modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9328271992077901 - name: Recall type: recall value: 0.9511948838774823 - name: F1 type: f1 value: 0.9419215065411217 - name: Accuracy type: accuracy value: 0.9864013657502796 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9328 - Recall: 0.9512 - F1: 0.9419 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0878 | 1.0 | 1756 | 0.0768 | 0.9152 | 0.9298 | 0.9224 | 0.9809 | | 0.0334 | 2.0 | 3512 | 0.0654 | 0.9239 | 0.9482 | 0.9359 | 0.9855 | | 0.0172 | 3.0 | 5268 | 0.0620 | 0.9328 | 0.9512 | 0.9419 | 0.9864 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 --- # Speech recognition with Next-gen Kaldi The torchscript model is from <https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03>
AnonymousSub/specter-bert-model_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- datasets: - relbert/relational_similarity model-index: - name: relbert/relbert-roberta-large-nce-d-semeval2012-nell results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7934920634920635 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6951871657754011 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7002967359050445 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8065591995553085 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.938 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6929824561403509 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6643518518518519 - task: name: Analogy Questions (ConceptNet Analogy) type: multiple-choice-qa dataset: name: ConceptNet Analogy args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4228187919463087 - task: name: Analogy Questions (TREX Analogy) type: multiple-choice-qa dataset: name: TREX Analogy args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6775956284153005 - task: name: Analogy Questions (NELL-ONE Analogy) type: multiple-choice-qa dataset: name: NELL-ONE Analogy args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7983333333333333 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.908693686906735 - name: F1 (macro) type: f1_macro value: 0.904579946495757 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.853755868544601 - name: F1 (macro) type: f1_macro value: 0.692486825588736 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6950162513542795 - name: F1 (macro) type: f1_macro value: 0.6871493405233474 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9597273422828129 - name: F1 (macro) type: f1_macro value: 0.8872776048982292 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9012848636790974 - name: F1 (macro) type: f1_macro value: 0.9013525979765641 --- # relbert/relbert-roberta-large-nce-d-semeval2012-nell RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/relational_similarity](https://huggingface.co/datasets/relbert/relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning). This model achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-d-semeval2012-nell/raw/main/analogy.forward.json)): - Accuracy on SAT (full): 0.6951871657754011 - Accuracy on SAT: 0.7002967359050445 - Accuracy on BATS: 0.8065591995553085 - Accuracy on U2: 0.6929824561403509 - Accuracy on U4: 0.6643518518518519 - Accuracy on Google: 0.938 - Accuracy on ConceptNet Analogy: 0.4228187919463087 - Accuracy on T-Rex Analogy: 0.6775956284153005 - Accuracy on NELL-ONE Analogy: 0.7983333333333333 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-d-semeval2012-nell/raw/main/classification.json)): - Micro F1 score on BLESS: 0.908693686906735 - Micro F1 score on CogALexV: 0.853755868544601 - Micro F1 score on EVALution: 0.6950162513542795 - Micro F1 score on K&H+N: 0.9597273422828129 - Micro F1 score on ROOT09: 0.9012848636790974 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-d-semeval2012-nell/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7934920634920635 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-large-nce-d-semeval2012-nell") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (n_dim, ) ``` ### Training hyperparameters - model: roberta-large - max_length: 64 - epoch: 20 - batch: 64 - random_seed: 0 - lr: 5e-06 - lr_warmup: 10 - aggregation_mode: average_no_mask - data: relbert/relational_similarity - data_name: nell_relational_similarity.semeval2012_relational_similarity - exclude_relation: None - split: train - split_valid: validation - loss_function: nce - classification_loss: False - loss_function_config: {'temperature': 0.05, 'num_negative': 300, 'num_positive': 10} - augment_negative_by_positive: False See the full configuration at [config file](https://huggingface.co/relbert/relbert-roberta-large-nce-d-semeval2012-nell/raw/main/finetuning_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.emnlp-main.712/). ``` @inproceedings{ushio-etal-2021-distilling, title = "Distilling Relation Embeddings from Pretrained Language Models", author = "Ushio, Asahi and Camacho-Collados, Jose and Schockaert, Steven", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.712", doi = "10.18653/v1/2021.emnlp-main.712", pages = "9044--9062", abstract = "Pre-trained language models have been found to capture a surprisingly rich amount of lexical knowledge, ranging from commonsense properties of everyday concepts to detailed factual knowledge about named entities. Among others, this makes it possible to distill high-quality word vectors from pre-trained language models. However, it is currently unclear to what extent it is possible to distill relation embeddings, i.e. vectors that characterize the relationship between two words. Such relation embeddings are appealing because they can, in principle, encode relational knowledge in a more fine-grained way than is possible with knowledge graphs. To obtain relation embeddings from a pre-trained language model, we encode word pairs using a (manually or automatically generated) prompt, and we fine-tune the language model such that relationally similar word pairs yield similar output vectors. We find that the resulting relation embeddings are highly competitive on analogy (unsupervised) and relation classification (supervised) benchmarks, even without any task-specific fine-tuning. Source code to reproduce our experimental results and the model checkpoints are available in the following repository: https://github.com/asahi417/relbert", } ```
AnonymousSub/unsup-consert-base_copy_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Anthos23/sentiment-roberta-large-english-finetuned-sentiment-analysis
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.42 +/- 20.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Anthos23/test_trainer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
AntonClaesson/finetuning_test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - fastai library_name: fastai pipeline_tag: image-classification license: openrail --- # RecycleTree - Glass Classification Model ![Banner](https://huggingface.co/pyesonekyaw/recycletree_plastic/resolve/main/banner.png) RecycleTree is a project from CZ3002 Advanced Software Engineering in Nanyang Technological University. It aims to enable users to have a more informed recycling experience, from finding the nearest recycling bins, to checking whether the item they wish to recycle can indeed be recycled, to learning more about recycling and contamination in general. The whole project can be found on [GitHub](https://github.com/py-sk/RecycleTree) This image classification model in particular is to classify plastic trash items into the following classes: * Ceramic * Glassware * Lightbulbs ## Training Data The training dataset had 7273 images across 3 classes, with each class having roughly the same distribution of images. The images were either scraped from Google image search, or obtained by ourselves in real life. ## Training Procedure As the purpose of this model was to act just as a proof of concept for quick prototyping of RecycleTree, I opted to use the fast.ai library and a simple model architecture of ResNet34. The training procedure is following the recommendations from [fast.ai](https://docs.fast.ai/) ## Other Models There are also other models in the RecycleTree model series: * [Materials Classification Model](https://huggingface.co/pyesonekyaw/recycletree_materials) - Classification of images of trash into different materials * [Paper Classification Model](https://huggingface.co/pyesonekyaw/recycletree_paper) - Classification of images of paper trash into different classes * [Metal Classification Model](https://huggingface.co/pyesonekyaw/recycletree_metal) - Classification of images of metal trash into different classes * [Plastic Classification Model](https://huggingface.co/pyesonekyaw/recycletree_plastic) - Classification of images of plastic trash into different classes * [Others Classification Model](https://huggingface.co/pyesonekyaw/recycletree_others) - Classification of images of other (not paper, metal, glass, or plastic) trash into different classes
AntonClaesson/movie-plot-generator
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - fastai library_name: fastai pipeline_tag: image-classification license: openrail --- # RecycleTree - Metal Classification Model ![Banner](https://huggingface.co/pyesonekyaw/recycletree_plastic/resolve/main/banner.png) RecycleTree is a project from CZ3002 Advanced Software Engineering in Nanyang Technological University. It aims to enable users to have a more informed recycling experience, from finding the nearest recycling bins, to checking whether the item they wish to recycle can indeed be recycled, to learning more about recycling and contamination in general. The whole project can be found on [GitHub](https://github.com/py-sk/RecycleTree) This image classification model in particular is to classify plastic trash items into the following classes: aerosol_can', 'aluminum_tray_foil', 'metal_can_or_container * Aerosol Can * Aluminum Tray Foil * Metal Can/Container ## Training Data The training dataset had 10872 images across 3 classes, with each class having roughly the same distribution of images. The images were either scraped from Google image search, or obtained by ourselves in real life. ## Training Procedure As the purpose of this model was to act just as a proof of concept for quick prototyping of RecycleTree, I opted to use the fast.ai library and a simple model architecture of ResNet34. The training procedure is following the recommendations from [fast.ai](https://docs.fast.ai/) ## Other Models There are also other models in the RecycleTree model series: * [Materials Classification Model](https://huggingface.co/pyesonekyaw/recycletree_materials) - Classification of images of trash into different materials * [Paper Classification Model](https://huggingface.co/pyesonekyaw/recycletree_paper) - Classification of images of paper trash into different classes * [Plastic Classification Model](https://huggingface.co/pyesonekyaw/recycletree_plastic) - Classification of images of plastic trash into different classes * [Glass Classification Model](https://huggingface.co/pyesonekyaw/recycletree_glass) - Classification of images of glass trash into different classes * [Others Classification Model](https://huggingface.co/pyesonekyaw/recycletree_others) - Classification of images of other (not paper, metal, glass, or plastic) trash into different classes
Antony/mint_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-17T08:42:55Z
--- tags: - fastai library_name: fastai pipeline_tag: image-classification license: openrail --- # RecycleTree - Others Classification Model ![Banner](https://huggingface.co/pyesonekyaw/recycletree_plastic/resolve/main/banner.png) RecycleTree is a project from CZ3002 Advanced Software Engineering in Nanyang Technological University. It aims to enable users to have a more informed recycling experience, from finding the nearest recycling bins, to checking whether the item they wish to recycle can indeed be recycled, to learning more about recycling and contamination in general. The whole project can be found on [GitHub](https://github.com/py-sk/RecycleTree) This image classification model in particular is to classify plastic trash items into the following classes: * Battery * Electronic Waste * Stationery ## Training Data The training dataset had 11453 images across 3 classes, with each class having roughly the same distribution of images. The images were either scraped from Google image search, or obtained by ourselves in real life. ## Training Procedure As the purpose of this model was to act just as a proof of concept for quick prototyping of RecycleTree, I opted to use the fast.ai library and a simple model architecture of ResNet34. The training procedure is following the recommendations from [fast.ai](https://docs.fast.ai/) ## Other Models There are also other models in the RecycleTree model series: * [Materials Classification Model](https://huggingface.co/pyesonekyaw/recycletree_materials) - Classification of images of trash into different materials * [Paper Classification Model](https://huggingface.co/pyesonekyaw/recycletree_paper) - Classification of images of paper trash into different classes * [Metal Classification Model](https://huggingface.co/pyesonekyaw/recycletree_metal) - Classification of images of metal trash into different classes * [Glass Classification Model](https://huggingface.co/pyesonekyaw/recycletree_glass) - Classification of images of glass trash into different classes * [Plastic Classification Model](https://huggingface.co/pyesonekyaw/recycletree_plastic) - Classification of images of plastic trash into different classes
gaurishhs/API
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -137.23 +/- 89.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Apisate/DialoGPT-small-jordan
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for GPT-J 6B detoxified <!-- Provide a quick summary of what the model is/does. --> This model is a GPT-J 6B model that has been detoxified using RLHF. # Training details Training logs can be found [here](https://wandb.ai/distill-bloom/trl/runs/2dm41xvj?workspace=user-younesbelkada)
ArBert/albert-base-v2-finetuned-ner-gmm-twitter
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-02-17T09:06:37Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Ahmade/bert_fine_tuned_cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Ahmade/bert_fine_tuned_cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5945 - Validation Loss: 0.5177 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5945 | 0.5177 | 0 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
ArBert/albert-base-v2-finetuned-ner-gmm
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-02-17T09:09:20Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: finetune_teacher_babble_noise_mozilla_200_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune_teacher_babble_noise_mozilla_200_epochs This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 71.8264 - Wer: 0.3574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 149.8494 | 14.7 | 1000 | 41.8514 | 0.3998 | | 101.5704 | 29.41 | 2000 | 41.9244 | 0.3942 | | 87.7921 | 44.12 | 3000 | 44.8273 | 0.4013 | | 74.0441 | 58.82 | 4000 | 48.9263 | 0.3976 | | 61.9751 | 73.53 | 5000 | 48.6313 | 0.3950 | | 51.4311 | 88.23 | 6000 | 52.6974 | 0.3915 | | 42.7197 | 102.94 | 7000 | 51.2589 | 0.3862 | | 35.5205 | 117.64 | 8000 | 57.6496 | 0.3841 | | 29.2148 | 132.35 | 9000 | 64.6558 | 0.3745 | | 24.4399 | 147.06 | 10000 | 62.6512 | 0.3692 | | 20.5101 | 161.76 | 11000 | 67.4978 | 0.3625 | | 18.0444 | 176.47 | 12000 | 72.0740 | 0.3584 | | 16.681 | 191.18 | 13000 | 71.8264 | 0.3574 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.11.0
ArBert/bert-base-uncased-finetuned-ner
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: en license: mit datasets: - Twitter15 - Twitter16 - PHEME tags: - conversational inference: false model-index: - name: Rumour Detection results: - task: type: conversational name: Rumour-Detection dataset: name: Twitter15, Twitter16, PHEME (Retrained scores) type: train and evaluation dataset metrics: - name: F1 type: f1 value: 0.698 - task: type: conversational name: Rumour-Detection dataset: name: Twitter15, Twitter16, PHEME (Scores reported in paper) type: train and evaluation dataset metrics: - name: F1 type: f1 value: 0.774 --- # Rumour Detection You can **test the model** at [Rumour-Detection-Twitter](https://huggingface.co/spaces/aisingapore/rumour-detection-twitter) | [SGNLP-Demo](https://sgnlp.aisingapore.net/rumour-detection-twitter).<br /> If you want to find out more information, please contact us at [email protected]. ## Table of Contents - [Model Details](#model-details) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Model Parameters](#parameters) - [Other Information](#other-information) ## Model Details **Model Name:** Rumour-Detection - **Description:** This model is based on the hierarchical transformer architecture described in the associated paper. - **Paper:** Interpretable rumor detection in microblogs by attending to user interactions. Proceedings of the AAAI Conference on Artificial Intelligence, April 2020 (Vol. 34, No. 05, pp. 8783-8790). - **Author(s):** Khoo, L. M. S., Chieu, H. L., Qian, Z., & Jiang, J. (2020). - **URL:** https://ojs.aaai.org//index.php/AAAI/article/view/6405 # How to Get Started With the Model ## Install Python package SGnlp is an initiative by AI Singapore's NLP Hub. They aim to bridge the gap between research and industry, promote translational research, and encourage adoption of NLP techniques in the industry. <br><br> Various NLP models, other than aspect sentiment analysis are available in the python package. You can try them out at [SGNLP-Demo](https://sgnlp.aisingapore.net/) | [SGNLP-Github](https://github.com/aisingapore/sgnlp). ```python pip install sgnlp ``` ## Examples For more full code (such as Rumour Detection), please refer to this [SGNLP-Github](https://github.com/aisingapore/sgnlp). <br> Alternatively, you can also try out the [Rumour-Detection-Twitter](https://huggingface.co/spaces/aisingapore/rumour-detection-twitter) | [SGNLP-Demo](https://sgnlp.aisingapore.net/rumour-detection-twitter) for Rumour-Detection-Twitter. # Training The train and evaluation datasets were derived from the Twitter15, Twitter16 and PHEME datasets. The full dataset can be downloaded from the author's [Dropbox](https://www.dropbox.com/sh/w3bh1crt6estijo/AAD9p5m5DceM0z63JOzFV7fxa?dl=0). - **Training Config:** Not available #### Training Results - **Training Time:** ~6 hours on a single V100 GPU. # Model Parameters - **Model Weights:** [link](https://storage.googleapis.com/sgnlp-models/models/rumour_detection_twitter/pytorch_model.bin) - **Model Config:** [link](https://storage.googleapis.com/sgnlp-models/models/rumour_detection_twitter/config.json) - **Model Inputs:** Thread of tweets. The first tweet should be the target tweet. - **Model Outputs:** Array of logits for each class (True, False, Unverified, Non-Rumour). This can be converted into probabilities using the softmax function. - **Model Size:** ~60mb - **Model Inference Info:** Not available. - **Usage Scenarios:** Rumour detection / fake news detection on Twitter # Other Information - **Original Code:** [link](https://github.com/serenaklm/rumor_detection)
ArBert/roberta-base-finetuned-ner-kmeans-twitter
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2023-02-17T09:36:54Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Belethor/mt5-small-finetuned-amazon-en-fr results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Belethor/mt5-small-finetuned-amazon-en-fr This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 9.0466 - Validation Loss: 4.0067 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 20496, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.0466 | 4.0067 | 0 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
Araf/Ummah
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: "en" tags: - dstc9 widget: - text: "i want to book the hilton hotel near china town." - text: "can you reserve A & B restaurant for me?" --- Only restaurant, hotel, and attraction names are tagged based on the following data and knowledge base. Data link: https://github.com/alexa/alexa-with-dstc9-track1-dataset Label map: "O": 0 "B-hotel": 1 "I-hotel": 2 "B-restaurant": 3 "I-restaurant": 4 "B-attraction": 5 "I-attraction": 6 ```python from transformers import AutoConfig, AutoModelForTokenClassification, BertTokenizer from transformers import TokenClassificationPipeline import json model_path = "wilsontam/dstc9_ner" label_map = { "LABEL_0": "O", "LABEL_1": "B-hotel", "LABEL_2": "I-hotel", "LABEL_3": "B-restaurant", "LABEL_4": "I-restaurant", "LABEL_5": "B-attraction", "LABEL_6": "I-attraction", } config = AutoConfig.from_pretrained( model_path, num_labels=len(label_map), ) model = AutoModelForTokenClassification.from_pretrained( model_path, from_tf=False, config=config, ) tokenizer = BertTokenizer.from_pretrained( model_path, ) # device=-1: cpu, device=0: gpu pipeline = TokenClassificationPipeline(model, tokenizer, device=-1) tokens = pipeline(["i want to book the hilton hotel near china town.", "can you reserve A & B restaurant for me?"]) ``` Credit: Jia-Chen Jason Gu, Wilson Tam
Aran/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-02-17T10:19:58Z
--- language: en tags: - exbert license: mit widget: - text: "Left pleural effusion with adjacent [MASK]." example_title: "Radiology 1" - text: "Heart size normal and lungs are [MASK]." example_title: "Radiology 2" - text: "[MASK] is a tumor suppressor gene." example_title: "Biomedical" - text: "The patient was on [MASK] for chronic atrial fibrillation" example_title: "Medication" --- # BioViL-T [BioViL-T](https://arxiv.org/abs/2301.04558) is a domain-specific vision-language model designed to analyze chest X-rays (CXRs) and radiology reports. It was trained using a temporal multi-modal pre-training procedure, which distinguishes it from its predecessor model ([BioViL](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136960001.pdf)). In detail, BioViL-T takes advantage of the temporal structure between data points, resulting in improved downstream performance on multiple benchmarks, while using the same training dataset as its predecessor. In particular, the resultant model displays significant improvement in embedding temporal information present in the image and text modalities (see [results](#performance)), as well as in the joint space. The canonical model can be adapted to both single- and multi-image downstream applications including: natural language inference, phrase-grounding, image/text classification, and language decoding. The corresponding BERT language model is trained in two stages: First, we pretrain [CXR-BERT-general](https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-general) from a randomly initialized BERT model via Masked Language Modeling (MLM) on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts and clinical notes from the publicly-available [MIMIC-III](https://physionet.org/content/mimiciii/1.4/) and [MIMIC-CXR](https://physionet.org/content/mimic-cxr/). The general model can be fine-tuned for research in other clinical domains by adjusting the parameters specific to the target domain. In the second stage, BioViL-T is continually pretrained from CXR-BERT-general using a multi-modal pre-training procedure by utilising radiology reports and sequences of chest X-rays. We utilise the latent representation of [CLS] token to align text and image embeddings. ## Language model variations | Model | Model identifier on HuggingFace | Vocabulary | Note | | ------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- | -------------- | --------------------------------------------------------- | | CXR-BERT-general | [microsoft/BiomedVLP-CXR-BERT-general](https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-general) | PubMed & MIMIC | Pretrained for biomedical literature and clinical domains | | CXR-BERT-specialized | [microsoft/BiomedVLP-CXR-BERT-specialized](https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized) | PubMed & MIMIC | Static pretraining for the CXR domain | | BioViL-T | [microsoft/BiomedVLP-BioViL-T](https://huggingface.co/microsoft/BiomedVLP-BioViL-T) | PubMed & MIMIC | Static & temporal pretraining for the CXR domain ## Image model The image model is jointly trained with the text model in a multi-modal contrastive learning framework. It's a hybrid image encoder composed of a Vision Transformer and ResNet-50, where the latter is used as backbone network to extract features from images at each time point. The transformer is included in the design to aggregate and compare image features extracted across the temporal dimension. The corresponding model definition and its loading functions can be accessed through our [HI-ML-Multimodal](https://github.com/microsoft/hi-ml/blob/main/hi-ml-multimodal/src/health_multimodal/image/model/model.py) GitHub repository. The joint image and text model, namely [BioViL-T](https://arxiv.org/abs/2204.09817), can be used in phrase grounding applications as shown in this python notebook [example](https://mybinder.org/v2/gh/microsoft/hi-ml/HEAD?labpath=hi-ml-multimodal%2Fnotebooks%2Fphrase_grounding.ipynb). Additionally, please check the [MS-CXR benchmark](https://physionet.org/content/ms-cxr/0.1/) for a more systematic evaluation of joint image and text models in phrase grounding tasks. ## Citation The corresponding manuscript is accepted to be presented at the [**Conference on Computer Vision and Pattern Recognition (CVPR) 2023**](https://cvpr2023.thecvf.com/) ```bibtex @misc{https://doi.org/10.48550/arXiv.2301.04558, doi = {10.48550/ARXIV.2301.04558}, url = {https://arxiv.org/abs/2301.04558}, author = {Bannur, Shruthi and Hyland, Stephanie and Liu, Qianchu and Perez-Garcia, Fernando and Ilse, Maximilian and Castro, Daniel C and Boecking, Benedikt and Sharma, Harshita and Bouzid, Kenza and Thieme, Anja and Schwaighofer, Anton and Wetscherek, Maria and Lungren, Matthew P and Nori, Aditya and Alvarez-Valle, Javier and Oktay, Ozan} title = {Learning to Exploit Temporal Structure for Biomedical Vision–Language Processing}, publisher = {arXiv}, year = {2023}, } ``` ## Model Use ### Intended Use This model is intended to be used solely for (I) future research on visual-language processing and (II) reproducibility of the experimental results reported in the reference paper. #### Primary Intended Use The primary intended use is to support AI researchers building on top of this work. CXR-BERT and its associated models should be helpful for exploring various clinical NLP & VLP research questions, especially in the radiology domain. #### Out-of-Scope Use **Any** deployed use case of the model --- commercial or otherwise --- is currently out of scope. Although we evaluated the models using a broad set of publicly-available research benchmarks, the models and evaluations are not intended for deployed use cases. Under unprecedented conditions, the models may make inaccurate predictions and display limitations, which may require additional mitigation strategies. Therefore, we discourage use of the model for automated diagnosis or in a medical device. Please refer to [the associated paper](https://arxiv.org/abs/2301.04558) for more details. ### How to use Here is how to use this model to extract radiological sentence embeddings and obtain their cosine similarity in the joint space (image and text): ```python import torch from transformers import AutoModel, AutoTokenizer # Load the model and tokenizer url = "microsoft/BiomedVLP-BioViL-T" tokenizer = AutoTokenizer.from_pretrained(url, trust_remote_code=True) model = AutoModel.from_pretrained(url, trust_remote_code=True) # Input text prompts describing findings. # The order of prompts is adjusted to capture the spectrum from absence of a finding to its temporal progression. text_prompts = ["No pleural effusion or pneumothorax is seen.", "There is no pneumothorax or pleural effusion.", "The extent of the pleural effusion is reduced.", "The extent of the pleural effusion remains constant.", "Interval enlargement of pleural effusion."] # Tokenize and compute the sentence embeddings with torch.no_grad(): tokenizer_output = tokenizer.batch_encode_plus(batch_text_or_text_pairs=text_prompts, add_special_tokens=True, padding='longest', return_tensors='pt') embeddings = model.get_projected_text_embeddings(input_ids=tokenizer_output.input_ids, attention_mask=tokenizer_output.attention_mask) # Compute the cosine similarity of sentence embeddings obtained from input text prompts. sim = torch.mm(embeddings, embeddings.t()) ``` ## Data This model builds upon existing publicly-available datasets: - [PubMed](https://pubmed.ncbi.nlm.nih.gov/) - [MIMIC-III](https://physionet.org/content/mimiciii/) - [MIMIC-CXR](https://physionet.org/content/mimic-cxr/) These datasets reflect a broad variety of sources ranging from biomedical abstracts to intensive care unit notes to chest X-ray radiology notes. The radiology notes are accompanied with their associated chest x-ray DICOM images in MIMIC-CXR dataset. ## Performance The presented model achieves state-of-the-art results in radiology natural language inference by leveraging semantics and discourse characteristics at training time more efficiently. The experiments were performed on the RadNLI and MS-CXR-T benchmarks, which measure the quality of text embeddings in terms of static and temporal semantics respectively. BioViL-T is benchmarked against other commonly used SOTA domain specific BERT models, including [PubMedBERT](https://aka.ms/pubmedbert) and [CXR-BERT](https://aka.ms/biovil). The results below show that BioViL-T has increased sensitivity of sentence embeddings to temporal content (MS-CXR-T) whilst better capturing the static content (RadNLI). | | MS-CXR-T | MS-CXR-T | RadNLI (2 classes) | RadNLI (2 classes) | | ----------------------------------------------- | :-------------------------------: | :----------------------: | :-------------------------: | :-------------: | | | Accuracy | ROC-AUC | Accuracy | ROC-AUC | | [PubMedBERT]((https://aka.ms/pubmedbert)) | 60.39 | .542 | 81.38 | .727 | | [CXR-BERT-General](https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-general) | 62.60 | .601 | 87.59 | .902 | | [CXR-BERT-Specialized]((https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized)) | 78.12 | .837 | 89.66 | .932 | | **BioViL-T** | **87.77** | **.933** | **90.52** | **.947** | The novel pretraining framework yields also better vision-language representations. Below is the zero-shot phrase grounding performance obtained on the [MS-CXR](https://physionet.org/content/ms-cxr/0.1/) benchmark dataset, which evaluates the quality of image-text latent representations. | Vision–Language Pretraining Method | MS-CXR Phrase Grounding (Avg. CNR Score) | MS-CXR Phrase Grounding (mIoU) | | ---------------------------------- | :--------------------------------------: | :----------------------------: | | BioViL | 1.07 +- 0.04 | 0.229 +- 0.005 | | BioViL-L | 1.21 +- 0.05 | 0.202 +- 0.010 | | **BioViL-T** | **1.33 +- 0.04** | **0.240 +- 0.005** | Additional experimental results and discussion can be found in the corresponding paper, ["Learning to Exploit Temporal Structure for Biomedical Vision–Language Processing", CVPR'23](https://arxiv.org/abs/2301.04558). ## Limitations This model was developed using English corpora, and thus can be considered English-only. The training dataset contains only medical images and reports acquired from an intensive-care-unit (ICU), where longitudinal images are often collected within range of hours or at most few days. As a result, the models may show reduced performance in analyzing consecutive images acquired over longer periods of time (e.g. years) where significant anatomical variations are observed between the scans. ## Further information Please refer to the corresponding paper, ["Learning to Exploit Temporal Structure for Biomedical Vision–Language Processing", CVPR'23](https://arxiv.org/abs/2301.04558.pdf) for additional details on the model training and evaluation. For additional inference pipelines with BioViL-T, please refer to the [HI-ML GitHub](https://aka.ms/biovil-t-code) repository. The associated source files will soon be accessible through this link.
ArashEsk95/bert-base-uncased-finetuned-sst2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m --- Safe Tensors backups for merges and models that aren't on huggingface. These are from the Cameron Duru converter tool: https://github.com/camenduru/converter-colab You can still access the space via CoreML : https://huggingface.co/spaces/coreml/converter These are backups for our CivitAI and Google Drive merges: https://civitai.com/user/duskfallcrew
Arnold/wav2vec2-hausa-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.63 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mohammadbehdad/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Arnold/wav2vec2-hausa2-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 872.50 +/- 297.66 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga eryzml -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga eryzml -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga eryzml ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 150000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
ArpanZS/search_model
[ "joblib" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-17T11:31:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 717.50 +/- 348.83 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga danilyef -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga danilyef -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga danilyef ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Ashl3y/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 439.00 +/- 145.89 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nsecord -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nsecord -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga nsecord ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Ashok/my-new-tokenizer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AshtonBenson/DialoGPT-small-quentin
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: lizziedearden/my_aime_gpt2_clm-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # lizziedearden/my_aime_gpt2_clm-model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.9895 - Validation Loss: 2.9968 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.3162 | 3.7395 | 0 | | 3.4696 | 3.2608 | 1 | | 2.9895 | 2.9968 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Asuramaru/DialoGPT-small-rintohsaka
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: gpl-3.0 language: - en library_name: diffusers pipeline_tag: text-to-image tags: - generative ai - stable-diffusion - image-to-image - realism - art --- Photoreal v2.7 Finetuned Stable Diffusion 1.5 for generating images You can test this model here > https://eva.circul.us/index.html ![img](./photoreal0.png) ![img](./photoreal1.png) ![img](./photoreal2.png)
At3ee/wav2vec2-base-timit-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: amazon-xlnet-large-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazon-xlnet-large-2 This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5627 - Accuracy: 0.7763 - F1: 0.7702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.5505 | 1.0 | 20000 | 0.5627 | 0.7763 | 0.7702 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Atchuth/DialoGPT-small-MBOT
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: Mark-Cooper/my_aime_gpt2_clm-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Mark-Cooper/my_aime_gpt2_clm-model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.0541 - Validation Loss: 2.8548 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.3688 | 3.7021 | 0 | | 3.5122 | 3.1472 | 1 | | 3.0541 | 2.8548 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
Atchuth/MBOT
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Agog/Soccer 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Ateeb/EmotionDetector
[ "pytorch", "funnel", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "FunnelForSequenceClassification" ], "model_type": "funnel", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 653.00 +/- 220.48 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tomercagan -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tomercagan -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga tomercagan ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Ateeb/asd
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 31.20 +/- 23.95 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Atlasky/turkish-negator-nn
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-17T13:03:54Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXt V2 (atto-sized model) ConvNeXt V2 model pretrained using the FCMAE framework and fine-tuned on the ImageNet-1K dataset at resolution 224x224. It was introduced in the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Woo et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt-V2). Disclaimer: The team releasing ConvNeXT V2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXt V2 is a pure convolutional model (ConvNet) that introduces a fully convolutional masked autoencoder framework (FCMAE) and a new Global Response Normalization (GRN) layer to ConvNeXt. ConvNeXt V2 significantly improves the performance of pure ConvNets on various recognition benchmarks. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnextv2_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnextv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, ConvNextV2ForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] preprocessor = AutoImageProcessor.from_pretrained("facebook/convnextv2-atto-1k-224") model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-atto-1k-224") inputs = preprocessor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnextv2). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2301-00808, author = {Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie}, title = {ConvNeXt {V2:} Co-designing and Scaling ConvNets with Masked Autoencoders}, journal = {CoRR}, volume = {abs/2301.00808}, year = {2023}, url = {https://doi.org/10.48550/arXiv.2301.00808}, doi = {10.48550/arXiv.2301.00808}, eprinttype = {arXiv}, eprint = {2301.00808}, timestamp = {Tue, 10 Jan 2023 15:10:12 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2301-00808.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Augustvember/WokkaBot3
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-17T13:08:29Z
--- license: creativeml-openrail-m --- 'hedgehogSCI' should be in the prompt on webUI
Augustvember/WokkaBot4
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-17T13:11:18Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -140.80 +/- 55.67 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'gym_id': 'LunarLander-v2' 'learning_rate': 0.00025 'seed': 1 'total_timesteps': 50000 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'unterwexi-tuned-ppo-self-implemented' 'wandb_entity': None 'capture_video': False 'num_envs': 4 'num_steps': 512 'anneal_lr': True 'gae': True 'gamma': 0.999 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Unterwexi/LunarLander-v2-ppo-clearnRL' 'batch_size': 2048 'minibatch_size': 512} ```
Aurora/community.afpglobal
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 1.000000082740371e-07 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Ayham/roberta_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.40 +/- 15.69 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ayham/roberta_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-02-17T14:53:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: xls-r-300m-toi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-toi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2253 - Wer: 0.2636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8741 | 0.96 | 500 | 0.4149 | 0.5654 | | 0.3708 | 1.92 | 1000 | 0.2344 | 0.3920 | | 0.2756 | 2.88 | 1500 | 0.2226 | 0.3656 | | 0.2086 | 3.84 | 2000 | 0.1730 | 0.2848 | | 0.1828 | 4.8 | 2500 | 0.2253 | 0.2636 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Ayham/robertagpt2_cnn
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXt V2 (femto-sized model) ConvNeXt V2 model pretrained using the FCMAE framework and fine-tuned on the ImageNet-1K dataset at resolution 224x224. It was introduced in the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Woo et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt-V2). Disclaimer: The team releasing ConvNeXT V2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXt V2 is a pure convolutional model (ConvNet) that introduces a fully convolutional masked autoencoder framework (FCMAE) and a new Global Response Normalization (GRN) layer to ConvNeXt. ConvNeXt V2 significantly improves the performance of pure ConvNets on various recognition benchmarks. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnextv2_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnextv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, ConvNextV2ForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] preprocessor = AutoImageProcessor.from_pretrained("facebook/convnextv2-femto-1k-224") model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-femto-1k-224") inputs = preprocessor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnextv2). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2301-00808, author = {Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie}, title = {ConvNeXt {V2:} Co-designing and Scaling ConvNets with Masked Autoencoders}, journal = {CoRR}, volume = {abs/2301.00808}, year = {2023}, url = {https://doi.org/10.48550/arXiv.2301.00808}, doi = {10.48550/arXiv.2301.00808}, eprinttype = {arXiv}, eprint = {2301.00808}, timestamp = {Tue, 10 Jan 2023 15:10:12 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2301-00808.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Aymene/opus-mt-en-ro-finetuned-en-to-ro
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-17T15:02:16Z
--- tags: - Bowling-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Bowling-v5 type: Bowling-v5 metrics: - type: mean_reward value: 52.90 +/- 4.01 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Bowling-v5** This is a trained model of a PPO agent playing Bowling-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Bowling-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Bowling-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Bowling-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayran/DialoGPT-medium-harry-potter-1-through-3
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - Amidar-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Amidar-v5 type: Amidar-v5 metrics: - type: mean_reward value: 1273.30 +/- 288.11 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Amidar-v5** This is a trained model of a PPO agent playing Amidar-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Amidar-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Amidar-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Amidar-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Amidar-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Amidar-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Amidar-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayran/DialoGPT-medium-harry-potter-1-through-4-plus-6-e18
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: apache-2.0 datasets: - mrm8488/CHISTES_spanish_jokes language: - es pipeline_tag: text-generation --- # Adapter for BERTIN-GPT-J-6B fine-tuned on Jokes for jokes generation ## Adapter Description This adapter was created by using the [PEFT](https://github.com/huggingface/peft) library and allows the base model **BERTIN-GPT-J-6B** to be fine-tuned on the dataset **mrm8488/CHISTES_spanish_jokes** for **Spanish jokes generation** by using the method **LoRA**. ## Model Description [BERTIN-GPT-J-6B](https://huggingface.co/bertin-project/bertin-gpt-j-6B) is a Spanish finetuned version of GPT-J 6B, a transformer model trained using Ben Wang's Mesh Transformer JAX. "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. ## Training data Dataset from [Workshop for NLP introduction with Spanish jokes](https://github.com/liopic/chistes-nlp) [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Training procedure TBA ## How to use ```py import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "mrm8488/bertin-gpt-j-6B-es-finetuned-chistes_spanish_jokes-500" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) # Inference batch = tokenizer("Esto son dos amigos", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True)) ```
Ayran/DialoGPT-small-gandalf
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - Amidar-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Amidar-v5 type: Amidar-v5 metrics: - type: mean_reward value: 1206.20 +/- 240.01 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Amidar-v5** This is a trained model of a PPO agent playing Amidar-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Amidar-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Amidar-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Amidar-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Amidar-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Amidar-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Amidar-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayran/DialoGPT-small-harry-potter-1-through-3
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - Alien-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Alien-v5 type: Alien-v5 metrics: - type: mean_reward value: 4168.00 +/- 2286.61 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Alien-v5** This is a trained model of a PPO agent playing Alien-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Alien-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Alien-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Alien-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
AyushPJ/test-squad-trained-finetuned-squad
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-02-17T15:05:38Z
--- tags: - Defender-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Defender-v5 type: Defender-v5 metrics: - type: mean_reward value: 64985.00 +/- 14038.98 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Defender-v5** This is a trained model of a PPO agent playing Defender-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Defender-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Defender-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Defender-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Azaghast/GPT2-SCP-ContainmentProcedures
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - Breakout-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Breakout-v5 type: Breakout-v5 metrics: - type: mean_reward value: 730.50 +/- 203.62 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Breakout-v5** This is a trained model of a PPO agent playing Breakout-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Breakout-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Breakout-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Azaghast/GPT2-SCP-Descriptions
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - BeamRider-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRider-v5 type: BeamRider-v5 metrics: - type: mean_reward value: 38510.80 +/- 14083.44 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BeamRider-v5** This is a trained model of a PPO agent playing BeamRider-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id BeamRider-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BeamRider-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/BeamRider-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BeamRider-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id BeamRider-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'BeamRider-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BME-TMIT/foszt2oszt
[ "pytorch", "encoder-decoder", "text2text-generation", "hu", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- license: mit tags: - generated_from_trainer datasets: - imdb model-index: - name: gpt-neo-1.3B-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-imdb This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
BOON/electra-xlnet
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638300289723342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
BOON/electra_qa
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kestrel256/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
BSC-LT/gpt2-large-bne
[ "pytorch", "gpt2", "text-generation", "es", "dataset:bne", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "license:apache-2.0" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXt V2 (large-sized model) ConvNeXt V2 model pretrained using the FCMAE framework and fine-tuned on the ImageNet-1K dataset at resolution 224x224. It was introduced in the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Woo et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt-V2). Disclaimer: The team releasing ConvNeXT V2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXt V2 is a pure convolutional model (ConvNet) that introduces a fully convolutional masked autoencoder framework (FCMAE) and a new Global Response Normalization (GRN) layer to ConvNeXt. ConvNeXt V2 significantly improves the performance of pure ConvNets on various recognition benchmarks. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnextv2_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnextv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, ConvNextV2ForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] preprocessor = AutoImageProcessor.from_pretrained("facebook/convnextv2-large-1k-224") model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-large-1k-224") inputs = preprocessor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnextv2). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2301-00808, author = {Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie}, title = {ConvNeXt {V2:} Co-designing and Scaling ConvNets with Masked Autoencoders}, journal = {CoRR}, volume = {abs/2301.00808}, year = {2023}, url = {https://doi.org/10.48550/arXiv.2301.00808}, doi = {10.48550/arXiv.2301.00808}, eprinttype = {arXiv}, eprint = {2301.00808}, timestamp = {Tue, 10 Jan 2023 15:10:12 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2301-00808.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
BSC-LT/roberta-base-biomedical-es
[ "pytorch", "roberta", "fill-mask", "es", "arxiv:2109.03570", "arxiv:2109.07765", "transformers", "biomedical", "spanish", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
161
null
--- license: mit tags: - generated_from_trainer model-index: - name: biomedical_question_answering results: [] datasets: - Shushant/BiomedicalQuestionAnsweringDataset language: - en metrics: - exact_match - f1 library_name: transformers pipeline_tag: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biomedical_question_answering This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on a custom dataset of question answer pairs annotated from research papers from Pubmed. It achieves the following results on the evaluation set: - Loss: 2.6629 ## Model description Model finetuned on PubmedBERT using custom daatset ## Intended uses & limitations For question answering related to biomedical research papers. ## Training and evaluation data Data https://huggingface.co/datasets/Shushant/BiomedicalQuestionAnsweringDataset ## Training procedure Finetuning using Trainer API ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 236 | 1.6866 | | No log | 2.0 | 472 | 1.5432 | | 0.737 | 3.0 | 708 | 1.7998 | | 0.737 | 4.0 | 944 | 1.9746 | | 0.2893 | 5.0 | 1180 | 1.9510 | | 0.2893 | 6.0 | 1416 | 2.1479 | | 0.1562 | 7.0 | 1652 | 2.3304 | | 0.1562 | 8.0 | 1888 | 2.5882 | | 0.0823 | 9.0 | 2124 | 2.6494 | | 0.0823 | 10.0 | 2360 | 2.6629 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
BSC-LT/roberta-base-bne-capitel-ner-plus
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "ner", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - autotrain - translation language: - unk - unk datasets: - Tritkoman/autotrain-data-abagaga co2_eq_emissions: emissions: 10.516087938863189 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 3551595787 - CO2 Emissions (in grams): 10.5161 ## Validation Metrics - Loss: 1.732 - SacreBLEU: 12.665 - Gen len: 19.955
BSen/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - Freeway-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Freeway-v5 type: Freeway-v5 metrics: - type: mean_reward value: 34.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Freeway-v5** This is a trained model of a PPO agent playing Freeway-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Freeway-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Freeway-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Freeway-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Babelscape/wikineural-multilingual-ner
[ "pytorch", "tensorboard", "safetensors", "bert", "token-classification", "de", "en", "es", "fr", "it", "nl", "pl", "pt", "ru", "multilingual", "dataset:Babelscape/wikineural", "transformers", "named-entity-recognition", "sequence-tagger-model", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
41,608
null
--- tags: - Hero-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hero-v5 type: Hero-v5 metrics: - type: mean_reward value: 36946.00 +/- 81.54 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Hero-v5** This is a trained model of a PPO agent playing Hero-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Hero-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Hero-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Hero-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Badr/model1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - IceHockey-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: IceHockey-v5 type: IceHockey-v5 metrics: - type: mean_reward value: 12.20 +/- 4.12 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **IceHockey-v5** This is a trained model of a PPO agent playing IceHockey-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id IceHockey-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/IceHockey-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/IceHockey-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/IceHockey-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id IceHockey-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'IceHockey-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Bagus/SER-LSSED
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-17T15:37:42Z
--- tags: - IceHockey-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: IceHockey-v5 type: IceHockey-v5 metrics: - type: mean_reward value: 13.10 +/- 4.53 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **IceHockey-v5** This is a trained model of a PPO agent playing IceHockey-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id IceHockey-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/IceHockey-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/IceHockey-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/IceHockey-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id IceHockey-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'IceHockey-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Bagus/ser-japanese
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Jamesbond-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Jamesbond-v5 type: Jamesbond-v5 metrics: - type: mean_reward value: 13075.00 +/- 6778.14 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Jamesbond-v5** This is a trained model of a PPO agent playing Jamesbond-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Jamesbond-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Jamesbond-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Jamesbond-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition
[ "pytorch", "tensorboard", "wav2vec2", "el", "dataset:aesdd", "transformers", "audio", "audio-classification", "speech", "license:apache-2.0" ]
audio-classification
{ "architectures": [ "Wav2Vec2ForSpeechClassification" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- tags: - Kangaroo-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Kangaroo-v5 type: Kangaroo-v5 metrics: - type: mean_reward value: 11610.00 +/- 1147.56 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Kangaroo-v5** This is a trained model of a PPO agent playing Kangaroo-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Kangaroo-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Kangaroo-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Kangaroo-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BalajiSathesh/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - Krull-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Krull-v5 type: Krull-v5 metrics: - type: mean_reward value: 8974.00 +/- 1199.98 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Krull-v5** This is a trained model of a PPO agent playing Krull-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Krull-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Krull-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Krull-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Banshee/LukeSkywalker
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Krull-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Krull-v5 type: Krull-v5 metrics: - type: mean_reward value: 9805.00 +/- 1003.48 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Krull-v5** This is a trained model of a PPO agent playing Krull-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Krull-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Krull-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Krull-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Batsy24/DialoGPT-small-Twilight_EdBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-02-17T15:42:47Z
--- tags: - NameThisGame-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: NameThisGame-v5 type: NameThisGame-v5 metrics: - type: mean_reward value: 12614.00 +/- 1144.99 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **NameThisGame-v5** This is a trained model of a PPO agent playing NameThisGame-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id NameThisGame-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id NameThisGame-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'NameThisGame-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BatuhanYilmaz/distilbert-base-uncased-finetuned-squad-d5716d28
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
18
2023-02-18T17:02:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: minirbt-h256-fin-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # minirbt-h256-fin-finetuned This model is a fine-tuned version of [hfl/minirbt-h256](https://huggingface.co/hfl/minirbt-h256) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4252 - Accuracy: 0.8808 - F1: 0.8813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4226 | 1.0 | 1096 | 0.4544 | 0.8569 | 0.8576 | | 0.3963 | 2.0 | 2192 | 0.3878 | 0.8800 | 0.8806 | | 0.324 | 3.0 | 3288 | 0.4218 | 0.8779 | 0.8784 | | 0.3088 | 4.0 | 4384 | 0.4252 | 0.8808 | 0.8813 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0.dev20230212 - Datasets 2.9.0 - Tokenizers 0.13.2
BatuhanYilmaz/dummy
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('emilienchauvet/sd-class-butterflies-32') image = pipeline().images[0] image ```
Bee-Garbs/DialoGPT-cartman-small
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - RoadRunner-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: RoadRunner-v5 type: RoadRunner-v5 metrics: - type: mean_reward value: 51700.00 +/- 6195.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **RoadRunner-v5** This is a trained model of a PPO agent playing RoadRunner-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id RoadRunner-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id RoadRunner-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'RoadRunner-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Bee-Garbs/DialoGPT-real-cartman-small
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - PrivateEye-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PrivateEye-v5 type: PrivateEye-v5 metrics: - type: mean_reward value: 100.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **PrivateEye-v5** This is a trained model of a PPO agent playing PrivateEye-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id PrivateEye-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id PrivateEye-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'PrivateEye-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Beelow/model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Qbert-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Qbert-v5 type: Qbert-v5 metrics: - type: mean_reward value: 16882.50 +/- 2001.75 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Qbert-v5** This is a trained model of a PPO agent playing Qbert-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Qbert-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Qbert-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Qbert-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BenGeorge/MyModel
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Riverraid-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Riverraid-v5 type: Riverraid-v5 metrics: - type: mean_reward value: 25723.00 +/- 2803.11 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Riverraid-v5** This is a trained model of a PPO agent playing Riverraid-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Riverraid-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Riverraid-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Riverraid-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Bharathdamu/wav2vec2-model-hindi-stt
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Tutankham-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Tutankham-v5 type: Tutankham-v5 metrics: - type: mean_reward value: 306.70 +/- 38.61 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Tutankham-v5** This is a trained model of a PPO agent playing Tutankham-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Tutankham-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Tutankham-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Bharathdamu/wav2vec2-model-hindibhasha
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - TimePilot-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: TimePilot-v5 type: TimePilot-v5 metrics: - type: mean_reward value: 45280.00 +/- 9469.30 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **TimePilot-v5** This is a trained model of a PPO agent playing TimePilot-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id TimePilot-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id TimePilot-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'TimePilot-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BigBoy/model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Venture-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Venture-v5 type: Venture-v5 metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Venture-v5** This is a trained model of a PPO agent playing Venture-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Venture-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Venture-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BigDaddyNe1L/Hhaa
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: emozilla/flan-t5-xl-sat-reading results: [] datasets: - emozilla/sat-reading --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emozilla/flan-t5-xl-sat-reading This model is a fine-tuned version of [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl) on the [emozilla/sat-reading](https://huggingface.co/datasets/emozilla/sat-reading) dataset. ## Model description This model was trained on the Reading section of several SAT Practice Tests. It scores better than the original pre-trained model while maintaining zero-shot task performance. For more information, see the blog post [Language Models vs. The SAT Reading Test](https://jeffq.com/blog/language-models-vs-the-sat-reading-test). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 38 | 0.1797 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1 - Datasets 2.9.0 - Tokenizers 0.13.2
BigSalmon/Flowberta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 model-index: - name: whisper-tiny-luganda results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-luganda This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4514 - eval_wer: 42.9665 - eval_runtime: 1100.3827 - eval_samples_per_second: 11.608 - eval_steps_per_second: 0.726 - epoch: 9.43 - step: 10000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
BigSalmon/FormalBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 531.00 +/- 158.90 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga helpingstar -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga helpingstar -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga helpingstar ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BigSalmon/FormalBerta2
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: train args: split metrics: - name: Accuracy type: accuracy value: 0.9385 - name: F1 type: f1 value: 0.9387958695968593 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1561 - Accuracy: 0.9385 - F1: 0.9388 # Label description - Label_0: sadness - Label_1: joy - Label_2: love - Label_3: anger - Label_4: fear - Label_5: surprise ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data This model is finetuned on the emotion dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1762 | 1.0 | 250 | 0.1719 | 0.929 | 0.9287 | | 0.1157 | 2.0 | 500 | 0.1561 | 0.9385 | 0.9388 | ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.0.dev20230215 - Datasets 2.9.0 - Tokenizers 0.11.0
BigSalmon/FormalBerta3
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - Venture-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Venture-v5 type: Venture-v5 metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Venture-v5** This is a trained model of a PPO agent playing Venture-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Venture-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Venture-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BigSalmon/FormalRobertaa
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - WizardOfWor-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: WizardOfWor-v5 type: WizardOfWor-v5 metrics: - type: mean_reward value: 10270.00 +/- 9236.67 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **WizardOfWor-v5** This is a trained model of a PPO agent playing WizardOfWor-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id WizardOfWor-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'WizardOfWor-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BigSalmon/FormalRobertaaa
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - WizardOfWor-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: WizardOfWor-v5 type: WizardOfWor-v5 metrics: - type: mean_reward value: 17920.00 +/- 6675.90 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **WizardOfWor-v5** This is a trained model of a PPO agent playing WizardOfWor-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id WizardOfWor-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'WizardOfWor-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BigSalmon/GPT2HardArticleEasyArticle
[ "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - Zaxxon-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Zaxxon-v5 type: Zaxxon-v5 metrics: - type: mean_reward value: 19530.00 +/- 4302.57 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Zaxxon-v5** This is a trained model of a PPO agent playing Zaxxon-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Zaxxon-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Zaxxon-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BigSalmon/InformalToFormalLincoln16
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: dys_asr_xlsr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dys_asr_xlsr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0468 - Wer: 1.3583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.4773 | 1.36 | 500 | 3.1298 | 1.0 | | 2.6931 | 2.72 | 1000 | 1.7611 | 2.7726 | | 1.0777 | 4.09 | 1500 | 0.3407 | 2.2212 | | 0.227 | 5.45 | 2000 | 0.0824 | 1.6604 | | 0.098 | 6.81 | 2500 | 0.0468 | 1.3583 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
BigSalmon/InformalToFormalLincoln17
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 104.50 +/- 63.85 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mibalaguer -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mibalaguer -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mibalaguer ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BigSalmon/InformalToFormalLincoln18
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 236.60 +/- 22.13 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/InformalToFormalLincoln20
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: emozilla/flan-t5-base-sat-reading results: [] datasets: - emozilla/sat-reading --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emozilla/flan-t5-base-sat-reading This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the [emozilla/sat-reading](https://huggingface.co/datasets/emozilla/sat-reading) dataset. ## Model description This model was trained on the Reading section of several SAT Practice Tests. It scores better than the original pre-trained model while maintaining zero-shot task performance. For more information, see the blog post [Language Models vs. The SAT Reading Test](https://jeffq.com/blog/language-models-vs-the-sat-reading-test). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 298 | 0.5527 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1 - Datasets 2.9.0 - Tokenizers 0.13.2
BigSalmon/InformalToFormalLincoln21
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
BigSalmon/InformalToFormalLincolnDistilledGPT2
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-finetuned-abbr-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-abbr-finetuned-ner This model is a fine-tuned version of [surrey-nlp/roberta-large-finetuned-abbr](https://huggingface.co/surrey-nlp/roberta-large-finetuned-abbr) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1392 - Precision: 0.9699 - Recall: 0.9660 - F1: 0.9679 - Accuracy: 0.9645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1169 | 0.25 | 7000 | 0.1114 | 0.9639 | 0.9581 | 0.9610 | 0.9575 | | 0.1171 | 0.5 | 14000 | 0.1150 | 0.9655 | 0.9534 | 0.9594 | 0.9554 | | 0.1202 | 0.75 | 21000 | 0.1058 | 0.9644 | 0.9578 | 0.9611 | 0.9575 | | 0.1105 | 0.99 | 28000 | 0.1098 | 0.9664 | 0.9549 | 0.9606 | 0.9566 | | 0.0935 | 1.24 | 35000 | 0.1270 | 0.9643 | 0.9570 | 0.9606 | 0.9570 | | 0.0999 | 1.49 | 42000 | 0.1112 | 0.9626 | 0.9605 | 0.9615 | 0.9580 | | 0.0948 | 1.74 | 49000 | 0.1114 | 0.9670 | 0.9606 | 0.9638 | 0.9603 | | 0.1015 | 1.99 | 56000 | 0.1146 | 0.9680 | 0.9589 | 0.9634 | 0.9597 | | 0.0816 | 2.24 | 63000 | 0.1244 | 0.9670 | 0.9607 | 0.9638 | 0.9603 | | 0.0855 | 2.49 | 70000 | 0.1107 | 0.9675 | 0.9623 | 0.9649 | 0.9614 | | 0.0814 | 2.73 | 77000 | 0.1047 | 0.9661 | 0.9630 | 0.9645 | 0.9611 | | 0.0827 | 2.98 | 84000 | 0.1082 | 0.9665 | 0.9631 | 0.9648 | 0.9614 | | 0.0655 | 3.23 | 91000 | 0.1485 | 0.9690 | 0.9615 | 0.9653 | 0.9618 | | 0.0631 | 3.48 | 98000 | 0.1314 | 0.9683 | 0.9639 | 0.9661 | 0.9627 | | 0.0667 | 3.73 | 105000 | 0.1164 | 0.9683 | 0.9643 | 0.9663 | 0.9629 | | 0.0652 | 3.98 | 112000 | 0.1297 | 0.9681 | 0.9653 | 0.9667 | 0.9633 | | 0.0485 | 4.23 | 119000 | 0.1441 | 0.9697 | 0.9645 | 0.9671 | 0.9636 | | 0.0505 | 4.47 | 126000 | 0.1350 | 0.9700 | 0.9651 | 0.9675 | 0.9642 | | 0.0498 | 4.72 | 133000 | 0.1243 | 0.9691 | 0.9657 | 0.9674 | 0.9640 | | 0.0463 | 4.97 | 140000 | 0.1392 | 0.9699 | 0.9660 | 0.9679 | 0.9645 | | 0.0371 | 5.22 | 147000 | 0.1527 | 0.9709 | 0.9658 | 0.9683 | 0.9649 | | 0.0363 | 5.47 | 154000 | 0.1490 | 0.9703 | 0.9667 | 0.9685 | 0.9651 | | 0.0341 | 5.72 | 161000 | 0.1538 | 0.9712 | 0.9666 | 0.9689 | 0.9656 | | 0.0338 | 5.97 | 168000 | 0.1488 | 0.9705 | 0.9668 | 0.9687 | 0.9653 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.10.3
BigSalmon/Lincoln4
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - UpNDown-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: UpNDown-v5 type: UpNDown-v5 metrics: - type: mean_reward value: 332890.00 +/- 7999.53 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **UpNDown-v5** This is a trained model of a PPO agent playing UpNDown-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id UpNDown-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/UpNDown-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/UpNDown-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/UpNDown-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id UpNDown-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'UpNDown-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
BigSalmon/MrLincoln11
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.63 +/- 21.81 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/MrLincolnBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-02-17T18:05:26Z
--- tags: - autotrain - translation language: - en - es datasets: - Tritkoman/autotrain-data-thisisforalesson co2_eq_emissions: emissions: 13.36932256664444 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 3554595856 - CO2 Emissions (in grams): 13.3693 ## Validation Metrics - Loss: 5.220 - SacreBLEU: 0.379 - Gen len: 3.235
BigSalmon/NEO125InformalToFormalLincoln
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.42 +/- 17.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/PhraseBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jcramirezpr/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
BigSalmon/Points
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
2023-02-17T18:28:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 285.92 +/- 15.92 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/SimplifyText
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
2023-02-17T18:40:29Z
--- tags: - autotrain - translation language: - unk - unk datasets: - Tritkoman/autotrain-data-rusyntest co2_eq_emissions: emissions: 0.05185212743615661 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 3555695871 - CO2 Emissions (in grams): 0.0519 ## Validation Metrics - Loss: 2.858 - SacreBLEU: 1.820 - Gen len: 5.265
BigeS/DialoGPT-small-Rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2023-02-17T18:59:43Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: GrimReaperSam/poca-soccer-twos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Binbin/test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-17T19:08:02Z
--- datasets: - buddhist-nlp/tib_eng_bitext language: - bo - en metrics: - bleu - chrf library_name: transformers --- |Training setup | | |----------------------|-------| |Num train steps | 10000| |Max seq len | 256| |Batch size | 512| |Total data points seen|5.1 mil| |Total tokens seen |450 mil| |Checkpoint step | 9800| |Learning rate | 1e-3| |Metric|Val |Test| |------|----|----| |BLEU |34.1|32.3| |chrf++|51.5|50.3|
BinksSachary/DialoGPT-small-shaxx
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2023-02-17T19:11:36Z
--- tags: - conversational --- # Piplup7575 AI Model
Blaine-Mason/hackMIT-finetuned-sst2
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
2023-02-17T19:27:57Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8607479822666818 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1385 - F1: 0.8607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2565 | 1.0 | 525 | 0.1725 | 0.8200 | | 0.128 | 2.0 | 1050 | 0.1388 | 0.8514 | | 0.0804 | 3.0 | 1575 | 0.1385 | 0.8607 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
BlueGamerBeast/DialoGPT-small-joshua
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-17T20:05:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.44 +/- 16.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import PPO from huggingface_sb3 import load_from_hub repo_id = "Yelinz/ppo-lunar-lander" # The repo_id filename = "lander-v1.zip" # The model filename.zip # When the model was trained on Python 3.8 the pickle protocol is 5 # But Python 3.6, 3.7 use protocol 4 # In order to get compatibility we need to: # 1. Install pickle5 (we done it at the beginning of the colab) # 2. Create a custom empty object we pass as parameter to PPO.load() custom_objects = { "learning_rate": 0.0, "lr_schedule": lambda _: 0.0, "clip_range": lambda _: 0.0, } checkpoint = load_from_hub(repo_id, filename) model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True) ... ```
BobBraico/distilbert-base-uncased-finetuned-imdb-accelerate
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.81 +/- 23.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Boondong/Wandee
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m --- https://civitai.com/models/9887/specimen-girl
Bosio/full-sentence-distillroberta3-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-17T20:13:38Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="paulinho123/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Botslity/Bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 799.00 +/- 502.99 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga justlotw -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga justlotw -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga justlotw ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1500000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BotterHax/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-02-17T20:22:13Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1490.20 +/- 353.17 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```