modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-28 00:48:09
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-28 00:47:12
card
stringlengths
11
1.01M
ckandemir/xlm-roberta-base-finetuned-panx-all
ckandemir
2023-09-02T14:31:52Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T13:34:37Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1723 - F1: 0.8549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3018 | 1.0 | 835 | 0.1952 | 0.8121 | | 0.1575 | 2.0 | 1670 | 0.1776 | 0.8404 | | 0.1017 | 3.0 | 2505 | 0.1723 | 0.8549 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Lenouche/JoueurDuGrenier
Lenouche
2023-09-02T14:31:09Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-13T23:02:23Z
--- license: openrail language: - fr ---
Lenouche/MrBidouille
Lenouche
2023-09-02T14:29:22Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-16T20:37:30Z
--- language: - fr license: openrail ---
Lenouche/PPWorld
Lenouche
2023-09-02T14:29:04Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-16T23:14:29Z
--- language: - fr license: openrail ---
Lenouche/GiaTechAndGaming
Lenouche
2023-09-02T14:28:46Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-17T01:44:54Z
--- language: - fr license: openrail ---
Lenouche/SebDuGrenier
Lenouche
2023-09-02T14:28:23Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-17T15:16:22Z
--- language: - fr type de modèle: - voix epochs: - 300 version de modèle: - RVC.v2 license: openrail ---
Zevin2023/MoC-IQA
Zevin2023
2023-09-02T14:28:05Z
0
0
null
[ "aa", "license:openrail", "region:us" ]
null
2023-09-02T14:02:17Z
--- license: openrail language: - aa metrics: - accuracy ---
Lenouche/TevIciJapon
Lenouche
2023-09-02T14:27:59Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-17T18:47:02Z
--- language: - fr license: openrail ---
Lenouche/PaulMirabel
Lenouche
2023-09-02T14:27:32Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-28T23:47:56Z
--- language: - fr license: openrail ---
Lenouche/DefendIntelligence
Lenouche
2023-09-02T14:26:44Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-31T00:44:45Z
--- language: - fr license: openrail ---
SymeCloud/Llama2-7b-Chat-GGUF
SymeCloud
2023-09-02T14:25:41Z
1
2
transformers
[ "transformers", "llama", "code", "llama-2", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-09-02T11:59:57Z
--- license: apache-2.0 language: - en tags: - code - llama-2 --- # Llama2 Chat 7B - GGUF - Model creator: [Meta](https://huggingface.co/meta-llama) - Original model: [Llama 2 7b Chat GGML](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML) <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates. * [llama.cpp](https://github.com/ggerganov/llama.cpp)
NiscR/Pyramids-1
NiscR
2023-09-02T13:53:42Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-09-02T13:53:36Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: NiscR/Pyramids-1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
VinayHajare/ppo-LunarLander-v2
VinayHajare
2023-09-02T13:51:21Z
5
3
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T06:37:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.26 +/- 19.25 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python # !pip gymnasium huggingface-sb3 stable_baselines3[extra] import gymnasium as gym from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.vec_env import DummyVecEnv from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.monitor import Monitor repo_id = "VinayHajare/ppo-LunarLander-v2" filename = "ppo-LunarLander-v2.zip" eval_env = gym.make("LunarLander-v2", render_mode="human") checkpoint = load_from_hub(repo_id, filename) model = PPO.load(checkpoint,print_system_info=True) mean_reward, std_reward = evaluate_policy(model,eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Enjoy trained agent observation, info = eval_env.reset() for _ in range(1000): action, _states = model.predict(observation, deterministic=True) observation, rewards, terminated, truncated, info = eval_env.step(action) eval_env.render() ```
venetis/roberta-base-finetuned-3d-sentiment
venetis
2023-09-02T13:41:28Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T07:49:37Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-base-finetuned-3d-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-3d-sentiment This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5817 - Accuracy: 0.7753 - Precision: 0.7757 - Recall: 0.7753 - F1: 0.7745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 6381 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7758 | 1.0 | 1595 | 0.7691 | 0.7069 | 0.7256 | 0.7069 | 0.7052 | | 0.5496 | 2.0 | 3190 | 0.6961 | 0.7255 | 0.7441 | 0.7255 | 0.7252 | | 0.4856 | 3.0 | 4785 | 0.6451 | 0.7368 | 0.7562 | 0.7368 | 0.7328 | | 0.4257 | 4.0 | 6380 | 0.5817 | 0.7753 | 0.7757 | 0.7753 | 0.7745 | | 0.351 | 5.0 | 7975 | 0.6637 | 0.7633 | 0.7717 | 0.7633 | 0.7637 | | 0.2551 | 6.0 | 9570 | 0.7646 | 0.7696 | 0.7738 | 0.7696 | 0.7699 | | 0.1845 | 7.0 | 11165 | 0.8529 | 0.7674 | 0.7730 | 0.7674 | 0.7680 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
Kamer/NoDuplicates
Kamer
2023-09-02T13:27:46Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T16:09:33Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: NoDuplicates results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NoDuplicates This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4279 - Accuracy: 0.9128 - F1 Macro: 0.8384 - F1 Class 0: 0.9406 - F1 Class 1: 0.3333 - F1 Class 2: 0.9127 - F1 Class 3: 0.6471 - F1 Class 4: 0.8254 - F1 Class 5: 0.8293 - F1 Class 6: 0.8767 - F1 Class 7: 0.7606 - F1 Class 8: 0.7500 - F1 Class 9: 0.9878 - F1 Class 10: 0.9444 - F1 Class 11: 0.9630 - F1 Class 12: 0.9265 - F1 Class 13: 0.8980 - F1 Class 14: 0.8444 - F1 Class 15: 0.8132 - F1 Class 16: 0.7778 - F1 Class 17: 0.9651 - F1 Class 18: 0.9574 - F1 Class 19: 0.8148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Class 0 | F1 Class 1 | F1 Class 2 | F1 Class 3 | F1 Class 4 | F1 Class 5 | F1 Class 6 | F1 Class 7 | F1 Class 8 | F1 Class 9 | F1 Class 10 | F1 Class 11 | F1 Class 12 | F1 Class 13 | F1 Class 14 | F1 Class 15 | F1 Class 16 | F1 Class 17 | F1 Class 18 | F1 Class 19 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:| | 1.4862 | 0.27 | 300 | 0.8201 | 0.7845 | 0.4484 | 0.8675 | 0.0 | 0.8627 | 0.0 | 0.6733 | 0.0 | 0.6627 | 0.0 | 0.0 | 0.9862 | 0.1935 | 0.9600 | 0.8299 | 0.0833 | 0.2353 | 0.24 | 0.0400 | 0.8852 | 0.9451 | 0.5033 | | 0.7269 | 0.53 | 600 | 0.5951 | 0.8491 | 0.6504 | 0.9048 | 0.0 | 0.8567 | 0.0 | 0.7596 | 0.6111 | 0.6887 | 0.0 | 0.0 | 0.9877 | 0.8033 | 0.9286 | 0.8798 | 0.9167 | 0.74 | 0.6857 | 0.5823 | 0.9506 | 0.9485 | 0.7640 | | 0.5429 | 0.8 | 900 | 0.5375 | 0.8637 | 0.7086 | 0.8904 | 0.0 | 0.8589 | 0.0 | 0.7254 | 0.7805 | 0.8215 | 0.6769 | 0.0 | 0.9877 | 0.7833 | 1.0 | 0.9022 | 0.9130 | 0.7912 | 0.7733 | 0.7048 | 0.9032 | 0.9474 | 0.7119 | | 0.4594 | 1.06 | 1200 | 0.5110 | 0.8805 | 0.7113 | 0.9099 | 0.0 | 0.8925 | 0.0 | 0.7706 | 0.7391 | 0.8139 | 0.4091 | 0.0 | 0.9908 | 0.8785 | 1.0 | 0.8983 | 0.8936 | 0.8090 | 0.7556 | 0.7907 | 0.9529 | 0.9574 | 0.7647 | | 0.3484 | 1.33 | 1500 | 0.4679 | 0.8951 | 0.7667 | 0.9180 | 0.0 | 0.9080 | 0.6957 | 0.8 | 0.7619 | 0.8299 | 0.6875 | 0.0 | 0.9908 | 0.8909 | 1.0 | 0.9196 | 0.9130 | 0.8172 | 0.7865 | 0.7527 | 0.9398 | 0.9474 | 0.7755 | | 0.3744 | 1.59 | 1800 | 0.4359 | 0.8951 | 0.7774 | 0.9290 | 0.0 | 0.8815 | 0.8462 | 0.8049 | 0.7805 | 0.8449 | 0.7059 | 0.0 | 0.9908 | 0.9346 | 1.0 | 0.9143 | 0.8980 | 0.8387 | 0.7475 | 0.7179 | 0.9647 | 0.9583 | 0.7895 | | 0.3514 | 1.86 | 2100 | 0.5161 | 0.8903 | 0.7592 | 0.9109 | 0.0 | 0.8973 | 0.6429 | 0.7603 | 0.7907 | 0.8571 | 0.7077 | 0.0 | 0.9908 | 0.9346 | 1.0 | 0.8971 | 0.8936 | 0.7042 | 0.7324 | 0.7857 | 0.9595 | 0.9574 | 0.7609 | | 0.3111 | 2.12 | 2400 | 0.4327 | 0.9080 | 0.8027 | 0.9283 | 0.3333 | 0.9141 | 0.7407 | 0.8207 | 0.8095 | 0.8622 | 0.7606 | 0.0 | 0.9908 | 0.9298 | 0.9630 | 0.9215 | 0.9167 | 0.8041 | 0.8 | 0.8132 | 0.9651 | 0.9574 | 0.8224 | | 0.2088 | 2.39 | 2700 | 0.4356 | 0.9128 | 0.8452 | 0.9386 | 0.3333 | 0.9058 | 0.8462 | 0.8265 | 0.8 | 0.8562 | 0.7429 | 0.7500 | 0.9893 | 0.9346 | 0.9630 | 0.9322 | 0.8936 | 0.8205 | 0.8372 | 0.7765 | 0.9651 | 0.9574 | 0.8350 | | 0.2317 | 2.65 | 3000 | 0.4294 | 0.9137 | 0.8217 | 0.9365 | 0.3333 | 0.9102 | 0.625 | 0.8243 | 0.8293 | 0.875 | 0.8056 | 0.3333 | 0.9893 | 0.9444 | 0.9630 | 0.9284 | 0.8980 | 0.8478 | 0.8471 | 0.7816 | 0.9651 | 0.9574 | 0.8400 | | 0.1816 | 2.92 | 3300 | 0.4279 | 0.9128 | 0.8384 | 0.9406 | 0.3333 | 0.9127 | 0.6471 | 0.8254 | 0.8293 | 0.8767 | 0.7606 | 0.7500 | 0.9878 | 0.9444 | 0.9630 | 0.9265 | 0.8980 | 0.8444 | 0.8132 | 0.7778 | 0.9651 | 0.9574 | 0.8148 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
chillpixel/blacklight-makeup-sdxl-lora
chillpixel
2023-09-02T13:15:34Z
651
8
diffusers
[ "diffusers", "art", "style", "sdxl", "lora", "stable diffusion", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "blacklight", "makeup", "neon", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-26T22:37:20Z
--- library_name: diffusers pipeline_tag: text-to-image base_model: stabilityai/stable-diffusion-xl-base-1.0 tags: - art - style - sdxl - lora - stable diffusion - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - blacklight - makeup - neon inference: true --- # Blacklight Makeup — SDXL LoRA ![Blacklight Makeup — SDXL LoRA Example Images](blacklight-makeup-sdxl-lora.jpg) ## <span style="color: orange;">Blacklight Makeup</span> is a fun art style for SDXL **Difficulty**: <span style="color: indianred;">*Advanced*</span> (not for beginners) **Blacklight makeup** is a mesmerizing art style that I have come to enjoy for its *creativity* and *boldness*. The magic lies in its ability to transform a simple canvas, such as the human face and body, into a vibrant and otherworldly masterpiece under the enchanting glow of ultraviolet light. The way the colors pop and come to life creates an almost surreal experience for both the creator and the audience. It's like stepping into a dreamlike realm. I hope that Blacklight Makeup's radiant glow inspires you to experiment, to challenge norms, and to create beauty that transcends the ordinary! ### What's new in Version 2? I've retrained it with *improved captions and parameters*, which brings: - simpler trigger words: `blacklight makeup` - better output quality - reduced file size - improved compatibility with other LoRAs ### What's next? Enhancing the dataset while also experimenting with new training techniques. ### How to use: **Example prompt:** `Portrait of woman with blacklight makeup, fantasy, highly detailed, digital painting, artstation, concept art, sharp focus, illustration, art by Tony Sart and artgerm and randy vargas` - trigger words: `blacklight makeup` - **combine with other LoRAs for extra fun!** - `<lora:blacklight_makeup_v2:1>` - **2:3** — 832x1248 - **16:9** — 1360x768 - **1:1** — 1024x1024 #### HuggingFace🤗 Diffusers ```python from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, ) pipe.scheduler = EulerDiscreteScheduler.from_config( pipe.scheduler.config, use_karras_sigmas=True ) pipe.to("cuda") pipe.load_lora_weights( "chillpixel/blacklight-makeup-sdxl-lora", weight_name="blacklight_makeup_v2.safetensors", ) image = pipe( prompt="Portrait of woman with blacklight makeup, fantasy, highly detailed, digital painting, artstation, concept art, sharp focus, illustration, art by Tony Sart and artgerm and randy vargas", num_inference_steps=35, guidance_scale=6, width=832, height=1248, ).images[0] ``` #### Also, available at: - [LoRA the Explorer](https://huggingface.co/spaces/multimodalart/LoraTheExplorer) - [CivitAI](https://civitai.com/models/134643/blacklight-makeup-sdxl-lora) - [Tensor.Art](https://tensor.art/models/630245562870045528) - [Ko-Fi](https://ko-fi.com/s/9d846bf374) I really hope you enjoy this LoRA — and if you do, ***please click the "like" button!*** I will release a new model every time somebody [buys me a coffee on Ko-Fi](https://ko-fi.com/chillpixel). Want to hire me to train SDXL? I'm open to innovation and marketing opportunities. Contact me at [email protected]
Ahmedhisham/social_bias_Bert
Ahmedhisham
2023-09-02T13:10:27Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T12:32:03Z
--- tags: - generated_from_keras_callback model-index: - name: social_bias_Bert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # social_bias_Bert This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Tokenizers 0.13.3
ckandemir/xlm-roberta-base-finetuned-panx-de-fr
ckandemir
2023-09-02T13:04:30Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T12:13:02Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1669 - F1: 0.8604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3059 | 1.0 | 715 | 0.1894 | 0.8169 | | 0.148 | 2.0 | 1430 | 0.1663 | 0.8473 | | 0.0932 | 3.0 | 2145 | 0.1669 | 0.8604 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
astroid19/ppo-LunarLander-v2
astroid19
2023-09-02T12:46:19Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T12:45:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 284.82 +/- 21.66 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
HorcruxNo13/swinv2-small-patch4-window8-256-finetuned-eurosat
HorcruxNo13
2023-09-02T12:44:00Z
146
0
transformers
[ "transformers", "pytorch", "swinv2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swinv2-small-patch4-window8-256", "base_model:finetune:microsoft/swinv2-small-patch4-window8-256", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T12:25:25Z
--- license: apache-2.0 base_model: microsoft/swinv2-small-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-small-patch4-window8-256-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7333333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-small-patch4-window8-256-finetuned-eurosat This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window8-256](https://huggingface.co/microsoft/swinv2-small-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5868 - Accuracy: 0.7333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 8 | 1.1951 | 0.2667 | | 5.0901 | 2.0 | 16 | 1.4301 | 0.7333 | | 2.785 | 3.0 | 24 | 1.1514 | 0.2667 | | 0.8599 | 4.0 | 32 | 0.5810 | 0.7333 | | 0.6058 | 5.0 | 40 | 0.5868 | 0.7333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Kamer/eliminare
Kamer
2023-09-02T12:42:03Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T09:01:13Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: eliminare results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eliminare This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 2.0155 - eval_Accuracy: 0.4159 - eval_F1_macro: 0.1352 - eval_F1_class_0: 0.8025 - eval_F1_class_1: 0.2857 - eval_F1_class_2: 0.5222 - eval_F1_class_3: 0.0 - eval_F1_class_4: 0.0593 - eval_F1_class_5: 0.0 - eval_F1_class_6: 0.0194 - eval_F1_class_7: 0.0 - eval_F1_class_8: 0.0 - eval_F1_class_9: 0.8555 - eval_F1_class_10: 0.0 - eval_F1_class_11: 0.0 - eval_F1_class_12: 0.1262 - eval_F1_class_13: 0.0 - eval_F1_class_14: 0.0 - eval_F1_class_15: 0.0323 - eval_F1_class_16: 0.0 - eval_F1_class_17: 0.0 - eval_F1_class_18: 0.0 - eval_F1_class_19: 0.0 - eval_runtime: 16.4701 - eval_samples_per_second: 68.609 - eval_steps_per_second: 8.622 - epoch: 0.23 - step: 1500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
mademuhas/qlora-cabrita-joao
mademuhas
2023-09-02T12:32:23Z
0
0
null
[ "generated_from_trainer", "base_model:tiiuae/falcon-7b", "base_model:finetune:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2023-09-02T12:32:17Z
--- license: apache-2.0 base_model: tiiuae/falcon-7b tags: - generated_from_trainer model-index: - name: qlora-cabrita-joao results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qlora-cabrita-joao This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3
simlamkr1/llama2-simtestmodel1
simlamkr1
2023-09-02T12:32:06Z
0
0
peft
[ "peft", "pytorch", "llama", "region:us" ]
null
2023-09-01T13:56:00Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
penguinman73/xlm-roberta-base-finetuned-panx-en
penguinman73
2023-09-02T12:25:02Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T12:22:08Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4028 - F1: 0.6831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1353 | 1.0 | 50 | 0.6267 | 0.5068 | | 0.5283 | 2.0 | 100 | 0.4369 | 0.6552 | | 0.358 | 3.0 | 150 | 0.4028 | 0.6831 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
rrozb/dqn-SpaceInvadersNoFrameskip-v4
rrozb
2023-09-02T12:22:17Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T12:21:54Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 597.00 +/- 109.80 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rrozb -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rrozb -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rrozb ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
penguinman73/xlm-roberta-base-finetuned-panx-it
penguinman73
2023-09-02T12:21:56Z
136
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T12:18:42Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2368 - F1: 0.8232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8358 | 1.0 | 70 | 0.3188 | 0.7261 | | 0.2864 | 2.0 | 140 | 0.2533 | 0.7911 | | 0.1938 | 3.0 | 210 | 0.2368 | 0.8232 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
penguinman73/xlm-roberta-base-finetuned-panx-fr
penguinman73
2023-09-02T12:18:32Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T12:13:41Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2760 - F1: 0.8452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5839 | 1.0 | 191 | 0.3623 | 0.7527 | | 0.2607 | 2.0 | 382 | 0.2836 | 0.8238 | | 0.1745 | 3.0 | 573 | 0.2760 | 0.8452 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
penguinman73/xlm-roberta-base-finetuned-panx-de-fr
penguinman73
2023-09-02T12:12:18Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T11:58:38Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1623 - F1: 0.8603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1813 | 0.8232 | | 0.1482 | 2.0 | 1430 | 0.1586 | 0.8462 | | 0.0959 | 3.0 | 2145 | 0.1623 | 0.8603 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
darthruebezahl/alicia02092023
darthruebezahl
2023-09-02T12:09:23Z
29
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-02T12:07:42Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: Alicia02092023 --- ### Alicia02092023 Dreambooth model trained by darthruebezahl with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: Alicia02092023 (use that on your prompt) ![Alicia02092023 0](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%281%29.jpg)![Alicia02092023 1](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%282%29.jpg)![Alicia02092023 2](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%283%29.jpg)![Alicia02092023 3](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%284%29.jpg)![Alicia02092023 4](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%285%29.jpg)![Alicia02092023 5](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%286%29.jpg)![Alicia02092023 6](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%287%29.jpg)![Alicia02092023 7](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%288%29.jpg)![Alicia02092023 8](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%289%29.jpg)![Alicia02092023 9](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2810%29.jpg)![Alicia02092023 10](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2811%29.jpg)![Alicia02092023 11](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2812%29.jpg)![Alicia02092023 12](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2813%29.jpg)![Alicia02092023 13](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2814%29.jpg)![Alicia02092023 14](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2815%29.jpg)![Alicia02092023 15](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2816%29.jpg)![Alicia02092023 16](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2817%29.jpg)![Alicia02092023 17](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2818%29.jpg)![Alicia02092023 18](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2819%29.jpg)![Alicia02092023 19](https://huggingface.co/darthruebezahl/alicia02092023/resolve/main/concept_images/Alicia02092023_%2820%29.jpg)
fkc294/xlm-roberta-base-finetuned-panx-de
fkc294
2023-09-02T11:56:53Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T11:06:08Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8646808510638297 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1361 - F1: 0.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2595 | 1.0 | 525 | 0.1540 | 0.8302 | | 0.1265 | 2.0 | 1050 | 0.1493 | 0.8468 | | 0.0806 | 3.0 | 1575 | 0.1361 | 0.8647 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
abeiler/huggingface-goatLora-goatV10-fullData-withAutoInference
abeiler
2023-09-02T11:54:04Z
84
0
transformers
[ "transformers", "pytorch", "tensorboard", "llama", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2023-09-01T03:25:58Z
--- tags: - generated_from_trainer model-index: - name: huggingface-goatLora-goatV10-fullData-withAutoInference results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # huggingface-goatLora-goatV10-fullData-withAutoInference This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
sharoz/gpt2-medium-custom-functions-dataset-python
sharoz
2023-09-02T11:52:46Z
170
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2-medium", "base_model:finetune:openai-community/gpt2-medium", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-02T11:39:39Z
--- license: mit base_model: gpt2-medium tags: - generated_from_trainer model-index: - name: gpt2-medium-custom-functions-dataset-python results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-medium-custom-functions-dataset-python This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6637 | 0.02 | 1 | 2.1553 | | 2.4565 | 0.05 | 2 | 2.0239 | | 2.1968 | 0.07 | 3 | 1.9137 | | 2.2327 | 0.09 | 4 | 1.8194 | | 2.0672 | 0.12 | 5 | 1.7425 | | 1.9292 | 0.14 | 6 | 1.6721 | | 1.8293 | 0.16 | 7 | 1.6049 | | 1.71 | 0.19 | 8 | 1.5385 | | 1.8569 | 0.21 | 9 | 1.4786 | | 1.7208 | 0.23 | 10 | 1.4236 | | 1.6461 | 0.26 | 11 | 1.3770 | | 1.6146 | 0.28 | 12 | 1.3361 | | 1.5799 | 0.3 | 13 | 1.3006 | | 1.515 | 0.33 | 14 | 1.2690 | | 1.4448 | 0.35 | 15 | 1.2488 | | 1.2871 | 0.37 | 16 | 1.2254 | | 1.6566 | 0.4 | 17 | 1.1972 | | 1.4823 | 0.42 | 18 | 1.1638 | | 1.4655 | 0.44 | 19 | 1.1379 | | 1.3227 | 0.47 | 20 | 1.1172 | | 1.4135 | 0.49 | 21 | 1.0973 | | 1.4835 | 0.51 | 22 | 1.0784 | | 1.401 | 0.53 | 23 | 1.0607 | | 1.3294 | 0.56 | 24 | 1.0455 | | 1.4781 | 0.58 | 25 | 1.0302 | | 1.1167 | 0.6 | 26 | 1.0153 | | 1.3876 | 0.63 | 27 | 1.0017 | | 1.1708 | 0.65 | 28 | 0.9911 | | 1.2199 | 0.67 | 29 | 0.9833 | | 1.2328 | 0.7 | 30 | 0.9709 | | 1.5262 | 0.72 | 31 | 0.9599 | | 1.1906 | 0.74 | 32 | 0.9501 | | 1.191 | 0.77 | 33 | 0.9404 | | 1.0422 | 0.79 | 34 | 0.9291 | | 1.277 | 0.81 | 35 | 0.9183 | | 1.1522 | 0.84 | 36 | 0.9092 | | 1.1841 | 0.86 | 37 | 0.9006 | | 1.2538 | 0.88 | 38 | 0.8931 | | 1.1318 | 0.91 | 39 | 0.8862 | | 1.012 | 0.93 | 40 | 0.8807 | | 1.0553 | 0.95 | 41 | 0.8753 | | 1.0566 | 0.98 | 42 | 0.8691 | | 1.1235 | 1.0 | 43 | 0.8638 | | 1.1207 | 1.02 | 44 | 0.8591 | | 1.0835 | 1.05 | 45 | 0.8544 | | 1.3731 | 1.07 | 46 | 0.8505 | | 0.9843 | 1.09 | 47 | 0.8450 | | 0.9201 | 1.12 | 48 | 0.8385 | | 1.0392 | 1.14 | 49 | 0.8340 | | 1.1158 | 1.16 | 50 | 0.8297 | | 0.8518 | 1.19 | 51 | 0.8247 | | 0.8871 | 1.21 | 52 | 0.8185 | | 1.0378 | 1.23 | 53 | 0.8124 | | 1.1116 | 1.26 | 54 | 0.8083 | | 1.0364 | 1.28 | 55 | 0.8043 | | 0.8949 | 1.3 | 56 | 0.7988 | | 1.068 | 1.33 | 57 | 0.7925 | | 0.9319 | 1.35 | 58 | 0.7859 | | 0.7654 | 1.37 | 59 | 0.7818 | | 0.8887 | 1.4 | 60 | 0.7787 | | 1.0294 | 1.42 | 61 | 0.7748 | | 1.1351 | 1.44 | 62 | 0.7711 | | 0.998 | 1.47 | 63 | 0.7689 | | 1.1106 | 1.49 | 64 | 0.7679 | | 0.9606 | 1.51 | 65 | 0.7660 | | 0.9273 | 1.53 | 66 | 0.7628 | | 0.9725 | 1.56 | 67 | 0.7595 | | 1.0205 | 1.58 | 68 | 0.7569 | | 1.0131 | 1.6 | 69 | 0.7549 | | 0.9203 | 1.63 | 70 | 0.7530 | | 0.898 | 1.65 | 71 | 0.7508 | | 0.817 | 1.67 | 72 | 0.7478 | | 0.9439 | 1.7 | 73 | 0.7447 | | 1.079 | 1.72 | 74 | 0.7427 | | 0.9806 | 1.74 | 75 | 0.7398 | | 1.261 | 1.77 | 76 | 0.7369 | | 1.0824 | 1.79 | 77 | 0.7340 | | 0.9523 | 1.81 | 78 | 0.7317 | | 0.9734 | 1.84 | 79 | 0.7300 | | 1.0786 | 1.86 | 80 | 0.7302 | | 0.8675 | 1.88 | 81 | 0.7298 | | 0.851 | 1.91 | 82 | 0.7279 | | 1.066 | 1.93 | 83 | 0.7254 | | 1.137 | 1.95 | 84 | 0.7239 | | 1.1387 | 1.98 | 85 | 0.7224 | | 0.739 | 2.0 | 86 | 0.7207 | | 0.8809 | 2.02 | 87 | 0.7192 | | 1.0253 | 2.05 | 88 | 0.7178 | | 0.8942 | 2.07 | 89 | 0.7160 | | 0.8436 | 2.09 | 90 | 0.7134 | | 0.8356 | 2.12 | 91 | 0.7115 | | 0.9951 | 2.14 | 92 | 0.7110 | | 0.7637 | 2.16 | 93 | 0.7098 | | 0.722 | 2.19 | 94 | 0.7087 | | 1.023 | 2.21 | 95 | 0.7072 | | 0.7015 | 2.23 | 96 | 0.7044 | | 0.8949 | 2.26 | 97 | 0.7017 | | 0.9573 | 2.28 | 98 | 0.6996 | | 0.8989 | 2.3 | 99 | 0.6987 | | 0.9738 | 2.33 | 100 | 0.6983 | | 0.8317 | 2.35 | 101 | 0.6970 | | 0.9778 | 2.37 | 102 | 0.6951 | | 0.7919 | 2.4 | 103 | 0.6924 | | 0.653 | 2.42 | 104 | 0.6898 | | 0.9133 | 2.44 | 105 | 0.6873 | | 0.8521 | 2.47 | 106 | 0.6841 | | 0.8673 | 2.49 | 107 | 0.6808 | | 0.8792 | 2.51 | 108 | 0.6777 | | 0.8635 | 2.53 | 109 | 0.6747 | | 1.0299 | 2.56 | 110 | 0.6719 | | 0.7554 | 2.58 | 111 | 0.6694 | | 0.9195 | 2.6 | 112 | 0.6671 | | 0.8374 | 2.63 | 113 | 0.6649 | | 0.8847 | 2.65 | 114 | 0.6628 | | 0.938 | 2.67 | 115 | 0.6615 | | 0.8967 | 2.7 | 116 | 0.6603 | | 0.8264 | 2.72 | 117 | 0.6594 | | 0.9195 | 2.74 | 118 | 0.6591 | | 0.8584 | 2.77 | 119 | 0.6588 | | 0.8058 | 2.79 | 120 | 0.6578 | | 1.0978 | 2.81 | 121 | 0.6560 | | 0.7889 | 2.84 | 122 | 0.6544 | | 0.7865 | 2.86 | 123 | 0.6527 | | 0.8553 | 2.88 | 124 | 0.6507 | | 0.9134 | 2.91 | 125 | 0.6486 | | 0.7911 | 2.93 | 126 | 0.6463 | | 0.9675 | 2.95 | 127 | 0.6439 | | 0.761 | 2.98 | 128 | 0.6417 | | 0.6347 | 3.0 | 129 | 0.6394 | | 0.7608 | 3.02 | 130 | 0.6368 | | 0.7563 | 3.05 | 131 | 0.6352 | | 0.8059 | 3.07 | 132 | 0.6333 | | 0.8825 | 3.09 | 133 | 0.6320 | | 0.7952 | 3.12 | 134 | 0.6307 | | 0.9209 | 3.14 | 135 | 0.6299 | | 0.8556 | 3.16 | 136 | 0.6295 | | 0.8613 | 3.19 | 137 | 0.6289 | | 0.7908 | 3.21 | 138 | 0.6288 | | 0.7728 | 3.23 | 139 | 0.6285 | | 0.707 | 3.26 | 140 | 0.6280 | | 0.8353 | 3.28 | 141 | 0.6270 | | 0.9482 | 3.3 | 142 | 0.6265 | | 0.726 | 3.33 | 143 | 0.6260 | | 0.7594 | 3.35 | 144 | 0.6250 | | 0.9403 | 3.37 | 145 | 0.6237 | | 0.8986 | 3.4 | 146 | 0.6218 | | 0.7309 | 3.42 | 147 | 0.6204 | | 0.8011 | 3.44 | 148 | 0.6197 | | 0.7373 | 3.47 | 149 | 0.6193 | | 0.6195 | 3.49 | 150 | 0.6174 | | 0.8668 | 3.51 | 151 | 0.6154 | | 0.8096 | 3.53 | 152 | 0.6136 | | 0.9364 | 3.56 | 153 | 0.6116 | | 0.7081 | 3.58 | 154 | 0.6105 | | 0.7799 | 3.6 | 155 | 0.6091 | | 0.7862 | 3.63 | 156 | 0.6090 | | 0.7221 | 3.65 | 157 | 0.6097 | | 0.7605 | 3.67 | 158 | 0.6090 | | 0.7481 | 3.7 | 159 | 0.6071 | | 0.776 | 3.72 | 160 | 0.6045 | | 0.9396 | 3.74 | 161 | 0.6022 | | 0.7166 | 3.77 | 162 | 0.6001 | | 0.709 | 3.79 | 163 | 0.5985 | | 0.8412 | 3.81 | 164 | 0.5970 | | 0.7692 | 3.84 | 165 | 0.5956 | | 0.7621 | 3.86 | 166 | 0.5942 | | 0.7832 | 3.88 | 167 | 0.5930 | | 0.7455 | 3.91 | 168 | 0.5919 | | 0.7888 | 3.93 | 169 | 0.5913 | | 0.7197 | 3.95 | 170 | 0.5908 | | 0.7936 | 3.98 | 171 | 0.5900 | | 0.5976 | 4.0 | 172 | 0.5890 | | 0.6375 | 4.02 | 173 | 0.5874 | | 0.7342 | 4.05 | 174 | 0.5859 | | 0.644 | 4.07 | 175 | 0.5845 | | 0.7232 | 4.09 | 176 | 0.5831 | | 0.7743 | 4.12 | 177 | 0.5819 | | 0.8015 | 4.14 | 178 | 0.5808 | | 0.7475 | 4.16 | 179 | 0.5801 | | 0.7005 | 4.19 | 180 | 0.5797 | | 0.7032 | 4.21 | 181 | 0.5795 | | 0.8204 | 4.23 | 182 | 0.5789 | | 0.7674 | 4.26 | 183 | 0.5787 | | 0.7219 | 4.28 | 184 | 0.5781 | | 0.624 | 4.3 | 185 | 0.5771 | | 0.7429 | 4.33 | 186 | 0.5755 | | 0.6445 | 4.35 | 187 | 0.5730 | | 0.7782 | 4.37 | 188 | 0.5712 | | 0.7882 | 4.4 | 189 | 0.5698 | | 0.7005 | 4.42 | 190 | 0.5687 | | 0.7509 | 4.44 | 191 | 0.5678 | | 0.6764 | 4.47 | 192 | 0.5671 | | 0.6529 | 4.49 | 193 | 0.5667 | | 0.6101 | 4.51 | 194 | 0.5668 | | 0.8211 | 4.53 | 195 | 0.5674 | | 0.7529 | 4.56 | 196 | 0.5667 | | 0.8615 | 4.58 | 197 | 0.5651 | | 0.8099 | 4.6 | 198 | 0.5641 | | 0.7145 | 4.63 | 199 | 0.5635 | | 0.7437 | 4.65 | 200 | 0.5632 | | 0.873 | 4.67 | 201 | 0.5631 | | 0.7937 | 4.7 | 202 | 0.5620 | | 0.7493 | 4.72 | 203 | 0.5608 | | 0.7614 | 4.74 | 204 | 0.5596 | | 0.6642 | 4.77 | 205 | 0.5585 | | 0.5854 | 4.79 | 206 | 0.5576 | | 0.6442 | 4.81 | 207 | 0.5572 | | 0.859 | 4.84 | 208 | 0.5562 | | 0.6627 | 4.86 | 209 | 0.5553 | | 0.8024 | 4.88 | 210 | 0.5540 | | 0.7443 | 4.91 | 211 | 0.5526 | | 0.6725 | 4.93 | 212 | 0.5520 | | 0.749 | 4.95 | 213 | 0.5521 | | 0.7687 | 4.98 | 214 | 0.5521 | | 0.5998 | 5.0 | 215 | 0.5522 | | 0.7578 | 5.02 | 216 | 0.5526 | | 0.7074 | 5.05 | 217 | 0.5536 | | 0.5647 | 5.07 | 218 | 0.5543 | | 0.7475 | 5.09 | 219 | 0.5539 | | 0.5776 | 5.12 | 220 | 0.5523 | | 0.7232 | 5.14 | 221 | 0.5507 | | 0.6487 | 5.16 | 222 | 0.5491 | | 0.6446 | 5.19 | 223 | 0.5477 | | 0.8951 | 5.21 | 224 | 0.5467 | | 0.7706 | 5.23 | 225 | 0.5460 | | 0.6351 | 5.26 | 226 | 0.5453 | | 0.7336 | 5.28 | 227 | 0.5445 | | 0.6329 | 5.3 | 228 | 0.5436 | | 0.5795 | 5.33 | 229 | 0.5430 | | 0.7553 | 5.35 | 230 | 0.5428 | | 0.6959 | 5.37 | 231 | 0.5430 | | 0.5945 | 5.4 | 232 | 0.5427 | | 0.6274 | 5.42 | 233 | 0.5422 | | 0.7024 | 5.44 | 234 | 0.5414 | | 0.8223 | 5.47 | 235 | 0.5402 | | 0.6441 | 5.49 | 236 | 0.5386 | | 0.749 | 5.51 | 237 | 0.5368 | | 0.6654 | 5.53 | 238 | 0.5357 | | 0.8781 | 5.56 | 239 | 0.5346 | | 0.7139 | 5.58 | 240 | 0.5340 | | 0.587 | 5.6 | 241 | 0.5339 | | 0.8308 | 5.63 | 242 | 0.5340 | | 0.5613 | 5.65 | 243 | 0.5334 | | 0.7108 | 5.67 | 244 | 0.5330 | | 0.6884 | 5.7 | 245 | 0.5322 | | 0.6955 | 5.72 | 246 | 0.5310 | | 0.5989 | 5.74 | 247 | 0.5301 | | 0.7517 | 5.77 | 248 | 0.5295 | | 0.6765 | 5.79 | 249 | 0.5291 | | 0.6223 | 5.81 | 250 | 0.5285 | | 0.6694 | 5.84 | 251 | 0.5277 | | 0.6235 | 5.86 | 252 | 0.5267 | | 0.6591 | 5.88 | 253 | 0.5259 | | 0.6832 | 5.91 | 254 | 0.5251 | | 0.7346 | 5.93 | 255 | 0.5246 | | 0.6574 | 5.95 | 256 | 0.5242 | | 0.704 | 5.98 | 257 | 0.5236 | | 0.7269 | 6.0 | 258 | 0.5234 | | 0.6097 | 6.02 | 259 | 0.5231 | | 0.5369 | 6.05 | 260 | 0.5224 | | 0.7094 | 6.07 | 261 | 0.5214 | | 0.608 | 6.09 | 262 | 0.5207 | | 0.6112 | 6.12 | 263 | 0.5200 | | 0.6414 | 6.14 | 264 | 0.5192 | | 0.6254 | 6.16 | 265 | 0.5186 | | 0.8219 | 6.19 | 266 | 0.5184 | | 0.6536 | 6.21 | 267 | 0.5183 | | 0.601 | 6.23 | 268 | 0.5184 | | 0.672 | 6.26 | 269 | 0.5182 | | 0.6646 | 6.28 | 270 | 0.5179 | | 0.7228 | 6.3 | 271 | 0.5179 | | 0.6542 | 6.33 | 272 | 0.5182 | | 0.6003 | 6.35 | 273 | 0.5185 | | 0.4799 | 6.37 | 274 | 0.5195 | | 0.7062 | 6.4 | 275 | 0.5203 | | 0.7557 | 6.42 | 276 | 0.5199 | | 0.7419 | 6.44 | 277 | 0.5189 | | 0.5468 | 6.47 | 278 | 0.5179 | | 0.6142 | 6.49 | 279 | 0.5168 | | 0.5953 | 6.51 | 280 | 0.5161 | | 0.602 | 6.53 | 281 | 0.5152 | | 0.6168 | 6.56 | 282 | 0.5146 | | 0.815 | 6.58 | 283 | 0.5141 | | 0.7738 | 6.6 | 284 | 0.5138 | | 0.64 | 6.63 | 285 | 0.5136 | | 0.6377 | 6.65 | 286 | 0.5133 | | 0.7254 | 6.67 | 287 | 0.5131 | | 0.6416 | 6.7 | 288 | 0.5128 | | 0.6555 | 6.72 | 289 | 0.5123 | | 0.6812 | 6.74 | 290 | 0.5118 | | 0.7116 | 6.77 | 291 | 0.5113 | | 0.6046 | 6.79 | 292 | 0.5104 | | 0.7386 | 6.81 | 293 | 0.5095 | | 0.733 | 6.84 | 294 | 0.5088 | | 0.6579 | 6.86 | 295 | 0.5081 | | 0.5418 | 6.88 | 296 | 0.5076 | | 0.5853 | 6.91 | 297 | 0.5071 | | 0.6488 | 6.93 | 298 | 0.5070 | | 0.5726 | 6.95 | 299 | 0.5069 | | 0.5821 | 6.98 | 300 | 0.5068 | | 0.9157 | 7.0 | 301 | 0.5068 | | 0.6769 | 7.02 | 302 | 0.5061 | | 0.7632 | 7.05 | 303 | 0.5049 | | 0.7479 | 7.07 | 304 | 0.5037 | | 0.5632 | 7.09 | 305 | 0.5028 | | 0.6493 | 7.12 | 306 | 0.5015 | | 0.6517 | 7.14 | 307 | 0.5007 | | 0.6944 | 7.16 | 308 | 0.5000 | | 0.5862 | 7.19 | 309 | 0.4996 | | 0.6161 | 7.21 | 310 | 0.4993 | | 0.6396 | 7.23 | 311 | 0.4988 | | 0.5506 | 7.26 | 312 | 0.4985 | | 0.7518 | 7.28 | 313 | 0.4982 | | 0.7445 | 7.3 | 314 | 0.4977 | | 0.6228 | 7.33 | 315 | 0.4974 | | 0.5555 | 7.35 | 316 | 0.4968 | | 0.7457 | 7.37 | 317 | 0.4964 | | 0.579 | 7.4 | 318 | 0.4961 | | 0.528 | 7.42 | 319 | 0.4956 | | 0.5286 | 7.44 | 320 | 0.4953 | | 0.591 | 7.47 | 321 | 0.4952 | | 0.5903 | 7.49 | 322 | 0.4953 | | 0.6155 | 7.51 | 323 | 0.4955 | | 0.5907 | 7.53 | 324 | 0.4954 | | 0.6028 | 7.56 | 325 | 0.4949 | | 0.5852 | 7.58 | 326 | 0.4943 | | 0.6156 | 7.6 | 327 | 0.4934 | | 0.582 | 7.63 | 328 | 0.4925 | | 0.6091 | 7.65 | 329 | 0.4918 | | 0.5877 | 7.67 | 330 | 0.4912 | | 0.7017 | 7.7 | 331 | 0.4908 | | 0.6496 | 7.72 | 332 | 0.4905 | | 0.6089 | 7.74 | 333 | 0.4903 | | 0.5807 | 7.77 | 334 | 0.4901 | | 0.5553 | 7.79 | 335 | 0.4897 | | 0.8058 | 7.81 | 336 | 0.4894 | | 0.6147 | 7.84 | 337 | 0.4892 | | 0.6289 | 7.86 | 338 | 0.4891 | | 0.5883 | 7.88 | 339 | 0.4891 | | 0.6048 | 7.91 | 340 | 0.4890 | | 0.6411 | 7.93 | 341 | 0.4889 | | 0.5575 | 7.95 | 342 | 0.4887 | | 0.6509 | 7.98 | 343 | 0.4884 | | 0.764 | 8.0 | 344 | 0.4882 | | 0.6364 | 8.02 | 345 | 0.4880 | | 0.561 | 8.05 | 346 | 0.4880 | | 0.5949 | 8.07 | 347 | 0.4878 | | 0.6904 | 8.09 | 348 | 0.4874 | | 0.647 | 8.12 | 349 | 0.4868 | | 0.6374 | 8.14 | 350 | 0.4862 | | 0.7048 | 8.16 | 351 | 0.4859 | | 0.6085 | 8.19 | 352 | 0.4854 | | 0.5246 | 8.21 | 353 | 0.4852 | | 0.531 | 8.23 | 354 | 0.4849 | | 0.4605 | 8.26 | 355 | 0.4844 | | 0.6132 | 8.28 | 356 | 0.4839 | | 0.6378 | 8.3 | 357 | 0.4835 | | 0.7885 | 8.33 | 358 | 0.4831 | | 0.6008 | 8.35 | 359 | 0.4827 | | 0.7118 | 8.37 | 360 | 0.4823 | | 0.6792 | 8.4 | 361 | 0.4821 | | 0.6317 | 8.42 | 362 | 0.4819 | | 0.5942 | 8.44 | 363 | 0.4817 | | 0.6184 | 8.47 | 364 | 0.4815 | | 0.5902 | 8.49 | 365 | 0.4813 | | 0.5353 | 8.51 | 366 | 0.4812 | | 0.685 | 8.53 | 367 | 0.4812 | | 0.5232 | 8.56 | 368 | 0.4811 | | 0.6393 | 8.58 | 369 | 0.4812 | | 0.5685 | 8.6 | 370 | 0.4812 | | 0.6234 | 8.63 | 371 | 0.4813 | | 0.5456 | 8.65 | 372 | 0.4810 | | 0.6159 | 8.67 | 373 | 0.4807 | | 0.6575 | 8.7 | 374 | 0.4804 | | 0.5769 | 8.72 | 375 | 0.4803 | | 0.5939 | 8.74 | 376 | 0.4801 | | 0.5721 | 8.77 | 377 | 0.4800 | | 0.5283 | 8.79 | 378 | 0.4797 | | 0.5275 | 8.81 | 379 | 0.4795 | | 0.5907 | 8.84 | 380 | 0.4794 | | 0.6058 | 8.86 | 381 | 0.4792 | | 0.7202 | 8.88 | 382 | 0.4790 | | 0.6811 | 8.91 | 383 | 0.4787 | | 0.5979 | 8.93 | 384 | 0.4785 | | 0.5572 | 8.95 | 385 | 0.4783 | | 0.5893 | 8.98 | 386 | 0.4781 | | 0.6796 | 9.0 | 387 | 0.4779 | | 0.5412 | 9.02 | 388 | 0.4780 | | 0.5453 | 9.05 | 389 | 0.4781 | | 0.7475 | 9.07 | 390 | 0.4782 | | 0.6222 | 9.09 | 391 | 0.4781 | | 0.5177 | 9.12 | 392 | 0.4778 | | 0.6182 | 9.14 | 393 | 0.4775 | | 0.6124 | 9.16 | 394 | 0.4772 | | 0.6485 | 9.19 | 395 | 0.4769 | | 0.5852 | 9.21 | 396 | 0.4765 | | 0.5656 | 9.23 | 397 | 0.4761 | | 0.6162 | 9.26 | 398 | 0.4758 | | 0.6965 | 9.28 | 399 | 0.4755 | | 0.5342 | 9.3 | 400 | 0.4753 | | 0.718 | 9.33 | 401 | 0.4751 | | 0.5089 | 9.35 | 402 | 0.4750 | | 0.5738 | 9.37 | 403 | 0.4748 | | 0.5612 | 9.4 | 404 | 0.4746 | | 0.5628 | 9.42 | 405 | 0.4744 | | 0.6512 | 9.44 | 406 | 0.4743 | | 0.6717 | 9.47 | 407 | 0.4742 | | 0.5937 | 9.49 | 408 | 0.4741 | | 0.5906 | 9.51 | 409 | 0.4741 | | 0.529 | 9.53 | 410 | 0.4741 | | 0.6554 | 9.56 | 411 | 0.4741 | | 0.5074 | 9.58 | 412 | 0.4741 | | 0.6997 | 9.6 | 413 | 0.4741 | | 0.5573 | 9.63 | 414 | 0.4741 | | 0.6113 | 9.65 | 415 | 0.4741 | | 0.5129 | 9.67 | 416 | 0.4741 | | 0.5428 | 9.7 | 417 | 0.4740 | | 0.5363 | 9.72 | 418 | 0.4739 | | 0.5862 | 9.74 | 419 | 0.4739 | | 0.6119 | 9.77 | 420 | 0.4738 | | 0.6698 | 9.79 | 421 | 0.4738 | | 0.5966 | 9.81 | 422 | 0.4737 | | 0.5309 | 9.84 | 423 | 0.4737 | | 0.5924 | 9.86 | 424 | 0.4736 | | 0.6133 | 9.88 | 425 | 0.4736 | | 0.6869 | 9.91 | 426 | 0.4736 | | 0.5508 | 9.93 | 427 | 0.4735 | | 0.6858 | 9.95 | 428 | 0.4735 | | 0.5681 | 9.98 | 429 | 0.4735 | | 0.7834 | 10.0 | 430 | 0.4735 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
abeiler/goatV10-testData-withAutoInference-withS3SafeTens
abeiler
2023-09-02T11:46:08Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "llama", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2023-09-02T11:45:47Z
--- tags: - generated_from_trainer model-index: - name: goatV10-testData-withAutoInference-withS3SafeTens results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # goatV10-testData-withAutoInference-withS3SafeTens This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
casque/FilmVelvia3
casque
2023-09-02T11:34:13Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-02T11:32:49Z
--- license: creativeml-openrail-m ---
Mustain/line_fujiki3
Mustain
2023-09-02T11:20:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T11:20:04Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
dwitidibyajyoti/fine_tune_layoutmlv3_model
dwitidibyajyoti
2023-09-02T11:15:36Z
77
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-30T09:45:10Z
--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2763 - Precision: 0.5109 - Recall: 0.6026 - F1: 0.5529 - Accuracy: 0.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 8.33 | 100 | 0.6800 | 0.3371 | 0.3846 | 0.3593 | 0.7682 | | No log | 16.67 | 200 | 0.3088 | 0.5204 | 0.6538 | 0.5795 | 0.9156 | | No log | 25.0 | 300 | 0.2142 | 0.5326 | 0.6282 | 0.5765 | 0.9305 | | No log | 33.33 | 400 | 0.2301 | 0.5795 | 0.6538 | 0.6145 | 0.9288 | | 0.4115 | 41.67 | 500 | 0.2426 | 0.5618 | 0.6410 | 0.5988 | 0.9272 | | 0.4115 | 50.0 | 600 | 0.4171 | 0.6190 | 0.6667 | 0.6420 | 0.8924 | | 0.4115 | 58.33 | 700 | 0.2265 | 0.5393 | 0.6154 | 0.5749 | 0.9371 | | 0.4115 | 66.67 | 800 | 0.2869 | 0.5506 | 0.6282 | 0.5868 | 0.9156 | | 0.4115 | 75.0 | 900 | 0.2633 | 0.5568 | 0.6282 | 0.5904 | 0.9272 | | 0.0231 | 83.33 | 1000 | 0.2763 | 0.5109 | 0.6026 | 0.5529 | 0.9222 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KhalfounMehdi/vit_musculoskeletal_abnormality_detection_mura_224px_16bs_20ep
KhalfounMehdi
2023-09-02T11:10:51Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "autotrain", "dataset:KhalfounMehdi/mura_dataset_processed_224px_train_val", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T11:10:27Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - KhalfounMehdi/mura_dataset_processed_224px_train_val --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.5185230374336243 f1: 0.8211164615658998 precision: 0.7175810473815462 recall: 0.9595664860358483 auc: 0.7988417458585272 accuracy: 0.749312671832042
yaohuacn/a2c-PandaReachDense-v3
yaohuacn
2023-09-02T11:10:11Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T11:05:12Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.19 +/- 0.08 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
VuongQuoc/longformer_sciq
VuongQuoc
2023-09-02T11:06:18Z
97
0
transformers
[ "transformers", "pytorch", "longformer", "multiple-choice", "generated_from_trainer", "endpoints_compatible", "region:us" ]
multiple-choice
2023-08-29T02:34:13Z
--- tags: - generated_from_trainer model-index: - name: longformer_sciq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longformer_sciq This model is a fine-tuned version of [VuongQuoc/longformer_sciq](https://huggingface.co/VuongQuoc/longformer_sciq) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1931 | 0.2 | 20 | 0.7457 | | 0.7677 | 0.4 | 40 | 0.7063 | | 1.0391 | 0.6 | 60 | 0.6745 | | 1.2915 | 0.8 | 80 | 0.6316 | | 1.1399 | 1.0 | 100 | 0.6652 | | 0.9975 | 1.2 | 120 | 0.6134 | | 0.9232 | 1.4 | 140 | 0.5561 | | 0.8026 | 1.6 | 160 | 0.5422 | | 0.7188 | 1.8 | 180 | 0.5370 | | 0.7272 | 2.0 | 200 | 0.5326 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0+cpu - Datasets 2.1.0 - Tokenizers 0.13.3
aigrils2/primitive0-diffuser
aigrils2
2023-09-02T11:05:44Z
29
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "lora", "base_model:wangjun/majicmix-realistic-v6", "base_model:adapter:wangjun/majicmix-realistic-v6", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-02T10:20:37Z
--- base_model: wangjun/majicmix-realistic-v6 tags: - text-to-image - stable-diffusion - lora - diffusers pipeline_tag: text-to-image ---
madroid/onnx-whisper
madroid
2023-09-02T11:02:02Z
0
0
null
[ "onnx", "whisper", "openai", "license:apache-2.0", "region:us" ]
null
2023-09-02T07:14:04Z
--- license: apache-2.0 tags: - whisper - onnx - openai ---
casque/majicmixRealistic_betterV2V25
casque
2023-09-02T11:00:36Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-02T10:43:18Z
--- license: creativeml-openrail-m ---
Tharun2003/tharun-3
Tharun2003
2023-09-02T10:57:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T10:53:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
JanSt/gbert-base-finetuned-twitter
JanSt
2023-09-02T10:57:40Z
8
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:deepset/gbert-base", "base_model:finetune:deepset/gbert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-24T10:58:07Z
--- license: mit base_model: deepset/gbert-base tags: - generated_from_trainer model-index: - name: gbert-base-finetuned-twitter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gbert-base-finetuned-twitter This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 192 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.194 | 1.0 | 4180 | 1.9622 | | 2.0075 | 2.0 | 8360 | 1.8813 | | 1.9429 | 3.0 | 12540 | 1.8339 | | 1.8985 | 4.0 | 16720 | 1.8057 | | 1.8676 | 5.0 | 20900 | 1.7801 | | 1.8446 | 6.0 | 25080 | 1.7793 | | 1.829 | 7.0 | 29260 | 1.7580 | | 1.815 | 8.0 | 33440 | 1.7445 | | 1.8048 | 9.0 | 37620 | 1.7319 | | 1.7997 | 10.0 | 41800 | 1.7331 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
andrewcho92/helloworld
andrewcho92
2023-09-02T10:33:10Z
0
0
null
[ "text-generation", "en", "license:openrail", "region:us" ]
text-generation
2023-09-02T10:14:37Z
--- license: openrail language: - en pipeline_tag: text-generation ---
adimazuz/texi-v3
adimazuz
2023-09-02T10:30:56Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T10:30:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: texi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="adimazuz/texi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
adimazuz/q-FrozenLake-v1-4x4-noSlippery
adimazuz
2023-09-02T10:23:17Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T10:23:15Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="adimazuz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jigglesaw/finetuning-sentiment-model-3000-samples
jigglesaw
2023-09-02T10:16:22Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T08:56:24Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.870967741935484 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3394 - Accuracy: 0.8667 - F1: 0.8710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
gg4ever/trOCR-final
gg4ever
2023-09-02T10:15:40Z
126
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "image-to-text", "ko", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2023-08-22T11:31:10Z
--- license: apache-2.0 language: - ko metrics: - cer - wer pipeline_tag: image-to-text --- # trOCR-final fine-tuned for VisionEncoderDecoderModel(encoder , decoder) encoder = 'facebook/deit-base-distilled-patch16-384' decoder = 'klue/roberta-base' ## How to Get Started with the Model ```python from transformers import VisionEncoderDecoderModel,AutoTokenizer, TrOCRProcessor import torch from PIL import Image device = torch.device('cuda') # change 'cuda' if you need. image_path='(your image path)' image = Image.open(image_path) #model can be .jpg or .png #hugging face download: https://huggingface.co/gg4ever/trOCR-final processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") trocr_model = "gg4ever/trOCR-final" model = VisionEncoderDecoderModel.from_pretrained(trocr_model).to(device) tokenizer = AutoTokenizer.from_pretrained(trocr_model) pixel_values = (processor(image, return_tensors="pt").pixel_values).to(device) generated_ids = model.generate(pixel_values) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_text) ``` ## Training Details ### Training Data 1M words generated by TextRecognitionDataGenerator(trdg) : https://github.com/Belval/TextRecognitionDataGenerator/blob/master/trdg/run.py 1.1M words from AI-hub OCR words dataset : https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&dataSetSn=81 ### Training Hyperparameters |hyperparameters|values| |-----------------------------|-------| |predict_with_generate|True| |evaluation_strategy|"steps"| |per_device_train_batch_size|32| |per_device_eval_batch_size|32| |num_train_epochs|2| |fp16|True| |learning_rate|4e-5| |eval_stept|10000| |warmup_steps|20000| |weight_decay|0.01|
muralee491/murale
muralee491
2023-09-02T10:14:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T10:12:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
StefanoCaloni/dqn-SpaceInvaders
StefanoCaloni
2023-09-02T10:04:52Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T08:32:06Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 299.00 +/- 68.26 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga StefanoCaloni -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga StefanoCaloni -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga StefanoCaloni ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 10000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 10000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 100), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
KhalfounMehdi/mura_vit_224
KhalfounMehdi
2023-09-02T10:01:11Z
192
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "autotrain", "dataset:KhalfounMehdi/mura_dataset_processed_224px_train_val", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T06:30:20Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - KhalfounMehdi/mura_dataset_processed_224px_train_val metrics: - accuracy --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metrics {'accuracy': 0.7795551112221945, 'recall': 0.9037098791162984, 'precision': 0.7690670450514366, 'f1': 0.83096972019931, 'total_time_in_seconds': 81.18831510400014, 'samples_per_second': 49.28049060846776, 'latency_in_seconds': 0.020292005774556397}
nichelia/example100
nichelia
2023-09-02T09:40:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T09:40:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
utnah/ckpt
utnah
2023-09-02T09:33:43Z
0
2
null
[ "license:openrail", "region:us" ]
null
2022-10-31T12:34:09Z
--- license: openrail --- Модели весов для StableDiffusion в формате ckpt. Для быстрой загрузки в [Google Colab](https://colab.research.google.com/drive/1TC4SSLncPWytSPvquR6Y4-U7wZRfAXrV) [![открыть Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1TC4SSLncPWytSPvquR6Y4-U7wZRfAXrV)
MP-1961/vit-base-patch16-224-finetuned-flower
MP-1961
2023-09-02T09:13:52Z
163
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T09:03:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-finetuned-flower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.13.3
franziskaM/b25-wav2vec2-large-xls-r-romansh-colab
franziskaM
2023-09-02T08:58:53Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_13_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-01T10:20:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: b25-wav2vec2-large-xls-r-romansh-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: rm-vallader split: test args: rm-vallader metrics: - name: Wer type: wer value: 0.24149976711690732 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # b25-wav2vec2-large-xls-r-romansh-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3303 - Wer: 0.2415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.1605 | 3.05 | 400 | 2.9535 | 1.0 | | 2.9451 | 6.11 | 800 | 2.9092 | 1.0 | | 1.7795 | 9.16 | 1200 | 0.4982 | 0.4951 | | 0.4094 | 12.21 | 1600 | 0.3883 | 0.3575 | | 0.2374 | 15.27 | 2000 | 0.3151 | 0.2876 | | 0.1674 | 18.32 | 2400 | 0.3284 | 0.2783 | | 0.1385 | 21.37 | 2800 | 0.3408 | 0.2641 | | 0.1133 | 24.43 | 3200 | 0.3355 | 0.2538 | | 0.1015 | 27.48 | 3600 | 0.3303 | 0.2415 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
922-Narra/llama-2-7b-chat-tagalog-v0.3a-gguf
922-Narra
2023-09-02T08:24:02Z
21
1
null
[ "gguf", "license:llama2", "endpoints_compatible", "region:us" ]
null
2023-09-01T10:32:37Z
--- license: llama2 --- GGUFs of [l27b-chat-tagalog-v0.3a](https://huggingface.co/922-Narra/llama-2-7b-chat-tagalog-v0.3a). (Primarily tested and run with Koboldcpp v1.41+). QLora (hf and GGML) [here](https://huggingface.co/922-Narra/tagalog-lm-lora-tests/tree/main/llama-2-7b-chat-tagalog-0.3a).
Kamer/bert-base-uncased-eurlex
Kamer
2023-09-02T08:14:26Z
109
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:nlpaueb/bert-base-uncased-eurlex", "base_model:finetune:nlpaueb/bert-base-uncased-eurlex", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T07:18:39Z
--- license: cc-by-sa-4.0 base_model: nlpaueb/bert-base-uncased-eurlex tags: - generated_from_trainer model-index: - name: bert-base-uncased-eurlex results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-eurlex This model is a fine-tuned version of [nlpaueb/bert-base-uncased-eurlex](https://huggingface.co/nlpaueb/bert-base-uncased-eurlex) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4164 - eval_Accuracy: 0.9224 - eval_F1_macro: 0.9301 - eval_F1_class_0: 0.8941 - eval_F1_class_1: 0.9388 - eval_F1_class_2: 0.9412 - eval_F1_class_3: 0.9730 - eval_F1_class_4: 0.9148 - eval_F1_class_5: 0.9573 - eval_F1_class_6: 0.9399 - eval_F1_class_7: 0.9685 - eval_F1_class_8: 0.9630 - eval_F1_class_9: 0.9495 - eval_F1_class_10: 0.8574 - eval_F1_class_11: 0.9241 - eval_F1_class_12: 0.8677 - eval_F1_class_13: 0.9442 - eval_F1_class_14: 0.9055 - eval_F1_class_15: 0.9022 - eval_F1_class_16: 0.8929 - eval_F1_class_17: 0.9811 - eval_F1_class_18: 0.8870 - eval_F1_class_19: 1.0 - eval_runtime: 154.2922 - eval_samples_per_second: 32.918 - eval_steps_per_second: 4.116 - epoch: 0.52 - step: 3000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
Ori/lama-2-13b-peft-2wikihop-strategyqa-retrieval-at1
Ori
2023-09-02T08:09:57Z
0
0
peft
[ "peft", "safetensors", "region:us" ]
null
2023-09-02T08:05:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
maroti/dqn-SpaceInvadersNoFrameskip-v4
maroti
2023-09-02T08:07:44Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T08:07:09Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 507.00 +/- 124.00 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga maroti -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga maroti -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga maroti ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Hemanth-thunder/kazuki_kurusu_lora_xl
Hemanth-thunder
2023-09-02T08:02:49Z
1
2
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-09-02T06:23:41Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of a kazuki kurusu tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Hemanth-thunder/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of a kazuki kurusu using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Johnlhugface/ppo-Huggy
Johnlhugface
2023-09-02T07:55:02Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-02T07:54:57Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Johnlhugface/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
squarelike/Gugugo-koja-1.3B-V0.95
squarelike
2023-09-02T07:31:26Z
67
2
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "translation", "ja", "ko", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-08-31T14:17:12Z
--- license: apache-2.0 language: - ja - ko pipeline_tag: translation --- [https://github.com/jwj7140/Gugugo](https://github.com/jwj7140/Gugugo) Prompt Template: ``` ### 한국어: {sentence}</끝> ### 일본어: ``` ``` ### 일본어: {sentence}</끝> ### 한국어: ```
shiveshnavin/my-dreambooth
shiveshnavin
2023-09-02T07:01:51Z
2
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-02T05:01:54Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of shivesh tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
Jakir057/finetuned-indian-food
Jakir057
2023-09-02T06:53:08Z
192
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T06:19:35Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-indian-food results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-indian-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.0026 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7056 | 0.1 | 100 | 0.5113 | 0.8881 | | 0.3027 | 0.21 | 200 | 0.1280 | 0.9796 | | 0.2823 | 0.31 | 300 | 0.1580 | 0.9656 | | 0.3273 | 0.42 | 400 | 0.0879 | 0.9837 | | 0.1808 | 0.52 | 500 | 0.0812 | 0.9822 | | 0.2101 | 0.63 | 600 | 0.0339 | 0.9937 | | 0.1495 | 0.73 | 700 | 0.0568 | 0.9833 | | 0.1296 | 0.84 | 800 | 0.0629 | 0.9844 | | 0.1462 | 0.94 | 900 | 0.0886 | 0.9733 | | 0.0519 | 1.04 | 1000 | 0.0544 | 0.9870 | | 0.3192 | 1.15 | 1100 | 0.0892 | 0.9726 | | 0.158 | 1.25 | 1200 | 0.0632 | 0.98 | | 0.0266 | 1.36 | 1300 | 0.0233 | 0.9944 | | 0.1832 | 1.46 | 1400 | 0.0292 | 0.9930 | | 0.1212 | 1.57 | 1500 | 0.0489 | 0.9852 | | 0.0994 | 1.67 | 1600 | 0.0142 | 0.9974 | | 0.0219 | 1.78 | 1700 | 0.0277 | 0.9930 | | 0.0664 | 1.88 | 1800 | 0.0158 | 0.9974 | | 0.0834 | 1.99 | 1900 | 0.0124 | 0.9978 | | 0.1093 | 2.09 | 2000 | 0.0140 | 0.9974 | | 0.1726 | 2.19 | 2100 | 0.0147 | 0.9963 | | 0.0476 | 2.3 | 2200 | 0.0058 | 0.9993 | | 0.0257 | 2.4 | 2300 | 0.0424 | 0.9911 | | 0.0215 | 2.51 | 2400 | 0.0076 | 0.9989 | | 0.0748 | 2.61 | 2500 | 0.0099 | 0.9974 | | 0.0059 | 2.72 | 2600 | 0.0053 | 0.9993 | | 0.0527 | 2.82 | 2700 | 0.0149 | 0.9963 | | 0.0203 | 2.93 | 2800 | 0.0041 | 0.9993 | | 0.0791 | 3.03 | 2900 | 0.0033 | 0.9989 | | 0.0389 | 3.13 | 3000 | 0.0033 | 0.9989 | | 0.0459 | 3.24 | 3100 | 0.0044 | 0.9989 | | 0.0276 | 3.34 | 3200 | 0.0031 | 0.9996 | | 0.0139 | 3.45 | 3300 | 0.0028 | 0.9996 | | 0.0076 | 3.55 | 3400 | 0.0055 | 0.9985 | | 0.0097 | 3.66 | 3500 | 0.0027 | 0.9996 | | 0.0193 | 3.76 | 3600 | 0.0026 | 0.9996 | | 0.0471 | 3.87 | 3700 | 0.0027 | 0.9996 | | 0.0282 | 3.97 | 3800 | 0.0027 | 0.9996 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dt-and-vanilla-ardt/ardt-vanilla-robust_train_walker2d_level-0209_0608-99
dt-and-vanilla-ardt
2023-09-02T06:36:38Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-02T05:10:31Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-robust_train_walker2d_level-0209_0608-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-robust_train_walker2d_level-0209_0608-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
GyanPrakashKushwaha/Sentiment-Analysis
GyanPrakashKushwaha
2023-09-02T06:26:34Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-09-02T06:26:34Z
--- license: bigscience-openrail-m ---
NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEconsE4
NobodyExistsOnTheInternet
2023-09-02T06:23:16Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-09-02T05:20:49Z
--- license: mit --- Trained on Math Chain of thought, Chemistry and Physics domain knowledge, and chat V1
budecosystem/genz-70b
budecosystem
2023-09-02T06:03:21Z
2,642
30
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-21T11:36:04Z
--- language: - en library_name: transformers pipeline_tag: text-generation --- --- <div align="center"><h1 align="center">~ GenZ ~</h1><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/genz-logo.png" width=150></div> <p align="center"><i>Democratizing access to LLMs for the open-source community.<br>Let's advance AI, together. </i></p> --- ## Introduction 🎉 Welcome to **GenZ**, an advanced Large Language Model (LLM) fine-tuned on the foundation of Meta's open-source Llama V2 70B parameter model. At Bud Ecosystem, we believe in the power of open-source collaboration to drive the advancement of technology at an accelerated pace. Our vision is to democratize access to fine-tuned LLMs, and to that end, we will be releasing a series of models across different parameter counts (7B, 13B, and 70B) and quantizations (32-bit and 4-bit) for the open-source community to use, enhance, and build upon. <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/mt_bench_compare.png" width="500"></p> The smaller quantization version of our models makes them more accessible, enabling their use even on personal computers. This opens up a world of possibilities for developers, researchers, and enthusiasts to experiment with these models and contribute to the collective advancement of language model technology. GenZ isn't just a powerful text generator—it's a sophisticated AI assistant, capable of understanding and responding to user prompts with high-quality responses. We've taken the robust capabilities of Llama V2 and fine-tuned them to offer a more user-focused experience. Whether you're seeking informative responses or engaging interactions, GenZ is designed to deliver. And this isn't the end. It's just the beginning of a journey towards creating more advanced, more efficient, and more accessible language models. We invite you to join us on this exciting journey. 🚀 --- <h2>Milestone Releases ️🏁</h2> **[21 August 2023]** [_GenZ-70B_](https://huggingface.co/budecosystem/genz-70b) : We're excited to announce the release of our Genz 70BB model. Experience the advancements by downloading the model from [HuggingFace](https://huggingface.co/budecosystem/genz-70b). **[27 July 2023]** [_GenZ-13B V2 (ggml)_](https://huggingface.co/budecosystem/genz-13b-v2-ggml) : Announcing our GenZ-13B v2 with ggml. This variant of GenZ can run inferencing using only CPU and without the need of GPU. Download the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2-ggml). **[27 July 2023]** [_GenZ-13B V2 (4-bit)_](https://huggingface.co/budecosystem/genz-13b-v2-4bit) : Announcing our GenZ-13B v2 with 4-bit quantisation. Enabling inferencing with much lesser GPU memory than the 32-bit variant. Download the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2-4bit). **[26 July 2023]** [_GenZ-13B V2_](https://huggingface.co/budecosystem/genz-13b-v2) : We're excited to announce the release of our Genz 13B v2 model, a step forward with improved evaluation results compared to v1. Experience the advancements by downloading the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2). **[20 July 2023]** [_GenZ-13B_](https://huggingface.co/budecosystem/genz-13b) : We marked an important milestone with the release of the Genz 13B model. The journey began here, and you can partake in it by downloading the model from [Hugging Face](https://huggingface.co/budecosystem/genz-13b). --- <h2>Evaluations 🎯</h2> Evaluating our model is a key part of our fine-tuning process. It helps us understand how our model is performing and how it stacks up against other models. Here's a look at some of the key evaluations for GenZ 70B: <h3>Benchmark Comparison</h3> We've compared GenZ models to understand the improvements our fine-tuning has achieved. | Model Name | MT Bench | MMLU | Human Eval | BBH | |:----------:|:--------:|:----:|:----------:|:----:| | Genz 13B | 6.12 | 53.62| 17.68 | 37.76| | Genz 13B v2| 6.79 | 53.68| 21.95 | 38.1 | | Genz 70B | 7.33 | 70.32| 37.8 |54.69 | <h3>MT Bench Score</h3> A key evaluation metric we use is the MT Bench score. This score provides a comprehensive assessment of our model's performance across a range of tasks. <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/mt_bench_score.png" width="500"></p> --- <h2>Getting Started on Hugging Face 🤗</h2> Getting up and running with our models on Hugging Face is a breeze. Follow these steps: <h3>1️⃣ : Import necessary modules</h3> Start by importing the necessary modules from the ‘transformers’ library and ‘torch’. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("budecosystem/genz-70b", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("budecosystem/genz-70b", torch_dtype=torch.bfloat16, rope_scaling={"type": "dynamic", "factor": 2}) prompt = "### User:\nWrite a python flask code for login management\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt") sample = model.generate(**inputs, max_length=128) print(tokenizer.decode(sample[0])) ``` Want to interact with the model in a more intuitive way? We have a Gradio interface set up for that. Head over to our GitHub page, clone the repository, and run the ‘generate.py’ script to try it out. Happy experimenting! 😄 <h2>Why Use GenZ? 💡</h2> You might be wondering, "Why should I choose GenZ over a pretrained model?" The answer lies in the extra mile we've gone to fine-tune our models. While pretrained models are undeniably powerful, GenZ brings something extra to the table. We've fine-tuned it with curated datasets, which means it has additional skills and capabilities beyond what a pretrained model can offer. Whether you need it for a simple task or a complex project, GenZ is up for the challenge. What's more, we are committed to continuously enhancing GenZ. We believe in the power of constant learning and improvement. That's why we'll be regularly fine-tuning our models with various curated datasets to make them even better. Our goal is to reach the state of the art and beyond - and we're committed to staying the course until we get there. But don't just take our word for it. We've provided detailed evaluations and performance details in a later section, so you can see the difference for yourself. Choose GenZ and join us on this journey. Together, we can push the boundaries of what's possible with large language models. --- <h2>Model Card for GenZ 70B 📄</h2> Here's a quick overview of everything you need to know about GenZ 70B. <h3>Model Details:</h3> - Developed by: Bud Ecosystem - Base pretrained model type: Llama V2 70B - Model Architecture: GenZ 70B, fine-tuned on Llama V2 70B, is an auto-regressive language model that employs an optimized transformer architecture. The fine-tuning process for GenZ 70B leveraged Supervised Fine-Tuning (SFT) - License: The model is available for commercial use under a custom commercial license. For more information, please visit: [Meta AI Model and Library Downloads](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) --- <h2>Intended Use 💼</h2> When we created GenZ 70B, we had a clear vision of how it could be used to push the boundaries of what's possible with large language models. We also understand the importance of using such models responsibly. Here's a brief overview of the intended and out-of-scope uses for GenZ 70B. <h3>Direct Use</h3> GenZ 70B is designed to be a powerful tool for research on large language models. It's also an excellent foundation for further specialization and fine-tuning for specific use cases, such as: - Text summarization - Text generation - Chatbot creation - And much more! <h3>Out-of-Scope Use 🚩</h3> While GenZ 70B is versatile, there are certain uses that are out of scope: - Production use without adequate assessment of risks and mitigation - Any use cases which may be considered irresponsible or harmful - Use in any manner that violates applicable laws or regulations, including trade compliance laws - Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2 Remember, GenZ 70B, like any large language model, is trained on a large-scale corpora representative of the web, and therefore, may carry the stereotypes and biases commonly encountered online. <h3>Recommendations 🧠</h3> We recommend users of GenZ 70B to consider fine-tuning it for the specific set of tasks of interest. Appropriate precautions and guardrails should be taken for any production use. Using GenZ 70B responsibly is key to unlocking its full potential while maintaining a safe and respectful environment. --- <h2>Training Details 📚</h2> When fine-tuning GenZ 70B, we took a meticulous approach to ensure we were building on the solid base of the pretrained Llama V2 70B model in the most effective way. Here's a look at the key details of our training process: <h3>Fine-Tuning Training Data</h3> For the fine-tuning process, we used a carefully curated mix of datasets. These included data from OpenAssistant, an instruction fine-tuning dataset, and Thought Source for the Chain Of Thought (CoT) approach. This diverse mix of data sources helped us enhance the model's capabilities across a range of tasks. <h3>Hyperparameters</h3> Here are the hyperparameters we used for fine-tuning: | Hyperparameter | Value | | -------------- | ----- | | Warmup Ratio | 0.04 | | Learning Rate Scheduler Type | Cosine | | Learning Rate | 2e-5 | | Number of Training Epochs | 3 | | Per Device Training Batch Size | 4 | | Gradient Accumulation Steps | 4 | | Precision | FP16 | | Optimizer | AdamW | --- <h2>Looking Ahead 👀</h2> We're excited about the journey ahead with GenZ. We're committed to continuously improving and enhancing our models, and we're excited to see what the open-source community will build with them. We believe in the power of collaboration, and we can't wait to see what we can achieve together. Remember, we're just getting started. This is just the beginning of a journey that we believe will revolutionize the world of large language models. We invite you to join us on this exciting journey. Together, we can push the boundaries of what's possible with AI. 🚀 --- Check the GitHub for the code -> [GenZ](https://raw.githubusercontent.com/BudEcosystem/GenZ)
miaoyh32/roberta-large-peft-p-tuning
miaoyh32
2023-09-02T05:46:27Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-22T01:47:27Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
Hellstar1337/freyaLoRA
Hellstar1337
2023-09-02T05:45:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-02T05:41:39Z
--- license: creativeml-openrail-m ---
jmhessel/cosmo-v2-7b
jmhessel
2023-09-02T05:39:26Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-02T05:39:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
sushanadhikari/animal_detection
sushanadhikari
2023-09-02T05:31:02Z
223
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T05:30:56Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: animal_detection results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9909909963607788 --- # animal_detection Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg) #### girl ![girl](images/girl.jpg) #### gold fish ![gold fish](images/gold_fish.jpg) #### house ![house](images/house.jpg)
johaanm/test-planner-alpha-V5.9
johaanm
2023-09-02T05:14:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T05:14:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
dt-and-vanilla-ardt/ardt-vanilla-robust_train_walker2d_level-0209_0437-66
dt-and-vanilla-ardt
2023-09-02T05:08:32Z
35
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-02T03:38:44Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-robust_train_walker2d_level-0209_0437-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-robust_train_walker2d_level-0209_0437-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
vita-group/llama-2-7b_wanda_unstructured
vita-group
2023-09-02T05:03:35Z
10
0
null
[ "license:mit", "region:us" ]
null
2023-09-01T15:05:46Z
--- license: mit --- # Compressed LLM Model Zone The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). Credits to Ajay Jaiswal, Zhenyu Zhang. License: [MIT License](https://opensource.org/license/mit/) Setup environment ```shell pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117 pip install transformers==4.31.0 pip install accelerate ``` How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer base_model = 'llama-2-7b' comp_method = 'magnitude_unstructured' comp_degree = 0.2 model_path = f'vita-group/{base_model}_{comp_method}' model = AutoModelForCausalLM.from_pretrained( model_path, revision=f's{comp_degree}', torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf') input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` | | Base Model | Model Size | Compression Method | Compression Degree | |---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| | 0 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) | | 1 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) | | 2 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) | | 3 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) | | 4 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) | | 5 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) | | 6 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) | | 7 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) | | 8 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) | | 9 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) | | 10 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1) | | 11 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2) | | 12 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) | | 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) | | 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |
spssspss0712/my_awesome_swag_model
spssspss0712
2023-09-02T04:40:41Z
103
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-09-02T03:10:29Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: my_awesome_swag_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_swag_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 1.0292 - Accuracy: 0.7910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7701 | 1.0 | 4597 | 0.5856 | 0.7695 | | 0.3699 | 2.0 | 9194 | 0.6229 | 0.7873 | | 0.1533 | 3.0 | 13791 | 1.0292 | 0.7910 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
rpi-zhar2/RSNA
rpi-zhar2
2023-09-02T04:36:27Z
0
0
null
[ "region:us" ]
null
2023-09-02T04:33:33Z
vits_model_1.pth => train loss: 0.442 && valid loss: 0.556
cfchase/stable-diffusion-rhteddy
cfchase
2023-09-02T04:30:11Z
3
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-21T02:50:44Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: true extra_gated_prompt: |- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. CompVis claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license --- # Red Hat Teddy ## Fine Tuned from Stable Diffusion v1-5 This model was based on [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) and finetuned to generate pictures of `rhteddy`. ![redhat dog](redhat-dog-small.jpg) ### Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "cfchase/stable-diffusion-rhteddy" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of rhteddy on the beach" image = pipe(prompt).images[0] image ```
Imxxn/AudioCourseU4-MusicClassification
Imxxn
2023-09-02T04:21:50Z
162
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-02T01:42:30Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: AudioCourseU4-MusicClassification results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AudioCourseU4-MusicClassification This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8804 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7993 | 1.0 | 225 | 1.5770 | 0.4 | | 1.0767 | 2.0 | 450 | 0.9900 | 0.7 | | 0.8292 | 3.0 | 675 | 0.8554 | 0.73 | | 0.5892 | 4.0 | 900 | 0.8991 | 0.74 | | 0.1584 | 5.0 | 1125 | 0.8473 | 0.78 | | 0.0082 | 6.0 | 1350 | 0.9282 | 0.8 | | 0.0094 | 7.0 | 1575 | 1.0036 | 0.82 | | 0.0581 | 8.0 | 1800 | 1.2186 | 0.82 | | 0.0021 | 9.0 | 2025 | 1.0192 | 0.83 | | 0.0011 | 10.0 | 2250 | 0.8804 | 0.88 | | 0.002 | 11.0 | 2475 | 1.1519 | 0.83 | | 0.0009 | 12.0 | 2700 | 0.9439 | 0.87 | | 0.0006 | 13.0 | 2925 | 1.1227 | 0.84 | | 0.0008 | 14.0 | 3150 | 1.0344 | 0.86 | | 0.0006 | 15.0 | 3375 | 1.0209 | 0.86 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
kwholee/distilbert-base-uncased-finetuned-emotion
kwholee
2023-09-02T04:05:10Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T03:28:15Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9259991388364199 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2102 - Accuracy: 0.926 - F1: 0.9260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8314 | 1.0 | 250 | 0.3108 | 0.9085 | 0.9077 | | 0.2446 | 2.0 | 500 | 0.2102 | 0.926 | 0.9260 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
gg-ai/beto-base-peft-p-tuning-sentiment
gg-ai
2023-09-02T04:00:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T04:00:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
gdhdp/xiao
gdhdp
2023-09-02T03:52:50Z
0
0
diffusers
[ "diffusers", "dataset:Open-Orca/OpenOrca", "arxiv:1910.09700", "license:openrail", "region:us" ]
null
2023-09-02T03:50:57Z
--- license: openrail datasets: - Open-Orca/OpenOrca library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wangrongsheng/Baichuan-13B-Chat-sft-merge
wangrongsheng
2023-09-02T03:38:05Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T03:36:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
nightdude/config_81190
nightdude
2023-09-02T02:59:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T02:58:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
ardt-multipart/ardt-multipart-robust_train_walker2d_level-0209_0140-99
ardt-multipart
2023-09-02T02:43:07Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-02T00:42:39Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_walker2d_level-0209_0140-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_walker2d_level-0209_0140-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-robust_train_halfcheetah_level-0209_0046-99
ardt-multipart
2023-09-02T02:02:23Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T23:48:11Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_halfcheetah_level-0209_0046-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_halfcheetah_level-0209_0046-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
FelipeCasali-USP/lgpd_pii_identifier
FelipeCasali-USP
2023-09-02T02:00:33Z
10
3
transformers
[ "transformers", "distilbert", "token-classification", "pt", "doi:10.57967/hf/1026", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-27T01:45:54Z
--- language: pt license: apache-2.0 widget: - text: "123.456.789-0" example_title: "CPF" - text: "75528899000119" example_title: "CNPJ (sem pontuação)" - text: "Nome Completo" example_title: "Felipe Casali Silva" - text: "Dados diversos" example_title: "Felipe Casali Silva, Teste, Rio de Janeiro, RJ" --- # lgpd_pii_identifier : LGPD PII Identifier lgpd_pii_identifier is a pre-trained NLP model to identify sensitive data in the scope of LGPD (Lei Geral de Proteção de Dados) The goal is to have a tool to identify document numbers like CNPJ, CPF, people's names and other kind of sensitive data, allowing companies to find and anonymize data according to their businness needs, and governance rules. ## Applications ### Identify PII (Personal Identifiable Information) in the scope of LGPD # WIP (Add image here) ## Usage In order to use the model, you need to get the HuggingFace auth token. You can get it [here](https://huggingface.co/settings/token). ```python from transformers import DistilBertModel, DistilBertTokenizer import numpy as np pred_mapper = { 0: "cnpj", 1: "cpf", 2: "nome", 3: "estado" } tokenizer = DistilBertTokenizer.from_pretrained("FelipeCasali-USP/lgpd_pii_identifier") lgpd_pii_identifier = DistilBertModel.from_pretrained("FelipeCasali-USP/lgpd_pii_identifier") tokens = tokenizer(["String to be analized"], return_tensors="pt", padding=True, truncation=True, max_length=512) lgpd_pii_identifier_outputs = lgpd_pii_identifier(**tokens) preds = [pred_mapper[np.argmax(pred)] for pred in lgpd_pii_identifier_outputs.logits.cpu().detach().numpy()] ``` ## Author - [Felipe Casali](https://www.linkedin.com/in/felipecasali/) ## Paper - Paper: WIP - MBA thesis: [lgpd_pii_identifier: Proteção de Dados Sensíveis na Era da Inteligência Artificial](WIP)
Laly/intel_image_classification_fastai
Laly
2023-09-02T01:47:48Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:47:44Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Isaacf/intel_image_classification_fastai
Isaacf
2023-09-02T01:44:54Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:44:50Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
baibaibai/baini_VoiceBank
baibaibai
2023-09-02T01:44:46Z
0
0
null
[ "UTAU", "diffsinger", "ja", "zh", "license:cc-by-nc-4.0", "region:us" ]
null
2023-09-01T13:36:24Z
--- license: cc-by-nc-4.0 language: - ja - zh tags: - UTAU - diffsinger --- 你好感谢您使用白溺的歌声数据库。 使用规约: 1.禁止用于 宗教 政治,等等,任何违反法律内容的创作。 2.禁止将本音源使用于大众雷点相关内容的创作(例如:为有不良行为的人或物进行二创) 3.允许用于非商业用途且不违反规约的创作。 4.用于商业用途或者盈利,需要向音源管理者申请授权。一般来说都是免费的。 5.使用本音源,不论是商业还是非商,不论是主唱还是和声等职位,都应清晰明了的标注声库名以及所属位置(例:和声:白溺) 6.本音源的oto文件以及wav名,wav文件,引擎模型文件等等,这类由本音源配布的内容以及配布内容二次生成的物品,未说明允许二次配布的,都视为不允许二次配布,也不允许用于违反此规约的创作。(注:使用本音源所配布的内容,进行ai或者其他的类似程序的训练学习等等,或其他近似的行为。属于对已配布内容的二次生成物,不允许以任何形式的分发) 7.更不允许,将此音源与其他音源二次拼接起来命名为新的音源。也不允许制作该音源的亚种,如果有亚种需求,请以音色的名义发布(例如:白溺·秋风)。不允许对音源的文件进行二次修改后以新的命名发布。 需要违反规约的事情,或者规约没有写明白的事情,请咨询声库管理者,声库管理者拥有本规约的最终解释权。 歌手基础信息: 歌手信息: 姓名:白溺 性别:男 生日:7月20日 中之人:小白菌(小雨天) 声库管理者/版权归属:小白菌菌 https://space.bilibili.com/207917768 通过邮箱联系我:[email protected](我可能只是偶尔看一眼)
javidjamae/autotrain-movie-sentiment-86557143111
javidjamae
2023-09-02T01:44:36Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "deberta", "text-classification", "autotrain", "en", "dataset:javidjamae/autotrain-data-movie-sentiment", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T01:43:36Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain" datasets: - javidjamae/autotrain-data-movie-sentiment co2_eq_emissions: emissions: 0.0061768979977510595 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 86557143111 - CO2 Emissions (in grams): 0.0062 ## Validation Metrics - Loss: 0.736 - Accuracy: 0.747 - Precision: 0.669 - Recall: 0.993 - AUC: 0.932 - F1: 0.800 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/javidjamae/autotrain-movie-sentiment-86557143111 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("javidjamae/autotrain-movie-sentiment-86557143111", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("javidjamae/autotrain-movie-sentiment-86557143111", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Jgutierrez90/intel_image_classification_fastai
Jgutierrez90
2023-09-02T01:44:09Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:44:06Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
felipelondo/intel_image_classification_fastai
felipelondo
2023-09-02T01:42:19Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:42:14Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Andresf7/intel_image_classification_fastai
Andresf7
2023-09-02T01:40:03Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:39:59Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Dagaviri/intel_image_classification_fastai
Dagaviri
2023-09-02T01:33:22Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:33:18Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
dacuervo1/intel_image_classification_fastai
dacuervo1
2023-09-02T01:30:29Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:30:25Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
AshtakaOOf/csm-bg
AshtakaOOf
2023-09-02T01:29:49Z
0
4
null
[ "art", "anime", "chainsaw-man", "loha", "text-to-image", "license:cc-by-nc-sa-4.0", "region:us" ]
text-to-image
2023-05-25T00:35:39Z
--- license: cc-by-nc-sa-4.0 pipeline_tag: text-to-image thumbnail: "https://media.discordapp.net/attachments/1102319457180856411/1113586206836535396/00145-2181918707.png" tags: - art - anime - chainsaw-man - loha --- # MOVED HERE: [AshtakaOOf/ash-networks](https://huggingface.co/AshtakaOOf/ash-networks) <details id="Dropdown"> <summary style="font-size: 1.10em"><strong>Old README.md</strong> (click to open the dropdown)</summary> <p align="center", style="font-size: 2.8rem; font-weight: bold; color: #f6df00;">Chainsaw Man LoHa</p> <p align="center", style="font-size: 1.2rem; font-weight: bold; color: #bf5a5f;">Use at 0.6 to 0.8 weight for best quality</p> <p align="center"><img src="https://media.discordapp.net/attachments/1102319457180856411/1113583145128833135/00118-1819962614.png" width="512"> <img src="https://media.discordapp.net/attachments/1102319457180856411/1113586206836535396/00145-2181918707.png" width="512"></p> <p align="center">Trained by AshtakaOOf</p> <p align="center">Dataset provided by High Speed Rail Enjoyer</p> # Main Token: ``` M,A,P ``` # Characters Tokens: ``` denji_(chainsaw_man) makima_(chainsaw_man) power_(chainsaw_man) hayakawa_aki himeno_(chainsaw_man) higashiyama_kobeni ``` # Examples: ![Denji](https://media.discordapp.net/attachments/1102319457180856411/1113575202400505948/tmpnc7puytv.png?width=466&height=657) ``` 1boy, male focus, solo, shirt, smile, teeth, sky, blonde hair, cloud, sharp teeth, white shirt, upper body, day, brown eyes, spiked hair, looking at viewer, cloudy sky, red eyes, grin, ((masterpiece)), denji_(chainsaw_man) ``` ![Power](https://media.discordapp.net/attachments/1102319457180856411/1113546405190053988/00015-3514920506.png?width=467&height=657) ``` 1girl, horns, solo, teeth, sharp teeth, sky, open mouth, cross-shaped pupils, long hair, cloud, hair over one eye, looking at viewer, demon horns, blue sky, day, outdoors, yellow eyes, hood, blonde hair, anime coloring, red horns, cloudy sky, jacket, ((masterpiece)), power_(chainsaw_man), M,A,P ``` ![Himeno Ramen](https://media.discordapp.net/attachments/1102319457180856411/1113571030326325371/tmpmwkbo72r.png?width=996&height=563) ``` 1girl, solo, breasts, looking_at_viewer, short_hair, bangs, shirt, black_hair, holding, white_shirt, food, necktie, collared_shirt, indoors, medium_hair, cup, v, eyepatch, table, plant, black_necktie, plate, bowl, cigarette, chopsticks, spoon, noodles, holdingcigarette, ramen, restaurant, himeno(chainsaw_man), M, A, P ``` </details>
dfelorza/intel_image_classification_fastai
dfelorza
2023-09-02T01:28:28Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:28:24Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
DavidOsorio/intel_image_classification_fastai
DavidOsorio
2023-09-02T01:26:54Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:26:50Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed