modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Declan/Politico_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-12-17T10:05:27Z
--- language: - en tags: - StableDiffusion - Warhammer - wh40k license: apache-2.0 library_name: diffusers pipeline_tag: text-to-image --- StableDiffusion model trained on Sororitas Sisters of Battle dataset Use token whsororitas for Sororitas Use token whinsignia for Insignia-themed items - Samples ![](002894.cefd6aa7.3328309311.png) ![](002779.09ad1707.2535063938.png) ![](002795.595afbdc.1309005523.png) ![](002902.1a772dce.3328309311.png) ![](003036.9b1585a3.71377978.png) ![](003039.e6481d2b.71377978.png) ![](003040.ea9c2949.71377978.png) ![](003042.24418fca.1336165508.png) ![](003473.efafacf2.3715296471.png) ![](003475.5b900bb1.3715296471.png) ![](002805.d088ab5c.3987490540.png)
DicoTiar/wisdomfiy
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Unterwexi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DiegoBalam12/institute_classification
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: TaxiV2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Unterwexi/TaxiV2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Dkwkk/Da
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kfahn/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Doohae/q_encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: afl-3.0 language: - it --- <img src="https://huggingface.co/dlicari/lsg16k-Italian-Legal-BERT/resolve/main/ITALIAN_LEGAL_BERT-LSG.jpg" width="600"/> # LSG16K-Italian-LEGAL-BERT [Local-Sparse-Global](https://arxiv.org/abs/2210.15497) version of [ITALIAN-LEGAL-BERT-SC](https://huggingface.co/dlicari/Italian-Legal-BERT-SC) by replacing the full attention in the encoder part using the LSG converter script (https://github.com/ccdv-ai/convert\_checkpoint\_to\_lsg). We used the LSG attention with 16,384 maximum sequence length, 7 global tokens, 128 local block size, 128 sparse block size, 2 sparsity factors, 'norm' sparse selection pattern (select the highest norm tokens).
Doohae/roberta
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: kontogiorgos/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-100
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- language: - th license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Thai results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 th type: mozilla-foundation/common_voice_11_0 config: th split: test args: th metrics: - type: wer value: 14.060702592690913 name: Wer - type: mer value: 13.786820528393562 name: Mer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Thai This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 th,None,th_th dataset. It achieves the following results on the evaluation set: - Loss: 0.1841 - Wer: 14.060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0909 | 0.2 | 1000 | 0.3373 | 25.5752 | | 0.0426 | 1.1 | 2000 | 0.2540 | 20.9739 | | 0.0267 | 2.0 | 3000 | 0.2210 | 17.4080 | | 0.0145 | 2.2 | 4000 | 0.2134 | 15.5675 | | 0.0099 | 3.1 | 5000 | 0.1841 | 13.2285 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
DoyyingFace/bert-asian-hate-tweets-asonam-unclean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small Chinese Base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs cmn_hans_cn type: google/fleurs config: cmn_hans_cn split: test args: cmn_hans_cn metrics: - name: Wer type: wer value: 16.643891773708663 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Chinese Base This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs cmn_hans_cn dataset. It achieves the following results on the evaluation set: - Loss: 0.3573 - Wer: 16.6439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0005 | 76.0 | 1000 | 0.3573 | 16.6439 | | 0.0002 | 153.0 | 2000 | 0.3897 | 16.9749 | | 0.0001 | 230.0 | 3000 | 0.4125 | 17.2330 | | 0.0001 | 307.0 | 4000 | 0.4256 | 17.2451 | | 0.0001 | 384.0 | 5000 | 0.4330 | 17.2300 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
DoyyingFace/bert-asian-hate-tweets-concat-clean-with-unclean-valid
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- tags: - generated_from_keras_callback model-index: - name: Farras/mT5_multilingual_XLSum-kompas results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Farras/mT5_multilingual_XLSum-kompas This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.2318 - Validation Loss: 3.9491 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 920, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.6000 | 4.0879 | 0 | | 4.2318 | 3.9491 | 1 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.10.0 - Datasets 2.7.1 - Tokenizers 0.13.2
albert-large-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26,792
2022-12-17T17:15:22Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="RajMoodley/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
albert-xlarge-v2
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,973
2022-12-17T17:22:08Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="RajMoodley/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
albert-xxlarge-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42,640
2022-12-17T17:23:59Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sdcid --- ### training params ```json ```
bert-base-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,621,271
2022-12-17T17:27:29Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### novasessaodidicowe Dreambooth model trained by Murdokai with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
bert-base-german-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "exbert", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
175,983
null
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - NoAI - AntiAI --- Stable Diffusion 1.4 finetuned with a lot of NoAI/AntiAI images plus AI generated **creative** logos. Have fun 🤗 ## Sample image NoAI-Diffusion-variety v1.0 |||| |-|-|-| |![sample.jpeg](https://s3.amazonaws.com/moonup/production/uploads/1671372814032-6304d89ddae2eb7d08416301.jpeg)| ## Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "Kokohachi/NoAI-Diffusion" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16") pipe = pipe.to("cuda") prompt = "sks icon, antiai logo" image = pipe(prompt).images[0] image.save("noai.png") ``` For more detailed instructions, use-cases and examples in JAX follow the instructions [here](https://github.com/huggingface/diffusers#text-to-image-generation-with-stable-diffusion)
bert-base-german-dbmdz-cased
[ "pytorch", "jax", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,814
2022-12-17T17:32:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-vit-base-patch16-224-in21k-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.988641975308642 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-vit-base-patch16-224-in21k-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0957 - Accuracy: 0.9886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3303 | 0.99 | 147 | 0.2950 | 0.9790 | | 0.1632 | 1.99 | 294 | 0.1593 | 0.9842 | | 0.1097 | 2.99 | 441 | 0.1223 | 0.9859 | | 0.0868 | 3.99 | 588 | 0.1053 | 0.9877 | | 0.0651 | 4.99 | 735 | 0.0957 | 0.9886 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
bert-base-german-dbmdz-uncased
[ "pytorch", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68,305
2022-12-17T17:38:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PP0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -225.45 +/- 28.06 name: mean_reward verified: false --- # **PP0** Agent playing **LunarLander-v2** This is a trained model of a **PP0** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bert-base-multilingual-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4,749,504
2022-12-17T17:38:20Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jackson-lucas/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bert-base-multilingual-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
328,585
null
Access to model sd-concepts-library/roberto-amaro-ocana is restricted and you are not in the authorized list. Visit https://huggingface.co/sd-concepts-library/roberto-amaro-ocana to ask for access.
bert-large-cased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,214
2022-12-17T17:48:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: ar split: test args: ar metrics: - name: Wer type: wer value: 55.249333333333325 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5848 - Wer: 55.2493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0216 | 6.01 | 2000 | 0.4766 | 55.8587 | | 0.0014 | 12.02 | 4000 | 0.5848 | 55.2493 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
bert-large-cased-whole-word-masking
[ "pytorch", "tf", "jax", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,316
2022-12-17T17:50:05Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="sheldon-spock/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bert-large-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
388,769
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sdcid --- ### a797ea21-1729-49ee-b2c9-1b0bc3d641f7 Dreambooth model trained by tzvc with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sdcid (use that on your prompt) ![sdcid 0](https://huggingface.co/tzvc/a797ea21-1729-49ee-b2c9-1b0bc3d641f7/resolve/main/concept_images/sdcid_%281%29.jpg)![sdcid 1](https://huggingface.co/tzvc/a797ea21-1729-49ee-b2c9-1b0bc3d641f7/resolve/main/concept_images/sdcid_%282%29.jpg)![sdcid 2](https://huggingface.co/tzvc/a797ea21-1729-49ee-b2c9-1b0bc3d641f7/resolve/main/concept_images/sdcid_%283%29.jpg)![sdcid 3](https://huggingface.co/tzvc/a797ea21-1729-49ee-b2c9-1b0bc3d641f7/resolve/main/concept_images/sdcid_%284%29.jpg)![sdcid 4](https://huggingface.co/tzvc/a797ea21-1729-49ee-b2c9-1b0bc3d641f7/resolve/main/concept_images/sdcid_%285%29.jpg)![sdcid 5](https://huggingface.co/tzvc/a797ea21-1729-49ee-b2c9-1b0bc3d641f7/resolve/main/concept_images/sdcid_%286%29.jpg)![sdcid 6](https://huggingface.co/tzvc/a797ea21-1729-49ee-b2c9-1b0bc3d641f7/resolve/main/concept_images/sdcid_%287%29.jpg)![sdcid 7](https://huggingface.co/tzvc/a797ea21-1729-49ee-b2c9-1b0bc3d641f7/resolve/main/concept_images/sdcid_%288%29.jpg)![sdcid 8](https://huggingface.co/tzvc/a797ea21-1729-49ee-b2c9-1b0bc3d641f7/resolve/main/concept_images/sdcid_%289%29.jpg)![sdcid 9](https://huggingface.co/tzvc/a797ea21-1729-49ee-b2c9-1b0bc3d641f7/resolve/main/concept_images/sdcid_%2810%29.jpg)
bert-large-uncased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
480,510
2022-12-17T17:53:38Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sheldon-spock/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bert-large-uncased-whole-word-masking
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
76,685
2022-12-17T17:54:46Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: J4F4N4F/Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
distilbert-base-cased-distilled-squad
[ "pytorch", "tf", "rust", "safetensors", "openvino", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "model-index", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
257,745
2022-12-17T18:01:29Z
--- license: mit --- ### painting made by bruegel V4 on Stable Diffusion This version includes entire paintings, as well as close ups. This is the `<bruegel-style-artwork>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Using stabilityai/stable-diffusion-2-base Example output: ![<bruegel> 500](https://i.imgur.com/C8jcA0v.jpg) Here is the new concept you will be able to use as a `style`: ![<bruegel-style-artwork> 0](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/58.jpeg) ![<bruegel-style-artwork> 1](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/91.jpeg) ![<bruegel-style-artwork> 2](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/87.jpeg) ![<bruegel-style-artwork> 3](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/121.jpeg) ![<bruegel-style-artwork> 4](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/146.jpeg) ![<bruegel-style-artwork> 5](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/112.jpeg) ![<bruegel-style-artwork> 6](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/186.jpeg) ![<bruegel-style-artwork> 7](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/139.jpeg) ![<bruegel-style-artwork> 8](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/120.jpeg) ![<bruegel-style-artwork> 9](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/44.jpeg) ![<bruegel-style-artwork> 10](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/69.jpeg) ![<bruegel-style-artwork> 11](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/148.jpeg) ![<bruegel-style-artwork> 12](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/98.jpeg) ![<bruegel-style-artwork> 13](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/244.jpeg) ![<bruegel-style-artwork> 14](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/107.jpeg) ![<bruegel-style-artwork> 15](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/197.jpeg) ![<bruegel-style-artwork> 16](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/132.jpeg) ![<bruegel-style-artwork> 17](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/71.jpeg) ![<bruegel-style-artwork> 18](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/8.jpeg) ![<bruegel-style-artwork> 19](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/125.jpeg) ![<bruegel-style-artwork> 20](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/154.jpeg) ![<bruegel-style-artwork> 21](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/65.jpeg) ![<bruegel-style-artwork> 22](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/74.jpeg) ![<bruegel-style-artwork> 23](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/209.jpeg) ![<bruegel-style-artwork> 24](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/226.jpeg) ![<bruegel-style-artwork> 25](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/129.jpeg) ![<bruegel-style-artwork> 26](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/249.jpeg) ![<bruegel-style-artwork> 27](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/82.jpeg) ![<bruegel-style-artwork> 28](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/103.jpeg) ![<bruegel-style-artwork> 29](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/48.jpeg) ![<bruegel-style-artwork> 30](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/183.jpeg) ![<bruegel-style-artwork> 31](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/62.jpeg) ![<bruegel-style-artwork> 32](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/99.jpeg) ![<bruegel-style-artwork> 33](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/224.jpeg) ![<bruegel-style-artwork> 34](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/145.jpeg) ![<bruegel-style-artwork> 35](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/12.jpeg) ![<bruegel-style-artwork> 36](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/116.jpeg) ![<bruegel-style-artwork> 37](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/27.jpeg) ![<bruegel-style-artwork> 38](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/153.jpeg) ![<bruegel-style-artwork> 39](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/26.jpeg) ![<bruegel-style-artwork> 40](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/152.jpeg) ![<bruegel-style-artwork> 41](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/63.jpeg) ![<bruegel-style-artwork> 42](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/47.jpeg) ![<bruegel-style-artwork> 43](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/40.jpeg) ![<bruegel-style-artwork> 44](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/123.jpeg) ![<bruegel-style-artwork> 45](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/96.jpeg) ![<bruegel-style-artwork> 46](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/237.jpeg) ![<bruegel-style-artwork> 47](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/54.jpeg) ![<bruegel-style-artwork> 48](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/105.jpeg) ![<bruegel-style-artwork> 49](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/134.jpeg) ![<bruegel-style-artwork> 50](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/89.jpeg) ![<bruegel-style-artwork> 51](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/174.jpeg) ![<bruegel-style-artwork> 52](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/4.jpeg) ![<bruegel-style-artwork> 53](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/228.jpeg) ![<bruegel-style-artwork> 54](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/1.jpeg) ![<bruegel-style-artwork> 55](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/230.jpeg) ![<bruegel-style-artwork> 56](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/75.jpeg) ![<bruegel-style-artwork> 57](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/73.jpeg) ![<bruegel-style-artwork> 58](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/221.jpeg) ![<bruegel-style-artwork> 59](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/101.jpeg) ![<bruegel-style-artwork> 60](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/140.jpeg) ![<bruegel-style-artwork> 61](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/212.jpeg) ![<bruegel-style-artwork> 62](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/220.jpeg) ![<bruegel-style-artwork> 63](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/43.jpeg) ![<bruegel-style-artwork> 64](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/110.jpeg) ![<bruegel-style-artwork> 65](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/199.jpeg) ![<bruegel-style-artwork> 66](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/19.jpeg) ![<bruegel-style-artwork> 67](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/104.jpeg) ![<bruegel-style-artwork> 68](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/187.jpeg) ![<bruegel-style-artwork> 69](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/168.jpeg) ![<bruegel-style-artwork> 70](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/164.jpeg) ![<bruegel-style-artwork> 71](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/185.jpeg) ![<bruegel-style-artwork> 72](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/159.jpeg) ![<bruegel-style-artwork> 73](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/155.jpeg) ![<bruegel-style-artwork> 74](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/2.jpeg) ![<bruegel-style-artwork> 75](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/0.jpeg) ![<bruegel-style-artwork> 76](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/217.jpeg) ![<bruegel-style-artwork> 77](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/128.jpeg) ![<bruegel-style-artwork> 78](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/205.jpeg) ![<bruegel-style-artwork> 79](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/248.jpeg) ![<bruegel-style-artwork> 80](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/250.jpeg) ![<bruegel-style-artwork> 81](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/117.jpeg) ![<bruegel-style-artwork> 82](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/36.jpeg) ![<bruegel-style-artwork> 83](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/227.jpeg) ![<bruegel-style-artwork> 84](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/137.jpeg) ![<bruegel-style-artwork> 85](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/72.jpeg) ![<bruegel-style-artwork> 86](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/18.jpeg) ![<bruegel-style-artwork> 87](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/222.jpeg) ![<bruegel-style-artwork> 88](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/86.jpeg) ![<bruegel-style-artwork> 89](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/61.jpeg) ![<bruegel-style-artwork> 90](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/126.jpeg) ![<bruegel-style-artwork> 91](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/171.jpeg) ![<bruegel-style-artwork> 92](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/232.jpeg) ![<bruegel-style-artwork> 93](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/124.jpeg) ![<bruegel-style-artwork> 94](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/191.jpeg) ![<bruegel-style-artwork> 95](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/102.jpeg) ![<bruegel-style-artwork> 96](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/24.jpeg) ![<bruegel-style-artwork> 97](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/113.jpeg) ![<bruegel-style-artwork> 98](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/192.jpeg) ![<bruegel-style-artwork> 99](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/131.jpeg) ![<bruegel-style-artwork> 100](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/182.jpeg) ![<bruegel-style-artwork> 101](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/198.jpeg) ![<bruegel-style-artwork> 102](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/207.jpeg) ![<bruegel-style-artwork> 103](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/59.jpeg) ![<bruegel-style-artwork> 104](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/204.jpeg) ![<bruegel-style-artwork> 105](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/97.jpeg) ![<bruegel-style-artwork> 106](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/194.jpeg) ![<bruegel-style-artwork> 107](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/211.jpeg) ![<bruegel-style-artwork> 108](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/247.jpeg) ![<bruegel-style-artwork> 109](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/229.jpeg) ![<bruegel-style-artwork> 110](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/6.jpeg) ![<bruegel-style-artwork> 111](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/45.jpeg) ![<bruegel-style-artwork> 112](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/25.jpeg) ![<bruegel-style-artwork> 113](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/147.jpeg) ![<bruegel-style-artwork> 114](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/11.jpeg) ![<bruegel-style-artwork> 115](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/119.jpeg) ![<bruegel-style-artwork> 116](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/34.jpeg) ![<bruegel-style-artwork> 117](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/33.jpeg) ![<bruegel-style-artwork> 118](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/9.jpeg) ![<bruegel-style-artwork> 119](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/202.jpeg) ![<bruegel-style-artwork> 120](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/83.jpeg) ![<bruegel-style-artwork> 121](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/165.jpeg) ![<bruegel-style-artwork> 122](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/7.jpeg) ![<bruegel-style-artwork> 123](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/68.jpeg) ![<bruegel-style-artwork> 124](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/46.jpeg) ![<bruegel-style-artwork> 125](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/114.jpeg) ![<bruegel-style-artwork> 126](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/14.jpeg) ![<bruegel-style-artwork> 127](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/127.jpeg) ![<bruegel-style-artwork> 128](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/136.jpeg) ![<bruegel-style-artwork> 129](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/149.jpeg) ![<bruegel-style-artwork> 130](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/176.jpeg) ![<bruegel-style-artwork> 131](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/184.jpeg) ![<bruegel-style-artwork> 132](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/77.jpeg) ![<bruegel-style-artwork> 133](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/201.jpeg) ![<bruegel-style-artwork> 134](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/218.jpeg) ![<bruegel-style-artwork> 135](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/231.jpeg) ![<bruegel-style-artwork> 136](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/142.jpeg) ![<bruegel-style-artwork> 137](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/188.jpeg) ![<bruegel-style-artwork> 138](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/80.jpeg) ![<bruegel-style-artwork> 139](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/108.jpeg) ![<bruegel-style-artwork> 140](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/150.jpeg) ![<bruegel-style-artwork> 141](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/175.jpeg) ![<bruegel-style-artwork> 142](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/162.jpeg) ![<bruegel-style-artwork> 143](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/234.jpeg) ![<bruegel-style-artwork> 144](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/118.jpeg) ![<bruegel-style-artwork> 145](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/163.jpeg) ![<bruegel-style-artwork> 146](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/79.jpeg) ![<bruegel-style-artwork> 147](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/70.jpeg) ![<bruegel-style-artwork> 148](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/20.jpeg) ![<bruegel-style-artwork> 149](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/22.jpeg) ![<bruegel-style-artwork> 150](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/10.jpeg) ![<bruegel-style-artwork> 151](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/84.jpeg) ![<bruegel-style-artwork> 152](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/42.jpeg) ![<bruegel-style-artwork> 153](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/66.jpeg) ![<bruegel-style-artwork> 154](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/240.jpeg) ![<bruegel-style-artwork> 155](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/180.jpeg) ![<bruegel-style-artwork> 156](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/233.jpeg) ![<bruegel-style-artwork> 157](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/93.jpeg) ![<bruegel-style-artwork> 158](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/167.jpeg) ![<bruegel-style-artwork> 159](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/95.jpeg) ![<bruegel-style-artwork> 160](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/92.jpeg) ![<bruegel-style-artwork> 161](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/242.jpeg) ![<bruegel-style-artwork> 162](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/239.jpeg) ![<bruegel-style-artwork> 163](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/213.jpeg) ![<bruegel-style-artwork> 164](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/52.jpeg) ![<bruegel-style-artwork> 165](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/210.jpeg) ![<bruegel-style-artwork> 166](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/78.jpeg) ![<bruegel-style-artwork> 167](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/193.jpeg) ![<bruegel-style-artwork> 168](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/166.jpeg) ![<bruegel-style-artwork> 169](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/236.jpeg) ![<bruegel-style-artwork> 170](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/38.jpeg) ![<bruegel-style-artwork> 171](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/35.jpeg) ![<bruegel-style-artwork> 172](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/173.jpeg) ![<bruegel-style-artwork> 173](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/195.jpeg) ![<bruegel-style-artwork> 174](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/156.jpeg) ![<bruegel-style-artwork> 175](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/115.jpeg) ![<bruegel-style-artwork> 176](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/178.jpeg) ![<bruegel-style-artwork> 177](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/49.jpeg) ![<bruegel-style-artwork> 178](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/158.jpeg) ![<bruegel-style-artwork> 179](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/215.jpeg) ![<bruegel-style-artwork> 180](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/28.jpeg) ![<bruegel-style-artwork> 181](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/235.jpeg) ![<bruegel-style-artwork> 182](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/190.jpeg) ![<bruegel-style-artwork> 183](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/177.jpeg) ![<bruegel-style-artwork> 184](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/32.jpeg) ![<bruegel-style-artwork> 185](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/94.jpeg) ![<bruegel-style-artwork> 186](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/223.jpeg) ![<bruegel-style-artwork> 187](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/122.jpeg) ![<bruegel-style-artwork> 188](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/203.jpeg) ![<bruegel-style-artwork> 189](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/172.jpeg) ![<bruegel-style-artwork> 190](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/196.jpeg) ![<bruegel-style-artwork> 191](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/111.jpeg) ![<bruegel-style-artwork> 192](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/64.jpeg) ![<bruegel-style-artwork> 193](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/241.jpeg) ![<bruegel-style-artwork> 194](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/135.jpeg) ![<bruegel-style-artwork> 195](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/3.jpeg) ![<bruegel-style-artwork> 196](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/88.jpeg) ![<bruegel-style-artwork> 197](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/246.jpeg) ![<bruegel-style-artwork> 198](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/13.jpeg) ![<bruegel-style-artwork> 199](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/138.jpeg) ![<bruegel-style-artwork> 200](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/161.jpeg) ![<bruegel-style-artwork> 201](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/15.jpeg) ![<bruegel-style-artwork> 202](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/5.jpeg) ![<bruegel-style-artwork> 203](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/85.jpeg) ![<bruegel-style-artwork> 204](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/81.jpeg) ![<bruegel-style-artwork> 205](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/16.jpeg) ![<bruegel-style-artwork> 206](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/133.jpeg) ![<bruegel-style-artwork> 207](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/206.jpeg) ![<bruegel-style-artwork> 208](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/181.jpeg) ![<bruegel-style-artwork> 209](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/169.jpeg) ![<bruegel-style-artwork> 210](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/189.jpeg) ![<bruegel-style-artwork> 211](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/100.jpeg) ![<bruegel-style-artwork> 212](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/109.jpeg) ![<bruegel-style-artwork> 213](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/200.jpeg) ![<bruegel-style-artwork> 214](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/55.jpeg) ![<bruegel-style-artwork> 215](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/37.jpeg) ![<bruegel-style-artwork> 216](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/130.jpeg) ![<bruegel-style-artwork> 217](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/60.jpeg) ![<bruegel-style-artwork> 218](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/21.jpeg) ![<bruegel-style-artwork> 219](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/219.jpeg) ![<bruegel-style-artwork> 220](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/53.jpeg) ![<bruegel-style-artwork> 221](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/170.jpeg) ![<bruegel-style-artwork> 222](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/31.jpeg) ![<bruegel-style-artwork> 223](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/141.jpeg) ![<bruegel-style-artwork> 224](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/17.jpeg) ![<bruegel-style-artwork> 225](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/23.jpeg) ![<bruegel-style-artwork> 226](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/51.jpeg) ![<bruegel-style-artwork> 227](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/30.jpeg) ![<bruegel-style-artwork> 228](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/243.jpeg) ![<bruegel-style-artwork> 229](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/50.jpeg) ![<bruegel-style-artwork> 230](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/76.jpeg) ![<bruegel-style-artwork> 231](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/179.jpeg) ![<bruegel-style-artwork> 232](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/208.jpeg) ![<bruegel-style-artwork> 233](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/39.jpeg) ![<bruegel-style-artwork> 234](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/29.jpeg) ![<bruegel-style-artwork> 235](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/225.jpeg) ![<bruegel-style-artwork> 236](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/144.jpeg) ![<bruegel-style-artwork> 237](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/238.jpeg) ![<bruegel-style-artwork> 238](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/106.jpeg) ![<bruegel-style-artwork> 239](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/151.jpeg) ![<bruegel-style-artwork> 240](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/41.jpeg) ![<bruegel-style-artwork> 241](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/157.jpeg) ![<bruegel-style-artwork> 242](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/216.jpeg) ![<bruegel-style-artwork> 243](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/56.jpeg) ![<bruegel-style-artwork> 244](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/245.jpeg) ![<bruegel-style-artwork> 245](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/57.jpeg) ![<bruegel-style-artwork> 246](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/160.jpeg) ![<bruegel-style-artwork> 247](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/214.jpeg) ![<bruegel-style-artwork> 248](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/143.jpeg) ![<bruegel-style-artwork> 249](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/67.jpeg) ![<bruegel-style-artwork> 250](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/90.jpeg)
distilbert-base-multilingual-cased
[ "pytorch", "tf", "onnx", "safetensors", "distilbert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,339,633
2022-12-17T18:11:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jackson-lucas/q-Taxi-v3-v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
distilbert-base-uncased-distilled-squad
[ "pytorch", "tf", "tflite", "coreml", "safetensors", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
100,097
2022-12-17T18:12:34Z
--- license: openrail --- Hypernetworks of the Musical Isotope girls: Kafu, Sekai, Rime, Coko, and Haru. ![02931-2547899982-masterpiece, best quality, anime girl, Kafu, looking at viewer, modeling, {{{{{{masterpiece}}}}}}, white hair, blue eyes, diamo.png](https://s3.amazonaws.com/moonup/production/uploads/1671301047195-6303c4ceeedc089484c4d880.png) ![02939-3352486538-masterpiece, best quality, anime girl, Sekai, looking at viewer, modeling, {{{{{{masterpiece}}}}}}, white hair, blue eyes, star.png](https://s3.amazonaws.com/moonup/production/uploads/1671301437935-6303c4ceeedc089484c4d880.png) ![03003-2425498032-masterpiece, best quality, anime girl, Rime, looking at viewer, modeling, {{{{{{masterpiece}}}}}}, white hair, blue eyes, star s.png](https://s3.amazonaws.com/moonup/production/uploads/1671301517557-6303c4ceeedc089484c4d880.png) ![02992-670380635-masterpiece, best quality, anime girl, Coko, animal ears, looking at viewer, modeling, {{{{{{masterpiece}}}}}}, white hair, blue.png](https://s3.amazonaws.com/moonup/production/uploads/1671301535727-6303c4ceeedc089484c4d880.png) ![02996-2836804016-masterpiece, best quality, anime girl, Haru, looking at viewer, modeling, {{{{{{masterpiece}}}}}}, white hair, blue eyes, headph.png](https://s3.amazonaws.com/moonup/production/uploads/1671301554001-6303c4ceeedc089484c4d880.png)
distilbert-base-uncased-finetuned-sst-2-english
[ "pytorch", "tf", "rust", "safetensors", "distilbert", "text-classification", "en", "dataset:sst2", "dataset:glue", "arxiv:1910.01108", "doi:10.57967/hf/0181", "transformers", "license:apache-2.0", "model-index", "has_space" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,060,704
2022-12-17T18:13:59Z
Autoregressive prompt augmenter for https://medium.com/@enryu9000/anifusion-sd-91a59431a6dd.
distilbert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "distilbert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10,887,471
2022-12-17T18:16:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.26 +/- 14.26 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
1503277708/namo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-17T21:57:04Z
--- tags: - conversational --- # Naruto DialoGPT Model
AI-Lab-Makerere/en_lg
[ "pytorch", "marian", "text2text-generation", "unk", "dataset:Eric Peter/autonlp-data-EN-LUG", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-12-18T04:10:39Z
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-vi-25p results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-vi-25p This model was trained from scratch on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.8293 - Wer: 0.4109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9542 | 1.31 | 400 | 1.4443 | 0.5703 | | 1.276 | 2.62 | 800 | 1.4606 | 0.5736 | | 1.1311 | 3.93 | 1200 | 1.4552 | 0.5186 | | 0.9519 | 5.25 | 1600 | 1.4477 | 0.5300 | | 0.8293 | 6.56 | 2000 | 1.4166 | 0.5097 | | 0.7555 | 7.87 | 2400 | 1.4100 | 0.4906 | | 0.6724 | 9.18 | 2800 | 1.4982 | 0.4880 | | 0.6038 | 10.49 | 3200 | 1.4524 | 0.4945 | | 0.5338 | 11.8 | 3600 | 1.4995 | 0.4798 | | 0.4988 | 13.11 | 4000 | 1.6715 | 0.4653 | | 0.461 | 14.43 | 4400 | 1.5699 | 0.4552 | | 0.4154 | 15.74 | 4800 | 1.5762 | 0.4557 | | 0.3822 | 17.05 | 5200 | 1.5978 | 0.4471 | | 0.3466 | 18.36 | 5600 | 1.6579 | 0.4512 | | 0.3226 | 19.67 | 6000 | 1.6825 | 0.4378 | | 0.2885 | 20.98 | 6400 | 1.7376 | 0.4421 | | 0.2788 | 22.29 | 6800 | 1.7150 | 0.4300 | | 0.249 | 23.61 | 7200 | 1.7073 | 0.4263 | | 0.2317 | 24.92 | 7600 | 1.7349 | 0.4200 | | 0.2171 | 26.23 | 8000 | 1.7419 | 0.4186 | | 0.1963 | 27.54 | 8400 | 1.8438 | 0.4144 | | 0.1906 | 28.85 | 8800 | 1.8293 | 0.4109 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
AIDA-UPM/MSTSb_stsb-xlm-r-multilingual
[ "pytorch", "xlm-roberta", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers" ]
sentence-similarity
{ "architectures": [ "XLMRobertaModel" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
2022-12-18T04:36:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.58 +/- 16.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AVSilva/bertimbau-large-fine-tuned-md
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Patil/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AdapterHub/roberta-base-pf-commonsense_qa
[ "roberta", "en", "dataset:commonsense_qa", "arxiv:2104.08247", "adapter-transformers", "adapterhub:comsense/csqa" ]
null
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- language: - "vi" tags: - "vietnamese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "Hai cái đầu thì tốt hơn một" --- # phobert-large-vietnamese-ud-goeswith ## Model Description This is a PhoBERT model pre-trained on Vietnamese texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [phobert-large](https://huggingface.co/vinai/phobert-large). ## How to Use ```py class UDgoeswithViNLP(object): def __init__(self,bert): from transformers import AutoTokenizer,AutoModelForTokenClassification from ViNLP import word_tokenize self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForTokenClassification.from_pretrained(bert) self.vinlp=word_tokenize def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds t=self.vinlp(text) w=self.tokenizer(t,add_special_tokens=False)["input_ids"] z=[] for i,j in enumerate(t): if j.find("_")>0 and [k for k in w[i] if k==self.tokenizer.unk_token_id]!=[]: w[i]=self.tokenizer(j.replace("_"," "))["input_ids"][1:-1] if [k for k in w[i] if k==self.tokenizer.unk_token_id]!=[]: w[i]=[self.tokenizer.unk_token_id] z.append(j) v=[self.tokenizer.cls_token_id]+sum(w,[])+[self.tokenizer.sep_token_id] x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)] with torch.no_grad(): e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:] r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())] e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan) g=self.model.config.label2id["X|_|goeswith"] r=numpy.tri(e.shape[0]) for i in range(e.shape[0]): for j in range(i+2,e.shape[1]): r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1 e[:,:,g]+=numpy.where(r==0,0,numpy.nan) m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan) m[1:,1:]=numpy.nanmax(e,axis=2).transpose() p=numpy.zeros(m.shape) p[1:,1:]=numpy.nanargmax(e,axis=2).transpose() for i in range(1,m.shape[0]): m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan) m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text+"\n" q=[self.model.config.id2label[p[i,j]].split("|") for i,j in enumerate(h)] t=[i.replace("_"," ") for i in t] if len(t)!=len(v)-2: t=[z.pop(0) if i==self.tokenizer.unk_token else i.replace("_"," ") for i in self.tokenizer.convert_ids_to_tokens(v[1:-1])] for i,j in reversed(list(enumerate(q[2:],2))): if j[-1]=="goeswith" and set([k[-1] for k in q[h[i]+1:i+1]])=={"goeswith"}: h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a] t[i-2]=(t[i-2][0:-2] if t[i-2].endswith("@@") else t[i-2]+" ")+t.pop(i-1) q.pop(i) t=[i[0:-2].strip() if i.endswith("@@") else i.strip() for i in t] for i,j in enumerate(t,1): u+="\t".join([str(i),j,"_",q[i][0],"_","|".join(q[i][1:-1]),str(h[i]),q[i][-1],"_","_"])+"\n" return u+"\n" nlp=UDgoeswithViNLP("KoichiYasuoka/phobert-large-vietnamese-ud-goeswith") print(nlp("Hai cái đầu thì tốt hơn một.")) ``` with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/) and [ViNLP](https://pypi.org/project/ViNLP/). Or without them: ``` from transformers import pipeline nlp=pipeline("universal-dependencies","KoichiYasuoka/phobert-large-vietnamese-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") print(nlp("Hai cái đầu thì tốt hơn một.")) ```
AdapterHub/roberta-base-pf-scicite
[ "roberta", "en", "dataset:scicite", "arxiv:2104.08247", "adapter-transformers", "text-classification" ]
text-classification
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
Access to model lindaines/1 is restricted and you are not in the authorized list. Visit https://huggingface.co/lindaines/1 to ask for access.
Akashpb13/xlsr_hungarian_new
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hu", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -159.88 +/- 67.16 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'lotek93/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
Aleksandra/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - tedlium2 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `pyf98/tedlium2_conformer_e15` This model was trained by Yifan Peng using tedlium2 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 8ee35df7260008e9a8a20d9a9b64773a02f706ef pip install -e . cd egs2/tedlium2/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/tedlium2_conformer_e15 ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Dec 17 04:27:41 CST 2022` - python version: `3.9.15 (main, Nov 24 2022, 14:31:59) [GCC 11.2.0]` - espnet version: `espnet 202209` - pytorch version: `pytorch 1.12.1` - Git hash: `26f432bc859e5e40cac1a86042d498ba7baffbb0` - Commit date: `Fri Dec 9 02:16:01 2022 +0000` ## asr_train_asr_conformer_e15_raw_en_bpe500_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev|466|14671|93.5|4.1|2.5|1.0|7.5|70.0| |decode_asr_asr_model_valid.acc.ave/test|1155|27500|93.4|4.0|2.6|1.0|7.6|64.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev|466|78259|97.0|0.8|2.1|0.8|3.8|70.0| |decode_asr_asr_model_valid.acc.ave/test|1155|145066|97.0|0.9|2.2|0.9|4.0|64.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev|466|28296|95.0|2.8|2.2|0.8|5.9|70.0| |decode_asr_asr_model_valid.acc.ave/test|1155|52113|95.1|2.5|2.4|0.9|5.8|64.2| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_e15.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_e15_raw_en_bpe500_sp ngpu: 1 seed: 2022 num_workers: 6 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 59747 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 50000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe500_sp/train/speech_shape - exp/asr_stats_raw_en_bpe500_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe500_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe500_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - s - ▁the - t - ▁a - ▁and - ▁to - d - e - ▁of - '''' - n - ing - ▁in - ▁i - ▁that - i - a - l - p - m - y - o - ▁it - ▁we - c - u - ▁you - ed - ▁ - r - ▁is - re - ▁this - ar - g - ▁so - al - b - ▁s - or - ▁f - ▁c - in - k - f - ▁for - ic - er - le - ▁be - ▁do - ▁re - ve - ▁e - ▁w - ▁was - es - ▁they - ly - h - ▁on - v - ▁are - ri - ▁have - an - ▁what - ▁with - ▁t - w - ur - it - ent - ▁can - ▁he - ▁but - ra - ce - ▁me - ▁b - ▁ma - ▁p - ll - ▁st - ▁one - 'on' - ▁about - th - ▁de - en - ▁all - ▁not - il - ▁g - ch - at - ▁there - ▁mo - ter - ation - tion - ▁at - ▁my - ro - ▁as - te - ▁le - ▁con - ▁like - ▁people - ▁or - ▁an - el - ▁if - ▁from - ver - ▁su - ▁co - ate - ▁these - ol - ci - ▁now - ▁see - ▁out - ▁our - ion - ▁know - ect - ▁just - as - ▁ex - ▁ch - ▁d - ▁when - ▁very - ▁think - ▁who - ▁because - ▁go - ▁up - ▁us - ▁pa - ▁no - ies - ▁di - ▁ho - om - ive - ▁get - id - ▁o - ▁hi - un - ▁how - ▁by - ir - et - ck - ity - ▁po - ul - ▁which - ▁mi - ▁some - z - ▁sp - ▁un - ▁going - ▁pro - ist - ▁se - ▁look - ▁time - ment - de - ▁more - ▁had - ng - ▁would - ge - la - ▁here - ▁really - x - ▁your - ▁them - us - me - ▁en - ▁two - ▁k - ▁li - ▁world - ne - ow - ▁way - ▁want - ▁work - ▁don - ▁lo - ▁fa - ▁were - ▁their - age - vi - ▁ha - ac - der - est - ▁bo - am - ▁other - able - ▁actually - ▁sh - ▁make - ▁ba - ▁la - ine - ▁into - ▁where - ▁could - ▁comp - ting - ▁has - ▁will - ▁ne - j - ical - ally - ▁vi - ▁things - ▁te - igh - ▁say - ▁years - ers - ▁ra - ther - ▁than - ru - ▁ro - op - ▁did - ▁any - ▁new - ound - ig - ▁well - mo - ▁she - ▁na - ▁been - he - ▁thousand - ▁car - ▁take - ▁right - ▁then - ▁need - ▁start - ▁hundred - ▁something - ▁over - ▁com - ia - ▁kind - um - if - ▁those - ▁first - ▁pre - ta - ▁said - ize - end - ▁even - ▁thing - one - ▁back - ite - ▁every - ▁little - ry - ▁life - ▁much - ke - ▁also - ▁most - ant - per - ▁three - ▁come - ▁lot - ance - ▁got - ▁talk - ▁per - ▁inter - ▁sa - ▁use - ▁mu - ▁part - ish - ence - ▁happen - ▁bi - ▁mean - ough - ▁qu - ▁bu - ▁day - ▁ga - ▁only - ▁many - ▁different - ▁dr - ▁th - ▁show - ful - ▁down - ated - ▁good - ▁tra - ▁around - ▁idea - ▁human - ous - ▁put - ▁through - ▁five - ▁why - ▁change - ▁real - ff - ible - ▁fact - ▁same - ▁jo - ▁live - ▁year - ▁problem - ▁ph - ▁four - ▁give - ▁big - ▁tell - ▁great - ▁try - ▁va - ▁ru - ▁system - ▁six - ▁plan - ▁place - ▁build - ▁called - ▁again - ▁point - ▁twenty - ▁percent - ▁nine - ▁find - ▁app - ▁after - ▁long - ▁eight - ▁imp - ▁gene - ▁design - ▁today - ▁should - ▁made - ious - ▁came - ▁learn - ▁last - ▁own - way - ▁turn - ▁seven - ▁high - ▁question - ▁person - ▁brain - ▁important - ▁another - ▁thought - ▁trans - ▁create - ness - ▁hu - ▁power - ▁act - land - ▁play - ▁sort - ▁old - ▁before - ▁course - ▁understand - ▁feel - ▁might - ▁each - ▁million - ▁better - ▁together - ▁ago - ▁example - ▁help - ▁story - ▁next - ▁hand - ▁school - ▁water - ▁develop - ▁technology - que - ▁second - ▁grow - ▁still - ▁cell - ▁believe - ▁number - ▁small - ▁between - qui - ▁data - ▁become - ▁america - ▁maybe - ▁space - ▁project - ▁organ - ▁vo - ▁children - ▁book - graph - ▁open - ▁fifty - ▁picture - ▁health - ▁thirty - ▁africa - ▁reason - ▁large - ▁hard - ▁computer - ▁always - ▁sense - ▁money - ▁women - ▁everything - ▁information - ▁country - ▁teach - ▁energy - ▁experience - ▁food - ▁process - qua - ▁interesting - ▁future - ▁science - q - '0' - '5' - '6' - '9' - '3' - '8' - '4' - N - A - '7' - S - G - F - R - L - U - E - T - H - _ - B - D - J - M - ă - ō - ť - '2' - '-' - '1' - C - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe500_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 15 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 preprocessor: default preprocessor_conf: {} required: - output_dir - token_list version: '202209' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
AlekseyKulnevich/Pegasus-HeaderGeneration
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - en thumbnail: "https://staticassetbucket.s3.us-west-1.amazonaws.com/avatar_grid.png" tags: - dreambooth - stable-diffusion - stable-diffusion-diffusers - text-to-image --- # Dreambooth style: Avatar __Dreambooth finetuning of Stable Diffusion (v1.5.1) on Avatar art style by [Lambda Labs](https://lambdalabs.com/).__ ## About This text-to-image stable diffusion model was trained with dreambooth. Put in a text prompt and generate your own Avatar style image! ![pk1.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/avatar_grid.png) ## Usage To run model locally: ```bash pip install accelerate torchvision transformers>=4.21.0 ftfy tensorboard modelcards ``` ```python import torch from diffusers import StableDiffusionPipeline from torch import autocast pipe = StableDiffusionPipeline.from_pretrained("lambdalabs/dreambooth-avatar", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "Yoda, avatarart style" scale = 7.5 n_samples = 4 with autocast("cuda"): images = pipe(n_samples*[prompt], guidance_scale=scale).images for idx, im in enumerate(images): im.save(f"{idx:06}.png") ``` ## Model description Base model is Stable Diffusion v1.5 and was trained using Dreambooth with 60 input images sized 512x512 displaying Avatar character images. The model is learning to associate Avatar images with the style tokenized as 'avatarart style'. Prior preservation was used during training using the class 'Person' to avoid training bleeding into the representations for that class. Training ran on 2xA6000 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud) for 700 steps, batch size 4 (a couple hours, at a cost of about $4). Author: Eole Cervenka
Andrianos/bert-base-greek-punctuation-prediction-finetuned
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/peterjin0703/ddpm-butterflies-128/tensorboard?#scalars)
Ann2020/model-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # waynedsouza/only_names This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('waynedsouza/only_names') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=waynedsouza/only_names) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6957 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Anomic/DialoGPT-medium-loki
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-19T09:07:28Z
--- language: - hy license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: hy-AM split: test args: hy-AM metrics: - name: Wer type: wer value: 39.73684210526316 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4380 - Wer: 39.7368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0001 | 34.0 | 1500 | 0.4380 | 39.7368 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Anonymous0230/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="AgentXXX/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AnonymousSub/AR_EManuals-BERT
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-12-19T09:18:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9320244184128031 - name: Recall type: recall value: 0.9506900033658701 - name: F1 type: f1 value: 0.9412646838290426 - name: Accuracy type: accuracy value: 0.9867398598928593 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0598 - Precision: 0.9320 - Recall: 0.9507 - F1: 0.9413 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0873 | 1.0 | 1756 | 0.0708 | 0.9148 | 0.9320 | 0.9233 | 0.9821 | | 0.0334 | 2.0 | 3512 | 0.0648 | 0.9270 | 0.9485 | 0.9376 | 0.9860 | | 0.0181 | 3.0 | 5268 | 0.0598 | 0.9320 | 0.9507 | 0.9413 | 0.9867 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
AnonymousSub/AR_bert-base-uncased
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: outputs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1299 - F1: 0.7010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 256 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 23 | 0.2190 | 0.7611 | | No log | 2.0 | 46 | 0.1212 | 0.2309 | | No log | 3.0 | 69 | 0.1235 | 0.6229 | | No log | 4.0 | 92 | 0.1299 | 0.7010 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
AnonymousSub/AR_rule_based_roberta_bert_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Antiraedus/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/AR_rule_based_roberta_hier_quadruplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: KoT5-test-add-data-prefix-summary results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KoT5-test-add-data-prefix-summary This model is a fine-tuned version of [hyorea1/KoT5-test-add-data-prefix-summary](https://huggingface.co/hyorea1/KoT5-test-add-data-prefix-summary) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1781 - Rouge1: 11.8533 - Rouge2: 2.9172 - Rougel: 11.715 - Rougelsum: 11.7278 - Gen Len: 35.164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 100 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 1.4974 | 0.32 | 800 | 1.1935 | 11.0529 | 3.0383 | 10.9308 | 10.9481 | 34.8809 | | 1.0394 | 0.64 | 1600 | 1.1979 | 11.2828 | 2.8757 | 11.1691 | 11.1952 | 35.6412 | | 1.2385 | 0.97 | 2400 | 1.1914 | 10.8007 | 3.0248 | 10.696 | 10.7022 | 34.8081 | | 1.4298 | 1.29 | 3200 | 1.1916 | 10.8949 | 2.9547 | 10.8037 | 10.832 | 34.7934 | | 1.3735 | 1.61 | 4000 | 1.1887 | 11.8127 | 3.2642 | 11.7143 | 11.7263 | 35.4331 | | 1.5772 | 1.93 | 4800 | 1.1794 | 11.3157 | 3.1017 | 11.2215 | 11.2237 | 34.3051 | | 1.2179 | 2.25 | 5600 | 1.1809 | 11.841 | 2.8297 | 11.7283 | 11.7173 | 35.0522 | | 1.2903 | 2.58 | 6400 | 1.1779 | 11.6353 | 2.8495 | 11.5117 | 11.544 | 34.95 | | 1.461 | 2.9 | 7200 | 1.1781 | 11.8533 | 2.9172 | 11.715 | 11.7278 | 35.164 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
AnonymousSub/AR_rule_based_roberta_hier_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9314616019818331 - name: Recall type: recall value: 0.9491753618310333 - name: F1 type: f1 value: 0.9402350587646913 - name: Accuracy type: accuracy value: 0.9857243774651204 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0636 - Precision: 0.9315 - Recall: 0.9492 - F1: 0.9402 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0898 | 1.0 | 1756 | 0.0718 | 0.9149 | 0.9359 | 0.9253 | 0.9811 | | 0.0351 | 2.0 | 3512 | 0.0641 | 0.9298 | 0.9490 | 0.9393 | 0.9860 | | 0.0186 | 3.0 | 5268 | 0.0636 | 0.9315 | 0.9492 | 0.9402 | 0.9857 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.12.1
AnonymousSub/AR_rule_based_roberta_only_classfn_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en - bg - multilingual license: gpl-3.0 tags: - bicleaner-ai tasks: - text-classification --- # Bicleaner AI full model for en-bg Bicleaner AI is a tool that aims at detecting noisy sentence pairs in a parallel corpus. It indicates the likelihood of a pair of sentences being mutual translations (with a value near to 1) or not (with a value near to 0). Sentence pairs considered very noisy are scored with 0. Find out at our repository for further instructions on how to use it: https://github.com/bitextor/bicleaner-ai
AnonymousSub/AR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="odedmou/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AnonymousSub/AR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - es license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Vi - Shiv Kumar Ganesh results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: vi split: test args: vi metrics: - name: Wer type: wer value: 46.676902829567894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Vi - Shiv Kumar Ganesh This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7220 - Wer: 46.6769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7433 | 1.02 | 100 | 1.6824 | 155.0559 | | 0.5929 | 2.04 | 200 | 0.8475 | 55.5824 | | 0.1188 | 3.05 | 300 | 0.6646 | 47.2801 | | 0.0672 | 5.0 | 400 | 0.7099 | 61.3292 | | 0.0317 | 6.02 | 500 | 0.6951 | 49.9013 | | 0.0169 | 7.04 | 600 | 0.7658 | 62.8866 | | 0.0089 | 8.06 | 700 | 0.6681 | 34.2509 | | 0.004 | 10.01 | 800 | 0.6875 | 43.8364 | | 0.0015 | 11.03 | 900 | 0.7129 | 46.8195 | | 0.0011 | 12.04 | 1000 | 0.7194 | 47.4775 | | 0.0011 | 13.06 | 1100 | 0.7217 | 46.1505 | | 0.001 | 15.01 | 1200 | 0.7220 | 46.6769 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/AR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-12-19T10:36:39Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="odedmou/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AnonymousSub/AR_rule_based_twostagetriplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: - sk license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Slovak CV11 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 sk type: mozilla-foundation/common_voice_11_0 config: sk split: test args: sk metrics: - name: Wer type: wer value: 23.14374107567825 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Slovak CV11 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 sk dataset. It achieves the following results on the evaluation set: - Loss: 0.3982 - Wer: 23.1437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.001 | 14.29 | 1000 | 0.3982 | 23.1437 | | 0.0013 | 28.57 | 2000 | 0.4343 | 24.0362 | | 0.0001 | 42.86 | 3000 | 0.4565 | 23.3222 | | 0.0001 | 57.14 | 4000 | 0.4700 | 23.3936 | | 0.0001 | 71.43 | 5000 | 0.4753 | 23.4531 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
AnonymousSub/AR_rule_based_twostagetriplet_hier_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 --- ## Lutech-AI/I-SPIn **I**talian-**S**entence **P**air **In**ference, AKA **I-SPIn**.<br> This is a fine-tuned version of the model [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2).<br> Its main task is to perform the [Natural Language Inference (NLI)](https://nlp.stanford.edu/projects/snli/) task in the Italian language.<br> The prediction labels may assume three possible values: 1. 1 means the model predicts <em>entailment</em>; 2. 0 represents the <em>neutral</em> case; 3. -1 corresponds to <em>contradiction</em>. ## How it was trained 1. Train [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the NLI task; 2. Apply Knowledge Distillation on the output of (1.) with IT-EN translation dataset to retain NLI knowledge and improve Italian language comprehension. # Usage #1 (HuggingFace Transformers) In the environment on which you want to run the project, type: ```markdown pip install --extra-index-url https://test.pypi.org/simple/ ispin ``` NOTE: during the first execution, a total of two different models will be downloaded: 1. I-SPIn; 2. paraphrase-multilingual-mpnet-base-v2. Each is roughly 1GB in dimension. ## Retrieve embeddings If you installed the package correctly, you can retrieve embeddings in the following way: ```python from ispin.ISPIn import ISPIn model = ISPIn.from_pretrained('Lutech-AI/I-SPIn') sentences = ['Questa è una frase di prova', 'Testando il funzionamento del modello'] sentence_embeddings = model(sentences) print(sentence_embeddings) # -> torch.Size(2, 768) ``` ## Retrieve labels If you installed the package correctly, you can retrieve labels in the following way: ```python from ispin.ISPIn import ISPIn model = ISPIn.from_pretrained('Lutech-AI/I-SPIn') premises = ['Il modello sta funzionando correttamente', 'Il modello non funziona correttamente'] hypothesis = ['Testando il funzionamento del modello'] premises_embeddings = model(premises) hypothesis_embeddings = model(hypothesis) predictions = model.predict( premises_embeddings, hypothesis_embeddings, one_to_many = False ) print(predictions) # -> [0 -1] ``` The computation is subdivided in two tasks (embedding, classification) to simplify a custom fine-tuning process. If you want to further optimize this classification head, you might want to deepcopy the layers and continue training (one can choose which layers by slicing the list): ```python import torch import copy module_list = torch.nn.ModuleList(list(copy.deepcopy(model.layers))[start:end]) ``` # Usage #2 (cloning repo) (will be deleted) In a terminal located in your project folder, type: 'git clone https://huggingface.co/Lutech-AI/I-SPIn/ ISPIn'. <br> Please specify the final 'ISPIn' to avoid complications when calling the Python module. <br> Then, in the code where you call the model, substitute the line: ```python model = ISPIn.from_pretrained('Lutech-AI/I-SPIn') ``` with: ```python model = ISPIn.from_pretrained('[your/path]/I-SPIn') ``` ## Full model architecture ```markdown ISPIn( (encoder): XLMRobertaModel(...) # transformers internal implementation of 'paraphrase-multilingual-mpnet-base-v2' (layers): ModuleList( (0): Linear(in_features=1536, out_features=1024, bias=True) (1): Linear(in_features=1024, out_features=512, bias=True) (2): Linear(in_features=512, out_features=256, bias=True) (3): Linear(in_features=256, out_features=128, bias=True) (4): Linear(in_features=128, out_features=64, bias=True) (5): Linear(in_features=64, out_features=3, bias=True) ) (activation): GELU() ) ``` ## Evaluation results | Dataset | Metric | Performance | |:--------------------------------------:|--------------|-------------| | [RTE3-ITA](https://github.com/gilnoh/RTEFormatWork/tree/master/RTE3-ITdata-original-format) | Accuracy | 68% | | [RTE3-ITA](https://github.com/gilnoh/RTEFormatWork/tree/master/RTE3-ITdata-original-format) | Min F1-Score | 60% | | [RTE-2009-ITA](https://live.european-language-grid.eu/catalogue/corpus/8121/download/) | Accuracy | 59% | | [RTE-2009-ITA](https://live.european-language-grid.eu/catalogue/corpus/8121/download/) | Min F1-Score | 31% | | [SNLI](https://nlp.stanford.edu/projects/snli/) (IT) translated w/[NLLB-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) | Accuracy | 74% | | [MNLI-Matched](https://cims.nyu.edu/~sbowman/multinli/) (IT) translated w/[NLLB-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) | Accuracy | 72% | | [MNLI-Mismatched](https://cims.nyu.edu/~sbowman/multinli/) (IT) translated w/[NLLB-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) | Accuracy | 73% NOTE: in [RTE3-ITA](https://github.com/gilnoh/RTEFormatWork/tree/master/RTE3-ITdata-original-format) and [RTE-2009-ITA](https://live.european-language-grid.eu/catalogue/corpus/8121/download/), there is no 'neutral' class. Hence, in those cases, during testing, as the model classified a sentence pair as 'neutral', it was manually relabeled as 'contradiction'.
AnonymousSub/AR_specter
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- The celebhq model finetuned on vintage faces for face generation ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Apocalypse-19/ddpm-celebahq-fintuned-vintage-faces') image = pipeline().images[0] image ```
AnonymousSub/EManuals_BERT_copy_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper-small-ar - Mourad Mars results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: ar split: test args: ar metrics: - name: Wer type: wer value: 44.976586 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper-small-ar - Mourad Mars This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.322550 - Wer: 44.976586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: train_batch_size=16 eval_batch_size=8 optimizer: Adam learning_rate=1e-5 warmup_steps=500 max_steps=4000 eval_steps=1000 metric_for_best_model="wer" ### Training results | Training Loss | Step | Validation Loss | Wer | |:-------------:|:----:|:----------------:|:---------:| | 0.2811 | 1000 | 0.393018 | 53.778349 | | 0.2356 | 2000 | 0.348794 | 47.793591 | | 0.1705 | 3000 | 0.332207 | 45.758883 | | 0.1476 | 4000 | 0.322550 | 44.976586 | ### Framework versions
AnonymousSub/EManuals_BERT_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="FBM/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AnonymousSub/EManuals_RoBERTa_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: "clayitization " --- ### Jak's **Clayitization** Image Pack (SD2.1) for Stable Diffusion **clayitization-sd2.1-768px v.1.0** *THIS IS FOR Stable Diffusion VERSION 2.1* You MUST also include the **clayitization-SD2.1-768px.yaml** file in the same directory as your model file (will be uploaded here for your convenience) With this model, other than being trained from SD2.1, you can also mix and match embeddings to your images! -------------------- From the makers of [Woolitize](https://huggingface.co/plasmo/woolitize-768sd1-5), another versatile Jak Texture Pack is available to help unleash your Clay-itivity! Trained using 100 (768px) training images, 8000 training steps, 500 Text_Encoder_steps. Use Prompt: "**clayitization**" in the beginning of your prompt followed by a word. *No major prompt-crafting needed*. Thanks to /u/Jak_TheAI_Artist for creating training images! Tips: - use fewer prompts to make a more raw clay look (eg. "clayitization, brad pitt" made the image below) - change to square for portraits, and rectangle for dioramas - add "3d, octane render, intricate details" for more realistic details in the clay - use 768 resolution or larger images for best results Sample pictures of this concept: prompt: Clayitization, cat, mdjrny-ppc (embedding) *this is adding the Midjourney-papercut embedding* ![0](https://huggingface.co/plasmo/woolitize-768sd1-5/resolve/main/sample_images/00105.jpg) prompt: Clayitization, brad pitt, inkpunk768 (embedding) *this is adding the Inkpunk768 embedding* ![0](https://huggingface.co/plasmo/woolitize-768sd1-5/resolve/main/sample_images/00108.jpg)
AnonymousSub/SDR_HF_model_base
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2022-12-19T11:06:15Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sirus --- ### EXP 1 resolutions 768 x 768 2400 steps, of 75% text encoder Model: sd 2.1 Example prompt: close up photo portrait of face sirus , black and white,photo,studio lighting, hard light, sony a7, 50 mm, mate skin, pores, wrinkles, hyperdetailed, hyperrealistic
AnonymousSub/SR_EManuals-BERT
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-12-19T11:07:22Z
--- language: - en - mt - multilingual license: gpl-3.0 tags: - bicleaner-ai tasks: - text-classification --- # Bicleaner AI full model for en-mt Bicleaner AI is a tool that aims at detecting noisy sentence pairs in a parallel corpus. It indicates the likelihood of a pair of sentences being mutual translations (with a value near to 1) or not (with a value near to 0). Sentence pairs considered very noisy are scored with 0. Find out at our repository for further instructions on how to use it: https://github.com/bitextor/bicleaner-ai
AnonymousSub/declutr-biomed-roberta-papers
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
Are you looking for <a href="https://victoria.asapcreditrepairusa.com/">credit fixing service</a>? You are at the right place. We are an innovative team with a group of dedicated, passionate, and remarkable individuals determined to help you repair financial defects from your record and help discover ways to improve credit score.
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - food widget: - text: a photo of cburgerz hamburger in a car --- # DreamBooth model for cburgerz trained by lewtun on the `lewtun/hamburgers` dataset. This your the Stable Diffusion model fine-tuned the cburgerz concept taught to Stable Diffusion with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of cburgerz hamburger** This model was created as part of the DreamBooth Hackathon. Visit the organisation page for instructions on how to take part! ## Description Describe your model and concept here. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('dreambooth-hackathon/cburgerz-hamburger') image = pipeline().images[0] image ```
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: gpl-3.0 tags: - object-detection - computer-vision - yolov6 - pypi datasets: - detection-datasets/coco --- ### Model Description [YOLOv6:](https://arxiv.org/abs/2209.02976) A single-stage object detection framework dedicated to industrial applications. [YOLOv6 v3.0](https://arxiv.org/abs/2301.05586): A Full-Scale Reloading [YOLOv6-Pip: Packaged version of the Yolov6 repository](https://github.com/kadirnar/yolov6-pip/) [Paper Repo: Implementation of paper - YOLOv6](https://github.com/meituan/YOLOv6/) ### Installation ``` pip install yolov6detect ``` ### Yolov6 Inference ```python from yolov6 import YOLOV6 model = YOLOV6(weights='kadirnar/yolov6s-v2.0', device='cuda:0', hf_model=True) model.classes = None model.conf = 0.25 model.iou = 0.45 model.show = False model.save = True pred = model.predict(source='data/images',yaml='data/coco.yaml', img_size=640) ``` ### BibTeX Entry and Citation Info ``` @article{li2022yolov6, title={YOLOv6: A single-stage object detection framework for industrial applications}, author={Li, Chuyi and Li, Lulu and Jiang, Hongliang and Weng, Kaiheng and Geng, Yifei and Li, Liang and Ke, Zaidan and Li, Qingyuan and Cheng, Meng and Nie, Weiqiang and others}, journal={arXiv preprint arXiv:2209.02976}, year={2022} } ```
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: gpl-3.0 tags: - object-detection - computer-vision - yolov6 - yolo datasets: - detection-datasets/coco --- ### Model Description [YOLOv6:](https://arxiv.org/abs/2209.02976) A single-stage object detection framework dedicated to industrial applications. [YOLOv6 v3.0](https://arxiv.org/abs/2301.05586): A Full-Scale Reloading [YOLOv6-Pip: Packaged version of the Yolov6 repository](https://github.com/kadirnar/yolov6-pip/) [Paper Repo: Implementation of paper - YOLOv6](https://github.com/meituan/YOLOv6/) ### Installation ``` pip install yolov6detect ``` ### Yolov6 Inference ```python from yolov6 import YOLOV6 model = YOLOV6(weights='kadirnar/yolov6m-v3.0', device='cuda:0', hf_model=True) model.classes = None model.conf = 0.25 model.iou = 0.45 model.show = False model.save = True pred = model.predict(source='data/images',yaml='data/coco.yaml', img_size=640) ``` ### BibTeX Entry and Citation Info ``` @article{li2022yolov6, title={YOLOv6: A single-stage object detection framework for industrial applications}, author={Li, Chuyi and Li, Lulu and Jiang, Hongliang and Weng, Kaiheng and Geng, Yifei and Li, Liang and Ke, Zaidan and Li, Qingyuan and Cheng, Meng and Nie, Weiqiang and others}, journal={arXiv preprint arXiv:2209.02976}, year={2022} } ```
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- language: - br license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Breton results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 br type: mozilla-foundation/common_voice_11_0 config: br split: test args: br metrics: - name: Wer type: wer value: 41.611670718999655 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Breton This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 br dataset. It achieves the following results on the evaluation set: - Loss: 0.8486 - Wer: 41.6117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0602 | 5.03 | 1000 | 0.7324 | 43.6957 | | 0.0036 | 10.05 | 2000 | 0.8486 | 41.6117 | | 0.001 | 15.08 | 3000 | 0.9033 | 42.0458 | | 0.0004 | 20.1 | 4000 | 0.9351 | 41.6811 | | 0.0003 | 25.13 | 5000 | 0.9468 | 41.7853 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.08 +/- 25.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - sl license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Slovenian CV11 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 sl type: mozilla-foundation/common_voice_11_0 config: sl split: test args: sl metrics: - name: Wer type: wer value: 17.93002915451895 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Slovenian CV11 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 sl dataset. It achieves the following results on the evaluation set: - Loss: 0.4331 - Wer: 17.9300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.003 | 26.32 | 1000 | 0.3665 | 19.0379 | | 0.0001 | 52.63 | 2000 | 0.4114 | 18.1778 | | 0.0001 | 78.95 | 3000 | 0.4331 | 17.9300 | | 0.0 | 105.26 | 4000 | 0.4458 | 18.0321 | | 0.0 | 131.58 | 5000 | 0.4512 | 17.9883 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
## Custom notes This model has been initaialized from the TSDAE checkpoint and fine-tuned as a CE with binary label and continious score on STS.
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- language: - tt license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Large v2 Tatar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large v2 Tatar This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 200 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: cc-by-4.0 tags: - yolov5 - yolo - digital humanities - object detection - computer-vision - document layout analysis - pytorch datasets: - datacatalogue --- # What's YOLOv5 YOLOv5 is an open-source object detection model released by [Ultralytics](https://ultralytics.com/), on [Github](https://github.com/ultralytics/yolov5). # DataCatalogue (or DataCat) [DataCatalogue](https://github.com/DataCatalogue) is a research project jointly led by Inria, the Bibliothèque nationale de France (National Library of France), and the Institut national d'histoire de l'art (National Institute of Art History). It aims at restructuring OCR-ed auction sale catalogs kept in France national collections into TEI-XML, using machine learning solutions. # DataCat Yolov5 We trained a YOLOv5 model on custom data to perform document layout analysis on auction sale catalogs. The training set consists of **581 images**, annotated with **two classes**: * *title* (585 instances) * *entry* (it refers to a catalog entry) (5017 instances) 59 images were used for validation. We reached: | precision | recall | mAP_0.5 | mAP_0.5:0.95 | |---|---|---|---| | 0.99 | 0.99 | 0.98 | 0.75 | # Dataset The dataset is not released for the moment. ## Demo An interactive demo is available on the following HugginFace Space: https://huggingface.co/spaces/HugoSchtr/DataCat_Yolov5 <img alt='detection example' src="https://huggingface.co/HugoSchtr/yolov5_datacat/resolve/main/eval/detection_example.png" width=30% height=30%> ## What's next The model performs well on our data and now needs to be incorporated into a dedicated pipeline for the research project. We also plan to train a new model on a larger training set in the near future.
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Roberto/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: - kn license: apache-2.0 tags: - whisper-event metrics: - wer model-index: - name: Whisper Kannada Tiny - Vasista Sai Lodagala results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: kn_in split: test metrics: - type: wer value: 13.38 name: WER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Kannada Tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Kannada data available from multiple publicly available ASR corpuses. It has been fine-tuned as a part of the Whisper fine-tuning sprint. **NOTE:** The code used to train this model is available for re-use in the [whisper-finetune](https://github.com/vasistalodagala/whisper-finetune) repository. ## Usage In order to evaluate this model on an entire dataset, the evaluation codes available in the [whisper-finetune](https://github.com/vasistalodagala/whisper-finetune) repository can be used. The same repository also provides the scripts for faster inference using whisper-jax. In order to infer a single audio file using this model, the following code snippet can be used: ```python >>> import torch >>> from transformers import pipeline >>> # path to the audio file to be transcribed >>> audio = "/path/to/audio.format" >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> transcribe = pipeline(task="automatic-speech-recognition", model="vasista22/whisper-kannada-tiny", chunk_length_s=30, device=device) >>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="kn", task="transcribe") >>> print('Transcription: ', transcribe(audio)["text"]) ``` For faster inference of whisper models, the [whisper-jax](https://github.com/sanchit-gandhi/whisper-jax) library can be used. Please follow the necessary installation steps as mentioned [here](https://github.com/vasistalodagala/whisper-finetune#faster-evaluation-with-whisper-jax), before using the following code snippet: ```python >>> import jax.numpy as jnp >>> from whisper_jax import FlaxWhisperForConditionalGeneration, FlaxWhisperPipline >>> # path to the audio file to be transcribed >>> audio = "/path/to/audio.format" >>> transcribe = FlaxWhisperPipline("vasista22/whisper-kannada-tiny", batch_size=16) >>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="kn", task="transcribe") >>> print('Transcription: ', transcribe(audio)["text"]) ``` ## Training and evaluation data Training Data: - [IISc-MILE Kannada ASR Corpus](https://www.openslr.org/126/) - [ULCA ASR Corpus](https://github.com/Open-Speech-EkStep/ULCA-asr-dataset-corpus#kannada-labelled-total-duration-is-60891-hours) - [Shrutilipi ASR Corpus](https://ai4bharat.org/shrutilipi) - [Google/Fleurs Train+Dev set](https://huggingface.co/datasets/google/fleurs) Evaluation Data: - [Google/Fleurs Test Set](https://huggingface.co/datasets/google/fleurs) - [IISc-MILE Test Set](https://www.openslr.org/126/) - [OpenSLR](https://www.openslr.org/79/) ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 88 - eval_batch_size: 88 - seed: 22 - optimizer: adamw_bnb_8bit - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - training_steps: 15008 (terminated upon convergence. Initially set to 51570 steps) - mixed_precision_training: True ## Acknowledgement This work was done at [Speech Lab, IIT Madras](https://asr.iitm.ac.in/). The compute resources for this work were funded by "Bhashini: National Language translation Mission" project of the Ministry of Electronics and Information Technology (MeitY), Government of India.
AnonymousSub/rule_based_twostage_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - kn license: apache-2.0 tags: - whisper-event metrics: - wer model-index: - name: Whisper Kannada Base - Vasista Sai Lodagala results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: kn_in split: test metrics: - type: wer value: 10.8 name: WER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Kannada Base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Kannada data available from multiple publicly available ASR corpuses. It has been fine-tuned as a part of the Whisper fine-tuning sprint. **NOTE:** The code used to train this model is available for re-use in the [whisper-finetune](https://github.com/vasistalodagala/whisper-finetune) repository. ## Usage In order to evaluate this model on an entire dataset, the evaluation codes available in the [whisper-finetune](https://github.com/vasistalodagala/whisper-finetune) repository can be used. The same repository also provides the scripts for faster inference using whisper-jax. In order to infer a single audio file using this model, the following code snippet can be used: ```python >>> import torch >>> from transformers import pipeline >>> # path to the audio file to be transcribed >>> audio = "/path/to/audio.format" >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> transcribe = pipeline(task="automatic-speech-recognition", model="vasista22/whisper-kannada-base", chunk_length_s=30, device=device) >>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="kn", task="transcribe") >>> print('Transcription: ', transcribe(audio)["text"]) ``` For faster inference of whisper models, the [whisper-jax](https://github.com/sanchit-gandhi/whisper-jax) library can be used. Please follow the necessary installation steps as mentioned [here](https://github.com/vasistalodagala/whisper-finetune#faster-evaluation-with-whisper-jax), before using the following code snippet: ```python >>> import jax.numpy as jnp >>> from whisper_jax import FlaxWhisperForConditionalGeneration, FlaxWhisperPipline >>> # path to the audio file to be transcribed >>> audio = "/path/to/audio.format" >>> transcribe = FlaxWhisperPipline("vasista22/whisper-kannada-tiny", batch_size=16) >>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="kn", task="transcribe") >>> print('Transcription: ', transcribe(audio)["text"]) ``` ## Training and evaluation data Training Data: - [IISc-MILE Kannada ASR Corpus](https://www.openslr.org/126/) - [ULCA ASR Corpus](https://github.com/Open-Speech-EkStep/ULCA-asr-dataset-corpus#kannada-labelled-total-duration-is-60891-hours) - [Shrutilipi ASR Corpus](https://ai4bharat.org/shrutilipi) - [Google/Fleurs Train+Dev set](https://huggingface.co/datasets/google/fleurs) Evaluation Data: - [Google/Fleurs Test Set](https://huggingface.co/datasets/google/fleurs) - [IISc-MILE Test Set](https://www.openslr.org/126/) - [OpenSLR](https://www.openslr.org/79/) ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.3e-05 - train_batch_size: 80 - eval_batch_size: 88 - seed: 22 - optimizer: adamw_bnb_8bit - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - training_steps: 10320 (terminated upon convergence. Initially set to 51570 steps) - mixed_precision_training: True ## Acknowledgement This work was done at [Speech Lab, IIT Madras](https://asr.iitm.ac.in/). The compute resources for this work were funded by "Bhashini: National Language translation Mission" project of the Ministry of Electronics and Information Technology (MeitY), Government of India.
AnonymousSub/rule_based_twostagequadruplet_hier_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### romeo-model Dreambooth model trained by rome6 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -199.06 +/- 76.98 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'paicup09/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
AnonymousSub/specter-bert-model
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 658.50 +/- 231.33 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SuburbanLion -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SuburbanLion -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SuburbanLion ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.15), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.00015), ('learning_starts', 100000), ('n_timesteps', 1500000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AnonymousSub/specter-bert-model_copy
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - science widget: - text: a photo of glxy galaxy --- # DreamBooth model for glxy trained by lewtun on the lewtun/galaxies dataset. This your the Stable Diffusion model fine-tuned the glxy concept taught to Stable Diffusion with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of glxy galaxy** This model was created as part of the DreamBooth Hackathon. Visit the organisation page for instructions on how to take part! ## Description Describe your model and concept here. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('dreambooth-hackathon/glxy-galaxy') image = pipeline().images[0] image ```
AnonymousSub/specter-bert-model_copy_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 39 with parameters: ``` {'batch_size': 32} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 19, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AnonymousSub/unsup-consert-base_copy
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-12-19T17:40:17Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - landscape widget: - text: a photo of swalps mountains --- # DreamBooth model for swalps trained by lewtun on the lewtun/alps dataset. This your the Stable Diffusion model fine-tuned the swalps concept taught to Stable Diffusion with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of swalps mountains** This model was created as part of the DreamBooth Hackathon. Visit the organisation page for instructions on how to take part! ## Description Describe your model and concept here. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('dreambooth-hackathon/swalps-mountains') image = pipeline().images[0] image ```
AnonymousSub/unsup-consert-base_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2022-12-19T17:43:11Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/SamFreitas/ddpm-butterflies-128/tensorboard?#scalars)
AnonymousSub/unsup-consert-emanuals
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2022-12-19T17:43:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mdeberta-targin-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-targin-final This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5637 - Accuracy: 0.7091 - Precision: 0.6841 - Recall: 0.6557 - F1: 0.6617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 296 | 0.6001 | 0.6435 | 0.6344 | 0.5087 | 0.4156 | | 0.6011 | 2.0 | 592 | 0.5633 | 0.7091 | 0.6879 | 0.6464 | 0.6521 | | 0.6011 | 3.0 | 888 | 0.5501 | 0.7234 | 0.6991 | 0.6841 | 0.6892 | | 0.5401 | 4.0 | 1184 | 0.5558 | 0.7082 | 0.6818 | 0.6595 | 0.6652 | | 0.5401 | 5.0 | 1480 | 0.5637 | 0.7091 | 0.6841 | 0.6557 | 0.6617 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
Anupam/QuestionClassifier
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-nya results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-nya This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4712 - Wer: 21.5239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2416 | 0.99 | 500 | 0.5146 | 34.7076 | | 0.1343 | 1.97 | 1000 | 0.4138 | 28.1748 | | 0.0792 | 2.96 | 1500 | 0.4268 | 31.3290 | | 0.0372 | 3.94 | 2000 | 0.4256 | 32.8057 | | 0.0246 | 4.93 | 2500 | 0.4354 | 22.0673 | | 0.0097 | 5.92 | 3000 | 0.4532 | 25.1742 | | 0.003 | 6.9 | 3500 | 0.4595 | 21.0396 | | 0.0005 | 7.89 | 4000 | 0.4586 | 21.3113 | | 0.0007 | 8.87 | 4500 | 0.4653 | 21.7129 | | 0.0002 | 9.86 | 5000 | 0.4712 | 21.5239 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Arina/Erine
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 612.00 +/- 212.15 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga maciekov01 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga maciekov01 -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga maciekov01 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Arnold/wav2vec2-hausa-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion language: - en library_name: diffusers --- # Banano Chan - Anything v3.0 (banchan-anything-v3.0) A potassium rich latent diffusion model. [Anything V3.0](https://huggingface.co/Linaqruf/anything-v3.0) trained to the likeness of [Banano Chan](https://twitter.com/Banano_Chan/). The digital waifu embodiment of [Banano](https://www.banano.cc), a feeless and super fast meme cryptocurrency. This model is intended to produce high-quality, highly detailed anime style with just a few prompts. Like other anime-style Stable Diffusion models, it also supports danbooru tags to generate images. e.g. `banchan, beautiful eyes, detail, flower meadow, cumulonimbus clouds, lighting, detailed sky, garden` A [detailed usage guide](https://huggingface.co/Banano/banchan-anything-v3-0/blob/main/doc/README.md) is also available if you are new to Stable Diffusion, image generation and prompting. Share your pictures in the [#banano-ai-art Discord channel](https://discord.com/channels/415935345075421194/991823100054355998) or [Community](https://huggingface.co/pbuyle/banchan-anything-v3-0/discussions) tab. Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures: ![0](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00009-163516349-banchan_sittin.png) ![1](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00014-3983377935-banchan,%20droo.png) ![2](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00027-830696812-banchan%20in%20fro.png) ![3](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00004-3717327640-banchan,_whit.png) ![4](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00015-3117834193-banchan,%20droo.png) ![5](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00013-3050499419-banchan,_beau.png) ![6](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00008-163516352-banchan_sittin.png) ![7](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00010-2243949390-banchan,_many.png) ![8](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00012-3906225245-banchan,_laug.png) ![9](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00001-2902509635-banchan.png) ![10](https://huggingface.co/pbuyle/banchan-anything-v3-0/resolve/main/sample_images/00005-3717327638-banchan,_whit.png) -- Dreambooth model trained with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook. ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Arnold/wav2vec2-large-xlsr-turkish-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- # Peter DiableGPT Model
Aspect11/DialoGPT-Medium-LiSBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: t123oni --- ### toni Dreambooth model trained by duja1 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: t123oni (use that on your prompt)
Asuramaru/DialoGPT-small-rintohsaka
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - sr license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large-V2 Serbian - Drishti Sharma results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sr split: test args: sr metrics: - name: Wer type: wer value: 11.007689194658035 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large-V2 Serbian - Drishti Sharma This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2142 - Wer: 11.0077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0965 | 1.91 | 400 | 0.2142 | 11.0077 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Ayham/bert_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Bluelemon883/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Ayham/xlnet_gpt_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.88 +/- 18.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ayham/xlnetgpt2_xsum7
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: - apache-2.0 - other tags: - generated_from_trainer - text-generation - opt - non-commercial - dialogue - chatbot - ai-msgbot inference: false --- # pszemraj/opt-peter-2.7B-sharded The same thing as [pszemraj/opt-peter-2.7B](https://huggingface.co/pszemraj/opt-peter-2.7B) except I sharded it. Please refer to the model card previously linked for all details. ---
Ayoola/pytorch_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-20T03:54:23Z
--- tags: - conversational --- ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("UmUDev/DialoGPT-medium-Alex") model = AutoModelWithLMHead.from_pretrained("UmUDev/DialoGPT-medium-Alex") print("====chatting 5 times with nucleus & top-k sampling & tweaking temperature & multiple sentences====") # chatting 5 times with nucleus & top-k sampling & tweaking temperature & multiple # sentences for step in range(20): # take user input text = input(">> You:") # encode the input and add end of string token input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt") # concatenate new user input with chat history (if there is) bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids # generate a bot response chat_history_ids_list = model.generate( bot_input_ids, max_length=1000, do_sample=True, top_p=0.95, top_k=50, temperature=0.75, num_return_sequences=5, pad_token_id=tokenizer.eos_token_id ) #print the outputs for i in range(len(chat_history_ids_list)): output = tokenizer.decode(chat_history_ids_list[i][bot_input_ids.shape[-1]:], skip_special_tokens=True) print(f"DialoGPT {i}: {output}") choice_index = int(input("Choose the response you want for the next input: ")) chat_history_ids = torch.unsqueeze(chat_history_ids_list[choice_index], dim=0) ```
Ayoola/wav2vec2-large-xlsr-turkish-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-20T03:59:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0531 - Rouge1: 97.0969 - Rouge2: 95.8095 - Rougel: 96.7452 - Rougelsum: 96.7363 - Gen Len: 15.3151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.033 | 1.0 | 519 | 0.2212 | 95.3952 | 91.6915 | 94.8024 | 94.7963 | 14.9826 | | 0.2732 | 2.0 | 1038 | 0.1233 | 96.3758 | 94.121 | 95.9352 | 95.9297 | 15.2223 | | 0.1814 | 3.0 | 1557 | 0.0940 | 96.7098 | 94.7563 | 96.2577 | 96.2413 | 15.2133 | | 0.144 | 4.0 | 2076 | 0.0757 | 96.6801 | 95.0173 | 96.2782 | 96.2691 | 15.2679 | | 0.1213 | 5.0 | 2595 | 0.0688 | 96.8498 | 95.2702 | 96.5014 | 96.485 | 15.2515 | | 0.1043 | 6.0 | 3114 | 0.0620 | 96.8951 | 95.3824 | 96.5526 | 96.5419 | 15.2808 | | 0.0938 | 7.0 | 3633 | 0.0561 | 97.0021 | 95.6205 | 96.6811 | 96.6711 | 15.3163 | | 0.0877 | 8.0 | 4152 | 0.0546 | 97.016 | 95.7049 | 96.6736 | 96.6688 | 15.3044 | | 0.0873 | 9.0 | 4671 | 0.0534 | 97.0697 | 95.7894 | 96.7221 | 96.7192 | 15.3123 | | 0.0841 | 10.0 | 5190 | 0.0531 | 97.0969 | 95.8095 | 96.7452 | 96.7363 | 15.3151 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
BAHIJA/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 552.50 +/- 73.70 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga akanametov -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga akanametov -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga akanametov ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Banshee/dialoGPT-luke-small
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- model-index: - name: Sociovestix/lenu_NO results: - task: type: text-classification name: Text Classification dataset: name: lenu type: Sociovestix/lenu config: 'NO' split: test revision: fbe0b4b5b8d6950c10f5710f2c987728635a4afe metrics: - type: f1 value: 0.9923123304190533 name: f1 - type: f1 value: 0.605199414275265 name: f1 macro args: average: macro widget: - text: "SOLITON INVEST AS" - text: "VERDIPAPIRFONDET NORNE AKSJE" - text: "STIFTELSEN HJELP TIL SELVHJELP" - text: "KMC PROPERTIES ASA" - text: "FELLESFORBUNDET" - text: "AGDER FYLKESKOMMUNE" - text: "ROMERIKE SPAREBANK" - text: "SPAREBANK 1 SMN PENSJONSKASSE" - text: "ES STUDIEKONSULT" - text: "J.THJØMØE SOLUTIONS" - text: "ANS ANDERSON" - text: "BORGEÅSEN BORETTSLAG" - text: "LINE OG LAURITZEN INVEST DA" - text: "FELLESKJØPET ROGALAND AGDER SA" - text: "NORD-AURDAL KOMMUNE" - text: "DEEP CYGNUS KS" - text: "MØRETRYGD GJENSIDIG FORSIKRING" - text: "NANNESTAD ALMENNING" - text: "NORDRE FOLLO KOMMUNE" - text: "GADUS SE" - text: "SAMEIET LUGOM" - text: "MEDIAKAREN AS TVANGSAVVIKLINGSBO" - text: "SUNNDAL BOLIGBYGGELAG" - text: "PARTREDERIET VLGC DA" - text: "KONSESJONSKRAFT IKS" --- # LENU - Legal Entity Name Understanding for Norway A Bert (multilingual uncased) model fine-tuned on norwegian legal entity names (jurisdiction NO) from the Global [Legal Entity Identifier](https://www.gleif.org/en/about-lei/introducing-the-legal-entity-identifier-lei) (LEI) System with the goal to detect [Entity Legal Form (ELF) Codes](https://www.gleif.org/en/about-lei/code-lists/iso-20275-entity-legal-forms-code-list). --------------- <h1 align="center"> <a href="https://gleif.org"> <img src="http://sdglabs.ai/wp-content/uploads/2022/07/gleif-logo-new.png" width="220px" style="display: inherit"> </a> </h1><br> <h3 align="center">in collaboration with</h3> <h1 align="center"> <a href="https://sociovestix.com"> <img src="https://sociovestix.com/img/svl_logo_centered.svg" width="700px" style="width: 100%"> </a> </h1><br> --------------- ## Model Description <!-- Provide a longer summary of what this model is. --> The model has been created as part of a collaboration of the [Global Legal Entity Identifier Foundation](https://gleif.org) (GLEIF) and [Sociovestix Labs](https://sociovestix.com) with the goal to explore how Machine Learning can support in detecting the ELF Code solely based on an entity's legal name and legal jurisdiction. See also the open source python library [lenu](https://github.com/Sociovestix/lenu), which supports in this task. The model has been trained on the dataset [lenu](https://huggingface.co/datasets/Sociovestix), with a focus on norwegian legal entities and ELF Codes within the Jurisdiction "NO". - **Developed by:** [GLEIF](https://gleif.org) and [Sociovestix Labs](https://huggingface.co/Sociovestix) - **License:** Creative Commons (CC0) license - **Finetuned from model [optional]:** bert-base-multilingual-uncased - **Resources for more information:** [Press Release](https://www.gleif.org/en/newsroom/press-releases/machine-learning-new-open-source-tool-developed-by-gleif-and-sociovestix-labs-enables-organizations-everywhere-to-automatically-) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> An entity's legal form is a crucial component when verifying and screening organizational identity. The wide variety of entity legal forms that exist within and between jurisdictions, however, has made it difficult for large organizations to capture legal form as structured data. The Jurisdiction specific models of [lenu](https://github.com/Sociovestix/lenu), trained on entities from GLEIF’s Legal Entity Identifier (LEI) database of over two million records, will allow banks, investment firms, corporations, governments, and other large organizations to retrospectively analyze their master data, extract the legal form from the unstructured text of the legal name and uniformly apply an ELF code to each entity type, according to the ISO 20275 standard. # Licensing Information This model, which is trained on LEI data, is available under Creative Commons (CC0) license. See [gleif.org/en/about/open-data](https://gleif.org/en/about/open-data). # Recommendations Users should always consider the score of the suggested ELF Codes. For low score values it may be necessary to manually review the affected entities.
Banshee/dialoGPT-small-luke
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.73 +/- 20.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Battlehooks/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - ar tags: - text-generation license: apache-2.0 widget: - text: "يا ليل الحب " --- Thepoet is an Arabic poem generator, pre-trained language model based on OpenAi GPT2 architechture. Special thanks to aubmindlab for their pretrained Arabic model - Aragpt2 - large (https://huggingface.co/aubmindlab/aragpt2-large) AraGPT2-large adafactor 1024 1280 20 36 2.98GB/792M Trained on two huge (APCD) datasets: 512MB Arabic Poem Comprehensive Dataset from Kaggle (https://www.kaggle.com/datasets/mohamedkhaledelsafty/best-arabic-poem-comprehensive-dataset) 150MB Arabic Poem Dataset from Kaggle(https://www.kaggle.com/datasets/ahmedabelal/arabic-poetry) ## Eval results Final perplexity reached was 119.5661 ### BibTeX entry and citation info ```bibtex @inproceedings{Mohamad El Abaji, year={2022} } ```
BatuhanYilmaz/bert-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.62 +/- 20.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BatuhanYilmaz/code-search-net-tokenizer1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
# chatgpt-clone Build Yo'own ChatGPT with OpenAI API &amp; Gradio ### Instructions: 1. Get your OpenAI API key here - https://beta.openai.com/account/api-keys 2. Replace that key in the `app.py` code 3. Install the required libraries `pip install -r requirements.txt` 4. run `python app.py` ### Complete Tutorial: https://youtu.be/n5nn3mQxrE8 ### Demo https://user-images.githubusercontent.com/5347322/207718196-c5fccff3-1531-4402-99db-fe0fc6bf0e5a.mp4
Bee-Garbs/DialoGPT-cartman-small
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - fr tags: - pytorch - yolov5 datasets: - endp --- ### endp-yolov5x-35e-bs4 - 35 epochs - batch size 4
BigSalmon/InformalToFormalLincoln22
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-12-20T12:00:20Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sdcid --- ### training params ```json ```
BigSalmon/InformalToFormalLincoln24
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.26 +/- 16.63 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/InformalToFormalLincolnDistilledGPT2
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-12-20T12:17:30Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sdcid --- ### a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sdcid (use that on your prompt) ![sdcid 0](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%281%29.jpg)![sdcid 1](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%282%29.jpg)![sdcid 2](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%283%29.jpg)![sdcid 3](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%284%29.jpg)![sdcid 4](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%285%29.jpg)![sdcid 5](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%286%29.jpg)![sdcid 6](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%287%29.jpg)![sdcid 7](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%288%29.jpg)![sdcid 8](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%289%29.jpg)![sdcid 9](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%2810%29.jpg)![sdcid 10](https://huggingface.co/tzvc/a44f2b8b-93b0-4cab-97fb-3d3d7ba9840b/resolve/main/concept_images/sdcid_%2811%29.jpg)