modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
CoveJH/ConBot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-16T16:44:10Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - huggingface/autotrain-data-test-c3f6d546 co2_eq_emissions: emissions: 3.2336342717362028 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 15006429 - CO2 Emissions (in grams): 3.2336 ## Validation Metrics - Loss: 0.225 - Accuracy: 0.925 - Precision: 0.906 - Recall: 0.950 - AUC: 0.987 - F1: 0.928 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/huggingface/autotrain-test-15006429 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("huggingface/autotrain-test-15006429", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("huggingface/autotrain-test-15006429", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Coverage/sakurajimamai
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - huggingface/autotrain-data-test-c3f6d546 co2_eq_emissions: emissions: 4.333089828360494 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 15006428 - CO2 Emissions (in grams): 4.3331 ## Validation Metrics - Loss: 0.116 - Accuracy: 0.970 - Precision: 0.961 - Recall: 0.980 - AUC: 0.995 - F1: 0.971 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/huggingface/autotrain-test-15006428 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("huggingface/autotrain-test-15006428", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("huggingface/autotrain-test-15006428", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Coyotl/DialoGPT-test-last-arthurmorgan
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-16T16:44:13Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - huggingface/autotrain-data-test-c3f6d546 co2_eq_emissions: emissions: 2.921599839224388 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 15006430 - CO2 Emissions (in grams): 2.9216 ## Validation Metrics - Loss: 0.184 - Accuracy: 0.935 - Precision: 0.958 - Recall: 0.911 - AUC: 0.983 - F1: 0.934 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/huggingface/autotrain-test-15006430 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("huggingface/autotrain-test-15006430", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("huggingface/autotrain-test-15006430", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Coyotl/DialoGPT-test2-arthurmorgan
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - huggingface/autotrain-data-test-c3f6d546 co2_eq_emissions: emissions: 4.951487198912758 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 15006431 - CO2 Emissions (in grams): 4.9515 ## Validation Metrics - Loss: 0.212 - Accuracy: 0.925 - Precision: 0.939 - Recall: 0.911 - AUC: 0.989 - F1: 0.925 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/huggingface/autotrain-test-15006431 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("huggingface/autotrain-test-15006431", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("huggingface/autotrain-test-15006431", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Coyotl/DialoGPT-test3-arthurmorgan
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-16T16:45:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Shivraj8615/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Craak/GJ0001
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: me --- ### training params ```json { "pretrained_model_name_or_path": "runwayml/stable-diffusion-v1-5", "instance_data_dir": "./b3d0ef12-11d6-43df-8a96-ebcb5ca71ea1/instance_data", "class_data_dir": "./class_data/person", "output_dir": "./b3d0ef12-11d6-43df-8a96-ebcb5ca71ea1/", "train_text_encoder": true, "with_prior_preservation": true, "prior_loss_weight": 1.0, "instance_prompt": "me", "class_prompt": "person", "resolution": 512, "train_batch_size": 1, "gradient_accumulation_steps": 1, "gradient_checkpointing": true, "use_8bit_adam": true, "learning_rate": 1e-06, "lr_scheduler": "polynomial", "lr_warmup_steps": 0, "num_class_images": 500, "max_train_steps": 1050, "mixed_precision": "fp16" } ```
CracklesCreeper/Piglin-Talks-Harry-Potter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: - or license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Odia results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 or type: mozilla-foundation/common_voice_11_0 config: or split: test args: or metrics: - name: Wer type: wer value: 29.196050775740478 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Odia This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 or dataset. It achieves the following results on the evaluation set: - Loss: 0.9507 - Wer: 29.1961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0009 | 99.0 | 1000 | 0.5994 | 29.3371 | | 0.0001 | 199.0 | 2000 | 0.8873 | 29.6756 | | 0.0 | 299.0 | 3000 | 0.9507 | 29.1961 | | 0.0 | 399.0 | 4000 | 0.9804 | 29.3089 | | 0.0 | 499.0 | 5000 | 0.9997 | 29.3089 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Crisblair/Wkwk
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.35 +/- 19.79 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Crives/distilbert-base-uncased-finetuned-emotion
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="HayLahav/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Cryptikdw/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sd-tzvc --- ### training params ```json { "pretrained_model_name_or_path": "multimodalart/sd-fine-tunable", "instance_data_dir": "./944a6d92-22b9-4d3a-bba4-4a6a10284396/instance_data", "class_data_dir": "./class_data/person", "output_dir": "./944a6d92-22b9-4d3a-bba4-4a6a10284396/", "train_text_encoder": true, "with_prior_preservation": false, "prior_loss_weight": 1.0, "instance_prompt": "sd-tzvc", "class_prompt": "person", "resolution": 512, "train_batch_size": 1, "gradient_accumulation_steps": 1, "gradient_checkpointing": true, "use_8bit_adam": true, "learning_rate": 1e-06, "lr_scheduler": "polynomial", "lr_warmup_steps": 0, "num_class_images": 500, "max_train_steps": 1050, "mixed_precision": "fp16" } ```
Crystal/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 247.32 +/- 21.64 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Cthyllax/DialoGPT-medium-PaladinDanse
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="zyoscovits/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Culmenus/IceBERT-finetuned-ner
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: twitter-sentiment-analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-sentiment-analysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3724 - Accuracy: 0.8660 - F1: 0.8652 - Precision: 0.8712 - Recall: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
Culmenus/XLMR-ENIS-finetuned-ner
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.85 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="zyoscovits/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Culmenus/opus-mt-de-is-finetuned-de-to-is_35g65cc_1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - vision - image-classification datasets: - sasha/autotrain-data-sea-slug-similarity widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 13.759124872304856 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2498977005 - CO2 Emissions (in grams): 13.7591 ## Validation Metrics - Loss: 0.757 - Accuracy: 0.837 - Macro F1: 0.778 - Micro F1: 0.837 - Weighted F1: 0.816 - Macro Precision: 0.787 - Micro Precision: 0.837 - Weighted Precision: 0.825 - Macro Recall: 0.796 - Micro Recall: 0.837 - Weighted Recall: 0.837
Culmenus/opus-mt-de-is-finetuned-de-to-is_35g65cc_2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-large-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0925 - Wer: 41.4086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.5216 | 1.04 | 1000 | 0.7054 | 58.7611 | | 0.0872 | 3.02 | 2000 | 0.7803 | 60.1400 | | 0.1073 | 4.06 | 3000 | 0.8312 | 61.0522 | | 0.0617 | 6.04 | 4000 | 0.8583 | 48.2181 | | 0.0053 | 8.02 | 5000 | 0.9135 | 41.8328 | | 0.0049 | 9.06 | 6000 | 0.9697 | 43.3814 | | 0.0044 | 11.04 | 7000 | 0.9863 | 41.9813 | | 0.0006 | 13.02 | 8000 | 1.0359 | 42.7662 | | 0.0019 | 14.06 | 9000 | 1.0714 | 41.3449 | | 0.0007 | 16.04 | 10000 | 1.0925 | 41.4086 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Culmenus/opus-mt-de-is-finetuned-de-to-is_ancc
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" - inference : true datasets: - sabhashanki/autotrain-data-micro-dataset-text-classification co2_eq_emissions: emissions: 2.843258817349137 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2499077017 - CO2 Emissions (in grams): 2.8433 ## Validation Metrics - Loss: 0.366 - Accuracy: 0.901 - Macro F1: 0.897 - Micro F1: 0.901 - Weighted F1: 0.901 - Macro Precision: 0.914 - Micro Precision: 0.901 - Weighted Precision: 0.907 - Macro Recall: 0.888 - Micro Recall: 0.901 - Weighted Recall: 0.901 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/sabhashanki/autotrain-micro-dataset-text-classification-2499077017 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("sabhashanki/autotrain-micro-dataset-text-classification-2499077017", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("sabhashanki/autotrain-micro-dataset-text-classification-2499077017", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Culmenus/opus-mt-de-is-finetuned-de-to-is_ekkicc
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="zyoscovits/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CurtisBowser/DialoGPT-medium-sora-three
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sd-tzvc --- ### training params ```json { "pretrained_model_name_or_path": "multimodalart/sd-fine-tunable", "instance_data_dir": "./3647bbc5-4fbe-4a94-95ec-5aec23a04e73/instance_data", "class_data_dir": "./class_data/person", "output_dir": "./3647bbc5-4fbe-4a94-95ec-5aec23a04e73/", "train_text_encoder": true, "with_prior_preservation": false, "prior_loss_weight": 1.0, "instance_prompt": "sd-tzvc", "class_prompt": "person", "resolution": 512, "train_batch_size": 1, "gradient_accumulation_steps": 1, "gradient_checkpointing": true, "use_8bit_adam": true, "learning_rate": 2e-06, "lr_scheduler": "polynomial", "lr_warmup_steps": 0, "num_class_images": 500, "max_train_steps": 1050, "mixed_precision": "fp16" } ```
CyberMuffin/DialoGPT-small-ChandlerBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 241.24 +/- 23.45 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Czapla/Rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### fangyuan Dreambooth model trained by yuanzheng with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/yuanzheng/fangyuan/resolve/main/sample_images/00017-1451197482-A_full_portrait_of_fangyuan,_intricate,_elegant,_highly_detailed,_digital_painting,_artstation,_concept_art,_smooth,_sharp_focus.png) ![1](https://huggingface.co/yuanzheng/fangyuan/resolve/main/sample_images/00031-4034654050-A_full_portrait_of_fangyuan,_hayao_miyazaki_style,_totoro_movie,_intricate,_elegant,_highly_detailed,_digital_painting,_artstati.png) ![2](https://huggingface.co/yuanzheng/fangyuan/resolve/main/sample_images/00018-2581892790-A_full_portrait_of_fangyuan,_intricate,_elegant,_highly_detailed,_digital_painting,_artstation,_concept_art,_smooth,_sharp_focus.png)
D3vil/DialoGPT-smaall-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
D3vil/DialoGPT-smaall-harrypottery
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-16T18:37:50Z
--- license: creativeml-openrail-m --- KerasCV's SD 2.1 weights were ported by user Jobayer and are mirrored here. See https://huggingface.co/Jobayer/stable_diffusion_v2/tree/main
D3xter1922/electra-base-discriminator-finetuned-mnli
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 metrics: - type: mean_reward value: -128.30 +/- 24.10 name: mean_reward verified: false --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
D4RL1NG/yes
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: rlanday/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DCU-NLP/electra-base-irish-cased-discriminator-v1
[ "pytorch", "electra", "pretraining", "ga", "transformers", "irish", "license:apache-2.0" ]
null
{ "architectures": [ "ElectraForPreTraining" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2022-12-16T18:55:41Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('dmarcos/sd-class-butterflies-32') image = pipeline().images[0] image ```
DCU-NLP/electra-base-irish-cased-generator-v1
[ "pytorch", "electra", "fill-mask", "ga", "transformers", "irish", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "ElectraForMaskedLM" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="letfd/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DHBaek/gpt2-stackoverflow-question-contents-generator
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: wonderful_morse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wonderful_morse This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 25000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00078, 'is_split_by_sentences': True, 'skip_tokens': 1661599744}, 'generation': {'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '81a1701e025d2c65ae6e8c2103df559071523ee0'}, 'path_or_name': 'tomekkorbak/goofy_pasteur'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'wonderful_morse', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1661599744, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/2dxkg0m7
DHBaek/xlm-roberta-large-korquad-mask
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "XLMRobertaForQuestionAnswering" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2-test-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2-test-mlm This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
DJSammy/bert-base-danish-uncased_BotXO-ai
[ "pytorch", "jax", "da", "dataset:common_crawl", "dataset:wikipedia", "transformers", "bert", "masked-lm", "license:cc-by-4.0", "fill-mask" ]
fill-mask
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-default-solution results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="letfd/taxi-v3-default-solution", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DJStomp/TestingSalvoNET
[ "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- language: - el license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large V2 Farsipal and El Greco results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 el type: mozilla-foundation/common_voice_11_0 config: el split: test args: el metrics: - name: Wer type: wer value: 9.110326894502228 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V2 Farsipal and El Greco This model is a fine-tuned version of [emilios/whisper-lg-v2-parsifal-el-0](https://huggingface.co/emilios/whisper-lg-v2-parsifal-el-0) on the mozilla-foundation/common_voice_11_0 el dataset. It achieves the following results on the evaluation set: - Loss: 0.2866 - Wer: 9.1103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0281 | 9.35 | 1000 | 0.2515 | 9.5561 | | 0.0131 | 18.69 | 2000 | 0.2866 | 9.1103 | | 0.0069 | 28.04 | 3000 | 0.3118 | 9.2403 | | 0.004 | 37.38 | 4000 | 0.3279 | 9.3796 | | 0.0025 | 46.73 | 5000 | 0.3464 | 9.3146 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 2.0.0.dev20221216+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
DKpro000/DialoGPT-medium-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: sleepy_pike results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sleepy_pike This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.000286, 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '9e6c78543a6ff1e4089002c38864d5a9cf71ec90'}, 'path_or_name': 'tomekkorbak/nervous_wozniak'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'sleepy_pike', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/gpfaqzl4
DKpro000/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: roberta-base-finetuned-swag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-swag This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.5161 - Accuracy: 0.8266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - total_eval_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1273 | 1.0 | 2298 | 0.5415 | 0.7898 | | 0.2373 | 2.0 | 4596 | 0.4756 | 0.8175 | | 0.1788 | 3.0 | 6894 | 0.5161 | 0.8266 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
DSI/ar_emotion_6
[ "pytorch", "bert", "transformers" ]
null
{ "architectures": [ "BertForMultiLabelSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2022-12-16T19:30:16Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.56 +/- 0.50 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="letfd/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support
[ "pytorch", "jax", "bert", "text-classification", "multilingual", "nl", "fr", "en", "arxiv:2104.09947", "transformers", "Tweets", "Sentiment analysis" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 293.61 +/- 20.43 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DTAI-KULeuven/mbert-corona-tweets-belgium-topics
[ "pytorch", "jax", "bert", "text-classification", "multilingual", "nl", "fr", "en", "arxiv:2104.09947", "transformers", "Dutch", "French", "English", "Tweets", "Topic classification" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
167
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.12 +/- 71.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DTAI-KULeuven/robbertje-1-gb-bort
[ "pytorch", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:oscar (NL)", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
Access to model Almnis/EB is restricted and you are not in the authorized list. Visit https://huggingface.co/Almnis/EB to ask for access.
DTAI-KULeuven/robbertje-1-gb-non-shuffled
[ "pytorch", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
53
null
--- language: - nsy --- A Nasal Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Nasal speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
alexandrainst/da-binary-emotion-classification-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,066
2022-12-16T20:07:33Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sdcid --- ### training params ```json { "pretrained_model_name_or_path": "multimodalart/sd-fine-tunable", "instance_data_dir": "./c3739a6f-43ec-4229-a926-9b5eecc089cc/instance_data", "class_data_dir": "./class_data/class", "output_dir": "./c3739a6f-43ec-4229-a926-9b5eecc089cc/", "train_text_encoder": true, "with_prior_preservation": true, "prior_loss_weight": 1.0, "instance_prompt": "sdcid", "class_prompt": "", "resolution": 512, "train_batch_size": 1, "gradient_accumulation_steps": 1, "gradient_checkpointing": true, "use_8bit_adam": true, "learning_rate": 2e-06, "lr_scheduler": "polynomial", "lr_warmup_steps": 0, "num_class_images": 200, "max_train_steps": 1050, "mixed_precision": "fp16" } ```
alexandrainst/da-emotion-classification-base
[ "pytorch", "tf", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
837
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="numan966/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
alexandrainst/da-hatespeech-detection-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,719
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Michunie/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
alexandrainst/da-sentiment-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "arxiv:1910.09700", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,432
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4429 - Wer: 52.7568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3629 | 1.03 | 1000 | 0.4917 | 53.1291 | | 0.289 | 2.06 | 2000 | 0.4747 | 61.3855 | | 0.2996 | 3.08 | 3000 | 0.4542 | 55.4692 | | 0.2331 | 4.11 | 4000 | 0.4353 | 51.4917 | | 0.1566 | 5.14 | 5000 | 0.4429 | 52.7568 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
alexandrainst/da-subjectivivity-classification-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "dataset:DDSC/twitter-sent", "dataset:DDSC/europarl", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
846
null
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 metrics: - type: mean_reward value: -59.15 +/- 14.45 name: mean_reward verified: false --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
alexandrainst/da-hatespeech-detection-small
[ "pytorch", "electra", "text-classification", "da", "transformers", "license:cc-by-4.0" ]
text-classification
{ "architectures": [ "ElectraForSequenceClassification" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,506
null
---#!pip install diffusers transformers scipy torch from diffusers import StableDiffusionPipeline import torch model_id = "nitrosocke/spider-verse-diffusion" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a magical princess with golden hair, spiderverse style" image = pipe(prompt).images[0] image.save("./magical_princess.png") license: openrail ---
alexandrainst/da-ned-base
[ "pytorch", "tf", "xlm-roberta", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- language: - nsy --- A Nasal Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Nasal speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
DaWang/demo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="numan966/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Dablio/Dablio
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-16T20:26:56Z
--- language: en thumbnail: http://www.huggingtweets.com/pinkopatriot/1671296225479/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1601873282088652800/WFS6pTVR_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Pinko Patriot 💕</div> <div style="text-align: center; font-size: 14px;">@pinkopatriot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Pinko Patriot 💕. | Data | The Pinko Patriot 💕 | | --- | --- | | Tweets downloaded | 3221 | | Retweets | 866 | | Short tweets | 530 | | Tweets kept | 1825 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ahxv9pk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pinkopatriot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lsemdfyt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lsemdfyt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pinkopatriot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Daiki/scibert_scivocab_uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Fast-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Michunie/Fast-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DaisyMak/bert-finetuned-squad-accelerate-10epoch_transformerfrozen
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,907
null
--- language: - ca license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny Cat results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ca split: test args: ca metrics: - name: Wer type: wer value: 41.10036241189396 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Cat This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6769 - Wer: 41.1004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5315 | 1.0 | 1000 | 0.6769 | 41.1004 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
DaisyMak/bert-finetuned-squad-transformerfrozen-testtoken
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-12-16T20:31:26Z
--- language: - nsy --- A Nasal Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Nasal speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
Daivakai/DialoGPT-small-saitama
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: mit widget: - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: playing music, playing sports example_title: Cat & Dog duplicated_from: laion/CLIP-ViT-L-14-laion2B-s32B-b82K --- # Model Card for CLIP ViT-L/14 - LAION-2B # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Details](#training-details) 4. [Evaluation](#evaluation) 5. [Acknowledgements](#acknowledgements) 6. [Citation](#citation) 7. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description A CLIP ViT L/14 model trained with the LAION-2B English subset of LAION-5B (https://laion.ai/blog/laion-5b/) using OpenCLIP (https://github.com/mlfoundations/open_clip). Model training ('babysitting') done by Ross Wightman on the [JUWELS Booster](https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html) supercomputer. See acknowledgements below. # Uses As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model. The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset. ## Direct Use Zero-shot image classification, image and text retrieval, among others. ## Downstream Use Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others. ## Out-of-Scope Use As per the OpenAI models, **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful. Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use. Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases. Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below. # Training Details ## Training Data This model was trained with the 2 Billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/). **IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress. ## Training Procedure The model was trained on 384 A100 GPUs using 200M sample 'virtual' epochs where dataset shards were sampled with replacement. The model was trained with 160 virtual epochs for a total of 32B samples seen. The first 68 epochs were trained with float16 AMP, global batch size 79K (208 per GPU). Initially running to epoch 75, where the loss spiked and training failed with NaN. Romain Beaumont was training H/14 and g/14 models at the same time on Stability cluster and hit similar instabilities. Collectively we tried restarts with, * different dataset shuffle seed * different LR * gradient clipping * modifications to the architecture * Norm modifications (stable norm for final, post embed norm for text transformer) as per https://github.com/mlfoundations/open_clip/pull/153 thanks to Phil Wang * Extra attention block norms ala Normformer (https://arxiv.org/abs/2110.09456) * Scaled cosine attention ala Swin-V2 (https://arxiv.org/abs/2111.09883) None of the above ended up working. Most blew up within the same epoch as original, with the exception of architecture mods. * Normformer mods signifcantly altered the network such that resuming did not quickly converge to previous performance, this was abandoned but might be worth trying from start. * Scaled cosine attn initially looked promising and lasted until epoch 90 before loss suddenly increased and appeared to remain 'stuck'. In the end, restarting at epoch 69 with `float32` precision solved all instabilities and training continued from there with global batch size 86k (224 per GPU). On A100 GPUs, `float32` had a minimal impact on the throughput once `tf32` matmuls were enabled in PyTorch. Approximately 10% slower than `float16 AMP`. Romain similary changed the precision but ended up using `bfloat16 AMP` to resolve issues. ### Slum Script ``` #SBATCH --nodes=96 #SBATCH --gres=gpu:4 #SBATCH --ntasks-per-node=4 #SBATCH --cpus-per-task=6 #SBATCH --wait-all-nodes=1 #SBATCH --job-name=open_clip_laion2b # load low-level libraries ml purge source /conda/bin/activate pytorch-112 export NCCL_ASYNC_ERROR_HANDLING=1 export CUDA_VISIBLE_DEVICES=0,1,2,3 export MASTER_PORT=12802 ### get the first node name as master address - customized for vgg slurm ### e.g. master(gnodee[2-5],gnoded1) == gnodee2 echo "NODELIST="${SLURM_NODELIST} master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) export MASTER_ADDR=$master_addr"i" echo "MASTER_ADDR="$MASTER_ADDR cd /home/me/open_clip export PYTHONPATH="$PYTHONPATH:$PWD/src" srun --cpu_bind=none,v --accel-bind=gn python -u src/training/main.py \ --save-frequency 1 \ --zeroshot-frequency 1 \ --train-data="/data/laion2B-en/{00000..23295}.tar" \ --train-num-samples=200000000 \ --warmup 10000 \ --lr "1e-3" \ --batch-size=224 \ --epochs=160 \ --workers=6 \ --model ViT-L-14 \ --name "L14-laion2B" \ --report-to "tensorboard" \ --seed 0 \ --precision 'fp32' \ --ddp-static-graph \ --local-loss \ --dataset-resampled \ --gather-with-grad \ --grad-checkpointing ``` # Evaluation Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark). ## Testing Data, Factors & Metrics ### Testing Data The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval. **TODO** - more detail ## Results The model achieves a 75.3 zero-shot top-1 accuracy on ImageNet-1k. An initial round of benchmarks have been performed on a wider range of datasets, currently viewable at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb **TODO** - create table for just this model's metrics. # Acknowledgements Acknowledging the Gauss Centre for Supercomputing e.V. (http://gauss-centre.eu) for funding this part of work by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS Booster at Jülich Supercomputing Centre (JSC). # Citation **BibTeX:** In addition to forthcoming LAION-5B (https://laion.ai/blog/laion-5b/) paper, please cite: OpenAI CLIP paper ``` @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` OpenCLIP software ``` @software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} } ``` # How to Get Started with the Model Use the code below to get started with the model. ** TODO ** - Hugging Face transformers, OpenCLIP, and timm getting started snippets
Daltcamalea01/Camaleaodalt
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('stp4007/sd-class-butterflies-32') image = pipeline().images[0] image ```
DanBot/TCRsynth
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - winograd_wsc metrics: - rouge model-index: - name: flan-t5-small-coref results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: winograd_wsc type: winograd_wsc config: wsc285 split: test args: wsc285 metrics: - name: Rouge1 type: rouge value: 0.906 widget: - text: "Sam has a Parker pen. He loves writing with it." example_title: "Example 1" - text: "Coronavirus quickly spread worldwide in 2020. The virus mostly affects elderly people. They can easily catch it." example_title: "Example 2" - text: "First, the manager evaluates the candidates. Afterwards, he notifies the candidates regarding the evaluation." example_title: "Example 3" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-small-coref This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the winograd_wsc dataset. The model was trained on the task of coreference resolution. It achieves the following results on the evaluation set: - Loss: 0.5656 - Rouge1: 0.906 - Rouge2: 0.8192 - Rougel: 0.9016 - Rougelsum: 0.9026 - Gen Len: 23.1724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 16 | 1.0901 | 0.6849 | 0.561 | 0.6734 | 0.6746 | 18.4483 | | No log | 2.0 | 32 | 0.9083 | 0.8512 | 0.7509 | 0.8438 | 0.8437 | 21.1379 | | No log | 3.0 | 48 | 0.8132 | 0.8638 | 0.7728 | 0.8588 | 0.8595 | 21.8276 | | No log | 4.0 | 64 | 0.7590 | 0.8786 | 0.7842 | 0.8744 | 0.876 | 22.2069 | | No log | 5.0 | 80 | 0.7225 | 0.8846 | 0.7928 | 0.8805 | 0.8817 | 22.3793 | | No log | 6.0 | 96 | 0.6920 | 0.886 | 0.7942 | 0.8821 | 0.8827 | 22.4483 | | No log | 7.0 | 112 | 0.6660 | 0.8861 | 0.7922 | 0.8816 | 0.8827 | 22.5172 | | No log | 8.0 | 128 | 0.6470 | 0.8879 | 0.7953 | 0.8836 | 0.8849 | 22.6897 | | No log | 9.0 | 144 | 0.6318 | 0.8968 | 0.806 | 0.8923 | 0.8933 | 23.069 | | No log | 10.0 | 160 | 0.6160 | 0.8968 | 0.806 | 0.8923 | 0.8933 | 23.069 | | No log | 11.0 | 176 | 0.6055 | 0.9056 | 0.822 | 0.9014 | 0.9021 | 23.1724 | | No log | 12.0 | 192 | 0.5962 | 0.9056 | 0.822 | 0.9014 | 0.9021 | 23.1724 | | No log | 13.0 | 208 | 0.5884 | 0.9074 | 0.8246 | 0.9033 | 0.9042 | 23.2069 | | No log | 14.0 | 224 | 0.5825 | 0.9049 | 0.8182 | 0.9005 | 0.9016 | 23.2414 | | No log | 15.0 | 240 | 0.5769 | 0.9049 | 0.8182 | 0.9005 | 0.9016 | 23.2414 | | No log | 16.0 | 256 | 0.5727 | 0.903 | 0.8132 | 0.8991 | 0.8997 | 23.1724 | | No log | 17.0 | 272 | 0.5698 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 | | No log | 18.0 | 288 | 0.5673 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 | | No log | 19.0 | 304 | 0.5661 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 | | No log | 20.0 | 320 | 0.5656 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
DanL/scientific-challenges-and-directions
[ "pytorch", "bert", "text-classification", "en", "dataset:DanL/scientific-challenges-and-directions-dataset", "arxiv:2108.13751", "transformers", "generated_from_trainer" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
134
null
Access to model barbudaniel/test is restricted and you are not in the authorized list. Visit https://huggingface.co/barbudaniel/test to ask for access.
Danbi/distilgpt2-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-16T20:51:11Z
--- tags: - generated_from_trainer datasets: - funsd model-index: - name: ananth-docai1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ananth-docai1 This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 0.7024 - Answer: {'precision': 0.7113513513513513, 'recall': 0.8133498145859085, 'f1': 0.7589388696655133, 'number': 809} - Header: {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119} - Question: {'precision': 0.7811387900355872, 'recall': 0.8244131455399061, 'f1': 0.8021927820922796, 'number': 1065} - Overall Precision: 0.7241 - Overall Recall: 0.7903 - Overall F1: 0.7558 - Overall Accuracy: 0.8106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.7944 | 1.0 | 10 | 1.6233 | {'precision': 0.01929260450160772, 'recall': 0.014833127317676144, 'f1': 0.016771488469601678, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.27685325264750377, 'recall': 0.17183098591549295, 'f1': 0.2120509849362688, 'number': 1065} | 0.1520 | 0.0978 | 0.1190 | 0.3505 | | 1.5001 | 2.0 | 20 | 1.2971 | {'precision': 0.11125, 'recall': 0.1100123609394314, 'f1': 0.11062771908017402, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4044059795436664, 'recall': 0.48262910798122066, 'f1': 0.4400684931506849, 'number': 1065} | 0.2912 | 0.3026 | 0.2968 | 0.5348 | | 1.136 | 3.0 | 30 | 0.9852 | {'precision': 0.4911699779249448, 'recall': 0.5500618046971569, 'f1': 0.5189504373177842, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6086587436332768, 'recall': 0.6732394366197183, 'f1': 0.6393223361569326, 'number': 1065} | 0.5562 | 0.5830 | 0.5693 | 0.6941 | | 0.8567 | 4.0 | 40 | 0.8143 | {'precision': 0.627744510978044, 'recall': 0.7775030902348579, 'f1': 0.6946438431805633, 'number': 809} | {'precision': 0.06666666666666667, 'recall': 0.01680672268907563, 'f1': 0.026845637583892617, 'number': 119} | {'precision': 0.6987179487179487, 'recall': 0.7164319248826291, 'f1': 0.7074640704682429, 'number': 1065} | 0.6563 | 0.6994 | 0.6772 | 0.7467 | | 0.6998 | 5.0 | 50 | 0.7133 | {'precision': 0.6534859521331946, 'recall': 0.7762669962917181, 'f1': 0.7096045197740113, 'number': 809} | {'precision': 0.2, 'recall': 0.11764705882352941, 'f1': 0.14814814814814817, 'number': 119} | {'precision': 0.7243532560214094, 'recall': 0.7624413145539906, 'f1': 0.7429094236047575, 'number': 1065} | 0.6757 | 0.7296 | 0.7016 | 0.7781 | | 0.5886 | 6.0 | 60 | 0.6775 | {'precision': 0.648406374501992, 'recall': 0.8046971569839307, 'f1': 0.7181467181467182, 'number': 809} | {'precision': 0.25806451612903225, 'recall': 0.13445378151260504, 'f1': 0.17679558011049723, 'number': 119} | {'precision': 0.712947189097104, 'recall': 0.7859154929577464, 'f1': 0.7476552032157214, 'number': 1065} | 0.6714 | 0.7546 | 0.7106 | 0.7890 | | 0.5185 | 7.0 | 70 | 0.6770 | {'precision': 0.6755888650963597, 'recall': 0.7799752781211372, 'f1': 0.7240390131956398, 'number': 809} | {'precision': 0.2079207920792079, 'recall': 0.17647058823529413, 'f1': 0.19090909090909092, 'number': 119} | {'precision': 0.7341337907375644, 'recall': 0.8037558685446009, 'f1': 0.7673688928731511, 'number': 1065} | 0.6851 | 0.7566 | 0.7191 | 0.7955 | | 0.4672 | 8.0 | 80 | 0.6729 | {'precision': 0.683083511777302, 'recall': 0.788627935723115, 'f1': 0.7320711417096959, 'number': 809} | {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119} | {'precision': 0.747431506849315, 'recall': 0.819718309859155, 'f1': 0.7819077474249888, 'number': 1065} | 0.6961 | 0.7702 | 0.7313 | 0.8007 | | 0.4188 | 9.0 | 90 | 0.6664 | {'precision': 0.6888888888888889, 'recall': 0.8046971569839307, 'f1': 0.74230330672748, 'number': 809} | {'precision': 0.2727272727272727, 'recall': 0.25210084033613445, 'f1': 0.26200873362445415, 'number': 119} | {'precision': 0.7708703374777975, 'recall': 0.8150234741784037, 'f1': 0.792332268370607, 'number': 1065} | 0.7102 | 0.7772 | 0.7422 | 0.8045 | | 0.3724 | 10.0 | 100 | 0.6845 | {'precision': 0.6928721174004193, 'recall': 0.8170580964153276, 'f1': 0.7498581962563812, 'number': 809} | {'precision': 0.33, 'recall': 0.2773109243697479, 'f1': 0.30136986301369867, 'number': 119} | {'precision': 0.7818343722172751, 'recall': 0.8244131455399061, 'f1': 0.8025594149908593, 'number': 1065} | 0.7221 | 0.7888 | 0.7540 | 0.8047 | | 0.3402 | 11.0 | 110 | 0.6830 | {'precision': 0.7118093174431203, 'recall': 0.8121137206427689, 'f1': 0.7586605080831409, 'number': 809} | {'precision': 0.3090909090909091, 'recall': 0.2857142857142857, 'f1': 0.296943231441048, 'number': 119} | {'precision': 0.787422497785651, 'recall': 0.8347417840375587, 'f1': 0.8103919781221514, 'number': 1065} | 0.7308 | 0.7928 | 0.7605 | 0.8129 | | 0.3219 | 12.0 | 120 | 0.6944 | {'precision': 0.7179203539823009, 'recall': 0.8022249690976514, 'f1': 0.7577349678925861, 'number': 809} | {'precision': 0.3220338983050847, 'recall': 0.31932773109243695, 'f1': 0.32067510548523204, 'number': 119} | {'precision': 0.781882145998241, 'recall': 0.8347417840375587, 'f1': 0.8074477747502271, 'number': 1065} | 0.7300 | 0.7908 | 0.7592 | 0.8097 | | 0.3004 | 13.0 | 130 | 0.6978 | {'precision': 0.7147540983606557, 'recall': 0.8084054388133498, 'f1': 0.7587006960556845, 'number': 809} | {'precision': 0.33043478260869563, 'recall': 0.31932773109243695, 'f1': 0.32478632478632474, 'number': 119} | {'precision': 0.7890974084003575, 'recall': 0.8291079812206573, 'f1': 0.8086080586080587, 'number': 1065} | 0.7329 | 0.7903 | 0.7605 | 0.8144 | | 0.2942 | 14.0 | 140 | 0.7001 | {'precision': 0.7145945945945946, 'recall': 0.8170580964153276, 'f1': 0.7623990772779701, 'number': 809} | {'precision': 0.30708661417322836, 'recall': 0.3277310924369748, 'f1': 0.3170731707317073, 'number': 119} | {'precision': 0.7820284697508897, 'recall': 0.8253521126760563, 'f1': 0.8031064412973961, 'number': 1065} | 0.7256 | 0.7923 | 0.7575 | 0.8108 | | 0.2853 | 15.0 | 150 | 0.7024 | {'precision': 0.7113513513513513, 'recall': 0.8133498145859085, 'f1': 0.7589388696655133, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119} | {'precision': 0.7811387900355872, 'recall': 0.8244131455399061, 'f1': 0.8021927820922796, 'number': 1065} | 0.7241 | 0.7903 | 0.7558 | 0.8106 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
Danbi/distilroberta-base-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.29 +/- 7.78 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dandara/bertimbau-socioambiental
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="yarafa/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Danih1502/t5-small-finetuned-en-to-de
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - hi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Hindi- Drishti Sharma results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 11.766321765406099 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Hindi- Drishti Sharma This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3655 - Wer: 11.7663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0 | 12.22 | 10000 | 0.3655 | 11.7663 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
DarkKibble/DialoGPT-medium-Tankman
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: multimodal-traj-class-no-numtransform results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multimodal-traj-class-no-numtransform This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1964 - Acc: 0.7237 - Relacc: 0.8446 - Num Fours: 617 - Mcc: 0.6029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Relacc | Num Fours | Mcc | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:---------:|:------:| | 0.9461 | 1.0 | 1212 | 0.8645 | 0.6752 | 0.7586 | 680 | 0.5115 | | 0.8387 | 2.0 | 2424 | 0.7880 | 0.6979 | 0.7889 | 630 | 0.5526 | | 0.7565 | 3.0 | 3636 | 0.7489 | 0.7183 | 0.8015 | 636 | 0.5851 | | 0.6997 | 4.0 | 4848 | 0.7542 | 0.7061 | 0.7908 | 574 | 0.5569 | | 0.6516 | 5.0 | 6060 | 0.6806 | 0.7388 | 0.8192 | 660 | 0.6176 | | 0.6049 | 6.0 | 7272 | 0.6898 | 0.7406 | 0.8395 | 638 | 0.6269 | | 0.5526 | 7.0 | 8484 | 0.6848 | 0.7408 | 0.8413 | 648 | 0.6288 | | 0.5343 | 8.0 | 9696 | 0.6904 | 0.7359 | 0.8413 | 645 | 0.6207 | | 0.4855 | 9.0 | 10908 | 0.7219 | 0.7400 | 0.8456 | 587 | 0.6253 | | 0.4618 | 10.0 | 12120 | 0.7310 | 0.7464 | 0.8448 | 624 | 0.6314 | | 0.4326 | 11.0 | 13332 | 0.7298 | 0.7575 | 0.8508 | 658 | 0.6536 | | 0.4098 | 12.0 | 14544 | 0.8706 | 0.7266 | 0.8395 | 611 | 0.6026 | | 0.3707 | 13.0 | 15756 | 0.8682 | 0.7431 | 0.8415 | 629 | 0.6260 | | 0.3377 | 14.0 | 16968 | 0.9299 | 0.7371 | 0.8467 | 590 | 0.6220 | | 0.315 | 15.0 | 18180 | 0.9393 | 0.7365 | 0.8463 | 635 | 0.6190 | | 0.2984 | 16.0 | 19392 | 1.0106 | 0.7348 | 0.8426 | 593 | 0.6134 | | 0.2804 | 17.0 | 20604 | 1.0719 | 0.7307 | 0.8465 | 623 | 0.6118 | | 0.2644 | 18.0 | 21816 | 1.1245 | 0.7280 | 0.8446 | 642 | 0.6117 | | 0.2469 | 19.0 | 23028 | 1.1745 | 0.7258 | 0.8430 | 619 | 0.6044 | | 0.2273 | 20.0 | 24240 | 1.1964 | 0.7237 | 0.8446 | 617 | 0.6029 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
DarkestSky/distilbert-base-uncased-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - gos --- A Gronings Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Gronings speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
Darkrider/covidbert_mednli
[ "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - gos --- A Gronings Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Gronings speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
Darren/darren
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 292.23 +/- 11.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DarshanDeshpande/marathi-distilbert
[ "pytorch", "tf", "distilbert", "fill-mask", "mr", "dataset:Oscar Corpus, News, Stories", "arxiv:1910.01108", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- language: - be license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Base Belarusian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 be type: mozilla-foundation/common_voice_11_0 config: be split: validation args: be metrics: - name: Wer type: wer value: 12.206885082321635 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Belarusian This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_11_0 be dataset. It achieves the following results on the evaluation set: - Loss: 0.1080 - Wer: 12.2069 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2445 | 0.17 | 1000 | 0.3059 | 32.4163 | | 0.1823 | 0.33 | 2000 | 0.2004 | 22.1259 | | 0.1412 | 0.5 | 3000 | 0.1752 | 20.0700 | | 0.1093 | 0.67 | 4000 | 0.1413 | 16.0533 | | 0.1137 | 0.83 | 5000 | 0.1155 | 13.3108 | | 0.0585 | 1.1 | 6000 | 0.1080 | 12.2069 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Darya/layoutlmv2-finetuned-funsd-test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 3 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
DataikuNLP/TinyBERT_General_4L_312D
[ "pytorch", "jax", "bert", "arxiv:1909.10351", "transformers" ]
null
{ "architectures": null, "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
74
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - winograd_wsc metrics: - rouge model-index: - name: flan-t5-large-coref results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: winograd_wsc type: winograd_wsc config: wsc285 split: test args: wsc285 metrics: - name: Rouge1 type: rouge value: 0.9495 widget: - text: "Sam has a Parker pen. He loves writing with it." example_title: "Example 1" - text: "Coronavirus quickly spread worldwide in 2020. The virus mostly affects elderly people. They can easily catch it." example_title: "Example 2" - text: "First, the manager evaluates the candidates. Afterwards, he notifies the candidates regarding the evaluation." example_title: "Example 3" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-coref This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the winograd_wsc dataset. The model was trained on the task of coreference resolution. It achieves the following results on the evaluation set: - Loss: 0.2404 - Rouge1: 0.9495 - Rouge2: 0.9107 - Rougel: 0.9494 - Rougelsum: 0.9494 - Gen Len: 23.4828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.0169 | 1.0 | 16 | 0.6742 | 0.7918 | 0.6875 | 0.7836 | 0.7847 | 18.2414 | | 0.6275 | 2.0 | 32 | 0.5093 | 0.8776 | 0.7947 | 0.8734 | 0.8732 | 21.5517 | | 0.596 | 3.0 | 48 | 0.4246 | 0.9104 | 0.8486 | 0.9085 | 0.9091 | 22.5172 | | 0.743 | 4.0 | 64 | 0.3632 | 0.9247 | 0.8661 | 0.9235 | 0.9231 | 22.8621 | | 0.5007 | 5.0 | 80 | 0.3301 | 0.9353 | 0.8845 | 0.9357 | 0.9353 | 22.8621 | | 0.2567 | 6.0 | 96 | 0.3093 | 0.9388 | 0.8962 | 0.9392 | 0.9388 | 22.9655 | | 0.4146 | 7.0 | 112 | 0.2978 | 0.9449 | 0.907 | 0.9455 | 0.9458 | 23.1034 | | 0.1991 | 8.0 | 128 | 0.2853 | 0.9454 | 0.9064 | 0.946 | 0.9462 | 23.069 | | 0.1786 | 9.0 | 144 | 0.2794 | 0.9475 | 0.9097 | 0.9475 | 0.9477 | 23.069 | | 0.3559 | 10.0 | 160 | 0.2701 | 0.9424 | 0.9013 | 0.9428 | 0.9426 | 23.0345 | | 0.2059 | 11.0 | 176 | 0.2636 | 0.9472 | 0.9069 | 0.9472 | 0.9472 | 23.0345 | | 0.199 | 12.0 | 192 | 0.2592 | 0.9523 | 0.9141 | 0.9521 | 0.9524 | 23.4483 | | 0.1634 | 13.0 | 208 | 0.2553 | 0.9523 | 0.9141 | 0.9521 | 0.9524 | 23.4483 | | 0.2006 | 14.0 | 224 | 0.2518 | 0.9523 | 0.9141 | 0.9521 | 0.9524 | 23.4483 | | 0.1419 | 15.0 | 240 | 0.2487 | 0.9523 | 0.9141 | 0.9521 | 0.9524 | 23.4483 | | 0.2089 | 16.0 | 256 | 0.2456 | 0.9523 | 0.9141 | 0.9521 | 0.9524 | 23.4483 | | 0.1007 | 17.0 | 272 | 0.2431 | 0.9523 | 0.9141 | 0.9521 | 0.9524 | 23.4483 | | 0.1598 | 18.0 | 288 | 0.2415 | 0.9495 | 0.9107 | 0.9494 | 0.9494 | 23.4828 | | 0.3088 | 19.0 | 304 | 0.2407 | 0.9495 | 0.9107 | 0.9494 | 0.9494 | 23.4828 | | 0.2003 | 20.0 | 320 | 0.2404 | 0.9495 | 0.9107 | 0.9494 | 0.9494 | 23.4828 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
DataikuNLP/average_word_embeddings_glove.6B.300d
[ "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "license:apache-2.0" ]
sentence-similarity
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - fr license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large French Cased results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 fr type: mozilla-foundation/common_voice_11_0 config: fr split: test args: fr metrics: - name: Wer type: wer value: 11.909957777883202 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large French Cased This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the mozilla-foundation/common_voice_11_0 fr dataset. It achieves the following results on the evaluation set: - Loss: 0.2962 - Wer: 11.9100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3357 | 0.2 | 1000 | 0.3994 | 16.1523 | | 0.3026 | 0.4 | 2000 | 0.3802 | 15.2403 | | 0.2904 | 0.6 | 3000 | 0.3389 | 14.0045 | | 0.2407 | 0.8 | 4000 | 0.3135 | 12.7947 | | 0.2451 | 1.0 | 5000 | 0.2962 | 11.9100 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
DataikuNLP/camembert-base
[ "pytorch", "tf", "camembert", "fill-mask", "fr", "dataset:oscar", "arxiv:1911.03894", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "CamembertForMaskedLM" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bguisard/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DataikuNLP/distiluse-base-multilingual-cased-v1
[ "pytorch", "distilbert", "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
{ "architectures": [ "DistilBertModel" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
2022-12-16T21:46:02Z
--- license: mit tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: ananth-docai2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ananth-docai2 This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.4203 - Answer: {'precision': 0.8505747126436781, 'recall': 0.9057527539779682, 'f1': 0.8772969768820391, 'number': 817} - Header: {'precision': 0.6476190476190476, 'recall': 0.5714285714285714, 'f1': 0.6071428571428571, 'number': 119} - Question: {'precision': 0.9104477611940298, 'recall': 0.9062209842154132, 'f1': 0.9083294555607259, 'number': 1077} - Overall Precision: 0.8715 - Overall Recall: 0.8862 - Overall F1: 0.8788 - Overall Accuracy: 0.8269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4218 | 10.53 | 200 | 1.0024 | {'precision': 0.8727272727272727, 'recall': 0.8812729498164015, 'f1': 0.8769792935444579, 'number': 817} | {'precision': 0.4036144578313253, 'recall': 0.5630252100840336, 'f1': 0.47017543859649125, 'number': 119} | {'precision': 0.8674812030075187, 'recall': 0.8570102135561746, 'f1': 0.8622139187295657, 'number': 1077} | 0.8321 | 0.8495 | 0.8407 | 0.7973 | | 0.0532 | 21.05 | 400 | 1.1791 | {'precision': 0.8563218390804598, 'recall': 0.9118727050183598, 'f1': 0.8832246591582691, 'number': 817} | {'precision': 0.5486725663716814, 'recall': 0.5210084033613446, 'f1': 0.5344827586206897, 'number': 119} | {'precision': 0.9044943820224719, 'recall': 0.8969359331476323, 'f1': 0.9006993006993008, 'number': 1077} | 0.8645 | 0.8808 | 0.8725 | 0.8103 | | 0.0117 | 31.58 | 600 | 1.5177 | {'precision': 0.8064516129032258, 'recall': 0.9179926560587516, 'f1': 0.8586147681740126, 'number': 817} | {'precision': 0.6046511627906976, 'recall': 0.4369747899159664, 'f1': 0.5073170731707317, 'number': 119} | {'precision': 0.9019607843137255, 'recall': 0.8542246982358404, 'f1': 0.8774439675727229, 'number': 1077} | 0.8458 | 0.8554 | 0.8506 | 0.7952 | | 0.0067 | 42.11 | 800 | 1.4884 | {'precision': 0.8443935926773455, 'recall': 0.9033047735618115, 'f1': 0.872856298048492, 'number': 817} | {'precision': 0.515625, 'recall': 0.5546218487394958, 'f1': 0.5344129554655871, 'number': 119} | {'precision': 0.8784530386740331, 'recall': 0.8857938718662952, 'f1': 0.8821081830790567, 'number': 1077} | 0.8420 | 0.8733 | 0.8574 | 0.7963 | | 0.0034 | 52.63 | 1000 | 1.4203 | {'precision': 0.8505747126436781, 'recall': 0.9057527539779682, 'f1': 0.8772969768820391, 'number': 817} | {'precision': 0.6476190476190476, 'recall': 0.5714285714285714, 'f1': 0.6071428571428571, 'number': 119} | {'precision': 0.9104477611940298, 'recall': 0.9062209842154132, 'f1': 0.9083294555607259, 'number': 1077} | 0.8715 | 0.8862 | 0.8788 | 0.8269 | | 0.0023 | 63.16 | 1200 | 1.5225 | {'precision': 0.834096109839817, 'recall': 0.8922888616891065, 'f1': 0.8622117090479007, 'number': 817} | {'precision': 0.5689655172413793, 'recall': 0.5546218487394958, 'f1': 0.5617021276595745, 'number': 119} | {'precision': 0.8962001853568119, 'recall': 0.8978644382544104, 'f1': 0.8970315398886828, 'number': 1077} | 0.8516 | 0.8753 | 0.8633 | 0.8096 | | 0.0013 | 73.68 | 1400 | 1.6801 | {'precision': 0.848, 'recall': 0.9082007343941249, 'f1': 0.8770685579196217, 'number': 817} | {'precision': 0.6741573033707865, 'recall': 0.5042016806722689, 'f1': 0.576923076923077, 'number': 119} | {'precision': 0.8977695167286245, 'recall': 0.8969359331476323, 'f1': 0.8973525313516025, 'number': 1077} | 0.8667 | 0.8783 | 0.8724 | 0.7977 | | 0.0014 | 84.21 | 1600 | 1.6236 | {'precision': 0.8876543209876543, 'recall': 0.8800489596083231, 'f1': 0.8838352796558081, 'number': 817} | {'precision': 0.6237623762376238, 'recall': 0.5294117647058824, 'f1': 0.5727272727272728, 'number': 119} | {'precision': 0.8656330749354005, 'recall': 0.9331476323119777, 'f1': 0.8981233243967828, 'number': 1077} | 0.8625 | 0.8877 | 0.8749 | 0.8072 | | 0.0006 | 94.74 | 1800 | 1.7231 | {'precision': 0.8619883040935673, 'recall': 0.9020807833537332, 'f1': 0.881578947368421, 'number': 817} | {'precision': 0.6883116883116883, 'recall': 0.44537815126050423, 'f1': 0.5408163265306123, 'number': 119} | {'precision': 0.8748890860692103, 'recall': 0.9155060352831941, 'f1': 0.8947368421052633, 'number': 1077} | 0.8626 | 0.8823 | 0.8723 | 0.8019 | | 0.0005 | 105.26 | 2000 | 1.8217 | {'precision': 0.8342665173572228, 'recall': 0.9118727050183598, 'f1': 0.871345029239766, 'number': 817} | {'precision': 0.6, 'recall': 0.5042016806722689, 'f1': 0.547945205479452, 'number': 119} | {'precision': 0.9049858889934148, 'recall': 0.89322191272052, 'f1': 0.8990654205607476, 'number': 1077} | 0.8594 | 0.8778 | 0.8685 | 0.7964 | | 0.0004 | 115.79 | 2200 | 1.7688 | {'precision': 0.8561484918793504, 'recall': 0.9033047735618115, 'f1': 0.8790946992257296, 'number': 817} | {'precision': 0.6555555555555556, 'recall': 0.4957983193277311, 'f1': 0.5645933014354068, 'number': 119} | {'precision': 0.8827272727272727, 'recall': 0.9015784586815228, 'f1': 0.8920532843362425, 'number': 1077} | 0.8616 | 0.8783 | 0.8699 | 0.7956 | | 0.0002 | 126.32 | 2400 | 1.7726 | {'precision': 0.8458904109589042, 'recall': 0.9069767441860465, 'f1': 0.8753691671588896, 'number': 817} | {'precision': 0.6741573033707865, 'recall': 0.5042016806722689, 'f1': 0.576923076923077, 'number': 119} | {'precision': 0.8878676470588235, 'recall': 0.8969359331476323, 'f1': 0.892378752886836, 'number': 1077} | 0.8607 | 0.8778 | 0.8692 | 0.7961 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
Dave/twomad-model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-16T22:09:22Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: roberta-base-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-cola This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6064 - Matthews Correlation: 0.6198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4308 | 1.0 | 534 | 0.4082 | 0.5856 | | 0.3759 | 2.0 | 1068 | 0.4661 | 0.5953 | | 0.2997 | 3.0 | 1602 | 0.5586 | 0.5969 | | 0.0746 | 4.0 | 2136 | 0.5806 | 0.5815 | | 0.1605 | 5.0 | 2670 | 0.6064 | 0.6198 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
DavidAMcIntosh/small-rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-16T22:17:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0615 - Precision: 0.9222 - Recall: 0.9372 - F1: 0.9297 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.051 | 1.0 | 877 | 0.0667 | 0.9090 | 0.9190 | 0.9139 | 0.9811 | | 0.2483 | 2.0 | 1754 | 0.0600 | 0.9295 | 0.9344 | 0.9320 | 0.9839 | | 0.0153 | 3.0 | 2631 | 0.0615 | 0.9222 | 0.9372 | 0.9297 | 0.9838 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
DavidSpaceG/MSGIFSR
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: bart-base-finetuned-en-to-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-en-to-ro This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.6768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 128 - total_train_batch_size: 128 - total_eval_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9521 | 1.0 | 4768 | 1.6768 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
Davlan/bert-base-multilingual-cased-finetuned-amharic
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
109
2022-12-16T22:28:37Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="AmineEA/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Davlan/bert-base-multilingual-cased-finetuned-igbo
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
2022-12-16T22:46:14Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="bguisard/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Davlan/bert-base-multilingual-cased-finetuned-kinyarwanda
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
2022-12-16T22:50:48Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Davlan/bert-base-multilingual-cased-finetuned-luo
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2022-12-16T22:54:47Z
Paper: [Pre-trained Language Models for Keyphrase Generation: A Thorough Empirical Study](https://arxiv.org/abs/2212.10233) ``` @article{https://doi.org/10.48550/arxiv.2212.10233, doi = {10.48550/ARXIV.2212.10233}, url = {https://arxiv.org/abs/2212.10233}, author = {Wu, Di and Ahmad, Wasi Uddin and Chang, Kai-Wei}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Pre-trained Language Models for Keyphrase Generation: A Thorough Empirical Study}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` Pre-training Corpus: [RealNews](https://github.com/rowanz/grover/tree/master/realnews) Pre-training Details: - Resume from bert-base-uncased - Batch size: 512 - Total steps: 250k - Learning rate: 1e-4 - LR schedule: linear with 4k warmup steps - Masking ratio: 15% dynamic masking
Davlan/bert-base-multilingual-cased-finetuned-naija
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: ananth-docai3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ananth-docai3 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1 - Tokenizers 0.12.1
Davlan/bert-base-multilingual-cased-finetuned-swahili
[ "pytorch", "tf", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
67
2022-12-16T23:01:54Z
--- language: - ur license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large-v2 Urdu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ur type: mozilla-foundation/common_voice_11_0 config: ur split: test args: ur metrics: - name: Wer type: wer value: 23.5020721174329 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large-v2 Urdu This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 ur dataset. It achieves the following results on the evaluation set: - Loss: 0.5947 - Wer: 23.5021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1935 | 1.1 | 200 | 0.4241 | 29.6526 | | 0.0649 | 3.09 | 400 | 0.4683 | 26.0622 | | 0.0156 | 5.08 | 600 | 0.5444 | 25.8104 | | 0.0039 | 7.08 | 800 | 0.5947 | 23.5021 | | 0.0019 | 9.07 | 1000 | 0.6123 | 23.8933 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Davlan/bert-base-multilingual-cased-finetuned-yoruba
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('sheldon-spock/sd-class-butterflies-32') image = pipeline().images[0] image ```
Davlan/bert-base-multilingual-cased-ner-hrl
[ "pytorch", "tf", "bert", "token-classification", "transformers", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
269,898
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2174 - Accuracy: 0.923 - F1: 0.9231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8279 | 1.0 | 250 | 0.3099 | 0.9075 | 0.9048 | | 0.2464 | 2.0 | 500 | 0.2174 | 0.923 | 0.9231 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
Davlan/byt5-base-eng-yor-mt
[ "pytorch", "t5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - generated_from_keras_callback model-index: - name: distilbert-base-uncased-finetuned_clf-spam results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned_clf-spam This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Tokenizers 0.13.2
Davlan/distilbert-base-multilingual-cased-masakhaner
[ "pytorch", "tf", "distilbert", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: mit --- # Python clone detection This is a codebert model for detecting Python clone codes, fine-tuned on the dataset shared by [PoolC](https://github.com/PoolC) on [Hugging Face Hub](https://huggingface.co/datasets/PoolC/1-fold-clone-detection-600k-5fold). The original source code for using the model can be found at https://github.com/sangHa0411/CloneDetection/blob/main/inference.py. # How to use To use the model in an efficient way, you can refer to this repository: https://github.com/RepoAnalysis/PythonCloneDetection, which contains a class that integrates data preprocessing, input tokenization, and model inferencing. You can also follow the original inference source code at https://github.com/sangHa0411/CloneDetection/blob/main/inference.py. More conveniently, a pipeline for this model has been implemented, and you can initialize it with only two lines of code: ```python from transformers import pipeline pipe = pipeline(model="Lazyhope/python-clone-detection", trust_remote_code=True) ``` To use it, pass a tuple of code pairs: ```python code1 = """def token_to_inputs(feature): inputs = {} for k, v in feature.items(): inputs[k] = torch.tensor(v).unsqueeze(0) return inputs""" code2 = """def f(feature): return {k: torch.tensor(v).unsqueeze(0) for k, v in feature.items()}""" is_clone = pipe((code1, code2)) is_clone # {False: 1.3705984201806132e-05, True: 0.9999862909317017} ``` # Credits We would like to thank the original team and authors of the model and the fine-tuning dataset: - [PoolC](https://github.com/PoolC) - [sangHa0411](https://github.com/sangHa0411) - [snoop2head](https://github.com/snoop2head) # Lincese This model is released under the MIT license.
Davlan/distilbert-base-multilingual-cased-ner-hrl
[ "pytorch", "tf", "distilbert", "token-classification", "transformers", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
123,856
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: chist/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Davlan/m2m100_418M-yor-eng-mt
[ "pytorch", "m2m_100", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "M2M100ForConditionalGeneration" ], "model_type": "m2m_100", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: artequino --- ### quino Dreambooth model trained by machinelearnear with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: artequino (use that on your prompt) ![artequino 0](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2844%29.jpg)![artequino 1](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%281%29.jpg)![artequino 2](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2845%29.jpg)![artequino 3](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2816%29.jpg)![artequino 4](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2843%29.jpg)![artequino 5](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2834%29.jpg)![artequino 6](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2818%29.jpg)![artequino 7](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2820%29.jpg)![artequino 8](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2824%29.jpg)![artequino 9](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2833%29.jpg)![artequino 10](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%289%29.jpg)![artequino 11](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2831%29.jpg)![artequino 12](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2819%29.jpg)![artequino 13](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2814%29.jpg)![artequino 14](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2830%29.jpg)![artequino 15](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2829%29.jpg)![artequino 16](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2832%29.jpg)![artequino 17](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2835%29.jpg)![artequino 18](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2812%29.jpg)![artequino 19](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2821%29.jpg)![artequino 20](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2840%29.jpg)![artequino 21](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2828%29.jpg)![artequino 22](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%283%29.jpg)![artequino 23](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%286%29.jpg)![artequino 24](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2826%29.jpg)![artequino 25](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2847%29.jpg)![artequino 26](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2837%29.jpg)![artequino 27](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2827%29.jpg)![artequino 28](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2817%29.jpg)![artequino 29](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2811%29.jpg)![artequino 30](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2823%29.jpg)![artequino 31](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2839%29.jpg)![artequino 32](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2842%29.jpg)![artequino 33](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%287%29.jpg)![artequino 34](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2813%29.jpg)![artequino 35](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2838%29.jpg)![artequino 36](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2815%29.jpg)![artequino 37](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2822%29.jpg)![artequino 38](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%284%29.jpg)![artequino 39](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2846%29.jpg)![artequino 40](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2825%29.jpg)![artequino 41](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%282%29.jpg)![artequino 42](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%285%29.jpg)![artequino 43](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2836%29.jpg)![artequino 44](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%288%29.jpg)![artequino 45](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2841%29.jpg)![artequino 46](https://huggingface.co/sd-dreambooth-library/quino/resolve/main/concept_images/artequino_%2810%29.jpg)
Davlan/mbart50-large-eng-yor-mt
[ "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-12-17T00:10:39Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="bakisanlan/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Davlan/mbart50-large-yor-eng-mt
[ "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-12-17T00:12:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8833333333333333 - name: F1 type: f1 value: 0.8852459016393444 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3062 - Accuracy: 0.8833 - F1: 0.8852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Davlan/naija-twitter-sentiment-afriberta-large
[ "pytorch", "tf", "xlm-roberta", "text-classification", "arxiv:2201.08277", "transformers", "has_space" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
61
2022-12-17T00:42:09Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ducdo/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Davlan/xlm-roberta-base-finetuned-english
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- inference: true language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m --- # SD_Boichi_Art_Style is an open source Stable Diffusion Embedding on art style of the Mangaka Boichi, by Akumetsu971 (https://www.tiktok.com/@akumetsu971) --- ### Model used to train: wd-v1-3-full-opt.ckpt (https://huggingface.co/hakurei/waifu-diffusion-v1-3) ### Files 6 files available (Best version is 4000steps): -Boichi2_style-1000 - 1000 steps -Boichi2_style-1000 - 2000 steps -Boichi2_style-1000 - 3000 steps -Boichi2_style-1000 - 4000 steps (recommended) -Boichi2_style-1000 - 5000 steps -Boichi2_style-1000 - 6000 steps ### Prompt You need to use DeepDanBooru Tags (https://gigazine.net/gsc_news/en/20221012-automatic1111-stable-diffusion-webui-deep-danbooru/) I also used Nixeu_style embedding (not necessary): https://huggingface.co/sd-concepts-library/nixeu) And Elysium_Anime_V2.ckpt (https://huggingface.co/hesw23168/SD-Elysium-Model) ### Example Positive Prompt: (Nixeu_style:1.2), (Boichi2_style-4000:1.2), (1boy:1.4), (muscular:1.2), (muscular_chest:1.2),pectorals, abs,(male_focus:1.5), (black_eyes:1.2), (white_hair:1.3),(muscular:1.2), (half_shaved_hair:1.1), (gel_spiked_hair:1.2), (white_hair:1.3), attractive, facing_camera, (male_focus:1.4), (solo:1.3), single, (detailed _mouth:1.2), (mouth_closed:1.2), ultra_detailed_face, (ultra_detailed_eyes:1.2), (symmetrical_eyes:1.2), (rounded_eyes:1.2), flame_in_the_eyes, high_details, high_quality, masterpiece, manga, (monochrome:1.4) Negative Prompt: (mediocre:1.2), (average:1.2), (bad:1.2), (wrong:1.2), (error:1.2), (fault:1.2),( badly_drawn:1.2), (poorly_drawn:1.2), ( low_quality:1.2), no_quality, bad_quality, no_resolution, low_resolution, (lowres:1.2), normal_resolution, (disfigured:1.8), (deformed:1.8), (distortion:1.2), bad_anatomy, (no_detail:1.2), low_detail, normal_detail, (scribble:1.2), (rushed:1.2), (unfinished:1.2), blur, blurry, claws, (misplaced:1.2), (disconnected:1.2), nonsense, random, (noise:1.2), (deformation:1.2), 3d, dull, boring, uninteresting, screencap, (text:1.2), (frame:1.1), (out_of_frame:1.2), (title:1.2), (description:1.3), (sexual:1.2), text, error,(logo:1.3), (watermark:1.3), bad_perspective, bad_proportions, cinematic, jpg_artifacts, jpeg_artifacts, extra_leg, missing_leg, extra_arm, missing_arm, long_hand, bad_hands, (mutated_hand:1.2), (extra_finger:1.2), (missing_finger:1.2), broken_finger, (fused_fingers:1.2), extra_feet, missing_feet, fused_feet, long_feet, missing_limbs, extra_limbs, fused_limbs, claw, (extra_digit:1.2), (fewer_digits:1.2), elves_ears, (naked:1.3), (wet:1.2), (girl:1.4) <img src="https://huggingface.co/Akumetsu971/SD_Boichi_Art_Style/resolve/main/04273-294460776-(Nixeu_style_1.2)%2C%20(Boichi2_style-4000_1.2)%2C%20(1boy_1.4)%2C%20(muscular_1.2)%2C%20(muscular_chest_1.2)%2Cpectorals%2C%20abs%2C(male_focus_1.5)%2C%20(.png" width="50%"/> <img src="https://huggingface.co/Akumetsu971/SD_Boichi_Art_Style/resolve/main/03917-1065737464-(Nixeu_style_1.2)%2C%20(Boichi2_style-4000_1.1)%2C%20(1girl_1.4)%2C%20(school_uniform_1.3)%2C%20in%20classroom%2C%20(full_body_1.2)%2C%20attractive%2C%20beaut.png" width="50%"/> <img src="https://huggingface.co/Akumetsu971/SD_Boichi_Art_Style/resolve/main/04007-2494757721-(Bchi_step_4000_1.2)%2C%20(1girl_1.3)%2C%20attractive%2C%20(wide_shot_1.2)%2C%20beautiful%20and%20elegant%2C%20black_eyes%2C%20facing_camera%2C%20solo%2C%20single%2C.png" width="50%"/> <img src="https://huggingface.co/Akumetsu971/SD_Boichi_Art_Style/resolve/main/03905-3403646630-(Nixeu_style_1.2)%2C%20(Boichi2_style-4000_1.1)%2C%20(1boy_1.4)%2C%20(profile_1.4)%2C%20%20fight_club%2C%20(muscular_1.3)%2C%20(no_clothe_1.4)%2C%20(naked_1.4.png" width="50%"/> ### Bad Example Used on another model or with bad prompt <img src="https://huggingface.co/Akumetsu971/SD_Boichi_Art_Style/resolve/main/03461-2842380376-1boy%2C%20(highly%20detailed)%2C%20masterpiece%2C%20Boichi_style.png" width="50%"/> ```
Davlan/xlm-roberta-base-finetuned-igbo
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68
null
Paper: [Pre-trained Language Models for Keyphrase Generation: A Thorough Empirical Study](https://arxiv.org/abs/2212.10233) ``` @article{https://doi.org/10.48550/arxiv.2212.10233, doi = {10.48550/ARXIV.2212.10233}, url = {https://arxiv.org/abs/2212.10233}, author = {Wu, Di and Ahmad, Wasi Uddin and Chang, Kai-Wei}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Pre-trained Language Models for Keyphrase Generation: A Thorough Empirical Study}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` Pre-training Corpus: [RealNews](https://github.com/rowanz/grover/tree/master/realnews) Pre-training Details: - Resume from facebook/bart-base - Batch size: 2048 - Total steps: 250k - Learning rate: 3e-4 - LR schedule: polynomial with 10k warmup steps - Masking ratio: 30%, Poisson lambda = 3.5
Davlan/xlm-roberta-base-finetuned-luganda
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Davlan/xlm-roberta-base-finetuned-naija
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.74 +/- 0.44 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bguisard/q-FrozenLake-v1-4x4", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Davlan/xlm-roberta-base-finetuned-somali
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
# Lucina [Download](https://huggingface.co/dearest/lucinamono/resolve/main/___lucinamono___epoch-000040.ckpt) ## Previews ![](https://huggingface.co/dearest/lucinamono/resolve/main/images/35385-1999493069-strap%2C%20long%20sleeves%2C%20wrist%20cuffs%2C%20onesie%2C%20turtleneck%2C_lying%2Creclining%2Ctrain%20interior%2Cheadphones%2C_intricate%2C%20elegant%2C%20highly%20det.png) ![](https://huggingface.co/dearest/lucinamono/resolve/main/images/35386-331620472-hoodie%2Cshorts%2Csneakers%2Cgame_cg%2Cstanding%2Cstreet%2Coutdoors%2Cfullbody%2C_intricate%2C%20elegant%2C%20highly%20detailed%2C%20digital%20painting%2C%20artstat.png) ![](https://huggingface.co/dearest/lucinamono/resolve/main/images/35383-2053880241-hoodie%2Cshorts%2Csneakers%2Cgame_cg%2Cstanding%2Cstreet%2Coutdoors%2Cfullbody%2C_intricate%2C%20elegant%2C%20highly%20detailed%2C%20digital%20painting%2C%20artstat.png)
Davlan/xlm-roberta-base-finetuned-wolof
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.71 +/- 17.31 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Davlan/xlm-roberta-base-finetuned-xhosa
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - generated_from_trainer model-index: - name: gpt2-reporter-badplace results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-reporter-badplace This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.21.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.12.1
Davlan/xlm-roberta-base-finetuned-yoruba
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: chantum1 --- ### Chantum Test q Dreambooth model trained by Balthamos with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-768 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! chantum1 (use that on your prompt) ![chantum1 0](https://huggingface.co/Balthamos/chantum-test-q/resolve/main/concept_images/chantum1_%281%29.jpg)
Davlan/xlm-roberta-base-finetuned-zulu
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-classification model_file: model.pkl --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-------------------|-----------------------------------------------------------| | Cs | 10 | | class_weight | | | cv | StratifiedKFold(n_splits=5, random_state=1, shuffle=True) | | dual | False | | fit_intercept | True | | intercept_scaling | 1.0 | | l1_ratios | | | max_iter | 100 | | multi_class | auto | | n_jobs | | | penalty | l2 | | random_state | 1 | | refit | False | | scoring | | | solver | lbfgs | | tol | 0.0001 | | verbose | 0 | </details> ### Model Plot The model plot is below. <style>#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 {color: black;background-color: white;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 pre{padding: 0;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-toggleable {background-color: white;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-estimator:hover {background-color: #d4ebff;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-item {z-index: 1;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-parallel-item:only-child::after {width: 0;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-3244a8f9-b723-4dac-a610-2fbd0449e147 div.sk-text-repr-fallback {display: none;}</style><div id="sk-3244a8f9-b723-4dac-a610-2fbd0449e147" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LogisticRegressionCV(cv=StratifiedKFold(n_splits=5, random_state=1, shuffle=True),random_state=1, refit=False)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3fe57819-ef08-46de-a235-f0f501b88302" type="checkbox" checked><label for="3fe57819-ef08-46de-a235-f0f501b88302" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegressionCV</label><div class="sk-toggleable__content"><pre>LogisticRegressionCV(cv=StratifiedKFold(n_splits=5, random_state=1, shuffle=True),random_state=1, refit=False)</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|----------| | accuracy | 0.982166 | | f1 score | 0.982166 | # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # citation_bibtex @article{singh2022emb, title={Emb-GAM: an Interpretable and Efficient Predictor using Pre-trained Language Models}, author={Singh, Chandan and Gao, Jianfeng}, journal={arXiv preprint arXiv:2209.11799}, year={2022} } # get_started_code from PIL import Image from skops import hub_utils import torch from transformers import AutoFeatureExtractor, AutoModel import pickle import os # load embedding model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') feature_extractor = AutoFeatureExtractor.from_pretrained('Ramos-Ramos/vicreg-resnet-50') model = AutoModel.from_pretrained('Ramos-Ramos/vicreg-resnet-50').eval().to(device) # load logistic regression os.mkdir('emb-gam-vicreg-resnet') hub_utils.download(repo_id='Ramos-Ramos/emb-gam-vicreg-resnet', dst='emb-gam-vicreg-resnet') with open('emb-gam-vicreg-resnet/model.pkl', 'rb') as file: logistic_regression = pickle.load(file) # load image img = Image.open('examples/english_springer.png') # preprocess image inputs = {k: v.to(device) for k, v in feature_extractor(img, return_tensors='pt').items()} # extract patch embeddings with torch.no_grad(): patch_embeddings = model(**inputs).last_hidden_state[0].permute(1, 2, 0).view(7*7, 2048).cpu() # classify pred = logistic_regression.predict(patch_embeddings.sum(dim=0, keepdim=True)) # get patch contributions patch_contributions = logistic_regression.coef_ @ patch_embeddings.T.numpy() # model_card_authors Patrick Ramos and Ryan Ramos # limitations This model is not intended to be used in production. # model_description This is a LogisticRegressionCV model trained on averages of patch embeddings from the Imagenette dataset. This forms the GAM of an [Emb-GAM](https://arxiv.org/abs/2209.11799) extended to images. Patch embeddings are meant to be extracted with the [`Ramos-Ramos/vicreg-resnet-50` ResNet checkpoint](https://huggingface.co/Ramos-Ramos/vicreg-resnet-50). # eval_method The model is evaluated using test split, on accuracy and F1 score with macro average. # confusion_matrix ![confusion_matrix](confusion_matrix.png)
Davlan/xlm-roberta-base-ner-hrl
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
760
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.904 - name: F1 type: f1 value: 0.9048248512888302 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2512 - Accuracy: 0.904 - F1: 0.9048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Daymarebait/Discord_BOT_RICK
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
Access to model mgutierrez/training-simple-model is restricted and you are not in the authorized list. Visit https://huggingface.co/mgutierrez/training-simple-model to ask for access.
Dean/summarsiation
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - pse --- A Besemah Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Besemah speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
Declan/HuffPost_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: openrail++ thumbnail: "https://huggingface.co/Verah/ai-protest-anime/resolve/main/s0.webp" tags: - stable-diffusion - text-to-image inference: false --- # "AI Protest" Anime Model ![Sample Image](s0.webp) This model has been trained to simulate what it may be like if the current (December 2022) artstation protest images against AI were actually used as training data inside a conventional anime stable diffusion model. For version 2, I trained two dreambooth models on the AI Protest imagery at 576px and 704px for 6k steps each. These unique models were then 50/50 merged. The intent behind this is regularization. The key word is still **ai protest** Version 1 was a quick and dirty DreamBooth model trained without regularization for 3023 steps. the key word is **ai protest**, simply use it in your prompt. **you may wish to increase the weight and/or duplicate it, as the influence is quite weak.** The base model (of both versions) is an early preview of WD1.4 (colloquially "WD 1.3.5") [wd-1-4-float32-booru-110k](https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/9fa4a42a9c4a0948472fa909e6c1a39be0dda699/models/wd-1-4-float32-booru-110k.ckpt) This means you should probably be using danbooru-style image tags in your prompts ## new samples (model version 2) negative prompt (for all): - traditional media, graphite medium, ugly, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, lowres, bad anatomy, bad hands, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, username, blurry, bad feet, sketch if you add `flat color, flat shading` to the negative prompt you can get uncanny early CG-like images. prompts for the header images: - (ai protest:1.3), [:1girl, finely detailed, beautiful, arknights, ruins, still life, text, (ai protest), solo, long hair, white hair, red eyes, headgear:0.24] - (ai protest:1.3), [:1girl, finely detailed, (cowboy shot), beautiful, arknights, ruins, still life, text, (ai protest), solo, long hair, white hair, red eyes, headgear:0.1] - (ai protest:1.3), [:1girl, (upper body:1.2), finely detailed, beautiful, arknights, ruins, still life, text, (ai protest:1.3), solo, long hair, white hair, red eyes, headgear:0.4] *I regularly use the prompt editing feature of automatic's UI. the fundamental syntax is for example: `[A:B:0.1]` this would be interprited as prompt A for the first 10% of samples, then after which it would become prompt B. In the examples above I am omitting any prompt A. With this method it will first draw the AI Protest sign, then add the anime girl to it after* ![Sample Image](s1.webp) - (ai protest:1.4), [:1girl, bangs, black hair, blazer, flower, grey jacket, hair flower, hair ornament, jacket, long hair, looking at viewer, portrait, purple eyes, school uniform, solo, swept bangs, twintails, upper body, white background, idolmaster, idolmaster shiny colors, fukumaru koito, ruins, text, (ai protest:1.2):0.15] - (ai protest:1.2), [:1girl, bangs, black hair, blazer, flower, grey jacket, hair flower, hair ornament, jacket, long hair, looking at viewer, portrait, purple eyes, school uniform, solo, swept bangs, twintails, upper body, white background, idolmaster, idolmaster shiny colors, fukumaru koito, text, (ai protest:1.2):0.15] - (ai protest:1.3), [:1girl, armband, bangs, bare shoulders, belt, black gloves, black hair, black shirt, blue eyes, breasts, coat, cropped legs, floating hair, gloves, hair between eyes, long hair, long sleeves, mask, medium breasts, midriff, mouth mask, no headwear, no navel, open clothes, open coat, shirt, sleeveless, sleeveless shirt, solo, stomach, upper body, white coat, blue archive, saori \(blue archive\), ai protest:0.1] - (ai protest:1.3), [:1girl, bangs, black dress, closed mouth, cropped torso, dress, green eyes, green hair, long sleeves, looking at viewer, medium hair, simple background, solo, upper body, wavy hair, white background, one-punch man, tatsumaki, ai protest:0.1] Other tips: You don't neccessarily need to use the prompt editing trick, I just like it. A second pass in img2img or via enabling highres fix can improve the fidelity of outputs. ## old samples (model version 1) ![Sample Image](01.webp) (ai protest:1.3), 1girl, mecha musume, headgear, (ai protest:1.3), (masterpiece), (best quality), (ultra-detailed), best illustration, (extremely delicate and beautiful), (ai protest:1.3) Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet ![Sample Image](02.webp) (ai protest:1.3), 1girl, upper body, mecha musume, headgear, (ai protest:1.3) ![Sample Image](04.webp) (ai protest:1.2), 1girl, bangs, black dress, closed mouth, cropped torso, dress, green eyes, green hair, long sleeves, looking at viewer, medium hair, simple background, solo, upper body, wavy hair, white background, one-punch man, tatsumaki ![Sample Image](05.webp) (ai protest:1.3), 1girl, mecha musume, headgear, (ai protest:1.3), (masterpiece), (best quality), (ultra-detailed), best illustration, (extremely delicate and beautiful), (ai protest:1.3) ![Sample Image](06.webp) (ai protest:1.6), mordred \(fate\) wears armor fighting, sword, Negative prompt: (missing digits:1.5), (extra digits:1.5), extra limb, bad art, incomplete, weird colors, blurry, poorly drawn, deformed, cartoon, b&w, missing limbs, inconsistent, multiple girls, 1boy, male, 2boys, short hair, hu tao, lumine, keqing, shenhe, mona, eula, yelan, beidou, contorted, signature, watermark, username, blurry, artist name, symmetrical, bad hands, jpeg artifacts, error, pixelated, multiple girls, 2girls, 3girls, ![Sample Image](08.webp) (ai protest:1.3), 1girl, upper body, mecha musume, headgear, (ai protest:1.3), (masterpiece), (best quality), (ultra-detailed), best illustration, (extremely delicate and beautiful) Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet ![Sample Image](09.webp) ai protest, 1girl, tattoo, masterpiece, best quality, ultra-detailed, illustration
Declan/NPR_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-12-17T09:12:22Z
--- language: mn license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_multiple_datasets datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs - bayartsogt/ulaanbal-v0 - bayartsogt/youtube-mongolian-v1 metrics: - wer - cer model-index: - name: whisper-small-mn-12 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test metrics: - type: wer value: 32.33012890539655 name: Wer - type: cer value: 13.34925204253124 name: Cer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-mn-12 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2949 - Wer: 32.3301 - Cer: 13.3493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 25000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.3012 | 1.05 | 1000 | 0.3749 | 43.2379 | 17.6739 | | 0.2171 | 2.11 | 2000 | 0.3012 | 36.7435 | 15.2029 | | 0.1732 | 3.16 | 3000 | 0.2823 | 33.4225 | 13.7561 | | 0.145 | 4.21 | 4000 | 0.2822 | 32.4995 | 13.2436 | | 0.1159 | 5.27 | 5000 | 0.2949 | 32.3301 | 13.3493 | | 0.0863 | 6.32 | 6000 | 0.3116 | 32.7234 | 13.3892 | | 0.0685 | 7.38 | 7000 | 0.3343 | 32.4776 | 13.3077 | | 0.0506 | 8.43 | 8000 | 0.3584 | 33.3952 | 13.7736 | | 0.0336 | 9.48 | 9000 | 0.3861 | 33.7011 | 13.8493 | | 0.0215 | 10.54 | 10000 | 0.4193 | 33.7011 | 14.0140 | | 0.0141 | 11.59 | 11000 | 0.4463 | 34.0343 | 14.0298 | | 0.0089 | 12.64 | 12000 | 0.4660 | 33.6137 | 13.8052 | | 0.0057 | 13.7 | 13000 | 0.4913 | 33.9797 | 13.9849 | | 0.0039 | 14.75 | 14000 | 0.5078 | 33.9906 | 14.0656 | | 0.0033 | 15.81 | 15000 | 0.5244 | 33.7721 | 13.9192 | | 0.0024 | 16.86 | 16000 | 0.5358 | 33.7612 | 13.7910 | | 0.0018 | 17.91 | 17000 | 0.5469 | 33.6465 | 13.8468 | | 0.0013 | 18.97 | 18000 | 0.5614 | 33.6683 | 13.7553 | | 0.0014 | 20.02 | 19000 | 0.5707 | 33.6574 | 13.8884 | | 0.0006 | 21.07 | 20000 | 0.5835 | 34.0671 | 14.0764 | | 0.0007 | 22.13 | 21000 | 0.5927 | 33.9742 | 14.0772 | | 0.0005 | 23.18 | 22000 | 0.5994 | 34.0398 | 14.0290 | | 0.0004 | 24.24 | 23000 | 0.6067 | 33.9469 | 13.9217 | | 0.0003 | 25.29 | 24000 | 0.6109 | 33.9688 | 13.9591 | | 0.0003 | 26.34 | 25000 | 0.6130 | 33.8267 | 13.8360 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2