modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Bubb-les/DisloGPT-medium-HarryPotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: roberta-base-fine-Disaster-Tweets-Part3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-fine-Disaster-Tweets-Part3 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3882 - Accuracy: 0.8380 - F1: 0.8377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 203 | 0.4632 | 0.8179 | 0.8184 | | No log | 2.0 | 406 | 0.3882 | 0.8380 | 0.8377 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-msa
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
71
null
--- tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: yelp_review_rating_reberta_base results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.67086 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yelp_review_rating_reberta_base This model was trained from scratch on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 0.8071 - Accuracy: 0.6709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:------:|:--------:|:---------------:| | 0.8355 | 1.0 | 40625 | 0.6449 | 0.8211 | | 0.7709 | 2.0 | 81250 | 0.6615 | 0.7877 | | 0.7141 | 3.0 | 121875 | 0.6712 | 0.7689 | | 0.6511 | 4.0 | 162500 | 0.6724 | 0.7845 | | 0.6229 | 5.0 | 203125 | 0.6719 | 0.8009 | | 0.6036 | 6.0 | 243750 | 0.8071 | 0.6709 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu102 - Datasets 2.6.1 - Tokenizers 0.12.1
CAMeL-Lab/bert-base-arabic-camelbert-ca
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
580
null
--- tags: - bert license: cc-by-4.0 --- ## bert-mlm-medium A medium-size BERT Language Model with an **MLM** pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://aclanthology.org/2022.acl-short.16/) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
CAMeL-Lab/bert-base-arabic-camelbert-da-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
null
--- tags: - bert license: cc-by-4.0 --- ## bert-sr-medium A medium-size BERT Language Model with a **shuffle + random** pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://aclanthology.org/2022.acl-short.16/) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
CAMeL-Lab/bert-base-arabic-camelbert-da-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
54
null
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pong-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -15.96 +/- 0.72 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
CAMeL-Lab/bert-base-arabic-camelbert-mix-ner
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,860
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/imraan/ddpm-butterflies-128/tensorboard?#scalars)
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
132
null
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1661 - F1: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2935 | 1.0 | 715 | 0.1887 | 0.8216 | | 0.1476 | 2.0 | 1430 | 0.1625 | 0.8473 | | 0.0955 | 3.0 | 2145 | 0.1661 | 0.8557 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
71
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
CAMeL-Lab/bert-base-arabic-camelbert-msa-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5528474752734607 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6169 - Matthews Correlation: 0.5528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5233 | 1.0 | 535 | 0.5188 | 0.4126 | | 0.3459 | 2.0 | 1070 | 0.5068 | 0.4955 | | 0.2316 | 3.0 | 1605 | 0.6169 | 0.5528 | | 0.1748 | 4.0 | 2140 | 0.8007 | 0.5306 | | 0.1274 | 5.0 | 2675 | 0.8444 | 0.5440 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
133
null
--- license: creativeml-openrail-m thumbnail: "https://huggingface.co/dallinmackay/JWST-Deep-Space-diffusion/resolve/main/previewJWST.jpg" tags: - stable-diffusion - text-to-image --- ### JWST Deep Space Diffusion This is a fine-tuned Stable Diffusion model (based on v1.5) trained on images taken by the **_James Webb Space Telescope_**, as well as Judy Schmidt. Use the token **_JWST_** in your prompts to use the style (e.g., "jwst, green spiral galaxy"). [CKPT download link](https://huggingface.co/dallinmackay/JWST-Deep-Space-diffusion/resolve/main/JWST-Deep-Space.ckpt) **Images rendered with this model:** _prompt and settings used: **"JWST"** | **Steps: 25, Sampler: Euler_a, CFG scale: 7**_ ![Image Samples](https://huggingface.co/dallinmackay/JWST-Deep-Space-diffusion/resolve/main/previewJWST.jpg) -- [![Become A Patreon](https://badgen.net/badge/become/a%20patron/F96854)](https://www.patreon.com/dallinmackay) -- This model was trained with Dreambooth, using TheLastBen colab notebook -- ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
CAMeL-Lab/bert-base-arabic-camelbert-msa-quarter
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - generated_from_trainer model-index: - name: chemical-bert-uncased-finetuned-cust results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chemical-bert-uncased-finetuned-cust This model is a fine-tuned version of [recobo/chemical-bert-uncased](https://huggingface.co/recobo/chemical-bert-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.5876 | 1.0 | 63 | 2.7997 | | 2.7843 | 2.0 | 126 | 2.3734 | | 2.418 | 3.0 | 189 | 2.1510 | | 2.2247 | 4.0 | 252 | 1.9822 | | 2.062 | 5.0 | 315 | 1.8463 | | 1.9875 | 6.0 | 378 | 1.8293 | | 1.9034 | 7.0 | 441 | 1.7666 | | 1.7818 | 8.0 | 504 | 1.6783 | | 1.7131 | 9.0 | 567 | 1.5754 | | 1.6793 | 10.0 | 630 | 1.5480 | | 1.5773 | 11.0 | 693 | 1.4568 | | 1.5391 | 12.0 | 756 | 1.5101 | | 1.5049 | 13.0 | 819 | 1.4340 | | 1.4476 | 14.0 | 882 | 1.4046 | | 1.4032 | 15.0 | 945 | 1.3593 | | 1.395 | 16.0 | 1008 | 1.3689 | | 1.3353 | 17.0 | 1071 | 1.3350 | | 1.3122 | 18.0 | 1134 | 1.2863 | | 1.3036 | 19.0 | 1197 | 1.3690 | | 1.2644 | 20.0 | 1260 | 1.1904 | | 1.222 | 21.0 | 1323 | 1.1986 | | 1.2091 | 22.0 | 1386 | 1.1650 | | 1.2007 | 23.0 | 1449 | 1.1949 | | 1.1456 | 24.0 | 1512 | 1.1649 | | 1.1426 | 25.0 | 1575 | 1.1498 | | 1.0883 | 26.0 | 1638 | 1.1489 | | 1.0915 | 27.0 | 1701 | 1.1179 | | 1.0635 | 28.0 | 1764 | 1.0726 | | 1.0899 | 29.0 | 1827 | 1.1107 | | 1.0251 | 30.0 | 1890 | 1.0944 | | 1.0387 | 31.0 | 1953 | 1.0488 | | 1.0037 | 32.0 | 2016 | 1.0679 | | 1.0101 | 33.0 | 2079 | 1.0272 | | 0.9595 | 34.0 | 2142 | 1.0158 | | 0.9661 | 35.0 | 2205 | 1.0316 | | 0.9535 | 36.0 | 2268 | 1.0086 | | 0.9269 | 37.0 | 2331 | 1.0221 | | 0.9395 | 38.0 | 2394 | 0.9626 | | 0.9105 | 39.0 | 2457 | 0.9903 | | 0.8888 | 40.0 | 2520 | 0.9892 | | 0.9316 | 41.0 | 2583 | 0.9786 | | 0.8804 | 42.0 | 2646 | 0.9938 | | 0.8589 | 43.0 | 2709 | 1.0105 | | 0.8573 | 44.0 | 2772 | 0.9729 | | 0.8566 | 45.0 | 2835 | 0.9972 | | 0.8392 | 46.0 | 2898 | 1.0085 | | 0.8363 | 47.0 | 2961 | 0.9336 | | 0.8184 | 48.0 | 3024 | 0.9886 | | 0.7964 | 49.0 | 3087 | 0.9661 | | 0.8025 | 50.0 | 3150 | 0.8956 | | 0.8156 | 51.0 | 3213 | 0.9415 | | 0.7906 | 52.0 | 3276 | 0.9381 | | 0.7783 | 53.0 | 3339 | 0.9445 | | 0.7696 | 54.0 | 3402 | 0.8859 | | 0.763 | 55.0 | 3465 | 0.8851 | | 0.7638 | 56.0 | 3528 | 0.9128 | | 0.7576 | 57.0 | 3591 | 0.8629 | | 0.757 | 58.0 | 3654 | 0.8917 | | 0.7232 | 59.0 | 3717 | 0.8956 | | 0.7327 | 60.0 | 3780 | 0.8727 | | 0.7321 | 61.0 | 3843 | 0.8558 | | 0.7131 | 62.0 | 3906 | 0.8876 | | 0.696 | 63.0 | 3969 | 0.8872 | | 0.6996 | 64.0 | 4032 | 0.7758 | | 0.6807 | 65.0 | 4095 | 0.8657 | | 0.6899 | 66.0 | 4158 | 0.8813 | | 0.6873 | 67.0 | 4221 | 0.8488 | | 0.6681 | 68.0 | 4284 | 0.8865 | | 0.6758 | 69.0 | 4347 | 0.8447 | | 0.6626 | 70.0 | 4410 | 0.8421 | | 0.6535 | 71.0 | 4473 | 0.8313 | | 0.6505 | 72.0 | 4536 | 0.8636 | | 0.6654 | 73.0 | 4599 | 0.8433 | | 0.6363 | 74.0 | 4662 | 0.7666 | | 0.6395 | 75.0 | 4725 | 0.8882 | | 0.6206 | 76.0 | 4788 | 0.8409 | | 0.6365 | 77.0 | 4851 | 0.8807 | | 0.6325 | 78.0 | 4914 | 0.8012 | | 0.6142 | 79.0 | 4977 | 0.7705 | | 0.6108 | 80.0 | 5040 | 0.8270 | | 0.62 | 81.0 | 5103 | 0.8552 | | 0.6188 | 82.0 | 5166 | 0.8377 | | 0.6024 | 83.0 | 5229 | 0.7985 | | 0.631 | 84.0 | 5292 | 0.8352 | | 0.5871 | 85.0 | 5355 | 0.8086 | | 0.6014 | 86.0 | 5418 | 0.8129 | | 0.5842 | 87.0 | 5481 | 0.8649 | | 0.5837 | 88.0 | 5544 | 0.8269 | | 0.5958 | 89.0 | 5607 | 0.8407 | | 0.564 | 90.0 | 5670 | 0.7906 | | 0.5748 | 91.0 | 5733 | 0.7393 | | 0.5918 | 92.0 | 5796 | 0.8445 | | 0.5682 | 93.0 | 5859 | 0.8073 | | 0.5497 | 94.0 | 5922 | 0.8165 | | 0.5606 | 95.0 | 5985 | 0.7638 | | 0.5593 | 96.0 | 6048 | 0.7929 | | 0.5556 | 97.0 | 6111 | 0.7991 | | 0.5604 | 98.0 | 6174 | 0.7417 | | 0.5503 | 99.0 | 6237 | 0.8070 | | 0.5561 | 100.0 | 6300 | 0.7845 | | 0.5344 | 101.0 | 6363 | 0.7933 | | 0.5209 | 102.0 | 6426 | 0.7741 | | 0.5337 | 103.0 | 6489 | 0.7760 | | 0.5437 | 104.0 | 6552 | 0.7634 | | 0.5165 | 105.0 | 6615 | 0.7543 | | 0.5343 | 106.0 | 6678 | 0.7661 | | 0.5155 | 107.0 | 6741 | 0.7953 | | 0.512 | 108.0 | 6804 | 0.8253 | | 0.5259 | 109.0 | 6867 | 0.7570 | | 0.5045 | 110.0 | 6930 | 0.7977 | | 0.5115 | 111.0 | 6993 | 0.7598 | | 0.5134 | 112.0 | 7056 | 0.7680 | | 0.5076 | 113.0 | 7119 | 0.7696 | | 0.5126 | 114.0 | 7182 | 0.7451 | | 0.4963 | 115.0 | 7245 | 0.7923 | | 0.5032 | 116.0 | 7308 | 0.7842 | | 0.5137 | 117.0 | 7371 | 0.7239 | | 0.488 | 118.0 | 7434 | 0.8188 | | 0.4938 | 119.0 | 7497 | 0.7479 | | 0.4866 | 120.0 | 7560 | 0.7761 | | 0.4901 | 121.0 | 7623 | 0.7930 | | 0.4877 | 122.0 | 7686 | 0.7733 | | 0.4858 | 123.0 | 7749 | 0.7492 | | 0.4813 | 124.0 | 7812 | 0.7645 | | 0.4817 | 125.0 | 7875 | 0.7938 | | 0.4822 | 126.0 | 7938 | 0.7253 | | 0.4771 | 127.0 | 8001 | 0.7481 | | 0.4769 | 128.0 | 8064 | 0.7402 | | 0.4666 | 129.0 | 8127 | 0.7993 | | 0.474 | 130.0 | 8190 | 0.7653 | | 0.4718 | 131.0 | 8253 | 0.7524 | | 0.4682 | 132.0 | 8316 | 0.7129 | | 0.4698 | 133.0 | 8379 | 0.7806 | | 0.4669 | 134.0 | 8442 | 0.7237 | | 0.4401 | 135.0 | 8505 | 0.7185 | | 0.4656 | 136.0 | 8568 | 0.7542 | | 0.4569 | 137.0 | 8631 | 0.7412 | | 0.4751 | 138.0 | 8694 | 0.7740 | | 0.4474 | 139.0 | 8757 | 0.7636 | | 0.4652 | 140.0 | 8820 | 0.7958 | | 0.4539 | 141.0 | 8883 | 0.7410 | | 0.4452 | 142.0 | 8946 | 0.7652 | | 0.4516 | 143.0 | 9009 | 0.7337 | | 0.4423 | 144.0 | 9072 | 0.7601 | | 0.4542 | 145.0 | 9135 | 0.7692 | | 0.4328 | 146.0 | 9198 | 0.7528 | | 0.4503 | 147.0 | 9261 | 0.7673 | | 0.4416 | 148.0 | 9324 | 0.7193 | | 0.447 | 149.0 | 9387 | 0.7517 | | 0.4434 | 150.0 | 9450 | 0.7241 | | 0.4374 | 151.0 | 9513 | 0.7281 | | 0.4334 | 152.0 | 9576 | 0.7150 | | 0.4209 | 153.0 | 9639 | 0.7531 | | 0.4405 | 154.0 | 9702 | 0.7252 | | 0.4384 | 155.0 | 9765 | 0.7367 | | 0.4265 | 156.0 | 9828 | 0.7111 | | 0.4386 | 157.0 | 9891 | 0.7215 | | 0.4276 | 158.0 | 9954 | 0.7119 | | 0.4289 | 159.0 | 10017 | 0.7587 | | 0.4415 | 160.0 | 10080 | 0.7935 | | 0.4315 | 161.0 | 10143 | 0.7574 | | 0.4227 | 162.0 | 10206 | 0.7296 | | 0.4352 | 163.0 | 10269 | 0.7145 | | 0.4108 | 164.0 | 10332 | 0.7133 | | 0.433 | 165.0 | 10395 | 0.7369 | | 0.4336 | 166.0 | 10458 | 0.7471 | | 0.4016 | 167.0 | 10521 | 0.7329 | | 0.4164 | 168.0 | 10584 | 0.7331 | | 0.4182 | 169.0 | 10647 | 0.7449 | | 0.4136 | 170.0 | 10710 | 0.7365 | | 0.4183 | 171.0 | 10773 | 0.7248 | | 0.4225 | 172.0 | 10836 | 0.7346 | | 0.4294 | 173.0 | 10899 | 0.7099 | | 0.4113 | 174.0 | 10962 | 0.7264 | | 0.4216 | 175.0 | 11025 | 0.6822 | | 0.4208 | 176.0 | 11088 | 0.7198 | | 0.407 | 177.0 | 11151 | 0.7266 | | 0.4164 | 178.0 | 11214 | 0.7466 | | 0.4112 | 179.0 | 11277 | 0.7409 | | 0.4067 | 180.0 | 11340 | 0.7058 | | 0.4297 | 181.0 | 11403 | 0.6918 | | 0.4137 | 182.0 | 11466 | 0.7432 | | 0.4102 | 183.0 | 11529 | 0.7272 | | 0.4184 | 184.0 | 11592 | 0.7309 | | 0.4049 | 185.0 | 11655 | 0.7215 | | 0.4097 | 186.0 | 11718 | 0.7375 | | 0.419 | 187.0 | 11781 | 0.7575 | | 0.4122 | 188.0 | 11844 | 0.7481 | | 0.4089 | 189.0 | 11907 | 0.7790 | | 0.4094 | 190.0 | 11970 | 0.7547 | | 0.4107 | 191.0 | 12033 | 0.7390 | | 0.4044 | 192.0 | 12096 | 0.7472 | | 0.4065 | 193.0 | 12159 | 0.7283 | | 0.4172 | 194.0 | 12222 | 0.7112 | | 0.4124 | 195.0 | 12285 | 0.7470 | | 0.4026 | 196.0 | 12348 | 0.7067 | | 0.4179 | 197.0 | 12411 | 0.7259 | | 0.4027 | 198.0 | 12474 | 0.7328 | | 0.4101 | 199.0 | 12537 | 0.6891 | | 0.3969 | 200.0 | 12600 | 0.7104 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
574
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-1b-korean-convsen1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-korean-convsen1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0014 - Cer: 0.0002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.3161 | 1.0 | 1762 | 0.1495 | 0.0443 | | 0.1188 | 2.0 | 3524 | 0.0125 | 0.0033 | | 0.0399 | 3.0 | 5286 | 0.0014 | 0.0002 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.11.0
CLAck/en-vi
[ "pytorch", "marian", "text2text-generation", "en", "vi", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2022-11-09T01:44:38Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer - video-classification - videomae - vision metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3992 - Accuracy: 0.8645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 148 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1374 | 0.26 | 38 | 1.7413 | 0.5714 | | 0.7949 | 1.26 | 76 | 0.7747 | 0.8 | | 0.4279 | 2.26 | 114 | 0.4053 | 0.9143 | | 0.291 | 3.23 | 148 | 0.3429 | 0.9286 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
CLS/WubiBERT_models
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-09T02:08:51Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # Guohua Diffusion This is the fine-tuned Stable Diffusion model trained on traditional Chinese paintings. Use **guohua style** in your prompts for the effect. ## Sample Image ![example1](https://huggingface.co/Langboat/Guohua-Diffusion/resolve/main/Untitled-1.jpg) ![example2](https://huggingface.co/Langboat/Guohua-Diffusion/resolve/main/Untitled-3.jpg) ## How to use #### WebUI Download the `guohua.ckpt` in model files. #### Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). ```python #!pip install diffusers transformers scipy torch from diffusers import StableDiffusionPipeline import torch model_id = "Langboat/Guohua-Diffusion" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "The Godfather poster in guohua style" image = pipe(prompt).images[0] image.save("./the_god_father.png") ```
CLTL/gm-ner-xlmrbase
[ "pytorch", "tf", "xlm-roberta", "token-classification", "nl", "transformers", "dighum", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2022-11-09T02:13:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 120 | 0.0053 | 0.8410 | 0.9372 | 0.8865 | 0.9991 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
CNT-UPenn/Bio_ClinicalBERT_for_seizureFreedom_classification
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
2022-11-09T02:57:58Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
CSResearcher/TestModel
[ "license:mit" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: toanbui1991/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # toanbui1991/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5101 - Train End Logits Accuracy: 0.6065 - Train Start Logits Accuracy: 0.5692 - Validation Loss: 1.1679 - Validation End Logits Accuracy: 0.6823 - Validation Start Logits Accuracy: 0.6523 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.5101 | 0.6065 | 0.5692 | 1.1679 | 0.6823 | 0.6523 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.10.0 - Datasets 2.6.1 - Tokenizers 0.13.2
Cameron/BERT-mdgender-convai-ternary
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-cased-ner-fcit499 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9417409184372858 - name: Recall type: recall value: 0.950207468879668 - name: F1 type: f1 value: 0.9459552495697073 - name: Accuracy type: accuracy value: 0.9905416329830234 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-cased-ner-fcit499 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0404 - Precision: 0.9417 - Recall: 0.9502 - F1: 0.9460 - Accuracy: 0.9905 ## Model description More information neededx ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 157 | 0.0578 | 0.8782 | 0.8976 | 0.8878 | 0.9825 | | No log | 2.0 | 314 | 0.0425 | 0.9317 | 0.9343 | 0.9330 | 0.9885 | | No log | 3.0 | 471 | 0.0391 | 0.9381 | 0.9433 | 0.9407 | 0.9897 | | 0.1097 | 4.0 | 628 | 0.0397 | 0.9377 | 0.9467 | 0.9422 | 0.9900 | | 0.1097 | 5.0 | 785 | 0.0404 | 0.9417 | 0.9502 | 0.9460 | 0.9905 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Cameron/BERT-rtgender-opgender-annotations
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper3_0020 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper3_0020 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1844 - Train Accuracy: 0.0334 - Validation Loss: 0.5619 - Validation Accuracy: 0.0313 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 5.0832 | 0.0116 | 4.4298 | 0.0124 | 0 | | 4.3130 | 0.0131 | 4.0733 | 0.0141 | 1 | | 3.9211 | 0.0146 | 3.6762 | 0.0157 | 2 | | 3.5505 | 0.0159 | 3.3453 | 0.0171 | 3 | | 3.1592 | 0.0175 | 2.8062 | 0.0199 | 4 | | 2.2581 | 0.0220 | 1.7622 | 0.0252 | 5 | | 1.4671 | 0.0259 | 1.2711 | 0.0276 | 6 | | 1.0779 | 0.0278 | 1.0220 | 0.0288 | 7 | | 0.8591 | 0.0290 | 0.8836 | 0.0295 | 8 | | 0.7159 | 0.0297 | 0.7918 | 0.0300 | 9 | | 0.6105 | 0.0304 | 0.7276 | 0.0303 | 10 | | 0.5287 | 0.0309 | 0.6850 | 0.0306 | 11 | | 0.4614 | 0.0313 | 0.6472 | 0.0308 | 12 | | 0.4049 | 0.0317 | 0.6199 | 0.0310 | 13 | | 0.3562 | 0.0320 | 0.6019 | 0.0311 | 14 | | 0.3139 | 0.0324 | 0.5868 | 0.0311 | 15 | | 0.2766 | 0.0326 | 0.5751 | 0.0312 | 16 | | 0.2438 | 0.0329 | 0.5701 | 0.0312 | 17 | | 0.2116 | 0.0332 | 0.5686 | 0.0313 | 18 | | 0.1844 | 0.0334 | 0.5619 | 0.0313 | 19 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
dccuchile/albert-base-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- tags: - generated_from_trainer model-index: - name: pz-bert-kr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pz-bert-kr This model is a fine-tuned version of [Hanwoon/pz-bert-kr](https://huggingface.co/Hanwoon/bert-kor-base-pz-language-test) on the Multiple datasets. It achieves the following results on the evaluation set: - Loss: 2.6540 ## Model description Korean Language Bert Model ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.7509 | 1.0 | 10546 | 2.7836 | | 2.7325 | 2.0 | 21092 | 2.7776 | | 2.6884 | 3.0 | 31638 | 2.7732 | | 2.6839 | 4.0 | 42184 | 2.7663 | | 2.655 | 5.0 | 52730 | 2.7548 | | 2.6475 | 6.0 | 63276 | 2.7388 | | 2.6172 | 7.0 | 73822 | 2.7406 | | 2.6177 | 8.0 | 84368 | 2.7320 | | 2.5885 | 9.0 | 94914 | 2.7121 | | 2.5743 | 10.0 | 105460 | 2.7156 | | 2.5652 | 11.0 | 116006 | 2.7047 | | 2.5642 | 12.0 | 126552 | 2.6916 | | 2.5644 | 13.0 | 137098 | 2.7033 | | 2.5136 | 14.0 | 147644 | 2.6833 | | 2.532 | 15.0 | 158190 | 2.6742 | | 2.5224 | 16.0 | 168736 | 2.6702 | | 2.5268 | 17.0 | 179282 | 2.6661 | | 2.5077 | 18.0 | 189828 | 2.6629 | | 2.5061 | 19.0 | 200374 | 2.6657 | | 2.4853 | 20.0 | 210920 | 2.6540 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
dccuchile/albert-base-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Chalet37/ddpm-butterflies-128/tensorboard?#scalars)
dccuchile/albert-base-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2022-11-09T06:41:27Z
--- license: mit tags: - generated_from_trainer model-index: - name: GPT2-LM-Finetuned-MBTI results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPT2-LM-Finetuned-MBTI This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9582 - Lm loss: 3.9581 - Perplexity: 52.36 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Lm loss | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:----------:| | 4.1981 | 1.0 | 3470 | 4.0349 | 4.0348 | 56.53 | | 4.0457 | 2.0 | 6940 | 3.9963 | 3.9962 | 54.39 | | 3.9757 | 3.0 | 10410 | 3.9815 | 3.9814 | 53.59 | | 3.9247 | 4.0 | 13880 | 3.9701 | 3.9701 | 52.99 | | 3.885 | 5.0 | 17350 | 3.9614 | 3.9613 | 52.52 | | 3.8523 | 6.0 | 20820 | 3.9627 | 3.9627 | 52.60 | | 3.8274 | 7.0 | 24290 | 3.9607 | 3.9606 | 52.49 | | 3.8076 | 8.0 | 27760 | 3.9585 | 3.9584 | 52.37 | | 3.7924 | 9.0 | 31230 | 3.9576 | 3.9575 | 52.33 | | 3.782 | 10.0 | 34700 | 3.9582 | 3.9581 | 52.36 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
dccuchile/albert-base-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- language: en thumbnail: http://www.huggingtweets.com/dailystoic-thestoicemperor-thetweetofgod/1667978138895/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1272553610434338816/-pN7JIO6_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513636967090917378/u3n2blUC_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/851774550631104514/FnBLKlzZ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Daily Stoic & God (Thee/Thy) & The Stoic Emperor</div> <div style="text-align: center; font-size: 14px;">@dailystoic-thestoicemperor-thetweetofgod</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Daily Stoic & God (Thee/Thy) & The Stoic Emperor. | Data | Daily Stoic | God (Thee/Thy) | The Stoic Emperor | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3241 | 1431 | | Retweets | 87 | 109 | 7 | | Short tweets | 34 | 99 | 40 | | Tweets kept | 3129 | 3033 | 1384 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ho61rre/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dailystoic-thestoicemperor-thetweetofgod's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3uv3jslg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3uv3jslg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dailystoic-thestoicemperor-thetweetofgod') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dccuchile/albert-large-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- language: en thumbnail: http://www.huggingtweets.com/mumukshusavitri/1667977046540/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1588132608243773441/zuQl_2d7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Savitri Mumukshu - सावित्री मुमुक्षु</div> <div style="text-align: center; font-size: 14px;">@mumukshusavitri</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Savitri Mumukshu - सावित्री मुमुक्षु. | Data | Savitri Mumukshu - सावित्री मुमुक्षु | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 123 | | Short tweets | 640 | | Tweets kept | 2475 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21w2o0rg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mumukshusavitri's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2m3kx4jk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2m3kx4jk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mumukshusavitri') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dccuchile/albert-large-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - generated_from_trainer model-index: - name: GPT2-CLS-Finetuned-MBTI results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPT2-CLS-Finetuned-MBTI This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9571 - Cls loss: 1.9559 - Cls Accuracy: 0.6052 - Cls F1: 0.5956 - Cls Precision: 0.6180 - Cls Recall: 0.6052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Cls loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:------------:|:------:|:-------------:|:----------:|:---------------:| | 2.0239 | 1.0 | 3470 | 1.7000 | 0.5262 | 0.4961 | 0.5438 | 0.5262 | 1.6998 | | 1.5182 | 2.0 | 6940 | 1.8171 | 0.5873 | 0.5764 | 0.5971 | 0.5873 | 1.8181 | | 1.3241 | 3.0 | 10410 | 1.9559 | 0.6052 | 0.5956 | 0.6180 | 0.6052 | 1.9571 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
dccuchile/albert-tiny-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - en tags: - align - clip license: apache-2.0 datasets: - kakaobrain/coyo-700m inference: false --- # Model Details This is an unofficial implementation of [ALIGN](https://arxiv.org/abs/2102.05918) trained on [COYO-700M](https://github.com/kakaobrain/coyo-dataset). The official ALIGN is trained on its dataset of 1.8B samples. That dataset is not released to the public. Instead, we trained our implementation of ALIGN model on [COYO-700M](https://github.com/kakaobrain/coyo-dataset). It's developed by Kakao Brain to validate the performance of COYO-700M dataset on a large-scale model. The training took about 8 days on TPU V3-512. ## Model Date April 2022 ## Model Type This is dual encoder model where - image encoder is using EfficientNet-B7 architecture - text encoder is using BERT-base architecture # Training data This model is trained on [COYO-700M](https://github.com/kakaobrain/coyo-dataset) dataset. # Evaluation results | | Dataset | ImageNet | Flickr30k | | MsCOCO | | |----------------------------------|:----------:|:--------:|:---------:|:-------:|:-------:|:-------:| | | | KNN | I2T R@1 | T2I R@1 | I2T R@1 | T2I R@1 | | ALIGN-L2-Large(Google) | ALIGN 1.8B | 76.4 | 88.6 | 75.7 | 58.6 | 45.6 | | ALIGN-B7-Base(Google) | ALIGN 1.8B | 69.3 | - | - | 55.4 | 41.7 | | COYO-ALIGN-B7-Base(Kakao Brain) | COYO-700M | 68.6 | 88.1 | 73.2 | 61.2 | 43.1 |
dccuchile/albert-base-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
586
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 160 with parameters: ``` {'batch_size': 20, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 160, "warmup_steps": 16, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dccuchile/bert-base-spanish-wwm-cased-finetuned-pos
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 --- # Chinese-CLIP-RN50 ## Introduction This is the smallest model of the Chinese CLIP series, with ResNet-50 as the image encoder and RBT3 as the text encoder. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP ## Use with the official API We provide a simple code snippet to show how to use the API for Chinese-CLIP. For starters, please install cn_clip: ```bash # to install the latest stable release pip install cn_clip # or install from source code cd Chinese-CLIP pip install -e . ``` After installation, use Chinese CLIP as shown below: ```python import torch from PIL import Image import cn_clip.clip as clip from cn_clip.clip import load_from_name, available_models print("Available models:", available_models()) # Available models: ['ViT-B-16', 'ViT-L-14', 'ViT-L-14-336', 'ViT-H-14', 'RN50'] device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = load_from_name("RN50", device=device, download_root='./') model.eval() image = preprocess(Image.open("examples/pokemon.jpeg")).unsqueeze(0).to(device) text = clip.tokenize(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]).to(device) with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) # Normalize the features. Please use the normalized features for downstream tasks. image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) logits_per_image, logits_per_text = model.get_similarity(image, text) probs = logits_per_image.softmax(dim=-1).cpu().numpy() print("Label probs:", probs) # [[1.268734e-03 5.436878e-02 6.795761e-04 9.436829e-01]] ``` However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference. <br><br> ## Results **MUGE Text-to-Image Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Setup</th><th colspan="4">Zero-shot</th><th colspan="4">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>42.7</td><td>69.0</td><td>78.0</td><td>63.2</td><td>52.7</td><td>77.9</td><td>85.6</td><td>72.1</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>49.5</td><td>75.7</td><td>83.2</td><td>69.5</td><td>60.1</td><td>82.9</td><td>89.4</td><td>77.5</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>63.0</td><td>84.1</td><td>89.2</td><td>78.8</td><td>68.9</td><td>88.7</td><td>93.1</td><td>83.6</td> </tr> </table> <br> **Flickr30K-CN Retrieval**: <table border="1" width="120%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>51.7</td><td>78.9</td><td>86.3</td><td>77.4</td><td>94.5</td><td>97.0</td><td>76.1</td><td>94.8</td><td>97.5</td><td>92.7</td><td>99.1</td><td>99.6</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>60.9</td><td>86.8</td><td>92.7</td><td>84.4</td><td>96.7</td><td>98.4</td><td>77.6</td><td>96.7</td><td>98.9</td><td>95.6</td><td>99.8</td><td>100.0</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>71.2</td><td>91.4</td><td>95.5</td><td>83.8</td><td>96.9</td><td>98.6</td><td>81.6</td><td>97.5</td><td>98.8</td><td>95.3</td><td>99.7</td><td>100.0</td> </tr> </table> <br> **COCO-CN Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>53.4</td><td>80.2</td><td>90.1</td><td>74.0</td><td>94.4</td><td>98.1</td><td>55.2</td><td>81.0</td><td>90.6</td><td>73.3</td><td>94.0</td><td>98.0</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>56.4</td><td>85.0</td><td>93.1</td><td>79.1</td><td>96.5</td><td>98.9</td><td>63.3</td><td>89.3</td><td>95.7</td><td>79.3</td><td>97.1</td><td>98.7</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>69.2</td><td>89.9</td><td>96.1</td><td>81.5</td><td>96.9</td><td>99.1</td><td>63.0</td><td>86.6</td><td>92.9</td><td>83.5</td><td>97.3</td><td>99.2</td> </tr> </table> <br> **Zero-shot Image Classification**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th>CIFAR10</th><th>CIFAR100</th><th>DTD</th><th>EuroSAT</th><th>FER</th><th>FGVC</th><th>KITTI</th><th>MNIST</th><th>PC</th><th>VOC</th> </tr> <tr align="center"> <td width="150%">GIT</td><td>88.5</td><td>61.1</td><td>42.9</td><td>43.4</td><td>41.4</td><td>6.7</td><td>22.1</td><td>68.9</td><td>50.0</td><td>80.2</td> </tr> <tr align="center"> <td width="150%">ALIGN</td><td>94.9</td><td>76.8</td><td>66.1</td><td>52.1</td><td>50.8</td><td>25.0</td><td>41.2</td><td>74.0</td><td>55.2</td><td>83.0</td> </tr> <tr align="center"> <td width="150%">CLIP</td><td>94.9</td><td>77.0</td><td>56.0</td><td>63.0</td><td>48.3</td><td>33.3</td><td>11.5</td><td>79.0</td><td>62.3</td><td>84.0</td> </tr> <tr align="center"> <td width="150%">Wukong</td><td>95.4</td><td>77.1</td><td>40.9</td><td>50.3</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td> </tr> <tr align="center"> <td width="150%">CN-CLIP</td><td>96.0</td><td>79.7</td><td>51.2</td><td>52.0</td><td>55.1</td><td>26.2</td><td>49.9</td><td>79.4</td><td>63.5</td><td>84.9</td> </tr> </table> <br> ## Citation If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support! ``` @article{chinese-clip, title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese}, author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang}, journal={arXiv preprint arXiv:2211.01335}, year={2022} } ``` <br>
dccuchile/bert-base-spanish-wwm-uncased-finetuned-mldoc
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
39
null
--- tags: - vision widget: - src: https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/festival.jpg candidate_labels: 灯笼, 鞭炮, 对联 example_title: festival - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: 音乐表演, 体育运动 example_title: cat & dog - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg candidate_labels: 梅西, C罗, 马奎尔 example_title: football --- # Chinese-CLIP-ViT-Large-Patch14 ## Introduction This is the large-version of the Chinese CLIP, with ViT-L/14 as the image encoder and RoBERTa-wwm-base as the text encoder. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP (Welcome to star! 🔥🔥) ## Use with the official API We provide a simple code snippet to show how to use the API of Chinese-CLIP to compute the image & text embeddings and similarities. ```python from PIL import Image import requests from transformers import ChineseCLIPProcessor, ChineseCLIPModel model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-large-patch14") processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-large-patch14") url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg" image = Image.open(requests.get(url, stream=True).raw) # Squirtle, Bulbasaur, Charmander, Pikachu in English texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"] # compute image feature inputs = processor(images=image, return_tensors="pt") image_features = model.get_image_features(**inputs) image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute text features inputs = processor(text=texts, padding=True, return_tensors="pt") text_features = model.get_text_features(**inputs) text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute image-text similarity scores inputs = processor(text=texts, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # probs: [[0.0066, 0.0211, 0.0031, 0.9692]] ``` However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference. <br><br> ## Results **MUGE Text-to-Image Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Setup</th><th colspan="4">Zero-shot</th><th colspan="4">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>42.7</td><td>69.0</td><td>78.0</td><td>63.2</td><td>52.7</td><td>77.9</td><td>85.6</td><td>72.1</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>49.5</td><td>75.7</td><td>83.2</td><td>69.5</td><td>60.1</td><td>82.9</td><td>89.4</td><td>77.5</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>63.0</td><td>84.1</td><td>89.2</td><td>78.8</td><td>68.9</td><td>88.7</td><td>93.1</td><td>83.6</td> </tr> </table> <br> **Flickr30K-CN Retrieval**: <table border="1" width="120%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>51.7</td><td>78.9</td><td>86.3</td><td>77.4</td><td>94.5</td><td>97.0</td><td>76.1</td><td>94.8</td><td>97.5</td><td>92.7</td><td>99.1</td><td>99.6</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>60.9</td><td>86.8</td><td>92.7</td><td>84.4</td><td>96.7</td><td>98.4</td><td>77.6</td><td>96.7</td><td>98.9</td><td>95.6</td><td>99.8</td><td>100.0</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>71.2</td><td>91.4</td><td>95.5</td><td>83.8</td><td>96.9</td><td>98.6</td><td>81.6</td><td>97.5</td><td>98.8</td><td>95.3</td><td>99.7</td><td>100.0</td> </tr> </table> <br> **COCO-CN Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>53.4</td><td>80.2</td><td>90.1</td><td>74.0</td><td>94.4</td><td>98.1</td><td>55.2</td><td>81.0</td><td>90.6</td><td>73.3</td><td>94.0</td><td>98.0</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>56.4</td><td>85.0</td><td>93.1</td><td>79.1</td><td>96.5</td><td>98.9</td><td>63.3</td><td>89.3</td><td>95.7</td><td>79.3</td><td>97.1</td><td>98.7</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>69.2</td><td>89.9</td><td>96.1</td><td>81.5</td><td>96.9</td><td>99.1</td><td>63.0</td><td>86.6</td><td>92.9</td><td>83.5</td><td>97.3</td><td>99.2</td> </tr> </table> <br> **Zero-shot Image Classification**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th>CIFAR10</th><th>CIFAR100</th><th>DTD</th><th>EuroSAT</th><th>FER</th><th>FGVC</th><th>KITTI</th><th>MNIST</th><th>PC</th><th>VOC</th> </tr> <tr align="center"> <td width="150%">GIT</td><td>88.5</td><td>61.1</td><td>42.9</td><td>43.4</td><td>41.4</td><td>6.7</td><td>22.1</td><td>68.9</td><td>50.0</td><td>80.2</td> </tr> <tr align="center"> <td width="150%">ALIGN</td><td>94.9</td><td>76.8</td><td>66.1</td><td>52.1</td><td>50.8</td><td>25.0</td><td>41.2</td><td>74.0</td><td>55.2</td><td>83.0</td> </tr> <tr align="center"> <td width="150%">CLIP</td><td>94.9</td><td>77.0</td><td>56.0</td><td>63.0</td><td>48.3</td><td>33.3</td><td>11.5</td><td>79.0</td><td>62.3</td><td>84.0</td> </tr> <tr align="center"> <td width="150%">Wukong</td><td>95.4</td><td>77.1</td><td>40.9</td><td>50.3</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td> </tr> <tr align="center"> <td width="150%">CN-CLIP</td><td>96.0</td><td>79.7</td><td>51.2</td><td>52.0</td><td>55.1</td><td>26.2</td><td>49.9</td><td>79.4</td><td>63.5</td><td>84.9</td> </tr> </table> <br> ## Citation If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support! ``` @article{chinese-clip, title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese}, author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang}, journal={arXiv preprint arXiv:2211.01335}, year={2022} } ``` <br>
dccuchile/distilbert-base-spanish-uncased-finetuned-pos
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - vision widget: - src: https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/festival.jpg candidate_labels: 灯笼, 鞭炮, 对联 example_title: festival - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: 音乐表演, 体育运动 example_title: cat & dog - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg candidate_labels: 梅西, C罗, 马奎尔 example_title: football --- # Chinese-CLIP-ViT-Large-Patch14-336px ## Introduction This is the large-version of the Chinese CLIP, with ViT-L/14@336px as the image encoder and RoBERTa-wwm-base as the text encoder. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP (Welcome to star! 🔥🔥) ## Use with the official API We provide a simple code snippet to show how to use the API of Chinese-CLIP to compute the image & text embeddings and similarities. ```python from PIL import Image import requests from transformers import ChineseCLIPProcessor, ChineseCLIPModel model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-large-patch14-336px") processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-large-patch14-336px") url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg" image = Image.open(requests.get(url, stream=True).raw) # Squirtle, Bulbasaur, Charmander, Pikachu in English texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"] # compute image feature inputs = processor(images=image, return_tensors="pt") image_features = model.get_image_features(**inputs) image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute text features inputs = processor(text=texts, padding=True, return_tensors="pt") text_features = model.get_text_features(**inputs) text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute image-text similarity scores inputs = processor(text=texts, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # probs: [[0.0219, 0.0316, 0.0043, 0.9423]] ``` However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference. <br><br> ## Results **MUGE Text-to-Image Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Setup</th><th colspan="4">Zero-shot</th><th colspan="4">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>42.7</td><td>69.0</td><td>78.0</td><td>63.2</td><td>52.7</td><td>77.9</td><td>85.6</td><td>72.1</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>49.5</td><td>75.7</td><td>83.2</td><td>69.5</td><td>60.1</td><td>82.9</td><td>89.4</td><td>77.5</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>63.0</td><td>84.1</td><td>89.2</td><td>78.8</td><td>68.9</td><td>88.7</td><td>93.1</td><td>83.6</td> </tr> </table> <br> **Flickr30K-CN Retrieval**: <table border="1" width="120%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>51.7</td><td>78.9</td><td>86.3</td><td>77.4</td><td>94.5</td><td>97.0</td><td>76.1</td><td>94.8</td><td>97.5</td><td>92.7</td><td>99.1</td><td>99.6</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>60.9</td><td>86.8</td><td>92.7</td><td>84.4</td><td>96.7</td><td>98.4</td><td>77.6</td><td>96.7</td><td>98.9</td><td>95.6</td><td>99.8</td><td>100.0</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>71.2</td><td>91.4</td><td>95.5</td><td>83.8</td><td>96.9</td><td>98.6</td><td>81.6</td><td>97.5</td><td>98.8</td><td>95.3</td><td>99.7</td><td>100.0</td> </tr> </table> <br> **COCO-CN Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>53.4</td><td>80.2</td><td>90.1</td><td>74.0</td><td>94.4</td><td>98.1</td><td>55.2</td><td>81.0</td><td>90.6</td><td>73.3</td><td>94.0</td><td>98.0</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>56.4</td><td>85.0</td><td>93.1</td><td>79.1</td><td>96.5</td><td>98.9</td><td>63.3</td><td>89.3</td><td>95.7</td><td>79.3</td><td>97.1</td><td>98.7</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>69.2</td><td>89.9</td><td>96.1</td><td>81.5</td><td>96.9</td><td>99.1</td><td>63.0</td><td>86.6</td><td>92.9</td><td>83.5</td><td>97.3</td><td>99.2</td> </tr> </table> <br> **Zero-shot Image Classification**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th>CIFAR10</th><th>CIFAR100</th><th>DTD</th><th>EuroSAT</th><th>FER</th><th>FGVC</th><th>KITTI</th><th>MNIST</th><th>PC</th><th>VOC</th> </tr> <tr align="center"> <td width="150%">GIT</td><td>88.5</td><td>61.1</td><td>42.9</td><td>43.4</td><td>41.4</td><td>6.7</td><td>22.1</td><td>68.9</td><td>50.0</td><td>80.2</td> </tr> <tr align="center"> <td width="150%">ALIGN</td><td>94.9</td><td>76.8</td><td>66.1</td><td>52.1</td><td>50.8</td><td>25.0</td><td>41.2</td><td>74.0</td><td>55.2</td><td>83.0</td> </tr> <tr align="center"> <td width="150%">CLIP</td><td>94.9</td><td>77.0</td><td>56.0</td><td>63.0</td><td>48.3</td><td>33.3</td><td>11.5</td><td>79.0</td><td>62.3</td><td>84.0</td> </tr> <tr align="center"> <td width="150%">Wukong</td><td>95.4</td><td>77.1</td><td>40.9</td><td>50.3</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td> </tr> <tr align="center"> <td width="150%">CN-CLIP</td><td>96.0</td><td>79.7</td><td>51.2</td><td>52.0</td><td>55.1</td><td>26.2</td><td>49.9</td><td>79.4</td><td>63.5</td><td>84.9</td> </tr> </table> <br> ## Citation If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support! ``` @article{chinese-clip, title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese}, author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang}, journal={arXiv preprint arXiv:2211.01335}, year={2022} } ``` <br>
dccuchile/distilbert-base-spanish-uncased-finetuned-xnli
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
2022-11-09T09:45:11Z
--- tags: - vision widget: - src: https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/festival.jpg candidate_labels: 灯笼, 鞭炮, 对联 example_title: festival - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: 音乐表演, 体育运动 example_title: cat & dog - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg candidate_labels: 梅西, C罗, 马奎尔 example_title: football --- # Chinese-CLIP-ViT-Huge-Patch14 ## Introduction This is the huge-version of the Chinese CLIP, with ViT-H/14 as the image encoder and RoBERTa-wwm-large as the text encoder. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP (Welcome to star! 🔥🔥) ## Use with the official API We provide a simple code snippet to show how to use the API of Chinese-CLIP to compute the image & text embeddings and similarities. ```python from PIL import Image import requests from transformers import ChineseCLIPProcessor, ChineseCLIPModel model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-huge-patch14") processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-huge-patch14") url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg" image = Image.open(requests.get(url, stream=True).raw) # Squirtle, Bulbasaur, Charmander, Pikachu in English texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"] # compute image feature inputs = processor(images=image, return_tensors="pt") image_features = model.get_image_features(**inputs) image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute text features inputs = processor(text=texts, padding=True, return_tensors="pt") text_features = model.get_text_features(**inputs) text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute image-text similarity scores inputs = processor(text=texts, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # probs: [[1.1419e-02, 1.0478e-02, 5.2018e-04, 9.7758e-01]] ``` However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference. <br><br> ## Results **MUGE Text-to-Image Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Setup</th><th colspan="4">Zero-shot</th><th colspan="4">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>42.7</td><td>69.0</td><td>78.0</td><td>63.2</td><td>52.7</td><td>77.9</td><td>85.6</td><td>72.1</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>49.5</td><td>75.7</td><td>83.2</td><td>69.5</td><td>60.1</td><td>82.9</td><td>89.4</td><td>77.5</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>63.0</td><td>84.1</td><td>89.2</td><td>78.8</td><td>68.9</td><td>88.7</td><td>93.1</td><td>83.6</td> </tr> </table> <br> **Flickr30K-CN Retrieval**: <table border="1" width="120%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>51.7</td><td>78.9</td><td>86.3</td><td>77.4</td><td>94.5</td><td>97.0</td><td>76.1</td><td>94.8</td><td>97.5</td><td>92.7</td><td>99.1</td><td>99.6</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>60.9</td><td>86.8</td><td>92.7</td><td>84.4</td><td>96.7</td><td>98.4</td><td>77.6</td><td>96.7</td><td>98.9</td><td>95.6</td><td>99.8</td><td>100.0</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>71.2</td><td>91.4</td><td>95.5</td><td>83.8</td><td>96.9</td><td>98.6</td><td>81.6</td><td>97.5</td><td>98.8</td><td>95.3</td><td>99.7</td><td>100.0</td> </tr> </table> <br> **COCO-CN Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>53.4</td><td>80.2</td><td>90.1</td><td>74.0</td><td>94.4</td><td>98.1</td><td>55.2</td><td>81.0</td><td>90.6</td><td>73.3</td><td>94.0</td><td>98.0</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>56.4</td><td>85.0</td><td>93.1</td><td>79.1</td><td>96.5</td><td>98.9</td><td>63.3</td><td>89.3</td><td>95.7</td><td>79.3</td><td>97.1</td><td>98.7</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>69.2</td><td>89.9</td><td>96.1</td><td>81.5</td><td>96.9</td><td>99.1</td><td>63.0</td><td>86.6</td><td>92.9</td><td>83.5</td><td>97.3</td><td>99.2</td> </tr> </table> <br> **Zero-shot Image Classification**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th>CIFAR10</th><th>CIFAR100</th><th>DTD</th><th>EuroSAT</th><th>FER</th><th>FGVC</th><th>KITTI</th><th>MNIST</th><th>PC</th><th>VOC</th> </tr> <tr align="center"> <td width="150%">GIT</td><td>88.5</td><td>61.1</td><td>42.9</td><td>43.4</td><td>41.4</td><td>6.7</td><td>22.1</td><td>68.9</td><td>50.0</td><td>80.2</td> </tr> <tr align="center"> <td width="150%">ALIGN</td><td>94.9</td><td>76.8</td><td>66.1</td><td>52.1</td><td>50.8</td><td>25.0</td><td>41.2</td><td>74.0</td><td>55.2</td><td>83.0</td> </tr> <tr align="center"> <td width="150%">CLIP</td><td>94.9</td><td>77.0</td><td>56.0</td><td>63.0</td><td>48.3</td><td>33.3</td><td>11.5</td><td>79.0</td><td>62.3</td><td>84.0</td> </tr> <tr align="center"> <td width="150%">Wukong</td><td>95.4</td><td>77.1</td><td>40.9</td><td>50.3</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td> </tr> <tr align="center"> <td width="150%">CN-CLIP</td><td>96.0</td><td>79.7</td><td>51.2</td><td>52.0</td><td>55.1</td><td>26.2</td><td>49.9</td><td>79.4</td><td>63.5</td><td>84.9</td> </tr> </table> <br> ## Citation If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support! ``` @article{chinese-clip, title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese}, author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang}, journal={arXiv preprint arXiv:2211.01335}, year={2022} } ``` <br>
CennetOguz/distilbert-base-uncased-finetuned-recipe-1
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-11-09T09:53:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: CR_ELECTRA_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CR_ELECTRA_5E This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3778 - Accuracy: 0.9133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.643 | 0.33 | 50 | 0.6063 | 0.66 | | 0.5093 | 0.66 | 100 | 0.4277 | 0.84 | | 0.2986 | 0.99 | 150 | 0.3019 | 0.8933 | | 0.2343 | 1.32 | 200 | 0.2910 | 0.9 | | 0.1808 | 1.66 | 250 | 0.2892 | 0.9133 | | 0.1922 | 1.99 | 300 | 0.3397 | 0.8867 | | 0.1623 | 2.32 | 350 | 0.2847 | 0.92 | | 0.1206 | 2.65 | 400 | 0.2918 | 0.9133 | | 0.1518 | 2.98 | 450 | 0.3163 | 0.9067 | | 0.1029 | 3.31 | 500 | 0.3667 | 0.8867 | | 0.1133 | 3.64 | 550 | 0.3562 | 0.9067 | | 0.0678 | 3.97 | 600 | 0.3394 | 0.9067 | | 0.0461 | 4.3 | 650 | 0.3821 | 0.9067 | | 0.0917 | 4.64 | 700 | 0.3774 | 0.9133 | | 0.0633 | 4.97 | 750 | 0.3778 | 0.9133 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
CennetOguz/distilbert-base-uncased-finetuned-recipe-accelerate-1
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - generated_from_trainer - stable diffusion - beautiful - masterpiece datasets: - Gustavosta/Stable-Diffusion-Prompts model-index: - name: tiny-gpt2-magicprompt results: [] widget: - text: "morning sun over Jakarta" example_title: "morning sun" - text: "WARNING: pip is" example_title: "pip" - text: "sentient cheese" example_title: "sentient cheese" - text: "cheeps are" example_title: "cheeps" parameters: min_length: 32 max_length: 64 no_repeat_ngram_size: 1 do_sample: True --- # tiny-gpt2-magicprompt ~~Generate/augment your prompt, stable diffusion style.~~ Enter a new dimension of creativity This model is a fine-tuned version of [sshleifer/tiny-gpt2](https://huggingface.co/sshleifer/tiny-gpt2) on the Gustavosta/Stable-Diffusion-Prompts dataset. It achieves the following results on the evaluation set: - Loss: 10.7918 - perplexity: 48618.8756 ## Intended uses & limitations ??? ## Training and evaluation data refer to the `Gustavosta/Stable-Diffusion-Prompts` dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 32 - total_train_batch_size: 512 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 10.8201 | 0.96 | 16 | 10.8191 | | 10.8167 | 1.96 | 32 | 10.8145 | | 10.8117 | 2.96 | 48 | 10.8095 | | 10.8058 | 3.96 | 64 | 10.8025 | | 10.7997 | 4.96 | 80 | 10.7989 | | 10.7959 | 5.96 | 96 | 10.7947 | | 10.7934 | 6.96 | 112 | 10.7925 | | 10.7924 | 7.96 | 128 | 10.7919 | | 10.7921 | 8.96 | 144 | 10.7918 | | 10.792 | 9.96 | 160 | 10.7918 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
Certified-Zoomer/DialoGPT-small-rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: toxicBERT-params results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # toxicBERT-params This model is a fine-tuned version of [unitary/toxic-bert](https://huggingface.co/unitary/toxic-bert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2938 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 174 | 0.2364 | 0.0 | 0.0 | 0.0 | 0.9077 | | No log | 2.0 | 348 | 0.2113 | 0.0 | 0.0 | 0.0 | 0.9190 | | 0.2654 | 3.0 | 522 | 0.2195 | 0.0 | 0.0 | 0.0 | 0.9223 | | 0.2654 | 4.0 | 696 | 0.2401 | 0.0 | 0.0 | 0.0 | 0.9211 | | 0.2654 | 5.0 | 870 | 0.2679 | 0.0 | 0.0 | 0.0 | 0.9198 | | 0.0844 | 6.0 | 1044 | 0.2930 | 0.0 | 0.0 | 0.0 | 0.9138 | | 0.0844 | 7.0 | 1218 | 0.2938 | 0.0 | 0.0 | 0.0 | 0.9174 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Chaddmckay/Cdm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer - stable diffusion - diffusion - text2image - prompt augment - prompt engineering datasets: - Gustavosta/Stable-Diffusion-Prompts model-index: - name: distilgpt2-magicprompt-SD results: [] thumbnail: https://i.ibb.co/WkmTnZD/image.png widget: - text: "morning sun over Jakarta" example_title: "morning sun" - text: "WARNING: pip is" example_title: "pip" - text: "sentient cheese" example_title: "sentient cheese" - text: "cheeps are" example_title: "cheeps" - text: "avocado armchair" example_title: "creative prompt" - text: "Landscape of" example_title: "landscape" parameters: min_length: 16 max_new_tokens: 24 no_repeat_ngram_size: 1 do_sample: True --- # distilgpt2-magicprompt-SD [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/pszemraj/bdddf9c3fe92d1ac2654730016d64c80/demo-distilgpt2-magicprompt.ipynb) Generate/augment your prompt, stable diffusion style. This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the Gustavosta/Stable-Diffusion-Prompts dataset. It achieves the following results on the evaluation set: - Loss: 1.3089 - eval_steps_per_second = 17.201 - perplexity = 3.7022 ## example Results in (_DALL-E, but you get the idea_): ![example](https://i.ibb.co/WkmTnZD/image.png) <br> this `distilgpt2` version is probably small/fast enough to be used locally on CPU! ## basic usage install transformers as needed: ```bash pip install -U transformers ``` load and query through a `pipeline` object: ```python from transformers import pipeline model_tag = "pszemraj/distilgpt2-magicprompt-SD" generator = pipeline( "text-generation", model=model_tag, ) prompt = "The Answer to Why" result = generator( prompt, max_new_tokens=24, ) # generate, adjust/add kwargs as needed print(result[0]["generated_text"]) ``` ## Training and evaluation data refer to the `Gustavosta/Stable-Diffusion-Prompts` dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7061 | 0.99 | 33 | 2.5859 | | 2.08 | 1.99 | 66 | 1.9965 | | 1.7623 | 2.99 | 99 | 1.7248 | | 1.5408 | 3.99 | 132 | 1.5449 | | 1.4147 | 4.99 | 165 | 1.4437 | | 1.3593 | 5.99 | 198 | 1.3768 | | 1.2703 | 6.99 | 231 | 1.3362 | | 1.2528 | 7.99 | 264 | 1.3175 | | 1.1981 | 8.99 | 297 | 1.3091 | | 1.2117 | 9.99 | 330 | 1.3089 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
Chaewon/mnmt_decoder_en
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2454 | 1.0 | 5533 | 1.2005 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Chaewon/mnmt_decoder_en_gpt2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 229.17 +/- 21.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ChaitanyaU/FineTuneLM
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_nosp_0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_nosp_0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9349 - Train Accuracy: 0.0157 - Validation Loss: 1.6630 - Validation Accuracy: 0.0172 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 7.5559 | 0.0010 | 6.3853 | 0.0013 | 0 | | 6.3227 | 0.0021 | 5.7023 | 0.0038 | 1 | | 4.9825 | 0.0063 | 3.6302 | 0.0109 | 2 | | 2.9413 | 0.0126 | 2.1959 | 0.0154 | 3 | | 1.9349 | 0.0157 | 1.6630 | 0.0172 | 4 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
Chakita/Friends
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-full-small_gpu_deneme4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-full-small_gpu_deneme4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Champion/test_upload_vox2_wavlm_epoch8
[ "sidekit", "audio" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ai5_sum_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ai5_sum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Validation Loss: nan - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.05, 'decay_steps': 165000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | nan | nan | 0 | | nan | nan | 1 | | nan | nan | 2 | | nan | nan | 3 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
Chan/distilroberta-base-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_nosp_0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_nosp_0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7431 - Train Accuracy: 0.0199 - Validation Loss: 0.9603 - Validation Accuracy: 0.0196 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 7.5559 | 0.0010 | 6.3853 | 0.0013 | 0 | | 6.3227 | 0.0021 | 5.7023 | 0.0038 | 1 | | 4.9825 | 0.0063 | 3.6302 | 0.0109 | 2 | | 2.9413 | 0.0126 | 2.1959 | 0.0154 | 3 | | 1.9349 | 0.0157 | 1.6630 | 0.0172 | 4 | | 1.4741 | 0.0171 | 1.3813 | 0.0181 | 5 | | 1.1975 | 0.0181 | 1.2161 | 0.0186 | 6 | | 1.0048 | 0.0188 | 1.0990 | 0.0191 | 7 | | 0.8598 | 0.0194 | 1.0165 | 0.0194 | 8 | | 0.7431 | 0.0199 | 0.9603 | 0.0196 | 9 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
Chandanbhat/distilbert-base-uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> ### Arcane based Artwork Diffusion Model I present you fine tuned model of stable-diffusion-v1-5, which heavily based of work of great artworks from Legend of Zelda: Breath of The Wild. Use the tokens **_botw style_** in your prompts for the effect. Model was trained using the diffusers library, which based on Dreambooth implementation. Training steps included: - prior preservation loss - train-text-encoder fine tuning ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ```python #!pip install diffusers transformers scipy torch from diffusers import StableDiffusionPipeline import torch model_id = "s3nh/s3nh/zelda-botw-stable-diffusion" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "Rain forest, botw style" image = pipe(prompt).images[0] image.save("./example_output.png") ``` # Gallery ## Grumpy cat, botw style <img src = "https://huggingface.co/s3nh/zelda-botw-stable-diffusion/resolve/main/grumpy cat0.png"> <img src = "https://huggingface.co/s3nh/zelda-botw-stable-diffusion/resolve/main/grumpy cat1.png"> <img src = "https://huggingface.co/s3nh/zelda-botw-stable-diffusion/resolve/main/grumpy cat2.png"> <img src = "https://huggingface.co/s3nh/zelda-botw-stable-diffusion/resolve/main/grumpy cat3.png"> ## Landscape, botw style ![image](https://huggingface.co/s3nh/zelda-botw-stable-diffusion/resolve/main/landscape0.png) ![image](https://huggingface.co/s3nh/zelda-botw-stable-diffusion/resolve/main/landscape1.png) ![image](https://huggingface.co/s3nh/zelda-botw-stable-diffusion/resolve/main/landscape2.png) ![image](https://huggingface.co/s3nh/zelda-botw-stable-diffusion/resolve/main/landscape3.png) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
CharlieChen/feedback-bigbird
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.4467807407096838 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4908 - Matthews Correlation: 0.4468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5214 | 1.0 | 535 | 0.4908 | 0.4468 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Cheatham/xlm-roberta-base-finetuned
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2100 with parameters: ``` {'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 2100, "warmup_steps": 210, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Cheatham/xlm-roberta-large-finetuned-d12
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- tags: - bert license: cc-by-4.0 --- ## bert-ascii-small A small-size BERT Language Model pre-trained by predicting the summation of the **ASCII** code values of the characters in a masked token as a pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://aclanthology.org/2022.acl-short.16/) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
Cheatham/xlm-roberta-large-finetuned-d12_2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/alibidaran/ddpm-butterflies-128/tensorboard?#scalars)
Cheatham/xlm-roberta-large-finetuned-r01
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
null
--- language: - el license: apache-2.0 tags: - hf-asr-leaderboard - whisper-medium - mozilla-foundation/common_voice_11_0 - greek - whisper-event - generated_from_trainer - whisper-event datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: Whisper Medium El Greco results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: el split: test metrics: - name: Wer type: wer value: 10.7448 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium El Greco This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4245 - eval_wer: 10.7448 - eval_runtime: 1107.1212 - eval_samples_per_second: 1.532 - eval_steps_per_second: 0.096 - epoch: 33.98 - step: 7000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 7000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Cheatham/xlm-roberta-large-finetuned
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- license: mit --- ### Banana from [vibrant venture](https://store.steampowered.com/app/1264520), on [that thing](https://huggingface.co/hakurei/waifu-diffusion) via Dreambooth #### model by no3 This model fine-tuned Banana from [vibrant venture](https://store.steampowered.com/app/1264520) taught to [that thing](https://huggingface.co/hakurei/waifu-diffusion) with Dreambooth. It can be used by modifying the `instance_prompt`: **sks ba** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) ### Note This model is not **heavily tested** recommended generic prompts if the output not creative is in progress, also it may be an update for this model. If you have issues or questions feel free to visit the Community Tab and start discussion about it. Here are the images used for training this concept: ![image 1](https://huggingface.co/no3/banana-wd-1.3-beta1/resolve/main/concept_images/1.jpg) ![image 2](https://huggingface.co/no3/banana-wd-1.3-beta1/resolve/main/concept_images/2.jpg) ![image 3](https://huggingface.co/no3/banana-wd-1.3-beta1/resolve/main/concept_images/3.jpg) ![image 4](https://huggingface.co/no3/banana-wd-1.3-beta1/resolve/main/concept_images/4.jpg) ![image 5](https://huggingface.co/no3/banana-wd-1.3-beta1/resolve/main/concept_images/5.jpg) [And the bad edited one](https://huggingface.co/no3/banana-wd-1.3-beta1/resolve/main/concept_images/6.jpg)
Cheatham/xlm-roberta-large-finetuned4
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- tags: - bert license: cc-by-4.0 --- ## bert-fc-small A small-size BERT Language Model with a **first character** prediction pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://aclanthology.org/2022.acl-short.16/) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
CheonggyeMountain-Sherpa/kogpt-trinity-poem
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- tags: - bert license: cc-by-4.0 --- ## bert-mlm-small A small-size BERT Language Model with an **MLM** pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://aclanthology.org/2022.acl-short.16/) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
Chertilasus/main
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - bert license: cc-by-4.0 --- ## bert-rand-small A small-size BERT Language Model with a **random** pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://aclanthology.org/2022.acl-short.16/) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
Chikita1/www_stash_stock
[ "license:bsd-3-clause-clear" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - bert license: cc-by-4.0 --- ## bert-sr-small A small-size BERT Language Model with a **shuffle + random** pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://aclanthology.org/2022.acl-short.16/) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
Ching/negation_detector
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: mit tags: - generated_from_trainer model-index: - name: pii_toxicity results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pii_toxicity This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6
Chinmay/mlindia
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - tabular - regression - tabular-regression datasets: - Robertooo/autotrain-data-hmaet co2_eq_emissions: emissions: 0.04056452250649151 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 2037366889 - CO2 Emissions (in grams): 0.0406 ## Validation Metrics - Loss: 0.003 - R2: 0.999 - MSE: 0.000 - MAE: 0.001 - RMSLE: 0.002 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
Chiuchiyin/DialoGPT-small-Donald
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-11-09T12:08:44Z
--- tags: - autotrain - tabular - regression - tabular-regression datasets: - Robertooo/autotrain-data-hmaet co2_eq_emissions: emissions: 0.30327638531180195 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 2037366891 - CO2 Emissions (in grams): 0.3033 ## Validation Metrics - Loss: 0.067 - R2: 0.486 - MSE: 0.005 - MAE: 0.055 - RMSLE: 0.036 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
ChoboAvenger/DialoGPT-small-joshua
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-09T12:25:34Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: DavidNo/albert-xxlarge-v2-finetuned-squadv2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # DavidNo/albert-xxlarge-v2-finetuned-squadv2 This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7633 - Train End Logits Accuracy: 0.6680 - Train Start Logits Accuracy: 0.6407 - Validation Loss: 1.1441 - Validation End Logits Accuracy: 0.5277 - Validation Start Logits Accuracy: 0.5106 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16494, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.0842 | 0.6032 | 0.5767 | 1.1372 | 0.5166 | 0.5058 | 0 | | 0.7633 | 0.6680 | 0.6407 | 1.1441 | 0.5277 | 0.5106 | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
ChrisP/xlm-roberta-base-finetuned-marc-en
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: gogzy/t5-base-finetuned_renre_2021_40 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gogzy/t5-base-finetuned_renre_2021_40 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.4875 - Validation Loss: 8.0355 - Train Rouge1: 7.0588 - Train Rouge2: 0.0 - Train Rougel: 4.7059 - Train Rougelsum: 4.7059 - Train Gen Len: 19.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 5.2501 | 9.8474 | 19.5652 | 11.1111 | 13.0435 | 19.5652 | 19.0 | 0 | | 7.5344 | 9.4134 | 7.0588 | 0.0 | 4.7059 | 4.7059 | 19.0 | 1 | | 5.0059 | 8.9935 | 7.0588 | 0.0 | 4.7059 | 4.7059 | 19.0 | 2 | | 5.3830 | 8.5525 | 7.0588 | 0.0 | 4.7059 | 4.7059 | 19.0 | 3 | | 5.4875 | 8.0355 | 7.0588 | 0.0 | 4.7059 | 4.7059 | 19.0 | 4 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
ChrisVCB/DialoGPT-medium-cmjs
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-11-09T12:30:08Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1, "warmup_steps": 1, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ChrisVCB/DialoGPT-medium-ej
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 tags: - pytorch - diffusers - super-resolution - diffusion-super-resolution --- # Latent Diffusion Models (LDM) for super-resolution **Paper**: [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) **Abstract**: *By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs.* **Authors** *Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer* ## Usage ### Inference with a pipeline ```python !pip install git+https://github.com/huggingface/diffusers.git import requests from PIL import Image from io import BytesIO from diffusers import LDMSuperResolutionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "CompVis/ldm-super-resolution-4x-openimages" # load model and scheduler pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id) pipeline = pipeline.to(device) # let's download an image url = "https://user-images.githubusercontent.com/38061659/199705896-b48e17b8-b231-47cd-a270-4ffa5a93fa3e.png" response = requests.get(url) low_res_img = Image.open(BytesIO(response.content)).convert("RGB") low_res_img = low_res_img.resize((128, 128)) # run pipeline in inference (sample random noise and denoise) upscaled_image = pipeline(low_res_img, num_inference_steps=100, eta=1).images[0] # save image upscaled_image.save("ldm_generated_image.png") ```
Chun/w-en2zh-hsk
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2022-11-09T12:59:54Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: dmlab_30 type: dmlab_30 metrics: - type: mean_reward value: 9.18 +/- 0.64 name: mean_reward verified: false --- A(n) **APPO** model trained on the **dmlab_30** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
Ci/Pai
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -120.71 +/- 17.76 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ciruzzo/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-11-09T13:41:28Z
--- tags: - generated_from_trainer model-index: - name: GPT2-CLS-Finetuned-MBTI-GPT2-CLS-Finetuned-MBTI-JointGPT2-Warmup-from-CLS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPT2-CLS-Finetuned-MBTI-GPT2-CLS-Finetuned-MBTI-JointGPT2-Warmup-from-CLS This model is a fine-tuned version of [GItaf/GPT2-CLS-Finetuned-MBTI](https://huggingface.co/GItaf/GPT2-CLS-Finetuned-MBTI) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Clarianliz30/Caitlyn
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: code tags: - code - gpt2 - generation datasets: - giulio98/xlcost-single-prompt widget: - text: "'''\nfunction to add two numbers\n'''\n###\n" example_title: "add two numbers" model-index: - name: codegen-350M-multi-xlcost results: - task: name: Code Generation type: code-generation dataset: name: "XLCost" type: code_eval_outputs metrics: - name: pass@1 type: code_eval_outputs value: 3.325 - name: pass@10 type: code_eval_outputs value: 15 - name: codebleu type: codebleu value: 20.18191 --- # CodeGen-350M-multi-xlcost-v2 CodeGen-350M-multi-xlcost is a CodeGen model fine-tuned on the Python split of XLCost dataset using Deepspeed. ## Usage You can load the CodeGen-350M-multi-xlcost-v2 model and tokenizer directly in `transformers`: ```Python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("giulio98/codegen-350M-multi-xlcost-v2") model = AutoModelForCausalLM.from_pretrained("giulio98/codegen-350M-multi-xlcost-v2") text = tokenizer.eos_token + "\'\'\'\n" + "function to add two numbers" + "\n\'\'\'\n" + "###\n" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` Output: ```Python ''' function to add two numbers ''' ### def add(a, b): return a + b ``` ## Training The model was finetuned on [XLCost-single-prompt](https://huggingface.co/datasets/giulio98/xlcost-single-prompt), an improved version of the original XLCost dataset [ xlcost-text-to-code](https://huggingface.co/datasets/codeparrot/xlcost-text-to-code). Below the hyperparameters. | Hyperparameter | value | |---------------------------|--------| |Per device train batch size| 16 | |Context size| 1024 | |Training steps| 259| |Gradient accumulation| 2| |Gradient checkpointing| True| |Learning rate|1.8e-05 | |Weight decay | 0.1 | |Warmup steps| 35 | |Schedule| linear | |zero stage| 2 | Below the deepspeed configuration ```Python { "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": 0.000018, "betas": [ 0.9, 0.999 ], "eps": 1e-8, "weight_decay": 0.1 } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 0.000018, "warmup_num_steps": 35 } }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": false }, "allgather_partitions": true, "allgather_bucket_size": 200000000, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 200000000, "contiguous_gradients": true }, "gradient_accumulation_steps": 2, "train_batch_size": 32, "train_micro_batch_size_per_gpu": 16, "gradient_clipping": 1, "wall_clock_breakdown": false } ``` The training was executed on 1 x V100 (16GB) GPU for 28min 50sec ## Performance We evaluated the model on the first 400 samples of XLCOST's [XLCost-single-prompt test split](https://huggingface.co/datasets/giulio98/xlcost-single-prompt/viewer/Python/test) and comparing the outputs of the generated codes with respect to the expected output using pass@k metric. | Metric | codegen-350M-multi-xlcost-v2 | codegen-350M-multi-xlcost | codegen-350M-mono(zero-shot) | codegen-350M-mono (one-shot) | codegen-350M-mono(few-shot) |--------|-----|-----|-----|-----|-----| |pass@1 |3.325% |3.70% | 0.4% | 0.35% | 0.48% | |pass@10 |15%| 14.5% | 3.5% | 3 % | 3.75% | |CodeBLEU |20.18%| None | 15.15% | 19.42 % | 20.27% | The [pass@k metric](https://huggingface.co/metrics/code_eval) tells the probability that at least one out of k generations passes the tests. ## Citations ``` @article{Nijkamp2022ACP, title={A Conversational Paradigm for Program Synthesis}, author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming}, journal={arXiv preprint}, year={2022} } ```
ClaudeYang/awesome_fb_model
[ "pytorch", "bart", "text-classification", "dataset:multi_nli", "transformers", "zero-shot-classification" ]
zero-shot-classification
{ "architectures": [ "BartForSequenceClassification" ], "model_type": "bart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: openrail library_name: diffusers tags: - TPU - JAX - Flax - stable-diffusion - text-to-image language: - en datasets: - camenduru/plushies inference: false --- flax 🧨 checkpoints are here. ckpt and 🧨 pytorch checkpoints here 🎉🎊 https://huggingface.co/camenduru/plushies-pt <br/> Trained with google cloud TPUs. ``` Runtime: 3h 26m 44s Steps: 18000 Precision: bf16 Learning Rate: 1e-6 ``` ![plushies](/camenduru/plushies/resolve/main/samples.jpg)
CleveGreen/FieldClassifier
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
34
null
--- tags: - autotrain - text-classification language: - ca widget: - text: "Aquest dissabte, Francesc Solé va arribar a la meta a Ordino com el guanyador del Ultra Trail d'Andorra després de 170km amb un desnivell altitudinal de 13 500 metres, en un temps de 31 hores i 9 minuts." - text: "Una cançó és una composició musical que conté, a vegades, una part amb veu o melodia vocal, és a dir, amb text, cantada, però també pot ser simplement un conjunt de notes tocades sistemàticament, formant un ritme." datasets: - projecte-aina/WikiCAT_ca co2_eq_emissions: emissions: 47.543878831739285 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2036166932 - CO2 Emissions (in grams): 47.5439 ## Validation Metrics - Loss: 0.701 - Accuracy: 0.787 - Macro F1: 0.776 - Micro F1: 0.787 - Weighted F1: 0.784 - Macro Precision: 0.786 - Micro Precision: 0.787 - Weighted Precision: 0.788 - Macro Recall: 0.775 - Micro Recall: 0.787 - Weighted Recall: 0.787 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crodri/autotrain-wikicat_ca-2036166932 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crodri/wikicat_ca", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crodri/wikicat_ca", use_auth_token=True) inputs = tokenizer("Una cançó és una composició musical que conté, a vegades, una part amb veu o melodia vocal, és a dir, amb text, cantada, però també pot ser simplement un conjunt de notes tocades sistemàticament, formant un ritme.", return_tensors="pt") outputs = model(**inputs) ```
CleveGreen/JobClassifier_v2_gpt
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "GPT2ForSequenceClassification" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- tags: - generated_from_trainer model-index: - name: PELM-JointGPT2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PELM-JointGPT2 This model is based on PELM framework and initialised from [genGPT-2](https://huggingface.co/GItaf/GPT2-LM-Finetuned-MBTI), then fine-tuned on the [MBTI dataset](https://www.kaggle.com/datasets/datasnaek/mbti-type). It achieves the following results on the evaluation set: - Loss: 4.3556 - Cls loss: 1.5778 - Lm loss: 3.9609 - Cls Accuracy: 0.6202 - Cls F1: 0.6126 - Cls Precision: 0.6216 - Cls Recall: 0.6202 - Perplexity: 52.50 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 4.2735 | 1.0 | 3470 | 4.3562 | 1.5844 | 3.9598 | 0.5833 | 0.5708 | 0.5928 | 0.5833 | 52.45 | | 4.0754 | 2.0 | 6940 | 4.3295 | 1.4806 | 3.9590 | 0.6196 | 0.6113 | 0.6332 | 0.6196 | 52.41 | | 3.985 | 3.0 | 10410 | 4.3556 | 1.5778 | 3.9609 | 0.6202 | 0.6126 | 0.6216 | 0.6202 | 52.50 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Clint/clinton
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -33.15 +/- 17.80 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. To learn to code your own PPO agent and train it Unit 8 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit8 # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 250000 'learning_rate': 0.00025 'num_envs': 2 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Terence3927/ppo-LunarLander-v2' 'batch_size': 256 'minibatch_size': 64} ```
CoachCarter/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-09T15:02:01Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: TSE_XLNET_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TSE_XLNET_5E This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4463 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6717 | 0.06 | 50 | 0.4377 | 0.8533 | | 0.3989 | 0.12 | 100 | 0.4525 | 0.84 | | 0.3433 | 0.17 | 150 | 0.3348 | 0.9133 | | 0.2646 | 0.23 | 200 | 0.3722 | 0.9 | | 0.3052 | 0.29 | 250 | 0.3306 | 0.8933 | | 0.2583 | 0.35 | 300 | 0.3129 | 0.92 | | 0.2712 | 0.4 | 350 | 0.3147 | 0.9 | | 0.2708 | 0.46 | 400 | 0.2680 | 0.9 | | 0.2443 | 0.52 | 450 | 0.2261 | 0.9133 | | 0.2463 | 0.58 | 500 | 0.2583 | 0.9067 | | 0.2525 | 0.63 | 550 | 0.2719 | 0.92 | | 0.2522 | 0.69 | 600 | 0.3905 | 0.8933 | | 0.2078 | 0.75 | 650 | 0.2674 | 0.9133 | | 0.264 | 0.81 | 700 | 0.2774 | 0.9133 | | 0.211 | 0.87 | 750 | 0.2652 | 0.9333 | | 0.286 | 0.92 | 800 | 0.1777 | 0.94 | | 0.2341 | 0.98 | 850 | 0.2570 | 0.9133 | | 0.1797 | 1.04 | 900 | 0.3162 | 0.92 | | 0.1831 | 1.1 | 950 | 0.3205 | 0.92 | | 0.2006 | 1.15 | 1000 | 0.3173 | 0.9133 | | 0.1555 | 1.21 | 1050 | 0.3388 | 0.9267 | | 0.1712 | 1.27 | 1100 | 0.3968 | 0.92 | | 0.1488 | 1.33 | 1150 | 0.4167 | 0.9133 | | 0.1893 | 1.38 | 1200 | 0.3269 | 0.9267 | | 0.1543 | 1.44 | 1250 | 0.3797 | 0.9133 | | 0.1825 | 1.5 | 1300 | 0.2203 | 0.94 | | 0.1841 | 1.56 | 1350 | 0.2744 | 0.9133 | | 0.1523 | 1.61 | 1400 | 0.3561 | 0.9067 | | 0.1914 | 1.67 | 1450 | 0.2859 | 0.9067 | | 0.1742 | 1.73 | 1500 | 0.2461 | 0.9267 | | 0.145 | 1.79 | 1550 | 0.4266 | 0.9133 | | 0.208 | 1.85 | 1600 | 0.3470 | 0.9067 | | 0.147 | 1.9 | 1650 | 0.4521 | 0.9133 | | 0.1867 | 1.96 | 1700 | 0.3648 | 0.9067 | | 0.182 | 2.02 | 1750 | 0.2659 | 0.9333 | | 0.1079 | 2.08 | 1800 | 0.3393 | 0.92 | | 0.1338 | 2.13 | 1850 | 0.3483 | 0.9267 | | 0.1181 | 2.19 | 1900 | 0.4384 | 0.92 | | 0.1418 | 2.25 | 1950 | 0.3468 | 0.9267 | | 0.0953 | 2.31 | 2000 | 0.4008 | 0.9267 | | 0.1313 | 2.36 | 2050 | 0.3301 | 0.9333 | | 0.0499 | 2.42 | 2100 | 0.4018 | 0.92 | | 0.1197 | 2.48 | 2150 | 0.3394 | 0.9267 | | 0.1237 | 2.54 | 2200 | 0.3399 | 0.92 | | 0.0766 | 2.6 | 2250 | 0.3947 | 0.9267 | | 0.1142 | 2.65 | 2300 | 0.4055 | 0.9133 | | 0.1362 | 2.71 | 2350 | 0.2599 | 0.9333 | | 0.1332 | 2.77 | 2400 | 0.3293 | 0.9133 | | 0.1241 | 2.83 | 2450 | 0.3717 | 0.92 | | 0.0696 | 2.88 | 2500 | 0.4440 | 0.92 | | 0.1012 | 2.94 | 2550 | 0.4026 | 0.92 | | 0.1028 | 3.0 | 2600 | 0.4202 | 0.9133 | | 0.0551 | 3.06 | 2650 | 0.4649 | 0.9133 | | 0.0796 | 3.11 | 2700 | 0.4053 | 0.92 | | 0.0786 | 3.17 | 2750 | 0.4862 | 0.9067 | | 0.0843 | 3.23 | 2800 | 0.4007 | 0.9267 | | 0.0502 | 3.29 | 2850 | 0.4510 | 0.92 | | 0.0726 | 3.34 | 2900 | 0.4171 | 0.9267 | | 0.0933 | 3.4 | 2950 | 0.3485 | 0.9333 | | 0.0624 | 3.46 | 3000 | 0.4442 | 0.9133 | | 0.0475 | 3.52 | 3050 | 0.4449 | 0.92 | | 0.0498 | 3.58 | 3100 | 0.4147 | 0.9267 | | 0.1101 | 3.63 | 3150 | 0.3484 | 0.9333 | | 0.0785 | 3.69 | 3200 | 0.3630 | 0.9267 | | 0.075 | 3.75 | 3250 | 0.4267 | 0.92 | | 0.0709 | 3.81 | 3300 | 0.3638 | 0.9267 | | 0.0754 | 3.86 | 3350 | 0.3890 | 0.9333 | | 0.1038 | 3.92 | 3400 | 0.3910 | 0.9267 | | 0.0274 | 3.98 | 3450 | 0.4246 | 0.9267 | | 0.0723 | 4.04 | 3500 | 0.3847 | 0.9267 | | 0.015 | 4.09 | 3550 | 0.4134 | 0.9333 | | 0.0329 | 4.15 | 3600 | 0.4136 | 0.9333 | | 0.0619 | 4.21 | 3650 | 0.4048 | 0.9333 | | 0.0505 | 4.27 | 3700 | 0.4228 | 0.9267 | | 0.0523 | 4.33 | 3750 | 0.4139 | 0.9267 | | 0.0365 | 4.38 | 3800 | 0.4067 | 0.9267 | | 0.0434 | 4.44 | 3850 | 0.4132 | 0.9333 | | 0.0262 | 4.5 | 3900 | 0.4245 | 0.9333 | | 0.0534 | 4.56 | 3950 | 0.4217 | 0.9333 | | 0.0186 | 4.61 | 4000 | 0.4282 | 0.9333 | | 0.0548 | 4.67 | 4050 | 0.4255 | 0.9333 | | 0.0146 | 4.73 | 4100 | 0.4368 | 0.9333 | | 0.0442 | 4.79 | 4150 | 0.4470 | 0.9333 | | 0.0431 | 4.84 | 4200 | 0.4469 | 0.9333 | | 0.0297 | 4.9 | 4250 | 0.4470 | 0.9333 | | 0.0601 | 4.96 | 4300 | 0.4463 | 0.9333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
CoachCarter/distilbert-base-uncased
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-09T15:20:14Z
--- license: cc-by-nc-sa-4.0 --- This is a blended model containing approximately 40 Dreambooth finetunings, two of which are mine, and should be used ideally with a complimentary hypernetwork and the latest VAE for best results. My style is somewhat blown out looking and relies on a lot of artifacts, I tend to set things high for CFG and step count.
CodeMonkey98/distilroberta-base-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased_finetuned_Balance_Upsampling_SPEECH_TEXT_DISPLAY_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_finetuned_Balance_Upsampling_SPEECH_TEXT_DISPLAY_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6982 - Accuracy: 0.7759 - F1: 0.7743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.5321 | 1.0 | 7958 | 1.3225 | 0.7271 | 0.7391 | | 0.2967 | 2.0 | 15916 | 1.3868 | 0.7574 | 0.7601 | | 0.1821 | 3.0 | 23874 | 1.4753 | 0.7513 | 0.7515 | | 0.1193 | 4.0 | 31832 | 1.7028 | 0.7588 | 0.7596 | | 0.0722 | 5.0 | 39790 | 1.8155 | 0.7615 | 0.7599 | | 0.041 | 6.0 | 47748 | 2.1622 | 0.7695 | 0.7678 | | 0.0258 | 7.0 | 55706 | 2.3871 | 0.75 | 0.7462 | | 0.0149 | 8.0 | 63664 | 2.6135 | 0.7571 | 0.7524 | | 0.0076 | 9.0 | 71622 | 2.7974 | 0.7648 | 0.7617 | | 0.0051 | 10.0 | 79580 | 2.6982 | 0.7759 | 0.7743 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.2 - Datasets 2.5.2 - Tokenizers 0.12.1
CodeNinja1126/bert-q-encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 376.30 +/- 46.89 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CodeNinja1126/koelectra-model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 268.56 +/- 46.53 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CodeNinja1126/test-model
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT_2000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_2000 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.7293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.9294 | 0.19 | 500 | 6.8136 | | 6.7692 | 0.39 | 1000 | 6.8006 | | 6.7567 | 0.58 | 1500 | 6.7770 | | 6.746 | 0.77 | 2000 | 6.7414 | | 6.7577 | 0.97 | 2500 | 6.7333 | | 6.7295 | 1.16 | 3000 | 6.7405 | | 6.7635 | 1.36 | 3500 | 6.7272 | | 6.7715 | 1.55 | 4000 | 6.7114 | | 6.7348 | 1.74 | 4500 | 6.7275 | | 6.719 | 1.94 | 5000 | 6.7322 | | 6.7427 | 2.13 | 5500 | 6.7242 | | 6.7136 | 2.32 | 6000 | 6.6852 | | 6.719 | 2.52 | 6500 | 6.7430 | | 6.7229 | 2.71 | 7000 | 6.7331 | | 6.7166 | 2.9 | 7500 | 6.7293 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
CoderBoy432/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: TSE_roBERTa_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TSE_roBERTa_5E This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2671 - Accuracy: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.68 | 0.06 | 50 | 0.5879 | 0.9133 | | 0.3596 | 0.12 | 100 | 0.3471 | 0.9 | | 0.3019 | 0.17 | 150 | 0.2314 | 0.9333 | | 0.2724 | 0.23 | 200 | 0.1860 | 0.9533 | | 0.2641 | 0.29 | 250 | 0.2271 | 0.94 | | 0.2941 | 0.35 | 300 | 0.1763 | 0.9467 | | 0.2494 | 0.4 | 350 | 0.2019 | 0.94 | | 0.221 | 0.46 | 400 | 0.2450 | 0.9533 | | 0.2456 | 0.52 | 450 | 0.2298 | 0.9467 | | 0.1705 | 0.58 | 500 | 0.2139 | 0.9533 | | 0.1973 | 0.63 | 550 | 0.2810 | 0.9333 | | 0.2348 | 0.69 | 600 | 0.2539 | 0.94 | | 0.2561 | 0.75 | 650 | 0.2330 | 0.9333 | | 0.2166 | 0.81 | 700 | 0.2083 | 0.9467 | | 0.205 | 0.87 | 750 | 0.2768 | 0.92 | | 0.2182 | 0.92 | 800 | 0.2182 | 0.94 | | 0.2009 | 0.98 | 850 | 0.2534 | 0.94 | | 0.1388 | 1.04 | 900 | 0.3099 | 0.9267 | | 0.1208 | 1.1 | 950 | 0.2770 | 0.9467 | | 0.1795 | 1.15 | 1000 | 0.2078 | 0.9467 | | 0.1443 | 1.21 | 1050 | 0.1965 | 0.96 | | 0.1519 | 1.27 | 1100 | 0.1918 | 0.9533 | | 0.1653 | 1.33 | 1150 | 0.1850 | 0.96 | | 0.1689 | 1.38 | 1200 | 0.2261 | 0.9467 | | 0.1802 | 1.44 | 1250 | 0.2246 | 0.96 | | 0.1894 | 1.5 | 1300 | 0.2026 | 0.96 | | 0.219 | 1.56 | 1350 | 0.1598 | 0.96 | | 0.1608 | 1.61 | 1400 | 0.1571 | 0.96 | | 0.1976 | 1.67 | 1450 | 0.1699 | 0.9533 | | 0.1987 | 1.73 | 1500 | 0.2173 | 0.9533 | | 0.1503 | 1.79 | 1550 | 0.2097 | 0.9533 | | 0.1293 | 1.85 | 1600 | 0.2316 | 0.9533 | | 0.2267 | 1.9 | 1650 | 0.1664 | 0.9533 | | 0.1833 | 1.96 | 1700 | 0.1829 | 0.9533 | | 0.1991 | 2.02 | 1750 | 0.1854 | 0.96 | | 0.0965 | 2.08 | 1800 | 0.2719 | 0.94 | | 0.1869 | 2.13 | 1850 | 0.1759 | 0.9667 | | 0.154 | 2.19 | 1900 | 0.2418 | 0.9533 | | 0.1093 | 2.25 | 1950 | 0.2517 | 0.9533 | | 0.1829 | 2.31 | 2000 | 0.2011 | 0.9667 | | 0.1331 | 2.36 | 2050 | 0.2125 | 0.9667 | | 0.1211 | 2.42 | 2100 | 0.2759 | 0.9533 | | 0.1523 | 2.48 | 2150 | 0.2093 | 0.9533 | | 0.1224 | 2.54 | 2200 | 0.2132 | 0.96 | | 0.1205 | 2.6 | 2250 | 0.2117 | 0.96 | | 0.1068 | 2.65 | 2300 | 0.2024 | 0.9667 | | 0.1563 | 2.71 | 2350 | 0.1979 | 0.9533 | | 0.1064 | 2.77 | 2400 | 0.2397 | 0.9533 | | 0.1393 | 2.83 | 2450 | 0.2133 | 0.9533 | | 0.0999 | 2.88 | 2500 | 0.2248 | 0.9533 | | 0.1383 | 2.94 | 2550 | 0.2273 | 0.9467 | | 0.1315 | 3.0 | 2600 | 0.2289 | 0.9467 | | 0.095 | 3.06 | 2650 | 0.2668 | 0.9467 | | 0.1249 | 3.11 | 2700 | 0.2345 | 0.96 | | 0.0653 | 3.17 | 2750 | 0.2188 | 0.96 | | 0.1102 | 3.23 | 2800 | 0.2601 | 0.9533 | | 0.1118 | 3.29 | 2850 | 0.2241 | 0.9667 | | 0.0746 | 3.34 | 2900 | 0.2306 | 0.96 | | 0.0875 | 3.4 | 2950 | 0.2906 | 0.9467 | | 0.0943 | 3.46 | 3000 | 0.2528 | 0.96 | | 0.1253 | 3.52 | 3050 | 0.2503 | 0.9533 | | 0.0971 | 3.58 | 3100 | 0.2182 | 0.96 | | 0.0919 | 3.63 | 3150 | 0.2224 | 0.96 | | 0.1053 | 3.69 | 3200 | 0.2114 | 0.9667 | | 0.1041 | 3.75 | 3250 | 0.2055 | 0.9667 | | 0.0836 | 3.81 | 3300 | 0.2196 | 0.96 | | 0.0873 | 3.86 | 3350 | 0.2129 | 0.96 | | 0.0725 | 3.92 | 3400 | 0.2352 | 0.9533 | | 0.1187 | 3.98 | 3450 | 0.2114 | 0.96 | | 0.108 | 4.04 | 3500 | 0.2233 | 0.96 | | 0.0725 | 4.09 | 3550 | 0.2538 | 0.9533 | | 0.0856 | 4.15 | 3600 | 0.2433 | 0.9533 | | 0.0921 | 4.21 | 3650 | 0.2316 | 0.9533 | | 0.0561 | 4.27 | 3700 | 0.2548 | 0.9533 | | 0.0774 | 4.33 | 3750 | 0.2247 | 0.96 | | 0.0508 | 4.38 | 3800 | 0.2389 | 0.96 | | 0.1014 | 4.44 | 3850 | 0.2755 | 0.9533 | | 0.0598 | 4.5 | 3900 | 0.2750 | 0.9533 | | 0.0796 | 4.56 | 3950 | 0.2697 | 0.9533 | | 0.0718 | 4.61 | 4000 | 0.2648 | 0.9533 | | 0.0566 | 4.67 | 4050 | 0.2620 | 0.9533 | | 0.0704 | 4.73 | 4100 | 0.2516 | 0.9533 | | 0.0582 | 4.79 | 4150 | 0.2653 | 0.9533 | | 0.1066 | 4.84 | 4200 | 0.2722 | 0.9467 | | 0.0782 | 4.9 | 4250 | 0.2698 | 0.9533 | | 0.0318 | 4.96 | 4300 | 0.2671 | 0.9533 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
CoderEFE/DialoGPT-marxbot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "has_space" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2022-11-09T15:58:46Z
--- tags: - conversational --- # Harry Potter Bot AI
CoderEFE/DialoGPT-medium-marx
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-11-09T16:19:50Z
--- license: gpl-3.0 --- # Breast Estrogen Receptor v1 Model Card This model card describes a model associated with a manuscript currently under peer review. Further details regarding the manuscript and an Arxiv link will be included shortly. ## Model Details - **Developed by:** James Dolezal - **Model type:** Deep convolutional neural network image classifier - **Language(s):** English - **License:** GPL-3.0 - **Model Description:** This is a model that can predict, from H&E-stained pathologic images of breast cancer, whether a tumor is likely to be estrogen receptor (ER) negative or positive. It is an [Xception](https://arxiv.org/abs/1610.02357) model with two dropout-enabled hidden layers. - **Image processing:** This model expects images of H&E-stained pathology slides at 299 x 299 px and 302 x 302 μm resolution. Images should be stain-normalized using a modified Reinhard normalizer ("Reinhard-Fast") available [here](https://github.com/jamesdolezal/slideflow/blob/master/slideflow/norm/tensorflow/reinhard.py). The stain normalizer should be fit using the `target_means` and `target_stds` listed in the model `params.json` file. Images should be should be standardized with `tf.image.per_image_standardization()`. - **Resources for more information:** [GitHub Repository](https://github.com/jamesdolezal/histologic-sheep) # Uses ## Examples For direct use, the model can be loaded using Tensorflow/Keras: ``` import tensorflow as tf model = tf.keras.models.load_model('/path/') ``` or loaded with [Slideflow](https://github.com/jamesdolezal/slideflow) version 1.1+ with the following syntax: ``` import slideflow as sf model = sf.model.load('/path/') ``` The stain normalizer can be loaded and fit using Slideflow: ``` normalizer = sf.util.get_model_normalizer('/path/') ``` The stain normalizer has a native Tensorflow transform and can be directly applied to a tf.data.Dataset: ``` # Map the stain normalizer transformation # to a tf.data.Dataset dataset = dataset.map(normalizer.tf_to_tf) ``` Alternatively, the model can be used to generate predictions for whole-slide images processed through Slideflow in an end-to-end [Project](https://slideflow.dev/project_setup.html). To use the model to generate predictions on data processed with Slideflow, simply pass the model to the [`Project.predict()`](https://slideflow.dev/project.html#slideflow.Project.predict) function: ``` import slideflow P = sf.Project('/path/to/slideflow/project') P.predict('/model/path') ``` ## Direct Use This model is intended for research purposes only. Possible research areas and tasks include - Applications in educational settings. - Research on pathology classification models for breast cancer. Excluded uses are described below. ### Misuse and Out-of-Scope Use This model should not be used in a clinical setting to generate predictions that will be used to inform patients, physicians, or any other health care members directly involved in their health care outside the context of an approved research protocol. Using the model in a clinical setting outside the context of an approved research protocol is a misuse of this model. This includes, but is not limited to: - Generating predictions of images from a patient's tumor and sharing those predictions with the patient - Generating predictions of images from a patient's tumor and sharing those predictions with the patient's physician, or other members of the patient's healthcare team - Influencing a patient's health care treatment in any way based on output from this model ### Limitations The model has not been validated to discriminate estrogen receptor status in a manner which controls for possible underlying biological bias, such tumor grade or histological subtype. ### Bias This model was trained on The Cancer Genome Atlas (TCGA), which contains patient data from communities and cultures which may not reflect the general population. This datasets is comprised of images from multiple institutions, which may introduce a potential source of bias from site-specific batch effects ([Howard, 2021](https://www.nature.com/articles/s41467-021-24698-1)). ## Training **Training Data** The following dataset was used to train the model: - The Cancer Genome Atlas (TCGA), BRCA cohort (see next section) This model was trained on a total of 1,048 slides, with 228 ER-negative tumor and 820 ER-positive tumors. **Training Procedure** Each whole-slide image was sectioned into smaller images in a grid-wise fashion in order to extract tiles from whole-slide images at 302 x 302 μm. Image tiles were extracted at the nearest downsample layer, and resized to 299 x 299 px using [Libvips](https://www.libvips.org/API/current/libvips-resample.html#vips-resize). During training, - Images are stain-normalized with a modified Reinhard normalizer ("Reinhard-Fast"), which excludes the brightness standardization step, available [here](https://github.com/jamesdolezal/slideflow/blob/master/slideflow/norm/tensorflow/reinhard.py) - Images are randomly flipped and rotated (90, 180, 270) - Images have a 50% chance of being JPEG compressed with quality level between 50-100% - Images have a 10% chance of random Gaussian blur, with sigma between 0.5-2.0 - Images are standardized with `tf.image.per_image_standardization()` - Images are classified through an Xception block, followed by two hidden layers with dropout (p=0.1) enabled during training - The loss is cross-entropy, with ER-negative=0 and ER-positive=1 - Training is completed after 1 epoch Additional training information: - **Hardware:** 1 x A100 GPUs - **Optimizer:** Adam - **Batch:** 128 - **Learning rate:** 0.0001, with a decay of 0.98 every 512 steps - **Hidden layers:** 2 hidden layers of width 1024, with dropout p=0.1 ## Evaluation Results External evaluation results are currently under peer review and will be posted once publicly available.
CoffeeAddict93/gpt1-call-of-the-wild
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit --- ### Fast_DreamBooth_AMLO on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### model by mrcrois This your the Stable Diffusion model fine-tuned the Fast_DreamBooth_AMLO concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt(s)`: **AMLO17.jpg, AMLO21.jpg, AMLO9.jpg, AMLO18.jpg, AMLO2.jpg, AMLO1.jpg, AMLO13.jpg, AMLO15.jpg, AMLO14.jpg, AMLO22.jpg, AMLO4.jpg, AMLO16.jpg, AMLO11.jpg, AMLO7.jpg, AMLO8.jpg, AMLO19.jpg, AMLO10.jpg, AMLO6.jpg, AMLO20.jpg, AMLO12.jpg, AMLO5.jpg** You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: AMLO5.jpg AMLO12.jpg AMLO20.jpg AMLO6.jpg AMLO10.jpg AMLO19.jpg AMLO8.jpg AMLO7.jpg AMLO11.jpg AMLO16.jpg AMLO4.jpg AMLO22.jpg AMLO14.jpg AMLO15.jpg AMLO13.jpg AMLO1.jpg AMLO2.jpg AMLO18.jpg AMLO9.jpg AMLO21.jpg AMLO17.jpg ![AMLO17.jpg 0](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO17.jpg) ![AMLO21.jpg 1](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO21.jpg) ![AMLO9.jpg 2](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO9.jpg) ![AMLO18.jpg 3](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO18.jpg) ![AMLO2.jpg 4](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO2.jpg) ![AMLO1.jpg 5](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO1.jpg) ![AMLO13.jpg 6](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO13.jpg) ![AMLO15.jpg 7](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO15.jpg) ![AMLO14.jpg 8](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO14.jpg) ![AMLO22.jpg 9](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO22.jpg) ![AMLO4.jpg 10](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO4.jpg) ![AMLO16.jpg 11](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO16.jpg) ![AMLO11.jpg 12](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO11.jpg) ![AMLO7.jpg 13](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO7.jpg) ![AMLO8.jpg 14](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO8.jpg) ![AMLO19.jpg 15](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO19.jpg) ![AMLO10.jpg 16](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO10.jpg) ![AMLO6.jpg 17](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO6.jpg) ![AMLO20.jpg 18](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO20.jpg) ![AMLO12.jpg 19](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO12.jpg) ![AMLO5.jpg 20](https://huggingface.co/mrcrois/fast-dreambooth-amlo/resolve/main/concept_images/AMLO5.jpg)
CoffeeAddict93/gpt1-modest-proposal
[ "pytorch", "openai-gpt", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "OpenAIGPTLMHeadModel" ], "model_type": "openai-gpt", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Fr - Joss results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 FR type: mozilla-foundation/common_voice_11_0 args: 'config: fr, split: test' metrics: - name: Wer type: wer value: 24.03653329331678 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Fr - Joss This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 FR dataset. It achieves the following results on the evaluation set: - Loss: 0.4212 - Wer: 24.0365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3803 | 0.99 | 1000 | 0.3992 | 23.9465 | | 0.2214 | 1.99 | 2000 | 0.3902 | 22.8108 | | 0.0986 | 2.98 | 3000 | 0.4028 | 22.4459 | | 0.0478 | 3.98 | 4000 | 0.4212 | 24.0365 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
CoffeeAddict93/gpt2-medium-call-of-the-wild
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: gpl-3.0 --- # Thyroid BRAF-RAS Score (BRS) v1 Model Card This model card describes a model associated with the manuscript "Deep learning prediction of BRAF-RAS gene expression signature identifies noninvasive follicular thyroid neoplasms with papillary-like nuclear features", by Dolezal _et al_, available [here](https://www.nature.com/articles/s41379-020-00724-3) ## Model Details - **Developed by:** James Dolezal - **Model type:** Deep convolutional neural network image classifier - **Language(s):** English - **License:** GPL-3.0 - **Model Description:** This is a model that can predict, from H&E-stained pathologic images of thyroid neoplasms, the predicted BRAF-RAS Score (BRS). BRS is a gene expression score scaled from -1 (BRAF-like) to +1 (RAS-like) indicating how similar a tumor's gene expression is to a BRAF-mutant and RAS-mutant tumor. The model is an [Xception](https://arxiv.org/abs/1610.02357) model with two dropout-enabled hidden layers. - **Image processing:** This model expects images of H&E-stained pathology slides at 299 x 299 px and 302 x 302 μm resolution. Images should be stain-normalized using a modified Reinhard normalizer ("Reinhard-Fast") available [here](https://github.com/jamesdolezal/slideflow/blob/master/slideflow/norm/tensorflow/reinhard.py). The stain normalizer should be fit using the `target_means` and `target_stds` listed in the model `params.json` file. Images should be should be standardized with `tf.image.per_image_standardization()`. - **Resources for more information:** [GitHub Repository](https://github.com/jamesdolezal/histologic-sheep) # Uses ## Examples For direct use, the model can be loaded using Tensorflow/Keras: ``` import tensorflow as tf model = tf.keras.models.load_model('/path/') ``` or loaded with [Slideflow](https://github.com/jamesdolezal/slideflow) version 1.1+ with the following syntax: ``` import slideflow as sf model = sf.model.load('/path/') ``` The stain normalizer can be loaded and fit using Slideflow: ``` normalizer = sf.util.get_model_normalizer('/path/') ``` The stain normalizer has a native Tensorflow transform and can be directly applied to a tf.data.Dataset: ``` # Map the stain normalizer transformation # to a tf.data.Dataset dataset = dataset.map(normalizer.tf_to_tf) ``` Alternatively, the model can be used to generate predictions for whole-slide images processed through Slideflow in an end-to-end [Project](https://slideflow.dev/project_setup.html). To use the model to generate predictions on data processed with Slideflow, simply pass the model to the [`Project.predict()`](https://slideflow.dev/project.html#slideflow.Project.predict) function: ``` import slideflow P = sf.Project('/path/to/slideflow/project') P.predict('/model/path') ``` ## Direct Use This model is intended for research purposes only. Possible research areas and tasks include - Applications in educational settings. - Research on pathology classification models for thyroid neoplasms. Excluded uses are described below. ### Misuse and Out-of-Scope Use This model should not be used in a clinical setting to generate predictions that will be used to inform patients, physicians, or any other health care members directly involved in their health care outside the context of an approved research protocol. Using the model in a clinical setting outside the context of an approved research protocol is a misuse of this model. This includes, but is not limited to: - Generating predictions of images from a patient's tumor and sharing those predictions with the patient - Generating predictions of images from a patient's tumor and sharing those predictions with the patient's physician, or other members of the patient's healthcare team - Influencing a patient's health care treatment in any way based on output from this model ### Limitations The model has not been validated in contexts where non-thyroid neoplasms, or rare thyroid subtypes such as anaplastic thyroid carcinoma, are possible. ### Bias This model was trained on The Cancer Genome Atlas (TCGA), which contains patient data from communities and cultures which may not reflect the general population. This datasets is comprised of images from multiple institutions, which may introduce a potential source of bias from site-specific batch effects ([Howard, 2021](https://www.nature.com/articles/s41467-021-24698-1)). ## Training **Training Data** The following dataset was used to train the model: - The Cancer Genome Atlas (TCGA), THCA cohort (see next section) This model was trained on a total of 369 slides, with 116 BRAF-like tumors and 271 RAS-like tumors. **Training Procedure** Each whole-slide image was sectioned into smaller images in a grid-wise fashion in order to extract tiles from whole-slide images at 302 x 302 μm. Image tiles were extracted at the nearest downsample layer, and resized to 299 x 299 px using [Libvips](https://www.libvips.org/API/current/libvips-resample.html#vips-resize). During training, - Images are stain-normalized with a modified Reinhard normalizer ("Reinhard-Fast"), which excludes the brightness standardization step, available [here](https://github.com/jamesdolezal/slideflow/blob/master/slideflow/norm/tensorflow/reinhard.py) - Images are randomly flipped and rotated (90, 180, 270) - Images have a 50% chance of being JPEG compressed with quality level between 50-100% - Images have a 10% chance of random Gaussian blur, with sigma between 0.5-2.0 - Images are standardized with `tf.image.per_image_standardization()` - Images are classified through an Xception block, followed by two hidden layers with dropout (p=0.1) enabled during training - The loss is mean squared error using the linear outcome BRS - Training is completed after 1 epoch Additional training information: - **Hardware:** 1 x A100 GPUs - **Optimizer:** Adam - **Batch:** 128 - **Learning rate:** 0.0001, with a decay of 0.98 every 512 steps - **Hidden layers:** 2 hidden layers of width 1024, with dropout p=0.1 ## Evaluation Results External evaluation results are currently under peer review and will be posted once publicly available.
CoffeeAddict93/gpt2-medium-modest-proposal
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: false ---
CogComp/roberta-temporal-predictor
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.00436", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TSE_BERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TSE_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3664 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6836 | 0.06 | 50 | 0.5614 | 0.8267 | | 0.4679 | 0.12 | 100 | 0.3521 | 0.9 | | 0.3325 | 0.17 | 150 | 0.2747 | 0.8933 | | 0.2493 | 0.23 | 200 | 0.2712 | 0.9067 | | 0.273 | 0.29 | 250 | 0.2304 | 0.9333 | | 0.2888 | 0.35 | 300 | 0.2253 | 0.92 | | 0.2558 | 0.4 | 350 | 0.2110 | 0.9267 | | 0.1997 | 0.46 | 400 | 0.2206 | 0.9267 | | 0.2748 | 0.52 | 450 | 0.2358 | 0.9267 | | 0.2448 | 0.58 | 500 | 0.2942 | 0.8933 | | 0.2247 | 0.63 | 550 | 0.2410 | 0.9067 | | 0.2002 | 0.69 | 600 | 0.2222 | 0.9133 | | 0.2668 | 0.75 | 650 | 0.2372 | 0.9133 | | 0.2701 | 0.81 | 700 | 0.2288 | 0.9333 | | 0.2034 | 0.87 | 750 | 0.2415 | 0.9267 | | 0.2374 | 0.92 | 800 | 0.2278 | 0.92 | | 0.2305 | 0.98 | 850 | 0.2270 | 0.92 | | 0.1704 | 1.04 | 900 | 0.2591 | 0.9333 | | 0.1826 | 1.1 | 950 | 0.2481 | 0.9267 | | 0.1116 | 1.15 | 1000 | 0.2906 | 0.9133 | | 0.1527 | 1.21 | 1050 | 0.2902 | 0.92 | | 0.1692 | 1.27 | 1100 | 0.2489 | 0.9333 | | 0.158 | 1.33 | 1150 | 0.2576 | 0.9333 | | 0.1608 | 1.38 | 1200 | 0.3344 | 0.9267 | | 0.1194 | 1.44 | 1250 | 0.3615 | 0.9267 | | 0.201 | 1.5 | 1300 | 0.3374 | 0.92 | | 0.1938 | 1.56 | 1350 | 0.2847 | 0.92 | | 0.1479 | 1.61 | 1400 | 0.3044 | 0.9267 | | 0.1628 | 1.67 | 1450 | 0.2980 | 0.9267 | | 0.1783 | 1.73 | 1500 | 0.3132 | 0.9267 | | 0.1885 | 1.79 | 1550 | 0.2676 | 0.9333 | | 0.1651 | 1.85 | 1600 | 0.2709 | 0.9333 | | 0.1376 | 1.9 | 1650 | 0.2777 | 0.94 | | 0.1571 | 1.96 | 1700 | 0.2761 | 0.9333 | | 0.1561 | 2.02 | 1750 | 0.2912 | 0.94 | | 0.1187 | 2.08 | 1800 | 0.2893 | 0.9467 | | 0.1205 | 2.13 | 1850 | 0.2882 | 0.9467 | | 0.0751 | 2.19 | 1900 | 0.3032 | 0.9467 | | 0.1412 | 2.25 | 1950 | 0.2926 | 0.9467 | | 0.0783 | 2.31 | 2000 | 0.2962 | 0.9467 | | 0.1094 | 2.36 | 2050 | 0.2909 | 0.9333 | | 0.1158 | 2.42 | 2100 | 0.3087 | 0.9333 | | 0.0606 | 2.48 | 2150 | 0.3102 | 0.9467 | | 0.1164 | 2.54 | 2200 | 0.2812 | 0.94 | | 0.1311 | 2.6 | 2250 | 0.3736 | 0.9267 | | 0.1087 | 2.65 | 2300 | 0.3069 | 0.94 | | 0.109 | 2.71 | 2350 | 0.3176 | 0.94 | | 0.0789 | 2.77 | 2400 | 0.3130 | 0.94 | | 0.0784 | 2.83 | 2450 | 0.3338 | 0.94 | | 0.1388 | 2.88 | 2500 | 0.3440 | 0.9333 | | 0.1062 | 2.94 | 2550 | 0.2883 | 0.94 | | 0.1016 | 3.0 | 2600 | 0.2776 | 0.94 | | 0.0642 | 3.06 | 2650 | 0.3302 | 0.9333 | | 0.052 | 3.11 | 2700 | 0.3217 | 0.94 | | 0.0539 | 3.17 | 2750 | 0.3899 | 0.9267 | | 0.0593 | 3.23 | 2800 | 0.3283 | 0.9467 | | 0.0468 | 3.29 | 2850 | 0.3382 | 0.9467 | | 0.0546 | 3.34 | 2900 | 0.3133 | 0.9467 | | 0.107 | 3.4 | 2950 | 0.3550 | 0.94 | | 0.1079 | 3.46 | 3000 | 0.3484 | 0.94 | | 0.0782 | 3.52 | 3050 | 0.3313 | 0.94 | | 0.0635 | 3.58 | 3100 | 0.3418 | 0.94 | | 0.0771 | 3.63 | 3150 | 0.3685 | 0.9333 | | 0.0629 | 3.69 | 3200 | 0.3467 | 0.9333 | | 0.0552 | 3.75 | 3250 | 0.3677 | 0.94 | | 0.0531 | 3.81 | 3300 | 0.3436 | 0.9333 | | 0.0819 | 3.86 | 3350 | 0.3802 | 0.9333 | | 0.0583 | 3.92 | 3400 | 0.3441 | 0.9333 | | 0.0434 | 3.98 | 3450 | 0.3666 | 0.9333 | | 0.0747 | 4.04 | 3500 | 0.3554 | 0.9333 | | 0.0309 | 4.09 | 3550 | 0.3582 | 0.9333 | | 0.1057 | 4.15 | 3600 | 0.3615 | 0.9267 | | 0.0391 | 4.21 | 3650 | 0.3583 | 0.9267 | | 0.0433 | 4.27 | 3700 | 0.3514 | 0.9333 | | 0.0597 | 4.33 | 3750 | 0.3580 | 0.9333 | | 0.0663 | 4.38 | 3800 | 0.3390 | 0.94 | | 0.0563 | 4.44 | 3850 | 0.3518 | 0.9267 | | 0.0702 | 4.5 | 3900 | 0.3542 | 0.9267 | | 0.0383 | 4.56 | 3950 | 0.3528 | 0.9267 | | 0.0474 | 4.61 | 4000 | 0.3485 | 0.9333 | | 0.0265 | 4.67 | 4050 | 0.3489 | 0.94 | | 0.0165 | 4.73 | 4100 | 0.3616 | 0.9333 | | 0.0489 | 4.79 | 4150 | 0.3579 | 0.9333 | | 0.0478 | 4.84 | 4200 | 0.3603 | 0.9333 | | 0.0536 | 4.9 | 4250 | 0.3666 | 0.9267 | | 0.0551 | 4.96 | 4300 | 0.3664 | 0.9267 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
CohleM/bert-nepali-tokenizer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: gpl-3.0 --- # Thyroid BRAF-RAS Score (BRS) GAN v1 Model Card This model card describes a model associated with a manuscript that is currently under review. Links to the manuscript will be provided once publicly available. ## Model Details - **Developed by:** James Dolezal - **Model type:** Generative adversarial network - **Language(s):** English - **License:** GPL-3.0 - **Model Description:** This is a StyleGAN2 model that can generate synthetic H&E pathologic images of thyroid neoplasms. The GAN is conditioned on discretized BRAF-RAS Score (BRS), a a gene expression score scaled from -1 (BRAF-like) to +1 (RAS-like) indicating how similar a tumor's gene expression is to a BRAF-mutant and RAS-mutant tumor. The GAN has been conditioned on the categories BRAF-like (=0) and RAS-like (=1). - **Image processing:** This model generates images at 512 x 512 px resolution and was trained on lossless (PNG) pathologic images at 302 x 302 μm magnification. - **Resources for more information:** [GitHub Repository](https://github.com/jamesdolezal/histologic-sheep) # Uses ## Examples This model is a [StyleGAN2](https://github.com/NVlabs/stylegan3) model and can be used with any StyleGAN-compatible scripts and tools. The [GitHub repository](https://github.com/jamesdolezal/histologic-sheep) associated with his model includes detailed information on how to interface with the GAN, generate images, and perform class blending via embedding interpolation. ## Direct Use This model is intended for research purposes only. Possible research areas and tasks include - Applications in educational settings. - Research on pathology classification models for thyroid neoplasms. Excluded uses are described below. ### Misuse and Out-of-Scope Use Output from this model should not be used in a clinical setting or be provided to patients, physicians, or any other health care members directly involved in their health care outside the context of an approved research protocol. Using the model in a clinical setting outside the context of an approved research protocol is a misuse of this model. This includes influencing a patient's health care treatment in any way based on output from this model. ### Limitations The model has not been validated in contexts where non-thyroid neoplasms, or rare thyroid subtypes such as anaplastic thyroid carcinoma, are possible. ### Bias This model was trained on The Cancer Genome Atlas (TCGA), which contains patient data from communities and cultures which may not reflect the general population. This datasets is comprised of images from multiple institutions, which may introduce a potential source of bias from site-specific batch effects ([Howard, 2021](https://www.nature.com/articles/s41467-021-24698-1)). ## Training **Training Data** The following dataset was used to train the model: - The Cancer Genome Atlas (TCGA), THCA cohort (see next section) This model was trained on a total of 369 slides, with 116 BRAF-like tumors and 271 RAS-like tumors. **Training Procedure** Each whole-slide image was sectioned into smaller images in a grid-wise fashion in order to extract tiles from whole-slide images at 302 x 302 μm. Image tiles were extracted at the nearest downsample layer, and resized to 512 x 512 px using [Libvips](https://www.libvips.org/API/current/libvips-resample.html#vips-resize). During training, images are randomly flipped and rotated (90, 180, 270). Training is otherwise identical to the official StyleGAN2 implementation. Additional training information: - **Hardware:** 2 x A100 GPUs - **Batch size:** 16 - **R1 gamma:** 3.2768 - **Training time:** 12,720 kimg ## Evaluation Results External evaluation results are currently under peer review and will be posted once publicly available.
Coldestadam/Breakout_Mentors_SpongeBob_Model
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: creativeml-openrail-m --- Stable Diffusion model trained using dreambooth to create pixel art, in 2 styles the sprite art can be used with the trigger word "pixelsprite" the scene art can be used with the trigger word "16bitscene" the art is not pixel perfect, but it can be fixed with pixelating tools like https://pinetools.com/pixelate-effect-image (they also have bulk pixelation) some example generations ![03044-1966091207-godzilla, in pixelsprite style.png](https://s3.amazonaws.com/moonup/production/uploads/1668023237949-63507e5e18a4f616c9dfba19.png) ![00366-443747549-cute_cat_full_bodyin_pixelsprite_style.png](https://s3.amazonaws.com/moonup/production/uploads/1668023239268-63507e5e18a4f616c9dfba19.png) ![02827-0-street in a sunny day. in 16bitscene style.png](https://s3.amazonaws.com/moonup/production/uploads/1668023288054-63507e5e18a4f616c9dfba19.png) ![02829-0-magical alice in wonderland forest, in 16bitscene style.png](https://s3.amazonaws.com/moonup/production/uploads/1668023291263-63507e5e18a4f616c9dfba19.png) ![02831-1-car driving away, synthwave outrun style wallpaper, in 16bitscene style.png](https://s3.amazonaws.com/moonup/production/uploads/1668023267399-63507e5e18a4f616c9dfba19.png) ![02863-7-isometric living room, detailed, in 16bitscene style.png](https://s3.amazonaws.com/moonup/production/uploads/1668023243698-63507e5e18a4f616c9dfba19.png) ![02935-1805121122-dark arcade room, pink neon lights, detailed, in 16bitscene style,.png](https://s3.amazonaws.com/moonup/production/uploads/1668023243346-63507e5e18a4f616c9dfba19.png)
ComCom/gpt2-large
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "GPT2Model" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1578486587171782656/vX6FFz3G_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">angelicism0666</div> <div style="text-align: center; font-size: 14px;">@angelicism0666</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from angelicism0666. | Data | angelicism0666 | | --- | --- | | Tweets downloaded | 1459 | | Retweets | 442 | | Short tweets | 346 | | Tweets kept | 671 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jmeiayq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @angelicism0666's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1xz6slmm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1xz6slmm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/angelicism0666') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ComCom/gpt2
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "GPT2Model" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: tomekkorbak/test-pii-2533 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tomekkorbak/test-pii-2533 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6
ComCom-Dev/gpt2-bible-test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
# IS2Project This is a Customer Sentiment Analysis for Code-Switched Language: A Case of Safaricom Limited. The proposed model will be able to detect customer sentiment analysis in the code-switched pair (English-Swahili) for Safaricom users using Support Vector Machines. The model will be able to categorize tweets into good reviews and bad reviews. The model is also compared with Logistic Regression and Naives Bayes to see which model performs the best.
Cometasonmi451/Mine
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - fr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Fri - Despres Julien results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Fri - Despres Julien This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - training_steps: 6000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.11.0 - Datasets 2.5.2 - Tokenizers 0.12.1
Connor/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 88 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 88, "warmup_steps": 9, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Connorvr/TeachingGen
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: deberta-base-finetuned-squad-pruned0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-squad-pruned0.1 This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.3741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4425 | 1.0 | 5533 | 2.3741 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Contrastive-Tension/BERT-Base-CT-STSb
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT_52000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_52000 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.6394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.9728 | 0.19 | 500 | 8.6854 | | 8.7387 | 0.39 | 1000 | 8.7712 | | 8.6739 | 0.58 | 1500 | 8.7362 | | 8.786 | 0.77 | 2000 | 8.7816 | | 8.6918 | 0.97 | 2500 | 8.6802 | | 8.595 | 1.16 | 3000 | 8.7086 | | 8.5342 | 1.36 | 3500 | 8.6558 | | 8.6484 | 1.55 | 4000 | 8.7442 | | 8.5594 | 1.74 | 4500 | 8.7238 | | 8.4791 | 1.94 | 5000 | 8.7073 | | 8.4489 | 2.13 | 5500 | 8.6470 | | 8.42 | 2.32 | 6000 | 8.7016 | | 8.4389 | 2.52 | 6500 | 8.6039 | | 8.5176 | 2.71 | 7000 | 8.6179 | | 8.5392 | 2.9 | 7500 | 8.6394 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Contrastive-Tension/BERT-Base-Swe-CT-STSb
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
126
null
--- license: gpl-3.0 --- # Breast Estrogen Receptor (ER) GAN v1 Model Card This model card describes a model associated with a manuscript that is currently under review. Links to the manuscript will be provided once publicly available. ## Model Details - **Developed by:** James Dolezal - **Model type:** Generative adversarial network - **Language(s):** English - **License:** GPL-3.0 - **Model Description:** This is a StyleGAN2 model that can generate synthetic H&E pathologic images of breast cancer. The GAN is conditioned on estrogen receptor (ER) status as determined by immunohistochemical testing, with categories ER-negative (=0) and ER-positive (=1). - **Image processing:** This model generates images at 512 x 512 px resolution and was trained on lossless (PNG) pathologic images at 400 x 400 μm magnification. - **Resources for more information:** [GitHub Repository](https://github.com/jamesdolezal/histologic-sheep) # Uses ## Examples This model is a [StyleGAN2](https://github.com/NVlabs/stylegan3) model and can be used with any StyleGAN-compatible scripts and tools. The [GitHub repository](https://github.com/jamesdolezal/histologic-sheep) associated with his model includes detailed information on how to interface with the GAN, generate images, and perform class blending via embedding interpolation. ## Direct Use This model is intended for research purposes only. Possible research areas and tasks include - Applications in educational settings. - Research on pathology classification models for breast cancer. Excluded uses are described below. ### Misuse and Out-of-Scope Use Output from this model should not be used in a clinical setting or be provided to patients, physicians, or any other health care members directly involved in their health care outside the context of an approved research protocol. Using the model in a clinical setting outside the context of an approved research protocol is a misuse of this model. This includes influencing a patient's health care treatment in any way based on output from this model. ### Limitations The model does not generate images reflective of estrogen receptor status in a manner which controls for possible underlying biological bias, such tumor grade or histological subtype. ### Bias This model was trained on The Cancer Genome Atlas (TCGA), which contains patient data from communities and cultures which may not reflect the general population. This datasets is comprised of images from multiple institutions, which may introduce a potential source of bias from site-specific batch effects ([Howard, 2021](https://www.nature.com/articles/s41467-021-24698-1)). ## Training **Training Data** The following dataset was used to train the model: - The Cancer Genome Atlas (TCGA), THCA cohort (see next section) This model was trained on a total of 1,048 slides, with 228 ER-negative tumor and 820 ER-positive tumors. **Training Procedure** Each whole-slide image was sectioned into smaller images in a grid-wise fashion in order to extract tiles from whole-slide images at 400 x 400 μm. Image tiles were extracted at the nearest downsample layer, and resized to 512 x 512 px using [Libvips](https://www.libvips.org/API/current/libvips-resample.html#vips-resize). During training, images are randomly flipped and rotated (90, 180, 270). Training is otherwise identical to the official StyleGAN2 implementation. Additional training information: - **Hardware:** 4 x A100 GPUs - **Batch size:** 32 - **R1 gamma:** 1.6384 - **Training time:** 10,000 kimg ## Evaluation Results External evaluation results are currently under peer review and will be posted once publicly available.
Contrastive-Tension/BERT-Distil-CT-STSb
[ "pytorch", "tf", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "DistilBertModel" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 88 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 88, "warmup_steps": 9, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Contrastive-Tension/BERT-Distil-NLI-CT
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: gpl-3.0 --- # Lung Adeno/Squam GAN v1 Model Card This model card describes a model associated with a manuscript that is currently under review. Links to the manuscript will be provided once publicly available. ## Model Details - **Developed by:** James Dolezal - **Model type:** Generative adversarial network - **Language(s):** English - **License:** GPL-3.0 - **Model Description:** This is a StyleGAN2 model that can generate synthetic H&E pathologic images of lung cancer. The GAN is conditioned on histologic subtype, with categories adenocarcinoma (=0) and squamous cell carcinoma (=1). - **Image processing:** This model generates images at 512 x 512 px resolution and was trained on lossless (PNG) pathologic images at 400 x 400 μm magnification. - **Resources for more information:** [GitHub Repository](https://github.com/jamesdolezal/histologic-sheep) # Uses ## Examples This model is a [StyleGAN2](https://github.com/NVlabs/stylegan3) model and can be used with any StyleGAN-compatible scripts and tools. The [GitHub repository](https://github.com/jamesdolezal/histologic-sheep) associated with his model includes detailed information on how to interface with the GAN, generate images, and perform class blending via embedding interpolation. ## Direct Use This model is intended for research purposes only. Possible research areas and tasks include - Applications in educational settings. - Research on pathology classification models for lung cancer. Excluded uses are described below. ### Misuse and Out-of-Scope Use Output from this model should not be used in a clinical setting or be provided to patients, physicians, or any other health care members directly involved in their health care outside the context of an approved research protocol. Using the model in a clinical setting outside the context of an approved research protocol is a misuse of this model. This includes influencing a patient's health care treatment in any way based on output from this model. ### Limitations The training dataset did not include adenosquamous tumors, so intermediate states represented by the GAN through embedding interpolation may or may not be biologically consistent with the truly intermediate adenosquamous tumors. ### Bias This model was trained on The Cancer Genome Atlas (TCGA), which contains patient data from communities and cultures which may not reflect the general population. This datasets is comprised of images from multiple institutions, which may introduce a potential source of bias from site-specific batch effects ([Howard, 2021](https://www.nature.com/articles/s41467-021-24698-1)). ## Training **Training Data** The following dataset was used to train the model: - The Cancer Genome Atlas (TCGA), LUAD (adenocarcinoma) and LUSC (squamous cell carcinoma) cohorts (see next section) This model was trained on a total of 941 slides, with 467 adenocarcinomas and 474 squamous cell carcinomas. **Training Procedure** Each whole-slide image was sectioned into smaller images in a grid-wise fashion in order to extract tiles from whole-slide images at 400 x 400 μm. Image tiles were extracted at the nearest downsample layer, and resized to 512 x 512 px using [Libvips](https://www.libvips.org/API/current/libvips-resample.html#vips-resize). During training, images are randomly flipped and rotated (90, 180, 270). Training is otherwise identical to the official StyleGAN2 implementation. Additional training information: - **Hardware:** 4 x A100 GPUs - **Batch size:** 32 - **R1 gamma:** 1.6384 - **Training time:** 25,000 kimg ## Evaluation Results External evaluation results are currently under peer review and will be posted once publicly available.
Contrastive-Tension/RoBerta-Large-CT-STSb
[ "pytorch", "tf", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TSE_ALBERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TSE_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3667 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5712 | 0.06 | 50 | 0.4047 | 0.82 | | 0.3198 | 0.12 | 100 | 0.2883 | 0.9 | | 0.3254 | 0.17 | 150 | 0.4352 | 0.84 | | 0.2898 | 0.23 | 200 | 0.2892 | 0.9133 | | 0.2826 | 0.29 | 250 | 0.3565 | 0.8867 | | 0.2696 | 0.35 | 300 | 0.2263 | 0.9333 | | 0.274 | 0.4 | 350 | 0.2068 | 0.94 | | 0.2393 | 0.46 | 400 | 0.2270 | 0.9333 | | 0.2067 | 0.52 | 450 | 0.2118 | 0.9333 | | 0.2332 | 0.58 | 500 | 0.4454 | 0.88 | | 0.3099 | 0.63 | 550 | 0.2777 | 0.9067 | | 0.2687 | 0.69 | 600 | 0.2077 | 0.9333 | | 0.2053 | 0.75 | 650 | 0.1923 | 0.9533 | | 0.2359 | 0.81 | 700 | 0.3891 | 0.9067 | | 0.2492 | 0.87 | 750 | 0.2765 | 0.9333 | | 0.2589 | 0.92 | 800 | 0.1879 | 0.9467 | | 0.2161 | 0.98 | 850 | 0.2733 | 0.9267 | | 0.1752 | 1.04 | 900 | 0.3108 | 0.92 | | 0.2213 | 1.1 | 950 | 0.3318 | 0.92 | | 0.1665 | 1.15 | 1000 | 0.4124 | 0.8933 | | 0.1832 | 1.21 | 1050 | 0.3448 | 0.92 | | 0.1671 | 1.27 | 1100 | 0.3343 | 0.9067 | | 0.184 | 1.33 | 1150 | 0.3929 | 0.9067 | | 0.2788 | 1.38 | 1200 | 0.3888 | 0.8933 | | 0.1768 | 1.44 | 1250 | 0.4028 | 0.9 | | 0.2368 | 1.5 | 1300 | 0.3154 | 0.9133 | | 0.2055 | 1.56 | 1350 | 0.2603 | 0.9267 | | 0.1693 | 1.61 | 1400 | 0.2994 | 0.9267 | | 0.1447 | 1.67 | 1450 | 0.3247 | 0.9267 | | 0.226 | 1.73 | 1500 | 0.3410 | 0.9267 | | 0.1744 | 1.79 | 1550 | 0.3105 | 0.9267 | | 0.1943 | 1.85 | 1600 | 0.2760 | 0.94 | | 0.2093 | 1.9 | 1650 | 0.2087 | 0.9467 | | 0.2027 | 1.96 | 1700 | 0.2773 | 0.9333 | | 0.1806 | 2.02 | 1750 | 0.3386 | 0.9267 | | 0.1161 | 2.08 | 1800 | 0.4301 | 0.9067 | | 0.0916 | 2.13 | 1850 | 0.3693 | 0.92 | | 0.1586 | 2.19 | 1900 | 0.2929 | 0.94 | | 0.1336 | 2.25 | 1950 | 0.4015 | 0.9133 | | 0.1746 | 2.31 | 2000 | 0.3027 | 0.92 | | 0.1353 | 2.36 | 2050 | 0.3224 | 0.9267 | | 0.116 | 2.42 | 2100 | 0.3609 | 0.9267 | | 0.1807 | 2.48 | 2150 | 0.3044 | 0.9267 | | 0.1016 | 2.54 | 2200 | 0.3706 | 0.9133 | | 0.0634 | 2.6 | 2250 | 0.3391 | 0.92 | | 0.167 | 2.65 | 2300 | 0.3463 | 0.92 | | 0.1718 | 2.71 | 2350 | 0.3254 | 0.92 | | 0.1269 | 2.77 | 2400 | 0.2640 | 0.9333 | | 0.1848 | 2.83 | 2450 | 0.2660 | 0.9267 | | 0.116 | 2.88 | 2500 | 0.2532 | 0.94 | | 0.1804 | 2.94 | 2550 | 0.3538 | 0.92 | | 0.1315 | 3.0 | 2600 | 0.4146 | 0.9067 | | 0.1024 | 3.06 | 2650 | 0.2899 | 0.9333 | | 0.0904 | 3.11 | 2700 | 0.3191 | 0.9333 | | 0.0596 | 3.17 | 2750 | 0.3569 | 0.9333 | | 0.1144 | 3.23 | 2800 | 0.3373 | 0.9267 | | 0.0782 | 3.29 | 2850 | 0.3447 | 0.9267 | | 0.064 | 3.34 | 2900 | 0.2932 | 0.94 | | 0.118 | 3.4 | 2950 | 0.3099 | 0.94 | | 0.1286 | 3.46 | 3000 | 0.3404 | 0.9267 | | 0.0963 | 3.52 | 3050 | 0.4026 | 0.9067 | | 0.1158 | 3.58 | 3100 | 0.3320 | 0.9267 | | 0.0967 | 3.63 | 3150 | 0.2984 | 0.94 | | 0.1122 | 3.69 | 3200 | 0.3149 | 0.9333 | | 0.134 | 3.75 | 3250 | 0.3804 | 0.9133 | | 0.0953 | 3.81 | 3300 | 0.3670 | 0.92 | | 0.0776 | 3.86 | 3350 | 0.4140 | 0.92 | | 0.0813 | 3.92 | 3400 | 0.3654 | 0.9333 | | 0.0406 | 3.98 | 3450 | 0.4364 | 0.92 | | 0.0538 | 4.04 | 3500 | 0.3553 | 0.94 | | 0.0734 | 4.09 | 3550 | 0.3814 | 0.9267 | | 0.0396 | 4.15 | 3600 | 0.3978 | 0.9267 | | 0.0427 | 4.21 | 3650 | 0.4333 | 0.92 | | 0.1472 | 4.27 | 3700 | 0.3816 | 0.92 | | 0.0587 | 4.33 | 3750 | 0.3624 | 0.92 | | 0.0549 | 4.38 | 3800 | 0.3461 | 0.9333 | | 0.0606 | 4.44 | 3850 | 0.3562 | 0.94 | | 0.0483 | 4.5 | 3900 | 0.3655 | 0.9333 | | 0.0351 | 4.56 | 3950 | 0.3613 | 0.9333 | | 0.0763 | 4.61 | 4000 | 0.3641 | 0.94 | | 0.0835 | 4.67 | 4050 | 0.3669 | 0.9333 | | 0.0542 | 4.73 | 4100 | 0.3569 | 0.9333 | | 0.0804 | 4.79 | 4150 | 0.3575 | 0.9333 | | 0.0336 | 4.84 | 4200 | 0.3655 | 0.9333 | | 0.0631 | 4.9 | 4250 | 0.3646 | 0.9333 | | 0.0183 | 4.96 | 4300 | 0.3667 | 0.9333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
Cooker/cicero-similis
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_havest_0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_havest_0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4115 - Train Accuracy: 0.0115 - Train Do Wer: 1.0 - Validation Loss: 6.2357 - Validation Accuracy: 0.0115 - Validation Do Wer: 1.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Do Wer | Validation Loss | Validation Accuracy | Validation Do Wer | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 9.9191 | 0.0046 | 1.0 | 8.5836 | 0.0067 | 1.0 | 0 | | 8.0709 | 0.0083 | 1.0 | 7.4667 | 0.0089 | 1.0 | 1 | | 7.1652 | 0.0100 | 1.0 | 6.8204 | 0.0112 | 1.0 | 2 | | 6.7196 | 0.0114 | 1.0 | 6.5192 | 0.0114 | 1.0 | 3 | | 6.4115 | 0.0115 | 1.0 | 6.2357 | 0.0115 | 1.0 | 4 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
Cool/Demo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- title: Finetuned Diffusion emoji: 🪄🖼️ colorFrom: red colorTo: pink sdk: gradio sdk_version: 3.18.0 app_file: app.py pinned: true license: mit --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Coolhand/Sentiment
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8346456692913387 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2763 - F1: 0.8346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5779 | 1.0 | 191 | 0.3701 | 0.7701 | | 0.2735 | 2.0 | 382 | 0.2908 | 0.8254 | | 0.1769 | 3.0 | 573 | 0.2763 | 0.8346 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
CopymySkill/DialoGPT-medium-atakan
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 156.20 +/- 43.02 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Corvus/DialoGPT-medium-CaptainPrice-Extended
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_havest_0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_havest_0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.1222 - Train Accuracy: 0.0117 - Train Do Wer: 1.0 - Validation Loss: 5.1600 - Validation Accuracy: 0.0117 - Validation Do Wer: 1.0 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Do Wer | Validation Loss | Validation Accuracy | Validation Do Wer | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 9.9191 | 0.0046 | 1.0 | 8.5836 | 0.0067 | 1.0 | 0 | | 8.0709 | 0.0083 | 1.0 | 7.4667 | 0.0089 | 1.0 | 1 | | 7.1652 | 0.0100 | 1.0 | 6.8204 | 0.0112 | 1.0 | 2 | | 6.7196 | 0.0114 | 1.0 | 6.5192 | 0.0114 | 1.0 | 3 | | 6.4115 | 0.0115 | 1.0 | 6.2357 | 0.0115 | 1.0 | 4 | | 6.1085 | 0.0115 | 1.0 | 5.9657 | 0.0115 | 1.0 | 5 | | 5.8206 | 0.0115 | 1.0 | 5.7162 | 0.0115 | 1.0 | 6 | | 5.5567 | 0.0115 | 1.0 | 5.4963 | 0.0115 | 1.0 | 7 | | 5.3223 | 0.0116 | 1.0 | 5.3096 | 0.0116 | 1.0 | 8 | | 5.1222 | 0.0117 | 1.0 | 5.1600 | 0.0117 | 1.0 | 9 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
CouchCat/ma_mlc_v7_distil
[ "pytorch", "distilbert", "text-classification", "en", "transformers", "multi-label", "license:mit" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- language: - en tags: - QA license: cc-by-4.0 datasets: - BoolQ - CommonSenseQA - DROP - DuoRC - HellaSWAG - HotpotQA - HybridQA - NarrativeQA - NaturalQuestionsShort - NewsQA - QAMR - RACE - SearchQA - SIQA - SQuAD - TriviaQA-web metrics: - Accuracy - Precision - Recall - F1 - MRR - R@3 - R@5 --- BERT for Sequence Classification trained on QA Dataset prediction task. - Input: question. - Output: dataset from where that question comes from. Original paper: TWEAC: Transformer with Extendable QA Agent Classifiers https://arxiv.org/abs/2104.07081 Datasets used for training: ``` list_datasets = ['BoolQ','CommonSenseQA','DROP','DuoRC','HellaSWAG','HotpotQA','HybridQA','NarrativeQA','NaturalQuestionsShort','NewsQA','QAMR','RACE','SearchQA','SIQA','SQuAD','TriviaQA-web'] ``` Results for all datasets: - Accuracy: 0.7919096825783123 - Precision: 0.731586272892176 - Recall: 0.7919096825783123 - F1: 0.7494425609552463 - MRR: 0.8720871733637521 - R@3: 0.9438690810655046 - R@5: 0.9745318608004427 - Queries/second: 6052.33538824659 Results per dataset: ``` "BoolQ": { "accuracy": 0.998776758409786, "mrr": 0.999388379204893, "r@3": 1.0, "r@5": 1.0, "query_per_second": 6978.947907596168, "precision": 0.8649364406779662, "recall": 0.998776758409786, "f1": 0.9270508089696281 }, "CommonSenseQA": { "accuracy": 0.9247135842880524, "mrr": 0.9476358338878795, "r@3": 0.9705400981996727, "r@5": 0.9705400981996727, "query_per_second": 5823.984138936813, "precision": 0.442443226311668, "recall": 0.9247135842880524, "f1": 0.5985169491525425 }, "DROP": { "accuracy": 0.9075083892617449, "mrr": 0.9378200367399193, "r@3": 0.9609899328859061, "r@5": 0.9786073825503355, "query_per_second": 6440.988897129248, "precision": 0.8636726546906187, "recall": 0.9075083892617449, "f1": 0.8850480670893842 }, "DuoRC": { "accuracy": 0.5555803405457654, "mrr": 0.7368963429107307, "r@3": 0.9092125808610305, "r@5": 0.9596996059186557, "query_per_second": 6853.643198794893, "precision": 0.646814404432133, "recall": 0.5555803405457654, "f1": 0.5977360905563778 }, "HellaSWAG": { "accuracy": 0.998406691894045, "mrr": 0.9990705702715262, "r@3": 1.0, "r@5": 1.0, "query_per_second": 3091.5012960785157, "precision": 0.9974134500596896, "recall": 0.998406691894045, "f1": 0.9979098238280083 }, "HotpotQA": { "accuracy": 0.7414435784479837, "mrr": 0.8435804344945315, "r@3": 0.9325652321247034, "r@5": 0.973568281938326, "query_per_second": 4972.668019223381, "precision": 0.7352150537634409, "recall": 0.7414435784479837, "f1": 0.7383161801923401 }, "HybridQA": { "accuracy": 0.7934218118869013, "mrr": 0.8806947764680021, "r@3": 0.964800923254472, "r@5": 0.9930755914598961, "query_per_second": 4886.494046259562, "precision": 0.7198952879581152, "recall": 0.7934218118869013, "f1": 0.7548723579467472 }, "NarrativeQA": { "accuracy": 0.5623756749076442, "mrr": 0.7416681781060867, "r@3": 0.9011082693947144, "r@5": 0.9580373212086767, "query_per_second": 7081.067049796865, "precision": 0.5623224095472628, "recall": 0.5623756749076442, "f1": 0.5623490409661377 }, "NaturalQuestionsShort": { "accuracy": 0.7985353692739171, "mrr": 0.8743599435345307, "r@3": 0.9439077594266126, "r@5": 0.9774072919912745, "query_per_second": 7136.590426649795, "precision": 0.7963020509633313, "recall": 0.7985353692739171, "f1": 0.7974171464135678 }, "NewsQA": { "accuracy": 0.5375118708452041, "mrr": 0.71192075967717, "r@3": 0.855650522317189, "r@5": 0.939696106362773, "query_per_second": 7193.851409052092, "precision": 0.18757249378624688, "recall": 0.5375118708452041, "f1": 0.2780985136961061 }, "QAMR": { "accuracy": 0.6658497602557272, "mrr": 0.7969741223377345, "r@3": 0.9207778369738945, "r@5": 0.973361747469366, "query_per_second": 7321.775044800525, "precision": 0.8654525309881587, "recall": 0.6658497602557272, "f1": 0.7526421968624852 }, "RACE": { "accuracy": 0.8771538617474154, "mrr": 0.917901778042666, "r@3": 0.9489154672613015, "r@5": 0.9693898236367322, "query_per_second": 6952.225120744351, "precision": 0.8767983789260385, "recall": 0.8771538617474154, "f1": 0.8769760843129306 }, "SearchQA": { "accuracy": 0.9762073027090695, "mrr": 0.9865069592101393, "r@3": 0.9972909305064782, "r@5": 0.9984687868080094, "query_per_second": 4031.0193826035634, "precision": 0.9870191735143503, "recall": 0.9762073027090695, "f1": 0.9815834665719192 }, "SIQA": { "accuracy": 0.9969293756397134, "mrr": 0.9977823268509042, "r@3": 0.9979529170931423, "r@5": 1.0, "query_per_second": 6711.547709005977, "precision": 0.9329501915708812, "recall": 0.9969293756397134, "f1": 0.9638792676892627 }, "SQuAD": { "accuracy": 0.550628092881614, "mrr": 0.7164538452390565, "r@3": 0.8660068519223448, "r@5": 0.9366197183098591, "query_per_second": 7033.420124363291, "precision": 0.48613678373382624, "recall": 0.550628092881614, "f1": 0.5163766175814368 }, "TriviaQA-web": { "accuracy": 0.7855124582584125, "mrr": 0.8647404868442627, "r@3": 0.9321859748266119, "r@5": 0.9640380169535063, "query_per_second": 4327.642440910395, "precision": 0.7404358353510896, "recall": 0.7855124582584125, "f1": 0.7623083634550667 }, ```