping_factor >= 1) stop("x$damping_factor must be a number between 0 and 1 (0 included, 1 not)") } if (algorithm != "PPR" & algorithm != "SPL" & algorithm != "direct") stop("algorithm must be 'PPR' or 'SPL' or 'direct'") if (correct_topology != TRUE & correct_topology != FALSE) stop("correct_topology must be TRUE or FALSE") if (!is.data.frame(lr_network)) stop("lr_network must be a data frame or tibble object") if (!is.data.frame(sig_network)) stop("sig_network must be a data frame or tibble object") if (!is.data.frame(gr_network)) stop("gr_network must be a data frame or tibble object") if (!is.list(settings)) stop("settings should be a list!") if(!is.character(settings[[1]]$from) | !is.character(settings[[1]]$name)) stop("setting$from and setting$name should be character vectors") if(!is.logical(settings[[1]]$response) | is.null(names(settings[[1]]$response))) stop("setting$response should be named logical vector containing class labels of the response that needs to be predicted ") if (secondary_targets != TRUE & secondary_targets != FALSE) stop("secondary_targets must be TRUE or FALSE") if (remove_direct_links != "no" & remove_direct_links != "ligand" & remove_direct_links != "ligand-receptor") stop("remove_direct_links must be 'no' or 'ligand' or 'ligand-receptor'") if(!is.character(source_names)) stop("source_names should be a character vector") if(length(source_names) != length(x$source_weights)) stop("Length of source_names should be the same as length of x$source_weights") if(correct_topology == TRUE && !is.null(x$ltf_cutoff)) warning("Because PPR-ligand-target matrix will be corrected for topology, the proposed cutoff on the ligand-tf matrix will be ignored (x$ltf_cutoff") if(correct_topology == TRUE && algorithm != "PPR") warning("Topology correction is PPR-specific and makes no sense when the algorithm is not PPR") names(x$source_weights) = source_names parameters_setting = list(model_name = "query_design", source_weights = x$source_weights) if (algorithm == "PPR") { if (correct_topology == TRUE){ parameters_setting = add_hyperparameters_parameter_settings(parameters_setting, lr_sig_hub = x$lr_sig_hub, gr_hub = x$gr_hub, ltf_cutoff = 0, algorithm = algorithm,damping_factor = x$damping_factor,correct_topology = TRUE) } else { parameters_setting = add_hyperparameters_parameter_settings(parameters_setting, lr_sig_hub = x$lr_sig_hub, gr_hub = x$gr_hub, ltf_cutoff = x$ltf_cutoff, algorithm = algorithm,damping_factor = x$damping_factor,correct_topology = FALSE) } } if (algorithm == "SPL" | algorithm == "direct"){ parameters_setting = add_hyperparameters_parameter_settings(parameters_setting, lr_sig_hub = x$lr_sig_hub, gr_hub = x$gr_hub, ltf_cutoff = x$ltf_cutoff, algorithm = algorithm,damping_factor = NULL,correct_topology = FALSE) } output_evaluation = evaluate_model(parameters_setting, lr_network, sig_network, gr_network, settings,calculate_popularity_bias_target_prediction = FALSE,calculate_popularity_bias_ligand_prediction=FALSE,ncitations = ncitations, secondary_targets = secondary_targets, remove_direct_links = remove_direct_links, n_target_bins = 3, ...) ligands_evaluation = settings %>% sapply(function(x){x$from}) %>% unlist() %>% unique() ligand_activity_performance_setting_summary = output_evaluation$performances_ligand_prediction_single %>% select(-setting, -ligand) %>% group_by(importance_measure) %>% summarise_all(mean) %>% group_by(importance_measure) %>% mutate(geom_average = exp(mean(log(c(auroc,aupr_corrected))))) best_metric = ligand_activity_performance_setting_summary %>% ungroup() %>% filter(geom_average == max(geom_average)) %>% pull(importance_measure) %>% .[1] performances_ligand_prediction_single_summary = output_evaluation$performances_ligand_prediction_single %>% filter(importance_measure == best_metric) performances_target_prediction_averaged = ligands_evaluation %>% lapply(function(x){x}) %>% lapply(wrapper_average_performances, output_evaluation$performances_target_prediction,"median") %>% bind_rows() %>% drop_na() performances_ligand_prediction_single_summary_averaged = ligands_evaluation %>% lapply(function(x){x}) %>% lapply(wrapper_average_performances, performances_ligand_prediction_single_summary %>% select(-importance_measure),"median") %>% bind_rows() %>% drop_na() mean_auroc_target_prediction = performances_target_prediction_averaged$auroc %>% mean(na.rm = TRUE) %>% unique() mean_aupr_target_prediction = performances_target_prediction_averaged$aupr_corrected %>% mean(na.rm = TRUE) %>% unique() median_auroc_ligand_prediction = performances_ligand_prediction_single_summary_averaged$auroc %>% median(na.rm = TRUE) %>% unique() median_aupr_ligand_prediction = performances_ligand_prediction_single_summary_averaged$aupr_corrected %>% median(na.rm = TRUE) %>% unique() return(c(mean_auroc_target_prediction, mean_aupr_target_prediction, median_auroc_ligand_prediction, median_aupr_ligand_prediction)) } mlrmbo_optimization = function(run_id,obj_fun,niter,ncores,nstart,additional_arguments){ requireNamespace("mlrMBO") requireNamespace("parallelMap") requireNamespace("dplyr") if (length(run_id) != 1) stop("run_id should be a vector of length 1") if(!is.function(obj_fun) | !is.list(attributes(obj_fun)$par.set$pars)) stop("obj_fun should be a function (and generated by mlrMBO::makeMultiObjectiveFunction)") if(niter <= 0) stop("niter should be a number higher than 0") if(ncores <= 0) stop("ncores should be a number higher than 0") nparams = attributes(obj_fun)$par.set$pars %>% lapply(function(x){x$len}) %>% unlist() %>% sum() if(nstart < nparams) stop("nstart should be equal or larger than the number of parameters") if (!is.list(additional_arguments)) stop("additional_arguments should be a list!") ctrl = makeMBOControl(n.objectives = attributes(obj_fun) %>% .$n.objectives, propose.points = ncores) ctrl = setMBOControlMultiObj(ctrl, method = "dib",dib.indicator = "sms") ctrl = setMBOControlInfill(ctrl, crit = makeMBOInfillCritDIB()) ctrl = setMBOControlMultiPoint(ctrl, method = "cb") ctrl = setMBOControlTermination(ctrl, iters = niter) design = generateDesign(n = nstart, par.set = getParamSet(obj_fun)) configureMlr(on.learner.warning = "quiet", show.learner.output = FALSE) parallelStartMulticore(cpus = ncores, show.info = TRUE) surr.rf = makeLearner("regr.km", predict.type = "se") print(design) print(ctrl) res = mbo(obj_fun, design = design, learner = surr.rf ,control = ctrl, show.info = TRUE, more.args = additional_arguments) parallelStop() return(res) } model_evaluation_hyperparameter_optimization = function(x, source_weights, algorithm, correct_topology, lr_network, sig_network, gr_network, settings, secondary_targets = FALSE, remove_direct_links = "no",damping_factor = NULL,...){ requireNamespace("dplyr") if (!is.null(damping_factor) & is.null(x$damping_factor)){ x$damping_factor = damping_factor } if (!is.list(x)) stop("x should be a list!") if (x$lr_sig_hub < 0 | x$lr_sig_hub > 1) stop("x$lr_sig_hub must be a number between 0 and 1 (0 and 1 included)") if (x$gr_hub < 0 | x$gr_hub > 1) stop("x$gr_hub must be a number between 0 and 1 (0 and 1 included)") if(is.null(x$ltf_cutoff)){ if( (algorithm == "PPR" | algorithm == "SPL") & correct_topology == FALSE) warning("Did you not forget to give a value to x$ltf_cutoff?") } else { if (x$ltf_cutoff < 0 | x$ltf_cutoff > 1) stop("x$ltf_cutoff must be a number between 0 and 1 (0 and 1 included)") } if (!is.numeric(source_weights) | is.null(names(source_weights))) stop("source_weights should be a named numeric vector") if(algorithm == "PPR"){ if (x$damping_factor < 0 | x$damping_factor >= 1) stop("x$damping_factor must be a number between 0 and 1 (0 included, 1 not)") } if (algorithm != "PPR" & algorithm != "SPL" & algorithm != "direct") stop("algorithm must be 'PPR' or 'SPL' or 'direct'") if (correct_topology != TRUE & correct_topology != FALSE) stop("correct_topology must be TRUE or FALSE") if (!is.data.frame(lr_network)) stop("lr_network must be a data frame or tibble object") if (!is.data.frame(sig_network)) stop("sig_network must be a data frame or tibble object") if (!is.data.frame(gr_network)) stop("gr_network must be a data frame or tibble object") if (!is.list(settings)) stop("settings should be a list!") if(!is.character(settings[[1]]$from) | !is.character(settings[[1]]$name)) stop("setting$from and setting$name should be character vectors") if(!is.logical(settings[[1]]$response) | is.null(names(settings[[1]]$response))) stop("setting$response should be named logical vector containing class labels of the response that needs to be predicted ") if (secondary_targets != TRUE & secondary_targets != FALSE) stop("secondary_targets must be TRUE or FALSE") if (remove_direct_links != "no" & remove_direct_links != "ligand" & remove_direct_links != "ligand-receptor") stop("remove_direct_links must be 'no' or 'ligand' or 'ligand-receptor'") if(correct_topology == TRUE && !is.null(x$ltf_cutoff)) warning("Because PPR-ligand-target matrix will be corrected for topology, the proposed cutoff on the ligand-tf matrix will be ignored (x$ltf_cutoff") if(correct_topology == TRUE && algorithm != "PPR") warning("Topology correction is PPR-specific and makes no sense when the algorithm is not PPR") parameters_setting = list(model_name = "query_design", source_weights = source_weights) if (algorithm == "PPR") { if (correct_topology == TRUE){ parameters_setting = add_hyperparameters_parameter_settings(parameters_setting, lr_sig_hub = x$lr_sig_hub, gr_hub = x$gr_hub, ltf_cutoff = 0, algorithm = algorithm,damping_factor = x$damping_factor,correct_topology = TRUE) } else { parameters_setting = add_hyperparameters_parameter_settings(parameters_setting, lr_sig_hub = x$lr_sig_hub, gr_hub = x$gr_hub, ltf_cutoff = x$ltf_cutoff, algorithm = algorithm,damping_factor = x$damping_factor,correct_topology = FALSE) } } if (algorithm == "SPL" | algorithm == "direct"){ parameters_setting = add_hyperparameters_parameter_settings(parameters_setting, lr_sig_hub = x$lr_sig_hub, gr_hub = x$gr_hub, ltf_cutoff = x$ltf_cutoff, algorithm = algorithm,damping_factor = NULL,correct_topology = FALSE) } output_evaluation = evaluate_model(parameters_setting, lr_network, sig_network, gr_network, settings,calculate_popularity_bias_target_prediction = FALSE,calculate_popularity_bias_ligand_prediction=FALSE,ncitations = ncitations, secondary_targets = secondary_targets, remove_direct_links = remove_direct_links, n_target_bins = 3, ...) ligands_evaluation = settings %>% sapply(function(x){x$from}) %>% unlist() %>% unique() ligand_activity_performance_setting_summary = output_evaluation$performances_ligand_prediction_single %>% select(-setting, -ligand) %>% group_by(importance_measure) %>% summarise_all(mean) %>% group_by(importance_measure) %>% mutate(geom_average = exp(mean(log(c(auroc,aupr_corrected))))) best_metric = ligand_activity_performance_setting_summary %>% ungroup() %>% filter(geom_average == max(geom_average)) %>% pull(importance_measure) %>% .[1] performances_ligand_prediction_single_summary = output_evaluation$performances_ligand_prediction_single %>% filter(importance_measure == best_metric) performances_target_prediction_averaged = ligands_evaluation %>% lapply(function(x){x}) %>% lapply(wrapper_average_performances, output_evaluation$performances_target_prediction,"median") %>% bind_rows() %>% drop_na() performances_ligand_prediction_single_summary_averaged = ligands_evaluation %>% lapply(function(x){x}) %>% lapply(wrapper_average_performances, performances_ligand_prediction_single_summary %>% select(-importance_measure),"median") %>% bind_rows() %>% drop_na() mean_auroc_target_prediction = performances_target_prediction_averaged$auroc %>% mean(na.rm = TRUE) %>% unique() mean_aupr_target_prediction = performances_target_prediction_averaged$aupr_corrected %>% mean(na.rm = TRUE) %>% unique() median_auroc_ligand_prediction = performances_ligand_prediction_single_summary_averaged$auroc %>% median(na.rm = TRUE) %>% unique() median_aupr_ligand_prediction = performances_ligand_prediction_single_summary_averaged$aupr_corrected %>% median(na.rm = TRUE) %>% unique() return(c(mean_auroc_target_prediction, mean_aupr_target_prediction, median_auroc_ligand_prediction, median_aupr_ligand_prediction)) } process_mlrmbo_nichenet_optimization = function(optimization_results,source_names,parameter_set_index = NULL){ requireNamespace("dplyr") requireNamespace("tibble") if(length(optimization_results) == 1){ optimization_results = optimization_results[[1]] } if (!is.list(optimization_results)) stop("optimization_results should be a list!") if (!is.list(optimization_results$pareto.set)) stop("optimization_results$pareto.set should be a list! Are you sure you provided the output of mlrMBO::mbo (multi-objective)?") if (!is.matrix(optimization_results$pareto.front)) stop("optimization_results$pareto.front should be a matrix! Are you sure you provided the output of mlrMBO::mbo (multi-objective?") if (!is.character(source_names)) stop("source_names should be a character vector") if(!is.numeric(parameter_set_index) & !is.null(parameter_set_index)) stop("parameter_set_index should be a number or NULL") if(is.null(parameter_set_index)){ parameter_set_index = optimization_results$pareto.front %>% as_tibble() %>% mutate(average = apply(.,1,function(x){exp(mean(log(x)))}), index = seq(nrow(.))) %>% filter(average == max(average)) %>% .$index } if(parameter_set_index > nrow(optimization_results$pareto.front)) stop("parameter_set_index may not be a number higher than the total number of proposed solutions") parameter_set = optimization_results$pareto.set[[parameter_set_index]] source_weights = parameter_set$source_weights names(source_weights) = source_names lr_sig_hub = parameter_set$lr_sig_hub gr_hub = parameter_set$gr_hub ltf_cutoff = parameter_set$ltf_cutoff damping_factor = parameter_set$damping_factor source_weight_df = tibble(source = names(source_weights), weight = source_weights) output_optimization = list(source_weight_df = source_weight_df, lr_sig_hub = lr_sig_hub, gr_hub = gr_hub,ltf_cutoff = ltf_cutoff, damping_factor = damping_factor) return(output_optimization) } model_evaluation_optimization_application = function(x, source_names, algorithm, correct_topology, lr_network, sig_network, gr_network, settings, secondary_targets = FALSE, remove_direct_links = "no",classification_algorithm = "lda",damping_factor = NULL,...){ requireNamespace("dplyr") if (!is.null(damping_factor) & is.null(x$damping_factor)){ x$damping_factor = damping_factor } if (!is.list(x)) stop("x should be a list!") if (!is.numeric(x$source_weights)) stop("x$source_weights should be a numeric vector") if (x$lr_sig_hub < 0 | x$lr_sig_hub > 1) stop("x$lr_sig_hub must be a number between 0 and 1 (0 and 1 included)") if (x$gr_hub < 0 | x$gr_hub > 1) stop("x$gr_hub must be a number between 0 and 1 (0 and 1 included)") if(is.null(x$ltf_cutoff)){ if( (algorithm == "PPR" | algorithm == "SPL") & correct_topology == FALSE) warning("Did you not forget to give a value to x$ltf_cutoff?") } else { if (x$ltf_cutoff < 0 | x$ltf_cutoff > 1) stop("x$ltf_cutoff must be a number between 0 and 1 (0 and 1 included)") } if(algorithm == "PPR"){ if (x$damping_factor < 0 | x$damping_factor >= 1) stop("x$damping_factor must be a number between 0 and 1 (0 included, 1 not)") } if (algorithm != "PPR" & algorithm != "SPL" & algorithm != "direct") stop("algorithm must be 'PPR' or 'SPL' or 'direct'") if (correct_topology != TRUE & correct_topology != FALSE) stop("correct_topology must be TRUE or FALSE") if (!is.data.frame(lr_network)) stop("lr_network must be a data frame or tibble object") if (!is.data.frame(sig_network)) stop("sig_network must be a data frame or tibble object") if (!is.data.frame(gr_network)) stop("gr_network must be a data frame or tibble object") if (!is.list(settings)) stop("settings should be a list!") if(!is.character(settings[[1]]$from) | !is.character(settings[[1]]$name)) stop("setting$from and setting$name should be character vectors") if(!is.logical(settings[[1]]$response) | is.null(names(settings[[1]]$response))) stop("setting$response should be named logical vector containing class labels of the response that needs to be predicted ") if (secondary_targets != TRUE & secondary_targets != FALSE) stop("secondary_targets must be TRUE or FALSE") if (remove_direct_links != "no" & remove_direct_links != "ligand" & remove_direct_links != "ligand-receptor") stop("remove_direct_links must be 'no' or 'ligand' or 'ligand-receptor'") if(!is.character(source_names)) stop("source_names should be a character vector") if(length(source_names) != length(x$source_weights)) stop("Length of source_names should be the same as length of x$source_weights") if(correct_topology == TRUE && !is.null(x$ltf_cutoff)) warning("Because PPR-ligand-target matrix will be corrected for topology, the proposed cutoff on the ligand-tf matrix will be ignored (x$ltf_cutoff") if(correct_topology == TRUE && algorithm != "PPR") warning("Topology correction is PPR-specific and makes no sense when the algorithm is not PPR") if(!is.character(classification_algorithm)) stop("classification_algorithm should be a character vector of length 1") names(x$source_weights) = source_names parameters_setting = list(model_name = "query_design", source_weights = x$source_weights) if (algorithm == "PPR") { if (correct_topology == TRUE){ parameters_setting = add_hyperparameters_parameter_settings(parameters_setting, lr_sig_hub = x$lr_sig_hub, gr_hub = x$gr_hub, ltf_cutoff = 0, algorithm = algorithm,damping_factor = x$damping_factor,correct_topology = TRUE) } else { parameters_setting = add_hyperparameters_parameter_settings(parameters_setting, lr_sig_hub = x$lr_sig_hub, gr_hub = x$gr_hub, ltf_cutoff = x$ltf_cutoff, algorithm = algorithm,damping_factor = x$damping_factor,correct_topology = FALSE) } } if (algorithm == "SPL" | algorithm == "direct"){ parameters_setting = add_hyperparameters_parameter_settings(parameters_setting, lr_sig_hub = x$lr_sig_hub, gr_hub = x$gr_hub, ltf_cutoff = x$ltf_cutoff, algorithm = algorithm,damping_factor = NULL,correct_topology = FALSE) } output_evaluation = evaluate_model_application_multi_ligand(parameters_setting, lr_network, sig_network, gr_network, settings, secondary_targets = secondary_targets, remove_direct_links = remove_direct_links, classification_algorithm = classification_algorithm,...) mean_auroc_target_prediction = output_evaluation$performances_target_prediction$auroc %>% mean() mean_aupr_target_prediction = output_evaluation$performances_target_prediction$aupr_corrected %>% mean() return(c(mean_auroc_target_prediction, mean_aupr_target_prediction)) } estimate_source_weights_characterization = function(loi_performances,loo_performances,source_weights_df, sources_oi, random_forest =FALSE){ requireNamespace("dplyr") requireNamespace("tibble") if(!is.data.frame(loi_performances)) stop("loi_performances should be a data frame") if(!is.character(loi_performances$model_name)) stop("loi_performances$model_name should be a character vector") if(!is.data.frame(loo_performances)) stop("loo_performances should be a data frame") if(!is.character(loo_performances$model_name)) stop("loo_performances$model_name should be a character vector") if (!is.data.frame(source_weights_df) || sum((source_weights_df$weight > 1)) != 0) stop("source_weights_df must be a data frame or tibble object and no data source weight may be higher than 1") if(!is.character(sources_oi)) stop("sources_oi should be a character vector") if(random_forest != TRUE & random_forest != FALSE) stop("random_forest should be TRUE or FALSE") loi_performances_train = loi_performances %>% filter((model_name %in% sources_oi) == FALSE) loo_performances_train = loo_performances %>% filter((model_name %in% sources_oi) == FALSE) loi_performances_test = loi_performances %>% filter(model_name == "complete_model" | (model_name %in% sources_oi)) loo_performances_test = loo_performances %>% filter(model_name == "complete_model" | (model_name %in% sources_oi)) output_regression_model = regression_characterization_optimization(loi_performances_train, loo_performances_train, source_weights_df, random_forest = random_forest) new_source_weight_df = assign_new_weight(loi_performances_test, loo_performances_test,output_regression_model,source_weights_df) return(list(source_weights_df = new_source_weight_df, model = output_regression_model)) } evaluate_model_cv = function(parameters_setting, lr_network, sig_network, gr_network, settings,secondary_targets = FALSE, remove_direct_links = "no", ...){ requireNamespace("dplyr") if (!is.list(parameters_setting)) stop("parameters_setting should be a list!") if (!is.character(parameters_setting$model_name)) stop("parameters_setting$model_name should be a character vector") if (!is.numeric(parameters_setting$source_weights) | is.null(names(parameters_setting$source_weights))) stop("parameters_setting$source_weights should be a named numeric vector") if (parameters_setting$lr_sig_hub < 0 | parameters_setting$lr_sig_hub > 1) stop("parameters_setting$lr_sig_hub must be a number between 0 and 1 (0 and 1 included)") if (parameters_setting$gr_hub < 0 | parameters_setting$gr_hub > 1) stop("parameters_setting$gr_hub must be a number between 0 and 1 (0 and 1 included)") if(is.null(parameters_setting$ltf_cutoff)){ if( parameters_setting$algorithm == "PPR" | parameters_setting$algorithm == "SPL" ) warning("Did you not forget to give a value to parameters_setting$ltf_cutoff?") } else { if (parameters_setting$ltf_cutoff < 0 | parameters_setting$ltf_cutoff > 1) stop("parameters_setting$ltf_cutoff must be a number between 0 and 1 (0 and 1 included)") } if (parameters_setting$algorithm != "PPR" & parameters_setting$algorithm != "SPL" & parameters_setting$algorithm != "direct") stop("parameters_setting$algorithm must be 'PPR' or 'SPL' or 'direct'") if(parameters_setting$algorithm == "PPR"){ if (parameters_setting$damping_factor < 0 | parameters_setting$damping_factor >= 1) stop("parameters_setting$damping_factor must be a number between 0 and 1 (0 included, 1 not)") } if (parameters_setting$correct_topology != TRUE & parameters_setting$correct_topology != FALSE) stop("parameters_setting$correct_topology must be TRUE or FALSE") if (!is.data.frame(lr_network)) stop("lr_network must be a data frame or tibble object") if (!is.data.frame(sig_network)) stop("sig_network must be a data frame or tibble object") if (!is.data.frame(gr_network)) stop("gr_network must be a data frame or tibble object") if (!is.list(settings)) stop("settings should be a list!") if(!is.character(settings[[1]]$from) | !is.character(settings[[1]]$name)) stop("setting$from and setting$name should be character vectors") if(!is.logical(settings[[1]]$response) | is.null(names(settings[[1]]$response))) stop("setting$response should be named logical vector containing class labels of the response that needs to be predicted ") if (secondary_targets != TRUE & secondary_targets != FALSE) stop("secondary_targets must be TRUE or FALSE") if (remove_direct_links != "no" & remove_direct_links != "ligand" & remove_direct_links != "ligand-receptor") stop("remove_direct_links must be 'no' or 'ligand' or 'ligand-receptor'") ligands = extract_ligands_from_settings(settings) output_model_construction = construct_model(parameters_setting, lr_network, sig_network, gr_network, ligands, secondary_targets = secondary_targets, remove_direct_links = remove_direct_links) model_name = output_model_construction$model_name ligand_target_matrix = output_model_construction$model ligands_zero = ligand_target_matrix %>% colnames() %>% sapply(function(ligand){sum(ligand_target_matrix[,ligand]) == 0}) %>% .[. == TRUE] if (length(ligands_zero > 0)){ noisy_target_scores = runif(nrow(ligand_target_matrix), min = 0, max = min(ligand_target_matrix[ligand_target_matrix>0])) ligand_target_matrix[,names(ligands_zero)] = noisy_target_scores } performances_target_prediction = bind_rows(lapply(settings,evaluate_target_prediction, ligand_target_matrix)) all_ligands = unlist(extract_ligands_from_settings(settings, combination = FALSE)) settings_ligand_pred = convert_settings_ligand_prediction(settings, all_ligands, validation = TRUE, single = TRUE) ligand_importances = bind_rows(lapply(settings_ligand_pred, get_single_ligand_importances, ligand_target_matrix[, all_ligands])) ligand_importances$pearson[is.na(ligand_importances$pearson)] = 0 ligand_importances$spearman[is.na(ligand_importances$spearman)] = 0 ligand_importances$pearson_log_pval[is.na(ligand_importances$pearson_log_pval)] = 0 ligand_importances$spearman_log_pval[is.na(ligand_importances$spearman_log_pval)] = 0 ligand_importances$mean_rank_GST_log_pval[is.na(ligand_importances$mean_rank_GST_log_pval)] = 0 ligand_importances$pearson_log_pval[is.infinite(ligand_importances$pearson_log_pval)] = 10000 ligand_importances$spearman_log_pval[is.infinite(ligand_importances$spearman_log_pval)] = 10000 ligand_importances$mean_rank_GST_log_pval[is.infinite(ligand_importances$mean_rank_GST_log_pval)] = 10000 all_importances = ligand_importances %>% select_if(.predicate = function(x){sum(is.na(x)) == 0}) performances_ligand_prediction_single = all_importances$setting %>% unique() %>% lapply(function(x){x}) %>% lapply(wrapper_evaluate_single_importances_ligand_prediction,all_importances) %>% bind_rows() %>% inner_join(all_importances %>% distinct(setting,ligand)) return(list(performances_target_prediction = performances_target_prediction, importances_ligand_prediction = all_importances, performances_ligand_prediction_single = performances_ligand_prediction_single)) }
listCaches = function(cacheSubDir="") { cacheDirFiles = list.files(paste0(getCacheDir(), cacheSubDir)) cacheDirFiles[which(sapply(cacheDirFiles, function(f) endsWith(f, ".RData")))] }
script='mqm_listeria1' library(qtl) data(listeria) augmentedcross <- mqmaugment(listeria, minprob=1.0) result <- mqmscan(augmentedcross) sink(paste('regression/',script,'.rnew',sep='')) result sink() cat(script,'successful')
ContinuousProximities<- function(x, y=NULL, ysup=FALSE, transpose=FALSE, coef = "Pythagorean", r = 1) { distances = c("Pythagorean", "Taxonomic", "City", "Minkowski", "Divergence", "dif_sum", "Camberra", "Bray_Curtis", "Soergel", "Ware_Hedges", "Gower") if (is.numeric(coef)) coef = distances[coef] if (!is.null(y)){ if (!(ncol(x)==ncol(y))) stop("Columns don't match") } Type="dissimilarity" if (is.null(y)) {Shape="Squared"} else{ if (ysup) Shape="Squared" else Shape="Rectagular"} result= list() result$TypeData="Continuous" result$Type=Type result$Coefficient=coef result$Data=x result$SupData=y result$r=r if ((!is.null(y) & (!ysup))) result$Proximities=ContinuousDistances(x, y, coef = coef, r = r) else result$Proximities=SymmetricContinuousDistances(x, coef = coef, r = r) result$SupProximities=NULL if (!is.null(y) & (ysup)) result$SupProximities=ContinuousDistances(x, y, coef = coef, r = r) class(result)="proximities" return(result) }
blrm_exnex <- function(formula, data, prior_EX_mu_mean_comp, prior_EX_mu_sd_comp, prior_EX_tau_mean_comp, prior_EX_tau_sd_comp, prior_EX_corr_eta_comp, prior_EX_mu_mean_inter, prior_EX_mu_sd_inter, prior_EX_tau_mean_inter, prior_EX_tau_sd_inter, prior_EX_corr_eta_inter, prior_is_EXNEX_inter, prior_is_EXNEX_comp, prior_EX_prob_comp, prior_EX_prob_inter, prior_NEX_mu_mean_comp, prior_NEX_mu_sd_comp, prior_NEX_mu_mean_inter, prior_NEX_mu_sd_inter, prior_tau_dist, iter=getOption("OncoBayes2.MC.iter" , 2000), warmup=getOption("OncoBayes2.MC.warmup", 1000), save_warmup=getOption("OncoBayes2.MC.save_warmup", TRUE), thin=getOption("OncoBayes2.MC.thin", 1), init=getOption("OncoBayes2.MC.init", 0.5), chains=getOption("OncoBayes2.MC.chains", 4), cores=getOption("mc.cores", 1L), control=getOption("OncoBayes2.MC.control", list()), prior_PD=FALSE, verbose=FALSE ) { call <- match.call() if (missing(data)) data <- environment(formula) mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "na.action"), names(mf), 0) mf <- mf[c(1, m)] f <- Formula::Formula(formula) mf[[1]] <- as.name("model.frame") mf$formula <- f mf <- eval(mf, parent.frame()) num_rhs_terms <- length(f)[2] idx_group_term <- num_rhs_terms has_inter <- TRUE idx_inter_term <- num_rhs_terms-1 mt <- attr(mf, "terms") for (i in seq_len(num_rhs_terms)) { tc <- terms(f, rhs=i) nt <- length(tc)-1 if(nt == 2 && attr(tc, "intercept") == 1 ) num_comp <- i else break } if (num_comp == 1) { has_inter <- FALSE idx_inter_term <- 0 } assert_that(length(f)[1] == 1) for (i in seq_len(num_comp)) assert_that(attr(terms(f, rhs=i), "intercept") == 1, msg="Intercept must be present for all components.") if(has_inter) assert_that(attr(terms(f, rhs=idx_inter_term), "intercept") == 0, msg="No intercept must be present for the interaction model.") y <- model.response(mf) assert_matrix(y, ncols=2, any.missing=FALSE) nr <- array(y[,2]) r <- array(y[,1]) n <- r + nr num_obs <- length(r) group_index_term <- model.part(f, data = mf, rhs = idx_group_term) if(ncol(group_index_term) > 2) stop("Grouping factor must have at most two terms (study index and optionally a stratum).") if(ncol(group_index_term) == 0) stop("Grouping factor must have at least one term (study index).") if(ncol(group_index_term) == 2) { idx_group_index <- 2 idx_strata_index <- 1 } else { idx_group_index <- 1 idx_strata_index <- NA } group_fct <- group_index_term[,idx_group_index] if(!is.factor(group_fct)) group_fct <- factor(group_index) group_index <- as.integer(unclass(group_fct)) num_groups <- nlevels(group_fct) assert_that(NROW(group_index) == num_obs) if(is.na(idx_strata_index)) { strata_fct <- rep(1, num_obs) } else { strata_fct <- group_index_term[,idx_strata_index] } if(!is.factor(strata_fct)) strata_fct <- factor(strata_fct) strata_index <- array(as.integer(unclass(strata_fct))) num_strata <- nlevels(strata_fct) assert_that(NROW(strata_index) == num_obs) .validate_group_stratum_nesting(group_index, strata_index) group_strata <- data.frame(group_index=seq_len(num_groups)) %>% left_join(unique(data.frame(group_index=group_index, strata_index=strata_index)), by="group_index") if(any(is.na(group_strata$strata_index))) { group_strata_undef <- which(is.na(group_strata$strata_index)) message("Info: The group(s) ", paste(levels(group_fct)[group_strata_undef], collapse=", "), " have undefined strata. Assigning first stratum ", levels(strata_fct)[1], ".") group_strata$strata_index[is.na(group_strata$strata_index)] <- 1 } group_index <- array(group_index) X <- .get_X(f, mf, num_comp, has_inter, idx_inter_term) X_comp <- X$comp X_comp_cols <- X$comp_cols X_inter <- X$inter num_inter <- ncol(X_inter) has_inter <- num_inter > 0 assert_matrix(prior_EX_mu_mean_comp, any.missing=FALSE, nrows=num_comp, ncols=2) assert_matrix(prior_EX_mu_sd_comp, any.missing=FALSE, nrows=num_comp, ncols=2) if(num_strata == 1) { if (is.matrix(prior_EX_tau_mean_comp)) prior_EX_tau_mean_comp <- array(prior_EX_tau_mean_comp, c(1, dim(prior_EX_tau_mean_comp))) if (is.matrix(prior_EX_tau_sd_comp)) prior_EX_tau_sd_comp <- array(prior_EX_tau_sd_comp, c(1, dim(prior_EX_tau_sd_comp))) } assert_array(prior_EX_tau_mean_comp, any.missing=FALSE, d=3) assert_array(prior_EX_tau_sd_comp, any.missing=FALSE, d=3) assert_that(all(dim(prior_EX_tau_mean_comp) == c(num_strata, num_comp, 2)), msg="prior_EX_tau_mean_comp must have dimensionality of num_strata x num_comp x 2.\nIn case of only one stratum a matrix of num_comp x 2 is sufficient.") assert_that(all(dim(prior_EX_tau_sd_comp) == c(num_strata, num_comp, 2)), msg="prior_EX_tau_sd_comp must have dimensionality of num_strata x num_comp x 2.\nIn case of only one stratum a matrix of num_comp x 2 is sufficient.") if(missing(prior_EX_corr_eta_comp)) prior_EX_corr_eta_comp <- rep(1.0, times=num_comp) assert_numeric(prior_EX_corr_eta_comp, lower=0, finite=TRUE, any.missing=FALSE, len=num_comp) if(!has_inter & missing(prior_EX_mu_mean_inter)) { prior_EX_mu_mean_inter <- array(0, dim=0) } if(!has_inter & missing(prior_EX_mu_sd_inter)) { prior_EX_mu_sd_inter <- array(0, dim=0) } assert_numeric(prior_EX_mu_mean_inter, any.missing=FALSE, len=num_inter) assert_numeric(prior_EX_mu_sd_inter, any.missing=FALSE, len=num_inter, lower=0) if(!has_inter & missing(prior_EX_tau_mean_inter)) { prior_EX_tau_mean_inter <- matrix(1, nrow=num_strata, ncol=num_inter) } if(!has_inter & missing(prior_EX_tau_sd_inter)) { prior_EX_tau_sd_inter <- matrix(1, nrow=num_strata, ncol=num_inter) } assert_matrix(prior_EX_tau_mean_inter, any.missing=FALSE, nrows=num_strata, ncols=num_inter) assert_matrix(prior_EX_tau_sd_inter, any.missing=FALSE, nrows=num_strata, ncols=num_inter) if(!has_inter & missing(prior_EX_prob_inter)) { prior_EX_prob_inter <- matrix(1, nrow=num_groups, ncol=num_inter) } assert_matrix(prior_EX_prob_comp, any.missing=FALSE, nrows=num_groups, ncols=num_comp) assert_matrix(prior_EX_prob_inter, any.missing=FALSE, nrows=num_groups, ncols=num_inter) if(missing(prior_EX_corr_eta_inter)) prior_EX_corr_eta_inter <- 1.0 assert_number(prior_EX_corr_eta_inter, lower=0, finite=TRUE) if(missing(prior_NEX_mu_mean_comp)) prior_NEX_mu_mean_comp <- prior_EX_mu_mean_comp if(missing(prior_NEX_mu_sd_comp)) prior_NEX_mu_sd_comp <- prior_EX_mu_sd_comp assert_matrix(prior_NEX_mu_mean_comp, any.missing=FALSE, nrows=num_comp, ncols=2) assert_matrix(prior_NEX_mu_sd_comp, any.missing=FALSE, nrows=num_comp, ncols=2) if(missing(prior_NEX_mu_mean_inter)) prior_NEX_mu_mean_inter <- prior_EX_mu_mean_inter if(missing(prior_NEX_mu_sd_inter)) prior_NEX_mu_sd_inter <- prior_EX_mu_sd_inter assert_numeric(prior_NEX_mu_mean_inter, any.missing=FALSE, len=num_inter) assert_numeric(prior_NEX_mu_sd_inter, any.missing=FALSE, len=num_inter, lower=0) if(missing(prior_is_EXNEX_comp)) { prior_is_EXNEX_comp <- apply(prior_EX_prob_comp < 1, 2, any) } else { assert_that( !any(!prior_is_EXNEX_comp & apply(prior_EX_prob_comp < 1, 2, any)), msg = paste("At least one drug component has", "prior_is_ENXEX_comp = FALSE, but", "prior_EX_prob_comp < 1 for one or more group_id's.", "For these component(s), if an EXNEX prior is desired", "set prior_is_EXNEX_comp = TRUE. Otherwise, if a", "fully exchangeable prior is desired, set", "prior_is_EX_prob_comp = 1.") ) if(any((prior_is_EXNEX_comp & apply(prior_EX_prob_comp == 1, 2, all)))) { warning(paste("At least one drug component has", "prior_is_ENXEX_comp = TRUE, but", "prior_EX_prob_comp = 1 for every group_id.", "The sampler will be more efficient if", "prior_is_EXNEX_comp is set to FALSE for those", "component(s).")) } } if(missing(prior_is_EXNEX_inter)) { prior_is_EXNEX_inter <- apply(prior_EX_prob_inter < 1, 2, any) } else { assert_that( !any(!prior_is_EXNEX_inter & apply(prior_EX_prob_inter < 1, 2, any)), msg=paste("At least one drug component has", "prior_is_ENXEX_inter = FALSE, but", "prior_EX_prob_inter < 1 for one or more group_id's.", "For these interaction(s), if an EXNEX prior is desired", "set prior_is_EXNEX_inter = TRUE. Otherwise, if a", "fully exchangeable prior is desired, set", "prior_is_EX_prob_inter = 1.") ) if(any((prior_is_EXNEX_inter & apply(prior_EX_prob_inter == 1, 2, all)))) { warning(paste("At least one interaction prior has", "prior_is_ENXEX_inter = TRUE, but", "prior_EX_prob_inter = 1 for every group_id.", "The sampler will be more efficient if", "prior_is_EXNEX_inter is set to FALSE for those", "interaction(s).")) } } assert_logical(prior_is_EXNEX_comp, any.missing=FALSE, len=num_comp) assert_logical(prior_is_EXNEX_inter, any.missing=FALSE, len=num_inter) assert_number(prior_tau_dist, lower=0, upper=2) assert_logical(prior_PD, any.missing=FALSE, len=1) stan_data <- list( num_obs=num_obs, r=r, nr=nr, num_comp=num_comp, num_inter=num_inter, X_comp=X_comp, X_inter=X_inter, num_groups=num_groups, num_strata=num_strata, group=group_index, stratum=strata_index, group_stratum_cid=array(group_strata$strata_index), prior_tau_dist = prior_tau_dist, prior_EX_prob_comp=prior_EX_prob_comp, prior_EX_prob_inter=prior_EX_prob_inter, prior_EX_mu_mean_comp=prior_EX_mu_mean_comp, prior_EX_mu_sd_comp=prior_EX_mu_sd_comp, prior_EX_tau_mean_comp=prior_EX_tau_mean_comp, prior_EX_tau_sd_comp=prior_EX_tau_sd_comp, prior_EX_corr_eta_comp=array(prior_EX_corr_eta_comp, num_comp), prior_EX_mu_mean_inter=array(prior_EX_mu_mean_inter, num_inter), prior_EX_mu_sd_inter=array(prior_EX_mu_sd_inter, num_inter), prior_EX_tau_mean_inter=prior_EX_tau_mean_inter, prior_EX_tau_sd_inter=prior_EX_tau_sd_inter, prior_EX_corr_eta_inter=prior_EX_corr_eta_inter, prior_NEX_mu_mean_comp=prior_NEX_mu_mean_comp, prior_NEX_mu_sd_comp=prior_NEX_mu_sd_comp, prior_NEX_mu_mean_inter=array(prior_NEX_mu_mean_inter, num_inter), prior_NEX_mu_sd_inter=array(prior_NEX_mu_sd_inter, num_inter), prior_is_EXNEX_comp=array(1*prior_is_EXNEX_comp, num_comp), prior_is_EXNEX_inter=array(1*prior_is_EXNEX_inter, num_inter), prior_PD=1*prior_PD ) control_sampling <- modifyList(list(adapt_delta=0.99, stepsize=0.1), control) exclude_pars <- ifelse(save_warmup, "", c("log_beta_raw", "eta_raw", "tau_log_beta_raw", "tau_eta_raw", "L_corr_log_beta", "L_corr_eta", "beta", "eta", "beta_EX_prob", "eta_EX_prob")) stan_msg <- capture.output(stanfit <- rstan::sampling(stanmodels$blrm_exnex, data=stan_data, warmup=warmup, iter=iter, chains=chains, cores=cores, thin=thin, init=init, control=control_sampling, algorithm = "NUTS", open_progress=FALSE, save_warmup=save_warmup, include=FALSE, pars=exclude_pars )) if(verbose) { cat(paste(c(stan_msg, ""), collapse="\n")) } if(attributes(stanfit)$mode != 0) stop("Stan sampler did not run successfully!") labels <- list() labels$param_log_beta <- .make_label_factor(c("intercept", "log_slope")) labels$param_beta <- .make_label_factor(c("intercept", "slope")) labels$component <- .make_label_factor(.abbreviate_label(sapply(X_comp_cols, "[", 2))) stanfit <- .label_index(stanfit, "mu_log_beta", labels$component, labels$param_log_beta) stanfit <- .label_index(stanfit, "tau_log_beta", strata_fct, labels$component, labels$param_log_beta) stanfit <- .label_index(stanfit, "rho_log_beta", labels$component) stanfit <- .label_index(stanfit, "beta_group", group_fct, labels$component, labels$param_beta) if(save_warmup) stanfit <- .label_index(stanfit, "beta_EX_prob", group_fct, labels$component) stanfit <- .label_index(stanfit, "log_lik_group", group_fct) if(has_inter) { labels$param_eta <- .make_label_factor(.abbreviate_label(colnames(X_inter))) stanfit <- .label_index(stanfit, "eta_group", group_fct, labels$param_eta) if(save_warmup) stanfit <- .label_index(stanfit, "eta_EX_prob", group_fct, labels$param_eta) stanfit <- .label_index(stanfit, "mu_eta", labels$param_eta) stanfit <- .label_index(stanfit, "tau_eta", strata_fct, labels$param_eta) stanfit <- .label_index(stanfit, "Sigma_corr_eta", labels$param_eta, labels$param_eta) } out <- list( call = call, group_strata=group_strata, standata=stan_data, stanfit=stanfit, formula = f, model = mf, terms = mt, xlevels = .getXlevels(mt, mf), data = data, idx_group_term=idx_group_term, idx_inter_term=idx_inter_term, has_inter=has_inter, group_fct=group_fct, strata_fct=strata_fct, labels=labels ) structure(out, class="blrmfit") } .get_X <- function(formula, model_frame, num_comp, has_inter, idx_inter_term) { X_comp <- list() X_comp_cols <- list() for (i in seq_len(num_comp)) { X_comp <- c(X_comp, list(model.matrix(formula, model_frame, rhs=i))) X_comp_cols <- c(X_comp_cols, list(colnames( X_comp[[i]] ))) assert_matrix(X_comp[[i]], ncols=2, any.missing=FALSE) } X_comp <- do.call(abind, c(X_comp, list(along=0))) if(has_inter) X_inter <- model.matrix(formula, model_frame, rhs=idx_inter_term) else X_inter <- model.matrix(~0, model_frame) list(comp=X_comp, inter=X_inter, comp_cols=X_comp_cols) } print.blrmfit <- function(x, ..., prob=0.95, digits=2) { cat("Bayesian Logistic Regression Model with EXchangeability-NonEXchangeability\n\n") cat("Number of observations:", x$standata$num_obs, "\n") cat("Number of groups :", x$standata$num_groups, "\n") cat("Number of strata :", x$standata$num_strata, "\n") cat("Number of components :", x$standata$num_comp, "\n") cat("Number of interactions:", x$standata$num_inter, "\n") cat("EXNEX components :", sum(x$standata$prior_is_EXNEX_comp), "\n") cat("EXNEX interactions :", sum(x$standata$prior_is_EXNEX_inter), "\n") assert_number(prob, lower=0, upper=1, finite=TRUE) probs <- c(0.5-prob/2, 0.5, 0.5+prob/2) Stratum <- Group <- total <- n_total <- NULL cat("\nObservations per group:\n") ds <- as.data.frame(table(x$group_fct)) rownames(ds) <- match(ds$Var1, levels(x$group_fct)) names(ds) <- c("Group", "n") totals <- data.frame(Stratum=x$strata_fct, Group=x$group_fct, total=x$standata$nr+x$standata$r) %>% group_by(Stratum, Group) %>% summarise(n_total=sum(total)) %>% ungroup() ds <- left_join(ds, totals, by="Group") ds$Stratum <- levels(x$strata_fct)[x$group_strata$strata_index] ds$n_total[is.na(ds$n_total)] <- 0 print(ds) cat("\nGroups per stratum:\n") si <- levels(x$strata_fct)[x$group_strata$strata_index] ds <- as.data.frame(table(si), stringsAsFactors = FALSE) names(ds) <- c("Stratum", "Groups") ds$Stratum <- factor(ds$Stratum, levels=levels(x$strata_fct)) ds <- ds[order(ds$Stratum, ds$Groups), ] totals_stratum <- totals %>% group_by(Stratum) %>% summarise(n_total=sum(n_total)) ds <- left_join(ds, totals_stratum, by="Stratum") print(ds) comp_idx <- function(labels) { inter <- grep("intercept\\]$", labels) slope <- grep("slope\\]$", labels) list(inter=inter, slope=slope) } strip_variable <- function(labels) { gsub("^([A-Za-z_]+\\[)(.*)\\]$", "\\2", labels) } cat("\nComponent posterior:\n") cat("Population mean posterior mu_log_beta\n") mu_log_beta <- summary(x$stanfit, pars=c("mu_log_beta"), probs=probs)$summary rs <- rownames(mu_log_beta) idx <- comp_idx(rs) rownames(mu_log_beta) <- gsub("^(.*),intercept|,log_slope$", "\\1", strip_variable(rs)) cat("intercept:\n") print(mu_log_beta[idx$inter,], digits=digits) cat("log-slope:\n") print(mu_log_beta[idx$slope,], digits=digits) cat("\nPopulation heterogeniety posterior tau_log_beta\n") tau_log_beta <- summary(x$stanfit, pars=c("tau_log_beta"), probs=probs)$summary rs <- rownames(tau_log_beta) idx <- comp_idx(rs) rownames(tau_log_beta) <- gsub("^(.*),intercept|,log_slope$", "\\1", strip_variable(rs)) cat("intercept:\n") print(tau_log_beta[idx$inter,], digits=digits) cat("log-slope:\n") print(tau_log_beta[idx$slope,], digits=digits) cat("\nPopulation correlation posterior rho_log_beta\n") rho_log_beta <- summary(x$stanfit, pars=c("rho_log_beta"), probs=probs)$summary rownames(rho_log_beta) <- strip_variable(rownames(rho_log_beta)) print(rho_log_beta, digits=digits) if(x$standata$num_inter > 0) { cat("\nInteraction model posterior:\n") cat("Population mean posterior mu_eta\n") mu_eta <- summary(x$stanfit, pars=c("mu_eta"), probs=probs)$summary rownames(mu_eta) <- strip_variable(rownames(mu_eta)) print(mu_eta, digits=digits) cat("\nPopulation heterogeniety posterior tau_eta\n") tau_eta <- summary(x$stanfit, pars=c("tau_eta"), probs=probs)$summary rownames(tau_eta) <- strip_variable(rownames(tau_eta)) print(tau_eta, digits=digits) cat("\nPopulation correlation posterior Sigma_corr_eta\n") Sigma_corr_eta <- summary(x$stanfit, pars=c("Sigma_corr_eta"), probs=probs)$summary rownames(Sigma_corr_eta) <- strip_variable(rownames(Sigma_corr_eta)) print(Sigma_corr_eta, digits=digits) } else { cat("\nNo interaction model posterior specified.\n") } invisible(x) } .label_index <- function(stanfit, par, ...) { idx <- grep(paste0("^", par, "\\["), names(stanfit)) str <- names(stanfit)[idx] fct <- list(...) idx_str <- t(sapply(strsplit(gsub("(.*)\\[([0-9,]*)\\]$", "\\2", str), ","), as.numeric)) if (length(fct) == 1) { idx_str <- matrix(idx_str, ncol=1) } ni <- ncol(idx_str) colnames(idx_str) <- paste0("idx_", seq_len(ni)) idx_str <- as.data.frame(idx_str) assert_that(ni == length(fct), msg="Insufficient number of indices specified") for(i in seq_len(ni)) { f <- fct[[i]] key <- data.frame(idx=seq_len(nlevels(f)), label=levels(f)) names(key) <- paste0(names(key), "_", i) idx_str <- left_join(idx_str, key, by=paste0("idx_", i)) } labs <- paste0("label_", seq_len(ni)) names(stanfit)[idx] <- paste0(par, "[", do.call(paste, c(idx_str[labs], list(sep=","))), "]") stanfit } .abbreviate_label <- function(label) { minlength <- getOption("OncoBayes2.abbreviate.min", 0) if(minlength > 0) return(abbreviate(label, minlength=minlength)) label } .make_label_factor <- function(labels) { factor(seq_along(labels), levels=seq_along(labels), labels=labels) } model.matrix.blrmfit <- function(object, ...) { return(model.matrix.default(object, object$data)) } .validate_group_stratum_nesting <- function(group_def, strata_def) { group_id <- strata_id <- NULL strata_per_group <- data.frame(group_id=group_def, strata_id=strata_def) %>% group_by(group_id) %>% summarize(num_strata=length(unique(strata_id))) assert_that(all(strata_per_group$num_strata == 1), msg="Inconsistent nesting of groups into strata. Any group must belong to a single stratum.") }
fdp_resolve_read <- function(this_read, yaml) { endpoint <- yaml$run_metadata$local_data_registry_url if ("use" %in% names(this_read)) { alias <- this_read$use } else { alias <- list() } if ("version" %in% names(this_read)) { read_version <- this_read$version } else if ("version" %in% names(alias)) { read_version <- alias$version } else { if ("data_product" %in% names(alias)) { read_dataproduct <- alias$data_product } else { read_dataproduct <- this_read$data_product } if ("namespace" %in% names(alias)) { read_namespace <- alias$namespace } else { read_namespace <- yaml$run_metadata$default_input_namespace } read_namespace_url <- new_namespace(name = read_namespace, endpoint = endpoint) read_namespace_id <- extract_id(read_namespace_url, endpoint = endpoint) entries <- get_entry("data_product", list(name = read_dataproduct, namespace = read_namespace_id)) if (is.null(entries)) { usethis::ui_stop("{read_dataproduct} is not in local registry") } else { read_version <- lapply(entries, function(x) x$version) %>% unlist() %>% max() } } read_version }
linters_to_lint <- list( assignment_linter = lintr::assignment_linter, line_length_linter = lintr::line_length_linter(80), trailing_semicolon_linter = trailing_semicolon_linter, attach_detach_linter = attach_detach_linter, setwd_linter = setwd_linter, sapply_linter = sapply_linter, library_require_linter = library_require_linter, seq_linter = seq_linter ) PREPS$lintr <- function(state, path = state$path, quiet) { path <- normalizePath(path) suppressMessages( state$lintr <- try(lint_package(path, linters = linters_to_lint), silent = TRUE) ) if(inherits(state$lintr, "try-error")) { warning("Prep step for linter failed.") } state }
context("test-path0-sanity") x <- PATH0(minimal_mesh) test_that("PATH0 round trip suite works", { skip_on_cran() expect_silent({ SC(x) SC0(x) plot(SC(x)) plot(SC0(x)) sc_vertex(x) sc_coord(x) sc_node(x) sc_edge(x) sc_segment(x) sc_object(x) sc_path(x) PATH(x) PATH0(x) sc_start(x) sc_end(x) }) expect_warning({ ARC(x) sc_arc(x) } ) expect_s3_class(TRI0(x), "TRI0") expect_s3_class( TRI(x), "TRI") }) test_that("errors when PATH0 round trip unsupported", { expect_error(ARC0(x)) })
findt2ab <- function(tstart, tmid, tend, ulstart, ulmid, xlstart, xlmid, xfstart, uf, lty, lwd, col) { tstart <- tstart tend <- tmid ustart <- ulstart uend <- ulmid xstart <- xlstart xend <- xlmid step <- 0.25 ab <- trajectoryab(tstart, tend, ustart, uend, xstart, xend, step) a <- ab[[1]][1] b <- ab[[1]][2] h01 <- function(t, tstart, ulstart, ulmid, xlstart, xlmid, xfstart, uf, a, b) xab(x0 = xlstart, u0 = ulstart, a, b, t, t0 = tstart) - xfollow(x0 = xfstart, u = uf, t, t0 = tstart) h12 <- function(t, tstart, tmid, xlmid, ulmid, xfstart, uf) xlmid + ulmid * (t - tmid) - xfollow(x0 = xfstart, u = uf, t, t0 = tstart) h0 <- h01(t = tstart, tstart, ulstart, ulmid, xlstart, xlmid, xfstart, uf, a, b) h1 <- h01(t = tmid, tstart, ulstart, ulmid, xlstart, xlmid, xfstart, uf, a, b) j1 <- h12(t = tstart, tstart, tmid, xlmid, ulmid, xfstart, uf) j2 <- h12(t = tend, tstart, tmid, xlmid, ulmid, xfstart, uf) s0 <- sign(h0) s1 <- sign(h1) w1 <- sign(j1) w2 <- sign(j2) t2 <- NA if(s0 != s1) { t2 <- uniroot(h01, tstart = tstart, ulstart = ulstart, ulmid = ulmid, xlstart = xlstart, xlmid = xlmid, xfstart = xfstart, uf = uf, a, b, interval = c(tstart, tmid), tol = 1e-9)$root xl2 <- xab(xlstart, ulstart, a, b, t2, tstart) ul2 <- uab(ulstart, a, b, t2, tstart) ul2 <- min(uf, ulmid) dest <- abs((ul2 - ulstart)/(t2 - tstart)) answer <- as.matrix(data.frame(dest = dest, t2 = t2, xl2, ul2, test = 4)) return(answer) } if(w1 != w2 & is.na(t2)) { t2 <- uniroot(h12, tstart = tstart, tmid = tmid, xlmid = xlmid, ulmid = ulmid, xfstart = xfstart, uf = uf, interval = c(tstart, tend), tol = 1e-9)$root xl2 <- xfollow(xfstart, uf, t2, tstart) ul2 <- min(uf, ulmid) dest <- abs((ul2 - ulstart)/(t2 - tstart)) answer <- as.matrix(data.frame(dest = dest, t2 = t2, xl2, ul2, test = 1)) return(answer) } if(is.na(t2)) { t2 <- (xlmid - xfstart + uf * tstart - ulmid * tmid)/(uf - ulmid) if(t2 > tstart) { xl2 <- xfstart + uf * (t2 - tstart) ul2 <- min(uf, ulmid) dest <- abs((ul2 - ulstart)/(t2 - tstart)) answer <- as.matrix(data.frame(dest = dest, t2 = t2, xl2, ul2, test = 2)) return(answer) } else { t2 <- tmid ul2 <- ulmid xl2 <- xlstart + ulmid * (t2 - tstart) answer <- as.matrix(data.frame(dest = NA, t2 = t2, xl2, ul2, test = 2)) } } }
library(tidyverse) library(ggforce) library(poissoned) library(wesanderson) library(colorspace) s <- round(runif(1, 0, 1000)) set.seed(s) pnts1 <- data.frame( x = rnorm(10, 0, 100), y = rnorm(10, 0, 100) ) %>% expand(x, y) pnts2 <- poisson_disc(ncols = 10, nrows = 20, cell_size = 10, verbose = TRUE) pnts <- rbind(pnts1, pnts2) %>% mutate(fill = round((x / y) %% 4)) w <- max(pnts$x) - min(pnts$x) h <- max(pnts$y) - min(pnts$y) a <- w/h pal = wes_palette("Darjeeling1", 5, "discrete") ggplot(pnts, aes(x, y)) + geom_voronoi_tile(aes(fill = factor(fill))) + geom_voronoi_segment(aes(color = factor(fill)), size = 0.4, alpha = 0.9) + scale_fill_manual(values = pal) + scale_color_manual(values = lighten(pal, 0.2)) + theme_void() + theme( legend.position = "none", plot.background = element_rect(fill = "grey90", color = NA), plot.margin = margin(10, 10, 10, 10) ) ggsave(here::here("genuary", "2021", "2021-14", paste0("2021-14-", s, ".png")), dpi = 320, width = 7, height = 7 / a)
varNDWI<-function(green,nir){ ndwi<-(green-nir)/(green+nir) return(ndwi) }
euklid.ewma.arl <- function(gX, gY, kL, kU, mu, y0, r0=0) { if ( gX <= 0 ) stop("gX must be positive") if ( gY <= 0 ) stop("gY must be positive") if ( kL <= 0 ) stop("kL must be positive") if ( kU <= 0 ) stop("kU must be positive") if ( kU < kL ) stop("kU must be larger than or equal to kL") if ( mu <= 0 ) stop("mu must be positive") if ( y0 <= 0 ) stop("y0 must be positive") if ( r0 < 0 ) stop("r0 must be non-negative") arl <- .C("euklid_ewma_arl", as.integer(gX), as.integer(gY), as.integer(kL), as.integer(kU), as.double(mu), as.double(y0), as.integer(r0), ans=double(length=1), PACKAGE="spc")$ans names(arl) <- "arl" arl }
upliftRF <- function(x, ...) UseMethod("upliftRF") upliftRF.default <- function(x, y, ct, mtry = floor(sqrt(ncol(x))), ntree = 100, split_method = c("ED", "Chisq", "KL", "L1", "Int"), interaction.depth = NULL, bag.fraction = 0.5, minsplit = 20, minbucket_ct0 = round(minsplit/4), minbucket_ct1 = round(minsplit/4), keep.inbag = FALSE, verbose = FALSE, ...) { if(!is.data.frame(x)) stop("uplift: x must be data frame. Aborting...") if(!is.numeric(y)) stop("uplift: y must be a numeric vector. Aborting...") if(!is.numeric(ct)) stop("uplift: ct must be a numeric vector. Aborting...") if (any(is.na(as.vector(x))) | any(is.infinite(as.matrix(x))) | any(is.na(as.vector(y))) | any(is.infinite(as.vector(y))) | any(is.na(as.vector(ct))) | any(is.infinite(as.vector(ct)))) stop("uplift: training data contains NaNs or Inf values. Please correct and try again. Aborting...") out.method <- charmatch(tolower(split_method), c("ed", "chisq", "kl", "l1", "int")) if (is.na(out.method)) stop("uplift: split_method must be one of 'ED', 'Chisq', 'KL', 'L1' or 'Int'. Aborting...") if (bag.fraction <= 0 || bag.fraction > 1) stop("uplift: bag.fraction must be greater than 0 and equal or less than 1. Aborting...") if (!is.null(interaction.depth) && interaction.depth < 1) stop("uplift: interaction.depth must be greater than 0. Aborting...") if (mtry < 1 || mtry > ncol(x)) stop("uplift: invalid mtry: reset to within valid range. Aborting...") if (length(unique(y)) != 2) stop("uplift: upliftRF supports only binary response variables. Aborting...") if (!all(unique(y) %in% c(0,1))) stop("uplift: y must be coded as 0/1. Aborting...") if (!all(unique(ct) %in% c(0,1))) stop("uplift: ct must be coded as 0/1. Aborting...") if (length(unique(ct)) != 2) stop("uplift: upliftRF supports only 2 treatments at the moment. Aborting...") if (length(y) != nrow(x) || nrow(x) != length(ct)) stop("uplift: length of x, y, and ct must be similar. Aborting...") xlevels <- lapply(x, mylevels) ncat <- sapply(xlevels, length) maxcat <- max(ncat) if (maxcat > 32) stop("uplift: can not handle categorical predictors with more than 32 categories. Aborting...") if (minbucket_ct0 < 1 || minbucket_ct1 < 1) stop("uplift: minbucket_ct0 and minbucket_ct1 must be greater than 0. Aborting...") if (verbose) message("uplift: status messages enabled; set \"verbose\" to false to disable") dframe <- cbind(x, ct, y, obs.index = 1:nrow(x)) nr_samples <- nrow(dframe) nr_vars <- ncol(x) dframe_sp <- split(dframe, list(dframe$y, dframe$ct)) split_len <- length(dframe_sp) if (split_len != 4) stop("uplift: each level of treatment ct must have positive (y=1) and negative (y=0) responses. Aborting...") nr_in_samples_sp <- lapply(dframe_sp, function(x) floor(nrow(x) * bag.fraction)) nr_in_samples <- sum(unlist(nr_in_samples_sp)) nr_nodes <- 2 * nr_in_samples + 1 trees <- vector("list", ntree) b.ind.m <- matrix(nrow = nr_in_samples, ncol = ntree, dimnames = list(NULL, paste('tree', 1:ntree,sep=''))) if (verbose) cat("upliftRF: starting.",date(),"\n") for (i in 1:ntree) { if (verbose) if ((i %% 10) == 0 && i < ntree) message( "", i, " out of ", ntree, " trees so far...") b.ind <- lapply(1:split_len, function(k) sample(1:nrow(dframe_sp[[k]]), nr_in_samples_sp[[k]], replace = FALSE)) dframe_sp_s <- lapply(1:split_len, function(k) dframe_sp[[k]][b.ind[[k]], ]) b.dframe <- do.call("rbind", dframe_sp_s) trees[[i]] <- buildTree(b.dframe, mtry, split_method, interaction.depth, minsplit, minbucket_ct0, minbucket_ct1, nr_vars, nr_in_samples, nr_nodes); if (keep.inbag) b.ind.m[, i] <- b.dframe$obs.index } cl <- match.call() var.names <- colnames(x) var.class <- sapply(x, class) res.trees <- list(call = cl, trees = trees, split_method = split_method, ntree = ntree, mtry = mtry, var.names = var.names, var.class = var.class, inbag = b.ind.m) class(res.trees) <- "upliftRF" return(res.trees) }
OrderWR<-function(N,m,ID=FALSE){ b<-c(1:N) grilla<-function(a){ A<-seq(1:length(a)) unoA <-rep(1,length(A)) B<-seq(1:length(a)) unoB <-rep(1,length(B)) P1<-kronecker(A,unoB) P2<-kronecker(unoA,B) grid<-matrix(cbind(P1,P2),ncol=2) return(grid) } if(m==1){ sam<-as.matrix(b) } if(m==2){ sam<-grilla(b) } if(m>2){ sam<-grilla(b) for(l in 3:m){ Sam1<-rep(0,l) for(j in 1:dim(sam)[1]){ for(k in 1:length(b)){ Sam1<-rbind(Sam1,c(sam[j,],b[k])) } } sam<-Sam1[-1,] } } if (is.logical(ID) == TRUE){return(sam)} else{ a<-dim(sam) val<-matrix(NA,a[1],a[2]) for(ii in 1:(dim(val)[1])){ for(jj in 1:(dim(val)[2])){ val[ii,jj]<-ID[sam[ii,jj]] } } return(val) } }