modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Declan/HuffPost_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sst2_int8_xml results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9036697247706422 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sst2_int8_xml This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4463 - Accuracy: 0.9037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.9.1+cu111 - Datasets 2.6.1 - Tokenizers 0.13.2
Declan/WallStreetJournal_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - generated_from_trainer model-index: - name: SciBERT-WIKI_Lifecycle_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SciBERT-WIKI_Lifecycle_Finetuned This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0933 | 1.0 | 2082 | 0.1159 | | 0.0782 | 2.0 | 4164 | 0.0935 | | 0.0442 | 3.0 | 6246 | 0.1142 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Declan/test_push
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-handwritten-io metrics: - accuracy model-index: - name: dalio-handwritten-io-1.3b results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-handwritten-io type: AlekseyKorshuk/dalio-handwritten-io metrics: - name: Accuracy type: accuracy value: 0.06143479984145858 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dalio-handwritten-io-1.3b This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the AlekseyKorshuk/dalio-handwritten-io dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.0614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.9219 | 0.1 | 1 | 2.6484 | 0.0529 | | 2.6938 | 0.2 | 2 | 2.6484 | 0.0529 | | 2.6365 | 0.3 | 3 | 2.5508 | 0.0560 | | 2.5088 | 0.4 | 4 | 2.5332 | 0.0562 | | 2.7307 | 0.5 | 5 | 2.5176 | 0.0565 | | 2.969 | 0.6 | 6 | 2.4941 | 0.0571 | | 2.7283 | 0.7 | 7 | 2.4883 | 0.0567 | | 2.6157 | 0.8 | 8 | 2.4766 | 0.0578 | | 2.6406 | 0.9 | 9 | 2.4590 | 0.0583 | | 2.5701 | 1.0 | 10 | 2.4375 | 0.0587 | | 2.2017 | 1.1 | 11 | 2.4238 | 0.0587 | | 2.0039 | 1.2 | 12 | 2.4219 | 0.0586 | | 1.8981 | 1.3 | 13 | 2.4160 | 0.0589 | | 1.7683 | 1.4 | 14 | 2.4160 | 0.0595 | | 1.6746 | 1.5 | 15 | 2.4121 | 0.0600 | | 1.8051 | 1.6 | 16 | 2.4102 | 0.0600 | | 2.0457 | 1.7 | 17 | 2.4043 | 0.0602 | | 1.8257 | 1.8 | 18 | 2.4004 | 0.0606 | | 1.744 | 1.9 | 19 | 2.3887 | 0.0607 | | 1.8232 | 2.0 | 20 | 2.3887 | 0.0607 | | 1.4741 | 2.1 | 21 | 2.3828 | 0.0610 | | 1.651 | 2.2 | 22 | 2.3770 | 0.0608 | | 1.3732 | 2.3 | 23 | 2.3730 | 0.0610 | | 1.3151 | 2.4 | 24 | 2.3730 | 0.0610 | | 1.5302 | 2.5 | 25 | 2.3730 | 0.0610 | | 1.2539 | 2.6 | 26 | 2.375 | 0.0612 | | 1.6211 | 2.7 | 27 | 2.3770 | 0.0612 | | 1.6047 | 2.8 | 28 | 2.3770 | 0.0613 | | 1.1953 | 2.9 | 29 | 2.3789 | 0.0614 | | 1.1621 | 3.0 | 30 | 2.3789 | 0.0614 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
DeepChem/ChemBERTa-10M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
90
2022-11-10T12:15:38Z
A magnificent and ancient Blue ice cave at the edge of the known universe in a reflective pond of cosmic stars, cinematic, atmospheric, 8K, mystical, dynamic lighting, landscape photography by Marc Adamus,
DeepChem/ChemBERTa-10M-MTR
[ "pytorch", "roberta", "arxiv:1910.09700", "transformers" ]
null
{ "architectures": [ "RobertaForRegression" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
708
null
--- language: en thumbnail: http://www.huggingtweets.com/sbe_sus/1668084101960/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1579111637973336071/MkdCeTeX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sberto.eth 📈</div> <div style="text-align: center; font-size: 14px;">@sbe_sus</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sberto.eth 📈. | Data | sberto.eth 📈 | | --- | --- | | Tweets downloaded | 1273 | | Retweets | 648 | | Short tweets | 221 | | Tweets kept | 404 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1rwjbirb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sbe_sus's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ejp5m2v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ejp5m2v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sbe_sus') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DeskDown/MarianMixFT_en-fil
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: bigscience-openrail-m --- Bloom-1b7 model finetuned on Bloom-175b generated data for email actionable points extraction
DevsIA/Devs_IA
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 --- ### DISTILBERT RUNNING ON [DEEPSPARSE](https://github.com/neuralmagic/deepsparse) GOES BRHMMMMMMMM. 🚀🚀🚀 This model is 👇 ███████╗ ██████╗ █████╗ ██████╗ ███████╗ ███████╗ ██╔════╝ ██╔══██╗ ██╔══██╗ ██╔══██╗ ██╔════╝ ██╔════╝ ███████╗ ██████╔╝ ███████║ ██████╔╝ ███████╗ █████╗ ╚════██║ ██╔═══╝ ██╔══██║ ██╔══██╗ ╚════██║█ █╔══╝ ███████║ ██║ ██║ ██║ ██║ ██ ║███████║ ███████╗ ╚══════╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═ ╝╚══════╝ ╚══════╝ ![Alt Text](https://media.giphy.com/media/4Hmjz2sqdtASJ2gFMH/giphy.gif) ### LOOKS LIKE THIS 👇 ![Imgur](https://imgur.com/gWfX811.jpg) ### Inference endpoints, outside of outliers (4ms) is avg. latency on 2 vCPUs: ![Imgur](https://i.imgur.com/qceSdjZ.png) ### Handler for access to inference endpoints ```python class EndpointHandler: def __init__(self, path=""): self.pipeline = Pipeline.create(task="text-classification", model_path=path) def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: """ Args: data (:obj:): prediction input text """ inputs = data.pop("inputs", data) start = perf_counter() prediction = self.pipeline(inputs) end = perf_counter() latency = end - start return { "labels": prediction.labels, "scores": prediction.scores, "latency (secs.)": latency } ``` ̷͈̍ ̵̳͒R̶̙̓i̸̟͘c̴̻̆k̸̑͜ÿ̷̳́ ̸̪̚ ̷͖̀
Waynehillsdev/Waynehills_summary_tensorflow
[ "tf", "t5", "text2text-generation", "transformers", "generated_from_keras_callback", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-11-10T17:51:20Z
#!/usr/bin/env python3 from diffusers import DiffusionPipeline import PIL import requests from io import BytesIO import torch def download_image(url): response = requests.get(url) return PIL.Image.open(BytesIO(response.content)).convert("RGB") pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, revision="fp16") pipe.to("cuda") pipe.enable_attention_slicing() ### Text-to-Image images = pipe.text2img("An astronaut riding a horse").images ### Image-to-Image init_image = download_image("https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg") prompt = "A fantasy landscape, trending on artstation" images = pipe.img2img(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images ### Inpainting img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = download_image(img_url).resize((512, 512)) mask_image = download_image(mask_url).resize((512, 512)) prompt = "a cat sitting on a bench" images = pipe.inpaint(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
DoyyingFace/bert-asian-hate-tweets-concat-clean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
2022-11-10T19:50:38Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librimix license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/simpleoier_librimix_asr_train_asr_transformer_multispkr_raw_en_char_sp` This model was trained by simpleoier using librimix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 28695114f2771ac3d2a9cc0b5fb30a2c3262e49a pip install -e . cd egs2/librimix/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/simpleoier_librimix_asr_train_asr_transformer_multispkr_raw_en_char_sp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Nov 10 14:58:09 EST 2022` - python version: `3.9.13 (main, Aug 25 2022, 23:26:10) [GCC 11.2.0]` - espnet version: `espnet 202209` - pytorch version: `pytorch 1.12.1` - Git hash: `b3c185d5d707bb385b74f42df2cc59bcf7d7e754` - Commit date: `Wed Nov 9 22:00:30 2022 -0500` ## asr_train_asr_transformer_multispkr_raw_en_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_multi_asrtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_asr_model_valid.acc.ave/test|6000|111243|80.4|17.4|2.2|3.8|23.5|88.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_multi_asrtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_asr_model_valid.acc.ave/test|6000|590408|90.5|6.1|3.5|3.9|13.5|88.0| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_transformer_multispkr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_multispkr_raw_en_char_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 45 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 5000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_char_sp/train/speech_shape - exp/asr_stats_raw_en_char_sp/train/text_shape.char - exp/asr_stats_raw_en_char_sp/train/text_spk2_shape.char valid_shape_file: - exp/asr_stats_raw_en_char_sp/valid/speech_shape - exp/asr_stats_raw_en_char_sp/valid/text_shape.char - exp/asr_stats_raw_en_char_sp/valid/text_spk2_shape.char batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - sound - - dump/raw/train_sp/text_spk1 - text - text - - dump/raw/train_sp/text_spk2 - text_spk2 - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text_spk1 - text - text - - dump/raw/dev/text_spk2 - text_spk2 - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - <space> - E - T - A - O - N - I - H - S - R - D - L - U - M - C - W - F - G - Y - P - B - V - K - '''' - X - J - Q - Z - <sos/eos> init: xavier_uniform input_size: null ctc_conf: reduce: false joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: default frontend_conf: fs: 16k specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_char_sp/train/feats_stats.npz model: pit_espnet model_conf: ctc_weight: 0.2 lsm_weight: 0.1 length_normalized_loss: false num_inf: 2 num_ref: 2 preencoder: null preencoder_conf: {} encoder: transformer_multispkr encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 8 num_blocks_sd: 4 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true num_inf: 2 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 preprocessor: multi preprocessor_conf: text_name: - text - text_spk2 required: - output_dir - token_list version: '202209' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
albert-base-v1
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38,156
2022-11-10T19:57:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad-a4-q3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-a4-q3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.7767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 17 - eval_batch_size: 17 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8135 | 1.0 | 516 | 1.9304 | | 1.4214 | 2.0 | 1032 | 1.7047 | | 1.0682 | 3.0 | 1548 | 1.7341 | | 0.8492 | 4.0 | 2064 | 1.7767 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
albert-base-v2
[ "pytorch", "tf", "jax", "rust", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4,785,283
2022-11-10T19:59:40Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-all-io metrics: - accuracy model-index: - name: dalio-all-io-1.3b results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-all-io type: AlekseyKorshuk/dalio-all-io metrics: - name: Accuracy type: accuracy value: 0.05582538140677676 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dalio-all-io-1.3b This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the AlekseyKorshuk/dalio-all-io dataset. It achieves the following results on the evaluation set: - Loss: 2.3652 - Accuracy: 0.0558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6543 | 0.03 | 1 | 2.6113 | 0.0513 | | 2.6077 | 0.07 | 2 | 2.6113 | 0.0513 | | 2.5964 | 0.1 | 3 | 2.5605 | 0.0519 | | 2.7302 | 0.14 | 4 | 2.5234 | 0.0527 | | 2.7 | 0.17 | 5 | 2.5078 | 0.0528 | | 2.5674 | 0.21 | 6 | 2.4941 | 0.0532 | | 2.6406 | 0.24 | 7 | 2.4883 | 0.0534 | | 2.5315 | 0.28 | 8 | 2.4805 | 0.0536 | | 2.7202 | 0.31 | 9 | 2.4727 | 0.0537 | | 2.5144 | 0.34 | 10 | 2.4648 | 0.0536 | | 2.4983 | 0.38 | 11 | 2.4512 | 0.0537 | | 2.7029 | 0.41 | 12 | 2.4414 | 0.0539 | | 2.5198 | 0.45 | 13 | 2.4336 | 0.0540 | | 2.5706 | 0.48 | 14 | 2.4258 | 0.0545 | | 2.5688 | 0.52 | 15 | 2.4180 | 0.0548 | | 2.3793 | 0.55 | 16 | 2.4102 | 0.0552 | | 2.4785 | 0.59 | 17 | 2.4043 | 0.0554 | | 2.4688 | 0.62 | 18 | 2.3984 | 0.0553 | | 2.5674 | 0.66 | 19 | 2.3984 | 0.0553 | | 2.5054 | 0.69 | 20 | 2.3945 | 0.0554 | | 2.452 | 0.72 | 21 | 2.3887 | 0.0555 | | 2.5999 | 0.76 | 22 | 2.3828 | 0.0556 | | 2.3665 | 0.79 | 23 | 2.3789 | 0.0556 | | 2.6223 | 0.83 | 24 | 2.375 | 0.0557 | | 2.3562 | 0.86 | 25 | 2.3711 | 0.0557 | | 2.429 | 0.9 | 26 | 2.3691 | 0.0557 | | 2.563 | 0.93 | 27 | 2.3672 | 0.0558 | | 2.4573 | 0.97 | 28 | 2.3652 | 0.0558 | | 2.4883 | 1.0 | 29 | 2.3652 | 0.0558 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
albert-large-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
687
2022-11-10T20:11:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-evn3-ntsema-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.97 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-evn3-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5004 - Wer: 0.97 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8078 | 7.14 | 400 | 1.3558 | 0.9933 | | 0.7854 | 14.28 | 800 | 1.2786 | 0.98 | | 0.3685 | 21.43 | 1200 | 1.4606 | 0.9733 | | 0.1912 | 28.57 | 1600 | 1.5004 | 0.97 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
albert-large-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26,792
2022-11-10T20:16:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wl metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-clinical-wl-es-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wl type: wl config: WL split: train args: WL metrics: - name: Precision type: precision value: 0.6865079365079365 - name: Recall type: recall value: 0.7355442176870748 - name: F1 type: f1 value: 0.7101806239737274 - name: Accuracy type: accuracy value: 0.8267950260730044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-clinical-wl-es-finetuned-ner This model is a fine-tuned version of [plncmm/roberta-clinical-wl-es](https://huggingface.co/plncmm/roberta-clinical-wl-es) on the wl dataset. It achieves the following results on the evaluation set: - Loss: 0.6227 - Precision: 0.6865 - Recall: 0.7355 - F1: 0.7102 - Accuracy: 0.8268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.028 | 1.0 | 500 | 0.6870 | 0.6558 | 0.6855 | 0.6703 | 0.8035 | | 0.5923 | 2.0 | 1000 | 0.6248 | 0.6851 | 0.7235 | 0.7038 | 0.8244 | | 0.4928 | 3.0 | 1500 | 0.6227 | 0.6865 | 0.7355 | 0.7102 | 0.8268 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
albert-xlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
341
2022-11-10T20:29:53Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-all-io metrics: - accuracy model-index: - name: dalio-all-io-1.3b-2-epoch results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-all-io type: AlekseyKorshuk/dalio-all-io metrics: - name: Accuracy type: accuracy value: 0.057553854065481976 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dalio-all-io-1.3b-2-epoch This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the AlekseyKorshuk/dalio-all-io dataset. It achieves the following results on the evaluation set: - Loss: 2.2949 - Accuracy: 0.0576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6543 | 0.03 | 1 | 2.6113 | 0.0513 | | 2.6077 | 0.07 | 2 | 2.6113 | 0.0513 | | 2.5964 | 0.1 | 3 | 2.5605 | 0.0519 | | 2.7302 | 0.14 | 4 | 2.5234 | 0.0527 | | 2.7002 | 0.17 | 5 | 2.5078 | 0.0529 | | 2.5674 | 0.21 | 6 | 2.4941 | 0.0533 | | 2.6399 | 0.24 | 7 | 2.4883 | 0.0534 | | 2.533 | 0.28 | 8 | 2.4805 | 0.0536 | | 2.7202 | 0.31 | 9 | 2.4746 | 0.0536 | | 2.5137 | 0.34 | 10 | 2.4648 | 0.0534 | | 2.499 | 0.38 | 11 | 2.4512 | 0.0536 | | 2.7026 | 0.41 | 12 | 2.4414 | 0.0539 | | 2.5254 | 0.45 | 13 | 2.4336 | 0.0543 | | 2.5667 | 0.48 | 14 | 2.4238 | 0.0545 | | 2.5715 | 0.52 | 15 | 2.4160 | 0.0548 | | 2.3739 | 0.55 | 16 | 2.4102 | 0.0550 | | 2.4756 | 0.59 | 17 | 2.4043 | 0.0549 | | 2.4783 | 0.62 | 18 | 2.3984 | 0.0550 | | 2.5665 | 0.66 | 19 | 2.3906 | 0.0549 | | 2.4888 | 0.69 | 20 | 2.3906 | 0.0549 | | 2.4476 | 0.72 | 21 | 2.3828 | 0.0550 | | 2.604 | 0.76 | 22 | 2.375 | 0.0552 | | 2.3416 | 0.79 | 23 | 2.3652 | 0.0554 | | 2.6028 | 0.83 | 24 | 2.3555 | 0.0555 | | 2.3425 | 0.86 | 25 | 2.3477 | 0.0558 | | 2.4142 | 0.9 | 26 | 2.3398 | 0.0558 | | 2.5317 | 0.93 | 27 | 2.3340 | 0.0559 | | 2.4119 | 0.97 | 28 | 2.3301 | 0.0561 | | 2.4048 | 1.0 | 29 | 2.3262 | 0.0563 | | 1.9646 | 1.03 | 30 | 2.3242 | 0.0564 | | 1.9233 | 1.07 | 31 | 2.3203 | 0.0563 | | 1.9276 | 1.1 | 32 | 2.3203 | 0.0564 | | 1.8702 | 1.14 | 33 | 2.3281 | 0.0565 | | 2.0997 | 1.17 | 34 | 2.3340 | 0.0565 | | 1.7943 | 1.21 | 35 | 2.3320 | 0.0568 | | 1.8579 | 1.24 | 36 | 2.3242 | 0.0567 | | 1.8844 | 1.28 | 37 | 2.3145 | 0.0568 | | 1.9288 | 1.31 | 38 | 2.3086 | 0.0569 | | 1.6616 | 1.34 | 39 | 2.3047 | 0.0570 | | 1.6443 | 1.38 | 40 | 2.3047 | 0.0571 | | 1.7616 | 1.41 | 41 | 2.3027 | 0.0572 | | 1.7904 | 1.45 | 42 | 2.3027 | 0.0571 | | 1.8762 | 1.48 | 43 | 2.3027 | 0.0573 | | 1.6569 | 1.52 | 44 | 2.3027 | 0.0573 | | 1.647 | 1.55 | 45 | 2.3027 | 0.0573 | | 1.8168 | 1.59 | 46 | 2.3027 | 0.0574 | | 1.7194 | 1.62 | 47 | 2.3027 | 0.0573 | | 1.7667 | 1.66 | 48 | 2.3027 | 0.0572 | | 1.7621 | 1.69 | 49 | 2.3027 | 0.0573 | | 1.7269 | 1.72 | 50 | 2.3008 | 0.0573 | | 1.7815 | 1.76 | 51 | 2.3008 | 0.0574 | | 1.8318 | 1.79 | 52 | 2.2988 | 0.0574 | | 1.9366 | 1.83 | 53 | 2.2988 | 0.0575 | | 1.736 | 1.86 | 54 | 2.2969 | 0.0576 | | 1.9984 | 1.9 | 55 | 2.2969 | 0.0575 | | 1.7203 | 1.93 | 56 | 2.2949 | 0.0575 | | 1.7391 | 1.97 | 57 | 2.2949 | 0.0576 | | 1.6611 | 2.0 | 58 | 2.2949 | 0.0576 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
albert-xlarge-v2
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,973
2022-11-10T20:35:15Z
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT_2000_custom_architecture results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_2000_custom_architecture This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.0153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 16.6991 | 0.19 | 500 | 8.9825 | | 8.259 | 0.39 | 1000 | 7.5650 | | 7.3895 | 0.58 | 1500 | 7.1084 | | 7.0328 | 0.77 | 2000 | 6.8799 | | 6.8743 | 0.97 | 2500 | 6.7598 | | 6.7775 | 1.16 | 3000 | 6.5915 | | 6.6348 | 1.36 | 3500 | 6.4513 | | 6.5759 | 1.55 | 4000 | 6.3394 | | 6.5243 | 1.74 | 4500 | 6.3336 | | 6.4492 | 1.94 | 5000 | 6.2714 | | 6.4472 | 2.13 | 5500 | 6.2921 | | 6.4283 | 2.32 | 6000 | 6.1922 | | 6.3508 | 2.52 | 6500 | 6.2112 | | 6.3838 | 2.71 | 7000 | 6.1727 | | 6.3303 | 2.9 | 7500 | 6.2093 | | 6.3067 | 3.1 | 8000 | 6.1984 | | 6.3099 | 3.29 | 8500 | 6.1589 | | 6.2806 | 3.49 | 9000 | 6.1732 | | 6.2861 | 3.68 | 9500 | 6.1257 | | 6.2645 | 3.87 | 10000 | 6.1655 | | 6.2992 | 4.07 | 10500 | 6.1156 | | 6.2331 | 4.26 | 11000 | 6.1212 | | 6.2247 | 4.45 | 11500 | 6.1991 | | 6.2235 | 4.65 | 12000 | 6.1181 | | 6.2354 | 4.84 | 12500 | 6.1469 | | 6.2157 | 5.03 | 13000 | 6.1170 | | 6.2076 | 5.23 | 13500 | 6.1128 | | 6.2085 | 5.42 | 14000 | 6.1079 | | 6.1917 | 5.62 | 14500 | 6.1511 | | 6.1917 | 5.81 | 15000 | 6.1032 | | 6.1887 | 6.0 | 15500 | 6.0877 | | 6.1895 | 6.2 | 16000 | 6.0876 | | 6.1685 | 6.39 | 16500 | 6.0734 | | 6.1709 | 6.58 | 17000 | 6.1039 | | 6.1442 | 6.78 | 17500 | 6.1347 | | 6.126 | 6.97 | 18000 | 6.0571 | | 6.1587 | 7.16 | 18500 | 6.0808 | | 6.1349 | 7.36 | 19000 | 5.9921 | | 6.1487 | 7.55 | 19500 | 6.0548 | | 6.1362 | 7.75 | 20000 | 6.0746 | | 6.1581 | 7.94 | 20500 | 6.0689 | | 6.1225 | 8.13 | 21000 | 6.0916 | | 6.1233 | 8.33 | 21500 | 6.0504 | | 6.1192 | 8.52 | 22000 | 6.0630 | | 6.0843 | 8.71 | 22500 | 6.0927 | | 6.1144 | 8.91 | 23000 | 6.0464 | | 6.1012 | 9.1 | 23500 | 6.0872 | | 6.1118 | 9.3 | 24000 | 6.0153 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
albert-xxlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7,091
null
Access to model luanverissimo/luanverissimo is restricted and you are not in the authorized list. Visit https://huggingface.co/luanverissimo/luanverissimo to ask for access.
bert-base-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,621,271
2022-11-10T20:52:55Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-all-io metrics: - accuracy model-index: - name: dalio-all-io-1.3b-3-epoch results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-all-io type: AlekseyKorshuk/dalio-all-io metrics: - name: Accuracy type: accuracy value: 0.05841094794583167 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dalio-all-io-1.3b-3-epoch This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the AlekseyKorshuk/dalio-all-io dataset. It achieves the following results on the evaluation set: - Loss: 2.3008 - Accuracy: 0.0584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6543 | 0.03 | 1 | 2.6113 | 0.0513 | | 2.6077 | 0.07 | 2 | 2.6113 | 0.0513 | | 2.5964 | 0.1 | 3 | 2.5605 | 0.0519 | | 2.7302 | 0.14 | 4 | 2.5234 | 0.0526 | | 2.7004 | 0.17 | 5 | 2.5078 | 0.0529 | | 2.5681 | 0.21 | 6 | 2.4941 | 0.0532 | | 2.6404 | 0.24 | 7 | 2.4883 | 0.0534 | | 2.5325 | 0.28 | 8 | 2.4805 | 0.0536 | | 2.7205 | 0.31 | 9 | 2.4746 | 0.0536 | | 2.5149 | 0.34 | 10 | 2.4648 | 0.0533 | | 2.5017 | 0.38 | 11 | 2.4512 | 0.0535 | | 2.7026 | 0.41 | 12 | 2.4395 | 0.0539 | | 2.5259 | 0.45 | 13 | 2.4316 | 0.0543 | | 2.563 | 0.48 | 14 | 2.4219 | 0.0546 | | 2.5679 | 0.52 | 15 | 2.4141 | 0.0550 | | 2.3701 | 0.55 | 16 | 2.4082 | 0.0551 | | 2.4739 | 0.59 | 17 | 2.4082 | 0.0551 | | 2.481 | 0.62 | 18 | 2.4023 | 0.0548 | | 2.5795 | 0.66 | 19 | 2.3945 | 0.0549 | | 2.4902 | 0.69 | 20 | 2.3867 | 0.0549 | | 2.4509 | 0.72 | 21 | 2.3809 | 0.0551 | | 2.6052 | 0.76 | 22 | 2.3730 | 0.0553 | | 2.3323 | 0.79 | 23 | 2.3633 | 0.0555 | | 2.5994 | 0.83 | 24 | 2.3555 | 0.0556 | | 2.3347 | 0.86 | 25 | 2.3477 | 0.0556 | | 2.421 | 0.9 | 26 | 2.3398 | 0.0559 | | 2.5337 | 0.93 | 27 | 2.3359 | 0.0560 | | 2.4102 | 0.97 | 28 | 2.3320 | 0.0563 | | 2.4309 | 1.0 | 29 | 2.3262 | 0.0564 | | 1.9305 | 1.03 | 30 | 2.3223 | 0.0564 | | 1.8601 | 1.07 | 31 | 2.3203 | 0.0567 | | 1.8682 | 1.1 | 32 | 2.3281 | 0.0564 | | 1.8657 | 1.14 | 33 | 2.3535 | 0.0564 | | 2.063 | 1.17 | 34 | 2.3398 | 0.0567 | | 1.6443 | 1.21 | 35 | 2.3242 | 0.0568 | | 1.7592 | 1.24 | 36 | 2.3164 | 0.0569 | | 1.8981 | 1.28 | 37 | 2.3105 | 0.0569 | | 1.9379 | 1.31 | 38 | 2.3047 | 0.0573 | | 1.6008 | 1.34 | 39 | 2.3027 | 0.0574 | | 1.595 | 1.38 | 40 | 2.3027 | 0.0575 | | 1.7096 | 1.41 | 41 | 2.3027 | 0.0575 | | 1.7245 | 1.45 | 42 | 2.3027 | 0.0576 | | 1.795 | 1.48 | 43 | 2.3008 | 0.0577 | | 1.7241 | 1.52 | 44 | 2.3008 | 0.0576 | | 1.6356 | 1.55 | 45 | 2.2988 | 0.0576 | | 1.77 | 1.59 | 46 | 2.2969 | 0.0576 | | 1.6675 | 1.62 | 47 | 2.2930 | 0.0577 | | 1.6929 | 1.66 | 48 | 2.2910 | 0.0577 | | 1.6635 | 1.69 | 49 | 2.2910 | 0.0576 | | 1.6093 | 1.72 | 50 | 2.2910 | 0.0578 | | 1.7362 | 1.76 | 51 | 2.2891 | 0.0580 | | 1.7015 | 1.79 | 52 | 2.2852 | 0.0581 | | 1.9515 | 1.83 | 53 | 2.2812 | 0.0582 | | 1.6494 | 1.86 | 54 | 2.2773 | 0.0580 | | 1.7522 | 1.9 | 55 | 2.2734 | 0.0580 | | 1.7369 | 1.93 | 56 | 2.2676 | 0.0581 | | 1.6528 | 1.97 | 57 | 2.2637 | 0.0581 | | 1.51 | 2.0 | 58 | 2.2617 | 0.0583 | | 1.4579 | 2.03 | 59 | 2.2637 | 0.0585 | | 1.2645 | 2.07 | 60 | 2.2695 | 0.0585 | | 1.2424 | 2.1 | 61 | 2.2773 | 0.0584 | | 1.2117 | 2.14 | 62 | 2.2891 | 0.0584 | | 1.4059 | 2.17 | 63 | 2.3008 | 0.0580 | | 1.328 | 2.21 | 64 | 2.3145 | 0.0581 | | 1.3436 | 2.24 | 65 | 2.3281 | 0.0580 | | 1.389 | 2.28 | 66 | 2.3379 | 0.0580 | | 1.2127 | 2.31 | 67 | 2.3398 | 0.0580 | | 1.3645 | 2.34 | 68 | 2.3418 | 0.0581 | | 1.3389 | 2.38 | 69 | 2.3379 | 0.0581 | | 1.2549 | 2.41 | 70 | 2.3320 | 0.0581 | | 1.2193 | 2.45 | 71 | 2.3281 | 0.0582 | | 1.3617 | 2.48 | 72 | 2.3223 | 0.0583 | | 1.2336 | 2.52 | 73 | 2.3184 | 0.0583 | | 1.179 | 2.55 | 74 | 2.3145 | 0.0583 | | 1.2468 | 2.59 | 75 | 2.3125 | 0.0583 | | 1.3325 | 2.62 | 76 | 2.3086 | 0.0583 | | 1.1471 | 2.66 | 77 | 2.3066 | 0.0583 | | 1.3123 | 2.69 | 78 | 2.3066 | 0.0583 | | 1.3285 | 2.72 | 79 | 2.3047 | 0.0585 | | 1.3232 | 2.76 | 80 | 2.3027 | 0.0584 | | 1.1228 | 2.79 | 81 | 2.3027 | 0.0584 | | 1.3524 | 2.83 | 82 | 2.3027 | 0.0584 | | 1.2042 | 2.86 | 83 | 2.3027 | 0.0583 | | 1.3588 | 2.9 | 84 | 2.3008 | 0.0583 | | 1.2982 | 2.93 | 85 | 2.3008 | 0.0584 | | 1.4373 | 2.97 | 86 | 2.3008 | 0.0585 | | 1.3562 | 3.0 | 87 | 2.3008 | 0.0584 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bert-base-german-dbmdz-uncased
[ "pytorch", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68,305
2022-11-10T21:22:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wl metrics: - precision - recall - f1 - accuracy model-index: - name: spanish-clinical-ner results: - task: name: Token Classification type: token-classification dataset: name: wl type: wl config: WL split: train args: WL metrics: - name: Precision type: precision value: 0.6868542362104594 - name: Recall type: recall value: 0.7348639455782313 - name: F1 type: f1 value: 0.7100484758853013 - name: Accuracy type: accuracy value: 0.8262735659847573 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanish-clinical-ner This model is a fine-tuned version of [plncmm/roberta-clinical-wl-es](https://huggingface.co/plncmm/roberta-clinical-wl-es) on the wl dataset. It achieves the following results on the evaluation set: - Loss: 0.6181 - Precision: 0.6869 - Recall: 0.7349 - F1: 0.7100 - Accuracy: 0.8263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.0283 | 1.0 | 500 | 0.6862 | 0.6690 | 0.6959 | 0.6822 | 0.8091 | | 0.599 | 2.0 | 1000 | 0.6198 | 0.6856 | 0.7276 | 0.7059 | 0.8252 | | 0.4973 | 3.0 | 1500 | 0.6181 | 0.6869 | 0.7349 | 0.7100 | 0.8263 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
bert-large-cased-whole-word-masking
[ "pytorch", "tf", "jax", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,316
2022-11-10T22:00:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9872 | 1.0 | 554 | 1.7933 | | 1.6189 | 2.0 | 1108 | 1.6159 | | 1.3125 | 3.0 | 1662 | 1.6247 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
bert-large-uncased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
480,510
2022-11-10T22:01:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-original-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-original-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.965 | 1.0 | 554 | 1.8076 | | 1.6215 | 2.0 | 1108 | 1.6230 | | 1.298 | 3.0 | 1662 | 1.6427 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
distilbert-base-cased-distilled-squad
[ "pytorch", "tf", "rust", "safetensors", "openvino", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "model-index", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
257,745
2022-11-10T22:28:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5443 | 1.0 | 554 | 1.6070 | | 1.2504 | 2.0 | 1108 | 1.5107 | | 0.8091 | 3.0 | 1662 | 1.6620 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
distilroberta-base
[ "pytorch", "tf", "jax", "rust", "safetensors", "roberta", "fill-mask", "en", "dataset:openwebtext", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,342,240
2022-11-11T00:16:08Z
--- tags: - generated_from_trainer model-index: - name: chemical-bert-uncased-finetuned-cust-c1-cust results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chemical-bert-uncased-finetuned-cust-c1-cust This model is a fine-tuned version of [shafin/chemical-bert-uncased-finetuned-cust](https://huggingface.co/shafin/chemical-bert-uncased-finetuned-cust) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.96 | 1.0 | 63 | 1.6719 | | 1.7095 | 2.0 | 126 | 1.5305 | | 1.5634 | 3.0 | 189 | 1.2972 | | 1.4785 | 4.0 | 252 | 1.3354 | | 1.3991 | 5.0 | 315 | 1.2542 | | 1.3482 | 6.0 | 378 | 1.1870 | | 1.2984 | 7.0 | 441 | 1.1844 | | 1.2589 | 8.0 | 504 | 1.1262 | | 1.1762 | 9.0 | 567 | 1.1176 | | 1.1724 | 10.0 | 630 | 1.0312 | | 1.1222 | 11.0 | 693 | 1.0113 | | 1.1021 | 12.0 | 756 | 1.0518 | | 1.0646 | 13.0 | 819 | 1.0433 | | 1.0273 | 14.0 | 882 | 0.9634 | | 1.0187 | 15.0 | 945 | 0.9299 | | 0.9854 | 16.0 | 1008 | 0.9458 | | 0.9799 | 17.0 | 1071 | 0.9733 | | 0.95 | 18.0 | 1134 | 0.9169 | | 0.934 | 19.0 | 1197 | 0.9246 | | 0.907 | 20.0 | 1260 | 0.8939 | | 0.8974 | 21.0 | 1323 | 0.8575 | | 0.8749 | 22.0 | 1386 | 0.8513 | | 0.8526 | 23.0 | 1449 | 0.8089 | | 0.8359 | 24.0 | 1512 | 0.8600 | | 0.8292 | 25.0 | 1575 | 0.8517 | | 0.8263 | 26.0 | 1638 | 0.8293 | | 0.8033 | 27.0 | 1701 | 0.7747 | | 0.7999 | 28.0 | 1764 | 0.8169 | | 0.7778 | 29.0 | 1827 | 0.7981 | | 0.7574 | 30.0 | 1890 | 0.7457 | | 0.7581 | 31.0 | 1953 | 0.7504 | | 0.7404 | 32.0 | 2016 | 0.7637 | | 0.7332 | 33.0 | 2079 | 0.7902 | | 0.7314 | 34.0 | 2142 | 0.7185 | | 0.7209 | 35.0 | 2205 | 0.7534 | | 0.6902 | 36.0 | 2268 | 0.7334 | | 0.6973 | 37.0 | 2331 | 0.7069 | | 0.687 | 38.0 | 2394 | 0.6820 | | 0.6658 | 39.0 | 2457 | 0.7155 | | 0.6697 | 40.0 | 2520 | 0.7149 | | 0.6584 | 41.0 | 2583 | 0.7413 | | 0.6638 | 42.0 | 2646 | 0.7245 | | 0.6282 | 43.0 | 2709 | 0.7177 | | 0.6418 | 44.0 | 2772 | 0.6653 | | 0.6323 | 45.0 | 2835 | 0.7715 | | 0.6256 | 46.0 | 2898 | 0.7269 | | 0.6109 | 47.0 | 2961 | 0.6744 | | 0.6133 | 48.0 | 3024 | 0.6816 | | 0.595 | 49.0 | 3087 | 0.6969 | | 0.6058 | 50.0 | 3150 | 0.6965 | | 0.5961 | 51.0 | 3213 | 0.6988 | | 0.587 | 52.0 | 3276 | 0.6727 | | 0.5861 | 53.0 | 3339 | 0.6327 | | 0.5758 | 54.0 | 3402 | 0.6538 | | 0.5692 | 55.0 | 3465 | 0.6612 | | 0.567 | 56.0 | 3528 | 0.5989 | | 0.5514 | 57.0 | 3591 | 0.6776 | | 0.5526 | 58.0 | 3654 | 0.6440 | | 0.556 | 59.0 | 3717 | 0.6682 | | 0.5476 | 60.0 | 3780 | 0.6254 | | 0.536 | 61.0 | 3843 | 0.6239 | | 0.526 | 62.0 | 3906 | 0.6606 | | 0.532 | 63.0 | 3969 | 0.6565 | | 0.5189 | 64.0 | 4032 | 0.6586 | | 0.5075 | 65.0 | 4095 | 0.6286 | | 0.5131 | 66.0 | 4158 | 0.6646 | | 0.498 | 67.0 | 4221 | 0.6486 | | 0.4979 | 68.0 | 4284 | 0.6313 | | 0.4885 | 69.0 | 4347 | 0.6419 | | 0.4875 | 70.0 | 4410 | 0.6313 | | 0.4904 | 71.0 | 4473 | 0.6602 | | 0.4712 | 72.0 | 4536 | 0.6200 | | 0.4798 | 73.0 | 4599 | 0.5912 | | 0.4802 | 74.0 | 4662 | 0.6001 | | 0.4704 | 75.0 | 4725 | 0.6303 | | 0.4709 | 76.0 | 4788 | 0.5871 | | 0.465 | 77.0 | 4851 | 0.6344 | | 0.4651 | 78.0 | 4914 | 0.6030 | | 0.4501 | 79.0 | 4977 | 0.5998 | | 0.4584 | 80.0 | 5040 | 0.5926 | | 0.4651 | 81.0 | 5103 | 0.6134 | | 0.438 | 82.0 | 5166 | 0.6254 | | 0.448 | 83.0 | 5229 | 0.6260 | | 0.4295 | 84.0 | 5292 | 0.5866 | | 0.434 | 85.0 | 5355 | 0.5740 | | 0.4261 | 86.0 | 5418 | 0.5691 | | 0.4312 | 87.0 | 5481 | 0.6243 | | 0.4289 | 88.0 | 5544 | 0.5781 | | 0.4255 | 89.0 | 5607 | 0.6226 | | 0.4254 | 90.0 | 5670 | 0.5538 | | 0.4231 | 91.0 | 5733 | 0.5874 | | 0.4107 | 92.0 | 5796 | 0.6054 | | 0.4082 | 93.0 | 5859 | 0.5898 | | 0.4144 | 94.0 | 5922 | 0.5826 | | 0.4225 | 95.0 | 5985 | 0.5501 | | 0.3964 | 96.0 | 6048 | 0.5886 | | 0.3972 | 97.0 | 6111 | 0.5831 | | 0.4165 | 98.0 | 6174 | 0.5164 | | 0.4024 | 99.0 | 6237 | 0.5714 | | 0.4013 | 100.0 | 6300 | 0.5734 | | 0.3933 | 101.0 | 6363 | 0.5727 | | 0.3821 | 102.0 | 6426 | 0.5985 | | 0.3904 | 103.0 | 6489 | 0.5571 | | 0.3965 | 104.0 | 6552 | 0.5837 | | 0.3789 | 105.0 | 6615 | 0.5989 | | 0.3733 | 106.0 | 6678 | 0.5405 | | 0.3907 | 107.0 | 6741 | 0.6059 | | 0.3794 | 108.0 | 6804 | 0.5602 | | 0.3689 | 109.0 | 6867 | 0.5590 | | 0.3603 | 110.0 | 6930 | 0.5886 | | 0.3747 | 111.0 | 6993 | 0.5294 | | 0.3667 | 112.0 | 7056 | 0.5759 | | 0.3754 | 113.0 | 7119 | 0.5821 | | 0.3676 | 114.0 | 7182 | 0.5653 | | 0.3524 | 115.0 | 7245 | 0.5537 | | 0.3624 | 116.0 | 7308 | 0.5523 | | 0.3527 | 117.0 | 7371 | 0.5799 | | 0.3588 | 118.0 | 7434 | 0.6346 | | 0.3539 | 119.0 | 7497 | 0.5116 | | 0.3553 | 120.0 | 7560 | 0.5716 | | 0.3483 | 121.0 | 7623 | 0.5721 | | 0.3625 | 122.0 | 7686 | 0.5393 | | 0.3354 | 123.0 | 7749 | 0.5800 | | 0.3392 | 124.0 | 7812 | 0.5389 | | 0.344 | 125.0 | 7875 | 0.5455 | | 0.3451 | 126.0 | 7938 | 0.5428 | | 0.3374 | 127.0 | 8001 | 0.5580 | | 0.3428 | 128.0 | 8064 | 0.5339 | | 0.3386 | 129.0 | 8127 | 0.5447 | | 0.3318 | 130.0 | 8190 | 0.5738 | | 0.3388 | 131.0 | 8253 | 0.5667 | | 0.3335 | 132.0 | 8316 | 0.5407 | | 0.3383 | 133.0 | 8379 | 0.5679 | | 0.3299 | 134.0 | 8442 | 0.5846 | | 0.327 | 135.0 | 8505 | 0.5511 | | 0.3354 | 136.0 | 8568 | 0.5649 | | 0.32 | 137.0 | 8631 | 0.5358 | | 0.3265 | 138.0 | 8694 | 0.5528 | | 0.319 | 139.0 | 8757 | 0.5926 | | 0.3304 | 140.0 | 8820 | 0.5531 | | 0.3191 | 141.0 | 8883 | 0.5379 | | 0.3298 | 142.0 | 8946 | 0.5468 | | 0.3134 | 143.0 | 9009 | 0.5623 | | 0.3186 | 144.0 | 9072 | 0.5162 | | 0.3179 | 145.0 | 9135 | 0.5570 | | 0.3175 | 146.0 | 9198 | 0.5379 | | 0.3051 | 147.0 | 9261 | 0.5437 | | 0.312 | 148.0 | 9324 | 0.5301 | | 0.3093 | 149.0 | 9387 | 0.5393 | | 0.3227 | 150.0 | 9450 | 0.5531 | | 0.3125 | 151.0 | 9513 | 0.5794 | | 0.3162 | 152.0 | 9576 | 0.5677 | | 0.3006 | 153.0 | 9639 | 0.5668 | | 0.3011 | 154.0 | 9702 | 0.5797 | | 0.3208 | 155.0 | 9765 | 0.5450 | | 0.3048 | 156.0 | 9828 | 0.5465 | | 0.3092 | 157.0 | 9891 | 0.5358 | | 0.3125 | 158.0 | 9954 | 0.5043 | | 0.3083 | 159.0 | 10017 | 0.5321 | | 0.3 | 160.0 | 10080 | 0.5526 | | 0.2968 | 161.0 | 10143 | 0.5324 | | 0.3068 | 162.0 | 10206 | 0.5471 | | 0.3129 | 163.0 | 10269 | 0.5575 | | 0.3061 | 164.0 | 10332 | 0.5796 | | 0.2943 | 165.0 | 10395 | 0.5544 | | 0.2967 | 166.0 | 10458 | 0.5422 | | 0.2959 | 167.0 | 10521 | 0.5149 | | 0.2987 | 168.0 | 10584 | 0.5685 | | 0.3045 | 169.0 | 10647 | 0.5176 | | 0.2975 | 170.0 | 10710 | 0.5044 | | 0.2948 | 171.0 | 10773 | 0.5264 | | 0.3 | 172.0 | 10836 | 0.5174 | | 0.2967 | 173.0 | 10899 | 0.5658 | | 0.2873 | 174.0 | 10962 | 0.4988 | | 0.2939 | 175.0 | 11025 | 0.5512 | | 0.2954 | 176.0 | 11088 | 0.5139 | | 0.301 | 177.0 | 11151 | 0.6007 | | 0.2948 | 178.0 | 11214 | 0.5167 | | 0.2898 | 179.0 | 11277 | 0.5443 | | 0.2869 | 180.0 | 11340 | 0.5544 | | 0.2973 | 181.0 | 11403 | 0.5644 | | 0.2985 | 182.0 | 11466 | 0.5153 | | 0.2904 | 183.0 | 11529 | 0.5561 | | 0.2872 | 184.0 | 11592 | 0.5610 | | 0.2894 | 185.0 | 11655 | 0.5511 | | 0.297 | 186.0 | 11718 | 0.5408 | | 0.2904 | 187.0 | 11781 | 0.5574 | | 0.2818 | 188.0 | 11844 | 0.5182 | | 0.2873 | 189.0 | 11907 | 0.5425 | | 0.2973 | 190.0 | 11970 | 0.5198 | | 0.2913 | 191.0 | 12033 | 0.5119 | | 0.2931 | 192.0 | 12096 | 0.5585 | | 0.2859 | 193.0 | 12159 | 0.5368 | | 0.2853 | 194.0 | 12222 | 0.5274 | | 0.294 | 195.0 | 12285 | 0.5685 | | 0.2885 | 196.0 | 12348 | 0.5581 | | 0.295 | 197.0 | 12411 | 0.4987 | | 0.2807 | 198.0 | 12474 | 0.5168 | | 0.289 | 199.0 | 12537 | 0.5284 | | 0.2893 | 200.0 | 12600 | 0.5420 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
roberta-large-mnli
[ "pytorch", "tf", "jax", "safetensors", "roberta", "text-classification", "en", "dataset:multi_nli", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:1806.02847", "arxiv:1804.07461", "arxiv:1704.05426", "arxiv:1508.05326", "arxiv:1809.05053", "arxiv:1910.09700", "transformers", "autogenerated-modelcard", "license:mit", "has_space" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
117,700
2022-11-11T01:12:15Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
xlnet-base-cased
[ "pytorch", "tf", "rust", "xlnet", "text-generation", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1906.08237", "transformers", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "XLNetLMHeadModel" ], "model_type": "xlnet", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 250 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
163,098
2022-11-11T03:20:02Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: frases-roberta-juridico-v0.7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # frases-roberta-juridico-v0.7 This model is a fine-tuned version of [projetocnj/roberta-base-juridico](https://huggingface.co/projetocnj/roberta-base-juridico) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9295 - F1: 0.8703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.12.1
AVSilva/bertimbau-large-fine-tuned-sd
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2022-11-11T13:47:55Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Abab/Test_Albert
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-11T15:05:28Z
--- language: - pl pipeline_tag: text-classification widget: - text: "Przykro patrzeć, a słuchać się nie da." example_title: "example 1" - text: "Oczywiście ze Pan Prezydent to nasza duma narodowa!!" example_title: "example 2" tags: - text - sentiment - politics metrics: - accuracy - f1 model-index: - name: PaReS-sentimenTw-political-PL results: - task: type: sentiment-classification # Required. Example: automatic-speech-recognition name: Text Classification # Optional. Example: Speech Recognition dataset: type: tweets # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: tweets_2020_electionsPL # Required. A pretty name for the dataset. Example: Common Voice (French) metrics: - type: f1 # Required. Example: wer. Use metric id from https://hf.co/metrics value: 94.4 # Required. Example: 20.90 --- # PaReS-sentimenTw-political-PL This model is a fine-tuned version of [dkleczek/bert-base-polish-cased-v1](https://huggingface.co/dkleczek/bert-base-polish-cased-v1) to predict 3-categorical sentiment. Fine-tuned on 1k sample of manually annotated Twitter data. Model developed as a part of ComPathos project: https://www.ncn.gov.pl/sites/default/files/listy-rankingowe/2020-09-30apsv2/streszczenia/497124-en.pdf ``` from transformers import pipeline model_path = "eevvgg/PaReS-sentimenTw-political-PL" sentiment_task = pipeline(task = "sentiment-analysis", model = model_path, tokenizer = model_path) sequence = ["Cała ta śmieszna debata była próbą ukrycia problemów gospodarczych jakie są i nadejdą, pytania w większości o mało istotnych sprawach", "Brawo panie ministrze!"] result = sentiment_task(sequence) labels = [i['label'] for i in result] # ['Negative', 'Positive'] ``` ## Intended uses & limitations Sentiment detection in Polish data (fine-tuned on tweets from political domain). ## Training and evaluation data - Trained for 3 epochs, mini-batch size of 8. - Training results: loss: 0.1358926964368792 It achieves the following results on the test set (10%): - No. examples = 100 - mini batch size = 8 - accuracy = 0.950 - macro f1 = 0.944 precision recall f1-score support 0 0.960 0.980 0.970 49 1 0.958 0.885 0.920 26 2 0.923 0.960 0.941 25
AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_no_lm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 457.50 +/- 157.18 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jmsalvi -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jmsalvi -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jmsalvi ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 150000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.15), ('frame_stack', 3), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1200000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AimB/konlpy_berttokenizer_helsinki
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: BERT-FINETUNE-MBTI-LM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-FINETUNE-MBTI-LM This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Aimendo/Triage
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: BERT-FINETUNE-MBTI-CLS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-FINETUNE-MBTI-CLS This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Aimendo/autonlp-triage-35248482
[ "pytorch", "bert", "text-classification", "en", "dataset:Aimendo/autonlp-data-triage", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- language: en thumbnail: http://www.huggingtweets.com/babyquakes524/1668231755244/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1501301681191112708/gKRltdLC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">babyquakes</div> <div style="text-align: center; font-size: 14px;">@babyquakes524</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from babyquakes. | Data | babyquakes | | --- | --- | | Tweets downloaded | 103 | | Retweets | 14 | | Short tweets | 8 | | Tweets kept | 81 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2lceokfz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @babyquakes524's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jqxev7cl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jqxev7cl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/babyquakes524') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Ajteks/Chatbot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer model-index: - name: BERT-FINETUNE-MBTI-CLS-BERT-FINETUNE-MBTI-CLS-JointBERT-Warmup-from-CLS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-FINETUNE-MBTI-CLS-BERT-FINETUNE-MBTI-CLS-JointBERT-Warmup-from-CLS This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.3549 - Cls loss: 2.1311 - Lm loss: 4.8216 - Cls Accuracy: 0.6058 - Cls F1: 0.6037 - Cls Precision: 0.6084 - Cls Recall: 0.6058 - Perplexity: 124.17 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 5.778 | 1.0 | 3470 | 5.5656 | 1.9246 | 5.0840 | 0.5931 | 0.5907 | 0.5968 | 0.5931 | 161.43 | | 5.1443 | 2.0 | 6940 | 5.3831 | 2.0178 | 4.8783 | 0.6069 | 0.6057 | 0.6177 | 0.6069 | 131.40 | | 4.9386 | 3.0 | 10410 | 5.3549 | 2.1311 | 4.8216 | 0.6058 | 0.6037 | 0.6084 | 0.6058 | 124.17 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
AkaiSnow/Rick_bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer model-index: - name: BERT-FINETUNE-MBTI-LM-BERT-FINETUNE-MBTI-LM-JointBERT-Warmup-from-LM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-FINETUNE-MBTI-LM-BERT-FINETUNE-MBTI-LM-JointBERT-Warmup-from-LM This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7966 - Cls loss: 1.4255 - Lm loss: 4.4398 - Cls Accuracy: 0.6380 - Cls F1: 0.6319 - Cls Precision: 0.6416 - Cls Recall: 0.6380 - Perplexity: 84.76 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 5.3087 | 1.0 | 3470 | 4.9005 | 1.4109 | 4.5474 | 0.6075 | 0.5981 | 0.6132 | 0.6075 | 94.39 | | 4.8274 | 2.0 | 6940 | 4.7987 | 1.3448 | 4.4621 | 0.6242 | 0.6193 | 0.6381 | 0.6242 | 86.67 | | 4.6472 | 3.0 | 10410 | 4.7966 | 1.4255 | 4.4398 | 0.6380 | 0.6319 | 0.6416 | 0.6380 | 84.76 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Akari/albert-base-v2-finetuned-squad
[ "pytorch", "tensorboard", "albert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- tags: - generated_from_trainer model-index: - name: Clinical-Longformer-breastcancer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Clinical-Longformer-breastcancer This model is a fine-tuned version of [yikuan8/Clinical-Longformer](https://huggingface.co/yikuan8/Clinical-Longformer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1392 | 1.3046 | | No log | 2.0 | 2784 | 1.2224 | | No log | 3.0 | 4176 | 1.1928 | | No log | 4.0 | 5568 | 1.1641 | | No log | 5.0 | 6960 | 1.1507 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.0 - Datasets 2.2.2 - Tokenizers 0.11.6
Akash7897/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0272 - Accuracy: 0.9287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 0.2337 | 0.6274 | | 0.3698 | 2.0 | 636 | 0.1052 | 0.8458 | | 0.3698 | 3.0 | 954 | 0.0650 | 0.8935 | | 0.1216 | 4.0 | 1272 | 0.0476 | 0.9068 | | 0.0727 | 5.0 | 1590 | 0.0386 | 0.9181 | | 0.0727 | 6.0 | 1908 | 0.0336 | 0.9219 | | 0.0556 | 7.0 | 2226 | 0.0305 | 0.9229 | | 0.0477 | 8.0 | 2544 | 0.0287 | 0.9287 | | 0.0477 | 9.0 | 2862 | 0.0276 | 0.9274 | | 0.0441 | 10.0 | 3180 | 0.0272 | 0.9287 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.2
Akashamba/distilbert-base-uncased-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - dreambooth-hackathon - wildcard - text-to-image datasets: BirdL/NGA_Art inference: true --- # NGA_Art_SD-V1.5 Model Card TL;DR:NGA Art is a Dreambooth model trained from public domain images from the National Art Gallery. The token is sks. # Model Pretraining This model is trained on top [Stable Diffusion 1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) # Data The data for NGA is located on [this page](https://huggingface.co/datasets/BirdL/NGA_Art) and was scraped from [Wikimedia Commons]. This dataset is 500 images in size. The dataset page goes into more detail. # Examples (TBD)
Akashpb13/Central_kurdish_xlsr
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ckb", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-mhr3-ntsema-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-mhr3-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7701 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.329 | 5.79 | 400 | 1.3162 | 1.0 | | 1.5529 | 11.59 | 800 | 0.6968 | 1.0 | | 0.8373 | 17.39 | 1200 | 0.7345 | 1.0 | | 0.4959 | 23.19 | 1600 | 0.7296 | 1.0 | | 0.3207 | 28.98 | 2000 | 0.7701 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Akashpb13/Galician_xlsr
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "gl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7720 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2896 | 1.0 | 318 | 3.2891 | 0.7429 | | 2.6283 | 2.0 | 636 | 1.8755 | 0.8374 | | 1.5481 | 3.0 | 954 | 1.1570 | 0.8961 | | 1.0149 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.7952 | 5.0 | 1590 | 0.7720 | 0.9184 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Akashpb13/xlsr_kurmanji_kurdish
[ "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "kmr", "ku", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: mit --- ### Oleg KOG on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### model by vronsice This your the Stable Diffusion model fine-tuned the Oleg KOG concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt(s)`: **oleg**
AkshatSurolia/ConvNeXt-FaceMask-Finetuned
[ "pytorch", "safetensors", "convnext", "image-classification", "dataset:Face-Mask18K", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
image-classification
{ "architectures": [ "ConvNextForImageClassification" ], "model_type": "convnext", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
56
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-bak4-ntsema-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.5241343126967472 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-bak4-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9896 - Wer: 0.5241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4269 | 9.52 | 400 | 0.8771 | 0.6238 | | 0.3885 | 19.05 | 800 | 0.9461 | 0.5661 | | 0.1447 | 28.57 | 1200 | 0.9896 | 0.5241 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
AkshatSurolia/DeiT-FaceMask-Finetuned
[ "pytorch", "deit", "image-classification", "dataset:Face-Mask18K", "transformers", "license:apache-2.0", "autotrain_compatible" ]
image-classification
{ "architectures": [ "DeiTForImageClassification" ], "model_type": "deit", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
46
null
--- license: mit --- # Bangla Wikipedia Doc2Vec model Bengali Wikipedia doc2vec model trained on Wikipedia dumps articles with vector size 100. This model is trained for the [bnlp](https://github.com/sagorbrur/bnlp) library. ## Training details - Total Wikipedia articles: 110448 - Hyper-parameter: `epochs: 40, min_count=2, vector_size=100` ## Usage - Get document vector from input document ```py from bnlp import BengaliDoc2vec bn_doc2vec = BengaliDoc2vec() model_path = "bangla_news_article_doc2vec.model" # keep other .npy model files also in same folder document = "রাষ্ট্রবিরোধী ও উসকানিমূলক বক্তব্য দেওয়ার অভিযোগে গাজীপুরের গাছা থানায় ডিজিটাল নিরাপত্তা আইনে করা মামলায় আলোচিত ‘শিশুবক্তা’ রফিকুল ইসলামের বিরুদ্ধে অভিযোগ গঠন করেছেন আদালত। ফলে মামলার আনুষ্ঠানিক বিচার শুরু হলো। আজ বুধবার (২৬ জানুয়ারি) ঢাকার সাইবার ট্রাইব্যুনালের বিচারক আসসামছ জগলুল হোসেন এ অভিযোগ গঠন করেন। এর আগে, রফিকুল ইসলামকে কারাগার থেকে আদালতে হাজির করা হয়। এরপর তাকে নির্দোষ দাবি করে তার আইনজীবী শোহেল মো. ফজলে রাব্বি অব্যাহতি চেয়ে আবেদন করেন। অন্যদিকে, রাষ্ট্রপক্ষ অভিযোগ গঠনের পক্ষে শুনানি করেন। উভয় পক্ষের শুনানি শেষে আদালত অব্যাহতির আবেদন খারিজ করে অভিযোগ গঠনের মাধ্যমে বিচার শুরুর আদেশ দেন। একইসঙ্গে সাক্ষ্যগ্রহণের জন্য আগামী ২২ ফেব্রুয়ারি দিন ধার্য করেন আদালত।" vector = bn_doc2vec.get_document_vector(model_path, text) print(vector) ``` - Find document similarity between two document ```py from bnlp import BengaliDoc2vec bn_doc2vec = BengaliDoc2vec() model_path = "bangla_news_article_doc2vec.model" # keep other .npy model files also in same folder article_1 = "রাষ্ট্রবিরোধী ও উসকানিমূলক বক্তব্য দেওয়ার অভিযোগে গাজীপুরের গাছা থানায় ডিজিটাল নিরাপত্তা আইনে করা মামলায় আলোচিত ‘শিশুবক্তা’ রফিকুল ইসলামের বিরুদ্ধে অভিযোগ গঠন করেছেন আদালত। ফলে মামলার আনুষ্ঠানিক বিচার শুরু হলো। আজ বুধবার (২৬ জানুয়ারি) ঢাকার সাইবার ট্রাইব্যুনালের বিচারক আসসামছ জগলুল হোসেন এ অভিযোগ গঠন করেন। এর আগে, রফিকুল ইসলামকে কারাগার থেকে আদালতে হাজির করা হয়। এরপর তাকে নির্দোষ দাবি করে তার আইনজীবী শোহেল মো. ফজলে রাব্বি অব্যাহতি চেয়ে আবেদন করেন। অন্যদিকে, রাষ্ট্রপক্ষ অভিযোগ গঠনের পক্ষে শুনানি করেন। উভয় পক্ষের শুনানি শেষে আদালত অব্যাহতির আবেদন খারিজ করে অভিযোগ গঠনের মাধ্যমে বিচার শুরুর আদেশ দেন। একইসঙ্গে সাক্ষ্যগ্রহণের জন্য আগামী ২২ ফেব্রুয়ারি দিন ধার্য করেন আদালত।" article_2 = "রাষ্ট্রবিরোধী ও উসকানিমূলক বক্তব্য দেওয়ার অভিযোগে গাজীপুরের গাছা থানায় ডিজিটাল নিরাপত্তা আইনে করা মামলায় আলোচিত ‘শিশুবক্তা’ রফিকুল ইসলামের বিরুদ্ধে অভিযোগ গঠন করেছেন আদালত। ফলে মামলার আনুষ্ঠানিক বিচার শুরু হলো। আজ বুধবার (২৬ জানুয়ারি) ঢাকার সাইবার ট্রাইব্যুনালের বিচারক আসসামছ জগলুল হোসেন এ অভিযোগ গঠন করেন। এর আগে, রফিকুল ইসলামকে কারাগার থেকে আদালতে হাজির করা হয়। এরপর তাকে নির্দোষ দাবি করে তার আইনজীবী শোহেল মো. ফজলে রাব্বি অব্যাহতি চেয়ে আবেদন করেন। অন্যদিকে, রাষ্ট্রপক্ষ অভিযোগ গঠনের পক্ষে শুনানি করেন। উভয় পক্ষের শুনানি শেষে আদালত অব্যাহতির আবেদন খারিজ করে অভিযোগ গঠনের মাধ্যমে বিচার শুরুর আদেশ দেন। একইসঙ্গে সাক্ষ্যগ্রহণের জন্য আগামী ২২ ফেব্রুয়ারি দিন ধার্য করেন আদালত।" similarity = bn_doc2vec.get_document_similarity( model_path, article_1, article_2 ) print(similarity) ```
AkshatSurolia/ICD-10-Code-Prediction
[ "pytorch", "bert", "transformers", "text-classification", "license:apache-2.0", "has_space" ]
text-classification
{ "architectures": null, "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
994
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9325508348487354 - name: Recall type: recall value: 0.9493436553349041 - name: F1 type: f1 value: 0.9408723209073472 - name: Accuracy type: accuracy value: 0.9862247601106728 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0604 - Precision: 0.9326 - Recall: 0.9493 - F1: 0.9409 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0902 | 1.0 | 1756 | 0.0673 | 0.9151 | 0.9308 | 0.9229 | 0.9823 | | 0.0347 | 2.0 | 3512 | 0.0613 | 0.9265 | 0.9478 | 0.9370 | 0.9856 | | 0.0181 | 3.0 | 5268 | 0.0604 | 0.9326 | 0.9493 | 0.9409 | 0.9862 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Akuva2001/SocialGraph
[ "has_space" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilroberta-base-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5788207437251082 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-cola This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7665 - Matthews Correlation: 0.5788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5226 | 1.0 | 535 | 0.5360 | 0.4620 | | 0.3597 | 2.0 | 1070 | 0.4694 | 0.5261 | | 0.2602 | 3.0 | 1605 | 0.5318 | 0.5496 | | 0.2063 | 4.0 | 2140 | 0.7052 | 0.5701 | | 0.1659 | 5.0 | 2675 | 0.7665 | 0.5788 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
AlanDev/DallEMiniButBetter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3397 - Accuracy: 0.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.202 | 1.0 | 318 | 2.3610 | 0.7506 | | 1.8112 | 2.0 | 636 | 1.1899 | 0.8610 | | 0.9255 | 3.0 | 954 | 0.6534 | 0.9168 | | 0.5268 | 4.0 | 1272 | 0.4620 | 0.9368 | | 0.3624 | 5.0 | 1590 | 0.3941 | 0.9448 | | 0.2935 | 6.0 | 1908 | 0.3682 | 0.9452 | | 0.2584 | 7.0 | 2226 | 0.3515 | 0.9497 | | 0.2393 | 8.0 | 2544 | 0.3453 | 0.9481 | | 0.2289 | 9.0 | 2862 | 0.3421 | 0.9490 | | 0.225 | 10.0 | 3180 | 0.3397 | 0.95 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
AlanDev/test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/ocean-chicken/ddpm-butterflies-128/tensorboard?#scalars)
AlbertHSU/BertTEST
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_wermet_0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_wermet_0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8954 - Train Accuracy: 0.0240 - Train Wermet: 16.2471 - Validation Loss: 1.4889 - Validation Accuracy: 0.0266 - Validation Wermet: 14.2782 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.0795 | 0.0116 | 43.8776 | 4.4395 | 0.0122 | 35.4119 | 0 | | 4.3059 | 0.0131 | 29.7976 | 4.0311 | 0.0143 | 26.0070 | 1 | | 3.8871 | 0.0148 | 19.3999 | 3.6500 | 0.0158 | 19.2186 | 2 | | 3.0943 | 0.0184 | 18.3704 | 2.3327 | 0.0226 | 22.5034 | 3 | | 1.8954 | 0.0240 | 16.2471 | 1.4889 | 0.0266 | 14.2782 | 4 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
Ale/Alen
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_wermet_0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_wermet_0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5820 - Train Accuracy: 0.0305 - Train Wermet: 1.5323 - Validation Loss: 0.6980 - Validation Accuracy: 0.0305 - Validation Wermet: 1.1238 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.0795 | 0.0116 | 43.8776 | 4.4395 | 0.0122 | 35.4119 | 0 | | 4.3059 | 0.0131 | 29.7976 | 4.0311 | 0.0143 | 26.0070 | 1 | | 3.8871 | 0.0148 | 19.3999 | 3.6500 | 0.0158 | 19.2186 | 2 | | 3.0943 | 0.0184 | 18.3704 | 2.3327 | 0.0226 | 22.5034 | 3 | | 1.8954 | 0.0240 | 16.2471 | 1.4889 | 0.0266 | 14.2782 | 4 | | 1.2781 | 0.0269 | 8.4169 | 1.1273 | 0.0283 | 7.4581 | 5 | | 0.9797 | 0.0283 | 4.8739 | 0.9481 | 0.0292 | 3.9451 | 6 | | 0.8006 | 0.0293 | 2.7433 | 0.8371 | 0.0297 | 2.3065 | 7 | | 0.6764 | 0.0299 | 2.1646 | 0.7554 | 0.0301 | 1.3005 | 8 | | 0.5820 | 0.0305 | 1.5323 | 0.6980 | 0.0305 | 1.1238 | 9 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
AlekseyKorshuk/horror-scripts
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- **Shichigoro Diffusion** v0.2 This is an experimental Stable Diffusion model trained on artworks by artist Shichigoro (https://shichigoro.com/). Only for personal use! Please respect the original artist! Use the token **_shichigoro_** in your prompts for the effect. _shichigoro, woman, breasts, detailed iris, intricate details, sharp focus, red eyes, detailed black hair_ Steps: 37, Sampler: Euler a, CFG scale: 7, Seed: 323609095, Size: 512x768 ![Woman](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/323609095_37.jpg) _shichigoro, lara croft_ Steps: 35, Sampler: Euler a, CFG scale: 7, Seed: 1483473625, Size: 512x768 ![Lara Croft](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/1483473625_35.jpg) _shichigoro, cute cat_ Steps: 35, Sampler: Euler a, CFG scale: 7, Seed: 3304424502, Size: 512x704 ![Cute Cat](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/3304424502_35.jpg) _shichigoro, cute dog_ Steps: 35, Sampler: Euler a, CFG scale: 7, Seed: 3304424516, Size: 512x704 ![Cute Dog](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/3304424516_35d.jpg) _shichigoro, cute dog_ Steps: 35, Sampler: Euler a, CFG scale: 7, Seed: 3304424505, Size: 512x704 ![Cute Dog](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/3304424505_35.jpg) _shichigoro, cow_ Steps: 35, Sampler: Euler a, CFG scale: 7, Seed: 3304424524, Size: 512x704 ![Cow](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/3304424524_35c.jpg) _shichigoro, harry potter_ Steps: 35, Sampler: Euler a, CFG scale: 7, Seed: 3304424516, Size: 512x704 ![Harry Potter](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/3304424516_35.jpg) _shichigoro, johnny depp_ Steps: 35, Sampler: Euler a, CFG scale: 7, Seed: 3304424521, Size: 512x704 ![Johnny Depp](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/3304424521_35.jpg) _shichigoro, keanu reeves_ Steps: 35, Sampler: Euler a, CFG scale: 7, Seed: 3304424524, Size: 512x704 ![Keanu Reeves](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/3304424524_35.jpg) _shichigoro, milla jovovich_ Steps: 35, Sampler: Euler a, CFG scale: 7, Seed: 3304424524, Size: 512x704 ![Milla Jovovich](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/3304424524_35m.jpg) _shichigoro, ALICE IN WONDERLAND_ Steps: 35, Sampler: Euler a, CFG scale: 7, Seed: 3876501189, Size: 512x704 ![Alice in Wonderland](https://huggingface.co/SenorKaffee/shichigoro-diff/resolve/main/samples/3876501189_35.jpg) ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). This model was trained using the diffusers based dreambooth training by ShivamShrirao using prior-preservation loss and the _train-text-encoder_ flag in 800 steps. ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Amalq/roberta-base-finetuned-schizophreniaReddit2
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: try-reinforce-cartpole-custom-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 115.70 +/- 4.03 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
AmanPriyanshu/DistilBert-Sentiment-Analysis
[ "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: cc-by-nc-3.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-sentiment-model-bert-multilingual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-bert-multilingual This model is a fine-tuned version of [QCRI/bert-base-multilingual-cased-pos-english](https://huggingface.co/QCRI/bert-base-multilingual-cased-pos-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9412 - Accuracy: 0.6624 - F1: 0.6624 - Precision: 0.6624 - Recall: 0.6624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
AndreLiu1225/t5-news
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
18
null
--- tags: - generated_from_trainer model-index: - name: kogpt2test-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kogpt2test-finetuned-wikitext2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 227 | 3.6688 | | No log | 2.0 | 454 | 3.6688 | | 2.9687 | 3.0 | 681 | 3.6688 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Andrey1989/mbart-finetuned-en-to-kk
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m thumbnail: "https://huggingface.co/wavymulder/overlord-diffusion-HN/resolve/main/images/char_eximg.jpg" --- **Overlord Diffusion - Hypernetwork** ![Header](https://huggingface.co/wavymulder/overlord-diffusion-HN/resolve/main/images/header.png) [*DOWNLOAD LINK*](https://huggingface.co/wavymulder/overlord-diffusion-HN/resolve/main/overlord%20-%20public%20version%201.0.pt) - This is a hypernet trained on screenshots of the anime Overlord. In your prompt, use the activation token: `overlord screencap anime` Designed to be used with 1.5, possibly works with other models but might require extra prompting. ![Character Example](https://huggingface.co/wavymulder/overlord-diffusion-HN/resolve/main/images/char_eximg.jpg) ![Landscape Example](https://huggingface.co/wavymulder/overlord-diffusion-HN/resolve/main/images/landscape_eximg.jpg) I really love how armour looks with this hypernetwork. Not currently trained on any actual characters from the anime. Struggles with modern clothes and settings, naturally. Makes cool skeletons but not Ainz (goal for future versions is to add main cast members)
Andrija/RobertaFastBPE
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-12T19:13:31Z
--- license: mit --- ### brime on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### model by samj This your the Stable Diffusion model fine-tuned the brime concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt(s)`: **prplbrime** You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: prplbrime ![prplbrime 0](https://huggingface.co/sd-dreambooth-library/brime/resolve/main/concept_images/prplbrime_0.jpg) ![prplbrime 1](https://huggingface.co/sd-dreambooth-library/brime/resolve/main/concept_images/prplbrime_1.jpg) ![prplbrime 2](https://huggingface.co/sd-dreambooth-library/brime/resolve/main/concept_images/prplbrime_2.jpg) ![prplbrime 3](https://huggingface.co/sd-dreambooth-library/brime/resolve/main/concept_images/prplbrime_3.jpg)
Andrija/SRoBERTa-NLP
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9506451612903226 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3448 - Accuracy: 0.9506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.4007 | 1.0 | 318 | 2.5187 | 0.7490 | | 1.93 | 2.0 | 636 | 1.2663 | 0.8606 | | 0.9765 | 3.0 | 954 | 0.6825 | 0.9165 | | 0.5424 | 4.0 | 1272 | 0.4728 | 0.9361 | | 0.3632 | 5.0 | 1590 | 0.3989 | 0.9439 | | 0.289 | 6.0 | 1908 | 0.3729 | 0.9458 | | 0.2521 | 7.0 | 2226 | 0.3561 | 0.9494 | | 0.2325 | 8.0 | 2544 | 0.3503 | 0.9490 | | 0.2216 | 9.0 | 2862 | 0.3474 | 0.9487 | | 0.2175 | 10.0 | 3180 | 0.3448 | 0.9506 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Andrija/SRoBERTa-XL-NER
[ "pytorch", "roberta", "token-classification", "hr", "sr", "multilingual", "dataset:hr500k", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: en thumbnail: http://www.huggingtweets.com/imyawnny/1668282121358/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468088681063931909/D3wxUSZI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">bigbootydumptruck</div> <div style="text-align: center; font-size: 14px;">@imyawnny</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from bigbootydumptruck. | Data | bigbootydumptruck | | --- | --- | | Tweets downloaded | 1025 | | Retweets | 139 | | Short tweets | 238 | | Tweets kept | 648 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1r9oa3i1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imyawnny's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/66u27v0w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/66u27v0w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imyawnny') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Ankitha/DialoGPT-small-harrypottery
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: http://www.huggingtweets.com/bet365/1668290987822/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1514571570630569989/z0NAzgOD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">bet365</div> <div style="text-align: center; font-size: 14px;">@bet365</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from bet365. | Data | bet365 | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 42 | | Short tweets | 9 | | Tweets kept | 3197 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/545q6umu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bet365's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hex0umv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hex0umv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bet365') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Ann2020/distilbert-base-uncased-finetuned-ner
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: creativeml-openrail-m tags: - text-to-image --- Trained on around 100 images at 768x768 resolution. Download "ComplexLA Style.ckpt" and add it to your model folder. Use prompt: ComplexLA style Use resolution near 768x768, lower resolution works but quality will not be as good. ![00557-2764539988-ComplexLA style, a cyberpunk volvo car driving on a road, high resolution, very detailed,.png](https://s3.amazonaws.com/moonup/production/uploads/1668296892221-6303c53d7373aacccd859bbd.png) ![00559-583683277-ComplexLA style, an aztec pyramid on a space station, high resolution, very detailed, hr giger.png](https://s3.amazonaws.com/moonup/production/uploads/1668296892613-6303c53d7373aacccd859bbd.png) ![00561-3608781371-a beautiful woman as an astronaut, ComplexLA style, high resolution, very detailed, greeble.png](https://s3.amazonaws.com/moonup/production/uploads/1668296892022-6303c53d7373aacccd859bbd.png) ![00583-3178034403-a steampunk mech power drone, explosion in background, ComplexLA style, mad max, high resolution, very detailed, greeble, intric.png](https://s3.amazonaws.com/moonup/production/uploads/1668300327645-6303c53d7373aacccd859bbd.png) ![00582-74183724-a mech power suit, ComplexLA style, mad max, high resolution, very detailed, greeble, intricate, dark night time, by greg rutkow.png](https://s3.amazonaws.com/moonup/production/uploads/1668300329121-6303c53d7373aacccd859bbd.png) ![00584-2085058274-a steampunk flying greeble, intricate drone, explosion in background, ComplexLA style, mad max, high resolution, very detailed,.png](https://s3.amazonaws.com/moonup/production/uploads/1668300391149-6303c53d7373aacccd859bbd.png) ![00587-755015015-a dieselpunk flying drone, combat fighting, ComplexLA style, high resolution, very detailed, greeble, intricate, dark night time.png](https://s3.amazonaws.com/moonup/production/uploads/1668301048483-6303c53d7373aacccd859bbd.png)
Anonymous0230/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - spacy - token-classification language: - pt license: cc-by-sa-4.0 model-index: - name: pt_core_news_trf results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9274830806 - name: NER Recall type: recall value: 0.9293805645 - name: NER F Score type: f_score value: 0.9284308531 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9782369668 - task: name: POS type: token-classification metrics: - name: POS (UPOS) Accuracy type: accuracy value: 0.9780853081 - task: name: MORPH type: token-classification metrics: - name: Morph (UFeats) Accuracy type: accuracy value: 0.9611192205 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.9735006445 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.9283559578 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.8965578424 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.9388275276 --- Portuguese transformer pipeline ([neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased)). Components: transformer, morphologizer, parser, ner, attribute_ruler, lemmatizer (trainable_lemmatizer). | Feature | Description | | --- | --- | | **Name** | `pt_core_news_trf` | | **Version** | `3.4.0` | | **spaCy** | `>=3.4.3,<3.5.0` | | **Default Pipeline** | `transformer`, `ner`, `tagger`, `morphologizer`, `trainable_lemmatizer`, `parser` | | **Components** | `transformer`, `ner`, `tagger`, `morphologizer`, `trainable_lemmatizer`, `parser` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [UD Portuguese Bosque v2.8](https://github.com/UniversalDependencies/UD_Portuguese-Bosque) (Rademaker, Alexandre; Freitas, Cláudia; de Souza, Elvis; Silveira, Aline; Cavalcanti, Tatiana; Evelyn, Wograine; Rocha, Luisa; Soares-Bastos, Isabela; Bick, Eckhard; Chalub, Fabricio; Paulino-Passos, Guilherme; Real, Livy; de Paiva, Valeria; Zeman, Daniel; Popel, Martin; Mareček, David; Silveira, Natalia; Martins, André)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) | | **License** | `CC BY-SA 4.0` | | **Author** | [Maicon Domingues](http://nlp.rocks) | ### Label Scheme <details> <summary>View label scheme (742 labels for 4 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `LOC`, `MISC`, `ORG`, `PER` | | **`tagger`** | `ADJ`, `ADJ_ADJ`, `ADJ_NOUN`, `ADP`, `ADP_ADV`, `ADP_DET`, `ADP_NUM`, `ADP_PRON`, `ADP_PROPN`, `ADV`, `ADV_PRON`, `AUX`, `AUX_PRON`, `CCONJ`, `CCONJ_PRON`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PART_NOUN`, `PART_NUM`, `PRON`, `PROPN`, `PROPN_PROPN`, `PUNCT`, `SCONJ`, `SCONJ_DET`, `SCONJ_PRON`, `SYM`, `VERB`, `VERB_PRON`, `VERB_PRON_PRON`, `VERB_SCONJ`, `X` | | **`morphologizer`** | `Gender=Masc\|Number=Sing\|POS=PROPN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part`, `POS=ADV`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Typo=Yes`, `POS=PUNCT`, `POS=VERB\|VerbForm=Ger`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `POS=SYM`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=CCONJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `POS=SCONJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|VerbForm=Inf`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV\|Polarity=Neg`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=ADP`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=AUX\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `ExtPos=CCONJ\|POS=ADV`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=AUX\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Mood=Sub\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `POS=VERB\|VerbForm=Part`, `Number=Sing\|POS=VERB\|Person=3\|VerbForm=Inf`, `ExtPos=NOUN\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `ExtPos=ADP\|POS=ADV`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part`, `ExtPos=CCONJ\|POS=CCONJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Prs`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=AUX\|VerbForm=Part`, `Number=Plur\|POS=AUX\|Person=3\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `ExtPos=INTJ\|POS=AUX`, `Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|Number=Sing\|POS=NUM`, `ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Plur\|POS=VERB\|Person=3\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `ExtPos=SCONJ\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `Case=Acc\|POS=PRON\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=PROPN`, `Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Dem`, `ExtPos=SCONJ\|POS=ADV`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `ExtPos=PROPN\|Number=Sing\|POS=PROPN`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Abbr=Yes\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Art`, `Number=Sing\|POS=AUX\|Person=3\|VerbForm=Inf`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Art`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|POS=PRON\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art\|Typo=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Definite=Def\|ExtPos=ADV\|Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=NOUN`, `ExtPos=CCONJ\|POS=VERB\|VerbForm=Ger`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `ExtPos=ADV\|POS=ADP`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Abbr=Yes\|ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `ExtPos=SCONJ\|POS=SCONJ`, `Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Inf`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art\|Typo=Yes`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADJ`, `ExtPos=NOUN\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `ExtPos=PROPN\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `ExtPos=SCONJ\|POS=ADP`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=PROPN\|PronType=Art`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `ExtPos=NOUN\|POS=ADP`, `Gender=Masc\|NumType=Mult\|Number=Sing\|POS=NUM`, `ExtPos=ADV\|POS=ADV`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=NOUN\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|POS=PRON\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `ExtPos=NOUN\|POS=X`, `POS=X`, `ExtPos=NOUN\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Dem`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Emp`, `Gender=Masc\|Number=Sing\|POS=DET`, `ExtPos=ADP\|POS=ADP`, `POS=NOUN`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `ExtPos=AUX\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Typo=Yes\|VerbForm=Inf`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pqp\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pqp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=ADV\|PronType=Ind`, `POS=ADV\|Typo=Yes`, `Abbr=Yes\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `POS=PRON\|PronType=Rel`, `ExtPos=ADV\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Definite=Def\|ExtPos=CCONJ\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|ExtPos=SCONJ\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=ADJ\|Voice=Pass`, `Number=Sing\|POS=ADJ`, `ExtPos=ADV\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `POS=INTJ`, `Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `ExtPos=ADV\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Part`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `ExtPos=CCONJ\|POS=ADP`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=PROPN\|PronType=Art`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `POS=DET\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `ExtPos=NOUN\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Acc\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `POS=SCONJ\|VerbForm=Ger`, `Abbr=Yes\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Neg`, `ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=NUM`, `Number=Sing\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET`, `ExtPos=PROPN\|Gender=Masc\|Number=Plur\|POS=PROPN`, `ExtPos=AUX\|POS=VERB\|VerbForm=Inf`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `ExtPos=ADJ\|POS=X`, `Gender=Fem\|Number=Sing\|POS=X`, `Abbr=Yes\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=PRON`, `Number=Sing\|POS=ADP`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art\|Typo=Yes`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel\|Typo=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Gender=Fem\|POS=PRON\|PronType=Prs`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art\|Typo=Yes`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=SCONJ\|PronType=Art`, `Case=Dat\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art\|Typo=Yes`, `ExtPos=AUX\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art\|Typo=Yes`, `NumType=Ord\|POS=ADJ`, `Gender=Masc\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `ExtPos=NOUN\|Gender=Masc\|Number=Sing\|POS=PROPN`, `ExtPos=PROPN\|Gender=Masc\|POS=PROPN`, `Gender=Masc\|POS=PROPN`, `Gender=Fem\|Number=Plur\|POS=DET`, `ExtPos=ADJ\|POS=ADP`, `ExtPos=ADJ\|POS=ADV`, `Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art\|Typo=Yes`, `ExtPos=ADP\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `ExtPos=NOUN\|POS=ADV`, `Gender=Fem\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `ExtPos=NOUN\|Gender=Fem\|Number=Plur\|POS=NOUN`, `ExtPos=CCONJ\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Plur\|POS=AUX\|Person=1\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `ExtPos=ADV\|POS=X`, `Gender=Masc\|Number=Sing\|POS=X`, `POS=NUM`, `ExtPos=NOUN\|NumType=Ord\|POS=NUM`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `ExtPos=AUX\|POS=VERB\|VerbForm=Ger`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|POS=VERB\|PronType=Prs\|VerbForm=Ger`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `Number=Plur\|POS=VERB\|Person=1\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `ExtPos=NOUN\|NumType=Card\|POS=PART`, `ExtPos=NUM\|Gender=Masc\|NumType=Frac\|Number=Sing\|POS=NUM`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|ExtPos=SCONJ\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `ExtPos=NOUN\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=CCONJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Definite=Def\|ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|Gender=Fem\|Number=Plur\|POS=NOUN`, `NumType=Card\|POS=ADP`, `ExtPos=AUX\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|ExtPos=ADV\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin`, `Abbr=Yes\|ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=PROPN`, `NumType=Ord\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=SCONJ\|Person=3\|PronType=Prs`, `ExtPos=PROPN\|POS=X`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `ExtPos=NOUN\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Tot`, `Number=Sing\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Art`, `POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|POS=VERB\|VerbForm=Part`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `ExtPos=ADP\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=ADJ`, `Definite=Def\|POS=ADP\|PronType=Art`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `ExtPos=NOUN\|Gender=Masc\|NumType=Frac\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|POS=SCONJ\|PronType=Art`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|POS=PRON\|PronType=Ind`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Voice=Pass`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `ExtPos=AUX\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=PART`, `Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Dat\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Ger`, `NumType=Card\|POS=DET`, `Case=Dat\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Inf`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `POS=PRON\|PronType=Prs`, `ExtPos=PROPN\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Imp\|VerbForm=Fin`, `ExtPos=ADV\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Sing\|POS=PROPN\|PronType=Art`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=AUX\|Person=1\|Tense=Past`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADV\|Person=3\|PronType=Prs`, `POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `ExtPos=SCONJ\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=NOUN\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADV\|Typo=Yes`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=SCONJ`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `ExtPos=ADP\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `ExtPos=CCONJ\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `Definite=Def\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `ExtPos=ADV\|Gender=Masc\|Number=Sing\|POS=ADP`, `ExtPos=AUX\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Case=Acc,Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `POS=DET`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Emp`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Art`, `Case=Acc\|Gender=Masc\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Ind`, `Definite=Def\|ExtPos=SCONJ\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|Typo=Yes`, `ExtPos=PROPN\|POS=ADV`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `ExtPos=PROPN\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=VERB\|Person=3\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=2\|PronType=Prs\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `NumType=Card\|POS=DET\|PronType=Art`, `Gender=Fem,Masc\|Number=Sing\|POS=PROPN`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=PRON\|PronType=Neg`, `Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Dem`, `ExtPos=AUX\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part`, `ExtPos=ADJ\|Gender=Fem\|Number=Sing\|POS=X`, `Gender=Fem\|Number=Plur\|POS=NUM`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=SCONJ\|PronType=Art`, `Case=Dat\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|NumType=Sets\|Number=Sing\|POS=NUM`, `POS=ADV\|PronType=Rel`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Foreign=Yes\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|POS=AUX\|PronType=Prs\|VerbForm=Inf`, `ExtPos=INTJ\|POS=ADV\|Polarity=Neg`, `POS=AUX`, `Gender=Masc\|Number=Plur\|POS=NUM`, `Number=Sing\|POS=DET\|PronType=Ind`, `Number=Plur\|POS=PRON\|PronType=Int`, `Abbr=Yes\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Ind`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art\|Typo=Yes`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Art\|Typo=Yes`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `ExtPos=NUM\|NumType=Mult\|POS=NUM`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `NumType=Card\|Number=Plur\|POS=NUM`, `ExtPos=AUX\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `ExtPos=NUM\|NumType=Card\|POS=NUM`, `POS=VERB`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Rel`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Typo=Yes\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|Typo=Yes\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Person=1\|VerbForm=Inf`, `ExtPos=NOUN\|Number=Sing\|POS=PROPN`, `ExtPos=ADP\|POS=DET`, `ExtPos=ADP\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Abbr=Yes\|ExtPos=PROPN\|Number=Sing\|POS=PROPN`, `ExtPos=AUX\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part`, `ExtPos=SCONJ\|Gender=Fem\|Number=Sing\|POS=ADV\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Art`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `ExtPos=PROPN\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=DET\|PronType=Tot`, `NumType=Range\|POS=NUM`, `Case=Dat\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Rel`, `ExtPos=PROPN\|Gender=Masc\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Definite=Def\|ExtPos=PROPN\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=X`, `ExtPos=NOUN\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `Abbr=Yes\|ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Person=1\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=SCONJ\|PronType=Dem`, `ExtPos=SCONJ\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `NumType=Frac\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Ind`, `Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADV\|PronType=Rel`, `ExtPos=NOUN\|NumType=Card\|POS=NUM`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind\|Typo=Yes`, `Mood=Cnd\|POS=VERB\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin` | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `parataxis`, `punct`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 92.84 | | `ENTS_P` | 92.75 | | `ENTS_R` | 92.94 | | `TAG_ACC` | 97.82 | | `POS_ACC` | 97.81 | | `MORPH_ACC` | 96.11 | | `LEMMA_ACC` | 97.35 | | `DEP_UAS` | 92.84 | | `DEP_LAS` | 89.66 | | `SENTS_P` | 93.49 | | `SENTS_R` | 94.28 | | `SENTS_F` | 93.88 |
AnonymousSub/AR_SDR_HF_model_base
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2022-11-12T23:57:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2733 | 1.0 | 1113 | 1.8881 | | 1.5489 | 2.0 | 2226 | 1.6480 | | 1.2799 | 3.0 | 3339 | 1.6243 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
AnonymousSub/AR_bert-base-uncased
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # imdb This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 0.3268 | 0.876 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
AnonymousSub/AR_declutr
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image datasets: - ProGamerGov/StableDiffusion-v1-5-Regularization-Images --- **Min-Illust-Background-Diffusion** This fine-tuned Stable Diffusion v1.5 model was trained for 2250 iterations with a batch size of 4, on a selection of artistic works by Sin Jong Hun. Training was performed using [ShivamShrirao/diffusers](https://github.com/ShivamShrirao/diffusers) with full precision, prior-preservation loss, the train-text-encoder feature, and the new [1.5 MSE VAE from Stability AI](https://huggingface.co/stabilityai/sd-vae-ft-mse). A total of 4120 regularization / class images were used from [here](https://huggingface.co/datasets/ProGamerGov/StableDiffusion-v1-5-Regularization-Images). Regularization images were generated using the prompt "artwork style", 50 DDIM steps, and a CFG of 7. Use the tokens **sjh style** in your prompts for the effect. Note that the effect also appears to occur at a much weaker strength on prompts that steer the output towards specific artistic styles. This model will likely not perform well on generating portraits and related tasks, as the training data was primarily composed of landscapes. <div align="center"> <img src="https://huggingface.co/ProGamerGov/Min-Illust-Background-Diffusion/resolve/main/v1_size_512x768_t3x4.png"> </div> * [Full Image](https://huggingface.co/ProGamerGov/Min-Illust-Background-Diffusion/resolve/main/v1_size_512x768_t3x4.png) <div align="center"> <img src="https://huggingface.co/ProGamerGov/Min-Illust-Background-Diffusion/resolve/main/v1_size_512x512_t4x10.png"> </div> * [Full Image](https://huggingface.co/ProGamerGov/Min-Illust-Background-Diffusion/resolve/main/v1_size_512x512_t4x10.png) <div align="center"> <img src="https://huggingface.co/ProGamerGov/Min-Illust-Background-Diffusion/resolve/main/v1_512x512_t4x5.png"> </div> * [Full Image](https://huggingface.co/ProGamerGov/Min-Illust-Background-Diffusion/resolve/main/v1_512x512_t4x5.png) Example images were generated with the v1 2250 iteration model using 50 steps of DPM++ 2M Karras with a format of: ``` <prompt>, sjh style ```
AnonymousSub/AR_rule_based_bert_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - pyannote - pyannote-audio - pyannote-audio-pipeline - audio - voice - speech - speaker - speaker-diarization - speaker-change-detection - voice-activity-detection - overlapped-speech-detection - automatic-speech-recognition datasets: - ami - dihard - voxconverse - aishell - repere - voxceleb license: mit --- # 🎹 Speaker diarization Relies on pyannote.audio 2.0: see [installation instructions](https://github.com/pyannote/pyannote-audio/tree/develop#installation). ## TL;DR ```python # load the pipeline from Hugginface Hub from pyannote.audio import Pipeline pipeline = Pipeline.from_pretrained("pyannote/[email protected]") # apply the pipeline to an audio file diarization = pipeline("audio.wav") # dump the diarization output to disk using RTTM format with open("audio.rttm", "w") as rttm: diarization.write_rttm(rttm) ``` ## Advanced usage In case the number of speakers is known in advance, one can use the `num_speakers` option: ```python diarization = pipeline("audio.wav", num_speakers=2) ``` One can also provide lower and/or upper bounds on the number of speakers using `min_speakers` and `max_speakers` options: ```python diarization = pipeline("audio.wav", min_speakers=2, max_speakers=5) ``` If you feel adventurous, you can try and play with the various pipeline hyper-parameters. For instance, one can use a more aggressive voice activity detection by increasing the value of `segmentation_onset` threshold: ```python hparams = pipeline.parameters(instantiated=True) hparams["segmentation_onset"] += 0.1 pipeline.instantiate(hparams) ``` ## Benchmark ### Real-time factor Real-time factor is around 5% using one Nvidia Tesla V100 SXM2 GPU (for the neural inference part) and one Intel Cascade Lake 6248 CPU (for the clustering part). In other words, it takes approximately 3 minutes to process a one hour conversation. ### Accuracy This pipeline is benchmarked on a growing collection of datasets. Processing is fully automatic: * no manual voice activity detection (as is sometimes the case in the literature) * no manual number of speakers (though it is possible to provide it to the pipeline) * no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset ... with the least forgiving diarization error rate (DER) setup (named *"Full"* in [this paper](https://doi.org/10.1016/j.csl.2021.101254)): * no forgiveness collar * evaluation of overlapped speech | Benchmark | [DER%](. "Diarization error rate") | [FA%](. "False alarm rate") | [Miss%](. "Missed detection rate") | [Conf%](. "Speaker confusion rate") | Expected output | File-level evaluation | | ---------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------- | --------------------------- | ---------------------------------- | ----------------------------------- | ------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------ | | [AISHELL-4](http://www.openslr.org/111/) | 14.61 | 3.31 | 4.35 | 6.95 | [RTTM](reproducible_research/AISHELL.SpeakerDiarization.Full.test.rttm) | [eval](reproducible_research/AISHELL.SpeakerDiarization.Full.test.eval) | | [AMI *Mix-Headset*](https://groups.inf.ed.ac.uk/ami/corpus/) [*only_words*](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 18.21 | 3.28 | 11.07 | 3.87 | [RTTM](reproducible_research/2022.07/AMI.SpeakerDiarization.only_words.test.rttm) | [eval](reproducible_research/2022.07/AMI.SpeakerDiarization.only_words.test.eval) | | [AMI *Array1-01*](https://groups.inf.ed.ac.uk/ami/corpus/) [*only_words*](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 29.00 | 2.71 | 21.61 | 4.68 | [RTTM](reproducible_research/2022.07/AMI-SDM.SpeakerDiarization.only_words.test.rttm) | [eval](reproducible_research/2022.07/AMI-SDM.SpeakerDiarization.only_words.test.eval) | | [CALLHOME](https://catalog.ldc.upenn.edu/LDC2001S97) [*Part2*](https://github.com/BUTSpeechFIT/CALLHOME_sublists/issues/1) | 30.24 | 3.71 | 16.86 | 9.66 | [RTTM](reproducible_research/2022.07/CALLHOME.SpeakerDiarization.CALLHOME.test.rttm) | [eval](reproducible_research/2022.07/CALLHOME.SpeakerDiarization.CALLHOME.test.eval) | | [DIHARD 3 *Full*](https://arxiv.org/abs/2012.01477) | 20.99 | 4.25 | 10.74 | 6.00 | [RTTM](reproducible_research/2022.07/DIHARD.SpeakerDiarization.Full.test.rttm) | [eval](reproducible_research/2022.07/DIHARD.SpeakerDiarization.Full.test.eval) | | [REPERE *Phase 2*](https://islrn.org/resources/360-758-359-485-0/) | 12.62 | 1.55 | 3.30 | 7.76 | [RTTM](reproducible_research/2022.07/REPERE.SpeakerDiarization.Full.test.rttm) | [eval](reproducible_research/2022.07/REPERE.SpeakerDiarization.Full.test.eval) | | [VoxConverse *v0.0.2*](https://github.com/joonson/voxconverse) | 12.76 | 3.45 | 3.85 | 5.46 | [RTTM](reproducible_research/2022.07/VoxConverse.SpeakerDiarization.VoxConverse.test.rttm) | [eval](reproducible_research/2022.07/VoxConverse.SpeakerDiarization.VoxConverse.test.eval) | ## Support For commercial enquiries and scientific consulting, please contact [me](mailto:[email protected]). For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository. ## Citations ```bibtex @inproceedings{Bredin2021, Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}}, Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine}, Booktitle = {Proc. Interspeech 2021}, Address = {Brno, Czech Republic}, Month = {August}, Year = {2021}, } ``` ```bibtex @inproceedings{Bredin2020, Title = {{pyannote.audio: neural building blocks for speaker diarization}}, Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe}, Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing}, Address = {Barcelona, Spain}, Month = {May}, Year = {2020}, } ```
AnonymousSub/AR_rule_based_roberta_bert_triplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: en thumbnail: http://www.huggingtweets.com/bookingcom/1668303763939/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1323220178574938113/SZK83dEL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Booking.com</div> <div style="text-align: center; font-size: 14px;">@bookingcom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Booking.com. | Data | Booking.com | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 15 | | Tweets kept | 3235 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/s8f2y1by/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bookingcom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ksjpd3c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ksjpd3c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bookingcom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AnonymousSub/AR_rule_based_roberta_hier_quadruplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6942 | 0.54 | 500 | 1.4832 | | 1.4133 | 1.09 | 1000 | 1.4111 | | 1.5088 | 1.63 | 1500 | 1.3778 | | 1.4368 | 2.17 | 2000 | 1.3645 | | 1.4041 | 2.72 | 2500 | 1.3587 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
AnonymousSub/AR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- language: en thumbnail: http://www.huggingtweets.com/lockheedmartin/1668307132890/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1067242179955896320/mKdx6PgL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lockheed Martin</div> <div style="text-align: center; font-size: 14px;">@lockheedmartin</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lockheed Martin. | Data | Lockheed Martin | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 482 | | Short tweets | 52 | | Tweets kept | 2711 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c8nhjq27/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lockheedmartin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2h80t679) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2h80t679/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lockheedmartin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AnonymousSub/AR_rule_based_twostagequadruplet_hier_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2022-11-13T02:53:16Z
--- language: en thumbnail: http://www.huggingtweets.com/officialuom/1668308017702/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433363936854880264/SO3O-Jle_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The University of Manchester</div> <div style="text-align: center; font-size: 14px;">@officialuom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The University of Manchester. | Data | The University of Manchester | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 429 | | Short tweets | 143 | | Tweets kept | 2675 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3i3q53v0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @officialuom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22shuuiy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22shuuiy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/officialuom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AnonymousSub/EManuals_RoBERTa_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: khasrul-alam/banglabert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # khasrul-alam/banglabert-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.8513 - Train End Logits Accuracy: 0.0 - Train Start Logits Accuracy: 0.0 - Validation Loss: 5.8678 - Validation End Logits Accuracy: 0.0 - Validation Start Logits Accuracy: 0.0 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 5.9297 | 0.0 | 0.0208 | 5.9075 | 0.0 | 0.0 | 0 | | 5.8513 | 0.0 | 0.0 | 5.8678 | 0.0 | 0.0 | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
AnonymousSub/SR_rule_based_hier_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2-g-receipts2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2-g-receipts2 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Purchase Time Precision: 0.9180 - Purchase Time Recall: 0.875 - Purchase Time F1: 0.8960 - Purchase Time Number: 128 - Receipt Date Precision: 0.8941 - Receipt Date Recall: 0.8994 - Receipt Date F1: 0.8968 - Receipt Date Number: 169 - Sub Total Precision: 0.8673 - Sub Total Recall: 0.7727 - Sub Total F1: 0.8173 - Sub Total Number: 110 - Supplier Address Precision: 0.7097 - Supplier Address Recall: 0.7719 - Supplier Address F1: 0.7395 - Supplier Address Number: 114 - Supplier Name Precision: 0.7159 - Supplier Name Recall: 0.7079 - Supplier Name F1: 0.7119 - Supplier Name Number: 267 - Tip Amount Precision: 0.6667 - Tip Amount Recall: 1.0 - Tip Amount F1: 0.8 - Tip Amount Number: 2 - Total Precision: 0.8978 - Total Recall: 0.9126 - Total F1: 0.9051 - Total Number: 183 - Total Tax Amount Precision: 0.8644 - Total Tax Amount Recall: 0.7846 - Total Tax Amount F1: 0.8226 - Total Tax Amount Number: 65 - Overall Precision: 0.8246 - Overall Recall: 0.8150 - Overall F1: 0.8198 - Overall Accuracy: 0.9749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Purchase Time Precision | Purchase Time Recall | Purchase Time F1 | Purchase Time Number | Receipt Date Precision | Receipt Date Recall | Receipt Date F1 | Receipt Date Number | Sub Total Precision | Sub Total Recall | Sub Total F1 | Sub Total Number | Supplier Address Precision | Supplier Address Recall | Supplier Address F1 | Supplier Address Number | Supplier Name Precision | Supplier Name Recall | Supplier Name F1 | Supplier Name Number | Tip Amount Precision | Tip Amount Recall | Tip Amount F1 | Tip Amount Number | Total Precision | Total Recall | Total F1 | Total Number | Total Tax Amount Precision | Total Tax Amount Recall | Total Tax Amount F1 | Total Tax Amount Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:---------------:|:------------:|:--------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.972 | 1.0 | 793 | 0.4257 | 0.3830 | 0.1406 | 0.2057 | 128 | 0.0 | 0.0 | 0.0 | 169 | 0.0 | 0.0 | 0.0 | 110 | 0.3973 | 0.5088 | 0.4462 | 114 | 0.5263 | 0.3745 | 0.4376 | 267 | 0.0 | 0.0 | 0.0 | 2 | 0.4096 | 0.7923 | 0.5400 | 183 | 0.0 | 0.0 | 0.0 | 65 | 0.4355 | 0.3092 | 0.3617 | 0.9296 | | 0.2924 | 2.0 | 1586 | 0.2379 | 0.9259 | 0.7812 | 0.8475 | 128 | 0.8182 | 0.7456 | 0.7802 | 169 | 0.8966 | 0.2364 | 0.3741 | 110 | 0.5571 | 0.6842 | 0.6142 | 114 | 0.6584 | 0.5993 | 0.6275 | 267 | 0.0 | 0.0 | 0.0 | 2 | 0.7042 | 0.8197 | 0.7576 | 183 | 1.0 | 0.0462 | 0.0882 | 65 | 0.7225 | 0.6195 | 0.6670 | 0.9630 | | 0.1611 | 3.0 | 2379 | 0.1756 | 0.8138 | 0.9219 | 0.8645 | 128 | 0.8020 | 0.9349 | 0.8634 | 169 | 0.7064 | 0.7 | 0.7032 | 110 | 0.5733 | 0.7544 | 0.6515 | 114 | 0.7308 | 0.6404 | 0.6826 | 267 | 0.0 | 0.0 | 0.0 | 2 | 0.8057 | 0.7705 | 0.7877 | 183 | 0.7258 | 0.6923 | 0.7087 | 65 | 0.7425 | 0.7669 | 0.7545 | 0.9670 | | 0.1013 | 4.0 | 3172 | 0.1557 | 0.9099 | 0.7891 | 0.8452 | 128 | 0.8659 | 0.8402 | 0.8529 | 169 | 0.8493 | 0.5636 | 0.6776 | 110 | 0.5970 | 0.7018 | 0.6452 | 114 | 0.6603 | 0.6479 | 0.6541 | 267 | 0.0 | 0.0 | 0.0 | 2 | 0.8371 | 0.8142 | 0.8255 | 183 | 0.8654 | 0.6923 | 0.7692 | 65 | 0.7721 | 0.7245 | 0.7475 | 0.9692 | | 0.0684 | 5.0 | 3965 | 0.1623 | 0.7718 | 0.8984 | 0.8303 | 128 | 0.7949 | 0.9172 | 0.8516 | 169 | 0.7131 | 0.7909 | 0.75 | 110 | 0.5705 | 0.7807 | 0.6593 | 114 | 0.6887 | 0.6629 | 0.6756 | 267 | 0.0 | 0.0 | 0.0 | 2 | 0.8392 | 0.9126 | 0.8743 | 183 | 0.5816 | 0.8769 | 0.6994 | 65 | 0.7202 | 0.8160 | 0.7651 | 0.9661 | | 0.0491 | 6.0 | 4758 | 0.1828 | 0.9008 | 0.8516 | 0.8755 | 128 | 0.8830 | 0.8935 | 0.8882 | 169 | 0.6846 | 0.8091 | 0.7417 | 110 | 0.5062 | 0.7105 | 0.5912 | 114 | 0.6729 | 0.6779 | 0.6754 | 267 | 0.0 | 0.0 | 0.0 | 2 | 0.8807 | 0.8470 | 0.8635 | 183 | 0.7361 | 0.8154 | 0.7737 | 65 | 0.7452 | 0.7890 | 0.7665 | 0.9673 | | 0.043 | 7.0 | 5551 | 0.1825 | 0.9237 | 0.8516 | 0.8862 | 128 | 0.8807 | 0.9172 | 0.8986 | 169 | 0.7672 | 0.8091 | 0.7876 | 110 | 0.6279 | 0.7105 | 0.6667 | 114 | 0.7788 | 0.6330 | 0.6983 | 267 | 0.0 | 0.0 | 0.0 | 2 | 0.9045 | 0.8798 | 0.8920 | 183 | 0.6867 | 0.8769 | 0.7703 | 65 | 0.8073 | 0.7909 | 0.7990 | 0.9717 | | 0.0325 | 8.0 | 6344 | 0.1645 | 0.875 | 0.875 | 0.875 | 128 | 0.8636 | 0.8994 | 0.8812 | 169 | 0.7288 | 0.7818 | 0.7544 | 110 | 0.6241 | 0.7719 | 0.6902 | 114 | 0.7085 | 0.7191 | 0.7138 | 267 | 0.0 | 0.0 | 0.0 | 2 | 0.8367 | 0.8962 | 0.8654 | 183 | 0.6344 | 0.9077 | 0.7468 | 65 | 0.7596 | 0.8218 | 0.7894 | 0.9711 | | 0.0276 | 9.0 | 7137 | 0.1761 | 0.9160 | 0.8516 | 0.8826 | 128 | 0.8706 | 0.8757 | 0.8732 | 169 | 0.8861 | 0.6364 | 0.7407 | 110 | 0.6045 | 0.7105 | 0.6532 | 114 | 0.6689 | 0.7416 | 0.7034 | 267 | 0.0 | 0.0 | 0.0 | 2 | 0.8299 | 0.8798 | 0.8541 | 183 | 0.9268 | 0.5846 | 0.7170 | 65 | 0.7793 | 0.7755 | 0.7774 | 0.9705 | | 0.0237 | 10.0 | 7930 | 0.1842 | 0.8473 | 0.8672 | 0.8571 | 128 | 0.8613 | 0.8817 | 0.8713 | 169 | 0.7607 | 0.8091 | 0.7841 | 110 | 0.6569 | 0.7895 | 0.7171 | 114 | 0.7189 | 0.6704 | 0.6938 | 267 | 0.0 | 0.0 | 0.0 | 2 | 0.8729 | 0.8634 | 0.8681 | 183 | 0.7794 | 0.8154 | 0.7970 | 65 | 0.7850 | 0.7987 | 0.7918 | 0.9709 | | 0.0229 | 11.0 | 8723 | 0.1811 | 0.9167 | 0.8594 | 0.8871 | 128 | 0.8929 | 0.8876 | 0.8902 | 169 | 0.75 | 0.7909 | 0.7699 | 110 | 0.6 | 0.7368 | 0.6614 | 114 | 0.6958 | 0.6854 | 0.6906 | 267 | 1.0 | 0.5 | 0.6667 | 2 | 0.8639 | 0.9016 | 0.8824 | 183 | 0.8525 | 0.8 | 0.8254 | 65 | 0.7849 | 0.8015 | 0.7931 | 0.9713 | | 0.017 | 12.0 | 9516 | 0.2075 | 0.8906 | 0.8906 | 0.8906 | 128 | 0.7727 | 0.9053 | 0.8338 | 169 | 0.8218 | 0.7545 | 0.7867 | 110 | 0.6042 | 0.7632 | 0.6744 | 114 | 0.6830 | 0.6779 | 0.6805 | 267 | 1.0 | 0.5 | 0.6667 | 2 | 0.8429 | 0.8798 | 0.8610 | 183 | 0.8281 | 0.8154 | 0.8217 | 65 | 0.7628 | 0.8025 | 0.7822 | 0.9696 | | 0.0149 | 13.0 | 10309 | 0.1781 | 0.8760 | 0.8828 | 0.8794 | 128 | 0.8786 | 0.8994 | 0.8889 | 169 | 0.8660 | 0.7636 | 0.8116 | 110 | 0.6357 | 0.7193 | 0.6749 | 114 | 0.7154 | 0.6779 | 0.6962 | 267 | 0.5 | 1.0 | 0.6667 | 2 | 0.9138 | 0.8689 | 0.8908 | 183 | 0.8793 | 0.7846 | 0.8293 | 65 | 0.8102 | 0.7938 | 0.8019 | 0.9738 | | 0.0124 | 14.0 | 11102 | 0.1957 | 0.9106 | 0.875 | 0.8924 | 128 | 0.8629 | 0.8935 | 0.8779 | 169 | 0.8586 | 0.7727 | 0.8134 | 110 | 0.5909 | 0.7982 | 0.6791 | 114 | 0.6823 | 0.7079 | 0.6949 | 267 | 1.0 | 0.5 | 0.6667 | 2 | 0.9191 | 0.8689 | 0.8933 | 183 | 0.8030 | 0.8154 | 0.8092 | 65 | 0.7875 | 0.8102 | 0.7987 | 0.9729 | | 0.01 | 15.0 | 11895 | 0.2174 | 0.9098 | 0.8672 | 0.888 | 128 | 0.8817 | 0.8817 | 0.8817 | 169 | 0.8298 | 0.7091 | 0.7647 | 110 | 0.6587 | 0.7281 | 0.6917 | 114 | 0.6842 | 0.6816 | 0.6829 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.8798 | 0.8774 | 183 | 0.9783 | 0.6923 | 0.8108 | 65 | 0.8038 | 0.7813 | 0.7924 | 0.9726 | | 0.0102 | 16.0 | 12688 | 0.2073 | 0.9106 | 0.875 | 0.8924 | 128 | 0.8276 | 0.8521 | 0.8397 | 169 | 0.7679 | 0.7818 | 0.7748 | 110 | 0.6378 | 0.7105 | 0.6722 | 114 | 0.6806 | 0.6704 | 0.6755 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8717 | 0.8907 | 0.8811 | 183 | 0.6962 | 0.8462 | 0.7639 | 65 | 0.7697 | 0.7919 | 0.7806 | 0.9705 | | 0.0091 | 17.0 | 13481 | 0.2205 | 0.8358 | 0.875 | 0.8550 | 128 | 0.8306 | 0.8994 | 0.8636 | 169 | 0.6133 | 0.8364 | 0.7077 | 110 | 0.5944 | 0.7456 | 0.6615 | 114 | 0.6833 | 0.7191 | 0.7007 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8410 | 0.8962 | 0.8677 | 183 | 0.7297 | 0.8308 | 0.7770 | 65 | 0.7334 | 0.8218 | 0.7751 | 0.9680 | | 0.0063 | 18.0 | 14274 | 0.2007 | 0.8527 | 0.8594 | 0.8560 | 128 | 0.8613 | 0.8817 | 0.8713 | 169 | 0.8283 | 0.7455 | 0.7847 | 110 | 0.6535 | 0.7281 | 0.6888 | 114 | 0.7520 | 0.6929 | 0.7212 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8730 | 0.9016 | 0.8871 | 183 | 0.7432 | 0.8462 | 0.7914 | 65 | 0.7998 | 0.8006 | 0.8002 | 0.9719 | | 0.0075 | 19.0 | 15067 | 0.2173 | 0.925 | 0.8672 | 0.8952 | 128 | 0.8765 | 0.8817 | 0.8791 | 169 | 0.8113 | 0.7818 | 0.7963 | 110 | 0.7196 | 0.6754 | 0.6968 | 114 | 0.6982 | 0.7191 | 0.7085 | 267 | 1.0 | 0.5 | 0.6667 | 2 | 0.9080 | 0.8634 | 0.8852 | 183 | 0.8833 | 0.8154 | 0.848 | 65 | 0.8164 | 0.7967 | 0.8064 | 0.9733 | | 0.0062 | 20.0 | 15860 | 0.2255 | 0.888 | 0.8672 | 0.8775 | 128 | 0.8613 | 0.8817 | 0.8713 | 169 | 0.9048 | 0.6909 | 0.7835 | 110 | 0.6718 | 0.7719 | 0.7184 | 114 | 0.7552 | 0.6816 | 0.7165 | 267 | 1.0 | 0.5 | 0.6667 | 2 | 0.9017 | 0.8525 | 0.8764 | 183 | 0.9074 | 0.7538 | 0.8235 | 65 | 0.8269 | 0.7823 | 0.8040 | 0.9733 | | 0.0063 | 21.0 | 16653 | 0.2417 | 0.8952 | 0.8672 | 0.8810 | 128 | 0.8453 | 0.9053 | 0.8743 | 169 | 0.84 | 0.7636 | 0.8000 | 110 | 0.6917 | 0.7281 | 0.7094 | 114 | 0.7194 | 0.6816 | 0.7 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8901 | 0.8852 | 0.8877 | 183 | 0.7937 | 0.7692 | 0.7813 | 65 | 0.8060 | 0.7967 | 0.8014 | 0.9721 | | 0.0045 | 22.0 | 17446 | 0.2069 | 0.8626 | 0.8828 | 0.8726 | 128 | 0.8830 | 0.8935 | 0.8882 | 169 | 0.7679 | 0.7818 | 0.7748 | 110 | 0.6462 | 0.7368 | 0.6885 | 114 | 0.7045 | 0.6966 | 0.7006 | 267 | 0.5 | 1.0 | 0.6667 | 2 | 0.8914 | 0.8525 | 0.8715 | 183 | 0.7361 | 0.8154 | 0.7737 | 65 | 0.7847 | 0.8006 | 0.7926 | 0.9721 | | 0.0044 | 23.0 | 18239 | 0.2675 | 0.8760 | 0.8828 | 0.8794 | 128 | 0.8721 | 0.8876 | 0.8798 | 169 | 0.8155 | 0.7636 | 0.7887 | 110 | 0.6864 | 0.7105 | 0.6983 | 114 | 0.7588 | 0.6479 | 0.6990 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8983 | 0.8689 | 0.8833 | 183 | 0.7714 | 0.8308 | 0.8 | 65 | 0.8168 | 0.7861 | 0.8012 | 0.9711 | | 0.0037 | 24.0 | 19032 | 0.2294 | 0.9032 | 0.875 | 0.8889 | 128 | 0.8848 | 0.8639 | 0.8743 | 169 | 0.8283 | 0.7455 | 0.7847 | 110 | 0.7097 | 0.7719 | 0.7395 | 114 | 0.6866 | 0.6891 | 0.6879 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8950 | 0.8852 | 0.8901 | 183 | 0.7826 | 0.8308 | 0.8060 | 65 | 0.8035 | 0.7996 | 0.8015 | 0.9733 | | 0.0028 | 25.0 | 19825 | 0.2435 | 0.9310 | 0.8438 | 0.8852 | 128 | 0.8398 | 0.8994 | 0.8686 | 169 | 0.7870 | 0.7727 | 0.7798 | 110 | 0.5959 | 0.7632 | 0.6692 | 114 | 0.6679 | 0.6929 | 0.6801 | 267 | 0.5 | 1.0 | 0.6667 | 2 | 0.8601 | 0.9071 | 0.8830 | 183 | 0.7179 | 0.8615 | 0.7832 | 65 | 0.7625 | 0.8102 | 0.7856 | 0.9712 | | 0.0031 | 26.0 | 20618 | 0.2441 | 0.9160 | 0.8516 | 0.8826 | 128 | 0.9036 | 0.8876 | 0.8955 | 169 | 0.8925 | 0.7545 | 0.8177 | 110 | 0.6667 | 0.7368 | 0.7 | 114 | 0.7323 | 0.6966 | 0.7140 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8817 | 0.8962 | 0.8889 | 183 | 0.8909 | 0.7538 | 0.8167 | 65 | 0.8262 | 0.7967 | 0.8112 | 0.9740 | | 0.0022 | 27.0 | 21411 | 0.2598 | 0.9160 | 0.8516 | 0.8826 | 128 | 0.8728 | 0.8935 | 0.8830 | 169 | 0.8646 | 0.7545 | 0.8058 | 110 | 0.7025 | 0.7456 | 0.7234 | 114 | 0.7660 | 0.6742 | 0.7171 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8639 | 0.9016 | 0.8824 | 183 | 0.8833 | 0.8154 | 0.848 | 65 | 0.8305 | 0.7977 | 0.8138 | 0.9742 | | 0.0027 | 28.0 | 22204 | 0.2239 | 0.8898 | 0.8828 | 0.8863 | 128 | 0.8817 | 0.8817 | 0.8817 | 169 | 0.8333 | 0.7727 | 0.8019 | 110 | 0.672 | 0.7368 | 0.7029 | 114 | 0.7216 | 0.6891 | 0.7050 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8956 | 0.8907 | 0.8932 | 183 | 0.8462 | 0.8462 | 0.8462 | 65 | 0.8130 | 0.8044 | 0.8087 | 0.9743 | | 0.0028 | 29.0 | 22997 | 0.2268 | 0.8889 | 0.875 | 0.8819 | 128 | 0.8772 | 0.8876 | 0.8824 | 169 | 0.8119 | 0.7455 | 0.7773 | 110 | 0.6667 | 0.7368 | 0.7 | 114 | 0.7245 | 0.7191 | 0.7218 | 267 | 0.5 | 1.0 | 0.6667 | 2 | 0.8865 | 0.8962 | 0.8913 | 183 | 0.7761 | 0.8 | 0.7879 | 65 | 0.8019 | 0.8073 | 0.8046 | 0.9742 | | 0.0023 | 30.0 | 23790 | 0.2654 | 0.9113 | 0.8828 | 0.8968 | 128 | 0.8935 | 0.8935 | 0.8935 | 169 | 0.82 | 0.7455 | 0.7810 | 110 | 0.6444 | 0.7632 | 0.6988 | 114 | 0.7570 | 0.7116 | 0.7336 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8649 | 0.8743 | 0.8696 | 183 | 0.8305 | 0.7538 | 0.7903 | 65 | 0.8137 | 0.8035 | 0.8085 | 0.9737 | | 0.0018 | 31.0 | 24583 | 0.2678 | 0.9024 | 0.8672 | 0.8845 | 128 | 0.8824 | 0.8876 | 0.8850 | 169 | 0.8039 | 0.7455 | 0.7736 | 110 | 0.5503 | 0.7193 | 0.6236 | 114 | 0.7015 | 0.7041 | 0.7028 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8653 | 0.9126 | 0.8883 | 183 | 0.8793 | 0.7846 | 0.8293 | 65 | 0.7822 | 0.8025 | 0.7922 | 0.9717 | | 0.0018 | 32.0 | 25376 | 0.2460 | 0.9174 | 0.8672 | 0.8916 | 128 | 0.8988 | 0.8935 | 0.8961 | 169 | 0.8224 | 0.8 | 0.8111 | 110 | 0.6860 | 0.7281 | 0.7064 | 114 | 0.7542 | 0.6779 | 0.7140 | 267 | 1.0 | 0.5 | 0.6667 | 2 | 0.8994 | 0.8798 | 0.8895 | 183 | 0.8448 | 0.7538 | 0.7967 | 65 | 0.8291 | 0.7948 | 0.8116 | 0.9742 | | 0.0015 | 33.0 | 26169 | 0.2474 | 0.9098 | 0.8672 | 0.888 | 128 | 0.8663 | 0.8817 | 0.8739 | 169 | 0.8131 | 0.7909 | 0.8018 | 110 | 0.7 | 0.7368 | 0.7179 | 114 | 0.7214 | 0.7079 | 0.7146 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8817 | 0.8962 | 0.8889 | 183 | 0.7937 | 0.7692 | 0.7813 | 65 | 0.8085 | 0.8054 | 0.8069 | 0.9739 | | 0.0006 | 34.0 | 26962 | 0.2690 | 0.9024 | 0.8672 | 0.8845 | 128 | 0.8844 | 0.9053 | 0.8947 | 169 | 0.8315 | 0.6727 | 0.7437 | 110 | 0.6667 | 0.7368 | 0.7 | 114 | 0.7391 | 0.7004 | 0.7192 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8870 | 0.8579 | 0.8722 | 183 | 0.8889 | 0.7385 | 0.8067 | 65 | 0.8185 | 0.7861 | 0.8020 | 0.9735 | | 0.0038 | 35.0 | 27755 | 0.2565 | 0.912 | 0.8906 | 0.9012 | 128 | 0.8786 | 0.8994 | 0.8889 | 169 | 0.7757 | 0.7545 | 0.7650 | 110 | 0.6562 | 0.7368 | 0.6942 | 114 | 0.6794 | 0.7303 | 0.7040 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8962 | 0.8962 | 0.8962 | 183 | 0.8 | 0.8 | 0.8000 | 65 | 0.7907 | 0.8150 | 0.8027 | 0.9730 | | 0.0008 | 36.0 | 28548 | 0.2583 | 0.8943 | 0.8594 | 0.8765 | 128 | 0.8655 | 0.8757 | 0.8706 | 169 | 0.7607 | 0.8091 | 0.7841 | 110 | 0.6829 | 0.7368 | 0.7089 | 114 | 0.7266 | 0.7266 | 0.7266 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 0.9180 | 0.9032 | 183 | 0.8125 | 0.8 | 0.8062 | 65 | 0.8021 | 0.8160 | 0.8090 | 0.9733 | | 0.0008 | 37.0 | 29341 | 0.2733 | 0.8862 | 0.8516 | 0.8685 | 128 | 0.8663 | 0.8817 | 0.8739 | 169 | 0.7611 | 0.7818 | 0.7713 | 110 | 0.6324 | 0.7544 | 0.688 | 114 | 0.7148 | 0.7041 | 0.7094 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8830 | 0.9071 | 0.8949 | 183 | 0.8333 | 0.7692 | 0.8 | 65 | 0.7902 | 0.8054 | 0.7977 | 0.9729 | | 0.0013 | 38.0 | 30134 | 0.2555 | 0.9322 | 0.8594 | 0.8943 | 128 | 0.8988 | 0.8935 | 0.8961 | 169 | 0.7395 | 0.8 | 0.7686 | 110 | 0.7395 | 0.7719 | 0.7554 | 114 | 0.7308 | 0.7116 | 0.7211 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8691 | 0.9071 | 0.8877 | 183 | 0.8197 | 0.7692 | 0.7937 | 65 | 0.8133 | 0.8141 | 0.8137 | 0.9744 | | 0.0003 | 39.0 | 30927 | 0.2683 | 0.9174 | 0.8672 | 0.8916 | 128 | 0.8882 | 0.8935 | 0.8909 | 169 | 0.8190 | 0.7818 | 0.8000 | 110 | 0.6718 | 0.7719 | 0.7184 | 114 | 0.7154 | 0.7154 | 0.7154 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.9022 | 0.9071 | 0.9046 | 183 | 0.8772 | 0.7692 | 0.8197 | 65 | 0.8149 | 0.8141 | 0.8145 | 0.9744 | | 0.0004 | 40.0 | 31720 | 0.2727 | 0.8889 | 0.875 | 0.8819 | 128 | 0.8817 | 0.8817 | 0.8817 | 169 | 0.8469 | 0.7545 | 0.7981 | 110 | 0.6822 | 0.7719 | 0.7243 | 114 | 0.7041 | 0.7041 | 0.7041 | 267 | 1.0 | 1.0 | 1.0 | 2 | 0.8883 | 0.9126 | 0.9003 | 183 | 0.8793 | 0.7846 | 0.8293 | 65 | 0.8100 | 0.8092 | 0.8096 | 0.9745 | | 0.0005 | 41.0 | 32513 | 0.2607 | 0.9106 | 0.875 | 0.8924 | 128 | 0.8629 | 0.8935 | 0.8779 | 169 | 0.8737 | 0.7545 | 0.8098 | 110 | 0.6953 | 0.7807 | 0.7355 | 114 | 0.7154 | 0.6966 | 0.7059 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8743 | 0.9126 | 0.8930 | 183 | 0.8125 | 0.8 | 0.8062 | 65 | 0.8104 | 0.8112 | 0.8108 | 0.9743 | | 0.0007 | 42.0 | 33306 | 0.2628 | 0.9106 | 0.875 | 0.8924 | 128 | 0.8678 | 0.8935 | 0.8805 | 169 | 0.8119 | 0.7455 | 0.7773 | 110 | 0.6899 | 0.7807 | 0.7325 | 114 | 0.6985 | 0.7116 | 0.7050 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8730 | 0.9016 | 0.8871 | 183 | 0.8254 | 0.8 | 0.8125 | 65 | 0.7998 | 0.8121 | 0.8059 | 0.9744 | | 0.0004 | 43.0 | 34099 | 0.2784 | 0.9098 | 0.8672 | 0.888 | 128 | 0.8994 | 0.8994 | 0.8994 | 169 | 0.8542 | 0.7455 | 0.7961 | 110 | 0.696 | 0.7632 | 0.7280 | 114 | 0.7127 | 0.7154 | 0.7140 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8925 | 0.9071 | 0.8997 | 183 | 0.8281 | 0.8154 | 0.8217 | 65 | 0.8170 | 0.8131 | 0.8151 | 0.9743 | | 0.0004 | 44.0 | 34892 | 0.2771 | 0.9098 | 0.8672 | 0.888 | 128 | 0.8941 | 0.8994 | 0.8968 | 169 | 0.8586 | 0.7727 | 0.8134 | 110 | 0.7049 | 0.7544 | 0.7288 | 114 | 0.7231 | 0.7041 | 0.7135 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8919 | 0.9016 | 0.8967 | 183 | 0.8154 | 0.8154 | 0.8154 | 65 | 0.8207 | 0.8112 | 0.8159 | 0.9745 | | 0.0003 | 45.0 | 35685 | 0.2756 | 0.9180 | 0.875 | 0.8960 | 128 | 0.8941 | 0.8994 | 0.8968 | 169 | 0.8673 | 0.7727 | 0.8173 | 110 | 0.7097 | 0.7719 | 0.7395 | 114 | 0.7159 | 0.7079 | 0.7119 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8978 | 0.9126 | 0.9051 | 183 | 0.8644 | 0.7846 | 0.8226 | 65 | 0.8246 | 0.8150 | 0.8198 | 0.9749 | | 0.0005 | 46.0 | 36478 | 0.2739 | 0.9180 | 0.875 | 0.8960 | 128 | 0.8941 | 0.8994 | 0.8968 | 169 | 0.8333 | 0.7727 | 0.8019 | 110 | 0.6667 | 0.7719 | 0.7154 | 114 | 0.7011 | 0.7116 | 0.7063 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8698 | 0.9126 | 0.8907 | 183 | 0.8226 | 0.7846 | 0.8031 | 65 | 0.8036 | 0.8160 | 0.8098 | 0.9747 | | 0.0001 | 47.0 | 37271 | 0.2774 | 0.9180 | 0.875 | 0.8960 | 128 | 0.8941 | 0.8994 | 0.8968 | 169 | 0.85 | 0.7727 | 0.8095 | 110 | 0.6667 | 0.7719 | 0.7154 | 114 | 0.7127 | 0.7154 | 0.7140 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.9061 | 0.8962 | 0.9011 | 183 | 0.8226 | 0.7846 | 0.8031 | 65 | 0.8141 | 0.8141 | 0.8141 | 0.9747 | | 0.0002 | 48.0 | 38064 | 0.2768 | 0.9180 | 0.875 | 0.8960 | 128 | 0.8941 | 0.8994 | 0.8968 | 169 | 0.85 | 0.7727 | 0.8095 | 110 | 0.6718 | 0.7719 | 0.7184 | 114 | 0.7159 | 0.7266 | 0.7212 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8967 | 0.9016 | 0.8992 | 183 | 0.8254 | 0.8 | 0.8125 | 65 | 0.8142 | 0.8189 | 0.8165 | 0.9754 | | 0.0001 | 49.0 | 38857 | 0.2778 | 0.9180 | 0.875 | 0.8960 | 128 | 0.8941 | 0.8994 | 0.8968 | 169 | 0.8416 | 0.7727 | 0.8057 | 110 | 0.6718 | 0.7719 | 0.7184 | 114 | 0.7159 | 0.7266 | 0.7212 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8967 | 0.9016 | 0.8992 | 183 | 0.8254 | 0.8 | 0.8125 | 65 | 0.8134 | 0.8189 | 0.8161 | 0.9753 | | 0.0003 | 50.0 | 39650 | 0.2778 | 0.9180 | 0.875 | 0.8960 | 128 | 0.8941 | 0.8994 | 0.8968 | 169 | 0.8431 | 0.7818 | 0.8113 | 110 | 0.6718 | 0.7719 | 0.7184 | 114 | 0.7159 | 0.7266 | 0.7212 | 267 | 0.6667 | 1.0 | 0.8 | 2 | 0.8967 | 0.9016 | 0.8992 | 183 | 0.8254 | 0.8 | 0.8125 | 65 | 0.8136 | 0.8198 | 0.8167 | 0.9753 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.2.2 - Tokenizers 0.13.2
AnonymousSub/SR_rule_based_hier_triplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - generated_from_keras_callback model-index: - name: Vit-mbert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Vit-mbert This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
AnonymousSub/SR_rule_based_only_classfn_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5_large_epoch_1_comve_triple results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_large_epoch_1_comve_triple This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 4 | 4.1923 | | No log | 2.0 | 8 | 3.5605 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.10.1 - Datasets 2.6.1 - Tokenizers 0.13.1
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: en thumbnail: http://www.huggingtweets.com/bbcnews/1672158882347/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529107486271225859/03qcVNIk_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BBC News (UK)</div> <div style="text-align: center; font-size: 14px;">@bbcnews</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BBC News (UK). | Data | BBC News (UK) | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 266 | | Short tweets | 0 | | Tweets kept | 2984 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n0xwshy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bbcnews's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/139ervf3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/139ervf3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bbcnews') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AnonymousSub/SR_rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: - ko tags: - text generation - pytorch - causal-lm license: apache-2.0 datasets: - oscar - lcw99/wikipedia-korean-20221001 - heegyu/namuwiki-extracted - cc100 --- # gpt-neo-1.3B Korean float16 version PPL on Oscar Korean text dataset = 46.0
AnonymousSub/SR_rule_based_twostagetriplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 198.19 +/- 17.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/cline-s10-AR
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
2022-11-13T10:32:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-hatespeech-model-sayak results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-hatespeech-model-sayak This model is a fine-tuned version of [cross-encoder/ms-marco-electra-base](https://huggingface.co/cross-encoder/ms-marco-electra-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1963 - Accuracy: 0.9639 - F1: 0.2609 - Precision: 0.6 - Recall: 0.1667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
AnonymousSub/cline
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "LecbertForPreTraining" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # 128-NORMAL ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 24 - eval_batch_size: 4 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Omerdor/128-NORMAL/tensorboard?#scalars)
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: phildav/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: mit --- ### mia from [lost nova](https://store.steampowered.com/app/1603410) on Stable Diffusion via Dreambooth #### model by no3 This your the Stable Diffusion model fine-tuned the mia-sd-1.5-beta1 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **sks_mia** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts). ### note If the output is real girl or a woman instead of mia just add **tow parentheses** in the instance_prompt, example `((sks_mia))`. If you want to convert diffusers to checkpoint ".ckpt" to use in UI like [AUTOMATIC1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) or any UI that's uses .ckpt file, Use this [script](https://gist.github.com/Christopher-Hayes/636ba25e0ae2e7020722d5386ac2571b) If you have issues or questions feel free to visit the Community Tab and start discussion about it. Here are some images used for training this concept: ![image 1](https://huggingface.co/no3/mia-sd-1.5-beta1/resolve/main/concept_images/1t.png) ![image 2](https://huggingface.co/no3/mia-sd-1.5-beta1/resolve/main/concept_images/2.png) ![image 3](https://huggingface.co/no3/mia-sd-1.5-beta1/resolve/main/concept_images/3.png) ![image 4](https://huggingface.co/no3/mia-sd-1.5-beta1/resolve/main/concept_images/4.png) ![image 5](https://huggingface.co/no3/mia-sd-1.5-beta1/resolve/main/concept_images/7.png) ![image 6](https://huggingface.co/no3/mia-sd-1.5-beta1/resolve/main/concept_images/6.png) Non included images my be removed next model for minimizing learning confusion, but you can view them in [concept_images](https://huggingface.co/no3/mia-sd-1.5-beta1/tree/main/concept_images) folder.
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.86254900846639 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1370 - F1: 0.8625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.26 | 1.0 | 525 | 0.1565 | 0.8218 | | 0.1276 | 2.0 | 1050 | 0.1409 | 0.8486 | | 0.0817 | 3.0 | 1575 | 0.1370 | 0.8625 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 15.00 +/- 11.07 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetune_hate_speech_improved_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune_hate_speech_improved_v1 This model is a fine-tuned version of [cross-encoder/ms-marco-electra-base](https://huggingface.co/cross-encoder/ms-marco-electra-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5548 - Accuracy: 0.8277 - F1: 0.8416 - Precision: 0.7883 - Recall: 0.9026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
AntonClaesson/finetuning_test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-13T21:14:40Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 17.10 +/- 21.04 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
ArBert/bert-base-uncased-finetuned-ner-gmm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 274 | 1.5943 | | 0.9165 | 2.0 | 548 | 1.5836 | | 0.9165 | 3.0 | 822 | 1.6090 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
ArJakusz/DialoGPT-small-starky
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m thumbnail: "https://huggingface.co/mitchtech/cardassian-diffusion/resolve/main/cardassian-grid1.png" tags: - stable-diffusion - text-to-image --- ### Cardassian Diffusion This is the fine-tuned Stable Diffusion model trained on screenshots of the cardassian alien species from the Star Trek franchise. Use the token **_cardassian_** in your prompts to generate the effect. [CKPT download link](https://huggingface.co/mitchtech/cardassian-diffusion/resolve/main/cardassian-diffusion-v1.ckpt) ### **Cardassians generated using this model** ![Generation Samples1](https://huggingface.co/mitchtech/cardassian-diffusion/resolve/main/cardassian-grid1.png) Kim Cardassian CardassELON Musk CardassIAN McKellen CardassiANNE Hathaway ![Generation Samples2](https://huggingface.co/mitchtech/cardassian-diffusion/resolve/main/cardassian-grid2.png) This model was trained using the diffusers based Dreambooth training by ShivamShrirao. -- ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Araf/Ummah
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-multilingual-cased-finetuned-squad-finetuned-squadv2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-squad-finetuned-squadv2 This model is a fine-tuned version of [monakth/distilbert-base-multilingual-cased-finetuned-squad](https://huggingface.co/monakth/distilbert-base-multilingual-cased-finetuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ArashEsk95/bert-base-uncased-finetuned-sst2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1229589315069628421/5Hy71tkj_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1591483220880678915/vDy4TSgn_400x400.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Humongous Ape MP & Sean Diamond & Jon Mao & dan & Pesky Splinter - Eternal Goatse Celebrant & Admiral Dan EX QC of the 3rd Antifa fleet! 💙 & Guybrush Tweetbad & Fesshole 🧻</div> <div style="text-align: center; font-size: 14px;">@apesahoy-bierincognito-fesshole-jonmao___-meat__hook-ripeacsky-theseandiamond-unfetteredmind1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Humongous Ape MP & Sean Diamond & Jon Mao & dan & Pesky Splinter - Eternal Goatse Celebrant & Admiral Dan EX QC of the 3rd Antifa fleet! 💙 & Guybrush Tweetbad & Fesshole 🧻. | Data | Humongous Ape MP | Sean Diamond | Jon Mao | dan | Pesky Splinter - Eternal Goatse Celebrant | Admiral Dan EX QC of the 3rd Antifa fleet! 💙 | Guybrush Tweetbad | Fesshole 🧻 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | Tweets downloaded | 3242 | 3220 | 662 | 2928 | 3107 | 3220 | 3127 | 3253 | | Retweets | 176 | 2162 | 53 | 683 | 2406 | 444 | 450 | 17 | | Short tweets | 577 | 239 | 119 | 305 | 136 | 1180 | 421 | 1 | | Tweets kept | 2489 | 819 | 490 | 1940 | 565 | 1596 | 2256 | 3235 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/329ftz7y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @apesahoy-bierincognito-fesshole-jonmao___-meat__hook-ripeacsky-theseandiamond-unfetteredmind1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b8bvjnq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b8bvjnq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/apesahoy-bierincognito-fesshole-jonmao___-meat__hook-ripeacsky-theseandiamond-unfetteredmind1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ArashEsk95/bert-base-uncased-finetuned-stsb
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- datasets: - drcd tags: - question-generation widget: - text: "[HL]伊隆·里夫·馬斯克[HL]是一名企業家和商業大亨" --- # Transformer QG on DRCD 請參閱 https://github.com/p208p2002/Transformer-QG-on-DRCD 獲得更多細節 The inputs of the model refers to ``` we integrate C and A into a new C' in the following form. C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|] ``` > Proposed by [Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.](https://www.aclweb.org/anthology/D19-5821/) ## Features - Fully pipline from fine-tune to evaluation - Support most of state of the art models - Fast deploy as a API server ## DRCD dataset [台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD)](https://github.com/DRCKnowledgeTeam/DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 DRCD資料集從2,108篇維基條目中整理出10,014篇段落,並從段落中標註出30,000多個問題。 ## Available models - BART (base on **[uer/bart-base-chinese-cluecorpussmall](https://huggingface.co/uer/bart-base-chinese-cluecorpussmall)**) ## Expriments Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L| ------------------|------|------|------|------|------|-------| BART-HLSQG |34.25 |27.70 |22.43 |18.13 |23.58 |36.88 | BART-HLSQG-v2 |39.30 |32.51 |26.72 |22.08 |24.94 |41.18 | ## Environment requirements The hole development is based on Ubuntu system 1. If you don't have pytorch 1.6+ please install or update first > https://pytorch.org/get-started/locally/ 2. Install packages `pip install -r requirements.txt` 3. Setup scorer `python setup_scorer.py` 5. Download dataset `python init_dataset.py` ## Training ### Seq2Seq LM ``` usage: train_seq2seq_lm.py [-h] [--base_model {facebook/bart-base,facebook/bart-large,t5-small,t5-base,t5-large}] [-d {squad,squad-nqg}] [--epoch EPOCH] [--lr LR] [--dev DEV] [--server] [--run_test] [-fc FROM_CHECKPOINT] optional arguments: -h, --help show this help message and exit --base_model {facebook/bart-base,facebook/bart-large,t5-small,t5-base,t5-large} -d {squad,squad-nqg}, --dataset {squad,squad-nqg} --epoch EPOCH --lr LR --dev DEV --server --run_test -fc FROM_CHECKPOINT, --from_checkpoint FROM_CHECKPOINT ``` ## Deploy ### Start up ``` python train_seq2seq_lm.py --server --base_model YOUR_BASE_MODEL --from_checkpoint FROM_CHECKPOINT ``` ### Request example ``` curl --location --request POST 'http://127.0.0.1:5000/' \ --header 'Content-Type: application/x-www-form-urlencoded' \ --data-urlencode 'context=[HL]伊隆·里夫·馬斯克[HL]是一名企業家和商業大亨' ``` ```json {"predict": "哪一個人是一名企業家和商業大亨?"} ```
Archie/myProject
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### blue lightsaber toy on Stable Diffusion via Dreambooth #### model by ktingos This your the Stable Diffusion model fine-tuned the blue lightsaber toy concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **a photo of sks toy** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/blue-lightsaber-toy/resolve/main/concept_images/2.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/blue-lightsaber-toy/resolve/main/concept_images/3.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/blue-lightsaber-toy/resolve/main/concept_images/1.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/blue-lightsaber-toy/resolve/main/concept_images/0.jpeg)
ArenaGrenade/char-cnn
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
<div style='display: flex; flex-wrap: wrap; column-gap: 0.75rem;'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1668392910189-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1668392910472-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1668392910185-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1668392910466-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1668392910473-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1668392910473-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1668392910467-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1668392910468-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1668392909896-noauth.jpeg' width='400' height='400'> </div>
AriakimTaiyo/DialoGPT-cultured-Kumiko
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: en thumbnail: http://www.huggingtweets.com/omershapira/1668392832122/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1890064313/oie_121542TV9Q0Cxb_400x400.gif&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Maybe: SIMD Crawford</div> <div style="text-align: center; font-size: 14px;">@omershapira</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Maybe: SIMD Crawford. | Data | Maybe: SIMD Crawford | | --- | --- | | Tweets downloaded | 3226 | | Retweets | 257 | | Short tweets | 266 | | Tweets kept | 2703 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2lgxr3u0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @omershapira's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23oo80xz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23oo80xz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/omershapira') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AriakimTaiyo/DialoGPT-revised-Kumiko
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - zeroth_korean_asr metrics: - wer model-index: - name: hubert_zeroth_gpu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: zeroth_korean_asr type: zeroth_korean_asr config: clean split: train args: clean metrics: - name: Wer type: wer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert_zeroth_gpu This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the zeroth_korean_asr dataset. It achieves the following results on the evaluation set: - Loss: 4.8302 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 26.5222 | 0.14 | 100 | 10.9084 | 1.0 | | 6.6076 | 0.29 | 200 | 4.8783 | 1.0 | | 4.8383 | 0.43 | 300 | 4.8768 | 1.0 | | 4.8372 | 0.57 | 400 | 4.8608 | 1.0 | | 4.8298 | 0.72 | 500 | 4.8625 | 1.0 | | 4.8377 | 0.86 | 600 | 4.8646 | 1.0 | | 4.829 | 1.01 | 700 | 4.8472 | 1.0 | | 4.8282 | 1.15 | 800 | 4.8435 | 1.0 | | 4.8282 | 1.29 | 900 | 4.8438 | 1.0 | | 4.8299 | 1.44 | 1000 | 4.8540 | 1.0 | | 4.8276 | 1.58 | 1100 | 4.8408 | 1.0 | | 4.8306 | 1.72 | 1200 | 4.8390 | 1.0 | | 4.8315 | 1.87 | 1300 | 4.8426 | 1.0 | | 4.8296 | 2.01 | 1400 | 4.8418 | 1.0 | | 4.829 | 2.16 | 1500 | 4.8475 | 1.0 | | 4.8324 | 2.3 | 1600 | 4.8409 | 1.0 | | 4.8299 | 2.44 | 1700 | 4.8360 | 1.0 | | 4.8285 | 2.59 | 1800 | 4.8419 | 1.0 | | 4.8267 | 2.73 | 1900 | 4.8355 | 1.0 | | 4.8232 | 2.87 | 2000 | 4.8445 | 1.0 | | 4.8179 | 3.02 | 2100 | 4.8390 | 1.0 | | 4.8248 | 3.16 | 2200 | 4.8506 | 1.0 | | 4.8184 | 3.3 | 2300 | 4.8392 | 1.0 | | 4.8268 | 3.45 | 2400 | 4.8509 | 1.0 | | 4.8315 | 3.59 | 2500 | 4.8469 | 1.0 | | 4.8249 | 3.74 | 2600 | 4.8457 | 1.0 | | 4.8244 | 3.88 | 2700 | 4.8414 | 1.0 | | 4.8226 | 4.02 | 2800 | 4.8333 | 1.0 | | 4.8275 | 4.17 | 2900 | 4.8344 | 1.0 | | 4.8218 | 4.31 | 3000 | 4.8351 | 1.0 | | 4.8199 | 4.45 | 3100 | 4.8386 | 1.0 | | 4.825 | 4.6 | 3200 | 4.8344 | 1.0 | | 4.828 | 4.74 | 3300 | 4.8372 | 1.0 | | 4.8228 | 4.89 | 3400 | 4.8349 | 1.0 | | 4.8264 | 5.03 | 3500 | 4.8344 | 1.0 | | 4.8237 | 5.17 | 3600 | 4.8332 | 1.0 | | 4.8269 | 5.32 | 3700 | 4.8376 | 1.0 | | 4.833 | 5.46 | 3800 | 4.8380 | 1.0 | | 4.8188 | 5.6 | 3900 | 4.8352 | 1.0 | | 4.8208 | 5.75 | 4000 | 4.8354 | 1.0 | | 4.8177 | 5.89 | 4100 | 4.8291 | 1.0 | | 4.8208 | 6.03 | 4200 | 4.8500 | 1.0 | | 4.8242 | 6.18 | 4300 | 4.8369 | 1.0 | | 4.8222 | 6.32 | 4400 | 4.8366 | 1.0 | | 4.8259 | 6.47 | 4500 | 4.8369 | 1.0 | | 4.8231 | 6.61 | 4600 | 4.8319 | 1.0 | | 4.825 | 6.75 | 4700 | 4.8363 | 1.0 | | 4.8245 | 6.9 | 4800 | 4.8420 | 1.0 | | 4.8139 | 7.04 | 4900 | 4.8427 | 1.0 | | 4.8202 | 7.18 | 5000 | 4.8393 | 1.0 | | 4.8196 | 7.33 | 5100 | 4.8380 | 1.0 | | 4.8199 | 7.47 | 5200 | 4.8364 | 1.0 | | 4.8264 | 7.61 | 5300 | 4.8414 | 1.0 | | 4.8259 | 7.76 | 5400 | 4.8397 | 1.0 | | 4.8215 | 7.9 | 5500 | 4.8376 | 1.0 | | 4.8198 | 8.05 | 5600 | 4.8344 | 1.0 | | 4.828 | 8.19 | 5700 | 4.8314 | 1.0 | | 4.8246 | 8.33 | 5800 | 4.8361 | 1.0 | | 4.8167 | 8.48 | 5900 | 4.8336 | 1.0 | | 4.8174 | 8.62 | 6000 | 4.8345 | 1.0 | | 4.8283 | 8.76 | 6100 | 4.8363 | 1.0 | | 4.8231 | 8.91 | 6200 | 4.8345 | 1.0 | | 4.8191 | 9.05 | 6300 | 4.8327 | 1.0 | | 4.8144 | 9.2 | 6400 | 4.8299 | 1.0 | | 4.8206 | 9.34 | 6500 | 4.8281 | 1.0 | | 4.822 | 9.48 | 6600 | 4.8329 | 1.0 | | 4.8228 | 9.63 | 6700 | 4.8309 | 1.0 | | 4.8239 | 9.77 | 6800 | 4.8348 | 1.0 | | 4.8245 | 9.91 | 6900 | 4.8309 | 1.0 | | 4.8173 | 10.06 | 7000 | 4.8303 | 1.0 | | 4.8188 | 10.2 | 7100 | 4.8335 | 1.0 | | 4.8208 | 10.34 | 7200 | 4.8290 | 1.0 | | 4.8228 | 10.49 | 7300 | 4.8316 | 1.0 | | 4.8226 | 10.63 | 7400 | 4.8272 | 1.0 | | 4.824 | 10.78 | 7500 | 4.8309 | 1.0 | | 4.8175 | 10.92 | 7600 | 4.8317 | 1.0 | | 4.8234 | 11.06 | 7700 | 4.8271 | 1.0 | | 4.8188 | 11.21 | 7800 | 4.8291 | 1.0 | | 4.8182 | 11.35 | 7900 | 4.8340 | 1.0 | | 4.8224 | 11.49 | 8000 | 4.8309 | 1.0 | | 4.8207 | 11.64 | 8100 | 4.8308 | 1.0 | | 4.8207 | 11.78 | 8200 | 4.8301 | 1.0 | | 4.822 | 11.93 | 8300 | 4.8281 | 1.0 | | 4.8199 | 12.07 | 8400 | 4.8301 | 1.0 | | 4.8198 | 12.21 | 8500 | 4.8337 | 1.0 | | 4.8212 | 12.36 | 8600 | 4.8310 | 1.0 | | 4.8211 | 12.5 | 8700 | 4.8304 | 1.0 | | 4.8226 | 12.64 | 8800 | 4.8303 | 1.0 | | 4.8224 | 12.79 | 8900 | 4.8312 | 1.0 | | 4.8146 | 12.93 | 9000 | 4.8362 | 1.0 | | 4.8173 | 13.07 | 9100 | 4.8321 | 1.0 | | 4.816 | 13.22 | 9200 | 4.8347 | 1.0 | | 4.8219 | 13.36 | 9300 | 4.8377 | 1.0 | | 4.8251 | 13.51 | 9400 | 4.8403 | 1.0 | | 4.8173 | 13.65 | 9500 | 4.8387 | 1.0 | | 4.8226 | 13.79 | 9600 | 4.8375 | 1.0 | | 4.8137 | 13.94 | 9700 | 4.8364 | 1.0 | | 4.819 | 14.08 | 9800 | 4.8323 | 1.0 | | 4.8258 | 14.22 | 9900 | 4.8329 | 1.0 | | 4.8097 | 14.37 | 10000 | 4.8293 | 1.0 | | 4.8247 | 14.51 | 10100 | 4.8311 | 1.0 | | 4.8197 | 14.66 | 10200 | 4.8306 | 1.0 | | 4.8201 | 14.8 | 10300 | 4.8308 | 1.0 | | 4.8158 | 14.94 | 10400 | 4.8319 | 1.0 | | 4.818 | 15.09 | 10500 | 4.8306 | 1.0 | | 4.8216 | 15.23 | 10600 | 4.8343 | 1.0 | | 4.8096 | 15.37 | 10700 | 4.8326 | 1.0 | | 4.8248 | 15.52 | 10800 | 4.8323 | 1.0 | | 4.8178 | 15.66 | 10900 | 4.8358 | 1.0 | | 4.8191 | 15.8 | 11000 | 4.8338 | 1.0 | | 4.8248 | 15.95 | 11100 | 4.8359 | 1.0 | | 4.8095 | 16.09 | 11200 | 4.8392 | 1.0 | | 4.8196 | 16.24 | 11300 | 4.8374 | 1.0 | | 4.827 | 16.38 | 11400 | 4.8346 | 1.0 | | 4.8165 | 16.52 | 11500 | 4.8365 | 1.0 | | 4.8206 | 16.67 | 11600 | 4.8344 | 1.0 | | 4.8169 | 16.81 | 11700 | 4.8344 | 1.0 | | 4.8164 | 16.95 | 11800 | 4.8390 | 1.0 | | 4.8159 | 17.1 | 11900 | 4.8367 | 1.0 | | 4.8202 | 17.24 | 12000 | 4.8375 | 1.0 | | 4.8156 | 17.39 | 12100 | 4.8362 | 1.0 | | 4.8174 | 17.53 | 12200 | 4.8410 | 1.0 | | 4.8188 | 17.67 | 12300 | 4.8323 | 1.0 | | 4.8167 | 17.82 | 12400 | 4.8319 | 1.0 | | 4.8229 | 17.96 | 12500 | 4.8347 | 1.0 | | 4.8179 | 18.1 | 12600 | 4.8320 | 1.0 | | 4.8182 | 18.25 | 12700 | 4.8384 | 1.0 | | 4.8151 | 18.39 | 12800 | 4.8374 | 1.0 | | 4.8212 | 18.53 | 12900 | 4.8346 | 1.0 | | 4.8241 | 18.68 | 13000 | 4.8344 | 1.0 | | 4.8184 | 18.82 | 13100 | 4.8352 | 1.0 | | 4.8174 | 18.97 | 13200 | 4.8357 | 1.0 | | 4.8092 | 19.11 | 13300 | 4.8332 | 1.0 | | 4.8149 | 19.25 | 13400 | 4.8347 | 1.0 | | 4.813 | 19.4 | 13500 | 4.8376 | 1.0 | | 4.8226 | 19.54 | 13600 | 4.8343 | 1.0 | | 4.8175 | 19.68 | 13700 | 4.8320 | 1.0 | | 4.8203 | 19.83 | 13800 | 4.8339 | 1.0 | | 4.8227 | 19.97 | 13900 | 4.8324 | 1.0 | | 4.8177 | 20.11 | 14000 | 4.8356 | 1.0 | | 4.824 | 20.26 | 14100 | 4.8339 | 1.0 | | 4.815 | 20.4 | 14200 | 4.8342 | 1.0 | | 4.8189 | 20.55 | 14300 | 4.8340 | 1.0 | | 4.8115 | 20.69 | 14400 | 4.8319 | 1.0 | | 4.8162 | 20.83 | 14500 | 4.8288 | 1.0 | | 4.8183 | 20.98 | 14600 | 4.8321 | 1.0 | | 4.8189 | 21.12 | 14700 | 4.8315 | 1.0 | | 4.8123 | 21.26 | 14800 | 4.8311 | 1.0 | | 4.8165 | 21.41 | 14900 | 4.8321 | 1.0 | | 4.8247 | 21.55 | 15000 | 4.8309 | 1.0 | | 4.8165 | 21.7 | 15100 | 4.8313 | 1.0 | | 4.815 | 21.84 | 15200 | 4.8354 | 1.0 | | 4.8234 | 21.98 | 15300 | 4.8300 | 1.0 | | 4.8134 | 22.13 | 15400 | 4.8284 | 1.0 | | 4.8178 | 22.27 | 15500 | 4.8298 | 1.0 | | 4.8128 | 22.41 | 15600 | 4.8309 | 1.0 | | 4.8185 | 22.56 | 15700 | 4.8291 | 1.0 | | 4.8177 | 22.7 | 15800 | 4.8288 | 1.0 | | 4.8208 | 22.84 | 15900 | 4.8306 | 1.0 | | 4.8183 | 22.99 | 16000 | 4.8277 | 1.0 | | 4.8135 | 23.13 | 16100 | 4.8286 | 1.0 | | 4.8116 | 23.28 | 16200 | 4.8275 | 1.0 | | 4.816 | 23.42 | 16300 | 4.8290 | 1.0 | | 4.8203 | 23.56 | 16400 | 4.8292 | 1.0 | | 4.8198 | 23.71 | 16500 | 4.8299 | 1.0 | | 4.8203 | 23.85 | 16600 | 4.8294 | 1.0 | | 4.8177 | 23.99 | 16700 | 4.8286 | 1.0 | | 4.8153 | 24.14 | 16800 | 4.8275 | 1.0 | | 4.8201 | 24.28 | 16900 | 4.8259 | 1.0 | | 4.8189 | 24.43 | 17000 | 4.8289 | 1.0 | | 4.8219 | 24.57 | 17100 | 4.8280 | 1.0 | | 4.8148 | 24.71 | 17200 | 4.8284 | 1.0 | | 4.8113 | 24.86 | 17300 | 4.8286 | 1.0 | | 4.8133 | 25.0 | 17400 | 4.8293 | 1.0 | | 4.8164 | 25.14 | 17500 | 4.8302 | 1.0 | | 4.8231 | 25.29 | 17600 | 4.8278 | 1.0 | | 4.8136 | 25.43 | 17700 | 4.8296 | 1.0 | | 4.8118 | 25.57 | 17800 | 4.8288 | 1.0 | | 4.8139 | 25.72 | 17900 | 4.8280 | 1.0 | | 4.8144 | 25.86 | 18000 | 4.8282 | 1.0 | | 4.8206 | 26.01 | 18100 | 4.8279 | 1.0 | | 4.8096 | 26.15 | 18200 | 4.8281 | 1.0 | | 4.8177 | 26.29 | 18300 | 4.8271 | 1.0 | | 4.8222 | 26.44 | 18400 | 4.8289 | 1.0 | | 4.8148 | 26.58 | 18500 | 4.8282 | 1.0 | | 4.8148 | 26.72 | 18600 | 4.8277 | 1.0 | | 4.819 | 26.87 | 18700 | 4.8283 | 1.0 | | 4.8138 | 27.01 | 18800 | 4.8290 | 1.0 | | 4.8094 | 27.16 | 18900 | 4.8292 | 1.0 | | 4.8236 | 27.3 | 19000 | 4.8282 | 1.0 | | 4.8208 | 27.44 | 19100 | 4.8293 | 1.0 | | 4.816 | 27.59 | 19200 | 4.8281 | 1.0 | | 4.8103 | 27.73 | 19300 | 4.8294 | 1.0 | | 4.8152 | 27.87 | 19400 | 4.8297 | 1.0 | | 4.8158 | 28.02 | 19500 | 4.8305 | 1.0 | | 4.8121 | 28.16 | 19600 | 4.8294 | 1.0 | | 4.8199 | 28.3 | 19700 | 4.8292 | 1.0 | | 4.8185 | 28.45 | 19800 | 4.8288 | 1.0 | | 4.8199 | 28.59 | 19900 | 4.8288 | 1.0 | | 4.8102 | 28.74 | 20000 | 4.8292 | 1.0 | | 4.8168 | 28.88 | 20100 | 4.8291 | 1.0 | | 4.8117 | 29.02 | 20200 | 4.8304 | 1.0 | | 4.8156 | 29.17 | 20300 | 4.8295 | 1.0 | | 4.8126 | 29.31 | 20400 | 4.8296 | 1.0 | | 4.8193 | 29.45 | 20500 | 4.8302 | 1.0 | | 4.8175 | 29.6 | 20600 | 4.8301 | 1.0 | | 4.8167 | 29.74 | 20700 | 4.8301 | 1.0 | | 4.8137 | 29.89 | 20800 | 4.8302 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.0.0 - Tokenizers 0.13.2
Arkadiusz/Test-model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - safetensors inference: false --- Dreambooth model for Klonoa from the videogame series of the same name. Trained for a bro, because none of the models can actually Klonoa. 814 pictures, 10k steps Prompt is klonoa Includes an additional hypernetwork trained ages ago which might help or might not. I claim no ownership over this, all rights belong to their respective owners. I also don't claim any responsibility or maintenance of the model, it is what it is. ![00007-50718731-klonoa.png](https://s3.amazonaws.com/moonup/production/uploads/1668396684469-63716cac15aafbe231371caa.png) ![00052-1399543699-retro artstyle, {{masterpiece)),best quality,illustration, klonoa, beautiful detailed eyes,long sleeves, hoodie,frills, no shado.png](https://s3.amazonaws.com/moonup/production/uploads/1668396694067-63716cac15aafbe231371caa.png) ![00049-1296967695-retro artstyle, {{masterpiece)),best quality,illustration, klonoa, beautiful detailed eyes,long sleeves, hoodie,frills, no shado.png](https://s3.amazonaws.com/moonup/production/uploads/1668396701520-63716cac15aafbe231371caa.png) ![00010-2362570806-SFW, klonoa, solo focus, Masterpiece, best quality, (style of scifi_1.3), from side, looking at viewer, mature female, old, medi.png](https://s3.amazonaws.com/moonup/production/uploads/1668396763957-63716cac15aafbe231371caa.png) ![00002-1965272831-klonoa.png](https://s3.amazonaws.com/moonup/production/uploads/1668396777419-63716cac15aafbe231371caa.png) Can do Klonoa cosplay too apparently ![00026-1081752272-SFW, klonoa, solo focus, (style of essence theme_1.3), (style of machine_1.3), (style of space_1.2), (style of android_1.1), fro.png](https://s3.amazonaws.com/moonup/production/uploads/1668396730691-63716cac15aafbe231371caa.png)
Arnold/wav2vec2-hausa-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-large-unlabeled-gab-semeval2023-task10-45000sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-unlabeled-gab-semeval2023-task10-45000sample This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1552 | 1.0 | 1407 | 1.9502 | | 1.9918 | 2.0 | 2814 | 1.8859 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.10.3
ArpanZS/search_model
[ "joblib" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 --- README **U**niversal **I**nformation **E**xtraction for Medical NER Model detail: https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie
Atiqah/Atiqah
[ "license:artistic-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - zh tags: - bert license: "apache-2.0" --- # Please use 'Bert' related functions to load this model! ## Chinese small pre-trained model MiniRBT In order to further promote the research and development of Chinese information processing, we launched a Chinese small pre-training model MiniRBT based on the self-developed knowledge distillation tool TextBrewer, combined with Whole Word Masking technology and Knowledge Distillation technology. This repository is developed based on:https://github.com/iflytek/MiniRBT You may also interested in, - Chinese LERT: https://github.com/ymcui/LERT - Chinese PERT: https://github.com/ymcui/PERT - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/iflytek/HFL-Anthology
Augustvember/WokkaBot2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: vikram15/t5-small-finetuned-newsSummary results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vikram15/t5-small-finetuned-newsSummary This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0476 - Validation Loss: 1.7854 - Train Rouge1: 47.4977 - Train Rouge2: 24.4278 - Train Rougel: 42.2516 - Train Rougelsum: 42.4756 - Train Gen Len: 16.305 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.0476 | 1.7854 | 47.4977 | 24.4278 | 42.2516 | 42.4756 | 16.305 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
Augustvember/wokka5
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: ChiefTheLord/codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ChiefTheLord/codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.7143 - Validation Loss: 2.2348 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1378398, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.7143 | 2.2348 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
Augustvember/wokkabottest2
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-finetuned-idl-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-idl-new This model is a fine-tuned version of [rohitsan/bart-finetuned-idl-new](https://huggingface.co/rohitsan/bart-finetuned-idl-new) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2981 - eval_bleu: 18.5188 - eval_gen_len: 19.3843 - eval_runtime: 257.315 - eval_samples_per_second: 24.464 - eval_steps_per_second: 3.059 - epoch: 8.0 - step: 56648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Ayham/albert_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9825925925925926 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0454 - Accuracy: 0.9826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2137 | 1.0 | 190 | 0.0981 | 0.9681 | | 0.1487 | 2.0 | 380 | 0.0517 | 0.9830 | | 0.1398 | 3.0 | 570 | 0.0454 | 0.9826 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Azaghast/DistilBERT-SCP-Class-Classification
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42
2022-11-14T13:04:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: test-sentiment-model-imdb-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8618421052631579 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-sentiment-model-imdb-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3296 - Accuracy: 0.86 - F1: 0.8618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.14.0.dev20221113 - Datasets 2.6.1 - Tokenizers 0.13.2
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition
[ "pytorch", "wav2vec2", "audio-classification", "ja", "dataset:jtes", "transformers", "audio", "speech", "speech-emotion-recognition", "has_space" ]
audio-classification
{ "architectures": [ "HubertForSequenceClassification" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: RoniXZONE/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RoniXZONE/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9645 - Train End Logits Accuracy: 0.7308 - Train Start Logits Accuracy: 0.6936 - Validation Loss: 1.1246 - Validation End Logits Accuracy: 0.7006 - Validation Start Logits Accuracy: 0.6612 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.5015 | 0.6068 | 0.5715 | 1.1471 | 0.6864 | 0.6508 | 0 | | 0.9645 | 0.7308 | 0.6936 | 1.1246 | 0.7006 | 0.6612 | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
Bakkes/BakkesModWiki
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - token-classification language: - pt widget: - text: "I love AutoTrain 🤗" datasets: - famube/autotrain-data-documentos-oficiais co2_eq_emissions: emissions: 6.461431564881563 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 2092367351 - CO2 Emissions (in grams): 6.4614 ## Validation Metrics - Loss: 0.059 - Accuracy: 0.986 - Precision: 0.000 - Recall: 0.000 - F1: 0.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/famube/autotrain-documentos-oficiais-2092367351 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("famube/autotrain-documentos-oficiais-2092367351", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("famube/autotrain-documentos-oficiais-2092367351", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```